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Résumé

La simulation du transport de neutrons de Monte-Carlo est une méthode stochastique largement utilisée dans

le domaine nucléaire pour les calculs de référence. Au lieu d’introduire des approximations mathématiques et

physiques pour simuler un système du monde réel, la méthode de Monte-Carlo regroupe les comportements des

particules par échantillonnage statistique, ce qui entraîne de manière significative un coût de calcul énorme. Afin

d’alléger ce coût, l’utilisation de supercalculateurs pour les simulations de Monte-Carlo est devenue une tendance

pour de nombreux chercheurs et développeurs.

Cependant, comme de plus en plus d’architectures modernes (multi-core / manycore, architectures hétérogènes)

émergent à un rythme assez rapide, il n’est pas anodin de développer des applications portables complètes sur

toutes ces architectures, de plus, d’optimiser et de maintenir l’application en continu donc pour obtenir des perfor-

mances préférables sur eux.

D’un côté, le développement et la durée de vie d’une application sont bien supérieurs au temps de développe-

ment d’architectures informatiques. Ainsi, concevoir une application pour une architecture donnée n’a pas de sens

car après le développement de l’application, il y a de fortes chances que l’architecture ait déjà évolué. De l’autre

côté, il est nécessaire que les applications soient évolutives et maintenables par le plus de personnes possible, per-

mettant à ces personnes qui ne sont pas familiarisées avec le HPC de développer des codes capables de fournir

de bonnes performances.

Pour répondre à l’évolution de la portabilité des performances, certains langages de programmation de haut

niveau tels que OpenACC, OpenMP offload ont été proposés pour permettre à l’application de bien fonctionner

sur une large gamme d’architectures sans de gros frais de développement et de maintenance. La plupart de

ces modèles de programmation sont dédiés aux architectures basées sur des accélérateurs avec l’augmentation

massive du parallélisme multi-niveaux qui représente la tendance sous-jacente des architectures de calcul. Dans

cette thèse, nous nous intéressons au développement d’un code de transport de neutrons Monte-Carlo portable

ciblant des architectures hybrides (CPU + GPU) avec l’utilisation de modèles de programmation hybrides.

Concernant l’évaluation de la portabilité des performances, certaines métriques ont déjà été proposées pour

évaluer quantitativement le compromis entre performance et portabilité. Cependant, il existe peu de recherches

traitant de l’évaluation des codes de transport de neutrons de Monte-Carlo sur les supercalculateurs en termes de

portabilité des performances, en outre, de portabilité des performances productibles. Ainsi, nous avons l’intention



de donner une évaluation explicite en termes de portabilité, de performance, ainsi que de productivité pour un

mini-benchmark de simulation de transport de neutrons de Monte-Carlo.

Le mini-benchmark slabAllNuclides a été implémenté sur un prototype de transport de neutrons de Monte-

Carlo développé au CEA, appelé PATMOS. Une version de déchargement hétérogène du code a été développée

via une méthode basée sur l’historique et une méthode basée sur des pseudo événements. Plusieurs modèles de

programmation (thread OpenMP, OpenMP offload, OpenACC, CUDA, Kokkos et SYCL) ont été implémentés pour

l’évaluation et les tests ont été réalisés sur différentes architectures (x86 ou OpenPower + GPU). Un ensemble

de métriques a été adopté pour évaluer notre simulation Monte-Carlo de déchargement hétérogène en termes

de portabilité, de performances et de productivité. L’analyse des métriques a été réalisée avec la proposition

d’une métrique générique et son qui atténue les défauts des métriques d’origine, les rendant plus adaptables pour

gérer la comparaison numérique des applications en termes de portabilité des performances et de portabilité de la

productivité à travers une variété d’informatique architectures.

En un mot, l’objectif de la thèse est d’évaluer les métriques existantes en termes de portabilité, de performance

et de productivité et de proposer des améliorations de ces métriques sur un exemple d’application réelle réalisant

une simulation de transport de neutrons de Monte-Carlo. Les principaux objectifs sont les suivants:

1. proposer un nouvel algorithme de suivi des particules, la méthode pseudo event-based.

2. analyser et régler les performances de la version CUDA.

3. mettre en œuvre des codes de transport de neutrons Monte-Carlo portables via des modèles de programma-

tion de haut niveau.

4. proposer et analyser une métrique générique et ses variantes.

5. évaluer les implémentations portables des codes de transport Monte-Carlo par la métrique générique.
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Chapter 1

Introduction

1.1 Motivations

Monte Carlo neutron transport simulation is a stochastic method which is widely used in the nuclear field for refer-

ence calculations. Instead of introducing mathematical and physical approximations to simulate a real-world system,

Monte Carlo method aggregates particles behaviors through statistical sampling which significantly leads to a huge

amount of computational cost. In order to alleviate this cost, the use of supercomputers for Monte Carlo simulation

has become a trend for many researchers and developers.

However, as more and more modern architectures (multi-core/manycore, heterogeneous architectures) emerge

in a rather fast rhythm, it is non-trivial to develop full portable applications on all these architectures, furthermore, to

optimize and maintain the application continuously so as to achieve preferable performances on them.

From one side, the development and life time of an application are much greater than the time for the devel-

opment of computing architectures. Thus, it makes little sense to design an application for a given architecture

since after the development of the application there is a good chance that the architecture has already evolved.

From the other side, it is necessary for applications to be scalable and maintainable by as many people as possible,

allowing those people who are not familiar with HPC to develop the codes capable of delivering good performance.

Therefore, developing applications of high performance portability becomes a hotspot to address in the field of HPC.

To meet the challenges mentioned above and gain better performance portability, some high-level programming

languages such as OpenACC, OpenMP have been proposed to allow the application performing well on a wide

range of architectures without large development and maintenance effort. Most of these programming models is

dedicated to accelerator-based architectures with the massive increase of multi-level parallelism which represents

the underlying trend in computational architectures. In this thesis, we are interested in the development of portable

Monte Carlo neutron transport code targeting to hybrid architectures (CPU + GPU) with the utilization of hybrid

programming models.
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Concerning the evaluation of performance portability, some metrics have already been proposed to evaluate

quantitatively the tradeoff between performance and portability. However, there are few researches addressing the

evaluation of Monte Carlo neutron transport codes on supercomputers in terms of performance portability. Thus, we

intend to give an explicit evaluation in terms of performance, portability as well as productivity for a mini-benchmark

of Monte Carlo neutron transport simulation.

1.2 Objectives

In a word, the objective of the thesis is to evaluate existing metrics in terms of performance, portability, productivity

and to propose improvements of these metrics on an example of real application performing Monte Carlo neutron

transport simulation. The entire process is described as follow:

1. We choose the application case, PATMOS, which is a Monte Carlo neutron transport prototype developed at

CEA.

2. We implement a mini-benchmark, slabAllNuclides on PATMOS performing a fixed source Monte Carlo simu-

lation which is representative of the application.

3. We develop a heterogeneous offload version of the code with the utilization of the conventional history-based

method and a originally proposed pseudo event-based method.

4. We implement several programming models (OpenMP thread, OpenMP offload, OpenACC, CUDA, Kokkos

and SYCL) targeting for hybrid architecture (CPU + GPU).

5. To evaluate the metrics as in any performance study, we set the OpenMP thread version of slabAllNuclides

as the reference on CPU and the CUDA version of slabAllNuclides as the reference on GPU. The pseudo

event-based method is adopted as reference both on CPU and GPU.

6. We perform evaluation of these implementations in terms of performance, portability, and productivity with the

use of metrics that we have proposed and improved. It should be noted that we are not looking for an optimal

implementation on a given architecture, but the best implementation in an application set which gives the best

level of performance or productive performance across a set of architectures.

1.3 Outline

This dissertation is dedicated to implementing several programming models on the Monte Carlo neutron transport

code, PATMOS, with a heterogeneous offloading strategy and evaluating these implementations in terms of perfor-

mance, portability, productivity across a set of modern architectures with the utilization of some originally proposed

or modified metrics.
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Chapter 2 will give an introduction of parallel computing from the hardware and software perspectives. With

reference to hardware perspective, the general terminology of parallel computer and the hardware architecture that

are used in the thesis (x86/OpenPower + Nvidia/Intel GPUs) will be elaborated in detail. With reference to software

perspective, programming models and profiling tools that are adopted in the thesis will be discussed.

Chapter 3 will cover background information about nuclear reactor physics, neutron transport simulation, Monte

Carlo method and present the state-of-the-art progress of Monte Carlo neutron transport codes in the field of HPC.

Cross section and on-the-fly Doppler broadening approach are addressed since they account for most of compu-

tational cost in the cases of isotopic depletion and thermal-hydraulic coupling. Two particle tracking methods, the

history-based method and event-based method are discussed as well.

Chapter 4 expresses the implementation of portable Monte Carlo neutron transport codes adopting several

programming languages or libraries including OpenMP thread, OpenMP offload, CUDA, OpenACC, Kokkos, as well

as SYCL. The heterogeneous offloading strategy and the originally proposed particle tracking method, pseudo

event-based method are introduced in detail. Numerical results and performance analysis of these implementations

will be given along with some achieved optimizations of the CUDA version.

Chapter 5 focuses on the establishment of a generic model and the evaluation of implementations in terms of

performance, portability, and productivity across a set of architectures with the use of this generic model. The best

implementation obtaining the best level of performance or productive performance will be given.

Chapter 6 draws conclusions from the previous chapters and introduces some work for future development

which may contain testifying our generic model with much more different cases widely used in the field of scientific

computing, optimizing the Kokkos and SYCL versions of implementations as the future releases of Kokkos and

SYCL may enable more support for our heterogeneous offloading strategy.
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Parallel Computing

The thesis work is based on the development of parallel code for Monte Carlo neutron transport simulation. There-

fore, we begin with the literature of thesis by giving an introduction of parallel computing from both the hardware

and software perspectives. It mainly consists of the basic information about parallel computing and some hardware

architectures, programming models as well as profiling tools that are used in research work.

2.1 General Terminology

Parallel computing is a type of computation in which many calculations or the execution of processes are carried

out simultaneously [50]. Instead of dividing a problem into a group of instructions and executing them sequentially,

parallel computing firstly breaks the problem into several sub-problems and carries out them concurrently.

Nowadays, the demand of parallel computing has reached to a very high level. With the blowout of big data, nu-

merical simulation needs a great amount of processing time which is far beyond the capacity of any single compute

resource. Thus, more and more parallel computing are used in a wide range of scientific and industrial domains

for the purpose of exploring the potential of underlying parallel hardware, making better use of dispersed compute

resource, and eventually saving the cost of time and money. In what follows some general parallel terminology will

be introduced to make better acknowledge of parallel computing.

2.1.1 Von Neumann Architecture

The von Neumann architecture is the fundamental design of modern parallel computers proposed by the Hungar-

ian mathematician and physicist John von Neumann in his 1945 paper [123]. This stored-program design allows

instruction and data being stored in electronic memory. Its main components are illustrated in Figure 2.1.

• Central Processing Unit (CPU): An electronic circuitry which executes instructions of a computer program.

It contains a processing unit and a control unit.
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⇤ Processing Unit (PU): It is comprised of an arithmetic logic unit (ALU) and a variety of registers. ALU

allows for arithmetic and bitwise operations on input data and returns the result as output. Registers are

fast storage areas which provide the fasted way to access data.

⇤ Control Unit (CU): A component of CPU that fetches and decodes instructions and directs the oper-

ations of the processor. It is comprised of a current instruction register (CIR) and a program counter

(PC). The CIR is responsible for holding the current instruction during processing. The PC contains the

address of the next instruction to be executed and increments itself after fetching an instruction.

• Memory Unit: It consists of random access memory (RAM) which stores data and instructions.

• Input/Output: Input and output mechanisms.

Figure 2.1: Von Neumann Architecture.

One of the key features of the von Neumann architecture is that both data and instructions are designed to

share common bus to communicate between central processing unit and memory unit. Thus, data operation and

instruction fetch cannot be executed simultaneously. This drawback is referred to as the von Neumann bottleneck

and usually limits the performance of the system significantly [82]. Two strategies are mostly adopted by modern

parallel computers to mitigate this bottleneck at memory hierarchy level, which are respectively adding internal

memory layer such as cache to communicate with central processing unit and providing separate storage and

pathways for data and instructions.

2.1.2 Flynn’s Taxonomy

Flynn’s Taxonomy is classification of parallel computing machines proposed by Michael J. Flynn in 1966 [46]. This

classification is based on distinguishing the multiplicity (single/multiple) of instruction and data streams. As a result,

there are four sub-categories according to Flynn’s taxonomy:
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• SISD: single instruction stream, single data stream

• SIMD: single instruction stream, multiple data stream

• MISD: multiple instruction stream, single data stream

• MIMD: multiple instruction stream, multiple data stream

Figure 2.2 show the workflow of instruction and data stream during program execution for the computer. Instruc-

tion stream refers to the flow of instructions fetched from main memory and operated by CPU. Data stream is the

flow of operands loaded or stored between main memory and CPU. The multiplicity of stream has two states, single

or multiple, indicating that if there is only one stream or multiple streams during any one clock cycle.

Figure 2.2: Instruction and Data Stream.

2.1.2.1 SISD organization

SISD computing machines are serial computers which handles only one stream of instructions and data at any point

in the execution. Some old type of computers such as CRAY1 and IBM360 adopt this organization. The diagram of

SISD organization is illustrated in Figure 2.3.

Figure 2.3: SISD Organization.
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2.1.2.2 SIMD organization

SIMD organization allows multiple processing units handling the same instruction broadcast from one control unit.

Meanwhile, all processing units take different data streams to accomplish arithmetic operations simultaneously. The

details of SIMD organization is depicted in Figure 2.4.

Figure 2.4: SIMD Organization.

Some parallel computers designed via SIMD organization are IBM 9000, Cray X-MP, ILLIAC-IV and Thinking

Machines CM-2. Furthermore, SIMD organization is widely employed in most parallel computers as specific in-

structions and execution units to achieve SIMD vector operation such as vector processing unit (VPU) and graphics

processing unit (GPU).

2.1.2.3 MISD organization

Figure 2.5: MISD Organization.
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MISD machine operates multiple instruction streams and single data stream with multiple control units and

processing units. Each control unit handles one instruction stream and sends it to the corresponding processing

unit. All processing units share a single data stream to complete execution as shown in Figure 2.5. There are few

examples of MISD machines that have ever existed.

2.1.2.4 MIMD organization

MIMD organization is the most popular for a parallel computing machine. Most modern supercomputers, networked

grids and all multiprocessor systems fall into this classification, such as IBM POWER5, Intel IA32, Cray XT3, etc. In

contrast to MISD organization, in which all processing units are fed with only a single data stream, each processing

unit in MIMD organization can handle a different data stream. Since there is no data and instruction dependencies

among processors, executions on different processors can be asynchronous. The diagram of MIMD organization is

denoted in Figure 2.6.

Figure 2.6: MIMD Organization.

Furthermore, MIMD contains a subcategory called as SPMD (single program, multiple data) [39]. It allows

a single program to be executed simultaneously by multiple processors with different input, which usually refers

message passing programming (section 2.4.1.1) on distributed memory architectures (section 2.2.2).

2.1.3 Parallel Speedup

2.1.3.1 Amdahl’s law

Amdahl’s law [16] is a formula indicating the potential speedup of an algorithm which can be expected by parallel

computing, as illustrated in Equation 2.1:
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Speedup(P,N) =
1

P

N
+ 1� P

(2.1)

where:

• P : The proportion of run time of a given algorithm that can be parallelized.

• N : The number of processors performing the program.

• P 2 [0, 1]:

⇤ if P = 0, then Speedup = 1, meaning that the algorithm has no parallel fraction and cannot be parallelized

to achieve performance speedup.

⇤ if P = 1, then Speedup = N , signifying that the optimal speedup of algorithm is N. With the increase of

number of processors, the speedup can be infinite in theory.

• N 2 [1,+1):

⇤ if N = 1, then Speedup = 1, the code is executed in serial mode.

⇤ if N ! +1, then Speedup =
1

1� P
. This is a derived version of Amdahl’s law, assuming that the

execution time of parallel fraction can be reduced to zero with multiple processors. This theoretical

achievable speedup is considered as the upper performance limit of parallelization of the given algorithm.

Amdahl’s law assumes the parallelizable part of an algorithm P is a constant. However, this assumption does

not always fit into real-world problems. In practice, the parallel fraction P often varies with the change of problem

size. Considering of this factor, we can have another derived version of Amdahl’s law as shown in Equation 2.2:

Speedup(P (W ), N) =
1

P (W )

N
+ 1� P (W )

(2.2)

where:

• W : The workload of a given problem.

• P (W ): The parallelizable proportion of execution time of a given problem with workload W .

Unfortunately, P (W ) is not a predictable function varying via specific rules. To overcome this shortcome, we can

consider in another way. Instead of fixing the problem size and comparing the execution time, it is possible to firstly

define a fixed execution time and then to calculate the speedup by comparing the achieved workload of program in

parallel and serial modes.
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2.1.3.2 Gustafson’s law

Gustafson’s law was proposed by John L. Gustafson and his colleague Edwin H. Barsis in the article “Reevaluating

Amdahl’s Law” in 1988 [52]. As shown in Equation 2.3, Gustafson’s law assumes that the total parallel workload

varies linearly with the number of processors. It estimates the theoretical attainable speedup of a program by

comparing the workload of the parallel version of the code Wp with N processors to the workload of the serial

version of the code Ws at a fixed execution time T .

Ws = (1� P )Ws + PWs;

Wp = (1� P )Ws +NPWs;

Speedup(N) =
Wp

Ws
= 1� P +NP ;

(2.3)

where:

• Ws: The workload of the code in serial mode at a fixed execution time T .

• Wp: The workload of the code in parallel mode with N processors at a fixed execution time T .

• P : The parallelizable fraction of the code at a fixed execution time T .

2.1.4 Scalability

In the context of parallel computing, scalability refers to the property of a system to handle a growing amount of

work by adding resources to the system [23]. There are two common types of scaling:

• Strong scaling: The strong scaling indicates the scalability tested under the condition that the time to solution

varies with the number of processors for a fixed total problem size.

• Weak scaling: The weak scaling describes the scalability evaluated under the condition that the time to

solution varies with the number of processors for a fixed problem size per processor.

There are many factors which influence the scalability of a parallel program. For example, the algorithm used in

the program often contains some inherent limits which lead to performance degradation with the increase of compute

resources. The memory capacity, memory bandwidth or network bandwidth of a parallel computing machine may

also be the bottleneck of scalability.
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2.2 Memory Architectures

Parallel computing machines can be separated into three types in the context of memory: shared memory architec-

ture, distributed memory architecture and hybrid memory architecture. Processors in shared memory architecture

share the global memory modules while processors in distributed memory architecture have their own local memory

and communicate with each other via a network. Hybrid memory architecture is the mix of shared and distributed

memory architectures. These memory architectures have their own advantages and disadvantages, we will dig into

them in the following part.

2.2.1 Shared Memory

Shared memory is a global address space which can be accessed by all processors. The key advantage of shared

memory architecture is that multiple processors have fast access to data in memory location, leading to high memory

bandwidth. Meanwhile, such fast access to memory incurs two disadvantages. First, the resource contention and

false sharing usually happen when several processors try to access the same or nearby memory locations. When

adding more processors to shared memory architecture, the performance degradation will become more and more

serious. Second, since several processors may handle data load/store operations simultaneously, data coherence

must be kept to ensure that different processors always use the “correct” data that has just been updated by other

processor. Such obligation for data coherence is quite a bottleneck to performance.

Figure 2.7: Shared Memory Architecture.

The shared memory architecture can further be divided into three models which are based on different manners

of memory access, as listed below:

• Uniform Memory Access Model (UMA): All processors in UMA are identical. They have equal access and

equal access time to shared memory, as shown in Figure 2.7 (a).

• Non Uniform Memory Access Model (NUMA): Global memory is not accessed uniformly by all processors.

Some processors attached to the same local memory have equal access time. However, the access to a
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non-local memory across link for these processors is slower. The NUMA model is described in Figure 2.7 (b).

• Cache-Only Memory Access Model (COMA): As illustrated in Figure 2.7 (c), COMA model is a specific

NUMA model where its local memories are used as cache (attraction memory) instead of main memory.

The difference between main memory and attraction memory is that when a data is accessed by non-local

processors, main memory keeps the space of data and gives a copy of data to processors to operate. On the

contrary, attraction memory migrates the data to wherever it is needed.

2.2.2 Distributed Memory

In distributed memory architecture, processors have their own local memory instead of sharing a global address

space. The separate memories are connected by message passing interconnection network such as Ethernet.

When a processor needs to access remote data in another processor, it uses the network link to communicate with

the remote processor. The diagram is depicted in Figure 2.8:

Figure 2.8: Distributed Memory Architecture.

Generally speaking, the key advantage of distributed memory architecture is that the problems of memory

conflicts (for example memory contention, race condition, cache coherence) can be alleviated since each processor

has its own private memory. However, the data access to remote memory consumes longer time than the access to

local memory, which may degrade significantly the performance if it happens too much inter-communications during

the execution of a program. Another shortcome of distributed memory is that programmers need to explicitly define

the mechanism of communications and synchronizations of processors for a given code, which augments much

programming complexity.
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2.2.3 Hybrid Memory

Hybrid memory architecture, also called distributed-shared memory architecture, is widely employed by modern high

performance computers. As Figure 2.9 shows, hybrid memory architecture consists of a group of shared memory

machines which are connected to each other via inter-connection network. A parallel computing machine designed

in hybrid memory architecture scales well with the increase of shared memory components, which makes it easier

to exploit the computing resources at the cost of increased programming complexity.

Figure 2.9: Hybrid Memory Architecture.

2.3 Computing Architectures

The current computer market is full of different hardware architectures produced by many vendors such as INTEL,

NVIDIA. These architectures are designed for solving different problems and each product has its advantages and

defects. In order to explore maximal computing capacity of a targeting architecture and learn about the performance

bottlenecks on this architecture for a given code, it is required to get better knowledge of the targeting architecture.

Therefore, we will express in detail several computing architectures used in the thesis work.

2.3.1 Hardware Characteristics

We start from highlighting some features which are widely used to characterize hardware capacity.

• Latency: refers to the time it takes for the execution of an operation. Its conventional unit of measurement is

microseconds.
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• Frequency: indicates the number of electronic pulses generated by a processor to synchronize operations of

its components per second. It can also be called “clock rate” with the units of measurement MHz or GHz.

• Bandwidth: signifies the amount of data which can be handled per unit of time. gigabytes/sec, megabytes/sec,

or bytes/cycle are widely used as units of measurement.

• Throughput: denotes the amount of floating-point operations which can be processed per unit of time. GFLOPS

is a common unit of measurement.

In a word, the evolution of computing architectures is mainly to design a hardware with lower latency, higher

frequency, higher bandwidth and higher throughput.

2.3.2 CPU Architectures

Figure 2.10: Modern CPU Architecture [90].

CPU is the electronic circuitry within a computer that executes a computer program by performing the basic

arithmetic, logical, control and input/output(IO) operations specified by instructions [130]. It is a general purpose

processor designed to perform a bunch of operations integrating the arithmetic and control operations while its per-

formance of these tasks is not good enough. Unlike the traditional structure of CPU as we illustrated in section 2.1.1,

where its components refer to processing unit and control unit, modern CPUs include memory units such as cache

and DRAM as depicted in Figure 2.10:
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• Cache: An intermediate memory layer made of SRAM which has higher bandwidth and lower latency com-

pared with main memory.

• DRAM: Dynamic random-access memory is primarily used as main memory. It is comprised of an array of

memory cells in which a transistor-capacitor circuit is used to store one bit of data based on its state of charge.

Due to capacitor leakage, DRAM needs to perform refresh process, which is a key difference to SRAM and

makes DRAM much slower than SRAM.

• DRAM: Static random-access memory uses multiple transistors in a latching circuit to store each bit of data.

Since it makes no use of transistors, SRAM does not need to be refreshed and it has higher efficiency on data

transfer comparing to DRAM.

2.3.2.1 Intel Broadwell

Figure 2.11: Broadwell Die Diagram [4].

Intel Broadwell is the fifth model generation of Intel Processor released in 2015 with 14nm die shrink of Haswell

microarchitecture [86]. Based on 14nm process technology, Broadwell reduces 49% feature neutral area and gains

better power efficiency due to improved Vmin (minimum operating voltage). Comparing to Haswell microarchitecture,

Broadwell introduces some new instruction set extensions including RDSEED, PREFETCHW, SMAP and Intel ADX. There



Chapter 2 Parallel Computing 16

are several instructions that are improved for lower latency in Broadwell such as FP MUL instructions and CLMUL

instructions. Broadwell also enlarges instruction queue, scheduler and second-level TLB for higher throughput.

Figure 2.11 denotes the die diagram of a Broadwell microarchitecture with 10 cores. As we can see, the

diagram can be divided into two main areas: Uncore and Core. Uncore is comprised of multiple modules designed

specifically for the server and workstation market space [62], such as LLC (Last Level Cache), Cbo (Caching Agent,

including Cache Box and Core Box), QPI (Intel QuickPath Interconnect), HA (Home Agent), iMC (Integrated Memory

Controller), IIO (Integrated I/O module), PCU (Power Control Unit) and UBox (Config Agent). Core contains mainly

the cores executing instructions and operations as well as two levels of caching hierarchy (L1 and L2).

2.3.2.2 Intel Skylake

Skylake is the 6th generation of Intel microarchitecture succeeding the Broadwell microarchitecture with 14nm pro-

cess (client) or 14nm+ process (server) technologies. The modified 14nm+ process has promoted transistor channel

strain which leads to higher frequency of processor (100 ⇠ 300 MHz) and better performance. Unlike Skylake (client)

which adopts ring topology on-die interconnect firstly introduced in Sandy Bridge architecture [137], Skylake (server)

implements a new networking topology called mesh interconnect architecture that mitigates the scaling bottlenecks

of latency and bandwidth as the number of cores increases in ring interconnect architecture. These two types of

Skylake machines are both used in the thesis work.

Note that Skylake introduces a number of new instructions in which the advanced vector extension using 512-

bit SIMD techniques (AVX-512) [101] is one of the most important feature contributing to parallel computing. The

AVX-512 instruction set in Skylake is composed of five separate sets:

• AVX512F: The fundamental of the 512-bit SIMD instruction extensions which is required for any implemen-

tations of AVX-512 extensions on microarchitectures. It is the extensions to AVX/AVX2 instruction sets using

EVEX prefix so as to support 512-bit registers, arithmetic operations, bitwise operations, data management,

parameter broadcasting, etc.

• AVX512CD: AVX512CD instruction set is designed specifically for conflict detection. Loops without address

conflict can be detected and then vectorized to improve performance.

• AVX512BW: BW refers to bytes (8-bit) and words (16-bit). This instruction set extends AVX-512 extensions

to cover 8-bit and 16-bit integer operations [102].

• AVX512DQ: DQ represents doubleword (32-bit) and quadword (64-bit). AVX512DQ instruction set introduces

some new 32-bit and 64-bit operations such as conversion and transcendental support.

• AVX512VL: One of an additional AVVX-512 instruction set dedicated to the compatibility of AVX-512 opera-

tions on registers with different vector length. For instance, XMM (128-bit SSE) registers and YMM (256-bit

AVX) registers.



Chapter 2 Parallel Computing 17

2.3.2.3 IBM POWER9

IBM POWER9 is a 14nm microarchitecture based on Power ISA (instruction set architecture) v3.0[61] firstly released

in 2017. The key component of POWER9 architecture is the 4-way or 8-way simultaneous multithreading core, as

SMT4 core and SMT8 core.

Figure 2.12: POWER9 SMT Core Diagram [7].

Figure 2.13: POWER9 SMT4 Chip Diagram where the cache hierarchy is illustrated [108].

Figure 2.12 shows the building blocks of POWER9 core. As we can see, a SMT core is composed of 1 or 2

super-slices (SMT4 or SMT8), along with an instruction fetch unit (IFU) and an instruction sequencing unit (ISU).

Each super-slice combines 2 slices together where each slice consists of a 64-bit vector and scalar unit (VSU)

coupled with load/store unit (LSU). Each slice is able to handle an address generation (AGEN) operation and a 64-

bit scalar operation including either a computational operation (fixed-point/floating-point) or a load/store operation
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at any given cycle. A super slice can be considered as a vector processing unit issuing two AGEN operations and a

128-bit vector operation every cycle. Besides, a POWER9 SMT core also contains 4 double-precision floating-point

units (DFUs), which allows for issuing double-precision floating-point multi-add/divide/square root instructions every

cycle. This design increases POWER9 CPU’s double-precision throughput.

The POWER9 processor has a 10MB eDRAM-based L3 cache chunk per SMT8 core (or shared between 2

SMT4 cores), as denoted in Figure 2.13. Different L3 cache chunks are linked by fabric interconnect to allow cores

sharing one L3 cache chunk accessing data residing in other L3 chunks. The POWER9 L2 cache is similar to

L3 cache as each 512KB L2 cache is associated with a SMT8 core or two SMT4 cores. Moreover, the POWER9

processor has a 32KB L1 instruction cache in conjunction with a 32KB L1 data cache per SMT4 core.

2.3.3 GPU Architectures

GPU (graphics processing unit) is originally a specialized electronic circuit dedicated to rapidly handle image pro-

cessing computations for output to a display device. Back then, it was widely used in personal computers, work-

stations or game consoles, only dealing with graphical operations. However, with more and more emergence

of programmable GPUs and programming interfaces, GPU’s highly parallel architecture has been found more

performance-efficient than CPU architecture performing compute-intensive and data parallel calculations. Thus,

a new software concept called “general-purpose computing on graphics processing unit” has been proposed and

largely developed which allows GPUs handling general-purpose applications in different domains such as geometric

computing, bioinformatics, computational finance, scientific computing and so on [34].

As denoted in Figure 2.14, GPU contains thousands of GPU cores settled massively in parallel so as to hide

latency and maximize throughput. Comparing GPU core with CPU core, GPU core is designed for data-parallel

computations with simple control logic whereas CPU core is rather heavy-weight, aimed at handling efficiently

complex control logic such as an algorithm composed of multiple conditional operations (if. . .else).

Regarding to GPU caches, state-of-the-art GPUs are being designed with sizable hardware-managed multi-

level caches, such as L1 cache, L2 cache and texture cache [85]. The cache memory has been enlarged with

the evolution of modern GPUs. For example, the Nvidia Tesla Volta GPU [88] has 6MB last level cache while the

latest released Nvidia Ampere Tensore Core GPU [92] has 40MB last level cache. Note that the last level cache

size of Nvidia Ampere architecture is competitive with that of Intel Skylake architecture containing up to around 30

cores. But if we consider the average cache memory which can be used for each core, Nvidia Ampere has 5KB last

level cache per core and that of Intel Skylake is 1.375MB per core. We can say that GPU is composed of tens of

hundreds of cores with relatively small caches. On the contrary, CPU is composed of tens of cores with relatively

large caches.

Furthermore, modern GPUs consume significant amount of power as the cost of performance optimization.

For example, the Nvidia Tesla Pascal GPU [87] has a TDP (thermal design power) level of 300W for maximum
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Figure 2.14: Modern GPU Architecture [90], where “green square” refers to GPU core, “yellow rectangle”
is GPU control unit, “orange rectangle” signifies GPU cache or shared memory.

performance. In contrast, Intel Xeon Gold 6148 has a maximum power consumption of 150W. Since more and more

GPUs have been widely used in high-performance computing (HPC) machines, the optimization of GPU power

efficiency has become a research hotspot to make supercomputers in future more friendly in economy and energy.

There are some research work that has been carried out to optimize power efficiency of GPUs from a hardware

perspective, such as saving static energy in L1 and L2 caches [128], using filter-cache to reduce accesses to

instruction cache [72] and so on. From a developer perspective, enhancing power efficiency of GPUs for a specific

application is mainly to optimize codes so as to make maximal use of computing resources.

In the following part of this section, we will introduce several GPU microarchitectures related to our research

work.

2.3.3.1 Intel Gen9.5

Intel Gen9.5 is the 14nm+ microarchitecture of Intel’s integrated graphics processing unit (IGPU) used in several

Intel’s CPU microarchitecture such as Kaby Lake, Coffee Lake, etc. Unlike dedicated graphics cards which have

their own RAM, IGPUs share the system RAM with the CPU.

