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Chargé de Recherche, Ecole des Ponts ParisTech (Laboratoire
Navier) Co-directeur de thèse
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Abstract: A study on the effective elastic properties of random porous materials:
3D Printing, Experiments and Numerics.

This thesis deals with the 3D-printing, numerical simulation and experimental testing of porous
materials with random isotropic microstructures. In particular, we attempt to assess by means
of well-chosen examples the effect of partial statistical descriptors (i.e., porous volume fraction or
porosity, two-point correlation functions and chord-length distribution) upon the linear effective
elastic response of random porous materials and propose (nearly) optimal microstructures by direct
comparison with available theoretical mathematical bounds. To achieve this, in the first part of this
work, we design ab initio porous materials comprising single-size (i.e. monodisperse) and multiple-size
(polydisperse) spherical and ellipsoidal non-overlapping voids. The microstructures are generated
using a random sequential adsorption (RSA) algorithm that allows to reach very high porosities (e.g.
greater than 80%). The created microstructures are then numerically simulated using finite element
(FE) and Fast Fourier Tranform (FFT) methods to obtain representative isotropic volume elements
in terms of both periodic and kinematic boundary conditions. This then allows for the 3D-printing of
the porous microstructures in appropriately designed dog-bone specimens. An experimental setup for
uniaxial tension loading conditions is then developed and the 3D-printed porous specimens are tested
to retrieve their purely linear elastic properties. This process allows, for the first time experimentally,
to show that such polydisperse (multiscale) microstructures can lead to nearly optimal effective elastic
properties when compared with the theoretical Hashin-Shtrikman upper bounds for a very large range
of porosities spanning values between 0-82%. To understand further the underlying mechanisms
that lead to such a nearly optimal response, we assess the influence of several statistical descriptors
(such as the one- and two-point correlation functions, the chord-length distribution function) of the
microstructure upon the effective elastic properties of the porous material. We first investigate the
ability of the two-point correlation function to predict accurately the effective response of random
porous materials by choosing two different types of microstructures, which have exactly the same
first (i.e., porosity) and second-order statistics. The first type consists of non-overlapping spherical
and ellipsoidal pores generated by the RSA process. The second type, which uses the thresholded
Gaussian Random Field (GRF) method, is directly reconstructed by matching the one- and two-point
correlation functions from the corresponding RSA microstructure. The FFT-simulated effective
elastic properties of these two microstructures reveal very significant differences that are in the order
of 100% in the computed bulk and shear moduli. This analysis by example directly implies that the
two-point statistics can be highly insufficient to predict the effective elastic properties of random
porous materials. We rationalize further this observation by introducing controlled connectivity in the
original non-overlapping RSA microstructures. The computed effective elastic properties of all three
microstructures show that the pore connectivity does not change neither the two-point correlation
functions nor the chord-length distribution but leads to a significant decrease in the effective elastic
properties. In order to quantify further these differences, we analyze the link between a geometrical
measure of the microstructure and the corresponding computed elastic fields by computing the first
(average) and second moments of the elastic strain fluctuations. This last analysis suggests that
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partial statistical information of the microstructure (without any input from the corresponding
elasticity problem) might be highly insufficient even for the qualitative analysis of a porous material
and by extension of any random composite material.

Keywords: Linear elasticity, Porous materials, Effective properties, 3D printed microstructures,
Statistical modeling, Porous network.
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Résumé: Étude des propriétés élastiques effectives de matériaux poreux à microstruc-
ture aléatoire: caractérisation numérique, expérimentale et impression 3D.

Le travail présenté dans cette thèse porte sur l’impression 3D, la caractérisation numérique et
expérimentale des matériaux poreux à microstructure aléatoire. Plus spécifiquement, ce travail a pour
objectif d’évaluer, à partir de modèles spécifiques de microstructures poreuses aléatoires, la pertinence
de descripteurs statistiques tels que la fraction volumique des pores, la fonction de corrélation et la
distribution de tailles de cordes sur la détermination des propriétés élastiques effectives. De plus, ce
travail met en évidence des microstructures aléatoires poreuses isotropes dont les propriétés élastiques
sont proches des résultats optimaux définis par les bornes supérieures de Hashin-Shtrikman. Pour
cela, nous concevons dans la première partie de cette thèse des matériaux poreux aléatoires qui se
composent de pores sphériques ou ellipsoïdaux ayant soit la même taille (monodisperse) soit plusieurs
tailles différentes (polydisperse). Ces microstructures sont générées à partir d’un procédé d’ajout
séquentiel et aléatoire, appelé RSA, et qui permet d’atteindre de large fractions volumiques (allant
au-delà de 80%). Les propriétés élastiques effectives de ces microstructures virtuelles sont ensuite
calculés par des simulations numériques par la méthode des éléments finis ou par des méthodes
utilisant la transformée de Fourier rapide (dite FFT). Ces méthodes sont utilisées pour déterminer la
taille du volume élémentaire représentatif (VER) pour des conditions aux limites périodiques et des
conditions aux limites homogènes en déformations. Ce VER permet ainsi de fabriquer par impression
3D des échantillons standards de matériaux poreux qui sont ensuite testés expérimentalement afin
d’obtenir leurs propriétés linéaires élastiques effectives. Les résultats de cette procédure mettent
pour la première fois en évidence que ces microstructures isotropes aléatoires et polydisperses (multi-
échelles) peuvent expérimentalement donner des propriétés élastiques effectives proches des bornes
supérieures de Hashin-Shtrikman pour une gamme de porosité allant de 0 à 82%. Afin de mieux
comprendre les paramètres morphologiques qui permettent d’atteindre ces propriétés optimales, nous
évaluons dans la seconde partie de la thèse, l’influence de descripteurs statistiques de la microstructure
tels que la fraction volumique de pores, la fonction de corrélation à deux points et la distribution
de tailles de cordes sur la détermination des propriétés élastiques effectives des matériaux poreux.
Pour cela, nous commençons tout d’abord par tester la pertinence des fonctions de corrélation à
deux points en considérant deux modèles de microstructures poreuses qui ont la même porosité et la
même fonction de corrélation. La première microstructure, générée par le code RSA, se compose de
différentes tailles de pores sphériques ou ellipsoïdaux. La deuxième microstructure est, quant à elle,
obtenue par seuillage d’un champ gaussien généré à partir de la fonctions de corrélation et la porosité
mesurées sur la première. Les propriétés élastiques effectives obtenues par la méthode FFT pour ces
deux types de microstructures montrent d’importantes différences qui peuvent atteindre des écarts
de 100% pour les modules effectives de compressibilité et de cisaillement. Ces résultats montrent
que la fonction de corrélation est insuffisante pour prédire les propriétés effectives de matériaux
poreux aléatoires. Afin de mieux comprendre les paramètres qui peuvent expliquer les différences
entre ces deux familles de microstructures, nous proposons d’évaluer l’influence de la connectivité
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sur les propriétés élastiques en introduisant de la connectivité entre les pores ellipsoïdaux dans les
microstructures générées par le RSA. Les propriétés effectives de ces microstructures montrent que la
connectivité entre les pores ne génère des écarts significatifs ni entre les fonctions de corrélation ni
entre les distributions de tailles de cordes des trois microstructures. Elle peut néanmoins engendrer
d’importantes différences dans les modules élastiques des microstructures. Pour mieux quantifier les
différences, une analyse du lien entre la géométrie locale dans l’espace poreux et les champs élastiques
du matériaux est proposée en étudiant la moyenne et l’écart type des fluctuations de la composante
hydrostatique et de cisaillement du champ de déformation. avec les modules de compressibilité
effectifs obtenus. Compte tenu de cette analyse, il semble qu’une description statistique partielle de
la microstructure sans information sur les champs élastiques locaux est insuffisante pour prédire les
propriétés effectives d’un matériau poreux aléatoire, et plus généralement celles de tout matériau
composite aléatoire.

Mots clés: Elasticité linéaire, Matériaux poreux aléatoires, propriétés effectives, Microstructures
imprimées, Modélisation statistique, Réseaux poreux.
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CHAPTER I

INTRODUCTION

This thesis is concerned with the estimation of the effective linear elastic properties of random
porous materials. Such materials are largely abundant in nature (e.g. geomaterials, wood or biological
tissues) and in man-made engineering industry (e.g. metals, foams and architectured materials).
Their effective physical properties depend not only on the properties of the solid phase material
but also on the distribution of the porosity in the matrix phase (Dean and Lopez, 1983; Fryxell
and Chandler, 1964; Phani and Niyogi, 1987; Chen et al., 2015). For that reason, they constitute a
challenging subject both for oil and gas exploration interest as well as for new 3D printed materials.
This thesis has two major parts which both relate to the question of whether there exist a simple
enough geometrical description of the microstructure that enables to predict the effective elastic
properties. In other words, the two parts of the thesis investigate simple statistical descriptors of
the porous phase in order to assess if they have a significant influence on the elastic properties of
material.
In the first part of this thesis, we investigate numerically and experimentally random porous mi-
crostructures with spherical voids in order to produce isotropic porous materials with high relative
stiffness properties and low densities. To that aim, a methodology combining numerical computations,
3D photopolymer printing and an experimental testing procedure has been developped to enable a
rigorous comparison between the elastic properties obtained from virtual microstructures and those
actually achieved by the 3D printed materials. Section I.1 presents a brief state-of-the-art of the 3D
printing of new materials in order to build high-stiffness low-density material and then details the
scope and objectives of this first part.
In the second part of this thesis, we investigate the ability of low-order statistics and simple geomet-
rical measures extracted from random porous microstructures to distinguish the elastic properties of
the microstructures. The objective of this part is to find a reduced geometrical description of a porous
material to model the elastic properties of multi-scale porous microstructures of carbonate rocks. We
thus study the influence of the aspet ratio of pores, the two-point correlation, the connectivity in
order to quantitatively assess the pertinence of these parameters in the prediction of the effective

1
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elastic properties.

I.1 The quest for high-stiffness porous materials

One major interest for porous materials lies in the ability of architecturing their internal mi-
crostructures in order to generate new materials that can extend the range of functional properties
achieved by their different constituents. For example, porous materials can be created to fill the
gaps of the Ashby’s material performance map shown in Fig.I.1 for high-stiffness and low density
materials. In the literature, one can recognize two categories among porous materials; materials
with closed-cell porosity, i.e. non-interconnecting voids, and open-cell porosity, which comprises
most lattice and foam materials. In particular, this latter class of composites has been extensively
studied in an effort to adapt the physical properties of their microstructure or micro-architecture
(Fleck et al., 2010) by controlling morphological features of the internal geometry (Gibson and
Ashby, 1997; Deshpande and Fleck, 2000). Such open-cell porous materials find applications in
high-stiffness lightweight structures (Zok et al., 2004; Berger et al., 2017), acoustic and vibration
dampers (Göransson, 2006; Banhart et al., 1996; Ma et al., 2013), impact energy absorbers (Davies
and Zhen, 1983), high electric capacitors (Wang et al., 2008) and filtration (Alderson et al., 2000)
and spans fields from electro-magnetism (Schurig, 2006)(Landy et al., 2008) and optics (Smith et al.,
2004) to acoustics (Chen and Chan, 2007), mechanics (Lee et al., 2012), (Zadpoor, 2016) and, more
recently, mechanobiology (Ahmadi et al., 2018).

Over the past two decades, porous materials were extensively produced using the replication
processing (Conde et al., 2006), a method developed in the late 90s. In recent years, however,
these materials have attracted far lesser attention than cellular solids with a periodic architecture
(mainly lattices). The reason for this is two-fold. First, periodic cellular materials exhibit higher
strength and stiffness than stochastic foams of the same density because of the higher strain-energy
stored during deformation. The latter is governed by cell wall stretching rather than bending
(Deshpande et al., 2001). Second, lattices are also naturally amenable to optimization and thus
offer unparalleled flexibility in achieving topology-optimized architectures depending, for instance,
on the design objective, constituent material and manufacturing method. Noteworthy is the octet
truss lattice by Deshpande et al (Deshpande et al., 2001). By virtue of its ideal nearly linear scaling
of mechanical properties with density, such cellular systems have paved the way to novel lattice
architectures with maximized strength and stiffness per unit weight. Examples, shown in Fig.I.2,
comprise the ultra-low density lattices of high-strength metals and ceramics, whereby the cells are
composed of either hollow trusses (Bauer et al., 2014)(Meza et al., 2014)(Zheng et al., 2014)(Jang
et al., 2013)(Schaedler et al., 2011), and continuous thin shells (Han et al., 2015) (“shellular”) with
dimensions extending from nanometers to microns. These systems, efficiently combine the structural
advantages of their stretch-dominated cellular geometry with the strengthening size effects of their
nano- or microscale features, and are today the lightest, stiffest and strongest metamaterials achieved.
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Figure I.1 – Ashby’s material map for the Young’s modulus-density space.(Ashby, 2013)

However, the poor scalability and highly anisotropic response largely limit the use of such cellular
materials for macroscale engineering applications.

In contrast to conventional techniques, recent additive manufacturing (AM) technologies allow
for the construction of microstructures layer-by-layer and thus, enable to incorporate complex
architectures into a material system. Coupled with the robustness of modern computational methods,
the various types of AM processes such as powder bed fusion (Heinl et al., 2007; Cansizoglu et al.,
2008; Gorny et al., 2011), stereolithography (Hengsbach and Lantada, 2014), 3D laser lithography
(Schaedler et al., 2011) and photon lithography Meza et al. (2014) have enabled extending the
portfolio of materials now available to scientists and engineers to scales from nanometer to meter
(Gosselin et al., 2016). The development of these new manufacturing processes has also led to
the development of new methods for generating complex microstructures that can be 3D printed.
One such popular approach is based on topology optimization methods among which is the ground
approach (Bendsoe et al., 1994) that consists of finding the optimal structure using a discrete nodal
description of the volume and minimizing a cost function of the boundary problem with a finite set
of structural elements, usually taken as beams or voxels. Such materials are therefore optimal in
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Figure I.2 – Examples of cellular microarchitectured systems fabricated using laser laser lithography.(Bauer
et al., 2014)

a subset of microstructures resulting from that chosen element and the solution is dependent on
the boundary conditions. Nevertheless, when using this methodology to create elastically-isotropic
microstructures that can achieve extremal elastic properties and approach known bounds, for instance
the Hashin-Shtrikman ones, such a task becomes less trivial. In particular, Sigmund (2000) has
obtained such three-dimensional microstructures when assembling polyhedral regions connected by
transversely isotropic three-rank laminates. The proposed microstructures, however, involve large
scale variations and are therefore impossible to produce by current additive manufacturing techniques
that only allow microstructures with similar length-scale orders.

Another approach, which is also popular in the literature, uses bio-inspired microstructures such as
wood-inspired fiber-reinforced honeycombs (Compton and Lewis, 2014), the two-phase co-continuous
solids that mimic biological exoskeletons and block copolymers (Wang et al., 2011) and lattice network
topologies obtained by connecting closest neighbors of crystallographic-like structures such as the
Face-Centered-Cubic (FCC) Berger et al. (2017). Such microstructures, similarly to other lattice
microstructures, have been shown so far to deliver rather optimal mechanical properties in some
specific directions but the anisotropic behavior related to their microstructural symmetries limits
their engineering application to specific loading conditions(Dirrenberger et al., 2013). In an attempt
to extend such microstructures to reach isotropic elastic behavior, Messner (2016), Meza et al. (2017)
and Tancogne-Dejean and Mohr (2017) have recently designed nearly-isotropic elastic microstructures
by imposing a group of constraints on lattice truss networks. The resulting lattices were shown
to lead to a fixed overall Poisson’s ratio and a fixed relative effective Young’s Modulus for a given
porosity which is found in many cases to be relatively far from the upper Hashin-Shtrikman bounds.
Furthermore, the specific combination of the crystallographic-based microstructures proposed in
order to fulfill the structural requirements have been numerically found by some of these authors
to give an increasing deviation from the elastic-isotropy with increase of the relative density (i.e.
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decrease of porosity).
An alternative approach, that is in the heart of the first part of this thesis, focuses on transferring

theoretical and virtual microstructures that are very close to the Hashin-Shtrikman bounds numer-
ically to fabrication and experimental testing. Contrary to the aforementioned lattice materials,
most of the theoretical bounds account for closed-cell porous materials. Such work make use of
minimization of energy principles which lead to rigorous theoretical bounds. Briefly, Hill (1952)
derived the forst bounds based on Voigt (1889) and Reuss (1929) estimates that respectively consider
the strain and stress constant in the material. By introducing a reference linear elastic homogeneous
material and uniform stress polarization in the microscopic equilibrium equations of linear elasticity,
Hashin and Shtrikman (1963a) and later Willis (1977) obtained rigorous bounds and estimates
for the effective linear elastic behaviour for two- and N-phase isotropic and anisotropic materials,
respectively. Such bounds are known to be optimal for isotropic two-phase microstructures as the
effective bulk modulus is attained by the Hashin (1962) model of composite sphere assemblage (CSA)
as shown Fig.I.3a). In turn, both effective shear and bulk moduli can be attained by the theoretical
high-rank (6th rank) laminates (Francfort and Murat, 1986) and the dilated Poisson hyperplanes
proposed by Jeulin (2001). As depicted by Fig.I.3, these microstructures lead to uniform elastic fields
in each phase but inherently involves a large range (infinite in some cases) of length scales in order
to attain statistical isotropy or to reach relatively high volume fraction. Motivated by these results,
we propose in the first part to realize isotropic multi-scale closed-cell porous materials containing
random distribution of non-overlapping spherical inclusions/voids (Lopez-Pamies et al., 2013a). The
goal of the first part of this thesis is to introduce a methodology that allows to combine 3D printing,
experimental testing, numerical and analytical modeling to create random closed-cell porous materials
with statistically controlled and ”isotropic” overall elastic properties that are extremely close to
the Hashin-Shtrikman bounds. As a direct illustration of the framework, we examine the elastic
response of porous-like solids consisting of non-overlapping, finite polydisperse (i.e. multiple size)
spherical inclusions that are randomly dispersed into a homogeneous matrix. Those inclusions are
made of a very soft support material, which has a Young’s and bulk modulus that is one thousand
times smaller than that of the matrix phase but of similar density. This result allows treating such
materials as “porous-like” composites in terms of their quasi-static mechanical response given the
very high inclusion/matrix contrast, but not as cellular solids in terms of relative density since the
support material has (almost) the same density as that of the matrix. Henceforth, the term “porosity”,
denoted with c, refers to the volume fraction of the pore-like inclusions such that 1 − c denotes
the remaining volume fraction of the matrix phase (and not the relative density like for cellular
solids and foams). More particularly, we exploit the polydispersity of the spherical voids to generate
random porous architectures that provide an experimentally feasible approximation of the Hashin
CSA model-microstructure (Hashin, 1962). This theoretical model is known to achieve the theoretical
limit of isotropic elastic compressibility but inherently involves an “infinite” range of length scales,
which makes the manufacturing of such composites practically impossible to achieve. To overcome
this issue, we develop a numerical protocol that enables generating RVEs of multi-inclusion material
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Figure I.3 – Illustrations of optimal microstructures for the effective elastic properties. (a) 2D slice of a coated
sphere assemblage (Hashin, 1962) that reaches the effective bulk moduli for isotropic materials. (b) Illustration
of a three-rank laminate (Francfort and Murat, 1986) which corresponds to the minimum number of scales
needed to achieve isotropic extremal elastic properties in 2D. (c) 2D slice of a Poisson hyperplanes (Jeulin,
2001). (d) Example of an optimal 2D microstructure obtained by topological optimization design(Sigmund,
2000).

systems, whereby high volume fractions of spherical voided inclusions are obtained by employing
inclusions with very different diameter. The virtual realizations of such heterogeneous materials are
then transformed into physical microstructures via the use of a 3D polymer printer. Using relatively
large computational resources, we are able to explore experimentally and numerically a very large
range of porosities that spans values from c = 0 to 82%. In particular, we show that our 3D-printed
random porous architectures are almost isotropic (both experimentally and numerically) and yield
values of the effective elastic moduli that lie near the corresponding Hashin-Shtrikman upper bounds.
Chapter II is devoted to the results obtained in the generation and fabrication of porous materials that
are close to the optimal effective properties for isotropic microstructures using 3D printing polymeric
technology and which have been published in two articles (Zerhouni et al., 2019; Tarantino et al.,
2019). Firstly, Section II.1 describes the Random Sequential Adsorption (RSA) algorithm (Rintoul
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and Torquato, 1997; Segurado and Llorca, 2002; Böhm et al., 2002; Lopez-Pamies et al., 2013a)
used for generating virtual periodic microstructures. in Section II.2, we introduce the numerical
homogenization approach used to determine a representative volume element (RVE) allowing for
rigorous comparison between analytical, numerical and corresponding experimental results inde-
pendently of the applied boundary conditions (i.e. periodic or affine etc). The second part of
this chapter is devoted to the 3D printing process characterization and the framework to go from
virtual to experimental materials. Section II.3 describes the process for assembling uniaxial tension
specimens out of cubic porous RVEs and assesses the accuracy of printing with the aid of microscopy
observations. Subsequently, an experimental setup is proposed to measure the linear elastic properties
of the porous specimens by a multi-step relaxation procedure (Hossain et al., 2012). This procedure
is used to examine the isotropy of the printing process for the pure matrix materials and analyze the
measurement sensitivity and effect of the support material used during the 3D printing to obtain
the spherical voids. Afterwards, in Section II.4, the effective experimental elastic properties of the
porous materials are shown and probed by finite element (FE) numerical estimates and the analytical
Hashin-Shtrikman bounds. A contour analysis of the local stress and strain fields is used to interpret
the influence of the microstructural features on the effective elastic properties. One of the important
outcomes of this study is that the 3D printed porous material specimens are found to be very close
to the theoretical Hashin-Shtrikman upper bounds.

