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Résumé

LŠobjectif de cette thèse est de développer des méthodes pour la mise en correspondance entre de paires dŠimages dans des situations diiciles, telles que (i) des changements extrêmes dŠéclairage, comme pour le scénario dŠappariement jour-nuit, (ii) lŠappariement de scènes peu texturées ou avec des structures répétitives, comme cŠest souvent le cas pour les scènes dŠintérieur, (iii) lŠappariement sur de longues échelles de temps (plusieurs mois ou années), où certains éléments structurels peuvent avoir été modiĄés et (iv) lŠappariement entre des parties dŠobjets appartenant à la même classe, mais qui peuvent présenter de grandes diférences dŠapparence intra-classe. Les principales contributions de cette thèse sont les suivantes. Tout dŠabord, nous développons une approche entrainable pour lŠalignement paramétrique dŠimages en utilisant un modèle de réseau siamois. Ce modèle prend deux images en entrée et peut estimer les paramètres dŠune transformation géométrique telle quŠune transformation aine, une homographie ou une transformation en spline. Le modèle proposé contient trois modules distincts pour lŠextraction de caractéristiques, lŠappariement et la régression des paramètres. Ces modules sont composés dŠopérations diférentiables, permettant un entraînement de bout-en-bout. Deuxièmement, aĄn de permettre lŠentraînement à partir de paires dŠimages réelles sans annotation de correspondance, nous développons un module inspiré de la mesure utilisée par lŠalgorithme RANSAC, mais implémentée de manière diférentiable aĄn que le modèle soit entraîné en utilisant la rétropropagation standard. Nous montrons que notre approche faiblement supervisée peut fournir un gain de performance signiĄcatif par rapport à lŠentraînement uniquement avec des images déformées synthétiquement. Troisièmement, nous développons les Réseaux de Consensus de Voisinage qui peuvent être utilisés pour estimer de manière i robuste les correspondances pour des tâches où des correspondances discrètes sont nécessaires. Ces modèles opèrent dans lŠespace 4D des correspondances dŠimages et peuvent être entrainés pour identiĄer des groupes cohérents de correspondances aĄn de lever lŠambiguïté de correspondances diiciles. EnĄn, comme la formulation dense des Réseaux de Consensus de Voisinage est gourmande en mémoire et en calcul, limitant leur mise en application pratique, nous développons une variante plus eicace qui peut réduire considérablement les besoins en mémoire et le temps dŠexécution.

Cette formulation eicace utilise un tenseur de corrélation parcimonieux pour stocker les correspondances provisoires, qui est traité par un réseau de neurones convolutifs parcimonieux 4D pouvant Ąltrer les correspondances incorrectes. Nos méthodes obtiennent des résultats état de lŠart pour lŠappariement dŠimages au niveau de catégories dans les benchmarks PF-WILLOW, PF-PASCAL, TSS et Caltech-101, ainsi que pour lŠappariement au niveau de lŠinstance dans les benchmarks HPatches-Sequences, InLoc et Aachen Day-Night.

Abstract

The goal of this thesis is to develop methods for establishing correspondences between pairs of images in challenging situations, such as (i) extreme illumination changes, as in the day-night matching scenario, (ii) matching scenes with little texture or with repetitive structures, as is frequently the case for indoor scenes, (iii) handling matching of scenes across long time-scales (e.g. years), where some structural elements may have been modiĄed and (iv) matching parts of objects which belong to the same class, but which may have large intra-class appearance diferences. The key contributions of this thesis are the following. First, we propose a trainable approach for parametric image alignment employing a Siamese network model. This model processes two input images and can estimate the parameters of a geometric transformation such as aine, homography or thin-plate spline. The proposed model contains three distinct modules for feature extraction, feature matching and parameter regression. These modules are implemented using diferentiable operations, which results in an end-to-end trainable architecture. Second, to allow training from real image pairs lacking correspondence annotation we develop a soft-inlier count module. This soft-inlier count module is inspired by the inlier count measure used in RANSAC, but implemented in a diferentiable way to allow training using standard backpropagation. We show that the proposed weakly-supervised approach can provide a signiĄcant performance gain compared to training solely with synthetically warped images. Third, we develop Neighbourhood Consensus Networks which robustly estimate correspondences in tasks where discrete correspondences are required. These models operate on the 4D space of image matches and can be trained to identify coherent patterns of correspondences enabling to disambiguate diicult matches. Finally, because the dense formulation iii of the Neighbourhood Consensus Network is memory and computationally intensive, limiting its applicability, we develop a more eicient variant that can signiĄcantly reduce the memory requirements and execution time. This eicient formulation uses a sparse-correlation tensor for storing the tentative correspondences, which is processed by a sparse submanifold 4D CNN that can Ąlter out the incorrect correspondences. Our methods obtain state-of-the-art results in the PF-WILLOW, PF-PASCAL, TSS and Caltech-101 category-level matching benchmarks, as well as in the HPatches-Sequences, InLoc and Aachen Day-Night instance-level matching benchmarks.

Chapter 1 Introduction 1.1 Goal

The goal of this thesis is to develop methods for establishing correspondences between pairs of images in challenging situations, such as (i) extreme illumination changes, as in the day-night matching scenario, (ii) matching scenes with little texture or with repetitive structures, as is frequently the case for indoor scenes, (iii) handling matching of scenes across long time-scales (e.g. years), where some structural elements may have been modiĄed and (iv) matching parts of objects which belong to the same class, but which may have large intra-class appearance diferences. An illustration of the goal of this thesis is presented in Fig. 1-1.

Although existing methods based on local invariant features have been used to successfully establish correspondences in many challenging situations, their performance is inherently limited by the underlying assumptions in their manually engineered designs. While hand-crafted feature descriptors can be designed to be invariant to aine illumination transformations, they are not invariant to strong illumination changes, such as in day-night matching, or to large appearance changes, such as in the case of category-level matching.

To overcome the limitations of manually engineered methods, our goal in this thesis is to develop trainable methods for Ąnding correspondences between images, in which the image descriptors can acquire the necessary invariances for solving these 3 challenging matching tasks by learning from the data itself.

Solving the diicult image correspondence problems that we target in this thesis in a trainable manner presents several challenges, which are discussed next.

Challenges

When seeking to develop trainable models to solve the image correspondence problem, we must address several challenges. These can be divided into three groups, as illustrated in Fig. 1-2: (i) challenges inherent to the diicult matching problems that we address, (ii) challenges related to the formulation of suitable end-to-end trainable models for solving the correspondence problem, and (iii) challenges related to Ąnding a suitable training scheme for training such models.

Challenging matching problems

Large appearance variation. Matching images with large appearance variation, such as the strong illumination changes in day-night matching, or the large intraclass variations in category-level matching, is diicult. In order to be able to Ąnd correspondences under these large appearance variations, we require intermediate feature representations that are invariant to these factors of variation. Moreover, these features should be descriptive and discriminative enough so that they can be unambiguously matched. In the past, feature point detectors have been used to select salient image regions, with the hope that these would be more robustly described and unambiguously matched. However, the usage of detectors presents additional diiculties such as achieving high repeatability under these strong appearance variations. An alternative option consists of densely extracting descriptors along a regular grid over the images. While dense descriptors circumvent the issue of missing detections due to low repeatability, they introduce additional challenges in terms of computational complexity. Therefore, Ąnding trainable intermediate feature representations that are robust to large appearance variations while being computationally eicient represents a challenge.

Feature extraction

Suitable training schemes

Which data? Which supervision? Which loss?

Figure 1-2: Challenges. We identify three main types of challenges: (i) those inherent to solving the diicult matching problems we address, such as day-night matching or category-level matching, (ii) those related to the formulation of suitable end-to-end trainable models for solving the correspondence problem, and (iii) Ąnding a suitable training scheme for training such models.

Large viewpoint variation. Achieving robustness to large variations in viewpoint in trainable features is challenging. While the classic approach of using covariant feature detectors to normalize the image regions used for description can be used, the detection stage typically involves several hard-decision steps (i.e. which points are considered detections, which is the correct scale and rotation, etc.) which are not diferentiable. On the other hand, trainable models can gain invariance to viewpoint changes by training with diverse data or by performing data augmentation during the training process. However, the level of invariance that can be learned is limited by the observed diversity in the data and the augmentations used, and the generalization of these invariance properties to unseen data is not guaranteed. Therefore, designing trainable feature representations with good viewpoint invariance properties constitutes an additional challenge.

Repetitive structures and low-textured areas. In this thesis, we also would like to obtain correspondences in indoor scenes, which typically have repetitive structures (such as doors, windows or columns) or low-textured areas (such as walls or ceilings).

In both of these cases, establishing matches is challenging due to the ambiguities that arise, as one particular image feature may have several good matching candidates in the other image.

Suitable trainable models

End-to-end trainable matching. While most of the work in trainable methods for correspondence estimation has concentrated on the development of trainable descriptors, we target the combined problem of description and matching. Therefore, we seek to obtain trainable models that can be optimized for the matching task directly, and in an end-to-end trainable way. This poses the challenges of designing a feature extraction module and a matching module which are both amenable to back-propagation.

Accurately localized correspondences. For many downstream image correspondence tasks, such as pose estimation or 3D reconstruction, having accurately localized correspondences is crucial. While classical hand-crafted methods can achieve sub-pixel keypoint localization accuracy, as they employ computationally inexpensive feature detectors, trainable models tend to be more computationally expensive, which may limit the resolution in which images can be processed and, in consequence, limiting the localization accuracy of the output correspondences. Therefore, obtaining trainable models for image correspondence estimation that can obtain accurately localized correspondences while being computationally eicient, is a challenging problem.

Suitable training scheme

In order to train a model for the matching task, we require training data which contains the rich diversity in appearance and viewpoint variations that we wish to tackle at testing time. Furthermore, unless a fully unsupervised approach is used, this data will require a certain level of manual annotation, in accordance with the type of supervision and loss that will be used to train the model. As annotating image correspondences densely is unfeasible, the fully-supervised setup cannot be directly employed. Therefore, approaches such as self-supervised learning, weakly-supervised learning or unsupervised learning will need to be used. Finding suitable training data and a suitable training scheme is, therefore, an additional challenge.

Motivation

Correspondence estimation is a fundamental problem of computer vision with numerous applications in robotics, augmented reality and 3D reconstruction, some of which are presented below.

Visual odometry. When mobile robots displace, the robot pose can be estimated from the commands given to its control system or by an inertial measurement unit.

However, small pose errors can accumulate leading to a large pose error, a phenomenon that is called drifting. The visual information coming from the robotŠs cameras can be used (possibly jointly with other sensors) in order to estimate the robot position and reduce the drift. For this, the correspondences between images taken at diferent times need to be robustly established, which is particularly diicult in indoor scenarios with low texture or repetitive structures. An example of visual odometry is presented in Fig. 1-3a.

Simultaneous localization and mapping. Related to visual odometry is the problem of simultaneous localization and mapping (SLAM), where both the robot pose and scene structure are estimated simultaneously. In this case, a map of the (a) Visual odometry for Mars Rover navigation [START_REF] Maimone | Two years of visual odometry on the mars exploration rovers[END_REF] (b) Simultaneous localization and mapping [START_REF] Engel | LSD-SLAM: Large-scale direct monocular SLAM[END_REF] (c) 3D reconstruction from photo collections [START_REF] Snavely | Photo tourism: Exploring photo collections in 3D[END_REF] (d) Scene change estimation [START_REF] Sakurada | Change Detection from a Street Image Pair using CNN Features and Superpixel Segmentation[END_REF] (e) Visual localization [START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF] (f) Object pose estimation [START_REF] Grabner | 3D Pose Estimation and 3D Model Retrieval for Objects in the Wild[END_REF] Figure 1-3: Different applications relying on correspondence estimation.

(g) Propagation of annotations [START_REF] Wang | Learning correspondence from the cycleconsistency of time[END_REF] Annotated source image Target image Transferred annotation (h) Semantic annotation transfer [Kim et al., 2018b] (i) Object part discovery [START_REF] Novotny | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF] (j) Semantic image editing [START_REF] Han | A Ćow-based model for clothed person generation[END_REF] Figure 1-3: (Cont.) Different applications relying on correspondence estimation.

environment is built as the robot moves, and is used for its localization. Again, the estimation of correspondences constitutes one of the main underlying problems.

An illustration of the map and camera poses obtained with SLAM is presented in Fig. 1-3b.

3D reconstruction from photo collections. Furthermore, correspondence estimation can be used to reconstruct the 3D scene structure from a set of images using structure-from-motion approaches, which can be followed by multi-view stereo algorithms. The created 3D models can be used for diverse purposes such as visual localization (discussed next), architecture, archaeology or auditing construction sites.

While images are usually acquired by Ćying drones or driving cars equipped with cameras, they can also come from unstructured photo collections downloaded from the internet, in which case images may contain large viewpoint and illumination variation, as well as scene modiĄcations. An example of a 3D model obtained from an internet photo collection is presented in Fig. 1-3c. Object pose estimation. Object pose estimation is an important problem for robotic manipulation and augmented reality which can be tackled by similar correspondence estimation approaches as camera pose estimation. In this case, correspondences between an object of interest and the rendered images of a similar 3D model can be computed and used to estimate the pose. Note that the exact 3D model of the object might be unavailable. In that case, a similar 3D model from the same object category can be used, resulting in a category-level matching problem.

Propagation of annotations in videos. Another application of correspondence estimation is to propagate information from one video frame to the subsequent frames.

The information from the initial frame can take several forms, such as an object bounding box (in which case we call the problem object tracking), semantic labels, or object keypoints. An example of this task is presented in Fig. 1-3g.

Semantic annotation transfer. Related to the previous task is the problem of annotation transfer across diferent images of the same category. In this case, the annotations for a target image can be obtained by transferring the annotations of a semantically related source image. These annotations can consist of sparse keypoints or semantic labels, for instance. As these annotations are costly to obtain, this technique can be used to obtain an estimate of the annotations, which can be later reĄned manually or by other automatic techniques. An illustration of semantic annotation transfer is presented in Fig. 1-3h.

Object part discovery. Correspondence estimation can be also used for unsupervised object part discovery. In this case, a collection of unannotated images from the same category can be used to discover the most characteristic object parts. An example of this task is presented in Fig. 1-3i.

Semantic image editing.

Finally, category-level image alignment can be used to perform image-editing, such as replacing the texture of an object with a diferent texture from the same category. An example of this for the task of garment virtual try-on is presented in Fig. 1-3j.

Contributions

In this thesis, we make contributions in both parametric image alignment and discrete correspondence estimation and develop methods that are able to handle both instance and category-level matching. The key contributions of this thesis are the following:

1. Trainable parametric image alignment. Our Ąrst contribution consists of a trainable approach for parametric image alignment employing a Siamese network model.

This model processes two input images and can estimate the parameters of a geometric transformation such as aine, homography or thin-plate spline. The proposed model contains three distinct modules for feature extraction, feature matching and parameter regression. These modules are implemented using diferentiable operations, resulting in an end-to-end trainable architecture.

Correlation layer for Siamese-networks.

In particular, for the matching module of the Siamese network, we propose to use a correlation layer instead of the subtraction or concatenation approaches used in other works employing Siamese networks for related tasks. An ablation study shows the superiority of the correlation operation with respect to these other alternatives. We believe that the correlation operation produces superior performance as it solely retains image similarity information, thus obtaining good generalization properties despite a large domain gap between training and evaluation, which is not the case in the subtraction or concatenation operations which retain information about the actual image content and are therefore more sensitive to such domain gap.

Transformation-agnostic loss for strong supervision. Furthermore, we

propose a transformation agnostic loss that operates on image coordinates instead of the transformation parameters directly. This loss enables the model to be trained with diferent types of geometric transformations without modiĄcations to the method or its implementation and avoids having to worry about the particular parameterizations of each geometric model.

Soft-inlier count module and loss for weak supervision.

The previously presented loss requires knowledge of the ground-truth transformation and was used in combination with synthetic imagery. In order to train from real image pairs lacking correspondence annotation, we develop a soft-inlier count module. This softinlier count module is inspired by the inlier count measure used in RANSAC but implemented in a diferentiable way to allow training using standard backpropagation.

We show that the proposed weakly-supervised approach can provide a signiĄcant performance gain with respect training solely with synthetically warped-images.

5. Neighbourhood Consensus Networks. Moreover, we develop the Neighbourhood Consensus Networks which can be used to robustly estimate correspondences in tasks where discrete correspondences are required. These models operate on the 4D space of image matches and can be trained to identify coherent patterns of correspondences enabling to disambiguate diicult matches or correct errors in tentative matches caused by large changes in appearance and background clutter. These models can also be incorporated into other computer vision pipelines as a generic robust matching model. In order to train the Neighbourhood Consensus Network, we propose an image-level loss which operates on pairs of positive images, where correspondences between scenes or objects exist, and of negative images, where scenes or objects do not correspond. This loss allows for training in a weakly supervised way and facilitates data collection as little annotation is required.

Indoor venues dataset (IVD).

In addition, we collected and released a dataset for indoor localization consisting in 3861 corresponding image pairs from 89 diferent indoor scenes, originally uploaded by individuals to Google Maps. The dataset includes diferent types of venues such as restaurants, cafes and museums from six diferent cities (Amsterdam, Brussels, Copenhagen, Edinburgh, Paris and Prague). The dataset contains challenging image pairs featuring changes in illumination and modiĄcations of the scene (both temporal, due to transient objects, and permanent), providing therefore similar conditions to those observed in real indoor localization situations.

Efficient Neighbourhood Consensus Networks.

Finally, because the dense formulation of the Neighbourhood Consensus Network is memory and computationally intensive, therefore limiting its applicability, we develop a more eicient variant that can reduce the memory requirements and run-time by more than 10×. This eicient formulation uses a sparse-correlation tensor for storing the tentative correspondences, which is processed by a sparse submanifold 4D CNN that can Ąlter out the incorrect correspondences.

Outline of the thesis

In Chapter 2, we present a literature review discussing the relevant methods for solving instance and category-level correspondence problems. In particular, we review both hand-crafted and trainable methods for obtaining both discrete and dense image correspondences.

Chapter 3 presents our trainable approach for parametric image alignment (contribution 1), based on a Siamese CNN with a correlation layer for matching (contribution 2), and employing our proposed strongly supervised loss together with synthetic imagery (contribution 3). Results are presented for both instance and category level matching problems.

Chapter 4 presents the soft-inlier count module that allows training the previously presented model in a weakly-supervised manner (contribution 4), obtaining a signiĄcant improvement over the baseline model for category-level matching.

Chapter 5 presents the Neighbourhood Consensus Networks for robust estimation of discrete image correspondences (contribution 5), with applications for category-level matching and indoor localization, as well as a suitable weakly supervised training loss for training from an indoor dataset containing only annotation at the level of image pairs (contribution 6).

Chapter 6 addresses the limitations of Neighbourhood Consensus Networks and presents the more eicient Sparse Neighbourhood Consensus Networks, which exploit the sparsiĄcation of the correlation tensor and a sparse submanifold CNN to obtain signiĄcant performance gains (contribution 7).

Chapter 7 concludes this thesis presenting the main obtained results and possible future research directions.

Publications and Software

During the development of this thesis, four papers were presented at major computer vision and machine learning conferences (CVPRŠ17, CVPRŠ18, NeurIPSŠ18 and ECCVŠ20). In addition, extended versions of two of these conference papers were accepted by the T-PAMI journal (one was published and the other one is in press).

The following chapters of this thesis present the material from our publications in the following way:

• Chapter 3 is based on the Convolutional neural network architecture for geometric matching conference paper, presented as spotlight at CVPRŠ17 [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], as well as in its T-PAMIŠ18 extended journal version [Rocco et al., 2018b].

• Chapter 4 is based on the CVPRŠ18 paper End-to-end weakly-supervised semantic alignment [Rocco et al., 2018a].

• Chapter 5 is based on the NeurIPSŠ18 conference paper Neighbourhood Consensus Networks which was accepted as a spotlight [Rocco et al., 2018c], as well as in an extended journal version to appear in T-PAMI [Rocco et al., Accepted].

• Chapter 6 is based on the ECCVŠ20 conference paper Efficient Neighbourhood Consensus Networks via Submanifold Sparse Convolutions [START_REF] Rocco | Eicient neighbourhood consensus networks via submanifold sparse convolutions[END_REF].

All the software developed during this thesis is available online at https://www. di.ens.fr/~iroccosp/ under open-source licences.

Chapter 2

Literature Review

In this chapter, we review related work on correspondence estimation. We begin by reviewing methods for instance-level matching in Sec. 2.1, followed by methods for category-level matching in Sec. 2.2.

Instance-level matching

In this section, we review methods for obtaining correspondences between images of the same scene, a problem which we call instance-level matching. We begin by reviewing manually engineered methods for local feature detection (Sec. 2.1.1), followed by methods for obtaining invariant feature descriptors (Sec. 2.1.2). Then, in Sec. 2.1.3,Sec. 2.1.4 and Sec. 2.1.5 we present more recent trainable methods for feature description, detection or joint detection and description, respectively. Next, in Sec. 2.1.6 we present the alternative approach of using densely extracted features, thus avoiding the feature detection step. Finally, in Sec. 2.1.7 we review diferent strategies for Ąltering the obtained candidate matches.

Hand-crafted local feature detectors

In constrained correspondence problems such as stereo-vision or optical-Ćow, the search space for a correspondence can be reduced to a local neighbourhood of the 17 Images from [START_REF] Moravec | Obstacle avoidance and navigation in the real world by a seeing robot rover[END_REF] and [START_REF] Harris | A combined corner and edge detector[END_REF].

initial point, signiĄcantly simplifying the complexity of the correspondence assignment.

In a general setting where there is a large motion between camera poses, however, matches cannot be assumed to lie within a local neighbourhood.

In this more general case, obtaining dense correspondences is extremely challenging.

Therefore, in order to simplify match assignment, local feature detectors have been developed. In this scenario, local image features such as corners, blobs or stable-regions are Ąrst extracted and in a subsequent stage used for matching.

An early corner detector was proposed by [START_REF] Moravec | Obstacle avoidance and navigation in the real world by a seeing robot rover[END_REF], where mean local changes in image intensity along diferent directions are computed, and local maxima are selected. An example of MoravecŠs early corner detector is presented in Fig. 2-1a.

An improvement was later proposed [START_REF] Harris | A combined corner and edge detector[END_REF], who replaced the computation of image intensity diferences with a Ąrst-order Taylor expansion, improv- Later on, [START_REF] Mikolajczyk | Scale & aine invariant interest point detectors[END_REF] proposed Harris-Laplace points which extended the formulation of [START_REF] Harris | A combined corner and edge detector[END_REF] by adding multi-scale processing (following [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF]) combined with a scale-selection step using the Laplacianof-Gaussian (LoG) function. In this way, the Harris-Laplace detector achieves scalecovariance. In addition, [START_REF] Mikolajczyk | Scale & aine invariant interest point detectors[END_REF] propose an additional variant called Harris-Aine, where multi-scale Harris points are Ąrst extracted, and then aine regions are iteratively estimated, thus achieving aine-covariance. A similar method for aine adaptation was proposed by Schafalitzky and Zisserman [2002b].

An example of Harris-Laplace and Harris-Aine features is presented in Fig. 2-2. In [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF].

Chapter 3 we develop an iterative approach for dealing with large viewpoint changes which is similar in spirit to the iterative estimation in Hessian-Aine features. However, our method attempts to directly register a pair of images without using local image features.

The LoG function can also be used by itself as a scale-covariant blob detector operating in a 3D scale-space representation of the image, as proposed by [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF],

which extends the initial method of [START_REF] Beaudet | Rotationally invariant image operators[END_REF]. In this case, the image is convolved with a family of LoG Ąlters of diferent scales, and local maxima in the 3D scale-space are selected, as illustrated in Fig. 23. A variant of this approach was proposed by [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], where the LoG function is approximated by the Diference-of-Gaussians (DoG) function, which allows for a more computationally eicient implementation. Furthermore, as these detection functions are prone to selecting detections on edges, [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] proposed an edge-response elimination approach based on an analysis of the eigenvalues of the Hessian matrix, which is similar in spirit to the analysis of the eigenvalues of the structure tensor previously proposed by [START_REF] Harris | A combined corner and edge detector[END_REF].

Another similar approach for edge-response elimination was proposed by [START_REF] Mikolajczyk | Interest point detection invariant to affine transformations[END_REF], by selecting keypoints that are simultaneously local extrema of both the trace and determinant of the Hessian.

Figure 2-4: Rotational invariant kernels. We plot the Ąrst 5 rotational invariant kernels (up to second order) used by [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF] to compute rotational invariant descriptors. They consist of a Gaussian kernel () and combinations of its derivatives as indicated by the subindices (expressed in Einstein notation for compactness).

Hand-crafted local feature descriptors

In the previous section, we reviewed the development of corner and blob feature detectors. While these methods provide candidate regions for matching, therefore greatly simplifying the matching task by reducing the search space of candidate matches, they do not directly provide any means for comparing two image regions.

Early corner detectors such as Moravec or Harris corners were typically matched by comparing local image grayscale patches extracted around the detected corners with a normalized correlation function [START_REF] Faugeras | Camera self-calibration: Theory and experiments[END_REF][START_REF] Thacker | Statistical analysis of a stereo matching algorithm[END_REF].

However, this approach is very sensitive to misalignments, noise and illumination changes, which lead to the development of more sophisticated feature descriptors.

An early feature descriptor was proposed by [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF], where each detected keypoint would be associated with a descriptor vector composed of nine rotational diferential invariants. These invariants are computed by convolving the image with a Gaussian kernel and diferent combinations of its derivatives (up to third order), achieving better robustness to noise (due to the averaging efect of the Gaussian Function) and illumination changes (due to diferentiation). The Ąrst Ąve rotational invariant kernels are illustrated in Fig. 234. The obtained rotation-invariant descriptor can be used in conjunction with a multi-scale approach to incorporate invariance to scale changes. In order to obtain correspondences, these descriptors are matched using the Mahalanobis distance. Alternatively, the descriptors can be Figures reproduced from [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] and [START_REF] Vedaldi | An open and portable library of computer vision algorithms[END_REF].

normalized (using an estimate of the covariance matrix of each component) and then be directly matched according to the Euclidean distance.

While the descriptor of [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF] can achieve invariance to rotation and scale changes, it is not robust to misalignment errors in the detections or local deformations due to perspective projection. In order to address these issues, [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] proposed the SIFT descriptor which incorporates ideas from the biologicallyinspired complex-cell model of [START_REF] Edelman | Complex cells and object recognition[END_REF] that emulates the behaviour of orientation-selective neurons which are insensitive to small translations. In order to achieve a similar behaviour, the SIFT descriptor computes a set histograms of image gradient orientations, each accumulating the gradient orientation information of a particular image region around the detected keypoint, as illustrated in Fig. 2345.

Typically, 16 histograms arranged in 4 × 4 grid around the keypoint are used for computing a SIFT descriptor, each containing 8 orientation bins. The Ąnal descriptor consists of the concatenation of these histograms, thus being 128-dimensional, and is normalized to unit length. Note that while each histogram is associated with a particular shift from the keypoint, each histogram only encodes orientation information in a small image region. In this sense, the SIFT descriptor is relatively insensitive to small local translations, as the complex cells of [START_REF] Edelman | Complex cells and object recognition[END_REF]. While Lowe [2004] proposes to use SIFT descriptors together with DoG keypoints, thus achieving scale-invariant descriptors, they can also be combined with Harris-Aine keypoints if aine invariant descriptors are required (at the cost of possibly lower detector repeatability). For this, SIFT descriptors are computed over image patches which are previously normalized using the keypointsŠ aine parameters, as illustrated in Fig. 2-2c. In principle, SIFT features can be directly matched with the Euclidean distance. However, because they are composed of histograms, the Hellinger kernel constitutes a better distance as shown by [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF]. In a similar spirit to the normalization used by [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF], [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF] propose a normalization for SIFT features consisting of an L1 normalization step followed by the square root (which they call RootSIFT features), which allows using the Euclidean distance directly for comparison while obtaining the beneĄts of using the Hellinger distance. While other hand-crafted descriptors have been proposed, such as SURF [START_REF] Bay | SURF: Speeded up robust features[END_REF], BRISK [START_REF] Leutenegger | Binary robust invariant scalable keypoints[END_REF],

ORB [START_REF] Rublee | An eicient alternative to SIFT or SURF[END_REF], KAZE [START_REF] Alcantarilla | Proc. ECCV[END_REF] and AKAZE [START_REF] Alcantarilla | Fast explicit difusion for accelerated features in nonlinear scale spaces[END_REF], SIFT (or its normalized version RootSIFT) has been much more widely adopted, and it is still one of the main approaches used for instance-level matching, and particularly for 3D reconstruction [START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF][START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF].

Trainable local feature descriptors

Despite the large success of SIFT features for many correspondence tasks, its matching performance degrades under large viewpoint or non-aine illumination changes. This limitation led to the development of trainable local feature descriptors, with the hope that the required invariances to viewpoint and illumination-changes could be learnt from data. However, trainable methods present additional challenges such as Ąnding suitable training data and a suitable training loss.

In the early approach by [START_REF] Winder | Learning local image descriptors[END_REF], a parametric descriptor based on modules inspired by hand-crafted descriptors such as SIFT is proposed, and the task is to learn a good set of parameters for it. [START_REF] Simonyan | Learning local feature descriptors using convex optimisation[END_REF] later extend this approach by casting it as a convex optimisation problem, while also proposing to learn a dimensionality reduction matrix which can improve descriptor matching performance. These approaches are illustrated in Fig. 23456.

