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pas que hein ! . . . c.f. la thèse de Florian). Ensuite je remercie tous mes compagnons de
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Résumé

Le milieu interstellaire se compose, en masse, d’environ 1% de poussière. Paradoxalement,
malgré sa faible concentration, celle-ci un rôle très important dans la formation stellaire. La
dynamique des grains de poussière peut différer de celle du gaz, entrainant des variations lo-
cales de concentration. Peu de travaux ont pourtant été consacrés à l’étude de cette dynamique
différentielle lors de la formation stellaire. Ma thèse s’inscrit dans l’objectif de pallier ce
manque et se décompose en quatre parties.

Dans la première partie, je développe un module traitant efficacement la dynamique des
poussières et pouvant simultanément inclure plusieurs espèces de grains pour le code multi-
dimensionnel sur grille adaptative RAMSES (Teyssier, 2002). Je teste ensuite mon module avec
soin en comparant mes résultats à des solutions analytiques. Je montre par ailleurs que mon
implémentation est robuste, précise et rapide.

Par la suite j’effectue des simulations de formation d’étoiles incluant plusieurs espèces de
poussières. Grâce à cette étude, j’établis qu’un découplage entre les grains et le gaz apparaı̂t
pour les grains d’une taille supérieure ou équivalente à la centaine de micromètres. Je trouve
également que ce découplage dépend fortement des propriétés initiales du coeur préstellaire.

Ensuite, je développe un formalisme analytique, similaire à la magnétohydrodynamique
non idéale, mais incluant en plus la dynamique des grains chargés. Ce formalisme me permet
de mettre en évidence différents régimes de couplage entre les grains, le champ magnétique et
le gaz, selon la taille des grains, leur charge et leur environnement.

En parallèle, j’étudie la dynamique des poussières dans les zones faiblement ionisées des
disques protoplanétaires afin d’étudier la formation des chondrules. Ce sont des grains de
poussière retrouvés dans la majorité des météorites et qui sont des éléments clés pour la
compréhension de la formation des disques et des planètes.
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Abstract

The interstellar medium is composed by approximately 1% of dust in terms of mass. Surpris-
ingly, this tiny amount of dust already plays a very important role in stellar formation. The
dynamics of dust grains may differ from that of the gas particles, leading to local variations
in concentration. However, very few studies have focused on the gas and dust differential
dynamics during star formation. My thesis aims to fill this gap and is divided into four parts.

In the first part, I develop a module dealing efficiently with dust dynamics that can simul-
taneously include multiple grain species intended to the multidimensional adaptive grid code
RAMSES (Teyssier, 2002). I then carefully test my module by comparing my results with known
analytical solutions. I also show that my implementation is robust, fast and accurate.

Then I perform star formation simulations that consider multiple dust species. This study
establishes that a decoupling between the dust and the gas appears for grains of sizes larger or
equivalent to a hundred micrometers. I also find that this decoupling strongly depends on the
initial properties of the prestellar core.

Then, I develop an analytical formalism, similar to the non-ideal magnetohydrodynamics
but that includes the dynamics of charged grains. This formalism allows to highlight different
coupling regimes between the grains, the magnetic field and the gas as a function of the grain
size, its charge and its environment.

In parallel, I investigate the dynamics of dust in the weakly ionized zones of protoplanetary
disks in order to study the formation of chondrules. Chondrules are dust grains found in most
meteorites and are key to understand the formation of disks and planets.
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”A long time ago in a galaxy far, far away ... ”

- Star Wars

In this introductory chapter, I report our current understanding of stellar and disk formation
as well as of the dust content of the interstellar medium (ISM). In that aim, I introduce

star and disk formation from an observational point of view. Then, I shortly review the ob-
servational evidences of dust grains in the ISM. Finally, in the light of our current theoretical
understanding of star formation, I explain why it is essential to understand the dynamics of
dust grains in this context.
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CHAPTER 1. THE LIFE OF GAS AND DUST DURING STAR FORMATION

1.1 Introduction

Astronomy is at least as old as civilization. Historically, the stars and the celestial objects of
the solar system such as the moon, the planets inside Saturn’s orbit and of course, the sun,
were the first source of wonder of astronomers. Archaeologists have found evidences that they
were thoroughly studied in the Babylonian and Egyptian empires but also in the early Chinese,
Indian and Mesoamerican societies. Yet, the general structure, composition and formation of
stars were not understood until the XXth century.

In 1919, Jean Baptiste Perrin and Arthur Eddington proposed first that the sun was fueled
by nuclear reactions within its core. A few years after, in 1925, Cecilia Payne-Gaposchkin
discovered that the sun, a fairly typical star, was primarily made of Hydrogen and Helium.
James Jeans understood in 1902 how stars were formed during the gravitational collapse of
unstable giant nebula, known today as molecular clouds. Later, in 1930, Robert Trumpler
discovered that these clouds were not only composed of gas, but they also contained small
interstellar dust grains, the seeds of planets. The global picture of star formation in these
molecular clouds and its relation to planet formation started to become clear in the 1960s
with the rise of computer simulations such as the ones of Richard Larson, Peter Bodenheimer,
Werner Tscharnuter and Alan Boss. The increase in computational power since the 1960s
allowed astronomers to elaborate more sophisticated models of astrophysical objects, including
more relevant physical processes such as magnetic fields, radiation etc..

Meanwhile, the colossal progresses made in observational astrophysics during the last 40
years revealed that the star and planet forming interstellar medium was far from being under-
stood in the details. Space telescopes, such as Spitzer or Hubble, have shown that molecu-
lar clouds were made of very complex filaments and were driven by the interaction between
turbulence, gravitation and magnetic fields. In 1995, Michel Mayor and Didier Queloz dis-
covered the first exoplanet around a solar type star, 51-Pegasi. Since then more than 4000
planetary systems of incredible diversity have been discovered around stars within the sun
neighborhood. Within the last ten years, giant interferometers such as the Atacama Large Mil-
limeter/submillimeter Array (ALMA) were able to probe young stars and their planet forming
disks, also called protoplanetary disks, revealing once again a surprising diversity of morphol-
ogy.

Modern astrophysicists now have the technical possibility to go much further into the de-
tails than their predecessors when describing astrophysical objects. In that vein, the goal of
this thesis is to add a new ingredient, traditionally overlooked and yet recently suspected of
impacting quantitatively star formation processes: the dust dynamics.

1.2 The young life of stars

1.2.1 An overview on low mass star formation

Low mass stars, with masses smaller than a few M� 1, are the most abundant stars in the
Universe. It is widely accepted that their formation takes place during three main stages (Andre
et al., 2000)

• The prestellar phase, during which the parent molecular cloud, mostly composed of
molecular hydrogen with a temperature of ∼ 10 K, undergoes an isothermal collapse in
the regions where the thermal support is insufficient to counteract the effects of gravity.
During this phase, the temperature remains almost constant as the gravitational energy

1 M� ≈ 1.9 × 1033g the mass of the sun
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is radiated away by the thermal dust emission. The free-falling material tends to show a
universal density profile of ρ ∝ r−2 (Foster & Chevalier, 1993). Eventually, the collapse
is stopped where the density reaches the typical value ρad ∼ 10−13 g cm−3 (Larson,
1969). At such high densities, the radiation becomes trapped in the core, mostly because
of the dust absorption. This region of the cloud is in quasi-static equilibrium and is called
the first Larson core that has a typical density of ρ ∼ 10−11 g cm−3 . As the radiation is
cannot escape the core, the latter is in adiabatic contraction which causes the temperature
to increase. Once it reaches ∼ 2000 K, H2 starts to dissociate and a second collapse is
triggered as the former reaction is endothermic. Once H2 has completely dissociated, the
newly formed second Larson core, begins a slow adiabatic contraction with an effective
polytropic index γeff ∼ 1.1 (Masunaga & Inutsuka, 2000). This object has a typical
density of ρ ∼ 1 g cm−3 and a radius of a few solar radii 2.

• After the second Larson core formation, the protostellar phase begins. During this phase,
the protostar mass increases by the accretion of the free-falling envelope. Conservation
of angular momentum during the collapse has led to the formation of an accretion disk,
also called a protoplanetary disk and the most probable birthplace of planets. Simul-
taneously, a fraction of the mass is being ejected from the system by bipolar outflows
(Bachiller, 1996) most probably driven by magnetic fields.

• When the star almost reaches its final mass and when its temperature has become high
enough to burn the deuterium at ∼ 106 K it enters the pre-main sequence phase (PMS).
The pre-main sequence protostar, now optically visible, contracts until hydrogen fusion
is triggered when the peak temperature reaches ∼ 107 K. At this stage, a star is born. It
is on the so-called main sequence where it awaits its final fate as a planetary nebula or a
supernova if its massive enough.

1.2.2 Observational evolutionary sequence

Young stellar objects (YSOs) are classified by observers according to their spectral energy dis-
tribution (SED) in the near and mid-infrared. More precisely, they are classified according to
the logarithmic slope αIR =

dlog(λFλ)
dλ , Fλ being the radiative flux at the wavelength λ. At first,

three different classes of objects were distinguished, the classes I to III.They correspond to
objects that are increasingly evolved in time. Class I (αIR > 0) are very early YSOs, but they
already are in the protostellar phase. They might be surrounded by an early protolanetary disk
and still have a massive envelope. The two most evolved classes, Class II (−1.5 < αIR < 0)
and III (αIR < −1.5) are PMS stars or, equivalently, T Tauri stars3. Class II are surrounded by
a protoplanetary disk while Class III are surrounded by a debris disk. Debris disks are not old
protoplanetary disks but rather the consequence of them. They are mostly composed of repro-
cessed dust grains (less than ≈ 1−100 µm) resulting of collision between small protoplanetary
bodies.

Another earlier stage, the Class 0, was discovered by Andre et al. (1993). At this stage, a
deeply embedded protostar is already formed but it is still less massive than the envelope. The
age of the Class 0 objects has been estimated to be about 104 years (Barsony, 1994).

The empirical evolutionary sequence is summarized in the cartoon illustration of figure 1.1.
Since the initial classification of YSOs, impressive developments have been made to improve
our observational capabilities. The SEDs that were the original probes of protostars are now

2the solar radius is R� ≈ 6.96 × 1010 cm
3T Tauri is a YSO located in the Taurus constellation
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Figure 1.1: Observational evolution sequence of star formation. Cartoon illustration inspired
from André (2002). Molecular clouds are cold clouds where star formation occurs, they live
a few millions years. Once the protostellar collaspe starts in a molecular cloud, the prestellar
core evolve through four classes. They are the observational evidence of the protostellar phase.

completed with resolved observations of molecular line emission (the most commonly ob-
served molecule is CO), dust continuum or polarized emission.

1.3 Protoplanetary disks

1.3.1 Protoplanetary disks observations

During the protostellar collapse, a disk forms around the protostar because of angular momen-
tum conservation. This so-called protoplanetary disk is most likely were planets are formed.
If these disk where theorized (Von Weizsäcker, 1944; Gamow & Hynek, 1945; Hoyle, 1960;
Terebey et al., 1984) and indirectly observed via SEDs (Mendoza V., 1968) quite early, the
recent rise of highly sensitive and resolved ground based interferometers such as ALMA have
completely changed our perspectives about them.

A large number of evolved protoplanetary disks4 have been observed in recent campaigns
such as the Disk Substructures at High Angular Resolution Project (DSHARP, Andrews et al.,
2018; Huang et al., 2018a,b). The wide variety of structures of these disks is striking, indicating
that their formation and evolution invoke complex physical processes. The most commonly
observed structures of protoplanetary disks are

• Cavities. They are often observed in the inner regions of the disks and have typical sizes
of ∼ 10 AU 5. These cavities are most likely to be opened by MHD winds (Suzuki et al.,
2016) or photoevaporation (Alexander et al., 2014).

• Annular Gaps. They are another commonly observed pattern. The most common ex-
planation for their presence is embedded protoplanets (see Papaloizou & Lin (1984) for

4around T-Tauri like stars
51 AU = 1, 496 × 108km
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Figure 1.2: Gallery of observed evolved protoplanetary disks taken from the review Andrews
(2020) showing the most commonly observed substructures of protoplanetary diks.

the theory and Pinte et al. (2019) for the recent observational evidence), non-ideal MHD
effects (Ruge et al., 2016) or dust traps (Gonzalez et al., 2015).

• Non-axisymmetric Arcs. They are rarer structures that are most often observed around
the inner cavities and eventually at the outer cavities or near a gap. Binary star interaction
is the most frequently invoked mechanism for their formation (Ragusa et al., 2017; Price
et al., 2018).
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• Spirals. They are also often seen in protoplanetary disks. They usually show preferential
m = 2 mode but can also exhibit some asymmetry. Their formation is usually explained
by binary interaction (Price et al., 2018) or by rotating gas accretion (Hennebelle et al.,
2017).

A gallery of protoplanetary disks exposing these most common structures can be seen in
figure 1.2.

Recently, younger disk candidates have also been observed around Class 0 stars using the
dust continuum emission and the molecular line emission (e.g. with the CO and SO molecule).
It is a challenging task to get precise observations of them as they are still deeply embedded in
a massive envelope. By observing the C18O (J = 2 − 1) and SO (J = 65 − 64) line emission of
L1527 IRS, which is either a Class 0 or a Class I protostar, with ALMA, Ohashi et al. (2014)
have found evidence of a keplerian disk. They claim to observe a disk with a radius of about
∼ 50 AU. This is significantly smaller than the size of the evolved disks around T-Tauri stars (in
average ∼ 165 AU, Isella et al., 2009) and is an evidence that disks are formed quite small and
increase in size during their evolution. Using the IRAM Plateau de Bure Interferometer for the
CALYPSO (Continum And Lines in Young ProtoStellar Objects) survey, Maury et al. (2019)
have observed 16 Class 0 and Class I objects where at least 11 are potentially surrounded by an
early disk. Summarizing their results and those from other surveys they claim that disk around
Class I protostar have median radii of ∼ 100 AU while this value is smaller that ∼ 50 AU for
disk around Class 0 objects (see Tobin et al., 2020, for similar findings).

1.3.2 Exoplanets

Since the discovery of the first exoplanet 51 Peg b around a solar type star by Mayor & Queloz
(1995)6, more than 4000 were either indirectly (with Kepler, CoRot, HARPS etc.) or directly
observed (with SPHERE, GPI etc.). Figure 1.3 shows the mass as a function of the orbital
period for a catalog of confirmed exoplanets generated using the website exoplanet.eu. The di-
versity of planets in terms of mass, radius, orbit, composition etc is already striking in the solar
system where we observe 4 telluric planets (Mercury,Venus, the Earth and Mars), 2 gas giants
(Jupiter and Saturn) and 2 ice giants (Uranus and Neptune). A wide diversity of exoplanets
such as, super-Earths (Charbonneau et al., 2009; Borucki et al., 2011), hot-Jupiter (Mayor &
Queloz, 1995), ocean planets (Charbonneau et al., 2009) etc., were recently discovered. This
is unequivocally an evidence that their formation and evolution is complex and cannot only be
explained by a model designed to understand the solar system solely. As explained in section
1.3.1, protoplanetary disks, that are the most probable locus of planet formation via dust grain
growth (see the recent review by Birnstiel et al., 2016), are also very diverse in terms of shape
and mass. Although it is difficult to correct bias in disks and exoplanets detection, it is natural
to think that the diversity in protoplanetary disks and in exoplanets are connected. Therefore
understanding star and disk formation is necessary to constrain planet formation which could,
eventually, lead to an answer to the fundamental question: how do Earth-like planet form?

1.4 Dust in the interstellar medium

The interstellar medium (ISM), is defined as anything, matter or radiation, that lies between
stellar system but is still in a galaxy. Although the dust grains represent a relatively small mass
fraction of the ISM (about 1:100 Mathis et al., 1977; Weingartner & Draine, 2001), they are
essential for its observation. In this section, I briefly review some of the major aspects of dust
observations that are relevant in the star formation context.

6Nobel Prize in 2019
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Figure 1.3: Catalog of the confirmed exoplanets generated using the website exoplanet.eu the
29th of January 2020. Planetary mass (in Jupiter mass) against the orbital period (in days). The
radius of the planet is indicated by the size of the green circle when available.

1.4.1 Extinction

(a) Dust obscured cloud in NGC281 observed by
the Hubble space telescope. Some of the regions
of the cloud are reddened and some are so dense
that even the red light does not penetrate (Credits:
NASA/ESA).

Distant dust 

obscured cloud

Distant star

I(λ) = I0(λ)e(−τλ)

I(λ) = I0(λ)

Attenuated red light

Blue reflection

(b) Cartoon illustration explaining the dust extinc-
tion process. The blue light is almost completely
absorbed by the dust while some of the red light
can penetrate all the way through. A blue reflection,
due to scattering by the dust grains, can be observed
when the cloud is illuminated on the same side as
the observer is.

Figure 1.4: Dust extinction process.
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Extinction has been discovered in the early 20th century (Barnard, 1907, 1910). If in ap-
pearance it seemed like an ”absence of stars”, Barnard understood that what he observed was
a ”dark nebula”. It was later established by Trumpler (1930) that this darkening of light was
produced by fine interstellar dust particles.

Let us consider a star at a distance d, with an apparent magnitude mobs,λ at a wavelength λ.
The dust extinction Aλ is defined as

Aλ ≡ mobs,λ − mλ, (1.1)

mλ being the apparent magnitude of the star if there was no extinction. It is related to the
absolute magnitude of the star Mλ by the formula mλ ≡ Mλ + 5 log

(
d

5pc

)
. If the star light, of

specific intensity I0(λ), is absorbed by an uniform dust cloud of optical depth τλ, the intensity
measured by the observer is I0(λ)e−τλ . From the definition of the magnitude, we can show that
in this case

Aλ ≈ 1.086τλ. (1.2)

The extinction allows to estimate the optical depths of the cloud, which can be linked to the
opacity and the grain properties.

Fitting the interstellar extinction at wavelengths ranging from infrared to ultraviolet and
supposing that grains were composed of graphite and silicates, Mathis et al. (1977) were able
to model the dust grain size distribution in the diffuse ISM. They have shown that this so-called
Mathis-Rumpl-Norsieck or MRN size distribution was quite well approximated by a power-law.
For a grain species of size sgrain ∈ [ 5nm, 0.25µm ], the number density n

(
sgrain

)
scales as

n
(
sgrain

)
∝ s−3.5

grain. (1.3)

An interesting property of this size-distribution is that the number and surface is mostly in
small grains while the mass that scales as ∝ s3

grain is dominated by the larger grains. As we will
see later the decoupling between the gas and the dust grains is mainly driven by the grain size
so we can wonder : is the MRN distribution well preserved during star formation?

1.4.2 Continuum emission

Thermal emission of interstellar dust grains is a powerful observing tool. If we consider a
grain of temperature Tgrain, at the local thermodynamic equilibrium (LTE) and according to
Kirchhoff’s law (Kirchhoff, 1859), it behaves as a black body. The ratio between its emissivity
εν (expressed in erg s−1 Hz−1 ster−1) and its absorption coefficient or opacity κabs

ν is thus equal
to the Planck function at the temperature Tgrain. In other words

εν = κabs
ν Bν

(
Tgrain

)
. (1.4)

This expression means that the light absorbed by the dust grains is re-emitted at a wave-
length dependent efficiency. This so-called thermal emission or dust continuum emission is
most efficient at wavelengths of the order of the grain size sgrain and thus provides an idea of
its value. In the diffuse ISM and in molecular clouds, dust thermal emission is observed in the
infrared (IR) and the far infrared (FIR), indicating dust sizes typically smaller than a micron.
It is worth noting that in L183, a dense region of a molecular cloud, an unexpected peak of
emission at 3.6 µm indicates the possible presence of micrometer (and even ∼ 10 µm) dust
grains (coreshine, see Pagani et al., 2010). In protoplanetary disks, dust thermal emission can
be observed at radio wavelengths indicating millimeter grains (see figure. 1.2). It appears that
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the maximum dust grain size increases with density (see Section. 1.4.3 for intermediate densi-
ties between L183 and protoplanetary disks). A multi-scale and extensive dust evolution study
should thus be devoted to determine if this is due to dust growth, dynamical segregation of dust
grains, both or a misinterpretation of the observations.

In addition, as the opacity typically traces the dust column density, the dust continuum is
often used in observations as a proxy for the gas density, assuming a certain dust-to-gas mass
ratio 7. Typically the dust-to-gas ratio is assumed to be 1:100 (Mathis et al., 1977). Some
notable object observed with the dust continuum emission are protoplanetary disks (see figure.
1.2), molecular clouds, galactic disks, supernovae remnants etc. A natural question can be
asked : is the dust-to-gas ratio really uniform or constant in these objects and can we use dust
to trace the gas? This question is addressed in the case of the protostellar collapse in Chapter 4.

1.4.3 Polarized emission

Figure 1.5: (Left) polarized dust continuum emission and magnetic field direction inferred from
the dust polarization angle (black lines). (Right) column density corrected with the ALMA
beam for a magnetically regulated collapse and magnetic field direction (grey and black lines).
Only the grey magnetic fields can be detected with ALMA’s sensitivity. The arrows at the two
poles indicate the main direction of the inflow. In both figures, the red and blue arrow indicate
the direction of the outflow. The horizontal black arrow shows the size of ALMA’s field of
view at 230GHz.

Interstellar dust grains are typically non-spherical, they are usually elongated in their semi-
major axis. One of the consequences of their asymmetry is that dust emission observed from
earth can be polarized if grains are in average aligned with a particular axis. The properties of
the dust polarized emission can provide some information on the object of interest if the grain
alignment mechanism is understood.

Two aspects of dust polarization are particularly interesting in the context of this thesis.

• In a magnetized environment, dust grains are believed to align perpendicularly to the
magnetic fields (Lazarian & Hoang, 2007). The polarization angle can therefore be used
to determine the direction of the magnetic field for various kind of sources. With the
interferometer ALMA, Maury et al. (2018) claim to have measured the direction of the
magnetic field in the Class 0 protostar B335. Their measurement seems in very good

7dust-to-gas ratio hereafter
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agreement with a magnetic protostellar collapse simulation made with the RAMSES code
(Teyssier, 2002, see Chapter 3 for details on the code and Chapter 4 for details on col-
lapse calculations), which is a strong argument in favor of a magnetically dominated
collapse. The left panel of figure 1.5 shows the polarized dust continuum emission of
B335 and the direction of the magnetic field inferred from the dust polarization angle.
The results of the collapse calculation are displayed in the right panel. It shows a column
density estimate, taking into account the distance of the object, and the magnetic field
direction.

• It was theorised by Kataoka et al. (2015) that large dust grains could scatter light with
high polarization degrees. They demonstrated that this so-called self-scattering is effi-
cient when the grain size is of the order of ≈ λ

2π . Recent studies (Sadavoy et al., 2018a,b,
2019) later found evidences of self-scattering in millimeter observation of Class 0 pro-
tostars which might indicate the presence of 100 µm grains in these objects. This is
particularly interesting because this size is intermediate between the potential 10 µm
grains supposely at the origin of the coreshine of molecular clouds (Pagani et al., 2010)
and the millimeter grains observed in evolved protoplanetary disks.

1.4.4 Interplanetary dust and chondrules

(a) Taken from (Jessberger et al., 2001). Interplan-
etary dust grain (porous chondrule collected in the
stratosphere) taken with a scanning electron micro-
scope. The aggregate is non-spherical and larger
than 10 µm.

(b) Taken from Jacquet & Marrocchi (2017) (collec-
tion of the Muséum National d’Histoire Naturelle
de Paris). Back-scattered electron images of vari-
ous chondrules from the NWA 5958 meteorite (a,c
and d) and AOA N1-14 meteorite (b). The diversity
in shape, composition and size is striking.

Figure 1.6: Laboratory evidences of cosmic dust (left) and meteoric dust (right).

On Earth, we have no direct access to interstellar dust, however it is possible to collect
grains from the solar system with balloons, U2 aircrafts or even spacecrafts (e.g. with Pionner
10 and 11, Ulysse and Galileo aroung Jupiter and Cassini around Saturn). This so-called inter-
planetary dust, better known as cosmic dust, although being reprocessed during the formation
and evolution of the solar system, are essential to understand the more distant and unavailable
interstellar dust grains. Figure 1.6a shows an example of interplanetary dust grain, collected in
the stratosphere, taken with a scanning electron microscope and presented by Jessberger et al.
(2001). Among other things, one can see that it is rather large (about 10 µm×20 µm) compared
to the grains expected from the diffuse ISM, which indicates that it has undergone dust growth
at some point of its evolution. It is an aggregate made of smaller dust grains and is clearly
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non-spherical. Laboratory studies of such dust grains suggest that their intrinsic density are
most of the time comprised between ∼ 1 g cm−3 and ∼ 3 g cm−3 (Love et al., 1994). According
to the same study, the grain densities can, in rarer cases, reach values as low as 0.3 g cm−3 and
as high as 6 g cm−3.

Another way to indirectly probe the properties of interstellar dust is through meteorites.
They have the advantage of being directly found on Earth but the disadvantage of being more
strongly reprocessed than isolated dust grains. Found in most of the chondrites, that represent
80% of the meteorites, chondrules among the most abundant meteoritic material. They are
almost spherical grains of sizes ranging from a few µm to ∼ 1 cm. They are mainly composed
of silicate minerals such as olivine or pyroxene but, in the details, they do present a wide diver-
sity of composition (see figure 1.6b for some example of chondrules). Some evidences suggest
that chondrules are formed by successive fast heating events8 where they reach temperatures
as high as a few 2000 K during a few minutes of even less followed by a slow cool down
(Connolly et al., 1998). How these flashes occur and where chondrules are formed is still un-
der debate. Joung et al. (2004) proposed that non-ideal magnetohydrodynamics (MHD) effects
could generates strong and very localized current sheets where the flash and thus the chondrule
formation could occur. I investigate this theory in Chapter 6.

1.5 Theory of star formation: essentials

In this section, I briefly review some of the fundamental theoretical knowledge of the protostel-
lar collapse. Although simplified up to some extent, the theoretical concepts introduced below
cover many key aspects of the dynamics of star formation and can be further refined when
required. This kind of approach represents the backbone of an extensive number of studies in
the field.

1.5.1 Virial equilibrium

The state of a self-gravitating cloud can be described by the Virial theorem (Clausius, 1870). If
we consider a particle of mass mp at a position r and subject to a force F, according to Newton’s
second law

mp
d2r
dt2 = F, (1.5)

by multiplying this equation by r, one can show that

mp
d
dt

(
r ·

dr
dt

)
= mp

(
dr
dt

)2

+ F · r. (1.6)

We now consider Np particles j with masses mp, j. From equation (1.6), we obtain

1
2

d2I

dt2 = 2Ek +

Np∑
j

F j · r j, (1.7)

where I =
∑Np

j mp, jr2
j is the inertial momentum of the system and Ek = 1

2
∑Np

j mp, j
(

dr
dt

)2
its

kinetic energy.

8called flashs hereafter
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Let us consider the simple case where the particles are only interacting via the gravi-
tational force. Then

∑Np
j F j · r j is exactly the gravitational potential energy of the system

Ep = −
∑Np

i
∑Np

i, j mp, jr j
Gmp,i(rj−ri)
|r j−ri |3

where G ' 6.67 × 10−8 cm3 g−1 s−2 is the gravitational

constant. If the system is in the so-called Virial equilibrium then necessarily d2I
dt2 = 0 and

Ep = −2Ek. (1.8)

If a cloud satisfies this condition, it means that its thermal support is perfectly balancing its
self-gravity and the cloud is stable against the gravitational collapse. The stability of a cloud
can thus be expressed in terms of a dimensionless parameter α, the thermal-to-gravitational
energy ratio, that writes as

α =
Ek

|Ep|
. (1.9)

For the cloud to be stable against gravitational collapse one must have α > 1
2 . In the simplified

case of an isothermal and spherical cloud of mass M0, radius R0 at temperature Tg and mean
molecular weight µg we obtain

α =
5
2

R0

GM0

kBTg

µgmH
, (1.10)

where kB ' 1.38 × 10−16 erg K−1 is the Boltzmann constant and mH ' 1.66 × 10−24 g is the
proton mass.

Using the stability condition α > 1
2 , one can determine that this cloud will be unstable

against gravity if its mass is larger than the so-called Jeans mass MJ (Jeans, 1902) that writes

MJ =

(
5kBTg

µgmHG

)3/2 (
3

4πρ0

)−1/2

, (1.11)

ρ0 being the cloud density. Similarly, it is unstable when its radius is smaller than the so-called
Jeans length λJ given by

λJ =

(
3

4πρ0
MJ

)1/3

. (1.12)

To summarize, any isothermal cloud with a mass larger than its Jeans mass or, equivalently,
a radius smaller than its Jeans length will undergo gravitational collapse. Interestingly, if the
gas follows a polytropic equation of state such as Pg ∝ ρ

γeff , one can show that MJ ∝ ρ
3γeff/2−2.

This means that for γeff > γcrit = 4/3, the Jeans mass increases with density and the cloud
is unconditionally stable against gravitational collapse. To understand the evolution of the
polytropic index 9 is thus crucial to understand the protostellar collapse.

1.5.2 Free-fall timescale

The characteristic timescale of the gravitational collapse, the free-fall timescale tff , can be easily
determined in the simplest case of a non-rotating cloud of uniform density ρ0 only subject to
gravity. As in Spitzer (1978), we study the collapse of a shell of initial radius r0. We define r
as its radius after a time t. Applying the second-law of Newton on the shell yields

d2r
dt2 = −G

4πρ0r3
0

3r2 , (1.13)

9note to be confused with the adiabatic index γ ≡ cp
cv
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after multiplying this equation by dr
dt and integrating it over time we obtain

1
2

(
dr
dt

)2

= −G
4πρ0r3

0

3

(
1
r
−

1
r0

)
, (1.14)

after taking the square-root of this equation one can show that

1√
r0
r − 1

dr
dt

= −

√
G

8πρ0r3
0

3
, (1.15)

defining the dimensionless parameter β such as cos2(β) = r
r0

and integrating the equation over
time once again we obtain

β +
1
2

sin2(β) =

√
G

8πρ0r3
0

3
t. (1.16)

We can use this relation to estimate the free-fall timescale of the shell. We consider that the
shell has entirely collapsed once r = 0, hence when β = π

2 . This yields

tff =

√
3π

32Gρ0
. (1.17)

1.5.3 Angular momentum conservation

As we already know, protoplanetary disks form around protostars through angular momentum
conservation. It is therefore interesting to investigate the evolution of the angular velocity of
a cloud during the gravitational collapse. The angular momentum of a system of volume V,
density ρ and velocity v is defined as

L =
y

V

ρ [r × v] dV, (1.18)

dV being the volume element at a position r and × denoting the cross product operation. This
quantity must be conserved for an isolated system. Let us consider the simple case of an
uniform and isolated cloud of initial radius r0 and angular velocity Ω0 and constant mass M0,
then the specific angular momentum J = |L|/M0 defined as J = Ω0r2

0 must also be conserved.
This allows us to estimate its angular velocity at a time t as

Ω (t) = Ω0

(
r0

r (t)

)2

. (1.19)

As the cloud collapses, its angular velocity increases and the centrifugal force eventually
dominates gravity leading to the formation of a disk. The typical radius of a prestellar core is
about ∼ 500 AU (Andre et al., 1996) which is 105 times larger than a solar type star. Assuming
the validity of equation (1.19), there should be approximately ten orders of magnitude increase
in angular velocity during the protostellar collapse leading to velocities close to the speed of
light which is far greater than what is observed or even physically acceptable.

In reality, there is at least a three orders of magnitude change in the specific angular mo-
mentum between prestellar cores and YSOs (Bodenheimer, 1995) which means that there is
an efficient mechanism that transports or dissipates it during the protostellar collapse. This
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angular momentum problem of star formation remains a fundamental issue in today’s astro-
physics as it requires to understand very precisely the angular momentum transport during star
formation.

Early hydrodynamical calculations without magnetic field of protostellar collapse of rotat-
ing clouds led to very massive and extended disks (Bodenheimer & Tscharnuter, 1979; Boss,
1980). This was due to the absence of an efficient mechanism to eject the angular momentum
such as wind, jet/outflows or magnetic braking. Since then, several solutions have been pro-
posed. Among others, magnetic fields have long been investigated as a possible answer for the
angular momentum problem with an ideal (Allen et al., 2003a; Hennebelle & Teyssier, 2008;
Commerçon et al., 2010; Tomida, 2014) and non-ideal MHD (Tomida et al., 2015; Wurster
et al., 2018; Vaytet et al., 2018b; Marchand et al., 2019) frameworks.

1.5.4 Magnetohydrodynamics

The dynamics of the gas during the protostellar collapse is well described by fluid equations
(mass, momentum and energy conservation equations). In this context, the effects of gravita-
tional acceleration, thermal pressure, magnetic fields and radiation are all important at different
scales. For the sake of simplicity, I present the equations of radiation non-ideal magnetohy-
drodynamics (RNIMHD) considering a barotropic equation of state (EOS) to account for the
effects of radiation.

Mass and momentum conservation

We define ρ as the density of the plasma and v as its velocity. Pg is the gas thermal pressure and
φ is the gravitational potential. In addition, we consider a magnetic field B, an electric field in
the comoving frame E. We also introduce the electric current J. In the non-relativistic case10,
it writes J = ∇ × B. Assuming local electroneutrality, the mass and momentum conservation
equations write as

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0,

∂ρv
∂t

+ ∇ ·
[
PgI + ρ(v ⊗ v)

]
= −ρ∇φ + J × B. (1.20)

The Poisson equation

In order to determine the gravitational potential φ and deduce the gravitational force, one must
solve the Poisson equation. It writes as follow

4φ = 4πGρ, (1.21)

this equation shows that any distribution of mass generates a gravitational force.

The barotropic equation of state

As explained earlier, to account for radiative transfer we consider a simple barotropic EOS

Pg = ρc2
s,iso

1 +

(
ρ

ρad

)γ−1 , (1.22)

10 in virtue of the Maxwell-Ampère equation
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where cs,iso is this isothermal soundspeed at low densities, and γ = 5/3 to reproduce the
monoatomic behavior of H2 at low temperatures (Masunaga & Inutsuka, 2000).

The barotropic EOS is a convenient way to model the two thermal regimes of the first
protostellar collapse, i.e. the isothermal regime at low density and the adiabatic regime when
the radiation is trapped at ρ > ρad.

• Where ρ � ρad, Pg ∼ ρc2
s,iso and the cloud is merely isothermal. At these densities, the

temperature is typically ∼ 10K, which yelds cs,iso ∼ 0.2 km s−1. The thermal support is,
by definition, not strong enough to prevent the collapse for a Jeans unstable cloud.

• Where ρ > ρad, Pg ∝ ργ. In these regions, the gas becomes adiabatic as radiation is
trapped, mostly because of the dust, and the temperature increases with density. As a
consequence, the gas is thermally supported against gravity and is in slow contraction
until H2 starts to dissociate, which is not taken into account in this model.

Magnetic field

v

Ω

Ω

v

Ω

« Pinching » « Twisting »

« Twisting+pinching »

B

B

B

B
B

Figure 1.7: Schematic view of the twisting and pinching of the magnetic field lines in a col-
lapsing cloud. Radial motions induce a pinch of the magnetic field lines while rotation twists
them. In a rotating and collapsing cloud both effects can be observed.

The previous equations must be completed by the induction equation 11 and the solenoidal
constrain, that prevents the formation of magnetic monopoles. These two equations, derived
from Maxwell’s equations, write as

∂B
∂t

+ ∇ × E = 0,

∇ ·B = 0. (1.23)

Closure is then given by an Ohm’s law, that relates the electric field E to the other hydro-
dynamical quantities. In the non-ideal MHD framework, which assumes a low ionization level,

11also known as the Maxwell Faraday equation

27



CHAPTER 1. THE LIFE OF GAS AND DUST DURING STAR FORMATION

the Ohm’s law is written as (Wardle & Ng, 1999)

Eb = v × B + E, (1.24)

where Eb the electric field in the rest frame of the fluid is given by

Eb = ηOJ + ηHJ × b + ηAJ⊥, (1.25)

where ηO, ηH and ηA are Ohmic, Hall and Ambipolar resistivities, derived from the conduc-
tivity tensor. These quantities depend on the charge, density and cross section of the charged
particles. More details on the Ohm’s law can be found in Chapter 5 were I propose a more
general derivation that includes dust dynamics.

It is interesting, in a first approach to consider only the effect of induction in the ideal MHD
limit. In this limit, the gas is considered as fully ionized and the electric field E = v×B is only
induced by the fluid motion. To explain the induction equation in this framework, we place
ourselves in cylindrical coordinates (er, eθ, ez). We now assume a cloud with a magnetic field
B = Bzez at a time t = t0. The induction equation at t = t0 is given by

Br

∂t
|t0 =

1
r
∂vrBz

∂θ
,

Bθ
∂t
|t0 =

∂vθBz

∂z
,

Bz

∂t
|t0 = −

1
r

[
∂rvrBz

∂r
+
∂vθBz

∂θ

]
. (1.26)

It is quite clear that azimuthal motions in the cloud twists the field lines by generating a Bθ
component while both the radial and toroı̈dal motions pinches them by generating a Br and by
affecting Bz. As there are no diffusive terms in the induction equation in the ideal case, the
collapse of the cloud naturally strengthens the magnetic field in the central regions of a proto-
stellar collapse. The twisting and pinching of the magnetic field is represented in a schematic
way in figure 1.7 in this context.

Keeping in mind how the configuration of the magnetic field lines can evolve during the
protostellar collapse, we now look at the magnetic force or Lorentz force J × B. With some
manipulation one can show that

J × B = −∇ ·

[
B2

2
I − B ⊗ B

]
, (1.27)

(1.28)

two terms can be identified, the magnetic pressure force −∇ · B2

2 , that acts on the gas similarly
to the thermal pressure force, and the magnetic tension ∇ · [B ⊗ B]. In a rotating cloud, the
twisting of the field lines generates an azimuthal component in the magnetic field Bθ and thus an
azimuthal magnetic tension ∇ · [BθB] eθ. This force then generates an azimuthal acceleration
to counteract the twisting. This so-called magnetic braking is extremely efficient to transport
angular momentum in the outer regions of the clouds. In the ideal MHD regime, the angular
momentum removal due to the magnetic braking is actually so efficient that it actually prevents
the disk formation (Allen et al., 2003a; Mellon & Li, 2008; Hennebelle & Fromang, 2008; Joos
et al., 2012), this is the magnetic braking catastrophe.