Figure 2.15 shows the main components of Intel Gen9.5. Overall, Intel Gen9.5 is comprised of three parts:

unslice, display, as well as slice. Among them, slice is responsible for calculations. It is a cluster of subslices. Each

subslice consists of 6 or 8 EUs which are dedicated to execute 3D shaders and computational kernels. Based

on different scaling models, Intel Gen9.5 is allowed to have maximum 72 EUs and minimum 12 EUs. Each EU is
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composed of 7 threads sharing the same instruction fetch unit and piplined to 4 instruction issue units.

Figure 2.15: Intel Gen9.5 Diagram [5].

2.3.3.2 Nvidia Pascal

Nvidia Pascal microarchitecture was firstly introduced in 2016 with the release of Tesla P100 card. As the successor

to Nvidia Maxwell microarchitecture, GP100 architecture provides some improvements such as enhanced peak

throughput (For Tesla P100, 5.3 TFLOPS in double-precision, 10.6 TFLOPS in single-precision). The number of

FP32 (single-precision floating-point) cores and FP64 (double-precision floating-point) cores in GP100 architecture

are respectively 3840 and 1920. Thus, the ratio of FP32 units to FP64 units for GP100 is 2. By comparison, the

ratio of FP32 units to FP64 units in Maxwell architecture is 32. Furthermore, GP100 can handle FP16 (half-precision

floating-point) operations which deliver great speedups for many deep learning algorithms.

With respect to memory, the overall memory size of GP100 is enlarged including register, L2 cache and shared

memory. HBM2, as the second generation of High Bandwidth Memory, is firstly adopted in GP100 architecture which

offers three times higher memory bandwidth compared with the Maxwell GM200 GPU, in which GDDR5 (graphics

double data rate type 5) memory is used. GP100 also use a new high-speed interconnect technology called NVLink

to increase performance for both CPU-to-GPU and GPU-to-GPU inter-communications as a substitution of PCI Ex-

press (PCIe) [9]. The NVLink implementation in GP100 (NVLink 1.0) delivers up to 160GB/s bidirectional bandwidth

with maximum 4 links. Besides, GP100 adds two hardware features to improve unified memory functionality: 49-bit

virtual addressing support and page faulting mechanism. Due to these features, GP100 unified memory offers a

system-wide virtual address space and it can be accessed simultaneously by CPU and GPU.

A full GP100 is composed of 60 streaming multiprocessors (SMs), a 4096KB L2 cache, eight 512-bit memory

controllers, four 4096-bit HBM2 stacks and 4 NVLinks. The number of SMs may vary for different GP100 products.
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For example, the Tesla P100 only enables 56 SMs. Each SM contains an instruction cache, a texture/L1 cache, 4

texture units, a 64KB shared memory and 2 processing blocks. Each processing block is comprised of 32 FP32

cores, 16 FP64 cores, an instruction buffer, a warp scheduler, 2 dispatch units and a 128KB register file, as illustrated

in Figure 2.16.

Figure 2.16: Nvidia Pascal GP100 Streaming Multiprocessor Unit [87].

GP100 and earlier Nvidia GPUs employ a SIMT (single instruction, multiple threads) model which resembles in

the SIMD model allowing multiple execution units fetching the same instruction and processing with multiple data.

The SIMT model groups a set of 32 threads as a “warp” in which all threads execute the same instruction at a given

cycle for parallel processing. A key feature of SIMT model which SIMD doesn’t have is that all threads in a warp

are allowed to have divergent execution paths. This feature enables Nvidia GPUs to deal with thread-level branch

divergences at the cost of performance degradation. Moreover, because all threads in a GP100 warp shares the

same program counter and call stack, the execution of divergent branches are serialized. During the execution,

one portion of threads in the warp become active to complete if branch, then the other portion of threads within

a warp change their state from inactive to active and handle else branch. After the end of else branch, the warp

reconverges to the original state. Such behavior may yield false result or deadlock for several active threads in if

branch requiring data which should have been updated or guarded by other threads in else branch. Hence, GP100

is unfriendly to handle thread-aware algorithms with data dependency among threads in a warp.
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2.3.3.3 Nvidia Volta

Nvidia Volta is the microarchitecture succeeding Pascal architecture firstly released in 2017 with the Tesla V100

product. A full GV100 consists of 84 SMs, a 6144KB L2 cache, eight 512-bit memory controllers, four 4096-bit

HBM2 stacks and 6 NVLinks. Note that the Tesla V100 uses 80 SMs.

As we can see in Figure 2.17, each SM is composed of a L1 instruction cache, a 128KB combined L1 data

cache and shared memory subsystem where shared memory size can be set up to 96KB, 4 texture units as well

as 4 processing blocks. Each processing block is comprised of 16 FP32 cores, 8 FP64 cores, 16 INT32 cores, 2

mixed-precision tensor cores (capable of handling FP64, FP32, FP16 operations), a L0 instruction cache, a warp

scheduler, a dispatch unit and a 64KB register file. In total, a Tesla V100 contains 5120 FP32 cores, 2560 FP64

cores, 5120 INT32 cores, 640 tensor cores, 320 texture units and 20MB register file size.

Figure 2.17: Nvidia Volta GV100 Streaming Multiprocessor Unit [88].

Comparing to GP100 architecture, GV100 has many advances from both hardware and software perspectives.

Since L1 data cache is merged with shared memory, L1 cache in GV100 benefits from the low latency and high

bandwidth of shared memory. Therefore the performance gap between a code with and without the use of shared

memory is significantly narrowed. GV100 supports 6 NVLinks 2.0 delivering in total 300 GB/s bidirectional bandwidth

which is around 2⇥ higher than the interconnect bandwidth of GP100. The HBM2 memory used in GV100 can

yield maximum 900 GB/s memory bandwidth which is higher than 700 GB/s in GP100. Besides, GV100 add a new
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“independent thread scheduling” feature to SIMT model, where each thread within a warp maintains its own program

counter and call stack so as to keep an independent execution state. Due to this new feature, statements from if

branch can be interleaved with statements from else branches and vice versa, making GV100 capable of carrying

out thread-aware algorithms where data-dependent executions are required among threads in a warp. With respect

to unified memory in GV100, it is improved by the introduction of a new Access Counter and the Address Translation

Services (ATS) support over NVLink.

2.3.4 Heterogeneous Architecture

Heterogeneous architecture refers to a hybrid architecture combined through memory bus (PCIe, NVLink) with

CPUs as the host and some processing units as the devices, including GPUs, DSPs (digital signal processors) [48],

FPGAs (field-programmable gate arrays) [35] and so on. A host is responsible for initializing the environment and

launching the application. A device, also called as an accelerator, is dedicated to handle the compute-intensive parts

of the application so as to enhance the performance of application. The calculations running on a heterogeneous

architecture is called heterogeneous computing, which is a popular trend in HPC domain. The most widely used

heterogeneous architecture is abstracted as CPUs + GPUs, including many different combinations such as Intel

Broadwell CPUs + 2 Nvidia P100 and IBM Power9 CPUs + 4 Nvidia V100.

2.4 Parallel Programming Models

A parallel programming model refers to an abstraction of underlying hardware architecture that allows for the ex-

pression of both algorithms and data structures. It is different from programming languages with the invocation of

an abstract execution model which cannot be understood by programming languages. In other words, a parallel

programming model exists independently of the choice of the programming language. It bridges the gap between

hardware and software.

There are mainly two classes of parallel programming models, which are individually called process interaction

and problem decomposition. With regards to process interaction, it denotes that the parallel processes are able to

communicate with each other. The most common forms of process interaction are shared-memory and message-

passing. There is also implicit interaction in which the process interaction is invisible to the programmer, such as

domain-specific languages and functional programming languages.

As for problem decomposition, it specifies the way in which the child processes of a program are formulated.

Task parallelism is one of the problem decomposition which focuses on processes. Data parallelism describes a

way of problem decomposition by performing operations in parallel on a data set. There is also implicit parallelism

which reveals nothing to the programmer, such as automatic parallelization support in compilers.
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2.4.1 Low-Level APIs

2.4.1.1 Message Passing Interface

Message Passing Interface (MPI) is a message-passing library interface specification designed for functioning on

a wide variety of parallel computing architectures, allowing convenient C, C++, Fortran bindings [47]. It addresses

principally the message-passing parallel programming model, in which multiple processes communicate by calling

library routines to send and receive messages to other processes.

MPI is a standard, not an implementation. There are many implementations of MPI, such as OpenMPI (an

open source MPI-2 implementation) [51] or MPICH2 (a freely available, portable implementation of MPI developed

originally by Argonne National Laboratory) [77]. In most MPI implementations, a fixed set of processes is created at

initialization of program. Moreover, these processes may execute different programs, which is a big distinction from

SPMD model where every process executes the same program.

MPI has been designed by a community of parallel computing vendors, computer scientists, and application

developers. Nowadays MPI is still the most widely used model in HPC domain.

2.4.1.2 CUDA

CUDA is a general-purposed parallel computing platform and programming model created by NVIDIA [89] that

leverages Nvidia GPUs to solve complex computational problems. It comes with a software environment that allows

developers to use C, C++, Fortran, Python or other languages. This accessibility makes it easy for developers to

manipulate Nvidia GPUs in parallel programming.

The basic CUDA processing flow follows the pattern: 1. Copy data from host (CPU memory) to device (GPU

memory); 2. Invoke kernel to do operations on device data; 3. Copy back data from device to host. Since CUDA

programming model is primarily asynchronous, during the execution of kernel, the host CPU can also execute other

tasks simultaneously.

CUDA programming model provides three key abstractions: a hierarchy of thread groups, a hierarchy of memory

groups and barrier synchronization. These three abstractions works together to explore maximal computing power

of accelerators.

When a kernel is launched from the host side, a large number of device threads are generated and each thread

executes the statements specified by the kernel [33]. All threads invoked by this kernel composes a grid. A grid

is consisted of many thread blocks. Each thread block contains a group of threads which can cooperate with each

other by using block-local synchronization and block-local shared memory.

Figure 2.18 show the CUDA thread hierarchy. Theoretically, CUDA provides the organization of threads in three

dimension. But in practice, a grid is usually organized as a 2D arrays of blocks and a block is composed of a 3D

array of threads.
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Figure 2.18: CUDA Thread Hierarchy [33].

Comparing to CPU memory hierarchy, CUDA memory hierarchy exposes a group of memory types which are

programmable, such as registers, shared memory, local memory, constant memory, texture memory and global

memory. The programmable types of memory makes CUDA programming model a very efficient tool for numerical

calculation.

As shown in Figure 2.19, global memory, constant memory and texture memory resides in device memory

with high latency and low bandwidth. Global memory is both readable and writable, while constant memory and

texture are only readable. Constant memory must be declared with the attribute __constant__. Local memory

is allocated for variables in a kernel that are eligible for registers but cannot fit into the register space. Local

memory has high latency and low bandwidth because it actually resides in the same physical location as global

memory. Shared memory is on-chip with much lower latency and higher bandwidth comparing to global memory.

To get use of shared memory, variables in kernel function need to be decorated with __shared__ attribute. Shared

memory is visible among threads in a thread block. In other words, it is a tool for inter-thread communication.

The __syncthreads() function must be used to access to shared memory without producing potential data hazard.

Registers are specified with the highest bandwidth and the lowest latency since they are thread private. Variables

declared in a kernel function without any other type qualifiers is generally stored in a register residing on each

thread. However, register are scarce resources, there is a limitation of registers per thread depending on different

GPU devices. Thus, if too much registers are used, there will be few thread blocks executing concurrently, leading

to an extreme low occupancy and bad performance.

CUDA programming model provides two levels of barrier synchronization: system-level and block-level. System-
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Figure 2.19: CUDA Memory Hierarchy [33].

level synchronization refers to the synchronization between host side and device side. cudaDeviceSynchronize()

function can be used to block the host process until all CUDA operations have been completed. Block-level synchro-

nization aims to barrier all threads in a thread block until they reach the same point in execution. It can be achieved

by using the function __syncthreads(), as we’ve mentioned above.

Besides, CUDA provides asynchronous multi-streams to enable concurrency of CUDA operations such as ker-

nel launches and memory copies. Operations within the same stream are ordered and unable to overlap. By

comparison, operations marked with different streams can overlap to achieve concurrency [78].

2.4.1.3 OpenCL

OpenCL is an open industry standard and framework for programming a heterogeneous collection of CPUs, GPUs,

and other processors or hardware accelerators. Unlike CUDA only supporting Nvidia GPUs, OpenCL targets to a

wide range of accelerators which are considered as OpenCL devices. OpenCL device is, in fact, an abstract term

describing a physical architecture. Each OpenCL devices is made up of many compute units which can be further

divided into a group of processing elements.

With regard to execution model, two terms "work-group" and "work-item" are used to describe OpenCL kernel

where computations occur. As an example, if we choose a Nvidia Pascal card as OpenCL device, then its compute

unit is equal to CUDA streaming processor and its processing element is mapped into CUDA thread. The OpenCL

work-group refers to as CUDA thread block, and the OpenCL work-item equals to the CUDA threads in the thread

block.
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OpenCL memory model characterizes two fundamental memory regions: host memory and device memory.

The device memory is divided into four named address spaces: global memory, constant memory, local memory

and private memory. If we map them into CUDA terms, global memory and constant memory are same, local

memory refers to as CUDA shared memory and private memory equals to CUDA registers.

Due to the abstracted memory and execution model, the key feature of OpenCL is portability. However, OpenCL

is not performance portable across platforms, especially comparing to CUDA programs running on Nvidia GPUs. A

study at Delft University from 2011 that compared CUDA programs and their straightforward translation into OpenCL

C found CUDA to outperform OpenCL by at most 30% on the Nvidia implementation. The performance differences

could mostly be attributed to differences in the programming model (especially the memory model) [45].

2.4.2 Directive-based Programming Models

Apart from the basic programming models introduced above, which are relatively at low-level, making them difficult

to learn and to maintain, there are some directive-based programming models which are much more simple and

easy to use, such as OpenMP, OpenACC, XMP [3][12], etc. In what follows we introduce several directive-based

programming models that we use in our thesis.

2.4.2.1 OpenMP

OpenMP is an application programming interface that supports portable parallel programming in C/C++ and Fortran

across a wide range of architectures including multicore nodes and chips, NUMA systems, GPUs, FPGAs, etc. The

most useful component of OpenMP API is called compiler directives. The structure of compiler directive is shown

as follow:

Fortran:!$OMP PARALLEL LOOP PRIVATE(A)

C/C++: #pragma omp parallel loop private(a)

Besides compiler directives, OpenMP also provides runtime library routines to set and query the number of

threads in parallel region or even initialize the parallel loop. Furthermore, certain environment variables can be set

manually to either specify loop schedule or to set number of threads, etc. Note that other programming models such

as Intel Cilk+ [1] and TBB [71] also support data and task parallelism as OpenMP.

The execution model of OpenMP is called as the fork-join model. When an initial thread encounters a parallel

region defined implicitly or explicitly by OpenMP directives, it generates a team of threads to accomplish the work

inside this region concurrently. At the end of the parallel region, all members of the team join together and the

program resumes being as a single thread of execution.
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OpenMP 4.0 starts to provide a set of directives to perform offload computing. Such functionality is achieved by

using the directive target. If a region is described by target, the data and code in this region may be offloaded

to an available device. It should be noted that the host device may offload target regions to multiple target devices

and OpenMP provides an interface to explicitly choose the target device. If there is no available target device,

all target regions will be executed on the host device. In general, The OpenMP API defines two types target

which are respectively dedicated to data mapping and code parallelization. The first one is composed of target

data, target enter/exit data, target update and declare target which specify that variables or functions are

mapped to or from a device. The second one consists teams, distribute (simd), distribute parallel for

(simd). There are already some implementations of OpenMP API allowing for target directive. For instance, the

IBM XL C/C++ V13.1.5 and XL Fortran V15.1.5 compilers are one of the first compilers that provide support for

Nvidia GPU offloading using OpenMP 4.5 specification.

The OpenMP API provides a relaxed-consistency, shared-memory model where all OpenMP threads have ac-

cess to a common place to store and retrieve data and each thread is allowed to have its own temporary view of

the memory which allows the thread to cache variables and thereby to avoid going to memory for reference to a

variable [10]. However, such relaxed-consistency model may cause data races and thus lead to incorrect result

of the program. In order to avoid the memory consistency issue, OpenMP provides flush operations to enforce

consistency between the temporary view and memory which can be specified using the flush directive.

2.4.2.2 OpenACC

OpenACC is a user-driven performance-portable accelerator programming model supporting implicit offload com-

puting by uses of compiler directives, library routines, and environment variables in C/C++ and Fortran [94]. In

contrast to CUDA, it is much easier for OpenACC to port CPU-based original code to multiple architectures with-

out any significant structural changes, which leads to lower portability and more complexity for code maintenance.

Tetsuya Hoshino and his group studied the performance implications of OpenACC for two microbenchmarks and

one real-world CFD application. The evaluations indicate that the current OpenACC compilers (PGI, HMPP, Cray)

achieve approximately 50% of performance of the CUDA versions [59].

As a OpenMP-like directive-based programming model, OpenACC gives a basic directive format shown as

follow:

Fortran:!$acc directive-name [clause-list]

C/C++: #pragma acc directive-name [clause-list]

The compiler directives are used to accomplish data transfers between host and device, kernel execution. data
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or enter data/exit data are adopted to achieve structured and unstructured data mapping. parallel loop or

kernel directives invoke parallel region executed on devices. OpenACC also provides a set of runtime library

routines as OpenMP. These routines can accomplish a large amount of works such as getting the number of

devices or retrieving the device pointer by a host pointer.

The execution model of OpenACC is similar to that of OpenMP, which is host-directed execution with attached

parallel accelerators, such as GPUs [13]. In the case of treating the multicore CPU as a device, the initial host

thread may initiate a team of threads and perform parallel execution for code regions decorated by parallel loop

and kernel directives.

OpenACC exposes coarse-grained, fine-grained and vector parallelism via gang, worker, and vector abstrac-

tions. In terms of CUDA terminology, a number of gangs is equal to a set of thread blocks. Each gang (thread block)

has one or more workers, referring to as warps. Vector parallelism is for SIMD or vector operations within a worker

(warp), which equals to CUDA threads in a warp.

OpenACC also supports concurrent activity queues for a targeting device where the host thread may enqueue

operations of data transfer or kernel execution onto multiple device queues. The host thread may continue execution

as the enqueued operations are handled asynchronously with the utilization of async directive clause or wait for all

operations in a queue to complete with the use of wait async directive.

The memory model of OpenACC manages implicitly data movement between the host and device based on

specific OpenPACC compiler directives. If a device shares memory with the host thread, new copies of the data will

be created for the device and there is no data movement occurring. If a device has a discrete memory with the host

thread, the space will be allocated in device memory and the data will be copied between the host memory and

device memory. Moreover, OpenACC does not provide an interface for explicit management of shared memory or

hardware caches. On the contrary, they are managed implicitly by the compiler with hints from the programmer in

the form of directives [13].

2.4.3 Libraries

There are many programming libraries which have been developed and used for parallel computing such as Kokkos,

SYCL, RAJA, etc. We intend to introduce Kokkos and SYCL which have be implemented in our thesis work in detail.

2.4.3.1 Kokkos

Kokkos is a C++ based programming model for writing performance portable applications targeting complex node ar-

chitectures with N-level memory hierarchies and multiple types of execution resources. It currently can use OpenMP,

Pthreads and CUDA as backend programming models. The principal abstractions of Kokkos are parallel execution

and data structure [43].
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Concerning about parallel execution, Kokkos uses “execution space” term to describe the targeting architec-

ture where code can actually be executed. It also provides three execution patterns which are called respectively

parallel_for, parallel_reduce and parallel_scan to invoke parallelism. “Execution policy” is adopted to deter-

mine the manner how a parallel function is executed, such as setting the number of threads of kernel.

Kokkos provides a set of abstractions to manage data. Firstly, it uses “memory space” term to specify physical

location of data and certain default memory access patterns. Secondly, a term named “memory layout” is used to

express the mapping style of data array. Finally, Kokkos uses “memory trait” term to tell compiler how to access a

data structure. There are different traits like atomic access, random access, etc.

The key advantage of Kokkos is that Kokkos gives abstractions for data layout management, making it a strong

programming model to obtain high performance portability, while other programming models such as OpenMP and

OpenACC are not able to address memory access pattern. However, Kokkos currently only supports 1 MPI process

using at most one manycore device, which means that it is impossible to use OpenMP directives invoking multiple

parallel threads targeting to multiple devices. In other words, Kokkos considers OpenMP and CUDA as same level

execution space. Programmers may either choose OpenMP or CUDA to do parallel computing. But they cannot use

OpenMP and CUDA at the same time.

2.4.3.2 SYCL

SYCL is a C++ standard library (precisely, an open industry standard) that enables single-source heterogeneous

programming under OpenCL backend (CUDA backend support is under development). It aims at providing the

portability and efficiency of an application across a wide range of architectures, meanwhile, mitigating the complexity

of heterogeneous programming by using higher-level C++ abstraction features such as templates, classes, and

lambda functions. There are several available implementations of SYCL developed by different vendors including

DPC++, ComputeCPP, triSYCL and hipSYCL as shown in Figure 2.20:

The SYCL execution model is comprised of the SYCL application execution model and the SYCL kernel execu-

tion model which targets respectively to define the execution of a SYCL program on host and device. The application

execution model defines the basic characteristics of “accelerators” attached to a host such as platform, context

and device. It also manages the launch and execution order of kernels by defining command queue, command group

and kernel function. The kernel execution model defines the coarse-grained and fine-grained index space of a

kernel function by using work-group and work-item.

With reference to SYCL memory model, SYCL use mainly two classes buffer and accessor to handle memory

operations between host and device such the allocation and data transfer of memories. Based on different ac-

cessors, SYCL allows users to access different memories on device including global memory, constant memory,

local memory and private memory.

Besides, SYCL offers several data parallel functions such as parallel_for, parallel_work_in_group and
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Figure 2.20: SYCL Implementations [8].

parallel_work_in_item to achieve hierarchical parallelism for a kernel as an outer loop for work-group and an

inner loop for work-item. The synchronization between work-items within a work-group can be realized by a

work-group barrier. On the contrary, there is no mechanism for synchronization between work-groups [69].

2.4.3.3 Others

RAJA [58] is a collection of C++ software abstractions, being developed at Lawrence Livermore National Laboratory

(LLNL), that enables architecture portability for HPC applications. StarPU is a task programming library for het-

erogeneous multi-core architectures which offers either the StarPU’s high level GCC plugin pragmas, StarPU’s rich

C/C++ API, or OpenMP pragmas to handle task scheduling and data transfer on available CPUs and GPUs [11].

ArrayFire is a high performance software library for parallel computing with an easy-to-use API. Its array based

function set makes parallel programming more accessible [135]. OCCA (oca-rina) is an open-source library which

aims to provide a unified API for interacting with backend device APIs (e.g. OpenMP, CUDA, OpenCL) targeting to

different architectures (CPUs, GPUs, FPGAs) [84]. DLB (Dynamic Load Balancing) library is dedicated to improve

the load balance of the outer level of parallelism (e.g. MPI) by redistributing the computational resources at the inner

level of parallelism (e.g. OpenMP) with LeWI (Lend When Idle) algorithm [2].
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2.4.4 Comparison of Implemented Programming Models

Table 2.1 shows the comparison of several programming models implemented in our thesis work, including CUDA,

Kokkos, OpenMP (thread + offload), OpenACC, and SYCL. From the perspective of thread hierarchy, all program-

ming models provide a number of abstract levels of parallelism, enabling themselves to map to hardware with

appropriate features except for CUDA, which only provides three levels of parallelism targeting specifically to the

Nvidia GPUs.

Table 2.1: Comparison of implemented programming models.

Programming Models Thread Hierarchy Memory Hierarchy Targeting Architectures

CUDA block, warp, thread

Programmable shared memory

Nvidia GPUs

Kokkos team, thread, vector CPUs, Nvidia GPUs

SYCL work-group, work-item CPUs, Intel GPUs

OpenMP team, thread, simd
Lack of interface to on-chip memory

CPUs, Nvidia GPUs

OpenACC gang, worker, vector CPUs, Nvidia GPUs

From the perspective of memory hierarchy, CUDA, Kokkos, and SYCL provide an interface to explicitly man-

age shared memory while OpenMP, OpenACC both manage on-chip memory implicitly with the utilization of com-

piler directives or high-level functions, giving users no interface to programme shared memory explicitly. Note

that CUDA uses __shared__ to declare variables on shared memory. Kokkos makes use of the member function

team_shmem().get_shmem() to explicitly get an allocation on the scratch pad memory. SYCL provides access to

allocated shared memory via local memory if a SYCL accessor has the access target target::local.

From the perspective of targeting architectures, CUDA is dedicated to targeting to Nvidia GPUs. Kokkos sup-

ports multicore/manycore processors (x86, OpenPower, ARM, etc) and Nvidia GPUs. SYCL is capable of targeting

to any CPU (x86, OpenPower, ARM), Nvidia/AMD/Intel GPUs as well as Intel/Xilinx FPGAs based on different

implementations. OpenMP and OpenACC may port codes to multicore CPUs and Nvidia GPUs.

2.5 Profiling Tools for Performance Analysis

Performance analysis is significant for parallel programming to mitigate bottlenecks. There are many profiling tools

which are widely used for programmers to optimize their codes. In what follows several tools related to our thesis

work will be introduced.
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2.5.1 nvprof

nvprof is one of NVIDIA profiling tools that enables users to collect and view profiling data from the command-line.

As a light-weight command-line profiler, nvprof is very handy to profile CUDA applications for quick checks such as

collecting a summary of run time consumption for all the kernels and memory transfer operations.

Besides, nvprof also offers users a way to perform more detailed analysis collecting a list of available events

and metrics during kernel execution where an event refers to a hardware counter describing a specific countable

activity, action or occurrence on a CUDA device such as active_cycles_pm (number of cycles a multiprocessor

has at least one active warp) and a metric is a property of a CUDA application characterized by one or more event

values such as achieved_occupancy (ratio of the average active warps per active cycle to the maximum number of

warps supported on a multiprocessor).

Furthermore, nvprof is capable of remote profiling by enabling the command-line option –output-profile so as

to obtain a data file which may be later imported into nvprof and the NVIDIA Visual Profiler (nvvp) for analysis.

2.5.2 NVIDIA Visual Profiler

The NVIDIA Visual Profiler (nvvp) offers different views including the Timeline View, the Analysis View, the Source-

Disassembly View and so on to allow users to analyze potential performance bottlenecks of their CUDA applications

and thus find a way to mitigate those bottlenecks and eventually optimize the performance [91].

The Timeline View consists of a set of timeline rows where each row shows the start and end times of the

activities corresponding to the type of this row which may represent a process for the profiled application, a CPU

thread performing either a CUDA driver or CUDA runtime API call as well as OpenACC and OpenMP directives, an

estimate of the compute utilization of a device over time, a context summarizing all memcpys of a type performed

during the profiling (device-to-host, host-to-device, device-to-device, and peer-to-peer), a CUDA default or created

stream undergoing a series of memcpys and kernel executions.

The Analysis View provides users a straightforward analysis which may be performed in guided or unguided

mode exploring some detailed performance information of a CUDA application which indicates the kernel perfor-

mance limiter, the kernel latency, the PC sampling as well as the memory statistics during the execution.

The Source-Disassembly View shows the hotspots and profiling data analyzed and aggregated for a kernel at

the source and assembly instruction level where the hotspots indicate the lines of source code that may generate

the performance bottlenecks and they are colored according to different level of importance (low, medium or high).

In addition to the results displayed in the timeline, analysis and source-disassembly views, users may also collect

the specific event and metrics values of a memory copy or kernel execution in the GPU Details View as what they

can do with the command-line profiler, nvprof. Moreover, there are some other views such as CPU Details/Source

View, OpenACC Details View, OpenMP Details View which are provided in nvvp to allow users to perform a complete

performance analysis.
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Monte Carlo Neutron Transport Simulation

In this chapter, we will elaborate some aspects of nuclear reactor physics which are considered in Monte Carlo

neutron transport simulation along with the context of Monte Carlo transport codes for the HPC.

3.1 Nuclear Reactor Physics

A nuclear reactor is a system which generates heat from nuclear fission where a self-propagating nuclear chain

reaction happens due to the collision of a neutron with an atomic nucleus. Each collision produces energy and

releases neutrons which may be used to trigger more collisions and free more neutrons to form the chain reaction.

Based on different characteristics as the types of fuel or coolant and so on, there are many types of nuclear reactor

such as Pressurized Water Reactor (PWR), Boiling Water Reactor (BWR), Advanced Gas-cooled Reactor (AGR),

Fast Breeder Reactor (FBR), etc. The main components of fuel are UO2 and PuO2 that consists uranium (233U,

235U) and plutonium (239Pu) nucleus. The coolants of reactors include H2O, D2O, CO2, Na and so on.

Nuclear reactor physics is the physics of neutron fission chain reacting systems. It encompasses those appli-

cations of nuclear physics and radiation transport and interaction with matter that determine the behavior of nuclear

reactors [115]. As a relatively mature discipline which has originated in the middle of the twentieth century and

evolved for tens of years, nuclear reactor physics has now become the fundament directing the uses of nuclear

energy for electricity production, neutron physics research, radiation therapy and so on. Nowadays, nuclear energy

provides 10% of the world’s electricity from about 440 nuclear reactors. In France, there is about 75% of its electricity

derived from nuclear power plants.

The study of nuclear reactor physics is intended to understand and predict the behavior of nuclear reactor which

is determined by the transport of neutrons and their interaction with nuclides composing the materials within a

reactor. In other words, it can be summarized as the study of neutron transport, calculating macroscopic physical

quantities such as the density of particles, the reaction rates, the heat power. Mathematically, this process can be
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abstracted as to solve the neutron transport equation derived from the Boltzmann transport equation that is firstly

proposed by Ludwig Boltzmann in 1872 [116].

3.2 Neutron Transport Simulation

3.2.1 Neutron Transport Equation

The neutron transport equation is a time-dependent linear equation which indicates a balance statement (neu-

tron production equals to neutron losses) in the phase space element drdΩdE for the angular neutron density

 (~r, Ω̂, E, t) at time t and kinetic energy E, with the position vector ~r and the unit vector in travel direction Ω̂ (equals

to
~v(E)

|~v(E)|
, where ~v(E) signifies the neutron velocity vector), as described in Equation 3.1. It should be noted that

we are interested in the stationary form of the following equation without consideration of the first term @n/@t in the

thesis work.
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(3.1)

On the left hand side:

• @n/@t: The partial derivative of the number of neutrons with respect to time t inside the phase space element.

• streaming: The time variation of neutrons in the phase space element caused by travel without nuclear

reactions.

• collision: The number of neutrons inside the phase space element that encounters collisions (radiative capture

+ scattering) at time t.

On the right hand side:

• scattering: The number of scattered neutrons at time t moved inside the space area from other areas.
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• fission: The prompt fission neutrons produced inside the space area due to fission at time t where �(E) refers

to the energy spectrum of the fission neutrons and ⌫(E0) means the average number of neutrons generated

per fission.

• external source: The neutrons provided by external source that is independent of the neutron flux at time t

inside the phase space element.

With reference to Σt, Σs and Σf denoted in Equation 3.1, they are respectively the macroscopic total cross

section, the macroscopic scattering cross section and the macroscopic fission cross section which characterize the

probability of a given reaction that a neutron may experience per unit path length traveled in the material. The details

of cross section will be elaborated in section 3.2.2.

Note that the scattering, radiative capture and fission mentioned above are different types of nuclear reactions

that happens during the bombardment-driven process. Scattering describes the interaction without changing the

nature of the target nuclide. It can be further divided into two types: elastic scattering and inelastic scattering. In

an elastic scattering process, the kinetic energy and momentum of the “incident neutron-target nucleus” system is

conserved and there is no energy transferred into nuclear excitation. By contrast, in an inelastic scattering reaction,

the momentum of the system is preserved while the kinetic energy of the system is not conserved due to the fact

that some energy of the incident neutron is transferred into nuclear excitation. Such energy transfer leaves the target

nucleus in a short-lived energy state and ends up with the emission of one or more gamma rays turning the nucleus

from an excited state to the ground state. In a radiative capture process, the target nucleus forms a compound

nucleus in an excited state of energy by absorbing the incident neutron and is de-excited by emitting gamma rays.

As for fission, the target nucleus captures the incident neutron and splits into lighter nuclei along with the production

of several neutrons and the emission of gamma rays, as well as the release of a large amount of energy.

Solutions to the neutron transport equation can be divided into fixed source problems and eigenvalue problems

according to whether an external neutron source exists [133]. Eigenvalue problems can be further classified into

(k, �, �, ↵)-eigenvalue problems [122][14][140][29] based on different ways to reach criticality of a steady-state

multiplying system in the absence of external source as described in Equation 3.2.