While the previously described approaches were strongly inĆuenced by hand-crafted descriptors such as SIFT, [START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF] proposed to use a Convolutional Neural Network (CNN) for computing descriptors inspired by the work of [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] which used a CNN for character recognition. [START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF] proposed both a classiĄcation-based approach and a regression-based approach.

In the classiĄcation-based approach, the CNN model takes an input image patch and classiĄes it among 600 keypoint classes. Correspondences are then assigned to keypoints from the two images belonging to the same class. A similar approach had been used in the past by [START_REF] Lepetit | Randomized trees for real-time keypoint recognition[END_REF], but using randomized trees instead of a CNN, and focusing on keypoints lying on particular objects. Furthermore, a very similar approach using a CNN was recently proposed by [START_REF] Cieslewski | Matching features without descriptors: Implicitly matched interest points[END_REF], with the main diference that it operates on the whole images and not on patches.

In the regression-based approach of [START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF], the CNN model takes input image patches and outputs 128-dimensional descriptors, which can be compared using the Euclidean distance. Other similar regression-based CNN approaches which also compare the output descriptor vectors with the Euclidean distance were later proposed Balntas et al. [2016a] propose the PN-Net model which is trained using triplets of positive and negative pairs and propose a ratio loss which they term SoftPN. The follow-up work by Balntas et al. [2016b] proposes a similar approach but incorporates an in-triplet hard-negative mining approach, where the distance between the positive and negative samples is also taken into account. They also compare the triplet ranking loss with their previously proposed ratio loss and determine that the former leads to superior matching performance. [START_REF] Mishchuk | Working hard to know your neighborŠs margins: Local descriptor learning loss[END_REF] propose to use a similar triplet ranking loss, but search for a hard-negative in both images, and use the hardest of the two. On the contrary, [START_REF] Tian | L2-net: Deep learning of discriminative patch descriptor in euclidean space[END_REF] propose to use a diferent loss which jointly optimizes all distances between a set of sampled descriptors from each image, which they claim is a more realistic setting as the number of negative pairs is much larger than that of positive pairs.

Other authors such as [START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF] or [START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF],

incorporate metric learning into the descriptor learning problem and propose Siamese regression-based CNN architectures which include a similarity computation block, as illustrated in Fig. 2-7c.

An additional diference between these methods lies in the choice of training data, and how ground-truth annotations for training are obtained. Most methods use correspondences obtained from reconstructed 3D scenes, which can capture realistic distortions from perspective projection as well as diverse illumination conditions [START_REF] Winder | Learning local image descriptors[END_REF]Balntas et al., 2016a;[START_REF] Simo-Serra | Discriminative learning of deep convolutional feature point descriptors[END_REF]Balntas et al., 2016b;[START_REF] Mishchuk | Working hard to know your neighborŠs margins: Local descriptor learning loss[END_REF][START_REF] Tian | L2-net: Deep learning of discriminative patch descriptor in euclidean space[END_REF][START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF][START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF]. A diferent approach was proposed by [START_REF] Simonyan | Learning local feature descriptors using convex optimisation[END_REF], who obtain correspondences through homographies estimated using SIFT features. Alternatively, [START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF] use a self-supervised approach to generate training pairs, by applying randomly-sampled transformations to a set of natural images.

Trainable local feature detectors

The trainable descriptors presented in the previous section operated on local image patches, extracted around hand-crafted keypoints such as DoG. Therefore, the success of such approaches depends, not only on having good descriptors for matching but also on the repeatability of the detections. If the same points are not repeatedly detected on the diferent images, then there is no chance for obtaining correct correspondences.

Recently, trainable keypoint detectors have also been proposed [START_REF] Verdie | A temporally invariant learned detector[END_REF][START_REF] Lenc | Learning covariant feature detectors[END_REF][START_REF] Mishkin | Repeatability Is Not Enough: Learning Discriminative Aine Regions via Discriminability[END_REF][START_REF] Laguna | Net: Keypoint detection by handcrafted and learned CNN Ąlters[END_REF], with the hope of improving the detection repeatability in challenging conditions, compared to hand-crafted methods. Some of these approaches are illustrated in Fig. 2345678. [START_REF] Verdie | A temporally invariant learned detector[END_REF] tackle the challenging problem of obtaining repeatable detections in urban scenes under strong illumination or appearance changes, such as in day-night situations or under diferent weather conditions. For this, they train diferent regression models to produce a scalar 2D response map, from which detections are to produce local extrema at these positive positions, resulting in a detector with high-repeatability. [START_REF] Lenc | Learning covariant feature detectors[END_REF] propose a diferent approach based on the covariance constraint, with the purpose of learning a covariant feature detector. In their approach, a CNN model estimates a geometric transformation from a small image patch, and the inverse of this transformation can be used to normalize the patch to a canonical frame, as shown in Fig. 2-8b. In this approach, detections are not explicitly deĄned as extrema of a 2D response map, but rather implicitly deĄned by means of a local geometric transformation. Then, the transformations from each patch are aggregated to select the Ąnal keypoints using a voting system (which is similar in spirit to the voting system of [START_REF] Hough | Method and means for recognizing complex patterns[END_REF]). Note that this approach generalizes beyond corner detection, and can be used to detect oriented circular frames (such as in SIFT), or aine frames (such as in Harris-Aine). [START_REF] Mishkin | Repeatability Is Not Enough: Learning Discriminative Aine Regions via Discriminability[END_REF] claim that repeatability alone does not ensure good matching, and propose to use a triplet margin ranking loss which operates on distances between auxiliary descriptors extracted at the detected features. They use this approach to train an aine-region detection model that computes the aine parameters from an input image patch, similarly to the Hessian-Aine detector. In this approach, the keypoint selection criterion is based on the shape of the estimated ellipses, rejecting the cases where the estimated ellipses are more elongated than a predeĄned axis ratio threshold.

Finally, [START_REF] Laguna | Net: Keypoint detection by handcrafted and learned CNN Ąlters[END_REF] propose a hybrid-CNN architecture for keypoint detection, where a part of the parameters is trainable, while the other is manually initialized to compute Ąrst and second-order image gradients or combinations of these. These hand-crafted convolutional Ąlters are inspired by classic hand-crafted detectors such as [START_REF] Harris | A combined corner and edge detector[END_REF] or [START_REF] Mikolajczyk | Scale & aine invariant interest point detectors[END_REF]. Their architecture also incorporates a multi-scale approach, where the same network is Ąrst applied on an image pyramid, and a Ąnal trainable layer produces the output 2D response map from the fused features, as illustrated in Fig. 2-8c. For keypoint selection, they propose to subdivide the image along a grid and select at most one keypoint for each grid cell by using an Index Proposal operation, which is equivalent to the soft-argmax operation used by [START_REF] Yi | LIFT: Learned invariant feature transform[END_REF]. They also propose a multi-scale extension that is less dependent on the chosen grid size.

Jointly-trained detectors and descriptors

In the previous two sections, we presented trainable keypoint detectors and descriptors, which were developed and trained independently. Given the success of end-to-end training for problems such as image classiĄcation, it is natural to ask whether it is possible to train jointly a keypoint detector and a descriptor in an end-to-end way. [START_REF] Yi | LIFT: Learned invariant feature transform[END_REF], [START_REF] Ono | Net: Learning local features from images[END_REF], [START_REF] Detone | SuperPoint: Self-Supervised Interest Point Detection and Description[END_REF], [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] and [START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF] delve into this problem and propose diferent approaches for its solution. Some of these methods are illustrated in Fig. 23456789. [START_REF] Yi | LIFT: Learned invariant feature transform[END_REF] proposed the LIFT method which follows the modular pipeline used in classic hand-crafted methods, but using trainable modules for detection, orientation estimation and description, as illustrated in Fig. 2-9a. However, training such a complex pipeline in an end-to-end way is non-trivial. Therefore the authors resort to a sequential training scheme, where the descriptor module is trained Ąrst, followed by the orientation module (which is conditioned on the learnt descriptor), and Ąnally, the detection module is trained (conditioned on the other two learnt modules). For training, local image patches extracted from a 3D reconstruction dataset are used.

Recent work by

While this provides diverse training data it also introduces a bias in the detector, as the locations of the learnt detections are constrained to lie on the same patches as the DoG detections from the 3D reconstruction, due to the patch-based training scheme. During evaluation, the detection model is decoupled and run over the full input image in a multi-scale fashion, obtaining a 2D response map for each scale.

Then, a non-maximum suppression (NMS) operation is used to select a sparse set of keypoints, from which patches are extracted and fed to orientation and description modules, following the classical hand-crafted methods. can be trained independently with diferent losses, with less interference than in the sequential model. On the contrary, the computational cost is increased as descriptors must be extracted densely (albeit with a downscaling factor of 1/8 with respect to the input resolution). A similar approach is followed by [START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF], but they propose a diferent training scheme to maximize the repeatability of the detections and discriminativeness of the keypoints.

The approach proposed by [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] is also similar to the one of DeTone et al. [2018]. However, it only features a single head which has a dual interpretation as a densely extracted set of 1D descriptors or a stack of 2D detection responses, as illustrated in Fig. 2-9c. In this way, all parameters are shared between the detector and descriptor. Note that this approach bears a resemblance with the early method of [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF] using rotational diferential invariants, where each component of the descriptor could be seen as a blob detector (cf. Fig. 234).

Densely extracted descriptors

Up to this point, we have described approaches for obtaining sparse local features, which are typically obtained by Ąrst, detecting interest points, and then, by computing descriptors around these interest points. This two-stage approach ofers several advantages. On the one side, the detector, which is typically computationally inexpensive, can be run at a high-resolution, producing very accurately localized keypoints (sometimes even with sub-pixel accuracy). On the other side, the detection stage produces a sparse set of image keypoints to be described and matched, therefore reducing the computational burden of these two subsequent stages. However, under strong illumination changes, detectors can sufer from low repeatability, which hinders the subsequent correspondence estimation task.

In order to overcome this issue, it is possible to forego the detection stage and instead compute descriptors densely over a coarse grid on the input image. This approach has been found beneĄcial for tasks which require matching under strongillumination changes, such as large-scale visual search [START_REF] Torii | 24/7 place recognition by view synthesis[END_REF][START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF]. Recently, densely extracted features have been also employed directly for 3D computer vision tasks, such as 3D reconstruction [START_REF] Widya | Structure from motion using dense cnn features with keypoint relocalization[END_REF], indoor localization and camera pose estimation [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF], and outdoor localization with night-time queries [START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF][START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF].

Note that while densely extracted features used for image retrieval are typically computed on a coarse low-resolution grid (e.g. 40 × 30), 3D computer vision tasks will typically require more accurately localized points. Extracting dense and accurately localized features, while keeping computational and memory requirements reasonable is one of the challenges of this approach. Very recently, [START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF] have proposed to use a hybrid approach where, given two images to be matched, descriptors are computed over detected keypoints in one image, but extracted densely over the other image.

In the following chapters of this thesis, we adopt the approach of using densely extracted features for matching, to be able to handle large appearance changes, as in the cases of day-to-night matching, or category-level matching. Furthermore, in chapter 6 we propose an approach for improving the localization accuracy of the obtained matches.

Filtering incorrect matches

In order to obtain correspondences using local image features, putative or tentative matches between descriptors are obtained by nearest-neighbour search, with the Euclidean distance. However, this typically yields a portion of incorrect matches.

Therefore, diferent heuristics or Ąltering techniques have been proposed to improve the fraction of correct matches in the set of tentative matches.

Second nearest-neighbour test. [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] proposes a criterion for eliminating ambiguous matches, as determined by the distance of one descriptor to the Ąrst and second nearest-neighbours in the set of descriptors of the other image. If the ratio of distances to the Ąrst and second nearest neighbours is above a given threshold (typically around 0.8), then the match is deemed too ambiguous and rejected. One drawback of this technique is that the radio threshold hyperparameter needs to be manually adjusted for each type of descriptor. This approach is illustrated in Fig. 2-10a.

Mutual correspondence test. An alternative criterion is to enforce mutual correspondence (or cross correspondence) as described by [START_REF] Schmid | Appariement d'images par invariants locaux de niveaux de gris. Application à l'indexation d'une base d'objets[END_REF]. The approach consists in rejecting those matches where the descriptors are not mutually nearestneighbours when considering the match assignment in both directions. One advantage of this method is that, contrary to the ratio test, it does not require selecting any hyperparameters. This approach is illustrated in Fig. 2-10b. Global geometric constraints. In many cases, we know by prior knowledge that correspondences should respect a particular geometric constraint. For instance, if the imaged scene is planar, then correspondences between two images should be related by a homography. Or if the scene has an arbitrary 3D structure but is static, then the epipolar constraint must be satisĄed. In these cases, the RANSAC algorithm by [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF] can be used to robustly estimate the parameters of these geometric models, while removing the matches that are not in agreement with it, which are typically the incorrect ones. This method has been widely successful and is employed in many algorithms for pose estimation and 3D reconstruction, among others. Several variants and extensions have been proposed [START_REF] Chum | Locally optimized RANSAC[END_REF][START_REF] Chum | Two-view geometry estimation unafected by a dominant plane[END_REF][START_REF] Sattler | Improving RANSACŚs Eiciency with a Spatial Consistency Filter[END_REF][START_REF] Lebeda | Fixing the locally optimized RANSAC[END_REF]. This approach is illustrated in Fig. 2-10c.

Neighbourhood consensus. A drawback of the RANSAC method is that a global geometric constraint should be satisĄed by all matches. While epipolar geometry can be used for static scenes, it is not a correct model for scenes which contain objects moving rigidly (e.g. cars) or non-rigidly (e.g. walking people). A diferent approach, called neighbourhood consensus, is based on establishing semi-local geometric constraints instead of a global geometric constraint. In this approach, the criterion used to Ąlter matches relies on the local supporting evidence from the neighbouring matches, as illustrated in Fig. 2-10d. The criterion used for retaining or rejecting matches can be based on patterns of distances [START_REF] Zhang | A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[END_REF], angles between neighbouring matches [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF], or simply by counting the number of consistent matches in a certain image neighbourhood [Schafalitzky and Zisserman, 2002a;[START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF][START_REF] Sattler | Improving RANSACŚs Eiciency with a Spatial Consistency Filter[END_REF][START_REF] Bian | Grid-based motion statistics for fast, ultra-robust feature correspondence[END_REF]. While simple, these techniques have been remarkably efective in removing incorrect matches and disambiguating local repetitive patterns [START_REF] Sattler | Improving RANSACŚs Eiciency with a Spatial Consistency Filter[END_REF].

Trainable match filtering methods. Recently, trainable approaches have also been proposed for the task of Ąltering local feature correspondences [START_REF] Brachmann | Neural-guided RANSAC: Learning where to sample model hypotheses[END_REF][START_REF] Yi | Learning to Ąnd good correspondences[END_REF][START_REF] Sarlin | Learning feature matching with graph neural networks[END_REF][START_REF] Zhang | Learning two-view correspondences and geometry using order-aware network[END_REF]. [START_REF] Yi | Learning to Ąnd good correspondences[END_REF] propose a neural-network architecture that operates on 4D match coordinates and classiĄes each correspondence as either correct or incorrect. [START_REF] Brachmann | Neural-guided RANSAC: Learning where to sample model hypotheses[END_REF] propose the Neural-guided RANSAC, which extends the previous method to produce weights instead of classiĄcation labels, which are used to guide RANSAC sampling. [START_REF] Zhang | Learning two-view correspondences and geometry using order-aware network[END_REF] also extend the work of Yi et al. in their proposed Order-Aware Networks, which capture the local context by clustering 4D correspondences into a set of ordered clusters, and the global context by processing these clusters with a multi-layer perceptron. Finally, [START_REF] Sarlin | Learning feature matching with graph neural networks[END_REF] propose to use a graph neural network followed by an optimisation procedure to estimate correspondences between two set of local features.

In chapter 5, we propose an end-to-end trainable method for feature extraction, matching and match Ąltering. Our model implements the neighbourhood consensus principle as a 4D convolutional neural network that operates on the 4D space of correspondences and allows learning the geometric patterns of correspondence that allow diferentiating a correct match from an incorrect one. In chapter 6, we revisit this approach and propose improvements to make it more eicient, as well as for obtaining better-localized matches.

Category-level matching

In this section, we present recent work for category-level matching (also called semantic matching). In this scenario, we want to Ąnd correspondences between images showing diferent instances of objects from the same object categories. We begin by reviewing the earliest methods based on hand-crafted descriptors in Sec. 2.2.1. Then, in Sec. 2.2.2 we review more recent methods that employ CNN features, both as stand-alone pretrained features or as part of a trainable pipeline.

Methods based on hand-crafted descriptors

Early methods for category-level matching employed hand-crafted descriptors like SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] or HOG [START_REF] Dalal | Histogram of Oriented Gradients for Human Detection[END_REF] together with optimization approaches for image alignment, based on the minimization of a given energy function. [START_REF] Berg | Shape matching and object recognition using low distortion correspondence[END_REF] match sparse features extracted on edges, and propose an approximate solution to an integer quadratic programming (IQP) problem for Ąnding the match assignments which jointly minimize an appearance and distortion cost. Their algorithm produces a small set of geometrically consistent correspondences, which can later be used to Ąt a thin-plate spline model for obtaining dense correspondences.

For feature description, the authors develop a descriptor based on the Geometric Blur operation by [START_REF] Berg | Geometric blur for template matching[END_REF], previously used for template matching. A qualitative example is presented in Fig. 2-11a. [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF] propose SIFT Flow, which adopts the computational framework of optical Ćow, but employs more general SIFT features instead of RGB values. Contrary to the approach of [START_REF] Berg | Shape matching and object recognition using low distortion correspondence[END_REF] which uses sparse descriptors extracted on edges, the SIFT Flow method uses densely extracted descriptors, computed at each image pixel. This makes match assignment computationally expensive as the search space of possible correspondences is very large. In order to address this issue, [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF] propose a coarse-to-Ąne matching scheme which, Ąrst, computes correspondences between the lowest resolution levels of two image pyramids built from the input images and, then, progressively processes the higher-resolution levels using the previous result as initialization. Speed-ups are obtained by only performing exhaustive matching at the lowest resolution, and searching in a local 11 × 11 window in the higher pyramid levels. Experiments show that this approach does not only improve runtime but also leads to better solutions. A qualitative example is presented in Fig. 2-11b.

The graph matching kernel (GMK) approach of [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF] could be seen as an intermediate approach between the sparse matching method of Berg et al.

[2005] and the dense SIFT Flow method of [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF]. While, similarly to SIFT Flow, the approach of [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF] uses features extracted on a grid, these are not extracted at individual pixel positions but on a coarse grid of resolution 30 × 40. These densely extracted descriptors are then matched by formulating the problem as a graph matching problem and solving the optimization using an extension of the graph cut method of [START_REF] Ishikawa | Exact optimization for Markov random Ąelds with convex priors[END_REF]. Note that while they use a single scale for optimization with a search window of 11 × 11 features, the actual receptive Ąeld of each feature is much larger than in SIFT Flow, which allows the method to still be able to handle large displacements. This work uses the descriptors of [START_REF] Boureau | Learning mid-level features for recognition[END_REF], which are based on the sparse coding of SIFT descriptors. A qualitative example is presented in Fig. 2-11c. [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] propose the Deformable Spatial Pyramid (DSP) method, which uses a similar multi-scale approach to SIFT Flow, but has two main diferences.

First, while the image pyramids used in SIFT Flow are constructed by progressively subsampling the original image, the spatial pyramid in DSP is deĄned in the opposite order. Following the approach initially proposed by [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] for image classiĄcation, [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] use a spatial pyramid which starts from a single cell which spans the whole image, and which is progressively subdivided into four smaller cells at each additional level of the pyramid. A Ąnal level is then added, where each pixel is considered a cell. Then, a graph is constructed where each node corresponds to a cell, and edges connect neighbouring cells of the same level (except in the Ąnal level) as well as between parent and child cells. The second main diference is that while in SIFT Flow the diferent pyramid-levels are processed sequentially, in DSP the matches between the multi-level graphs are optimized jointly. Compared to SIFT Flow, the DSP approach achieves better matching accuracy while being noticeably faster. This work uses SIFT descriptors aggregated at each cell for matching. A qualitative example is presented in Fig. 2-11d.

While the previous methods computed correspondences between features extracted at keypoints or on uniform grids, the Proposal Flow method of [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] performs matching over features computed on category-independent multi-scale region proposals, which had been successfully employed for object detection [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. These proposals can contain full objects or object parts, as well as salient background regions. Contrary to previous approaches which relied on the optimization of an energy function for matching, [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] propose to compute the most probable matches through a bayesian formulation. Their best performing approach, called local offset matching, uses a principle which is close to neighbourhood consensus to model the probabilities of matching regions. Once matches between region proposals are established, a Ćow Ąeld can be computed and used to align the input images.

Proposal Flow uses HOG descriptors [START_REF] Dalal | Histogram of Oriented Gradients for Human Detection[END_REF] extracted on 8 × 8 patches. A qualitative example is presented in Fig. 2-11e.

Methods based on CNNs

Following the success of CNNs for image classiĄcation, a lot of research efort was devoted to gaining a deeper understanding of their inner workings. One of the questions that arose was whether their intermediate representations could be used for estimating correspondences. [START_REF] Long | Do convnets learn correspondence?[END_REF] studied such problem and showed that it was possible to replace the densely extracted SIFT features in the SIFT Flow method by intermediate CNN features obtaining similar results. For this, they used conv4 features from a pretrained AlexNet CNN model, originally used for image classiĄcation [START_REF] Krizhevsky | ImageNet classiĄcation with deep convolutional neural networks[END_REF]. The method we present in Chapter 3 is closely inspired by this approach but uses a diferent operation for fusing both branches of the Siamese network and can handle category-level matching with multiple classes of objects, as well as instance-level matching. Kim et al. [2018b] propose to combine pretrained CNN layers with additional layers In the follow-up work of [START_REF] Novotny | Self-supervised learning of geometrically stable features through probabilistic introspection[END_REF], self-supervision is used to train a

Siamese CNN model for image matching, where supervision is provided in the form of synthetically warped natural images. In addition to the estimated dense feature maps, the model computes a 2D scalar conĄdence map for each image, which estimates the belief that a reliable correspondence can be established using the features at each position, serving a similar purpose as a feature detector. Interestingly, while the model is trained for the matching task only, some channels of the learnt features activate on distinct object parts, showing a duality between obtaining reliable correspondences and learning object keypoints.

While the previous methods focused on learning descriptors for category-level matching [Kim et al., 2018b;[START_REF] Novotny | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF][START_REF] Novotny | Self-supervised learning of geometrically stable features through probabilistic introspection[END_REF] or a similarity metric between them [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], other methods propose to additionally learn to estimate a transformation between two input images. [START_REF] Jeon | Pyramidal aine regression networks for dense semantic correspondence[END_REF] propose the PARN model which uses the spatial pyramid representation from [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], and uses a stack of Siamese CNNs for estimating an aine transformation Ąeld at each cell of the pyramid. While a global aine transformation is estimated for the top cell of the pyramid, residual aine transformations are estimated for all cells on the lower levels. Similarly to the FCSS method [Kim et al., 2018b], supervision is obtained by Ąnding candidate matches and Ąltering them with the mutual correspondence test. A qualitative example of the PARN method is shown in Fig. 2-12e. Kim et al. [2018a] propose the RTN model, which uses a similar Siamese CNN architecture for estimating an aine transformation Ąeld, but proceeds in a multi-scale recurrent approach that resembles that of SIFT Flow. On a Ąrst iteration, features are extracted with a large stride parameter, which results in a high subsampling factor. Then, these features are matched using a correlation operation and fed into a transformation estimation network that regresses a coarse aine Ąeld. In the subsequent iterations, the stride parameter is progressively decreased, and residual and more precisely localized transformations are estimated. Note that contrary to the PARN model which contained a stack of CNNs for processing each cell of the spatial pyramid, a single CNN model is used recurrently in RTN. The network is trained using the weakly-supervised scheme of the FCSS method [Kim et al., 2018b] Chapter 3

CNN architecture for geometric matching

In this chapter, we develop a trainable architecture for estimating correspondences between a pair of images. However, instead of estimating a sparse set of correspondences by matching local image features, as is often done in instance-level matching, we adopt the approach of estimating the parameters of a geometric model such as aine, homography or thin-plate spline. These geometric transformations ofer a strong regularization, which can be helpful for Ąnding correspondences under large appearance changes, such as in the case of category-level matching.

The contributions of this chapter are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer signiĄcantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging PF, TSS and Caltech-101 datasets.

Introduction

Estimating correspondences between images is one of the fundamental problems in computer vision [START_REF] Forsyth | Computer vision: a modern approach[END_REF][START_REF] Hartley | Multiple view geometry in computer vision[END_REF] with applications ranging from large-scale 3D reconstruction [START_REF] Agarwal | Building Rome in a day[END_REF] to image manipulation [START_REF] Hacohen | Non-rigid dense correspondence with applications for image enhancement[END_REF] and semantic segmentation [START_REF] Rubinstein | Unsupervised joint object discovery and segmentation in internet images[END_REF]. Traditionally, correspondences consistent with a geometric model such as epipolar geometry or planar aine transformation, are computed by detecting and matching local features (such as SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] or HOG [START_REF] Dalal | Histogram of Oriented Gradients for Human Detection[END_REF][START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF]), followed by pruning incorrect matches using local geometric constraints [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF][START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF] and robust estimation of a global geometric transformation using algorithms such as RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF] or Hough transform [START_REF] Hough | Method and means for recognizing complex patterns[END_REF][START_REF] Lamdan | Object recognition by aine invariant matching[END_REF][START_REF] Leibe | Robust object detection with interleaved categorization and segmentation[END_REF][START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. This approach works well in many cases but fails in situations that exhibit (i) large changes of depicted appearance due to e.g. intra-class variation [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF], or (ii) large changes of scene layout or non-rigid deformations that require complex geometric models with many parameters which are hard to estimate in a manner robust to outliers.

In this chapter we build on the traditional approach and develop a convolutional neural network (CNN) architecture that mimics the standard matching process. First, we replace the standard local features with powerful trainable convolutional neural network features [START_REF] Krizhevsky | ImageNet classiĄcation with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], which allows us to handle large changes of appearance between the matched images. Second, we develop trainable matching and transformation estimation layers that can cope with noisy and incorrect matches in a robust way, mimicking the good practices in feature matching such as the second nearest-neighbour test [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], neighbourhood consensus [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF][START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF]] and Hough transformlike estimation [START_REF] Hough | Method and means for recognizing complex patterns[END_REF][START_REF] Lamdan | Object recognition by aine invariant matching[END_REF][START_REF] Leibe | Robust object detection with interleaved categorization and segmentation[END_REF][START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF].

The outcome is a convolutional neural network architecture trainable for the end-task of geometric matching, which can handle large appearance changes, and is therefore suitable for both instance-level and category-level matching problems.

The contributions of this chapter are three-fold. First, we propose a convolutional neural network architecture for geometric matching, which mimics the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer signiĄcantly increases generalization capabilities to never seen before images. Finally, we show that the same model can give state-of-the-art results on several challenging datasets for category-level image alignment. Our approach is illustrated in Fig. 3-1.

All training and evaluation code, as well as our trained networks, are available at http://www.di.ens.fr/willow/research/cnngeometric/.

Related work

The classical approach for Ąnding correspondences involves identifying interest points and computing local descriptors around these points [START_REF] Harris | A combined corner and edge detector[END_REF][START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF][START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Mikolajczyk | An aine invariant interest point detector[END_REF][START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Berg | Shape matching and object recognition using low distortion correspondence[END_REF][START_REF] Bay | SURF: Speeded up robust features[END_REF]. While this approach performs relatively well for instance-level matching, the feature detectors and descriptors lack the generalization ability for category-level matching.

Recently, convolutional neural networks have been used to learn powerful feature descriptors which are more robust to appearance changes than the classical descriptors [START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF][START_REF] Simo-Serra | Discriminative learning of deep convolutional feature point descriptors[END_REF][START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF][START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF]Balntas et al., 2016a;[START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF]. However, these works are focused on learning descriptors [START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF][START_REF] Simo-Serra | Discriminative learning of deep convolutional feature point descriptors[END_REF]Balntas et al., 2016a;[START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF], or a similarity measure between descriptors [START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF][START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF][START_REF] Altwaijry | Learning to match aerial images with deep attentive architectures[END_REF], and do not target the problem of Ąnding the transformation relating the two input images. In this chapter, we go a step further from CNN descriptors, and seek to also learn to estimate the geometric transformation.

Related are also network architectures for estimating inter-frame motion in video [START_REF] Weinzaepfel | Large displacement optical Ćow with deep matching[END_REF][START_REF] Fischer | FlowNet: Learning optical Ćow with convolutional networks[END_REF][START_REF] Thewlis | Fully-trainable deep matching[END_REF] or instance-level homography estimation [START_REF] Detone | Deep image homography estimation[END_REF], however their goal is very diferent from ours, targeting high-precision correspondence with very limited appearance variation and background clutter. Closer to us is the network architecture of [START_REF] Kanazawa | Weakly supervised matching for single-view reconstruction[END_REF] which, however, tackles a diferent problem of Ąne-grained category-level matching (diferent species of birds) with limited background clutter and small translations and scale changes, as their objects are largely centered in the image. In addition, their architecture is based on a diferent matching layer, which we show not to perform as well as the matching layer used in our work.

