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Abstract

Data-driven models of the 3D face are a promising direction for cap-

turing the subtle complexities of the human face, and a central component

to numerous applications thanks to their ability to simplify complex tasks.

Most data-driven approaches to date were built from either a relatively

limited number of samples or by synthetic data augmentation, mainly be-

cause of the difficulty in obtaining large-scale and accurate 3D scans of the

face. Yet, there is a substantial amount of information that can be gathered

when considering publicly available sources that have been captured over

the last decade, whose combination can potentially bring forward more

powerful models.

This thesis proposes novel methods for building data-driven models

of the 3D face geometry, and investigates whether improved performances

can be obtained by learning from large and varied datasets of 3D facial

scans. In order to make efficient use of a large number of training samples

we develop novel deep learning techniques designed to effectively handle

three-dimensional face data. We focus on several aspects that influence

the geometry of the face: its shape components including fine details, its

motion components such as expression, and the interaction between these

two subspaces.

We develop in particular two approaches for building generative mod-

els that decouple the latent space according to natural sources of variation,

e.g.identity and expression. The first approach considers a novel deep

autoencoder architecture that allows to learn a multilinear model without

requiring the training data to be assembled as a complete tensor. We next

propose a novel non-linear model based on adversarial training that fur-

ther improves the decoupling capacity. This is enabled by a new 3D-2D

architecture combining a 3D generator with a 2D discriminator, where both

domains are bridged by a geometry mapping layer.

As a necessary prerequisite for building data-driven models, we also

address the problem of registering a large number of 3D facial scans in

motion. We propose an approach that can efficiently and automatically

handle a variety of sequences while making minimal assumptions on the

input data. This is achieved by the use of a spatiotemporal model as well as

a regression-based initialization, and we show that we can obtain accurate

registrations in an efficient and scalable manner.

Finally, we address the problem of recovering surface normals from

natural images, with the goal of enriching existing coarse 3D reconstruc-

tions. We propose a method that can leverage all available image and

normal data, whether paired or not, thanks to a new cross-modal learning

architecture. Core to our approach is a novel module that we call deac-

tivable skip connections, which allows to transfer the local details from

the image to the output surface without hurting the performance when

autoencoding modalities, achieving state-of-the-art results for the task.

Keywords. 3D face modeling • Decoupled generative models • 4D face

registration • Surface normal estimation
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Résumé

Les modèles du visage 3D fondés sur des données sont une direction

prometteuse pour capturer les subtilités complexes du visage humain, et

une composante centrale de nombreuses applications grâce à leur capa-

cité à simplifier des tâches complexes. La plupart des approches basées

sur les données à ce jour ont été construites à partir d’un nombre limité

d’échantillons ou par une augmentation par données synthétiques, princi-

palement en raison de la difficulté à obtenir des scans 3D à grande échelle.

Pourtant, il existe une quantité substantielle d’informations qui peuvent

être recueillies lorsque l’on considère les sources publiquement accessibles

qui ont été capturées au cours de la dernière décennie, dont la combinaison

peut potentiellement apporter des modèles plus puissants.

Cette thèse propose de nouvelles méthodes pour construire des mo-

dèles de la géométrie du visage 3D fondés sur des données, et examine si

des performances améliorées peuvent être obtenues en apprenant à par-

tir d’ensembles de données vastes et variés. Afin d’utiliser efficacement

un grand nombre d’échantillons d’apprentissage, nous développons de

nouvelles techniques d’apprentissage profond conçues pour gérer efficace-

ment les données faciales tri-dimensionnelles. Nous nous concentrons sur

plusieurs aspects qui influencent la géométrie du visage : ses composantes

de forme, y compris les détails, ses composants de mouvement telles que

l’expression, et l’interaction entre ces deux sous-espaces.

Nous développons notamment deux approches pour construire des

modèles génératifs qui découplent l’espace latent en fonction des sources

naturelles de variation, e.g.identité et expression. La première approche

considère une nouvelle architecture d’auto-encodeur profond qui permet

d’apprendre un modèle multilinéaire sans nécessiter l’assemblage des don-

nées comme un tenseur complet. Nous proposons ensuite un nouveau

modèle non linéaire basé sur l’apprentissage antagoniste qui davantage

améliore la capacité de découplage. Ceci est rendu possible par une nou-

velle architecture 3D-2D qui combine un générateur 3D avec un discrimina-

teur 2D, où les deux domaines sont connectés par une couche de projection

géométrique.

En tant que besoin préalable à la construction de modèles basés sur

les données, nous abordons également le problème de mise en correspon-

dance d’un grand nombre de scans 3D de visages en mouvement. Nous

proposons une approche qui peut gérer automatiquement une variété de

séquences avec des hypothèses minimales sur les données d’entrée. Ceci

est réalisé par l’utilisation d’un modèle spatio-temporel ainsi qu’une ini-

tialisation basée sur la régression, et nous montrons que nous pouvons

obtenir des correspondances précises d’une manière efficace et évolutive.

Finalement, nous abordons le problème de la récupération des nor-

males de surface à partir d’images naturelles, dans le but d’enrichir les

reconstructions 3D grossières existantes. Nous proposons une méthode qui

peut exploiter toutes les images disponibles ainsi que les données normales,

qu’elles soient couplées ou non, grâce à une nouvelle architecture d’ap-

prentissage cross-modale. Notre approche repose sur un nouveau module

qui permet de transférer les détails locaux de l’image vers la surface de
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sortie sans nuire aux performances lors de l’auto-encodage des modalités,

en obtenant des résultats de pointe pour la tâche.
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1Introduction

The face is our main vehicle for communication, whether verbally, non-

verbally, or even involuntarily via micro-expressions. Our ability to produce at

least some of the facial expressions is an innate and not a cultural trait [Ekman

and Keltner, 1970], and thus deeply connected to our most basic instincts. It is

also our principal source for recognizing people: it is the face that we will recall

first when we think of someone. As such, it has long captivated researchers

from numerous domains, ranging from biology and psychology to computer

vision and computer graphics.

Digital faces have received similar attention and are equivalently challeng-

ing. They play a central role in the film and gaming industry, which has pushed

for impressive advances with the goal of creating believable characters. Highly

realistic faces can currently be modeled, rendered and animated, although the

process is still very complex and expensive, requiring significant manual input

from the artists. Digital 3D faces are also ubiquitous in consumer-grade applica-

tions. From more trivial tasks such as creating effects during a video-conference,

to the more promising applications of telepresence, avatar generation and fully

autonomous virtual agents, all of these rely on an underlying model of the

three-dimensional face. They are also part of numerous applications in the

medical field, including early diagnosis of craniofacial disorders [Suttie et al.,

2013], reconstruction of missing parts for implant design [Mueller et al., 2011],

and pain detection [Zhang et al., 2015], to name a few.

The key enabler for the majority of these applications is the underlying

parametric model: a function that generates a 3D face based only on a few

parameters, thus reducing the complexity of the task at hand. First proposed

almost fifty years ago by Parke [1974], parametric models are widely used in

the film industry thanks to their efficiency [Lewis et al., 2014b], as well as in

numerous computer vision tasks where the low-dimensional representation can

simplify ill-posed problems, e.g.recovering a 3D face from a single image [Blanz

and Vetter, 1999].

Building accurate models of the 3D face as well as its motion is a hard task,

due to two main reasons. First, the anatomy of the face is very complex. Its

shape is influenced by the underlying bone structure as well as the surrounding

tissue, and movement is induced by small muscles that are attached close to

the surface skin. When these muscles contract they create subtle but noticeable
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changes that include creases and wrinkles, deforming the surface in a mostly

non-rigid manner. To complicate things more, this highly flexible system varies

from person to person according to their underlying shape.

A second source of complexity comes from our remarkably tuned ability

to read expressions. Already in 1872 Charles Darwin argued that facial ex-

pressions are a biological and not a cultural trait [Darwin, 1872], and this was

shown to be true for at least certain “universal” expressions 1 in the seminal

work of psychologist Paul Ekman [Ekman and Keltner, 1970]. Since this is a

skill more instinctive than learned, we can easily recognize subtle errors made

by a computer generated face. This phenomenon has even been formalized

in the so-called uncanny valley hypothesis. Introduced by Mori et al. [1970],

the hypothesis relates the level of realism of a character with the emotional

response of the observer. The more realistic the better the response, but when

it reaches a point of almost-realistic, but not entirely, it produces a highly un-

pleasant effect due to our ability to recognize the missing aspects. Only when

the face is truly realistic one can overcome this “uncanny valley”.

Data-driven models are a promising direction for dealing with the afore-

mentioned complexities. The goal here is to learn the particularities of the face

from a database of real 3D scans, such that new identities and/or expressions

can be generated by manipulating a few parameters based on the statistics of

the database. Building such models involves several steps: scanning a large 3D

facial dataset with sufficient variation in terms of identities and expressions;

establishing correspondences among the captured data, such that they all share

the same mathematical representation; and correctly modeling the different

factors that affect the facial geometry using a meaningful parameterization.

Each of these steps has challenges that remain unsolved.

First, capturing and processing the necessary 3D scans for building data-

driven models is a laborious task, which is why most current models were

learned from relatively limited datasets. Yet, given the interest that the facial

shape has received from the research community, there is a large collection of

publicly available databases that were acquired throughout the last decades.

Combined, they cover a wide range of identities and expressions, whether

static (e.g. [Cao et al., 2013, Yin et al., 2006, Savran et al., 2008]) or in motion

(e.g. [Yin et al., 2008, Fanelli et al., 2010, Cosker et al., 2011, Zhang et al., 2014]),

and can even capture fine-scale details (e.g. [Stratou et al., 2011]). These datasets

are a valuable source of information for building data-driven models of the 3D

face, and the ability to learn patterns from all of them can potentially result in

more powerful models. But handling large 3D datasets coming from various

sources presents additional challenges, requiring methods that are at the same

time efficient, scalable and robust.

Establishing correspondences among raw scans is also a difficult problem,

challenged by noisy data, lack of distinctive structures in large areas of the

facial surface, and significant shape variations arising from different ethnicities,

1. Anger, disgust, fear, happiness, sadness and surprise.



1.1. CONTRIBUTIONS 5

age or expressions. The problem is even harder when dealing with large

datasets for which its capture setup is not fully controlled, such as the ones

previously mentioned.

Finally, there are many factors that influence the facial shape, and accu-

rately capturing these poses too several challenges. One aspect that is often

overlooked, and yet necessary for correctly animating a face, is how to model

the interactions that occur between the shape and motion-related components

of the face geometry; that is, how to correctly model the expressions taking into

account the underlying shape. This is typically approached by either building

independent models for the shape and expression spaces (thus ignoring any

possible interaction), or by building tensor-based models which, although tak-

ing into account these interactions, are hard to scale to large datasets. Another

challenging aspect is how to encode and recover detailed surfaces using a data-

driven approach, since low-dimensional parametric models usually struggle

to recover high-frequency information.

In this thesis we investigate whether better models for the 3D face geometry

can be obtained by learning from a large number of real 3D scans. We are

interested here in all aspects that influence the geometry of the face: its identity-

related components, including its details, as well as those that arise during

motion. To this end, we develop novel techniques for building decoupled

models (i.e.those that capture the interaction between the different subspaces)

in Chapters 3 and 5; address the problem of establishing dense correspondences

among a large number of datasets of 3D faces in motion in Chapter 4; and tackle

the problem of recovering finer details through a surface normal representation

in Chapter 6. Motivated by the need to handle large-scale datasets coming

from publicly available sources, we propose efficient and scalable methods

that take advantage of recent deep learning techniques, building performant

models that can profit from all available data.

1.1 Contributions

This thesis contributes novel methods for building data-driven models of

the 3D face, as well as a novel image/shape prior for the problem of surface

normal recovery. We focus here on models that can decouple the latent space

such that we can improve applications related to the facial motion. In the final

chapter we move the focus onto the problem of recovering surface details, an

aspect that is typically not encoded in low-dimensional parametric models. In

all cases we developed algorithms that can profit from both large and realistic

datasets, making use of deep learning frameworks to efficiently handle a large

and varied source of information.

We make in particular the following contributions:
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• A novel approach for building multilinear models from large datasets,

in order to decouple the parameterization in a scalable manner and

without the need to assemble the dataset into a complete tensor.

• A novel registration approach for 3D faces in motion, designed to ef-

ficiently and robustly put a large number of examples into a common

parameterization.

• A novel modeling framework for learning non-linear decoupled models

of the 3D face using adversarial learning. To enable this, we contribute

a new architecture based on a geometry mapping layer, that allows to

perform efficient convolutions on the 3D face while leveraging advances

in 2D neural networks.

• A novel method for the estimation of surface normals from uncon-

strained images, which can learn from large and unpaired datasets of

high-quality normals and in-the-wild 2D images of the face. To this

end we contribute the deactivable skip connections, a novel module that

enhances the capabilities of cross-modal learning and proved to be key

for training from unpaired data.

1.2 Outline

We begin by reviewing the related work in Chapter 2, including all the

necessary steps for building data-driven models.

Chapter 3 presents the multilinear autoencoder, an approach for building

tensor-based decoupled models from large datasets that cannot be assembled

into a complete tensor. We leverage the capacity of deep neural networks

to optimize efficiently over large datasets and propose a new autoencoder

architecture that allows to refine an initial multilinear model, such that it can

better capture all available data.

Chapter 4 considers the problem of registration, and introduces a novel

approach designed to handle large datasets of 3D faces in motion. Key to the

method is the use of a spatiotemporal model as well as a regression-based

initialization approach, which allows to efficiently process a large number of

frames and sequences.

With a large and registered dataset now in hand, Chapter 5 revisits the prob-

lem of building decoupled models through a novel framework that makes use

of recent generative adversarial learning techniques. This is enabled by a new

3D-2D architecture that allows to generate three-dimensional data while profit-

ing from advances in 2D neural networks, where both domains are bridged by

a geometry mapping layer.

In Chapter 6 we move the focus to the problem of estimating surface nor-

mals from unconstrained images, and propose a novel approach based on

cross-modal learning which allows to learn a rich latent space that encodes
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both 2D facial image and 3D surface normal information, achieving state-of-

the-art results for the task.

Finally, Chapter 7 concludes with a summary of our main contributions as

well as considerations for future directions that extend this work.

1.3 Publications

The material presented in this thesis is based on the following publications:

Chapter 3:

• FERNANDEZ ABREVAYA, V., WUHRER, S., BOYER, E. Multilinear Au-

toencoder for 3D Face Model Learning. IEEE Winter Conference on Appli-

cations of Computer Vision (WACV). (2018)

Chapter 4:

• FERNANDEZ ABREVAYA, V., WUHRER, S., BOYER, E. Spatiotemporal

Modeling for Efficient Registration of Dynamic 3D Faces. IEEE Interna-

tional Conference on 3D Vision (3DV). (2018)

Chapter 5:

• FERNANDEZ ABREVAYA, V., BOUKHAYMA, A., WUHRER, S., BOYER,

E. A Decoupled 3D Facial Shape Model by Adversarial Training. IEEE

International Conference on Computer Vision (ICCV). (2019)

Chapter 6:

• FERNANDEZ ABREVAYA, V., BOUKHAYMA, A., TORR, P.H.S., BOYER, E.

Cross-modal Deep Face Normals with Deactivable Skip Connections.

IEEE conference on computer vision and pattern recognition (CVPR). (2020)





2Background

There are several ways by which we can discretize a 3D surface for com-

putational purposes. A commonly used approach, and the one we follow

throughout most of this thesis, is to represent the surface as a triangular

mesh: a collection of vertices V = {vi ∈ R3, i ∈ [1 . . .n]} and triangular facets

F = {(vi,vj,vk), vi , vj , vk ∈ V} that approximate the real, continuous, surface.

An example of a facial mesh can be seen in Figure 2.1. This allows to represent

the discrete 3D points as encoded by V , as well as any intermediate point p

inside a triangle (vi , vj , vk) through its barycentric coordinates (α,β), such that

p = αvi + βvj +γvk , with α + β +γ = 1,α,β,γ ≥ 0. Triangular meshes can also

be parameterized into 2D by a one-to-one mapping φ : V →D, in which each

vertex vi ∈ V is associated with a coordinate (u,v)i in the unit square domain

D. This so-called UV parameterization allows to store in a regular grid the

associated color textures, displacement maps, normal maps, or even the ge-

ometry [Gu et al., 2002], encoding dense surface information by interpolating

with the barycentric coordinates.

If we want to recover a mesh of n vertices with known triangulation F from

an input (e.g.a 2D image) we need to estimate 3n parameters –a large number

of degrees of freedom if the mesh has a reasonable resolution. Fortunately, this

can be significantly reduced when dealing with a specific class of shapes such

as the face. Here the amount of variation among different instances is much

less than when dealing with arbitrary objects, and one can presume that the

shapes live in a manifold of dimension d << 3n. Numerous methods have been

proposed that exploit this fact using dimensionality reduction techniques over

a training dataset [Blanz and Vetter, 1999, Vlasic et al., 2005] or by hand-crafting

a set of d basic facial shapes that can then be linearly combined [Lewis et al.,

2014b]. Not only this reduces the dimensionality, but also provides a strong

prior knowledge on which facial meshes are plausible that can greatly benefit

tasks such as 3D reconstruction from images or real-time facial animation.

Several steps are needed before one can study the properties and common

patterns of the face geometry from a dataset of 3D scans. The first step is to

acquire such a dataset from real people, which should ideally contain detailed

scans of the geometry and be diverse in terms of age, sex, ethnicity, or facial

expressions (Section 2.1). The next step is to register the scans such that they

share a common parameterization: each face should contain the same number

of vertices and triangulation F , and each three-dimensional point should have
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Figure 2.1 – Example of facial mesh. From left to right: raw scan (from Savran

et al. [2008]), template mesh (adapted from Alexander et al. [2010]), registered

mesh.

the same anatomical meaning (Section 2.2). Once in correspondence the dataset

can be rigidly aligned (e.g.using Generalized Procrustes Analysis [Davies et al.,

2008]), removing rotation, translation, and optionally scale differences 1 such

that only variations due to shape remain.

With a registered and rigidly aligned dataset we can now study how each

of the vertices vary under different types of deformations. There are several

aspects of the face that can be captured by a model. Differences in morpho-

logical features give place to variations in identity: the traits that distinguish

one person from the other. These will be covered in Section 2.3.1. Another

important source of variation is that which occurs when performing different

expressions: changes that occur when a single identity is set in motion (Sec-

tion 2.3.2). A particular kind of models, that we call here decoupled models,

allow to capture variations in both identity and expression simultaneously,

while taking into account the interactions that occur between these two spaces;

these are discussed in Section 2.3.3. Another aspect is the encoding of details,

as parameteric models usually struggle with higher-frequency components

due to the low-dimensional representation; these are reviewed in Section 2.3.4.

Finally, the appearance of the face is also crucial for applications such as re-

alistic rendering and analysis-by-synthesis algorithms. We will not review

appearance models here as this work is focused on the geometric aspects of the

face –interested readers are referred to Klehm et al. [2015], Egger et al. [2019].

This chapter is intended only as a brief overview that will serve as back-

ground information for the chapters to come. For a more detailed treatment we

refer to Brunton et al. [2014b], Egger et al. [2019] regarding data-driven facial

shape models, Lewis et al. [2014b], Orvalho et al. [2012] for 3D facial animation

and Zollhöfer et al. [2018] for the application of 3D face reconstruction from

monocular input.

1. For anatomical shapes, scale is usually preserved.
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2.1 Acquisition

There exists a variety of scanners that can accurately measure the 3D surface

of the face. A typical classification divides them into active and passive, where

the former acquires data by emitting a signal which is then measured by a

sensor, while the latter employ sensing devices alone such as two or more

RGB cameras. Each of these has its own strengths and weaknesses, as well

as its own noise characteristics. Active systems include laser scanners [Levoy

et al., 2000] which were used for faces in e.g. Blanz and Vetter [1999], structured

light scanners [Geng, 2011], which were used in e.g. Savran et al. [2008] and

time-of-flight devices [Hansard et al., 2012], used for example in Cao et al.

[2014a]. The accuracy and speed of these sensors can vary greatly, ranging

from accurate at the cost of slower frame rates (e.g. the structured light scanner

used in [Paysan et al., 2009]), to real-time at the cost of lower resolution (e.g.the

Kinect sensor [Mutto et al., 2012]).

Passive methods estimate depth by reasoning about the reflected light as

captured by one or more sensing devices. A commonly used approach operates

by triangulating corresponding pixels from two (e.g. [Valgaerts et al., 2012]) or

more (e.g. [Beeler et al., 2010, Bradley et al., 2010]) RGB cameras, a technique

known as multi-view stereo. This allows the acquisition of both texture and

depth at high frame rates and are thus particularly well suited for dynamic

captures –many publicly available motion data such as [Cosker et al., 2011,

Yin et al., 2008] were acquired using this technique. Although the quality of

multi-view stereo methods has lagged behind active sensors for many years,

recent work e.g. [Beeler et al., 2010, 2011, Wu et al., 2011, Fyffe et al., 2017]

has demonstrated that high quality 3D scans of the face can be obtained with

purely passive approaches, under well-controlled studio setups.

As opposed to the previously mentioned geometric methods which estimate

surface positions, photometric methods are concerned with the estimation of the

surface normals, and have been used with both active and passive scanners.

This is achieved by analyzing the interaction of the light with the surface, either

from one image (a technique called shape-from-shading [Horn and Brooks,

1989]) or multiple images showing different illuminations, a technique called

photometric stereo [Woodham, 1980]. Both cases estimate dense per-pixel

orientations from which the shape can be recovered by integration [Quéau et al.,

2018], or combined with depth to improve an initial reconstruction [Nehab

et al., 2005]. These techniques are suitable for acquiring high frequency details

and perform well with the facial shape as they do not require a highly textured

surface. The most accurate facial acquisitions are typically obtained with

a combination of geometric and photometric methods, e.g. Ma et al. [2007],

Zivanov et al. [2009], Ghosh et al. [2011], Seck et al. [2016].

Although much research effort has been dedicated to reduce the quality

gap between high-end systems and consumer-grade devices (e.g.RGB or RGB-

D cameras), good quality acquisitions still need to be done using expensive

systems with complex setups and often costly offline computations. Thus,
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it is to date difficult and expensive to acquire a large dataset of 3D scans

that will allow the use of modern deep learning techniques. However, the

facial shape has always attracted much research interest, and as a consequence

numerous databases of 3D facial scans have been acquired and made publicly

available. For example, BU-3DFE [Yin et al., 2006], Bosphorus [Savran et al.,

2008], ND-2006 [Faltemier et al., 2007] or FaceWarehouse [Cao et al., 2013]

contain thousands of scans showing multiple identites in multiple expressions;

ICT-3DRFE [Stratou et al., 2011] and Photoface [Zafeiriou et al., 2011] were

captured using photometric systems and thus exhibit high frequency details;

and dynamic datasets such as BU-4DFE [Yin et al., 2008], D3DFACS [Cosker

et al., 2011], BP4D-Spontaneous [Zhang et al., 2014], B3D(AC)2 [Fanelli et al.,

2010] or CoMA [Ranjan et al., 2018] open up the possibility of analyzing the

facial surface in motion. In this work we study techniques to make use of this

large but varied source of information in order to learn richer models of the 3D

shape, as well as its motion-related components such as expression.

2.2 Registration

Capture systems typically return meshes that are inconsistent with each

other: each scan contains a different number of vertices, and each of these

vertices may have a different anatomical meaning (for example the i-th vertex

of one scan might be located at the tip of the nose, while the i-th vertex of

another scan might be located in the eye corner). This unordered representation

is clearly ill-suited for studying shape variations, as we do not know how each

point really varies from one shape to the next. In order to solve this we need

to put the data in correspondence, a process that is sometimes referred to as

registration.

Following the definition of Van Kaick et al. [2011], given a set of input

shapes S1,S2, . . . ,Sn the problem of finding correspondences is defined as that

of finding a meaningful relation R between the shapes. Correspondences can

be sparse, establishing a connection between a few, typically distinctive points;

or dense, where the correspondence is defined for all the primitive elements

of the shape (e.g.all the vertices of a mesh). Sparse correspondence for 3D

faces are commonly referred to as landmarks, and are defined in terms of

morphologically relevant and distinguishable features such as the eye corners

or the tip of the nose. Example works include Passalis et al. [2011], Creusot

et al. [2013], Bolkart and Wuhrer [2015a], Gilani et al. [2017]. We are mostly

concerned here with dense correspondences for the 3D face, as this will allow

to study the properties of entire facial surfaces. Example works include Blanz

and Vetter [1999], Amberg et al. [2007], Li et al. [2008] to name a few, and will

be elaborated in the following paragraphs.

The nature of the relation R also gives rise to different types of algorithms.

Rigid registration methods study the case where R is a rigid transformation:

the goal here is to find a global rotation R ∈ R3×3 and translation t ∈ R3 that
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will minimize some distance function between two shapes X and Y . A widely

used solution is the Iterative Closest Point (ICP) algorithm [Besl and McKay,

1992], which iterates between selecting the closest point as a matching corre-

spondence, and computing the optimal rigid transformation for these corre-

spondences by minimizing the point-to-point error function:

argmin
R∈R3×3,t∈R3

∑

pi∈X
||qi − (Rpi + t)||22, s.t.RTR = I,det(R) = 1 (2.1)

where qi ∈ Y is the closest point to (Rpi + t) given the current estimate for

R,t. The closest point search can be accelerated by using appropriate data

structures such as a kd-tree [Bentley, 1975] or by inverse calibration [Blais and

Levine, 1995]. An alternative to Equation 2.1 is to minimize the point-to-plane

function [Chen and Medioni, 1992, Low, 2004], which considers instead the

distance between (Rpi + t) and the tangent plane to the closest point:

argmin
R∈R3×3,t∈R3

∑

pi∈X

(

nT
qi
(Rpi + t−qi )

)2
, s.t.RTR = I,det(R) = 1 (2.2)

with nqi the normal vector at the closest point qi ∈ Y . Both cases will converge

to a local solution and as such require a good initialization, although it has

been shown that the point-to-plane formulation will typically converge faster.