I.2 The porous structure of sedimentary rocks

The second part of this projet was devoted to understanding the influence of stastitical descriptors
of the porous space description on the effective elastic properties of porous materials in the perspective
of application on carbonate rocks which represent a large potential reservoirs for off-shore oil and
gas production. Such sedimentary rocks are formed by successive deposits combined with diagenetic
phenomena and fracture processing wich confere to the rock a complex and heterogeneous spatial
distribution of porosity that spreads over multiple scales as depicted by Figure I.4. This multiscale
porosity is composed of pores of different shapes and sizes and is difficult to capture with imaging
techniques due to the limitations in sample scales that can be observed. Another difficulty related to
the heterogeneous porous phase of such rocks lies in the fact that laboratory analysis of real materials,
such as core flooding, porosimetry measurement and experimental testing, involves destructive testing
which prevents from re-using rom the same sample for multiple characterization and induces an
important cost. In turn, numerical simulations offers a faster and non-destructive way to compute the
elastic properties of the material using direct computational methods on 2D or 3D images (Garboczi
and Day, 1995; Moulinec and Suquet, 1998). However, the accurate characterization depends on the
careful selection of the representative volume to overcome boundary conditions dependency and the
comparison between the experimental and computational effective properties is usually limited by the
resolution of the imaged sample in comparison with the scale of the experimentally tested specimen.
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Figure I.4 – Three images of shale structure representing macro, micro and nanoscale (from left to right).
Below each image are reported some common methods to obtain spatial information at each scale. The typical
size of sample and resolution for each method are given in parentheses.(Gerke et al., 2015)

In this context, developping upscaling models with high predictive capacity for the effective prop-
erties of the microstructure is an important challenge which relies on both qualitative and quantitative
understanding of how the pore characteristics such as pore shape, size and connectivity impacts the
elastic properties of the rock is crucial for improving reservoir predictions. To that aim, a classical
approach relies on the assumption that scales are well separated in order to use homogenization
theory to construct (semi-)analytical models. Another popular approach have focussed on studying
particular morphologies and developping models based on numerical or experimental available data
(Gibson and Ashby, 1988; Roberts and Garboczi, 2001). Boosted by the recent advances in additive
manufacturing technology, a similar approach consists in conducting a parametric study of the
morphological features of the porous space in order to link the properties to the microstructure.
Such process has been used to derive the influence of the processes in sedimentary rock on their
experimental properties (Ishutov et al., 2017; Head and Vanorio, 2016). Their approach is based
on image manipulation of the porous network of real rocks in order to highlight the microstructure
resulting from a specific process such as compaction or dissolution. The resulting images are then
printed and tested in order to compare between experiments on printed samples and numerical
simulations on images. The preliminary results show good quantitative agreement for permeability
related to the calculated porosity which shows the potential of additive manufacturing in develop-
ping methods to characterize the porous network influence on rock’s properties and compare the
experimental tests and the numerical simulation with the same samples. Another potential use
of 3D printing consists of manufacturing the mathematical models of fractured rocks and porous
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network in order to validate the theoretical studies and the numerical methods (Suzuki et al., 2014).
By controlling the fracture and pore geometry in the mathematical models which is subsequently
transferred into the experimental samples by 3D printing, this approach provide quantitative re-
sults of the influence of several aspects of the geometry such as the aperture of the interconnected
porosity and the size of fractures on the flow properties. This approach enables to validate hypoth-
esis for theoretical models and to build heuristic models for more complex microstructural parameters.

In this second part of the presented work, we propose a parametric study of the influence of pore
characteristics such as shape, size and connectivity on the effective elastic properties by gradually
complexifying the description of the porous space using measurable statistical and microstructural
descriptors. The objective is to quantitatively measure the errors related to the statistical description
of the material and investigate the question about which morphological parameters are sufficient to
discriminate porous microstructures in term of their effective properties. To that aim, we first study
the influence of second-order random field models by reconstructing level-cut Gaussian Random
Fields from the correlation function of RSA microstructures consisting of different sizes of isolated
ellipsoidal inclusions randomly distributed in the material at different volume fractions c and for
different aspect ratios of ellipsoids ω. The second-order statistical reconstruction is a very popular
approach for predictive modeling of heterogeneous materials and has been extensively developped
and analyzed in the study of effective transport properties of materials (Teubner, 1991; Roberts
and Teubner, 1995; Levitz, 1998; Roberts, 1997; Roberts and Garboczi, 2001; Øren and Bakke,
2002; Roubin et al., 2015). However, studies of the uncertainties related to predicting the effective
elastic properties using the second-order models are missing. The results of this work, which will
be further detailed in the Sec.III.3, highlight the significant influence of the shape of pores on the
elastic properties and the lack of information about the connectivity and the pore shape of the GRF
models which leads to high differences in the effective properties of materials. Subsequently, in order
to study and analyze the effect of connectivity on microstructure properties, we generate porous
network models by connecting the inclusions in the RSA microstructures using cylindrical channel of
different radiuses and compute their effective properties for two ranges of porosities c = 15% and 25%.
Such connected porous microstructures are popular in the study of the influence of the porous phase
on the permeability of rocks. The parameters defining the pore geometry can be directly extracted
from the image analysis of the porous space. The connected porous microstructures constitute a
third microstructure type along with the isolated inclusions microstructure (RSA microstructures)
and the thresholded GRF microstructures. The elastic properties of these three microstructures are
compared for similar volume fraction c = 15% and c = 25% and analysis of the two-point correlation
functions and the chord-length distributions is proposed for interpreting the differences. The results
show that the differences in the effective elastic properties are unrelated to the similarities in neither
the chord-distribution nor the correlation function. In order to analyze the influence of the local
geometry of the porous space on the local elastic field, we link the Euclidean distance transform of
the microstructure to the fluctuations of the hydrostatic and shear components of the strain field
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measured at a given distance. The results presented in Sec.IV.2.3 show good qualitative agreement
between the two measures.
The two parts of this work provide complementary approaches to the understanding of the porous
space influence on the effective properties of porous materials and how to trigger the characteristic
parameters of the pore space in order to create new light materials with controlled effective properties.
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CHAPTER II

3D PRINTED MICROSTRUCTURES WITH NEARLY OPTIMAL
EFFECTIVE ELASTIC PROPERTIES

Summary of this chapter: In this chapter, we introduce a methodology that allows to combine
3D printing, experimental testing, numerical and analytical modeling to create random closed-cell
porous materials with statistically controlled and ’isotropic’ effective elastic properties that lie near
the optimal Hashin-Shtrikman bounds. In the first section II.1, we present the two procedures
of the Random Sequential Adsorption (RSA) algorithm used to generate periodic microstructure
consisting of isolated inclusions of ellipsoidal shape and randomly distributed in the unit cell. The
first procedure was proposed by Anoukou et al. (2018) and consists of full input of the morphological
descriptors of the different ellipsoidal inclusions inside the microstructure. The second procedure
has been developped for this thesis in order to reach high volume fraction of pores with a minimum
input parameters. Subsequently, Section II.2 presents the numerical procedure used in order to
determine the Representative Volume Element that is suitable for the comparison between numerical
and experimental characterization of porous microstructures. In Section II.3, we combines the results
of the RVE determination with the 3D printer characterization in order to propose an experimental
procedure to obtain the macroscopic elastic properties of the 3D printed samples. The 3D printing
procedure of virtually generated materials. The last section II.4 presents the effective experimental
elastic properties of the porous materials along with the finite elament (FE) numerical estimates and
the analytical bounds. Contour plots of the local stress and strain fields obtained by the numerical
computation are used to interpret the results and discuss the influence of some microstructural
features on the effective elastic properties. The details of the 3D printing characterization and
application of the methodology to monodisperse spherical inclusions at low volume fractions has
been published in Zerhouni et al. (2019). The extension of this methodology to polydisperse in size
spherical pores and high volume fractions using the modified RSA algorithm has been published in
Tarantino et al. (2019).

11
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II.1 Randomly distributed non-overlapping ellipsoidal inclusions

This section details the important parts that build the code used for the generation of isolated
pores inside a homogeneous matrix. The random heterogeneous materials generated in this part
are based on the random sequential addition (or adsorption) (RSA) process of ellipsoidal inclusions
(Rintoul and Torquato, 1997). It consists in placing randomly, irreversibly, and sequentially non-
overlapping objects into a volume (or onto a surface). In the recent investigations, for instance
the works of (Segurado and Llorca, 2002), (Fritzen et al., 2012), (Lopez-Pamies et al., 2013a), the
RSA algorithm is clearly explained and used in the context of linear and non-linear computational
homogenization of composites or porous materials containing spherical shaped inclusions or voids.
Two types of geometric constraints are generally imposed:

• The non-overlapping condition which specified that the distance between each pair of objects
(center-to-center distance) has to exceed a minimum value noted s1.

• The distance between the spherical object and the surfaces of the cuboidal cell must take a
minimum value s2.

Assuming periodicity of the spherical object distribution, the first condition has to be checked also
between the object to be added and the periodic images of any previously accepted object which
cuts any of the cuboidal cell surfaces. For more details on these geometric constraints, the reader is
referred to the paper of (Segurado and Llorca, 2002).
In the recent work of Anoukou et al. (2018), the RSA algorithm has been used to generate non-
overlapping randomly oriented or aligned inclusions of ellipsoidal shape uniformly distributed in the
unit cell. The sequential addition of the spherical objects is constrained by some geometric conditions
for adequate finite element discretization.. In this general case, the distance between non-spherical
objects is more complicated to determine than using the center-to-center distance between the two
objects. In the work of Pierard et al. (2007) on elasto-plastic composite materials reinforced with
aligned (unidirectional orientation) elastic ellipsoidal inclusions, an algorithm proposed by (Lin and
Han, 2002) is used to determined iteratively the minimum distance between two ellipsoids with
a slight modified version of the iterative process for finding the minimum distance between two
ellipsoids.
In this first part of the thesis, the main contribution related to the RSA algorithm corresponds to
the proposed automatic generation of polydisperse in size ellipsoidal pores in order to achieve large
volume fractions with non-overlapping ellipsoidal inclusions. This new algorithm is based on the
minimum distance between two randomly oriented ellipsoids and the minimum distance between an
ellipsoid and the boundary surface of the cubic unit cell developed in the work of Anoukou et al.
(2018) which are detailed in the Appendix II.B. Section II.1.1 introduces the descriptors of the
isolated pore microstructures generated with RSA algorithms. Subsequently, section II.1.2 details
the two procedures for the generation of RSA microstructures; either the full input of morphological
descriptiors of the different families of inclusions where the definition of a family of inclusions
presented in the work of Anoukou et al. (2018) or th automatic generation of polydisperse in size
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inclusions to reach high porosities with a small number of descriptors.

II.1.1 The Random Sequential Adsorption (RSA) method

II.1.1.a Characteristics of an ellipsoidal inclusion

An arbitrary oriented ellipsoid Ei(vi,Zi) is defined by all space points x solution of the quadric
equation:

Qi(x) =
(
x− vi

)TZi(x− vi
)
− 1 ≤ 0 (1)

where vi denotes the center position of the ellipsoid and Zi is the characteristic matrix of the ellipsoid
expressed as :

Zi =
1

a2i,3

(
ω2
i,1ni,1 ⊗ ni,1 + ω2

i,2ni,2 ⊗ ni,2 + ni,3 ⊗ ni,3
)

(2)

where ni,1,ni,2,ni,3 are the principal vectors of the Zi matrix related to the orientation of the ellipsoid
which can be expressed using Euler angles φ, θ and ψ such that:

ni,1 = Rie1 , ni,2 = Rie2 , ni,3 = Rie3 (3)

with

R =

 cos(φ) cos(ψ)− cos(θ) sin(φ) sin(φ) − cos(ψ) sin(φ)− cos(φ) cos(θ) sin(ψ) sin(θ) sin(ψ)

cos(θ) cos(ψ) sin(φ) + cos(φ) sin(ψ) cos(φ) cos(θ) cos(ψ)− sin(φ) sin(ψ) − cos(ψ) sin(θ)

sin(φ) sin(θ) cos(φ) sin(θ) cos(θ)


(4)

In order to build randomly oriented ellipsoid, the Euler angles have to be build such that φ and ψ
are generated randomly [−π, π] while the angle θ is generated by randomly picking cos(θ) ∈ [−1, 1]

and then setting θ = cos−1(cos(θ)).

II.1.1.b The morphological descriptors of the microstructure

An RVE microstructure generated by the RSA algorithm consists of a cubic cell of size L
made of n families of ellipsoidal pores each occupying a volume fraction ci, i = 1, ..., N embedded
in a homogeneous matrix phase. In the case of a monodisperse microstructure (size, shape and
eventually orientation), n = 1 and the RVE is composed of two phases. For the case of polydipserse
microstructures, phases refer to sub-domains in the RVE which are different in size and/or shape
and even in orientation and distribution.
In addition to the previous definition of polydispersion, particulate microstructures can be polydisperse
regarding to the physical properties of phases. Simply says, in general, a phase is defined as a family
of pores or particles that have the same size, shape, orientation and physical properties.
There are many possible ways for the creation of polydisperse microstructures. The following
procedure is adopted:
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- Creation of a fictitious reference microstructure of the RVE containing N ref
p monodisperse

(N=1) ellipsoids inclusions with volume fraction cref = c, where c is the total volume fraction
of inclusions and N ref

p is a characteristic number related to the characteristic size aref3 (Lopez-
Pamies et al., 2013a) by:

aref3 =
(3cωref1 ωref2

4πN ref
p

)1

3 (5)

For the construction of the polydisperse microstructure, morphological information such as size
and shape of inclusion in each phase are calculated using the fictitious RVE microstructure. More
precisely, the characteristic length ar,3 of the r family of inclusions is proportional to the characteristic
length aref3 following a size coefficient defined by the input of size distribution Ssize such that:

Ssize =
{
χ1, χ2, ..., χn

}
(6)

with ar,3 = χra
ref
3 with r = 1..n

and the other semi-axis lengths ar,1, ar,2 are retrieved from the set of aspect ratios Sshape, representing
the shape of the polydisperse families of inclusions defined as:

Sshape =
(
ω1,1, ω1,2, ω2,1, ω2,2, ..., ωn,1, ωn,2

)
(7)

such that ωr,1 =
ar,3
ar,1

, ωr,2 =
ar,3
ar,2

for r = 1..n

In turn, the volume fraction cr of each phase r is given by the set Sc which is expressed by the set of
contributions δr to the total volume fraction c:

Sc = δ1, δ2, ..., δn (8)

such that cr = δrc for r = 1..n and
n∑
r=1

δr = 1.

Thus, the general RSA algorithm in this study takes as input:

- The number N ref
p of monodipserse pores (or particles) in the fictitious reference cuboidal cell.

- The total volume fraction c

- The number n of families of inclusions.

- The sets of microstructural descriptors Ssize, Sshape, Sc

- Two offset parameter tol1, tol2 for the determination of distances s1 and s2.

It is worth mentionning that for the implementation of the iterative generation process, the mi-
crostructural descriptors have been sorted in a decreasing order of the characteristic size ar,3 of the
phases. Thus, the generation of inclusions inside the cubic cell is chosen to start from the pores with
the biggest ar,3 and regardless of the shape of inclusions.
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Figure II.1 – representation of an RSA unit-cell with the characteristic elements of an arbitrarly oriented
ellipsoidal inclusion.

II.1.2 The RSA algorithm

II.1.2.a Controlled morphological descriptors

Accounting for the full description of the families of inclusions such that it is given in Sec.II.1.1.b,
the RSA algorithm outcome consists of the centers of the different ellipsoids vi and their characteristic
parameters, namely the orientation parameters consisting of the Euler angles (φi, θi, ψi) and the
size and shape characteristics represented that the semi-axes lengths (ai,1, ai,2, ai,3). The iterative
RSA algorithm stores the current value of the total volume fraction in a variable called the apparent
volume fraction ct which is initiated to 0 and the addition process of inclusion can be decomposed to
the following steps:

- step 1: Generate the center position vi = (xi, yi, zi) ∈ [0, L]3 of the ith ellipsoid and its
orientation by generating of randomly oriented ellipsoids using its Euler angles φi, θi, ψi following
the procedure explained in the introduction to Sec.II.B.

- step 2: Check for which family of inclusions the ellipsoid is to be added following the total
volume fraction ct generated at that stage. For example, if cr−1 ≤ ct < cr for r ∈ {1, ..., n} then
the characteristic semi-lengths ai,1, ai,2, ai,3 of the ellipsoid are computed in order to match the
input parameter of the phase r given in Sec.II.1.1.b.

- step 3: Compute the minimum distance ∆1 between the current inclusion i and any previously
accepted inclusion j = 1, ..., i − 1 and its 26 periodic images defined by the translation of
the center vj by a vector h =

(
h1, h2, h3

)
with h1, h2, h3 ∈ {0,−Li, Li}. The process for

determination of the minimum distance between two randomly oriented ellipsoids is described
in Sec.II.B.1 following the published work by (Anoukou et al., 2018). This distance is compared
to the minimum value s1 defined according to the input parameter tol1 such that :

s1 =
(
max(ai,1 + ai,2 + ai,3) + max(aj,1 + aj,2 + aj,3)

)
tol1 (9)

If ∆1 < s1 for any of the j,h configurations, the process is reset to step 1. Otherwise, the
process continue to step 4.

- step 4: Compute the minimum distance ∆2 between the ellipsoid i and the six boundary
planes of the cubic cell implemented following the results in Sec.II.B.2. In turn, this distance is



16 Chapter II – 3D printed microstructures with nearly optimal effective elastic properties

subjected to a comparison with the minimum value s2 defined according to the input parameter
tol2 such that:

s1 =
(
max(ai,1 + ai,2 + ai,3)

)
tol2 (10)

Similarly to step 3, the current inclusion i passes this step if the distance ∆2 < s2, otherwise
the generation is reset to step 1.

- step 5: Once the inclusion verifies the minimum distance requirements, it is irreversibly added
to the list of all accepted inclusions by storing its microstructural information as well as those
of its 26 periodic images. The current volume fraction c is then incremented by the volume of
the new inclusion such that:

c = c+
4πai,1ai,2ai,3

3L3
(11)

This implemented volume fraction represents the exact value of the current volume fraction of
inclusion in the cell because the different subsets of the ellipsoid i that lie outside the volume
V are included through the periodic images of the ellipsoid.

II.1.2.b Extension of the RSA algorithm to automatic polydispersion in size

The procedure defined in the previous section II.1.2.a offers the advantage to have full control over
the morphology of the different phases and to mixing ellipsoidal inclusions with different aspect ratios.
However, a heterogeneous microstructure with volume fraction c consisting of isolated ellipsoidal
inclusions, of the same aspect ratios ω1 and ω2, can be defined in different ways by triggering the
distribution of sizes and partition of volume fraction. Such versatility comes with the cost over
simplistic description when a relatively high volume fraction of inclusions is targeted. Finding the
suitable set of parameters as defined in Sec.II.1.1.b to create the microstructure with the desired c
can be a long and difficult task to handle manually.
In order to ensure the achievement of a large range of volume fractions with a minimum of descriptors
of each family of inclusions in the RSA generated microstructure, the algorithm shown in Sec.II.1.2.a
has been modified for the specific case of microstructures with polydispersed-in-size inclusions having
the same aspect ratios. This extension was also made to create a standard and uniform workflow for
the study of 3D printed RSA generated microstructures indistinctively of the dispersion in size of
isolated inclusions embedded inside the volume.
In the modified algorithm, the morphological descriptors consist of:

- The total volume fraction targeted c,

- The biggest characteristic size amax3 among the families of inclusions.