Some works, such as [START_REF] Berg | Shape matching and object recognition using low distortion correspondence[END_REF][START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF][START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF][START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF][START_REF] Long | Do convnets learn correspondence?[END_REF][START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF], have addressed the hard problem of category-level matching, but rely on traditional non-trainable optimization for matching [START_REF] Berg | Shape matching and object recognition using low distortion correspondence[END_REF][START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF][START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF][START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF][START_REF] Long | Do convnets learn correspondence?[END_REF], or guide the matching using object proposals [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF].

On the contrary, our approach is fully trainable in an end-to-end manner and does not require any optimization procedure at evaluation time, or guidance by object proposals.

Others [START_REF] Learned-Miller | Data driven image models through continuous joint alignment[END_REF][START_REF] Shokrollahi Yancheshmeh | Unsupervised visual alignment with similarity graphs[END_REF][START_REF] Zhou | Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF] have addressed the problems of instance and category-level correspondence by performing joint image alignment. However, these methods difer from ours as they:

(i) require class labels; (ii) donŠt use CNN features; (iii) jointly align a large set of images, while we align image pairs; and (iv) donŠt use a trainable CNN architecture for alignment as we do.

Architecture for geometric matching

In this section, we introduce a new convolutional neural network architecture for estimating parameters of a geometric transformation between two input images. The architecture is designed to mimic the classical computer vision pipeline (e.g. [START_REF] Philbin | Object retrieval with large vocabularies and fast spatial matching[END_REF]), while using diferentiable modules so that it is trainable end-to-end for the geometry estimation task. The classical approach consists of the following stages: (i) local descriptors (e.g. SIFT) are extracted from both input images, (ii) the descriptors are matched across images to form a set of tentative correspondences, which are then used to (iii) robustly estimate the parameters of the geometric model using RANSAC or Hough voting.

Our architecture, illustrated in Fig. 3-2, mimics this process by: (i) passing input images and through a Siamese architecture consisting of convolutional layers, In the following, we describe each of the three stages in detail.

Feature extraction CNN
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Feature extraction

The Ąrst stage of the pipeline is feature extraction, for which we use a standard CNN architecture. A CNN without fully connected layers takes an input image and produces a feature map ∈ R ℎ×× , which can be interpreted as a ℎ × dense spatial grid of -dimensional local descriptors. A similar interpretation has been used previously in instance retrieval [START_REF] Azizpour | Factors of transferability for a generic convnet representation[END_REF][START_REF] Babenko | Aggregating local deep features for image retrieval[END_REF][START_REF] Gong | Multi-scale orderless pooling of deep convolutional activation features[END_REF][START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] demonstrating high discriminative power of CNN-based descriptors. Thus, for feature extraction we use the VGG-16

network [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], cropped at the pool4 layer (before the ReLU unit), followed by per-feature L2-normalization. We use a pre-trained model, originally trained on ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] for the task of image classiĄcation.

As shown in Fig. 3-2, the feature extraction network is duplicated and arranged in a

Siamese conĄguration such that the two input images are passed through two identical networks which share parameters.

Matching network

The image features produced by the feature extraction networks should be combined into a single tensor as input to the regressor network to estimate the geometric transformation. We Ąrst describe the classical approach for generating tentative correspondences, and then present our matching layer which mimics this process.

Tentative matches in classical geometry estimation. Classical methods start by computing similarities between all pairs of descriptors across the two images. From this point on, the original descriptors are discarded as all the necessary information for geometry estimation is contained in the pairwise descriptor similarities and their spatial locations. Secondly, the pairs are pruned by either thresholding the similarity values, or, more commonly, by only keeping the matches which involve the nearest (most similar) neighbours. Furthermore, the second nearest-neighbour test [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] prunes the matches further by requiring that the match strength is signiĄcantly stronger than the second best match involving the same descriptor, which is very efective at discarding ambiguous matches.

Matching layer. Our matching layer applies a similar procedure. Analogously to the classical approach, only descriptor similarities and their spatial locations should be considered for geometry estimation, and not the original descriptors themselves.

To achieve this, we propose to use a correlation layer followed by normalization.

Firstly, all pairs of similarities between descriptors are computed in the correlation layer. Secondly, similarity scores are processed and normalized such that ambiguous matches are strongly down-weighted.

In more detail, given L2-normalized dense feature maps , ∈ R ℎ×× , the correlation map ∈ R ℎ××(ℎ×) outputted by the correlation layer contains at each position the scalar product of a pair of individual descriptors f ∈ and f ∈ , as detailed in Eq. (3.1). A diagram of the correlation layer is presented in Fig. 3-3. Note that at a particular position (, ), the correlation map contains the similarities between f at that position and all the features of .

As is done in the classical methods for tentative correspondence estimation, it is important to postprocess the pairwise similarity scores to remove ambiguous matches. To this end, we apply a channel-wise normalization of the correlation map at each spatial location to produce the Ąnal tentative correspondence map . The normalization is performed by ReLU, to zero out negative correlations, followed by L2-normalization, which has two desirable efects. First, let us consider the case when descriptor f correlates well with only a single feature in . In this case, the normalization will amplify the score of the match, akin to the nearest-neighbour matching in classical geometry estimation. Second, in the case of the descriptor f matching multiple features in due to the existence of clutter or repetitive patterns, matching scores will be down-weighted similarly to the second nearest-neighbour test [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. However, note that both the correlation and the normalization operations are diferentiable with respect to the input descriptors, which facilitates backpropagation thus enabling end-to-end learning.

Discussion. The Ąrst step of our matching layer, namely the correlation layer, is somewhat similar to layers used in DeepMatching [START_REF] Weinzaepfel | Large displacement optical Ćow with deep matching[END_REF] and

FlowNet [START_REF] Fischer | FlowNet: Learning optical Ćow with convolutional networks[END_REF]. However, DeepMatching [START_REF] Weinzaepfel | Large displacement optical Ćow with deep matching[END_REF] only uses deep RGB patches and no part of their architecture is trainable. FlowNet [START_REF] Fischer | FlowNet: Learning optical Ćow with convolutional networks[END_REF] uses a spatially constrained correlation layer such that similarities are only computed in a restricted spatial neighbourhood thus limiting the range of geometric transformations that can be captured. This is acceptable for their task of learning to estimate optical Ćow, but is inappropriate for larger transformations that we consider in this chapter. Furthermore, neither of these methods performs score normalization, which we Ąnd to be crucial in dealing with cluttered scenes.

Previous works have used other matching layers to combine descriptors across images, namely simple concatenation of descriptors along the channel dimension [START_REF] Detone | Deep image homography estimation[END_REF] or subtraction [START_REF] Kanazawa | Weakly supervised matching for single-view reconstruction[END_REF]. However, these approaches sufer from two problems. First, as the following layers are typically convolutional, these methods also struggle to handle large transformations as they are unable to detect long-range matches. Second, when concatenating or subtracting descriptors, instead of computing pairwise descriptor similarities as is commonly done in classical geometry estimation and mimicked by the correlation layer, image content information is directly outputted. To further illustrate why this can be problematic, consider two pairs of images that are related with the same geometric transformation Ű the concatenation and subtraction strategies will produce diferent outputs for the two cases, making it hard for the regressor to deduce the geometric transformation. In contrast, the correlation layer output is likely to produce similar correlation maps for the two cases, regardless of the image content, thus simplifying the problem for the regressor. In line with this intuition, in Sec. 3.7.3 we show that the concatenation and subtraction methods indeed have diiculties generalizing beyond the training set, while our correlation layer achieves generalization yielding superior results.
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Figure 3-4: Architecture of the regression network. It is composed of two convolutional layers without padding and stride equal to 1, followed by batch normalization and ReLU, and a Ąnal fully connected layer which regresses to the transformation parameters.

Regression network

The normalized correlation map is passed through a regression network which directly estimates parameters of the geometric transformation relating the two input images. In classical geometry estimation, this step consists of robustly estimating the transformation from the list of tentative correspondences. Local geometric constraints are often used to further prune the list of tentative matches [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF][START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF]] by only retaining matches which are consistent with other matches in their spatial neighbourhood. Final geometry estimation is done by RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF] or Hough voting [START_REF] Hough | Method and means for recognizing complex patterns[END_REF][START_REF] Lamdan | Object recognition by aine invariant matching[END_REF][START_REF] Leibe | Robust object detection with interleaved categorization and segmentation[END_REF][START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF].

We again mimic the classical approach using a neural network, where we stack two blocks of convolutional layers, followed by batch normalization [START_REF] Iofe | Batch Normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] and the ReLU non-linearity, and add a Ąnal fully connected layer which regresses to the parameters of the transformation, as shown in Fig. 34. The intuition behind this architecture is that the estimation is performed in a bottom-up manner somewhat like Hough voting, where early convolutional layers vote for candidate transformations, and these are then processed by the later layers to aggregate the votes. The Ąrst convolutional layers can also enforce local neighbourhood consensus [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF][START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF]] by learning Ąlters which only Ąre if nearby descriptors in image are matched to nearby descriptors in image , and we show qualitative evidence in Sec. 3.7.5 that this indeed does happen.

Discussion. A potential alternative to a convolutional regression network is to use fully connected layers. However, as the input correlation map size is quadratic in the number of image features, such a network would be hard to train due to a large number of parameters that would need to be learned, and it would not be scalable due to occupying too much memory and being too slow to use. It should be noted that even though the layers in our architecture are convolutional, the regressor can learn to estimate large transformations. This is because one spatial location in the correlation map contains similarity scores between the corresponding feature in image and all the features in image (c.f. equation (3.1)), and not just the local neighbourhood as in [START_REF] Fischer | FlowNet: Learning optical Ćow with convolutional networks[END_REF].

Geometric transformations

Three diferent parametric geometric transformations were employed in this chapter:

aine, homography and thin-plate spline. The details of their parametrizations are presented next. As images are warped using the reverse mapping, the transformations map coordinates from the target image to the source image .

Affine transformation

An aine transformation is a 6 degree-of-freedom linear transformation capable of modeling translation, rotation, non-isotropic scaling and shear. It can be parametrized This parametrization can be converted to the 3 × 3 homography matrix [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], which is used to perform the actual transformation:

= ℎ 11 + ℎ 12 + ℎ 13 ℎ 31 + ℎ 32 + ℎ 33 , = ℎ 21 + ℎ 22 + ℎ 23 ℎ 31 + ℎ 32 + ℎ 33 , (3.5)
where, ℎ are elements of the homography matrix .

Thin-plate spline transformation

The thin-plate spline (TPS) transformation [START_REF] Bookstein | Principal warps: Thin-plate splines and the decomposition of deformations[END_REF] 

= + + + ︁ =1 (‖ ⊗ ‖), = + + + ︁ =1 (‖ ⊗ ‖).
(3.7)

Here, () = 2 log 2 and the parameters , , and are computed from TPS by:

[ 1 , . . . , , , , ] = ⊗1 [ A1 , . . . , Ak , 0, 0, 0] [ 1 , . . . , , , , ] = ⊗1 [ A1 , . . . , Ak , 0, 0, 0] , (3.8)
where ⊗1 is a constant matrix which needs to be computed only once, as it depends only on the Ąxed control points . Please refer to [START_REF] Bookstein | Principal warps: Thin-plate splines and the decomposition of deformations[END_REF] for further details.

Hierarchy of transformations

A commonly used approach when estimating image to image transformations is to start by estimating a simple transformation and then progressively increase the model Image is then warped using this transformation to roughly align it with , and passed along with through a second network which estimates a thin-plate spline (TPS) transformation that reĄnes the alignment.

complexity, reĄning the estimates along the way [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Berg | Shape matching and object recognition using low distortion correspondence[END_REF][START_REF] Philbin | Object retrieval with large vocabularies and fast spatial matching[END_REF]. The motivation behind this method is that estimating a very complex transformation could be hard and computationally ineicient in the presence of clutter, so a robust and fast rough estimate of a simpler transformation can be used as a starting point, also regularizing the subsequent estimation of the more complex transformation.

We follow the same good practice and start by estimating an aine transformation (or alternatively a homography) which performs a rough alignment. The estimated aine transformation is then used to align image to image using an image resampling layer [START_REF] Jaderberg | Spatial Transformer Networks[END_REF]. The aligned images are then passed through a second geometry estimation network which estimates the parameters of a thin-plate spline transformation. The Ąnal estimate of the geometric transformation is then obtained by composing the two transformations. The process is illustrated in Fig. 3456, and detailed in Algorithm 2.

Iterative refinement

When input images are related by a large transformation, it is diicult to obtain many good matches, so a single pass through the geometry estimation network might produce a poor alignment. In such cases, performing several iterations of the estimation can be beneĄcial, as illustrated in Fig. 34567, since it allows the number of obtained from the previous iteration ( (0) is initialized to identity). A Ąne alignment, () , between image and the warped image is estimated and chained onto (⊗1) to form the reĄned cumulative transformation estimate () .

matches to progressively grow. This approach has proven to be particularly useful for instance-level alignment, as detailed in section 3.6.4.

Training

In order to train the parameters of our geometric matching CNN, it is necessary to design the appropriate loss function, and to use suitable training data. We address these two important points next, and also provide details about the implementation.

Loss function

We assume a fully supervised setting, where the training data consists of pairs of images and the desired outputs in the form of the parameters of the ground-truth geometric transformation. The loss function ℒ is designed to compare the estimated transformation with the ground-truth transformation and, more importantly, compute the gradient of the loss function with respect to the estimates ℒ . This gradient is then used in a standard manner to learn the network parameters which minimize the loss function by using backpropagation and Stochastic Gradient Descent.

It is desired for the loss to be general and not speciĄc to a particular type of geometric model, so that it can be used for estimating aine, homography, thin-plate spline or any other geometric transformation. Furthermore, the loss should be independent of the parametrization of the transformation and thus should not directly operate on the parameter values themselves. We address all these design constraints by measuring loss on an imaginary grid of points = ¶ ♢ = ¶( , )♢ =1... which is being deformed by the transformation. Namely, we construct a grid of points in image space, transform it using the neural network estimated and ground-truth transformations and GT with parameters and , respectively, and measure the discrepancy between the two transformed grids by summing the squared distances between the corresponding grid points:

ℒ(, ) = 1 ︁ =1 ‖ ′ ⊗ ′′ ‖ 2 (3.9)
where ′ = ( ) and ′′ = GT ( ) are the transformed grid points according to the estimated and ground-truth transformations respectively. The grid points are uniformly distributed in the image using normalized coordinates, i.e. , ∈ [⊗1, 1].

Note that we construct the coordinate system such that the center of the image is at (0, 0) and that the width and height of the image are equal to 2, i.e. the bottom left and top right corners have coordinates (⊗1, ⊗1) and (1, 1), respectively.

The gradient of the loss function with respect to the transformation parameters, needed to perform backpropagation in order to learn network weights, can be computed easily if the location of the transformed grid points ′ = ( ) is diferentiable with respect to . This is commonly the case, for example, when is an aine transformation, ( ) is linear in parameters and therefore the loss can be diferentiated in a straightforward manner. In the case of the aine transformation, we chose a rotation angle ≍ (⊗Þ/12, Þ/12), a shear angle ã ≍ (⊗Þ/6, Þ/6), anisotropic scaling factors Ú 1 , Ú 2 ≍ (0.75, 1.25), and translations , ≍ (⊗0. 25, 0.25). These parameters are deĄned on the SVD decomposition of the aine transformation (see [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] sec.

Training data

2.4.3), and must then be composed to obtain the [ ] matrix described in section 3.4.1:

︀ ︀ ︀ 11 12 21 22 ︀ ⎥ ︀ = ()(⊗ã)diag(Ú 1 , Ú 2 )(ã).
(3.10)

In the case of the homography and thin-plate spline transformations, the target points and are obtained by perturbing the Ąxed and with random translations Ó , Ó ≍ (⊗0.4, 0.4):

= + (Ó , Ó ), = + (Ó , Ó ). (3.11)
In all cases, the uniform distribution was used in order not to impose a strong prior on the transformation parameters. The ranges were chosen to roughly cover the observed transformations in the PF-WILLOW dataset.

Implementation details

We use the PyTorch library [START_REF] Paszke | Automatic diferentiation in PyTorch[END_REF] and train the networks using the Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] optimizer with learning rate 10 ⊗3 , and a batch size of 16.

There At evaluation time, the single-stage models featuring diferent geometric transformations can be used in conjunction as illustrated in Fig. 3456. Trained networks can also be executed iteratively as described in section 3.4.5 and illustrated in Fig. 34567.

The evaluation algorithm is detailed in Algorithm 2.

Experimental results

In this section we compare our method to baselines and the state-of-the-art for both category-level and instance-level alignment problems.

In the case of category-level alignment, both qualitative and quantitative evaluation is performed on three diferent datasets previously used for this task: the PF dataset [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF], the TSS dataset [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] and the Caltech-101 dataset [START_REF] Fei-Fei | One-shot learning of object categories[END_REF]].

In the case of instance-level alignment, qualitative and quantitative evaluation is performed on the Graiti benchmark [START_REF] Mikolajczyk | An aine invariant interest point detector[END_REF] A diferent single-stage model for each of the aine, homography and thin-plate spline transformations was trained independently. Both single-stage (Fig. 3-2) and two-stage (Fig. 3456) alignment strategies were investigated. Furthermore, the iterative reĄnement procedure described in section 3-7 was used for the Graiti benchmark.

PF dataset

This dataset contains image pairs depicting diferent instances of the same classes, such as ducks and cars, but with large intra-class variations, e.g. the cars are often of diferent make, or the ducks can be of diferent subspecies. Furthermore, the images contain signiĄcant background clutter, as can be seen in Fig. 3456789. It contains a total of 2251 image pairs from two subgroups: PF-WILLOW (900 pairs, introduced in [START_REF] Ham | Proposal Flow[END_REF]) and PF-PASCAL (1251 pairs, introduced in [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF]). Images from each pair were manually selected to ensure that objects have similar poses.

Evaluation metric. The quality of the obtained alignment is assessed by exploiting the keypoint annotation provided with the PF dataset. The task is to predict the locations of predeĄned keypoints from image in image . We do so by estimating a geometric transformation that warps image into image , and applying the same transformation to the keypoint locations P = ¶ ♢ =1,..., in , to obtain the estimated keypoint locations ¶ ( )♢ =1,..., in . The alignment quality is then computed using the standard evaluation metric for this benchmark, the average probability of correct keypoint (PCK) [START_REF] Yang | Articulated human detection with Ćexible mixtures of parts[END_REF], being the proportion of keypoints that are correctly matched. A keypoint is considered to be matched correctly if the distance between its predicted location ( ) and its ground-truth position is below a predeĄned threshold . Therefore, the PCK is computed as follows:

PCK = ♣ ¶ ∈ P , ( ( ), ) < ♢♣ , (3.12)
where the distance threshold is = Ð ≤ max(ℎ, ), Ð = 0.1 and (ℎ, ) are the height and width of the object bounding box, respectively.

Results. We compare our method against SIFT Flow [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF], Graphmatching kernels (GMK) [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF], Deformable spatial pyramid matching (DSP) [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], DeepFlow [START_REF] Revaud | DeepMatching: Hierarchical deformable dense matching[END_REF], and all three variants of Proposal Flow (NAM, PHM, LOM) [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF]. As shown in Tab. 3.1, our method outperforms all others and sets the new state-of-the-art on this data. The best competing methods are based on Proposal Flow and make use of object proposals, which enables them to guide the matching towards regions of images that contain objects. Their performance varies signiĄcantly with the choice of the object proposal method, illustrating the importance of this guided matching. On the contrary, our method does not use any guiding, but it still manages to outperform even the best Proposal Flow and object proposal combination.

Furthermore, we also compare against aine transformations estimated with RANSAC using the same descriptors as our method (VGG-16 pool4). The parameters of this baseline have been tuned extensively to obtain the best result by adjusting the thresholds for the second nearest-neighbour test and by pruning proposal transformations which are outside of the range of likely transformations. Our aine estimator outperforms the RANSAC baseline on this task by a 2% margin. where challenging pairs of images from the Proposal Flow dataset [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF],

Methods PF-PASCAL PF-WILLOW DeepFlow [START_REF] Revaud | DeepMatching: Hierarchical deformable dense matching[END_REF] 0.21 0.20 GMK [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF] 0.27 0.27 SIFT Flow [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF] 0.33 0.38 DSP [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] 0.30 0.37 Proposal Flow (SS+NAM) [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] 0.36 0.52 Proposal Flow (SS+PHM) [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] 0.42 0.55 Proposal Flow (SS+LOM) [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] 0 Table 3.1: Results on the PF dataset. We report the matching accuracy in terms of the PCK (Ð = 0.1), for both PF-PASCAL and PF-WILLOW. All the numbers apart from ours and RANSAC are taken from [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF].

containing large intra-class variations, are aligned correctly. The method is able to robustly, in the presence of clutter, estimate large translations, rotations, scale changes, as well as non-rigid transformations and some perspective changes.

TSS dataset

The TSS dataset introduced in [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] this allows for the alignment to be densely evaluated over the object of interest, in contrast to the PCK computation for the PF dataset, where the alignment is only evaluated in a handful of manually annotated keypoints.

Regarding the distance threshold = Ð ≤ max(ℎ, ) used for the PCK computation, the criterion used in [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF][START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF]] is adopted, where the reported values are computed with Ð = 0.05 and with (ℎ, ) being the dimensions of the target image.

Results. The quantitative results for the TSS dataset are presented in Tab. 3.2, in terms of the mean PCK over the set of image pairs. For each of the 400 pairs, both Methods FG3DCar JODS PASCAL All DSP [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] 0.49 0.47 0.38 0.45 SIFT Flow [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF] 0.63 0.51 0.36 0.52 Taniai et al. [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] 0.83 0.60 0.48 0.67 Proposal Flow (SS+LOM) [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] 0 the forward (from to ) and backward (from to ) alignments are computed and evaluated, resulting in a total of 800 evaluation pairs.

The middle columns of Tab. 3.2 present the mean PCK over the three subsets of the TSS dataset: FG3DCar, JODS and PASCAL; and the right-most column presents the mean PCK over the whole TSS dataset. It can be observed that our single-stage models improve the overall average score by up to 3%, while the two-stage models achieve the best results on all the diferent subsets, and improve by up to 7% over the previously published results.

In Fig. 3-10 we present qualitative results on the TSS dataset. In order to assess the visual quality of the obtained results, we also present the ground-truth aligned and segmented images provided with the dataset in the right-most column.

As it can be observed, the proposed method can produce good alignments results, which are close to the ground-truth alignment.

Caltech-101 dataset

Following the same procedure as in [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF][START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF], the alignment quality is also evaluated on the Caltech-101 dataset [START_REF] Fei-Fei | One-shot learning of object categories[END_REF]. For each of Image Image Aligned (af.+TPS) Ground-truth the 101 categories, 15 image pairs were chosen randomly, resulting in 1515 evaluation pairs. These pairs are the same as in [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF].

Evaluation metrics. As no keypoint annotations are provided for the Caltech-101 dataset, PCK cannot be used to assess the matching accuracy. Since segmentations masks are provided, we follow [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF][START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] and evaluate the quality of segmentation mask alignment using the following metrics: label transfer accuracy (LT-ACC), intersection-over-union (IoU), and localization error (LOC-ERR).

Let ( , ) be a pair of images with ground-truth segmentation masks (M , M ), and be the estimated transformation from to . Then, the transferred annotated mask from the source image, M ′ = (M ), is compared with the ground-truth mask in the target image M to assess the alignment quality.

The label transfer accuracy metric (LT-ACC), measures the number of correctly transferred foreground and background pixels in the following way:

LT-ACC = ♣ ¶ ∈ , M ′ ( ) = M ( )♢♣ ♣ ∈ ♣ (3.13)
Therefore, the numerator of the LT-ACC adds up the number of background pixels which are correctly mapped to background and the foreground pixels which are correctly mapped to foreground.

The intersection-over-union (IoU), or Jaccard index, as the LT-ACC also compares the mask alignment quality. However, contrary to LT-ACC, it only considers the correctly aligned foreground pixels, ignoring the background. It is computed in the following way: Then LOC-ERR metric measures the disagreement between the coordinates of the original point = ( , ) relative to , and its transformed coordinates

IoU = ♣M ′ ∩ M ♣ ♣M ′ ∪ M ♣ . ( 3 
′ = ( ) = ( ′ , ′
) relative to , in the following way:

LOC-ERR = 1 ♣ ♣ ︁ ( A , ′ A )∈ ♣ ⊗ ′ ♣ + ♣ ⊗ ′ ♣, (3.15)
where ( , ) and ( ′ , ′ ) are the normalized coordinates of and ′ = ( ):

Methods LT-ACC IoU LOC-ERR DeepFlow [START_REF] Revaud | DeepMatching: Hierarchical deformable dense matching[END_REF] 0.74 0.40 0.34 GMK [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF] 0.77 0.42 0.34 SIFT Flow [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF] 0.75 0.48 0.32 DSP [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] 0.77 0.47 0.35 Proposal Flow (RP, LOM) [START_REF] Ham | Proposal Flow[END_REF] 0.78 0.50 0.26 Proposal Flow (SS, LOM) [START_REF] Ham | Proposal Flow[END_REF] 0 [START_REF] Ham | Proposal Flow[END_REF].

( , ) = ︂ ⊗ A , ⊗ A ℎ ︂ ( ′ , ′ ) = ⎠ ′ ⊗ B , ′ ⊗ B ℎ ⎜ (3.16)
and is the set of all pairs of points ( , ′ ) in which the transformed points ′ = ( ) fall inside the bounds of image .

Results. The quantitative results on the Caltech-101 dataset are presented in Tab.

3.3. As it can be observed, our approach outperforms the state-of-the-art by a signiĄcant margin, obtaining, for example, an IoU of 0.55 compared to the previous best result of 0.50.

In addition, it can be observed that the LOC-ERR metric values do not follow the trend of the other two metrics. This is because the LOC-ERR metric makes the invalid assumption that the images are related with a translation and anisotropic scaling transformation.

The beneĄt of the two-stage approaches is clear from the more realistic IoU metric, where adding a second stage achieves an IoU of 0.55 compared to 0.53 of the single-stage In Fig. 3-11, we present a qualitative comparison of the results obtained by our method and other previous methods on images from this dataset. For each example, the second row presents the transferred segmentation mask (M ) of overlaid with , for each of the methods. As it can be visually assessed, the proposed approach achieves a superior alignment than most of the previous methods.

Graffiti benchmark

This section presents the results of the proposed method on the challenging Graiti instance-level matching benchmark [START_REF] Mikolajczyk | An aine invariant interest point detector[END_REF]. This benchmark contains 6 images of the same planar scene with increasingly varying viewpoint, with up to 70 ◇ azimuthal rotation from the reference image. Ground-truth homography transformations from the reference image 1 to images 2-6 are available with the dataset. We employed the same homography estimation CNN used for the categorylevel alignment datasets, trained from synthetic StreetView image pairs. To overcome the large viewpoint variation in this dataset, we perform iterative reĄnement, as described in section 3.4.5, with a total of 5 iterations. The same CNN model is used for all iterations.

Evaluation metric. In order to measure the quality of the estimated homography transformation, the average endpoint error is used:

AEE(, ) = 1 ︁ =1 ‖ ′ ⊗ ′′ ‖ (3.17)
where ′ = ( ) and ′′ = GT ( ) are the transformed sampling points = [1, 2, . . . , ℎ]×[1, 2, . . . , ] when applying the estimated and ground-truth homographies, respectively. Note that this is similar to the proposed loss (5.11), but without squaring the distances.

Results.

Quantitative results are presented on Tab. 3.4. The proposed method is compared against state-of-the-art methods for this dataset, such as SIFT features (DoG+SIFT) [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], SIFT features with aine-covariant detectors (DoG-aine+SIFT) [START_REF] Mikolajczyk | An aine invariant interest point detector[END_REF] and ASIFT [START_REF] Yu | An Algorithm for Fully Aine Invariant Comparison[END_REF].

Features are matched and Ąltered using the second nearest-neighbour test [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] and the homography transformation is estimated with the locally optimized RANSAC algorithm [START_REF] Lebeda | Fixing the locally optimized RANSAC[END_REF] with the following parameter settings: distance threshold = 6px, estimation conĄdence Ö 0 = 0.999, and the Ąnal reĄnement step using all inliers. The rest of the parameters are set to their default values. The RANSAC algorithm is executed 5 times and the mean error values are reported. In all cases, the standard deviations were below 0.3 pixels.

As it can be observed from Tab. 3.4, although our method does not produce the best results, it still achieves reasonable alignments for pairs (1, 2) up to (1, 5), and

Methods

Image pair

(1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
DoG+SIFT [START_REF] Mikolajczyk | An aine invariant interest point detector[END_REF] 0.63 1.61 2.89 fail fail DoG-aine+SIFT [START_REF] Mikolajczyk | An aine invariant interest point detector[END_REF] However, it is interesting to point out that while DoG-SIFT fails for pair (1, 5), our method does not. This conĄrms the intuition that CNN feature descriptors have some degree of aine invariance, achieved due to multiple pooling operations. The invariance enables multiple good initial matches to be established, producing a good initial transformation estimate, which is then progressively reĄned using the iterative procedure.

Qualitative results for the pair (1, 5) of the Graiti benchmark are shown in Fig. 3-12. The Ągure also shows the progression of the alignment as more reĄnement iterations are performed. As it can be observed, the obtained alignment is qualitatively good.

