
HAL Id: tel-03086234
https://theses.hal.science/tel-03086234

Submitted on 22 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In situ calibration of low-cost instrumentation for the
measurement of ambient quantities : evaluation

methodology of the algorithms and diagnosis of drifts
Florentin Delaine

To cite this version:
Florentin Delaine. In situ calibration of low-cost instrumentation for the measurement of ambient
quantities : evaluation methodology of the algorithms and diagnosis of drifts. Data Structures and
Algorithms [cs.DS]. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAX075�. �tel-
03086234�

https://theses.hal.science/tel-03086234
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
0I

P
PA

X
07

5
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Abstract51

In various fields going from agriculture to public health, ambient quantities have to be52

monitored in indoors or outdoors areas. For example, temperature, air pollutants, water53

pollutants, noise and so on have to be tracked. To better understand these various phenomena,54

an increase of the density of measuring instruments is currently necessary. For instance, this55

would help to analyse the effective exposure of people to nuisances such as air pollutants.56

The massive deployment of sensors in the environment is made possible by the decreasing57

costs of measuring systems, mainly using sensitive elements based on micro or nano technologies.58

The drawback of this type of instrumentation is a low quality of measurement, consequently59

lowering the confidence in produced data and/or a drastic increase of the instrumentation costs60

due to necessary recalibration procedures or periodical replacement of sensors.61

There are multiple algorithms in the literature offering the possibility to perform the calibration62

of measuring instruments while leaving them deployed in the field, called in situ calibration63

techniques.64

The objective of this thesis is to contribute to the research effort on the improvement of data65

quality for low-cost measuring instruments through their in situ calibration.66

In particular, we aim at 1) facilitating the identification of existing in situ calibration67

strategies applicable to a sensor network depending on its properties and the characteristics of its68

instruments; 2) helping to choose the most suitable algorithm depending on the sensor network69

and its context of deployment; 3) improving the efficiency of in situ calibration strategies through70

the diagnosis of instruments that have drifted in a sensor network.71

Three main contributions are made in this work. First, a unified terminology is proposed72

to classify the existing works on in situ calibration. The review carried out based on this73

taxonomy showed there are numerous contributions on the subject, covering a wide variety of74

cases. Nevertheless, the classification of the existing works in terms of performances was difficult75

as there is no reference case study for the evaluation of these algorithms.76

Therefore in a second step, a framework for the simulation of sensors networks is introduced.77

It is aimed at evaluating in situ calibration algorithms. A detailed case study is provided across78

the evaluation of in situ calibration algorithms for blind static sensor networks. An analysis79

of the influence of the parameters and of the metrics used to derive the results is also carried80

out. As the results are case specific, and as most of the algorithms recalibrate instruments81

without evaluating first if they actually need it, an identification tool enabling to determine the82

instruments that are actually faulty in terms of drift would be valuable.83

Consequently, the third contribution of this thesis is a diagnosis algorithm targeting drift84

faults in sensor networks without making any assumption on the kind of sensor network at stake.85

Based on the concept of rendez-vous, the algorithm allows to identify faulty instruments as86

long as one instrument at least can be assumed as non-faulty in the sensor network. Across87

the investigation of the results of a case study, we propose several means to reduce false results88

and guidelines to adjust the parameters of the algorithm. Finally, we show that the proposed89

diagnosis approach, combined with a simple calibration technique, enables to improve the quality90

of the measurement results. Thus, the diagnosis algorithm opens new perspectives on in situ91

calibration.92
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Résumé93

Dans de nombreux domaines allant de l’agriculture à la santé publique, des grandeurs94

ambiantes doivent être suivies dans des espaces intérieurs ou extérieurs. On peut s’intéresser par95

exemple à la température, aux polluants dans l’air ou dans l’eau, au bruit, etc. Afin de mieux96

comprendre ces divers phénomènes, il est notamment nécessaire d’augmenter la densité spatiale97

d’instruments de mesure. Cela pourrait aider par exemple à l’analyse de l’exposition réelle des98

populations aux nuisances comme les polluants atmosphériques.99

Le déploiement massif de capteurs dans l’environnement est rendu possible par la baisse des100

coûts des systèmes de mesure, qui utilisent notamment des éléments sensibles à base de micro ou101

nano technologies. L’inconvénient de ce type de dispositifs est une qualité de mesure insuffisante.102

Il en résulte un manque de confiance dans les données produites et/ou une hausse drastique des103

coûts de l’instrumentation causée par les opérations nécessaires d’étalonnage des instruments ou104

de remplacement périodique des capteurs.105

Il existe dans la littérature de nombreux algorithmes qui offrent la possibilité de réaliser106

l’étalonnage des instruments en les laissant déployés sur le terrain, que l’on nomme techniques107

d’étalonnage in situ.108

L’objectif de cette thèse est de contribuer à l’effort de recherche visant à améliorer la qualité109

des données des instruments de mesure bas coût à travers leur étalonnage in situ.110

En particulier, on vise à 1) faciliter l’identification des techniques existantes d’étalonnage in111

situ applicables à un réseau de capteurs selon ses propriétés et les caractéristiques des instruments112

qui le composent ; 2) aider au choix de l’algorithme le plus adapté selon le réseau de capteurs et113

son contexte de déploiement ; 3) améliorer l’efficacité des stratégies d’étalonnage in situ grâce au114

diagnostic des instruments qui ont dérivé dans un réseau de capteurs.115

Trois contributions principales sont faites dans ces travaux. Tout d’abord, une terminologie116

globale est proposée pour classer les travaux existants sur l’étalonnage in situ. L’état de l’art117

effectué selon cette taxonomie a montré qu’il y a de nombreuses contributions sur le sujet,118

couvrant un large spectre de cas. Néanmoins, le classement des travaux existants selon leurs119

performances a été difficile puisqu’il n’y a pas d’étude de cas de référence pour l’évaluation de120

ces algorithmes.121

C’est pourquoi dans un second temps, un cadre pour la simulation de réseaux de capteurs122

est introduit. Il vise à guider l’évaluation d’algorithmes d’étalonnage in situ. Une étude de cas123

détaillée est fournie à travers l’évaluation d’algorithmes pour l’étalonnage in situ de réseaux124

de capteurs statiques et aveugles. Une analyse de l’influence des paramètres et des métriques125

utilisées pour extraire les résultats est également menée. Les résultats dépendant de l’étude126

de cas, et la plupart des algorithmes réétalonnant les instruments sans évaluer au préalable si127

cela est nécessaire, un outil d’identification permettant de déterminer les instruments qui sont128

effectivement fautifs en termes de dérive serait précieux.129

Dès lors, la troisième contribution de cette thèse est un algorithme de diagnostic ciblant les130

fautes de dérive dans les réseaux de capteurs sans faire d’hypothèse sur la nature du réseau131

de capteurs considéré. Basé sur le concept de rendez-vous, l’algorithme permet d’identifier les132

instruments fautifs tant qu’il est possible de supposer qu’un instrument n’est pas fautif dans le133

réseau de capteurs. À travers l’analyse des résultats d’une étude de cas, nous proposons différents134

v



Résumé

moyens pour diminuer les faux résultats et des recommandations pour régler les paramètres135

de l’algorithme. Enfin, nous montrons que l’algorithme de diagnostic proposé, combiné à une136

technique simple d’étalonnage, permet d’améliorer la qualité des résultats de mesure. Ainsi, cet137

algorithme de diagnostic ouvre de nouvelles perspectives quant à l’étalonnage in situ.138
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Notations499

The notations are organised into several categories to quickly identify a set of notations used500

in a particular context.501

Note from the author: Conflicts exist due to identical notations that are used for different502

objects depending on the context. It concerns notably the measurand models (2D Gaussian Model503

and Gaussian Plume model) and the parameters of the calibration algorithms to remain consistent504

with the usual notations in the literature.505

Common objects506

t Instant of time507

∆t Time duration508

ω Angular frequency509

E Expectation510

N (α, β) Normal law of mean α and standard deviation β.511

U(α, β) Uniform law on the range [α;β]512

µ Average513

σ Standard deviation514

Measuring instruments515

si, sj Measuring instruments (or systems if it is mentioned)516

c(si) Accuracy class of si517

S Set of measuring instruments. Sk, Sk+ and Sk− are respectively the sets of518

measuring instruments where c(si) = k, c(si) ≥ k and c(si) ≤ k519

m(si, t) Measurement result of si at t520

M(si, (t,∆t)) Set of measurement results for si, over the time range [t−∆t; t]521

v(si, t) Measured value of si at t522

V (si, (t,∆t)) Set of measured values for si, over the time range [t−∆t; t]523

vtrue(si, t) True value that should be measured by si at t if it were ideal524

∆v(si, t) Measurement uncertainty of the value measured by si at t. It can be a525

constant or not526

xxi



Notations

∆vr(si, t) Relative measurement uncertainty of the value measured by si at t.527

vmin(k) is the detection limit of instruments of class k528

ζ(si, t) Indication of si at t529

F Function representing the measuring chain of an instrument530

F̂ Estimate of the measuring chain of an instrument531

F̂−1 Inverse of the estimate of the measuring chain of an instrument532

q(t) Vector of values of influence quantities533

q̂(t) Estimate of the vector of values of influence quantities534

H Relationship built during an in situ calibration535

H−1 Calibration relationship derived from an in situ calibration536

Fault models537

G Gain drift538

O Offset drift539

ε Noise540

ψ Spike value541

pψ Spike probability542

2D Gaussian model543

C Concentration544

x, y, z Coordinates545

A Amplitude546

σ Standard deviation547

FWHM Full width at half maximum548

Gaussian Plume model549

Q Emission rate at the source550

Vw Wind speed551

σy, σz Horizontal and vertical dispersions552

H Pollutant effective release

H = hs + ∆h(t)

with hs, the pollutant source height, and ∆h:

∆h(t) = 1.6F 1
3x

2
3

Vw
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π
D

(
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θ

)
g gravity constant553

D volumetric flow554

θ ambient temperature555

θs source temperature556

Parameters of the calibration algorithms557

ν Number of components of the PCA for the algorithms SM-X558

w Parameter for the algorithms SM-X559

R,Q Parameter for the algorithms X-KF560

C Penalty parameterfor the algorithm SVR-KF561

a, c0, c1 Kriging parameters for the algorithm K-KF562

Usual metrics563

MAE Mean absolute error564

MAPE Mean absolute percentage error565

RMSE Root-mean-square error566

ρ Pearson correlation coefficient567

R2 Coefficient of determination568

Error model569

F Function570

a Slope571

b Intercept572

ε Additive error573

Metrics for the evaluation of the performances of the diagnosis algorithm574

TN True negative575

FN False negative576

NDN Non-determined negative577

FP False positive578

TP True positive579

NDP Non-determined positive580

P Number of positives581
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N Number of negatives582

Prev Prevalence583

TPR True positive rate584

TNR True negative rate585

FPR False positive rate586

FNR False negative rate587

NDPR Non-determined positive rate588

NDNR Non-determined negative rate589

NDR Non-determined rate590

PPV Positive predictive value591

FDR False discovery rate592
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FOR False omission rate594

ACC Accuracy595

∆D(si) Delay of first positive detection for an instrument si596

Diagnosis algorithm597

D Set of diagnosis procedures598

d Diagnosis procedure599

td Instant of the diagnosis procedure d600

∆cDmin(k) Minimal relative difference of class required for instruments of class k with601

their diagnoser instruments602

cDmin(si) Minimal class of sensors allowed to diagnose si.603

Ω(si, t) True status of si at t, equal either to NF (non-faulty) or F (faulty)604

Ω̂(si, t) Predicted status of si at t, equal either to NF (non-faulty), F (faulty) or A605
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Ω̃(si, t) Actualised status of si at t, equal either to NF (non-faulty), F (faulty) or607
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SD Set of sensors to diagnose609

SNF (t) Set of sensors where Ω̂(si, t) = NF610

SF (t) Set of sensors where Ω̂(si, t) = F611

CF (S, λ) Set of combination of λ sensors in S that can be diagnosed as faulty612
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M≈(si, (t,∆t)) Set of measurement results coherent with true values for si, over the time613

range [t−∆t; t]614

M+(si, (t,∆t)) Set of measurement results upper non-coherent with true values for si, over615

the time range [t−∆t; t]616

M−(si, (t,∆t)) Set of measurement results lower non-coherent with true values for si, over617

the time range [t−∆t; t]618

M∗(si, (t,∆t)) Set of measurement results for si, over the time range [t −∆t; t] that are619

metrologically valid620

ϕ(si → sj , t) Rendez-vous between si and sj at t621

Φ(si → sj , (t,∆t)) Set of rendez-vous between si and sj over the time range [t−∆t; t]. Φ(si →622

S, (t,∆t)) is the set of rendez-vous between si and any other instrument of623

S over the time range [t−∆t; t]. It is also denoted Φ(si, (t,∆t))624

Φ≈(si → sj , (t,∆t)) Set of coherents rendez-vous between si and sj over the time range [t−∆t; t]625

Φ+(si → sj , (t,∆t)) Set of upper non-coherents rendez-vous between si and sj over the time626

range [t−∆t; t]627

Φ−(si → sj , (t,∆t)) Set of lower non-coherents rendez-vous between si and sj over the time628

range [t−∆t; t]629

Φ(si → S, (t,∆t)) k Set of rendez-vous between si and all sj ∈ S such as c(sj) ≥ k over the time630

range [t−∆t; t]631

MatΦ(D,∆t) Matrix of the minimal number of rendez-vous between two instruments on a632

duration ∆t and over a set of diagnosis procedures D633

Φv(si → S, (t,∆t)) Set of rendez-vous between si and sj ∈ S over the time range [t−∆t; t] that634

are valid635

|Φv|min Minimal number of valid rendez-vous required to conduct successfully a636

diagnosis637

r≈ϕv(si, (t,∆t)) Rate of coherent rendez-vous in the set of valid rendez-vous of si over the638

time range [t−∆t; t]639

r+
ϕv(si, (t,∆t)) Rate of upper non-coherent rendez-vous in the set of valid rendez-vous of si640

over the time range [t−∆t; t]641

r−ϕv(si, (t,∆t)) Rate of lower non-coherent rendez-vous in the set of valid rendez-vous of si642

over the time range [t−∆t; t]643

(r+
ϕv)max Maximal tolerated value for r+

ϕv(si, (t,∆t)) for any t644

(r−ϕv)max Maximal tolerated value for r−ϕv(si, (t,∆t)) for any t645

(r+
ϕv + r−ϕv)max Maximal tolerated value for (r+

ϕv + r−ϕv)(si, (t,∆t)) = 1− r≈ϕv(si, (t,∆t)) for646

any t647

rtrue(si, (t,∆t)) Rate of measurement results coherent with true values of si over the time648

range [t−∆t; t]649
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rtrue(si, (t,∆t)) Φ Rate of measurement results coherent with true values in the set of rendez-650

vous of si over the time range [t−∆t; t]651

rtrue(si, (t,∆t)) Φv Rate of measurement results coherent with true values in the set of valid652

rendez-vous of si over the time range [t−∆t; t]653

w Weight operator for rendez-vous such as:

w(ϕ(si → sj , t)) = 1
|Φ(si, t)|

with Φ(si, t) = Φ((si, S), t|0)654

Practical definition of rendez-vous655

l(si, t) Position of si at t656

∆lϕ Maximal distance between two instruments to consider them in rendez-vous657

(spatial condition)658

∆tϕ Maximal difference between the timestamps of the measurement results of659

two instruments to consider them in rendez-vous (temporal condition)660

a(si, t) Representativity area of the instrument si at t661
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General Introduction662

1 Context of the thesis663

The monitoring of ambient quantities is a fundamental operation for the digitisation of our664

environment [59]. From the level of precipitation [32] to the concentration of pollutants in the air665

[111], more and more quantities need to be monitored. The information brought by measurements666

is used in various fields from agriculture [117] to public health [46] for instance. Such a monitoring667

may have a major impact because these quantities can have significant effects on human lives.668

For instance, heatwaves, corresponding to high temperatures at both day and night, induce an669

abnormal mortality rate that can be extremely high [81]. Combined with drought, they can also670

be disastrous for agriculture and generate water stress [159]. Thus, the comprehension of these671

phenomena is particularly important to explain and predict their evolution over time but also to672

react to them.673

This activity of monitoring has evolved over time, following the progress in science and674

technologies. Nowadays, the observation of ambient quantities is carried out with high quality675

measuring systems, at least for strategic or regulatory applications like meteorology [174] or air676

quality monitoring [158]. They can be deployed on the ground, in the sea, in the air or even in677

space via satellites. Regulatory-grade instruments are usually expensive. Regarding those on the678

ground, they are often deployed at fixed positions. Depending on the target area to monitor, on679

the spatial variability of the measurand and on the spatio-temporal resolution desired, hundreds680

of devices may be required, as shown for instance by [21] and [101] in the field of air quality681

monitoring. Thus, it may not be possible to have a high spatial resolution with such instruments682

as few of them are deployed together most of the time due to their cost [78]. For instance, about683

30 measuring stations are deployed across Paris and its inner suburbs to monitor air pollution [2]684

as shown in the figure page 2. Moreover, all of them are not monitoring the same quantities. For685

instance, only a third of these stations are monitoring O3. Consequently, the spatial resolution is686

even smaller for some measurands.687

Following up the scientific advances in micro and nano-electronics [90, 135], it is now possible688

to imagine a dense monitoring of ambient quantities with a fine granularity, both temporally689

and spatially, notably for air quality monitoring [110, 135] which is the practical context chosen690

for this thesis. Indeed, small low-cost measuring instruments have been designed in recent691

years. Fostered by the emergence of the Internet of Things, the interest for such devices has692

been growing significantly because they open up new possibilities for environmental sensing693

[62]. Without actually replacing regulatory grade instruments, it is hoped they can complement694

existing networks of measuring instruments. As they are affordable, they can also be owned by695

everybody. In this way, low-cost sensors are tools that could be used for individual awareness696

and education, particularly concerning both indoor and outdoor air quality [27].697

Nevertheless, these low-cost sensing technologies are still young, and several challenges are yet698

to be tackled [62, 127]. One of them concerns the quality of the measurement results they produce.699

The particular issue degrading the results addressed in this thesis is the instrumental drift which700

these instruments are prone to. The classical approach to solve this problem is to recalibrate the701

instruments in a calibration facility. This requires taking the instrument out of service, bringing702
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Symbol Definition

Permanent urban station
Permanent traffic station

Map of permanent air pollution monitoring stations of Airparif for Paris and its inner suburbs
(December 2018)

it to a facility, calibrating it, bringing it back to the field and putting it back in service. This703

operation has both economically and technically a definite cost. Therefore, when hundreds of704

measuring instruments are deployed, performing this task is particularly challenging because it705

has to be carried out more frequently than with high-quality instruments. However, because706

numerous instruments are deployed and forming a sensor network, there may be relationships707

between their measured values that could be exploited to manage this issue.708

In the literature, multiple solutions have been proposed to mitigate the impact of the drift for709

environmental low-cost sensors by performing what we call an in situ calibration. It means710

the calibration of measuring instruments while leaving them in the field, preferably without any711

physical intervention. To avoid these physical interventions, the idea is to use the values provided712

by other instruments deployed.713

2 Contributions714

The objective of this thesis is to contribute to the research effort on the improvement of data715

quality for low-cost measuring instruments through their in situ calibration. In particular, we716

aim at:717

• facilitating the identification of existing in situ calibration strategies applicable to a sensor718

network depending on its properties and the characteristics of its instruments.719

• helping to choose the most suitable algorithm depending on the sensor network and its720

context of deployment.721

• improving the efficiency of in situ calibration strategies through the diagnosis of instruments722

2



3. Organisation of the manuscript

that have drifted in a sensor network.723

Toward this goal, three main contributions are made in this work. First, a unified terminology724

is proposed to classify the existing works on in situ calibration. Indeed there is no shared725

vocabulary in the scientific community enabling a precise description of the main characteristics726

of the algorithms. The review carried out based on this taxonomy showed there are numerous727

contributions on the subject, covering a wide variety of cases. Due to the type of sensor network728

deployed, in terms of properties of the measuring instruments or how these devices can interact729

between them, different approaches may be considered. Nevertheless, the classification of the730

existing works in terms of performances was difficult as there is no reference case study for the731

evaluation of these algorithms.732

Therefore in a second step, a framework for the simulation of sensor networks is introduced.733

It is aimed at evaluating in situ calibration algorithms. It details all the aspects to take into734

account when designing a case study. A detailed case study is provided across the evaluation of735

in situ calibration algorithms for blind static sensor networks. An analysis of the influence of736

the parameters and of the metrics used to derive the results is also carried out. As the results737

are case specific, and as most of the algorithms recalibrate instruments without evaluating first738

if they actually need it, an identification tool enabling to determine the instruments that are739

actually faulty in terms of drift would be valuable.740

Thus, the third contribution of this thesis is the design of a diagnosis algorithm targeting741

drift faults in sensor networks without making any assumption on the kind of sensor network at742

stake. Based on the concept of rendez-vous, the algorithm allows identifying faulty instruments743

as long as one instrument at least can be assumed as non-faulty in the sensor network. Across744

the investigation of the results of a case study, we propose several means to reduce false results745

and guidelines to adjust the parameters of the algorithm. Finally, we show that the proposed746

diagnosis approach, combined with a simple calibration technique, enables to improve the quality747

of the measurement results.748

3 Organisation of the manuscript749

The manuscript is organised as follows.750

In Chapter 1, concepts related to measuring instruments are defined and the performances751

of low-cost measuring instruments in the context of air quality monitoring are reviewed. Then,752

the issue of data quality for these devices and how calibration can mitigate drift problems are753

discussed. The concept of in situ calibration is introduced, followed by the interesting properties754

of sensor networks for this application. At the end of the chapter, the problem statement is755

recalled and detailed.756

In Chapter 2, the taxonomy for the classification of in situ calibration strategies is introduced,757

followed by the review of existing works.758

Chapter 3 introduces the framework for the simulation of sensor networks designed for the759

evaluation of in situ calibration algorithms. A case study concerning blind static sensor networks760

is developed, and multiple derived cases are investigated to determine the influence of parameters761

and of the metrics used on the interpretations of the results.762

Afterwards, the diagnosis algorithm for drift faults in sensor networks is introduced in Chapter763

4. A case study is developed and means to improve its results are discussed. The sensitivity of764

the diagnosis algorithm to the choices made during the design of the case study is investigated.765

It is followed by the combination of the diagnosis algorithm with a simple calibration approach766

that exploits information build during the diagnosis, applied to the preceding case study.767

Finally, the contributions are summarised in the last chapter and a general conclusion is768

provided, along with perspectives regarding this work.769
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Several appendices are also provided in this manuscript. Appendix A provides variations and770

extensions of the diagnosis algorithm presented in Chapter 4. They require further studies but771

the basis are introduced towards future work. Appendix B extends the discussion on the main772

assumption made for the diagnosis algorithm. Lastly, Appendix C presents an additional case773

study related to the sensitivity of the diagnosis algorithm.774
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Chapter 1. Low-cost Measuring Instruments for Air Quality Monitoring: Description,
Performances and Challenges

Introduction812

This chapter is aimed at recalling several concepts related to measuring instruments first. The813

question of the measurement of ambient quantities is detailed by defining low-cost instruments814

and by reviewing their performances in the context of air quality monitoring. Afterwards, the815

challenges for these instruments are defined. The threats to the data quality of measuring816

instruments are discussed before investigating how calibration can mitigate drift problems.817

Finally, the concept of in situ calibration is introduced, followed by the definition of a sensor818

network and its interesting characteristics for our problem. At the end of the chapter, the819

problem statement is detailed based on the previous developments.820

1 Measurement of ambient quantities with low-cost instruments821

In this section, the definition of a measuring instrument is recalled first. Then, a general822

description of how it makes measurements is provided, followed by the definition of low-cost823

instruments, their challenges and a review of their actual performances in metrological terms.824

1.1 Definition of a measuring instrument825

In environmental monitoring, we aim at tracking one or several quantities through measure-826

ments of their values over time. Such quantities are for instance temperature, relative humidity,827

pressure, concentration of chemical components in a gas or a liquid, noise... These quantities we828

aim at monitoring are called measurands.829

Definition 1 (Quantity [14]). A quantity is the "property of a phenomenon, body, or substance,830

where the property has a magnitude that can be expressed as a number and a reference".831

Definition 2 (Quantity value [14]). A quantity value is a "number and reference together832

expressing the magnitude of a quantity".833

Definition 3 (Measurement [14]). A measurement is the "process of experimentally obtaining834

one or more quantity values that can reasonably be attributed to a quantity".835

Definition 4 (Measurand [14]). A measurand is the "quantity intended to be measured".836

To carry out measurements, one or several measuring instruments are used. Multiple devices837

may be required to perform a measurement and they can be embedded into a single device as a838

measuring system. Such a system may be used to track several measurands.839

Definition 5 (Measuring instrument [14]). A measuring instrument is a "device used for making840

measurements, alone or in conjunction with one or more supplementary devices".841

Definition 6 (Measuring system [14]). A measuring system is a "set of one or more measuring842

instruments and often other devices, including any reagent and supply, assembled and adapted843

to give information used to generate measured values within specified intervals for quantities of844

specified kinds".845

1.2 Measuring chain of an instrument846

In a measuring instrument (or system), several components may be necessary to perform a847

measurement, forming a measuring chain. It usually starts by one or several sensors1 and provides848

as an output one or several indications. For example, consider a mercury-in-glass thermometer849

(Figure 1.1.1). The sensor is the mercury. Depending on the variation of the volume of the liquid850

following temperature, its level in a tube of glass is the indication. With an appropriate scale of851

value, this level can be converted back to a temperature through direct reading.852

1In ordinary use, the term sensor may refer to a measuring instrument. This is a slight misuse of language.
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1. Measurement of ambient quantities with low-cost instruments

Mercury

Scale of values

Indication

Tube of glass

Figure 1.1.1: Description of a mercury-in-glass thermometer2

Definition 7 (Measuring chain [14]). A measuring chain is a "series of elements of a measuring853

system constituting a single path of the signal from a sensor to an output element".854

Definition 8 (Sensor [14]). A sensor is the part of a measuring instrument "that is directly855

affected by a phenomenon, body, or substance carrying a quantity to be measured".856

Definition 9 (Indication [14]). An indication is a "quantity value provided by a measuring857

instrument or a measuring system".858

As shown in Figure 1.1.1, the raw indication provided by a measuring instrument is not859

necessarily of the same kind as the measurand. There is often a quantity conversion that is860

performed at the end of the measuring chain so that the measurand and the indications provided861

are of the same kind to facilitate the readings. In this case, the indication provided by a measuring862

instrument is a measured value. For the conversion step, values from different instruments may863

be involved in the case of a measuring system.864

Definition 10 (Measured value [14]). A measured value is a "quantity value representing a865

measurement result".866

The values provided by measuring instruments are not necessarily equal to the actual values867

of the measurand affecting the sensor. The actual values of measurand are called true quantity868

values.869

Definition 11 (True quantity value [14]). A true quantity value, or true value, is a "quantity870

value consistent with the definition of a quantity".871

Thus, an uncertainty is usually associated with a measured value to give an idea of its872

precision. Its value can be determined through various means (see [72]), the components of the873

measuring chain having an influence.874

Definition 12 (Uncertainty3 [14]). An uncertainty is a "non-negative parameter characterizing875

the dispersion of the quantity values being attributed to a measurand, based on the information876

used."877

2Modified image. Original source: Menchi (Licence CC BY-SA), https://commons.wikimedia.org/w/index.
php?curid=51236

3The concept of uncertainty is different from the concept of measurement error because even after evaluating
the components of the error that are known or supposed, an uncertainty always remains [72]
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Chapter 1. Low-cost Measuring Instruments for Air Quality Monitoring: Description,
Performances and Challenges

This is notably why a measured value is a value representing a measurement result but not a878

measurement result itself. Usually, a measurement result is expressed by a measured value and an879

uncertainty. A measurement result composed of only a measured value does not allow to estimate880

how close it is to the true value. In fact, any important information for the interpretation of881

a measurement result should be added to it. It can concern the operating conditions, or data882

helping to identify when or where a result was obtained, like a timestamp or GPS coordinates.883

Definition 13 (Measurement result [14]). A measurement result is a "set of quantity values884

being attributed to a measurand together with any other available relevant information".885

All along the measuring chain, influence quantities may act on the output of the instrument.886

Definition 14 (Influence quantity [14]). An influence quantity is a "quantity that, in a direct887

measurement, does not affect the quantity that is actually measured, but affects the relation888

between the indication and the measurement result".889

The measuring chain of an instrument can be more or less long depending on the measurement890

method. For a digital thermometer, based on a thermocouple for instance, the sensor provides891

a voltage, as an indication of the temperature. Several processings are usually carried out892

afterwards like amplification and filtering, which adds steps in the measuring chain compared to893

the case of a mercury-in-glass thermometer.894

The description of the measuring chain of an instrument is summarised in Figure 1.1.2.895

Measuring chain

Measured values
Sensor
(Sensitive 
element, 

transducer…)

Processing(s)
Quantity

conversion
Indication(s)

…
True quantity

values

Measuring instrument

Influence quantity values

Figure 1.1.2: Schematic description of the measuring chain of a measuring instrument

1.3 Low-cost instruments896

1.3.1 Definition897

For any measurand, there is a wide range of measuring instruments notably in terms of cost.898

Their price is related to the capabilities of instruments in terms of measurement range, sensitivity,899

uncertainty and so on. In the General Introduction, we exposed that reference instruments were900

sometimes too expensive to enable a dense environmental monitoring of different quantities,901

taking as an example the context of air quality monitoring. Consequently, low-cost instruments902

are necessary to help carry out this task.903

Definition 15 (Reference measuring instrument). A reference (or regulatory-grade) measuring904

instrument is a measuring instrument implementing a reference measurement procedure or905

equivalent. Such an instrument is usually expensive.906

Definition 16 (Low-cost measuring instrument). A low-cost measuring instrument is a measuring907

instrument significantly affordable compared to reference instruments.908
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1. Measurement of ambient quantities with low-cost instruments

Depending on the application, what a low-cost measuring instrument is may be very different909

[27, 110, 138]. In the context of air pollution monitoring, we speak of devices that cost US$ 100910

or less to few US$ 1,000 [71, 85, 110] at most, considering that reference instruments can be911

worth from US$ 10,000 to more than US$ 100,000.912

Low-cost instruments are often characterised by a small size, thanks to the use of micro913

and nano technologies [183]. They are also frequently autonomous in terms of energy: they are914

powered by batteries or small solar panels. Most of the time they have wireless communications915

capabilities. They can be deployed at fixed positions or be mobile and even wearable [66].916

1.3.2 Challenges of environmental monitoring917

Few years ago, Hart et al. [62] and Rundel et al. [127] exposed various challenges for918

measuring devices used in environmental monitoring:919

Energy supply and management This subject concerns mainly autonomous devices. In this920

case, it aims notably at minimising the energy consumption so that size of the system of921

energy storage and charge can be reduced. In addition, the lifespan of the energy supply922

components has to be the longest as possible to limit the maintenance operations and its923

environmental impact.924

Hardware standardisation To have upgradeable systems, interoperability of the hardware925

must be met, with user-friendly manageability.926

Software standardisation In the same way that hardware has to be standardised, the software927

of measuring instruments should also be normalised to facilitate the usage of devices from928

different manufacturers in the same deployment.929

Data standardisation To help data management and the use of values, data formats must be930

standardised.931

Data quality improvement This challenge concerns different aspects. First, in conjunction932

with data standardisation, the data quality has to be ensured by providing for each mea-933

surement all the necessary and meaningful information regarding its realisation. Secondly,934

the accuracy of the measurements has to be improved through the upgrade of the hardware935

but also with the help of data processing algorithms.936

Data usage reinforcement To make sure the most is taken out of the acquired data, it is937

necessary to facilitate its management and use. It would also be valuable to exploit the938

measurements in the largest number of possible applications.939

Security reinforcement As systems are more and more connected, they become vulnerable to940

attacks that can affect data integrity. Protocols must be established to prevent tampering941

and protect privacy.942

Among all these challenges, data quality is an important one for low-cost instruments in943

particular and is still a major issue [119]. Indeed, if a satisfying data quality cannot be achieved,944

the responses to any of the other challenges cited will have a limited impact.945

1.3.3 Performances of low-cost instruments in the literature for air quality946

monitoring947

While the concepts introduced and methods developed in this work are generic, the examples948

and illustrations provided are taken from the field of air quality monitoring. Indeed, regulatory-949

grade instruments as used by air quality surveillance agencies are extremely expensive. Therefore,950
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the interest for low-cost devices is major in this field [27]. To evaluate the severity of data quality951

issues for these devices, a review of their actual performances is conducted in this section.952

In the literature, there are numerous works proposing an evaluation of the performances of953

low-cost sensors for air quality monitoring. In a review from 2019 [73], the authors reported 105954

references "that include quantitative comparison of sensor data with reference measurements"955

from 2004 to April 2019, with 91 between January 2015 and December 2018. We consider here956

the following works: [15, 16, 71, 73, 85, 121, 141], some of them being aggregates of previous957

publications [73, 121]. They tackle the most common measurands regarding to air quality: PM10958

[15, 16, 73, 121, 141], PM2.5 [15, 16, 71, 73, 85, 121, 141], PM1 [73, 141], O3 [15, 16, 71, 73, 85,959

121, 141], NO2 [15, 16, 71, 73, 121, 141], NO [15, 16, 71, 73], CO [15, 16, 71, 73, 85, 121] and960

SO2 [15, 16, 71]. In these studies, the considered low-cost measuring instruments or systems961

are co-located to reference, e.g. regulatory-grade, measuring instruments at a given location, for962

instance an urban environment [15, 141], a suburban environment [71] or a mountain site [85].963

These studies report a wide range of performances for the measuring instruments or systems964

they consider: from poor to suitable at least for indicative measurements, according to the Data965

Quality Objectives (DQO) set by the European Union [158], and this for all the measurands.966

Minimum and maximal values of the coefficient of determination R2 reported in the cited967

publications for PM10, PM2.5, PM1, O3, NO2, NO , CO and SO2 are listed in Table 1.1.1.968

This metric indicates the quality of the linear regression between the values of an instrument969

and a reference.970

Publication
PM10 PM2.5 PM1 O3 NO2 NO CO SO2

min – max min – max min – max min – max min – max min – max min – max min – max

Borrego et al. [15] 0.13–0.36 0.07–0.27 n/a 0.12–0.77 0.02–0.89 0.34–0.80 0.53–0.87 0.09–0.20
Jiao et al. [71] < 0.25–0.45 n/a < 0.25–0.94 < 0.25–0.57 0.77–0.87 < 0.25–0.68 < 0.25
Li et al. [85] n/a 0.82 n/a 0.62 n/a n/a 0.68 n/a
Spinelle et al. [141] 0.01–0.81 0.00–0.86 0.26–0.95 0.04–0.96 0.35–0.88 n/a n/a n/a
Rai et al. [121]* 0.07–0.99 0.01–0.99 < 0.10–0.89 n/a < 0.10–0.99 n/a
Karagulian et al. [73]* 0.00–1.00 0.00–1.00 < 0.60–0.95 < 0.00–1.00 0.00–1.00 < 0.10–1.00 0.25–1.00 n/a

Table 1.1.1: Minimum and maximal values of the coefficient of determination R2 reported
in the cited publications for PM10, PM2.5, PM1, O3, NO2, NO , CO and SO2. Publications
marked with a "*" are surveys aggregating results from other works. Sometimes the values were
given for several types of PM instruments. The values of this table concern different types of
devices and do not relate the variability that can be observed with several instruments of the

same manufacturer [141].

Several authors report that their results should be considered with caution. On the first hand,971

those who obtained results only at one site, under a certain type of operating conditions, explain972

that their work should be repeated with different conditions [141]. On the other hand, those who973

aggregated results point out the diversity of the metrics used [73] and of the conditions under974

which the results were obtained [121], which makes the comparisons difficult. Karagulian et al.975

[73] chose to rely on the coefficient of determination R2 to compare the highest number of studies,976

but they explained that this metric is not the most appropriate. They call for standardised977

protocols for the evaluation of low-cost measuring instruments. Such a protocol for the evaluation978

for low-cost gas sensors for air quality monitoring has been proposed [138].979

In all of these works, the calibration of the instruments is a main concern. In Section 1.2, we980

mentioned that in general, measuring instruments provide indications not necessarily of the same981

kind as the measurand and that a quantity conversion is often carried out to facilitate the reading982

of measurement results. Determining the relationship to obtain measurements results from983

indications is what calibration allows to achieve. This operation is carried out on a measuring984

instrument for the first time right after its manufacturing or before its first use [67]. Generally,985
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it is performed in a dedicated facility. However, it is only mandatory to have an individual986

calibration for regulatory-grade instruments. In most cases, several instruments are calibrated987

altogether. Sometimes it also happens that instruments are not calibrated at all.988

In the publications cited, out-of-the-box measurement results were quite inaccurate most989

of the time and some instruments had to be compensated following influence quantities like990

temperature, relative humidity or chemical components depending on the measurand and on the991

measuring principle at stake [16, 71, 73, 121]. Jiao et al. [71] showed for instance an improvement992

of the coefficient R2:993

• from 0.36 to 0.43, from 0.45 to 0.60 and from 0.43 to 0.50 for three different PM instruments994

• from 0.88 to 0.94 for an O3 instrument995

• from 0.57 to 0.82 for a NO2 instrument996

In conclusion, all the authors report that the quality of measurement results can be strongly997

improved with the use of data treatment and processing tools. To better understand how data998

processing algorithms can improve the quality of the measurement results, the issues causing999

their degradation must be identified.1000

2 Threats to data quality for measuring instruments1001

2.1 Introduction1002

In Section 1.3.2, the challenge of data quality was briefly presented from different perspectives.1003

First, it can be related to the quality of the information composing a measurement result, e.g.1004

the measured value, its uncertainty, the conditions under which the measurement was made and1005

so on.1006

In another way, it can be considered as a lack (or not) of measurement accuracy compared to1007

the one of reference instruments in terms of sensitivity or resolution for instance. Such issues1008

can be known at the design or prototyping stage of measuring instruments depending on their1009

components. Therefore, to improve the quality of the measurements, the performances of the1010

instruments have to be upgraded. This can be achieved along the advances during the conception1011

and manufacturing of its components.1012

The data quality issue can also be observed as a challenge regarding the ability of a measuring1013

instrument to deliver results consistent with its specifications during its life. In the field of1014

dependability, this can be considered as a question of reliability. It is the continuity of correct1015

service delivered by a system [5]. For an instrument, the correct service is the achievement of1016

measurements consistent with its metrological specifications. It is often observed that the quality1017

of low-cost devices decays with time, even under regular operating conditions [33]. This is the1018

general issue we focus on in this work.1019

The threats to the dependability of a system, and consequently the threats to its reliability,1020

are failures, errors and faults [5]. A failure is an event making the instrument no longer able1021

to deliver a correct service regarding its specifications or requirements. This event is triggered by1022

a deviation of the normal state of the system, called an error, and its potential cause is a fault.1023

The fault itself may be explained by the failure of another part of the system and so on. Thus,1024

there is a relationship of causality between these concepts [5].1025

In our case, the failure we are interested in for a measuring system is the event when the1026

measurement results it delivers are not correct regarding the actual values of the measurand1027

and the results that should be provided by the device. To improve the quality of data provided1028

by low-cost measuring instruments, it is necessary to determine the faults that are causing this1029

failure. The faults of a measuring system can be studied from different perspectives depending1030

on the case [115]. Consider an instrument that is in failure mode from the point of view of data1031
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due to the absence of measurement results. With a data-centric point of view, the fault that1032

generated this failure could be called "missing data". However, with a system-centric approach,1033

this "missing data" fault can be explained in several ways, for instance a failure from a component1034

of the measuring chain, a power failure or a communication failure, and these failures could be1035

explained by a wide variety of faults depending on the system considered as illustrated in Figure1036

1.2.1. Therefore, a point of view must be chosen.1037

Low-
battery

Low-
power

Power 
failure

Missing
data 
fault

Data 
error

Data 
failure

Fault Error FaultFailure Error Failure

System-centric Data-centric

… …

Figure 1.2.1: Example of situation where a fault from a system-centric point of view generates
a fault and then a failure from a data-centric perspective.

