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Résumé

LŠobjectif de cette thèse est de développer des méthodes pour la mise en correspondance

entre de paires dŠimages dans des situations diiciles, telles que (i) des changements ex-

trêmes dŠéclairage, comme pour le scénario dŠappariement jour-nuit, (ii) lŠappariement

de scènes peu texturées ou avec des structures répétitives, comme cŠest souvent le

cas pour les scènes dŠintérieur, (iii) lŠappariement sur de longues échelles de temps

(plusieurs mois ou années), où certains éléments structurels peuvent avoir été modiĄés

et (iv) lŠappariement entre des parties dŠobjets appartenant à la même classe, mais

qui peuvent présenter de grandes diférences dŠapparence intra-classe. Les principales

contributions de cette thèse sont les suivantes. Tout dŠabord, nous développons

une approche entrainable pour lŠalignement paramétrique dŠimages en utilisant un

modèle de réseau siamois. Ce modèle prend deux images en entrée et peut estimer

les paramètres dŠune transformation géométrique telle quŠune transformation aine,

une homographie ou une transformation en spline. Le modèle proposé contient trois

modules distincts pour lŠextraction de caractéristiques, lŠappariement et la régression

des paramètres. Ces modules sont composés dŠopérations diférentiables, permettant

un entraînement de bout-en-bout. Deuxièmement, aĄn de permettre lŠentraînement à

partir de paires dŠimages réelles sans annotation de correspondance, nous développons

un module inspiré de la mesure utilisée par lŠalgorithme RANSAC, mais implémentée

de manière diférentiable aĄn que le modèle soit entraîné en utilisant la rétroprop-

agation standard. Nous montrons que notre approche faiblement supervisée peut

fournir un gain de performance signiĄcatif par rapport à lŠentraînement uniquement

avec des images déformées synthétiquement. Troisièmement, nous développons les

Réseaux de Consensus de Voisinage qui peuvent être utilisés pour estimer de manière
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robuste les correspondances pour des tâches où des correspondances discrètes sont

nécessaires. Ces modèles opèrent dans lŠespace 4D des correspondances dŠimages

et peuvent être entrainés pour identiĄer des groupes cohérents de correspondances

aĄn de lever lŠambiguïté de correspondances diiciles. EnĄn, comme la formulation

dense des Réseaux de Consensus de Voisinage est gourmande en mémoire et en calcul,

limitant leur mise en application pratique, nous développons une variante plus eicace

qui peut réduire considérablement les besoins en mémoire et le temps dŠexécution.

Cette formulation eicace utilise un tenseur de corrélation parcimonieux pour stocker

les correspondances provisoires, qui est traité par un réseau de neurones convolutifs

parcimonieux 4D pouvant Ąltrer les correspondances incorrectes. Nos méthodes obti-

ennent des résultats état de lŠart pour lŠappariement dŠimages au niveau de catégories

dans les benchmarks PF-WILLOW, PF-PASCAL, TSS et Caltech-101, ainsi que pour

lŠappariement au niveau de lŠinstance dans les benchmarks HPatches-Sequences, InLoc

et Aachen Day-Night.



Abstract

The goal of this thesis is to develop methods for establishing correspondences between

pairs of images in challenging situations, such as (i) extreme illumination changes, as

in the day-night matching scenario, (ii) matching scenes with little texture or with

repetitive structures, as is frequently the case for indoor scenes, (iii) handling matching

of scenes across long time-scales (e.g. years), where some structural elements may

have been modiĄed and (iv) matching parts of objects which belong to the same class,

but which may have large intra-class appearance diferences. The key contributions of

this thesis are the following. First, we propose a trainable approach for parametric

image alignment employing a Siamese network model. This model processes two input

images and can estimate the parameters of a geometric transformation such as aine,

homography or thin-plate spline. The proposed model contains three distinct modules

for feature extraction, feature matching and parameter regression. These modules are

implemented using diferentiable operations, which results in an end-to-end trainable

architecture. Second, to allow training from real image pairs lacking correspondence

annotation we develop a soft-inlier count module. This soft-inlier count module

is inspired by the inlier count measure used in RANSAC, but implemented in a

diferentiable way to allow training using standard backpropagation. We show that

the proposed weakly-supervised approach can provide a signiĄcant performance gain

compared to training solely with synthetically warped images. Third, we develop

Neighbourhood Consensus Networks which robustly estimate correspondences in tasks

where discrete correspondences are required. These models operate on the 4D space

of image matches and can be trained to identify coherent patterns of correspondences

enabling to disambiguate diicult matches. Finally, because the dense formulation
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of the Neighbourhood Consensus Network is memory and computationally intensive,

limiting its applicability, we develop a more eicient variant that can signiĄcantly

reduce the memory requirements and execution time. This eicient formulation uses a

sparse-correlation tensor for storing the tentative correspondences, which is processed

by a sparse submanifold 4D CNN that can Ąlter out the incorrect correspondences. Our

methods obtain state-of-the-art results in the PF-WILLOW, PF-PASCAL, TSS and

Caltech-101 category-level matching benchmarks, as well as in the HPatches-Sequences,

InLoc and Aachen Day-Night instance-level matching benchmarks.
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Chapter 1

Introduction

1.1 Goal

The goal of this thesis is to develop methods for establishing correspondences between

pairs of images in challenging situations, such as (i) extreme illumination changes, as

in the day-night matching scenario, (ii) matching scenes with little texture or with

repetitive structures, as is frequently the case for indoor scenes, (iii) handling matching

of scenes across long time-scales (e.g. years), where some structural elements may

have been modiĄed and (iv) matching parts of objects which belong to the same class,

but which may have large intra-class appearance diferences. An illustration of the

goal of this thesis is presented in Fig. 1-1.

Although existing methods based on local invariant features have been used to suc-

cessfully establish correspondences in many challenging situations, their performance

is inherently limited by the underlying assumptions in their manually engineered

designs. While hand-crafted feature descriptors can be designed to be invariant to

aine illumination transformations, they are not invariant to strong illumination

changes, such as in day-night matching, or to large appearance changes, such as in

the case of category-level matching.

To overcome the limitations of manually engineered methods, our goal in this

thesis is to develop trainable methods for Ąnding correspondences between images, in

which the image descriptors can acquire the necessary invariances for solving these

3
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(a) Matching (shown as green links) in outdoor scenes with day-night illumination changes.

(b) Matching in indoor scenes with repetitive structures and surfaces with little texture.

(c) Matching diferent objects of the same object category across large changes in appearance.

Figure 1-1: Goal. We seek to solve the image correspondence problem in challenging
situations, such as (a) day-night matching, (b) dealing with scenes with repetitive
structures and little texture, or (c) matching parts of objects which belong to the
same class.
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challenging matching tasks by learning from the data itself.

Solving the diicult image correspondence problems that we target in this thesis

in a trainable manner presents several challenges, which are discussed next.

1.2 Challenges

When seeking to develop trainable models to solve the image correspondence problem,

we must address several challenges. These can be divided into three groups, as

illustrated in Fig. 1-2: (i) challenges inherent to the diicult matching problems that

we address, (ii) challenges related to the formulation of suitable end-to-end trainable

models for solving the correspondence problem, and (iii) challenges related to Ąnding

a suitable training scheme for training such models.

1.2.1 Challenging matching problems

Large appearance variation. Matching images with large appearance variation,

such as the strong illumination changes in day-night matching, or the large intra-

class variations in category-level matching, is diicult. In order to be able to Ąnd

correspondences under these large appearance variations, we require intermediate

feature representations that are invariant to these factors of variation. Moreover,

these features should be descriptive and discriminative enough so that they can be

unambiguously matched. In the past, feature point detectors have been used to select

salient image regions, with the hope that these would be more robustly described and

unambiguously matched. However, the usage of detectors presents additional diicul-

ties such as achieving high repeatability under these strong appearance variations. An

alternative option consists of densely extracting descriptors along a regular grid over

the images. While dense descriptors circumvent the issue of missing detections due

to low repeatability, they introduce additional challenges in terms of computational

complexity. Therefore, Ąnding trainable intermediate feature representations that are

robust to large appearance variations while being computationally eicient represents

a challenge.
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Challenging

matching problems

repetitive

structures

intra-class

variation

day-

night

matching

changes

across time

Suitable trainable

models

Geometric
transformation

estimation

Pairwise
feature

matching

Feature
extraction

Suitable training 

schemes

Which data?

Which supervision?

Which loss?

Figure 1-2: Challenges. We identify three main types of challenges: (i) those inherent
to solving the diicult matching problems we address, such as day-night matching or
category-level matching, (ii) those related to the formulation of suitable end-to-end
trainable models for solving the correspondence problem, and (iii) Ąnding a suitable
training scheme for training such models.

Large viewpoint variation. Achieving robustness to large variations in viewpoint

in trainable features is challenging. While the classic approach of using covariant

feature detectors to normalize the image regions used for description can be used, the

detection stage typically involves several hard-decision steps (i.e. which points are

considered detections, which is the correct scale and rotation, etc.) which are not

diferentiable. On the other hand, trainable models can gain invariance to viewpoint

changes by training with diverse data or by performing data augmentation during the

training process. However, the level of invariance that can be learned is limited by

the observed diversity in the data and the augmentations used, and the generalization

of these invariance properties to unseen data is not guaranteed. Therefore, designing
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trainable feature representations with good viewpoint invariance properties constitutes

an additional challenge.

Repetitive structures and low-textured areas. In this thesis, we also would like

to obtain correspondences in indoor scenes, which typically have repetitive structures

(such as doors, windows or columns) or low-textured areas (such as walls or ceilings).

In both of these cases, establishing matches is challenging due to the ambiguities that

arise, as one particular image feature may have several good matching candidates in

the other image.

1.2.2 Suitable trainable models

End-to-end trainable matching. While most of the work in trainable methods

for correspondence estimation has concentrated on the development of trainable

descriptors, we target the combined problem of description and matching. Therefore,

we seek to obtain trainable models that can be optimized for the matching task

directly, and in an end-to-end trainable way. This poses the challenges of designing

a feature extraction module and a matching module which are both amenable to

back-propagation.

Accurately localized correspondences. For many downstream image correspon-

dence tasks, such as pose estimation or 3D reconstruction, having accurately localized

correspondences is crucial. While classical hand-crafted methods can achieve sub-pixel

keypoint localization accuracy, as they employ computationally inexpensive feature

detectors, trainable models tend to be more computationally expensive, which may

limit the resolution in which images can be processed and, in consequence, limiting the

localization accuracy of the output correspondences. Therefore, obtaining trainable

models for image correspondence estimation that can obtain accurately localized

correspondences while being computationally eicient, is a challenging problem.
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1.2.3 Suitable training scheme

In order to train a model for the matching task, we require training data which

contains the rich diversity in appearance and viewpoint variations that we wish to

tackle at testing time. Furthermore, unless a fully unsupervised approach is used, this

data will require a certain level of manual annotation, in accordance with the type

of supervision and loss that will be used to train the model. As annotating image

correspondences densely is unfeasible, the fully-supervised setup cannot be directly

employed. Therefore, approaches such as self-supervised learning, weakly-supervised

learning or unsupervised learning will need to be used. Finding suitable training data

and a suitable training scheme is, therefore, an additional challenge.

1.3 Motivation

Correspondence estimation is a fundamental problem of computer vision with numerous

applications in robotics, augmented reality and 3D reconstruction, some of which are

presented below.

Visual odometry. When mobile robots displace, the robot pose can be estimated

from the commands given to its control system or by an inertial measurement unit.

However, small pose errors can accumulate leading to a large pose error, a phenomenon

that is called drifting. The visual information coming from the robotŠs cameras can be

used (possibly jointly with other sensors) in order to estimate the robot position and

reduce the drift. For this, the correspondences between images taken at diferent times

need to be robustly established, which is particularly diicult in indoor scenarios with

low texture or repetitive structures. An example of visual odometry is presented in

Fig. 1-3a.

Simultaneous localization and mapping. Related to visual odometry is the

problem of simultaneous localization and mapping (SLAM), where both the robot

pose and scene structure are estimated simultaneously. In this case, a map of the
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(a) Visual odometry for Mars Rover
navigation [Maimone et al., 2007]

(b) Simultaneous localization and
mapping [Engel et al., 2014]

(c) 3D reconstruction from photo
collections [Snavely et al., 2006]

(d) Scene change estimation [Sakurada
and Okatani, 2015]

(e) Visual localization [Sattler et al.,
2018]

(f) Object pose estimation [Grabner
et al., 2018]

Figure 1-3: Different applications relying on correspondence estimation.
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(g) Propagation of annotations [Wang et al., 2019]

Annotated
source image

Target image

Transferred
annotation

(h) Semantic annotation
transfer [Kim et al., 2018b]

(i) Object part discovery [Novotny et al.,
2017]

(j) Semantic image editing [Han et al.,
2019]

Figure 1-3: (Cont.) Different applications relying on correspondence estima-
tion.
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environment is built as the robot moves, and is used for its localization. Again,

the estimation of correspondences constitutes one of the main underlying problems.

An illustration of the map and camera poses obtained with SLAM is presented in

Fig. 1-3b.

3D reconstruction from photo collections. Furthermore, correspondence es-

timation can be used to reconstruct the 3D scene structure from a set of images

using structure-from-motion approaches, which can be followed by multi-view stereo

algorithms. The created 3D models can be used for diverse purposes such as visual

localization (discussed next), architecture, archaeology or auditing construction sites.

While images are usually acquired by Ćying drones or driving cars equipped with

cameras, they can also come from unstructured photo collections downloaded from the

internet, in which case images may contain large viewpoint and illumination variation,

as well as scene modiĄcations. An example of a 3D model obtained from an internet

photo collection is presented in Fig. 1-3c.

Visual localization. For robotic localization applications, such as required by self-

driving cars or indoor robot navigation, visual localization can be used to obtain

precise localization estimates. In this scenario, correspondences between a query image

from the robot and a previously obtained database image are established, and 3D

algorithms (such as Perspective-n-Point) are used to estimate the robotŠs pose. The

problem of visual localization is illustrated in Fig. 1-3e, where a pre-computed 3D

model of the environment is shown on top and diferent possible query images used for

localization are shown at the bottom. Note that these images contain large variations

in illumination conditions.

Object pose estimation. Object pose estimation is an important problem for

robotic manipulation and augmented reality which can be tackled by similar correspon-

dence estimation approaches as camera pose estimation. In this case, correspondences

between an object of interest and the rendered images of a similar 3D model can be

computed and used to estimate the pose. Note that the exact 3D model of the object
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might be unavailable. In that case, a similar 3D model from the same object category

can be used, resulting in a category-level matching problem.

Propagation of annotations in videos. Another application of correspondence

estimation is to propagate information from one video frame to the subsequent frames.

The information from the initial frame can take several forms, such as an object

bounding box (in which case we call the problem object tracking), semantic labels, or

object keypoints. An example of this task is presented in Fig. 1-3g.

Semantic annotation transfer. Related to the previous task is the problem of

annotation transfer across diferent images of the same category. In this case, the

annotations for a target image can be obtained by transferring the annotations of a

semantically related source image. These annotations can consist of sparse keypoints or

semantic labels, for instance. As these annotations are costly to obtain, this technique

can be used to obtain an estimate of the annotations, which can be later reĄned

manually or by other automatic techniques. An illustration of semantic annotation

transfer is presented in Fig. 1-3h.

Object part discovery. Correspondence estimation can be also used for unsuper-

vised object part discovery. In this case, a collection of unannotated images from

the same category can be used to discover the most characteristic object parts. An

example of this task is presented in Fig. 1-3i.

Semantic image editing. Finally, category-level image alignment can be used to

perform image-editing, such as replacing the texture of an object with a diferent

texture from the same category. An example of this for the task of garment virtual

try-on is presented in Fig. 1-3j.
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1.4 Contributions

In this thesis, we make contributions in both parametric image alignment and discrete

correspondence estimation and develop methods that are able to handle both instance

and category-level matching. The key contributions of this thesis are the following:

1. Trainable parametric image alignment. Our Ąrst contribution consists of a

trainable approach for parametric image alignment employing a Siamese network model.

This model processes two input images and can estimate the parameters of a geometric

transformation such as aine, homography or thin-plate spline. The proposed model

contains three distinct modules for feature extraction, feature matching and parameter

regression. These modules are implemented using diferentiable operations, resulting

in an end-to-end trainable architecture.

2. Correlation layer for Siamese-networks. In particular, for the matching

module of the Siamese network, we propose to use a correlation layer instead of

the subtraction or concatenation approaches used in other works employing Siamese

networks for related tasks. An ablation study shows the superiority of the correlation

operation with respect to these other alternatives. We believe that the correlation op-

eration produces superior performance as it solely retains image similarity information,

thus obtaining good generalization properties despite a large domain gap between

training and evaluation, which is not the case in the subtraction or concatenation

operations which retain information about the actual image content and are therefore

more sensitive to such domain gap.

3. Transformation-agnostic loss for strong supervision. Furthermore, we

propose a transformation agnostic loss that operates on image coordinates instead of

the transformation parameters directly. This loss enables the model to be trained with

diferent types of geometric transformations without modiĄcations to the method or

its implementation and avoids having to worry about the particular parameterizations

of each geometric model.
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4. Soft-inlier count module and loss for weak supervision. The previously

presented loss requires knowledge of the ground-truth transformation and was used

in combination with synthetic imagery. In order to train from real image pairs

lacking correspondence annotation, we develop a soft-inlier count module. This soft-

inlier count module is inspired by the inlier count measure used in RANSAC but

implemented in a diferentiable way to allow training using standard backpropagation.

We show that the proposed weakly-supervised approach can provide a signiĄcant

performance gain with respect training solely with synthetically warped-images.

5. Neighbourhood Consensus Networks. Moreover, we develop the Neighbour-

hood Consensus Networks which can be used to robustly estimate correspondences

in tasks where discrete correspondences are required. These models operate on the

4D space of image matches and can be trained to identify coherent patterns of corre-

spondences enabling to disambiguate diicult matches or correct errors in tentative

matches caused by large changes in appearance and background clutter. These models

can also be incorporated into other computer vision pipelines as a generic robust

matching model. In order to train the Neighbourhood Consensus Network, we propose

an image-level loss which operates on pairs of positive images, where correspondences

between scenes or objects exist, and of negative images, where scenes or objects do not

correspond. This loss allows for training in a weakly supervised way and facilitates

data collection as little annotation is required.

6. Indoor venues dataset (IVD). In addition, we collected and released a dataset

for indoor localization consisting in 3861 corresponding image pairs from 89 diferent

indoor scenes, originally uploaded by individuals to Google Maps. The dataset includes

diferent types of venues such as restaurants, cafes and museums from six diferent

cities (Amsterdam, Brussels, Copenhagen, Edinburgh, Paris and Prague). The dataset

contains challenging image pairs featuring changes in illumination and modiĄcations

of the scene (both temporal, due to transient objects, and permanent), providing

therefore similar conditions to those observed in real indoor localization situations.
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7. Efficient Neighbourhood Consensus Networks. Finally, because the dense

formulation of the Neighbourhood Consensus Network is memory and computationally

intensive, therefore limiting its applicability, we develop a more eicient variant that

can reduce the memory requirements and run-time by more than 10×. This eicient

formulation uses a sparse-correlation tensor for storing the tentative correspondences,

which is processed by a sparse submanifold 4D CNN that can Ąlter out the incorrect

correspondences.

1.5 Outline of the thesis

In Chapter 2, we present a literature review discussing the relevant methods for solving

instance and category-level correspondence problems. In particular, we review both

hand-crafted and trainable methods for obtaining both discrete and dense image

correspondences.

Chapter 3 presents our trainable approach for parametric image alignment (contri-

bution 1), based on a Siamese CNN with a correlation layer for matching (contribution

2), and employing our proposed strongly supervised loss together with synthetic

imagery (contribution 3). Results are presented for both instance and category level

matching problems.

Chapter 4 presents the soft-inlier count module that allows training the previously

presented model in a weakly-supervised manner (contribution 4), obtaining a signiĄcant

improvement over the baseline model for category-level matching.

Chapter 5 presents the Neighbourhood Consensus Networks for robust estimation

of discrete image correspondences (contribution 5), with applications for category-level

matching and indoor localization, as well as a suitable weakly supervised training loss

for training from an indoor dataset containing only annotation at the level of image

pairs (contribution 6).

Chapter 6 addresses the limitations of Neighbourhood Consensus Networks and

presents the more eicient Sparse Neighbourhood Consensus Networks, which exploit

the sparsiĄcation of the correlation tensor and a sparse submanifold CNN to obtain
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signiĄcant performance gains (contribution 7).

Chapter 7 concludes this thesis presenting the main obtained results and possible

future research directions.

1.6 Publications and Software

During the development of this thesis, four papers were presented at major com-

puter vision and machine learning conferences (CVPRŠ17, CVPRŠ18, NeurIPSŠ18 and

ECCVŠ20). In addition, extended versions of two of these conference papers were

accepted by the T-PAMI journal (one was published and the other one is in press).

The following chapters of this thesis present the material from our publications in the

following way:

∙ Chapter 3 is based on the Convolutional neural network architecture for geometric

matching conference paper, presented as spotlight at CVPRŠ17 [Rocco et al.,

2017], as well as in its T-PAMIŠ18 extended journal version [Rocco et al., 2018b].

∙ Chapter 4 is based on the CVPRŠ18 paper End-to-end weakly-supervised semantic

alignment [Rocco et al., 2018a].

∙ Chapter 5 is based on the NeurIPSŠ18 conference paper Neighbourhood Consensus

Networks which was accepted as a spotlight [Rocco et al., 2018c], as well as in

an extended journal version to appear in T-PAMI [Rocco et al., Accepted].

∙ Chapter 6 is based on the ECCVŠ20 conference paper Efficient Neighbourhood

Consensus Networks via Submanifold Sparse Convolutions [Rocco et al., 2020].

All the software developed during this thesis is available online at https://www.

di.ens.fr/~iroccosp/ under open-source licences.

https://www.di.ens.fr/~iroccosp/
https://www.di.ens.fr/~iroccosp/


Chapter 2

Literature Review

In this chapter, we review related work on correspondence estimation. We begin by

reviewing methods for instance-level matching in Sec. 2.1, followed by methods for

category-level matching in Sec. 2.2.

2.1 Instance-level matching

In this section, we review methods for obtaining correspondences between images

of the same scene, a problem which we call instance-level matching. We begin

by reviewing manually engineered methods for local feature detection (Sec. 2.1.1),

followed by methods for obtaining invariant feature descriptors (Sec. 2.1.2). Then,

in Sec. 2.1.3, Sec. 2.1.4 and Sec. 2.1.5 we present more recent trainable methods for

feature description, detection or joint detection and description, respectively. Next,

in Sec. 2.1.6 we present the alternative approach of using densely extracted features,

thus avoiding the feature detection step. Finally, in Sec. 2.1.7 we review diferent

strategies for Ąltering the obtained candidate matches.

2.1.1 Hand-crafted local feature detectors

In constrained correspondence problems such as stereo-vision or optical-Ćow, the

search space for a correspondence can be reduced to a local neighbourhood of the

17
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(a) Moravec corner detector

(b) Harris corner detector

Figure 2-1: Early corner detectors. We show the output of the early Moravec (a)
and Harris (b) corner detectors. The detected corners are shown on the left, and the
imaged scenes are shown on the right (note that in (a) we show a photograph of the
scene, while (b) corresponds to the actual digital image used for corner detection).
Images from [Moravec, 1980] and [Harris and Stephens, 1988].

initial point, signiĄcantly simplifying the complexity of the correspondence assignment.

In a general setting where there is a large motion between camera poses, however,

matches cannot be assumed to lie within a local neighbourhood.

In this more general case, obtaining dense correspondences is extremely challenging.

Therefore, in order to simplify match assignment, local feature detectors have been

developed. In this scenario, local image features such as corners, blobs or stable-regions

are Ąrst extracted and in a subsequent stage used for matching.

An early corner detector was proposed by Moravec [1980], where mean local

changes in image intensity along diferent directions are computed, and local maxima

are selected. An example of MoravecŠs early corner detector is presented in Fig. 2-1a.

An improvement was later proposed Harris and Stephens [1988], who replaced the

computation of image intensity diferences with a Ąrst-order Taylor expansion, improv-
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(a) (b) (c)

Figure 2-2: Harris-Laplace and Harris-Affine detectors. (a) Multi-scale Har-
ris detections (white) and selected scale using the LoG (black). (b) Result of the
iterative aine adaptation proposed in Harris-Aine for the multi-scale Harris detec-
tions of (a). (c) Normalized local image region, according to the estimated aine
parameters. [Mikolajczyk and Schmid, 2004].

ing isotropy properties (and therefore improving invariance to rotation). Furthermore,

instead of considering the local maxima of the image intensity change function di-

rectly, Harris and Stephens [1988] proposed to select the local maxima of a cornerness

function based on the eigenvalues of the local structure tensor, allowing to eliminate

responses on edges. An example of the HarrisŠ corner detector is presented in 2-1b.

Later on, Mikolajczyk and Schmid [2004] proposed Harris-Laplace points which

extended the formulation of Harris and Stephens [1988] by adding multi-scale processing

(following Lindeberg [1998]) combined with a scale-selection step using the Laplacian-

of-Gaussian (LoG) function. In this way, the Harris-Laplace detector achieves scale-

covariance. In addition, Mikolajczyk and Schmid [2004] propose an additional variant

called Harris-Aine, where multi-scale Harris points are Ąrst extracted, and then

aine regions are iteratively estimated, thus achieving aine-covariance. A similar

method for aine adaptation was proposed by Schafalitzky and Zisserman [2002b].

An example of Harris-Laplace and Harris-Aine features is presented in Fig. 2-2. In
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(a) (b) (c)

Figure 2-3: Laplacian-of-Gaussian detector. (a) Original image. (b) Detected
scale-covariant blobs. (c) Detected blobs displayed in the 3D scale-space [Lindeberg,
1998].

Chapter 3 we develop an iterative approach for dealing with large viewpoint changes

which is similar in spirit to the iterative estimation in Hessian-Aine features. However,

our method attempts to directly register a pair of images without using local image

features.

The LoG function can also be used by itself as a scale-covariant blob detector oper-

ating in a 3D scale-space representation of the image, as proposed by Lindeberg [1998],

which extends the initial method of Beaudet [1978]. In this case, the image is convolved

with a family of LoG Ąlters of diferent scales, and local maxima in the 3D scale-space

are selected, as illustrated in Fig. 2-3. A variant of this approach was proposed by Lowe

[2004], where the LoG function is approximated by the Diference-of-Gaussians (DoG)

function, which allows for a more computationally eicient implementation. Further-

more, as these detection functions are prone to selecting detections on edges, Lowe

[2004] proposed an edge-response elimination approach based on an analysis of the

eigenvalues of the Hessian matrix, which is similar in spirit to the analysis of the

eigenvalues of the structure tensor previously proposed by Harris and Stephens [1988].

Another similar approach for edge-response elimination was proposed by Mikolajczyk

[2002], by selecting keypoints that are simultaneously local extrema of both the trace

and determinant of the Hessian.
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Figure 2-4: Rotational invariant kernels. We plot the Ąrst 5 rotational invariant
kernels (up to second order) used by Schmid and Mohr [1997] to compute rotational
invariant descriptors. They consist of a Gaussian kernel (�) and combinations of
its derivatives as indicated by the subindices (expressed in Einstein notation for
compactness).

2.1.2 Hand-crafted local feature descriptors

In the previous section, we reviewed the development of corner and blob feature

detectors. While these methods provide candidate regions for matching, therefore

greatly simplifying the matching task by reducing the search space of candidate

matches, they do not directly provide any means for comparing two image regions.

Early corner detectors such as Moravec or Harris corners were typically matched by

comparing local image grayscale patches extracted around the detected corners with a

normalized correlation function [Faugeras et al., 1992; Thacker and Courtney, 1992].

However, this approach is very sensitive to misalignments, noise and illumination

changes, which lead to the development of more sophisticated feature descriptors.

An early feature descriptor was proposed by Schmid and Mohr [1997], where each

detected keypoint would be associated with a descriptor vector composed of nine

rotational diferential invariants. These invariants are computed by convolving the

image with a Gaussian kernel and diferent combinations of its derivatives (up to

third order), achieving better robustness to noise (due to the averaging efect of the

Gaussian Function) and illumination changes (due to diferentiation). The Ąrst Ąve

rotational invariant kernels are illustrated in Fig. 2-4. The obtained rotation-invariant

descriptor can be used in conjunction with a multi-scale approach to incorporate

invariance to scale changes. In order to obtain correspondences, these descriptors

are matched using the Mahalanobis distance. Alternatively, the descriptors can be
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(a) (b)

Figure 2-5: SIFT descriptor. (a) Illustration of the descriptor. The descriptor is
composed by 16 histograms arranged in a 4 × 4 grid, as shown in green. Each of these
histograms contains 8 orientation bins, shown by the arrows, which accumulate the
orientation of image gradients in a 4px×4px image cell. (b) Example SIFT descriptors
(green) extracted on oriented DoG keypoints (yellow). Figures reproduced from [Lowe,
2004] and Vedaldi and Fulkerson [2010].

normalized (using an estimate of the covariance matrix of each component) and then

be directly matched according to the Euclidean distance.

While the descriptor of Schmid and Mohr [1997] can achieve invariance to rotation

and scale changes, it is not robust to misalignment errors in the detections or local

deformations due to perspective projection. In order to address these issues, Lowe

[2004] proposed the SIFT descriptor which incorporates ideas from the biologically-

inspired complex-cell model of Edelman et al. [1997] that emulates the behaviour

of orientation-selective neurons which are insensitive to small translations. In order

to achieve a similar behaviour, the SIFT descriptor computes a set histograms of

image gradient orientations, each accumulating the gradient orientation information

of a particular image region around the detected keypoint, as illustrated in Fig. 2-5.

Typically, 16 histograms arranged in 4 × 4 grid around the keypoint are used for

computing a SIFT descriptor, each containing 8 orientation bins. The Ąnal descriptor

consists of the concatenation of these histograms, thus being 128-dimensional, and

is normalized to unit length. Note that while each histogram is associated with a

particular shift from the keypoint, each histogram only encodes orientation information
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in a small image region. In this sense, the SIFT descriptor is relatively insensitive to

small local translations, as the complex cells of Edelman et al. [1997]. While Lowe

[2004] proposes to use SIFT descriptors together with DoG keypoints, thus achieving

scale-invariant descriptors, they can also be combined with Harris-Aine keypoints

if aine invariant descriptors are required (at the cost of possibly lower detector

repeatability). For this, SIFT descriptors are computed over image patches which

are previously normalized using the keypointsŠ aine parameters, as illustrated in

Fig. 2-2c. In principle, SIFT features can be directly matched with the Euclidean

distance. However, because they are composed of histograms, the Hellinger kernel

constitutes a better distance as shown by Arandjelović and Zisserman [2012]. In a

similar spirit to the normalization used by Schmid and Mohr [1997], Arandjelović

and Zisserman [2012] propose a normalization for SIFT features consisting of an L1

normalization step followed by the square root (which they call RootSIFT features),

which allows using the Euclidean distance directly for comparison while obtaining the

beneĄts of using the Hellinger distance. While other hand-crafted descriptors have

been proposed, such as SURF [Bay et al., 2006], BRISK [Leutenegger et al., 2011],

ORB [Rublee et al., 2011], KAZE [Alcantarilla et al., 2012] and AKAZE [Alcantarilla

et al., 2013], SIFT (or its normalized version RootSIFT) has been much more widely

adopted, and it is still one of the main approaches used for instance-level matching,

and particularly for 3D reconstruction [Sattler et al., 2018; Dusmanu et al., 2019].

2.1.3 Trainable local feature descriptors

Despite the large success of SIFT features for many correspondence tasks, its matching

performance degrades under large viewpoint or non-aine illumination changes. This

limitation led to the development of trainable local feature descriptors, with the hope

that the required invariances to viewpoint and illumination-changes could be learnt

from data. However, trainable methods present additional challenges such as Ąnding

suitable training data and a suitable training loss.

