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Résumé

La cryptographie à base de réseaux euclidiens repose en grande partie sur l’utilisation du problème
Learning With Errors (LWE) comme fondation de sécurité. Ce problème est au moins aussi difficile que
les problèmes standards portant sur les réseaux, mais les primitives cryptographiques qui l’utilisent sont
inefficaces en termes de consommation en temps et en espace. Les problèmes Polynomial Learning With
Errors (PLWE), dual Ring Learning With Errors (dual-RLWE) et primal Ring Learning With Errors
(primal-RLWE) sont trois variantes de LWE qui utilisent des stuctures algébriques supplémentaires afin
de pallier les inconvénients ci-dessus. Le problème PLWE est paramétré par un polynôme f , alors
que dual-RLWE et primal-RLWE sont définis à l’aide de l’anneau d’entiers d’un corps de nombres.
Ces problèmes, dits algébriques, sont eux-mêmes au moins aussi difficiles que des problèmes standards
portant sur les réseaux, mais, dans leur cas, les réseaux impliqués appartiennent à des classes restreintes.

Dans cette thèse, nous nous intéressons aux liens entre les variantes algébriques de LWE.
Tout d’abord, nous montrons que pour une vaste classe de polynômes de définition, il existe des

réductions (non-uniformes) entre dual-RLWE, primal-RLWE et PLWE pour lesquelles l’amplification des
paramètres peut être contrôlée. Ces résultats peuvent être interprétés comme une indication forte de
l’équivalence calculatoire de ces problèmes.

Ensuite, nous introduisons une nouvelle variante algébrique de LWE, Middle-Product Learning With
Errors (MP-LWE). On montre que ce problème est au moins aussi difficile que PLWE pour beaucoup
de polynômes de définition f . Par conséquent, un système cryptographique reposant sur MP-LWE reste
sûr aussi longtemps qu’une de ces instances de PLWE reste difficile à résoudre.

Enfin, nous montrons la pertinence cryptographique de MP-LWE en proposant un protocole de
chiffrement asymétrique et une signature digitale dont la sécurité repose sur la difficulté présumée de
MP-LWE.
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Abstract

Lattice-based cryptography relies in great parts on the use of the Learning With Errors (LWE) problem
as hardness foundation. This problem is at least as hard as standard worst-case lattice problems,
but the primitives based on it usually have big key sizes and slow algorithms. Polynomial Learning
With Errors (PLWE), dual Ring Learning With Errors (dual-RLWE) and primal Ring Learning With
Errors (primal-RLWE) are variants of LWE which make use of extra algebraic structures in order to fix
the above drawbacks. The PLWE problem is parameterized by a polynomial f , while dual-RLWE and
primal-RLWE are defined using the ring of integers of a number field. These problems, which we call
algebraic, also enjoy reductions from worst-case lattice problems, but in their case, the lattices involved
belong to diverse restricted classes.

In this thesis, we study relationships between algebraic variants of LWE.
We first show that for many defining polynomials, there exist (non-uniform) reductions between

dual-RLWE, primal-RLWE and PLWE that incur limited parameter losses. These results could be inter-
preted as a strong evidence that these problems are qualitatively equivalent.

Then we introduce a new algebraic variant of LWE, Middle-Product LearningWith Errors (MP-LWE).
We show that this problem is at least as hard as PLWE for many defining polynomials f . As a con-
sequence, any cryptographic system based on MP-LWE remains secure as long as one of these PLWE
instances remains hard to solve.

Finally, we illustrate the cryptographic relevance of MP-LWE by building a public-key encryption
scheme and a digital signature scheme that are proved secure under the MP-LWE hardness assumption.
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List of symbols

N,Z,Q,R,C . . . sets of non-negative integers, integers, rationals, reals,
complex numbers

N∗,Z∗,Q∗,R∗,C∗ . . . sets of non-zero non-negative integers, integers, rationals, reals,
complex numbers

Zq . . . Z/qZ
Rq . . . R/qZ
x . . . column vector
xt . . . row vector
Sn . . . the set of n-dimensional vectors with coefficients in S
||x||p . . . `p norm of x: (

∑n
i=1 |xi|p)1/p

||x||∞ . . . `∞ norm of x: maxi |xi|
σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) . . . the singular values of the matrix M ∈ Rn×n

||M|| . . . the largest singular value σ1(M) of the matrix M
||M||F . . . the Frobenius norm of M
Mi,j . . . the element on the i-th row and j-th column from M
[n] . . . the set {1, 2, . . . ,n}
ϕ(n) . . . Euler’s totient function evaluated in n

log(x) . . . logarithm in base 2 of x
dxe . . . least integer greater than or equal to x

x←↩ D . . . x is sampled from a distribution D
x←↩ S or x←↩ U(S) . . . x is sampled from the uniform distribution on the set S

a||b . . . the string obtained by the concatenation of the strings a and b
(a, b) . . . the greatest common divisor of a and b
Σ � 0 . . . the set of positive definite matrices
Σ � 0 . . . Σ is a positive definite matrix

f(n) = Õ(g(n)) . . . f(n) = O(f(n) logk(n)) for some k > 0

We use the standard Bachmann–Landau notations and we say that a function ε is negligible in n if
ε(n) = 1

nω(1) .
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Résumé long en français

Jusqu’à très récemment, la sécurité des schémas cryptographiques à clé publique reposait en grande
partie sur la difficulté présumée de certaines hypothèses de théorie de nombres telles que la factorisation
d’entiers [RSA78] ou le calcul du logarithme discret dans des groupes cycliques [DH76]. Shor [Sho94]
a fourni en 1994 un algorithme qui permet de résoudre efficacement les deux problèmes ci-dessus avec
un ordinateur quantique. Par conséquent, la cryptographie qu’on utilise aujourd’hui pour sécuriser les
services de l’Internet ne sera plus sécurisée une fois que des ordinateurs quantiques à grande échelle
deviendront pratiques. Le but de la cryptographie post-quantique est de développer des schémas cryp-
tographiques qui restent securisés même en présence d’ordinateurs quantiques.

À la fin de l’année 2016, l’Institut National de Standards et Technologie (NIST) a lancé un "processus
pour solliciter, évaluer et standardiser" des schémas de chiffrement à clé publique et des signatures
digitales qui puissent remplacer les normes actuelles dans un contexte post-quantique. La plupart des
propositions fondent leur sécurité sur la difficulté présumée de problèmes bien étudiés portant sur les
réseaux, codes, systèmes multivariés ou fonctions de hachage. À l’heure actuelle, parmi les propositions
acceptées, trois sur les neuf signatures et neuf sur les dix-sept schémas de chiffrement reposent sur des
réseaux.

Réseaux euclidiens
Un réseau est un sous-ensemble de Rm qui peut être décrit comme l’ensemble de toutes les combi-
naisons linéaires entières de n vecteurs linéairement indépendants b1, · · · , bn. Nous appelons n la
dimension du réseau. Le problème le plus connu lié aux réseaux est le problème du plus court vecteur
(SVP pour shortest vector problem en anglais) et il demande, étant donné un réseau L, de trouver
un vecteur non nul le plus court (pour la norme euclidienne) de L. Le problème bénéficie d’une vari-
ante ApproxSVPγ paramétrée par γ > 1, qui demande de trouver un vecteur non nul dont la norme
n’est pas plus que γ · λ1(L), où λ1(L) est la norme d’un vecteur non nul le plus court du réseau. Les
meilleurs algorithmes connus pour résoudre ApproxSVPγ , l’algorithme de Schnorr [Sch87] et sa version
heuristique [SE94], s’exécutent en temps exponentiel dans la dimension n du réseau pour des facteurs
d’approximation polynomiaux, ce qui rend ApproxSVPγ avec γ = poly(n) approprié comme fondation
de sécurité. Pourtant, du point de vue de la conception cryptographique, les problèmes reposant sur
des réseaux standards ne sont pas avantageux. La raison est que pour utiliser ces problèmes, il faut
choisir un réseau L en particulier, pour lequel le problème correspondant pourrait être facile. Nous
appelons souvent ces problèmes pire-cas, car ils ne sont pas nécessairement difficiles à résoudre pour
tous les réseaux, mais difficiles à résoudre dans le pire des cas.

Cryptographie basée sur les réseaux
La cryptographie basée sur les réseaux repose principalement sur des problèmes moyen-cas de réseaux
(c’est-à-dire des problèmes définis sur des réseaux pour lesquels des instances aléatoires sont difficiles à
résoudre). Dans son travail [Ajt96], Ajtai a montré une connexion remarquable entre les problèmes de
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réseaux moyen-cas et pire-cas. Tout d’abord, il a introduit le problème Short Integer Solutions (SIS) qui
demande, étant donné certains vecteurs aléatoires ai ∈ Znq , à trouver une combinaison non-triviale d’eux
avec des coefficients "courts" dont la somme est zéro. Ajtai a prouvé que pour un certain paramètre γ
qui dépend de paramètres du problème SIS, si on peut résoudre SIS en moyenne, il y a un algorithme
efficace pour résoudre le problème ApproxSIVPγ dans le pire-cas. Pour γ ≥ 1, le problème ApproxSIVPγ
demande, étant donné un réseau arbitraire n dimensional L, de trouver n vecteurs v1, . . . , vn linéaire-
ment indépendants et plus courts que γ ·λn(L), où λn(L) est le plus petit réel tel qu’il existe n vecteurs
linéairement indépendants dans L de normes inférieures à lui. La difficulté de SIS a été affinée dans
une série d’ouvrages ([MR04, GPV08, MP13], etc.) et utilisée comme garantie de sécurité pour la
construction de nombreuses applications cryptographiques telles que des fonctions à sens unique et des
fonctions résistantes aux collisions ([Ajt96, GGH96, LM06], etc.), des protocoles d’identification et des
schémas de signature digitale ([Lyu08, Lyu12], entre autres), etc.

Regev a introduit [Reg05] le problème Learning With Errors (LWE), un problème moyen-cas reposant
sur des réseaux qui, contrairement au SIS, convient mieux à la construction de schémas de chiffrement.
Le problème LWE est paramétré par des entiers positifs n, q et une distribution d’erreur χ sur R.
La variante de recherche de LWE demande de trouver un secret s ∈ Znq étant donné de nombreux
échantillons (ai, bi =< ai, s > + ei mod q), où ai est choisi uniformément dans Znq et ei est tiré selon
la distribution χ. Pour un certain γ qui dépend de paramètres du problème, LWE est au moins aussi
difficile que les problèmes de réseaux standards tels que ApproxSIVPγ ([Reg05, Pei09, BLP+13], etc.)
Le problème LWE a également une version décisionelle dans laquelle on demande de distinguer entre
des échantillons du type décrit ci-dessus et des échantillons uniformes sur Znq ×R/qZ. Les deux versions
du problème peuvent être réduites l’une à l’autre ([Reg05, Pei09, ACPS09, MP12, BLP+13], etc.). La
variante de décision de LWE, qui convient mieux à la conception cryptographique que la variante de
recherche LWE, a été initialement utilisée pour créer des schémas de chiffrement à clé publique ([Reg05,
GPV08, LP11], etc.). Plus tard, LWE a prouvé sa polyvalence et a également été utilisé pour créer
des primitives avancées telles que le chiffrement fonctionnel ([ABCP15, ALS16], etc.), le chiffrement
homomorphe ([BV11, BGV12], etc.), le chiffrement reposant sur l’identité ([GPV08, ABB10], etc.),
entre autres.

Les schémas cryptographiques basés sur SIS et LWE sont souvent moins efficaces que les protocoles
classiques basés sur des hypothèses de théorie des nombres, car ils nécessitent le stockage d’une grande
matrice A (qui correspond aux vecteurs ai) et le calcul de multiplications matrice-vecteur. Polynomial
Short Integer Solutions (PSIS)/Module Short Integer Solutions (Module-SIS) et Polynomial Learning
With Erors (PLWE)/Ring Learning With Erors (RLWE)/Module Learning With Erors (Module-LWE)
sont des variantes de SIS, respectivement LWE, qui utilisent des structures algébriques supplémentaires
afin d’atteindre une efficacité pratique.

Les problèmes PSIS et PLWE sont paramétrés par un polynôme unitaire irréductible f ∈ Z[x] dont
le degré est n. Dans le problème PSIS [LM06, PR06] sur l’anneau Zq[x]/(f), on reçoit k polynômes
choisis uniformément au hasard a1, . . . , ak et on doit trouver k éléments z1, . . . , zk qui ne soient pas
tous nuls et ayant de petits coefficients tels que

∑
i aizi = 0 dans l’anneau Zq[x]/(f). D’autre part, la

(variante de décision de) PLWE [SSTX09] demande de distinguer avec une probabilité non-négligeable
sur le choix de s, entre des échantillons de la distribution uniforme sur Zq[x]/(f) × (R/qZ)[x]/(f) et
des échantillons qui dépendent du s ∈ Zq[x]/(f) choisi uniformément et de certains termes d’erreur
avec de petits coefficients. Les deux problèmes peuvent être obtenus comme des variantes spéciales de
SIS, respectivement LWE, en identifiant un vecteur a ∈ Znq avec un polynôme dans Zq[x]/(f). De plus,
cette correspondance permet d’identifier un produit matrice-vecteur par une multiplication de deux
polynômes modulo f et d’effectuer une arithmétique rapide, mais également de gagner de l’espace lors
du stockage de la matrice A.

La version de recherche/décision du problème PLWE pourrait être interprétée comme une variante
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non-homogène du problème de recherche/décision NTRU. Le problème NTRU est inspiré du système de
chiffrement NTRUEncrypt [HPS98], qui est le premier schéma de chiffrement à clé publique reposant
sur les réseaux qui utilise des anneaux de polynômes. Il n’y a aucune réduction connue des problèmes
pire-cas de réseaux au problème NTRU, ni du problème NTRU à la cryptanalyse de NTRUEncrypt.
Pourtant, il existe dans la litérature une version légèrement modifiée [SS11] de NTRUEncrypt qui est
prouvée sûre sous l’hypothèse PLWE.

Le problème de recherche/décision RLWE [LPR10] est paramétré par un corps de nombres K et il a
deux variantes : primal-RLWE, qui est défini en fonction de l’anneau d’entiers OK , et dual-RLWE, qui
utilise le dual O∨K . Les problèmes PLWE, primal-RLWE et dual-RLWE sont en fait identiques dans le
cas de cyclotomiques (i.e. polynômes de degré ϕ(n) dont les seules racines sont les racines primitives n-
ièmes de l’unité) dont l’ordre n est une puissance de 2. Les problèmes PSIS, PLWE et RLWE bénéficient
également de réductions des problèmes pire-cas de réseaux [LM06, PR06, SSTX09, LPR10, PRSD17]
tels que ApproxSIVPγ , mais dans leur cas, les réseaux impliqués appartiennent à une classe particulière.
Nous appelons les réseaux respectifs réseaux idéaux, parce qu’un tel réseau correspond à un idéal dans
un anneau qui depend du problème.

Les problèmes SIS et PSIS et les problèmes LWE et RLWE peuvent être obtenus comme des cas
particuliers de Module-SIS et Module-LWE ([BGV12, LS15]). Les problèmes Module-SIS et Module-LWE
sont des problèmes de cas moyen qui sont [LS15] au moins aussi difficiles que le problème ApproxSIVPγ
restreint aux réseaux qui correspondent à des modules sur un anneau (i.e. réseaux modules).

Les problèmes SIS/LWE sont en fait équivalents à ApproxSIVPγ et les problèmes Module-SIS/LWE
sont équivalents à ApproxSIVPγ pour des réseaux modules [AD17]. En revanche, ApproxSIVPγ sur des
réseaux idéaux (qui est en fait équivalent à ApproxSVPγ dans ce cas) pourrait être strictement plus
facile que PSIS/PLWE/RLWE. Des vulnérabilités potentielles dans la difficulté de ApproxSVPγ pour les
réseaux idéaux rendraient les réductions à PSIS/PLWE/RLWE vides de sens. En effet, pour certains
polynômes de paramétrage f , tels que les cyclotomiques, le problème ApproxSVPγ pour les réseaux
idéaux ([CDPR16, CDW17, PHS19], etc.) est plus facile à résoudre que le problème ApproxSVPγ pour
les réseaux généraux, classiquement et quantiquement.

Contributions
Dans cette thèse, nous nous intéressons aux liens entre les variantes algébriques de LWE. Tout d’abord,
nous établissons des connexions entre PLWE et RLWE. Deuxièmement, nous introduisons une nouvelle
variante algébrique, Middle-Product Learning With Errors (MP-LWE), et nous analysons sa relation
avec PLWE. Enfin, nous montrons la pertinence cryptographique de MP-LWE.

PLWE et RLWE
Alors que la difficulté du problème de décision RLWE repose sur la difficulté du problème ApproxSVPγ
dans les réseaux idéaux de OK pour tout corps de nombres K ([PRSD17]), la version décisionnelle
de PLWE était connue pour être au moins aussi difficile que ApproxSVPγ dans des réseaux idéaux de
Z[x]/(f) [SSTX09, LPR10] uniquement pour le cas de cyclotomiques d’ordre une puissance de 2. Dans
le Chapitre 3, nous montrons que pour de nombreux polynômes f de degré n, les problèmes PLWE,
primal-RLWE, dual-RLWE, à la fois pour leurs versions de recherche et de décision, se réduisent (non-
uniformément) les uns aux autres en temps polynomial avec des amplifications d’erreurs limitées. En
conséquence, la difficulté du problème de décision PLWE n’est plus restreinte à la classe de cyclotomiques
d’ordre une puissance de 2, mais plutôt à une classe beaucoup plus large de polynômes de définition.

Nos contributions du Chapitre 3 peuvent être décrites comme suit. Tout d’abord, nous montrons
que la réduction de dual-RLWE à primal-RLWE de [LPR10] peut être implémentée avec une petite
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amplification d’erreur. Cette réduction nécessite la connaissance d’un élément court t dans l’idéal
différent (O∨K)−1 et nous montrons qu’on peut trouver efficacement un tel t dans n’importe quel corps
de nombres K par échantillonnage Gaussien. Ensuite, nous étendons ce résultat à une réduction
de primal-RLWE à PLWE, mais l’analyse est plus compliquée. Tout d’abord, nous devons gérer la
transformation de OK à Z[x]/(f) à l’aide du conducteur de Z[x]/(f). Deuxièmement, nous devons
montrer que la réduction n’augmente pas trop l’erreur. Nous décrivons une large classe de polynômes
pour lesquels l’augmentation de l’erreur peut être contrôlée. Ces deux réductions sont non-uniformes,
car leurs implémentations nécessitent la connaissance d’informations spécifiques sur le corps K. Enfin,
nous obtenons une réduction de la variante recherche de RLWE à sa variante décision qui fonctionne
pour n’importe quel corps de nombres K, en utilisant la technique dite Oracle Hidden Center Problem
introduite en [PRSD17].

Middle-Product Learning With Errors
Il pourrait arriver que PSIS/PLWE/RLWE soient faciles à résoudre pour certains polynômes f (ou corps
de nombres K), et difficiles pour les autres. Motivé par cette observation, Lyubashevsky a introduit
[Lyu16] une variante de PSIS sur Zq[x] et a prouvé que ce nouveau problème (que nous allons appeler
PSIS∅) est au moins aussi difficile que le problème PSIS pour tout polynôme de paramétrage f dans une
grande famille F . Par conséquent, tout schéma cryptographique dont la preuve de sécurité repose sur
PSIS∅ reste sécurisé tant que la recherche de vecteurs courts dans les idéaux de Z[x]/(f) reste difficile
pour au moins un f ∈ F .

Dans le Chapitre 4, nous définissons un analogue du problème PSIS∅ adapté au contexte de LWE.
Nous introduisons Middle-Product Learning With Errors (MP-LWE) et montrons que ce problème est
au moins aussi difficile que PLWE pour de nombreux polynômes f . Le paramètre d’erreur du problème
MP-LWE paramétré par n peut être fixé pour gérer une classe exponentiellement grande de polynômes f .
De plus, nous montrons que MP-LWE reste difficile même si les secrets sont tirés d’une distribution
qui produit des éléments de petites normes avec une forte probabilité, en réduisant directement le
problème PLWE avec des secrets "courts" à MP-LWE avec des secrets "courts". Ce résultat utilise la
même technique que le précédent, mais l’analyse des distributions résultantes de secrets et d’erreurs est
plus complexe.

Applications de MP-LWE
Dans le Chapitre 5, nous construisons deux primitives cryptographiques dont les preuves de sécurité
sont basées sur la difficulté conjecturée du problème MP-LWE. Tout d’abord, nous construisons un
schéma de chiffrement à clé publique IND-CPA qui s’inspire du schéma de Regev [Reg09] basé sur LWE.
On dit qu’un schéma de chiffrement à clé publique est IND-CPA (pour indistinguishable against chosen-
plaintext attacks en anglais) si aucun adversaire efficace ne peut reconnaître à quel message clair parmi
deux correspond un message chiffré, même si les deux messages ont été choisis par lui-même.

Ensuite, nous construisons un schéma de signature digitale prouvé sûr dans le QROM (pour quantum
oracle-model en anglais) reposant sur la difficulté conjecturée de MP-LWE avec des secrets "courts".
Nous montrons que la signature est UF-CMA (unforgeable against chosen-message attacks en anglais),
ce qui signifie qu’aucun attaquant, après avoir vu une signature pour n’importe quels messages choisis
de manière adaptative, n’est capable de produire une signature valide pour un nouveau message. Nous
montrons que pour des paramètres qui atteignent une sécurité similaire à celle utilisée pour instancier
la signature de Lyubashevsky [Lyu16], notre signature digitale a des signatures plus courtes d’environ
un facteur de 2. Nous prouvons également que la taille de la signature dans [Lyu16] ne peut pas être
trop réduite tout en préservant la sécurité du schéma. Par rapport aux schémas de signature à base
de réseaux proposés dans le cadre du processus de standardisation du NIST, notre schéma de signature
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réalise un compromis risque-performance entre les systèmes à anneau fixe et les systèmes reposant
sur LWE.

Nos contributions concernant les relations entre la difficulté de PLWE, RLWE et MP-LWE sont ré-
sumées dans la Figure 1. Les contributions sur les relations entre PLWE et RLWE correspondent à la pub-
lication [RSW18], tandis que les résultats sur MP-LWE ont été publiés dans [RSSS17] et [BDH+20].

[RSSS17]: Miruna Rosca, Amin Sakzad, Damien Stehlé and Ron Steinfeld. Middle-Product Learn-
ing With Errors. In Proc. of CRYPTO, pages 283-297, Springer, 2017.

[RSW18]: Miruna Rosca, Damien Stehlé and Alexandre Wallet. On the Ring-LWE and Polynomial-
LWE Problems. In Proc. of EUROCRYPT, pages 146-173, Springer, 2018.

[BDH+20]: Shi Bai, Dipayan Das, Ryo Hiromasa, Miruna Rosca, Amin Sakzad, Damien Stehlé,
Ron Steinfeld and Zhenfei Zhang. MPSign: A Signature from Small-Secret Middle-Product Learning
with Errors. In Proc. of PKC, pages 66-93, Springer, 2020.

Impact
Les contributions présentées dans cette thèse ont inspiré d’autres travaux. Nous n’en mentionnons
maintenant que quelques-uns. Nos résultats présentés au Chapitre 3 ont inspiré une preuve de difficulté
alternative de PLWE dans [BBPS19] qui relie le problème à une classe de réseaux différente, correspon-
dant aux idéaux inversibles de l’ordre Z[x]/(f). Bai et al. définissent dans [BBD+19] une variante de
MP-LWE qui évite la procédure d’échantillonnage Gaussien, le problème Middle-Product Computational
Learning With Rounding, et l’utilisent pour construire un schéma de chiffrement à clé publique avec
la même efficacité asymptotique que celle du Chapitre 5. Le schéma de chiffrement à clé publique
que nous construisons dans le Chapitre 5 a en fait été implémenté et affiné dans [SSZ17, SSZ19] et
soumis plus tard au processus de standardisation du NIST. Steinfeld et al. [SSZ17, SSZ19] spécialisent
également le résultat de difficulté portant sur MP-LWE à une famille de polynômes qui permet la préser-
vation de la distribution d’erreur dans la réduction du PLWE à MP-LWE afin d’intégrer cette réduction
dans la procédure de sélection des paramètres. Lombardi et al. [LVV19] proposent un nouveau lemme
des restes pour les polynômes sur Zq[x] qui ne sont pas réduits modulo un polynôme f et l’utilisent
pour construire un schéma de chiffrement reposant sur l’identité dont la preuve de sécurité est basée
sur une version légèrement modifiée de MP-LWE. Un cadre général pour analyser toutes les variantes
algébriques existantes de LWE, y compris MP-LWE, a été proposé dans [PP19].
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Fig. 1: Réductions entre les variantes algébriques de LWE. Chaque flèche peut masquer une dégradation
du taux d’erreur (et transfert entre rang du module et module dans le cas de [AD17]). Les flèches
noires sans références correspondent aux réductions triviales. Les flèches en pointillés correspondent
aux résultats présentés dans le Chapitre 3 et les flèches en tirets correspondent aux résultats présentés
dans le Chapitre 4. Les flèches verticales en pointillés correspondent à des réductions non-uniformes.
Les réductions impliquant PLWE sont analysées pour une famille restreinte de polynômes de définition.
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Chapter 1

Introduction

Until recently, the security of public-key cryptographic schemes was mainly relying on the presumed
hardness of some number theoretic assumptions such as factoring [RSA78] or computing discrete log-
arithms in cyclic groups [DH76]. Shor [Sho94] gave in 1994 an algorithm which allows the solving of
the above two problems very fast with a quantum computer. Consequently, the cryptography that we
use nowadays on the Internet will be insecure once large scale quantum computers become practical.
The goal of post-quantum cryptography is to develop cryptographic schemes which remain secure even
in the presence of quantum computers.

At the end of 2016, the National Institute of Standards and Technology (NIST) has initiated [NIS]
a "process to solicit, evaluate, and standardize" public-key encryption schemes and digital signatures
which could replace the current standards in a post-quantum era. Most of the proposals base their
security on the conjectured hardness of well-studied problems on lattices, codes, multivariate systems
or hash functions. At the moment, among the remaining candidates, 3 out of 9 signatures and 9 out
of 17 key encapsulation mechanisms are based on lattices.

Lattices
A lattice is a subset of Rm which can be described as the set of all integer linear combinations of
some linearly independent vectors b1, . . . , bn. We call n the dimension of the lattice. The most famous
problem related to lattices is the Shortest Vector Problem (SVP) and it asks, given a lattice L, to find
a shortest non-zero vector (with respect to the Euclidean norm) in L. The problem enjoys a relaxed
variant ApproxSVPγ , parameterized by γ > 1, which asks to find a non-zero vector whose norm is no
more than γ ·λ1(L), where λ1(L) is the norm of a shortest non-zero vector in the lattice. The best known
algorithms for solving ApproxSVPγ , Schnorr’s algorithm [Sch87] and its heuristic version [SE94], run in
exponential time in the dimension n of the lattice for polynomial approximation factors γ, which makes
ApproxSVPγ with γ = poly(n) suitable to be used as security foundation. Still, from a cryptographic
design perspective, standard lattice problems are not attractive. The reason is that relying on such
problems would mean to pick a particular lattice L, for which the corresponding problem could be easy.
We often call such problems worst-case problems, because they are not neccessarily hard to solve for
any lattice, but hard to solve in the worst-case.

Lattice-based cryptography
Lattice-based cryptography mostly relies on average-case lattice problems (i.e. problems defined over
lattices for which random instances are hard to solve). In his seminal work [Ajt96], Ajtai proved an
incredible connection between average-case and worst-case lattice problems. He first introduced the
Short Integer Solutions (SIS) problem which asks, given some uniformly random vectors ai ∈ Znq , to
find a non-trivial "short" integer combination of them which sums to zero. Ajtai proved that for a
certain parameter γ depending on the parameters of the SIS problem, solving SIS on average would
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imply an efficient algorithm for solving the ApproxSIVPγ problem in the worst case. For γ ≥ 1, the
ApproxSIVPγ problem asks, given an n-dimensional lattice L, to find n vectors v1, . . . , vn linearly
independent and shorter than γ · λn(L), where λn(L) is the smallest number with the property that
there exist n linearly independent vectors in L of norm less than it. The hardness of SIS has been
refined in a series of works ([MR04, GPV08, MP13], etc.) and used as security guarantee for building
many cryptographic applications such as one-way and collision-resistant hash functions ([Ajt96, GGH96,
LM06], etc.), identification protocols and digital signature schemes ([Lyu08, Lyu12], among others),
etc.

Regev introduced in [Reg05] the Learning With Errors (LWE) problem, an average-case lattice
problem which is, contrary to SIS, more suitable for building encryption schemes. The LWE problem
is parameterized by positive integers n, q, and an error distribution χ over R. The (search variant of
the) LWE problem asks to find the secret s ∈ Zq given many samples (ai, bi =< ai, s > + ei mod q),
where ai is uniformly random in Znq and ei is drawn from the distribution χ. For some γ dependent on
the parameters of the problem, LWE is at least as hard as standard lattice problems such as ApproxSIVPγ
([Reg05, Pei09, BLP+13], etc.). The LWE problem also has a decision version which asks to distinguish
between samples of the type described above and uniform samples on Znq × R/qZ. The two versions
of the problem can be reduced one to the other ([Reg05, Pei09, ACPS09, MP12, BLP+13], etc.).
The decision variant of LWE, which is more suitable for cryptographic design than search LWE, has
been initially used to build public-key encryption schemes ([Reg05, GPV08, LP11], etc.). Later on,
LWE proved its versatility and it has been used to also build advanced primitives such as functional
encryption ([ABCP15, ALS16], etc.), homomorphic encryption ([BV11, BGV12], etc.), identity-based
encryption ([GPV08, ABB10], etc.), among others.

The cryptographic schemes based on SIS and LWE are usually less efficient than the classical proto-
cols based on number theoretic assumptions, because they require the storage of a big matrix A (corre-
sponding to the vectors ai) and the computation of several matrix-vector multiplications. Polynomial
Short Integer Solutions (PSIS)/Module Short Integer Solutions (Module-SIS) and Polynomial Learning
With Errors (PLWE)/Ring Learning With Errors (RLWE)/Module Learning With Errors (Module-LWE)
are variants of SIS, respectively LWE, which make use of extra algebraic structures in order to reach
practical efficiency.

The PSIS and PLWE problem are both parameterized by a monic irreducible polynomial f ∈ Z[x] of
degree n. In the PSIS problem [LM06, PR06] over the ring Zq[x]/(f), one is given k uniformly random
polynomials a1, . . . , ak and is asked to find k not all zero elements z1, . . . , zk having small coefficients
such that

∑
i aizi = 0 in the ring Zq[x]/(f). On the other hand, the (decision variant of the) PLWE

problem [SSTX09] asks to distinguish with non-negligible probability over the choice of s, between
arbitrarily many samples from the uniform distribution on Zq[x]/(f) × (R/qZ)[x]/(f) and samples
which depend on the uniformly random s ∈ Zq[x]/(f) and on some error terms with small coefficients.
Both problems can be obtained as special variants of SIS, respectively LWE, by identifying a vector
a ∈ Znq with a polynomial in Zq[x]/(f). This correspondence allows to further identify a matrix-vector
product by a multiplication of two polynomials modulo f and perform fast-arithmetic, but to also save
space when storing the matrix A.

The search/decision version of the PLWE problem could be interpreted as the inhomogeneous variant
of the search/decision NTRU problem. The NTRU problem is inspired by the NTRUEncrypt cryptosys-
tem [HPS98], which is the first lattice-based public-key encryption scheme using polynomial rings.
There is no known reduction from worst-case lattice problems to the NTRU problem, nor from the
NTRU problem to breaking the security of the respective cryptosystem. Still, there exists in the lit-
erature a slightly modified version [SS11] of NTRUEncrypt which is provably secure under the PLWE
hardness assumption.

The search/decision RLWE problem [LPR10] is parameterized by a number field K and has two
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variants: primal-RLWE, which is defined based on the ring of integers OK , and dual-RLWE, which
uses the dual O∨K . The PLWE, primal-RLWE and dual-RLWE problems are actually identical in the
case of cyclotomics (i.e. polynomials of degree ϕ(n) whose only roots are the n-th primitive roots of
unity) whose order n is a power of two. The PSIS, PLWE and RLWE problems also enjoy reductions
from worst-case lattice problems [LM06, PR06, SSTX09, LPR10, PRSD17] such as ApproxSIVPγ , but
in their case the lattices involved belong to a special class. We call the respective lattices ideal lattices,
because any such lattice corresponds to an ideal of a ring depending on the problem.

The SIS and PSIS problems, respectively the LWE and RLWE problems, can be obtained as particular
cases of Module-SIS and Module-LWE ([BGV12, LS15]). The Module-SIS and Module-LWE problems
are average-case problems proven [LS15] to be at least as hard as the ApproxSIVPγ problem on lattices
which correspond to modules over a specific ring (i.e. module lattices).

The SIS/LWE problems are actually equivalent to ApproxSIVPγ and the Module-SIS/LWE prob-
lems equivalent to ApproxSIVPγ over module lattices [AD17]. On the contrary, ApproxSIVPγ over
ideal lattices (which is actually equivalent to ApproxSVPγ in this case) could be strictly easier than
PSIS/PLWE/RLWE. Potential weaknesses in the hardness of ApproxSVPγ over ideal lattices would
make the reductions to PSIS/PLWE/RLWE vacuous. For some polynomials f such as cyclotomics, the
ApproxSVPγ problem is indeed easier on ideal lattices ([CDPR16, CDW17, PHS19], etc.) than on
general lattices, both classically and quantumly.

1.1 Contributions
In this thesis, we study relationships between algebraic variants of LWE. First, we establish connections
between PLWE and RLWE. Second, we introduce a new algebraic variant, the Middle-Product Learning
With Errors (MP-LWE) problem, and discuss its relationship with PLWE. Last, we illustrate the
cryptographic use of MP-LWE.

PLWE and RLWE
While the hardness of decision RLWE relies now on the hardness of solving ApproxSVPγ in lattices
corresponding to OK ideals for any field K due to [PRSD17], the decision PLWE problem was known
to be at least as hard as ApproxSVPγ in Z[x]/(f) ideal lattices [SSTX09, LPR10] only for the case of
cyclotomics of order a power of 2. In Chapter 3, we show that for exponentially many polynomials f
of degree n, the corresponding PLWE, primal-RLWE, dual-RLWE problems, both in their search and
decision versions, (non-uniformly) reduce to one another in polynomial time with limited error rate
increases. As a consequence, the hardness of decision PLWE is not restricted anymore to the class of
cyclotomics of order a power of two, but rather to a much larger class of polynomials.