We propose to take a data-centric point of view. Indeed, from the review of Section 1.3.3,1038

data processing techniques are seen as promising means to improve the quality of the results of1039

measuring instruments. Consequently, we choose to define the faults that we are interested in1040

from what can be observed from the output of the measuring chain of an instrument, e.g. its1041

indications or its measured values, because they are the inputs of data processing algorithms.1042

The identification of the cause of the faults, whether they concern the measuring chain of the1043

instruments or not, will not be studied here.1044

2.2 Faults1045

Several taxonomies have been proposed to differentiate faults of measuring instruments and1046

sensor networks [98, 114, 115, 125].1047

In this work, we propose to use the following taxonomy, inspired from a previous work1048

conducted by Ni et al. [115] that focuses on the relationships between faults taken from different1049

points of view.1050

Eight different types of faults conducting to a possible data failure were identified. The list of1051

possible faults is illustrated in Figure 1.2.2. In this figure, the fault-less signal is vtrue(t) = sin(ωt)1052

with t ∈ [0; 100] and ω = 2π × 0.01.41053

Noise Disturbances present in the indications and which may be correlated or not to the true1054

signal. Usually, it is modelled as a Gaussian white noise, e.g. a random variable following1055

a normal law N of null average and with a given standard deviation, that is added to the1056

true values. This fault is usually permanent but is also intrinsic to a digital measuring1057

instrument. In fact, noise is considered as a fault when it exceeds the specifications of the1058

instrument. Its severity may vary over time.1059

In Figure 1.2.2a, the measured values v(t) are equal to v(t) = vtrue(t) + ε(t) with ε(t) ∼1060

N (0, 0.3).1061

Spikes The measured values at some instants are very different from the ones expected. This1062

observation is based on the previous and following values, if there is no physical cause1063

related to the measurand that could explain this variation. They can be of two types:1064

single-point (only one point differs in the data set) or multi-points (a few points differ in1065

the data set). The spike is characterised by its amplitude and, for multi-points, by its1066

4The unit of time is arbitrary.
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Figure 1.2.2: Considered faults for measuring instruments in the manuscript (continued)

shape, which both may vary. A probability law is associated to determine the frequency of1067

spike occurrence. This fault is transient, but its frequency and severity may vary over time.1068

In Figure 1.2.2b, two one-point spikes appear at t = 30 and t = 70 with a respective1069

amplitude of 50% and 250% to the related values, and one multi-points spike appears at1070

t = 58 for 5 time steps with a maximal amplitude of 75% of the absolute value of the signal1071

and with a triangular shape.1072

Drift The drift fault is "a continuous or incremental change over time in indication, due to1073

changes in metrological properties of a measuring instrument" [14]. Usually, this fault is1074

permanent and irreversible, except if it is due to influence quantities which the effect is not1075

compensated by the measuring system and is reversible.1076

In Figure 1.2.2c, there is a drift of the gain G added, so that v(t) = (1 +G(t)) · vtrue(t) It1077

is defined as:1078

G(t) =
{

0 if t < 50
0.01(t− 50) if t ≥ 50

Stuck-at Several consecutive values are identical when they should not. This fault can be1079

transient or permanent, e.g. it may last for a certain amount of time or forever when it1080

appears.1081

In Figure 1.2.2d, this fault appears at t = 45 and lasts for 10 time steps.1082
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Figure 1.2.2: Considered faults for measuring instruments in the manuscript

Bad timing A measurement result was obtained but has a timestamp differing from the one1083

expected. It can be a transient fault, for instance due to a momentary latency of the1084

instrument, or a permanent fault due to the drift of the clock of the device.1085

In Figure 1.2.2e, values expected at t ∈ [60; 100] are recorded with a delay of 8 units of1086

time.1087

Missing values Measured values have been lost. As for the stuck-at fault, it can be a transient1088

or a permanent fault. In Figure 1.2.2f, values at t ∈ [50; 80] are missing.1089

Measured values out of range The recorded measured values are out of the measurement1090

range of the sensor.1091

The instrument may behave differently depending how it was designed to manage such1092

fault. It may detect this fault and do not record the value, detect it and record it anyway,1093

or it does not have a detection system and record the values normally. If recorded, the1094

value may be equal to one of the bounds of the measurement range, simulating as it is1095

stuck-at, or to another one, more or less related to the true value of the measurand.1096

In Figure 1.2.2g, we considered the instrument having a range of [0; 0.90] and recording the1097

values, behaving as it is stuck-at when values are out-of-range.1098

Operating conditions out of range The environment of measurement is out of range of the1099

sensor’s normal operating conditions. Like for the fault of measured values out of range,1100

the possibly wrong values may be managed differently depending on the instrument. They1101

can be recorded normally, or recorded but marked as unreliable or not recorded at all.1102
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In Figure 1.2.2h, the instrument is not recording values anymore when the operation1103

condition signal exceeds 40.1104

2.3 Discussion1105

This fault taxonomy is a list of the most common data faults that can be observed in sets of1106

measurement results from measuring instruments. Although several faults may be related to1107

each other5, they provide a reasonable overview of the threats to the data quality of measuring1108

instruments, in terms of accuracy of the results. The way they appear and how they manifest in1109

the data can be discussed in detail for each type of device but is out of the scope of this work.1110

These different faults can be differentiated in terms of how an instrument may be able to deal1111

with them. Indeed, low-cost environmental measuring instruments have computing capabilities,1112

though sometimes minimal. Thus, they can be self-aware of their characteristics and may be1113

able to pre-treat their measured values and potentially identify some faults.1114

For instance, concerning the "out of range" fault, a device can be able to detect when it1115

produces a value higher than its maximal possible output if it knows its measurement range. The1116

instrument may then raise an error indicating it made an incorrect measurement, either because1117

the value of its own measurand was indeed too high compared to its properties or because the1118

measuring instrument is producing an erroneous response to the value of the measurand for1119

instance. This reasoning can be extended to the faults "bad timing", "missing value" or even1120

"operating conditions out of range" if a measuring instrument can access to information on its1121

operating conditions, with the help of other devices. Note that these three faults do not concern1122

directly the measured value but more how it was obtained. On the contrary, "noise", "stuck-at",1123

"spike" and "drift" faults concern directly the measured value like the "out of range" fault. To1124

detect them with a data-centric approach, an analysis of the measured values has to be carried1125

out. "Noise", "stuck-at" and "spike" are faults having a characteristic time shorter than a "drift"1126

fault which usually affects a measuring instrument on a longer time basis. For them it is possible1127

to consider studying the variance or the gradient of the measured signal in a first step [112],1128

although more elaborated techniques have been developed [114]. Be that as it may, self correcting1129

its faults is not straightforward for measuring instruments.1130

In fact, drift is one of the most problematic faults because it is a continuous change over time1131

in the indications of the instruments. In this way, the relationship between the true values of1132

the measurand and the indications evolves. Consequently, the relationship determined through1133

a previous calibration to derive measured values from true values has to be determined again.1134

This is why calibration is an operation also conducted during the maintenance of an instrument1135

and it must be carried out periodically. To follow the traditional guidelines, it requires to take it1136

out of service and to bring it to a calibration facility. After this operation and the adjustment of1137

the instruments, it can be brought back to its deployment site and put back in service. However,1138

in the context of large deployments of measuring instruments, carrying out this maintenance1139

operation in this manner can have a significant cost, both economically and technically. It is all1140

the more important that low-cost devices are particularly prone to declining performances, often1141

sooner than expected [33].1142

3 Calibration of measuring instruments1143

In Section 1.3.3, we briefly introduced the concept of calibration. It was reported as a main1144

concern in studies on the performances of low-cost instruments. Thus, we provide here its formal1145

definition and develop why it is a challenging procedure for large deployments of measuring1146

5For instance, a "spike" fault may trigger a "measured value out of range" fault which itself may be represented
by a "stuck-at". However, this is not always the case: a "measured value out of range" fault can happen due to the
normal evolution of a measurand.
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instruments.1147

3.1 Definition1148

The formal definition of calibration is the following:1149

Definition 17 (Calibration [14]). Calibration is the "operation that, under specified conditions,1150

in a first step, establishes a relation between the quantity values with measurement uncertainties1151

provided by measurement standards and corresponding indications with associated measurement1152

uncertainties and, in a second step, uses this information to establish a relation for obtaining a1153

measurement result from an indication".1154

Definition 18 (Measurement standard [14]). A measurement standard is the "realisation of the1155

definition of a given quantity, with stated quantity value and associated measurement uncertainty,1156

used as a reference".1157

In practice, it means in a first step that the calibration of a measuring instruments consists1158

into observing its response to known values of the measurand. From these observations it is1159

possible to determine a relationship giving the indication provided by a measuring instrument1160

following the value of the measurand. To obtain the measured values from the indications, this1161

relationship has to be inverted. This is summarised in Figure 1.3.11162
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Figure 1.3.1: Schematic description of the steps of a calibration operation

As an example, consider the case of a mercury-in-class thermometer once again. Without1163

its scale, we do not read a temperature value (measured value), we read a level of mercury1164

(indication). Thus, the calibration of this instrument consists into putting the device into several1165

environments for which the conditions are controlled, and the value of the temperature known1166

with its uncertainty. For each value of temperature, the level of mercury is read. Then, it is1167

possible to determine the level of mercury as a function of the temperature. Building the scale1168

for the thermometer consists into inverting this relationship, which is a simple task in this case1169

because it can be approximated as a linear relationship.1170

Following the VIM [14], "calibration may be expressed by a statement, calibration function,1171

calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an1172

additive or multiplicative correction of the indication with associated measurement uncertainty",1173

a correction being a "compensation for an estimated systematic effect".1174

The proper achievement of calibration for a measuring instrument is notably meant to ensure1175

its trueness.1176
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3.2 Analysis1177

Let us have a short analysis of calibration from a mathematical perspective. In this case, the1178

result of calibration is expressed as a function. Consider that ζ(si, t) is the indication provided1179

by si at t and that the measuring chain of the measuring instrument is represented as a function1180

F .1181

Therefore,
∀t, ζ(si, t) = F(vtrue(si, t),q(t))

where vtrue are the true values of the measurand and q is a vector of the values of the1182

influence quantities of the considered instrument.61183

The first step of calibration aims at determining F̂ which is an estimate of F . Then, the
purpose is to derive F̂−1 such as:

v(si, t) = (F ◦ F̂−1)(vtrue(si, t),q(t))

where v are the measured values. Ideally, v(si, t) = vtrue(si, t).1184

However, deriving this function may be challenging because F̂ depends on q(tcalibration),
where tcalibration is the instant of the calibration. If there is no influence quantity, F̂−1 can be
determined without any problem. On the opposite case, F̂−1 should be determined on the entire
space of q, so that with q̂, an estimator of the values of the influence quantities, we can have:

v(si, t) = F̂−1(ζ(si, t), q̂(t)) = F̂−1(F(vtrue(si, t),q(t)), q̂(t)) (1.1)

Obtaining this relationship over the entire space of q is difficult, without considering that the1185

uncertainties also have to be derived. This is why there are two steps in a calibration procedure,1186

e.g. the determination of F̂ and then of F̂−1, the first step alone being often perceived as1187

calibration. F̂ and F̂−1 are often determined under a given finite set of operating conditions. The1188

same reasoning can be extended to any type of expression chosen for the results of calibration1189

(curve, diagram, table...).1190

3.3 In situ calibration1191

Calibration is an operation having a major impact on the quality of the measurements1192

performed by an instrument. Indeed, the output of calibration is a relationship enabling to derive1193

measurement results from indications, e.g. measured values and their associated uncertainties.1194

Through this step, making the budget of the uncertainties on the indications is a prerequisite,1195

and if there are influence quantities at stake, they must be taken into account. Thus, from its1196

definition and all its constraints, it is justified to usually carry out calibration operations in1197

dedicated facilities. This is manageable for few tens of instruments and corresponds to what is1198

done by air quality monitoring agencies for instance [3] but it may be less the case in a deployment1199

involving hundreds of nodes, particularly if they are low-cost. Indeed, these nodes are more1200

prone to drift, requiring more frequent calibrations. Also, it was observed in some works [27, 124]1201

that even if a laboratory calibration is performed, such instruments may behave differently once1202

deployed in the field due to the uncontrolled operating conditions. In this context, maintaining a1203

dense deployment of instruments for environmental sensing, with a significant number of low-cost1204

devices is a tremendous task with classical approaches.1205

This is why research works emerged on in situ calibration algorithms, mostly in the past1206

decade.1207

Definition 19 (In situ calibration algorithms). In situ calibration algorithms aim at calibrat-1208

ing measuring instruments while leaving them in the field, preferably without any physical1209

6Quantities involved in the operating conditions of the calibration can be influence quantities too.
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intervention.1210

They are also called field [64], in place [24] or online [150] calibration algorithms.71211

The literature on the subject studies under which hypotheses, in which manner and with1212

which performances the measurement accuracy of one or several instruments can be improved1213

with such algorithms. Notably in the context of a dense deployment of measuring instruments,1214

comparisons of the measurement results of different instruments could be carried out for instance1215

to perform this task and this is exactly what these algorithms aims at exploiting in practice.1216

Most of the time, in situ calibration strategies do not take indications as an input but
measured values. Mathematically speaking, considering the developments presented in Section
3.2, it means it is not the function F̂ that is derived but a function H mapping what are
considered as standard values and potentially influence quantity values to measured values so
that:

H : (vstandard(si, t),q(t))→ v(si, t)

Then H−1 is derived and, in the same way that we expressed concerns regarding the determination
of F̂−18, the corrected values vcorr(si, t) that we obtain after an in situ calibration can be expressed
as:

vcorr(si, t) = Ĥ−1(v(si, t), q̂(t)) (1.2)

If the in situ calibration is perfect, then vcorr(si, t) = vtrue(si, t).1217

In summary, in situ calibration strategies aim at giving relationships to obtain corrected1218

measured values from measured values. To do so, it uses standards defined with the measured1219

results of other measuring instruments. The measurement uncertainties associated with the1220

measured value measured both by the instruments to calibrate and the ones used to provide1221

standard values can be used to derive the uncertainties of the corrected values. Finally, the1222

operating conditions may be known through instruments measuring other quantities. Thus, in1223

situ calibration is a procedure conceptually close to the formal definition of calibration.1224

3.4 Discussion1225

Deploying a large number of instruments in an environment may offer opportunities to1226

overcome the problem of calibration for low-cost measuring instruments and more generally the1227

issue of data quality. Indeed, the devices deployed can be related in a network, allowing them to1228

share information like their measurement results.1229

However, regarding the formal definition of calibration and depending on the point of view,1230

using results from instruments obtained in an uncontrolled environment to calibrate other devices1231

may not be considered as equivalent to employing measurement standards or to being under1232

controlled conditions. This is particularly true if results from an instrument of an equivalent1233

accuracy class than another is used to calibrate another device.1234

Definition 20 (Accuracy class [14]). The accuracy class (or class) is the "class of measuring1235

instruments or measuring systems that meet stated metrological requirements that are intended to1236

keep measurement errors or instrumental measurement uncertainties within specified limits under1237

specified operating conditions".1238

Indeed, values in which a high confidence can be put are used to calibrate measuring1239

instruments. Thus, the sources of the measurement standards and the conditions under which1240

an algorithm is applied are critical for in situ calibration strategies.1241

7Calibration without any adjective is also used but it may be confusing regarding the definition of calibration
in the VIM [14].

8e.g. it should be carried out on the entire space of q, with an estimator q̂ of the values of the potential
influence quantities.
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4. Sensor networks

4 Sensor networks1242

We define in this section what a sensor network is. Note that we do not discuss (wireless1243

or not) sensor networks in general here. We focus on its characteristics of interest from the1244

perspective of in situ calibration of measuring instruments.1245

4.1 Definition1246

Definition 21 (Sensor network [62]). A sensor network9 is a set of measuring systems spatially1247

deployed in order to periodically measure one or more quantities in an environment and that1248

are exchanging information between them through a communication layer that can be wired or1249

wireless.1250

The measuring systems of the network are also called nodes. A node may be static or mobile.1251

The network can be either meshed, with device to device communications, or a collection of stars1252

centred on gateways for instance. A sensor network may target a single or multiple measurands.1253

For a given measurand, instruments in a same network are not necessarily of the same1254

accuracy class. In this work, those which are known to be more accurate than the others of the1255

network are called reference instruments.1256

It is also supposed that the nodes have sufficient computing and communication capabilities to1257

carry out the operations proposed by algorithms to overcome the issue of their in situ calibration.1258

(a) Each instrument can be related
directly to a reference

(b) Each instrument can be related
indirectly to a reference

(c) No reference instrument in the
netwok

Symbol Definition

Reference node
Non-reference node

Figure 1.4.1: Examples of sensor networks with a different number of reference instruments
and different relationships between the instruments.

4.2 Characteristics of interest in this work1259

Regarding the issue of data quality for low-cost instruments, there are two characteristics of1260

sensor networks particularly interesting to tackle this issue: the presence of reference instruments1261

9Like sensor being used to refer to a measuring instrument, there is also a slight misuse of language here.
However, this expression is widely used.
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for each measurand and the mobility of the nodes.1262

4.2.1 Presence of references1263

In sensor networks, reference instruments may be present in different manners. First of1264

all, it is possible that each non-reference node can compare its measurement results directly to1265

those of a reference one. It is illustrated in Figure 1.4.1a where the edges represent the possible1266

comparisons. They can be defined following a criterion of distance between the nodes.1267

Another possibility is that each instrument can be related to a reference node but in this1268

case there may be intermediary nodes for some instruments as shown in Figure 1.4.1b.1269

Finally, the last possible case is that there is no reference instrument in the network. This is1270

the example of Figure 1.4.1c. Edges were drawn representing relationships between non-reference1271

instruments.1272

In the case of nodes that are measuring systems which do not measure the same quantities,1273

it is possible that the graph of relationship between instruments is different depending on the1274

measurand.1275

ti ti+n

(a) Each instrument is static

ti ti+n

(b) There are both static and mobile instruments

ti ti+n

(c) Each instrument is mobile

Figure 1.4.2: Illustration of the principle of static, static and mobile, and mobile sensor
networks.

4.2.2 Mobility1276

We already mentioned that measuring instruments deployed for environmental monitoring1277

can remain at a fixed position, e.g. they are static, or they can change of position over time, e.g.1278

they are mobile.10 Thus there are three different situation that can happen, regardless of the1279

accuracy class of the instruments:1280

• all the nodes of the network are static.1281

• all the nodes are mobile.1282

10The case of wearable instruments is considered as a particular case of mobile instruments
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• there are both static and mobile nodes in the network.1283

This is illustrated in Figure 1.4.2.1284

Note that in the presence of mobile nodes, the relationships between reference and non-1285

reference instruments as exposed in the previous section may change overtime.1286

4.3 Conclusion1287

In this section, we defined what a sensor network is in a general manner. Two characteristics1288

of sensor network were presented respectively regarding the presence of reference instruments in1289

the network and the mobility of the nodes. The different possible cases for each property were1290

exposed. They are interesting for the problem we want to address because the configuration of1291

the sensor network can be exploited to drive the design of in situ calibration algorithms.1292

5 Problem statement1293

Based on the previous sections, we now detail the problem statement of this thesis briefly1294

exposed above in the General Introduction.1295

5.1 Motivations1296

To perform a dense measurement of ambient quantities in the context of environmental1297

monitoring activities such as air quality, the use of low-cost instruments is necessary to achieve1298

it at a reasonable cost economically speaking.1299

Among all the challenges for the measurement of ambient quantities in the context of1300

environmental monitoring, the need for an improvement of data quality appears to be major,1301

particularly for low-cost devices. Indeed, they are prone to faults, one of them being the1302

instrumental drift.1303

The traditional solution to mitigate this fault is to regularly perform calibration, as part1304

of maintenance operations. However, the cost of these tasks may limit the feasibility of dense1305

deployments of measuring instruments in practice. Indeed, it usually requires taking out the1306

node of the service, bringing it to a calibration facility, calibrating it and putting it back in1307

service. Therefore, there is a need for tools that allow recalibrating measuring instruments while1308

leaving them on the field.1309

Because the aim of environmental monitoring with low-cost instruments is notably to have1310

a high density of instruments in the monitored area, it is tempting to use the measurement1311

results of other instruments to detect and potentially correct drift faults. The sensor network1312

thus constituted may offer opportunities to overcome this issue of data quality. In addition, the1313

presence of reference instruments in the network, or the mobility of the nodes are characteristics1314

that can facilitate the in situ calibration of measuring instruments.1315

Fortunately, researchers have begun to tackle this issue and there are already methodologies1316

exploiting the properties of sensor networks to enable an in situ calibration of measuring1317

instruments.1318

5.2 Objectives of the thesis1319

As stated in the General Introduction, the objective of this thesis is to contribute to the1320

research effort on the improvement of data quality for low-cost measuring instruments through1321

their in situ calibration.1322

In the first place, the goal is to identify the existing techniques in the literature enabling such1323

a calibration. In Section 4, we reported there are sensor networks with different characteristics in1324

terms of presence of reference instruments and of mobility of the nodes. Thus, the same in situ1325

calibration algorithm may not be applicable to each type of sensor network for instance. This is1326
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why a taxonomy is developed for the description of such algorithms, facilitating the identification1327

of the strategies that could be applied to a given sensor network depending on its properties and1328

the characteristics of its instruments.1329

In the case where several in situ calibration algorithms are adapted to a sensor network, it1330

is possible that each strategy does not yield the same performances. In other words, they may1331

not all allow correcting instruments as well as possible. Being able to evaluate the performances1332

of different in situ calibration strategies on the same use case would be valuable. The second1333

objective of this thesis is to provide a means to achieve this task.1334

Finally, before calibrating measuring instruments, it is necessary to determine if an instrument1335

needs to undergo such an operation. In publications introducing in situ calibration algorithms,1336

they mainly focus on how to perform the calibration itself and less on how to identify the faulty1337

instruments in a sensor network. Identifying these instruments is the last objective of this thesis.1338
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Chapter 2. In Situ Calibration Algorithms for Environmental Sensor Networks

Introduction1365

In Chapter 1, we recalled that calibration is a procedure which is part of the maintenance1366

operations that must be carried out periodically on measuring instruments. To follow the1367

traditional guidelines for a device deployed in the field, it requires to take it out of service and1368

to bring it to a calibration facility. After this operation and the adjustment of the instruments,1369

it can be brought back to its deployment site and put in service again. This is manageable for1370

few tens of instruments and corresponds to what is done by air quality monitoring agencies for1371

instance [3]. However, notably in the particular case of environmental sensing, the increase of the1372

number of measuring instruments deployed to ensure a higher spatial coverage may not be feasible1373

due to the cost of regulatory-grade instruments. This is why low-cost instruments are necessary1374

to achieve this goal. In the literature, it is reported they are suffering from multiple issues, one of1375

them being a faster drift than usual instruments. Regarding calibration, it forces to increase the1376

frequency of this maintenance operation and thus its cost, economically and technically. Also, it1377

was observed in some works [27, 124] that even if a laboratory calibration is performed, once1378

deployed in the field, the instruments may behave differently due to the uncontrolled operating1379

conditions. In this context, maintaining a sensor network for environmental sensing and composed1380

of a significant number of low-cost instruments with classical approaches is a tremendous task.1381

This is why research works emerged on in situ calibration algorithms, mostly in the past1382

decade. The literature on the subject is abundant. This is expected as the topic of sensor1383

networks is a very hot research subject due to the trend for Smart Cities and the Internet of1384

Things. More practically, it is also predictable due to the variety of sensor networks as described1385

in Chapter 1, Section 4. Indeed, one can easily suspect that an algorithm may not be applicable1386

to any type of sensor network, on top of the assumptions surrounding it.1387

A major gap is the absence of a unified terminology to describe the field of application of in1388

situ calibration algorithms, regardless of the quantities measured by the sensor network. The1389

large variety of different techniques are reported under different terms in the literature, such1390

as "blind calibration", "multi-hop calibration", "macro calibration" and so on. The expression1391

describing an algorithm, notably in the title or the abstract of publications, is sometimes not1392

unique and is often incomplete. For instance, Balzano et al. [7] or Wang et al. [168] present their1393

strategies as "blind calibration" algorithms but it does not indicate if it is applicable to static1394

sensor networks, mobile ones or both. Consequently, it is not crystal-clear for an end user from1395

the first lines of an article if its content matches his/her needs.1396

Thus, through the literature review carried out on in situ calibration algorithms in this thesis,1397

a synthetic taxonomy for their classification is proposed in the following sections.1398

1 Scope of the taxonomy1399

To build the taxonomy, several guidelines were adopted. First of all, it should help to identify1400

relevant algorithms for any type of sensor network.1401

Also, the terms must be independent from the kind of measurand of the sensor networks: the1402

groups of categories described are relevant for any environmental phenomenon.1403

The attributes should also be limited to the properties involved in the definition of in situ1404

calibration, e.g. the definition of the measurement standards, how the relationship between1405

measured values and standard values is established and the relationship correcting the measured1406

values.1407

There are other considerations that could matter and interact with calibration, such as data1408

integrity, security or even privacy, in particular when crowdsensing platforms involving citizens1409

are developed [102]. The way the calibration relationship is computed, e.g. in a centralised or1410

decentralised manner is also a major subject. As a matter of fact, the care for the management1411

of these questions at an early step of the design of the sensor networks is crucial. The way these1412
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concepts are implemented with respect to the system architecture may have a significant impact1413

on the effectiveness of some calibration methods.1414

Nevertheless, they are not attributes that are directly driving the result of the calibration1415

procedure compared to the network architecture and the algorithmic principles underlying the1416

calibration method. Thus they are not in the scope of the presented taxonomy but defining1417

characteristics that should be clarified in a second step to describe an in situ calibration strategy1418

as part of a "datasheet" could be valuable for future works.1419

2 Taxonomy for the classification of the algorithms1420

The following subsections introduce the proposed taxonomy for the classification of in situ1421

calibration strategies for sensor networks.1422

They can be divided into two categories: network architecture characteristics, namely the1423

nature of instruments and their potential mobility, and the algorithmic principles of the calibration1424

techniques, namely the mathematical structure of the calibration relationship and to which point1425

the algorithm can be distributed.1426

Each subsection represents a primary level group of categories that may have others nested.1427

Categories for each group are in bold font. Figure 2.2.1 represents all the primary levels of the1428

taxonomy and the defined categories.1429

Classification of in situ calibration strategies

Use of reference 
instruments

Calibration 
relationshipGrouping strategyMobility of the 

instruments

Reference-based

Partially blind

Blind

Static

Mobile and static

Mobile

Pairwise calibration

Group calibration

Macro calibration

Mono-kind variables without time

Mono-kind variables with time

Multiple-kind variables with time

Multiple-kind variables without time

Groups of categories related to the algorithmic principle
and output

Groups of categories related to the architecture of 
the network

Figure 2.2.1: Proposed taxonomy for the classification of in situ calibration algorithms

2.1 Use of reference instruments1430

One of the first criteria of classification is how the calibration method assumes the presence1431

of reference instruments within the network. This is why this characteristic was introduced as a1432

major feature of sensor networks for our problem in Chapter 1 Section 4.2.1. Three categories of1433

in situ calibration strategies are derived from this property with the examples from Figure 1.4.11434

in Chapter 1 to illustrate them.1435

The calibration of measuring instruments using a sufficient number of reference measurement1436

instruments is called reference-based calibration. It means the network is composed of1437

both reference and non-reference instruments and that all the non-reference instruments can1438

be calibrated using at least one reference instrument. The approach postulates the existence1439

of a calibration relationship between each non-reference instrument and at least one reference1440

instrument because they are close enough for instance.1441
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The calibration of measuring instruments in the absence of reference values is called blind1442

calibration. It means the network is composed of only non-reference instruments. These various1443

methods may or may not assume the existence of a correlation between the instrument outputs.1444

The hybrid situation is called partially blind calibration. In this setting, the network1445

may gather both reference and non-reference instruments, but a reference-based calibration is1446

not achievable, e.g. when some of the non-reference instruments can never be compared to a1447

reference instrument. It also captures the cases where a cluster of non-reference instruments is1448

considered as good enough to approximate a reference instrument.1449

2.2 Mobility of the instruments1450

The second significant aspect of the network architecture is the potential mobility of nodes.1451

As for the presence of references, this characteristic was also introduced as a major feature1452

of sensor networks in Chapter 1 Section 4.2.2. In the same way, three categories of in situ1453

calibration strategies are considered to illustrate how the methods exploit this feature. Figure1454

1.4.2 in Chapter 1 provides examples also illustrating these categories.1455

A first category of methods addresses networks with exclusively static nodes. A second1456

one addresses networks with exclusively mobile nodes. The corresponding methods rely often1457

strongly on the mobility of the nodes to achieve calibration. A last group of methods addresses1458

heterogeneous networks with both mobile and static nodes. In such cases the mobility of the1459

nodes is not systematically exploited in the calibration strategy.1460

2.3 Calibration relationships1461

In Chapter 1 Section 3, the purpose of calibration was defined as the establishment of a1462

mathematical relationship between the indications of the instrument and the standard values of1463

the measurand and then the derivation of a relationship for obtaining measurement results from1464

indications. Based on the mathematical developments in Chapter 1 Section 3.2, it is possible to1465

have different types of relationships, for instance if there are influence quantities or not.1466

The categories identified in this section are first based on the number of kinds of quantities as1467

input variables in the relationship: the measurand, the indications, the influence quantities, and1468

so on. In terms of algorithmic principles of the calibration methods, it implies the variety and1469

quantity of data to exchange as well as the computational effort necessary to achieve a target1470

accuracy.1471

The most straightforward relationships are called mono-kind variables without time.1472

They only take a single quantity as input variable and do not depend on time.1473

The second category of relationships gathers the ones that have mono-kind variables with1474

time. It accounts for a relationship with mono-kind variables which is influenced by time, for1475

instance in case of an instrument drifting due to ageing [160]. This is the reason why time is1476

considered as a particular influence quantity.1477

The relationships with multiple-kind variables without time account for two or more1478

quantities as variables but remain independent from time. These models are mainly used1479

to include the effect of influence quantities (except time) in the calibration relationship. In1480

these cases, the networks include instruments measuring the influence quantities. They are not1481

systematically reference instruments and therefore their calibration may also be included in the1482

calibration strategy.1483

Finally, this last approach may be extended into relationships with multiple-kind variables1484

with time when appropriate.1485

For each of these categories, subcategories can be defined based on the kind of mathematical1486

expression used for the calibration relationship. Popular examples are polynomials with constant1487

coefficients [7], gain-phase [13], variable offset [168], neural networks [36].1488
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These categories are particularly important regarding in situ calibration strategies. Indeed,
considering Equations 1.1 and 1.2 in Chapter 1 Section 3, we have then:

vcorr(si, t) = Ĥ−1(F̂−1(ζ(si, t), q̂(t)), q̂(t))
= Ĥ−1(F̂−1((F(vtrue(si, t),q(t)), q̂(t)), q̂(t))

(2.1)

For example, and recalling that in fine the purpose of in situ calibration is to determine the1489

relationship Ĥ−1, assume that the calibration relationship F̂−1 of an instrument is defined so1490

that:1491

v(si, t) = G · ζ(si, t) +O + κ · θ(t)

where G, O and κ are constant and G is a correction of the gain of the instrument, O a1492

correction of the offset, and κ · θ(t) a temperature compensation standing for q̂(t) in the general1493

expression of F̂−1.1494

If the behaviour of the measuring instrument changes over time, F̂−1 cannot ensure that
v(si, t) = vtrue(si, t). If the calibration relationship F̂−1 cannot be adjusted, the relationship
Ĥ−1 obtained with an in situ calibration strategy may compensate the change of behaviour.
Consider Ĥ−1 such as:

vcorr(si, t) = Gcorr · v(si, t) +Ocorr + κcorr · θ(t)

Therefore:

vcorr(si, t) = GcorrG · ζ(si, t) + (GcorrO +Ocorr) + (Gcorrκ+ κcorr) · θ(t)

Here, Ĥ−1 allows determining a calibration relationship equivalent to the type of F̂−1.1495

However, if Ĥ−1 is such as:

vcorr(si, t) = Gcorr · v(si, t) +Ocorr

Then:
vcorr(si, t) = GcorrG · ζ(si, t) + (GcorrO +Ocorr) +Gcorrκ · θ(t)

In this case, it may not be possible to correctly compensate the drift of the instrument si1496

because GcorrG and Gcorrκ are coupled: it is not possible to correct them independently.1497

This is why the type of relationship, both considering the quantities at stake and the kind of1498

relationship between them, is a key parameter of in situ calibration algorithms.1499

2.4 Instrument grouping strategies1500

While the previous categories are mostly driven by operational constraints (deployment1501

strategy, properties of the measurand and of the selected instruments), the present paragraph1502

considers the number of nodes involved in each calibration step and to which point the algorithm1503

can be distributed.1504

A first approach is pairwise calibration. Two instruments are used, one providing standard1505

values for the other. It is classically applied between a reference instrument (or an approximation1506

of reference) and each of the nodes related to it. It can be a distributed or even localised1507

algorithm. This case is illustrated in Figure 2.2.2a.1508

A macro calibration strategy consists in calibrating the network as a whole, e.g. the1509

values of all the instruments are used to calibrate each node of the network. Even if they exist,1510

node-to-node relationships may not be exploited directly. A centralised algorithm might be1511

necessary with this grouping strategy. This case is illustrated in Figure 2.2.2c.1512
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(a) Pairwise calibration (b) Group calibration (c) Macro calibration

Symbol Definition

Instrument to calibrate
Instrument involved
Instrument not involved

Figure 2.2.2: Examples of cases for grouping strategies from the point of view of an instrument
to calibrate. It shows which instruments are used to calibrate it. In these figures, the sensor
networks are equivalent in terms of the number of instruments and relationships between the
instruments. The relationships between the instruments in Figure 2.2.2c are not represented

because they may not be exploited directly.

Group calibration is an intermediate approach consisting in carrying calibration operation1513

among groups of measuring instruments among the whole network. In this case, the criteria1514

defining these groups become essential. This approach may be used when pairwise calibration1515

induces significant errors, while macro calibration approaches are not fine adjusted enough.1516

This category includes notably strategies where groups are composed of instruments measuring1517

additional quantities besides the main target quantity. These additional quantities are often1518

included as influence quantities in the calibration relationship. These algorithms can be at least1519

partially distributed, e.g. the computation is concentrated on an elected group leader, or fully1520

distributed at the cost of messages broadcasting. This case is illustrated in Figure 2.2.2b.1521

3 Comparison to other taxonomies1522

During the development of the presented taxonomy, two notable works reviewing calibration1523

algorithms for sensor networks were conducted and published within a few months.1524

The first publication is from Maag et al. [95] and focus on sensor networks for air pollution1525

monitoring, addressing operational concerns regarding to calibration. Maag et al. build their1526

classification of the algorithms around the terms "blind calibration", "collaborative calibration",1527

"blind and collaborative calibration" and "transfer calibration". They add precision regarding1528

the mobility of the instruments in the publications they cite. Without going into details of1529

the definitions of the terms, it is a taxonomy with few attributes: blind group calibration and1530

blind macro calibration strategies cannot be distinguished with this taxonomy for instance. This1531

information on how the instruments are grouped to perform a calibration is important, notably1532

if a distributed algorithm is targeted. This is why this feature was added in the presented1533

taxonomy.1534

The second publication is from Barcelo-Ordinas et al. [8]. The taxonomy they developed1535
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Calibration
Area of interest Processing mode

Position from reference

Groun- truth use

Micro (Point)

Macro (Area)

Blind

Semi-blind

Non-blind

Collocated

Multi-hop

Model-based

Centralized

Distributed

Number of sensors

Sensor Fusion

Single sensor

Calibration time

Pre/Post

Periodic

Opportunistic

Operation mode

On-Line

Off-Line

Figure 2.2.3: Taxonomy for the classification of self-calibration algorithms according Barcelo-
Ordinas et al. [8]

is more detailed. All the categories of attributes they proposed are represented in Figure 2.2.3.1536

Some of them are common with the presented taxonomy, like the use of reference instruments1537

which is called the "ground-truth use". There are also differences. First, two groups of categories1538

are close to what was defined here as the grouping strategy in the presented taxonomy: the "area1539

of interest" and the "number of instruments". However, the associated definitions and the number1540

of categories in these groups do not strictly match the ones given in Section 2. Also the idea of1541

using reference instruments is refined in this taxonomy with a "position from reference" group1542

of attributes, meaning the authors do not consider a relationship between the use of reference1543

instruments and the category "position from reference". Barcelo-Ordinas et al. also provided1544

other groups of attributes like the "calibration time", the "operation mode" or the "processing1545

mode". The processing mode was stated as not in the scope of the presented taxonomy in1546

Section 1. The "calibration time" (pre/post, periodic, opportunistic) and the "operation mode"1547

(on-line, off-line) can have an influence on the data quality of the instruments. Indeed, two1548

algorithms with the same attributes except one that performs a periodic calibration and the1549

other an opportunistic one may not give the same results. However, we estimate that such1550

features should be considered in a second phase while identifying relevant algorithms considering1551

a given sensor network. For this reason, these features were not added to the presented taxonomy,1552

contrary to Barcelo-Ordinas et al. Finally, contrary to the work of Maag et al. and the work1553

presented here, Barcelo-Ordinas et al. did not consider the mobility of the instruments of the1554

network as an attribute of in situ calibration algorithms.1555

In both of these works, the mathematical expression of the calibration relationship is not1556

directly an attribute of the algorithms. This topic is discussed but separately from others like1557

the presence of reference in the network. In addition, calibration relationships are considered1558

from the point of view of the mathematical expression only in both publications. The question1559

of the calibration relationship is more developed in the presented taxonomy. The classification of1560

calibration relationships is decomposed in two levels in our work: first the kinds of quantities1561

involved in the relationships and then their mathematical expression. In this way, the proposed1562

taxonomy provides a description capturing more information on the calibration relationships in1563

in situ calibration algorithms.1564
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To conclude, the presented taxonomy is halfway between the one of Maag et al. which is1565

based on few groups of attributes, and the one of Barcelo-Ordinas et al. that is more extensive1566

but with information excluded from the scope of this work. Our taxonomy is limited to what1567

is seen as the essential attributes of an in situ calibration algorithm and designed with an1568

effort to avoid any redundancy or misunderstanding from the terms used, the taxonomy of1569

Barcelo-Ordinas et al. being sometimes confusing due to some groups of categories that are1570

semantically close. Nevertheless, all these works are interesting basis towards the definition and1571

use a shared terminology.1572

4 Review of the literature based on this classification1573

An application of the classification is provided here with highlights on the existing literature.1574

A large number of in situ calibration studies according to this classification are sorted in Table1575

2.4.1. Some rows refer to multiple papers as they are related somehow (same technique or same1576

authors) and consist in developments of the same initial paper. The current section focuses on a1577

description of the methods. The topic of performance comparison between methods is addressed1578

in the next section. The addressed measurands cover a wide range of environmental quantities:1579

temperature [7], pressure [182], noise [129], air pollutants [63], light [163]... Most of the reported1580

studies have generic approaches that can be transposed to other measurands.1581

4.1 Overview1582

Regarding pairwise strategies, relatively few papers address methodological issues related to1583

reference-based pairwise strategies, as this approach is the closest to a "traditional" calibration1584

approach with measurement standards and features fewer challenges. Partially blind and blind1585

pairwise calibration methods (often focusing on mobile nodes) are more complex as they require1586

to define calibration relationships not only between reference and non-reference nodes, but also1587

between non-reference nodes only. This translates into error propagation issues.1588

Macro calibration approaches were initially developed to address the absence of reference1589

instruments in a network and thus are mostly blind or partially blind. In the absence of reference,1590

there is a strong challenge in defining valid calibration relationships based on values from1591

non-reference instruments, which explains the major consideration for these methods.1592

Group strategies have been generating strong interests as they appear to outperform both1593

pairwise and macro strategies with or without reference instruments.1594

Most methods are based on relationships with mono-kind variables without time and with1595

a linear expression, but more complex models are progressively appearing to better address1596

the complexity of environmental sensing. Moreover, a particular attention is given in most1597

publications to the calibration relationship used compared to the other attributes of in situ1598

calibration that we identified. This can be explained by the significance of this information for1599

readers, e.g. it allows determining if the algorithm is able to provide a correction corresponding1600

to the way an instrument drifts.1601

Likewise, while most works initially focused on static networks, there are now many interests1602

for mobile nodes as they allow for physical rendez-vous between nodes. Henceforth, calibration1603

methods are less impacted by the physical variability of the phenomena.1604

Finally, an underlying question addressed is the ability to distribute the computation of1605

calibration relationships [23, 55, 107, 129, 143, 144, 177]. The topic is of strong interest when1606

considering privacy preservation issues [102]. The capability to decentralise is linked to the1607

grouping strategy: pairwise and group strategies foster more naturally decentralised computation,1608

under the condition that the nodes are capable of individual procession and of bidirectional1609

communication. On the contrary, macro-calibration strategies tend to be centralised, except1610

when the characteristics of the parameter identification methods allow for partially or fully1611
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Table 2.4.1: In situ calibration strategies for sensor networks
R: Reference-based, PB: Partially blind, B: Blind, P: Pairwise, Gr: Group, Ma: Macro,
1V: Mono-kind variables without time, 1VT: Mono-kind variables with time, MV: Multiple-kind
variables without time, MVT: Multiple-kind variables with time, M: Exclusively mobile, S:

Exclusively static, MS: Mobile and static

Papers

Availability
of reference
instruments

Instruments
grouping
strategies

Kinds of variables
in calibration
relationships

Mobility
of the

instruments

R PB B P Gr Ma 1V 1VT MV MVT M S MS

Ramanathan et al. [123] X - - X - - X - - - - X -
Miluzzo et al. [107] X - - - X - X - - - X - X

Deshmukh et al. [39] X - - X - - X - - - - X -
Spinelle et al. [139, 140] X - - X X - X - X - - X -
Moltchanov et al. [109] X - - X - - X - - - - X -
Gao et al. [58] X - - X - - X - X - - X -
Lin et al. [88] X - - X - - X - - - - X -
Fang et al. [50, 51] X - - - X - - - X - - X -
Martin et al. [103] X X - - X - - - X - - X -
Sun et al. [147] X - - - X - - - X - - X -
Zimmerman et al. [186] X - - - X - - - X - - X -
Weissert et al. [108, 171] X - - - X - X - - - - X -
Yu et al. [184] X - - - X - - - X - - X -
Topalovic et al. [155] X - - X X - X - X - - - -
Wei et al. [169, 170] X - - - X - - - X - - X -
Mahajan et al. [96] X - - X X - X - X - - X -
Malings et al. [100] X - - - X - - - X - - X -
Qin et al. [120] X - - - X - - - X - - - X

Barcelo-Ordinas et al. [9, 10,
53] X - - - X - - - X - - X -

Wang et al. [165] X - - - X - - - X - - X -
Loh et al. [91] X - - X - - X - X - - X -
Badura et al. [6] X - - X X - X - X - - X -
Cordero et al. [34] X - - - X - - - X - - X -
Tsujita et al. [156] - X X X - - X - - - X - X

Tsujita et al. [157] - X X X X - - - X - - X -
Y. Xiang et al. [177] - X X X - - X - - - X - X

Hasenfratz et al. [63], Saukh
et al. [131, 132] - X X X - - X - - - X - X

Fu et al. [57] - X X X - - X - - - X - X

Maag et al. [93, 94] - X X - X - - - X - X - X

Arfire et al. [4] - X X - X - X X X X X - X

Markert et al. [102] - X X X X - X - - - X - X

Kizel et al. [75] - X - X - - X - - - - X -
Sailhan et al. [129] - - X X X - X - - - X - -
Fonollosa et al. [56] - X X X - - X - - - - X -
Whitehouse et al. [172] - - X - - X X - - - - X -
Ihler et al. [65] - X X - X - X - - - - X -
Taylor et al. [152] - - X - - X X - - - - X -

continued on next page
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continued from previous page

Papers

Availability
of reference
instruments

Instruments
grouping
strategies

Kinds of variables
in calibration
relationships

Mobility
of the

instruments

R PB B P Gr Ma 1V 1VT MV MVT M S MS

Tan et al. [151] - - X - X - X - - - - X -
Bychkovskiy et al. [24] - X X X - - X - - - - X -
Balzano et al. [7], Lipor et
al. [89], Dorffer et al. [44] - X X - - X X - - - - X -

Takruri et al. [148–150] - - X - - X X - - - - X -
Kumar et al. [76, 77] - - X - X - X - - - - X -
Ramakrishnan et al. [122] - - X - - X X - - - - X -
Buadhachain et al. [23] - - X - X X X - - - X - X

Bilen et al. [13] - - X - - X X - - - - X -
Cambareri et al. [25] - - X - - X X - - - - X -
C. Wang et al. [161–163] - - X - - X X - - - X - -
C. Xiang et al. [176] - - X - - X X - - - X - -
Dorffer et al. [41–43, 45] - X X - - X X - - - X - -
Y. Wang et al. [166–168] Li
[87] - - X - - X - X - - - X -

Ye et al. [182] - - X X - - X - - - X - -
De Vito et al. [36, 47] - - X - X - - - X - - X -
Son et al. [137], Lee [82] - - X - - X X - - - X - -
Stankovic et al. [143, 144] - - X - - X X - - - - X -
Fishbain et al. [55] - X X - X - X - - - - X -
Popoola et al. [118] - - X X - - - - X - - X -
Yan et al. [180] - - X - X - - - X - - X -
Yang et al. [181] - - X - - X X - - - - X -
Mueller et al. [113] - - X - X - - - X - - X -
Kim et al. [74] - - X - X - - - X - - X -
Chen et al. [30] - - X - - X - - X - - X -
Wu et al. [175] - - X - X - X - - - - X -
Becnel et al. [11] - X - X X - X - - - - X -
Cheng et al. [31] - X - X - - X - - - - X -
Sun et al. [146] - X - - X - - - X - X - -

decentralised computation. However, while distributed computing impacts the computational1612

performance of algorithms, there is no report on how it affects calibration performances so far.1613

4.2 Mobile and static nodes1614

Static networks are more frequently studied than mobile ones. A wide range of solutions1615

is now available to calibrate them. However, these calibration methods usually require a high1616

spatial density of nodes to overcome the spatial variability of the phenomena, which is not always1617

viable technically or economically. The availability of mobile nodes could alleviate this constraint,1618

as calibration operations exploit physical rendez-vous between nodes. In turn, the methods based1619

on this principle are challenged when the rendez-vous frequency is too low compared to the speed1620

of degradation of the measurement accuracy [132]. In such cases, the addition of a few reference1621

nodes seems to yield satisfying results [45, 63, 146]. Moreover, a challenge of mobile instruments1622

is that they face rapid transients. To address this, methods initially developed for static networks1623

appear promising, such as the work of De Vito et al. [36, 47] which uses dynamic and nonlinear1624
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supervised machine learning tools.1625

4.3 Calibration relationships1626

Most reported relationships are of mono-kind variables without time type and based on1627

linear expressions. Nevertheless, there is a rising interest for models with multiple-kind variables,1628

which stems from the observation that there are indeed significant influence quantities for various1629

environmental measurands, notably air pollutant concentrations or temperature and humidity.1630

It often depends on the technology of the instruments used [50, 68, 71, 136, 169, 170]. Such1631

relationships gave very interesting results compared to simpler relationship models:1632

• for reference-based group calibration in [6, 9, 10, 34, 53, 120, 139, 140, 147, 155]1633

• for partially blind group calibration strategies in [4, 50, 93, 103], including with time-1634

sensitive models in [4, 23]1635

• for blind strategies, either pairwise or group based, in [47, 113, 118, 180].1636

On the contrary, relationships with multiple-kind variables were shown to be unnecessary in1637

[22, 64] where the control of the operating temperature of the device was sufficient to perform a1638

pairwise calibration without being influenced by this quantity. Malings et al. [100] reached a1639

similar conclusion while also indicating that generalised models, e.g. calibration relationships1640

built on all the values of the different measurands of a measuring system for all the instruments of1641

the device, have several advantages: they reduce the effort required to calibrate the instruments1642

because only one generalised relationship is derived instead of individual ones.1643

In general, time-dependent approaches are used to address drift issues. Drift is often modelled1644

as an additive random variable with a given probability distribution [167, 177], so that drift-1645

compensation translates as an offset correction.1646

4.4 Pairwise strategies1647

Reference-based pairwise1648

Relatively few papers address methodological issues related to reference-based pairwise1649

strategies, as this approach is the closest to a "traditional" calibration approach with measurement1650

standards. Primarily, reference instruments may be directly co-located in the field with non-1651

reference instruments to achieve their calibration [6, 50, 88, 96, 123, 139, 140, 155].1652

However, more automated strategies are expected, requiring less the co-location of instruments.1653

Nevertheless, even in the simple case of a relatively dense sensor network, the measurand may1654

spatially vary too much in general to relate a reference instrument at a given location to an1655

instrument at another location for calibration purposes. As an elementary solution to this,1656

Moltchanov et al. [109] proposed to carry out calibration against the reference node using only1657

the data collected during a specific time span based on the postulate that the phenomenon varies1658

less during this time span. This was an idea previously developed by Tsujita et al. [157] including1659

weather conditions used to correct the measured values but not with a reference-based approach.1660

