Adéquation algorithme architecture pour l'accélération de méthodes d'inversion de données en grande dimension

Nicolas GAC

Maître de conférences à l'université Paris Saclay Laboratoire des Signaux et Systèmes (L2S) - Groupe Problèmes Inverses (GPI)

Soutenance HDR, 23 novembre 2020

- 2 Adéquation Algorithme Architecture (A^3)
- 3 Calcul intensif sur GPU/FPGA
 - 4 Calcul distribué sur serveur multiGPU
- 5 Perspectives

~ ~

Formation		
2000-04	ENSIMAG + DEA Microélectronique + M2 Trait. signal	
2004-08	Thèse (GIPSA-lab) A ³ sur FPGA pour la tomographie TEP	[R ₂₀₀₉ ,R ₂₀₁₂]
2007-08	ATER à l'Université de Cergy	
2008-09	Post-Doctorat (L2S/CEA-List) A ³ sur GPU pour la tomographie X	

2009-.. Maître de conférences à l'Université Paris Saclay (IUT de Cachan)

Recherche au Groupe Problèmes Inverses (GPI)

2017-19 **Délégation CNRS** à mi-temps au laboratoire Lagrange (Nice)

Parallélisation multiGPU pour la radioastromie

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

23 novembre 2020 3/30

Activité d'enseignement

Enseignements IUT (90%) et M2 (10 %)

IUT Systèmes numériques embarqués

M2 M2 SETI (parallélisation GPU/FPGA) + M2 ATSI (Imagerie médicale)

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

Parcours depuis le doctorat

- 2 Adéquation Algorithme Architecture (A³)
 - Problématique et positionnement
 - A³ au sein du GPI
 - Encadrement de thèses et collaborations
 - Calcul intensif sur GPU/FPGA
 - \bullet Paire de projection/rétroprojection \mathcal{P}/\mathcal{R}
 - Opérateur de convolution ${\mathcal C}$

4 Calcul distribué sur serveur multiGPU

- Reconstruction tomographique
- DeconvSKA : Déconvolution en radioastronomie
- 5 Perspectives
 - Une méthodologie A³ à échelle humaine
 - SKA, un défi A³ à grande échelle

Meilleure combinaison d'architectures et d'algorithmes

sous contraintes de :

- temps de traitement
- précision de calcul
- consommation énergétique

Meilleure combinaison d'architectures et d'algorithmes

sous contraintes de :

- temps de traitement
- précision de calcul
- consommation énergétique

- coût du système de calcul
- temps de développement

Meilleure combinaison d'architectures et d'algorithmes

sous contraintes de :

- temps de traitement
- précision de calcul
- consommation énergétique

- coût du système de calcul
- temps de développement

Différentes approches A³

- outils pour le TdSI (ex : Syndex, PREESM ...)
- proche des capteurs (*smart sensors*)
- proche de l'application et des architectures

Meilleure combinaison d'architectures et d'algorithmes

sous contraintes de :

- temps de traitement
- précision de calcul
- consommation énergétique

- coût du système de calcul
- temps de développement

Différentes approches A³

- outils pour le TdSI (ex : Syndex, PREESM ...)
- proche des capteurs (*smart sensors*)
- proche de l'application et des architectures
 - contextes applicatifs spécifiques avec contraintes fortes
 - solutions « sur mesure » pour des performances optimales.

Adéquation Algorithme Architecture

Enjeux

- Interaction humaine la plus forte possible entre expertises :
 - applicative
 - algorithmique
 - matérielle
- Prise en compte des évolutions technologiques
- Difficile mais impérative généralisation de la démarche A³

Problème inverse

Reconstruction à partir des mesures d'un instrument

Verrous

- #1 Problèmes dit « mal posé »
- #2 Problème en grande dimension

Problème inverse

Reconstruction à partir des mesures d'un instrument

Verrous

- #1 Problèmes dit « mal posé »
- #2 Problème en grande dimension

Méthodes analytiques

Modélisation souvent réductrice

🙂 rapide 🙁 moins robuste

Problème inverse

Reconstruction à partir des mesures d'un instrument

Verrous

- #1 Problèmes dit « mal posé »
- #2 Problème en grande dimension

Méthodes analytiques

Modélisation souvent réductrice

🙂 rapide 🙁 moins robuste

Reconstructions d'une mousse métallique [C_{2011a}]

Problème inverse

Reconstruction à partir des mesures d'un instrument

Verrous

- #1 Problèmes dit « mal posé »
- #2 Problème en grande dimension

\mathbb{M}_D : $oldsymbol{g} = oldsymbol{H}oldsymbol{f} + oldsymbol{\epsilon}$

- g : mesures de l'instrument
- \boldsymbol{H} : modèle d'acquisition
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

\mathbb{M}_D : $\mathbf{g} = \mathbf{H}\mathbf{f} + \mathbf{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- $\pmb{H}: \mathsf{modèle} \ \mathsf{d'acquisition}$
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