- The aspect ratios ω1 = amax3 /amax1 and ω2 = amax3 /amax2 that is applied to all generated
inclusions.

- The minimum distance criterion s1 replacing the parameters tol1 and tol2 concerning the
distance between two ellipsoids and the distance between an ellipsoid and a boundary surface
of the microstructure.
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- The minimum size criterion Dlim which is a stopping criterion for the generation of the process.

Before describing the generation procedure in the modified RSA algorithm, some remarks worth to
be emphasized concerning the morphological parameter of control. Firstly, using amax3 as a direct
input parameter together with c requires that amax3 ≤ alim such that the microstructures can contain
at least one inclusion such that :

alim =

(
3ω1ω2

4πc

)1

3
(12)

Thus, the algorithm starts by checking the following condition before any generation and set the
value of amax3 = alim otherwise. Secondly, the minimum size criterion Dlim, which has been based on
fabrication limitations, forces the algorithm to stop the generation once the characteristic semi-axis
lengths of the generated inclusion i verify that min(ai,3,ai,2,ai,1) ≤ Dlim. In that case, the c may
not be reached and the algorithm returns the periodic microstructure composed by the previously
accepted inclusions and the corresponding volume fraction. However, since this parameter is put as a
microstructural descriptors, it is possible to leave as null and thus allowing the generation of very
small inclusions and large size ratios to the cost of long time of generation.
Taking into account these latter remarks, the modified RSA process starts by setting morphological
parameters of the current inclusion with characteristic semi-lengths amax3 , amax2 = ω2/a

max
3 and

amax1 = ω1/a
max
3 and the apparent volume fraction is initiated to c = 0. The iterative procedure of

generation of the inclusions can be described by four main step including an iteration tracker that is
initiated to 0:

- Step 1: The algorithm generates the center position vi = (xi, yi, zi) ∈ [0, L]3 of the ith ellipsoid
and its Euler angles φi, θi, ψi following the same procedure described in SecII.1.2.a.

- Step2: Compute the minimum distance ∆1 between the current inclusion i and any previously
accepted inclusion j = 1, ..., i− 1 and its 26 periodic images. This distance is compared to the
global parameter s1 which can be seen as the minimum thickness of a ligament of the matrix
phase that is accepted. We highlight again that this change in the definition of s1 make a
switch in the strategy of the RSA algorithm by creating process based criterion instead of an
easy-mesh criterion related to FE computations. If ∆1 < s1 for any of the 27 configurations,
the process is reset to step 1. Otherwise, the process continue to step 3.

- Step3: Compute the minimum distance ∆2 between the ellipsoid i and the six boundary planes
of the cubic cell implemented following the procedure in Sec.II.B.2 and add the inclusion i
and its periodic images to the set of generated inclusions if the distance verifies ∆2 ≤ s1. The
tracker of iterations is thus reset to 0 and the current volume fraction is then incremented by
the volume of the new inclusion and such that:

ct = ct−1 +
4πai,1ai,2ai,3

3L3
(13)

Otherwise the generation is reset to step 1 and the iteration tracker is incremented by 1.
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- step 4: Unless the iteration tracker reaches the cut-off value of iterations, the algorithm
keep generating inclusions with the same morphological descriptors. In the current work, this
cut-off value is set to 3000 consecutive rejected center positions to fastly reach an end of the
process. Once the 3000 successive rejections are reached, the algorithm automatically reduces
the characteristic sizes of the new generated inclusion ai,3 by 1% such that:

ai,3 = 0.99ai−1,3 , ai,1 =
ai,3
ω1

, ai,2 =
ai,3
ω2

(for i ≥ 1, a0,3 = amax3 ) (14)

This procedure continues until the desired porosity c or the minimum size Dlim criterion is reached.
The algorithm returns the previously accepted inclusions and their periodic images in a microstructure
with total volume fraction c = ct.
Using these two procedures, the following section details the parameters used to generate porous
microstructures used in the 3D printing process.

II.1.3 Fabrication of the 3D printed microstructures

II.1.3.a Monodisperse RSA microstructures for moderate porosities

For relatively low volume fraction (c ≤ 30%), microstructures consisting of a randomly distributed
spherical inclusions were constructed using the RSA algorithm in Sec.II.1.2.a. The porous phase is
filled with single sized inclusions of diameter D and offset parameters for minimum distances criterions
set to tol1 = 0.02 and tol2 = 0.05 in order to obtain easy-to-mesh realizations. Figure II.2 shows
three such RVEs comprising monodisperse spherical voids of increasing porosity c = {10%, 20%, 30%}
with the number of pores N used for their generation.

II.1.3.b Polydisperse RSA microstructures for moderate to very high porosities

For volume fraction c > 30% the virtual realizations of the porous microstructures are obtained
using the modified random sequential addition (RSA) procedure and thus contain a finite number of
polydisperse spherical voids. The generated cubic unit cells are periodic, and contain a finite number
of families of identical spheres (here pores) randomly dispersed in the cell volume. In Fig. II.3, a few
representative RSA-generated cubic cells containing a volume fraction of spherical pores are shown for
illustration. it can be observed that for relatively low and moderate volume fractions, the generated
microstructures contain pores of very similar size while the range of pore sizes in relatively high
porous microstructures extends significantly and can reach more than 45:1 as discussed later. The
fact that microstructures generated by the automatic procedure (see section II.1.2.b) for porosities
below 30% gives a monodisperse in size microstructure, the polydispersed microstructure obtained
for higher volume fraction can be seen as a possible extension to the monodisperse microstructures
in the previous section.
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a) b) c)

d) e) f)

Figure II.2 – RVEs of unit volume L3 with N randomly distributed spherical particles of monodisperse sizes
for a total porosity (a) c = 10% and N = 160, (b) c = 20% and N = 275, (c) c = 30% and N = 400. (d-f)
Representative meshes corresponding to the undeformed configuration of the representative cubic cells.

a) b) c)

Figure II.3 – RVEs of unit volume L3 with N randomly distributed spherical particles of polydisperse sizes
obtained by the automatic RSA algorithm for a total porosity (a) c = 40% and N = 160, (b) c = 60% and
N = 275, (c) c = 75% and N = 400.
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II.2 Determination of the RVE for experimental testing

The physical dimension of the cubic cell or equivalently the RVE size is directly related to the
applied conditions. Numerical studies (Suquet, 1987; Kanit et al., 2003) on periodic unit-cells have
shown that the effective elastic properties of random particulate materials can be obtained with
relatively small RVEs, i.e., for large values D/L where D the characteristic size of the smallest
heterogeneities and L is the characteristic size of the cell under study. However, In the case of
uniaxial experiments, we applied mixed boundary conditions, i.e., part of the specimen is subjected
to displacement control and another is stress-free. The fabrication of porous material with accurate
control of their effective properties requires the determination the RVE size that withdraws effects
related to the applied boundary conditions.
To adress this question, we define the RVE by studying numerically two sets of boundary conditions,
the periodic (PBC) and the uniform strain (KUBC) ones. The periodic boundary conditions are
defined such that the dispacement field in the whole volume is decomposed into a displacement
related the macroscopic strain tensor ε and a L-periodic fluctuation field u∗ such that (Suquet, 1987)

u(x) = E · x + u∗(x) ∀x ∈ V (15)

Here, ε denotes the average strain in the RVE and u∗ has a zero volume average and accounts for
the fluctuations of the field due to the voids. Imposing periodic fluctuations of the displacement field
on a microstructure implies that the microstructure is periodic of the same period with that of the
fluctuating displacement field and that for the equilibrium of the internal forces the traction vector
fulfills anti-periodic condition such that for two homologous points x+ and x− on ∂V :

u∗(x+) = u∗(x−) (16)

σ(x+) · n = −σ(x−) · n (17)

For a technical discussion on how to apply such periodic boundary conditions, the reader is referred
to Mbiakop et al. (2015) and Appendix B of Danas (2017).
Contrary to the PBC, for which the homogenized elastic properties rapidly converge to the effective
properties, the Kinematic Uniform Boundary Conditions (KUBC) are known to be an upper bound
for the apparent elastic properties of voided materials (Huet, 1990). Their deviation from the effective
elastic properties is of the same order as the one obtained by using the Static uniform boundary
condition in which a traction vector t is prescribed at any point of the boundary. The KUBC consists
in imposing a displacement at any material point x on the boundary ∂V prescribed through a uniform
strain ε such that

u(x) = ε · x ∀x ∈ ∂V (18)

the RVE problem can be formulated in terms of the parameters of the RSA microstructure by the
problem of finding the ratio D/L for which we reach the convergence of the overall elastic properties
obtained by numerical simulations for the two sets of boundary conditions, the periodic (PBC) and
the uniform strain (KUBC) ones. Since the exact convergence can only be ensured for D << L, the
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targeted convergence for finding an experimental RVE is considered when (a) the effective properties
obtained by the application of the KUBC reach an asymptotic value that is less than 2% from those
corresponding to the PBC and (b) further increase of the number of pores does not affect the KUBC
result by more than 0.1 %.

II.2.1 Numerical procedure to determine the RVE size

For this purpose, a number of periodic cubic cells with gradually decreasing size D of inclusion, i.e.
increasing number of voids, are generated using a fixed porosity c. In order to address the statistical
deviation of the RSA process, four different realizations for each pair c and N (or D) have been
simulated.
Subsequently, the microstructures are discretized by use of ten-node tetrahedral quadratic elements
(C3D10 in ABAQUS Version 6.11 (2011) software) using the automatic mesh generator NETGEN
(Schöberl, 1997), which is also capable of creating identical surface meshes at opposite faces of the cell.
This, in turn, allows for a direct implementation of the periodic boundary conditions by elimination
techniques (e.g., use the ∗Equation command in ABAQUS). For information, the converged RVEs
comprise approximately 1.2M degrees of freedom (d.o.f) for low porosity (0 ≤ c ≤ 30%), 5M d.o.f for
the moderate ones (30% ≤ c ≤ 50%) and up to 18M d.o.f for the highest porosity (c = 82%).
Numerical estimates of homogenized elastic moduli are obtained by linear elastic FE analysis where
the matrix phase is modeled by an isotropic linear elastic constitutive behavior with Young’s Modulus
E = 1.4 GPa and Poisson’s ratio ν = 0.42 corresponding to those of the virgin matrix phase used
during the printing while the inclusions are considered as voids. (More details on the 3D printing
procedure and the properties of the matrix phase and the inclusion phase are given in Section II.3.2.)
The homogenized stiffness tensor is computed from the average stress and strain fields using the
overall constitutive equation (Hill, 1963)

σ(x) = C̃ : ε(x) (19)

In practice, adopting Voigt notation, each column of the stiffness tensor C̃ is computed by imposing a
strain field in a particular direction. For example, imposing the overall strain field ε ≡ (ε11, 0, 0, 0, 0, 0),
we obtain six linear relations: C̃kl11 = σkl/ε11 with kl = 11, 22, 33, 12, 23, 31. The computation of all
six columns of C̃ is done by applying all six independent average strains, ε, as described in Kanit
et al. (2003). If the heterogeneous material is isotropic, the overall elastic properties can be described
by its overall bulk modulus κ̃ and its shear modulus µ̃ such that the isotropic stiffness tensor, denoted
C̃iso, is introduced as a projection of C̃ along the fourth-order deviatoric and hydrostatic tensors, i.e.,

C̃iso = 3κ̃ J + 2µ̃K with κ̃ =
C̃ :: J

3
=
C̃iijj

9
, µ̃ =

C̃ :: K
10

=
3C̃ijij − 9κ̃

30
. (20)

where, κ̃ and µ̃ denote the isotropized bulk and shear moduli, and J (Jijkl = (1/3)δijδkl) and K = I−J
are the isotropic projection tensors, with I such that Iijkl = (1/2)(δikδjl + δilδjk), the identity tensor
in the space of symmetric fourth-order tensors, and δij (with i, j = 1, 2, 3) the identity second-order



22 Chapter II – 3D printed microstructures with nearly optimal effective elastic properties

rank tensor. Note that J and K satisfy the relations J : J = J, K : K = K, and J : K = K : J = O.
In many cases, isotropy of the heterogeneous material is an assumption that needs to be verified using
quantitative measure of the deviation of the overall stiffness tensor and the isotropic one. There are
two possible approaches for a quantitative measure of the deviation from isotropy; the geometrical
approach which consists in evaluating the deviation from isotropy of the RVE in a geometrical sense
(geometrical isotropy), and the mechanical approach, consisting in assessing the gap from isotropy of
the mechanical response (mechanical isotropy), e.g. the effective stiffness tensor in the linear elastic
context. In this study, we use the notion of mechanical isotropy since the goal is the evaluation of
the effective elastic properties, and a deviation in geometric anisotropy (which is inherently present
in our unit-cells) cannot be translated directly to deviation in mechanical isotropy.

Several authors (see for instance Zener and Siegel (1949), Spoor et al. (1995), Bucataru and
Slawinski (2008), Moussaddy et al. (2013), Ghossein and Lévesque (2014)) have proposed methods
which can be used to estimate the deviation from mechanical isotropy. They differ from each other
by the measure of the amplitude of the stiffness tensor (represented in matrix form adopting Voigt
notation), as well as the number of the coefficients used in that measure. The well-known measure
of Zener’s anisotropy ratio defined via δz = 2C̃44/(C̃11 − C̃12) (using Voigt notation) takes only in
consideration particular components of the stiffness tensor that correspond to cubic symmetry. Since
our materials are random, we adopt the Frobenius norm as a measure of the amplitude of the stiffness
matrix, which uses all components of C̃. The deviation from isotropy of C̃, denoted by δiso, is then
evaluated as a ratio of the Frobenius elastic distance function (Moakher and Norris, 2006)

δiso =
||C̃− C̃iso||F
||C̃||F

, (21)

where ||A||F =
√

Tr (A · AT ), is the Frobenius norm of the tensor A. The value of δiso = 0 corresponds
to exact isotropy.
The RSA algorithm is known to lead to very small deviations from isotropy when spherical inclusions
are used (but see corresponding results for ellipsoidal inclusions in Anoukou et al. (2018)). In the
present study, the maximum error is found to be δiso < 0.006 and the deviation from δz = 1 which
corresponds to the isotropic case is less than 0.01. Therefore, the proposed RVEs can be considered
isotropic.

II.2.2 Converged RVEs for monodisperse spherical pores

For spherical single sized voids in cubic cells, the ratio between the size of the pores and the size
of the cubic unit cell D/L is related to the number of voids N and their volume fraction c such that:

c =
Nπ

6

(
D

L

)3

, or
D

L
=

3

√
6c

Nπ
(22)

Using the above definitions and boundary conditions, we carry out calculations to estimate the
number of pores required for convergence in the effective elastic properties or equivalently the size of
the RVE which is defined by the ratio D/L in equation (22)2. It is noted here that in addition to
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the converged RVE, a number of technical constraints related to the 3D printing accuracy and the
experimental equipment have to be taken into account. Those constraints are discussed in detail
in the following section. We recall that convergence towards an experimental RVE is considered
when (a) the effective bulk and shear moduli obtained by the application of the KUBC reach an
asymptotic value that is less than 2% from those corresponding to the PBC and (b) further increase
of the number of pores does not affect the KUBC result by more than 0.1 %.

a) b)

c) d)

Figure II.4 – Numerical results to determine the number of monodisperse spherical pores that lead to
convergence for the different boundary conditions PBC and KUBC. Normalized effective elastic moduli: (a)
normalized bulk modulus κ̃/κm, (b) normalized shear modulus µ̃/µm, (c) normalized Young’s modulus Ẽ/Em

and (d) Poisson’s ratio ν̃ for c = 15%. The matrix bulk, shear and Young’s moduli are κm, µm and Em,
respectively.

Specifically, Fig. II.4 shows the evolution of the normalized effective moduli, defined as the ratio of
the effective moduli of the RVE over the moduli of the matrix, for a porosity of c = 15% as a function
of the number of pores N . The periodic boundary conditions (PBC) converge rapidly (i.e., for N ∼ 30)
to the effective elastic properties of the given microstructure and show no substantial dispersion
among the various realizations. By contrast, the kinematically uniform boundary conditions (KUBC)
require a much larger number of voids for convergence, in the order of N = 225. This, in turn,
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leads to a size ratio D/L ∼ 0.103, i.e. a side length of the cube that is approximately ten times the
diameter of the void. Moreover, we observe that the KUBC loading leads to more dispersion among
the different realizations.
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Figure II.5 – (Left axis) Converged in terms of elastic properties pore diameter-to-cube size ratio D/L and
(right axis) pore diameter (in mm) for a cube side length L = 12mm as a function of the porosity c. Colored
regions depict in red the non-converged D/L ratio, in yellow the converged D/L ratio for given porosity and
in green the maximum pore size, i.e., D/L that can be used to obtain converged RVEs. Contours of equation
(22)2 for different number of pores N are shown as dotted lines.

Similar calculations, as those discussed in the context of Fig. II.4 for porosity c = 15%, are carried
out for the entire range of porosities analyzed in this study allowing us to get a converged size ratio
D/L as a function of c, as shown in Fig. II.5. We observe that D/L increases with c and is of the
order D/L ∼ 0.1. Overall a ratio D/L ∼ 9.85 · 10−2 is sufficient for a converged RVE (green area in
Fig. II.5). This implies that the diameter of the voids should be less than D ∼ 1.18mm for a cubic
RVE of side length L = 12mm in order to get converged effective elastic properties for any porosity
c (see right axis of Fig. II.5). Instead, one can use larger void diameters at larger porosities c, as
shown by the yellow area in Fig. II.5 but it has to be taken case-by-case. The red regime, on the
other hand, indicates non-converged D/L ratios. Note at last that the converged ratios D/L are also
a function of the number of voids N in the RVE, which are shown in the same figure as contours of
equation (22)2 (dotted lines).

II.2.3 Extension to polydisperse RVEs

Following the procedure introduced in Sec.II.2.2, the size of the RVE can be defined by a single
geometrical parameter D/L relating the unique heterogeneity size D which spherical void diameter
and the characteristic size of the cell L. In the case of polydisperse systems, a similar approached was
possible thanks to the automatic process of generation of polydisperse inclusions which for spherical
inclusions can be related to only the diameter of the biggest inclusion Dmax for any given volume
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fraction c. Thus, the procedure for such microstructures consists in decreasing progressively the
diameter Dmax for fixed porosity c and measuring the overall elastic properties for the two sets of
boundary conditions as described in Sec.II.2 until convergence of the elastic properties is reached.
In Figs.II.6 a-d), the extended RVE procedure is described for a representative porosity c = 60%. Fig
II.6a represent different cubic cells with decreasing diameter Dmax while the results of normalized
effective elastic moduli obtained from the FE computations are plotted in Fig.II.6 b-d). In these
figures, the diameter of the smallest voids Dmin is used as secondary horizontal axis. For illustration
purposes, we report in the inset of Figure II.6b the evolution of the ratio Dmax/Dmin as a function
of Dmax. To ensure statistical representativeness, each data point is the average of five simulations
onto different realizations. It is observed that the normalized bulk and shear moduli of the porous
microstructures computed using KUBC converge quite fast toward the PBC results and that decreasing
Dmax leads to an important increase in the total number of inclusions in the cell and thus increases
the size of calculations.
Collecting the converge RVE size obtained for both studies, we plot the evolution of both Dmax/Dmin

and Dmin as a function of the volume fraction, i.e. c. At small porosities, i.e. 0 ≤ c ≤ 35%, the
ratio Dmax/Dmin remains constant and equal to Dmax/Dmin = 1 with RVE size obtained for
Dmin = 1.2mm (for a unit cell of characteristic size L = 12mm) showing that RVEs for such volume
fractions can be obtained with a single size of voids. It is worth noting that this result confirms
earlier studies (Lopez-Pamies et al., 2013a; Anoukou et al., 2018) that have found that the effective
elastic properties for monodisperse and polydisperse spherical particles at equal volume fraction
were nearly identical for the RSA microstructures. On the other hand, for c ≥ 40%; polydispersity
is essential to achieve high values of volume fractions without interfering on the center points or
characteristic sizes of generated (i.e. already accepted) inclusions by the RSA. Figure II.7 shows a
rapid increase of the converged ratio Dmax/Dmin which reaches values as large as 45:1. This last
result shows that to achieve large porosities c ≥ 75%, the continuous distribution of sizes imposes to
build multi-scale microstructures.
It is worth noting that, for such volume fractions, the convergence in the overall elastic properties
obtained with KUBC and PBC could not be reached in the numerical simulations. The deviation
between the overall elastic properties obtained for both boundary conditions goes up to 8% for
c = 82% and no improvment could be sought because generating these microstructures reaches the
accuracy limitations of the 3D Printer. In this case, an experimental RVE obtained from averaging
the experimental overall elastic properties of multiple sample realizations was chosen to remedy to
that.