According to Shu et al. (1987) a good estimate for the ionization fraction xi in molecular
cloud is

xi =
C
√
ρ

(1.29)
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with C = 3 × 10−16 g1/2 cm−3/2. During the early phases of star formation the density ranges
between ∼ 10−19 g cm−3 and ∼ 10−11 g cm−3. The ionization is thus very low, typically
ranging from xi ∼ 10−11 to xi ∼ 10−6. The ideal MHD approximation breaks and the resistive
regime becomes relevant. Via diffusion, magnetic reconnection or drift between the charged
species, the three resistive effects identified earlier can affect the topology of the magnetic
field lines. In practice, both the Ohmic and Ambipolar diffusion can reduce the efficiency of
the magnetic braking at different scales (Duffin & Pudritz, 2008; Mellon & Li, 2009; Kunz
& Mouschovias, 2010; Tomida et al., 2015; Masson et al., 2016). The Hall effect is more
complicated. Depending on the angle between the angular velocity and the magnetic field, it
can either reduce or increase the strength of the braking (Tsukamoto et al., 2015; Marchand
et al., 2018). Although non-ideal MHD is a good candidate to form realistic disks, its effects
strongly rely on the values of magnetic resistivities that are still poorly constrained as they
depend on a careful estimate of the ionization fraction which depends, among others, on the
dust content of the clouds.

1.6 Towards gas and dust mixtures

1.6.1 Previous works

Figure 1.8: Taken from Tricco et al. (2017). Time averaged volume weighted probability
density function of the dust-to-gas ratio in a SPH calculation of turbulent cloud in the typical
conditions of molecular clouds. Grains smaller that 1 µm have a peaked PDF while for the
10 µm it is broad. This indicates that a significant decoupling occurs for those grains. For
these grains, the dust-to-gas ratio can increase up to one order of magnitude.

All the aforementioned studies assumed a perfect collisional coupling between the gas and
the dust with an uniform and constant dust-to-gas ratio θd ≡

ρd
ρg

. A few recent studies indicate
that this might not be a legitimate approximation in the star formation context.

• At the scale of molecular clouds Hopkins & Lee (2016) found, using lagrangian parti-
cles for the dust, that a dynamical decoupling between the gas and the dust was occuring
for dust grains with sizes larger than ∼ 1µm. Using smoothed-particle-hydrodynamics
(SPH) and a monofluid approach for the gas and the dust 12, Tricco et al. (2017) found

12a detailled explanation of the monofluid formalism can be found in Chapter 2
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Figure 1.9: Taken from Bate & Lorén-Aguilar (2017). Edge-one view of the column density
of gas and dust for three collapse simulations using the SPH approach with various grain sizes
(10 µm,100 µm and 1 mm) at four different times. The colors are set so that the gas and dust
maps match when the dust-to-gas ratio is at its initial value of 1%. A brighter dust map thus
indicates a strong enrichment in dust grains. We observe that grains > 100 µm fall significantly
faster than the gas enriching the central regions of the collapse.

that this effect was occurring for grains larger that ∼ 10 µm (see figure 1.8 for the prob-
ability density function of the dust-to-gas ratio obtained by Tricco et al., 2017).

• At the scale of the protostellar collapse, only Bate & Lorén-Aguilar (2017) has investi-
gated the dynamical decoupling between gas and dust. They found that large dust grains
with sizes & 100 µm could fall significantly faster than the gas enriching the inner re-
gions at the cost of a depletion in the envelope (see figure 1.9 for the column density
of gas and dust they obtained at various times). This work, although restrained in its
exploration of the parameter space, sets a milestone for the study of dust dynamics in
star formation.

All these works were carried out with single dust species simulations assuming a initial
dust-to-gas ratio of 1% which means that they do not properly follow the evolution of the grain
size distribution and that they might either under or over or under estimate the variations of
dust-to-gas ratio by assuming a mean grain size.

1.6.2 This work

In this manuscript, I present the work that I carried out during my three years of PhD at the
Centre de Recherche Astrophysique de Lyon under the supervision of Benoı̂t Commerçon.
This thesis aims to provide answers to modern questions of star and planet formation using
theoretical and numerical tools. I mainly focus on the dynamics of the interstellar dust and its
impact on stellar formation.

This manuscript is organized as follows
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• In Chapter 2, I introduce the basic theoretical concepts required to study neutral dust
dynamics in star forming regions. In that goal, I present the dynamics of a single neutral
dust grain interacting with a surrounding gas. Then, I extend this view to a multifluid
formalism. After this, I introduce the monofluid approach for gas and dust mixtures and
the terminal velocity approximation useful when these mixtures are tightly coupled over
a dynamical timescale. Finally, I extend the formalism to the dynamics of neutral dust
grains in a weakly ionized plasma.

• In Chapter 3, I introduce my main numerical tool, the RAMSES code. After a technical
description of main features of RAMSES, I detail the developments that I made to incor-
porate dust dynamics in its structure. Finally, I present multiple tests of implementation
of my dust dynamics solver.

• In Chapter 4, I present protostellar collapse calculations of gas and dust mixtures, i.e.
dustycollapses, that I performed with my dust solver. After providing some details on
my method of solution, I describe numerically and analytically the general properties of
dustycollapses. Finally, I discuss the caveats and prospects of this study.

• In Chapter 5, I extend the monofluid formalism in the terminal velocity approximation
to the dynamics of mixtures composed of both neutral gas and charged solid particles.
After a presentation of the formalism, I describe the main dynamical regimes that are
implied by the additional decoupling terms it holds. Finally, I give some astrophysical
prospect in the context of the protostellar collapse, protoplanetary and the interstellar
medium.

• In Chapter 6, I present some preliminary work in which I explore a model of chondrule
formation in weakly ionized protoplanetary disks. After an introduction of the essen-
tial theoretical knowledge of protoplanetary disks, I introduce unstratified and stratified
shearing box calculations that include multiple dust species. These models are also com-
puted with my dust solver and the RAMSES code.

• Finally, in Chapter 7, I summarize my thesis and present the most direct prospects of this
work.
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”We are nothing but dust and shadows. Dust and shadows!”

- Gladiator

33



CHAPTER 2. GAS AND DUST HYDRODYNAMICS

In this chapter, I describe the dynamics of neutral dust grains. I first pay attention to the
interaction between a single grain and a surrounding gas. After that, I review dust dynamics

in a hydrodynamical context. Finally, I extend this formalism to the dynamics of neutral dust
in a MHD frameworks. This chapter is mainly bibliographic although I use the notations and
include additional terms that I introduced in my refereed paper Lebreuilly et al. (2019) and
present some of my unpublished recent developments.

2.1 Single grain dynamics

2.1.1 Assumptions

Spherical compact grains To approach the dynamics of dust grains, I base myself on an
approximation that considers the dust grains as small spherical and compact particles of radius
sgrain, mass mgrain, and intrinsic density ρgrain. The spherical grain approximation is a first step
toward a realistic treatment of dust dynamics and will be further questioned in future works.

Interaction with the gas particles The dust particles are colliding with the gas particles and
couple to the mean flow. However, it is the imperfect nature of this decoupling that controls
the differential gas and dust dynamics. We usually neglect grain-grain collisions.

Epstein regime Another important assumption is that the grain sizes are smaller than the gas
mean free-path λg, this will allow us to derive the so-called Epstein drag-force in section 2.1.3.
More precisely, I consider that sgrain <

4
9λg. The mean free-path of a gas is given by

λg =
1

ngσcoll
, (2.1)

where ng is the number density of the gas and σcoll its collision cross-section. Assuming a
cross-section that is of typically the surface of a H2 molecule, we get σcoll = 2 × 10−15 cm−2.
Typically, in the diffuse ISM, ng ' 1 cm−3 (Draine, 2011), assuming that the gas is mostly
molecular hydrogen we obtain in these conditions λg ' 5×1016 cm. In protoplanetary disk, the
typical densities are ' 1014 cm−3 which leads to λg ' 2 cm. Star forming regions (molecular
clouds, collapsing dense core) typically have intermediate densities between the diffuse ISM
and the protoplanetary disk and therefore considering sgrain <

4
9λg is a valid hypothesis for the

typical grains sizes I aim to consider (sgrain < 1 − 10 mm).

2.1.2 Useful definitions

In the next sections, we consider mixtures made of gas and dust particles. Let us define, the
gas density ρg and its velocity vg. Similarly, I note ρd and vd, the dust density and velocity. I
emphasize that ρd is not the same quantity as the dust intrinsic density ρgrain because of the large
distances between two dust grains. I define ∆v ≡ vd − vg as the differential velocity between
the grain and the gas. I also define the gas sound speed cs, its thermal velocity ωth = 2√

πβ

where β =
mg

2kBTg
, mg being the mean mass of the gas particles and Tg its temperature. Note that

ωth =
√

8
πγcs where γ is the gas adiabatic index.
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Grain coordinates

s grai
n

Φ

θ

ex

ey

ez

Δv = (Δv)ex

dS = s2grain sin(θ)dθdΦer

er

Figure 2.1: Cartoon representation
of the grain coordinates. The polar
axis ex is chosen to be aligned with
the differential velocity between the
grain and the gas. θ is the angle
between the surface element dS and
the polar axis and Φ the angle be-
tween the surface element and the y-
axis. The grain radius is sgrain.

2.1.3 Epstein drag force

First, let us examine the fate of a single grain within a gas of density ρg. It exchanges mo-
mentum with the surrounding gas molecules through microscopic collisions. In this section, I
demonstrate the Epstein law (Epstein, 1924). Let us assume that

• mgrain � mg.

• The collision between the gas and the grain are specular, which means that the velocity
of the gas particle after a gas-grain collision is orthogonal to the grain surface.

• Grain-grain collisions are neglected.

• The grains are small enough not to disturb the local Maxwellian distribution of the gas
velocity, i.e. sgrain <

4
9λg.

We place ourselves in the grain coordinates described in figure 2.1, the polar axis ex is
chosen to be aligned with the differential velocity between the grain and the gas. We assume
that the gas velocity follows a Maxwell–Boltzmann distribution, the probability dP for a gas
particle to have a velocity u ∈ [u, u + du] writes as

dP =

√
β

π
e−βu2

du, (2.2)

if we define dN
dt as the collision rate on the surface element dS of particles with a velocity u, it

writes as
dN
dt

= [u + ∆v cos (θ)] ngdPdS

= [u + ∆v cos (θ)] ng

√
β

π
e−βu2

dudS , (2.3)

under the assumption of specular collisions and if mgrain � mg, the momentum transferred
from a gas particle to a dust grain during one collision is given by

p = −2mg(u + ∆v cos (θ))er. (2.4)
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Therefore, the momentum exchange rate between the gas and the dust grain dp
dt is written as

dp
dt

= p
dN
dt

= −2mg(u + ∆v cos (θ))2ng

√
β

π
e−βu2

dudS . (2.5)

The effective drag force Fdrag generated by those collisions must be aligned with the polar axis,
we can therefore write

Fdrag = −2mg

√
β

π
ngs2

grainIex, (2.6)

where

I =
y

(u + ∆v cos (θ))2e−βu2
du cos θ sin θdθdΦ. (2.7)

We can the distinguish three different cases

• if u ≥ ∆v, collisions can occur for any angle θ.

• if u < ∆v, collisions can occur only if ∆v cos θ > −u.

• if u ≤ −∆v, no collision is possible.

We can thus decompose I as

I =

∫ 2π

0
dΦ

∫ +∞

∆v
du

∫ π

0
(u + ∆v cos (θ))2e−βu2

du cos θ sin θdθ

+

∫ 2π

0
dΦ

∫ ∆v

−∆v
du

∫ cos−1( −u
∆v )

0
(u + ∆v cos (θ))2e−βu2

du cos θ sin θdθ. (2.8)

Computing these integrals yields (Laibe & Price, 2012b)

Fdrag = −
√
π
ρgs2

grain

β

[(
ψ +

1
2ψ

)
e−ψ

2
+

(
ψ2 + 1 −

1
4ψ2

)
√
πerf (ψ)

]
ex, (2.9)

where ψ =
√
β∆v. For ψ � 1, which means that the differential velocity is small compared to

the thermal velocity, we obtain with a first-order Taylor expansion (Epstein, 1924)

Fdrag = −
4
3
πρgs2

grainωth∆v, (2.10)

which can be rewritten as

Fdrag = −
mgrain

ts,grain
∆v, (2.11)

where we define the stopping time of the grain ts,grain. It is the typical time required by the dust
grain to adjust its dynamics to a change in the gas velocity. The grain stopping time is given by

ts,grain ≡

√
πγ

8
ρgrain

ρg

sgrain

cs
, (2.12)

where cs and γ denote the sound speed and the adiabatic index of the gas, respectively. The
Epstein regime is a particular case of a linear drag regime.

Large and dense grains are less coupled to the gas. If cs and ρg increase, the coupling of
the two phases becomes more important as the collision rate between gas and dust particles
increases. The opposite drag force applies on the gas particles because of the total mixture
momentum conservation.
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2.1.4 Kwok correction

In star forming regions, the soundspeed can be very low because the gas is usually cold
(Tg ' 10 K). It is thus interesting to investigate the Epstein drag force when ψ � 1. In
this approximation, we can do a first-order Taylor expansion of equation (2.9) in 1

ψ . We then
obtain the following drag force

Fdrag = −πρgs2
grain∆v∆v. (2.13)

By interpolating between the ψ � 1 and ψ � 1, Kwok (1975) has shown that a good approxi-
mation for the stopping time in supersonic regime is

ts,k ≡
√
πγ

8
ρgrain

ρg

sgrain

cs

(
1 +

9
128π

Md
2
)−1/2

, (2.14)

whereMd =
|∆v|
cs

is the differential velocity Mach number. For small values ofMd this stopping
time converges to the value given by the Epstein regime, it is thus convenient to use it for any
value ofMd.

2.1.5 Stokes regime

If the dust grains are larger than 4
9λg, they can perturb the local Maxwellian distribution of the

gas and we enter in the so-called Stokes regime were

Fdrag = −
1
2

Cdragπs2
grain∆v∆v, (2.15)

Cdrag being a piecewise function of the Reynolds number Rd, the ratio between the inertial and
viscous forces. Cdrag writes as

Cdrag =


24Re−1 if Rd < 1,
24Re−0.6 if 1 < Rd < 800,
0.44 if 800 < Rd.

(2.16)

One can show that, for a highly turbulent media (Rd � 1) 1, the Stokes drag force is equal
to the Epstein drag force when sgrain = 4

9λg. We note that in protoplanetary disk, as explained
earlier, only grains larger than a centimeter have sgrain >

4
9λg. Therefore in the remaining of the

manuscript I will only place myself in the Epstein regime and, if needed, consider the Kwok
correction.

2.2 Fluid approach

In the aim of modeling the collective effects of dust grains, I now introduce the fluid approach
for gas and dust mixtures. A continuous fluid description of the dust being way more feasible
than treating the grains independently with a N-body approach.

2.2.1 Continuous fluid approach

For a continuous fluid approach to be valid, one must be able to average the physical quantities
such as the dust density, momentum, etc... over control volumes V∗ = L∗3 that are sufficiently

1which is typically the case in astrophysical flows
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large to be statistically meaningful, but still small compared to the macroscopic scale of the
system L3

macro. The so-called mesoscopic scale L∗ must verify the condition Lmicro � L∗ �
Lmacro for the fluid approximation to stand. The microscopic scale is the typical scale at which
particles interact. Dust grains are extremely massive compared to the gas molecule but much
less numerous, so grain-grain collisions are extremely rare. Furthermore, the dust fluid, when it
can be defined, can be considered as pressureless in most cases. The unfortunate consequence
is that, without any gas, the microscopic scale of the dust is likely to be very large. Fortunately,
gas-grain collisions are likely to be much more frequent than grain-grain collisions and they
therefore set the microscopic scale when they damp the velocity spread of the dust quickly over
a dynamical timescale. In the case of a moderately to strongly coupled gas and dust mixture
one can then consider that Lmicro = λg which is the same scale as for the gas. It is therefore as
legitimate to model the dust with a continuous approach as it is for the gas, provided that they
couple via the drag force.

2.2.2 Bifluid formalism

A usual model for gas and dust mixtures consists of two fluids interacting via the drag term
(Saffman, 1962). Although modeled as a pressureless fluid, the dust feels the forces exerted
on the gas via the drag force. The bifluid formulation of gas and dust mass and momentum
conservation writes

dgρg

dt
= −ρg(∇ · vg),

ddρd

dt
= −ρd(∇ · vd),

ρg
dgvg

dt
= −∇Pg + ρgfg + ρgf + K∆v,

ρd
ddvd

dt
= ρdfd + ρdf − K∆v,

dgeg

dt
= −

Pg

ρg
∇ · vg +

K
ρg

∆v ·∆v, (2.17)

where ∆v ≡ vd − vg is the differential velocity between the two fluids; f is the specific force
acting on both gas and dust; and fg and fd are the specific forces, drag and pressure force
excluded, affecting the gas or the dust, respectively. In the rest of this section, unless specified,
I assume the hydrodynamical case where fg and fd are zero, and f is either zero or the gravity
force. The gas pressure Pg is given by Pg = (γ − 1)ρgeg, eg being the gas specific internal
energy. The gas derivative dg

dt ≡
∂
∂t +

(
vg · ∇

)
differs from the dust derivative dd

dt ≡
∂
∂t + (vd · ∇).

The drag force was obtained by integrating equation (2.11) over a mesoscopic control volume
and assuming a locally homogeneous media. The drag coefficient K is defined as

K ≡
ρdρg

ρts
, (2.18)

where the fluid stopping time, simply called stopping time hereafter, differs from the grain
stopping time as the dust grains only represent a small fraction of the volume (Laibe & Price,
2012a). It is defined as

ts ≡
ρg

ρ
ts,grain, (2.19)

ρ ≡ ρd + ρg being the total density of the gas and dust mixture.
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2.3 The monofluid formalism

Alternatively, it is possible to model the gas and dust mixture as a single fluid or monofluid
made of multiple phases and with a total density ρ (Laibe & Price, 2014a,b). In this section, I
first derive the full one-fluid/monofluid set of equations for one dust species.2 Then, I present
the diffusion and terminal velocity approximation which are ways to simplify the monofluid
equations for strongly coupled gas and dust mixtures. Finally, I then present the extension of
this formalism to multiple species that was first introduced in Laibe & Price (2014b).

2.3.1 Definition of the monofluid quantities

The monofluid is moving at the mixture barycentric velocity v defined as

v ≡
ρgvg + ρdvd

ρg + ρd
.

I also define the dust ratio

ε ≡
ρd

ρ
,

which must not be confused with the dust-to-gas ratio θd =
ρd
ρg

. Using these new monofluid
quantities, it is straightforward to write

vg = v − ε∆v; vd = v + (1 − ε)∆v; ρg = (1 − ε) ρ; ρd = ερ.

A new Lagrangian derivative d
dt ≡

∂
∂t + (v · ∇) has to be defined to develop the monofluid set of

equations

2.3.2 Monofluid formalism

Total mass conservation

Let us first focus on the total mass conservation equation. In their conservative formulation,
the gas and dust mass conservation equations are written as

∂ρg

∂t
+ ∇ · (ρgvg) = 0,

∂ρd

∂t
+ ∇ · (ρdvd) = 0, (2.20)

using the new monfluid variables we can write these equations as

∂ρ (1 − ε)
∂t

+ ∇ ·
[
ρ (1 − ε) (v − ε∆v)

]
= 0,

∂ρε

∂t
+ ∇ ·

[
ρε(v + (1 − ε)∆v)

]
= 0. (2.21)

Summing these two equations allows to straightforwardly obtain the mass conservation equa-
tion

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0, (2.22)

2The demonstration are tedious, but relatively straightforward and can be left for a second reading, to emphasize
on the results, the final equations are boxed.
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which, with a Lagrangian formulation is written as

dρ
dt

= −ρ(∇ · v). (2.23)

Unsurprisingly, the total mass of the gas and dust mixture is strictly conserved.

Total momentum conservation

I now aim to derive the total momentum conservation equation. As for the mass conservation,
it is easier to demonstrate it in the conservative form. In this form, the momentum conservation
equations of the gas and dust fluids are written as

∂ρgvg

∂t
+ ∇ ·

[
ρgvg ⊗ vg

]
= −∇Pg + ρgf + K∆v,

∂ρdvd

∂t
+ ∇ ·

[
ρdvd ⊗ vd

]
= ρdf − K∆v. (2.24)

Summing the two equation, we obtain

∂ρgvg + ρdvd

∂t
+ ∇ · [ρgvg ⊗ vg + ρdvd ⊗ vd] = −∇Pg + ρf, (2.25)

switching to the monofluid variables and rearranging the order of the terms yields

∂ρv
∂t

+ ∇ · [ρ(1 − ε)v ⊗ v + ρεv ⊗ v + ρ(1 − ε)ε2∆v ⊗ ∆v + ρε(1 − ε)2∆v ⊗ ∆v]

+ ∇ · [−ρε(1 − ε)(v ⊗ ∆v + ∆v ⊗ v) + ρε(1 − ε)(v ⊗ ∆v + ∆v ⊗ v)]

= −∇Pg + ρf. (2.26)

Simplifying all the terms, we get

∂ρv
∂t

+ ∇ · [ρv ⊗ v + ρε(1 − ε)∆v ⊗ ∆v] = −∇Pg + ρf, (2.27)

which using, the total mass conservation equation, yields the Lagrangian form

dv
dt

= −
∇Pg

ρ
+ f −

1
ρ
∇ · (ε(1 − ε)ρ∆v ⊗ ∆v) . (2.28)

Dust mass conservation/Dust ratio evolution

From equation (2.21), we can easily deduce the mass conservation equation from the dust. It is
written as

∂ρε

∂t
+ ∇ ·

[
ρε(v + (1 − ε)∆v)

]
= 0. (2.29)

To obtain the Lagrangian formulation of the dust ratio evolution equation, one has to develop
the derivatives and linear operators of equation (2.29) in the following way

ε
∂ρ

∂t
+ ρ

∂ε

∂t
+ ρ∇ · εv + ε∇ · ρv = −∇ ·

[
ρε((1 − ε)∆v)

]
. (2.30)

Using equation (2.22), we easily get

ρ
∂ε

∂t
+ ρv · ∇ε = −∇ ·

[
ρε((1 − ε)∆v)

]
. (2.31)

With a Lagrangian formulation, the former equation yields

dε
dt

= −
1
ρ
∇ · (ε(1 − ε)ρ∆v) . (2.32)
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Differential velocity evolution

The total momentum equation is not sufficient to constrain the evolution of the gas and dust
velocity as we also need to now how the differential velocity evolves. I now derive its evo-
lution equation. No convenient conservative formulation has been found for this equation yet
as the drag force constantly exchange momentum between the gas and the dust, I therefore
demonstrate the evolution equation directly in its Lagrangian form. In this approach, we have

dgvg

dt
= −

∇Pg

ρg
+ f +

K
ρg

∆v,

ddvd

dt
= f −

K
ρd

∆v. (2.33)

By subtracting these two equations we get

ddvd

dt
−

dgvg

dt
=
∇Pg

ρg
− K

ρd + ρg

ρdρg
∆v. (2.34)

Switching to the monofluid variables leads to

dv + (1 − ε)∆v
dt

+ ((1 − ε)∆v · ∇)(v + (1 − ε)∆v) −
dv − ε∆v

dt
+ (ε∆v · ∇)((v − ε)∆v)

=
∇Pg

ρg
− K

1
ρ(1 − ε)ε

∆v, (2.35)

this can be further simplified as

d∆v
dt

+ (∆v · ∇)v + ((1 − ε)∆v · ∇)((1 − ε)∆v) − (ε∆v · ∇)(ε∆v)

=
∇Pg

ρg
− K

1
ρ(1 − ε)ε

∆v, (2.36)

At this state, we already have an evolution equation for the differential velocity. It is however
interesting to go further in the development. Let us thus work on the (1− ε)∆v · ∇((1− ε)∆v)−
ε∆v∇(ε∆v) term that we call X. Using the vector identity (A · ∇)A = 1

2∇(A.A) − A × (∇ × A),
we find

X = −
1
2
∇((2ε − 1)∆v.∆v) − (1 − ε)∆v × (∇ × ((1 − ε)∆v)) + ε∆v × (∇ × ((ε∆v)).

We can now, using the fact that K =
ρε(1−ε)

ts
, show that

d∆v
dt

=
∇Pg

(1 − ε)ρ
−

∆v
ts
− (∆v · ∇)v + ffrict + ∆ω. (2.37)

The term ∆ω was absent in the previous literature and I recovered it in Lebreuilly et al. (2019).
The new and now complete formulation introduced here holds a physical meaning, it presents

• A friction force ffrict = 1
2∇ ((2ε − 1)∆v ·∆v).

• A differential vorticity term ∆ω = (1 − ε)∆v × (∇ × (1 − ε)∆v) − ε∆v × (∇ × ε∆v).
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Energy conservation

The last monofluid equation to derive is the gas energy conservation equation, which is the
most straightforward to demonstrate. With a bifluid formalism, this equation writes as

dgeg

dt
= −

Pg

ρg
∇ · vg +

K
ρg

∆v ·∆v, (2.38)

the monofluid formulation is obtained simply by changing the variables as

deg

dt
− (ε∆v · ∇)eg = −

Pg

ρ(1 − ε)
∇ · (v − ε∆v) +

ε

ts
∆v ·∆v, (2.39)

and then rearranging the terms to finally obtain

deg

dt
= −

Pg

ρ(1 − ε)
∇ · (v − ε∆v) + (ε∆v · ∇)eg + ε

∆v ·∆v
ts

. (2.40)

In addition to the differential advection terms, this equation presents a heating term ε ∆v ·∆v
ts

due
to the gas and dust friction.

Summary

Finally, in the Lagrangian form, the conservation of mass and momentum energy for the mix-
ture and of the gas internal energy writes

dρ
dt

= −ρ(∇ · v),

dv
dt

= −
∇Pg

ρ
+ f −

1
ρ
∇ · (ε(1 − ε)ρ∆v ⊗ ∆v) ,

dε
dt

= −
1
ρ
∇ · (ε(1 − ε)ρ∆v) ,

d∆v
dt

=
∇Pg

(1 − ε)ρ
−

∆v
ts
− (∆v · ∇)v +

1
2
∇ ((2ε − 1)∆v ·∆v)

+(1 − ε)∆v × (∇ × (1 − ε)∆v) − ε∆v × (∇ × ε∆v),
deg

dt
= −

Pg

ρ(1 − ε)
∇ · (v − ε∆v) + (ε∆v · ∇)eg + ε

∆v ·∆v
ts

. (2.41)

At this point, the monofluid approach is a dual reformulation of the dust and gas fluid
equations (2.17). However, it may be much more convenient for numerical simulations when
using Lagrangian particles since it requires only one resolution scale (the mixture resolution)
and it avoids the artificial trapping of dust particles (Laibe & Price, 2014a). Note that this
system must be closed by a gas equation of state.

2.3.3 Stokes number

At this stage, it is necessary to introduce a very useful dimensionless quantity called the Stokes
number. It is defined as

St ≡
(
ts/tdyn

)
, (2.42)

where tdyn is the dynamical timescale of the system considered, e.g. the free-fall timescale
during a protostellar collapse, the orbital time in a protoplanetary disk, or the crossing time in a
molecular cloud. The Stokes number is useful to evaluate the strength of the coupling between
the gas and the dust. Two limiting cases can be identified
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• St � 1, the stopping time is very small compared to the dynamical timescale of the
system and the dust fluid adjusts very quickly to the gas structure. The coupling between
the gas and the dust is strong.

• St � 1, the dust grain does not have the time to feel the gas during a dynamical timescale
and the coupling is weak.

I will now focus on the strong coupling (or strong drag) regime which is the most relevant
regime in star formation (see Chapter 4 for the justification).

2.3.4 Diffusion approximation

Laibe & Price (2014a) have shown that, for a strong drag regime, two simplifications can be
made. In the so-called diffusion approximation,

∣∣∣∣∣∣∆v2/v2
∣∣∣∣∣∣, ∣∣∣∣∣∣∆v ⊗ ∆v/v2

∣∣∣∣∣∣, ∣∣∣∣∣∣∆v × (∇ × (1 − ε)∆v)/v2
∣∣∣∣∣∣

and
∣∣∣∣∣∣∆v × (∇ × ε∆v)/v2

∣∣∣∣∣∣ are second-order in Stokes number 3. System (2.41) reduces to

dρ
dt

= −ρ(∇ · v),

dv
dt

= −
∇Pg

ρ
+ f,

dε
dt

= −
1
ρ
∇ · (ρε(∆v − ε∆v)) ,

d∆v
dt

=
∇Pg

(1 − ε)ρ
−

∆v
ts
− (∆v · ∇)v,

deg

dt
= −

Pg

ρ(1 − ε)
∇ · v + (ε∆v · ∇) eg. (2.43)

The errors caused by the diffusion approximation are marginal as long as St � 1. We note
that the first-order term − Pg

ρ(1−ε)∇ · (ε∆v) in the energy equation must also be simplified ow-
ing to energy conservation, as explained by Price & Laibe (2015) in their second footnote.
Another approximation known as the terminal velocity approximation (Youdin & Goodman,
2005; Chiang, 2008) can be made when St � 1. In this case

∣∣∣∣∣∣∣∣ d∆v
dt /

(
∆v
ts

)∣∣∣∣∣∣∣∣ and
∣∣∣∣∣∣∣∣(∆v · ∇)v/

(
∆v
ts

)∣∣∣∣∣∣∣∣
are transitory terms, and are thus neglected. A consequence of the terminal velocity approx-
imation for linear drag regimes is that the differential velocity directly depends on the force
balance

∆v = ts
∇Pg

(1 − ε)ρ
.

It should be noted that this expression can change if other forces apply on the dust or
the gas, e.g., the radiation or the Lorentz forces (see section 2.3.8). In the terminal velocity
approximation, we finally obtain

dρ
dt

= −ρ(∇ · v),

dv
dt

= −
∇Pg

ρ
+ f,

dε
dt

= −
1
ρ
∇ ·

(
εts∇Pg

)
,

deg

dt
= −

Pg

ρ(1 − ε)
∇ · v +

(
εts
∇Pg

(1 − ε)ρ
· ∇

)
eg.

3 ||.|| indicates the L2 norm of either a tensor or a vector
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The two first equations are identical to pure hydrodynamics when only gas is involved. The
third equation describes the evolution of the dust ratio. Using a conservative formulation, it can
be expressed as an advection equation

∂ρε

∂t
+ ∇ ·

[
ρε

(
v +

ts∇Pg

ρ

)]
= 0. (2.44)

In this formulation, the equation is almost identical to mass conservation but with a different
advection velocity due to the dephasing between the dust and the barycenter. The specific
internal energy equation is similar to pure hydrodynamics with an additional term that accounts
for the back-reaction of dust on the gas.

2.3.5 (N + 1) phase mixtures

In the diffuse interstellar medium or in protoplanetary disks various grain sizes can coexist. It
is therefore more realistic to simultaneously consider several dust species in order to reproduce
the observed dust size distributions.

In this aim, the previous monofluid formalism has been extended to (N + 1) phase mixtures
with N distinct dust species and a gas phase (Laibe & Price, 2014c; Hutchison et al., 2018).
They show that, in the diffusion approximation the monofluid set of equations writes

dρ
dt

= −ρ(∇ · v),

dv
dt

= −
∇Pg

ρ
+ f,

dεk

dt
= −

1
ρ
∇ ·

(
εkTs,k∇Pg

)
, ∀k ∈ [1,N] ,

deg

dt
= −

Pg

ρ(1 − E)
∇ · v +

(
ETs

∇Pg

(1 − E)ρ
· ∇

)
eg, (2.45)

where εk is the dust ratio of the phase k and Ts,k is the effective stopping time of the dust phase
k defined as

Ts,k ≡
ts,k

1 − εk
−

N∑
l=1

εl

1 − εl
ts,l,

where ts,k is the individual stopping time of the phase k. The
∑N

l=1
εl

1−εl
ts,l term accounts for the

interaction between dust species that is due to their cumulative back-reaction on the gas. I also
introduce the total dust ratio

E ≡

N∑
l=1

εl,

and the mean stopping time

Ts ≡
1
E

N∑
l=1

εlTs,l.

The gas and dust densities are simply given by

ρg ≡ (1 − E) ρ,

ρd,k ≡ εkρ.

When N = 1, system (2.45) reduces to the formulation for a single dust phase.
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2.3.6 Conservative formulation

Combining the different equations with mass conservation in the Lagrangian frame, co-moving
with the barycenter, leads to the formulation of the system of equations in a conservative form

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0,

∂ρv
∂t

+ ∇ ·
[
PgI + ρ(v ⊗ v)

]
= ρf,

∂ρd,k

∂t
+ ∇ ·

[
ρd,k

(
v +

Ts,k∇Pg

ρ

)]
= 0,

∂E
∂t

+ ∇ ·
[
(E + Pg)v

]
= ∇ ·

[
ETs

1 − E
∇Pg

ρ

Pg

γ − 1

]
, (2.46)

where ρd,k is the density of the dust phase k, E ≡ 1
2ρv2 + ρ(1 − E)eg is the total energy of

the mixture and I is the identity matrix. We note the presence of a source term in the energy
equation that comes from the fact that, if the kinetic energy flows at the mixture velocity, the
gas internal energy is still advected at the gas velocity. This term is non-dissipative.

2.3.7 Gas and dust sound waves: dustywaves

At this stage, it is important to linearly perturb the equations in order to analyze the waves
propagation in a gas and dust mixture (dustywaves from now on). This development was made
in Laibe & Price (2011, 2014a) for one dust species and in Laibe & Price (2014b) for multiple
species.

For simplicity, I demonstrate the dispersion relation in an isothermal 1D case without any
exterior force (f = 0). For any quantity A, we note A0 its background value and δA its perturbed
value. We suppose an uniform background state with an initial barycenter velocity set to zero.
In this context, the perturbed conservation equations are written as

∂δρ

∂t
+ ρ0

∂δvx

∂x
= 0,

ρ0
∂δvx

∂t
+ c2

s,0

[
(1 − E0)

∂δρ

∂x
− ρ0

∂δE

∂x

]
= 0,

ρ0
∂δεk,0

∂t
+ c2

s,0Ts,k,0εk,0

[
(1 − E0)

∂2δρ

∂x2 − ρ0
∂2δE

∂x2

]
= 0. (2.47)

Summing the last equation over all the dust species we get

ρ0
∂δE

∂t
+ c2

s,0Ts,0E0

[
(1 − E0)

∂2δρ

∂x2 − ρ0
∂2δE

∂x2

]
= 0. (2.48)

The perturbation relation thus depends only on the mean properties of the dust fluid. Consid-
ering linear perturbations of the type δA ∝ ei[kx−ωt], we finally obtain the dispersion relation of
the dustywave

ω2 + iE0Ts,0c2
s,0k2ω − c2

s,0k2(1 − E0) = 0. (2.49)

A first-order development of the solution of this equation in ωTs,0 is particularly interesting
and holds most of important effects for strongly coupled mixture (Laibe & Price, 2014a). We
therefore approximate the dispersion relation as

ω ' ±kcs,0
√

1 − E0 −
i
2
E0Ts,0c2

s,0k2. (2.50)
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The dustywave can be interpreted as a modified soundwave that propagates at a modified sound
speed c̃s = cs,0

√
1 − E0 and is damped by the drag between the gas and the dust at a rate that

increases with the stopping time, i.e. the grain size. This conclusion is valid only for strongly
coupled mixture. If the initial Stokes number is large compared to 1, the coupling is poor and
the damping disappears (Laibe & Price, 2011).

Solving exactly the perturbation relation for the full monofluid set of equations is not diffi-
cult, but tedious, as it requires to determine the roots of a cubic polynomial. The method was
first presented in Laibe & Price (2011). In their work, they provided a numerical solver that I
use in Chapter 3 to test my numerical implementation of dust dynamics.

2.3.8 A more general case: Individual forces

Let us now consider a more general case where individual forces apply on the gas and the
different dust species. These forces are denoted as fg and fd,k, respectively. The monofluid
development and diffusion approximation can be made as in the previous section. Laibe &
Price (2014a) have shown that in this case, the differential velocity between the dust species k
and the gas is given by

∆vd,k =
ts,k

1 − εk

fd,k − fg −

N∑
j=1

ε j(fd, j − fg)

 . (2.51)

considering that the dust velocity is written as

vd,k = v + ∆vd,k −

N∑
j=1

ε j∆vd, j, (2.52)

Let us now push further the derivation to get the set of hydrodynamical equations in this case.
Using equation (2.52), defining the differential velocity with the barycenter wk = vd,k − v, we
easily find that

wk = −Ts,k(1 − E)fg

+
ts,k

1 − εk

fd,k −

N∑
i=1

εifd,i

 − N∑
i=1

εi
ts,i

1 − εi
fd,i +

N∑
i=1

N∑
j=1

ts,i
εiε j

1 − εi
fd, j. (2.53)

The dust mass conservation equation is given by

∂ρd,k

∂t
+ ∇ ·

[
ρd,k (v + wk)

]
= 0. (2.54)

The total momentum equation is also modified and is now written as

∂ρv
∂t

+ ∇ ·
[
ρ(v ⊗ v)

]
= ρf + ρgfg +

∑N
j=1 ρd, jfd, j. (2.55)

The energy equation cannot be derived in the case because the energy E depends on the
forces that operate, e.g. in the presence of a magnetic field E = 1

2ρv2 + ρ(1 − E)eg + B2

2 (see
section 2.4.5 for the derivation with a magnetic field).
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2.4 Non-ideal MHD with neutral dust grains

2.4.1 Introduction

In this section, I propose an extension of the monofluid formalism to include the dynamics of
neutral dust grains in non-ideal magnetohydrodynamics (NdustyNIMHD), similar to what was
presented by Fromang & Papaloizou (2006); Riols & Lesur (2018) with single dust species and
without considering the cumulative dust back-reaction.

A new force, the Lorentz force must be introduced. As the dust grains are neutral, they are
not sensitive the this force. However, as in the hydrodynamical case, they indirectly feel this
force via collisions. The demonstration of this formalism is very similar to the hydrodynamical
case and I therefore only present the equations with some indications on how to derive them.