In the early approach by Winder and Brown [2007], a parametric descriptor based

on modules inspired by hand-crafted descriptors such as SIFT is proposed, and the
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(a) (b)

Figure 2-6: Parametric descriptors inspired by SIFT. (a) Diferent spatial-
aggregation conĄgurations evaluated by Winder and Brown [2007]. (b) Parametric
spatial-aggregation conĄguration of Simonyan et al. [2014]. Figures reproduced from
the respective works.

task is to learn a good set of parameters for it. Simonyan et al. [2014] later extend

this approach by casting it as a convex optimisation problem, while also proposing

to learn a dimensionality reduction matrix which can improve descriptor matching

performance. These approaches are illustrated in Fig. 2-6.

While the previously described approaches were strongly inĆuenced by hand-crafted

descriptors such as SIFT, Jahrer et al. [2008] proposed to use a Convolutional Neural

Network (CNN) for computing descriptors inspired by the work of LeCun et al. [1998]

which used a CNN for character recognition. Jahrer et al. [2008] proposed both a

classiĄcation-based approach and a regression-based approach.

In the classiĄcation-based approach, the CNN model takes an input image patch

and classiĄes it among 600 keypoint classes. Correspondences are then assigned to

keypoints from the two images belonging to the same class. A similar approach had

been used in the past by Lepetit et al. [2005], but using randomized trees instead of

a CNN, and focusing on keypoints lying on particular objects. Furthermore, a very

similar approach using a CNN was recently proposed by Cieslewski et al. [2018], with

the main diference that it operates on the whole images and not on patches.

In the regression-based approach of Jahrer et al. [2008], the CNN model takes input

image patches and outputs 128-dimensional descriptors, which can be compared using

the Euclidean distance. Other similar regression-based CNN approaches which also

compare the output descriptor vectors with the Euclidean distance were later proposed
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(a) (b) (c)

Figure 2-7: Siamese CNN architectures for image comparison. (a) Early
Siamese architecture for signature comparison by Bromley et al. [1994]. (b) Siamese
architecture for patch description which uses the Euclidean distance for comparison
of Simo-Serra et al. [2015]. (c) Siamese architecture which incorporates a metric
learning module by Zagoruyko and Komodakis [2015]. Figures reproduced from the
respective works.

by Balntas et al. [2016a], Balntas et al. [2016b], Simo-Serra et al. [2015], Mishchuk

et al. [2017] and Tian et al. [2017]. During training, these regression-based CNN use

a Siamese conĄguration with shared weights, as illustrated in Fig. 2-7b. The main

diferences between these methods lie in the proposed CNN architectures and the

losses used for training.

Balntas et al. [2016a] propose the PN-Net model which is trained using triplets

of positive and negative pairs and propose a ratio loss which they term SoftPN. The

follow-up work by Balntas et al. [2016b] proposes a similar approach but incorporates

an in-triplet hard-negative mining approach, where the distance between the positive

and negative samples is also taken into account. They also compare the triplet ranking

loss with their previously proposed ratio loss and determine that the former leads to

superior matching performance. Mishchuk et al. [2017] propose to use a similar triplet

ranking loss, but search for a hard-negative in both images, and use the hardest of the

two. On the contrary, Tian et al. [2017] propose to use a diferent loss which jointly

optimizes all distances between a set of sampled descriptors from each image, which

they claim is a more realistic setting as the number of negative pairs is much larger
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than that of positive pairs.

Other authors such as Han et al. [2015] or Zagoruyko and Komodakis [2015],

incorporate metric learning into the descriptor learning problem and propose Siamese

regression-based CNN architectures which include a similarity computation block, as

illustrated in Fig. 2-7c.

An additional diference between these methods lies in the choice of training

data, and how ground-truth annotations for training are obtained. Most methods use

correspondences obtained from reconstructed 3D scenes, which can capture realistic dis-

tortions from perspective projection as well as diverse illumination conditions [Winder

and Brown, 2007; Balntas et al., 2016a; Simo-Serra et al., 2015; Balntas et al., 2016b;

Mishchuk et al., 2017; Tian et al., 2017; Han et al., 2015; Zagoruyko and Komodakis,

2015]. A diferent approach was proposed by Simonyan et al. [2014], who obtain corre-

spondences through homographies estimated using SIFT features. Alternatively, Jahrer

et al. [2008] use a self-supervised approach to generate training pairs, by applying

randomly-sampled transformations to a set of natural images.

2.1.4 Trainable local feature detectors

The trainable descriptors presented in the previous section operated on local image

patches, extracted around hand-crafted keypoints such as DoG. Therefore, the success

of such approaches depends, not only on having good descriptors for matching but also

on the repeatability of the detections. If the same points are not repeatedly detected

on the diferent images, then there is no chance for obtaining correct correspondences.

Recently, trainable keypoint detectors have also been proposed [Verdie et al.,

2015; Lenc and Vedaldi, 2016; Mishkin et al., 2018; Laguna et al., 2019], with the

hope of improving the detection repeatability in challenging conditions, compared to

hand-crafted methods. Some of these approaches are illustrated in Fig. 2-8.

Verdie et al. [2015] tackle the challenging problem of obtaining repeatable detec-

tions in urban scenes under strong illumination or appearance changes, such as in

day-night situations or under diferent weather conditions. For this, they train diferent

regression models to produce a scalar 2D response map, from which detections are
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Time change 

(a) (b) (c)

Figure 2-8: Different trainable detectors. (a) The TILDE detector of Verdie et al.
[2015] is trained with stacks of aligned webcam images to achieve high repeatability
under strong illumination and appearance changes. (b) The covariant detector of Lenc
and Vedaldi [2016] estimates a geometric transformation �� for each input patch x�,
which can be inverted to normalize the patches to the canonical frame. Note that
detections �1 and �2 are deĄned implicitly by the estimated transformations �1 and
�2. (c) The Key.Net architecture of Laguna et al. [2019] combines hand-crafted and
trainable operations in a multi-scale approach. Figures reproduced from the respective
works.

extracted by selecting local extrema, in a similar way to what is done with traditional

hand-crafted detectors. For training, they use webcam images which are spatially

aligned, as illustrated in Fig. 2-8a. For each scene, they cluster DoG detections that

appear at similar positions under many images as positive samples and select the

top-100 positive samples for each scene for training. Then, the model is trained

to produce local extrema at these positive positions, resulting in a detector with

high-repeatability.

Lenc and Vedaldi [2016] propose a diferent approach based on the covariance

constraint, with the purpose of learning a covariant feature detector. In their approach,

a CNN model estimates a geometric transformation from a small image patch, and

the inverse of this transformation can be used to normalize the patch to a canonical

frame, as shown in Fig. 2-8b. In this approach, detections are not explicitly deĄned

as extrema of a 2D response map, but rather implicitly deĄned by means of a local

geometric transformation. Then, the transformations from each patch are aggregated

to select the Ąnal keypoints using a voting system (which is similar in spirit to the

voting system of Hough [1962]). Note that this approach generalizes beyond corner
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detection, and can be used to detect oriented circular frames (such as in SIFT), or

aine frames (such as in Harris-Aine).

Mishkin et al. [2018] claim that repeatability alone does not ensure good matching,

and propose to use a triplet margin ranking loss which operates on distances between

auxiliary descriptors extracted at the detected features. They use this approach to

train an aine-region detection model that computes the aine parameters from an

input image patch, similarly to the Hessian-Aine detector. In this approach, the

keypoint selection criterion is based on the shape of the estimated ellipses, rejecting

the cases where the estimated ellipses are more elongated than a predeĄned axis ratio

threshold.

Finally, Laguna et al. [2019] propose a hybrid-CNN architecture for keypoint

detection, where a part of the parameters is trainable, while the other is manually

initialized to compute Ąrst and second-order image gradients or combinations of

these. These hand-crafted convolutional Ąlters are inspired by classic hand-crafted

detectors such as Harris and Stephens [1988] or Mikolajczyk and Schmid [2004]. Their

architecture also incorporates a multi-scale approach, where the same network is

Ąrst applied on an image pyramid, and a Ąnal trainable layer produces the output

2D response map from the fused features, as illustrated in Fig. 2-8c. For keypoint

selection, they propose to subdivide the image along a grid and select at most one

keypoint for each grid cell by using an Index Proposal operation, which is equivalent

to the soft-argmax operation used by Yi et al. [2016]. They also propose a multi-scale

extension that is less dependent on the chosen grid size.

2.1.5 Jointly-trained detectors and descriptors

In the previous two sections, we presented trainable keypoint detectors and descriptors,

which were developed and trained independently. Given the success of end-to-end

training for problems such as image classiĄcation, it is natural to ask whether it is

possible to train jointly a keypoint detector and a descriptor in an end-to-end way.

Recent work by Yi et al. [2016], Ono et al. [2018], DeTone et al. [2018], Dusmanu

et al. [2019] and Revaud et al. [2019] delve into this problem and propose diferent
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(a)

(b) (c)

Figure 2-9: Different jointly-trainable detectors and descriptors. (a) The
LIFT modular pipeline from Yi et al. [2016] contains trainable detection, orientation,
and description modules. (b) The Superpoint method of DeTone et al. [2018] uses a
shared encoder, from which both detections and descriptions are computed by two
independent decoder heads. (c) The D2-Net method of Dusmanu et al. [2019] extracts
a deep 3D feature map which has a dual interpretation as a set of densely extracted
1D descriptor vectors, and a set of stacked 2D detection response maps. Figures
reproduced from the respective works.

approaches for its solution. Some of these methods are illustrated in Fig. 2-9.

Yi et al. [2016] proposed the LIFT method which follows the modular pipeline used

in classic hand-crafted methods, but using trainable modules for detection, orientation

estimation and description, as illustrated in Fig. 2-9a. However, training such a

complex pipeline in an end-to-end way is non-trivial. Therefore the authors resort to

a sequential training scheme, where the descriptor module is trained Ąrst, followed by

the orientation module (which is conditioned on the learnt descriptor), and Ąnally,

the detection module is trained (conditioned on the other two learnt modules). For

training, local image patches extracted from a 3D reconstruction dataset are used.

While this provides diverse training data it also introduces a bias in the detector,
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as the locations of the learnt detections are constrained to lie on the same patches

as the DoG detections from the 3D reconstruction, due to the patch-based training

scheme. During evaluation, the detection model is decoupled and run over the full

input image in a multi-scale fashion, obtaining a 2D response map for each scale.

Then, a non-maximum suppression (NMS) operation is used to select a sparse set of

keypoints, from which patches are extracted and fed to orientation and description

modules, following the classical hand-crafted methods.

Ono et al. [2018] propose LF-Net which extends the approach of Yi et al. [2016],

but incorporates both the orientation estimation and the multi-scale treatment into

the detector module. In this way, it can operate on full images in both training and

evaluation. Ono et al. [2018] also propose diferent training losses for training the

detector and descriptor modules. In particular, they propose an image-level detector

loss which minimizes the error between the 2D response maps of both images. This

approach is more general and does not constrain the keypoint locations to lie in a

neighbourhood of the DoG keypoints, as in the case of LIFT.

DeTone et al. [2018] take a diferent path, and instead of following the classic

sequential pipeline of Ąrst detecting keypoints and then computing descriptors, they

propose a CNN which computes a common representation from which both detectors

and descriptors are computed in parallel by two diferent output decoder heads, as

illustrated in Fig. 2-9b. This parallelisation of the model facilitates training, as heads

can be trained independently with diferent losses, with less interference than in the

sequential model. On the contrary, the computational cost is increased as descriptors

must be extracted densely (albeit with a downscaling factor of 1/8 with respect to the

input resolution). A similar approach is followed by Revaud et al. [2019], but they

propose a diferent training scheme to maximize the repeatability of the detections

and discriminativeness of the keypoints.

The approach proposed by Dusmanu et al. [2019] is also similar to the one of DeTone

et al. [2018]. However, it only features a single head which has a dual interpretation

as a densely extracted set of 1D descriptors or a stack of 2D detection responses,

as illustrated in Fig. 2-9c. In this way, all parameters are shared between the
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detector and descriptor. Note that this approach bears a resemblance with the early

method of Schmid and Mohr [1997] using rotational diferential invariants, where each

component of the descriptor could be seen as a blob detector (cf. Fig. 2-4).

2.1.6 Densely extracted descriptors

Up to this point, we have described approaches for obtaining sparse local features,

which are typically obtained by Ąrst, detecting interest points, and then, by comput-

ing descriptors around these interest points. This two-stage approach ofers several

advantages. On the one side, the detector, which is typically computationally inexpen-

sive, can be run at a high-resolution, producing very accurately localized keypoints

(sometimes even with sub-pixel accuracy). On the other side, the detection stage

produces a sparse set of image keypoints to be described and matched, therefore

reducing the computational burden of these two subsequent stages. However, under

strong illumination changes, detectors can sufer from low repeatability, which hinders

the subsequent correspondence estimation task.

In order to overcome this issue, it is possible to forego the detection stage and

instead compute descriptors densely over a coarse grid on the input image. This

approach has been found beneĄcial for tasks which require matching under strong-

illumination changes, such as large-scale visual search [Torii et al., 2015; Arandjelović

et al., 2016; Noh et al., 2017]. Recently, densely extracted features have been also

employed directly for 3D computer vision tasks, such as 3D reconstruction [Widya

et al., 2018], indoor localization and camera pose estimation [Taira et al., 2018], and

outdoor localization with night-time queries [Germain et al., 2019; Sattler et al., 2018].

Note that while densely extracted features used for image retrieval are typically

computed on a coarse low-resolution grid (e.g. 40 × 30), 3D computer vision tasks will

typically require more accurately localized points. Extracting dense and accurately

localized features, while keeping computational and memory requirements reasonable

is one of the challenges of this approach. Very recently, Germain et al. [2019] have

proposed to use a hybrid approach where, given two images to be matched, descriptors

are computed over detected keypoints in one image, but extracted densely over the



32 CHAPTER 2. LITERATURE REVIEW

other image.

In the following chapters of this thesis, we adopt the approach of using densely

extracted features for matching, to be able to handle large appearance changes, as

in the cases of day-to-night matching, or category-level matching. Furthermore, in

chapter 6 we propose an approach for improving the localization accuracy of the

obtained matches.

2.1.7 Filtering incorrect matches

In order to obtain correspondences using local image features, putative or tentative

matches between descriptors are obtained by nearest-neighbour search, with the

Euclidean distance. However, this typically yields a portion of incorrect matches.

Therefore, diferent heuristics or Ąltering techniques have been proposed to improve

the fraction of correct matches in the set of tentative matches.

Second nearest-neighbour test. Lowe [2004] proposes a criterion for eliminating

ambiguous matches, as determined by the distance of one descriptor to the Ąrst and

second nearest-neighbours in the set of descriptors of the other image. If the ratio of

distances to the Ąrst and second nearest neighbours is above a given threshold (typically

around 0.8), then the match is deemed too ambiguous and rejected. One drawback

of this technique is that the radio threshold hyperparameter needs to be manually

adjusted for each type of descriptor. This approach is illustrated in Fig. 2-10a.

Mutual correspondence test. An alternative criterion is to enforce mutual corre-

spondence (or cross correspondence) as described by Schmid [1996]. The approach

consists in rejecting those matches where the descriptors are not mutually nearest-

neighbours when considering the match assignment in both directions. One advantage

of this method is that, contrary to the ratio test, it does not require selecting any

hyperparameters. This approach is illustrated in Fig. 2-10b.
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(c) (d)

Figure 2-10: Methods for filtering incorrect matches. (a) LoweŠs second nearest-
neighbour test (or ratio test) retains matches where the ratio of distances to the Ąrst
and second nearest-neighbours is below a threshold. (b) The mutual correspondence
test retains correspondences that are mutual when matching in both directions. (c)
RANSAC can be used to robustly Ąt a geometric model (such as homography in the
case of planar objects) and reject the matches that are not in agreement with the
model. (d) Neighbourhood consensus retains correspondences which have a number of
coherent supporting matches in their neighbourhoods.

Global geometric constraints. In many cases, we know by prior knowledge that

correspondences should respect a particular geometric constraint. For instance, if the

imaged scene is planar, then correspondences between two images should be related

by a homography. Or if the scene has an arbitrary 3D structure but is static, then

the epipolar constraint must be satisĄed. In these cases, the RANSAC algorithm

by Fischler and Bolles [1981] can be used to robustly estimate the parameters of these

geometric models, while removing the matches that are not in agreement with it,

which are typically the incorrect ones. This method has been widely successful and

is employed in many algorithms for pose estimation and 3D reconstruction, among

others. Several variants and extensions have been proposed [Chum et al., 2003, 2005;

Sattler et al., 2009; Lebeda et al., 2012]. This approach is illustrated in Fig. 2-10c.

Neighbourhood consensus. A drawback of the RANSAC method is that a global

geometric constraint should be satisĄed by all matches. While epipolar geometry can
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be used for static scenes, it is not a correct model for scenes which contain objects

moving rigidly (e.g. cars) or non-rigidly (e.g. walking people). A diferent approach,

called neighbourhood consensus, is based on establishing semi-local geometric con-

straints instead of a global geometric constraint. In this approach, the criterion

used to Ąlter matches relies on the local supporting evidence from the neighbouring

matches, as illustrated in Fig. 2-10d. The criterion used for retaining or rejecting

matches can be based on patterns of distances [Zhang et al., 1995], angles between

neighbouring matches [Schmid and Mohr, 1997], or simply by counting the number of

consistent matches in a certain image neighbourhood [Schafalitzky and Zisserman,

2002a; Sivic and Zisserman, 2003; Sattler et al., 2009; Bian et al., 2017]. While simple,

these techniques have been remarkably efective in removing incorrect matches and

disambiguating local repetitive patterns [Sattler et al., 2009].

Trainable match filtering methods. Recently, trainable approaches have also

been proposed for the task of Ąltering local feature correspondences [Brachmann and

Rother, 2019; Yi et al., 2018; Sarlin et al., 2019; Zhang et al., 2019]. Yi et al. [2018]

propose a neural-network architecture that operates on 4D match coordinates and

classiĄes each correspondence as either correct or incorrect. Brachmann and Rother

[2019] propose the Neural-guided RANSAC, which extends the previous method to

produce weights instead of classiĄcation labels, which are used to guide RANSAC

sampling. Zhang et al. [2019] also extend the work of Yi et al. in their proposed Order-

Aware Networks, which capture the local context by clustering 4D correspondences

into a set of ordered clusters, and the global context by processing these clusters with

a multi-layer perceptron. Finally, Sarlin et al. [2019] propose to use a graph neural

network followed by an optimisation procedure to estimate correspondences between

two set of local features.

In chapter 5, we propose an end-to-end trainable method for feature extraction,

matching and match Ąltering. Our model implements the neighbourhood consensus

principle as a 4D convolutional neural network that operates on the 4D space of

correspondences and allows learning the geometric patterns of correspondence that
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allow diferentiating a correct match from an incorrect one. In chapter 6, we revisit

this approach and propose improvements to make it more eicient, as well as for

obtaining better-localized matches.

2.2 Category-level matching

In this section, we present recent work for category-level matching (also called semantic

matching). In this scenario, we want to Ąnd correspondences between images showing

diferent instances of objects from the same object categories. We begin by reviewing

the earliest methods based on hand-crafted descriptors in Sec. 2.2.1. Then, in Sec. 2.2.2

we review more recent methods that employ CNN features, both as stand-alone pre-

trained features or as part of a trainable pipeline.

2.2.1 Methods based on hand-crafted descriptors

Early methods for category-level matching employed hand-crafted descriptors like

SIFT [Lowe, 2004] or HOG [Dalal and Triggs, 2005] together with optimization

approaches for image alignment, based on the minimization of a given energy function.

Berg et al. [2005] match sparse features extracted on edges, and propose an

approximate solution to an integer quadratic programming (IQP) problem for Ąnding

the match assignments which jointly minimize an appearance and distortion cost. Their

algorithm produces a small set of geometrically consistent correspondences, which

can later be used to Ąt a thin-plate spline model for obtaining dense correspondences.

For feature description, the authors develop a descriptor based on the Geometric

Blur operation by Berg and Malik [2001], previously used for template matching. A

qualitative example is presented in Fig. 2-11a.

Liu et al. [2011] propose SIFT Flow, which adopts the computational framework of

optical Ćow, but employs more general SIFT features instead of RGB values. Contrary

to the approach of Berg et al. [2005] which uses sparse descriptors extracted on edges,

the SIFT Flow method uses densely extracted descriptors, computed at each image

pixel. This makes match assignment computationally expensive as the search space of
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Sparse matches Dense matches (from Ątting a thin-plate spline)

(a) Sparse matching method of Berg et al. [2005] using IQP.

Source image Target image Output Flow Ąeld

(b) SIFT Flow method of Liu et al. [2011].

Source image Target image Output Flow Ąeld

(c) Graph matching kernel method of Duchenne et al. [2011].

Source image Target image Output Transferred mask

(d) DSP method of Kim et al. [2013]

Source image Target image Output Flow Ąeld

(e) Proposal Flow method of Ham et al. [2017]

Figure 2-11: Sample results from category-level matching methods using
hand-crafted features.



37

possible correspondences is very large. In order to address this issue, Liu et al. [2011]

propose a coarse-to-Ąne matching scheme which, Ąrst, computes correspondences

between the lowest resolution levels of two image pyramids built from the input images

and, then, progressively processes the higher-resolution levels using the previous result

as initialization. Speed-ups are obtained by only performing exhaustive matching at

the lowest resolution, and searching in a local 11 × 11 window in the higher pyramid

levels. Experiments show that this approach does not only improve runtime but also

leads to better solutions. A qualitative example is presented in Fig. 2-11b.

The graph matching kernel (GMK) approach of Duchenne et al. [2011] could be

seen as an intermediate approach between the sparse matching method of Berg et al.

[2005] and the dense SIFT Flow method of Liu et al. [2011]. While, similarly to

SIFT Flow, the approach of Duchenne et al. [2011] uses features extracted on a grid,

these are not extracted at individual pixel positions but on a coarse grid of resolution

30 × 40. These densely extracted descriptors are then matched by formulating the

problem as a graph matching problem and solving the optimization using an extension

of the graph cut method of Ishikawa [2003]. Note that while they use a single scale

for optimization with a search window of 11 × 11 features, the actual receptive Ąeld

of each feature is much larger than in SIFT Flow, which allows the method to still

be able to handle large displacements. This work uses the descriptors of Boureau

et al. [2010], which are based on the sparse coding of SIFT descriptors. A qualitative

example is presented in Fig. 2-11c.

Kim et al. [2013] propose the Deformable Spatial Pyramid (DSP) method, which

uses a similar multi-scale approach to SIFT Flow, but has two main diferences.

First, while the image pyramids used in SIFT Flow are constructed by progressively

subsampling the original image, the spatial pyramid in DSP is deĄned in the opposite

order. Following the approach initially proposed by Lazebnik et al. [2006] for image

classiĄcation, Kim et al. [2013] use a spatial pyramid which starts from a single cell

which spans the whole image, and which is progressively subdivided into four smaller

cells at each additional level of the pyramid. A Ąnal level is then added, where each

pixel is considered a cell. Then, a graph is constructed where each node corresponds
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to a cell, and edges connect neighbouring cells of the same level (except in the Ąnal

level) as well as between parent and child cells. The second main diference is that

while in SIFT Flow the diferent pyramid-levels are processed sequentially, in DSP

the matches between the multi-level graphs are optimized jointly. Compared to SIFT

Flow, the DSP approach achieves better matching accuracy while being noticeably

faster. This work uses SIFT descriptors aggregated at each cell for matching. A

qualitative example is presented in Fig. 2-11d.

While the previous methods computed correspondences between features extracted

at keypoints or on uniform grids, the Proposal Flow method of Ham et al. [2017]

performs matching over features computed on category-independent multi-scale region

proposals, which had been successfully employed for object detection [Girshick et al.,

2014]. These proposals can contain full objects or object parts, as well as salient

background regions. Contrary to previous approaches which relied on the optimization

of an energy function for matching, Ham et al. [2017] propose to compute the most

probable matches through a bayesian formulation. Their best performing approach,

called local offset matching, uses a principle which is close to neighbourhood consensus

to model the probabilities of matching regions. Once matches between region proposals

are established, a Ćow Ąeld can be computed and used to align the input images.

Proposal Flow uses HOG descriptors [Dalal and Triggs, 2005] extracted on 8 × 8

patches. A qualitative example is presented in Fig. 2-11e.

2.2.2 Methods based on CNNs

Following the success of CNNs for image classiĄcation, a lot of research efort was

devoted to gaining a deeper understanding of their inner workings. One of the questions

that arose was whether their intermediate representations could be used for estimating

correspondences.

Long et al. [2014] studied such problem and showed that it was possible to replace

the densely extracted SIFT features in the SIFT Flow method by intermediate CNN

features obtaining similar results. For this, they used conv4 features from a pretrained

AlexNet CNN model, originally used for image classiĄcation [Krizhevsky et al., 2012].
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(a)

(b)

(c)

(d)

(e)

(f)

Source image Target image Output

Figure 2-12: Sample results from category-level matching methods using
CNN features. (a) Method of Ufer and Ommer [2017]. (b) WarpNet method
of Kanazawa et al. [2016]. (c) FCSS method of Kim et al. [2018b]. (d) AnchorNet
features of Novotny et al. [2017] within the Proposal Flow framework of Ham et al.
[2017]. (e) PARN method of Jeon et al. [2018]. (f) RTN method of Kim et al. [2018a].
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Ufer and Ommer [2017] use the same AlexNet conv4 features, but extract them

in a multi-scale fashion using an image pyramid. Furthermore, instead of matching

all densely extracted features, they propose a keypoint selection method based on

thresholding the aggregated activation values across all feature channels and performing

non-maximum suppression over the featureŠs 2D entropy map. Finally, they select a

Ąxed number of top features for each scale. After individual multi-scale features have

been extracted using this approach, they propose to match them using an Integer

Quadratic Program, followed by a thin-plate spline model Ątting to obtain dense

correspondences (similarly to the early approach by Berg et al. [2005]). A qualitative

example of the method of Ufer and Ommer [2017] is shown in Fig. 2-12a.

While these methods used CNN features for estimating correspondences, these are

pretrained features on image classiĄcation and are treated as Ąxed feature extractors.

Furthermore, these methods do not propose to learn any additional parameters

but are rather based on optimization schemes for match assignment. Other works

have gone further, both by attempting to learn better descriptors for the matching

task speciĄcally, or by learning to assign correspondences instead of relying on an

optimization scheme.

Kanazawa et al. [2016] propose a Siamese architecture which regresses the parame-

ters of a thin-plate-spline (TPS) transformation and show that their model can be

trained from weak-supervision using only foreground object masks. A qualitative

example is presented in Fig. 2-12b. For training, they use a weakly-supervised ap-

proach to obtain a set of natural geometric deformations from a Ąne-grained dataset

of birds, and a self-supervised approach to generate synthetically warped images by

sampling from this set of deformations. Finally, corresponding foreground points on

the pairs of synthetically warped images are used for computing the training loss.

The method we present in Chapter 3 is closely inspired by this approach but uses a

diferent operation for fusing both branches of the Siamese network and can handle

category-level matching with multiple classes of objects, as well as instance-level

matching.

Kim et al. [2018b] propose to combine pretrained CNN layers with additional layers
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which are trained from scratch to compute their fully convolutional self-similarity

features (FCSS), which are densely extracted features trained speciĄcally for category-

level matching. For training, they propose a weakly-supervised scheme where positive

and negative training pairs are collected at each training step by, Ąrst, computing

putative matches within object bounding boxes by k-NN search and, then, Ąltering

these matches with the mutual correspondence criterion. The pairs of features that

satisfy the cross-correspondence criterion are then used as positive pairs, while those

which do not are used as negative pairs. These positive and negative pairs are then

employed by a contrastive loss to train the model. After the model is trained, FCSS

features can be extracted for a pair of images, and correspondences can be computed

directly by nearest-neighbour search. A qualitative example of the alignment obtained

by matching FCSS features is shown in Fig. 2-12c. The follow-up work [Kim et al.,

2017] uses FCSS features within an optimization framework to obtain smoother

correspondence Ąelds than those obtained from nearest-neighbour matching alone.

Han et al. [2017] propose the SCNet model that extends the Proposal Flow method

of Ham et al. [2017]. As in Proposal Flow, SCNet also employs region proposals

for estimating category-level correspondences. However, instead of computing region

proposals similarities by comparing HOG features, they propose to compute deep CNN

descriptors for each region proposal (similarly to R-CNN Girshick et al. [2014]), which

are then processed by an additional fully-connected layer and compared using a rectiĄed

cosine similarity. The model is trained using a hinge loss with an L2 regularization

term on the similarity matrix, where pairs of positive and negative proposals are

deĄned by exploiting the manually annotated keypoints of the PF-PASCAL dataset.

Novotny et al. [2017] propose the AnchorNet CNN architecture for learning semantic

object parts using very weak image-level supervision, where only class labels are

required. Their CNN architecture Ąrst extracts dense hypercolumn descriptors, which

are initialized using a pretrained image classiĄcation model. Then, class-speciĄc

convolutional Ąlters are used to discover diverse and discriminative object parts. In

addition, they propose to combine these class-speciĄc Ąlters by means of a denoising

autoencoder to obtain more general class-agnostic features. Besides showing that
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meaningful object parts can be learnt from such weak supervision, they show that their

learnt class-agnostic features can be used for semantic keypoint transfer, by replacing

HOG features in the Proposal Flow framework (yielding similar performance), or

SIFT features in DSP (yielding superior performance). A qualitative example of the

alignment obtained by using AnchorNet features within the Proposal Flow framework

is shown in Fig. 2-12d.

In the follow-up work of Novotny et al. [2018], self-supervision is used to train a

Siamese CNN model for image matching, where supervision is provided in the form of

synthetically warped natural images. In addition to the estimated dense feature maps,

the model computes a 2D scalar conĄdence map for each image, which estimates the

belief that a reliable correspondence can be established using the features at each

position, serving a similar purpose as a feature detector. Interestingly, while the model

is trained for the matching task only, some channels of the learnt features activate on

distinct object parts, showing a duality between obtaining reliable correspondences

and learning object keypoints.

While the previous methods focused on learning descriptors for category-level

matching [Kim et al., 2018b; Novotny et al., 2017, 2018] or a similarity metric between

them [Han et al., 2017], other methods propose to additionally learn to estimate a

transformation between two input images.

Jeon et al. [2018] propose the PARN model which uses the spatial pyramid repre-

sentation from Kim et al. [2013], and uses a stack of Siamese CNNs for estimating an

aine transformation Ąeld at each cell of the pyramid. While a global aine transfor-

mation is estimated for the top cell of the pyramid, residual aine transformations

are estimated for all cells on the lower levels. Similarly to the FCSS method [Kim

et al., 2018b], supervision is obtained by Ąnding candidate matches and Ąltering them

with the mutual correspondence test. A qualitative example of the PARN method is

shown in Fig. 2-12e.

Kim et al. [2018a] propose the RTN model, which uses a similar Siamese CNN

architecture for estimating an aine transformation Ąeld, but proceeds in a multi-scale

recurrent approach that resembles that of SIFT Flow. On a Ąrst iteration, features
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are extracted with a large stride parameter, which results in a high subsampling

factor. Then, these features are matched using a correlation operation and fed into a

transformation estimation network that regresses a coarse aine Ąeld. In the subsequent

iterations, the stride parameter is progressively decreased, and residual and more

precisely localized transformations are estimated. Note that contrary to the PARN

model which contained a stack of CNNs for processing each cell of the spatial pyramid,

a single CNN model is used recurrently in RTN. The network is trained using the

weakly-supervised scheme of the FCSS method [Kim et al., 2018b] to generate positive

and negative pairs but using a diferent classiĄcation-based loss. A qualitative example

of the RTN method is shown in Fig. 2-12f. A similar iterative approach is presented

in Chapter 3.