II.2.4 FE results for porous microstructures

Before explaining the 3D printing procedure and results of its application on our microstructures,
it is worth discussing the results obtained with FEM for the effective properties of the porous RSA
microstructures because these results carry intrinsic influence of the microstructure descriptions on
the effective elastic properties without the effect of imperfections or specificities related to the choice



26 Chapter II – 3D printed microstructures with nearly optimal effective elastic properties

246810
0.20

0.22

0.24

0.26

0.28

0.30

PBC

KUBC

0.060

0.065

0.070

0.075

0.080

PBC

KUBC

2

4

6

8

246810

0.20.81.31.802.30

0.20.81.31.802.30

246810

0.18

0.20

0.22

0.24

0.26

PBC

KUBC

246810

Figure II.6 – a) Realizations of microstructures containing a random distribution of polydisperse spherical
voids at porosity c = 60%. Geometrical paramters for these microstructures are: (i) Dmax = 8.4mm and
Dmax/Dmin = 4 (ii) Dmax = 6.0mm and Dmax/Dmin = 4.5 (iii) Dmax = 4.8mm and Dmax/Dmin = 5 (iv)
Dmax = 2.3mm and Dmax/Dmin = 6.5. (b-d) Results for the effective (b) bulk, (c) shear and (d) Young
moduli normalized by the corresponding matrix moduli obtained from FE simulations with periodic (PBC)
and kinematically uniform (KUBC) boundary conditions. data are the average of five realizations. The inset
in figure (b) shows the evolution of the ratio between diameters of the biggest and smallest pores Dmax/Dmin

for different input Dmax values.

of 3D printing process. We explore numerically the effective elastic properties of RSA microstructures
for porosities ranging from c = 0 to c = 82% for which no analytical solution is yet available.
The normalized effective shear µ̃/µ̃m and bulk κ̃/κ̃m are shown as a function of the total volume
fraction c in Figure II.8. The data points, depicted by solid circles correspond to the average values
of four different RVE realizations and depict very small standard deviation as shown by the error
bars. Moreover, for all porosities analyzed here the deviation from isotropy is less that δiso < 1%

thereby indicating that our porous materials are fully isotropic solids.
For comparison purposes, the theoretical HS bounds defined (solid lines) for isotropic porous solids
in Eq.II.A.2.b are also reported in Figure II.8.
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Figure II.7 – Results of the RVE convergence study for a large range of porosity, 0 ≤ c ≤ 82% showing the
ratio Dmax/Dmin and the Dmin obtained as a function of the porosity.
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Figure II.8 – Plots of the normalized shear modulus µ̃/µm and bulk modulus κ̃/κm as a function of the
volume fraction of inclusions c. The data points are obtained from FE periodic unit-cell simulations with
periodic boundary conditions (PBC). The Hashin-Shtrikman upper bound for isotropic porous materials is
also displayed for each modulus using solid lines.

κ̃HS =
4(1− c)µmκm
4µm + 3c κm

(23)

µ̃HS =
(1− c)(8µm + 9κm)µm

4µm(2 + 3c) + 3κm(3 + 2c)
(24)

The difference between the FE predictions and the corresponding HS bounds remains small over the
entire range of porosity explored. Moreover, this difference decreases gradually for moderate to low
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porosities (0 ≤ c ≤ 40%) and for large ones ( c ≥ 60%). Rather interestingly, this difference is found
to be maximum for intermediate values of the porosity 40% ≤ c ≤ 60% which will be discussed with
insight on the local elastic fields in the Sec.II.4.3.

II.3 3D printing and experimental protocol

This section presents the 3D polymer printing technique, the characterization of the process with
optical imaging and Electronic microscopy for the determination of the resolution of printing objects.
Then it presents the setup of characterization of the 3D printer materials properties and then the
fabrication of porous-like materials with experimentally assessed effective properties.

II.3.1 Additive manufacturing of porous specimens

All test specimens are 3D-printed using an acrylic photopolymer available in our EDEN 260VS
3D-printer purchased by Stratasys. The photopolymeric resin employed for 3D-printing has the
commercial name VeroWhitePlus and is selected for its suitability to produce parts with very fine
feature details, such as our spherical void microstructures. The main aim of the experiments is then
the measurement of the effective Young’s modulus and Poisson’s ratio of the 3D-printed random
porous microstructures. Due to the viscoelastic response of the VeroWhitePlus polymer, we measure
the material parameters for the basic (ground state) elasticity by means of a tensile relaxation testing.
Following the experimental methodology presented in Hossain et al. (2012), we carry out two trains
of experiments, namely (i) single- and (ii) multi-step relaxation tests, and we assess their suitability
for obtaining the basic elasticity data from the time-dependent stress response.

II.3.1.a Fabrication of the tensile-test specimen

Specifically, our virtual test specimens have a dog-bone shape which is designed to ensure uniaxial
stress conditions (on average since our porous specimens are heterogeneous) in the gage section. The
ratio of the length to the width is for all samples higher than 10 (Wissler and Mazza, 2007). In order
to construct the virtual geometry of the porous samples, we adopt the protocol shown in Fig. II.9.
We first assemble length-wise five representative cubic RVE cells of length L = 12mm (see discussion
in Section II.3.2) in order to build the reduced uniform section of the test specimens. The latter is
enclosed between the heads of the sample which, in turn, have a solid section thus allowing us to
mount the specimen onto the uniaxial machine. The physical dimensions of the test specimens can
be obtained from Fig. II.9.

Next, we transform the 3D virtual model of our test specimens into a stereolitography format (i.e.
STL) for 3D-printing. This is done by employing the commercial software NETGEN to mesh the
3D-models with four-node tetrahedral elements and subsequently export the latter to STL. We note
in passing that more often than not the exported 3D STL models contain errors associated with the
normal vectors defining the facets of the internal voids surfaces. In fact, these normal vectors define
the direction towards which material should not be printed. Thus, one should correct the normal
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direction so that it points towards the center of the sphere. In the present study, those normal vector
directions are corrected by use of the commercial software NETFABB (presently CadVision).

Figure II.9 – (Top) Virtual testing sample generated by assembling length-wise 5 cubic porous RVEs and by
adding gripping heads of solid material. (Left) A zoom of the RVE which defines our gage section. (Bottom)
3D printed testing sample after cleaning support material from open pores and boundary surface. (Right)
A zoom of the 3D printed RVE showing the size of the actual axial and transverse gage sections in the
experiment.

II.3.1.b The 3D printer constraints and technical requirements

Once a correct STL model is produced, we then fabricate the specimens using the 3D-printer
EDEN 260VS by Stratasys. Our printer employs a PolyJet technology that consists in building volume
parts through layer deposition of liquid photopolymerizable droplets (of micrometric size) which are
then cured with a UV light with no-additional post-curing. For the VeroWhitePlus resin used in this
study, the layer resolution is 16µm whereas that of the jetting precision is 100µm, as specified by the
manufacturer (for more information go to: http://www.stratasys.com). Furthermore, in order to
overcome gravity constraints related to 3D objects such as that of a sphere, our 3D-printer uses a
support gel-like material to print the spherical void volumes during layer deposition. As detailed
in Section II.3.4, this support material has no influence on the effective response of the measured
porous-like composites.

Another important specificity of the 3D printer related to the fabrication of the porous microstruc-
tures is the accuracy of the 3D-printing process. In order to assess the geometrical dimension that
can be produced by the available 3D printer, porous microstructures are observed by mean of an
optical microscope. Specifically, guided by the results of the numerical RVE calculations in Fig. II.5,
we have investigated several void diameters spanning from D = 200µm to D = 1200µm. In order
to observe the microstructures under the microscope, we deliberately interrupted the 3D-printing
process at arbitrary time steps and then resumed it after optical analysis. Overall, Fig. II.11 reveals
that pores with circular section are finely fabricated in both cases and can be manufactured with
very good dimensional accuracy within the range of size explored. Figure II.11 also shows that the
spherical pores can be printed up to a diameter of about 200µm and the a thickness of ligament of
about 150µm. A set of representative optical micrographs are shown in Fig. II.10, with parts (b)

http://www.stratasys.com
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a) b) c)

Figure II.10 – Optical image showing a cross-section of the macroscopic 3D printed specimen with the
spherical pores for the assessment the printing accuracy. Observations of representative 3D printed spherical
voids of diameter (b) D ∼ 1.2mm and (c) D ∼ 0.500mm. A fairly good printing accuracy is observed in both
cases.

Figure II.11 – Micrographs of the 3D-printed porous microstructures obtained upon interrupting the 3D
printing process at a build volume of thickness about 500 µm. The pore-like inclusions are built by the
3D-printer using a gel-like support material (i.e. nearly transparent phase). Pores through thickness are also
visible (i.e. light grey phase).From left to right, the 2D micrographs represents microstructures of total volume
fraction 20%, 40%, 60% and 75%

and (c) corresponding to pore diameters of ∼ 1.2mm and ∼ 0.5mm, respectively. Finally, it is worth
mentioning that no additional micron-size porosity has been observed in the matrix phase as a result
of the printing process.

II.3.2 Experimental protocol

The tensile relaxation experiments are carried out at room-temperature using a servo-hydraulic
uniaxial apparatus as shown in Fig.II.12. When increasing the volume fraction of porous-like inclusions
c, the mechanical behavior of the material drops down and lowers the values of force needed to reach
the monitored displacement. In order to keep accuracy of the measurements even at low force range,
we measure the load history with a 10kN force transducer (accuracy ±10N) for c ≤ 30%, and we
change the setup to a 1.5kN the load transducer with accuracy of ±0.1N. In turn, the measurements
of the axial and transverse strains are obtained simultaneously and independently by means of two
clip-on gage extensometers. Specifically, the former is measured with an MTS 632.13F-20 sensor
(accuracy ±0.0075mm) and the latter with an Epsilon 3475-025M-ST transducer (accuracy ±0.1mm).
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It is important to note here that since we are interested in measuring the effective properties of the
porous materials, the gage length for each extensometer was set equal to the characteristic cubic
RVE cell length, i.e. L = 12mm (see discussion in Section II.1.3). It is not the goal of the present
study to measure the local strains in-between the voids or any other local information.
For consistency with the numerical analysis, for each test, we use four specimens to assess the degree
of reproducibility of the experimental results. We also note that in order to minimize the discrepancy
of the measurements, every test sample is printed individually and experiments are conducted three
days after the manufacturing process (to prevent aging of the polymer matrix). As reported by
Barclift and Williams (2012), the relative distance between the samples as those are set upon the
building tray of the 3D-printer could be an additional source of scattering in their elastic properties.

II.3.2.a Single relaxation testing

A common approach in determining the time-independent equilibrium response, i.e., the equilib-
rium stress state, in viscoelastic polymers is to perform single-step relaxation tests under a constant
applied displacement. Such tests typically involve the application of a constant displacement (leading
to a constant overall strain) and then monitoring the force decay over time.

The value that the stress reaches asymptotically at the end of the holding time in single-step
relaxation experiments corresponds to the equilibrium stress. Therefore, it is the value of interest for
the estimation of the Young’s modulus. We assess the suitability of this testing method by carrying out
three relaxation tests at different strain rates ε̇ = {10−4, 10−5, 10−6}s−1 for the pure VeroWhitePlus
material (i.e. without voids) and by measuring the load history under an applied constant nominal
strain of ∼ 0.5%. Those single-step relaxation tests, albeit useful to obtain the relaxation decay of
the material and an approximate range of the linear response regime, are inappropriate to provide
the pure (i.e. without viscoelastic contributions) elastic modulus of the material.

II.3.2.b Multi-step relaxation testing

In view of this, multi-step relaxation tests at various levels of deformation is an alternative to
single-relaxation and can be employed to determine the basic elasticity (slopes of the stress-strain
response) of the materials under study. In many practical cases, and particularly when the amount of
the viscous effects in the material are unknown, the method proves more suitable and time-effective
than the single-step relaxation as discussed by Hossain et al. (2012). In the present study, multi-step
relaxation tests at ε̇ = 10−5s−1 are conducted. At each step, a displacement corresponding to an
average axial strain increment of 0.1% is applied to the test specimen and the step-wise load history
is recorded except for volume fraction c = 82% for which an average axial strain increment of 0.05%

is applied in order to prevent large straining of the thin matrix ligaments between neighboring
pore-inclusions. Each test consists of seven relaxation steps so that the final nominal strain ε ≤ 0.7%

which corresponds to the value of the nominal strain beyond which the stress-strain response of the
polymer VerowhitePlus matrix starts departing from linearity.
To pilot the experiments, we use an in-built computer program where the holding time for relaxation
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Figure II.12 – Picture of the experimental setup used in order to determine the effective elastic properties of
polymeric porous microstructures.

is variable. Specifically, we consider the material to be at its equilibrium state, and therefore attaining
its purely elastic response, when the difference between two consecutive force measurements is smaller
than a tolerance value related to the sensitivity of the experimental setup. For volume fractions
c ≤ 30%, this tolerance value has been set to 10N (which corresponds to the accuracy of our load
cell) and the time interval between two consecutive measurements is taken to 20min following the
observations of relaxation time of the matrix polymer shown in Fig.II.13. For higher volume fractions
c ≥ 30%, the equilibrium state criterion in the relaxation phase is change from a difference smaller
than 10N to a difference smaller than 4N and the time step between two consecutive force comparison
measurements in the relaxation phase was also changed to 3min intervals in order to gain time on
the experiment.

II.3.3 Characterization of the Matrix material

In this section, we show detailed experimental results related to the polymeric matrix material
used for the 3D printing, following the procedure discussed in the previous section.

II.3.3.a Elastic moduli of the monolithic VeroWhitePlus matrix

Experimental results of the single-step relaxation tests for the monolithic VeroWhitePlus matrix
at different strain rates ε̇ = {10−4, 10−5, 10−6}s−1 are reported in Figs II.13a,b. Data in Fig II.13a
provide quantitative measurements of the matrix strain rate sensitivity as well as of its time-dependent
response. The comparison of the curves in Fig II.13a shows that the initial slope of the axial force-time
response decreases with decreasing strain rate, whereas not all three curves reach to the equilibrium
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state within the holding time window, although they all exhibit the tendency to reach the same
asymptotic force value at large times. For completeness, we report in the inset of Fig II.13a the
measured stress-strain response of the matrix at two different strain rates ε̇ = {10−5, 10−6}s−1 and
observe that they depart from linearity after ∼ 0.7% strain. Therefore, in order to obtain the initial
Young’s modulus one has to make sure that the overall applied strains remain small, which makes
experimental measurements extremely sensitive. On the other hand, Fig II.13b reveals that the
Poisson’s ratio, obtained as the absolute value of the ratio between the transverse strain over the
axial strain, is strain-rate insensitive.

a) b)

Figure II.13 – (a) Force measurements for single-step relaxation tests at different strain rates showing
strong rate-dependence. Inset shows the corresponding axial stress-strain response for strain rates ε̇ = {10−5,
10−6} s−1. (b) Axial versus transverse strain curve obtained for different strain rates showing that the Poisson’s
ratio is fairly rate-independent. Inset shows the evolution of the applied strain as a function of time.

a) b)

Figure II.14 – Overall applied strain rate ε̇ = 10−5s−1: (a) Stress-Strain curves obtained during multi-step
relaxation steps. The Young’s modulus is obtained by the slope of the curve that connects the fully relaxed
stress states excluding the first point. (b) Axial versus transverse strain curve during the multi-step relaxation
test. Slopes during loading are found to be fairly independent of the level of the axial strain.

The results of the multi-step relaxation experiments at ε̇ = 10−5 s−1 for the VeroWhitePlus
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matrix are reported in Fig II.14a. The effective Young’s modulus, Ẽ (or Em for the pure polymer),
is then evaluated as the slope of the line connecting the equilibrium (fully relaxed) stress points in
the nominal stress-strain curve as shown in Fig. II.13a. It is worth mentioning that in the evaluation
of the slope, we use six equilibrium stress points, neglecting the one at zero strain, which can be very
sensitive to initial settings of the experimental setup (e.g., gripping of the specimen, minor sliding
between the heads and the machine and sensitivity of the extensometers). Moreover, in agreement
with previous observations in Fig II.13b, Fig. II.14 shows that at each relaxation step the slope
of transverse strain-axial strain curve is time-independent thereby making the calculation of the
Poisson’s ratio straightforward. Finally, a very small drop is observed for the transverse strain at
each relaxation step.

II.3.3.b Isotropy of the 3D printed matrix material

Prior to testing the porous materials, we first investigate experimentally the isotropy of the
mechanical response of the 3D-printed pure VeroWhitePlus matrix. This analysis is extremely
important for our study since the microstructural anisotropy (if any) could be easily attributed to
the intrinsic anisotropy of the polymer matrix. In order to address this issue, we print the dog-bone
specimens in all three different directions with respect to the printer heads. For clarity, hereinafter
e1 corresponds to the printing direction, i.e. the displacement direction of the printer’s heads, e2
and e3 are respectively the in-plane and out-of-plane directions perpendicular to e1. We also note
that e3 corresponds to the direction of deposition of the sequential layers. In Fig. II.15, we report

a) b)

Figure II.15 – Experimental results of (a) Young’s modulus Em and (b) Poisson’s ratio νm for the matrix
phase with respect to the printing direction. The matrix is found to be isotropic.

computed values of the Young’s modulus and Poisson’s ratio for all three different printing directions.
The elastic parameters are obtained from multi-step relaxation experiments as described in the
previous section. As seen, the measured values of these moduli are within the scatter of data and are
independent of the printing direction. The measured mechanical isotropy can partially be explained
by observation of Fig II.10a. In our 3D printer, the liquid polymer droplets create a homogeneous
solid material when coalescing and overcome any apparent laminated microstructure that would result
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from the 16µm layering process. Finally, our data provided experimental evidence that the matrix
material (VeroWhite) is statistically homogeneous and exhibits an elastically isotropic behavior with
a Young’s modulus Em = 1400± 120MPa and a Poisson’s ratio of νm = 0.42± 0.02. These moduli
correspond to a bulk modulus of κm = 2920MPa and a shear modulus of µm = 493MPa.

II.3.4 Characterization of the support material

This section deals with the influence of the gel-like support material, with commercial name
SUPP705 (Startasys) used to overcome gravity issues while printing the internal spherical void
geometry. Similarly to the building photopolymer, this material is also an acrylic-based polymer with
density dSUPP705 = 1.13 but it can be easily removed from the external surfaces of the 3D-printed
parts by waterjet or chemical NaOh solution if it is inside an open (or connected with the surface)
porosity. For closed-cell porosity, as is the case in the present study, this material is trapped inside
the structure.

II.3.4.a Elastic moduli of SUPP705 material

As mentionned before, the 3D printer uses a gel-like support material to support the layer-by-layer
building of the structure and this material is trapped inside closed space of the microstructure. It is
also worth mentionning that this support material is not an option for building parts and the design
of a part made of such material needs to use a shell to force the use of the support material in precise
regions and to be easy to take away without damaging the support material.
Accounting for these fabrication constraints, an experimental specimen shown in Fig.II.17 has been
designed to test the elastic properties of the support material. The specimen consists of a 50mm-length
strips of support material with a squared gage section of 5mm-size enclosed by a U-shaped sandwich
structure on both ends of its length direction and by a layer of VeroWhitePlus material of 200µm
thickess on the front and in the back faces of the gage section. These two layers can be easily striped
away from the support material strip and the U-shape VeroWhitePlus structure is used to mount the
specimen onto the tensile testing machine without damaging the structure as shown in Fig.II.16.
To ensure appropriate characterization of the mechanical properties of the support material, four
samples were tested in uniaxial testing setup. The experimental setup that was developped for
VeroWhitePlus characterization cannot be applied to the support material as the weight of the
transducers itself breaks the samples. For determining the Young moduli and Poisson’s ratio of the
material, we use optical marker tracking method that enables to measure the macroscopic longitudinal
and transversal strains using a camera connected to a post-treatment software. As shown by Fig.II.16,
a regular grid made of nine points is made in a central position on the gage surface of the strip of the
support material in order to avoid boundary effects on the measurements. The dotted positions are
manually identified in the software of the camera and are made suffisciently distant from each others
to prevent the marker tracker from inverting their positions during the experiment. The tracking
system is based on taking regularly pictures of the zone of interest and saving the coordinates of
the central points of each identified marker. The good measurement of the displacement of the
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markers is based on the hypothesis that the pictures are taken in a frequency that is higher than the
one related to the variations of the actual displacement field and the dots do not overlap or switch
positions so that the new position of a marker is found by tracing a high contrast gap around the
previous position. The transverse and longitudinal strains are respectively computed by dividing the
measured transverse and longitudinal displacement by the initial distance between the markers in
the transverse and longitudinal directions. In turn, the applied force on the sample is acquired using
a load cell of ±10N connected to the computer and the engineering stress is computed by dividing it
by the gage section 5× 5 mm2.
The Young moduli is computed by the slope between the engineering stress and strain in the linear

behavior ES =
dσ11
dε11

while the poisson ratio is taken as the opposite of the slope between the transverse

and longitudinal strains νS = −dε22
dε11

. The results of the tensile tests at ambient temperature and at a

strain rate of ε̇ = 10−5s−1, similar to the one chosen to conduct the experiments on porous material,
give a tensile modulus ES = 1.3± 0.1MPa and a Poisson’s ratio νs = 0.25 and the stress-strain curve
shows that the support material has a brittle fracture at strains around 1%.