On a high level, our contributions from Chapter 3 can be described as follows. We first show that
the reduction from dual-RLWE to primal-RLWE from [LPR10] can be implemented with a small error
growth. This reduction requires the knowledge of a short element t in the different ideal (O∨K)−1 and
we show that we can efficiently find such a t in any field K by Gaussian sampling. Then, we extend
this result to a reduction from primal-RLWE to PLWE, but the analysis is more complicated. Firstly,
we have to handle the transformation from OK to Z[x]/(f) with the help of the so-called conductor
of Z[x]/(f). Secondly, we have to show that the reduction does not increase the error too much. We
describe a huge class of polynomials for which the error increase can be controlled. These two reductions
are non-uniform, in the sense that their implementations require the knowledge of specific information
on the field K. Finally, we obtain a search to decision reduction for RLWE which works for any number
field K by using the so-called Oracle Hidden Center Problem technique introduced in [PRSD17].

17



CHAPTER 1. INTRODUCTION

Middle-Product Learning With Errors
It could happen that PSIS/PLWE/RLWE are easy to solve for some polynomials f (or number fields K),
and hard for others. Motivated by this, Lyubashevsky introduced in [Lyu16] a variant of PSIS over Zq[x]
and proved that this new problem (which we are going to refer to as PSIS∅) is at least as hard as the PSIS
problem for any parameterizing polynomial f in a large family F . As a consequence, any cryptographic
scheme whose security proof relies on PSIS∅ stays secure as long as finding short vectors in ideals of
Z[x]/(f) remains hard for at least one f ∈ F .

In Chapter 4, we define an analogue of the PSIS∅ problem adapted to the LWE context. We introduce
the Middle-Product Learning With Errors (MP-LWE) problem and show that this problem is at least as
hard as PLWE for many polynomials f . The noise parameter of the MP-LWE problem of parameter n
can be set to handle an exponentially large class of polynomials f . We further show that MP-LWE
remains hard even if the secrets are drawn from a distribution which produces small elements with
high probability, by directly reducing the PLWE problem with "short" secrets to MP-LWE with "short"
secrets. This result follows the same blueprint as the previous one, but the analysis of the resulting
error and secret distributions is more involved.

Applications of MP-LWE
In Chapter 5, we build two cryptographic primitives whose security proofs are based on the conjectured
hardness of the MP-LWE problem. First, we build an IND-CPA public-key encryption scheme which
follows the same blueprint as Regev’s scheme [Reg09] based on LWE. We say that a public-key encryp-
tion scheme is IND-CPA (indistinguishable against chosen-plaintext attacks) if no efficient adversary
can recognize which of two messages is encrypted in a given ciphertext, even if the two messages have
been chosen by itself.

Then, we build a digital signature scheme tightly secure in the quantum random-oracle model
under the conjectured hardness of the MP-LWE with small secrets assumption. We show that the
signature is unforgeable against chosen-message attacks (UF-CMA), which means that no attacker,
after having seen (possibly more than) one signature for any poly(n) adaptively chosen messages, is
able to produce a valid signature for a new message. We show that for parameters that achieve similar
security to those used to instantiate Lyubashevsky’s signature [Lyu16], our digital signature has shorter
signatures by approximately a factor of 2. We also provide evidence that the signature size in [Lyu16]
cannot be decreased too much while preserving the security of the scheme. Compared to the lattice-
based signature schemes proposed for standardization, our signature scheme achieves a risk-performance
tradeoff between fixed-ring and LWE-based schemes.

Our contributions regarding the relationships between the hardness of PLWE, RLWE and MP-LWE
are summarized in Figure 1.1. The contributions on relationships between PLWE and RLWE correspond
to [RSW18], while the results on MP-LWE have been published in [RSSS17] and [BDH+20].

[RSSS17]: Miruna Rosca, Amin Sakzad, Damien Stehlé and Ron Steinfeld. Middle-Product Learn-
ing With Errors. In Proc. of CRYPTO, pages 283-297, Springer, 2017.

[RSW18]: Miruna Rosca, Damien Stehlé and Alexandre Wallet. On the Ring-LWE and Polynomial-
LWE Problems. In Proc. of EUROCRYPT, pages 146-173, Springer, 2018.

[BDH+20]: Shi Bai, Dipayan Das, Ryo Hiromasa, Miruna Rosca, Amin Sakzad, Damien Stehlé,
Ron Steinfeld and Zhenfei Zhang. MPSign: A Signature from Small-Secret Middle-Product Learning
with Errors. In Proc. of PKC, pages 66-93, Springer, 2020.
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CHAPTER 1. INTRODUCTION

1.2 Impact
The contributions presented in this thesis inspired other works. We mention now just a few of them. Our
results presented in Chapter 3 inspired an alternative hardness proof of PLWE in [BBPS19] by relating
the problem to a different class of lattices, corresponding to the invertible ideals of the order Z[x]/(f).
Bai et al. introduced in [BBD+19] a variant of MP-LWE which avoids the Gaussian sampling procedure,
the Middle-Product Computational Learning With Rounding problem, and used it to build a public-
key encryption scheme with the same asymptotic efficiency as the one from Chapter 5. The public-key
encryption scheme that we build in Chapter 5 has been implemented and refined in [SSZ17, SSZ19] and
later submitted to the NIST standardization process. Steinfeld et al. [SSZ17, SSZ19] also specialize
the hardness result on MP-LWE to a family of polynomials which allow the preservation of the noise
distribution in the PLWE to MP-LWE reduction in order to incorporate the reduction into the parameter
selection procedure with a limited efficiency loss. Lombardi et al. [LVV19] proposed a new leftover-hash
lemma for polynomials over Zq[x] that are not folded modulo some polynomial f and used it to build
an identity-based encryption scheme whose proof of security is based on a slightly modified version of
MP-LWE. A general framework to analyze all the existing algebraic variants of LWE, including MP-LWE,
has been proposed in [PP19].

[LS15]

[AD17]

ApproxSVP
(OK-ideals)

decision
dual-RLWE

decision
primal-RLWE

decision
PLWE

decision
MP-LWE

search
dual-RLWE

search
primal-RLWE

search
PLWE

search
MP-LWE

ApproxSIVP
(OK-modules)

decision
Module-LWE

[PRSD17]

Fig. 1.1: Reductions between algebraic variants of LWE. Each arrow may hide a noise rate degradation
(and module rank - modulus magnitude transfer in the case of [AD17]). The black arrows without
references correspond to trivial reductions. The dotted arrows correspond to the results presented
in Chapter 3 and the dashed arrows correspond to the results presented in Chapter 4. The vertical
dotted arrows correspond to non-uniform reductions. The reductions involving PLWE are analyzed for
a restricted family of defining polynomials.
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Chapter 2

Preliminaries

In this chapter, we recall some preliminary results on lattices, polynomials and their relationship with
structured matrices, probabilities and algebraic number theory. We then introduce the cryptographic
definitions that we are going to use in this thesis.
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CHAPTER 2. PRELIMINARIES

2.1 Lattices
In this section, we briefly recall the definitions and results on lattices that we are going to use in the
next chapters. There are several resources which can be consulted for a good introduction on lattices
and lattice-based cryptography. Among them, we recommend the lecture notes [Pei, Reg] and the two
surveys [MR09] and [Pei15].

2.1.1 Definitions
We start by giving the definition of a lattice.

Definition 2.1. Given m linearly independent vectors (bi)1≤i≤m over Rn, the lattice L ⊆ Rn generated
by them is the set of all linear integer combinations of the vectors bi:

L(b1, . . . , bm) = {
m∑
i=1

zibi : z1, . . . , zm ∈ Z}.

The set (bi)1≤i≤m is called a basis of the lattice L. If we define B as the n × m matrix whose
columns are b1, b2, . . . , bm, we simply write L = L(B) = L(b1, . . . , bm). We say that m is the rank of
the lattice L and n is its dimension. If n = m, the lattice is called full-rank. In this thesis, all the
lattices will be full-rank. A lattice has many bases and any two bases B1, B2 ∈ Rn×m generate the
same lattice if and only if B2 = B1 · U for some integer matrix U whose determinant is 1 or −1.

v1

v2

b1

b2

Fig. 2.1: A two-dimensional lattice and two of its bases: {b1,b2} and {v1,v2}.

Definition 2.2. If L is a lattice and (bi)1≤i≤m is a basis of it, we define the determinant of L as
det(L) = (det(< bi, bj >)i,j)1/2.

Although the determinant is defined by first fixing a basis B of the lattice, it can be shown that its
value is actually independent on the choice of B.

For any p ∈ N∗ ∪ {∞} and any lattice L ⊂ Rn, λp1(L) denotes the `p norm of a shortest nonzero
vector in L. When p = 2 we usually simply write λ1(L).

Theorem 2.1 (Minkowski’s First Theorem). For any full-rank lattice L ∈ Rn, we have λ1(L) ≤√
n · det(L)1/n.
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Definition 2.3. Given a lattice L ⊂ Rn, we define its dual lattice L∗ as L∗ = {x ∈ Rn :< x, y >∈ Z
for all y ∈ L}.

2.1.2 Lattice problems
Minkowski’s bound (Theorem 2.1) on the norm of a shortest nonzero vector in a lattice L is in general
loose and we may ask whether we can actually compute or better approximate λ1(L) or find a lattice
vector whose norm is λ1(L). In the next problem definitions, γ ≥ 1 is a parameter of the problems.

Definition 2.4 (ApproxSVPγ). Given a lattice L ⊂ Rn, find a nonzero vector v ∈ L such that ||v||2 ≤
γ · λ1(L).

Definition 2.5 (GapSVPγ). Given a lattice L ⊂ Rn and a positive integer d, distinguish between the
two cases λ1(L) ≤ d and λ1(L) > γ · d.

For γ = 1, GapSVPγ and ApproxSVPγ are equivalent (see e.g. [MG02]). For γ > 1, GapSVPγ
trivially reduces to ApproxSVPγ ([MG02, p. 20]), but the converse is not in general true. Still, there
exists a dimension preserving randomized reduction [SD16, Che13] from ApproxSVPγ to GapSVPγ′ for
γ′ = γO(n/ logn).

γλ1(L)v1

v2

v

v′

Fig. 2.2: The vector v is a shortest nonzero vector in L = L(v1, v2) and v′ is a shortest vector up to
γ = 1.5 approximation factor.

Another well-known lattice problem is ApproxCVPγ . This problem also enjoys a decision variant
GapCVPγ , defined analogously to GapSVPγ , and is closely related to ApproxSVPγ in the sense that
ApproxSVPγ reduces to ApproxCVPγ ([GMSS99]) for any γ ≥ 1. Moreover, there exists a folklore
reduction from ApproxCVP√n·γ2 to ApproxSVPγ whose proof can be found in [SD15].

Definition 2.6 (ApproxCVPγ). Given a lattice L ⊂ Rn and a vector t ∈ Rn, find a vector v ∈ L such
that ||v− t||2 ≤ γ · dist(t, L), where dist(t, L) := inf{||t− t′||2 : t′ ∈ L}.

Notice that the above problem definitions are given in terms of the `2 norm, but we could define
these problems with respect to any other norm. When γ = 1, we call the corresponding problems exact
and usually omit the subscript γ.

The fastest known algorithms to solve the above lattice problems, sieving ([AKS01, ADRSD15,
ASD18], etc.) and enumeration ([Kan83], etc.), run in exponential time in the dimension of the lattice
for polynomial approximation factors, which makes these computational problems suitable to be used
as hardness foundation for cryptographic schemes.
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t

v1

v2

w

Fig. 2.3: The vector w is the closest vector to t belonging to L = L(v1, v2).

2.1.3 Learning With Errors
In [Reg05], Regev introduced a natural generalization of the so-called Learning Parity with Noise
problem [BFKL93, BKW03]: the Learning With Errors problem (LWE). He proved its hardness based
on the presumed hardness of GapSVPγ and illustrated its cryptographic use by constructing a public-key
encryption scheme whose security relies on the hardness of LWE. Following [Reg05], several (advanced)
cryptographic schemes have been built using LWE ([BCD+16, GPV08], etc.). In this thesis, we study
algebraic variants of LWE, but we recall LWE now for the sake of completeness. The LWE problem is
parameterized by two integers n ≥ 1 and q ≥ 2 and an error distribution χ on R and relies on the
following distribution.

Definition 2.7 (LWE distribution). For a vector s ∈ Znq called the secret, we define the LWE distribution
Ds,χ as the distribution over Znq × Rq obtained by sampling a ←↩ U(Znq ), e←↩ χ and returning the pair
(a, b =< a, s > + e mod q).

The LWE problem has two variants: search and decision. The decision variant is more suitable for
cryptographic purposes than the search variant.

Definition 2.8 (Search LWEq,n,χ). Given many samples (ai, bi) ∈ Znq × Rq from the distribution Ds,χ

for some s ∈ Znq , find the secret s.

The search variant of LWE could be seen as an average-case exact ApproxCVP problem on the lattice
L(A) := {A ·w : w ∈ Znq }+ qZm where every row of the matrix A ∈ Zm×nq corresponds to a sample ai.
Indeed, for a typical choice of parameters, the vector b (whose entries are the bi’s) is very close to one
of the vectors of L(A) and the goal in search LWE is exactly to recover that vector.

Definition 2.9 (Decision LWEq,n,χ). Decision LWEq,n,χ consists in distinguishing between a sampler
from Ds,χ and a uniform sampler over Znq × Rq, with non-negligible probability over the choice of s.

Under some conditions on the parameters ([Reg05, Pei09, MM11, MP12], etc.), the search and
decision variants are actually equivalent. Notice that both the search and decision LWE problems are
easy to solve if the error distribution χ always outputs 0, since we can efficiently recover the secret s
using Gaussian elimination. We refer to the above search/decision variants of LWE as continuous since
the error distribution χ is continuous. There also exist correponding discrete variants, where χ is a
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distribution on Zq := Z/qZ. The main result in [Reg05] is a quantum reduction from solving certain
lattice problems to solving the LWE problem.

Theorem 2.2 ([Reg05]). For any 0 < α < 1, any q ≥ 2 and any Gaussian error distribution χ of
standard deviation αq ≥ 2

√
n, solving search LWEq,n,χ is at least as hard as quantumly solving GapSVPγ

on arbitrary n-dimensional lattices, for some γ = Õ(n/α).

We recall now some of the follow-up works where the hardness of LWE has been analyzed in different
contexts and parameter settings. In [Pei09], Peikert analyzed the LWE problem in the setup where the
error distribution is a continuous Gaussian. First, he showed that the search variant of LWE with
exponential modulus remains at least as hard as GapSVPγ for γ = Õ(n/α) even classically. Secondly,
he gave a classical hardness proof of the search variant of LWE with polynomial modulus based on
a non-standard lattice problem. He also gave a search-to-decision LWE reduction which requires the
modulus q to be a product of distinct and sufficiently large polynomially bounded primes. Later on,
building upon [Pei09], Brakerski et al. [BLP+13] proved the classical hardness of LWE in dimension n
with polynomial modulus based on the hardness of GapSVPγ in dimension '

√
n using the so-called

modulus reduction technique.

2.2 Polynomials and structured matrices
In this section, we exhibit some connections between polynomials and the structured matrices that we
are going to use in this thesis and recall the definition of the expansion factor of a polynomial [LM06].
We refer the reader to [Pan01] for more details on structured matrices.

Let R be a ring. We let R[x] denote the set of polynomials with coefficients in R and for any
k > 0, we let R<k[x] denote the set of polynomials in R[x] of degree < k. Given a polynomial
f(x) = f0 + f1x + · · · + fk−1x

k−1 ∈ R<k[x], we call f0 the free coefficient of f and fk−1 the leading
coefficient of f . We use the following notations: f(x) = fk−1 + fk−2x + · · · + f0x

k−1 ∈ R<k[x],
f = (f0, . . . , fk−1)T ∈ Rk and f = (fk−1, . . . , f0)T ∈ Rk. Notice that f(x) = f( 1

x ) · xk−1. Also, the
definition of f takes into consideration the set where the polynomial f lives and not the actual degree
of f . For any two integers 0 ≤ a ≤ b, we let [f(x)]ba denote the polynomial fa + fa+1x+ · · ·+ fbx

b−a.
When a = b, we simply write [f(x)]a (or fa) instead of [f(x)]aa. For any integers 0 < a ≤ b and any
polynomials p ∈ R<a[x] and q ∈ R<b[x], we consider their product pq ∈ R<a+b−1[x] and their sum
p+ q ∈ R<b[x]. We have that pq(x) = p(x) · q(x) and p+ q(x) = p(x) · xb−a + q(x).

We let R[[x]] denote the ring of formal power series in x with coefficients in the ring R. We extend
the above notation [f(x)]ba to any formal series f(x) ∈ R[[x]].

If Rk is a normed vector space over R, for any p ∈ N∗∪{∞} we extend the definition of the `p norm
of vectors to polynomials and define ||f(x)||p := ||f ||p.

When the indeterminate x is clear from the context, we simply write f instead of f(x).

Definition 2.10. Let f be a polynomial of degree m ≥ 0. For any d > 0 and any a ∈ R[x], we
let Rotdf (a) denote the matrix in Rd×m whose i-th row is given by the coefficients of the polynomial
(xi−1 · a) mod f , for any i = 1, . . . , d. When d = m, we will use the notation Rotf (a) instead of
Rotmf (a).

For example, the Rotmf (a) matrix associated to the polynomials a(x) = a0 + a1x+ . . .+ am−1x
m−1
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and f(x) = xm + 1 is:

Rotf (a) =



a0 a1 . . . an−2 am−1

−am−1 a0 . . . am−3 am−2
...

. . .
...

...
. . .

...

−a1 −a2 . . . −am−1 a0


Note that if a′ = a mod f , then Rotdf (a) = Rotdf (a′) for any d and Rotf (a · b) = Rotf (a) ·Rotf (b) for

any a, b ∈ R[x].

Definition 2.11. Let f be a polynomial of degree m and d > 0. We define Md
f as the (Hankel) matrix

in Rd×m such that for any 1 ≤ i ≤ d and 1 ≤ j ≤ m, the coefficient (Mf )i,j is the constant coefficient
of xi+j−2 mod f . When d = m, we simply write Mf instead of Mm

f .

For example, the Mf matrix associated to f = xm + 1 is:

Mf =



1 0 . . . 0 0
0 0 . . . 0 −1
0 0 . . . −1 0
... . .

. ...

0 −1 . . . 0 0


The matrix Mf helps rewriting multiplication on the left by matrix Rotf (a) as a multiplication on

the right by a.

Lemma 2.1. For any a ∈ R<m[x], we have Rotf (a) · (1, 0, . . . , 0)T = Mf · a.

Proof. First, the i-th coordinate of the left hand side is the constant coefficient of xi−1 · a mod f .
Second, the i-th coordinate of the right hand side is

((a0x
i−1 mod f) mod x) + · · ·+ ((am−1x

m+i−2 mod f) mod x),

which can be re-written as xi−1(a0 + · · · + am−1x
m−1 mod f) mod x = (xi−1 · a mod f) mod x. The

latter is the constant coefficient of xi−1 · a mod f .

Definition 2.12. For any d, k > 0 and a ∈ R<k[x], we let Toepd,k(a) denote the matrix in Rd×(k+d−1)

whose i-th row, for i = 1, . . . , d, is given by the coefficients of xi−1 · a:

Toepd,k(a) =



a0 a1 . . . ak−1 0 . . . . . . 0
0 a0 . . . ak−2 ak−1 . . . . . . 0
...

. . .
. . .

...
. . .

. . .

0 0 . . . . . . a0 . . . ak−2 ak−1


Lemma 2.2. For any d, k > 0 and any a ∈ R<k[x], we have Rotdf (a) = Toepd,k(a) · Rotk+d−1

f (1).

Proof. It is sufficient to prove that the rows of Rotdf (a) and Toepd,k(a) ·Rotk+d−1
f (1) are equal. We just

note that the i-th row of Rotk+d−1
f (1) is xi−1 mod f , for i = 1, . . . , k + d− 1 and these will fill the gap

in the definitions of Rotdf (a) and Toepd,k(a).
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Example 1. Let us look at the special case f = xm + 1 and m = d = k = n. In this case, the Rotdf (a)
and Toepd,k(a) · Rotd+k−1

f (1) matrices are the following ones:

Rotf (a) =



a0 a1 . . . an−2 an−1

−an−1 a0 . . . an−3 an−2
...

. . .
...

...
. . .

...

−a1 −a2 . . . −an−1 a0



Toepn,n(a) ·Rot2n−1
f (1) =



a0 a1 . . . an−1 0 . . . . . . 0
0 a0 . . . an−2 an−1 . . . . . . 0
...

. . .
. . .

...
. . .

. . .

0 0 . . . . . . a0 . . . an−2 an−1


·



1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

... . . .
...

0 0 . . . 0 1
−1 0 . . . 0 0
0 −1 . . . 0 0
...

. . .
...

0 0 . . . −1 0


Moreover, in this case, for any polynomial b ∈ R<n[x], the vector Rotf (a) · b is exactly ab mod f ,

which implies that the vector of coefficients of ab mod f can be written as a product of Toepn,n(a) and
Rot2n−1

f (1) · b.

The expansion factor of a polynomial f was introduced in [LM06] and measures how large become
the coefficients of a polynomial g when it is reduced modulo f , compared to the coefficients of g.

Definition 2.13. Let f ∈ Z[x] of degree m. Then the expansion factor of f is defined as EF(f) =
max(‖g mod f‖∞/‖g‖∞ : g ∈ Z<2m−1[x] \ {0}).

There is no known polynomial time algorithm to compute the expansion factor of an arbitrary
polynomial. Still, some bounds have been obtained in [LM06]. Using these bounds, one can obtain
special classes of polynomials whose expansion factors are polynomially bounded.

Definition 2.14. If a polynomial f(x) ∈ Z[x] can be written as f(x) = xn+
∑n−m
i=0 fix

i with fn−m 6= 0
and 0 < m ≤ n, we say that gap(f) = m.

Lemma 2.3 (Adapted from [LM06, Th. 3.6]). If f is a polynomial in Z[x],

EF(f) ≤ 2||f ||∞ · (2||f ||1)d
deg(f)−2)

gap(f) e.

As a consequence, for any polynomial f = xm + h, with h =
∑
i≤m/2 hix

i and ‖h‖∞ ∈ poly(m), we
have that EF(f) ∈ poly(m).

The expansion factor is useful when trying to bound the largest singular value of the matrices Md
f

and Rotkf (1).

Lemma 2.4 ([LVV19, Le. 9]). Let f(x) ∈ Z[x] and d ≤ deg(f). Then ‖Md
f‖ ≤

√
d · EF(f).
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Lemma 2.5. Let f ∈ Z[x] and k ≥ deg(f). Then ‖Rotkf (1)‖2 ≤ deg(f) + (k−deg(f)) ·deg(f) ·EF(f)2.

Proof. The bound on ‖Rotkf (1)‖ can be obtained by noticing that Rotkf (1) contains Ideg(f) as a submatrix
and all its other entries are bounded by EF(f).

2.3 Probabilities
We recall now the probablity concepts that we are going to use throughout this thesis.

2.3.1 Basic definitions
In this section, we recall the definitions of the statistical distance, the Rényi divergence and the min-
entropy. The statistical distance and the Rényi divergence of two distributions are both measures of
similarity of the respective distributions, while the min-entropy of a random variable measures the
probability of the most likely result.

Definition 2.15. If D1,D2 are two continuous distributions over the same measurable set S, their
statistical distance is ∆(D1,D2) :=

∫
S
|D1(x)−D2(x)| dx. If D1 and D2 are defined over some finite

set S, their statistical distance is ∆(D1,D2) := 1
2
∑
x∈S |Pr[D1 = x]− Pr[D2 = x]|.

Definition 2.16. The Rényi divergence of two continuous distributions D1 and D2 over the same
measurable set S is R(D1‖D2) =

∫
S
D1(x)2/D2(x) dx.

Definition 2.17. Let X be a random variable chosen according to a discrete distribution D defined on
a set S. We define the min-entropy of X as H∞(X) = −maxx∈S log Pr[X = x].

2.3.2 Leftover hash lemma
We are going to use the following variant of the leftover hash lemma borrowed from [HILL99] in
Chapter 4 in order to approximate how far a certain distribution is from the uniform one. In Chapter 3,
we will prove a variant of the leftover hash lemma over number rings for specific distributions.

Definition 2.18. A finite family H of hash functions h : X → Y is called universal if Prh←↩U(H)[h(x1) =
h(x2)] = 1/|Y |, for all x1 6= x2 ∈ X.

Lemma 2.6 (Leftover hash lemma). Let X,Y ,Z denote finite sets. Let H be a universal family of
hash functions h : X → Y . Let f : X → Z be arbitrary. Then for any random variable T taking values
in X, we have:

∆
(

(h,h(T ), f(T )) , (h,U(Y ), f(T ))
)
≤ 1

2 ·
√
γ(T ) · |Y | · |Z|,

where γ(T ) = maxt∈X Pr[T = t].

2.3.3 Gaussian distributions
In the problems that we will study, the so-called noise distributions will be Gaussian. In this section,
we recall the definition of a Gaussian distribution.

A symmetric matrix Σ ∈ Rn×n is positive definite if xtΣx > 0 for every non-zero vector x ∈ Rn.
For any non-singular matrix B ∈ Rn×n, the matrix Σ = BBt is positive definite and we say that
B =

√
Σ. Every positive definite matrix Σ has a square root B = QD, where Σ = QD2Qt is the spectral

decomposition of Σ. Note that the square root of a positive definite matrix is not unique (B′ = BH
is also a square root of Σ for every orthogonal matrix H ∈ Rn×n). If Σ ∈ Rn×n is a positive definite
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matrix, its inverse is also positive definite and, moreover, the set of positive definite matrices is closed
under addition.

Definition 2.19. For a positive definite matrix Σ ∈ Rn×n, we define the Gaussian function on Rn of
covariance matrix Σ as ρΣ(x) = exp(−πxtΣ−1x) for every x ∈ Rn. The probability distribution whose
density is proportional to ρΣ is called the Gaussian distribution and is denoted DΣ.

When Σ = diag(s2
i )i for some s = (s1, . . . , sn)t ∈ Rn, we write ρs and Ds instead of ρΣ and DΣ,

respectively. When Σ = s2 · In for some s ∈ R, we simply write ρs and Ds.

2.3.4 Gaussian distributions over lattices
We now define Gaussian distributions on lattices, which we call from now on discrete as lattices represent
discrete subgroups of Rn. We then show that if the standard deviation of a discrete Gaussian r is large
enough, the distribution behaves similarly to a continous one.

Definition 2.20. For a positive definite matrix Σ ∈ Rn×n and a full-rank lattice L ⊂ Rn we define
ρΣ(L) :=

∑
x∈L ρΣ(x). Using this, we can now define the discrete Gaussian distribution over L of

covariance parameter Σ as DL,Σ(x) = ρΣ(x)/ρΣ(L) for every x ∈ L.

In Figure 2.4, we plot a Gaussian distribution on Z of standard deviation 1.2.

Lemma 2.7 ([LPSS14, Le. 5]). Let Σ1, Σ2 ∈ Rn×n two covariance matrices and L1, L2 full-rank lattices
in Rn such that 1 ≥ ηε((Σ−1

1 +Σ−1
2 )1/2·(L1∩L2)) for some ε ∈ (0, 1/2). If x1 ←↩ DL1,Σ1 and x2 ←↩ DL2,Σ2 ,

then the statistical distance between the distribution of x1 + x2 and DL1+L2,Σ1+Σ2 is less than 4ε.

Lemma 2.8 ([Ban95, Le. 2.10]). Let L be a full-rank lattice in Rn and r > 0. Then Prx←DL,r (‖x‖∞ >

r · t) ≤ 2n · exp(−π · t2).

The smoothing parameter of a lattice L was introduced in [MR04] and it informally says how large
the parameter r should be in order for the distribution DL,r to behave similarly to the continuous
Gaussian Dr.

Definition 2.21. For ε > 0, we define the smoothing parameter ηε(L) as the smallest r > 0 such that
ρ1/r(L∗ \ {0}) ≤ ε.

If L1 ⊆ L2 are two lattices, we have that ηε(L2) ≤ ηε(L1) for any ε > 0.

Lemma 2.9 ([MR04, Le. 3.3]). For any full-rank lattice L ⊂ Rn and ε > 0, we have ηε(L) ≤ λn(L) ·√
ln(2n(1 + 1/ε))/π.

Lemma 2.10 (Adapted from [MR04, Le. 4.4]). Let L be an n-dimensional lattice, ε ∈ (0, 1/3) and
r ≥ ηε(L). Then Prx←↩DL,r [‖x‖ ≥ 2r

√
n] ≤ 2−2n.

Lemma 2.11 ([GPV08, Cor. 2.8]). Let L′ ⊆ L be full-rank lattices, ε ∈ (0, 1/2) and r ≥ ηε(L′). Then
∆(DL,r mod L′,U(L/L′)) ≤ 2ε.

Lemma 2.12 ([PR06, Le. 2.11]). Let L be an n-dimensional lattice, ε ∈ (0, 1/3) and r ≥ 4ηε(L). Then
DL,r(0) ≤ 2−2n+1.
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0

Fig. 2.4: Discrete Gaussian distribution on Z of standard deviation r = 1.2.

2.4 Algebraic number theory
In this section, we give a brief introduction into algebraic number theory. We reccommend [Ste17] for
a more general description of the results.

2.4.1 Number fields
A number field K is a finite extension of Q, which can always be described as Q[x]/f for some monic
irreducible polynomial f ∈ Z[x], or Q[α] for some root α of f . Note that a given K admits several such
f ’s. In this setup, the polynomial f is called a defining polynomial of K and the extension degree of K
is deg f . The set of all elements of K whose minimal polynomials have coefficients in Z is a ring called
the ring of integers and is denoted by OK . It contains the subring Z[α] ' Z[x]/f and, in general,
the inclusion is strict. Examples where OK = Z[α] include quadratic extensions Q(

√
d) for d ≡ 2, 3

mod 4, cyclotomic fields (i.e., when α is a primitive root of the unity) and number fields with a defining
polynomial f of squarefree discriminant ∆f . To avoid confusion with elements of OK , elements in Z
are called rational integers.

2.4.2 Embeddings
A number field K = Q[α] of degree n has exactly n ring embeddings σi : K → C in the complex field.
If we let α1, . . . ,αn be the n roots of its defining polynomial, then these embeddings are defined by
σi(α) = αi and extended Q-linearly. They are often called Minkowski embeddings. If the image of an
embedding is contained in the real field R it is said to be real, else it is said to be complex. As complex
roots come by pairs of conjugates, so do the complex embeddings. We let s1 denote the number of real
embeddings and s2 the number of pairs of complex embeddings, so that n = s1 + 2s2.

We define the canonical space H := {x ∈ Rs1 × C2s2 : ∀i ≤ s2 : xs1+s2+i = xs1+i}. The space H
with the inner product induced on it from Cn is isomorphic to Rn as inner product spaces. Indeed,
let (ei)i≤n be the canonical basis of Cn. We define hi = ei for i ≤ s1, and hs1+i = (es1+i+es1+s2+i)/

√
2

and hs1+s2+i = (es1+i − es1+s2+i)/
√
−2 for i ≤ s2. The hi’s form an orthonormal R-basis of H. The

embedding map, which is usually called canonical or Minkowski, is then defined as σ : K → H by
mapping an element in K to its vector of (suitably ordered) embeddings. Note that via the embedding
map, we have KR := K ⊗Q R ' H. Among its nice properties, the multiplicative structure of K is
preserved, i.e., σ(xy) = (σ1(x)σ1(y), . . . ,σn(x)σn(y)).

If we are given a (geometric) norm ‖ · ‖ on the space Rs1 ×C2s2 , then we can consider the geometric
norm of an element in K by means of the Minkowski embeddings. The (field) trace is the Q-linear map
defined as Tr(x) =

∑
i≤n σi(x) and the (field) norm is N(x) =

∏
i≤n σi(x).
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Another way is to use the so-called coefficients embedding, which amounts to viewing an element
a(x) =

∑n
i=0 aix

i as its vector of coefficients a = (ai)i<n. Different defining polynomials forK = Q[x]/f
give different coefficient embeddings, and coefficient and Minkowski embeddings have different geometric
settings. Going from the coefficient representation a of K to its Minkowski equivalent is done by the
linear transformation σ(a) = Vfa, where Vf denotes the Vandermonde matrix of f =

∏n
i=1(x− αi):

Vf =


1 α1 . . . αn−1

1

1 α2 . . . αn−1
2

... . . .
...

1 αn . . . αn−1
n

 .

It is well-known that the square determinant of this matrix is the discriminant of f , i.e., we have
(detVf )2 = ∆f =

∏
i 6=j(αi − αj). When it defines a number field, the polynomial f does not have any

double root thus Vf is invertible and we have a = V −1
f σ(a).

2.4.3 Rings and ideals in number fields
We call any subring of K a number ring. For a number ring R, an (integral) R-ideal is an additive
subgroup I ⊆ R which is closed by multiplication in R, i.e., such that IR = I. A more compact
definition is to say that I is an R-module contained in R. If a1, . . . , ak are elements in R, we let
〈a1, . . . , ak〉 = a1R+ . . .+akR and call it the ideal generated by the ai’s. The product of two ideals I, J
is the ideal generated by all elements xy with x ∈ I and y ∈ J . The sum, product and intersection of
two R-ideals are again R-ideals.

Two integral R-ideals I, J are said to be coprime if I+J = R, and, in this case, we have I ∩J = IJ .
Any non-zero ideal in a number ring has finite index, i.e., the quotient ring R/I is always finite when
I is a non-zero R-ideal. An R-ideal p is said to be prime if whenever p = IJ for some R-ideals I, J ,
then either I = p or J = p. In a number ring, any prime ideal p is maximal, i.e., R is the only R-ideal
containing it. It also means that the quotient ring R/p is a finite field. It is well-known that any
OK-ideal admits a unique factorization into prime OK-ideals, i.e., it can be written I = pe11 . . . pekk with
all pi’s distinct prime ideals. It fails to hold in general number rings and orders, but we describe later
in Lemma 3.1 how the result can be extended in certain cases.