In the context of the Internet of Things, Loh et al. proposed a web-query based framework using1661

machine learning to calibrate portable particulate matter measuring instruments. They reference1662

values are obtained from governmental monitoring stations.1663

Partially blind pairwise1664

Partially blind pairwise calibration focuses mostly on mobile nodes. Tsujita et al. [156]1665

tackled it first for mobile nodes by proposing that the device to calibrate should display either the1666

value of a reference node that is close enough, or the average measurements between co-located1667
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nodes if no reference node is available. A calibration parameter is adjusted with these values to1668

correct measurements between rendez-vous.1669

Y. Xiang et al. [177] later proposed another method. They also distinguish calibration1670

based on the values of a reference instrument and on the values of a non-reference instrument.1671

Their originality relies in the correction of the values that is performed with an estimator of the1672

drift error of the node. This error is recalculated at each calibration by minimising its variance1673

according to a linear combination of the values of the instruments involved in the calibration1674

process.1675

Hasenfratz et al. [63] addressed by various methods the case of calibration for mobile devices1676

against reference instruments or not. They notably provided dedicated extensions for the case1677

where some devices rarely encounter reference instruments. They also demonstrated a linear1678

dependency between the measurement error and the number of intermediary calibrations between1679

a given node and the reference node it is calibrated against. In [132] and [131], Saukh et al.1680

proposed solutions to this issue of error accumulation by working on the occurrence of rendez-vous1681

between nodes, in view of maximising the opportunities of calibration. An alternative idea1682

was developed by Fu et al. [57] who proposed the optimisation of the deployment of reference1683

instruments to ensure that all nodes can be calibrated against one of the references with a path1684

no longer than k hops. Then Maag et al. [93, 94] and Arfire et al. [4] extended this work to1685

models with multiple-kind variables, with and without time dependency. They showed that the1686

complexity of the model should be adjusted based on the frequency of rendez-vous.1687

In a similar way, Markert et al. [102] introduced a calibration strategy based on rendez-vous1688

but with a particular focus on privacy aspects for the exchange of data.1689

Kizel et al. [75] also proposed a multi-hop calibration method consisting into co-locating two1690

devices for a certain time, one being the reference to the other, and then moving the freshly1691

calibrated device close to another non-calibrated, a reference instrument being introduced in the1692

loop to reset the error that accumulates. The advantage is the error is related to the number of1693

hops that took place like in [63].1694

Sailhan et al. [129] developed a multi-hop, multiparty calibration scheme with the addition1695

of an assessment protocol for the relevancy of the calibration, based on a weighted directed1696

hypergraph of the network, the weights indicating the quality of the calibration. The presented1697

strategy was applied to blind networks but as in [63], it could be extended to partially blind1698

networks.1699

In the case where the instruments cannot be mobile, Weissert et al. [108, 171] proposed to1700

use a proxy model in their framework for the calibration of sensor networks. It consists into1701

using the mean and standard deviation of the data obtained at a given location that is equivalent1702

in terms of land use compared to the location of the instrument to calibrate.1703

Fonollosa et al. [56] used various models for calibration of chemical measuring instruments1704

with an approach called "calibration transfer" which is a kind of multi-hop calibration. Indeed,1705

the principle is to calibrate one of the instruments and then apply the same model on other1706

instruments to calibrate, eventually with a transformation to properly map the measurement1707

spaces. This approach was also used by Laref et al. [80]. Such strategies are widely used in1708

the field of spectroscopy [173]. It, however, requires the measuring instruments are more or1709

less behaving the same under identical varying conditions, which is not always the case when1710

dealing with low-cost instruments. Moreover, in the context of environmental sensing with1711

static instruments over a large area, it is very unlikely that the instruments measure the same1712

quantities at the same time. Thus, deriving the correct transformation to transfer the calibration1713

relationship is challenging. Cheng et al. [31] proposed an in-field calibration transfer method to1714

learn this transformation when the distributions of the reference values at the source and target1715

locations are similar, and when this transformation can be assumed as linear.1716
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4.5 Blind macro calibration1717

Blind calibration strategies for sensor networks were first developed as a way to locate spatially1718

the nodes in a static network. Whitehouse et al. [172] proposed to solve an optimisation problem1719

ensuring that consistency and geometrical constraints were respected. Ihler et al. [65] proposed1720

nonparametric belief propagation instead. Taylor et al. [152] developed an inference technique1721

using a Bayesian filter. However, as they targeted spatial localisation, most of these methods1722

based their algorithms on electromagnetic or acoustic [151] propagation (time delay, intensity1723

loss...), and cannot be applied directly to other calibration problems.1724

Bychkovskiy et al. [24] proposed a first solution that could be used for any measurand,1725

provided that the existence of relations between instruments of the network is known. It demands1726

first to estimate the parameters of each existing relationship between instruments in the network.1727

Then, the consistency of the derived relationships must be maximised to be resilient to circular1728

dependencies. This technique was applied to a dense static sensor network and has not been yet1729

extended to a mobile sensor network. In theory, it could also be applied to a sensor network1730

with reference nodes but there is no report on the topic.1731

Later, Balzano et al. [7] developed a blind and partially blind calibration strategy for static1732

sensor network suitable for any measurands, without any prior knowledge on existing relationships1733

between the values of instruments. They tested it notably on temperature, light intensity or1734

CO2 level measurements. The key postulate is the sensor network is dense enough to oversample1735

the signal of interest. They proposed that the true signal lies in a subspace of the space formed1736

by the measured values. Considering the prior choice of the subspace, the parameters of the1737

calibration relationships for all nodes are then estimated using singular value decomposition or1738

by solving a system of equations using a least square estimator. This method was extended later1739

in [89] to provide a total least square formulation and also in [44] to take into account outliers1740

and separate them from the measurement matrix.1741

Alternately, Takruri et al. [148–150] addressed calibration as a drift compensation problem.1742

They proposed to proceed recursively: measured values at step n are first corrected with predicted1743

drifts obtained at step n-1, then the next measurements are predicted using support vector1744

regression (SVR). Finally, the predicted values are used to estimate the drifts using a Kalman1745

filter. Kumar et al. [76, 77] replaced SVR by kriging, which is a method of interpolation originally1746

from geostatistics, as a prediction method for next values. In the same vein of using spatial1747

relationship between the measured values, Chen et al. [31] introduced a spatial correlation model1748

for drift correction targeting sensor networks deployed in buildings.1749

Ramakrishnan et al. [122] proposed another blind calibration strategy based on a gossip-based1750

distributed consensus strategy, with SAGE algorithm used for parameter estimation. Later1751

Buadhachain et al. [23] used an expectation-maximisation algorithm instead. The consensus-1752

based approach is interesting as it can reduce the communication bandwidth.1753

Bilen et al. [13] extended the problem of blind calibration to the case of sparse input signals,1754

which are measurements with missing/useless information, and exploited compressive sensing to1755

estimate the instruments’ corrective gains.1756

Cambareri et al. [25] proposed a non-convex formulation of the problem and gave a formal1757

criterion of convergence of the calibration method enabling to estimate corrective gains for the1758

values.1759

For mobile nodes, C. Wang et al. [162] proposed a method which exploits the moments of the1760

measurements, here the average and the variance. They formulate calibration as an optimisation1761

problem minimising the difference between the moments of the true signal and the measured1762

one. The method was extended in [161] and [163] for different expressions of the calibration1763

relationship. The approach was later adjusted by C. Xiang et al. [176] to address specifically1764

mobile crowdsensing, with instruments embedded in mobile phones for instance. Dorffer et al.1765
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[41, 42, 45] considered mobile sensor network calibration with mono-kind variables and linear1766

relationships for spatially sparse signals by using matrix factoring, with an extension regarding1767

non-linear calibration [43].1768

Wang et al. [168] proposed an extension of [7] relaxing some hypothesis and based their1769

estimation on a Kalman filter with the help of a drift detection strategy. The approach was1770

improved in [87] in terms of drift detection, number of instruments allowed to drift at the same1771

time and pre-processing of the input signal with wavelet denoising. Wu et al. [175] applied the1772

same idea recently but in the case of clustered sensor networks, e.g. when the instruments of1773

the networks can be grouped into several clusters. In this case, it is more a group calibration1774

strategy than a macro calibration.1775

Wang et al. then extended their work for sparse signals with either a Bayesian approach1776

[167] or a deep learning approach [166].1777

Yang et al. [181] also based their work on the idea of [7]. They prove that, if the underlying1778

signals follow a first-order auto-regressive process, then the parameters of the linear calibration1779

model are recoverable. They use a nonparametric Bayesian model to do so.1780

Overall, macro calibration methods do not suffer from error propagation issues unlike pairwise1781

approaches. However, because of the absence of references, they usually require large amount of1782

data, which is typically available in the case of highly dense static networks or mobile networks1783

with high frequency of rendez-vous.1784

4.6 Group strategies1785

On the first hand, group calibration strategies are used to calibrate multiple instruments1786

located at the same place and measuring different quantities that could influence the calibration1787

relationship. It was shown that their corrected values were more accurate when exploiting1788

multiple-kind variables in calibration relationships [9, 10, 47, 53, 100, 120, 139, 140]. Therefore,1789

strategies [63] that were developed for pairwise and mono-kind variables calibration in the first1790

place were extended to group calibration [4, 93, 94]. New methods were also developed.1791

Based on results like [71, 139, 140], Zimmerman et al. [186] introduced a calibration strategy1792

using random forests with multiple-kind variable relationships for measuring systems when the1793

latter are co-located to reference instruments.1794

Kim et al. [74] recently presented an approach of blind group calibration with prior information1795

on the cross-sensitivities of instruments, known from laboratory experiments, to build calibration1796

relationships with multiple-kind variables.1797

On the other hand, other works proposed group calibration strategies to reinforce the1798

confidence in the values used as standards.1799

Miluzzo et al. [107] proposed a calibration technique with multiple reference nodes in a sensor1800

network by formulating a distributed average consensus problem estimating the offset of each1801

non-reference node. The concept of sensing factor was introduced. It refers to the area within1802

which the measurand value can be assumed to be identical for the reference instruments and the1803

instruments to calibrate.1804

Lee et al. [82, 137] proposed a blind group approach for mobile nodes. The area of deployment1805

is divided into several non-overlapping regions. It is assumed that calibration relationships exist1806

in each of these areas. This is used to formulate the parameter estimation problem as a Laplacian1807

linear equation relating the drift, the measured values and noise.1808

Stankovic et al. [144] developed a novel methodology based on exploiting the neighbours1809

of each node. Relations in the network are expressed in a matrix and, as there are groups of1810

neighbours, the matrix can be decomposed into blocks. Each block represents a group of relations1811

with parameters to estimate, reducing the problem compared to a macro blind calibration. This1812

approach was extended in [143] to better deal with the case of additive measurement noise.1813
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Fishbain et al. [55] proposed a method of aggregation for non-calibrated sensor network1814

relying on a group-consensus strategy.1815

Fang et al. [50] later introduced reference instruments that are measuring different quantities,1816

in view of analysing the influence quantities in the calibration relationship. More recently [51],1817

they also added an outlier detection and removal strategy before the calibration stage to improve1818

the quality of the input data.1819

Yu et al. [184] also proposed to derive features from the time series of the measurands to1820

reduce the effect of cross-interference phenomenon between two quantities and then to use a deep1821

calibration model to correct the measuring instruments. The same idea of feature extraction was1822

also developed by Wang et al. [165] in a work extending the idea of piecewise linear calibration of1823

[163] to a group calibration with different types of calibration relationship computed piecewise.1824

Becnel et al. [11] used the concepts developed in [63, 131, 132] notably to propose a group1825

calibration strategy with a weighted neighbourhood approach. On a same dataset, their approach1826

seems to improve the results by 20 % compared to the previous works they considered.1827

4.7 Comment regarding other surveys1828

By comparing the common references in Table 2.4.1 to the references listed in Table 5 of1829

the survey of Barcelo-Ordinas et al. [8], we can observe that some works are not classified in1830

the same way like for instance the work of Balzano et al. [7] that is classified as "micro" for the1831

attribute "area of interest" and "single sensor" for the attribute "number of sensors" whereas it was1832

classified as a macro calibration technique here. This was expected as differences were pointed1833

out between the two taxonomies in Section 2. As the groups "area of interest" and "number of1834

sensors" of Barcelo-Ordinas et al. are similar to the grouping strategy in the presented taxonomy,1835

it appears we did not understand the algorithms in the same way. This underlines the use of a1836

shared terminology is critical to ensure a good comprehension of the algorithms.1837

5 Conclusion1838

In this chapter, a taxonomy for the classification of in situ calibration algorithms for sensor1839

networks has been proposed. It is based on four groups of categories capturing both the different1840

network architectures and algorithmic principles: the availability of reference instruments in1841

the network, the mobility of the instruments, the kind of input variables in the calibration1842

relationships, and the instruments grouping strategy (pairwise, macro or by group) used for a1843

calibration procedure.1844

The review shows that relatively few papers address methodological issues related to reference-1845

based pairwise strategies, as this approach is the closest to a "traditional" calibration approach1846

and features relatively little challenges. Partially blind and blind pairwise calibration methods,1847

which often focus on mobile nodes, are more complex as they require to define calibration1848

relationships between non-reference nodes, which translates into error propagation issues. Macro1849

calibration approaches are mostly used to deal with reference-less situation. Their challenge lies1850

in defining valid calibration relationships between non-reference instruments. Group strategies1851

appear to improve on performance of both pairwise and macro strategies with or without reference1852

instruments. Most methods are based on calibration relationships with mono-kind variables1853

and a linear expression, but more complex models are progressively appearing to better address1854

the complexity of environmental sensing. Likewise, while most work initially focused on static1855

networks, there is now a strong interest for mobile nodes as they allow for physical rendez-vous1856

between nodes, which reduces the impact of the physical variability of the phenomena between1857

static distant nodes.1858

In a general manner, the main situations and issues for the in situ calibration of environmental1859

sensor networks have been addressed multiple times in the literature. To identify the improvements1860
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that could be brought, the question of the performances of the existing algorithms must be1861

tackled, which is the subject of the next chapter.1862

The content of this chapter is based on the following publication:1863

F. Delaine, B. Lebental and H. Rivano, "In Situ Calibration Algorithms for Environ-1864

mental Sensor Networks: A Review," in IEEE Sensors Journal, vol. 19, no. 15, pp.1865

5968-5978, 1 Aug.1, 2019, DOI: 10.1109/JSEN.2019.2910317.1866

The review presented in this thesis was extended to the papers published after this survey.1867
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1. Challenges for the comparison of in situ calibration algorithms

1 Challenges for the comparison of in situ calibration algorithms1909

In Chapter 2, after proposing a taxonomy for the classification of in situ calibration algorithms,1910

a review of the existing works was conducted. The literature on the subject is abundant1911

and numerous contributions were reported, covering all the possible types of sensor networks.1912

Nevertheless, no comparison of the in situ calibration strategies in terms of performances was1913

proposed in this survey. Indeed, though the presented algorithms in publications are operational1914

from a mathematical perspective, a formal quantification of the improvement is never provided.1915

Instead, one or several case studies are systematically provided to demonstrate how the algorithm1916

is put in practice and its efficiency on these specific cases. This step is either performed through1917

simulations [45], laboratory experiments or field experiments [109], or both [7].1918

The principle of such studies consists in comparing the measured values, both before and after1919

calibration, to the values that should have been measured by the instruments if they were ideal.1920

The latter values are obtained with the help of simulations or with higher quality instruments1921

co-located to the instruments to recalibrate.1922

Regarding approaches by simulation, different ones are proposed to compute numerically1923

the values of the measurand. It can be based on 2D Gaussian fields [41] or ARMA processes1924

[166] for instance. Disturbances like noise or drifts are added to the reference values in order1925

to generate the measured values. However, the models can be more or less realistic. Thus, the1926

model used may raise the question of the relevance of the results obtained, notably with respect1927

to experiments.1928

Concerning experimental approaches, there are lots of datasets produced and used in various1929

studies (for instance the Intel Lab Data [79], a deployment at James Reserve used in [7], the1930

OpenSense Zurich Dataset [86]). They may be representative of particular types of deployments,1931

for instance indoor (Intel Lab Data) or outdoor (James Reserve, OpenSense) measurements, with1932

static and dense sensor networks (Intel Lab Data, James Reserve) or mobile sensor networks1933

(OpenSense). Moreover, whereas repeating a simulation with different network settings (number1934

of instruments, types of instruments, positions...) but identical phenomenon is feasible, it is1935

almost impossible with experiments except under laboratory conditions. Although there are1936

existing facilities that could allow it [38], they are not adapted for the study of sensor networks1937

over large areas. A solution could be the deployment of as many instruments as necessary to1938

produce the desired configurations, but this would drastically increase the cost of the experiment.1939

Moreover, this would have to be reproduced in multiple environments in order to study its1940

influence on the performance of in situ calibration strategies.1941

More generally, whether we focus on simulation-based or experimental approaches, there is no1942

single case study that is reused a significant number of times in multiple publications by different1943

groups of authors according to the review conducted in Chapter 2. It prevents the comparison of1944

existing works. Such a study is conducted in [35] but as for the work of Karagulian et al. [73]1945

reported in Chapter 1 Section 1.3.3, the conclusions must be considered with precautions. In this1946

case, the performances after calibration of measuring systems using instruments from the same1947

manufacturer are compared based on the results published by different groups of researchers.1948

However, the results were not obtained on the same case study. In this way, conclusions may be1949

incorrect.1950

As an explanation to the absence of one or several main case studies in the community, they1951

are not always easily reproducible. For simulation-based ones, some of their parameters may1952

have not been provided or even mentioned. This is why an identical approach may be used in1953

multiple papers but rarely from different authors. Regarding experiments, datasets are often1954

shared with the community, though they sometimes become unavailable over time or require1955

post-processing that is left to the user. Nevertheless, as for simulation, a dataset is rarely used1956

in publications from authors who did not produce it. This may be due again to the fact that1957
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experiments are tailored for specific cases and calibration strategies.1958

Another difficulty is the multiplicity of metrics that can be used to assess the performances1959

of the strategies [17]. Such metrics are for instance the mean absolute error, the mean absolute1960

percentage error, the root-mean-square error, the Pearson’s correlation coefficient and so on.1961

Original metrics developed in works on the evaluation of the performance of instruments [54]1962

or ones related to official recommendations such as the data quality objective (DQO) in the1963

context of air quality measuring instruments [16, 27, 95] are also used. They are mostly based on1964

prior information concerning the expected corrected values. As shown in the comparison of the1965

existing works carried out by Cross et al.[35], authors do not all use the same metrics in their1966

case studies.1967

Also, in the perspective of comparative studies, while a few authors have shared the code1968

associated to their publications as in [89] or [44], most of the codes are not open-sourced.1969

Therefore, algorithms have to be fully reimplemented in most cases to achieve comparison [168]1970

and due to the efforts it requires, it is carried out in comparative studies only for strategies with1971

features similar to the one they propose–for example the use of machine learning techniques [26,1972

48, 49] or the use of Kalman filter [168].1973

Overall, while a new strategy can be overperforming previous ones on a given case study,1974

one rarely knows whether the new strategy is better in general or only for the specific case (Fig.1975

3.1.1), regardless of whether it is based on simulation or on experiment.1976

Publication

Algorithm

Conclusion

Case study

Not proved -

Figure 3.1.1: Usual evaluation process performed across papers: consider three publications,
Pa, Pb and Pc that are published successively. Pa introduces an algorithm Aa which is evaluated
on case study Ca. It concludes that the algorithm is working. Later, Pb presents Ab and evaluate
it with Aa on case study Cb, concluding that Ab has better performances than Aa. Finally, Pc
brings forward Ac and show it is better than Ab on case study Cc. In the absence of unified
validation case study, Ab may still be better than Ac on Ca,b, and Aa better than Ab and Ac on

Ca and Ca,b,c respectively.

Thus, there is a strong need for systematic tools and protocols [84, 95] enabling to compare1977

across studies the performances of in situ calibration methodologies.1978

This chapter is addressing this question. The contribution consists in a generic framework1979

to design case studies that can be used for quantitative comparisons of in situ calibration1980

strategies. Its objective is to get a better understanding of the factors driving the performances1981

of calibration strategies and the quality of sensor networks. For reproducibility and scaling issues,1982

it is based on numerical simulations of the environmental phenomenon and of the measuring1983

instruments, their metrological properties as well as the faults introduced in the measurements.1984

It is henceforth not a new calibration methodology, but the first methodology to carry out a1985

systematic inter-comparison of the performances of existing methodologies.1986

We apply this framework on seven calibration algorithms. In a first step, we consider an1987
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elementary case study on a blind static network that is sufficient to get first insights by analysing1988

the performances with commonly used metrics at different scales. Then, we evaluate the impact1989

of the realism of the model of pollution emission and dispersion, the density of the deployment1990

of the measuring instruments, and the error model of the devices. Finally, several engineering1991

insights are deduced from the investigations carried out, validating the relevance of such a1992

framework in the design phase of a practical network of low-cost environmental sensors.1993

2 Description of the framework1994

A generic framework to design case studies is proposed in this section for quantitative1995

comparisons of in situ calibration strategies. It aims at yielding a better understanding of the1996

factors driving the performances of calibration strategies, and at providing a protocol as rigorous1997

as possible to conduct such studies. The different steps are described in a generic way to ensure1998

their applicability for most cases.1999

Like for faults in Chapter 1 Section 2, we adopt a data-centric point of view. We do not target2000

the modelling of the entire measuring chain of an instrument described in Chapter 1 Section 1.22001

and illustrated in Figure 1.1.2 in the same chapter. We assume that instruments are grey boxes2002

which provide measured values based on true values of a measurand and possibly also on true2003

values of influence quantities. The grey boxes representing instruments consist into algorithms2004

mimicking the features of real instruments.2005

In this work, we focus on the metrological performances of in situ calibration strategies.2006

Other subjects such as the communication costs, the energy consumption or the computational2007

efforts for instance are not in the frame of this study.2008

2.1 Simulation-based strategy2009

The methodology is based on simulation because it enables the following properties that are2010

difficult to get with field or lab experiments2011

• Ability to perform a study with different operating conditions for a same sensor network.2012

• Reproducibility: same operating conditions on different sensor networks.2013

• Knowledge of true values: in experimental operating conditions, true values are not2014

known perfectly–there is always an uncertainty– and having very accurate values requires2015

high-quality instruments which are usually expensive.2016

• Scalability: the only limit to the density, number and diversity of measuring instruments is2017

the computing time.2018

To conduct the evaluation of in situ calibration strategies, the framework combines the2019

simulations of the environmental phenomena to produce the true values of the measurand, and2020

of the potential influence quantities, at any position and time, the simulations of the mobility –if2021

any– of the nodes of the network to know where and when measurements are performed, and2022

the simulations of the measuring chain of the instruments to produce the measured values. The2023

realism of the results will depend on the complexity and accuracy of each simulation model. On2024

the other hand, being able to analyse results on a simplistic model can also help to highlight2025

fundamental properties before confronting them to more complex situations. In particular, even2026

if we consider networks of sensors, we neglect to simulate the system and networking aspects.2027

We consider they have a lesser influence on the metrological performances of in situ calibration2028

strategies. One could, however, argue that system and network issues could challenge the2029

robustness of a given implementation of a calibration protocol because of packet loss. It could2030

also be interesting to evaluate the energetic cost or time to converge of such implementation. It2031
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is still possible to extend the framework to these issues that could be covered by tools such as2032

WSNet11, NS-312 or other13.2033

The objective of this framework is to help end users in the design of their sensor networks by:2034

• showing which strategies are applicable to a given use case. Currently only a few strategies2035

are supplemented with strong formal criteria enabling to determine whether they can be2036

used for a given network and in a given situation, for instance in [45] or [7]. Such criterion2037

may, however, be not easy to define and therefore simulation is an interesting solution.2038

• showing which strategies should give the best performances regarding the assumptions that2039

can be made in practice.2040

• allowing the optimisation of the settings of the calibration strategies –as in [109] where the2041

time period of calibration is studied. As there are rarely formal applicability criteria, there2042

is also rarely protocols defined for the adjustment of the parameters.2043

2.2 Functional decomposition2044

Our methodology, represented in Figure 3.2.1, can be described schematically as follows:2045

1. Build a dataset of ideal measured values.2046

(a) Simulate the quantities involved with a sufficiently high resolution (spatially and2047

temporally).2048

(b) Simulate the positions of the measuring instruments.2049

(c) Combine the two simulations.2050

2. Build measured values from the ideal measured values, e.g. add defects to these values.2051

3. Perform calibration, e.g. determine the correction to apply to the measured values.2052

4. Derive corrected measured values.2053

5. Compare measured and corrected measured values with ideal measured values. If the2054

algorithm performs well, the corrected values should be closer to the ideal values than the2055

measured ones.2056

Quantities
simulation

Sensors
positions 

simulation

Build ideal
measured values

Build
measured values Calibration Correction Performance 

evaluation

Figure 3.2.1: Schematic diagram of the methodology proposed for in situ calibration strategies
evaluation

To apply this methodology, input data are the number of instruments involved, the quantities2057

measured, the in situ calibration strategies to apply and the metrics considered for the evaluation2058

of the results but also:2059

11WSNet: http://wsnet.gforge.inria.fr/
12NS-3: https://www.nsnam.org/
13OMNet++, OpNet, LoRaSim...
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• Information to simulate the quantities involved. Depending on the model, it can be as2060

simple as some parameters of an equation (e.g. a Gaussian model) or a complex description2061

of an urban scene (e.g. http://air.ec-lyon.fr/SIRANE/)2062

• Specifications on the deployment and possible mobility of the instruments. Since the2063

positions of the instruments is critical for the performances of the sensor network, the2064

number of instruments deployed, and their positions may be optimised [19].2065

• Descriptions of the measuring chain of the instruments involved, in terms of drift and of2066

their potential influence quantities.2067

• Configuration of the considered in situ calibration strategies.2068

As outputs, the framework provides time series of the true values, of the measured values2069

and of the corrected values for each instrument. Values of metrics computed for the comparison2070

of these times series may also be given.2071

The following subsections give details on each step.2072

2.2.1 Build ideal measured values2073

Ideal measured values are measured values that should be measured by instruments if2074

they were perfect. It means for an instrument si that its measured values v(si, t) are equal to2075

the true value of the measurand, noted vtrue(si, t), for all t.2076

Generating these ideal measured values for all the instruments of a sensor network can be2077

carried out as follows.2078

To build ideal measured values, true values of the measurand must be computed. True values2079

of other quantities may also be derived for the simulation such as influence quantities if the2080

instruments to model undergo such effects.2081

To be able to repeat the study with different sensor networks, the quantities can be simulated2082

independently of the positions of the instruments so that one may build different sets of ideal2083

measured values from a same simulation of the quantities depending on the sensor network.2084

Therefore, the simulation is performed on the targeted domain of study, e.g. a specific2085

geometry, at a sufficient spatial and temporal resolution, regarding the potential positions of the2086

instruments and their frequency of measurement. The model used for the simulation depends on2087

the application and on the targeted accuracy. Ideally, the simulation should perfectly represent2088

the studied environmental phenomena and the quantities affecting instruments operating under2089

real conditions. This is not always possible and thus the models used may not reflect the real2090

temporal and spatial variability of environmental phenomena. This is particularly true for air2091

pollution monitoring. While high model accuracy can be achieved with advanced computational2092

fluid dynamics models [12], such models require time and resources that are not always acceptable2093

or available for users. In multiple works, case studies were conducted with abstract models [7],2094

enabling to demonstrate that the proposed calibration strategy is functional. However, such2095

models do not enable determining if an algorithm is applicable on real cases.2096

In addition to the true values of the considered quantities, the sets of the positions where2097

measurements are performed must be built with respect to the position and possible mobility of2098

each instrument. Based on the positions of the instruments over time, true values are extracted2099

and stored from the simulation of the studied quantities at the locations of each instrument at2100

each time step according to their sampling periods.2101

Afterwards, a time series of ideal measured values is available for each measuring instrument.142102

14In this section, we considered that the simulation of the quantities and the simulation of the positions of the
instruments are carried out separately and then combined. However, it might be possible to determine first the
positions of the instruments and then to derive the ideal measured values only at the positions for instance.
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After this step, these time series must be validated against the hypotheses of the targeted2103

calibration strategies.2104

2.2.2 Build measured values from the ideal measured values2105

Until this step, measuring instruments are assumed ideal. Thus, to obtain realistic measured2106

values, e.g. values that include the real behaviour of measuring instruments, faults must be2107

introduced. The taxonomy presented in Chapter 1 Section 2.2 can be used here to model the2108

measured values. As we study in situ calibration strategies, drift faults are introduced principally.2109

The influence on the performances of in situ calibration strategies of other faults (e.g. noise,2110

spikes, missing data...) can also be studied by introducing them in the measured values (see2111

Section 5.3.2).2112

2.2.3 Perform calibration and build corrected values2113

Once measured values are obtained, calibration may then be performed low-cost to correct2114

them. It must be based on algorithms applicable to the specific case study addressed.2115

Calibration and correction are separated in the methodology for the sake of genericity. Some2116

calibration strategies directly determine the correction to apply to each value [149], while others2117

provide parameters of a mathematical relationship to apply to each measured value [7].2118

2.2.4 Evaluate2119

Finally, corrected values, measured values and true values can be compared to assess the2120

performances of the algorithms. Most of the time, usual metrics are employed such as root-mean-2121

square error, mean absolute or Pearson’s correlation coefficient for each measuring instrument in2122

the network. Results of case studies may also be presented as the mean of these metrics over the2123

whole network [150]. We discuss the most suitable metrics to use in Section 4.2124

In the following sections, the framework is applied to the comparison of several strategies for2125

blind static networks on a case study that is simple enough to focus on fundamental issues.2126

3 Comparison of in situ calibration strategies for blind static sensor net-2127

works2128

The purpose of this section is to give a simple example of how to apply the framework.2129

3.1 Frame of the study2130

In this section, the case of blind static sensor networks is considered. All the instruments2131

remain at the same position and no reference instrument is present. This type of sensor network2132

offers a particular challenge in terms of calibration. By contrast, when reference instruments are2133

in the network, trustworthy values are available. Secondly, when instruments are mobile, it is2134

possible that two or more instruments are measuring the same true quantity value when they are2135

in a spatio-temporal vicinity. For blind static sensor networks, the availability of standard values2136

may not be assumed, and only the instruments that are deployed close enough can compare their2137

measurements.2138

We consider seven calibration strategies, from four different groups of authors, that were2139

identified in across the review of Chapter 2. These strategies have never been compared all2140

together on a common case study.2141

• Balzano et al. [7]: To apply this algorithm, the sensor network must be dense enough to2142

oversample the signal of interest. We refer to this assumption by the term "oversampling"2143

afterwards. With such a sensor network, the true values lie in a subspace of the space2144

formed by the measured values. To calibrate the instruments, this subspace must be2145
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known. The gains and offsets for all nodes are then estimated with the chosen subspace2146

and the measured values using singular value decomposition (SVD) or by solving a system2147

of equations using a least square (LS) estimator. These strategies are respectively called2148

SM-SVD and SM-LS, SM standing for subspace matching. Note that gains are estimated2149

up to a multiplicative coefficient. Consequently, the gain of one instrument should be2150

known to complete the calibration. Likewise, the offset computation requires either to2151

know some of the offsets, or that an additional hypothesis on the signal is valid.15 As such,2152

the network is not perfectly blind in truth.2153

• Lipor et al. [89]: This work is an extent of [7]. It shows first that the solution obtained with2154

SM-SVD is equivalent to the one obtained by solving the system of equations expressed as2155

a total least squares problem (TLS). The latter strategy is called SM-TLS.162156

• Takruri et al. [148–150]: Three contributions from these authors are considered. The2157

first one is based on the idea that the average of the values of neighbouring measuring2158

instruments gives a good estimation of the correct value of an instrument to calibrate. If2159

the absolute difference between the measured value and the average is greater than a given2160

threshold, this difference is added to the instrument’s value. We call this strategy AB-DT2161

(average-based estimation for difference-based threshold). Two variations are also proposed,2162

a first one in which the difference-based threshold mechanism is replaced by a Kalman2163

filter that estimates the error affecting the instruments (AB-KF), and a second one where2164

the average-based part is replaced by support vector regression (SVR-KF).2165

• Kumar et al. [76, 77]: This work, inspired from the previous one, also proposes the use of a2166

Kalman filter to estimate the error of each instrument but instead of performing an average2167

over neighbouring nodes or using SVR for true value estimation, kriging is used (K-KF).2168

Note that not every strategy that could have been applied to our case study is considered2169

here. For instance, the work of Dorffer et al. [44] extends [7] and [89] for sparse signals, but this2170

is not in the scope of the study.2171

3.2 Application of the framework2172

3.2.1 Simulation of the ideal measured values2173

A space of 1000× 1000m is considered. It is discretised with a step of 10m. At the centre
of this area, a NO2 source is considered. The concentration of NO2, C, at the instant t and
position (x, y), is modelled as:

C(x, y, t) = A(t) exp
(
− x2 + y2

σ(t)2

)
It is a 2D Gaussian function with an equal spread σ for x and y. This model is not very2174

realistic but has been used in other papers [45] for its simplicity of implementation. Examples of2175

pollution maps are represented in Figure 3.3.1.2176

To facilitate the interpretation of σ, it is expressed as a function of the full width at half
maximum (FWHM) of the Gaussian curve:

σ = FWHM

2 ln(2)
15A usual assumption is that "the signal has a null (or known) average".
16Note that additional formulations given in the publication, in the case where some gains are known for a

subset of instruments, are not considered here as it would be equivalent to have a partially blind sensor network.
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Figure 3.3.1: Examples of maps of concentration C used following C(x, y) = A exp
(
−

(2 ln(2))2 x2 + y2

FWHM2
)
for given A and FWHM

A and FWHM are functions representing respectively the temporal evolution of the amplitude2177

of the 2D Gaussian function and of its FWHM.2178

To be representative of actually measured concentrations, the function A is based on values2179

measured by a NO2 monitoring station in Paris between 2017/01/01 00:00 and 2017/12/31 23:00,2180

with an hourly time step (Paris centre station [2]).17 We consider it represents our pollution2181

source at the coordinates (0, 0). Even if the values of the station are not the ones of a real source,2182

we assume it gives a reasonable order of magnitude of variation over time.2183

The FWHM represents the spread of the pollutant around the source. Two linear piecewise2184

functions are defined to represent the daily evolution of the FWHM: one for weekdays and one2185

for weekends. They are represented in Figure 3.3.2b. Their shape is inspired from the dataset2186

17There were missing entries in the time series. Values were first interpolated with a limit of 3 consecutive
values to fill, e.g. 3 hours. Then, in the case where more than 3 consecutive values are missing, the interpolation is
made based on the values at the same hour of the previous and next day. The values are interpolated with a linear
function for both cases.

48



3. Comparison of in situ calibration strategies for blind static sensor networks

0 50 100 150 200 250

10

20

30

40

50

60

70

80 NO2 - Paris Centre 2017

t (hour)

A(
t) 

(μ
g.

m
 -3 )

(a) Partial plot of the values used to model the amplitude
A of the phenomenon model
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(b) Profiles designed for the daily evolution of
the FWHM per days of the week

Figure 3.3.2: Evolution of A and FWHM for the modelling of the concentration of pollutant

used for the amplitude A. This is not fully realistic, but it provides an order of magnitude of2187

spatial and temporal variations occurring in urban context.2188

The concentration of pollutant C is simulated for a year at an hourly time-step over the2189

area of study. To avoid the computation of C, at each time step, for the current value of A and2190

FWHM , a catalogue of maps is generated from sets of possible values for the amplitude and2191

the FWHM : respectively from 0 to 150µg m−3 with a step of 5µg m−3 and from 0 to 4000m2192

with a step of 500m. In our case, it required the simulation of 157 maps. To derive the time2193

series, the map generated with the closest allowed values of A and FWHM is picked from the2194

catalogue at each time step. Finally, a time series of 8760 maps is obtained.2195

A sensor network S of |S| = 16 static measuring instruments is considered. It is uniformly2196

deployed spatially. The positions are represented in Figure 3.3.3. Then, the time series of2197

concentration maps and the positions of the instruments are combined to obtain the time series2198

of ideal measured values for all the instruments, noted vtrue. In this case, we consider that the2199

instruments measure one value per hour.2200
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Figure 3.3.3: Positions of the 16 measuring instruments considered in the case study, deployed
uniformly in the field

The validity of this set of ideal measured values must be verified for SM-(SVD,LS,TLS)2201
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strategies. The network should satisfy the hypothesis of "oversampling". To verify it, a principal2202

component analysis (PCA) of the matrix formed by the concatenation of the ideal measured2203

values time series of each node is carried out. We assume that the sensor network is satisfying the2204

oversampling hypothesis if the explained variance ratio of the ν first components is greater than2205

0.999 and ν < |S|. In our case, the condition is met for ν = 2 < |S|. Therefore, the oversampling2206

hypothesis is satisfied.2207

3.2.2 Building of the measured values2208

The network is defined as "blind", which can also be expressed by "all the instruments have the2209

same sensing reliability". In a first step, instruments are only drifting. Drift of each instrument is2210

only function of time. We assume all the instruments undergo a linear drift increasing up to 5%2211

of the gain every 7 days. The actual drift is randomly drawn following a uniform law. The value2212

of 5% is set according to what is reported in typical measuring instrument datasheets [105].2213

The instruments are assumed to be initially calibrated and to remain faultless for eight weeks,2214

which gives a training dataset for the strategies needing it, notably to learn the subspace of the2215

signal with PCA for SM-(SVD,LS,TLS). For four additional weeks, the instruments are kept2216

without drift to study how calibrations strategies behave if the devices are not drifting. Finally,2217

the instruments start drifting after twelve weeks. This instant is noted tstart drift.2218

Therefore, the gain G(si, t) of the instrument si at t is :2219

G(si, t) =


1 if t < tstart drift

G(si, t− 1) if t ≥ tstart drift and (t− tstart drift) mod 7 days 6= 0
G(si, t− 1) + δG(si, t) if t ≥ tstart drift and (t− tstart drift) mod 7 days = 0

with ∀t, δG(si, t) ∼ U(0, 0.05)

This drift model is called "Weekly Gain Linear Increase"(WGLI).2220

The measured value v(si, t) of the instrument si at t is expressed from the true value vtrue(si, t)
using the relationship:

v(si, t) = G(si, t) · vtrue(si, t)

3.2.3 Configuration of the strategies2221

Each strategy has parameters to set up. They are defined as follows:2222

• SM-(SVD,LS,TLS): All these strategies share the same parameters, namely the period-2223

icity of calibration and the time interval on which the linear system is solved. Note that2224

the adjustment of the parameters was not discussed by the original authors. We chose to2225

apply the strategy each week and to solve the linear system over the past w = 7 days.2226

• Kalman filter of (AB, SVR, K)-KF: Variables R and Q are set to 0.0001 and 1 respec-2227

tively.2228

• Definition of neighbours for AB-(DT,KF): Instruments are defined as neighbours if they2229

are distant of less than 250m.2230

• Parameters of the SVR for SVR-KF: Kernel used is ’rbf’, the kernel coefficient gamma is2231

set to 10−8 and the penalty parameter C is set to 103.2232

• Parameters for the weighting for K-KF: a, c0 and c1 were defined as in [77], therefore2233

a = 12, c0 = 0.25, c1 = 0.85.2234
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We invite the reader to refer to the original publications for a more in-depth understanding2235

of the parameters of these calibration strategies.2236

3.2.4 Evaluation2237

To compare the corrected values of an instrument, obtained with each strategy, and its2238

measured values against its ideal measured values, metrics are needed. We consider the most2239

commonly used metrics in the publications reported in Chapter 2 and described as follows. They2240

can be computed for each instrument or averaged over the network. We discuss the relevance2241

of these statistics in Section 4. In the following, the set x stands for the k measured values2242

of an instrument si over [t −∆t; t], V (si, (t,∆t)) or the corresponding set of corrected values2243

Vcorr(si, (t,∆t)) and the set y is the associated k true values Vtrue(si, (t,∆t)).2244

• Mean absolute error (MAE):

MAE(x, y) = 1
k

k∑
i=0
|xi − yi|

• Root-mean-square error (RMSE):

RMSE(x, y) =

√√√√1
k

k∑
i=0

(xi − yi)2

• Mean absolute percentage error (MAPE):

MAPE(x, y) = 100
k

k∑
i=0

|xi − yi|
|yi|

Remark: the values of y must all be different from zero.2245

• Pearson correlation coefficient (ρ):

ρ(x, y) = E[(x− E[x])(y − E[y])]√
E[(x− E[x])2]E[(y − E[y])2]

with E[.] being the expectation.2246

For perfect instruments before correction (or after with vcorr instead of v):2247

• MAE(V (si, (t,∆t)), Vtrue(si, (t,∆t))) = 0.2248

• RMSE(V (si, (t,∆t)), Vtrue(si, (t,∆t))) = 0.2249

• MAPE(V (si, (t,∆t)), Vtrue(si, (t,∆t))) = 0%.2250

• ρ(V (si, (t,∆t)), Vtrue(si, (t,∆t))) = 1.2251

3.3 Results2252

In Figure 3.3.4, a partial plot of true values, measured values and corrected values obtained2253

with each strategy is displayed for a particular instrument. For the considered device, a visual2254

observation indicates that strategies SM-(SVD, LS, TLS) and SVR-KF provide better results2255

than AB-DT, AB-KF and K-KF.2256
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Figure 3.3.4: True values, measured values and corrected values with the strategies considered
for a particular instrument s1 = 2 between t = 5424h and t = 5471h. SM-(SVD, LS, TLS) and

SVR-KF seem to provide better results than AB-DT, AB-KF and K-KF

MAE MAPE RMSE Pearson

µ σ µ σ µ σ µ σ

No calibration 18 2 53 6 25 2 0.935 0.007
SM-SVD 1 1 5 4 2 2 0.994 0.006
SM-LS 1 1 3 2 2 1 0.995 0.005

SM-TLS 1 1 5 4 2 2 0.994 0.006
AB-DT 18 1 55 6 25 1 0.932 0.004
AB-KF 18 1 58 11 25 1 0.933 0.003

SVR-KF 16 1 83 11 18 1 0.825 0.012
K-KF 18 1 53 10 24 1 0.927 0.005

Table 3.3.1: Mean and standard deviation of each metric, computed on the entire time interval
of drift, over the 16 nodes of the network. SM-(SVD, LS, TLS) strategies have the best results
overall whatever the metric considered. SVR-KF provides corrected values only slightly better
than before calibration according to MAE and RMSE but not according to MAPE and Pearson
correlation coefficient. AB-(DT, KF) and K-KF do not improve the measured values significantly.

Despite its advantage to easily visualise the results, this representation is not representative2257

of all the instruments of the network.2258

The computation of the mean and standard deviation of each metric over the whole sensor2259

network, on the entire time interval of study and with the results of each strategy, plus without2260

calibration, is given in Table 3.3.1. With it, we observe that:2261

• SM-(SVD, LS, TLS) strategies have the best results overall with a small mean error and2262

standard deviation whatever the metric considered2263

• SVR-KF which seemed to give interesting results in Figure 3.3.4 provides corrected values2264

only slightly better than before calibration according to MAE and RMSE but not according2265

to MAPE and Pearson correlation coefficient. This could be explained by two reasons. The2266

strategy may correct well for high measured values but correct poorly for low ones. It could2267

also be due to errors in the corrected values of particular instruments introduced by the2268

calibration algorithm. The aggregation by averaging makes it impossible to discriminate2269

between these two possible explanations.2270

• AB-(DT, KF) and K-KF do not improve the measured values2271
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MAE MAPE RMSE Pearson

s1 s2 s1 s2 s1 s2 s1 s2

No calibration 22 18 66 51 30 24 0.924 0.942
SM-SVD 1 3 4 10 2 5 0.996 0.983
SM-LS 1 2 3 7 2 3 0.997 0.986

SM-TLS 1 3 4 10 2 5 0.996 0.983
AB-DT 20 17 61 49 26 23 0.933 0.932
AB-KF 18 17 56 45 25 23 0.935 0.927

SVR-KF 16 16 80 71 19 19 0.828 0.805
K-KF 17 16 51 43 24 23 0.930 0.918

Table 3.3.2: Values of the metrics, computed on the entire time interval of drift, for two
particular instruments of the network s1 = 2 and s2 = 10. Strategies AB-(DT, KF) and (SVR,
K)-KF are quite equivalent for these two instruments. The improvements are rather small for
both instruments. For SM-(SVD, LS, TLS), results are consistent with the observations of Table

3.3.1.