Figure II.16 – (a)Virtual design of the specimen used to enforce support material testing (b) 3D-printed
specimen prepared in order to test the elastic properties of the support material.

II.3.4.b The effect of support on composite material properties

The experimental characterization of the proposed porous materials shows that the measured
elastic moduli ES and Em have a contrast of almost thousand times. Besides that, the mechanical
characterization , conducted in this study to properly account for the 3D printed material as porous-
like material, needs to account for the effect of this support material and examine if it behaves closely
to a voided material. To that aim, two methods were developped. An experimental assessment of the
negligeable effect of the support material has been conducted by printing and chacterizing specimens
with gage zone consisting of aligned cylinders in the direction of the specimen thickness (see insets in
Fig.II.18) in two configurations; one where the support material has been removed from the cylinders
and the other one where the support material has been retained. Results of the apparent overall
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a) b)

Figure II.17 – (a) Experimental setup used in order to characterize the support material of the 3D-printer
(b) Illustration of the brittle fracture of the support material occuring in the central region of the gage zone.

Young’s modulus 1 for these two structures are shown in Fig. II.18. No significant difference is found
between the two configurations, indicating that the support material has negligible elastic properties
when compared with those of the virgin matrix material (VerowhitePlus).
The second verification consists in numerical simulations using FEM conducted on the RSA

microstructures at different volume fraction c at two configurations: one where the inclusions are
meshed and associated to the isotropic elastic properties of the support material and another one
accounting for porous inclusions. The overall elastic properties of both configurations were obtained
using the same procedure as the one introduced in Sec.II.2.1 and comparison between the elastic
moduli shows that a negligeable deviation is introduced by the thousand-times softer material in
comparison with the fully porous material when considering a linear elastic behavior. These results
are confirmed by the Hashin-Shtrikman two-phase upper bound as can be seen in the Fig.II.19.

1. Note that these structures are not representative and hence the measured elastic properties are those corresponding
to a structure and not a material.
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a) b)

Figure II.18 – Experimental results of the apparent (a) Young’s modulus and (b) Poisson’s ratio for the
investigation of the effect of the support material inside the voided phase. A cylindrical-void specimen is
specifically fabricated in order to control the presence or not of the support material. The support material
has negligible effect upon the elastic properties.

a) b)
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Figure II.19 – Numerical results of normalized (a) effective bulk modulus κ̃/κm and (b) effective shear
modulusµ̃/µm for microstructures with inclusions computed using either void properties for the inclusions or
the support material properties. Bounds of HS in both cases are plotted along with the numerical computations
to highlight the low difference in analytical estimates between the two configurations.

II.4 Experimental effective elastic properties of the 3D printed porous
materials

II.4.1 Experimental isotropy assessment

An important aspect of the experimental study (similarly to the numerical one) is the isotropy of
the 3D-printed RVEs. It is noted here that this is a non-trivial analysis since the RVEs under study
do not exhibit any symmetry planes, as is the case in highly periodic trusses and lattices. Moreover,
from the corresponding numerical study, we observe that the random dispersion of the inclusion in
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such RVEs leads to similar tensile and shear moduli along the three orthogonal directions of the cube
cell.
In order to probe the degree of isotropy in our 3D-printed composites, the Young’s modulus along
the three orthogonal axes of the cubic RVE at selected volume fractions of void-like inclusions, e.g.
c = 65%, 70% and 75%, where the RVEs comprise a very large number of void sizes. This is achieved
by first rotating the generated cubic cell along its three axes and then by using each rotated cell
to construct the virtual test sample. The latter is then 3D-printed and tested. Attention is here
limited to the axial stiffness, since the scatter observed in the measurements of the Poisson’s ratio
would make it difficult to compare the values. To separate between anisotropy factors related to the
process and those inherent to the microstructure, numerical simulation are conducted on the same
realizations. As expected, the degree of anisotropy found on the experimental measures is small with
differences between the largest and the smallest experimental moduli found to be respectively 12, 9
and 6% for c = 75%, 70%, 65%. These deviations are in the order of the experimental scatter found
for the properties of the pure matrix. In turn, differences in the numerical estimates are negligible
and are consistent with the values of the deviation from isotropy δiso < 1%.
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Figure II.20 – (Top) Numerical estimates of the Young’s modulus along the three orthogonal directions for
moderate-to-high volume fractions c. (Bottom) The experimental measurements of the Young’s modulus along
the three orthogonal directions conducted on the specimens built using rotation of the unit-cell microstructures

II.4.2 Evolution of the effective elastic moduli of 3D printed specimen with
porosity

In this section, we compare the theoretical Hashin-Shtrikman (HS) bounds for isotropic porous
materials, with numerical (FEM) calculations and the present experimental measurements. Since, the
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proposed microstructures exhibit almost perfect isotropy by construction, direct comparison of their
elastic effective properties with the HS isotropic bounds is meaningful in terms of moduli, such as the
Young’s modulus and Poisson’s ratio or equivalently the bulk and shear moduli. For isotropic porous
materials, the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963b; Willis, 1977) are given by
the expressions in Eq.II.A.2.b. The corresponding effective Young’s modulus, Ẽ and Poisson’s ratio,
ν̃, are readily obtained by Eqs. II.4.2.
It is recalled at this point that the HS homogenization bounds refer to infinitely polydisperse (i.e.
infinite sizes of) voids. Nonetheless, as we will be discussed in Sec.II.4.3, for porosities up to c = 30%

(see also Anoukou et al. (2018)), the monodisperse and polydisperse results are almost identical.
Moreover, we recall here that both the FEM and experimental results correspond to four different
realizations and samples, respectively, for each porosity. Figure II.21 shows the effective (a) Young’s
modulus Ẽ, (b) Poisson’s ratio ν̃, (c) bulk modulus κ̃ and (d) shear modulus µ̃ as a function of
the porosity c. The results are abtained as the average of at least four specimens and are reported
together with their error bar. For comparison, the HS upper bounds fo an isotropic porous medium
are plotted alongside the FE approximations. The latter are computed from values shown in Fig.
II.21 using the standard linear elastic equivalence:

Ẽ =
9κ̃µ̃

(3κ̃+ µ̃)
and ν̃ =

(3κ̃− 2µ̃)

(6κ̃+ 2µ̃)
(25)

It can be observed that the experimental results for the directly measured Ẽ are in very good
agreement with the numerical FE results and lie very close to the HS bound. The maximum deviation
of the experimental Young’s modulus Ẽ from the theoretical HS bound is observed at moderate
porosity, where the error bars exhibit the highest scatter suggesting that a main factor for this
dispersion is the conditioning of the polymeric material during 3D printing as well as measurement
sensitivity resulting from the extensometers. In turn, the measured values of the Poisson’s ratio
varies a lot and more particularly when the volume fraction increases due to the sensitivity for the
measurements of the transverse strain at large volume fraction of inclusions (Tarantino et al., 2016)
and departs from the HS estimates for c ≥ 40%. It is noted that the FE results exhibit very small
deviation (less than 0.1%), and thus the corresponding scatter is not shown explicitly in the plots.

II.4.3 Discussion

It is relevant at this point to make a few important comments. In particular, we recall that the
Hashin-Shtrikman bounds are obtained by setting a constant stress polarization in the inclusion phase
(Hashin and Shtrikman, 1963b; Willis, 1977), which implies uniform stress and strain fields therein.
That allows to obtain the Eshelby (1957) exact solution for a dilute volume fraction. Nevertheless,
this choice of uniform stress polarization is only approximate for spherical or ellipsoidal inclusions
and moderate to high volume fractions (Willis, 1977). This has the following two implications.
First, spherical voids cannot reach, even numerically, the HS bounds with increasing porosity, since
the fields cannot remain uniform inside the inclusions due to strong interactions between them.
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Figure II.21 – Normalized with the matrix properties effective (a) Young’s modulus Ẽ/Em, (b) Poisson’s
ratio ν̃, (c) bulk modulus κ̃/κm and (d) shear modulus µ̃/µm as a function of the porosity c. Comparison
between the analytical HS bounds, FE monodisperse numerical estimates and experimental results.

Nevertheless, it is more than interesting to observe in Fig. II.21 that both the experimental and
numerical effective elastic moduli for spherical voids remain very close to the theoretical HS bounds.
Second, we recall that the 6-rank laminate microstructures (Francfort and Murat, 1986) and the
infinite rank-laminates (Idiart, 2008) do attain the HS bounds primarly because the fields inside each
phase of the microstructure are uniform and thus are in line with the constant sress polarization
assumption used in the HS bounds. It is however difficult to-date to reproduce realistically such
microstructures due to the many length scales involved in their construction (but see Sigmund (2000)
towards this direction). In order to explain the small differences between the FE and the experiments.
two major features appears to us in relation with the experimental setup and the local fields obtained
by our FE calculations. From the experimental side, the scatter can be related to the uncertainty
in the elastic moduli of the matrix polymer which is in the same order with the deviation. The
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second feature is related to the local nonlinear strains that are developed in the experimental material
while the FE calculcation neglect because of the linear elastic assumption made on the behavior of
the material. Specifically, we show in the insets of Fig. II.22 strain contours for selected porosities
c = {5%, 12%, 25%}. The uniform distribution of voids avoids clustering and leads to rather minimal
stress and strain concentration in regions between the voids. For porosities up to 10%, the local strain
fluctuations induced by the microstructural heterogeneities remain relatively small by comparison to
the overall applied strain ε (see colorbars). When increasing the porosity, the denser packing of the
voids creates more localized strain zones with more pronounced strain fluctuations with respect to
the average strain. This implies significant interactions between voids, which, in turn, lead to the
deviation observed between the numerical results and the theoretical HS bounds. Nevertheless, this
deviation remains very small (< 4%) (see also Böhm and Han (2001)).
In turn, Figure II.23 shows the local strain fields fo higher porosities, i.e. c = 40, 50, 65, 75 and

a) b)

Figure II.22 – Normalized with the matrix properties effective (a) bulk modulus κ̃/κm and (b) shear modulus
µ̃/µm for monodisperse microstructures (porosity 0 ≤ c ≤ 30%). Insets of the local strain field normalized by
the overall field are shown by contour plots obtained from compressibility loading in the case (a) and of shear
loading conditions for case (b).

82%, under hydrostatic and shear loadings with periodic boundary conditions. The contour plots
highlights the fact that the deviation from the average value are much higher at middle range
porosities 40% ≤ c ≤ 60%, whereas the field near the internal boundaries of the voids are found
to become uniform with decreasing porosity, c ≤ 30% or increasing porosity (i.e. c > 60%). In
connection with those last observations, it is important to mention that in the FE calculations the
local strains can reach values that are almost twice that of the average strain applied, see for instance
ε11/ε11 ∼ 2 in the insets of Fig. II.22 and Fig. II.23. This, in turn, implies that in the experimental
results and usually for porosities higher than 20%, the amplitude of the local strain fields could
exceed the range of validity of linear elasticity in several regions of the unit-cell. For large porosities,
those local strain fluctuations in random closed-cell porous solids are a direct consequence of the
interaction between the closely packed spherical voids. This leads to a local nonlinear response of the
matrix phase, especially in our experiments (see inset of Fig. II.13a), which constitutes an additional
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Figure II.23 – Local strain fields normalized by the overall field shown by contours plots for different volume
fraction of RSA microstructures obtained from the automatic algorithm. The upper column shows the
dispersion of the normalized bulk strain field obtained from compressibility simulation. The lower-one depicts
the plots for normalized shear moduli.

reason for the differences observed between the HS linear bounds or the FE and the experimental
measurements. However, when porosity increases to the point were the matrix ligament between the
voids becomes very thin, the strain fields gradually become uniform again and that closes their gap
with HS bound.
To correlate the observed local strain fields with the porous microstructures, we report in Fig.II.24
the simulated microstructures at porosity c = {20%, 50% and 82%} together with the numerical
strain contours for hydrostatic loading. In agreement with the analysis in Fig.II.20, with increasing
porosity the microstructure evolves from a random monodisperse to a finitely polydisperse distribution
of spheres. As discussed earlier, the largest void diameter is observed to increase as the porosity
increases from c = 20%, c = 50% and c = 82%(Fig.II.23). Collectively, the numerical micrographs in
Fig. II.24 reveal micro- structural features similar to those reported for other random closed-cell
foams produced by conventional foaming process. Prior studies on foamed polymers (Youssef et al.,
2005; Dawson and Shortall, 1982; Saha et al., 2005), glass(Walsh et al., 1965) and ceramics (Meza
et al., 2017) with porosity between 30% and 75%, show that the microstructure of these materials
consists of a homogeneous (random) distribution of nearly spherical bubbles. These bubbles are
found to be uniform both in size and shape at low porosity (Youssef et al., 2005; Dawson and Shortall,
1982), but gradually become polydisperse as the porosity increases (Dawson and Shortall, 1982; Saha
et al., 2005). Interestingly, similar to random closed-cell foams (Youssef et al., 2005; Dawson and
Shortall, 1982; Kim et al., 2005), the present porous composites (see the magnifications in the bottom
row of Fig.II.24 ) clearly show that there is no unique minimal thickness for the inter-inclusion
ligament t. This is a direct consequence of the void polydispersity and randomness. At high porosity,
e.g. c = 82% (Fig. II.24), the matrix ligament between two neighboring large voids contains a
number of smaller inclusions as is the case also for foamed polymers and ceramics at low density in



44 Chapter II – 3D printed microstructures with nearly optimal effective elastic properties

Refs. Dawson and Shortall (1982); Saha et al. (2005); Kim et al. (2005). Finally, in Fig. II.25 we

Figure II.24 – Local strain fields normalized by the overall field shown by contours plots for different volume
fraction of RSA microstructures obtained from the automatic algorithm. The upper column shows the
dispersion of the normalized bulk strain field obtained from compressibility simulation. The lower-one depicts
the plots for normalized shear moduli.

compare, at equal matrix volume fraction 1− c, the measured normalized axial stiffness of the present
closed-cell random porous materials with recent porous materials as well as with fully-stochastic
foams produced by more conventional manufacturing processes (e.g. foaming and replication). As
seen, the 3D-printed porous solids of this work exhibit normalized Young modulus values that rival
those of closed-cell stochastic foams. The study on the porous glass (Walsh et al., 1965) (whose
moduli are reported in Ref. (Roberts and Garboczi, 2001) and in Fig.II.7 alongside experimental
investigations on other foamed polymers (Youssef et al., 2005; Dawson and Shortall, 1982; Saha et al.,
2005), indicate that the microstructure of these materials comprises similar geometrical features to
those of the present composites. More interestingly, our materials are almost twice stiffer than most
open-pore microcellular foams (Despois and Mortensen, 2005) and two to five times stiffer than two
of the most performing metamaterials demonstrated today. The latter are the nano- and macroscale
octet-truss lattices fabricated by 3D laser writing (Meza et al., 2017). Hence, the present random 3D-
printed porous materials are promising candidates in terms of relative stiffness per unit-volume. The
advantages they offer over other fully stochastic cellular solids, i.e. foams, produced by conventional
processing routes (for which data in Fig. II.25 are taken from Ref.Roberts and Garboczi (2001)) are
many. These notably are the precision of the size and shape of the pore-inclusions as well as the
ability to reach very large and precise volume fractions in a straightforward and controlled manner.
Moreover, by virtue of their fully random architecture the proposed materials offer the added benefit of
being fully isotropic, whereby most of today’s lightest and stiffest metamaterials of the same porosity
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are not (Compton and Lewis, 2014; Bauer et al., 2014; Han et al., 2015; Meza et al., 2017). On the
other hand, the present materials are not cellular in the sense of relative density (but behave as such
in the mechanical sense). As explained before, the reason is that the inclusions are made of a gel-like
material that, despite having low axial stiffness and behaving mechanically as a porous-like phase as
shown in Sec.II.3.4, it has almost the same density of the matrix material. In order to overcome this
issue, several ideas are currently being explored such as introducing a minor connectivity between
the inclusions and using a chemically soluble support material. Nonetheless, this is an effort at the
very early stages and is left to a future study.
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Figure II.25 – Property space map of the Young’s modulus vs volume fraction of the matrix (1−c), comparing
the present isotropic 3D-printed porous polymers (red solid squares) with other closed-cell and open-cell foams
as well as with lattice microstructures of similar volume fraction.

II.5 Concluding remarks

In this study, the elastic fields of random porous microstructures consisting of non-overlapping,
finite polydisperse spherical void inclusions embedded in a homogeneous isotropic matrix have been
explored in order to create polymeric (choice dictated by 3D printer) porous-like materials for volume
fraction that extends from c = 0 up to c = 82%. The microstructures are generated using RSA
algorithms with different parameters to control the morphology of the inclusions and to optimize the
generation of microstructure for the specific use of highly porous materials.
The chapter presented the combined numerical and experimental roadmap used to convert a computer-
designed random medium into a 3D printed building material. This workflow starts from the generation
of microstructures, then a numerical study has been implemented to define a cubic RVE using the
convergence of the overall elastic moduli (i.e. κ̃ and µ̃) of microstructures having the same porosity
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and decreasing number of the characteristic size of heterogeneities, for the Kinematically uniform
(KU-) and Periodic Boundary Conditions (PBC). The resulting cubic RVE has been subsequently
assembled to form a standard dog-bone specimen for uniaxial tensile tests.
The 3D printing process and materials were analyzed in order to address the anisotropy due to
the printing procedure as well as the one related to the randomness of the microstructure. The
support material used by the 3D PolyJet printer to sustain voided structures has been tested and
its overall elastic properties have been shown to have negligible effect on the effective properties
of the composite microstructures due to the high contrast (1:1000) in the elastic properties with
those of the matrix building polymer (VeroWhitePlus). The purely energetic elastic moduli of the
heterogeneous materials has been obtained by an experimental procedure of multi-step relaxation at
relatively small strains chosen in order to overcome the viscous effect of polymers.
An important result of the work presented in this chapter is that RSA microstructures consisting
of spherical voids, for monodisperse moderate porosities (up to 30%) and polydisperse in size high
porosities (up to 82%), provide effective elastic moduli that lie very close to the optimal isotropic
Hashin-Shtrikman bounds. The differences between FE simulations, experimental results and Hashin-
Shtrikman bounds were analyzed using the local strain fields obtained by numerical computations.
The observations confirm that the deviation is related to strain localization which is found to be
higher at moderate porosity whereas the elastic fields become more uniform at both ends of the
volume fraction, i.e. c ≤ 30% and c ≥ 70%. Furthermore, the normalized effective Young’s modulus
of the presented random microstructures exhibits stiffer properties than any experimentally tested
isotropic foams and metamaterials and are promising microstructures for lightweight highly-stiff
materials if 3D printing technology improves the printing of voided closed zones.
This first part of the thesis shows that the optimal effective elastic moduli of isotropic materials are
almost attained by the isolated spherical pores with single-sized and polydisperse in size microstructure
for a large range of porosities. However, in some cases, one would want to be able to trigger the
microstructures in order to create isotropic porous microstructures with controlled effective properties.
The question is therefore, which parameters of the microstroctures are significantly influencing the
elastic properties of material. The next part of this thesis is devoted to this topic. The objective is
to assess the infuence of some statistical descriptors of the microstructures such as the correlation
function, the chord length distribution and the connectivity on the efective elastic properties.



APPENDIX

II.A Basic definitions for the effective elastic properties of hetero-
geneous materials

This section briefly recalls the basic assumptions on the heterogeneous materials related the
determination of their effective properties. It starts by introducing, in Sec.II.A.1, the micromechanical
problem of linear elasticity in heterogeneous materials and presents the different boundary conditions
that are needed in order to determine the effective elastic properties in a representative volume
element. Section III.1.1 introduces the n-point statistical descriptors needed in order to characterize
the morphology of a random composite. In turn, Section II.A.2 recalls the classical first and second-
order bounds on the effective properties of isotropic two-phase microstructures and highlights some
examples of theorethical microstructures assessing the optimality of the second-order bounds of
Hashin-Shtrikman (Hashin and Shtrikman, 1963b). This Hashin-Shtrikman bound is therefore the
target for creating materials with high stiffness and low-density function which is the topic of the
Chapter II.