Tokyo Time Machine dataset

Qualitative results for the Tokyo Time Machine dataset [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] are shown in Fig. 3-13. The images have been captured at diferent points in time which are months or years apart. Note that, by automatically highlighting the diferences (in the feature space) between the aligned images, it is possible to detect changes in the scene, such as occlusions, changes in vegetation, or structural diferences e.g. new buildings being built.

Discussions and ablation studies

In this section we examine the importance of various components of our architecture, and discuss the impact of the training set, the learned Ąlters and the limitations of the method.

Methods PCK

Subtraction [START_REF] Kanazawa | Weakly supervised matching for single-view reconstruction[END_REF] 

Correlation versus concatenation and subtraction

Replacing our correlation-based matching layer with feature concatenation or subtraction, as proposed in [START_REF] Detone | Deep image homography estimation[END_REF] and [START_REF] Kanazawa | Weakly supervised matching for single-view reconstruction[END_REF], respectively, incurs a large performance drop, as shown in Tab. 3.5. The behavior is expected as we designed the matching layer to only keep information on pairwise descriptor similarities rather than the descriptors themselves, as is good practice in classical geometry estimation methods, while concatenation and subtraction do not follow this principle.

Normalization

Table 3.5 also shows the importance of the correlation map normalization step, where the normalization improves results from 41% to 48%. The step mimics the second nearest-neighbour test used in classical feature matching [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], as discussed in Sec. 3.3.2. Note that [START_REF] Fischer | FlowNet: Learning optical Ćow with convolutional networks[END_REF]] also uses a correlation layer, but they do not normalize the map in any way, which is clearly suboptimal.

Generalization

In order to assess the inĆuence on the performance of the trained method with respect to the training dataset used, we train a second model using PASCAL VOC 2011 [START_REF] Everingham | The PASCAL Visual Object Classes Challenge[END_REF] images, instead of StreetView images. As seen in Tab. 3.5, our method is relatively unafected by the choice of training data as its performance is similar regardless whether it was trained with StreetView or PASCAL images. We also attribute this to the design choice of operating on pairwise descriptor similarities rather than the raw descriptors.

Geometric models

Diferent conĄgurations of the proposed method have been analyzed, varying the geometric models and using both single-stage (as in Fig. 3-2) and two-stage approaches (as in Fig. 3456).

Results from Tables 3.1, 3.2, and 3.3 show that the two-stage homography+TPS is the best performing approach, being slightly superior to aine+TPS. On the other hand, TPS alone is the best single-stage approach, but interestingly, two-iteration TPS performs worse than both aine+TPS and homography+TPS. This conĄrms the intuition discussed in section 3.4.4, where using a simpler geometric model to perform the rough alignment is expected to be more robust than using a more complex one.

What is being learned?

We 

Limitations

Next, we analyze limitations of the proposed method and discuss possible ways of alleviating them.

Robustness to occlusion.

The robustness of the proposed method to occlusion was assessed by computing the PCK on the PF-WILLOW dataset when substituting a rectangular portion of each image in the dataset with a crop from a diferent unrelated image. Both positions and aspect ratios of these rectangles were independently and randomly sampled for each image. The results are shown in Tab. 3.6. It can be observed that all methods, including Proposal Flow [START_REF] Ham | Proposal Flow[END_REF], degrade signiĄcantly when occluding 10% or 20% of the area of the images. Although retraining the proposed method replicating the occlusion procedure helps to improve the performance on the occluded data, it also degrades the performance on the unoccluded case. Therefore, alignment with signiĄcant occlusion still presents a challenge for the current methods, including ours. Multiple objects. Currently, the proposed method can only produce a global alignment of the image pair, and handling multiple objects is still a challenge. This is in line with current datasets on category-level image alignment which contain a single foreground object, and with all competing methods which also make this assumption.

Methods

This limitation could be addressed by incorporating an attention mechanism.

Learning better features.

Although the proposed architecture is fully diferentiable, which makes it end-to-end trainable for the task of semantic alignment, we have observed that Ąnetuning the feature extraction CNN does not improve alignment performance. This is because our synthetic dataset used for training does not contain rich appearance variations present in the real category-level alignment datasets used for evaluation. While supervision from synthetic data comes with no cost and is useful to train the regression CNN, it is not suited for learning better image features for alignment. As a solution to this problem, we have developed a combined approach using synthetic data for training the regression CNN and real data for Ąnetuning the feature extraction CNN [Rocco et al., 2018a].

Confidence in the estimated transformation. The proposed method does not currently produce a measure of the conĄdence in the estimated transformation. However, the soft-inlier count presented in [Rocco et al., 2018a] could be employed for this purpose.

Asymmetry in the method. Given an pair of images and , the method is trained to produce the alignment in one direction only. In order to make the method more symmetric, the alignments in both directions could be estimated simultaneously and a cycle consistency loss [Zhou et al., 2016b;[START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networkss[END_REF]] could be incorporated.

Computational cost

The presented method currently takes about 1.6s per 240 × 240px image pair, which is 1.5× faster than SIFT Flow and 6× faster than Proposal Flow, when run on a modern CPU. Furthermore, the presented method can also be run on the GPU, which allows to obtain an additional 40× speedup.

Conclusions

In this chapter we have described a network architecture for geometric matching trainable from synthetic imagery without the need for manual annotations. The architecture is modular and Ćexible, and can be applied iteratively, in order to estimate large transformations, or in a cascade, enabling estimation of complex transformations.

Thanks to our matching layer, the network generalizes well to never seen before imagery, reaching state-of-the-art results on several challenging datasets for categorylevel matching. The method has also proven useful for instance-level alignment, obtaining reasonable alignment for the challenging Graiti benchmark. This opens-up the possibility of applying our architecture to other diicult correspondence problems such as matching across large changes in illumination (day/night) [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] or depiction style [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF]. 

Introduction

Finding correspondence is one of the fundamental problems in computer vision. Initial work has focused on Ąnding correspondence between images depicting the same object or scene with applications in image stitching [START_REF] Szeliski | Image alignment and stitching: A tutorial[END_REF], multi-view 3D

reconstruction [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], motion estimation [START_REF] Weinzaepfel | Large displacement optical Ćow with deep matching[END_REF][START_REF] Fischer | FlowNet: Learning optical Ćow with convolutional networks[END_REF] or tracking [START_REF] Newcombe | Dense tracking and mapping in real-time[END_REF][START_REF] Engel | LSD-SLAM: Large-scale direct monocular SLAM[END_REF].

In this chapter we study the problem of Ąnding category-level correspondence, or semantic alignment [START_REF] Berg | Shape matching and object recognition using low distortion correspondence[END_REF][START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF], where the goal is to establish dense correspondence between diferent objects belonging to the same category, such as the two diferent motorcycles illustrated in Fig. 4-1. This is an important problem with applications in object recognition [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF], image editing [START_REF] Dale | Image restoration using online photo collections[END_REF], or robotics [START_REF] Nikandrova | Category-based task speciĄc grasping[END_REF]. This is also an extremely challenging task because of the large intra-class variation, changes in viewpoint and presence of background clutter.

The current best semantic alignment methods [START_REF] Kim | DCTM: Discrete-continuous transformation matching for semantic Ćow[END_REF][START_REF] Han | SCNet: Learning semantic correspondence[END_REF][START_REF] Novotny | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF] employ powerful image representations based on convolutional neural networks coupled with a geometric deformation model. However, these methods sufer from one of the following two major limitations. First, the image representation and the geometric alignment model are not trained together in an end-to-end manner.

Typically, the image representation is trained on some auxiliary task such as image classiĄcation and then employed in an often ad-hoc geometric alignment model. Second, while trainable geometric alignment models exist [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF][START_REF] Brachmann | DSAC -Diferentiable RANSAC for camera localization[END_REF], they require strong supervision in the form of ground truth correspondences, which is hard to obtain for a diverse set of real images on a large scale.

In this chapter, we address both these limitations and develop a semantic alignment model that is trainable end-to-end from weakly supervised data in the form of matching image pairs without the need for ground truth correspondences. To achieve that we design a novel convolutional neural network architecture for semantic alignment with a diferentiable soft inlier scoring module inspired by the RANSAC inlier scoring procedure. The resulting architecture is end-to-end trainable with only image-level supervision. The outcome is that the image representation can be trained from rich appearance variations present in diferent but semantically related image pairs, rather than synthetically deformed imagery [START_REF] Kanazawa | Weakly supervised matching for single-view reconstruction[END_REF][START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF]. We show that our approach signiĄcantly improves the performance of the baseline deep CNN alignment model, achieving state-of-the-art performance on multiple standard benchmarks for semantic alignment. Our code and trained models are available at http://www.di.ens.fr/willow/research/weakalign/.

Related work

The problem of semantic alignment has received signiĄcant attention in the last few years with progress in both (i) image descriptors and (ii) geometric models. The key innovation has been making the two components trainable from data. We summarize the recent progress in Table 4.1 where we indicate for each method whether the descriptor (D) or the alignment model (A) are trainable, whether the entire architecture is trainable end-to-end (E-E), and whether the required supervision is strong (s) or weak (w).

Early methods, such as [START_REF] Berg | Shape matching and object recognition using low distortion correspondence[END_REF][START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF][START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF],

employed hand-engineered descriptors like SIFT or HOG together with hand-engineered alignment models based on minimizing a given matching energy. This approach has been quite successful [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF][START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF][START_REF] Yang | Object-aware dense semantic correspondence[END_REF][START_REF] Ufer | Deep semantic feature matching[END_REF] using in some cases [START_REF] Ufer | Deep semantic feature matching[END_REF] pre-trained (but Ąxed) convolutional neural network (CNN) descriptors. However, none of these methods train the image descriptor or the geometric model directly for semantic alignment.

Others [START_REF] Novotny | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF]Kim et al., 2018b[START_REF] Kim | DCTM: Discrete-continuous transformation matching for semantic Ćow[END_REF] have investigated trainable image descriptors for semantic matching but have combined them with hand-engineered alignment models still rendering the alignment pipeline not trainable end-to-end.

Finally, recent work [START_REF] Han | SCNet: Learning semantic correspondence[END_REF][START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] has employed trainable CNN descriptors together with trainable geometric alignment methods. However, in [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] the matching is learned at the object-proposal level and a nontrainable fusion step is necessary to output the Ąnal alignment making the method non end-to-end trainable. On the contrary, [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] estimate a parametric geometric model, which can be converted into dense pixel correspondences in a diferentiable way, making the method end-to-end trainable. However, the method is trained with strong supervision in the form of ground truth correspondences obtained from synthetically warped images, which signiĄcantly limits the appearance variation in the training data.

Contributions. We develop a network architecture where both the descriptor and the alignment model are trainable in an end-to-end manner from weakly supervised data. This enables training from real images with rich appearance variation and without the need for manual ground-truth correspondence. We demonstrate that the proposed approach signiĄcantly improves alignment results achieving state-of-the-art performance on several datasets for semantic alignment.

Weakly-supervised semantic alignment

This section presents a method for training a semantic alignment model in an end-toend fashion using only weak supervision Ű the information that two images should match Ű but without access to the underlying geometric transformation at training time. The approach is outlined in Fig. 4-2. Namely, given a pair of images, an alignment network estimates the geometric transformation that aligns them. The Then, the soft-inlier count is computed (in green) by Ąrst Ąnding the inlier region in agreement with , and then adding up the pairwise matching scores inside this area. The soft-inlier count is diferentiable, which allows the whole model to be trained using back-propagation. Functions are represented in blue and tensors in pink.

quality of the estimated transformation is assessed using the proposed soft-inlier count which aggregates the observed evidence in the form of feature matches. The training objective then is to maximize the alignment quality for pairs of images which should match.

The key idea is that, instead of requiring strongly supervised training data in the form of known pairwise alignments and training the alignment network with these, the network is ŞforcedŤ into learning to estimate good alignments in order to achieve high alignment scores (soft-inlier counts) for matching image pairs. The details of the alignment network and the soft-inlier count are presented next.

Semantic alignment network

In order to make use of the error signal coming from the soft-inlier count, our framework requires an alignment network which is trainable end-to-end. We build on the Siamese CNN architecture described in Chapter 3, illustrated in the left section of Fig. 4-2.

The architecture is composed of three main stages Ű feature extraction, followed by feature matching and geometric transformation estimation Ű which we review below. Pairwise feature matching. This stage computes all pairwise similarities, or match scores, between local features in the two images. This is done with the normalized correlation function : R ℎ×× × R ℎ×× ⊃ R ℎ××ℎ× , deĄned as:

= ( , ) = ⟨ : , : ⟩ ︁ ︀ , ⟨ : , : ⟩ 2 , (4.1)
where the numerator in (4.1) computes the raw pairwise match scores by computing the dot product between features pairs. The denominator performs a normalization operation with the efect of down-weighing ambiguous matches, by penalizing features from one image which have multiple highly-rated matches in the other image. This is in line with the classical second nearest-neighbour test of Lowe [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. The resulting tensor contains all normalized match scores between the source and target features.

Geometric transformation estimation.

The Ąnal stage of the alignment network consists of estimating the parameters of a geometric transformation given the match scores . This is done by a transformation regression CNN, represented by the function

: : R ℎ××ℎ× ⊃ R , = () (4.2)
where is the number of degrees of freedom, or parameters, of the geometric model; Note that all parts of the geometric alignment network are diferentiable and therefore amenable to end-to-end training, including the feature extractor which can learn better features for the task of semantic alignment.

Soft-inlier count

We propose the soft-inlier count used to automatically evaluate the estimated geometric transformation . Making an efort to maximize this count provides the weak-supervisory signal required to train the alignment network, avoiding the need for expensive manual annotations for . The soft-inlier count is inspired by the inlier count used in the robust RANSAC method [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF], which is reviewed Ąrst.

RANSAC inlier count.

For simplicity, let us consider the problem of Ątting a line to a set of observed points , with = 1, . . . , as illustrated in Fig. 4-3a. RANSAC proceeds by sampling random pairs of points used to propose line hypotheses, each of which is then scored using the inlier count, and the highest scoring line is chosen;

here we only focus on the inlier count aspect of RANSAC used to score a hypothesis.

Given a hypothesized line ℓ, the RANSAC inlier scoring function counts the number of observed points which are in agreement with this hypothesis, called the inliers. A point is typically deemed to be an inlier if its distance to the line is smaller than a chosen distance threshold , i.e. d(, ℓ) < .

The RANSAC inlier count, , can be formulated by means of an auxiliary indicator function illustrated in Fig. 4-3b, which we call the inlier mask function :

= ︁ ( ), where () = ︁ ︁ ︁ ︁ ︁ ︁ ︁ 1, if d(, ℓ) < 0, otherwise.
(4.4)

Soft-inlier count. The RANSAC inlier count cannot be used directly in a neural network as it is not diferentiable. Furthermore, in our setting there is no sparse set of matching points, but rather a match score for every match in a discretized match space. Therefore, we propose a direct extension, the soft-inlier count, which, instead of counting over a sparse set of matches, sums the match scores over all possible matches.

The running line-Ątting example can now be revisited under the discrete-space conditions, as illustrated in Figure 4-3c. The proposed soft-inlier count for this case is:

= ︁ , , (4.5) 
where is the match score at each grid point (i,j), and is the discretized inlier mask:

= ︁ ︁ ︁ ︁ ︁ ︁ ︁ 1 if d ⎞ (, ), ℓ ︁ < 0 otherwise (4.6)
Translating the discrete-space line-Ątting example to our semantic alignment problem, is a 4-D tensor containing scores for all pairwise feature matches between the two images (Section 4.3.1), and matches are deemed to be inliers if they Ąt the estimated geometric transformation . More formally, the inlier mask is now also a 4-D tensor, constructed by thresholding the transfer error: Differentiability. The proposed soft-inlier count is diferentiable with respect to the transformation parameters as long as the geometric transformation is diferentiable [START_REF] Jaderberg | Spatial Transformer Networks[END_REF], which is the case for a range of standard geometric transformations such as 2D aine, homography or thin-plate spline transformations.

= ︁ ︁ ︁ ︁ ︁ ︁ ︁ 1 if d ⎞ ( 
Furthermore, it is also diferentiable w.r.t. the match scores, which facilitates training of the feature extractor.

Implementation as a CNN layer. The inlier mask can be computed by warping an identity mask Id with the estimated transformation , where Id is constructed by thresholding the transfer error of the identity transformation:

Id = ︁ ︁ ︁ ︁ ︁ ︁ ︁ 1 d ⎞ (, ), (, ) ︁ < 0 otherwise. (4.9)
The warping is implemented using a spatial transformer layer [START_REF] Jaderberg | Spatial Transformer Networks[END_REF], which consists of a grid generation layer and a bilinear sampling layer. Both of these functions are readily available in most deep learning frameworks.

Optimization objective. Given a training pair of images that should match, the goal is to maximize the soft-inlier count , or, equivalently, to minimize ℒ = ⊗.

Analogy to RANSAC. Please also note that our method is similar in spirit to RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF], where (i) transformations are proposed (by random sampling) and then (ii) scored by their support (number of inliers). In our case, during training (i) the transformations are proposed (estimated) by the regressor network and (ii) scored using the proposed soft-inlier score. The gradient of this score is used to improve both the regressor and feature extractor (see Fig. 4-2).

In turn, the regressor produces better transformations and the feature extractor better feature matches that maximize the soft-inlier score on training images.

Evaluation and results

In this section we provide implementation details, benchmarks used to evaluate our approach, and quantitative and qualitative results.

Implementation details

Semantic alignment network. For the underlying semantic alignment network, we use the best-performing architecture from the code release of [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] which employs a ResNet-101 model [START_REF] He | Deep residual learning for image recognition[END_REF], cropped after conv4-23, as the feature extraction CNN . Note that this is a better performing model than the one described in the original paper [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], mainly due to use of ResNet versus VGG-16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. Given an image pair, the model produces a thin-plate spline geometric transformation which aligns the two images; has 18 degrees of freedom. The network is initialized with the pre-trained weights from the code release of [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], and we Ąnetune it with our weakly supervised method. Note that the initial model has been trained in a self-supervised way from synthetic data, not requiring human supervision [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], therefore not 

Evaluation benchmarks

Evaluation is performed on three standard image alignment benchmarks: PF-PASCAL, Caltech-101 and TSS.

PF-PASCAL [Ham et al., 2017]. This dataset contains 1351 semantically related

image pairs from 20 object categories, which present challenging appearance diferences and background clutter. We use the split proposed in [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], which divides the dataset into roughly 700 pairs for training, 300 pairs for validation, and 300 pairs for testing. Keypoint annotations are provided for each image pair, which are used only for evaluation purposes. Alignment quality is evaluated in terms of the percentage of correct keypoints (PCK) metric [START_REF] Yang | Articulated human detection with Ćexible mixtures of parts[END_REF], which counts the number of keypoints which have a transfer error below a given threshold. We follow the procedure employed in [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], where keypoint (, ) coordinates are normalized in the [0, 1] range by dividing with the image width and height respectively, and the value Ð = 0.1 is employed as the distance threshold.

Caltech-101 [Fei-Fei et al., 2006].

Although originally introduced for the image classiĄcation task, the dataset was adopted in [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] for assessing semantic alignment, and has been then extensively used for this purpose [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF]Kim et al., 2018b;[START_REF] Han | SCNet: Learning semantic correspondence[END_REF][START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF]. The evaluation is performed on 1515 semantically related image pairs, 15 pairs for each of the 101 object categories of the dataset. The semantic alignment is evaluated using three diferent metrics:

(i) the label transfer accuracy (LT-ACC); (ii) the intersection-over-union (IoU), and;

(iii) the object localization error (LOC-ERR). The label transfer accuracy and the intersection-over-union both measure the overlap between the annotated foreground object segmentation masks, with the former putting more emphasis on the background class and the latter on the foreground object. The localization error computes a dense displacement error. However, given the lack of dense displacement annotations, the metric computes the ground-truth transformation from the source and target bounding boxes, thus assuming that the transformation is a simple translation with axis-aligned anisotropic scaling. This assumption is unrealistic as, amongst others, it does not cover rotations, aine or deformable transformations. Therefore, we believe that LOC-ERR should not be reported any more, but report it here for completeness and in order to adhere to the currently adopted evaluation protocol. 

TSS

Results

In the following, our alignment network trained with weak supervision is compared to the state-of-the-art alignment methods, many of which require manual annotations or strong supervision (cf. Table 4.1).

PF-PASCAL.

From Table 4.2 it is clear that our method sets the new state-of-theart, achieving an overall PCK of 75.8%, which is a 3.6% improvement over the best competitor [START_REF] Han | SCNet: Learning semantic correspondence[END_REF]. This result is impressive as the two methods are trained on the same image pairs, with ours being weakly supervised while [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] make use of bounding box annotations.

The beneĄts of weakly supervised training can be seen by comparing our method with the ResNet-101+CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] approach presented in chapter 3.

The two use the same base alignment network (cf. Section 4.4.1), but ResNet-101+CNNGeo was trained only on synthetically deformed image pairs, while ours employs the proposed weakly supervised Ąne-tuning. The 3.9% boost clearly demonstrates the advantage obtained by training on real image pairs and thus encountering rich appearance variations, as opposed to using synthetically transformed pairs in ResNet-101+CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF].

Caltech-101. Method LT-ACC IoU LOC-ERR HOG+PF-LOM [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] 0.78 0.50 0.26 FCSS+SIFT Flow [Kim et al., 2018b] 0.80 0.50 0.21 FCSS+PF-LOM [Kim et al., 2018b] 0.83 0.52 0.22 VGG-16+SCNet-A [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] 0.78 0.50 0.28 VGG-16+SCNet-AG [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] 0.78 0.50 0.27 VGG-16+SCNet-AG+ [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] 0.79 0.51 0.25 HOG+OADSC [START_REF] Yang | Object-aware dense semantic correspondence[END_REF] 0.81 0.55 0.19 VGG-16+CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] 0.80 0.55 0.26 ResNet-101+CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] 0 HOG+PF-LOM [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] 0.786 0.653 0.531 0.657 HOG+TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] 0.830 0.595 0.483 0.636 FCSS+SIFT Flow [Kim et al., 2018b] 0.830 0.656 0.494 0.660 FCSS+PF-LOM [Kim et al., 2018b] 0.839 0.635 0.582 0.685 HOG+OADSC [START_REF] Yang | Object-aware dense semantic correspondence[END_REF] 0.875 0.708 0.729 0.771 FCSS+DCTM [START_REF] Kim | DCTM: Discrete-continuous transformation matching for semantic Ćow[END_REF] 0.891 0.721 0.610 0.740 VGG-16+CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] 0.839 0.658 0.528 0.675 ResNet-101+CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] 

Conclusions

In this chapter we have presented a network architecture and training procedure for semantic image alignment inspired by the robust inlier scoring used in the widely successful RANSAC Ątting algorithm [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF] 

Introduction

Finding visual correspondences is one of the fundamental image understanding problems with applications in 3D reconstruction [START_REF] Agarwal | Building Rome in a day[END_REF], visual localization [START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF][START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF] or object recognition [START_REF] Liu | SIFT Flow: Dense correspondence across scenes and its applications[END_REF]. In recent years, signiĄcant efort has gone into developing trainable image representations for Ąnding correspondences between images under strong appearance changes caused by viewpoint or illumination variations [START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF][START_REF] Fischer | Descriptor matching with convolutional neural networks: a comparison to SIFT[END_REF][START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF][START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF]Balntas et al., 2016a;[START_REF] Simonyan | Learning local feature descriptors using convex optimisation[END_REF][START_REF] Simo-Serra | Discriminative learning of deep convolutional feature point descriptors[END_REF]Balntas et al., 2016b;[START_REF] Yi | LIFT: Learned invariant feature transform[END_REF]. However, unlike in other visual recognition tasks, such as image classiĄcation or object detection, where trainable image representations have become the de facto standard, the performance gains obtained by trainable features over the classic hand-crafted ones have been only modest at best [START_REF] Schonberger | Comparative evaluation of hand-crafted and learned local features[END_REF].

One of the reasons for this plateauing performance could be the currently dominant approach for Ąnding image correspondence based on matching individual image features.

While we have now better local patch descriptors, the matching is still performed by variants of the nearest neighbour assignment in a feature space followed by separate disambiguation stages based on geometric constraints. This approach has, however, fundamental limitations. Imagine a scene with textureless regions or repetitive patterns, such as a corridor with almost textureless walls and only few distinguishing features.

A small patch of an image, depicting a repetitive pattern or a textureless area, is indistinguishable from other portions of the image depicting the same repetitive or textureless pattern. Such matches will be either discarded [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] or incorrect.

As a result, matching individual patch descriptors will often fail in such challenging situations.

In this chapter, we take a diferent direction and develop a trainable neural network architecture that disambiguates such challenging situations by analyzing local neighbourhood patterns in a full set of dense correspondences. The intuition is the following: in order to disambiguate a match on a repetitive pattern, it is necessary to analyze a larger context of the scene that contains a unique non-repetitive feature.

The information from this unique match can then be propagated to the neighbouring uncertain matches. In other words, the certain unique matches will support the close-by uncertain ambiguous matches in the image.

This powerful idea goes back to at least 1990s [START_REF] Zhang | A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[END_REF][START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF]Schafalitzky and Zisserman, 2002a;[START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF][START_REF] Bian | Grid-based motion statistics for fast, ultra-robust feature correspondence[END_REF], and is typically known as neighbourhood consensus or more broadly as semi-local constraints. The neighbourhood consensus has been typically carried out on sparsely detected local invariant features as a Ąltering step performed after a hard assignment of features by nearest neighbour matching using the Euclidean distance in the feature space. Furthermore, the neighbourhood consensus has been evaluated by manually engineered criteria, such as a certain number of locally consistent matches [Schafalitzky and Zisserman, 2002a;[START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF][START_REF] Bian | Grid-based motion statistics for fast, ultra-robust feature correspondence[END_REF], or consistency in geometric parameters including distances and angles between matches [START_REF] Zhang | A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[END_REF][START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF].

In this chapter, we go one step further and propose a way of learning neighbourhood consensus constraints directly from training data. Moreover, we perform neighbourhood consensus before hard assignment of feature correspondence; that is, on the complete set of dense pair-wise matches. In this way, the decision on matching assignment is done only after taking into account the spatial consensus constraints, hence avoiding errors due to early matching decisions on ambiguous, repetitive or textureless matches.

Contributions. The contributions of this chapter are threefold: First, we develop a neighbourhood consensus network Ű a convolutional neural network architecture for dense matching that learns local geometric constraints between neighbouring correspondences without the need for a global geometric model. Second, we show that parameters of this network can be trained from scratch using a weakly supervised loss-function that requires supervision at the level of image pairs without the need for manually annotating individual correspondences. Third, we show that the proposed model is applicable to a range of matching tasks producing highquality dense correspondences, achieving state-of-the-art results on both category-and instance-level matching benchmarks. Code, training data and models are available at http://www.di.ens.fr/willow/research/ncnet/.

Related work

The method we present in this chapter relates to several lines of research, which we review below.

Matching with hand-crafted image descriptors. Traditionally, correspondences between images have been obtained by hand crafted local invariant feature detectors and descriptors [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Mikolajczyk | An aine invariant interest point detector[END_REF][START_REF] Tuytelaars | Local invariant feature detectors: A survey[END_REF] that were extracted from the image with a controlled degree of invariance to local geometric and photometric transformations. Candidate (tentative) correspondences were then obtained by variants of nearest neighbour matching.

Strategies for removing ambiguous and non-distinctive matches include the widely used second nearest neighbour ratio test [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], or enforcing matches to be mutual nearest neighbours. Both approaches work well for many applications, but have the disadvantage of discarding many correct matches, which can be problematic for challenging scenes, such as indoor spaces considered in this chapter that include repetitive and textureless areas. While successful, handcrafted descriptors have only limited tolerance to large appearance changes beyond the built-in invariance.

Matching with trainable descriptors. The majority of trainable image descriptors are based on convolutional neural networks (CNNs) and typically operate on patches extracted using a feature detector such as DoG [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], yielding a sparse set of descriptors [START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF][START_REF] Fischer | Descriptor matching with convolutional neural networks: a comparison to SIFT[END_REF]Balntas et al., 2016a;[START_REF] Simonyan | Learning local feature descriptors using convex optimisation[END_REF][START_REF] Simo-Serra | Discriminative learning of deep convolutional feature point descriptors[END_REF]Balntas et al., 2016b] or use a pre-trained image-level CNN feature extractor [START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF][START_REF] Savinov | Matching neural paths: Transfer from recognition to correspondence search[END_REF]. Others have recently developed trainable methods that comprise both feature detection and description [START_REF] Yi | LIFT: Learned invariant feature transform[END_REF][START_REF] Choy | Universal correspondence network[END_REF][START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF]. The extracted descriptors are typically compared using the Euclidean distance, but an appropriate similarity score can be also learnt in a discriminative manner [START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF][START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF], where a trainable model is used to both extract descriptors and produce a similarity score. Finding matches consistent with a geometric model is typically performed in a separate post-processing stage [START_REF] Long | Do convnets learn correspondence?[END_REF][START_REF] Jahrer | Learned local descriptors for recognition and matching[END_REF][START_REF] Fischer | Descriptor matching with convolutional neural networks: a comparison to SIFT[END_REF]Balntas et al., 2016a;[START_REF] Simonyan | Learning local feature descriptors using convex optimisation[END_REF][START_REF] Simo-Serra | Discriminative learning of deep convolutional feature point descriptors[END_REF]Balntas et al., 2016b;[START_REF] Yi | LIFT: Learned invariant feature transform[END_REF][START_REF] Choy | Universal correspondence network[END_REF][START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF].

