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A B S T R A C T

Viruses are in many ways fascinating biological systems. They vary
in their structure, their replication methods, and in their target hosts.
They are the smallest self-replicating and self-assembling entities on
Earth. Viruses are partly made of a protein shell called the capsid, the
most important and interesting component as it encloses their genetic
material. The main role of the capsid is to protect the viral genome. As
a result and despite their smallness, they have evolved to sustain high
external or internal constraints. However, the mechanisms underlying
the appearance of viruses (through the capsids shape) and those that
bring their high resistances are still poorly understood. Such prob-
lematics are of great interest as they could lead to the development of
artificial nanocages. Viral derived nanocages are promising for various
bioappplications, such as gene therapies or nanoapplications, such as
drug delivery. The work I propose in my Ph.D. aims to contribute
modestly to the understanding of viral assembly and stability using
both analytical and numerical investigations.

Viruses are biological structures produced thanks to molecular self-
assembly. Because the final crystal is too be curved, the induced
elastic stress is relaxed thanks to the introduction of topological defects
in the protein lattice. We propose in the Ph.D. thesis a quantitative
mechanism for this phenomenon by using standard thin shell elasticity.
In particular, we show that the type and the angular location of a defect
is determined by the value of the azimuthal stress that characterizes
compressive or tensile regions. The elastic model proposed permits us
to compare quantitatively the relaxation of mechanical stress induced
by various defect distributions.

Testing the mechanical stability of viral particles is possible thanks
to nanoindentation experiments by atomic force microscopy. Using a
coarse-grained molecular simulation of a viral structure, we build in
the Ph.D. thesis a framework to help interpret mechanical information
obtained by such nanoexperiments. More specifically, non-vanishing
Gaussian curvature of viruses and the geometry of the tip have an
influence on the viral quantitative stiffnesses that can be extracted. The
coalescence of analytical and numerical results enables us to capture
and rationalize the latter influence. We hope the latter work to be of
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interest for following investigations regarding mechanical aspects of
viruses.

R É S U M É

Les différentes propriétés des virus en font des objets intéressants
et fascinants. On peut en trouver de différentes structures, avec des
méthodes de réplication différentes et ils sont spécifiques à leurs cibles.
Ils constituent la plus petite entité auto-assemblée, elle-même encodée
par un matériel génétique. Ce génome est protégé par une capside à
l’intérieur virus lui-même. La capside est le constituant le plus impor-
tant d’un virus. Son rôle est de protéger le génome viral des agressions
extérieures. De fait, elle peut supporter de hautes contraintes méca-
niques ou chimiques externes et/ou internes. Cependant, les méca-
nismes conduisant à leur construction, influençant leurs formes et leur
conférant cette résistance sont toujours assez peu compris. Ces pro-
blématiques présentent un intérêt majeur car elles ouvrent la porte au
développement de nanocages. Ces nanocages inspirées des virus pour-
raient être particulièrement utiles pour des applications biologiques,
en thérapie génique par exemple, ou des applications technologiques,
comme la délivrance de médicaments à des cibles spécifiques. Le travail
présenté dans cette thèse se propose modestement de contribuer à la
compréhension de l’auto-assemblage et de la stabilité virale en utilisant
des modèles numériques et analytiques.

Les virus sont des échafaudages biologiques auto-assemblés. La
structure finale étant nécessairement courbée, la contrainte élastique
au cours de l’auto-assemblage due à la courbure est relachée par
l’inclusion de défauts topologiques dans le réseau protéique. Dans cette
thèse, par l’utilisation de la physique de l’élasticité en milieu continu,
on propose une modélisation pour ce phénomène. En particulier, on
montre que le type et la localisation angulaire du défaut à la frontière de
l’assemblage sont deux paramètres fixés par la contrainte azimuthale,
celle-ci pouvant être compressive ou extensive. Le modèle élastique
proposé permet de comparer et d’évaluer l’effet relaxant de différentes
distributions de défauts topologiques dans la structure.

Par ailleurs, l’évaluation et les tests de stabilité mécaniques des
structures virales ont été rendus possible par les expériences de na-
noindentation par microscopie à force atomique. En utilisant une si-
mulation numérique de dynamique moléculaire d’une structure virale
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gros-grains, on construit dans cette thèse un cadre de travail permettant
d’aider à l’interprétation des informations mécaniques tirées de ces
expériences. Plus spécifiquement, la courbure Gaussienne non-nulle du
virus indenté et la géométrie de la pointe utilisée pour l’indentation ont
des influences sur la rigidité mécanique effective pouvant être extraite
expérimentalement. La coalescence de résultats numériques et théo-
riques nous permet de capturer et de rationaliser cette influence. On
espère que ce travail pourra être d’intérêt pour des recherches futures
portant sur les propriétés mécaniques des virus.
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Part I

S TAT E O F T H E A RT

Gare à ceux qui prétendraient créer de toutes pièces un art
nouveau sans aucun lien avec les formes de l’art historique.
Car le passé est la base sur laquelle il faut fonder tout
progrès, car ce passé, c’est l’expérience humaine tout entière,
c’est l’enseignement des siècles.
– César Daly





1B I O L O G I C A L P R E L I M I N A R I E S

1.1 résumé

Dans ce chapitre, on se propose d’établir un bref état de l’art sur la
morphologie et la structure biologique des virus. Un modèle d’infection
viral général est rappelé, ainsi que la théorie de Caspar-Klug relative à
la structure des virus sphériques.

1.2 history of viruses and their morphology

It is impossible to know with certainty how and when viruses
emerged as they do not leave historical footprints such as fossils.
Though, they must be prior to multicellular organisms, hence they
should exist since the mesoproterozoic era [22]. They were discov-
ered thanks to a porcelain filter, called the Chamberland-Pasteur filter,
which could purify a liquid sample from its bacteria population. In
1892, Dmitri Ivanovsky showed that a disease of tobacco plant could
be transmitted via liquid plant extracts even after their purification by
Chamberland-Pasteur filtration. However, many years passed before a
link was established between those filterable agents (seen previously as
very small bacteria) and a new type of disease causing particle : Viruses.
They are in many ways fascinating biological systems. They are the
smallest self-replicating entities which use nucleic acids 1 to store their
biological information or genome. They are able to self-assemble,
thereby reducing significantly their free energy. Their genome is stored
and protected by an outer shell called the "capsid" made of proteins 2

sometimes inside a second envelope made of proteins and phospho-
lipids. These capsids are remarkably stable from the biochemical view
point but they exhibit also remarkable mechanical properties (some

1. Nucleic acids are biopolymers, or small biomolecules, essential to all known
forms of life, they encode and then store information of every life-form organism and
viruses on Earth.

2. Proteins are large biomolecules, or macromolecules, consisting of one or more
long chains of amino acid residues, i. e.organic compounds containing amine (-NH2)
and carboxyl (-COOH) functional groups. Proteins are required for the structure,
function, and regulation of the body’s cells, tissues, and organs.

3
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capsids can have a young modulus above 140MPa) [70]. Viruses have
additionnaly a very complex life cycle. Though their genomes encode
all proteins needed to assemble new capsids, viruses lack any metabolic
components or ribosomes possessed by cells. Consequently, they can
only replicate within a host cell. At the surface of most virions 3, one
finds glycoproteins 4 that enable viruses to bind to targeted cells via
viral receptors. It is admitted that viruses have simply evolved to make
use of those molecules, which have their own physiological functions
in the cell, for their own replication. Usually, a virus attaches to the spe-
cific receptor site on the host cell membrane. Then, we can distinguish
bacteriophages from plant and animal viruses. The nucleic acid of bac-
teriophages is injected in the host cell naked, leaving the capsid outside
the cell. Plant and animal viruses can enter through endocytosis, in
which the cell membrane surrounds the entire virus before its entire
disassembly. Once the genome released in the cell, the replication
mechanism strongly depends on the viral genome. Nevertheless, all
viruses reroute host cell’s replication process for proteins to synthesize
viral enzymes and assemble new virions. After the assembly of many
(typically hundreds of) copies, the new viral particles are released,
often resulting in cell death. Outside their host cells the infectious
particles remain passive until a new host is encountered, starting the
replication process again (See Fig. 1.1). Because they are to interfereA viral capsid is a

shell made of
proteins protecting

the viral genome.

with very specific metabolisms, they are highly specific to their hosts.
Consequently, as said earlier, they can be classified with the type of
hosts they infect. They can be divided into bacteriophages, animal
viruses, plant viruses and finally archaea viruses. Archaea viruses
and bacteriophages, or shortly phages, infect prokaryotic (without a
nucleus) host organisms (i. e. more generally bacteries). On the con-
trary, the host cells of animal and plant viruses are eukaryotic (with a
nucleus).

The detailed knowledge of the mechanism of viral assembly is of
significant interest for bionano-application [95]: Their self-assembly
offers the possibility to enclose tailored cargo, which could not enter
the host cell otherwise, for gene therapies. It is now possible to load
viruses experimentally with drugs, markers, and even nano-particles
like quantum dots or magnetic beads [35, 48].

3. A virion is a complete virus consisting of a genome surrounded by a protein
shell, it is the infective form of a virus.

4. Proteins which contain chains of monosaccharides (i. e. simple sugars).
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Figure 1.1 – Schematic diagram of Zika Virus cycle, virus is recognized by the
Fcγ receptors. This enables the virus to fuse with the ensosome
and initiate virus production using the replication apparatus of
the host cell. The release of copies kills the host cell. (Diagram
taken from Ref. [43])
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This widespread use of the self-assembly paradigm is associated
with its versatility and efficiency. It has motivated a recent series of
experiments and the building of models exploring both the mechanical
limits of viral capsids and the global self-assembly pathway. These
studies revealed an astonishing robustness of viral shells against large
internal pressure and externally applied forces underlining the progres-
sive arising of their symmetry. This work aims to contribute modestly
to the understanding of viral assembly and stability using both an-
alytical and numerical investigations. In the following sections we
present earlier theoretical results, that are important to know and to
understand for studying capsid mechanic.

1.3 structure and symmetry of capsids

Capsid proteins are expressed from the RNA or DNA contained by
the virus itself. As mentioned previously, once in the host cell, they
self-assemble in a very efficient way that can withstand high internal
or external pressure. Most of them are spherical but it is also possible
to find more original structures in Nature, such as conical, e. g. the
Human Immunodeficiency Virus (HIV) capsid, or toroidal one, e. g.
the intracisternal toroidal type “A” virus of murine leukemia [13, 79].
Thanks to the modern techniques of X-ray spectroscopy and cryotrans-
mission electron microscopy, the crystallographic structure of viruses
is now part of the core knowledge of modern virology [96]. For most
of them, the capsid proteins are grouped in subunits called capsomers
i. e. oligomers made of either five (pentamer) or six (hexamer) proteins
. Surprisingly but very interestingly spherical viruses possess an icosa-A virus can be seen

as a curved crystal. hedral symmetry (their shape is similar to a dice with 20 faces). As
most viruses are spherical hollow containers, the simplest and smallest
capsid one can imagine is a perfect icosahedron made of exactly 60
proteins assembled into pentamers. In that case, all proteins are similar
and surrounded by a similar environment, leading to a very robust
biological shell: The Adeno-Associated Virus (AAV) capsid. However, a
capsomer has a limited size (∼ 5nm), and 12 of them gives a very small
virus which diameter d ∼ 25nm [17, 47]. All viral genomes cannot be
contained in such a small volume. Hence, Caspar and Klug proposed
a brilliant model in which in larger shells, proteins shall arrange in
such a way that the protein-protein interactions are quasi-equivalent to
the ones found in the perfect icosahedral shell [28]. They proposed
that for a given viral spherical shell, each triangular facet of the match-
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ing icosahedron can be divided into three symmetrically equivalent
parts. Those parts are called icosahedral asymmetric units (IAU), to
construct the hexagonal lattice. Then, the Caspar-Klug Theory (CK The-
ory) is built upon 60 identical subunits organized on the 20 triangles
creating the faces of the icosahedron. Consequently, the icosahedral
symmetry of capsids is generalized to an icosadeltahedral one, where the
number of hexamers is unlimited but exactly 12 pentamers lie on the
vertex positions of a perfect icosahedron 5. The number of hexamers
required for the tessellation of a capsid with a given protein lattice
structure is linked to the so-called triangulation number T 6 introduced
with the quasi-equivalence principle. T follows a sequence of magic num-
bers (T = 1, 2, 3, 4, 7, 9, · · · ) characterized by two integers h, k which
describe the number of hexamers one would have to "walk over" to get
from one pentamer to an adjacent pentamer within a completed capsid
T = h2 + hk+ k2. In order to get from one pentamer to its nearest
neighboring pentamer, one must follow a straight chain of h hexamers,
then make a 60 degrees turn and proceed another straight chain of k
hexamers (See Fig. 1.2).

h = 2, k = 0

Figure 1.2 – The hidden geometry of the omegavirus. To highlight what has
been said in the main text, an artistic coarse-graining is made
[40]. This is an artistic coarse-graining It enables us to extract the
magic number T = 4, where h = 2, k = 0. Omegavirus exhibits a
skew capsid.

This number comes handy as, in most cases, a capsid with a triangu-
lation number T is comprised of 60T capsid proteins, or 12 pentamers

5. The number of pentamers is topologically constrained to close a capsid whatever
its shape as we will see in further details later.

6. The adjective "triangulation" is explained herefater in Ch. 2.
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and 10(T − 1) hexamers [28, 68]. When h > k > 0, we use the term
skew capsid. Skew capsids with h 6= k are chiral (See Fig. 1.3).

Class 1
Icosahedron
(h > 0, k = 0)

Class 2
Highly faceted
(h > k > 0)

Class 3
Pentakis dodecahedron

(h = k)

T = 4
h = 2, k = 0

T = 7
h = 2, k = 1

T = 3
h = k = 1

Figure 1.3 – The three virus spherical classes. All canonical capsids may be
built from a single type of pentamer and of distinct hexameral
shapes, leading to skew (or non-skew) and chiral (or non-chiral)
capsids. The path to get from one pentamer to its nearest neigh-
boring one is highlighted in red. Proteins constituting viruses
are coarse-grained into triangles for sake of clarity. The previous
coarse-graining is explained hereafter (See Ch. 2).

Small capsids are generally spherical, but large viruses (e. g. phage
HK97 or the phycodnavirus with a diameter approaching 100nm) ex-
hibit a faceted geometry with nearly flat portions between the twelve
pentamers pointing outward. This buckling transition results from the
competition between the stretching energy associated with the pen-
tamers (in plane energy) in the lattice of capsomers and the bending
elasticity of the viral capsid (out of plane energy) [66]. All what has been
said previously is valid for viruses exhibiting a spherical aspect, non-
icosahedral capsids with spherocylindrical shapes are common among
bacteriophages. Even more complex, polymorphism can be observed
for several capsids. This polymorphism depends on the physiological
environment itself. Exceptions to the quasi-equivalence principle sug-
gest that shapes of capsids depend strongly on capsomer-capsomer in-
teractions which themselves depend on spatial environment. It reflects
an influence of the covalent bindings but also of the conformational
changes in the protein structures. The exact shape of these of course
differs from a protein type to another.

Hence, rationalizing the morphological aspect of viral capsids ap-
pears to be a great challenge from the chemical, physical, biological
and mathematical view point [9, 91].



2E L A S T I C I T Y A N D D E F E C T S

2.1 résumé

On se propose de détailler ici les modèles mathématiques et numériques
nous permettant de rationaliser les comportements élastiques des virus
ainsi que leur structures. Une emphase est mise sur la description
mathématique des pentamères et des heptamères considérés comme
des défauts topologiques dans la structure protéique biologique des
virus.

2.2 elasticity on curved membranes

2.2.1 Euler theorem and Euler characteristic

Proteins possess somehow the ability to deform reversibly. Hence, Proteins constituting
viral capsids can be
seen as triangles and
are packed
hexagonally, the
most condensed state
in the curved
biological shell.

a shell made of proteins shall present elastic properties and shall be
deformable. Then, a virus can be seen as a crystal but more importantly
as a curved elastic crystal. Provided reasonable hypotheses, it shall be
possible to use physics of elasticity to describe the elastic behavior
of viruses. One can look first at the local protein packing to make
viral capsids, as we only describe the global symmetry of spherical
capsids in Ch. 1. It appears that, in most viruses, proteins are packed
hexagonally (as described previously), because it is the most condensed
state reachable for them (See Fig. 2.1). There exists a

geometrical
frustration in the
hexagonal protein
lattice due to the
curvature required
for the closure of the
viral shell itself...

However, the latter hexagonal packing is in conflict with the geo-
metrical curvature required to close the shell. An hexagonal protein
lattice shall lead to a planar membrane. From now on, one can intro-
duce the notion of geometrical frustration to describe situations where
certain types of local order (here the hexagonal packing), favoured by
physical interactions, cannot propagate throughout a system [90]. The
geometrical frustration in our case is revealed by the Euler theorem.
This elegant theorem relates the number of vertices (written V), the

9
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A)

B)

C)

Figure 2.1 – Most viruses present an hexagonal packing. That is why we
introduce previously the triangulation number T . A viral capsid
can be coarse-grained as a shell exhibiting a triangular lattice.
Each protein is represented as a triangle. Thus, T becomes a
quantitative metric for capsid size. A) Structure of P74− 26 ma-
jor capsid protein (a typical monomer constituting the spherical
P74− 26 viral capsid) colored by domain with corresponding
labeled schematic in Subfig. B. B) Domains of P74− 26 major cap-
sid protein. C) The hexagonal packing leading to a "triangulated"
protein shell which presents then elastic properties. Figures are
adapted from Ref. [97].
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number of edges (written E) and the number of faces (written F) for
any convex polyhedron (such as our coarse-grained capsid) 1:

V − E+ F = χE. (2.1)

In Eq. (2.1), χE is the topological charge. There exists an easy path to
compute the previous number. χE is related to the genus g of the tessel-
lated closed surface. Indeed, g represents, in simple words, the number
of "handles" of it and one can write χE = 2(1− g). For surfaces with
boundaries, the Euler number is given by χE = 2(1− g) −h, where h is
the number of boundaries or "holes". Consequently, a sphere without
holes nor handles (g = 0, h = 0) has its Euler characteristic equal to 2,
a torus with 1 handle and no boundaries (g = 1, h = 0) has its Euler
characteristic equal to 0. Two orientable closed surfaces with the same
genus (thus the same Euler characteristic) are homeomorphic. They
can be mapped into one another without changing their topological
properties. One kind of mapping includes any transformation of a
surface in space that can be achieved by bending, stretching, squeezing
or shrinking the surface. So, essentially, we can achieve a homeomor-
phism by treating a surface in space as if it were made from a sheet of
rubber and then bending, stretching, squeezing or shrinking it. If one
can continuously deform a surface into another without drilling or tear-
ing it, former and latter surfaces are homeomorphic and topologically
equivalent.

Then, if one wants to tesselate a sphere using an hexagonal lattice (or
to build a viral shell), one shall make sure that the equation V −E+ F =

2 is satisfied by the tessellation. This mandatory directive is possible
to follow by the introduction of topological defects in the crystalline
order of the membrane.

2.2.2 Crystalline order and defects

As we are to study crystals with 6-fold local order (See Subsec. 2.2.1),
it should be useful to introduce a minimal model. Instead of studying
the elasticity of an all-atom system, we shall represent a single protein
as a triangle. Then, to mimic the previous presented tessellation, we
create a bond between each pair of adjacent proteins. Consequently,
within this discrete model, building blocks are triangles.

1. In our coarse-grained model, F represents the number of proteins, V the number
of summits of proteins, E the number of edges between adjacent proteins.
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h = 3, k = 0

Figure 2.2 – A typical coarse-grained icosahedral viral capsid, which can be
seen as a curved elastic crystal, T = 9, {h, k} = {3, 0}. Each
triangle represents a protein. This coarse-graining enables us to
capture the in-plane and out-of-plane behavior of the elastic shell.
Disclinations are highlighted with red dots.

The previous coarse-graining has been extensively used to explore
capsid growth [46, 62, 74]. Here, we shall discuss about a technical
detail. Indeed, a shortcut was taken. It is not correct to say that a
protein is exactly coarse-grained by a triangle. The latter sentence is
valid only if the capsid one wishes to represent is sufficiently big (with
a triangulation number T > 7). For smaller capsid (T = 1, 3, 4), the
latter coarse-graining possess a loop effect, and a triangle represents in
fact 3 packed proteins 2 [103].

Coming back to our model, It shall be necessary to name a topological
defect as also a topological charge, where the so-called charge is the
deviation from the ideal coordination number of the planar triangular
lattice. If one writes qi and ci the charge and the coordination number
of the ith vertex respectively, one has qi = 6− ci. This notion of charge
comes handy by use of the famous Gauss-Bonnet theorem, which
relates the Euler characteristic introduced earlier and the total charge
of the crystal Q:

Q =

V∑
i=1

qi = 6χE. (2.2)

For the case of viral capsids, or simply, spheres, the total charge must
be equal to 12, using Eq. (2.2). Hence, if one wishes to tessellate a sphere
using a triangular lattice, one shall introduce twelve pentagones, i. e.