M ·  (~r, Ω̂, E) = F ·  (~r, Ω̂, E) (3.2)

where:

• M : The transport operator (Ω̂ ·r+ Σt(~r, E)�
R1

0
dE0

R
4π

dΩ0
Σs

⇣
~r, E0 ! E, Ω̂0 ! Ω̂

⌘
).

• F : The fission operator (χ(E)
4π

R1

0
dE0

R
4π

dΩ0⌫ (E0)Σf (~r, E
0)).

If we perform a k-eigenvalue calculation for Equation 3.2, the problem is reduced to determine the effective

multiplication factor keff and its corresponding eigenfunction  eff (~r, Ω̂, E).
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M ·  (~r, Ω̂, E) =
F

keff
·  (~r, Ω̂, E) (3.3)

The effective multiplication factor indicates the ratio of the neutron production to the neutron loss which is used

to characterize the subcritical, critical and supercritical states of a multiplying system listed as follow:

• keff < 1: Subcritical state, the neutron population of system decreases in time.

• keff = 1: Critical state, the chain reaction is self-sustaining as the neutron population remains unchanged in

time.

• keff > 1: Supercritical state, the neutron population increases in an exponential way with time.

3.2.2 Nuclear Cross Section

Nuclear cross sections are the key ingredients of the neutron transport equation as they represent the probability of

the neutron to interact with the crossed material.

3.2.2.1 Macroscopic Cross Section

The macroscopic cross section characterizes the probability of the neutron to interact with the material per unit

path length traveled in the material. It is the sum of the microscopic cross section of all the nuclides present in the

material weighted by their atomic density, as described in Equation 3.4.

Σr(E, T ) =
X

i

Ni�r,i(E, T ) (3.4)

where:

• r: The nuclear reaction type.

• i: The index of a nuclide that resides in the material.

• E: The energy of the incident neutron.

• T : The temperature of the material.

• Ni: The atomic density of the nuclide i.

• �r,i(E, T ): The r-type microscopic cross section of the nuclide i at a given energy E and temperature T .
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3.2.2.2 Microscopic Cross Section

The microscopic cross section of a nucleus is denoted in a simple form as �r with the units of measurement barn

(10�28m2) or 10�24cm2 where r refers to one sort of nuclear reactions such as elastic scattering (�s), inelastic scat-

tering (�i), radiative capture (�γ) and fission (�f ). The total microscopic total cross section �t is used to characterize

the probability that any sort of nuclear reaction will occur for a nucleus as described in Equation 3.5.

�t = �s + �i + �γ + �f| {z }
absorption

+ . . . (3.5)

Figure 3.1 depicts the cross sections of several reaction types for 238U varying with the incident energy of the

neutron. As we can see, the total cross section is typically dominated by the elastic scattering cross section plus

absorption cross section. Furthermore, the energy-dependent cross section can be generally divided into three

energy ranges including low-energy region, resonance region and high-energy region [57]. The full range of cross

section for a nuclide may be comprised of one or more regions. For example, 238U contains all three regions while

1H is only represented in the way of low-energy region.

Figure 3.1: Comparison of different types of cross sections for 238U via JANIS 4.0 [114] with the database
set to ENDF/B-VII.0 library [30].

In the low-energy region (typically E < 1eV), the incident energy is well below the resonance and the
1

�
behavior

(� the velocity of incident neutron) is observed instead for both the scattering cross section and the absorption
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cross section when the effects of temperature and Doppler broadening is taken into account (mainly discussed in

section 3.2.2.3). According to this behavior, the cross sections are tabulated as smooth functions of
1

�
or

1p
E

.

The resonance region is one characterized by large fluctuations of several orders of magnitude. It can be divided

into two regions which are respectively the resolved and unresolved resonance region. In the resolved resonance

region, resonances can be seen and distinguished using methodologies such as the R-matrix formalism [30]. In the

unresolved resonance region, there are so many resonances that they cannot be distinguished with each other and

a statistical representation is adopted.

In the high-energy region, the cross sections become smooth again such as in the low-energy region. Moreover,

we can find from the Figure 3.1 that at high energy the reactions involving neutron emission such as the inelastic

scattering and fission become more significant comparing to ones without neutron emission such as the elastic

scattering and radiative capture.

3.2.2.3 Effects of Temperature and Doppler Broadening

The effect of temperature on cross sections is caused by the thermal motion of atoms which adds the dependence

of cross sections on the relative energy between the incident neutron and the target nucleus. Such effect leads to

different phenomena across energy regions.

(a)
(b)

Figure 3.2: Effect of temperature on cross sections [36].

In the low-energy region, when the temperature augments from 0 Kelvin, the energy-dependent scattering cross

section function changes from a quasi-constant function to a decreasing function in
1

�
shape, as depicted in Fig-

ure 3.2a.

In the resonance region, resonances are flattened with the increase of temperature. This process is called the

Doppler broadening of resonances. The peak-to-peak amplitudes of resonances become smaller and the widths

of resonances become broader. Resonances may eventually be smoothed out if the temperature is enhanced to a
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high level. For example, due to the Doppler effect, we can easily see that the increase of temperature (from 0 Kelvin

to 300 Kelvin) significantly weakens the resonance, as shown in Figure 3.2b.

In the high-energy region, the effect of temperature is negligible since the thermal motion of target nucleus is

much less dominant than the motion of incident neutron. The target nucleus is considered at rest as it behaves at 0

Kelvin.

Mathematically, the Doppler broadening equation, as described in Equation 3.6, has been proposed by Cullen

and Weisbin to calculate Doppler broadened cross sections along with the SIGMA1 algorithm which performs the

convolution in this equation by piecewise-linear exact integration [38].

� (y, T ) =
1

y2

✓
1

⇡

◆1/2 Z 1

0

x2� (x, T0) [e
�(x�y)2 � e�(x+y)2 ]dx (3.6)

where y2 = ↵E, x2 = ↵Er, ↵ =
M

kB(T � T0)
:

• E: The incident neutron energy.

• Er: The relative energy between incident neutron and target nucleus.

• M : The target mass.

• kB : The Maxwell-Boltzmann constant equaling to 1.38064852⇥ 10�23 m2 · kg · s�2 · K�1.

• T0: The base temperature of cross sections to be broadened.

In addition to the SIGMA1 method, there are many methods that introduces approximations to the Doppler

broadening equation. For instance, the Gauss-Legendre quadrature and Gauss-Hermite quadrature approaches

approximate the integral in Equation 3.6 to a form of Gaussian quadrature which contributes to higher computa-

tional efficiency comparing to the SIGMA1 method due to the avoidance of complementary error function evalua-

tions [107][76][41][65].

The Doppler broadening algorithms mentioned above are widely used in cross section processing codes such

as NJOY [81], AMPX [42], PREPRO [37] to prepare cross sections at the desired temperatures from 0 Kelvin cross

sections. These codes also build 0 Kelvin cross sections from more elementary parameters such as resonances

parameters.

Note that the simulation performed in our thesis work is based on thermohydraulic coupling which takes the

effect of Doppler broadening into account for temperature feedback. As the temperature varies during the execution

of simulation, a large number of temperature-dependent cross section data is required and the on-the-fly Doppler

broadening method becomes essential as the conventional pretabulated method needs too much memory to store

broadened cross section data.
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3.2.3 Isotopic Depletion Calculations and Thermohydraulic Feedback

One of the main challenges for Monte-Carlo neutron transport code in reactor physics is the realization, at the

fuel pin scale, of an irradiation cycle at a fuel nuclear reactor core. To perform this kind of calculation in realistic

conditions, it is necessary to couple a neutron transport code with:

• An isotopic depletion solver to take into account the creation and disappearance of nuclides in the material

under irradiation. This is governed by the Boltzmann-Bateman non-linear coupled system [17]. This kind of

calculation induces a large number of nuclides in the fuel material.

• The coupling with a thermohydraulic solver to take into account the temperature and/or density change in

the fuel and the coolant. This kind of calculation needs a large number of temperature to be considered. To

avoid a prohibitive memory foot print (about 1GB per temperature for the cross section), on-the-fly Doppler

broadening techniques become mandatory.

3.3 Computational Methods

Two major approaches are conventionally used to solve Equation 3.1, including the deterministic method and the

Monte Carlo method. The deterministic methods consist in applying numerical discretizations to the variables of

the neutron transport equation. The Monte Carlo method is to transform the integral form of the neutron transport

equation into the average of N values of particle histories collected through a large number of iterations [80] which

is given as Equation 3.7:

X ⇡ 1

N

NX

n=1

 
1X

k=1

xnk

!
(3.7)

where X is a macroscopic quantity of interest such as a reaction rate, xnk is the observation of this quantity at the

very position of kth iteration for particle n. According to the central limit theorem and the law of large numbers, X

converges to the exact value of the integral when N !1.

3.3.1 Deterministic Method

The deterministic method introduces discretizations and approximations to simplify and obtain numerical solutions of

the neutron transport equation. The discretizations are typically made with respect to the variables such as energy,

angular, and spatial [124][134][121].

• Energy discretization: The multigroup cross section library is used in substitution of the continuous-energy

cross section data where the energy range is divided into multiple groups and the cross sections in each

group become a constant.
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• Angular discretization: The integral of angular is transformed to a sum of weighted neutron flux function

following discretized direction vector.

• Spatial discretization: The geometry is discretized into a mesh of points and the integral of space becomes a

sum of neutron flux at each point.

The introduction of discretizations makes the deterministic method a compute-efficient solution to neutron trans-

port simulation at the expense of precision. Moreover, due to the limits of discretizations under complex conditions,

the deterministic method may be unable to handle problems with specific features.

3.3.2 Monte Carlo Method

The Monte Carlo method is a stochastic approach to obtain the statistical properties of real-world problems [110].

The key feature of Monte Carlo method is the use of random sampling and statistical analysis. For example, to solve

a mathematical equation, unlike conventional deterministic method which introduces numerical discretizations to

achieve approximations, Monte Carlo method aggregates the results of a large amount of samples generated from

a probability distribution which is constructed by (pseudo-)random numbers to simulate the reality corresponding to

the equation.

Due to the fact that Monte Carlo method solves the equations abstracted from real-world problems with minimal

mathematical approximations, Monte Carlo method is widely used to simulate complex systems with many coupled

degrees of freedom in many domains such as statistical physics [19], computational biology [93], artificial intelli-

gence [26] and so on. When it is applied to solve the neutron transport problem as described in Equation 3.7, a

neutron transport problem will be turned into the tracking of a large number of particle histories from their birth to

their death in conjunction with the aggregated estimates obtained by tallying.

A history (random walk process) of neutron n consists of a sequence of iterations (In0, In1, In2, . . . , InKn
) in

which the neutron moves a distance from its initial position to next position and then interact with the material it

is flying through (Figure 3.3). Kn is the total number of iterations contained in the history of neutron n and after

the final iteration the neutron is desactived by leakage, absorption or energy cut. Each iteration Ink,k2Kn
can be

denoted by a triple (~Pnk, ~Dnk, Cnk) where ~Pnk is the position of neutron n at the beginning of kth iteration, ~Dnk is

the displacement of neutron n at kth iteration. Cnk is one type of interactions for neutron n at kth iteration including

scattering, absorption as well as none of collisions if the neutron moves across boundaries.

In the context of nuclear reactor physics, especially taking isotopic depletion into account, the most computa-

tional work during each iteration is the calculations of cross sections which are required for random samples of

the distance of movement, the nuclide to be collided, the sort of interaction and the update of kinetic state of the

neutron.

As for the tallying part, the observation xnk given in Equation 3.7 of a random variable X varies with the dif-

ferent choices of estimators. For example, in order to tally the reaction rate for reaction r within a volume without
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Figure 3.3: Neutron histories tracked from their birth to death through a set of volumes where green cycles
refer to active neutrons and red cycles refer to desactived neutrons.

considering weights, we can use several estimators listed as follows:

• Analog estimator: observations of reaction r are accumulated. xnk equals to 1 if reaction r happens, 0

otherwise.

• Collision estimator: observations resulting in any type of collisions are scored with the ratio of macroscopic

cross section for reaction r to total macroscopic cross section. xnk becomes
Σr

Σt
if there is a collision, 0

otherwise.

• Track-length estimator: observations resulting in any type of collisions are scored with the multiplication of

corresponding distance of movement and macroscopic cross section for reaction r. xnk equals to | ~Dnk|Σr for

a colliding iteration, 0 otherwise.

Furthermore, the error estimation of a tally is basically achieved by the use of variance by which we know the

statistical error of the corresponding estimate. The comparison among estimates can be handled by the adoption

of variance of the mean of estimates from which we can analyze the order of number of particles that makes the

errors of several estimators tending to an arbitrary low level.

Overall, the very few approximations introduced make the Monte Carlo method a precise approach which is

capable of handling a large number of neutron transport problems under complex conditions and performing ref-

erence calculations. However, it incurs a much higher computational cost comparing to the deterministic method

widely used in the industry. For this reason, researchers and developers of many Monte Carlo transport solvers

have turned to solutions by porting Monte Carlo codes to modern architectures so as to reduce time to solution

and/or model more complex systems.
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3.4 HPC and Monte Carlo Neutron Transport Simulation

The development of Monte Carlo neutron transport simulation in HPC mainly focus on the parallelization of Monte

Carlo codes so as to benefit from high throughput of parallel computing machines and eventually yield improving

performance. In what follows an explicit introduction of the state-of-the-art in the development of Monte Carlo

neutron transport in HPC will be elaborated.

3.4.1 State-of-the-art

The general workflow of a serial Monte Carlo neutron transport simulation is illustrated in Figure 3.4. It is mainly

comprised of three steps including initialization, particle tracking and finalization. The initialization step is responsible

for setting up materials and generating particles from source. The particle tracking step is devoted to tracking particle

histories one by one in which the cross section calculations account for the most consuming part of Monte Carlo

neutron transport simulation. The finalization step is in charge of tally computation in order to retrieve estimates of

physical quantities.

Figure 3.4: Serial Monte Carlo neutron transport simulation workflow.

Due to the embarrassingly parallel nature of Monte Carlo transport problems where particles are simulated

independently during their lifetime, Monte Carlo simulation is an ideal candidate for data parallelism at coarse grain

level. Such parallelization is achieved by the use of distributed/shared memory parallel programming model like

MPI and OpenMP for all three sections mentioned above. It decomposes the serial codes into a set of identical

processes in parallel fed with different data including dispatched particles, replicated tallies and geometries (or

splitted geometries).

The distributed memory parallelism reached in Monte Carlo transport simulation needs to arrive at a trade-off

between memory footprint on each rank and communication workloads across ranks. For example, if the geometries
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of Monte Carlo simulation are divided into separate domains across ranks, communications among ranks will be

significantly augmented because each rank needs to address the domain-crossing issue by sending and receiving

the data of out-domain and in-domain particles. By contrast, if distributed memory parallelism is only responsible for

dispatching particles, there will be much less inter-communications among ranks at the expense of larger memory

footprints since each rank is required to hold entire data of geometries [20].

Similarly, there is always a compromise between memory footprint and achievable bandwidth for shared memory

process of Monte Carlo transport simulation. For instance, the data of nuclides is usually stored as one copy and

used for all multithreading processes on a shared memory system. Such strategy highly reduces memory footprints

but degrades the efficiency of memory access due to the avoidance of data races and extra overheads of non-local

memory access via links and so on. The corresponding performance penalty varies a lot with hardware properties

such as cache hierarchy, memory access model (NUMA or UMA). It’s up to developers to find a way the most

adaptive to the coarse-grained parallelism of Monte Carlo transport simulation on a specific working machine taking

memory footprint and bandwidth into consideration.

In addition to coarse-grained data parallelism, the parallelization at fine-grained level has also been developed

for Monte Carlo transport simulation and it has become a major aspect to dig into as modern architectures have

added more features of vectorization such as SIMD and SIMT techniques. Typically, after the parallelization of

coarse granularity, each processing thread is assigned to track histories of a batch of particles. To further parallelize

the Monte Carlo transport codes, one may either vectorize the inner-loops in particle tracking kernel injected by

cross section calculations or divide particles within a batch into vectors based on different events and execute a

vector of particles in parallel once a time. The first strategy in which particles are tracked in sequence is actually

called as history-based method. The second strategy where particles of a sorted event type are simulated in parallel

is instead event-based method.

3.4.2 Parallelism

The parallelism of history-based Monte Carlo neutron transport codes used in our thesis is showed in Algorithm 1. At

the distributed memory level, each MPI rank is in charge of performing an independent replication of the simulation

(the first loop at line 1). The inter-communications among MPI ranks occurs only at the end of each simulation to

compute the mean and variance of all the tallies. However, each MPI rank duplicates the global data such as the

cross section data, the isotopic description of the materials, the description of the geometry and above all the tallies

data structure, which lead to large memory footprints. For depletion calculation, tally data structure and materials

description may represent several tens of gigabytes. Hence, for these kind of calculation one MPI rank is typically

attached to one node.

The second loop (line 3) is executed in sequence to handle all particles in the current process batch by batch.

The third loop (line 5) is achieved by the shared memory level of parallelism as this loop contains the largest
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trip count (between 105 and 106). All threads are responsible for tracking the histories of a number of particles

assigned to themselves in parallel. It is obvious that with the increase of the number of threads, the scalability will

always degrade due to the common obstacles occurred at shared memory level such as memory contention, NUMA

systems. Besides, since in our case we use the on-the-fly Doppler broadening method which contributes to a large

amount of computational cost, the workloads of each thread may be significantly unbalanced. In order to mitigate

this load balancing issue, we adopt the strategy of dynamic scheduling to assign the untracked particles to idle

threads.

The while loop (line 6) simulates a particle from its birth to its death. This type of tracking approach is called

history-based because we won’t go to the next particle until the disappearance of the current particle.

The fourth loop (line 8) is dedicated to calculating macroscopic cross sections sequentially in which the calcula-

tions of microscopic cross section for each nuclide can be vectorized or parallelized by SIMD and SIMT techniques

employed in our Monte Carlo neutron transport codes. This level of parallelism is the key point to be studied in this

thesis work.

Algorithm 1: Parallelism of History-based Monte Carlo neutron transport codes.

1 foreach process do /* MPI level */

2 distribute all particles in the current process into a number of batches;

3 foreach batch do

4 . . .;

5 foreach particle in the current batch do /* Shared memory parallelism */

6 while particle is alive do

7 . . .;

8 foreach nuclide in the material do

9 calculate microscopic cross section; /* SIMD, SIMT */

10 sum up macroscopic cross section;

11 end

12 . . .;

13 end

14 end

15 . . .;

16 end

17 end
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3.4.3 History-based and Event-based Methods

Most of the MC transport codes are based on the history-based method, but in the 80’s to make the best use of

vector processors the event-based algorithm was developed which is brought up to exploit GPUs and vectorization.

Algorithm 2 shows the general procedure of history-based Monte Carlo transport simulation at the processing

thread level. The outermost for loop (line 1) is executed in serial containing a while loop (line 2) tracking a particle

from its birth to death. In each iteration, cross sections are firstly calculated (line 3-6) to sample distance as well as

collided nuclide and interaction type (line 7). The displacement and collision take place afterward as illustrated from

line 8 to line 12. The vectorizable parts reside in macroscopic cross section calculations including an outer loop

for total cross section sum-up, an inner loop of energy lookup and an inner loop of integral in addition if on-the-fly

Doppler broadening method is adopted. The details of these cross section algorithms are expressed in section 3.4.4.

Algorithm 2: History-based Monte Carlo transport algorithm.

1 foreach particle distributed to the processing thread do

2 while particle is alive do

3 calculation of macroscopic cross section, with several vectorizable parts;

4 • outer loop for calculating macroscopic cross section;

5 • inner loop of energy lookup to find Elow and Eup;

6 • inner loop of integral injected by on-the-fly Doppler broadening method;

7 sample distance to collision in material;

8 if new position is still inside material then

9 move particle to new position, and do collision;

10 else

11 move particle across boundary;

12 end

13 end

14 end

As an alternative solution, the event-based method was proposed by regrouping particles according to their

different event types and undertaking the simulation of banked particles in parallel [25]. The general procedure

of event-based method is described in Algorithm 3. The outermost while loop (line 1) ensures that all particles

dispatched to a given processing thread will be tracked until they are desactived. The first inner for loop (line 2) is

devoted to fill identified particles to vectors of different event types. The second inner for loop (line 5) is responsible

for processing particles of an event type vector by vector.
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Algorithm 3: Event-based Monte Carlo transport algorithm.

1 while any particles are alive on the processing thread do

2 foreach active particle do

3 Identify next event type and move it to the vector of corresponding event type;

4 end

5 foreach vector of event type do

6 perform event for all particles in vector;

7 end

8 end

The classification of event types may be of fine or coarse granularity which is totally up to developers to define.

For example, Bleile developed an event-based Monte Carlo transport algorithm where only three event types are

used: collision processing, material interface crossing, and cell boundary crossing [22][21]. Bergmann and Vujić

proposed an event-based Monte Carlo transport algorithm adapting to GPUs in which more than a dozen of event

types are defined [18]. Fine-grained event types introduce less branch divergence for each event kernel while it

incurs extra workload due to shuffle operations so as to regroup particles into different vectors. On the contrary,

coarse-grained event types reduce particle regrouping need but make branch divergence a major point to degrade

kernel performance. If we define three events including migration, scattering and absorption, the event-based Monte

Carlo transport algorithm can be unfolded as shown in Algorithm 4.

Initially, all particles on the processing thread are stored in the vector of migration. In each iteration of while

loop (line 2), three for loops are performed successively to process particles of different event type. The loop on the

migration vector (line 3) takes responsibility of calculating cross sections, sampling distance and moving particles to

collision sites. If a particle is going to undertake a collision, it will be moved to the vector of scattering or absorption

and be processed in one of the following two loops. The loop of scattering (line 13) carries out scattering interactions

for all particles in the vector and then shuffles them back to the vector of migration to prepare for next iteration. The

loop of absorption (line 17) processes all particles of absorption, kills these particles afterward and adds newly born

particles (production of fission) to the vector of migration. All three inner for loops are candidates for vectorization

using SIMD or SIMT techniques.

Overall, compared with history-based method, event-based approach is better suited for vectorization on modern

computers to benefit from data-level parallelism. At the same time, it introduces extra workload of consolidating

surviving particles during the simulation and requires restructuring the control flow and redesigning data structure,

which makes it difficult to implement with full-physics capabilities.

Recently, a significant number of studies have explored using Intel MIC and Nvidia GPU for Monte Carlo trans-

port solvers and micro-benchmarks [18][95][55][54]. Both history-based method and event-based method are im-
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plemented and the results are quite informative and promising. They have proved that history-based method is

far more straightforward to implement than event-based method and event-based method may outperform history-

based method with specific tuning strategies such as remapping data references, use of intrinsic functions and

design of trivial kernel. Romano has developed a simple model to theoretically estimate the efficiency of event-

based method and observed that the good performance is yielded when the ratio of the particle bank size (e.g.

migration vector size) to the vector length (e.g. AVX-512 SIMD-vector is able to store 8 double) is over 20 [106].

Algorithm 4: (Migration, scattering, absorption)-based Monte Carlo transport algorithm.

1 initially, store all particles in the vector of migration;

2 while any particles are alive on the processing thread do

3 foreach particle in the vector of migration do

4 calculation of macroscopic cross section;

5 sample distance to collision in material;

6 if new position is still inside material then

7 move particle to new position;

8 shuffle particle to the vector of corresponding collision;

9 else

10 move particle across boundary;

11 end

12 end

13 foreach particle in the vector of scattering do

14 do scattering;

15 shuffle particle to the vector of migration;

16 end

17 foreach particle in the vector of absorption do

18 do absorption;

19 add produced particles (due to fission) to the vector of migration;

20 end

21 end

3.4.4 Cross Section Computing Algorithms

For a given material comprised of a set of nuclides, each nuclide has its own energy grid stored in a continuous

array mapping to corresponding cross section data stored in another array of the same length. The macroscopic

cross sections are summed up as described in Equation 3.4. As for microscopic cross section calculations, there



Chapter 3 Monte Carlo Neutron Transport Simulation 50

are mainly two approaches, which are called respectively pre-tabulated method and on-the-fly Doppler broadening

method.

With reference to pre-tabulated method, an energy lookup is employed to find the nearest energy lower-upper

bound in cross section tables of given temperatures and the required cross section is retrieved by performing an in-

terpolation based on this bound. The cross sections are prepared for all the temperatures occurring in the simulated

system and then loaded into memory. This kind of method induces a lot of memory operations for little computation

and is therefore memory-bound.

With reference to on-the-fly Doppler broadening method, instead of storing all cross section data in memory, only

the cross section data of a baseline temperature is stored and the temperature dependence is calculated on-the-fly

during the simulation. This kind of method consumes less memory but is much more compute intensive.

3.4.4.1 Macroscopic Cross Section Lookup Algorithm

As shown in Algorithm 5, the macroscopic cross section of a given material accumulates with the multiplications of

microscopic cross sections and atomic densities of the nuclides composing the material. This algorithm has well

vectorization potential since the loop size is large enough (from tens of to hundreds of nuclides) and the workload

assigned to each processing unit is equal to others which gets rid of the performance penalty caused by imbalance.

Bergmann [18] implemented a macroscopic cross section kernel where in addition to the total macroscopic cross

section, other values related to it are computed as well, including interaction distance, collided nuclide and so on.

These extra calculations are equally distributed to all processing units and thus the workload balance is nicely

maintained.

Algorithm 5: Macroscopic cross section lookup.
Input: a group of M couples of microscopic cross sections, atomic densities, {�i, Ni}i2M , corresponding to

M nuclides which compose a given material

Result: calculated macroscopic cross section Σ of the material

1 Σ = 0;

2 foreach composing nuclide of the material, indexed with i, i 2M do

3 Σ += Ni�i;

4 end

3.4.4.2 Pre-tabulated Microscopic Cross Section Calculation Algorithm

Pre-tabulated approach mainly consists two steps, an energy lookup and an interpolation. Typically, the continuous-

energy cross section data is stored as a long table of cross sections (cross section grid) which is bijective to another
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long table of energy points (energy grid). In this case, an energy lookup with input energy E is indeed to find the

lower-upper bound Ek and Ek+1 with the relation Ek 6 E 6 Ek+1. The corresponding microscopic cross section is

then retrieved by one of linear-linear interpolations as described in Equation 3.8.

�(E) = �(Ek) +
E�Ek

Ek+1�Ek
[�(Ek+1)� �(Ek)]

�(E) = �(Ek+1)� Ek+1�E
Ek+1�Ek

[�(Ek+1)� �(Ek)]
(3.8)

The key nature of such linearly-interpolable cross section data is that energy grid sizes highly depend on their

corresponding nuclides. Some nuclides have hundreds of energy points (e.g. 1H, 3H) whereas other nuclides

have more than a million energy points (e.g. 238U). This feature leads to considerable variations of workloads

between energy lookup processes through different nuclides and makes efficiency of energy lookup algorithms

nuclide-dependent via different search schemes.

With respect to workload imbalance, some methods such as unionized energy grid [74], fractional cascad-

ing [79], hash map [24][125], N-ary map [127] have been proposed to address this issue by reconstructing energy

grids and supplementing additional mapping tables to effectively reduce iteration path. The basic logic of these

methods is either to expand energy tables of various lengths to a same length or to compress searching ranges of

long energy tables into narrower ones.

With respect to search schemes, binary search and linear search are two major approaches commonly used to

perform energy lookups. The computational complexity of binary search is O(log2N) while linear search is O(N),

N is the number of elements in table. Comparing to linear search, binary search has optimized computational

complexity which gains much better performance with a large problem size. However, the random memory access

pattern of binary search leads to bad memory coalescing and high cache misses, giving it few chances to be

vectorized with SIMD or SIMT optimizations [111].

Previous work done by Wang [129] has tested the search schemes, reconstruction and mapping techniques

mentioned above with 512-bit SIMD optimizations. The results shows that the threshold table length for choosing

between vectorized linear search and binary search is 200. Such behavior is informative and indicates that with uses

of mapping techniques such as hashing and N-ary mapping, it may contribute to performance improvement if the

vectorized linear search is adopted for energy lookups through narrow bins. Besides, the vectorized binary search,

also called as N-ary search, yield worse performance compared with binary search by reason of higher cache

misses that are caused by extra non-coalesced memory access. As for reconstruction and mapping techniques,

unionized energy grid method contributes to the best performance improvement whereas N-ary mapping the worst.

In general, there are few opportunities to exploit vectorization for Monte Carlo algorithms based on pre-tabulated

cross section where latency-bound energy lookups take up most of computing time. As a solution, the compute-

intensive FLOP work between frequent memory loads introduced by on-the-fly Doppler broadening may mitigate the

latency-bound bottleneck mainly induced by the binary search in the pre-tabulated approach [119].
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Algorithm 6: Basic pre-tabulated algorithm with binary search scheme.
Input: a given energy E, the energy grid eg[N ] and cross section grid csg[N ] of a nuclide with grid size

equaling to N

Result: calculated microscopic cross section �(E) of the nuclide

1 k = getLowerBound(E, eg); /* 0 6 k < N � 1 and eg[k] < E 6 eg[k + 1] */

2 �(E) = csg[k] +
E � eg[k]

eg[k + 1]� eg[k]
(csg[k + 1]� csg[k]); /* linear-linear interpolation */

Now we only consider a basic pre-tabulated method using binary search scheme without the introduction of

reconstructed cross section data and mapping techniques as a comparison of on-the-fly Doppler broadening al-

gorithm expressed in section 3.4.4.3. The general procedure of this method is illustrated in Algorithm 6 where

getLowerBound() is a binary search function retrieving the last element which is lower than the input energy in the

input energy grid.

3.4.4.3 On-the-fly Doppler Broadening Microscopic Cross Section Calculation Algorithm

On-the-fly Doppler broadening algorithms calculate temperature-dependent cross sections during the Monte Carlo

transport simulation which reduces memory footprints at the expense of much higher computational cost. In addition

to the SIGMA1 on-the-fly Doppler broadening method which performs piecewise-linear exact integration, some other

methods have also been proposed to reconstruct cross sections by various multipole representations and regression

models [60][66][136].

Algorithm 7: Basic SIGMA1 on-the-fly Doppler broadening algorithm.
Input: a given energy E and temperature T , the energy grid eg[N ] and cross section grid csg[N ] of a nuclide

with grid size equaling to N , the elements in csg are of a baseline temperature T0

Result: calculated microscopic cross section �(E) of the nuclide

1 calculate E1 and E2 based on input parameters;

2 lb = getLowerBound(E1, eg), ub = getLowerBound(E2, eg) + 1; /* 0 6 lb < ub 6 N � 1 */

3 �(E) += compute_integral(lb, ub, eg, csg, . . .); /* integral computation between [lb, ub] */

A basic SIGMA1 on-the-fly Doppler broadening approach can be abstracted as a process to retrieve lower-upper

bound of integral range along with another process of integral computation. In Algorithm 7, lb and ub are calculated

by the same binary search function getLowerBound() described in Algorithm 6 with inputs E1, E2 and eg. The

compute_integral() function is an integral computation kernel approximated from Equation 3.6 which only considers

calculations inside the range �4 6 x� y < 4 since the term e�(x�y)2 becomes negligible when |x� y| is large [38].



Chapter 3 Monte Carlo Neutron Transport Simulation 53

3.4.5 The PATMOS Monte Carlo Prototype

There are many simulation codes developed to solve Monte Carlo transport problems, such as MCNP [118],

TRIPOLI [27], Serpent [75], RMC [126], OpenMC [105], Shift [96] as well as the code used in our thesis, PAT-

MOS [28].

PATMOS is a prototype of Monte Carlo neutron transport under development at CEA dedicated to the testing

of algorithms for high-performance computations on modern architectures [28]. One of the goals is to perform pin-

by-pin full core depletion calculations for large nuclear power reactors with realistic temperature fields. Numerical

results have been verified by comparisons with TRIPOLI-4 R� [27] and MCNP5 [118].

The physics of PATMOS is simplified with two types of particles (mono-kinetic pseudo-particles and neutrons).

Four types of physical interactions including elastic scattering, discrete inelastic scattering, absorption and simpli-

fied fission have been implemented. The scoring part is encapsulated into a scorer class which deals with tally

computation during the simulation and gathers statistical results afterwards.

PATMOS relies on a hybrid parallelism based on MPI for distributed memory parallelism and OpenMP, C++ native

threads or Intel TBB for shared memory parallelism. It is entirely written in C++, with a heavy use of polymorphism

in order to always allow the choice between competing algorithms such as the mix of nuclides with pre-computed

Doppler-broadened cross sections and on-the-fly Doppler broadening.