2.4.2 Momentum equation

The plasma/gas now feels the Lorentz force and therefore the momentum conservation equation
writes

∂ρv
∂t

+ ∇ ·

[(
Pg +

B2

2

)
I + ρ(v ⊗ v) − B ⊗ B

]
= ρf. (2.56)

This equation is exactly the same as the dust-free equation and is again simply obtained by
summing all the momentum equation. By summing the Lorentz force of all the charged species,
we find as in standard MHD that the barycenter feels a force J × B. This force can still be
decomposed in a magnetic pressure term and a magnetic tension. Note that the classical MHD
equations already are monofluid equations (see the review by Teyssier & Commerçon, 2019),
although they neglect the dynamics of any species in the barycenter frame. More detail on the
subject can be found in Chapter 5.

2.4.3 Differential velocity

To determine the differential velocity between a dust species k and the barycenter, I use equa-
tion (2.53). The Lorentz force can be written as fL = J×B

ρ(1−E) and thus wk is given by

wk = Ts,k
∇Pg − J × B

ρ
, (2.57)

which, in MHD, is equivalent to

wk = Ts,k
∇Pg − (∇ × B) × B

ρ
. (2.58)

Contrary to the hydrodynamical case, the neutral dust grains in a magnetized environment do
not simply drift toward pressure bumps but rather to regions where (∇ × B) × B = ∇Pg.

2.4.4 Induction equation

The induction equation is written as

∂B
∂t

+ ∇ ×
[
vg × B

]
= −∇ × Eb, (2.59)
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where I recall that Eb = E − vg × B, here g refers to the neutral phase of the plasma (dust
excluded). Accounting from the fact that the gas velocity differs from the barycenter velocity
yields

∂B
∂t

+ ∇ ×


v − 1

1 − E

N∑
k=1

εkwk

 × B

 = −∇ × Eb. (2.60)

We note that if the back-reaction is low, when | 1
1−E

∑
k εkwk| � |v|, we obtain again the non-

ideal MHD induction equation

∂B
∂t

+ ∇ × [v × B] = −∇ × Eb. (2.61)

2.4.5 Energy equation

As said before, the derivation of the energy equation must be done specifically when a magnetic
field is considered as the energy now writes E ≡ 1

2ρv2 +ρ(1−E)eg + B2

2 . Without back-reaction
the energy conservation equation is also the same as in non-ideal MHD and writes

∂E
∂t

+ ∇ · [(E + Pn)v − B(B · v)] = ρf · v + ρΛres, (2.62)

where Λres = J ·Eb is the non-ideal resistive heating source term.
If we now consider back-reaction, the derivation of the energy equation becomes more

complicated. Energy conservation imposes that

dE
dt

= 0. (2.63)

We now define the kinetic energy Ekin = 1
2ρv2, the internal energy Eint = ρ(1 − E)eg, and the

magnetic energy Emag = B2

2 . The three derivatives of the energies are given by

dEkin

dt
= −v∇Pg + ρv · f + v · (J × B)

dEint

dt
= −Pg∇ · v − (1 − E)eg∇ · ρv + ∇ ·

 1
1 − E

N∑
k=1

εkwkeg


dEmag

dt
= B ·

(B · ∇) · v − B(∇ · v) − ∇ × Eb + ∇ ×

 1
1 − E

N∑
k=1

(εkwk) × B


 , (2.64)

The magnetic energy can be further simplified as B · ∇ × ( 1
1−E

∑
k(εkwk) × B) = 0. Summing

all the terms, and using the same method to rearrange them as in standard MHD, we obtain the
energy conservation equation. It writes as

∂E
∂t

+ ∇ · [((E + Pn)v − B(B · v)] = ∇ ·

 Pg

γ − 1
1

1 − E

N∑
k=1

εkwk

 + ρf · v + ρΛres. (2.65)
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2.4.6 NdustyNIMHD

Here, I summarize the equation of NdustyNIMHD, they write as follows

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0,

∂ρv
∂t

+ ∇ ·

[(
Pg +

B2

2

)
I + ρ(v ⊗ v) − B ⊗ B

]
= ρf,

∂ρd,k

∂t
+ ∇ ·

[
ρd,k (v + wk)

]
= 0,

∂E
∂t

+ ∇ · [((E + Pn)v − B(B · v)] = ∇ ·

 Pg

γ − 1
1

1 − E

N∑
k=1

εkwk

 + ρf · v + ρΛres,

∂B
∂t

+ ∇ ×


v − 1

1 − E

N∑
k=1

εkwk

 × B

 = −∇ × Eb,

∇ ·B = 0. (2.66)

where

wk = Ts,k
∇Pg − (∇ × B) × B

ρ
. (2.67)

Fortunately, these equations are rather similar to the non-ideal MHD equations especially when
we make the hypothesis that | 1

1−E
∑

k εkwk| � |v|.
As a first step toward correctly treating the dynamics of neutral grain in a magnetized envi-

ronment it is interesting to only consider the modification in the differential velocity between
the gas and dust show in equation (2.67). The additional terms of the induction equation are
likely to be small compared to the others for strongly coupled mixtures. In this case, the differ-
ential velocity between the gas and the dust must be small compared to the barycenter velocity.

2.5 Summary

In this Chapter, I introduced the reader to gas and dust differential dynamics. In short:

1. I recalled the dynamics of a single dust grain embedded in a neutral gas.

2. I established that collective effects of dust grains could be well described with a multi-
fluid approach.

3. I have later shown that this multifluid can be reformulated without approximation as a
monofluid composed a gas and a dust phase.

4. I have shown that great simplifications could be made for tightly coupled gas and dust
mixtures in the so-called diffusion and terminal velocity approximation.

5. I presented the extension of the previous formalism to multiple dust species.

6. I presented the monofluid set of equations in the case of neutral dust grains in a weakly
ionized plasma (NdustyMHD).
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In this chapter, I introduce the RAMSES code (Teyssier, 2002). This code solves the self-
gravitating radiation-magnetohydrodynamics equations and is a very popular tool for astro-

physical or cosmological simulations. After introducing RAMSES main features, I present the
RAMSES module that I developed in order to be able to treat dust dynamics with multiple grain
species. In the last part of this chapter, I perform several tests to benchmark my implementa-
tion. This work was mostly presented in Lebreuilly et al. (2019).

3.1 The RAMSES code

3.1.1 RAMSES

The RAMSES code (Teyssier, 2002) is a finite-volume Eulerian code that integrates the equa-
tion of hydrodynamics in their conservative form on an AMR grid (Berger & Oliger, 1984)..
Among others applications, it has been extended to magnetohydrodynamics (Teyssier et al.,
2006; Fromang et al., 2006; Masson et al., 2012; Marchand et al., 2018), radiation hydro-
dynamics (Commerçon et al., 2011; Rosdahl et al., 2013; Commerçon et al., 2014; Rosdahl
& Teyssier, 2015; González et al., 2015), and cosmic ray and anisotropic heat conduction
(Dubois & Commerçon, 2016). I extended it to the treatment of dust dynamics in Lebreuilly
et al. (2019).

3.1.2 Hyperbolic formulation of hydrodynamics

For simplicity, the hydrodynamical version of RAMSES is presented at first. It solves the Euler
equations of a pure gas in their hyperbolic form

∂U
∂t

+ ∇ ·F(U) = 0, (3.1)

the state U vector and flux F vector being

U ≡
(
ρg, ρgvg, Eg

)
,

F(U) ≡
(
ρgvg, ρgvg ⊗ vg + PgI, vg(Eg + Pg)

)
,

where I is the identity matrix and Eg ≡
1
2ρgvg

2 + ρgeg is the total energy of the gas. We note
that the equations of hydrodynamics are hyperbolic only when there are no source terms such
as the gravity. When introducing a non-hyperbolic source term, the former equation can be
written as

∂U
∂t

+ ∇ ·F(U) = S(U). (3.2)

Let us now consider the case were S(U) = 0. For a 1D problem integrated over time (for
t ∈ [0,T ]) and space (for x ∈ [xleft, xright]), the previous system is written as∫ xright

xleft

(U(T ) − U(0)) dx +

∫ T

0

(
F(xright) − F(xleft)

)
dt = 0. (3.3)

3.1.3 Godunov scheme

Finite-volume methods are based on the estimation of the average of U over the cells. Equa-
tion (3.3) shows that, with this approach, the evolution of the state vector is constrained by the
fluxes at the interfaces of the cells.
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RAMSES uses a second-order predictor-corrector Godunov method (Godunov, 1959) to up-
date U. At the timestep n for a cell i, any physical quantity A is discretized as

A(x, t)→ An
i .

Cell interfaces are denoted with half integer subscripts, e.g, i + 1/2 for the interface between
the cell i and i + 1. Similarly, half timesteps are also denoted with half integer superscripts, e.g,
n + 1/2. For a cell of length ∆x and a timestep ∆t, the scheme writes

Un+1
i = Un

i −
(
Fn+1/2

i+1/2 − F
n+1/2
i−1/2

) ∆t
∆x

, (3.4)

where the discretized fluxes Fn+1/2
i±1/2 = F?

(
Un

i ,U
n
i−1

)
are the solutions of the so-called Riemann

problem at the interfaces.

3.1.4 Riemann problems

x

ρg
ρg,left

ρg,right

t = 0

x

ρg

t = t1

Rarefaction

C
ontact

Shock

ρg,right
ρg,left

ρ ⋆g,left

ρ⋆g,right

Figure 3.1: Cartoon illustration of a Riemann problem with a density discontinuity (shock-
tube). (Left) initial state. (Right) Density after an arbitrary time, the three characteristic waves
(rarefaction, contact and shock) propagate and two additional states are produced.

A Riemann problem occurs when there is a discontinuity of the hydrodynamical variables
at the interface between two control volumes (see figure 3.1 for a cartoon illustration of a
Riemann problem). Numerically, a Riemann problem is solved by determining the value of
F?

(
Un

i ,U
n
i−1

)
. One first needs to estimate the characteristic wave speeds of the system. In that

goal, equation (3.1) can be reformulated as
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∂U
∂t

+ J∇ ·U = 0, (3.5)

where J is the Jacobian matrix of F(U), its eigenvalues are the characteristic wave speeds. In
the hydrodynamical 1D case, it is written as

J =


0 1 0

γ−3
2 v2

g,x (3 − γ)vg,x (γ − 1)
γ−2

2 v3
g,x −

γvg,xPg
ρg(γ−1)

3−2γ
2 v2

g,x −
γPg

ρg(γ−1) γvg,x

 , (3.6)

this matrix is quite hard to handle as it is but, fortunately, equation (3.5) can be written in terms
of so-called primitive variables1 V =

(
ρg, vg, Pg

)
as

∂V
∂t

+ A∇ ·V = 0, (3.7)

where A is similar to J and therefore has the same eigenvalues. A is written

A =


vg,x ρg 0
0 vg,x

1
ρg

0 γPg vg,x

 . (3.8)

One then find that the three eigenvalues λi,i∈[1,3] of A (and therefore J) are

λi,i∈[1,3] =


vg,x − cs,

vg,x,

vg,x + cs,

(3.9)

cs =

√
γPg
ρg

being the gas adiabatic soundspeed. In this simple hydrodynamical case, the infor-
mation travels at three different wave speeds. There is an expansion wave at vg,x − cs, a contact
discontinuity wave at vg,x and a shock wave at vg,x + cs. Assuming two initial states Uleft and
Uright, two additional states U?

left and U?
right are expected to form while these three waves propa-

gate (see figure 3.1). The second step to solve a Riemann problem consists in determining these
additional step. Then one must estimate the flux at the interface between the control volumes
F?

(
Uleft,Uright,U?

left,U
?
right

)
.

3.1.5 Approximate Riemann solver : The HLL case

It is possible to numerically find an exact solution of a Riemann problem, however it comes
with a great computational cost (Toro, 2013). A way to overcome this difficulty is to use an
approximate Riemann solver such as

• The Roe solver that uses the linearized Jacobian matrix to estimate the states in each
domain.

• The Lax-Friedrich solver that considers only two waves of opposite direction propagat-
ing at the highest of the three characteristic speeds. As a consequence, it also considers
an intermediate state known as Ullf .

• The HLL solver also consider two waves but with different speeds. It thus also introduces
an additional intermediate state which is Uhll.

1that can be expressed in term of the conservative variables
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t

x

𝕌left

𝕌hll

𝕌right

SrightSleft

Figure 3.2: Space time di-
agram illustrating the Rie-
mann problem in the HLL
case. S left and S right are the
two characteristic speeds
of the problem. Uhll is the
intermediate state. Note
that with the HLL solver
S left , S right is possible, as
illustrated here.

• The HLLC solver, a modification of HLL that restores the contact wave and therefore
consider the four states presented above.

For simplicity, I explain here how the HLL solver works. In this approach the state vector
is written as

U =


Uleft if x

t ≤ S left,

Uhll if S left ≤
x
t ≤ S right,

Uright if x
t ≥ S right,

(3.10)

where S left and S right are the two characteristic speeds of the problem2 (see figure 3.2 for a
space time diagram illustrating the HLL Riemann problem). It is easy to show that∫ xright

xleft

U(T )dx = (TS left − xleft)Uleft +
(
TS right − TS left

)
Uhll +

(
xright − TS right

)
Uright, (3.11)

which, using equation (3.3) yields

Uhll =
S rightUright − S leftUleft + Fleft − Fright

S right − S left
, (3.12)

where Fleft = F(Uleft) and Fright = F(Uright). Applying the Rankine-Hugoniot condition at the
left-hll interface when S left ≤ 0 ≤ S right one can show that

Fhll = Fleft + S left (Uhll − Uleft) , (3.13)

which, using the expression of Uhll, leads to

Fhll =
S rightFleft − S leftFright + S leftS right(Uright − Uleft)

S right − S left
. (3.14)

2not to be confused with the source terms S
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The final value of the flux at the interface of the control domain is then given by

F? =


Fleft if 0 ≤ S left,

Fhll if S left ≤ 0 ≤ S right,

Fright if 0 ≥ S right.

(3.15)

3.1.6 The MUSCL scheme

Once the interface fluxes are estimated, they can be used to update the state vector according
to the Godunov method. In the first-order Godunov method, the state vector is considered
constant in a cell, which constitutes a piecewise constant approximation. To gain an order of
accuracy, one must adopt a piecewise linear approximation. The MUSCL predictor-corrector
scheme (van Leer, 1979), used in RAMSES, has been developed in that perspective. This scheme
consists in two successive steps

• The predictor step, during which the state vector is estimated at the left and right inter-
faces of the control domain using an estimate of its slopes in every direction and at half
timestep using equation (3.7).

• The corrector step, when the predicted state vector is used to compute the flux using an
approximate Riemann solver (e.g. HLL, HLLD, see section 3.1.5 for HLL)

Let us detail the predictor step (the corrector step simply follows section 3.1.5).
To perform the predictor step one can be tempted to use a central finite difference to esti-

mate the slope ∆xU of the vector step. Unfortunately, there is no insurance of preserving the
monotonicity with this estimate. To ensure its preservation, slope limiters must be employed.
They are designed to preserve the so-called total variation diminishing property (TVD, Harten,
1983). Defining the total variation as

TV(Un) =
∑

i

|Un
i+1 − U

n
i |, (3.16)

the TVD condition is given by

TV(Un+1) ≤ TV(Un). (3.17)

A classical example of slope limiters is MINMOD that is written as

∆xUMINMOD =


a if |a| < |b| and ab > 0
b if |a| > |b| and ab > 0
0 otherwise ,

(3.18)

where a = Un
i − U

n
i−1 and b = Un

i+1 − U
n
i .

Once the slope ∆xU is estimated using a slope limiter. U, the MUSCL schemes uses equa-
tion (3.7) to perform the predictor step. In the simple case of mass conservation, this equation
is given by

∂ρg

∂t
= −

∂ρgvg,x

∂x
, (3.19)

A discretization of this equation allows us to estimate ρg
n+1/2
i−1/2 , which is the value at the left

boundary of the cell i and therefore at the right of the interface between i− 1 and i. It is written
as

ρg
n+1/2
i−1/2 = ρg

n
i −

1
2

∆xρg
n
i −

∆t
2∆x

(
ρg

n
i ∆xvg,x

n
i + vg,x

n
i ∆xρg

n
i

)
. (3.20)

All the other variables (momentum and energy in the hydrodynamical case) are updated simi-
larly according to their evolution equation.
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3.1.7 Gravity

As explained earlier, gravity adds non-hyperbolic source terms to the equation of hydrodynam-
ics. In addition, the Poisson equation, that is not hyperbolic as well, must be solve to account
for the interaction between the mass distribution and the gravitational potential. In RAMSES, the
Poisson equation is solved either by the conjugate gradient algorithm or by a multigrid solver.
I do not details their implementation which are explained in (Teyssier, 2002, for the conju-
gate gradient) and (Guillet & Teyssier, 2011, for the multigrid solver). Typically, the multigrid
solver is more efficient than the conjugate gradient while the later is more robust.

Once the gravitational potential is determined at a time t by one of the two available solver
one must add the source terms to the state vectors. In RAMSES, the gravity source term Sn+1/2

gravityi
is computed as

Sn+1/2
gravityi

=

(
0,

1
2

(
ρg

n
i ∇φ

n
i + ρg

n+1
i ∇φ

n+1
i

)
,

1
2

(
ρg

n
i vg,x

n
i ∇φ

n
i + ρg

n+1
i vg,x

n+1
i ∇φ

n+1
i

))
. (3.21)

This method, called the fractional step method (detailled in Toro, 2013), ensure the preserva-
tion of the second-order accuracy of the Godunov method. The modified Godunov scheme in
presence of gravity is

Un+1
i = Un

i −
(
Fn+1/2

i+1/2 − F
n+1/2
i−1/2

) ∆t
∆x

+ Sn+1/2
gravityi

∆t. (3.22)

3.1.8 Magnetohydrodynamics

I explained in the previous section how the hydrodynamical conservation equations are solved
in RAMSES. In star formation, magnetic fields are known to play an important role (Allen et al.,
2003a; Hennebelle & Teyssier, 2008; Commerçon et al., 2010; Tomida, 2014; Tomida et al.,
2015; Wurster et al., 2018; Vaytet et al., 2018b; Marchand et al., 2019). Besides adding new
waves to the problem, MHD requires to solve the induction equation while ensuring that the
solenoidal constraint is preserved.

In both non-ideal and ideal MHD, the induction equation can be written as

∂B
∂t
− ∇ × E = 0, (3.23)

this equation is not hyperbolic. However, defining the magnetic flux over a surface S as φB =s
S BdS, equation (3.23) can be formulated as

∂φB

∂t
=

∮
C

Edl, (3.24)

we note that this equation preserves the magnetic divergence during the magnetic field evolu-
tion.

The finite-surface constrained transport method (Evans & Hawley, 1988) have been im-
plemented in RAMSES by Teyssier et al. (2006) to ensure the preservation of ∇ ·B even after
discretisation. In that aim, the magnetic field is now defined at the cell interface while the
time averaged electric field components are evaluated at the edges of the interfaces. With this
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approach, equation (3.24) is discretized as follows

Bn+1
x,i−1/2, j,k − Bn

x,i−1/2, j,k

∆t
=

En+1/2
z,i−1/2, j+1/2,k − En+1/2

z,i−1/2, j−1/2,k

∆y
−

En+1/2
y,i−1/2, j,k+1/2 − En+1/2

y,i−1/2, j,k−1/2

∆z
,

Bn+1
y,i, j−1/2,k − Bn

x,i, j,−1/2k

∆t
=

En+1/2
x,i, j−1/2,k+1/2 − En+1/2

x,i, j−1/2,k−1/2

∆z
−

En+1/2
z,i+1/2, j−1/2,k − En+1/2

z,i−1/2, j−1/2,k

∆x
,

Bn+1
z,i, j,k−1/2 − Bn

x,i, j,k−1/2

∆t
=

En+1/2
y,i+1/2, j,k−1/2 − En+1/2

y,i−1/2, j,k−1/2

∆x
−

En+1/2
x,i, j+1/2,k−1/2 − En+1/2

x,i, j−1/2,k−1/2

∆y
.

(3.25)

By construction, this discretization imposes ∇ ·Bn = ∇ ·Bn+1. Hence to ensure the solenoidal
constrant in RAMSES, having ∇ ·B0 = 0 is enough.

As the electric fields play a role that is equivalent to the fluxes in hydrodynamics, they must
be estimated at the cell edges. A so-called 2D Riemann problem at the junction between four
states, left-bottom, left-top, right-bottom and right-top, must then be solved. For simplicity,
I chose not to detail the 2D Riemann problem and the approximate 2D Riemann solver that
follow the same principles, but with much heavier expressions, as the standard 1D case. In
short, the procedure to update the magnetic field is executed as follows

1 The values of hydro variables are estimated at the cell corners using 2D slope limiters.

2 The electric fields at the corners are estimated using an approximate 2D-Riemann solver,
e.g. HLL.

3 The magnetic fields are updated according to equations (3.25).

The induction equation is not the only change that is brought to the equation of hydrody-
namics in MHD. In ideal MHD case seven characteristic wave must be considered

• 2 Alfvén waves that propagates at the speed λ = vg,x ± va,

• 4 fast/slow magneto-sonic waves with λ = vg,x ±

√
1
2 (c2

s + v2
a) ± 1

2

√
(c2

s − v2
a)2 − 4c2

s v2
a,x,

• 1 contact discontinuity propagating at the speed λ = vg,x,

where va = B√
ρ

is the Alfvén speed (Alfvén, 1942). The approximate Riemann solvers of
RAMSES have been extended to take the additional ideal and non-ideal-MHD waves into ac-
counts by (Teyssier et al., 2006; Fromang et al., 2006; Masson et al., 2012; Marchand et al.,
2018).

3.1.9 AMR grid

The AMR grid enables an accurate description of the regions of interest in the simulation box.
In RAMSES, the AMR grid is made of otcs. They are groups of 2ndim cells, where ndim is the
number of dimension of the simulation. Octs are tagged with a refinement level ` with a value
between `min for the coarsest cells and `max for the finest. The length of a cell of level ` is

∆x` =
Lbox

2`
,

where Lbox is the size of the simulation box. For a uniform grid with an unique level `, the
effective resolution is simply 2`. As a consequence, in RAMSES ∆x = ∆y = ∆z.

58



CHAPTER 3. NUMERICAL METHODS

Lbox
Δx = Lbox

2Δx = Lbox
4

x

Δx = Lbox
8

ℓ = 1ℓ = 2ℓ = 3
Figure 3.3: Cartoon illus-
tration of an 2D AMR grid
with `min = 1 and `min = 3
with a refinement strategy
that imposes only one level
difference between two ad-
jacent cells. The AMR al-
lows to increase the reso-
lution in regions of interest
using a relevant refinement
criterion, e.g. the based
on the Jeans-length in star
formation simulations.

The AMR grid can be either refined or unrefined at each timestep to resolve regions of
interest in the simulation box, it is however imposed that neighbor cells can only differ by
one level. Figure 3.3 shows a cartoon illustration of an AMR grid in the simple case of a 2D
simulation with a minimum level `min = 1 and a maximum level `min = 3. The minimum and
maximum cell sizes are therefore Lbox

8 and Lbox
2 .

3.1.10 Timestepping
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Δtℓ

Δt1,ℓ+1 Δt2,ℓ+1
Figure 3.4: Cartoon illustration the adaptive timesteping strategy used by RAMSES. Inspired
form Romain Teyssier’s lecture.
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Courant condition

RAMSES is an explicit code, which means that the timestep must be verifying the so-called
Courant–Friedrichs–Lewy condition (Courant et al., 1928, hereafter CFL). If we consider a
cell of length ∆x in which the maximum wave speed is cmax, then the CFL conditions typically
imposes that

∆t = CCFL
∆x

cmax
. (3.26)

where CCFL < 1 is a safety factor. How cmax is determined depends on the numerical scheme
used. RAMSES uses a dimensionally split scheme and the maximum waves speed must be chosen
as cmax = cs + |vg,x| + |vg,y| + |vg,z| in the hydrodynamical case. In the ideal MHD case, cs is
replaced by the fast magnetosonic wave.

Adaptive timestep

The RAMSES code uses an adaptive timestep to reduce the computation time while maintaining
a good accuracy for the refined cells. When a level ` is updated with a timestep ∆t`, the level
` + 1 is updated twice with two timesteps, ∆t1,`+1 and ∆t2,`+1, each verifying the CFL. The two
levels are synchronized with the following condition

∆t` = ∆t1,`+1 + ∆t2,`+1.

Time update

The state vector is updated level by level starting from the finer up to the coarser level. For a
cell of level `, three types of interfaces are possible

• The fine-to-coarse interfaces, when the neighbor cell is at level ` − 1;

• the fine-fine interfaces, when the neighbor cell is also at level `;

• the coarse-to-fine interfaces, when the neighbor cell is at level ` + 1.

During the update of level ` + 1, the fluxes at the interface with level ` are used to update the
level ` + 1 and stored for the later update of the level `. During the update of the level, the
state vector of the coarser levels is held constant. The fine-to-coarse and fine-fine fluxes are
computed during the update of the level `. The coarse neighbor cells at level ` − 1 are virtually
refined to compute the flux at the boundaries with level `. The adaptive timesteping and flux
update strategy is summarized in figure 3.4.

3.2 Implementation of the dust dynamics

3.2.1 Operator splitting

In the previous section, I explained how RAMSES solves the equations of hydrodynamics in
their conservative form. The monofluid formalism in the diffusion approximation has the same
structure for the mass, momentum and energy conservation equation. A total of N additional
equations are however required when N dust species are included. The system is now written
as

∂U
∂t

+ ∇ ·FH(U) + ∇ ·F∆(U) = 0. (3.27)
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The new state vector U is defined as

U ≡
(
ρ, ρv, E, ρd,k

)
;

the flux FH is similar to the flux of pure hydrodynamics and is given by

FH(U) ≡
(
ρv, ρv ⊗ v + PgI, v(E + Pg), ρd,kv

)
,

the flux F∆ accounts for the dust drift and is given by

F∆(U) ≡
(
0, 0,

Pg

γ − 1
wg,b, ρd,kwk

)
,

where wk, the differential advection velocity between the dust species k and the barycenter, is

wk ≡
Ts,k∇Pg

ρ
; (3.28)

and wg,b is the differential velocity between the gas and the barycenter is written as

wg,b = −
ETs

1 − E
∇Pg

ρ
(3.29)

or

wg,b = −

N∑
k=1

ρd,k

ρ −
∑

j ρd, j
wk. (3.30)

The classical second-order Godunov method presented above is used to update the state vector.
An operator splitting method is performed to solve the system in two steps. In the so-called
hydrodynamical step, RAMSES only computes FH and update the state vector accordingly. An
important difference between this step and the classical hydrodynamical version of RAMSES is
that the fluid density ρ is different from the gas density. As a consequence, the pressure and the
sound wave speeds must be computed using ρg = ρ(1 − E) instead of ρ.

3.2.2 MUSCL scheme for dust diffusion/advection

The second step of the operator splitting consists in considering the contribution from the
second flux vector F∆. For simplicity, let us now focus on the update of the dust density
keeping in mind that the dust density and energy updates are done simultaneously. In this aim,
the following equation is solved

∂ρ̃d,k

∂t
= −∇ ·

[
ρ̃d,kwk

]
, (3.31)

where ρ̃d,k refers to ρd,k after its advection as a passive scalar at the velocity v. In the remainder
of the section, I omit this symbol and the k index. A MUSCL predictor-corrector scheme is
used to compute the dust diffusion fluxes F (ρd) ≡ ρdw. The flux storage and the Godunov
update are performed as in the hydrodynamical step.

Apart from the dust densities and the energy of the mixture, the variables are constant
during this step. In particular, the total density ρ is constant.
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Differential advection velocity: During the diffusion step, the aim is to compute the differ-
ential advection velocity wn

i, j,k. To get its value, the pressure gradient is evaluated at the center
of the cell i, j, k of length ∆x. For example, its component in the x-direction, is

∇xPg
n
i, j,k =

Pg
n
i+1, j,k − Pg

n
i−1, j,k

∆xi+1, j,k + ∆xi−1, j,k
, (3.32)

where ∆xi−1, j,k and ∆xi+1, j,k denote the distance in the x-direction from the center of the cell to
the center of the left and right neighbor cells, respectively. They take into account the level of
the neighbor cell.

If the neighbor cell is coarser, the pressure is interpolated at the fine level using a slope
limiter to compute the gradient. This method is similar to what is used in the hydrodynamical
solver of RAMSES, with a loss of one order of accuracy at level interface. In certain condi-
tions this method maintains a second-order accuracy of the scheme in presence of AMR (see
section 3.3.4). The case where the neighbor cell is at a finer level is never considered since
fine-to-coarse fluxes are already computed during the update of the finer level. Finally, the
expression of the x-component of wn

i, j,k is given by

wx
n
i, j,k =

Ts
n
i, j,k∇xPg

n
i, j,k

ρn
i, j,k

. (3.33)

Predictor step: During the predictor step, the dust density is estimated at the left and right
interfaces with a simple finite difference method. It uses slope limiters to preserve the TVD
property of the scheme. The centered value of the dust density is estimated at half timesteps as

ρd
n+1/2
i, j,k = ρd

n
i, j,k

−
∆t

2∆x

∑
σ=x,y,z

(
wσ

n
i, j,k∆σρd

n
i, j,k + ρd

n
i, j,k∆σwσ

n
i, j,k

)
, (3.34)

where ∆σρd
n
i, j,k and ∆σwσ

n
i, j,k are the TVD variations of ρd and wσ in the direction σ. After the

prediction of ρd
n+1/2
i, j,k , ρd and wσ are interpolated at the interfaces.

Let us consider the interface in the x-direction. The left and right interface values, sill
indicated by the left and right annotation, are given by

ρlefti, j,k = ρd
n+1/2
i, j,k −

∆xρd
n
i, j,k

2
.

ρrighti, j,k = ρd
n+1/2
i, j,k +

∆xρd
n
i, j,k

2
,

wxlefti, j,k = wx
n
i, j,k −

∆xwx
n
i, j,k

2
,

wxrighti, j,k = wx
n
i, j,k +

∆xwx
n
i, j,k

2
. (3.35)

The bottom, top, back, and front states are estimated in a similar way.

Corrective step: The correction operation consists in computing the fluxes at the interface
using the left and right predicted values, respectively. Let us consider the left interface of the
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cell i, j, k in the x-direction. To avoid issues with the velocity discontinuities at the interfaces
(e.g., due to spurious pressure jumps, Sharma et al., 2009), I impose a unique advection velocity

wn+1/2
i−1/2, j,k =

wleft
n+1/2
i, j,k + wright

n+1/2
i−1, j,k

2
. (3.36)

This average does not appear to be critical for the second-order accuracy of the scheme. Our
scheme uses the upwind method (Courant et al., 1952) to estimate the flux, sufficient to get the
second-order accuracy in space. It writes as

F∆
n+1/2
i−1/2, j,k = max

(
wn+1/2

i−1/2, j,kρd,left
n+1/2
i, j,k , 0

)
+ min

(
wn+1/2

i−1/2, j,kρd,right
n+1/2
i−1, j,k, 0

)
. (3.37)

Several other approximate Riemann solvers can be used in our implementation as well, such as
Lax-Wendroff (Lax & Wendroff, 1960) or Harten-Lax-van Leer (Harten et al., 1983, hereafter
HLL). The fluxes in the other directions F n+1/2

i, j−1/2,k and F n+1/2
i, j,k−1/2 are estimated in a similar way.

The dust density is finally updated according to

ρd
n+1
i, j,k = ρd

n
i, j,k −

∆t
∆x

(
F

n+1/2
i+1/2, j,k − F

n+1/2
i−1/2, j,k

)
−

∆t
∆x

(
F

n+1/2
i, j+1/2,k − F

n+1/2
i, j−1/2,k

)
−

∆t
∆x

(
F

n+1/2
i, j,k+1/2 − F

n+1/2
i, j,k−1/2

)
. (3.38)

The time update and flux storage strategy still follows section 3.1.10 when an AMR grid is
employed.

Energy : Similarly and simultaneously with the dust diffusion step, the energy is updated
after the hydrodynamical step to account for the energy component of F∆. It is computed
using the same scheme as the dust density with the velocity computed with equation (3.30) and
the internal energy instead of the dust density. The fluxes are then added to the state vector
similarly to equation (3.38) with the total energy instead of the dust density.

3.2.3 Timestepping with dust

Since the dust diffusion step consists in solving an advection equation explicitly, the scheme
stability is achieved if the timestep ∆t verifies the split CFL condition

∆t < ∆tdust ≡ CCFL
∆x∑

σ=x,y,z

∣∣∣max(wσ,wg,bσ)
∣∣∣ , (3.39)

where CCFL < 1 is a safety factor. In addition, the hydrodynamical step imposes another
stability condition that writes

∆t < CCFL
∆x

|cs| +
∑
σ=x,y,z |vσ|

, (3.40)

where vσ is the mixture velocity in the direction σ. Dust diffusion is stable without intervention
on the timestep as long as

|cs| +
∑

σ=x,y,z

|vσ| >
∑

σ=x,y,z

∣∣∣max(wσ,wg,bσ)
∣∣∣. (3.41)

If the former condition is not verified, which is the case when the pressure gradient is steep,
dust diffusion constrains the timestep. In this case, the dust timestep is imposed instead of the
hydrodynamical one.
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3.3 Tests

To benchmark the implementation of dust dynamics in RAMSES, I run the canonical tests for
gas and dust mixtures, dustydiffuse, dustyshock, dustywave and the settling test. I also test
this advection solver with the dustyadvect test. These tests, of increasing complexity, intend to
verify, separately, together and finally under realistic physical conditions, the implementation
of the dust terms.

3.3.1 Dustyadvect

0.00
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0.10

ρ
d

No predictor stepNo predictor stepNo predictor stepNo predictor step MinmodMinmodMinmodMinmod

0.0 0.2 0.4 0.6 0.8 1.0
x
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ρ
d

Van LeerVan LeerVan LeerVan Leer

0.0 0.2 0.4 0.6 0.8 1.0
x

SuperbeeSuperbeeSuperbeeSuperbee

`=7

`=9

`=11

`=13

Analytic

Figure 3.5: dustyadvect tests using the function f1 (equation (3.43)). Dust density after one
period on various grids (` = 7 in blue, ` = 9 in orange, ` = 11 in green, ` = 13 in red) as a
function of the position compared with the analytic solution (black solid line). I present this
test using four different slope limiters. (Top left) No predictor step. (Top right) Minmod slope
limiter. (Bottom left) Van-Leer slope limiter. (Bottom right) Superbee slope limiter.

The scheme convergence and behavior at discontinuities is examined with 1D advection
tests. These test are the simplest presented here and only verify the correct implementation of
the advection scheme. In these dustyadvect tests, the advection velocity wx is set constant and
the hydrodynamical update is deactivated. It consists in solving the following equation

∂ρd

∂t
= −wx

∂ρd

∂x
. (3.42)

Considering an initial condition ρd(x, 0) = f (x), f (x) having a period of the size of the box
L = 1, the analytic solution at time t is simply given by ρd(x, t) = f (x − wxt). In the remainder
of the section, wx = 1.

At first, four dustyadvect tests are performed. I impose the initial function f1, which writes
∀x ∈ [0, L]

f1 (x) =

{
0.1 if L

4 < x < 3L
4 ,

0.01 otherwise.
(3.43)

In the first test, no predictor step is operated. Different slope limiters are then used for the three
other tests in the predictor step; Minmod (Roe, 1986), Van-Leer (van Leer, 1974), and Superbee
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Figure 3.6: dustyadvect tests with an initial condition given by the function f2 (equation
(3.44)). L2 (equation (3.45)) norm as a function of the cell size for the scheme using the Min-
mod slope limiter (blue squares) and without predictor step (orange diamonds). The results are
compared with a first-order slope (dashed line) and a second-order slope (dotted line).

(Roe, 1986). Uniform grids of resolutions ranging from ` = 7 (128 cells) to ` = 13 (8192 cells)
are considered. Extremely small timesteps compared with the CFL condition ∆t = 8×10−6 are
imposed to ensure that the spatial error dominates.

Figure 3.5 shows the outcome of these tests after one period, at t = 1. As expected, the
quality of the results strongly depends on the slope limiter. Without the predictor step (no
slope limiter) the solver is simply a first-order centered upwind scheme. In this case a larger
resolution is required to achieve the same accuracy as in the three other tests. As expected,
the Van-Leer and Superbee slope limiters give more accurate results than the Minmod test but
at the cost of a lack of symmetry. The Minmod slope limiter was therefore chosen as a good
compromise to achieve a satisfying precision and to preserve symmetry.

Another series of dustyadvect tests are performed for different resolutions, using the Min-
mod slope limiter and without a predictor step. A smooth initial Gaussian-like function f2 is
imposed to quantify the truncation error in space of the scheme which writes, ∀x ∈ [0, L],

f2 (x) = 0.01 + 0.1 exp

−( x − L/2
L/4

)2 . (3.44)

I use a very small timestep ∆t = 10−8 to minimize the truncation errors in time compared
with spatial errors. The results are compared at the same time t = 0.01 with the analytic
solution using the L2 norm

L2 =

√√√∑Ncell
i=1

∣∣∣∣ρd
n
RESULTS,i − ρd

n
ANALYTIC,i

∣∣∣∣2
Ncell

. (3.45)

Figure 3.6 shows the evolution of the L2 norm with (blue squares) and without (orange
diamonds) a prediction step as a function of the size of the cells for the Gaussian-like test. As
expected, without prediction, the scheme has only a first-order accuracy in space, while it is a
second-order scheme when the full predictor-corrector scheme with slope limiters are used.
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3.3.2 Dustydiffuse
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Figure 3.7: Dustydiffuse tests. Dust ratio as a function of the position at t = 1 (red), t = 5
(green), t = 10 (blue), t = 20 (purple) compared with the exact solution (black solid lines).