Approches bayésiennes

Loi a posteriori : $p(f|g) = \frac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

- Choix de l'estimateur
- 2 Choix du modèle de l'instrument H
- ${f 0}$ Choix du modèle des incertitudes ϵ
- Ohoix du modèle de l'objet \mathbb{M}_f
- Ohoix de l'algorithme d'optimisation

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- \boldsymbol{H} : modèle d'acquisition
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

Approches bayésiennes

Loi a posteriori : $p(f|g) = \frac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

MAP

- EAP
- Choix du modèle de l'instrument H
- ${f 0}$ Choix du modèle des incertitudes ϵ
- ${f 0}$ Choix du modèle de l'objet ${\Bbb M}_f$
- Ohoix de l'algorithme d'optimisation

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- \boldsymbol{H} : modèle d'acquisition
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

Approches bayésiennes

Loi a posteriori : $p(f|g) = \frac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

MAP
FAP

- 2 Choix du modèle de l'instrument H
- ${f 0}$ Choix du modèle des incertitudes ϵ
- ${f 40}$ Choix du modèle de l'objet ${\Bbb M}_f$
- Ohoix de l'algorithme d'optimisation

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- **g** : mesures de l'instrument
- \boldsymbol{H} : modèle d'acquisition
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

Approches bayésiennes

Loi a posteriori : $p(f|g) = \frac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- EAP
- 2 Choix du modèle de l'instrument H
- ${f 0}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- ${f 0}$ Choix du modèle de l'objet ${\Bbb M}_f$
- S Choix de l'algorithme d'optimisation

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- **g** : mesures de l'instrument
- \boldsymbol{H} : modèle d'acquisition
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

Approches bayésiennes

Loi a posteriori : $p(f|g) = \frac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- EAP
- 2 Choix du modèle de l'instrument H
- ${f 0}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- Ohoix du modèle de l'objet \mathbb{M}_f
- S Choix de l'algorithme d'optimisation

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- **g** : mesures de l'instrument
- \boldsymbol{H} : modèle d'acquisition
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

Approches bayésiennes

Loi a posteriori : $p(f|g) = \frac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- EAP
- 2 Choix du modèle de l'instrument H
- ${f 0}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- Ohoix du modèle de l'objet M_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- S Choix de l'algorithme d'optimisation

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- **g** : mesures de l'instrument
- \boldsymbol{H} : modèle d'acquisition
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- EAP
- 2 Choix du modèle de l'instrument H
- ${f 0}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- Ohoix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- $\pmb{H}: \mathsf{modèle} \ \mathsf{d'acquisition}$
- f : objet à reconstruire
- ϵ : incertitudes sur g et H

Moindre carré reg. quadratique

$$J(f) = \|g - Hf\|^2 + \lambda \|Df\|^2$$
$$f^{(n+1)} = f^{(n)} - \alpha \nabla J(f^{(n)})$$

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- EAP
- Choix du modèle de l'instrument H
- ${f 3}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- Ohoix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- \pmb{H} : modèle d'acquisition
- f : objet à reconstruire
- $\boldsymbol{\epsilon}$: incertitudes sur \boldsymbol{g} et \boldsymbol{H}

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f;\mathbb{M}_D)p(f;\mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- 2 Choix du modèle de l'instrument H
- ${f 0}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- Ohoix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- \pmb{H} : modèle d'acquisition
- f : objet à reconstruire
- $\boldsymbol{\epsilon}$: incertitudes sur \boldsymbol{g} et \boldsymbol{H}

Nicolas GAC (L2S)

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- EAP
- 2 Choix du modèle de l'instrument H
- ${f 3}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- Ohoix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- $\pmb{H}: \mathsf{mod} \texttt{èle} \; \mathsf{d'acquisition}$
- f : objet à reconstruire
- $\boldsymbol{\epsilon}$: incertitudes sur \boldsymbol{g} et \boldsymbol{H}

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f;\mathbb{M}_D)p(f;\mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- 2 Choix du modèle de l'instrument H
- ${f 3}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- Ohoix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- \pmb{H} : modèle d'acquisition
- f : objet à reconstruire
- $\boldsymbol{\epsilon}$: incertitudes sur \boldsymbol{g} et \boldsymbol{H}

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f;\mathbb{M}_D)p(f;\mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- EAP
- 2 Choix du modèle de l'instrument H
- ${f 3}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- Ohoix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- \pmb{H} : modèle d'acquisition
- f : objet à reconstruire
- $\boldsymbol{\epsilon}$: incertitudes sur \boldsymbol{g} et \boldsymbol{H}

Nicolas GAC (L2S)

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f;\mathbb{M}_D)p(f;\mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- 2 Choix du modèle de l'instrument H
- ${f 3}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- Ohoix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- $\pmb{H}: \mathsf{mod} \texttt{èle} \; \mathsf{d'acquisition}$
- f : objet à reconstruire
- $\boldsymbol{\epsilon}$: incertitudes sur \boldsymbol{g} et \boldsymbol{H}