A fractional R-ideal I is an R-module such that xI ⊆ R for some x ∈ K×. An integral ideal is
a fractional ideal, and so are the sum, the product and the intersection of two fractional ideals. A
fractional R-ideal I is said to be invertible if there exists a fractional R-ideal J such that IJ = R. In
this case, the (unique) inverse is the integral ideal I−1 = {x ∈ K : xI ⊆ R}. Any OK-ideal is invertible,
but it is again false for a general number ring.

The algebraic norm of a non-zero integral R-ideal I is defined as NR(I) = |R/I|, and we will omit
the subscript when R = OK . It satisfies NR(IJ) = NR(I)NR(J) for every R-ideals I, J .

The dual of a fractional R-ideal I is I∨ = {α ∈ K : Tr(αI) ⊆ Z}, which is also a fractional R-ideal.
We always have II∨ = R∨, so that I∨ = I−1R∨ when I is invertible. We also have I∨∨ = I for any
R-ideal I.

A particularly interesting dual is O∨K , whose inverse (O∨K)−1 is called the different ideal. The
different ideal is an integral ideal, whose norm ∆K = N ((O∨K)−1) is called the discriminant of the
number field. We note that, for every f defining K, the field discriminant ∆K is a factor of the
discriminant ∆f of f . This provides an upper bound on ∆K in terms of the defining polynomial f .
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2.4.4 Ideal lattices
A lattice could also be defined as a full-rank discrete additive subgroup of an R-vector space V which
is a Cartesian power Hm (for m ≥ 1) of H. Any fractional OK-ideal I is a free Z-module of rank
n = deg(K), i.e., it can be written as Zu1 + · · ·+Zun for some ui’s in K. Its canonical embedding σ(I)
is a lattice of dimension n in the R-vector space H ⊆ Rs1 × C2s2 . Such a lattice is called an ideal
lattice (for OK). For the sake of readability, we will abuse notations and often identify I and σ(I). It is
possible to look at the coefficient embedding of such lattices as well, but we will not need it. The lattice
corresponding to I∨ is I∗. The discriminant of K satisfies ∆K = (detOK)2. In the following lemma,
the upper bounds follow from Minkowski’s theorem whereas the lower bounds are a consequence of the
algebraic structure underlying ideal lattices.

Lemma 2.13 (Adapted from [PR07, Se. 6.1]). Let K be a number field of degree n. For any fractional
OK-ideal I, we have:

√
n · N (I)1/n ≤ λ1(I) ≤

√
n · (N (I)

√
∆K)1/n,

N (I)1/n ≤ λ∞1 (I) ≤ (N (I)
√

∆K)1/n.

Lemma 2.14 (Adapted from [PR07, Le. 6.5]). For any OK-ideal I and ε ∈ (0, 1), we have ηε(I) ≤√
log(2n(1 + 1/ε))/(πn) · (N (I)∆K)1/n.

2.4.5 Gaussians on H
We define the Gaussian distribution DH

Σ on H as the distribution obtained by sampling x←↩ DΣ and
returning

∑
i xihi. The canonical embedding allows us to interpret a distribution on H as a distribution

on K. We will repeatedly use the observation that if x is sampled from DH
Σ and t belongs to KR, then

t · x is distributed as DH
Σ′ with Σ′ = diag(|σi(t)|) ·Σ · diag(|σi(t)|).

2.5 Cryptographic definitions
In this section, we introduce the most relevant cryptographic concepts that we are going to use through-
out the thesis.

2.5.1 Proofs by reduction
In modern cryptography, if we wish to prove that a cryptographic scheme is secure, we rely on some
presumably hard problem (GapSVP, GapCVP, etc.). Concretely, we prove the security by reduction,
i.e., we show how to transform any efficient adversary A that succeeds in breaking the cryptographic
scheme Π in time t with advantage ε into an efficient algorithm B that solves the hard problem P in
time t′ with probability ε′. If t ≈ t′ and ε ≈ ε′, we say that the reduction is tight. When t′ � t or
ε′ � ε we call the reduction non-tight. If the parameters of Π are set based on the concrete hardness
assumption for the problem P and the reduction from P to Π is non-tight, the parameters will be larger
than in the case of a tight reduction.

2.5.2 (Quantum) Random-oracle model
The random-oracle model is a general framework which allows the construction of cryptographic schemes
and the proof of their security assuming the existence of efficient truly random functions. More specif-
ically, the random-oracle model assumes the existence of a public random function H which can be
evaluated by querying an oracle. The oracle returns a uniform value H(x) when given an input x which
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has not been previously queried and is consistent with its previous answer when given an input x which
has already been queried. When the cryptographic primitive is implemented in practice, the truly ran-
dom oracle H is replaced by a cryptographic hash function. Although there is no theoretical evidence
that a security proof in the random-oracle model still holds when the oracle is instantiated with a
specific cryptographic hash function, the random-oracle model could be seen as a tradeoff between a
rigorous proof of security and no proof.

In the quantum random-oracle model, the oracle H can be queried on quantum superpositions. The
cryptographic definitions and the security games in the quantum random-oracle model are similar to
those in the classical random-oracle model, with the only difference that they make use of an adversary
which is given quantum access to the random oracles involved, but classical access to all the other
oracles (e.g. signing/decryption oracles). We call any such adversary quantum. The framework where
we do not assume the existence of truly random functions is called the standard model. For a gentle
introduction to the random-oracle model we recommend [KL14], while for a background on quantum
computing, we recommend [dW19].

2.5.3 Pseudorandom functions
In this section we give the formal definition of pseudorandom functions.

Definition 2.22. A pseudorandom function PRF is a map PRF : K × {0, 1}n → {0, 1}k where K is a
finite key space and n, k are positive integers, such that no (quantum) adversary A trying to distinguish
the output of the PRF from a uniform output is able to have a non-negligible advantage. The adversary
A is able to perform a polynomial number of classical queries to one of the two oracles PRF(K, ·)
and RF(·) and its advantage is defined as

AdvPR
PRF(A) := |Pr(APRF(K,·) = 1|K ← K)− Pr(ARF(·) = 1)|

where RF : {0, 1}n → {0, 1}k is a uniformly sampled function from F({0, 1}n, {0, 1}k).

The evaluation in x of PRF(K, ·) is deterministically computable in polynomial time for any K ∈ K
and any valid input x. Defining the function RF takes exponential time, since the domain of the function
is exponentially large. Still, since the adversary has access only to a polynomial number of evaluations
of RF, we can consider that its defining the function takes only polynomial time: when the adversary
asks for the evaluation of RF on an input x, we either pick the output RF(x) uniformly at random in
{0, 1}k and store the pair (x, RF(x)) in a table if x has never been queried before, or, if x has already
been queried, we return the value y such that (x, y) is in this table.

2.5.4 Public-key encryption
Public-key encryption allows two parties to confidentially communicate without sharing a common key
before they interact. In this section, we formalize this notion and recall the related security definitions
that we are going to use in Chapter 5.

Definition 2.23 (Public-key encryption scheme). A public-key encryption scheme is a tuple of classical
ppt ( i.e. probabilistic polynomial time) algorithms PKE := (KeyGen, Enc, Dec).

• The key generation algorithm KeyGen takes as input a security parameter λ in unary and returns
the public key pk and the secret key sk. The public key pk determines the set of messagesM and
the set of ciphertexts C.

• The encryption algorithm Enc takes as input the public key pk and a message m ∈M and returns
the ciphertext c := Encpk(m) ∈ C.
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• The challenger runs KeyGen, gets the pair (pk, sk) and publishes pk.

• After having been given the public key pk, the adversary A outputs two messages m0 and m1.

• The challenger chooses a uniform bit b ∈ {0, 1} and sends back to the adversary c := Encpk(mb).

• A outputs b′ ∈ {0, 1}.

The output of this experiment is 1 if b = b′ and 0 if b 6= b′.

Fig. 2.5: The PubCPA,A
PKE experiment.

• The challenger runs KeyGen, gets the pair (pk, sk) and publishes pk.

• After having been given the public key pk, the adversary may query Decsk(·) many times.

• The adversary A outputs two messages m0 and m1.

• The challenger chooses a uniform bit b ∈ {0, 1} and sends back to the adversary c := Encpk(mb).

• The adversary can still interact with the decryption oracle, but may not ask for a decryption of
the ciphertext c.

• A outputs b′ ∈ {0, 1}.

The output of this experiment is 1 if b = b′ and 0 if b 6= b′.

Fig. 2.6: The PubCCA,A
PKE experiment.

• The decryption algorithm Dec takes as input the secret key sk and a ciphertext c and returns
Decsk(c) ∈M∪ {⊥}.

We say thatM is the message space, C is the ciphertext space and ⊥ is the failure symbol.

Definition 2.24. We say that the public-key encryption scheme PKE has correctness error δ ≥ 0 if for
any message m ∈M,

Pr[Decsk(Encpk(m)) = m] > 1− δ,

where the probability is taken over the output (pk, sk) of KeyGen and the randomness used by the Enc
and Dec algorithms.

The security of PKE is modelled by different games. We recall here two of the most relevant
security notions related to public-key encryption. Intuitively, we say that PKE is indistinguishable
against chosen-plaintext attacks (IND-CPA secure) if no efficient adversary can recognize which of two
messages is encrypted in a given ciphertext, even if the two candidate messages have been chosen by
itself. Formally, given a public-key encryption scheme PKE := (KeyGen, Enc, Dec) and an adversary A,
first consider the four steps experiment PubCPA,A

PKE captured in Figure 2.5.

Definition 2.25. We say that PKE is indistinguishable against chosen-plaintext attacks (IND-CPA
secure) if for all ppt (quantum) adversaries A, there is a negligible function negl such that

Pr[PubCPA,A
PKE = 1] < 1

2 + negl(λ).

By allowing the adversary A to query a decryption oracle Decsk(·), we can define a different exper-
iment PubCCA,A

PKE as in Figure 2.6.
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Definition 2.26. We say that PKE is indistinguishable against chosen-ciphertext attacks (IND-CCA
secure) if for all ppt (quantum) adversaries A, there is a negligible function negl such that

Pr[PubCCA,A
PKE = 1] < 1

2 + negl(λ).

It is usually harder to prove directly the IND-CCA security of a public-key encryption scheme. Still,
there exist several transformations that turn a public-key encryption scheme with weaker security prop-
erties into an IND-CCA secure one, both in the random-oracle model ([FO99, FO13, OP01, CHJ+02],
among others) and quantum random-oracle model ([EU16, HHK17], etc.). The most well-known such
transformation, due to Fusjisaki and Okamoto, combines an IND-CPA public-key encryption scheme
with a one-time secure symmetric encryption scheme and two hash functions into an encryption scheme
that is IND-CCA secure in the quantum random-oracle model.

2.5.5 Digital signatures
Digital signatures allow a signer who has published a verification key vk to sign a message using the
corresponding private key sk in such a way that anyone who knows vk can verify that the message
originated from the respective signer and whether the message was altered or not. In this section
we recall the formal definition of a digital signature, the security notion we are interested in and the
Fiat-Shamir transform [FS86]. The Fiat-Shamir transform combines an identification scheme ID :=
(IGen, P, V) and a hash function into a digital signature scheme SIG := (G = IGen, S, V) which is secure
in the random-oracle model. We recall that there also exist lattice-based digital signatures in the
literature whose security proof holds in the standard model ([CHKP10, DM14], among others).

Definition 2.27 (Digital signature). A digital signature scheme is a tuple of classical ppt algorithms
SIG := (KeyGen, Sign, Ver).

• The key generation algorithm KeyGen takes as input a security parameter λ (in unary) and returns
the verification key vk and the signing key sk. The two keys determine the set of messages M
and the set of possible signatures Σ.

• The signing algorithm Sign takes as input the key sk and a message m ∈ M and returns a
signature σ = Sign(sk,m) ∈ Σ.

• The verification algorithm Ver takes as input the verification key vk, a message m and a signature
σ and returns Ver(vk,m,σ) ∈ {0, 1}.

We say thatM is the message space and Σ is the signature space.

Definition 2.28. We say that the signature scheme SIG has correctness error δ ≥ 0 if for any message
m ∈M,

Pr[Ver(vk,m, Sign(sk,m)) = 1] > 1− δ,

where the probability is taken over the output (sk, vk) of KeyGen and the randomness used by the Ver
and Sign algorithms.

Definition 2.29 (Unforgeability). A signature scheme SIG := (KeyGen, Sign, Ver) is said to be unforge-
able against one-per-message chosen message attack (UF-CMA1) in the (quantum) random oracle model
if for every ppt (quantum) forger F , there is a negligible function negl such that

Pr[ the output of the experiment in Figure 2.7 is 1 ] < negl(λ),
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• The challenger runs KeyGen, gets the pair (vk, sk) and publishes vk.

• The forger F may adaptively (quantumly) query the random oracle H(·) and classically query
the signing oracle Signsk(·) a polynomial number of times in order to obtain signatures for the
distinct messages {mi}i.

• The forger F outputs a message m∗ 6= mi for all i and σ∗.

The output of the experiment is 1 if Ver(vk,m∗,σ∗) = 1 and 0 otherwise.

Fig. 2.7: The UF-CMA1 experiment.

where the probability is taken over the randomness used by KeyGen, Sign, Ver and F and is denoted by
AdvUF-CMA1

SIG (F).

In the UF-CMA1 experiment, the forger is not allowed to ask for more than one signature per
message. One can extend this definition to the scenario where the attacker may have access to more
than one signature for any of poly(n) adaptively chosen messages {mi}. In that case, if no (quantum)
adversary F can produce a valid signature for a message m∗ /∈ {mi}, we say that the signature scheme
is unforgeable against chosen message attack (UF-CMA) in the (quantum) random-oracle model.

As showed in [BBS16], a UF-CMA1 signature scheme can be combined with a pseudo-random func-
tion to obtain a signature scheme that is UF-CMA, and the conversion is tight in the random-oracle
model (further, the upgrade preserves strongness). As observed in [KLS18], this transformation is also
tight in the quantum random-oracle model.

In the corresponding strong UF-CMA/UF-CMA1 experiments, the adversary may return a forgery
for a message which has already been queried to the signing oracle, but with a different signature. As
shown in [Kat10, p. 27], any UF-CMA secure signature can be upgraded to a UF-sCMA secure signature
using a one-time UF-sCMA secure signature ([Lam79, BDE+11], etc.).

2.5.5.1 Identification schemes

A canonical identification scheme is an interactive protocol between two parties: a prover P and a
verifier V that allows P to prove its identity (i.e., to authenticate itself) to V. The prover sends a
commitment W and the verifier selects a uniform challenge c and sends it to P. Upon receiving c, the
prover sends back a response Z to the verifier. After it receives Z, the verifier makes a deterministic
decision. In this section we give recall the formal definition and the basic security properties of an
identification scheme. We closely follow the notations used in [KLS18].

Definition 2.30 (Canonical identification scheme). A canonical identification scheme is a tuple of
classical ppt algorithms ID := (IGen, P, V).

• The key generation algorithm IGen takes as input a security parameter λ and returns the public
and secret keys (pk, sk). The public key defines the set of challenges ChSet, the set of commitments
WSet, and the set of responses ZSet.

• The prover algorithm P consists of two sub-algorithms: P1 takes as input the secret key sk and
returns a commitment W ∈WSet and a state St; P2 takes as inputs the secret key sk, a commit-
ment W , a challenge c, and a state St and returns a response Z ∈ ZSet∪ {⊥}, where ⊥/∈ ZSet is
a special symbol indicating failure.

• The verifier algorithm V takes as inputs the public key pk and the conversation transcript (W , c,Z)
and outputs 1 (acceptance) or 0 (rejection).
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If Z =⊥, then we set (W , c,Z) = (⊥,⊥,⊥).
The triple (W , c,Z) ∈WSet×ChSet×ZSet∪{(⊥,⊥,⊥)} generated in this way is called a transcript.

Given the public key pk, the transcript is valid if V (pk,W , c,Z) = 1.
We say that ID has correctness error δ if for all public and secret keys generated by IGen, all possible

transcripts in WSet×ChSet× ZSet with Z 6=⊥ are valid and the probability that a honestly generated
transcript is (⊥,⊥,⊥) is less than δ.

We recall now the background on identification schemes necessary to understand the statement of
Theorem 2.3.

Definition 2.31. We say that the canonical identification scheme ID has α bits of min-entropy if

Pr
(pk,sk)←IGen(λ)

(H∞(W |(W ,St)← P1(sk)) ≥ α) ≥ 1− 2−α.

Definition 2.32 (No-abort honest-verifier zero-knowledge). A canonical identification scheme ID is
εzk-perfect no-abort honest-verifier zero-knowledge (εzk-perfect na-HVZK) if there exists a ppt algorithm
Sim which given only the public key pk outputs (W , c,Z) such that the statistical distance between
(W , c,Z) ← Sim(pk) and (W , c,Z) ← Trans(pk) is at most εzk and the element c from (W , c,Z) ←
Sim(pk) follows a uniform distribution conditioned on c 6=⊥.

Trans(sk)
1: (W ,St)← P1(sk)
2: c← ChSet
3: Z ← P2(sk,W , c,St)
4: if Z =⊥ then
5: (W , c,Z) = (⊥,⊥,⊥)
6: end if
7: output (W , c,Z)

Fig. 2.8: The algorithm Trans(sk).

Definition 2.33 (Lossiness). A canonical identification scheme is lossy (and we call it LID) if there
exists a lossy key generation algorithm LossyIGen that takes as input λ and returns a public key pkls
and no secret key such that the public keys generated by IGen and LossyIGen are indistinguishable. In
other words, for any quantum adversary A, the following quantity is negligible:

AdvlossID (A) :=|Pr(A(pkls) = 1|pkls ← LossyIGen(λ))− Pr(A(pk) = 1|(pk, sk)← IGen(λ))|.

Definition 2.34 (Lossy soundness). A canonical identification scheme is εls-lossy-sound if, for every
quantum adversary A, the following probability that A could impersonate the prover is less than εls:

Pr

V (pkls,W ∗, c∗,Z∗) = 1

∣∣∣∣∣∣∣∣
pkls ← LossyIGen(λ);
(W ∗,St)← A(pkls);
c∗ ← ChSet;Z∗ ← A(St, c∗)

 .

2.5.5.2 From identification schemes to digital signatures: the Fiat-Shamir transform

The security of the Fiat-Shamir transform has been analyzed in the quantum random-oracle model
in [KLS18, LZ19, DFMS19], among others. The conversion is tight only in [KLS18], but it requires a
number of assumptions on the identification scheme. We recall the main result in [KLS18] in the next
theorem.
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S (sk,m)
1: i = 0
2: while Z =⊥ and i ≤ kl do
3: i = i+ 1
4: (W ,St) := P1(sk)
5: c := H(W‖m)
6: Z := P2(sk,W , c,St)
7: end while
8: if Z =⊥ then
9: σ =⊥
10: else
11: σ = (W ,Z)
12: end if
13: output σ

V (pk,m,σ)
1: parse σ as σ = (W ,Z)
2: c := H(W‖m)
3: output V(pk,W , c,Z) ∈ {0, 1}

Fig. 2.9: The signature SIG obtained via Fiat-Shamir transform from ID.

Theorem 2.3 ([KLS18, Th. 3.1]). Consider an identification scheme ID which is lossy, εzk-perfect
na-HVZK, has α bits of entropy and is εls-lossy sound and the signature scheme SIG obtained by applying
the Fiat-Shamir transform to the identification scheme ID, as in Figure 2.9.

For any quantum adversary A against UF-CMA1 security that issues at most QH quantum queries
to the random oracle and QS classical signing queries, there exists a quantum adversary B against ID
such that

AdvUF-CMA1
SIG (A) ≤ AdvlossID (B) + 8(QH + 1)2 · εls + kmQS · εzk + 2−α+1.

and Time(B)=Time(A)+kmQH .
Moreover, if we de-randomize the signature scheme in Figure 2.9 by using a pseudo-random function

PRF as in Figure 2.10, then for any quantum adversary A against UF-CMA security that issues at most
QH quantum queries to the random oracle and QS classical signing queries, there exists a quantum
adversary B against ID and a quantum adversary C against the PRF such that

AdvUF-CMA
DSIG (A) ≤ AdvlossID (B) + 8(QH + 1)2 · εls + kmQS · εzk + 2−α+1 + AdvPR

PRF(C).

The de-randomized version of the signature scheme DSIG := (IGen, DS, V) obtained from Fiat-Shamir
transformation is given in Figure 2.10. Here, the PRF key K is also a part of the secret key in the
signature scheme.
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DS ((sk,K),m)
1: i = 0
2: while Z =⊥ and i ≤ kl do
3: i = i+ 1
4: (W ,St) := P1 (sk; PRFK(0‖i‖m))
5: c := H(W‖m)
6: Z := P2 (sk,W , c,St; PRFK(1‖i‖m))
7: end while
8: if Z =⊥ then
9: σ =⊥
10: else
11: σ = (W ,Z)
12: end if
13: output σ

V (pk,m,σ)
1: parse σ as σ = (W ,Z)
2: c := H(W‖m)
3: output V(pk,W , c,Z) ∈ {0, 1}

Fig. 2.10: The de-randomized signature DSIG obtained via Fiat-Shamir transform from ID.
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Chapter 3

On the RLWE and PLWE problems

In this chapter, we show that there exist reductions which incur limited parameter losses between
the following algebraic variants of LWE: dual-Ring Learning With Errors (dual-RLWE), primal-Ring
Learning With Errors (primal-RLWE) and Polynomial Learning With Errors (PLWE), both in their
search and decision variants. More precisely: we prove that the (decision/search) dual to primal
reduction from Lyubashevsky et al. [EUROCRYPT 2010] and Peikert [SCN 2016] can be implemented
with a small error rate growth for all rings (the resulting reduction is non-uniform polynomial time);
we extend it to polynomial-time reductions between (decision/search) primal RLWE and PLWE that
work for a family of polynomials f that is exponentially large as a function of deg f (the resulting
reduction is also non-uniform polynomial time); and we exploit the recent technique from Peikert et
al. [STOC 2017] to obtain a search to decision reduction for RLWE for arbitrary number fields. The
reductions incur error rate increases that depend on intrinsic quantities related to K and f .

This chapter is mainly based on a joint work with Damien Stehlé and Alexandre Wallet, published
at Eurocrypt 2018.
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3.1 Introduction
Ring Learning With Errors (RLWE) was introduced by Lyubashevsky et al. in [LPR10], as a means
of speeding up cryptographic constructions based on LWE [Reg09]. Let K be a number field, OK its
ring of integers and q ≥ 2 a rational integer. The search variant of RLWE with parameters K and q

consists in recovering a secret s ∈ O∨K/qO∨K with O∨K denoting the dual of OK , from arbitrarily many
samples (ai, ai · s+ ei). Here each ai is uniformly sampled in OK/qOK and each ei is a small random
element of KR := K ⊗Q R. The noise term ei is sampled such that its Minkowski embedding vector
follows a Gaussian distribution with a small covariance matrix (relative to qO∨K). The decision variant
consists in distinguishing arbitrarily many such pairs for a common s chosen uniformly in O∨K/qO∨K ,
from uniform samples in OK/qOK × KR/qO∨K . More formal definitions are provided in Section 3.4,
but these suffice for describing our contributions.

Lyubashevsky et al. backed in [LPR10] the conjectured hardness of the RLWE problem with a
quantum polynomial time reduction from the (worst-case) ApproxSVP restricted to the class of Euclidean
lattices corresponding to ideals of OK , with geometry inherited from the Minkowski embeddings. They
showed its usefulness by describing a public-key encryption with quasi-optimal efficiency: the bit-sizes
of the keys and the run-times of all involved algorithms are quasi-linear in the security parameter.
A central technical contribution was a reduction from search RLWE to decision RLWE, when K is
cyclotomic, and decision RLWE for cyclotomic fields is now pervasive in lattice-based cryptography,
including in practice [ADPS16, BDK+18, DKL+18]. The search-to-decision reduction from [LPR10]
was later extended to the case of general Galois rings in [EHL14, CLS19].

Prior to RLWE, Stehlé et al. [SSTX09] introduced what is now referred to as Polynomial Ring
Learning With Errors (PLWE), for cyclotomic polynomials of degree a power of 2. PLWE is parametrized
by a monic irreducible f ∈ Z[x] and an integer q ≥ 2, and consists in recovering a secret s ∈ Zq[x]/f
from arbitrarily many samples (ai, ai ·s+ei) where each ai is uniformly sampled in Zq[x]/f and each ei is
a small random element of R[x]/f . The decision variant consists in distinguishing arbitrarily many such
samples for a common s sampled uniformly in Zq[x]/f , from uniform samples. Here the noise term ei is
sampled such that its coefficient vector follows a Gaussian distribution with a small covariance matrix.
Stehlé et al. gave a reduction from the restriction of ApproxSVP to the class of lattices corresponding
to ideals of Z[x]/f , to search PLWE, for f a power-of-2 cyclotomic polynomial.

Finally, a variant of RLWE with s ∈ OK/qOK rather than O∨K/qO∨K was also considered (see, e.g.,
[DD12] among others), to avoid the complication of having to deal with the dual O∨K of OK . In the
rest of this thesis, we will refer to the latter as primal-RLWE and to standard RLWE as dual-RLWE.

Even though [LPR10] defined RLWE for arbitrary number fields, the problem was mostly studied in
the literature for K cyclotomic. This specialization had three justifications:

• it leads to very efficient cryptographic primitives, in particular if q totally splits over K;

• the hardness result from [LPR10] holds for cyclotomics;

• no particular weakness was known for these fields.

Among cyclotomics, those of order a power of 2 are a popular choice. In the case of a field K defined
by the cyclotomic polynomial f , we have that OK = Z[α] for α a root of f . Further, in the case
of power-of-2 cyclotomics, mapping the coefficient vector of a polynomial in Z[x]/f to its Minkowski
embedding is a scaled isometry. This makes primal-RLWE and PLWE collapse into a single problem.
Still in the case of power-of-2 cyclotomics, the dual O∨K is a scaling of OK , implying that dual and
primal-RLWE are equivalent. Apart from the monogenicity property, these facts do not hold for all
cyclotomics. Nevertheless, Ducas and Durmus [DD12] showed it is still possible to reduce dual-RLWE
to primal-RLWE.
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Later on, Peikert et. al [PRSD17] gave a (quantum) reduction from ApproxSVP for OK-ideals to
decision dual-RLWE for the corresponding field K which works for any number field K.

3.2 Contributions
The focus on the RLWE hardness for non-cyclotomic fields makes the discrepancies between the RLWE
and PLWE variants more critical. In this chapter, we show that the six problems considered above —
dual-RLWE, primal-RLWE and PLWE, all in both decision and search forms — actually reduce to one
another in polynomial time with limited error rate increases, for huge classes of rings. More precisely,
these reductions are obtained with the following three results.

• We show that for every field K, it is possible to implement the reduction from decision (resp.
search) dual-RLWE to decision (resp. search) primal-RLWE from [LPR10, Le. 2.15] and [Pei16,
Se. 2.3.2], with a limited error growth. Note that there exists a trivial converse reduction from
primal-RLWE to dual-RLWE.

• We show that the reduction mentioned above can be extended to a reduction from decision (resp.
search) primal-RLWE in K to decision (resp. search) PLWE for f , where K is the field generated
by the polynomial f . The analysis is significantly more involved. It requires the introduction of
the so-called conductor ideal, to handle the transformation from the ideal OK to the order Z[x]/f ,
and upper bounds on the condition number of the map that sends the coefficient embeddings to
the Minkowski embeddings, to show that the noise increases are limited. Our conditioning upper
bound is polynomial in n only for limited (but still huge) classes of polynomials that include those
of the form xn + x · P (x)− a, with degP < n/2 and a prime that is ≥ 25 · ‖P‖21 and ≤ poly(n).
A trivial converse reduction goes through for the same f ’s.

• We exploit the recent technique from [PRSD17] to obtain a search to decision reduction for
dual-RLWE.

Concretely, the error rate increases are polynomial in n = degK, the root discriminant |∆K |1/n and,
for the reduction to PLWE, in the root algebraic norm N (CZ[α])1/n of the conductor ideal CZ[α] of Z[α],
where α is a root of f defining K. We note that in many cases of interest, all these quantities are
polynomially bounded in n. To enjoy these limited error rate growths, the first two reductions require
knowledge of specific data related to K, namely, a short element (with respect to the Minkowski
embeddings) in the different ideal (O∨K)−1 and a short element in CZ[α]. In general, these are hard to
compute.

3.2.1 Techniques
The first reduction is derived from [LPR10, Le. 2.15] and [Pei16, Se. 2.3.2]: if it satisfies some arithmetic
properties, a multiplication by an element t ∈ OK induces an OK-module isomorphism from O∨K/qO∨K
to OK/qOK . For the reduction to be meaningful, we need t to have small Minkowski embeddings. We
prove the existence of such a small t satisfying the appropriate arithmetic conditions, by generalizing
the inclusion-exclusion technique developed in [SS13] to study the key generation algorithm of the
NTRU signature scheme [HHPW10].

The Lyubashevsky et al. bijection works with O∨K and OK replaced by arbitrary ideals of K, but
this does not provide a bijection from OK/qOK to Z[α]/qZ[α], as Z[α] may only be an order of OK (and
not necessarily an ideal). We circumvent this difficulty by using the conductor ideal of Z[α]. Intuitively,
the conductor ideal describes the relationship between OK and Z[α]. As far as we are aware, this is
the first time the conductor ideal is used in the RLWE context. This bijection and the existence of an
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appropriate multiplier t as above provide a (non-uniform) reduction from primal-RLWE to a variant
of PLWE for which the noise terms have small Minkowski embeddings (instead of small polynomial
coefficients).

We show that for many number fields, the linear map between polynomial coefficients and Minkowski
embeddings has a condition number that is polynomially bounded in n, i.e., the map has bounded
distortion and behaves not too noticeably differently from a scaling. This implies that the latter
reduction is also a reduction from primal-RLWE to standard PLWE for these rings. We were able to
show condition number bounds that are polynomial in n only for restricted families of polynomials f ,
yet exponentially large as n increases. These include in particular those of the form mentioned above.
Note that the primality condition on the constant coefficient is used only to ensure that f is irreducible
and hence defines a number field. For these f ’s, we use Rouché’s theorem to prove that the roots are
close to the scaled n-th roots of unity (a1/n · αkn)0≤k<n, and then that f “behaves” as xn − a in terms
of geometric distortion.

Our search-to-decision reduction for dual-RLWE relies on techniques developed in [PRSD17]. In that
article, Peikert et al. consider the following ‘oracle hidden center’ problem (OHCP). In this problem, we
are given access to an oracle O taking as inputs a vector z ∈ Rk and a scalar t ∈ R≥0, and outputting a
bit. The probability that the oracle outputs 1 (over its internal randomness) is assumed to depend only
on exp(t) · ‖z−x‖, for some vector x. The goal is to recover O’s center x. On the one hand, Peikert et
al. give a polynomial-time algorithm for this problem, assuming the oracle is ‘well-behaved’ ([PRSD17,
Prop. 4.4]). On the other hand, they show how to map a Bounded Distance Decoding (BDD) instance
to such an OHCP instance if they have access to Gaussian samples in the dual of the BDD lattice, where
the engine of the oracle is the decision dual-RLWE oracle ([PRSD17, Se. 6.1]). We construct the OHCP
instance from the decision RLWE oracle in a different manner. We use our input search dual-RLWE
samples and take small Gaussian combinations of them. By re-randomizing the secret and adding
some noise, we can obtain arbitrarily many dual-RLWE samples. Subtracting from the input samples
well-chosen zi’s in KR and setting the standard deviation of the Gaussian combination appropriately
leads to a valid OHCP instance. The main technical hurdle is to show that a Gaussian combination of
elements of O∨K/qO∨K is close to uniform. For this, we generalize a ring Leftover Hash Lemma proved
for specific pairs (OK , q) in [SS11].

3.2.2 Related works
The reductions studied in this chapter can be combined with those from ApproxSVP for OK-ideals to
dual-RLWE [LPR10, PRSD17]. Recently, Albrecht and Deo [AD17] built upon [BLP+13] to obtain
a reduction from Module-LWE to RLWE. This can be both combined with our reductions and the
quantum reductions from ApproxSVP for OK-modules to Module-LWE1 [LS15, PRSD17]. Downstream,
the reductions can be combined with the reduction from PLWE to Middle-Product LWE from Chapter
4. The latter involves an error rate growth that is linearly bounded by the so-called expansion factor
of f : it turns out that those f ’s for which we could bound the condition number of the Minkowski map
by a polynomial function of deg f also have polynomially bounded expansion factor. These reductions
and those considered in this chapter are pictorially described in Figure 3.1.

The ideal-changing scaling element t and the distortion of the Minkowski map were closely studied
in [CIV16a, CIV16b, Pei16] for a few precise polynomials and fields. We use the same objects, but
provide bounds that work for all (or many) fields.

1The reduction from [LS15] is limited to cyclotomic fields, but [PRSD17] readily extends to module lattices.
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Fig. 3.1: Relationships between variants of RLWE and PLWE. The dotted box contains the problems
studied in this chapter. Each arrow may hide a noise rate degradation (and module rank - modulus
magnitude transfer in the case of [AD17]). The top to bottom arrows in the dotted box correspond
to non-uniform reductions. The reductions involving PLWE are analyzed for limited family of defining
polynomials. The arrows without references correspond to trivial reductions.

3.2.3 Impact
As it is standard for the hardness foundations of lattice-based cryptography, our reductions should not
be considered for setting practical parameters. They should rather be viewed as a strong evidence that
the six problems under scope are essentially equivalent and do not suffer from a design flaw (unless they
all do). We hope they will prove useful towards understanding the plausibility of weak fields for RLWE.

Our first result shows that there exists a way of reducing dual-RLWE to primal-RLWE while control-
ling the noise growth. Even though the reduction is non-uniform, it gives evidence that these problems
are qualitatively equivalent. Our second result shows that RLWE and PLWE are essentially equivalent
for a large class of polynomials/fields. In particular, the transformation map between the Minkowski
embeddings and the coefficient embeddings has a bounded distortion. Finally, our search to decision
fills an important gap. On the one hand, it precludes the possibility that search RLWE could be harder
than decision RLWE. On the other hand, it gives further evidence of the decision RLWE hardness.
In [PRSD17], the authors give a reduction from ApproxSVP for OK-ideals to decision RLWE. But in
the current state of affairs, ApproxSVP for this special class of lattices seems easier than RLWE, at least
for some parameters [CDPR16, CDW17], etc. On the opposite, RLWE is qualitatively equivalent to
ApproxSIVP for OK-modules ([LS15, AD17]).