When the hydrodynamical variables (pressure and dust ratio excluded) remain constant,
equation (2.44) behaves as a non-linear diffusion equation. Pure dust diffusion tests can thus be
performed. The main goal of this test is to verify the correct implementation of the F∆ terms.
In the dustydiffuse tests (Price & Laibe, 2015), the hydrodynamical step is deactivated and ts
and cs are set constant as well. Therefore, I only solve the following equation:

∂ρd

∂t
=
∂ρdwx

∂x
. (3.46)

An isothermal equation of state Pg = c2
s (1 − ε)ρ is considered. The advection velocity is then

given by

wx = −tsc2
s
∂ε

∂x
; (3.47)

ρ being constant, the equation can be written as the a non-linear diffusion equation

∂ε

∂t
= tsc2

s
∂

∂x

(
ε
∂ε

∂x

)
. (3.48)

Equation (3.48) has a self similar solution known as the Barenblatt-Pattle solution (Barenblatt,
1952) that writes

ε(t, x,C) = (tsc2
s t)−1/3

(
C −

1
6

x2

(tsc2
s t)2/3

)
, (3.49)

where C is a constant depending on the initial conditions. I consider the following initial profile

ε(t0, x) = ε0

1 − (
x
xc

)2 , (3.50)
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Figure 3.8: Dustyshock
with ε = 0.5. (Top left)
Gas density as a function
of position. (Top right)
Same but for dust. (Bot-
tom left) Gas pressure.
(Bottom right) Gas and
dust velocities. The AMR
level (right axis) is rep-
resented with dotted blue
lines. The analytic solu-
tion is given by the black
solid lines. Red circles and
blue crosses indicate gas
and dust numerical quanti-
ties, respectively.

which is consistent with equation (3.49) if

t0 =
C3

tsc2
s ε

3
0

,

C =

(
ε0xc
√

6

)2/3

.

I additionally set ρ = 1, ts = 0.1, ε0 = 0.1 and cs = 1 and an AMR grid of `min = 4 and with
`max = 10. The refinement criterion, based on the dust density gradient, forbids a variation of
more than 5% between two cells.

Figure 3.7 shows a comparison between the outcome of the tests and the analytic solutions
at t = 1, t = 5, t = 10 and t = 20. At each time the numerical results agree with the exact
solution to a precision of less then 1% in L2 norm. Even though my scheme is fundamentally
designed for advection, it is also efficient at handling diffusion problems.

3.3.3 Dustyshock

Another canonical test for gas and dust mixtures consists of 1D hydrodynamical shocks. For
strongly coupled mixtures, these so-called dustyshock tests are closely approximated by the
same analytic solution as the usual Sod test (Sod, 1978), but with the modified sound speed c̃s

c̃s = cs
√

1 − ε0,

ε0 being the initial dust ratio. The dust ratio ε remains almost constant through the shock;
however, small pressure bumps must occur where there is either a pressure or density gradient.
The goal of this test is to verify the impact of the dust in FH since F∆ is almost negligible.

The same prescription as Laibe & Price (2014a) for the stopping time is used. It writes

ts =
ε(1 − ε)ρ

K
,

where K is the drag coefficient defined previously. This prescription is consistent with the
expression of the stopping time presented before is convenient for tests since it allows us simply
parametrize the coupling between the gas and dust phase.
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A dustyshock test is performed on an AMR grid with `min = 4 and `max = 13 with a high
initial dust ratio. The grid is refined with a criterion that forbids dust density variations of more
than 5% between two neighbor cells. Two distinct regions, representing the left and right half
of the box, are set with different initial conditions given by(

ρ0, v0, Pg0, ε0
)
left

= (1, 0, 1, 0.5)(
ρ0, v0, Pg0, ε0

)
right

= (0.125, 0, 0.1, 0.5) .

Finally, a drag coefficient K = 1000 and an adiabatic index γ = 1.4 are imposed.
Figure 3.8 shows the gas and dust densities, the velocity, and the gas pressure as a func-

tion of the position at t = 0.2. The Sod solution with the modified sound speed is very well
recovered.

3.3.4 Dustywave
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Figure 3.9: dustywave test. Velocity of the gas (top) and dust (bottom) phase as a function of
the position at t = 4.5 for the K50, K100 and K1000 tests (from left to right) compared with
the analytical solution (black lines) given by Laibe & Price (2011).

The 1D dustywave test (Laibe & Price, 2011) consists in following the evolution of an
isothermal sound wave in a gas and dust mixture. The goal of this test is to verify the impact of
the dust in both FH and F∆. Small periodic perturbations on the equations (2.41) on the density,
the dust ratio, the pressure, and the velocity are imposed

ρ = ρ0 + δρ0,

ε = ε0 + δε0,

Pg = Pg0 + δPg0,

vx = 0 + δvx0,

where the index 0 and the symbol δ indicate respectively the initial uniform quantities and the
perturbations. As explained in chapter 2, Laibe & Price (2011) provide the analytic solution
for this test in the full bifluid case. They find that the sound waves propagate with the modified
sound speed c̃s and are damped because of the dust inertia. Large grains damp these sound
waves faster than small grains as they are more massive.
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Figure 3.10: dustywave test. Same as in figure 3.9 but for the density perturbations.

Three dustywave tests are performed using different drag coefficients K = 50 (K50, strong
back-reaction regime), K = 100 (K100) and K = 1000 (K1000,weak back-reaction regime).
The initial perturbations are in the form

δρ0 = ρ0δ sin
(
2π

x
L

)
,

δvx0 = v0δ sin
(
2π

x
L

)
,

δPg0 = (1 − ε0) c2
s,0δρ0,

δε0 = 0,

where x is the position in the box, L is the box length, cs,0 is the initial sound speed, and δ is
a parameter that sets the amplitude of the perturbation. The initial uniform state is set such as
that

ρ0 = 2,

ε0 = 0.5,

v0 = 1,

cs,0 = 1.

The adiabatic index of the gas is γ = 1.0000013 to simulate an isothermal soundwave propaga-
tion. The initial perturbation has a relative amplitude δ = 10−4. The simulation box has a size
L = 1.0 and the grid is taken as uniform with 64 cells. The timestep ∆t = 10−4 is the same for
the three tests and respects the stability condition for the considered drag coefficients.

Figures 3.9 and 3.10 show the velocity vx and the perturbation density δρ = ρ− ρ0 for both
gas and dust at t = 4.5 for these three tests. The amplitude of the damping increases with a
decreasing K and the results are increasingly less accurate as the errors due to the diffusion
approximation increase, consistently with the theory (Laibe & Price, 2011; Price & Laibe,
2015). Larger grains, i.e, with smaller K, have more inertia and allow an efficient damping of
the gas.

3 Taking exactly γ = 1 is not possible with RAMSES as the internal energy is computed as Pg
γ−1
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Figure 3.11: dustywave numerical convergence tests. L2 norm as a function of the minimum
cell size for the scheme using the Minmod slope limiter (blue squares), without predictor step
(orange diamonds) and with AMR (green circles) . The results are compared with a first-order
slope (dashed line) and a second-order slope (dotted line).

I perform dustywave tests on uniform grids with resolutions ranging from ` = 5 to ` = 9,
with a small timestep ∆t = 10−5 and for K = 50. I also perform runs on AMR grids with coarse
resolutions ranging from `min = 4 to `min = 8. For these tests, the cells for x ∈ [0.25, 0.75]
have a level of refinement `max = `min+1. I test the order of my scheme and measure the
accuracy of numerical solution against a solution of reference obtained at very high resolution
(` = 11) in both time and space (∆t = 10−6). I do not compare the results with the analytic
solution presented above as it not exact in the diffusion approximation. Figure 3.11 shows the
L2 errors obtained when increasing the number of cells. The scheme is first-order in space
without correction and second-order when using the Minmod limiter. In the presence of AMR,
the scheme keeps a second-order accuracy in space for low resolution but deteriorates at high
resolutions. This is due to the estimate of the pressure gradient that is first-order at a refined
interface. At high resolution, the error is smaller (almost two orders of magnitude) than the
tests without a predictor step.

3.3.5 Disk settling

The settling test, introduced by Price & Laibe (2015), is designed to test the algorithm in
realistic astrophysical conditions and including gravity. It simulates the local settling of dust
grains in a disk in hydrostatic equilibrium. As in Price & Laibe (2015), I set an analytic
gravitational force

fgrav = −
GM?y

(y2 + r2)3/2 ,

where G is the gravitational constant, M? is the mass of the central star, y is the altitude and r
the cylindrical radius at which the disk is simulated. The gas density at hydrostatic equilibrium
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Figure 3.12: settling test on a uniform grid at level ` = 8 with millimeter-size dust grains.
Dust ratio at t=1 (red circles), 5 (blue circles), and 10 orbits (green circles) as a function of the
altitude.

for |y| � r is

ρg = ρg,0e−
y2

2H2 ,

where H is the local scale height of the disk, which is determined by the ratio H/r = 0.05. I
then assume an isothermal equation of state where the imposed soundspeed cs is

cs = HΩk, (3.51)

Ωk being the Keplerian angular velocity at the radius r. Finally, a uniform initial dust ratio ε0
is imposed.

In the terminal velocity approximation, the analytic solution for the dust velocity is directly
set by the pressure gradient that compensates the gravitational force, hence

vd,y = wY = −StΩk
y

(1 + (y/r)2)3/2 , (3.52)

which is the limit at low Stokes number (St = Ωkts in this case) of the expression given by
Hutchison et al. (2018). As the gas approximately remains in equilibrium, solving the settling
problem consists in solving

∂ρd

∂t
+
∂ρdwy

∂y
= 0. (3.53)

Even though the density can, in principle, be determined using the same method as the velocity,
it relies on the hypothesis of an infinite dust reservoir that is inconsistent with my choice of
boundaries. I choose to compare my results with a numerical solution as in Hutchison et al.
(2018). I use a similar Crank-Nicholson scheme to get this solution, except that it only solves
the dust density equation using the analytic dust velocity.
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Figure 3.13: Comparison between multiple phase with N = 5 (top) and an equivalent single
phase (bottom) dustydiffuse test. Dust ratio as a function of the position at t = 1 (red), t = 5
(green), t = 10 (blue) and t = 20 s (purple) compared with the exact solution (black solid lines).

I perform a 2D settling test at a disk orbiting around a solar mass star at radius of 50 au.
The simulation box has periodic boundary conditions and L = 20 au, which is approximately
8H . As in Price & Laibe (2015) and Hutchison et al. (2018), the initial mid-plane gas density
ρg ' 6 × 10−13g cm−3. I also set an initial dust ratio of 4.99 × 10−3 of millimeter grains with
an intrinsic density of ρgrain = 3 g cm−3. The adiabatic index of the gas is γ = 5/3.

A first test with a uniform grid at level ` = 8 is performed. Figure 3.12 shows the dust ratio
as a function of y. As can be seen, the results are essentially similar to those obtained in Price
& Laibe (2015) and Hutchison et al. (2018).

3.3.6 Multigrain

Example 1 : Dustydiffuse

To benchmark the implementation of the multiple dust species in the code, ten dustydiffuse
tests are performed on uniform grids of ` = 7. They are operated with one dust phase and with
this same phase split with N ∈ [2, 10] (multigrain). All the dust bins have the same intrinsic
properties. As all the tests are equivalent, it is expected that they give the same results. The
parameters used are the same as in section 3.3.2.

Figure 3.13 shows the total dust density as a function of position with N = 5 (top) and
N = 1 (bottom) at t = 1, t = 5, t = 10, and t = 20. The results agree for the multigrain
simulation and for the single phase simulation to machine precision.

Figure 3.14 shows the CPU time as a function of the number of species N . We see that
the multigrain simulations are not very expensive. The CPU time agrees more with a square
root scaling with N than a linear one. As discussed by Hutchison et al. (2018) with the multi-
grain algorithm in the PHANTOM code (Price et al., 2017), the monofluid formalism is a highly
computationally effective tool to treat multiple phases.
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Figure 3.14: CPU time tCPU of the ten equivalent dustydiffuse tests as a function of the number
of species N .

Example 2 : Dustywave

In this section, I test the cumulative back-reaction of dust on the gas and the interaction be-
tween dust species. To benchmark my multigrain implementation in a strong back-reaction
regime I run a dustywave simulation with two dust species. The initial barycentric velocity is
a sinusoidal perturbation of amplitude 10−4, the other variables are not initially perturbed. I
numerically integrate the linearly perturbed equations of gas and dust mixtures assuming solu-
tions of the type A(t) exp(ikx) as in Laibe & Price (2014c) to obtain my reference solution. The
test is performed with a uniform grid of ` = 9 and timesteps given by the CFL condition. In
this test, I consider two dust phases and a total initial dust ratio of 0.5. The first bin has a drag
coefficient K = 50 and an initial dust ratio of 0.4, the second has a drag coefficient K = 1000
and an initial dust ratio of 0.1. In this case, we expect the first dust species to damp the gas
efficiently.

Figure 3.15 shows the amplitude of the density perturbations (gas and dust) and velocity
(gas) compared with the reference solution. My results are in excellent agreement with the
reference solution in terms of amplitude, period and damping rate. As expected the damping
of the gas is significant. This emphasizes the fundamental role of the cumulative back-reaction
on the dynamics of dust grains in presence of multiple species as the second phase K = 1000
could not damp the gas as efficiently (see section 3.3.4).

Example 3 : Disk settling

The disk settling test presented in section 3.3.5 is nicely adapted to test my multigrain solver
in realistic conditions. Dust grains of various sizes are present in protoplanetary disks and they
experience different dynamical evolutions. To test the solver in these conditions, a settling test
with ten dust species is performed with a resolution of ` = 8. As before, the intrinsic grain
density is 3 g cm−3, but every species is characterized by a proper dust ratio ε j and grain size
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Figure 3.15: multigrain dustywave test. The
three panels show the evolution of the maxi-
mum amplitude of the perturbation for the dust
densities (top), the gas density (middle), and
the gas velocity (bottom). The K = 50 and
K = 1000 dust phases are shown with blue and
green circles respectively. The red circles rep-
resent the gas. The semi-analytic solution is
given by the dashed black line. The damping
of the mixture is due to the cumulative back-
reaction of dust on the gas and is mostly due to
the grains with K = 50.
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j sgrain, j (cm) ε j ts (s) at z = 0
1 1.0 × 10−5 3.99 × 10−5 40
2 2.78 × 10−5 6.65 × 10−5 111
3 7.74 × 10−5 1.11 × 10−4 310
4 2.15 × 10−4 1.85 × 10−4 860
5 5.99 × 10−4 3.09 × 10−4 2396
6 1.67 × 10−3 5.15 × 10−4 6680
7 4.64 × 10−3 8.59 × 10−4 18560
8 1.29 × 10−2 1.43 × 10−3 51600
9 3.59 × 10−2 2.39 × 10−3 143600

10 1.0 × 10−1 3.99 × 10−3 400000

Table 3.1: Dust distribution and stopping time at z = 0 for the multigrain settling test
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Figure 3.16: multigrain settling test. Dust ratios and dust velocities (circles) of the ten phases
of the settling test after ten orbits compared with the numerical ( dotted black lines) and
analytic (black lines) one-species solution.

sgrain, j. These quantities are determined using a MRN-like distribution 4, I use the same values
for the minimum and maximum grain size as in Hutchison et al. (2018). The details of the size
distribution are summarized in table 3.1, which also shows the stopping time of each species in
the mid-plane of the disk.

Figure 3.16 shows the dust ratio and velocity of every species after ten orbits compared
with the one-species solution, which is a good approximation as long as the cumulative back-
reaction on the gas is small. Again, the solution is very well captured by my solver.

Figure 3.17 shows the dust densities in the (xy)-plane. There is no dispersion of the values
in the x-direction, and the initial symmetry of the problem is conserved to machine precision
which originate from the Eulerian nature of the numerical scheme. As in previous studies,
we see that ten orbits are enough to efficiently separate the dust phases. Note that an orbit
at 50 au is approximately 353 years which is a few hundred times smaller than the free-fall
timescale of a typical protostellar cloud of density ' 10−19 g cm−3(Andre et al., 2000) which
is approximately 105 − 106 years. An efficient settling is thus expected to happen during the
collapse of this cloud, especially for large grains, e.g., sgrain > 10−2cm here, for which the
typical settling timescale is a few orbits.

As in Hutchison et al. (2018), I am interested in the effects of the interaction between
different dust species. Figure 3.18 shows a zoom of the vertical profile of ε1 as a function of
y. The behavior of this phase is very similar to what was observed in Hutchison et al. (2018).
The dashed black line shows the one-species solution. As can be seen, for this species, the
discrepancies between the one-species solution and the multigrain test are on the order of
magnitude of the variations of ε1 at the dust front, which emphasizes the fundamental character
of the equivalent stopping time in multigrain simulations.

4ε
(
sgrain

)
∝ s4−m

grain with m = 3.5
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Figure 3.17: multi-
grain settling test.
Dust density for the
bin j = 2, 4, 6, 8, and
10 in the (xy)-plane at
t = 0, 1, 5, and 10 or-
bits. The efficiency of
the settling increases
with the grain size
and millimeter grains
(10th bin) are strongly
settled after 10 orbits.

Figure 3.18: multigrain settling test. Mag-
nification of the dust front as a function of
y for the j = 1 dust species (brown circles)
compared with the one-species solution (dot-
ted line). These dust grains are dragged by the
gas, which is itself submitted to the cumula-
tive back-reaction of all the other dust species
through the gas, hence the difference is the one-
species solution.
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3.4 Conclusion

In this Chapter, I have presented an Eulerian approach to treat the dynamics of small dust
grains. It is efficient in the diffusion regime and can be employed to treat multiple dust species
simultaneously and efficiently. After presenting the AMR code RAMSES, I described the nu-
merical scheme that I implemented in it. It successfully passed the canonical validation tests
for advection schemes and dust dynamics solvers.

• dustyadvect, an advection test.

• dustydiffuse, a diffusion test where the gas density and temperature are fixed.

• dustyshock, a shock propagation test.

• dustywave, a wave propagation test.

• settling, that reproduces the settling of dust grains in a stratified protoplanetary disk.

I can draw the following conclusion

1. The scheme has a second-order accuracy in space on uniform grids and intermediate
between first and second-order on AMR grids.

2. The method also appears to efficiently treat a non-linear diffusion problem (dustydiffuse).

3. The dustyshock, dustywave and settling tests show that the waves and shock propagate
at the correct velocity and that the dust phase feels the common forces between gas and
dust, e.g, gravity.

4. The multigrain dustydiffuse test operated with a split dust phase shows that my method
is efficient to treat multiple dust species simultaneously as the computation time scales
in
√

N.

5. Non-linear effects of the cumulative back-reaction on both the gas and the dust are well
captured by the multigrain dustywave tests and the multigrain settling tests. In partic-
ular I retrieve similar behavior to the one that Hutchison et al. (2018) observed in the
multigrain settling test.
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Puumba

”Oh, gee. I always thought they were balls of gas burning billions of miles
away.”

Simba

”Pumbaa, with you, everything’s gas.”

- The lion king

In this chapter, I present the dynamics of neutral dust during the early phases of the proto-
stellar collapse (dustycollapse) with numerical models that were evolved in time with my

multigrain dust dynamics solver in RAMSES. I shortly present the framework and the methods
that I used to study the dustycollapse. Then, I briefly review the unrotating dustycollapses
that were introduced in Lebreuilly et al. (2019). Finally, I focus on more advanced dustycol-
lapse simulations that consider multiple dust species, initial solid body rotation and magnetic
fields. The rotating dustycollapse simulations are the object of a recent submitted publication.

4.1 Context

Small dust grains are essential ingredients of star, disk and planet formation. They regulate
the thermal budget of star forming regions through their opacity and thermal emission (McKee
& Ostriker, 2007; Draine, 2004). In addition, they are thought to be the main formation site
of H2 at present days (Gould & Salpeter, 1963). It is widely accepted that planet formation is
induced by dust growth within protoplanetary disks (see the recent review by Birnstiel et al.,
2016). Finally, the dust grains are significant charge carriers (Marchand et al., 2016; Wurster
et al., 2016; Zhao et al., 2016) and therefore regulate the evolution of magnetic fields during the
protostellar collapse which can affect, among others, the disk formation (Masson et al., 2016;
Hennebelle et al., 2020) and the fragmentation process (Commerçon et al., 2011).

Until recently, one paradigm was that dust of the interstellar medium (ISM) is usually
composed of grains with sizes up to ∼ 0.1 µm with a typical size distribution well modelled
by the Mathis-Rumpl-Nordsieck distribution (MRN, Mathis et al., 1977). Recent observations
seem to indicate that larger grains could exist in the denser regions of the ISM. Pagani et al.
(2010) proposed that over-bright envelopes of prestellar cores (coreshine) could be explained
by the presence of micrometer grains. In addition, it was suggested that recent observations
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with ALMA of the polarised light at (sub)millimeter wavelengths in Class 0 and I objects could
be interpreted as the self-scattering by grains with sizes up to ≈ 100 µm (Kataoka et al., 2015,
2016; Pohl et al., 2016; Sadavoy et al., 2018a,b, 2019). Galametz et al. (2019) has also shown
that the low values of the dust emissivity in Class 0 objects could indicate the presence of these
large grains in their envelope. Finally, Tychoniec et al. (2020) estimated that the mass of solids
in Class 0 disks is sufficient to grow planets only if large grains are included in the opacity
models, which might indicate dust growth in the early phases of protostar formation.

Over the past few years, significant improvements have been made in numerical models
to better understand the early phases of the protostellar collapse that leads to the first Larson
core formation (Larson, 1969). The angular momentum budget is a long-standing problem in
star formation. Indeed, the specific angular momentum of prestellar cores differs to those of
young stars by more than three orders of magnitude (Bodenheimer, 1995; Belloche, 2013). In
numerous studies, the magnetic braking has been investigated as one of the possible solutions
to address this issue (Allen et al., 2003b; Price & Bate, 2007; Hennebelle & Fromang, 2008;
Commerçon et al., 2011; Masson et al., 2016). State-of-the-art simulations now account for the
effect of magnetic fields both in a ideal (Commerçon et al., 2010) and non-ideal (Tomida et al.,
2015; Vaytet et al., 2018a; Wurster et al., 2019) magnetohydrodynamics (MHD) framework,
radiative feedback (Commerçon et al., 2010; González et al., 2015; Tomida et al., 2015) and
other physical mechanisms. Only Bate & Lorén-Aguilar (2017) have investigated the dynamics
of dust during the protostellar collapse (dustycollapse). They report that ∼ 100 µm grains can
significantly decouple from the gas leading to large increase of dust-to-gas ratio in the disk
and the first Larson core. In 2D, Vorobyov & Elbakyan (2019) have studied the gas and dust
decoupling in gravitoviscous protoplanetry disks including dust growth and also report strong
variations of dust-to-gas ratio. So far, no 3D dustycollapse simulation has been performed in
a MHD/non ideal MHD context or with multiple dust species.

In chapter 3, I presented a fast, accurate and robust implementation of dust dynamics for
strongly coupled gas and dust mixtures that allows an efficient treatment of multiple grain
species in RAMSES. I now present simulations of protostellar collapse of gas and dust mixtures
and in particular the first simulations with multiple grain species. I investigate how the maxi-
mum grain size of the dust distribution, the ratio between the thermal and gravitational energy,
i.e. the thermal support, and the magnetic fields may affect the decoupling between the gas and
neutral dust grains.

4.2 Framework

4.2.1 Dusty hydrodynamics for the protostellar collapse

As explained in Chapter 2, a gas and dust mixture withN small grains species can be modeled
as a monofluid in the diffusion approximation (Laibe & Price, 2014c; Price & Laibe, 2015;
Hutchison et al., 2018; Lebreuilly et al., 2019). This fluid, of density ρ, flows at its barycenter
velocity v. The k-th dust phase, of density ρk, has the specific velocity vk ≡ v+wk, where wk is
the differential velocity between the dust and the barycenter. In the context of the protostellar
collapse and in the absence of magnetic fields, this mixture is well described by the following
set of equations

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0,

∂ρk

∂t
+ ∇ ·

[
ρk (v + wk)

]
= 0, ∀k ∈ [1,N] ,

∂ρv
∂t

+ ∇ ·
[
PgI + ρ(v ⊗ v)

]
= −ρ∇φ, (4.1)
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where Pg is the thermal pressure of the gas and I the identity matrix. The gravitational potential
φ is set by the Poisson equation

4φ = 4πGρ, (4.2)

where G denotes the gravitational constant.
The previous equations are closed using a barotropic law that reproduces both the isother-

mal regime at low density and the adiabatic regime when the density reaches the critical value
ρad which corresponds to the density at which dust becomes opaque to its own radiation (Lar-
son, 1969). Similarly to Commerçon et al. (2008), I express the gas pressure as

Pg = ρgc2
s,iso

1 +

(
ρg

ρad

)γ−1 , (4.3)

The gas density ρg is ρg = ρ −
∑

k ρk. Regions of low densities are isothermal and have for
sound speed cs,iso.

I model a single dust grain k as a small compact and homogeneous sphere of radius sgrain,k
and intrinsic density ρgrain,k

1. When the grain is smaller than the mean free path of the gas (the
so-called Epstein drag regime, Epstein 1924), the drag stopping time ts,k is given by

ts,k ≡
√
πγ

8
ρgrain,k

ρ

sgrain,k

cs
, (4.4)

where ρ is the total density of the gas and dust mixture, cs is the sound speed of the gas and γ
its adiabatic index.

If the differential velocity ∆vk ≡ vk − vg between the gas and the dust is supersonic, a
correction in the drag regime must be applied. In this case the stopping time is given by
(Kwok, 1975)

ts,k ≡
√
πγ

8
ρgrain,k

ρ

sgrain,k

cs

(
1 +

9
128π

Md
2
)−1/2

, (4.5)

where Md =
|∆vk |

cs
is the differential velocity Mach number. In the remaining of this paper,

unless specified, I consider this correction.
In the terminal velocity approximation, the differential velocity of the phase k is

wk =

 ρ

ρ − ρk
ts,k −

N∑
l=1

ρl

ρ − ρl
ts,l

 ∇Pg

ρ
, (4.6)

and the gas and dust velocities, vg and vk are given by

vg = v −
N∑

k=1

ρk

ρ − ρk
wk,

vk = v + wk. (4.7)

For later purposes, I still define the dust ratio εk ≡
ρk
ρ , the total dust ratio ε ≡

∑N
k εk, and the

dust-to-gas ratio θd ≡

∑N
k ρk

ρg
. For any quantity A, I define Ā ≡ A/A0 where A0 is its initial value.

ε̄ and θ̄ are called the dust-ratio and dust-to-gas ratio enrichment respectively. Further details
about the monofluid formalism and its implementation in RAMSES can be found in Chapters 2
and 3.

1distinct from the dust density ρk
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4.2.2 Dusty-MHD with neutral grains

In Chapter 2, I extended the above formalism to neutral grains embedded in a weakly ionized
plasma. Here I only consider the resistive effect of ambipolar diffusion, i.e. the drift between
ions and neutrals other than the dust. In this context, the equations of NdustyMHD can be
expressed as

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0,

∂ρk

∂t
+ ∇ ·

[
ρk (v + wk)

]
= 0, ∀k ∈ [1,N] ,

∂ρv
∂t

+ ∇ ·

[(
Pg +

B2

2

)
I + ρ(v ⊗ v) − B ⊗ B

]
= −ρ∇φ,

∂B
∂t
− ∇ ×

(v − N∑
k=1

ρk

ρ − ρk
wk) × B


+∇ ×

[
ηA

|B|2
[(∇ × B) × B] × B

]
= 0,

∇ ·B = 0, (4.8)

where B is the magnetic field and ηA is the ambipolar resistivity.
As in Chapter 2, I can express wk as

wk =

 ρ

ρ − ρk
ts,k −

N∑
l=1

ρl

ρ − ρl
ts,l

 ∇Pg − (∇ × B) × B
ρ

, (4.9)

To further simplify equations (4.8), I assume in this chapter that the plasma velocity v is
the barycenter velocity which is valid when εk||wk|| � ||wk|| � |v|. In this case the induction
equation is written as

∂B
∂t
− ∇ × [v × B] + ∇ ×

[
ηA

|B|2
[(∇ × B) × B] × B

]
= 0. (4.10)

4.3 Method

4.3.1 RAMSES

In this chapter, I take advantage of the RAMSES code presented in Chapter 3. In this same
chapter (mostly based on Lebreuilly et al., 2019), I presented the extension of the code to the
treatment of dust dynamics with multiple species in the diffusion approximation and terminal
velocity regime that I also use here.

4.3.2 Boss and Bodenheimer test

I perform Boss and Bodenheimer tests (Boss & Bodenheimer, 1979) to follow the dynamics
of the dust during the first collapse and first core formation. Boss and Bodenheimer tests
consist in a gravitationally unstable uniform spherical cloud that we let collapse in a low density
background. The parameters of the setup are the initial mass of the dense core M0, the total
dust ratio ε0, the temperature of the gas Tg and a mean molecular weight µg. The ratio between
the thermal and the gravitational energy α is

α =
5
2

(1 − ε0)R0

GM0

kBTg

µgmH
, (4.11)
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and sets the initial radius of the cloud R0 and its density ρ0. In addition, I impose an initial
solid body rotation around the z-axis at the angular velocity Ω0 by setting the ratio between the
rotational and the gravitational energy β given by

β =
1
3

R3
0Ω2

0

GM0
. (4.12)

Eventually, I apply an initial azimuthal density perturbation according to

ρ = ρ0 [1 + A cos (mθ)] . (4.13)

In this chapter, I aim to investigate the impact of magnetic fields on the dynamics of neutral
dust grains in two simulations, one with ideal MHD and one with ambipolar diffusion. For
these runs, I impose an uniform magnetic field using the mass-to-flux-to-critical-mass-to-flux-
ratio

µ =

( M0

Φ

)
/
( M

Φ

)
c
, (4.14)

the critical mass-to-flux ratio being given by (M/Φ)c = 0.53
3π

√
5/G (Mouschovias & Spitzer,

1976). I set an angle φmag between the magnetic fields and the rotation axis to reduce the
efficiency of the magnetic braking.

4.3.3 Dust grain size distributions

In my multigrain simulations, N > 1 dust bins are considered. The dust ratio of each bins is
set from power-law distributions

dε
ds

=
ε0∫ S max

S min
s3−mds

s3−m, (4.15)

with ε0 the total initial dust ratio and, S min and S max being the minimum and maximum sizes
of the grains present in the medium, respectively. For the standard MRN distribution, S min =

5 nm, S max = 250 nm and m = 3.5.
The method described in Hutchison et al. (2018) is used to compute the initial dust ratio

and typical grain size of each bin. A logarithmic grid is used to determine the edges S k of the
bins

log(S k) = log
(
S max

S min

)
k
N

+ log (S min) . (4.16)

The typical grain size of a bin k required to compute the stopping time is

sk =
√

S kS k+1. (4.17)

S min and S max are the edges of the distribution and must not be confused with the minimum and
maximum bin size that are averaged quantities. The initial dust ratios in each bin are computed
according to

ε0k = ε0

S 4−m
k+1 − S 4−m

k

S 4−m
max − S 4−m

min

 . (4.18)
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4.3.4 Setup

Cloud setup

I impose initial conditions that are typical of the first protostellar collapse (Larson, 1969) with
Tg = 10 K, µg = 2.31 and a solar mass cloud. I also set γ = 5/3 since molecular hydrogen
behaves as a monoatomic gas at low temperatures (Whitworth & Clarke, 1997). As explained
in section 4.2.1, a barotropic law is used to close system (4.1) with ρad = 10−13g cm −3 (Larson,
1969). Finally, I set m = 2 and A = 0.1 to favor fragmentation and the formation of two spiral
arms in the rotating runs.

I impose an uniform initial total dust-to-gas ratio of θd,0 = 0.01 in all the models. For the
multgrain rotating runs, I always consider 10 bins with grain sizes distributed according to
section 4.3.3. Spherical collapses are however computed with only one dust species. In all the
models S min = 5 nm, and m = 3.5 and S max is specified individually. I consider grains with
ρgrain = 3 g cm−3 for the spherical collapses and ρgrain = 1 g cm−3 for the rotating models.

The two magnetic models have been computed with µ = 5 and φmag = 40◦. For the non-
ideal MHD model the ambipolar resistivity is computed similarly to the case of reference of
Marchand et al. (2016).

Numerical setup

I use the hlld Riemmann solver (Miyoshi & Kusano, 2005) for the barycenter part of the
conservation equations with a minmod slope limiter (Roe, 1986) for both the gas and the dust.
The Truelove criterion (at least 4 point per Jeans length, Truelove et al., 1997) must be satisfied
to avoid artificial clump formation. I therefore enforce a refinement criteria that imposes at
least 15 points per local Jeans length. The grid is initialized to the level `min = 5 and allows
refinement up to a maximum level `max = 162 (which gives a resolution between 323 and
655363 cells).

Analysis of the models

I consider that the first hydrostatic core (FHSC) is fully formed when the peak density reaches
10−11 g cm−3 for the first time. I denote the corresponding time tcore, and use this definition to
compare my models at similar evolutionary stages. I present here the different objects that are
observed in my models and their definition in this work.

• The first hydrostatic core/the fragments are any object of density larger than 10−12.5 g cm−3.
The FHSC or F0 corresponds to the central fragment. F1 and F2 are the secondary frag-
ments/FHSC

• The disk D is the region that satisfies Joos et al. (2012) criterion. For the analysis, we
place ourselves in cylindrical coordinates (r, φ, z). A region is identified as a disk if it is
Keplerian (vφ > fthrevr), in hydrostatic equilibrium (vφ > fthrevz), rotationally supported
( 1

2ρv2
φ > fthrePg) and dense ρ > 3.9 × 10−15 g cm−3. As in Joos et al. (2012) , I choose

fthre = 2.

• The pseudo-disk P (Galli & Shu, 1993), for magnetic runs, is defined as the regions
with r < 5000 AU and densities above 3.9 × 10−17 g cm−3 that are not in the disk and
fragments. The criterion is similar to Hincelin et al. (2016). 5000 AU is an arbitrary
distance that is sufficiently larger than the central objects while being smaller than the
initial cloud.

217 for the spherical collapses, although this level is never reached
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• Jets/outflows O correspond to any region with r < 5000 AU with v · r
|r| > 0.2 km sec−1(r

is the position relative to the center of the box). The criterion is also similar as (Hincelin
et al., 2016).

• The envelope E encompasses the regions with r < 5000 AU that exclude the fragments,
the disk/pseudo-disk and the jets/outflows.

I consider two different weights for averaging a quantity A over a volumeV in the compu-
tational box. Volume averaging is computed according to

〈A〉v =

∑
i∈V ∆x3

i Ai∑
i∈V ∆x3

i

. (4.19)

Mass averaging is computed according to

〈A〉m =

∑
i∈V ρi∆x3

i Ai∑
i∈V ρi∆x3

i

, (4.20)

where ρi and ∆xi are the total density and length of individual cells i in the averaged volume.
Volume averages emphasize on regions of large spatial extension, i.e. the envelope, while mass
averages emphasize on regions of high density, i.e. the core+disk and the denser regions of the
envelope.

4.3.5 Regularization of the differential velocity and dust density

The terminal velocity approximation is unrealistic in low density regions or in shocked regions
where the pressure is discontinuous (Lovascio & Paardekooper, 2019).

In the rotating models, I cap the differential velocities to wcap in my models to avoid pro-
hibitively small timesteps and unrealistically large variations in the dust ratio at strong shock
fronts. I impose wcap = 1 km s−1. To verify that this does not impact the results, I ran extra
models with wcap = 0.1 km s−1, wcap = 0.5 km s−1 and wcap = 2 km s−1. A comparison between
these models and my fiducial is given in Appendix 4.10.

In my models, the drift velocity can in some regions be supersonic. Unless specified,
I account for the correction presented in equation (4.5). In that perspective, I use the drift
velocity estimated at the previous timestep to estimate the differential velocity mach number.

Finally, I set the drift velocity to zero at densities lower than the ones of the initial cloud,
i.e. the background. This is a way to ensure that the regions where the terminal velocity is not
valid do not affect significantly the calculation.

4.3.6 Validity of the model

The diffusion approximation is valid as long as the ratio between the stopping time and the
dynamical timescale of the gas is small compared to unity (Laibe & Price, 2014c). This ratio
is called the Stokes number St.

During the first collapse, the dynamical timescale is the free-fall time tff (see section 4.4.1
or chapter 1). For an initial dust-to-gas ratio of 0.01 and a temperature of 10 K, the initial
Stokes number St0 of a spherical collapse is given by

St0 ∼ 0.038
(

M0

1M�

) (
ρgrain

1 g cm−3

) ( sgrain

0.05 cm

) (
α

0.5

)3/2
< 1. (4.21)
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Figure 4.1: Logarithm of the maximum (10th bin) Stokes number as a function of the spherical
radius for the four models with the largest Stokes numbers at tcore + 2 kyr. (Top-left) mmMRN,
(Top-right) mmMRNa0.25, (Bottom-left) mmMRNmhd , (Bottom-right) mmMRNnimhd.

The dynamics of grains smaller than 0.05 cm can be simulated using the diffusion approxima-
tion. Note that the Stokes number varies as ∝ 1√

ρ
(since tff ∝ 1√

ρ
and ts ∝ 1

ρ ) and hence can
increases with a decreasing density. I show in figure 4.1 the values of the maximum Stokes
number as a function of the radius for the four rotating models with the least coupled dust
(see section 4.5 for a description of the models). The maximum value for St is smaller than
∼ 0.15 in external regions of the collapse of the rotating models and it is typically smaller than
0.05 inside the collapsing regions for this models. Rotation provides an additional support to
the collapse, which causes an increase of the free-fall timescale. Hence, as the initial angular
velocity increases, the initial Stokes number decreases and the diffusion approximation is even
more accurate. Similarly, magnetic fields increase the duration of the collapse which broadens
the validity domain of the diffusion approximation. Finally, the Stokes number also decreases
when α decreases, implying that the diffusion approximation remains valid for small values of
α.

In the induction equation, I consider for simplicity that the plasma is moving at the barycen-
ter velocity. This approximation is valid when ε � 1, i.e. when the back-reaction from the dust
onto the gas is negligible. Note that I investigate the impact of the back-reaction in Appendix
4.11.
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Figure 4.2: Ratio between the
free-fall timescale of the mix-
ture and the free-fall timescale
of the gas. The red circle corre-
sponds to the fiducial simulation
with gas only, and the blue cir-
cles correspond to gas and dust
mixtures for various dust ratios.
The black solid line is the ana-
lytical solution.
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4.4 Spherical dusty protostellar collapses

The final test of the algorithm verifies again that both gas and dust are sensitive to gravity and
the 3D implementation of the solver. In all the models of this section, β = 0, A = 0 and the
Kwok correction is not considered. All the collapse of this section are hydrodynamical and
computed with single grain species. I presented these models in Lebreuilly et al. (2019).

4.4.1 Free-fall timescale for strongly coupled mixtures

A core only composed with gas would collapse at the following free-fall timescale

tff,g ≡

√
3π

32Gρg
.

For a perfectly coupled gas and dust mixture (ts � tff) it writes

tff =

√
3π

32Gρ
.