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f;\mathbb{M}_D)p(f;\mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- 2 Choix du modèle de l'instrument H
- ${f 3}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- Ohoix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

\mathbb{M}_D : $\boldsymbol{g} = \boldsymbol{H}\boldsymbol{f} + \boldsymbol{\epsilon}$

- \boldsymbol{g} : mesures de l'instrument
- \pmb{H} : modèle d'acquisition
- f : objet à reconstruire
- $\boldsymbol{\epsilon}$: incertitudes sur \boldsymbol{g} et \boldsymbol{H}

Nicolas GAC (L2S)

Approches bayésiennes

Loi a posteriori : $p(f|g) = rac{p(g|f; \mathbb{M}_D)p(f; \mathbb{M}_f)}{p(g)}$

Choix de l'estimateur

- 2 Choix du modèle de l'instrument H
- ${f 3}$ Choix du modèle des incertitudes ϵ
 - Lois normale, de student-t [C_{2017d}] ...
 - Error splitting model [R_{2019b}]
- 4 Choix du modèle de l'objet \mathbb{M}_f
 - Modèle de Gauss Markov Potts [R_{2017b}]
 - Représentation par ondelettes [R_{2018b}]
- S Choix de l'algorithme d'optimisation
 - Descente de gradient simple ou conjuguée
 - ADMM, split Bergman...

Adéquation Algorithme Architecture (A^3) A^3 au sein du GPI

Architectures de calcul étudiées

Plateforme de calcul avec cartes accélératrices

Puces accélératrices de calcul

- GPU : processeur massivement parallèle
- FPGA : conception d'une architecture sur mesure

⇒ Adaptées aux systèmes embarqués, PC ou supercalculateur HPC

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

Larges champs d'exploration architecturale

GPU : algorithmes massivement parallèles

Parallélisation

- #1 à grains fins sur les [100 5000] coeurs de calcul
- #2 à grains épais sur les [1-16] cartes accélératrices

Murs mémoire pour l'accès aux données

- #1 coeurs de calcul ↔ mémoire DDR [1 32] Go
- #2 cartes accélératrices ↔ mémoire hôte [0.1 1] To
- Boîte à outils d'accélération (texture 2D/3D, tensor cores, half float...)

Larges champs d'exploration architecturale

GPU : algorithmes massivement parallèles

Parallélisation

- #1 à grains fins sur les [100 5000] coeurs de calcul
- #2 à grains épais sur les [1-16] cartes accélératrices

• Murs mémoire pour l'accès aux données

- #1 coeurs de calcul ↔ mémoire DDR [1 32] Go
- #2 cartes accélératrices ↔ mémoire hôte [0.1 1] To
- Boîte à outils d'accélération (texture 2D/3D, tensor cores, half float...)

FPGA : outils de synthèse de haut niveau (HLS)

- Architecture alternative au GPU
 - #1 Architecture basse consommation
 - #2 Parallélisme de pipeline

• Guide/méthodologie d'utilisation des outils HLS

Reconnaissance radar

2010-13 **Thomas Boulay** - CIFRE avec Thales Air Systems

Classification de signatures radars accélérée sur GPUs

Reconnaissance radar

2010-13 Thomas Boulay

Imagerie acoustique

2010-13 **Ning Chu** - Bourse China Scholarship Council Approches bayésiennes pour la localisation de sources acoustiques

[R_{2014a}, C_{2014b}]

Reconstruction tomographique en imagerie à rayons X

2011-14 **Long Chen** - *CIFRE avec Carestream Dental* Réduction d'artefacts métalliques pour l'imagerie dentaire

 $\left[\mathsf{C}_{2013d}, \mathsf{C}_{2014d}\right]$

2014-17 Li Wang2016-19 Camille Chapdelaine
Reconstruction tomographique en imagerie à rayons X

- 2011-14 Long Chen
- 2014-17 Li Wang Bourse China Scholarship Council

Approches bayésiennes hiérarchiques pour la reconstruction

 $[\mathsf{R}_{2017a},\mathsf{R}_{2018b}]$

2016-19 Camille Chapdelaine

Reconstruction tomographique en imagerie à rayons X

- 2011-14 Long Chen
- 2014-17 Li Wang
- 2016-19 **Camille Chapdelaine** *CIFRE avec SAFRAN* Contrôle Non Destructif (CND) de pièces aéronautiques

 $\left[\mathsf{R}_{2017b},\mathsf{R}_{2019b}\right]$

2018-21 **Mickael Seznec** - CIFRE avec Thales TRT Démarche A³ pour le calcul haute performance embargué

carte GPU pour système embarqué

 $\left[\mathsf{C}_{2018b},\mathsf{C}_{2020b}\right]$

2019-22 Nicolas Monnier

Synthèse de haut niveau sur FPGA

- 2016-19 Maxime Martelli
- 2019-22 Daouda Diakite

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

23 novembre 2020 13 / 30

- 2018-21 Mickael Seznec
- 2019-22 Nicolas Monnier Bourse Région IdF + coll. Atos Bull