Very recently, Lee et al. [2019] proposed the SFNet method which can estimate a

dense Ćow Ąeld for semantic image alignment. Similarly to the Siamese CNN model

in RTN, dense features are extracted for both images and matched using a correlation

operation. However, the SFNet propose to use a kernel soft argmax operation to

compute a dense Ćow Ąeld from the correlation values, instead of regressing the

parameters of an aine model. For training, synthetically warped images are used, as

well as their foreground masks. The supervision is given by a mask consistency loss, a

Ćow consistency loss (which favours mutual correspondence) and a smoothness loss

which operates as a regularization term.
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Chapter 3

CNN architecture for geometric

matching

In this chapter, we develop a trainable architecture for estimating correspondences

between a pair of images. However, instead of estimating a sparse set of correspondences

by matching local image features, as is often done in instance-level matching, we

adopt the approach of estimating the parameters of a geometric model such as

aine, homography or thin-plate spline. These geometric transformations ofer a

strong regularization, which can be helpful for Ąnding correspondences under large

appearance changes, such as in the case of category-level matching.

The contributions of this chapter are three-fold. First, we propose a convolutional

neural network architecture for geometric matching. The architecture is based on three

main components that mimic the standard steps of feature extraction, matching and

simultaneous inlier detection and model parameter estimation while being trainable

end-to-end. Second, we demonstrate that the network parameters can be trained from

synthetically generated imagery without the need for manual annotation and that our

matching layer signiĄcantly increases generalization capabilities to never seen before

images. Finally, we show that the same model can perform both instance-level and

category-level matching giving state-of-the-art results on the challenging PF, TSS and

Caltech-101 datasets.

45
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3.1 Introduction

Estimating correspondences between images is one of the fundamental problems

in computer vision [Forsyth and Ponce, 2002; Hartley and Zisserman, 2003] with

applications ranging from large-scale 3D reconstruction [Agarwal et al., 2011] to

image manipulation [HaCohen et al., 2011] and semantic segmentation [Rubinstein

et al., 2013]. Traditionally, correspondences consistent with a geometric model such

as epipolar geometry or planar aine transformation, are computed by detecting

and matching local features (such as SIFT [Lowe, 2004] or HOG [Dalal and Triggs,

2005; Ham et al., 2017]), followed by pruning incorrect matches using local geometric

constraints [Schmid and Mohr, 1997; Sivic and Zisserman, 2003] and robust estimation

of a global geometric transformation using algorithms such as RANSAC [Fischler and

Bolles, 1981] or Hough transform [Hough, 1962; Lamdan et al., 1988; Leibe et al.,

2008; Lowe, 2004]. This approach works well in many cases but fails in situations that

exhibit (i) large changes of depicted appearance due to e.g. intra-class variation [Ham

et al., 2017], or (ii) large changes of scene layout or non-rigid deformations that require

complex geometric models with many parameters which are hard to estimate in a

manner robust to outliers.

In this chapter we build on the traditional approach and develop a convolutional

neural network (CNN) architecture that mimics the standard matching process. First,

we replace the standard local features with powerful trainable convolutional neural

network features [Krizhevsky et al., 2012; Simonyan and Zisserman, 2015], which

allows us to handle large changes of appearance between the matched images. Second,

we develop trainable matching and transformation estimation layers that can cope with

noisy and incorrect matches in a robust way, mimicking the good practices in feature

matching such as the second nearest-neighbour test [Lowe, 2004], neighbourhood

consensus [Schmid and Mohr, 1997; Sivic and Zisserman, 2003] and Hough transform-

like estimation [Hough, 1962; Lamdan et al., 1988; Leibe et al., 2008; Lowe, 2004].

The outcome is a convolutional neural network architecture trainable for the

end-task of geometric matching, which can handle large appearance changes, and is
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Figure 3-1: Top: The proposed model can be trained from synthetic image pairs,
avoiding the need for manual annotation. Bottom: At evaluation time, the trained
geometry estimation network automatically aligns two images with substantial ap-
pearance diferences. It is able to estimate large deformable transformations robustly
in the presence of clutter.

therefore suitable for both instance-level and category-level matching problems.

The contributions of this chapter are three-fold. First, we propose a convolutional

neural network architecture for geometric matching, which mimics the standard steps

of feature extraction, matching and simultaneous inlier detection and model parameter

estimation, while being trainable end-to-end. Second, we demonstrate that the network

parameters can be trained from synthetically generated imagery without the need for

manual annotation and that our matching layer signiĄcantly increases generalization

capabilities to never seen before images. Finally, we show that the same model can

give state-of-the-art results on several challenging datasets for category-level image
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alignment. Our approach is illustrated in Fig. 3-1.

All training and evaluation code, as well as our trained networks, are available

at http://www.di.ens.fr/willow/research/cnngeometric/.

3.2 Related work

The classical approach for Ąnding correspondences involves identifying interest points

and computing local descriptors around these points [Harris and Stephens, 1988;

Schmid and Mohr, 1997; Lowe, 2004; Mikolajczyk and Schmid, 2002; Lowe, 2004;

Berg et al., 2005; Bay et al., 2006]. While this approach performs relatively well for

instance-level matching, the feature detectors and descriptors lack the generalization

ability for category-level matching.

Recently, convolutional neural networks have been used to learn powerful feature

descriptors which are more robust to appearance changes than the classical descriptors

[Jahrer et al., 2008; Simo-Serra et al., 2015; Han et al., 2015; Zagoruyko and Komodakis,

2015; Balntas et al., 2016a; Noh et al., 2017]. However, these works are focused on

learning descriptors [Jahrer et al., 2008; Simo-Serra et al., 2015; Balntas et al., 2016a;

Noh et al., 2017], or a similarity measure between descriptors [Han et al., 2015;

Zagoruyko and Komodakis, 2015; Altwaijry et al., 2016], and do not target the

problem of Ąnding the transformation relating the two input images. In this chapter,

we go a step further from CNN descriptors, and seek to also learn to estimate the

geometric transformation.

Related are also network architectures for estimating inter-frame motion in video [Wein-

zaepfel et al., 2013; Fischer et al., 2015; Thewlis et al., 2016] or instance-level homog-

raphy estimation [DeTone et al., 2016], however their goal is very diferent from ours,

targeting high-precision correspondence with very limited appearance variation and

background clutter. Closer to us is the network architecture of [Kanazawa et al., 2016]

which, however, tackles a diferent problem of Ąne-grained category-level matching

(diferent species of birds) with limited background clutter and small translations and

scale changes, as their objects are largely centered in the image. In addition, their

http://www.di.ens.fr/willow/research/cnngeometric/


49

architecture is based on a diferent matching layer, which we show not to perform as

well as the matching layer used in our work.

Some works, such as [Berg et al., 2005; Liu et al., 2011; Duchenne et al., 2011; Kim

et al., 2013; Long et al., 2014; Ham et al., 2017], have addressed the hard problem

of category-level matching, but rely on traditional non-trainable optimization for

matching [Berg et al., 2005; Liu et al., 2011; Duchenne et al., 2011; Kim et al., 2013;

Long et al., 2014], or guide the matching using object proposals [Ham et al., 2017].

On the contrary, our approach is fully trainable in an end-to-end manner and does

not require any optimization procedure at evaluation time, or guidance by object

proposals.

Others [Learned-Miller, 2006; Shokrollahi Yancheshmeh et al., 2015; Zhou et al.,

2015] have addressed the problems of instance and category-level correspondence by

performing joint image alignment. However, these methods difer from ours as they:

(i) require class labels; (ii) donŠt use CNN features; (iii) jointly align a large set of

images, while we align image pairs; and (iv) donŠt use a trainable CNN architecture

for alignment as we do.

3.3 Architecture for geometric matching

In this section, we introduce a new convolutional neural network architecture for

estimating parameters of a geometric transformation between two input images. The

architecture is designed to mimic the classical computer vision pipeline (e.g. [Philbin

et al., 2007]), while using diferentiable modules so that it is trainable end-to-end

for the geometry estimation task. The classical approach consists of the following

stages: (i) local descriptors (e.g. SIFT) are extracted from both input images, (ii)

the descriptors are matched across images to form a set of tentative correspondences,

which are then used to (iii) robustly estimate the parameters of the geometric model

using RANSAC or Hough voting.

Our architecture, illustrated in Fig. 3-2, mimics this process by: (i) passing input

images �� and �� through a Siamese architecture consisting of convolutional layers,
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Feature extraction CNNIA fA

Feature extraction CNNIB fB

W Matching fAB
Regression

CNN
θ

Figure 3-2: Diagram of the proposed architecture. Images �� and �� are passed
through feature extraction networks which have tied parameters � , followed by a
matching network which matches the descriptors. The output of the matching network
is passed through a regression network which outputs the parameters of the geometric
transformation.

thus extracting feature maps �� and �� which are analogous to dense local descriptors,

(ii) matching the feature maps (densely extracted descriptors) across images into a

tentative correspondence map ���, followed by a (iii) regression network which directly

outputs the parameters of the geometric model, �, in a robust manner. The inputs to

the network are the two images, and the outputs are the parameters of the chosen

geometric model, e.g. a 6-D vector for an aine transformation.

In the following, we describe each of the three stages in detail.

3.3.1 Feature extraction

The Ąrst stage of the pipeline is feature extraction, for which we use a standard

CNN architecture. A CNN without fully connected layers takes an input image and

produces a feature map � ∈ R
ℎ×�×�, which can be interpreted as a ℎ × � dense

spatial grid of �-dimensional local descriptors. A similar interpretation has been

used previously in instance retrieval [Azizpour et al., 2015; Babenko and Lempitsky,

2015; Gong et al., 2014; Arandjelović et al., 2016] demonstrating high discriminative

power of CNN-based descriptors. Thus, for feature extraction we use the VGG-16

network [Simonyan and Zisserman, 2015], cropped at the pool4 layer (before the

ReLU unit), followed by per-feature L2-normalization. We use a pre-trained model,

originally trained on ImageNet [Deng et al., 2009] for the task of image classiĄcation.

As shown in Fig. 3-2, the feature extraction network is duplicated and arranged in a

Siamese conĄguration such that the two input images are passed through two identical
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networks which share parameters.

3.3.2 Matching network

The image features produced by the feature extraction networks should be combined

into a single tensor as input to the regressor network to estimate the geometric

transformation. We Ąrst describe the classical approach for generating tentative

correspondences, and then present our matching layer which mimics this process.

Tentative matches in classical geometry estimation. Classical methods start

by computing similarities between all pairs of descriptors across the two images. From

this point on, the original descriptors are discarded as all the necessary information

for geometry estimation is contained in the pairwise descriptor similarities and their

spatial locations. Secondly, the pairs are pruned by either thresholding the similarity

values, or, more commonly, by only keeping the matches which involve the nearest

(most similar) neighbours. Furthermore, the second nearest-neighbour test [Lowe,

2004] prunes the matches further by requiring that the match strength is signiĄcantly

stronger than the second best match involving the same descriptor, which is very

efective at discarding ambiguous matches.

Matching layer. Our matching layer applies a similar procedure. Analogously to

the classical approach, only descriptor similarities and their spatial locations should

be considered for geometry estimation, and not the original descriptors themselves.

To achieve this, we propose to use a correlation layer followed by normalization.

Firstly, all pairs of similarities between descriptors are computed in the correlation

layer. Secondly, similarity scores are processed and normalized such that ambiguous

matches are strongly down-weighted.

In more detail, given L2-normalized dense feature maps ��, �� ∈ R
ℎ×�×�, the

correlation map ��� ∈ R
ℎ×�×(ℎ×�) outputted by the correlation layer contains at each

position the scalar product of a pair of individual descriptors f� ∈ �� and f� ∈ ��, as

detailed in Eq. (3.1).
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Figure 3-3: Correlation map computation with CNN features. The correlation
map ��� contains all pairwise similarities between individual features f� ∈ �� and
f� ∈ ��. At a particular spatial location (�, �) the correlation map output ��� contains
all the similarities between f�(�, �) and all f� ∈ ��.

���(�, �, �) = f�(�, �)� f�(��, ��) (3.1)

where (�, �) and (��, ��) indicate the individual feature positions in the ℎ × � dense

feature maps, and � = ℎ(�� ⊗ 1) + �� is an auxiliary indexing variable for (��, ��).

A diagram of the correlation layer is presented in Fig. 3-3. Note that at a particular

position (�, �), the correlation map ��� contains the similarities between f� at that

position and all the features of ��.

As is done in the classical methods for tentative correspondence estimation, it is im-

portant to postprocess the pairwise similarity scores to remove ambiguous matches. To

this end, we apply a channel-wise normalization of the correlation map at each spatial

location to produce the Ąnal tentative correspondence map ���. The normalization is

performed by ReLU, to zero out negative correlations, followed by L2-normalization,

which has two desirable efects. First, let us consider the case when descriptor f�

correlates well with only a single feature in ��. In this case, the normalization will

amplify the score of the match, akin to the nearest-neighbour matching in classical ge-

ometry estimation. Second, in the case of the descriptor f� matching multiple features

in �� due to the existence of clutter or repetitive patterns, matching scores will be

down-weighted similarly to the second nearest-neighbour test [Lowe, 2004]. However,

note that both the correlation and the normalization operations are diferentiable
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with respect to the input descriptors, which facilitates backpropagation thus enabling

end-to-end learning.

Discussion. The Ąrst step of our matching layer, namely the correlation layer,

is somewhat similar to layers used in DeepMatching [Weinzaepfel et al., 2013] and

FlowNet [Fischer et al., 2015]. However, DeepMatching [Weinzaepfel et al., 2013]

only uses deep RGB patches and no part of their architecture is trainable. FlowNet

[Fischer et al., 2015] uses a spatially constrained correlation layer such that similarities

are only computed in a restricted spatial neighbourhood thus limiting the range of

geometric transformations that can be captured. This is acceptable for their task of

learning to estimate optical Ćow, but is inappropriate for larger transformations that

we consider in this chapter. Furthermore, neither of these methods performs score

normalization, which we Ąnd to be crucial in dealing with cluttered scenes.

Previous works have used other matching layers to combine descriptors across

images, namely simple concatenation of descriptors along the channel dimension

[DeTone et al., 2016] or subtraction [Kanazawa et al., 2016]. However, these approaches

sufer from two problems. First, as the following layers are typically convolutional,

these methods also struggle to handle large transformations as they are unable to

detect long-range matches. Second, when concatenating or subtracting descriptors,

instead of computing pairwise descriptor similarities as is commonly done in classical

geometry estimation and mimicked by the correlation layer, image content information

is directly outputted. To further illustrate why this can be problematic, consider

two pairs of images that are related with the same geometric transformation Ű the

concatenation and subtraction strategies will produce diferent outputs for the two

cases, making it hard for the regressor to deduce the geometric transformation. In

contrast, the correlation layer output is likely to produce similar correlation maps

for the two cases, regardless of the image content, thus simplifying the problem for

the regressor. In line with this intuition, in Sec. 3.7.3 we show that the concatenation

and subtraction methods indeed have diiculties generalizing beyond the training set,

while our correlation layer achieves generalization yielding superior results.
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fAB �conv1 BN1 ReLU1 conv2 BN2 ReLU2 FC

7×7×225×128 5×5×128×64 5×5×64×P

Figure 3-4: Architecture of the regression network. It is composed of two convo-
lutional layers without padding and stride equal to 1, followed by batch normalization
and ReLU, and a Ąnal fully connected layer which regresses to the � transformation
parameters.

3.3.3 Regression network

The normalized correlation map is passed through a regression network which directly

estimates parameters of the geometric transformation relating the two input images. In

classical geometry estimation, this step consists of robustly estimating the transforma-

tion from the list of tentative correspondences. Local geometric constraints are often

used to further prune the list of tentative matches [Schmid and Mohr, 1997; Sivic and

Zisserman, 2003] by only retaining matches which are consistent with other matches in

their spatial neighbourhood. Final geometry estimation is done by RANSAC [Fischler

and Bolles, 1981] or Hough voting [Hough, 1962; Lamdan et al., 1988; Leibe et al.,

2008; Lowe, 2004].

We again mimic the classical approach using a neural network, where we stack

two blocks of convolutional layers, followed by batch normalization [Iofe and Szegedy,

2015] and the ReLU non-linearity, and add a Ąnal fully connected layer which regresses

to the parameters of the transformation, as shown in Fig. 3-4. The intuition behind

this architecture is that the estimation is performed in a bottom-up manner somewhat

like Hough voting, where early convolutional layers vote for candidate transformations,

and these are then processed by the later layers to aggregate the votes. The Ąrst

convolutional layers can also enforce local neighbourhood consensus [Schmid and

Mohr, 1997; Sivic and Zisserman, 2003] by learning Ąlters which only Ąre if nearby

descriptors in image � are matched to nearby descriptors in image �, and we show

qualitative evidence in Sec. 3.7.5 that this indeed does happen.

Discussion. A potential alternative to a convolutional regression network is to use

fully connected layers. However, as the input correlation map size is quadratic in
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the number of image features, such a network would be hard to train due to a large

number of parameters that would need to be learned, and it would not be scalable due

to occupying too much memory and being too slow to use. It should be noted that

even though the layers in our architecture are convolutional, the regressor can learn to

estimate large transformations. This is because one spatial location in the correlation

map contains similarity scores between the corresponding feature in image � and all

the features in image � (c.f. equation (3.1)), and not just the local neighbourhood as

in [Fischer et al., 2015].

3.4 Geometric transformations

Three diferent parametric geometric transformations were employed in this chapter:

aine, homography and thin-plate spline. The details of their parametrizations are

presented next. As images are warped using the reverse mapping, the transformations

map coordinates from the target image � to the source image �.

3.4.1 Affine transformation

An aine transformation is a 6 degree-of-freedom linear transformation capable of

modeling translation, rotation, non-isotropic scaling and shear. It can be parametrized

by a 6 dimensional vector �AFF:

�AFF = [�11, �12, �21, �22, ��, ��], (3.2)

such that points �� = [��, ��]� are mapped to points �� = [��, ��]� according to:

�� =

︀

︀

︀

�11 �12

�21 �22

︀

⎥

︀�� +

︀

︀

︀

��

��

︀

⎥

︀ . (3.3)

3.4.2 Homography transformation

A homography transformation deforms a given quadrilateral �� = ¶��1, . . . , ��4♢

into any other given quadrilateral �� = ¶��1, . . . , ��4♢, while keeping collinearity. It
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has 8 degrees-of-freedom and is more Ćexible than the aine transformation, as it can

handle perspective since parallel lines need not remain parallel. Homography is the

model relating 2-D images (pinhole projections) of a 3-D plane. We adopt the 4-point

homography parametrization from [DeTone et al., 2016], which consists of deĄning the

quadrilateral �� of the target image to be the outer edge of the image, and using the

coordinates of the quadrilateral �� of the source image as the 8-dimensional vector

�HOM:

�HOM = [��A1
, . . . , ��A4

, ��A1
, . . . , ��A4

]. (3.4)

This parametrization can be converted to the 3 × 3 homography matrix � [Hartley

and Zisserman, 2003], which is used to perform the actual transformation:

�� =
ℎ11 �� + ℎ12 �� + ℎ13

ℎ31 �� + ℎ32 �� + ℎ33

,

�� =
ℎ21 �� + ℎ22 �� + ℎ23

ℎ31 �� + ℎ32 �� + ℎ33

,

(3.5)

where, ℎ�� are elements of the homography matrix �.

3.4.3 Thin-plate spline transformation

The thin-plate spline (TPS) transformation [Bookstein, 1989] is a parametric model

which performs smooth 2-D interpolation given a set of � corresponding control points

�� = ¶��1, . . . , ���♢ and �ℬ = ¶��1, . . . , ���♢ between two images. In this chapter,

we use � = 9 and arrange the control points �� in a 3 × 3 uniform grid on the target

image, as illustrated in Fig. 3-5. Because control points �� are Ąxed for all image

pairs, the TPS transformation is parametrized only by the control points �� in the

source image:

�TPS = [��A1
, . . . , ��A9

, ��A1
, . . . , ��A9

]. (3.6)

Then, the thin-plate spline transformation maps points �� = [��, ��]� to points
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Image �

�� = ¶��1, . . . , ��9♢

Image �

�� = ¶��1, . . . , ��9♢

Figure 3-5: Thin-plate spline control points. Illustration of the 3 × 3 TPS grid
of control points used in the thin-plate spline transformation model.

�� = [��, ��]� according to:

�� = �� + �� �� + �� �� +
�︁

�=1

����(‖�� ⊗ ���‖),

�� = �� + �� �� + �� �� +
�︁

�=1

����(‖�� ⊗ ���‖).

(3.7)

Here, �(�) = �2 log �2 and the parameters �, �, � and � are computed from �TPS

by:

[��1, . . . , ���, ��, ��, ��]� = �⊗1[��A1
, . . . , ��Ak

, 0, 0, 0]�

[��1, . . . , ���, ��, ��, ��]� = �⊗1[��A1
, . . . , ��Ak

, 0, 0, 0]� ,
(3.8)

where �⊗1 is a constant matrix which needs to be computed only once, as it depends

only on the Ąxed control points ��. Please refer to [Bookstein, 1989] for further

details.

3.4.4 Hierarchy of transformations

A commonly used approach when estimating image to image transformations is to

start by estimating a simple transformation and then progressively increase the model
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Figure 3-6: Estimating progressively more complex geometric transforma-
tions. Images � and � are passed through a network which estimates an aine
transformation with parameters �AFF (see Fig. 3-2). Image � is then warped using
this transformation to roughly align it with �, and passed along with � through a
second network which estimates a thin-plate spline (TPS) transformation that reĄnes
the alignment.

complexity, reĄning the estimates along the way [Lowe, 2004; Berg et al., 2005; Philbin

et al., 2007]. The motivation behind this method is that estimating a very complex

transformation could be hard and computationally ineicient in the presence of clutter,

so a robust and fast rough estimate of a simpler transformation can be used as

a starting point, also regularizing the subsequent estimation of the more complex

transformation.

We follow the same good practice and start by estimating an aine transformation

(or alternatively a homography) which performs a rough alignment. The estimated

aine transformation is then used to align image � to image � using an image

resampling layer [Jaderberg et al., 2015]. The aligned images are then passed through

a second geometry estimation network which estimates the parameters of a thin-plate

spline transformation. The Ąnal estimate of the geometric transformation is then

obtained by composing the two transformations. The process is illustrated in Fig. 3-6,

and detailed in Algorithm 2.

3.4.5 Iterative refinement

When input images are related by a large transformation, it is diicult to obtain

many good matches, so a single pass through the geometry estimation network

might produce a poor alignment. In such cases, performing several iterations of the

estimation can be beneĄcial, as illustrated in Fig. 3-7, since it allows the number of
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Matching
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Feature Ext.
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Figure 3-7: Iterative transformation refinement. In iteration i, image � is
warped using the cumulative transformation estimate �(�⊗1)

� obtained from the previous
iteration (�(0)

� is initialized to identity). A Ąne alignment, �(�), between image � and
the warped image � is estimated and chained onto �(�⊗1)

� to form the reĄned cumulative
transformation estimate �(�)

� .

matches to progressively grow. This approach has proven to be particularly useful for

instance-level alignment, as detailed in section 3.6.4.

3.5 Training

In order to train the parameters of our geometric matching CNN, it is necessary to

design the appropriate loss function, and to use suitable training data. We address

these two important points next, and also provide details about the implementation.

3.5.1 Loss function

We assume a fully supervised setting, where the training data consists of pairs of

images and the desired outputs in the form of the parameters ��� of the ground-truth

geometric transformation. The loss function ℒ is designed to compare the estimated

transformation � with the ground-truth transformation ��� and, more importantly,

compute the gradient of the loss function with respect to the estimates �ℒ

��
. This

gradient is then used in a standard manner to learn the network parameters which

minimize the loss function by using backpropagation and Stochastic Gradient Descent.

It is desired for the loss to be general and not speciĄc to a particular type of

geometric model, so that it can be used for estimating aine, homography, thin-
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plate spline or any other geometric transformation. Furthermore, the loss should be

independent of the parametrization of the transformation and thus should not directly

operate on the parameter values themselves. We address all these design constraints

by measuring loss on an imaginary grid of points � = ¶��♢ = ¶(��, ��)♢�=1...� which

is being deformed by the transformation. Namely, we construct a grid of points

in image space, transform it using the neural network estimated and ground-truth

transformations �� and ��GT
with parameters � and ��� , respectively, and measure

the discrepancy between the two transformed grids by summing the squared distances

between the corresponding grid points:

ℒ(�, ��� ) =
1

�

�︁

�=1

‖�′
� ⊗ �′′

� ‖
2

(3.9)

where �′
� = ��(��) and �′′

� = ��GT
(��) are the transformed grid points according to

the estimated and ground-truth transformations respectively. The grid points are

uniformly distributed in the image using normalized coordinates, i.e. ��, �� ∈ [⊗1, 1].

Note that we construct the coordinate system such that the center of the image is at

(0, 0) and that the width and height of the image are equal to 2, i.e. the bottom left

and top right corners have coordinates (⊗1, ⊗1) and (1, 1), respectively.

The gradient of the loss function with respect to the transformation parameters,

needed to perform backpropagation in order to learn network weights, can be computed

easily if the location of the transformed grid points �′
� = ��(��) is diferentiable with

respect to �. This is commonly the case, for example, when � is an aine transforma-

tion, ��(��) is linear in parameters � and therefore the loss can be diferentiated in a

straightforward manner.

3.5.2 Training data

Our training procedure requires fully supervised training data consisting of image

pairs and a known geometric relation. Training CNNs usually requires a lot of data,

and no public datasets exist that contain many image pairs annotated with their

geometric transformation. Therefore, we opt for training from synthetically generated
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Original image
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Figure 3-8: Synthetic image generation. Symmetric padding is added to the
original image to enlarge the sampling region, its central crop is used as image �, and
image � is created by performing a randomly sampled transformation ��GT

.

data, which gives us the Ćexibility to gather as many training examples as needed,

for any 2-D geometric transformation of interest. Given that this training data is

obtained for free, the approach can be classiĄed as unsupervised (or self-supervised),

even though the loss function requires the ground-truth transformation parameters.

Synthetic pair generation. We generate each training pair (��, ��), by sampling

�� from a public image dataset, and generating �� by applying a random transformation

��GT
to ��. More precisely, �� is created from the central crop of the original image,

while �� is created by transforming the original image with added symmetrical padding

in order to avoid border artifacts; the procedure is shown in Fig. 3-8.

Synthetic training datasets. The images used for the synthetic pair generation

are sampled from the Tokyo Time Machine dataset [Arandjelović et al., 2016] which

contains Google StreetView images of Tokyo. We select 20k images for training and

20k for validation.

During training, a batch is Ąrst selected from the training split of the dataset, and

then a random transformation for each image in the batch is sampled independently

from reasonable ranges. These ranges depend on the geometric model chosen for

training the network.

In the case of the aine transformation, we chose a rotation angle � ≍ � (⊗Þ/12, Þ/12),

a shear angle ã ≍ � (⊗Þ/6, Þ/6), anisotropic scaling factors Ú1, Ú2 ≍ � (0.75, 1.25),
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and translations ��, �� ≍ � (⊗0.25, 0.25). These parameters are deĄned on the SVD

decomposition of the aine transformation (see [Hartley and Zisserman, 2003] sec.

2.4.3), and must then be composed to obtain the [���] matrix described in section

3.4.1:

︀

︀

︀

�11 �12

�21 �22

︀

⎥

︀
= �(�)�(⊗ã)diag(Ú1, Ú2)�(ã). (3.10)

In the case of the homography and thin-plate spline transformations, the target

points �� and �� are obtained by perturbing the Ąxed �� and �� with random

translations Ó�, Ó� ≍ � (⊗0.4, 0.4):

��� = ��� + (Ó�, Ó�),

��� = ��� + (Ó�, Ó�).
(3.11)

In all cases, the uniform distribution was used in order not to impose a strong

prior on the transformation parameters. The ranges were chosen to roughly cover the

observed transformations in the PF-WILLOW dataset.

3.5.3 Implementation details

We use the PyTorch library [Paszke et al., 2017] and train the networks using the

Adam [Kingma and Ba, 2015] optimizer with learning rate 10⊗3, and a batch size of 16.

There is no need for jittering as instead of data augmentation we can simply generate

more synthetic training data. Input images are resized to 240 × 240 producing 15 × 15

feature maps that are passed into the matching layer. Single-stage models speciĄc

for each particular geometric transformation (aine, homography or thin-plate spline)

are trained, with transformations sampled randomly at training time according to

the previously described procedure. Each network is trained until convergence which

typically occurs after 20 epochs (25000 iterations), and takes between 4 and 8 hours

on a single GPU, depending on the complexity of the geometric model. The training
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Algorithm 1: Training procedure using synthetic pairs

input : Image database DB
CNN model ��

output : Trained CNN model ��

for training epochs do
for � in DB do

// Generate synthetic training pair

Sample random transformation �GT

�� = central crop of �;
�� = ��GT

(�);
// Estimate transformation �
� = �� (��, ��);
// Compute loss and update model

� = ℒ(�, ��� );
� = update(�, �ℒ

��
);

end

end

algorithm is detailed in Algorithm 1.

At evaluation time, the single-stage models featuring diferent geometric transfor-

mations can be used in conjunction as illustrated in Fig. 3-6. Trained networks can

also be executed iteratively as described in section 3.4.5 and illustrated in Fig. 3-7.

The evaluation algorithm is detailed in Algorithm 2.

3.6 Experimental results

In this section we compare our method to baselines and the state-of-the-art for both

category-level and instance-level alignment problems.

In the case of category-level alignment, both qualitative and quantitative evaluation

is performed on three diferent datasets previously used for this task: the PF dataset

[Ham et al., 2017], the TSS dataset [Taniai et al., 2016] and the Caltech-101 dataset

[Fei-Fei et al., 2006].

In the case of instance-level alignment, qualitative and quantitative evaluation is

performed on the Graiti benchmark [Mikolajczyk and Schmid, 2002]. In addition,

qualitative alignment results are presented for the Tokyo Time Machine dataset [Arand-
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Algorithm 2: Transformation estimation using two-stage network

input : Source and target images (��, ��)
Stage 1 CNN model �1

Stage 2 CNN model �2

output : Aligned image � ′′
�

// First stage

�1 = �1(��, ��);
� ′

� = ��1
(��);

// Second stage

�2 = �2(�
′
�, ��);

� ′′
� = ��2

(� ′
�);

jelović et al., 2016].

A diferent single-stage model for each of the aine, homography and thin-plate

spline transformations was trained independently. Both single-stage (Fig. 3-2) and

two-stage (Fig. 3-6) alignment strategies were investigated. Furthermore, the iterative

reĄnement procedure described in section 3-7 was used for the Graiti benchmark.

3.6.1 PF dataset

This dataset contains image pairs depicting diferent instances of the same classes,

such as ducks and cars, but with large intra-class variations, e.g. the cars are often of

diferent make, or the ducks can be of diferent subspecies. Furthermore, the images

contain signiĄcant background clutter, as can be seen in Fig. 3-9. It contains a total of

2251 image pairs from two subgroups: PF-WILLOW (900 pairs, introduced in [Ham

et al., 2016]) and PF-PASCAL (1251 pairs, introduced in [Ham et al., 2017]). Images

from each pair were manually selected to ensure that objects have similar poses.

Evaluation metric. The quality of the obtained alignment is assessed by exploiting

the keypoint annotation provided with the PF dataset. The task is to predict the

locations of predeĄned keypoints from image � in image �. We do so by estimating

a geometric transformation � that warps image � into image �, and applying the

same transformation to the keypoint locations P� = ¶� �
�♢�=1,...,� in ��, to obtain

the estimated keypoint locations ¶� (� �
�)♢�=1,...,� in ��. The alignment quality is
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then computed using the standard evaluation metric for this benchmark, the average

probability of correct keypoint (PCK) [Yang and Ramanan, 2013], being the proportion

of keypoints that are correctly matched. A keypoint is considered to be matched

correctly if the distance between its predicted location � (� �
�) and its ground-truth

position � �
� is below a predeĄned threshold �. Therefore, the PCK is computed as

follows:

PCK =
♣¶� �

� ∈ P�, �(� (� �
�), � �

�) < �♢♣

�
, (3.12)

where the distance threshold is � = Ð ≤ max(ℎ, �), Ð = 0.1 and (ℎ, �) are the height

and width of the object bounding box, respectively.