Several energy lookup algorithms have been implemented in PATMOS with much vectorization effort to improve

performance especially for pre-tabulated method dominated by energy lookup process. The SIGMA1 on-the-fly

Doppler broadening method used in NJOY as the reference method [81] has also been implemented in PATMOS

with some effort to reorganize the main loop of the SIGMA1 algorithm which in turn yields the reconstructed main

loop a better potential for vectorization. This on-the-fly Doppler broadening algorithm has been ported to Nvidia

GPUs as a rewritten CUDA kernel which allows CPU threads offloading the compute-intensive workloads of cross

section calculations to multiple GPUs and copying back results for further simulation.

In this chapter, we give a brief introduction about nuclear reactor physics, neutron transport simulation, as well as

Monte Carlo method. The state-of-the-art progress of HPC and Monte Carlo neutron transport codes are discussed

with respect to parallelism, particle tracking methods, cross section computing algorithms.



Chapter 4

Portable Implementation of on-the-fly

Doppler Broadening in PATMOS

Chapter 2 and Chapter 3 have presented the context of this thesis work. In this chapter, the implementation of the

SIGMA1 Doppler Broadening algorithm in PATMOS with the chosen programming models are described. Then,

the performance results of these different implementations are analyzed on a benchmark executed on several plat-

forms [31]. At last, performance profiling and optimization are presented.

4.1 Implementation of SIGMA1 on-the-fly Doppler Broadening Algorithm

This section presents the SIGMA1 Doppler broadening algorithm which allows, from a cross section at a base

temperature (typically 0 Kelvin), to compute the cross section at a given temperature and a given energy.

As we have illustrated in Algorithm 7, our SIGMA1 on-the-fly Doppler broadening algorithm mainly consists

in computing the indexes corresponding to the lower and upper bounds of the interval of integration (function

getLowerBound()) and then compute the integral of Equation 3.6 (function compute_integral()) in which the cross

section has the following form:

�(x) = �i + si(x
2 � x2

i ) = �i+1 � si(x
2
i+1 � x2) (4.1)

where si =
σi+1�σi

x2
i+1�x2

i

.

According to Equation 3.6 and Equation 4.1, we have:
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where
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where erfc and exp are respectively the complementary error function (see Equation 4.6) and the base e exponential

function.
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a

e�z2

dz (4.6)
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Algorithm 8: Function of compute_integral().
Input: a given energy E, a coefficient ↵, a lower-upper bound lb, ub and an energy grid eg[N ], a cross

section grid csg[N ]

Result: accumulated cross section � after integral computation

1 � = 0, y =
p
↵E;

/* Accumulation of the first element */

2 index = lb, ea = eg[index], eb = eg[index+ 1];

3 x =
p
↵ · ea, a = x� y;

4 calculate F0(a), F1(a), F2(a), F3(a), F4(a); /* According to Equation 4.5 */

5 calculate A and B based on Fn(a); /* According to Equation 4.4 */

6 siab =
csg[index+ 1]� csg[index]

↵(eb� ea)
;

7 � += A(csg[index]� siab · ↵ · ea) +B · siab;

/* Accumulation from the second element to the second last element */

8 for index lb+ 1 to ub� 1 by 1 do

9 ea = eg[index� 1], eb = eg[index], ec = eg[index+ 1];

10 x =
p
↵ · eb, a = x� y;

11 calculate F0(a), F1(a), F2(a), F3(a), F4(a); /* According to Equation 4.5 */

12 calculate A and B based on Fn(a); /* According to Equation 4.4 */

13 siab =
csg[index]� csg[index� 1]

↵(eb� ea)
;

14 sibc =
csg[index+ 1]� csg[index]

↵(ec� eb)
;

15 � += (sibc� siab)(B �A · ↵ · eb);

16 end

/* Accumulation of the last element */

17 index = ub, ea = eg[index� 1], eb = eg[index];

18 x =
p
↵ · eb, a = x� y;

19 calculate F0(a), F1(a), F2(a), F3(a), F4(a); /* According to Equation 4.5 */

20 calculate A and B based on Fn(a); /* According to Equation 4.4 */

21 siab =
csg[index]� csg[index� 1]

↵(eb� ea)
;

22 � �= A(csg[index]� siab · ↵ · eb) +B · siab;

Based on Equation 4.3, we have the algorithm of the function compute_integral() with a given energy, lower

and upper bounds of the interval of integration, a coefficient ↵ = M
kB(T�T0)

and cross section grids as inputs (see

Algorithm 8).
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The calculations of Fn(a) fucntions call erfc and exp functions multiple times which accounts for a large part of

the computing time. A CPU-based profiling of a typical Monte Carlo neutron transport benchmark, slabAllNuclides,

implemented in PATMOS in terms of run time percentage is illustrated in Table 4.1 in which all results were retrieved

by C++ native clock and perf (more detail about slabAllNuclides is elaborated in section 4.4.1).

Table 4.1: Typical Monte Carlo neutron transport run time percentage in PATMOS.

Processing Step Run Time Percentage (%)
Total Cross Section 95.4
exp 17.6
erfc 49.4
getLowerBound 2.4
compute_integral 79.2
Partial Cross Section 1.7
exp 0.2
erfc 0.6
getLowerBound 0.1
compute_integral 1.4
Initialization 1.8
buildMedium 1.5
Others 1.1

The total cross section calculations account for up to 95% of total run time where the most computational

cost comes from the functions erfc and exp which take up respectively 49% and 18% of total run time. Besides,

comparing to the run time percentage of compute_integral function which gains around 79% of total run time, the

function getLowerBound is quite negligible with only 2% run time percentage.

Thus, we adopt a heterogeneous offloading strategy for our portable implementations of Monte Carlo code

where only the cross section calculation is offloaded on the accelerator. The rest of the calculation remains on the

host. Each accelerator can be considered as a cross section server that can be queried during the particle tracking

process, by one or several host threads, to compute cross sections at a given energy and temperature. To achieve

this heterogeneous offloading strategy, the main development effort is to rewrite codes which are dedicated to port-

ing nuclide data and microscopic cross section calculations to devices via implementations of several programming

models. The next section gives more details about the difference.

4.2 Implementations in the Different Programming Models

PATMOS allows two levels of parallelism via MPI + Multi-thread libraries (OpenMP, C++ threads). Each MPI rank

performs history tracking for a batch of particles and the average scores of simulation are calculated via inter-node

communications. In the shared memory parallellism, each CPU thread is in charge of tracking a group of particles. It

allows all threads to share the non-mutable data and scores which are concurrently updated through atomic memory
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operations.

In order to address architectures where multiple accelerators are associated with a host upon a single node, we

may use either “Multiple Threads, Single Accelerator (MTSA)” or “Multiple Threads, Multiple Accelerators (MTMA)”

strategies. The main difference between them is that MTSA requires one MPI process using a single accelerator

while MTMA allows multiple threads of a MPI rank to target to multiple accelerators. MTMA avoids extra launch

latency and memory footprint on a single node, which makes it a memory-friendly way for our heterogeneous

offloading strategy.

Since the offloading part of our MC simulation introduces no inter-node communication, we do not consider MPI

in this thesis work but only OpenMP thread + {X}, where {X} can be any languages or libraries which are capable of

parallel programming on modern accelerators. In this thesis work, we have considered CUDA, OpenACC, OpenMP

offload, Kokkos, SYCL or none at all (called OpenMP thread implementation in the following).

4.2.1 Code Architecture

The rewritten work consists in developing a set of derived classes inheriting from three base classes that include

Nuclide, NeutronMedia and NeutronMediaNavigator.

The base class Nuclide engages in storing basic information related to a given nuclide such as its atomic

weight (AW), energy and cross section grids of a particular base temperature as well as its table length. The derived

classes of Nuclide are implemented via different programming languages or libraries to accomplish the nuclide data

transfer from host to devices. The UML (unified modeling language) diagram of class Nuclide along with its derived

classes is depicted in Figure 4.1.

Figure 4.1: Inheritance relationship between base class Nuclide and its derived classes.

The base class NeutronMedia is designed to store material and nuclide data which is required to perform

a Monte Carlo neutron transport simulation as illustrated in Figure 4.2. It contains a function makeNavigator()
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Figure 4.2: Inheritance relationship between base class NeutronMedia and its derived classes.

which returns a pointer referring to an instance of the class NeutronMediaNavigator or its derived classes such as

CUDANeutronMediaNavigator. Each pointer is distributed to a CPU thread and responsible for undergoing iterations

of particle history tracking. The derived classes of NeutronMedia are dedicated to storing the total number of

devices and threads, creating all objects of derived class of Nuclide, transfering them from host to devices with

the call of the function allocateNucDataOnDevices() and deallocating them from devices with the invocation of

the function deleteNucDataOnDevices(). The function makeNavigator() of the derived classes of NeutronMedia

is parameterized by a value of type size_t indicating the thread ID of the corresponding instance of the class

NeutronMediaNavigator.

Figure 4.3: Inheritance relationship between base class NeutronMediaNavigator and its derived classes.

At last, the base class NeutronMediaNavigator handles the iterations of particle history tracking which include
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mainly the total cross section calculations, the random samples of distance, collided nuclide, interaction type as well

as kinetic state of the tracked particle after intereaction. The core part, total cross section calculation, is put in the

function computeSigma() which differs a lot between its derived classes. The attribute device_id is retrieved by

the thread_id in cooperation with the total number of devices nb_devices, as described in the formula device_id

= thread_id % nb_devices where % is the operator to obtain the remainder. Figure 4.3 shows the diagram of the

class NeutronMediaNavigator.

Algorithm 9: Pseudo-code of OpenMP thread implementation.

1 void NeutronMediaNavigator::computeSigma(. . .){

2 total_sigma = 0;

3 for(int t=0; t<N; ++t){ /* calculate microscopic cross sections of N nuclides */

4 sigma1DopplerBroadening(t, h_macroscopic_cs, . . .);

5 }

6 for(int t=0; t<N; ++t){ /* calculate macroscopic cross section of N nuclides */

7 total_sigma += h_macroscopic_cs[t] * h_concentrations[t];

8 }

9 }

10 void sigma1DopplerBroadening(. . .){

11 h_macroscopic_cs[i] = 0;

12 E1 = . . .; E2 = . . .;

13 lb = getLowerBound(E1, . . .); ub = getLowerBound(E2, . . .) + 1;

14 h_macroscopic_cs[i] += compute_integral(lb, ub, . . .);

15 }

16 double compute_integral(. . .){

17 double sigma = 0;

18 int index = lb; sigma += . . .;

19 #pragma omp simd reduction(+: sigma)

20 for(int i=lb+1; i<ub; ++i){

21 sigma += . . .;

22 }

23 index = ub; sigma -= . . .;

24 return sigma;

25 }

In general, the parallelization effort is made with the function sigma1DopplerBroadening(), as a part of the func-

tion computeSigma() in the class NeutronMediaNavigator as well as its derived classes to vectorize the SIGMA1
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on-the-fly Doppler broadening algorithm on host or accelerators. Furthermore, since the function getLowerBound()

takes up a rather negligible run time percentage comparing to that of the function compute_integral(), we basically

focus on the parallelization of compute_integral(), more specifically, the parallelization of the for loop in the integral

computation.

4.2.2 OpenMP Thread Implementation

The OpenMP thread version does not induce nuclide data transfer between host and devices, thus the single point

to address is the OpenMP SIMD directive that we adopt to vectorize the for loop in the function compute_integral(),

as shown in Algorithm 9 (at line 19). Besides, this loop can be vectorized by auto-vectorization of Intel compiler

since version 16. It should be noted that the OpenMP thread version is the reference implementation on CPU.

4.2.3 CUDA Implementation

With respect to other portable implementations which allow for offloading microscopic total cross section calculations

to accelerators, the rewritten parts are designed to accomplish the nuclide data transfer between host and devcies

as well as the microscopic cross section calculations on devices. The data management of a particular nuclide is

coded in the functions allocateNucOnDevices() and deleteNucOnDevices() of derived classes inherited from the

base class Nuclide. Furthermore, the functions allocateNucDataOnDevices() and deleteNucDataOnDevices() of

child classes inherited from parent class NeutronMedia perform a for loop to recursively allocate, copy and remove

data of all nuclides. The microscopic cross section calculations are offloaded by parallelizing the for loop in the

function computeSigma() of derived classes inherited from the base class NeutronMediaNavigator (Algorithm 9 at

lines 3–5).

The parallelization is achieved by distributing each call of a function sigma1DopplerBroadening() in the outer-

loop to a work-group of device where each work-group is composed of a set of work-items which are responsible for

vectorizing the inner-loop in the function compute_integral(). For example, the default strategy for Nvidia GPUs is to

assign the workload of microscopic cross section calculation of each nuclide to a CUDA warp so as to achieve a task-

level parallelism. And all CUDA threads within a warp are used to vectorize the inner-loop of integral computation

as a completion of data-level parallelism. Our reference implementation on GPU achieved by CUDA is shown in

Algorithm 10.

The functions allocateNucOnDevices() and deleteNucOnDevices() in the class CUDANuclide calls the functions

of the CUDA runtime API cudaMalloc(), cudaMemcpy() as well as cudaFree() to allocate, copy and delete the data

of a given nuclide on multiple devices (at lines 1–9). Note that the function cudaSetDevice() is used to set the

current device associated to the corresponding host thread for kernel execution.
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Algorithm 10: Pseudo-code of CUDA implementation.

1 void CUDANuclide::allocateNucOnDevices(. . .){

2 for(int idev=0; idev<nb_devices; ++idev){ /* allocate and copy the nuclide data to devices */

3 cudaSetDevice(idev); cudaMalloc(. . .); cudaMemcpy(. . ., cudaMemcpyHostToDevice);

4 }

5 }

6 void CUDANuclide::deleteNucOnDevices(. . .){

7 for(int idev=0; idev<nb_devices; ++idev) /* remove the nuclide data from devices */

8 cudaSetDevice(idev); cudaFree(. . .);

9 }

10 void CUDANeutronMediaNavigator::computeSigma(. . .){

11 dim3 blocksize(32, 1); int gridsize = N; /* set CUDA kernel dimension */

12 cudaMalloc(. . .); cudaMemcpyAsync(. . ., cudaMemcpyHostToDevice, stream);

13 kernel_launchngridsize, blocksize, 0, streamo(. . .); /* launch CUDA kernel */

14 cudaMemcpyAsync(. . ., cudaMemcpyDeviceToHost, stream); cudaFree(. . .);

15 total_sigma = 0; . . . /* macroscopic cross section calculation */

16 }

17 __global__ void kernel_launch(. . .){

18 int t = blockIdx.x; /* ensure t < N */

19 sigma1DopplerBroadening(t, . . .);

20 }

21 __device__ inline double compute_integral(. . .){

22 double sigma = 0; double sigma_tmp = 0;

23 int index = lb; sigma += . . .;

24 for(int i=lb+1+threadIdx.x; i<ub; i+=32)

25 sigma_tmp += . . .;

26 for(int mask=16; mask>0; mask/=2)

27 sigma_tmp += __shfl_xor_sync(. . .);

28 sigma += sigma_tmp;

29 index = ub; sigma -= . . .;

30 return sigma;

31 }

As for the outer-loop in the function computeSigma() of class CUDANeutronMediaNavigator calling a function

sigma1DopplerBroadening() during each iteration, a CUDA kernel kernel_launch() is replaced to parallelize this

loop along with two asynchronous memory copies cudaMemcpyAsync() where all three functions are enabled with
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CUDA multi-stream support owning a single stream associated to the corresponding host thread (at lines 12–14).

This CUDA asynchronous multistreaming technique allows for concurrent CUDA calls initiated by different host

threads. By contrast, operations (data transfer and kernel calculation) with the same stream called by a single host

thread are executed sequentially and cannot overlap. With reference to the computational kernel kernel_launch()

(at lines 17–20), its default dimension is set to N threadblocks, where each threadblock contains one CUDA warp.

Note that N is the gridsize of kernel (at line 11). Each warp is assigned to calculate the microscopic cross section of

a single nuclide recorded by the task index t = blockIdx.x.

At last, the inner-loop in the function compute_integral() is vectorized by CUDA threads within a warp. Each

CUDA thread handles a part of the workload and store the partial result in sigma_tmp. A sum reduction is then

operated by resorting to a warp shuffle instruction __shfl_xor_sync() to aggregate the total value of sigma_tmp

among CUDA threads within the warp.

Generally, from the thread hierarchy perspective, our CUDA implementation makes use of two levels of work

units warp-thread to achieve the task-level and data-level parallelism of the SIGMA1 on-the-fly Doppler broadening

algorithm. From the memory hierarchy point of view, the programmable memory including registers and global

memory are adopted to accomplish data management such as load/store and warp shuffle operations. Shared

memory is not considered for the initial design as other programming models such as OpenACC and OpenMP

offload do not yet offer programming interface to shared memory.

4.2.4 OpenACC Implementation

The OpenACC implementation is quite similar to the CUDA version as the CUDA runtime instructions are replaced

by OpenACC directives to achieve nuclide data transfer between host and devices and offload microscopic cross

section calculations to accelerators.

In order to handle the data management of memory allocation, movement and removal between host and

devices, the directives #pragma acc {enter/exit} data {copyin/copyout/delete} are adopted as shown in Al-

gorithm 11 (at lines 4, 10, 14, 18). The OpenACC runtime function acc_set_device_num() is used to set current

device which may be CPU host, Nvidia GPU and so on. Moreover, the device pointers that are associated with

the related host pointers by the directive #pragma acc enter data copyin can be retrieved by another OpenACC

runtime function acc_deviceptr().

Concerning the parallelization of SIGMA1 on-the-fly Doppler broadening method implemented in the function

computeSigma() of class OpenACCNeutronMediaNavigator, our OpenACC version adopts the directive #pragma

acc parallel loop gang to parallelize the outer-loop and the directive #pragma acc loop vector the inner-loop.

The number of parallel gangs for the outer-loop is set to N by clause num_gangs(N) which corresponds to the gridsize

N in the CUDA implementation. The length of vector unit for the inner-loop is defined by clause vector_length(32)

which can be interpreted as 32 CUDA threads within a warp under the condition that the device type is set to Nvidia.
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Algorithm 11: Pseudo-code of OpenACC implementation.

1 void OpenACCNuclide::allocateNucOnDevices(. . .){

2 for(int idev=0; idev<nb_devices; ++idev){

3 acc_set_device_num(idev, device_type); /* set current device */

4 #pragma acc enter data copyin(. . .) /* copy nuclide data to device */

5 }

6 }

7 void OpenACCNuclide::deleteNucOnDevices(. . .){

8 for(int idev=0; idev<nb_devices; ++idev){

9 acc_set_device_num(idev, device_type); /* set current device */

10 #pragma acc exit data delete(. . .) /* remove nuclide data from device */

11 }

12 }

13 void OpenACCNeutronMediaNavigator::computeSigma(. . .){

14 #pragma acc enter data copyin(. . .) async(stream)

15 #pragma acc parallel loop gang num_gangs(N) vector_length(32) async(stream) present(. . .)

16 for(int t=0; t<N; ++t)

17 sigma1DopplerBroadening(t, . . .);

18 #pragma acc exit data copyout(. . .) async(stream)

19 total_sigma = 0; . . . /* macroscopic cross section calculation */

20 }

21 inline double compute_integral(. . .){

22 double sigma = 0; double sigma_tmp = 0;

23 int index = lb; sigma += . . .;

24 #pragma acc loop vector reduction(+: sigma_tmp)

25 for(int i=lb+1; i<ub; ++i)

26 sigma_tmp += . . .;

27 sigma += sigma_tmp;

28 index = ub; sigma -= . . .;

29 return sigma;

30 }

The clause present(. . .) ensures that the data required by the function sigma1DopplerBroadening() is already

copied to the device. The clause async(stream) where stream may be a nonnegative scalar integer expression

makes the host multi-threads possible to process kernel computations or data operations in parallel, which equals

to the CUDA asynchronous multi-stream mechanism. Besides, the reduction operation can be achieved by using
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the clause reduction(operator:vars) on a loop to perform one type of operation for one or more variables. In our

case, the variable sigma_tmp is involved in a sum reduction that spans the inner-loop with the vector clause and

the aggregated value of this variable undergoing the sum reduction will be updated at the exit of the inner-loop.

4.2.5 OpenMP Offload Implementation

Like the OpenACC version, the OpenMP offload implementation also relies on the utilization of directives and run-

time functions to execute some portion of the code on the device. However, there are several differences between

them which need to be highlighted.

Firstly, although OpenMP target specification offers the directives to manage data transfer between host and de-

vices including #pragma omp target {enter/exit} data, as far as we know, it doesn’t give any interface to access

the device addresses allocated by these directives of data management as what the function acc_deviceptr() does in

OpenACC specification. Since these device pointers are required to be stored in the data structure that will be trans-

ferred between host and device during each call of the function computeSigma(), we directly use some OpenMP

runtime functions dedicated to performing data management such as omp_target_alloc(), omp_target_memcpy()

and omp_target_free() where omp_target_alloc() allocates memory in a device data environment and returns the

corresponding device address (at lines 3, 4, 9 in Algorithm 12).

Secondly, the directives adopted in the function computeSigma() which are responsible for data transfer and

kernel launch, #pragma omp target {data map/teams distribute have no clause specifying the asynchronous

stream. Despite the fact that OpenMP offload does offer a couple of directives #pragma omp task, #pragma omp

taskwait as well as a clause widely used to specify a set of directives denoted as nowait, such techniques only

allow the corresponding code region being executed asynchronously with respect to the current host thread. Thus,

OpenMP offload is not able to provide CUDA asynchronous multistreaming support as OpenACC which achieves

this functionality by using the clause async(stream).

It should be noted that the map-type of the directive #pragma omp target data map that we use in our imple-

mentation is tofrom or to. The map-type tofrom signifies the mapping of data from host to device at the start of

the region and the update of data from device to host at the end of the region while the map-type to refers to barely

the mapping of variable to the device data environment. Furthermore, the outer-loop parallelized by the directive

#pragma omp target teams distribute are specified by the clauses num_teams(N) and thread_limit(32) which

define respectively N parallel teams and the upper limit of 32 threads per team.

As for the parallelization of the inner-loop in the function compute_integral(), the directive #pragma omp parallel

for is used along with the clause reduction(+:sigma_tmp) so as to perform a sum reduction for the variable

sigma_tmp. Besides, the clause device(idev) utilized in directives #pragma omp target [data] creates the data

environment on the device of ID idev and the clause if(target [data]:device_enabled) makes the target region

in the host data environment when the scalar expression represented by device_enabled evaluates to zero. The



Chapter 4 Portable Implementation of on-the-fly Doppler Broadening in PATMOS 66

variable device_enabled is set at runtime depending on the variable nb_devices that is returned by the OpenMP

API runtime function omp_get_num_devices() as device_enabled = 0, if nb_devices = 0; device_enabled = 1,

otherwise.

Algorithm 12: Pseudo-code of OpenMP offload implementation.

1 void OpenMPNuclide::allocateNucOnDevices(. . .){

2 for(int idev=0; idev<nb_devices; ++idev){

3 auto this->d_eg[idev] = omp_target_alloc(. . ., idev); /* allocate memory on device */

4 omp_target_memcpy(. . ., idev, ihost); /* copy nuclide data to device */

5 }

6 }

7 void OpenMPNuclide::deleteNucOnDevices(. . .){

8 for(int idev=0; idev<nb_devices; ++idev){

9 omp_target_free(. . ., idev); /* remove nuclide data from device */

10 }

11 }

12 void OpenMPNeutronMediaNavigator::computeSigma(. . .){

13 #pragma omp target data map(tofrom: . . .) map(to: . . .) device(. . .) if(target data: . . .)

14 {

15 #pragma omp target teams distribute num_teams(N) thread_limit(32) device(. . .) if(target: . . .)

16 for(int t=0; t<N; ++t)

17 sigma1DopplerBroadening(t, . . .);

18 }

19 total_sigma = 0; . . . /* macroscopic cross section calculation */

20 }

21 inline double compute_integral(. . .){

22 double sigma = 0; double sigma_tmp = 0;

23 int index = lb; sigma += . . .;

24 #pragma omp parallel for reduction(+: sigma_tmp)

25 for(int i=lb+1; i<ub; ++i)

26 sigma_tmp += . . .;

27 sigma += sigma_tmp;

28 index = ub; sigma -= . . .;

29 return sigma;

30 }
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4.2.6 Kokkos Implementation

Algorithm 13: Pseudo-code of Kokkos implementation.

1 void KokkosNuclide::allocateNucOnDevices(. . .){

2 Kokkos::View<double *, . . .> d_eg_view(. . .); /* allocate a view inside a device memory space */

3 Kokkos::View<double *, . . .>::HostMirror h_eg_view = Kokkos::create_mirror_view(d_eg_view);

4 for(int i=0; i<size; ++i){

5 h_eg_view(i) = h_eg[i]; /* fill up the mirror view */

6 }

7 Kokkos::deep_copy(d_eg_view, h_eg_view); /* deep copy from mirror view to its original view */

8 }

9 void KokkosNeutronMedia::deleteNucDataOnDevices(. . .){

10 for(int i=0; i<N; ++i)

11 this->kokkos_nuclides[i].reset(nullptr); /* explicitly delete objects of the class KokkosNuclide */

12 }

13 void KokkosNeutronMediaNavigator::computeSigma(. . .){

14 Kokkos::TeamPolicy<> policy(N, Kokkos::AUTO()); /* set team policy of kernel */

15 Kokkos::deep_copy(. . .);

16 Kokkos::parallel_for(policy, functor); /* functor is a C++ class defining sigma1DopplerBroadening() */

17 Kokkos::deep_copy(. . .);

18 total_sigma = 0; . . . /* macroscopic cross section calculation */

19 }

20 KOKKOS_INLINE_FUNCTION double compute_integral(. . ., Kokkos::TeamPolicy<>::member_type& vector){

21 double sigma = 0; double sigma_tmp = 0;

22 int index = lb; sigma += . . .;

23 Kokkos::parallel_reduce(Kokkos::ThreadVectorRange(vector,ub-lb-1), KOKKOS_LAMBDA (const int& j,

double& t_sigma){

24 t_sigma += . . .;

25 }, sigma_tmp);

26 sigma += sigma_tmp;

27 index = ub; sigma -= . . .;

28 return sigma;

29 }

Firstly, since Kokkos implementation does not support multiple devices, our Kokkos implementation is not able

to be processed on a heterogeneous architecture of a CPU associated to multiple GPUs.

In our Kokkos implementation, the data management between host and device is operated by the use of the
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class Kokkos::View and the Kokkos runtime function Kokkos::deep_copy(). A Kokkos view is an array of zero or

more dimensions specified by a type of entries, an execution space, a memory space as well as a memory layout.

In our scenario, we utilize views of a single dimension allocated in the default execution space such as Serial,

Cuda and manually set different memory spaces including Kokkos::CudaSpace and Kokkos::HostSpace with their

default memory layouts such as Kokkos::LayoutLeft. The Kokkos function deep_copy() is used to manage data

placement between views in different memory spaces. In order to avoid the limitations that only those views with

an identical memory layout can be performed by deep_copy() correctly, the Kokkos::View::HostMirror is used as

a type of view mapped to the host memory space with a compatible memory layout comparing to its original type

Kokkos::View.

It should also be noted that the execution space OpenMP is not taken into account since our programming model

explicitly makes use of OpenMP thread directives to accomplish task-level parallelism and Kokkos is only responsible

for serial execution inside a host memory space. Moreover, like OpenACC and OpenMP offload, we use the data()

method defined in Kokkos View class to obtain the device pointer of a given view conserving nuclide data which is

put in other views whose entries are of a C++ struct and these views will be used in the function computeSigma().

As for the function deleteNucOnDevices() of parent class Nuclide, it is not explicitly implemented in the child class

KokkosNuclide due to the fact that all views produced in our Kokkos implementation are stored in either a C++ struct

or a C++ function and Kokkos provides a reference-counting mechanism to automatically manage deallocation of

Views as once the reference count of a view reaches zero, this view will be deallocated from its memory space

(constructor and copy increase the reference count, destructor and assignment decrease the reference count).

Alternatively, to ensure that before the call of Kokkos::finalize(), reference counts of all views are returned to

zero, we implement the function deleteNucDataOnDevice() of the class KokkosNeutronMedia to forcefully call the

destructor of the class KokkosNuclide in which views of nuclide data are conserved.

The computational kernel is launched by calling the function Kokkos::parallel_for() parameterized by a

Kokkos execution policy setting its league size and team size along with a user-defined functor encapsulating the

sigma1DopplerBroadening() function. In our case, the Kokkos::TeamPolicy is set to N leagues (handling cross

section calculations of N nuclides in parallel) and Kokkos::AUTO threads per team (Cuda execution space equaling

to a multiple of 32 and Serial equaling to the corresponding vector length of a given host processor). Moreover,

Kokkos adopts a mechanism to verify if a host thread generated by Kokkos already exists in a thread pool, which may

sometimes cause runtime error with the utilization of our programming model OpenMP thread + Kokkos::Serial.

For the purpose of avoiding this bug, we manually remove the verification part implemented in the Kokkos source

file Kokkos_HostThreadTeam.cpp.

The compute_integral() function is implemented in the functor as a KOKKOS_INLINE_FUNCTION where the in-

ner loop is parallelized by the Kokkos::parallel_reduce() function which accepts a parameter of an instance of

Kokkos::ThreadVectorRange() defining the loop range and a parameter of KOKKOS_LAMBDA function encapsulating

the calculation part as illustrated in Algorithm 13 (at lines 23–25). Although Kokkos provides an interface to pro-
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gramme “scratched pad” memory shared by threads in a team, we don’t use explicitly this functionality in order to

make our Kokkos version in accordance with other implementations.

It should be noted that Kokkos provides indeed the interoperability of CUDA runtime API functions. By instanti-

ating an object of the class Kokkos::Cuda with its constructor fed with a parameter of the class cudaStream_t which

is initialized by the CUDA runtime function cudaStreamCreate(), the kernels and memory operations invoked by

different host threads can be overlapped as an achievement of CUDA asynchronous multistreaming in the latest

version of Kokkos. Nevertheless, such technique has not been implemented in our basic Kokkos version since

for all versions implemented via high-level programming languages or libraries, we intend to hide low-level APIs

completely and offer users a pure high-level interface to programme.

4.2.7 SYCL Implementation

As shown in Algorithm 14 (at lines 1–8), the memory copies of nuclide data are invoked as memory copy kernels in

the function allocateNucOnDevices() of the class SYCLNuclide. All nuclide data are stored in the cl::sycl::buffer

class of one dimension as an input parameter of a command group which is submitted to a queue by invoking its

member function submit(). The access of SYCL buffer is achieved by the class cl::sycl::accessor which provides

an entry to data either on host or within a command group enqueued to SYCL queues. The constructor of SYCL

queues adopted in our implementation accepts an instance of the class cl::sycl::default_selector which may

select a host device or accelerators. The memory copy operation is undertaken by the member function copy() of

the cl::sycl::handler class which copies the host data into the memory object accessed by SYCL accessors.

The parallelization of outer-loop in the function computeSigma() is accomplished by the invocation of an hierar-

chical kernel which calls the function parallel_for_work_group() of the class cl::sycl::handler with two values

of the class cl::sycl::range representing respectively the number of work-groups and the number of work-items

per work-group as well as a user-defined functor encapsulating the function sigma1DopplerBroadening() in its

operator() function. In our case, the number of work-groups is set to N where each work-group is assigned to

a task of microscopic cross section calculation of a nuclide. The number of work-items per work-group denoted

as work_group_size is hardware-dependent which needs developers to manually set its value. Besides, since by

default all variables declared inside the parallel_for_work_group scope are allocated in local memory which are

shared by all work-items within the group, we declare these variables of the type cl::sycl::private_memory<T>

as a substitution of the type T for the purpose of explicitly declaring them in private memory and avoiding the use of

shared memory. In this way, the SYCL version can be in accordance with other implementations.

After the execution of the computational kernel, a member function update_host() of SYCL handler for memory

operation is enqueued to the SYCL queue to copy the calculated data back to host.

Note that each call of the function submit() invokes a single kernel or memory operation by convention. It should

be avoided to put multiple kernels and memory operations in the same scope of a function submit().
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Algorithm 14: Pseudo-code of SYCL implementation.