Trainable image alignment. Recently, end-to-end trainable methods have been developed to produce correspondences between images according to a parametric geometric model, such as an aine, perspective or thin-plate spline transformation [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF][Rocco et al., , 2018a]]. In addition, Recurrent Transformer Nets (RTN) [Kim et al., 2018a] employ locally-varying aine deformation Ąelds. In these works, all pairwise feature matches are computed and used to estimate the geometric transformation parameters using a CNN. Unlike previous methods that capture only a sparse set of correspondences, this geometric estimation CNN captures interactions between a full set of dense correspondences. However, these methods currently only estimate a low complexity parametric transformation, and therefore their application is limited to only coarse image alignment tasks. In contrast, we target a more general problem of identifying reliable correspondences between images of a general 3D scene. Our approach is not limited to a low dimensional parametric model, but outputs a generic set of locally consistent image correspondences, applicable to a wide range of computer vision problems ranging from category-level image alignment to camera pose estimation. The proposed method builds on the classical ideas of neighbourhood consensus, which we review next.

Match filtering by neighbourhood consensus. Several strategies have been introduced to decide whether a match is correct or not, given the supporting evidence from the neighbouring matches. The early examples analyzed the patterns of distances [START_REF] Zhang | A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[END_REF] or angles [START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF]] between neighbouring matches. Later work simply counts the number of consistent matches in a certain image neighbourhood [Schafalitzky and Zisserman, 2002a;[START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF],

which can be built in a scale invariant manner [START_REF] Sattler | Improving RANSACŚs Eiciency with a Spatial Consistency Filter[END_REF], using a regular image grid [START_REF] Bian | Grid-based motion statistics for fast, ultra-robust feature correspondence[END_REF], or an adaptive neighbourhood size by considering a certain number of nearby matches [START_REF] Ma | Locality preserving matching[END_REF]. While simple, these techniques have been remarkably efective in removing random incorrect matches and disambiguating local repetitive patterns [START_REF] Sattler | Improving RANSACŚs Eiciency with a Spatial Consistency Filter[END_REF]. Inspired by this simple yet powerful idea we develop a neighbourhood consensus network Ű a convolutional neural architecture that (i) analyzes the full set of dense matches between a pair of images and (ii) learns patterns of locally consistent correspondences directly from data.

Other modern match filtering methods. While the idea of using neighbourhood consensus to remove outlier matches dates back to the 1990s [START_REF] Zhang | A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[END_REF][START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF], it is still an actively researched topic. Recently, Bian et al. [START_REF] Bian | Grid-based motion statistics for fast, ultra-robust feature correspondence[END_REF] proposed the Grid-based Motion Statistics (GMS) approach,

where the images to be matched are partitioned into a set of cells and the number of matches between each cell are used to distinguish inliers from outliers. Also, Ma et al. [START_REF] Ma | Locality preserving matching[END_REF] propose the Locality Preserving Matching (LPM) approach, where the sizes of the neighbourhoods are not explicitly deĄned, but rather inferred by nearest-neighbour search, and which proposes an optimization scheme to determine inliers by minimizing a global cost function. While these methods build on the idea of neighbourhood consensus, they are manually engineered and have no trainable parameters. Our proposed neighbourhood consensus network seeks to combine the power of the neighbourhood consensus approach with that of trainable convolutional neural networks. Other recent trainable methods for match Ąltering have also been proposed [START_REF] Yi | Learning to Ąnd good correspondences[END_REF][START_REF] Zhang | Learning two-view correspondences and geometry using order-aware network[END_REF][START_REF] Brachmann | Neural-guided RANSAC: Learning where to sample model hypotheses[END_REF], although they are particularly focused on robust estimation of the essential and fundamental matrices of two-view geometry. In particular, the Context Normalization Network (CNe) of [START_REF] Yi | Learning to Ąnd good correspondences[END_REF] combines a deep fully connected network (MLP) that operates on the level of individual 4D match coordinates with a Context Normalization (CN) Layer which acts at a global, image level. We compare our proposed method with GMS [START_REF] Bian | Grid-based motion statistics for fast, ultra-robust feature correspondence[END_REF], LPM [START_REF] Ma | Locality preserving matching[END_REF] and CNe [START_REF] Yi | Learning to Ąnd good correspondences[END_REF].

Flow and disparity estimation. Related are also methods that estimate optical Ćow or stereo disparity such as [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF][START_REF] Horn | Determining optical Ćow[END_REF][START_REF] Hirschmüller | Stereo processing by semiglobal matching and mutual information[END_REF][START_REF] Sun | Secrets of optical Ćow estimation and their principles[END_REF][START_REF] Brox | Large displacement optical Ćow: Descriptor matching in variational motion estimation[END_REF], or their trainable counterparts [START_REF] Dosovitskiy | FlowNet: Learning optical Ćow with convolutional networks[END_REF][START_REF] Sun | PWC-Net: CNNs for optical Ćow using pyramid, warping, and cost volume[END_REF][START_REF] Kendall | End-to-end learning of geometry and context for deep stereo regression[END_REF]. These works also aim at establishing reliable point to point correspondences between images.

However, we address a more general matching problem where images can have large viewpoint changes (indoor localization) or major changes in appearance (category-level matching). This is diferent from optical Ćow where image pairs are usually consecutive video frames with small viewpoint or appearance changes, and stereo where matching is often reduced to a local search around epipolar lines. The optical Ćow and stereo problems are well addressed by specialized methods that explicitly exploit the problem constraints (such as epipolar line constraint, small motion, smoothness, etc.).

Proposed approach

In this chapter, we combine the robustness of neighbourhood consensus Ąltering with the power of trainable neural architectures. We design a model which learns to discriminate a reliable match by recognizing patterns of supporting matches in its neighbourhood. Furthermore, we do this in a fully diferentiable way, such that this trainable matching module can be directly combined with strong CNN image descriptors. The resulting pipeline can then be trained in an end-to-end manner for the task of feature matching. An overview of our proposed approach is presented in weakly supervised training loss. These components are described next.

Dense feature extraction and matching

In order to produce an end-to-end trainable model, we follow the common practice of using a deep convolutional neural network (CNN) as a dense feature extractor.

Then, given an image , this feature extractor will produce a dense set of descriptors, ¶ ♢ ∈ R , with indices = 1, . . . , ℎ and = 1, . . . , , and (ℎ, ) denoting the number of features along image height and width (i.e. the spatial resolution of the features), and the dimensionality of the features.

While classic hand-crafted neighbourhood consensus approaches are applied after a hard assignment of matches is done, this is not well suited for developing a matching method that is diferentiable and amenable for end-to-end training. The reason is that the step of selecting a particular match is not diferentiable with respect to the set of all the possible features. In addition, in case of repetitive features, assigning the match to the Ąrst nearest neighbour might result in an incorrect match, in which case the hard assignment would lose valuable information about the subsequent closest neighbours.

Therefore, in order to have an approach that is amenable to end-to-end training, all pairwise feature matches need to be computed and stored. For this we use an approach similar to the one presented in Chapter 3. Given two sets of dense feature descriptors = ¶ ♢ and = ¶ ♢ corresponding to the images to be matched, the exhaustive pairwise cosine similarities between them are computed and stored in a 4-D tensor ∈ R ℎ××ℎ× referred to as correlation map, where:

= ⟨ , ⟩ ‖ ‖ 2 ‖ ‖ 2 .
(5.1)

Note that, by construction, elements of in the vicinity of index correspond to matches between features that are in the local neighbourhoods and of descriptors in image and in image , respectively, as illustrated in Fig. 5-1; this structure of the 4-D correlation map tensor will be exploited in the next section.

Neighbourhood consensus network

The correlation map contains the scores of all pairwise matches. In order to further process and Ąlter the matches, we propose to use 4-D convolutional neural network (CNN) for the neighbourhood consensus task (denoted by (≤)), which is illustrated in Fig. 5-1.

Determining the correct matches from the correlation map is, a priori, a signiĄcant challenge. Note that the number of correct matches are of order of ℎ, while the size of the correlation map is of the order of (ℎ) 2 . This means that the great majority of the information in the correlation map corresponds to matching noise due to incorrectly matched features. However, supported by the idea of neighbourhood consensus presented in Sec. 4.1, we can expect correct matches to have a coherent set of supporting matches surrounding them in the 4-D space. These geometric patterns are equivariant with translations in the input images; that is, if the images are translated, the matching pattern is also translated in the 4-D space by an equal amount. This property motivates the use of 4-D convolutions for processing the correlation map as the same operations should be performed regardless of the location in the 4-D space. This is analogous to the motivation for using 2-D convolutions to process individual images Ű it makes sense to use convolutions, instead of for example a fully connected layer, in order to proĄt from weight sharing and keep the number of trainable parameters low. Furthermore, it facilitates sample-eicient training as a single training example provides many error signals to the convolutional weights, since the same weights are applied at all positions of the correlation map. Finally, by processing matches with a 4D convolutional network we establish a strong locality prior on the relationships between the matches. That is, by design, the network will determine the quality of a match by examining only the information in a local 2D neighbourhood in each of the two images.

The proposed neighbourhood consensus network has several convolutional layers, as illustrated in Fig. 5-1, each followed by ReLU non-linearities. The convolutional Ąlters of the Ąrst layer of the proposed CNN span a local 4-D region of the matches space, which corresponds to the Cartesian product of local neighbourhoods and in each image, respectively. Therefore, each 4-D Ąlter of the Ąrst layer can process and detect patterns in all pairwise matches of these two neighbourhoods. This Ąrst layer has 1 Ąlters that can specialize in learning diferent local geometric deformations, producing 1 output channels, that correspond to the agreement with these local deformations at each 4-D point of the correlation tensor. These output channels are further processed by subsequent 4-D convolutional layers. The aim is that these layers capture more complex patterns by combining the outputs from the previous layer, analogously to what has been observed for 2-D CNNs [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF].

Finally, the neighbourhood consensus CNN produces a single channel output, which has the same dimensions as the 4D input matches.

To make the method invariant to the particular order of the input images, that is, that it will produce the same matches regardless of whether an image pair is input to the net as ( , ) or ( , ), we deĄne the following symmetric version of the network by applying it twice in the following way:

() = () + ⎞ ( T ) ︁ T , (5.2)
where is the correlation map deĄned in (5.1) and by T we mean swapping the pairs of dimensions corresponding to the Ąrst and second images:

⎞ T ︁ = .
This Ąnal output constitutes the filtered matches using the neighbourhood consensus network,

where matches with inconsistent local patterns are downweighted or removed. Further

Ąltering can be done by means of a global Ąltering strategy, as presented next.

Soft mutual nearest neighbour filtering

Although the proposed neighbourhood consensus network can suppress and amplify matches based on the supporting evidence in their neighbourhoods Ű that is, at a semi-local level Ű it cannot enforce global constraints on matches, such as being a reciprocal match, where matched features are required to be mutual nearest neighbours:

( , ) mutual N.N. ⇐⇒ ︁ ︁ ︁ ︁ ︁ ︁ ︁ (, ) = argmin ‖ ⊗ ‖ (, ) = argmin ‖ ⊗ ‖.
(5.3)

Filtering the matches by imposing the hard mutual nearest neighbour condition expressed by (5.3) would eliminate the great majority of candidate matches, which makes it unsuitable for usage in an end-to-end trainable approach, as this hard decision is non-diferentiable.

We therefore propose a softer version of the mutual nearest neighbour Ąltering ( (≤)), both in the sense of softer decision and better differentiability properties, that can be applied on dense 4-D match scores:

′ = (), where ′ = , ( 5.4) 
and and are the ratios of the score of the particular match with the best scores along each pair of dimensions corresponding to images and respectively: = max , and = max .

(5.5)

This soft mutual nearest neighbour Ąltering operates as a gating mechanism on the input, downweighting the scores of matches that are not mutual nearest neighbours.

Note that the proposed formulation is indeed a softer version of the mutual nearest neighbours criterion as ′ equals the matching score if ( , ) are mutual nearest neighbours, and is decreased to a value in [0, ) otherwise. On the contrary, the ŞhardŤ mutual nearest neighbour matching would assign ′ = 0 in the latter case.

While this Ąltering step has no trainable parameters, it can be inserted in the CNN pipeline at both training and evaluation stages, and it will help to enforce the global reciprocity constraint on matches. In the proposed approach, the soft mutual nearest neighbour Ąltering is used to Ąlter both the correlation map, as well as the output of the neighbourhood consensus CNN, as illustrated in Fig. 5-1.

Lightweight model

Given the correlation tensor , and the previously deĄned symmetric neighbourhoodconsensus network () and soft mutual nearest neighbour Ąltering ( ) operations, the full proposed method can be expressed as:

NCNet() = ( ◇ ◇ )().
(5.6) However, due to memory requirements, one might prefer to use lighter-weight neighbourhood consensus network instead of its symmetric version :

L-NCNet() = ( ◇ ◇ )(), (5.7) 
Due to the lower memory requirements, L-NCNet is useful for running the network on higher resolution images. Note that switching from NCNet to the lightweight L-NCNet simply results in neglecting the second term of (5.2) and can be done without retraining.

Extracting correspondences from the correlation map

Suppose that we want to match two images and , whose raw correlation map is .

Then, the output of our model ′ = NCNet() is a 4-D filtered correlation map, which contains (Ąltered) scores for all pairwise matches. However, for various applications, such as image warping, geometric transformation estimation, pose estimation, visualization, etc, it is desirable to obtain a set of point-to-point image correspondences between the two images. To achieve this, a hard assignment can be performed in either of two possible directions, from features in image to features in image , or vice versa.

For this purpose, two scores are deĄned from the correlation map, by performing soft-max in the dimensions corresponding to images and :

= exp( ′ ) ︀ exp( ′ ) and = exp( ′ ) ︀ exp( ′ )
.

(5.8)

Note that the scores are: (i) positive, (ii) normalized using the soft-max function, which makes ︀ = 1. Hence we can interpret them as discrete conditional probability distributions of , being a match, given the position (, ) of the match in or (, ) in . If we denote (, , , ) the discrete random variables indicating the position of a match (a priori unknown), and (, , , ) the particular position of a match, then:

P ( = , = ♣ = , = ) =
, and

P ( = , = ♣ = , = ) = .
(5.9)

Then, the hard-assignment in one direction can be done by just taking the most likely match (the mode of the distribution) as follows: matches with score if:

(, ) = argmax

P ( = , = ♣ = , = ) = argmax , with := .
(5.10)

Figure 5-2: Extracting correspondences from the correlation map. We illustrate the process of extracting correspondences in both directions, ⊃ and ⊃ .

The matches of over are obtained analogously. This process is illustrated in Fig. 5-2.

This probabilistic intuition allows us to model the match uncertainty using a probability distribution and will be also useful to motivate the loss used for weaklysupervised training, which will be described next.

Weakly-supervised training

In this section we deĄne the loss function used to train our network. One option is to use a strongly-supervised loss, but this requires dense annotations consisting of all pairs of corresponding points for each training image pair. Obtaining such exhaustive ground-truth is complicated Ű dense manual annotation is impractical, while sparse annotation followed by an automatic densiĄcation technique typically results in imprecise and erroneous training data. Another alternative is to resort to synthetic imagery which would provide point correspondences by construction, but this has the downside of making it harder to generalize to larger appearance variations encountered in real image pairs we wish to handle. Therefore, it is desirable to be able to train directly from pairs of real images, requiring as little annotation as possible.

For this we propose to use a training loss that only requires a weak-level of supervision consisting of annotation on the level of image pairs. These training pairs ( , ) can be of two types, positive pairs, labelled with = +1, or negative pairs, Figure 5-3: Illustration of the proposed weakly-supervised loss. For positive pairs, the distribution of match scores is forced towards a Kronecker delta distribution, while for negative pairs it is forced towards a uniform distribution. labelled with = ⊗1. Then, the following loss function is proposed:

ℒ( , ) = ⊗ ⎞ + ︁ ,
(5.11)

where and are the mean matching scores over all hard assigned matches as per (5.10) of a given image pair ( , ) in both matching directions.

Note that the minimization of this loss maximizes the scores of positive and minimizes the scores of negative image pairs, respectively. As explained in 5.3.5, the hard-assigned matches correspond to the modes of the distributions of (5.9). Therefore, maximizing the score forces the distribution towards a Kronecker delta distribution, having the desirable efect of producing well-identiĄed matches in positive image pairs. Similarly, minimizing the score forces the distribution towards the uniform one, weakening the matches in the negative image pairs. Note that while the only scores that directly contribute to the loss are the ones coming from hard-assigned matches, all matching scores afect the loss because of the normalization in (5.8). Therefore, all matching scores will be updated at each training step. An illustration of the proposed weakly-supervised loss is presented in Fig. 5-3.

Feature relocalization

The localization precision of the extracted features depends on the spatial resolution ℎ × of the dense feature map . For some tasks, such as pose estimation, precisely localized features are needed. However, in some cases, given hardware constraints, one cannot increase the spatial resolution ℎ × to obtain the required precision, as increasing ℎ and by a factor of two results in a sixteen-fold increase in the memory consumption and computation time of the whole NCNet model. Therefore, we devise a method to increase the localization precision, with a less severe impact on the memory consumption and computation time.

In this approach, the correlation map from (5.1) is computed with higher resolution features 2ℎ × 2 leading to a 2ℎ × 2 × 2ℎ × 2 correlation map. This correlation map is then downsampled to resolution ℎ × × ℎ × before further processing by the neighbourhood consensus network. Note that by doing this the memory requirements of the correlation tensor are still increased by a factor of 16, but the memory requirements of the 4D convolutional network are kept constant. The downsampling is performed by a 4-D max-pooling operation, with the kernel of size 2:

′ = max ∈[2,2+1],∈[2,2+1],∈[2,2+1],∈[2,2+1]
.

(5.12)

The downsampled correlation map ′ is then processed and used to compute the Ąnal matches, which are localized with a precision given by the downsampled resolution ℎ × . However, one can re-localize these features, and reduce the localization error, by simply using the positions of the features that yielded the locally maximal correlation value in the 4-D max-pooling operation given by (5.12). In other words, for a match ( , ), the Ąnal re-localized feature positions ( ′ , ′ ) and ( ′ , ′ ) are computed by:

′ , ′ , ′ , ′ = argmax ∈[2,2+1],∈[2,2+1],∈[2,2+1],∈[2,2+1]
.

(5.13) Note that a similar approach was used in [START_REF] Badrinarayanan | A deep convolutional encoder-decoder architecture for image segmentation[END_REF] for upsampling feature maps for the task of semantic segmentation, and in [START_REF] Widya | Structure from motion using dense cnn features with keypoint relocalization[END_REF] for feature localization.

Experimental results

The proposed approach was evaluated on both category and instance-level matching problems. The same approach is used to obtain reliable matches for both types of matching problems, which are then used to solve the diferent task proposed by each particular benchmark.

Category-level matching

The proposed method was evaluated on the task of category-level matching, where, given two images containing diferent instances from the same category (e.g. two diferent cat images) the goal is to match or align the similar semantic parts. Three diferent standard benchmarks were used and evaluated using their respective metrics.

These benchmarks will be presented next.

Proposal Flow. The Proposal Flow benchmark was used for evaluating the task of semantic keypoint transfer, where given annotated keypoints in the source image the task is to determine their positions in the target image. Both PF-Pascal and PF-Willow variants of the PF dataset [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] were used, which respectively contain 1251 and 900 semantically related image pairs annotated with sparse keypoints.

The performance is measured using the percentage of correct keypoints (PCK), that is, the number of correctly matched annotated keypoints within a tolerance threshold of the ground-truth position. In both cases, the evaluation protocol of [START_REF] Han | SCNet: Learning semantic correspondence[END_REF]Rocco et al., 2018a] is followed, where the PCK is computed using normalized keypoint coordinates (, ) = (/, /ℎ) with (ℎ, ) being the image resolution and the normalized distance threshold = Ð. Note that [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF][START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] used slightly diferent deĄnitions of PCK, so in order to make a fair comparison, for these methods we report the results from [START_REF] Han | SCNet: Learning semantic correspondence[END_REF]Kim et al., 2018a] which re-evaluated them using the presented evaluation procedure.

Caltech-101. The Caltech-101 [START_REF] Fei-Fei | One-shot learning of object categories[END_REF] dataset was used for evaluating the task of label transfer, which consists of transferring the semantic segmentation labels of the source image onto the target image. The same evaluation data and procedure as in Chapter 3 and [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] was used, which includes 1515 evaluation pairs. The alignment accuracy is quantitatively measured using the label transfer accuracy (LT-ACC), which measures the alignment correctness of both foreground and background labels; and the Jaccard similarity coeicient (IoU), which only measures the alignment correctness of the foreground object. The previously employed localization error metric (LOC-ERR) is not considered here as it was shown to be unrepresentative of the alignment quality. For the mathematical deĄnitions of these metrics, please refer to Chapter 3. For qualitative evaluation, the output aligned images are presented, which provides better qualitative assessment of the alignment than visualizing the transferred segmentation masks.

TSS. Finally, we report results on the TSS dataset [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] HOG+PF-LOM [START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF] 62.5 56.8 0.50 0.78 0.786 0.653 0.531 0.657 SCNet-AG+ [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] 72.2 70.4 0.51 0.79 0.776 0.608 0.474 0.619 CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] 71.9 81.1 0.61 0.83 0.901 0.764 0.563 0.743 WeakAlign [Rocco et al., 2018a] 75.8 84.3 0.63 0.85 0.903 0.764 0.565 0.744 RTN [Kim et al., 2018a] 75.9 71.9 0.64 0.87 0.901 0.782 0.633 0.772 NCNet ( = 100, FR) 78.9 84.3 0.62 0.85 0.945 0.814 0.571 0.777

Table 5.1: Results for semantic matching on different datasets. We evaluate on the tasks of keypoint transfer (PF-Pascal/Willow), label transfer (Caltech) and dense alignment (TSS).

Results. Quantitative results are presented in Table 5. 

Instance-level matching

Next we show that our method is also suitable for instance level matching and evaluate it on two diferent benchmarks, (i) HPatches [START_REF] Balntas | HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors[END_REF], consisting mostly of pictures of outdoor planar scenes, paintings or printed photographs and, (ii)

InLoc [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF], consisting in indoor images taken at diferent times. While in both benchmarks the image pairs contain strong variations of illumination conditions and viewpoint, the InLoc dataset is particularly challenging as indoor spaces are often self-similar and contain large textureless areas. Furthermore, while the HPatches dataset allows for a direct evaluation of the matching accuracy, the InLoc dataset evaluates the matching task as a module in an indoor visual localization pipeline, where the goal is to estimate an accurate 6DoF camera pose of a query photograph given a large-scale 3D model of a building.

HPatches. We employ the HPatches benchmark [START_REF] Balntas | HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors[END_REF] to directly evaluate the matching accuracy in the instance-level matching case. The dataset contains 116 sequences, each belonging to a diferent planar scene and each containing 6 images which are used to form 5 image pairs. These sequences are divided into the illumination (57 sequences) and viewpoint (59 sequences) subsets, which only contain changes along these factors of variation. The dataset provides a ground-truth homography transformation for each image pair, which is used to assess the accuracy of the extracted matches. Two diferent measures are used. The Ąrst one is the mean matching accuracy (MMA), following the standard evaluation protocol for this dataset [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF], inspired by [Mikolajczyk and Schmid, 2005]:

MMA ⎞ ¶( , )♢ =1 ; ︁ = ︀ =1 ✶ >0 ⎞ ⊗ ‖ ( ; ) ⊗ ‖ 2 ︁ , (5.14) 
where ¶( , )♢ =1 is the set of matches between points and in images and respectively, (≤, ) is the transformation with the ground-truth homography , ✶ >0 is the indicator function for positive numbers and is the distance threshold parameter. Similarly to PCK, MMA measures the proportion of matches that are correct up to a certain tolerance threshold , but contrary to PCK, is deĄned as an absolute number of pixels in the original image resolution. The MMA directly evaluates the matching accuracy. The second evaluation metric assesses whether the matches can be used to accurately estimate the homography transformation between each image pair. For this, the obtained matches are used to estimate the homography matrix by running a modern RANSAC variant [START_REF] Chum | Locally optimized RANSAC[END_REF][START_REF] Chum | Two-view geometry estimation unafected by a dominant plane[END_REF]. The average transfer error (TE) of the estimated homography with respect to the ground-truth homography is computed as:

TE ⎞ ; ︁ = ︀ A ∈Ω ‖ ( ; ) ⊗ ( ; )‖ 2 ♣Ω ♣ , (5.15)
where Ω is the set of all pixels coordinates over image , ♣Ω ♣ the number of pixels of image , (≤, ) is the transformation with the ground-truth homography and (≤, ) is the transformation with the estimated homography . We use the transfer error to evaluate the quality of as it represents a meaningful geometric distance which is measured in pixels and is invariant to the homography parametrization, which is not the case if the error is computed directly on the homography matrix entries.

InLoc. We use the InLoc dataset [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF], which consists of 10K database images (perspective cutouts) extracted from 227 RGBD panoramas, and an additional set of 356 query images captured with a smart-phone camera at a diferent time (several months later) from the database images. Here, the goal is to estimate an accurate 6DoF camera pose of a query photograph within a large-scale 3D model of a building. We follow the same evaluation protocol as in [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF] and report the percentage of correctly localized queries at a given camera position error threshold.

Training. As both the HPatches and the InLoc were designed for evaluation and do not provide a training set, we collected an Indoor Venues Dataset (IVD) [Rocco et al., 2018c], consisting of user-uploaded photos, captured at public places such as (a) Variants of the proposed method. We present results when matching using diferent feature map sizes ( is the size of the feature map along the longest edge), using both NCNet and the lighter version L-NCNet with or without the feature relocalization operation (FR).

Hes. det. + rSIFT [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF] (2.9)

HAN + HN++ [START_REF] Mishkin | Repeatability Is Not Enough: Learning Discriminative Aine Regions via Discriminability[END_REF][START_REF] Mishchuk | Working hard to know your neighborŠs margins: Local descriptor learning loss[END_REF] (2.0) DELF [START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF] (1.9)

SuperPoint [START_REF] Detone | SuperPoint: Self-Supervised Interest Point Detection and Description[END_REF] (0.9) D2-Net (trained) [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] (2.5)

GMS [START_REF] Bian | Grid-based motion statistics for fast, ultra-robust feature correspondence[END_REF] (1.5)

CNe [START_REF] Yi | Learning to Ąnd good correspondences[END_REF] (0.5)

LPM [START_REF] Ma | Locality preserving matching[END_REF] In Fig. 5-6b, the best performing variant of NCNet is compared against other state-of-the-art methods on the HPatches benchmark. Our method obtains the best results for viewpoint changes for the larger thresholds. For smaller thresholds, our method sufers from a localization precision that is limited by the resolution of the features used for matching. This is a common issue for all methods that rely on CNN descriptors, contrary to handcrafted descriptors that can be run on much higher resolutions. Note that, while some methods present better accuracy at small threshold values in the viewpoint subset, they tend to perform worse than our method in the illumination subset. Overall, our method obtains the best results for threshold values above 5px.

Next, we evaluate the quality of the homographies estimated with RANSAC using the transfer error (5.15) on the HPatches dataset. An image pair is counted as correctly aligned if the transfer error for that pair is smaller than a 5px threshold. In Tab. 5.2

we present the number of pairs that each method is able to correctly align, from both the illumination and viewpoint subsets, and overall. For the correctly aligned pairs, we also show the average number of inliers, and the efective transfer error for these pairs. NCNet can align more pairs overall than any other method, while obtaining the smallest average transfer error overall. For evaluation on the InLoc benchmark, we plug-in our trainable neighbourhood consensus network (NCNet) as a correspondence module into the InLoc indoor localization pipeline [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF]. This pipeline consists of the following steps: 

Ablation studies

In this section we assess the relevance of two diferent components in the proposed 

Implementation details

Model details. The model was implemented in PyTorch [START_REF] Paszke | Automatic diferentiation in PyTorch[END_REF], and a ResNet-101 network [START_REF] He | Deep residual learning for image recognition[END_REF] initialized on ImageNet was used for feature extraction (up to the conv4_23 layer). Diferent architectures of the neighbourhood consensus network (≤) are used for category-and instance-level matching, as these two problems present diferent challenges. For category-level matching, a more complex network is used in order to capture the strong appearance diferences in these matching problems. For instance-level matching, a simpler network is used, allowing to process the images in higher resolution and obtaining more precisely localized matches, which is required for tasks such as pose estimation. In all cases, the input and output category-level matching, (≤) contains three layers of 5 × 5 × 5 × 5 Ąlters, resulting in 180K trainable parameters. In the case of instance-level matching, (≤) has two layers of 3 × 3 × 3 × 3 Ąlters, resulting in 2.6K trainable parameters. Both models are trained using dense feature maps and of size 25 × 25. For evaluation, the category-level matching model also uses 25 × 25 dense feature maps, processes an image pair in 0.5s and requires 240MB of memory. For instance-level matching, evaluation is performed using larger feature maps, such as 100 × 75, in order to obtain a higher localization precision which is required for instance-level matching. In this case, the execution takes 9.3s and requires 5700MB of memory.

Training details. The model is initially trained for 5 epochs using Adam optimizer [START_REF] Kingma | A method for stochastic optimization[END_REF], with a learning rate of 5 × 10 (5.16) and considering 0-indexed tensors and that takes the value 0 when the index ′ is out of range ( ′ < 0 or ′ ⊙ ℎ).