2. Those 3 proteins, once packed, exhibit indeed a triangular shape.
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twelve vertex coordinated five times 3. Let us explain why. It is possible
to relate the coordination number ci of a vertex to its contribution to
the Euler sum written ei. Let us consider consider a tessellation in
which each face is a triangle : each edge then belongs for one-half to
the vertex and each face for 1/3. Thus, the contribution of the ith vertex
to the euler sum is given by:

ei = 1−
ci
2
+
ci
3

= 1−
ci
6

. (2.3)

Hence, a vertex coordinated five times has a +1/6 contribution, a
vertex coordinated seven times has a −1/6 contribution and a vertex
coordinated six times (the ideal coordination number of a planar tri-
angular lattice) has zero contribution. In other words, a vertex ideally
coordinated is shared among 6 faces, other coordination numbers lead
to the introduction of a defect in the lattice. Immediately, it is easy
to realize that the contribution of twelve pentagons to the Euler sum
is exactly 2. Referring to Ch. 1, we now know why capsids present
hexamers (6 hexagonally packed proteins) with exactly 12 pentamers
(5 pentagonally packed proteins). Their protein lattice is in fact geo- ... and building the

latter frustrated
protein lattice is
made possible by the
introduction of
exactly 12 pentamers
called positive
disclinations and
possibly
pentamer-heptamer
pairs called
dislocations. On the
contrary, isolated
heptamers,
physically and
mathematically
forbidden in the
lattice are called
negative
disclinations.

metrically frustrated by their own curvature required for their closure.
Note that, in crystalline shell exhibiting a triangular lattice, dipoles of

topological defects can exist. Indeed, following our previous reasoning,
a dipole constituted of a pentamer-heptamer pair presents a zero charge
(and consequently a zero contribution to the euler sum) in the soft
network. Nonetheless, the elastic stress shall be non-negligible close to
the introduced topological dipole. Those two types of defects are the
main ones we will focus on in this study. Hereafter, isolated pentagons
and isolated heptagons in the triangulation are called disclinations. Due
to their charges, they are respectively called positive and negative discli-
nations. They represent pentamers (respectively heptamers) for viral
capsids, and they are the consequence of the geometrical frustration
associated to the topology of the biological membrane. Pentagon-
heptagon pairs exhibiting a zero contribution to the Euler sum and
that are not topologically forbidden are called dislocations.

Consequently, we know now that a virus can be viewed as an elastic
curved shell. The latter possesses a thickness and its geometry can be
defined by specifying the form of its middle surface (the middle curved
plane of the shell) and of its thickness at each point. To study the me-
chanic of viruses during self-assembly, we now make two hypotheses.

3. Note that fullfilling Eq. (2.2) enables at the same time to fullfill Eq. (2.1).
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Firstly, we assume that the straight lines, initially normal to the middle
plane of the membrane before the deformation, remain straight and
normal to the middle surface during the deformation, and the length
of such elements is not altered. Secondly, we assume the absence of
reciprocal pressure of horizontal layers. In other words, for a given
layer, no pressure is exerted from the layer above or below. Hence, and
from now on, we will assume that viruses behave as shells of constant
thicknesses. Hence, we see (possibly unclosed) viruses as 2D elastic
crystals. We will briefly describe in next subsection the mathematical
formalism used to describe such shells.

2.2.3 Mathematical formalism

In this subsection, we introduce briefly the mathematical formalism
of 2D continuum elasticity used in this work. Obviously, this summary
is not exhaustive and we just describe the minimalist toolkit used to
study elastic crystal assumed to describe correctly viral elastic behav-
ior. This brief reminder is separated in two subsubsections, in-plane
elasticity and out-of-plane elasticity considered with the Monge gauge
explained hereafter. For sake of simplicity, this introduction will have
two conventions, we use implicit Einstein summation (components
with repeated index are summed up), and displacements/components
are embeded in a 3D euclidean space described by cartesian coordi-
nates. In order to use other arbitrary coordinates, one can use nothing
but the chain rule to reparametrize as one wishes.

2.2.3.1 In-plane formalism

Let us suppose an initial flat elastic crystal. The analysis of the flat
membrane begins with the elastic free energy taken to be quadratic in
strain (using tensor notation):There exists a

mathematical
formulation to

describe disclinations
and dislocations

within the
crystalline order of

the viral shell.

E =
1

2

∫
S

ds (2µuijuij + λu2ii), (2.4)

where λ and µ are the 2D Lamé coefficients characterizing the elastic
properties of the membrane, S its total surface, uij the 2D strain. In
elasticity, a deformation is represented by a vector field u(r) = (u1, u2)

which maps the point r(x1, x2) to r(x1, x2) + u(x1, x2). Hence, the in-
plane deformation is encoded in the in-plane vector field u. The strain
is defined as the change in separation between points in the reference
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state, dl2, and deformed state dl ′2, dl ′2 − dl2 = 2uij dxi dxj. This
gives:

uij =
1

2

(
∂ui
∂xj

+
∂uj

∂xi
+
∂uk
∂xi

∂uk
∂xj

)
' 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. (2.5)

The last equality of Eq. (2.5) holds for small deformations [61]. Note
that uij is symmetric (no change appears if i, j indexes are inverted
in the latter equation). We note ∂/∂xi = ∂i the covariant derivative
against the ith component. In the absence of topological defects, the
displacement is a single valued mapping. In their presence, the map-
ping is disrupted and u becomes a multi-valued function. Following
the model built by Seung and Nelson [94], disclinations can be defined
in terms of a bond angle field on the crystal. It measures the orienta-
tion of edges around each vertice. Hence, crossing any closed loop L
containing a disclination increases the scalar θ of an increment called
disclinicity s.

∮
L

dθ =

∮
L

∂θ

∂xi
dxi = s (2.6)

In our coarse-grained lattices with a 6-fold rotationnal symmetry, s
is a multiple of 2π/6. The values ±2π/6 are the most important for our
case because they represent respectively the ±1 topological charges (i. e.
pentagons and heptagons mathematically). The disclinicity is the angle
(to withdraw or to add) by which it is possible to recover the original
lattice (See Fig. 5.5). Using the Stokes theorem, it is possible to rewrite
Eq. (2.6) on partial derivatives to get the mathematical formulation of a
disclination located at r0 on the plane:

εij
∂

∂xi

∂

∂xj
θ = sδ(r − r0). (2.7)

εij is the Levi-Civita tensor and δ is the classic Dirac delta distribution.
We give its definition:

εi,j =

(
0 ε12 = 1

ε21 = −1 0

)
(2.8)

One can relate the bond-angle field and the displacement with the
relation θ = 1/2εij∂iuj [73]. Hence, it follows that:

εikεjl∂k∂l
1

2
(∂iuj − ∂jui) = sδ(r − r0). (2.9)
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Regarding dislocations, they can be defined directly from the dis-
placement vector. Indeed, crossing a counterclockwise loop L contain-
ing the dislocation core increments u by a vector b called the Burgers
vector. Mathematically, this gives:∮

L

duk =

∮
L

∂uk
∂xi

dxi = bk. (2.10)

The Burgers vector is the amount by which the path around the
singularity fails to close (See Fig. 5.5). Following the same method
used previously, it is possible to write (r0 being the location of the
dislocation):

εli
∂

∂xl

∂

∂xi
uk = bkδ(r − r0). (2.11)

A) B)

s = 2π
3

b

Figure 2.3 – A) An example of a flat disclination (5-fold coordinated) in a
coarse-grained monolayer. In blue is highlighted the angle to add
to recover an hexagonal lattice. B) An example of a flat dislocation
in a coarse-grained monolayer, in red and black are highlighted
two unclosed loops to show the Burgers vector highlighted in
blue. Figures are adapted from Ref. [94]. Their definitions remain
unchanged in curved membranes.

Minimizing the previous free energy E against variations of u enables
us to get the equilibrium equation:

∂σij

∂xi
= 0, (2.12)

where σij is defined as the stress tensor (with δij the Kronecker symbol):

σij = 2µuij + λukkδij. (2.13)
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Eq. (2.13) and Eq. (2.12) permit us to say that the stress tensor is also
symmetric and has zero divergence. Thus, it can be derived from a
scalar function χ and defined as the Airy stress function [61]:

σij = εikεjl
∂

∂xk

∂χ

∂xl
. (2.14)

Although, various χ functions can satisfy Eq. (2.12). We shall give a
compatibility equation so that χ provides the way to derive a physically
realizable stress distribution given a displacement u. Inverting Eq. (2.13)
yields:

uij =
1+ σ

Y
σij −

σ

Y
σllδij, (2.15)

where we define:

Y =
4µ(µ+ λ)

2µ+ λ
,

σ =
λ

2µ+ λ
,

(2.16)

as respectively the 2D Young modulus and the Poisson ratio. Combining
Eq. (2.14) and Eq. (2.15) leads to an equation on the Airy stress function
and the 2D strain:

1

Y
∇4χ = εikεjl∂k∂luij

= εikεjl∂k∂l
1

2
(∂iuj − ∂jui) + εikεjl∂k∂l∂jui

= εkl∂k∂lθ+ εik∂kεjl∂j∂lui, (2.17)

where ∇4 = ∇2∇2 is the bilaplacian, the laplacian ∇2 being equal to
∂i∂i on the plane. With the use of Eq. (2.6) and Eq. (2.7), we finally
write the final in-plane stress compatible equation:

1

Y
∇4χ =

∑
α

sαδ(r − rα) +
∑
β

b
β
i εik∂kδ(r − rβ). (2.18)

In Eq. (2.18), we summed over all topological defects that can be
present in the surface. The αth disclination is located at rα on the plane,
and the βth dislocation possessing a Burger vector bβ is located at rβ.
In the latter equation, the dipolar nature of dislocations can be clearly
seen with the derivative. Disclinations can be seen as the fundamental
defect, and one can build dislocations out of very close opposite pairs
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of disclinations (pentagons with a +1 charge and heptagons with a −1

charge) with their mathematical expression taken at first order [89].
We note s(r) the right term of Eq. (2.18), and we call it classically the
topological defect density. It is the source of elastic stress in the planar
membrane by analogy with the famous Poisson equation.

1

Y
∇4χ = s(r). (2.19)

Nonetheless, Eq. (2.19) is incomplete, because it is restricted to planar
membranes. But our aim is also to describe elastic behaviors of shells that
buckle out of the plane to give incomplete or complete viral capsids.

2.2.3.2 Out-of-plane formalism

If one is to study elasticity of non-planar shell, a description of
the deflection is required. Consequently, the in-plane displacement is
described by previous application u(r) = (u1, u2) but the out-of-plane
one is described with the new-vector field w(r). In other words, a point
in the reference state which was at the position r(x1, x2) is to move
to its new position r(x1, x2) + u(x1, x2) + w(x1, x2) in the deformed
state. Here, the in-plane deformation is encoded in the vector field
u and the out-of-plane deformation is encoded in the vector field w.
In this precise case, w is in fact a vector field containing a single
non-zero component w along the vertical direction. This is by far the
most popular parametrization for deflected crystals. Called the Monge
parametrization, it describes them with a single height function above
or below a flat reference plane [34].

Then, the exact form of the strain tensor becomes:

2uij = ∂iuj + ∂jui + ∂iuk∂juk + ∂iw∂jw

' ∂iuj + ∂jui + ∂iw∂jw. (2.20)

We define the elastic free bending energy, also called the Helfrich
energy H as:

H =

∫
S

ds
(
1

2
DH 2 + κK

)
, (2.21)

where H and K are respectively the mean curvature and the Gaussian
curvature. D, κ, are respectively the flexural rigidity and the Gaus-
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sian rigidity [44]. We compute H and K (within the Monge gauge
formalism for deflections):

H = ∇ ·

(
∇w√

1+ |∇w|2

)
' ∇2w ; (2.22)

K =
det∂i∂jw

(1+ |∇w|2)2
' det(∂i∂jw)

= −
1

2
εikεjl∂k∂l(∂iw∂jw). (2.23)

Last equalities hold if |∇w| is small. Then, to derive the analog of
Eq. (2.19), in the deflected case, we shall minimize the sum H + E

against u and w. This gives:

D∇4w = ∇iσij∂jw,
∂iσij = 0.

(2.24)

Again, with the very same definition and methodology used previ-
ously, cf. Eq. (2.14) and Eq. (2.18), we write:

D∇4w+ εikεjl∂k∂l(∂iχ∂jw) = 0,

1

Y
∇4χ = s(r) +

1

2
εikεjl∂k∂l(∂iw∂jw).

(2.25)

Let L be the non-linear scalar operator:

L(h, f) = −εikεjl∂k∂l(∂ih∂jf). (2.26)

We get at equilibrium (no external vertical constraints is applied) a An analytical
description of the
internal stress and of
deflections capsids is
possible using the
Föppl–Von-Karman
equations within the
context of deflections
of thin plates. An
additionnal term is
added to take into
account the presence
of topological defects
in the compatibility
equation.

system of equations on the vertical deflection and the Airy stress
function:

D∇4w− L(χ,w) = 0,

1

Y
∇4χ = s(r) −

1

2
L(w,w).

(2.27)

With a defect free shell, it is possible to let the defect density vanish,
and we recover the famous Föppl–Von-Karman equations for large
deflections of thin plates [99]. Naturally, if we are to add an external
constraint written p, Eq. (2.27) becomes:

D∇4w− L(χ,w) = p,

1

Y
∇4χ = s(r) −

1

2
L(w,w).

(2.28)
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A very important dimensionless parameter arises in discussing spher-
ical crystals with Eq. (2.28), the Föppl–Von-Karman number:The

Föppl–Von-Karman
ratio γ is an

important
adimensionalized

parameter that
balances the in-plane
deformation cost of a
viral membrane and
the out-of-plane one.

γ =
YR2

D
. (2.29)

It measures the ratio of stretching to bending moduli. When the
Föppl–Von-Karman number is large, the protein subunits optimize
stretching and bend away from their preferred radius of curvature,
showing some degree of faceting.This is the case for some viruses
such as the Hepatitis B Virus (HBV). Hence, the competition between
in-plane energy and out-of-plane energy is evidenced very easily by
the previous parameter. Faceted viruses shall exhibit a large γ contrary
to non-faceted viruses.

2.3 numerical simulations of deflected membranes

The presented elastic model for shell membranes exhibiting defects
is, apart from being very elegant, compatible with a numerical study.
Previous equations have been widely used in the literature to address
various problems of thin plate elasticity.

2.3.1 In-plane energy

From the latter
continuous model, it
is possible to derive a

dicrete version of
in-plane stretching

energy and of
out-of-plane bending

energy to be
minimized if we are

to study numerically
deflections of

coarse-grained
membranes and

shells.

We define a stretching energy S on each bond in our 2D triangular
lattice:

S =
1

2
ke
∑
{a,b}

(da,b − d0)
2, (2.30)

where da,b is the length of the bond relating vertex a and b and ke its
rigidity (assumed uniform on all bonds). The sum is running through
all bonds. Using this discrete in-plane energy enables us to test the
predictions of the elastic analytical model regarding a membrane which
Lamé coefficients are equal. They are evaluated as λ = µ =

√
3/4 · ke.

Referring to Eq. (2.16), it follows two very useful equalities on the
Young modulus and on the Poisson ratio:

ke =

√
3

2
Y, σ =

1

3
. (2.31)
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2.3.2 Out-of-plane energy

Additionally, to simulate the deflection of our tessellated membrane,
let us introduce the numerical bending energy:

B = kb
∑
〈α,β〉

[1− cos(θα,β − θ0)], (2.32)

where kb is the bending stiffness (also assumed uniform on all pairs of
adjacent faces). θα,β is the angle between the normal vectors of faces α
and β respectively. θ0 is a parameter reflecting a preferred curvature for
the membrane. Numerically, this is equivalent to simulate a membrane
which flexural rigidity D is opposite to its Gaussian rigidity, D = −κ.
Finally, we get the relation [37, 94]:

kb =
2√
3
D. (2.33)

Taking the vertex mass m = 1, it yields the membrane mass density
[108]:

ρ =
2√
3

. (2.34)

2.4 cautions

We recalled briefly the main equations of elasticity on deflected mem-
branes. When constructing the latter theory, we use two assumptions:
the hypothesis of the straight normals and the hypothesis of an absence
of reciprocal pressure of horizontal layers (See the end of Subsec. 2.2.2).
The theory assumes that the deflections w are sufficiently large (they
can be comparable with the shell thickness or larger), but they should
remain small relative to other dimensions (for instance its arc length)
and then finite. Due to previous assumptions, in-plane deformations
and their respective derivatives u1, u2, ∂iuj are also considered small
compared to deflections w and the values ∂iw. Those are quite reason-
able for our studies: the deflection w occurs in the direction of the least
rigidity, while the displacements u1 and u2 occur in the direction of the
largest rigidity of the membrane. It is easier to bend adjacent proteins
one in front of another rather than to separate them. Generally speak-
ing, for proteins constituting viral capsids, we estimate D ∼ 20kBT ,
while Y ∼ 200kBT/nm

2 [8, 38, 87]. In other words, results that can be
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derived using previous equations on curved topographies are obtained
within a small curvature expansion deviated from a flat reference state.
Therefore, previous equations must not be used to study closed elastic
crystals but only unclosed ones (i. e. unclosed curved self-assemblies).
Indeed, in closed curved shells, there is geometric frustration, implying
that stress and strain are necessarily present and cannot vanish, they
do not obey previous equations. To solve such problems, one should
look for a perfect screening solution where the defect density is not
zero and exactly equal to the curvature of the system. This can be done
using a recent formulation of elasticity theory in curved geometries. It
unifies its geometric and topological contents with the theory of defects
[65, 111]. Nevertheless, within reasonable assumptions, it is possible to
describe deflections compared to a spherical reference. Equations will
be presented in Ch. 4.



3S E L F - A S S E M B LY PAT H WAY

3.1 résumé

Dans ce chapitre, un bref état de l’art est proposé concernant l’auto-
assemblage des structures virales. Encore une fois, une emphase
est mise sur l’inclusion des précédents défauts topologiques (i.e les
pentamères et les heptamères).

3.2 disclinations and curvature

Recent simulations of viral self-assembly have shown that a wide
range of capsids shape can be obtained by tuning essentially the spon-
taneous curvature of the surface [46, 62, 112]. In a very interesting
letter published in 2009, Levandosky and Zandi showed that the spe-
cific form of conical HIV shells is not induced by a complex biological
mechanism (such as the presence of a template or the influence of a
surrounding membrane) but rather it is the natural response of an
elastic sheet growing under simple rules of nonequilibrium assembly
[62]. They used a two-step model: each time a subunit is added into
the growing shell, an elastic relaxation of the partially formed structure
occurs. The unit cell has the form of a triangular prism constituted
of three triangles made smaller and smaller from top to bottom (See
Fig. 3.1). This gives a spontaneous curvature to the built numerical
sheet. Because of this curvature, it is possible to form disclinations.
Indeed, in case of a flat sheet made of perfect hexagons, triangles
possess a spontaneous angle α equal to exactly 60◦. Each time five
triangles are assembled, it is possible to add a sixth one to realize
another perfect hexagon. But the previously described cell creates in
fact an opening angle slightly less than 60◦, hence, below a critical
angle αc, one can choose to stretch previous unit made of three layers
containing five trangles each to create a "disclination". The system
of springs is relaxed using the energy defined in Eq. (2.30), except
that stiffnesses are non-uniform in the unit cell (See Fig. 3.1). Finally,
they considered a deterministic growth: they assumed the attachment
of each new unit cell at the place where the subunit maximizes the

23
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number of intermolecular bonds, corresponding to a minimum of the
energy landscape. That corresponds to a location at the growing edge
with a minimum opening angle. Hence most probable places are de-
termined by the values of the opening angle (if there are equivalent
positions at the edge, then one of them is randomly chosen).

A) B)

Figure 3.1 – A) The unit cell in the form of a triangular prism. Each line
represents a spring, the equilibrium lengths of springs, of con-
stant stiffness k, constituting triangles are set from top to bottom
a0 + 2∆, a0 and a0 − 2∆, so that the radius of curvature of the
outer shell is set R = a0(1+ a0/2∆). Dashed and dotted lines
represent springs connecting the three layers of triangles which
stiffnesses are respectively k/2 and k/3 to make the sheet elasti-
cally isotropic. B) The closure algorithm. Because of the presence
of spontaneous curvature, the opening angle α is always less
than 60◦ contrary to a perfect hexagon. Thus, below a critical
angle αc, the five existing subunits are to be stretched to form
a "pentagon", i. e. a disclination. Figures and details are taken
from Ref. [62].

Obviously, with increasing radius of curvature the shell size also
increases. The interesting trend regards the shape of the resulting
capsids that depends on the spontaneous curvature between triangular
prisms. The previous trend is modulated by a deviation from spherical
shape as one proceeds from the smaller radii of curvature to the larger
ones (See Fig. 3.2). Generally, large spontaneous curvatures promote
smaller opening angles and consequently facilitate the creation of
pentagons, resulting into a structure very similar to an icosahedron
(but not a perfect one). On the contrary, small spontaneous curvatures
between subunits make the formation of pentagons energetically costly,
keeping opening angles at values just slightly below 60◦. In the end,
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no pentagon is observed, resulting into very well defined cylindrical
shapes (See Fig. 3.2).

i) ii) iii)

iv) v)

vi)

vii)

Figure 3.2 – Shapes and relative sizes of viral structures against the sponta-
neous radius of curvature, R, which is determined by the quantity
∆. Those structures were built using an algorithm described in
the main text and in Fig. 3.1. Here a0 is set to 1 and ∆ is i) 0.2, ii)
0.15, iii) 0.1, iv) 0.08, v) 0.076, vi) 0.075, and vii) 0.072. A conical
closed structure is obtained for ∆ = 0.076 that is Re ∼ 7.5. Figures
and details are adapted from Ref. [62].

However, as it has been shown in Ch. 2, all viruses exhibit exactly
12 disclinations, required topologically. Notably, these pentamers are
irregularly localized in elongated capsids, while they are equidistant in
icosahedral capsids. The mechanisms underlying both the appearance
and the localization of pentamers are poorly understood. Regarding
spherical capsids, Castelnovo clearly highlighted the resulting benefit
from the specific icosahedral symmetry in 2017 [30]. At each step
of the self-assembly, by solving Eq. (2.27), it is possible to derive an
energy composed of three terms, i) the intrinsic elastic cost to map the
membrane onto a spherical substrate, ii) the self-energy of disclinations,
iii) the pairwise interaction of disclinations. Each disclination helps
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to screen out the geometric frustration due to the Gaussian curvature
of the sphere. In the meantime, it appears that repulsive interaction
among disclinations, as well as their repulsion with the free boundary,
will contribute to distribute them regularly. As evidenced in Fig. 3.3,
each disclination inclusion enables to delay the strong increase of
the elastic energy. We recall here that the maximal net number of
disclinations within the structure of a closed capsid is twelve. This net
number is fixed topologically (See Ch. 2). It is shown in Fig. 3.3 that
the regular distribution of these disclinations along the vertices of an
icosahedron gives the lowest energy, compared to a random location for
these disclinations. Even more interesting, we observe that icosahedral
symmetry appears progressively, as a result of energy minimization
upon regular inclusion of disclinations [64, 106, 112].