II.A.1 Linear elasticity problem

Assuming statistically homogeneous and ergodic materials with no body force, the theory of
homogenization relies on the scale separation between three characteristic lengths characterizing a
mechanical problem in heterogeneous material. Specifically, the characteristic size d of the smallest
heterogeneities is much smaller than the characteristic size L of the cell under study and the
characteristic size l of variation of the applied loading. A Representative Volume Element (RVE) is
defined as the cell size V in which these conditions are satisfied. Therefore, a sample constituted of
such volume can be regarded as a homogeneous material with stiffness tensor corresponding to the
effective elastic properties C̃ in V .
In order to obtain the effective stiffness tensor, one need to solve the local problem of linear elasticity

47
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which can be formulated in the case of imposed strain boundary conditions as:

div σ = 0

ε(x) =
1

2
[∇u+∇Tu]

σ(x) = C(x) : ε(x)

u(x) = ε · x

(26)

where σ(x) is the local stress field, ε(x) the local strain field and C(x) is the fourth-order positive
definite stiffness tensor defined locally on each point x of the material.
The macroscopic stiffness tensor is then obtained by applying the Hooke’s model between the average
stress σ and strain ε fields expressed by:

σ = C̃ : ε (27)

where notation X defines the volume average of quantity X defined as:

X =
1

V

∫
x∈V
X (x)d3x (28)

σ and ε thus denote the average stress and strain fields of the material.

II.A.2 Rigorous bounds on the elastic properties of isotropic two-phase materi-
als

Before recalling the first and second-order bounds on the effective elastic properties for random
microstructures, it should be mentioned that analytical estimates of the effective elastic properties have
been derived using approximations of the elastic heterogeneous field for some particular heterogeneous
microstructures. A large number of these estimates are derived from the Eshelby’s solution of an
inclusion of stifness tensor Ci embedded in a homogeneous unbounded medium with elastic tensor
C0 and undergoing a uniform macroscopic stress-free strain field E (Eshelby, 1957). Following a
rigorous decomposition of the inclusion problem, the Eshelby’s result shows that the strain elastic
field εi in the ellipsoidal inclusion are uniform and expressed by:

εi = [I+ P0
i : (Ci − C0)]

−1 : E (29)

where εi denotes the elastic field in the inclusion phase, I is the fourth-order identity tensor and
P0
i (C0) = P0

i is the Hill tensor (Hill, 1963; Willis, 1981) which depends on the stiffness tensor C0 of
the reference medium properties and on the shape and orientation of the ellipsoidal inclusion i (see
the recent review by Parnell (2016) on the expression and computation of the Hill tensor for different
type of ellipsoids). In turn, the stress field in the inclusion is uniform and is computed from the
stress-strain relation for the inclusion:

σi = Ci[I+ P0
i : (Ci − C0)]

−1 : E (30)
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The effective elastic properties derived from the Eqs.II.A.2 and II.A.2 depend on the choice of the
stiffness tensor associated to the reference medium and on the value of the elastic field at infinity E.
By making the hypothesis over these parameters, multiple models, usually referred to as effective
medium models, have been developed, among which the Mori-Tanaka estimates (Mori and Tanaka,
1973), the self-consistent estimates (Budiansky, 1965; Hutchinson and Hill, 1976; Christensen and
Lo, 1979) and the differential scheme estimates (Roscoe, 1952; McLaughlin, 1977; Norris, 1985;
Nemat-Nasser and Hori, 1990).
While these homogenization estimates can be useful for fast approximation of the effective elastic
properties of some heterogeneous materials, their use is constrained to verifying that the hypothesis
on the elastic strain and stress fields and the internal morphology are representative of the local
interactions inside the real microstructure. Based on rigorous variational principles or asymptotic
expansions, bounds can be derived to obtain range of possible values for the effective elastic properties
based on general information on the microstructure. Hereafter, the main bounds used for two-phase
materials are recalled and specialized for porous materials.

II.A.2.a Classical Hill bounds

Using the classical variational formulation, the linear elasticity problem associated to KUBC
(respectively SUBC) can be expressed as minimization problem of the potential energy (respectively
the complementary energy) which leads to the Voigt bound (Voigt, 1889) (respectively Reuss bound
(Reuss, 1929)) which are expressed for two-phase materials by:

C̃ ≤ C̃V = c1C1 + (1− c1)C2 (31)

[
c1C−11 + (1− c1)C−12

]−1
= C̃R ≤ C̃ (32)

The Voigt bound corresponds to an isostrain condition, meaning that it is verified when the strain
is the same all over the material, and the Reuss bound corresponds to an isostress condition that
involves a uniform stress field in all constituents.
For isotropic linear elastic phases characterized by their bulk κr and shear µr moduli (r = 1, 2

denoting the phase index), these bounds lead systematically to an isotropic composite with effective
bulk κ̃ and shear µ̃ moduli:( c1

κ1
+

1− c1
κ2

)
≤ κ̃ ≤

(
c1κ1 + (1− c1)κ2

)
(33)( c1

µ1
+

1− c1
µ2

)
≤ µ̃ ≤

(
c1µ1 + (1− c1)µ2

)
(34)

In the case of porous materials with homogeneous isotropic matrix with bulk κm and shear µm
moduli, the results simplify:

0 ≤ κ̃ ≤ (1− c)κm (35)

0 ≤ µ̃ ≤ (1− c)µm (36)
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where c denotes the porosity (or porous volume fraction). These bounds are called first-order bounds
since they only include information about the elastic properties of the different constituents in the
material and their volume fraction information but no information about the distribution or shape of
the inclusion or more generally of higher-order microstructural statistics.

II.A.2.b Hashin-Shtrikman bounds

In the case of an isotropic elastic material with two-phase isotropic elastic constituents, improved
bounds have been proposed by Hashin-Shtrikman (Hashin and Shtrikman, 1963a) using a minimization
principle to the quadratic energy function obtained from the auxiliary formulation of the elasticity
problem. In the case of two well-ordered phases such that κ1 ≥ κ2 and µ1 ≥ µ2, the Hashin-Shtrikman
upper bounds for the effective bulk and shear moduli are written as:

κ̃HS = κ1 +
1− c1

1

κ2 − κ1
+

c1

κ1 +
4

3
µ1

(37)

µHS = µ1 +
1− c1

1

µ2 − µ1
+ 2c1

κ1 + 2µ1

5µ1(κ1 +
4

3
µ1)

(38)

The lower Hashin-Shtrikman bound is obtained by inverting the indexes 1 and 2 in the previous
relation (Eqs.II.A.2.b). If the constituents are not well ordered, a similar expression has been
developped (Walpole, 1966) introducing an auxiliary isotropic material characterized by κ0 =

max(κ1, κ2) and µ0 = max(µ1, µ2) for the upper bound and κ0 = min(κ1, κ2) and µ0 = min(µ1, µ2)

for the lower bound such that:

κ̃HS = κ1 +
1− c1

1

κ2 − κ1
+

c1

κ1 +
4

3
µ0

(39)

µHS = µ1 +
1− c1

1

µ2 − µ1
+

c1

µ1 +
µm
6

(9κ0 + 8µ0
κ0 + 2µ0

) (40)

For porous materials of porosity c, the lower bound vanishes and possible values of the isotropic
effective elastic moduli are limited by the upper bound of Hashin-Shtrikman:

κ̃HS =
4(1− c)µmκm
4µm + 3c κm

(41)

µ̃HS =
(1− c)(8µm + 9κm)µm

4µm(2 + 3c) + 3κm(3 + 2c)
(42)
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II.B Algorithms for randomly oriented and non-overlapping ellip-
soids

The generation of randomly distributed ellipsoids in a unit cell of volume V is equivalent to the
problem of generating random axis uniformly distributed in the space as the ellipsoid orientation is
characterized by its three principal axis ni,1, ni,2 and ni,3 which are fully defined by the Euler angles
of the solid. In order to build randomly oriented ellipsoid, the Euler angles have to be build such
that φ and ψ are generated randomly [−π, π] while the angle θ is generated by randomly picking
cos(θ) ∈ [−1, 1] and then setting θ = cos−1(cos(θ)). The next subsections detail the procedure used
to ensure the non-overlapping condition between the ellipsoids and the procedure for computing the
minimum distance with the cell boundary that is important for both the numerical meshing and 3D
printing workflow.

II.B.1 The minimum distance between two ellipsoids

The problem of generating non-overlapping random oriented ellipsoids that are distant by a
minimum distance ∆1 > s1 in a periodic microstructure is decomposed into two major checking
processes. The first one consists in ensuring that the ellipsoid i under verification does not overlap
with any of the previously added inclusions or their periodic images. Mathematically, this is equivalent
to solve that the following system of equations in R3:{

Q1 = (x− vi)TZi(x− vi)− 1 ≤ 0

Q2 = (x− vj + h)TZj(x− vj + h)− 1 ≤ 0
(43)

where vector h = (h1, h2, h3) is one of the translation vectors for the periodic images of the ellipsoid.
To solve the system, the algorithm uses Kurzhanski and Valyi (1997) lemma which states that a
necessary and suffiscient condition to prove that two ellipsoids E(v1,Z1) and E(v2,Z2) intersect is to
find for any α ∈ [0, 1], an ellipsoid E(vα,Zα) such that det(Zα) > 0 with:

vα =
( 2∑
n=1

αnZn
)−1( 2∑

n=1

αnZn · vn
)

(44)

Zα =
1

1− hα

2∑
n=1

αnZn (45)

where α1 = α, α2 = 1− α and hα =
2∑

n=1
αn
(
vn · Zn · vn

)
−
( 2∑
n=1

αnZn · vn
)
· vα.

In the case of non-overlapping ellipsoids, the minimal distance ∆1 of the two ellipsoids can be
formulated as an optimization problem such that:

min||x1 − x2||2
such that (x1 − v1)

TZ1(x1 − v1)− 1 = 0

(x2 − v2)
TZ2(x2 − v2)− 1 = 0

(46)
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where ||.||2 denotes the Euclidean norm. In order to solve this problem, the algorithm uses an iterative
procedure proposed by (Lin and Han, 2002) based on the local approximation of the interior ellipsoid
by a ball as shown in Fig.II.B.1.
The iterative process consists in constructing two balls B1(ck1, r

k
1) and B1(ck2, r

k
2) inside the ellipsoids

Figure II.B.1 – Geometrical representation of iterative steps to find the minimum distance between two
ellipsoids.

E1,E2 and tangent to them at two points xk+1
1 and xk+1

2 such that:

Bi(cki , rki ) =
{
x : ||xi − cki ||2 ≤ rki

}
, i = 1, 2 (47)

where cki is the center of the ball at the kth step which are initiated at the center positions vi
for i = 1, 2. The position of points xk+1

1 and xk+1
2 are defined uniquely and in a way to verify

the minimum distance between the two balls B1(ck1, rk1) and B1(ck2, rk2) by constraining them to be
expressed as:

xk+1
i = ck1 + ti(ck2 − ck1) for i = 1, 2 (48)

where the two parameters t1 and t2 are defined as the solution of the system of equations:

ti = {t ∈ [0, 1] : Ait
2 +Bit+ Ci = 0} for x = 1, 2 (49)

with Ai = (ck2 − ck1)TZi(ck2 − ck1), Bi = (ck2 − vi)TZi(ck2 − ck1) and Ci = (ck1 − vn)TZi(ck1 − vn).
In turn, these two points verify the global minimum distance between the ellipsoids E(v1,Z1) and
E(v2,Z2). The normal vectors to the ellipsoids at these two points are colinear to the vector
xk+1
1 − xk+1

2 such that:

< Nk+1
i , (xk+1

1 − xk+1
2 ) >= 0 for i = 1 and 2 (50)
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If that is not the case, the process creates new centers ck+1
1 and ck+1

2 defined by the following
expressions that enable to have fast convergence to the minimum distance:

ck+1
i = xk+1

i − γi
2
Nk+1
i and rki =

γi
2
||Nk+1

i ||2 (51)

Nk
i = ∇Qi is the normal to the ellipsoid i at the point xki and the parameter γi corresponds to a

measure of the matrix Zi related to the spectral radius of Zi noted ρ(Zi) as follows:

0 < γi <
1

ρ(Zi)
and γi =

1

|||Zi|||F
(52)

where |||.|||F is the matrix Frobenius norm.

II.B.2 Minimum distance between an ellipsoid and a plane

Any surface of the cuboidal cell can be defined by the equation of a plane P(n,A) such that:

P(n,A) =
{
x : n · (x−A) = 0

}
(53)

where n is the normal vector to the plane and A is a known point on P. For the cubic cell, all
planes are defined by combining a normal vector n = ex, ey or ez with a points (0, 0, 0) or (1, 1, 1).
The problem of finding the minimum distance d

(
E ,P

)
between the ellipsoid E and the plane P is

related to the problem finding the points x on the ellipsoid for which the normal vector N is parallel
to the plane normal n such that: {

N× n = 0
Q(x) = 0

(54)

The solutions of this system of Eqs.II.B.2 gives the closest and furthest points to the plane. To find
the minimum distance, it is sufficient to compute the distance of these two points x1 and x2 to the
plane P using the formula in Eq.II.B.2 and keep the shortest one:

d(xi,P) =
|n · xi + n ·A|

||n||
(55)
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CHAPTER III

A CRITICAL ASSESSMENT OF SECOND-ORDER STATISTICS

Summary of this chapter: The second part of this thesis is devoted to understanding the link
between the microstructures and the effective properties of random porous materials. More specifically,
we try to find which simple statistical descriptors of the microstructure, other than the porosity,
have a significant effect on the effective elastic properties. In this context, the following chapter
presents a quantitative analysis of the deviations on the effective elastic properties that can be
obtained by accounting only for the porosity and the two-point correlation function. This assessment
is conducted by comparing the effective elastic properties of two different types of microstructures
having the same second-order statistical descriptors. First section III.1 gives a brief introduction to
the probabilistic low-order description and presents the tools used in order to extract second-order
statistical information from a 3D image. Section III.2 is devoted to thresholded Gaussian Random
Fields (GRF) which enable to build two-phase random microstructures that are fully described by
the porosity and the correlation function. Section III.3 presents the reconstruction methodology and
results obtained from the application of these tools on isolated polydisperse pores microstructures
with different sets of aspects ratios and analyzes quantitatively the differences in the effective elastic
properties that can be obtained from microstructures that share the same second-order informations.

III.1 Second-order statistics of microstructures

III.1.1 Statististical description of microstructures

Predicting the properties of random porous material is an important task for a large number of
industrial applications and relies on an accurate modeling of the random microstructures (Escoda
et al., 2011; Azzimonti et al., 2013; Figliuzzi et al., 2016; de Francqueville et al., 2019; Cadiou et al.,
2019). The microstructures of heterogeneous materials can be characterized statistically via various
types of statistical descriptors. A 3D random heterogeneous material occupying a volume V ⊂ R3

55
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can be modeled by a random field X for which the random variables {X(x),x ∈V} takes on N

discrete values corresponding to the different constituents. For a particular microstructure sample,
the physical properties can be characterized through the probabilistic analysis of the underlying
stochastic process.
Focusing on the statistical modeling of two-phase random composites, the material can be defined
through the characteristic function χ(2)(x) of the porous phase, named 2, such that:

χ(2)(x) =

{
1 if x ∈ heterogeneity
0 else

(1)

The matrix phase characteristic function is directly related to the first one by:

χ(1)(x) = 1− χ(2)(x) (2)

Considering t = (t1, t2, ..., tn) a list of n elements 1 or 2 index , the statistical measure St(x1,x2, ..,xn)

defines the probability that all points
(
xi
)
i=1..n

lie on the assigned phases
(
ti
)
i=1..n

. It can be expressed
by the expectation of the random function χt1(x1)χ

t2(x2)..χ
tn(xn), such that:

St(x1,x2, ..,xn) = P
{
χ(t1)(x1) = 1, χ(t2)(x2) = 1, .., χ(tn)(xn) = 1

}
(3)

For statistically homogeneous media, the n-point distribution function is invariant by translation
and thus only depends on the relative positions of the points

(
xi
)
i=1..n

such that:

St(x1,x2, ..,xn) = St(x12,x13, ..,x1n) (4)

where xij = xi − xj In the particular case when t is chosen such that t1 = t2 = .. = tn, the n-point
probability functions are called n-point correlation function as they define the probability that all n
points

(
xi
)
i=1..n

lie on the same phase, i.e. phase 1 or 2.
The exact expression of the effective mechanical properties are known to be dependent on an infinite
set of correlation function that statistically characterize the microstructure (Torquato, 1997). In
Chapter 12 of the book by Torquato (2002), the procedure in order extraction of these n-point
probability functions from two-phase microstructure makes use of Monte-Carlo simulations. It is
based on picking randomly n points

(
xi
)
i=1..n

on the sample and recording the outcome of their joint
characteristic function χ(x1)χ(x2)..χ(xn). By repeating this procedure for a large number of sets,
the n-point correlation function could be determined. However, such procedure is prohibitive due to
the time and computational memory needed in order to obtain statistical order, even for order higher
than 3-point correlation function.
Due to this computational limitations, available statistical information for modeling of real mi-
crostructures are usually restrained to third-order correlation function obtained from 2D images
(Yao et al., 1993; Roberts, 1997; Gillman et al., 2015) for microstructures assumed to be isotropic
and second-order information when it comes to the study of 3D images of general materials (Øren
and Bakke, 2002; Neumann et al., 2019). Because of their simple implementation (see Sec.III.1.3),
a popular approach for modeling random materials consists in employing statistical models of the
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microstructures based on the first and two-point stastistics (Teubner, 1991; Levitz, 1998; Roubin et al.,
2015; de Francqueville et al., 2019). In this context, an important question is wether these statistics
are sufficient to distinguish between microstructures in term of their effective elastic properties and
the resulting uncertainties.

Studies devoted to statistical reconstruction based on the second-order information have been
mostly limited to the study of morphology mimicking and the permeability properties which are
known to be highly dependent on the connected porous network of the microstructures(Roberts,
1997; Roubin et al., 2015; Øren and Bakke, 2002). These studies pointed out significant differences
in the morphological features of the heterogeneous phase between microstructures having similar
correlation functions and have shown that these different internal geometries lead to deviations in the
transport properties of the materials under comparison. In this case, a popular approach (Roberts,
1997; Roubin et al., 2015) consists in generating multiple statistical reconstructions using the same
second-order statistics and then chosing a particular statistical or morphological parameter to select
the right reconstruction model for the real microstructure. The physical properties investigated
are then computed in order to assess the reconstruction procedure. These studies are based on
approximating the correlation function of the microstructures by an analytical model which tries to
match the exact correlation function of the real material by some fitting parameters. The procedure
leaves therefore some uncertainties on the causes of the deviation between the effective properties of
the second-order model and the investigated material. The methodology proposed by Roberts (1997)
has been applied to model the effective elastic properties tungsten-silver composite and has found
that the level-cut GRF reconstructed from the two-point correlation function was sufficient to retrieve
the experimental elastic properties of the real material. These results showing that the second-order
models can accurately predict the mechanical behavior of some specific heterogeneous materials
(Roberts, 1997; Roubin et al., 2015) do not enable to conclude on the ability of the correlation
function to predict the effective elastic properties of materials.

This chapter presents a quantitative analysis of the differences in the effective elastic properties
that can be obtained from modeling random porous microstructures based only on the correlation
function. To that aim, we consider two different types of microstructures having the same two-point
statistical descriptors. The first type of microstructures consist of isolated ellipsoidal pores uniformly
distributed inside the unit cell. The second type of microstructures is obtained by applying a
level-cut to a Gaussian Random Field (GRF). This GRF is generated using the porosity and the
correlation function measured on the first type of microstructures and thus, ensures similar two-point
statistics between the two random microstructures. The chapter is organized such that the important
properties related to the two-point correlation function and their practical extraction from images of
the materials are briefly recalled in Sec.III.1. Section III.2 details the choice of GRFs in order to
create statistically controlled random porous microstructures based only on the volume fraction and
the correlation function. Section III.3 applies the GRF reconstruction procedure using the correlation
function extracted from RSA microstructures with ellipsoidal inclusions of aspect ratio ω. The elastic
properties of both the isolated inclusions microstructures and their associated thresholded GRF are
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computed using FFT-based simulation. Comparison of the elastic properties of microstructures with
the same two-point statistics highlights the insufficiency of these low-order statistics to distinguish
the effective elastic properties of porous microstructures.