In the context of the Boss and Bodenheimer test, this timescale indirectly depends on the initial
dust ratio

tff =
π

5
√

5
GM0

(
αµmH

kbTg(1 − ε0)

)3/2

. (4.22)

Physically, this is due to the fact that two cores with the same initial α but different ε0 have
different initial radius, hence free-fall timescale. Indeed, R0 increases with ε0 so that the gas
provides the same thermal support against gravity.

To test this relation, non-rotating dustycollapse with various dust ratios and the same α =

0.5 are performed. The condition ts � tff is ensured by considering very small grains with
s = 10−7 cm.

Figure 4.2 shows the ratio between the free-fall timescale of a dusty cloud and the one of a
pure-gas cloud compared with the analytical solution. I define the free-fall timescale as the time
at which the peak density reaches ρad. The scaling relation is very well verified. As expected,
the gas, but also the dust, are sensitive to gravity and fall at the mixture free-fall timescale.
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Figure 4.3: Properties of the first Larson core at tcore for the Col1, Col10, Col100. The core
mass, the dust mass ratio and the formation time are shown as a function of the grain size (blue
circles). The results are compared with the fiducial ColGAS simulation (dashed red lines). The
top x-axis shows the initial Stokes number in the core St0.

4.4.2 Core properties

Non-rotating dustycollapse of α = 0.5 are performed with an initial dust-to-gas ratio of 1%.
Single grain species of size 1 µm (Col1), 10 µm (Col10) and 100 µm (Col100) are consid-
ered. The results are compared at at tcore with a fiducial collapse without any treatment of dust
(ColGAS).

Figure 4.3 shows the total mass of the first hydrostatic core Mcore, the dust mass ratio
Md/Mcore and tcore as a function of the grain size (bottom x-axis) and the initial Stokes num-
ber (top x-axis). The first core properties depend on the amount of dust in the initial dense
core. In the fiducial ColGAS test, the gas density is assimilated to the total density, as often in
the literature. This results in a lower first-core mass and a shorter formation time. Note that
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Figure 4.4: Radial profiles
of the Col10 test. (Top-
Left) Gas density. (Top-
right) Dust ratio. (Bottom-
Left) Gas and dust ve-
locities. (Bottom-right)
Stokes number. The hor-
izontal green line corre-
sponds to a dust-to-gas ra-
tio of 1%
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Figure 4.5: Same as
Fig.4.4 for the Col100
test.
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Model α S max (cm) µ φmag (◦) Ambipolar tcore (kyr) St0,10

mmMRN 0.5 0.1 - - - 72.84 1.22 × 10−2

MRN 0.5 2.5 × 10−5 - - - 73.6 1.06 × 10−5

100micMRN 0.5 0.01 - - - 72.9 1.72 × 10−3

mmMRNa0.25 0.25 0.1 - - - 23 4.31 × 10−3

mmMRNmhd 0.5 0.1 5 40 NO 81.1 1.22 × 10−2

mmMRNnimhd 0.5 0.1 5 40 YES 81.1 1.22 × 10−2

Cloud mass Number of bins
1M� 10

Table 4.1: Syllabus of the different simulations, with the thermal-to-gravitational energy ratios
α, maximum grain sizes S max . The initial mass-to-flux ratio µ as well as the tilt between
the magnetic field and the rotation axis φmag are given for simulations with magnetic field.
Additionally, I also provide the formation time of the FHSC tcore and and the initial Stokes
number of the largest grains St0,10, the mass of the initial core and the number of dust bins.

the barotropic equation of state implicitly assumes a constant dust-to-gas ratio of 1% which is
slightly inconsistent. Dust-to-gas ratios might be even larger in core forming regions (Hopkins
& Lee, 2016; Tricco et al., 2017) which could lead to even more important discrepancies. In
terms of dynamics, small grains (s < 100 µm) do not have a significant impact as they fall
alongside the gas. However, the differential velocity between the gas and the dust is propor-
tional to the stopping time, hence large grains (s ≥ 100 µm) are prone to fall substantially
faster than the gas. Their infall provokes a slight acceleration of the first core formation as it
changes the balance between the gravity and the thermal support of the gas. The mass of the
core decreases as the grain size increases because the gas has less time to be accreted during the
collapse. The settling of dust in the central regions of the core, however, leads to an increase
of the Md/Mcore.

Figures 4.4 and 4.5 show the radial profiles for the Col10 and Col100 tests, respectively,
of the gas density, the dust ratio, the gas and dust velocities, and the Sotkes number. As can
be seen, the strong dust depletion in the outer regions of the collapse provides the enrichment
of the core. However, as the damping is more efficient in the high density regions (see the
velocities vg ≈ vd), the dust ratio increases at a slower rate in the inner regions of the collapse,
i.e, the first core. If the maximum increase of dust ratio in the outer regions of the collapse is
about ∼ 20% for the Col10 test, it goes up to ∼ 300% for the Col100 test.

4.5 Rotating models

The rotating models presented in this section are referenced in table 4.1. All of them have been
evolved up to at least 2 kyr after the formation of the first core. My fiducial case mmMRN has
been run over a longer time.

4.5.1 Fiducial simulation

In this section, I present my fiducial case mmMRN where α = 0.5 and β = 0.03. The grain size
distribution is extended up to S max = 1 mm. The value of S max leads to an average size of the
last and largest bin s10 ∼ 160 µm. The total initial dust-to-gas ratio is θd,0 = 1%.

Figure 4.6 shows edge-on (four top figures) and mid-plane (four bottom figures) density
cuts of the gas (left) and of the dust fluid with the largest grain size (160 µm, right) at 1 kyr and
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Figure 4.6: mmMRN test
at tcore + 1 kyr and tcore +

2 kyr (tcore = 72.84 kyr).
Edge-on and mid-plane
cuts of the gas and the
dust densities for the least
coupled species are pro-
vided (left and right re-
spectively). Values of
the gas density are indi-
cated by the colorbar on
the bottom. Dust densi-
ties have been multiplied
by a factor 100 to be
represented on the same
scale. Hence, colors of
the gas and the dust maps
match when the dust-to-
gas ratio equals its ini-
tial value 0.01. Dust den-
sity variations in regions
where ε0ρd < min(ρg)
have voluntarily not been
displayed to highlight the
enriched regions. These
depleted regions are de-
limited by the dashed grey
lines. This choice of col-
ors applies for all density
maps in this study. Gas
and dust are clearly not
perfectly coupled.
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Figure 4.7: mmMRN test at tcore + 2 kyr. Probability density function (PDF) of the dust ratio
enrichment log(ε̄) for the two most coupled and three least coupled dust species (colored dashed
lines) and for all the dust (black line) in the core+fragments(left), the disk (middle) and the
envelope (right). Dust is not a good tracer for the gas here and the dust distribution is not
uniform in the considered objects.

2 kyr after the formation of the first Larson core (tcore = 72.84 kyr for this model), respectively.
The density distributions obtained for the gas and the dust are clearly different. This discrep-
ancy originates from an imperfect coupling between the two phases which causes a drift of the
dust toward the inner regions of the collapse. This general trend can be explained by a simple
force budget on the gas and the dust. Although the gas is partially supported by pressure, dust
grains are only subjected to gravity and gas drag. As such, the dust fluid collapses essentially
faster than the gas. It therefore enriches the first core and the disk at the cost of a depletion of
solids in the envelope. Figure 4.6 shows that these strong enrichment in the mid-plane and de-
pletion in the envelope have already occurred at tcore +1 kyr, and continues for more than 1 kyr.
In the mid-plane, the envelope is enriched in large dust grains close to the central object and
depleted further away. In the vertical direction, it is mostly depleted in large grains. In short,
after the first core formation these grains are concentrated in a very thin layer of 10 − 100 AU
above/under the mid-plane. At this stage, the envelope is mostly a reservoir of low dust den-
sities for the large grains. Hence accretion of dust arising from the envelope does not enrich
significantly the fragments and the disk in large grains and the dust-to-gas ratio in the disk even
decreases. Note that the latter is still very enriched by the end of the calculation. Most of the
enrichment of dust-to-gas ratio in the central objects is indeed actually taking place during the
initial phases of the collapse, when the densities are low everywhere and the coupling between
the gas and the dust is the weakest.

Figure 4.7 shows probability density functions (PDF) of the dust ratio enrichment, denoted
log(ε̄). It compares the distributions of the two most coupled and the three least coupled dust
species (colored dashed lines) at tcore +2 kyr. It also indicates the PDF integrated over the grain
size distribution (black line). These PDF are displayed in three different regions, namely the
core and the fragments (left), the disk (middle) and the envelope (right). Figure 4.7 shows that
the dust enrichment in the inner regions is size-dependent. Small grains experience larger drag
that reduces their differential velocity with respect to the gas.

Here, grains with sizes smaller than a few microns remain very well coupled with the gas
in all the considered regions, whereas for larger grains the PDF of the dust ratio is broad. For
160 µm grains, the dust ratio increases by one order of magnitude in some regions of the disk
and up to two orders of magnitude in the envelope. On average, the dust ratio is 1.8% in the
core, 1.75% in the disk and ∼ 0.86% in the envelope. In addition, the dust has experienced
a strong and local dynamical sorting. I indeed measure a typical standard deviation for the
dust-ratio enrichment ε̄ of 0.072 in the core, 0.14 in the disk and 0.23 in the envelope. The
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Figure 4.8: mmMRN test ∼
1 kyr (top), ∼ 2 kyr (mid-
dle) and ∼ 4 kyr (bottom)
after the first core forma-
tion (tcore = 72.84 kyr).
Mid-plane view of the to-
tal dust ratio (left) and the
dust ratio of the least cou-
pled species (right). The
colorbar is the same for
both figures. The dot-
ted white lines represent
the regions where the to-
tal (left) or 160 µm grains
(right) dust-to-gas ratio is
at its initial value, which
can also be regarded as a
dust enrichment line.

Figure 4.9: mmMRN test at tcore + 1 kyr (tcore =

72.84 kyr). Mid-plane view of the gas pressure
(up-close). The white arrows represent the di-
rection of the differential velocity w10.
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Figure 4.10: mmMRN test. Volume averaged total dust-to-gas ratio enrichment as a function
of time for different density thresholds. The FHSC formation can be identified by the dotted
vertical blue line while fragmentation occurs during a time delimited by the green area. We
observe a slow decrease of the dust-to-gas ratio at low density at the benefit of an enrichment
of high density regions. Cores and fragments at ρ > 10−11 g cm−3 are formed in a dust rich en-
vironment. The dust-to-gas ratio is almost constant for ρ > 10−11 g cm−3 because the increase
of temperature due to the adiabatic contraction strengthen the coupling between the gas and the
dust.

standard deviation is the largest in the envelope, a region which is depleted in dust in the outer
regions and enriched close to the disk and fragments. The disk experiences larger variations
of dust-to-gas ratio compared to the core. Indeed, the latter is in adiabatic contraction. This
induces high temperatures, which in return causes a strong decrease of the Stokes number.
Hence, dust is essentially frozen with the gas in the core and vd ≈ vg. Figure 4.8 shows the
dust ratio for the total dust distribution (left) and for the 10th species (right) in the mid-plane
of the collapse, at 1 kyr (top), 2 kyr (middle) and 4 kyr (bottom) after the formation of the
first Larson core respectively. The maps on the left and on the right are very similar as most
of the evolution of the dust ratio is due to the dynamics of the least coupled species, which
represents a large fraction of the dust mass (see also the PDF). The structures in the dust ratio
observed in figure 4.8 can be interpreted by looking at the thermal pressure distribution shown
in figure 4.9. Dust grains tend to drift toward local pressure maxima (see figure 4.8, top panel)
where the differential velocity is zeroed (see equation (4.6)). The essential of the variations
of the total dust ratio are due to the largest grains, since they represent most of the dust mass
and have the largest drift velocities. Hence, a significant fraction of the dust mass in the inner
regions is composed with large grains. Finally, note that 4 kyr after the first core formation,
the average value for the total dust-to-gas ratio is roughly unchanged but generally increasing
(of about 1%) in the core and fragments since their formation. For the disk, I note a decrease
of dust ratio of ∼ 30% for the largest grains (∼ 22% in total) in the disk since the first core
formation. In addition, the total dust-to-gas ratio continues to diminish in the envelope at this
time as settling goes on, with a final average value of ∼ 0.83%.

Figure 4.10 shows the evolution of the dust-to-gas ratio enrichment averaged in volume for
different density threshold in the regions where R < 5000 AU. The dust depletion at large scales
in the envelope at low densities is a relatively slow process, which occurs during the entire
collapse. Once regions with larger densities are formed, they usually experience a relatively
quick enrichment from the dust content of the low density regions, and then a quick depletion
in favor of even denser regions. Figure 4.10 shows that fragmentation occurs in a dust-rich
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Figure 4.11: MRN test at tcore + 2 kyr (tcore = 73.6 kyr). Edge-on (top) and mid-plane (bottom)
cuts of the gas density (left) and dust density of the least coupled species (right). The two maps
are almost indistinguishable due to the very strong coupling between gas and all dust species.

environment. A strong enrichment of the volume where ρ > 10−13 g cm−3 delimited by the
brown line indeed happens exactly when fragments form. This explains why these fragment
tend to be more dust-rich than the first hydrostatic core. Interestingly, the dust-to-gas ratio does
not vary significantly in the volume where ρ > 10−11 g cm−3 which is in adiabatic contraction.
Again, the temperatures in this region are high and therefore the Stokes numbers are very low,
which significantly slows down the differential dynamics of the gas and the dust. Note that this
volume is already dust enriched by the time of its formation by almost a factor of two.

4.5.2 Parameter exploration

Maximum grain size

As seen in section 4.5.1 for the mmMRN model, the differential dynamics between gas and dust
during the protostellar collapse depends critically on the grain sizes. Therefore, I perform two
simulations 100micMRN and MRN with the same set of parameters as in mmMRN, but where
I vary the maximum grain size. I choose S max = 100 µm for the 100micMRN model (which
yields s10 ∼ 22.6 µm) and S max = 250 nm for the MRN model (which yields s10 ∼ 139 nm).

Let us first consider MRN, which is the model that has the smallest S max. Figure 4.11 shows
the density of the gas (left) of the least coupled dust species (right) at tcore + 2 kyr. Because the
coupling between gas and dust is almost perfect, the two maps are indistinguishable by eye.
This is expected because the maximum grain size is ≈ 10−5 cm which corresponds to an initial
Stokes number St0,10 ∼ 1.06 × 10−5 � 1(see section 4.3.4 for a theoretical justification). As
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Figure 4.12: MRN test at tcore + 2 kyr. Probability density function (PDF) of the total dust ratio
enrichment log(ε̄) in the core and the fragments, the disk and the envelope. Dust is a very good
tracer for the mass here and the dust distribution is almost uniform in the objects considered.

a result, dust is a excellent tracer of the gas in this model. This is illustrated by figure 4.12
that shows the probability density function of the dust ratio enrichment log(ε̄) in the core and
fragments, the disk and the envelope at tcore+2 kyr. Contrary to the mmMRN model, these PDFs
are strongly peaked. The average dust-to-gas ratio integrated over the total dust distribution is
≈ 1% in the core and the fragments, the disk and the envelope. The standard deviation for
the dust ratio enrichment ranges between 2 × 10−4%(in the core) and 1.4 × 10−2% (in the
envelope). For this model, the variations of the dust ratio are very small. Therefore, in absence
of coagulation, one may expect that a standard MRN distribution appears to remain extremely
well preserved during the protostellar collapse at all scales.

To investigate an intermediate scenario, I now focus on the 100micMRN model. I do not
show the density maps in this case due to their strong resemblance with the MRN case. The
PDFs of the dust ratio enrichment log(ε̄) in the core and fragments, the disk and the envelope
at tcore + 2 kyr are shown in figure 4.13. In this case, the variations of dust ratio are more
significant than in MRN. However, compared to the mmMRN case, these variations still remain
quite small. The average dust-to-gas ratio is 1.06% in the core and the disk and 0.99% in the
envelope. The typical standard deviation for the dust-ratio enrichment are 7× 10−3 in the core,
2.2×10−2 in the disk and 7.8×10−2 in the envelope. This confirms that the larger the grains are,
the more significant the decoupling with the gas is. Note that, for 100micMRN, it is reasonable
to infer the gas density from the dust.

Thermal-to-gravitational energy ratio

The free-fall timescale depends on the ratio between the thermal and the gravitational energy.
I therefore present in this section mmMRNa0.25, a model similar to the reference case but with
α = 0.25. This parameter is expected to affect strongly the dust dynamics. A lower value of α
produces faster protostellar collapses prior to the first core formation due to the smaller thermal
support. It thus develops faster high densities regions where dust strongly couples. In addition,
a cloud with a smaller α has a smaller initial Stokes number, which means that the dust is also
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Figure 4.13: 100micMRN test at tcore + 2 kyr. Probability density function (PDF) of the total
dust ratio enrichment log(ε̄) in the core and the fragments, the disk and the envelope. Dust is a
relatively good tracer for the gas although significant variations of the dust-to-gas are observed.

initially better coupled with the gas. The post-core evolution of mmMRNa0.25 is different than
in mmMRN in virtue of a smaller initial disk radius. Smaller disk with a smaller initial value of
α are expected as shown by Hennebelle et al. (2016) (their equation (14)).

Figure 4.14 shows the densities of the gas (left) and the least coupled dust species (right)
at tcore + 2 kyr for mmMRNa0.25. Apart from the outer regions that are quite depleted in dust
content, we do not see any significant difference between gas and dust. Indeed, the core forms
quickly, leaving no time for the differential motion between gas and dust to develop. For a
comparison with the fiducial case, I show in figure 4.15 the probability density function of
the dust ratio enrichment log(ε̄) in the core and the fragments, the disk and the envelope at
tcore + 2 kyr. The PDFs are much more peaked in mmMRNa0.25 than in mmMRN. The values
of the standard deviation of the dust-ratio enrichment are 2× 10−2 in the FHSC and fragments,
3 × 10−2 in the disk and 0.1 in the envelope. This was actually expected as the initial Stokes
number scales as α2/3 and is thus ≈ 0.6 times smaller in mmMRNa0.25 than in mmMRN.

Magnetic fields

I now consider the dynamics of neutral grains in collapsing magnetized clouds. The two models
are performed with the same parameters as mmMRN but with an initial magnetic field given by
µ = 5 and a tilt of 40◦. For mmMRNmhd I use an ideal MHD solver and for mmMRNnimhd I
consider ambipolar diffusion.

Figures 4.16 and 4.17 show the densities for the gas (left) and the least coupled dust species
(right) at tcore +2 kyr for the two models mmMRNmhd and mmMRNnimhd respectively. For both
models, the dust is significantly decoupled from the gas and the settling in the core/disk/pseudo-
disk is very efficient. As in mmMRN, dense regions (disk, core, pseudo-disk and high density
regions of the outflow) are prone to be enriched in solid particles while low density regions are
depleted (envelope and low density regions of the outflow). I note that the decoupling is slightly
more efficient in these models than in mmMRN. This is mostly due to the 10 kyr difference in
free-fall timescale. Although additional decoupling terms due to the magnetic field appear in
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Figure 4.14: mmMRNa0.25 test at tcore + 2 kyr (tcore = 23 kyr). Edge-on (top) and mid-plane
(bottom) cuts of the gas density (left) and dust density of the least coupled species (right). Dust
has less time to significantly decouple from the gas than in the mmMRN case. A strong dust
depletion is observed in the envelope.

the dust differential velocity (∝ J × B) those are negligible compared to the hydrodynamical
terms (∝ ∇Pg) in the decoupling of gas and dust in my magnetised collapse models.

I show in figure 4.18 and 4.19 the PDF of the dust ratio enrichment for the different ob-
jects at tcore + 2 kyr for the mmMRNmhd and mmMRNnimhd runs, respectively. Although the
shapes of the distributions are different from my fiducial case, I essentially reach to the same
conclusion that is a peaked distribution with a significantly large average, indicating a strong
initial enrichment, in the [core+disk] system and a broad distribution in the envelope. Note
that the average dust-to-gas ratio in the disk and the core are higher in these two models than
in the fiducial case. I indeed measure an average dust-to-gas ratio of ∼ 2.2 − 2.3% in the disk
and the first hydrostatic core for these models. In these magnetic runs, the pinching of the
magnetic field lines during the collapse produces a pseudo-disk, which is a dense but not rota-
tionally supported regions. These pseudo-disks have a very broad PDF and show enriched and
depleted regions in both the ideal and non-ideal cases. A similar behavior is observed in the
magnetically driven outflow for the ideal case, that are dust-rich in dense regions and depleted
at low densities. In the mmMRNnimhd, the outflow is less evolved and is mostly dust-depleted
similarly to the envelope.

In summary, neutral dust dynamics in the presence of magnetic fields seems to follow the
same general trend as in the hydrodynamical case. Dust collapses faster than the gas and is
enriched in the inner regions of the collapse a few thousand years after the first core forma-
tion. This enrichment is mainly located in the pseudo-disk (only observed in the magnetized
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Figure 4.15: mmMRNa0.25 test at tcore + 2 kyr. Probability density function (PDF) of the
total dust ratio enrichment log(ε̄) in the core+fragments, the disk and the envelope. Dust is a
relatively good tracer for the gas in the dense object although a notable depletion is observed
in the envelope.

models), the disk, the first hydrostatic core. and the high density regions of the outflow.

4.6 Features of dusty collapses

I summarize here the properties of the dusty collapse in its different regions. Figure 4.20 shows
the dust-to-gas ratio enrichment averaged in mass as a function of the grain size for all the
models and all the objects defined in section 4.3.4. I refer to the dashed horizontal line as the
enrichment line. If an object lies above it, it is enriched in dust during the collapse. If it lies
under, it is dust depleted. This information is collected in table 4.3.

4.6.1 Core and fragments

Here, I detail the dust and gas properties in the first hydrostatic core and the fragments. In
every model, we observe a value of

〈
Θd,k≤6

〉
m that remains unchanged for all the cores and

fragments. Indeed, small grains have short stopping times and remain very well coupled to the
gas all along the collapse. Simulations with the largest maximum grain size (S max = 0.1 µm)
have the largest dust enrichment. On the contrary, for the MRN model, the dust-to-gas ratio
preserves its initial value in all the fragments. Moreover, the dust distribution itself remains ex-
tremely well preserved. In the mmMRNa0.25 case, the enrichment of the largest dust grains is
much less efficient than in mmMRN. This is explained by a shorter free-fall timescale and higher
initial densities, which implies smaller initial Stokes numbers. In mmMRN mmMRNa0.25 and
100micMRN, the fragments have larger enrichment in large grains (k > 6, see table 4.2 for
the corresponding grain sizes) . For example, in the mmMRN case, the dust-to-gas ratio of the
160 µm grains is enriched by a factor of ≈ 2.6 in the central object, and ≈ 3 in the fragments.
Note that the dust-to-gas ratio enrichment of the first hydrostatic core is stronger in simulations
that include magnetic fields than in mmMRN. As explained before, magnetic fields bring an
additional decoupling in the case of neutral grains which explains in part why the dust enrich-
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Figure 4.16: mmMRNmhd at tcore + 2 kyr (tcore = 81.1 kyr). Edge-on (top) and mid-plane
(bottom) cuts of the gas density (left) and dust density of the least coupled species (right). Dust
is significantly decoupled from the gas and concentrate in the high density regions such as the
core, the disk, the pseudo-disk and the inner regions of the outflow.

ment is even stronger in mmMRNmhd and mmMRNnimhd than in mmMRN. More importantly,
the collapse is longer for these models due to the magnetic support. This leaves more time for
dust grains to enrich the central regions. For the fragmenting cases, I note a preferred con-
centration of dust in the fragments that can be explained by two mechanisms. First, fragments
form after the central object and thus stay a longer time in the isothermal phase where dust
is less coupled since the temperature is smaller. Second, the dust-rich spiral arms developing
through the envelope (see figures 4.8) are mainly accreted by the fragments (see figure 4.10).
This provides an additional channel to enrich the fragments in solids.

4.6.2 Disks

I review the disk properties of all the models at tcore + 2 kyr . Essentially, the values are similar
to what is measured in the cores. This is essentially caused by the fact that the dust enrichment
happens prior to core formation at low densities (see figure 4.10). I measure a total dust-to-
gas ratio enrichment of ∼ 1.75 in mmMRN, ∼ 1 in MRN, ∼ 1.1 in 100micMRN, ∼ 1.1 in
mmMRNa0.25, ∼ 2.3 in mmMRNmhd and ∼ 2.1 in mmMRNnimhd. I emphasize once again that
the decoupling between the gas and the dust depends strongly on the initial properties of the
cloud. Note that in mmMRN the dust ratio is highly non-uniform in the disk (see figures 4.7
and 4.8 for the mmMRN case) or even constant (see figure 4.10). As explained in section 4.5.1,
there is a decrease of ∼ 22% of dust-to-gas ratio in mmMRN between tcore and tcore + 4 kyr.
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Figure 4.17: mmMRNnimhd at tcore + 2 kyr (tcore = 81.1 kyr). Edge-on (top) and mid-plane
(bottom) cuts of the gas density (left) and dust density of the least coupled species (right).
As in the ideal case, dust is significantly decoupled from the gas and concentrate in the high
density regions such as the core, the disk, the pseudo-disk and the inner regions of the outflow
.

This is most likely due to the fact that the disk is accreting dust depleted material from the
envelope. In addition, since dust drifts toward pressure bumps – or regions where J×B ∼ ∇Pg
for magnetic runs – dust cannot always be used as a direct proxy to trace the gas density.
Although, as shown in figure 4.9, the sub-structures seen in the dust originate from the ones
in the gas, they may have very distinct morphologies. This is similar to what is found for
T-Tauri disks, where gaps could be opened in the dust only (Dipierro & Laibe, 2017). Once
again, simulations with magnetic fields show a more significant dust enrichment because of the
longer timescale of the collapse. Note that the disk masses are however much smaller in the
two models where magnetic braking occurs. Indeed, longer integration time is required for the
disk to grow significantly (Hennebelle et al., 2020).

4.6.3 Pseudo-disks

In this section, I describe the principal features of the dusty pseudo-disks that are observed
in the two magnetic runs mmMRNmhd and mmMRNnimhd. These pseudo-disks are strongly
enriched with a total dust-to-gas ratio enrichment of ∼ 2 for both cases (see values in table 4.3).
Interestingly, the pseudo-disk is generally more enriched in smaller grains (up to 47 µm grains)
than the other objects. This is due to two effects. First, the pseudo-disk is less dense than the
central regions of the collapse, namely the disk and the core. This explains why smaller grains
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Figure 4.18: mmMRNmhd test at tcore + 2 kyr. Probability density function (PDF) of the dust
ratio enrichment log(ε̄) in the core (blue), the disk (green) the pseudo-disk (purple), the out-
flow (orange) and the envelope (red). Dust is not a good tracer for the gas here and the dust
distribution is not uniform in the considered objects.

Figure 4.19: mmMRNnimhd test at tcore + 2 kyr. Probability density function (PDF) of the
dust ratio enrichment log(ε̄) in the core (blue), the disk (green) the pseudo-disk (purple), the
outflow (orange) and the envelope (red). Dust is not a good tracer for the gas here and the dust
distribution is not uniform in the considered objects.

are more easily drifting towards it. Second, the strong pressure gradient orthogonal to the
pseudo-disk generates a drift from the envelope towards it, even for small grains. Once these
grains have reached the pseudo-disk, they couple strongly to the gas while larger grains are
able to drift to even deeper regions such as the disk and the core.
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Figure 4.20: All the models at tcore+2 kyr. The dust-to-gas ratio enrichment averaged in mass is
shown as a function of the grain size for all the objects. Grain with sizes smaller than 10−4 cm
are almost always perfectly coupled with the gas. For larger sizes, the enrichment is model
dependent. Grains with typical sizes larger than 10−3 cm decouple from the gas. Dense objects
such as the fragments F or the disk D and pseudo-disk P are enriched in dust. Low density
objects such as the envelope E or the outflows O are depleted in dust. Magnetized models
exhibit the stronger decoupling between the gas and the dust.

4.6.4 Outflows

I now describe the major features of the dusty outflows that can be observed in the two mag-
netic runs mmMRNmhd and mmMRNnimhd. For mmMRNmhd, figure 4.21 shows the relative
variations of the dust ratio at three different times, for the 47 µm (left) and 160 µm (right)
grains (9th and 10th bins), respectively. The magenta arrows represent the differential velocity
with the barycenter. These two dust species have a completely different evolution. Indeed, the
outflow does not carry a significant quantity of 160 µm grains at tcore + 2 kyr because they are
already strongly depleted in low density regions. Subsequently, the outflow is strongly depleted
in these species with

〈
Θ̄d,10

〉
m
∼ 0.22 for mmMRNmhd and

〈
Θ̄d,10

〉
m
∼ 0.44 for mmMRNnimhd.

On the contrary, 47 µm grains are significantly enriched by a factor 1.04-1.28 at that time.
Initially, the outflow is not powerful enough to eject matter from then inner regions and rather
collects the grains from the envelope. This explains why the enrichment measured in the out-
flow are similar to those measured in the envelope. Interestingly at tcore + 2 kyr, we see that
the outflow is well established and starts to carry the inner regions that are denser and more
enriched in 160 µm grains. This indicates that outflows provide a channel to re-enrich the
envelope in large grains.
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Figure 4.21: mmMRNmhd. Edge-
on view of the relative variations of
the dust ratio at four different times
for the 47 µm (left) 160 µm grains
(right). The magenta arrows repre-
sent the differential velocity with the
barycenter. Regions that are dust de-
pleted of more than two orders of
magnitude are not displayed (black
background).
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4.6.5 Envelope

In general, the envelope is dust depleted owing to mass conservation since the inner part are
enriched. For all the models, the small dust grains (with k ≤ 6) do not experience significant
dust-to-gas ratio variations. Larger grains can however show significant dust-to-gas ratio vari-
ations. I measure a value of

〈
Θd,10

〉
m as low as 0.38 for mmMRNnimhd and mmMRNmhd, and

0.73 for mmMRN. This values are averaged over all the envelope, but contrary to the core and
fragments, the envelope is very contrasted in terms of density. Among all objects (pseudo-disk
excluded), the envelope is experiencing the larger dust-to-gas ratio variations (see for example
figures 4.7 and 4.19). This is expected since the density in the envelope is lower than in the
other objects. Typically, the depletion in large grain of the envelope increases with a decreasing
density and have a larger dust content in their inner regions (see figure 4.21 for both behavior).

I have shown that dust is not necessarily a good tracer for the gas density, i.e. I find
important local variations in the dust distribution in mmMRN, mmMRNmhd, mmMRNnimhd.
This has strong consequences for observations, since dust continuum radiation fluxes depend
on densities integrated along the line of sight. It is therefore interesting to estimate error that
arises when the total column density is estimated from the mass of a single dust bin k. I compute
this error Errk from the total column density and the dust column density Σd,k according to

Errk ≡
Σ − Σd,k/εk,0

Σ
. (4.23)

The total error Err is defined the same way but using the total dust column density and initial
dust ratio.

Figure 4.22 shows an edge-on view of the total column density Σ (top), the total error Err
(middle) and the error estimated by using the largest grains only – 160 µm in this case (bottom)
for the mmMRNnimhd model 2 kyr after the formation of the first core. The error is large when
considering either all the grains (middle) or only the largest ones (bottom). Note that the total
column density inferred from the total dust mass would be underestimated in the upper layers
and overestimated in the inner regions because dust drifts toward the center of the collapse. The
effect is maximal for the largest grains, where the error can reach values as high as ∼ 250% in
the inner envelope.

4.7 Estimate of the dust enrichment

Here, I provide a semi-analytic estimate of the dust enrichment occurring during the proto-
stellar collapse. I use it to infer the typical minimal Stokes number above which a given dust
enrichment can be reached.

4.7.1 Enrichment equation

In the terminal velocity approximation, and making the assumption that the collapse is is
isothermal and purely hydrodynamical, the evolution of the dust ratio for a species k is given
by

dεk

dt
= −

1
ρ
∇ ·

εk

 ts,k
1 − εk

−

N∑
j=1

ε j
ts, j

1 − ε j

 c2
s∇ρ

1 − N∑
i=1

εi


 . (4.24)

To provide analytical estimates of dust-ratio enrichment during the collapse, I now neglect the
cumulative back-reaction of dust onto the gas. When the cumulative back-reaction is negligible,
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Figure 4.22: mmMRNmhd at tcore +

2 kyr. Edge-on view of the total col-
umn density log(Σ) (top), the total er-
ror Err (middle) and the error when
using the largest grains only – 160 µm
in this case (bottom).
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the evolution of ε̄ = ε
ε0

and ε are constrained by the same equation, i.e. ε̄ does not depend on
ε0. The dust ratio enrichment is described by the equation

dε̄k

dt
= −

1
ρ
∇ ·

[
ε̄ktsc2

s∇ρ
]
. (4.25)

where d
dt ≡

∂
∂t + v · ∇. I now use the dimensionless variables

τ =
t

τff,0
and x =

r
λJ,0

,

where τff,0 =
√

1
Gρ0

and λJ,0 = csτff,0. Equation (4.25) becomes

dε̄k

dτ
= −Stk,0

1
ρ̄
∇x ·

[
ε̄kρ̄
−1∇xρ̄

]
, (4.26)

where ρ̄ =
ρ
ρ0

. The term ρ̄−1 appears in the divergence owing to ts,k ∝ 1
ρ .

4.7.2 Semi-analytical model

Neglecting local variations of ε̄ in comparison with local density variations yields

dε̄k

dτ
' −Stk,0ε̄k

1
ρ̄
∇x ·

[
ρ̄−1∇xρ̄

]
. (4.27)

I then obtain
ε̄ (x, τ) = χStk,0 , (4.28)

where χ ≡ e−
∫ τ

0 ∇x(ρ̄−1∇xρ̄)/ρ̄dτ is independent of the dust properties. Hence, at a given time and
position, the dust enrichment varies essentially exponentially with the initial Stokes number. A
proper mathematical estimate of the integral quantity will be investigated in the future.

4.7.3 Estimate in the core

We can roughly approximate χ in the core and after a free-fall time tff,0 =

√
3π
32τff,0. An order

of magnitude estimate provides

|ln (χ) | ≈

√
3π
32

c2
s

Gρadr2
var
, (4.29)

where rvar is the typical length at which variations of density become significant. Above ρad,
the temperature are high and the gas and dust differential dynamics is negligible. A reasonable
choice for ρ̄ is therefore ρ̄ =

ρad
ρ0

. In the typical condition of a protostellar collapse, one obtains

|ln (χ) | ≈ 126
( rvar

1 AU

)−2
(

Tgas

10 K

)
. (4.30)

Taking rvar = 1 AU seems reasonable as it is about a tenth of the first-core radius in my models.
For rvar ≈ 5 AU, I find that |ln (χ) | ≈ 5. The value of χ strongly depends on the steepness
of the pressure gradients, hence on rvar. This model only provides an rough estimate of ε̄ and
should not replace either a numerical treatment of the dust or a proper estimate of χ during the
collapse.
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Figure 4.23: Semi-analytic and measured enrichment in my hydrodynamical models (MRN ex-
cluded) against the initial Stokes number. The lines represent the semi-analytical development
using a best fit of χ for the FHSC (dotted), disk (solid) and envelope (dashed), respectively.
The extreme values of the enrichment given by my toy model are delimited by the blue areas.
The color coding and choice of markers is the same as in figure 4.20.

4.7.4 Comparison with the models

Figure 4.23 shows the dust ratio enrichment as a function of the initial Stokes number for
mmMRN, mmMRNa0.25 and 100micMRN for the first core, the disk and the envelope. The
dashed, dotted and solid lines represent the values obtained with equation (4.28) by fitting the
values of χ. Finally, the blue area represents the range of dust enrichment obtained with the two
extreme values of χ estimated in the previous section. I do not show the dust enrichment for
MRN as it is clearly negligible (see figure 4.20). In addition, I do not display the enrichment
in the secondary fragments for the sake of readability.

A fairly good agreement between the fits and the measured dust ratio enrichment is ob-
served in all the regions, especially in the cores. This suggests that the enrichment indeed
mostly varies exponentially with the initial Stokes number. We do observe small deviations
in the disk and the envelope for mmMRN. The non-linear behaviour of equation (4.24), either
due to local variations of ε or the cumulative back-reaction of dust on the gas is therefore not
completely negligible. In appendix 4.11, I show that the dust-to-gas variations induced by the
dust back-reaction are almost negligible and that the discrepancy with the exponential increase
of the dust ratio observed is most likely caused by local variation of dust-to-gas ratio, e.g the
mixing between depleted material of the envelope and dust rich material from the disk.

Finally, I emphasize that the dust enrichment in all the cores is comprised between the
lowest and highest value estimated with my toy-model. This model being quite crude, I ac-
knowledge that it cannot compete with an eventual model based on an accurate estimate of
χ.
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Schematic view of a dusty protostellar collapse

Figure 4.24: Schematic view of a dusty protostellar collapse. Blue regions are dust depleted
and red regions are dust enriched. Typically, the outer regions of the envelope is depleted. The
outflow, only observed in magnetic runs, is enriched on its surface and depleted elsewhere.
Dense regions, such as the core and fragments F (the fragments are observed only in the
hydrodynamical case), the pseudo-disk P (only in magnetic runs) and the diskD are generally
enriched. The strength of dust decoupling depends on the initial choice of parameters such as
the maximum grain size, the thermal-to-gravitational energy ratio or the presence of a magnetic
field. This view of a dusty protostellar collapse is simplified and provides only a global sketch
of the evolution.

4.7.5 Critical Stokes number

Assuming that the value of χ is known, it can be used to determine the critical Stokes number
Stcrit,ε̄ above which some regions can reach a given enrichment ε̄. Equation (4.28) can indeed
by inverted as

Stcrit,ε̄ =
lnε̄
lnχ

. (4.31)

Using the value of χ obtained by fitting my models (figure 4.23), we can estimate the
typical Stokes numbers needed to get a dust enrichment by a factor of 2 in the core and the disk
is approximately Stcrit,2 ∼ 0.01 − 0.027. With my toy model, I find Stcrit,2 ∼ 0.006 − 0.13. It
is a significantly wider range but it contains what is measured with my models. Similarly, we
can estimate that to get a dust ratio depletion of 50%, the grains must typically have Stcrit,1/2 ∼

0.027−0.11. In short, it is easier to enrich the disk and the core than it is to deplete the envelope.

4.8 Discussion

4.8.1 Summary of the models

I investigated the effect of several parameters on the dust dynamics during the protostellar
collapse such as the thermal-to-gravitational energy ratio α, the maximum grain size of the
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dust distribution and the presence of magnetic fields. It appears that the first two parameters
are critical for the development of a significant differential dynamics between the gas and the
dust during the early phases of the collapse.