A) B)

Figure 3.3 – Elastic energy for a spherical membrane as function of the inter-
mediate size during viral self-assembly. Elastic cost of disclina-
tions is taken into account after their inclusion in the membrane.
A) Energetic cascade for disclination inclusion. Elastic energy
for 12 disclinations with icosahedral symmetry (thick red line),
compared to the energy of n = 1 to n = 12 disclinations (thin
black lines). Dashed vertical lines indicate the radial positions of
disclinations. The elastic energy without disclinations is shown
by the blue line. B) Elastic energy for 12 disclinations with icosa-
hedral symmetry (thick red line), compared to 10 realizations of
random locations for 12 disclinations (thin dashed colored lines).
Inset: Example of locations of six disclinations regularly localized
on the shell growing at a constant curvature. Figures and details
are taken from Ref. [30]

.
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Regarding large viruses though, large icosahedral symmetries re-
quire scaffolding proteins. By studying the growth of large viral shells Disclinations help to

screen intrinsic
curvatures of shells.
To close a capsid, it is
energetically
favorable to
introduce a pentamer
within the biological
scaffold.

(capsids), Li and Zandi showed that a nonspecific template not only
selects the radius of the capsid, but also leads to the error-free assem-
bly of protein subunits into capsids with universal icosahedral order
[64]. Using the continuum and discrete minimal model presented
earlier (See Ch. 2), the growth of spherical large shells was investigated
with a major supplementary ingredient: a Lennard-Jones potential
enables to create an attractive force between triangular subunits and
the preformed scaffolding layer. Again, at each step of growth, a new
triangle is added to the location in the boundary which makes the
maximum number of bonds with the neighboring subunits (this is
justified with the same reasons given previously). For the case of the
described template driven assembly, and additionnaly to the Föppl–
Von-Karman number, one shall introduce a new adimensionalized
parameter η = D/ε. D is the previously defined flexural rigidity and
ε quantifies the depth of the Lennard-Jones potential. For small η,
multimers follow the inner core curvature during the self-assembly,
whereas for large η, the spherical shell detaches from the core and
follows its spontaneous curvature. The presented study is restricted
to regimes where η ' O(1) and γ � 1, thus the template rules the
final size of the capsid. For viruses with T 6 4, the inner core appears
useless. However, as soon as T becomes greater than 4, the substrate
is required. Consistently with previous assumptions, the growth of a
large spherical cap (T = 13) is considered with an aperture angle θ that
varies monotonically from 0 to π. For each value of θ the free energy is
evaluated and the inclusion of a new disclination is considered. Once
the latter is favorable, the defect is added. Two results deserve to be
underlined, the first disclination is not centered, i. e. the cap grows
initially defect-free. This is the result of the competition between the
disclination self-energy whose minimum is at the boundary and Gaus-
sian curvature–disclination interaction. Additionally, as the shell grows,
the addition of disclinations becomes more and more favorable and
each time a new energy valley for the formation of a new disclination
emerges. On Fig. 3.4, the contour plots of total elastic energies are
showed for spherical caps with θ = 0.8 through θ = π. The bigger
ball in each plot indicates the position of the latest energy well, which
is where the addition of the next disclination will take place. The
agreement between the continuum model and the simulations is to be
enlighted. During the growth process, disclinations always appear in
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positions that eventually become the vertices of an icosahedron. To
conclude, the final structure depends on the value of γ and of the size
of the spherical crystal. Small spherical crystals, with T < 4 assemble
spontaneously for any Föppl–Von-Karman number, whereas larger
ones without a template, with γ ' O(1) adopt configurations without
specific symmetry. A template and a stretching dominant regime can
have a significant impact on the structure and the symmetry of the
shell.

A)

B)

Figure 3.4 – The snapshots of a T = 13 growth in discrete simulation A) and
continuum theory B). For the discrete part, the yellow vertices
belong to pentamers, blue ones to hexamers, and red ones to
the cap edge. The gold core mimics the preformed scaffolding
layer or inner core. The caps for the continuum part denote the
energy contour plots for the newest disclinations that appear in
the purple energy well. The red region has the highest energy
and the purple region the lowest one. There is a yellow ball in
the position of each disclination. The largest ball corresponds
to a newly formed disclination. Each valley corresponds to the
position of a future disclination. Figures and details are adapted
from Ref. [64].

However, in this section, we only discussed energetical consequences
of disclinations but no mention was made about dislocations. We must
take into account the other ubiquitous point defect and its fundamental
role at play if we are to investigate two-dimensional crystals such as
viral capsids.

3.3 dislocations and relaxation

In literature, a substantial amount of studies exist regarding dislo-
cations. More particularly, for the simplest case of crystalline order
on the sphere, the key feature is the appearance of scars, i. e. linear
chains of dislocations around a central disclination that freely terminate



3.3 dislocations and relaxation 29

inside the crystal or at the boundary of it. They appear for crystals
sufficiently large. Crystalline spherical caps are dislocation-free when
its width R is comparable to its lattice spacing a, R ' a [6, 12, 14, 16,
77, 102]. In a very elegant experiment, the so-called scars even have
been observed in systems of colloidal beads self-adsorbed on spherical
water droplets in an oil emulsion [12]. The observation was done
along with an associated triangulation to enlighten topological defects.
As dislocations appear to be very common defects within condensed
matter field, a wide range of analytic studies were done, and crystals
with scars can be treated analytically and efficiently. In a seminal
paper, Bowick et al., using the Green function of the Bilaplace-Beltrami
operator on a sphere, provided a way to evaluate the elastic energy
of an icosahedral lattice. The latter evaluation takes into account i)
disclination-disclination interactions, ii) disclination-dislocation inter-
actions and iii) dislocation-dislocation interactions. More precisely,
particular favored tesselations can vary from system to system with
fixed "particle" number, depending, e. g., on details such as the defect
core energies encrypted via the elastic constants [14, 15]. Interestingly, For large crystals,

dislocations play a
key role to relax
internal elastic stress
under various
conditions.
Additionnaly,
fractures in colloidal
crystals are more to
nucleate near or on
dislocations.
However, their
existence in viral
shells is not certified,
but they can be of
significant interest
in our work.

they showed that if a disclination is placed on the top of a cone and if
the resulting crystal is forced into a spherical monolayer, scars radiate
out of the disclination all the way to the boundary. We must add that
the dislocation core energy within the lattice is small compared to the
external stress introduced by the constant curvature. In simple words,
m grain boundaries of finite length and variable spacings between dis-
locations form to reduce external stress in the resulting curved crystal
(See Fig. 3.5). But, once again, since the resulting final configuration
depends on nonuniversal features, such as dislocation and disclination
core energies, curvature, and variate commensurability properties, only
a general trend is presented here and all configurations should realize
it in an approximate way. However, based on the asymptotic theory
of caps within continuum limit of vanishing lattice spacing, Azadi et
al. derived the morphological phase diagram of ground-state defect
patterns for crystals on spherical substrates [6].

They studied the transition between neutral state and charged ground
states of a crystalline cap subject to external boundary forces σb. The
latter is added using a constant boundary condition (either tensile or
compressive) on the radial stress. The phase portrait was also derived
in function of the surface covered by the latter cap Φ =W2/2R2, where
1/R2 was its gaussian curvature and W its circular radius. Before
showing the latter phase portrait, one must outline the mathematical
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Figure 3.5 – A disclination surrounded by a cloud of aligned dislocations
(scars). The central disclination is highlighted in purple and
dislocations in red and green. To distinguish them, +1/6 and
−1/6 charges are in red and green respectively. The resulting
configuration, particularly lengths L1 and L2 or intermediate
spacings between dislocations constituting scars depend on de-
tails encrypted in elastic constants, imposed curvature and size
of the crystal. The gold inner core mimics the imposed curvature.
Figure is taken from Ref. [6].

method and physical principles underlying it within the limit b→ 0,
where b represents the norm of the Burgers vector. To construct such
a stable pattern, one should note that a dislocation b in a stress field
experiments the so-called Peach-Koehler force. The force acting on the
dislocation is not a physical force (like mechanical force of springs or
electrostatic force on a charged particle), but rather a way to describe
the tendancy of the dislocation to move through the crystal when
stresses are present. We write it as:

Fi = εijσjkbk, (3.1)

taking into account that the latter force is proportional to the elastic
stress. Hence, two interacting dislocations experiment a stabilizing
pull towards the boundary proportional to b2. Then, a distribution of
dislocations satisfying mechanical equilibrium in axisymmetric caps
and polarized along the hoop direction is under zero force (like aligned
magnetic dipoles) [2]. This defect polarization is consistent with scars
added or removed along the radial direction to ease the collapse of
compressive or tensile hoop stresses depending on the sign. Therefore,
Azadi et al. sought perfect stress-collapses along the hoop direction.
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This is formally equivalent to the notion of perfect screening of Gaus-
sian curvature [52]. It results six distinct competing defect morpholo-
gies at low surface coverage in the (Φ,σb) plane. These are shown
schematically in Fig. 3.6: Dislocation free states exist for all boundary
forces and curvatures. There is a region where neutral scars exist (i. e.
without a disclination), bounded by two critical tensions that depend
on the surface coverage σb < T∗n = YΦ/2 and σb > −P∗n = −YΦ/4.
The region of stable charged caps (scars and disclination) is bounded
from below by a critical curve σb = −Pc∗ = −Y(1/12−Φ/2). One shall
note that the charged center-bound scars state lies above the curve
σb = −Pc∗∗, where Pc∗∗ a tension such that, Pc∗∗ = 0 if Φ < 1/12 and
Pc∗∗ = YΦ/4(1− 1/144Φ

2) + 1/24 log 1/12Φ otherwise (See Fig. 3.6).

A) B)

Figure 3.6 – A) The schematics of six possible states (defect morphologies
I–VI) described in the text. B) The phase space spanned by
surface coverage, Φ, and boundary stresses, σb, that delineate
the regions of mechanical stability (existence) for the competing
radial scar morphologies described in the core text. Figures and
details are taken from Ref. [6].

Despite the precise study of this phase portrait, the latter is of great
interest to show that positions of dislocations (low-energy defects
relatively mobile compared to high-energy ones: disclinations) have an
influence on the elastic resulting stress. Their configurations can help
to screen a constant Gaussian curvature.

In a substantial numerical work Negri et al. showed that scars have a
strong influence on crystalline stability if they are submitted to mechan-
ical forces [72]. They considered a set of N colloidal particles confined
onto a spherical substrate and interacting through a Lennard-Jones
potential. As it has been said previously, the beads tend to group either
into packs of 5 (disclinations) or into pairs of 5-7 packs (dislocations).
Naturally, because of the spherical constraint, dislocations tend to align
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themselves into scars. They submitted the resulting crystal to two
main deformations, volumetric and deviatoric. In other words, on
one hand to create a volumetric strain, they inflated the final shell,
preserving uniform Gaussian curvature (change of volume). On the
other hand, to create a deviatoric strain, they changed the shape of the
shell preserving its surface constant, starting from a sphere to give an
ellipsoid.

Under volumetric strain, as one could have expected, the shell cracks.
The fact is that precise initial failures appear to be in scarified regions.
Under deviatoric deformation, squeezing the spherical shell into an
ellipsoid, one can observe the alignement of scars with the greater
axis of the ellipsoid. The first behavior is attributable to the fact that
grain boundary scars induce weak spots in the crystal, where cracks
are easily nucleated. Dislocations introduce naturally non-null stress
and strain fields. Regarding the second behavior, the Peach-Koehler
force previously described shall arrange scars parallel to the longer axis
following the tensile/compressive stress to reach the final ellipsoidal
shape (See Fig. 3.7).

An important note is to be shared with the reader here. We have to
specify that dislocations were not observed up to now in viral capsids.
Nonetheless, many examples of thin biological structures exhibit them
such as bacterial cell wall, bacterial flagella and cell membranes [18,
107, 110]. They are mathematically characterized in slightly different
ways. Dislocations in viral capsids may be rare or non-existent due to
their capacity to re-assemble while self-assembling. The self-assembly
process may not be perfectly irreversible, in order to limit the number
of "mistakes" and increases in energy, one can assume that proteins
may detach and re-attach somewhere else to avoid the creation of
an heptamer. The addition of an heptamer in the structure may be
biologically and chemically inconvenient, thus a re-arrangement can
probably occur. However, to our knowledge, no findings exist in
literature that attest inexistence (or their incompatibility for the case of
large capsids) of dislocations in viruses. Then, despite their still non-
proven existence in our material of predilection, it can be of significant
interest to include such defects in our work.

3.4 motivation

The brief state of the art proposed hereinbefore provides significant
insights in disclination and dislocation inclusion mechanisms. Their
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A)

B)

Figure 3.7 – A) Curved colloidal crystal under isotropic expansion, fracture
appears along defects. The initial shell configuration (obtained by
relaxing a random configuration of particles) shows topological
defects already arranged in scars. R0 represents the initial radius
of the spherical crystal, ∆R its relative increase. B) Squeezing a
colloidal crystalline sphere leads to plastic deformation mediated
by grain boundary scars reorientation. The ellipsoid is deformed
under the constant surface-area constraint. c represents the length
of the semi-axis. 7-fold defects are represented in red on the
snapshots, 5-fold in blue, 6-fold in grey. Figures and details are
adapted from Ref. [72].
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use to relax stress due to curvature during self-assembly of elastic
crystals is not to be proven anymore. Disclinations help to relieve
elastic stress by introducing a spontaneous local curvature. Specific
patterns of dislocations arise to screen the latter itself, possibly created
by an inner core. Those patterns depend also on external parameters
(surface coverage and external boundary forces for instance). However,
previous results were mostly obtained by minimizing the global energy
of the surface as the surface is assembled. A description of defect
nucleation mechanisms at the scale of a local subunit is still lacking in
literature. We aim at curing this deficiency in the present work.



4A F M , V I R U S A N D D E F E C T S

4.1 résumé

Au cours de ce chapitre, un second état de l’art est réalisé, concernant
la nanoindentation de capsides virales. La nanoindentation à l’aide de
microscope à force atomique est particulièrement utile pour "sonder"
les propriétés élastiques de ces mêmes capsides.

4.2 introduction

Nanoindentation experiments on the protein shells of viruses has
established atomic force microscopy as a useful framework for probing
the mechanics of large protein assemblies. Indeed, the stability and
strength of capsids are crucial for viruses to infect their respective hosts
through the cycle presented on Ch. 1. Moreover, an extensive study is
required if capsids are to be used for biomedical and nanotechnological
applications. Recently, a wide range of studies regarding indentation
have been proposed. They investigate the latter phenomenon, on shells
or specific viruses analytically, experimentally or numerically. We
propose in this chapter a non-extensive and modest state-of-the-art to
supplement previous chapters and conclude this part.

4.3 atomic force microscopy

Atomic Force
Microscopy is a
useful tool to probe
the mechanical
properties of viruses
even at the nanoscale
and to realize
nanoindentation
experiments. Viruses
respond like springs
for small indentation
depths. It is thus
possible to extract an
effective stiffness.

To test mechanical properties of viruses, the most important and
popular tool is the AFM. Nevertheless, due to the smallness of viruses,
it is often very hard to get a good interpretation of the results and to
relate the information to their biological characteristics. The use of this
method reveals that viruses can be remarkably resistant to external
(chemical or physical) sollicitations. In this section, we will summarize
briefly main features of Atomic Force Microscopy. The AFM permits
to acquire nanometric-resolution images and to extract the physical
rigidity of the tested sample (a macromolecule, a virus, a cell, or even
non-livig objects such as nano-antennas) [23, 32, 36, 63, 81, 93]. We will
see further that it is also possible to test and compare resistances of

35
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filled and empty capsids, to infer the influence of a mutation in the
protein structure or even to detect the influence of maturation process
on the effective stiffness. In a typical nanoindentation experiment, the
tested sample is chemically attached to the substrate. A sharp tip is
attached to a cantilever which back is illuminated by a laser diode.
The reflection of the latter pulse to a four-segmented position sensor
enabling to record the vertical movements exerted by the cantilever.
The distance between the tip and the sample to be probed or imaged
is controlled by application of a voltage to a piezo-electric crystal
("piezo"), which expands or contracts in a defined way. Imposing
a piezo-extension while measuring the deflections of the cantilever
enables to test the mechanical resistance of capsids under external
applied loads. Usually, for small indentation, response is linear i. e.
proportional to the deflection. The factor is called effective spring stiffness
as the latter regime corresponds to a spring response. On the contrary
for large indentation, non-linear behaviors appear. It is even possible
to see discontinuities in experimental, force-distance curves. Those
discontinuities are often interpreted as sample mechanical failures or
micro-cracks. We call maximal indentation the value of the displacement
at which a sudden drop appears on the curve. At this point, the sample
is destroyed and the breaking force can be evaluated. Some mechanical
observations done with an AFM can be interpreted using the continuum
model of elasticity theory presented in Sec. 4.5. On Fig. 4.1 it is possible
to see a sketch of an indentation experiment and typical force-distance
curves.

4.4 experiments

A wide variety of studies exists in literature focusing on the me-
chanical properties of viral particles, and several articles adopt theExperimentally, for

most viruses
pentamers are softer
than hexamers. The
effective stiffness of

viruses is in fact
anisotropic and
depend on their

geometries, their
shapes and their

intrinsic structures.

perspective of structural and molecular virology to review the results
obtained to date [69, 85]. Carrasco et al. showed a stiffness anisotropy
of both virions (capsids containing DNA, i. e. active viruses) and cap-
sids of the Minute Virus of Mice (MVM) [24]. After having evidenced
relevant conformational rearrangements of the capsid on selected sub-
strates, they measured effective stiffnesses using an AFM to indent the
latter biological particles. These measures were taken along various
symmetry axes (5-fold, 2-fold, 3-fold axes) shown on Fig. 4.2.

As said earlier, most spherical viruses possess an icosahedral sym-
metry. 5-fold symmetry axes pass through the vertices of the matching
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A) B)

C) D) E)

Figure 4.1 – A) Sketch of an AFM. B) Sketch of the experimental approach
for investigating the mechanical properties of capsids by means
of nanoindentation. A sharp tip approaches the sample to be
tested. The tip is attached to a cantilever. Deflections of the
cantilever due to tip-sample interactions are measured thanks to
the reflection of the laser onto a photodetector illuminating the
back of the former. C)-D)-E) Typical experimental force-distance
curves acquired on capsids. C)-D) Responses are linear. F = keffz,
hence, it is possible to measure an effective spring stiffness keff.
The linear response of the surface is due to the deflection of the
cantilever. Hence, one shall take into account the stiffness of the
cantilever to measure the stiffness of the sample itself. E) The
drop in the force-distance curve is the physical signature of a
sample mechanical failure. The sample is broken. Sketches and
curves were kindly given by Mme Carrasco-Salas.
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A)

B)

C)

X-ray Atomic force

Figure 4.2 – MVM particles as viewed along fivefold A), threefold B), and
twofold C) symmetry axes. Left side corresponds to simplified
cartoons. Center images represent molecular surfaces derived
from cristallographic data taken from The Protein Data Bank
(PDB ID code 1MVM; Ref. [1]). Right side: 60nm× 60nm AFM
images of MVM particles. Figures and details are taken from
Ref. [24].
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icosahedral structure, 3-fold ones pass through centers of faces. Inden-
tation along a 2-fold axis of symmetry corresponds to an indentation
on one of the edges of the corresponding icosahedron. Due to the
optimal distribution of disclinations highlighted by Castelnovo [30],
disclinations are in fact located on 5-fold axes. Whatever the particles
studied (virions or empty capsids of MVM), the effective stiffness of
5-fold axes is less than the two other symmetries. Results are shown
in Fig. 4.3. For both cases, k5−fold < k3−fold < k2−fold. This suggests
that pentamers or disclinations are weaker, in terms of mechanical
resistance, than the rest of the biological structure. Hence, experimen-
tal AFM results reveal an anisotropic mechanical stiffness of the MVM

particle. Moreover, comparing DNA-filled capsids and empty ones, it
is possible to assert statistically a mechanical reinforcement by external
DNA. Using finite-element method simulations they showed DNA
patches bound to the internal face of the MVM capsid can explain the
observed reinforcement. The latter result is in agreement with Ref. [54]
regarding WT phage.

In the same laboratory, the mechanical properties were interestingly
manipulated by protein engineering. By mutating specific position
of MVM virions and capsids, they showed a small dependence of the
corresponding stiffness. Note that this dependence was also tested
against the last three symmetry axes. The trend presented earlier
remains interestingly unchanged [25]. The latter trend against protein
mutations was also independently shown by Miguel et al. [70].

Additionally, we wish to specify that viral stiffnesses can be strongly The effective stiffness
that can be extracted
from AFM
experiments also
depends on external
parameters such as
pH or the underlying
substate-virus
interaction.

dependent on the environment, and on the global shapes of viral cap-
sids. For instance, the size and the mechanical stability of norovirus can
depend on pH according to Cuellar et al. [33] (See Fig. 4.4). The size of
the particles tends to increase isotropicallly and linearly with the pH.
This increase could be, according to the authors, due to conformation-
nal changes of the capsomers. The spring stiffness is nearly constant
for pH < 7 with the error bars but drops for pH > 7, indicating a
weakening of the stability.

Experiments presented in Klug et al. [60] also highlighted a stiffness
reduction by a factor of three between the native pH 5 and intermediate
pH 6 CCMV capsid. The softening from pH 5 to pH 6 can be due to
local changes in the bonding environment (changes or interruptions in
the protein-protein interactions) that act to weaken the capsid.