Numerous variants have been proposed that tackle different aspects of the

algorithm, see e.g. [Castellani and Bartoli, 2012].

Non-rigid registration considers the case where R can be an arbitrary re-

lation; a significantly more complex problem with a larger solution space. A

common approach when working with a specific class of shapes is to do tem-

plate fitting: a pre-computed mesh (e.g.an artist-quality facial mesh) is warped

towards each of the scans, automatically establishing dense correspondences

among all shapes through the common template. Non-rigid variants for this

purpose differ mostly in the choice of deformation parameterization. This in-

cludes per-vertex affine transformations [Allen et al., 2003, Amberg et al., 2007],

vertex displacements [Weise et al., 2009, Salazar et al., 2014], free-form deforma-

tions (FFD) [Huang et al., 2003, Wang et al., 2004], thin-plate splines (TPS) [Chui

and Rangarajan, 2000, Patel and Smith, 2009, Hutton et al., 2001], deformation

graph [Li et al., 2008], physics-based models [Passalis et al., 2005], gaussian

mixture models [Myronenko et al., 2007] and gaussian process deformation

model [Gerig et al., 2018].

An alternative, used particularly for faces, is to perform the registration

in the 2D domain by leveraging the associated UV texture map. Blanz and

Vetter [1999] proposed the use of optical flow on the texture maps of 200

subjects in neutral expressions, which worked well on their database of uniform

ethnicities. To handle more variations, Patel and Smith [2009] used instead

a TPS that interpolates manually annotated landmarks in the UV domain.

Manual annotations were replaced by an Active Appearance Model (AAM)

in Cosker et al. [2011] and Cheng et al. [2017a]. The work of Booth et al. [2018]
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compared the non-rigid ICP approach of Amberg et al. [2007] with the two

UV-based approaches (TPS and optical flow), and showed superior results

for non-rigid ICP, in the context of automatic registration of a large number

of neutral 3D faces. Dai et al. [2017] proposed instead to combine the two

alternatives, initially fitting a template using coherent point drift [Myronenko

et al., 2007] and afterwards refining using optical flow.

Non-rigid registration can also be aided by the use of a statistical model,

such as those outlined in Section 2.3. This was considered in e.g. Albrecht

et al. [2008], Schneider and Eisert [2009], Cheng et al. [2017b] which used a

linear model of shape or expression, Brunton et al. [2014a], Bolkart and Wuhrer

[2015a] that used a multilinear model, and Lüthi et al. [2017] that considered a

gaussian process model. Note how this is a chicken-and-egg problem: while

statistical models can be useful priors for registration, in order to build such a

model one requires a training set of registered meshes in the first place. One

solution is to use a bootstrapping approach as considered in e.g. [Blanz and

Vetter, 1999, Li et al., 2017]. Here an initial registration is used to build a

statistical model which in turn is used to improve the registrations, iterating for

a few times. Another option is to jointly optimize for the registration and the

model, a harder problem that was addressed in Bolkart and Wuhrer [2015b],

Zhang et al. [2016].

Finally, a line of work focuses on the case where the face is undergoing

a certain motion, a problem usually referred to as tracking. Examples of this

include Beeler et al. [2011], Bolkart and Wuhrer [2015a], Li et al. [2017]. If the

same template is used to track multiple motions then correspondences are

established both in space and time, expanding the scope of applications. We

contribute in Chapter 4 an approach for efficiently registering a large number of

3D facial scans in motion; a more detailed review of the topic will be presented

there.

2.3 Models

Once registered, each face can be represented as a vector x =

(x1, y1, z1, . . . ,xn, yn, zn) ∈ R
3n with n the number of vertices. We are now in

position to analyze a population of 3D faces {x1, . . . ,xm} and study how the

surface varies according to the different factors that influence the shape. The

next subsections will elaborate on the identity, expression, and high frequency

detail models that were built for this purpose.

2.3.1 Modeling Identity Variations

By far the most common approach for modeling identity variations is to

use Principal Component Analysis (PCA) [Jolliffe, 1986], assuming a normal

distribution of the shapes.

The process of building such a model begins by removing the average face

x̄ = 1
m

∑m
i=1 xi from each sample, i.e.x̃i = xi − x̄. The now centered data is assem-
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bled into the columns of a matrix X ∈ R3n×m, and an eigenvalue decomposition

of the covariance matrix is performed, e.g.by singular value decomposition

(SVD) of X. The eigenvectors v1, . . . ,vp associated with the non-zero eigenval-

ues provide an orthogonal basis for a new vector space that is decorrelated

and is typically of much lower dimensionality compared to R
3n, while the

eigenvalues λ1, . . . ,λp contain the variance of the data in the direction of each

eigenvector. The dimensionality can thus be further reduced by keeping the

d < p eigenvectors with largest eigenvalues, such that a certain percentage of

variance is retained. This process yields a generative model in which novel

faces can be synthesized from a vector w ∈ Rd by:

x(w) = x̄+Bw, (2.3)

where B ∈ R3n×d contains the d principal eigenvectors and w is the low dimen-

sional representation of x(w) ∈ R3n. Thanks to the Gaussian assumption we

can easily estimate the likelihood of each parameter wi in w, knowing that

P(wi ) = exp[−1/2( wi√
λi
)2]. This can be leveraged for regularization, as was done

in e.g. [Blanz and Vetter, 1999, Aldrian and Smith, 2013, Lewis et al., 2014a,

Patel and Smith, 2016, Thies et al., 2016].

The seminal work of Blanz and Vetter [1999] was the first to propose the

use of this model for a set of densely corresponded faces. Their so-called 3D

Morphable Model (3DMM) consisted of two independent PCA models, one

for shape and one for texture, trained from 200 scans of Caucasian subjects. An

improved version was made publicly available in Paysan et al. [2009], known as

the Basel face model. This is still widely used to date –see e.g. [Richardson et al.,

2016, Tran et al., 2017a, Zhu et al., 2017, Tewari et al., 2017, Genova et al., 2018,

Bas and Smith, 2019], and newer versions have been recently proposed [Gerig

et al., 2018]. Other publicly available alternatives include the multi-resolution

model of Huber et al. [2016], the models of Brunton et al. [2014b] and the

full-head models of Dai et al. [2017] and Li et al. [2017].

Equation 2.3 denotes a global model, in that a single parameter vector

generates the entire shape. Local models of identities have also been explored,

where several sub-models encode different regions of the face. This allows

more diversity in the generation process and better generalization to unseen

data, but the representation is less compact and harder to fit to ambiguous input

such as 2D images. The work of Blanz and Vetter [1999] already proposed

to build PCA models for five regions of the face, and several other works

followed this idea, e.g. ter Haar and Veltkamp [2008], De Smet and Van Gool

[2011], Brunton et al. [2011].

A drawback of PCA models is that they can only represent shapes that are

linear combinations of the training data, and hence require a large training set

with sufficient coverage. Booth et al. [2016] built a model from almost 10.000

identities, showing that indeed a larger set can yield models of higher quality.

Alternatively, Lüthi et al. [2017] model shape variations as a Gaussian Process,

which allows to compensate for the lack of data with manually designed
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kernels. In this thesis we approach this by learning models from a large scale

dataset acquired from multiple sources as explained in Section 2.1.

2.3.2 Modeling Expression Variations

Modeling expressions is considerably harder as the movement induced by

the muscles on the skin can be highly non-linear.

In the area of facial animation the use of parametric models was introduced

by Parke [1974], and since then many approaches have been proposed for

manipulating a 3D face based on a few parameters. Frequently employed in

the film industry is the blendshape model [Lewis et al., 2014b], used for example

to create Gollum in The Lord of the Rings or Benjamin Button in The Curious Case

of Benjamin Button. The blendshape model is based on a set of d meshes in

correspondence showing a single subject in multiple expressions, and generates

new faces as a linear combination of these:

x(w) = Bw, (2.4)

where B ∈ R
3n×d contains each expression mesh (the blendshapes) on the

columns. This is very similar to the PCA model of Equation 2.3 and follows the

same goal: to reduce the dimensionality and limit the range of deformations

allowed. Yet, there is an important difference: unlike PCA the bases are not

orthogonal with each other, but carry instead semantic meaning. For example,

the first basis might generate a smile and the second one a blink. This makes

it easier for artists to manipulate and animate the facial mesh, modifying

expressions by simply “sliding” the components of the parameter vector w.

Such semantic control is not possible with PCA, which in exchange offers better

compactness since the basis vectors have no redundancy.

The model can also be expressed as displacements from a selected neutral

face of the subject x0, known as the delta blendshape model:

x(w) = x0 +Bw, (2.5)

where B now contains displacements from the neutral face, i.e.(xi − x0) on each

column. This allows a more localized control if the blendshapes are focused

on a region, and to easily replace the identity by simply modifying the neutral

face x0. In order to build the basis vectors the blendshapes can be either

manually modeled by an artist (usually following the Facial Action Coding

System (FACS) [Ekman and Friesen, 1978] 2), scanned from an actor (e.g. [Weise

et al., 2009]), transferred from the expressions of a different actor [Li et al., 2010]

or automatically discovered [Bouaziz et al., 2013, Li et al., 2013].

The blendshape model has been widely adopted thanks to its simplicity

and semantic parameterization, but can present artifacts due to its linear nature.

In particular, it is easy to obtain unrealistic shapes when activating multiple

2. The Facial Action Coding System is a description of the visible facial movements, classifying

each into Action Units (AUs) which describe a contraction or relaxation of a specific muscle.
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blendshapes at the same time, and care must be taken when combining them

so that they do not interfere with each other. To address this some authors

proposed to include bilinear “correction” shapes bi,j [Lewis et al., 2014b] such

that x(w) = Bw+wiwjbi,j , which are only considered when two blendshapes

are simultaneously non-zero. Nonlinear corrections were also considered,

e.g. Seol et al. [2012], as well as the combination of blendshape models with

physical simulation [Barrielle et al., 2016, Cong et al., 2016, Kozlov et al., 2017,

Ichim et al., 2017, Barrielle and Stoiber, 2019].

In the computer vision community several works proposed extensions to

3DMM that handle expressive faces. Blanz et al. [2003] encoded expressions as

displacements from the corresponding neutral face and built a PCA model from

35 scanned expressions of a single subject. This idea was extended to several

subjects in the work of Amberg et al. [2008], while Yang et al. [2011] built

instead one PCA model per-expression. Local expression models have also

been considered, e.g. Decarlo and Metaxas [2000], Tena et al. [2011], Neumann

et al. [2013], Wu et al. [2016], Cheng et al. [2017b]. While these can generalize

better, they usually cannot capture the co-articulation effects that occur between

different parts of the face, e.g.the simultaneous movement of the eyes and

mouth during a smile. A few non-linear models were recently proposed, such

as Li et al. [2017] which includes jaw articulation and corrective blendshapes,

or Ranjan et al. [2018], Lombardi et al. [2018], Tran et al. [2019] that used deep

neural networks to model the expression space.

2.3.3 Modeling Identity and Expression Variations

Models that can simultaneously encode variations due to identity and

expression have clear advantages, as they can generalize to a larger scope of

scenarios.

Although it is possible to learn a single PCA model where both novel

identities and expressions are synthesized from a unique latent vector, this

would require a large amount of training data to properly generalize to un-

seen instances [Yang et al., 2011]. Only recently a few non-linear models

were proposed with this property by leveraging deep learning techniques,

e.g. Tran and Liu [2018], Bagautdinov et al. [2018], Shamai et al. [2019], Zhou

et al. [2019]. More importantly, such an entangled representation does not

allow to independently control the generation of identities and expressions,

excluding applications that take benefit of this such as animation, tracking and

recognition.

The most straightfoward and commonly adopted way of combining these

two spaces is by addition:

x(wid ,wexp) = fid (wid ) + fexp(wexp), (2.6)

where wid ∈ Rdid ,wexp ∈ Rdexp are the latent vectors for identity and expression

respectively, fid : Rdid −→ R
3n is a function that decodes the vertices of the
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neutral face, and fexp : Rdexpr −→ R
3n decodes displacement vectors from a

neutral expression. In the case of a linear model, typically fid (wid ) = x̄+Bidwid

with Bid a PCA basis for the identity space, and fexp(wexp) = Bexpwexp with

Bexp a PCA or a blendshape basis for expression. This is the approach followed

for example by Amberg et al. [2008], Garrido et al. [2016a], Thies et al. [2016],

Tewari et al. [2017], Liu et al. [2018], Kim et al. [2018a], Tewari et al. [2019].

A handful of works have also modeled either the identity or the expression

functions as nonlinear, such as Ranjan et al. [2018] where the PCA identity

model of Flame [Li et al., 2017] is combined with a deep mesh autoencoder for

expressions, or Tran et al. [2018, 2019], Li et al. [2020] that train a deep neural

network for each space.

The additive model of Equation 2.6 assumes that the expression displace-

ments are the same for all identities, ignoring the fact that the way an expression

is performed depends on the underlying shape. Bilinear [Tenenbaum and Free-

man, 2000, Chuang et al., 2002] and multilinear [Vasilescu and Terzopoulos,

2002, Vlasic et al., 2005] models address this through the use of factorization

techniques.

Multilinear models are mappings from a set of latent variables to the out-

put shape, such that the different factors modulate each other multiplicatively.

The model becomes linear when all but one of the factors is held constant.

Let us first recall the basic concepts of multilinear algebra, on which the

model is based 3. A N -th order tensor X ∈ Rd1×···×dN is a multi-dimensional

array that is indexed by N integers, generalizing the concept of vectors (first-

order tensors) and matrices (second-order tensors) to higher dimensions. The

higher order analog of rows and columns is called a fiber, obtained by fixing

all but one of the indices. For example, given a 3-rd order tensor Y ∈ Rd1×d2×d3 ,

the vector yi,:,k ∈ R
d2 , with i ∈ [1..d1], k ∈ [1..d3] is a mode-2 fiber of Y . A

tensor X ∈ Rd1×···×dn×···×dN can be converted into a matrix through a process

called matricization, unfolding or flattening. The mode-n matricization of X is

a matrix X(n) ∈ Rdn×(d1d2...dn−1dn+1...dN ) obtained by arranging the mode-n fibers

as columns. The mode-n product between a tensor X and a matrix U ∈ RK×dn ,

denoted as X ′ = X ×n U, is a tensor X ′ ∈ Rd1×···×K×···×dN obtained by replacing

all mode-n fibers x by Ux.

To build a multilinear model of 3D faces the training set {x1, . . . ,xm} is

assembled into a tensor, where one of the dimensions represents the vertices

and the rest is arranged according to the modeled factors of variation. For

example, a training set of mi identities each performing me expressions can be

arranged as a tensor Y ∈ R3n×mi×me such that the fiber Y:,i,j contains the vertices

of the ith identity and eth expression, and the fiber Yk,:,e contains the k-th vertex

of all identities when performing the e-th expression.

Higher-Order SVD (HOSVD) [De Lathauwer et al., 2000a] generalizes the

concept of SVD to tensors, and can be applied to the centered version X ′ of X

3. A more detailed review can be found in Kolda and Bader [2009].
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to obtain a decomposition of the form:

X ′ ≈ C ×1U1 ×2U2 . . .×N UN (2.7)

where Ui ∈ Rdi×pi ,pi ≤ di are orthogonal matrices, and C ∈ Rp1×···×pN , called

the core tensor, models the interaction between the different vector spaces

spanned by Ui . As with PCA, the training tensor is first centered such that

X ′:,i1,...,iN = X:,i1,...,iN − x̄, with x̄ the average vertices among the training set. Since

the goal is to model vertices as a function of parameters for the different factors

(e.g.identity, expression), multilinear models of the face typically do not factor

along the mode that corresponds to the vertices [Vlasic et al., 2005], such that

X ′ ≈M×2U2 . . .×N UN . (2.8)

A multilinear model of identity and expression will thus generate new faces

as

x(w2,w3) = x̄+M×2w2 ×3w3, (2.9)

where e.g.w2 ∈ R
did are the identity coefficients, w3 ∈ R

dexp the expression

coefficients, and did ,dexp the corresponding dimensions.

The model was first applied for 3D faces in Vlasic et al. [2005], where the

authors built a bilinear model for identity and expression and a trilinear model

that also considers visemes. It has since been used to address multiple tasks,

including mesh animation [Wampler et al., 2007], video editing [Dale et al.,

2011, Yang et al., 2012], 3D reconstruction [Shi et al., 2014], avatar reconstruc-

tion [Cao et al., 2016] and statistical modeling of motion [Bolkart and Wuhrer,

2015a]. A localized version has been proposed in Brunton et al. [2014a], and

publicly available models were made in the works of Cao et al. [2013], Brunton

et al. [2014b] and Bolkart and Wuhrer [2016]. The recent work of Yang et al.

[2020] builds a multilinear model from a dataset of around 900 identities in 20

expressions each.

A main disadvantage of multilinear models is the need to build a full

training data tensor, requiring very careful capture conditions in which e.g.all

identities perform all of the expressions. Already the work of Vlasic et al. [2005]

approached this through the use of Probabilistic PCA for tensor completion.

Bolkart and Wuhrer [2016] proposed a method to robustly learn a model

considering missing data, corrupt data, and incorrect semantic correspondence.

Recent work has also explored fully unsupervised approaches: Wang et al.

[2017] recover the core tensor using an alternating least squares approach,

while Wang et al. [2019] train a deep autoencoder with multilinear structure

on three modalities. In Chapter 3 we will present a novel deep autoencoder

architecture that allows to train a multilinear model from incomplete data

tensors, allowing to handle significantly larger training sets.

Nonlinear models of identity and expression have also been proposed.

Wang et al. [2004] use manifold learning techniques to model the different

expression styles of individuals. More recently, deep learning approaches have

allowed to learn such non-linear models in a scalable manner, including the
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fusion network of Jiang et al. [2019], and the work developed in the context of

this thesis, which will be introduced in Chapter 5.

2.3.4 Modeling Details

While useful for handling complex problems, low-dimensional parametriza-

tions often restrict the deformations to its coarsest features: mid-scale and high-

frequency details are mostly lost in the process. Only recently researchers began

to explore a low-dimensional space that can still encode higher-frequency ge-

ometry, again thanks to advances in deep learning, e.g. [Tran et al., 2018, 2019].

Still, the usual approach is to complement the coarse shape from a parametric

model with one or two extra layers that encode out-of-model details. This can

include a medium-scale layer for wrinkles and a fine-scale layer for mesoscopic

geometry, and the deformations can be represented directly on the (possibly

refined) mesh [Garrido et al., 2013, 2016a], as displacement maps [Golovin-

skiy et al., 2006, Thomas and Taniguchi, 2016, Tran et al., 2019], or as normal

maps [Ichim et al., 2015, Lattas et al., 2020].

At the coarsest level, corrective layers can be added to a parametric model

to more closely match the input data and capture person-specific idiosyn-

crasies. To keep the model tractable the correctives can too be encoded in a

low-dimensional space, such as the linear spectral basis of Bouaziz et al. [2013],

Garrido et al. [2016a] or the automatically learned corrective function of Tewari

et al. [2018].

When available, a database of high-resolution scans can be used to learn

a generative model of wrinkle formation. Such an approach was followed

for example by Golovinskiy et al. [2006] who synthesized displacement maps

based on statistical analysis, Ma et al. [2008], Bickel et al. [2008], Bermano et al.

[2014] that model displacements as a function of the coarse shape, and Cao et al.

[2015] that regress wrinkles based on local appearance. The training dataset

can be person-specific [Bickel et al., 2008, Bermano et al., 2014] or person-

independent [Golovinskiy et al., 2006, Cao et al., 2015], and can be acquired

from less constrained setups such as a single high-quality model [Li et al., 2015]

or video data [Garrido et al., 2016a]. When large datasets are available deep

learning techniques can also be leveraged, e.g. Huynh et al. [2018], Yamaguchi

et al. [2018], Tran et al. [2018], Chen et al. [2019].

Since medium- and fine-scale layers correlate with the deformations of the

coarser shape, several works proposed to build a mapping between the coarse

shape parameters and the finer layers. This was considered for example in Ma

et al. [2008] through the use of deformation-driven polynomial displacement

maps, Bickel et al. [2008], Ichim et al. [2015] that train a mapping between edge

strain and displacement or normal maps, and Garrido et al. [2016a], Yang et al.

[2020] by regressing displacements from the coefficients of a parametric model.

Fine-scale details have been traditionally obtained using photometric ap-

proaches, e.g.shape-from-shading (SfS) [Horn and Brooks, 1989] in the case of a

single image. This recovers a normal map which can then be integrated [Quéau
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et al., 2018] or used to enhance a pre-computed depth map using methods such

as Nehab et al. [2005]. While SfS normally relies on generic priors (such as

smoothness or integrability), face-specific models can also be leveraged to alle-

viate some of its intrinsic limitations. For example, Smith and Hancock [2006]

constrain the output to lie in the space of a statistical model of surface normals.

The shading-based refinement methods of Valgaerts et al. [2012], Garrido et al.

[2013], Shi et al. [2014], Garrido et al. [2016a] follow a coarse-to-fine approach

where the results from coarser levels are used to constrain SfS. Data-driven

approaches, and in particular recent deep learning techniques, can potentially

provide a strong prior to SfS by learning from a large set of examples. Yet, the

works presented to date [Shu et al., 2017, Sengupta et al., 2018, Trigeorgis et al.,

2017] can only recover overly-smoothed normal distributions. We will present

in Chapter 6 a novel approach for normal estimation using deep learning that

can recover significantly more accurate results.





3A Multilinear Autoencoder for 3D Face

Model Learning from Large Datasets

Generative models of the 3D facial shape are extensively used in a number

of fields that include computer vision –where they serve as priors for ill-posed

problems such as 3D reconstruction from images–, computer graphics –where

they can be used for the animation of digital characters–, and medical image

analysis, where they can be used to distinguish normal from pathological

structures. They proved to be benefitial for these tasks as they provide a low-

dimensional parameterization for an otherwise complex problem, simplifying

both synthesis and inference tasks.

A special kind of models are those that can decouple the changes due to

natural factors of variation, for instance identity, expression or even age in

the case of faces. Such models provide an (ideally) independent parameteri-

zation for each of the factors, incorporating a degree of semantic control that

enables numerous applications. For example, a decoupled parameterization

allows to transfer the expression from one digital character to another one by

simply replicating the expression vector, potentially preserving the target’s

individuality in the performance of the expression [Vlasic et al., 2005, Dale et al.,

2011]. Knowing that the identity is constant allows for strong regularization

in tracking [Dale et al., 2011, Shi et al., 2014] or learning [Sanyal et al., 2019,

Tewari et al., 2019] tasks, a property that will also be leveraged in Chapter 4.

Other applications include 3D face and expression recognition [Mpiperis et al.,

2008, Liu et al., 2018], expression rectification [Yang et al., 2011], automatic

blendshape generation [Cao et al., 2013, 2014a, 2016, Wang et al., 2020] and

synthetic data generation for machine learning applications [Han et al., 2017,

Shamai et al., 2019].

Multilinear models were proposed with this task in mind. The model,

first employed for 3D faces by Vlasic et al. [2005], extends the widely used 3D

Morphable Model [Blanz and Vetter, 1999] by assembling the training dataset as

a tensor that is organized based on the specified factors, and by replacing PCA

with a tensor decomposition method, typically Higher-Order SVD (HOSVD) 1.

This results in a compact model where the different latent vectors influence

only one factor (e.g.identity or expression), and the interaction between these

is modeled in a multiplicative manner.

1. An introduction to multilinear models is provided in Section 2.3.3.
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Multilinear models have however one major drawback: in order to build

them one needs to assemble the training data into a complete tensor. In the

case of faces showing different identities and different expressions, this means

that each subject must be scanned performing each of the training expressions.

This is clearly not scalable and prohibits the use of scans for which the full set

of expressions is not present.

The problem is more pronounced when considering publicly available 3D

datasets, whose combination can be large and whose sources and capture

protocols can be varied, e.g. Cosker et al. [2011], Savran et al. [2008], Yin et al.

[2008]. Considering the effort that is involved in capturing accurate scans of the

3D face, these datasets are a valuable source of information and the ability to

learn patterns from them can potentially bring forward more powerful models.

Yet, there is evidently no control on the type of data that was captured, and as

a consequence one cannot build a complete data tensor to train a multilinear

model. The large number of scans also demands for computationally efficient

and scalable methods, as well as fully automatic registration approaches that

could hence result in partially corrupted training data (either in the geometry

or in the semantics). The question is then how to leverage all available train-

ing data to build richer multilinear models –without assuming a complete

training data tensor, requiring little to no pre-processing, and taking into ac-

count that the scans may be corrupted by geometric noise and/or erroneous

labels.

This chapter takes a step towards these goals by proposing a novel frame-

work that can learn a multilinear model of the 3D face from such data. This is

achieved through a new autoencoder architecture that combines a CNN-based

encoder –thus assuring robustness to corrupt and incomplete data– with a

multilinear decoder, that can effectively decouple the shape variations over data

attributes. It additionally inherits the benefit of scalability that is characteristic

of autoencoders. Moreover, using a multilinear model as decoder rather than a

generic network allows to explicitly take advantage of redundant training data

showing the same factor, and to effectively decouple shape variations in the

learned representation.

The proposed approach builds on recent works that use deep neural net-

works for 3D face modeling. In particular, two of them [Laine et al., 2017,

Tewari et al., 2017] have successfully explored the combination of a CNN-

based encoder with a linear generative model as decoder for the task of 3D

reconstruction of faces from 2D images. We follow a similar strategy however,

unlike Tewari et al. [2017] the decoder is learned with the rest of the network,

and unlike Laine et al. [2017], our learned model generalizes to various factors

captured for different subjects.

The method takes as input a set of 3D face scans annotated with labels

for each factor, e.g.identities and expressions, and provides: (i) A multilinear

model, which is able to accurately reconstruct the training data and decouples

shape changes due to different factors; (ii) A trained autoencoder capable of
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regressing from any 3D face scan to the registered model, thus allowing to

efficiently compute correspondences for new data.