From mmMRN, MRN and 100micMRN, I established that the maximum grain size is a
critical parameter for the differential gas and dust dynamics. Typically, if the maximum grain
size in the core is smaller than a few microns (see figure 4.20), I do not observe significant
variations of the dust ratio. On the contrary, when larger grains are considered, the total dust
ratio can increase by a factor of 2−3, even in the very first thousands of years of the protostellar
collapse (see mmMRN, mmMRNmhd or mmMRNnimhd). Hence, in order to understand the
initial dust and gas content of protoplanetary disks, it is crucial to measure accurately the dust
size distribution in early prestellar cores. This conclusion is reinforced by recent observations
(Galametz et al., 2019) or synthetic observations (Valdivia et al., 2019) that seem to probe the
existence of ∼ 100 µm exist in Class 0 objects.

For small initial values of α, e.g. in mmMRNa0.25, the collapse is fast and large grains
do not have the time to significantly enrich the core and the disk in one free-fall timescale.
Besides, as mmMRNa0.25 is set with a higher initial density, dust is initially more coupled with
the gas in this particular model. I point out that the efficiency of the dust enrichment relies
strongly on the lifetime of low densities regions (see figure 4.10) and on the range of densities
experienced during the collapse (see section 4.3.4). Hence, although 100micMRN has a smaller
maximum grain size as mmMRNa0.25, both models have a similar total dust content by the end
of the simulation as the free-fall timescale in 100micMRN is longer. The initially properties
of the cloud appear to be extremely important to quantify the evolution of the dust distribution
during the protostellar collapse. It would be therefore interesting to study the dust collapse of a
Bonor-Ebert sphere, since its free-fall timescale is usually longer than the one of the Boss and
Bodenheimer test (Machida et al., 2014). I leave this proper comparison to further works.

With mmMRNmhd and mmMRNnimhd, I investigated the effect of a magnetic field on the
dynamics of dust during the protostellar collapse. I qualitatively find similar results as in my
fiducial case. Quantitatively, the decoupling between the gas and the dust does however pro-
duce more significant variations of the dust-to-gas ratio in the magnetic case. The presence
of a dense and stratified pseudo-disk strengthens the envelope and the outflow depletion. This
pseudo-disk is consequently strongly enriched in solids. It is in fact almost as enriched as the
disk and the first hydrostatic core. However it is much more massive than the disk by the end
of the calculation. Therefore, understanding how the pseudo-disk is accreted by the core and
the disk is of particular interest and future studies should focus on its long time evolution.

For the sake of summarizing, I show in figure 4.24 a schematic view of a dusty protostellar
collapse a few kyr after the formation of the first hydrostatic core. The blue areas depict the dust
depleted regions (low density regions of the envelope and outflow) and the red areas represent
the regions enriched in dust (cores, disk high density regions of the envelope and outflow, and
pseudo-disk). The intensity of the gas and dust decoupling depends naturally of the parameters
that I presented earlier in this chapter. I emphasize that this cartoon illustration is only a sim-
plified picture of a dusty protostellar collapse that does not account for the variability between
the models and were I do not quantitatively show the local variations of the dust-to-gas ratio.

4.8.2 Comparison with previous works

My results are in qualitative agreement with the previous study of Bate & Lorén-Aguilar
(2017), where a decoupling between gas and dust for grains larger than ≈ 100 µm was also
identified. A main difference is that I do not obtain as large dust-to-gas ratio enhancements.
Indeed, in Bate & Lorén-Aguilar (2017), the dust mass is distributed in a single bin of dust
with mass of 1% of the mass of the gas. In my multigrain simulations, only a fraction of the
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dust mass lies in the largest grains, which provides, less significant dust-to-gas ratio variations
as in Bate & Lorén-Aguilar (2017). This effect was predicted in Bate & Lorén-Aguilar (2017).
I note that ε̄ only depends on the initial dust content via the cumulative back-reaction of the
dust on the gas. If this back-reaction is neglected as in equation (4.25), the enrichment is inde-
pendent from the initial value of the dust-to-gas ratio. This allows us a more direct comparison
with Bate & Lorén-Aguilar (2017). In their study, they observe an increase of dust-to-gas ratio
of about one order of magnitude for the 100 µm grains, which is about 3 times larger than what
I observe in mmMRN for example. Using the calibrated value of χ and equation (4.28), we
can estimate that the dust ratio enrichment of 100 µm for grains with ρgrain = 3g cm−3 would
be ∼ 2.27 in the first hydrostatic core. The difference with Bate & Lorén-Aguilar (2017) is
likely due to their use of Bonor-Ebert spheres as initial conditions that have a longer free-fall
timescale (∼ 120 kyr) and because they have lower initial densities (∼ 10−20 g cm−3)and
therefore larger initial Stokes numbers (∼ 1 for 100 µm grains). In 2D simulation of collaps-
ing gravitoviscous protoplanetary disks, Vorobyov et al. (2019); Vorobyov & Elbakyan (2019);
Elbakyan et al. (2020) have focused on the evolution of dust including grain growth and frag-
mentation. Similarly to my models, they observe local variations of the dust-to-gas ratio in the
disks. They also found larger dust-to-gas ratios in the inner regions of the collapse and smaller
dust-to-gas ratios a few hundreds of AU away from the core. In their high density clumps, they
find dust-to-gas ratios between 1.7% and 2.3% which is quite similar to my findings. Locally,
Vorobyov & Elbakyan (2019) observe particularly large increase of dust-to-gas ratio in density
clumps, which is typically to what we observe in my secondary fragments.

In section 4.4, I performed three collapse simulations of non-rotating gas and dust mixture,
considering only single dust species (1 µm, 10 µm and 100 µm). In this work, I already
observed a significant decoupling occurring for 100 µm grains. However the increase of dust-
to-gas ratio in the core was strong only in the outer regions of the collapse. As previously said,
we can estimate that in mmMRN the dust-to-gas ratio enrichment of 100 µm would be about
2.27 for grains with ρgrain = 3 g cm−3. It was only ∼ 1.2 in my first non-rotating spherical
collapse calculation, although both models have the same initial α. I interpret this result as an
effect of rotation. Firstly, because it slows down the collapse (by a factor ∼ 0.87 here), which
leaves more time for the central regions to be enriched in dust. Secondly, because it generates
steeper vertical pressure gradients which allows a more efficient settling of the dust grains. I
do not aim to investigate the effect of the initial angular velocity in details since this was done
by Bate & Lorén-Aguilar (2017). The initial angular velocity was found to simply enhance the
differential gas and dust dynamics similarly to what the thermal-to-gravitational energy ratio
would do. I choose not to explore the impact of grain density because the dependence of the
Stokes number in this quantity is the same as for the grain size.

4.8.3 Possible implications for planet formation

The simulations presented in this study consolidate the idea that protostellar collapses may
form protoplanetary disks containing ε0 & 2 − 3% of their mass under the form of solids.

When the dust ratio ε0 is larger than the square of the aspect ratio of the disk
(

H
r

)2
– even

by a tiny amount, grain growth is expected to occur so efficiently that pebbles can decouple
from the gas before drifting and falling onto the central star (Laibe, 2014). This condition is
likely to be fulfilled as protoplanetary disks typically have

(
H
r

)2
' 0.01 (Andrews et al., 2010).

The former condition is strengthened by the fact that back-reaction may also inhibit radial-drift
and vertical settling (e.g. Kanagawa et al. 2017; Dipierro et al. 2018a; Lin 2019), and holds
until grains fragment. Two scenarios have been debated when fragmentation occurs. In the
first scenario, grains may fall onto the central star if the disk does not contain a pressure trap
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Figure 4.25: Hall factor as a function of the density and the grain size for µ = 5 for negatively
charged grains. The dashed line denotes the equality between the gyration and the stopping
time.

(e.g. Brauer et al. 2008; Birnstiel et al. 2009). In the second one, dust may exert strong drag
onto the gas and powers the development of self-induced dust traps (Gonzalez et al., 2017).
The formation of these traps occurs when back-reaction dominates locally over gas viscosity,
and may be extremely effective for ε0 & 2 − 3%. In any case, large dust contents favour the
formation of planetesimals through the development of the streaming instability (e.g. Johansen
et al. 2007, 2009; Dra̧żkowska et al. 2016). This instability may be even more effective when
it develops through unstable epicyclic modes (Jaupart & Laibe, 2020), although peculiar dust
distributions may quench it (Krapp et al., 2019). As argued by Vorobyov & Elbakyan (2019),
dust-rich density clumps, similar to the secondary cores in my fragmenting models, could be a
favored locus of giant planet formation. They indeed noted both the piling-up of large grains
and important growth in these clumps.

In short, a larger initial dust content always favour planet formation in disks, and this may
be in a dramatic manner. A quantitative knowledge of the differential dynamics of gas and dust
during the protostellar collapse and the initial dust size distribution in prestellar cores therefore
appears essential to understand the early stages of planet formation. In that perspective, an
extensive study of dust dynamics and coagulation/fragmentation should be done from the scales
of molecular clouds and, through the protostellar collapse, up to protoplanetary disks.

4.8.4 Neutral grains approximation

Grains are likely to be significant or even the main charge carriers during the protostellar col-
lapse (Umebayashi & Nakano, 1990; Marchand et al., 2016). Charged dust fluids feel the
Lorentz drag fL,k in addition to the Epstein drag. The expression of this force is

fL,k ≡
3Zke

4πρgrain,ks3
grain,k

(E + vk × B) , (4.32)
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where Zk is the number of charges on the dust grain k, e the electron charge and E is the electric
field. The gyration time of a grain is expressed as

tgyr,k =
4πρgrain,ks3

grain,k

3Zke|B|
. (4.33)

A grain subject to a significant Lorentz drag could preferentially couple to the magnetic
field rather than the gas. In addition, by controlling the Ohmic, ambipolar and Hall resistivities
(Kunz & Mouschovias, 2009), charged grains most likely affect the magnetic and electric fields
evolution. To compare the magnetic and neutral drags strength, it is interesting to compare the
stopping-to-gyration time ratio also known as Hall factor Γk. In the Epstein regime, this ratio
writes

Γk ≡

√
9γ

128π
Zke|B|

ρcss2
grain,k

. (4.34)

To model the Hall factor in a collapsing core, I consider a gas with a barotropic equation
of state with Tg = 10 K, an adiabatic index γ = 5/3 and negatively charged grains. The grain
charge computation follows Wurster et al. (2016) and is detailed in Appendix 4.A. I use simple
assumptions for the magnetic field, stating that

|B| = min

B0

(
ρ

ρ0

)2/3

, 0.1G

 , (4.35)

where B0 is the initial magnetic field, given by µ and ρ0 the initial core density. The magnetic
threshold at 0.1 G is imposed to reproduce the plateau systematically observed when consid-
ering ambipolar diffusion Masson et al. (2016); Hennebelle et al. (2016); Vaytet et al. (2018a).
One can then show that

Γk =

√
9γ

128π
Zke

ρcss2
grain,k

min

 M0
1/3

µ
(

M0
Φ

)
c

(
4πρ

3

)2/3

, 0.1G

 . (4.36)

Figure 4.25 shows the absolute value of the Hall factor as a function of the density and
the grain size. For a wide range of grain sizes, the Hall factor is always much smaller than
unity. These grains can therefore be considered neutral at least dynamically. I note that Γk is
larger than unity for very small grain (sgrain,k / 10−6cm). These grains are very well coupled
the the gas in the neutral case but, when charged, could experience a strong decoupling with
the neutrals. This would occur if the latter are decoupled from the magnetic field e.g., in the
non-ideal regime. The Lorentz drag might play a crucial role for the dynamics of very small
grains in star formation but is probably not very important for the large grains that I observe to
decouple in my models. Efforts to study the dynamics of such grains have been made in the
past (Guillet et al., 2007; Hopkins & Squire, 2018) and should be extended to dusty collapses in
future studies. I emphasize that the electromotive term in the Lorentz force applies only on the
charged species and not the barycenter and might play a very important role in the decoupling
between the charged grains and the neutrals (barycenter) even when Γk < 1.

4.8.5 Caveat: Coagulation/fragmentation during the collapse

Dust coagulation has been neglected during this study. It may however affect strongly dust
evolution during the collapse since dust decoupling depend on grain sizes. Following Draine
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(1985), one can estimate the coagulation timescale tcoag,i, j between two dust phases i and j due
to their relative motion within the collapsing clouds as

tcoag,i, j =

3
4
ρi

(sgrain,i + sgrain, j)2

ρgrain,is3
grain,i

|vi − v j|

−1

. (4.37)

Assuming the same density for all the grains, neglecting cumulative back-reaction effects and
magnetic fields, and considering an isothermal collapse, differential velocities can be estimated
from the diffusion approximation as

|vi − v j| ∼ ρgrain|sgrain,i − sgrain, j|cs
|∇ρ|

ρ2 . (4.38)

As said in section 4.3.4, the density profile of the free-falling material can be approximated
as a power law with an exponent ζ = −2 (Larson, 1969). In this case, one obtains at a distance
r from the central region

tcoag,i, j =

[
3|ζ |
4r

εi(1 + qi, j)(1 − q2
i, j)cs

]−1

. (4.39)

where qi, j ≡
sgrain, j
sgrain,i

is the ratio between the grain sizes. In the limit qi, j � 1, I find

tcoag,i, j ∼ 170 kyr
( ε j

10−2

)−1 ( r
100 AU

) ( cs

0.19 km s−1

)−1
. (4.40)

Growth induced by the relative dynamics between dust grains is therefore expected to be not
very efficient during protostellar collapse away from the core but could be non-negligible in the
inner regions. At r = 10 AU, tcoag,i, j ∼ 17 kyr, which is quite smaller than the typical free-fall
timescale of a prestellar core.

I note that growth could also be enhanced by the turbulence, the Brownian motions of dust
grains or focalization due to grain charges (Blum & Wurm, 2008). In the case of Brownian
motions, for example, assuming that the grain temperature is equal to the gas temperature, the
differential velocity for two grains of different mass can be expressed as (Birnstiel et al., 2016)

|vi − v j| =

√
8kBTg

π

√
mgrain,i + mgrain, j

mgrain,imgrain, j
, (4.41)

hence, assuming again that qi, j � 1 the coagulation timescale writes as

tcoag,i, j =

3
4
ρi

1
ρgrain,isgrain,i

√
8kBTg

πmgrain, j


−1

, (4.42)

I now consider a region of density 10−12 g cm−3 and temperature of 10 K. Assuming sgrain, j =

0.1 µm and sgrain,i = 100 µm, I get tcoag,i, j ∼ 240 kyr. I note that, in the case of the Brownian
motions, the coagulation timescale depends on the grains size of both species. If we now
consider sgrain, j = 0.01 µm, tcoag,i, j ∼ 7 kyr.

In short, I am tempted to say that in the presence of large grains, very small grain could be
efficiently removed during the collapse in high density regions. Coagulation should therefore
be included in future studies. I admit however that the presence of such large grains during
the early phases of the protostellar collapse is still under debate. It is indeed unclear how
these large dust grains can overcome the fragmentation barrier, as the differential velocities
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between two dust species is typically quite large, e.g up to a few ≈ 0.1kms−1 in the envelope
of mmMRN in the case of the two least coupled species. Typically, the velocity above which
fragmentation can occur is thought to be about a few 10 ms−1 (Blum & Wurm, 2008) although
it could be higher (Yamamoto et al., 2014). Large grains could overcome the fragmentation
barrier because the fragmentation timescale is typically equivalent to coagulation timescale
(e.g. Gonzalez et al., 2017). Fragmentation could simply not have the time to occur during the
collapse, especially considering that large grains quickly drift toward regions of high density
where their drift velocity is typically around a few meter per seconds.

4.9 Conclusion and perspective

In this study, I presented the first multigrain and non-ideal MHD simulations of dusty proto-
stellar collapses using the new dust dynamics solver of RAMSES. I presented six rotating and
three non-rotating dustycollapse simulations. The rotating models were carried out with a si-
multaneous treatment of 10 dust species with different sizes. In these simulations, I investigate
the impact of the maximum grain size, the thermal-to-gravitational energy ratio and the pres-
ence of magnetic fields on the dynamics of the dustycollapse. I summarize below my principal
findings

1. Small grains with sizes less than a few 10 µm are strongly coupled to the gas during
the protostellar collapse. On the contrary, grains larger than ∼ 100 µm tend to decouple
significantly.

2. When the first hydrostatic core forms, high density regions – the core, the fragments, the
disk and the pseudo-disk – are enriched in dust by a typical factor of two, whereas low
density regions – the envelope and the outflow – are dust-depleted.

3. Dust is not necessarily a proxy for gas during the collapse. Inferring gas densities from
dust is found to potentially lead to extremely large errors (up to ∼ 250%).

4. A standard MRN grain size distribution with a maximum grain size of 250nm is however
extremely well preserved during the protostellar collapse in absence of coagulation.

5. Dust dynamics is strongly affected by the initial cloud properties. Variations of the dust-
to-gas ratio reach the largest values when the free-fall is long and the initial density is
low. An additional decoupling occurs for neutral grains in the presence of magnetic fields
because collapse proceeds over longer timescales.

6. With a semi-analytical model, I show that the dust-ratio varies exponentially with the
initial Stokes number during the collapse. More precisely, I have shown that it can be
expressed as ε0 χ

St0 where χ is a dimensionless function of the time independent on the
dust properties. Fitting the values of χ gives a very good agreement between the semi-
analytical model and the measured dust-ratios in the range of Stokes number considered
in my simulations.

7. Using the calibration of χ with the results of my model, I show that a Stokes number of
at least 0.01 is required to enrich the core and the disk in a dust species by a factor of 2.
Similarly I show that grains with St0 ' 0.0027 can potentially be depleted by a factor of
2 in the envelope after the first core formation.

Dust evolution during the protostellar collapse could have serious consequences on the
initial state of protoplanetary disks and the further formation of the planets. In the future,
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Figure 4.26: Fiducial model for various maximum dust differential velocity wcap. Mid-plane
view of the total dust-ratio at the FHSC formation. (Top-left) wcap = 0.1 kms−1, (Top-right)
wcap = 0.5 km s−1, (Bottom-left) wcap = 1 km s−1, (Bottom-right) wcap = 2 km s−1.

substantial efforts should be made to include the dynamics of charged dust grains during the
protostellar collapse, since the Lorentz drag cannot necessarilly be neglected for small grains.
Coagulation and fragmentation of dust grains should also be considered to investigate more
realistically dust evolution during the star formation process.

4.10 Impact of velocity regularization

As explained in section 4.3.5, the simulations of my fiducial model have been performed with
various values for the maximum gas and dust differential velocity wcap. I investigated the
effect of varying wcap by performing complementary simulations with wcap = 0.1, 0.5, 1 and
2 km s−1. I attempted to simulate an additional model with wcap = 10 km s−1 but this led to
numerical instabilities due to unrealistically large dust velocities at the accretion shock, where
the diffusion approximation is not valid.

In figure 4.26, I show a face-one view of the dust-ratio at the time of the FHSC formation
for these 4 models. With wcap = 0.5 − 2 km s−1 I essentially find the same results as in the
fiducial case that has wcap = 1 km s−1. Having wcap = 0.1 km s−1 however appears to be a
too extreme choice. It indeed suppresses most of the initial dust enrichment that is due to the
decoupling between the gas and the dust in the envelope. Having wcap = 1 km s−1 appeared to
be a reasonable choice to cope with time stepping and physical constraints.
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Figure 4.27: Semi-analytic and measured dust-ratio enrichment in mmMRN (red) and
mmMRNeps1e-7 (pink) in the core (stars), disk (triangles) and envelope (circles) at tcore + 2 kyr
against the initial Stokes number. The lines represent the semi-analytical development using a
best fit of χ for the FHSC (dotted), disk (solid) and envelope (dashed), respectively. I display
the same information for mmMRN at tcore+kyr in the disk (grey).

4.11 Non-linear dust enrichment: neglecting back-reaction

As stated in section 4.3.4, equation (4.26) is valid as long as local dust-ratio variations and the
cumulative back-reaction of the dust can be neglected. In this approximation, the dust ratio
enrichment increases exponentially with the Stokes number. As pointed out in section 4.3.4, I
observe deviations from the exponential law in the disk and the envelope in mmMRN, while it
is very well verified in the core.

To ascertain whether these deviations are due to back-reaction or not, I perform an ad-
ditional simulation similar to the fiducial one, but with θd,0 = 10−7 (mmMRNeps1e-7). For
mmMRNeps1e-7, we expect the back-reaction to be definitely negligible as θd,0 � 1.

Figure 4.27 shows the dust ratio enrichment as a function of the initial Stokes number for
mmMRN (red) and mmMRNeps1e-7 (pink) in the core, disk and envelope at tcore + 2 kyr. On top
of this, the dust ratio in the disk but at tcore is plotted for mmMRN (grey). As can be seen, the
differences between the models at tcore+2 kyr have similar dust-ratio enrichment. This indicates
that the cumulative back-reaction of dust is negligible when Stk,0 < 10−2 and only corrective
above that. I am also confident that the mixing between dust enriched and dust depleted content,
i.e. a non-negligible ∇ε, are the source of discrepancy between a pure exponential enrichment
and the values measured in my models in the disk. We indeed observe a very good agreement
with the exponential law for mmMRN at tcore. At this time the disk has just formed from the
dense and dust enriched material of the inner envelope. Later at tcore + 2 kyr, the disk has been
accreting material from the envelope that is significantly depleted in large grains which causes
a diminution of the average dust enrichment.
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4.A Charges on dust grains

One can crudely estimate the charges on the grains during the collapse similarly to Wurster
et al. (2016), to compare the relative intensities of the Lorentz and the Epstein drags. For
simplicity, I assume that all the grains have the same negative charge Zd (for all k, Zk = Zd) and
the ions to have a charge Zions = 1. I consider 100 dust bins distributed as an MRN extended to
millimeter-in-size grains, with a dust-to-gas ratio of 1%. Local electroneutrality ensures that

nions − ne + Zdnd = 0, (4.43)

nions, ne and nd being the number density of the ions, electrons and dust, the latter being given
by

nd ≡
µgmH

mgrain
εn, (4.44)

where mgrain is the average mass of a dust grain.
Two additional constrains are provided by the evolution equations for the ions and electrons

charge density (Umebayashi & Nakano, 1980; Fujii et al., 2011). Assuming steady state and
only considering charge capture by the grains (Keith & Wardle, 2014), they give

nions =
ζn

kions,grainsnd
,

ne =
ζn

ke,grainsnd
, (4.45)

where ζ is the cosmic-ray ionization rate. Similarly to Wurster et al. (2016), I adopt the typical
value ζ = 10−17s−1. I also express kions,grains and ke,grains, the charge capture rates on neutral
grains, as in (Fujii et al., 2011) as

kions,grains ≡ πs2
grain

√
8kbTg

πmions
(1 −

e2Zd

sgrainkbTg
),

ke,grains ≡ πs2
grain

√
8kbTg

πme
exp

[
e2Zd

sgrainkbTg

]
. (4.46)

where sgrain is the average grain size, me is the electron mass and mions the ions mass, assumed
to be 24.3 proton masses. Using the previous equations, one obtains

Zd =
ζ

n

(
mgrain

εµgmH

)2 [
1

kions,grains(Zd)
−

1
ke,grains(Zd)

]
, (4.47)

that I invert using the Newton-Raphson method to get Zd.

4.B Distributions

In table 4.2, I provide the initial dust distributions, rounded quantities for the three maximum
grain size used in my models (the exact calculation can be made using the method presented in
4.3.3). Table 4.3 shows

〈
Θd,k

〉
m (in %), the dust-to-gas ratio averaged in mass, along with its

corresponding dust enrichment and the gas mass (in units of M�) for all runs tcore + 2 kyr and
all the different objects.
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Model j
〈
Θd,k≤6

〉
m

〈
Θd,7

〉
m

〈
Θd,8

〉
m

〈
Θd,9

〉
m

〈
Θd,10

〉
m mg

mmMRN F0 0.085[1] 0.075[1.03] 0.14[1.03] 0.31[1.24] 1.17[2.6] 0.082
F1 0.085[1] 0.076[1.04] 0.15[1.1] 0.37[1.54] 1.38[3] 0.024
F2 0.085[1] 0.076[1.04] 0.15[1.1] 0.37[1.54] 1.37[2.98] 0.024
D 0.085[1] 0.075[1.03] 0.15[1.1] 0.34[1.41] 1.1[2.4] 0.096
E 0.085[1] 0.073[1] 0.13[0.96] 0.23[0.95] 0.34[0.73] 1.0

MRN F0 0.37[1] 0.12[1] 0.14[1] 0.17[1] 0.21[1] 0.088
F1 0.37[1] 0.12[1] 0.14[1] 0.17[1] 0.21[1] 0.033
F2 0.37[1] 0.12[1] 0.14[1] 0.17[1] 0.21[1] 0.033
D 0.37[1] 0.12[1] 0.14[1] 0.17[1] 0.21[1] 0.091
E 0.37[1] 0.12[1] 0.14[1] 0.17[1] 0.21[1] 0.98

100micMRN F0 0.13[1] 0.09[1] 0.15[1] 0.25[1.04] 0.43[1.1] 0.086
F1 0.13[1] 0.09[1] 0.15[1] 0.25[1.04] 0.46[1.17] 0.023
F2 0.13[1] 0.09[1] 0.15[1] 0.25[1.04] 0.46[1.17] 0.023
D 0.13[1] 0.09[1] 0.15[1] 0.25[1.04] 0.44[1.13] 0.097
E 0.13[1] 0.09[1] 0.15[1] 0.24[1] 0.38[0.97] 0.99

mmMRNa0.25 F0 0.085[1] 0.074[1.01] 0.14[1.03] 0.26[1.04] 0.51[1.12] 0.20
F1 0.085[1] 0.074[1.01] 0.14[1.03] 0.27[1.08] 0.58[1.29] 0.10
F2 0.085[1] 0.074[1.01] 0.14[1.03] 0.27[1.08] 0.58[1.29] 0.10
D 0.085[1] 0.074[1.01] 0.14[1.03] 0.26[1.04] 0.56[1.24] 0.16
E 0.085[1] 0.073[1] 0.13[0.96] 0.24[0.96] 0.4[0.89] 0.7

mmMRNmhd F0 0.085[1] 0.076[1.04] 0.15[1.1] 0.37[1.48] 1.5[3.33] 0.075
D 0.085[1] 0.076[1.04] 0.15[1.1] 0.39[1.56] 1.58[3.58] 0.0012
P 0.086[1.01] 0.077[1.05] 0.16[1.19] 0.43[1.72 ] 1.23[2.73] 0.1
O 0.085[1] 0.074[1.01] 0.14[1.03] 0.26[1.04] 0.1[0.22] 0.0082
E 0.085[1] 0.072[0.98] 0.13[0.96] 0.2[0.8] 0.17[0.38] 0.5

mmMRNnimhd F0 0.085[1] 0.077[1.5] 0.15[1.1] 0.37[1.48] 1.5[3.33] 0.081
D 0.085[1] 0.076[1.04] 0.15[1.1] 0.37[1.48] 1.44[3.2] 0.011
P 0.086[1.01] 0.077[1.05] 0.16[1.19] 0.43[1.72] 1.22[2.71] 0.1
O 0.086[1.01] 0.076[1.04] 0.15[1.1] 0.32[1.28] 0.2[0.44] 0.0018
E 0.085[1] 0.072[0.98] 0.13[0.96] 0.2[0.8] 0.17[0.38] 0.5

Table 4.3: Mass averaged dust-to-gas ratio
〈
Θd,k

〉
m (in %) and gas mass (in units of M�) for

all runs tcore + 2 kyr and all the objects, the number inside the brackets is the corresponding
mass averaged dust enrichment. When

〈
Θ̄d

〉
m
> 1, the enrichment is referenced in red while it

is referenced in blue when
〈
Θ̄d

〉
m
≤ 1. I denote the different objects as follows, F j represent

the fragments (F0 being the FHSC), D the disks, O the outflow, P the pseudo-disks and E the
envelope.
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Robert Muldoon

”Quiet, all of you! They’re approaching the Tyrannosaur paddock.”

- Jurassic Park

In this chapter, I present a set of equations for magnetohydrodynamics with multiple charged
grains species that I recently derived in collaboration with Pr. Daniel Price at the Monash

university. This visit in Australia was possible thanks to the DUSTBUSTERS consortium. This
work is also carried out in collaboration with Vincent Guillet (IAS). This chapter is the most
technical of this manuscript and I encourage the reader to be read Chapter 2 before this one.

123



CHAPTER 5. GAS AND DUST MAGNETOHYDRODYNAMICS

5.1 Introduction

Growing number of studies have investigated the dynamics of neutral dust grains in various
regions of the interstellar medium (ISM). When large enough, these grains are expected to
decouple from the gas. The size at which the decoupling occurs typically depends on the
environment, it goes from 1 − 10 µm in molecular clouds (Lee et al., 2017; Tricco et al.,
2017) to 1 − 10 mm in protoplanetary disks (e.g. Dipierro et al., 2015, 2018a; Riols & Lesur,
2018; Lin, 2019). During the protostellar collapse the typical grain size for the decoupling is
intermediate (∼ 10 − 100 µm, see Bate & Lorén-Aguilar, 2017, or see Chapter 4).

One of the missing ingredients in these studies is the impact of the grain charge. These
studies indeed all consider the grains to be dynamically neutral. In the diffuse ISM and up to
the densities of molecular clouds, dust grains are typically negatively charged, approximately
carrying one elementary charge per grain (Draine & Sutin, 1987; Guillet et al., 2007). Dur-
ing the protostellar collapse, they might even be the main charge carriers. In this case the
value of magnetic resistivities would be controlled by the shape of the grain size distribution
(Umebayashi & Nakano, 1990; Marchand et al., 2016; Wurster et al., 2016). This is important
because the coupling between the magnetic fields and the neutral gas, regulated by the resis-
tivity, probably controls the early disk properties (Masson et al., 2016; Hennebelle et al., 2016;
Vaytet et al., 2018b; Hennebelle et al., 2020).

Sub-micrometer grains are believed to be extremely important for the coupling between
the gas and the magnetic fields. Small grains tend to strongly couple to the magnetic field.
This happens because their gyration time is shorter than their stopping time (see Guillet et al.,
2007; Hopkins & Squire, 2018, or Chapter 4). As a consequence, their presence reduce the
values of the resistivities and hence increase the magnetic braking efficiency. It was shown by
Zhao et al. (2016) that the smallest grain size in the dust size distribution is a critical parameter
that controls the angular momentum transport during disk formation. In particular, they have
shown that including very small grains in the dust distribution could prevent the formation of
a rotationally supported disks. A key question of disk formation might thus be: what is the
fate of the very small grains from the diffuse ISM to collapsing regions? Another potential
consequence of the strong coupling between the magnetic field and the very small grains is that
they might decouple with the gas when the latter is poorly coupled with magnetic fields (Guillet
et al., 2007). This potential decoupling might lead to a size sorting even for small grains and
enhance the effect of grain growth in low density regions. To investigate this hypothesis, the
drift velocity of dust grains needs to be determined in a full set of MHD equations that includes
their dynamics whether if they are charged or neutral.

The charged dust grain dynamics has been investigated in the ideal MHD limit with a
multifluid approach by Hopkins & Squire (2018); Squire & Hopkins (2018); Hopkins et al.
(2020). In the non-ideal case, monofluid approaches have been proposed by Wardle (1998);
Guillet et al. (2007); Kunz & Mouschovias (2009). These studies however neglected the impact
of the hydrodynamical drift (see Chapters 2 and 4 ) due to the imperfect coupling between the
grains and the neutral gas and that remains when the grain charge goes to zero. In this chapter,
I present a new set of non-ideal MHD equtions for neutral gas + charged particles mixtures in
section 5.2. In section 5.3, I show that this set of equations recovers the expected drift velocities
in the main limiting cases, e.g. non-ideal MHD, ideal MHD and hydrodynamics. In section
5.4, I discuss the potential astrophysical objects where this new formalism could prove useful.
Finally I present my conclusions and perspectives in section 5.5
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5.2 Dynamical equations

The aim of this section is to provide a new set of non-ideal MHD equations (dusty-MHD
hereafter) that includes the drift of several distinct charged species, i.e. the dust, ions and
electrons and one neutral gas. For simplicity, I consider that the collisions with the neutral gas
are dominant over charged-charged collisions. It is important to keep in mind that, although I
put the emphasize on dust grains, ions and electrons have the same treatment.

5.2.1 Definitions and useful relations

Before introduce the dynamical equation, I re-define here the multi- and mono-fluid quantities.
The new notations aim to be as general as possible. In this work, I considerN charged species.
The species n, represented by the N + 1 index in sums, is the neutral gas. The total density of
the fluid ρ writes

ρ ≡

N+1∑
j=1

ρ j, (5.1)

ρ j is the density of the fluid j, q j its typical charge and n j its number density . For a fluid k, the
mass fraction xk is defined as

xk ≡
ρk

ρ
. (5.2)

In the case of the dust, the mass fraction is exactly the same quantity as the dust-ratio. Each
fluid k has a velocity vk. The barycenter of the total mixture has a velocity v that is expressed
as

v ≡
N+1∑
j=1

x jv j, (5.3)

wk ≡ vk−v is the drift of the species k with respect to the barycenter. The neutral gas differential
velocity is then directly given by

wn = −

N∑
j=1

x j

xn
w j, (5.4)

as
∑N+1

j=1 x jw j = 0.

f are the specific forces that apply on all the fluids, e.g. the gravitational force. Fk the
forces that apply only on the fluid k, drag and Lorentz force excluded. I define again Kk ≡

xkρn
tk

as the drag coefficient between k and the neutral gas, tk being the timescale of coupling with
the neutral gas, e.g. the stopping time for the dust.

Finally, E and B are the electric and magnetic field, respectively.
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5.2.2 Multifluid: Mass and momentum conservation

In the multifluid approach, the mass and momentum conservation equations of the charged+neutral
gas mixture are written as

∂ρn

∂t
+ ∇ · ρnvn = 0,

∂ρk

∂t
+ ∇ · ρkvk = 0,

∂ρnvn

∂t
+ ∇ · [ρnvn ⊗ vn] = ρnf + Fn +

N∑
j=1

K j∆v j,

∂ρkvk

∂t
+ ∇ · [ρkvk ⊗ vk] = ρkf + Fk + nkqk(E + vk × B)

− Kk∆vk. (5.5)

The electric fields need to be constrained by an Ohm’s law, derived from the momentum equa-
tion, while the magnetic field evolution is constrained by the induction equation. This set of
equations must also be completed with an energy conservation equation and an equation of
state when thermal pressure forces are significant.

5.2.3 Monofluid: Mass and momentum conservation

As explained in details in Chapter 2 or in the previous works of Laibe & Price (2014a,b,c);
Hutchison et al. (2018), the mass and barycenter momentum conservation equations can be
rewritten without any approximation using a monofluid approach. In the case of the dusty-
MHD equations are given by

∂ρ

∂t
+ ∇ · ρv = 0,

∂ρk

∂t
+ ∇ · ρk(v + wk) = 0,

∂ρv
∂t

+ ∇ · [ρv ⊗ v] = −

N∑
j=1

∇ · (ρ jw j ⊗ w j)

+ F + F̄ + J × B, (5.6)

where F ≡ ρf and F̄ ≡
∑N+1

j=1 F j. Note that we do not need to solve a similar equation for
the neutral gas in virtue of equation (5.4). Let us recall that, it virtue of the Maxwell-Ampère
equation, the current is defined as J ≡ ∇×B in the non-relativistic magnetic regime. No electric
force applies to the barycenter in virtue of local electroneutrality.

On top of this, the drift velocities of the charged particles are constrained by the following
equation

∂wk

∂t
+ (v · ∇)wk = (wk · ∇)v + −(wk · ∇)wk

+
1
ρ

N∑
j=1

∇ · (ρ jw j ⊗ w j)

+
Fk

ρk
+

qk

mk
(Eb + wk × B) −

Kk

ρk
(wk − wn)

−
F̄
ρ
−

J × B
ρ

, (5.7)
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where Eb ≡ v × B + E is the electric field in the rest frame of the barycenter. This equation is
obtained similarly as the evolution equation of ∆v (see chapter 2) but subtracting the evolution
equation of v instead of vn to the one of vk.

5.2.4 Approximations

In strong coupling regimes, one can neglect neglect the quadratic and inertial terms in equa-
tions (5.6) and (5.7) : this is the terminal velocity approximation and the diffusion approxima-
tion (see Chapter 2 or Laibe & Price, 2014a,b,c; Price & Laibe, 2015, for a complete study).

In this formalism, equation (5.7) becomes

0 =
Fk

ρk
+

qk

mk
(Eb + wk × B) −

Kk

ρk
(wk − wn) −

F̄
ρ
−

J × B
ρ

. (5.8)

We can further neglect the cumulative back-reaction of the dust on the gas when xn ∼ 1 � x j,n

which gives ||wn|| � ||wk|| as
∑N+1

j=1 x jv j ' xnvn ' v and also ρn ' ρ. This leads to

Kk

ρk
wk −

qk

mk
wk × B =

Fk

ρk
+

qk

mk
Eb −

F̄
ρ
−

J × B
ρ

, (5.9)

which, after rearranging the terms yields

wk − Γkwk × b =
Γk

|B|
Eb +

Fk − xk(F̄ + J × B)
Kk

, (5.10)

where I define the Hall factor as Γk ≡
ρkqk |B|
mkKk

. It is the ratio between the coupling time tk and the

gyration time tgyr,k ≡
qk |B|
mk

. The Hall factor quantifies the relative importance of the coupling
with the neutral gas to the one with the magnetic field. I also define the magnetic field unit
vector as b ≡ B

|B| .
We can rewrite the former equation as

wk − Γkwk × b =
Γk

|B|
Eb +WH ,k, (5.11)

where WH ,k is the drift velocity of k in the limit Γk → 0. In other words, WH ,k is the drift
velocity of neutral grains. It is defined as

WH ,k ≡
Fk − xk(F̄ + J × B)

Kk
, (5.12)

Equation (5.11) can be inverted straightforwardly to obtain wk, as long as the forces Fk do
not depend on the drift velocities, to obtain

wk = wMH,k + wEM,k,

(5.13)

where I distinguish the magneto-hydro drift 1

wMH,k ≡
Γk

1 + Γ2
k

WH ,k × b +
1

1 + Γ2
k

WH ,k,⊥ +WH ,k// (5.14)

1see chapter 2 for the hydrodynamical limit of this drift
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and the electromotive drift due to the imperfect coupling between the neutral gas and the mag-
netic field

wEM,k ≡
1
|B|

 Γ2
k

1 + Γ2
k

Eb × b +
Γk

1 + Γ2
k

Eb,⊥ + ΓkEb//

 , (5.15)

where // and ⊥ denote the parallel and perpendicular component of a vector, respectively.
Equation (5.13) shows strong similarities with the form proposed by the previous studies of
Wardle (1998) and Guillet et al. (2007). They were however neglecting the neutral driftWH ,k
due to the differential forces between the neutral gas and the charged species. As explained
earlier, in this study, a drift between the neutral gas and the charged species remains when
Γk → 0. More precisely, in this limit wEM,k → 0 and the magneto-hydro drift tends to the
hydro drift wMH,k →WH ,k.