III.1.2 Correlation function properties

The second-order information consists of the volume fraction of phase i which can be computed
using the expectation value of the indicator function of the phase χ(x) such that:

c = P
{
χ(x) = 1

}
(5)

The second statistical descriptors is the two-point correlation function of the porous phase 2, noted
S22(x1,x2), which is simply written S22(r) for statistically homogeneous medium with r = x1 − x2

such that:
S22(r) = E[χ(x)χ(x + r)] (6)

The shape of the function S22(r) and its properties has been extensively studied for its use in the
theory of second-order random fields (Vanmarcke, 1983; Adler and Taylor, 2007) and modeling of
random phenomenon and materials (Levitz, 1998; Roberts, 1997; Roubin et al., 2015). For two-
phase microstructures, the two-point correlation functions of both phases are simply related by the
expression:

S22(r) = S11(r)− 2c+ 1 (7)

The cross-correlation S12(r) which gives the probability that two point distant by a vector r lie on
two different phases can be also directly related to the two-point correlation function of the porous
phase such that:

S21(r) = c− S22(r) (8)

where the total volume fraction c corresponds to phase 2. Thus, the two-point probability functions
of a two-phase material can be fully expressed by the two-point correlation function of the porous
phase 2 and will be simply referred to as the correlation function S22(r).
By definition, the function is bounded by the volume fraction of c such that:

S22(r) ≤ S22(0) = c (9)

And in the absence of long-range interaction, the random function χ(x) and χ(x+r) are independent
for large lag-vectors r and expectation of their joint function χ(x)χ(x+r) is equal to the squared
value of volume fraction c2:

lim
|r|→∞

S22(r)→ c2 (10)

The S22(r) is an even function of r and is an L-periodic function when the microstructure are
L-periodic. In this case, there is no convergence towards c2 but the S22(r) remains close to the c2 for
sufficiently large values of r in the [0, L/2].
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In turn, using a Taylor expansion, it has been shown that the initial slope of the correlation function
S22(r) is related to the specific surface s which is an important morphological descriptor of the
microstructure defined as the ratio between the interface area and the volume such that for isotropic
3D materials :

dS22
dr
|r=0 = −s

4
(11)

For more details about the morphological and topological information that can extracted from the
correlation function, the reader is referred to the work of Adler and Taylor (2007) and Torquato
(2002).
Another parameter that is of interest in our study is the correlation length L, the definition of
which is based on the correlation function S22(r) in the present work. This parameter is a popular
descriptor of the microstructure which has been defined in different ways related to some characteristic
lengths in the microstructure. In some studies on reconstructed geomaterials, it is defined as the first
distance at which S22(r) reaches c2 to some uncertainty and relate that to the characteristic size of
heterogeneities (Øren and Bakke, 2002). It can also be related to the integral range A of an isotropic
random function when L→∞ which is known to define a reference volume for which the estimation
of the volume fraction c is sufficiently precise (Lantuejoul, 2002). For isotropic L-periodic correlation
microstructures, choice has been made in this study to define this parameter as:

L =

∫ L/2

0
|S22(r)|dr (12)

III.1.3 Extraction of second-order statistical descriptors from images

These two statistical descriptors can be simply extracted from a voxelized microstructure. For a
two-phase material, this 3D representation of a random field X(x) valued on a regular grid points of
size N1 ×N2 ×N3 can be considered as its characteristic function χ(x) = X(x) such that phase 1

takes value 0 and phase 2 takes value 1.
The mean value c of the porous phase corresponds to its first-order stastical descriptor. This can be
easily computed by counting the component of the image having the value 1.

In turn, since the Fourier transform of the correlation function Ŝ22(k) is known to the equal to
the power spectrum of the characteristic, the correlation function in the real space is recovered using
the inverse Fourier transform:

S22(r) =

∫
V
|χ̂(k)|2 exp(ir.k)dk (13)

For voxelized microstructures, the Eq.III.1.3 is implemented using the direct and inverse discrete
Fourier transforms.



60 Chapter III – A critical assessment of second-order statistics

III.2 Thresholded Gaussian Random Fields (GRF)

III.2.1 Interest of Gaussian Random Fields:

A random field is fully determined by its n-joint probability distributions Px1,x2,...,xn(t). However,
a popular method to model the random heterogeneous materials is to use random fields which only
accounts for simple description of the microstructure (Tran et al., 2016; Roubin et al., 2015). To that
aim, Gaussian Random Fields (GRFs) are perfect candidates since they are fully controlled their
correlation function. Indeed, their n-joint probability distributions can be expressed simply by the
expectation m and the correlation function ρ(r). Considering a normalized GRF such that m = 0

and σ = 1, the n-joint probability density function is expressed by:

Px1,x2,...,xn(t1, t2, ..., tn) =
1

(2π)n det(M)1/2
exp

(
− tTM−1t

2

)
(14)

where t = (t1, t2, ..., tn) and M is the correlation matrix defined such that Mij = ρ(xi − xj) =

E[Y (xi)Y (xj)].
A two-phase random microstructure can be obtained by applying threshold to a continuous GRF
Y (x) with a level-cut λ such that a discrete two-valued random field X(x) is defined:{

Y (x) > λ→ X(x) = 1 : phase 1,
Y (x) ≤ λ→ X(x) = 0 : phase 0

(15)

The n-point correlation function St1,t2,..,tn(x1,x2, ...,xn) of such microstructure are related to the
n-joint probability distribution Px1,x2,...,xn(t1, t2, ..., tn) of the continuous GRF and the threshold
level λ such that:

St(x1,x2, ...,xn) =

∫ +∞

λ

∫ +∞

−λ
...

∫ ∞
λ

Px1,x2,...,xn(y)dy (16)

The two-phase microstructure is therefore fully determined by the correlation function ρ(r) and the
threshold level λ.
In particular, a direct relation between the cut-off level λ and the volume fraction c = S2(x) of the
thresholded GRF is given by:

c =
1√
2π

∫ +∞

λ
exp

(
− t

2

2

)
dt (17)

which can be computed directly using the Gauss error function denoted erf (x):

c = 1− erf(
λ√
2

) (18)

In turn, the correlation function ρ(r) of the continuous GRF can be related to correlation function
S22(r) using the following relation (Lantuejoul, 2002)

S22(r) = c− 1

2π

∫ 1

ρ(r)
exp

(
− λ2

1 + t

) dt√
1 + t2

(19)
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By performing a derivation of Eq.III.2.1, it can be observed that this relation is independent of the
vector r and defines a one-to-one relation between the correlation function of a continuous GRF and
the two-point correlation function of a two-phase microstructure: ρ

′
(S22) = 2π

√
1− ρ2 exp

(
λ2

1 + ρ

)
ρ(c) = 1

(20)

This differential equation enables to have an efficient implementation of the inversion of Eq.III.2.1.
Therefore, a statistically controlled random porous microstructure can be generated from the only
input of the target two-point correlation function and the porosity thanks to GRFs.

III.2.2 Generation of a GRF

Another interest of using GRFs relies on the central limit theorem. This theorem states that
the average of independent and identically distributed random variables converges in distribution
to the Gaussian distribution which makes Gaussian random variables and fields easy to generate.
Therefore, multiple approaches have been developed in order to generate GRFs among which exact
methods based on the matrix decomposition method (Davis, 1987; Dietrich and Newsam, 1993),
spectral methods (Shinozuka and Jan, 1972) or some approximate methods such as the turning
bands methods (Matheron, 1973) or the sequential simulation (Gómez-Hernández and Journel, 1993;
Pebesma, 2004) (see (Liu et al., 2019) for a review on different methods of random field generation).
In our work, we constructed a GRF Y (x) in a cubic volume V = [0, L]3 using the spectral method
(Shinozuka and Jan, 1972; Shinozuka and Deodatis, 1991; Poirion and Soize, 1995). Such method
generates the random field by manipulation in the frequency domain and makes use of the fast
Fourier transform to efficiently build a continuous 3D-periodic field for any given covariance function.
We generate a continuous L-periodic normalized GRF Y (x) defined by its correlation function ρ(r)
expressed by (Poirion and Soize, 1995) (See Appendix III.A for details):

Y (x) = Re

√2

N1−1∑
b1=0

N2−1∑
b2=0

N3−1∑
b3=0

√
ρ̃b−MZb exp

(2π

L
(b−M) · x + Φb

) (21)

where Φb are random variables uniformly distributed in [0, 2π[ and Zb are random coefficients such
that Zb =

√
− ln(Ψ) with Ψ uniformly distributed in ]0, 1]. Notations b refers to (b1, b2, b3) and

M are chosen following the grid size N1 ×N2 ×N3 such that Mi = Ni/2 for even number Ni and
Mi = (Ni − 1)/2 for odd numbers.
In order that the correlation function of the generated field corresponds to the target correlation
function, the Fourier transform of this latter should have a bounded support, i.e. its Fourier coefficients
have to be zero above frequencies not accounted by the summation of Eq.III.A. The discrete values
of the GRF on a grid (xβ)β∈[0,N1]×[0,N2]×[0,N3] are then expressed as:

Ŷ (xβ) = Re

√2

N1−1∑
b1=0

N2−1∑
b2=0

N3−1∑
b3=0

√
ρ̃b−MZb exp

(
− i2π

3∑
j=1

Mjβj
Nj

+ Φb

)
exp

(
i2π

3∑
j=1

bjβj
Ni

)
(22)
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where ρ̃b denotes the Fourier coefficients of the correlation function ρ(r) defined by:

ρ̃b =
1

L3

∫
V
ρ(r) exp

(
−i2π

L

3∑
i=1

bi.ri

)
dr

The discrete values of the GRF expressed in Eq.III.A can be seen as the discrete inverse Fourier

transform of the array

(
Ŷb

)
where b ∈ [0, N1]× [0, N2]× [0, N3] such that:

Ŷ (xβ) =
√

2 exp
(
− i2π

3∑
j=1

Mjβj
Nj

)
DFT−1

[
(Ŷb)

]
(23)

where:
Ŷb =

√
ρ̃b−MZb exp

(
iΦb

)
(24)

III.2.2.a An example of GRFs microstructure

The implementation of the discrete GRF presented in Sec.III.2.2 on a grid of size N1 ×N2 ×N3

can be outlined by the following steps:

- Step 1: Generation of (N1, N2, N3) arrays of random numbers Zb and phases φb.

- Step 2: Compute the square root of the Fourier coefficient of the correlation function
√
ρ̂b.

- Step 3: Compute Yb defined by Eq.III.A

- Step 4: The summation of (Yb)b∈[0,N1]×[0,N2]×[0,N3] is done using FFT algorithms

- Step 5: Create array of numbers
√

2 exp
(
− 2π

Ni
Miβi

)
.

- Step 6: The array of the GRF valued on each grid voxel is then obtained by taking the real
part of the multiplication of arrays in Step 5 and Step 4.

Using the FFT algorithm, this method enables to quickly generate continuous and periodic GRF in
3D independently of the grid size. To illustrate the obtained thresholded microstructures, we first
take for example the periodic correlation function presented in the work of Rasmussen and Williams
(2005)

ρ(x, α) =

3∏
i=1

exp

(
− 2

α2
sin2

(πxi
L

))
(25)

The correlation length of this function is difficult to express analytically, however, it is directly
linked to the input parameter α. Figure III.2.1 shows the plot of the correlation function for
α = {0.02, 0.1, 0.3, 0.5}. The correlation function is characterise by an initial slope up to a certain
distance r characterizing the correlation length that can be interepreted as a characteristic length
of heterogeneities in a unit volume. This fast decrease is linked to α and is followed by a slow
asymptotic decrease to zero which highlights the no long-range interaction. In order to have an



III.2 – Thresholded Gaussian Random Fields (GRF) 63

Figure III.2.1 – Periodic correlation function plotted for different values of parameter α.

efficient computation of the fast Fourier transform in the current configuration of the FFT simulation
code, the grid size has to be product of powers of small prime numbers. For this example, GRFs were
generated on grids of size 256× 256× 256. Figure III.2.2 shows a realization obtained for the different
input of parameter α. The importance of the correlation length is observed in the fluctuations in
the desired porosity versus the porosity obtained. The microstructures with values α ≤ 0.2 have
fluctuations exceeding 10% of the desired porosity. As we decrease the value of α, these fluctuations
decrease and the microstructures get more complex with smaller heterogeneities.
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a) b)

c) d)

Figure III.2.2 – 2D slices of the realization of the gaussian random field with a periodic correlation function
depending on the parameter α to control the integral range value expressing the size ratio between hetero-
geneities and the volume of the cell. Porosity threshold has been fixed to 35% and illustrations are for : a)
α = 0.02 b) α = 0.2 c) α = 0.3 d) α = 0.5

III.3 Reconstruction of thresholded GRF from RSAmicrostructures

In this section, we apply the reconstruction procedure using the two-point correlation function
obtained from random microstructures generated using the RSA algorithm presented in the Sec.II.1.2.a.
Using FFT-based numerical computations, we investigate the effective elastic properties of both
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isolated inclusions microstructures taken from RSA algorithm and their reconstructed thresholded
GRF for a range of volume fractions. The obtained results enable to quantify numerically the errors
on estimating the effective properties of a random material using the second-order information.

III.3.1 The reconstruction process

To make this study, we generate, using the RSA algorithm, microstructures consisting of uniform
distribution of randomly oriented ellipsoidal inclusions of the same aspect ratio ω1 = ω2 = ω ∈
{0.1, 0.2, 0.4, 0.6, 0.8, 1} and partitionned in six sizes. The choice of polydispersity in size is motivated
by the interest in achieving large range of volume factions going from 0% to 25% for all the aspect
ratios and reaching up to 35% for aspect ratios ω ∈ {0.4, 0.6, 0.8, 1}. In order to avoid uncertainties
of results related to the multiple ways to define a polydisperse microstructure, all microstructures
are build using the same set of morphological descriptors except the shape of the inclusion. These
sets are fixed as:

- Size of the biggest inclusion is chosen such that the porous materials comprises a total number
of inclusions higher than N ≥ 50. This minimum number of inclusion represents the theoretical
number of pores in the unit cell if the total porosity c comprised single-sized pores of spherical
shape:

a3 =
3

√
3 c

200πω2
(26)

- Set of size ratios: Ssize = {1, 0.85, 0.75, 0.65, 0.55, 0.45}

- Set of volume fraction partition: Sc = {20%, 30%, 10%, 10%, 10%, 20%}

The offset parameters defined in Sec.II.1.2.a are set to tol1 = tol2 = 0.05. Realizations obtained for
such microstructures are shown in Fig.III.3.1 for different volume fractions and shape of inclusions.
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a) b) c)

d) e) f)

Figure III.3.1 – Realizations of microstructures generated by RSA algorithm with a total volume of c = 15%

and consisting of six families of isolated pores having different sizes but the same aspect ratio ω (b) ω = 0.1,
(c) ω = 0.4, (d) ω = 0.6, (e) ω = 0.8, (f) ω = 1.. The 3D views are descritizations of the microstructures in
regular grids of size 2563

Following the procedure given in Sec.III.1.3, the two-point correlation function of each configuration
is obtained by averaging the extracted two-point correlation function over 50 realizations discretized
on a grid size of 2563. From the plots in Fig.III.3.2, it can be observed that the correlation functions
of the different configurations are almost the same on distance r measured along the three orthogonal
axis. This assesses that the microstructures under investigation depict at least geometrically cubic
symmetry.

The shape of the correlation function also provides information about the microstructure as we
observe an initial value corresponding to the volume fraction of the microstructure and a fast decrease
of the function which can be interpreted as an information of large internal surface mostly related to
the smallest family of inclusions. This decrease is then smoothed when distance r increases until the
function stabilizes at a value corresponding approximately to the square of the volume fraction. This
smooth decrease of the correlation function witnesses the polydispersity in sizes and orientation of
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a) b)
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Figure III.3.2 – Correlation function plotted in the three principle directions of the cartesian grid for different
aspect ratios of pores for total porosity c = 15% (a) ω = 1 (b) ω = 0.4 (c) ω = 0.2 and (d)ω = 0.1.

the inclusions as it extends a larger range of distances for small aspect ratios.

III.3.2 Numerical difficulties on reconstruction procedure

As shown in Sec.III.2.2.a, the reconstruction procedure works without any artefact when using an
analytical correlation function as the Fourier coefficients can be directly computed using numerical
integration of the given correlation function of the GRF. In the case of periodic microstructures
with randomly oriented polydisperse and isolated ellipsoidal inclusions, no analytical expression
for the correlation function can be found. This imposes the extraction of the correlation function
from discretized realizations of the microstructure (as detailled in Sec.III.1.3). In turn, the Fourier
coefficients of the correlation function obtained on a discrete grid are evaluated using the discrete
Fourier transform of the correlation such as:

Ŝ22(kb) = DFT[S22(rα)] (27)
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Because the correlation function is evaluated on discretized microstructures, its estimation is
approximated and the positive definiteness of the theoretical covariance does not necessarily hold as
negative Fourier coefficients appears in the numerical procedure of reconstruction of real discretized
microstructures for some cases, specifically the aspect ratios that are close to sphericity ω ∈
{0.6, 0.8, 1.}. However, the condition of positive definiteness is a necessary condition to the proposed
reconstruction procedure, as it uses the square root of the Fourier coefficients to build the continuous
GRF. In order to avoid these negative values of Fourier coefficients, a first approach consists of
increasing the grid size to obtain a better approximation of the theoretical correlation, because the
correlation function on discretized microstructures is shown to converge towards the theoretical
correlation function when grid size N →∞. However, memory limitations prevent from computing
the extraction of the correlation function for microstructures meshed on grids larger than 10243 which
was insufficient to reach all positive Fourier coefficients. Another approach that we have tried in
order to prevent negative Fourier coefficient consists in interpolating the correlation function on each
direction of the cartesian basis and compute the Fourier coefficients using numerical integration. This
approximation on the correlation function was unsuccessful as negative Fourier coefficients at high
order were still found. This is certainly related to the discretized description of the microstructure
which induces noise on the extracted two-point correlation function (See section 2.6.4 of the book by
Chiles and Delfiner (1999)). After non-concluding trials to overcome the numerical errors causing the
negative Fourier coefficients, we resorted to truncating the Fourier coefficients for the reconstruction
procedure. Since these negative remain small in comparison with the Fourier coefficients at small
frequencies (ratio of values below 10−4 and an absolute intensity below 10−6), we decided to apply
a threshold value on the Fourier coefficients and cancel all coefficients below 10−6. As shown in
Fig.III.3.3, this truncation of the Fourier coefficients has no significant impact on the reconstruction
of the correlation function which display very good agreement. Errors between the two correlation
functions are measured using similar deviation measure than the one used for deviation from isotropy
in Eq.21 such that:

δ =
||SGRF22 (r)− SRSA22 (r)||F

||SRSA22 (r)||F
(28)

The obtained results are depicted in Fig.III.4.1 and are mostly below 5%.
3D realizations of the reconstructed microstructures obtained after cutting out the negative values
of the Fourier coefficients are given as insets in Fig.III.3.3. It can be clearly observed that the
morphology of the porous phase is different to the isolated inclusions microstructure it was derived
from. The microstructures exhibit no clear matrix heterogeneity geometry specially for relatively
high volume fractions and the heterogeneities take different sizes and morphologies in the same
configuration. Furthermore, there is no clear observable distinction between the threshold GRF
microstructures obtained from different correlation functions related to different aspect ratios of
the RSA inclusions. The reconstruction procedure is reproduced for different volume fraction and
Fig.III.3.4 shows the evolution of the thresholded GRF microstructures obtained from applying the
method to RSA microstructures of aspect ratio ω = 0.4 for an increasing volume fraction c.
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Figure III.3.3 – Comparison of the isotropic correlation function of the RSA microstructures generated and
the corresponding second-order thresholded GRF for a total volume fraction c = 5% and : (a) aspect ratio
ω = 1.,(b) aspect ratio ω = 0.4,(c) aspect ratio ω = 0.2,(d) aspect ratio ω = 0.1.

III.3.3 Fast-Fourier Transform (FFT) based methods

Finite element methods have been used extensively in full-field computation of mechanical
behavior of heterogeneous materials. Thanks to the automated generation of conforming meshes of
the microstructures with gradual sizes of elements to optimize the number of degrees of freedom to
solve the discretized problem, the computations of the effective properties using such methods have
been efficient in time and memory. However, such easy-meshing is more difficult when the morphology
of the microstructures cannot be defined explicitly or if sharp angles are present in the microstructure
as it is the case of highly elongated inclusions (higher than ω = 5 or less than ω = 0.3), or in case of
inclusions connected by cylindrical channels (as in Sec. IV.1) or in case of images of real material.
For such cases, method based on the Fast Fourier Transform (FFT) have been successfully developed
in order to solve numerically the linear elastic problem and more complex behavior (Moulinec and
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a) b) c)

d) e) f)

Figure III.3.4 – Realizations of the RSA microstructures generated with aspect ratio ω = 0.4 for a total
volume fraction (a) c = 5%, (b) c = 15%,(c) c = 25%. Realizations of the corresponding second-order
thresholded GRF (d) c = 5%, (e) c = 15%,(f) c = 25%. The microstructures are shown by their mesh in
regular grids of size 2563

Suquet, 1998; Brenner et al., 2012; Gélébart and Mondon-Cancel, 2013; Bignonnet and Dormieux,
2014) directly on regular 3D voxel-grids (or pixel grids in 2D).