ExaSKA : Parallélisation d'algorithmes TdSI en radioatronomie

carte GPU pour système HPC

Synthèse de haut niveau sur FPGA

- 2016-19 Maxime Martelli
- 2019-22 Daouda Diakite

Nicolas GAC (L2S)

- 2018-21 Mickael Seznec
- 2019-22 Nicolas Monnier

Synthèse de haut niveau sur FPGA

2016-19 Maxime Martelli - CIFRE avec Thales DMS

Approche haut niveau pour l'accélération de la simulation radar

2019-22 Daouda Diakite

Nicolas GAC (L2S)

- 2018-21 Mickael Seznec
- 2019-22 Nicolas Monnier

Synthèse de haut niveau sur FPGA

- 2016-19 Maxime Martelli
- 2019-22 Daouda Diakite - Bourse ED STIC

Démarche A³ appliquée à la tomographie et à la radioastronomie

HDR - A³ pour problèmes inverses

Projets collaboratifs

Radiotélescope SKA

• Pipeline de formation des images hyperspectrales

2015-... Lagrange (A. Ferrari) - ANR Magellan puis DeconvSKA

- 2018-19 IETR/Lagrange/Obs Paris/Atos Bull PEPS SKALLAS (porteur)
- 2021-25 IETR/Lagrange/Obs Nançay/IRISA ANR DARK-ERA (porteur)

Projets collaboratifs

Traitements de données spectrales

• Correction de vibrations mécaniques par déconvolution 1D

2010-13 GEOPS (F. Schmidt)

Instrument PFS (Planetary Fourier Spectrum)

• Démélange de gaz interstellaires

Projets collaboratifs

Traitements de données spectrales

- Correction de vibrations mécaniques par déconvolution 1D
- Démélange de gaz interstellaires

- 2017-18 CEA-Irfu/LIP6 CNRS HyperStars (M.A. Miville-Deschênes)
- **2018-21** Parcours recherche de J. Besson Méthode ROHSA [R_{2019a}] parallélisée sur GPU

- Parcours depuis le doctorat
- 2 Adéquation Algorithme Architecture (A³)
 - Problématique et positionnement
 - A³ au sein du GPI
 - Encadrement de thèses et collaborations
- 3 Calcul intensif sur GPU/FPGA
 - \bullet Paire de projection/rétroprojection \mathcal{P}/\mathcal{R}
 - \bullet Opérateur de convolution ${\cal C}$

4 Calcul distribué sur serveur multiGPU

- Reconstruction tomographique
- DeconvSKA : Déconvolution en radioastronomie
- 5 Perspectives
 - Une méthodologie A³ à échelle humaine
 - SKA, un défi A³ à grande échelle

Opérateurs \mathcal{P} de projection et \mathcal{R} de rétroprojection

Algorithme itératif

$$\boldsymbol{f}^{(n+1)} = \boldsymbol{f}^{(n)} + \alpha \ \boldsymbol{H}^{t}(\boldsymbol{g} - \boldsymbol{H}\boldsymbol{f}) + \dots$$

H de grande dimension

f de taille 2048³ \implies H de taille 256 Exa octets

 \implies Calcul de H et de H^t par une paire \mathcal{P}/\mathcal{R}

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

23 novembre 2020 16 / 30

Paire de projection/rétroprojection \mathcal{P}/\mathcal{R}

Paire de projection/rétroprojection \mathcal{P}/\mathcal{R}

Modèle ray-driven \mathcal{P}_{Siddon}

Modèle ray-driven $\overline{\mathcal{P}_{Joseph}}$

Modèle ray-driven $\mathcal{P}_{Regular}$

Modèle *ray-driven* $\overline{\mathcal{P}_{Regular}}$

Modèle Voxel-Driven \mathcal{R}_{VDL}

Modèle *ray-driven* $\overline{\mathcal{P}}_{Regular}$

Modèle Voxel-Driven \mathcal{R}_{VDL}

$$\mathcal{R}(\boldsymbol{g}) = \boldsymbol{H}_{\mathcal{R}}^t \boldsymbol{g}$$

$\mathcal{P}(\boldsymbol{f}) = \boldsymbol{H}_{\mathcal{P}} f$

Modèle ray-driven $\mathcal{P}_{Regular}$

Modèle Voxel-Driven \mathcal{R}_{VDL}

$$\mathcal{P}(\boldsymbol{f}) = \boldsymbol{H}_{\mathcal{P}}\boldsymbol{f}$$

 $\mathcal{R}(\boldsymbol{g}) = \boldsymbol{H}_{\mathcal{R}}^t \boldsymbol{g}$

La paire $\mathcal{P}_{Regular}/\mathcal{R}_{VDL}$ est non duale \mathcal{P}/\mathcal{R} est une paire duale $\equiv \forall f, \forall g, < g \cdot \mathcal{P}(f) > = < \mathcal{R}(g) \cdot f >$