However Cuellar et al. appropriately highlighted that interaction
with the mica support can induce spreading and thus reduce observed
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A)

B)

Figure 4.3 – Comparison of the mechanical properties of A) MVM empty cap-
sids and B) virions. Left side gives the crystallographic structures
of both particles using the program RasMol [92]. On the right
side, the histograms are shown. The distributions of effective
stiffness (spring constant, k) values is depicted for individual par-
ticles subjected to nano-indentation along fivefold (red), threefold
(green), and twofold (blue) axes. Figures and details are taken
from Ref. [24].
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A) B)

Figure 4.4 – A) Measured heights Hm of norovirus like particles as a function
of pH. The dashed line shows the linear regression of Hc against
the pH. B) Spring constant K as a function of pH, the error bars
corresponds to the width of the median absolute deviation. The
latter statistic was calculated from the slope in the linear region
of the force-separation curve for at least 50 particles. Fig. adapted
from Ref. [33].

heights as this interaction may also be pH dependent. Indeed, con-
tact mechanics for small icosahedral viruses shall not be negligible
according to studies realized by Zeng et al. They showed significant
changes in height distribution of the Brome Mosaic Virus (BMV) if the
virions were attached to mica substrate or Highly Oriented Pyrolytic
Graphite (HOPG) one [113]. Similarly, Llauró et al. reported experimen-
tal evidence of the modulation of mechanical properties of the Tomato
Bushy Stunt Virus (TBSV) by calcium ions [67].

As said earlier, for viruses with exotic shape such as bacteriophages,
non gaussian distributions of stiffnesses can be extracted from nanoin-
dentation experiments. Two complementary studies were led by Car-
rasco and Ivanovska et al. on bacteriophage Φ29 [26, 53]. The virus
possess an ovoid shape, the shell of the Φ29 prohead is constructed
from 235 capsomers arranged with 11 pentameric plus 20 hexameric
units forming icosahedral end caps. 10 hexameric units form the cylin-
drical equatorial region. At one of the end caps, the connector complex
replaces the last pentamer [26, 51, 109]. Because of this exotic appear-
ance, Φ29 reveals complex elastic properties. Focusing on Carrasco’s
result, the experimental spring stiffness depends obviously on the se-
lected prohead adsorption geometry (that is, up right or laid down, See
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Fig. 4.5). Upright proheads exhibit a stiffness of (0.075± 0.020)Nm−1

whereas laid down ones exhibit (0.192± 0.034)Nm−1. Consequently,
laid-down proheads are approximately three times stiffer than upright
ones. The authors checked that the spring constant of the upright
proheads does not depend on the particle geometry adsorption (the
position of the connector, top or below is irrelevant). One can interpret
this by advancing that the connector must be more compliant and more
deformable (because of its hydrophobicity) than the shell. Proheads
that are attached through a nondeformed connector would be perhaps
too unstable for infectious processes.

A) B)

Figure 4.5 – Nanoindentation experiments of Φ29. A) Typical forward in-
dentations curves on different locations, i. e. on glass substrate
(dotted), on the up right configuration (grey), on the laid down
configuration (black). B) Classification of the indentation curve
slopes, as previsouly, up right configuration is in grey and laid
down one in black. Note the decrease of the spring stiffness in
the second configuration. 56 indentations were carried out on 5
uprigth capsids and 6 laid down ones. We shall report that in the
upright dataset, two proheads were adsorbed through the connec-
tor, two through the capped-end and one remains unidentified.
Figures taken from Ref. [26].

From those studies, one can conclude that variations of the elastic
response can arise either from inhomogeneity of the material (e. g.
its thickness, its topological distribution) or from variations in local
curvature. Indeed it should be harder, for instance, to indent a convex
area than a flat one. The biochemical environment also influences
greatly the mechanical properties of capsids. In the following section,
we present several numerical and analytical attempts to elucidate those
variations.
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4.5 continuum model , scaling

4.5.1 Scaling

Several attempts exist to derive the effective spring stiffnesses of
capsids in function of their characteristics or the mechanical properties
of their materials (i. e. the Young modulus, the bending rigidity, the
radius, etc). Within thin shell approximation, it is assumed that the
elastic response is obtained by balancing the bending energy and the
stretching energy. For small deformations i. e. in linear regime, the
scaling is made on a bounded region d. The inverse or mirror buckling
is not considered in this case. Thus, evaluating the difference in energy Scaling relations

enable to extract
approximate
analytical values for
effective stiffnesses of
viruses that depend
on their
Föppl-Von-Karman
ratio γ.

between the newly deformed regime and the former one is possible.
Indeed, the deformed regime possess on the bounded region a bigger
radius of curvature compared to the initial one, the bounded region is
flattened. Assuming the equilibrium, the force-distance law reads [21,
61]:

F ∼
D

R2
√
γ∆, (4.1)

where ∆ is the indentation depth, F the deforming force, D the previ-
ously defined bending rigidity, R the initial radius of the capsid and γ
the Föppl–Von-Karman ratio. For small deformation at least, the effec-
tive spring-stiffness scales as γ1/2. The latter result has been widely
tested in the literature (See Ref. [8, 33, 53, 114, 117] for a review).

When the axial load exceeds a critical value, the curvature of the
shell is spontaneously inverted, the shell snaps. The bending energy
comes primarily from the small strip connecting the inverted part
with the non-inverted one. The stretching energy is dominated by the
deformation along the circles of constant latitude in the inverted part.
Again, balancing those two contributions at equilibrium enables to get
a non-linear force-distance relation [21]:

F ∼
D

R3/2
γ1/4

√
∆. (4.2)

In the non-linear regime, the force-distance law is no longer that of
a spring but rather has square root dependence on ∆. Note that the
latter relation is valid only if indentation depth does not exceed the
initial radius of the cap. Moreover, it is restricted to spherical viruses
where the response is invariant under rotation of the shell.
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4.5.2 Deviation from Föppl–Von-Karman equations

Analytically, it is possible to use Föppl–Von-Karman equations to
describe deformation from a spherical substrate (See Eq. 2.28 in Ch. 2).
However, they cannot be used to study deflection of spherical elastic
shell and more particularly indentation of viruses. The curvature
is in this case non-negligible compared to the size of the shell, and
the hypotheses to use them are not valid anymore. In this case, the
equations used are known as the Donnan-Mushtari-Vlasov equations
(DMV). We provide hereafter an easy (but highly non-rigorous) route to
derive DMV equations. This proof enables to find most of the terms of
the equations. They are obtained by assuming a two-step deformation.
A first one passing from a flat state to a spherical one with solutions
(in polar coordinates r = {r, θ} using the Monge gauge parametrization
presented earlier):

w0(r) =
r2

2R0
;

χ0(r) =
YR4

R20

(
2
r2

R2
−
r4

R4

)
;

p0(r) = −
∆χ0
R0

.

(4.3)

Donnan-Mushtari-
Vlasov equations are
of significant interest
to study analytically

indentation of
viruses. However, no

analytical attempts
to our knowledge

exist in literature to
study influence of

defects while the
elastic shell is under
external constraints.

In simpler words, we impose a parabolic deflection using the external
vertical pressure p0 to approximate a spherical one of Gaussian curva-
ture 1/R20. Then, we compute the resulting Airy function and pressure
to get such a deflection. Let us note that these solutions are valid in
a domain of reference r ∈ [0, R] and absolutely not at r → ∞. Then,
one can seek perturbed solutions assuming that the final quantities are
written w = w0 +w1, χ = χ0 + χ1 and p = p0 + p1. Then, w1, χ1 and
p1 are solutions of the system:

∇4χ1
Y

= −
∇2w1
R0

−
1

2
L(w1, w1);

D∇4w1 =
∇2χ1
R0

+ L(w1, χ1) + p1 + L(w1, χ0).
(4.4)

We note here that the last term of the second equation L(w1, χ0) is
of order 1/R20 and can be neglected if the shell is considered shallow
(the displacements by modulus are equal or exceed the shell thickness
but are considerably less than other linear dimensions of the shell).
Consequently, we obtain (provided previous assumptions) governing
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differential equations of non-linear theory of shallow shells of constant
curvatures:

∇4χ1
Y

= −
1

2
L(w1, w1) −

∇w1
R0

;

D∇4w1 −
∇2χ1
R0

− L(w1, χ1) = p1.
(4.5)

Obviously, this was a very simple approach to DMV equations, a rig-
orous derivation of governing equations of non-linear theory of shells
has been made taking into account rotations in strain–displacement
and equilibrium equations leading to non-linear relations. However,
in-plane displacements are still neglected in front of out-of plane ones
i. e. the stiffness of the shell in the tangent plane is significantly greater
than the flexural one. More rigorous Vlasov and Reissner’s approach
[82, 83] enables to re-write Eq. (4.5) as follows:

∇4χ
Y

= −
1

2
L(w1, w1) −∇2kw;

D∇4w1 −∇2kχ− L(w1, χ1) = p1,
(4.6)

where ∇k is called Vlasov’s operator written, in cartesian coordinates,
κ1∂

2
x + κ2∂

2
y, κ1 and κ2 being the principal curvatures in the directions

of coordinate lines. It is obvious that if κ1,2 → ∞, one recovers
equations that describe large deflections of thin plates presented in
Ch. 2.

Additionally, topological defect distributions are not described in this
context. We note however that, if we were to describe and study inden-
tation of spherical membranes, only a point force load p1 = δ(r)/2πr
would have to be injected in Eq. (4.6). This point force is the easiest
route to get an analytical force-indentation relation, even though such
a force is not realistic from the nano-experimental view point. Indeed,
due to the smallness of viruses, AFM tips exert a load more compat-
ible to the one obtained with a hard sphere. Nevertheless, previous
assumption enables to get an interesting result (See Subsec. 4.5.3).

4.5.3 Solutions

Such a study has been significantly advanced by Vella et al. [104,
105]. They derived an effective stiffness for a pressurized shell F ∼ kδ,
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where δ represents the indentation depth, k the effective stiffness and
F the point force intensity:

k =
4πD

l2b

(τ2 − 1)1/2

[tan−1(1− τ−2)]1/2
. (4.7)

lb = (DR20/Y)
1/4 is a natural bending length scale and τ = 1

4pR
2
0/
√
YDDMV equations

enable to recover
analytically scaling

results.

a dimensionless pressure, R0 the radius of the spherical membrane, p
the internal pressure. Note that, if τ becomes negligible compared to
1, the unpressurized result of Reissner and Buenemann is recovered
k = 8D/l2b ∼ D/R2 · √γ.

4.5.4 Cautions

Continuum mechanics, as a first approximation, has provided very
useful information about elastic properties of viruses. Nevertheless, aNevertheless, for

large
Föppl–Von-Karman

number γ, other
scalings permit to

deduce that
disclinations are

stiffer than planar
hexamers. For a

capsid with large γ,
it is a lot easier to

bend the viral shell
rather than to strecth
it. Spherical viruses

exhibit a faceted
shape that resemble

an icosaheder for
γ > 200. Pentamers

point out of the
capsid.

continuum description cannot capture the discrete nature of subunits
forming the capsid. More specifically, it does not capture the previously
presented stiffness anisotropy against orientations of MVM. Let us
highlight that previous model and scalings do not take into account
influence of topological defects in the membrane constituting viral
capsids. Additionally, to our knowledge, such a model considering
both effects (indentation and defects) is still lacking in literature. As
from the structural point of view, those defects are associated with
a few numbers of capsomers structured by five proteins (pentamers)
instead of six (hexamers), one shall take into account the discreteness
effect of the packing. By modeling proteins constituting the capsid
by triangles, it is possible, in an approximate way to reproduce the
molecular structure. Hexamers become perfect planar hexagons (6
equilateral triangles) while pentamers point outward the viral capsid
if proteins are considered particularly stiff, therefore curving locally
the region (cf Fig. 3.1 in Ch. 3). Such models have been mostly studied
numerically, as we will see in Sec. 4.6.

However, several authors tried to extend previous scaling for stiffness
estimates modifying the stretching contribution to the energy. They
tried to estimate the stiffness of a disclination located at the summit
of the matching icosaheder for spherical viruses. In the limit of large
Föppl–Von-Karman numbers, the stiffness response to forces applied
on icosahedron edges and summits have been studied by Widom et al.
[108] and Timoshenko [100, 101] . We recall that, in this limit, spherical
viruses resemble icosahedrons and exhibit a faceted shape. We expect
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then different scalings against material properties due to the geometry
and the new aspect of viruses. Considering the indentation on a flat
triangular face, that is an hexamer of the idealized icosaheder, solving
Föppl–Von-Karman equations with appropriate conditions leads to:

khexamer ∼
Y

γ
. (4.8)

Let us now suppose the indentation is done on a vertex, that is a
pentamer. Assuming that the bending and strain energy persist along
the length of the ridges linking the different summits and that the force
is transmitted along those ridges, the stiffness scales as:

kvertex ∼
Y

logγ
(4.9)

Consequently, within the large γ limit, we expect vertices to be stiffer
than faces. Nevertheless, within the latter limit, it should be then possi-
ble to distinguish vertices from faces numerically and experimentally.

4.6 numerical view point

Different types of simulations of nanoindentation experiments, ac-
counting for the discreteness of the capsid at diverse resolution levels,
have been presented in literature. To get numerical capsids to indent,
elastic networks are predominantly used. The elastic hypothesis is
efficient to study buckling and deformations in the linear regime, but
they cannot easily account for breaking events. On the contrary, re-
ducing the coarse-graining and introducing more realistic interactions
in simulations can make them incredibly costly. In the following, we
present typical numerical nanoindentation experiments that appeared
relevant in our framework. Obviously, we recall here that the following
state of the art is non-exhaustive and numerous pertinent studies non
presented though existing can be found in the literature.

In a careful study led in 2008, Gibbons and Klug tested and ex-
tracted numerically various effective stiffnesses for the CCMV capsid.
They used methods developed to construct volumetric finite element
meshes of macromolecules that enabled them to create a coarse-grained
three-dimensional model that adhere to geometric details of the capsid
structure [11, 39, 115, 116]. They constrained the resulting numerical
capsid between a flat hard plate and a rigid hemisphere of radius 20nm
to model the AFM tip. We recall here that CCMV has an average radius
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similar to the one given to the tip. Additionally, they included an
AFM response, i. e. a tip displacement to model the cantilever stiffness
in the simulation. To match the experimental spring constant value
k
exp
CCMV ∼ 0.15N/m, the Young modulus of the model was tuned for

the native CCMV capsid, with a value set to 215MPa giving the best
agreement. The relaxation of the system is done using the gradient
of the deformation, to make the most appropriate choice of vertex
displacements. Very interestingly and fortunately, they investigated,Numerically and

experimentally,
when indented

vertically,
disclinations are

softer than the rest of
the shell. However,

for large
Föppl–Von-Karman

numbers (mostly
non realistic

biophysically for
viruses), the latter

trend is reversed.

as previously though numerically, the stiffness heterogeneity of CCMV,
against the three orientations, 2-3 and 5-fold axes of symmetry. Even
though the difference between the orientations is not very strong, previ-
ously given inequalities and observed on another virus by Carrasco et al.
still hold (See Fig.4.6). According to the authors, stiffening may corre-
spond to discrete changes in contact geometry as additional capsomers
contact the AFM tip. Modeling the AFM cantilever as a linear spring
enabled them to underline its role: a stiffer cantilever would more
accurately represent the nonlinearity of the capsid response. However,
from an experimental view point, this also decreases the signal/noise
ratio of the tip deflection measurement, leading to overall less accurate
measurement of the capsid response. We thought that this latter re-
sult deserved to be pointed out considering its relative importance for
experimental investigations.

Deciphering the elastic behavior of HBV, Roos et al. also verified ori-
entationnal dependence of the elastic stiffness, confronting both Finite
Element (FE) Simulations and Molecular Dynamics (MD) Simulations
to experiments [86]. For small deformation at least, the three of them
coalesce at the nanoscale with a special advantage for MD simulations
that do not need to be tuned with experimental data compared to FE
analysis to perform scalings.

The previous trend regarding the stiffness and symmetry axes has
been found numerically for other viruses possessing other geometries
(i. e. T -numbers) and also with simpler coarse-grained models and re-
laxation processes, where capsomers are simply represented by spheres
interacting through a Lennard-jones Potential [3, 29, 45] and relaxed
using the well-known Langevin dynamics [55, 76].

Buenemann and Lenz studied mechanical limits of viral capsids
with the Föppl–Von-Karman number γ varying on a large interval,
from 10 to 2000 [20]. This investigation regards specific geometries for
specific viruses such asΦ29 or the latter CCMV. Nevertheless, the coarse-
grained model is very similar to the one proposed by Seung and Nelson,
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Figure 4.6 – Contact force curves for the native numerical CCMV indented on
each of the rotational symmetric orientations, as a function of the
total displacement, which includes also AFM tip displacement.
The stiffness of the cantilever of the AFM is set to k ∼ 0.05Nnm−1.
Figure is taken from Ref. [39]

giving the study a general character as they could systematically vary
elastic moduli and geometries of capsids to probe their mechanical
responses against external disturbances. Viruses were indented radially
and precisely on a point to consider the precise difference between
hexamers and pentamers. Relaxation of the numerical structure is done
here using conjugate gradient algorithm [80]. For small indentation,
compared to the radius of the studied capsid, it appears that the
latter scaling given for k (unpressurized case) in Eq. (4.7) agrees well
with numerical simulations, and pentamers are softer as reported
before. However, for their model, and because of discreteness effect,
for γ > 500, the numerical capsid gets a faceted shape, and pentamers
appear to be slightly stiffer than hexamers.

After a certain depth of indentation, the capsid buckles, and this
event only occurs with the indentation of pentamers. For even larger
γ, γ > 2000, the effective stiffness of hexamers grows like Yγ−2/3,
whereas for pentamers a linear dependence to Y is extracted (See
Fig. 4.7).

Hence, from those studies, one can assert that viruses possess stiff-
ness heterogeneities due specifically to their geometries but also on the
materials they are constituted of.
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A) B)

C)

Figure 4.7 – Force-distance relationships of locally deformed viral shells. ξ is
the normalized indentation depth with the radius of the numeri-
cal shell R, F is scaled by κb/R where κb is the flexural rigidity
here. A) For small γ, regimes are linear with an effective stiffness
proportional to

√
γ. B)-C) Above the critical threshold γc, stiff-

ness heterogeneity appears with the faceted shape. For γ ∼ 1000,
pentamers are stiffer than hexamers and for a strong indenta-
tion, pentamers buckle in the viral shell, causing softening. For
γ > 2000, pentamers may even snap into a new stable inverted
configuration, which creates discontinuities in the force-distance
function. Figures and details are adapted from Ref. [20].
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4.7 motivations

As said in the introduction of this chapter, AFM is a remarkably use-
ful tool to probe the mechanical properties of viruses at the nanoscale.
All experimental observations are relevant since they address the global
stability of viruses, as well as their deformability. Nowadays, the con-
stant growth of the computational power enables to develop more and
more precise numerical nanoindentation simulations. Those are also of
interest to provide insights into viral resistivity at the molecular scale.
Most works dealing with nanoindentation of viruses have focused
on their linear response. Focusing more specifically on icosahedral
viruses, the three main symmetries (2-fold, 3-fold and 5-fold) strongly
suggest that elastic properties of capsids are not uniform throughout
the molecular structure. Additionally, differences in stiffness for iden-
tical experiments were traced back again to the orientation of virus
adhesion. Those were consequently interpreted as signatures of the
asphericity of the virus.

Scalings and analytical models proposed in literature mostly as-
sume point-indentation to rationalize both numerical and experimental
results. Most results were also analyzed assuming top-indentation.
Nevertheless, one can think that AFM tip shapes and tip positions have
an influence on the induced elastic deformation during an indentation
experiment. The response might then be different. Due to the smallness
of viruses, it is perhaps preferable to model AFM tips as spheres which
radii are comparable to viral sizes. Tip thermal drifts are sometimes in-
evitable too in experiments. Those can also be non-negligible regarding
the typical working scale of a few nanometers. Investigate tip position
dependence can also be of significant interest for the interpretation
of experimental results. We hope to familiarize ourselves with such
dependences in this work.





Part II

M E C H A N I C A L S T R E S S R E L A X AT I O N I N
S E L F - A S S E M B LY

Depuis la montagne jusqu’au cristal le plus menu , depuis
le lichen jusqu’aux chênes de nos forêts, depuis le polype
jusqu’à l’homme, tout dans la nature terrestre possède du
style, c’est à dire l’harmonie parfaite entre le résultat et les
moyens employés pour l’obtenir.
– Eugène Viollet-le-Duc





5G R O W T H O N A C U RV E D S U B S T R AT E

5.1 résumé

Dans cette partie autant que dans ce chapitre, un modèle élastique
de nucléation de défauts est proposé. En particulier, dans l’hypothèse
d’un auto-assemblage irréversible d’une capside virale sphérique, on
montre que les pentamères (respectivement les heptamères) sont le plus
susceptibles de se former respectivement dans les régions où la tension
azimuthale (selon la circonférence) en bordure de calotte protéique est
le plus compressif (respectivement le plus extensif).

5.2 introduction

To make an
analytical model and
to propose a defect
nucleation
mechanism, we write
the equations
regarding thin plates
elasticity in a polar
frame. We will study
the self-assembly of a
crystalline spherical
cap forced to adopt a
constant curvature.

We have seen earlier that individual molecules such as capsomers
for the viral case can acquire a collective behavior to self-assemble. For
spherical viruses, icosahedral structure is mostly observed. Capsomers
tend to be hexamers, but because of a topological constraint (i. e. to
create a closed shell), 12 pentamers (i. e. positively charged defects:
disclinations) arise in the final structure. Additionally, no topologi-
cal restrictions exist against the introduction of heptamers (negatively
charged defects) in large capsids provided they are attached to pen-
tamers to create dislocations which have a zero charge. It is thus
possible to introduce an infinite number of dislocations in the molec-
ular self-assembled system. However, the progressive arising of such
defects in the crystalline order of the biological shell and physical
mechanisms that drive them is still far from clear. This work, we
hope, will contribute modestly to a deeper understanding of the latter
phenomenon.