As the studied problems reduce to one another, one may then wonder which one to use for crypto-
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graphic design. Using dual-RLWE requires knowledge of OK , which is notoriously hard to compute for
an arbitrary field K. This may look as an incentive to use the corresponding PLWE problem instead,
as it does not require the knowledge of OK . Yet, for it to be useful in cryptographic design, one must
be able to decode the noise from its representative modulo a scaled version of the lattice corresponding
to Z[α]. This seems to require the knowledge of a good basis of that lattice, which may not be easy to
obtain either, depending on the considered polynomial f .

3.2.4 Follow-up work
We now briefly describe the connection between our contribution and [BBPS19], a follow-up work
presented at Asiacrypt 2019. In this work, Bolboceanu et al. introduced a generalization of the RLWE
problem called Order-LWE, where the ambient ring is not the ring of integers of a number field anymore,
but rather a full-rank sub-ring of it (i.e. an order). They showed that Order-LWE is at least as hard
as worst-case lattice problems in invertible ideal lattices of the respective order. The PLWE problem
associated to the polynomial f is an instance of Order-LWE for the particular order O = Z[x]/f . As a
consequence, their work implies a worst-case hardness result for PLWE different from the one presented
in this chapter, essentially by relating it to a different class of lattices than those considered in [LPR10,
PRSD17].

3.3 Orders in number fields
An order O in K is a number ring which is a finite index subring of OK . In particular, the ring
of integers OK is the maximal order in K. Number rings such as Z[α], with α a root of a defining
polynomial f , are of particular interest. In this chapter, we will work with only these two previously
mentioned orders.

The conductor of an order O is defined as the set CO = {x ∈ K : xOK ⊆ O}. It is contained in O,
and it is both an O-ideal and an OK-ideal: it is in fact the largest ideal with this property. It is never
empty, as it contains the index [OK : O]. If it is coprime with the conductor, an ideal in OK can be
naturally considered as an ideal in O, and reciprocally. This is made precise in the following lemma.

Lemma 3.1 ([Cona, Th. 3.8]). Let O be an order in K.

1. Let I be an OK-ideal coprime to CO. Then I ∩ O is an O-ideal coprime to CO and the natural
map O/I ∩ O −→ OK/I is a ring isomorphism.

2. Let J be an O-ideal coprime to CO. Then JOK is an OK-ideal coprime to CO and the natural
map O/J −→ OK/JOK is a ring isomorphism.

3. The set of OK-ideals coprime to CO and the set of O-ideals coprime to CO are in multiplicative
bijection by I 7−→ I ∩ O and J 7−→ JOK .

The above description does not tell how to “invert” the isomorphisms. This can be done by a
combination of the following lemmas and passing through the conductor, as we will show later.

Lemma 3.2. Let O be an order in K and I an OK-ideal coprime to the conductor CO. Then the
inclusions CO ⊆ O and CO ⊆ OK induce isomorphisms CO/I ∩CO ' O/I ∩O and CO/I ∩CO ' OK/I.

Proof. By assumption we have CO+ I = OK , so that the homomorphism CO → OK/I is surjective. By
Lemma 3.1, the set I ∩ O is an O-ideal coprime to CO so that CO + I ∩ O = O. This implies that the
homomorphism CO → O/I ∩ O is surjective too. Both homomorphisms have kernel I ∩ CO.

Lemma 3.3 ([Cona, Cor. 3.10]). Let O be an order in K and β ∈ O such that βOK is coprime to CO.
Then βOK ∩ O = βO.
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3.4 Formal definitions of dual-RLWE, primal-RLWE and PLWE
We now formally define the computational problems that we will study in this chapter.

Definition 3.1 (RLWE and PLWE distributions). Let K a degree n number field defined by f , OK its
ring of integers, Σ � 0 and q ≥ 2.

For s ∈ O∨K/qO∨K , we define the dual-RLWE distribution A∨q,Σ(s) as the distribution over OK/qOK×
KR/qO∨K obtained by sampling a←↩ U(OK/qOK), e←↩ DH

Σ and returning the pair (a, a · s+ e).
For s ∈ OK/qOK , we define the primal-RLWE distribution Aq,Σ(s) as the distribution over OK/qOK×

KR/qOK obtained by sampling a←↩ U(OK/qOK), e←↩ DH
Σ and returning the pair (a, a · s+ e).

For s ∈ Zq[x]/f , we define the PLWE distribution Pq,Σ(s) as the distribution over Zq[x]/f×Rq[x]/f
obtained by sampling a←↩ U(Zq[x]/f), e←↩ DΣ and returning the pair (a, a · s+ e) (with Rq = R/qZ).

In the definition above, we identified the support H of DH
Σ with KR, and the support Rn of DΣ

with R[x]/f . Note that sampling from A∨q,Σ(s) and Aq,Σ(s) seems to require the knowledge of a basis
of OK . It is not known to be computable in polynomial-time from a defining polynomial f of an
arbitrary K. In this chapter, we assume that a basis of OK is known.

Definition 3.2 (The RLWE and PLWE problems). We use the same notations as above. Further, we
let E� be a subset of Σ � 0 and D� be a distribution over Σ � 0.

Search dual-RLWEq,E� (resp. primal-RLWE and PLWE) consists in finding s from a sampler from
A∨q,Σ(s) (resp. Aq,Σ(s) and Pq,Σ(s)), where s ∈ O∨K/qO∨K (resp. s ∈ OK/qOK and s ∈ Zq[x]/f)
and Σ ∈ E� are arbitrary.

Decision dual-RLWEq,D� (resp. primal-RLWE and PLWE) consists in distinguishing between a sam-
pler from A∨q,Σ(s) (resp. Aq,Σ(s) and Pq,Σ(s)) and a uniform sampler over OK/qOK ×KR/qO∨K (resp.
OK/qOK ×KR/qOK and Zq[x]/f ×Rq[x]/f), with non-negligible probability over s←↩ O∨K/qO∨K (resp.
s ∈ OK/qOK and s ∈ Zq[x]/f) and Σ←↩ D�.

In Chapter 5, we are going to use a variant of the decision PLWE problem where the error is either
drawn from a continuous distribution as above and then rounded to the nearest integer, either drawn
from a distribution on Zq[x]/f . We call these variants discrete in contrast with the one defined above
which we call continuous.

When the distribution D� over Σ � 0 assigns a non-zero probability only to a single positive
definite matrix Σ, Decision dual-RLWEq,D� (resp. primal-RLWE and PLWE) asks to distinguish between
a sampler from A∨q,Σ(s) (resp. Aq,Σ(s) and Pq,Σ(s)) and a uniform sampler over OK/qOK ×KR/qO∨K
(resp. OK/qOK×KR/qOK and Zq[x]/f×Rq[x]/f), with non-negligible probability over s←↩ O∨K/qO∨K
(resp. s ∈ OK/qOK and s ∈ Zq[x]/f). In this case, we write Decision dual-RLWEq,DΣ (resp. primal-
RLWE and PLWE) instead of Decision dual-RLWEq,D� (resp. primal-RLWE and PLWE).

The dual-RLWE (resp. primal-RLWE and PLWE) problems have also been studied for different secret
distributions on O∨K/qO∨K (resp. OK/qOK and Zq[x]/f) in [ACPS09, BBPS19], etc. In Chapters 4
and 5, we are going to use a variant of the decision PLWE problem where the error is drawn from a
χ1 distribution and the secret is drawn from a distribution χ2 on Zq[x]/f that both produce small
elements with high ptobability. We use the notation PLWEq,χ1,χ2 for this variant. It was observed
in [LPR10] that under a condition on q which ensures that a uniform element in Zq/(f) is invertible
with non-negligible probability, the reduction from uniform secret to small secret described in [ACPS09]
in the context of LWE also applies to PLWE.

Lemma 3.4. Let f be a polynomial of degree n and q ≥ n such that the factors of f modulo q are
distinct. Let χ1 and χ2 be distributions over Zq[x]/(f). Then there is a ppt reduction from PLWE(f)

q,χ1,χ2

to PLWE(f)
q,χ1,χ1

.
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The hardness of PLWE was investigated in [SSTX09, LPR10], among others. The problems above are
in fact defined for sequences of number fields of growing degrees n such that the bit-size of the problem
description grows at most polynomially in n. The run-times, success probabilities and distinguishing
advantages of the algorithms solving the problems are considered asymptotically as functions of n.

We will consider variants of the decision problems for which the distinguishing must occur for
all s ∈ O∨K/qO∨K (resp. s ∈ OK/qOK and s ∈ Zq[x]/f) and all Σ ∈ E� rather than with non-negligible
probability over s. We call this variant worst-case decision dual-RLWE (resp. primal-RLWE and PLWE).
When the set E� consists of a single matrix Σ, we write Decision dual-RLWEq,DΣ (resp. primal-RLWE
and PLWE) instead of Decision dual-RLWEq,E� (resp. primal-RLWE and PLWE). Under some conditions
on D� and E�, these variants are computationally equivalent.

Lemma 3.5 (Adapted from [LPR10, Se. 5.2]). We use the same notations as above. If PrΣ←↩D� [Σ /∈
E�] ≤ 2−n, then decision dual-RLWEq,D� (resp. primal-RLWE and PLWE) reduces to worst-case decision
dual-RLWEq,E� (resp. primal-RLWE and PLWE).

Assume further that D� can be sampled from in polynomial-time. If maxΣ∈E� R(D�‖D� + Σ) ≤
poly(n), then worst-case decision dual-RLWEq,E� (resp. primal-RLWE and PLWE) reduces to decision
dual-RLWEq,D� (resp. primal-RLWE and PLWE).

Note that it is permissible to use the Rényi divergence here even though we are considering decision
problems. Indeed, the argument is applied to the random choice of the noise distribution and not to
the distinguishing advantage. The same argument has been previously used in [LPR10, Se. 5.2].

Proof. The first statement is direct. We prove the second statement only for dual-RLWE, as the proofs
for primal-RLWE and PLWE are direct adaptations. Assume we are given a sampler that outputs (ai, bi)
with ai ←↩ U(OK/qOK) and bi either uniform inKR/qO∨K or of the form bi = ais+ei with s ∈ O∨K/qO∨K
and ei ←↩ DH

Σ . The reduction proceeds by sampling s′ ←↩ U(O∨K/qO∨K) and Σ′ ←↩ D�, and mapping
all input (ai, bi)’s to (a′i, b′i) = (ai, bi+ais

′+e′i) with e′i ←↩ DH
Σ′ . This transformation maps the uniform

distribution to itself, and A∨q,Σ(s) to A∨q,Σ′′(s + s′) with Σ′′ij = Σij + Σ′ij for all i, j. If the success
probability (success being enjoying a non-negligible distinguishing advantage) over the error parameter
sampled from D� is non-negligible, then so is it for the error parameter sampled D� + Σ, as, by
assumption, the Rényi divergence R(D�‖D� + Σ) is polynomially bounded.

Many choices of D� and E� satisfy the conditions of Lemma 3.5. The following is inspired
from [LPR10, Se. 5.2]. We define the distribution E� as follows, for an arbitrary r: Let sij = r2(1+nxij)
for all i > j, sii = r2(1+n3xii) for all i and sij = sji for all i < j, where the xij ’s are independent sam-
ples from the Γ(2, 1) distribution (of density function x 7→ x exp(−x)); the output matrix is (sij)ij . Note
that it is symmetric and strictly diagonally dominant (and hence � 0) with probability 1−2−Ω(n). Then
the set of all Σ � 0 with coefficients of magnitudes ≤ r2n4 satisfies the first condition of Lemma 3.5, and
the set of all Σ � 0 with coefficients of magnitudes ≤ r2 satisfies the second condition of Lemma 3.5. We
can hence switch from one variant to the other while incurring an error rate increase that is ≤ poly(n).

3.5 From dual-RLWE to primal-RLWE
The following result is the key ingredient for the dual-RLWE to primal-RLWE and primal-RLWE to
PLWE reductions.

Lemma 3.6 ([LPR10, Le. 2.14]). Let I and J two OK-ideals. Let t ∈ I such that the ideals t · I−1

and J are coprime and let M be any fractional OK-ideal. Then the function θt :M→M defined as
θt(x) = t · x induces an OK-module isomorphism fromM/JM to IM/IJM.
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The authors of [LPR10] also gave an explicit way to obtain a suitable t by solving a set of conditions
stemming from the Chinese Remainder Theorem. However, this construction does not give good control
on the magnitudes of the Minkowski embeddings of t. In Chapter 3 we show that the size of t can be
controlled by Gaussian sampling.

Theorem 3.1 (Adapted from [Pei16, Se. 2.3.2]). Let Σ � 0 and s ∈ O∨K/qO∨K . Let t ∈ (O∨K)−1

such that t(O∨K) + qOK = OK . Then the map (a, b) 7→ (a, t · b) transforms A∨q,Σ(s) to Aq,Σ′(t · s) and
U(OK/qOK ×KR/qO∨K) into U(OK/qOK ×KR/qOK), with Σ′ = diag(|σi(t)|) ·Σ · diag(|σi(t)|). The
natural inclusion OK → O∨K induces a map that transforms U(OK/qOK ×KR/qOK) to U(OK/qOK ×
KR/qO∨K), and Aq,Σ(s) to A∨q,Σ(s).

Proof. First, let (a, b = a·s+e) be distributed as A∨q,Σ(s). We define b′ = t·b = a·(t·s)+e′, with e′ = t·e.
By Lemma 3.6, multiplication by t induces an OK-module isomorphism O∨K/qO∨K ' OK/qOK , hence
t · s ∈ OK/qOK . Also, the distribution of the error term e′ is DH

Σ′ . As a consequence, the sample (a, b′)
is distributed as Aq,Σ′(t · s). Second, if (a, b) is uniform in OK/qOK ×KR/qO∨K , as multiplying by t
induces an isomorphism, we have that b′ is uniform in KR/qOK , independently from a. For the converse
reduction, we map (a, b) ∈ OK/qOK × KR/qOK to (a, b mod qO∨K) ∈ OK/qOK × KR/qO∨K . Since
qOK ⊆ qO∨K , the map is well defined and it also maps Aq,Σ(s) to A∨q,Σ(s) and U(OK/qOK ×KR/qOK)
to U(OK/qOK ×KR/qO∨K).

3.6 Controlling the noise growth in the dual to primal reduc-
tion

The reduction of Theorem 3.1 is built upon the existence of t as in Lemma 3.6. While this existence is
guaranteed constructively by [LPR10], the size is not controlled by the construction. Another t that sat-
isfies the conditions is t = f ′(α), where f ′ is the derivative of f defining K = Q[α]. Indeed, from [Conb,
Rem. 4.5], we know that f ′(α) ∈ (O∨K)−1. However, the noise growth incurred by multiplication by
f ′(α) may be rather large in general: we have N(f ′(α)) = ∆f = [OK : Z[α]]2 · N ((O∨K)−1).

In this section, we give a probabilistic proof that adequate t’s with controlled size can be found by
Gaussian sampling.

Let I and J be integral ideals of OK . Theorem 3.2 below states that a Gaussian sample t in I

is such that t · I−1 + J = OK with non-negligible probability. The main technical hurdle is to show
that the sample is not trapped in IJ ′ with J ′ a non-trivial factor of J . We handle this probability in
different ways depending on the algebraic norm of J ′, extending an idea used in [SS13, Se. 4].

• For small-norm factors J ′ of J , the Gaussian folded modulo IJ ′ is essentially uniform over I/IJ ′,
by Lemma 2.11. This requires the standard deviation parameter s to be above the smoothing
parameter of IJ ′. We use the smoothing parameter bound from Lemma 2.14.

• For large-norm factors J ′, we argue that the non-zero points of IJ ′ are very unlikely to be hit,
thanks to the Gaussian tail bound given in Lemma 2.10 and the fact that the lattice minimum
of IJ ′ is large, by Lemma 2.13.

• For middle-norm factors J ′, neither of the arguments above applies. Instead, we bound the
probability that t belongs to IJ ′ by the probability that t belongs to IJ ′′, where J ′′ is a non-
trivial factor of J ′, and use the first argument above. The factor J ′′ must be significantly denser
than J ′ so that we have smoothing. But it should also be significantly sparser than OK so that
the upper bound is not too large.

Setting the standard deviation parameter of the discrete Gaussian so that at least one of the three
arguments above applies is non-trivial. In particular, this highly depends on how the ideal J factors
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into primes (whether the pieces are numerous, balanced, unbalanced, etc). The choice we make below
works in all cases while still providing a reasonably readable proof and still being sufficient for our
needs, from an asymptotic perspective. In many cases, better choices can be made. If J is prime, we
can take a very small s and use only the second argument. If all factors of J are small, there is good
enough ‘granularity’ in the factorization to use the third argument, and again s can be chosen very
small.

Theorem 3.2. Let I and J be integral OK-ideals, and write J = pe11 . . . pekk for some prime ideals pi.
We sort the pi’s by non-decreasing algebraic norms. Assume that we can take δ ∈ [ 4n+log2 ∆K

log2N (J) , 1].2 We
define:

s =
{(
N (J)1/2N (I)∆K

)1/n if N (pk) ≥ N (J)1/2+δ,(
N (J)1/2+2δN (I)∆K

)1/n else.

Then we have
Pr

t←↩DI,s
[tI−1 + J = OK ] ≥ 1− k

N (p1) − 2−n+4.

Proof. We bound the probability P of the negation, from above. We have

P = Pr
t←↩DI,s

[t ∈
⋃
i∈[k]

Ipi] =
∑

S⊆[k],S 6=∅

(−1)|S|+1 · Pr
t←↩DI,s

[t ∈ I ·
∏
i∈S

pi].

We rewrite it as P = P1 + P2 with

P1 =
∑

S⊆[k],S 6=∅

(−1)|S|+1 1∏
i∈S N (pi)

= 1−
∏
i∈[k]

(
1− 1
N (pi)

)
,

P2 =
∑

S⊆[k],S 6=∅

(−1)|S|+1

(
Pr

t←↩DI,s
[t ∈ I ·

∏
i∈S

pi]−
∏
i∈S

1
N (pi)

)
.

We have P1 ≤ 1− (1− 1/N (p1))k ≤ k/N (p1). Our task is now to bound P2.
Assume first that N (pk) ≥ N (J)1/2+δ. This implies that

∏
i∈S N (pi) ≤ N (J)1/2−δ for all S ⊆ [k]

not containing k. By Lemma 2.14, we have s ≥ ηε(I
∏
i∈S pi) for all such S’s, with ε = 2−2n. We

“smooth” out those ideals, i.e., we use Lemma 2.11 to obtain, for all S ⊆ [k] \ {k}:∣∣∣∣∣ Pr
t←↩DI,s

[t ∈ I ·
∏
i∈S

pi]−
∏
i∈S

1
N (pi)

∣∣∣∣∣ ≤ 2ε.

Now if S is a subset containing k, then we have N (
∏
i∈S pi) ≥ N (J)1/2+δ. By Lemma 2.13, we

have λ1(I
∏
i∈S pi) ≥

√
n·N (I)1/nN (J)(1/2+δ)/n. On the other hand, by Lemma 2.10, we have Prt←↩DI,s [‖t‖ ≥

2s
√
n] ≤ 2−2n. Thanks to our choice of s, the assumption on δ and Lemma 2.12, we obtain

Pr
t←↩DI,s

[t ∈ I
∏
i∈S

pi] ≤ Pr
t←↩DI,s

[t = 0] + 2−2n ≤ 2−2n+2.

This allows us to bound P2 as follows:

P2 ≤ 2k ·
(
ε+ 2−2n+2 +N (J)−(1/2+δ)

)
.

By assumption on δ, we haveN (J) ≥ 22n and P2 ≤ 2−n+3. This completes the proof for the largeN (pk)
case.

2The parameter δ should be thought as near 0. It can actually be chosen such if N (J) is sufficiently large.
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Now, assume that N (pk) < N (J)1/2+2δ. Then, as above, the definition of s implies that, for any
S ⊆ [k] with N (

∏
i∈S pi) ≤ N (J)1/2+δ, we have |Pr[t ∈ I

∏
i∈S pi] − 1/

∏
i∈S N (pi)| ≤ 2−2n+1. Also

as above, if we have N (
∏
i∈S pi) ≥ N (J)1/2+3δ, then λ1(I

∏
i∈S pi) is too large for a non-zero element

of I
∏
i∈S pi to be hit with significant probability. Assume finally that

N (J)1/2+2δ ≤ N (
∏
i∈S

pi) ≤ N (J)1/2+3δ.

As N (pk) < N (J)1/2+δ, there exists S′ ⊆ S such that

N (J)δ ≤ N (
∏
i∈S′

pi) ≤ N (J)1/2+2δ.

By inclusion, we have that Pr[t ∈ I
∏
i∈S pi] ≤ Pr[t ∈ I

∏
i∈S′ pi]. Now, as the norm of

∏
i∈S′ pi is small

enough, we can use the smoothing argument above to claim that

Pr
t←↩DI,s

[t ∈ I
∏
i∈S′

pi] ≤ 2−2n+1 + 1
N (
∏
i∈S′ pi)

≤ 2−2n+1 + 1
N (J)δ .

By assumption on δ, the latter is ≤ 2−n+2. Collecting terms allows to complete the proof.

The next corollary shows that the needed t can be found with non-negligible probability.

Corollary 3.1. Let I be an integral OK-ideal. Let q ≥ max(2n, 216 ·∆8/n
K ) be a prime rational integer

and pk a prime factor of qOK with largest norm. We define:

s =
{
q1/2 · (N (I)∆K)1/n if N (pk) ≥ q(5/8)·n,
q3/4 · (N (I)∆K)1/n else.

Then, for sufficiently large n, we have

Pr
t←↩DI,s

[tI−1 + qOK = OK ] ≥ 1/2.

Proof. The result follows from applying Theorem 3.2 with J = qOK and δ = 1/8. The first lower
bound on q ensures that k/N (p1) ≤ 1/2, where k ≤ n denotes the number of prime factors of qOK and
p1 denotes a factor with smallest algebraic norm. The second lower bound on q ensures that we can
indeed set δ = 1/8.

We insist again on the fact that the required lower bounds on s can be much improved under specific
assumptions on the factorization of q. For example, one could choose a q such that all the factors of
qOK have large norms, by sampling q randomly and checking its primality and the factorization of the
defining polynomial f modulo q. In that case, the factors q1/2 and q3/4 can be decreased drastically.

We note that if the noise increase incurred by a reduction from an LWE-type problem to another
is bounded as nc1 · qc2 for some c1 < 1 and some c2 < 1, then one may set the working modulus q so
that the starting LWE problem has a sufficient amount of noise to not be trivially easy to solve, and
the ending LWE problem has not enough noise to be information-theoretically impossible to solve (else
the reduction would be vacuous). Indeed, it suffices to set q sufficiently larger than nc1/(1−c2).

3.7 From primal-RLWE to PLWE
In this section, we describe a reduction from primal-RLWE to PLWE. As an intermediate step, we first
consider a reduction from primal-RLWE to a variant PLWEσ of PLWE where the noise is small with
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respect to the Minkowski embedding rather than the coefficient embedding. Then, we assess the noise
distortion when looking at its Minkowski embedding versus its coefficient embedding.

If K = Q[x]/f for some f =
∏
j≤n(x − αj), the associated Vandermonde matrix Vf has jth row

(1,αj , . . . ,αn−1
j ) and corresponds to the linear map between the coefficient and Minkowski embedding

spaces. Thus a good approximation of the distortion is given by the condition number Cond(Vf ) =
sn/s1, where the si’s refer to the largest/smallest singular values of Vf .

Since Cond(Vf ) ≤ ‖Vf‖F · ‖V −1
f ‖F, these matrix norms also quantify how much Vf distorts the

space. For a restricted, yet exponentially large, family of polynomials defining number fields, we show
that both ‖Vf‖F and ‖V −1

f ‖F are polynomially bounded.
To do this, we start from fn,a = xn−a whose distortion is easily computable. Then we add a “small

perturbation” to this polynomial. Intuitively, the roots of the resulting polynomial should not move
much, so that the norms of the “perturbed” Vandermonde matrices should be essentially the same. We
formalize this intuition in Section 3.7.2 and locate the roots of the perturbed polynomial using Rouché’s
theorem.

Mapping a sample of PLWEσ to a sample of the corresponding PLWE simply consists in changing
the geometry of the noise distribution. A noise distribution with covariance matrix Σ in the Minkowski
embedding corresponds to a noise distribution of covariance matrice (V −1

f )TΣV −1
f in the coefficient

space. The converse is also true, replacing V −1
f by Vf . Moreover, the noise growths incurred by the

reductions remain limited whenever ‖Vf‖F and ‖V −1
f ‖F are small.

Overall, reductions between primal-RLWE to PLWE can be obtained by combining Theorems 3.3
and 3.5 below (with Lemma 3.5 to randomize the noise distributions).

3.7.1 Reducing primal-RLWE to PLWEσ

We keep the notations of the previous section, and let Z[x]/(f) = O.

Definition 3.3 (The PLWEσ problem). Let also Σ be a positive definite matrix, and q ≥ 2. For s ∈
O/qO, we define the PLWEσ distribution Pσq,Σ(s) as the distribution over O/qO ×KR/qO obtained by
sampling a←↩ U(O/qO), e←↩ DH

Σ and returning the pair (a, a · s+ e)
Let D� be a distribution over Σ � 0. Decision PLWEσ consists in distinguishing between a sampler

from Pσq,Σ(s) and a uniform sampler over O/qO × KR/qO, with non-negligible probability over s ←↩
O/qO and Σ←↩ D�.

Theorem 3.3. Assume that qOK + CO = OK . Let Σ be a positive definite matrix and s ∈ OK/qOK .
Let t ∈ CO such that tC−1

O + qOK = OK . Then the map (a, b) 7→ (t · a, t2 · b) transforms U(OK/qOK ×
KR/qOK) to U(O/qO × KR/qO) and Aq,Σ(s) to Pσq,Σ′(t · s), where the new covariance is Σ′ =
diag(|σ(ti)|2) ·Σ · diag(|σi(t)|2).

Let Pσq,Σ(s) be a PLWEσ distribution. The natural inclusion O → OK induces a map that transforms
U(O/qO ×KR/qO) to U(OK/qOK ×KR/qOK) and Pσq,Σ(s) to Aq,Σ(s).

Proof. Let (a, b = a · s+ e) be distributed as Aq,Σ(s). Let a′ = t · a and b′ = t2 · b = a′ · (t · s) + e′, with
e′ = t2 · e. Then a′ is uniformly distributed in CO/qCO by applying Lemma 3.6 for I = CO, J = qOK
andM = OK . It is also uniformly distributed in O/qO by combining Lemma 3.2 and Lemma 3.3. The
noise follows the claimed distribution, see the observation in Section 2.4.5. The fact that t · s ∈ O/qO
completes the proof that Aq,Σ(s) is mapped to Pσq,Σ′(t · s).

Now, let (a, b) be uniform in OK/qOK×KR/qOK . We already know that a′ is uniformly distributed
in O/qO. Let us now consider the distribution of b′. Thanks to the assumption on qOK , we also
have t2C−1

O + qOK = OK . Therefore, by Lemma 3.6, multiplication by t2 induces an isomorphism
OK/qOK ' CO/qCO, and hence, by Lemmas 3.2 and 3.3, an isomorphism OK/qOK ' O/qO. This
gives the first reduction.
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We now turn to the converse reduction. By coprimality and Lemmas 3.2 and 3.6, we have |O/qO| =
|OK/qOK |. This implies that, thanks to the inclusion O ⊆ OK , any (a, b) uniform in O/qO ×KR/qO
is also uniform in OK/qOK ×KR/qOK and Pσq,Σ(s) is mapped to Aq,Σ(s).

As Theorem 3.1, Theorem 3.3 relies on a the existence of a good multiplier. WritingK = Q[x]/(f) =
Q[α] andO = Z[α], the element f ′(α) again satisfies the constraints. Indeed, we know thatO∨ = 1

f ′(α)O
(see [Conb, Th. 3.7]), and we have the inclusion OK ⊆ O∨. Multiplying by f ′(α), we obtain f ′(α)OK ⊆
O. By definition, this means that f ′(α) ∈ CO, as claimed. While a large f ′(α) would mean a large
noise growth in the primal-RLWE to PLWEσ reduction, we described in Section 3.6 how to find a smaller
adequate multiplier if needed.

We have N (f ′(α)) = [OK : Z[α]]2 ·∆K , and, from [Ste17, p.48], the prime factors of [OK : Z[α]] are
exactly those ofN (CO). Provided the valuations are not too high, there should be smaller elements in CO
than f ′(α). We provide in Section 3.8 concrete examples of number fields with defining polynomials f
such that the norm of f ′(α) is considerably larger than both the norms of CO and (O∨K)−1.

3.7.2 Distortion between embeddings
To bound the norms of a Vandermonde matrix associated to a polynomial and its inverse, we study
the magnitude of the roots and their pairwise distances. It is known that the Frobenius norm ||V ||F
of a matrix V satisfies ‖V ‖2F = Tr(V ∗V ), where ∗ denotes the transpose-conjugate operator. For
Vandermonde matrices, this gives

‖Vf‖2F =
∑
j∈[n]

∑
k∈[n]

|αj |2(k−1), (3.1)

which can be handled when the magnitudes of the αj ’s are known. The entries of V −1
f = (wij) have

well-known expressions as:

wij = (−1)n−i en−i(αj)∏
k 6=j

(αj − αk) , (3.2)

where e0 = 1, ej for j > 0 stands for the elementary symmetric polynomial of total degree j in n−1
variables, and αj = (α1, . . . ,αj−1,αj+1, . . . ,αn), the vector of all roots but αj . We have the following
useful relations with the symmetric functions Ei of all the roots (for all j):

E1(α) = αj + e1(αj),
Ei(α) = αjei−1(αj) + ei(αj) for 2 ≤ i ≤ n− 1,
En(α) = αjen−1(αj).

(3.3)

Combining (3.3) with Vieta’s formulas, bounds on the magnitudes of the roots leads to bounds on the
numerators of the wij ’s. The denominators encode the separation of the roots, and deriving a precise
lower bound turns out to be the main difficulty. By differentiating f(x) =

∏
j∈[n](x−αj), we note that∏

k 6=j |αj − αk| = |f ′(αj)|.

3.7.3 A family of polynomials with easily computable distortion
We first introduce a family of polynomials for which ‖Vf‖F and ‖V −1

f ‖F are both simple to estimate. For
n ≥ 2 and a ≥ 1, we define fn,a = xn − a. The roots can be written3 as αj = a1/ne2iπ jn , for 0 ≤ j < n.

3For the rest of this section, ‘i’ will refer to the imaginary unit.

51



CHAPTER 3. ON THE RLWE AND PLWE PROBLEMS

As these are scalings of the roots of unity, both their magnitude and separation are well-understood.
With (3.1), we obtain ‖Vfn,a‖F ≤ na

n−1
n ≤ na.

For any j, we readily compute |f ′n,a(αj)| = na
n−1
n . Using (3.3), we observe that |ei(αj)| = |αj |i for

1 ≤ i < n. We obtain that the row norm of V −1
fn,a

is given by its first row as

∑
j∈[n]

|w1j | =
1

na
n−1
n

·
∑
j∈[n]

|αj |n−1 = 1,

from which it follows that ‖V −1
fn,a
‖F ≤

√
n.

Next, we show that if we apply a small perturbation to the coefficients of fn,a, the norms of
the Vandermonde matrix and its inverse are still polynomially bounded. Let P (x) =

∑
1≤j≤ρ·n pjx

j

for some constant ρ ∈ (0, 1), where the pj ’s are a priori complex numbers. Locating the roots of
gn,a = fn,a + P is our first step towards estimating ‖Vgn,a‖F and ‖V −1

gn,a
‖F. We will use the following

version of Rouché’s theorem.

Theorem 3.4 (Rouché, adapted from [Con95, p.125-126]). Let f ,P be complex polynomials, and let
D be a disk in the complex plane. If for any z on the boundary ∂D we have |P (z)| < |f(z)|, then f

and f + P have the same number of zeros inside D, where each zero is counted as many times as its
multiplicity.

The lemma below allows to determine sufficient conditions on the parameters such that the assump-
tions of Theorem 3.4 hold. We consider small disks Dk = D(αk, 1/n) of radius 1/n around the roots
α1, . . . ,αn of fn,a, and we let ∂Dk denote their respective boundaries. We let ‖P‖1 =

∑
j |pj | denote

the 1-norm of P .

Lemma 3.7. We have, for all k ≤ n and z ∈ ∂Dk:

|P (z)| ≤ (ae)ρ · ‖P‖1 and |fn,a(z)| ≥ a
(

1− cos(a−1/n)− 2ea−1/n

na2/n

)
.

Proof. Write z = αk + eit

n for some t ∈ [0, 2π). We have |z| ≤ a1/n + 1/n, and hence |z|ρn ≤
aρ
(
1 + 1

na1/n

)ρn. The first claim follows from the inequality |P (z)| ≤ max(1, |z|ρn) · ‖P‖1.
Next, we have |fn,a(z)| = a|(1 + eit′

na1/n )n− 1|, where t′ = t− 2kπ/n. W.l.o.g., we assume that k = 0.
Let Log denote the complex logarithm, defined on C \ R−. Since the power series

∑
k≥1(−1)k−1uk/k

converges to Log(1+u) on the unit disk, we have Log(1+ eit

na1/n ) = eit

na1/n +δ, for some δ satisfying |δ| ≤
|u| ·

∑
k≥1 |u|k/(k + 1) ≤ |u|2 for u = eit

na1/n (note that it has modulus ≤ 1/n ≤ 1/2). Similarly, we can
write exp(nδ) = 1 + ε for some ε satisfying |ε| ≤ 2n|δ| ≤ 2/(na2/n). We hence have:

|fn,a(z)| = a · |A(t) · (1 + ε)− 1| ≥ a · ||A(t)− 1| − |ε ·A(t)|| ,

with A(t) = exp(eita−1/n).
Elementary calculus leads to the inequalities |A(t)− 1| > 1− cos(a−1/n) and |A(t)| ≤ ea−1/n for all

t ∈ [0, 2π). Define A(t) = exp(eita−1/n) for t ∈ [−π,π]. We have

argA(−t) = − argA(t) = a−1/n sin(−t),
|A(−t)| = |A(t)| = exp(a−1/n cos(t)).