Modèle *ray-driven* $\overline{\mathcal{P}_{Regular}}$

Modèle Voxel-Driven \mathcal{R}_{VDL}

Modèle Distance-Driven \mathcal{P}_{DD}

Modèle *ray-driven* $\overline{\mathcal{P}_{Regular}}$

Modèle Distance-Driven \mathcal{R}_{DD}

Modèle Voxel-Driven \mathcal{R}_{VDL}

Modèle ray-driven $\mathcal{P}_{Regular}$

Modèle Distance-Driven \mathcal{R}_{DD}

Modèle Voxel-Driven \mathcal{R}_{VDL}

Modèle Separable Footprint (transverse)

Modèle ray-driven $\mathcal{P}_{Regular}$

Modèle Distance-Driven \mathcal{R}_{DD}

Modèle Voxel-Driven \mathcal{R}_{VDL}

Modèle Separable Footprint (axial)

Modèle ray- $\overline{driven \mathcal{P}_{Regular}}$

Modèle Distance-Driven \mathcal{R}_{DD}

Modèle Voxel-Driven \mathcal{R}_{VDL}

Modèle Separable Footprint (axial)

$\implies \mathcal{P}_{DD}/\mathcal{R}_{DD}$ et $\mathcal{P}_{SF}/\mathcal{R}_{SF}$ paires duales

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

Contributions (1/2)

Accélération sur GPU

- Mise en évidence des limitations dûes aux paires non duales
- Parallélisation originale de la paire duale $\mathcal{P}_{SF}/\mathcal{R}_{SF}$ [C_{2018a},C_{2019a}]
- Comparaison de performances

	TomoGPI	Astra		RTK	
	(s)	(s)		(s)	
$\mathcal{P}_{Regular}$	5.34	6.74	(× 1.3)	41.6	(× 7.8)
\mathcal{R}_{VDL}	2.60	5.49	(× 2.1)	5.63	(× 2.2)
GPU., π_{int} : jeu de données [1024 × 1024 ² · 1024 ³]					

Accélération sur FPGA

• Rétroprojecteur \mathcal{R}_{VDL} parallélisé sur FPGA avec les outils HLS [R_{2018a}]

Contributions (2/2)

Logiciels

- TomoGPI : fruit des travaux du GPI depuis 10 ans
- TomoBayes : co-propriété du L2S et de SAFRAN
- Volonté de rendre les codes ouverts

Laptop démonstrateur avec boitiers externes FPGA et GPU

GPU versus FPGA

 GUPS : Giga mises à jour de voxels (\mathcal{R}) ou de rayons (\mathcal{P}) par seconde

Accélération de la convolution 2D sur GPU

Le GPU, une boite à outils d'accélération [M. Seznec]

- Calcul et stockage en demi-flottant pour la déconvolution [C_{2018b}]
- *tensors cores* pour noyaux de taille "moyenne" [C_{2020d}]

22 / 30

Parcours depuis le doctorat

- 2 Adéquation Algorithme Architecture (A³)
 - Problématique et positionnement
 - A³ au sein du GPI
 - Encadrement de thèses et collaborations
- Calcul intensif sur GPU/FPGA
 - \bullet Paire de projection/rétroprojection \mathcal{P}/\mathcal{R}
 - Opérateur de convolution ${\mathcal C}$

4 Calcul distribué sur serveur multiGPU

- Reconstruction tomographique
- DeconvSKA : Déconvolution en radioastronomie

5 Perspectives

- Une méthodologie A³ à échelle humaine
- SKA, un défi A³ à grande échelle

Boucle iterative

Le bus PCIe potentiel goulôt d'étranglement

Stratégies en grande dimension

#1 Recouvrement des temps de transfert mémoire (streams)

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

23 novembre 2020 23 / 30

Stratégies en grande dimension

- #1 Recouvrement des temps de transfert mémoire (streams)
- #2 Décentralisation des données avec échange de données entre GPUs voisins

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

23 novembre 2020 23 / 30

Distribution de données en tomographie $[C_{2020c}]$

Distribution de données en tomographie $[C_{2020c}]$

Nicolas GAC (L2S)

Reconstruction tomographique

Distribution de données en tomographie $[C_{2020c}]$

Accélération de HtH sur Szay [GPUV100]

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

Reconstruction tomographique

Distribution de données en tomographie $[C_{2020c}]$

Accélération de HtH sur S_{zay}[GPU_{V100}]

Descente de gradient sur $S_{zay}[GPU_{V100}]$

TomoBayes		MPI Astra
Mem _{GPU}	Mem _{CPU} 🗡	\times
2.55 mn	17.07 mn	3.84
	×6.70	$\times 1.51$

Nicolas GAC (L2S)