5.3 equations in a polar frame

5.3.1 Back to basics

Self-assembly of hexamers results into a perfect planar surface,
whereas disclinations help to introduce curvature leading to a buckled

55
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structure, even if same building blocks are used. Therefore, the closure
of capsids requires those pentamers, but where and how to include
them in the structure ? To answer this question, we will consider a
curved elastic triangulated surface growing on a spherical scaffold.
The important role given here to an inner core is reasonable. Indeed,
several large viruses assemble onto scaffolding proteins that play a
key role in the physico-chemical process. For instance without them,
subunits of the Infectious Bursal Disease Virus (IBDV) assemble into a
T = 1 capsid. One can also mention the Reoviridae virus family which
viruses possess a multishell structure that can also act as inner cores.
In this section, to get theoretical insights, we will model the growing
surface as an elastic sheet. Consequently, we will briefly recall the
classical framework of thin plate elasticity, writing previous equations
in a cylindrical frame (See Ch. 2).

Let us consider a flat disk of radius R with negligible thickness, i. e.
h� R. The latter disk is then forced to adopt a curvature equal to 1/R0.
Using polar coordinates r = {r, θ}, we characterize an in-plane elastic
displacement with u = (= {ur, uθ}. The out-of-plane displacement is
characterized by the deflection w. As we are to consider the large-
deflection case for the disk, we recall the two non-linear Föppl–Von-
Karman equations. They couple the Airy stress function χ(r, θ) and
the deflection, or vertical deformation, w(r, θ) taking into account the
elastic cost of defects:

∇4χ
Y

= s(r, θ) −
1

2
L(w,w);

D∇4w = L(w,χ) + p(r, θ).
(5.1)

In polar coordinates, the L operator is defined as follows:

L(w,χ) =
∂2w

∂r2

(
1

r

∂χ

∂r
+
1

r2
∂2χ

∂θ2

)
+
∂2χ

∂r2

(
1

r

∂w

∂r
+
1

r2
∂2w

∂θ2

)
− 2

∂

∂r

(
1

r

∂χ

∂θ

)
∂

∂r

(
1

r

∂w

∂θ

)
, (5.2)

and the Laplacian is written:

∇2w =
1

r

∂

∂r

(
r
∂w

∂r
+
1

r2
∂2w

∂θ2

)
. (5.3)
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To get the Bilaplacian ∇4, we simply apply the Laplacian twice
∇4 = ∇2∇2:

∇4w =
1

r4
(4∂2θw+ ∂4θw) +

1

r3
(∂rw− 2∂r∂

2
θw)

+
1

r2
(2∂2r∂

2
θw− ∂2rw) +

2∂3rw

r
+ ∂4rw. (5.4)

Additionally, provided that R−1|∂rw|� 1, L(w,w)/2 approximately
reduces to the Gaussian curvature of the studied cap 1/R20. Föppl–
Von-Karman equations are valid upon the assumption of mechanical
equilibrium, stress tensor and Airy stress function are thus linked by
equations:

σrr =
1

r

∂χ

∂r
+
1

r2
∂2χ

∂θ2
;

σrθ = −
∂

∂r

(
1

r

∂χ

∂θ

)
;

σθθ =
∂2χ

∂r2
,

(5.5)

and planar strain components are computed inverting Hooke’s law as:

urr =
1

Y
(σrr − νσθθ);

uθθ =
1

Y
(σθθ − νσrr);

urθ =
1+ ν

Y
σrθ.

(5.6)

Previous equations are basic tools needed to propose an analytical
model for the introduction of our two favourite defects, disclinations
and dislocations. In triangular crystalline lattices, such as those formed
by viral capsid proteins, positive disclinations are associated with
proteins having five neighbors, and negative disclinations with seven
neighbors. A dislocation is a bound pair of a positive disclination and
of a negative one i. e. an heptamer-pentamer pair.

5.3.2 Creased membranes and crushed caps

Before studying directly previous equations with a non-vanishing
distribution of defects s(r, θ) 6= 0 on the spherical cap, let us study the
initial state of the spherical cap itself. Let us assume an initial sheet
is stretched to reach a spherical state of constant Gaussian curvature
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1/R20. This imposes a deformation w(r, θ) such that L(w,w) = 2/R20.
Our sheet is circularly invariant, then w is a pure radial function, hence
one can write:

1

2
L(w,w) =

1

R20
⇔ d2w

dr2
1

r

dw
dr

=
1

R20

⇔ 1

2r

d
dr

(
dw
dr

)2
=
1

R20
(5.7)

⇔ dw
dr

=

√
r2

R20
+α, (5.8)

where α is a constant of integration. The slope must vanish at the
origin, so α = 0, and drw = r/R0. It follows subsequently the parabolic
profile w(r) = r2/2R0 that approximates previous constant Gaussian
curvature.Firstly, we compute

radial and azimuthal
stresses for a

spherical cap without
any defect. Radial

stress-free boundary
conditions are

imposed, the elastic
crystalline sheet is

not stretched nor
pulled radially. Hoop
stress is tensile close

to the top and
compressive near the

rim. This state of
stress makes

ineluctable the
wrinkling of sheets
when they are put

onto spheres
provided their

respective sizes are
comparable.

With this imposed deformation and with no defects, the compatibility
equation is solvable, knowing that χ obeys the same symmetry as the
vertical deflection w, and that ∇2 = r−1 dr(rdr). Hence it is possible
to write:

∇4χ
Y

= −
1

R20
⇔ 1

r

d
dr
r

d
dr
∇2χ = −

Y

R20

1

r
drrdrχ = −

Yr2

4R20
+A log r+B

χ(r) = −
Yr4

64R20
+
Ar2

4
(log r− 1) +

Br2

4
+C log r+D, (5.9)

where A,B,C and D are, again, constants of integration. As we are
only interested in derivatives of χ through Eq. (5.5), D is set equal to
zero. It is a dummy constant. Two constants, A and B are directly
multiplied by r2, we choose to re-write χ as:

χ(r) =
−Yr4

64R20
+
Ar2

4
log r+

B ′r2

4
+C log r, (5.10)

where B ′ = B−A. Now let us reason more physically. We do not want
divergent components of the stress tensor at the origin r→ 0. Other-
wise circular caps mapped onto spheres would not exist, and it should
not be possible to wear beanies. Thus, we set A = C = 0. Moreover, we
want our circular cap to self-asssemble freely, consequently, we impose
free-boundary conditions σθθ(r = R) = σrθ(r = R) = 0. The radial
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and shear stresses vanish at the boundary. Using Eq. (5.5) again, this
enables us to find B:

σrr(r = R) = −
YR4

16R20
+
B

2
= 0⇔ B =

YR2

8r20
, (5.11)

and finally, Airy stress function for a circular cap with constant Gaus-
sian curvature 1/R20 is written as:

χ(r) = −
Yr4

64R20
+
YR2

32R20
r2 =

YR4

64R20

(
2
r2

R2
−
r4

R4

)
. (5.12)

The radial and azimuthal stresses become respectively:

σrr =
YR2

16R20

(
1−

r2

R2

)
;

σθθ =
YR2

16R20

(
1− 3

r2

R2

)
.

(5.13)
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Figure 5.1 – A) Plot of radial and azimuthal stresses (respectively σrr and
σθθ) against normalized radial position r/R, where r is the radial
position in polar coordinates, R the radius of the cap. For this
particular plot, R/R0 = 1/2. R0 denotes the radius of curvature.
Note that above a critical radius r∗ = R/

√
3, σθθ becomes nega-

tive. B) Sketch of the hoop stress profile where r∗ is highlighted
in blue.

In Eq. (5.13), one easily finds a critical radius r∗ = R/
√
3 above which

the hoop stress becomes negative. This signifies that the molecular
elastic sheet is tensed close to the center and compressed close to
the boundary in the azimuthal direction. This result, in spite of its
triviality, permits us to understand why a planar sheet is ineluctably
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wrinkled when put onto a sphere. It is the physical consequence of
the geometric incompatibility between the plane and the sphere. This
state of stress is prone to an out-of plane buckling instability, and it
is the origin of the wrinkling observed when a flat disk is forced to
adhere on a sphere. A non-negligible amount of papers can be found
in literature investigating the latter inevitable wrinkling in spherically
confined crystalline sheet [42, 49, 50]. From those papers, we have to
underline that wrinkling is possible when the adhesion to the inner
core is not too strong compared to the bending cost, allowing an out-of-
plane deformation. Also, emergent structures of dislocations presented
earlier prevent from the latter crushing (See Ch. 3) [5, 6] and can be
used to discuss compression-free model.

5.4 growth on a spherical substrate

5.4.1 Introduction of disclinations

Coming back to our study of self-assembly, and due to previous
results, we can anticipate and come up with a spontaneous mechanism
for introduction of disclinations. Indeed, one can imagine an open
arrangement of five subunits at the perimeter of the crystalline cap.
Another unit could perfectly close the latter to get an hexamer. Never-Due to compressive

hoop stress at the
rim, it is possible to

think that pentamers,
i.e positive

disclinations are
nucleated when hoop
stress is sufficiently

compressive. On the
contrary, heptamers,

i.e negative
disclinations, are

nucleated when hoop
stress is sufficiently

tensile at the rim.

theless, provided hoop stress is compressive enough, hoop strain can
reduce drastically available space for a new subunit addition. Ergo,
the nucleation of a pentagon is more likely to happen, resulting into
the nucleation of a positively charged 5-fold defect. On the contrary,
one can reverse previous argumentation. Provided hoop stress is suffi-
ciently tensile, hoop strain increases available space, rending possible
the addition of two supplementary subunits, instead of one, thereby
creating a negatively charged 7-fold defect. The mechanism proposed
is sketched on Fig. 5.2.

In order to investigate more quantitatively the mechanical influence
of defect inclusion in the growing and curved molecular cap, one
needs to solve Eq. (5.1) in the presence of an off-centered (positive
or negative) disclination. Fortunately for us, the solution has been
recently proposed by Grason et al. [4, 41], decomposing the effect
of defect inclusion into two parts. A direct one, due to the defect
itself in an infinite medium, and another one taking into account the
interaction between the defect and the boundary. As Eq. (5.1) are
linear, the combination of both solutions leads to a global Airy stress



5.4 growth on a spherical substrate 61

Pentamer

Hexamer

Heptamer

σθθ < σ5c < 0

σ5c < σθθ < σ7c

0 < σ7c < σθθ

+

+

Figure 5.2 – Proposed mechanism for nucleations of defects illustrated on
triangulated surfaces, based on values of hoop stress. Thresh-
old values for hoop stress are labeled as σ5c and σ7c. Arrows
represent the elastic stress that makes possible the nucleation of
the respective (negative or positive) disclination in the azimuthal
direction. If hoop stress is compressive enough, a positive discli-
nation is nucleated. On the other hand, if hoop stress is tensile
enough, a negative disclination is added. Last mechanism makes
possible the introduction of dislocations in the crystalline struc-
ture, a supplementing positive 5-fold defect is to be attached to
the 7-fold negative one.
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function valid for any distribution of defects. This path was originately
proposed by Brown in 1941 [19], to study the effect of dislocations on
magnetization in a metallic lattice. The interaction between defects and
the boundary are computed using an image charge outside the cap,
always to satisfy stress-free-boundary conditions. We propose here a
simple summary of this work.It is possible to

compute Airy stress
function that

characterizes states
of stress in the

crystalline sheet even
when an off-centered

disclination is
included in the

studied self-assemble
system.

We consider a disclination at polar coordinates (r = ρ, θ = 0), the
direct Airy stress function is given by:

χd =
Ys

8π
r ′2 log r ′

=
Ys

16π
(r2 + ρ2 − 2ρr cos θ) log[r2 + ρ2 − 2ρr cos θ], (5.14)

where r ′2 = r2+ρ2−2ρr cos θ represents the squared distance between
the point (r, θ) where the function is evaluated and the defect location.
In simple words, direct Airy stress function for an off-centered defect
is the delocalized direct Airy stress function for a centered defect
proposed by Seung et al. [94] in a crystalline flexible membrane χSd =

Ys/8π · r2 log r. χd can be expanded:

χd =


Ysr ′2

8π

[
log ρ−

∞∑
n=1

1

n

(
rn

ρn

)
cosnθ

]
if r < ρ;

Ysr ′2

8π

[
log r−

∞∑
n=1

1

n

(
ρn

rn

)
cosnθ

]
otherwise.

(5.15)

In order to compute indirect Airy function, we seek solution of
∇4χi = 0 for r < R using Michell solution of generic form:

χi =

∞∑
n=0

Cnr
n cosnθ+Dnrn+2 cosnθ, (5.16)

where Cn and Dn coefficients are determined in order to satisfy stress-
free boundary condition [71].

In order to find latter coefficients, we re-write the multipole expan-
sion given in Eq. (5.15) for the direct stress function corrected from
Ref. [41]:

χd =


Ys

8π

∞∑
n=0

A<n (r) cosnθ if r < ρ;

Ys

8π

∞∑
n=0

A>n (r) cosnθ if r > ρ,
(5.17)
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where we give the coefficients that depend on the position at which the
function is evaluated:

A<0 (r) = (ρ2 + r2) log ρ+ r2

A<1 (r) = −2ρr log ρ− rρ−
r3

2ρ

A<n>2(r) =
rn

ρn

[
ρ2

n(n− 1)
−

r2

n(n+ 1)

]
,

(5.18)

and: 
A>0 (r) = (ρ2 + r2) log r+ ρ2

A>1 (r) = −2ρr log r− rρ−
ρ3

2r

A>n>2(r) =
ρn

rn

[
r2

n(n− 1)
−

ρ2

n(n+ 1)

]
.

(5.19)

Now, it suffices to inject χ = χd + χi in Eq. (5.5), and to reduce both
boundary conditions at r = R to get a system of equations that will
enable us to get a final formulation for Cn and Dn respectively. From
first condition:

σrθ|r=R = 0⇔ ∂r
1

r
∂θ(χi + χd)|r=R = 0, (5.20)

one writes the relation ∀n ∈N:

Cn(n− 1)Rn−2+Dn(n+ 1)Rn

+
drAn(r)|r=R

R
−
An(R)

R2
= 0, (5.21)

and from second condition:

σrr|r=R = 0⇔ 1

r2
∂2θ(χi + χd) +

1

r
∂r(χi + χd)|r=R = 0, (5.22)

we writes ∀n ∈N:

(−n2 +n)CnR
n−2 + (−n2 +n+ 2)DnR

n

−n2
An(R)

R2
+

drAn(r)|r=R
R

= 0. (5.23)

Note that we got rid off the <,> superscripts, as computations are
rigorously the same in both cases. Now solving the system of equations
composed of Eq. (5.21) and Eq. (5.23), we get the solutions:

∀n ∈N,


Cn =

1

2Rn
[RdrAn(r)|r=R − (n+ 2)An(R)]

Dn =
1

2Rn+2
[nAn(R) − RdrAn(r)|r=R]

(5.24)
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From now on, we will focus on azimuthal stress at the boundary.
Combining Eq. (5.19) and Eq. (5.24), it is possible to compute χr>ρi (r)

that is to add to χd to get full Airy stress function in the presence of
an off-centered defect at {ρ, 0} for a flat surface. To complete Ref. [41]:Radial and hoop

stresses can be
computed from

previous Airy stress
function.

χ
r>ρ
1

Ys/8π
=
r ′2

2
log
(
r ′2R4

r̄ ′2ρ2

)
−
r(2ρ3 cos θ+ r(R2 − ρ2 + R2 logR2))

2R2
. (5.25)

Here, we call r̄ ′2 = r2 + R4/ρ− 2rR2 cos θ/ρ the distance between
the point of observation and the image charge outside the boundary at
(R2/ρ, 0). We recall that the image charge was created to get stress-free
boundary conditions in radial directions at the rim of the spherical
crystalline cap. To get the angular dependence with the defect location
in the latter function, it suffices to replace θ by θ−φ, where φ denotes
its angular position. A last single step is necessary to get physical
quantities, the computation of stress tensor components using Eq. (5.5)
for a disclination (we recall that the assumed position is {ρ, θ = 0} on
the sheet). We write:Positive disclinations

(pentamers) relax
compressive hoop
stress when they

nucleate at the rim of
the spherical

crystalline sheet.
This relaxation is
short-ranged. If a

first disclination is
nucleated at the rim,

hoop stress is still
highly compressive

at diametrically
opposed points. This

favors face to face
disclination
nucleations.

σ
r>ρ
θθ,1

Ys/8π
= −1+

ρ2

R2
+ log

(
r ′2R2

r̄ ′2ρ2

)
+
3r2 + ρ2 + 2ρ cos θ(ρ cos θ− 3r)

r ′2

−
r̄ ′2ρ3[5r2ρ+ ρ3 − 2r cos θ(2R2 + 3ρ2) + 4R2ρ cos2 θ]

r̄ ′4ρ4

−
2ρ2r ′2(rρ− R2 cos θ)2

r̄ ′4ρ4
, (5.26)

σ
r>ρ
rr,1

Ys/8π
=
ρ2

R2
+ log

(
r ′2R2

r̄ ′2ρ2

)
+
2ρ2 sin2 θ
r ′2

−
2R6 + r2ρ2(r2 + 4R2) + r2ρ4

r̄ ′4ρ2

+
rρ cos θ[3R4 + 2R2ρ2 + 2r2(R2 + ρ2)]

r̄ ′4ρ2

−
R4[cos 2θ(r2 − 2R2 + ρ2) + rρ cos 3θ]

r̄ ′4ρ2
. (5.27)

Using these exact expressions and due to the linearity of Eq. (5.1) and
of Eq. (5.5), it is possible to investigate the relaxation of hoop stress at



5.4 growth on a spherical substrate 65

the rim of the circular curved cap for various defect configurations, pro-
vided we specify their positions. Indeed, for a self-assembly assumed
irreversible, the modulation of hoop stress by inclusion of defects at
the rim of the scaffold is the only degree of freedom and thus the only
way to relax its elastic stress. For this reason we evaluate resulting
hoop stress at r = R in function of θ. For a single disclination of charge
s located at {ρ1, θ1}, resulting hoop stress is (taking into account the
curvature with the first term, the second represents the stress generated
by the defect itself):

σθθ,1(R, θ) =
YR2

16R20

(
1− 3

r2

R2

)
+
Ys

8π

2(R2 − ρ21)
2

R2[R2 + ρ21 − 2Rρ1 cos(θ− θ1)]
. (5.28)

However, nucleation
of positive
disclinations at the
rim generates tensile
bursts in the
azimuthal direction
between the
boundary and the
defects. This
promotes nucleation
of negative
disclinations
(heptamers) to create
dislocations. On the
contrary, bursts are
compressive if
negative dislocations
are nucleated. This
enables also to create
dislocations,
reversing latter
reasoning.

On Fig. 5.3, the inclusion of a single positive defect, relieves the hoop
stress locally. The effect apears to be quite large close to the defect
itself, where hoop stress becomes positive, hence tensile. However, σθθ
reduces significally towards the initial compression due to curvature at
diametrically opposed points. According to our initial intuition, during
the growing process, another positive disclination is more prone to
nucleate at the opposite of the initial one on the cap. After the sec-
ond nucleation, once again, the most compressive regions are located
symmetrically between the two first disclinations. Increasing the size
of the surface, we observe that inclusion of disclinations at highly
compressive regions relaxes them significantly. Iterating this mecha-
nism for disclination inclusion and this type of minimal hoop stress
analysis, it shall be possible to recover azimuthal locations compatible
with icosahedral symmetry for large spherical viruses. However, radial
locations for optimal defect inclusion may depend on further details of
the model, one can think about the contact energy between capsomers.

If we consider now azimuthal stress in function of r denoting the
radial position, at the angular position of a single fivefold defect, we
notice that the latter inclusion induces a burst of tensile hoop stress
between the defect and the rim itself. According to our earlier analysis
(See Fig. 5.2), the burst shall promote the nucleation of a sevenfold
negative defect. On the other hand, if hoop stress is plotted against
r, but now at the angular position of a sevenfold defect, we notice
the negative disclination induces a burst of compressive hoop stress.
Therefore, it favors the nucleation of a fivefold positive defect. By this
quantitative analysis, we consolidate previously assumed mechanism
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Figure 5.3 – Relaxation of hoop stress by defect nucleation. The hoop stress
at the rim of the assembly is computed with and without defects
(highlighted in red on the sketched structure, we specify their
angular positions on graphs). The size R of the structure is
shown at the top of each graph in function of imposed Gaussian
curvature radius R0. The radial position of the first defect ρ1 =

0.95Ra, the second defect ρ2 = 0.8Rb, the third one ρ3 = 0.85Rc.
We chose radial positions in order to highlight relaxation of hoop
stress described in the main text. At each step, a disclination is
added at the most compressive region.
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for defect nucleation whatever their types: disclinations or dislocations.
Based on this observation, one dislocation or several ones may also be
efficient in relieving hoop stress at the boundary (See Fig. 5.4).
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Tensile burst

Compressive
burst
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B)

Figure 5.4 – Hoop stress σθθ in function of the adimensionalized radial po-
sition r/R, R represents the size of the cap specified at the top
of each graph in function of the imposed radius of curvature R0.
A) Only one positive disclination is included in the structure (a
5-fold defect). In the configuration specified in Fig. 5.3. We plot
hoop stress for θ = 0 i. e. the angular position of the first defect.
Note the tensile burst near the border of the cap, this should
favor the inclusion of a negative 7-fold defect. B) On the contrary,
the negative disclination case is considered, though with same
configuration. Now, a compressive burst near the border of the
cap favors the nucleation of a 5-fold defect. Note the subsequent
relief of hoop stress each time a disclination is added.

5.4.2 Introduction of dislocations

To study the effect of dislocations on azimuthal stress at the rim
of the cap, we compute Airy stress function in the presence of a
single off-centered dislocation. This can be done by superimposing
Airy stress function of a 5-fold and a 7-fold defect in the limit of
vanishing separation. Within the continuous limit, we recall that this
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pair of defects can be viewed as a dislocation. Assuming the resulting
dislocation possesses a Burgers vector b = beθ, we compute χ57 as:

χ57(r, θ) = b lim
e→0

χ
(ρ,θ)
1 (r, θ) − χ

(ρ+e,θ)
1 (r, θ)

e
. (5.29)

Hence:It is also possible to
compute Airy stress

function when an
off-centered

dislocation is
included in the

studied
self-assembled

system. It suffices to
consider the

contribution of a pair
of opposed

disclinations in the
vanishing separation

limit.