These last two observations invited us to look at results for particular instruments. Table 3.3.22272

gathers the results for two instruments selected randomly. We observe that strategies AB-(DT,2273

KF) and (SVR, K)-KF are quite equivalent for these two instruments. The improvements are2274

rather small for both instruments. For SM-(SVD, LS, TLS), results are consistent with our2275

previous observation based on the average and the standard deviation in Table 3.3.1. The standard2276

deviation does give the information of the existence but not the identity of the instruments that2277

are degraded or improved by calibration, which is needed for practical deployments to drive the2278

maintenance operations.2279

Furthermore, note that the results of Table 3.3.1 were computed over the 12 weeks of drift.2280

The results may be different if computed over a different time range, for instance over each week.2281

Figure 3.3.5 shows the evolution over time of the MAE computed each week for a particular2282

instrument and each strategy. Table 3.3.3 provides statistics on the MAE computed each week2283

but also for the other metrics that were computed in the same way. From the standard deviations2284

of MAE, MAPE and RMSE, it shows that the observations made previously could be locally2285

false, e.g. a strategy is better than others considering a computation of the metrics over the 122286

weeks of drift but not always considering a computation of the metrics over each week. This2287

is shown in Figure 3.3.5 where results with MAE for SVR-KF are nearly always worse than2288

those for AB-DT, AB-KF and K-KF until week 24 but are better afterwards. This figure also2289

shows that the performances of SVR-KF could be explained by the presence of a bias, at least2290

according to MAE because it is quite constant in Figure 3.3.5.2291

3.4 Conclusions2292

Through this evaluation, we have shown that existing in situ calibration strategies could2293

improve the measured values of a blind static sensor network in the considered case study. Overall,2294

the strategies SM-(SVD, LS, TLS) have the best performances. This can be explained by the2295

fact that the gain of at least one of the instruments in the network has to be known for these2296

methods. In a way, the sensor network is only partially blind, but acquiring this information may2297

not be a major issue in practice for large sensor networks. The other strategies appear to be able2298

to mitigate the drift by few per cents at most only in the best cases, depending on the metric2299
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Figure 3.3.5: Evolution of the MAE computed for each week of the drift period between the
drifted values and the true values, and between the corrected values for each strategy and the
true values for a particular instrument, after the start of drift. MAE for SVR-KF is nearly always
worse than those for AB-DT, AB-KF and K-KF until week 24 but are better afterwards. The
performances of SVR-KF could be explained by the presence of a bias, at least according to this

metrics, as its evolution is quite flat.

MAE MAPE RMSE Pearson

µ σ µ σ µ σ µ σ

No calibration 22 16 66 36 25 17 1.000 0.000
SM-SVD 1 1 3 3 1 1 1.000 0.000
SM-LS 1 1 3 2 1 1 1.000 0.000

SM-TLS 1 1 3 3 1 1 1.000 0.000
AB-DT 20 13 61 32 22 14 0.999 0.001
AB-KF 18 13 56 31 21 14 0.999 0.000

SVR-KF 16 4 80 39 18 4 0.935 0.034
K-KF 17 14 51 32 20 15 1.000 0.000

Table 3.3.3: Mean and standard deviation of the weekly mean of each metric for s1 during the
drift period. From the standard deviations of MAE, MAPE and RMSE, the observations made
based on Table 3.3.1 could be locally false, e.g. a strategy is better than others considering a
computation of the metrics over the 12 weeks of drift but not always considering a computation

of the metrics over each week.

considered. The comparison between metrics enables understanding better how they operate.2300

For all algorithms, studying the average values of the metrics over all the network hides strong2301

disparities from instrument to instrument.2302

However, these results could be challenged based on the following considerations:2303

• The results may be different with another network (different positions and increased2304

number of instruments, notably for AB-DT, AB-KF and K-KF strategies that use values2305

of neighbour instruments for the prediction of correct values). However, the network is2306

often defined by the use case. Thus, it is not always a criterion that can be optimised.2307

• The model of the considered phenomenon is not realistic and therefore results may not be2308

practical. It is, however, sufficient to highlight issues of the algorithms under test. A more2309

realistic model may not yield better result but would certainly make the analysis more2310

complex.2311
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• Only a drift of the gain was added which does not fully relate the behaviour of a real2312

instrument. Adopting a finer-grained model of the behaviour also increases the complexity2313

of the case study.2314

• Other parameters of the calibration strategies may change the results. We empirically2315

explored the parameters of the algorithms, keeping in this study the values that give the2316

best results for each strategy. There is, however, no claim for optimality here, but the2317

framework can be used to optimise the parameters of a given strategy.2318

In Section 5, the impact of these four separate aspects on the algorithms is tested. Before2319

moving on to this, we discuss in the next section the metrics used and how additional ones, or2320

other ways to visualise results, can give an enhanced comprehension of the behaviour of the2321

calibration algorithms on a sensor network.2322

4 Evaluation of measurements after correction2323

4.1 Problem statement2324

To evaluate the performances of in situ calibration strategies, various metrics are commonly2325

used like MAE, MAPE, RMSE and Pearson’s correlation coefficient notably. We presented the2326

results as statistics of these metrics over the entire network or values for particular instruments.2327

The metrics were computed on the entire time interval of study or on subintervals. Results were2328

displayed as tables and plots. These choices enabled carrying out an analysis at multiple scales2329

(entire network versus individual instruments). This approach underlines disparities of efficiency2330

of the algorithms on particular instruments for instance.2331

Multiple surveys exist on metrics [17]. They aim at providing a clear reading on the differences2332

and similarities among the wide spectra of metrics used. While metrics are numerous, groups of2333

them are based on the same idea (difference, absolute difference, square difference...). In some2334

works, such as in [54], an integrated performance index was developed to combine the values2335

of several metrics into a single one. However, some metrics are interdependent [154], which2336

can exaggerate or hide information when they are combined. In the literature regarding in situ2337

calibration strategies, the choice of metrics is not always clearly justified, nor is the choice of2338

the values presented and how they are computed (values for particular instruments, statistics2339

of the metric over the network and so on). Moreover, Tian et al. [154] showed it is possible to2340

have equal values of multiple metrics for two sets of values very different from each other. They2341

justified it by the interdependence, underdetermination and incompleteness of usual metrics, in2342

addition to the fact that they assume the error to be linear. This issue is major as metrics are2343

used in official recommendations such as the data quality objectives (DQO) in the context of air2344

quality measuring instruments [16, 27, 95]. In this way, we suggest in the next section to use an2345

error model as introduced by Tian et al. [154]. It is considered as a satisfying means to deal2346

with these issues.2347

Another question lies in the way a metric is computed or in how statistics are derived from2348

it. As shown in the previous section, looking at values of metrics computed over the full-time2349

interval of drift or computed over each week may yield different interpretations. The choice of2350

the time interval on which it is derived can be guided by requirements on the minimal duration2351

for which the mean error of an instrument must be under a given threshold for instance.2352

Regarding the use of statistics, it concerns particularly networks with hundreds of nodes,2353

for which interpreting the values of metrics for each node may not be easily feasible. However,2354

statistics derived over the entire network do not enable discriminating easily between instruments2355

differently affected by an algorithm. The use of statistics is perfectly appropriate if the quality2356

of the calibration of the instruments belonging to a sensor network should be evaluated at the2357

level of the network, e.g. when it is the collective performance that matter. Otherwise, if each2358
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instrument is expected to be perfectly calibrated after an in situ calibration, statistics may2359

only give a first idea of the performances of the algorithm. At the same time, evaluating the2360

performances of an algorithm on a very large sensor network by looking at each instrument2361

individually may not be feasible. Thus, the scale at which the performances of the instruments2362

are evaluated must be specified in the description of a study, to make a proper use of statistics2363

and to determine if the analysis is manageable in practice.2364

In addition, the way the results are displayed is important. We discuss this topic in Section2365

4.3 and propose the use of an easily readable representation, compatible with the error model we2366

use hereafter.2367

4.2 Evaluation with an error model2368

We investigate in this section an approach which captures better individual instrument
behaviours. It applied to the previous case study for the sake of comparison. We follow the error
model approach proposed by Tian et al.[154]. It consists in finding a function F associating
each measured value of an instrument si, noted v(si, t), to the true values of the measurand
vtrue(si, t) so that v(si, t) = F(vtrue(si, t)).18 They illustrated this with a linear additive error
model expressed as:

v(si, t) = a · vtrue(si, t) + b+ ε(t)

with a and b being respectively a constant gain and a constant offset, and ε a random error,2369

following a given probability law depending on the case. If the actual distribution of ε is not2370

determined, it is equivalent to the fitting a linear trend model between v and vtrue. A linear2371

regression can be used to determine the slope a and the intercept b in this case. a = 1 and b = 02372

are the ideal results, indicating a perfect calibration. The linear regression between v and vtrue is2373

appropriate to describe the performances before calibration. Comparing the slope and intercept2374

of this regression to the ones obtained with the linear regression between the corrected values2375

after calibration vcorr and the true values vtrue enables determining the improvement brought2376

by the calibration algorithm. This approach with linear regression is used in the literature on2377

calibration of individual instruments [139]. In our case, this error model is perfectly appropriate2378

to evaluate the remaining error after calibration, considering the drift model defined in Section 3.2379

The case study of Section 3 is analysed here again with the error model. The results associated2380

with all the tables and figures presented are provided. First, the overall results obtained with2381

this approach for the slope and intercept of the linear model, plus the score of the regression, e.g.2382

the coefficient of determination of the regression, are in Table 3.4.1. Then, results are reported2383

in Table 3.4.2 for the same particular instruments considered in Section 3.From these tables, the2384

observations that can be made are consistent with those made with Table 3.3.1 and Table 3.3.2.2385

These tables also seem to confirm a bias for the strategy SVR-KF: the standard deviation of2386

the slope and intercept among instruments is small, the mean slope is close to 1 but the mean2387

intercept is equal to 10. However, the poor mean score of the regression invites to be careful.2388

Table 3.4.3 shows the mean and standard deviation of a, b and of the score computed weekly2389

for a particular instrument. In this case, the means are different from those of Table 3.4.2 for s12390

(a linear regression is not a linear operation). We observe that the slope for SVR-KF is varying2391

significantly. More importantly, the mean intercept is equal to zero with a standard deviation of2392

17, which is not the case for the other strategies. Therefore, the observation made with Table2393

3.4.2 about SVR-KF is not valid locally and can explain why the mean score is poor compared2394

to the ones obtained with the other strategies.2395

In conclusion, the use of an error model allows to make the same conclusions as in Section2396

3. However, clearer information can be derived such as the remaining error after calibration,2397

18This idea of error model is close to the concept of a calibration relationship. The inverse function of the error
model is the relationship to apply to an instrument so that calibration is perfect.
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expressed in terms of gain and offset.2398

Slope Intercept Score

µ σ µ σ µ σ

No calibration 1.62 0.07 -2 0 0.87 0.01
SM-SVD 1.02 0.02 1 0 0.99 0.01
SM-LS 0.97 0.02 1 0 0.99 0.01

SM-TLS 1.02 0.02 1 0 0.99 0.01
AB-DT 1.62 0.05 -2 1 0.87 0.01
AB-KF 1.62 0.04 -1 1 0.87 0.01

SVR-KF 1.05 0.03 10 1 0.68 0.02
K-KF 1.62 0.04 -2 1 0.86 0.01

Table 3.4.1: Mean (µ) and standard deviation (σ) of the parameters of the error model and the
regression score, computed on the entire time interval of drift, over the 16 nodes of the network.
The observations that can be made with these values are identical to those of Table 3.3.1. This
table also seems to confirm that there is a bias for SVR-KF as the standard deviation of the slope
and intercept among instruments is small, with mean slope close to 1 but a mean intercept equal
to 10. However, the poor mean score of the regression invites to be careful with this statement.

Slope Intercept Score

s1 s2 s1 s2 s1 s2

No calibration 1.77 1.58 -2 -1 0.85 0.89
SM-SVD 1.01 1.05 0 1 0.99 0.97
SM-LS 0.97 0.94 0 1 0.99 0.97

SM-TLS 1.01 1.05 0 1 0.99 0.97
AB-DT 1.62 1.55 0 -1 0.87 0.87
AB-KF 1.63 1.56 -1 -3 0.87 0.86

SVR-KF 1.09 1.01 9 12 0.69 0.65
K-KF 1.62 1.56 -2 -4 0.87 0.84

Table 3.4.2: Values of the parameters of the error model and the regression score, computed on
the entire time interval of drift, for two particular instruments of the network s1 = 2 and s2 = 10.

The observations that can be made with these values are identical to those of Table 3.3.2.
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Slope Intercept Score

µ σ µ σ µ σ

No calibration 1.66 0.36 0 0 1.00 0.00
SM-SVD 1.03 0.04 0 0 1.00 0.00
SM-LS 0.99 0.03 0 0 1.00 0.00

SM-TLS 1.03 0.04 0 0 1.00 0.00
AB-DT 1.53 0.28 2 1 1.00 0.00
AB-KF 1.54 0.30 0 1 1.00 0.00

SVR-KF 1.35 0.28 0 17 0.88 0.06
K-KF 1.51 0.32 0 0 1.00 0.00

Table 3.4.3: Mean and standard deviation of the parameters of the error model and the
regression score for s1, computed on each week of the drift period. The slope for SVR-KF varies
significantly and the mean intercept is equal to zero with a standard deviation of 17. This is not
the case for the other strategies. Thus, the observation made with Table 3.4.2 on SVR-KF is not
valid locally and can explain why the mean score is poor compared to the ones obtained with

the other strategies.
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Figure 3.4.1: Evolution of the slope, intercept and score of the error model of s1, computed
on each week of the drift period. Both the slope and intercept are locally poor for SVR-KF,
although this is not visible when computing the error model on the entire time interval of study.

This explains the poor values of the score compared to the other strategies.
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4.3 Means of visualisation2399

Choosing other ways of visualising results may help to better understand what happens to2400

each instrument. Various representations (Figures 3.4.2, 3.4.3 and 3.4.4) are discussed in terms2401

of suitability for the comparison of methods.2402
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Figure 3.4.2: Box plots of the MAE, computed on the entire time interval of drift, of the 16
nodes of the network without calibration and with SM-SVD. It is a graphical representation
of the information displayed in Table 3.3.1 for MAE. Supplementary information is provided

compared to the table: quartiles, minimum and maximal values.
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Figure 3.4.3: Matrix of the MAE, computed on the entire time interval of drift, of the 16 nodes
of the network without calibration and with SM-SVD. It shows exactly the information for

each instrument. The colour scale can help to identify problematic instruments.

Figure 3.4.2 is a boxplot-based representation of the values of MAE computed on the entire2403

time interval of study. A boxplot is provided for each strategy. This representation is a2404

graphical illustration of the information displayed in Table 3.3.1 for MAE. In addition, it provides2405

supplementary information compared to the table: quartiles, minimum and maximal values.2406

However, this representation does not show exactly the results for each instrument. One graph2407

is needed for each metric. The plot can also show statistics on the evolution of a metric for a2408

particular instrument like Table 3.3.3 but again it can only display information about one metric.2409

To display values regarding each instrument of a network, a matrix of values can be a solution.2410

A colour scale can make the values more easily readable. Figure 3.4.3 is a matrix of the mean of2411

MAE on the entire time interval of study. This figure shows exactly the information for each2412

instrument. The colour scale helps to identify problematic instruments. It is appropriate for2413

real-time display. Nevertheless, if multiple metrics (or variables if an error model is considered)2414

are used, one matrix must be plotted for each one. The study of multiple calibration strategies is2415

not possible on a single plot.2416
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Figure 3.4.4: Target plot of the 16 nodes as a function of their slope and intercept in the
error model for each calibration strategy. The slope and intercept are computed on the entire
time interval of drift. In this case, it allows to locate an instrument according to the slope and
intercept of its associated error model. The red rectangle is an example of area that can be
defined to quickly identify instruments that are not satisfying a requirement, here a slope in

[0.9; 1.1] and an intercept in [−5; 5].

To overcome the challenge of displaying information for multiple instrument on a single chart,2417

we propose to use target plots. They enable locating a point along multiple axes (two for a 2D2418

diagram, three for a 3D diagram). Boundaries within which the point should be ideally can be2419

depicted. Each axis can be used for a different metrics. A colour scale can be used to depict2420

a third one. In the previous section, we proposed to use an error model with two variables.2421

Therefore, a target plot is perfectly adapted. Figure 3.4.4 is a target plot of the parameters of2422

the error model, each point’s coordinates being the values of the slope and the intercept of the2423

error model for each instrument, computed on the entire time interval of study. Indeed, this2424

diagram shows exactly the information for each instrument. Moreover, statistics like standard2425

deviation can be added with error bars. The target diagram is also appropriate for real-time2426

display and results for multiple calibration strategies can be plotted. Thus, it is a very powerful2427

representation, although it is limited to two or three variables, respectively for a 2D plot and2428

a 3D plot (potentially three or four with a colour scale on the markers) to allow a graphical2429

representation, and only one statistic per axis can be added with error bars.2430

4.4 Conclusion2431

In this section, we investigated further issues regarding the evaluation of performances of in2432

situ calibration strategies in terms of metrics and display. The conclusions are as follows:2433

• In the case of an evaluation based on usual metrics, the study with multiple metrics is2434

strongly recommended, with a careful regard on the purpose of each metric. Possible2435

interdependence and underdetermination between them19 may mislead interpretations.2436

We recommend using an error model-based approach, which allows to better capture the2437

correction brought by a calibration algorithm, for instance in terms of gain and offset.2438

• The way metrics (or the parameters when an error model is used) are computed (time2439

range on which the calculation is performed, periodicity of the computation) should be2440

consistent with the details of the case study.2441

19Note that the set of metrics that is used in this work (or a subset) is not optimal itself regarding these
questions. See [154]
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• Computing statistics of metrics over the whole network is advantageous for large sensor2442

networks, but may hide important information regarding to individual instrument (for2443

instance, a specific device degrading the overall performances of a given method due to2444

outliers)2445

• Graphical visualisations of metrics (or parameters of an error model) can enable a better2446

analysis, notably with a target plot of the model’s parameters when an error model with2447

two or three parameters is used.2448

5 Sensitivity of the calibration algorithms to the specificities of the case2449

study2450

In this section, we discuss the influence of the solutions chosen for the implementation of2451

each step of the framework on the performances of the algorithms studied. First the function2452

used to model the concentration of pollutant is modified. Then, the number of instruments is2453

changed. Afterwards, the influence of the drift model is investigated. Finally, the impacts of2454

a change of parameters for the calibration algorithms are studied. For comparison purposes,2455

the metrics chosen in Section 3 are used, completed with the error model and the target plot2456

proposed in Section 4 when appropriate.2457

5.1 Using a more realistic model of the true values2458

The model used in Section 3 is simplistic and can legitimately raise questions on the perfor-2459

mances of each calibration strategy with a more representative model. In this section, consider2460

the Gaussian Plume model [61, 145], a refined model with meteorological parameters, taken2461

from a real-world data set. Otherwise, the space of study and its discretisation, the pollutant2462

source location and duration of study, the sensor network, the instrument drift model, and the2463

parameters of the calibration strategies are kept similar to the previous case study.2464

We suppose that at each time step, the pollutant dispersion to be in steady state. Con-2465

centration C at instant t and position (x, y, z) for a wind direction following x is expressed2466

as:2467

C(x, y, z, t) = Q

4πVw(t)σyσz
e
− y2

4σ2
y

(
e
− (z−H)2

4σ2
z + e

− (z+H)2

4σ2
z

)
with2468

• σy and σz: respectively horizontal and vertical dispersion coefficients2469

• Q: Emission rate at the source2470

• Vw: Wind speed2471

• H: Pollutant effective release. H = hs + ∆h(t) where

∆h(t) = 1.6F 1
3x

2
3

Vw
with F = g

π
D

(
Ts − T (t)

Ts

)
– hs: pollutant source height2472

– g: gravity constant2473

– D: volumetric flow2474

– Ts: source temperature2475

– T : ambient temperature2476
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Figure 3.5.1: Example of concentration map used and based on the Gaussian plume model.
The pollutant source is at coordinates (xs, ys) = (0, 0), hs = 25m, the map is observed at
z = 2m. Other parameters are : T = 25◦C, Vw = 10m s−1, Ts = 30◦C, g = 9.8m s−2, D =
1.9× 10−9 m3 s−1, Q = 5× 10−3 kg s−1, σy = 1.36|x − xs|0.82, σz = 0.275|x − xs|0.69. Wind

direction is equal to 0° here.

To allow for wind direction changes, the cylindrical coordinate system is used to rotate the2477

plume.2478

Emission rate, temperature of the source and dispersion coefficients are supposed constant2479

over the simulation range. Ambient temperature, wind speed and wind direction are extracted2480

from METAR weather reports collected over a year. An example of pollution map obtained for a2481

given altitude z is represented in Figure 3.5.1.2482
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Figure 3.5.2: True values, measured values and corrected values with the strategies considered
for a particular instrument between t = 5424h and t = 5471h with the Gaussian plume model.
Note that the profiles of the curves are very different from those of Figure 3.3.4 as instruments
are not necessarily exposed to the plume of pollutant due to the wind direction. In this case it is

exposed to the pollutant between t = 5445h and t = 5456h.

Figure 3.5.2 is a temporal plot for a particular instrument like in Section 3. From this plot2483

we observe that the true signal appears to vary more quickly from high to low values. This is2484

due to the fact that only one source of pollutant is considered in the area, and that the wind2485

varies quickly from one direction to another in this dataset. Moreover, as we assumed that2486

the concentration at each time step could be represented following the equation of a stationary2487

Gaussian Plume, the pollutant quickly spreads at some points if the wind direction changes a lot.2488

In practice the pollutant may not disperse as fast.2489
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MAE MAPE RMSE Pearson

µ σ µ σ µ σ µ σ

No calibration 13 6 17 6 38 21 0.98 0.00
SM-SVD 2.30× 103 6.12× 103 2.28× 105 6.13× 105 1.39× 104 3.73× 104 0.55 0.43
SM-LS 26 24 952 2.42× 103 93 138 0.85 0.34

SM-TLS 2.30× 103 6.12× 103 2.28× 105 6.13× 105 1.39× 104 3.73× 104 0.55 0.43
AB-DT 36 3 2.11× 103 529 54 7 0.62 0.19
AB-KF 36 3 2.11× 103 529 54 7 0.62 0.19

SVR-KF 249 357 1.51× 104 2.15× 104 270 380 0.54 0.18
K-KF 47 22 2.18× 103 1.31× 103 85 36 0.11 0.43

Slope Intercept Score

µ σ µ σ µ σ

No calibration 1.56 0.08 -2 1 0.97 0.01
SM-SVD -21.11 60.40 2.49× 103 6.99× 103 0.48 0.42
SM-LS 0.34 0.32 10 28 0.83 0.33

SM-TLS -21.11 60.40 2.49× 103 6.99× 103 0.48 0.42
AB-DT 0.82 0.31 19 13 0.42 0.24
AB-KF 0.82 0.31 19 13 0.42 0.24

SVR-KF 0.83 0.19 234 357 0.32 0.19
K-KF 0.26 0.66 30 15 0.18 0.27

Table 3.5.1: Mean and standard deviation of each metric, computed on the entire time interval
of drift, over the 16 nodes of the network with the Gaussian plume model. No calibration strategy
allows to obtain less error than without calibration, even for SM-(SVD, LS, TLS) strategies that

had the best performances in Section 3.

Results with usual metrics and statistics on the parameters of the linear error model are2490

presented in Table 3.5.1 on the entire network. From this table, we observe first that no calibration2491

strategy provides less error than without calibration, even for SM-(SVD, LS, TLS), the strategies2492

that had the best performances in Section 3. This is also the case in Table 3.5.2 for the same2493

particular instruments considered in Section 3, despite apparently satisfying results according to2494

MAE but not according to the slope and intercept notably. The results for each instrument are2495

depicted in detail in Figure 3.5.3 with the target plot of the parameters of the error model for all2496

the instruments.2497

Using a more realistic model of dispersion obviously produces a more complex signal that2498

may require a higher density of instruments to capture the phenomenon. Indeed, the subspace2499

size for SM-(SVD, LS, TLS) is equal to 11 (it was 2 in Section 3.2.1). This is still fitting the2500

oversampling condition required for these algorithms, but it could explain the actual results:2501

there may not be enough measuring instruments to capture all the features of the measurand.2502

The same reasoning applies for SVR-KF which is also model based. For the other strategies, for2503

which the prediction of true values is based on neighbouring nodes, the quality of the results2504

which were already poor in Section 3 is even worse.2505

In conclusion, the influence of the model used to derive the true values of the measuring2506

instruments is important. Considering cases on urban air pollution monitoring, the dispersion of2507
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Figure 3.5.3: Target plot of the 16 nodes as a function of their slope and intercept in the
error model, computed on the entire time interval of drift, for each calibration strategy and with
the Gaussian plume model. The instruments are not all present, notably for those after the
correction by SVR-KF. Axis were truncated to keep the plot readable. The red rectangle depicts
the same requirement as in Figure 3.4.4 e.g. a slope in [0.9; 1.1] and an intercept in [−5; 5]. Few

instruments are inside this area whatever the in situ calibration strategy considered.

pollutant for cities with different street layout may lead to different concentration fields despite2508

identical pollutant sources and experimental conditions. Therefore, even with an identical sensor2509

network with instruments drifting in the same way, in situ calibration strategies could produce2510

corrections of a variable quality.2511
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MAE MAPE RMSE Pearson

s1 s2 s1 s2 s1 s2 s1 s2

No calibration 12 12 19 13 36 35 0.98 0.98
SM-SVD 6 33 108 201 24 269 0.83 0.06
SM-LS 8 25 55 86 20 57 0.97 0.97

SM-TLS 6 33 108 201 24 269 0.83 0.06
AB-DT 37 32 2.59× 103 1.61× 103 51 45 0.57 0.79
AB-KF 37 32 2.60× 103 1.61× 103 51 45 0.57 0.79

SVR-KF 24 387 1.31× 103 2.60× 104 34 415 0.69 0.34
K-KF 27 63 818 3.41× 103 55 100 0.60 -0.25

Slope Intercept Score

s1 s2 s1 s2 s1 s2

No calibration 1.75 1.47 -1 -2 0.96 0.97
SM-SVD 0.83 0.25 2 -6 0.68 0.00
SM-LS 0.58 0.17 0 -0 0.94 0.93

SM-TLS 0.83 0.25 2 -6 0.68 0.00
AB-DT 0.77 0.92 27 14 0.33 0.63
AB-KF 0.77 0.92 28 14 0.33 0.63

SVR-KF 0.78 0.98 3 382 0.48 0.12
K-KF 0.95 -0.26 18 42 0.36 0.06

Table 3.5.2: Values of the metrics, computed on the entire time interval of drift, for two
particular instruments of the network s1 = 2 and s2 = 10, with the Gaussian plume model. No
calibration strategy allows to obtain less error than without calibration, even for SM-(SVD, LS,
TLS) strategies that had the best performances in Section 3, despite apparently satisfying results

according to MAE but not according to the slope and intercept notably.
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5.2 Density of the sensor network2512

The density of the network of sensors is crucial to capture fine spatial features of the2513

phenomenon. In this section, we investigate the impact on the performances of the calibration2514

strategies.2515

First, we replay the initial case study (2D Gauss dispersion model) with regular grid networks2516

with one instrument every 1000
n m, n ∈ [2..10]. The size of the network, |S| = n2, grows from 42517

to 100. It was equal to 16 Section 3. All other parameters are kept.2518
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Figure 3.5.4: Evolution of the mean of the MAE, computed on the entire time interval of study,
of all the nodes of the network, as a function of the number of nodes |S|, for the 2D Gauss model

Evolution of the mean of the MAE of the network with |S| is shown in Figure 3.5.4. From it,2519

we observe that increasing the number of instruments improves the results with strategies K-KF2520

and SVR-KF. However, the results are not significantly impacted by |S| for strategies AB-(DT,2521

KF) and SM-(SVD, LS, TLS) compared to the baseline case (|S| = 16). It can be explained by2522

the simplicity of the model used to derive the true values. Moreover, for these strategies, slightly2523

better results are obtained with a smaller number of instruments than with |S| = 16. It seems2524

that such a number (4 or 9 nodes) already enables capturing enough information to calibrate2525

instruments for SM-(SVD, LS, TLS). For AB-(DT, KF), the prediction based on averaging values2526

of neighbour instruments cannot be improved by increasing the number of instruments. Indeed,2527

the network is blind, and instruments are all drifting at the same time, following the same model,2528

with different values of drift. For SVR-KF, issues identified in Sections 3 and 4 seem to prevail2529

despite an improvement of the performances with more instruments (but not with a lower number2530

of nodes). However, in a general manner for K-KF, the more instruments are deployed, the more2531

the kriging seems to provide accurate predictions. Results still have to be improved for |S| = 1002532

though.2533

Thus, the number of instruments has an influence, though limited, on the results of the in2534

situ calibration strategies. We also conjecture that the way instruments are deployed can have2535

an influence, as it is crucial for an efficient reconstruction of the signal [20].2536

We also replay Gaussian Plume case study with a regular grid network of 100 instruments.2537

We conjectured in Section 5.1 that increasing the density of instruments could improve on the2538

poor calibration performances witnessed. Unexpectedly, our results contradict this intuition: the2539

increased number of instruments does not improve the performances of the considered strategies.2540

Results with usual metrics and statistics on the parameters of the linear error model are2541

presented in Table 3.5.3 for the entire network. From this table, we indeed observe that no2542

calibration strategy allows obtaining less error than without calibration. In Table 3.5.4 results2543

are quite equivalent to the previous ones in orders of magnitude. SM-(SVD, LS, TLS) strategies2544
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MAE MAPE RMSE Pearson

µ σ µ σ µ σ µ σ

No calibration 13 7 17 6 38 25 0.98 0.00
SM-SVD 1.04× 1012 1.04× 1013 1.04× 1014 1.04× 1015 6.32× 1012 6.32× 1013 0.55 0.37
SM-LS 4.77× 108 4.77× 109 4.77× 1010 4.77× 1011 2.91× 109 2.91× 1010 0.91 0.26

SM-TLS 8.67× 1011 8.67× 1012 8.67× 1013 8.67× 1014 5.29× 1012 5.29× 1013 0.54 0.37
AB-DT 37 3 2.09× 103 580 57 8 0.63 0.20
AB-KF 37 3 2.10× 103 578 57 8 0.63 0.20

SVR-KF 412 208 2.68× 104 1.33× 104 432 232 0.51 0.18
K-KF 39 21 1.66× 103 973 71 41 0.10 0.44

Slope Intercept Score

µ σ µ σ µ σ

No calibration 1.55 0.07 -2 1 0.97 0.01
SM-SVD −1.01× 1011 1.01× 1012 1.22× 1012 1.22× 1013 0.43 0.38
SM-LS −4.63× 107 4.63× 108 5.63× 108 5.63× 109 0.89 0.26

SM-TLS −8.43× 1010 8.43× 1011 1.02× 1012 1.02× 1013 0.42 0.38
AB-DT 1.02 0.71 17 14 0.43 0.25
AB-KF 1.02 0.71 17 14 0.43 0.25

SVR-KF 0.82 0.14 415 208 0.29 0.16
K-KF 0.19 1.38 23 11 0.20 0.30

Table 3.5.3: Mean and standard deviation of each metric, computed on the entire time interval
of study, over the 100 nodes of the network with the Gaussian plume model. Again, no calibration

strategy allows to obtain less error than without calibration.

have abnormal performances, notably due to outliers in the results for some instruments. Figure2545

3.5.5 depicts the target plot of the parameters of the error model for all the instruments.2546

For the strategies AB-DT, AB-KF and K-KF, which perform the prediction of true values2547

based on neighbouring nodes, the fact that instruments are drifting altogether may have a more2548

important effect than the density of the network. For SM-(SVD, LS, TLS), the subspace of the2549

signal, which is at the heart of these algorithms, was chosen considering the same criteria on the2550

sum of the explained variance ratios. In this case, 13 components of the PCA with the highest2551

variance ratios were kept (11 in Section 5.1). Thus, setting that a subspace is satisfying if the2552

sum of the explained variance ratios of its components is greater than a threshold may not be2553

sufficient to define it properly. The same reasoning applies for SVR-KF which is also model2554

based.2555
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MAE MAPE RMSE Pearson

s1 s2 s1 s2 s1 s2 s1 s2

No calibration 10 10 22 22 23 21 0.98 0.99
SM-SVD 5 3 36 25 13 6 0.92 0.99
SM-LS 6 4 42 30 11 6 0.99 1.00

SM-TLS 5 3 36 25 13 6 0.92 0.99
AB-DT 37 37 2.16× 103 2.08× 103 53 54 0.59 0.63
AB-KF 38 37 2.17× 103 2.09× 103 53 54 0.59 0.63

SVR-KF 373 309 2.22× 104 1.75× 104 374 311 0.63 0.68
K-KF 9 10 44 62 18 22 0.95 0.90

Slope Intercept Score

s1 s2 s1 s2 s1 s2

No calibration 1.59 1.54 -1 -1 0.97 0.97
SM-SVD 0.84 0.87 -0 -0 0.85 0.98
SM-LS 0.71 0.84 -0 -0 0.99 0.99

SM-TLS 0.84 0.87 -0 -0 0.85 0.98
AB-DT 1.11 1.28 20 16 0.35 0.39
AB-KF 1.11 1.28 20 16 0.34 0.39

SVR-KF 0.89 1.02 375 309 0.39 0.46
K-KF 1.31 1.29 1 1 0.91 0.81

Table 3.5.4: Values of the metrics, computed on the entire time interval of study, for two
particular instruments of the network s1 = 2 and s2 = 10, with the Gaussian plume model. For
these instruments, the results are quite equivalent to those of Table 3.5.2 in orders of magnitude
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Figure 3.5.5: Target plot of the 16 nodes as a function of their slope and intercept in the error
model, computed on the entire time interval of study, for each calibration strategy and with the
Gaussian plume model. The instruments are not all present: axes were truncated to keep the
plot readable. The red rectangle depicts the same requirement as in Figure 3.4.4 and 3.5.3 e.g. a
slope in [0.9; 1.1] and an intercept in [−5; 5]. More instruments are inside this area compared to
Figure 3.5.3 but most of them are outside whatever the in situ calibration strategy considered.
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5.3 Instrument modelling2556

The modelling of the instruments used combines a simple drift model and the assumption that2557

there are no other faults occurring to instruments than drifting. This hypothesis is not realistic,2558

in particular when considering low-cost instruments. In this section, we introduce a more realistic2559

drift model and evaluate the robustness of calibration strategies when the measurements are2560

corrupted by other faults.2561

The model for the simulation of the true values, the sensor network and the parameters of2562

the calibration strategies used in Section 3 are considered.2563

5.3.1 Drift model2564

To determine the influence of the drift complexity, two models are considered, with tstart drift2565

being the instant when the instrument begins to drift:2566

• Random gain and offset increase (RGOI): Gain G(si, t) and offset O(si, t) drift of instru-2567

ment si are computed at each time step following:2568

G(si, t) =
{

1 if t < tstart drift

G(si, t− 1) + δG(si, t) if t ≥ tstart drift

with ∀t, δG(si, t) drawn following U(0, δGmax)

O(si, t) =
{

0 if t < tstart drift

O(si, t− 1) + δO(si, t) if t ≥ tstart drift

with ∀t, δO(si, t) drawn following U(0, δOmax)

with δGmax and δOmax being respectively the maximal gain and offset possible increase2569

per time step.2570

• Continuous gain and offset increase (CGOI): A constant gain δG(si) and offset δO(si)2571

increase of instrument si are drawn from uniform laws at the beginning of the drift and2572

are added to respectively to the gain and offset of the instrument at each time step.2573

G(si, t) =
{

1 if t < tstart drift

G(si, t− 1) + δG(si) if t ≥ tstart drift

with δG(si) drawn following U(0, δGmax)

O(si, t) =
{

0 if t < tstart drift

O(si, t− 1) + δO(si) if t ≥ tstart drift]

with δO(si) drawn following U(0, δOmax)

with δGmax and δOmax being respectively the maximal gain and offset possible increase2574

per time step.2575

For both models, measured values are expressed following:

v(si, t) = G(si, t) · vtrue(si, t) +O(si, t)

In this case, δGmax = 6× 10−5, and δOmax = 0.03.2576

71



Chapter 3. Framework for the Simulation of Sensor Networks Aimed at Evaluating In Situ
Calibration Algorithms

There is an offset in RGOI and CGOI drift models. The estimation of the offset could not be2577

carried out with SM-(SVD, LS, TLS) because the phenomenon does not have a null average on2578

the give time span of calibration. Hence, the offsets are expected to be wrong for these strategies.2579

Results with usual metrics and statistics on the parameters of the linear error model are2580

presented in Table 3.5.5 and 3.5.6. From these tables and compared to Tables 3.3.1 and 3.4.1, we2581

observe that very different results can be obtained depending on the drift model and notably2582

for SM-(SVD, LS, TLS). For these strategies, the measured values with RGOI or CGOI drift2583

models are less improved by the calibration strategies even if we take into account that we2584

expected to have incorrect offsets. Indeed, the average slope is worse than the one in Table 3.4.1,2585

with an equivalent standard deviation. For both drift models, SVR-KF seems to improve the2586

measured values according to MAE, MAPE, RMSE and the Pearson correlation coefficient but2587

not according to the error model with a poor slope (0.76) and a high intercept (20) in average.2588

AB-(DT,KF) and K-KF give corrected values equivalent to the measured values with the RGOI2589

model. They are slightly improved if the measured values are built with the CGOI model and2590

more notably for K-KF.2591

Thus, the drift model used to derive the measured values can drastically change the corrected2592

values obtained after calibration depending on the algorithm used.2593
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MAE MAPE RMSE Pearson

µ σ µ σ µ σ µ σ

No calibration 56 0 273 46 65 0 0.65 0.00
SM-SVD 50 3 248 32 56 3 0.67 0.01
SM-LS 46 1 232 43 52 1 0.68 0.00

SM-TLS 50 3 248 32 56 3 0.67 0.01
AB-DT 56 0 274 48 65 0 0.65 0.00
AB-KF 56 1 276 54 65 1 0.64 0.00

SVR-KF 14 0 86 13 16 1 0.84 0.01
K-KF 56 1 276 54 65 1 0.64 0.00

Slope Intercept Score

µ σ µ σ µ σ

No calibration 1.41 0.00 43 1 0.42 0.01
SM-SVD 1.24 0.01 42 2 0.45 0.01
SM-LS 1.18 0.04 40 0 0.46 0.00

SM-TLS 1.24 0.01 42 2 0.45 0.01
AB-DT 1.41 0.01 43 1 0.42 0.00
AB-KF 1.41 0.03 43 1 0.42 0.00

SVR-KF 0.76 0.02 20 1 0.71 0.02
K-KF 1.41 0.03 43 1 0.41 0.00

Table 3.5.5: Mean and standard deviation of each metric, computed on the entire time interval
of study, over the 16 nodes of the network with the RGOI drift model. Results are very different
with this model compared to Tables 3.3.1 and 3.4.1, notably for SM-(SVD, LS, TLS) even if we

take into account that we expected to have incorrect offsets.
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MAE MAPE RMSE Pearson

µ σ µ σ µ σ µ σ

No calibration 44 29 210 131 51 34 0.75 0.15
SM-SVD 33 21 162 99 38 24 0.78 0.14
SM-LS 26 16 133 89 31 19 0.77 0.13

SM-TLS 33 21 162 99 38 24 0.78 0.14
AB-DT 46 1 227 44 54 1 0.70 0.01
AB-KF 47 1 228 46 54 1 0.70 0.00

SVR-KF 14 0 85 13 16 0 0.84 0.01
K-KF 20 1 95 22 23 1 0.89 0.00

Slope Intercept Score

µ σ µ σ µ σ

No calibration 1.34 0.20 33 23 0.58 0.23
SM-SVD 1.18 0.12 27 17 0.63 0.21
SM-LS 1.07 0.13 21 14 0.61 0.20

SM-TLS 1.18 0.12 27 17 0.63 0.21
AB-DT 1.35 0.03 35 1 0.49 0.01
AB-KF 1.35 0.03 36 1 0.49 0.00

SVR-KF 0.76 0.02 20 1 0.71 0.02
K-KF 1.18 0.02 14 1 0.79 0.01

Table 3.5.6: Mean and standard deviation of each metric, computed on the entire time interval
of study, over the 16 nodes of the network with the CGOI drift model. Results are very different
with this model compared to Tables 3.3.1 and 3.4.1, notably for SM-(SVD, LS, TLS) even if we

take into account that we expected to have incorrect offsets.
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5.3.2 Other faults2594

As stated in Chapter 1 Section 2.2, measuring instruments are subject to other faults but2595

drift. Even if calibration algorithms are not capturing these faults, the quality of input data2596

impacts the performances of calibration. In [50], it was shown that the outliers contained in the2597

time series of measured values have a more important influence on the calibration results than2598

the average quality of the data. As an early work on the topic, Ramanathan et al. [123] observed2599

that the measured values were sometimes corrupted, even with an individual field calibration for2600

each instrument performed with a mobile chemistry laboratory at the time of deployment. In2601

this section, we investigate the influence of other faults on the calibration results.2602

Let us assume that in addition to a WGLI drift, all the instruments are undergoing after2603

tstart drift:2604

Noise We model it as a random variable following a normal law. For each instrument si, the2605

value of the noise ε(si, t) is drawn from N (0, εmax) at each time step, with εmax = 20 here2606

Spikes In this study, a spike occurs depending on the random variable pψ(si, t) that follows2607

U(0, 1). If pψ(si, t) < 0.05, a spike is added to the measured value v(si, t). The value of2608

the spike is equal to (ψ · v)(si, t), with ψ(si, t) following U(−1, 1).2609

Thus, the measured values of an instrument si are equal to:2610

v(si, t) =


G(si, t) · vtrue(si, t) if t < tstart drift

G(si, t) · vtrue(si, t) + ε(si, t) if t ≥ tstart drift and pψ(si, t) ≥ 0.05
(G(si, t) + ψ(si, t)) · vtrue(si, t) + ε(si, t) if t ≥ tstart drift and pψ(si, t) < 0.05

Results with usual metrics and statistics on the parameters of the linear error model are2611

presented in Table 3.5.7. While SM-(SVD, LS, TLS) strategies worked very well for instruments2612

suffering from drift only, their performances degrade significantly after introducing these faults2613

in the measured values. For the other strategies, noise and spikes do not seem to degrade the2614

results although the performances were fairly unsatisfying from the start like in Section 3. It is2615

expected since this kind of fault is not considered by the calibration strategies. It is henceforth2616

less a matter of performance than an issue of robustness of each method against abnormal values.2617

In practice, one should try to identify and correct as many faults as possible, e.g. by filtering2618

spikes and averaging noise, before applying an in situ calibration algorithm.2619
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MAE MAPE RMSE Pearson

µ σ µ σ µ σ µ σ

No calibration 25 2 106 14 33 2 0.79 0.01
SM-SVD 60 50 198 144 82 70 0.23 0.33
SM-LS 28 6 93 10 33 7 0.35 0.57

SM-TLS 60 50 198 144 82 70 0.23 0.33
AB-DT 21 1 78 17 28 2 0.88 0.01
AB-KF 21 1 78 17 28 2 0.88 0.01

SVR-KF 18 0 92 15 22 0 0.75 0.01
K-KF 25 1 107 18 32 1 0.79 0.00

Slope Intercept Score

µ σ µ σ µ σ

No calibration 1.62 0.07 -2 0 0.62 0.01
SM-SVD 0.18 0.69 -13 14 0.16 0.25
SM-LS 0.15 0.26 -0 1 0.43 0.08

SM-TLS 0.18 0.69 -13 14 0.16 0.25
AB-DT 1.63 0.04 -2 1 0.77 0.02
AB-KF 1.63 0.04 -1 1 0.78 0.02

SVR-KF 1.06 0.03 10 1 0.56 0.01
K-KF 1.61 0.04 -2 1 0.62 0.01

Table 3.5.7: Mean and standard deviation of each metric, computed on the entire time interval
of study, over the 16 nodes of the network with the WGLI drift model, spikes and noise. The
results with SM-(SVD, LS, TLS) are significantly influenced by the spikes and noise. The other
strategies do not seem to provide more degraded results due to the noise and spikes although the

performances were fairly unsatisfying from the start in Section 3.
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5.4 Parameters of calibration strategies2620

Finally, the last step that can influence the results is the configuration of the calibration2621

strategies. Indeed, the strategies considered in Section 3 have multiple parameters.2622

Multiple studies can be performed for each parameter of each strategy we considered. As an2623

example, we only investigate the case of SM-(SVD, LS, TLS). The influence of the frequency2624

of computation and of the duration of the time range used to select the measured values used2625

is studied. Note that this aspect was not treated in the original publication [7]. We consider2626

here that the period of computation and the duration of the time range for the selection of the2627

measured values are equal and denoted w. The same environment, sensor network and drift2628

model as in Section 3 are considered.2629

Figure 3.5.6 represents the evolution of the mean of MAE over the network for the considered2630

strategies as a function of w. The best result is obtained with w = 7, which was our original2631

value in Section 3, considering the average of the error for the three strategies with the same2632

w. Nevertheless, changing the value of w may lower the improvement brought by the in situ2633

calibration for low and high w but the corrected values are still closer to the true values compared2634

to the measured values.2635

We also changed the criteria to determine the signal subspace. The sum of the explained2636

variance ratio of the components obtained by PCA must be greater 1 − 1× 10−30 instead of2637

1−1× 10−3 previously. This resulted in a change of the subspace with four components considered2638

instead of two. The same study with varying w was conducted and results are shown in Figure2639

3.5.7.2640

We still observe that the best results are obtained for w = 7: for most of the values of w, the2641

algorithms degrade the quality of the measurements. This is even more significant for SM-SVD2642

and SM-TLS. We, however, do not claim that w = 7 is an optimal parameter since we only2643

showcase this feature of the framework: it enables a full parametric optimisation of the methods.2644

Calibration methods are indeed very sensitive to the adjustment of several parameters and a2645

comparative study should include a parametric optimisation.2646

77



Chapter 3. Framework for the Simulation of Sensor Networks Aimed at Evaluating In Situ
Calibration Algorithms

0 5 10 15 20 25 30
0

5

10

15

Measured values
SM-SVD
SM-LS
SM-TLS

w

M
AE

 (μ
g.

m
 -3 )

Figure 3.5.6: Evolution of the mean of MAE, computed on the entire time interval of study,
over the network for the strategies SM-SVD, SM-LS and SM-TLS as a function of w. The best
result is obtained for w = 7, which was our original value in Section 3, considering the average

error of the three strategies for the same w.
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Figure 3.5.7: Evolution of the mean of MAE, computed on the entire time interval of study,
over the network for the strategies SM-SVD, SM-LS and SM-TLS as a function of w with a
different signal subspace than in Figure 3.5.6. The best results are still obtained for w = 7 but
for most the values of w, the algorithms degrade the quality of the measurements and more

significantly for SM-SVD and SM-TLS.
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5.5 Summary of the results2647

In this section, we changedseveral parameters independently : the model of the phenomenon,2648

the number of instruments, the faults introduced, notable the drift model, and the parameters of2649

the calibration strategies for SM-(SVD, LS, TLS) that gave the best results previously.2650

Figure 3.5.8: Summary of the results observed by changing the parameters of the baseline case
study which was built with a 2D Gaussian function to model the measurand, with the WGLI
drift model applied to the measured values of the instruments, with 16 nodes in the network and
the values indicated in Section 3 for the parameters of the in situ calibration algorithms. The
improvements are judged relatively to results of the baseline case, recalled in the first column.
Thus, this table does not indicate that the corrected values are very close to the true values

when the measured values are improved.