Our model performs favorably against other recent approaches that learn

multilinear face models from incomplete training data tensors, namely Bolkart

and Wuhrer [2016] and Wang et al. [2017]. In particular, we show experi-

mentally that the proposed method is capable of building rich models which

achieve a better decoupling of factors. This is demonstrated by a classifica-

tion rate of synthetically transferred expressions that is over 5% higher than

competing methods. While the experiments focus on identity and expression

attributes, our formalism readily generalizes to other factors as well.

3.1 Related Work

There is an extensive amount of work on 3D human face modeling, many

of which were reviewed in Section 2.3. Here we focus the discussion on works

that are most closely related to the proposed approach.

Generative modeling of 3D faces Linear models were first introduced to

model face shape in neutral expression along with appearance information

in Blanz and Vetter [1999], and later extended to include expression change

as a linear factor in Amberg et al. [2008]. These linear models are often called

3D morphable models (3DMM), and have recently been learned from large

training sets [Booth et al., 2016] and from craniofacial scans [Dai et al., 2017].

These models do not account for correlations of expression and identity spaces.

Multilinear models were introduced to independently represent the in-

fluence of different factors on the facial shape, which allows for expression

transfer [Vlasic et al., 2005]. They were later used to edit 2D images and videos

with the help of 3D face reconstructions [Dale et al., 2011, Cao et al., 2014b].

FaceWarehouse [Cao et al., 2014b] is a popular publicly available multilinear

3D face model. While multilinear models effectively decouple shape variations

due to different factors, they require carefully acquired training data where

each subject is captured in every factor.

Li et al. [2017] introduced a generative model learned from a large collection

of 3D motion sequences of faces. Pose changes due to skeletal motion is

modeled using a skinning approach, while shape changes due to identity,

expression, and pose correction are modeled as linear factors similar to 3DMM.

Interestingly, they note that it is an open problem to extend tensor-based

multilinear models to handle dynamic training data.

We take a step in this direction by deriving an efficient method to learn a

multilinear model from an incomplete tensor of training data, that effectively

decouples factor effects.

Learning a multilinear model from partial or noisy data Traditionally, multi-

linear models are learned by assembling a dataset into a tensor and performing

tensor decomposition [De Lathauwer et al., 2000a]. This requires each training
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face to be present in all factors. Furthermore, noise in the data, registration

or labeling affect the quality of the model. While tensor completion methods

can be used to solve the problem of incomplete data, they do not scale well in

practice, especially if the tensor is dense as in our case [Song et al., 2019].

Two recent methods were proposed to address these problems. Bolkart and

Wuhrer [2016] introduced a groupwise optimization to handle both missing

and noisy data and was shown to outperform tensor completion methods.

However, the approach is computationally costly and hence does not scale

to large datasets with high dimensionality in two or more factors. Another

work proposed an unsupervised method to compute a multilinear model from

partial data [Wang et al., 2017]. While computationally more efficient, it uses a

non-standard tensor decomposition that leads to a generative model that does

not fully decouple the modes. We will compare to both methods in Section 3.4.

Deep neural networks for 3D face modeling Deep neural networks have ex-

perimentally been shown to summarize large groups of data and automatically

extract only the relevant features for a large variety of problems, providing an

efficient structure for the optimization of large datasets. This motivates the use

of deep learning as a scalable and robust alternative for training a multilinear

model.

Initial works that used CNN frameworks to recover the 3D shape from a

single photograph include Zhu et al. [2016], Richardson et al. [2016, 2017], Tran

et al. [2017a], Güler et al. [2017], Sela et al. [2017]. This was predominantly

achieved by supervised regression towards the coefficients of a 3DMM, restrict-

ing the accuracy of the solution due to the use of synthetic data. The work

of Tewari et al. [2017] was the first to frame the generative model as decoder

of a neural network. This allowed for end-to-end self-supervised training

using an analysis-by-synthesis loss function. Subsequent methods focused on

improving the loss formulation, such as Genova et al. [2018], Sengupta et al.

[2018], Sanyal et al. [2019]. Unlike the present work, none of these model-based

decoders were trained or improved during the CNN optimization.

By the time of publication, only the work of Laine et al. [2017] observed

that optimizing an initial PCA model within a deep learning task can yield

better results than a fixed model. The work on this chapter follows a similar

path, yet unlike Laine et al. [2017] our model is not person-specific and can

generalize to arbitrary subjects and expressions. Since then the approach has

been adopted by several works. In particular, the simultaneous training of a

generative model and a regressor from RGB images holds great potential, as it

allows to build fully-unsupervised 3D models from large-scale 2D datasets. In

this context, Tewari et al. [2018] learned a corrective space for a fixed identity

model, Tewari et al. [2019] learned the full identity space, and Tran et al. [2018,

2019] learned both identity and expression models directly from images.
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Figure 3.1 – Multilinear Autoencoder architecture. The encoder takes as input

a 3D mesh, which is rendered into a heightmap, processed by a deep CNN,

and transformed into a latent representation by the fully-connected layers. The

decoder splits the latent representation according to the specified factors and

performs a multilinear transformation in order to get the output mesh. Both

encoder and decoder are optimized during training.

3.2 Overview

The goal of this work is to learn a generative model of faces from a set

of labeled 3D scans, that are possibly corrupted by both geometric noise and

label errors. To achieve this, we propose an autoencoder architecture with a

CNN-based encoder and a multilinear model-based decoder, as illustrated in

Figure 3.1 and detailed in the following section.

Input Data To train the autoencoder we consider 3D face scans showing

variations in different factors, e.g.identity and expression, along with the cor-

responding labels. Not all combinations of factors are required in the input

scans, and part of the training data can be without labels. The input scans are

first registered, enabling reconstruction errors between the output meshes and

the input scans to be estimated in a consistent way. These registrations need

not be precise, as the global nature of training will ensure that isolated errors

are averaged out.

Encoder The CNN encoder maps each 3D face scan into a low-dimensional

representation that decouples the influence of the different factors on the final

shape. Extending CNNs to unorganized 3D geometric data is an active field of

research (see e.g. Wu et al. [2020]) and beyond the scope of this work. Instead,

we take advantage of the fact that 3D faces can be mapped onto 2D images

for which regular CNNs apply. Hence, the first step of the encoder is to

project input 3D scans into grayscale images that contain depth information.

The remainder of the encoder consists of a convolutional neural network

followed by fully connected layers, which transform the depth image into a

d-dimensional vector with the concatenated coefficients for each mode.

Decoder The multilinear decoder splits the output of the encoder according

to the factors, applies mode-n multiplication between these latent vectors and

the core tensor, and adds a previously computed average face, as normally

done with multilinear models (see Sections 3.3.1 and 2.3.3). The output of the
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decoder are 3D vertex coordinates that, combined with the connectivity of the

average face, define a 3D mesh. The key here is that all of these operations can

be written as layers of a neural network, thus allowing to update the values of

the core tensor along with the rest of the network.

Training During training both the CNN encoder and the multilinear decoder

are optimized. In addition to a generative loss that accounts for reconstruction

errors, we optimize a latent loss that measures whether input faces with

the same labels are mapped onto close-by points in parameter space, hence

enforcing shape variations to be decoupled with respect to the different factors.

The space that models face variations is large compared to the available

training data and a good initialization is thus required. To this aim, both

encoder and decoder are pre-trained, as detailed in Section 3.3.3.

Once the autoencoder has been trained, the multilinear model can be ex-

tracted from the decoder and treated as a classic multilinear model. In addition,

the trained encoder can be used to regress any 3D scan to the model, thereby

allowing to efficiently register new data.

3.3 Multilinear Autoencoder

We now describe the proposed autoencoder architecture that allows to learn

k modes of variation in the input face data through a multilinear model.

3.3.1 Multilinear Model as a Decoder

In a multilinear model a face is represented by a set of vectors {w2, . . . ,wk+1},
wj ∈ Rdj , where k is the number of linear modes attached to faces in the model.

Let x ∈ R3n be the vector of 3D coordinates associated with the n vertices of a

face mesh, then the multilinear model relates the latent k factors wj with the

3D face x by:

x = x̄+M×2wT
2 ×3wT

3 . . .×k+1wT
k+1, (3.1)

where x̄ is the average training face,M∈ R3n×d2×d3×...dk+1 is a tensor that com-

bines the linear modes wj called the core tensor, and ×j is the product ofM and

a vector along mode j . The model is therefore represented by the entries ofM
in addition to the set of coefficients w

(i)
j for the i-th face and the j-th factor in

the training set.

An interesting property of tensors states that [Kolda and Bader, 2009]

Y = C ×1A1 ×2A2 . . .×k+1Ak+1⇔
Y(n) =AnC(n)

(

Ak+1⊗ . . .⊗An+1⊗An−1⊗ . . .A1
)

,
(3.2)

where Y and C are tensors, ⊗ is the Kronecker product, An are matrices of appro-

priate dimensions, and C(n),Y(n) are the matricizations of C and Y containing
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the mode-n fibers as columns. In particular, for the model vector coefficents

wj , a training face mesh x, and mode n = 1,

x = x̄+ C ×1wT
1 ×2wT

2 . . .×k+1wT
k+1⇔

x = x̄+wT
1C(1)

(

wT
k+1⊗ . . .⊗wT

2

)

.
(3.3)

Recall that the vector w1 corresponds to the vertices factor, and as such it

is “absorbed” by the core tensor of the model (see Section 2.3.3). Hence,

M = C ×1w1⇔M(1) =wT
1C(1), and thus Equation 3.1 can be written as

x = x̄+M(1)

(

wT
k+1⊗ . . .⊗wT

2

)

. (3.4)

By writing the transformation M(1)(⊗2j=k+1wj ) as layers of a neural network,

we can refine the multilinear modelM at the same time we optimize for the

reconstructions. After training, it suffices to recover M(1) from the network and

fold it back into a tensorM to obtain the new multilinear model.

3.3.2 Learning the Multilinear Model

The training process seeks to obtain good reconstructions of the data, while

at the same time decoupling the latent representation with respect to the

factors of variation. Hence, we will use two loss functions: a geometric loss

that measures the reconstruction error, and a latent loss that softly evaluates

how decoupled the latent space is, by measuring how close two embeddings

with the same label are.

Generative loss Given a training set X of faces, the loss of a multilinear model

M over a mini-batch Xb ⊆ X is measured as the average error between the

reconstructions of the model and the observed faces xi :

LG =
1

|Xb |
∑

xi∈Xb

∥

∥

∥

∥

∥

xi −
(

x̄+M×2w(i)
2 . . .×k+1w(i)

k+1

)
∥

∥

∥

∥

∥

2

2
, (3.5)

or equivalently (Eq. 3.4)

LG =
1

|Xb |
∑

xi∈Xb

∥

∥

∥

∥

∥

∥

xi −
(

x̄+M(1)

(

2⊗
j=k+1

w
(i)
j

))
∥

∥

∥

∥

∥

∥

2

2

. (3.6)

Note that Equation 3.6 is not a decomposition of the data tensor, but a soft con-

straint that allows to represent a given label in mode j by different coefficients

w
(i)
j for different faces xi . This can be an advantage when the labeling is not

trust-worthy, allowing for flexibility in the factor separation.

Latent loss We observed that a simple reconstruction loss is not sufficient to

ensure a decoupled space, as originally guaranteed by the tensor decompo-

sition. This is expected, since Equation 3.6 does not evaluate the coefficients
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wj directly but the reconstruction they yield, therefore allowing the output

vertices to be arbitrarily affected by any mode.

To overcome this, we define a loss function that softly constrains the latent

parameters. Given a training batch Xb, for each mode j we consider the labeled

subset W
(j)
lbl = {w

(1)
j , . . . ,w

(m)
j }, m ≤ |Xb |, of mode-j latent weights in the batch,

obtained after encoding Xb; for example, all the batch weights that have an

“expression” label associated with it. Let W̃
(i)
j = {w(i1)

j ,w
(i2)
j , . . .} be the set of all

mode-j coefficients in the full training dataset that share the same label in mode

j as w
(i)
j ∈W

(j)
lbl (for example, all the training faces that were labeled “happy”).

Then the function writes:

L(j)L =
1

|W(j)
lbl |

∑

w
(i)
j ∈W

(j)
lbl

1

|W̃(i)
j |

∑

w
(p)
j ∈W̃

(i)
j

∥

∥

∥

∥
w

(i)
j −w

(p)
j

∥

∥

∥

∥

2

2
, (3.7)

where the average over coefficients accounts for very different sizes of the sets

W
(i)
j . The latent loss is then the sum of the loss of each mode:

LL =
k+1
∑

j=2

L(j)L . (3.8)

Note that the loss is calculated on each batch over the full training set, and

thus the gradient must also be globally computed as:

∂

∂w
(i)
j

L(j)L = 2
∑

w
(p)
j ∈W̃

(i)
j

1

|W̃(i)
j |

(

w
(i)
j −w

(p)
j

)

− 2
∑

w
(p)
j ∈W̃

(i)
j

1

|W̃(p)
j |

(

w
(p)
j −w

(i)
j

)

= 2
∑

w
(p)
j ∈W̃

(i)
j

1

|W̃(i)
j |

(

w
(i)
j −w

(p)
j

)

+2
∑

w
(p)
j ∈W̃

(i)
j

1

|W̃(p)
j |

(

w
(i)
j −w

(p)
j

)

= 4
1

|W̃(i)
j |

∑

w
(p)
j ∈W̃

(i)
j

(

w
(i)
j −w

(p)
j

)

.

(3.9)

Here, the second term accounts for the fact that w
(i)
j will appear in the set W̃

(p)
j ,

and the last line considers |W̃(p)
j | = |W̃

(i)
j |.

3.3.3 Architecture

CNN Encoder The encoder transforms the 3D face input data into a vector

w ∈ Rd2+···+dk+1 that contains the concatenated model coefficients, i.e.the latent

parameters of the face. The first layer of the network takes as input a 3D scan

and converts it into a 2D image that encodes heights from a fixed plane. The

regression from the 2D heightmap to the model coefficients is implemented us-

ing a ResNet-18 [He et al., 2016] which reduces the image to a 256-dimensional



3.4. EVALUATION 31

vector, after which three fully-connected layers perform the regression towards

the coefficient vector w of the specified dimensions.

Multilinear Decoder The multilinear decoder takes as input the vector w,

which is seen as a concatenation of mode coefficients w = {w2,w3, . . . ,wk+1}, and

transforms it into 3D vertex coordinates by performing mode multiplications

with the core tensor. As explained in Section 3.3.1, this operation can be

written as the product between the matricized version of the tensor M(1) and

the Kronecker product of each mode coefficient (Equation 3.4). Therefore, in

order to learn the parameters of the core tensor M we implement each of

these operations as a layer in the network, and allow the linear module M(1)

to be optimized with the rest of the parameters. This way we benefit from the

capacity of neural networks to robustly summarize the representative aspects

of an entire dataset, and from the associated optimization machinery to find

the model in a scalable manner.

Estimation The multilinear autoencoder estimation proceeds in two stages.

First, we initialize both CNN encoder and multilinear decoder, as our train-

ing data is limited with respect to the number of parameters. Initializing the

multilinear decoder with random values did not yield good results in our exper-

iments, particularly in terms of decoupling. Hence we initialize by performing

Higher Order Singular Value Decomposition (HOSVD) [De Lathauwer et al.,

2000a] on a complete subset of the data, i.e.a subset in which all the factors of

variation are present for all elements. Note that this enforces a limit on the

dimensionality of the latent vectors, since now they cannot be greater than

the amount of samples for each factor in the initial tensor. To subsequently

pre-train the CNN encoder, we optimize it separately using the generative

loss in Equation 3.5 with the fixed initial multilinear model, and with both

registered and unregistered scans to augment the training data.

In the second stage the full network is optimized with all available face

data. This is achieved by minimizing the following combined generative and

latent loss:

argmin

M(1),{w(i)
j }
LG +λLL, (3.10)

where λ is a scalar that weighs the contribution of the latent loss.

3.4 Evaluation

We evaluate both the generative model that is extracted from the decoder

as well as the full autoencoder that can be used for regression.

We begin by presenting implementation details (Section 3.4.1), the datasets

employed (Section 3.4.2), and the proposed evaluation protocol that analizes

the quality of the generative model (Section 3.4.3). In Section 3.4.4 we show re-

sults using these metrics over alternative latent weights and model dimensions,

as well as comparisons to state-of-the art methods that learn multilinear 3D



32
CHAPTER 3. A MULTILINEAR AUTOENCODER FOR 3D FACE MODEL

LEARNING FROM LARGE DATASETS

face models from incomplete data. Section 3.4.5 evaluates next the multilinear

autoencoder and its ability to register raw scans into the new model. Finally,

Section 3.4.6 showcases a few applications of the multilinear autoencoder.

3.4.1 Implementation Details

To pre-train the encoder and to learn the generative model during fine-

tuning we use the AdaDelta algorithm [Zeiler, 2012], with parameters as pro-

vided in the paper. We use a mini-batch size of 64, a learning rate of 0.01 for

pre-training and a learning rate of 1 for training the autoencoder. The encoder

was pre-trained for 100 epochs and the autoencoder was fine-tuned for 200

epochs. Unless otherwise specified, we use λ = 1 in Equation 3.10, and set the

dimensions of identity and expression spaces to 89 and 25 respectively, which

is the maximum allowed by the initial tensor (see Section 3.3.3). The framework

was implemented in PyTorch v1.0.1 [Paszke et al., 2019], and the experiments

were run using a NVidia GeForce GTX 1080 GPU. For the facial mesh template

we used a cropped version of the publicly available Digital Emily [Alexander

et al., 2010], which consisted of n = 10057 vertices (see Figure 2.1).

3.4.2 Datasets

Training data for initialization We use BU-3DFE [Yin et al., 2006] and Bospho-

rus [Savran et al., 2008] datasets for initialization, as these come with manually

annotated landmarks that simplify pre-processing. The data is registered using

Optimal Step NICP [Amberg et al., 2007], initialized with Laplacian defor-

mation using the provided landmarks. In the case of BU-3DFE we register

against the “raw” version of the scans, switching to the post-processed ver-

sion provided by the authors only in the cases where this failed. In total we

registered 2499 scans from BU-3DFE and 2698 from Bosphorus. To initialize

the decoder we run HOSVD [De Lathauwer et al., 2000a] on a data tensor

built from BU-3DFE, which provides 100 identities performing 25 expressions

each: the seven prototypical expressions 2, with each non-neutral expression

in four levels of intensity. We consider each intensity as a distinct expression

and remove subjects that belong to the testing set, resulting in a training data

tensor of size 3 ∗ 10057× 89× 25 3. The CNN encoder is pretrained with both

BU-3DFE and Bosphorus. To augment the training data we randomly rotate

each face by an angle θ ∈ [−10◦;10◦] in yaw, pitch or roll axes, and apply a

random scale in [0.95;1.05]. Furthermore, we use both the registered data and

the corresponding raw 3D scans, for which the registered versions allow to

recover ground truth vertex correspondences for training. This augmentation

allows the CNN encoder to learn richer feature extractors, as the raw scans

2. Neutral, Angry, Disgust, Fear, Happy, Sad, Surprise.
3. We used 89 out of 100 identities: ten subjects were left out for testing, and one subject was

left out of the initial tensor as one of the expressions did not register succesfully.
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contain larger geometric errors, holes and extra parts such as hair and the neck.

This results in a set of 99,000 heightmap images for pretraining.

Training data for model optimization We demonstrate the capabilities of

the multilinear autoencoder (MAE) trained on two different datasets. A first

MAE is learned from static data, using the combined Bosphorus and BU-3DFE

databases, for a total of 4500 meshes. We will refer to this MAE as Bu3+Bosph.

We use seven labels from BU-3DFE which correspond to the highest intensity

of each expression; the lower intensities are left unlabeled. For Bosphorus we

label the seven prototypical expressions as well as the action units, with the

exception of action units 43 and 44 which are not correctly captured by the

registration. The second MAE is learned by combining the previous with the

dynamic database D3DFACS [Cosker et al., 2011] using the publicly available

registrations of Li et al. [2017] 4. Although there is redundancy in consecutive

frames, this allows to test a scenario where MAE is trained on a considerably

larger training set. We will refer to this as Bu3+Bosph+D3D. The dataset is

sparsely labeled by considering the first three frames of each sequence as the

neutral expression, and the five frames located around the middle as peak

frames, which are assigned the facial action unit of the sequence (establish-

ing a semantic correspondence with the expressions in Bosphorus). In total,

Bu3+Bosph+D3D is trained from 49811 scans, an order of magnitude larger

than the training sets used in previous methods [Bolkart and Wuhrer, 2016,

Wang et al., 2017].

Test data We leave 10 subjects out from BU-3DFE and 10 from Bosphorus,

and test both Bu3+Bosph and Bu3+Bosph+D3D on these. The testing subjects

were selected among those whose registrations were of good quality (manually

verified), while keeping a balance between male/female subjects as well as

different ethnicities. 5

3.4.3 Evaluation Protocol

We measure the quality of the generative models using the metrics general-

ization and specificity [Davies et al., 2008]. Generalization measures the ability

of the model to adapt to unseen data, and is evaluated by projecting test data

into the model space and calculating the reconstruction error. To provide a

common framework for comparisons, this is implemented by iteratively fixing

one space and finding the optimal coefficients for the other one [Vlasic et al.,

2005]. We ignore border vertices during evaluation as these contain noise due

to the registration process. Specificity measures whether only valid members

of the shape class are modeled, or in other words, the model’s suitability for

4. We registered our template to one of the frames using Amberg et al. [2007] and transferred

the correspondences to the rest of the dataset.
5. We use the following identities: F0007, F0013, F0043, F0045, F0056, M0012, M0015, M0027,

M0037, M0038 for BU-3DFE, bs003, bs024, bs032, bs038, bs081, bs086, bs090, bs092, bs095, bs101

for Bosphorus.
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generating synthetic data. To evaluate specificity, we assume the data to fol-

low independent normal distributions in identity and expression spaces and

sample 1000 faces. For each randomly drawn sample we measure its mean

vertex distance to all elements in the training data and keep the minimum

value; specificity is defined as the average of this process over all synthetically

generated faces. To compute the normal distribution we consider the sample

mean and standard deviation based on the training data. We account for an

imbalanced number of labels by first grouping the coefficients by label, sum-

marizing each group by its medoid, and computing the normal distribution

based on per-group values.

There is no standard metric to evaluate decoupling, and hence we propose

here a protocol that was adapted from Ghosh et al. [2017]. We first train

an external classifier to recognize the seven prototypical expressions (anger,

happiness, disgust, sadness, fear, surprise and neutral) given an input image

with a rendered mesh 6. The evaluation proceeds as follows. We obtain identity

and expression weights for each sample in the testing split of BU-3DFE by

iterative registration. We regularize this process with a Tikhonov regularization

term,
did
∑

k=1

(

w2(k)− w̄2(k)

σ2(k)

)2

(3.11)

for identity and similarly defined for expression, where σ2(k) denotes the

standard deviation for identity coefficients. We further regularize by simul-

taneously registering all the expressions of a same identity (i.e.we solve for a

unique identity weight w2 while fixing several expression weights w
(i)
3 in a

single system), and again ignore the border vertices due to noisy registrations.

Once the identity and expression coefficients were recovered, we transfer the

seven expressions of one test identity to all the other identities, and repeat the

process for each subject in the testing set. Expression transfer is performed by

replacing the expression weight w3 with that of the current source face. Finally,

we let the classifier measure whether the known transferred expression was

preserved, and report the average accuracy of the classifier.

3.4.4 Generative Model Evaluation

This section shows results on the quality of the learned generative model

under different configurations, as well as comparisons to classic tensor decom-

position and two state-of-the-art methods on multilinear model learning of 3D

faces from incomplete data.

Influence of the latent loss We first measure how different values of λ affect

the output model, both for Bu3+Bosph and Bu3+Bosph+D3D . Results are shown

in Tables 3.1 and 3.2. As expected, greater values of λ result in progressively

6. We render normal maps as we found this to work better for recognition. The classifier is

trained using BU-3DFE and Bosphorus which provide the necessary labels.
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Bu3+Bosph

λ Generalization Specificity Expression

0.1 1.06 3.33 32.54

1 1.04 3.47 58.41

10 1.09 3.41 57.30

Table 3.1 – Influence of the latent loss on the Bu3+Bosph model. Median gener-

alization error (mm), specificity error (mm) and percentage of correct classifica-

tions after expression transfer. Best values in bold.

Bu3+Bosph+D3D

λ Generalization Specificity Expression

0.1 1.00 3.38 47.46

1 1.00 3.61 50.16

10 0.99 3.32 45.87

Table 3.2 – Influence of the latent loss on the Bu3+Bosph+D3D model. Median

generalization error (mm), specificity error (mm) and percentage of correct

classifications after expression transfer. Best values in bold.

better decoupling of the spaces, but it appears to saturate at one point. An

illustration of the effect of λ on the Bu3-Bosph model is shown in Figure 3.2. All

selected models produce plausible synthetic faces, but there is a clear decrease

in the quality of the transfers when the value of λ is too low. Interestingly,

larger values of λ also appear to improve generalization, which suggests that

the latent loss is acting as a regularizer that can help to better reconstruct

unseen data. We select λ = 1 for the following experiments.

Compactness Ideally a model should perform well using a small number of

parameters. We thus evaluate generalization, specificity and expression transfer

under different latent dimensions, varying either the identity or the expression

space. For this experiment we re-use the pretrained encoder from the previous

evaluation (trained on dimensions 89 − 25 for identity and expression) by

simply removing the corresponding rows in the last linear layer of the encoder.