Therefore, the graph of A(t) is symmetric with respect to the real axis. We can hence restrict the study
of A(t) to [0,π]. As |A(t)| decreases for such t’s, this implies that |A(t)| ≤ |A(π)| ≤ ea−1/n for all t.
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Let <A(t) and =A(t) respectively denote the real and imaginary parts of A(t). Their derivatives
are − exp

(
a−1/n cos(t)

)
a−1/n · sin

(
t+ a−1/n sin(t)

)
and exp

(
a−1/n cos(t)

)
a−1/n · cos

(
t+ a−1/n sin(t)

)
,

respectively. The study of their signs shows that <A(t) decreases on [0,π], and that there exists a
t0 ∈ (π/4,π/2) such that =A(t) increases on [0, t0] and decreases on [t0,π]. We have:

• when t ∈ [π/2,π], <A(t) ≤ <A(π/2) so that |A(t)− 1| ≥ 1− cos(a−1/n),

• when t ∈ [π/4,π/2], =A(t) ≥ min{=A(π/2),=A(π/4)} so that

|A(t)− 1| ≥ min{sin(a−1/n), e
√

2/(2a1/n) sin(
√

2
2 a−1/n)} ≥ 1− cos(a−1/n),

• when t ∈ [0,π/4], <A(t) ≥ <A(π/4), so that

|A(t)− 1| > |<A(π/4)− 1| > e
√

2/(2a1/n) cos(
√

2
2a1/n )− 1 ≥ 1− cos(a−1/n).

These inequalities and the symmetry imply the claimed lower bound on |A(t) − 1|. The second claim
follows.

We note that when a = 2o(n) and n is sufficiently large, then the lower bound on |fn,a(z)| may be
replaced by |fn,a(z)| > a/3. To use Rouché’s theorem, it is then enough that a, ρ and ‖P‖1 satisfy
a > (3eρ‖P‖1)

1
1−ρ . We can now derive upper bounds on the norms of Vgn,a and its inverse.

Lemma 3.8. For any a > (‖P‖1 · C−1 · eρ)
1

1−ρ with C = |1− cos(a−1/n)− 2ea
−1/n

na2/n |, we have:

‖Vgn,a‖F ≤ ane and ‖V −1
gn,a
‖F ≤ n5/2(‖P‖1 + 1)a1/ne2.

Proof. Let αj = a1/ne2iπj/n be the roots of fn,a (for 0 ≤ j < n). Thanks to the assumptions and
Lemma 3.7, Theorem 3.4 allows us to locate the roots (βj)0≤j<n of gn,a within distance 1/n from
the αj ’s. Up to renumbering, we have |αj − βj | ≤ 1/n for all j. In particular, this implies that
|βj | ≤ a1/n + 1/n for all j. The first claim follows from (3.1).

Another consequence is that any power less than n of any |βj | is ≤ ae. We start the estimation
of ‖V −1

gn,a
‖ by considering the numerators in (3.2). Let k0 = 1 + bn(1 − ρ)c. For any k < k0, we

know that Ek(β) = 0. Using (3.3), we obtain |ek(βj)| = |βj |k ≤ ae for k < k0 and that ek0−1(βj) =
(−1)k0−1βk0−1

j . Then (3.3) gives Ek0(β) = (−1)k0pn−k0 = (−1)k0−1βk0
j + ek0(βj), which implies that

|ek0(βj)| ≤ |βj |k0 + |pn−k0 |. By induction, we obtain, for all k < n− k0:

|ek0+k(βj)| ≤ |pn−k0−k|+ |pn−k0−k+1βj |+ · · ·+ |pn−k0β
k
j |+ |βj |k0+k

≤ (‖P‖1 + 1) max(1, |βj |n),

so that |ek(βj)| ≤ (‖P‖1 + 1)ae for k ≥ 1.
We now derive a lower bound on the denominators in (3.2). The separation of the βj ’s is close to

that of the αj ’s. Concretely: |βj−βk| ≥ |αj−αk|−2/n for all j, k. Therefore, we have
∏
k 6=j |βj−βk| ≥∏

k 6=j(|αj−αk|−2/n). Using the identity |αj−αk| = 2a1/n sin(|k−j|π/n) and elementary calculus, we
obtain

∏
k 6=j |βj − βk| ≥ a

n−1
n /(ne). Indeed, recall that

∏
k 6=j |βj − βk| ≥

∏
k 6=j(|αj − αk| − 2/n), and

that |αj−αk| = 2a1/n sin(|k−j|π/n). Standard bounds on the sine function give that sin(kπ/n) ≥ 2k/n
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for 1 ≤ k ≤ n/2, and sin(kπ/n) ≥ 2− 2k/n for n/2 < k ≤ n. We derive that:

∏
k 6=j
|βj − βk| ≥

∏
k 6=j
|αj − αk| ·

∏
k 6=j

|k−j|≤n/2

(
1− 1

2a1/n|k − j|

)2

≥ |f ′n,a(αj)| · exp

2
∑

1≤k′≤n/2

log
(

1− 1
2a1/nk′

) .

We have log(1 − 1
2a1/nk′

) ≥ −1
a1/nk′

, and from the asymptotic expression of harmonic numbers, we can
write

∑n/2
k′=1 1/k′ ≤ log(n/2) + 1. We obtain:

∏
k 6=j
|βj − βk| ≥ na(n−1)/n ·

(ne
2

)−2a−1/n

≥ a(n−1)/n/(ne).

Thus any coefficient wij of V −1
gn,a

satisfies |wij | ≤ n(‖P‖1 +1)a1/ne2. The claim follows from equivalence
between the row and Frobenius norms.

We now assume that the pj ’s and a are integers. The following lemma states that, for a prime and
sufficiently large, the polynomial gn,a is irreducible, and thus defines a number field.

Lemma 3.9. Assume that P is an integer polynomial. For any prime a > ‖P‖1 + 1, the polynomial
gn,a is irreducible over Q.

Proof. Let β be a root of gn,a. Then we have a = |βn + P (β)| ≤ |β|n + ‖P‖1 max(1, |β|n). The
assumption on a implies that |β| > 1. In other words, all the roots of gn,a have a magnitude > 1. Now,
assume by contradiction that gn,a = h1h2 for some rational polynomials h1,h2. Since gn,a is monic, it
is primitive and we can choose h1,h2 as integer polynomials. The product of their constant coefficients
is then the prime a. Hence the constant coefficient of h1 or h2 is ±1, which contradicts the fact that
the roots of gn,a have magnitude > 1.

Overall, we have proved the following result.

Theorem 3.5. Let ρ ∈ (0, 1) and pj ∈ Z for 1≤ j ≤ ρ · n. Then for a ≥ (3eρ‖P‖1)1/(1−ρ) smaller
than 2o(n) and prime, and n sufficiently large, the polynomial gn,a = xn+

∑
1≤j≤ρ·n pjx

j+a is irreducible
over Q and satisfies:

‖Vgn,a‖F ≤ ane and ‖V −1
gn,a
‖F ≤ n5/2(‖P‖1 + 1)a1/ne2.

In particular, if a and ‖P‖1 are polynomial in n, then both ‖Vgn,a‖F and ‖V −1
gn,a
‖F are polynomial in n.

3.7.4 Other “good” families of polynomials
We consider polynomials as fn,ε0,ε1 = xn+ε1 ·x+ε0 for εi ∈ {±1}. Notice that this class of polynomials
includes the polynomials used in [BCLvV16]. Recall that Vfn,ε0,ε1

denotes the Vandermonde matrix
associated to fn,ε0,ε1 . We prove the following result.

Lemma 3.10. For every n > 2 and any ε0, ε1 ∈ {±1}, we have:

‖Vfn,ε0,ε1
‖F ≤ 2n and ‖V −1

fn,ε0,ε1
‖F ≤ 6n7/2.

We first use a general result on lacunary polynomials to estimate the magnitudes of the roots.
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Proposition 3.1 ([Mig00, Thm. 1]). For any positive integer n and 1 ≤ k < n − 1, let P (x) =
xn+an−k−1x

n−k−1 + · · ·+a0 be a complex polynomial, such that a0 6= 0. For any root α of P , we have

|α| ≤ (n− k) 1
k+1 · max

1≤j≤n
|an−j |1/j .

Proof of Lemma 3.10. In our case, we see that any root α of fn,ε0,ε1 is less than 2 1
n−1 . We use this

observation several times below. Thanks to Equation (3.1), this gives that ‖Vfn,ε0,ε1
‖F ≤ 2n.

We use (3.2) to estimate ‖V −1
fn,ε0,ε1

‖F. From (3.3), we get that |ei(αj)| = |αj |i for i ≤ n − 2
and j ≤ n, and |en−1(αj)| = |ε0−αj ·en−2(αj)| ≤ 3. We now study the denominators of (3.2), that we
can rewrite as f ′n,ε0,ε1(αj) = αj(1−n)ε1−nε0

αj
. Using the triangle inequality, we have |αj(1−n)ε1−nε0| ≥

n − (n − 1) · 2 1
n−1 . Since the function g(x) = (1 + 1/x)x is strictly increasing, so is the sequence

an = (1 + n+1
n2 ) n2

n+1 . This gives that a1−1/n2

n = (1 + n+1
n2 )n−1 ≥ 2 for any n ≥ 3. It follows that

n − (n − 1) · 2 1
n−1 ≥ 1/n2 for any n ≥ 3. We conclude by observing that |αj | < 2 implies that

|f ′(αj)| ≥ 1
2n2 and then |wij | ≤ 6n2. Equivalence between row and Frobenius norms gives the claim.

In this situation, fn,ε0,ε1 may not be irreducible overQ. For example, if n ≡ 2 mod 3 and ε0 = ε1 = 1,
then the primitive third roots of unity are also roots of fn,1, hence x2 + x + 1 is a factor. A similar
situation occurs with x2 − x + 1 if n ≡ 2 mod 6 and ε0 = 1, ε1 = −1. This does not, however, impact
the estimation of the norms.

3.8 On small elements and f ′(α)
In Section 3.7.1, we discussed the possibility to use f ′(α) for reductions between dual (resp. primal)
RLWE and primal-RLWE (resp. PLWE), as it is the case that f ′(α) ∈ CO ∩ (O∨K)−1. The results of
Section 3.6 are meaningful for our applications when there are smaller elements in (O∨K)−1 and CO
than in the ideal generated by f ′(α). More formally, we show that there are fields K for which

λ1
(
(O∨K)−1) < λ1

((
f ′(α)

))
( resp. λ1(CO) < λ1

((
f ′(α)

))
).

By Lemma 2.13, it suffices that ∆f > ∆3/2
K (resp. ∆f > NOK (CO)∆1/2

K ). Below, we give a family of
number fields K of degree 3 with defining polynomials f such that f ′(α) can have an arbitrarily large
algebraic norm, relatively to those of (O∨K)−1 and CO.

Lemma 3.11. Let q 6= 3 be a prime integer such that q2 6≡ 1 mod 9. Let f = x3− q2, K = Q[x]/f and
O = Z[x]/f ' Z[α].

1. We have N (f ′(α)) = ∆f = 33 · q4 and N ((O∨K)−1) = ∆K = 33 · q2.

2. If CO is the conductor of O, then NO(CO) = [OK : O] = q and NOK (CO) = q2.

The family of f ’s considered in Lemma 3.11 is restrictive. Numerical experiments suggest that
polynomials f = xp − q2 with p, q distinct primes and q2 6≡ 1 mod p2 give [OK : O] = NO(CO) = q

p−1
2

and NOK (CO) = qp−1.

Proof. A determinant computation gives ∆f = Res(f , f ′) = 33 · q4. From this factorization and the
formula ∆f = [OK : O]2 · ∆K , we can deduce that 3 and q are the only possible prime factors of
[OK : O]. It is known (see, e.g., [Ste17, p.48]) that a prime integer p divides this index if and only if
there is at least one prime O-ideal factor of pO which is not invertible as an O-ideal. This property
amounts to checking divisibility between polynomials (Kummer-Dedekind’s theorem, [Ste17, Thm. 3.1,
p.31]), and O is said to be singular over p.
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We first show that O is not singular over 3 but is singular over q. The reduction of f modulo 3 is
x3 − 1 = (x − 1)3 in F3. Division of f by x − 1 gives f = (x − 1)(x2 + x + 1) + 1 − q2, so from the
assumptions on q, 32 does not divide the remainder 1− q2. This precisely means that O is not singular
over 3, and we deduce that 3 divides ∆K . On the other hand, the reduction of f modulo q is x3 in
Fq. Division of f by x gives f = x · x2 − q2, so that q2 divides the remainder: the order O is singular
over q. In particular, the index [OK : O] is either q or q2.

From the factorization of f modulo q, we also know that the ideal pq = 〈q,α〉 is the only prime in O
containing qO, and that it is not invertible. From [Ste17, ex. 25, p. 53], this also means that CO ⊆ pq,
where CO is the (non-trivial) conductor of O.

Using [Ste17, Cor. 3.2, p. 32], we know that β := 1
qα

2 is not in O. One checks that the minimal
polynomial of β over Q is x3−q, hence β ∈ OK . In particular, we have a ring extension O ⊆ O[β] ⊆ OK .
Observe that Z[β] is regular above q: reducing x3 − q modulo q gives again x3, but the remainder by
division by x is now q. Now, the order O[β] is a common extension of O and Z[β], and from [Ste17,
Le. 3.8, p. 33], ring extensions do not add new singular primes. This implies that O[β] is a Dedekind
ring in OK . Moreover, from [Ste17, Le. 3.20, p. 39], we get that O[β] = OK . We also obtain that
qOK ⊆ Pq := 〈q,β〉 = βOK .

We first observe that β2 − α = 0, which means that O[β] = {λβ + µ : λ,µ ∈ O}. We readily
check that q(λβ + µ) and α(λβ + µ) are elements in O for any λ,µ ∈ Z[α], so we actually have that
pq := 〈q,α〉O = CO. This means that O/pq ' Fq or, equivalently, that NO(CO) = q. We now show that
|O[β]/O| = [O : CO], where the left cardinality is taken for the quotient of the additive groups. Now
two elements λβ + µ,λ′β + µ′ are in the same class if and only if (λ − λ′)β is in O. This amounts to
asking that λ−λ′ ∈ CO, so that the classes of the quotient ring O/CO are in one-to-one correspondance
with the classes of the quotient group O[β]/O. In other words, we have [OK : O] = q.

We now describe CO as an OK-ideal. Since β2 = α, we have CO ( Pq = βOK as OK-ideals. On the
other hand, we have P2

q = β2OK = αOK ⊆ CO as OK-ideals. As Pq is prime in OK , we get CO = P2
q.

We now obtain that NOK (CO) = NOK (P2
q) = q2.

3.9 Search to decision dual-RLWE
The reduction relies on the recent technique of [PRSD17]. To leverage it, we use a generalized Leftover
Hash Lemma over rings. The proof generalizes a technique used in [SS11] to the case where the
irreducible factors of the defining polynomial (of K) reduced modulo q do not share the same degree.
Alternatively, a generalization of the regularity lemma from [LPR13, Se. 7] to arbitrary number fields
could be used. Such a generalization may go through and improve our results a little.

3.9.1 A ring-based Leftover Hash Lemma
Let m ≥ 2. We identify any rank m OK-module M ⊆ Km with the lattice σ(M) ⊆ Hm. For such
modules, the dual may be defined as

M̂ = {t ∈ Km : ∀x ∈M ,Tr(〈t,x〉) ∈ Z}.

Here 〈·, ·〉 is the K-bilinear map defined by 〈x,y〉 =
∑m
i=1 xiyi. We have σ(M̂) = σ(M)∗ in Hm. For

some q ≥ 2 and a fixed a ∈ (OK/qOK)m, we focus on the modules:

L(a) = a
q
O∨K + (O∨K)m and a⊥ = {t ∈ OmK : 〈t,a〉 = 0 mod qOK}.

To prove our Leftover Hash Lemma variant, the main argument relies on an estimation of λ∞1 (â⊥),
which is obtained by combining the following two lemmas. The first one was stated in [LS15, Se. 5]
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without a proof, for the case of cyclotomic fields (this restriction is unnecessary). For the sake of
completeness, we give its proof here.

Lemma 3.12. Let q ≥ 2 and a ∈ (OK/qOK)m. Then we have â⊥ = L(a).

Proof. We proceed by double inclusion, starting with L(a) ⊆ â⊥. Let x = (x1, . . . ,xm) ∈ a⊥ and
t = (t1, . . . , tm) ∈ L(a). By definition, there exist s ∈ O∨K and b1, . . . , bm ∈ O∨K such that ti = ai

q s+ bi,
for all i. Then the element Tr(〈t,x〉) = 1

qTr(s〈a,x〉)+
∑m
i=1 Tr(xibi) is an integer. Indeed, by definition

of x, the product s〈a,x〉 belongs to qO∨K . This implies that all traces are rational integers, which
completes the proof of the first inclusion.

By duality, the reverse inclusion is equivalent to L̂(a) ⊆ a⊥. Let y ∈ L̂(a). As a
q ∈ L(a) we obtain

that Tr(〈y, a〉) ∈ qZ. This implies that we have Tr(〈y,b〉) ∈ Z for all b ∈ (O∨K)m. Taking for b vectors
with one coordinate arbitrary in O∨K and 0 for the rest, we see that all yi’s belong to O∨∨K = OK , hence
y ∈ OmK . The fact that Tr(〈y,b〉) ∈ Z for all b ∈ (O∨K)m also implies that Tr(s〈a

q ,y〉) is an integer for
all s ∈ O∨K , so that 〈a

q ,y〉 ∈ O∨∨K = OK . Equivalently, we have y ∈ a⊥.

We now obtain a probabilistic lower bound on λ∞1 (â⊥) = λ∞1 (L(a)). In full generality, it should
depend on the ramification of the selected prime integer q, i.e., the exponents appearing in the factor-
ization of qOK in prime ideals. It is a classical fact that the ramified prime integers are exactly the
primes dividing the discriminant of the field, so that there are only finitely many such q’s. Moreover, it
is always possible to use modulus switching techniques ([BLP+13, LS15]) if q ramifies. Therefore, we
consider only the non-ramified case.

Lemma 3.13. Let q ≥ 2 a prime that does not divide ∆K . For any m ≥ 2 and δ > 0, and except with
a probability ≤ 23n(m+1)q−mnδ over the uniform choice of a ∈ ((OK/qOK)×)m, we have:

λ∞1 (L(a)) ≥ ∆−1/n
K · q− 1

m−δ.

Proof. Thanks to the assumption on q, we can write qOK = p1 . . . pk for distinct prime ideals pi.
By Lemma 3.6 and the Chinese Remainder Theorem, we have O∨K/qO∨K ' OK/qOK '

⊕k
i=1 Fqdi ,

where qdi = N (pi).
Let a = (a1, . . . , am) sampled uniformly in ((OK/qOK)×)m. Fix some bound B > 0 and let pB be

the probability that qL(a) = aO∨K + q(O∨K)m contains a t = (t1, . . . , tm) such that 0 < ‖t‖∞ < B. Our
goal is to bound pB from above. By the union bound, we have that

pB ≤
∑

s∈O∨
K
/qO∨

K

∑
t∈(O∨K/qO

∨
K)m

0<‖t‖∞<B

p(t, s),

with p(t, s) = Pra[∀ j, tj = ajs mod qO∨K ] for any s and t over O∨K/qO∨K . By independance of the
aj ’s, we can write p(t, s) =

∏
j∈[m] p(tj , s) with p(tj , s) = Praj [tj = ajs mod qO∨K ]. As O∨K/qO∨K and

OK/qOK are isomorphic, estimating this probability amounts to studying the solutions in (OK/qOK)×
of the equation t = as mod qOK , for all t, s ∈ OK/qOK .

Note that if there is an i such that t = 0 mod pi and s 6= 0 mod pi, or vice-versa, then there is no
solution, so that p(t, s) = 0. Now, assume that s and t are 0 modulo the same pi’s. Let S ⊆ [k] denote
the set of their indices, and let dS be such that qdS = N (

∏
i∈S pi). On the one hand, for all i ∈ [k] \S,

both t and s are invertible modulo pi so there is exactly one solution modulo those i’s. On the other
hand, for all i ∈ S, all the elements of F×

qdi
are solutions. This gives

∏
i∈S(qdi − 1) possibilities out of

the
∏
i(qdi − 1) elements of (OK/qOK)×. Overall, we obtain that p(t, s) =

∏
i∈[k]\S(qdi − 1)−1. Hence,

57



CHAPTER 3. ON THE RLWE AND PLWE PROBLEMS

for t with coordinates tj such that s and all tj ’s are 0 modulo the same pi’s, we have:

p(t, s) = q−m(n−dS)
∏

i∈[k]\S

(1− 1
qdi

)−m ≤ q−m(n−dS) · 2mk,

the last inequality coming from the fact that 1− 1/qdi ≥ 1/2 for all i.
Let τ denote the isomorphism mapping O∨K/qO∨K to OK/qOK . The probability to bound is now

pB ≤ 2mk ·
∑
S⊆[k]

∑
τ(s)∈OK/qOK
∀i∈S:pi | τ(s)

∑
τ(t)∈(OK/qOK)m

0<‖t‖∞<B
∀ j,∀i∈S:pi | τ(tj)

q−m(n−dS).

For any r > 0, we let B(r) denote the (open) ball in H of center 0 and radius r, with respect to the
infinity norm. Such a ball has a volume Vol(B(r)) = (2r)n. For any S ⊆ [k], we define N(B,S) =
|B(B) ∩ L(τ−1(

∏
i∈S pi))| − 1. Since there are 2k subsets in [k] and qn−dS elements τ(s) ∈ OK/qOK

such that pi|s for all i ∈ S, we have

pB ≤ 2k(m+1) · max
S⊆[k]

N(B,S)m
q(n−dS)(m−1) . (3.4)

We now give an upper bound for N(B,S), from which we will obtain the result. Let IS =
∏
i∈S pi

and λS = λ∞1 (τ−1(IS)). Observe that any two distinct balls of radius λS/2 and centered around
elements of B(B) ∩ L(τ−1(IS)) do not intersect. Moreover, all of them are contained in B(B + λS/2).
This implies that

N(B,S) ≤ Vol(B(B + λS/2))
Vol(B(λS/2)) =

(
2B
λS

+ 1
)n

.

It remains to give a lower bound on λS . As τ−1(IS) = ISO∨K , we have N (τ−1(IS)) = qdS/∆K . With
Lemma 2.13, this gives ∆−1/n

K qdS/n ≤ λS . If we set B = ∆−1/n
K qβ , then nβ < dS leads to N(B,S) = 0

and nβ ≥ dS implies the upper bound N(B,S) ≤ 22nqnβ−dS . With (3.4), this gives

pB ≤ 2(m+1)(k+2n) · max
S⊆[k]
dS≤nβ

qm(β−1)n+(n−dS).

The maximum is reached for dS = 0 (i.e., when S = ∅). In this case, the exponent of q is −mnδ for β =
1− 1

m − δ. We obtain that λ∞1 (qL(a)) ≥ ∆−1/n
K q1− 1

m−δ except with probability ≤ 23n(m+1)q−mnδ.

We are now ready to state the variant of the Leftover Hash Lemma.

Theorem 3.6. Let q ≥ 2 prime that does not divide ∆K . Let δ > 0, ε ∈ (0, 1/2) and m ≥ 2. For a
given a in ((OK/qOK)×)m, let Ua be the distribution of

∑
i≤m tiai where the vector t = (t1, . . . , tm) is

sampled from DOK ,s with s ≥
√

log(2mn(1 + 1/ε))/π ·∆1/n
K q1/m+δ. Then, except for ≤ 23n(m+1)q−mnδ

of a’s, the distance to uniformity of Ua is ≤ 2ε.

Proof. First we note that the map t 7→
∑
i≤m tiai is a well-defined surjective OK-module homomor-

phism from OmK to OK/qOK , with kernel a⊥. The distance to uniformity of Ua is hence the same as
the distance to uniformity of t mod a⊥. By Lemma 2.11, the claim follows whenever s ≥ ηε(a⊥). By
Lemma 2.9, it suffices to find an appropriate lower bound on λ∞1 (L(a)). Lemma 3.13 allows to complete
the proof.

Corollary 3.2 (Leftover Hash lemma). If t is sampled from DOK ,s with s ≥
√

log(2mn(1 + 1/ε))/π ·
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∆1/n
K q1/m+δ, and the ai’s are sampled from U((OK/qOK)×), then:

∆
[(
a1, . . . , am,

∑
i≤m

tiai

)
,U
(

((OK/qOK)×)m ×OK/qOK
)]

≤ 2ε+ 23n(m+1) · q−mnδ.

3.9.2 Search RLWE to decision RLWE
We now give the reduction from search to decision. As all proofs can be done similarly, we focus on the
dual-RLWE version of the problems. For the sake of simplicity, we consider only the case of diagonal
covariance matrices. The proof readily extends to general covariance matrices. To obtain the reduction,
we need to generate suitable new samples from a starting set of samples from search dual-RLWE. The
lemma below is adapted from [LS15, Le. 4.15]. We will use it to analyze the error distribution we get
when generating new samples.

Lemma 3.14. Let α > 0, L a rank-m OK-module, ε ∈ (0, 1/2), a vector t ∈ DL+c,r for some c ∈ Hm,
and e′ ∈ KR chosen according to DH

α . If ri ≥ ηε(L) and α
δi
≥ ηε(L) for all i, then ∆(〈t, e〉+e′,DH

x ) ≤ 4ε
with xi =

√
(riδi)2 + α2 and δi = (

∑
k∈[m] |σi(ek)|2)1/2 for all i.

We can now give a reduction from search dual-RLWE to worst-case decision dual-RLWE. It may be
combined with the worst-case decision dual-RLWE to decision dual-RLWE from Lemma 3.5.

Theorem 3.7. Let r ∈ (R≥0)n be such that ri = ri+s2 for any i > s1 and ri ≤ r for some r > 0.
Let d =

√
n · ∆1/n

K q1/m+1/n, and consider Σ = {r′ : r′i ≤
√
d2 · r2 ·m+ d2}. Then there exists a

probabilistic polynomial-time reduction from search dual-RLWEq,Dr with m ≤ q/(2n) input samples to
worst-case decision dual-RLWEq,Σ.

Proof. We have m samples (ai, bi = ais+ ei) ∈ OK/qOK ×KR/qO∨K from the dual-RLWE distribution
A∨q,r(s), for a uniform s ∈ O∨K/qO∨K that we want to find. This is equivalent to finding the error term
e = (e1, . . . , em). By assumption on m, the ai’s are all invertible with non-negligible probability. If it is
not the case, the reduction aborts. From now on, we hence assume that they are uniformly distributed
in (OK/qOK)×.

We use the same technique as in [PRSD17], in that we find the ith embeddings σi(e1), . . . ,σi(em)
of the error terms by constructing an m-dimensional instance of the Oracle Hidden Center Problem
(OHCP). The only difference consists in the way we create the samples that we give to the decision
oracle. The reduction uses the dual-RLWE decision oracle to build the oracles Oi : Rm ×R≥0 → {0, 1}
for i ≤ s1 and Oi : Cm × R≥0 → {0, 1} for s1 < i ≤ s1 + s2.

For i ≤ s1, we define ki : R → KR as ki(x) = σ−1(x · vi) and for s1 < i ≤ s1 + s2, we define
ki : C→ KR as ki(x) = σ−1(x · vi + x · vi+s2), where the vi’s form the canonical basis of H.

On input (z1, . . . , zm,α), oracle Oi will output 1 with probability depending on exp(α)‖e − z‖,
where z = (ki(z1), . . . , ki(zm)). It works as follows. It first chooses a uniform s′ ∈ O∨K/qO∨K . On input
(z1, . . . , zm,α), it samples t = (t1, . . . , tm) ∈ OmK Gaussian with parameter exp(α) ·

√
n ·∆1/n

K q1/m+1/n

and some e′ from Dd. The oracle then creates (a′, b′) = (〈t,a〉, 〈t,b − z̄〉 + a′s′ + e′), where b =
(b1, . . . , bm).

By Corollary 3.2, the distribution of (a, 〈t,a〉) is exponentially close to U(((OK/qOK)×)m×OK/qOK).
Since bj = ajs + ej for all j, we get b′ = a′(s + s′) + 〈t, e − z̄〉 + e′, so oracle Oi creates RLWE sam-
ples for a uniformly distributed s + s′, provided the error term follows a suitable distribution. We let
δ` = (

∑
j∈[m] σ`(ej − ki(zj))|2)1/2 for ` ≤ n. In particular, we have δi = ‖σi(e1)− z1, . . . ,σi(em)− zm‖.

Let us now study the distribution of the error term 〈t, e − z〉 + e′. We can see that once the value
of 〈t,a〉 = c and the ai’s are known, one can write t = (ca−1

1 , 0, . . . , 0) + (−a−1
1
∑
i≥2 tiai, t2, . . . , tm),
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where the second vector belongs to a⊥. This means that the actual support of t is a shift of the a⊥

lattice by the vector (ca−1
1 , 0, . . . , 0). Using Lemma 3.14, we get that the distribution of the error is

DH
x where xj =

√
exp2(α) · d2 · δ2

j + d2.
Let Si,(z1,...,zm,α) be the samples obtained by applying the procedure above many times. Oracle Oi

calls the dual-RLWE decision oracle with these and outputs 1 if and only if the latter accepts. With non-
negligible probability over the choice of the initial errors, the distribution of the samples we get when
we call the oracle Oi on (0, 0) belongs to the set Σ. One can now show that using the same technique
as in [PRSD17], it is possible to recover good approximations of the vector (σi(e1), . . . ,σi(em)). By
substracting them from the initial search samples, rounding and then taking the inverses of the ai’s,
we obtain s.

3.10 On Vandermonde matrices and the expansion factor
In the study of algebraic variants of LWE, the expansion factor is an important parameter. For example,
the PLWE to MP-LWE reduction from Chapter 4 requires that the expansion factor of the polynomial
parameterizing PLWE be small. The polynomials f for which we managed to bound ‖Vf‖F and ‖V −1

f ‖F

in Theorem 3.5 have small expansion factors.
In this section, we study the relationship between ‖Vf‖F, ‖V −1

f ‖F and the expansion factor EF(f)
of an arbitrary polynomial f . We first show that there exist polynomials f with small expansion factors
but large ‖V −1

f ‖F. Then, we show that if ‖Vf‖F and ‖V −1
f ‖F are both small, the expansion factor EF(f)

will also be small.

For integers n ≥ 4, 2 ≤ k < n/2, a ≥ 2, consider the family of polynomials given by

gn,k,a = xn − 2(ax− 1)k.

The factor 2 is used to ensure irreducibility by way of Eisenstein’s criterion. Such polynomials have a
“gap” in their coefficients. Considering a, k as function of n, their expansion factors are polynomially
bounded if for example a ≤ poly(n) and k is constant, or if a is constant and k ≤ O(logn).

Besides, Bugeaud and Mignotte showed that there is a cluster of k roots exponentially close to the
real 1/a. In particular, if the other roots are not too far away from this cluster, the denominators
in (3.2) force ‖V −1

f ‖F to be exponentially large. We adapt some results of [BM10]; in particular, we
locate the roots outside the cluster to be at distance at most a from the origin. This enables us to
prove that ‖V −1

f ‖F is exponentially large in n.

Lemma 3.15 (Adapted from [BM10]). If (1 + 21−n/k)n/k < a, then the polynomial gn,k,a has k roots
in the disk D( 1

a , 1
an/k

).

Proof. We apply Rouché’s theorem. Write gn,k,a = f + P , where f = −2(ax− 1)k, and P = xn is the
“perturbation.” For any z = 1

a + eit

an/k
on the circle, we have |f(z)| = 2

an−k
and |P (z)| ≤

( 1
a + 1

an/k

)n,
so that the assumption gives |P (z)| < |f(z)| . We conclude using Theorem 3.4 and the fact that f has
a root of multiplicity k in the disk.

Lemma 3.16. If a > 4
n+2k
n−2k , then the polynomial gn,k,a has all its roots in the disk D( 1

a , a
n

2(n−k) − 1
an/k

).

Proof. Write P = −2(ax − 1)k and f = xn. For any z on the boundary of the disk, we have |f(z)| ≥(
a

n
2(n−k) − 1

a −
1

an/k

)n ≥ a
n2

2(n−k) · 2−n. If we write P =
∑
i pix

i, then |pi| = 2ai
(
k
i

)
so that ‖P‖1 =

2(a+ 1)k. We obtain

|P (z)| ≤ max(1, |z|k) · ‖P‖1 ≤ 2(a+ 1)k
(
a

n
2(n−k) − 1

a
− 1
an/k

)k,
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and the assumption implies that |P (z)| < |f(z)| on the boundary of the disk. We conclude using
Rouché’s theorem (Theorem 3.4).

The term “− 1
an/k

” in the radius cancels in the next proof. As a consequence of these lemmata, we
can show that the inverse Vandermonde associated to gn,k,a has several exponentially large entries.

Proposition 3.2. Let n ≥ 4, 2 ≤ k < n/2, a ≥ 2 be integers such that a > max
(
(1+21−n/k)n/k, 4

n+2k
n−2k

)
.

Then ‖V −1
gn,k,a

‖∞ ≥ an/2−n/k

2k−1 .

Proof. The assumption on a allows us to apply the two lemmata above. Let α1, . . . ,αk be the roots
in the disk D( 1

a , 1
an/k

) (their cardinality is provided by Lemma 3.15). We have, for all i ≤ k, that∏k
j=1,j 6=i |αi−αj | ≤

2k−1

an−n/k
. Let αk+1, . . . ,αn denote the other roots. From Lemma 3.16 and for i ≤ k,

we see that maxj>k |αi − αj | ≤ a
n

2(n−k) and thus
∏
j 6=i |αi − αj | ≤

2k−1

an/2−n/k . From (3.2), the latter
inequality implies that the k first entries in the last row of V −1

gn,k,a
have magnitudes at least an/2−n/k

2k−1 .
This gives us the claim.

Proposition 3.2 shows how to define polynomials for which the expansion factor is small and the
inverse Vandermonde has very large entries. The following is an example. Note that there is some
flexibility in the choice of a and k with respect to n to achieve the desired behavior. For example, one
can also fix a and look for k ≤ C log(n) for a constant C > 0.

Corollary 3.3. For k = 3 and 5 ≤ a ≤ poly(n), the polynomials gn,3,a satisfy

EF(gn,3,a) ≤ poly(n) and ‖V −1
gn,3,a

‖F ≥ 2Ω(n).

We turn now to the second result of this section. We will make use of the observation that for any
degree n polynomial f , we have that EF(f) ≤ (2n− 1) ·max{||xk mod f ||∞ : 0 ≤ k ≤ 2n− 2}.