The results obtained are reported in Figure 3.5.8. From a general perspective, we observed2651

that:2652

• increasing the complexity of the model of the phenomenon drastically worsen the results2653

for all the strategies2654

• changing the number of instruments between |S| = 4 and |S| = 100 in our case does not2655

have a determining effect.2656

• the model of the drift strongly impacts the results2657

• the presence of other faults in the measured values can degrade the results2658

• the (correct) adjustment of parameters of calibration strategies may have a significant effect2659

Therefore, comparing in situ calibration strategies requires multiple precautions on how the2660

corrected values were obtained and on what the measured values were based to provide fair and2661

correct conclusions.2662
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6 Discussion and conclusion2663

In this chapter, a framework for the simulation of sensor networks, which enables a systematic2664

comparison of in situ calibration strategies with reproducibility, and scalability, was presented.2665

We have showcased this methodology by comparing several calibration strategies for blind and2666

static sensor networks. Our results provide several engineering insights on the design of a sensor2667

network.2668

Based on the methodology described in Section 2, we have proposed a case study in Section2669

3 concerning blind and static sensor networks. Although we have shown that several strategies2670

have better performances than the others, these results have to be tempered as the conclusions2671

depends on how the evaluation is conducted. We have proposed solutions to conduct a balanced2672

assessment of the performances in terms of metrics used in Section 4. It is still challenging2673

for sensor networks with a high number of instruments that require multiple scale analysis. In2674

addition, we have shown in Section 5 that results may not be the same depending on choices2675

made during the design of the case study regardless of how the evaluation is carried out. We2676

have developed variations of our initial case study by changing the model computing the true2677

values of the measurand, the number of instruments, the fault model of the instruments and2678

parameters of calibration strategies.2679

Our results highlight the dependence of the performances of in situ calibration algorithms2680

to the case study. Besides, these performances seem to be often limited, even on the relatively2681

simple environmental models discussed here. The latter explains why more complex and accurate2682

environmental models were not tested here. Finding the good trade-off between simplicity and2683

realism of the simulation models is important. At first sight, the goal could be to consider models2684

as realistic as possible everywhere. However, the accuracy of simulation-based environmental2685

models remains challenging to establish, and costly to run, while simplified models such as those2686

used in the paper may be sufficient when the goal is to compare methods to single out the most2687

promising ones among several for a predefined case study. This is also true for the models to2688

simulate the measuring chain and the deployment of the instruments.2689

It allows to point out an additional advantage to the framework proposed in this paper:2690

its suitability as a design tool for sensor networks. For instance, after having determined the2691

number of instruments (and their positions) required to cover a given area with a static sensor2692

network, the best in situ calibration strategy and its parameters could be identified among2693

a set of algorithms applicable to this particular network. In such cases, however, a stronger2694

focus on the accuracy of the environmental model should be put whenever possible. Beyond2695

the quality of the models, the adjustment of the strategies is crucial for an objective evaluation.2696

The reproducibility provided by the framework is an asset to conduct a thorough parametric2697

optimisation and compare the best results of each calibration.2698

To conclude, we can point out the following engineering insights on the design of a sensor2699

network and the evaluation of in situ calibration strategies.2700

• There is actually no method that is universally outperforming the other. The best calibration2701

strategy to apply depends on the deployment of the instruments and the exploitation of2702

the measurements.2703

• Even on the same scenario, two strategies can outperform each other depending on which2704

metrics of performance is considered and the way they are computed. The metrics and2705

their means of visualisation have to be chosen accordingly to the target exploitation of the2706

sensor network, to focus on the relevant features. We also advise using an error model in2707

order to get meaningful details on the performances.2708

• Increasing the density of the deployment of instruments does not always lead to better2709

performances of a calibration strategy.2710
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• In some case, the quality of data can be degraded by a calibration strategy. Besides, other2711

faults than drift will happen, in particular when considering low-cost instruments with2712

low-quality electronics. To cope with robustness issues of the calibration strategy, it seems2713

relevant to process these errors upstream.2714

The content of this chapter is based on the following publication:2715

F. Delaine, B. Lebental and H. Rivano, "Framework for the Simulation of Sensor2716

Networks Aimed at Evaluating In Situ Calibration Algorithms," in Sensors, vol. 20,2717

no. 16, 2020, DOI: 10.3390/s20164577.2718

Codes and data files used to produce the results of Sections 3, 4 and 5 are available online2719

under licence AGPL 3.0 and ODbL 1.0 respectively in [37]2720
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1. Motivations

1 Motivations2791

Across the study of all the in situ calibration strategies in Chapter 2, and particularly regarding2792

those considered in Chapter 3, most strategies perform the calibration of all instruments without2793

evaluating first whether they actually need it. Moreover, we observed the algorithms may2794

not improve, or may even degrade, the quality of the measurements. Two guidelines for in2795

situ calibration algorithms can be established based on that. First, instruments providing2796

measurement results agreeing with their specifications, should not be affected by an in situ2797

calibration strategy. Secondly, the need for a calibration operation must be explicitly determined.2798

This is particularly important if the execution of the algorithm is expensive, e.g. in terms of2799

energy consumption in the case of autonomous nodes. It would add more confidence in the2800

algorithms, namely it could inform it recalibrated an instrument because a criterion on its2801

measurement results was met.2802

Some calibration algorithms are actually providing the identification of instruments needing2803

a calibration, notably in [87, 168]. In these two publications, the algorithm determines first2804

whether an instrument has drifted since the last time step. If it is the case, it gives the identity2805

of the instrument that has drifted and correct it with the help of all the other instruments.2806

However, if more than one instrument is drifting at a time, the algorithm raises an error. This is2807

problematic as such a case is very likely in practice.2808

In the same vein of assumptions that are difficult to meet in practice, multiple strategies2809

are designed based on the hypothesis that the sensor network is "dense". It means that each2810

instrument is within few tens of meters to one or several nodes of the network. The need for2811

this assumption to be verified can be explained as follows. To correct drifting instruments, their2812

correct values–or the values of the drift–must be estimated. To do so, mainly two approaches are2813

considered: the estimation from values measured by neighbouring instruments or the estimation2814

from a model of the measurand. This is the case whether the network is static or not and blind2815

or not.2816

Regarding the first approach, instruments should be physically close enough to have com-2817

parable values between them. This is something that can be easily achieved in practice and2818

the reason why the assumption of a dense sensor network is often proposed. However, if the2819

distance between the instrument to recalibrate and the instruments used to estimate its value is2820

too important compared to the characteristic spatial length of variation of the measurand, and if2821

it cannot be reduced, it may not be possible to have an accurate estimation with the desired2822

uncertainty. Thus, as complex quantities are targeted in environmental monitoring, comparisons2823

may be feasible for mobile sensor networks, but it is less likely to be the case for static sensor2824

networks. Indeed, with mobile instruments can sometimes meet whatever the number of nodes in2825

the network. For static ones, the number of instruments may have to be significantly increased2826

depending on the application so that values of different devices may be compared but with an2827

associated cost that may be significant.202828

Therefore, a model-based approach for estimating the correct values of instruments may2829

be preferred when meeting the required density of instruments is not possible, e.g. with static2830

instruments close enough or with mobile nodes meeting often. With a model-based approach, it2831

is assumed possible to model satisfyingly the measurand to estimate its value at several locations,2832

with the help of a priori information and sometimes with measured values, preferably from2833

20The case where neighbouring instruments are used to evaluate the values of an instrument could be extended
to the case where the nodes of the network embed several instruments with the same characteristics and measuring
the same quantity. In this case, the set of instruments of a node measuring the same quantity can be seen as a
measuring system, which would be equivalent to having a single instrument of a higher quality. Indeed, it can
be legitimately expected that the average of the values of these instruments is more accurate than their values
considered individually. This comes down to the case described in this paragraph. For the sake of clarity, this
particular situation is not discussed in detail in this manuscript.
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reference instruments. Acquiring such information may not be easy or may require a long training2834

period to capture enough features of the phenomena. The latter may not be compatible with the2835

lifespan of the instruments, especially if they are low cost. The deployment of expensive reference2836

instruments during the deployment phase is a solution but has a major cost impact, notably if a2837

high number of instruments is required. Additionally, using a model for the measurand raises2838

the question of the interest of deploying the sensor network itself. If the model is able to derive2839

at the required spatiotemporal resolution the values of the considered phenomenon, even with2840

the help of a few high-quality instruments, this may be sufficient for most applications.2841

Overall, these elements point out that most approaches for in situ calibration can be challenged2842

by the fact that the reference values used for calibration, e.g. standard values, need to meet2843

certain conditions. They are not necessarily met in in situ calibration algorithms. The same2844

precautions should be taken regarding the identification of instruments that have drifted, whatever2845

the approach chosen to determine them.2846

In this chapter, we investigate the feasibility of drift detection for measuring instruments2847

with the help of measurement results from other devices. The concept of rendez-vous is used2848

to achieve this goal and is formally defined in Section 3, based on existing works on the subject2849

[40, 132]. The study of these rendez-vous is expected to help to determine if an instrument2850

needs to be recalibrated as long as one of the instruments involved in the rendez-vous can be2851

considered as a standard, e.g. an instrument of which results can legitimately be trusted. To2852

remain the most generic as possible, no assumption is made for this algorithm on the2853

type of sensor network, on the density of instruments and on the measurand such as2854

a priori known information regarding it.212855

Thus, a formal definition of the concept of rendez-vous is proposed first based on existing2856

works. Which values of instruments may be compared to each other in practice is briefly discussed.2857

Then, a diagnosis algorithm, that is a way to identify the instruments that need a correction of2858

their calibration relationship, is provided. The approach is based on rendez-vous. Afterwards,2859

a case study is presented to illustrate the application of the diagnosis algorithm. The means2860

to improve the results, in terms of false results, are discussed followed by guidelines on the2861

adjustment of the parameters of the algorithm. The sensitivity of the algorithm to the parameters2862

of the case study is studied. Finally, the algorithm is combined to a simple calibration strategy2863

showing promising results. Before moving to these contributions, a literature review is conducted2864

regarding fault diagnosis applied to sensor networks and in particular regarding the detection of2865

drift.2866

2 State-of-the-art of fault diagnosis applied to sensor networks2867

2.1 Overview of fault diagnosis for sensor networks through existing reviews2868

In the last decade, while sensor networks gained in popularity, the question of their de-2869

pendability became a major subject. In particular, multiple contributions were made on fault2870

diagnosis as reported in various surveys [98, 106, 114, 185].2871

In these publications, the research works are classified by the way the diagnosis is performed.2872

First, the place where the decision is computed, e.g. if it is a centralised, decentralised or hybrid2873

approach, is considered. Then, the general mathematical approach used for the diagnosis (testing,2874

comparisons, majority voting, statistics, probabilities, machine learning algorithms, fuzzy logic,2875

clustering...) is studied.2876

Faults are generally characterised by "hard" or "soft" and as "permanent", "transient" or2877

"temporary"[98, 106, 185]. Only Muhammed et al. [114] used a taxonomy similar to the one of2878

Ni et al. [115] that inspired the one used in this manuscript. In particular, these authors report2879

21It could be for instance an actual correlation between the true values at two very distant points that could be
exploited in a specific situation.
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that the existing diagnosis algorithms are often targeting multiple faults. For those addressing2880

the drift fault22, stuck-at or out-of-range faults are also detected by the same algorithm in the2881

15 associated references they cited.2882

In the following surveys [98, 114, 185], the diagnosis approaches reported concern mainly2883

static sensor networks. Mahapatro et al. [98] listed eight algorithms that could be applied2884

to static and mobile sensor networks.23 Zhang et al. [185] reported two references explicitly2885

dealing with mobile sensor networks [1, 28]. They also stated that approaches designed for static2886

networks behave poorly when applied to mobile ones. This indicates that algorithms exploiting2887

specificities related to networks with mobile nodes in the diagnosis approach have not been2888

deeply investigated so far.2889

In addition, other subjects such as energy consumption, communication range needed,2890

communication failures, or the amount of required neighbour nodes are taken into account in the2891

surveys on fault diagnosis for sensor networks [98, 106, 114, 185]. Zhang et al. [185] underline2892

it is challenging to design a diagnosis approach having satisfying performances or properties2893

regarding all the features of interest for such an algorithm, e.g. for instance diagnosing faults2894

well with low energy consumption, few communications between nodes and so on.2895

2.2 Existing methods of diagnosis compatible with the concept of rendez-vous2896

addressing any fault2897

2.2.1 Introduction2898

The methods used to carry out the diagnosis of any fault in sensor networks are diverse in2899

terms of concepts and tools on which they are based on. According to the surveys cited [98,2900

106, 114, 185], different main ideas come out like the use of comparisons between instruments,2901

the use of statistics and probabilities, as well as the use of machine learning models (regressors,2902

classifiers...). As the goal in this chapter is to propose a diagnosis algorithm for sensor networks2903

based on rendez-vous between the nodes, we focus here on approaches compatible with this idea,2904

e.g. it consists at least in comparison of values measured by different instruments.2905

2.2.2 Related works2906

Chen et al. [29] introduced a faulty sensor detection algorithm consisting of four steps of2907

evaluation. First, each instrument compares its measured value at the instant of the diagnosis2908

with the measured values of its neighbours. If the difference between two instruments is higher2909

than a first threshold, the deviation of the difference since the last comparison is computed. If it2910

is higher than a second threshold, the test between the two instruments is marked as positive.2911

In a second step, each instrument determines if it is likely good or faulty depending on the2912

number of positive tests and its number of neighbours. This information is shared between the2913

instruments so that based on its neighbours that are likely good, an instrument determines if2914

it is actually good and share this result. Then, for the remaining undetermined instruments,2915

their statuses are decided if all their neighbours are non-faulty and if all the initial tests gave2916

the same results. If ambiguities remains, they are removed based on the likely statuses of the2917

instruments. Xu et al. [179] proposed an extension of this work dealing with the particular case2918

of tree-like networks to reduce the number of communications. To avoid intermittent faults, they2919

also proposed to compute the initial test result based on multiple comparisons of values between2920

two instruments, instead of a unique comparison. In the same way, Saha et al. [128] developed2921

a similar algorithm but with comparisons for multiple quantities (measurand and remaining2922

22In the publication of Muhammed et al. [114], calibration, gain, and offset faults correspond to what is notably
a drift fault in this thesis.

23Note that the subject of mobile sensor networks was new at the time when Mahapatro et al. [98] published
their survey.
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energy).2923

Ssu et al. [142] proposed an approach to diagnosis faults between sources and sinks. The2924

main idea is to send a request through two paths and to compare the results obtained at the2925

sink node. If the results are different, then at least one faulty path exists. The algorithm tries to2926

identify it with the help of a third path and a majority voting procedure, but the faulty paths2927

cannot always be identified. Such a method is particularly relevant to diagnose communication2928

or hardware-related faults.2929

Lee et al. [83] presented a distributed algorithm to isolate faulty nodes. Initially, the nodes2930

are all assumed as faulty. A comparison is made between the measured values of neighbour nodes2931

and if the result is higher than a threshold, then the test is positive. If less than a predefined2932

number of positive tests has been obtained, or if the test with a non-faulty node is negative, then2933

the diagnosed instrument is non-faulty. The algorithm works either based on single comparisons2934

between neighbours or with comparisons repeated multiple times.2935

Mahapatro et al. [97, 99] introduced a clustering-based diagnosis algorithm. The clustering2936

part is used for the definition of the neighbours around cluster heads, the cluster heads being2937

the instruments with the highest residual energy levels. They also compare the measured values2938

between instruments of a cluster and a majority voting strategy is used to determine the state of2939

the nodes.2940

Chanak et al. [28] developed a comparison-based scheme using a reference mobile sink node2941

moving between the static nodes of the network. When it is close to a node, several diagnoses are2942

performed to detect hardware and software faults. This also enables a low consumption of energy2943

for the transmission of the measurement results as it is no longer necessary to communication2944

with a distant gateway. The core of this contribution lies in the determination of an optimal2945

path to meet with each node.2946

Luo et al. [92] proposed an approach using the concept of average consensus. Each instrument2947

estimates first its status regarding the average consensus measured value build with the values of2948

its neighbours. Each instrument also estimates the statuses of its neighbours. Then, the decisions2949

of all the instruments are merged to make the final decision.2950

In reaction to contributions computing the average value of the neighbours of an instrument2951

by weighting their values with the inverse of the distance between them, Xiao et al. [178] argued2952

that the distance does not control alone the relationship between the values of two instruments,2953

notably if a closer one is actually faulty. Thus, they propose to take into account an indicator of2954

trustworthiness computed for each node of the network. This confidence value is used in voting2955

procedures that are used to determine the status of instruments.2956

Ji et al. [69] also developed their algorithm around a weighted average of the values measured2957

by an instrument. The weights are representing a confidence level associated to each instrument.2958

The difference between the measured value of an instrument and the average is compared to a2959

threshold. If it is greater than the threshold, the confidence level of the instrument is decreased2960

and once it reaches zero, the instrument is reported as faulty.2961

This idea of trust between instruments has been extensively studied and extended, as did2962

for instance Jiang et al. [70]. Their robust trust model is based on direct comparisons but also2963

on third parties and recommendations, with concerns about the security of the communications2964

between the instruments. Their trust framework is also adapted for mobile sensor networks.2965

Wang et al. [164] exploited Petri nets to introduce a trust-based formal model aimed at detecting2966

faults in sensor networks.2967

Sharma et al. [134] also exploited the idea of confidence in a method similar to the one of2968

Chen et al. [29]. The main difference with Chen et al. is that in a first step each instrument2969

analyses its own behaviour and that a confidence level is associated to the determined statuses.2970

Feiyue et al. [52] proposed to combine the information resulting of a self-evaluation and2971

of comparisons with the neighbours of each instrument. In a first step, the reliable nodes are2972
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determined through a majority voting procedure. Then, various metrics are computed and2973

combined to make the decisions for the instruments that were not considered reliable in the first2974

step.2975

2.2.3 Remarks2976

In this section, the way the computation is conducted (centralised, decentralised, hybrid) was2977

not discussed on purpose. Indeed, this topic impacts the number of communications required and2978

the energy consumption of the method more than the actual result of the diagnosis procedure.2979

Another aspect is how the faults are managed after detection in a diagnosis algorithm. There2980

are different visions. Considering the diagnosis of outliers for instance, Ottosen et al. [116]2981

adopted a gap-filling strategy. Fang et al. [51] preferred a fault removal approach because this2982

procedure is a data processing carried out before the calibration of the instruments of the network.2983

As shown for the calibration of measuring instruments in Chapter 3, it may also be preferable to2984

correct measurement results prior to the diagnosis of drift if any other fault may be present.2985

Finally, in the works presented here, the diagnosis is performed in most cases based on single2986

values from a given set of instruments measured at the same time. Taking a decision on a short2987

time range may not be correct, especially if drift is targeted. Indeed, drift is a fault increasing2988

little by little and thus a diagnosis on a long sequence of measured values over time could be2989

more appropriate.2990

2.3 Positioning of the contribution2991

From this review, we observed that the literature on fault diagnosis for sensor networks is rich2992

and abundant. Static sensor networks have been widely studied while mobile sensor networks2993

have been partially covered. Multiple types of faults are addressed, concerning various aspects2994

of measuring systems, but drift is not specifically targeted in existing works. Various methods2995

have been used to tackle the challenge of fault diagnosis, notably based on comparisons between2996

instruments.2997

However, the validity of the comparisons is rarely discussed from a metrological perspective.2998

It would be valuable to develop a new approach with considerations on the quality of the2999

measurement results. Moreover, exploiting the concept of rendez-vous allows to take into account3000

that it happens in a spatiotemporal vicinity. This concept is more sophisticated than the simple3001

idea of comparison of measurement results.3002

In addition, a diagnosis algorithm not requiring any assumptions on the type of sensor network3003

and its structure would be interesting. Indeed, the existing approaches are often targeting static3004

sensor networks, which may imply a dense network in the case of a comparison-based strategy,3005

and rarely networks with mobile nodes. Regarding rendez-vous, mobility is an important feature3006

that can facilitate their occurrence. Because mobile nodes can meet spatially with other mobile3007

or static nodes, a diagnosis approach based on these meeting points would allow more meaningful3008

comparisons of values if a very high density of measuring instruments is not feasible. In this3009

way, if the algorithm works whether the sensor network is static or has mobile node leaves to the3010

users the choice of the most appropriate type of sensor network for their application.3011

3 Definition of concepts for a drift diagnosis algorithm based on rendez-3012

vous3013

Before the presentation of an algorithm for the diagnosis of drift in sensor networks, this section3014

introduces the definitions of the concepts of validity and compatibility of measurement results,3015

and of rendez-vous. A sensor network composed of a set of instruments S is considered here and3016

in the following sections without any other assumption on its type and on the characteristics of3017

its nodes.3018
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3.1 Validity of measurement results3019

In Chapter 1 Section 1.2, we recalled that measuring instruments cannot exactly provide true3020

values. In addition, we indicated they may be different accuracy class, e.g. of different qualities,3021

in Chapter 1 Section 3.3022

On top of these ideas, we introduce here the notion of the validity of measurement results.3023

For instance, a measuring instrument cannot measure all the values of a quantity. It has a3024

bounded measuring interval which is the set of values of a quantity "that can be measured by3025

a given measuring instrument or measuring system with specified instrumental measurement3026

uncertainty, under defined conditions" [14]. In addition, it cannot work properly under any3027

operating conditions. Therefore, a measurement result with a value outside an instrument’s3028

measuring interval or which has been obtained outside of the normal conditions of operation of a3029

device, may not be valid.3030

The conditions under which measurement results are valid are specific to each type of3031

instrument. In practice, they are usually provided in the technical documentation or it is possible3032

to determine them experimentally. In this chapter, the conditions under which results are3033

considered as valid are explained in the case study.3034

The notation M∗(si, (t,∆t)) refers to the set of measurement results for si, over the time3035

range [t−∆t; t] that are metrologically valid, e.g. v(si, t) in the measuring interval and so on3036

depending on the definition of what a valid result is metrologically speaking.3037

3.2 Compatibility of measurement results3038

Definition 22. Consider si ∈ S. A measurement result m(si, t) is compatible with true3039

value if vtrue(si, t) ∈ [v(si, t)−∆v(si, t); v(si, t) + ∆v(si, t)].3040

Definition 23. Consider si ∈ S. A measurement result m(si, t) is upper non-compatible3041

with true value if vtrue(si, t) < v(si, t)−∆v(si, t).3042

Definition 24. Consider si ∈ S.A measurement result m(si, t) is lower non-compatible with3043

true value if vtrue(si, t) > v(si, t) + ∆v(si, t).3044

The set of measurement results compatible with true values of si obtained during [t−∆t; t]
is noted M≈(si, (t,∆t)). M+(si, (t,∆t)) and M−(si, (t,∆t)) are defined for upper and lower
non-compatible measurement results respectively. It can be noticed that

M(si, (t,∆t)) = M≈(si, (t,∆t)) ∪M+(si, (t,∆t)) ∪M−(si, (t,∆t))

These definitions can be extended for the comparison of measurement results between different3045

instruments.3046

Definition 25. Consider si and sj ∈ S. m(si, t) is compatible with m(sj , t′) if v(sj , t′) −3047

∆v(sj , t′) ≤ v(si, t)−∆v(si, t) ≤ v(sj , t′)+∆v(sj , t′) or v(sj , t′)−∆v(sj , t′) ≤ v(si, t)+∆v(si, t) ≤3048

v(sj , t′) + ∆v(sj , t′). It is noted m(si, t) ≈ m(sj , t′).3049

Definition 26. Consider si and sj ∈ S. m(si, t) is upper non-compatible with m(sj , t′) if3050

v(si, t)−∆v(si, t) ≥ v(sj , t′) + ∆v(sj , t′). It is noted m(si, t) > m(sj , t′).3051

Definition 27. Consider si and sj ∈ S. m(si, t) is lower non-compatible with m(sj , t′) if3052

v(si, t) + ∆v(si, t) ≤ v(sj , t′)−∆v(sj , t′). It is noted m(si, t) < m(sj , t′).3053

The sets of measurement results of si obtained during [t−∆t; t] associated to these definitions3054

are respectively noted M≈(si → sj , (t,∆t)), M+(si → sj , (t,∆t)) and M−(si → sj , (t,∆t)).3055

More restrictive criteria can be set to determine if measurement results are compatible3056

either with their associated true values or with results of other instruments. For instance, it3057
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could be a minimal level of overlapping between [v(si, t) − ∆v(si, t); v(si, t) + ∆v(si, t)] and3058

[v(sj , t′) −∆v(sj , t′); v(sj , t′) + ∆v(sj , t′)]. However, the influence of these definitions are not3059

studied afterwards as it is more a matter of specification for the quality of measurements than a3060

matter of diagnosis.3061

3.3 Rendez-vous3062

3.3.1 Formal and practical definitions3063

A rendez-vous between two instruments is defined as follows.3064

Definition 28 (Rendez-vous). Two instruments si and sj ∈ S are considered in rendez-vous3065

when they are in a spatiotemporal vicinity so that their measurement results can be compared. In3066

practice, it means for both their measurement results m(si, t) and m(sj , t′) that the instruments3067

were spatially close enough and the difference between the instants of measurement t and t′ was3068

small enough to actually measure the same quantity value.3069

si being in a rendez-vous at t with sj is noted ϕ(si → sj , t). Respectively sj being in a3070

rendez-vous at t′ with si is noted ϕ(sj → si, t
′).3071

The concept of "close enough" instruments will be explained later in the present section.3072

Regarding the instants of measurement, two different ones are defined, t and t′, because si3073

and sj may not have the same measurement frequency or may not have synchronous clocks.3074

Consequently, in general, the measurement results of two instruments in rendez-vous are not3075

obtained exactly at the same time.3076

The set of the rendez-vous encountered by si with sj during [t − ∆t; t] is noted Φ(si →3077

sj , (t,∆t)). By extension, Φ(si → S, (t,∆t)) is the set of rendez-vous between si and any other3078

instrument of S during [t−∆t; t].3079

First of all, with this definition of a rendez-vous, there is no reason that any of the instrument3080

should be mobile or static. As long as the conditions regarding the spatiotemporal vicinity are3081

respected, rendez-vous can happen.24 Thus, the use of the concept of rendez-vous in practice3082

requires the definition of what an acceptable spatiotemporal vicinity is for a rendez-vous.3083

A first possible definition can be based on a maximal distance ∆lϕ allowed between the
instruments and on a maximal acceptable time difference ∆tϕ between the measurement results
of the two instruments. Therefore, si is in rendez-vous with sj at t if

∃t′ ∈ R+ such as ∃m(sj , t′) and |t− t′| ≤ ∆tϕ and |l(si, t)− l(sj , t′)| ≤ ∆lϕ

with l(si, t) and l(sj , t′) being the positions of si at t and sj at t′. The temporal condition3084

allows multiple rendez-vous with a single instrument for a same measurement result if t′ is3085

not unique. In this case, t′ can be chosen as the value reaching the minimum of |t − t′| or of3086

|l(si, t)− l(sj , t′)|. This choice of a unique measurement result for sj is necessary to ensure that3087

the measurement result of si is compared to the result the most probable to have been obtained3088

from the same quantity value.3089

In practice, ∆tϕ can be related to the characteristic time of variation of the measurand3090

whereas ∆lϕ may be related to the spatial homogeneity of this quantity.3091

Another definition of the spatial closeness can be designed based on the concept of repre-
sentative area of measurement results [126], noted a(si, t) for si at t. It is the area around the
location of a measurement result in which the measurement result is representative of any other
result that would have been obtained at another position within the area. This definition may
be more usable in practice than the one based on a norm as it considers the geometry of the

24If no instrument is mobile, it may be necessary to have less restrictive requirements on the spatiotemporal
vicinity to observe rendez-vous.
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area in which the instruments are. There are buildings and crossings for instance in an urban
environment. Thus, with this definition, si is in rendez-vous with sj at t if for instance:

∃t′ ∈ R+ such as ∃m(sj , t′) and |t− t′| ≤ ∆tϕ and a(si, t) ∩ a(sj , t′) 6= ∅

An alternate expression could be the following:

∃t′ ∈ R+ such as ∃m(sj , t′) and |t− t′| ≤ ∆tϕ and |a(si, t) ∩ a(sj , t′)| ≥ ∆aϕ

where ∆aϕ is the minimal size of the intersection of the representativity area of both measurement3092

results.3093

In conclusion, the concept of rendez-vous can be applied according to different definitions in3094

practice. In the following sections, the diagnosis algorithm is designed without any assumption3095

on the practical definition of a rendez-vous.3096

3.3.2 Compatible rendez-vous3097

Consider a rendez-vous ϕ(si → sj , t). By associating the definitions of compatible measure-3098

ment results, a rendez-vous of si with sj at t is stated as compatible if m(si, t) ≈ m(sj , t′). Oth-3099

erwise it is stated as upper non-compatible if m(si, t) > m(sj , t′) or lower non-compatible3100

if m(si, t) < m(sj , t′).25 Consequently, Φ≈(si → sj , (t,∆t)), Φ+(si → sj , (t,∆t)) and Φ−(si →3101

sj , (t,∆t)) are the respective associated sets of such rendez-vous.3102

4 Algorithm for the diagnosis of calibration issues in a sensor network3103

4.1 General idea3104

The general purpose of a diagnosis algorithm is to determine whether if a system is faulty3105

(F) or non-faulty (NF). In the present case, the predicted status of an instrument si at t is3106

noted Ω̂(si, t). Ideally, Ω̂(si, t) is equal to the true status of the instrument, Ω(si, t), which is3107

unknown in practice.3108

To determine if instruments are correctly calibrated, the proposed approach consists in using3109

the concept of rendez-vous introduced in Section 3.3. When two instruments si and sj are3110

in rendez-vous, it means that, according to chosen spatiotemporal conditions, they were both3111

measuring the same quantity value at the same time and the same place. Suppose that one of the3112

instruments, sj for instance, was diagnosed as non-faulty and consider m(si, t) and m(sj , t′), the3113

measurement results involved in a rendez-vous ϕ(si → sj , t).26 If both results are metrologically3114

valid, it means that m(sj , t′) can be seen as a standard value for si: it is a known value with an3115

associated uncertainty. Thus, if m(si, t) ≈ m(sj , t′), it denotes that si is correctly calibrated, at3116

least according to sj , and its status can be predicted as non-faulty. Otherwise, it is predicted as3117

faulty. As sj helps to predict the status of si, it is called a diagnoser of si.3118

Predicting the status of an instrument based on only one value may easily lead to false
predictions because drift is a fault usually having a longer characteristic time than others like
spike faults. For instance, if spikes are not correctly removed before carrying out a diagnosis,
it is possible that m(si, t) > m(sj , t′) or that m(si, t) < m(sj , t′), e.g. the measurement results
m(si, t) and m(sj , t′) are not compatible, whereas the true status of si, Ω(si, t) is actually equal
to non-faulty from a calibration perspective. Hence, the use of multiple rendez-vous with sj and
also with other instruments to predict the status of si can reduce the impact of these particular

25We recall that more restrictive criterion can be set to determine if measurement results are compatible with
the results of other instruments but it is not studied in this work. See Section 3.2 for more details.

26We recall that the measurement resultsm(si, t) andm(sj , t′) have two different timestamps t and t′ respectively
because they may not have been obtained exactly at the same time (see Section 3.3).
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Figure 4.4.1: Example where the measurement results m(si, t) and m(sj , t′) are compatible
with each other but where m(si, t) is not compatible with its true value

cases. Moreover, if the class27 of si is such as c(si)� c(sj), predicting the status of si based on
sj , even if Ω̂(sj , t′) = NF , may not be advisable. Indeed, it is possible that m(si, t) ≈ m(sj , t′)
but with m(si, t) not compatible with its true value as shown in Figure 4.4.1. A solution to that
is to allow only instruments of a higher class than the one of si to take part in the prediction of
its status. This minimal class is noted cDmin(si) and is defined by :

cDmin(si) = c(si) + ∆cDmin(c(si))

where ∆cDmin(k) is the relative difference of class required between instruments of class k and3119

the instruments allowed to be their diagnosers.283120

Thus, to determine the status of an instrument si at td, the following set of valid rendez-
vous Φv(si → S, (td,∆t)) is used:

Φv(si → S, (td,∆t)) ={ϕ(si → sj , t) ∈ Φ(si → S, (td,∆t)), such as
sj /∈ SD, // sj is not an instrument to diagnose
Ω̂(sj , t′) = NF , // sj is non-faulty
c(sj) ≥ cDmin(si), // The class of sj is higher or equal to the minimal
class allowed to diagnose si
m(si, t) ∈M∗(si, (td,∆t)), // The measurement result of si is valid
m(sj , t′) ∈M∗(sj , (td,∆t))} // The measurement result of sj is valid

(4.1)
It is also possible that the input information of a diagnosis algorithm is not sufficient to3121

choose between F and NF statuses. Thus, a third option for the predicted status of a system is3122

ambiguous (A).29 In the present case, it is when Φv(si → S, (td,∆t)) does not contain enough3123

rendez-vous to allow a prediction with enough confidence. This minimal size for a set of valid3124

rendez-vous for any instrument is noted |Φv|min.303125

Based on the definition of Φv(si → S, (td,∆t)), an algorithm can be designed to determine3126

the statuses of all the instruments in a sensor network.3127

27See Definition 20 in Chapter 1 Section 3, page 18.
28∆cDmin(k) can be identical for each class e.g. ∆cDmin(k) = ∆cDmin(S)∀k ∈ [0..cmax].
29The true status of an instrument cannot be ambiguous. It is either faulty or non-faulty strictly.
30It is possible to define different |Φv|min for each class of instrument like for ∆cDmin(k). |Φv|min was introduced

as a common constant for the diagnosis of all the instruments because the amount of valid information to perform
a binary diagnosis has no major reason to change from a class to another and in the worst case, |Φv|min can be set
as:

|Φv|min = min
k∈[0..cmax]

|Φv|min(k)
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4.2 Procedure for the diagnosis of all the instruments in a sensor network3128

Consider a diagnosis procedure d that occurs at td, and ∆t such as [td −∆t; td] is the time3129

range on which the diagnosis procedure is carried out. The measurement results obtained and3130

the rendez-vous that occurred during [td −∆t; td] are the data that will be used to predict the3131

statuses of the instruments of S. This forms a scene as defined by [40].3132

All the instruments in Scmax are assumed as non-faulty. 31 Thus, at the beginning of a3133

diagnosis procedure, the set of instruments to diagnose SD is equal to S \ Scmax where3134

Scmax is the set of instruments of class cmax.3135

Then, the predicted statuses Ω̂(si, td) for each si ∈ S are initialised. The predicted statuses3136

of the instruments in Scmax are set to non-faulty and those of the instruments in SD are initially3137

set to ambiguous.3138

Afterwards the predicted statuses of all the instruments, noted Ω̂(S, td), are actualised. These3139

actualised statuses are noted Ω̃(S, td).3140

They are determined as follows for each instrument si ∈ SD. First, if |Φ(si → S, (td,∆t))| <3141

|Φv|min, it means that during [td −∆t; td], si did not meet other instruments enough times to be3142

able to diagnose its status, whatever the predicted statuses of the other instruments. Therefore,3143

it is not possible to actualise its predicted status with another value than ambiguous, which is3144

already the value of Ω̃(si, td), and si is removed from SD.3145

Otherwise, Φv(si → S, (td,∆t)) is determined. If its size is lower than |Φv|min, the actualised3146

predicted status of si stays equal to ambiguous and si remains in SD as the size of Φv(si →3147

S, (td,∆t)) may change in a future iteration.3148

If |Φv(si → S, (td,∆t))| ≥ |Φv|min, the actualised predicted status can be determined between3149

non-faulty and faulty.3150

To do so, the rates r≈Φv(si → S, (td,∆t)), r+
Φv(si → S, (td,∆t)) and r−Φv(si → S, (td,∆t)) are3151

computed. They are defined as follows :3152

r≈Φv(si, (td,∆t)) is the rate of compatible rendez-vous in the set of valid rendez-vous of si over
the time range [td −∆t; td]. It is equal to

r≈Φv(si, (td,∆t)) = |Φ
≈
v (si, (td,∆t))|
|Φv(si, (td,∆t))|

r+
Φv(si, (td,∆t)) is the rate of upper non-compatible rendez-vous in the set of valid rendez-vous

of si over the time range [td −∆t; td]. It is equal to

r+
Φv(si, (td,∆t)) = |Φ

+
v (si, (td,∆t))|
|Φv(si, (td,∆t))|

r−Φv(si, (td,∆t)) is the rate of lower non-compatible rendez-vous in the set of valid rendez-vous
of si over the time range [td −∆t; td]. It is equal to

r−Φv(si, (td,∆t)) = |Φ
−
v (si, (td,∆t))|
|Φv(si, (td,∆t))|

Based on (r+
Φv)max, (r−Φv)max and (r+

Φv + r−Φv)max, which are the maximal tolerated values3153

associated to the rates r≈Φv(si, (td,∆t)), r+
Φv(si, (td,∆t)) and r−Φv(si, (td,∆t)), if one of the following3154

conditions is true :3155

• r+
Φv(si → S, (td,∆t)) > (r+

Φv)max3156

31This assumption is discussed in Section 6.
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• r−Φv(si → S, (td,∆t)) > (r−Φv)max3157

• (1− r≈Φv(si → S, (td,∆t))) > (r+
Φv + r−Φv)max3158

then Ω̃(S, td) is equal to faulty. Otherwise Ω̃(si, td) is set to non-faulty. In the end, si is3159

removed from SD.323160

The use of three different rates, r≈Φv(si → S, (td,∆t)), r+
Φv(si → S, (td,∆t)) and r−Φv(si →3161

S, (td,∆t)), is useful because it brings an additional information on the status of the instrument if3162

it is diagnosed as faulty. If this prediction was triggered by the condition on r+
Φv(si → S, (td,∆t)),3163

it indicates that the instrument is overestimating its measured values for instance.3164

After all the instruments in SD are treated, if Ω̂(S, td) = Ω̃(S, td), it means that no statuses3165

of the instruments in SD changed. Consequently, the statuses of the instruments of the network3166

at td, Ω̂(S, td), are determined and the diagnosis procedure ends. Otherwise Ω̂(S, td) takes the3167

values of Ω̃(S, td) and the actualised statuses are determined again for each instrument si ∈ SD.3168

The pseudo-code of this algorithm is provided in Algorithm 1.3169

4.3 Improvements and extensions of the presented algorithm3170

The considered algorithm can be easily improved in terms of efficiency. Appendix A Section3171

1 provides a version with several changes that may reduce the number of iterations of the main3172

loop of Algorithm 1.3173

Moreover, it is possible to add more confidence into the predicted statuses of the instruments3174

by restricting the set of the diagnosers of an instrument si to the one of the diagnosers of3175

class k > cDmin(si), with k being the highest class such as the predicted status Ω̂(si, td) can be3176

determined as non-faulty. This formulation is provided in Appendix A Section 2.3177

In addition, the formulation of Algorithm 1 invites to compute it in a centralised manner.3178

Appendix A Section 3 introduces elements allowing an application of the principles of the3179

diagnosis algorithm in a decentralised manner.3180

Finally, Appendix A Section 4 gives insights on how the diagnosis procedure could be extended3181

to the case of a sensor network measuring different quantities and for which some of its measurands3182

are influence quantities for several instruments in the network.3183

For the sake of clarity, Algorithm 1 is the version used in the following sections of this chapter.3184

4.4 Conclusion3185

In this section, the principle of a diagnosis algorithm for sensor networks aiming at detecting3186

drift faults of measuring instruments was introduced. It is strongly based on the concepts of3187

rendez-vous between measuring instruments and of class of a measuring instrument. As a major3188

assumption, the instruments with the highest class must be assumed as non-faulty. Several3189

parameters drive the algorithm and are studied in the following sections. In a first step, the next3190

section gives an example of case study applying the presented algorithm.3191

32Alternate manners to determine the predicted status of an instrument according to compatible and non-
compatible valid rendez-vous could be chosen. For instance, the value of the predicted status could be chosen
according to the number of compatible and non-compatible valid rendez-vous. Thus (r+

Φv
)max, (r−Φv

)max and
(r+

Φv
+ r−Φv

)max would be replaced by maximal numbers of tolerated non-compatible rendez-vous regarding
|Φ+
v (si → S, (td,∆t))|, |Φ−v (si → S, (td,∆t))| and their sum.
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Algorithm 1: Algorithm of the diagnosis procedure proposed for the detection of drift
in sensor networks
Data: S, Φ(S → S, (td,∆t)), |Φv|min, ∆cDmin
Result: Ω̂(S, td)
/* Initiate the set of instruments to diagnose and the predicted statuses

of the instruments */
SD ← S \ Scmax
Ω̂(Scmax , td)← NF
Ω̂(SD, td)← A
Ω̃(SD, td)← Ω̂(SD, td) /* Initiate the actualised statuses */
/* Ignore the instruments that cannot have enough valid rendez-vous */
for si ∈ SD do

if |Φ(si → S, (td,∆t))| < |Φv|min then
SD ← SD \ {si}

end
/* Predict the status of each instrument to diagnose */
repeat

Ω̂(S, td)← Ω̃(S, td) /* The actualised statuses are now the predicted
statuses */
for si ∈ SD do

/* Build the current set of valid rendez-vous for si */
cDmin(si)← c(si) + ∆cDmin(c(si))
Φv(si → S, (td,∆t))← {ϕ(si → sj , t) ∈ Φ(si → S, (td,∆t)), such as

sj /∈ SD, Ω̂(sj , t′) = NF , c(sj) ≥ cDmin(si),
m(si, t) ∈M∗(si, (td,∆t)) and m(sj , t′) ∈M∗(sj , (td,∆t))}

/* If si have enough valid rendez-vous, then compute the different
rates to actualize its status */

if |Φv(si → S, (td,∆t))| ≥ |Φv|min then
r≈Φv(si → S, (td,∆t))← |Φ≈v (si→S,(td,∆t))|

|Φv(si→S,(td,∆t))|

r+
Φv(si → S, (td,∆t))← |Φ+

v (si→S,(td,∆t))|
|Φv(si→S,(td,∆t))|

r−Φv(si → S, (td,∆t))← |Φ−v (si→S,(td,∆t))|
|Φv(si→S,(td,∆t))|

/* If a condition on the different rates is met, then the
actualised status of si is set to faulty, otherwise, it is set
to non-faulty */

if r+
Φv(si → S, (td,∆t)) > (r+

Φv)max or r−Φv(si → S, (td,∆t)) > (r−Φv)max or
(1− r≈Φv(si → S, (td,∆t))) > (r+

Φv + r−Φv)max then
Ω̃(si, td)← F

else
Ω̃(si, td)← NF

end
SD ← SD \ {si} /* si is diagnosed so it can be removed from SD */

end
end

until Ω̂(S, td) = Ω̃(S, td) /* Repeat until there is no difference between the
predicted and actualised statuses */
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5 Application of the algorithm to a first case study3192

To illustrate the presentation of the diagnosis algorithm, this section provides a first case3193

study based on simulation to appreciate its performances.3194

5.1 Definition of the case study3195

5.1.1 Sensor network3196

A sensor network of 10 instruments is considered. The class of one of them is equal to 1, the3197

others being of class zero. Thus, cmax = 1 in this case.3198
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Figure 4.5.1: Map of the 100 positions available for the instruments in the case study.