The results can be found in Table 3.3. As expected, lower dimensions increase

the error in generalization, although this is more significant when varying the

identity space. On the other hand, the expression transfer capacity, as captured

by the current evaluation, does not appear to vary much among the different

dimensions. A change can be observed under 20 dimensions for the identity

space (last row in Table 3.3). This could be explained by the fact that Euclidean

distances between vectors, as required by Equation 3.7, are more significant

when the dimensionality is lower. On the other hand, a correct expression

transfer depends also on correctly recovering the coefficients and it is thus
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#Id #Expr Generalization Specificity Expression

89 25 1.04 3.47 58.41

89 20 1.07 3.57 57.62

89 15 1.11 3.51 59.52

89 10 1.19 3.77 57.46

65 20 1.23 3.43 60.00

50 20 1.42 3.18 51.59

35 20 1.64 3.33 53.33

20 20 1.87 3.57 64.93

Table 3.3 – Influence of latent size for identity and expression spaces: median

generalization error (mm), specificity error (mm) and percentage of correct

classifications after expression transfer.

related to how well the model generalizes, which might explain why the value

sometimes fluctuates.

Comparison to standard tensor decomposition We compare here to standard

tensor decomposition methods, namely higher-order SVD (HOSVD) [De Lath-

auwer et al., 2000a] and higher-order orthogonal iteration (HOOI) [De Lath-

auwer et al., 2000b]. Both methods require complete data tensors to perform

a Tucker decomposition. For a fair comparison MAE is both pre-trained and

trained using BU-3DFE alone, with distinct labels assigned to the different

expression intensities. We refer to this version as “MAE - bu3”.

Results are shown in the top three rows of Table 3.4. Note that HOSVD is

the method we use for initialization of the decoder, and thus we show here

(a) λ = 0.1

(b) λ = 1

Figure 3.2 – Influence of the latent loss on expression transfer. From left to right:

input mesh, transferred expressons: angry, disgust, fear, happy, sad, surprise.

Lower values of λ can sometimes fail to properly decouple the latent space,

and hence transferring expressions does not preserve semantics.
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Model Generalization Specificity Expression

HOSVD 1.20 4.05 51.59

HOOI 1.20 4.01 51.75

MAE - bu3 1.13 3.76 61.43

MAE - bu3-bosph 1.04 3.47 58.41

MAE - bu3-bosph-d3d 1.00 3.61 50.16

Table 3.4 – Comparison against standard tensor decomposition methods, and

influence of training data size. The top three rows show comparisons against

classic tensor decomposition methods, using the same training dataset. The

bottom rows show improvements obtained when training with larger datasets

that cannot be assembled as a tensor. In terms of median generalization er-

ror (mm), specificity error (mm), and percentage of correct classifications for

expression transfer.

that the proposed training indeed improves the initial model, even when no

additional data is used. We further compare against HOOI since it shares our

goal of enhancing an initial model provided by HOSVD, which is achieved

through an iterative approach. We observe from Table 3.4 that all metrics are

improved compared to both tensor decomposition methods. This includes the

expression transfer capacity thanks to the addition of the latent loss, with a

correct classification value that is almost 10% higher.

Effect of training data The main benefit of our approach is the ability to train

with large datasets that do not necessarily form a complete data tensor. Hence,

we show in the bottom of Table 3.4 the improvements that can be attained

by comparing against different training data sizes. While MAE-bu3, HOSVD

and HOOI were trained on 2225 samples, MAE-bu3-bosph was trained on

4500 and MAE-bu3-bosph-D3D on 49811 scans. We can see from Table 3.4

that the ability to generalize to unseen data is greatly improved, as well as the

specificity values, showing the benefit of leveraging all available training data.

Comparison to state-of-the-art Finally, we compare to two closely related

works that learn multilinear models of 3D faces from incomplete data tensors:

RMM [Bolkart and Wuhrer, 2016] and Wang et al. [2017]. We run RMM on our

own registration using the publicly available code with default parameters.

We use the same subset from BU-3DFE and Bosphorus as in the published

model since this was already proven to work correctly for RMM, except we

remove the testing identities that were used for the previous experiments

(see Section 3.4.2). In particular, we use 184 identites from BU-3DFE and

Bosphorus, and 7 expressions from BU-3DFE (with the highest intensities)

plus 23 expressions from Bosphorus. The latent dimensions are set to 23 and

6 for identity and expression respectively, as in the published RMM model.

We build a model using this setting for the method of Wang et al. [2017] with

code provided by the authors, and train MAE on this data and with same
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Method Generalization Specificity Expression

Bolkart and Wuhrer [2016] 1.71 3.44 56.51

Wang et al. [2017] 1.53 3.57 13.65

MAE 2.17 3.42 61.59

Table 3.5 – Comparison between state-of-the-art and the MAE decoder, in terms

of median generalization error (mm), specificity error (mm), and percentage of

correct classifications for expression transfer.

dimensions.

Table 3.5 shows the results obtained. We can see that our method outper-

forms the other two in terms of specificity and expression transfer. Figure 3.3

shows an example of expression transfer results for the three methods. Note

that while RMM and MAE achieve visually plausible results, Wang et al. [2017]

gives noisy faces that do not preserve identities, as their tensor decomposition

does not yield a good decoupling of the different modes.

3.4.5 Multilinear Autoencoder Evaluation

We now evaluate the multilinear autoencoder, including the encoder that

can efficiently regress into the learned multilinear model. We start by dis-

(a) Wang et al. [2017]

(b) RMM [Bolkart and Wuhrer, 2016]

(c) MAE

Figure 3.3 – Qualitative comparison between state-of-the-art and MAE. From

left to right: original scan, transferred expressions: angry, disgust, fear, happy,

sad, surprise.
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Fitting method Generalization

Encoder only 3.17

Iterative - average initialization 1.04

Iterative - encoder initialization 1.01

Table 3.6 – Generalization value (mm) under different fitting methods: using

only the encoder; using the iterative approach with average identity and

expression weights for initialization; and using the iterative approach with

encoder initialization.

cussing the computation times of the method, and afterwards consider the

capacity of the model to register unseen data.

Computation times Computing the core tensor using HOSVD for 89 − 25
dimensions requires on average 3 seconds. Pre-training the encoder takes about

40ms per mini-batch and ∼ 3 minutes per epoch for our data (including data-

loading time). Fine-tuning the Bu3+Bosph model takes about 13 seconds on

average per epoch, while fine-tuning Bu3+Bosph+D3D takes around 2 minutes

per epoch. Generating each depth image takes ∼ 20ms for the registered data.

Once the training is finished, regressing from a single raw scan to 3D vertices

requires around 250ms for a batch of size 64.

Generalization with the autoencoder For a fair comparison, all generalization

values presented in the previous section were obtained by iterative fitting

initialized with the mean identity or expression vector. We show in Table 3.6

two alternatives for this that leverage the encoder: by using the encoder for

registration, and by using the encoder as initialization for the iterative method.

We can see from Table 3.6 that the generalization value using the encoder

alone is significantly higher than the rest. On the other hand this can be

done very efficiently when performed on the GPU. Thus, we leverage the

encoder for efficiently initializing the iterative process, achieving an even

better generalization value as shown in the bottom row of Table 3.6.

Registration of raw scans We evaluate the reconstructions of the test set

obtained by regressing with the multilinear autoencoder using the original raw

scan images. We consider the initial registered versions of the scans as ground-

truth even though this might not be exact, since the registrations were manually

verified to be globally correct. This gives a median per-vertex Euclidean error of

3.86mm for Bu3+Bosph, and a median per-vertex Euclidean error of 3.85mm for

Bu3+Bosph+D3D. Figure 3.4 shows one example of raw scan registration (from

a different dataset). Even though the error is relatively high, we observe that

the outputs are in general visually close to the expected identity and expression,

and could be used as initializations for optimization-based refinements.
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Figure 3.4 – Registration of raw scans using the encoder. Top: input scans.

Bottom: registered results.

3.4.6 Applications

We finish this section by showcasing two possible applications of the multi-

linear autoencoder.

Identity recognition from 3D mesh sequences Face recognition from 3D or

4D data has received increasing attention thanks to both a wider availability

of depth data, as well as the potential it holds in overcoming the inherent

limitations of 2D images. We test the ability of MAE to perform recognition as

follows. Given an input mesh sequence, we use the encoder on each frame to

recover identity and expression coefficients. We then measure the Euclidean

distance between the recovered identity coefficient and each of the coefficients

in a training database, keeping the identity label of the closest sample. Finally,

we set as identity label of the sequence the label that was guessed by the

majority of the frames.

We base the evaluation on the protocol used in Sun et al. [2010] and Alashkar

et al. [2016]. In particular, we take 60 identities from the BU-4DFE dataset [Yin

et al., 2008] and perform two experiments: Expression Dependent (ED) and

Expression Independent (EI). For the ED experiment we split each mesh sequence

in half, using the first half as training database and the second half for testing.

For the EI experiment we use one expression sequence for training and the rest

of the expressions for testing, repeating for each of the six expressions. In both

cases we report the percentage of correct classifications.

We show results in Tables 3.7 and 3.8, where we also compare to the values

reported by Sun et al. [2010] and Alashkar et al. [2016]. Our simple recognition

method achieves the best results for the ED experiment, as well as competitive

results on the EI experiment. Note that unlike these methods our approach is

very efficient, as it requires only one pass of the encoder and an L2 distance
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Method Recognition Rate (%)

LLE on static 3D (reported in [Sun et al., 2010]) 82.34

PCA on static 3D (reported in [Sun et al., 2010]) 80.78

LDA on static 3D (reported in [Sun et al., 2010]) 91.37

Sun et al. [2010] 97.47

Alashkar et al. [2016] 100.00

MAE 100.00

Table 3.7 – Identity recognition from 3D mesh sequences (ED experiment):

comparison against Sun et al. [2010], Alashkar et al. [2016] and approaches

using static 3D data reported in Sun et al. [2010].

Method AN DI FE HA SA SU Avg.

Sun et al. [2010] 94.12 94.09 94.45 94.52 93.87 95.02 94.37

Alashkar et al. [2016] 85.20 87.70 83.49 83.36 84.86 80.49 84.13

MAE 87.00 90.33 86.67 86.67 87.33 86.00 87.33

Table 3.8 – Identity recognition from 3D mesh sequences (EI experiment):

Recognition rate (percentage) for each of the training expressions: angry (AN),

disgust (DI), fear (FE) happy (HA), sad (SA), surprise (SU), and comparisons

to Sun et al. [2010], Alashkar et al. [2016].

calculation against the database, where both can be done efficiently on the

GPU.

Expression Synthesis on Raw Data The multilinear autoencoder can also be

used to plausibly deform 3D facial scans, e.g.for automatic creation of a blend-

shape rig. We propose to this end the following method. Given an input raw

scan in neutral expression, we first register our template in order to obtain iden-

tity and expression coefficients of the model. Here we registered in particular

using Amberg et al. [2007] and then projected into the model using the iterative

approach, initialized with the known neutral expression coefficient. We next

recover the target expression coefficients by registering multiple expressions

from a different identity. In this case we regularize both with Equation 3.11 and

by fitting a unique identity weight to multiple expressions. We then combine

the source identity coefficient with the target expression coefficients, thus ob-

taining deformed templates that perform the required expressions. Finally, we

deform the original mesh based on the positions of the deformed template and

with Laplacian regularization. Point-to-point correspondences between the

template and the scan can be easily obtained thanks to the initial registration.

An example of results obtained using this method on a subject from Bosphorus

can be found in Figure 3.5, where different action units where transferred to a

source mesh (taken from the testing set). For comparison, we show in the top

row of Figure 3.5 the ground-truth scans of the source performing the target

action units.
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Source

AU10

(Upper lip

raiser)

AU17

(Chin

raiser)

AU18 (Lip

puckerer)

AU23 (Lip

tightener)

AU26 (Jaw

drop)

AU27

(Mouth

stretch)

Figure 3.5 – Expression synthesis on raw data. Top: ground-truth scans, bottom:

our results.

3.5 Conclusion

In this chapter we demonstrated that it is possible to obtain an expressive

multilinear model from large and diverse datasets, by leveraging a novel ar-

chitecture that we call Multilinear Autoencoder. The proposed approach is

capable of making better use of all available data, learning a generative model

that can better decouple the latent space, and an encoder that can perform

fast regression into this model from raw, unregistered scans. Throughout the

experimental evaluation we showed that the Multilinear Autoencoder out-

performs current state-of-the-art methods that learn multilinear models from

incomplete data, particularly in terms of decoupling the spaces. We believe this

work opens up possibilities for learning rich generative 3D face models from

large training sets, which in turn can enhance numerous applications including

recognition and animation. The next chapter will present one of these possible

applications: the registration of large datasets of 3D scans.

The proposed method has a few limitations that are worth mentioning.

A first limitation lies in the need to initialize the decoder with a complete

data tensor, requiring at least a subset of the data to be capable of being as-

sembled as such. It is clear that removing this would further simplify the

requirements on the training set. Moreover, it would also eliminate the restric-

tions on the latent space dimensions (see Section 3.3.3), which are bounded by

the size of this subset. As mentioned, a random initialization of the decoder did

not yield good results in our experiments, yet better initialization approaches

can still be explored.

Another disadvantage is related to the choice of dimensionality of the dif-

ferent spaces. Not only this choice is bounded by the size of the initial tensor,

but there is also no principled approach for selecting the appropriate model

dimensions. Unlike PCA or HOSVD where the percentage of retained vari-
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ance can guide model selection, here it must be done by ad-hoc procedures,

e.g.parameter sweep as in Table 3.3. It is not clear yet how model selection can

be performed for this type of deep-learning based models, but a more princi-

pled approach would certainly be desirable, as compactness is an important

aspect.

A final limitation is the large number of parameters involved in the model,

a problem that comes from the use of a multilinear model itself. The amount

of entries in the core tensor is typically very large and grows exponentially

with each new factor that is added. In our implementation, the number of

trainable parameters in the decoder is an order of magnitude larger than those

in the convolutional encoder. This also results in large disk space usage for the

trained model, on the order of hundreds of megabytes.

Most of these limitations will be addressed by considering a novel strategy

for modeling decoupled spaces in Chapter 5.





4Large-Scale Registration of Faces in

Motion

Registration is an essential step in the process of learning a model such as

the one presented in the previous chapter. Given two or more scans of a 3D face

(not necessarily of the same subject) this technique ensures that anatomically

corresponding points are consistently identified, such that the vertex located at

e.g.the tip of the nose will always be found at that location 1. Without this step,

the different 3D scans have no coherent structure and their common patterns

cannot be studied.

We focus here on the registration of spatiotemporal data, i.e.sequences of 3D

face scans, otherwise called 4D data. The interest in the context of this work is

two-fold. First, this allows to parameterize not only the individual facial shapes

but also their temporal evolution, expanding the scope and performance of au-

tomatic facial analysis systems such as expression recognition [Alashkar et al.,

2016, Fang et al., 2012, Sandbach et al., 2011], pain detection [Zhang et al., 2015]

and realistic expression synthesis [Yu et al., 2012]. Second, motion acquisitions

allow to capture a larger range of expressions including spontaneous ones,

which would be much harder to elicit in a static capture. This can give access

to a rich and diverse source of information for building generative models of

the 3D face, and registration is a fundamental first step towards this goal.

When dealing with motion sequences one could in principle apply a purely

spatial registration algorithm to each frame, e.g. [Amberg et al., 2007, Salazar

et al., 2014], yielding a static face pose parametrization that is agnostic to time

information. Yet, in the case of faces in motion, the registration can account for

the temporal aspects through a spatiotemporal parametrization. The interest

here is to better capture face deformations with a temporal tracking, where

static registrations provide only coarse and noisy motion information. Spa-

tiotemporal registration is however more complex than its static counterpart,

since tracking robustly and reliably is still challenging in practice.

The process of collecting 4D scans is expensive and time-consuming. Yet, as

mentioned before, multiple research groups have captured and released large

4D face databases throughout the last decade, e.g. Yin et al. [2008], Cosker et al.

[2011], Zhang et al. [2014]. We aim here to harness such source of information

by registering the large corpus into a single parameterization. This in turn poses

additional challenges to the registration process. Not only the amount of data

1. An introduction is provided in Section 2.2.
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is considerably larger, but the capture systems and acquisition protocols differ

from one dataset to the other. Face registration methods in this context should

be able to handle datasets in a fully automatic way, as manual intervention is

not feasible for thousands of frames, in addition to being robust to different

types of noise resulting from different acquisition scenarios. Furthermore, they

must be efficient in order to process thousands of frames in a reasonable time.

The work presented in this chapter addresses the aforementioned objec-

tives by proposing a novel method to register spatiotemporal 3D face data.

The approach is based purely on geometry to allow leveraging any available

temporal 3D face scan, even when the associated RGB images are not provided

e.g.for privacy reasons. We do not require pre-determined landmarks as input,

which are more challenging to obtain for 3D data, thus removing a possible

source of error. The main innovation here is the use of a spatiotemporal model

as opposed to a purely static one, which combined with a regression-based

approach allows to exploit the spatial and temporal coherence of the data in

an efficient manner. The use of such model enables registrations that both fix

identities over temporal sequences and regularize observed motions to prevent

high-frequency flickering. The approach presents the following advantages: it

can register multiple datasets into a single representation; it does not require

color information as in e.g. Cosker et al. [2011], Cheng et al. [2017a], Fyffe

et al. [2017], and is robust to occlusions by construction; it runs an order of

magnitude faster than recently proposed methods based on parametric face

models [Bolkart and Wuhrer, 2015a, Li et al., 2017] while achieving comparable

accuracy; and provides compact representations of the results.

The method is evaluated qualitatively and quantitatively on three pub-

licly available datasets, namely D3DFACS [Cosker et al., 2011], BU-4DFE [Yin

et al., 2008] and BP4D-Spontaneous [Zhang et al., 2014], demonstrating it can

efficiently obtain accurate registrations as well as compact representations.

Comparisons to Bolkart and Wuhrer [2015a], Li et al. [2017] and Cosker et al.

[2011] show that the proposed approach can achieve similar or better results in

terms of vertex-to-scan error and in terms of semantic parametrization, while

remaining either more general in terms of requirements of the datasets, or more

efficient in terms of computational times.

4.1 Related Work

Numerous works have studied the registration of static 3D face scans, and

an overview can be found in Section 2.2. While a static method can be applied

independently to each frame of a motion sequence, this is known to lead

to artifacts including high-frequency jitter. We focus therefore on methods

that take advantage of the temporal redundancy captured by 4D data. A

related line of research that has recently received considerable attention is the

reconstruction of 4D facial motion based on monocular 2D video, e.g. [Cao

et al., 2015, Garrido et al., 2016a]. These works solve an underconstrained

reconstruction instead of a 3D registration as addressed in this work; the
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interested reader is referred to the survey of Zollhöfer et al. [2018]. In the

following we discuss strategies for the registration of 4D face data.

Registration of 4D face data

Initial geometry-based methods used a coarse-to-fine approach combined

with Free Form Deformations [Wang et al., 2004], or through harmonic [Wang

et al., 2008] or conformal [Sun et al., 2010] maps that reduce the problem

to 2D registration. For expression recognition, Fang et al. [2012] performed

pairwise registration of consecutive frames using an Annotated Face Model

(AFM) [Kakadiaris et al., 2007], where temporal information was exploited by

initializing with the result of the previous frame.

For real-time expression transfer, Weise et al. [2009] introduced a system

based on non-rigid Iterative Closest Point (ICP), from which a person-specific

blendshape model was built and used to sequentially track sequences of the

same actor in real-time. Follow-up work [Weise et al., 2011] improved on

this by using color cues and a probabilistic animation prior which can handle

noisier input from an RGB-D camera. The methods of Li et al. [2013], Bouaziz

et al. [2013] further removed the need for calibration by updating an initial

blendshape model on-the-fly. Other real-time tracking approaches from RGB-

D video include Zollhöfer et al. [2014] that deform a template using an as-

rigid-as-possible prior, and Thies et al. [2015] that track blendshape weights

through an analysis-by-synthesis framework. Further improvements on this

line of work included robustness to occlusions and pose [Hsieh et al., 2015],

detailed blendshape models through the use of displacement maps [Thomas

and Taniguchi, 2016], eye-gaze control [Thies et al., 2018a,b], and full head and

upper body tracking [Thies et al., 2018a].

More recent alternatives, used mainly for high-quality acquisition setups,

follow two main lines. The first performs registration in texture space by

computing correspondences between sparse landmarks predicted using an

Active Appearance Model (AAM), which are densified using thin-plate spline

deformations [Cosker et al., 2011, Cheng et al., 2017a]. The method of Cosker

et al. [2011] achieves inter-sequence correspondence by registering each frame

towards a manually selected neutral expression, and intra-sequence corre-

spondence by registering these neutral frames to a template. To better handle

texture variations, Cheng et al. [2017a] extend the previous by using session-

and-subject specific AAM, and non-rigid ICP [Amberg et al., 2007] between

manually selected neutral frames. Since these methods operate on color in-

formation, they require careful acquisition setups with controlled lighting

conditions, as e.g.moving shadows can lead to inaccuracies.

The second line of work takes advantage of low dimensional parametric

shape spaces learned from large databases of static 3D face scans and used

as prior during registration. Most related to our work, multilinear models of

identity and expression [Bolkart and Wuhrer, 2015a] and a linear articulated

model with expressions [Li et al., 2017] have been used for this purpose. These
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works achieve registrations of relatively high accuracy and report running

times of 30 seconds to 2 minutes per frame. Although the overall facial shape

is recovered, fine-scale details such as wrinkles are not modeled. Our work

shares this property, as well as the robustness and accuracy of these methods

while allowing for a gain in efficiency.

Joint registration and reconstruction

Performance capture is concerned with the recovery of both the 3D shape

and its temporally coherent deformations, and it is hence also related to this

work. In this context, several authors use optical flow to recover a consistent

geometry from passive [Bradley et al., 2010, Beeler et al., 2011] or active [Zhang

et al., 2004] systems using synchronized multi-view 2D videos. Bradley et al.

[2010] jointly solve for registration and reconstruction by sequentially tracking

the initial frame. Optical flow with sequential tracking is known to be prone

to drift (i.e.the accumulation of tracking errors), and thus Beeler et al. [2011]

propose instead to do optical flow on sub-sequences defined by automatically

selected key-frames. Results are of very high quality and achieve pore-level

details. Non-sequential tracking has also been explored, by using a minimum

spanning tree [Klaudiny and Hilton, 2012], a performance flow graph [Fyffe

et al., 2014], or by independent optical flow between a template and each

frame [Fyffe et al., 2017]. All of these methods require a dense setup of syn-

chronized video cameras. Valgaerts et al. [2012] simplify these requirements

by introducing a method that achieves results of similar quality from a single

pair of stereo cameras, combining sequential scene flow to compute the global

registration with shading-based refinement to compute fine-scale details. More

recently, Wu et al. [2018] proposed an incremental approach in which a person-

specific neural network is used for initialization and gradually improved as

more frames are registered. These methods achieve temporally coherent results

which are of high quality and include fine-scale details. However, they are lim-

ited to specific acquisition setups as the input to the methods are synchronized

and calibrated 2D videos. In this work, we consider the more general problem

of registering the geometry of 4D face scans without the need for reliable color

information.

4.2 Method

We aim here at registering a large number of sequences of 3D face scans,

displaying a varied range of identities and emotions. Each of these sequences

may contain many frames, and each frame a large number of vertices, making

the problem high-dimensional and difficult to optimize. Furthermore, datasets

captured with different acquisition setups present different levels of noise,

missing data and occlusions, hence the naive application of a frame-by-frame

template fitting approach is prone to failure. To keep the method as general as

possible we do not assume availability of either landmark or color information,
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Figure 4.1 – Overview of the proposed spatiotemporal registration approach.

The input to the system is a sequence of 3D scans showing a 3D face in motion,

and the output is a registered version of the sequence encoded in a compact

representation. The registration is initialized by a frame-by-frame automatic

regression approach that gives identity and expression coefficients of a mul-

tilinear model. The identity coefficients are then combined in order to build

a spatiotemporal model of the sequence, and an iterative process alternates

between projecting into this model and refining the geometry.

which allows to register data coming from sources for which privacy is a

concern.

In order to process large datasets we seek a strategy that is centered around

robustness and efficiency. To this end, we follow a model-based approach as

was previously considered by e.g. Amberg et al. [2008], Schneider and Eisert

[2009], Cheng et al. [2017b] in the static case, or Bolkart and Wuhrer [2015a],

Li et al. [2017] in the temporal case. But unlike these, we propose instead to

use a spatiotemporal model, combining a shape space that regularizes the

spatial information with a temporal space that regularizes the trajectories of

each vertex, thus capitalizing on the redundancies present both in space and

time. This allows not only for more accurate registrations, but also faster

computational times and a very compact representation of the output.

A second step towards robustness and efficiency is taken by the use of

a regression-based initialization. This builds on the work presented in the

previous chapter by leveraging the multilinear encoder for a fast initialization

of the spatial component of the model. The regression is done independently

on each frame and outputs for each time step the identity and expression

coefficients of a static multilinear model. Per-frame identity coefficients are then

combined into a single identity weight and used to build the shape basis of the

spatiotemporal model. The algorithm proceeds by alternating between fitting

the current estimation to the possibly noisy correspondences, and projecting

the result back into the spatiotemporal model. Figure 4.1 summarizes the

process.

We will begin by describing the spatiotemporal model in Section 4.2.1,

while the details of the algorithm are presented in Section 4.2.2.



50 CHAPTER 4. LARGE-SCALE REGISTRATION OF FACES IN MOTION

4.2.1 Spatiotemporal Model

The model used in this approach is an extension of the multilinear model

introduced in Section 2.3.3 and Chapter 3. Recall that, given x ∈ R3n a vector of

coordinates associated with the n vertices of a registered mesh,M∈ R3n×did×dexp

a core tensor, and wid ∈ Rdid , wexp ∈ Rdexp the identity and expression coeffi-

cients respectively, the multilinear model relates these to the 3D face by:

x ≈ x̄+M×2wid ×3wexp , (4.1)

where x̄ is the mean face over the model’s training data, and ×i denotes mode-i

multiplication.