Results. We compare our method against SIFT Flow [Liu et al., 2011], Graph-

matching kernels (GMK) [Duchenne et al., 2011], Deformable spatial pyramid matching

(DSP) [Kim et al., 2013], DeepFlow [Revaud et al., 2015], and all three variants of

Proposal Flow (NAM, PHM, LOM) [Ham et al., 2017]. As shown in Tab. 3.1, our

method outperforms all others and sets the new state-of-the-art on this data. The best

competing methods are based on Proposal Flow and make use of object proposals,

which enables them to guide the matching towards regions of images that contain

objects. Their performance varies signiĄcantly with the choice of the object proposal

method, illustrating the importance of this guided matching. On the contrary, our

method does not use any guiding, but it still manages to outperform even the best

Proposal Flow and object proposal combination.

Furthermore, we also compare against aine transformations estimated with

RANSAC using the same descriptors as our method (VGG-16 pool4). The pa-

rameters of this baseline have been tuned extensively to obtain the best result by

adjusting the thresholds for the second nearest-neighbour test and by pruning proposal

transformations which are outside of the range of likely transformations. Our aine

estimator outperforms the RANSAC baseline on this task by a 2% margin.

Fig. 3-9 illustrates the efectiveness of our method in category-level matching,

where challenging pairs of images from the Proposal Flow dataset [Ham et al., 2017],
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Methods PF-PASCAL PF-WILLOW

DeepFlow [Revaud et al., 2015] 0.21 0.20
GMK [Duchenne et al., 2011] 0.27 0.27
SIFT Flow [Liu et al., 2011] 0.33 0.38
DSP [Kim et al., 2013] 0.30 0.37
Proposal Flow (SS+NAM) [Ham et al., 2017] 0.36 0.52
Proposal Flow (SS+PHM) [Ham et al., 2017] 0.42 0.55
Proposal Flow (SS+LOM) [Ham et al., 2017] 0.45 0.56

RANSAC with our features (aine) 0.44 0.46

Ours (aine) 0.46 0.48
Ours (homography) 0.48 0.49
Ours (TPS) 0.51 0.54

Ours (aine + TPS) 0.51 0.60
Ours (homography + TPS) 0.53 0.60
Ours (2×TPS) 0.52 0.57

Table 3.1: Results on the PF dataset. We report the matching accuracy in terms
of the PCK (Ð = 0.1), for both PF-PASCAL and PF-WILLOW. All the numbers
apart from ours and RANSAC are taken from [Ham et al., 2017].

containing large intra-class variations, are aligned correctly. The method is able to

robustly, in the presence of clutter, estimate large translations, rotations, scale changes,

as well as non-rigid transformations and some perspective changes.

3.6.2 TSS dataset

The TSS dataset introduced in [Taniai et al., 2016] contains 400 image pairs of three

subgroups: FG3DCar contains 195 image pairs of cars, JODS contains 81 image

pairs of airplanes, horses and cars and PASCAL contains 124 image pairs of bicycles,

motorbikes, buses, cars and trains. For all 400 image pairs, approximate ground-truth

optical Ćow data is provided.

Evaluation metric. The evaluation metric used for the TSS dataset is also the

PCK, presented in Eq. (3.12), previously presented for the PF dataset. However,

the ground-truth optical Ćow data available in the TSS dataset allows to compute

the PCK using a dense set of keypoints P� = ¶� �
� ∈ M�♢�=1,...,�, composed by the

foreground pixels inside the segmentation mask M� of the object in ��. Therefore,
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Image � Aligned � (aine) Aligned � (af.+TPS) Image �

Figure 3-9: Qualitative results on the PF dataset. Each row shows one test
example from the Proposal Flow dataset. Ground truth matching keypoints, only
used for alignment evaluation, are depicted as crosses and circles for images � and �,
respectively. Keypoints of same color are supposed to match each other after image �
is aligned to image �. To illustrate the matching error, we also overlay keypoints of �
onto diferent alignments of � so that lines that connect matching keypoints indicate
the keypoint position error vector. Our method manages to roughly align the images
with an aine transformation (column 2), and then perform Ąner alignment using
thin-plate spline (TPS, column 3). The top two examples are from the PF-WILLOW
dataset while the bottom one is from PF-PASCAL.

this allows for the alignment to be densely evaluated over the object of interest, in

contrast to the PCK computation for the PF dataset, where the alignment is only

evaluated in a handful of manually annotated keypoints.

Regarding the distance threshold � = Ð ≤max(ℎ, �) used for the PCK computation,

the criterion used in [Ham et al., 2017; Taniai et al., 2016] is adopted, where the

reported values are computed with Ð = 0.05 and with (ℎ, �) being the dimensions of

the target image.

Results. The quantitative results for the TSS dataset are presented in Tab. 3.2, in

terms of the mean PCK over the set of image pairs. For each of the 400 pairs, both
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Methods FG3DCar JODS PASCAL All

DSP [Kim et al., 2013] 0.49 0.47 0.38 0.45
SIFT Flow [Liu et al., 2011] 0.63 0.51 0.36 0.52
Taniai et al. [Taniai et al., 2016] 0.83 0.60 0.48 0.67
Proposal Flow (SS+LOM) [Ham et al., 2017] 0.79 0.65 0.53 0.68

Ours (aine) 0.81 0.65 0.51 0.68
Ours (homography) 0.83 0.66 0.52 0.70
Ours (TPS) 0.84 0.72 0.51 0.71

Ours (aine + TPS) 0.89 0.72 0.54 0.75
Ours (homography + TPS) 0.88 0.72 0.55 0.75
Ours (2×TPS) 0.86 0.70 0.52 0.72

Table 3.2: Results on the TSS dataset. We report the matching accuracy in terms
of PCK (Ð = 0.05). The three intermediate columns show the results for each subset
of the TSS dataset: FG3DCar, JODS and PASCAL. The last column shows the PCK
result over the whole dataset.

the forward (from �� to ��) and backward (from �� to ��) alignments are computed

and evaluated, resulting in a total of 800 evaluation pairs.

The middle columns of Tab. 3.2 present the mean PCK over the three subsets of

the TSS dataset: FG3DCar, JODS and PASCAL; and the right-most column presents

the mean PCK over the whole TSS dataset. It can be observed that our single-stage

models improve the overall average score by up to 3%, while the two-stage models

achieve the best results on all the diferent subsets, and improve by up to 7% over the

previously published results.

In Fig. 3-10 we present qualitative results on the TSS dataset. In order to assess

the visual quality of the obtained results, we also present the ground-truth aligned

and segmented images provided with the dataset in the right-most column.

As it can be observed, the proposed method can produce good alignments results,

which are close to the ground-truth alignment.

3.6.3 Caltech-101 dataset

Following the same procedure as in [Kim et al., 2013; Ham et al., 2017], the alignment

quality is also evaluated on the Caltech-101 dataset [Fei-Fei et al., 2006]. For each of
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Image � Image � Aligned � (af.+TPS) Ground-truth

Figure 3-10: Qualitative results on the TSS dataset. Each row shows one test
example from the TSS dataset. The last column shows the ground-truth alignment used
for evaluation. Example 1 is from TSS-FG3DCar, examples 2-3 are from TSS-JODS,
and 4-7 from TSS-PASCAL.

the 101 categories, 15 image pairs were chosen randomly, resulting in 1515 evaluation

pairs. These pairs are the same as in [Ham et al., 2017].

Evaluation metrics. As no keypoint annotations are provided for the Caltech-101

dataset, PCK cannot be used to assess the matching accuracy. Since segmentations

masks are provided, we follow [Kim et al., 2013; Ham et al., 2017] and evaluate the

quality of segmentation mask alignment using the following metrics: label transfer

accuracy (LT-ACC), intersection-over-union (IoU), and localization error (LOC-ERR).

Let (��, ��) be a pair of images with ground-truth segmentation masks (M�, M�),

and � be the estimated transformation from �� to ��. Then, the transferred annotated

mask from the source image, M′
� = � (M�), is compared with the ground-truth mask

in the target image M� to assess the alignment quality.

The label transfer accuracy metric (LT-ACC), measures the number of correctly

transferred foreground and background pixels in the following way:
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LT-ACC =
♣¶� ∈ ��, M′

�(� ) = M�(� )♢♣

♣� ∈ ��♣
(3.13)

Therefore, the numerator of the LT-ACC adds up the number of background

pixels which are correctly mapped to background and the foreground pixels which are

correctly mapped to foreground.

The intersection-over-union (IoU), or Jaccard index, as the LT-ACC also compares

the mask alignment quality. However, contrary to LT-ACC, it only considers the

correctly aligned foreground pixels, ignoring the background. It is computed in the

following way:

IoU =
♣M′

� ∩ M�♣

♣M′
� ∪ M�♣

. (3.14)

Finally, the localization error (LOC-ERR) metric measures the spatial error of

each transferred pixel [Kim et al., 2013], assuming that the images are related by a

translation and anisotropic scaling transformation which aligns the bounding boxes of

the source and target images.

To this end, two normalized coordinate systems are deĄned relative to the source

and target image bounding boxes, such that their origins are set on the top-left corners

of the object bounding boxes, and the coordinates are normalized by the widths and

heights of the bounding boxes.

Let �� = (��A
, ��A

) and �� = (��B
, ��B

) be the top-left corners of the objects

bounding boxes on �� and �� respectively, and (ℎ�, ��), (ℎ�, ��) the bounding box

dimensions.

Then LOC-ERR metric measures the disagreement between the coordinates of

the original point �� = (��, ��) relative to ��, and its transformed coordinates

� ′
� = � (��) = (�′

�, �′
�) relative to ��, in the following way:

LOC-ERR =
1

♣� ♣

︁

(�
A

,� ′

A
)∈�

♣�̂� ⊗ �̂′
�♣ + ♣�̂� ⊗ �̂′

�♣, (3.15)

where (�̂�, �̂�) and (�̂′
�, �̂′

�) are the normalized coordinates of �� and � ′
� = � (��):
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Methods LT-ACC IoU LOC-ERR

DeepFlow [Revaud et al., 2015] 0.74 0.40 0.34
GMK [Duchenne et al., 2011] 0.77 0.42 0.34
SIFT Flow [Liu et al., 2011] 0.75 0.48 0.32
DSP [Kim et al., 2013] 0.77 0.47 0.35
Proposal Flow (RP, LOM) [Ham et al., 2016] 0.78 0.50 0.26
Proposal Flow (SS, LOM) [Ham et al., 2016] 0.78 0.50 0.25

Ours (aine) 0.78 0.51 0.24
Ours (homography) 0.80 0.52 0.24
Ours (TPS) 0.80 0.53 0.24

Ours (aine + TPS) 0.79 0.55 0.26
Ours (homography + TPS) 0.81 0.55 0.25
Ours (2×TPS) 0.80 0.54 0.26

Table 3.3: Evaluation on the Caltech-101 dataset. Matching quality is measured
in terms of LT-ACC and IoU. The best two Proposal Flow methods (RP, LOM and
SS, LOM) are included here. All numbers apart from ours are taken from [Ham et al.,
2016].

(�̂�, �̂�) =
︂

�� ⊗ ��A

��

,
�� ⊗ ��A

ℎ�

︂

(�̂′
�, �̂′

�) =

⎠

�′
� ⊗ ��B

��

,
�′

� ⊗ ��B

ℎ�

⎜ (3.16)

and � is the set of all pairs of points (��, � ′
�) in which the transformed points

� ′
� = � (��) fall inside the bounds of image ��.

Results. The quantitative results on the Caltech-101 dataset are presented in Tab.

3.3. As it can be observed, our approach outperforms the state-of-the-art by a

signiĄcant margin, obtaining, for example, an IoU of 0.55 compared to the previous

best result of 0.50.

In addition, it can be observed that the LOC-ERR metric values do not follow

the trend of the other two metrics. This is because the LOC-ERR metric makes the

invalid assumption that the images are related with a translation and anisotropic

scaling transformation.

The beneĄt of the two-stage approaches is clear from the more realistic IoU metric,

where adding a second stage achieves an IoU of 0.55 compared to 0.53 of the single-stage
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(a) Image pairs(b) DeepFlow (c) GMK (d) SIFT Flow (e) DSP (f) PF (g) Ours

Figure 3-11: Qualitative results on the Caltech-101 dataset. Each block of two
rows corresponds to one example, where column (a) shows the original images Ű image
� in the Ąrst row and image � in the second row. The remaining columns of the Ąrst
row show image � aligned to image � using various methods. The second row shows
image � overlaid with the segmentation map transferred from image �. Our results
correspond to the two-stage aine+TPS model.

best performing model.

In Fig. 3-11, we present a qualitative comparison of the results obtained by our

method and other previous methods on images from this dataset. For each example,

the second row presents the transferred segmentation mask � (M�) of �� overlaid with

��, for each of the methods. As it can be visually assessed, the proposed approach

achieves a superior alignment than most of the previous methods.

3.6.4 Graffiti benchmark

This section presents the results of the proposed method on the challenging Graiti

instance-level matching benchmark [Mikolajczyk and Schmid, 2002]. This benchmark

contains 6 images of the same planar scene with increasingly varying viewpoint, with
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up to 70◇ azimuthal rotation from the reference image. Ground-truth homography

transformations from the reference image 1 to images 2-6 are available with the

dataset. We employed the same homography estimation CNN used for the category-

level alignment datasets, trained from synthetic StreetView image pairs. To overcome

the large viewpoint variation in this dataset, we perform iterative reĄnement, as

described in section 3.4.5, with a total of 5 iterations. The same CNN model is used

for all iterations.

Evaluation metric. In order to measure the quality of the estimated homography

transformation, the average endpoint error is used:

AEE(�, ��� ) =
1

�

�︁

�=1

‖�′
� ⊗ �′′

� ‖ (3.17)

where �′
� = ��(��) and �′′

� = ��GT
(��) are the transformed sampling points � =

[1, 2, . . . , ℎ]×[1, 2, . . . , �] when applying the estimated and ground-truth homographies,

respectively. Note that this is similar to the proposed loss (5.11), but without squaring

the distances.

Results. Quantitative results are presented on Tab. 3.4. The proposed method

is compared against state-of-the-art methods for this dataset, such as SIFT fea-

tures (DoG+SIFT) [Lowe, 2004], SIFT features with aine-covariant detectors (DoG-

aine+SIFT) [Mikolajczyk and Schmid, 2002] and ASIFT [Yu and Morel, 2011].

Features are matched and Ąltered using the second nearest-neighbour test [Lowe, 2004]

and the homography transformation is estimated with the locally optimized RANSAC

algorithm [Lebeda et al., 2012] with the following parameter settings: distance thresh-

old � = 6px, estimation conĄdence Ö0 = 0.999, and the Ąnal reĄnement step using

all inliers. The rest of the parameters are set to their default values. The RANSAC

algorithm is executed 5 times and the mean error values are reported. In all cases,

the standard deviations were below 0.3 pixels.

As it can be observed from Tab. 3.4, although our method does not produce the

best results, it still achieves reasonable alignments for pairs (1, 2) up to (1, 5), and
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Methods
Image pair

(1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

DoG+SIFT [Mikolajczyk and Schmid, 2002] 0.63 1.61 2.89 fail fail

DoG-aine+SIFT [Mikolajczyk and Schmid, 2002] 0.60 1.57 1.44 2.40 2.75

ASIFT [Yu and Morel, 2011] 0.45 1.35 1.02 0.96 1.62

Ours (5×homography) 4.17 4.81 3.17 2.55 fail

Table 3.4: Evaluation on the Graffiti benchmark. Matching quality is measured
in terms of the AEE (px), being the original image of 640 × 800 px. Our homography
estimation model is run recursively Ąve times.

fails for pair (1, 6). The lower performance of our method when compared to local

interest points methods can be explained by the lower resolution of the input image,

which is resized from 800 × 640px to 240 × 240px, and also by the low resolution of

the extracted CNN features, which is of 15 × 15. In addition, due to the max-pooling

operations, the exact positions of the image features cannot be recovered from the

CNN features.

However, it is interesting to point out that while DoG-SIFT fails for pair (1, 5),

our method does not. This conĄrms the intuition that CNN feature descriptors have

some degree of aine invariance, achieved due to multiple pooling operations. The

invariance enables multiple good initial matches to be established, producing a good

initial transformation estimate, which is then progressively reĄned using the iterative

procedure.

Qualitative results for the pair (1, 5) of the Graiti benchmark are shown in

Fig. 3-12. The Ągure also shows the progression of the alignment as more reĄnement

iterations are performed. As it can be observed, the obtained alignment is qualitatively

good.

3.6.5 Tokyo Time Machine dataset

Qualitative results for the Tokyo Time Machine dataset [Arandjelović et al., 2016] are

shown in Fig. 3-13. The images have been captured at diferent points in time which
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Source image Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Target image

Figure 3-12: Qualitative results on the Graffiti benchmark, pair (1, 5). The
Ąrst and last columns show the source and target images. The intermediate columns
show the progress of the alignment at diferent iterations.

(a) Image � (b) Image � (c) Aligned im. � (d) Overlay b+c (e) Dif. map

Figure 3-13: Qualitative results on the Tokyo Time Machine dataset. Each
row shows a pair of images from the Tokyo Time Machine dataset, and our alignment
along with a Şdiference mapŤ, highlighting absolute diferences between aligned images
in the descriptor space. Our method successfully aligns image � to image � despite
of viewpoint and scene changes (highlighted in the diference map).

are months or years apart. Note that, by automatically highlighting the diferences

(in the feature space) between the aligned images, it is possible to detect changes in

the scene, such as occlusions, changes in vegetation, or structural diferences e.g. new

buildings being built.

3.7 Discussions and ablation studies

In this section we examine the importance of various components of our architecture,

and discuss the impact of the training set, the learned Ąlters and the limitations of

the method.
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Methods PCK

Subtraction [Kanazawa et al., 2016] 0.24

Concatenation [DeTone et al., 2016] 0.34

Ours (without normalization) 0.41

Ours (trained on PASCAL) 0.47

Ours (trained on StreetView) 0.48

Table 3.5: Ablation studies. We report ablations on the matching layer and efect of
the training dataset. Accuracy is measured in terms of the PCK on the PF-WILLOW
dataset using the single-stage aine model.

3.7.1 Correlation versus concatenation and subtraction

Replacing our correlation-based matching layer with feature concatenation or subtrac-

tion, as proposed in [DeTone et al., 2016] and [Kanazawa et al., 2016], respectively,

incurs a large performance drop, as shown in Tab. 3.5. The behavior is expected

as we designed the matching layer to only keep information on pairwise descriptor

similarities rather than the descriptors themselves, as is good practice in classical

geometry estimation methods, while concatenation and subtraction do not follow this

principle.

3.7.2 Normalization

Table 3.5 also shows the importance of the correlation map normalization step, where

the normalization improves results from 41% to 48%. The step mimics the second

nearest-neighbour test used in classical feature matching [Lowe, 2004], as discussed in

Sec. 3.3.2. Note that [Fischer et al., 2015] also uses a correlation layer, but they do

not normalize the map in any way, which is clearly suboptimal.

3.7.3 Generalization

In order to assess the inĆuence on the performance of the trained method with respect

to the training dataset used, we train a second model using PASCAL VOC 2011
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[Everingham et al., 2011] images, instead of StreetView images. As seen in Tab. 3.5,

our method is relatively unafected by the choice of training data as its performance

is similar regardless whether it was trained with StreetView or PASCAL images. We

also attribute this to the design choice of operating on pairwise descriptor similarities

rather than the raw descriptors.

3.7.4 Geometric models

Diferent conĄgurations of the proposed method have been analyzed, varying the

geometric models and using both single-stage (as in Fig. 3-2) and two-stage approaches

(as in Fig. 3-6).

Results from Tables 3.1, 3.2, and 3.3 show that the two-stage homography+TPS

is the best performing approach, being slightly superior to aine+TPS. On the other

hand, TPS alone is the best single-stage approach, but interestingly, two-iteration

TPS performs worse than both aine+TPS and homography+TPS. This conĄrms the

intuition discussed in section 3.4.4, where using a simpler geometric model to perform

the rough alignment is expected to be more robust than using a more complex one.

3.7.5 What is being learned?

We examine Ąlters of size 7 × 7 × 225 from the Ąrst convolutional layer of the

regressor, which operate directly on the output of the matching layer, i.e. the tentative

correspondence map. We observe that two Ąlter properties emerge from training: (i)

Ąlters specialize in detecting matches in speciĄc positions in image �, and (ii) Ąlters

learn to mimic local neighbourhood consensus for robust match estimation. In order

to visualize this, each 1 × 1 × 225 1-D slice through the channels of one convolutional

Ąlter at a particular spatial location is reshaped as a 15 × 15 image. Recall that

the 225 channels correspond to Ćattened similarities with image � (see Fig. 3-3 and

Eq. (3.1)), therefore these images show the ĄlterŠs preferences to matches in speciĄc

locations in image �. For visualization, we pick the peaks from all slices of Ąlter

weights and average them together to produce a single image. Several Ąlters are shown
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Figure 3-14: Filter visualization. Some convolutional Ąlters from the Ąrst layer
of the regressor, acting on the tentative correspondence map, show preferences to
spatially co-located features that transform consistently to the other image, thus
learning to perform the local neighbourhood consensus criterion often used in classical
feature matching. Refer to the text for more details on the visualization.

in Fig. 3-14. It can be observed that matches form clusters, which means that spatially

co-located features in image � (within the 7 × 7 support of the Ąlter) respond strongly

to spatially consistent locations in image �, therefore conĄrming that this layer has

learned to mimic local neighbourhood consensus. Furthermore, it can be observed

that the size of the preferred spatial neighbourhood varies across Ąlters, thus showing

that Ąlters specialize for certain scale changes. Finally, the fact that the location of

the highest Ąlter weights (bright yellow) is diferent for diferent Ąlters shows that the

Ąlters specialize for diferent locations in image �.

3.7.6 Limitations

Next, we analyze limitations of the proposed method and discuss possible ways of

alleviating them.

Robustness to occlusion. The robustness of the proposed method to occlusion

was assessed by computing the PCK on the PF-WILLOW dataset when substituting a

rectangular portion of each image in the dataset with a crop from a diferent unrelated

image. Both positions and aspect ratios of these rectangles were independently and

randomly sampled for each image. The results are shown in Tab. 3.6. It can be observed

that all methods, including Proposal Flow [Ham et al., 2016], degrade signiĄcantly

when occluding 10% or 20% of the area of the images. Although retraining the proposed

method replicating the occlusion procedure helps to improve the performance on the

occluded data, it also degrades the performance on the unoccluded case. Therefore,

alignment with signiĄcant occlusion still presents a challenge for the current methods,

including ours.
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Methods
Occluded area

0% 10% 20%

Proposal Flow (SS, LOM) [Ham et al., 2016] 0.56 0.46 0.30

Ours (homography+TPS) 0.60 0.46 0.32

Ours trained with 10% occlusions (hom.+TPS) 0.57 0.47 0.36

Ours trained with 20% occlusions (hom.+TPS) 0.48 0.43 0.38

Table 3.6: Robustness to occlusions. We report the PCK on the PF-WILLOW
dataset.

Multiple objects. Currently, the proposed method can only produce a global

alignment of the image pair, and handling multiple objects is still a challenge. This is

in line with current datasets on category-level image alignment which contain a single

foreground object, and with all competing methods which also make this assumption.

This limitation could be addressed by incorporating an attention mechanism.

Learning better features. Although the proposed architecture is fully diferen-

tiable, which makes it end-to-end trainable for the task of semantic alignment, we

have observed that Ąnetuning the feature extraction CNN does not improve alignment

performance. This is because our synthetic dataset used for training does not contain

rich appearance variations present in the real category-level alignment datasets used

for evaluation. While supervision from synthetic data comes with no cost and is useful

to train the regression CNN, it is not suited for learning better image features for

alignment. As a solution to this problem, we have developed a combined approach

using synthetic data for training the regression CNN and real data for Ąnetuning the

feature extraction CNN [Rocco et al., 2018a].

Confidence in the estimated transformation. The proposed method does not

currently produce a measure of the conĄdence in the estimated transformation. How-

ever, the soft-inlier count presented in [Rocco et al., 2018a] could be employed for this

purpose.
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Asymmetry in the method. Given an pair of images �� and ��, the method is

trained to produce the alignment in one direction only. In order to make the method

more symmetric, the alignments in both directions could be estimated simultaneously

and a cycle consistency loss [Zhou et al., 2016b; Zhu et al., 2017] could be incorporated.

3.7.7 Computational cost

The presented method currently takes about 1.6s per 240 × 240px image pair, which is

1.5× faster than SIFT Flow and 6× faster than Proposal Flow, when run on a modern

CPU. Furthermore, the presented method can also be run on the GPU, which allows

to obtain an additional 40× speedup.

3.8 Conclusions

In this chapter we have described a network architecture for geometric matching

trainable from synthetic imagery without the need for manual annotations. The

architecture is modular and Ćexible, and can be applied iteratively, in order to estimate

large transformations, or in a cascade, enabling estimation of complex transformations.

Thanks to our matching layer, the network generalizes well to never seen before

imagery, reaching state-of-the-art results on several challenging datasets for category-

level matching. The method has also proven useful for instance-level alignment,

obtaining reasonable alignment for the challenging Graiti benchmark. This opens-up

the possibility of applying our architecture to other diicult correspondence problems

such as matching across large changes in illumination (day/night) [Arandjelović et al.,

2016] or depiction style [Aubry et al., 2013].



Chapter 4

End-to-end weakly-supervised

semantic alignment

In this chapter, we adopt the correspondence estimation architecture from Chapter 3

but instead of training from synthetically transformed imagery (as done in Chapter 3),

we propose a diferent training scheme using weak image-level supervision that allows

training the model directly in an end-to-end manner from real image pairs. The

outcome is that parameters are learnt from the rich appearance variation present in

diferent but semantically related images without the need for tedious manual annota-

tion of correspondences for training. To enable weakly-supervised training, we develop

a diferentiable soft inlier scoring module, inspired by the inlier scoring procedure from

RANSAC [Fischler and Bolles, 1981]. Our soft inlier scoring module computes the

quality of the alignment based only on geometrically consistent correspondences that

are in agreement with a geometric model, thereby reducing the efect of background

clutter. Our experiments demonstrate that the proposed approach can improve the

performance over training solely using the self-supervised approach from Chapter 3,

achieving state-of-the-art performance on multiple standard benchmarks for semantic

alignment.

81
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Figure 4-1: Illustration of the proposed method. We describe a CNN architecture
that, given an input image pair (top), outputs dense semantic correspondence between
the two images together with the aligning geometric transformation (middle) and discards
geometrically inconsistent matches (bottom). The alignment model is learnt from weak
supervision in the form of matching image pairs without correspondences.

4.1 Introduction

Finding correspondence is one of the fundamental problems in computer vision. Initial

work has focused on Ąnding correspondence between images depicting the same

object or scene with applications in image stitching [Szeliski, 2006], multi-view 3D

reconstruction [Hartley and Zisserman, 2003], motion estimation [Weinzaepfel et al.,

2013; Fischer et al., 2015] or tracking [Newcombe et al., 2011; Engel et al., 2014].

In this chapter we study the problem of Ąnding category-level correspondence, or

semantic alignment [Berg et al., 2005; Liu et al., 2011], where the goal is to establish

dense correspondence between diferent objects belonging to the same category, such

as the two diferent motorcycles illustrated in Fig. 4-1. This is an important problem

with applications in object recognition [Liu et al., 2011], image editing [Dale et al.,

2017], or robotics [Nikandrova and Kyrki, 2015]. This is also an extremely challenging
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task because of the large intra-class variation, changes in viewpoint and presence of

background clutter.

The current best semantic alignment methods [Kim et al., 2017; Han et al., 2017;

Novotny et al., 2017] employ powerful image representations based on convolutional

neural networks coupled with a geometric deformation model. However, these methods

sufer from one of the following two major limitations. First, the image representation

and the geometric alignment model are not trained together in an end-to-end manner.

Typically, the image representation is trained on some auxiliary task such as image

classiĄcation and then employed in an often ad-hoc geometric alignment model. Second,

while trainable geometric alignment models exist [Rocco et al., 2017; Brachmann et al.,

2017], they require strong supervision in the form of ground truth correspondences,

which is hard to obtain for a diverse set of real images on a large scale.

In this chapter, we address both these limitations and develop a semantic alignment

model that is trainable end-to-end from weakly supervised data in the form of matching

image pairs without the need for ground truth correspondences. To achieve that

we design a novel convolutional neural network architecture for semantic alignment

with a diferentiable soft inlier scoring module inspired by the RANSAC inlier scoring

procedure. The resulting architecture is end-to-end trainable with only image-level

supervision. The outcome is that the image representation can be trained from rich

appearance variations present in diferent but semantically related image pairs, rather

than synthetically deformed imagery [Kanazawa et al., 2016; Rocco et al., 2017]. We

show that our approach signiĄcantly improves the performance of the baseline deep

CNN alignment model, achieving state-of-the-art performance on multiple standard

benchmarks for semantic alignment. Our code and trained models are available

at http://www.di.ens.fr/willow/research/weakalign/.

4.2 Related work

The problem of semantic alignment has received signiĄcant attention in the last

few years with progress in both (i) image descriptors and (ii) geometric models.

http://www.di.ens.fr/willow/research/weakalign/
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Paper Descriptor
Alignment

method
Trainable

D A E-E S

Liu et al.Ś11 [Liu et al., 2011] SIFT SIFT Flow ✗ ✗ ✗ -

Kim et al.Ś13 [Kim et al., 2013] SIFT+PCA DSP ✗ ✗ ✗ -

Taniai et al.Ś16 [Taniai et al., 2016] HOG TSS ✗ ✗ ✗ -

Ham et al.Ś16 [Ham et al., 2017] HOG PF-LOM ✗ ✗ ✗ -

Yang et al.Ś17 [Yang et al., 2017] HOG OADSC ✗ ✗ ✗ -

Ufer et al.Ś17 [Ufer and Ommer, 2017] AlexNet DSFM ✗ ✗ ✗ -

Novotny et al.Ś17 [Novotny et al., 2017] AnchorNet
DSP ✓ ✗ ✗ w
PF-LOM ✓ ✗ ✗ w

Kim et al.Ś17 [Kim et al., 2018b] FCSS
SIFT Flow ✓ ✗ ✗ s
PF-LOM ✓ ✗ ✗ s

Kim et al.Ś17 [Kim et al., 2017] FCSS DCTM ✓ ✗ ✗ s

Han et al.Ś17 [Han et al., 2017] VGG-16
SCNet-A ✓ ✓ ✗ s
SCNet-AG ✓ ✓ ✗ s
SCNet-AG+ ✓ ✓ ✗ s

Rocco et al.Ś17 [Rocco et al., 2017]
VGG-16 CNN Geo. ✓ ✓ ✓ s
ResNet-101 CNN Geo. ✓ ✓ ✓ s

Proposed method ResNet-101 CNN Geo. ✓ ✓ ✓ w

Table 4.1: Comparison of recent related work. The table indicates employed image
descriptor and alignment method. The last four columns show which components of the
approach are trained for the semantic alignment task: descriptor (D), alignment (A) or both
in end-to-end manner (E-E); and the level of supervision (S): strong (s) or weak (w).

The key innovation has been making the two components trainable from data. We

summarize the recent progress in Table 4.1 where we indicate for each method whether

the descriptor (D) or the alignment model (A) are trainable, whether the entire

architecture is trainable end-to-end (E-E), and whether the required supervision is

strong (s) or weak (w).

Early methods, such as [Berg et al., 2005; Liu et al., 2011; Kim et al., 2013],

employed hand-engineered descriptors like SIFT or HOG together with hand-engineered

alignment models based on minimizing a given matching energy. This approach has

been quite successful [Ham et al., 2017; Taniai et al., 2016; Yang et al., 2017; Ufer and

Ommer, 2017] using in some cases [Ufer and Ommer, 2017] pre-trained (but Ąxed)
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convolutional neural network (CNN) descriptors. However, none of these methods

train the image descriptor or the geometric model directly for semantic alignment.

Others [Novotny et al., 2017; Kim et al., 2018b, 2017] have investigated trainable

image descriptors for semantic matching but have combined them with hand-engineered

alignment models still rendering the alignment pipeline not trainable end-to-end.