Lemma 3.17. Let f(x) ∈ Z[x] be a monic polynomial of degree n with distinct roots α1, . . . ,αn. Then
EF(f) ≤ (2n− 1) · ||V −1

f ||F · ||Vf ||2F.

Proof. Let Cf be the companion matrix of f , i.e.,

Cf =



0 0 . . . 0 −f0

1 0 . . . 0 −f1

0 1 . . . 0 −f2
...

0 0 . . . 1 −fn−1


∈ Zn×n.

Since the roots αi of f are distinct, the matrix Cf is diagonalizable as follows

Vf · Cf · V −1
f = diag(α1, . . . ,αn),

where diag(α1, . . . ,αn) is a diagonal n×n matrix having on the (i, i) position the root αi of f . It means
that for any k > 0, we have that Ckf = V −1

f · diag(αk1 , . . . ,αkn) · Vf . The last column of Cf corresponds
to the coefficients of the polynomial xn mod f . By induction, it can be proved that actually for any
k ≥ 1, the last column of Ckf corresponds to the coefficients of the polynomial xn+k−1 mod f . As a
consequence,

EF(f) ≤ (2n− 1) ·max{||Ckf ||F : 1 ≤ k ≤ n− 1}
= (2n− 1) ·max{||V −1

f · diag(αk1 , . . . ,αkn) · Vf ||F : 1 ≤ k ≤ n− 1}
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The Frobenius norm is submultiplicative and for any 1 ≤ k ≤ n− 1, we have that

||diag(αk1 , . . . ,αkn)||F ≤ ||Vf ||F,

which allow us to write EF(f) ≤ (2n− 1) · ||V −1
f ||F · ||Vf ||2F and to conclude.
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Chapter 4

The Middle-Product Learning
With Errors problem

In this chapter, we introduce the Middle-Product Learning With Errors problem (MP-LWE), a struc-
tured variant of LWE which makes use of the middle-product between two polynomials modulo an
integer q. We show that MP-LWE is at least as hard as PLWE(f) for many polynomials f . The noise
growth in the reduction is proportional to the expansion factor of f . We also show that MP-LWE
remains hard even if the secrets are drawn from a distribution which produces small elements with high
probability.

This chapter is mainly based on two articles: a joint work [RSSS17] with Amin Sakzad, Damien
Stehlé and Ron Steinfeld accepted for publication at Crypto 2017 and another joint work [BDH+20]
with Shi Bai, Dipayan Das, Ryo Hiromasa, Amin Sakzad, Damien Stehlé, Ron Steinfeld and Zhenfei
Zhang which has been accepted at PKC 2020.
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4.1 Introduction
The PSIS and PLWE problems have been introduced as variants of SIS and LWE which led to more
efficient cryptographic constructions. Still, while SIS and LWE enjoy reductions from some presumably
hard worst-case lattice problems for general lattices, their corresponding algebraic variants PSIS and
PLWE only enjoy reductions from the ApproxSVP problem restricted to the class of so-called ideal
lattices ([LM06, PR06, SSTX09]). We refer to this variant of ApproxSVP as ApproxSVP(f), since the
ideal lattices depend on the polynomial f which parameterizes PSIS and PLWE. Concretely, the ideal
lattices correspond to ideals of the ring Z[x]/f .

The hardness of ApproxSVP(f) has been investigated in a sequence of works. In the case of lattices
corresponding to principal ideals in cyclotomic rings of prime-power conductor, Cramer et al. [CDPR16]
gave a quantum polynomial time algorithm for solving the ApproxSVP(f) problem with approximation
factor 2Õ(

√
n) (where n is the degree of f) which works by first computing a generator of the ideal using

[BS16] and then shortening it using the so-called log-unit lattice. Later on, Cramer et al. [CDW17]
extended the algorithm from [CDPR16] to any ideal in a cyclotomic ring of prime-power conductor.
Moreover, under some conditions on p, q, α and β, Holzer et al. [HWB17] extended [CDPR16] in the
case of principal ideals in cyclotomic rings of conductor pαqβ . As a comparison, for such approximation
factors and arbitrary lattices, the best known algorithms [Sch87] run in time 2Õ(

√
n). We mention that

the development of faster algorithms for solving the ApproxSVP(f) problem in cyclotomic number fields
motivated the choice of non-cyclotomic polynomials in [BCLvV16]. Bauch et al. [BBdV+17] showed
that in the case of multiquadratic fields, similar discrepencies between the hardness of ApproxSVP and
ApproxSVP(f) arise for principal ideals. Later on, building upon [CDW17], Pellet–Mary et al. [PHS19]
improved the trade-offs for solving ApproxSVP(f) in lattices corresponding to any ideal of the ring
of integers of an arbitrary number field K, both classicaly and quantumly, at the cost of allowing
the algorithm to perform some pre-computations. The pre-computations depend only on the ambient
number field K and not on the lattice chosen and have run-time exponential in log(∆), where ∆ is the
discriminant of K. For instance, in the case of prime power cyclotomic fields, once the pre-processing
is done, for a 2Õ(nα) approximation factor, their algorithm takes 2Õ(n1−2α) + poly(n) time quantumly
and 2Õ(n1−2α) + 2Õ(

√
n) classically.

One may wonder how hard PSIS(f) or PLWE(f) actually are, since a polynomial f for which the
ApproxSVP(f) problem is easy (or easier than ApproxSVP) does not necessarily correspond to an easy
PSIS(f) or PLWE(f) instance.

It could happen that PSIS(f) or PLWE(f) are easy to solve for some polynomials f , and hard
for others. For instance, if f has a linear factor over the integers, then PSIS(f) and PLWE(f) are
computationally easy (we note that the reductions from ApproxSVP(f) require f to be irreducible).
Apart from the very specific case of field extensions [GHPS12], hardness on K seems unrelated to
hardness on another field K ′. Finding weak f ’s for PLWE has been investigated in a series of articles
[EHL14, ELOS15, CLS19, CLS16], but the respective attacks work only for error distributions with
small width relative to the geometry of the corresponding ring [CIV16a, CIV16b, Pei16].

This lack of understanding of which f ’s correspond to hard PLWE(f) problems motivates research
into problems that are provably as hard as PSIS(f) or PLWE(f) for the hardest f in a large class of
polynomials, while preserving the efficiency advantages of these problems. In [Lyu16], Lyubashevsky
introduced a variant of PSIS(f) which enjoys the above desirable property. This new problem, which
we are going to call PSIS∅, is not parametrized by a specific polynomial f , but only by the degree n.
The main result in [Lyu16] is a reduction from PSIS(f) to PSIS∅ which works for all f ’s in a family
of polynomials of size exponential in n. As a result, PSIS∅ serves as an alternative cryptographic
foundation that hedges against the risk that PSIS(f) is easy to solve for some f as long as PSIS(f) stays
hard for some f in the family.
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4.2 Contributions
Our first contribution is the introduction of an LWE counterpart to Lyubashevsky’s PSIS∅ problem:
the middle-product learning with errors problem (MP-LWE). This problem is defined in Section 4.4
using the so-called middle-product of two polynomials. Let n, q ≥ 2. We let Z<nq [x] denote the
set of polynomials with coefficients in Zq and degree < n. For a ∈ Z<nq [x] and s ∈ Z<2n−1

q [x], we
let a�

n
s = b(a · s mod x2n−1)/xn−1c ∈ Z<nq [x] denote the polynomial obtained by multiplying a and

s and keeping only the middle n coefficients. The MP-LWE problem with parameters n, q ≥ 2 and
α ∈ (0, 1), consists in distinguishing arbitrarily many samples (ai, bi) uniform in Z<nq [x]× (R/qZ)<n[x],
from the same number of samples (ai, bi) with ai uniform in Z<nq [x] and bi = ai �n s+ ei, where each
coefficient of ei is sampled from the Gaussian distribution of standard deviation α ·q, and s is uniformly
chosen in Z<2n−1

q [x]. The reversed coefficient vector of the middle-product of two polynomials is in fact
equal to the product of the Toeplitz matrix associated to one polynomial by the reversed coefficient
vector of the second polynomial.

In Section 4.5 we give a reduction from (decision) PLWE(f) to (decision) MP-LWE of parameter n, for
every monic f of degree n whose constant coefficient is coprime with q. We prove this result in two steps.
First, we map the PLWE samples to a variant of MP-LWE whose error distribution depends on the matrix
Mf parameterized by the polynomial f and whose correponding secret is non-uniform. In the second
step, we re-randomize the secret and remove the dependency on f of the error by adding a compensating
Gaussian distribution. In the end, the noise parameter of the MP-LWE samples amplifies linearly with
the expansion factor of f and can for example be set to handle all monic polynomials f = xn + g with
constant coefficient coprime with q, deg g ≤ n/2 and ‖g‖ ≤ nc for an arbitrary c > 0. For any c, this
set of f ’s has exponential size in n. We note that similar restrictions involving the expansion factor
appeared before in [LM06, SSTX09].

If the free coefficient of the polynomial f(x) is invertible in Zq, f(x) is invertible in the ring Zq[[x]]
and the expansion of 1

f(x) as a formal series is closely related to the matrix Mf . This observation allows
us to rewrite the reduction from PLWE to MP-LWE in a more algebraic way in Section 4.6.

Finally, in Section 4.7, we show that the reduction from PLWE(f) to MP-LWE still holds if the errors
are drawn from a discrete distribution and the secrets are sampled from a distribution which produces
small elements with high probability. Discretizing the noise distribution is more convenient in real
applications and can be achieved via routine techniques. Oppositely, having the secret distribution
take small values compared to q is not straightforward. In contrast with the result from Section 4.5,
this reduction requires a condition on the noise parameter α which arrises when we approximate the
distribution of the sum of two random discrete variables by a new discrete distribution as in Lemma 2.7.
The condition on α is implied by a lower bound on the smallest singular value of the matix Mf and we
manage to bound from below the smallest singular value of the matrix Mf for an exponentially large
family of polynomials f .

4.2.1 Follow-up works
In this section, we briefly describe the connection of some works built upon MP-LWE with the results
presented in this chapter.

4.2.1.1 Middle-Product Learning With Rounding

At Asiacrypt 2019, Bai et al. [BBD+19] introduced the Middle-Product Computational Learning With
Rounding (MP-CLWR) problem, as a natural adaption to the middle-product context of the compu-
tational Learning With Rounding (LWR) problem over rings [CZZ18]. The motivations of this new
problem were twofold. Firstly, on the security front, MP-CLWR is at least as hard as MP-LWE, and it
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thus relies on the hardness of solving certain lattice problems on a large class of lattices. Secondly, by
using rounding, the MP-CLWR problem avoids the Gaussian error sampling which could be costly and
easily exploitable by an attacker. To illustrate the cryptographic relevance of MP-CLWR, the authors
of [BBD+19] build a public key encryption scheme IND-CPA secure in the random oracle model under
the MP-CLWR hardness assumption, with the same asymptotic efficiency as the one based on MP-LWE
that we present in Chapter 5.

4.2.1.2 A general framework for all LWE variants

Peikert and Pepin ([PP19]) proposed at TCC 2019 a general framework to analyse all the (algebraic)
variants of LWE in the literature.

In particular, they define a new problem L-LWE parameterized by a lattice L in a number field K
and show that PLWE, primal/dual-RLWE, Order-LWE and Module-LWE can be obtained as particular
cases of this problem instantiated with suitable lattices L. Then they show that for any two lattices
L′ ⊆ L of a number field K, under some conditions on their so-called coefficient rings and |L : L′|,
there is an error preserving reduction from L-LWE to L∨-LWE. Using the above result, they obtain the
hardness of a variant of PLWE with secret belonging to Z[α]∨ instead of Z[α], which they call dual-
PLWE, by directly reducing dual-RLWE to this new problem. Moreover, they rewrite the definition
of the MP-LWE problem in terms of biliniar maps and use it to give a reduction from dual-PLWE to
MP-LWE. As a consequence, they reobtain the hardness of MP-LWE from Section 4.4 based on the
hardness of solving certain lattice problems in a wide class of lattices.

4.3 The middle-product of two polynomials
In this section, we recall the definition of the middle-product of two polynomials and we exhibit its
relationship with Toeplitz matrices. Let R be a ring. Assume we have two polynomials a and b of
degrees < da and < db, respectively, and da + db − 1 = d + 2k for some integers d and k. Then the
middle-product of size d of a and b is obtained by multiplying a and b, deleting the left coefficients
of 1,x, . . . ,xk−1, deleting the right coefficients of xk+d,xk+d+1, . . . ,xd+2k−1 and dividing what remains
in the middle by xk.

Definition 4.1. Let da, db, d, k be integers such that da + db − 1 = d + 2k. The middle-product
�
d

: R<da [x]×R<db [x]→ R<d[x] is the map:

(a, b) 7→ a�
d
b = ck + ck+1 · x+ · · ·+ ck+d−1 · xd−1,

where a(x)·b(x) =
∑d+2k−1
i=0 ci ·xi. We use the same notation �

d
for every da, db such that da+db−1−d

is non-negative and even.

The middle-product of polynomials is used in computer algebra to accelerate computations in poly-
nomial rings (see, e.g., [Sho99, HQZ04]). As it is part of the output of polynomial multiplication, it can
be computed with a number of ring additions and multiplications that is quasi-linear number in da+db,
but faster algorithms also exist [HQZ04].

Lemma 4.1. Let d, k > 0. Let r ∈ R<k+1[x] and a ∈ R<k+d[x] and b = r �
d
a. Then b =

Toepd,k+1(r) · a. In other words, we have b = Toepd,k+1(r) · a.

Proof. We first note that Toepd,2k+d(r · a) = Toepd,k+1(r) · Toepk+d,k+d(a). Thus, by definition of
the middle-product, we have that the coefficients of b appear in the first row of Toep(r · a), namely
bi = Toepd,2k+d(r · a)1,k+i+1 for i < d. But since Toep(r · a) is constant along its diagonals, we
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also have that b appear (in reversed order) in the (k + d)-th column of Toepd,2k+d(r · a), namely bi =
Toepd,2k+d(r ·a)d−i,k+d for i < d. Therefore, vector b is the (k+d)-th column of Toepd,2k+d(r ·a), which
is equal to Toepd,k+1(r) ·a′, where a′ is the (k+ d)-th column of Toepk+d,k+d(a). Since Toepk+d,k+d(a)
is constant along its diagonals, its first row is equal to its reversed (k + d)-th column, so a′ = a, as
required.

The above lemma and the example following Lemma 2.2 indicate that the multiplication modulo
f = xn + 1 can be easily converted into a middle-product. We will further exploit this connection in
Section 4.5 using Lemma 2.1 without restricting the choice of the polynomial f .

Observation 4.3.1. Notice that using the notations from the previous lemma, we also have the fol-
lowing equality:

b =



0 . . . . . . 0 r0 r1 . . . rk−1 rk

0 . . . . . . r0 r1 r2 . . . rk 0

0 . . . . .
.

. .
.

. .
.

. .
.

. .
. 0 0

0 r0 . .
.

. .
.

. .
.

rk 0 . . . 0
r0 r1 . . . . . . rk 0 . . . . . . 0


·



ak+d−1

ak+d−2

ak+d−3
...
...
...
...

a0


The middle-product is an additive homomorphism when either of its inputs is fixed. As a conse-

quence of the associativity of matrix multiplication and Lemma 4.1, the middle-product satisfies the
following "associativity" property.

Lemma 4.2. Let d, k,n > 0. For all r ∈ R<k+1[x], a ∈ R<n[x], s ∈ R<n+d+k−1[x], we have that
r �

d
(a�

d+k s) = (r · a)�
d
s.

Proof. Note first that the degree bounds match. Now, by Lemma 4.1, the vector associated to the
reverse of r�

d
(a�

d+k s) is Toepd,k+1(r)·(Toepd+k,n(a)·s). Similarly, the vector associated to the reverse
of (r ·a)�

d
s is Toepd,k+n(r ·a) · s. The result follows from observing that Toepd,k+1(r) ·Toepd+k,n(a) =

Toepd,k+n(r · a).

4.4 Middle-product learning with errors
In this section, we use the middle-product introduced in the previous section to define a new com-
putational problem: Middle-Product Learning With Errors (MP-LWE). Before stating the MP-LWE
problem, we first introduce the distribution its definition relies on.

Definition 4.2 (MP-LWE distribution). Let n, d > 0, q ≥ 2, and χ a distribution over R<dq [x]. For
s ∈ Z<n+d−1

q [x], we define the distribution MPq,n,d,χ(s) over Z<nq [x] × R<dq [x] as the one obtained by:
sampling a←↩ U(Z<nq [x]), e←↩ χ and returning (a, b = a�

d
s+ e).

Definition 4.3 (MP-LWE). Let n, d > 0. Let χ1 and χ2 be distributions over R<dq [x] and Z<n+d−1
q [x],

respectively. The decision MP-LWEq,n,d,χ1,χ2 problem consists in distinguishing between arbitrarily many
samples from MPq,n,d,χ1(s) and the same number of uniform samples in Z<nq [x] × R<dq [x], with non-
negligible probability over the choice of s←↩ χ2.
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We can also define a search variant of MP-LWEq,n,d,χ1,χ2 , which consists in computing s ∈ Z<n+d−1
q [x]

from arbitrarily many samples from the distribution MPq,n,d,χ1(s), where s has been sampled from the
χ2 distribution. When χ2 is the uniform distribution on Z<n+d−1

q [x], we simply write MP-LWEq,n,d,χ1

instead of MP-LWEq,n,d,χ1,χ2 .
The decision/search MP-LWEq,n,d,χ1,χ2 problems can be viewed as variants of the corresponding LWE

problem in which the samples are correlated. For instance, thanks to Lemma 4.1, the decision variant of
MP-LWEq,n,d,χ1,χ2 can be restated as follows: given many samples (Toepd,n(ai), bi) ∈ Zd×(n+d−1)

q ×Rdq
for uniformly chosen ai ∈ Z<nq [x], decide if the vectors bi are uniformly sampled in Rdq or are of the
form bi = Toepd,n(ai) · s + ei for some ei ←↩ χ1 and some common secret s←↩ χ2.

Interestingly, Toeplitz matrices have already been used in cryptography in the context of symmetric
key authentication protocols. In [GRS08], Gilbert et al. propose the Random-HB# and HB# protocols
which improve the HB+ protocol [JW05] of Juels and Weis in terms of security and practicality. The
security of HB# relies on the conjectured hardness of solving the so-called "Toeplitz-MHB" problem.
The Toeplitz-MHB problem makes use of a binary Toeplitz matrix and binary vectors. We omit here its
formal definition which can be found in [GRS08]. One could think to extend this definition by removing
the binary condition put on the objects used in the following way.

Definition 4.4 (LWE-Toeplitz-MHBq,n,d,χ). Let n, d > 0, q ≥ 2 and χ a distribution over Rd. Let S be
a random secret Toeplitz matrix in Zn×dq . Given many samples (ai, aiS + ei), where ai ←↩ U(Znq ) and
ei ←↩ χ, and a vector a ∈ Znq uniformly chosen, find aS.

Since the matrix S is Toeplitz, it is uniquely defined by its first column and its first row. Suppose
its first column is (sn−1, . . . , s0)t and its first row is (sn−1, . . . , sn+d−2). Notice that for any vector
ai ∈ Znq , aiS is the vector of coefficients of the polynomial ai �d s, where s :=

∑n+d−2
i=0 six

i and ai is
naturally identified with a polynomial in Z<nq [x]. As a consequence, the MP-LWEq,n,d,χ problem and
the LWE-Toeplitz-MHBq,n,d,χ problem resemble in terms of their inputs.

The LWE-Toeplitz-MHBq,n,d,χ problem trivially reduces to MP-LWEq,n,d,χ. While Toeplitz-MHB is
only conjectured to be hard in [GRS08], in the next section we give concrete evidence of the hardness
of MP-LWE based on the hardness of solving the PLWEf problem for many polynomials f .

4.5 Hardness of MP-LWE
In this section, we give a reduction from PLWE(f) to MP-LWE which works for many polynomials f .
We manage to get better parameters compared to those in Theorem 3.6 from [RSSS17] by making use
of Lemma 2.4, which improves on Lemma 2.8 from [RSSS17].

Theorem 4.1. Let n, d > 0, q ≥ 2, and α ∈ (0, 1). For S > 0, we let F(S, d,n) denote the set of
polynomials f ∈ Z[x] that are monic, have constant coefficient coprime with q, have degree m in [d,n]
and that satisfy EF(f) < S. Then there exists a ppt reduction from PLWE(f)

q,Dα·q for any f ∈ F(S, d,n)
to MP-LWEq,n,d,Dα′·q with α′ = α

√
dS.

Proof. We first reduce PLWE(f) to a variant of MP-LWE whose only dependency on f lies in the noise
distribution (see Lemma 4.3 below). Then we remove the latter dependency, by adding a compensating
Gaussian distribution (see Lemma 4.4 below). The bound on the magnitude of matrix Mf from
Lemma 2.4 for χ = Dα·q implies that

‖Σ0‖ = α2q2‖J ·Md
f‖2 = α2q2‖Md

f‖2 ≤ d(αqEF(f))2 < d(αqS)2.

Hence, taking α′q = αq
√
dS completes the proof.
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Lemma 4.3. Let n, d > 0, q ≥ 2, and χ a distribution over R<d[x]. Then there exists a ppt reduction
from PLWE(f)

q,χ for any monic f ∈ Z[x] with constant coefficient coprime with q and degree m ∈ [d,n],
to MP-LWEq,n,d,J·Md

f
·χ. Here, matrix Md

f is the one obtained by keeping only the first d rows of Mf ,
and J ∈ Zd×d is the one with 1’s on the anti-diagonal and 0’s everywhere else.

Proof. We describe below an efficient randomized mapping φ that takes as input a pair (ai, bi) ∈
Zq[x]/f×Rq[x]/f and maps it to a pair (a′i, b′i) ∈ Z<nq [x]×R<dq [x], such that φmaps U(Zq[x]/f×Rq[x]/f)
to U(Z<nq [x] × R<dq [x]) and P(f)

q,χ(s) to MPq,n,d,χ′(s′), for some s′ that depends on s and some χ′ that
depends on χ and f .

The reduction is then as follows:

• Sample t←↩ U(Z<n+d−1
q [x]).

• Each time the MP-LWE oracle requests a new sample, ask for a fresh PLWE sample (ai, bi),
compute (a′i, b′i) = φ(ai, bi) and give (a′i, b′i) + (0, a′i �d t) to the MP-LWE oracle.

• When MP-LWE terminates, return its output.

Assuming φ satisfies the specifications above, the reduction maps uniform samples to uniform samples,
and P(f)

q,χ(s) samples for a uniform s that is common to all samples to MPq,n,d,J·Md
f
·χ(s′+ t) samples for

a uniform s′ + t that is common to all samples.
We now describe φ. Let (ai, bi) ∈ Zq[x]/f × Rq[x]/f be an input pair. Let m denote the degree

of f . We sample ri ←↩ U(Z<n−mq [x]) and set φ(ai, bi) = (a′i, b′i) with:

a′i = ai + f · ri ∈ Z<nq [x] , b′i = Md
f · bi ∈ R<dq [x].

As ai and ri are uniformly distributed in Z<mq [x] and Z<n−mq [x] respectively, the polynomial a′i is
uniformly distributed in Z<nq [x] (we refer to [Lyu16, Lemma 2.10] for a fully detailed proof).

Further, if bi is uniformly distributed, then so is its coefficient vector bi, and so is Md
f ·bi. Indeed, as

the constant coefficient is coprime with q, the matrix Mf is invertible modulo q (reordering its columns
makes it triangular, with diagonal coefficients invertible modulo q).

Now, assume that bi = ai · s+ ei, for some s ∈ Zq[x]/f and ei ←↩ χ. Thanks to Subsection 2.2, we
know that Rotf (bi) = Rotf (ai) · Rotf (s) + Rotf (ei), and, by taking the first columns and d first rows,
we have

Md
f · bi = Rotdf (ai) ·Mf · s + Md

f · ei
= Rotdf (a′i) ·Mf · s + Md

f · ei
= Toepd,n(a′i) · Rotd+n−1

f (1) ·Mf · s + Md
f · ei

= Toepd,n(a′i) · s′ + Md
f · ei,

where s′ = Rotd+n−1
f (1) ·Mf · s. Since b′i = Md

f · bi = Toep(a′i) · s′+Md
f · ei, we get that e′i = Md

f · ei,
which makes the distribution in MP-LWE equal to the claimed J ·Md

f ·χ. This completes the proof.

We now remove the dependency on f of the noise distribution.

Lemma 4.4. Let n, d > 0, q ≥ 2. Let σ′ > 0. Let Σ0 ∈ Rd×d be symmetric definite positive matrix
with ‖Σ0‖ < (σ′)2. Then there exists a ppt reduction from MP-LWEq,n,d,DΣ0

to MP-LWEq,n,d,Dσ′ .

Proof. The reduction is as follows. We first note that, there exists a positive definite matrix Σ′, such
that Σ0 + Σ′ = (σ′)2 · Idd. The positive definiteness is guaranteed by fact that ‖Σ0‖ < (σ′)2. Then, for
any MP-LWEq,n,d,DΣ0

input sample (ai, bi), we sample e′i ←↩ DΣ′ and compute (a′i, b′i) = (ai, bi + e′i).

69



CHAPTER 4. THE MIDDLE-PRODUCT LEARNING WITH ERRORS PROBLEM

Observe that the reduction maps uniform samples to uniform samples, and MPq,n,d,DΣ0
(s) samples

to MPq,n,d,Dσ′ (s) samples. This completes the proof.

Notice that we do not use the monocity of the polynomial f in the reduction and the only condition
on the coefficicients of f (i.e. (f0, q) = 1) is necessary to preserve the uniformity by multiplication with
the matrix Mf . Still, we keep this monocity condition in the statemenet of the theorem in order to be
consistent with the definition of the PLWE problem.

4.6 A different way to see the PLWE to MP-LWE reduction
In this section, we first embed the ring Z<nq [x] into Zq[[x]], naturally identifying a polynomial a ∈ Z<nq [x]
with the formal series whose first n coefficients are equal to the coefficients of a and whose other
coefficients are set to 0, and then rewrite the definition of the middle-product of a and b by allowing the
element b to be a formal series instead of a polynomial. This allows us to give an algebraic interpretation
of the reduction from Theorem 4.1. We use the notations introduced in Section 2.2.

Definition 4.5. The middle-product �
d

: Z<nq [x]× Zq[[x]]→ Z<dq [x] is the map:

(a, b) 7→ a�
d
b = [ab]n+d−2

n−1

The multiplication a · b is done in the ring Zq[[x]] by identifying the polynomial a ∈ Z<nq [x] with
the formal series whose first n coefficients are equal to the coefficients of a and whose other coefficients
are all set to 0. Notice that for a fixed a ∈ Z<nq [x] and any two formal series b and b′ which coincide
on their first n + d − 1 coefficients, we have that a �d b = a �d b′. This means that the following two
definitions are just a restatement of the middle-product distribution and problem.

Definition 4.6 (MP-LWE distribution). Let n, d > 0, q ≥ 2 and a distribution χ over R<dq [x]. For
s ∈ Zq[[x]], we define the distribution MPq,n,d,χ(s) over Z<nq [x]× R<dq [x] as the one obtained by: sam-
pling a←↩ U(Z<nq [x]), e←↩ χ and returning (a, b = a�

d
s+ e).

Definition 4.7 (MP-LWE). Let n, d > 0, q ≥ 2. Let χ1 and χ2 distributions over R<dq [x] and Zq[[x]],
respectively. The decision MP-LWEn,d,q,χ1 consists in distinguishing between arbitrarily many samples
from MPq,n,d,χ1(s) and the same number of samples from U(Z<nq [x] × R<dq [x]), with non-negligible
probability over the choices of s←↩ χ2.

Theorem 4.2. Let n, d,S > 0, q ≥ 2 and α ∈ (0, 1). For any monic polynomial f ∈ Z[x] of degree
m ∈ [d,n] such that (f0, q) = 1 and EF(f) < S, there is a polynomial time reduction from PLWE(f)

q,Dαq
to MP-LWEq,n,d,Dα′q , where α

′ = α
√
dS.

Proof. It is enough to describe an efficient randomized mapping φ which takes as input a pair (a, b) ∈
Zq[x]/f×Rq[x]/f and maps it to a pair (a′, b′) ∈ Z<nq [x]×R<dq [x] such that φmaps U(Zq[x]/f×Rq[x]/f)
to U(Z<nq [x]× R<dq [x]) and P(f)

q,Dαq (s) to MPq,n,d,Dα′q (s′). First, we choose s∗ ←↩ U(Zq[[x]]).
For each sample asked by the MP-LWE oracle, we ask the PLWE oracle for a sample (ai, bi). Now we

choose ri ←↩ U(Z<n−mq [x]) and set a′i(x) = ai + fri(x) = ai(x) · xn−m + f(x) · ri(x), which is uniform
in Z<nq [x], using the same argument as in Lemma 4.3. Since the leading coefficient of f is invertible in
Zq, f is invertible in the ring of formal series and we can set

b′i(x) =
[
bi(x)
f(x)

]m−1+d−1

m−1
+ [a′i(x)s∗(x)]n−1+d−1

n−1 + e′i(x)

for some e′i chosen from an error compensating Gaussian distribution.
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We have two cases, depending on the distribution from which the sample (a, b) has been chosen.
If for any i, we have bi = ais+ ei mod f for some common secret s and ei ←↩ Dαq, then there exists

a polynomial ki ∈ Zq[x] of degree ≤ m− 2 such that bi = ais+ ei − kif and bi(x) = ai(x)s(x) + ei(x) ·
xm−1 − ki(x) · f(x).

Notice that

bi(x)
f(x)

= a′i(x)− f(x)ri(x)
xn−m

· s(x)
f(x)

+ ei(x)
f(x)

· xm−1 − ki(x)

= a′i(x) · s(x)
f(x)

· 1
xn−m

+ ei(x) · xm−1

f(x)
− ki(x)− ri(x)s(x)

xn−m

and

[
bi(x)
f(x)

]m−1+d−1

m−1
=
[
a′i(x) · s(x)

f(x)
+ ei(x) · xn−1

f(x)
− ki(x) · xn−m − ri(x)s(x)

]n−1+d−1

n−1
.

The degree of the polynomials ki(x) · xn−m and ri(x)s(x) is less than n− 1, which implies that

[
bi(x)
f(x)

]m−1+d−1

m−1
=
[
a′i(x) · s(x)

f(x)
+ ei(x) · xn−1

f(x)

]n−1+d−1

n−1
.

It follows that

b′i(x) =
[
a′i(x) · ( s(x)

f(x)
+ s∗(x))

]n−1+d−1

n−1
+
[
ei(x)
f(x)

]d−1

0
+ e′i(x).

In the following, we analyse the distribution of
[
ei(x)
f(x)

]m−1

0
. By writing 1

f(x)
=
∑∞
j=0 zj · xj , we

notice that the vector of the first m coefficients of ei(x)
f(x)

is Zei, where

Z =



0 0 . . . . . . z0

0 0 . . . z0 z1
...

...
...

...
...

...
...

...
...

...

z0 z1 . . . . . . zm−1


and ei =



e0

e1
...
...

em−1


.

By identifying the coefficients of 1
f(x)

, we obtain that z0 = 1 and

zj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−fm−1 −fm−2 · · · · · · −fm−j+1 −fm−j
−1 −fm−1 . . . . . . −fm−j+2 −fm−j+1

0 −1 . . . . . . . . . . . .

0 . . . . . . . . . . . . . . .

0 . . . . . . −1 −fm−1 −fm−2

0 . . . . . . 0 −1 −fm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for any j ∈ {1,m − 1}. One can now notice that zj = −[xm+j mod f ]0 for any j ∈ {0, . . . ,m − 1},
which means that the matrix Z is closely related to the matrix Mf that we used in the proof of
Theorem 4.1. Moreover, using the definition of the expansion factor and the fact that zm−1 = 0, we
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get that |zj | < EF(f) for any j ≤ m− 1.

We can see now that the vector of coefficients of the polynomial
[
ei(x)
f(x)

]d−1

0
can be written as Z(d) ·ei,

where Z(d) ∈ Zd×mq is the submatrix of Z containing only the first d rows. Using the same argument
as in the proof of Lemma 2.4, we have that ||Z(d)||2 ≤ (

√
d · EF(f))2 < (

√
d · S)2. This implies that

by adding a compensating Gaussian e′i(x) as in Theorem 4.1, the distribution of (a′i, b′i) will be exactly
MPq,n,d,Dα′q .

If for any i, the element bi was uniform in Rq [x]
(f) , then

[
bi(x)
f(x)

]m−1+d−1

m−1
will also be uniform in

R<dq [x]. Indeed, notice that
[
bi
f

]
k

= 1
[f ]m

(
[bi]k −

k∑
j=1

[f ]j ·
[
bi
f

]
k−j

)
for any k ≥ 0. We set by definition

[ bi
f

]−1 := − [bi]0
[f ]0 . Now we can see that

([
bi

f

]
m−1

, . . . ,
[
bi

f

]
m−1+m−1

)
= − 1

[f ]m

([
bi

f

]
−1

, . . . ,
[
bi

f

]
m−2

)
· Fm,

where F is the matrix

F =



0 0 . . . 0 [f ]0
1 0 . . . 0 [f ]1
0 1 . . . 0 [f ]2
...

0 0 . . . 1 [f ]m−1


∈ Zm×m.

Since b is uniformly distributed, so is the vector
([

bi
f

]
−1

, . . . ,
[
bi
f

]
m−2

)
. Moreover, since the free

coefficient of f is invertible in Zq, the matrix F is invertible modulo q and maps the uniform distribution

to the uniform one and we get that, in particular,
([

bi
f

]
m−1

, . . . ,
[
bi
f

]
m−1+d−1

)
is also uniform. As a

consequence, b′i(x) will also be uniform.

Notice that the only condition on fm used in the reduction is the invertiblity in Zq. Still, we keep
the stronger condition fm = 1 in the statement of the theorem just to be consistent with the definition
of the PLWE(f) problem.

4.7 Hardness of MP-LWE with small secrets
In the next chapter, we will show the cryptographic relevance of MP-LWE by builduing a public-key
encryption scheme and a signature scheme whose proofs of security rely on the presumed hardness
of MP-LWE. A main obstacle towards building a signature scheme directly from MP-LWE with the
Fiat-Shamir with aborts methodology [Lyu09] is the need of small secrets. In this section we show that
MP-LWE remains at least as hard as PLWE for numerous parametrizing polynomials f , when the secret s
is sampled from a specific distribution χs that produces small secrets with overwhelming probability.
We use the so-called "discrete variant" of MP-LWE, where the error distribution is over Z<dq [x] instead
of R<dq [x]. For the ease of reading, we keep the same notations for the MP-LWE problem with discrete
noise as for the MP-LWE problem with continuous noise.