In addition, the memory requirements can be reduced by exploiting the fact that the 4D convolutional network has multiple channels in the hidden layers but single channel input and output. If the correlation tensor can be Ątted into the GPU memory, the memory requirements of the forward pass through can be limited by computing the output tensor = () in chunks which can then be stacked to obtain the full output tensor. In order to do this, a set of slices = 1, . . . , are generated from the input tensor , and fed to the network progressively. Note that, while the output slices are non-overlapping, the inputs will have an overlap due to the overlapping receptive Ąelds of the output slices. The slicing can be then performed in the following way: ¶ ::: ♢ =,..., = = ( ) with = ¶ ::: ♢ =⊗,...,+ ,

(5.17)

where the input slices are larger than the output slices by 2 + 1, which corresponds to the receptive Ąeld of the last layer of the network . In consequence, when using this approach no padding should be performed in the convolutional layers of .

Limitations

While our method identiĄes correct matches in many challenging cases, some situations remain diicult. The two typical failure modes include: repetitive patterns combined with large changes in scale, and locally geometrically consistent groups of incorrect matches. Furthermore, the proposed method has quadratic ( 2 ) complexity with respect to the number of image pixels (or CNN features) . This limits the resolution of the images that we are currently able to handle in a 16GB GPU to 1600 × 1200px

(or 3200 × 2400px if using feature relocalization or slicing), and renders the method relatively slow: the processing time of a 3200 × 2400px image pair using feature relocalization is ≡ 7 seconds.

Conclusion

In category-level matching [START_REF] Kanazawa | Learning category-speciĄc mesh reconstruction from image collections[END_REF], or visual localization across day/night illumination [START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF].

Chapter 6

Making neighbourhood consensus networks efficient

In this chapter, we propose the Sparse Neighbourhood Consensus Networks (Sparse-NCNet) which address the main limitations of the NCNet model presented in Chapter 5.

In particular, we propose modiĄcations to: (i) reduce memory consumption, (ii) reduce inference time, and (iii) improve the localization of obtained correspondences. Results

show that our proposed modiĄcations can reduce the memory footprint and execution time more than 10×, with equivalent matching performance. This is achieved by sparsifying the correlation tensor containing tentative matches, subsequently processing it with a 4D CNN using submanifold sparse convolutions. Localization accuracy is signiĄcantly improved by processing the input images in higher resolution, which is possible due to the reduced memory footprint, and by a novel two-stage correspondence relocalization module. The proposed Sparse-NCNet method obtains state-of-the-art results on the HPatches Sequences and InLoc visual localization benchmarks, and competitive results in the Aachen Day-Night benchmark.

Introduction

Finding correspondences between images depicting the same 3D scene is one of the fundamental tasks in computer vision [START_REF] Julesz | Towards the automation of binocular depth perception[END_REF][START_REF] Marr | Cooperative computation of stereo disparity[END_REF]Mori 133 et al., 1973] with applications in 3D reconstruction [Schönberger and Frahm, 2016;Schönberger et al., 2016;[START_REF] Widya | Structure from motion using dense cnn features with keypoint relocalization[END_REF], visual localization [START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF][START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF][START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF] or pose estimation [START_REF] Gao | Complete solution classiĄcation for the perspective-three-point problem[END_REF][START_REF] Grabner | 3D Pose Estimation and 3D Model Retrieval for Objects in the Wild[END_REF][START_REF] Persson | Lambda twist: An accurate fast robust perspective three point (P3P) solver[END_REF]. The predominant approach currently consists of Ąrst detecting salient local features, by selecting the local extrema of some form of feature selection function, and then describing them by some form of feature descriptor [START_REF] Bay | SURF: Speeded up robust features[END_REF][START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Rublee | An eicient alternative to SIFT or SURF[END_REF]. While hand-crafted features such as Hessian aine detectors [START_REF] Mikolajczyk | An aine invariant interest point detector[END_REF] with SIFT descriptors [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] have obtained impressive performance under strong viewpoint changes and constant illumination [Mikolajczyk et al., 2005], their robustness to illumination changes is limited [Mikolajczyk et al., 2005;Zhou et al., 2016a]. More recently, a variety of trainable keypoint detectors [START_REF] Laguna | Net: Keypoint detection by handcrafted and learned CNN Ąlters[END_REF][START_REF] Lenc | Learning covariant feature detectors[END_REF][START_REF] Mishkin | Repeatability Is Not Enough: Learning Discriminative Aine Regions via Discriminability[END_REF][START_REF] Verdie | A temporally invariant learned detector[END_REF] and descriptors [Balntas et al., 2016a,b;[START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF][START_REF] Mishchuk | Working hard to know your neighborŠs margins: Local descriptor learning loss[END_REF][START_REF] Tian | L2-net: Deep learning of discriminative patch descriptor in euclidean space[END_REF][START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF] have been proposed, with the purpose of obtaining increased robustness over hand-crafted methods. While this approach has achieved some success, extreme illumination changes such as day-to-night matching combined with changes in camera viewpoint remain a challenging open problem [START_REF] Balntas | Workshop in Long-Term Visual Localization under Changing Conditions[END_REF][START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF][START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF]. In particular, all local feature methods, whether hand-crafted or trained, sufer from missing detections under these extreme appearance changes.

In order to overcome this issue, the detection stage can be avoided and, instead, features can be extracted on a dense grid across the image. This approach has been successfully used for both place recognition [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF][START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF][START_REF] Torii | 24/7 place recognition by view synthesis[END_REF] and image matching [Rocco et al., 2018c;[START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF][START_REF] Widya | Structure from motion using dense cnn features with keypoint relocalization[END_REF]. However, extracting features densely comes with additional challenges: it is memory intensive and the localization accuracy of the features is limited by the sampling interval of the grid used for the extraction.

In this chapter we adopt the dense feature extraction approach. In particular, we build on the Neighbourhood Consensus Networks (NCNet) presented in Chapter 5, [START_REF] Balntas | HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors[END_REF] benchmark for image matching with challenging viewpoint and illumination changes and the InLoc [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF] benchmark for indoor localization and camera pose estimation. Furthermore, we show our model obtains competitive results on the Aachen Day-Night benchmark [START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF], which evaluates day-night feature matching for the task of camera localization. An example of the correspondences produced by our method is presented in Fig. 6-1. Our code and models are available online at http://www.di.ens.fr/willow/research/sparse-ncnet/.

Related work

Matching with trainable local features. Most recent work in trainable local features has focused on learning more robust keypoint descriptors [Balntas et al., 2016a,b;[START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF][START_REF] Mishchuk | Working hard to know your neighborŠs margins: Local descriptor learning loss[END_REF][START_REF] Tian | L2-net: Deep learning of discriminative patch descriptor in euclidean space[END_REF][START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF]. Initially these descriptors were used in conjunction with classic handcrafted keypoint detectors, such as DoG [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. Recently, trainable keypoint detectors were also proposed [START_REF] Laguna | Net: Keypoint detection by handcrafted and learned CNN Ąlters[END_REF][START_REF] Lenc | Learning covariant feature detectors[END_REF][START_REF] Mishkin | Repeatability Is Not Enough: Learning Discriminative Aine Regions via Discriminability[END_REF][START_REF] Verdie | A temporally invariant learned detector[END_REF], as well as methods providing both detection and description [START_REF] Detone | SuperPoint: Self-Supervised Interest Point Detection and Description[END_REF][START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF][START_REF] Ono | Net: Learning local features from images[END_REF][START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF][START_REF] Yi | LIFT: Learned invariant feature transform[END_REF]. From these, some adopt the classic approach of Ąrst performing detection on the whole image and then computing descriptors from local image patches, cropped around the detected keypoints [START_REF] Ono | Net: Learning local features from images[END_REF][START_REF] Yi | LIFT: Learned invariant feature transform[END_REF], while the most recent methods compute a joint representation from which both detections and descriptors are computed [START_REF] Detone | SuperPoint: Self-Supervised Interest Point Detection and Description[END_REF][START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF][START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF]. In most cases, local features obtained by these methods are independently matched using nearest-neighbour search with the Euclidean distance [Balntas et al., 2016a,b;[START_REF] Mishchuk | Working hard to know your neighborŠs margins: Local descriptor learning loss[END_REF][START_REF] Tian | L2-net: Deep learning of discriminative patch descriptor in euclidean space[END_REF], although some works have proposed to learn the distance function as well [START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF][START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF]. As discussed in the previous section, local features are prone to loss of detections under extreme lighting changes [START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF]. In order to alleviate this issue, in this chapter we adopt the usage of dense features, which are described next.

Matching with densely extracted features. Motivated by applications in largescale visual search, others have found that using densely extracted features provides additional robustness to illumination changes compared to local features extracted at detected keypoints, which sufer from low repeatability under strong illumination changes [START_REF] Torii | 24/7 place recognition by view synthesis[END_REF][START_REF] Zhao | Oriented pooling for dense and non-dense rotation-invariant features[END_REF]. This approach was also adopted by later work [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF]. Such densely extracted features used for image retrieval are typically computed on a coarse low resolution grid (e.g. 40 × 30). However, such coarse localization of the dense features is not an issue for visual retrieval, as the dense features are not directly matched, but rather aggregated into a single image-level descriptor, which is used for retrieval. Recently, densely extracted features have been also employed directly for 3D computer vision tasks, such as 3D reconstruction [START_REF] Widya | Structure from motion using dense cnn features with keypoint relocalization[END_REF], indoor localization and camera pose estimation [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF], and outdoor localization with night queries [START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF][START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF]. In these methods, correspondences are obtained by nearest-neighbour search performed on extracted descriptors, and Ąltered by the mutual nearest-neighbour criterion [START_REF] Oron | Best-buddies similar-ityŮrobust template matching using mutual nearest neighbors[END_REF]. In this chapter, we build on the NCNet method presented in Chapter 5, where the match Ąltering function is learnt from data. Diferent recent methods for learning to Ąlter matches are discussed next.

Learning to filter incorrect matches. When using both local features extracted at keypoints or densely extracted features, the obtained matches by nearest-neighbour search contain a certain portion of incorrect matches. In the case of local features, a heuristic approach such as LoweŠs ratio test [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] can be used to Ąlter these matches. However the ratio threshold value needs to be manually tuned for each method. To avoid this issue, Ąltering by mutual nearest neighbours can be used instead [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF]. Recently, trainable approaches have also been proposed

for the task of Ąltering local feature correspondences [START_REF] Brachmann | Neural-guided RANSAC: Learning where to sample model hypotheses[END_REF][START_REF] Yi | Learning to Ąnd good correspondences[END_REF][START_REF] Sarlin | Learning feature matching with graph neural networks[END_REF][START_REF] Zhang | Learning two-view correspondences and geometry using order-aware network[END_REF]. [START_REF] Yi | Learning to Ąnd good correspondences[END_REF] propose a neural-network architecture that operates on 4D match coordinates and classiĄes each correspondence as either correct or incorrect. Brachmann et al. [START_REF] Brachmann | Neural-guided RANSAC: Learning where to sample model hypotheses[END_REF] propose the Neural-guided RANSAC, which extends the previous method to produce weights instead of classiĄcation labels, which are used to guide RANSAC sampling. Zhang et al. [START_REF] Zhang | Learning two-view correspondences and geometry using order-aware network[END_REF]] also extend the work of Yi et al.

in their proposed Order-Aware Networks, which capture local context by clustering 4D correspondences onto a set of ordered clusters, and global context by processing these clusters with a multi-layer perceptron. Finally, Sarlin et al. [START_REF] Sarlin | Learning feature matching with graph neural networks[END_REF] describe a graph neural network followed by an optimisation procedure to estimate correspondences between two sets of local features. These methods were speciĄcally designed for Ąltering local features extracted at keypoint locations and not features extracted on a dense grid. Furthermore, these methods are focused only on learning match Ąltering, and are decoupled from the problem of learning how to detect and describe the local features.

In this chapter we build on the NCNet method (Chapter 5) for Ąltering incorrect matches, which was designed for dense features. Furthermore, contrary to the above described methods, our approach performs feature extraction, matching and match

Ąltering in a single pipeline.

Improved feature localization. Recent methods for local feature detection and description which use a joint representation [START_REF] Detone | SuperPoint: Self-Supervised Interest Point Detection and Description[END_REF][START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] as well as methods for dense feature extraction [Rocco et al., 2018c;[START_REF] Widya | Structure from motion using dense cnn features with keypoint relocalization[END_REF] sufer from poor feature localization, as the features are extracted on a low-resolution grid. Diferent approaches have been proposed to deal with this issue.

The D2-Net method [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] follows the approach used in SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] for reĄning the keypoint positions, which consists of locally Ątting a quadratic function to the feature detection function around the feature position and solving for the extrema. The SuperPoint method [START_REF] Detone | SuperPoint: Self-Supervised Interest Point Detection and Description[END_REF] uses a CNN decoder that produces a one-hot output for each 8 × 8 pixel cell of the input image (in case a keypoint is efectively detected in this region), therefore achieving pixel-level accuracy.

Others [START_REF] Widya | Structure from motion using dense cnn features with keypoint relocalization[END_REF] use the intermediate higher resolution features from the CNN to improve the feature localization, by assigning to each pooled feature the position of the feature with highest L2 norm from the preceding higher resolution map (and which participated in the pooling). This process can be repeated up to the input image resolution.

The relocalization approach of NCNet (Chapter 5) is based on a max-argmax operation on the 4D correlation tensor of exhaustive feature matches. This approach can only increase the resolution of the output matches by a factor of 2. In contrast, we describe a new two-stage relocalization module that builds on the approach used in NCNet, by combining a hard relocalization stage that has similar efects to NCNetŠs max-argmax operation, with a soft-relocalization stage that obtains sub-feature-grid accuracy via interpolation.

Sparse Convolutional Neural Networks were recently introduced [Graham, 2015[Graham, , 2014] ] for the purpose of processing sparse 2D data, such as handwritten characters [Graham, 2014]; 3D data, such as 3D point-clouds [Graham, 2015]; or even 4D data, such as temporal sequences of 3D point clouds [Choy et al., 2019a]. These models have shown great success in 3D point-cloud processing tasks such as semantic segmentation [Choy et al., 2019a;[START_REF] Graham | 3D semantic segmentation with submanifold sparse convolutional networks[END_REF] and point-cloud registration [Choy et al., 2019b;[START_REF] Gojcic | Learning multiview 3D point cloud registration[END_REF]. In this chapter, we use networks with submanifold sparse convolutions [START_REF] Graham | 3D semantic segmentation with submanifold sparse convolutional networks[END_REF] for the task of Ąltering correspondences between images, which can be represented as a sparse set of points in a 4D space of image coordinates. In submanifold sparse convolutions, the active sites remain constant between the input and output of each convolutional layer. As a result, the sparsity level remains Ąxed and does not change after each convolution operation. To the best of our knowledge this is the Ąrst time these models are applied to the task of match Ąltering.

Sparse Neighbourhood Consensus Networks

In this section we detail the proposed Sparse Neighbourhood Consensus Networks.

We start with a brief review of Neighbourhood Consensus Networks (Chapter 5)

identifying their main limitations. Next, we describe our approach which overcomes these limitations.

Review: Neighbourhood Consensus Networks

The Neighbourhood Consensus Network is a method for feature extraction, matching Next, the exhaustive set of all possible matches between the dense feature maps and is computed and stored in a 4D correlation tensor ∈ R ℎ××ℎ× .

Finally, the correspondences in are Ąltered by a 4D CNN. This network can detect coherent spatial matching patterns and propagate information from the most certain matches to their neighbours, robustly identifying the correct correspondences.

This last Ąltering step is inspired by the neighbourhood consensus procedure [START_REF] Bian | Grid-based motion statistics for fast, ultra-robust feature correspondence[END_REF]Schafalitzky and Zisserman, 2002a;[START_REF] Schmid | Local grayvalue invariants for image retrieval[END_REF][START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF][START_REF] Zhang | A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[END_REF], where a particular match is veriĄed by analysing the existence of other coherent matches in its spatial neighbourhood in both images.

Despite its promising results, the original formulation of Neighbourhood Consensus Networks has three main drawbacks that limit its practical application: it is (i) memory intensive, (ii) slow, and (iii) matches are poorly localised. These points are discussed in detail next.

High memory requirements. The high memory requirements are due to the computation of the correlation tensor ∈ R ℎ××ℎ× which stores all matches between the densely extracted image features ( , ) ∈ R ℎ×× . Note that the number of elements in the correlation tensor (ℎ × × ℎ × ) grows quadratically with respect to the number of features (ℎ × ) of the dense feature maps ( , ), therefore limiting the ability to increase the feature resolution. For instance, for dense feature maps of resolution 200 × 150, the correlation tensor would require by itself 3.4GB of GPU memory in the standard 32-bit Ćoat precision. Furthermore, processing this correlation tensor using the subsequent 4D CNN would require more than 50GB of GPU memory, which is much more than what is currently available on most standard GPUs. While 16-bit half-Ćoat precision could be used to halve these memory requirements, they would still be prohibitively large.

Long processing time. In addition, Neighbourhood Consensus Networks are slow as the full dense correlation tensor must be processed. For instance, processing the 100 × 75 × 100 × 75 correlation tensor containing matches between a pair of dense feature maps of 100 × 75 resolution takes approximately 10 seconds on a standard Tesla T4 GPU.

Poor match localization. Finally, the high-memory requirements limit the maximum feature map resolution that can be processed, which in turn limits the localization accuracy of the estimated correspondences. For instance, for a pair images with 1600 × 1200px resolution, where correspondences are computed using a dense feature map with a resolution of 100 × 75, the output correspondences are localised within an error of 8 pixels. This can be problematic if correspondences are used for tasks such as pose estimation, where small errors in the localization of correspondences in image-space can yield high camera pose errors in 3D space.

In this chapter, we devise strategies to overcome the limitations of the original NCNet method, while keeping its main advantages, such as the usage of dense feature maps which avoids the issue of missing detections, and the processing of multiple matching hypotheses to avoid early matching errors. Our eicient Sparse-NCNet approach is described next.

Sparse-NCNet: Efficient Neighbourhood Consensus Networks

In this section, we describe the Sparse-NCNet approach in detail. An overview is presented in Fig. 6 Then, these dense features are matched and stored into a sparse correlation tensor.

Contrary to the original NCNet formulation, where all the pairwise matches between the dense features are stored and processed, we propose to keep only the top matches for a given feature, measured by the cosine similarity. In detail, each feature : from image at position (, ) is matched with its K nearest-neighbours in , and vice versa. The one-sided sparse correlation tensor, matching from image to image ( ⊃ ) is then described as:

⊃ = ︁ ︁ ︁ ︁ ︁ ︁ ︁ ⟨ : , : ⟩ if : within K-NN of : 0 otherwise . (6.2)
To make the sparse correlation map invariant to the ordering of the input images, we also perform this in the reverse direction ( ⊃ ), and add the two one-sided correlation tensors together to obtain the Ąnal (symmetric) sparse correlation tensor:

= ⊃ + ⊃ . (6.3)
This tensor uses a sparse representation, where only non-zero elements need to be stored. Note that the number of stored elements is, at most, ℎ × × × 2 which is in practice much less than the ℎ × × ℎ × elements of the dense correlation tensor, obtaining great memory savings in both the storage of this tensor and its subsequent processing. For example, for a feature map of size 100 × 75 and = 10, the sparse representation takes 3.43MB vs. 215MB of the dense representation, resulting in a 12× reduction of the processing time. In the case of feature maps with 200 × 150 resolution, the sparse representation takes 13.7MB vs. 3433MB for the dense representation. This allows Sparse-NCNet to also process feature maps at this resolution, something that was not possible with NCNet due to the high memory requirements. The proposed sparse correlation tensor is a compromise between the common procedure of taking the best scoring match and the approach taken by NCNet, where all pairwise matches are stored. In this way, we can keep suicient information in order to avoid early mistakes, while keeping low memory consumption and processing time.

Then the sparse correlation tensor is processed by a permutation-invariant CNN ( (≤)), to produce the output Ąltered correlation map : = ( ). (6.4)

The permutation invariant CNN (≤) consists of applying the 4D CNN (≤) twice such that the same output matches are obtained regardless of the order of the input images: (6.5) where by transposition we mean exchanging the Ąrst two dimensions with the last two dimensions, which correspond to the coordinates of the two input images. The 4D CNN (≤) operates on the 4D space of correspondences, and is trained to perform the neighbourhood consensus Ąltering. Note that while (≤) is a sparse CNN using submanifold sparse convolutions [START_REF] Graham | 3D semantic segmentation with submanifold sparse convolutional networks[END_REF], where the active sites between the sparse input and output remain constant, the convolution kernel Ąlters are dense (i.e. hypercubic).

( ) = ( ) + ⎞ ⎞ ( ) ︁︁ ,
While in the original NCNet method, a soft mutual nearest-neighbour operation (≤) is also performed, we have removed it as we noticed its efect was not signiĄcant when operating on the sparse correlation tensor. From the output correlation tensor , the output matches are computed by applying argmax at each coordinate: (6.6) where (, ) is the match coordinate in the sampling grid of , and (, ) is the match coordinate in the sampling grid of .

⎞ (, ), (, ) ︁ a match if ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ (, ) = argmax (,) , or (, ) = argmax (,) , 

Match relocalization by guided search

While the sparsiĄcation of the correlation tensor presented in the previous section allows processing higher resolution feature maps, these are still several times smaller in resolution than the input images. Hence, they are not suitable for applications that require (sub)pixel feature localization such as camera pose estimation or 3Dreconstruction.

To address this issue, in this chapter we propose a two-stage relocalization module and similarly for , . This is done using a ROI-pooling operation [START_REF] Girshick | Proc. ICCV[END_REF].

Finally, exhaustive matches between the local feature crops , and , are computed, and the output of the hard relocalization module is the displacement associated with the maximal matching score:

Δ ℎ = ⎞ (Ó, Ó), (Ó, Ó) ︁ = argmax (,), (,) 
⟨ , : , , : ⟩. (6.8)

Then, the Ąnal match location from the hard relocalization stage is computed as:

ℎ = 2 + Δ ℎ = ⎞ (2 + Ó, 2 + Ó), (2 + Ó, 2 + Ó) ︁ .
(6.9)

Note that the relocalized matches ℎ are deĄned in a 2ℎ × 2 grid, therefore obtaining a 2× increase in localization accuracy with respect to the initial matches , which are deĄned in a ℎ × grid. Also note that while the implementation is diferent, the efect of the proposed hard relocalization is similar to the max-argmax operation used in NCNet (Chapter 5), while being more memory eicient as it avoids the computation of the a dense correlation tensor in high resolution.

Soft relocalization. The second step consists of a soft relocalization operation that obtains sub-feature localization accuracy in the 2ℎ × 2 grid of high resolution features and . For this, new 3 × 3 local feature crops ( , , , ) ∈ R 3×3× are sampled around the coordinates of the estimated matches ℎ from the previous relocalization stage. Note that no upsampling of the coordinates is done in this case, as the matches are already in the 2ℎ × 2 range. Then, soft relocalization displacements are computed by performing the softargmax operation [START_REF] Yi | LIFT: Learned invariant feature transform[END_REF] on the matching scores between the central feature of , and the whole of , , and vice versa:

Δ = ⎞ (Ó, Ó), (Ó, Ó) ︁ where ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ (Ó, Ó) = softargmax (,) ⟨ , : , , 11: ⟩ (Ó, Ó) = softargmax (,)
⟨ , 11: , , : ⟩ . (6.10)

The intuition of the softargmax operation is that it computes a weighted average of the candidate positions in the crop where the weights are given by the softmax of the matching scores. The Ąnal matches from soft relocalization are obtained by applying the soft displacements to the matches from hard relocalization: = ℎ + Δ .

Experimental evaluation

We evaluate the proposed Sparse-NCNet method on three diferent benchmarks: (i)

HPatches Sequences, which evaluates the matching task directly, (ii) InLoc, which targets the problem of indoor 6-dof camera localization and (iii) Aachen Day-Night, which targets the problem of outdoor 6-dof camera localization with challenging day-night illumination changes. We Ąrst present the implementation details followed by the results on these three benchmarks.

Implementation details. We train the Sparse-NCNet model following the training protocol from NCNet (Chapter 5). We use the IVD dataset with the weakly-supervised mean matching score loss of Sec. 5.3.6 for training. The 4D CNN (≤) has two sparse convolution layers with 3 4 sized kernels, with 16 output channels in the hidden layer.

A value of = 10 is used for computing (6.3). The model is implemented using PyTorch [START_REF] Paszke | Automatic diferentiation in PyTorch[END_REF], MinkowskiEngine [Choy et al., 2019a] and Faiss [START_REF] Dale | Image restoration using online photo collections[END_REF], and trained for 5 epochs using Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] with a learning rate of 5 × 10 ⊗4 . A pretrained ResNet-101 (up to conv_4_23) with no strided convolutions in the last block is used as the feature extractor (≤). This feature extraction model is not Ąnetuned as the training dataset is small (3861 image pairs)

and that would lead to overĄtting and loss of generalisation. The softargmax operation in (6.10) uses a temperature value of 10.

HPatches Sequences

The HPatches Sequences [START_REF] Balntas | HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors[END_REF] benchmark assesses the matching accuracy under strong viewpoint and illumination variations. We follow the evaluation procedure from [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF], where 108 image sequences are employed, each from a diferent planar scene, and each containing 6 images. The Ąrst image from each sequence is matched against the remaining 5 images. The benchmark employs 56 sequences with viewpoint changes, and constant illumination conditions, and 52 sequences with illumination changes and constant viewpoint. The metric used for evaluation is the mean matching accuracy (MMA) [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF], which assesses the fraction of correct matches under diferent tolerance: .11) where ¶( , )♢ =1 is the set of matches to be evaluated, ( ) is the warped point using the ground-truth homography , ✶ >0 is the indicator function for positive numbers, and is the chosen tolerance threshold (in pixels).

MMA ⎞ ¶( , )♢ =1 ; ︁ = ︀ =1 ✶ >0 ⎞ ⊗ ‖ ( ) ⊗ ‖ ︁ , ( 6 
Sparse-NCNet vs. NCNet. In Fig. 6 [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] and R2D2 [START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF]. The correct correspondences are shown in green, and the incorrect ones in red for a threshold = 3px. Below each pair we indicate the fraction of correct matches (both in percentage and absolute values). Our method is presented for both the top 2K and top 6K matches, and it obtains the largest fraction of correct matches for both cases. Examples are from the illumination sequences. threshold value = 3 pixels. For the proposed Sparse-NCNet, results are presented for two diferent numbers of matches, 2000 and 6000. Results show that our method produces the largest fraction of correct matches, even when considering as many as 6000 correspondences. In particular, note that our method is able to produce a large amount of correct correspondences even under strong illumination changes, as shown in Fig. 67. Furthermore, note that the nature of the correspondences produced by Sparse-NCNet is diferent from those of local feature methods. While local feature methods can only produce correspondences on the detected points, which are the local extrema of a particular feature detection function, our method produces densely packed sets of correspondences. A discussion about this behaviour is presented in Sec. 6.5.

InLoc benchmark

The InLoc benchmark [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF] targets the problem of indoor localization.

It contains a set of database images of a building, obtained with a 3D scanner, and a set of query images from the same building, captured with a cell-phone several months later. The task is then to obtain the 6-dof camera positions of the query images. We follow the DensePE approach proposed [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF] to Ąnd the top 10 candidate database images for each query, and employ Sparse-NCNet to obtain matches between them. Then, we follow again the procedure in [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF] to obtain the Ąnal estimated 6-dof query pose, which consists of running PnP [START_REF] Gao | Complete solution classiĄcation for the perspective-three-point problem[END_REF] followed by dense pose veriĄcation [START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF].

The results are presented in Fig. 678. First, we observe that Sparse-NCNet with hard relocalization (H) and a resolution of 100 × 75 obtains equivalent results to NCNet (methods B vs. C), while being almost 7× faster and requiring 6.5× less memory, conĄrming what was already observed in the HPatches benchmark (cf. B1 vs. B2 in Fig. 6-4a). Moreover, our proposed Sparse-NCNet method with two-stage relocalization (H+S) in the higher 200 × 150 resolution (method A) obtains the best results and sets a new state-of-the-art for this benchmark. Recall that it is impossible to use the original NCNet on the higher resolution due to its excessive memory More qualitative examples are presented in Fig. 6789. Each image pair is composed of a query image (top row) captured with a cell-phone and a database image (middle row), captured several months earlier with a 3D scanner. Note that the illumination conditions in the two types of images are diferent. Furthermore, because of the time diference between both images, some objects may have been displaced (e.g. furniture) and some aspects of the scene may have changed (e.g. wall decoration). For ease of visualisation, we overlay only the top 500 correspondences for each image pair, which appear in green. These correspondences have not been geometrically veriĄed, and therefore contain a certain fraction of incorrect matches. Note however, that most matches are coherent and the few incorrect outliers are likely to be removed when running RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF] within the PnP pose solver [START_REF] Gao | Complete solution classiĄcation for the perspective-three-point problem[END_REF], therefore obtaining a good pose estimate. Also note how Sparse-NCNet is able to obtain correspondences in low textured areas such as walls or ceilings, or on repetitive patterns such as carpets. For each image pair, we show the top 500 matches produced by Sparse-NCNet between the query image (top row) and database image (middle row). In addition we show the rendered scene from the estimated query 6-dof pose (bottom row), obtained by running RANSAC+PnP [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF][START_REF] Gao | Complete solution classiĄcation for the perspective-three-point problem[END_REF] on our matches. Note these rendered images are well aligned with the query images, demonstrating that the estimated poses have low translation and rotation errors. Table 6.1: Results on Aachen Day-Night. Sparse-NCNet is able to localise a similar number of queries to R2D2 and D2-Net.