Finally, recent work [Han et al., 2017; Rocco et al., 2017] has employed trainable

CNN descriptors together with trainable geometric alignment methods. However,

in [Han et al., 2017] the matching is learned at the object-proposal level and a non-

trainable fusion step is necessary to output the Ąnal alignment making the method

non end-to-end trainable. On the contrary, [Rocco et al., 2017] estimate a parametric

geometric model, which can be converted into dense pixel correspondences in a

diferentiable way, making the method end-to-end trainable. However, the method is

trained with strong supervision in the form of ground truth correspondences obtained

from synthetically warped images, which signiĄcantly limits the appearance variation

in the training data.

Contributions. We develop a network architecture where both the descriptor and

the alignment model are trainable in an end-to-end manner from weakly supervised

data. This enables training from real images with rich appearance variation and

without the need for manual ground-truth correspondence. We demonstrate that the

proposed approach signiĄcantly improves alignment results achieving state-of-the-art

performance on several datasets for semantic alignment.

4.3 Weakly-supervised semantic alignment

This section presents a method for training a semantic alignment model in an end-to-

end fashion using only weak supervision Ű the information that two images should

match Ű but without access to the underlying geometric transformation at training

time. The approach is outlined in Fig. 4-2. Namely, given a pair of images, an

alignment network estimates the geometric transformation that aligns them. The



86 CHAPTER 4. END-TO-END WEAKLY-SUPERVISED SEMANTIC ALIGNMENT

Feature
extraction

Pairwise
feature

matching

Geometric
transformation

estimation

Soft-inlier
count

Space
of match
scores

Inlier
mask

generation

Masked
match
scores

Weakly-supervised training module

Figure 4-2: End-to-end weakly-supervised alignment. Source and target images (��, ��)
are passed through an alignment network used to estimate the geometric transformation
�. Then, the soft-inlier count is computed (in green) by Ąrst Ąnding the inlier region �

in agreement with �, and then adding up the pairwise matching scores inside this area.
The soft-inlier count is diferentiable, which allows the whole model to be trained using
back-propagation. Functions are represented in blue and tensors in pink.

quality of the estimated transformation is assessed using the proposed soft-inlier count

which aggregates the observed evidence in the form of feature matches. The training

objective then is to maximize the alignment quality for pairs of images which should

match.

The key idea is that, instead of requiring strongly supervised training data in the

form of known pairwise alignments and training the alignment network with these,

the network is ŞforcedŤ into learning to estimate good alignments in order to achieve

high alignment scores (soft-inlier counts) for matching image pairs. The details of the

alignment network and the soft-inlier count are presented next.

4.3.1 Semantic alignment network

In order to make use of the error signal coming from the soft-inlier count, our framework

requires an alignment network which is trainable end-to-end. We build on the Siamese

CNN architecture described in Chapter 3, illustrated in the left section of Fig. 4-2.

The architecture is composed of three main stages Ű feature extraction, followed by

feature matching and geometric transformation estimation Ű which we review below.
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Feature extraction. The input source and target images, (��, � �), are passed

through two fully-convolutional feature extraction CNN branches, � , with shared

weights. The resulting feature maps (� �, � �) are ℎ × � × � tensors which can be

interpreted as dense ℎ × � grids of �-dimensional local features ���: ∈ R
�. These

individual �-dimensional features are L2 normalized.

Pairwise feature matching. This stage computes all pairwise similarities, or match

scores, between local features in the two images. This is done with the normalized

correlation function � : R
ℎ×�×� × R

ℎ×�×� ⊃ R
ℎ×�×ℎ×�, deĄned as:

����� = �(� �, � �)���� =
⟨� �

��:, � �
��:⟩

︁

︀

�,�⟨�
�
��:, � �

��:⟩
2
, (4.1)

where the numerator in (4.1) computes the raw pairwise match scores by computing

the dot product between features pairs. The denominator performs a normalization

operation with the efect of down-weighing ambiguous matches, by penalizing features

from one image which have multiple highly-rated matches in the other image. This

is in line with the classical second nearest-neighbour test of Lowe [Lowe, 2004]. The

resulting tensor � contains all normalized match scores between the source and target

features.

Geometric transformation estimation. The Ąnal stage of the alignment network

consists of estimating the parameters of a geometric transformation � given the match

scores �. This is done by a transformation regression CNN, represented by the function

�:

� : R
ℎ×�×ℎ×� ⊃ R

� , � = �(�) (4.2)

where � is the number of degrees of freedom, or parameters, of the geometric model;

e.g. � = 6 for an aine model. The estimated transformation parameters � are used

to deĄne the 2-D warping ��:
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�� : R
2 ⊃ R

2, (��, ��) = ��(��, ��) (4.3)

where (��, ��) are the spatial coordinates of the target image, and (��, ��) the corre-

sponding sampling coordinates in the source image. Using ��, it is possible to warp

the source to the target image.

Note that all parts of the geometric alignment network are diferentiable and

therefore amenable to end-to-end training, including the feature extractor � which

can learn better features for the task of semantic alignment.

4.3.2 Soft-inlier count

We propose the soft-inlier count used to automatically evaluate the estimated ge-

ometric transformation �. Making an efort to maximize this count provides the

weak-supervisory signal required to train the alignment network, avoiding the need for

expensive manual annotations for �. The soft-inlier count is inspired by the inlier count

used in the robust RANSAC method [Fischler and Bolles, 1981], which is reviewed

Ąrst.

RANSAC inlier count. For simplicity, let us consider the problem of Ątting a line

to a set of observed points ��, with � = 1, . . . � , as illustrated in Fig. 4-3a. RANSAC

proceeds by sampling random pairs of points used to propose line hypotheses, each

of which is then scored using the inlier count, and the highest scoring line is chosen;

here we only focus on the inlier count aspect of RANSAC used to score a hypothesis.

Given a hypothesized line ℓ, the RANSAC inlier scoring function counts the number

of observed points which are in agreement with this hypothesis, called the inliers. A

point � is typically deemed to be an inlier if its distance to the line is smaller than a

chosen distance threshold �, i.e. d(�, ℓ) < �.

The RANSAC inlier count, ��, can be formulated by means of an auxiliary indicator
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(a) Inliers and outliers (b) Inlier mask function (c) Discretized space

Figure 4-3: Line-fitting example. (a) The line hypothesis ℓ can be evaluated in terms of
the number of inliers. (b) The inlier mask � speciĄes the region where the inlier distance
threshold is satisĄed. (c) In the discretized space setting, where the match score ��� exists
for every point (�, �), the soft-inlier count is computed by summing up match scores masked
by the inlier mask � from (b).

function illustrated in Fig. 4-3b, which we call the inlier mask function �:

�� =
︁

�

�(��), where �(�) =

︁

︁

︁

︁

︁

︁

︁

1, if d(�, ℓ) < �

0, otherwise.

(4.4)

Soft-inlier count. The RANSAC inlier count cannot be used directly in a neural

network as it is not diferentiable. Furthermore, in our setting there is no sparse set

of matching points, but rather a match score for every match in a discretized match

space. Therefore, we propose a direct extension, the soft-inlier count, which, instead of

counting over a sparse set of matches, sums the match scores over all possible matches.

The running line-Ątting example can now be revisited under the discrete-space

conditions, as illustrated in Figure 4-3c. The proposed soft-inlier count for this case is:

� =
︁

�,�

������, (4.5)

where ��� is the match score at each grid point (i,j), and ��� is the discretized inlier

mask:

��� =

︁

︁

︁

︁

︁

︁

︁

1 if d
⎞

(�, �), ℓ
︁

< �

0 otherwise

(4.6)
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Translating the discrete-space line-Ątting example to our semantic alignment

problem, � is a 4-D tensor containing scores for all pairwise feature matches between

the two images (Section 4.3.1), and matches are deemed to be inliers if they Ąt the

estimated geometric transformation �. More formally, the inlier mask � is now also a

4-D tensor, constructed by thresholding the transfer error:

����� =

︁

︁

︁

︁

︁

︁

︁

1 if d
⎞

(�, �), ��(�, �)
︁

< �

0 otherwise,

(4.7)

where ��(�, �) are the estimated coordinates of target imageŠs point (�, �) in the source

image according to the geometric transformation �; d
⎞

(�, �), ��(�, �)
︁

is the transfer

error as it measures how aligned is the point (�, �) in the source image, with the

projection of the target image point (�, �) into the source image. The soft-inlier count

� is then computed by summing the masked matching scores over the entire space of

matches:

� =
︁

�,�,�,�

����������. (4.8)

Differentiability. The proposed soft-inlier count � is diferentiable with respect

to the transformation parameters � as long as the geometric transformation �� is

diferentiable [Jaderberg et al., 2015], which is the case for a range of standard geometric

transformations such as 2D aine, homography or thin-plate spline transformations.

Furthermore, it is also diferentiable w.r.t. the match scores, which facilitates training

of the feature extractor.

Implementation as a CNN layer. The inlier mask � can be computed by warping

an identity mask �Id with the estimated transformation ��, where �Id is constructed

by thresholding the transfer error of the identity transformation:

�Id

���� =

︁

︁

︁

︁

︁

︁

︁

1 d
⎞

(�, �), (�, �)
︁

< �

0 otherwise.

(4.9)

The warping is implemented using a spatial transformer layer [Jaderberg et al.,
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2015], which consists of a grid generation layer and a bilinear sampling layer. Both of

these functions are readily available in most deep learning frameworks.

Optimization objective. Given a training pair of images that should match, the

goal is to maximize the soft-inlier count �, or, equivalently, to minimize ℒ = ⊗�.

Analogy to RANSAC. Please also note that our method is similar in spirit to

RANSAC [Fischler and Bolles, 1981], where (i) transformations are proposed (by

random sampling) and then (ii) scored by their support (number of inliers). In our

case, during training (i) the transformations are proposed (estimated) by the regressor

network � and (ii) scored using the proposed soft-inlier score. The gradient of this

score is used to improve both the regressor � and feature extractor � (see Fig. 4-2).

In turn, the regressor produces better transformations and the feature extractor better

feature matches that maximize the soft-inlier score on training images.

4.4 Evaluation and results

In this section we provide implementation details, benchmarks used to evaluate our

approach, and quantitative and qualitative results.

4.4.1 Implementation details

Semantic alignment network. For the underlying semantic alignment network,

we use the best-performing architecture from the code release of Rocco et al. [2017]

which employs a ResNet-101 model [He et al., 2016], cropped after conv4-23, as the

feature extraction CNN � . Note that this is a better performing model than the one

described in the original paper [Rocco et al., 2017], mainly due to use of ResNet versus

VGG-16 [Simonyan and Zisserman, 2015]. Given an image pair, the model produces

a thin-plate spline geometric transformation �� which aligns the two images; �� has

18 degrees of freedom. The network is initialized with the pre-trained weights from

the code release of Rocco et al. [2017], and we Ąnetune it with our weakly supervised
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method. Note that the initial model has been trained in a self-supervised way from

synthetic data, not requiring human supervision [Rocco et al., 2017], therefore not

afecting our claim of weakly supervised training1.

Training details. Training and validation image pairs are obtained from the training

set of PF-PASCAL, described in Section 4.4.2. All input images are resized to 240×240,

and the value � = �/30 (where � = ℎ = � is the size of the extracted feature maps)

was used for the transfer error threshold. The whole model is trained end-to-end,

including the aine parameters in the batch normalization layers. However, the running

averages of the batch normalization layers are kept Ąxed, in order to be less dependent

on the particular statistics of the training dataset. The network is implemented in

PyTorch [Paszke et al., 2017] and trained using the Adam optimizer [Kingma and Ba,

2015] with learning rate 5 ≤ 10⊗8, no weight decay and batch size of 16. The training

dataset is augmented by horizontal Ćipping, swapping the source and target images,

and random cropping. Early stopping is required to avoid overĄtting, given the small

size of the training set. This results in 13 training epochs, taking about an hour on a

modern GPU.

4.4.2 Evaluation benchmarks

Evaluation is performed on three standard image alignment benchmarks: PF-PASCAL,

Caltech-101 and TSS.

PF-PASCAL [Ham et al., 2017]. This dataset contains 1351 semantically related

image pairs from 20 object categories, which present challenging appearance diferences

and background clutter. We use the split proposed in [Han et al., 2017], which divides

the dataset into roughly 700 pairs for training, 300 pairs for validation, and 300 pairs

for testing. Keypoint annotations are provided for each image pair, which are used only

for evaluation purposes. Alignment quality is evaluated in terms of the percentage

of correct keypoints (PCK) metric [Yang and Ramanan, 2013], which counts the

1The initial model is trained with a supervised loss, but the ŞsupervisionŤ is automatic due to the
use of synthetic data.
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number of keypoints which have a transfer error below a given threshold. We follow

the procedure employed in [Han et al., 2017], where keypoint (�, �) coordinates are

normalized in the [0, 1] range by dividing with the image width and height respectively,

and the value Ð = 0.1 is employed as the distance threshold.

Caltech-101 [Fei-Fei et al., 2006]. Although originally introduced for the image

classiĄcation task, the dataset was adopted in [Kim et al., 2013] for assessing semantic

alignment, and has been then extensively used for this purpose [Ham et al., 2017; Kim

et al., 2018b; Han et al., 2017; Rocco et al., 2017]. The evaluation is performed on

1515 semantically related image pairs, 15 pairs for each of the 101 object categories

of the dataset. The semantic alignment is evaluated using three diferent metrics:

(i) the label transfer accuracy (LT-ACC); (ii) the intersection-over-union (IoU), and;

(iii) the object localization error (LOC-ERR). The label transfer accuracy and the

intersection-over-union both measure the overlap between the annotated foreground

object segmentation masks, with the former putting more emphasis on the background

class and the latter on the foreground object. The localization error computes a

dense displacement error. However, given the lack of dense displacement annotations,

the metric computes the ground-truth transformation from the source and target

bounding boxes, thus assuming that the transformation is a simple translation with

axis-aligned anisotropic scaling. This assumption is unrealistic as, amongst others, it

does not cover rotations, aine or deformable transformations. Therefore, we believe

that LOC-ERR should not be reported any more, but report it here for completeness

and in order to adhere to the currently adopted evaluation protocol.

TSS [Taniai et al., 2016]. The recently introduced TSS dataset contains 400

semantically related image pairs, which are split into three diferent subsets: FG3DCar,

JODS and PASCAL, according to the origin of the images. Ground-truth Ćow is

provided for each pair, which was obtained by manual annotation of sparse keypoints,

followed by automatic densiĄcation using an interpolation algorithm. The evaluation

metric is the PCK computed densely over the foreground object. The distance
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threshold is deĄned as Ð max(��, ℎ�) with (��, ℎ�) being the dimensions of the source

image, and Ð = 0.05.

Assessing generalization. We train a single semantic alignment network with the

700 training pairs from PF-PASCAL without using the keypoint annotations, and

stress that our weakly-supervised training objective only uses the information that

the image pair should match. The same model is then used for all experiments Ű

evaluation on the test sets of PF-PASCAL, Caltech-101 and TSS datasets. This poses

an additional diiculty as these datasets contain images of diferent object categories

or of diferent nature. While PF-PASCAL contains images of common objects such as

car, bicycle, boat, etc, Caltech-101 contains images of much less common categories

such as accordion, buddha or octopus. On the other hand, while the classes of TSS

do appear in PF-PASCAL, the pose diferences in TSS are usually smaller than in

PF-PASCAL, which modiĄes the challenge into obtaining a very precise alignment.

4.4.3 Results

In the following, our alignment network trained with weak supervision is compared to

the state-of-the-art alignment methods, many of which require manual annotations or

strong supervision (cf. Table 4.1).

PF-PASCAL. From Table 4.2 it is clear that our method sets the new state-of-the-

art, achieving an overall PCK of 75.8%, which is a 3.6% improvement over the best

competitor [Han et al., 2017]. This result is impressive as the two methods are trained

on the same image pairs, with ours being weakly supervised while [Han et al., 2017]

make use of bounding box annotations.



Method aero bike bird boat bottle bus car cat chair cow d.table dog horse moto person plant sheep sofa train tv all

PF-LOM (HOG) 73.3 74.4 54.4 50.9 49.6 73.8 72.9 63.6 46.1 79.8 42.5 48.0 68.3 66.3 42.1 62.1 65.2 57.1 64.4 58.0 62.5
SCNet-A (VGG-16) 67.6 72.9 69.3 59.7 74.5 72.7 73.2 59.5 51.4 78.2 39.4 50.1 67.0 62.1 69.3 68.5 78.2 63.3 57.7 59.8 66.3
SCNet-AG (VGG-16) 83.9 81.4 70.6 62.5 60.6 81.3 81.2 59.5 53.1 81.2 62.0 58.7 65.5 73.3 51.2 58.3 60.0 69.3 61.5 80.0 69.7
SCNet-AG+ (VGG-16) 85.5 84.4 66.3 70.8 57.4 82.7 82.3 71.6 54.3 95.8 55.2 59.5 68.6 75.0 56.3 60.4 60.0 73.7 66.5 76.7 72.2
CNNGeo (VGG-16) 75.2 80.1 73.4 59.7 43.8 77.9 84.0 67.7 44.3 89.6 33.9 67.1 60.5 72.6 54.0 41.0 60.0 45.1 58.3 37.2 65.0
CNNGeo (ResNet-101) 82.4 80.9 85.9 47.2 57.8 83.1 92.8 86.9 43.8 91.7 28.1 76.4 70.2 76.6 68.9 65.7 80.0 50.1 46.3 60.6 71.9
Proposed 83.7 88.0 83.4 58.3 68.8 90.3 92.3 83.7 47.4 91.7 28.1 76.3 77.0 76.0 71.4 76.2 80.0 59.5 62.3 63.9 75.8

Table 4.2: Per-class PCK on the PF-PASCAL dataset. We compare our method against PF-LOM [Ham et al., 2016], SCNet [Han
et al., 2017] and CNNGeo [Rocco et al., 2017]. Our method sets the new state-of-the-art on this dataset.
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The beneĄts of weakly supervised training can be seen by comparing our method

with the ResNet-101+CNNGeo [Rocco et al., 2017] approach presented in chapter 3.

The two use the same base alignment network (cf. Section 4.4.1), but ResNet-

101+CNNGeo was trained only on synthetically deformed image pairs, while ours

employs the proposed weakly supervised Ąne-tuning. The 3.9% boost clearly demon-

strates the advantage obtained by training on real image pairs and thus encountering

rich appearance variations, as opposed to using synthetically transformed pairs in

ResNet-101+CNNGeo [Rocco et al., 2017].

Caltech-101. Table 4.3 presents the quantitative results for this dataset. The

proposed method beats state-of-the-art results in terms of the label-transfer accuracy

and intersection-over-union metrics. Weakly supervised training again improves the

results, by 2%, over the synthetically trained ResNet-101+CNNGeo. In terms of

the localization-error metric, our model does not attain state-of-the-art performance,

but we argue that this metric is not a good indication of the alignment quality, as

explained in section 4.4.2. This claim is further backed up by noticing that the relative

ordering of various methods based on this metric is in direct opposition with the other

two metrics.

Method LT-ACC IoU LOC-ERR

HOG+PF-LOM [Ham et al., 2017] 0.78 0.50 0.26

FCSS+SIFT Flow [Kim et al., 2018b] 0.80 0.50 0.21

FCSS+PF-LOM [Kim et al., 2018b] 0.83 0.52 0.22

VGG-16+SCNet-A [Han et al., 2017] 0.78 0.50 0.28

VGG-16+SCNet-AG [Han et al., 2017] 0.78 0.50 0.27

VGG-16+SCNet-AG+ [Han et al., 2017] 0.79 0.51 0.25

HOG+OADSC [Yang et al., 2017] 0.81 0.55 0.19

VGG-16+CNNGeo [Rocco et al., 2017] 0.80 0.55 0.26

ResNet-101+CNNGeo [Rocco et al., 2017] 0.83 0.61 0.25

Proposed 0.85 0.63 0.24

Table 4.3: Evaluation results on the Caltech-101 dataset.
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Method FG3D. JODS PASC. avg.

HOG+PF-LOM [Ham et al., 2017] 0.786 0.653 0.531 0.657
HOG+TSS [Taniai et al., 2016] 0.830 0.595 0.483 0.636
FCSS+SIFT Flow [Kim et al., 2018b] 0.830 0.656 0.494 0.660
FCSS+PF-LOM [Kim et al., 2018b] 0.839 0.635 0.582 0.685
HOG+OADSC [Yang et al., 2017] 0.875 0.708 0.729 0.771
FCSS+DCTM [Kim et al., 2017] 0.891 0.721 0.610 0.740
VGG-16+CNNGeo [Rocco et al., 2017] 0.839 0.658 0.528 0.675
ResNet-101+CNNGeo [Rocco et al., 2017] 0.901 0.764 0.563 0.743
Proposed 0.903 0.764 0.565 0.744

Table 4.4: Evaluation results on the TSS dataset.

TSS. The quantitative results for the TSS dataset are presented in Table 4.4. We

set the state-of-the-art for two of the three subsets of the TSS dataset: FG3DCar and

JODS. Although our weakly supervised training provides an improvement over the

base alignment network, ResNet-101+CNNGeo, the gain is modest. We believe the

reason is a very diferent balancing of classes in this dataset compared to our training.

Recall our model is trained only once on the PF-PASCAL dataset, and is then applied

without any further training on TSS and Caltech-101.

Qualitative results. Figures 4-4a, 4-4b and 4-5 show qualitative results on the

Caltech-101, TSS and PF-PASCAL datasets, respectively. Our method is able to

align images across prominent viewpoint changes, in the presence of signiĄcant clutter,

while simultaneously tolerating large intra-class variations.

4.5 Conclusions

In this chapter we have presented a network architecture and training procedure for

semantic image alignment inspired by the robust inlier scoring used in the widely

successful RANSAC Ątting algorithm [Fischler and Bolles, 1981]. The architecture

requires supervision only in the form of matching image pairs and sets the new state-of-

the-art on multiple standard semantic alignment benchmarks, even beating alignment

methods that require geometric supervision at training time. However, handling
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multiple objects and non-matching image pairs still remains an open challenge. These

results open-up the possibility of learning powerful correspondence networks from

large-scale datasets such as ImageNet.
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(a) Caltech-101

(b) TSS

Figure 4-4: Alignment examples on the Caltech-101 and TSS datasets. Each row
shows the (left) source and (middle) target images, and (right) the automatic semantic
alignment.
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(a) Semantic alignment (b) Strongest inlier matches

Figure 4-5: Alignment examples on the PF-PASCAL dataset. Each row corresponds
to one example. (a) shows the (right) automatic semantic alignment of the (left) source and
(middle) target images. (b) shows the strongest inlier feature matches.



Chapter 5

Neighbourhood consensus

networks

In this chapter, we develop a trainable model for reliably estimating sets of semi-

dense correspondences between pairs of images. Contrary to the approach used in

Chapters 3 and 4 where a global geometric model was used to guide the matching,

in this chapter we rely on semi-local constraints for obtaining correspondences in

challenging situations such as in scenes with strong appearance diferences or repetitive

patterns. In particular, the contributions of this chapter are threefold. First, we develop

an end-to-end trainable convolutional neural network architecture that identiĄes sets

of spatially consistent matches by analyzing neighbourhood consensus patterns in

the 4D space of all possible correspondences between a pair of images without the

need for a global geometric transformation. Second, we demonstrate that the model

can be trained efectively from weak supervision in the form of matching and non-

matching image pairs without the need for costly manual annotation of point to point

correspondences. Third, we show the proposed neighbourhood consensus network can

be applied to a range of matching tasks including both category- and instance-level

matching, obtaining the state-of-the-art results on the PF, TSS, InLoc and HPatches

benchmarks.

101
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5.1 Introduction

Finding visual correspondences is one of the fundamental image understanding prob-

lems with applications in 3D reconstruction [Agarwal et al., 2011], visual localiza-

tion [Sattler et al., 2018; Taira et al., 2018] or object recognition [Liu et al., 2011]. In

recent years, signiĄcant efort has gone into developing trainable image representations

for Ąnding correspondences between images under strong appearance changes caused by

viewpoint or illumination variations [Jahrer et al., 2008; Fischer et al., 2014; Zagoruyko

and Komodakis, 2015; Han et al., 2015; Balntas et al., 2016a; Simonyan et al., 2014;

Simo-Serra et al., 2015; Balntas et al., 2016b; Yi et al., 2016]. However, unlike in

other visual recognition tasks, such as image classiĄcation or object detection, where

trainable image representations have become the de facto standard, the performance

gains obtained by trainable features over the classic hand-crafted ones have been only

modest at best [Schonberger et al., 2017].

One of the reasons for this plateauing performance could be the currently dominant

approach for Ąnding image correspondence based on matching individual image features.

While we have now better local patch descriptors, the matching is still performed by

variants of the nearest neighbour assignment in a feature space followed by separate

disambiguation stages based on geometric constraints. This approach has, however,

fundamental limitations. Imagine a scene with textureless regions or repetitive patterns,

such as a corridor with almost textureless walls and only few distinguishing features.

A small patch of an image, depicting a repetitive pattern or a textureless area, is

indistinguishable from other portions of the image depicting the same repetitive or

textureless pattern. Such matches will be either discarded [Lowe, 2004] or incorrect.

As a result, matching individual patch descriptors will often fail in such challenging

situations.

In this chapter, we take a diferent direction and develop a trainable neural

network architecture that disambiguates such challenging situations by analyzing local

neighbourhood patterns in a full set of dense correspondences. The intuition is the

following: in order to disambiguate a match on a repetitive pattern, it is necessary to
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analyze a larger context of the scene that contains a unique non-repetitive feature.

The information from this unique match can then be propagated to the neighbouring

uncertain matches. In other words, the certain unique matches will support the

close-by uncertain ambiguous matches in the image.

This powerful idea goes back to at least 1990s [Zhang et al., 1995; Schmid and

Mohr, 1997; Schafalitzky and Zisserman, 2002a; Sivic and Zisserman, 2003; Bian et al.,

2017], and is typically known as neighbourhood consensus or more broadly as semi-local

constraints. The neighbourhood consensus has been typically carried out on sparsely

detected local invariant features as a Ąltering step performed after a hard assignment

of features by nearest neighbour matching using the Euclidean distance in the feature

space. Furthermore, the neighbourhood consensus has been evaluated by manually

engineered criteria, such as a certain number of locally consistent matches [Schafalitzky

and Zisserman, 2002a; Sivic and Zisserman, 2003; Bian et al., 2017], or consistency in

geometric parameters including distances and angles between matches [Zhang et al.,

1995; Schmid and Mohr, 1997].

In this chapter, we go one step further and propose a way of learning neigh-

bourhood consensus constraints directly from training data. Moreover, we perform

neighbourhood consensus before hard assignment of feature correspondence; that is,

on the complete set of dense pair-wise matches. In this way, the decision on matching

assignment is done only after taking into account the spatial consensus constraints,

hence avoiding errors due to early matching decisions on ambiguous, repetitive or

textureless matches.

Contributions. The contributions of this chapter are threefold: First, we develop

a neighbourhood consensus network Ű a convolutional neural network architecture

for dense matching that learns local geometric constraints between neighbouring

correspondences without the need for a global geometric model. Second, we show

that parameters of this network can be trained from scratch using a weakly su-

pervised loss-function that requires supervision at the level of image pairs without

the need for manually annotating individual correspondences. Third, we show
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that the proposed model is applicable to a range of matching tasks producing high-

quality dense correspondences, achieving state-of-the-art results on both category- and

instance-level matching benchmarks. Code, training data and models are available

at http://www.di.ens.fr/willow/research/ncnet/.

5.2 Related work

The method we present in this chapter relates to several lines of research, which we

review below.

Matching with hand-crafted image descriptors. Traditionally, correspondences

between images have been obtained by hand crafted local invariant feature detec-

tors and descriptors [Lowe, 2004; Mikolajczyk and Schmid, 2002; Tuytelaars and

Mikolajczyk, 2008] that were extracted from the image with a controlled degree of

invariance to local geometric and photometric transformations. Candidate (tenta-

tive) correspondences were then obtained by variants of nearest neighbour matching.

Strategies for removing ambiguous and non-distinctive matches include the widely

used second nearest neighbour ratio test [Lowe, 2004], or enforcing matches to be

mutual nearest neighbours. Both approaches work well for many applications, but

have the disadvantage of discarding many correct matches, which can be problematic

for challenging scenes, such as indoor spaces considered in this chapter that include

repetitive and textureless areas. While successful, handcrafted descriptors have only

limited tolerance to large appearance changes beyond the built-in invariance.

Matching with trainable descriptors. The majority of trainable image descrip-

tors are based on convolutional neural networks (CNNs) and typically operate on

patches extracted using a feature detector such as DoG [Lowe, 2004], yielding a

sparse set of descriptors [Jahrer et al., 2008; Fischer et al., 2014; Balntas et al.,

2016a; Simonyan et al., 2014; Simo-Serra et al., 2015; Balntas et al., 2016b] or use

a pre-trained image-level CNN feature extractor [Noh et al., 2017; Savinov et al.,

2017]. Others have recently developed trainable methods that comprise both feature

http://www.di.ens.fr/willow/research/ncnet/
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detection and description [Yi et al., 2016; Choy et al., 2016; Noh et al., 2017]. The

extracted descriptors are typically compared using the Euclidean distance, but an

appropriate similarity score can be also learnt in a discriminative manner [Zagoruyko

and Komodakis, 2015; Han et al., 2015], where a trainable model is used to both

extract descriptors and produce a similarity score. Finding matches consistent with

a geometric model is typically performed in a separate post-processing stage [Long

et al., 2014; Jahrer et al., 2008; Fischer et al., 2014; Balntas et al., 2016a; Simonyan

et al., 2014; Simo-Serra et al., 2015; Balntas et al., 2016b; Yi et al., 2016; Choy et al.,

2016; Noh et al., 2017].

Trainable image alignment. Recently, end-to-end trainable methods have been

developed to produce correspondences between images according to a parametric geo-

metric model, such as an aine, perspective or thin-plate spline transformation [Rocco

et al., 2017, 2018a]. In addition, Recurrent Transformer Nets (RTN) [Kim et al.,

2018a] employ locally-varying aine deformation Ąelds. In these works, all pairwise

feature matches are computed and used to estimate the geometric transformation

parameters using a CNN. Unlike previous methods that capture only a sparse set of

correspondences, this geometric estimation CNN captures interactions between a full

set of dense correspondences. However, these methods currently only estimate a low

complexity parametric transformation, and therefore their application is limited to

only coarse image alignment tasks. In contrast, we target a more general problem

of identifying reliable correspondences between images of a general 3D scene. Our

approach is not limited to a low dimensional parametric model, but outputs a generic

set of locally consistent image correspondences, applicable to a wide range of computer

vision problems ranging from category-level image alignment to camera pose estima-

tion. The proposed method builds on the classical ideas of neighbourhood consensus,

which we review next.

Match filtering by neighbourhood consensus. Several strategies have been

introduced to decide whether a match is correct or not, given the supporting evidence
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from the neighbouring matches. The early examples analyzed the patterns of dis-

tances [Zhang et al., 1995] or angles [Schmid and Mohr, 1997] between neighbouring

matches. Later work simply counts the number of consistent matches in a certain

image neighbourhood [Schafalitzky and Zisserman, 2002a; Sivic and Zisserman, 2003],

which can be built in a scale invariant manner [Sattler et al., 2009], using a regular

image grid [Bian et al., 2017], or an adaptive neighbourhood size by considering a cer-

tain number of nearby matches [Ma et al., 2019]. While simple, these techniques have

been remarkably efective in removing random incorrect matches and disambiguating

local repetitive patterns [Sattler et al., 2009]. Inspired by this simple yet powerful idea

we develop a neighbourhood consensus network Ű a convolutional neural architecture

that (i) analyzes the full set of dense matches between a pair of images and (ii) learns

patterns of locally consistent correspondences directly from data.