5.2.5 Full Ohm’s law

As previously mentioned, the evolution of the magnetic field is constrained by the induction
equation that writes as follows

∂B
∂t

= −∇ × E. (5.16)

An Ohm’s law is then required to constrain the electric field. Using the local electroneutrality
we can show that

J ≡
N∑
j=1

n j q j(v + w j) = (
N∑
j=1

n j q j)v +

N∑
j=1

n j q jw j =

N∑
j=1

n j q jw j, (5.17)

using equation (5.13) and defining the magneto-hydro drift current

JMH ≡

N∑
j=1

n j q jwMH, j, (5.18)

we can show that

J = JMH + σOEb// + σpEb,⊥ + σHEb × b, (5.19)

where we define

• the Ohm conductivity

σO ≡

N∑
j=1

n j q j

|B|
Γ j, (5.20)

• the Peterson conductivity

σp ≡

N∑
j=1

n j q j

|B|
Γ j

1 + Γ2
j

, (5.21)

• the Hall conductivity

σH ≡

N∑
j=1

n j q j

|B|

Γ2
j

1 + Γ2
j

. (5.22)
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Apart from the term JMH, equation (5.19) is the same a in usual non-ideal MHD (e.g.,
Wardle & Ng, 1999). Writing ∆J = J − JMH, it is then easy to demonstrate that the Ohm’s law
writes

Eb = ηO∆J + ηH∆J × b + ηA∆J⊥, (5.23)

where we define

• the Hall resistivity

ηH ≡
σH

σ2
p + σ2

H

, (5.24)

• the Ohm resistivity

ηO ≡
1
σO

, (5.25)

• the ambipolar resistivity

ηA ≡
σp

σ2
p + σ2

H

−
1
σO

. (5.26)

We note that, in the limit |JMH| � |J|, equation (5.23) reduces to the standard Ohm’s law in
non-ideal MHD.

5.2.6 Energy conservation

In the terminal velocity approximation, we neglect the internal energy of the charged particles,
assuming the total energy of the mixture is defined as E ≡ 1

2ρv2 + B2

2 +ρu, where u is the neutral
gas internal energy. The energy conservation equation is thus written as

∂E
∂t

+ ∇ · [((E + Pn)v − B(B · v)]

= (F + F̄) · v + Λres, (5.27)

where the resistive heating source term Λres writes

Λres = Eb · J. (5.28)

Contrary to the standard non-ideal MHD case there is no constrain on the positivity of ∆J · J
even though that must be intrinsically the case to verify the second principle of thermodynam-
ics. This means that ||JMH|| must be smaller than ||J|| for the terminal velocity approximation
to hold. As a precaution, I choose to neglect the magneto-hydro drift current in the induction
equation and assume a standard non-ideal MHD Ohm law (see Wardle & Ng, 1999; Kunz &
Mouschovias, 2009, for detailed works on the matter). We therefore have

Eb = ηOJ + ηHJ × b + ηAJ⊥. (5.29)
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5.2.7 Summary

Using the previous derivation we can now write down the expression of multispecies MHD
in the first-order terminal velocity approximation with neglected back-reaction and magneto-
hydro drift current as

∂ρ

∂t
+ ∇ · ρv = 0

∂ρk

∂t
+ ∇ · ρk(v + wk) = 0

∂ρv
∂t

+ ∇ · [ρv ⊗ v] = −

N∑
j=1

∇ · (ρ jw j ⊗ w j)

+ F + F̄ + J × B,
∂B
∂t
− ∇ × (v × B) = −∇ × Eb,

∂E
∂t

+ ∇ · [((E + Pn)v − B(B · v)] = (F + F̄) · v + Λres, (5.30)

with the drift velocity and electric field given by

wk = wMH,k + wEM,k,

Eb = ηOJ + ηHJ × b + ηAJ⊥. (5.31)

We note that Eb// = 0 as J = ∇ × B, which is why there is now only three terms in the
drift velocity. For energy conservation reasons, we neglected JMH in the induction equation
but one should keep in mind that this term exists. The set equations that includes JMH can
be straightforwardly obtained by performing the transformation J → ∆J except in Λres that
remains unchanged.

5.2.8 On the back-reaction

I neglected the cumulative back-reaction of charged species onto neutral gas particles, but this
is only valid in the low ionisation regime and when the dust ratio is small compared to unity.
During the protostellar collapse phase neglecting the back-reaction for the dust is likely to be
valid (see Chapter 4). In addition, the ionization fraction of the most abundant charged species
remains between xi ' 10−25 − 10−5 in dense cores (Marchand et al., 2016) which is signifi-
cantly smaller than unity. We note however that in certain objects, such as the protoplanetary
disks, the back-reaction of dust is not negligible (Dipierro et al., 2018b). A simple solution
to approximate the back-reaction consists in a first order development in terms of x =

∑N
j=1 x j

such as

wback
k = wno−back

k + xδwk + O(x2wno−back
k ), (5.32)

where wback
k and and wno−back

k are the drift velocity of the species k when the back-reaction is
not neglected and neglected, respectively. We note that wno−back

k is given by equation (5.31).
When the back reaction is considered, we must solve equation (5.8), it now becomes

wback
k − Γkwback

k × b =
Γk

|B|
Eb +

Fk − xk(F̄ + J × B)
Kk

−

N∑
j=1

x j

xn
wback

j , (5.33)
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substituting wback
k in equation (5.33) with the expression given by equation (5.32) yields

xδwk − xΓkδwk × b = −

N∑
j=1

x j

xn
wno−back

j , (5.34)

which eventually gives

xδwk = −
Γk

1 + Γ2
k

N∑
j=1

x j

xn
wno−back

j × b −
1

1 + Γ2
k

N∑
j=1

x j

xn
wno−back

j,⊥ −

N∑
j=1

x j

xn
wno−back

j,// . (5.35)

To determine the new Ohm’s law, we need to separate the expression into a magneto-hydro
drift and electromotive drift as in the back-reaction free case. We will thus obtain additional
terms in the three resistivities. I choose not to go any further on this question yet.

5.2.9 Dimensionless numbers

Before reviewing the different regimes of dusty-MHD mixtures, it is convenient to define cer-
tain dimensionless quantities. Let us re-define the Stokes number as

Stk ≡
tk

tdyn
, (5.36)

where tdyn is the dynamical timescale of the system studied. e.g. the free-fall timescale during
the protostellar collapse. When Stk � 1, the coupling between the species k and the neutral
gas is strong. Similarly we can also define a magnetic Stokes number as

Stmk ≡
tgyr,k

tdyn
. (5.37)

When Stmk � 1, the coupling between the species k and the magnetic field is strong. If
Stmk � Stk, then the species k preferentially couples to the magnetic field rather than with the
neutral gas. This corresponds exactly to the condition Γk � 1 because Γk =

Stk
Stmk

.
For each resistive effect r we define the magnetic Reynolds number as

Rmr ≡
|v|2tdyn

ηr
. (5.38)

When any of the magnetic Reynolds number is smaller than unity, the resistivity of the mixture
potentially causes a decoupling from the magnetic field. If both Rmr and Γk � 1, then the
species k can decouple from the neutral gas by coupling with the magnetic field even when
Stk � 1.

We also define the β plasma parameter as

β ≡
2P
|B|2

, (5.39)

this parameter quantifies the relative importance of the thermal and magnetic pressure forces.
The magnetic force dominates over the pressure force when β � 1.

The last dimensionless numbers that we define quantifies the relative the importance of
the magneto-hydro drift velocity compared to the electromotive drift. This magneto-hydro-to-
electromotive-drift ratio writes as

Φk ≡
|wMH,k|

|wEM,k|
. (5.40)
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5.3 Dynamical regimes

In these section, I introduce the main dynamical regimes that can be explored by our formalism
(see table 5.1 for a summary). For simplicity, and as it is the most usual case, I consider in this
section that Fk = 0 and Fn = −∇Pn, where Pn is the thermal pressure. Therefore

WH ,k =
tk
ρ

(∇Pn − J × B).

Regime |Γk| Φk wk

Neutral � 1 � 1 WH ,k
Resistive − � 1 wk '

1
|B|Eb × b

Ideal MHD � 1 � 1 WH ,k//
Guiding Center ' 1 � 1 1

2WH ,k × b + 1
2WH ,k,⊥ +WH ,k//

Table 5.1: Summary the different coupling regimes for a phase k. Name of the regime and
expression of the terminal drift velocity depending on the Hall factor Γk and of Φk (− means
that the regime is valid for any value of the quantity) .

5.3.1 Neutral regime

When Γk � 1 and Φk � 1 it is easy to show that wk ' WH ,k which is exactly the expression
that one would obtain in the case of neutral grains dynamics when back-reaction is neglected
(Laibe & Price, 2014a, or see Chapter 2).

It is interesting to note that sinceWH ,k =
ts,k
ρn

(∇Pn − J × B), even neutral grains will not
preferentially drift toward pressure bumps but rather towards regions where ∇Pn = J × B.
Which can be substantially different in the case where the plasma parameter is of the order of
unity or less (e.g. see the next chapter).

5.3.2 Ideal regime

When Γk � 1 for all the charged particles, then the electric field writes E ' v × B and
ideal MHD becomes a correct approximation. In this case we expect that Φk � 1 and wk '

WH ,k// , the drift between the charged particles and the neutral gas can only occur along the field
lines. Interestingly,WH ,k// =

ts,k
ρ (∇Pn ·b)b as the current is orthogonal to the magnetic field.

Contrary to neutral grains, that drift toward ∇Pn = J×B regions, perfectly coupled magnetized
grains do drift toward pressure bumps. However, they only do so along the magnetic field lines.

5.3.3 Resistive regime

Let us now consider the resistive regime for a charged species k that has φk � 1. In this case,
wk '

1
|B|Eb × b. The resistive regime contains three sub-regimes depending on which resistive

effect dominates.

• Ambipolar regime. When |σH| � σP � σO, the ambipolar diffusion dominates over the
other resistive effects, then wk '

ηA
|B|J × b.

• Ohmic regime. If σO ∼ σP � |σH| we enter the Ohmic regime. In this regime wk '
ηO
|B|J.

• Hall regime. If the Hall effect is the dominant resistive effect then we enter the Hall
regime where wk '

ηH
|B| (J × b) × b.
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5.3.4 Guiding center regime

Another interesting regime occurs when |Γk| ' 1 and Φk � 1. In this case, we obtain wk '
1
2WH ,k × b + 1

2WH ,k,⊥ +WH ,k// . wk, although similar in norm as WH ,k does not have the
same direction as in the case of neutral grains. This regime might be of particular interest when
grains of Stk ∼ 0.01 − 0.1 also have |Γk| ' 1 as it significantly alters the dynamics of dust
species that typically decouple from the gas in the neutral case.

5.3.5 Critical grain size

A particularly interesting quantity is the maximum grain size scrit for which |Γk| > 1. Assuming
the Epstein regime

tk ≡
√
πγ

8
ρgrain,k

ρ

sgrain,k

cs
, (5.41)

the condition |Γk| > 1 is expressed as

s2
crit =

3
8

√
γ

2π
|Zcrit|e|B|
ρcs

, (5.42)

where Zcrit, the average number of charges for a grain of size scrit, need to be determined to
find scrit

2 . According to Spitzer (1941); Simpson (1978) a simple estimate of the charge of a
grains with a size scrit is

|Zcrit| '
kBTgscrit

e2c2 . (5.43)

Combining equations (5.42) and (5.43) yields

scrit '
3
8

√
γ

2π
kBTg

ec2

|B|
ρcs

, (5.44)

which can be further simplified as cs =

√
γkBTg
µgasmH

. We thus obtain

scrit '
3

8
√

2π

1
ec2

√
kbTg

µgasmH

|B|
n
, (5.45)

where n is the neutral gas number density.

5.4 Discussion

In this section, I review the critical grain size in various astrophysical objects to have a first
idea of the dynamical regime that applies to them. We note however that to clearly identify
the regime in which a grain stands, an estimate of Φk is essential although it is not as trivial as
determining scrit because it requires a precise knowledge of the charge distribution and current
intensity.

2note that in this system of units e ' 1.602 × 10−20 abC
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5.4.1 Protostellar collapse

During the protostellar collapse, a typical estimate of the magnetic field is (Li et al., 2011)

|B| ' 1.43 × 10−7 √n G. (5.46)

Considering that during the collapse µgas = 2.31 and assuming isothermality (which is valid in
low density regions) , we can estimate scrit as

scrit ' 8.8 × 10−6 cm
(

Tg

10 K

)1/2 ( n
10 cm−3

)−1/2
, (5.47)

this size is smaller than most of the grains present in the ISM, which seems to indicate that
during the protostellar collapse most grains are well described in the neutral regime. Small
sub-nanometer grains such as the Polycyclic Aromatic Hydrocarbons (PaHs) will probably
only couple to the magnetic field in low density regions (typically with n < 104 − 105 cm−3).
Ions, that have a typical size of ' 10−8 cm could potentially couple to magnetic field up to
higher densities.

I refer to Chapter 4 for more detail on the charge during the collapse with another model of
magnetic field and grain charging. The main picture is relatively unchanged with the simplified
model that I use in this chapter.

5.4.2 Protoplanetary disks

I now aim to estimate scrit in protoplanetary disks (see the next chapter for details on proto-
planetary disks). In that perspective, I consider a simple magnetic field configuration where the
magnetic field intensity is given by the β parameter such as

|B|
n
' 2
√

2π
√
µgasmH

√
γkbTg

1
√
βρ
. (5.48)

Let us now assume a disk density profile (Hayashi, 1981, see the next chapter for the
details) such as

ρ = ρ0e−
N2

z
2 , (5.49)

where ρ0 = 9 × 10−10g cm−3 is the disk density at a radius of 1 AU and Nz is the altitude in
terms on scale height (typically smaller than 5 − 6). Combining the disk equilibrium density
with equations (5.45) and (5.48) and considering γ = 1.4 and µgas = 2.38 (Bai & Stone, 2013,
e.g. as in ), we get

scrit ' 4.73 × 10−12cm
(

Tg

280 K

)
1
√
β

e
N2

z
4 , (5.50)

this length is extremely small (even compared to the size of an hydrogen atom). β being prob-
ably rarely smaller than 10−1 within less than 5 − 6 scale heights (Lesur et al., 2014), we thus
expect dust grains to behave dynamically as is they where neutral in the innermost regions of
protoplanetary disks even where the temperature is high. This is consistent with the presence
of the dead zones (and the domination of the Ohmic dissipation) in the mid-plane of protoplan-
etary disks. We note that the mid-plane density ρ0 decreases with R. In the Hayashi (1981)
model for example, ρ0 ∝ R−5/2 and Tg ∝ R−1/2. At the disk edge R ' 150 AU, at Nz = 5 and
β = 0.1, we therefore have

scrit ' 3.3 × 10−7cm, (5.51)

this is still a very small grain size, especially in the context of protoplanetary disks.
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5.4.3 Interstellar medium

Let us now focus on dust in the interstellar medium, where the density is significantly lower
than during the protostellar collapse or in protoplanetary disks. I will investigate three different
regions, i.e the warm neutral medium (WNM), the cold neutral medium (CNM) and the Giant
molecular clouds (GMC). Some key properties of these regions are

• WNM. It is also composed of atomic gas but with temperatures of T ' 104 K and
densities of ∼ 0.6 cm−3 (Draine, 2011).

• CNM. These regions are composed of atomic gas, have temperature of the order of T '
102 K and densities of ∼ 30 cm−3 (Draine, 2011).

• GMC. They are large clouds composed of molecular hydrogen and the locus of prestellar
cores. They have typical temperatures of ∼ 10 − 50 K and densities typically larger than
103 cm−3 (Draine, 2011).

These three regions are intrinsically connected. The thermal instability (Field, 1965; Parker,
1966), occuring at the boundaries of the CNM and the WNM, is one of the most common
mechanism to explain molecular cloud formation. These three environment have completely
different temperatures. Since they are low density regions and we can expect a strong coupling
between the magnetic fields and the grains. In the following, I estimate the critical grain size
in the three regions.

WNM

We now place ourselves in the typical WNM conditions, assuming a temperature between
500 K and 7000 K, a density of ∼ 0.6 cm−3, µgas = 1 and a magnetic field between 2 µG and
8 µG (Draine, 2011). We find that typically scrit ∈ [0.028, 0.1] cm, these values are even largen
than what we obtain for the CNM (see next section). They are typically much higher than the
maximum grain size expected in the diffuse ISM. This indicates that, in the WNM, all the dust
grains strongly couple to the magnetic field and quite possibly decouple with the gas. If the
gas is however coupled to the magnetic field the dust might couple to it even better than if they
were neutral as they would be in the ideal MHD drift regime (wk ' WH ,k//).

CNM

In the CNM, the temperature is typically 100 K, assuming a density of ∼ 30 cm−3 and a mag-
netic field between 2 µG and 8 µG (Draine, 2011) we find scrit ∈

[
6.3 × 10−5, 2.5 × 10−4

]
cm.

Both values are larger than the expected maximum grain size of the diffuse ISM (typically
0.1 µm Mathis et al., 1977). In the CNM, all the dust distribution might thus couple to the
magnetic field when the latter is large. In regions of low magnetic fields, the largest grains
∼ 0.1 µm might only be marginally coupled with the field.

Molecular clouds

Molecular clouds are the locus of the protostellar collapse and hence star and planet formation.
They are typically denser and colder than the CNM and WNM but less dense than collapsing re-
gions. Assuming a typical cloud density of ∼ 100 cm−3, temperatures of ∼ 10−50 K and µgas =

2.31 and magnetic fields between 2 µG and 8 µG, we obtain scrit ∈
[
3.8 × 10−6, 3.5 × 10−5

]
cm.

The bulk of the grain size distribution 3 is still coupled to the magnetic fields in molecular
3in terms of abundance and not in terms of mass
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clouds if there is no dust growth in GMC. If grains larger than a micron are already formed in
this clouds (Pagani et al., 2010), they will rather couple to the neutral gas than to the magnetic
fields although it was shown by Tricco et al. (2017) that this coupling is not perfect either and
leads to strong dust-to-gas ratio variations.

5.5 Conclusion

In this chapter, I introduced a monofluid formalism in the terminal velocity approximation use-
ful to model simultaneously several neutral and charged fluids. This formalism allows to follow
simultaneously the decoupling of charged particles with the neutral gas or with the magnetic
field under the approximation that neutral gas-charged collisions are the most frequent and that
the cumulative back-reaction of dust on the neutral gas is negligible. I proposed a solution to
extend this formalism including the back-reaction with a first-order Taylor expansion in terms
of charged particle concentration. In the near future, I aim to use this method to include the
impact of charged-charged collisions.

After a presentation of the derivation of the monofluid in section 5.2, I described the dy-
namical regimes that can be treated with this formalism in section 5.3. These regimes are:

1. The neutral regime. Whatever their charge, the grains are not coupled to the magnetic
field.

2. The ambipolar, Ohmic and Hall regimes, that are the three non-ideal MHD regimes
where the drift between the charged particles and the neutral depends on which non-
ideal effect dominates.

3. The ideal MHD regime, where all the charged particles are strongly coupled with the
magnetic fields and with the neutral gas, only a drift parallel to the magnetic field lines
remains.

4. The guiding center regime, where the charged are marginally coupled to the magnetic
field. In this regime the drift velocity is typically of the same order of magnitude as if
they were neutral but its direction is changed.

After presenting the dynamical regimes, I introduced the maximum grain size for a grains
to couple more to the magnetic field than to the neutral gas. The study of this critical grain
size in protoplanetary disks and during the protostellar collapse indicates that when the density
is high enough (typically larger than 100 cm3), the grains are more prone to behave as if they
were neutral no matter how many charges they hold. I have however shown that the smallest
grains of the size distribution might still be marginally coupled to the magnetic fields in low
density regions and that it is worth investigating their dynamics. In low density parts of the star
forming ISM such as the cold neutral medium, the warm neutral medium and giant molecular
cloud, I have shown that most grains are significantly coupled to the magnetic field. I have yet
to determine if this strong coupling with the magnetic field weakens or strengthens the coupling
between the grains and the neutral gas.
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Samwise Gamgee

”Come on, Mr. Frodo ! I can’t carry it for you, but I can carry you.”

- The Lord of the Rings (The Return of the King)

In this final chapter, I focus on evolved protoplanetary disks around T-Tauri stars. More
specifically, I investigate a possible formation mechanism for chondrules in resistive current

sheets. After drawing some of the essential context, I introduce my preliminary results and
current issues. This work is carried out in collaboration with Pr. Mordecai-Mark Mac Low.
I got the pleasure to work with him at the American Museum of Natural History (AMNH) in
New York City. This visit took place in 2018 and was allowed by the Kade Fellowship1.

6.1 Context

The dust content of the solar system originates from interstellar dust. All the dust collected
on earth is highly reprocessed either during the early solar system evolution or during the
entry in earth’s atmosphere. This is especially the case in chondrites. They are the most often
found type of meteorites (around 80% mass). In these meteorites, the chondrules represent the
20−80% the mass. They are surrounded by a matrix of fine grains that are more numerous than
chondrules. The chondrules are spherical silicate grains of 0.1 − 1 mm with a glassy texture
(Jones et al., 2005). To constrain the physical conditions at play in protoplanetary disks, it
is essential to find a common mechanism that explains chondrule formation and is able to
reproduce their abundance in the solar system.

Chondrule properties indicate that they might form during rapid heating and cooling events
called flashes (see Boss, 1996, for a short review of chondrule formation theories). The abun-
dance of chondrules is an evidence that these flashes, no matter how and where they occur, are
common enough to turn a large fraction of the dust into chondrules. Nevertheless, a chondrule
forming flash must meet at least three prerequisites. They must have extremely short timescales
(less than a few minutes, Connolly & Love, 1998), be very localized so that the chondrule can
exit them rapidly (Hubbard & Ebel, 2015) while being energetic enough to increase the grain
temperature up to ≈ 1700 − 2000 K (Lofgren & Lanier, 1990; Radomsky & Hewins, 1990;
Hewins & Connolly, 1996). Compared to the free-space cooling time of chondrule-sized ob-
jects of a few seconds, the cooling rate must be relatively slow (≈ 102 − 103 K h−1 Radomsky
& Hewins, 1990). Chondrules are most likely formed in repeated heating events which suggest
that they must experience several flashes during their heating (Barosch et al., 2020). Chon-
drule formation theories must also be able to reproduce their narrow range of size (0.1− 1 mm,
Jacquet, 2014; Friedrich et al., 2015), their diversity of composition and must explain the pres-
ence of the matrix. The evidence for complementarity suggests a reservoir of common origin
for chondrules and matrix. Nevertheless, the matrix grains are clearly different from chon-
drules in term of composition and size. They contain a substantial abundance of volatiles that
would evaporate at temperatures higher than 500 − 800 K, which indicates that they do not ex-
perience any dramatic heating event. In addition, the matrix is mostly composed of fine grains
(less than . 5µm). Whether it is a by-product of chondrule formation (Huss et al., 2005) or a
population that experiences a totally different evolution, the question of the matrix formation
is intrinsically related to chondrule formation.

Magnetic fields in protoplanetary disks have been widely studied as a possible source of
angular momentum transport via the so-called magnetorotational instability (hereafter MRI,

1I was granted a total of 9,500 $ by the Richard Gilder Graduate School for a three month stay
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Balbus & Hawley, 1991; Stone et al., 1996; Sano et al., 2000, among others). As disks are
in fact poorly ionised, the importance of the MRI has later been downward revised as mid-
plane dead zones have been theorized (Gammie, 1996; Fleming et al., 2000). Some studies
have shown that it might even be suppressed entirely in disks, with the angular momentum
carried away instead by magnetocentrifugal winds (Bai & Stone, 2013; Lesur et al., 2014).
An imperfect coupling between the neutral and the magnetic field however might give birth
to interesting dissipative structures (Brandenburg & Zweibel, 1994). An interesting theory of
chondrule formation states that it could happen it in narrow current sheets (Joung et al., 2004).
These dissipative structures are believed to occur because of the finite electric conductivity
(Parker, 1972, 1994; Joung et al., 2004). The resistive heating might be efficient enough in
current sheets so that dust grains reach their melting temperatures (McNally et al., 2014). In
addition, it was shown by Hubbard et al. (2012), that the increase of the temperature could
theoretically reduce the sheets spatial extension making them a favoured place for chondrule
formation. Current sheet formation has been investigated in the unstratified shearing box mod-
els of McNally et al. (2014) with Ohmic dissipation only and observed in global (Gressel et al.,
2015) simulations of protoplanetary disks as well. In parallel, recent studies have started to
investigate dust dynamics in resistive disks (Riols & Lesur, 2018; Riols et al., 2020) however
the dust behaviour near the current sheets and in presence of dissipation essentially remains
unexplored.

In this chapter, I investigate the theory of chondrule formation in current sheet simulations
with the help of both unstratified and stratified shearing box simulations including the dynamics
of multiple neutral dust species. After a recall of the theoretical framework, I present the early
results of my simulations and the perspectives to improve my models.

6.2 Theoretical framework

In this section, I review the essential properties of resistive dusty protoplanetary disks.

6.2.1 NdustyNIMHD for protoplanetary disks

Around T-Tauri stars, the disk mass is much smaller than the mass of the star, it is usual to
neglect the self gravity of the disk. In this context the equations of MHD with multiple neutral
dust grains species write as

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0,

∂ρk

∂t
+ ∇ ·

[
ρk (v + wk)

]
= 0, ∀k ∈ [1,N] ,

∂ρv
∂t

+ ∇ ·

[(
Pg +

B2

2

)
I + ρ(v ⊗ v) − B ⊗ B

]
= −ρg,

∂B
∂t
− ∇ ×

(v − N∑
k=1

ρk

ρ − ρk
wk) × B

 = −∇ × Eb,

∇ ·B = 0, (6.1)

where I still model the dust differential velocity as

wk =

 ρ

ρ − ρk
ts,k −

N∑
l=1

ρl

ρ − ρl
ts,l

 ∇Pg − (∇ × B) × B
ρ

. (6.2)
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This set of equations is essentially the same as in Chapter 4 but without self-gravity. The
gravitational acceleration is g is now simply given by

g = −
GM∗
|r − r∗|3

(r − r∗) (6.3)

where M∗ is the mass of the central star and r∗ is its position. At this point, let us recall the
definition of the plasma parameter

β ≡
2Pg

|B|2
. (6.4)

6.2.2 Thin-disk approximation

Thin disk approximation

R

h = ( h
R ) R

D = R2(1 + (H
R )

2
) ≈ R

gZ = − 𝒢M*
D2 sin α = − 𝒢M*z

D3 ≈ − 𝒢M*
R3 z = − Ω2kepz

Simplified gravity force 

α

Figure 6.1: Cartoon illustration of an edge-on cut of a protoplanetary disk explaining the prin-
ciple of the thin-disk approximation. As H/R � 1, the distance to the star can be approximated
by the cylindrical radius. As a consequence, the gravitational force is simplified and an analyt-
ical solution for the hydrostatic equilibrium can be found.

We now place ourselves in a cylindrical set of coordinates where R is the cylindrical radius,
z is the altitude and θ is the azimuthal angle. At equilibrium and neglecting magnetic fields or
dust, we find

∂Pg

∂z
= ρggZ , (6.5)

∂Pg

∂R
= ρggR +

ρgv2
θ

R
, (6.6)
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If we assume that the protoplanetary disk is vertically thin, which constitutes the thin disk
approximation, then the gravity can be simplified (see figure 6.1 for the justification)

g ≡ (gR, 0, gZ) =
(
−Ω2

kepz, 0,−Ω2
kepR

)
, (6.7)

where Ωkep ≡

√
GM∗
R3 is the Keplerian orbital velocity.

Vertical equilibrium

At first, we place ourselves at a radius R and focus on the vertical equilibrium. With the
simplified gravitational acceleration, equation (6.5) becomes

∂Pg

∂z
= ρggZ . (6.8)

As the disk is very thin z � R, it is reasonable to assume vertical isothermality (∂cs
∂z = 0, cs

being the gas sound speed). We can re-write equation (6.8) for a perfect gas as

1
ρg

∂ρg

∂z
= −

z
H2 , (6.9)

H, the disk scale-height, is defined as

H =
cs

Ωkep
. (6.10)

Solving equation (6.8) yields

ρg(R, z) = ρg,0 (R) e−
z2

2H2 , (6.11)

where ρg,0 (R), the mid-plane density, is an integration constant for z that only depends on the
cylindrical radius. The mid-plane density is a free-function of R modeled as

ρg,0 (R) = ρ0

(
R
R0

)−n

, (6.12)

where ρ0, R0 and n can be chosen to best reproduce observed disks.

Radial equilibrium

If we now assume that the temperature also has as a power law radial dependency such as

Tg = Tg,0

(
R
R0

)−α
, (6.13)

then

cs = cs,0

(
R
R0

)−α/2
, (6.14)

and

1
ρg

∂c2
sρg

∂R
= −

(n + α) c2
s

R
. (6.15)
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Which yields

vθ = RΩkep

√
1 − (n + α)

(H
R

)2
. (6.16)

In thin disks, the gas is almost Keplerian with a small deviation of the order of H/R. If H/R
is large then the pressure force starts to act on the rotation velocity and this deviation must be
considered. To simplify the model, I now assume that vθ = RΩkep.

Thin disk model

In summary,thin disks equilibrium can be approximated as

ρg(R, z) = ρ0

(
R
R0

)−n

e−
z2

2H2

vθ(R, z) = RΩkep. (6.17)

6.2.3 Shearing box approximation

≈
≈ =

Shearing box approximation

Co-rotating frame

ex

ez

eyer

ez

eθ

Figure 6.2: Cartoon illustration of an edge-on cut of a protoplanetary disk explaining the prin-
ciple of the shearing box approximation. In the shearing box, we neglect both the curvature
terms and the radial dependency of the hydrodynamical quantities.

Modeling the protoplanetary disk as a whole is computationally expensive, especially when
attempting to resolve the current sheets. Fortunately, a simple approximation can be made
when considering only a small part of the disk. In this so-called vertically stratified shearing
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box approximation (VSBA, Hawley et al., 1995), we only model a small volume of the disk at
a radius R0 called the shearing box, with a length L0 � R0 typically of a few H and in rotation
at the Keplerian velocity Ωkep|R0 . We then neglect any radial variations of the quantities within
the shearing box (as shown is the cartoon illustration of figure 6.2). Neglecting locally the
curvature of the disk (Hill, 1878), we can approximate the shearing box as a Cartesian box
where ex = er and ey ≈ eθ. In the Keplerian case Ω ∝ R−3/2 hence

∂Ωkep

∂R
|R0 = −

3
2

Ωkep|R0

R0
, (6.18)

for simplicity we now write Ωkep|R0 ≡ Ω. In the co-rotating frame, and in absence of any
perturbation, the disk material flows at the shear velocity vshear in the x direction. It is expressed
as

vshear = −q
x

R0
Ω. (6.19)

Out of equilibrium, the total momentum conservation equation becomes (Hawley et al., 1995)

∂ρv
∂t

+ ∇ ·

[
ρv ⊗ v + (Pg +

B2

2
)I + B ⊗ B

]
= −2ρΩ × v + ρg, (6.20)

where the gravitational acceleration g is given by g = −2qΩ2x−Ω2z. The term −2ρqΩ2x repre-
sents the centrifugal pseudo-force and −2ρΩ×v is the Coriolis force. The vertical gravitational
acceleration, −Ω2z, is often neglected in what is called unstratified shearing boxes.

6.2.4 Ionization fraction

Protoplanetary disks are poorly ionized (Fromang et al., 2002; Lesur et al., 2014). The electron
fraction xe (equal to the ionization fraction in the dust free case) needs to be determined in
order to quantify the impact of the non-ideal resistivities on the disk evolution (essentially on
the gas and dust motions). The ionization fraction is defined as

xe ≡
ne

nn
, (6.21)

where ne and nn are number densities of the electrons and the neutrals, respectively. The ion-
ization model follows Lesur et al. (2014) and Béthune et al. (2017). In a metal free environment
Gammie (1996) and Fromang et al. (2002) have shown that

xe '

√
ζ

krnn
, (6.22)

where ζ is the ionization rate and kr is the dissociative recombination rate coefficient of molec-
ular ions that is estimated as (Leu et al., 1973)

kr ' 3 × 10−6T−1/2
g cm3s−1. (6.23)

In addition, as in Lesur et al. (2014), I also consider the ionization from far-ultraviolet (FUV)
radiation xFUV = 2 × 10−5e−(Σ/0.03 g cm−2)4

such as

xe '

√
ζ

krnn
+ xFUV. (6.24)

To compute xe, one must evaluate the ionization rate ζ. As in Lesur et al. (2014)

ζ = ζcr + ζrad + ζx−rays, (6.25)

where
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Figure 6.3: Elsasser number (top) and ioniza-
tion fraction (bottom) profiles of the stratified
models at R = 1 AU (solid lines) and R = 5 AU
(dashed lines).

• The ionization rate by the cosmic rays is given by ζcr = ζcr,0e−(Σ/96 gcm−2) where ζcr,0 =

10−16 s−1 (see for example Umebayashi & Nakano, 1981).

• The radioactive decay of 26 Al is given by ζrad = 10−19 s−1 (Umebayashi & Nakano,
2009).

• The ionization from x-ray photons at 3 kev (Igea & Glassgold, 1999; Bai & Goodman,
2009) is given by

ζx−rays

Lx,29

( R
1AU

)2.2
= ζ1

(
e−

N+

1.5×1021cm−2
0.4

+ e−
N−

1.5×1021cm−2
0.4

)
+ ζ2

(
e−

N+

7×1023cm−2
0.65

+ e−
N−

7×1023cm−2
0.65

)
,

where Lx,29 =
Lx

1029erg , Lx being the x-ray luminosity of the star. As in Béthune et al.

(2017), I consider the case Lx = 1030erg s−1 which is typical of T-Tauri stars. N+ and N−
are the number column density above and bellow the considered point. Finally, we have
ζ1 = 6 × 10−12 s−1 and ζ2 = 10−15 s−1. The first two terms represent the attenuation of
x-rays by absorption and the two last terms represent the contribution from scattering.

This estimate of the ionization fraction, although simplified, considers most of the effects
at play in protoplanetary disk. It however lacks an essential ingredient which is the dust. It
could play an essential role in the ionization level by capturing the free-electrons becoming the
main charge carriers in the disk (Marchand et al., 2016).
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6.2.5 Resistivities

The ionization fraction allows us to directly infer the value of the resistivities assuming only
one ion species (potassium K+ of mass mi = 39 mH, Balbus & Terquem, 2001) we have

ηO =
c2me

4πe2

1
xe
〈σv〉e ,

ηA =
|B|2

γiρiρ
. (6.26)

where 〈σv〉e = 8.28 × 10−9
√

Tg
100 K cm3s−1 is the electron-neutral collision rate (Draine et al.,

1983) and γi =
〈σv〉i

µgmH+mi
where the ion-neutral collision rate (Draine, 2011), writes as 〈σv〉i =

1.3 × 10−9cm3s−1. As a first step, I do not consider yet any effect of the Hall resistivity which
constitutes one of the caveats of this study.

At this stage it is interesting to define the ambipolar and Ohmic Elsasser numbers Am and
Λ, that quantify the relative importance of the resistivity and the Alfven wave propagation and
are defined as

Am ≡
v2

A

ηAΩ
,

Λ ≡
v2

A

ηOΩ
, (6.27)

where vA ≡ |B|/
√
ρ is still the Alfven speed.

Figure 6.3 shows the Elsasser number (top) and ionization fraction (bottom) profiles of the
stratified models at R = 1 AU (solid lines) and R = 5 AU (dashed lines). As can be seen, the
impact resistivities is expected to be significant in the inner 2 to 4 scale heights above the mid-
plane. Typically Ohmic dissipation is dominant in the close to the mid-plane while ambipolar
diffusion takes over at around 2−3H. At these scale heights, the Elsasser numbers are typically
of the order of 1-100.

6.2.6 Resistive heating

The Ohmic and ambipolar resistivities both introduce a heating term in the energy equation,
ΛO and ΛA respectively (see chapter 5). These two heating terms can be written as

ΛO ≡ ηO||J||2,

ΛA ≡ ηA
||J × B||2

||B||2
. (6.28)

In this preliminary study, I do not introduce these terms in the energy equation and assume
isothermality because including them would require an accurate treatment of the cooling terms
as well.

6.2.7 Useful quantities

Several quantities need to be defined in order to properly analyze magnetized disks. First let us
define the spatial horizontal average of any quantity A as

〈A〉S =
1
L2

x
Adxdy, (6.29)
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Figure 6.4: Illustration of a current
sheet near a magnetic null (black
dotted line). The magnetic field
lines are displayed in blue, while the
current direction is given by the red
symbols.

J × B
B

J

J × B

where L is the box size. I also define the time average as

〈A〉T =
1

T2 − T1

∫
Adt, (6.30)

where T1 is the time at which the average starts and T2 the time at which it ends, both are
specified in the text. Naturally the horizontal space-time average then is defined as

〈A〉S,T =
1

T2 − T1

1
L2

y
Adxdydt, (6.31)

There are two source of angular momentum transport in my models.

• the Maxwell stress tensor, defined as M = −B⊗B. It quantifies the amount of momentum
transported by the magnetic field.

• the Reynolds stress tensor, defined as R = ρv⊗ v. It quantifies the amount of momentum
transported by the fluid motions.

Using these two quantities, we can define the effective radial transport parameter (Shakura &
Sunyaev, 1976)

α =

∫ (〈
Mxy

〉
S,T

+
〈
Rxy

〉
S,T

)
dz∫

Pgdz
, (6.32)

it quantifies the efficiency of angular momentum transport in the disk is typically smaller than
1.