Déconvolution

- Données : Images dirty ${\widetilde{m l}}_\ell$ du ciel à plusieurs longueurs d'onde ℓ
- <u>Critère</u> : attache aux données + reg. spatiale + reg. spectrale $J(f) = \sum_{\ell=1}^{L} \|\tilde{I}_{\ell} - H_{\ell}I_{\ell}\|_{2}^{2} + \mu_{I} \sum_{\ell=1}^{L} \|D_{I}I_{\ell}\|_{2}^{2} + \mu_{S} \sum_{i,j=1,1}^{N^{2}} \|D_{S}S_{i,j}\|_{2}^{2},$ • Descente : $f^{(m+1)} = f^{(m)} - \alpha \nabla J_{I}(f^{(m)}) - \alpha \nabla J_{S}(f^{(m)})$

Déconvolution

• Données : Images dirty ${\it \tilde{I}}_\ell$ du ciel à plusieurs longueurs d'onde ℓ

• Critère : attache aux données + reg. spatiale + reg. spectrale

$$J(f) = \sum_{\ell=1}^{L} \|\tilde{I}_{\ell} - H_{\ell}I_{\ell}\|_{2}^{2} + \mu_{I} \sum_{\ell=1}^{L} \|D_{I}I_{\ell}\|_{2}^{2} + \mu_{S} \sum_{i,j=1,1}^{N^{2}} \|D_{S}S_{i,j}\|_{2}^{2},$$
• Descente : $f^{(m+1)} = f^{(m)} - \alpha \nabla J_{I}(f^{(m)}) - \alpha \nabla J_{S}(f^{(m)})$

Déconvolution

- Données : Images dirty ${\widetilde{m l}}_\ell$ du ciel à plusieurs longueurs d'onde ℓ
- <u>Critère</u> : attache aux données + reg. spatiale + reg. spectrale $J(f) = \sum_{\ell=1}^{L} \|\tilde{I}_{\ell} - H_{\ell}I_{\ell}\|_{2}^{2} + \mu_{I} \sum_{\ell=1}^{L} \|D_{I}I_{\ell}\|_{2}^{2} + \mu_{S} \sum_{i,j=1,1}^{N^{2}} \|D_{S}S_{i,j}\|_{2}^{2},$ • Descente : $f^{(m+1)} = f^{(m)} - \alpha \nabla J_{I}(f^{(m)}) - \alpha \nabla J_{S}(f^{(m)})$

Déconvolution

- Données : Images dirty ${\widetilde{m l}}_\ell$ du ciel à plusieurs longueurs d'onde ℓ
- <u>Critère</u> : attache aux données + reg. spatiale + reg. spectrale $J(f) = \sum_{\ell=1}^{L} \|\tilde{I}_{\ell} - H_{\ell}I_{\ell}\|_{2}^{2} + \mu_{I} \sum_{\ell=1}^{L} \|D_{I}I_{\ell}\|_{2}^{2} + \mu_{S} \sum_{i,j=1,1}^{N^{2}} \|D_{S}S_{i,j}\|_{2}^{2},$ • Descente : $f^{(m+1)} = f^{(m)} - \alpha \nabla J_{I}(f^{(m)}) - \alpha \nabla J_{S}(f^{(m)})$

Distribution des données

Calcul de $\nabla J_S(\mathbf{f}^{(m)})$

- N^2 convolutions spectrales 1D
- Stratégie de transferts mémoire
- #1 redistribution massive avant et après (CPU ↔ GPU ou interGPU)

Déconvolution

- Données : Images dirty ${ ilde {m l}}_\ell$ du ciel à plusieurs longueurs d'onde ℓ
- <u>Critère</u> : attache aux données + reg. spatiale + reg. spectrale $J(f) = \sum_{\ell=1}^{L} \|\tilde{I}_{\ell} - H_{\ell}I_{\ell}\|_{2}^{2} + \mu_{I} \sum_{\ell=1}^{L} \|D_{I}I_{\ell}\|_{2}^{2} + \mu_{S} \sum_{i,j=1,1}^{N^{2}} \|D_{S}S_{i,j}\|_{2}^{2},$ • Descente : $f^{(m+1)} = f^{(m)} - \alpha \nabla J_{I}(f^{(m)}) - \alpha \nabla J_{S}(f^{(m)})$

Distribution des données

Nicolas GAC (L2S)

Calcul de $\nabla J_S(\mathbf{f}^{(m)})$

- N^2 convolutions spectrales 1D
- Stratégie de transferts mémoire
- #1 redistribution massive avant et après (CPU ↔ GPU ou interGPU)
- #2 échanges interGPU de résultats intermédiaires

Convolution spectrale distribuée (Olivier Pérard)

Premiers résultats d'accélération

Xeon (28 coeurs)	$S_{zay}[1 \text{ GPU}_{V100}]$	$S_{zay}[8 \text{ GPU}_{V100}]$
119 s	11.0 s	1.58 s
Matlab multithreads	(× 10.8)	(× 7.0)

convolution d'un hypercube de taille 1024³ pour un noyau de taille 512

Nicolas GAC (L2S)