Aachen Day-Night

The Aachen Day-Night benchmark [START_REF] Sattler | Benchmarking 6DOF outdoor visual localization in changing conditions[END_REF] targets 6-dof outdoor camera localization under challenging illumination conditions. It contains 98 night-time query images from the city of Aachen, and a shortlist of 20 day-time images for each nighttime query. Sparse-NCNet is used to obtain matches between the query and images in the short-list. The resulting matches are then processed by the 3D reconstruction software COLMAP [Schönberger and Frahm, 2016] to obtain the estimated query poses.

The results are presented in Table 6.1. Sparse-NCNet presents a similar performance to the state-of-the-art methods D2-Net [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] and R2D2 [START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF]. Note that the results of these three diferent methods difer by only a few percent, which represents only 1 or 2 additionally localised queries, from the 98 total night-time queries. The proposed Sparse-NCNet obtains state-of-the-art results for the 1m and 5 ◇ threshold, being able to localise 68.4% of the queries (67 out of 98).

One qualitative example from this benchmark is presented in Fig. 6 

Insights about Sparse-NCNet

In this section we provide additional insights about the way Sparse-NCNet operates, which difers from traditional local feature detection and matching methods. In Fig. 6-11 we plot the top matches produced by Sparse-NCNet for diferent values of : 100 (left column), 400 (middle column) and 1600 (right column). By comparing the middle column (showing the top 400 matches) with the left column (showing the top 100), we can observe that many of the additional 300 matches are close to the initial 100 matches. A similar efect is observed when comparing the right column (top 1600 matches) with the middle column (top 400 matches). This could be attributed to the fact that Sparse-NCNet propagates information from the strongest matches to their neighbours. In this sense, strong matches, which are typically non-ambiguous ones, can help in matching their neighbouring features, which might not be so discriminative.

Conclusion

In this chapter we have presented the Sparse Neighbourhood Consensus Networks for eiciently estimating correspondences between images. Our approach overcomes the main limitations of the original Neighbourhood Consensus Networks that demonstrated promising results on challenging matching problems, making these models practical and widely applicable. The proposed model jointly performs feature extraction, matching and robust match Ąltering in a computationally eicient manner, outperforming stateof-the-art results on two challenging matching benchmarks. The entire pipeline is end-to-end trainable, which opens-up the possibility for including additional modules for speciĄc downstream problems such as camera pose estimation or 3D reconstruction. Chapter 7

Conclusions

In this Ąnal chapter, we review the main contributions of this thesis and present some possible research directions for future work.

Contributions

In this thesis, we have focused on developing trainable models for establishing correspondences between pairs of images. This presented several challenges, such as designing a suitable model which is end-to-end trainable and Ąnding a suitable training scheme. We have investigated several model architectures and training schemes for solving this problem. The contributions developed in each chapter are detailed next.

In Chapter 3, we have developed a Siamese end-to-end trainable CNN architecture for image alignment which outputs parameters of a geometric transformation such as aine, homography, or thin-plate-spline. This architecture has a modular structure which follows the traditional matching pipeline composed of a feature extraction stage, followed by a matching stage, and a transformation estimation stage. In particular, we have proposed to use densely extracted CNN features for the feature extraction stage, together with a correlation operation which outputs the exhaustive set of matching scores between the densely extracted features. This approach for feature extraction and matching was adopted in all the subsequent chapters of this thesis, as well as by other works, for example, [START_REF] Novotny | Self-supervised learning of geometrically stable features through probabilistic introspection[END_REF]Kim et al., 2018a;[START_REF] Jeon | Pyramidal aine regression networks for dense semantic correspondence[END_REF]161 Lee et al., 2019;[START_REF] Melekhov | Dgc-net: Dense geometric correspondence network[END_REF][START_REF] Truong | GLU-Net: Global-local universal network for dense Ćow and correspondences[END_REF]. In order to train this model, we have developed a suitable training scheme following a self-supervised approach,

where training image pairs are generated by synthetically warping a set of natural images with randomly sampled transformations, as well as an appropriate training loss that is agnostic to the type of geometric transformation and its parametrization. on the concept of a soft-inlier count, which borrows inspiration from the inlier count that is used in RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF]. This method was extended by [START_REF] Wang | Learning correspondence from the cycleconsistency of time[END_REF], who propose to use cycle-consistency across several video frames as a supervisory signal. We have shown that the proposed weakly-supervised training can improve performance over the previous self-supervised training alone, achieving state-of-the-art results in category-level alignment.

In Chapter 5, we have proposed a new end-to-end trainable model for image correspondence. Contrary to the model from previous chapters which outputs parameters of a geometric transformation, this model can output a discrete set of correspondences and is, therefore, better suited for instance-level matching problems. This is achieved by replacing the regressor CNN previously used for transformation estimation, by a 4D Neighbourhood Consensus Network (NCNet) that operates on the space of 4D matching scores. We have shown that NCNet models are useful both for instance and category-level matching obtaining state-of-the-art results on tasks as diverse as indoor localization and semantic keypoint transfer. Our NCNet model has been extended by [START_REF] Li | Correspondence networks with adaptive neighbourhood consensus[END_REF] who propose adaptive neighbourhood sizes and by [START_REF] Yang | Volumetric correspondence networks for optical Ćow[END_REF] who propose alternative separable 4D convolutions and employed by other recent work [START_REF] Chen | Arbicon-net: Arbitrary continuous geometric transformation networks for image registration[END_REF][START_REF] Laskar | Geometric image correspondence veriĄcation by dense pixel matching[END_REF].

In Chapter 6, we have proposed a more eicient formulation for Neighbourhood Consensus Networks, which seeks to overcome the main drawbacks of the original formulation. For this, the proposed Sparse-NCNet model uses a sparse correlation tensor, that contains only the most promising matches between the dense features of each image, and which is processed by a sparse submanifold CNN. We have shown that the resulting model can run an order of magnitude faster and with fewer memory requirements than the original model while providing equivalent results. Furthermore, we have proposed a two-stage relocalization approach that improves the localization accuracy of matches, which has a direct positive impact on camera pose estimation and 3D reconstruction results.

Future work

In this section, we analyze some possible future research directions which could extend the work presented in this thesis.

Computational efficiency. Most recent methods for estimating correspondences between images rely on deep CNN descriptors which are computationally intensive to extract, resulting in higher processing times than previous hand-crafted methods.

In addition, trainable match Ąltering methods such as NCNet (chapter 5) have

( 2 ) complexity with respect to the number of features . These factors limit the applicability of both trainable descriptors and trainable match Ąltering methods for processing a large number of images, such as in the case of large-scale 3D reconstruction, or real-time applications such as SLAM. To obtain more computationally eicient trainable descriptors, distillation approaches [Hinton et al., 2015] could be used for transferring knowledge from deep models towards shallower and more eicient ones.

Another alternative is to directly adopt shallower CNN models for image description and train them from scratch for the correspondence task, as done by [START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF]. One additional approach could involve using half-precision Ćoating-point arithmetic to speed-up the computations and reduce memory requirements, as proposed by Micikevicius et al. [2017]. Finally, to produce fast trainable approaches for match Ąltering, sparse sub-manifold convolutions can be used, as proposed in Chapter 6, or graph-convolutional networks, as proposed by [START_REF] Sarlin | Learning feature matching with graph neural networks[END_REF].

Localization accuracy. Due to the high computational requirements discussed above, many recent methods extract CNN features densely along a grid that has a subsampling factor of 4 or 8 with respect to the original image resolution. This subsampling results from the strided-convolutions or pooling operations in the feature extraction CNN, which are often inherited from image classiĄcation CNN architectures where such subsampling is desirable for spatially-aggregating the visual information from large image areas. However, for the task of image correspondence estimation, these subsampling operations result in less accurately localized matches, which can be problematic for tasks such as 3D reconstruction. Diferent approaches have been proposed to address this issue, by either producing a detection map in full image resolution [START_REF] Detone | SuperPoint: Self-Supervised Interest Point Detection and Description[END_REF], Ątting a quadratic function to a 2D keypoint response map [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF], replacing the subsampling operations by dilated convolutions [START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF], using guidance from higher-resolution intermediate features [START_REF] Widya | Structure from motion using dense cnn features with keypoint relocalization[END_REF] or using guidance from higher-resolution local matches as we proposed in Chapter 6. However, despite these eforts, 3D reconstruction benchmarks show that the reprojection error of trainable methods is in most cases still above 1px while SIFT can achieve sub-pixel reprojection errors. Therefore, improving the localization accuracy of the correspondences produced by trainable methods to match or surpass that of SIFT is still an ongoing research efort. the SfM reconstruction as guidance [START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF]. However, this still requires a successful 3D reconstruction (typically obtained with DoG keypoints and SIFT features), which limits the diiculty of pairs that can be used during training. Weaklysupervised approaches requiring annotation at the level of image pairs (chapter 4) or at the level of single images [START_REF] Novotny | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF] have been proposed for the task of category-level matching where object classes are well deĄned. However, it is not clear how to translate these approaches to instance-level matching, where the notion of Şobject classŤ is ill-deĄned. In the past, weakly-supervised losses have been proposed

Large

for the task of visual localization, relying solely on GPS information [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF]. However, this approach has not yet been extended to the task of learning image correspondences. We believe that this approach has the potential of enabling large-scale training with no manual annotation, possibly allowing to learn richer feature descriptors, and therefore constitutes a possible future research direction.

Identification of non-matching regions. In Chapter 3, we have presented an approach towards identifying non-matching image regions, obtained by thresholding 2D similarity maps. However, this idea was not further explored. Nevertheless, we believe that for a correspondence estimation model to be most useful, both the corresponding and non-corresponding regions should be identiĄed. In the case of large transient objects which appear only in one of the images, additional semantic information could be used to this end. In the case of small regions that only appear in one image due to self-occlusions, reasoning with an estimated 3D scene structure could be helpful. The incorporation of additional semantic and geometric information is discussed next.

Incorporating additional semantic and geometric information. Current methods for estimating correspondences operate on deep CNN features, which are typically pre-trained on an image classiĄcation task, and therefore act as high-level descriptors. However, the recent success of CNN methods in tasks such as instance-level semantic segmentation [START_REF] He | Proc. ICCV[END_REF], monocular depth estimation [START_REF] Luo | Consistent video depth estimation[END_REF][START_REF] Lasinger | Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer[END_REF] or surface normal estimation [START_REF] Zamir | Taskonomy: Disentangling task transfer learning[END_REF] ofers the possibility of incorporating additional semantic and geometric information to the correspondence assignment problem. This could be particularly useful for (i) identifying static and transient objects in the scene, (ii) developing top-down correspondence estimation methods, where high-level correspondences between objects-instances are Ąrst established (or not established, for transient objects that appear only in one image), and matches are then searched within the corresponding objects only, (iii) guiding the matching process through geometric reasoning using noisy priors such as depth estimated from each image independently using a monocular method. In the past, [START_REF] Arandjelović | Visual vocabulary with a semantic twist[END_REF] have shown the beneĄts of incorporating semantic information into SIFT descriptors for matching as well as for image retrieval. [START_REF] Taira | Is this the right place? Geometric-semantic pose veriĄcation for indoor visual localization[END_REF] show that semantic information in the form of segmentation masks and geometric information in the form of surface normals can be beneĄcial for the task of camera pose estimation. However, we believe that further research can be done to incorporate these types of information in more general correspondence estimation methods.

Modern dense 3D reconstruction. Recently, much progress has been made in obtaining dense correspondences in unconstrained settings (contrary to stereo vision or optical Ćow), with large viewpoint and illumination changes. in Chapters 5 and 6 we have presented a method that operates on densely extracted features and can produce semi-dense correspondences in such diicult matching settings. A diferent recent method can obtain a regular correspondence Ąeld for both instance and category-matching problems [START_REF] Truong | GLU-Net: Global-local universal network for dense Ćow and correspondences[END_REF]. It would be desirable if these dense approaches could be used for the task of 3D reconstruction. However, current structure-from-motion pipelines are heavily based on sparse local features with dense estimation only happening at a later stage through multi-view-stereo methods. Using current structure-from-motion pipelines with dense correspondences is not straightforward. Therefore, we believe that more modern 3D reconstruction pipelines and software should be developed, which can fully proĄt from recent methods for dense correspondence estimation. Note that using dense correspondence estimation methods for 3D reconstruction has the potential of producing more complete 3D models and to require a smaller set of images for a successful reconstruction.

  (a) Matching (shown as green links) in outdoor scenes with day-night illumination changes. (b) Matching in indoor scenes with repetitive structures and surfaces with little texture. (c) Matching diferent objects of the same object category across large changes in appearance.

Figure 1

 1 Figure 1-1: Goal. We seek to solve the image correspondence problem in challenging situations, such as (a) day-night matching, (b) dealing with scenes with repetitive structures and little texture, or (c) matching parts of objects which belong to the same class.

Visual localization .

 localization For robotic localization applications, such as required by selfdriving cars or indoor robot navigation, visual localization can be used to obtain precise localization estimates. In this scenario, correspondences between a query image from the robot and a previously obtained database image are established, and 3D algorithms (such as Perspective-n-Point) are used to estimate the robotŠs pose. The problem of visual localization is illustrated in Fig. 1-3e, where a pre-computed 3D model of the environment is shown on top and diferent possible query images used for localization are shown at the bottom. Note that these images contain large variations in illumination conditions.
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 21 Figure 2-1: Early corner detectors. We show the output of the early Moravec (a) and Harris (b) corner detectors. The detected corners are shown on the left, and the imaged scenes are shown on the right (note that in (a) we show a photograph of the scene, while (b) corresponds to the actual digital image used for corner detection).Images from[START_REF] Moravec | Obstacle avoidance and navigation in the real world by a seeing robot rover[END_REF] and[START_REF] Harris | A combined corner and edge detector[END_REF].

Figure 2

 2 Figure 2-2: Harris-Laplace and Harris-Affine detectors. (a) Multi-scale Harris detections (white) and selected scale using the LoG (black). (b) Result of the iterative aine adaptation proposed in Harris-Aine for the multi-scale Harris detections of (a). (c) Normalized local image region, according to the estimated aine parameters.[START_REF] Mikolajczyk | Scale & aine invariant interest point detectors[END_REF].
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 23 Figure 2-3: Laplacian-of-Gaussian detector. (a) Original image. (b) Detected scale-covariant blobs. (c) Detected blobs displayed in the 3D scale-space[START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF].
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 25 Figure 2-5: SIFT descriptor. (a) Illustration of the descriptor. The descriptor is composed by 16 histograms arranged in a 4 × 4 grid, as shown in green. Each of these histograms contains 8 orientation bins, shown by the arrows, which accumulate the orientation of image gradients in a 4px × 4px image cell. (b) Example SIFT descriptors (green) extracted on oriented DoG keypoints (yellow). Figures reproduced from[START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] and[START_REF] Vedaldi | An open and portable library of computer vision algorithms[END_REF].
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 26 Figure 2-6: Parametric descriptors inspired by SIFT. (a) Diferent spatialaggregation conĄgurations evaluated by Winder and Brown [2007]. (b) Parametric spatial-aggregation conĄguration of Simonyan et al. [2014]. Figures reproduced from the respective works.
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 27 Figure 2-7: Siamese CNN architectures for image comparison. (a) Early Siamese architecture for signature comparison by Bromley et al. [1994]. (b) Siamese architecture for patch description which uses the Euclidean distance for comparison of Simo-Serra et al. [2015]. (c) Siamese architecture which incorporates a metric learning module by Zagoruyko and Komodakis [2015]. Figures reproduced from the respective works.
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 28 Figure 2-8: Different trainable detectors. (a) The TILDE detector of Verdie et al. [2015] is trained with stacks of aligned webcam images to achieve high repeatability under strong illumination and appearance changes. (b) The covariant detector of Lenc and Vedaldi [2016] estimates a geometric transformation for each input patch x , which can be inverted to normalize the patches to the canonical frame. Note that detections 1 and 2 are deĄned implicitly by the estimated transformations 1 and 2 . (c) The Key.Net architecture of Laguna et al. [2019] combines hand-crafted and trainable operations in a multi-scale approach. Figures reproduced from the respective works.

  Figure 2-8: Different trainable detectors. (a) The TILDE detector of Verdie et al. [2015] is trained with stacks of aligned webcam images to achieve high repeatability under strong illumination and appearance changes. (b) The covariant detector of Lenc and Vedaldi [2016] estimates a geometric transformation for each input patch x , which can be inverted to normalize the patches to the canonical frame. Note that detections 1 and 2 are deĄned implicitly by the estimated transformations 1 and 2 . (c) The Key.Net architecture of Laguna et al. [2019] combines hand-crafted and trainable operations in a multi-scale approach. Figures reproduced from the respective works.
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 29 Figure 2-9: Different jointly-trainable detectors and descriptors. (a) The LIFT modular pipeline from Yi et al. [2016] contains trainable detection, orientation, and description modules. (b) The Superpoint method of DeTone et al. [2018] uses a shared encoder, from which both detections and descriptions are computed by two independent decoder heads. (c) The D2-Net method of Dusmanu et al. [2019] extracts a deep 3D feature map which has a dual interpretation as a set of densely extracted 1D descriptor vectors, and a set of stacked 2D detection response maps. Figures reproduced from the respective works.
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 210 Figure 2-10: Methods for filtering incorrect matches. (a) LoweŠs second nearestneighbour test (or ratio test) retains matches where the ratio of distances to the Ąrst and second nearest-neighbours is below a threshold. (b) The mutual correspondence test retains correspondences that are mutual when matching in both directions. (c) RANSAC can be used to robustly Ąt a geometric model (such as homography in the case of planar objects) and reject the matches that are not in agreement with the model. (d) Neighbourhood consensus retains correspondences which have a number of coherent supporting matches in their neighbourhoods.

  Figure 2-11: Sample results from category-level matching methods using hand-crafted features.
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 212 Figure 2-12: Sample results from category-level matching methods using CNN features. (a) Method of Ufer and Ommer [2017]. (b) WarpNet method of Kanazawa et al. [2016]. (c) FCSS method of Kim et al. [2018b]. (d) AnchorNet features of Novotny et al. [2017] within the Proposal Flow framework of Ham et al. [2017]. (e) PARN method of Jeon et al. [2018]. (f) RTN method of Kim et al. [2018a].

  task speciĄcally, or by learning to assign correspondences instead of relying on an optimization scheme.[START_REF] Kanazawa | Weakly supervised matching for single-view reconstruction[END_REF] propose a Siamese architecture which regresses the parameters of a thin-plate-spline (TPS) transformation and show that their model can be trained from weak-supervision using only foreground object masks. A qualitative example is presented in Fig.2-12b. For training, they use a weakly-supervised approach to obtain a set of natural geometric deformations from a Ąne-grained dataset of birds, and a self-supervised approach to generate synthetically warped images by sampling from this set of deformations. Finally, corresponding foreground points on the pairs of synthetically warped images are used for computing the training loss.

  which are trained from scratch to compute their fully convolutional self-similarity features (FCSS), which are densely extracted features trained speciĄcally for categorylevel matching. For training, they propose a weakly-supervised scheme where positive and negative training pairs are collected at each training step by, Ąrst, computing putative matches within object bounding boxes by k-NN search and, then, Ąltering these matches with the mutual correspondence criterion. The pairs of features that satisfy the cross-correspondence criterion are then used as positive pairs, while those which do not are used as negative pairs. These positive and negative pairs are then employed by a contrastive loss to train the model. After the model is trained, FCSS features can be extracted for a pair of images, and correspondences can be computed directly by nearest-neighbour search. A qualitative example of the alignment obtained by matching FCSS features is shown in Fig.2-12c. The follow-up work[START_REF] Kim | DCTM: Discrete-continuous transformation matching for semantic Ćow[END_REF] uses FCSS features within an optimization framework to obtain smoother correspondence Ąelds than those obtained from nearest-neighbour matching alone.[START_REF] Han | SCNet: Learning semantic correspondence[END_REF] propose the SCNet model that extends the Proposal Flow method of[START_REF] Ham | Proposal Ćow: Semantic correspondences from object proposals[END_REF]. As in Proposal Flow, SCNet also employs region proposals for estimating category-level correspondences. However, instead of computing region proposals similarities by comparing HOG features, they propose to compute deep CNN descriptors for each region proposal (similarly to R-CNN[START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]), which are then processed by an additional fully-connected layer and compared using a rectiĄed cosine similarity. The model is trained using a hinge loss with an L2 regularization term on the similarity matrix, where pairs of positive and negative proposals are deĄned by exploiting the manually annotated keypoints of the PF-PASCAL dataset.[START_REF] Novotny | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF] propose the AnchorNet CNN architecture for learning semantic object parts using very weak image-level supervision, where only class labels are required. Their CNN architecture Ąrst extracts dense hypercolumn descriptors, which are initialized using a pretrained image classiĄcation model. Then, class-speciĄc convolutional Ąlters are used to discover diverse and discriminative object parts. In addition, they propose to combine these class-speciĄc Ąlters by means of a denoising autoencoder to obtain more general class-agnostic features. Besides showing that meaningful object parts can be learnt from such weak supervision, they show that their learnt class-agnostic features can be used for semantic keypoint transfer, by replacing HOG features in the Proposal Flow framework (yielding similar performance), or SIFT features in DSP (yielding superior performance). A qualitative example of the alignment obtained by using AnchorNet features within the Proposal Flow framework is shown in Fig.2-12d.

  to generate positive and negative pairs but using a diferent classiĄcation-based loss. A qualitative example of the RTN method is shown in Fig.2-12f. A similar iterative approach is presented in Chapter 3.Very recently,[START_REF] Lee | Sfnet: Learning object-aware semantic correspondence[END_REF] proposed the SFNet method which can estimate a dense Ćow Ąeld for semantic image alignment. Similarly to the Siamese CNN model in RTN, dense features are extracted for both images and matched using a correlation operation. However, the SFNet propose to use a kernel soft argmax operation to compute a dense Ćow Ąeld from the correlation values, instead of regressing the parameters of an aine model. For training, synthetically warped images are used, as well as their foreground masks. The supervision is given by a mask consistency loss, a Ćow consistency loss (which favours mutual correspondence) and a smoothness loss which operates as a regularization term.
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 31 Figure 3-1: Top: The proposed model can be trained from synthetic image pairs, avoiding the need for manual annotation. Bottom: At evaluation time, the trained geometry estimation network automatically aligns two images with substantial appearance diferences. It is able to estimate large deformable transformations robustly in the presence of clutter.
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 32 Figure 3-2: Diagram of the proposed architecture. Images and are passed through feature extraction networks which have tied parameters , followed by a matching network which matches the descriptors. The output of the matching network is passed through a regression network which outputs the parameters of the geometric transformation.
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 33 Figure 3-3: Correlation map computation with CNN features. The correlation map contains all pairwise similarities between individual features f ∈ and f ∈ . At a particular spatial location (, ) the correlation map output contains all the similarities between f (, ) and all f ∈ .

  by a 6 dimensional vector AFF : AFF = [ 11 , 12 , 21 , 22 , , ], (3.2) such that points = [ , ] are mapped to points = [ , ] according to: deforms a given quadrilateral = ¶ 1 , . . . , 4 ♢ into any other given quadrilateral = ¶ 1 , . . . , 4 ♢, while keeping collinearity. It has 8 degrees-of-freedom and is more Ćexible than the aine transformation, as it can handle perspective since parallel lines need not remain parallel. Homography is the model relating 2-D images (pinhole projections) of a 3-D plane. We adopt the 4-point homography parametrization from [DeTone et al., 2016], which consists of deĄning the quadrilateral of the target image to be the outer edge of the image, and using the coordinates of the quadrilateral of the source image as the 8-dimensional vector HOM : HOM = [ A1 , . . . , A4 , A1 , . . . , A4 ]. (3.4)

  Figure 3-5: Thin-plate spline control points. Illustration of the 3 × 3 TPS grid of control points used in the thin-plate spline transformation model.
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 36 Figure3-6: Estimating progressively more complex geometric transformations. Images and are passed through a network which estimates an aine transformation with parameters AFF (see Fig.3-2). Image is then warped using this transformation to roughly align it with , and passed along with through a second network which estimates a thin-plate spline (TPS) transformation that reĄnes the alignment.
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 37 Figure3-7: Iterative transformation refinement. In iteration i, image is warped using the cumulative transformation estimate(⊗1) 

  Figure 3-8: Synthetic image generation. Symmetric padding is added to the original image to enlarge the sampling region, its central crop is used as image , and image is created by performing a randomly sampled transformation GT .

Fig. 3 -

 3 Fig. 3-9 illustrates the efectiveness of our method in category-level matching,

  Figure 3-9: Qualitative results on the PF dataset.Each row shows one test example from the Proposal Flow dataset. Ground truth matching keypoints, only used for alignment evaluation, are depicted as crosses and circles for images and , respectively. Keypoints of same color are supposed to match each other after image is aligned to image . To illustrate the matching error, we also overlay keypoints of onto diferent alignments of so that lines that connect matching keypoints indicate the keypoint position error vector. Our method manages to roughly align the images with an aine transformation (column 2), and then perform Ąner alignment using thin-plate spline (TPS, column 3). The top two examples are from the PF-WILLOW dataset while the bottom one is from PF-PASCAL.
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 310 Figure 3-10: Qualitative results on the TSS dataset. Each row shows one test example from the TSS dataset. The last column shows the ground-truth alignment used for evaluation. Example 1 is from TSS-FG3DCar, examples 2-3 are from TSS-JODS, and 4-7 from TSS-PASCAL.

  .14)Finally, the localization error (LOC-ERR) metric measures the spatial error of each transferred pixel[START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], assuming that the images are related by a translation and anisotropic scaling transformation which aligns the bounding boxes of the source and target images.To this end, two normalized coordinate systems are deĄned relative to the source and target image bounding boxes, such that their origins are set on the top-left corners of the object bounding boxes, and the coordinates are normalized by the widths and heights of the bounding boxes. Let = ( A , A ) and = ( B , B ) be the top-left corners of the objects bounding boxes on and respectively, and (ℎ , ), (ℎ , ) the bounding box dimensions.

  Figure 3-11: Qualitative results on the Caltech-101 dataset. Each block of two rows corresponds to one example, where column (a) shows the original images Ű image in the Ąrst row and image in the second row. The remaining columns of the Ąrst row show image aligned to image using various methods. The second row shows image overlaid with the segmentation map transferred from image . Our results correspond to the two-stage aine+TPS model.

  Figure 3-12: Qualitative results on the Graffiti benchmark, pair (1, 5). The Ąrst and last columns show the source and target images. The intermediate columns show the progress of the alignment at diferent iterations.

  Figure 3-13: Qualitative results on the Tokyo Time Machine dataset. Each row shows a pair of images from the Tokyo Time Machine dataset, and our alignment along with a Şdiference mapŤ, highlighting absolute diferences between aligned images in the descriptor space. Our method successfully aligns image to image despite of viewpoint and scene changes (highlighted in the diference map).

  Figure 3-14: Filter visualization. Some convolutional Ąlters from the Ąrst layer of the regressor, acting on the tentative correspondence map, show preferences to spatially co-located features that transform consistently to the other image, thus learning to perform the local neighbourhood consensus criterion often used in classical feature matching. Refer to the text for more details on the visualization.
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 41 Figure 4-1: Illustration of the proposed method. We describe a CNN architecture that, given an input image pair (top), outputs dense semantic correspondence between the two images together with the aligning geometric transformation (middle) and discards geometrically inconsistent matches (bottom). The alignment model is learnt from weak supervision in the form of matching image pairs without correspondences.
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 42 Figure4-2: End-to-end weakly-supervised alignment. Source and target images ( , ) are passed through an alignment network used to estimate the geometric transformation . Then, the soft-inlier count is computed (in green) by Ąrst Ąnding the inlier region in agreement with , and then adding up the pairwise matching scores inside this area. The soft-inlier count is diferentiable, which allows the whole model to be trained using back-propagation. Functions are represented in blue and tensors in pink.

Feature extraction .

 extraction The input source and target images, ( , ), are passed through two fully-convolutional feature extraction CNN branches, , with shared weights. The resulting feature maps ( , ) are ℎ × × tensors which can be interpreted as dense ℎ × grids of -dimensional local features : ∈ R . These individual -dimensional features are L2 normalized.

  e.g. = 6 for an aine model. The estimated transformation parameters are used to deĄne the 2-D warping : : R 2 ⊃ R 2 , ( , ) = ( , ) (4.3) where ( , ) are the spatial coordinates of the target image, and ( , ) the corresponding sampling coordinates in the source image. Using , it is possible to warp the source to the target image.

  Figure 4-3: Line-fitting example. (a) The line hypothesis ℓ can be evaluated in terms of the number of inliers. (b) The inlier mask speciĄes the region where the inlier distance threshold is satisĄed. (c) In the discretized space setting, where the match score exists for every point (, ), the soft-inlier count is computed by summing up match scores masked by the inlier mask from (b).