The instruments of class k = 0 move randomly in a discrete space of 100 positions at a3199

discrete time. The positions of the instruments are geometrically defined according to a grid of3200

10× 10 with a step that represents 100m, and centred on (x, y) = (0, 0) as shown in Figure 4.5.1.3201

At each time step a new position is chosen randomly for each instrument following a uniform3202

law. Instruments may remain in position and multiple instruments may share a position. Two3203

instruments are in rendez-vous when they are at the same position at the same time. In addition,3204

the instrument of class cmax is static. Its position is randomly drawn among the 100 positions.3205

As the case study is based on simulation, the time step has no actual physical meaning. To3206

ease the comprehension of the study, the time step of the simulation represents 10 min and the3207

case study lasts 265 days.3208

5.1.2 Instruments3209

Instruments are assumed to be initially calibrated. In the first place, the instrument of class3210

cmax is assumed as perfect, e.g. it does not drift. The instruments of class zero all follow the3211

same drift model. The model chosen corresponds to the RGOI model defined in Chapter 53212

Section 5.3.1, page 71. As a reminder, gain G(si, t) and offset O(si, t) drift of instrument si are3213

computed for this model at each time step following:3214

G(si, t) =
{

1 if t < tstart drift

G(si, t− 1) + δG(si, t) if t ≥ tstart drift

with ∀t, δG(si, t) drawn following U(0, δGmax)

97



Chapter 4. Diagnosis of Drift Faults in Sensor Networks

O(si, t) =
{

0 if t < tstart drift

O(si, t− 1) + δO(si, t) if t ≥ tstart drift

with ∀t, δO(si, t) drawn following U(0, δOmax)

with δGmax and δOmax being respectively the maximal gain and offset possible increase per3215

time step.3216

Measured values are expressed following:

v(si, t) = G(si, t) · vtrue(si, t) +O(si, t)

The instruments start to drift at t = 03217

Each measured value v(si, t) is associated to a constant relative uncertainty ∆rv(ci) depending
on the class of the instrument such as

∆v(si, t)
v(si, t)

= ∆rv(ci)

A detection limit33 vmin(ci) is also defined to balance the effect of high uncertainties for low3218

measured values. This detection limit is used to determine if a measurement result m(si, t) is3219

metrologically valid, e.g. all the values below this detection limit are not considered valid.3220

All the values of the parameters are listed in Table 4.5.1.3221

Parameter Value Unit

Class 1
∆rv 1 %
vmin 0.752 µg m−3

Class 0
δGmax 2/(24*6*30) %/10min
δOmax 18.8/(24*6*30) µg/m3/10min
∆rv 30 %
vmin 37.6 µg m−3

True values model
Amax 200 µg m−3

σmax 3826 m

Table 4.5.1: Values of the parameters of the case study. The values of δGmax and δOmax are
displayed as a fraction of (24 ∗ 6 ∗ 30) min for the sake of clarity, e.g. the numerator is the

maximal drift of the gain and of the offset per 30 days.

5.1.3 True values3222

To model the true values of the instruments, the model used in Chapter 3 Section 3.2.1 is3223

considered. However in this case, instead of using the data that was considered to determine3224

the values of A(t) and σ(t), A(t) and σ(t) are drawn randomly at each time step following the3225

33The detection limit is the value "obtained by a given measurement procedure, for which the probability of falsely
claiming the absence of a component is β, given a probability α of falsely claiming its presence" [14]. In practice, it
is recommended that β = α = 0.05 for information.
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uniform laws U(0, Amax) and U(0, σmax) respectively. The values of Amax and σmax are reported3226

in Table 4.5.1.3227

The impact of this choice on the results is discussed in Section 5.6 and 9.3.3228

5.2 Configuration of the diagnosis algorithm3229

We aim at performing a diagnosis every 15 days. Thus, for d ∈ D, td = (d+ 1)× 15 days,3230

with D = [0..16].3231

The goal of this diagnosis is to detect when an instrument has provided at least 25% of3232

measurement results non-compatible with their true values over the past 15 days.3233

According to this specification, we choose ∆t = 15 days and the rate thresholds (r+
Φv)max,3234

(r−Φv)max and (r+
Φv + r−Φv)max are all set to 25%.3235

The minimal number of valid rendez-vous to conclude with a predicted status different from3236

ambiguous |Φv|min is set initially to 15.3237

5.3 Definition of the true status of an instrument3238

As it is a simulation, it is possible to know the true status of an instrument. Indeed its3239

measured values and the true values are accessible, and therefore, it can be determined if 25% of3240

measurement results non-compatible with their true values were obtained or not during a period3241

of 15 days.3242

rtrue(si, (t,∆t)) is the rate of measurement results compatible with true values of si over
[t−∆t; t]. It is equal to

rtrue(si, (t,∆t)) = |M
≈(si, (t,∆t))|

|M(si, (t,∆t))|
In this case, if rtrue(si, (t,∆t)) < 0.75, then Ω(si, t) = F . Otherwise, Ω(si, t) = NF .3243

Note that the true status of an instrument is based on all its measurement results against3244

the true values on the considered time range whereas its predicted status is based on the3245

measurement results of its valid rendez-vous with other devices. Thus, it is expected3246

that instruments which are actually non-faulty may be predicted as faulty and vice versa because3247

the sets of measurement results used to compute the true and predicted status of an instrument3248

are different.3249

5.4 Metrics for the evaluation of performances of the diagnosis algorithm3250

To estimate the performance of the algorithm, vocabulary and metrics that are used to3251

evaluate binary classifiers [130, 153] are appropriate but must be adapted as the predicted3252

statuses can take three values instead of two.3253

Regarding the possible true statuses and predicted statuses, there are six cases:3254

• A non-faulty status predicted for an instrument which true status is non-faulty is a true3255

negative (TN)3256

• A faulty status predicted for an instrument which true status is non-faulty is a false3257

negative (FN)3258

• An ambiguous status predicted for an instrument which true status is non-faulty is a3259

non-determined negative (NDN)3260

• A non-faulty status predicted for an instrument which true status is faulty is a false3261

positive (FP)3262

• A faulty status predicted for an instrument which true status is faulty is a true positive3263

(TP)3264
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• An ambiguous status predicted for an instrument which true status is faulty is a non-3265

determined positive (NDP)3266

To these primary metrics, P and N are added, which are respectively the number of3267

positives (faulty true status) and the number of negatives (non-faulty true status).3268

The relationships between these metrics are summed up in Table 4.5.2

True status

Non-faulty (N) Faulty (P)

Predicted status
Non-faulty True negative (TN) False negative (FN)
Ambiguous Non-determined negative (NDN) Non-determined positive (NDP)

Faulty False positive (FP) True positive (TP)

Table 4.5.2: Contingency table of the different primary metrics
3269

For these metrics, only the instruments in S \ Scmax are considered. The instruments of class3270

cmax being always assumed as non-faulty and being not drifting in the following sections, taking3271

them into account would bias the metrics defined afterwards in Table 4.5.3.3272

Table 4.5.3: Metrics derived from the metrics P , N , TP , TN , FP , FN , NDP and NDN

Name Expression Role

Prevalence Prev = P
P+N

Indicates the proportion of positive cases
among all the cases

True positive rate TPR = TP
P

Indicates the proportion of positive cases
correctly detected

True negative rate TNR = TN
N

Indicates the proportion of negative cases
correctly detected

False positive rate FPR = FP
N

Indicates the proportion of positive cases
incorrectly detected

False negative rate FNR = FN
P

Indicates the proportion of negative cases
incorrectly detected

Non-determined
positive rate NDPR = NDP

P

Indicates the proportion of positive cases
detected as ambiguous

Non-determined
negative rate NDNR = NDN

N

Indicates the proportion of negative cases
detected as ambiguous

Non-determined
rate NDR = NDP+NDN

P+N
Indicates the proportion of all cases detected
as ambiguous

Positive predictive
value PPV = TP

TP+FP
Indicates the proportion of correctly de-
tected positive cases per positive call

False discovery rate FDR = FP
TP+FP

Indicates the proportion of incorrectly de-
tected positive cases per positive call

Negative predictive
value NPV = TN

TN+FN
Indicates the proportion of correctly de-
tected negative cases per negative call

False omission rate FOR = FN
TN+FN

Indicates the proportion of incorrectly de-
tected negative cases per negative call

continued on next page
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continued from previous page

Name Expression Role

Accuracy ACC = TP+TN
P+N Indicates the proportion of correct detection

Another metric added is the delay of first positive detection for an instrument si,
noted ∆D(si). It is the difference between the index of the diagnosis procedure d where Ω(si, td)
changes from NF to F and the index of the diagnosis procedure d′ where Ω̂(si, td′) = F for the
first time. Thus:

∆D(si) = d− d′

This value can be positive or negative as there can be early or late positive detection. In3273

the following results, the average and the standard deviation of this metric over S \ Scmax are3274

considered.3275

5.5 Results3276

5.5.1 Observations from the results of different instruments3277

In Figure 4.5.2, the evolution of the true and predicted statuses over time are represented for3278

different instruments. It shows that the diagnosis algorithm can produce different results over3279

the instruments:3280

• the status of the instrument at each diagnosis procedure is often correctly predicted, except3281

for a delay right after it becomes faulty (Figures 4.5.2a and 4.5.2c)3282

• there are predicted statuses equal to ambiguous, once only in Figure 4.5.2a, but it can3283

happen frequently considering Figure 4.5.2b3284

• Changing decisions happen, e.g. an instrument predicted as faulty may be predicted as3285

non-faulty later (Figure 4.5.2b)3286

In all these particular cases, false results are observed, e.g. for instance an instrument is3287

predicted as non-faulty when it is faulty and so on. In Section 5.3, we stated that these behaviours3288

were expected. We investigate the reasons behind these incorrect predictions in Section 5.6.3289

5.5.2 Overall appreciation3290

Globally, the values of the metrics computed over all the diagnosis procedures are listed in3291

Table 4.5.4.34 In this study, the prevalence of positive cases, e.g. the proportion of cases where3292

the instruments are actually faulty over all the diagnosis procedures, is equal to 76%, for 1533293

cases (9 instruments diagnosed 17 times each).3294

From the number of TP , FP , TN , FN , NDP and NDN , it shows that:3295

• Most of the predicted statuses are true negatives (36 cases) and true positives (78 cases)3296

• Few predicted statuses are false negatives (20 cases) and non-determined positives (193297

cases)3298

• No non-determined negative and false positive are predicted3299

Consequently, the TNR is equal to 1 and the FPR is equal to zero whereas the TPR is3300

important (0.67) and the FNR is moderate (0.17). Moreover, the NDNR is equal to zero and3301

34We remind that the metrics do not take into account the instruments of class cmax in this Section.
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(c) Instrument 6, class 0

Figure 4.5.2: Evolution of the true status and of the predicted status for several instruments

the NDPR is equal to 0.16, thus NDR = 16% of ambiguous predictions were made which is3302

quite important.3303

That being said, it appears that the algorithm is correct when it predicts that instruments3304

are faulty (PPV = 1, FDR = 0). It is often not correct when it predicts that instruments are3305

non-faulty, about one third of the time (NPV = 0.64, FOR = 0.36). According to Figure 4.5.2,3306

there is a delay when an instrument actually becomes faulty and the first prediction as faulty.3307

It confirmed by the statistics of the delay of positive detection ∆D in Table 4.5.5: the average3308

value is negative and in fact it is always lower or equal to zero according to the maximal value of3309

this metric.3310

Nevertheless, the accuracy is equal to 75% which is acceptable for a first case study without3311

a fine adjustment of the diagnosis algorithm’s parameters.3312

5.5.3 Evolution over time of the metrics3313

The values of the metrics given in the previous subsection are representative of the results3314

for all the diagnosis 17 procedures. They do not allow to understand how this overall result was3315

build. Therefore, we study here their evolution.3316

Figure 4.5.3 shows the evolution of the metrics as a function of the index of the diagnosis3317

procedure. Each curve gives the values obtained for the corresponding metric at the diagnosis d3318

with the results of the nine instruments, where d is the index of the diagnosis procedure.3319
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True status

Non-faulty Faulty Prevalence Accuracy
N = 36 P = 117 0.76 0.75

Non-faulty TN FN NPV FOR

36 20 0.64 0.36

Predicted status Ambiguous NDN NDP

0 19

Faulty FP TP FDR PPV

0 78 0.00 1.00

TNR FNR

1.00 0.17

NDNR NDPR NDR

0.00 0.16 0.16

FPR TPR

0.00 0.67

Table 4.5.4: Confusion matrix of the case study (metrics are defined in Section 5.4).

Delay of positive detection

µ σ min max

−2.1 1.2 −4 0

Table 4.5.5: Statistics of the delay of positive detection ∆D for the case study

Figure 4.5.3a shows that first there are only non-faulty instruments (curve of N), and faulty3320

ones appear at the 5th diagnosis (d = 4). After the 6th diagnosis, all the instruments of class3321

zero are faulty (curve of P ). The transition is quite abrupt but this was expected because all3322

the instruments of class zero follow the same law of drift. The curves of the true positives TP3323

and true negatives TN follow mostly the ones of P and N respectively. The false positives or3324

negatives are in fact occurring around the transition where instruments of class zero become3325

faulty. This behaviour is more clearly represented in Figures 4.5.3b and 4.5.3c with the curves of3326

the TPR and FNR, and the curves of the NPV and FOR respectively. Finally, with Figure3327

4.5.3d, we observe that the global accuracy, initially equals to one, decreases until the transition3328

phase and then increases again, converging to 0.8, which is explained by the 20% of NDP cases3329

in the last diagnosis procedures (Figure 4.5.3c).3330

To conclude, this particular study of the evolution of the metrics allowed to understand3331

the global results over the 17 diagnosis procedures: the false results occur mainly when the3332

instruments actually become faulty and the number of predicted statuses equal to ambiguous3333

increases as more as there are instruments actually predicted as faulty. Thus, worse overall results3334

could have been displayed by considering the results of few diagnosis procedures around the3335

transition phase. We conjecture that better results would be obtained by increasing the number3336

of diagnosis procedures in the case study, without changing any parameter of the algorithm, e.g.3337
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Figure 4.5.3: Evolution of the metrics computed for each diagnosis procedure as a function of
the current diagnosis procedure id (continued) (metrics are defined in Section 5.4).

by increasing the duration of the case study. However, this would not reduce the number of false3338

that may happen in absolute terms. The reasons why false results happen are explained in the3339

following section.3340
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Figure 4.5.3: Evolution of the metrics computed for each diagnosis procedure as a function of
the current diagnosis procedure id (metrics are defined in Section 5.4).
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3

2

Symbol m(si, t) compatible
with true value?

m(si, t) involved
in a rendez-vous?

m(si, t) ≈ m(sj , t′)?

Yes No -
No No -
Yes Yes Yes
Yes Yes No
No Yes Yes
No Yes No

i
The number i indicates that the measurement result m(si, t) is involved
in i rendez-vous.
Set of the measurements results involved in rendez-vousM(si, (td,∆t)) Φ
Set of the measurements results involved in valid rendez-vous
M(si, (td,∆t)) Φv

Figure 4.5.4: Representation of an example set of measurement results M(si, (td,∆t)). First,
we observe that the restrictions of the set of measurement resultsM(si, (td,∆t)) to the ones where
they are respectively involved in rendez-vous M(si, (td,∆t)) Φ and involved in valid rendez-vous
M(si, (td,∆t)) Φv do not have the same proportion of measurement results compatible with their
true values. Thus, the rates of measurement results compatible with true values rtrue(si, (td,∆t)),
rtrue(si, (td,∆t)) Φ and rtrue(si, (td,∆t)) Φv are not equal. Therefore, considering that the
predicted statuses are determined with r≈Φv(si, (td,∆t)) for instance, which computation is
based on the set Φv(si → S, (td,∆t)), it is possible that r≈Φv(si, (td,∆t)) from rtrue(si, (td,∆t)).
Here rtrue(si, (td,∆t)) = 0.6 and r≈Φv(si, (td,∆t)) = 0.48. If a threshold of 0.5 is considered to
differentiate faulty instruments from non-faulty ones, then the true status of si is Ω(si, td) = NF

here but its predicted status is Ω̃(si, td) = F : it is a false result.
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5.6 Explanations of false results3341

In this case study, multiple false results, e.g. false positive or false negative, were observed.3342

The reasons why they happen can easily be explained.3343

Consider as an example a set of measurement results M(si, (td,∆t)). This set is composed of3344

100 measurement results, represented as squares in Figure 4.5.4, such as the rate of compatible3345

measurement results with their true values rtrue(si, (td,∆t)) is equal to 60
100 = 0.6. If a threshold3346

equal to 0.5 for rtrue is considered to differentiate faulty instruments from non-faulty ones35,3347

then Ω(si, td) = NF here.3348

In the diagnosis algorithm, the predicted status of an instrument is determined based on3349

the measurement results associated to the rendez-vous in the set Φv(si → S, (td,∆t)). These3350

measurement results are the ones in the blue rectangle dashed line in Figure 4.5.4. The question is3351

whether these measurement results are representative of M(si, (td,∆t)) and thus allow obtaining3352

a r≈Φv(si, (td,∆t)) equal to rtrue(si, (td,∆t)) or not.3353

Consider first M(si, (td,∆t)) Φ which is the restriction of M(si, (td,∆t)) to the measurement3354

results associated to rendez-vous that are in the set Φ(si → S, (td,∆t)). In this case, not all the3355

measurement results of si are involved in a rendez-vous, only those with a border in Figure 4.5.43356

(grouped in the orange rectangle dashed line in Figure 4.5.4). Computing rtrue(si, (td,∆t)) Φ,3357

which is defined similarly to rtrue(si, (td,∆t)), gives a value of 24
48 = 0.50 which is worse than3358

rtrue(si, (td,∆t)) but the result is still correct: it allows to say that si is non-faulty because3359

rtrue(si, (td,∆t)) Φ ≥ 0.5 according to the threshold previously chosen.3360

However, the rate used for the prediction of the status of an instrument, r≈Φv(si, (td,∆t)), is3361

not based on comparisons with true values but with other instruments. Different situations can3362

be observed as shown in the table of Figure 4.5.4:3363

• a measurement result compatible with its true values can be compatible or not with the3364

measurement result of the other instrument involved in a rendez-vous3365

• a measurement result non-compatible with its true values can be compatible or not with3366

the measurement result of the other instrument involved in a rendez-vous3367

• measurement results of an instrument may be involved in several rendez-vous.3368

From the perspective of Φ(si → S, (td,∆t)) first before moving to Φv(si → S, (td,∆t)),3369

rtrue(si, (td,∆t)) Φ may not be equal to r≈Φ (si, (td,∆t)) and it is the case here as r≈Φ (si, (td,∆t)) =3370
24−2+4

48+3 = 0.51 6= rtrue(si, (td,∆t)) Φ. The difference is small but the reason why false results3371

happen begins to appear. On top of the fact that the compatibility between measurement results3372

of two instruments may not correctly report the true status of an instrument36, the sets used3373

for the computations of the rates rtrue and rΦ do not necessarily have the same composition of3374

measurement results.3375

Considering then M(si, (td,∆t)) Φv , we have:

rtrue(si, (td,∆t)) Φv = 8
20 = 0.40 and r≈Φv(si, (td,∆t)) = 8 + 3

20 + 3 = 0.48

Thus, with a threshold (r+
Φ + r−Φ )max = 0.5, the predicted status of si, Ω̂(si, td), is equal to faulty3376

(because r≈Φv(si, (td,∆t)) < (r+
Φ + r−Φ)max) which is different from Ω(si, td): it is a false result.3377

Figure 4.5.5 shows the evolution of the different rates rtrue and r≈Φv computed for each block3378

of 15 days for the instrument that was considered in Figure 4.5.2b. With the trigger level in3379

red, the evolution of the green and blue curves in Figure 4.5.2b can be explained following the3380

35e.g. if rtrue(si, (td,∆t)) ≥ 0.5 then Ω(si, td) = NF
36See Section 4.1
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Figure 4.5.5: Evolution of the rates rtrue and r≈Φv for s1 in the case study of Section 5. The
missing points for r≈Φv are due to the ambiguous cases where r≈Φv could not be computed.

reasoning developed for the presented theoretical example. In this Figure, the diagnosis curve is3381

particularly interesting as the instrument is alternatively diagnosed as faulty and non-faulty, and3382

several times.3383

Through this development, the reason why false results appear has been explained. It is3384

because the properties of sets of measurement results like M(si, (td,∆t)) are not necessarily3385

conserved while building Φv(si → S, (td,∆t)) and it is this latter set that is used to compute the3386

rates rΦv . In fact, there is a sort of "sampling" of M(si, (td,∆t)) that is performed through the3387

rendez-vous and resulting in M(si, (td,∆t)) Φv in the end. This explains mainly the false results3388

of the diagnosis algorithm. Solving this issue is quite challenging. It might be possible in some3389

situations where the characteristics of the sets of measurement results could be conserved by the3390

"sampling" at stake for the restriction of the sets of measurement results but it would generally3391

require strong assumptions on the measurement results and on the occurrence of rendez-vous,3392

without taking into account the notion of validity of the rendez-vous. However, by adjusting3393

the parameters of the diagnosis algorithm, it may also be possible to reduce the number of false3394

results. Therefore, they are reviewed in the following section.3395

5.7 On the parameters of the diagnosis algorithm3396

There are several parameters that drive the proposed algorithm:3397

• the instant of diagnosis td and its periodicity3398

• the time difference ∆t defining the length of the time range on which measurement results3399

selected for the input data of the algorithm3400

• the minimal relative differences of class required for instruments of class k with their3401

diagnoser instruments ∆cDmin(k)3402

• the minimal required number of valid rendez-vous |Φv|min3403

• the conditions for a measurement result to be considered as valid3404

• the conditions of spatiotemporal vicinity for two instruments to be in rendez-vous3405
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• the maximal tolerated values (r+
Φv)max, (r−Φv)max and (r+

Φv + r−Φv)max for the rates of upper3406

and lower non-compatible rendez-vous in sets of valid rendez-vous.3407

It may be possible to improve the results of case study with different rules or values for them.3408

Indeed, values were chosen but may not be the ones allowing obtaining the best results. They3409

may explain the reason why there are many false results in particular. The following paragraphs3410

provide a discussion regarding the choice of the parameters.3411

Instant of diagnosis and its periodicity3412

td is the instant of the dth diagnosis. In this case study, we chose to have a periodic diagnosis,3413

e.g. diagnosis procedures are carried out on a regular basis (every 15 days).37 With a different3414

frequency of diagnosis, for instance every week or even every day in the case study, it may3415

be possible to detect sooner that an instrument has become faulty in exchange of a higher3416

computational cost. Consequently, the overall results would be different but this would not3417

change the general behaviour of the algorithm. The choice of the instant of diagnosis and its3418

periodicity is not discussed in detail in this work despite the fact that it may have a significance3419

in practice because it strongly depends on the instruments used and on the context of deployment.3420

Indeed, all the instruments do not have the same characteristic time of drift for instance. This3421

information is often provided as an order of magnitude of drift of the gain and offset over a week3422

or a month in percentage in datasheets [104]. In this way, it would influence the periodicity3423

of the diagnosis. Moreover, the context of deployment can justify to perform the diagnosis at3424

specific times of the day.38 Thus, the characteristics of the instruments used and the context of3425

deployment can help in the choice of the moment of diagnosis and its periodicity. 393426

Length of the time range on which the algorithm is applied3427

The length of the time range ∆t has an important influence on the results. Indeed, the higher3428

∆t is, the more rendez-vous may be in Φ(si → S, (td,∆t)) and consequently in Φv(si → S, (td,∆t)),3429

and vice versa. Thus, it influences the contents of M(si, (td,∆t)) Φ and M(si, (td,∆t)) Φv .3430

However, a high value of ∆t implies that measurement results obtained at very different instants3431

would be used by the diagnosis algorithm. Considering that old measurement results are more3432

accurate than recent ones in the case of an irreversible drift, the higher ∆t is, the less the3433

measurement results at the actual level of the drift will be preponderant in M(si, (td,∆t)) Φv .3434

Therefore, choosing a different value for ∆t while trying to bring closer the distributions of3435

measured values in M(si, (td,∆t)) and M(si, (td,∆t)) Φv could also induce false results for3436

another reason because as shown in Section 5.6, the content of the sets M(si, (td,∆t)) and3437

M(si, (td,∆t)) Φv are not necessarily equivalent, regardless of ∆t. Moreover, reducing ∆t in3438

particular could also have another drawback: on a short time range there may likely be less3439

rendez-vous than on a longer one. Depending on the minimal required number of valid rendez-3440

vous |Φv|min, the value of ∆t can make the algorithm not functional, e.g. all the instruments3441

37An actual day and hour is not associated to td because it does not have a real signification here.
38As an example, in [109] for an in situ calibration strategy, Moltchanov et al. chose to apply their in situ

calibration algorithm every day after 4:00a.m. and to use the measured values between 1:00a.m. and 4:00a.m..
They proceeded like this because the measuring instruments to calibrate were distant from the reference and at this
moment, the measurand was supposed to be homogenous in the measurement area, enabling to compare between
them the values measured by the instruments. Therefore, in the same context with our diagnosis algorithm, it
may be relevant to apply it at a similar time of the day that was used in [109].

39Note that too high a frequency of diagnosis may be pointless if no rendez-vous occurs between two instants of
diagnosis. It would be more relevant to have in this case a formulation of the algorithm so that the diagnosis
procedure is carried out when new rendez-vous happen. In this way, Appendix A Section 5 provides a discussion
regarding first how to reformulate the algorithm so that it is possible to trigger a diagnosis procedure on an event,
e.g. a rendez-vous, and how to use an event-based range on which the algorithm is applied. Then, elements
regarding a real-time version of the diagnosis algorithm are given in Appendix A Section 6.
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different from the class cmax would be predicted as ambiguous.3442

In fact, as for the instant of diagnosis and its periodicity, the adjustment of ∆t could be3443

defined based on the properties of the instruments used like their characteristic time of drift.3444

Indeed, it can give an order of magnitude of the relevant length of the time range on which the3445

diagnosis algorithm should be applied.3446

Minimal relative differences of class required3447

The minimal relative differences of class required ∆cDmin(k) would usually be set to +1 or 0.3448

Indeed, it is rarely advisable to determine the statuses of instruments with ones of a lower class3449

as shown in Section 4.1. Predicting the status of an instrument with diagnoser instruments of a3450

strictly higher class can give a higher confidence in the diagnosis as their measurement results3451

are standards of a higher quality than the ones provided by diagnoser instruments of an identical3452

class.3453

Minimal required number of valid rendez-vous3454

The minimal required number of valid rendez-vous |Φv|min can be a chosen integer but to3455

add up more confidence in the predicted status, it is advisable to make it the highest as possible.3456

However, too high a value can make the diagnosis impossible: all the instruments of class cmax−13457

and lower would be diagnosed as ambiguous. If a training dataset of rendez-vous is available, it3458

is possible to give an upper boundary. This is explained in Section 8.3459

Conditions for a measurement result to be considered as valid3460

The conditions to satisfy to state a measurement result of an instrument as valid can be set3461

according to the datasheets of the instruments. Measurement range, detection limit and so on3462

are values usually given. Thus, it is not really a parameter driving the diagnosis algorithm, it is3463

a constraint driven by the choice of the measuring instruments.3464

Conditions of spatiotemporal vicinity for two instruments to be in rendez-3465

vous3466

This subject was already discussed in Section 3.3. We introduced different definitions for3467

these conditions. In summary, they should be determined based on expert specifications or on3468

characteristics of the measurand and of the measuring instruments.3469

Maximal tolerated values for the rates of upper and lower non-compatible3470

rendez-vous in sets of valid rendez-vous3471

Like td, its periodicity and ∆t, the maximal tolerated values (r+
Φv)max, (r−Φv)max and (r+

Φv +3472

r−Φv)max for the rates of upper and lower non-compatible rendez-vous in sets of valid rendez-vous3473

can be derived according to a requirement. This is what was done in Section 5.2. Nevertheless,3474

these parameters have a major role in the way false results are produced because they are used3475

to make the final decision between a status predicted as faulty or non-faulty. Therefore, their3476

adjustment is discussed in Section 7 where the reduction of false results is tackled.3477

5.8 Conclusion3478

In this section, a case study was conducted to put in practice the algorithm of diagnosis3479

presented in Section 4.2. It provides satisfying results according to the initial specification.3480

However, the results are not excellent. There are false results and, in this particular case, a3481

significant number of false negatives. There are also several cases of predicted statuses equal to3482

ambiguous. The reasons behind the false results were explained theoretically.3483
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To improve the results, the adjustment of the parameters of the algorithm was discussed.3484

The brief overview of each one highlighted that the adjustment of some of them can be driven3485

by expert specifications and the characteristics of the measuring instruments composing the3486

sensor network. For |Φv|min, (r+
Φv)max, (r−Φv)max and (r+

Φv + r−Φv)max, guidelines are provided in3487

Sections 7 and 8 to set their values.3488

Before that, we discuss in the following section the assumption for the instruments of class3489

cmax that are considered as non-faulty–they were even not drifting in the present case study.3490

6 On the assumption regarding the top-class instruments being always3491

predicted as non-faulty3492

6.1 Theoretical discussion3493

The assumption that instruments of class cmax are always predicted as non-faulty is a strong3494

one. It is, however, necessary for the proper operation of the presented algorithm. If there is no3495

assumption regarding the status of any instrument of class cmax, they are initially considered as3496

ambiguous and thus the sets Φv(si → S, (td,∆t)) are always empty. In this case, the algorithm3497

predicts a status equal to ambiguous for each instrument, which makes it useless.3498

Actually, the assumption on the instruments of class cmax can be relaxed: one single3499

instrument of class cmax supposed as non-faulty may be sufficient. More practically,3500

depending on the value of |Φv|min and on the configuration of the sensor network, only a subset3501

of Scmax may be sufficient to ensure the lowest number of instruments systematically diagnosed3502

as ambiguous.40 Note that this formulation is also more appropriate in the case of a blind sensor3503

network. Indeed, for this type of sensor network, all the instruments are considered as equivalent3504

from a metrological perspective. Consequently, there is no subset of instruments of a higher class3505

than others.413506

Following on from this new formulation of the assumption regarding the statuses of the3507

instruments of class cmax, we might be tempted to try to relax it to point where the status of3508

only one instrument of any class has to be known. Consider such an instrument si. Again, all3509

the instruments sj ∈ S such as cDmin(sj) > c(si) cannot be diagnosed differently than ambiguous3510

if the minimal relative differences of class required ∆cDmin(k) is set to +1 or 0 as recommended3511

in Section 5.7. In particular, if the class of si is the lowest class in the network, noted cmin,3512

and if ∆cDmin(cmin) = +1, then all the instruments of the network, except si are systematically3513

diagnosed as ambiguous. In fact, the lower the class of si is, the more instruments will always be3514

predicted as ambiguous. Thus, it may be simpler to come back to assuming some instruments of3515

class cmax as non-faulty. It is acceptable to guarantee such a hypothesis in real situations.3516

6.2 Case study with the instrument of class cmax drifting3517

In the case study of Section 5, the instrument of class cmax, noted here s9, was first assumed3518

as perfect, e.g. not drifting, for the sake of clarity.3519

Consider here that this instrument is also undergoing drift following the RGOI model but3520

with δGmax(s9) = 0.5/(24 ∗ 6 ∗ 30)%/10min and δOmax(s9) = 1.88/(24 ∗ 6 ∗ 30)µg/m3/10min.423521

With the previous definition of rtrue and the same criteria to determine the true status of the3522

instrument Ω(s9, t) like the other instruments, the evolution of the true and predicted statuses3523

40Note that if ∆cDmin(cmax) > 0, the instruments of class cmax which statuses are not assumed as non-faulty,
cannot be diagnosed differently than ambiguous. Hence, it may be more relevant to define a sub-network without
these instruments on which the diagnosis algorithm is applied so that the results are not biased by the behaviour
of the algorithm with these instruments.

41In the case of a blind sensor network, necessarily ∆cDmin = 0 for all the instruments, otherwise the algorithm
cannot work.

42See Table 4.5.1 for the explanation regarding Gmax(s9) and Omax(s9) expressed as fractions.
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Figure 4.6.1: Evolution of the true status and of the predicted status of s9, the instrument of
class 1, when it is drifting

True status

Non-faulty Faulty Prevalence Accuracy
N = 36 P = 117 0.76 0.72

Non-faulty TN FN NPV FOR

36 28 0.56 0.44

Predicted status Ambiguous NDN NDP

0 15

Faulty FP TP FDR PPV

0 74 0.00 1.00

TNR FNR

1.00 0.24

NDNR NDPR NDR

0.00 0.13 0.10

FPR TPR

0.00 0.63

Table 4.6.1: Confusion matrix of the case study when the instrument of class 1 is drifting
(metrics are defined in Section 5.4).

over time for this particular instrument is given in Figure 4.6.1, the predicted status being again3524

assumed as always non-faulty. We observe that there are consequently false negative if the3525

assumption is kept. However, still without taking into account s9 in the metrics to evaluate the3526

results, the diagnosis algorithm gives the results of Tables 4.6.1 and 4.6.2. We observe that the3527

values of the metrics do not change significantly from Tables 4.5.4 and 4.5.5. They are slightly3528

worse sometimes: more false negatives (28 instead of 20), less true positives (74 instead of 78),3529

thus NPV is lower and the FOR is higher but the PPV is higher.3530

Therefore, it appears that even with s9 drifting, the diagnosis algorithm still provides satisfying3531

results. In this way, assuming that the instruments of class cmax are not drifting is acceptable.3532
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Delay of positive detection

µ σ min max

−2.3 0.9 −4 −1

Table 4.6.2: Statistics of the delay of positive detection ∆D for the case study when the
instrument of class 1 is drifting

More detailed explanations are provided in Appendix B to show that even when drifting, this3533

instrument is still more accurate than the instruments of a lower class. In fact, the metric3534

used to determine if an instrument is truly faulty or not is not fairly appreciating the status3535

of an instrument when the goal is to compare its measurement results to the ones of another3536

instrument, potentially of a worse quality.3537

6.3 Conclusion3538

In this section, the need for an assumption regarding the instruments of class cmax to be3539

considered as non-faulty was explained and relaxed to only require this assumption for one of3540

them at least. The case study of Section 5 was extended by making the instrument of class cmax3541

drifting. It showed that the results were only slightly worse in this configuration. In conclusion,3542

assuming that instruments of class cmax are always non-faulty is a reasonable hypothesis.3543

7 Means to reduce false results3544

In this section, we discuss several means to reduce the number of false results that happen3545

for the reasons explained in Section 5.6.3546

7.1 Keep the predicted status of instruments unchanged once they are pre-3547

dicted as faulty3548

A first idea to overcome faults results could be to keep the predicted status of an instrument3549

equal to faulty for the next diagnosis procedures once it is first diagnosed as so. Figure 4.7.13550

shows the effect of such choice on the same instrument as in Figure 4.5.2b: here the instrument3551

changes of status only once.3552

The global performances of the diagnosis algorithm on the case study with this choice of3553

behaviour are shown in Table 4.7.1. The results obtained are improved: there are less false3554

negatives, less non-determined positives and much more true positives. Thus, all the associated3555

metrics based on these metrics are improved. An accuracy of 88% is obtained, while the PPV3556

goes up to 1 for instance. Only the FNR and FOR are still important but this is explained by3557

the late detection of the change of status of the instruments in average (−2.1) as shown in Table3558

4.7.2.3559

Therefore, this solution of keeping the predicted status of an instrument equal faulty, once it3560

is predicted as so, avoids observing changes of predicted statuses after being predicted as faulty3561

a first time but it does not solve entirely the problem of false results.3562

7.2 Alternate definition for rates used to decide of the status of the instru-3563

ments3564

In Section 5.6, we observed that measurement results may be considered multiple times in the
computation of the rates r+

Φv , r
−
Φv and r≈Φv if an instrument encounters multiple other instruments

at the same time. It could be preferable to have each measurement result counted only once,
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Figure 4.7.1: Evolution of the true status and of the predicted status of s1 while keeping
Ω̂(s1, t) = F for t ≥ td such as Ω̂(s1, td) = F for the first time.

True status

Non-faulty Faulty Prevalence Accuracy
N = 36 P = 117 0.76 0.88

Non-faulty TN FN NPV FOR

36 18 0.67 0.33

Predicted status Ambiguous NDN NDP

0 1

Faulty FP TP FDR PPV

0 98 0.00 1.00

TNR FNR

1.00 0.15

NDNR NDPR NDR

0.00 0.01 0.01

FPR TPR

0.00 0.84

Table 4.7.1: Confusion matrix of the case study with the predicted statuses kept as faulty from
one diagnosis procedure to another once the status of an instrument is predicted as faulty for

the first time (metrics are defined in Section 5.4).

notably if M(si, (td,∆t)) Φv ∼ M(si, (td,∆t)) in terms of distribution of the measured values.
To achieve that, we define γ(si → sj , t), the weight of the rendez-vous ϕ(si → sj , t) :

γ(ϕ(si → sj , t)) = 1
|Φ(si → S, t)|

with Φ(si → S, t) = Φ(si → S, (t, 0)) regarding the previous notations of the sets Φ3565
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Delay of positive detection

µ σ min max

−2.1 1.2 −4 0

Table 4.7.2: Statistics of the delay of positive detection ∆D for the case study with the predicted
statuses kept as faulty from one diagnosis procedure to another once the status of an instrument

is predicted as faulty for the first time
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Figure 4.7.2: Evolution for s1 in the case study of Section 5 (a) of the rates rtrue and r≈Φv (both
definitions) ; (b) of its true status and of its predicted status with the alternate definition for r≈Φv

; while keeping Ω̂(s1, t) = F for t ≥ td such as Ω̂(s1, td) = F for the first time.