When the data is a sequence of F 3D faces in correspondence, [x1, . . . ,xF ],

xi ∈ R3n, one could encode it within the multilinear model by using a unique

identity representation wid plus an array of expression weights [w1
exp , . . . ,w

F
exp].

This is the approach followed for example by Bolkart and Wuhrer [2015a],

and while it gives a relatively compact representation, it has a few drawbacks.

First, unless a prior is imposed on the curve, the expression weights can take

any form which in practice results in flickering of the reconstructed vertices.

Second, the formulation does not take into account the high temporal regularity

that each vertex exhibits, resulting in redundancy of the representation.

As originally proposed by Akhter et al. [2012], a bilinear model can be

built that leverages both spatial and temporal redundancies. To this end, the

sequence is organized into a matrix S ∈ RF×3n containing each frame in a row,

S = [x1, . . . ,xF ]T , or equivalently each vertex trajectory in a column. Let B ∈
R
3n×ds be a matrix with the shape basis vectors in its columns, encoding each

frame into a space of dimension ds. Similarly, let Θ ∈ RF×dt be a matrix with

the temporal basis vectors in its columns, encoding the trajectory of each vertex

into a space of dimension dt . Then the sequence matrix S can be decomposed

as

S ≈ΘCBT , (4.2)

where C ∈ R
dt×ds is a matrix of spatiotemporal coefficients that compactly

encode S. The dimensions ds and dt allow to trade off the compactness of the

representation and the approximation error of the input sequence.

We can easily incorporate this model into the multilinear framework. Given

the unique identity coefficients wid , multiplying it with the core tensor results

in a shape matrix for that particular subject:

x ≈ x̄+ (M×2wid )×3wexp (4.3)

= x̄+wT
exp (M×2wid )(3) (4.4)

= x̄+wT
expB

T (4.5)

where X(3) denotes mode-3 matricization of a tensor X (see Kolda and Bader

[2009]). We can thus obtain the shape matrix B of the spatiotemporal model by

simply multiplyingM×2wid , assuming we know wid .
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For the temporal basis Θ we follow Akhter et al. [2012] and fix it to the Dis-

crete Cosine Transform (DCT), since this approaches the optimal PCA-learned

basis when the data is generated from a stationary first-order Markov process,

and was empirically demonstrated to hold for sparse facial data in Akhter et al.

[2012]. Note that the dimensions dt of the temporal basis need to be chosen

carefully, as a very low-dimensional space will not allow high-frequency tra-

jectories and will flatten the original motion. In this work we set dt to be a

factor of the sequence length (i.e.dt = F/k for some constant k), which allows a

certain degree of independence from the sampling rate if we assume that the

motions are of approximately the same speed. This approach worked well for

the experiments shown in this chapter where this property holds, but a more

accurate method for model selection should be investigated. We leave this as

future work.

4.2.2 Registration

As depicted in Figure 4.1, we proceed in two major steps. First, we perform

an initialization independently on each frame that robustly and efficiently

regresses each scan against identity and expression coefficients of the multi-

linear model. The resulting meshes correctly capture the general structure of

the motion and shape but are still overly smooth and, because each frame is

treated independently, exhibit high-frequency jitter. To remedy this we use

the multilinear face model to build the spatiotemporal model described in

Section 4.2.1. The second step makes use of this model to iteratively improve

the initial approximations, regularizing the motion of the vertices and turning

the problem into a much lower-dimensional one compared to a frame-wise

formulation. We now describe each of these steps in more detail.

Frame-wise Initialization

Given a sequence of observations [o1, . . . ,oF ] consisting of F frames, we

register each frame independently by regressing identity and expression co-

efficients using the encoder part of the multilinear autoencoder presented in

Chapter 3. We thus obtain a sequence of identity and expression weights that

represent the face motion:

Wid = [w1
id , . . . ,w

F
id ],and (4.6)

Wexp = [w1
exp , . . . ,w

F
exp]. (4.7)

Even though the network was trained with raw scans presenting different

types of noise, the quality of the registration degrades when the input data

differs in form and orientation from the original training data. To ensure results

of high quality, the input 3D scan is therefore pre-processed as follows. We

first detect the nose tip by training a neural network for this task on depth

data, using the same architecture and training data as in the previous chapter
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(Section 3.4.2) 2. We next crop the face a radius of 100mm around this point, and

perform a coarse frontalization step so that it approximately looks towards the

z-direction. For frontalization, we consider the direction of the normals of each

vertex, which gives a distribution of orientations over the sphere that sample

a semi-sphere for a cropped face. The directional mean of this distribution

gives a coarse approximation of where the face is “looking at”, and we align

this to the directional mean of the model’s mean face. This makes the weak

assumption that the face is not upside-down and works well as long as the

cropped face does not contain too many holes or extra parts. Note that only a

coarse alignment is required here since the autoencoder was trained to have

some degree of robustness to pose variation in the input image. As a result, this

pre-processing step can be replaced with any other method that will produce a

cropped face and a rough frontalization.

The resulting multilinear model representations [x1, . . . ,xF ], obtained by

reconstructing the faces using Equation 4.1 with the coefficients from Equa-

tions 4.6 and 4.7, are in the coordinate system in which the multilinear model

was learned. For further refinement of these approximations they need to be

compared to the original scans. To align the observations [o1, . . . ,oF ] to the

model coordinate system we take advantage of the depth images generated

during regression to find initial correspondences. In particular, we consider

the depth image of the cropped and frontalized scan, and the depth image of

the registered mesh, and establish preliminary correspondences by assigning

pixels at the same location. This correspondence is used to rigidly transform oi

to xi (i = 1, . . . ,F). We then perform a few iterations of regular ICP alignment 3.

Once each frame is aligned, we discard the cropped version and go back to

the original raw scan; this allows to remove the quality of the crop as possible

source of error in the subsequent steps.

Given the identity coefficients of Equation 4.6 we next proceed to build the

model outlined in Section 4.2.1. Unlike the original formulation of Akhter et al.

[2012] in which both the shape basis B and the model coefficients C need to

optimized, we leverage the multilinear model to obtain a person-specific spa-

tiotemporal representation. Specifically, we summarize the regressed identity

coefficients Wid into a unique coefficient wid for the entire sequence, given that

the identity of the subject is fixed for any given motion. We compute wid as

a mean over the regressed results, wid =Wid , and create the shape basis B by

multiplying the core tensor with wid as BT =M×2wid . The temporal basis Θ

is fixed to the DCT basis according to the specified dimensions dt .

2. We use the bu-bosph version which has ground-truth nose tip locations. The input is the

same heightmap used for regressing multilinear coefficients. Note that nose tip detection on a

heightmap image is a relatively easy task.
3. We accelerate the nearest point search using the libigl implementation of the axis-aligned

bounding box (AABB) data structure [Jacobson et al., 2018]. We stop when the difference between

iterations is small, or a maximum of 30 iterations is reached.
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Iterative Refinement

Up to this point we have computed, for each frame i, spatially aligned

observations oi along with registered faces xi that approximate the geome-

try of oi . By iterating between refining the geometry of xi to match oi , and

projecting into the spatiotemporal model, we further improve the geometric

approximation of the registrations, obtaining temporally smooth results that

can be represented compactly.

Geometric refinement To improve the quality of the approximation xi of oi

we non-rigidly deform the registrations to the scans. The following discussion

omits the frame index i to simplify notation. The registration x is warped to

o by optimizing for displacements δx of the vertices of x along their normal

directions with Laplacian regularization. In particular, we solve for

min
{δx1,...,δxn}

α
n

∑

j=1

wj ||vxj + δxj n
x
j −px

j ||2 + β
n

∑

j=1

||L(δxj )||2, (4.8)

where vxj ∈ R3 is a vertex in x, px
j ∈ R3 the closest point to vxj in o, nx

j ∈ R3 the

normal vector of vxj , L the cotangent discretization of the Laplace-Beltrami

operator [Meyer et al., 2003], and wj ,α,β are scalar weights. We discard closest

points whose Euclidean distance is greater than 5mm and whose deviation in

normal vector is greater than 45◦ by setting wj to zero. This formulation can

be efficiently minimized by solving a linear system of equations.

Spatiotemporal sequence projection For each iteration, we gather the ap-

proximations xi obtained in the previous step into a sequence matrix S, and

use Equation 4.2 to compute C by solving

BCT = STΘ. (4.9)

This can be performed efficiently, as B is fixed and can be factorized once for

all the iterations.

Final refinement The two previous steps are iterated a few times until con-

vergence. To obtain more detailed results we complete the iterative process

with a final geometric refinement step. This allows to leave the bounds of the

multilinear model, thereby providing more accurate approximations of oi . To

prevent artifacts we use a stronger regularization weight β in the last geometric

refinement. However, this loses both the compactness of the representation

and the motion regularization. To rectify this we project the trajectory of the

displacements δxi into a second DCT basis (of possibly different dimensional-

ity d ′t), obtaining a displacement coefficient vector di ∈ Rd ′t for each of the n

vertices, with d ′t << F. We thus retain compactness while allowing for more

detailed registrations, as well as preventing flickering in the final trajectory of

the vertices.
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Sequence Representation

After registration we can compactly store the results given the multilinear

model. For each registered motion the following information suffices to re-

construct the sequence [x1, . . . ,xF ]: (1) the identity coefficient wid ∈ Rdid that

compactly encodes the shape matrix B; (2) the spatiotemporal coefficients

C ∈ Rdt×ds ; (3) the dimensions of the temporal bases dt and d ′t ; and (4) the m

displacement coefficients {d1, . . . ,dm},di ∈ Rd ′t . This significantly reduces the

storage requirements of large datasets (e.g.from 9.1GB to less than 1MB in the

example from Figure 4.5), while still retaining a reasonable level of detail.

4.3 Evaluation

We validate the approach on D3DFACS [Cosker et al., 2011], BU-4DFE [Yin

et al., 2008] and BP4D-Spontaneous [Zhang et al., 2014] datasets. D3DFACS

contains 519 sequences of 10 subjects performing different types of facial action

units, while BU-4DFE contains 101 subjects with 6 sequences each performing

the six prototypical emotions; in both cases the average sequence length is

around 100 frames and the meshes contain around 30K and 35K vertices

respectively. BP4D-Spontaneous contains 328 sequences with 41 subjects

performing 8 tasks each, which were designed to elicit spontaneous emotions.

The average sequence length is around 1100 frames and the average number

of vertices is around 37K. In the following we provide both qualitative and

quantitative evaluations over these.

Implementation details The code was implemented in C++ using

Eigen3 [Guennebaud et al., 2010] and libigl [Jacobson et al., 2018]. We use

the autoencoder from Chapter 3 that was trained on BU-3DFE [Yin et al., 2006]

and Bosphorus [Savran et al., 2008] datasets for 500 epochs 4. The dimensions

of identity and expression spaces are set to 65 and 20, and the dimension of

the temporal basis is set to F/5 (where F is the number of frames). We set

d ′t = 5, and unless otherwise specified, we fix the number of iterations to 5. For

Equation 4.8 we set β = 1, α = 0.9 during iterations and α = 0.8 for the final

step. Since BU-4DFE contains noisier scans, we set α = 0.5 during iterations

and α = 0.2 for the final step to avoid overfitting. The template mesh has 5996

vertices and is depicted in Figure 4.4.

4.3.1 Qualitative results

Figure 4.3 shows an example of the results obtained on each of the steps

of the method: regression, spatiotemporal registration, and final refinement.

Figure 4.2 shows a few more examples of registrations obtained on D3DFACS,

BU-4DFE and BP4D-Spontaneous. They illustrate that accurate cross-dataset

registrations can be obtained, while still being robust to different types of noise

in the data.

4. We use in fact the version that was originally published in Fernández Abrevaya et al. [2018].
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Figure 4.2 – Registration examples on (from top to bottom): D3DFACS, BU-

4DFE and BP4D datasets.

4.3.2 Quantitative results

We evaluate the quality of the registrations with two commonly used met-

rics: median per-vertex error towards the input scan, and landmark distances.

The median per-vertex error is taken across all registered frames in the dataset,

and shows how close the registrations are to the real scans. We also evaluate

semantic accuracy by manually placing landmarks on five key-frames over

10 randomly selected sequences of D3DFACS, and measuring the Euclidean

distances between these and the landmarks defined over the template. We use

in particular 11 landmarks, which can be visualized in Fig 4.4. The chosen

key-frames sample the sequence by taking the first and last frame, the peak

frame, and two intermediate ones.

We evaluate the stability of the motion by using a compactness measure (see

Davies et al. [2008]) as follows. For each sequence, we align the frames using

generalized Procrustes analysis, perform PCA, and measure the amount of

variabilty captured by each principal component. If the registrations exhibit

high-frequency jitter, we expect to see less variability retained by the first

principal components, as the variations coming from flickering vertices would

have to be encoded by higher-order principal components. To summarize

Figure 4.3 – Results for the successive steps (left to right): raw scan, regression,

1 iteration, 5 iterations, final.
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Figure 4.4 – Template mesh, and landmarks used for evaluation.

this over the entire dataset we determine the mean variability obtained as a

function of the percentage of principal components considered.

Figure 4.6 shows a cumulative plot of the median per-vertex error on

D3DFACS obtained after the initial regression, after 1, 3, 5 and 10 iterations of

spatiotemporal registration, and for the final result. We can see that the iterative

process improves the initial regressions in terms of surface fit. Furthermore,

Table 4.1 shows the mean landmark error over the 11 landmarks for the final

results obtained after 1, 3, 5 and 10 iterations. Despite being a landmark-free

registration method, the method obtains a good semantic accuracy that is

improved with each iteration.

We evaluate the benefits of the temporal regularization by comparing the

full model with a static version of our framework. For this, instead of project-

ing onto the spatiotemporal model we independently project each frame onto

the shape basis B, and measure the results in terms of vertex error and com-

pactness. Figure 4.7 shows cumulative plots obtained for these registrations.

Note that while using a spatiotemporal model achieves similar accuracies in

terms of vertex error, the compactness of each sequence improves with the

spatiotemporal model, implying less high-frequency jitter with the latter. This

results can also be qualitatively assessed in the accompanying video.

Finally, we show the ability of the method to track long videos by registering

the sequences from BP4D-Sponteanous, many of which consist of more than

1000 frames. We obtain a mean vertex error of 0.33mm over all registered

sequences and frames. Figure 4.5 further shows the median per-vertex error for

each frame on one example. This error stays between 0.1 and 0.4mm and does

not increase with time, suggesting that no drift is occuring. This is expected, as

the regression step is performed independently on each frame.

With respect to the running times, we report a mean per-frame processing

time of 578ms on the D3DFACS dataset, 637ms on BU-4DFE and 399ms for

BP4D, for five iterations in all cases. Computation times were measured on an

Intel Xeon 3.30GHz with NVidia GeForce GTX 1080 GPU.

4.3.3 Comparisons

We compare our method to the previous works of Bolkart and Wuhrer

[2015a], Li et al. [2017] and Cosker et al. [2011] using registrations provided by
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It. 1 It. 3 It. 5 It. 10 Li et al. [2017]

Mean error 2.92 2.77 2.69 2.65 3.13

Table 4.1 – Mean landmark error in mm., for 1, 3, 5 and 10 iterations, and

comparison with Li et al. [2017], over 10 selected sequences of the D3DFACS

dataset.

Figure 4.5 – Median per-vertex error for each frame of a long sequence in BP4D.

the authors.

Bolkart and Wuhrer Bolkart and Wuhrer [2015a] also register motion se-

quences in a fully-automatic manner by using a multilinear model and geo-

metric information only. We compare to this method on 497 sequences from

Figure 4.6 – Cumulative plot of median per-vertex error over D3DFACS (46028

frames) for: regression results, spatiotemporal registration (1, 3, 5 and 10

iterations) and final refinement.
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(a) Median per-vertex error

(b) Mean compactness

Figure 4.7 – Comparison between our method and a static version, in terms of

vertex error and sequence compactness.

BU-4DFE, which are the sequences that were correctly registered by Bolkart

and Wuhrer [2015a]. Figure 4.8a shows cumulative plots of the median per-

vertex error on all the registered sequences in BU-4DFE, comparing Bolkart and

Wuhrer [2015a] to our registration without and with the final refinement step,

since Bolkart and Wuhrer [2015a] has no refinement step. Figure 4.9a further

shows a qualitative comparison over a challenging example. Results reveal sim-

ilar accuracy for both methods without the refinement step, whereas Bolkart

and Wuhrer [2015a] requires around 30 seconds per-frame to process.

Li et al. The method of Li et al. [2017] was used to register D3DFACS, and

thus we compare our results over this dataset. For a fair comparison we crop

their full-head model so that it contains only the face, to be similar to our

registrations. We obtain a mean vertex error of 0.13 mm for our method, and

0.33mm for Li et al. [2017]. In Figure 4.8b we show the cumulative plots for

the median per-vertex distance for both methods. They demonstrate that our
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approach achieves higher accuracy while reducing both the running time (Li

et al. [2017] reported 155 seconds per-frame) and the requirements on the

dataset. We also compare with respect to landmark errors; results can be found

in Table 4.1. Our approach achieves better semantic accuracy with a single

iteration, even though it requires no pre-determined landmarks to guide the

process, confirming that our registrations faithfully preserve the anatomic

semantics. Figure 4.9b shows a qualitative comparison.

Cosker et al. Finally, we compare to the work of Cosker et al. [2011]. Com-

parisons are done over 3 sequences of D3DFACS that were provided by the

authors. We obtain a mean error of 0.13mm for our method and 0.18 mm

for Cosker et al. [2011]. Figure 4.8c shows the results in terms of median per-

vertex error. They demonstrate similar accuracy although our method is more

general as it does not require a controlled capture setup. Figure 4.9c shows a

qualitative comparison.

Comparisons on efficiency The efficiency of our method comes from both the

regression step and the spatiotemporal model optimization. The regression

is essential to get a good starting point that is already close to a local mini-

mum, and it can be performed efficiently on the GPU thanks to the heightmap

representation. Furthermore, due to the spatiotemporal model we need to

optimize for much less parameters, while still remaining in a global sequence

formulation. In particular, on each iteration we need to solve for the matrix

C which is of size ds × dt , with ds = dexp . In our implementation dt = F/5 and

thus we optimize for dexpF/5 parameters, reducing by a factor of 5 compared

to a frame-by-frame formulation. The method of Bolkart and Wuhrer [2015a]

optimizes for the parameters of each frame, which amounts to did + Fdexp
variables to be solved. The main data term on the method of Li et al. [2017]

optimizes for shape and expression parameters plus per-joint pose parameters

of an articulated model on a frame-by-frame basis, increasing the complexity.

Moreover, each frame is initialized from the previous one and thus it cannot

be parallelized. As for UV-based methods such as Cosker et al. [2011], the

computational complexity depends on the number of pixels of the image; while

these are usually more efficient than 3D-based ones, we have shown that we

can achieve similar accuracy, while remaining more general with respect to the

acquisition setup.

4.3.4 Limitations

The regression-based initialization allows the method to be robust to noise

in the input data, but it comes with drawbacks. In particular, the use of a

depth map implies that the method is not rotation-invariant, and thus a proper

pre-processing is needed to ensure that the face is “looking front”. Although

this does not require accurate pose detection (the network was trained with

data showing ±30◦ of pose variation), the output will be more accurate the
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(a) Bolkart and Wuhrer [2015a] on 49757 frames

(b) Li et al. [2017] on 46028 frames

(c) Cosker et al. [2011] on 292 frames

Figure 4.8 – Comparisons to Bolkart and Wuhrer [2015a] on BU-4DFE, Li

et al. [2017] on D3DFACS, and Cosker et al. [2011] on a subset of D3DFACS.

Cumulative plots for median per-vertex error.



4.3. EVALUATION 61

(a) Bolkart and Wuhrer [2015a]

(b) Li et al. [2017]

(c) Cosker et al. [2011]

Figure 4.9 – Qualitative comparisons. From left to right: original scan, com-

pared method, our result.
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(a) (b) (c)

Figure 4.10 – Failure example. (a) Heightmap obtained after bad nose tip

detection (top) and the following frame (bottom); (b) Regression results; (c)

Recovery by interpolation.

closer the input is to a frontal pose, and this in turn affects the final result.

Furthermore, our choice of initialization can sometimes be a source of failure,

particularly with the nose tip detection; see e.g.Figure 4.10. When this step fails

all subsequent steps fail too, since regressions are inaccurate and initial corre-

spondences cannot be found. In our experiments, this resulted in erroneous

registration of some of the frames in BU-4DFE and BP4D datasets. On the other

hand, since we are dealing with motion data, unsuccessful frames that are

isolated can be ignored without resulting in failure of the entire sequence. In

our implementation we automatically detect failed frames after ICP diverges,

and this is fixed by interpolating pose and shape parameters using correct

neighbouring frames. With this simple approach all sequences from BU-4DFE

and 95% from BP4D were registered (no errors were found during registration

of D3DFACS).

Another intrinsic limitation comes from the restricted scope of our trained

model. Particularly for expressions that are far from this scope, the framework

will provide only a coarse approximation and even the final refinement step can

fail to compensate. A related problem, already mentioned in Section 4.3.4, is

the simplistic approach for temporal model selection, in which the dimensions

are only dependent on the number of frames. Even though this worked well

for most of the sequences registered here, a few of the sequences from BP4D

include speech, which occurs faster than pre-defined expressions. In our

experiments the chosen temporal resolution is not sufficient for this type of

motion, and some of the visemes get smoothed out.
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4.4 Conclusion

We described in this chapter a novel method for the automatic registration

of large datasets of 3D face scans in motion. Having access to a fully automatic,

efficient and accurate registration approach not only enables the study of both

spatial and temporal patterns of the face, but also allows to do so at a larger

scale. This in turn allows to benefit from the efforts of multiple researchers

that captured and made publicly available different aspects of the 3D face in

motion. The technique proposed in this chapter holds several properties that

are appealing in this context: it is fully automatic, robust to different noise

characteristics, has minimum requirements on the input scans and as such it

is not limited to a specific capture system, it is efficient, and yields compact

representations of the data. We successfully registered in Section 4.3 three

standard datasets, without losing accuracy and with significantly better time

performances than competing methods. The approach shows how the use of a

global spatiotemporal model -as opposed to a purely static shape model, or a

sequential motion prior- can benefit the task of 4D registration. It also indicates

how a regression-based approach can help to achieve a robust initialization,

despite its limited accuracy against more classic methods.

There are several aspects that should be considered in a future work. First,

as mentioned in Section 4.2.1, the approach we used for temporal model

selection is quite simplistic and a more accurate strategy, capable of handling

motions of variable speed, would be more valuable. In particular, we observed

that speech-related motions –which are performed at higher speed than pre-

defined expressions or action units– can be easily “washed out” due to the low

dimensional temporal space. Setting higher dimensions for the temporal space

on the other hand results in high-frequency jitter, and thus a better approach

–e.g.an automatic selection of the best temporal dimension, or a semi-local

model covering a certain time window– should be explored. An alternative

that is also worth exploring is to consider a different type of temporal model,

e.g.a data-driven one.

Another interesting extension would be to consider a refinement not only of

the expression and geometry factors, but also the identity which is used to build

the shape basis B. Recall that this is constructed purely from the regression

results –a bad identity initialization could result in poor registrations. Although

we did not observe such problems, it is clear that simultaneously refining the

shape would further benefit the accuracy of the technique.

A final extension should devote particular attention to the most expressive

parts of the face: the mouth and the eyes. These areas have very distinct motion,

geometry and appearance, and are key for transmitting emotions. Our current

method is not capable of distinguishing closed from open eyes, or capturing

subtle eyelid motion, and as previously mentioned the temporal dimensions

are sometimes insufficient to correctly capture speech. A local treatment of

these (as considered in e.g. Garrido et al. [2016b], Bermano et al. [2015]) should

be considered for more accurate results.





5A Decoupled 3D Facial Shape Model by

Adversarial Learning

The previous chapter provided access to a large dataset of registered 3D

faces. With this at hand, we revisit the problem of building decoupled models

that was addressed in Chapter 3, this time in light of more advanced modeling

techniques.

We are interested here in building generative models that can capture the

space of realistic three-dimensional faces, while also differentiating the various

factors that influence the generation of this shape, e.g.the individual identity

or the expression. As mentioned, these decoupled models offer an independent

parameterization to each of the sources of variation while at the same time

modeling the interactions that occur among them. While the interest is typically

to disentangle identity from expression, other factors may come to play too.

For instance, a model that can disentangle shape, expression and viseme 1

can have applications in visual 3D speech synthesis, enabling systems that

generalize to multiple identities and can control the emotion in which a viseme

is performed.

The identity and expression subpaces are typically modeled as two inde-

pendent linear factors which are additively combined [Amberg et al., 2008].

While simple and effective for inference applications, these models can pro-

duce artifacts when transferring expressions among very different facial shapes.

Another commonly used alternative for decoupling the latent space is the mul-

tilinear model, and we have seen in Chapter 3 how it can be learned from a large

dataset of 3D facial scans. Yet, there are several challenges that remain.

First, while scalability in terms of size of the training set was already ad-

dressed in this thesis, multilinear models are still not scalable in terms of

number of factors. The size of the core tensor grows exponentially with each

new dimension, a property that is shared by the Multilinear Autoencoder of

Chapter 3. Furthermore, acquiring the data becomes harder with each new

factor: a model that decouples for example identity, expression and viseme

would require the capture of multiple subjects each performing all the expres-

sions in all of the visemes; a high cost both in time and money. Multilinear

Autoencoders also suffer from this, as they still require a subset of the data to

be assembled as a tensor for initialization.