By Ji ∈ Zi×i we denote the matrix with 1’s on the anti-diagonal and 0’s everywhere else. Let q ≥ 2,
n ≥ d > 0, T > 0 and k := n+d− 1. Let E(T , d,n) denote the set of all monic polynomials g(x) ∈ Z[x]
with constant coefficient coprime to q, degree m ∈ [d,n], and σm(Mf ) ≥ T .
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Theorem 4.3. Let q ≥ 2, n ≥ d > 0, T > 0 and k := n+d−1. For any polynomial f ∈ E(T , d,n) and
1 ≥ α ≥ 2

√
n

qT , there is a ppt reduction from PLWE(f)
q,DZm,αq,DZm,αq

to MP-LWEq,n,d,DZd,α′′q ,DZk,α′q
, where

α′ = αn
√

2n · EF(f)2 and α′′ = α
√

2d · EF(f).

Proof. We first reduce PLWE(f) to a variant of MP-LWE where the dependence on f lies both in the
secret and error distributions. Using the same idea as in Theorem 4.1, except for the fact that now we do
not rerandomize the secret to make it uniform, we know that there is a ppt reduction from PLWE(f)

q,χe,χs
to MP-LWEq,n,d,χ′e,χ′s where χ

′
e = Jd ·Md

f ·χe and χ′s = Jn+d−1 ·Rotd+n−1
f (1) ·Mf ·χs. We now define the

following notations: Bs := α · qJk · Rotkf (1) ·Mf and Be := α · qJd ·Md
f , and Σs := Bs ·Bts ∈ Rk×k and

Σe := Be ·Bte ∈ Rd×d, respectively. This means that there is a a ppt reduction from PLWE(f)
q,DZm,αq ,DZm,αq

to MP-LWEq,n,d,DZd,Σe
,DZk,Σs

. We now have, using Lemmas 2.4 and 2.5, that

‖Σs‖ ≤ (αq)2 · ‖Rotd+n−1
f (1)‖2 · ‖Mf‖2

≤ (αq)2 ·
(
m+ (d+ n− 1−m) ·m · EF(f)2)m · EF(f)2

≤ (αq)2 · (n+ (n− 1) · n · EF(f)2)n · EF(f)2

≤ (αq)2 · n3 · EF(f)4 < (α′q)2/2

and

‖Σe‖ ≤ (αq)2 · ‖Md
f‖2 ≤ d · (αq · EF(f))2 < (α′′q)2/2.

Since ‖Σs‖ < (α′q)2 and ‖Σe‖ < (α′′q)2, there exist two symmetric positive definite matrices Σ′s
and Σ′e such that Σs + Σ′s = (α′q)2Ik and Σe + Σ′e = (α′′q)2Id. We now replace the rerandomization
to uniform from Theorem 4.1 by a rerandomization to a Gaussian distribution. We first sample t ←↩
DZk,Σ′s . For any MP-LWEq,n,d,DZd,Σe

,DZk,Σs
sample (ai, bi), we sample e′ ←↩ DZd,Σ′e and output (a′i, b′i) =

(ai, bi + ai �d t+ e′i). If (ai, bi) is uniform, so is (a′i, b′i). If bi = ai �d s+ ei, then

b′i = ai �d s+ ei + ai �d t+ e′i = ai �d (s+ t) + (ei + e′i).

The matrices Σs, Σ′s, Σe and Σ′e are all symmetric, so they are in particular orthogonally diagonaliz-
able. Moreover, since Σs and Σ′s (resp. Σe and Σ′e) commute, it means that Σs and Σ′s (resp. Σe and Σ′e)
are simultaneously diagonalizable. We can hence write Σs = UDsU

t and Σ′s = UD′sU
t for two diagonal

matrices Ds and D′s such that (α′q)2Ik = Ds +D′s and an orthogonal matrix U ∈ Rk×k. Similarly, we
can write Σe = V DeV

t and Σ′e = V D′eV
t, where De and D′e are diagonal, De + D′e = (α′′q)2Id and

V ∈ Rd×d is orthogonal. Now we can write

η2−k(
√

Σ−1
s + Σ′−1

s · Zk) = η2−k(
√
U(D−1

s +D′−1
s )U t · Zk) = η2−k(U

√
D−1
s +D′−1

s · Zk).

Since the smoothing parameter is invariant to rotations, we have that

η2−k(
√

Σ−1
s + Σ′−1

s · Zk) = η2−k(
√
D−1
s +D′−1

s · Zk).

Using Lemma 2.9, we obtain that

η2−k(
√
D−1
s +D′−1

s · Zk) ≤ max
i

√
1

σi(Σs)
+ 1

(α′q)2 − σi(Σs)
·
√
k + 1.

We showed that σ1(Σs) ≤ (αq)2σ1(Mf )2σ1(Rotd+n−1
f (1))2 ≤ (α′q)2/2, which implies that (α′q)2 −
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σi(Σs) ≥ σi(Σs) for any i ≤ k and thus for any i ≤ k,

1
σi(Σs)

+ 1
(α′q)2 − σi(Σs)

≤ 2
σi(Σs)

≤ 2
σk(Σs)

.

Using the bound on the smallest singular value of Mf , we now get that

σk(Σs) ≥ (αq)2σm(Mf )2σm(Rotn+d−1
f (1))2 ≥ (αq)2 · T 2,

which guarantees that for any α ≥ 2
√
n

q·T we have that

η2−k(
√
D−1
s +D′−1

s · Zk) ≤
√

2
(αq)2 · T 2 ·

√
k + 1 ≤ 1.

As a consequence, using Lemma 2.7, the statistical distance between the distribution of s+t and DZk,α′q

is < 4 · 2−d = 4ε as k > d. Similarly, we have η2−d(
√

Σ−1
e + Σ′−1

e · Zd) ≤ 1 and the statistical distance
between the distribution of ei + e′i and DZd,α′′q is also ≤ 4ε. This completes the proof.

Lemma 4.5. Let f = xm+P (x) ∈ Z[x] with m ≥ 2 and deg(P ) ≤ m/2. Then σm(Mf ) ≥ 1
2+
√
m·EF(f) .

Proof. By reordering the rows of Mf , the singular values stay the same and we can view Mf as a block
of four matrices D1 ∈ Zbm/2c×bm/2c, D2 ∈ Zdm/2e×dm/2e, 0 ∈ Zdm/2e×bm/2c and T ∈ Zbm/2c×dm/2e in
the following way:

Mf =

 D1 T

0 D2

 .

The matrices D1 and D2 are diagonal, 0 is the all-0 matrix and T is an upper triangular matrix.
We now use the definition σm(Mf ) = min(‖Mf · y‖2 : y ∈ Rm, ‖y‖2 = 1). Let y ∈ Rm such that
σm(Mf ) = ‖Mf · y‖2 and ‖y‖2 = 1. The vector y can be written as y = (yt0|yt1)t, with y0 ∈ Rbm/2c and
y1 ∈ Rdm/2e. On the one hand, we have:

‖Mf · y‖2 ≥ ‖D1 · y0 + T · y1‖2 ≥ ‖D1 · y0‖2 − ‖T · y1‖2
≥ ‖y0‖2 − ‖T‖ · ‖y1‖2
≥ ‖y‖2 − ‖y1‖2 − ‖Mf‖ · ‖y1‖2
≥ 1− (1 +

√
m · EF(f)) · ‖y1‖2,

where the last inequality is by Lemma 2.4. On the other hand, we also have

‖Mf · y‖2 ≥ ‖D2 · y1‖2 ≥ ‖y1‖2.

This provides the bound

σm(Mf ) ≥ max
(
1− (1 +

√
m · EF(f)) · ‖y1‖2, ‖y1‖2

)
≥ 1

2 +
√
m · EF(f) ,

and the conclusion follows.

An elementary computation shows that for any polynomial as in the above Lemma 4.5, we have
EF(f) ≤ 3

4m
2‖P‖2∞ (see also [LM06, Se. 3.1] for a similar but more general statement). This implies

the following corollary of Theorem 4.3.

Corollary 4.1. Let q ≥ 2, n ≥ d > 0, k := n + d − 1 and S > 0. For any degree m ≥ 2 polynomial
f = xm + P (x) ∈ Z[x] with constant coefficient coprime with q such that deg(P ) ≤ m/2 and ‖P‖2∞ ≤
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4S/3m2 and any 1 ≥ α ≥ 2
√
n · (2 +

√
nS)/q there is a ppt reduction from PLWE(f)

q,DZm,αq,DZm,αq
to

MP-LWEq,n,d,DZd,α′′q ,DZk,α′q
, where α′ = αn

√
2n · S2 and α′′ = α

√
2d · S.
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Chapter 5

Applications of MP-LWE in
cryptography

In this chapter, we exhibit the cryptographic expressiveness of MP-LWE by constructing a public-key
encryption scheme and a digital signature scheme whose proofs of security rely on the hardness of PLWE
for at least one polynomial f of degree n in a family whose size is exponentially large as a function
of n. We also argue why the technique used in [GPV08] to build the so-called dual of the encryption
scheme above cannot be applied in the MP-LWE setting.

This chapter is mainly based on two articles: a joint work [RSSS17] with Amin Sakzad, Damien
Stehlé and Ron Steinfeld which was accepted at Crypto 2017 and a joint work [BDH+20] with Shi
Bai, Dipayan Das, Ryo Hiromasa, Amin Sakzad, Damien Stehlé, Ron Steinfeld and Zhenfei Zhang
accepted at PKC 2020.
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5.1 Introduction
The first cryptographic scheme based on LWE was the public-key encryption scheme given by Regev in
[Reg09]. Assume n is the dimension and q is the modulus of the underlying LWE problem. The public
key consists of m LWE samples (ai, bi =< ai, s > + ei mod q) ∈ Znq × Zq, while the secret key consists
of the commun secret s used to generate the respective samples. To encrypt a bit µ ∈ {0, 1}, one takes
a random subset S of [m] and outputs the ciphertext c = (

∑
i∈S ai,µ · bq/2c+

∑
i∈S bi), which can be

interpreted as an element in Zn+1
q . To decrypt c, one computes (s, 1)t · c and decrypts to 0 if this is

closer to 0 than to bq/2c modulo q or decrypts to 1 otherwise. If the errors are small compared to q,
than the decryption is correct with high probability. The security proof is based on two observations:
the public key is indistinguishable from uniform by the LWE assumption and encrypting using a uniform
key is information-theoretically secure. A major drawback of the above cryptosystem is that it allows
the encryption of only one bit at a time. In order to fix this, Peikert et al. described in [PVW08]
an improved version of the above cryptosystem, which allows the encryption of l bits at a time. The
main idea is to replace the secret s ∈ Znq with a matrix S ∈ Zl×nq whose rows represent l uniformly
independent LWE secrets. The encryption scheme allows to encrypt l = O(n) bits per ciphertext, with
no asymptotic increase in the sizes of the public key or ciphertexts, nor in the runtime of encryption
at the cost of an increase in the size of the secret key size and decryption runtime.

Later on, Gentry, Peikert and Vaikuntanathan described in [GPV08] a public-key encryption scheme
which can be seen as a "dual" of the initial Regev cryptosystem, in the sense that the key generation and
the encryption steps are swapped. In the dual scheme, the secret key is an uniformly vector x ∈ {0, 1}m
and the public key consists of m uniform vectors ai ∈ Znq and u =

∑
i∈[m] aixi. To encrypt a bit

µ ∈ {0, 1}, one chooses a secret s ∈ Znq and outputs the ciphertext c = (st ·a1, . . . , st ·am, st ·u+µ·bq/2c).
To decrypt, one computes ct · (x, 1) and decrypts to 0 if this value is closer to 0 than to bq/2c and
to 1 otherwise. The security proof has two main ideas: for a reasonable choice of parameters, the
public key is nearly uniform using the leftover hash lemma and a public key along with a ciphertext is
indistinguishable from uniform by the LWE hardness assumption.

The above LWE based encryption schemes also enjoy PLWE and RLWE counterparts ([SSTX09,
LPR10, LPR13], among others).

The SIS problem and its variants allow the construction of digital signatures secure both in the
standard model ([CHKP10, Boy10, MP12, DM14], etc.) and random-oracle model ([GPV08, Lyu09,
Lyu12, GLP12, DDLL13], etc.).

5.2 Contributions
In this chapter, we illustrate the cryptographic expressiveness of MP-LWE, but also its limitations.

In Section 5.3, we first describe a public-key encryption scheme adapted from [Reg09] to the middle-
product setting. The scheme is IND-CPA secure under the MP-LWE hardness assumption, involves keys
of bit-size Õ(λ) and algorithms running in time Õ(λ). The correctness proof of the scheme uses the
associativity property of the middle product. To establish its security, we prove that a related hash
function family involving middle-products is universal and apply the generalized version of the leftover
hash lemma from Section 2.3.2. The standard leftover hash lemma does not seem to suffice for our
needs, as in our case the first part of the ciphertext is not statistically close to uniform as it happens
in Regev’s encryption scheme.

In Section 5.5, we build an identification scheme which follows Schnorr’s general framework [Sch89]
and then upgrade it to a signature scheme MPSign that is tightly secure in the quantum-access random
oracle model, using [KLS18]. The signature scheme is secure under the MP-LWE with short secrets
hardness assumption. We show that MPSign is UF-CMA, which means that no adversary may forge
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a signature on a message for which it has not seen a signature before. We did not manage to prove
that there is no adversary who may forge a new signature on a previously signed message, i.e., that
the scheme is UF-sCMA. Nevertheless, as discussed in Chapter 2, any UF-CMA secure signature can be
upgraded to a UF-sCMA secure signature using a one-time UF-sCMA secure signature [Kat10, p. 27].

We provide concrete parameters for MPSign corresponding to level 1 security of the NIST post-
quantum standardization process (via the SVP core hardness methodology from [ADPS16]), which
take into account our tight quantum random-oracle model security proof with respect to small secret
MPLWE (rather than just taking in account the classical random-oracle model security proof as, e.g., in
the Dilithium scheme parameter selection [DKL+18]). We also provide parameters that achieve similar
security to those from [Lyu16], to allow for a reasonably fair comparison. The MPSign verification key
is larger but its signature size is twice smaller.

Our MPSign signature length savings over the scheme of [Lyu16] arise mainly due to our use of
much smaller secret key coordinates. Therefore, one could wonder the reducing the size of the secret
key coordinates in the scheme of [Lyu16] would also give a secure signature scheme. As an additional
small contribution we show that the answer is negative by presenting a simple efficient key recovery
attack on Lyubashevsky’s scheme with sufficiently small secret coordinates. Our attack works (heuris-
tically) when the underlying inhomogeneous variant of PSIS∅ has a unique solution, and shows that
a lower bound similar to that shown sufficient in the security proof of [Lyu16] is also necessary for
the security of Lyubashevsky’s scheme (and the underlying inhomogeneous PSIS∅ problem) with small
secret coordinates. Zhenfei Zhang implemented a proof-of-concept of MPSign in Sage, and the code is
publicly available at:

https://github.com/pqc-ntrust/middle-product-LWE-signature.

Adapting the dual-Regev scheme from [GPV08] does not seem straightforward. Indeed, it appears
that we would need a leftover hash lemma for polynomials over Zq[x] that are not folded modulo some
polynomial f . The difficulty is that the constant coefficients of the polynomials are now “isolated”, in
the sense that the constant coefficient of a polynomial combination of polynomials only involves the
constant coefficients of these polynomials. At the end of this chapter we provide evidence that even
if we assume the existence of such a leftover hash lemma, the technique used in [GPV08] to prove
correctness cannot be applied to a direct adaptation of the respective scheme to the middle-product
setting.

5.2.1 Related works
Our signature construction is similar to the one in [Hir18]. However, the proof of the latter is incorrect:
in its proof of high min-entropy of commitments (see [Hir18, Lemma 7]), it is assumed that the middle
n coefficients of the product between a uniform a ∈ Zq[x] of degree < n and a fixed polynomial y of
degree ≤ 2n, are uniform. In fact, this distribution depends on the rank of a Hankel matrix associated
to y and encoding the linear function from a to the considered coefficients of the product. This Hankel
matrix can be of low rank and, when it is the case, the resulting distribution is uniform on a very
small subset of the range. Interestingly, the distribution of these Hankel matrices (for a uniform y)
was recently studied in [BBD+19], in the context of proving hardness of an MP-LWE variant with
deterministic noise. We do not know how to fix the error from [Hir18]. As a result, we use a different
identification scheme to be able to make our proofs go through. Concretely, the identification scheme
from [Hir18] used the Bai-Galbraith [BG14] compression technique to decrease the signature size. We
circumvent the difficulty by not using the Bai-Galbraith compression technique.

Lyubashevsky’s signature from [Lyu16] can also be viewed as secure under the assumption that
PLWE(f) is hard for at least one f among exponentially many defining polynomials f , like ours. In-
deed, it was proved secure under the assumption that PSIS∅ is hard, it was proved that PSIS(f) reduces
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to PSIS∅ for exponentially many defining polynomials f , and PLWE(f) (directly) reduces to PSIS(f).
Furthermore, MP-LWE (both with small-magnitude secrets and uniform secrets) reduces to PSIS∅,
whereas the converse is unknown. Hence it seems that in terms of assumptions, Lyubashevsky’s signa-
ture outperforms ours. However, the security proof from [Lyu16] only holds in the random oracle model,
as opposed to ours which is tight in the quantum-access random oracle model. Recent techniques on
Fiat-Shamir in the QROM [LZ19, DFMS19] might be applicable to [Lyu16], but they are not tight.

It is useful to also compare MPSign with LWE-based signature schemes and efficient lattice-based
signature schemes such as those at Round 2 of the NIST post-quantum standardization process [NIS]:
Dilithium [DKL+18], Falcon [PFH+19] and Tesla [BAA+19]. Compared to LWE-based signatures, our
proposal results in much smaller values for the sum of sizes of a signature and a public key, with much
stronger security guarantees than the efficient schemes based on polynomial rings. For example, scaling
Dilithium with NIST security level 1 parameters to LWE requires multiplying the public key size by
the challenge dimension n = 256, since for an LWE adaptation of Dilithium, the public key would be a
matrix with n columns instead of 1. For NIST security level 1, the public key and signature sizes sum
would be above 300KB for an LWE adaptation of Dilithium, whereas the same quantity is 47KB for
MPSign (see Table 5.2). Now, compared to the Dilithium, Falcon and Tesla NIST candidates, security
guarantees are different. The security of Dilithium and Tesla relies on the module variants of PLWE
and PSIS for a fixed polynomial [LS15]. In the case of Dilithium, the known security proof in the
QROM is quite loose [LZ19], unless one relies on an ad hoc assumption like SelfTargetMSIS [KLS18].
Moreover, in the case of Dilithium, the SIS instance is in an extreme regime: the maximum infinity
norm of the vectors to be found are below q/2, but their Euclidean norms may be above q. Currently, no
reduction backs the assumption that SIS is intractable in that parameter regime. In Falcon, the public
key is assumed pseudo-random, which is an adhoc version of the NTRU hardness assumption [HPS98].
Oppositely, the security of MPSign relies on the assumed PLWE hardness for at least one polynomial
among exponentially many. Overall, MPSign is an intermediate risk-performance tradeoff between
fixed-ring and LWE-based schemes.

5.2.2 Follow-up works
In this section, we briefly describe two works built upon MP-LWE.

5.2.2.1 Titanium: KEM from the MP-LWE assumption

Titanium ([SSZ17, SSZ19]) is an optimized public-key encryption scheme built upon our results from
Section 5.3 and submitted to the NIST standardization competition [NIS]. In Titanium, Steinfeld et
al. first specialize the hardness result on MP-LWE to a restricted (but still exponentially large) family
of polynomials F . For any f ∈ F , the PLWE(f) to MP-LWE reduction preserves the noise distribution.

The proposal specifies two variants of Titanium: Titanium-CPA and Titanium-CCA. Titanium-
CPA is tightly IND-CPA secure in the random-oracle model under the PLWE(f) hardness assumption
with respect to any f in the family F . Titanium-CCA is obtained by converting Titanium-CPA into
an IND-CCA secure Key Encapsulation Mechanism (KEM) using the generic Fujisaki-Okamoto trans-
formation [FO99, HHK17]. In the classical setting, the Fujisaki-Okamoto conversion is tight and the
concrete parameters of Titanium are chosen by taking into account proof bounds and the best known
BKZ attack on the underlying PLWE(f) problem associated to a polynomial f ∈ F of maximum degree
and following the CoreSVP methodology from [ADPS16]. In the quantum setting, the parameters of
Titanium are chosen based on the assumption that the classical security proof bounds still apply.

The Std128 parameter set of Titanium-CPA corresponds to NIST category 1 or AES 128 security
level. At a higher security level, Titanium-CPA instantiated with Std128 has ciphertexts 3 times
smaller, faster key generation, encryption, and decryption time by factors of 1.4, 2.3, and 1.3 and
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shorter |pk| + |ct| size compared to the LWE based encryption scheme described in [BCD+16]. On
the other hand, compared to the Module-LWE based scheme Kyber [BDK+18], at a lower security
level, Titanium-CCA has ciphertexts, secret key, and public key that are at least 3 times larger and
key generation, encapsulation, and decapsulation times slower by factors of 7.6, 5 and 5.1. On the
security front, Titanium achieves better security guarantees than Kyber, by not relying on the choice
of a specific polynomial. Consequently, Titanium could be seen as an intermediate solution in terms of
security guarantees versus efficiency.

5.2.2.2 Identity-based encryption from MP-LWE

Lombardi et al. [LVV19] introduced a slight variant of MP-LWE, the Degree-Parametrized-MP-LWE
problem, which remains at least as hard as the PLWE problem for a large class of polynomials f . In
this new variant, the samples generated using a fixed secret polynomial s can have varying pre-specified
degrees. They also proved a leftover-hash lemma for polynomials with bounded degree and proposed a
so-called dual-Regev type encryption scheme based on the Degree-Parametrized-MP-LWE assumption.
This is a variant of the Regev type encryption we build in this chapter, where the key generation and
ecryption steps are swapped. Their scheme is IND-CPA secure in the random oracle model under the
Degree-Parametrized-MP-LWE assumption and has quasi-linear key size and algorithm runtime.

Their main contribution is an Identity-Based Encryption (IBE) scheme based on Degree-Parametrized-
MP-LWE. Their construction follows the lattice trapdoors paradigm of [GPV08] and is obtained
by combining the dual encryption scheme with Micciancio-Peikert style lattice trapdoors [MP12].
The IBE scheme is (T , ε) secure under the (T , ε) Degree-Parametrized-MP-LWE assumption only for
ε > 2−poly(logn). This technical limitation is due to the achievable parameters of their leftover hash
lemma. Since for exponential security, one needs to be able to handle exponentially small ε, their IBE
scheme does not reach a meaningful form of concrete security.

5.3 A public-key encryption scheme from MP-LWE
In this section we describe a public key encryption scheme that is IND-CPA secure under the MP-LWE
hardness assumption. The scheme is an adaptation of Regev’s from [Reg09] and can be upgraded to
an IND-CCA secure scheme in the random-oracle model using the Fujisaki-Okamoto [FO99] transform.

5.3.1 The scheme
The public-key encryption scheme we propose in Figure 5.1 relies on parameters q,n, d, t ≥ 2 with
q odd, and a noise rate α ∈ (0, 1). We let χ = bDαqe denote the distribution over Z<d+k[x] where
each coefficient is sampled on R from Dα·q and then rounded to nearest integer. The plaintext space
is {0, 1}<d[x] and the ciphertext space is Z<k+n

q [x]× Z<dq [x].

5.3.2 Correctness
The correctness of the scheme presented in Figure 5.1 follows from Lemma 4.2 and the proof of cor-
rectness of Regev’s encryption scheme.

Lemma 5.1. Assume that α < 1/(16
√
λtk) and q ≥ 16t(k+ 1). With probability ≥ 1− d · 2−Ω(λ) over

the randomness of (sk, pk) ←↩ KeyGen, for all plaintext m and with probability 1 over the randomness
of Enc, we have Dec(sk, Enc(pk,m)) = m.
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KeyGen(1λ)
1: s←↩ U(Z<n+d+k−1

q [x])
2: i = 1
3: for i ≤ t do
4: ai ←↩ U(Z<nq [x])
5: ei ←↩ χ
6: bi = ai �d+k s+ 2 · ei ∈ Z<d+k

q [x]
7: end for
8: sk = s
9: pk = (ai, bi)i≤t
10: output (pk, sk)

Enc(pk,m)
1: i = 1
2: for i ≤ t do
3: ri ←↩ U({0, 1}<k+1[x])
4: end for
5: c1 =

∑
i≤t ri · ai

6: c2 = m+
∑
i≤t ri �d bi

7: output c = (c1, c2)

Dec(sk, c)
1: m′ = (c2 − c1 �d s mod q mod 2
2: output m′

Fig. 5.1: PKE scheme from MP-LWE.

Proof. Assume that (c1, c2) is an encryption of m under pk. Then we have, modulo q:

c2 − c1 �d s = m+
∑
i≤t

ri �d bi − (
∑
i≤t

ri · ai)�d s

= m+
∑
i≤t

(
ri �d (ai �d+k s+ 2 · ei)− (ri · ai)�d s

)
= m+ 2

∑
i≤t

ri �d ei,

where the last equality follows from Lemma 4.2. If ‖m + 2 ·
∑
i≤t ri �d ei‖∞ < q/2, then centered

reduction modulo q of c2− c1�d s gives us m+ 2 ·
∑
i≤t ri�d ei (over the integers). Reducing modulo 2

then provides m.
Now, each coefficient of

∑
i≤t ri �d ei can be viewed as an inner product between a binary vec-

tor of dimension t(k + 1) and a vector sampled from bDαqet(k+1). Each coefficient individually has
magnitude ≤ αq

√
λt(k + 1) + t(k + 1) with probability ≥ 1 − 2−Ω(λ), because of the Gaussian tail

bound and the triangle inequality. By the union bound and triangular inequality, we obtain that
‖m+ 2 ·

∑
i≤t ri �d ei‖∞ < 2αq

√
tλ(k + 1) + 2t(k + 1) + 1 with probability ≥ 1− d · 2−Ω(λ).

5.3.3 Security
The security proof of the scheme presented in Figure 5.1 is adapted from that of Regev’s encryption
scheme from [Reg09], with a subtlety in the application of the leftover hash lemma. In Regev’s scheme,
if the public key is replaced by uniformly random elements, then the leftover hash lemma guarantees
that the joint distribution of the public key and the encryption of an arbitrary plaintext is within
exponentially small statistical distance from uniform. This property does not hold in our case: indeed,
if a1, . . . , at all have constant coefficient equal to 0 (this event occurs with a probability 1/qt, which
is not exponentially small for our parameters), then so does

∑
i riai. However, we can show that

the second component c2 of the ciphertext is statistically close to uniform, given the view of the first
component c1. This suffices, as the plaintext is embedded in the second ciphertext component.

We first prove that the hash function family coming into play in the security proof is universal.

Lemma 5.2. Let q, k, d ≥ 2. For (bi)i ∈ (Z<d+k
q [x])t, we let h(bi)i denote the map that sends (ri)i≤t ∈

({0, 1}<k+1[x])t to
∑
i≤t ri �d bi ∈ Z<dq [x]. Then the hash function family (h(bi)i)(bi)i is universal.
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Proof. Our aim is to show that for r1, . . . , rt not all 0, we have

Pr
(b
i
)i,(b′i)i

[∑
i≤t

ri �d bi =
∑
i≤t

ri �d b′i
]

= q−d.

W.l.o.g. we may assume that r1 6= 0. By linearity, it suffices to prove that for all y ∈ Z<dq [x],

Pr
b1

[
r1 �d b1 = y

]
= q−d.

Let j be minimal such that the coefficient in xj of r1 is non-zero (i.e., equal to 1 as r1 is binary).
Then the equation r1 �d b1 = y restricted to entries j + 1 to j + d is a triangular linear system in
the coefficients of b1 with diagonal coefficients equal to 1. The map b1 7→ r1 �d b1 restricted to these
coefficients of b1 is hence a bijection. This gives the equality above.

Lemma 5.3. Assume that t ≥ (2 · λ+ (k + d+ n) · log q)/(k + 1). Then the scheme above is IND-CPA
secure, under the MP-LWEq,n,d+k,Dαq hardness assumption.

Proof. Recall that in the IND-CPA security experiment, the challenger C first gives pk to the adver-
sary A. Then, A sends back two plaintexts m0 6= m1. Now the challenger samples a bit b ←↩ {0, 1},
computes c←↩ Enc(pk,mb) and sends c to A, who eventually outputs a bit b′. The scheme is secure if
no ppt adversary A outputs b′ = b more probability that is non-negligibly away from 1/2.

Now, consider the variant of the experiment above, in which C does not run (sk, pk)←↩ KeyGen(1λ)
but instead samples pk = (ai, bi)i uniformly. Under the MP-LWE hardness assumption, the probabilities
that A outputs b′ = b in both experiments are negligibly close. The reduction from MP-LWE to
distinguishing the first and second experiments consists in multiplying by 2 (which is co-prime to q)
and rounding the real samples given by an MP-LWE oracle to the nearest integer modulo q. The latter
maps MP-LWE with real noise to MP-LWE with rounded real noise (and uniform MP-LWE over the reals
modulo q to a uniform MP-LWE over the integers modulo q).

We consider a third experiment, in which C also samples pk = (ai, bi)i, and additionally does not
compute c ←↩ Enc(pk,mb) before sending it to A, but instead computes c = (c1, c2) as follows. For
i ≤ t, it samples ri ←↩ U({0, 1}<k+1[x]), u←↩ U(Z<dq [x]), and sets:

c1 =
∑
i≤t

ri · ai , c2 = u.

Note that in this game, the view ofA is independent of b, and hence the probability that it outputs b′ = b

is exactly 1/2. We argue below that the distributions of ((ai, bi)i, c1, c2) in this new experiment and
the latter one are within exponentially small statistical distance. The combination of these two facts
provides the result.

It remains to prove that

∆
(

((ai, bi)i,
∑
i≤t

ri · ai,
∑
i≤t

ri �d bi) , ((ai, bi)i,
∑
i≤t

ri · ai,u)
)
≤ 2−λ,

where the ai’s, bi’s, ri’s and u are uniformly sampled in Z<nq [x], Z<d+k
q [x], U({0, 1}<k+1[x]) and Z<dq [x],

respectively. By Lemma 5.2, the hash function family h(bi)i is universal. Further, the quantity
∑
i≤t ri ·

ai belongs to Z<k+n
q , of cardinality qk+n. Hence, by the Generalized Leftover Hash Lemma (see

Lemma 2.6), the statistical distance above is bounded from above by (2−(k+1)·t · qk+d+n)1/2/2.
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5.3.4 Parameters
Example parameters are n ≥ λ, k = d = n/2, q = Θ(n5/2+c√logn), t = Θ(logn) and α =
Θ(1/n

√
logn), for c > 0 arbitrary. For these parameters, the scheme is correct (by Lemma 5.1)

and secure under MP-LWEq,n,n,Dαq (by Lemma 5.3). These parameters allow to rely on the assumed
hardness of PLWE(f)

q,Dβ·q via Theorem 4.1, for β = Ω(
√
n/q) (hence preventing attacks à la [AG11])

and for any f monic of degree n, with constant coefficient coprime with q and expansion factor ≤ nc.
Finally, note that the scheme encrypts and decrypts n plaintext bits in time Õ(n), and the key pair
has bit-length Õ(n).

5.4 An impossibility result for a dual-Regev scheme based on
MP-LWE

In this section we show that it is impossible to naturally adapt the dual-Regev scheme based on LWE
from [GPV08] and its proofs of correctness and security to the middle-product setting if the distribution
of the randomness used in the public key generation has enough entropy. The security proof of such a
cryptosystem would follow two steps. Firstly, we would have to show that the public key is statistically
close to uniform. Secondly, we would have to argue that the encryption of a message is indistinguishable
from uniform under the MP-LWE hardness assumption.

We are interested in adapting the dual-Regev scheme to the middle-product setting because following
[GPV08], combining the dual-Regev scheme with the so-called lattice trapdoors yields identity-based
encryption. Identity-based encryption (IBE) is a type of public-key encryption in which users can
generate their public keys from some public identifiers (such as their email addresses). The secret key
of an user is generated by a trusted authority using public information and secret trapdoors. One of
the main advantages of an IBE scheme is the elimination of the need to predistribute the public keys
of the users.

We present in Figure 5.2 our attempt of dual-Regev public key encryption scheme based on MP-LWE.
We argue now the design rationale and the choice of parameters. Assume that we want to prove that
the encryption of a message is indistinguishable from uniform under the MP-LWEq,n+1,m+1,χ hardness
assumption, where q is the modulus, n,m ≥ 0 and χ is the error distribution on Zm+1[x] used to
generate the MP-LWE samples. As a consequence, the degree of ai is less than n + 1, the degree
of the secret s is less than n + m − 1, the plaintext space is {0, 1}<m+1[x] and the ciphertext space
is (Z<m+1

q [x])t+1, where t+ 1 is the number of MP-LWE samples. We assume that the randomnesses ri
used in the key generation are sampled from a distribution R on Z<d+1[x] for some d > 0. In order to
create a polynomial u of degree n to be used in the encryption process, we consider that the natural way
would be to first create the polynomial

∑
i riai and then extract n consecutive coefficients out of it. As

a consequence, we set u = [
∑
i riai]

l0+n
l0

∈ Z<n+1
q [x], for some l0 ≥ 0. For the decryption, we consider

that the natural way would be to extract from
∑
i rici a number of m+ 1 consecutive coefficients from

the kth to the (k +m)th position for some k ≥ 0.

Theorem 5.1. (Informal) If H∞(R) > log(3) and assuming that [
∑
i riai]

l0+n
l0

is uniform in Z<n+1
q [x]

conditioned on the ai’s, no matter how we choose l0, k, d ≥ 0, the scheme from Figure 5.2 is not correct.

The proof of the theorem uses the following result.