γv can be defined for Φv too. With this weight, we have notably:∑
ϕ(si→sj ,t′)∈Φv(si,(t,∆t))

γv(ϕ(si → sj , t
′)) = |M(si, (t,∆t)) Φv |

Thus, an alternate definition of r≈Φv(si, (t,∆t)) is for instance:

r≈Φv(si, (t,∆t)) =

∑
ϕ(si→sj ,t′)∈Φ≈v (si,(t,∆t))

γv(ϕ(si → sj , t
′))

∑
ϕ(si→sj ,t′)∈Φv(si,(t,∆t))

γv(ϕ(si → sj , t
′))

However, Figure 4.7.2a shows that using this definition in this case study does not change the3566

values of r≈Φv(s1, (t,∆t)) compared to the results obtained with the previous definition. Hence,3567

there is no change in the predicted status of the instrument that was considered in Figure 4.7.13568

as shown in Figure 4.7.2b. This is also globally the case according to Table 4.7.3 compared to3569

Table 4.7.1.3570

7.3 Adjustment of the maximal tolerated values for the different rates used3571

to determine the statuses of the instruments3572

The issue of false results can be seen from another perspective. In fact, the most problematic3573

false results are the false negatives. Indeed, false positives will only trigger an early maintenance3574
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True status

Non-faulty Faulty Prevalence Accuracy
N = 36 P = 117 0.76 0.88

Non-faulty TN FN NPV FOR

36 18 0.67 0.33

Predicted status Ambiguous NDN NDP

0 1

Faulty FP TP FDR PPV

0 98 0.00 1.00

TNR FNR

1.00 0.15

NDNR NDPR NDR

0.00 0.01 0.01

FPR TPR

0.00 0.84

Table 4.7.3: Confusion matrix of the case study with the predicted statuses kept as faulty from
one diagnosis procedure to another once the status of an instrument is predicted as faulty for
the first time and with the alternate definition for r≈Φv (metrics are defined in Section 5.4).

of the instruments which is preferable in terms of quality of the measurements. The cost of the3575

maintenance has to be taken into account but regarding calibration issues, an in situ calibration3576

could be performed.3577

The parameters that can be adjusted to obtain hopefully more false negatives and less false3578

positives are the maximal tolerated values (r+
Φv)max, (r−Φv)max and (r+

Φv + r−Φv)max for the rates3579

of upper and lower non-compatible rendez-vous in sets of valid rendez-vous. The lower these3580

values are, the less non-compatible result will be accepted.3581

It is difficult to give a formal procedure to adjust these values and would require additional3582

developments. By the way of a possible solution, an empirical approach could be considered if a3583

training database or test cases are available. While setting first values for (r+
Φv)max, (r−Φv)max3584

and (r+
Φv + r−Φv)max arbitrarily, instruments may be diagnosed and the results studied to see if3585

the predictions were correct. If it is the case, it means that the maximal tolerated values for the3586

rates could be increased if there were only true positives, and decreased if there were only true3587

negatives. In the opposite cases, e.g. if there were only false positives or only false negatives, it3588

means that these values should be increased and decreased respectively. However, if there are3589

both true positives, true negatives, false positives and false negatives, the values for (r+
Φv)max,3590

(r−Φv)max and (r+
Φv + r−Φv)max should be adjusted so that the true positives and true negatives are3591

maximised and the false positives and false negatives minimised. It may be impossible to find3592

values so that there are no false results.3593

7.4 Conclusion3594

In this section, two means to reduce false results were presented, one having an interesting3595

effect (keeping the predicted status of instruments unchanged once they are predicted as faulty)3596
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and the other one having no influence on the results (an alternate definition for rates used to3597

decide of the status of the instruments). Then, we discussed the adjustment of the maximal3598

tolerated values for the different rates used to determine the statuses of the instruments because3599

it can help to have more false positives and less false negatives. We explained notably why false3600

positives were less predjudiciable than false negatives.3601

In conclusion, we can say that despite a careful design of the sensor network and adjustment3602

of the parameters of the diagnosis algorithm, false results may still happen. Therefore, a careful3603

investigation must be carried out if a high rate of false results is observed to understand their3604

causes.3605

8 Adjustment of the minimal size required for a set of valid rendez-vous3606

to allow a prediction between the statuses faulty and non-faulty3607

The choice of the value of |Φv|min can make the algorithm non-functional: in the worst3608

situation, all the instruments, except those of class cmax, are always diagnosed as ambiguous if3609

the condition |Φv(si, (t,∆t)| ≥ |Φv|min is never satisfied for any si to diagnose. Thus, having3610

a method to determine first if the value of |Φv|min is compatible with the considered sensor3611

network and then to give an upper boundary for its value would be interesting.3612

Note that in the case where the condition |Φv(si, (t,∆t)| ≥ |Φv|min is never satisfied, it is3613

also possible to increase ∆t so that more rendez-vous could be included in the set Φv(si, (t,∆t).3614

We assume here that ∆t was defined first to determine a relevant set of rendez-vous based on3615

expert knowledge (Section 5.7) and cannot be changed.3616

8.1 Algorithm determining an upper boundary for |Φv|min3617

Consider a training database giving the possible rendez-vous between the instruments of a3618

sensor network over a given time range, such as a set D of diagnosis procedures could be carried3619

out on it.3620

For each d ∈ D, it is possible to determine for each instrument the set of its rendez-vous3621

|Φ(si → sj , (td,∆t))|.3622

Consider the matrix MatΦ(D,∆t) ∈ N|S|×|S| where its values are defined by:

φi,j = min
d∈D
|Φ(si → sj , (td,∆t))|

Each line of this matrix gives the worst-case scenario of rendez-vous occurring on a range of3623

diagnosis according to the training database.3624

We will now apply a procedure similar to the diagnosis algorithm to obtain a maximum value3625

for |Φv|min such as all the instruments are diagnosable as non-faulty, noted max |Φv|min, under a3626

number of assumptions.3627

Consider first the set SNF = Scmax because the instruments of class cmax are assumed as3628

non-faulty by the diagnosis algorithm.43 and the set of instruments to diagnose SD = S \ Scmax .3629

For each si ∈ SD, it is possible to compute:

|Φv|min(si) =
|S|∑
j=1

c(sj)≥cDmin(si)
sj∈SNF

φi,j

The maximum of these |Φv|min(si) gives a first value for the upper boundary max |Φv|min. If3630

43In the case where only a subset of Scmax is assumed as non-faulty (see Section 6), only the instruments of this
subset should be in SNF .
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we suppose that all the rendez-vous are likely to be valid in the worst case scenario and that all3631

the instruments are likely to be non-faulty, then with |Φv|min = max |Φv|min, all the si such as3632

|Φv|min(si) = max |Φv|min would be predicted as non-faulty. Representing this set of instruments3633

by ŜNF , we would have in a following iteration of the diagnosis algorithm SNF = SNF ∪ ŜNF3634

and SD = SD \ ŜNF .3635

|Φv|min(si) can be computed again for the remaining instruments in SD. If the maximum of3636

these new values is lower than the previous value obtained for max |Φv|min, then max |Φv|min is3637

set to this new maximum so that some of the remaining instruments in SD can be diagnosed in3638

the worst case scenario of rendez-vous during a second iteration of the algorithm. This procedure3639

is repeated until SD is empty. The value of max |Φv|min obtained at the end is the maximal3640

value for |Φv|min ensuring that all the instruments can be diagnosed as non-faulty when they are3641

likely to be so in the worst case scenario of rendez-vous.3642

However, some instruments can be diagnosed as faulty in practice. In this case, the value3643

max |Φv|min obtained previously may not be reachable for some instruments.3644

To overcome this issue, we can compute max |Φv|min as a function of the number λ of3645

instruments predicted as faulty in the network.3646

Consider CF (S(cmax−1)−, λ) that is the set of all the possible combinations of λ faulty in-3647

struments in S(cmax−1)−. For each set of instruments that are faulty SF ∈ CF (S(cmax−1)−, λ),3648

it is possible to determine max |Φv|min(SF ) following the procedure described previously by3649

initialising SD to S \ (Scmax ∪ SF ). For λ > 0, it is possible that some instruments have no3650

rendez-vous with the non-faulty instruments depending on SF . Thus, the end of the procedure3651

described previously is reached when SD is empty or when SD is identical after an iteration.3652

Then:
max |Φv|min(λ) = min

SF∈CF (S(cmax−1)−,λ)
(max |Φv|min(SF ))

is the maximal value allowed for |Φv|min considering λ instruments as faulty.3653

However, it is possible that max |Φv|min(λ) > max |Φv|min(λ′) for λ′ < λ.3654

Thus:
max |Φv|min(λ) = min

λ′∈[0..λ]
(max |Φv|min(λ′))

Algorithm 2 gives a pseudo-code to determine the values of max |Φv|min as a function of the3655

number of instruments considered as faulty λ.3656

Algorithm 2: Algorithm to determine the maximal value of the minimal size required
for a set of valid rendez-vous to allow prediction between the statuses faulty and non-
faulty for an instrument, as a function of the number of faulty instruments in the sensor
network
Data: S, {Φ(S, (td,∆t)), d ∈ D}
Result: max |Φv|min
/* Compute the matrix of the minimal numbers of rendez-vous encountered

on the diagnosis ranges between each couple of instruments */
for i ∈ [1..|S|] do

for j ∈ [1..|S|] do
φi,j ← mind∈D |Φ(si → sj , (td,∆t))|

end
end
/* Determine the maximal value allowed for |Φv|min as a function of the

number of faulty instruments */
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for λ ∈ [0..|S(cmax−1)−|] do /* For each number of instruments that can be
faulty */

max |Φv|min(λ)← +∞
/* For each combination of λ instruments that can be faulty */
for SF ∈ CF (S(cmax−1)−, λ) do

SNF ← Scmax

SD ← S \ (Scmax ∪ SF )
max |Φv|min(SF )← +∞
/* Determine the maximal value for |Φv|min according to SF so that

all the instruments in SD can be predicted as non-faulty */
repeat

S̃D ← SD

max |Φv|min(SF )′ ← 0
for si ∈ SD do

max |Φv|min(si)←
|S|∑
j=1

c(sj)≥cDmin(si)
sj∈SNF

φi,j

if max |Φv|min(si) > max |Φv|min(SF )′ then
max |Φv|min(SF )′ ← max |Φv|min(si)
ŜNF ← {si}

else if max |Φv|min(si) = max |Φv|min(SF )′ then
ŜNF ← ŜNF ∪ {si}

end
if max |Φv|min(SF )′ < max |Φv|min(SF ) then

max |Φv|min(SF )← max |Φv|min(SF )′
end
SNF ← SNF ∪ ŜNF

SD ← SD \ ŜNF

until SD = ∅ or SD = S̃D

/* If this new maximal value for |Φv|min is lower than the current
one of max |Φv|min(λ), then it is the new maximal value allowed
for |Φv|min with λ faulty instruments */

if max |Φv|min(SF ) < max |Φv|min(λ) then
max |Φv|min(λ)← max |Φv|min(SF )

end
/* If the maximal value allowed for |Φv|min with λ faulty

instruments is higher than the maximal value allowed for a lower
number of instruments, then it is this value that is the maximal
value allowed for |Φv|min with λ faulty instruments */

if λ > 0 and max |Φv|min(λ− 1) < max |Φv|min(λ) then
max |Φv|min(λ)← max |Φv|min(λ− 1)

end
end

end

119



Chapter 4. Diagnosis of Drift Faults in Sensor Networks

0 2 4 6 8

0

2

4

6

8

10

12

14

Number of faulty instruments λ

m
ax

 |
Φ

 v|
 mi

n

Figure 4.8.1: Evolution of max |Φv|min as a function of the number of faulty instruments λ
in the network, based on the matrix MatΦ(D,∆t) derived from the database used for the case

study of Section 5

8.2 Application to the case study3657

Consider the following matrix MatΦ(D,∆t) obtained with the database used in the case
study of Section 5:

MatΦ(D,∆t) =



0 13 11 8 4 9 10 8 9 13
13 0 7 12 7 11 12 10 9 12
11 7 0 9 10 9 11 11 12 10
8 12 9 0 9 9 12 9 13 8
4 7 10 9 0 8 13 11 13 7
9 11 9 9 8 0 10 8 13 11
10 12 11 12 13 10 0 14 9 12
8 10 11 9 11 8 14 0 13 14
9 9 12 13 13 13 9 13 0 8
13 12 10 8 7 11 12 14 8 0


The last row corresponds to the instrument of class cmax = 1.3658

Applying the considered algorithm to determine max |Φv|min as a function of λ gives the3659

Figure 4.8.1.3660

First of all, note that the overall upper boundary for |Φv|min given by this algorithm is equal3661

to 14, which is lower than the value used in the case study in Section 5: this value was set to3662

15. This could explain some of the predictions that were observed of instruments diagnosed as3663

ambiguous. Hence, the algorithm we provided allow to identify if a value of |Φv|min is likely to3664

lead to instruments predicted as ambiguous.3665

Suppose that we want to be still able to diagnose the sensor network without any ambiguous3666

predicted statuses due to a lack of valid rendez-vous when five instruments are predicted as3667

faulty for instance. With Figure 4.8.1, then |Φv|min must be lower or equal to 10 according to3668

the training database used.3669
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True status

Non-faulty Faulty Prevalence Accuracy
N = 36 P = 117 0.76 0.91

Non-faulty TN FN NPV FOR

36 14 0.72 0.28

Predicted status Ambiguous NDN NDP

0 0

Faulty FP TP FDR PPV

0 103 0.00 1.00

TNR FNR

1.00 0.12

NDNR NDPR NDR

0.00 0.00 0.00

FPR TPR

0.00 0.88

Table 4.8.1: Confusion matrix of the case study with the predicted statuses kept as faulty from
one diagnosis procedure to another once the status of an instrument is predicted as faulty for

the first time and |Φv|min = 10 (metrics are defined in Section 5.4).

Delay of positive detection

µ σ min max

−1.6 1.2 −3 0

Table 4.8.2: Statistics of the delay of positive detection ∆D for the case study with the predicted
statuses kept as faulty from one diagnosis procedure to another once the status of an instrument

is predicted as faulty for the first time, |Φv|min = 10

Consider now |Φv|min = 10 in our case study with the predicted status of the instrument kept3670

unchanged once they are equal to faulty (Section 7). The execution of the diagnosis algorithm3671

with this value for |Φv|min gives the results of Tables 4.8.1 and 4.8.2. We observe that the results3672

are significantly improved from what was obtained previously (Tables 4.7.1 and 4.7.2). There are3673

less false negatives, no more non-determined positives, and more true positives. The PPV is3674

now equal to 1 and the NPV increased from 0.67 to 0.72. The accuracy is now equal to 0.913675

instead of 0.88. Moreover, the average delay of positive detection has been improved.3676

Therefore, changing the value of |Φv|min is necessary if the algorithm is not functional at3677

all (e.g. when Ω̂(si, t) = A, ∀si and t) but it can also be useful to improve the performances of3678

the algorithm. In our case, a lower value of |Φv|min is interesting.44 The algorithm provided to3679

determine max |Φv|min as a function of the number of faulty instruments in the sensor network3680

is adapted to help to find a suitable |Φv|min.3681

44Note that a higher (or lower) value than 10 for |Φv|min could give better results. The optimisation of this
value was not addressed in this work.
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8.3 Conclusion3682

In this section, an algorithm was provided to give an upper boundary to |Φv|min, the minimal3683

size for a set of valid rendez-vous to allow a prediction between the statuses faulty and non-faulty.3684

We defined this upper boundary max |Φv|min as a function of the number of instruments already3685

diagnosed as faulty in the sensor network to adjust |Φv|min with concerns for the robustness of3686

the diagnosis algorithm when instruments are diagnosed as faulty.3687

Afterwards, this algorithm was applied on the dataset used in the case studies presented in3688

this chapter. It allowed first to identify that the value of |Φv|min initially chosen was higher3689

than the overall upper boundary given by the algorithm. This could explain the predictions of3690

instruments as ambiguous in previous results. Then, by choosing a lower value for |Φv|min to3691

tolerate five instruments predicted as faulty in previous diagnosis procedures, the results of the3692

case study were improved, showing the interest of the algorithm developed in this section.3693

9 Sensitivity of the algorithm to changes in the case study3694

In the previous sections, the diagnosis algorithm was introduced and a case study was3695

presented to illustrate the application of the algorithm. The means to reduce false results were3696

discussed just like the assumption regarding the instruments of class cmax. In Chapter 3, the3697

influence on the results of various aspects of the case study was studied for the evaluation of in3698

situ calibration strategies. In this section, the same type of studies are conducted regarding the3699

case study that was presented in Section 5. Indeed, results are likely to be case specific according3700

to the results of the two previous sections where we saw that the choice of the values of the3701

parameters |Φv|min, (r+
Φv)max, (r−Φv)max, (r+

Φv + r−Φv)max and so on could change results obtained.3702

In this section, the influence of the drift values, of the true values and of the model used to3703

build the true values is investigated. The role of the density of instruments is also questioned3704

and a discussion regarding the robustness of the algorithm against other faults is provided.3705

In the following studies, the parameters of the algorithm that allowed obtaining the3706

best results in Section 8 are used, e.g. with the predicted statuses kept as faulty from one3707

diagnosis procedure to another, once the status of an instrument is predicted as faulty, and with3708

|Φv|min = 10. It is explained when the value of a parameter is changed.3709

9.1 Influence of the values of drift3710

As the results of Section 8 and the following were obtained for one draw of drift values, the3711

case study was repeated for 100 draws. Table 4.9.1 presents the mean and standard deviation of3712

each metric.45 This table shows that:3713

• the mean values are equal to the values obtained in Table 4.8.1. This indicates that on3714

average, the observations and conclusions do not depend on the variability of the drift.3715

• the standard deviations of all the metrics are close to zero. This is small considering the3716

mean values and the relative standard deviation varying from zero to at most 16% of the3717

mean value, reached for FN .3718

Thus, in this case study, the results of the diagnosis algorithm are not dependent on the3719

values of the drift46, with this drift model at least, and with this configuration of the algorithm.3720

45The values for the delay of positive detection ∆D are not provided here for the sake of clarity.
46Note that the range of magnitude of drift does not change here, only the variability is studied. A different

range would be equivalent to operating with different measuring instruments in practice.
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True status

Non-faulty Faulty Prevalence Accuracy
µ σ µ σ µ σ µ σ

36.00 0.00 117.00 0.00 0.76 0.00 0.91 0.00

Non-faulty
TN FN NPV FOR

µ σ µ σ µ σ µ σ

36.00 0.00 13.88 0.69 0.72 0.01 0.28 0.01

Predicted status Ambiguous
NDN NDP

µ σ µ σ

0.00 0.00 0.06 0.34

Faulty
FP TP FDR PPV

µ σ µ σ µ σ µ σ

0.00 0.34 103.06 0.34 0.00 0.00 1.00 0.00

TNR FNR

µ σ µ σ

1.00 0.00 0.12 0.01

NDNR NDPR NDR

µ σ µ σ µ σ

0.00 0.00 0.00 0.00 0.00 0.00

FPR TPR

µ σ µ σ

0.00 0.00 0.88 0.00

Table 4.9.1: Confusion matrix for 100 simulations of the case study with drift values drawn
again for each one (metrics are defined in Section 5.4).

9.2 Influence of the true values3721

In the same way, the results of Section 8 were obtained for one draw of true values. Therefore,3722

the case study was repeated for 100 draws of true values. Table 4.9.2 presents the mean and3723

standard deviation of each metric.47 This table shows that on average the number of true3724

positives and false negatives are respectively more and less important than with the initial draw.3725

The standard deviations are also close to zero which is small compared to most of the mean3726

values, except for the metrics FP , NDP and FN , plus some the associated metrics derived from3727

them (FNR, FPR, FOR).3728

Thus, again on average, the results obtained are globally better compared to the specific case3729

study considered previously, in terms of NPV , FOR, accuracy and threat score notably.3730

In conclusion, the results obtained are dependent of the true values, at least when this model3731

is considered. This is consistent with the studies carried out in Section 5.6 where we showed that3732

the false results depends mostly on the measurement results associated to the rendez-vous.3733

47The values for the delay of positive detection ∆D are not provided here for the sake of clarity.
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True status

Non-faulty Faulty Prevalence Accuracy
µ σ µ σ µ σ µ σ

36.47 1.38 116.53 1.38 0.76 0.01 0.95 0.02

Non-faulty
TN FN NPV FOR

µ σ µ σ µ σ µ σ

35.59 1.19 7.40 2.95 0.83 0.06 0.17 0.06

Predicted status Ambiguous
NDN NDP

µ σ µ σ

0.00 0.00 0.10 0.33

Faulty
FP TP FDR PPV

µ σ µ σ µ σ µ σ

0.88 2.75 109.03 2.75 0.01 0.01 0.99 0.01

TNR FNR

µ σ µ σ

0.98 0.03 0.06 0.03

NDNR NDPR NDR

µ σ µ σ µ σ

0.00 0.00 0.00 0.00 0.00 0.00

FPR TPR

µ σ µ σ

0.02 0.03 0.94 0.03

Table 4.9.2: Confusion matrix for 100 simulations of the case study with true values following
a 2D Gaussian model which parameters are randomly drawn for each simulation (metrics are

defined in Section 5.4).

9.3 Influence of the model used for the true values3734

To reinforce the results on the influence of the values, the model used to derive the true values3735

is changed in this section. Because the measurement results of the rendez-vous are samples of all3736

the measurement results acquired during a time range, and because the predicted statuses are3737

determined based on sets without taking into account the actual order of the measurements, we3738

propose to randomly draw the true values at each time step and at each position following the3739

uniform law U(0, 400).3740

The case study with this model for the true values was repeated for 100 draws of true values.3741

Table 4.9.3 presents the mean and standard deviation of each metric.48 The results of this table3742

are similar to the ones of Table 4.9.2 in Section 9.2, except regarding false positives that are3743

slightly higher. In general, the orders of magnitude are similar for the metrics. Thus, the model3744

chosen for the true values does not seem to have a significant effect on the results. This statement3745

does not take into account the fact that only random models were used here because of the3746

48The values for the delay of positive detection ∆D are not provided here for the sake of clarity.
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9. Sensitivity of the algorithm to changes in the case study

True status

Non-faulty Faulty Prevalence Accuracy
µ σ µ σ µ σ µ σ

63.43 0.57 89.57 0.57 0.59 0.00 0.92 0.02

Non-faulty
TN FN NPV FOR

µ σ µ σ µ σ µ σ

59.97 2.43 8.07 3.39 0.88 0.04 0.12 0.04

Predicted status Ambiguous
NDN NDP

µ σ µ σ

0.00 0.00 0.15 0.36

Faulty
FP TP FDR PPV

µ σ µ σ µ σ µ σ

3.46 3.42 81.35 3.42 0.04 0.02 0.96 0.02

TNR FNR

µ σ µ σ

0.95 0.04 0.09 0.04

NDNR NDPR NDR

µ σ µ σ µ σ

0.00 0.00 0.00 0.00 0.00 0.00

FPR TPR

µ σ µ σ

0.05 0.04 0.91 0.04

Table 4.9.3: Confusion matrix for 100 simulations of the case study with true values randomly
drawn following a uniform law (metrics are defined in Section 5.4).

mathematical objects used by the diagnosis algorithm, e.g. sets. Indeed, the order between the3747

measured values is not exploited. We even observed in Section 5.6 that by considering only the3748

measurement results obtained when an instrument is in rendez-vous to predict its status, we were3749

actually performing a sampling of all its measurement results. This already breaks the continuity3750

of the measured signal. In Appendix C, an additional case study is provided to confirm that the3751

realism of the model for the true values does not have a major influence. Therefore, whether or3752

not the relationship between two consecutive measured values is realistic, this has no significance3753

for the diagnosis algorithm: it is aimed at determining a status over a time range and this time3754

range is considered as a whole. In this way, it is the values that have the most significant effect3755

as shown earlier in Section 5.6.3756

9.4 Influence of the density of instruments3757

In previous studies, few ambiguous statuses were predicted. This is principally due to the3758

fact that most of the instruments of class 0 have often rendez-vous with the instruments of class3759

1 so that the size of the set of rendez-vous of an instrument si of class 0 with instruments of3760

class 1 Φ(si → S1, (td,∆t)) always satisfies |Φ(si → S1, (td,∆t))| ≥ |Φv|min. In this way, with3761
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at most one or two executions of the main loop of the algorithm, all the instruments can be3762

diagnosed faulty or non-faulty. However, if instruments were meeting less often, we expect that3763

more ambiguous statuses would be produced.3764

Consequently, to simulate the same sensor network of 10 instruments having less rendez-vous,3765

the number of accessible positions was increased from 100 to 202549. From Figure 4.9.1, we3766

can observe that with 225 positions the values of the metrics deteriorate compared to the case3767

with 100 positions and are even poorer for 400 positions and more. This can be observed just3768

from the ACC going from more than 0.7 for 225 positions to less than 0.2 afterwards but the3769

other metrics give interesting insights. Indeed, from Figure 4.9.1a, we observe that for more than3770

400 positions, there are only NDP and NDN . This explains why the TPR, FPR, TNR and3771

FPR are equal to zero, and the PPV , FDR, NPV and FOR are not defined for more than3772

400 positions, in Figures 4.9.1b and 4.9.1c respectively. This does not only indicate that the3773

diagnosis algorithm provides poor results but also that there is something making the algorithm3774

unable to predict a different status than ambiguous for the measuring instruments.3775

Therefore, the number of positions has an influence on the performances. This indicates3776

that the number of rendez-vous is at the heart of the diagnosis algorithm. If the number of3777

rendez-vous taking place cannot be increased by performing changes in the sensor network for3778

instance, the parameter that must be adjusted to have better performances is |Φv|min. Indeed, if3779

a lower value of |Φv|min can be acceptable, a sensor network with less rendez-vous occurring may3780

be diagnosable.3781

In our case, while still varying the number of positions from 100 to 2025, |Φv|min is set to3782

6 instead of 10. Figure 4.9.2 shows that even better results of diagnosis are obtained with 2253783

positions than with 100 (more TP , less FN , thus a higher TPR and PPV and a lower FNR3784

and FOR, resulting in a higher ACC value notably).3785

While the diagnosis algorithm still provides acceptable results with 400 positions, although3786

non-determined positives and negatives begin to occur, the performances remain still very3787

poor for a higher number of positions as the number of ambiguous predictions drastically3788

increases according to the evolution of NDP and NDN and the NDR. Thus, the value of ACC3789

deteriorates more slowly than in Figure 4.9.1 but still very quickly.3790

Therefore, the diagnosis algorithm depends significantly of the density of instruments but3791

more in terms of rendez-vous than of a physical density of instrument. Indeed, in Section 5, we3792

defined the positions of the instruments in an area of 1× 1km. However, we could have chosen3793

any other unit or subunit of length: this would have not changed the results we obtained. In3794

practice, it means the sensor network can cover any area as long as the nodes meet regularly for3795

diagnosis purposes.3796

49The formula used to define these numbers of positions was the following: ((1 + 0.5 · i)× 10)2 with i ∈ [0..7].
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Figure 4.9.1: Evolution of the metrics computed over all the diagnosis procedures as a function
of the number of accessible positions with |Φv|min = 10 (metrics are defined in Section 5.4).

(continued)
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Figure 4.9.1: Evolution of the metrics computed over all the diagnosis procedures as a function
of the number of accessible positions with |Φv|min = 10 (metrics are defined in Section 5.4).
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Figure 4.9.2: Evolution of the metrics computed over all the diagnosis procedures as a function
of the number of accessible positions with |Φv|min = 6 (metrics are defined in Section 5.4).

(continued)

129



Chapter 4. Diagnosis of Drift Faults in Sensor Networks

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

PPV
FDR
NPV
FOR

Evolution of metrics

Number of positions

M
et

ri
c 

va
lu

e

(c)

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

ACC

Evolution of metrics

Number of positions

M
et

ri
c 

va
lu

e

(d)

Figure 4.9.2: Evolution of the metrics computed over all the diagnosis procedures as a function
of the number of accessible positions with |Φv|min = 6 (metrics are defined in Section 5.4).

130



9. Sensitivity of the algorithm to changes in the case study

9.5 Influence of other faults3797

Concerning the influence of other faults on the results of diagnosis procedures, a reasoning3798

similar to the one carried out in Section 5.6 for the study of false results can be made. Indeed,3799

measurement results affected by other faults are likely to generate non-compatible measurement3800

results with their true values. We can expect it is also the case regarding other instruments3801

when such measurement results are associated to rendez-vous. Thus, it is very likely that, when3802

they are valid, the rendez-vous of an instrument si associated to such measurement results3803

affected by other faults are not belonging to the set of compatible valid rendez-vous of si,3804

Φ≈v (si, (td,∆t)). Therefore, regarding the rates r≈Φv(si → S, (td,∆t)), r+
Φv(si → S, (td,∆t)) and3805

r−Φv(si → S, (td,∆t)) and their maximal associated values, the presence of measurement results3806

affected by other faults in valid rendez-vous for an instrument will tend to generate positive3807

results if they are not treated in advance, e.g. the instruments should be predicted as faulty3808

earlier.3809

To illustrate this, spikes and noise were added to the measured values following the same3810

drift model and with the same parameters that were used in Chapter 3 Section 5.3.1. The results3811

of the diagnosis are given in Tables 4.9.4 and 4.9.5. From them, we observe that N is lower3812

and P is higher than in Table 4.8.1. Therefore, the instruments should be considered as faulty3813

earlier. Regarding all the other metrics, their values are still good and similar to the results of3814

Table 4.8.1. Thus, it appears that the supplementary faulty measured values are not affecting3815

significantly the results of the diagnosis algorithm. More importantly, despite a slightly higher3816

standard deviation than in Table 4.8.2, the average delay of positive detection is close to zero and3817

even positive. Its maximal value is also positive. It indicates that the prediction of instruments3818

as faulty happens earlier than in Section 8.3819

To conclude, the proposed diagnosis algorithm targeting initially drift faults is robust to other3820

faults. Although instruments are predicted as faulty more times, regardless if such a prediction3821

is true or false, they are less harmful than false negative results in the context of drift diagnosis.3822

Indeed, it calls for an earlier maintenance of the devices in this case instead of a late one.3823

9.6 Conclusion3824

In this section, several studies were conducted to investigate the sensitivity of the diagnosis3825

algorithm to different effects. The following insights were brought:3826

• the results are not dependent on the values of the drift3827

• the true values, and thus the measurement results involved in the rendez-vous, have an3828

influence on the results. This is consistent with previous results of Section 5.63829

• the model used to derive the true values have less influence on the results than the values3830

themselves3831

• the density of instruments is critical in terms of frequency of rendez-vous with other3832

instruments3833

• the algorithm is robust to other faults. Their only effect if they are not managed prior to a3834

drift diagnosis procedure is to make the predictions of instruments as faulty happening3835

earlier. This could generate false positive results, which are less prejudicial than false3836

negatives3837
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True status

Non-faulty Faulty Prevalence Accuracy
N = 23 P = 130 0.85 0.90

Non-faulty TN FN NPV FOR

20 11 0.65 0.35

Predicted status Ambiguous NDN NDP

0 2

Faulty FP TP FDR PPV

3 117 0.03 0.97

TNR FNR

0.87 0.08

NDNR NDPR NDR

0.00 0.02 0.01

FPR TPR

0.13 0.90

Table 4.9.4: Confusion matrix of the case study with the predicted statuses kept as faulty from
one diagnosis procedure to another once the status of an instrument is predicted as faulty for the
first time, |Φv|min = 10 and spikes and noise added to the measured values (metrics are defined

in Section 5.4).

Delay of positive detection

µ σ min max

0.2 1.7 −2 3

Table 4.9.5: Statistics of the delay of positive detection ∆D for the case study with the predicted
statuses kept as faulty from one diagnosis procedure to another once the status of an instrument
is predicted as faulty for the first time, |Φv|min = 10 and spikes and noise added to the measured

values
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10. Combination with a simple calibration approach

10 Combination with a simple calibration approach3838

The diagnosis algorithm is primarily oriented at detecting when instruments require calibration.3839

We investigate now how this algorithm behaves when calibration is carried out on an instrument3840

after it was predicted as faulty. The diagnosis algorithm is configured as in Section 5, except for3841

|Φv|min which is set to 10 as a consequence of the study in Section 8. Therefore, the status of3842

an instrument that is predicted as faulty can change as it is the trigger of a calibration3843

procedure.3844

Three cases are considered when an instrument is detected as faulty:3845

• No calibration is carried out (equivalent to what was done in Section 5)3846

• Once an instrument is predicted as faulty, its gain and offset are respectively reinitialised3847

to 1 and 0. It is equivalent to having an oracle that knows the gain and offset of each3848

instrument at each instant. That is considered as a perfect calibration.3849

• A linear regression is carried out based on the couples of measured values of the faulty3850

instruments and its diagnosers that are in the set of valid rendez-vous used for the diagnosis.3851

This technique is usually one of the firsts to be tested for the calibration of measuring3852

instruments [139].3853

Results for a single instrument are displayed in Figure 4.10.1. The instrument is recalibrated3854

right after being diagnosed as faulty for both recalibration methods. Nevertheless, it is only3855

visible at the next diagnosis procedure. Also from these curves we cannot assess the quality3856

of the calibration, it only shows that it was efficient enough to be again above the threshold3857

mentioned in the specification of the case study.3858

Table 4.10.1 represents the results for the case without calibration. Tables 4.10.2 and 4.10.33859

display the values of the metrics computed on the case study with the oracle-based and linear3860

regression-base calibration approaches respectively. Results are disturbing as the tables give3861

slightly better results without calibration. However this is normal. In the cases where there is3862

actually recalibration performed, instruments are changing of true status several times (this is3863

shown by the values of N , P and the prevalence in each table). In Section 5.5, we observed3864

that most of the false results happen around the moment where an instrument actually becomes3865

faulty. When instruments are recalibrated, they still continue to drift and they may change of3866

status again over time. Therefore, more false results are likely to be obtained when a calibration3867

strategy is applied. For this reason, the performances between the case study for which no3868

calibration is carried out and the ones where it is, based on an oracle or on linear regression here,3869

cannot be compared in terms of metrics without taking into account this fact.3870

That being said, the behaviour of the instruments is the same in terms of values and drift3871

whether the calibration is performed with an oracle or with linear regression: it is only a different3872

correction that is applied to the instruments. Thus, the results of the diagnosis algorithm can be3873

compared between Tables 4.10.2 and 4.10.3. From these tables, it appears that the calibration3874

based on linear regression provides better results in terms of improvement of the quality of the3875

instruments’ measurements: N is greater (consequently P is lower) and there are four less false3876

negative for three more true positive and negative and one more false positive. Therefore, the3877

accuracy with this method of calibration is slightly better. Although that the values of all the3878

metrics are of the same order of magnitude, it is disturbing that the oracle-based method gives3879

less accurate results, yet it corresponds to an ideal recalibration. In fact, like Figure 4.10.1, these3880

tables do not assess the actual quality of the calibration but only the quality of the diagnosis.3881

It only shows that indeed some instruments are corrected so that they are truly non-faulty3882

again–and can be detected legitimately as so.3883
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(a) Without recalibration
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(b) With recalibration based on an oracle
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(c) With recalibration based on linear regression with the
set of valid rendez-vous used at the diagnosis instant

Figure 4.10.1: Evolution of true and predicted status for instrument s1 for different choices of
calibration

To proceed to an evaluation of the impact of the calibration on the measurement results, the3884

error model introduced in Chapter 3 is considered and its parameters are estimated for each3885

instrument considering the entire time interval of study. Table 4.10.4 presents the statistics of the3886

parameters and score of the model and Figure 4.10.3 represents a target plot of the instruments3887

as a function of their slope and intercept. We observe that both the calibration approaches give3888

equivalent results compared to the case without calibration. The error on the slope and on the3889

intercept are reduced of at least 50% and 64% respectively.3890

However, even with the oracle-based calibration, we observe that the remaining average offset3891

can still be considered as significant. This residual is explained by the fact that the gain and3892

offset of the instruments are corrected at specific moments and not at each time step: between3893

two diagnosis procedures, the instruments continue to drift. Moreover, when an instrument is3894

considered as faulty, the correction is applied on the values that are measured after the moment3895

this prediction is made. This is illustrated in Figure 4.10.2. Thus, it explains why when we3896

compute the parameters of the error model on the entire time range of study, the slope and3897

intercept are not equal to their ideal values (one and zero respectively).3898

More significantly, the average score of the linear regression on the error model increases3899

from 0.84 to 0.97 at least indicating a good connection between the calibrated values and the3900
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True status

Non-faulty Faulty Prevalence Accuracy
N = 36 P = 117 0.76 0.88

Non-faulty TN FN NPV FOR

36 17 0.68 0.32

Predicted status Ambiguous NDN NDP

0 2

Faulty FP TP FDR PPV

0 98 0.00 1.00

TNR FNR

1.00 0.15

NDNR NDPR NDR

0.00 0.02 0.01

FPR TPR

0.00 0.84

Table 4.10.1: Confusion matrix of the case study on calibration without recalibration (metrics
are defined in Section 5.4).
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Figure 4.10.2: Evolution of the true values, of the measured values without and with recalibra-
tion by linear regression for s1. The true and predicted statuses are also plotted to show when

recalibrations are triggered.

true values compared to the measured values and the true values if no calibration is performed.3901

Thus, a simple calibration approach, based on the information contained in the rendez-vous used3902

to predict the statuses of the instruments, allows obtaining an interesting improvement of their3903

metrological performances.3904

To conclude, this case study shows that, in addition to being able to detect quite accurately3905

when an instrument does not meet a specification, the diagnosis algorithm can also provide useful3906
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True status

Non-faulty Faulty Prevalence Accuracy
N = 107 P = 46 0.30 0.83

Non-faulty TN FN NPV FOR

107 26 0.80 0.20

Predicted status Ambiguous NDN NDP

0 0

Faulty FP TP FDR PPV

0 20 0.00 1.00

TNR FNR

1.00 0.57

NDNR NDPR NDR

0.00 0.00 0.00

FPR TPR

0.00 0.43

Table 4.10.2: Confusion matrix of the case study on calibration with an oracle-based calibration
(metrics are defined in Section 5.4).
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Figure 4.10.3: Target plot of the 9 nodes of class 0 of the network as a function of their slope
and intercept following the error model of Chapter 3, computed on the entire time interval of

study, for each calibration strategy.

data to perform the recalibration of measuring instruments through the sets of valid rendez-vous3907

used during diagnosis procedures.3908
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10. Combination with a simple calibration approach

True status

Non-faulty Faulty Prevalence Accuracy
N = 110 P = 43 0.28 0.85

Non-faulty TN FN NPV FOR

109 22 0.83 0.17

Predicted status Ambiguous NDN NDP

0 0

Faulty FP TP FDR PPV

1 21 0.05 0.95

TNR FNR

0.99 0.51

NDNR NDPR NDR

0.00 0.00 0.00

FPR TPR

0.01 0.49

Table 4.10.3: Confusion matrix of the case study on calibration with calibration based on linear
regression (metrics are defined in Section 5.4).

Calibration approach
Slope Intercept Score

µ σ µ σ µ σ

No calibration 1.04 0.00 42 0 0.84 0.00
Oracle-based 1.01 0.00 14 1 0.97 0.01
Linear regression-based 1.02 0.00 15 1 0.98 0.01

Table 4.10.4: Statistics of the slope, intercept and score of the error model of Chapter 3
computed for the nodes of class 0 of the network on the entire time interval of study and for

each calibration strategy.
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11 Conclusion3909

In this chapter, a novel algorithm for the diagnosis of drift faults in sensor networks was3910

introduced. It exploits the concept of rendez-vous between measuring instruments. A key3911

property of this algorithm is that it does not require any assumption of the type of sensor3912

network. The only hypothesis needed concern the assumption as always non-faulty of at least a3913

subset of instruments of the highest metrological class in the sensor network.3914

Based on an initial case study that showed promising results, we discussed the adjustment3915

of the different parameters of the algorithm. While we mostly provided guidelines to adjust3916

them empirically, notably to reduce the number of false results, an algorithm was proposed3917

to facilitate the adjustment of the minimal number of required valid rendez-vous to allow a3918

prediction between the status faulty and non-faulty |Φv|min. It gives an upper boundary for3919

the value of this parameter. In our case study, it allowed to identify that the value previously3920

considered was too high to ensure a good diagnosis. Lowering the value of this parameter3921

improved significantly the results. In summary, the recommendations provided across the chapter3922

for all the parameters are summarised in Table 4.11.1.3923

A study of the parameters of the case study influencing the results of the diagnosis algorithm3924

was conducted. It showed the measurement results of the instruments, in particular those3925

involved in rendez-vous, and the frequency of rendez-vous between instruments are key factors3926

regarding respectively the results of the diagnosis algorithm and the adjustment of its parameters.3927

The algorithm was also shown to be robust to other faults in the measurement results. Indeed,3928

such faulty values are likely to generate false positives, which may be less prejudicial than false3929

negatives.3930

Finally, the diagnosis algorithm was associated to a simple calibration approach. When an3931

instrument is diagnosed as faulty, the valid rendez-vous that were used to make the prediction of3932

its status are exploited to make a linear regression between the values of the faulty instrument3933

and the values from its diagnosers. This allowed to successfully correct the gain and offset of the3934

faulty measuring instruments. Therefore, the diagnosis algorithm that was presented opens new3935

perspectives on in situ calibration as this algorithm does more than indicating which instruments3936

are faulty in a sensor network: it also provides information that can be exploited to correct them.3937
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11. Conclusion

Parameter Effect Recommendation

Conditions of va-
lidity of measure-
ment results

Determine if a measurement
result can be compared to an-
other.

It should be determined based on the prop-
erties of the measuring instruments de-
ployed.

Conditions of spa-
tiotemporal vicin-
ity to be in rendez-
vous

Determine if two measurement
results can be compared to
each other.

It can be determined based on expert spec-
ifications or on characteristics of the mea-
surand and of the measuring instruments.

Instant of diagno-
sis td

Defines the reference time of
the time range on which the
diagnosis is performed.

Can be determined based on the charac-
teristics of the instruments used and the
context of deployment.

Periodicity of the
diagnosis

Determines the frequency at
which the algorithm is com-
puted.

It can be determined based on the charac-
teristics of the instruments used and the
context of deployment.

Length of the time
range ∆t

Defines the length of the time
range on which the diagnosis
is performed.

It can be determined based on the charac-
teristics of the instruments used.

Minimal relative
difference of class
∆cDmin(k)

Determines which classes of
instruments can be the diag-
nosers of instruments belong-
ing to a given class k.

The higher the relative class is, the more
accurate are the diagnosers. It should be
set to +1 or 0 but not to a negative value.

Maximal tol-
erated values
for the different
rates (r+

Φv)max,
(r−Φv)max and
(r+

Φv + r−Φv)max

Defines the triggers to deter-
mine if an instrument is faulty
or non-faulty.

Too high values are likely to generate false
negatives while too low values generate
false positives. It should be adjusted to
favour false positives instead of false nega-
tives, while minimising their number.

Minimal required
number of valid
rendez-vous
|Φv|min

Determines if a given set
of valid rendez-vous is large
enough to determine if an
instrument is faulty or non-
faulty.

Considering a defined ∆t and using the
algorithm provided, a value can be chosen
based on the number of faulty instruments
tolerated in the network. A sufficiently
high |Φv|min should be chosen so that the
content of the sets Φv are large enough to
likely have representative sets.

Table 4.11.1: Recommendations for the different parameters of the diagnosis algorithm
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Conclusion and perspectives3938

1 Conclusion3939

In this thesis, we tackled the issue of calibration for sensor networks, a question that is3940

particularly critical when low-cost instruments are deployed.3941

In the first part of this thesis, we reviewed the existing works concerning in situ calibration3942

which are techniques aiming at calibrating measuring instruments while leaving them in the3943

field, preferably without any physical intervention on them. Across this survey, we proposed a3944

concise taxonomy enabling the classification of the algorithms. Four main groups of categories3945

were defined, two of them following properties of the sensor networks that may be exploited,3946

namely the presence of reference instruments in the network and the mobility of the nodes,3947

and the other two concerning respectively the grouping strategy at stake in the algorithm and3948

the kind of mathematical relationship that can be derived. This extensive survey showed that3949

there are numerous contributions on the subject, covering a large spectrum of the cases that3950

can be encountered when deploying sensor networks. However, a quantitative comparison of the3951

performances of the algorithm was shown to be difficult because algorithms are often applied3952

on specific case studies in their original publication. Indeed, there is no standard use cases or3953

protocols to allow such comparisons.3954

Therefore, a framework for the simulation of sensor networks aimed at evaluating the3955

performances of in situ calibration algorithms was proposed in the second part of this thesis.3956

It was applied to the comparison of seven in situ calibration algorithms for blind and static3957

sensor networks. We independently changed the model used to derive the true values of the3958

measurand, the drift and fault model, the number of instruments and parameters of some3959

calibration algorithms. We showed that even with a particular care to conduct a balanced3960

comparison, different conclusions can be drawn by slightly changing the case study. Thus,3961

in addition to being a protocol enabling the effective comparison of strategies, the proposed3962

framework could be used to choose the most appropriate in situ calibration algorithm during the3963

design of a sensor network.3964

However, we also observed that some calibration algorithms may correct measuring instruments3965

regardless of their actual performances, particularly concerning those for blind sensor networks.3966

Therefore, it is possible that instruments which measurement results are still correct regarding the3967

metrological specifications of the instruments, have their values corrected. In the worst case, they3968

may have their values degraded. Thus, a diagnosis algorithm for drift faults in sensor networks3969

was proposed in the last part of this thesis. This algorithm is particularly interesting because it3970

is based on rendez-vous between measuring instruments. This concept is more complex than a3971

simple comparison of measured values as it encapsulates the idea of a necessary spatio-temporal3972

vicinity so that measurement results can be relevantly compared. In addition, the algorithm3973

demands no assumption on the type of sensor network used, requiring only that some of the3974

best instruments in the network can be assumed as non-faulty. Across a case study, we showed3975

that the algorithm allowed to successfully identify drifting instruments. In a second step, a3976

better adjustment of the different parameters of the algorithm enabled to improve the results,3977

although our guidelines are mainly empirical. Then, by investigating the influence of the design3978
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choices of our case study, we showed the measurement results involved in rendez-vous and the3979

frequency of rendez-vous between instruments, are key factors regarding respectively the results3980

of the diagnosis algorithm and the adjustment of its parameters. In addition, the algorithm3981

is robust to other faults: faulty values are likely to generate false positives, which may be less3982

prejudicial than false negatives in the context of environmental sensing. Finally, while combining3983

the diagnosis algorithm to a naive calibration approach, it was possible to successfully correct3984

the gain and offset of the faulty measuring instruments based on the measurement results of3985

rendez-vous between instruments, while leaving the measurement results of non-faulty ones3986

unchanged. Indeed, the diagnosis algorithm also provides information that can be exploited to3987

correct measuring instruments.3988

2 Perspectives3989

Several perspectives can be considered for the direct pursuit of this work but also for the3990

scientific community and the general public from a larger scope.3991

Direct perspectives3992

Extensions of the diagnosis algorithm3993

In the appendices, several extensions of the diagnosis algorithm are related. They aim3994

at being able to apply the diagnosis algorithm we proposed in any situation and with the3995

same performances. However, their development is not complete and demands supplementary3996

investigations. Moreover, the adjustment of some parameters of the algorithm is empirical and3997

may not be conducted through an automated optimisation procedure. Eventually, being able to3998

ensure that the specification stating when instruments should be considered as faulty or not, is3999

verified, or at least correctly implemented, would be valuable. Therefore, investigating if means4000

could be brought to improve the adjustment of the parameters of the algorithm and the formal4001

qualification of its performances would be of a major interest.4002

Design of sensor networks4003

In this work, we proposed a framework that could be used to identify the relevant algorithms4004

for the in situ calibration of a sensor network in its environment of deployment. To facilitate the4005

development of sensor networks, there is a need for engineering tools to identify at the design4006

stage what the data processing algorithms are from which a sensor network would benefit, on top4007

of tools already optimising their deployment in the case of static sensor networks for instance [18].4008

This demands to aggregate the various results obtained by the scientific community from various4009

fields in a dedicated product. Such an integrated tool is not currently available in the literature.4010

Perspectives for the scientific community and the general public4011

Standardisation of the vocabulary for the description of in situ calibration4012

algorithms4013

In this work, we proposed a taxonomy for the classification of in situ calibration algorithms.4014

We observed that there were also other taxonomies. An intensive work of standardisation of this4015

vocabulary and on the practices to describe and evaluate these algorithms would be valuable4016

in order to structure the work of the scientific community on this subject. Calls were recently4017

published along the same lines [60, 133].4018

Data processing standardisation4019

In scientific publications exploiting measurement results from low-cost sensor networks, data4020

processing that are carried out to have a clean dataset are not always fully described. For4021
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measuring instruments on the market, even for certified ones, the way the measurements are4022

processed is rarely mentioned or only as a black box. Concerning sensors as components of4023

measuring instruments, technical datasheets are often scarce and imprecise on how they behave4024

over time and depending on their operating conditions. In the scientific community, there are calls4025

for a standardisation of the data processing algorithms in order to determine how far processed4026

measurement results are from raw ones [60, 133]. We extend this call to the need for a clear4027

information on how measuring instruments and their components behave from a metrological4028

perspective, to facilitate the identification and use of adapted data processing algorithms.4029

Qualification of instruments and their processing4030

Although experiments under laboratory or field condition conducted during this thesis were4031

not reported in this manuscript, actual measuring instruments and systems were studied in the4032

early months of this thesis through the Sense-City platform [38] as it was done in the studies4033

reported in Chapter 1 Section 1.3.3. Regarding low-cost instruments and considering the cost4034

range we considered in this work (US $100 to US $10,000), there is a wide variety of quality4035

among these measuring instruments and systems. In the scientific community, there are reports4036

on the performances of measuring instruments but it is not mandatory for a manufacturer to4037

provide the results of such works with its devices. In fact, it is currently difficult for an end user4038

to identify clearly which instrument suits its needs and at which cost because the information4039

provided is quite poor. Therefore, an effort of qualification of the performances of measuring4040

instruments, with the data processing algorithms they use, and a transparent information of the4041

general public about it when instruments are put on the market would be valuable.4042

Environmental footprint of low-cost environmental sensor network4043

Currently, there is little information on the environmental footprint of low-cost measuring4044

instruments [78]. While their interest can be legitimately justified whatever the measurand4045

considered, it has to be counterbalanced by their impact on the environment. We are dealing4046

here most of the time with electronic devices that may be difficult to recycle and may require rare4047

materials. In addition, they also require a computer and telecommunication infrastructure, those4048

being known to have more and more impact on the greenhouse gases emissions around the world.4049