- Parcours depuis le doctorat
- 2 Adéquation Algorithme Architecture (A³)
 - Problématique et positionnement
 - A³ au sein du GPI
 - Encadrement de thèses et collaborations
- 3 Calcul intensif sur GPU/FPGA
 - \bullet Paire de projection/rétroprojection \mathcal{P}/\mathcal{R}
 - Opérateur de convolution ${\mathcal C}$

4 Calcul distribué sur serveur multiGPU

- Reconstruction tomographique
- DeconvSKA : Déconvolution en radioastronomie

5 Perspectives

- Une méthodologie A^3 à échelle humaine
- SKA, un défi A³ à grande échelle

Une méthodologie A^3 à échelle humaine

Faciliter le dialogue entre *algorithmiciens* et *architectes*

- vision synthétique des algorithmes candidats
- vision synthétique du potentiel et des limitations des architectures
- utilisation d'outils simples : analyse off-line des accès mémoire, roofline model...

Une méthodologie A^3 à échelle humaine

Faciliter le dialogue entre *algorithmiciens* et *architectes*

- vision synthétique des algorithmes candidats
- vision synthétique du potentiel et des limitations des architectures
- utilisation d'outils simples : analyse off-line des accès mémoire, roofline model...

Roofline model

- Utilisation plus systématique
- Extension pour FPGA, tensor cores...

Terrain d'expérimentation de la démarche A^3

Reconstruction tomographique

- Exploration algorithmique et architecturale des paires \mathcal{P}/\mathcal{R}
- Fort potentiel de collaborations locales (ex : plateforme TOMX)

Radioastronomie

- ROHSA-GPU séparation de source accélérée sur GPU
- DeconvSKA déconvolution sur serveur multiGPU

Une méthodologie A^{3} à échelle humaine

Terrain d'expérimentation de la démarche A^3

Reconstruction tomographique

- Exploration algorithmique et architecturale des paires \mathcal{P}/\mathcal{R}
- Fort potentiel de collaborations locales (ex : plateforme TOMX)

Radioastronomie

- ROHSA-GPU séparation de source accélérée sur GPU
- DeconvSKA déconvolution sur serveur multiGPU

Utilisation des outils de l'IA

• CNN mimant algorithmes difficilement parallélisables

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

23 novembre 2020 28 / 30

Projet ANR DARK-ERA (1/2)

Le supercalculateur SDP (Science Data Processing), un projet HPC pionner

- Flux de données gigantesque à traiter en temps réel
- Chaîne algorithmique complexe d'inversion de données
- Budget énergétique limité

Objectifs A^3 de DARK-ERA

#1 Outil de prototypage rapide SimSDP

#2 Exploration des accélérateurs low power

29 / 30

SKA, un défi A^3 à grande échelle

Projet ANR DARK-ERA (2/2)

Enjeux et motivations

- Outil SimSDP
 - Défi commun de son adoption par les radioastronomes
 - Utilisation pour d'autres applications « flot de données »

Intérêt propre pour le GPI

- Prototype FPGA de la chaine SDP de NenuFAR (Nançay)
- Complémentarité avec le projet ExaSKA

Interactions enrichissantes

- Radiastronomie 🛛 😁 Problèmes inverses
- Informatique HPC \leftrightarrow Electronique embarquée
- $A^3 \ll \text{outils} \gg A^3 \ll \text{proche applications/architecture} \gg$

Publications mentionnées dans la présentation

Liste complète : https://l2s.centralesupelec.fr/u/gac-nicolas/publications/

[R_{2019a}] A. Marchal, M.A. Miville-Deschênes, F. Orieux, <u>N. Gac</u>, C. Soussen, M.J. Lesot, A. Revault d'Allonnes, Q. Salomé, ROHSA : Regularized Optimization for Hyper-Spectral Analysis, Astronomy and Astrophysics - AA, 2019

[R_{2019b}] C. Chapdelaine, A. Mohammad-Djafari, <u>N. Gac</u>, E. Parra, Error-Splitting Forward Model for Iterative Reconstruction in X-ray Computed Tomography and application with Gauss-Markov-Potts prior, *IEEE Transactions on Computational Imaging*, 2019

[R_{2018a}] M. Martelli, <u>N. Gac</u>, A. Merigot, C. Enderli, 3D Tomography back-projection parallelization on Intel FPGAs using OpenCL, *Journal of Signal Processing Systems, Springer, 2018*

[R_{2018b}] L. Wang, A. Mohammad-Djafari, <u>N. Gac</u>, M. Dumitru, 3D X-ray Computed Tomography with a Hierarchical Prior model for Sparsity in Haar Transform domain, *Entropy, Special Issue Probabilistic Methods for Inverse* Problems, MDPI, 2018

[R_{2017a}] L. Wang, A. Mohammad-Djafari, <u>N. Gac</u>, X-ray Computed Tomography using a sparsity enforcing prior model based on Haar transformation in a Bayesian framework, *Special Issue of Fundamenta Informaticae, IOS Press, 2017*