A second downside is the assumption of linearity. During motion the

face undergoes complex deformations that experts believe cannot be correctly

1. The visual counterpart of a phoneme (a unit of sound).
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captured by a restricted linear space [Pighin and Lewis, 2006, Cosker et al.,

2010, Trutoiu et al., 2014]. To relax the linear assumption in modeling 3D faces,

deep generative models with autoencoder architectures have recently been

proposed. They demonstrate benefits in modeling geometric details [Bagautdi-

nov et al., 2018, Tran et al., 2019], joint appearance and shape [Lombardi et al.,

2018, Zhou et al., 2019] and non-linear deformations present in extreme facial

expressions [Ranjan et al., 2018]. Yet, none of these approaches are capable of

decoupling the factors of variation. 2

A final drawback, this time more specific to the technique presented in

Chapter 3, relates to the loss function that was used to enforce decoupling

while training the network. The loss in Equation 3.7 induces an error solely

based on the structure of the latent space. Yet, we believe that the perception

of the output should also be taken into acount if we want to model subtler

changes. For example, given two meshes with a same expression code, they

should be perceived by a human observer as having the same expression even

if the geometric displacements are significantly different, and this should be

valid not only for e.g.the coarse “smile” expression label, but also for all the

subtle variations that exist. Ideally, the latent loss should focus too on this

aspect.

We present here an altogether different technique for learning a decoupled

3D face model, and investigate the use of Generative Adversarial Networks

(GANs) [Goodfellow et al., 2014] for this task. GANs are well suited to our

problem since the loss function is designed to evaluate the output and not the

structure of the latent space, while performing a non-linear transformation

between the latent variables and the resulting mesh. Furthermore, the proposed

approach is scalable in terms of the number of factors to be modeled, requiring

only sparsely labeled data and a new discriminator for each additional factor.

A key challenge is how to best represent the data to enable stable training

of GANs. While current deep learning techniques have shown impressive

results in the image domain, extending these to 3D data is not straightforward.

We propose here a novel 3D-2D architecture in which a multilayer percep-

tron (MLP) generates the 3D face shape given a latent code, while a regular

convolutional network is used as a 2D discriminator. This is allowed by an

intermediate geometry mapping layer that transforms a 3D surface mesh into a

geometry image encoding the mesh vertex locations.

To effectively decouple the factors of variation we build on auxiliary classi-

fiers [Odena et al., 2017] whose task is to correctly guess the label associated

with each factor (e.g.“happy” expression), and introduce a loss on the classifier

features for unlabeled samples. Comparisons with recent approaches based

on autoencoder architectures [Fernández Abrevaya et al., 2018, Ranjan et al.,

2018] demonstrate that the proposed model can better decouple identity and

expression, and exhibit more variability in the generated data.

In summary, this chapters contributes:

2. A concurrent work was published that tackles this, see Jiang et al. [2019].
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1. A new generative 3D face model that captures non-linear deformations

due to expression, as well as the relationship between identity and ex-

pression subspaces.

2. A novel 3D-2D architecture that allows to generate 3D meshes while

leveraging the discriminative power of CNNs, by introducing a geometry

mapping layer that acts as bridge between the two domains.

3. A training scheme that enables to effectively decouple the factors of

variation, leading to significant improvements with respect to the state of

the art.

5.1 Related Work

We focus in the following on closely related deep learning works for 3D face

modeling and disentanglement. A more detailed review on classic data-driven

models such as the 3D Morphable Model (3DMM) can be found in Section 2.3.

Autoencoders for 3D faces Recent works leverage deep learning methods to

overcome the limitations of (multi-)linear models. Ranjan et al. [2018] proposed

an autoencoder architecture that learns a single global model of the 3D face,

and as such the different factors cannot be decoupled directly. However, an

extension called DeepFLAME was proposed that combines a linear model of

identity [Li et al., 2017] with the autoencoder trained on expression displace-

ments. While expressions are modeled non-linearly, the relationship between

identity and expression is not addressed explicitly. In Chapter 3 we developed

the multilinear autoencoder (MAE) [Fernández Abrevaya et al., 2018] in which

the decoder is a multilinear tensor structure. While the relationship between

the two spaces is accounted for, transferring expressions still presents artifacts.

We compare our proposed approach to DeepFLAME and MAE, as they achieve

state-of-the-art results on decoupling identity and expression variations.

Bagautdinov et al. [2018] proposed a multiscale model of 3D faces at dif-

ferent levels of geometric detail. Two recent works [Tran et al., 2018, Tewari

et al., 2018] use autoencoders to learn a global or corrective morphable model

of 3D faces and their appearance based on 2D training data. However, none

of these methods allow to disentangle factors of variation in the latent space.

Unlike the aforementioned works, we investigate the use of GANs to learn a

decoupled model of the 3D face.

GANs for 3D faces Some recent works have proposed to combine a 3DMM

with an appearance model obtained by adversarial learning. Slossberg et al.

[2018] train a GAN on aligned facial textures and combine this with a linear

3DMM to generate realistic synthetic data. Gecer et al. [2019] train a similar

model and show that GANs can be used as a texture prior for accurate fitting

to 2D images. Deng et al. [2018] fit a 3DMM to images and use a GAN to

complete the missing parts of the resulting UV map. All of these methods rely

on linear 3DMMs, and hence to shape spaces limited in expressiveness. While
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the focus is on improving the appearance, we follow a different objective with

a generative shape model that decouples identities and expressions.

To the best of our knowledge, by the time of publication the only work

that learned 3D facial shape variations using a GAN was Shamai et al. [2019],

which is an extension of Slossberg et al. [2018]. The authors proposed to

learn identity variations by training a GAN on geometry images, but unlike

our work they do not model the non-linear variations due to expression nor

the correlation between identity and expression, since the main focus is on

appearance. Recently, Moschoglou et al. [2020] combined an autoencoder

architecture with a GAN adversarial loss to learn shape variations, where

geometry is again encoded in a UV map. Unlike these works, we propose to

generate the shapes directly in the 3D domain, and use geometry images only

for discrimination.

Two other methods learn to enhance an input 3D face geometry with pho-

tometric information using a GAN. Given a texture map and a coarse mesh,

Huynh et al. [2018] augment the latter with fine scale details, and given an

input image and a base mesh, Yamaguchi et al. [2018] infer detailed geometry

and high quality reflectance. Both works require the conditioning of an input,

and unlike us they do not build a generative 3D face model.

Generative models with disentangled representations The problem of learn-

ing disentangled representations has received considerable attention in the

machine learning community, see e.g. [Bengio et al., 2013, van Steenkiste et al.,

2019]. When full label supervision is available, bilinear [Tenenbaum and Free-

man, 2000] and multi-linear [Vasilescu and Terzopoulos, 2002, Vlasic et al.,

2005] models were initially proposed to disentangle known factors of variation.

More recently, Reed et al. [2014] extended a Restricted Boltzmann Machine by

clamping parts of the hidden units assigned to a specific factor, and Dosovitskiy

et al. [2015], Kulkarni et al. [2015] trained deep neural networks to generate

2D projections of 3D objects from high-level descriptions. Weaker forms of

labeling were considered in Reed et al. [2015], Mathieu et al. [2016], Jha et al.

[2018], and fully unsupervised approaches were proposed by Chen et al. [2016],

Higgins et al. [2017], Kim and Mnih [2018]. Because of the lack of supervision

these methods cannot control which factors are encoded.

In their original form, GANs are unable to explicitly disentangle latent

factors according to known features or attributes. Numerous works have

been proposed that modify certain factors of an input image using GANs

conditioned on an image and control labels, e.g. Tran et al. [2017b], Pumarola

et al. [2018], Shen et al. [2018], Zhao et al. [2018], Usman et al. [2019]. They all

require explicit conditioning on a key factor (e.g.expression, rotation, lighting)

as well as identity in the form of an input image, whereas we aim here to learn

the latent spaces implicitly. To our knowledge only a few works decouple

without conditioning on an input shape. Mathieu et al. [2016] combine an

encoder-decoder generator and a reconstruction loss with swapped latent

vectors to disentangle identity, but only experimented with very low resolution
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Figure 5.1 – Proposed architecture. A MLP generates the 3D coordinates of the

mesh, while discrimination occurs in 2D space thanks to the geometry mapping

layer. Identity and expression codes zid , zexp are used to control the generator,

and classification losses are added to decouple between the two. A feature

loss is introduced to ensure consistency over features with fixed identities or

expressions.

images. Donahue et al. [2018] decouples by classifying pairs with a common

identity. Neither of these are symmetrical with respect to the two factors to

disentangle as they focus on preserving identity only. We propose here an

alternative that succeeds in decoupling latent codes into a constant number of

separate factors.

5.2 Background

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are

based on a minimax game, in which a discriminator D and a generator G are

optimized for competing goals. The discriminator is tasked with learning the

difference between real and fake samples, while the generator is trained to

maximize the mistakes of the discriminator. At convergence, G approximates

the real data distribution. Training involves the optimization of the following:

min
G

max
D
LGAN = Ex∼pdata [logD(x)] +Ez∼pz [log(1−D(G(z)))], (5.1)

where pdata denotes the distribution of the training set, and pz denotes the prior

distribution for G, typicallyN (0, I ).

GANs have been shown to be very challenging to train with the original

formulation and prone to low diversity in the generated samples. To address

this, Arjovsky et al. [2017] propose to minimize instead an approximation of the

Earth Mover’s distance between generated and real data distributions, which

is the strategy we adopt in this work:

LGAN = Ex∼pdata [D(x)]−Ez∼pz [D(G(z))]. (5.2)

In particular we use the extension of Gulrajani et al. [2017] which uses a

gradient penalty in order to enforce that D is 1-Lipschitz.

When labels are available, using them has proven to be beneficial for GAN

performance. Odena et al. [2017] proposed the Auxiliary Classifier GANs (AC-

GAN), in which D is augmented so that it outputs the probability of an image
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belonging to a pre-defined class label c ∼ pc. In this case, the loss function for

G and D is extended with:

LrealC = Ex∼pdata ,c∼pc [logP(C = c|x)], (5.3)

Lf akeC = Ez∼pz ,c∼pc [logP(C = c|G(z,c))]. (5.4)

In order to evaluate if a model is correctly decoupling, we need to be able

to distinguish whether two identites or expressions sharing the same latent

code are perceptually similar. Thus, our work builds on the idea of auxiliary

classifiers in order to learn a decoupling of the shape variations into factors, as

will be explained in the next section.

5.3 Method

We consider as input a dataset of registered and rigidly aligned 3D facial

meshes, where each mesh is defined by (V ,F ), the set of 3D vertices V ∈
R
3×nv and the set of triangular faces F ∈ N3×nf that connect the vertices. Our

goal is to build an expressive model that can decouple the representation

based on known factors of variation. In contrast to classical approaches in

which a reconstruction error is optimized, we rely instead on the adversarial

loss enabled by a convolutional discriminator. To this end, we introduce an

architecture in which a geometry mapping layer serves as bridge between the

generated 3D mesh and the 2D domain, for which convolutional layers can be

applied (Section 5.3.1). To learn a decoupled parameterization, we build on the

idea of Auxiliary Classifiers and introduce a feature loss to further improve the

results (Section 5.3.3). We will consider here a model that decouples between

identity and expression, however the principle can be easily extended to more

factors.

5.3.1 Geometry Mapping Layer

While deep learning can be efficiently used on regularly sampled signals,

such as 2D pixel grids, applying it to 3D surfaces is more challenging due to

their irregular structure. In this work we propose to generate the 3D coor-

dinates of the mesh using a multilayer perceptron, while the discriminative

aspects are handled in the 2D image domain. This allows to benefit from

efficient and well established architectures that have been proven to behave

adequately under adversarial training, while still generating the 3D shape in

its natural domain.

In particular, a 2D representation of a mesh can be achieved through a UV

parameterization φ : V →D that associates each vertex vk ∈ V with a coordinate

(u,v)k in the unit square domain D. Continuous images can be obtained

by interpolating the (x,y,z) vertex values according to the 2D barycentric

coordinates, and storing them in the image channels. Borrowing the term

from Gu et al. [2002], we call this a geometry image (see Figure 5.2a).
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Note that although our method could generate geometry images instead

of 3D meshes, this would introduce an unnecessary additional reconstruction

step that is likely to cause information loss and artifacts in the final meshes, as

illustrated in Figure 5.2b. This is due to the fact that a single planar unfolding

of a mesh may create distortions such as triangle flipping [Sheffer et al., 2006],

and a many-to-one mapping may be obtained even with a bijective parameteri-

zation due to the finite size of images. In addition, as elaborated in Gu et al.

[2002], unless border vertices are preassigned to distinct pixels which can be

challenging for large meshes, sampling these locations results in erroneous

interpolations. Generating 3D point coordinates instead allows to avoid re-

construction artifacts, and to apply common mesh regularization techniques

that simplify and improve the learning process. We use geometry images only

as the representation for the discriminative component that evaluates the 3D

generator through CNNs.

The mapping layer operates as follows. Given a mesh made of vertices

V = {vk/k = 1..nv}, a target image size n× n, and a pre-computed UV parame-

terization φ, we build two images IU , IV of dimension n×n, and three images

Iv1 , Iv2 and Iv3 of dimension n × n × 3 each. For each pixel (i, j), we consider

the φ-projected mesh triangle (v̂1, v̂2, v̂3) containing it. The barycentric abscissa

and ordinate of pixel (i, j) in triangle (v̂1, v̂2, v̂3) are then stored in images IU

and IV respectively, and the original face vertex coordinates v1, v2 and v3 are

stored in images Iv1 , Iv2 and Iv3 . The mapping layer computes the output

geometry image I as:

I = IU ∗ Iv1 + IV ∗ Iv2 + (1− IU − IV ) ∗ Iv3 , (5.5)

where ∗ denotes element-wise multiplication and 1 ∈ R
n×n is the matrix of

ones. Since this layer simply performs indexing and linear combinations on the

elements of V using the predefined parameters in IU and IV , all operations are

differentiable and the gradients can be back-propagated from the discriminated

image to the generated mesh.

(a) Geometry image (b) Original and reconstructed meshes

Figure 5.2 – While a GAN could be used to generate geometry images, re-

covering the mesh from them is prone to artifacts, e.g. erroneous boundary

interpolations (red) and precision loss (blue) in 5.2b. In this work we generate

instead the 3D mesh, while geometry images are used only for discrimination.
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Convolving the UV map obtained through the geometry mapping layer

corresponds to convolving the original mesh, such that the convolutional

kernel covers the surface in a possibly un-even manner, as illustrated in Fig-

ure 5.3. This process allows to take advantage of the efficiency of regular grids

while still generating shapes in 3D space, retaining knowledge of the surface

connectivity.

Figure 5.3 – Illustration of mesh convolutions using the geometry mapping

layer. The top row represents a UV map with a convolutional kernel being

applied, while the bottom row shows the effect on the original mesh. The

geometry mapping layer allows to backpropagate results from the image

representation to the generated mesh.

5.3.2 Architecture

Figure 5.1 depicts our proposed architecture. The generator consists of

two fully connected layers that map the latent code z to a vector of size 3nv
containing the stacked 3D coordinates of displacements from a reference face

mesh. The output vertex positions are passed through the mapping layer

to generate a geometry image of size n × n, which is then processed by the

discriminator in order to classify whether the generated mesh is real or fake. We

also consider auxiliary classifiers for the discriminator, denoted as Cid and Cexp .

The design of D shows two main differences with respect to the original AC-

GAN. First, instead of classifying only one type of label, we use here classifiers

for both identity and expression. This favors decoupling, since the classification

of one factor is independent of the choice of parametrization for the other

factors. Second, we provide distinct convolutional layers for the real/fake,

identity and expression blocks. This is motivated by the observation that the
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features required to classify identities and expressions are not necessarily the

same.

5.3.3 Decoupled Model Learning

We rely on the discriminator not only to generate realistic faces, but also to

decouple the factors of variation. For this, we optimize D such that it maximizes

LD = LGAN +λC (LID +LEXP ). (5.6)

Here, LGAN denotes the standard adversarial loss (see Equation 5.2), and

LID ,LEXP the classification losses measured against the labels provided with

the dataset and weighted by scalar λC . These losses are defined similarly to

Equation 5.3 as:

LID = Ex∼pdata ,c∼pidc [logP(C = c|x)],
LEXP = Ex∼pdata ,c∼pexpc

[logP(C = c|x)], (5.7)

where pidc and p
exp
c denote the distribution of identity and expression labels,

respectively. We ignore the sample contribution in the classification loss if it is

not labeled.

The generator G takes as input a random vector z = {zid , zexp , znoise}, which is

the concatenation of the identity code zid ∼ pid , the expression code zexp ∼ pexp
and a random noise znoise ∼ pnoise. It produces the location of nv displacement

vectors from a reference mesh, and is trained by minimizing:

LG = λ1LGAN −λ2

(

LidCL +L
exp
CL

)

+λ3

(

LidFEAT +LexpFEAT

)

+λ4Lreg ,
(5.8)

where LGAN is the standard GAN loss (Equation 5.2); LidCL and LexpCL are classifi-

cation losses; LidFEAT and LexpFEAT are feature losses that aim to further increase

the decoupling of the factors; Lreg is a regularizer; and λ1,λ2,λ3,λ4 are weights

for the different loss terms. We explain each of these in the following.

Classification Loss In addition to the adversarial loss, the generator is trained

to classify its samples with the correct labels by maximizing:

LidCL = Ez∼pz ,c∼pidc [logP(C = c|G(z))],

LexpCL = Ez∼pz ,c∼pexpc
[logP(C = c|G(z))]. (5.9)

In order to generate data belonging to a specific class, we sample one iden-

tity/expression code zid , zexpr for each label and fix it throughout the training;

this becomes the input for G each time the classification loss must be evaluated.

We denote the set of fixed codes for identity and expression as T id and T exp

respectively.

Feature Loss The classification loss is limited to codes in T id /T exp , which have

associated labels. We found that better decoupling results can be obtained if we
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include a loss on the classifier features. We measure this by generating samples

in pairs which share the same identity or expression vector, and measuring the

error as:

LidFEAT =
2

N

∑

zid

(

1− cos(f1,zid ,f2,zid )
)

, (5.10)

LexpFEAT =
2

N

∑

zexp

(

1− cos(f1,zexp ,f2,zexp )
)

. (5.11)

Here, N is the batch size, and fi,zid = f
(

G(zid , zexp,i , znoise,i )
)

are feature vectors

obtained by inputting the sample G(zid , zexp,i , znoise,i ) through the classifier Cid

and extracting the features from the second to last layer. That is, given two

inputs which were generated with the same identity vector, LidFEAT enforces that

their feature vectors in the identity classifier are also aligned. The definition is

analogous for fi,zexp with Cexp .

To enable training with both classification and feature loss, for each batch

iteration we alternate between the sampling of labeled identity codes zid ∈ T id

with unlabeled expression codes zexp ∼ pexp , and the sampling of unlabeled

identity codes zid ∼ pid with labeled expression codes zexp ∈ T exp . The classi-

fication is evaluated for the labeled factor only, while the feature loss is used

for unlabeled codes, and the alternation allows to better cover the identity and

expression sub-spaces during training.

Regularization Generating a 3D mesh allows us to reason explicitly at the

surface level and define high order loss functions using the mesh connectiv-

ity. In particular, we enforce spatial consistency over the generated faces by

minimizing the following term on the output displacements v = G(z):

Lreg = ||Lv||22, (5.12)

where L is the cotangent discretization of the Laplace-Beltrami operator [Meyer

et al., 2003].

5.4 Evaluation

We provide in this section results obtained with the proposed framework,

which demonstrate its benefits particularly in decoupling. We first clarify

our set-up with implementation details in Section 5.4.1 and the datasets used

in 5.4.2. We explain in Section 5.4.3 the proposed metrics for the evaluation

of a 3D face model, and introduce a new measure for analyzing the diversity

of the generated samples. In Section 5.4.4 we perform ablation studies to

verify that all the components are necessary to effectively train an expressive

model. Finally, in Section 5.4.5 we compare our results to state-of-the-art 3D

face models that can decouple the latent space, and show that our approach

outperforms with respect to decoupling and diversity.
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5.4.1 Implementation Details

We set the weights to λC = 0.1 (Equation 5.6), λ1 = λ2 = 1, λ3 = 0.5 and

λ4 = 100 (Equation 5.8). The classification losses are further weighted to

account for imbalanced labels [King and Zeng, 2001]. For the generator, we

use two fully connected layers with an intermediate representation of size 512

and ReLU non-linearity. For the discriminator we use a variant of DC-GAN

[Radford et al., 2016], with the first two convolutional blocks shared between

Creal , Cid and Cexpr , while the remaining are duplicated for each module (more

details can be found in Appendix A.1). The models were trained for 200 epochs

using ADAM optimizer [Kingma and Ba, 2015] with β1 = 0.9 and β2 = 0.999, a

learning rate of 0.0002 and a batch size of 64. During training we add instance

noise [Sønderby et al., 2017] with σ = 0.1 to the input of D. The discriminator

is trained for 3 iterations each time we train the generator. The models take

around 2 hours to train on a NVidia GeForce GTX 1080 GPU.

The template mesh contains 22129 vertices. We pre-compute the UV map φ

using harmonic parameterization [Eck et al., 1995], setting the outer boundary

face vertices to a unit square to ensure full usage of the image domain. We

generate geometry images of size 64× 64; we experimented with other image

sizes but the best decoupling results were obtained with this resolution. The

dimensions for (zid , zexp , znoise) are set to (65,15,5) to facilitate comparison with

Fernández Abrevaya et al. [2018], and the feature vectors used in Equations 5.10

and 5.11 are of size 2048.

5.4.2 Datasets

All models were trained using a combination of four publicly available 3D

face datasets. In particular, we use two datasets containing static 3D scans

of multiple subjects: BU-3DFE [Yin et al., 2006] and Bosphorus [Savran et al.,

2008], and combine these with two datasets of 3D motion sequences of multi-

ple subjects: BP4D-Spontaneous [Zhang et al., 2014] and BU-4DFE [Yin et al.,

2008]. The static datasets provide variability of identities, while the motion

datasets provide variability of expressions and a larger number of training

samples. We registered BU-3DFE and Bosphorus with a template fitting ap-

proach [Salazar et al., 2014], and the motion datasets with the spatiotemporal

approach introduced in Chapter 4.

The final dataset contains 30559 registered 3D faces and was obtained by

subsampling the motion sequences. We provide identity labels for all meshes,

while the expression labels are limited to the seven basic emotional expressions,

which appear in both static datasets. For BU-4DFE, expression labels are

assigned to three frames per sequence: the neutral expression to the first and

last frame, and the labeled expression of the sequence to the peak frame. For

BP4D, one neutral frame is manually labeled per subject (this is a requirement

for comparison to Ranjan et al. [2018]). Overall, due to the use of motion data,

only 7% of it is assigned expression labels.
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5.4.3 Evaluation Metrics

We evaluate the models in terms of diversity of the generated samples,

decoupling of identity and expression spaces, and specificity to the 3D facial

shape. We believe it is necessary to simultaneously consider all the metrics,

as they provide complementary information on the model. For instance, a

good decoupling value can be obtained when the diversity is poor, since

small variations facilitate the classification of samples as “same”. Conversely,

a large diversity value can be obtained when decoupling is poor, since the

identities/expressions sharing the same code can yield very different shapes.

We detail these in the following.

Diversity We consider it important to measure the diversity of the 3D face

shapes generated by a model, particularly with GANs that are known to be

prone to mode collapse. To the best of our knowledge, this has not yet been

considered in the context of 3D face models and we propose therefore to

evaluate as follows. We sample p pairs of randomly generated meshes and

compute the mean vertex distance among the pairs; diversity is then defined

as the average of distances over the p pairs. We expect here to see higher

values for more diverse models. We evaluate on three sets of sampled pairs:

(1) among pairs chosen randomly (global diversity), (2) among pairs that share

the same identity code (identity diversity) and (3) among pairs that share the

same expression code (expression diversity). For all cases we evaluate on 10000

pairs. For comparison, the training set is also evaluated on these three metrics

by leveraging the labels.

Decoupling To evaluate decoupling in both identity and expression spaces

we follow the protocol proposed in Donahue et al. [2018]. In particular, we first

train two networks, one for identity and one for expression, that transform

an image representation of the mesh to an n-dimensional vector using triplet

loss [Schroff et al., 2015], where n = 128 in our experiments. The trained

networks allow to measure whether two meshes share the same identity or

expression by checking whether the distance between their embeddings is

below a threshold τ.

To measure identity decoupling, we generate n random faces xi =

G(ziid , z
i
exp , z

i
noise), and for each random face we fix the identity code and sam-

ple m faces Y (xi ) = {G(ziid , z
j
exp , z

j
noise), j = 1..m}. We then use the embedding

networks to evaluate whether the original faces xi and their corresponding

samples in Y (xi ) correspond to the same identity, and report the percentage of

times the pairs were classified as “same”. We proceed analogously for expres-

sion decoupling. We set n = 100, m = 100, τ = 0.14 for identity and τ = 0.226

for expression; more implementation details are given in Appendix A.2.

Specificity Specificity is a metric commonly used for the evaluation of statisti-

cal shape models [Davies et al., 2008] and whose goal is to quantify whether
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(a) W/o mesh reg.

(b) W/o expr. classif.

(c) W/o feature loss

(d) Proposed

Figure 5.4 – Qualitative results for alternative approaches. From left to right:

randomly generated samples (dark gray), random samples with a same expres-

sion code (light gray), random samples with a same identity code (purple).

all the generated samples belong to the original shape class, faces in our case.

For this, n samples are randomly drawn from the model and for each the mean

vertex distance to each member of the training set is measured, keeping the

minimum value. The metric then reports the mean of the n values. We use here

n = 1000.

5.4.4 Ablation Tests

We start by demonstrating that each of the proposed components is neces-

sary to obtain state-of-the-art results according the metrics previously defined.

To this end, we compare our approach against the following alternatives: (1)

without mesh regularization (Equation 5.12); (2) with identity classification

only; (3) with expression classification only; and (4) without feature loss (Equa-

tions 5.10 and 5.11).

Table 5.1 gives the evaluation metrics for each of these options, and Figure

5.4 provides qualitative examples. From the results we observe that: (1) The

mesh regularization is crucial to generate samples that are realistic facial shapes.