Being able to evaluate the global impact of the entire measuring chain, from the instruments4050

to the datacentres in which measurement results are stored and exploited, would be of a major4051

interest in order to determine the actual benefits of dense low-cost sensor networks compared4052

to what is currently achieved with the information brought by more traditional environmental4053

measuring systems.4054
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Appendix4055

A4056

Diagnosis Algorithm for Drift Faults in4057

Sensor Networks: Extensions4058

1 Formulation reducing the number of iterations of the algorithm4059

The formulation of Algorithm 1 given in Chapter 4 Section 4.2 is not optimised in terms4060

of iterations. Indeed, considering the statuses of instruments are likely predicted based on the4061

results obtained for instruments of a higher class than their own (based on the recommendation4062

to set the minimal relative differences of class required ∆cDmin(k) to +1 or 0 in Chapter 4 Section4063

5.7), it would be relevant to browse the set of instruments to diagnose SD by descending classes4064

of instruments instead of browsing it regardless of the classes of the instruments. In addition,4065

actualising the predicted statuses at the end of the evaluation of the instruments of each class4066

would allow using the instruments predicted as non-faulty at the previous iteration.4067

Algorithm 3 provides this optimised formulation in terms of iterations.4068

Algorithm 3: Algorithm of the diagnosis procedure proposed for the detection of drift
in sensor networks with its number of iterations optimised
Data: S, Φ(S → S, (td,∆t)), |Φv|min, ∆cDmin
Result: Ω̂(S, td)
/* Initiate the set of instruments to diagnose and the predicted statuses

of the instruments */
SD ← S \ Scmax
Ω̂(Scmax , td)← NF
Ω̂(SD, td)← A
Ω̃(SD, td)← Ω̂(SD, td) /* Initiate the actualised statuses */
/* Ignore the instruments that cannot have enough valid rendez-vous */
for si ∈ SD do

if |Φ(si → S, (td,∆t))| < |Φv|min then
SD ← SD \ {si}

end
/* Predict the status of each instrument to diagnose */
repeat

Ω̂(S, td)← Ω̃(S, td) /* The actualised statuses are now the predicted
statuses */
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for k ← cmax − 1 to 0 do /* For each class of instruments in descending
order */

Ω̂′(S, td)← Ω̃(S, td) /* A local instance of the future predicted
statuses is created, to take into account the results of the
predictions for the previous values of k in this loop */
for si ∈ SD ∩ Sk do

/* Build the current set of valid rendez-vous for si, using
Ω̂′(S, td) instead of Ω̂(S, td) */

cDmin(si)← c(si) + ∆cDmin(c(si))
Φv(si → S, (td,∆t))← {ϕ(si → sj , t) ∈ Φ(si → S, (td,∆t)), such as

sj /∈ SD, Ω̂′(sj , t′) = NF , c(sj) ≥ cDmin(si),
m(si, t) ∈M∗(si, (td,∆t)) and m(sj , t′) ∈M∗(sj , (td,∆t))}

/* If si have enough valid rendez-vous, then compute the
different rates to actualise its status */

if |Φv(si → S, (td,∆t))| ≥ |Φv|min then
r≈Φv(si → S, (td,∆t))← |Φ≈v (si→S,(td,∆t))|

|Φv(si→S,(td,∆t))|

r+
Φv(si → S, (td,∆t))← |Φ+

v (si→S,(td,∆t))|
|Φv(si→S,(td,∆t))|

r−Φv(si → S, (td,∆t))← |Φ−v (si→S,(td,∆t))|
|Φv(si→S,(td,∆t))|

/* If a condition on the different rates is met, then the
actualised status of si is set to faulty, otherwise, it is
set to non-faulty */

if r+
Φv(si → S, (td,∆t)) > (r+

Φv)max or r−Φv(si → S, (td,∆t)) > (r−Φv)max or
(1− r≈Φv(si → S, (td,∆t))) > (r+

Φv + r−Φv)max then
Ω̃(si, td)← F

else
Ω̃(si, td)← NF

end
SD ← SD \ {si} /* si is diagnosed so it can be removed from SD

*/
end

end
end

until Ω̂(S, td) = Ω̃(S, td) /* Repeat until there is no difference between the
predicted and actualised statuses */

2 Diagnosis with the prediction as non-faulty based on the highest suffi-4069

cient class4070

In Chapter 4 Section 4.2, the prediction of an instrument si as non-faulty or faulty is based on4071

the set of valid rendez-vous Φv(si → S, (td,∆t)) if the condition regarding the minimal number4072

of valid rendez-vous required |Φv|min is satisfied. Φv(si → S, (td,∆t)) is notably defined with the4073

help of the minimal class allowed to be a diagnoser of si, cDmin(si).4074

However, suppose that ∃k > cDmin(si) such as |Φv(si → Sk+, (td,∆t))| > |Φv|min. In this4075

case, the status of si can be predicted with a smaller number of instruments. This is interesting4076
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because instruments of higher class usually have a lower measurement uncertainty. Thus, if the4077

predicted status of si, Ω̂(si, td), is determined as non-faulty, a higher confidence in si can be4078

granted: it is predicted as non-faulty based on its compatibility with instruments of a higher4079

class than the minimal one required to diagnose it. Consequently, we can estimate that the4080

measurement results of si are more accurate than expected. By predicting the statuses of the4081

instruments in this manner, the results of the diagnosis algorithm would be enriched with a4082

useful information.4083

Nevertheless, if si is predicted as faulty according to Φv(si → Sk+, (td,∆t)), it is still possible4084

to obtain Ω̂(si, td) = NF with the set of valid rendez-vous Φv(si → S, (td,∆t)). In this case, it is4085

still preferable to have si predicted as non-faulty despite a prediction as faulty with a subset of4086

the diagnoser instruments.4087

It is also possible to obtain Ω̂(si, td) = NF according to Φv(si → Sk+, (td,∆t)) but Ω̂(si, td) =4088

F according to Φv(si → S, (td,∆t)). We estimate the prediction based on Φv(si → S, (td,∆t)) is4089

more likely a false positive as less accurate instruments are considered than in Sk+. Such a case4090

may be very rare. Indeed, the less the diagnoser instruments are accurate, the more the predicted4091

statuses have a chance to be equal to non-faulty. This is due to mean used to determine the4092

compatibility between measurement results: it is based on the measurement uncertainty. This4093

time, it is preferable to have si predicted as non-faulty with a subset of the diagnoser instruments4094

despite a faulty prediction that can be made with all of them.4095

Therefore, Algorithm 1 must be adapted to include this idea, expressed as a diagnosis4096

algorithm with negative prediction based on the highest sufficient class. It is described in4097

Algorithm 450.4098

Algorithm 4: Algorithm of the diagnosis procedure proposed for the detection of drift
in sensor networks with the prediction as non-faulty based on the highest sufficient class
Data: S, Φ(S → S, (td,∆t)), |Φv|min, ∆cDmin
Result: Ω̂(S, td)
/* Initiate the set of instruments to diagnose and the predicted statuses

of the instruments */
SD ← S \ Scmax
Ω̂(Scmax , td)← NF
Ω̂(SD, td)← A
Ω̃(SD, td)← Ω̂(SD, td) /* Initiate the actualised statuses */
/* Ignore the instruments that cannot have enough valid rendez-vous */
for si ∈ SD do

if |Φ(si → S, (td,∆t))| < |Φv|min then
SD ← SD \ {si}

end
/* Predict the status of each instrument to diagnose */
repeat

Ω̂(S, td)← Ω̃(S, td) /* The actualised statuses are now the predicted
statuses */
for si ∈ SD

cDmin(si)← c(si) + ∆cDmin(c(si))
k ← cmax

50The improvements brought with Algorithm 3 in Section 1 are not added for the sake of clarity.
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repeat
/* Build the current set of valid rendez-vous for si with the

instruments in Sk+ */
Φv(si → Sk+, (td,∆t))← {ϕ(si → sj , t) ∈ Φ(si → Sk+, (td,∆t)), such as

sj /∈ SD, Ω̂′(sj , t′) = NF , c(sj) ≥ cDmin(si),
m(si, t) ∈M∗(si, (td,∆t)) and m(sj , t′) ∈M∗(sj , (td,∆t))}

/* If si have enough valid rendez-vous, then compute the
different rates to actualise its status */

if |Φv(si → Sk+, (td,∆t))| ≥ |Φv|min then
r≈Φv(si → Sk+, (td,∆t))← |Φ≈v (si→Sk+,(td,∆t))|

|Φv(si→Sk+,(td,∆t))|

r+
Φv(si → Sk+, (td,∆t))← |Φ+

v (si→Sk+,(td,∆t))|
|Φv(si→Sk+,(td,∆t))|

r−Φv(si → Sk+, (td,∆t))← |Φ−v (si→Sk+,(td,∆t))|
|Φv(si→Sk+,(td,∆t))|

/* If a condition on the different rates is met, then the
actualised status of si is set to faulty, otherwise, it is
set to non-faulty */

if r+
Φv(si → Sk+, (td,∆t)) > (r+

Φv)max or
r−Φv(si → Sk+, (td,∆t)) > (r−Φv)max or
(1− r≈Φv(si → Sk+, (td,∆t))) > (r+

Φv + r−Φv)max then
Ω̃(si, td)← F

else
Ω̃(si, td)← NF

end
end
k ← k − 1

until k < cDmin(si) or Ω̃(si, t) = NF

if Ω̃(si, td) 6= A then
SD ← SD \ {si} /* si is diagnosed so it can be removed from SD */

end
end

until Ω̂(S, td) = Ω̃(S, td) /* Repeat until there is no difference between the
predicted and actualised statuses */
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3 From a centralised to a decentralised computation4099

From its description provided in Chapter 4 Section 4.2 and its pseudo-code in Algorithm 1,4100

our diagnosis algorithm has to be computed in a centralised manner. Indeed, all the rendez-vous4101

between the instruments must be known, with the associated measurement results and information4102

to determine the validity of the rendez-vous, and along with the predicted and actualised status4103

of the instruments during the different iterations of the main loop in the algorithm.4104

However, it is possible to consider a distributed calculation, notably if the measurement4105

results are not collected in a centralised manner.4106

Consider an instrument si.4107

We assume si knows ∆cDmin(si), |Φv|min, (r+
Φv)max, (r−Φv)max and (r+

Φv + r−Φv)max.4108

It is also possible to assume it knows that Ω̂(Scmax , td) = NF due to the assumption of the4109

instruments of class cmax as non-faulty required for the algorithm51.4110

Finally, si knows Φ(si → S, (td,∆T )). We assume when two instruments meet, they exchange4111

information related on the rendez-vous they have (measurement results and so on).4112

Consider Sϕ(si, (td,∆t)) which is the set of instruments involved in a rendez-vous with si
between [td −∆t; td]52:

Sϕ(si, (td,∆t)) = {sj such as ∃ϕ(si → sj , t
′) ∈ Φ(si → S, (td,∆T ))}

Based on it, si can define a local set of instruments to diagnose SD = (si ∪ Sϕ(si, (td,∆t))) \4113

Scmax .4114

Depending on SD, si can derive Φv(si → S, (td,∆T )) if it knows Ω̂(sj , td) for sj ∈ Sϕ(si, (td,∆t))\4115

SD. Then, si can determine its actualised status as indicated in Algorithm 1. If si /∈ SD after4116

this, its predicted status is known. Otherwise, si has to try to determine it again.4117

In fact, the most challenging step is to access to Ω̂(sj , td) for sj ∈ SD \ {si} to actualise SD4118

between each iteration of the algorithm.4119

Calls must be sent to these instruments asking if sj determined if Ω̃(sj , td) is equal to NF or4120

F .4121

There is, however, a need for a synchronisation mechanism between the node. Indeed, because4122

the prediction of each instrument’s status depends on exchanges of information with others,4123

some instruments may be able to perform iterations of the algorithm faster or slower than others.4124

To avoid issues by mixing predicted statuses that were not determined after the same iteration4125

of the diagnosis procedure, we define a loop counter nD. This counter is incremented at each4126

repetition of the main loop of the algorithm. When si calls the instruments sj ∈ SD \ {si} to ask4127

for Ω̃(sj , td), it also indicates that this call is related to the loop nD.4128

After receiving the responses, si removes the sj from its local SD if Ω̃(sj , td) 6= A and it can4129

again try to determine its status.4130

At some point, Ω̃(Sϕ(si, (td,∆t), td) may not change anymore. Thus, like in Algorithm 1,4131

if Ω̂(Sϕ(si, (td,∆t), td) = Ω̃(Sϕ(si, (td,∆t), td) after an iteration of the diagnosis procedure, the4132

algorithm terminates and Ω̂(si, td) = A.4133

The distributed formulation of the diagnosis algorithm is provided in Algorithm 5. By4134

construction, due to its synchronous behaviour, it is certain that the results are identical to the4135

ones obtained in a centralised manner.4136

The protocol of communication between the nodes, either when they are in rendez-vous4137

or when they exchange actualised statuses, is not detailed in this pseudo-code. Moreover, we4138

suppose that these communications are managed in a separate thread from the one in which is4139

run the diagnosis algorithm to blockings. Finally, Algorithm 5 does not manage the case where:4140

51Or a subset of Scmax . See Chapter 4 Section 6.
52Therefore, Φ(si → Sϕ(si, (td,∆t)), (td,∆T )) = Φ(si → S, (td,∆T )).
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• the diagnosis algorithm run by sj has terminated after the loop nD′ and Ω̂(sj , td) = A.4141

• ∃si such as it is still trying to determine its predicted status during a loop nD > nD
′ .4142

Thus, sj ∈ Sϕ(si, (td,∆t)) during the loop nD. si will ask sj for its actualised status after the4143

loop nD even if the status of sj was definitively predicted as ambiguous. We can assume that in4144

practice sj can tell si after the loop nD′ that Ω̂(sj , td) will not change anymore and thus avoid4145

useless communications. This would require few changes in Algorithm 5 that were not written4146

for the sake of clarity.4147

In conclusion, it is possible to apply our diagnosis algorithm in a decentralised manner. The4148

solution proposed is, however, not unique and other protocols could be considered.4149

Algorithm 5: Algorithm of the diagnosis procedure proposed for the detection of drift
in sensor networks written in a distributed manner. Each node of the network runs this
pseudo-code.
Data: Sϕ(si, (td,∆t)), Φ(si → S, (td,∆t)), |Φv|min, cDmin(si)
Result: Ω̂(S, td)
/* Initiate the set of instruments to diagnose and the predicted statuses

of the instruments */
SD ← (si ∪ Sϕ(si, (td,∆t))) \ Scmax
Ω̂(Scmax , td)← NF
Ω̂(SD, td)← A
Ω̃(SD, td)← Ω̂(SD, td) /* Initiate the actualised statuses */
/* Ignore the instruments that cannot have enough valid rendez-vous */
for si ∈ SD do

if |Φ(si → S, (td,∆t))| < |Φv|min then
SD ← SD \ {si}

end
nD ← 0
/* Predict the status of each instrument to diagnose */
repeat

nD ← nD + 1
Ω̂(S, td)← Ω̃(S, td) /* The actualised statuses are now the predicted
statuses */

/* Build the current set of valid rendez-vous for si */
Φv(si → S, (td,∆t))← {ϕ(si → sj , t) ∈ Φ(si → S, (td,∆t)), such as

sj /∈ SD, Ω̂(sj , t′) = NF , c(sj) ≥ cDmin(si),
m(si, t) ∈M∗(si, (td,∆t)) and m(sj , t′) ∈M∗(sj , (td,∆t))}

/* If si have enough valid rendez-vous, then compute the different
rates to actualise its status */

if |Φv(si → S, (td,∆t))| ≥ |Φv|min
r≈Φv(si → S, (td,∆t))← |Φ≈v (si→S,(td,∆t))|

|Φv(si→S,(td,∆t))|

r+
Φv(si → S, (td,∆t))← |Φ+

v (si→S,(td,∆t))|
|Φv(si→S,(td,∆t))|

r−Φv(si → S, (td,∆t))← |Φ−v (si→S,(td,∆t))|
|Φv(si→S,(td,∆t))|
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/* If a condition on the different rates is met, then the
actualised status of si is set to faulty, otherwise, it is set to
non-faulty */

if r+
Φv(si → S, (td,∆t)) > (r+

Φv)max or r−Φv(si → S, (td,∆t)) > (r−Φv)max or
(1− r≈Φv(si → S, (td,∆t))) > (r+

Φv + r−Φv)max then
Ω̃(si, td)← F

else
Ω̃(si, td)← NF

end
SD ← SD \ {si} /* si is diagnosed so it can be removed from SD */

end
for sj ∈ SD \ {si} do /* Actualise SD */

ask sj if Ω̃(sj , td) has changed to NF or F during loop nD

actualise Ω̃(sj , td) if necessary
if Ω̃(sj , td) 6= A then

SD ← SD \ {sj}
end

end
until Ω̂(Sϕ(si, (td,∆t), td) = Ω̃(Sϕ(si, (td,∆t), td) or si /∈ SD /* Repeat until there
is no difference between the predicted and actualised statuses or if the
status of si has been determined */
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4 Multiple measurands4150

Low-cost sensors are prone to drift due to influence quantities affecting the indication provided4151

by the instrument. Thus, it is frequent that the calibration relationship of such instruments4152

has to take into account their influence quantities. This is easily applicable in a measurement4153

system embedding a main instrument measuring the principal measurand targeted by the system4154

and several other instruments that measure the values of the influence quantities of the main4155

instrument.4156

Therefore, the sensor network addresses more than one measurand in this case. It can be4157

seen as a "network of sensor networks", each one considering a specific measurand. In this way,4158

some sensor networks are dependent on others to determine their measured values. The diagnosis4159

of the instruments of such systems is discussed in this section.4160

4.1 General idea4161

We propose here a general concept of protocol to carry out the diagnosis of drift fault in sensor4162

networks composed of measurements systems in which one or more instruments has influence4163

quantities measured by other instruments of the same system.4164

The general idea is the following:4165

1. Carry out the diagnosis for each sub-network measuring a same quantity and for which the4166

instruments have no influence quantities following the algorithm described in Chapter 44167

Section 4.2.4168

2. Perform the diagnosis for each measuring a same quantity and for which the instruments4169

have influence quantities measured by a sub-network previously diagnosed. The way to4170

carry this diagnosis out is discussed in the following subsection.4171

3. Repeat step 2 until the diagnosis has been performed on each sub-network, e.g. for each4172

measurand.4173

4.2 Diagnosis of drift faults in a sub-network with instruments having influ-4174

ence quantities4175

In fact, we aim at using the same algorithm already defined in Chapter 4 Section 4.2. Indeed,4176

the presence of influence quantities questions only the validity of the measurement results.4177

We remind we assume that the sensor network is composed of measurement systems, in which4178

the influence quantities of one or more of its instruments are measured by other instruments4179

that also belong to the same system.4180

Consider a sub-network with one influence quantity, a diagnosis procedure d that happens at4181

td and suppose we know the predicted statuses at td of the instruments measuring the influence4182

quantities.4183

Consider a rendez-vous between two instruments si and sj , ϕ(si → sj , t) with t ∈ [td−∆t; td]53,4184

with sj supposed non-faulty and of class c(sj) ≥ cDmin. The instruments measuring the influence4185

quantity are denoted s′i and s′j54.4186

Let us discuss the validity of the rendez-vous. First regarding the measured values of si, three4187

different cases appear:4188

53In this case, we could also speak of a rendez-vous between two systems because all the pairs of instruments
measuring the same quantities in the systems i and j are in rendez-vous

54We also suppose when two systems are in rendez-vous, we have measurements for all the measurands. This
assumption could be discussed in more details as it requires to extend the definition of rendez-vous and to discuss
the case of instruments of a same system with different acquisition frequencies. Such particular cases are not
treated here
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• s′i is non-faulty: the measured value of s′i can be used to determine the one of si with4189

its calibration relationship. In this case, the measurement result m(si, t) is valid and the4190

rendez-vous may be valid too55.4191

• s′i is faulty but s′j is non-faulty: the measured value of s′j can be used to determine the one4192

of si with its calibration relationship. In this case, m(si, t) is again valid the rendez-vous4193

may be valid too 56.4194

• s′i and s′j are faulty: the measured value of si cannot be determined as no value of its4195

influence quantity can be reliably used with the calibration relationship. In this case,4196

m(si, t) is not valid. Therefore, ϕ(si → sj , t) is not valid.4197

The same reasoning can be applied to sj .57584198

In fact, the presence of influence quantities has only an influence on the validity of the4199

measurement results. Thus, the Equation 4.1 from Chapter 4 Section 4.1 used to determine4200

Φv(si → S, (td,∆t)) is still valid. We recall this equation:4201

Φv(si → S, (td,∆t)) ={ϕ(si → sj , t) ∈ Φ(si → S, (td,∆t)), such as
sj /∈ SD, // sj is not an instrument to diagnose
Ω̂(sj , t′) = NF , // sj is non-faulty
c(sj) ≥ cDmin(si), // The class of sj is higher or equal to the minimal
class allowed to diagnose si
m(si, t) ∈M∗(si, (td,∆t)), // The measurement result of si is valid
m(sj , t′) ∈M∗(sj , (td,∆t))} // The measurement result of sj is valid

(A.1)
This is why, apart from the conditions on the validity of the measurement results that may4202

change, the diagnosis algorithm remains applicable in the context of measuring instruments with4203

influence quantities.4204

4.3 Conclusion4205

In this section, we presented a manner to extend our diagnosis algorithm for drift faults in4206

sensor networks to the case where4207

However, a formulation enriching the results provided by the diagnosis algorithm could be4208

developed in future work. Indeed, the fact that values of measuring instruments from other4209

systems can be used to determine the status of an instrument in a given system could allow us4210

to determine a status at the level of the measuring system for instance or at least to qualify the4211

predicted statuses in light of how the validity of measurement results is determined.4212

5 Diagnosis algorithm for drift faults in sensor networks with an event-4213

based formulation4214

In the first place, the diagnosis algorithm was presented as being applied at an instant td over4215

[td −∆t; td]. It means that it is time which triggered the diagnosis and that the determination of4216

55Depending on the other conditions defined for the validity of the measurement results.
56See note 55
57This development can be extended to the case where there are multiple influences quantities but also to the

case where more than two instruments meet at the same time, e.g. the values of the influence quantity measured
by a third system could be used when s′i and s′j are faulty in our case.

58The definitions related the compatibility between two measurement results could be extended based on these
three cases.

153



Appendix A. Diagnosis Algorithm for Drift Faults in Sensor Networks: Extensions

the sets of rendez-vous is notably based on a time range.4217

However, notably in the perspective of a real-time application, it could be valuable to trigger4218

the diagnosis when rendez-vous occurs. A rendez-vous can be assimilated to an event able to4219

trigger a diagnosis procedure. Such rendez-vous is noted ϕ(...), "..." standing for the instruments4220

actually involved in the rendez-vous and the time instant at which it occurred.4221

In the same way, the contents of the sets of rendez-vous could be determined based on a4222

number of rendez-vous, noted |Φ|D, that occurred before ϕ(...). It can be useful if the number of4223

rendez-vous on [td −∆t; td] varies a lot between the instruments. For instance, some of them4224

may not be diagnosable with not enough (valid) rendez-vous on this time range. A solution is4225

to increase ∆t. However in this case, other instruments may have their statuses not correctly4226

predicted with a greater ∆t (see Chapter 4 Section 7). Thus, replacing ∆t by |Φ|D can help to4227

overcome this situation: all the instruments will be diagnosed based on sets of rendez-vous that4228

are equivalent in terms of size.4229

In addition to the couple (td,∆t) defining the moment of the diagnosis and the time period4230

on which it is made, there are other combinations possible to set these characteristics of the4231

algorithm with the help of ϕ(...) and |Φ|D:4232

• (td, |Φ|D): the diagnosis occurs at td and the last |Φ|D rendez-vous are considered for each4233

instrument to predict its status.4234

• (td,∆t, |Φ|D): the diagnosis occurs at td and the rendez-vous that happened in [td −∆t; td]4235

are considered, up to the |Φ|D last ones.4236

• (ϕ(...),∆t): the diagnosis occurs on ϕ(...) and the rendez-vous that happened in [td−∆t; td]4237

are considered, with td being the instant at which ϕ(...) was generated.4238

• (ϕ(...), |Φ|D): the diagnosis occurs on ϕ(...) and the last |Φ|D rendez-vous are considered4239

for each instrument to predict its status.4240

• (ϕ(...),∆t, |Φ|D): the diagnosis occurs at ϕ(...) and the rendez-vous that happened in4241

[td −∆t; td] are considered, up to the |Φ|D last ones59.4242

The diagnosis algorithm can be easily adapted to consider these alternate definitions of the4243

instant α ∈ {td, ϕ(...)} at which is executed and of the duration β ∈ {∆t, |Φ|D, (∆t, |Φ|D)} used4244

to define the sets used by the algorithm. Indeed, the expression "(td,∆t)" can be replaced by4245

"(α, β)" straightforward in Algorithm 160.4246

To conclude, the proposed diagnosis algorithm can also be applied with an event-based4247

definition of the instant at which it is executed and of the duration used to define the sets of4248

rendez-vous it uses.4249

6 Real-time diagnosis algorithm of drift faults in sensor networks4250

Until then, the diagnosis was considered as a procedure carried out periodically or, with the4251

definitions of Section 5, on events. If it is performed at each time step or on each event, the4252

59When ∆t and |Φ|D are combined it is possible that a set of rendez-vous:
– contains less than |Φ|D rendez-vous if less than that occurred during [td −∆t; td].
– does not contain all the rendez-vous that occurred during [td −∆t; td] if there were more rendez-vous than
|Φ|D.

60In fact, behind "..." in ϕ(...) lies a "td" which is the instant at which the rendez-vous occurred. This td is used
in practice to determine the sets involved in a diagnosis procedure. Also behind "|Φ|D" lies a "t′d" which is the
instant when the first of the |Φ|D rendez-vous occurred. This t′d is different for each instrument. The definitions
given in Chapter 4 Section 3 have to be adapted depending on the choice of α and β.

154



6. Real-time diagnosis algorithm of drift faults in sensor networks

algorithm is not very efficient: it computes rates based on sets that are not often changing (and4253

probably not a lot) between two time steps. This section aims at providing elements for the4254

design of a more efficient way to perform in real-time the diagnosis of drift faults in a sensor4255

network.4256

6.1 Choice of an event-based approach4257

To provide a real-time formulation of the diagnosis algorithm, we choose to rely on an4258

event-based approach, at least regarding α following the notations of Section 5.4259

This choice is guided by the fact that the sets of rendez-vous Φ(si → S, (α, β)) for each si ∈ S4260

do not have to be actualised at each time step but only when a new rendez-vous happens.4261

However, if β = ∆t, it invites to determine the statuses of the instruments based on a sliding4262

window of rendez-vous that changes at each time step. This case is discussed afterwards.4263

6.2 General idea4264

Consider two instruments si and sj . When a rendez-vous happens between them, at t for4265

instance, Φ(si → S, (α, β)) and Φ(sj → S, (α, β)) are changed. Thus, the predicted statuses of si4266

and sj have to be actualised.4267

To determine the statuses of the instruments after this rendez-vous, the principles introduced4268

in Chapter 4 Section 4.1 have to be extended.4269

Indeed, we must determine which instrument between si and sj is the diagnoser instrument4270

for the other. The set of diagnosers of si at t is noted Sdiagnosers(si, t).4271

At t, in a real-time approach, we have values for Ω̂(si, t) and Ω̂(sj , t). Depending on the case,4272

the rendez-vous ϕ(si → sj , t) will be considered either in Φv(si → S, (α, β)) or Φv(sj → S, (α, β))4273

(sets of valid rendez-vous).4274

The following cases are possible:4275

Ω̂(si, t) Ω̂(sj , t) Decision

NF NF The diagnoser must be chosen between si and sj .
NF A si is a diagnoser for sj .
NF F si is a diagnoser for sj .
A NF sj is a diagnoser for si.
A A The rendez-vous cannot be considered as valid by any of the instruments.
A F The rendez-vous cannot be considered as valid by any of the instruments.
F NF sj is a diagnoser for si.
F A The rendez-vous cannot be considered as valid by any of the instruments.
F F The rendez-vous cannot be considered as valid by any of the instruments.

Table A.6.1: Possible cases when a new rendez-vous occurs between si and sj for a real-time
diagnosis

In fact, there is only one particular case: when Ω̂(si, t) = Ω̂(sj , t) = NF . To choose the one4276

to use as a diagnoser, we propose to rely on the class and on the duration since the instruments4277

were predicted as non-faulty. The diagnoser is the one that has first the highest class and then4278

the one that has been predicted as non-faulty first.4279

Once this information is determined, e.g. sj is a diagnoser for si for instance, the set of valid4280

rendez-vous Φv(si → S, (α, β)) is actualised following a derived version of Equation 4.1 from4281
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Chapter 4 Section 4.1:4282

Φv(si → S, (α, β)) ={ϕ(si → sj , t) ∈ Φ(si → S, (α, β)), such as
sj ∈ Sdiagnosers(si, t), // sj is a diagnoser of si
Ω̂(sj , t′) = NF , // sj is non-faulty
c(sj) ≥ cDmin(si), // The class of sj is higher or equal to the minimal
class allowed to diagnose si
m(si, t) ∈M∗(si, (α, β)), // The measurement result of si is valid
m(sj , t′) ∈M∗(sj , (α, β))} // The measurement result of sj is valid

(A.2)
Then, the predicted status of si can be actualised following the same principles described in4283

Chapter 4 Section 4.2 (rates, criteria...). Because the predicted status of only of the instruments4284

involved in the rendez-vous is actualised, it would be valuable to use a decentralised approach.4285

6.3 Initialisation of the algorithm4286

Like in Chapter 4 Section 4.2, all the instruments in Scmax are assumed as non-faulty, the4287

set of instruments to diagnose SD is equal to S \ Scmax and the predicted statuses Ω̂(si, td) are4288

initialised to non-faulty for si ∈ Scmax and to ambiguous for si ∈ SD.4289

At t = 0, for each si ∈ S, Φ(si → S, (t, β)) = ∅. Overtime, these sets will be filled with4290

rendez-vous. Only when Φv(si → S, (α, β)) ≥ |Φv|min for si ∈ SD, the predicted statuses can4291

begin to change.4292

6.4 Allowed changes of status4293

With the principles presented, the predicted statuses of the instruments can change from4294

one rendez-vous to another like in Chapter 4 Section 4.2. It may be preferable to consider an4295

approach where the predicted status of an instrument is kept equal to faulty once it is first4296

diagnosed as so as suggested in Chapter 4 Section 7 to avoid false results.4297

6.5 Conclusion4298

In this section, we provided avenues toward the definition of a real-time formulation of4299

our diagnosis algorithm. We suggested using an event-based approach following the concepts4300

introduced in Section 5. We introduced a general idea to actualise the predicted status of the4301

instruments when a new rendez-vous occurs and discussed the particular cases. We presented the4302

criteria of initialisation which are equivalent to those of Chapter 4 and we recommended using4303

the approach of Chapter 4 Section 7 where the predicted status of an instrument is kept equal4304

to faulty once it is first diagnosed. To validate the ideas presented, it would be necessary to4305

fully develop the algorithm and compared its execution on a same case study where our original4306

diagnosis algorithm61 would be applied at each time step.4307

Afterwards, the algorithm giving an upper boundary to |Φv|min, the minimal size for a set4308

of valid rendez-vous to allow a prediction between the status faulty and non-faulty could be4309

extended for the cases where the diagnosis is performed in real-time.4310

61With the predicted status of the instruments kept equal to faulty once first diagnosed as so.

156



Appendix4311

B4312

On the Reason Why Assuming the4313

Instruments of Class cmax are not4314

Drifting is Acceptable4315

In this appendix, more details are briefly given to understand why assuming the instruments4316

of class cmax are not drifting is acceptable.4317

In Chapter 4 Section 6.2, it appeared that even with s9 drifting, the diagnosis algorithm still4318

provides satisfying results when assuming this instrument as always non-faulty.4319

Suppose that there was a means to correctly predict the status of s9. Following the reasoning4320

that was used to design the algorithm in Chapter 4 Section 4, this instrument should not be4321

considered at some point for the prediction of the statuses of other instruments. Nevertheless,4322

based on the results obtained in the study we conducted, the information provided by this4323

instrument with its measurement results is of a sufficient quality to help the prediction of the4324

other instruments.4325

In fact, this can be explained by the definition used for rtrue in Chapter 4 Section 5.3.4326

rtrue uses the set of measurements results compatible with the true values M≈(si, (t,∆)). The4327

compatibility of a measurement with its true value is appreciated regarding the uncertainty on4328

the measured value and the true value. For the instruments of class cmax here, the uncertainty,4329

absolute or relative, is significantly smaller than the uncertainty of the instruments of lower class,4330

particularly in this case study (see Table 4.5.1 in Chapter 4 Section 5 where ∆rv(s9)� ∆rv(sj)4331

for all the other instruments sj). Thus, with this definition of rtrue, when two instruments of4332

different classes have their true statuses equal to faulty for the first time, it does not mean that4333

their drift is equivalent. It is possible that an instrument of a given class is still performing well4334

relatively to an instrument of a lower class, which is the case here with s9 drifting more slowly:4335

δGmax(s9)� δGmax(sj) and δOmax(s9)� δOmax(sj). This is the most important feature and4336

such relationships would likely be valid in practice with instruments of different metrological4337

class.4338

Therefore, to better appreciate the true status of a given instrument regarding one of a4339

lower class (or not), the compatibility of its measurement results with its true values should be4340

evaluated considering the highest measurement uncertainty between these two devices. In our4341

case, the true status of s9 is always non-faulty if M≈(si, (t,∆)) is determined with the relative4342

uncertainty ∆rv of the instruments of class zero than with its own ∆rv as shown in Figure B.0.1.4343

In conclusion, assuming that s9 is not drifting and is always non-faulty is valid from the4344

point of view of all the other instruments of lower class in the network because even when4345

drifting, this instrument is still more accurate than the instruments of a lower class. The metric4346
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Figure B.0.1: Evolution of the true status of s9, computed with the relative uncertainty ∆rv
on the results of the instruments of class 0 instead of its own ∆rv, and its predicted status when

it is drifting

used to determine if an instrument is truly faulty or not is not fairly appreciating the status4347

of an instrument when the goal is to compare its measurement results to the ones of another4348

instrument, potentially of a worse quality.4349
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Appendix4350

C4351

Sensitivity of the Diagnosis4352

Algorithm: Case Study with Values4353

Related Over Time for the Parameters4354

of the True Values’ Model4355

1 Introduction4356

We extend here the results of Chapter 4 Section 9.3 on the influence of the model used for4357

the true values in the case study developed in Section 5 of the same chapter. More precisely, an4358

additional case study is provided to confirm that the realism of the model for the true values4359

does not have a major influence.4360

2 Model used4361

We propose to use for the true values the same model as in Chapter 4 Section 3 but instead4362

of using values drawn randomly for the amplitude and FWHM of the Gaussian curve at each4363

time step, the dataset that was exploited in Chapter 3 Section 3 is considered here to derive4364

these values. Thus, the values of the amplitude and FWHM of the Gaussian curve are related4365

from one time step to another.4366

In this dataset, the values are given hourly. As we used a time step equivalent to 10min4367

in Chapter 4 Section 3, the dataset has to be resampled. The missing values are interpolated4368

linearly.4369

Apart from the model for the true values, the case study is identical to the one of Chapter 44370

Section 8 (case study of Section 3 with improvements regarding false results and the adjustment4371

of |Φv|min|).4372

3 Results4373

Table C.3.1 gives the values of each metric. Compared to the results of Table 4.8.1 and4374

considering there is a slightly higher prevalence here (0.88 instead of 0.76), e.g. more faulty cases4375

that non-faulty ones, we observe there are less false negative results (10 instead of 14). The4376

number of true negatives TN is equal to the number of negative cases N (18). Thus, there are4377

no false positives. There are also no predicted statuses equal to ambiguous.4378

Therefore, the TNR and TPR are high (1.00 and 0.93) and so is the PPV (1.00). Only4379

the NPV and FOR are worse than with a random draw of the parameters of the model of the4380

true values (0.64 and 0.36 respectively instead of 0.72 and 0.28) . Although, considering the low4381

159



Appendix C. Sensitivity of the Diagnosis Algorithm: Case Study with Values Related Over Time
for the Parameters of the True Values’ Model

True status

Non-faulty Faulty Prevalence Accuracy
N = 18 P = 135 0.88 0.93

Non-faulty TN FN NPV FOR

18 10 0.64 0.36

Predicted status Ambiguous NDN NDP

0 0

Faulty FP TP FDR PPV

0 125 0.00 1.00

TNR FNR

1.00 0.07

NDNR NDPR NDR

0.00 0.00 0.00

FPR TPR

0.00 0.93

Table C.3.1: Confusion matrix of the case study with true values based on the 2D Gauss model
with values of its parameters derived from a real dataset

number of TN due to the low value of N , this is not major.4382

The overall performance from the point of view of the accuracy is slightly better than in4383

Table 4.8.1 (0.93 instead of 0.91)4384

4 Conclusion4385

This case study confirms the conclusion from Chapter 4 Section 9.3, e.g. the model chosen for4386

the true values does not seem to have a significant effect on the results. Indeed, the mathematical4387

objects used by the diagnosis algorithm are sets: the order between the measured values is4388

not exploited. Combined to the observation of Chapter 4 Section 7 (the only measurement4389

results considered to the status of a measuring instrument are the ones obtained when it is in4390

rendez-vous. Thus, a sampling of all its measurement results is performed, breaking already the4391

continuity of the measured signal), the relationship between two consecutive measured values4392

has no significance for the diagnosis algorithm: it is aimed at determining a status over a time4393

range and this time range is considered as a whole. Therefore, it is the values that have the most4394

significant effect as shown earlier in Chapter 4 Section 7.4395

4396
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Titre : Étalonnage in situ de l’instrumentation bas coût pour la mesure de grandeurs ambiantes : méthode
d’évaluation des algorithmes et diagnostic des dérives

Mots clés : Réseaux de capteurs, Qualité de mesure, Étalonnage, Evaluation, Diagnostic, Mesures ambiantes

Résumé : Dans de nombreux domaines allant de
l’agriculture à la santé publique, des grandeurs
ambiantes doivent être suivies dans des espaces
intérieurs ou extérieurs. On peut s’intéresser par
exemple à la température, aux polluants dans l’air ou
dans l’eau, au bruit, etc. Afin de mieux comprendre
ces divers phénomènes, il est notamment nécessaire
d’augmenter la densité spatiale d’instruments de me-
sure. Cela pourrait aider par exemple à l’analyse
de l’exposition réelle des populations aux nuisances
comme les polluants atmosphériques.
Le déploiement massif de capteurs dans l’environ-
nement est rendu possible par la baisse des coûts
des systèmes de mesure, qui utilisent notamment
des éléments sensibles à base de micro ou nano
technologies. L’inconvénient de ce type de dispositifs
est une qualité de mesure insuffisante. Il en résulte
un manque de confiance dans les données pro-
duites et/ou une hausse drastique des coûts de l’ins-
trumentation causée par les opérations nécessaires
d’étalonnage des instruments ou de remplacement
périodique des capteurs.
Il existe dans la littérature de nombreux algorithmes
qui offrent la possibilité de réaliser l’étalonnage des
instruments en les laissant déployés sur le terrain,
que l’on nomme techniques d’étalonnage in situ.
L’objectif de cette thèse est de contribuer à l’effort de
recherche visant à améliorer la qualité des données
des instruments de mesure bas coût à travers leur
étalonnage in situ.
En particulier, on vise à 1) faciliter l’identification des
techniques existantes d’étalonnage in situ applicables
à un réseau de capteurs selon ses propriétés et les
caractéristiques des instruments qui le composent ;
2) aider au choix de l’algorithme le plus adapté selon
le réseau de capteurs et son contexte de déploiement
; 3) améliorer l’efficacité des stratégies d’étalonnage
in situ grâce au diagnostic des instruments qui ont
dérivé dans un réseau de capteurs.
Trois contributions principales sont faites dans ces

travaux. Tout d’abord, une terminologie globale est
proposée pour classer les travaux existants sur
l’étalonnage in situ. L’état de l’art effectué selon cette
taxonomie a montré qu’il y a de nombreuses contri-
butions sur le sujet, couvrant un large spectre de cas.
Néanmoins, le classement des travaux existants se-
lon leurs performances a été difficile puisqu’il n’y a
pas d’étude de cas de référence pour l’évaluation de
ces algorithmes.
C’est pourquoi dans un second temps, un cadre pour
la simulation de réseaux de capteurs est introduit. Il
vise à guider l’évaluation d’algorithmes d’étalonnage
in situ. Une étude de cas détaillée est fournie à tra-
vers l’évaluation d’algorithmes pour l’étalonnage in
situ de réseaux de capteurs statiques et aveugles.
Une analyse de l’influence des paramètres et des
métriques utilisées pour extraire les résultats est
également menée. Les résultats dépendant de l’étude
de cas, et la plupart des algorithmes réétalonnant
les instruments sans évaluer au préalable si cela
est nécessaire, un outil d’identification permettant de
déterminer les instruments qui sont effectivement fau-
tifs en termes de dérive serait précieux.
Dès lors, la troisième contribution de cette thèse
est un algorithme de diagnostic ciblant les fautes
de dérive dans les réseaux de capteurs sans faire
d’hypothèse sur la nature du réseau de capteurs
considéré. Basé sur le concept de rendez-vous, l’al-
gorithme permet d’identifier les instruments fautifs
tant qu’il est possible de supposer qu’un instrument
n’est pas fautif dans le réseau de capteurs. À tra-
vers l’analyse des résultats d’une étude de cas, nous
proposons différents moyens pour diminuer les faux
résultats et des recommandations pour régler les pa-
ramètres de l’algorithme. Enfin, nous montrons que
l’algorithme de diagnostic proposé, combiné à une
technique simple d’étalonnage, permet d’améliorer la
qualité des résultats de mesure. Ainsi, cet algorithme
de diagnostic ouvre de nouvelles perspectives quant
à l’étalonnage in situ.
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Abstract : In various fields going from agriculture to
public health, ambient quantities have to be monitored
in indoors or outdoors areas. For example, tempera-
ture, air pollutants, water pollutants, noise and so on
have to be tracked. To better understand these various
phenomena, an increase of the density of measuring
instruments is currently necessary. For instance, this
would help to analyse the effective exposure of people
to nuisances such as air pollutants.
The massive deployment of sensors in the environ-
ment is made possible by the decreasing costs of
measuring systems, mainly using sensitive elements
based on micro or nano technologies. The drawback
of this type of instrumentation is a low quality of mea-
surement, consequently lowering the confidence in
produced data and/or a drastic increase of the instru-
mentation costs due to necessary recalibration proce-
dures or periodical replacement of sensors.
There are multiple algorithms in the literature offering
the possibility to perform the calibration of measuring
instruments while leaving them deployed in the field,
called in situ calibration techniques.
The objective of this thesis is to contribute to the re-
search effort on the improvement of data quality for
low-cost measuring instruments through their in situ
calibration.
In particular, we aim at 1) facilitating the identification
of existing in situ calibration strategies applicable to
a sensor network depending on its properties and the
characteristics of its instruments; 2) helping to choose
the most suitable algorithm depending on the sensor
network and its context of deployment; 3) improving
the efficiency of in situ calibration strategies through
the diagnosis of instruments that have drifted in a sen-
sor network.
Three main contributions are made in this work. First,

a unified terminology is proposed to classify the exis-
ting works on in situ calibration. The review carried out
based on this taxonomy showed there are numerous
contributions on the subject, covering a wide variety of
cases. Nevertheless, the classification of the existing
works in terms of performances was difficult as there
is no reference case study for the evaluation of these
algorithms.
Therefore in a second step, a framework for the simu-
lation of sensors networks is introduced. It is aimed
at evaluating in situ calibration algorithms. A detai-
led case study is provided across the evaluation of in
situ calibration algorithms for blind static sensor net-
works. An analysis of the influence of the parameters
and of the metrics used to derive the results is also
carried out. As the results are case specific, and as
most of the algorithms recalibrate instruments without
evaluating first if they actually need it, an identification
tool enabling to determine the instruments that are ac-
tually faulty in terms of drift would be valuable.
Consequently, the third contribution of this thesis is
a diagnosis algorithm targeting drift faults in sensor
networks without making any assumption on the kind
of sensor network at stake. Based on the concept of
rendez-vous, the algorithm allows to identify faulty ins-
truments as long as one instrument at least can be
assumed as non-faulty in the sensor network. Across
the investigation of the results of a case study, we pro-
pose several means to reduce false results and guide-
lines to adjust the parameters of the algorithm. Finally,
we show that the proposed diagnosis approach, com-
bined with a simple calibration technique, enables to
improve the quality of the measurement results. Thus,
the diagnosis algorithm opens new perspectives on in
situ calibration.
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