6.2.8 Current sheets generation

To understand the basic principle of current sheet formation, let us place ourselves in a simple
one dimensional case as in Joung et al. (2004) with a magnetic field in the y direction and
varying with x. This simple configuration is illustrated in figure 6.4. Similarly to Joung et al.
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(2004), I assume that the resistive part of the induction equation rapidly dominates over the
∇ × (v × B) term and that the Ohmic resistivity is locally uniform. When a steady state is
reached, the induction equation of By simplifies as

(B2
0 + B2

y)
d2By

dx2 + 2By

(
dBy

dx

)2

= 0, (6.33)

where B0 =
√
ηOγiρiρ. The solution of this equation satisfies the condition

1
3

B3
y + B2

0By = Cx, (6.34)

where C is an integration constant. It can be determined by estimating the value of the magnetic
field at x = 1

2λMRI, λMRI = 2π√
3

(vA/Ω) being the distance between two magnetic nulls (or
current sheets), but also the wavelength of the most MRI unstable mode (Balbus & Hawley,
1991).

Naturally, we expect the magnetic field to be close to its maximum value Bmax at x = 1
2λMRI,

hence we have

C =
2Bmax(B2

0 + 1
3 B2

max)
λMRI

, (6.35)

where Bmax is inferred from the remnant magnetic field in chondrites which is typically a few
Gauss (Desch & Connolly, 2002; Fu et al., 2014). When B2

0 �
1
3 B2

y , this model retrieves the
expected behavior of ideal where By ∝ x1/3 or Jz ∝ x−2/3 (Brandenburg & Zweibel, 1994). We
note that here the peak of the current is obtained at x = 0. As stated in Joung et al. (2004), we
can define the typical current sheet thickness LCS as the value of x where there is a transition
between the resistive and ideal regime, i.e where B2

0 ∼
1
3 B2

y . This yields

LCS ≈
2
√

3B3
0

C
. (6.36)

With a simplified resistivity profile Joung et al. (2004) obtained

LCS ∼ 1.5 × 105
( n
1013cm3

) ( Tg

1000K

) ( B
1G

) (Bmax

3G

)−3 ( R
3 AU

)3/2
km. (6.37)

6.3 Numerical Model

In this work, I still take advantage of my implementation of the dust dynamics in the RAMSES
code (see Chapter 3 for more details). My new tool is indeed well suited to study dust dy-
namics in the context of protoplanetary disks. I present, in this chapter, two types of shearing
box models, the unstratified and stratified models. In this manuscript, I emphasize more on
the unstratified models. I also present the setup of the stratified models that are described in
sectio 6.5. Although they are less advanced, they represent the next goal of this study and its
interesting to discuss them.

6.3.1 Numerical scheme

In all the models, I integrate equations (6.1) replacing the momentum equation by equa-
tion (6.20). I use the MUSCL scheme of RAMSES with the HLLD Riemann solver for the
barycenter part of the MHD equations and for the induction equation (Miyoshi & Kusano,
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2005). For stability and similarly to Fromang et al. (2013), the solver automatically switches
to a Lax–Friedrichs solver where β < 10−3. As in Fromang et al. (2013) and again for stability
issues, I use the multidimensional slope limiter of Suresh (2000) for the barycenter part of the
conservation equations. Similarly to Colling et al. (2018), I use an operator-splitting and an im-
plicit Crank-Nicholson scheme to take into account the shear source terms in equation (6.20)
without adding any constrain on the scheme stability.

For the dust source term, I use the upwind MUSCL solver that I implemented in RAMSES
and I use the MINMOD slope limiter (see Chapter 2 for the details on the implementation). I
found that using this slope limiter for the differential dust advection source term is significantly
faster as it does not require the computation of any transverse derivatives.

6.3.2 Regularization of the scheme

When regions of very small density form in a model, they can lead to very large Alfven veloc-
ities and hence very small timesteps. When this happens, to evolve significantly the model in a
reasonable time is impossible. To circumvent this issue, I impose an adaptive density floor that
prevents β to be smaller than the value βmin = 10−4. In other words, I impose

ρ = max
(
ρ, βmin

|B|2

2c2
s

)
. (6.38)

I noticed that this floor is enough to get tractable timesteps and is actually less restrictive
than density floors used in the previous studies of Bai & Stone (2013); Bai (2013) and simpler
than implementing a source term in the density as in Fromang et al. (2013). I point out that this
method is strictly equivalent to imposing a maximum Alfvenic Mach number.

In low density regions, the terminal velocity approximation no longer holds. I impose a
maximum dust differential velocity of 5 km s−1 everywhere in the box to avoid unphysically
large dust velocities or new constraint on the timestep. This value is typically only reached in
regions of very low densities. For safety, I also enforce the maximum Stokes number to be 0.3
by setting

ts,k = min
(
ts,k,

0.3
Ω

)
. (6.39)

This last regularization is similar to what was used in Ballabio et al. (2018).

6.3.3 Boundary conditions

Radial boundaries

In shearing box simulations, the shear must be imposed at the ghost cells of the radial bound-
aries. I adapted the previous implementation of the shearing box in RAMSES by Colling et al.
(2018) used in galactic disk simulations to Keplerian rotation. At the upper boundary, the shear
requires replacement of the value of the conservative variables in the ghost cell (at the exception
of the magnetic field and the radial velocity) by the value in the lower domain shifted by −qΩ L

2 t
(modulo half the box size). Similarly, the hydrodynamical variables of the lower boundary are
estimated by applying the shear qΩ L

2 t on the upper domain. In addition, the shear is added to
the radial velocity so that vr,ghost = vr + qΩ L

2 . At each timestep, the length at which ghost zones
are displaced is not an integer multiple of the grid size, hence a linear interpolation between
two adjacent cells is required to get the exact value of the shear at the ghost zone. Figure 6.5
shows a simplified cartoon illustration of the shearing box radial boundary conditions for the
hydrodynamical variable when ghost cells are exactly moved one cell size during a timestep.
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Figure 6.5: Cartoon illustration of the shearing
boundary conditions (inspired from Colling
et al., 2018). Values in the ghost zone are ob-
tained by the advection of the variables of the
corresponding cells at the opposite side of the
domain.

The magnetic field is treated differently because one must ensure the preservation of the
solenoidal constrain. I first impose the continuity of the tangential magnetic fields (By and
Bz) by setting a zero-gradient between the ghost zone and the extremity of the computational
domain. Then, I also enforce the continuity of Bx in the face of the ghost cell neighboring the
domain by copying its value from the last cell of the computational domain. Finally the value
of Bx in the remaining face of the ghost cell is deduced by enforcing a zero divergence in the
cell.

Azimuthal and vertical boundaries

In all the models, azimuthal boundaries are treated as simple periodic boundaries. For the
unstratified models, the vertical boundaries are also periodic. They however require a special
treatment in the stratified case. To avoid any odd symmetry in the wind solution (Bai & Stone,
2013), to gain in resolution at a cheap cost and to partly circumvent the cubical box of RAMSES, I
model only the upper half of the disk, hence the lower vertical boundary is treated as a reflective
boundary, which is similar to a zero gradient boundary but with a flip of the vertical component
of the velocity. The upper boundary is a zero-gradient boundary where I forbid any inflow by
imposing a positive vertical component of the velocity. As for the shearing boundaries, the
magnetic fields also require a special treatment. At the lower boundary, the magnetic field is
treated exactly as for the shear boundary. At the upper boundary, I impose the continuity of
the vertical component of the magnetic field and set the horizontal component to zero as in
previous studies (Fromang et al., 2013; Bai & Stone, 2013; Lesur et al., 2014).

6.3.4 Initial conditions

Equilibrium

• Unstratified models. I impose a constant initial density and a temperature of 300K. The
initial magnetic field is vertical with β0 = 750. In addition, the effect of vertical gravity is
neglected. Although the vertical gravity is neglected, the Coriolis and Centrifugal force
are kept. These models have a box length of one scale height, i.e 0.05 AU as all the
unstratified models are computed at R0 = 1 AU. The models are all isothermal, however
future models will explore the impact of heating and cooling.
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• Stratified models. The disk equilibrium is computed according to the Hayashi (1981)
model where the initial column density and temperatures are given by

Σ = Σ0

(
R
R0

)−3/2

Tg = Tg,0

(
R
R0

)−1/2

. (6.40)

As in Hayashi (1981), Σ0 = 1700 g cm−2, Tg,0 = 280 K and R0 = 1 AU. The initial
density ρ is determined by equation (6.17) where

ρ =
Σ

2πRH
e−

z2

2H2 , (6.41)

The initial magnetic field is vertical with mid-plane value for β0 of 105. During the
disk evolution, a magneto-centrifugal wind is quickly triggered. As there is no way for
accretion to proceed in local disk simulation, the mass of the box decreases significantly
if one does not replenish it as it would naturally occur in a global accretion disk. To
mimic the steady state implied by the replenishment of the disk, I multiply the density
by an uniform factor at each timestep to ensure the total mass conservation (Ogilvie,
2012)2.

Dust

In all the runs, I consider three dust species of size 10 µm,100 µm and 1 mm with initial dust-
to-gas ratios of 1/3%. I choose not to explore the behavior of grains smaller than a micron
because they are probably strongly coupled with the gas (as 10 µm grains). All the dust species
have an intrinsic grain density of 3 g cm−3. In this model, I did not considered the Kwok
correction of the stopping time as the gas soundspeed is significantly higher than during the
first protostellar collapse.

Resitivities

• Unstratified models The initial ambipolar and Ohmic resistivity are initially uniform
and imposed by setting the value of the Elsasser number. Through the run, the Ohmic
resistivity stays constant. The ambipolar resistivity however varies as it scales as ∝ |B2|.
To avoid very small timesteps, I cap the value of the resistivies by the value 10ΩH2

as Lesur et al. (2014). This safety threshold has not yet been reached in the stratified
models.

• Stratified models The ambipolar and Ohmic resistivities are set according to the model
presented in sections 6.2.4 and 6.2.5. For simplicity, the column density used to get the
ionization profile is considered constant and matches the initial conditions during the run.
I indeed assume that it does not vary significantly during the evolution of the models. I
aim to reproduce the strong ionization in high altitudes where the vertical isothermal
approximation breaks down (Aresu et al., 2011). I therefore multiply the resistivity by
a factor e−(xe/10−8) as in Béthune et al. (2017). I still cap the values of the resistivity to
10ΩH2 to avoid very small timesteps.

2I do not do this for unstratifed runs since they use periodic conditions at z = ±L/2 and mass is better conserved
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6.4 Results

In this section, I present some of the preliminary results in the unstratified case. I briefly discuss
the stratified models in section 6.5.

6.4.1 Models

The naming of the models follows simple rules. Each unstratified model name starts with the
label unstr while stratified model names start with str. When either the Ohmic dissipation of
the ampibolar diffusion is activated, the letter O and A are included in the name respectively.
For the unstratified models the number following O and A refers to the initial value of the
Elsasser number of the Ohmic dissipation and ambipolar diffusion. For the stratified models
no Elsasser number is specified because the resistivity is computed according to the model
presented above. If a non-ideal effect is not activated then its corresponding letter is absent in
the model name. The initial mixture density is specified by the number after the letter d. For
the unstratified models, it refers to the density according to ρ0 = 10−dg cm−3, while, for the
stratified models, it refers to the column density such as Σ0 = d g cm−2 . Finally the radius at
which the model is computed is given after the letter r.

I show in table 6.1 the main properties of each model including their name, the presence
of stratification, the box size, the radial distance from the star, information on which non-ideal
effect is considered, the initial density (of the mid-plane for stratified runs), α and the current
final time of the model tend expressed in units of Ω−1. In addition, I provide the resolution and
the initial plasma parameter β. In the future, I will run these models further in time until they
all reach at least t = 100 Ω−1 in the unstratified case and t = 1000 Ω−1 in the stratified case.

6.4.2 Fiducial run

Figure 6.6: Edge-on slices (x-z cuts) of the beta plasma (left) and the current (right) at t = 5
years (∼ 31Ω−1) for the unstr-O10A10d11r1 model.

In this section, I introduce my fiducial model unstr-O10A10d11r1 which is an unstratified
model at R = 1 AU. In this model, both the ambipolar diffusion and the Ohmic dissipation are
activated. The ambipolar and Ohmic initial Elsasser numbers are both set equal to 10.

Figure 6.6 shows a slice of the β plasma (left) and the current (right) at t = 5 years which
corresponds approximately to ∼ 31Ω−1. As can be seen, some MRI turbulence has developed
in this model. There are strong local variations of β ranging between ∼ 0.05 and ∼ 1000. I
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Figure 6.7: Edge-on slices (x-z cuts) of the dust ratio at t = 5 years (∼ 31Ω−1) for the
unstr-O10A10d11r1 model. The dust grain size increases from left to right. The unique
colorbar has been chosen to display at best the dust ratio variations for the millimeter grains.

Figure 6.8: Histogram of the dust ratio ε of the 10 µm (left), 100 µm (middle) and 1 mm grains
(right) as a function of the current ||J|| at t = 5 years for the unstr-O10A10d11r1 model. The
colors represent the averaged total density (the colorbar is log-scaled).

verified, by looking at parallel slices, that the complex structures in the current are made of
sheets rather than filaments although they might re-organize themselves after a longer integra-
tion time. These sheets have a typical width of ≈ 10−3 AU ≈ 1.5 × 105 km which is about the
same order of magnitude as our previous estimate but it also of the order of 4∆x. We can thus
wonder if the current structures are resolved yet. I am currently running the same model with
twice the resolution to confirm this.

In figure 6.7, I show a slice of the dust ratio for the 10 µm (left), 100 µm (middle) and 1 mm
grains (right) at t = 5 years. The colorbar of these three slices is unique and aims to display at
best the variation of dust ratio of the 1 mm grains. As can be seen, these grains experience a
strong dynamical sorting. Their dust ratio indeed increases up to two order of magnitude in a
significant fraction of the volume. Smaller 100 µm grains also experience significant, although
less important, dust ratio variations (up to an order of magnitude). The dust ratio variations
of 10 µm are much smaller (about ±10% at most). Dust grains tend to be more depleted in
current maxima. This is actually not unexpected, if we consider a magnetically dominated
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Figure 6.9: Histogram of the dust ratio ε of the 10 µm (left), 100 µm (middle) and 1 mm
grains (right) as a function ambipolar heating source ΛA term at t t = 5 years for the
unstr-O10A10d11r1 model. The colors represent the integrated total mass (the colorbar is
log-scaled).

plasma (β < 1), the differential dust velocity can be approximated as wk ≈ −ts,k J×B
ρ , and dust

thus tends to be repelled from current sheets (see figure 6.4 for the structure of J×B in current
sheets). This correlation between strong currents and low dust ratio is clearly visible in figure
6.8 that shows the histogram of the dust ratio as a function of the current for the three dust
species. We note, however, that a significant proportion of the dust is still observed in high
current regions.

The heating source term ΛA = ηA
||J×B||2
||B||2 due to ambipolar diffusion dominates strongly

over the Ohmic source term ηO||J||2 in this model. The ambipolar term ||J×B||2
||B||2 does not have

the same morphology as ||J||2. The strongly heated regions are thus not necessarily where the
peaks of the current sheets are. In figure 6.9, I display the histogram of the dust ratios as a
function of ΛA, the color represents the integrated mass. In the right panel, we see that the bulk
of the mass for the millimeter dust grains resides in regions of moderate heating although large
dust ratio can be noted in a wide range of ΛA. As explained earlier, the dust ratio variations
of small 10 µm grains are much less important. There is no significant preferential sorting of
these grains.

6.4.3 Impact of the resistivity

Figure 6.10: Same as figure 6.6 for the unstr-O1A1d11r1 model.
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Figure 6.11: Same as figure 6.8 for the unstr-d11r1 model.

Figure 6.12: Same as figure 6.7 for the unstr-O1A1d11r1 model. The colormap is set to match
the one in figure 6.7

Figure 6.13: Same as figure 6.9 but for the unstr-O1A1d11r1 model.

I now explore the impact of resistivity with two additional models, unstr-O1A1d11r1 and
unstr-d11r1. In the first model, the two Elsasser numbers are set to one, and the second model
is computed with ideal mhd.
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Figure 6.10 and 6.11 show slices of the β index (left) and the current (right) at t = 5 years
for unstr-O1A1d11r1 and unstr-d11r1, respectively. As can be seen, in both model similar
current sheets structures form as in the fiducial mode. In the case of unstr-O1A1d11r1, these
sheets are wider than for the fiducial case with a typical size of ∼ 2 × 10−3 AU. A widening
of the current structures is expecting with an increasing resistivity. As the ambipolar length
increases, the magnetic field lines are rearranged over larger scales. In figure 6.11, that shows
the ideal case, we observe, on the contrary, a sharpening of the current structure but also an
increased number of strong current sheets. We should however keep in mind that, in the ideal
case, the current structures are non-dissipative. The magnetic field can however generate high
temperatures because the MRI turbulence compresses the gas. However, as stated in McNally
et al. (2013), the regions of strong compression might be too short lived to consistently generate
enough heat to form chondrules.

Figure 6.12 shows a slice of the dust ratio for the 10 µm (left), 100 µm (middle) and
1 mm grains (right) at t = 5 years for the unstr-O1A1d1r1 model. We observe local varia-
tions of the dust ratio for the 100 µm and 1 mm grains of the same order of magnitude as in
unstr-O10A10d11r1, however the regions of high dust ratio are wider in this model because
the current sheets are also wider. In this model, we see even better that the dust tends to migrate
toward regions of small current. However, as explained earlier these regions are not necessarily
regions of low dissipation by ambipolar diffusion. As can be seen in figure 6.13, that shows
the histograms of the dust ratio for each dust species as a function of ΛA, a significant fraction
of the regions of high ambipolar heating are actually significantly enriched in 1 mm grains.
Smaller 10 µm grains are still very coupled everywhere.

6.4.4 Impact of the density

Figure 6.14: Same as figure 6.6 for the unstr-O10A10d10r1 model.

As the dust drift velocity scales as ∝ 1
ρ2 , it is essential to study the impact of the initial den-

sity on the dust ratio evolution near current sheets. To do this, I have run the unstr-O10A10d10r1
model, which is the same model as the fiducial, but with an initial density of 10−10g cm−3.

As can be seen in figure 6.14, that shows again slices of the β index (left) and the current
(right) at t = 5 years for unstr-O10A10d10r1. Sheet-like regions of high current still form at
a higher density. In fact, the peak of current measured in this model is actually higher than in
the fiducial model. The dust however concentrates less in this model, as was expected. Figure
6.15 shows the slice of the dust ratio for the 10 µm (left), 100 µm (middle) and 1 mm grains
(right) at t = 5 years for this model. The colormap is still set to match the one from my
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Figure 6.15: Same as figure 6.7 for the unstr-O10A10d10r1 model. The colormap is set to
match the one in figure 6.7

fiducial model. We do observe less variations of dust ratio in this model than in the fiducial
one, however they are still significant. In particular, there are local increases of dust ratio of up
to one order of magnitude near current sheets for the millimeter grains. This increase is caused
by a strong depletion of grains in the peak of the current sheets. Note that even if the increase
of dust ratio for the millimeter grain is one order of magnitude smaller than in my fiducial,
the peak millimeter dust densities of the two models are comparable since the initial mixture
density of unstr-O10A10d10r1 is ten times higher. In summary, the physical conditions in
unstr-O10A10d10r1 might be as favorable as in unstr-O10A10d11r1 to form millimeter size
chondrules.

6.5 Future work and conclusion

6.5.1 Heating and cooling

All the models here were computed in the isothermal approximation. My first goal for improve-
ment is to include the resistive heating terms in order to assert that it can generate localized hot
spots of temperature & 1000 K. I have already run preliminary models with the ambipolar
and ohmic heating in the setup and an exponential orbital cooling term to mimic the impact of
radiation. This simple prescription for the cooling led to very high temperatures of & 5000 K.

In order to accurately describe the thermal evolution, I will first include the thermal con-
duction flux in the energy equation. This term is already implemented in RAMSES and should
be relatively straightforward to include. Later, I aim to better estimate the cooling source term
in the energy equation by using FUV thermochemical models similarly to Gressel et al. (2020).

6.5.2 Lagrangian dust evolution

It is not straightforward to determine the thermal history of dust grains with an Eulerian dust
solver. In order to retrieve it, future models will be computed with Monte-Carlo tracer particles
(Cadiou et al., 2019) that I recently coupled with my dust dynamics solver. It will be used to
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• follow the temperature of dust grains

• follow their interaction with current sheets

• compute the chondrule mass formation rate.

6.5.3 Stratifed local and global models

Figure 6.16: Same as figure 6.6 for the str-OAd1700r1 model at t = 60 yr (∼ 375Ω−1). In this
case 0.05 AU is also the disk scale height.

Figure 6.17: Same as figure 6.7 for the str-OAd1700r1 model at t = 60 yr (∼ 375Ω−1).
The colormap is set to match the one in figure 6.7. The squares represents the unstrati-
fied boxes and are placed in the regions when the physical conditions are roughly similar to
unstr-O10A10d11r1 and unstr-O1A1d11r1 (for the red square) and unstr-O10A10d10r1
and unstr-O1A1d10r1 (for the blue square).

The long term goal of this study is to investigate chondrule formation in global disk models
that include the radial dependency of the disk profile. As a first step, I now consider the vertical
stratification. The two main objectives of including stratification are
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(a) str-OAd1700r1 model (b) str-OAd1700r5 model

Figure 6.18: Averaged dust ratio profile for the two stratified runs

• to determine if large dust grains are present far above the mid-plane where the current
sheets are believed to form;

• to confirm that current sheets do form even when stratification is included.

My fiducial stratified model is str-OAd1700r1. The set of parameters used for this model
is described in table 6.1. In short, it is a model computed at a radial distance from the star of
1 AU that includes both ambipolar diffusion and Ohmic dissipation. Figure 6.16 show slices
of the β plasma (left) and the current (right) at t = 60 years for str-OAd1700r1. We observe a
relatively dead zone near the disk mid plane (z < H), although the mid-plane β is significantly
smaller than expected from this model (that is very similar to 1-OA-5 in Lesur et al., 2014, for
example). I also note that the value of α measured in str-OAd1700r1 is 6.3 × 10−3, which is
higher that what is measured by Lesur et al. (2014) or Bai & Stone (2013) by almost one order
of magnitude. In other words, the angular momentum transport is likely to be too efficient and
the mid-plane magnetic field is likely to be too strong in my models. This discrepancy with
the literature could be due to several reasons, such as an insufficient resolution of the current
models (10 points per scale-height while Lesur et al., 2014, have 16 points per scale-height),
the fact that I model only the upper half of the disk or that we must use a cubical box with
RAMSES. Future models with twice the resolution or that include the two sides of the disk will
be dedicated to understand this discrepancy. Until then, the results from the two stratified runs
cannot be considered as conclusive.

Above the mid-plane, complex sheet-like current structures can be clearly distinguished.
These high-current regions are quite thick compared to those observed in the unstratified runs,
but one could expect them to narrow down with an increasing resolution. Figure 6.17 shows
a slice of the dust ratio for the 10 µm (left), 100 µm (middle) and 1 mm grains (right) for
the fiducial at t = 60 yr (∼ 375Ω−1). The squares are placed at the approximate loca-
tion where the physical conditions in the model are roughly similar to unstr-O10A10d11r1
and unstr-O1A1d11r1 (red square) and unstr-O10A10d10r1 and unstr-O1A1d10r1 (blue
square). As can be seen, millimeter grains settle efficiently in the inner regions of the mid-plane
and the wind, although properly developed, is not sufficiently strong to lift them to regions of
density ∼ 10−11g cm−3 (red square), they are however not absent from the regions of density
∼ 10−10g cm−3 (blue square). As explained earlier, the dust sorting near current sheets in these
regions is less important for ρ ∼ 10−10g cm−3 than it is for ρ ∼ 10−11g cm−3 but still significant
and the initial density of ρ ∼ 10−10g cm−3 compensates for the sorting difference. Figures
6.18a and 6.18b show the average dust ratio profile as a function of height for both stratified
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models. As can be seen, the settling is even more efficient in str-OAd1700r5. Close to the
mid-plane, the dust ratio of these grains is almost doubled. As a consequence they are strongly
depleted above 1-2 scale heights. Intermediate 100 µm grains are quite present up to 2 scale
height in both models and are also depleted above that. As can be seen, the small grains are
efficiently redistributed over the entire computational domain by the wind.

6.5.4 Summary

In this chapter, I presented preliminary results of an ongoing study that aims to investigate a
model of chondrule formation in current sheets within weakly ionized protoplanetary disks.

After an introduction to the essential theoretical and numerical aspects of protoplanetary
disk evolution. I presented two types of models;

• Unstratified models. I have shown that structures similar to current sheets are formed
under various initial conditions. I have also shown that the structures in the current can
lead to an important sorting for grains of & 100 µm. This is particularly interesting in
the context of chondrule formation as they are thought to form in regions of high solid
concentration (Alexander et al., 2008) and because the typical minimum chondrule size
is about & 100 µm. It is also worth noting again that, in all the unstratified models,
regions of strong ambipolar heating are observed for a wide range of dust ratio for the
millimeter grains (and & 100 µm in some models).

• Stratified models. I have shown that millimeter grains seem to settle efficiently in the
disk mid-plane (z < 1− 2 H) and are strongly depleted above 1− 2 H. In addition, above
1 − 2 H, I observe current structures that are similar to those of unstratified models.
It is important to note that, at this stage, the stratified model str-OAd1700r1 fails to
reproduce some aspects of similar models of the literature, e.g. it has a very large α. I
am still carefully investigating this puzzling discrepancy. It could be due for example to
an insufficient resolution or differences with the literature in the treatment of the mid-
plane boundaries.
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Chapter 7

Conclusions and perspectives

Jack Sparrow

”No survivors? Then where do the stories come from, I wonder.”

- Pirates of the Caribbean

In this PhD thesis, I presented my work dedicated to the study of the early stages of low
mass star and planet formation. More particularly, I have put a strong emphasize on dust
dynamics and its relation to star formation. This thesis was carried out with the help of both
numerical and theoretical tools, I will now present a short summary of its content.

In the chapter 1, I have reviewed some of the essential knowledge of star formation in the
theoretical, observational and numerical point of view. I also explained why the dust is an
essential component of the star and planet forming interstellar medium. In particular, I have
shown that its dynamics, while being largely overlooked, might strongly differ from the gas.

In chapter 2, I presented our current understanding of the dynamics of small neutral grains.
After a description of the interaction between a gas and a single dust grain, I presented neutral
dust dynamics using a fluid approach. Starting from a multifluid approach for the dynamical
equations of gas and dust mixtures, I described how they can be reformulated as a monofluid
composed of several phases but with a single advection velocity. Then, I introduced the so-
called terminal velocity and diffusion approximations that greatly simplify the monofluid set of
equations in the presence of strongly coupled gas and dust mixture. Eventually, I proposed an
extension of this formalism to the study of neutral grains in a magnetohydrodynamical context.

In chapter 3, I introduced the main numerical tool used in this thesis, i.e. the RAMSES code
(Teyssier, 2002). Then, I described the dust dynamics solver that I implemented in the code
and that I presented in Lebreuilly et al. (2019). After a description of the principle of my
dust dynamics scheme, I benchmarked it against a wide battery of tests all designed to isolated
different aspects of the algorithm, i.e. dustyadvect, dustydiffuse, dustyshock, dustywave, a
wave propagation test and a settling test. These canonical tests have all been successfully
passed by the solver I that implemented which, in addition, proved to be fast and efficient.

In chapter 4, the core of this thesis, I have presented the first 3D protostellar collapse sim-
ulations with multiple dust species dustycollapses. After a description of my methods, I first
presented spherical collapse simulations with only one dust species at a time. With these mod-
els, I verified that we retrieve the expected free-fall timescale for strongly coupled gas and dust
mixtures and also provided a simplified view of dustycollapses. I then increased the com-
plexity of the dustycollapses by considering initial solid body rotation, multiple dust species
and, in some models, magnetic fields. I have shown that dust grains can decouple significantly
from the gas provided that they were large enough (typically & 10 − 100 µm). However, this
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decoupling strongly depends on the initial cloud properties. Conversely, I have also shown that
standard MRN dust size distributions, that have a maximum grain size of ∼ 0.1 µm, remain
very well preserved during the collapse in absence of coagulation/fragmentation of the dust
grains. I demonstrated that the cumulative back-reaction of dust grains on the gas is negligible
during the collapse for initial dust-to-gas ratio of less than 1%. In addition, I presented a semi-
analytical model of dust enrichment. It has shown that during the collapse, the dust-to-gas ratio
varies exponentially with the Stokes number, the ratio between the stopping time of the grain
and the free-fall timescale of the gas.

In chapter 5, I proposed another extension of the monofluid formalism that is designed to
the study of strongly coupled charged dust+ions+electron+neutral mixture. After a description
of the derivation of this so-called dustyMHD formalism, I highlighted the main dynamical
regimes that it holds. Eventually, I analyzed the critical maximum grain size required for a
grain to couple to the magnetic fields in various astrophysical objects such as the protostellar
collapse, protoplanetary disks, the cold and warm neutral medium and molecular clouds.

In the chapter 6, I presented the early developments of an ambitious project that aims to
study a possible mechanism of chondrule formation in the current sheets of weakly ionized
protoplanetary disks. After reviewing the basic theoretical framework necessary to understand
protoplanetary disks, I presented unstratified shearing box calculations that simultaneously in-
clude three neutral dust species. I have shown that complex sheet-like current structures, similar
to current sheets, are formed in the early times of these models and that they strongly affect the
dust dynamics for grains of size & 100 µm. Then, I presented the direct perspectives of this
study which are, to introduce the disk heating and cooling, Lagrangian tracer particles for the
dust and vertical stratification of the disk.

After this work, many direct prospects could be imagined. In the upcoming years, dusty
protostellar collapse calculations will increase in complexity. Among other things I intend to

• evolve them over a long time after the first-core formation using sink particles similarly
to Hennebelle et al. (2020).

• self-consistently estimate the resistivities accounting for the dependency on the local dust
distribution.

• include a better treatment of the radiation with the use of the flux limited diffusion and a
self-consistent estimate of the dust opacity.

These developments should be extremely valuable to constrain dust dynamics during the col-
lapse. In addition, these models will be computed with an accurate treatment of dust growth
currently in development at CRAL (Lombart & Laibe, 2019) and that I will soon couple to my
RAMSES dust module. A direct step, that follows the work I carried out in chapter 5, is to in-
clude the dynamics of charged grains in my dust solver and to carry simulations of charged dust
dynamics of the protostellar collapse, protoplanetary disks, the cold and warm neutral medium
and molecular clouds. A particular attention to the three last objects will be payed since they
are the ones where dust grains might be the most coupled to magnetic fields. Naturally, I plan
to continue to carry the project to study chondrule formation according to the prospects that I
discussed in chapter 6.
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Andrews, S. M., Huang, J., Pérez, L. M., et al. 2018, The Astrophysical Journal Letters, 869,
L41

Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2010, The Astro-
physical Journal, 723, 1241

Aresu, G., Kamp, I., Meijerink, R., et al. 2011, Astronomy and Astrophysics, 526, A163

Bachiller, R. 1996, Annual Review of Astronomy and Astrophysics , 34, 111

Bai, X.-N. 2013, The Astrophysical Journal, 772, 96

Bai, X.-N. & Goodman, J. 2009, The Astrophysical Journal, 701, 737

Bai, X.-N. & Stone, J. M. 2013, The Astrophysical Journal, 769, 76

Balbus, S. A. & Hawley, J. F. 1991, The Astrophysical Journal, 376, 214

Balbus, S. A. & Terquem, C. 2001, The Astrophysical Journal, 552, 235

Ballabio, G., Dipierro, G., Veronesi, B., et al. 2018, Monthly Notices of the Royal Astronomi-
cal Society, 477, 2766

Barenblatt, G. 1952, Prikladnaya Matematika i Mekhanika, 16, 679

173



BIBLIOGRAPHY

Barnard, E. E. 1907, The Astrophysical Journal, 25, 218

Barnard, E. E. 1910, The Astrophysical Journal, 31, 8

Barosch, J., Ebel, D. S., Hezel, D. C., Alpert, S., & Palme, H. 2020, Earth and Planetary
Science Letters, 542, 116286

Barsony, M. 1994, Astronomical Society of the Pacific Conference Series, Vol. 65, Class 0
Protostars, ed. D. P. Clemens & R. Barvainis, 197

Bate, M. R. & Lorén-Aguilar, P. 2017, Monthly Notices of the Royal Astronomical Society,
465, 1089

Belloche, A. 2013, in EAS Publications Series, Vol. 62, EAS Publications Series, ed. P. Hen-
nebelle & C. Charbonnel, 25–66

Berger, M. J. & Oliger, J. 1984, Journal of Computational Physics, 53, 484
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Maury, A. J., André, P., Testi, L., et al. 2019, Astronomy and Astrophysics, 621, A76

Maury, A. J., Girart, J. M., Zhang, Q., et al. 2018, Monthly Notices of the Royal Astronomical
Society, 477, 2760

Mayor, M. & Queloz, D. 1995, Nature, 378, 355

McKee, C. F. & Ostriker, E. C. 2007, Annual Review of Astronomy and Astrophysics , 45, 565

McNally, C. P., Hubbard, A., Mac Low, M.-M., Ebel, D. S., & D’Alessio, P. 2013, The Astro-
physical Journal Letters, 767, L2

McNally, C. P., Hubbard, A., Yang, C.-C., & Mac Low, M.-M. 2014, The Astrophysical Jour-
nal, 791, 62

179



BIBLIOGRAPHY

Mellon, R. R. & Li, Z.-Y. 2008, The Astrophysical Journal, 681, 1356

Mellon, R. R. & Li, Z.-Y. 2009, The Astrophysical Journal, 698, 922

Mendoza V., E. E. 1968, The Astrophysical Journal, 151, 977

Miyoshi, T. & Kusano, K. 2005, Journal of Computational Physics, 208, 315

Mouschovias, T. C. & Spitzer, L., J. 1976, The Astrophysical Journal, 210, 326

Ogilvie, G. I. 2012, Monthly Notices of the Royal Astronomical Society, 423, 1318

Ohashi, N., Saigo, K., Aso, Y., et al. 2014, The Astrophysical Journal, 796, 131

Pagani, L., Steinacker, J., Bacmann, A., Stutz, A., & Henning, T. 2010, Science, 329, 1622

Papaloizou, J. & Lin, D. N. C. 1984, The Astrophysical Journal, 285, 818

Parker, E. N. 1966, The Astrophysical Journal, 145, 811

Parker, E. N. 1972, The Astrophysical Journal, 174, 499

Parker, E. N. 1994, Spontaneous current sheets in magnetic fields : with applications to stellar
x-rays. International Series in Astronomy and Astrophysics, 1

Pinte, C., van der Plas, G., Ménard, F., et al. 2019, Nature Astronomy, 3, 1109

Pohl, A., Kataoka, A., Pinilla, P., et al. 2016, Astronomy and Astrophysics, 593, A12

Price, D. J. & Bate, M. R. 2007, Astrophysics and Space Science, 311, 75

Price, D. J., Cuello, N., Pinte, C., et al. 2018, Monthly Notices of the Royal Astronomical
Society, 477, 1270

Price, D. J. & Laibe, G. 2015, Monthly Notices of the Royal Astronomical Society, 454, 2320

Price, D. J., Wurster, J., Nixon, C., et al. 2017, PHANTOM: Smoothed particle hydrodynamics
and magnetohydrodynamics code, Astrophysics Source Code Library

Radomsky, P. M. & Hewins, R. H. 1990, Geochimica et Cosmochimica Acta, 54, 3475

Ragusa, E., Dipierro, G., Lodato, G., Laibe, G., & Price, D. J. 2017, Monthly Notices of the
Royal Astronomical Society, 464, 1449

Riols, A. & Lesur, G. 2018, Astronomy and Astrophysics, 617, A117

Riols, A., Lesur, G., & Menard, F. 2020, arXiv e-prints, arXiv:2006.01194

Roe, P. L. 1986, Annual Review of Fluid Mechanics, 18, 337

Rosdahl, J., Blaizot, J., Aubert, D., Stranex, T., & Teyssier, R. 2013, Monthly Notices of the
Royal Astronomical Society, 436, 2188

Rosdahl, J. & Teyssier, R. 2015, Monthly Notices of the Royal Astronomical Society, 449,
4380

Ruge, J. P., Flock, M., Wolf, S., et al. 2016, Astronomy and Astrophysics, 590, A17

Sadavoy, S. I., Myers, P. C., Stephens, I. W., et al. 2018a, The Astrophysical Journal, 859, 165

180



BIBLIOGRAPHY

Sadavoy, S. I., Myers, P. C., Stephens, I. W., et al. 2018b, The Astrophysical Journal, 869, 115

Sadavoy, S. I., Stephens, I. W., Myers, P. C., et al. 2019, The Astrophysical Journal Supplement
Series, 245, 2

Saffman, P. G. 1962, Journal of Fluid Mechanics, 13, 120

Sano, T., Miyama, S. M., Umebayashi, T., & Nakano, T. 2000, The Astrophysical Journal, 543,
486

Shakura, N. I. & Sunyaev, R. A. 1976, Monthly Notices of the Royal Astronomical Society,
175, 613

Sharma, P., Colella, P., & Martin, D. F. 2009, ArXiv e-prints

Shu, F. H., Adams, F. C., & Lizano, S. 1987, Annual Review of Astronomy and Astrophysics ,
25, 23

Simpson, I. C. 1978, Astrophysics and Space Science, 57, 381

Sod, G. A. 1978, Journal of Computational Physics, 27, 1

Spitzer, Lyman, J. 1941, The Astrophysical Journal, 93, 369

Spitzer, L. 1978, Physical processes in the interstellar medium

Squire, J. & Hopkins, P. F. 2018, Monthly Notices of the Royal Astronomical Society, 477,
5011

Stone, J. M., Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1996, The Astrophysical Journal,
463, 656

Suresh, A. 2000, SIAM J. Sci. Comput., 22, 1184–1198

Suzuki, T. K., Ogihara, M., Morbidelli, A. r., Crida, A., & Guillot, T. 2016, Astronomy and
Astrophysics, 596, A74

Terebey, S., Shu, F. H., & Cassen, P. 1984, The Astrophysical Journal, 286, 529

Teyssier, R. 2002, Astronomy and Astrophysics, 385, 337
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