1 void SYCLNuclide::allocateNucOnDevices(. . .){

2 cl::sycl::queue sq(cl::sycl::default_selector{}); /* create a SYCL queue of a particular device type */

3 cl::sycl::buffer<. . .> buffer_eg(h_eg, . . .); /* wrap the host data in a SYCL buffer */

4 sq.submit([&] (cl::sycl::handler& cgh){ /* Enqueue a kernel */

5 auto d_eg_accessor = buffer_eg.get_access<. . .>(cgh); /* request access to the buffer */

6 cgh.copy(h_eg, d_eg_accessor); /* copy h_eg to the memory object accessed by d_eg_accessor */

7 });

8 }

9 void SYCLNeutronMediaNavigator::computeSigma(. . .){

10 this->sq.submit([&] (cl::sycl::handler& cgh){

11 cgh.parallel_for_work_group(N, work_group_size, functor(. . .));

12 });

13 this->sq.submit([&] (cl::sycl::handler& cgh){

14 cgh.update_host(. . .);

15 });

16 total_sigma = 0; . . . /* macroscopic cross section calculation */

17 }

18 cl::sycl::private_memory<double> compute_integral(. . ., cl::sycl::group<1>& work_items){

19 size_t num_items = work_items.get_local_range(0); double[num_items] item_sigmas = {0};

20 cl::sycl::private_memory<double> sigma(work_items);

21 cl::sycl::private_memory<int> index(work_items);

22 work_items.parallel_for_work_item([&](cl::sycl::h_item<1> item){

23 sigma(item) = 0; sigma_tmp = 0;

24 index(item) = lb(item); sigma(item) += . . .;

25 for(int i=lb(item)+1; i<ub(item); i+=item.get_get_local_range(0))

26 sigma_tmp += . . .;

27 item_sigmas[item.get_local_id(0)] = sigma_tmp;

28 for(int mask=item.get_local_range(0); mask>0; mask/=2){

29 if(item.get_local_id(0)<mask)

30 item_sigmas[item.get_local_id(0)] += item_sigmas[thread.get_local_id(0) + mask];

31 }

32 sigma(item) += item_sigmas[0];

33 index(item) = ub(item); sigma(item) -= . . .;

34 });

35 return sigma;

36 }
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Since it is possible to call the function parallel_work_for_item() of the class cl::sycl::group multiple times

within the parallel_work_for_group scope, the inner-loop in the compute_integral() function can be vectorized by

this function (at lines 25–26). However, due to the fact that SYCL of version 1.2.1 does not provide a pre-defined

function performing the sum reduction, we are obligated to manually implement a reduction loop to summarize the

final result with the utilization of shared memory (at lines 28–31). Although the latest version of SYCL released in

2020 offers the function parallel_reduce() of the class cl::sycl::handler along with the cl::sycl::reduction in-

terface and cl::sycl::reducer class to perform reduction over all work items, this function has not been expanded

to the class cl::sycl::group so as to be invoked in the parallel_work_for_group scope [69]. Therefore, it is not

suitable to our coding strategy of hierarchical parallelism and we hope such functionality can be implemented in the

future release.

Additionally, SYCL allows the host to target to multiple devices. However, unlike CUDA, OpenACC and OpenMP

offload which offer users the interface to explicitly associate a particular device with a host thread, the function

select_device() of the class device_selector set up the device based on the highest score gained by all available

SYCL devices and it will randomly select a device if more than one device obtains the same high score. As for the

kernel execution order in our SYCL implementation, since all command groups are submitted to different queues

where each queue is owned by a particular host thread, the order of execution is determined by the SYCL runtime.

Moreover, because all command group objects use almost the same nuclide data as the contents of requirement

sets, they depend on each other and cannot be overlapped as concurrent kernels.

4.3 Implementations of Particle Tracking Methods

4.3.1 Heterogeneous Offloading History-based Method

Algorithm 15: Heterogeneous offloading history-based Monte Carlo neutron transport algorithm.

1 foreach particle distributed to the processing thread do

2 while particle is alive do

3 calculation of macroscopic cross section, with several vectorizable parts;

4 • do microscopic cross section lookups =) offloaded;

5 ⇤ binary search to find lower-upper bounds;

6 ⇤ integral computation;

7 • sum up macroscopic cross section;

8 sample distance, move particle, do interaction;

9 end

10 end



Chapter 4 Portable Implementation of on-the-fly Doppler Broadening in PATMOS 72

Algorithm 15 shows the procedure of history-based method implemented in PATMOS adopting our hetero-

geneous offloading strategy. Microscopic cross section lookup using the SIGMA1 on-the-fly Doppler broadening

algorithm is the only part offloaded to accelerators. Once the required data for cross section lookups are transferred

from host to device, calculations on device begin and the host summarizes macroscopic total cross section after

the results being transferred back. It is obvious that our design brings in too many back-and-forth data transfers

between host and device. The size of data movement for each calculation (a group of nuclides in one material) is

quite small but the large number of memcpy calls induces many launch overheads which may degrade performance

in an overwhelming way.

4.3.2 Heterogeneous Offloading Pseudo Event-based Method

As one of general guidelines for mitigating the performance bottleneck due to host-device data transfers is to batch

many small transfers into one large transfer. Thus, we developed another tracking algorithm in which one host thread

treats several particles at the same time so as to request the GPU to compute the microscopic cross sections for

all of these particles at the same time, in one bigger kernel. This is achieved by banking multiple particles into

one group and offloading microscopic cross section lookups for all these particles. In this way, the number of data

transfers can be reduced and the amount of work for each kernel is increased.

Algorithm 16: Heterogeneous offloading pseudo event-based Monte Carlo neutron transport algo-

rithm.

1 foreach bank of particles distributed to the processing thread do

2 while particles remain in bank do

3 foreach remaining particle in bank do /* First event */

4 bank required data for microscopic cross section lookups;

5 end

6 • do microscopic cross section lookups =) offloaded; /* Second event */

7 ⇤ binary search to find lower-upper bounds;

8 ⇤ integral computation;

9 foreach remaining particle in bank do /* Third event */

10 • sum up macroscopic cross section;

11 sample distance, move particle, do interaction;

12 end

13 end

14 end
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To fulfill this tuning strategy, our history-based method is redesigned to a new “pseudo event-based” approach.

The details of this new method are described in Algorithm 16. The overall procedure of history tracking is reorga-

nized into three events including a for loop of data banking, a kernel of microscopic cross section calculations and

another for loop of macroscopic cross section calculations along with the distance sampling, particle movement

and interaction.

4.4 Numerical Results

In this section, the numerical results of a benchmark implemented in PATMOS via different programming languages

and libraries as well as two particle tracking approaches (history-based and pseudo event-based methods) executed

across a set of architectures will be elaborated.

4.4.1 Description of the benchmark

The benchmark, called slabAllNuclides, consists in a fixed source Monte Carlo simulation of a slab discretized in

10,000 volumes. Each volume is made with the same material containing 388 nuclides, which corresponds to the

number of nuclides available in the ENDFB-VII.0 nuclear data library. The number of nuclides in the material has

a big impact on the macroscopic cross section calculation time. That is why we chose a material composition

representative of what is encountered in depletion calculation. Moreover, 1H and 238U are predominant so as to

obtain a neutronic behavior representative of a pressurized water reactor. The temperature of the material is 900

Kelvin. We simulate 10 batches of 500,000 particles.

In the following, all the tests are performed with the SIGMA1 on-the-fly Doppler broadening algorithm. The

base temperature from which the cross section are Doppler broadened is 0 Kelvin. Performances of the different

implementations (programming models and particle tracking method) are evaluated by comparing the simulation

time (the run time per cycle) or the particle tracking rate (the number of particles treated per second).

4.4.2 Compiler Support

Since the programming languages or libraries implemented in the research (OpenMP thread, CUDA, OpenACC,

OpenMP offload, Kokkos and SYCL) do not cover all architectures and each one has different degrees of maturity

achieved by different compilers, it is of significance that we make a global summary of the compiler support for these

programming models.

From Table 4.2, we find that OpenMP thread can be compiled by most of compilers except NVCC where NVCC

is Nvidia’s CUDA Compiler based on LLVM compiler infrastructure which is dedicated to compiling CUDA code.

Concerning OpenACC, PGI starts to support OpenACC 1.0 specification from its 2012 release and the full

features of directives-based parallel programming specified in OpenACC 2.6 as well as some features of OpenACC
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3.0 specification such as deep copy directives have been implemented in recent releases. Besides, GCC provides

implementation of OpenACC specification from GCC 5 and its latest release GCC 10 starts to support some features

of OpenACC 2.6 specification.

With respect to OpenMP offload, GCC offers support for offload of OpenMP 4.5 and 5.0 specifications targeting

to Intel MIC, Nvidia GPUs and AMD GCN architectures. IBM XLC 16.1 supports OpenMP 4.5 specification offloading

computations to Nvidia GPUs with the requirements of little endian operating system and CUDA 9.2 backend. Clang

fully supports OpenMP 4.5 specification and some features of OpenMP 5.0 specification with a set of offload targets

including x86, OpenPower, Arm and Nvidia GPU architectures. Moreover, Intel C++ compiler next generation code

generator provided in the Intel oneAPI HPC toolkit support OpenMP 4.5/5.0 TARGET offload feature for Intel GPUs

(Gen9 through Gen11). It should also be noted that the OpenMP offload support targeting to host (multicore CPU)

is provided by PGI 2019 or later releases, the development of GPU target offload is on the roadmap.

Table 4.2: Compiler support for different programming models.

Compilers
Programming Models

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

GCC X X X

PGI X X IN FUTURE

XLC X X

Clang X X

Intel C++ X X

NVCC X X

DPC++ X X

hipSYCL X X X

ComputeCpp X X

Kokkos wrapper X X X

With reference to Kokkos, GCC, PGI, XLC, Clang, Intel C++, NVCC compilers can be wrapped into a Kokkos

compiler for the compilation of Kokkos code on x86, OpenPower, Intel MIC, ARM architectures. The support of

Kokkos for AMD and Intel GPU backend is on the roadmap and should be developed by the year of 2021.

As for SYCL, DPC++, hipSYCL and ComputeCpp provide support for compiling SYCL code with the offload

target of Intel CPUs, Intel GPUs, Intel FPGAs, AMD GPUs, Nvidia GPUs and so on. DPC++ is a LLVM-based high-

performance compiler for the Data Parallel C++ language of C++ and SYCL standards provided in the Intel oneAPI

Base Toolkit [103]. It mainly offloads code across OpenCL platforms such as Intel CPUs, GPUs and FPGAs. A

DPC++ backend implementation in collaboration with Codeplay enabling Nvidia GPU offloading support has been

released recently [104]. This implementation should work on Nvidia GPUs of capability 5.0 or higher with CUDA
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10.2 installed. hipSYCL [15] is a LLVM-based compiler building on CUDA, HIP and OpenMP backends instead of

OpenCL which allows it to target multicore CPUs, Nvidia GPUs and AMD GPUs. It is wrapped with a clang plugin

to provide support for SYCL code and thus interoperable with CUDA and HIP codebases. ComputeCpp is a LLVM-

based device compiler capable of compiling SYCL implementations on OpenCL platforms which mainly include

Intel CPUs, Intel GPUs, Intel FPGAs, AMD GPUs with SPIR(-V) support and Nvidia GPUs with experimental PTX

support [113]. Except for SYCL implementations mentioned above, there are another two incomplete LLVM-based

implementations, triSYCL [68] and sycl-gtx [120] which both build on OpenCL backend to provide offload support

for OpenCL devices.

4.4.3 Execution Environment

All intra-node tests of slabAllNuclides benchmark expressed in this chapter are carried out on five machines which

are listed in Table 4.3:

Table 4.3: List of machines to run tests of slabAllNuclides benchmark.

Machines Details

GridCL 2⇥ 20-core Intel Xeon Gold 6138, HT + 2⇥ Nvidia V100

Cobalt-hybrid 2⇥ 14-core Intel Xeon E5-2680 v4, HT + 2⇥ Nvidia P100

Cobalt-v100 2⇥ 20-core Intel Xeon Gold 6148, HT + 4⇥ Nvidia V100

Gorgon 2⇥ 20-core IBM Power9, SMT4 + 4⇥ Nvidia V100

Intel NUC 1⇥ 4-core Intel Core i7-8705G, HT + 1⇥ Intel HD Graphics 630

where HT refers to hyper-threading, SMT refers to simultaneous multi-threading.

In summary, all five machines listed above compose a set of architectures including x86 (Broadwell, Skylake,

Kaby Lake G), OpenPower (Power9), Nvidia GPU (P100, V100) and Intel GPU (Intel HD Graphics 630). The first

four are computing center machines while the last one is a desktop machine.

The basic configurations of these architectures are illustrated in Table 4.4. Note that the cores and threads of

Nvidia GPUs listed in Table 4.4 signify respectively the streaming multiprocessors (SMs) and CUDA threads. As for

the Intel Gen9.5 architecture, the number of cores refers to its number of execution units.

The compilers installed on GridCL include GCC 7.1, PGI 20.7, Intel C++ 17.0, Clang 11.0.0 and NVCC 9.2/10.1,

which offer support for OpenMP thread, CUDA, OpenACC, OpenMP offload and Kokkos implementations. On

Cobalt-hybrid and Cobalt-v100, GCC 7.1, PGI 18.7, Intel C++ 17.0, and NVCC 9.0 are provided to achieve the

compilation of OpenMP thread, CUDA, OpenACC, Kokkos. Gorgon uses GCC 7.3, XLC 16.1, PGI 19.4 and CUDA

9.2/10.1 to compile OpenMP thread, CUDA, OpenACC, OpenMP offload and Kokkos. At last, Intel NUC is in-

stalled with GCC 7.4, PGI 19.10, ComputeCpp 1.1.6, DPC++ 2021.1-beta03 to provide support for OpenMP thread,
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OpenACC, Kokkos as well as SYCL implementations.

Table 4.4: Configurations of processors composing accessible machines.

Processors Cores Threads Frequency GHz Memory Bandwidth GB/s FP64 TFLOPS

Skylake
Intel Xeon Gold 6138 40 80 2.00 207.4 2.6
Intel Xeon Gold 6148 40 80 2.40 207.4 3.1

Broadwell
Intel Xeon E5-2680 v4 28 56 2.40 76.8 1.1

Kaby Lake G
Intel Core i7-8705G 4 8 3.10 37.5 0.2

Power9
Power9 SMT4 40 160 3.20 340 1.0

Nvidia Pascal
P100 56 1792 1.33 720 5.3

Nvidia Volta
V100 80 2560 1.30 900 7.8

Intel Gen9.5
Intel HD Graphics 630 24 168 0.35 37.5 0.03

4.4.4 Performance Analysis in Host Mode

Due to the fact that our implementations in PATMOS adopts a heterogeneous offloading strategy, distributing particle

tracking tasks to a group of CPU threads where the microscopic cross section calculations required in all tasks may

be offloaded to devices or performed on host, the performance analysis should be classified into two modes: host

and offload. We start from the study of the effects of thread binding on performance in host mode.

4.4.4.1 Thread Affinity Analysis

The test is carried out on the machine GridCL where the SYCL version is not able to be executed successfully.

The benchmark is compiled by Intel C++ 17.0 with the auto-vectorization functionality enabled. The configuration of

GridCL can be checked from Table 4.3 and Table 4.4.

OpenMP mainly provides three levels of thread affinity, sockets, cores and threads so as to bind a thread to a

hardware socket, core or thread. In order to deliver better performance for a given number of threads, it is a priority

to bind these threads to as much as hardware cores rather than hardware sockets or threads since the latter two

choices may end up with many cores bound by more than one thread. Therefore, we prefer to set the thread affinity

level to cores by using the command export OMP_PLACES=cores instead of sockets and threads. As for the thread

affinity policy, we consider two cases, close and spread which bind the threads respectively by a close and sparse
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distribution across the available places.

From Table 4.5, we find that the spread policy outperforms the close policy. The performance gap becomes

greater when the number of threads is less than the total number of cores on the machine (In this case, GridCL

contains two sockets of 20 cores). The reason for this performance gap is that binding all threads to the cores in a

single socket as what the close policy does gives each thread limited bandwidth. By contrast, binding all threads

over two sockets gives each thread a higher available bandwidth and mitigates the memory-bound issue.

Table 4.5: Performance of the OpenMP thread version of slabAllNuclides using the history-based method
via different thread affinity policy.

Number of threads cores/close cores/spread

10 1269.89 1113.39

20 732.26 639.34

30 472.89 462.95

40 374.05 373.86

50 352.12 351.85

60 331.73 329.19

70 310.20 307.66

80 294.50 291.38

The performance is evaluated by the simulation time (s/cycle), the lower the better.

Note that the performance of slabAllNuclides using the pseudo event-based method is similar to that using the

history-based method in host mode. The spread policy is also better than the close policy. Thus, we set the thread

affinity in host mode to cores/spread for all tests undergone in the following.

4.4.4.2 Scaling Analysis

Now, we carry out a series of tests for scaling analysis (strong scaling) on the machine GridCL. For host mode, the

scaling performance is mainly influenced by overheads to avoid memory contention when shared resources such

as nuclide data are accessed by multiple threads simultaneously.

Figure 4.4 depicts the run time per cycle (the lower the better) and strong scalability (the higher the better)

of slabAllNuclides benchmarks using the history-based method (denoted as HB). In terms of simulation time, all

curves are in a form of
1

x
as the run time per cycle decreases with the increase of threads. For example, the

OpenMP thread version gains a factor of approximate 28x performance speedup with 40 threads comparing to

that with a single thread. In terms of strong scalability, all versions resemble in each other. With the increase of

threads from 10 threads to 20 threads and finally to 40 threads, their scalability drops from around 90% to 80%, and

then to 70%. It can be concluded that we obtain 10% drop of strong scalability as the number of threads doubles.
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Furthermore, when the hyper-threading is enabled, the scalability drops from 70% to around 45% as the number of

threads varies from 40 to 80, which corresponds to the normal behavior of hyper-threading.

Figure 4.4: Scaling performance of the slabAllNuclides using the history-based method in host mode
(Simulation time, the lower the better; Strong scalability, the higher the better).

Figure 4.5: Scaling performance of the slabAllNuclides using the pseudo event-based method in host
mode (Simulation time, the lower the better; Strong scalability, the higher the better).
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Similarly, Figure 4.5 shows the simulation time and strong scalability of slabAllNuclides benchmarks using the

pseudo event-based method (denoted as PEB). Note that the bank size of pseudo event-based method is set to

100 as there is no need to perform a bank size analysis in host mode. From the perspective of performance, the

simulation time of different implementations of slabAllNuclides using the pseudo event-based method is generally

a little higher than the one using the history-based method. This is caused by the data banking and additional

loop overheads of the pseudo event-based method. From the perspective of strong scalability, the scalability of all

versions decreases in the similar way of the history-based method.

4.4.4.3 Vectorization

The performance gaps between different programming models are caused by different compilers. For instance,

by using the options -Wa,-adhlng and -fopt-info with GCC compiler to generate assembly code along with the

source code and show optimization information.

OpenMP directive enabled

LOOP BEGIN at sigma1xse.cxx(88,3)

remark #15305: vectorization support: vector length 2

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

remark #15475: –- begin vector cost summary –-

remark #15476: scalar cost: 450

remark #15477: vector cost: 195.000

remark #15478: estimated potential speedup: 2.280

remark #15488: –- end vector cost summary –-

LOOP END

Auto-vectorization enabled

LOOP BEGIN at sigma1xse.cxx(88,3)

remark #15305: vectorization support: vector length 4

remark #15475: –- begin vector cost summary –-

remark #15476: scalar cost: 419

remark #15477: vector cost: 91.750

remark #15478: estimated potential speedup: 4.320

remark #15488: –- end vector cost summary –-

LOOP END

We find that the for loop in the function compute_integral() is vectorized with a vector length 2 for holding
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two 64-bit double-precision floating point variables simultaneously as only the SSE (XMM0-XMM15) registers are

used in the instructions such as vmulsd %xmm4, %xmm7, %xmm0. In summary, the OpenMP SIMD directive and GCC

compiler options both fail to make the GCC compiler fully exploiting the hardware feature (Skylake processor with

AVX512 extensions).

The Intel C++ compiler manages to parallelize the for loop in the function compute_integral() with a 256-

bit vectorization (vector length 4 for holding four variables of double type simultaneously) achieved by the use of

AVX2 (YMM0-YMM15) registers, as shown in the optimization report listed above which is enabled by adding the

-qopt-report=5 into compiler options. It indicates that the OpenMP SIMD directive also has no effect on Intel C++

compiler for the utilization of AVX2 extensions on GridCL as it acts for the GCC compiler. In order to accomplish

a higher level of vectorization, the compiler options for auto-vectorization must be added. However, all compilers,

including GCC, Intel C++, as well as PGI and LLVM Clang, fail to vectorize the inner-loop with AVX512 extensions

on GridCL.

4.4.5 Performance Analysis in Offload Mode

4.4.5.1 Thread Affinity Analysis

Due to the GPU topology, the CPU affinity may affect the performance. By using the command nvidia-smi topo

-m, we find that on GridCL, a single GPU is connected closely to a socket including 20 cores, 40 threads via PCIe.

A comparison of the performances of slabAllNuclides adopting different thread affinity policies in offload mode

tested on GridCL shows that for slabAllNuclides using the pseudo event-based method PEB, both the OpenMP

cores/spread and cores/close policies introduces few performance gap between each other, as illustrated in

Table 4.6. The maximal ratio of the performance gap to the greater performance for a given number of threads is

4.57% achieved by 10 threads while the average percentage of performance gap equals to 1.56%.

On the contrary, the performances of slabAllNuclides HB adopting different thread affinity policies differentiate

quite a lot with each other. From Table 4.6 we find that the maximal percentage of performance gap reaches up to

24.06% and the average ratio of performance gap to the higher performance is 12.66%. It indicates that comparing

to pseudo event-based method, history-based method is much more influenced by the choice of thread affinity policy

related to GPU topology. Note that the tests listed in Table 4.6 are performed with a single device by setting the

environment variable CUDA_VISIBLE_DEVICES to a single number, 0 or 1. We can conclude that the cores/close

policy works better than the cores/spread policy for slabAllNuclides HB in offload mode targeting to a single device.

As for multi-threads targeting to multi-GPUs, the effect of CPU affinity is similar to that of a single device,

as described in Table 4.7. With respect to history-based method, the cores/close policy is more suitable than

the cores/spread policy, improving around 16.33% performance in average. With respect to pseudo event-based

method, the cores/spread policy outperforms a little the cores/close with a maximal 8.94% performance improve-

ment and an average percentage of performance gap equaling to 2.50%.
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Overall, in what follows we set the thread affinity to cores/spread for all tests carried out in offload mode to

accord with the thread affinity set for tests executed in host mode, as we discussed in the section 4.4.4.

Table 4.6: Comparison of the performances of slabAllNuclides in offload mode adopting different thread
affinity policies tested on GridCL with a single Nvidia V100.

Number of threads
cores/close cores/spread

HB PEB HB PEB

2 1168.85 393.20 1278.35 399.46
4 725.82 215.61 955.73 207.73
6 1383.32 153.42 1794.62 149.67
8 1731.11 124.94 2004.87 122.95

10 1845.44 112.84 1592.36 107.69
20 1905.26 96.90 1868.24 96.87
40 2475.58 96.69 2556.41 96.83
60 3047.89 97.16 4006.39 96.96
80 3980.08 141.11 4062.55 143.19

where HB and PEB are respectively the abbreviations of history-based and pseudo event-based methods. The performance is
evaluated by the simulation time (s/cycle), the lower the better.

Table 4.7: Comparison of the performances of slabAllNuclides in offload mode adopting different thread
affinity policies tested on GridCL with two Nvidia V100.

Number of threads
cores/close cores/spread

HB PEB HB PEB

2 1087.49 388.09 1071.43 377.84
4 587.34 202.77 632.48 195.39
6 442.70 141.48 483.95 137.02
8 397.23 110.35 864.31 107.81

10 594.39 99.27 969.56 90.39
20 621.76 62.15 933.36 57.77
40 927.63 49.20 943.89 49.15
60 1669.81 49.39 1699.01 49.85
80 1971.01 49.83 1966.18 49.99

where HB and PEB are respectively the abbreviations of history-based and pseudo event-based methods. The performance is
evaluated by the simulation time (s/cycle), the lower the better.

4.4.5.2 Bank Size Analysis

Moreover, when it comes to the pseudo event-based method, the bank size is also a key factor that influences the

performance as well as the optimal thread number. In what follows we perform a bank size analysis for the CUDA
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version of slabAllNuclides on GridCL. If the bank size is set to 1, the program will run in a history-based way. If it is

superior to 1, a pseudo event-based way. The tests are carried out with certain thread numbers and a single Nvidia

V100 card, as depicted in Figure 4.6.

Figure 4.6: Bank size analysis of the CUDA version of slabAllNuclides in offload mode, the higher the
better.

We find that too small and too large bank size cannot maximize performance. For the region of bank size ranging

from 1 to 100, with the increase of bank size, the performance of benchmark improves significantly, gaining a factor

of approximately 20x speedup. When the bank size surpasses 100, most of performances executed by different

thread numbers varies little and becomes stable, until the bank size exceeds a rather large number (in our case,

5 ⇥ 104), as the green region shown in Figure 4.6. After this green region, the performance of benchmark drops

down which is due to the CPU idle threads caused by the lack of tasks to be distributed to all available threads

(number of banks is smaller than number of threads). For example, when the bank size equals to 5 ⇥ 105, there is

only a single bank to be assigned to a CPU thread and all performances executed by multiple threads tend to the

same value.

It is obvious that choosing a bank size residing in the green region is a better choice to exploit the optimal

performance of our CUDA implementation in offload mode. Thus for the following tests carried out via the pseudo

event-based method, we intend to fix all their bank sizes to 100.
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4.4.5.3 Scaling Analysis

Concerning the offload mode, the overheads of kernel launch and memory transfer become a major point to affect

scaling performance. Unlike host mode where its performance improves with the increase of threads continuously,

the performance of offload mode is more like having a peak value at a given number of threads. If we use more

threads, the benefits obtained from multithreading will be uncompetitive to the overheads of kernel launch and

memory transfer, leading to a significant performance degradation.

In particular, for Nvidia GPUs with multi-stream support, too many host threads where each one targets to a

CUDA stream make some overheads and latency of kernels and memory transfers unable to be hidden due to the

total multi-stream number limited by compute resources. Therefore, it is significant to perform a scalability analysis

that concentrates on finding the optimal thread number delivering the best performance.

Figure 4.7: Scaling performance of the CUDA version of slabAllNuclides in offload mode, the higher the
better.

The tests are carried out with the CUDA version of slabAllNuclides on the machine GridCL in offload mode. Both

the history-based method and the pseudo event-based method are taken into account. The bank size of the pseudo

event-based method is set to 100 which has already been proved as a good choice to exploit the best performance.
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Figure 4.7 shows that the pseudo event-based method generally exceeds a magnitude of performance achieved

by the history-based method. With reference to the pseudo event-based method, when the number of threads sur-

passes a value (15 for a single GPU, 30 for two GPUs), its performance reaches up to a high value and becomes

quite stable. With reference to the history-based method, there is a peak value obtained by a specific number of

threads (4 for a single GPU, 6 for two GPUs). When the number of threads increases over the peak number, its

performance degrades little by little. This scalability analysis indicates that the history-based method is a bad candi-

date for our heterogeneous offloading strategy while the pseudo event-based method exploits more computational

capability of devices and delivers much more improving performance.

4.4.6 Performance Evaluation

A series of tests have been carried out on the platform set introduced in section 4.4.3 for the purpose of evaluating

the performance of the different programming models. Numerical results of peak performance are illustrated in

Table 4.8.

Table 4.8: Particle tracking rate via different programming models on a set of platforms, the higher the
better.

Machine Programming Model

slabAllNuclides

(⇥102 particles/s)

HB PEB

GridCL CPU (40 cores, HT2) OMPth 17.2 16.9

OMPth+ACC 7.7 6.9

OMPth+offload 6.5 5.5

OMPth+Kokkos 12.8 8.1

1V100 OMPth+CUDA 5.2 51.8

OMPth+ACC 3.5 34.7

OMPth+offload 0.4 2.6

OMPth+Kokkos 0.4 0.7

2V100 OMPth+CUDA 10.5 101.7

OMPth+ACC 7.0 59.8

OMPth+offload 0.6 4.5

Cobalt-hybrid CPU (28 cores, HT2) OMPth 10.2 9.5

OMPth+ACC 4.5 4.4

OMPth+Kokkos 7.1 5.9
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1P100 OMPth+CUDA 4.7 25.7

OMPth+ACC 3.3 21.8

OMPth+Kokkos 0.3 2.4

2P100 OMPth+CUDA 10.7 51.0

OMPth+ACC 6.2 42.8

Cobalt-v100 CPU (40 cores, HT2) OMPth 14.6 13.6

OMPth+ACC 6.6 6.4

OMPth+Kokkos 7.9 7.2

1V100 OMPth+CUDA 4.2 55.7

OMPth+ACC 2.5 21.8

OMPth+Kokkos 0.3 2.8

2V100 OMPth+CUDA 11.0 84.7

OMPth+ACC 5.2 42.0

4V100 OMPth+CUDA 21.7 140.4

OMPth+ACC 10.5 70.4

Gorgon CPU (40 cores, SMT4) OMPth 7.0 6.8

OMPth+ACC 7.7 7.4

OMPth+offload 1.7 1.5

OMPth+Kokkos 6.7 6.0

1V100 OMPth+CUDA 4.4 55.0

OMPth+ACC 2.4 36.6

OMPth+offload 2.5 6.5

OMPth+Kokkos 0.31 1.2

2V100 OMPth+CUDA 8.2 104.4

OMPth+ACC 4.8 62.9

OMPth+offload 4.9 12.8

4V100 OMPth+CUDA 15.4 147.0

OMPth+ACC 8.2 80.6

OMPth+offload 8.9 25.0

Intel NUC CPU (4 cores, HT) OMPth 3.2 3.1

OMPth+ACC 1.2 1.1
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OMPth+Kokkos 2.3 2.2

OMPth+SYCL 0.2 0.1

1Gen9.5 OMPth+SYCL 0.3 0.6

where OMPth refers to OpenMP thread, OMPth+offload means OpenMP host and offload functionalities.

We find that among the implemented programming models, the CUDA and OpenACC versions allow to obtain

better performance. For example, at maximal 101.7 ⇥ 102 and 59.8 ⇥ 102 particles/s on GridCL, 147.0 ⇥ 102 and

80.6 ⇥ 102 particles/s on Gorgon). The OpenMP offload version is not competitive with the OpenACC version, for

instance, merely leading to a 5�10% tracking rate of the CUDA version on GridCL and Gorgon. The Kokkos version

obtains even much worse performance than the OpenMP offload version, with the peak performances of 0.7 ⇥ 102

particles/s on GridCL and 1.2⇥ 102 particles/s on Gorgon. As for the SYCL version, it is the single version capable

of offloading computational kernel to Intel Graphics while there is a lack of compiler support to successfully compile

and execute the SYCL version on other machines equipped with Nvidia GPUs. The peak performance of the SYCL

version in offload mode is 0.6⇥ 102 particles/s on Intel NUC.

Figure 4.8: slabAllNuclides performance speedup on GridCL, the higher the better - Baseline for the
performance is obtained in host mode with the use of pseudo event-based method and a fixed number of
bank size, 100.

Figure 4.8 provides a straightforward view for comparison of performance speedup among different programming

models on GridCL. From the figure we find that in general the pseudo event-based method (PEB) outperforms the

history-based method (HB) in offload mode. Comparing to the baseline performance obtained by the pseudo event-

based method fixing the bank size to 100, the CUDA version may reach up to approximately 6.0x speedup and the
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OpenACC version may gain a factor of 3.5x speedup. Other implementations including OpenMP offload, Kokkos as

well as SYCL are not competitive to the baseline performance in host mode.

Figure 4.9: slabAllNuclides performance speedup on Cobalt-hybrid, the higher the better - Baseline for
the performance is obtained in host mode with the use of pseudo event-based method and a fixed number
of bank size, 100.

Figure 4.10: slabAllNuclides performance speedup on Cobalt-v100, the higher the better - Baseline for
the performance is obtained in host mode with the use of pseudo event-based method and a fixed number
of bank size, 100.
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Figure 4.9 shows the performances of different programming models on Cobalt-hybrid. In comparison with the

baseline performance in host mode, the CUDA version may obtain at maximal a factor of 5.5x speedup and the

OpenACC version reaches up to a factor of 4.5x speedup with the utilization of two Nvidia P100s. If we only target

to a single accelerator, the CUDA version gains around 2.6x performance speedup and the OpenACC version gets

a factor of 2.3x speedup. Except for these two implementations, the Kokkos version in offload mode obtains worse

performance than its performance in host mode.