Other modern match filtering methods. While the idea of using neighbourhood

consensus to remove outlier matches dates back to the 1990s [Zhang et al., 1995;

Schmid and Mohr, 1997], it is still an actively researched topic. Recently, Bian et

al. [Bian et al., 2017] proposed the Grid-based Motion Statistics (GMS) approach,

where the images to be matched are partitioned into a set of cells and the number

of matches between each cell are used to distinguish inliers from outliers. Also, Ma

et al. [Ma et al., 2019] propose the Locality Preserving Matching (LPM) approach,

where the sizes of the neighbourhoods are not explicitly deĄned, but rather inferred by

nearest-neighbour search, and which proposes an optimization scheme to determine

inliers by minimizing a global cost function. While these methods build on the idea

of neighbourhood consensus, they are manually engineered and have no trainable

parameters. Our proposed neighbourhood consensus network seeks to combine the

power of the neighbourhood consensus approach with that of trainable convolutional

neural networks. Other recent trainable methods for match Ąltering have also been

proposed [Yi et al., 2018; Zhang et al., 2019; Brachmann and Rother, 2019], although

they are particularly focused on robust estimation of the essential and fundamental

matrices of two-view geometry. In particular, the Context Normalization Network
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(CNe) of Yi et al. [Yi et al., 2018] combines a deep fully connected network (MLP) that

operates on the level of individual 4D match coordinates with a Context Normalization

(CN) Layer which acts at a global, image level. We compare our proposed method

with GMS [Bian et al., 2017], LPM [Ma et al., 2019] and CNe [Yi et al., 2018].

Flow and disparity estimation. Related are also methods that estimate opti-

cal Ćow or stereo disparity such as [Lucas and Kanade, 1981; Horn and Schunck,

1981; Hirschmüller, 2007; Sun et al., 2010; Brox and Malik, 2010], or their trainable

counterparts [Dosovitskiy et al., 2015; Sun et al., 2018; Kendall et al., 2017]. These

works also aim at establishing reliable point to point correspondences between images.

However, we address a more general matching problem where images can have large

viewpoint changes (indoor localization) or major changes in appearance (category-level

matching). This is diferent from optical Ćow where image pairs are usually consecutive

video frames with small viewpoint or appearance changes, and stereo where matching

is often reduced to a local search around epipolar lines. The optical Ćow and stereo

problems are well addressed by specialized methods that explicitly exploit the problem

constraints (such as epipolar line constraint, small motion, smoothness, etc.).

5.3 Proposed approach

In this chapter, we combine the robustness of neighbourhood consensus Ąltering

with the power of trainable neural architectures. We design a model which learns

to discriminate a reliable match by recognizing patterns of supporting matches in

its neighbourhood. Furthermore, we do this in a fully diferentiable way, such that

this trainable matching module can be directly combined with strong CNN image

descriptors. The resulting pipeline can then be trained in an end-to-end manner for

the task of feature matching. An overview of our proposed approach is presented in

Fig. 5-1. There are Ąve main components: (i) dense feature extraction and matching,

(ii) the neighbourhood consensus network, (iii) a soft mutual nearest neighbour Ąltering,

(iv) extraction of correspondences from the output 4D Ąltered match tensor, and (v)
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Figure 5-1: Overview of the proposed method. A fully convolutional neural network
is used to extract dense image descriptors �� and �� for images �� and ��, respectively.
Scores for all pairs of individual feature matches ��

�� and ��
�� are stored in the 4-D correlation

map ����� (here shown as a 3-D illustration). These matches are further processed by the
proposed soft-nearest neighbour Ąltering and neighbourhood consensus network to produce
the Ąnal set of output correspondences.

weakly supervised training loss. These components are described next.

5.3.1 Dense feature extraction and matching

In order to produce an end-to-end trainable model, we follow the common practice of

using a deep convolutional neural network (CNN) as a dense feature extractor.

Then, given an image �, this feature extractor will produce a dense set of descriptors,

¶� �
��♢ ∈ R

�, with indices � = 1, . . . , ℎ and � = 1, . . . , �, and (ℎ, �) denoting the number

of features along image height and width (i.e. the spatial resolution of the features),

and � the dimensionality of the features.

While classic hand-crafted neighbourhood consensus approaches are applied after

a hard assignment of matches is done, this is not well suited for developing a matching

method that is diferentiable and amenable for end-to-end training. The reason is that

the step of selecting a particular match is not diferentiable with respect to the set

of all the possible features. In addition, in case of repetitive features, assigning the

match to the Ąrst nearest neighbour might result in an incorrect match, in which case

the hard assignment would lose valuable information about the subsequent closest

neighbours.

Therefore, in order to have an approach that is amenable to end-to-end training,

all pairwise feature matches need to be computed and stored. For this we use an
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approach similar to the one presented in Chapter 3. Given two sets of dense feature

descriptors �� = ¶��
�� ♢ and �� = ¶��

�� ♢ corresponding to the images to be matched,

the exhaustive pairwise cosine similarities between them are computed and stored in

a 4-D tensor � ∈ R
ℎ×�×ℎ×� referred to as correlation map, where:

����� =
⟨��

�� , ��
�� ⟩

‖��
�� ‖

2
‖��

�� ‖2

. (5.1)

Note that, by construction, elements of � in the vicinity of index ���� correspond

to matches between features that are in the local neighbourhoods �� and �� of

descriptors ��
�� in image � and ��

�� in image �, respectively, as illustrated in Fig. 5-1;

this structure of the 4-D correlation map tensor � will be exploited in the next section.

5.3.2 Neighbourhood consensus network

The correlation map contains the scores of all pairwise matches. In order to further

process and Ąlter the matches, we propose to use 4-D convolutional neural network

(CNN) for the neighbourhood consensus task (denoted by �(≤)), which is illustrated

in Fig. 5-1.

Determining the correct matches from the correlation map is, a priori, a signiĄcant

challenge. Note that the number of correct matches are of order of ℎ�, while the size of

the correlation map is of the order of (ℎ�)2. This means that the great majority of the

information in the correlation map corresponds to matching noise due to incorrectly

matched features.

However, supported by the idea of neighbourhood consensus presented in Sec. 4.1,

we can expect correct matches to have a coherent set of supporting matches surrounding

them in the 4-D space. These geometric patterns are equivariant with translations in

the input images; that is, if the images are translated, the matching pattern is also

translated in the 4-D space by an equal amount. This property motivates the use of

4-D convolutions for processing the correlation map as the same operations should

be performed regardless of the location in the 4-D space. This is analogous to the

motivation for using 2-D convolutions to process individual images Ű it makes sense
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to use convolutions, instead of for example a fully connected layer, in order to proĄt

from weight sharing and keep the number of trainable parameters low. Furthermore,

it facilitates sample-eicient training as a single training example provides many error

signals to the convolutional weights, since the same weights are applied at all positions

of the correlation map. Finally, by processing matches with a 4D convolutional network

we establish a strong locality prior on the relationships between the matches. That is,

by design, the network will determine the quality of a match by examining only the

information in a local 2D neighbourhood in each of the two images.

The proposed neighbourhood consensus network has several convolutional layers, as

illustrated in Fig. 5-1, each followed by ReLU non-linearities. The convolutional Ąlters

of the Ąrst layer of the proposed CNN span a local 4-D region of the matches space,

which corresponds to the Cartesian product of local neighbourhoods �� and �� in

each image, respectively. Therefore, each 4-D Ąlter of the Ąrst layer can process and

detect patterns in all pairwise matches of these two neighbourhoods. This Ąrst layer

has �1 Ąlters that can specialize in learning diferent local geometric deformations,

producing �1 output channels, that correspond to the agreement with these local

deformations at each 4-D point of the correlation tensor. These output channels

are further processed by subsequent 4-D convolutional layers. The aim is that these

layers capture more complex patterns by combining the outputs from the previous

layer, analogously to what has been observed for 2-D CNNs [Zeiler and Fergus, 2014].

Finally, the neighbourhood consensus CNN produces a single channel output, which

has the same dimensions as the 4D input matches.

To make the method invariant to the particular order of the input images, that is,

that it will produce the same matches regardless of whether an image pair is input

to the net as (��, ��) or (��, ��), we deĄne the following symmetric version of the

network � by applying it twice in the following way:

�(�) = �(�) +
⎞

�(�T)
︁T

, (5.2)

where � is the correlation map deĄned in (5.1) and by �T we mean swapping the pairs
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of dimensions corresponding to the Ąrst and second images:
⎞

�T
︁

����
= �����. This Ąnal

output constitutes the filtered matches using the neighbourhood consensus network,

where matches with inconsistent local patterns are downweighted or removed. Further

Ąltering can be done by means of a global Ąltering strategy, as presented next.

5.3.3 Soft mutual nearest neighbour filtering

Although the proposed neighbourhood consensus network can suppress and amplify

matches based on the supporting evidence in their neighbourhoods Ű that is, at a

semi-local level Ű it cannot enforce global constraints on matches, such as being a

reciprocal match, where matched features are required to be mutual nearest neighbours:

(��
��, ��

��) mutual N.N. ⇐⇒

︁

︁

︁

︁

︁

︁

︁

(�, �) = argmin�� ‖��
�� ⊗ ��

��‖

(�, �) = argmin�� ‖��
�� ⊗ ��

�� ‖.

(5.3)

Filtering the matches by imposing the hard mutual nearest neighbour condition

expressed by (5.3) would eliminate the great majority of candidate matches, which

makes it unsuitable for usage in an end-to-end trainable approach, as this hard decision

is non-diferentiable.

We therefore propose a softer version of the mutual nearest neighbour Ąltering

(�(≤)), both in the sense of softer decision and better differentiability properties, that

can be applied on dense 4-D match scores:

�′ = �(�), where �′
���� = ��

�����
�
���������, (5.4)

and ��
���� and ��

���� are the ratios of the score of the particular match ����� with the best

scores along each pair of dimensions corresponding to images � and � respectively:

��
���� =

�����

max�� �����

, and ��
���� =

�����

max�� �����

. (5.5)

This soft mutual nearest neighbour Ąltering operates as a gating mechanism on the

input, downweighting the scores of matches that are not mutual nearest neighbours.
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Note that the proposed formulation is indeed a softer version of the mutual nearest

neighbours criterion as �′
���� equals the matching score ����� if (��

�� , ��
�� ) are mutual

nearest neighbours, and is decreased to a value in [0, �����) otherwise. On the contrary,

the ŞhardŤ mutual nearest neighbour matching would assign �′
���� = 0 in the latter

case.

While this Ąltering step has no trainable parameters, it can be inserted in the

CNN pipeline at both training and evaluation stages, and it will help to enforce the

global reciprocity constraint on matches. In the proposed approach, the soft mutual

nearest neighbour Ąltering is used to Ąlter both the correlation map, as well as the

output of the neighbourhood consensus CNN, as illustrated in Fig. 5-1.

5.3.4 Lightweight model

Given the correlation tensor �, and the previously deĄned symmetric neighbourhood-

consensus network (�) and soft mutual nearest neighbour Ąltering (�) operations,

the full proposed method can be expressed as:

NCNet(�) = (� ◇ � ◇ �)(�). (5.6)

However, due to memory requirements, one might prefer to use lighter-weight

neighbourhood consensus network � instead of its symmetric version �:

L-NCNet(�) = (� ◇ � ◇ �)(�), (5.7)

Due to the lower memory requirements, L-NCNet is useful for running the network

on higher resolution images. Note that switching from NCNet to the lightweight L-

NCNet simply results in neglecting the second term of (5.2) and can be done without

retraining.
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5.3.5 Extracting correspondences from the correlation map

Suppose that we want to match two images �� and ��, whose raw correlation map is �.

Then, the output of our model �′ = NCNet(�) is a 4-D filtered correlation map, which

contains (Ąltered) scores for all pairwise matches. However, for various applications,

such as image warping, geometric transformation estimation, pose estimation, visu-

alization, etc, it is desirable to obtain a set of point-to-point image correspondences

between the two images. To achieve this, a hard assignment can be performed in

either of two possible directions, from features in image � to features in image �, or

vice versa.

For this purpose, two scores are deĄned from the correlation map, by performing

soft-max in the dimensions corresponding to images � and �:

��
���� =

exp(�′
����)

︀

�� exp(�′
����)

and ��
���� =

exp(�′
����)

︀

�� exp(�′
����)

. (5.8)

Note that the scores are: (i) positive, (ii) normalized using the soft-max function,

which makes
︀

�� ��
���� = 1. Hence we can interpret them as discrete conditional

probability distributions of ��
�� , ��

�� being a match, given the position (�, �) of the match

in � or (�, �) in �. If we denote (�, �, �, �) the discrete random variables indicating

the position of a match (a priori unknown), and (�, �, �, �) the particular position of a

match, then:

P (� = �, � = � ♣ � = �, � = �) = ��
����, and

P (� = �, � = � ♣ � = �, � = �) = ��
����.

(5.9)

Then, the hard-assignment in one direction can be done by just taking the most

likely match (the mode of the distribution) as follows:

��
�� matches ��

�� with score ��
�� if:

(�, �) = argmax
��

P (� =�, �=� ♣� = �, � =�) = argmax
��

��
����,

with ��
�� := �����.

(5.10)
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Figure 5-2: Extracting correspondences from the correlation map. We il-
lustrate the process of extracting correspondences in both directions, � ⊃ � and
� ⊃ �.

The matches of ��
�� over �� are obtained analogously. This process is illustrated in

Fig. 5-2.

This probabilistic intuition allows us to model the match uncertainty using a

probability distribution and will be also useful to motivate the loss used for weakly-

supervised training, which will be described next.

5.3.6 Weakly-supervised training

In this section we deĄne the loss function used to train our network. One option

is to use a strongly-supervised loss, but this requires dense annotations consisting

of all pairs of corresponding points for each training image pair. Obtaining such

exhaustive ground-truth is complicated Ű dense manual annotation is impractical,

while sparse annotation followed by an automatic densiĄcation technique typically

results in imprecise and erroneous training data. Another alternative is to resort to

synthetic imagery which would provide point correspondences by construction, but

this has the downside of making it harder to generalize to larger appearance variations

encountered in real image pairs we wish to handle. Therefore, it is desirable to be able

to train directly from pairs of real images, requiring as little annotation as possible.

For this we propose to use a training loss that only requires a weak-level of

supervision consisting of annotation on the level of image pairs. These training pairs

(��, ��) can be of two types, positive pairs, labelled with � = +1, or negative pairs,
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Figure 5-3: Illustration of the proposed weakly-supervised loss. For positive
pairs, the distribution of match scores is forced towards a Kronecker delta distribution,
while for negative pairs it is forced towards a uniform distribution.

labelled with � = ⊗1. Then, the following loss function is proposed:

ℒ(��, ��) = ⊗�
⎞

�̄� + �̄�
︁

, (5.11)

where �̄� and �̄� are the mean matching scores over all hard assigned matches as

per (5.10) of a given image pair (��, ��) in both matching directions.

Note that the minimization of this loss maximizes the scores of positive and

minimizes the scores of negative image pairs, respectively. As explained in 5.3.5, the

hard-assigned matches correspond to the modes of the distributions of (5.9). Therefore,

maximizing the score forces the distribution towards a Kronecker delta distribution,

having the desirable efect of producing well-identiĄed matches in positive image

pairs. Similarly, minimizing the score forces the distribution towards the uniform one,

weakening the matches in the negative image pairs. Note that while the only scores

that directly contribute to the loss are the ones coming from hard-assigned matches,

all matching scores afect the loss because of the normalization in (5.8). Therefore, all

matching scores will be updated at each training step. An illustration of the proposed

weakly-supervised loss is presented in Fig. 5-3.

5.3.7 Feature relocalization

The localization precision of the extracted features � �
�� depends on the spatial resolution

ℎ × � of the dense feature map � � . For some tasks, such as pose estimation, precisely

localized features are needed. However, in some cases, given hardware constraints,
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one cannot increase the spatial resolution ℎ × � to obtain the required precision, as

increasing ℎ and � by a factor of two results in a sixteen-fold increase in the memory

consumption and computation time of the whole NCNet model. Therefore, we devise a

method to increase the localization precision, with a less severe impact on the memory

consumption and computation time.

In this approach, the correlation map � from (5.1) is computed with higher

resolution features 2ℎ × 2� leading to a 2ℎ × 2� × 2ℎ × 2� correlation map. This

correlation map � is then downsampled to resolution ℎ × � × ℎ × � before further

processing by the neighbourhood consensus network. Note that by doing this the

memory requirements of the correlation tensor are still increased by a factor of 16, but

the memory requirements of the 4D convolutional network are kept constant. The

downsampling is performed by a 4-D max-pooling operation, with the kernel of size 2:

�′
���� = max

�∈[2�,2�+1],�∈[2�,2�+1],�∈[2�,2�+1],�∈[2�,2�+1]
�����. (5.12)

The downsampled correlation map �′ is then processed and used to compute the

Ąnal matches, which are localized with a precision given by the downsampled resolution

ℎ×�. However, one can re-localize these features, and reduce the localization error, by

simply using the positions of the features that yielded the locally maximal correlation

value in the 4-D max-pooling operation given by (5.12). In other words, for a match

(��
��, ��

��), the Ąnal re-localized feature positions (�′, �′) and (�′, �′) are computed by:

�′, �′, �′, �′ = argmax
�∈[2�,2�+1],�∈[2�,2�+1],�∈[2�,2�+1],�∈[2�,2�+1]

�����. (5.13)

Note that a similar approach was used in [Badrinarayanan et al., 2017] for upsampling

feature maps for the task of semantic segmentation, and in [Widya et al., 2018] for

feature localization.
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5.4 Experimental results

The proposed approach was evaluated on both category and instance-level matching

problems. The same approach is used to obtain reliable matches for both types of

matching problems, which are then used to solve the diferent task proposed by each

particular benchmark.

5.4.1 Category-level matching

The proposed method was evaluated on the task of category-level matching, where,

given two images containing diferent instances from the same category (e.g. two

diferent cat images) the goal is to match or align the similar semantic parts. Three

diferent standard benchmarks were used and evaluated using their respective metrics.

These benchmarks will be presented next.

Proposal Flow. The Proposal Flow benchmark was used for evaluating the task

of semantic keypoint transfer, where given annotated keypoints in the source image

the task is to determine their positions in the target image. Both PF-Pascal and

PF-Willow variants of the PF dataset [Ham et al., 2017] were used, which respectively

contain 1251 and 900 semantically related image pairs annotated with sparse keypoints.

The performance is measured using the percentage of correct keypoints (PCK), that

is, the number of correctly matched annotated keypoints within a tolerance threshold

of the ground-truth position. In both cases, the evaluation protocol of [Han et al.,

2017; Rocco et al., 2018a] is followed, where the PCK is computed using normalized

keypoint coordinates (�̂, �̂) = (�/�, �/ℎ) with (ℎ, �) being the image resolution and

the normalized distance threshold �̂ = Ð. Note that [Ham et al., 2017; Rocco et al.,

2017] used slightly diferent deĄnitions of PCK, so in order to make a fair comparison,

for these methods we report the results from [Han et al., 2017; Kim et al., 2018a]

which re-evaluated them using the presented evaluation procedure.

Caltech-101. The Caltech-101 [Fei-Fei et al., 2006] dataset was used for evaluating

the task of label transfer, which consists of transferring the semantic segmentation
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labels of the source image onto the target image. The same evaluation data and

procedure as in Chapter 3 and Ham et al. [2017] was used, which includes 1515

evaluation pairs. The alignment accuracy is quantitatively measured using the label

transfer accuracy (LT-ACC), which measures the alignment correctness of both

foreground and background labels; and the Jaccard similarity coeicient (IoU), which

only measures the alignment correctness of the foreground object. The previously

employed localization error metric (LOC-ERR) is not considered here as it was shown

to be unrepresentative of the alignment quality. For the mathematical deĄnitions of

these metrics, please refer to Chapter 3. For qualitative evaluation, the output aligned

images are presented, which provides better qualitative assessment of the alignment

than visualizing the transferred segmentation masks.

TSS. Finally, we report results on the TSS dataset [Taniai et al., 2016] which

consists of 400 semantically related image pairs which are subdivided into three

subgroups: FG3D, JODS and PASCAL. By employing a semi-automated method

requiring human intervention, dense ground-truth Ćow maps were computed for each

image pair, which enables dense evaluation of the alignment, in contrast to sparse

keypoints or segmentation masks used in the previous two cases. The metric employed

to assess the dense alignment is also the percentage of correct keypoints (PCK) Ű but

evaluated densely and not sparsely Ű with distance threshold � = Ð max(ℎ, �), where

(ℎ, �) is the target image resolution.

Training. From the three category-level benchmarks, only the PF-Pascal provides

a training split [Han et al., 2017], which divides the data into approximately 700 pairs

for training, 300 for validation and 300 for testing. In order to train the network in a

weakly-supervised manner using the proposed loss (5.11), the 700 training pairs of

PF-Pascal are used as positive training pairs, and negative pairs are generated by

randomly pairing images of diferent categories, such as a car with a dog image. The

same model trained on the PF-Pascal training split was used for evaluation on all the

category-level benchmarks.
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PF-P PF-W Caltech TSS

Method PCK PCK IOU LT-ACC FG3D JODS PASCAL avg.

HOG+PF-LOM [Ham et al., 2017] 62.5 56.8 0.50 0.78 0.786 0.653 0.531 0.657
SCNet-AG+ [Han et al., 2017] 72.2 70.4 0.51 0.79 0.776 0.608 0.474 0.619
CNNGeo [Rocco et al., 2017] 71.9 81.1 0.61 0.83 0.901 0.764 0.563 0.743
WeakAlign [Rocco et al., 2018a] 75.8 84.3 0.63 0.85 0.903 0.764 0.565 0.744
RTN [Kim et al., 2018a] 75.9 71.9 0.64 0.87 0.901 0.782 0.633 0.772
NCNet (� = 100, FR) 78.9 84.3 0.62 0.85 0.945 0.814 0.571 0.777

Table 5.1: Results for semantic matching on different datasets. We evaluate on the
tasks of keypoint transfer (PF-Pascal/Willow), label transfer (Caltech) and dense alignment
(TSS).

Results. Quantitative results are presented in Table 5.1. The proposed neighbour-

hood consensus network (NCNet) obtains state-of-the-art results in several of the

evaluated benchmarks. Qualitative examples of the semantic keypoint transfer on the

PF dataset are shown in Fig. 5-4. Additional qualitative examples of dense alignment

on the Caltech-101 and TSS datasets are presented in Fig. 5-5. These qualitative

results demonstrate how our approach can correctly match semantic object parts

in challenging situations with large changes of appearance and non-rigid geometric

deformations. Note that the dense alignments in Fig. 5-5 are obtained directly by

bilinear interpolation of the matches outputted by NCNet, not requiring the use of any

global geometric model or regularization technique, in contrast with other methods.

5.4.2 Instance-level matching

Next we show that our method is also suitable for instance level matching and

evaluate it on two diferent benchmarks, (i) HPatches [Balntas et al., 2017], consisting

mostly of pictures of outdoor planar scenes, paintings or printed photographs and, (ii)

InLoc [Taira et al., 2018], consisting in indoor images taken at diferent times. While in

both benchmarks the image pairs contain strong variations of illumination conditions

and viewpoint, the InLoc dataset is particularly challenging as indoor spaces are often

self-similar and contain large textureless areas. Furthermore, while the HPatches

dataset allows for a direct evaluation of the matching accuracy, the InLoc dataset

evaluates the matching task as a module in an indoor visual localization pipeline,
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(a) PF-Pascal

(b) PF-Willow

Figure 5-4: Semantic key-
point transfer. The anno-
tated (ground truth) keypoints
in the left image are automati-
cally transferred to the right im-
age using the dense correspon-
dences between the two images
obtained from our NCNet.

(a) Caltech-101

(b) TSS

Figure 5-5: Dense semantic alignment. The Ąrst two
columns show the source and target images, respectively.
The right-most column shows the result of transforming the
source image by bilinear interpolation using the matches
obtained by NCNet such that the result is aligned to the
target image. Note that no global geometric model is used
for the warping.
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where the goal is to estimate an accurate 6DoF camera pose of a query photograph

given a large-scale 3D model of a building.

HPatches. We employ the HPatches benchmark [Balntas et al., 2017] to directly

evaluate the matching accuracy in the instance-level matching case. The dataset

contains 116 sequences, each belonging to a diferent planar scene and each containing

6 images which are used to form 5 image pairs. These sequences are divided into

the illumination (57 sequences) and viewpoint (59 sequences) subsets, which only

contain changes along these factors of variation. The dataset provides a ground-truth

homography transformation for each image pair, which is used to assess the accuracy

of the extracted matches. Two diferent measures are used. The Ąrst one is the

mean matching accuracy (MMA), following the standard evaluation protocol for this

dataset [Dusmanu et al., 2019], inspired by [Mikolajczyk and Schmid, 2005]:

MMA
⎞

¶(��
� , ��

� )♢�
�=1; �

︁

=

︀�
�=1✶>0

⎞

� ⊗ ‖� (��
� ; ��� ) ⊗ ��

� ‖2

︁

�
, (5.14)

where ¶(��
� , ��

� )♢�
�=1 is the set of matches between points ��

� and ��
� in images � and

� respectively, � (≤, ��� ) is the transformation with the ground-truth homography

��� , ✶>0 is the indicator function for positive numbers and � is the distance threshold

parameter. Similarly to PCK, MMA measures the proportion of matches that are

correct up to a certain tolerance threshold �, but contrary to PCK, � is deĄned as

an absolute number of pixels in the original image resolution. The MMA directly

evaluates the matching accuracy. The second evaluation metric assesses whether the

matches can be used to accurately estimate the homography transformation between

each image pair. For this, the obtained matches are used to estimate the homography

matrix �̂ by running a modern RANSAC variant [Chum et al., 2003, 2005]. The

average transfer error (TE) of the estimated homography �̂ with respect to the

ground-truth homography ��� is computed as:

TE
⎞

�̂; �
︁

=

︀

�A∈Ω ‖� (��; ��� ) ⊗ � (��; �̂)‖2

♣Ω�♣
, (5.15)
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where Ω� is the set of all pixels coordinates over image �, ♣Ω�♣ the number of pixels of

image �, � (≤, ��� ) is the transformation with the ground-truth homography ��� and

� (≤, �̂) is the transformation with the estimated homography �̂. We use the transfer

error to evaluate the quality of �̂ as it represents a meaningful geometric distance

which is measured in pixels and is invariant to the homography parametrization, which

is not the case if the error is computed directly on the homography matrix entries.

InLoc. We use the InLoc dataset [Taira et al., 2018], which consists of 10K database

images (perspective cutouts) extracted from 227 RGBD panoramas, and an additional

set of 356 query images captured with a smart-phone camera at a diferent time

(several months later) from the database images. Here, the goal is to estimate an

accurate 6DoF camera pose of a query photograph within a large-scale 3D model of a

building. We follow the same evaluation protocol as in [Taira et al., 2018] and report

the percentage of correctly localized queries at a given camera position error threshold.

Training. As both the HPatches and the InLoc were designed for evaluation and

do not provide a training set, we collected an Indoor Venues Dataset (IVD) [Rocco

et al., 2018c], consisting of user-uploaded photos, captured at public places such as

restaurants, cafes, museums or cathedrals, by crawling Google Maps. It features

not only viewpoint and illumination changes, such as the variations present in the

HPatches dataset, but also scene modiĄcations due to the passage of time as in the

InLoc dataset. The IVD dataset contains 3861 positive image pairs from 89 diferent

venues in 6 diferent cities, split into train: 3481 pairs (80 places) and validation: 380

pairs (from the remaining 9 places). The same model trained on IVD was used for

evaluation on both the HPatches and InLoc benchmarks.

Results. We use the trained NCNet model to Ąnd correspondences in each pair

of the HPatches dataset and evaluate the accuracy of these correspondences. The

results using the mean matching accuracy (MMA) metric from (5.14) are presented

in Fig. 5-6. In Fig. 5-6a, the results of several variants of the proposed method are

presented.
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NCNet (� = 50, FR) NCNet (� = 100) NCNet (� = 100, FR)

L-NCNet (� = 100) L-NCNet (� = 100, FR) L-NCNet (� = 200)

(a) Variants of the proposed method. We present results when matching using diferent
feature map sizes (� is the size of the feature map along the longest edge), using both NCNet
and the lighter version L-NCNet with or without the feature relocalization operation (FR).

Hes. det. + rSIFT [Arandjelović and Zisserman, 2012] (2.9�)

HAN + HN++[Mishkin et al., 2018; Mishchuk et al., 2017] (2.0�)

DELF [Noh et al., 2017] (1.9�)

SuperPoint [DeTone et al., 2018] (0.9�)

D2-Net (trained) [Dusmanu et al., 2019] (2.5�)

GMS [Bian et al., 2017] (1.5�)

CNe [Yi et al., 2018] (0.5�)

LPM [Ma et al., 2019] (0.5�)

L-NCNet (ours) (2.0�)

(b) Comparison with state-of-the-art methods. The proposed L-NCNet (with a feature map
size � = 200) method obtains the best overall results for threshold values above 5px and the
best viewpoint results for thresholds above 5.5px.

Figure 5-6: HPatches benchmark results. We report the Mean Matching Accuracy
(MMA) as a function of the tolerance threshold for the illumination and viewpoint subsets,
as well as the overall results.
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These variations include: (i) diferent sizes of the feature maps (s=50, 100 or 200 along

the longest edge), which correspond to running the method with diferent input image

resolutions; (ii) the use of a feature relocalization operation described in Sec. 5.3.7; and

(iii) either employing the symmetric NCNet or the lightweight L-NCNet model, which

allows for evaluation with larger feature map sizes. Increasing the feature map size

improves the localization precision of the matches, increasing the matching accuracy.

However the vanilla NCNet cannot handle the larger feature map sizes due to GPU

memory constraints. Using the feature relocalization method enables the NCNet to

improve the localization precision, improving the MMA over the variants using the

same feature map sizes and no relocalization. The best results are obtained with the

lighter L-NCNet using the largest feature size of � = 200.

In Fig. 5-6b, the best performing variant of NCNet is compared against other

state-of-the-art methods on the HPatches benchmark. Our method obtains the best

results for viewpoint changes for the larger thresholds. For smaller thresholds, our

method sufers from a localization precision that is limited by the resolution of the

features used for matching. This is a common issue for all methods that rely on

CNN descriptors, contrary to handcrafted descriptors that can be run on much higher

resolutions. Note that, while some methods present better accuracy at small threshold

values in the viewpoint subset, they tend to perform worse than our method in the

illumination subset. Overall, our method obtains the best results for threshold values

above 5px.

Next, we evaluate the quality of the homographies estimated with RANSAC using

the transfer error (5.15) on the HPatches dataset. An image pair is counted as correctly

aligned if the transfer error for that pair is smaller than a 5px threshold. In Tab. 5.2

we present the number of pairs that each method is able to correctly align, from both

the illumination and viewpoint subsets, and overall. For the correctly aligned pairs,

we also show the average number of inliers, and the efective transfer error for these

pairs. NCNet can align more pairs overall than any other method, while obtaining

the smallest average transfer error overall.
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Illumination (260 pairs) Viewpoint (280 pairs) Overall (540 pairs)

Method # corr. # inl. TE [px] # corr. # inl. TE [px] # corr. # inl. TE [px]

NCNet 256 9124 0.34 268 8227 1.35 524 8665 0.86
SuperPoint 257 574 0.96 264 914 1.16 521 746 1.06
GMS 224 2478 1.27 235 2782 1.34 459 2634 1.31
CNe 254 486 1.05 252 438 1.26 506 462 1.16
LPM 222 199 1.15 223 945 1.24 445 572 1.20

Table 5.2: Homography estimation on HPatches The number of correctly aligned
pairs (within a 5px average transfer error threshold) for each method and benchmark
subset (illumination, viewpoint or overall) is computed. For the correct pairs, we also
present the average number of inliers and transfer error (TE). NCNet obtains the
largest number of correctly aligned pairs overall (524 out of 540) with the smallest
average transfer error (0.86px).

Figure 5-7: Correspondences on HPatches images. The top row shows the image pair;
the middle row shows the matches obtained directly from the correlation map � (before NCNet
Ąltering); the bottom row shows the matches obtained by the proposed method (after NCNet Ąltering).
Correspondences have been coloured as inliers (green) and outliers (red) w.r.t. the ground-truth
homography using a threshold of 5px. Each image shows 100 randomly sampled matches from the
top 2000 matches. The proposed NCNet method tends to obtain a larger fraction of correct matches
which span a larger portion of the image with respect to the raw matches before NCNet Ąltering.
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Finally, in Fig. 5-7 we present qualitative examples which illustrate the efect of

NCNet in Ąltering the tentative correspondences from the raw correlation tensor. We

plot 100 randomly sampled matches from the top 2000 matches obtained directly from

the correlation map, and after Ąltering with NCNet. Results show that NCNet tends

to increase the fraction of correct matches.