χ
r>ρ
57 (r, θ)

Yb/12
= −

r2R2 + R4 + r4(ρ2/R2 − 1)

ρr̄ ′2

−
r cos θ[−R2(R2 + 4ρ2) + r2(R2 − ρ2 − 3ρ4/R2) + 6rρ3 cos θ]

ρ2r̄ ′2

− (ρ− r cos θ) log
(
R4r ′2

ρ2r̄ ′2

)
, (5.30)

and it becomes relatively "easy" to compute radial and hoop stresses
using Eq. (5.5). The results are presented on Eq. (5.31) and Eq. (5.32).
We compute first σrr:

σ
57,r>ρ
rr

Yb/12
= −

2ρ

R2
−
2(ρ− r cos θ)

r ′2
+
2r(rρ− R2 cos θ)

ρ2r̄ ′2

+
ρ2(2r2ρ(r2 + 4R2 + 2ρ2) − r(2r2R2 + 3R4 + 6(r2 + R2)ρ2) cos θ)

ρ4r̄ ′4

+
ρ2R4(2ρ cos 2θ+ r cos 3θ)

ρ4r̄ ′4
−
4rρ(r− ρ cos θ) sin2 θ

r ′4

−
2ρ(−R4 + r2ρ2)

ρ6r̄ ′6
{
2R6 + r2(r2 + 4R2)ρ2 + r2ρ4

−rρ[3R4 + 2R2ρ2 + 2r2(R2 + ρ2)] cos θ

+R4[(r2 − 2R2 + ρ2) cos 2θ+ rρ cos 3θ]
}

. (5.31)

We specify here that, for such a dislocation, the 5-fold defect is closer
to the center of the disk, whereas, the 7-fold is closer to the border.
Consequently, the two defects are aligned radially.
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If one wishes the opposite configuration, it suffices to change the
sign of both equations. We present σθθ:

σ
57,r>ρ
θθ

Yb/12
= −

2ρ

R2
−
2(ρ− r cos θ)

r ′2
−
2rρ2(rρ− R2 cos θ)r ′2

ρ4r̄ ′4

+
2r(rρ− R2 cos θ)

ρ2r̄ ′2
+
2ρ(r2 + 2ρ2 − 3rρ cos θ)

ρ2r̄ ′2

+
8r2R4ρ+ 8R2ρ(R4 + 2r2ρ2) cos2 θ− 4r cos θ(R6 + R2(r2 + 4R2)ρ2)

ρ4r̄ ′4

−
4r cos θ(r2ρ4 + R4ρ2 cos 2θ)

ρ4r̄ ′4
+
4rρ(r− ρ cos θ) sin2 θ

r ′4

−
2ρ

ρ6r̄ ′6
{
−4rρ(rρ− R2 cos θ)3(r2 + ρ2 − 2rρ cos θ)

+ (R4 + r2ρ2 − 2rR2ρ cos θ)[2ρ(ρ− r cos θ)(rρ− R2 cos θ)2

+ (r2 + ρ2 − 2rρ cos θ)(R4 + 4r2ρ2 − 6rR2ρ cos θ+ R4 cos 2θ)]
}

.
(5.32)

Again, it suffices to superimpose, for an arbitrary distribution of
dislocations (radially aligned though), latter Airy stress function to
get final global Airy function injecting angular and radial dependence
as for distributions of disclinations. Only angular dependence of
dislocations themselves is not taken into account in those formulae.
Additionally, it is perfectly possible now to create and analyze the
effect of distributions of both disclinations and dislocations, for example
combination of scars and disclinations at the rim of the hexatic sheet.
As for a disclination, we give the hoop stress at the rim for a single
dislocation located at {r = ρ1, θ = θ1} (again we take into account the
curvature, the second term is the defect contribution):

σdθθ,1(R, θ) =
YR2

16R20

(
1− 3

r2

R2

)
+
Yb

24

4(R2 − ρ21)[ρ1(3R
2 + ρ21) − R(R

2 + 3ρ21) cos(θ− θ1)]
R2[R2 + ρ21 − 2Rρ1 cos(θ− θ1)]2

. (5.33)

In Fig. 5.5, we show different hoop stress distributions at the rim for
several defect arrangements. Obviously, single disclination case and
single dislocation case are compared, but we analyze also both effects
of a small grain boundary (three dislocations aligned on a row) and of
a "charged" grain boundary (three aligned dislocations which row is
terminated by a disclination). It is evident to notice that, whatever the
type of defect studied, hoop stress close to a defect is relieved, but it
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reduces drastically when the position diametrically opposed is reached.
In addition, for a given small size of the disc (compared to the radius ofSimilarly, hoop and

radial stresses
generated with a

dislocation can be
computed.

Relaxation stress
patterns are very

similar to those
realized with
disclinations.

However, elastic
stress contributions
of dislocations and

disclinations can be
summed up to

analyze the effect of
chains of dislocations

or disclinations, i.e,
scars.

curvature), no significant differences can be noticed between patterns
of hoop stress distributions with respect to defect types. However, if
the latter size is increased, long range stress relaxation varies with
respect to defect configurations. Indeed, we observe that charged grain
boundaries are best for long range stress relief while the crystalline
cap grows. This observation is compatible with the presence of grain
boundaries in the ground state energy of closed shells with large radii
previously mentioned earlier [6, 12, 16].

It could be of interest to test, using the superimposition property of
previous equations, hoop stress relaxation at the rim for various defect
distributions. More especially, to test the effect of length for scars and
against various directions.

5.5 various distributions

5.5.1 Defects along one direction VS multiple directions

In this section, we compute hoop stress at the rim of the spherical
crystalline cap for several defect configurations. More specifically,Previous patterns are

invariant if other
directions are added

in defect
distributions. They
are invariant with
respect to angular

orientations.

for each type of defect arrangement (isolated disclination, isolated
dislocation, scars) we wish to test the relaxation pattern against its
orientation. In other words, is there a benefit to include several similar
defects at the same radius but for various angular positions ? As
said, previously, it suffices to sum up hoop stresses for all defects
switching appropriately angular and radial dependences. On Fig. 5.6,
we make the quantitative comparison. As noticed previously, even in
the multidirectional case, latter order of curves is conserved, i. e. grain
boundaries are best to relax hoop stress at the rim at long distances.
However, the stress relaxation pattern is enhanced adding multiple
directions to the defect distribution. This is not surprising considering
the fact that more defects help to screen the elastic stress, improving
then the relaxation. Note that, if one is to understand special features
of stress relaxation by defect nucleation, testing hypotheses against one
direction is easier and results extracted are also relevant in multiple
directions (See Fig. 5.6).
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Figure 5.5 – Hoop stress with respect to polar angle for various defect dis-
tributions. Those configurations are used to relax locally the
mechanical stress due to the geometric curvature, we set Gaus-
sian curvature to 1/R20. The size of the cap is shown at the top
for each graph. A) All defects are arranged along the single
angular position θ = 0. Their radial positions are as follows,
ρ5 = ρ57 = .95Ra, for the charged dislocation ρ57 = .95Ra; ρ5 =

.97Ra. For the scar, ρ(1)57 = .95Ra, ρ(2)57 = .97Ra, ρ(3)57 = .99Ra. For
the charged scar, we chose a similar arrangement, and we set
ρ5 = .996Ra. For distributions close to the border, no particular
effect is observed on stress relaxation patterns at long distance.
B) However, for the very same arrangement, and if the size of
the cap is increased, a strong modulation of the relaxing effect is
possible, where the charged scar appears to be more efficient. C)
We sketch here typical configurations at the rim of triangulated
surfaces: a single dislocation and a scar made of two dislocations,
hoop stress patterns are highlighted with red and blue arrows
(respectively red for a compressive stress and blue for a tensile
one).
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Figure 5.6 – Hoop stress relaxation against the angular position at the rim of
the cap for several defect distributions. We highlight here that for
similar defect arrangements, the "relaxation order" is conserved,
i. e. no change in relaxation efficiency can be observed comparing
respectively disclinations, dislocations, charged dislocations, etc.,
if same types of defect(s) are added at other angles. For instance,
on graph A) defects are placed at θ = 0, and then B) disposed
at respectively θi = {0, 2π/3, 4π/3}. Locations of defects are
sketched by green stars on respective spherical caps below each
graph. In fact, each defect nearly touches the boundary. The
order remains unchanged. Nevertheless, a better mechanical
relaxation can be noted due to the higher number of defects in
the second case.
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5.5.2 Effect of scar lengths

Because we know now that testing special configurations in one
direction is as relevant as in several ones, we wish to evaluate the
effect of scar length on stress relaxation. Does a long scar have a better Better long-range

hoop stress
relaxations are
obtained with long
scars terminated by
isolated disclinations
in the crystalline
spherical cap.

effect than a smaller one on σθθ at the rim of the molecular assembly
? To adress this question, we build scars made of three, five, ten and
fifteen dislocations aligned radially for a unique angular position θ.
Results are shown on Fig. 5.7. Increasing the length of scars leads
undoubtedly to better relaxations. This can be easily deduced from the
vertical shift of hoop stress towards positive values (tensile hoop stress).
Additionally, a scar starting in the bulk of the molecular assembly and
terminating at the boundary induces a better relaxation (See Fig. 5.7).
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Figure 5.7 – Hoop stress relaxation against the angular position at the rim of
the cap for various length of scars. Defects are radially aligned
along a single direction. We set ρ1 = .758R, for the single discli-
nation and single dislocation. Then, between each defect, we
let a space of .008. Note that the best relaxation is obviously
obtained for the longest scar. Hoop stress relaxation pattern
remains unchanged though.

All previous results were derived and tested analytically, we should
now test them numerically, using the triangular model proposed by
Seung and Nelson [94] and presented earlier.





6N U M E R I C A L T E S T

6.1 résumé

Dans ce chapitre, le précédent modèle de nucléation de défauts
topologiques (heptamères et pentamères) est étudié numériquement.
Un accord raisonnable qualitatif et quantitatif est obtenu avec les précé-
dents résultats analytiques.

6.2 introduction

It is possible to test latter predictions of the elastic analytical model
by using numerical triangular surfaces. We will first recall proceedings
and then present numerical results compared with the analytical model.

6.3 numerical proceedings and test

To check our model numerically, the triangular coarse-grained pro-
tein lattice is computed to match the topological properties of the
protein surface. Consequently, most vertex are shared among six tri- A numerical test of

the previously
proposed mechanism
can be realized. A
satisfactory
agreement between
analytical and
numerical results is
firstly reached.

angles, five triangles for a positive disclination, 7 for a negative one,
dislocations are created by 5-7 dipoles. The elastic energy is com-
posed of two terms: an in-plane stretching energy and an out-of-plane
bending energy, both terms are to be minimized to obtain equilibrium
configurations. We write the total energy:

E =
ke

2

∑
α,β

(dα,β − d0)
2 + kb

∑
i,j

[1− cos(θi,j − θ0)], (6.1)

where dα,β is the length of the edge connecting vertices α and β, the
preferred length being d0. θi,j represents the angle between the two
normal vectors of adjacent triangles i and j. The remaining set of
parameters {ke, kb, θ0} enables us to model intrinsinc elastic properties
between building blocks. More precisely, θ0 models the preferred
curvature between adjacent faces to mimic the radius of curvature R0
such that θ0 ∼ d0/R0. Within the continuous limit, the discrete model
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reproduces the continuous system with elastic constants Y = 2ke/
√
3,

D =
√
3kb/2, with equal Lamé coefficients λ = µ =

√
3/4 · ks and with

the Poisson ratio σ = 1/3.
In order to compare and test our analytical predictions, the triangular

structure with appropriate defect locations is constructed. Then, we
map each vertices on the surface of a sphere with radius R0, the final
structure is relaxed using the conjugate gradient method [80]. To
prevent the latter structure to recover a particular flat state, we add a
radial Morse potential between vertices and the spherical "substrate".
For following numerical results, we ensured that the pure elastic energy
does not depend on the Morse parameters.

The numerical computation of stress tensor components is rather
tedious as it requires to perturb numerical membranes. Hence, if one
wishes to compare numerical and analytical hoop stress patterns at
the rim, it is easier to evaluate the stretching energy density Γ . Indeed,
because of specific radial stress-free boundary conditions, Γ is evaluated
as:

Γ(R, θ) =
[σrr(R, θ) + σθθ(R, θ)]

2

2
=
σ2θθ(R, θ)

2
. (6.2)

Consequently, in the numerical case, we evaluate Γ by averaging
for each vertex of the rim the stretching energy stored in the related
connected edges.The proposed

mechanism is finally
tested numerically.

Numerical trends are
in agreement with

what has been
written previously.

Negative
disclinations and

dislocations appear if
tensile stress

threshold is low. If
the latter is high,

only positive
disclinations

nucleate.

We test numerically three particular configurations. A first one with
a disclination close to the boundary and a second one with the same
positive charge far from the boundary. The last configuration possess
three disclinations close to the rim, in order to test the stress relief
when several defects are included in the coarse-grained molecular
structure. Quantitative comparisons are shown in Fig. 6.1. For all
cases, comparison between numerical and analytical energy densities
shows satisfactory agreement. Remarkably, no adjustment has been
required on numerical parameters to get latter agreements. Note
that, for the multidisclination case, the reversal of the convexity of
σ2θθ due to negative squared values is not present. This implies the
stress-relief towards positive values by defect nucleations. Overall,
those comparisons validate analytical results obtained in this work.
Quantitative comparisons were also realized for isolated dislocations
close and far from the rim of the coarse-grained molecular scaffold.
Again, satisfactory agreements are obtained without any adjustment
validating, once again, our previous results.
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Figure 6.1 – Comparison of analytical (lines) and numerical (points) energy
densities at the rim of the coarse-grained crystalline cap for
several defect distributions. Numerical structures were built
accordingly. We present here the single disclination case and the
single dislocation one A) at the rim and B) far from the border.
C) The multidisclination case is shown below. The size of the
spherical cap for each plot is shown above in function of the
radius of curvature R0. Other parameters, ρ5 = ρ57 = .88Ra,
and ρ(3)5 = .88Rc. θ = 0 for two first cases, θi = {0, π/2, π} for
the last one. Locations of defects are sketched with green stars
on respective spherical caps at top right corners. Satisfactory
agreements are obtained for all cases without any adjustment.
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6.4 switching from disclinations to dislocations

In this section, we present additionnal results of self-assembly simu-
lations. The algorithm used here is very similar to the one elaborated
by Li et. al [64, 106, 112]. We recall here its main features, and our
modifications. As said previously, the building blocks are deformable
triangles that self-assemble by sharing edges. The resulting structure
grows on an attractive spherical substrate to model inner core attraction.
The Morse potential is once again used. We choose to build triangular
structures isotropically, and at each growing step of the simulation,
elastic energy is minimized using the conjugate gradient algorithm. We
ensure that the adhesive Morse energy to reach specific Gaussian cur-
vature is not taken into account in the minimisation process. Each time
five triangles meet at a common vertice, there is a choice to be made:
closing the pentagon or adding a new triangle to form an hexagon.
The choice can be made on an energetic criterion, selecting the con-
figuration with the lowest energy. Equivalently, it suffices to compare
the length between the two free vertices of the unclosed pentagon. If
the length is smaller than a given threshold l5c, the local structure is
closed. On the contrary, if the length is larger, a new block is added to
form an hexagon.

In our algorithm, we slightly modify this last step. Indeed, we
suggested previously that depending on hoop stress values, the local
structure is to be closed into a pentagon or an heptagon. If σθθ is
smaller (respectively larger) than a critical threshold σ5c (respectively
σ7c), we proceed to the nucleation of a pentagon (respectively of an
heptagon). Now, using classical Hook relation, we can translate two
stress thresholds into strain thresholds: u5c = σ5c/Y, u7c = σ7c/Y.
Finally, those two strain thresholds can be translated numerically into
length thresholds, with relations u5c = (l5c − l0)/l0, u7c = (l7c −

l0)/l0 respectively.
As a consequence, when the length between free boundary vertices

is smaller than l5c, we close the pentagon, when it is between l5c
and l7c, we close an hexagon (i. e. one triangle is added), when it
is above l7c, we close an heptagon (i. e. two triangles are added).
We show in Fig. 6.2, numerical structures that result from such an
algorithm. We start from an initial coarse-grained triangular lattice
free from topological charge. Then, varying the parameter l7c, we
add exactly 180 triangles without any other restriction regarding their
distribution. It is observed that reducing l7c promotes the transition
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from disclination mode stress relaxation to dislocation and scar mode
stress relaxations. At this point, we can take a step back, and consider
our results. Indeed, the resulting scars are not aligned radially (which
is the most effective way of relaxing for a frozen structure according to
the literature [5, 6]). They are rather aligned with the boundary. Such
a distribution of scars may be due to our irreversible assumption. We
assumed the structure cannot re-organize at the boundary to prevent
from the nucleation of heptamers. Even though such a nucleation
is locally favorable, it may be forbidden from a global view point or
re-arranged radially. This is how we can rationalize and interpret
our typical scar distributions. Then, our nucleation algorithm can
be improved including the consideration of the global energy not
only for the relaxing process. Nonetheless we illustrated numerically
our proposed mechanism for defect nucleation based on hoop stress
thresholds at the rim of a crystalline spherical cap.

6.5 conclusion

Our analysis led us to identify the in-plane hoop stress evaluated at
the rim of the hemispherical cap as the most relevant quantity in order
to explain defect nucleation. In the case of an irreversible self-assembly,
the rim of the assembly is the only degree of freedom that enables to
reduce the inherent geometric frustration due to the curvature. We
showed in previous chapters that defect nucleation is able to relax
locally compressive hoop stress at the rim and to ease further assembly.
We computed radial and hoop stress profiles for different crystalline
spherical structures and gave a way to evaluate them for various defect
distributions, including scars. In agreement with the work of Azadi
et. al [4], radial lines of dislocations are also efficient to relax internal
stress during self-assembly. We proposed a mechanism to reach, for
the case of large closed crystals, the ground state constituted of twelve
disclinations decorated with multiple clouds of scars which lengths
enhance the elastic stress relaxation. We observed further that using
a single direction for defect nucleation leads to pictures and effects
similar to the ones observed in the multidirectional case.

From all previous analyses, we draw here the final conclusion, dif-
ferent defect configurations can lead to similar stress relaxation pat-
terns. However, we did not find a way to rationalize objectively the
icosahedral symmetry of defect distributions found in Nature. Latter
distributions require a global view point by considering total elastic
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l5c = 0.7l0

l7c = 1.3l0 l7c = 1.5l0 l7c > 1.5l0

+180
+180

+180

Figure 6.2 – Snapshots of self-assembly simulations showing nucleation of
defects depending on hoop stress thresholds. l0 is the equilib-
rium length of edges.The first closing threshold is associated to
the length l5c = 0.7l0. Then we increase the closing threshold
l7c. If l7c = 1.5l0 no dislocation appears in the simulation, only
disclinations. We precise that the radius of curvature R0 = 12l0
and we set the ratio of moduli ke/kb = 100. Red dots high-
lights pentamers, blue dots, heptamers and green dots, tetramers.
Tetramers are considered as defects on the boundary, we expect
trimers instead. Each arrow indicates that 180 triangles (coarse-
grained proteins) are added under the specified conditions above
and below.
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energy for each distribution. We concluded from last section that
disclination/dislocation preference is set by local stress profiles and
molecular affinity between building blocks, switching single-defect
regime to scar-dominated ones. In order to highlight defect nucleation
mechanism, we chose a spherical surface as an idealized geometry
and for the sake of calculation tractability. However, the mechanism
proposed shall be valid for various other geometries and curvatures
that are all sources of frustration. A given self-assembled system on
a given substrate with given Gaussian curvature should possess par-
ticular stress patterns therefore leading to various profiles for defect
distributions. For example, assuming self-assembly on a torus which
possess inner negative Gaussian curvature, negative sevenfold defect
distributions are more relevant as shown in literature [52].

Obviously, local rearrangements in the bulk of molecular self-assemblies
are not taken into account in previous analyses. Disclination motions
are unlikely to happen in a general way as they require large-scale
rearrangement. Dislocation motions require mostly local rearrange-
ment, and are determined and preferred at the biochemical level. If
interaction between subunits are strong enough, relaxation in the bulk
are not favorable, it is easier to reduce mechanical stress at the rim
of the assembly [75]. Let us note also that finding optimal azimuthal
positions of defects by searching for most negative hoop stress val-
ues is consistent with final symmetries found by minimizing global
energies as the surface is growing [64]. Again, we recall that present
work is not expected to be applied for closed structures, but only to
those with moderate deviations from planar configurations. However,
physical features previously presented for self-assembly might remain
unchanged.
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S T I F F N E S S H E T E R O G E N E I T Y I N V I R U S E S

Ce que nous appelons les lois de la nature est l’ensemble
des méthodes que nous avons trouvées pour adapter les
choses à notre intelligence et les plier à l’accomplissement
de nos volontés.
– Émile Boutroux





7( V I RT UA L ) N A N O I N D E N TAT I O N

7.1 résumé

Cette partie et ce chapitre se focalise sur le second aspect des études
virologiques, à savoir la nanoindentation des virus. On détaille ici les
ingrédients numériques nécessaires que nous avons utilisé pour étudier
"virtuellement" la nanoindentation de capsides virales sphériques. La
réponse mécanique élastique du virus est étudiée en fonction de la
forme de la pointe indentante du microscope à force atomique. La
dépendance par rapport à la position de cette même pointe par rapport
au virus est, par ailleurs, évaluée. Dans un deuxième temps, la précé-
dente réponse élastique est également étudiée selon si le virus présente
un aspect icosahédrique ou non. Ce précédent aspect découlant princi-
palement des propriétés élastiques du virus lui-même.