Figure 4.10 depicts the performance speedups of different programming models on Cobalt-v100. By using 4

Nvidia GPUs, the CUDA and OpenACC versions may respectively reach up to at maximal 10.2x speedup and 5.2x

speedup compared with the baseline performance in host mode. At the same time, they may obtain approximately

6x and 3x speedups with the utilization of 2 Nvidia GPUs. When targeting to a single device, the CUDA version

gains a factor of 4.1x speedup and the OpenACC version a factor of 1.7x speedup. The OpenMP offload and SYCL

versions are unable to be compiled and executed on Cobalt-v100. As for the Kokkos version, its performance in

offload mode is similar to that on GridCL and Cobalt-hybrid, which is much worse than the performances of the

CUDA and OpenACC versions.

Figure 4.11: slabAllNuclides performance speedup on Gorgon, the higher the better - Baseline for the
performance is obtained in host mode with the use of pseudo event-based method and a fixed number of
bank size, 100.

The performance speedups tested on the OpenPower-based machine, Gorgon are illustrated in Figure 4.11.

Except for the SYCL version, other implementations of different programming languages and libraries can be com-

piled successfully and the performance gaps among them are similar to those obtained on GridCL. However, the

performance speedups of the CUDA, OpenACC, OpenMP offload and Kokkos versions in offload mode in compar-



Chapter 4 Portable Implementation of on-the-fly Doppler Broadening in PATMOS 89

ison with the OpenMP thread version in host mode are much higher than those tested on GridCL as well as other

platforms. For example, the CUDA version may gain a factor of around 22x speedup comparing to the baseline

performance. This is due to the fact that the baseline performance in host mode tested on Gorgon via the pseudo

event-based method because all compilers achieves no vectorization for the inner-loop in the SIGMA1 on-the-fly

Doppler broadening algorithm on OpenPower architecture while the peak performance tested on x86 architecture is

obtained by Intel C++ compiler which manages to vectorize the inner-loop with AVX2 extensions.

Besides, the best performance of the OpenMP offload version obtained on Gorgon is better than its peak perfor-

mance tested on GridCL while the performances of the CUDA and OpenACC versions gained on Gorgon are similar

to the peak values tested on GridCL. For instance, the peak performance of the OpenMP offload version tested

on GridCL in offload mode with a single device gains 2.6 ⇥ 102 particles/s while its peak performance obtained on

Gorgon reaches up to 6.5⇥ 102 particles/s. This may be caused by the OpenMP offload functionalities achieved by

different compilers including LLVM Clang and XLM C++.

Figure 4.12: slabAllNuclides performance speedup on Intel NUC, the higher the better - Baseline for the
performance is obtained in host mode with the use of pseudo event-based method and a fixed number of
bank size, 100.

At last, Figure 4.12 shows the performance speedups of different programming models executed on Intel NUC

equipped with an integrated graphical card (Intel Gen9.5). The SYCL version is the single implementation capable

of offloading computational kernel to Intel Graphics. However, the corresponding performance in host and offload

modes is much worse than the baseline performance obtained by the OpenMP thread version executed in host

mode, with a factor of 0.1-0.2x speedup. Concerning other programming models such as OpenMP thread, Ope-

nACC and Kokkos which are successfully processed in host mode, the OpenMP thread and Kokkos versions are
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compiled by Intel compiler with vectorization support enabled. This is the reason that their performances outperform

the performance of the OpenACC version which is compiled by PGI compiler.

Overall, based on the peak performances expressed above, we end up with several conclusions listed as follows:

1. Pseudo event-based method (PEB) surpasses significantly history-based method (HB) with a magnitude of

performance speedup in offload mode while its performance is a little less than the performance of history-

based method in host mode.

2. In host mode, the implementation that is able to be compiled by Intel compiler with the vectorization options

enabled such as the OpenMP thread and Kokkos versions gain better performance than those implementa-

tions requiring to be compiled by other compilers such as the OpenACC, OpenMP offload versions.

3. In offload mode (Nvidia P100, V100, Intel Gen9.5):

• The CUDA version renders the highest performance via PEB comparing to other programming models.

• The OpenACC version generally gains approximately 50%-60% of the CUDA performance via both HB

and PEB.

• The OpenMP offload version provokes a huge performance degradation via either HB or PEB which

is caused by underdeveloped support of CUDA multi-streams for our OpenMP offload implementation

achieved by LLVM-Clang and IBM XLC compilers comparing to the CUDA and OpenACC versions.

• Our Kokkos version is limited to offload computational kernels to a single device and does not support

CUDA multistreaming. Its performance in offload mode is less competitive to the baseline performance

in host mode which is completely unsatisfactory.

• Our SYCL version can only be compiled on Intel NUC associated with Intel Graphics. However, its

performance in offload mode is much worse than the baseline performance with a factor of 0.1-0.2x

speedup. More optimizations and tests are required with the use of more architectures and the next

version of SYCL compilers since SYCL is a preliminary programming model and its implementations

achieved by different compilers are immature.

4.5 Profiling and Optimization

In this section, we intend to perform a series of profiling to understand better about the conclusions drew in the

previous section. The analysis is carried out on GridCL focusing on the offload mode by using the profiling tools

such as nvprof and nvvp to ensure that most of implementations of different programming models can be analyzed.

Unfortunately, the SYCL version is not able to be included in the following analysis. We start the analysis from the

comparison between the history-based method and the pseudo event-based method.
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4.5.1 Profiling of HB and PEB

The number of threads is set to 10 and the bank size for the pseudo event-based method is fixed to 100. The total

number of particles is reset to 5⇥103. We use nvprof to perform an analysis of the CUDA version of slabAllNuclides

using both the history-based method and the pseudo event-based method in default summary mode.

Table 4.9: Profiling of the CUDA version of slabAllNuclides in offload mode on GridCL using nvprof.

GPU activities
Time Percentage(%) Execution Time (s)

HB PEB HB PEB

sigma1DopplerBroadening 85.81 72.41 9.17 1.62

CUDA memcpy HtoD 9.36 22.33 1.00 0.50

CUDA memcpy DtoH 4.84 5.27 0.52 0.12

The performance is evaluated by the execution time (s), the lower the better.

From Table 4.9 we find that the execution of the CUDA kernel function sigma1DopplerBroadening() and mem-

cpys (HtoD and DtoH) via PEB saves around 90% run time comparing to those via HB. This is in accordance

with the performance results introduced in the previous section. To get more detailed information about the CUDA

kernels of both HB and PEB methods, we use nvvp to perform a complete profiling analysis which is illustrated in

Table 4.10.

Several metrics used in the table above are described as:

• Global memory load/store throughput.

• Global memory load efficiency: ratio of requested global memory load throughput to required global memory

load throughput expressed as percentage.

• Global memory store efficiency: ratio of requested global memory store throughput to required global memory

store throughput expressed as percentage.

• Achieved occupancy: ratio of the average active warps per active cycle to the maximum number of warps

supported on a multiprocessor.

• Branch efficiency: ratio of branch instruction to sum of branch and divergent branch instruction.

• Warp execution efficiency: ratio of the average active threads per warp to the maximum number of threads

per warp supported on a multiprocessor.

• Double-precision floating-point efficiency: ratio of achieved to peak double-precision floating-point operations.

• Execution dependency: An input required by the instruction is not yet available.
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Table 4.10: Metric values of the computational kernel sigma1DopplerBroadening() of the slabAllNuclides
CUDA version using nvvp.

Metrics HB PEB

Grid size [388,1,1] [25996,1,1]

Block size [32,1,1] [32,1,1]

Registers/Thread 69 69

Shared Memory/Block 0B 0B

Theoretical Block Limit 28 28

Device Block Limit 32 32

Global Memory Load Throughput 33.03GB/s 262.20GB/s

Global Memory Store Throughput 0.36GB/s 2.87GB/s

Global Memory Load Efficiency 50.39% 65.24%

Global Memory Store Efficiency 25.00% 25.00%

Achieved Occupancy 6.22% 31.86%

Double-precision Floating-point Efficiency 4.42% 21.94%

Branch Efficiency 98.94% 98.68%

Warp Execution Efficiency 94.92% 94.72%

Memory Dependency 33.11% 17.97%

Execution Dependency 48.57% 37.79%

• Memory dependency: A load/store cannot be made because the required resources are not available or are

fully utilized, or too many requests of a given type are outstanding.

With reference to the analysis of the history-based method, the results indicate that the performance of the

kernel sigma1DopplerBroadening() is most likely limited by the latency of arithmetic or memory operations which

delivers low compute throughput and memory bandwidth comparing to the peak performance of V100, as described

in Table 4.10 (compute throughput and global memory load/store throughput). The branch efficiency and warp

execution efficiency show that the issues of divergent branches and idle threads per warp for the kernel function

sigma1DopplerBroadening() is not the key bottleneck limiting the performance. Besides, the grid size of the kernel

is too small to keep the GPU busy so as to hide compute and memory latency. As a result, the achieved occupancy

of the kernel via the HB method gains 6.22% while the theoretical occupancy equals to 43.8% as the number of

blocks per SM is limited by the usage of registers per thread (69, where 64 is the maximal registers per thread

that can be used to allow 32 blocks executing concurrently on each SM). The execution dependency and memory

dependency are the most important stall reasons that limit the performance where the values corresponding to these

two types of stalls are 48.57% and 33.11%, indicating that the latency of the kernel is mainly introduced by execution

and memory dependency stalls and it may be potentially reduced by increasing instruction-level parallelism and

optimizing memory alignment as well as access patterns. The memory dependency stall can also be reflected by
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the metrics of global memory load and store efficiency, which are respectively 50.39% and 25.00%, meaning that

for each memory transaction call, only a half or a quarter of bus volume (32 bytes in total) can be actually used due

to memory misalignment and inadequate access patterns.

With reference to the analysis of the pseudo event-based method, although the compute throughput and memory

bandwidth improve quite a lot comparing to the metric values of the HB method (64-bit floating-point efficiency varies

from 4.42% to 21.94%, global memory load throughput increases from 33.03GB/s to 262.20GB/s, global memory

store throughput augments from 0.36GB/s to 2.87GB/s), its performance is still limited by the latency of arithmetic or

memory operations. The branch efficiency and warp execution efficiency remain the same as the HB method. The

execution dependency and memory dependency are still the most two important reasons causing the performance

degradation, taking up respectively 37.79% and 17.97% stalls during the kernel execution, which contribute to less

stalls relative to the HB method. Moreover, since the grid size of the kernel for the PEB method is much larger than

that of the HB method, the achieved occupancy via the PEB method gains 31.86% which surpasses the value of

the HB method significantly and leads to a considerable performance improvement.

In summary, the PEB method has significantly improved the compute throughput and memory bandwidth in

comparison with the HB method. The achieved occupancy of the PEB method gains a factor of 5 enhancement

comparing to the HB method so as to hide more compute and memory latency. However, even for the PEB method,

the utilization of compute resources of Nvidia V100 is still at the medium level and the kernel performance is bound

by instruction and memory latency. From one side, the occupancy of the kernel may be improved by reducing the

number of registers used for each CUDA thread or by restricting the maximum number of registers per thread with

the flag -maxrregcount. From the other side, the execution dependency and memory dependency stalls may be

reduced by adding instruction-level parallelism and optimizing memory alignment and access patterns. In what

follows we continue to perform a series of performance analysis of different implementations of slabAllNuclides

(OpenACC, OpenMP offload, Kokkos) using the PEB method to know better about the performance bottlenecks of

all these implementations.

4.5.2 Profiling of different programming models

The following performance analysis has been carried out with the OpenACC, OpenMP offload, Kokkos versions of

slabAllNuclides via the PEB method. The input parameters are set to 5 ⇥ 103 particles, 10 threads, and the bank

size is fixed to 100.

4.5.2.1 OpenACC Analysis

From Table 4.11, we can see that the computational kernel of the OpenACC version uses 110 registers for each

thread which leads to a smaller theoretical block limit and a lower achieved occupancy comparing to the CUDA
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Table 4.11: Metric values of the computational kernel sigma1DopplerBroadening() of the OpenACC,
OpenMP offload, Kokkos versions of slabAllNuclides using the PEB method.

Metrics OpenACC OpenMP offload Kokkos

Grid size [25996,1,1] [25996,1,1] [25996,1,1]

Block size [32,1,1] [32,1,1] [1,32,1]

Registers/Thread 110 200 70

Shared Memory/Block 276B 0B 0B

Theoretical Block Limit 16 10 28

Global Memory Load Throughput 195.51GB/s 57.31GB/s 62.24GB/s

Global Memory Store Throughput 2.19GB/s 0.63GB/s 0.31GB/s

Global Memory Load Efficiency 64.94% 63.82% 25.00%

Global Memory Store Efficiency 25.00% 25.00% 25.00%

Achieved Occupancy 18.02% 12.59% 20.16%

Double-precision Floating-point Efficiency 14.13% 5.61% 5.22%

Branch Efficiency 93.16% 97.50% 100.00%

Warp Execution Efficiency 39.96% 27.00% 100.00%

version. The memory bandwidth of the OpenACC version is also worse than the CUDA version. Furthermore, the

OpenACC version makes use of shared memory automatically and each block contains 276 bytes shared memory.

The warp execution efficiency of the OpenACC version gains around 40% which is much less than the CUDA version

(around 100%), indicating that the OpenACC kernel generates more intra-warp divergence than the CUDA kernel.

4.5.2.2 OpenMP offload Analysis

The OpenMP offload kernel is similar to the OpenACC kernel. From the aspect of the usage of registers, it uses 200

registers per thread which makes the theoretical block limit decreasing to 10 and results in a lower achieved occu-

pancy in comparison with the OpenACC version. The memory bandwidth of the OpenMP offload kernel degrades

significantly due to the lack of CUDA multi-stream support. It should also be noted that the OpenMP offload version

makes no use of shared memory as the CUDA version. The warp execution efficiency of the OpenMP offload kernel

is 27% which is even less than the OpenACC version, indicating that the OpenMP offload version also has much

higher intra-warp divergence than the CUDA version.

4.5.2.3 Kokkos Analysis

The Kokkos version use 70 registers for each thread which is in accordance with the CUDA version. As a results,

its achieved occupancy is almost equal to that of the CUDA version. The memory bandwidth of the Kokkos kernel

is similar to that of the OpenMP offload kernel as they both provide no support of CUDA multi-streaming. However,
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the global memory load efficiency of the Kokkos is 25% which is less than other versions, leading to a larger number

of memory transactions for memory load operation. This may be the reason that the performance of the Kokkos

version is not competitive with the OpenMP offload version. Besides, the Kokkos kernel also makes no use of

shared memory as the CUDA kernel. As for the warp execution efficiency of the Kokkos version, it is equal to 100%,

meaning that there is no intra-warp divergence occurring during the execution of the Kokkos kernel.

Table 4.12: Comparison of the performances of the Kokkos versions of slabAllNuclides tested on GridCL
with a single Nvidia V100.

Particle Tracking Method
Simulation Time (s/cycle)

Kokkos basic Kokkos optimized

HB 426.95 393.26
PEB 97.63 87.60

The performance is evaluated by the simulation time (s/cycle), the lower the better.

Note that Kokkos also provides the interoperability of CUDA runtime API functions to enable the support of CUDA

asynchronous multistreaming. We intend to implement this technique in our Kokkos version as an optimization and

the timeline view of nvvp shows that the optimized Kokkos version indeed makes use of CUDA multi-streams and

the performance of the optimized Kokkos version has improved 10% relative to the performance of the basic Kokkos

version using the PEB method, as showed in Table 4.12.

4.5.3 Optimizations of the CUDA version

According to the performance analysis carried out in the previous section, we intend to accomplish several opti-

mizations for the purpose of mitigating the bottlenecks of the kernel of slabAllNuclides. In order to make fully use

of CUDA’s feature set, the optimization effort has been done on the CUDA version of slabAllNuclides. The input

parameters are set to 5⇥ 105 particles, 20 threads. The bank size for the PEB method is still set to 100.

4.5.3.1 Zero Copy

Since our design of algorithms, especially for the history-based method, requires many small data transfers during

the simulation, the zero copy functionality can be used to obtain higher bandwidth between the host and the device

by using pinned memory. Instead of allocating data in pageable host memory which need to be firstly copied to a

temporary pinned memory and then transferred to device memory from the pinned memory once a data transfer

between host and device is invoked, the zero copy functionality manages to directly allocate the data in pinned

memory so as to avoid the cost of data transfer between pageable and pinned memory with the utilization of CUDA

runtime API cudaMallocHost() or cudaHostAlloc() and cudaFreeHost().
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4.5.3.2 Register Usage

Both the HB and PEB methods own the problem of the overuse of registers per thread which may prevent the kernel

from fully utilizing the device. Since in our case, the maximum number of registers that a thread can use to execute

32 blocks concurrently on a SM is 64, we may use the -maxrregcount=64 flag to manually set the maximum number

of registers for each thread.

4.5.3.3 Unified Memory

The CUDA Unified Memory is a single memory address space accessible from both host and device which allows

the data to be read and written from CPUs or GPUs without explicit invocation of memory transfer operations. In

order to retrieve a pointer accessible from any processor, the CUDA runtime API function cudaMallocManaged()

need to be called. In our case, the input data required for kernel execution may be stored in managed memory.

4.5.3.4 Multiple Kernels

Because the computational kernel of the function sigma1DopplerBroadening() consists mainly two parts, a proce-

dure of precalculation to retrieve lower-upper bound and increment several cross section values to the final result

and a procedure of integral computation which handles the execution of several inner-loops. When a warp deals

with the cross section calculation of a nuclide, all CUDA threads within this warp can only execute the same work-

loads of the precalculation part simultaneously which makes no contribution to parallelize this procedure so as to

gain improved performance.

As a solution, we may separate the original kernel into two small kernels which are dedicated to handling the

precalculation part and integral computation part respectively. Each CUDA thread in the precalculation kernel is

responsible for precalculating the data of a set of nuclides required in the integral computation kernel. Each warp

in the integral computation kernel is responsible for summarizing the final cross section values of a set of nuclides

from inner-loops.

4.5.3.5 Fine-grained Kernel

As the performance bottlenecks of the kernel using the PEB method may be alleviated by adding instruction-level

parallelism and optimizing memory access patterns, we may redesign our computational kernel into a more fine-

grained one where a set of CUDA threads within a warp are assigned to calculate the cross section of a nuclide. For

example, we can use 4 or 8 threads to calculate the cross section value of a nuclide and thus a warp can handle 8

or 4 tasks at the same time. In this case, it is preferable to perform the sum reduction for the inner-loops with the

utilization of shared memory. The newly designed function of sum reduction is shown above where NUCS_PER_WARP
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refers to the number of nuclides assigned to a warp and sigma_tmp is a table of size 32 allocated in shared memory

for data storage.

Original sum reduction

for (int i = 16; i > 0; i »= 1)

sigma += __shfl_xor_sync(0xffffffff, sigma, i);

Newly designed sum reduction

if (threadIdx.x < NUCS_PER_WARP) {

for (int i = 0; i < 32 / NUCS_PER_WARP; ++i)

sigma += sigma_tmp[threadIdx.x + i * NUCS_PER_WARP];

}

Original process

int lb = getLowerBound(E1, . . .);

int ub = getLowerBound(E2, . . .) + 1;

Newly designed process

int task_id = threadIdx.x % NUCS_PER_WARP;

double ee;

if (threadIdx.x < NUCS_PER_WARP) {

ee = . . .;

} else {

ee = . . .;

}

res[threadIdx.x] = getLowerBound(ee, . . .);

int lb, ub;

lb = res[task_id];

if (threadIdx.x < NUCS_PER_WARP) {

ub = res[task_id + NUCS_PER_WARP] + 1;

} else {

ub = res[threadIdx.x] + 1;

}

Furthermore, since the precalculation part includes two invocations of the function getLowerBound(), we may

also execute these two functions concurrently with the utilization of shared memory. The idea is to divide all 32
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threads within a warp into two groups where the two groups are responsible for retrieving respectively the lower and

upper bounds of all tasks assigned to this warp.

The value of NUCS_PER_WARP can be set to {1, 2, 4, 8, 16}. If we extend this value to 32, meaning that each

thread calculates the cross section of a nuclide on its own and there is no vectorization for the inner-loops, we will

have no more need to use shared memory since the intra-warp communication among threads is reduced to zero.

A series of tests of slabAllNuclides concerning all these cases have been executed and the corresponding

results are listed in Table 4.13. It is obvious that the performance of both the HB and PEB methods improves

firstly with the increase of the number of tasks for each warp. After it reaches up to the peak value obtained with

NUCS_PER_WARP equaling to 4, the performance degrades little by little.

Table 4.13: Granularity analysis of the CUDA version of slabAllNuclides performed on GridCL
with a single Nvidia V100 and 20 CPU threads.

NUCS_PER_WARP
Simulation Time (s/cycle)

HB PEB

1 2257.97 93.12
2 2086.65 74.95
4 1927.87 73.39
8 2228.79 85.98

16 2740.79 109.98
32 3080.32 159.34

The performance is evaluated by the simulation time (s/cycle), the lower the better.

We can say that there is always a tradeoff between the increase of instruction-level parallelism and the increase

of branch divergence. The performance of the CUDA version using the PEB method under the condition that

NUCS_PER_WARP = 4 gains approximately 21% improvement comparing to the one given by NUCS_PER_WARP = 1.

4.5.3.6 Comparison of performances of the CUDA version via different optimizations

According to all optimizations discussed above, we denote them in a simple way to prepare for a thorough perfor-

mance evaluation.

• warp: the original implementation of the CUDA version.

• zero-copy : an optimized version with the zero copy functionality.

• maxrregcount-64: an optimized version with the maximum usage of registers per thread set to 64.

• maxrregcount-32: an optimized version with the maximum usage of registers per thread set to 32.
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• unified-memory : an optimized version with the use of unified memory.

• multi-kernels: an optimized version dividing the original kernel into two small kernels.

• 4-nucs-per-warp: an optimized version of a fine-grained kernel where each warp handles 4 computational

tasks simultaneously.

The corresponding results are illustrated in Table 4.14. We can find that the zero-copy strategy improves sig-

nificantly the performance via the HB method with a factor of 2x speedup while it degrades around 50% of the

performance via the PEB method.

Table 4.14: Comparison of the performances of the CUDA implementations of slabAllNuclides
tested on GridCL with a single Nvidia V100 and 20 CPU threads.

Optimizations
Simulation Time (s/cycle)

HB PEB

warp 1868.24 96.87

zero-copy 933.20 198.48

maxrregcount-64 1600.47 91.69

maxrregcount-32 1664.74 222.70

unified-memory 4775.12 237.65

multi-kernels 2121.47 80.99

4-nucs-per-warp 1927.87 73.39

The performance is evaluated by the simulation time (s/cycle), the lower the better.

As for the strategy of setting up maximum registers per thread, the maxrregcount-64 enhances a little per-

formance for both the HB and PEB methods comparing to the original warp version while the maxrregcount-32

improves the performance adopting the HB method and weakens around 40% of the performance relative to the

warp version using the PEB method. It is recommended to make fully use of available registers for each thread

without limiting the theoretical maximum occupancy a kernel may achieve since the local memory of a much lower

memory bandwidth comparing to registers will be used to accomplish memory operations for spilled data.

With reference to the unified-memory optimization, the results shows that our programming strategy is not a

good candidate for the utilization of CUDA Unified Memory since the performance of both the HB and PEB methods

using unified memory obtains approximately 60% performance degradation in comparison with the original warp

version.

In addition to the optimizations discussed above, the implementations optimized by multi-kernels and 4-nucs-

per-warp manage to outperforms the original one with a factor of 1.2-1.3x speedup for the PEB method. However,

these two optimizations make no contribution to achieve the performance improvement for the HB method, as

depicted in Figure 4.13.
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Overall, we can draw several conclusions listed as follows:

• With respect to the history-based method, the zero-copy strategy is the most useful way to optimize the kernel

and improve the performance.

• With respect to the pseudo event-based method, the multi-kernels and 4-nucs-per-warp strategies become

the most favorable ways to mitigate performance bottlenecks and achieve optimizations.

• The maxrregcount optimization should be used carefully so as to fully exploit the compute resources of the

device and avoid too much usage of local memory.

• The CUDA Unified Memory is inappropriate to be used in our case with the heterogeneous offloading strategy.

Figure 4.13: Performance speedup of the CUDA version of slabAllNuclides adopting different optimization
strategies tested on GridCL with a single Nvidia V100 and 20 CPU threads, the higher the better.

In conclusion, this chapter introduces explicitly the portable implementations of Monte Carlo neutron transport
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code with the utilization of a heterogeneous offloading strategy via different programming models. The basic per-

formance evaluation and profiling have been done for the purpose of better understanding the bottlenecks of our

portable implementations and achieving several optimizations.



Chapter 5

Metrics Comparison among Programming

Models

Based on the portable implementations of a set of programming languages or libraries on the Monte Carlo neutron

transport code PATMOS, we need to find ways to evaluate them so as to choose the most suitable one to our Monte

Carlo code and accessible machines.

Till now, there are few researches addressing the evaluation of Monte Carlo neutron transport codes on su-

percomputers with reference to 3P (performance, portability, productivity), not to mention the evaluation of Monte

Carlo neutron transport codes adopting a partial offloading strategy. To our knowledge, the only work related to the

implementation of MC transport solver with concern of portability is carried on by Bleile and his group [21] where

they developed a monoenergetic event-based MC neutron transport solver relying on the Nvidia Thrust library and

discovered that the Thrust version can only obtain a maximum of 36% performance comparing to the CUDA version.

In order to obtain the correct feedback and take it as reference for future development of next generation Monte

Carlo neutron transport code, it is significant to perform an evaluation of our Monte Carlo neutron transport codes in

terms of 3P. Thus, in this chapter, we intend to give an explicit evaluation of portable implementations of programming

models on PATMOS in respect of performance, portability, and productivity which are leveraged by metrics proposed

by ourselves or other researchers. A part of work has already be presented in the conference SNA+MC and will be

published recently [32].

5.1 Definitions of Metrics

According to the 3P Principle, a programming language or library cannot satisfy performance, portability and pro-

ductivity at the same time and there are always trade-offs among them. For example, Figure 5.1 intuitively showed

the relation among 3P for the programming models implemented in our research. The right arrow indicates that
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after several explicit optimizations, the implementation of a programming model on an application may gain better

performance but become less productive.

Figure 5.1: An example of 3P principle of the implemented programming models including OpenMP
thread, OpenMP offload, OpenACC, Kokkos, SYCL.

However, 3P Principle only states the trade-offs among performance, portability as well as productivity. The

lack of measures to accurately capture the 3P properties of an application across different architectures makes it an

unsatisfactory candidate for quantitative evaluation with explicitness and conciseness.

From the perspective of quantitative evaluation, some researchers have already done impressive work in terms

of performance portability and productivity. For example, Pennycook and his group have proposed a definition

for performance portability which highlights the objectivity and measurability as well as a metric to quantify the

performance portability of an application across a set of computing architectures [97][98]. This metric has been

used in many studies of performance portability [100][40][73][139]. The definition is given as:

Definition 5.1.1 Performance portability is a measurement of an application’s performance efficiency for a given

problem that can be executed correctly on all platforms in a given set.

Its corresponding metric measures the performance efficiency of an application for a case set (a, p,H) where

performance efficiency includes application efficiency, architectural efficiency and so on. The metric is defined as

follows:

P(a, p,H) =

8
><
>:

|H|P
i2H

1
ei(a,p)

if i is supported

0 otherwise

(5.1)

where ei(a, p) signifies the performance efficiency of the application a solving a problem p on a platform i in the

platform set H.
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The reason of ei(a, p) referring to the performance efficiency is that performance efficiency is objective enough

to describe the ability of an application exploiting the computing power of a platform for the purpose of solving a

problem. However, the use of P always involves comparisons of estimated values between different applications

or problems such as P(a1, p,H) against P(a2, p,H). It is meaningless that we only compute an aggregated value

by P without doing any comparison. In our opinion, the metrics of absolute performance like execution time or

throughput may also be used by P .

Furthermore, P performs the harmonic mean to ensure that the estimated result is directly proportional to the

sum of scores across H. Nonetheless, this argument remains to be discussed. Although Smith has proved in his

paper [112] that harmonic mean should be used for summarizing performance expressed as a rate (details will be

expressed in section 5.1.2.1), which is corresponding to the performance efficiency, such correct aggregation is

used to capture an intrinsic property of a particular platform. When it comes to the aggregation of values across

a platform set, it is not precise to say that harmonic mean summarizes correctly the measured values to reflect an

intrinsic property of a platform set. In fact, whether such intrinsic property of a platform set exists is itself a question

to ask. Thus, P may also adopt other aggregating methods such as arithmetic and geometric means to estimate

the data set.

According to the two arguments addressed above, we have come up with an original idea to establish a generic

model which defines a variety of metrics with regard to 3P, allowing the utilization of different aggregating methods

performing from multiple dimensions such as an application set, a problem set, a platform set.

5.1.1 Generic Model

Before the establishment of the generic model, we first give several crucial notions which are repeatedly used for

the following definitions.

Definition 5.1.2 An application is a program which adopts specific algorithms and programming models to handle

one or more problems and produce an output.

Definition 5.1.3 A problem is actually a suite of input parameters that describes a real problem.

Note that in our case, slabAllNuclides fed with different number of threads, number of particles, number of volumes,

bank size are considered as different problems.

Definition 5.1.4 A platform is a hardware and software infrastructure that supports the execution of an application

(architecture, operating system, compiler, etc.).

Definition 5.1.5 A characteristic is a value describing a property such as performance, productivity, portability,

maintainability, energy consumption and so on. This value is obtained by other metrics with the following formula:
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c = C(a, p, h) (5.2)

where C(a, p, h) is a metric parameterized by an application, a problem and a platform.

Given a characteristic c, an application set A = {a}, a problem set P = {p} and a platform set H = {h}, we

have three functions parameterized by three fixed variables along with a variable set:

• A(c, A, p, h): A generic function that evaluates the characteristic c of a set of applications A solving the

problem p running on the platform h.

• P(c, a, P, h): A generic function that evaluates the characteristic c of the application a solving a set of problems

P running on the platform h.

• H(c, a, p,H): A generic function that evaluates the characteristic c of the application a solving the problem p

across a set of platforms H.

A(c, A, p, h) is generally used to describe an intrinsic property of a given problem and platform. For example, we

can set OpenMP thread version of slabAllNuclides via the history-based and pseudo event-based methods as two

elements in A and fix a particular problem p. Then we compare the results of A(c, A, p, h1) and A(c, A, p, h2) where

h1 and h2 differentiate between each other on the type of compiler. In this way, the general influence of compilers

for history-based and pseudo-event based applications on an expected property can be evaluated numerically.

P(c, a, P, h) indicates a general property of a given application and platform solving a set of problems. For

instance, if we set P = {pi}i21,2,...,10 as ten problems with different number of threads, P(c, a, P, h) will become a

value reflecting the scalability of the application a running on the platform h. The comparison between P(c, a1, P, h)

and P(c, a2, P, h) shows the corresponding scalabilities of the applications a1 and a2 on a particular platform.

Similarly, H(c, a, p,H) is calculated to highlight a property of a specific application and problem across a platform

set. Let H be a group of architectures, then H(c, a, p,H) leverages a property relevant to portability for a particular

application and problem.

Now we transfer A, P, H to three operators FA, FP , FH as described in Equation 5.3 which signify the com-

putations of a data set C(a, p, h) retrieved from one of three dimensions including application, problem and platform

so as to eventually calculate an aggregated metric.

A(c, A, p, h) = FA ·C(a, p, h)

P(c, a, P, h) = FP ·C(a, p, h)

H(c, a, p,H) = FH ·C(a, p, h)

(5.3)

Since our objective is to establish a generic model which applies to all three dimensions, the mathematical

expressions should be independent of each dimension. Thus we define F as a simplified notation of {FA, FP , FH}

and we obtain:
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F ·C(a, p, h) = F · {Ci(a, p, h)}i=1,2,...,N =

8
>>><
>>>:

C({ai}, p, h) = C(A, p, h) if 8ai 2 A

C(a, {pi}, h) = C(a, P, h) if 8pi 2 P

C(a, p, {hi}) = C(a, p,H) if 8hi 2 H

(5.4)

Note that the distribution of all elements in the data set {Ci(a, p, h)}i=1,2,...,N is better one-dimensional because

it is quite meaningless to aggregate values diversifying on multiple dimensions (e.g. summarization of three values

C(a2, p1, h1), C(a1, p2, h1) and C(a1, p1, h2) does not help us to identify the exact influence of each dimension on the

property). Therefore, we exclude possibilities of complicate interactions between different dimensions in our generic

model.