Lemma 5.4 (Schwartz-Zippel, [GV12]). Let F ∈ Fq[X1, . . . ,Xn] be a non-zero polynomial of degree
d. For any i ∈ {1, . . . ,n}, let Pi be a probability distribution on Zq such that for any i, H∞(Pi) ≥
log(q)− h for some common fixed 0 ≤ h ≤ log(q). If xi ←↩ Pi, then Pr[F (x1, . . . ,xn) = 0) ≤ 2h · d/q.

Proof of Theorem 5.1. Since [
∑
i riai]

l0+n
l0

is uniform in Z<n+1
q [x], we should have l0 ≤ d (otherwise, the

coefficients from d+ n to l0 + n will always be zero). We show that the decryption does not work with
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KeyGen(1λ)
1: i = 1
2: for i ≤ t do
3: ai ←↩ U(Z<n+1

q [x])
4: ri ←↩ R
5: end for
6: u = [

∑
i riai]

l0+n
l0

∈ Z<n+1
q [x]

7: sk := (ri)i≤t
8: pk := ((ai)i≤t,u)
9: output (pk, sk)

Enc(pk,µ)
1: s←↩ U(Z<n+m+1

q )
2: i = 1
3: for i ≤ t+ 1 do
4: ei ←↩ χ
5: end for
6: i = 1
7: for i ≤ t do
8: ci = ai �m+1 s+ 2ei
9: end for
10: ct+1 = u�m+1 s+ 2et+1 + µ
11: output c = (c1, . . . , ct, ct+1)

Dec(sk, c)
1: µ′ = (ct+1 − [

∑
i≤t ri · ci]

k+m
k mod

q) mod 2
2: output µ′

Fig. 5.2: Attempt of a dual-Regev PKE scheme from MP-LWE.

high probability over the choices of r, a and s as it works in the dual-Regev scheme. In order to achieve
correctness, the equality [[ra]l0+n

l0
· s]n+m

n = [r · [as]n+m
n ]k+m

k should hold with high probability over the
choices of r, a and s. Let us denote by Pr,a,s(x) the polynomial [[ra]l0+n

l0
· s]n+m

n − [r · [as]n+m
n ]k+m

k

of degree m. Now notice that Prr,a,s[Pr,a,s(x) = 0] ≤ Prr,a,s[[Pr,a,s]0 = 0] and the coefficients of
the polynomial Pr,a,s(x) are degree 3 polynomials in the coefficients of the r, a and s. Suppose that
[Pr,a,s]0 = [[ra]l0+n

l0
· s]n − [r · [as]n+m

n ]k, which is a polynomial of degree 3 in the coefficients of the
polynomials r, a and s, is the zero polynomial. By plugging in r = xl0 , a = xn and s = 1, we get that
k = l0. By taking r = xl0−1, a = 1 and s = xn+1, we get that the polynomial evaluates to −1, which is
a contradiction. In conclusion, we obtain that [Pr,a,s]0 is not the zero polynomial. Using Lemma 5.4,
we now get that Prr,a,s[Pr,a,s(x) = 0] ≤ Prr,a,s[[Pr,a,s]0 = 0] ≤ 2h · 3/q < 1 for any h < log(q/3).

5.5 A signature scheme based on small secrets MP-LWE
In this section, we build an identification scheme based on the middle-product learning with errors with
small secrets assumption. Then, we show that Theorem 2.3 is applicable to our construction by checking
all the theorem assumptions, as in [KLS18]. As a consequence, by the Fiat-Shamir transformation, we
obtain a digital signature scheme that is secure under the middle-product learning with errors with
small secrets assumption in the quantum random-oracle model.

5.5.1 The identification scheme
We first present in Figure 5.3 an identification scheme which makes use of the middle-product of
polynomials.

We use an extendable output function Sam, i.e., a function on bit strings in which the output can
be extended to any required length. If we want the deterministic output y of Sam on input x to be
uniformly distributed on the set S, we write y ←↩ S := Sam(x).

The key generation starts by choosing a random string ρ and expanding it into a uniform polyno-
mial a ∈ Z<nq [x] using the function Sam. The public key consists of a sample (a, b) drawn from the
MPq,n,d+k,χ(s) distribution, where both the secret s and the error e follow a Gaussian distribution of
parameter α′q, respectively α′′q.
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In the first step of the protocol, the prover chooses two polynomials y1 and y2 whose coefficients are
bounded in absolute value by a′, respectively a′′, and sends to the verifier the polynomial w = a�dy1+y2.
The verifier chooses a random challenge from the challenge space

DH := {c ∈ {0, 1,−1}<k+1[x] with ‖c‖1 = κ}

and sends it back to the prover. The challenge space consists of polynomials of small norms and
the parameter κ is chosen such that the cardinality of the challenge space is large. The prover now
applies rejection in order to make sure that his answer doesn’t leak information about the secret key.
Concretely, the prover computes z1 = c�n+d−1 s+ y1 and z2 = c�d e+ y1 and checks if ‖z1‖∞ ≤ A′

and ‖z2‖∞ ≤ A′′. If so, it accepts to send his answer (z1, z2) to the verifier. Otherwise, it aborts. We
provide concrete parameters with which our scheme can be instantiated in practice in the next section.

IGen

1: ρ←↩ {0, 1}256

2: a←↩ Z<nq [x] := Sam(ρ)
3: s←↩ DZn+d+k−1,α′q
4: e←↩ DZd+k,α′′q
5: b = a�d+k s+ e
6: pk = (ρ, b)
7: sk = (ρ, s, e)
8: output (pk, sk)

P1 (sk)
1: y1 ←↩ Z<n+d−1

≤a′ [x]
2: y2 ←↩ Z<d≤a′′ [x]
3: w = a�d y1 + y2
4: output W = w, St =

(w, y1, y2)

P2(sk,W = w, c,St = (w, y1, y2))
1: z1 = c�n+d−1 s+ y1
2: z2 = c�d e+ y2
3: if ‖z1‖∞ > A′ or ‖z2‖∞ > A′′

then
4: (z1, z2) =⊥
5: end if
6: output Z = (z1, z2)

V (pk,W = w, c,Z = (z1, z2))
1: a←↩ Z<nq [x] := Sam(ρ)
2: if w = a�d z1 +z2− c�d b, ‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′ then
3: output 1
4: else
5: output 0
6: end if

Fig. 5.3: The identification scheme (IGen, V, P = (P1, P2)).

Lemma 5.5. If A′ + ‖c�n+d−1 s‖∞ ≤ a′ and A′′ + ‖c�d e‖∞ ≤ a′′, then the identification scheme is
perfectly na-HVZK, i.e., its transcripts are publicly simulatable and εzk = 0.

Proof. Figure 5.4 (left) shows how to generate a real transcript using the secret key sk, and Figure 5.4
(right) shows how to simulate a transcript using only the public key pk. The identification scheme is
perfectly na-HVZK if every pair of polynomials (z1, z2) ∈ Z<n+d−1

≤A′ [x]×Z<d≤A′′ [x] has the same probability
to be generated in the Trans algorithm as in the Sim algorithm. This is indeed the case: our choice of
parameters guarantees that z1 − c�n+d−1 s ∈ Z<n+d−1

≤a′ [x] and z2 − c�d e ∈ Z<d≤a′′ [x] and moreover, for
any secret key (s, e) and any pair (z1, z2), we have that

Pr(z1 = c�n+d−1 s+ y1|y1 ←↩ Z<n+d−1
≤a′ [x]) = Pr(y1 = z1 − c�n+d−1 s|y1 ←↩ Z<n+d−1

≤a′ [x])
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and
Pr(z2 = c�d e+ y2|y2 ←↩ Z<d≤a′′ [x]) = Pr(y2 = z2 − c�d s|y2 ←↩ Z<d≤a′′ [x]).

As a consequence, the probability of producing z1 and z2 in Trans such that ‖z1‖∞ ≤ A′ and
‖z2‖∞ ≤ A′′ and not returning ⊥ is ( 2A′+1

2a′+1 )n+d−1( 2A′′+1
2a′′+1 )d, which means that the outputs of Trans and

Sim have the same distribution.

Trans (sk)
1: a←↩ Z<nq [x] := Sam(ρ)
2: y1 ←↩ Z<n+d−1

≤a′ [x]
3: y2 ←↩ Z<d≤a′′ [x]
4: w = a�d y1 + y2
5: c←↩ DH

6: z1 = c�n+d−1 s+ y1
7: z2 = c�d e+ y2
8: if ‖z1‖∞ > A′ or ‖z2‖∞ > A′′ then
9: output ⊥
10: else
11: output (z1, z2, c)
12: end if

Sim (pk)
1: a←↩ Z<nq [x] := Sam(ρ)
2: with probability

1− ( 2A′+1
2a′+1 )n+d−1( 2A′′+1

2a′′+1 )d
3: output ⊥
4: c←↩ DH

5: z1 ←↩ Z<n+d−1
≤A′ [x]

6: z2 ←↩ Z<d≤A′′ [x]
7: output (z1, z2, c)

Fig. 5.4: The transcript Trans and the simulation Sim algorithms.

Lemma 5.6. The scheme has correctness error δ = 1− ( 2A′+1
2a′+1 )n+d−1( 2A′′+1

2a′′+1 )d.

Proof. First, we show that the verification procedure always accepts a honest transcript if (z1, z2) 6=⊥.
Assume that (z1, z2) 6=⊥. It means that ‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′. Now we prove that

a�d z1 + z2 − c�d b = a�d y1 + y2.

Because of Lemma 4.2, we have that

a�d z1 =a�d (c�n+d−1 s+ y1)
=a�d (c�n+d−1 s) + a�d y1

=(a · c)�d s+ a�d y1

and

c�d b =c�d (a�d+k s+ e)
=c�d (a�d+k s) + c�d e
=(c · a)�d s+ c�d e.

Overall, we obtain:

a�d z1 + z2 − c�d b
= ((a · c)�d s+ a�d y1) + (c�d e+ y2)− ((c · a)�d s+ c�d e)
= a�d y1 + y2.

Since Sim outputs ⊥ with the same probability as Trans, we know that the probability to have
(z1, z2) =⊥ is exactly δ.
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Lemma 5.7. The identification scheme ID is lossy.

Proof. In the lossy key generation algorithm LossyIGen (Figure 5.5), we generate the public key (a, b)
uniformly. The public keys generated by IGen and LossyIGen are indistinguishable by the MP-LWE
assumption. Indeed, for any quantum adversary A against ID, there exists an adversary B trying to
distinguish MP-LWE samples from uniform ones such that the loss advantage AdvlossID (A) is equal to
the advantage of B.

Lemma 5.8. The identification scheme ID has d · log(2a′′ + 1) bits of min-entropy.

Proof. Indeed, for every commitment ω, we have that:

Pr
a,y1,y2

(a�d y1 + y2 = ω) ≤ max
a,y1

Pr
y2

(y2 = ω − a�d y1) ≤ 1
(2a′′ + 1)d ,

where the first probability is taken over the uniform choice of a ∈ Z<nq [x], y1 ∈ Z<n+d−1
≤a′ [x] and

y2 ∈ Z<d≤a′′ [x]. In the second one, the probability is taken over the uniform choice of y2 ∈ Z<d≤a′′ [x] and
the maximum is taken over all a ∈ Z<nq [x] and y1 ∈ Z<n+d−1

≤a′ [x].

LossyIGen

1: ρ←↩ {0, 1}256

2: a←↩ Z<nq [x] := Sam(ρ)
3: b←↩ Z<d+k

q [x]
4: output pkls = (a, b)

Fig. 5.5: The LossyIGen algorithm.

Lemma 5.9. The identification scheme ID is εls-lossy-sound, where

εls ≤
1
|DH |

+ (4A′ + 1)n+d−1 · (4A′′ + 1)d · |DH |2 · q−d.

Proof. We show that relatively to a lossy key pkls generated by the LossyIGen algorithm in Figure
5.5, not even an unbounded quantum adversary can impersonate the prover. This reduces to the
computation of the following probability taken over the uniform choice of a ∈ Z<nq [x], b ∈ Z<d+k

q [x]
and c ∈ DH :

P := Pr(∃ z1 ∈ Z<n+d−1
≤A′ [x], z2 ∈ Z<d≤A′′ [x] : a�d z1 + z2 − c�d b = w).

Let S denote the set of pairs (a, b) such that there exists at most one c for which there exist small
z1, z2 such that a�d z1 + z2 − c�d b = w. We can write P ≤ P1 + P2, where

P1 = Pr((a, b) ∈ S) · 1
|DH |

≤ 1
|DH |

and

P2 ≤ Pr((a, b) /∈ S) · 1
≤ Pr(∃ c 6= c′, z1, z2, z′1, z′2 : a�d (z1 − z′1) + z2 − z′2 − (c− c′)�d b = 0)
= Pr(∃ ec ∈ DH −DH \ {0}, e1 ∈ Z<n+d−1

≤2A′ , e2 ∈ Z<d≤2A′′ :

a�d e1 + e2 − ec �d b = 0),
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where a and b are uniformly sampled in Z<nq [x], respectively Z<d+k
q [x], c, c′ ∈ DH , z1, z1 ∈ Z<n+d−1

≤A′ [x],
and z2, z′2 ∈ Z<d≤A′′ [x] and DH −DH denotes the set {d− d′ | d, d′ ∈ DH}.

Let us fix (ec 6= 0, e1, e2). The rank of Toep(ec) is maximum for ec 6= 0, which means that the
function b 7→ ec �d b maps an element b from the uniform distribution on Z<d+k

q [x] to an element b′
from the uniform distribution on Z<dq [x]. We can now write:

Pr(a�d e1 + e2 − ec �d b = 0) = Pr(b′ = a�d e1 + e2) = q−d,

where the first probability is taken over the uniform choice of a ∈ Z<nq [x] and b ∈ Z<d+k
q [x] and

the second one is taken over the choice of a ∈ Z<nq [x] and b′ ∈ Z<dq [x]. We conclude that P2 ≤
(4A′ + 1)n+d−1 · (4A′′ + 1)d · |DH |2 · q−d.

5.5.2 The signature scheme
In Figure 5.6, we present our digital signature scheme which is obtained by the de-randomized Fiat-
Shamir transform of the identification scheme ID. The correctness of the signature scheme follows
(see [KLS18, p. 11]) from the correctness of the underlying identification scheme (Lemma 5.6). The
scheme is UF-CMA secure in the quantum random oracle model, as discussed in Subsection 2.5.

The signature scheme relies on a hash function H : {0, 1}∗ → DH , which outputs elements with
small norms and will be modelled by a random oracle in the security proof. We refer to [DDLL13] for
an efficient method to construct such a hash function.

KeyGen

1: ρ←↩ {0, 1}256

2: a←↩ Z<nq [x] := Sam(ρ)
3: s←↩ DZn+d+k−1,α′q
4: e←↩ DZd+k,α′′q
5: b = a�d+k s+ e
6: vk = (b, ρ)
7: sk = (s, e,K, ρ)
8: output (sk, vk)

Sign (sk = (s, e,K, ρ),m)
1: a←↩ Z<nq [x] := Sam(ρ)
2: i = 0
3: while (z1, z2) =⊥ and i ≤ kl do
4: i = i+ 1
5: y1 ←↩ Z<n+d−1

<a′ [x] := Sam(K‖m‖i‖0)
6: y2 ←↩ Z<d<a′′ [x] := Sam(K‖m‖i‖1)
7: w = a�d y1 + y2
8: c := H(w‖m)
9: z1 = c�n+d−1 s+ y1
10: z2 = c�d e+ y2
11: if ‖z1‖∞ > A′ or ‖z2‖∞ > A′′ then
12: (z1, z2) =⊥
13: end if
14: end while
15: output (z1, z2, c)

Verify (vk = (b, ρ),m, (z1, z2, c))
1: a←↩ Z<nq [x] := Sam(ρ)
2: w = a�d z1 + z2 − c�d b
3: if c = H(w‖m), ‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′

then
4: output 1
5: else
6: output 0
7: end if

Fig. 5.6: The signature scheme.

The key generation algorithm samples a←↩ Z<nq [x] using the extendable function Sam seeded with
a 256-bit seed ρ, and then two small secret polynomials s ←↩ DZn+d+k−1,α′q and e ←↩ DZd+k,α′′q. It
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outputs (b = a�d+k s+ e, ρ) as the verification key vk and (s, e,K, ρ) as the signing key sk, K being a
random key for the pseudorandom function Sam(K‖·) used in the signature algorithm.

To sign a message m, we first recompute a ←↩ Z<nq [x] := Sam(ρ), generate deterministic masking
parameters y1 ←↩ Z<n+d−1

<a′ [x] := Sam(K‖m‖i‖0) and y2 ←↩ Z<d<a′′ [x] := Sam(K‖m‖i‖1), where i is the
repetition index and compute w = a�d y1 + y2. Then we compute c := H(w‖m), z1 = c�n+d−1 s+ y1

and z2 = c�d e+y2. A potential signature is now (z1, z2, c). In order to make the signature pair (z1, z2)
independent of the signing key, we perform rejection sampling on potential signatures before outputting
the right one. A potential signature (z1, z2, c) is output if both ‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′.

To check if (z1, z2, c) is a valid signature for a messagem, we first recompute a←↩ Z<nq [x] := Sam(ρ)
and w = a�d z1 + z2 − c�d b and we accept if ‖z1‖∞ ≤ A′, ‖z2‖∞ ≤ A′′ and c := H(w‖m).

5.5.3 Concrete parameters
In this section, we give sample parameters with which our digital signature scheme can be instantiated.
The choice of parameters takes into account the correctness error probability, the security and the
efficiency of our scheme.

The signing acceptance probability is set to p = 1/3 as in [Lyu16] for a fair comparison. In terms of
efficiency, we focus on minimizing the size of a signature. Our signature size is (n+ d− 1) dlog(A′)e+
d dlog(A′′)e+ κ(dlog(k + 1)e+ 1) bits. The optimal value of d/n for minimizing the signature length is
close to 0.5. As d/n reduces below 0.5, the signature dimension drops. Due to the lossiness condition,
d/n and log q are inversely proportional, so we have to increase n to maintain security, which means
that overall the signature length will increase. If d/n increases towards 1, log q reduces but the signature
dimension increases and we cannot reduce the signature length.

The size of our public key (a, b) is 256 + (d+ k)dlog(q)e bits. Since for our lossiness property in the
security proof we need a much larger q than the one used in [Lyu16], our public key becomes larger
than the public key used in [Lyu16]. On the other hand, our scheme has significantly shorter signatures.
Our savings in MPSign signature length over the scheme in [Lyu16] arise largely from the smaller secret
key coordinates in MPSign. As our attack of Section 5.5.5 shows, such savings are not possible in the
scheme of [Lyu16] due to the insecurity of PSIS∅ with sufficiently small secret coordinates.

In order to set concrete parameters for our scheme achieving λ bits of security, we need to bound
from above the advantage of any adversary trying to attack the UF-CMA security of MPSign in the
quantum random oracle model by 2−λ. By Theorem 2.3 and Lemma 5.7, it is enough to bound Adv,
AdvPRPRF(C) and 2−d log(2a′+1)+1 by 2−λ/5 and 8(QH+1)2 ·εls by 2−λ+1/5, where the notations are those
from Section 5 and Adv stands for the advantage of an adversary trying to solve the MP-LWEq,n,d+k,χ1,χ2

problem, where both χ1 and χ2 are discrete Gaussians of parameters α′′q, respectively α′q. As it is
standard in lattice-based cryptography, we further neglect the noise amplification in Theorem 4.3 and
assume that the MP-LWE problem with very small secret (with ‖s‖∞ ≈ 1) is concretely at least as hard
as the PLWE(f) problem with very small secret. Indeed, there are no known attacks on the MP-LWE
with small secrets problem that exploit the very small secret when generic algebraic attacks on LWE are
protected against (see, e.g., [AG11, ACF+15a, ACF+15b]). Since the discrete Gaussian distributions
of the error and secret have small standard deviation, we assume that we can safely replace them
by a corresponding centered binomial distribution, as has been done in many practical lattice-based
encryption schemes (see [ADPS16, SSZ19, BDK+18], among others).

We use [APS15] in order to estimate both the classical and quantum bit complexities of the primal
attack against the PLWE(f) problem associated to a polynomial f of maximum degree n from the family.
The cost models we choose are bkz.sieve for classical security, respectively bkz.qsieve for quantum
security.

We present in Table 5.1 a comparison between the efficiency of MPSign and the scheme described

89



CHAPTER 5. APPLICATIONS OF MP-LWE IN CRYPTOGRAPHY

MPSign [Lyu16]
public key size 19 KB 9.6 KB
secret key size 0.7 KB 8.8 KB
signature size 13 KB 27 KB
q ≈ 287 ≈ 230

Tab. 5.1: Efficiency of MPSign.

λQ = 130 λQ = 89
n 3800 2500
d 1910 1300
k 512 512
q ≈ 290.9 ≈ 287.3

κ 53 53
|DH | ≈ 2294 ≈ 2294

logA′ ≈ 21.0 ≈ 20.4
logA′′ ≈ 19.4 ≈ 18.9
δ 1.004 1.005
α′q 2

√
π 2

√
π

α′′q 2
√
π 2

√
π

public key size 26.9 KB 19.5 KB
secret key size 1.06 KB 0.74 KB
signature size 20.1 KB 12.8 KB

Tab. 5.2: Sample parameters for MPSign for λQ bits of quantum security.

in [Lyu16]. For the same Hermite factor δ0 = 1.005 (driving the security level), by choosing n = 2500,
d = 1300, k = 512 for our scheme, we manage to shorten the size of a signature by a factor of 2.1. We
manage to also shorten the size of the secret key by a factor of 11 at the cost of doubling the size of
the public key. Still, one can always only store the seed that is expanded into the secret key during
signing.

In the first column of Table 5.2, we provide concrete parameters for MPSign that satisfy both classical
and quantum level 1 NIST requirements. Concretely, they achieve λ ≥ 143 for classical adversaries and
λ ≥ 130 for quantum adversaries. The second column contains parameters for λ = 89 bits of quantum
security, corresponding to a Hermite factor δ = 1.005.1

5.5.4 Implementation
We implemented MPSign in Sage (Python) as a proof-of-concept and the source code is publicly avail-
able.2 For the experiments, we used a MacBook Pro with Intel i7-8559U CPU at 2.7 GHz. Turbo-
boost and hyperthreading were both disabled. For a fair comparison, we also implemented the scheme
from [Lyu16]. It is expected that both implementations are slower than if they were implemented with
a system language (such as C) with an aim for optimization. Nonetheless, since both implementa-
tions use the same Gaussian sampler, the same hash to challenge function, and the same polynomial

1We analyse the λ = 89 case in order to directly compare with the sample parameters in [Lyu16].
2https://github.com/pqc-ntrust/middle-product-LWE-signature
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[Lyu16] MPSign
min ave max min ave max

key generation 22.3 25.9 46.7 14.6 16.3 27.1
signing 111 418 5771 28.3 99.6 713

verification 15.0 30.8 53.0 16.3 18.8 28.6

Tab. 5.3: Performance comparison, in ms.

multiplication algorithm, we believe that the comparison is relatively fair.
We instantiate MPSign and the scheme from [Lyu16] with corresponding parameters achieving

δ = 1.005 (for MPSign these parameters may be found in Table 5.2). In both benchmarks we iterated
1000 times, each time with a different seed and a different message to sign. The results of our comparison
may be found in Table 5.3. The data are for the average cost in milliseconds. Our scheme is almost
twice faster than the one from [Lyu16] in key generation and verification, and four times faster in
signing. This is mainly due to the fact that the scheme from [Lyu16] requires scalar multiplications
over vectors of polynomials, while our scheme involves a single middle-product (over a somewhat longer
polynomial).

5.5.5 An attack on Inhomogeneous PSIS∅ with small secrets
In contrast to our hardness result for MP-LWE with small secret coordinates shown in the previous
section, here we show a simple efficient attack on the Inhomogeneous PSIS∅ problem from [Lyu16] with
sufficiently small secret coordinates (such that it has a unique solution). Our algorithm gives a key
recovery attack against a small secret variant of the signature scheme of [Lyu16], and shows that a
lower bound on the size of the secret key coordinates similar to that in the security proof of [Lyu16] is
necessary for the security of that signature scheme. MPSign achieves lower signature size than [Lyu16],
by using small secret coordinates. The attack presented below shows that a similar improvement in
signature size cannot be securely achieved in [Lyu16], stressing an MPSign advantage over the approach
of [Lyu16].

We now recall the definition of the Inhomogeneous PSIS∅ problem (which we denote by I-PSIS∅)
from [Lyu16]. The hardness of that problem underlies the security of the key generation algorithm in the
signature scheme of [Lyu16]. We note that our definition below is the ‘exact’ case of the ‘approximate’
definition in [Lyu16] (with the parameters of [Lyu16, Def. 3.3] set as c = 1, s = β and d1 = d2 = d).
This restriction makes our attack even stronger since a solution to the exact problem is also a solution
to the ‘approximate’ problem.

Definition 5.1 (I-PSIS∅). Let n, d > 0. An instance of the I-PSIS∅q,n,d,k,β problem consists of a tuple
(a1, . . . , ak, t), where ai ←↩ Z<nq [x] for i = 1, . . . , k and t =

∑k
i=1 ai · si ∈ Z<n+d−1

q [x], where si ←↩
[−β,β]<d[x] for i = 1, . . . , k. A solution to the problem is k elements (s′1, . . . , s′k) with s′i ∈ [−β,β]<d[x]
for i = 1, . . . , k such that

k∑
i=1

ai · s′i = t.

Note that the public key of the signature scheme of [Lyu16] consists of an instance of I-PSIS∅, and
a solution is a valid secret key.

Our attack on I-PSIS∅ works in the case where s1, . . . , sk is the unique solution, and consists of a
simple greedy algorithm that exploits the zero triangles in the Toeplitz matrices associated with the
polynomials ai, to reduce the problem to a sequence of k-dimensional knapsack subproblems: for each
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r < d, we recover the k-tuple of coefficients of xr in the polynomials si(x) for i = 1, . . . , k. When k is
small (as is the case for efficient parameter sets), the attack is efficient.

In more detail, let t(x) =
∑k
i=1 ai(x) · si(x) ∈ Z<n+d−1

q [x] be the target polynomial in an instance
of I-PSIS∅. We denote by tr, ai,r and si,r the coefficient of xr in the polynomials t(x), ai(x), si(x),
respectively. We observe that for any r = 0, . . . , d−1, the coefficient tr depends only on the coefficients
of xj for j ≤ r of the si’s, namely we have

tr =
k∑
i=1

r∑
j=0

ai,j · si,r−j =
k∑
i=1

ai,0 · si,r +
k∑
i=1

r∑
j=1

ai,j · si,r−j . (5.1)

Given an instance (a1, . . . , ak, t) of the I-PSIS∅q,n,d,k,β problem, our algorithm works as follows:

1 For r = 0, . . . , d− 1:

(a) Find some vector s′∗,r := (s′1,r, . . . , s′k,r) ∈ [−β,β]k such that

tr =
k∑
i=1

ai,0 · s′i,r +
k∑
i=1

r∑
j=1

ai,j · s′i,r−j . (5.2)

(b) If no such vector s′∗,r exists, return ⊥.

2 Return (s′1, . . . s′k), where s′i =
∑d−1
j=0 s

′
i,jx

j for i = 1, . . . , k.

Lemma 5.10. Suppose q is prime. With probability ≥ 1 − (4β + 1)k/q over the choice of a1, . . . , ak,
the solution (s′1, . . . , s′k) = (s1, . . . , sk) to the I-PSIS∅q,n,d,k,β problem is unique, and the above algorithm
returns this solution in time (2β + 1)k · poly(n, d, log q).

Proof. It follows from (5.1) that the solution (s′1, . . . , s′k) = (s1, . . . , sk) satisfies (5.2) for each r and
hence can be output by the algorithm. Now suppose, towards a contradiction, that the algorithm
outputs ⊥ or a different solution (s′1, . . . , s′k) 6= (s1, . . . , sk). Then let r∗ ≥ 0 denote the least iteration
r of the algorithm where the solution s′∗,r∗ := (s′1,r∗ , . . . , s′k,r∗) to (5.2) for r = r∗ is not equal to
s∗,r∗ := (s1,r∗ , . . . , sk,r). From (5.2), we have

tr∗ =
k∑
i=1

ai,0 · s′i,r∗ +
k∑
i=1

r∑
j=1

ai,j · si,r∗−j =
k∑
i=1

ai,0 · si,r∗ +
k∑
i=1

r∑
j=1

ai,j · si,r∗−j ,

and hence
k∑
i=1

ai,0 · (si,r∗ − s′i,r∗) = 0.

As a consequence, the vector v∗ := (s1,r∗ − s′1,r∗ , . . . , sk,r∗ − s′k,r∗) 6= 0 satisfies
∑k
i=1 ai,0v

∗
i = 0, and

v∗ ∈ [−2β, 2β]k. We claim that such a non-zero vector v∗ exists with probability at most (4β + 1)k/q
over the uniform choice of the ai,0’s. Indeed, since q is prime, the probability that a fixed non-zero
vector v ∈ [−2β, 2β]k satisfies

∑k
i=1 ai,0vi = 0 is 1/q. A union bound over all ≤ (4β + 1)k non-

zero vectors in [−2β, 2β]k provides the claim. Therefore, the algorithm outputs the unique solution
(s′1, . . . , s′k) = (s1, . . . , sk) with probability at least 1−(4β+1)k/q. The run-time follows since Step 1(a)
in the algorithm can be implemented by an exhaustive search through all (2β + 1)k possible values for
s′∗,r.

We observe that the run-time can be reduced to 2O(k) · poly(n, d, log q) using a lattice closest vector
algorithm to solve the k-dimensional knapsack problems.

92



CHAPTER 5. APPLICATIONS OF MP-LWE IN CRYPTOGRAPHY

By Lemma 5.10, our algorithm for I-PSIS∅q,n,d,k,β succeeds with high probability when β is at least
slightly smaller than q1/k/4, and runs in polynomial time when k = O(1), even for very high degrees n
and d. In comparison, the hardness reduction for I-PSIS∅q,n,d,k,β in [Lyu16, Le. 3.4] requires the lower
bound β > 2λ/(kd)−1 · q1/k·(1+n/d) (where λ denotes the security parameter and is such that the success
probability of the I-PSIS∅ attacker handled by the reduction is > 2−λ). Our attack gives an efficient
key recovery attack against the signature scheme of [Lyu16] with small secrets β. For instance, the
recommended parameters of the latter scheme have k = 6 and q ≈ 230 and β ≈ 211.5, but β < 23 will
suffice for our attack to succeed. Moreover, heuristically, we expect that our algorithm will succeed
with even larger β corresponding to a unique solution. The run-time is likely in practice to be in
the order of minutes on a typical laptop 3, using LLL lattice reduction for solving the 6-dimensional
knapsack instances; even a brute-force search of each knapsack instance would take in the order of only
(2β)k < 230 arithmetic operations. For the above parameters, our LLL-based implementation solved 7
out of 10 (resp. 2 out of 10) instances with β = 7 (resp. β = 8), taking about 3 minutes on a 3.1GHz
Intel Core i5 CPU.

3https://github.com/pqc-ntrust/middle-product-LWE-signature
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Chapter 6

Open problems

We discuss here a list of open problems related to our contributions that we find interesting to be
further investigated.

In this thesis, one of the main goals was to explore relationships between PLWE and RLWE. We think
that it is interesting to see if we can also relate two different instances of the same problem. Progress
into this direction has been done in [BGV12, GHPS12], etc. with applications in fully homomorphic
encryption, but their results are restricted to the case of extensions K ⊆ K ′ of cyclotomic fields. In
Chapter 3, we have seen that if we slightly modify the coefficients of a polynomial f to create a new
polynomial g, the roots do not change too much. This means that the geometry of K = Q[x]/(f) and
K ′ = Q[x]/(g) are very similar. Maybe this similarity in the geometry of K and K ′ could allow us to
link the hardness of the PLWE(f) problem / the RLWE problem defined using the number field K to
the hardness of PLWE(g) / the RLWE problem defined using the number field K ′. Even more, if such
connections are possible, one could further try to find a polynomial f for which the PLWE(f) problem
is at least as hard as PLWE(g) for many polynomials g. This would increase the confidence in choosing
that specific f over other polynomials, since any cryptographic system based on PLWE(f) would remain
secure as long as PLWE(g) remains hard to solve for at least one polynomial g in the respective family.
Given our hardness result on MP-LWE from Chapter 4, a completely different strategy to attack the last
problem would be to find a polynomial f for which PLWE(f) is at least as hard as MP-LWE. Finding
such an f may be hard. Still, it could be possible to reduce MP-LWE to Module-LWE. Indeed, it can
be shown that for an MP-LWEq,n+1,n,χ sample (a, b = a�n s+ e), we can write the second component
as b = (a1s1 mod f) + (a2s2 mod g), where a1 and a2 are two uniformly random polynomials whose
coefficients depend on the coefficients of a, s1 and s2 are uniformly random and independent polynomials
depending on s, f = xn−1+1 and g = xn−1−1. This writing is reminiscent of a Module-LWE sample, but
there are two observations to be made: unlike in the Module-LWE case, the polynomials a1 and a2 are
not independent and there are two different parameterizing modulus f and g involved. For the second
difficulty, using a field extension where the roots of both f and g live could be the start of a strategy.
An MP-LWE to Module-LWE reduction would be a truly remarkable result. Indeed, combined with our
results from Chapter 3 and [AD17], it would imply that MP-LWE is actually equivalent to Module-LWE
(and even to ApproxSIVP on module lattices via [LS15]) for many parameterizing polynomials f . In
the absence of such an equivalence, MP-LWE seems to be harder than Module-LWE.

Regarding MP-LWE, there are also some other questions that we find stimulating. One of our
contributions from Chapter 4 is the hardness proof of MP-LWE with small secrets which works by first
reducing PLWE with short secrets to MP-LWE with short secrets and then relying on the reduction
from PLWE with uniform secrets to PLWE with short secrets from [ACPS09]. Even if it would not
have cryptographic consequences, it would be nice to give an alternative proof, by exhibiting a direct
reduction from MP-LWE with uniform secrets to MP-LWE with small secrets, similar to the one which
works in the LWE or PLWE cases. Also, in contrast to other algebraic variants of LWE, at the moment
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there are few cryptographic primitives whose security relies on MP-LWE. Except for our contributions
in Chapter 5, the only primitive based on MP-LWE that we are aware of is the identity-based encryption
scheme [LVV19]. It would be interesting to see if [LVV19] can be improved, in the sense of reaching
exponential security, but also to design other primitives (e.g. homomorphic encryption) based on the
MP-LWE problem.
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