7.2 introduction

The main role of the capsid is to protect the viral genome against
external aggressions. Consequently, as said earlier, capsids developed We investigate now

mechanical
properties of viruses
using numerical and
analytical models.

remarkable mechanical properties and strong resistivity to agressions
from external environment. Atomic force microscopy has recently pro-
vided highly precise methods to probe mechanical properties of various
viruses. Nevertheless, molecular details underlying viral mechanics
remain unresolved. These remarkable properties can also be unveiled We restrict our

study to small
deformations. Thus,
viral shells shall
behave as springs
when nanoindented.
It is possible to
extract numerically
their effective
stiffness simulating
a so-called Atomic
Force Microscope.

in single-virus nanoindentation experiments. In this chapter, we will
present what we will call a Virtual Atomic Force Microscope (VAFM)
combined with coarse-grained molecular dynamics simulations. The
latter term was firstly introduced by Aznar, Roca-Bonet and Reguera
in 2018 [8]. This study, we hope, will permit interpretation of experi-
mental results at the molecular level. The combination of numerical
results with analytical models enables us to scrutinize conformational
effects on structural stiffness trend. It is also numerically possible to
investigate how specific set-up experiments influence measurements of
mechanical resistances. This study demonstrates that material proper-
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ties of viral nanoparticles can be correctly described by both numerical
and analytical approaches.

7.3 virtual atomic force microscopy

7.3.1 Parametrization of the empty capsid

Viruses can be seen as elastic curved crystals. In order to create a
VAFM, we first coarse-grain the elastic biomembrane regarding it as a
discrete thin elastic shell. Thus, constituting proteins become triangles
of a spherical triangular lattice (provided T > 4). Although interactions
between individual amino-acids are presumably very complex, effec-
tive acid-acid interactions and their hydrophobicity give the protein a
rigidity. That is why we choose to coarse-grain our capsid at the pro-
tein level. Within such a numerical model, in-plane deformations are
taken into account with bond deformations, varying their lengths. Out-
of-plane deformations are taken into account varying angles between
adjacent faces or triangles [94]:

Fd =
∑
〈i,j〉

1

2
ks(`〈i,j〉 − `0)

2 +
∑
α,β

kb(1− cos θα,β), (7.1)

where `〈i,j〉 is the length of the edge relating vertices i, j. When theTo analyze and
investigate
mechanical

properties of viral
shells, we

coarse-grain them at
the protein level.

Proteins are modeled
as elastic triangles.

Triangles can be
stretched to simulate

in-plane
deformations and

triangle pairs can be
bent to simulate

out-of-plane
deformations.

latter length is different from the preferred one `0, the bond is stretched
or compressed by a spring force proportional to the spring stiffness ks.
kb sets the bending energetic cost for developing a non zero angle θα,β
between the two given adjacent faces α,β. The equilibrium length `0 is
used to normalize distances, and our unit of energy is set to kBT .

Each virus possess a magic T number (See Ch. 1). In order to refine
previous coarse-graining, the latter parameter is chose as an input
to build the final structure, preserving the particular symmetry and
the particular (possibly non)-skew capsid shape. The structures are
obtained using the java applet available at Ref. [31].

As previously said, an important parameter arises in our model
previously presented, the Föppl Von-Karman ratio γ = 4R20ks/3kb
balancing the in-plane/out-of-plane energies [27, 59], with R0 the size of
the spherical coarse-grained structure. We retrict our study to spherical
viruses, so that γ ' O(1), unless specified differently. At ambient
temperature T = 298K, we set ks = 200kBT/nm2 ' 120kcal/mol/nm2
and kb = 80kBT ' 50kcal/mol [8, 38, 87].
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7.3.2 Interactions with the substrate and with the tip

The coarse-grained thin shell interacts both with the infinite flat
substrate on which it is lying, and with the approaching spherical or
conical tip (we can change the tip shape as it is described hereafter).
Both influences are computed using a repulsive Morse potential on The Morse potential

is used to simulate
repulsive
interactions of both
AFM tips and
underlying
substrate.

vertices:

V(r) =
∑
i

P(1− e−ri/a)2. (7.2)

P is its depth, ri the distance between the ith vertice and the tip
(respectively the substrate) and a the width of the well. We sum over
all vertices. Interactions are naturally repulsive at very short distance,
and attractive at larger distance. We add a steric repulsive cost to each
face to prevent the tip from entering the numerical virus. Actually, we
consider also the repulsion of the barycenter of each face [87]. Points
of contact with the substrate are not allowed to slide tangentially and
fixed at their initial positions in order to prevent our numerical shell
from rolling. In our simulation, we set P = 2kBT ' 1.2 kcal/mol and
a = 2Å.

7.3.3 Simulation and relaxation

We consider
quasi-static
indentation. Each
time the AFM tip is
lowered to indent the
numerical shell,
vertices of triangles
are relaxed to their
new equilibrium
positions. We take
into account thermal
fluctuations. AFM
tips are modeled
either by a smooth
cone or a sphere. We
shall examine the
difference between
two cases.

The relaxation is done using a Langevin dynamics [3, 8, 86], i.e, for
the ith vertex, we compute the following trajectory for the relaxation:

ri(t+ dt) = ri(t) −
dt
γ
∇(Fd + V) +

(
2
kBT dt
ξ

)1/2
η, (7.3)

where ri represents the position of the vertex, ∇(Fd + V) the gradient
of the latter elastic energy and of repulsive interactions to relax the
system (from the tip and the substrate). Numerical computation of the
gradient is inspired from Ref. [98] 1. η is a Gaussian white noise vector
included to mimic thermal fluctuations and ξ denotes the damping
coefficient that enables solely to account for the effective mass of beads
and frictional forces. ξ = 1kcal/mol/nm to get good agreement with
experimental diffusion time of capsomers. The integration time-step is
set to dt = 400 fs. We assume quasi-static nanoindentation, hence the
tip is lowered from 9pm between each relaxation iteration that lasts

1. The technical report is amusingly from Walt Disney Animation studios.
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2µs. We ensured that equilibrium state is reached between each tip
descent. Using numerical simulations allows also to investigate the
precise influence of various parameters on viral mechanical properties
such as the tip geometry (spherical or conical) and elastic parameters.
The size and the shape of the tip can be changed very easily. In an
attempt to do realistic nanoindentation simulations, we indent with
a tip of radius Rt = 1/5R0 (unless a different value is specified in
following results). If the tip is chosen to be conical, half-angle of the
cone is set to α = π/4 (again, unless a different value is specified).
Note that, due to the smallness of the majority of viruses, the conical
tip is in fact a line-swept sphere where instead of a cylinder, a cone is
smoothly joining the two half sphere ends. Only the Morse repulsion of
the bottom sphere (of radius Rt) and of the conical part are taken into
account during indentation using an algorithm inspired of Ref. [10].
To investigate more precisely VAFM experiments, latter parameters are
tunable.

7.3.4 Data extraction

From simulations, elastic energy-indentation curves are obtained,
the position of the center of the VAFM tip is recorded and substracted
with its initial position giving the indentation depth. The maximal
indentation depth is set to δmax = 0.3R0, provided the tip has not
reach the bottom in the off-centered case. Indeed, when coordinates
of the tip in the x− y plane are not zeros, the position of the tip is
carefully computed so that indentations begin at the contact of theTo extract effective

numerical stiffnesses
of numerical shells,

elastic energy is
plotted against the

indentation depth. A
quadratic fit suffices

to compute the
effective stiffness as

the shell behaves like
a spring.

numerical cap. Note that if the tip is not above the virus, the initial
height of the tip is set equal to the radius of the virus. Data is stored
between each relaxation step, and each nanoindentation experiments
is repeated several times to check the reproducibility of the results
(specified in captions of figures). A quadratic numerical fit of elastic
energy of the form Fd = k/2 · δ2 using the Nonlinearfit method of
Mathematica enables us to extract the effective stiffness of the virus for
each experiment and at each tip position (See Fig. 7.1, Subfig. C) for
examples of fits). δ represents the indentation depth.
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7.4 results

7.4.1 Spherical tip VS Conical tip

Unless specified, we chose to indent a skew virus which T -number
is set equal to 9 (h = 3, k = 0). Because this structure is of intermediate Effective stiffness

varies with lateral
position of the AFM
tip. However,
particular trends are
visible when the
shape of the tip is
changed. More
specifically, when the
tip is conical, the
conical fraction plays
a major role when
the tip lateral
position is changed.
Non vanishing
stiffness can be
extracted even
indenting far away
from the shell.

size and it is technically easier to indent a region with no elastic effects
due to disclinations. On Fig. 7.1, we plot the variation of effective
stiffness of the numerical capsid against the lateral position of the tip
of the VAFM. Results from conical and spherical indentations are both
shown. Immediately, we see that, even far away from the center of
the simulated virus, effective stiffness for the conical case does not
vanish. This can be seemingly understood by the fact that the domain of
influence of the cone is significantly larger than the pure sphere. Even
when the tip is not above the virus, the conical part can still indent the
numerical capsid. The latter phenomenon is sketched on Fig. 7.1, Subfig.
B). We highlighted the conical tip-virus intersection with the blue
dotted ellipse. This results into a mechanical response of the coarse-
grained biological scaffold. Consequently, non-vanishing stiffness can
be extracted from those particular nanoindentation experiments. This
effective stiffness appears nearly constant with the error bars (See
Fig. 7.1 for details). Regarding the spherical case, the extracted effective
stiffness drops to zero far away from the coarse-grained virus. We note
that when the tip is shifted not far away from the center of the capsid
(r < R0, where r represents the viral vertical axis-tip distance), for
both conical and spherical tips, an important decrease of the stiffness
is found (around 20% when the tip is shifted from a quarter of the
capsid radius). The agreement between both cases in the "close-regime" When the viral shell

is very stiff, it
exhibits a faceted
shape. Disclinations
point out of the shell
creating nearly an
icosaheder. Strong
variations of effective
stiffness can then be
observed against
lateral position of the
tip. Pentamers are
stiffer than hexamers.
Effective stiffnesses
thus depends also on
intrinsic structures
and molecular details
of capsids.

suggests that the spherical part of the conical tip plays the major role
in this region. Note that we normalize effective stiffnesses by the
Laudau stiffness of a thin shell point-indented at the top, kL = Y/

√
γ.

Numerical average of top stiffnesses is in agreement with scaling of
Landau et al. Indeed, kmax ∼ 50kBT/l

2
0 ∼ D/R

2
0 ·
√
γ ∼ Yγ−1/2.

7.4.2 Geometrical dependance

Previous qualitative agreement in the close regime for conical and
spherical cases nurtures the need to specify previous stiffness depen-
dence on tip shapes. As a result, we show on Fig. 7.2 the dependence
of stiffness on the radius of the tip and on the conical angle. We vary
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Figure 7.1 – Comparison of virtual nanoindentation experiments using a
spherical or a conical tip. A) Snapshot of a virtual nanoindenta-
tion using a spherical tip. B) Snapshot of a virtual nanoindenta-
tion using a conical tip. Note that the conical part is indenting
the numerical capsid. This is highlighted by the blue dotted
ellipse. C) Quadratic fits of the discrete elastic energy against
the indentation depth. Note the decrease of the effective stiffness
when the spherical tip is off-centered. D) Extracted numerical
stiffness against the position of the tip for the spherical tip (red
circles) and the conical tip (blue diamonds). Each point of the
curve is the average of 4 virtual indentations. The error bars are
the corresponding root mean-square deviations. The stiffness
does not vanish for r > R0 + Rt with the conical tip. Parameters
of simulations: Rt/R0 = 1/5, Semi-aperture of the cone α = π/4,
γ = 57.6533. Other parameters unchanged.
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the aperture angle of the conical tip but also its bottom radius, and we
compare the results to the first situation. We find that, if one increases
the bottom radius of the conical tip, the plateau (i. e. the region where
stiffness is constant with the tip position for indentations with a conical
shape) is shifted to the right as function of the lateral position of the
tip. This can be explained by the fact that, as the bottom tip is bigger,
the transition between what we can call the spherical and the conical
regimes appears later. Similarly, the higher the aperture angle is, the
higher is the height of the plateau. The aperture angle seems to fix the
effective stiffness that is extracted from conical indentation.
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Figure 7.2 – Comparison of virtual nanoindentation experiments using vari-
ous conical tips. A) Effective stiffness against the tip position, the
aperture angle α = π/4 is the same for both tips. Only the bottom
radius was changed, for the blue diamond curve Rt/R0 = 1/5, for
the square green curve Rt/R0 = 3/4. Note the shift to the right of
the plateau for the bigger radius compared to the initial situation
as function of the position of the tip. B) Here, both radii of conical
tips are equal, only the aperture angle was changed, α = π/4

for the blue diamond curve, and α = π/6 for the magenta down
triangle curve. Note the decrease of the heigth of the plateau
with aperture angle of the cone. γ ' 57.6533. The experiment
for each position was repeated 2 times, error bars correspond to
square root type deviations. Other parameters unchanged.
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7.4.3 5-fold, 3-fold symmetries

In previous studies, we loaded coarse-grained viral shells with small
forces to probe their global elastic behavior. The latter seems logically
dependent on the position of the tip, i.e the region indented. Neverthe-
less, several experimental and theoretical studies suggest that the elastic
response also depends on internal structures of capsids. Specifically,
for indentations along the 5-fold symmetry, for most viruses, capsids
appear weaker in the studied regime, i. e. for γ ' O(1) [8, 20, 24, 86].
We checked that our results are coherent with latter studies. We then
investigate the robustness of the latter trend against the shape of the tip.
On Fig. 7.3, we plot numerical stiffnesses extracted from indentations
with a cone for various orientations of the numerical capsid. We also
investigate the trend for a Föppl–Von-Karman number γ above the
buckling transition, i. e. γ ∼ 500. The various orientations of the shell
were taken so that either a pentamer or an hexamer faces up the tip.
Then, several trajectories are available. We can choose to off-center the
tip to indent passing through a pentamer or an hexamer. We have then
4 cases to investigate. For γ ∼ 50 6 200, no significant differences ap-
pear between cases. On the contrary, strong discrepancies appear after
the buckling threshold. This is coherent with numerical results already
obtained by Buenemann et al. and Widom et al. For γ > 500, the capsid
has a strongly faceted shape. The twelve positive disclinations point
out of the coarse-grained viral structure. This structural inhomogeneity
induces a stiffer elastic response of pentamers compared to hexamers.
Interestingly, the stiffer response of pentamers is observed whatever
their positions in the structure of the shell. In other words, pentamers
on top of the shell are stiffer than hexamers but this is also confirmed by
the value of the stiffness plateau. For trajectories starting from a central
pentamer, the plateau is higher if the trajectory ends on a peripheric
pentamer rather than on a peripheric hexamer. However, the two last
trajectories starting from a central hexamer to pass respectively on a
peripheric pentamer and on a peripheric hexamer are more complex.
We can legitimately think that they reflect a stronger contribution of
the intrinsic structure of the shell. Going from one central hexamer
towards a distal pentamer, the stiffness first increases, before decreas-
ing in agreement with the first observed trend. This can be due to
the "side" indentation of the distal pentamer. The stiffness extracted
that way corresponds to 80% the one extracted when the indentation is
performed at the top. Surprisingly, the stiffness plateau is the highest
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when an indentation is performed on a distal hexamer. This can be due
to the indentation of the so-called ridge between the two neighboring
disclinations at high Föppl–Von-Karman number. This might ends up
to the deformation of the two neighboring disclinations at large scale.

To conclude, for large Föppl–Von-Karman numbers, the dispersion
of trajectories shows that the effective stiffness can also be strongly
dependent on tip trajectories themselves. Latter results resonate with
some previously presented [20] (See Ch. 4) and others presented by
Aznar, Luque and Reguera [7]. Indeed, they showed that the bulk mod-
ulus K0 = −V · ∂p/∂V = R2/9V · ∂2E/∂2R seem to be comparatively
stiffer for icosahedral shell than for spherical one. In their notations, V
is the volume of the shell, R its radius, E the energy and p the pressure.
In words, K0 measures the compressibility of the capsid. Additionally,
polyhedral (i.e icosahedral) capsids systematically tolerate higher val-
ues of the bursting pressure than their spherical counterparts. Here,
for a comparison, we submitted it to an external localized one. Conse-
quently, the choice of an icosahedral instead of spherical shape seems
to bring mechanical advantages that can play an important biological
role. It can be now of interest to rationalize previously observed trends
and more specifically the position-dependent one.
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Figure 7.3 – Comparison of virtual nanoindentation experiments for various
orientations and two different Föppl–Von-Karman numbers γ.
A) Numerical effective stiffness against the position of the tip
for various orientations of the numerical capsid, γ = 57.6533.
Inset represents the structure of the capsid for such a γ. The
orientations are taken in order to indent either on a disclination
at the top or off-centered. Trajectories of the tip on the capsid
are represented with the respective colors on sketches at the
right. No significant differences can be noticed for this case. B)
Numerical effective stiffness against the position of the tip for
various orientations of the numerical capsid, γ = 576.533. Tra-
jectories are represented with the same colors on the numerical
capsid which structure is computed for latter γ. Strong discrep-
ancies can be noticed. Parameters of the indentation and of the
tip : Rt/R0 = 1/5, α = π/4. The experiment for each position
was repeated 2 times, error bars correspond to square root type
deviations. Other parameters unchanged.
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8.1 résumé

Dans ce chapitre, les précédents résultats numériques obtenus sont
analysés et rationalisés analytiquement. Un accord quantitatif est
encore une fois obtenu.

8.2 introduction

We recall here that scaling results obtained and summed up in Ch. 4

are done assuming that indentations are point-like. However, due to
the smallness of some viruses, in particular the AAV or the HBV, the
latter hypothesis is not valid. The AFM tip possess a finite curvature
radius comparable to the studied particles that can be included in
simulations or models. Deciphering the role of this finite curvature
in nanoindentation experiments can be of significant interest. We aim
in this chapter, using a simple geometrical model, to fill this gap and
rationalize results of Ch. 7.

In this chapter, we distinguish two types of indentation:
— Spherical indentation, where the AFM tip is modeled by a sphere

of radius comparable to the one of the viral particle.
— Conical indentation where the AFM tip is modeled using a conical

tip ended by an hemisphere at the bottom. Its radius is also
comparable to the size of the viral particle.

The different geometries considered are sketched in Fig. 8.1.

8.3 spherical nanoindentation

Previously observed
trends are due to
geometrical effects.
When the tip is
off-centered, the real
indentation depth is
smaller than the
input vertical
displacement.
Hence, the elastic
response of the viral
shell is lower than
the top-indentation
response.

In the case of a sphere-sphere indentation, Figure 8.1 highlights
a strong decrease of the indentation depth. The latter decrease is
accessible through the same vertical tip displacement if the tip moves
from the top to the edge of the shell horizontally. Indeed, if the tip
moves, let us say to the right of the shell, the corresponding shell
deformation decreases too. This can be highlighted by the intersection
between the viral sphere and the spherical tip (See Fig. 8.1, Subfig. A).
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Figure 8.1 – Sketches of indentations. A) Indentation with a sphere, we high-
light the fact that when the tip is off-centered, Xtip = r, the real
indentation δr is less than the vertical descent or indentation δ. B)
Indentation with a cone, the real indentation δr is constant after
a given radial position of the tip r = (R0 + Rt) cosα. Idealized
deformed regions are highlighted in orange.
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According to previous works, the size of the deformed zone scales as
d ∼ R0γ

−1/4, where R0 is the radius of the shell and γ the Föppl–Von-
Karman ratio [21]. However, the estimation of the overlaped regions
provides us a simple way to quantify variations of deformations.

Here, we want to compute from vertical tip displacement δ drawn in
Fig. 8.1, the real indentation depth δr. We assume small indentation (i. e.
we restrict our study to non-inverted capsid). It is possible to determine
the angle between the initial axis of symmetry of the experiment when
the tip and the capsid are aligned with the new lateral position of the
former, written r. The angle is denoted θ and it is possible to compute:

cos θ =
√
1− sin2 θ =

√
1−

(
r

Rt + R0

)2
, (8.1)

where Rt denotes the tip radius. A straightforward geometrical
computation enables to compute the real indentation depth:

δr =

1+
δ̃

R0 − δ̃
−

√
1+

(
δ̃

R0 − δ̃

)2(
1

cos2 θ
− 1

)
1+

δ̃

R0 − δ̃

, (8.2)

where the variable δ̃ = δ cos θ/(1 + Rt/R0). In the limit of small
indentation, when δ� R0, the real indentation depth reduces to:

δr = δ cos θ = δ

√
1−

(
r

Rt + R0

)2
. (8.3)

Consequently, the effective stiffness that shall be extracted either
from simulations or experiments depends on the lateral position of the
tip as (approximately):

k
sphere
eff = ktop

√
1−

(
r

R0 + Rt

)2
. (8.4)

8.4 conical indentation

In the case of the conical tip, we note α the aperture angle of the cone.
The latter is terminated by an hemisphere of radius Rt. As for spherical
indentation, extracted effective stiffness depends also on the lateral
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position of the tip for conical indentation. Moreover, the previous proof
is valid as soon as r 6 R0. However, when the tip is moved far from
the viral shell r > (R0 + Rt) cosα, or simply when θ = π/2− α, only
the conical part of it is indenting. Additionally, real indentation δr
associated to a vertical displacement δ is identical whatever the lateral
position r. This is easily explained by the fact that the curvature that
plays the major role in the indentation is zero and the overlap with the
shell remains constant with r.

By geometrical analysis, one in fact writes:

δr = δ sinα. (8.5)

When the cone indents, we deduce:

kcone
eff =

 ktop

√
1−

(
r

Rt + R0

)2
if r < (R0 + Rt) cosα,

ktop sinα otherwise.

(8.6)

We compare our analytic predictions to numerical results on Fig. 8.2.
The resulting stiffness variations, shown in Fig. 8.2, is similar to theSimilarly, using a

geometrical model, it
is possible to recover
and analyze the role

of the conical
fraction of the

conical tip. However,
no quantitative
agreements are

reached with pure
geometry.

observed numerical stiffness changes. The geometrical model predicts
a decrease of the effective stiffness by off-centering the spherical tip
towards vanishing values in qualitative agreement with simulations.
For the case of the conical tip, a similar trend is observed as soon as the
spherical part of the tip indents. Then, when the conical part indents,
the effective stiffness reaches a non-zero constant value. This is also
observed in the numerical experiments. However, we are driven to
admit that numerical latter curves show a stronger decrease of stiffness
compared to the simple geometrical model, suggesting the presence of
other effects at play in the real system.