For evaluation on the InLoc benchmark, we plug-in our trainable neighbourhood

consensus network (NCNet) as a correspondence module into the InLoc indoor lo-

calization pipeline [Taira et al., 2018]. This pipeline consists of the following steps:

i. retrieval, ii. re-ranking, iii. pose estimation for shortlisted images, and iv. dense

pose veriĄcation by view synthesis. We integrate NCNet as an intermediate step

between the re-ranking (ii) and pose estimation steps (iii) of the InLoc pipeline. In the

combined approaches DensePE+NCNet and InLoc+NCNet, the matches generated by

NCNet are used to compute the poses in step (iii). DensePE+NCNet contains steps

(i-iii) while InLoc+NCNet also contains the dense pose veriĄcation step (iv).

In order to evaluate the contribution of NCNet separately from that of the fea-

ture extractor network, two additional experiments are performed where NCNet is

replaced with hard mutual nearest neighbours matching (MNN), using the same

base CNN network (ResNet-101). Results are summarized in Table 5.3 and clearly

demonstrate beneĄts of our approach (DensePE+NCNet) compared to both sparse

keypoint (DoG+SIFT) matching (SparsePE) and the CNN feature matching used

in [Taira et al., 2018] (DensePE). When inserted into the entire localization pipeline,

our approach (InLoc + NCNet) obtains state-of-the-art results on the indoor local-

ization benchmark. For these experiments an input resolution of � = 3200 pixels

along the longest image edge together with the feature relocalization operation from

Sec. 5.3.7 were used. Qualitative results of NCNet in challenging indoor scenes with

repetitive structures and texture-less areas are presented in Fig. 5-8.
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Distance (m)

Method 0.25 0.50 1.00 2.00

SparsePE [Taira et al., 2018] 21.3 30.7 42.6 48.3
DensePE [Taira et al., 2018] 35.3 47.4 57.1 61.1
DensePE+MNN 31.9 50.5 62.0 64.7
DensePE+NCNet 37.1 53.5 62.9 66.3
InLoc[Taira et al., 2018] 38.9 56.5 69.9 74.2
InLoc+MNN 37.1 60.2 72.0 76.3
InLoc+NCNet 44.1 63.8 76.0 78.4

Table 5.3: InLoc benchmark results. We show the rate (%) of correctly localized queries
within a given distance (m) and 10◇ angular error.

(a) (b) (c)

Figure 5-8: Correspondences and poses on InLoc. Each row shows (a-b) the correspon-
dences used for pose estimation in the case of the proposed NCNet method (blue) against those of the
baseline InLoc method (red); and (c) the resulting obtained poses for the proposed NCNet (blue) and
InLoc baseline (red) compared to the ground-truth pose (green). In both cases the InLoc baseline
produces many mismatches due to repetitive structures (ceiling lamps in the top, and columns in the
bottom example) that result in a large pose error. On the other hand, NCNet obtains mostly correct
matches resulting in a small pose error.
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5.4.3 Ablation studies

In this section we assess the relevance of two diferent components in the proposed

NCNet formulation (5.6), namely the symmetric 4D convolutional network � that

implements neighbourhood consensus, and the soft mutual nearest neighbour Ąltering

operation � . For this, we train diferent variants of the proposed method and evaluate

their performance on the PF-Pascal benchmark. No Ąnetuning of the feature extraction

network is performed in this ablation. Results are presented in Table 5.4.

The top section of the table shows the performance of two networks containing only

the isolated symmetric neighbourhood-consensus � and soft mutual nearest neighbour

Ąltering � components. As it can be observed, the isolated components do not

perform well in the task of keypoint transfer. The middle section of the table shows

the combinations of these two components. Note that applying the soft mutual nearest

neighbour Ąltering � Ąrst and then symmetric neighbourhood consensus module �

produces much better results than doing so in the opposite order. The bottom section

of the table shows the full proposed model including two stages of soft mutual nearest

neighbour Ąltering � , using both the lightweight L-NCNet and the symmetric NCNet

versions.

5.4.4 Implementation details

Model details. The model was implemented in PyTorch [Paszke et al., 2017], and

a ResNet-101 network [He et al., 2016] initialized on ImageNet was used for feature

extraction (up to the conv4_23 layer). Diferent architectures of the neighbourhood

consensus network �(≤) are used for category- and instance-level matching, as these

two problems present diferent challenges. For category-level matching, a more complex

network is used in order to capture the strong appearance diferences in these matching

problems. For instance-level matching, a simpler network is used, allowing to process

the images in higher resolution and obtaining more precisely localized matches, which

is required for tasks such as pose estimation. In all cases, the input and output

tensors have a single channel, and the intermediate results have 16 channels. For
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PF-Pascal

Method PCK (Ð = 0.1)

�(�) 12.5
�(�) 44.0

(� ◇ �)(�) 13.6
(� ◇ �)(�) 77.2

(� ◇ � ◇ �)(�) (L-NCNet) 74.3
(� ◇ � ◇ �)(�) (NCNet) 78.0

Table 5.4: Ablation studies on the PF-Pascal dataset. We evaluate diferent model
conĄgurations for Ąltering the correlation map scores � using the neighbourhood consensus
(� or the lightweight �) and soft mutual nearest neighbour Ąltering (�) modules.

category-level matching, �(≤) contains three layers of 5 × 5 × 5 × 5 Ąlters, resulting in

180K trainable parameters. In the case of instance-level matching, �(≤) has two layers

of 3 × 3 × 3 × 3 Ąlters, resulting in 2.6K trainable parameters. Both models are trained

using dense feature maps �� and �� of size 25 × 25. For evaluation, the category-level

matching model also uses 25 × 25 dense feature maps, processes an image pair in 0.5s

and requires 240MB of memory. For instance-level matching, evaluation is performed

using larger feature maps, such as 100 × 75, in order to obtain a higher localization

precision which is required for instance-level matching. In this case, the execution

takes 9.3s and requires 5700MB of memory.

Training details. The model is initially trained for 5 epochs using Adam opti-

mizer [Kingma and Ba, 2015], with a learning rate of 5 × 10⊗4 and keeping the feature

extraction layer weights Ąxed. We used a batch size of 16 and the training takes 9

hours on a standard Tesla T4 GPU. For category level matching, the model is then

subsequently Ąnetuned for 5 more epochs, training both the feature extraction and

the neighbourhood consensus network, with a learning rate of 1 × 10⊗5. In the case

of instance level matching, Ąnetuning the feature extraction did not improve the

performance.
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4D convolutions. As 4D convolutions ( *

4�
) are not currently supported by PyTorch,

they were implemented by aggregating the results of multiple 3D convolutions ( *

3�
)

over the remaining fourth dimension. Given a 4D input tensor � ∈ R
ℎ×�×�×� and

a 4D weight tensor � ∈ R
�×�×�×� with � odd (channel and batch dimensions are

omitted for simplicity), their convolution can be then computed by:

⎞

� *
4�

�
︁

�:::
=

�⊗1︁

�=0

��′::: *
3�

��::: with �′ = � + � ⊗ (� ⊗ 1)/2 , (5.16)

and considering 0-indexed tensors and that � takes the value 0 when the index �′ is

out of range (�′ < 0 or �′ ⊙ ℎ).

In addition, the memory requirements can be reduced by exploiting the fact that

the 4D convolutional network � has multiple channels in the hidden layers but single

channel input and output. If the correlation tensor can be Ątted into the GPU memory,

the memory requirements of the forward pass through � can be limited by computing

the output tensor � = �(�) in chunks which can then be stacked to obtain the full

output tensor. In order to do this, a set of slices �� � = 1, . . . , � are generated from

the input tensor �, and fed to the network progressively. Note that, while the output

slices are non-overlapping, the inputs will have an overlap due to the overlapping

receptive Ąelds of the output slices. The slicing can be then performed in the following

way:

¶��:::♢�=�,...,� = �� = �(��)

with �� = ¶��:::♢�=�⊗�,...,�+� ,
(5.17)

where the input slices �� are larger than the output slices �� by 2� + 1, which

corresponds to the receptive Ąeld of the last layer of the network � . In consequence,

when using this approach no padding should be performed in the convolutional layers

of � .
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5.4.5 Limitations

While our method identiĄes correct matches in many challenging cases, some situations

remain diicult. The two typical failure modes include: repetitive patterns combined

with large changes in scale, and locally geometrically consistent groups of incorrect

matches. Furthermore, the proposed method has quadratic �(�2) complexity with

respect to the number of image pixels (or CNN features) � . This limits the resolution

of the images that we are currently able to handle in a 16GB GPU to 1600 × 1200px

(or 3200 × 2400px if using feature relocalization or slicing), and renders the method

relatively slow: the processing time of a 3200 × 2400px image pair using feature

relocalization is ≡ 7 seconds.

5.5 Conclusion

In this chapter we have presented a neighbourhood consensus network Ů a CNN

architecture that learns local patterns of correspondences for image matching without

the need for a global geometric model. We have shown the model can be trained

efectively from weak supervision and obtains strong results outperforming state-of-

the-art on two very diferent matching tasks. These results open up the possibility

for end-to-end learning of other challenging visual correspondence tasks, such as 3D

category-level matching [Kanazawa et al., 2018], or visual localization across day/night

illumination [Sattler et al., 2018].
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Chapter 6

Making neighbourhood consensus

networks efficient

In this chapter, we propose the Sparse Neighbourhood Consensus Networks (Sparse-

NCNet) which address the main limitations of the NCNet model presented in Chapter 5.

In particular, we propose modiĄcations to: (i) reduce memory consumption, (ii) reduce

inference time, and (iii) improve the localization of obtained correspondences. Results

show that our proposed modiĄcations can reduce the memory footprint and execution

time more than 10×, with equivalent matching performance. This is achieved by

sparsifying the correlation tensor containing tentative matches, subsequently processing

it with a 4D CNN using submanifold sparse convolutions. Localization accuracy is

signiĄcantly improved by processing the input images in higher resolution, which is

possible due to the reduced memory footprint, and by a novel two-stage correspondence

relocalization module. The proposed Sparse-NCNet method obtains state-of-the-art

results on the HPatches Sequences and InLoc visual localization benchmarks, and

competitive results in the Aachen Day-Night benchmark.

6.1 Introduction

Finding correspondences between images depicting the same 3D scene is one of the

fundamental tasks in computer vision [Julesz, 1962; Marr and Poggio, 1976; Mori

133
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et al., 1973] with applications in 3D reconstruction [Schönberger and Frahm, 2016;

Schönberger et al., 2016; Widya et al., 2018], visual localization [Germain et al., 2019;

Sattler et al., 2018; Taira et al., 2018] or pose estimation [Gao et al., 2003; Grabner

et al., 2018; Persson and Nordberg, 2018]. The predominant approach currently

consists of Ąrst detecting salient local features, by selecting the local extrema of some

form of feature selection function, and then describing them by some form of feature

descriptor [Bay et al., 2006; Lowe, 2004; Rublee et al., 2011]. While hand-crafted

features such as Hessian aine detectors [Mikolajczyk and Schmid, 2002] with SIFT

descriptors [Lowe, 2004] have obtained impressive performance under strong viewpoint

changes and constant illumination [Mikolajczyk et al., 2005], their robustness to

illumination changes is limited [Mikolajczyk et al., 2005; Zhou et al., 2016a]. More

recently, a variety of trainable keypoint detectors [Laguna et al., 2019; Lenc and

Vedaldi, 2016; Mishkin et al., 2018; Verdie et al., 2015] and descriptors [Balntas

et al., 2016a,b; Han et al., 2015; Mishchuk et al., 2017; Tian et al., 2017; Zagoruyko

and Komodakis, 2015] have been proposed, with the purpose of obtaining increased

robustness over hand-crafted methods. While this approach has achieved some success,

extreme illumination changes such as day-to-night matching combined with changes in

camera viewpoint remain a challenging open problem [Balntas et al., 2019; Dusmanu

et al., 2019; Germain et al., 2019]. In particular, all local feature methods, whether

hand-crafted or trained, sufer from missing detections under these extreme appearance

changes.

In order to overcome this issue, the detection stage can be avoided and, instead,

features can be extracted on a dense grid across the image. This approach has been

successfully used for both place recognition [Arandjelović et al., 2016; Germain et al.,

2019; Noh et al., 2017; Torii et al., 2015] and image matching [Rocco et al., 2018c;

Sattler et al., 2018; Widya et al., 2018]. However, extracting features densely comes

with additional challenges: it is memory intensive and the localization accuracy of the

features is limited by the sampling interval of the grid used for the extraction.

In this chapter we adopt the dense feature extraction approach. In particular, we

build on the Neighbourhood Consensus Networks (NCNet) presented in Chapter 5,
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(a) Input images (b) Output matches (c) Match conĄdence

Figure 6-1: Correspondence estimation with Sparse-NCNet. Given an input
image pair (a), we show the raw output correspondences produced by Sparse-NCNet
(b) which contain groups of spatially coherent matches. These groups tend to form
around highly-conĄdent matches, which are shown in yellow shades (c) (see Sec. 6.5
for a discussion on this behaviour and additional examples).

that allow for jointly trainable feature extraction, matching, and match-Ąltering

to directly output a strong set of (mostly) correct correspondences. Our proposed

approach, Sparse-NCNet, seeks to overcome the limitations of the original NCNet

formulation, namely: large memory consumption, high execution time and poorly

localised correspondences.

Our contributions are the following. First, we propose the eicient Sparse-NCNet

model, which is based on a 4D convolutional neural network operating on a sparse

correlation tensor, which is obtained by storing only the most promising correspon-

dences, instead of the set of all possible correspondences. Sparse-NCNet processes

this sparse correlation tensor with submanifold sparse convolutions [Graham et al.,

2018] and can obtain equivalent results to NCNet while being several times faster

(up to 10×) and requiring much less memory (up to 20×) without decrease in per-

formance compared to the original NCNet model. Second, we propose a two-stage

relocalization module to improve the localization accuracy of the correspondences
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output by Sparse-NCNet. Finally, we show that the proposed model signiĄcantly

outperforms state-of-the-art results on the HPatches Sequences [Balntas et al., 2017]

benchmark for image matching with challenging viewpoint and illumination changes

and the InLoc [Taira et al., 2018] benchmark for indoor localization and camera

pose estimation. Furthermore, we show our model obtains competitive results on the

Aachen Day-Night benchmark [Sattler et al., 2018], which evaluates day-night feature

matching for the task of camera localization. An example of the correspondences

produced by our method is presented in Fig. 6-1. Our code and models are available

online at http://www.di.ens.fr/willow/research/sparse-ncnet/.

6.2 Related work

Matching with trainable local features. Most recent work in trainable local

features has focused on learning more robust keypoint descriptors [Balntas et al.,

2016a,b; Han et al., 2015; Mishchuk et al., 2017; Tian et al., 2017; Zagoruyko and

Komodakis, 2015]. Initially these descriptors were used in conjunction with classic hand-

crafted keypoint detectors, such as DoG [Lowe, 2004]. Recently, trainable keypoint

detectors were also proposed [Laguna et al., 2019; Lenc and Vedaldi, 2016; Mishkin

et al., 2018; Verdie et al., 2015], as well as methods providing both detection and

description [DeTone et al., 2018; Dusmanu et al., 2019; Ono et al., 2018; Revaud et al.,

2019; Yi et al., 2016]. From these, some adopt the classic approach of Ąrst performing

detection on the whole image and then computing descriptors from local image patches,

cropped around the detected keypoints [Ono et al., 2018; Yi et al., 2016], while the

most recent methods compute a joint representation from which both detections and

descriptors are computed [DeTone et al., 2018; Dusmanu et al., 2019; Revaud et al.,

2019]. In most cases, local features obtained by these methods are independently

matched using nearest-neighbour search with the Euclidean distance [Balntas et al.,

2016a,b; Mishchuk et al., 2017; Tian et al., 2017], although some works have proposed

to learn the distance function as well [Han et al., 2015; Zagoruyko and Komodakis,

2015]. As discussed in the previous section, local features are prone to loss of detections

http://www.di.ens.fr/willow/research/sparse-ncnet/
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under extreme lighting changes [Germain et al., 2019]. In order to alleviate this issue,

in this chapter we adopt the usage of dense features, which are described next.

Matching with densely extracted features. Motivated by applications in large-

scale visual search, others have found that using densely extracted features provides

additional robustness to illumination changes compared to local features extracted

at detected keypoints, which sufer from low repeatability under strong illumination

changes [Torii et al., 2015; Zhao et al., 2013]. This approach was also adopted by later

work [Arandjelović et al., 2016; Noh et al., 2017]. Such densely extracted features

used for image retrieval are typically computed on a coarse low resolution grid (e.g.

40 × 30). However, such coarse localization of the dense features is not an issue for

visual retrieval, as the dense features are not directly matched, but rather aggregated

into a single image-level descriptor, which is used for retrieval. Recently, densely

extracted features have been also employed directly for 3D computer vision tasks,

such as 3D reconstruction [Widya et al., 2018], indoor localization and camera pose

estimation [Taira et al., 2018], and outdoor localization with night queries [Germain

et al., 2019; Sattler et al., 2018]. In these methods, correspondences are obtained

by nearest-neighbour search performed on extracted descriptors, and Ąltered by the

mutual nearest-neighbour criterion [Oron et al., 2017]. In this chapter, we build on the

NCNet method presented in Chapter 5, where the match Ąltering function is learnt

from data. Diferent recent methods for learning to Ąlter matches are discussed next.

Learning to filter incorrect matches. When using both local features extracted

at keypoints or densely extracted features, the obtained matches by nearest-neighbour

search contain a certain portion of incorrect matches. In the case of local features,

a heuristic approach such as LoweŠs ratio test [Lowe, 2004] can be used to Ąlter

these matches. However the ratio threshold value needs to be manually tuned for

each method. To avoid this issue, Ąltering by mutual nearest neighbours can be used

instead [Dusmanu et al., 2019]. Recently, trainable approaches have also been proposed

for the task of Ąltering local feature correspondences [Brachmann and Rother, 2019; Yi
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et al., 2018; Sarlin et al., 2019; Zhang et al., 2019]. Yi et al. [Yi et al., 2018] propose

a neural-network architecture that operates on 4D match coordinates and classiĄes

each correspondence as either correct or incorrect. Brachmann et al. [Brachmann

and Rother, 2019] propose the Neural-guided RANSAC, which extends the previous

method to produce weights instead of classiĄcation labels, which are used to guide

RANSAC sampling. Zhang et al. [Zhang et al., 2019] also extend the work of Yi et al.

in their proposed Order-Aware Networks, which capture local context by clustering

4D correspondences onto a set of ordered clusters, and global context by processing

these clusters with a multi-layer perceptron. Finally, Sarlin et al. [Sarlin et al., 2019]

describe a graph neural network followed by an optimisation procedure to estimate

correspondences between two sets of local features. These methods were speciĄcally

designed for Ąltering local features extracted at keypoint locations and not features

extracted on a dense grid. Furthermore, these methods are focused only on learning

match Ąltering, and are decoupled from the problem of learning how to detect and

describe the local features.

In this chapter we build on the NCNet method (Chapter 5) for Ąltering incorrect

matches, which was designed for dense features. Furthermore, contrary to the above

described methods, our approach performs feature extraction, matching and match

Ąltering in a single pipeline.

Improved feature localization. Recent methods for local feature detection and

description which use a joint representation [DeTone et al., 2018; Dusmanu et al.,

2019] as well as methods for dense feature extraction [Rocco et al., 2018c; Widya

et al., 2018] sufer from poor feature localization, as the features are extracted on a

low-resolution grid. Diferent approaches have been proposed to deal with this issue.

The D2-Net method [Dusmanu et al., 2019] follows the approach used in SIFT [Lowe,

2004] for reĄning the keypoint positions, which consists of locally Ątting a quadratic

function to the feature detection function around the feature position and solving

for the extrema. The SuperPoint method [DeTone et al., 2018] uses a CNN decoder

that produces a one-hot output for each 8 × 8 pixel cell of the input image (in case a
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keypoint is efectively detected in this region), therefore achieving pixel-level accuracy.

Others [Widya et al., 2018] use the intermediate higher resolution features from the

CNN to improve the feature localization, by assigning to each pooled feature the

position of the feature with highest L2 norm from the preceding higher resolution map

(and which participated in the pooling). This process can be repeated up to the input

image resolution.

The relocalization approach of NCNet (Chapter 5) is based on a max-argmax

operation on the 4D correlation tensor of exhaustive feature matches. This approach

can only increase the resolution of the output matches by a factor of 2. In contrast,

we describe a new two-stage relocalization module that builds on the approach used in

NCNet, by combining a hard relocalization stage that has similar efects to NCNetŠs

max-argmax operation, with a soft-relocalization stage that obtains sub-feature-grid

accuracy via interpolation.

Sparse Convolutional Neural Networks were recently introduced [Graham,

2015, 2014] for the purpose of processing sparse 2D data, such as handwritten charac-

ters [Graham, 2014]; 3D data, such as 3D point-clouds [Graham, 2015]; or even 4D

data, such as temporal sequences of 3D point clouds [Choy et al., 2019a]. These models

have shown great success in 3D point-cloud processing tasks such as semantic segmen-

tation [Choy et al., 2019a; Graham et al., 2018] and point-cloud registration [Choy

et al., 2019b; Gojcic et al., 2020]. In this chapter, we use networks with submanifold

sparse convolutions [Graham et al., 2018] for the task of Ąltering correspondences

between images, which can be represented as a sparse set of points in a 4D space

of image coordinates. In submanifold sparse convolutions, the active sites remain

constant between the input and output of each convolutional layer. As a result, the

sparsity level remains Ąxed and does not change after each convolution operation. To

the best of our knowledge this is the Ąrst time these models are applied to the task of

match Ąltering.
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6.3 Sparse Neighbourhood Consensus Networks

In this section we detail the proposed Sparse Neighbourhood Consensus Networks.

We start with a brief review of Neighbourhood Consensus Networks (Chapter 5)

identifying their main limitations. Next, we describe our approach which overcomes

these limitations.

6.3.1 Review: Neighbourhood Consensus Networks

The Neighbourhood Consensus Network is a method for feature extraction, matching

and match Ąltering. Contrary to most methods, which operate on local features,

NCNet operates on dense feature maps (��, ��) ∈ R
ℎ×�×� with � channels, which are

extracted over a regular grid of ℎ × � spatial resolution. These are obtained from

the input image pair (��, ��) ∈ R
�×� ×3 by a fully convolutional feature extraction

network. The resolution ℎ × � of the extracted dense features is typically 1/8 or 1/16

of the input image resolution � × � , depending on the particular feature extraction

network architecture used.

Next, the exhaustive set of all possible matches between the dense feature maps

�� and �� is computed and stored in a 4D correlation tensor ��� ∈ R
ℎ×�×ℎ×�.

Finally, the correspondences in ��� are Ąltered by a 4D CNN. This network can

detect coherent spatial matching patterns and propagate information from the most

certain matches to their neighbours, robustly identifying the correct correspondences.

This last Ąltering step is inspired by the neighbourhood consensus procedure [Bian

et al., 2017; Schafalitzky and Zisserman, 2002a; Schmid and Mohr, 1997; Sivic and

Zisserman, 2003; Zhang et al., 1995], where a particular match is veriĄed by analysing

the existence of other coherent matches in its spatial neighbourhood in both images.

Despite its promising results, the original formulation of Neighbourhood Consensus

Networks has three main drawbacks that limit its practical application: it is (i) memory

intensive, (ii) slow, and (iii) matches are poorly localised. These points are discussed

in detail next.
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High memory requirements. The high memory requirements are due to the

computation of the correlation tensor ��� ∈ R
ℎ×�×ℎ×� which stores all matches

between the densely extracted image features (��, ��) ∈ R
ℎ×�×�. Note that the

number of elements in the correlation tensor (ℎ × � × ℎ × �) grows quadratically

with respect to the number of features (ℎ × �) of the dense feature maps (��, ��),

therefore limiting the ability to increase the feature resolution. For instance, for

dense feature maps of resolution 200 × 150, the correlation tensor would require by

itself 3.4GB of GPU memory in the standard 32-bit Ćoat precision. Furthermore,

processing this correlation tensor using the subsequent 4D CNN would require more

than 50GB of GPU memory, which is much more than what is currently available on

most standard GPUs. While 16-bit half-Ćoat precision could be used to halve these

memory requirements, they would still be prohibitively large.

Long processing time. In addition, Neighbourhood Consensus Networks are slow

as the full dense correlation tensor must be processed. For instance, processing the

100 × 75 × 100 × 75 correlation tensor containing matches between a pair of dense

feature maps of 100 × 75 resolution takes approximately 10 seconds on a standard

Tesla T4 GPU.

Poor match localization. Finally, the high-memory requirements limit the maxi-

mum feature map resolution that can be processed, which in turn limits the localiza-

tion accuracy of the estimated correspondences. For instance, for a pair images with

1600 × 1200px resolution, where correspondences are computed using a dense feature

map with a resolution of 100 × 75, the output correspondences are localised within

an error of 8 pixels. This can be problematic if correspondences are used for tasks

such as pose estimation, where small errors in the localization of correspondences in

image-space can yield high camera pose errors in 3D space.

In this chapter, we devise strategies to overcome the limitations of the original

NCNet method, while keeping its main advantages, such as the usage of dense feature

maps which avoids the issue of missing detections, and the processing of multiple
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Figure 6-2: Overview of Sparse-NCNet. From the dense feature maps �� and ��,
their top K matches are computed and stored in the one-sided sparse 4D correlation
tensors ��⊃� and ��⊃�, which are later combined to obtain the symmetric sparse
correlation tensor ���. The raw matching score values in ��� are processed by the
4D Sparse-NCNet �̂(≤) producing the output tensor �̃�� of Ąltered matching scores.

matching hypotheses to avoid early matching errors. Our eicient Sparse-NCNet

approach is described next.

6.3.2 Sparse-NCNet: Efficient Neighbourhood Consensus Net-

works

In this section, we describe the Sparse-NCNet approach in detail. An overview is

presented in Fig. 6-2. Similar to NCNet, the Ąrst stage of our proposed method consists

in dense feature extraction. Given a pair of RGB input images (��, ��) ∈ R
�×� ×3,

�2-normalized dense features (��, ��) ∈ R
ℎ×�×� are extracted via a fully convolutional

network � (≤):

�� = � (��), �� = � (��). (6.1)

Then, these dense features are matched and stored into a sparse correlation tensor.

Contrary to the original NCNet formulation, where all the pairwise matches between

the dense features are stored and processed, we propose to keep only the top � matches

for a given feature, measured by the cosine similarity. In detail, each feature ��
��: from

image � at position (�, �) is matched with its K nearest-neighbours in ��, and vice
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versa. The one-sided sparse correlation tensor, matching from image � to image �

(� ⊃ �) is then described as:

��⊃�
���� =

︁

︁

︁

︁

︁

︁

︁

⟨��
��:, ��

��:⟩ if ��
��: within K-NN of ��

��:

0 otherwise

. (6.2)

To make the sparse correlation map invariant to the ordering of the input images,

we also perform this in the reverse direction (� ⊃ �), and add the two one-sided

correlation tensors together to obtain the Ąnal (symmetric) sparse correlation tensor :

��� = ��⊃� + ��⊃�. (6.3)

This tensor uses a sparse representation, where only non-zero elements need to be

stored. Note that the number of stored elements is, at most, ℎ × � × � × 2 which is

in practice much less than the ℎ × � × ℎ × � elements of the dense correlation tensor,

obtaining great memory savings in both the storage of this tensor and its subsequent

processing. For example, for a feature map of size 100 × 75 and � = 10, the sparse

representation takes 3.43MB vs. 215MB of the dense representation, resulting in a 12×

reduction of the processing time. In the case of feature maps with 200×150 resolution,

the sparse representation takes 13.7MB vs. 3433MB for the dense representation. This

allows Sparse-NCNet to also process feature maps at this resolution, something that

was not possible with NCNet due to the high memory requirements. The proposed

sparse correlation tensor is a compromise between the common procedure of taking

the best scoring match and the approach taken by NCNet, where all pairwise matches

are stored. In this way, we can keep suicient information in order to avoid early

mistakes, while keeping low memory consumption and processing time.

Then the sparse correlation tensor is processed by a permutation-invariant CNN

(�̂(≤)), to produce the output Ąltered correlation map �̃��:

�̃�� = �̂(���). (6.4)
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The permutation invariant CNN �̂(≤) consists of applying the 4D CNN �(≤) twice

such that the same output matches are obtained regardless of the order of the input

images:

�̂(���) = �(���) +
⎞

�
⎞

(���)�
︁︁�

, (6.5)

where by transposition we mean exchanging the Ąrst two dimensions with the last two

dimensions, which correspond to the coordinates of the two input images. The 4D

CNN �(≤) operates on the 4D space of correspondences, and is trained to perform

the neighbourhood consensus Ąltering. Note that while �(≤) is a sparse CNN using

submanifold sparse convolutions [Graham et al., 2018], where the active sites between

the sparse input and output remain constant, the convolution kernel Ąlters are dense

(i.e. hypercubic).

While in the original NCNet method, a soft mutual nearest-neighbour operation

�(≤) is also performed, we have removed it as we noticed its efect was not signiĄcant

when operating on the sparse correlation tensor. From the output correlation tensor

�̃��, the output matches are computed by applying argmax at each coordinate:

⎞

(�, �), (�, �)
︁

a match if

︁

︁

︁

︁

︁

︁

︁

︁

︁

︁

︁

(�, �) = argmax
(�,�)

�̃��
����, or

(�, �) = argmax
(�,�)

�̃��
����

, (6.6)

where (�, �) is the match coordinate in the sampling grid of ��, and (�, �) is the match

coordinate in the sampling grid of ��.

6.3.3 Match relocalization by guided search

While the sparsiĄcation of the correlation tensor presented in the previous section

allows processing higher resolution feature maps, these are still several times smaller

in resolution than the input images. Hence, they are not suitable for applications

that require (sub)pixel feature localization such as camera pose estimation or 3D-

reconstruction.

To address this issue, in this chapter we propose a two-stage relocalization module
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h×w

2h×2w
2h×2w

2h×2w

(a) Hard relocalization (b) Soft relocalization

Figure 6-3: Two-stage relocalization module. (a) The hard relocalization step
allows to increase by 2× the localization accuracy of the matches � outputted by
Sparse-NCNet, which are deĄned on the ℎ × � feature maps �� and ��. This is done
by keeping the most similar match �ℎ between two 2 × 2 local features �̂�,� and
�̂�,�, cropped from the 2ℎ × 2� feature maps �̂� and �̂�. (b) The soft relocalization
step then reĄnes the position of these matches in the 2ℎ × 2� grid, by computing
sub-feature-grid soft localization displacements based on the softargmax operation.

based on the idea of guided search. The intuition is that we search for accurately

localised matches on 2ℎ × 2� resolution dense feature maps, guided by the coarse

matches output by Sparse-NCNet at ℎ × � resolution. For this, dense features are

Ąrst extracted at twice the normal resolution (�̂�, �̂�) ∈ R
2ℎ×2�×�, which is done by

upsampling the input image by 2× before feeding it into the feature extraction CNN

� (≤). Note that these higher resolution features are used for relocalization only, i.e.

they are not used to compute the correlation tensor or processed by the 4D CNN

for match-Ąltering, which would be too expensive. Then, these dense features are

downsampled back to the normal ℎ × � resolution by applying a 2 × 2 max-pooling

operation with a stride of 2, obtaining �� and ��. These low resolution features

(��, ��) ∈ R
ℎ×�×� are processed by Sparse-NCNet, which outputs matches in the form

� =
⎞

(�, �), (�, �)
︁

, with the coordinates (�, �) and (�, �) indicating the position of the

match in �� and ��, respectively, as described by (6.6).

Having obtained the output matches in ℎ × � resolution, the Ąrst step (hard

relocalization) consists in Ąnding the best equivalent match in the 2ℎ × 2� resolution

grid. This is done by analysing the matches between two local crops of the high

resolution features �̂� and �̂�, and keeping the highest-scoring one. The second step
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(soft relocalization) then reĄnes this correspondence further, by obtaining a sub-feature

accuracy in the 2ℎ × 2� grid. These two relocalization steps are illustrated in Fig. 6-3,

and are now described in detail.