This is reflected by a very large value in specificity as well as low diversity, due

to the fact that the model never converged to realistic faces (see Figure 5.4a). (2)
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Dec-Id↑ Dec-Exp↑ Div↑ Div-Id↑ Div-Exp↑ Sp.↓
Training data − − 4.89 3.30 5.04 −
w/o mesh regularization 99.6 99.1 1.41 0.65 1.25 3.61

w/o expr. classification 100.0 42.8 4.81 0.11 4.87 2.01

w/o id. classification 7.8 98.9 5.28 4.87 2.05 2.22

w/o feature loss 96.0 80.3 4.47 1.75 4.01 2.00

3DMM 99.6 65.6 3.53 1.95 2.89 2.30

MAE 99.5 53.3 3.89 0.92 3.76 2.00

CoMA 97.5 65.5 3.38 1.71 2.90 2.47

Ours 98.6 89.7 4.74 1.94 4.22 2.01

Table 5.1 – Quantitative evaluation with respect to decoupling of identity and

expression (Dec-, percentage), diversity (Div-, in mm) and specificity (Sp., in

mm.); and comparisons to 3DMM [Amberg et al., 2008], MAE [Fernández Abre-

vaya et al., 2018] and CoMA [Ranjan et al., 2018]. Higher is better, except for

specificity.

Considering classification in only one factor significantly reduces the capacity

of the model to preserve semantic properties in the other factor, as indicated

by the very low decoupling values obtained in the corresponding rows. This

justifies the use of classifiers for each of the factors. (3) Without the feature loss

the model can still achieve good results, but both expression decoupling and

diversity are lower than with the full model and the inclusion of the feature

loss improves expression classification by almost 10%. Note that decoupling

the expression space is significantly more challenging than identity, as the

provided labels are very sparse. This effect is illustrated on Figure 5.4c, where

models with the same expression code can lead to faces with slightly differ-

ent expressions. Our approach provides more coherent faces, as shown in

Figure 5.4d.

5.4.5 Comparisons

We compare the proposed approach against state-of-the-art generative 3D

face models. Our goal is to build a decoupled latent space, and thus we focus

the comparison to works that either enforce this explicitly [Fernández Abrevaya

et al., 2018], or combine a model trained on expressions with a linear space of

identities [Ranjan et al., 2018, Amberg et al., 2008]. We train all models using

the same dimensions (65 for identity and 20 for expression).

The model proposed in Fernández Abrevaya et al. [2018], called MAE in the

following, was trained with the same dataset and the same label information

(Section 5.4.2) for 200 epochs, with the default parameters given in the paper.

We initialize the encoder and the decoder from the publicly available models.

The model proposed in Ranjan et al. [2018], called CoMA in the follow-

ing, does not explicitly favor decoupling and thus we use the DeepFLAME
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Source Target CoMA MAE Ours

(a) Transferring expression to a target face

(b) Sampling novel identities from the transferred expression.

Figure 5.5 – Qualitative comparison in terms of expression transfer. Top:

expression code zexpr transferred to a target identity. Bottom: using zexpr from

the source in the top row, we sample novel identities (left to right: CoMA,

MAE, ours).

alternative [Li et al., 2017], which we also train with the same dataset. This

results in a PCA model built from 299 identities and an autoencoder trained

on 30330 displacements from the corresponding neutral face. For the identity

space we manually selected one neutral frame for each sequence in BP4D-

Spontaneous, as this dataset does not provide labels. The model was trained

using the publicly available code for 200 epochs.

We also trained an additive linear model as described in Amberg et al.

[2008] using our dataset, and the same neutral/expression separation selected

for CoMA (see above). We refer to this model as 3DMM.

Model quality We show quantitative results with respect to decoupling, diver-

sity and specificity in the bottom of Table 5.1. Note that the proposed approach

significantly outperforms the others in terms of expression decoupling, which

is more challenging than identity due to the sparse labeling. This is shown qual-

itatively in Figure 5.5, where we transferred expressions by simply exchanging

the latent code zexp . We can see here that the expression is well preserved by

our model.

With respect to identity decoupling the four methods perform similarly

well, with 3DMM achieving the highest value. Note that, in the case of MAE,

the large decoupling value is combined with the lowest diversity in identity

(Div-Id), which suggests limited generative capabilities.

Our model outperforms all methods in terms of diversity. Combined with
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Method λ = 0 λ = 0.01 λ = 10

3DMM [Amberg et al., 2008] 6.62 4.64 2.46

MAE [Fernández Abrevaya et al., 2018] 4.46 4.06 2.78

CoMA [Ranjan et al., 2018] 3.05 3.02 2.83

Ours 2.62 2.55 2.42

Table 5.2 – Reconstruction of sparse data under different regularization weights

(RMSE, in mm).

a specificity value that is among the best, this implies that it has learned to

generate significant variations that remain valid facial shapes.

Reconstruction of Sparse Data We test here model generalization when re-

constructing partial face data given sparse constraints. To this purpose, we use

the dataset provided by Ranjan et al. [2018], which contains 12 subjects per-

forming 12 extreme expressions. We take the middle frame of each sequence

and manually label 85 landmarks (see Figure 5.9b), resulting in a testing set of

144 subjects. The face model is fitted by minimizing:

argmin
z

p
∑

i=1

||ṽi (z)− vi ||22 +λ||z||22, (5.13)

where vi are the 3D locations of the p key-points in the testing set, ṽi (z) are the

corresponding key-points in the face model generated with code z, and λ the

regularization weight. We optimize using a gradient descent approach [Kingma

and Ba, 2015] starting from a randomly sampled code z. Note that this is a

challenging scenario since the training set does not contain such expressions,

and the correspondences are very sparse.

We compare our results with those obtained with 3DMM, MAE and CoMA,

using the same optimization for all methods. We measure the reconstruction

error against the ground-truth surface and report the RMSE. Quantitative

results can be found in Table 5.2 for different regularization weights λ. Our

method outperforms in all cases, including without regularization (λ = 0). We

found that our model can produce reasonable faces in most cases, while MAE

and CoMA easily produce un-realistic faces when the regularization is not

strong enough. Qualitative examples can be seen in Figure 5.9a.

5.4.6 Extension to other factors

One of the benefits of our framework lies in its ability to easily extend to

other factors of variation. As an illustration, we trained a model that decouples

identity, expression and viseme (the visual counterpart of a phoneme). The re-

sults can be found in Figure 5.6, where we show qualitative examples obtained

by modifying the different factors of variation individually.
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Figure 5.6 – Example of decoupling between identity, expression and viseme.

We trained the model using the audiovisual 3D dataset of Fanelli et al.

[2010], which contains 14 subjects performing 40 speech sequences in neutral

and “expressive” mode. We assign phoneme labels using the Montreal Forced

Aligner tool [McAuliffe et al., 2017] with the provided audio, which are mapped

to visemes following Neti et al. [2000]. For expression, we manually labeled

699 frames with the aid of the provided expression ratings of each sequence.

This resulted in a database with 100% labeled identites, 68% labeled visemes,

and 3% labeled expressions. We set the latent dimensions to (50,50,50,5) for

identity, expression, viseme and noise, respectively.

Note that this is a simplified model of speech, since the temporal informa-

tion is not taken into account. Yet, we can see in Figure 5.6 that a decoupling

between the aspects affected by phoneme production, and those affected by

expressions such as happiness or surprise can be easily distinguished by our

framework. Note for example the change in eye expression and the subtle

mouth movements that occur to accommodate the viseme under different

expressions. It is also worth noting that these results were obtained with fully

automatic labels for viseme, and very sparse manual labels for expression, thus

simplifying the efforts required to annotate the dataset. Unlike the identity
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and expression factors, which are intuitively easier to separate, the viseme and

expression factors are more intertwined and decoupling them is very challeng-

ing even for a human annotator. In spite of this, our results show that we can

reasonably decouple the three factors.

5.4.7 Latent Space Manipulation

Thanks to the decoupling of identity and expression spaces, we can syn-

thesize new expressions by simple manipulation of the latent space. We show

here two possibilities for this.

Given a source mesh obtained with G(zsrcid , zsrcexpr , z
src
noise) and a target mesh

obtained with G(z
target
id , z

target
expr , z

target
noise ), we generate new expressions for the

target mesh by either

1. Replacing the expression with that of the source: G(z
target
id ,zsrcexpr, z

target
noise )

2. Adding the expression vectors: G(z
target
id ,zsrcexpr + z

target
expr , z

target
noise )

Results can be seen in Figure 5.7. In particular, note how adding the latent

vectors results in plausible expressions which preserve the semantics of both

sources.

Finally, we show that the latent space is smooth with an example of inter-

polation and extrapolation in Figure 5.8.

Source Target Replaced Added Target Replaced Added

Figure 5.7 – Example of expression space manipulation. In gray a source mesh

and a target mesh. In purple the result of (1) replacing the expression code

of the target with that of the source (replaced), and (2) adding the source and

target expression codes (added).

5.5 Conclusion

We explored in this work the use of adversarial training for learning de-

coupled 3D facial models. Our results show that purely discriminative losses

are well suited for the decoupling task, achieving state-of-the-art performance
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Figure 5.8 – From top to bottom: interpolation (purple) and extrapolation (gray)

of expression code, identity code, and the full latent.

in terms of decoupling and diversity of the generated samples. Although the

expressiveness of the model remains limited by the diversity of the training

data and the accuracy of its labels, we show that adversarial learning has strong

potential in building performant 3D facial models.

Our framework is enabled by a novel method for processing 3D data using

deep learning approaches, namely the 3D-2D architecture. This architecture

allows to benefit from advances in 2D convolutional networks while still

generating the data in the 3D domain. The results of this work suggest that such

3D-2D approach is a viable alternative to other mesh processing frameworks,

e.g. Verma et al. [2018]. Exploring its true capacity in light of other tasks is an

interesting direction that we leave for future work.

GANs have shown an impressive ability to retain fine-scale details in 2D

facial images. Unfortunately, due to the lack of proper training data the present

work does not answer the question of whether similar progress can be obtained

in 3D through the proposed approach. Yet, we believe that it should be possible

given the proper data and enough network capacity, and leave this too as a

future direction.
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Input With regularization No regularization

(a) Comparison against MAE and COMA, with and without regularization. From left

to right: MAE, COMA, our result.

(b) 85 landmarks used for fitting

Figure 5.9 – Reconstruction of sparse data



6Estimating 3D Face Normals from Natural

Images

The previous chapters dealt with the global properties of the face: how

to model and track the geometry of the 3D shape and motion, as well as

the interactions between the identity and expression subspaces. In this final

chapter we consider a slightly different but related problem: how to estimate

local geometric details. To this end, we depart from the global shape models

used until now and build instead a prior that can simultaneously encode

information about the facial normals and natural face images. The goal here is

to estimate accurate surface normals from images in-the-wild, which can be

used to enhance coarser estimations from parametric models as illustrated in

Figure 6.1.

3D reconstruction of the human face is a long-standing problem in com-

puter vision, with a wide range of applications including biometrics, forensics,

animation, gaming, and human digitalization. In many of these applications

monocular inputs are considered in order to limit the acquisition constraints,

Figure 6.1 – Our model predicts accurate normals from a single input image

that can be used to enhance a coarse geometry (e.g. PRN [Feng et al., 2018]).
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hence enabling uncontrolled environments as well as efficient information

usage for e.g.facial telecommunication and entertainment. Although signifi-

cant progress has been recently made by the scientific community, recovering

detailed 3D face models given only single images is still an open problem.

Monocular face reconstruction is in essence an ill-posed problem which

requires strong prior knowledge. Assuming a simple shading model, sem-

inal shape-from-shading (SfS) approaches [Horn and Brooks, 1989, Zhang

et al., 1999] were estimating shape normals by considering local pixel inten-

sity variations. Fine scale surface details can be recovered using this strategy,

however the applicability to in-the-wild images is limited by the simplified

image formation model that is assumed. Later on, a more global strategy was

proposed with parametric face models, such as the ones considered in the

previous chapters. They allow fitting a template face controlled by only a

few coefficients, resulting hence in improved robustness. While being widely

adopted, parametric models are inherently restricted in expressiveness and

have difficulties in recovering small surface details, as a consequence of their

low dimensional representation. Recently, deep learning methods that exploit

large-scale face image datasets have been investigated with the aim of better

generalization. While most works in this category are trained to estimate the

coefficients of a parametric model [Tewari et al., 2017, 2018, Genova et al., 2018,

Kim et al., 2018a, Sanyal et al., 2019], a few other approaches infer directly per-

pixel depth [Sela et al., 2017], UV position maps [Feng et al., 2018] or surface

normals [Trigeorgis et al., 2017, Sengupta et al., 2018].

As observed in previous work [Smith et al., 2019, Zhang and Funkhouser,

2018], regressing depth information alone can lead to suboptimal results, espe-

cially detail-wise, as the inherent scale ambiguity with single images can make

convergence difficult for neural networks. On the other hand, the estimation of

normals appears to be an easier task for such networks, given that normals are

strongly correlated to pixel intensities and depend mostly on local information,

a fact already exploited by SfS techniques. Still, only a few approaches have

been proposed in this line for facial images [Shu et al., 2017, Sengupta et al.,

2018], mostly due to the limited available ground-truth data. We propose here

a method that overcomes this limitation and can leverage all data available

through the use of cross-modal learning. Our experiments demonstrate that

this strategy can estimate more accurate and sharper facial surface normals

from single images.

The proposed approach recovers accurate normals corresponding to the

facial region within an RGB image, with the goal of enhancing an existing

coarse reconstruction, Feng et al. [2018] in our experiments. We cast the prob-

lem as a color-to-normal image translation, which can be in principle solved by

combining an image encoder EI with a normal decoder DN as in Trigeorgis et al.

[2017], and including skip connections between EI and DN [Ronneberger et al.,

2015] in order to transfer details from the image domain to the normals domain.

However, training such a network can prove difficult unless a large dataset of

image/normal pairs, that ideally contains images in-the-wild, is available. In
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practice few such datasets are currently publicly available, e.g. Zafeiriou et al.

[2011], which were moreover captured under controlled conditions. To improve

generalization, we propose to augment the architecture with a normal encoder

EN and an image decoder DI , where all encoders/decoders share the same

latent space. This augmented architecture provides additional constraints on

the latent space with the auto-encoded image-to-image and normal-to-normal

branches, effectively building a prior over both realistic facial shapes and real-

istic facial images. In order to keep advantage of the skip connections between

EI and DN , while avoiding the resulting bonded connections between EN with

DN that hamper the architecture, we introduce the deactivable skip connections.

This allows skip connections to be turned on and off during training according

to the type of data.

To summarize, we contribute in this chapter:

1. A framework that leverages cross-modal learning for the estimation of

normals from a single face image in-the-wild.

2. The introduction of the deactivable skip connection.

3. An extensive evaluation that shows that our approach outperforms

state-of-the-art methods on the Photoface [Zafeiriou et al., 2011] and

Florence [Bagdanov et al., 2011] datasets, with up to nearly 10% im-

provements in angular error on the Florence dataset, as well as visually

compelling reconstructions.

6.1 Related Work

We focus the discussion below on methods that consider 3D face recon-

struction, or normal estimation, given single RGB images.

Reconstruction with Parametric Models 3D reconstruction from a single im-

age is ill-posed and many methods resort therefore to strong priors with para-

metric face models such as blendshape [Garrido et al., 2013, Cao et al., 2015,

Thomas and Taniguchi, 2016] or statistical models, typically the 3D Morphable

Model (3DMM) [Blanz and Vetter, 1999]. These models are commonly used

within an analysis-by-synthesis optimization [Romdhani and Vetter, 2005, Hu-

ber et al., 2016, Egger et al., 2018, Booth et al., 2018, Gecer et al., 2019] or,

more recently, using deep learning to regress model parameters [Richardson

et al., 2016, 2017, Tewari et al., 2017, Tran et al., 2017a, Genova et al., 2018,

Feng et al., 2018, Kim et al., 2018a, Tewari et al., 2019, Sanyal et al., 2019], or

alternatively to regress other face information using 3DMM training data, for

instance volumetric information [Jackson et al., 2017], UV position map [Feng

et al., 2018], normal map [Trigeorgis et al., 2017], depth map [Sela et al., 2017],

or the full image decomposition [Shu et al., 2017, Sengupta et al., 2018, Kim

et al., 2018b]. This strategy has proven robustness, however it is constrained

by the parametric representation that offers limited expressiveness and fails in

recovering fine scale details.
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In order to improve the quality of the reconstructions several works have

proposed to add medium-scale correctives on top of the parametric model [Li

et al., 2013, Garrido et al., 2016a, Tewari et al., 2018], to train a local wrinkle

regressor [Cao et al., 2015], or to learn deep non-linear 3DMMs [Tran et al., 2019,

Zhou et al., 2019] that can capture higher-frequency details. Our method also

enables to enhance a face prediction through the estimation of more accurate

normals.

Normal Estimation with Shape from Shading Shape-from-shading

(SfS) [Horn and Brooks, 1989, Zhang et al., 1999] is a well-studied technique

that aims at recovering detailed 3D surfaces from a single image based on

shading cues. It estimates surface normals using the image irradiance equation,

as well as illumination model parameters when these are unknown. SfS is

inherently limited by the simplified image formation model assumed but has

inspired numerous works that build on the correlation between pixel inten-

sity and normals, either explicitly or implicitly. For instance, a few works on

faces combined SfS with a data-driven model, e.g. [Smith and Hancock, 2006,

Kemelmacher-Shlizerman and Basri, 2010, Snape and Zafeiriou, 2014], which

helps to avoid some of the limitations such as ill-posedeness and ambigui-

ties e.g. [Belhumeur et al., 1999]. The recent works of Shu et al. [2017] and

Sengupta et al. [2018] use deep neural networks to decompose in-the-wild

facial images into surface normals, albedo and shading, assuming Lambertian

reflectance and using a semi-supervised learning approach inspired by SfS.

Our work follows a similar direction and estimates the normal information

from a single image, but unlike Shu et al. [2017] and Sengupta et al. [2018] we

do not rely on an image formation model and let instead the network learn

such transformation from real data.

Normal Estimation with Deep Networks Closely related to our work are

methods that recover surface normals from an image using deep neural net-

works, e.g. [Wang et al., 2015, Eigen and Fergus, 2015, Yoon et al., 2016, Kokki-

nos, 2017, Bednarik et al., 2018, Qi et al., 2018, Zhang and Funkhouser, 2018,

Qiu et al., 2019, Du et al., 2019, Smith et al., 2019, Alldieck et al., 2019]. Yoon

et al. [2016] and Bansal et al. [2016] focus on the normal prediction task in

order to recover detailed surfaces. Eigen and Fergus [2015] simultaneously

regress depth, normal and semantic segmentation using a multi-scale approach.

Zhang and Funkhouser [2018] predict surface normal and occlusion bound-

aries to later optimize for depth completion; a similar direction was followed

by Qiu et al. [2019] for outdoor scenes. Trigeorgis et al. [2017] estimate facial

normals with a supervised approach trained on synthetic data. Our approach

differs from the aforementioned methods with a new architecture that enables

cross-modal learning, hence improving performances in monocular 3D face

normal estimation.

Geometry Enhancement using Deep Networks Methods have been proposed
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Figure 6.2 – Overview of the proposed approach. Our cross-modal architecture

allows exploitation of paired and unpaired image/normal data for image-

to-normal translation (red), by means of further image-to-image (green) and

normal-to-normal (blue) regularizations during training. The deactivable skip

connections allow to transfer details from the image encoder EI to the normal

decoder DN without having to link the normal encoder EN to the normal

decoder DN .

that directly enhance face models using deep neural networks. Richardson

et al. [2017] use two networks where the first estimates a coarse shape and

the second one refines the depth map from the previous branch, using an

SfS-inspired unsupervised loss function. Sela et al. [2017] recover the depth

and correspondence maps coupled with an off-line refinement step. The works

of Yamaguchi et al. [2018], Huynh et al. [2018] estimate high frequency details

by training with very accurate ground-truth data, which requires a careful

acquisition process and high-quality inputs. Tran et al. [2018] estimate a per-

pixel bump map, where the ground-truth data is obtained by applying an SfS

method offline. The work of Chen et al. [2019] learns to estimate a geometric

proxy and a displacement map for details primarily for high resolution images

(2048× 2048). While they mention limitations with low resolution images, we

show results with resolutions as low as 256× 256.

6.2 Method

We propose to predict face normals from a single color image using a deep

convolutional encoder-decoder network. A natural solution to this purpose is

to combine an image encoder EI with a normal decoder DN , as in e.g. Trigeorgis

et al. [2017]. However training such an architecture requires pairs of normal and

color images in correspondence. Although a few public datasets are available

that contain high-quality 3D or normal ground-truth information for faces, for

instance ICT-3DRFE [Stratou et al., 2011] or Photoface [Zafeiriou et al., 2011],

they were obtained under controlled conditions and do not, therefore, really
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cover the distribution of images in-the-wild. On the other hand, numerous

large datasets of natural images are publicly available, for example CelebA [Liu

et al., 2015] and AffectNet [Mollahosseini et al., 2017], yet without the associated

accurate and detailed ground-truth normal values. Whereas other works have

approached this by augmenting the training corpus with synthetic ground-

truth [Trigeorgis et al., 2017, Sengupta et al., 2018], we propose instead a

method based on cross-modal learning that can leverage all available data,

even unpaired.

6.2.1 Cross-modal Architecture

As depicted in Figure 6.2, we use two encoder/decoder networks, one for

images EI /DI and one for normals EN /DN , sharing the same latent space. This

architecture is trained with image-to-image, normal-to-normal and image-to-

normal supervision simultaneously in order to obtain a robust and rich latent

representation. To this purpose, we exploit paired images of normal and color

information on faces, as available from [Stratou et al., 2011, Zafeiriou et al.,

2011], in addition to individual images of either color or normal information,

from e.g.CelebA-HQ [Karras et al., 2017] and BJUT-3D [bju, 2005]. To improve

the overall performance we augment this architecture with long skip connec-

tions between EI and DN , as it favors the transfer of details between the image

and normal domains, and since it has been shown to significantly increase

performance in several image translation tasks e.g. Isola et al. [2017]. In practice

we use a U-Net+ResNet [Ronneberger et al., 2015, He et al., 2016] architecture

that combines the benefits of both short and long skip connections.

Training such an architecture end-to-end raises an obstacle: the skip connec-

tions from EI to DN (EI →DN ), which are based on concatenating feature maps,

impose by construction to also have skip connections between the encoder

and decoder of the normal modality, i.e. EN →DN . This is counterproductive

in practice: by setting skip connections within the same modality, it is in fact

easier for the normal autoencoder to transfer features from the earliest layers

of its encoder to the last layers of its decoder through the skip connection, thus

depriving the deeper layers of any meaningful gradients during training. Not

only will this fail to improve the latent face representation, but it will also alter

the coefficients of the normal decoder for the image-to-normal inference task.

For this reason, we introduce the deactivable skip connections as shown in

Figure 6.3 and detailed in Section 6.2.2. This allows us to train the framework

end-to-end by setting long connections solely between EI and DN , thus learning

a rich latent space that encodes facial features from both color and normal

images while profiting from all available data.

6.2.2 Deactivable Skip Connections

As mentioned earlier, skip connections are well suited to our problem

as they allow sharing of low-level information at multiple scales while still

preserving the general structure. In the implementation of standard skip con-
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(a) Standard skip connection

(b) Deactivable skip connection

Figure 6.3 – Instead of concatenating the encoder features (red) and decoder

features (blue), as with standard skip connections, we fuse the encoder features

with part of the decoder features (light blue), to be able to deactivate this

operation when needed.

nections, as in Ronneberger et al. [2015], Isola et al. [2017], the decoder features

at the (n− i)th layer Fn−i
D are the concatenation of the processed previous layer

features f (Fn−i−1
D ) and the encoder features at layer i, Fi

E , where n is the total

number of layers (see Figure 6.3a).

Let m(Fi
EI
) be the number of feature maps at the ith layer of EI . The proposed

architecture (Figure 6.2) requires to set connections from the image encoder EI

to the normal decoder DN , and as a consequence, each layer features Fn−i
DN

of

DN are expected to always have an additional m(Fi
EI
) channels. In order to gain

generalization over each domain, both the color and the normal images can be

auto-encoded during training. However, since the concatenation is expected

during training on the decoder DN side, features of the normal encoder EN

must be concatenated as well, which as discussed is detrimental to our model.

The deactivable skip connections are designed such that, during training,

the transfer of feature maps from encoders to decoders can be selectively

activated or deactivated. Compared to a decoder equipped with standard skip

connections, the processed features f (Fn−i−1
D ) of our decoder include m(Fi

E)

extra channels (light blue in Figure 6.3b). During a normal-to-normal pass,

the skip connections are deactivated and the (n − i)th layer features of the
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normal decoder correspond to the processed previous layer features e.g.Fn−i
D =

f (Fn−i−1
D ). During an image-to-normal pass, the skip connection is activated:

we first perform an element-wise max-pooling between the ith layer features of

the encoder Fi
E and the last m(Fi

E) channels of the processed (n− i − 1)th layer

features of the decoder f (Fn−i−1
D ), as illustrated in Figure 6.3b. The result is

stacked back with the remaining of the processed previous layer features thus

forming the final (n−i)th decoder layer features Fn−i
D . Doing so allows to transfer

the information from encoder to decoder without degrading performances

when the transfer operation does not occur, as when auto-encoding normals.

6.2.3 Training

We train the framework end-to-end using both supervised and unsuper-

vised data, where the latter includes individual image and normal datasets.

During training, the skip connections are deactivated when doing a normal-

to-normal pass. For the supervised case, and for unsupervised normals, the

loss function is the cosine distance between the output and the ground-truth,

which in our experiments gave better results than the L1/L2 norm:

Lnrm(N,N̂ ) = 1− 1

|N |
∑

(i,j)

N (i, j)⊤ · N̂ (i, j)

||N (i, j)||2||N̂ (i, j)||2
, (6.1)

where N (i, j) and N̂ (i, j) are the normal vectors at pixel (i, j) in the ground-truth

and output normal images N and N̂ respectively, and |N | is the number of

pixels in N . For unsupervised image data we use the L2 loss:

Limg (I , Î ) = ||I − Î ||22, (6.2)

where Î is the output color image and I the ground-truth. In both cases, the loss

is applied only on facial regions segmented using masks obtained as explained

in Section 6.3.1.