8.5 discussion

Comparing numerical results with models, trends appear correct but
not the values. The two estimations in Eq. 8.4 and Eq. 8.6 assume that
the shell does not move laterally under off-centered vertical indentation.
Nevertheless, if the adhesion with the substrate is not strong enough,
one shall reasonably expect the shell to move horizontally. Even, in
the limit of weak adhesion, the shell can be expected to escape from
the imposed indentation constraint by rolling or sliding sideways.
This additionnal shift could lower the resulting stiffness as it reduces
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Figure 8.2 – Effective stiffness against the position of the tip. The red curve
represents the numerical stiffness obtained by indentation with
a spherical tip, the blue curve represents the numerical stiffness
obtained by indentation with a conical tip. Plain and dotted
lines correspond to the respective analytical model. The trends
appear to be correct for both cases but no quantitative agreement
is observed. This can be due to the strong "no lateral movement"
assumption. Parameters of the simulations: γ = 57.6533, Rt/R0 =

1/5, α = π/4 (for the cone). Each dot is the mean of 4 numerical
experiments, error bars correspond to square root type deviations.
Other parameters unchanged.
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the accessible deformation. Consequently, the first major correction
that can be brought to the geometrical model is to take into account
horizontal displacements which may be concomittant with vertical
indentations (See Fig. 8.3).

For the spherical case, it is possible to estimate the horizontal shift
written δh by assuming that the vertical indentation produces it. Con-
sequently, we should correct Eq. 8.3:

δr = δ cos θ = δ

√
1−

(
r+ δh
Rt + R0

)2
. (8.7)

Consequently, the viral shell remains at its position if the horizontal
restoring force computed as Fh ∼ kadhesionδh, where kadhesion is an
estimation of the response, balances the horizontal component of the
indentating force Fhindentation estimated as:

Fhindentation = ktopδr
r+ δh
R0 + Rt

. (8.8)

We shall take into
account horizontal
response when the
tip is off-centered.
And this, for both
shapes. Including

and taking into
account horizontal

contribution enables
to recover

quantitative
agreements. Effective
stiffness dependence

against lateral
position of AFM tip
is now rationalized

for both conical and
spherical shapes.

Hence, one can estimate the horizontal shift as:

δh ∼ δ
ktop

kadhesion

r

R0 + Rt
. (8.9)

This simple scaling, enables us to deduce that the horizontal displace-
ment increases with lateral position of the tip r and decreases with
adhesion efficiency kadhesion. To test the latter scaling, we choose to
compute resulting horizontal displacement of the barycenter of all
vertices for each numerical indentation experiment. This is done for
different tip positions. Within simulations, we can indeed compute,
for each lateral position, the net horizontal shift of the shell center
of mass compared to the original position prior to indentation. This
is shown in Fig. 8.4 respectively for spherical and conical tips. It is
observed within these plots that horizontal shift increases first linearly
with lateral position, in qualitative agreement with scaling prediction
reported in Eq. (8.9). The latter shift can be associated to a more global
deformation rather than a pure vertical one.

Let us note that Eq. (8.9) can be rewritten as δh = Ar, where A
introduces a rescaling that depends on specific adhesion parameters
and geometrical ones. Then, this enables us to rescale Eq. (8.4) and to
write:

k
sphere
eff = ktop

√
1−

(
r

Rt + R0

)2
(1+A)2 (8.10)
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Figure 8.3 – The need to take into account the horizontal response of the cap-
sid. When the tip is off-centered, the capsid response possesses
an horizontal component Fh. The latter component is highlighted
for both spherical A) and conical B) cases. C) The quantitative dis-
agreement between the geometrical model and the numerical re-
sults for quantitative stiffness as function of the lateral position of
the tip may be due to this horizontal response. Parameters of the
simulations: γ = 57.6533, Rt/R0 = 1/5, α = π/4 (for the cone).
Each dot is the mean of 4 numerical experiments, error bars
correspond to square root type deviations. Other parameters
unchanged.
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Figure 8.4 – Horizontal displacement of the barycenter of all vertices against
lateral position of the tip. A linear trend appears for both shapes
of tip (spherical or conical) in agreement with Eq. (8.9) presented
in main text. Parameters of the simulations: γ = 57.6533, Rt/R0 =

1/5, α = π/4 (for the cone). Dots represents the mean of 4 sim-
ulations and error bars correspond to respective square root
deviations.

As a consequence, a stronger decrease of stiffness is predicted com-
pared to the original geometrical model. This argument can also be
applied to the conical model. A becomes an adjustable parameter, and
the corrected geometrical model shows a much better agreement with
numerical data (See Fig. 8.5).

We check that an agreement is reached for various parameters (See
Fig. 8.5). The plateau stiffness seems to depend only on the opening
angle of the conical part of the tip but not on the radius of the swept
sphere terminating the cone itself in agreement with Eq. (8.6). On
the contrary, the transition between what we can call the spherical
regime and the conical regime depends on both the opening angle of
the cone and of the radius of the spherical part of the tip. Again, a
quantitative agreement between the numerical model and the analytical
one is obtained. We thus demonstrated and discussed that stiffness
heterogeneity depends strongly on lateral positions of the tip. The
latter effect should then be considered in experimental investigations
on an equal foot with pH condition, substrate interaction (partly taken
into account in our model) and viral capsid shape effects.
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Figure 8.5 – Effective stiffness against lateral position of the tip for various
conical shapes. Colored curves represent numerical results. Plain
and dotted lines correspond to respective corrected analytical
models. Trends appear to be correct and a quantitative agreement
is reached for all cases. The lateral movement is included in the
model. Parameters of the simulations: γ = 57.6533. Respective
parameters are specified above each figure. Other parameters
unchanged.
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8.6 conclusion

We showed that the shape of the AFM tip and its lateral position play
a major role in stiffness extraction during an indentation experiment.
Indeed, for the spherical case, as soon as the lateral position of the tip is
greater than the capsid radius, the effective stiffness vanishes. Though,
it is still possible to extract a stiffness that represents nearly 50% of the
value that can be extracted for a top-indentation when the tip possess a
conical shape. The important decrease of effective stiffness when the tip
is off-centered (around 20% when the tip is moved by 20% of the radial
size of the capsid) seems partly due to a pure geometrical effect for
both cases. Indeed, the deformation of the capsid is lowered when the
tip is off-centered. Consequently, the necessary mechanical response to
balance the deformation can also be less important. Hence the decrease
for the extracted stiffness. However, there exists a supplementary
horizontal response. Due to the off-centering of external constraints,
the reaction of viral capsids is not purely vertical but also horizontal.
It is mandatory to take into account those two reacting components
in the viral response to reach an agreement between analytical and
numerical results.

In addition, we recall that when building blocks of viral capsids are
resistant to in-plane compression, spherical capsids exhibit a faceted
shape that resembles an icosaheder. In this particular regime, discli-
nations (i. e. pentamers), located at the summit of the matching icosa-
heder, are stiffer than hexamer lattices located on faces. More surpris-
ingly, the regions linking neighboring disclinations (i. e. the edges of
the icosaheder) have an average effective stiffness greater than all other
areas on the viral surface. In the latter regime, strong discrepancies in
extracted effective stiffnesses can arise depending on regions indented
in the intrinsic viral structure.

Latter results were derived using numerical simulations. They were
then rationalized analytically. An experimental evidence misses in our
study, but investigations are currently performed in the laboratory. The
results were not completely analyzed by the time the manuscript was
written. We hope to present global results in the near future. Local
protein deformations are not taken into account in our study, due
to the coarse-grained nature of our simulations. We chose to model
proteins, building blocks of capsids, as simple triangles to be stretched.
Nevertheless, their hydrophobic character grants them a certain rigidity
to build a stable scaffold (chemical reactions and allostery set aside) [56,
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57, 78, 84] making our assumption reasonable. Instead of computing
the 3D deformation of the capsid, we chose to focus on the main inden-
tation variable, the indentation depth. The reduction of latter variable
as function of lateral position of the tip provided us reasonable agree-
ment with numerical data. In agreement with Lenz and Buenemann
[20, 21], whose numerical model is similar to ours, no difference can be
noticed between hexamers and pentamers for spherical and relatively
stretchable viruses. From an experimental view point, no bimodality
was detected for λ-phage for instance [70]. However, in the MVM, no
sensible difference between pentamer and hexamer is seen for empty
capsid, while there is a difference in the presence of internal genome
[24]. Internal pressure brought by the viral genome, not taken into
account in our model, could rend the capsid faceted, thus creating the
observed bimodality. Previous observed trends can recall similar re-
sults regarding plant tissue mechanics where it has been shown that the
consideration of local differences in mechanical properties are essential
for proper data interpretation [88]. In a plant tissue, local stiffness
measurements can vary with the level of turgor pressure (caused by
osmotic flow of water through the cell walls) in an unexpected way.
The previous turgor pressure can play, by analogy, the same role as
our DNA internal pressure. Thus enhancing the previously observed
trends. In the buckled regime, our model is incorrect at least quantita-
tively. However, we can still expect the qualitative geometrical trend.
Latter geometrical effect is thus to be combined with intrinsic capsid
structural effects. Indentation depths remain small in our model, it
can be of significant interest to pursue indentations to deeper depths
to observe non-linear reactions, especially for buckled shells. It has
been observed that graphene cones have two degenerate configurations:
their original shape and its inverse. However, if the local reflection
symmetry of the graphene sheet is broken by the chemisorption of just
five hydrogen atoms to the apex, then the maximal yield strength of
the cone increases significantly [58]. Those results also resonate with
ours, where pentamers exhibit locally a conical shape, pointing out-
wards the viral shell. We hope the previous study to motivate further
ones focusing on effects of other tip shapes and non-spherical viruses.
We also modestly aimed at easing interpretation of nanoindentation
experimental results to unveil various aspects of viral nanomechanics.
We hope this study to be profitable and experimentally checked in the
future.





C O N C L U S I O N

Viruses are constituted of several layers that contain the viral genome.
They are possibly made of a lipid enveloppe and always of a matrix
protein and the capsid. The capsid is the most important part of the
virus as it encloses and protects the viral genome. The viral genome
encodes both the genome and conveys the infection generally. Capsids
are self-assembled systems made of proteins arranged in multimers.
Some are arranged into hexamers (the most efficient packing of pro-
teins), others into pentamers (fivefold defects). From the topological
view point, pentamers are called disclinations. Due to a topological
constraint, a capsid (an assembly topologically equivalent to a sphere)
must contain exactly 12 isolated positive disclinations. Those disclina-
tions are remarkably useful to relax the elastic stress created by the
curvature to complete the biological shell. They seem to nucleate at the
most compressive regions of the unclosed self-assembled systems. The
Gaussian curvature of the growing surface is a source of in-plane stress.
A given distribution of Gaussian curvature will therefore generate a
particular stress pattern at the rim where the assembly is effectively
proceeding. Nucleating a fivefold defect in the hexagonal packing will
reduce locally along the rim the mechanical stress. Interestingly, the
introduction of a disclination leads to a tensile elastic burst. This tensile
burst can be relaxed by the inclusion of a sevenfold defect (heptamers)
in a similar manner. The latter nucleation of a pentamer-heptamer
pair is topologically called a dislocation. Dislocations tends to align
themselves into scars. They were not observed yet in viral capsids
though they are present in other biological self-assembled systems
such as clathrin or microtubules. We chose then, to include them in the
present study. It is observed that all the defect arrangements produce
similar patterns of hoop stress reliefs at the rim of the surface: close
to the defect, the hoop stress is relieved and becomes positive, while
this stress relief decreases when positions diametrically opposed to
the defect(s) are reached. However, when the size of the structure is
increased, a so-called charged scar (a scar terminated by a disclination)
provides more efficient long range stress relaxation at the rim than an
isolated disclination. This observation is compatible with the presence
of radial scars in the ground state energy of closed shells with large
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radii previously mentioned in several studies. Our work is therefore
able to provide an assembly pathway leading to the observed ground
state for a closed shell. We shall underline that the latter results were
found assuming the irreversibility of the growing structure. In other
words, this neglects any further rearrangement away from the rim, in
the bulk of the structure that has been assembled. These rearrange-
ments represent another degree of freedom that could be used in order
to relax the mechanical stress. However, their contribution might not be
as important for two reasons. First, single disclination motion requires
large scale rearrangements and is therefore unlikely to happen. On
the other hand, dislocation motion is known to require mostly local
structural changes, and it is the cost of these changes that will deter-
mine if the structure can relax using dislocation motion. We expect
the interaction between subunits to be strong enough (around 20kBT )
that bulk defect mobility becomes again unlikely. Let us notice that
our model is resolved using polar coordinates on spherical scaffolds
for the sake of tractibility and it is therefore expected to only apply for
structures with moderate deviations from a planar configuration. The
physical ingredients, though, seem essentially described.

Focusing on the high resisitivity of closed capsids against external
applied load, we proved again the usefulness of disclinations. Pro-
vided the stretching energy to be high enough, disclinations exhibit a
significant higher effective stiffness compared to sixfold faces. Using a
coarse-grained numerical model for capsids, we proved them to resist
significant loads if a disclination is indented. However, the most useful
result is enlightened when the stretching and the bending components
of the elastic energy are comparable. Using, once again, a numerical
model for vitual indentation experiments, we showed that the shape
of the tip plays a significant role in effective stiffness measurements.
Because of the smallness of viruses, even the tip of an atomic force
microscope resembles to a cone terminated by a swept sphere. We
demonstrated that such a shape can lower the experimental measure-
ment if the viral particle and the tip are not aligned vertically. This is
due to a lower deformation compared to top indentation. This lower
deformation is the consequence of the particular geometry of the sys-
tem. These results should have been expected, but our work provides
for the first time a refined quantitative model to take into account the
latter geometrical effect. Remarkably, numerical and analytical results
coalesce. If the tip is moved from the top by 20% the radius of the
viral particle, a drift that is thermically accessible, the same reduction
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is observed onto the extracted numerical stiffness. We expect the same
reduction in experiences. Again, due to the contribution from the
conical side of the AFM tip, it is possible to extract a non-vanishing
stiffness even if the virus is not indented. Knowing this value enables
to recover the top effective stiffness. All the latter results were de-
rived using a coarse-grained numerical model. However interactions
between individual amino-acids are presumably very complex, the ef-
fective acid-acid interactions and their hydrophobicity give the protein
a certain rigidity that enables us to model it as a rigid building block.

We hope that the present work will motivate future investigations,
extending the presented models in order to describe defect nucleation
until full completion of the spherical surface, or to describe the interplay
between tip geometries and viral capsid shapes.



C O N C L U S I O N

Les virus sont donc constitués de plusieurs couches contenant le
génome viral. Ils sont possiblement constitués pour partie d’une enve-
loppe lipidique et toujours d’une matrice protéique et de la capside. La
capside est la partie la plus importante du virus contenant le génome.
Ce génome encode à la fois l’infection et la structure du virus. La
capside est un système auto-assemblé fait de protéines arrangées en
multimères. Certains d’entre eux sont des pentamères, d’autres des
hexamères (l’hexamère étant le paquetage optimal pour les protéines
constituant la capside). D’un point de vue topologique, les pentamères
sont appelés disclinaisons. En raison de la contrainte topologique, toutes
les capsides sont topologiquement équivalentes à des sphères, il doit
donc y avoir exactement 12 disclinaisons positives et isolées dans l’as-
semblage protéiques. Ces disclinaisons sont particulièrement utiles
pour relâcher la tension élastique créée par la courbure à la bordure
de l’assemblage. Il semble que ces dernières nucléent au point de
compression maximale de l’assemblage biologique incomplet. En ef-
fet, la courbure gaussienne de la surface croissante est une source
de stress élastique dans le plan. Une distribution donnée de courbure
Gaussienne engendrera donc une certaine distribution de stress à la bor-
dure où l’auto-assemblage procède effectivement. La nucléation d’une
disclinaison dans l’organisation hexagonale réduira ainsi le stress élas-
tique le long de la bordure de l’échafaudage biologique. De manière
intéressante, l’introduction d’une telle disclinaison génère dans l’en-
vironnement immédiat une contrainte extensive. Cette dernière peut
alors être relâché de manière très similaire par l’introduction d’un hep-
tamère. Cette dernière nucléation d’une paire pentamère-heptamère
est topologiquement appelée dislocation. Ces dislocations ont tendance
à s’aligner en cicatrices dans des structures biologiques variées. Elle
n’ont pas encore été observées dans des capsides, mais existent dans
d’autres systèmes biologiques, tel que la clathrine ou les microtubules.
Nous avons donc choisi d’inclure ce nouveau type de défauts dans la
présente étude. Nous avons par la suite observé que ces divers arrange-
ments de défauts produisent des effets de relaxation très similaires sur
le stress élastique en bordure : proche du défaut, la tension azimuthale
est relâchée pour redevenir extensive. Cependant, ce relâchement se
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réduit peu à peu alors que l’on s’éloigne du défaut et la tension azimu-
thale redevient alors compressive en région diamétralement opposée.
Mais, au cours de la croissance de la structure, on s’aperçoit que les
cicatrices chargées (c’est à dire les cicatrices terminées par une discli-
naison isolée) permettent une meilleure relaxation à longue distance
comparée à celle induite par une disclinaison seule. Ce résultat est
compatible avec les larges structures sphériques closes exhibant des
cicatrices radialement alignées dans leurs états fondamentaux, der-
nières structures mentionnées dans la littérature. Nous nous devons
de tout de même souligner que les résultats précédents furent déduits
en supposant l’irréversibilité de l’assemblage. En d’autres mots, on
néglige des arrangements supplémentaires dans le corps de l’échafau-
dage biologique. Mais on peut légitimement supposer que ce degré
de liberté supplémentaire pour la relaxation est d’une contribution
négligeable pour deux raisons. Premièrement, le mouvement d’une
disclinaison isolée requiert des réarrangements sur des dimensions
comparables à la taille de la structure incomplète. Ces mouvements
sont donc energétiquement défavorables. Les dislocations sont en re-
vanche plus mobiles, leurs mouvements nécessitant un réarrangement
plus local. Mais l’interaction protéique d’une énergie d’environ 20kBT
à température ambiante est supposée suffisamment élevée pour préve-
nir de tels mouvements. Nous devons aussi ajouter que les résultats
présentés au cours de ces travaux furent déduits et calculés dans une
géométrie polaire sur un assemblage sphérique à courbure modérée, et
ce, pour des raisons de tractabilité. Les mécanismes physiques et les
ingrédients essentiels semblent, en revanche, décrits.

En se focalisant ensuite sur la resistivité des capsides aux contraintes
extérieures, nous avons également démontré l’utilité des disclinaisons.
Si l’énergie élastique de tension (dans le plan) est suffisamment élevée,
les disclinaisons possèdent une raideur effective significativement plus
élevée que les faces paquetées hexagonalement. En utilisant un simple
modèle gros-grain pour modéliser une capside virale, nous avons
démontré qu’elles sont capables de résister à des chargements plus
élevés si une disclinaison est effectivement indentée. En revanche, nous
estimons que ce travail met en lumière un résulat plus utile quand le
coût energétique de déformation hors du plan est comparable à celui
de la déformation dans le plan. En utilisant, à nouveau, un modèle
gros-grain numérique pour la capside, nous avons pu démontrer que
la forme de l’objet biologique et la forme de la pointe utilisée pour
l’indentation jouent un rôle non négligeable sur la raideur effective
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pouvant être extraite au cours d’une telle expérience. En effet, en
raison de la très petite taille des virus, une pointe de microscope
atomique peut être vue comme un cône en terminaison sphérique.
Cette forme particulière diminue effectivement la raideur effective
extraite au cours d’une expérience d’indentation. Ceci est en fait une
conséquence purement géométrique, la zone déformée si la pointe et
le virus ne sont pas verticalement alignés étant plus petite, ce dernier
résultat était parfaitement prévisible. Néanmoins, notre travail propose
pour la première fois un modèle quantitatif pour prendre en compte
cette moindre déformation géométrique. Si la pointe d’un microscope
à force atomique est excentré de 20% du rayon du virus étudié, ce
qui est thermiquement possible aux échelles étudiées, une réduction
comparable est observée sur la mesure de raideur effective. On s’attend
aux mêmes conséquences expérimentalement. De plus, en raison de la
partie conique de la pointe d’AFM, il est possible d’extraire une raideur,
et ce même si la pointe n’indente pas effectivement le virus. La pointe
tombe, en fait, en dehors du virus. Avec le modèle proposé, il est tout de
même possible de remonter à la raideur effective si la pointe indentait
effectivement au sommet. Ces derniers résultats, furent déduits en
utilisant un modèle gros-grain numérique pour la capside et un modèle
géométrique. Ces résulats coalescent toutefois remarquablement. Nous
n’avons pas réalisé d’études "tout atomes" en raison des interactions
présumées complexes entre les acides aminés constituant les diverses
protéines, blocs primaires d’une capside virale. Mais l’interaction acide-
acide et leurs hydrophobicités respectives confèrent à la protéine une
relative rigidité, ce qui rend nos hypothèses de travail acceptables.

Nous espérons finalement que ce travail permettra de futures re-
cherches qui étendront possiblement les modèles précédemment propo-
sés dans le but de décrire la nucléation des défauts jusqu’à achèvement
complet d’une capside virale ou d’une coque biologique et/ou de
décrire encore mieux l’interaction pointe d’AFM-morphologie virale.
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D E C L A R AT I O N

Ce monde en lui-même n’est pas raisonnable, c’est tout ce qu’on
en peut dire. Mais ce qui est absurde, c’est la confrontation de cet
irrationnel et de ce désir éperdu de clarté dont l’appel résonne au plus
profond de l’homme.
– Albert Camus

Lyon, December 18, 2020

Lucas Menou
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