There are a variety of mathematical models which are extensively used to perform statistical computations

on data sets. In what follows we define our generic operator F by Pythagorean means (arithmetic, geometric,

harmonic) [99][44] which are respectively denoted as Fam, Fgm and Fhm.

5.1.1.1 Arithmetic Mean

Definition 5.1.6 The metric Fam is an operator computing the arithmetic mean of a data set of N values {Ci(a, p, h)}i=1,2,...,N ,

defined by Equation 5.5:

Fam ·C(a, p, h) =

8
>><
>>:

1

N

NX

i=1

Ci(a, p, h) (a)

PN
i=1 !iCi(a, p, h) (b)

(5.5)

where Equation 5.5(a) is the standard version of arithmetic mean metric using equal weightings while Equa-

tion 5.5(b) is the weighted version. Each Ci(a, p, h) is multiplied by a weight !i and the sum of {!i}i2N equals

to 1. Note that the standard version is a special case of weighted version with !i =
1

N
.

5.1.1.2 Geometric Mean

Definition 5.1.7 The metric Fgm is an operator computing the geometric mean of a data set of N values {Ci(a, p, h)}i=1,2,...,N ,

defined by Equation 5.6:

Fgm ·C(a, p, h) =

8
>><
>>:

NY

i=1

Ci(a, p, h)
1
N (a)

QN
i=1 Ci(a, p, h)

ωi (b)

(5.6)

where Equation 5.6(a) is the standard version of geometric mean metric using equal weightings while Equa-

tion 5.6(b) is the weighted version. Each Ci(a, p, h) is raised to the power of a weight !i and the sum of {!i}i2N

equals to 1. The standard version is a special case of weighted version with !i =
1

N
.
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5.1.1.3 Harmonic Mean

Definition 5.1.8 The metric Fhm is an operator computing the harmonic mean of a data set of N values {Ci(a, p, h)}i=1,2,...,N ,

defined by Equation 5.7:

Fhm ·C(a, p, h) =

8
>>>>><
>>>>>:

N
PN

i=1

1

Ci(a, p, h)

(a)

1
P

N
i=1

!i

Ci(a, p, h)

(b)

(5.7)

where Equation 5.7(a)(b) are respectively the standard and weighted versions of harmonic mean metric using equal

weightings. Each 1
Ci(a,p,h)

is multiplied by a weight !i and the sum of {!i}i2N equals to 1. The standard version is

also a special case of weighted version with !i =
1

N
.

Generally, the arithmetic mean metric Fam calculates the sum of a collection of numbers divided by the count of

numbers in the collection [63]. The geometric mean metric Fgm is often used to aggregate the values of a data set

containing different numeric ranges [6] so as to indicate the central tendency by using the products of these values.

The harmonic mean metric Fhm is appropriate for situations when the average of rates is desired by calculating the

inverse of the sum of the inverses of a collection of values. In order to apply these metrics of Pythagorean means

correctly for the purpose of accurate capture of a property, it is significant to exploit conditions that these metrics

are applicable to.

5.1.2 Adaptability Analysis

We say a metric is adaptive to a data set C(a, p, h) if it is capable of evaluating a set of elements {Ci(a, p, h)}i=1,2,...,N

with correctness. Otherwise, the observed result may be overestimated or underestimated. Based on several

studies [112][70] addressing this issue, we arrive at the following definitions.

Definition 5.1.9 A single-platform property is characterized by F summarizing a data set C(a, p, h) which varies on

the dimension of application or problem. By contrast, a property captured by F with its data set C(a, p, h) varying

on the dimension of platform is called across-platform property.

A single-platform property indicates an intrinsic characteristic of the platform whereas an across-platform prop-

erty expresses an extrinsic property among platforms. Thus, the adaptabilities of arithmetic, geometric and harmonic

mean metrics dependent on the property to be characterized. Before further discussions, we firstly define the form

of property used in our model.

Definition 5.1.10 A property characterized by C(a, p, h), no matter it is single-platform or across-platform, is gener-

ally represented by a base-unit quantity or its inverse as well as a ratio of one base-unit quantity to another base-unit

quantity.
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5.1.2.1 Adaptability to Single-platform Properties

Since a single-platform property reflects an intrinsic characteristic of the platform, in order to estimate it correctly, it

is important to summarize the measured values for each quantity. Hence, we define the adaptability of F as follow:

Definition 5.1.11 Adaptability of the metric F towards a set of single-platform data C(a, p, h) is maintained only if

all measured values of each base-unit quantity are accumulated to a total value and the result of F · C(a, p, h) is

proportional or inversely proportional to these total values.

Now we consider the first case, C(a, p, h) is represented by a base-unit quantity such as time and we have a set

of data C(a, p, h) = {ti}i=1,2,...,N . Based on Equation 5.5, it is obvious to find that the standard version of arithmetic

mean metric Fam performs well for this data set, since the estimated value is proportional to the sum of measured

time.

Fam ·C(a, p, h) =
1

N

NX

i=1

ti /
PN

i=1 ti (5.8)

Alternatively, if C(a, p, h) is denoted as the inverse of time, the standard version of harmonic mean metric Fhm

will be adaptive towards the data set C(a, p, h) = {
1

ti
}i=1,2,...,N because the final result is inversely proportional to

the sum of measured time, as expressed below:

Fhm ·C(a, p, h) =
N

PN
i=1 ti

/ 1
PN

i=1 ti
(5.9)

As for the third case, we consider C(a, p, h) a ratio such as floating point operations per second (GLOPS) with

C(a, p, h) becoming {
p1
t1

,
p2
t2

, . . . ,
pN
tN

}. If we adopt a strategy of measurement which fixes the execution time T , and

measures the corresponding floating point operations of N cases, {
p1
T
,
p2
T
, . . . ,

pN
T

}, the estimate of Fam ·C(a, p, h)

will be similar to Equation 5.8:

Fam ·C(a, p, h) =
1

N

NX

i=1

pi
T

=
1

NT

NX

i=1

pi /
PN

i=1 pi (5.10)

Since this estimate is proportional to
PN

i=1 pi, we can say that Fam is an accurate measurement of floating point

operations per second when all values in C(a, p, h) are measured with the same execution time. For example, an

application counting the total single-precision floating point operations within the same time step. However, if we

adopt another strategy of measurement by which each C(a, p, h) is evaluated with fixed number of floating point

operations, denoted as P , then we will have:

Fam ·C(a, p, h) =
1

N

NX

i=1

P

ti
=

P

N

NX

i=1

1

ti
/

PN
i=1

1

ti
(5.11)

The result is proportional to the sum of the inverses of ti instead of the inverse of the sum of ti. Therefore,
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Fam is not suitable to handle this case accurately. But if we apply Fhm to the data set, the result resembles in

Equation 5.9 indicating that Fhm is adaptive to C(a, p, h) retrieved by second strategy of measurement.

Fhm ·C(a, p, h) =
N

PN
i=1

ti
P

=
PN

PN
i=1 ti

/ 1
PN

i=1 ti
(5.12)

Note that the conclusions drawn above expands the ones drawn in Smith’s previous work [112] where he con-

cludes that arithmetic mean is a bad candidate for summarizing floating point operations per second and this quan-

tity should be estimated by harmonic mean instead. The reason he arrived at such conclusions is that in his paper,

each case is assumed to perform the same number of floating point operations during the execution time. This

assumption is actually our second strategy of measurement proposed above.

In fact, the standard versions of Fam and Fhm adopting two strategies of measurement can be considered

as weighted versions of Fam and Fhm applying to C(a, p, h) with C(a, p, h) = {
p1
t1

,
p2
t2

, . . . ,
pN
tN

} and the formulas

resemble in Equation 5.10 and Equation 5.12, which are expressed as

F ·C(a, p, h) =

8
>>>><
>>>>:

NX

i=1

!i
pi
ti

=
NX

i=1

 
tiPN
i=1 ti

!
pi
ti

= 1
N

PN
i=1 NpiP
N
i=1 ti

= 1
NT

PN
i=1 p

0
i

1
PN

i=1 !i
ti
pi

= 1
P

N
i=1

⇣
pi

PN
i=1

pi

⌘
ti
pi

=
N

PN
i=1 piP

N
i=1 Nti

= PNP
N
i=1 t0

i

9
>>>>=
>>>>;

=

PN
i=1 piPN
i=1 ti

(5.13)

where:

• !i =
tiPN
i=1 ti

or
piPN
i=1 pi

• p0i = Npi

• t0i = Nti

• T =
PN

i=1 ti

• P =
PN

i=1 pi

According to Equation 5.13, we know that for a data set C(a, p, h) = {
p1
t1

,
p2
t2

, . . . ,
pN
tN

} characterizing an intrinsic

single-platform property, its optimal estimate is equaling to
PN

i piP
N
i ti

and we can always find a weighted version of Fam

or Fhm to obtain it. However, for the standard versions of Fam or Fhm, it is not safe to directly apply them to any

data set in a form like C(a, p, h) = {
p1
t1

,
p2
t2

, . . . ,
pN
tN

}. We better fix one quantity and measure the other.

5.1.2.2 Adaptability to Across-platform Properties

When it comes to address an across-platform property, it is not easy to decide which metric is the most suitable

one for a given data set. From the one side, since each measured value indicates the expected property of the

corresponding platform, we don’t need paying attention to correctly summarize these values like what we have
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discussed in previous section. From the other side, how to choose a metric and properly use it highly depends on

the objective of users and the property to be aggregated. Therefore, we need to know more about the nature of

three metrics, Fam, Fgm, Fhm.

In general, Fam, Fgm and Fhm have a relation described below, the equality among them is achieved under

the condition that all elements in the data set C(a, p, h) are equal.

Fhm 6 Fgm 6 Fam (5.14)

Concerning about the relation between the percentage of change of the metric F and the amount of change for

an element in the data set, we assume that C(a, p, h) = {c1, c2, . . . , cN}, C0(a, p, h) = {c1 +M, c2, . . . , cN} and M

is a constant signifying the amount of change for c1. Let K1 =
PN

i=1 ci, K2 =
QN

i=1 ci, K3 =
PN

i=1
1
ci

and we have:

Fam · (C0(a, p, h)�C(a, p, h))

Fam ·C(a, p, h)
=

K1 +M �K1

K1
=

M

K1
(5.15)

Fgm · (C0(a, p, h)�C(a, p, h))

Fgm ·C(a, p, h)
=

K
1
N

2 (1 +
M

c1
)

1
N �K

1
N

2

K
1
N

2

= (1 +
M

c1
)

1
N � 1 (5.16)

Fhm · (C0(a, p, h)�C(a, p, h))

Fhm ·C(a, p, h)
=

K3

K3 +
1

c1+M �
1
c1

� 1 =
M

K3c1(c1 +M)�M
(5.17)

Equation 5.15 signifies that the amount of change introduced by any element in the data set leads to the same

percentage of change for the metric Fam. On the contrary, Equation 5.16 and Equation 5.17 indicate that the

percentage of change for Fgm and Fhm depends on the value of the changing element in the data set.

If we set ⇢1 =
M

c1
as the percentage of change of the changing element, the percentages of change for Fam

and Fhm will turn into c1ρ1

K1
and 1

K3c1(1+
1
ρ1

)�1
. It means that given a fixed percentage of change for one of elements

Ci(a, p, h), the corresponding percentages of change for Fam and Fhm depend on ci, in other words, on the choice

of element. By contrast, the percentage of change for Fgm becomes (1 + ⇢1)
1
N � 1, indicating that the percentage

of change introduced by any element contributes to the same percentage of change for Fgm. Based on the analysis

above, we arrive at two definitions:

Property 5.1.1 Given an amount of change for the value of any case in C(a, p, h), the percentage of change for

Fam is case-independent.

Property 5.1.2 Given a percentage of change for the value of any case in C(a, p, h), the percentage of change for

Fgm is case-independent.

In addition, Fam and Fgm accept both positive numbers and zero while Fhm only applies to positive number.

Note that Fgm = 0 if any element in C(a, p, h) equals to zero. However, since Fgm usually cooperates with logarithm
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to convert the product of values to the sum of logarithms of values, one may need to pay more attention to the use

of zero value.

Fgm also has a property that Fam and Fhm do not have, that is, the geometric mean of the ratio of two data

sets (the geometric mean of a normalized data set) equals to the ratio of the geometric mean of one data set to the

geometric mean of the other data set.

Fgm ·

✓
C

0(a, p, h)

C(a, p, h)

◆
=

Fgm ·C0(a, p, h)

Fgm ·C(a, p, h)
(5.18)

This feature allows Fgm being capable of giving consistent results for a normalized data set. However, if we

want to aggregate performance values such as time, floating point operations, it is recommended to avoid the use

of the geometric mean since multiplications of times or floating point operations are meaningless [112].

5.1.3 Metrics of Portability, Performance, Productivity

5.1.3.1 Metrics of Portability

After the establishment of generic model F , now we take a look at the metrics of portability. We give a classical

definition of portability in HPC domain.

Definition 5.1.12 Portability refers to the ability of an application a to solve a problem p correctly on a given set of

platforms H.

Thus, the generic metric of portability is F applying to a specific data set C(a, p, h) and we have three different

sub-types, Fam, Fgm and Fhm. Since the portability of an application solving a problem on a platform can be de-

scribed by a boolean value, 0 or 1, referring to non-portable or portable, the values of elements {Ci(a, p, h)}i=1,2,...,N

can be expressed as:

8i = 1, 2, . . . , N, Ci(a, p, h) =

8
<
:

0 if (a, p) fails to run correctly on h

1 if (a, p) runs correctly on h
(5.19)

According to Equation 5.19, we have:

Fgm ·C(a, p, h) = Fhm ·C(a, p, h) =

8
>>><
>>>:

0 if 9h 2 H,h doesn’t support (a, p)

1 if 8h 2 H,h supports (a, p)

Fam ·C(a, p, h) =
|S|

|H|

(5.20)

where S is the sub-set of H containing all supported platforms in H for (a, p). |S| is the total number of supported

platforms and |H| is the total number of platforms.
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Note that the harmonic mean metric Fhm only applies to positive number. In this scenario, we use limits 1
0 !1

and 1
1
! 0 to allow calculations of zero values for Fhm. We can say that both Fgm and Fhm accurately describe the

portability of a couple (a, p) on a set of platforms H. On the contrary, Fam fails to address the feature of portability

across multiple platforms.

5.1.3.2 Metrics of Performance

Generally, performance is a key property of interest to HPC community. Here we a generic definition of performance

for a triple (a, p, h).

Definition 5.1.13 Performance refers to any measurable property reflecting the running efficiency of an application

a to solve a problem p correctly on a platform h.

There are a variety of metrics capable of characterizing the performance, commonly including time-based met-

rics (e.g. execution time) and energy-based metrics (e.g. energy consumption). We list several time-based metrics

as follows:

• Time/Duration: A basic metric describing the performance. It is the easiest metric to be measured, with sec

as its unit of measurement.

• Throughput: A metric denoting the total amount of floating point operations which can be processed per unit

of time. It can be measured by some profiling tools such as Intel Advisor and nvprof. GFLOPS and MFLOPS are

common units of measurement.

• Bandwidth: A metric signifying the total amount of data which can be handled per unit of time. It can also be

measured by profiling tools like Intel Advisor and nvprof. gigabytes/sec, megabytes/sec are widely used as

units of measurement.

• Particle Tracking Rate: A particular metric targeting to describe the performance of any particles codes such

as MC codes. Its unit of measurement is particles/sec.

• Speedup: A metric representing a ratio of a measured value to a baseline value on the platform. This metric

has no unit.

• Application Efficiency: A metric describing the achieved performance as a fraction of the best observed

performance on the platform [109].

• Architectural Efficiency: A metric representing the ratio of achieved performance to the peak theoretical

performance on the platform.
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5.1.3.3 Metrics of Productivity

The term “productivity” is a broad concept involving many aspects in HPC community. One may be of interest to as-

sess the productivity of a HPC center by measuring the ratio of scientific output to total costs of ownership [131][132]

or to measure the productivity of an individual by computing the performance of an application that he has been de-

voted to developing as a fraction of his development effort [138]. When it comes to the productivity of an application,

it may be assessed by the LOC (lines of code) required by this application which adopts a particular programming

model or algorithm to achieve an expected behavior.

Due to the confounding factors of productivity, the correctness of flattening it into a metric has been chal-

lenged [64] and it seems that to make a metric of productivity more convincing, one should narrow the concept of

productivity down as much as possible, only focusing on a single factor to study.

The first level of classification is based on the subject. Productivity of HPC’s sites, developers, applications

differentiates among each other. For example, we use LOC as a measurement of productivity. For a developer, it’s

a subjective metric since LOC highly depends on his skillset. But for an application, LOC is quite objective because

the basic mechanisms required by this application of a specific programming model or algorithm to perform an

expected behavior remain almost unchangeable.

The second level of classification divides productivity into explicit productivity and implicit productivity where ex-

plicit productivity bridges the relat on between output and input with a formula like
output

input
while implicit productivity

only focuses on the judgement of input. The input may be development effort and the output is usually considered

as performance.

In our case, we firstly study the implicit productivity of an application a solving a problem p on a platform h,

(a, p, h). The definition is given by:

Definition 5.1.14 Implicit productivity of a case (a, p, h) refers to the development effort devoted to a for solving a

problem p on a platform h.

Note that the time dependence of development effort is ignored because this quantity is heavily influenced by

developer’s skillset. Thus, from the perspective of applications, time should not be considered as a parameter in the

metrics of implicit productivity.

The typical metrics of implicit productivity are LOC and NW (number of words), which has already been used

in many productivity studies [117][83]. Since the code size of an application is relevant to the development style of

developers, comparisons of LOC or NW among a set of applications should be done under the condition that all

applications are developed in a same coding style, adopting same algorithms.

We propose another metrics of implicit productivity, PS-LOC (platform-specific lines of code) and PS-NW

(platform-specific number of words) which are used to measure the lines of code or number of words of a platform-

specific code path for an application which allows it executing correctly on a particular platform.
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The Halstead complexity metric [53] is also a choice to characterize implicit productivity of a case (a, p, h).

Instead of counting lines of code, we separate each line into a group of operators and operands and then obtain the

program length N by summarizing N1 and N2 where N1 and N2 are the total number of occurrences of operators

and operands. Similarly, the vocabulary n is aggregated by n1 and n2 where they represent respectively the total

number of distinct operators and operands. Based on N and n, the program volume V and program difficulty D are

defined as V = N log2 n and D = n1

2 · N2

n2
. The program effort E is calculated by V and D with the formula E = V ·D.

Parameters mentioned above mainly including N , V and E can be used as metrics to evaluate implicit productivity.

Moreover, in order to address the program length of a platform-specific code path for an application, a new metric

PS-N (platform-specific program length) is proposed the same as PS-LOC and PS-NW.

Besides, Harrell et al. [56] proposed a metric D(A) called “code divergence” to quantify the difference of LOC

between distinct applications targeting different platforms in A. The formula is given by:

D(A) =

0
@ |A|

2

1
A

�1

P
{ai,aj}⇢A d (ai, aj)

d (ai, aj) =
|LOC(ai)� LOC(aj)|

min(LOC(ai, LOC(aj))

(5.21)

where d (ai, aj) represents the pairwise distance which is quantified by normalized change in LOC between the

application ai targeting to a particular platform and the application aj targeting to the same or different platform.

In fact, the pairwise distance d (ai, aj) can be used to calculate the corresponding distance of an application

between its different platform-specific code paths. We have:

di,j(a, p, h) = d [(a, p, hi), (a, p, hj)] =
|LOC(a, p, hi)� LOC(a, p, hj)|

min(LOC(a, p, hi), LOC(a, p, hj))
(5.22)

Furthermore, for applications implemented by high level programming model, their code paths of different plat-

forms may differ little between each other despite some addition and removals of lines. For example, an ap-

plication implemented by OpenACC may use a single line to set device type, such as acc_device_nvidia and

acc_device_host. In order to change its device type from Nvidia GPU to host, it is required to delete the line of

acc_device_nvidia and add a new line targeting to acc_device_host. The total number of LOC of two code paths

remain the same. Therefore, for the purpose of characterizing this feature, a measure called churn is defined [56]:

chni,j(a, p, h) =
# lines of add/del

l

l =

8
<
:

1, ∆LOC = 0

∆LOC ∆LOC 6= 0

∆LOC = |LOC(a, p, hi)� LOC(a, p, hj)|

(5.23)

Several relative metrics of measurements mentioned above may also be specified with respect to baseline
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values as reference, such as relative LOC, relative program effort and so on. Overall, we have a set of implicit

productivity metrics described in the following equation:

C(a, p, h) =

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

di,j(a, p, h) and chni,j(a, p, h)

program volume/effort

N (program length) and PS-N

LOC and PS-LOC, NW and PS-NW

relative metrics derived from items above

. . .

(5.24)

As for explicit productivity, it is in fact a hybrid definition of “performance-implicit productivity” which is described

as follow:

Definition 5.1.15 Explicit productivity of a case (a, p, h) refers to the ratio of the performance of an application a

solving a problem p on a platform h to the corresponding development effort devoted to a.

A classical measure of explicit productivity is called RDTP (relative development time productivity), which is

shown in Equation 5.25. This metric is originally developed to evaluate parallel code development where the relative

speedup and effort are ratios of performance/development effort of parallel code to that of serial code [49].

Ψrelative =
relative speedup

relative effort
(5.25)

As a matter of fact, the reference version required to compute relative speedup and relative effort in Equa-

tion 5.25 may not limited to a serial application. In our scenario, we may set a parallel code as reference, such as

OpenMP version, and calculate relative metrics of a set of parallel applications implementing different programming

models.

Furthermore, the relative effort in Ψrelative is mainly characterized by LOC, although other attributes can also

be considered such as development time, function points [138][67]. We prefer some metrics of implicit productivity

such as PS-LOC to account for development effort in Ψrelative and we eventually have:

C(a, p, h) =
relative speedup

relative metric of implicit productivity
(5.26)

It should be noted that if the value of relative speedup or metric of implicit productivity can’t be zero, otherwise,

C(a, p, h) becomes meaningless.

5.1.4 Metrics of Performance Portability

The metric P(a, p,H) proposed by Pennycook which is described in Equation 5.1 can actually be represented by

the standard version of portability metric Fhm applying to a data set C(a, p, h) retrieved by a performance efficiency
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metric with Ci(a, p, h) = ei(a, p), and we have:

Fhm ·C(a, p, h) = P(a, p,H) (5.27)

With reference to discussions above, the metric P can be expanded from adopting the metrics of relative per-

formance to other metrics of absolute performance with the utilization of multiple aggregating methods. We arrive

at a new definition of performance portability along with a new metric of performance portability.

Definition 5.1.16 Performance portability is a measurement adopting various aggregating methods which esti-

mates the performance of an application a running correctly on a platform set H to solve a given problem p with the

intention of comparison.

In this way, F becomes the generic metric of performance portability when it applies to a data set C(a, p, h)

retrieved by a metric of performance.

5.1.4.1 Adaptability of F towards performance metrics

Now that we have several metrics of performance portability and a set of performance metrics including execution

time, application efficiency and so on, a study of adaptability of F towards these performance metrics is going to be

of great significance.

Because the objective of summarization of values is no longer to reflect an intrinsic property, but to simply

aggregate measured data for comparison, the common rule that we should follow is that each platform in the

platform set should be treated independently and equally. In other words, since each platform has its own scale

of performance for an application to solve a problem, the performance improvement with reference to the maximal

performance on platforms h1 and h2 should make the same contribution to the estimated value of F . Therefore, we

have the following definition:

Definition 5.1.17 Adaptability of a performance portability metric F towards a data set C(a, p, h) retrieved by a

performance metric is maintained only if the contribution made by any platform in a platform set H is treated inde-

pendently and equally.

For instance, consider an application set A = {a1, a2, a3} solving a given problem p across a platform set

H = {h1, h2} as illustrated in Table 5.1. We assume that comparing to the application a1, a2 and a3 respectively

gains a 25% performance improvement on platforms h1 and h2. According to Definition 5.1.17, they should make

same contribution to the estimated value of F , thus F ·C(a2, p, h) = F ·C(a3, p, h).

Based on Definition 5.1.17, we need to find out in which way the contribution of performance on platforms is

expressed by different performance metric. In general, there are two ways which are individually described as a

percentage of change and an amount of change.
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Table 5.1: Execution time of applications {a1, a2, a3} solving a given problem across a set of platforms
{h1, h2}, the lower the better.

Applications
Platforms

Performance Improvement Expected F ·C(a, p, h)
h1 h2

a1 10 100 - -
a2 7.5 100 25% equal
a3 10 75 25% equal

The first type mainly applies to several performance metrics indicating the absolute performance, including time,

throughput, bandwidth as well as particle tracking rate. Because the absolute performance is unable to reflect the

scale of performance on a particular platform, we can use the percentage of change to implicitly express the scaled

contribution on this platform.

On the contrary, the second type is for metrics measuring the relative performance such as application efficiency

and architectural efficiency. Since these metrics represent itself a scaled value on a particular platform, we can

directly use the amount of change to present the scaled contribution on this platform. Overall, with respect to

Property 5.1.1 and Property 5.1.2, we have a few properties listed as follows:

Property 5.1.3 Fgm is the most adaptive metric applying to a data set C(a, p, h) retrieved by a metric indicating the

absolute performance since in this scenario the percentage of change for Fgm is platform-independent.

Property 5.1.4 Fam is the most adaptive metric applying to a data set C(a, p, h) retrieved by a metric indicating the

relative performance since in this scenario the percentage of change for Fam is platform-independent.

Property 5.1.5 Fhm is the least adaptive metric in F to evaluate performance portability since the percentage of

change for Fhm is not platform-independent in all cases and in turn fails to meet the requirement described in

Definition 5.1.17.

5.1.4.2 Strict and Relaxed Performance Portability

One of key features of P is that it highlights the property of portability which can be expressed as a boolean value.

In this way, if an application is not supported by all platforms in H, then the metric value will equal to zero. Similarly,

Fgm and Fhm applying to a data set C(a, p, h) retrieved by a performance metric also keep this feature. We call the

performance portability maintaining this feature a strict performance portability, which can be defined as:

Definition 5.1.18 Strict performance portability (SPP) inherits the entire feature of portability saying that for an

application a solving a problem p, if this application is not supported by all platforms in the platform set H, the

estimated value will be zero.
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However, strict performance portability addresses significantly the state of portability at the cost of lack of ex-

pressiveness for the metric to indicate which application can hit the highest score value in terms of performance

portability when a large number of applications may not be supported by all platforms in H.

For example, in Table 5.2, if we calculate the strict performance portability of a set of applications {a1, a2, a3, a4}

solving a problem across a platform set H = {h1, h2, h3, h4, h5, h6}, the estimated values of all applications will be

zero since each application is not supported by all platforms in H. In fact, we can’t retrieve non-zero values of

{a1, a2, a3} and {a4} at the same time. Moreover, in order to obtain non-zero values of {a1, a2, a3}, the maximal

platform set is limited to H = {h3, h5}. Such behavior is impractical and requires users to cautiously choose the

platform set so as to attain comparable results from metrics of performance portability. After all, it is meaningless

that most of applications gain the same score, zero. In pursuance of exploiting complete information, it is obligated

to apply the metric of strict performance portability to a variety of sub-sets of platforms which makes the procedure

of evaluation redundant and complicated.

Table 5.2: Portability of applications {a1, a2, a3, a4} solving a given problem across a set of platforms
{h1, h2, h3, h4, h5, h6}.

Applications
Platforms

h1 h2 h3 h4 h5 h6

a1 1 1 1 1
a2 1 1 1 1
a3 1 1 1 1
a4 1

As an alternative, we propose a new type of performance portability which is called as relaxed performance

portability. The definition is given as follow:

Definition 5.1.19 Relaxed performance portability (RPP) limits the boolean feature of portability and addresses

more about performance, which means that for an application a solving a problem p, the estimated value will be

zero only if this application is blocked by all platforms in the platform set H.

With respect to Definition 5.1.18 and Definition 5.1.19, we know that Fam is a natural metric calculating relaxed

performance portability while Fgm and Fhm are metrics aggregating strict performance portability. We need to

redesign Fgm and Fhm in order to make them capable of characterizing relaxed performance portability. But for

convenience, we make modifications of Fgm and Fhm as well as Fam.

5.1.4.3 Variants of F

Generally, the criterion for design of variants of F can be summarized as follows:
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1. Quantify both the performance and portability.

2. The metric equals to zero when all platforms in the set H do not support (a, p).

3. With the increase of non-supported platforms for an application, the metric value degrades.

4. Not to change the nature of Fam and Fgm as described in Property 5.1.1 and Property 5.1.2.

Let S and N the sub-sets of a platform set H with S [ N = H. All platforms in S support an application a

solving a problem p while all platforms in N don’t support the couple (a, p). According to the criterion, we may firstly

calculate F ·C(a, p, h)h2S , denoted as F 0, the estimated value of F applying to a data set C(a, p, h) where each h

is in the platform sub-set S and then make use of this value in variants of F .

Here is our proposition of a transfer operator T1 to get the first variant of F :

(T1 � F ) ·C(a, p, h) =
|S|

|H|
F 0 (5.28)

where |S| is the total number of supported platforms and |H| is the total number of platforms. Based on Equa-

tion 5.20, we have T1 � Fam = Fam.

T1 � F directly use the estimated value of F applying to the data set retrieved from all supported platforms in

the platform set H and add a multiplier factor, the ratio of total number of supported platforms S to the total number

of platforms H, to weight it. Alternatively, we can also treat F 0 as a part of terms for all elements in C(a, p, h) which

are retrieved from non-supported platforms and we have:

T2 �C(a, p, h) = {C
0

i(a, p, h)}8i=1,2,...,|H|

C
0

i(a, p, h) =

8
<
:

f(F 0) if Ci(a, p, h) = 0

Ci(a, p, h) if Ci(a, p, h) > 0

(5.29)

where T2 is the second transfer operator applying to the data set C(a, p, h). f is a function parameterized by F 0 with

a positive value as output. Fam, Fgm and Fhm have its corresponding function f to meet the third criteria proposed

above, saying that with the increase of non-supported platforms for an application, the metric value decreases.

Thus, we can calculate their critical factors kam, kgm, khm to learn about the maximal and minimal values of f .

Let S and N the sub-sets of a platform set H containing respectively the supported and non-supported platforms

in H for a couple (a, p), K1 =
P|S|

i=0 Ci(a,p,h)

|S| , K2 =
Q|S|

i=1 Ci(a, p, h)
1

|S| , K3 = |S|
P|S|

i=0
1

Ci(a,p,h)

. The criticality equations

of Fam, Fgm and Fhm are described in Equation 5.30:
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P|S|
i=0 Ci(a, p, h) + |N |kam

|S|+ |N |
= K1

|S|Y

i=1

Ci(a, p, h)
1

|S|+|N|

|N |Y

i=1

k
1

|S|+|N|
gm = K2

|S|+ |N |
P|S|

i=0
1

Ci(a,p,h)
+ |N |khm

= K3

(5.30)

And we have:

kam = F
0

am

kgm = F
0

gm

khm =
1

F
0

hm

(5.31)

• if f(F
0

am) < kam: Fam ·(T2 �C(a, p, h)) decreases with the increase of non-supported platforms for the couple

(a, p).

• if f(F
0

gm) < kgm: as above.

• if f(F
0

hm) > khm: as above.

With the intention of highlighting the effect of the increase of non-supported platforms on F , we choose f(F
0

am) =

kam

|N | , f(F
0

gm) =
kgm

|N | , f(F
0

hm) = |N |
khm

for numerical evaluations afterward.

At last, we propose the third transfer operator along with the third variant of F described as follow:

(T3 � F ) ·C(a, p, h) = Integer[|S|].Decimal[fF 0] (5.32)

where Integer[|S|] means that we use |S| as the integer part of metric and Decimal[fF 0] as the decimal part of metric.

fF 0 is the normalized value of F 0 with fF 0 = F 0

F 0

max

. F
0

max is the maximal F 0 obtained among a set of applications. Note

that if fF 0 equals to 100%, the decimal part will be noted as 0.9̄.

T3 � F is a more intuitive formula which addresses more portability comparing to the other ones. It allows

numerical comparison of performance portability among a set of supported/non-supported platforms where the per-

formances of different applications are only compared when these applications have the same number of supported

platforms.

Overall, the variants of F that we adopt enable the numerical comparison of performance portability among

applications across different architectures when not all applications are supported by all architectures. This feature

is more adaptive under the circumstances that the supported platforms for each application in an application set

differentiates significantly among each other, resulting in small application and platform sets.
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5.1.5 Metrics of Productivity Portability

As the definition of performance portability, we give the definition of productivity portability:

Definition 5.1.20 Productivity portability is a measurement adopting various aggregating methods which estimates

the average productivity of an application a solving a given problem p across a platform set H with the intention of

comparison.