  ) are the estimated coordinates of target imageŠs point (, ) in the source image according to the geometric transformation ; d ⎞ (, ), (, ) ︁ is the transfer error as it measures how aligned is the point (, ) in the source image, with the projection of the target image point (, ) into the source image. The soft-inlier count is then computed by summing the masked matching scores over the entire space

  afecting our claim of weakly supervised training 1 . Training details. Training and validation image pairs are obtained from the training set of PF-PASCAL, described in Section 4.4.2. All input images are resized to 240×240, and the value = /30 (where = ℎ = is the size of the extracted feature maps)was used for the transfer error threshold. The whole model is trained end-to-end, including the aine parameters in the batch normalization layers. However, the running averages of the batch normalization layers are kept Ąxed, in order to be less dependent on the particular statistics of the training dataset. The network is implemented in PyTorch[START_REF] Paszke | Automatic diferentiation in PyTorch[END_REF] and trained using the Adam optimizer[START_REF] Kingma | A method for stochastic optimization[END_REF] with learning rate 5 ≤ 10 ⊗8 , no weight decay and batch size of 16. The training dataset is augmented by horizontal Ćipping, swapping the source and target images, and random cropping. Early stopping is required to avoid overĄtting, given the small size of the training set. This results in 13 training epochs, taking about an hour on a modern GPU.

[

  [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF]. The recently introduced TSS dataset contains 400 semantically related image pairs, which are split into three diferent subsets: FG3DCar, JODS and PASCAL, according to the origin of the images. Ground-truth Ćow is provided for each pair, which was obtained by manual annotation of sparse keypoints, followed by automatic densiĄcation using an interpolation algorithm. The evaluation metric is the PCK computed densely over the foreground object. The distance threshold is deĄned as Ð max( , ℎ ) with ( , ℎ ) being the dimensions of the source image, and Ð = 0.05.Assessing generalization.We train a single semantic alignment network with the 700 training pairs from PF-PASCAL without using the keypoint annotations, and stress that our weakly-supervised training objective only uses the information that the image pair should match. The same model is then used for all experiments Ű evaluation on the test sets of PF-PASCAL, Caltech-101 and TSS datasets. This poses an additional diiculty as these datasets contain images of diferent object categories or of diferent nature. While PF-PASCAL contains images of common objects such as car, bicycle, boat, etc, Caltech-101 contains images of much less common categories such as accordion, buddha or octopus. On the other hand, while the classes of TSS do appear in PF-PASCAL, the pose diferences in TSS are usually smaller than in PF-PASCAL, which modiĄes the challenge into obtaining a very precise alignment.

  . The architecture requires supervision only in the form of matching image pairs and sets the new state-ofthe-art on multiple standard semantic alignment benchmarks, even beating alignment methods that require geometric supervision at training time. However, handling multiple objects and non-matching image pairs still remains an open challenge. These results open-up the possibility of learning powerful correspondence networks from large-scale datasets such as ImageNet.
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 44 Figure 4-4: Alignment examples on the Caltech-101 and TSS datasets. Each row shows the (left) source and (middle) target images, and (right) the automatic semantic alignment.
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 45 Figure 4-5: Alignment examples on the PF-PASCAL dataset. Each row corresponds to one example. (a) shows the (right) automatic semantic alignment of the (left) source and (middle) target images. (b) shows the strongest inlier feature matches.

Fig. 5

 5 Fig. 5-1. There are Ąve main components: (i) dense feature extraction and matching, (ii) the neighbourhood consensus network, (iii) a soft mutual nearest neighbour Ąltering, (iv) extraction of correspondences from the output 4D Ąltered match tensor, and (v)
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 51 Figure5-1: Overview of the proposed method. A fully convolutional neural network is used to extract dense image descriptors and for images and , respectively. Scores for all pairs of individual feature matches and are stored in the 4-D correlation map (here shown as a 3-D illustration). These matches are further processed by the proposed soft-nearest neighbour Ąltering and neighbourhood consensus network to produce the Ąnal set of output correspondences.

  which consists of 400 semantically related image pairs which are subdivided into three subgroups: FG3D, JODS and PASCAL. By employing a semi-automated method requiring human intervention, dense ground-truth Ćow maps were computed for each image pair, which enables dense evaluation of the alignment, in contrast to sparse keypoints or segmentation masks used in the previous two cases. The metric employed to assess the dense alignment is also the percentage of correct keypoints (PCK) Ű but evaluated densely and not sparsely Ű with distance threshold = Ð max(ℎ, ), where (ℎ, ) is the target image resolution. Training. From the three category-level benchmarks, only the PF-Pascal provides a training split [Han et al., 2017], which divides the data into approximately 700 pairs for training, 300 for validation and 300 for testing. In order to train the network in a weakly-supervised manner using the proposed loss (5.11), the 700 training pairs of PF-Pascal are used as positive training pairs, and negative pairs are generated by randomly pairing images of diferent categories, such as a car with a dog image. The same model trained on the PF-Pascal training split was used for evaluation on all the category-level benchmarks. LT-ACC FG3D JODS PASCAL avg.

  1. The proposed neighbourhood consensus network (NCNet) obtains state-of-the-art results in several of the evaluated benchmarks. Qualitative examples of the semantic keypoint transfer on the PF dataset are shown in Fig. 5-4. Additional qualitative examples of dense alignment on the Caltech-101 and TSS datasets are presented in Fig. 5-5. These qualitative results demonstrate how our approach can correctly match semantic object parts in challenging situations with large changes of appearance and non-rigid geometric deformations. Note that the dense alignments in Fig. 5-5 are obtained directly by bilinear interpolation of the matches outputted by NCNet, not requiring the use of any global geometric model or regularization technique, in contrast with other methods.

  Figure 5-4: Semantic keypoint transfer. The annotated (ground truth) keypoints in the left image are automatically transferred to the right image using the dense correspondences between the two images obtained from our NCNet.
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 55 Figure 5-5: Dense semantic alignment. The Ąrst two columns show the source and target images, respectively. The right-most column shows the result of transforming the source image by bilinear interpolation using the matches obtained by NCNet such that the result is aligned to the target image. Note that no global geometric model is used for the warping.

  restaurants, cafes, museums or cathedrals, by crawling Google Maps. It features not only viewpoint and illumination changes, such as the variations present in the HPatches dataset, but also scene modiĄcations due to the passage of time as in the InLoc dataset. The IVD dataset contains 3861 positive image pairs from 89 diferent venues in 6 diferent cities, split into train: 3481 pairs (80 places) and validation: 380 pairs (from the remaining 9 places). The same model trained on IVD was used for evaluation on both the HPatches and InLoc benchmarks. Results. We use the trained NCNet model to Ąnd correspondences in each pair of the HPatches dataset and evaluate the accuracy of these correspondences. The results using the mean matching accuracy (MMA) metric from (5.14) are presented in Fig. 5-6. In Fig. 5-6a, the results of several variants of the proposed method are presented.

  Comparison with state-of-the-art methods. The proposed L-NCNet (with a feature map size = 200) method obtains the best overall results for threshold values above 5px and the best viewpoint results for thresholds above 5.5px.
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 56 Figure5-6: HPatches benchmark results. We report the Mean Matching Accuracy (MMA) as a function of the tolerance threshold for the illumination and viewpoint subsets, as well as the overall results.
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 57 Figure 5-7: Correspondences on HPatches images. The top row shows the image pair;the middle row shows the matches obtained directly from the correlation map (before NCNet Ąltering); the bottom row shows the matches obtained by the proposed method (after NCNet Ąltering). Correspondences have been coloured as inliers (green) and outliers (red) w.r.t. the ground-truth homography using a threshold of 5px. Each image shows 100 randomly sampled matches from the top 2000 matches. The proposed NCNet method tends to obtain a larger fraction of correct matches which span a larger portion of the image with respect to the raw matches before NCNet Ąltering.

  i. retrieval, ii. re-ranking, iii. pose estimation for shortlisted images, and iv. dense pose veriĄcation by view synthesis. We integrate NCNet as an intermediate step between the re-ranking (ii) and pose estimation steps (iii) of the InLoc pipeline. In the combined approaches DensePE+NCNet and InLoc+NCNet, the matches generated by NCNet are used to compute the poses in step (iii). DensePE+NCNet contains steps (i-iii) while InLoc+NCNet also contains the dense pose veriĄcation step (iv).In order to evaluate the contribution of NCNet separately from that of the feature extractor network, two additional experiments are performed where NCNet is replaced with hard mutual nearest neighbours matching (MNN), using the same base CNN network (ResNet-101). Results are summarized in Table5.3 and clearly demonstrate beneĄts of our approach (DensePE+NCNet) compared to both sparse keypoint (DoG+SIFT) matching (SparsePE) and the CNN feature matching used in[START_REF] Taira | InLoc: Indoor visual localization with dense matching and view synthesis[END_REF] (DensePE). When inserted into the entire localization pipeline, our approach (InLoc + NCNet) obtains state-of-the-art results on the indoor localization benchmark. For these experiments an input resolution of = 3200 pixels along the longest image edge together with the feature relocalization operation from Sec. 5.3.7 were used. Qualitative results of NCNet in challenging indoor scenes with repetitive structures and texture-less areas are presented in Fig.5-8.

  Figure 5-8: Correspondences and poses on InLoc. Each row shows (a-b) the correspondences used for pose estimation in the case of the proposed NCNet method (blue) against those of the baseline InLoc method (red); and (c) the resulting obtained poses for the proposed NCNet (blue) and InLoc baseline (red) compared to the ground-truth pose (green). In both cases the InLoc baseline produces many mismatches due to repetitive structures (ceiling lamps in the top, and columns in the bottom example) that result in a large pose error. On the other hand, NCNet obtains mostly correct matches resulting in a small pose error.

  ⊗4 and keeping the feature extraction layer weights Ąxed. We used a batch size of 16 and the training takes 9 hours on a standard Tesla T4 GPU. For category level matching, the model is then subsequently Ąnetuned for 5 more epochs, training both the feature extraction and the neighbourhood consensus network, with a learning rate of 1 × 10 ⊗5 . In the case of instance level matching, Ąnetuning the feature extraction did not improve the performance.4D convolutions. As 4D convolutions ( * 4 ) are not currently supported by PyTorch, they were implemented by aggregating the results of multiple 3D convolutions ( * 3 ) over the remaining fourth dimension. Given a 4D input tensor ∈ R ℎ××× and a 4D weight tensor ∈ R ××× with odd (channel and batch dimensions are omitted for simplicity), their convolution can be then computed by: with ′ = + ⊗ ( ⊗ 1)/2 ,

  this chapter we have presented a neighbourhood consensus network Ů a CNN architecture that learns local patterns of correspondences for image matching without the need for a global geometric model. We have shown the model can be trained efectively from weak supervision and obtains strong results outperforming state-ofthe-art on two very diferent matching tasks. These results open up the possibility for end-to-end learning of other challenging visual correspondence tasks, such as 3D

  Figure 6-1: Correspondence estimation with Sparse-NCNet. Given an input image pair (a), we show the raw output correspondences produced by Sparse-NCNet (b) which contain groups of spatially coherent matches. These groups tend to form around highly-conĄdent matches, which are shown in yellow shades (c) (see Sec. 6.5 for a discussion on this behaviour and additional examples).

  and match Ąltering. Contrary to most methods, which operate on local features, NCNet operates on dense feature maps ( , ) ∈ R ℎ×× with channels, which are extracted over a regular grid of ℎ × spatial resolution. These are obtained from the input image pair ( , ) ∈ R × ×3 by a fully convolutional feature extraction network. The resolution ℎ × of the extracted dense features is typically 1/8 or 1/16 of the input image resolution × , depending on the particular feature extraction network architecture used.
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 62 Figure 6-2: Overview of Sparse-NCNet. From the dense feature maps and , their top K matches are computed and stored in the one-sided sparse 4D correlation tensors ⊃ and ⊃ , which are later combined to obtain the symmetric sparse correlation tensor . The raw matching score values in are processed by the 4D Sparse-NCNet (≤) producing the output tensor of Ąltered matching scores.

  -2. Similar to NCNet, the Ąrst stage of our proposed method consists in dense feature extraction. Given a pair of RGB input images ( , ) ∈ R × ×3 , 2-normalized dense features ( , ) ∈ R ℎ×× are extracted via a fully convolutional network

(

  soft relocalization) then reĄnes this correspondence further, by obtaining a sub-feature accuracy in the 2ℎ × 2 grid. These two relocalization steps are illustrated in Fig.6-3, and are now described in detail.Hard relocalization. The Ąrst step is hard relocalization, which can improve localization accuracy by 2×. For each match = , and 2 × 2 local feature crops , , , ∈ R 2×2× are sampled around these coordinates from the high resolution feature maps and :
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 66 Figure 6-6: HPatches qualitative results (viewpoint). We present the results of Sparse-NCNet, along with state-of-the-art methods SuperPoint [DeTone et al., 2018], D2-Net [Dusmanu et al., 2019] and R2D2 [Revaud et al., 2019]. The correct correspondences are shown in green, and the incorrect ones in red for a threshold = 3px. Below each pair we indicate the fraction of correct matches (both in percentage and absolute values). Our method is presented for both the top 2K matches and the top 6K matches, and it obtains the largest fraction of correct matches for both cases. Examples are from the viewpoint sequences.
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 67 Figure 6-7: HPatches qualitative results (illumination). We present the results of Sparse-NCNet, along with state-of-theart methods SuperPoint [DeTone et al., 2018], D2-Net[START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] and R2D2[START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF]. The correct correspondences are shown in green, and the incorrect ones in red for a threshold = 3px. Below each pair we indicate the fraction of correct matches (both in percentage and absolute values). Our method is presented for both the top 2K and top 6K matches, and it obtains the largest fraction of correct matches for both cases. Examples are from the illumination sequences.
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 68 Figure 6-8: Results on the InLoc benchmark for long-term indoor localization. (Left) Our proposed method (A) obtains state-of-the-art results on this benchmark. (Right) Our method obtains correspondences in challenging indoor scenes with repetitive patterns and low amount of texture. Top: query images. Bottom: matched database images captured from diferent viewpoints. Correspondences produced by our approach are overlaid in green. The query and database images were taken several months apart.
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 69 Figure 6-9: InLoc qualitative results.For each image pair, we show the top 500 matches produced by Sparse-NCNet between the query image (top row) and database image (middle row). In addition we show the rendered scene from the estimated query 6-dof pose (bottom row), obtained by running RANSAC+PnP[START_REF] Fischler | Random sample consensus: a paradigm for model Ątting with applications to image analysis and automated cartography[END_REF][START_REF] Gao | Complete solution classiĄcation for the perspective-three-point problem[END_REF]] on our matches. Note these rendered images are well aligned with the query images, demonstrating that the estimated poses have low translation and rotation errors.

  -1. Additional qualitative examples are shown in Fig. 6-10. We show several image pairs composed of night query images (top) and their top matching database images (bottom), according to the average matching score of Sparse-NCNet. For each image pair, we overlay the top 500 correspondences obtained with Sparse-NCNet. Note that these correspondences were not geometrically veriĄed by any means. Nevertheless, as seen in Fig. 6-10, most correspondences are coherent and seem to be correct, despite the strong changes in illumination between night and day images.
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 610 Figure 6-10: Aachen day-night results. We show the top 500 correspondences obtained by Sparse-NCNet between the night query image (top) and the database day image (bottom). Note that the large majority of matches are correct, despite the strong illumination changes.

Figure 6

 6 Figure 6-11: Insights about Sparse-NCNet. We show the top matches between each pair of images for diferent values of . The strength of the match is shown by color (the more yellow the stronger). Please note how new matches tend to appear close to high scoring matches, demonstrating the propagation of information in Sparse-NCNet.

Finally, we have

  shown that the usage of a correlation operation for matching provides good generalization properties, by showing successful results in both instance-and category-level alignment despite the domain gap between training and testing. In Chapter 4, we have extended the previously proposed model with a weaklysupervised training module, which does not require access to the ground-truth geometric transformation, and thus allows training from corresponding pairs of natural images with no further annotation. This weakly-supervised training module is based

  -scale training. Most trainable methods for correspondence estimation have relied on 3D reconstruction from structure-from-motion (SfM) as a way to generate ground-truth correspondences for training. However, this may introduce a bias for DoG detections if only the sparse 3D point-cloud from SfM methods based on DoG detections are used. An alternative is to obtain dense correspondences between image pairs using optical Ćow, and use the sparse correspondences and camera poses from

  

Algorithm 2: Transformation estimation using two-stage network input

  . In addition, qualitative alignment results are presented for the Tokyo Time Machine dataset [Arand-

		: Source and target images ( , )
		Stage 1 CNN model 1
		Stage 2 CNN model 2
	output : Aligned image ′′
	// First stage
	1 = 1 ( , );
	′	= 1 ( );
	// Second stage
	2 = 2 ( ′	, );
	′′	= 2 ( ′	);
	jelović et al., 2016].

  Table3.2: Results on the TSS dataset. We report the matching accuracy in terms of PCK (Ð = 0.05). The three intermediate columns show the results for each subset of the TSS dataset: FG3DCar, JODS and PASCAL. The last column shows the PCK result over the whole dataset.

		.79	0.65	0.53	0.68
	Ours (aine)	0.81	0.65	0.51	0.68
	Ours (homography)	0.83	0.66	0.52	0.70
	Ours (TPS)	0.84	0.72	0.51	0.71
	Ours (aine + TPS)	0.89	0.72	0.54	0.75
	Ours (homography + TPS)	0.88	0.72	0.55	0.75
	Ours (2×TPS)	0.86	0.70	0.52	0.72

Table 3

 3 Matching quality is measured in terms of LT-ACC and IoU. The best two Proposal Flow methods (RP, LOM and SS, LOM) are included here. All numbers apart from ours are taken from

	.78	0.50	0.25

.3: Evaluation on the Caltech-101 dataset.

Table 3 . 4 :

 34 Evaluation on the Graffiti benchmark. Matching quality is measured in terms of the AEE (px), being the original image of 640 × 800 px. Our homography estimation model is run recursively Ąve times. fails for pair(1, 6). The lower performance of our method when compared to local interest points methods can be explained by the lower resolution of the input image, which is resized from 800 × 640px to 240 × 240px, and also by the low resolution of the extracted CNN features, which is of 15 × 15. In addition, due to the max-pooling operations, the exact positions of the image features cannot be recovered from the CNN features.

	0.60	1.57	1.44	2.40	2.75

  Ablation studies. We report ablations on the matching layer and efect of the training dataset. Accuracy is measured in terms of the PCK on the PF-WILLOW dataset using the single-stage aine model.

	]	0.24
	Concatenation [DeTone et al., 2016]	0.34
	Ours (without normalization)	0.41
	Ours (trained on PASCAL)	0.47
	Ours (trained on StreetView)	0.48
	Table 3.5:	

  Table3.6: Robustness to occlusions. We report the PCK on the PF-WILLOW dataset.

		Occluded area
		0% 10% 20%
	Proposal Flow (SS, LOM) [Ham et al., 2016]	0.56 0.46 0.30
	Ours (homography+TPS)	0.60 0.46 0.32
	Ours trained with 10% occlusions (hom.+TPS)	0.57 0.47 0.36
	Ours trained with 20% occlusions (hom.+TPS)	0.48 0.43 0.38

Table 4

 4 

	Paper	Descriptor	Alignment method	Trainable D A E-E S
	Liu et al.Ś11 [Liu et al., 2011]	SIFT	SIFT Flow ✗ ✗ ✗ -
	Kim et al.Ś13 [Kim et al., 2013]	SIFT+PCA DSP	✗ ✗ ✗ -
	Taniai et al.Ś16 [Taniai et al., 2016]	HOG	TSS	✗ ✗ ✗ -
	Ham et al.Ś16 [Ham et al., 2017]	HOG	PF-LOM	✗ ✗ ✗ -
	Yang et al.Ś17 [Yang et al., 2017]	HOG	OADSC	✗ ✗ ✗ -
	Ufer et al.Ś17 [Ufer and Ommer, 2017] AlexNet	DSFM	✗ ✗ ✗ -
	Novotny et al.Ś17 [Novotny et al., 2017] AnchorNet	DSP PF-LOM	✓ ✗ ✗ w ✓ ✗ ✗ w
	Kim et al.Ś17 [Kim et al., 2018b]	FCSS	SIFT Flow ✓ ✗ ✗ s PF-LOM ✓ ✗ ✗ s
	Kim et al.Ś17 [Kim et al., 2017]	FCSS	DCTM	✓ ✗ ✗ s
			SCNet-A	✓ ✓ ✗ s
	Han et al.Ś17 [Han et al., 2017]	VGG-16	SCNet-AG ✓ ✓ ✗ s
			SCNet-AG+ ✓ ✓ ✗ s
	Rocco et al.Ś17 [Rocco et al., 2017]	VGG-16 ResNet-101 CNN Geo. ✓ ✓ ✓ s CNN Geo. ✓ ✓ ✓ s
	Proposed method	ResNet-101 CNN Geo. ✓ ✓ ✓ w

.1: Comparison of recent related work. The table indicates employed image descriptor and alignment method. The last four columns show which components of the approach are trained for the semantic alignment task: descriptor (D), alignment (A) or both in end-to-end manner (E-E); and the level of supervision (S): strong (s) or weak (w).

Table 4

 4 

.3 presents the quantitative results for this dataset. The proposed method beats state-of-the-art results in terms of the label-transfer accuracy and intersection-over-union metrics. Weakly supervised training again improves the results, by 2%, over the synthetically trained ResNet-101+CNNGeo. In terms of the localization-error metric, our model does not attain state-of-the-art performance, but we argue that this metric is not a good indication of the alignment quality, as explained in section 4.4.2. This claim is further backed up by noticing that the relative ordering of various methods based on this metric is in direct opposition with the other two metrics.

Table 4
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	.83	0.61	0.25

.3: Evaluation results on the Caltech-101 dataset.

  The quantitative results for the TSS dataset are presented in Table4.4. We set the state-of-the-art for two of the three subsets of the TSS dataset: FG3DCar and JODS. Although our weakly supervised training provides an improvement over the base alignment network, ResNet-101+CNNGeo, the gain is modest. We believe the reason is a very diferent balancing of classes in this dataset compared to our training.

		0.901 0.764 0.563 0.743
	Proposed	0.903 0.764 0.565 0.744
	Table 4.4: Evaluation results on the TSS dataset.

TSS.

Recall our model is trained only once on the PF-PASCAL dataset, and is then applied without any further training on TSS and Caltech-101.

Qualitative results. Figures 4-4a, 4-4b and 4-5 show qualitative results on the

Caltech-101, TSS and PF-PASCAL datasets, respectively. Our method is able to align images across prominent viewpoint changes, in the presence of signiĄcant clutter, while simultaneously tolerating large intra-class variations.

Table 5 . 2 :

 52 Homography estimation on HPatchesThe number of correctly aligned pairs (within a 5px average transfer error threshold) for each method and benchmark subset (illumination, viewpoint or overall) is computed. For the correct pairs, we also present the average number of inliers and transfer error (TE). NCNet obtains the largest number of correctly aligned pairs overall (524 out of 540) with the smallest average transfer error (0.86px).

  Table5.3: InLoc benchmark results. We show the rate (%) of correctly localized queries within a given distance (m) and 10 ◇ angular error.

			Distance (m)	
	Method	0.25	0.50	1.00	2.00
	SparsePE [Taira et al., 2018] 21.3	30.7	42.6	48.3
	DensePE [Taira et al., 2018]	35.3	47.4	57.1	61.1
	DensePE+MNN	31.9	50.5	62.0	64.7
	DensePE+NCNet	37.1	53.5	62.9	66.3
	InLoc[Taira et al., 2018]	38.9	56.5	69.9	74.2
	InLoc+MNN	37.1	60.2	72.0	76.3
	InLoc+NCNet	44.1 63.8 76.0 78.4

  NCNet formulation (5.6), namely the symmetric 4D convolutional network that implements neighbourhood consensus, and the soft mutual nearest neighbour Ąltering operation . For this, we train diferent variants of the proposed method and evaluate their performance on the PF-Pascal benchmark. No Ąnetuning of the feature extraction network is performed in this ablation. Results are presented in Table5.4.The top section of the table shows the performance of two networks containing only the isolated symmetric neighbourhood-consensus and soft mutual nearest neighbour Ąltering components. As it can be observed, the isolated components do not perform well in the task of keypoint transfer. The middle section of the table shows the combinations of these two components. Note that applying the soft mutual nearest neighbour Ąltering Ąrst and then symmetric neighbourhood consensus module produces much better results than doing so in the opposite order. The bottom section of the table shows the full proposed model including two stages of soft mutual nearest neighbour Ąltering , using both the lightweight L-NCNet and the symmetric NCNet versions.

  -4 we compare the matching quality of the proposed Sparse-NCNet model and the NCNet model. We Ąrst compare both methods NCNet against several methods, including state-of-the-art trainable methods such as SuperPoint[START_REF] Detone | SuperPoint: Self-Supervised Interest Point Detection and Description[END_REF], D2-Net[START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] NCNet, 2k Sparse-NCNet, 6k 41.6% (558/1342) 30.6% (424/1386) 72.7% (722/993) 99.7% (1994/2000) 99.2% (5952/6000) NCNet, 2k Sparse-NCNet, 6k 68.8% (727/1057) 45.7% (1170/2561) 64.8% (1567/2420) 85.6% (1712/2000) 77.6% (4656/6000)

	under equal conditions, both without relocalization (methods A1 vs. A2), and with hard relocalization only (methods B1 vs. B2). The results in Fig. 6-4 show that Sparse-NCNet can obtain signiĄcant reductions in processing time and memory consumption, while keeping almost the same matching performance. In addition, our proposed Method Feature resolution Reloc. method Reloc. resolution Mean time (s) Peak VRAM (MB) A1. Sparse-NCNet 100 × 75 Ů Ů 0.83 251 A2. NCNet 100 × 75 Ů Ů 9.81 5763 B1. Sparse-NCNet 100 × 75 H 200 × 150 1.55 1164 B2. NCNet 100 × 75 H 200 × 150 10.56 7580 C1. Sparse-NCNet 100 × 75 H+S 200 × 150 1.56 1164 C2. Sparse-NCNet 200 × 150 H+S 400 × 300 7.51 2391 (a) Time and GPU memory comparison (Tesla T4 GPU) 1 2 3 4 5 6 7 8 9 10 threshold [px] 0.0 0.2 0.4 0.6 0.8 1.0 MMA Illumination 1 2 3 4 5 6 7 8 9 10 threshold [px] Viewpoint 1 2 3 4 5 6 7 8 9 10 threshold [px] Overall (b) MMA on HPatches Sequences Figure 6-4: Sparse-NCNet vs. NCNet on HPatches. Sparse-NCNet can obtain equivalent results to NCNet, both without relocalization (cf. A1 vs. A2), and with hard relocalization (H) (cf. B1 vs. B2), while greatly reducing execution time and memory consumption. The proposed two-stage relocalization (H+S) brings an improvement in matching accuracy with a minor increase in execution time (cf. C1 vs. B1). Finally, the reduced memory consumption in Sparse-NCNet allows for processing in higher resolution, which produces the best results, while still being faster and more memory eicient than NCNet (cf. C2 vs. B2). processing time (methods C1 vs. B1). Finally, the reduced memory consumption allows for processing of higher resolution 200 × 150 feature maps, which is not possible for NCNet. Our proposed method in higher resolution (method C2) produces the best results while still being 30% faster and 3× more memory eicient than the best NCNet variant (method B2). Sparse-NCNet vs. state-of-the-art methods. In addition, we compare the per-formance of Sparse-SuperPoint D2-Net R2D2 Sparse-SuperPoint D2-Net R2D2 Sparse-
	two-stage relocalization module can improve performance with a minor increase in

The initial model is trained with a supervised loss, but the ŞsupervisionŤ is automatic due to the use of synthetic data.
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based on the idea of guided search. The intuition is that we search for accurately localised matches on 2ℎ × 2 resolution dense feature maps, guided by the coarse matches output by Sparse-NCNet at ℎ × resolution. For this, dense features are Ąrst extracted at twice the normal resolution ( , ) ∈ R 2ℎ×2× , which is done by upsampling the input image by 2× before feeding it into the feature extraction CNN (≤). Note that these higher resolution features are used for relocalization only, i.e. they are not used to compute the correlation tensor or processed by the 4D CNN for match-Ąltering, which would be too expensive. Then, these dense features are downsampled back to the normal ℎ × resolution by applying a 2 × 2 max-pooling operation with a stride of 2, obtaining and . These low resolution features ( , ) ∈ R ℎ×× are processed by Sparse-NCNet, which outputs matches in the form = ⎞ (, ), (, ) ︁ , with the coordinates (, ) and (, ) indicating the position of the match in and , respectively, as described by (6.6).

Having obtained the output matches in ℎ × resolution, the Ąrst step (hard relocalization) consists in Ąnding the best equivalent match in the 2ℎ × 2 resolution grid. This is done by analysing the matches between two local crops of the high resolution features and , and keeping the highest-scoring one. The second step or R2D2 [START_REF] Revaud | R2D2: Repeatable and reliable detector and descriptor[END_REF]. The mean-matching accuracy results are presented in Fig. 6-5. For all other methods, the top 2000 features points were selected from each image, and matched enforcing mutual nearest-neighbours, yielding approximately 1000 correspondences per image pair. For Sparse-NCNet, the top 1000 correspondences were selected for each image pair, for a fair comparison. Sparse-NCNet obtains the best results for the illumination sequences for thresholds higher than 4 pixels, and in the viewpoint sequences for all threshold values. Sparse-NCNet obtains the best results overall, with a large margin over the state-of-the-art R2D2 method. We believe this could be attributed to the usage of dense descriptors (which avoid the loss of detections) together with an increased matching robustness from performing neighbourhood consensus. 

Qualitative results are presented in
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