[R_{2017b}] C. Chapdelaine, A. Mohammad-Djafari, <u>N. Gac</u>, E. Parra, A 3D Bayesian Computed Tomography Reconstruction Algorithm with Gauss-Markov-Potts Prior Model and its Application on Real Data, *Special Issue of Fundamenta Informaticae*, IOS Press, 2017

[R_{2014a}] N. Chu, J. Picheral, A. Mohammad-Djafari, <u>N. Gac</u>, A robust super-resolution approach with sparsity constraint in acoustic imaging, *Applied Acoustics, Elsevier, 2014, 76, pp.197-208.*

[R_{2014b}] F. Schmidt, I. Shatalina, M. Kowalski, <u>N. Gac</u>, B. Saggin, et al., Toward a numerical deshaker for PFS, Planetary and Space Science, Elsevier, 2014, 91, pp.45 - 51.

[R₂₀₁₃] T. Boulay, <u>N. Gac</u>, A. Mohammad-Djafari, J. Lagoutte, Algorithmes de reconnaissance NCTR et parallélisation sur GPU, *Traitement du Signal, Lavoisier, 2013, 6, pp.309-342.*

 $[R_{2012}]$ M.L. Gallin-Martel., Y. Grondin, <u>N. Gac</u> et al, Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid Xenon Positron Emission Tomograph for small animal imaging, *Nuclear Instruments and Methods in Physics Research, Elsevier, 2012, 682, pp.66-74*

[R2009] <u>N. Gac</u>, S.Mancini, M. Desvignes et D. Houzet, High Speed 3D Tomography on CPU, GPU and FPGA, EURASIP Journal on Embedded systems, SpringerOpen, 2009

Publications mentionnées dans la présentation

Liste complète : https://l2s.centralesupelec.fr/u/gac-nicolas/publications/

[C_{2020a}] D. Diakite, M. Martelli, <u>N. Gac</u>, An OpenCL pipeline implementation on Intel FPGA for 3D backprojection, International Conference on Image Formation in X-Ray Computed Tomography, 2020, Regensburg

[C_{2020b}] M. Seznec, N. Gac, F. Orieux, A. Sashala Naik, An efficiency-driven approach for real-time optical flow processing on parallel hardware, *IEEE International Conference on Image Processing (ICIP)*, 2020, Abu Dhabi

[C_{2020c}] M. Chghaf, N. Gac, Data distribution on a multi-GPU node for TomoBayes CT reconstruction, IEEE Conference on Embedded and Real-Time Computing Systems and Applications (RTSCA), 2020, South Korea

[C_{2020d}] M. Seznec, N. Gac, F. Orieux, A. Sashala Naik, A new convolutions algorithm to leverage tensor cores, GPU Technology Conference (GTC), May 2020, Silicon Valley, United States

[C_{2019a}] N. Georgin, C. Chapdelaine, N. Gac, A. Mohammad-Djafari, E. Parra, Multi-streaming and multi-GPU optimization for a matched pair of Projector and Backprojector, 2019 International Conference on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Jun 2019, Philadelphia, United States

[C_{2018a}] C. Chapdelaine, N. Gac, A. Mohammad-Djafari, E. Parra, New GPU implementation of Separable Footprint (SF) Projector and Backprojector : first results, International Meeting on Image Formation in X-Ray Computed Tomography, Salt Lake City, US, 2018

[C_{2018b}] M. Seznec, N. Gac, A. Ferrari, F. Orieux, A Study on Convolution Using Half–Precision Floating–Point Numbers on GPU for Radioastronomy Deconvolution, *IEEE SIPS, Cape Town, South Africa, October 2018*

[C_{2017d}] M. Dumitru, <u>N. Gac</u>, L. Wang, A. Mohammad-Djafari, Unsupervised sparsity enforcing iterative algorithms for 3D image reconstruction in X-ray Computed Tomography, *Fully3D*, 2017

[C_{2014b}] N. Chu, <u>N. Gac</u>, J. Picheral, A. Mohammad-Djafari, 2D Convolution model using (in)variant kernels for fast acoustic imaging, *BEBEC 2014, Berlin Beamforming Conference, 15 p., 2014*

[C_{2014d}] L. Chen, T. Rodet, <u>N. Gac</u>, A simple and efficient super-short-scan algorithm of fan-beam reconstruction for multiple circular trajectories : solution towards the truncated data, *CT Meeting*, *Salt Lake City*, *pp. 212-215*, 2014

 $[C_{2013d}]$ L. Chen, T. Rodet, <u>N. Gac</u>, A penalized weighted least-squares image reconstruction based on scatter correction methods for X-ray CT, 2013 IEEE NSS and MIC, Seoul, 2013

[C_{2011a}] <u>N. Gac</u>, A. Vabre, A. Mohammad-Djafari, Multi GPU parallelization of 3D bayesian CT algorithm and its application on real foam reconstruction with incomplete data set, *FVR*, *Poitiers*, 2011

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

Merci de votre attention

Nicolas GAC (L2S)

HDR - A³ pour problèmes inverses

23 novembre 2020 30 / 30