Hard relocalization. The Ąrst step is hard relocalization, which can improve

localization accuracy by 2×. For each match � =
⎞

(�, �), (�, �)
︁

, the 2× upsam-

pled coordinates
⎞

(2�, 2�), (2�, 2�)
︁

are Ąrst computed, and 2 × 2 local feature crops

�̂�,�, �̂�,� ∈ R
2×2×� are sampled around these coordinates from the high resolution

feature maps �̂� and �̂�:

�̂�,� = (�̂�
��:)2�⊘�⊘2�+1

2�⊘�⊘2�+1
, (6.7)

and similarly for �̂�,�. This is done using a ROI-pooling operation [Girshick, 2015].

Finally, exhaustive matches between the local feature crops �̂�,� and �̂�,� are computed,

and the output of the hard relocalization module is the displacement associated with

the maximal matching score:

Δ�ℎ =
⎞

(Ó�, Ó�), (Ó�, Ó�)
︁

= argmax
(�,�),(�,�)

⟨�̂�,�
��: , �̂�,�

��: ⟩. (6.8)

Then, the Ąnal match location from the hard relocalization stage is computed as:

�ℎ = 2� + Δ�ℎ =
⎞

(2� + Ó�, 2� + Ó�), (2� + Ó�, 2� + Ó�)
︁

. (6.9)

Note that the relocalized matches �ℎ are deĄned in a 2ℎ×2� grid, therefore obtaining

a 2× increase in localization accuracy with respect to the initial matches �, which are

deĄned in a ℎ × � grid. Also note that while the implementation is diferent, the efect

of the proposed hard relocalization is similar to the max-argmax operation used in

NCNet (Chapter 5), while being more memory eicient as it avoids the computation

of the a dense correlation tensor in high resolution.

Soft relocalization. The second step consists of a soft relocalization operation

that obtains sub-feature localization accuracy in the 2ℎ × 2� grid of high resolution

features �̂� and �̂�. For this, new 3 × 3 local feature crops (�̂�,�, �̂�,�) ∈ R
3×3×�
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are sampled around the coordinates of the estimated matches �ℎ from the previous

relocalization stage. Note that no upsampling of the coordinates is done in this case, as

the matches are already in the 2ℎ × 2� range. Then, soft relocalization displacements

are computed by performing the softargmax operation [Yi et al., 2016] on the matching

scores between the central feature of �̂�,� and the whole of �̂�,�, and vice versa:

Δ�� =
⎞

(Ó�, Ó�), (Ó�, Ó�)
︁

where

︁

︁

︁

︁

︁

︁

︁

︁

︁

︁

︁

(Ó�, Ó�) = softargmax
(�,�)

⟨�̂�,�
��: , �̂�,�

11: ⟩

(Ó�, Ó�) = softargmax
(�,�)

⟨�̂�,�
11: , �̂�,�

��: ⟩
. (6.10)

The intuition of the softargmax operation is that it computes a weighted average of

the candidate positions in the crop where the weights are given by the softmax of the

matching scores. The Ąnal matches from soft relocalization are obtained by applying

the soft displacements to the matches from hard relocalization: �� = �ℎ + Δ��.

6.4 Experimental evaluation

We evaluate the proposed Sparse-NCNet method on three diferent benchmarks: (i)

HPatches Sequences, which evaluates the matching task directly, (ii) InLoc, which

targets the problem of indoor 6-dof camera localization and (iii) Aachen Day-Night,

which targets the problem of outdoor 6-dof camera localization with challenging

day-night illumination changes. We Ąrst present the implementation details followed

by the results on these three benchmarks.

Implementation details. We train the Sparse-NCNet model following the training

protocol from NCNet (Chapter 5). We use the IVD dataset with the weakly-supervised

mean matching score loss of Sec. 5.3.6 for training. The 4D CNN �(≤) has two sparse

convolution layers with 34 sized kernels, with 16 output channels in the hidden layer.

A value of � = 10 is used for computing ��� (6.3). The model is implemented using

PyTorch [Paszke et al., 2017], MinkowskiEngine [Choy et al., 2019a] and Faiss [Johnson

et al., 2017], and trained for 5 epochs using Adam [Kingma and Ba, 2015] with a
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learning rate of 5 × 10⊗4. A pretrained ResNet-101 (up to conv_4_23) with no strided

convolutions in the last block is used as the feature extractor � (≤). This feature

extraction model is not Ąnetuned as the training dataset is small (3861 image pairs)

and that would lead to overĄtting and loss of generalisation. The softargmax operation

in (6.10) uses a temperature value of 10.

6.4.1 HPatches Sequences

The HPatches Sequences [Balntas et al., 2017] benchmark assesses the matching

accuracy under strong viewpoint and illumination variations. We follow the evaluation

procedure from [Dusmanu et al., 2019], where 108 image sequences are employed, each

from a diferent planar scene, and each containing 6 images. The Ąrst image from

each sequence is matched against the remaining 5 images. The benchmark employs

56 sequences with viewpoint changes, and constant illumination conditions, and 52

sequences with illumination changes and constant viewpoint. The metric used for

evaluation is the mean matching accuracy (MMA) [Dusmanu et al., 2019], which

assesses the fraction of correct matches under diferent tolerance:

MMA
⎞

¶(��
� , ��

� )♢�
�=1; �

︁

=

︀�
�=1✶>0

⎞

� ⊗ ‖��(��
� ) ⊗ ��

� ‖
︁

�
, (6.11)

where ¶(��
� , ��

� )♢�
�=1 is the set of matches to be evaluated, ��(��

� ) is the warped point

��
� using the ground-truth homography �, ✶>0 is the indicator function for positive

numbers, and � is the chosen tolerance threshold (in pixels).

Sparse-NCNet vs. NCNet. In Fig. 6-4 we compare the matching quality of the

proposed Sparse-NCNet model and the NCNet model. We Ąrst compare both methods

under equal conditions, both without relocalization (methods A1 vs. A2), and with

hard relocalization only (methods B1 vs. B2). The results in Fig. 6-4 show that Sparse-

NCNet can obtain signiĄcant reductions in processing time and memory consumption,

while keeping almost the same matching performance. In addition, our proposed

two-stage relocalization module can improve performance with a minor increase in



149

Method
Feature

resolution
Reloc.

method
Reloc.

resolution
Mean

time (s)
Peak

VRAM (MB)

A1. Sparse-NCNet 100 × 75 Ů Ů 0.83 251
A2. NCNet 100 × 75 Ů Ů 9.81 5763

B1. Sparse-NCNet 100 × 75 H 200 × 150 1.55 1164
B2. NCNet 100 × 75 H 200 × 150 10.56 7580

C1. Sparse-NCNet 100 × 75 H+S 200 × 150 1.56 1164
C2. Sparse-NCNet 200 × 150 H+S 400 × 300 7.51 2391

(a) Time and GPU memory comparison (Tesla T4 GPU)
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Overall

(b) MMA on HPatches Sequences

Figure 6-4: Sparse-NCNet vs. NCNet on HPatches. Sparse-NCNet can obtain
equivalent results to NCNet, both without relocalization (cf. A1 vs. A2), and with hard
relocalization (H) (cf. B1 vs. B2), while greatly reducing execution time and memory
consumption. The proposed two-stage relocalization (H+S) brings an improvement in
matching accuracy with a minor increase in execution time (cf. C1 vs. B1). Finally,
the reduced memory consumption in Sparse-NCNet allows for processing in higher
resolution, which produces the best results, while still being faster and more memory
eicient than NCNet (cf. C2 vs. B2).

processing time (methods C1 vs. B1). Finally, the reduced memory consumption

allows for processing of higher resolution 200 × 150 feature maps, which is not possible

for NCNet. Our proposed method in higher resolution (method C2) produces the

best results while still being 30% faster and 3× more memory eicient than the best

NCNet variant (method B2).

Sparse-NCNet vs. state-of-the-art methods. In addition, we compare the per-

formance of Sparse-NCNet against several methods, including state-of-the-art trainable

methods such as SuperPoint [DeTone et al., 2018], D2-Net [Dusmanu et al., 2019]
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Sparse-NCNet R2D2 [Revaud et al., 2019] D2-Net [Dusmanu et al., 2019]

SuperPoint [DeTone et al., 2018] DELF [Noh et al., 2017]

HessAfNet + HN++ [Mishchuk et al., 2017; Mishkin et al., 2018]

Aine Det. + RootSIFT [Mikolajczyk and Schmid, 2002; Arandjelović and Zisserman, 2012]

Figure 6-5: Sparse-NCNet vs. state-of-the-art on HPatches. The MMA of
Sparse-NCNet and several state-of-the-art methods is shown. Sparse-NCNet obtains
the best results overall with a large margin over the recent R2D2 method.

or R2D2 [Revaud et al., 2019]. The mean-matching accuracy results are presented

in Fig. 6-5. For all other methods, the top 2000 features points were selected from

each image, and matched enforcing mutual nearest-neighbours, yielding approximately

1000 correspondences per image pair. For Sparse-NCNet, the top 1000 correspon-

dences were selected for each image pair, for a fair comparison. Sparse-NCNet obtains

the best results for the illumination sequences for thresholds higher than 4 pixels,

and in the viewpoint sequences for all threshold values. Sparse-NCNet obtains the

best results overall, with a large margin over the state-of-the-art R2D2 method. We

believe this could be attributed to the usage of dense descriptors (which avoid the

loss of detections) together with an increased matching robustness from performing

neighbourhood consensus.

Qualitative results are presented in Figures 6-6 and 6-7. We compare the MMA

of Sparse-NCNet with the state-of-the-art methods SuperPoint [DeTone et al., 2018],

D2-Net [Dusmanu et al., 2019] and R2D2 [Revaud et al., 2019], which are trainable

methods for joint detection and description on local features. The correctly matched

points are shown in green, while the incorrectly matched ones are shown in red, for a
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SuperPoint D2-Net R2D2 Sparse-NCNet, 2k Sparse-NCNet, 6k

41.6% (558/1342) 30.6% (424/1386) 72.7% (722/993) 99.7% (1994/2000) 99.2% (5952/6000)

SuperPoint D2-Net R2D2 Sparse-NCNet, 2k Sparse-NCNet, 6k

68.8% (727/1057) 45.7% (1170/2561) 64.8% (1567/2420) 85.6% (1712/2000) 77.6% (4656/6000)

Figure 6-6: HPatches qualitative results (viewpoint). We present the results
of Sparse-NCNet, along with state-of-the-art methods SuperPoint [DeTone et al.,
2018], D2-Net [Dusmanu et al., 2019] and R2D2 [Revaud et al., 2019]. The correct
correspondences are shown in green, and the incorrect ones in red for a threshold
� = 3px. Below each pair we indicate the fraction of correct matches (both in percentage
and absolute values). Our method is presented for both the top 2K matches and the
top 6K matches, and it obtains the largest fraction of correct matches for both cases.
Examples are from the viewpoint sequences.



SuperPoint D2-Net R2D2 Sparse-NCNet, 2k Sparse-NCNet, 6k

63.0% (264/419) 50.8% (539/1062) 61.5% (546/888) 92.2% (1844/2000) 78.9% (4736/6000)

SuperPoint D2-Net R2D2 Sparse-NCNet, 2k Sparse-NCNet, 6k

66.6% (1244/1869) 42.6% (984/2312) 74.5% (1667/2238) 79.9% (1597/2000) 78.6% (4716/6000)

Figure 6-7: HPatches qualitative results (illumination). We present the results of Sparse-NCNet, along with state-of-the-
art methods SuperPoint [DeTone et al., 2018], D2-Net [Dusmanu et al., 2019] and R2D2 [Revaud et al., 2019]. The correct
correspondences are shown in green, and the incorrect ones in red for a threshold � = 3px. Below each pair we indicate the
fraction of correct matches (both in percentage and absolute values). Our method is presented for both the top 2K and top 6K
matches, and it obtains the largest fraction of correct matches for both cases. Examples are from the illumination sequences.
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threshold value � = 3 pixels. For the proposed Sparse-NCNet, results are presented

for two diferent numbers of matches, 2000 and 6000. Results show that our method

produces the largest fraction of correct matches, even when considering as many as

6000 correspondences. In particular, note that our method is able to produce a large

amount of correct correspondences even under strong illumination changes, as shown

in Fig. 6-7. Furthermore, note that the nature of the correspondences produced by

Sparse-NCNet is diferent from those of local feature methods. While local feature

methods can only produce correspondences on the detected points, which are the

local extrema of a particular feature detection function, our method produces densely

packed sets of correspondences. A discussion about this behaviour is presented in

Sec. 6.5.

6.4.2 InLoc benchmark

The InLoc benchmark [Taira et al., 2018] targets the problem of indoor localization.

It contains a set of database images of a building, obtained with a 3D scanner, and a

set of query images from the same building, captured with a cell-phone several months

later. The task is then to obtain the 6-dof camera positions of the query images. We

follow the DensePE approach proposed [Taira et al., 2018] to Ąnd the top 10 candidate

database images for each query, and employ Sparse-NCNet to obtain matches between

them. Then, we follow again the procedure in [Taira et al., 2018] to obtain the Ąnal

estimated 6-dof query pose, which consists of running PnP [Gao et al., 2003] followed

by dense pose veriĄcation [Taira et al., 2018].

The results are presented in Fig. 6-8. First, we observe that Sparse-NCNet with

hard relocalization (H) and a resolution of 100 × 75 obtains equivalent results to

NCNet (methods B vs. C), while being almost 7× faster and requiring 6.5× less

memory, conĄrming what was already observed in the HPatches benchmark (cf. B1

vs. B2 in Fig. 6-4a). Moreover, our proposed Sparse-NCNet method with two-stage

relocalization (H+S) in the higher 200 × 150 resolution (method A) obtains the best

results and sets a new state-of-the-art for this benchmark. Recall that it is impossible

to use the original NCNet on the higher resolution due to its excessive memory
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Figure 6-8: Results on the InLoc benchmark for long-term indoor local-
ization. (Left) Our proposed method (A) obtains state-of-the-art results on this
benchmark. (Right) Our method obtains correspondences in challenging indoor scenes
with repetitive patterns and low amount of texture. Top: query images. Bottom:
matched database images captured from diferent viewpoints. Correspondences pro-
duced by our approach are overlaid in green. The query and database images were
taken several months apart.

requirements.

More qualitative examples are presented in Fig. 6-9. Each image pair is composed

of a query image (top row) captured with a cell-phone and a database image (middle

row), captured several months earlier with a 3D scanner. Note that the illumination

conditions in the two types of images are diferent. Furthermore, because of the time

diference between both images, some objects may have been displaced (e.g. furniture)

and some aspects of the scene may have changed (e.g. wall decoration). For ease of

visualisation, we overlay only the top 500 correspondences for each image pair, which

appear in green. These correspondences have not been geometrically veriĄed, and

therefore contain a certain fraction of incorrect matches. Note however, that most

matches are coherent and the few incorrect outliers are likely to be removed when

running RANSAC [Fischler and Bolles, 1981] within the PnP pose solver [Gao et al.,

2003], therefore obtaining a good pose estimate. Also note how Sparse-NCNet is

able to obtain correspondences in low textured areas such as walls or ceilings, or on

repetitive patterns such as carpets.
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Figure 6-9: InLoc qualitative results. For each image pair, we show the top 500
matches produced by Sparse-NCNet between the query image (top row) and database
image (middle row). In addition we show the rendered scene from the estimated query
6-dof pose (bottom row), obtained by running RANSAC+PnP[Fischler and Bolles,
1981; Gao et al., 2003] on our matches. Note these rendered images are well aligned
with the query images, demonstrating that the estimated poses have low translation
and rotation errors.
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Correctly localised queries (%)
Method 0.5m, 2◇ 1.0m, 5◇ 5.0m, 10◇

RootSIFT [Lowe, 2004; Arandjelović and Zisserman, 2012] 36.7 54.1 72.5
DenseSfM [Sattler et al., 2018] 39.8 60.2 84.7
HessAfNet + HN++ [Mishchuk et al., 2017; Mishkin et al., 2018] 39.8 61.2 77.6
DELF [Noh et al., 2017] 38.8 62.2 85.7
SuperPoint [DeTone et al., 2018] 42.8 57.1 75.5
D2-Net [Dusmanu et al., 2019] 44.9 66.3 88.8
D2-Net (Multi-scale) [Dusmanu et al., 2019] 44.9 64.3 88.8
R2D2 (patch = 16) [Revaud et al., 2019] 44.9 67.3 87.8
R2D2 (patch = 8) [Revaud et al., 2019] 45.9 66.3 88.8
Sparse-NCNet (H, 200 × 150) 44.9 68.4 86.7

Table 6.1: Results on Aachen Day-Night. Sparse-NCNet is able to localise a
similar number of queries to R2D2 and D2-Net.

6.4.3 Aachen Day-Night

The Aachen Day-Night benchmark [Sattler et al., 2018] targets 6-dof outdoor camera

localization under challenging illumination conditions. It contains 98 night-time query

images from the city of Aachen, and a shortlist of 20 day-time images for each night-

time query. Sparse-NCNet is used to obtain matches between the query and images

in the short-list. The resulting matches are then processed by the 3D reconstruction

software COLMAP [Schönberger and Frahm, 2016] to obtain the estimated query

poses.

The results are presented in Table 6.1. Sparse-NCNet presents a similar perfor-

mance to the state-of-the-art methods D2-Net [Dusmanu et al., 2019] and R2D2 [Re-

vaud et al., 2019]. Note that the results of these three diferent methods difer by only

a few percent, which represents only 1 or 2 additionally localised queries, from the 98

total night-time queries. The proposed Sparse-NCNet obtains state-of-the-art results

for the 1m and 5◇ threshold, being able to localise 68.4% of the queries (67 out of 98).

One qualitative example from this benchmark is presented in Fig. 6-1.

Additional qualitative examples are shown in Fig. 6-10. We show several image

pairs composed of night query images (top) and their top matching database images

(bottom), according to the average matching score of Sparse-NCNet. For each image

pair, we overlay the top 500 correspondences obtained with Sparse-NCNet. Note that

these correspondences were not geometrically veriĄed by any means. Nevertheless, as

seen in Fig. 6-10, most correspondences are coherent and seem to be correct, despite

the strong changes in illumination between night and day images.
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Figure 6-10: Aachen day-night results. We show the top 500 correspondences
obtained by Sparse-NCNet between the night query image (top) and the database
day image (bottom). Note that the large majority of matches are correct, despite the
strong illumination changes.
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6.5 Insights about Sparse-NCNet

In this section we provide additional insights about the way Sparse-NCNet operates,

which difers from traditional local feature detection and matching methods. In Fig. 6-

11 we plot the top � matches produced by Sparse-NCNet for diferent values of � :

100 (left column), 400 (middle column) and 1600 (right column). By comparing the

middle column (showing the top 400 matches) with the left column (showing the top

100), we can observe that many of the additional 300 matches are close to the initial

100 matches. A similar efect is observed when comparing the right column (top 1600

matches) with the middle column (top 400 matches). This could be attributed to the

fact that Sparse-NCNet propagates information from the strongest matches to their

neighbours. In this sense, strong matches, which are typically non-ambiguous ones, can

help in matching their neighbouring features, which might not be so discriminative.

6.6 Conclusion

In this chapter we have presented the Sparse Neighbourhood Consensus Networks for

eiciently estimating correspondences between images. Our approach overcomes the

main limitations of the original Neighbourhood Consensus Networks that demonstrated

promising results on challenging matching problems, making these models practical and

widely applicable. The proposed model jointly performs feature extraction, matching

and robust match Ąltering in a computationally eicient manner, outperforming state-

of-the-art results on two challenging matching benchmarks. The entire pipeline is

end-to-end trainable, which opens-up the possibility for including additional modules

for speciĄc downstream problems such as camera pose estimation or 3D reconstruction.
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� = 100 � = 400 � = 1600

Figure 6-11: Insights about Sparse-NCNet. We show the top � matches between
each pair of images for diferent values of � . The strength of the match is shown
by color (the more yellow the stronger). Please note how new matches tend to
appear close to high scoring matches, demonstrating the propagation of information
in Sparse-NCNet.
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Chapter 7

Conclusions

In this Ąnal chapter, we review the main contributions of this thesis and present some

possible research directions for future work.

7.1 Contributions

In this thesis, we have focused on developing trainable models for establishing cor-

respondences between pairs of images. This presented several challenges, such as

designing a suitable model which is end-to-end trainable and Ąnding a suitable training

scheme. We have investigated several model architectures and training schemes for

solving this problem. The contributions developed in each chapter are detailed next.

In Chapter 3, we have developed a Siamese end-to-end trainable CNN architecture

for image alignment which outputs parameters of a geometric transformation such as

aine, homography, or thin-plate-spline. This architecture has a modular structure

which follows the traditional matching pipeline composed of a feature extraction stage,

followed by a matching stage, and a transformation estimation stage. In particular, we

have proposed to use densely extracted CNN features for the feature extraction stage,

together with a correlation operation which outputs the exhaustive set of matching

scores between the densely extracted features. This approach for feature extraction

and matching was adopted in all the subsequent chapters of this thesis, as well as by

other works, for example, [Novotny et al., 2018; Kim et al., 2018a; Jeon et al., 2018;

161
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Lee et al., 2019; Melekhov et al., 2019; Truong et al., 2020]. In order to train this model,

we have developed a suitable training scheme following a self-supervised approach,

where training image pairs are generated by synthetically warping a set of natural

images with randomly sampled transformations, as well as an appropriate training

loss that is agnostic to the type of geometric transformation and its parametrization.

Finally, we have shown that the usage of a correlation operation for matching provides

good generalization properties, by showing successful results in both instance- and

category-level alignment despite the domain gap between training and testing.

In Chapter 4, we have extended the previously proposed model with a weakly-

supervised training module, which does not require access to the ground-truth geo-

metric transformation, and thus allows training from corresponding pairs of natural

images with no further annotation. This weakly-supervised training module is based

on the concept of a soft-inlier count, which borrows inspiration from the inlier count

that is used in RANSAC [Fischler and Bolles, 1981]. This method was extended

by Wang et al. [2019], who propose to use cycle-consistency across several video frames

as a supervisory signal. We have shown that the proposed weakly-supervised training

can improve performance over the previous self-supervised training alone, achieving

state-of-the-art results in category-level alignment.

In Chapter 5, we have proposed a new end-to-end trainable model for image corre-

spondence. Contrary to the model from previous chapters which outputs parameters

of a geometric transformation, this model can output a discrete set of correspondences

and is, therefore, better suited for instance-level matching problems. This is achieved

by replacing the regressor CNN previously used for transformation estimation, by a

4D Neighbourhood Consensus Network (NCNet) that operates on the space of 4D

matching scores. We have shown that NCNet models are useful both for instance

and category-level matching obtaining state-of-the-art results on tasks as diverse

as indoor localization and semantic keypoint transfer. Our NCNet model has been

extended by Li et al. [2020] who propose adaptive neighbourhood sizes and by Yang

and Ramanan [2019] who propose alternative separable 4D convolutions and employed

by other recent work [Chen et al., 2019; Laskar et al., 2020].
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In Chapter 6, we have proposed a more eicient formulation for Neighbourhood

Consensus Networks, which seeks to overcome the main drawbacks of the original

formulation. For this, the proposed Sparse-NCNet model uses a sparse correlation

tensor, that contains only the most promising matches between the dense features of

each image, and which is processed by a sparse submanifold CNN. We have shown

that the resulting model can run an order of magnitude faster and with fewer memory

requirements than the original model while providing equivalent results. Furthermore,

we have proposed a two-stage relocalization approach that improves the localization

accuracy of matches, which has a direct positive impact on camera pose estimation

and 3D reconstruction results.

7.2 Future work

In this section, we analyze some possible future research directions which could extend

the work presented in this thesis.

Computational efficiency. Most recent methods for estimating correspondences

between images rely on deep CNN descriptors which are computationally intensive

to extract, resulting in higher processing times than previous hand-crafted methods.

In addition, trainable match Ąltering methods such as NCNet (chapter 5) have

�(�2) complexity with respect to the number of features �. These factors limit the

applicability of both trainable descriptors and trainable match Ąltering methods for

processing a large number of images, such as in the case of large-scale 3D reconstruction,

or real-time applications such as SLAM. To obtain more computationally eicient

trainable descriptors, distillation approaches [Hinton et al., 2015] could be used for

transferring knowledge from deep models towards shallower and more eicient ones.

Another alternative is to directly adopt shallower CNN models for image description

and train them from scratch for the correspondence task, as done by Revaud et al.

[2019]. One additional approach could involve using half-precision Ćoating-point

arithmetic to speed-up the computations and reduce memory requirements, as proposed
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by Micikevicius et al. [2017]. Finally, to produce fast trainable approaches for match

Ąltering, sparse sub-manifold convolutions can be used, as proposed in Chapter 6, or

graph-convolutional networks, as proposed by Sarlin et al. [2019].

Localization accuracy. Due to the high computational requirements discussed

above, many recent methods extract CNN features densely along a grid that has

a subsampling factor of 4 or 8 with respect to the original image resolution. This

subsampling results from the strided-convolutions or pooling operations in the feature

extraction CNN, which are often inherited from image classiĄcation CNN architectures

where such subsampling is desirable for spatially-aggregating the visual information

from large image areas. However, for the task of image correspondence estimation,

these subsampling operations result in less accurately localized matches, which can

be problematic for tasks such as 3D reconstruction. Diferent approaches have been

proposed to address this issue, by either producing a detection map in full image

resolution [DeTone et al., 2018], Ątting a quadratic function to a 2D keypoint response

map [Dusmanu et al., 2019], replacing the subsampling operations by dilated con-

volutions [Revaud et al., 2019], using guidance from higher-resolution intermediate

features [Widya et al., 2018] or using guidance from higher-resolution local matches

as we proposed in Chapter 6. However, despite these eforts, 3D reconstruction

benchmarks show that the reprojection error of trainable methods is in most cases still

above 1px while SIFT can achieve sub-pixel reprojection errors. Therefore, improving

the localization accuracy of the correspondences produced by trainable methods to

match or surpass that of SIFT is still an ongoing research efort.

Large-scale training. Most trainable methods for correspondence estimation have

relied on 3D reconstruction from structure-from-motion (SfM) as a way to generate

ground-truth correspondences for training. However, this may introduce a bias for

DoG detections if only the sparse 3D point-cloud from SfM methods based on DoG

detections are used. An alternative is to obtain dense correspondences between image

pairs using optical Ćow, and use the sparse correspondences and camera poses from
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the SfM reconstruction as guidance [Revaud et al., 2019]. However, this still requires

a successful 3D reconstruction (typically obtained with DoG keypoints and SIFT

features), which limits the diiculty of pairs that can be used during training. Weakly-

supervised approaches requiring annotation at the level of image pairs (chapter 4) or

at the level of single images [Novotny et al., 2017] have been proposed for the task of

category-level matching where object classes are well deĄned. However, it is not clear

how to translate these approaches to instance-level matching, where the notion of

Şobject classŤ is ill-deĄned. In the past, weakly-supervised losses have been proposed

for the task of visual localization, relying solely on GPS information [Arandjelović

et al., 2016]. However, this approach has not yet been extended to the task of learning

image correspondences. We believe that this approach has the potential of enabling

large-scale training with no manual annotation, possibly allowing to learn richer

feature descriptors, and therefore constitutes a possible future research direction.

Identification of non-matching regions. In Chapter 3, we have presented an

approach towards identifying non-matching image regions, obtained by thresholding 2D

similarity maps. However, this idea was not further explored. Nevertheless, we believe

that for a correspondence estimation model to be most useful, both the corresponding

and non-corresponding regions should be identiĄed. In the case of large transient

objects which appear only in one of the images, additional semantic information could

be used to this end. In the case of small regions that only appear in one image due to

self-occlusions, reasoning with an estimated 3D scene structure could be helpful. The

incorporation of additional semantic and geometric information is discussed next.

Incorporating additional semantic and geometric information. Current meth-

ods for estimating correspondences operate on deep CNN features, which are typically

pre-trained on an image classiĄcation task, and therefore act as high-level descrip-

tors. However, the recent success of CNN methods in tasks such as instance-level

semantic segmentation [He et al., 2017], monocular depth estimation [Luo et al., 2020;

Lasinger et al., 2019] or surface normal estimation [Zamir et al., 2018] ofers the
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possibility of incorporating additional semantic and geometric information to the cor-

respondence assignment problem. This could be particularly useful for (i) identifying

static and transient objects in the scene, (ii) developing top-down correspondence

estimation methods, where high-level correspondences between objects-instances are

Ąrst established (or not established, for transient objects that appear only in one

image), and matches are then searched within the corresponding objects only, (iii)

guiding the matching process through geometric reasoning using noisy priors such

as depth estimated from each image independently using a monocular method. In

the past, Arandjelović and Zisserman [2014] have shown the beneĄts of incorporating

semantic information into SIFT descriptors for matching as well as for image retrieval.

Taira et al. [2019] show that semantic information in the form of segmentation masks

and geometric information in the form of surface normals can be beneĄcial for the

task of camera pose estimation. However, we believe that further research can be done

to incorporate these types of information in more general correspondence estimation

methods.

Modern dense 3D reconstruction. Recently, much progress has been made

in obtaining dense correspondences in unconstrained settings (contrary to stereo

vision or optical Ćow), with large viewpoint and illumination changes. in Chapters 5

and 6 we have presented a method that operates on densely extracted features

and can produce semi-dense correspondences in such diicult matching settings. A

diferent recent method can obtain a regular correspondence Ąeld for both instance

and category-matching problems [Truong et al., 2020]. It would be desirable if

these dense approaches could be used for the task of 3D reconstruction. However,

current structure-from-motion pipelines are heavily based on sparse local features

with dense estimation only happening at a later stage through multi-view-stereo

methods. Using current structure-from-motion pipelines with dense correspondences

is not straightforward. Therefore, we believe that more modern 3D reconstruction

pipelines and software should be developed, which can fully proĄt from recent methods

for dense correspondence estimation. Note that using dense correspondence estimation
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methods for 3D reconstruction has the potential of producing more complete 3D

models and to require a smaller set of images for a successful reconstruction.
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RÉSUMÉ

L’objectif de cette thèse est de développer des méthodes pour la mise en correspondance entre de paires d’images

dans des situations difficiles, telles que des changements extrêmes d’éclairage, des scènes avec peu de texture ou

comprenant des structures répétitives, ou la mise en correspondance entre parties d’objets qui appartiennent à la même

classe mais qui peuvent présenter de grandes différences d’apparence intra-classe. Nos contributions sont les suivantes

: (i) nous développons une approche entraînable pour l’alignement paramétrique d’images en utilisant un modèle de

réseau siamois, (ii) nous concevons une approche d’entraînement faiblement supervisée, qui permet l’entraînement à

partir de paires d’images réelles annotées seulement au niveau des paires d’images, (iii) nous proposons les Réseaux

de Consensus de Voisinage qui peuvent être utilisés pour estimer de manière robuste les correspondances pour des

tâches où des correspondances discrètes sont requises et (iv) nous développons une variante plus efficace qui peut

réduire les besoins en mémoire et le temps d’exécution des Réseaux de Consensus de Voisinage par un facteur dix.

MOTS CLÉS

Vision par ordinateur, estimation de correspondances, apprentissage profond, apprentissage faiblement

supérvisé.

ABSTRACT

The goal of this thesis is to develop methods for establishing correspondences between pairs of images in challenging

situations, such as extreme illumination changes, scenes with little texture or with repetitive structures, and matching parts

of objects which belong to the same class, but which may have large intra-class appearance differences. In summary,

our contributions are the following: (i) we develop a trainable approach for parametric image alignment by means of a

siamese network model, (ii) we devise a weakly-supervised training approach, which allow training from real image pairs

having only annotation at the level of image-pairs, (iii) we propose the Neighbourhood Consensus Networks which can

be used to robustly estimate correspondences in tasks where discrete correspondences are required, and (iv) because

the dense formulation of the Neighbourhood Consensus Networks is memory and computationally intensive, we develop

a more efficient variant that can reduce the memory requirements and run-time by more than ten times.

KEYWORDS

Computer vision, correspondence estimation, deep Learning, weakly-supervised learning.
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