In practice, as we can only perform a training iteration for one input modal-

ity at a time, either an input batch of images or normals, we train our model

as follows: when loading a batch of images with image/normal ground-truth

pairs, we perform a normal-to-normal iteration first, followed by an image-to-

normal plus image-to-image iteration, where both losses in the latter iteration

are summed with equal weights. When loading a batch of images only, we

perform an image-to-image iteration. Finally, with a batch of normals only, we

naturally proceed with a normal-to-normal iteration alone.

6.3 Evaluation

We report below on the accuracy of the normals estimated with our ap-

proach on standard datasets [Zafeiriou et al., 2011, Bagdanov et al., 2011].

We compare against state-of-the-art methods on normal estimation and 3D

reconstruction, and show significant improvements in terms of normal pre-

diction accuracy. This is supported by compelling reconstructions of images
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in-the-wild from 300-W [Sagonas et al., 2013], as can be seen in Figures 6.4

and 6.5.

Following previous work [Sengupta et al., 2018, Trigeorgis et al., 2017], we

use as metric the mean angular error between the output and the ground-truth

normals, as well as percentage of pixels within the facial region with an angular

error of less than 20◦, 25◦ and 30◦. For qualitative comparisons we show both

the output normal map, as well as the mesh results obtained by enhancing

the output of PRN [Feng et al., 2018] using normal mapping [Cohen et al.,

1998]: we append the predicted normals to the the PRN mesh thus rendering

enhanced geometric shading.

6.3.1 Implementation Details

The framework was implemented in PyTorch [Paszke et al., 2019], and all

experiments were run on a GTX TITAN Black. The networks were trained for

40 epochs using ADAM solver [Kingma and Ba, 2015] with a learning rate

of 10−4. We use a ResNet-18 [He et al., 2016] architecture and set five skip

connections, one at the output of the initial layer and the rest at the output of

each of the four residual blocks. Each mini-batch during training consists of

data of the same type, i.e.images only, normals only or image-normal pairs, as

this worked best for us empirically.

Similar to prior work, input images are crops of fixed size around the face.

We extract 2D keypoints with a face detector [King, 2009] and create masks on

the facial region by finding the tightest square of edge size l around the convex

hull of the points. The images are then cropped with a square patch of size

1.2 × l centered at the same 2D location as the previously detected box, and

subsequently resized to 256× 256.

6.3.2 Datasets

Our training set comprises multiple datasets: ICT-3DRFE [Stratou et al.,

2011] and Photoface [Zafeiriou et al., 2011] which provide image/normal pairs,

CelebA-HQ [Karras et al., 2017] which only contains 2D images, and BJUT-

3D [bju, 2005], which consists of high-quality 3D scans.

We generated 8625 image/normal pairs from ICT-3DRFE by randomly

rotating the 345 3D models and relighting them using the provided albedos.

We sampled random rotation axes and angles in [−π/4,π/4], random lighting

directions with positive z, and random intensities in [0,2]. For Photoface, fol-

lowing the setting in [Trigeorgis et al., 2017, Sengupta et al., 2018], we randomly

selected a training subset of 353 people resulting in 9478 image/normal pairs.

We also generated 5000 high resolution facial images from CelebA-HQ, which

is used to train the image-to-image branch exclusively. In addition, we render

3000 normal images from the 500 scans of BJUT-3D, rotated with random axes

and angles in [−π/4,π/4]. We only render normal images from this dataset as

the original scan color images are not provided.
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For evaluation purposes we use the remaining testing subset of Photoface,

which consists of 100 subjects not seen during training and 1489 image/normal

pairs. This subset challenges the reconstruction with very severe lighting

conditions. Following the work of Feng et al. [2018], we create an additional

evaluation set by rendering 530 color and normal facial images from the 53 3D

models of the Florence dataset [Bagdanov et al., 2011], rotated with random

axes and angles in [−π/4,π/4]. This allows to evaluate on a completely unseen

dataset. Finally, we use the 300-W dataset [Sagonas et al., 2013] of 2D face

images to assess qualitative performances in-the-wild. Note that for both

training and testing, we limited ourselves to 3D face datasets of high quality

and details.

Mean±std < 20o < 25o < 30o

Pix2Vertex [Sela et al., 2017] 33.9±5.6 24.8% 36.1% 47.6%

Extreme [Tran et al., 2018] 27.0±6.4 37.8% 51.9% 64.5%

3DMM [Trigeorgis et al., 2017] 26.3±10.2 4.3% 56.1% 89.4%

3DDFA [Zhu et al., 2017] 26.0±7.2 40.6% 54.6% 66.4%

SfSNet [Sengupta et al., 2018] 25.5±9.3 43.6% 57.5% 68.7%

PRN [Feng et al., 2018] 24.8±6.8 43.1% 57.4% 69.4%

Ours 22.8±6.5 49.0% 62.9% 74.1%

UberNet [Kokkinos, 2017] 29.1±11.5 30.8% 36.5% 55.2%

NiW [Trigeorgis et al., 2017] 22.0±6.3 36.6% 59.8% 79.6%

Marr Rev [Bansal et al., 2016] 28.3±10.1 31.8% 36.5% 44.4%

SfSNet-ft [Sengupta et al., 2018] 12.8±5.4 83.7% 90.8% 94.5%

Ours-ft 12.0±5.3 85.2% 92.0% 95.6%

Table 6.1 – Quantitative comparisons on the Photoface dataset with mean

angular errors (degrees) and percentage of errors below 20◦, 25◦ and 30◦. -ft
means that the method was fine-tuned on Photoface.

Mean±std < 20o < 25o < 30o

Extreme [Tran et al., 2018] 19.2±2.2 64.7% 75.9% 83.3%

SfSNet [Sengupta et al., 2018] 18.7±3.2 63.1% 77.2% 86.7%

3DDFA [Zhu et al., 2017] 14.3±2.3 79.7% 87.3% 91.8%

PRN [Feng et al., 2018] 14.1±2.16 79.9% 88.2% 92.9%

Ours 11.3±1.5 89.3% 94.6% 96.9%

Table 6.2 – Quantitative comparisons on the Florence dataset with mean angular

errors (degrees) and percentage of errors below 20◦, 25◦ and 30◦.
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(a) Input (b) Ours (c) SfSnet (d) PRN (e) Extreme (f) Pix2V (g) 3DDFA

Figure 6.4 – Qualitative comparisons on normals in the 300-W dataset

6.3.3 Comparisons

We compare our results to methods that explicitly recover surface normals,

either for facial images (SfSNet [Sengupta et al., 2018], NiW [Trigeorgis et al.,

2017]) or for general scenes (Marr Rev [Bansal et al., 2016], UberNet [Kokkinos,

2017]). We also compare against state-of-the-art approaches for 3D face recon-

struction, namely the classic 3DMM fitting method used in Trigeorgis et al.

[2017], 3DDFA [Zhu et al., 2017], the bump map regression based approach of

Tran et al. [2018] and the combined regression+shape-from-shading approach
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(a) (b) (c) (d) (e) (f) (g)

Figure 6.5 – Qualitative comparisons on geometries in the 300-W dataset. (a)

Input, (b) Ours+PRN, (c) SfSNet+PRN, (d) PRN, (e) Extreme, (f) Pix2Vertex, (g)

3DDFA

of Sela et al. [2017].

Quantitative results can be found in Table 6.1 for Photoface and Table 6.2 for

Florence datasets. We show results of our method both with (Ours-ft) and

without (Ours) fine-tuning of the training split of Photoface in the upper and

lower parts of Table 6.1 respectively. The same is done with SfSNet. The error

values on Photoface for the methods of Sengupta et al. [2018], Trigeorgis et al.

[2017], Sela et al. [2017], Bansal et al. [2016] and Kokkinos [2017] are as reported

in Sengupta et al. [2018], and we use the publicly available implementations

of Tran et al. [2018], Zhu et al. [2017] and Feng et al. [2018] for the others. For

the Florence dataset we use the publicly available implementations. Note that,

to be able to evaluate the per-pixel normal accuracy, we can only compare to

3D reconstruction methods whose output is aligned with the image. For a fair

comparison, all methods were given facial images of size 256× 256 as input,

resized if necessary.

The proposed approach shows the best values both in mean angular error

and percentage under 20◦, 25◦ and 30◦ degrees, only outperformed by 3DMM

on errors under 30◦. As noted by the authors in Trigeorgis et al. [2017], 3DMM

fitting performs well under 30◦ because of the coarseness of the model and the
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keypoint supervision, but its performance on tighter angles drops drastically

as it lacks precision. We found that, although Sela et al. [2017] and Tran et al.

[2018] usually provide seemingly detailed reconstructions, the actual normals

of these methods lack accuracy as witnessed by their numbers.

Our good performance is also confirmed by qualitative comparisons over

images in-the-wild in various head poses and under arbitrary lighting condi-

tions as can be seen in Figures 6.4 and 6.5. For comparisons with mesh results

(Figure 6.5), we show for both our approach and SfSNet [Sengupta et al., 2018]

the normal mapping over the same base mesh, obtained using PRN [Feng et al.,

2018], and we refer to these as Ours+PRN and SfSNet+PRN respectively. We

show our meshes from two views to illustrate that the output is not optimized

for a particular viewpoint, a known limitation with SfS. Compared to SfSNet

we recover much more refined details that significantly enhance the base mesh.

Compared to Extreme [Tran et al., 2018] our approach does not include unnec-

essary additional noise. As observed by other authors, Pix2Vertex [Sela et al.,

2017] cannot handle difficult poses or illuminations, and sometimes simply

fails to converge. Both PRN and 3DDFA [Zhu et al., 2017] can correctly recover

the general structure of the face, although their goal was not to recover surface

details as we do.

We believe our improved results are due to the fact that we do not rely on a

parametric model for training data generation, as was done in e.g. Sengupta

et al. [2018], as well as the strongly regularized latent space that is learned

through the two encoder/decoder networks, in addition to the skip connections

that can transfer the necessary details.

6.3.4 Ablation

We evaluate here the influence of the proposed architectural components.

In particular, we compare against the alternatives shown in Figure 6.6: our

model without skip connections (Figure 6.6b), without the normal encoder EN

(Figure 6.6c), and without both the normal encoder EN and image decoder DI

(Figure 6.6d), i.e.a basic encoder-decoder architecture. Since there is no need in

the last two cases for deactivable skip connections we use standard ones. We

show quantitative results in Table 6.7, and qualitative examples in Figure 6.8.

(a) Ours (b) w/o skip co. (c) w/o EN (d) w/o EN ,DI

Figure 6.6 – Architectures for the ablation test: (a) our proposed architecture,

(b) without skip connections, (c) without the normal encoder and (d) without

the normal encoder and the image decoder.
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Mean±std < 20o < 25o < 30o

w/o skip co. (Fig.6.6b) 24.4± 6.7 46.6% 60.6% 72.0%

w/o EN ,DI (Fig.6.6d) 23.3± 6.3 47.7% 61.9% 73.3%

w/o EN (Fig.6.6c) 23.0± 6.8 47.6% 61.5% 73.1%

Ours (Fig.6.6a) 22.8± 6.5 49.0% 62.9% 74.1%

(a) On Photoface [Zafeiriou et al., 2011]

Mean±std < 20o < 25o < 30o

w/o skip co. (Fig.6.6b) 12.6± 1.4 85.8% 92.6% 95.8%

w/o EN (Fig.6.6c) 12.4± 1.6 86.0% 92.6% 95.9%

w/o EN ,DI (Fig.6.6d) 12.0± 1.2 87.8% 94.1% 96.7%

Ours (Fig.6.6a) 11.3± 1.5 89.3% 94.6% 96.9%

(b) On Florence [Bagdanov et al., 2011]

Figure 6.7 – Quantitative comparisons between architectures: the proposed

architecture (Ours), without skip connections (w/o skip co.), without the normal

encoder (w/o EN ) and without the normal encoder and the image decoder (w/o

EN ,DI ).

(a) Input (b) Ours (c) w/o EN DI (d) w/o EN (e) w/o skip co.

Figure 6.8 – Qualitative comparisons between architectures: (b) our proposed

architecture, (c) without the normal encoder and the image decoder, (d) without

the normal encoder, and (e) without skip connections.

Our final model outperforms the alternatives both quantitatively and quali-
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tatively which validates the proposed cross-modal architecture design, and the

benefit of the introduced deactivable skip connections.

For example, we can see in the geometric shape of the eyelids in the first

row of Figure 6.8 and the shading in the second row that our final model

gets the best from each of the alternatives. Our correct global shape estimate

is comparable to that of the cross-modal model without skip connections,

although the latter is smoother and clearly lacks details. Additionally we

can see that removing the image decoder DI and normal encoder EN (i.e.a

standard encoder-decoder with skip connections) gives poor results for images

in-the-wild, due to the domain gap between training and evaluation. This can

be visualized particularly in the artifacts appearing on the third and fourth

examples, or the inaccurate shadings of the second example. Finally, our fine

details are comparable to those of the model with skip connections but without

the normal encoder EN , which in turn has a reduced ability to represent the

shape accurately, since it has not learned an additional prior on the geometric

aspects of the face.

6.3.5 Low-cost depth enhancement

We can use our model to enhance the appearance of the noisy depth data

coming from low-cost RGB-D sensors, e.g. Kinect. We show an example of

this using the FaceWarehouse dataset [Cao et al., 2013], where we use the

accompanying RGB image to predict normals with our method, and append

these normals to the raw depth image pixel-wise using normal mapping, thus

rendering enhanced geometric shading. In Figure 6.9 we show the RGB images

in the first row, the raw depth in the second, and the same depth enhanced

with our model’s predictions in the last one. The ability to recover accurate

normals allows to enhance the depth appearance significantly.

6.3.6 Limitations

The proposed method still has limitations, some of which are shown in Fig-

ure 6.10. These belong to extreme situations that represent outliers to the train-

ing data, including faces in very severe lighting/shades (Figure 6.10a,6.10b),

occlusion (Figures 6.10c,6.10d), very low quality images (Figure 6.10e) and

unusual facial textures (Figure 6.10f).

6.4 Conclusion

This chapter presented a novel deep learning based approach for the esti-

mation of facial normals in-the-wild. The proposed method is centered on a

new architecture that combines the robustness of cross-modal learning and the

detail transfer ability of skip connections, enabled thanks to the new deactivable

skip connections. By leveraging both paired and unpaired data of image and

normal modalities during training, we learn a strong prior knowledge on the

distribution of both natural images and facial shape in the form of surface
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Figure 6.9 – Raw Kinect depth enhancement using our normals on the Face-

warehouse dataset [Cao et al., 2013].

(a) (b) (c) (d) (e) (f)

Figure 6.10 – Failure cases

normals. Thanks to this, we achieve state-of-the-art results on angular estima-

tion errors and obtain visually compelling enhanced 3D reconstructions on

challenging images in-the-wild.

Compared to classic SfS approaches, we achieve accurate estimations even

under hard conditions imposed by natural images; and we can further do
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it efficiently thanks to the use of a neural network. Compared to methods

based on parametric approaches, we are able to recover much finer details as a

result of the skip connections and our novel cross-modal architecture that can

leverage all available data. Through ablation studies and comparisons to other

approaches, this chapter also confirms that (1) normal estimation is a task well

suited for convolutional networks, and (2) training exclusively on real images

and high-quality scans is highly benefitial, which was again allowed by the

use of cross-modal learning and the deactivable skip connections.

Among the limitations of our work are the inability to properly handle

occlusions (as it is mostly a local method) and to recover finer-details, e.g.pore-

level details, which are directions that will be tackled in future work. Moreover,

unlike parametric models our results are not temporally coherent, and thus

cannot be used to study motion-related aspects without a registration step. We

believe however that this framework can be leveraged to enhance generative

models such as the ones presented in previous chapters. An interesting future

direction would be to harness this in order to learn fine-scale details that

correlate with both identity and expression. Considering that the proposed

architecture is rather generic, a final future direction will be to investigate its

use on other tasks that exhibit similar data conditions.
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This thesis presented novel methods for learning data-driven models of

the 3D facial shape from large-scale datasets. There are many aspects of the

face geometry that are interesting and challenging to explore. We focused

here on the following aspects: (1) how to build decoupled models that can

capture the interaction between the shape and motion components; (2) how to

place large datasets of 3D faces in motion into a single parameterization; and

(3) how to obtain finer details by focusing on the problem of surface normal

recovery from natural images. In each of these methods we investigated

whether better performances could be obtained by working on large-scale

datasets. We circumvented the difficulty of acquiring a large number of 3D

scans by profiting from the numerous publicly available sources, and proposed

techniques designed to handle the challenges that come with such data while

harnessing the underlying information.

To conclude this work we summarize next the main contributions of this

thesis, as well as directions for future work.

7.1 Summary of Contributions

The main contributions of this thesis were the following:

Chapter 3 proposed the multilinear autoencoder, a novel method for building

multilinear models that does not require complete data tensors for training.

The approach was based on a new architecture that enabled the use of the deep

learning optimization machinery to refine an initial tensor model. This allowed

to better encode all available training data, thus demonstrating that expressive

multilinear models can be learned from large-scale sources. Additionally,

we proposed a loss function on the latent space which allowed to retain the

decoupling capabilities of multilinear models, and even improve them when

compared to competing methods.

Chapter 4 contributed a spatiotemporal registration approach for 3D faces

in motion, designed to automatically process datasets coming from multiple

acquisition systems. Through the combination of a spatiotemporal model that

globally handles entire motion sequences, and a regression-based approach that

can efficiently and robustly initialize the registration process, we demonstrated

accurate performances while remaining both efficient and scalable. The method

was tested on three publicly available datasets showing different types of
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motion including spontaneous ones, and combined allowed us to register more

than 300,000 facial frames.

Chapter 5 explored the use of adversarial learning for decoupled models,

contributing an alternative technique to linear and multilinear models that

achieved significantly better decoupling results. We enabled the use of adver-

sarial learning for 3D faces by proposing the geometry mapping layer, which

acts as bridge between the 3D generator and 2D discriminators. This strategy

allowed to leverage recent progress in generative adversarial learning while

still generating three-dimensional faces in their natural domain. Our purely

discriminative loss functions demonstrated significantly better decoupling

capabilities, and were able to capture subtle expression differences in the latent

space.

Since there is no standard evaluation protocol, both Chapters 3 and 5 further

proposed metrics to assess the degree of decoupling of generative models based

on external classifiers. Chapter 5 also proposed a diversity metric, which was

not considered before in the evaluation of 3D face models.

Finally, Chapter 6 introduced a new approach for the problem of estimating

facial normals from images in-the-wild. Improved performances were obtained

through the use of a novel cross-modal learning technique that enabled training

exclusively from high quality data, whether paired or not. This was achieved

by a novel module that we called deactivable skip connections, which allowed to

integrate both the auto-encoded and image-to-normal branches within a same

architecture, while still transferring the local details from the input image to the

output surface. We showed how this strategy can learn a rich latent space of

both natural images and surface normals that enabled accurate reconstructions,

as well as state-of-the-art results and visually compelling enhancements in

challenging cases.

Each of these methods have a few drawbacks that were discussed by the

end of each chapter. We summarize here what we consider to be the main

points:

• For methods that learn a global latent space such as those in Chapters 3

and 5, it remains a question what is the optimal dimension of each space,

and how to properly choose these dimensions. This was also a problem

in the spatiotemporal model used in Chapter 4, where a low number of

temporal coefficients can lead to overly-smoothed motions. The prob-

lem is shared by many of the recent deep-learning based techniques that

operate as “black-box” machines. A principled way of choosing the op-

timal dimensionality such that it balances model expressiveness against

compactness is certainly desirable, particularly for telecommunication

systems.

• The registration method in Chapter 4 globally considers the entire facial

surface and motion, but a more local treatment of certain attributes



7.2. FUTURE WORK 105

of the face might be worth exploring. This is valid both in terms of

space and time. In terms of time, some motions occur faster than others,

and a unique temporal space for the entire sequence might not be able

to capture higher frequencies. A more local approach, e.g.a sliding

window with variable dimensionality, could be necessary for accurate

results in different types of motion. In terms of space, areas such as

the mouth and eyes are key for transmitting emotions, and a faithful

recovery of their shape is essential for applications such as animation

and re-targeting. Specific optimization terms for these areas, as it was

considered in e.g. Bermano et al. [2015], Garrido et al. [2016a], could

further improve the results of Chapter 4.

• The approach for surface normal estimation in Chapter 6 does not

yield temporally coherent results, and thus it cannot be used to study

how finer details evolve over time. Furthermore, because of the local

formulation the results are not robust to occlussions. To address this,

a combination of global models (like those considered in previous

chapters) and local approaches such as the one presented here should

be considered.

More general directions for future work are discussed in the next section.

7.2 Future work

The models presented here were learned from publicly available sources

that allowed to consider datasets of larger scale than most related work. Yet,

these are still expensive and time consuming to capture, and can only be

acquired under controlled setups which limit the range of motions that can

be studied. Learning high-quality models from cheaper acquisition devices

such as RGB or RGB-D sensors would not only give access to a larger corpus

of training data, but will also allow to model human behaviour that cannot be

recorded in controlled scenarios. In the case of faces, this means modeling truly

spontaneous expressions and micro-expressions, as well as their relationship

with the environment. First works that learn 3D models purely from RGB

images have begun to appear, e.g. Tran and Liu [2018], Tran et al. [2019], but

are still limited in the amount of variations they can capture. Extending the

directions considered in this thesis such that equivalent or improved results

can be obtained using less constrained data is an exciting avenue for future

work.

For decoupled models there are two interesting extensions that were not

addressed here. First is the unsupervised discovery of the latent factors: instead

of training with labeled data as considered in this thesis, it would be benefitial

to explore the case were the labels corresponding to each of the factors are

unknown. This would allow for example to build the identity-expression-

viseme model of Figure 5.6 without the need to provide any manual annotation,
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which is very time consuming and prone to errors. While numerous work

have explored this with 2D applications in mind (e.g. Chen et al. [2016]), the

direction is mostly unexplored in the case of 3D data.

Another extension is the fine-grained encoding of semantics in the latent

space. The decoupling considered here is concerned with the independent

manipulation of identity and expression, but there is no mechanism to control

for example the size of the nose or how closed the eyes are. Having access

to semantically-based parameters that can modify for example the intensity

of an action unit (as it is commonly done in the film industry through the

blendshape parameterization) would allow for widespread adoption of more

complex models like the one in Chapter 5. Furthermore, such models could be

use for inferring semantic information from e.g.2D images, which can in turn

be useful for fine-grained recognition and manipulation.

The models of Chapters 3 and 5 are global models that encode the entire

face, while the approach of Chapter 6 considers mostly local information. There

is a trade-off for each: using global models gives robustness to different tasks

by providing a strong knowledge of what a face should look like and how

the different spaces interact with each other, but it is not capable of capturing

details. On the other hand, the local approach of Chapter 6 allows to recover

finer details 1, but the results are neither robust nor temporally coherent. A

future direction in terms of modeling will be to explore a combination of these

two, in order to benefit from the best of each.

Some of the technical contributions of this thesis can be applied to other

problems and it would be interesting to explore their capacity for this. This

is the case of the geometry mapping layer of Chapter 5 and the deactivable

skip connections of Chapter 6. For example, the geometry mapping layer

can be useful for general tasks on 3D shapes such as correspondence and

classification, while the deactivable skip connections can be leveraged on other

applications that both involve multiple modalities and can profit from the use

of skip connections.

1. Note that there is still a notion of global shape, see e.g.Figure 6.8b.
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AAppendix

A.1 Chapter 5 - Architecture

Figure A.1 shows the architecture for the Generator and Discriminator

(the latter with the classification branches). Here, did , dexp and dnoise are the

dimensions for identity, expression and noise, respectively; nid is the number of

distinct labels for identity, and nexp the number of distinct labels for expression.

We use Leaky ReLU with a slope of 0.2.

A.2 Chapter 5 - Decoupling Evaluation

We train the embedding networks using a Resnet-18 architecture with input

images of size 224 × 224. The images contain the orthographic projection

of the facial mesh, and the values in the RGB channels encode the normal

direction of each vertex, as we found this to give better results than the UV

images. The networks were trained using the datasets described in Section 5.4.2

with the provided labels. The threshold is selected such that it maximizes

the accuracy on the validation set, while keeping the False Acceptance Rate

(FAR) below 10%. We build the validation set by randomly choosing an equal

number of positive and negative pairs from the testing split. We choose 0.14 as

threshold for identity, which achieves 98.66% accuracy and a FAR of 1.21%.

For expression we use 0.226 as threshold, which achieves 84.2% of accuracy

and a FAR of 8.03%.
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Operation Activation Output Shape

z ∼N (0, I ) − did + dexp + dnoise
Linear LReLU 512

Linear − 66387

Reshape − 22129× 3
(a) Generator

Operation Activation Output Shape

Input − 22129× 3
Geometry mapping − 3× 64× 64
Common branch

Conv 3× 3 LReLU 16× 32× 32
Conv 3× 3 LReLU 32× 16× 16
Discriminator branch

Conv 3× 3 LReLU 64× 8× 8
Conv 3× 3 LReLU 128× 4× 4
Reshape − 2048

Linear − 1

Identity branch

Conv 3× 3 LReLU 64× 8× 8
Conv 3× 3 LReLU 128× 4× 4
Reshape − 2048

Linear − nid

Expression branch

Conv 3× 3 LReLU 64× 8× 8
Conv 3× 3 LReLU 128× 4× 4
Reshape − 2048

Linear − nexp

(b) Discriminator and Classifiers.

Figure A.1 – Generator and Discriminator used for the GAN architecture of

Chapter 5