In this way, F becomes the generic metric of productivity portability when it applies to a data set retrieved by a

productivity metric.

5.1.5.1 Metrics of Implicit Productivity Portability

When F applies to implicit productivity metrics, it characterizes the average development effort for a couple (a, p)

across a set of platforms. The metrics that indicate platform-specific code paths of an application should be adopted,

such as PS-LOC. Since there is no meaning to aggregate the PS-LOC of a non-supported platform, the platform

set should be limited to a sub-set of platforms supporting this application.

The adaptability of F towards metrics of implicit productivity portability (IPP) is unlike F towards performance

portability metrics. Since metrics such as LOC, PS-LOC is not scaled on each platform, we are unable to choose

the aggregating method (arithmetic, geometric, harmonic means) with reference to the platform-independent per-

centage of change. By contrast, we give all aggregating methods a chance to be examined.

Moreover, the metric of pairwise distances di,j(a, p, h) may also be applied to F and we obtain the code diver-

gence of the application of different platform-specific code paths as described in Equation 5.33 based on Equa-

tion 5.22. The number of combinations for taking r things out of n things is denoted as Comb(n, r).

F ·C(a, p, h) =

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

Fam ·C(a, p, h) =

P
{i,j}⇢H di,j (a, p, h)

Comb(|H|, 2)

Fgm ·C(a, p, h) =
Q

{i,j}⇢H di,j (a, p, h)

1

Comb(|H|, 2)

Fhm ·C(a, p, h) =
Comb(|H|, 2)

P
{i,j}⇢H

1

di,j (a, p, h)

(5.33)

Similarly, according to Equation 5.23, we may apply F towards the metric of churn chni,j(a, p, h), as described

in Equation 5.34 where chni0,i refers to the churn distance between the reference code path i0 and another code

path i for an implementation. This value expresses the average addition and removals of lines required for an

implementation of a given coda path to be ported to another platform in a given platform set.
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F ·C(a, p, h) =

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

Fam ·C(a, p, h) =

P|H|�1
i=1 chni0,i (a, p, h)

|H|� 1

Fgm ·C(a, p, h) =
Q|H|�1

i=1 chni0,i (a, p, h)

1

|H|� 1

Fhm ·C(a, p, h) =
|H|� 1

P|H|�1
i=1

1

chni0,i (a, p, h)

(5.34)

5.1.5.2 Metrics of Explicit Productivity Portability

When F applies to explicit productivity metrics, it actually reflects the productive performance portability which rep-

resents the average performance improvement per program utility unit across a platform set. In order to obtain

meaningful relative speedup or effort, it is required that we have to at least find an application supported by all plat-

forms in the platform set and treat it as the reference implementation. Otherwise we may use different applications

as reference on distinct platforms and the aggregation of results will be quite meaningless. Based on this limitation,

the variants of F addressing relaxed performance portability cannot be directly used to capture productive perfor-

mance portability. We have to find the application supported by a maximal number of platforms in the platform set

and perform the evaluation of productive performance portability simply across the new sub-set of platforms.

The adaptability of F towards metrics of explicit productivity portability (EPP), also called as productive per-

formance portability, is similar to that of performance portability. We should maintain the feature of platform-

independent percentage of change. Since our productive performance portability metrics adopt speedup as perfor-

mance metric, according to Property 5.1.1, Fam is the most adaptive metric to aggregate productive performance

portability of an application solving a problem across a set of platforms.

5.2 Evaluation of Benchmark

The benchmark slabAllNuclides is used to perform further evaluations. SIGMA1 on-the-fly Doppler broadening

approach and pseudo event-based method are chosen along with the input parameters fixed to 5 ⇥ 105 particles

and 100 bank size. Ten platforms are composed from five machines introduced in the previous chapter in the

consideration of single CPU or CPU + 1GPU.

Portability of six versions of slabAllNuclides implemented via programming models of OpenMP thread, CUDA,

OpenACC, OpenMP offload, Kokkos as well as SYCL across ten platforms is shown in Table 5.3.

Note that green cells refer to applications portable to the corresponding platform while gray cells represent the

non-portability of applications towards the related platform. We find that the OpenMP version is only targeted to

CPU platforms and it is non-portable to Nvidia GPUs and Intel GPU. The CUDA version is limited to be executed on

heterogeneous architectures of CPU + Nvidia GPU. Both the OpenACC and Kokkos implementations are portable
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to nine of ten platforms composed of Intel CPUs and Nvidia GPUs whereas the OpenMP offload implementation

is only portable to the heterogeneous architecture of GridCL and Gorgon due to lack of compiler support on other

platforms. The SYCL version is the single implementation portable to the architecture of Intel CPU+GPU, however,

it is not supported by other platforms owing to lack of compilers to support the offload functionality.

Table 5.3: Portability of slabAllNuclides implemented via different programming models across a set of
platforms.

Platforms
Programming Models

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

GridCL Skylake 1 0 1 1 1 0

+1V100 0 1 1 1 1 0

Cobalt-hybrid Broadwell 1 0 1 0 1 0

+1P100 0 1 1 0 1 0

Cobalt-v100 Skylake 1 0 1 0 1 0

+1V100 0 1 1 0 1 0

Gorgon Power9 1 0 1 1 1 0

+1V100 0 1 1 1 1 0

Intel NUC Kaby Lake G 1 0 1 0 1 1

+1Gen9.5 0 0 0 0 0 1

5.2.1 Performance Portability Evaluation

We use a metric of relative performance, application efficiency and a metric of absolute performance, particle

tracking rate to perform the evaluation of performance portability with our generic model F . The values of particle

tracking rate are exactly those listed in Table 4.8. The data set of application efficiency are measured by dividing

the performance (particle tracking rate) of an application on a given platform by the best performance achieved on

this platform.

Table 5.4 shows all values of performance metrics that will be applied to F and its variants as the data set

C(a, p, h). Based on these values, we can calculate the results of F ·C(a, p, h) evaluating the performance portability

of different implementations of slabAllNuclides which are illustrated in Table 5.5 and Table 5.6. Note that all blank

cells represent that the implementation of a given programming model fails to run on a given platform. These blank

cells are corresponding to the gray cells illustrated in Table 5.3 and will be considered as zero values for computation.

From Table 5.5 we can find that for the given platform set and application set, Fam is the single metric which

renders meaningful results for comparison. By contrast, Fgm and Fhm both obtain zero values for all implementa-

tions of benchmark. In order to make these two metrics capable of retrieving non-zero values, the groups of platform
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Table 5.4: Metrics of performance of different implementations of slabAllNuclides across a set of platforms.

Machines #GPUs
Programming Models

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

Particle Tracking Rate (⇥102 particles/s)
GridCL 0 16.9 6.9 5.5 8.1

1 51.8 34.7 2.6 0.7
Cobalt-hybrid 0 9.5 4.4 5.9

1 25.7 21.8 2.4
Cobalt-v100 0 13.6 6.4 7.2

1 55.7 21.8 2.8
Gorgon 0 6.8 7.4 1.5 6.0

1 55.0 36.6 6.5 1.2
Intel NUC 0 3.1 1.1 2.2 0.1

1 0.6
Application Efficiency (%)

GridCL 0 100 41 33 48
1 100 67 5 1

Cobalt-hybrid 0 100 46 62
1 100 85 9

Cobalt-v100 0 100 47 53
1 100 39 5

Gorgon 0 92 100 20 81
1 100 67 12 2

Intel NUC 0 100 35 71 3
1 100

Particle tracking rate (particles/s), the higher the better; Application Efficiency (%), the higher the better.

and application should be reset to smaller ones where all applications in the application subset are supported by all

platforms in the platform subset. Although we may draw graphs of performance portability varying over a sequence

of subsets of platforms, as what Deakin has done in his paper [40], this requires a large amount of work for repeated

calculations of performance portability over a range of architectures. As an alternative, we have used the variants

of F to retrieve the values of performance portability.

All results retrieved by different aggregating methods are calculated as reference. According to Property 5.1.3,

Fgm is the most adaptive metric applying to a data set C(a, p, h) of particle tracking rate since in this case the

percentage of change for Fgm is platform-independent to meet the requirement of adaptability of performance

portability expressed in Definition 5.1.17. Therefore, we mainly give a detailed analysis of results obtained by Fgm

which are highlighted with green color.

With respect to the metric T1 � Fgm ·C(a, p, h), the highest value is obtained by the CUDA version, 18.0 ⇥ 102

particles/s, while the lowest value is retrieved by the SYCL version, 0.0 particles/s by keeping one decimal place. The

priorities of different programming models for better performance become CUDA > OpenACC > OpenMP thread >

Kokkos > OpenMP offload > SYCL.
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Table 5.5: Evaluation of performance portability for different implementations of slabAllNuclides across a
set of platforms via the generic model F and the absolute performance metric, particle tracking rate, the
higher the better.

Metrics
Particle Tracking Rate (⇥102 particles/s)

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

F ·C(a, p, h)
Fam 5.0 18.8 14.1 1.6 3.7 0.1
Fgm 0.0 0.0 0.0 0.0 0.0 0.0
Fhm 0.0 0.0 0.0 0.0 0.0 0.0

F
0 ·C(a, p, h)

F
0

am 10.0 47.1 15.7 4.0 4.1 0.4
F

0

gm 8.6 44.9 9.9 3.4 3.1 0.2
F

0

hm 7.1 42.4 5.2 2.9 2.2 0.2

T1 � F ·C(a, p, h)
Fam 5.0 18.8 14.1 1.6 3.7 0.1
Fgm 4.3 18.0 9.0 1.4 2.8 0.0
Fhm 3.5 17.0 4.7 1.2 2.0 0.0

F · (T2 �C(a, p, h))
Fam 6.0 23.5 15.7 2.0 4.1 0.1
Fgm 3.8 15.3 9.9 1.2 3.1 0.0
Fhm 2.4 10.6 5.2 0.7 2.2 0.0

T3 � F ·C(a, p, h)
Fam 5.21 4.99 9.33 4.09 9.09 2.01
Fgm 5.19 4.99 9.22 4.08 9.07 2.01
Fhm 5.17 4.99 9.12 4.07 9.05 2.00

where T1, T2 and T3 are three transfer operators defined in section 5.1.4.3 to obtain variants of F . Note
that the value of T3 � F ·C(a, p, h) is a score which has no unit.

With respect to the metric Fgm · (T2 �C(a, p, h)), the priority order is exactly the same as the metric T1 � Fgm ·

C(a, p, h). The CUDA version gains the best result which surpasses the OpenACC version with a factor of 1.5x

speedup.

With respect to the metric T3 � F · C(a, p, h), the highest score is retrieved by the OpenACC version while the

lowest score is obtained by the SYCL version. The OpenACC and Kokkos versions benefit from the largest integer

part which represents the number of supported platforms for a given programming model. As for the comparison be-

tween the OpenACC and Kokkos version, the decimal part of the OpenACC version is larger than that of the Kokkos

version, which means that the normalized aggregating result of the OpenACC version surpasses the one of the

Kokkos version. Overall, this variant of Fgm renders a priority order as OpenACC > Kokkos > OpenMP thread >

CUDA > OpenMP offload > SYCL.

Now we consider the evaluation of performance portability for different implementations of slabAllNuclides via

the generic model F and the relative performance metric, application efficiency, as illustrated in Table 5.6. Similarly,

the values highlighted with green color are gained by the utilization of Fam which is the most adaptive metric for

the evaluation of application efficiency according to Property 5.1.4. Since in this scenario the percentage of change
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for Fam is platform-independent to meet the requirement of adaptability of performance portability expressed in

Definition 5.1.17.

Fam manages to get meaningful values and the results shows that the priority order is OpenACC > OpenMP thread >

CUDA > Kokkos > SYCL > OpenMP offload where the OpenACC version gains the best application efficiency 53%

and the OpenMP offload version renders the worst, 7%. Fgm and Fhm are still unable to evaluate the strict per-

formance portability for the given application set and platform set in our case. All values expressing the relaxed

performance portability are calculated by the variants of F as reference.

Table 5.6: Evaluation of performance portability for different implementations of slabAllNuclides across a
set of platforms via the generic model F and the relative performance metric, application efficiency, the
higher the better.

Metrics
Application Efficiency (%)

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

F ·C(a, p, h)
Fam 49 40 53 7 33 10
Fgm 0 0 0 0 0 0
Fhm 0 0 0 0 0 0

F
0 ·C(a, p, h)

F
0

am 98 100 59 18 37 52
F

0

gm 98 100 55 14 16 17
F

0

hm 98 100 52 11 5 6

T1 � F ·C(a, p, h)
Fam 49 40 53 7 33 10
Fgm 49 40 50 6 15 3
Fhm 49 40 47 4 4 1

F · (T2 �C(a, p, h))
Fam 59 50 59 9 37 15
Fgm 44 34 55 5 16 3
Fhm 33 25 52 3 5 1

T3 � F ·C(a, p, h)
Fam 5.98 4.99 9.59 4.18 9.37 2.52
Fgm 5.98 4.99 9.55 4.14 9.16 2.17
Fhm 5.98 4.99 9.52 4.11 9.05 2.06

where T1, T2 and T3 are three transfer operators defined in section 5.1.4.3 to obtain variants of F . Note
that the value of T3 � F ·C(a, p, h) is a score which has no unit.

Similarly, we explain in detail the results retrieved by the variants of Fam. With reference to the metric T1 �Fgm ·

C(a, p, h), the results are equal to those obtained by the original metric Fam, which corresponds to the equation

T1 � Fam = Fam. With reference to the metric Fgm · (T2 � C(a, p, h)), the results shows that the OpenMP thread

and OpenACC versions gain the highest value, 59% while the OpenMP offload version obtains the lowest one,

9%. The priorities of different programming models for better application efficiency become OpenMP thread =

OpenACC > CUDA > Kokkos > SYCL > OpenMP offload. With reference to the metric T3 � F · C(a, p, h), the

priority order resembles in the one obtained in Table 5.5, which is OpenACC > Kokkos > OpenMP thread >
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CUDA > OpenMP offload > SYCL.

In conclusion, the results listed in Table 5.5 and Table 5.6 prove that Fhm 6 Fgm 6 Fam. For example, the

values retrieved by the variant T1 � Fhm, T1 � Fgm, T1 � Fam for the CUDA version in Table 5.5 increase from

17.0 ⇥ 102 particles/s to 18.8 ⇥ 102 particles/s. Excluding the variant of F transferred by the operator T3 which

maintains its own scoring mechanism, the CUDA version aggregates the highest value of particle tracking rate and

the OpenACC version gains the highest application efficiency when they are evaluated by the metric F as well

as its variants with the utilization of two transfer operators T1 and T2. As for the metric T3 � F , the OpenACC

version obtains the best performance in terms of particle tracking rate and application efficiency, since this variant

addresses much more portability than performance, which makes the OpenACC and Kokkos versions the most

competitive implementations of slabAllNuclides running across the given ten platforms in terms of performance

portability.

5.2.2 Productivity Portability Evaluation

5.2.2.1 Implicit Productivity Portability

Table 5.7 shows a variety of metrics of implicit productivity for implementations of slabAllNuclides across a set

of platforms. The measured source files include the partial offloading part to transfer nuclide data to device and

calculate microscopic cross sections on device.

With respect to LOC, the results are measured by using the command line wc -l. The CUDA version requires

the largest number of LOC whereas the OpenMP thread version the smallest. The PS-LOC of each implementation

for Intel x86-based, IBM Power-based, Intel GPU-based and Nvidia GPU-based platforms are same and thus the

corresponding code distances di,j between two of four types of platforms for all implementations are equal to zero. It

indicates that the OpenACC, OpenMP offload, Kokkos and SYCL versions are of high abstraction which leads to little

difference between distinct platform-specific code paths. The churns of different code paths for each implementation

reflect that the OpenMP offload version share a single code path for both Intel x86-based, IBM Power-based and

Nvidia GPU-based platforms and the largest difference between code paths is introduced by the Kokkos version

where it is obliged to define the Kokkos execution space during the compilation. The differences of code paths for

each implementation are summarized as follows:

• OpenMP thread: none.

• CUDA: none.

• OpenACC: set acc_device_host or acc_device_nvidia.

• OpenMP offload: nb_devices = omp_get_num_devices(), the program automatically decide whether it is

executed on host or device according to nb_devices.
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• Kokkos: set Kokkos::CudaSpace or Kokkos::HostSpace during the compilation.

• SYCL: set sycl::cpu_selector{} or sycl::gpu_selector{}.

Table 5.7: Metrics of implicit productivity for implementations of slabAllNuclides across a set of platforms.

Metrics
Programming Models

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

Lines of code (LOC)
Total 567 1517 711 699 705 832
h1 567 - 710 699 697 831
h2 567 - 710 699 697 -
h3 - 1517 710 699 697 -
h4 - - - - - 831

Code distance
d1,2 0 - 0 - 0 -
d1,3 - - 0 - 0 -
d1,4 - - - - - 0
d2,3 - - 0 0 0 -
d2,4 - - - - - -
d3,4 - - - - - -

Churn
chn1,2 0 - 0 0 0 -
chn1,3 - - 2 0 16 -
chn1,4 - - - - - 2
chn2,3 - - 2 0 16 -
chn2,4 - - - - - -
chn3,4 - - - - - -

Halstead complexity metric
Program length 2255 5570 2315 2698 2790 3816
Program volume 201912 59078 22211 25870 26866 36957
Program difficulty 11.6 11.4 11.8 11.4 11.3 11.5
Program effort 242706 675996 262814 295612 303432 425327

h1 represents an Intel x86 architecture, h2 an IBM Power architecture, h3 a Nvidia GPU platform, h4 an
Intel GPU architecture. di,j and chni,j refer to individually the code distance and churn between the code
paths of hi and hj . If i = j, di,i = 0, chni,i = 0.

With respect to the Halstead complexity metrics, all operators and operands are counted manually with the use

of vimgrep to search operator patterns. We find that the program difficulty of all implementations are at the same

level. This is reasonable since all implementations adopt the same algorithms and they are coded in a single style.

The program length, volume and effort of the CUDA version is the highest ones comparing to other implementations

which means that the CUDA version is the most complicate implementation requiring much development effort.

Moreover, it should be noted that the SYCL version differs quite a lot from the OpenMP thread, OpenACC, OpenMP

offload and Kokkos versions in terms of program length/volume/effort by cause of its cumbersome way of declaring



Chapter 5 Metrics Comparison among Programming Models 129

variables in private memory and its user-defined function of sum reduction.

Table 5.8: Implicit productivity portability evaluated by F for implementations of slabAllNuclides across a
set of supported platforms.

Metrics
Programming Models

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

Number of supported platforms |S| & |H| = 10
5 4 9 4 9 2

Number of combinations of supported platforms
10 6 36 6 36 1

Platform-specific lines of code (PS-LOC)
Fam 567 1517 710 699 697 831
Fgm 567 1517 710 699 697 831
Fhm 567 1517 710 699 697 831

Code divergence
Fam 0 0 0 0 0 0
Fgm 0 0 0 0 0 0
Fhm 0 0 0 0 0 0

Churn
Fam 0 0 1 0 8 0.25
Fgm 0 0 0 0 0 0
Fhm 0 0 0 0 0 0

Now we may apply the metric F towards the data sets of implicit productivity listed above with the intention

of evaluating the implicit productivity portability for implementations of slabAllNuclides across a set of supported

platforms. From Table 5.8 we find that the estimated values of PS-LOC for each implementation retrieved by Fam,

Fgm, Fhm are equal since the platform-specific code distances between different code paths of each implementation

are equaling to zero. We can only observe several differences from results of the metric churn. For instance, with

reference to the Kokkos version, the estimated value of platform-specific churn aggregated by Fam is 8, meaning

that given a code path as reference, it requires on average 8 lines of modification to make the Kokkos version

successfully running on all supported platforms. It should be noted that Fgm and Fhm always return zeros if any

value in its data set is equal to zero. Thus, both of them are not qualified to capture the feature of churns for each

implementation of different code paths.

In general, for implementations which are portable to multiple architectures including the OpenACC, OpenMP

offload, Kokkos, SYCL versions, their code divergences and churns are all at a low level, indicating that their mainte-

nance effort is rather little. However, because the code paths of each implementation targeting to different platforms

are similar to each other, the retrieved data sets are not suitable to examine different sub-types of F . We can only

say that in our scenario, Fam is the single metric capable of evaluating the churns of several implementations.
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5.2.2.2 Explicit Productivity Portability

Table 5.9: Metrics of explicit productivity for implementations of slabAllNuclides across a set of platforms.

Machines #GPUs
Programming Models

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

Relative Speedup (x)
GridCL 0 2.45 1.00 0.80 1.17

1 1.49 1.00 0.07 0.02
Cobalt-hybrid 0 2.16 1.00 1.34

1 1.18 1.00 0.11
Cobalt-v100 0 2.13 1.00 1.13

1 2.56 1.00 0.13
Gorgon 0 0.92 1.00 0.20 0.81

1 1.50 1.00 0.18 0.03
Intel NUC 0 2.82 1.00 2.00 0.09

Relative PS-LOC (x)
GridCL 0 0.80 1.00 0.98 0.98 1.17

1 2.14 1.00 0.98 0.98
Cobalt-hybrid 0 0.80 1.00 0.98 0.98 1.17

1 2.14 1.00 0.98 0.98
Cobalt-v100 0 0.80 1.00 0.98 0.98 1.17

1 2.14 1.00 0.98 0.98
Gorgon 0 0.80 1.00 0.98 0.98

1 2.14 1.00 0.98 0.98
Intel NUC 0 0.80 1.00 0.98 0.98 1.17

Ψrelative

GridCL 0 3.06 1.00 0.82 1.19
1 0.70 1.00 0.07 0.02

Cobalt-hybrid 0 2.70 1.00 1.37
1 0.55 1.00 0.11

Cobalt-v100 0 2.66 1.00 1.15
1 1.20 1.00 0.13

Gorgon 0 1.15 1.00 0.20 0.83
1 0.70 1.00 0.18 0.03

Intel NUC 0 3.52 1.00 2.04 0.08

Considering the evaluation of explicit productivity portability (EPP or productive performance portability), we first

need to choose a subset of the original platform set H so as to make at least one application in the application

set capable of running across the platforms in the subset of H. Fortunately, we may exclude the platform of the

machine Intel NUC associated with an Intel GPU and reset the platform set to H 0 with |H 0| = 9. In this way, both the

OpenACC and Kokkos versions are good candidates for reference and the relative speedup and implicit productivity

(PS-LOC) of different programming models are illustrated in Table 5.9 as we use the results of the OpenACC version

as baseline values.
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Based on the values of Ψrelative listed above, we can use the variants of F to evaluate the productive performance

portability of different implementations of slabAllNuclides across the platform set H 0. Note that the blank cells in

Table 5.9 signify the meaninglessness and cannot be replaced by zero values. Thus, the original metric of Fam is

also unable to aggregate meaningful results.

From Table 5.10, we find that Fam, Fgm and Fhm retrieve the same priority order. According to Property 5.1.4,

Fam is the most adaptive metric for the evaluation of relative value, so we give an explication of results obtained by

Fam which are highlighted with green color.

Table 5.10: Evaluation of productive performance portability for different implementations of slabAllNu-
clides across a subset of platforms via the generic model F , Ψrelative, the higher the better.

Metrics
Ψrelative

OpenMP thread CUDA OpenACC OpenMP offload Kokkos SYCL

F
0 ·C(a, p, h)

F
0

am 2.618 0.788 1.000 0.318 0.763 0.080
F

0

gm 2.454 0.754 1.000 0.213 0.311 0.080
F

0

hm 2.245 0.726 1.000 0.153 0.086 0.080

T1 � F ·C(a, p, h)
Fam 1.454 0.350 1.000 0.141 0.763 0.009
Fgm 1.363 0.335 1.000 0.095 0.311 0.009
Fhm 1.247 0.323 1.000 0.068 0.086 0.009

F · (T2 �C(a, p, h))
Fam 1.745 0.438 1.000 0.176 0.848 0.018
Fgm 1.325 0.308 1.000 0.087 0.311 0.013
Fhm 0.962 0.225 1.000 0.048 0.086 0.011

T3 � F ·C(a, p, h)
Fam 5.99 4.30 9.38 4.12 9.29 1.03
Fgm 5.99 4.31 9.41 4.09 9.13 1.03
Fhm 5.99 4.32 9.45 4.07 9.04 1.04

The variants of Fam transferred by T1 and T2 obtain the similar results. The priorities of different programming

models for better productive performance portability are both OpenMP thread > OpenACC > Kokkos > CUDA >

OpenMP offload > SYCL where the highest values gained by the OpenMP thread version of two variants are

respectively 1.454 and 1.745 and the lowest values retrieved by the SYCL version of two variants are respectively

0.009 and 0.018.

As for the metric T3 � Fam · C(a, p, h), the OpenACC version renders the highest score, 5.99, while the SYCL

version obtains the lowest score, 1.03. The priority order retrieved by this variant resembles in the one attained by

the same variant addressing performance portability, which is OpenACC > Kokkos > OpenMP thread > CUDA >

OpenMP offload > SYCL.

Overall, excluding the metric T3 � F ·C(a, p, h) which addresses more portability than productive performance,

the results shows that the OpenMP thread version obtains the best productive performance across a set of platforms
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which makes it the best candidate for implementation in terms of performance, portability and productivity with the

given platform set. The OpenACC and Kokkos versions are more competitive to the CUDA version in terms of

3P which are mainly due to their much wider range of portable platforms and much higher abstraction of code.

The OpenMP offload version gains bad scores since it achieves bad performance and covers a narrow range of

platforms in the platform set. Lastly, the SYCL obtains bad results however these values may be biased since

this programming model is preliminary and its compiler support is underdeveloped. In order to retrieve unbiased

estimates, we need carry out more tests across more architectures for the SYCL version with the use of the next

version of SYCL compilers.

It should also be addressed that the conclusions drawn above depend on the applications, problems and plat-

forms (environments included) that we use in the thesis [31][32]. For example, it is safe to say that the OpenMP

thread version of our Monte Carlo neutron transport codes obtains the best productive performance across a set

of platforms to solve a fixed source Monte Carlo problem using SIGMA1 on-the-fly Doppler broadening approach.

However, if we change the applications, the problems, or the platforms, other conclusions may be reached instead.

Hence rather than giving a guide for users who want to make a choice of programming model and environment for

their applications with the use of our generic metric, our interest lies in offering users a practical tool to analyze their

special cases and help them making their own choice.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis project depicts the proposal of a generic metric as well as its variants to evaluate Monte Carlo neutron

transport code in terms of performance, portability and productivity through the implementation of a benchmark

based on the Monte Carlo neutron transport prototype PATMOS via different programming languages or libraries.

The development work is based on the SIGMA1 on-the-fly Doppler broadening method which calculates cross

section data on-the-fly during the simulation. Because this method has added more FLOP workloads and thus

manages to mitigate the memory-bound issue caused by random memory accesses which are mainly incited by

the binary search of the typical pretabulated method. Besides, we adopt a heterogeneous offloading strategy for

our portable implementations of Monte Carlo codes, which performs all the particle tracking and scoring on host,

and offloads the calculations of total microscopic cross sections of nuclides to accelerators since the cross section

computation accounts for up to 95% of total run time in PATMOS. To achieve this heterogeneous offloading strategy,

the main development effort is to rewrite codes which are dedicated to porting nuclide data and microscopic cross

section calculations to devices via implementations of several programming models.

The first part of work in this thesis project focuses on the portable implementations of microscopic cross section

computational kernel in PATMOS. Our general programming model can be abstracted as OpenMP thread + {X},

where {X} can be any languages or libraries which are capable of parallel programming on modern accelerators

including CUDA, OpenACC, OpenMP offload, Kokkos, SYCL or none at all. For the purpose of reducing the large

amount of overheads introduced by kernel launch and memory transfer operations with the utilization of conventional

particle tracking approach, the history-based method, we have proposed another approach, called the pseudo event-

based method, which reorganizes the procedure of history tracking into three events which are respectively assigned

to handle data banking, microscopic cross section calculation and the rest of processes (macroscopic cross section

summarization, distance sampling, particle movement and interaction).
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The tests show that the pseudo event-based method generally exceeds a magnitude of performance achieved

by the history-based method. It corresponds to the fact that the pseudo event-based method manages to batch

small transfers into one larger transfer and merge small kernels into one larger kernel which eliminates significantly

the data transfer and kernel launch overheads and exploits higher computational capability of accelerators. The nu-

merical quantities such as the achieved occupancy have also proved that the pseudo event-based method achieves

to improve the compute throughput and memory bandwidth of Nvidia GPUs in comparison with the history-based

method. However, from the perspective of the utilization of compute resources of Nvidia GPUs, both the pseudo

event-based and history-based methods are far from making full use the compute resources. The profiling analysis

indicates that our heterogeneous offloading code may be mitigated by reducing the number of registers used for

each CUDA thread, adding instruction-level parallelism and optimizing memory alignment and access patterns.

As for the comparison of performance achieved by different portable implementations of slabAllNuclides, the

results show that in host mode, the OpenMP thread and Kokkos versions which can be compiled by Intel compiler

with the vectorization options enabled gain better performance than other implementations. In offload mode, the

CUDA and versions always renders better performance than other implementations via both the pseudo event-based

and history-based methods.

The second part of work in this thesis project intends to evaluate our portable implementations of Monte Carlo

neutron transport codes in terms of performance, portability and productivity. A generic metric F has been estab-

lished based on the metric of performance portability P(a, p,H) proposed by Pennycook and his group. Comparing

to Pennycook’s metric, our generic metric allows for the aggregation of values retrieved from an application set or a

problem set. Besides, it integrates three aggregating methods which are respectively the arithmetic mean, the geo-

metric mean and the harmonic mean. The adaptabilities of three aggregating methods applying to different types of

data set have been analyzed theoretically. According to the definitions of performance, we have proved that Fgm is

the most adaptive metric applying to a data set retrieved by a metric indicating the absolute performance and Fam

is the most adaptive metric applying to a data set retrieved by a metric indicating the relative performance.

Furthermore, we have proposed several variants of F to make it capable of evaluating relaxed performance

portability where the estimated value will be zero only if the given application is blocked by all platforms in the

platform set. Such variants make users easier to obtain meaningful values without the obligation of finding the

appropriate application or platform set where each application in the application set is supported by all platforms in

the platform set.

We have used the generic metric F ·C(a, p, h) and its variants to evaluate the performance portability and pro-

ductive performance portability of different implementations of slabAllNuclides (OpenMP thread, CUDA, OpenACC,

OpenMP offload, Kokkos and SYCL) across a set of platforms.

The main contributions of this research work can be concluded into several points:

• Proposition of a new particle tracking algorithm, pseudo event-based method for the heterogeneous offloading
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strategy of SIGMA1 on-the-fly Doppler broadening method.

• Implementations of SIGMA1 on-the-fly Doppler broadening method via multiple programming models.

• Proposition and analysis of the generic metric and its variants F · C(a, p, h) for the quantitative evaluation

of portable implementations of Monte Carlo neutron transport codes in terms of portability, performance and

productivity.

6.2 Future Work

There is some work that we intend to do for future development. From evaluation metric side, the operator F need

to be testified by much more different cases which are widely used in the domain of scientific computing. More

aggregating methods may also be integrated into our generic metric to enrich the capability of F handling complex

problems. Besides, more tests need to be done so as to cover a wider range of architectures (AMD, Intel GPUs, etc.)

for the evaluation of our portable implementations of Monte Carlo neutron transport code in terms of performance,

portability and productivity. We also intend to find an optimal version using portable programming model (on Nvidia

GPUs) such as the OpenACC version and compare the cost the portability for moving it to other architectures.

From programming model side, we have interest to optimize the OpenMP offload, Kokkos and SYCL versions.

For example, Kokkos may enable the support of MTMA strategy in future which makes it possible to allow multiple

threads targeting to multiple devices at the same time. Several implementations of SYCL such as DPC++ may

completely support Nvidia GPUs. All of these possible changes need to be tested and integrated in our portable

implementations of Monte Carlo neutron transport code.

From Monte Carlo neutron transport simulation side, since we have demonstrated that porting total microscopic

cross section calculation with Doppler broadening techniques to accelerators may contribute to a significant perfor-

mance improvement, we can offload partial cross section calculation as well in order to make our implementation

more adaptive to other complex cases. Moreover, we may also offload other methods of cross section calculation

such as pre-tabulated and multipole methods to accelerators.
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