Initially proposed by Moulinec (1994)(Moulinec and Suquet, 1998), these methods are based on
the Lippmann-Schwinder equation (Zeller and Dederichs, 1973) obtained by introducing a reference
linear elastic homogeneous material with stiffness tensor C0 in the local problem of linear elasticity.
This equation is an implicit equation with the strain field ε(x) as unknown:

ε = ε(x) + Γ(0)[(C− C0) : ε](x) (29)

where Γ(0) is the so-called Green’s operator over second-rank tensors and τ (x) is the heterogeneous
polarization field defined by:

τ (x) =
(
C− C0

)
: ε(x) (30)

For our computation, we use the variational form proposed by Brisard and Dormieux (2010) with
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discretized green operator proposed by Willot (2015).
The procedure for discretizing the RSA isolated pore microstructures can be time-consuming if it is
conducted by loop checking if each voxel of the grid belongs to an inclusion. In order to optimize it,
we use a ’bounding box’ procedure which only checks center position of voxels that lie on the smallest
cuboidal cell defined by each ellipsoid. The RSA microstructures are discretized on grids of size 2563

with voxels taking values among {0, 0.125, 0.25, 375, 0.5, 0.625, 0.75, 0.875, 1}, which correspond to
an approximation of the porosity contained in each voxel. This choice is motivated by the results
presented in Appendix III.B.2 on the sensitivity of the effective elastic properties to the mesh size
and to the elastic properties assigned to voxels sitting at the interface between the two phases. On
the other hand, the thresholded GRF microstructures are generated on grids of size 2563 with each
voxel taking the value 0 or 1.
The assignement of the local elastic properties to each voxel is derived from the discretization of the
method proposed in the work by Brisard and Dormieux (2012) such that:

(Cα − C0)
−1 = (1− cα)(Cm − C0)

−1 + cα(Ci − C0)
−1 (31)

Where cα and Cα are respectively the approximate porosity and the stiffness tensor assigned to
the voxel at position α = (α1, α2, α3) in the cartesian grid, with αi ∈ {1, 2, .., 256} for i = 1, 2, 3. In
turn, C0 is the stiffness tensor of the reference material chosen as an elastic isotropic material tensor
defined by its shear moduli µ0 = 0.493GPa and its Poisson ratio ν0 = 0.42 and Cm is the stiffness
tensor of the solid phase which is an elastic isotropic material tensor defined by its shear moduli
µm = 0.492GPa and its Poisson ratio νm = 0.42. The Stiffness tensor Ci corresponding to the porous
phase is computed using a shear moduli µm = 0.GPa and a Poisson’s ratio νm = 0.42.
Similarly to the FE computations presented in Sec. II.2.1, we apply six independent loading conditions
in order to compute the effective stiffness tensor of the microstructures. The outcome of each step
corresponds to the solution of the polarization field τα on each voxel and the local strain field εα.
Using the relation III.3.3 between both fields, the components of the overall stiffness tensor are found
such that:

Cijkl = C0,ijkl + τ ij/εkl (32)

The analysis of the elastic properties is done by computing the overall bulk and shear moduli using
the isotropic projectors J and K and the isotropy deviation δiso as defined in Sec.II.2.1.

III.3.4 Comparison of the effective elastic properties between GRF and RSA
microstructures

The thresholded GRF are statistically controlled by their volume fractions and two-point correla-
tion function, meaning that a realization can deviate from the targeted second-order information
but the ensemble average over sufficiently large number of realizations. As shown in Fig.III.3.3, 50
realizations enable to reach accurate recontruction of the statistical information. In order to determine
the effective elastic properties of the thresholded GRF in a reasonable time, FFT computations
were conducted on five realizations over the fifty generated ones. The realizations were chosen to
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have a volume fraction very close to the one of the associateed isolated inclusion microstructures
such that the difference in the actual volume fraction and the targeted one is less than 0.1%. For
all configurations of volume fractions c = {5%, 10%, 15%, 20%, 25%, 30%, 35%} and aspect ratios
ω = {0.1, 0.2, 0.4, 0.6, 0.8, 1}, the FFT computations of the thresholded GRF microstructures were
conducted on grids of size 2563 with binary voxels associated either to the pore phase or to the
matrix. The local elastic properties of the matrix phase are defined by an isotropic elastic stiffness
tensor defined by its shear moduli µm = 492MPa and its Poisson ratio νm = 0.42 corresponding
to the properties found for the 3D printing material. The porous phase is modeled by an isotropic
stiffness tensor with null shear moduli µp = 0MPa. The reference material is chosen to have an
isotropic elastic stiffness tensor stiffer than the matrix phase and determined by a shear moduli
µ0 = 493MPa and a Poisson ratio ν0 = 0.42.
The same properties of the matrix, the porous phase and the reference material were applied to
five realizations of RSA microstructures for grids of size 2563 built with ratio r = 2 as explained in
Sec.III.B.2. The composite voxels were assigned elastic properties following the relation III.B.2.
Figures III.3.5 depict the effective bulk and shear moduli obtained for each configuration of RSA
microstructures and the second-order reconstructured thresholded GRF. The curve representing
evolution of effective elastic moduli of microstructures containing isolated inclusions shows the
important influence of the shape of inclusions on the elastic properties as the material is highly
softened by the elongation inclusions. This behavior related to the shape of inclusions is not captured
by the reconstructed microstructures for which all realizations of a given volume fraction c have
similar elastic moduli. Though differences in the two-point correlation function are clearly observed,
the thresholded GRFs seem only sensitive to the volume fraction.
For small volume fractions c ≤ 15%, the constant effective elastic moduli of the thresholded GRF
microstructures are similar values with the RSA microstructure generated for aspect ratio ω ≈ 0.4 for
the effective bulk κ̃ and slightly smaller for the effective shear µ̃. For larger volume fraction c ≥ 15%,
the aspect ratio corresponding to the elastic properties of the thresholded GRF microstructures drops
quickly to highly elongated aspect ratio depicting change in the morphology of the microstructure.
Indeed, observations of the 3D microstructure of the thresholded Gaussian random field highlight an
increasing connectivity in the porous phase with increasing the total volume fraction. Studies on
the conductivity and fluid flow properties on heterogeneous material using statistical modeling by
thresholded GRFs (Teubner, 1991; Roubin and Colliat, 2016) have shown that the percolation of the
heterogeneous phase is highly related to the roots of the Euler characteristic. This topological feature
has an explicit expression in case of Gaussian distribution which leads to percolation of the porous
phase at porosity c ≈ 16% for sufficiently large cells(Roubin and Colliat, 2016). This morphological
property explains the increasing connectivity between the heterogeneous components which lead to
softening the porous GRF microstructures in comparison with the RSA microstructures (Roubin and
Colliat, 2016). Due to the symmetry of random field, percolation of the matrix phase is lost when
porosity reaches values higher than c ≥ 84%. In this case, the microstructures have a null effective
stiffness tensor.
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Figure III.3.5 – (1) Evolution of the effective bulk modulus normalized by the matrix modulus κ̃/κm as a
function of the aspect ratio of for unit cell microstructures with porosity (a)c = 5% (b) c = 15% (c) c = 25%

(2) Evolution of the effective shear modulus normalized by the matrix modulus µ̃/µm as a function of the
aspect ratio of for unit cell microstructures with porosity (a)c = 5% (b) c = 15% (c) c = 25%.

The evolution of the effective bulk modulus and shear modulus as a function of the volume fraction
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c for different aspect ratios are shown in Fig.III.3.6 along with Hashin-Shtrikman estimates for
the effective bulk and shear moduli of ellipsoidal microstructures (Willis, 1978; Gatt et al., 2005)
(Detailed in Appendix III.C). The results show good agreement of the Hashin-Shtrikman estimates
with the effective properties obtained from RSA microstructures down to aspect ratio ω = 0.4. For
aspect ratios below this value, the results decrease faster than predicted by the HS estimates. Besides
that, the evolution of the effective bulk and shear moduli of the thresholded GRF microstructures,
normalized by the moduli of the matrix phase, do not correspond to the evolution of the Willis
estimates for a particular aspect ratio of inclusions. When increasing the porosity, these effective
elastic moduli decrease with a higher rate due certainly to the increase in the connectivity of the
porous phase. Figure III.4.1 shows a quantified error on the effective stiffness tensor in comparison

a) b)

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
GRF

HSW estimate

=0.1

=0.2

=0.4

=1.

0 10 20 30
0.2

0.4

0.6

0.8

1.0
GRF

HSW estimate

=0.1

=0.2

=0.4

=1.

Figure III.3.6 – (a) Evolution of the effective bulk moduli κ̃/κm as a function of the porosity for microstructure
with inclusions of aspect ratios ω and reconstructed thresholded GRF. The estimates of Hashin-Shtrikman for
ellipsoids proposed by (Willis, 1978) are plotted for comparison. (b) Evolution of the effective shear moduli
µ̃/µm as a function of the porosity for the same microstructures.

with the error on the reconstruction of the two-point correlation function for different volume fractions
c = 5%, 15% and 25%. The errors on the reconstruction process are contained within a relatively small
range (generally below 5%), and are most certainly related to the finite number of realization used to
compute the correlation function of each of the microstructures and to the numerical truncations
in the Fourier coefficients to generate the GRF as mentionned in Sec.III.3.2. On the other hand,
the deviations in the effective elastic properties of the material are significant and can reach more
than 100% deviation. The largest differences are observed for microstructures related to elongated
inclusions with ω = 0.1 or 0.2 while the errors in the reconstruction as discussed in Sec.III.3.2 have
been observed on aspect ratios close to sphericity ω = 0.8 or 1.
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Figure III.3.7 – Evolution of the deviation from isotropy δiso plotted for a selection of RSA microstructure
with aspect ratios ω = 0.2 or 0.4 or 1 and their corresponding second-order reconstructed microstructures
(Thresholded GRF).

III.4 Concluding remarks

In this chapter, two types of microstructures having the same second-order information (volume
fraction and two-point correlation function) are generated and computed using FFT based methods.
The first type of microstructures consists of isolated ellipsoidal inclusions generated using the RSA
algorithm and the second type is derived from a reconstruction procedure based on the volume
fraction and two-point correlation function of the latter type.
The reconstruction procedure explained in Sec.III.2, provides accurate reconstruction of the statistical
information of the microstructure but the effective elastic results of the two microstructures show
large differences.This assesses that the building procedure based only on the volume fraction and the
correlation function of the porous phase misses important features of the microstructures which in
the case of our study were related to the shape of heterogeneities and the connectivity of the pores.
Though GRF reconstruction method suffers from several limitations related to the Gaussian character
of the field, the results shown in this study highlight two important facts:

- The shape of the inclusions has an important effect on the effective elastic properties of the
material which, in the case of isotropic microstructures, can be well captured by the effective
bulk and shear moduli obtained from Hashin-Shtrikman estimates for ellipsoidal microstructures
(Willis, 1978) given in Appendix III.C.

- The two-point correlation function is insufficient to deliver accurate predictions on the effective
elastic properties of a random heterogeneous material. The statistical parameters captured from
it are unable to distinguish the local information about the morphology of the heterogeneities
such as the shape and the connectivity.

In order to quantify the differences between the two types of microstructures, we present in the next
chapter the computation of statistical descriptors of the connectivity in heterogeneous microstructures.
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To quantify the effect of connectivity on the elastic properties, a third type of microstructure consisting
in connecting the isolated inclusions of the RSA algorithm has been developped with quantitative
connectivity parameters taken from practical work on geomaterials.
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Figure III.4.1 – (1) Comparison between the deviation between the effective bulk modulus and the errors
related to the 3D reconstruction of the two-point correlation function as a function of the aspect ratio ω of
inclusions present in the RSA microstructure at different porosities (a) c = 5% (b) c = 15% (c) c = 25%.
(2) Comparison between the deviation between the effective bulk modulus and the errors related to the 3D
reconstruction of the two-point correlation function as a function of the aspect ratio ω of inclusions present in
the RSA microstructure at different porosities (a)c = 5% (b) c = 15% (c) c = 25%.
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APPENDIX

III.A Generation of the Gaussian Random Field by spectral method:

The GRF proposed in this work is defined in the continuous space by (Poirion and Soize, 1995):

Y (x) = α

N1∑
b1=0

N2∑
b2=0

N3∑
b3=0

HbZb cos(kb.x + Φb) (33)

where b = (b1, b2, b3), N1, N2, N3 ∈ N3. In this expression, the following variables are defined as:

— Φb are random variables uniformly distributed in [0, 2π[

— Zb are random coefficients such that Zb =
√
− ln(Ψ) with Ψ uniformly distributed in ]0, 1].

— Hb and kb are deterministic coefficients chosen in order to control the correlation function of
the field and make use of the Fast-Fourier Transform algorithm.

It can be seen that the two-point correlation of this normalized field Y (x) is directly related to the
Fourier coefficient of the target correlation function ρ expressed by:

ρ(r) =
α2

2

N1∑
b1=0

N2∑
b2=0

N3∑
b3=0

H2
b cos(kb · r) (34)

Since for all b ∈ [0, N1]× [0, N2]× [0, N3], Zb and Φb are two independent random variables:

E[Zb cos(kb.x + Φb)] = E[Zb]E[cos(kb.x + Φb)] (35)

Since:

E[cos(kb.x + Φb)] =
1

2π

∫ 2π

0
cos(kb.x + Φb)dφb (36)

=
1

2π

[
sin(kb.x + Φb)

]2π
0

= 0

79
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Thus E[Y (x)] = 0.
Similarly, the two-point correlation function of this field can be calculated such that:

E[Y (x)Y (x + r)] = α2
∑
b

∑
c
HbHcE[ZbZc]E[cos(kb.x + Φb) cos(kc.(x+r) + Φc)] (37)

where the notation
∑
b

has been used to simplify
N1∑
b1=1

N2∑
b2=1

N3∑
b3=1

.

If b 6= c, the two random variables are independent and for similar calculation in Eq.III.A as it can
be shown that:

E[cos(kb.x + Φb) cos(kc.(x+r) + Φc)] = E[cos((kb.x + Φb)]E[cos(kc.x+r + Φc)]

= 0 (38)

If b = c, then transformation of the product of cosines into a sum of cosines enables to get:

E[cos(kb.x + Φb) cos(kb.x + Φb)] =
1

2
E[cos((kb.r)] +

1

2
E[cos(kb.(2x+r) + 2Φb)]

=
1

2
E[cos((kb.r)] (39)

In turn, for b = c:

E[Z2
b] = E[

√
− log(Ψ)

2
] (40)

= −
∫ 1

0
ln(Ψ)dΨ

= [x ln(x)− x]1lim→0

= 1

Thus this field has a normal distribution, i.e. its mean value is E[Y (x)] = 0 and its variance σ2 = 1.
The two-point correlation of Y (x) is also given by the expression:

ρ(r) =
α2

2

N1∑
b1=0

N2∑
b2=0

N3∑
b3=0

H2
b cos(kb · r) (41)

It is worth mentioning that this correlation function is L-periodic as it was expected.
In order to determine the values of α, Hb and kb to match the target correlation function and make
use of Fast Fourier Transform, we consider a regular discretization of the spatial field by step h and
a discretization of its spectral domain by step ∆k and initial phase Bi in each principal direction ei
such that:

xβ = h(β1e1 + β2e2 + β3e3) , kb = ∆k[(b1 −B1)e1 + (b2 −B2)e2 + (b3 −B3)e3]

The random field Y (x) valued at discrete point xβ can be expressed as:

Y (xβ) = Re

α N1∑
b1=0

N2∑
b2=0

N3∑
b3=0

HbZbexp(−ikb.xβ + Φb)

 (42)

= Re

α N1∑
b1=0

N2∑
b2=0

N3∑
b3=0

HbZb exp
(
− i∆k h

3∑
j=1

Bjβj + Φb

)
exp

(
− i∆k h

3∑
j=1

bjβj

)
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where Re(X) denotes the real part of the complex X. For an efficient computation, it is interesting
to write these discrete values Y (xβ) using discrete inverse Fourier transform (Ŷ (b))b∈B such that:

Y (xβ) = Re

 N1∑
b1=0

N2∑
b2=0

N3∑
b3=0

Ŷ (b) exp
(
− i2π

3∑
j=1

bjβj
Nj

) (43)

A natural choice to obtain equivalent expression between Eq.III.A and Eq.43 comes out by setting:

∆k =
2π

L
(44)

Therefore, the correlation function ρ(r) is expressed by:

ρ(r) = Re

α2

2

N1−1∑
b1=0

N2−1∑
b2=0

N3−1∑
b3=0

H2
b exp

(
i
2π

L

[
(b1 −B1)r1 + (b2 −B2)r2(b3 −B3)r3

]) (45)

On the one hand, using the L-periodicity of the random field in the cell of volume V = [0, L]3, the
correlation function is also L-periodic and can be expressed by its Fourier series as:

ρ(r) =
∑
b∈Z3

ρ̃b exp(−ikb.r) (46)

where ρ̃b are the Fourier coefficients of the correlation function that are defined as:

ρ̃b =
1

L3

∫
V
ρ(r) exp

(
−i2π

L

3∑
i=1

bi.ri

)
dr

Assuming the spectral power function is non-null only in a closed frequency domain Ω = [−M1,M1]×
[−M2,M2]× [−M3,M3] centered at 0, the Fourier series of the correlation function can be written as:

ρ(r) =

M1∑
b1=−M1

M2∑
b2=−M2

M3∑
b3=−M3

ρ̃b exp

(
− i2π

L
b · r

)
(47)

On the other hand, using that the correlation function of a statistically homogeneous material
is an even function and translating the index of summation in the Eq.III.A, the expression of the
correlation function of the GRF Y (x) is formulated as:

ρ(r) =
α2

2

N1/2∑
b1=−N1/2

N2/2∑
b2=−N2/2

N3/2∑
b3=−N3/2

H2
b exp

(
i
2π

L

(
(b1+

N1

2
−B1)r1+(b2+

N2

2
−B2)r2+(b3+

N3

2
−B3)r3

))
(48)

From this expression, we see that the numbers N1, N2, N3 have to be odd numbers and by connecting
both Eq.III.A and Eq.III.A the choices of deterministic parameters of the GRF Y (x) are defined as:

α =
√

2 , Bi = Mi

kbi =
2π

Li
(bi −Mi) , Hb =

√
ρ̃b (49)
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It is worth noting that computing the square root of the Fourier coefficients of the correlation
function

√
ρ̂b is always correct because an important property related to the realizability of two-phase

correlation functions imposes that the correlation function of a GRF is positive-definite function.
The positive definiteness conditions has been shown to be equivalent to Wiener-Khintchine condition
which imposes the existence and non-negativity of the Fourier transform of the correlation function
which is means that the Fourier coefficients of the correlation function are not negative.
To sum up, we generate a continuous L-periodic normalized GRF Y (x) defined by its correlation
function ρ(r) expressed by:

Y (x) = Re

√2

N1−1∑
b1=0

N2−1∑
b2=0

N3−1∑
b3=0

√
ρ̃b−MZb exp

(2π

L
(b−M) · x + Φb

) (50)

with notations M = (M1,M2,M3) and where Φb are random variables uniformly distributed in
[0, 2π[ and Zb are random coefficients such that Zb =

√
− ln(Ψ) with Ψ uniformly distributed in

]0, 1].
The Fourier transform of the correlation function ρ̃(r) has been assumed to be fully contained within
a bounded support Ω which leads to consider odd numbers N1, N2 and N3. However, this condition
does not restrict the generation of the GRF to only odd grid sizes as there is no loss in the expression
of the field to extend the sum for wave number b corresponding to null values of the Fourier coefficient,
i.e. ρ̃b = 0 and consider Mi = Ni/2 for even number Ni and Mi = (Ni − 1)/2 for odd numbers.
The discrete values of the GRF on a grid (xβ)β∈[0,N1]×[0,N2]×[0,N3] are expressed as:

Ŷ (xβ) = Re

√2

N1−1∑
b1=0

N2−1∑
b2=0

N3−1∑
b3=0

√
ρ̃b−MZb exp

(
− i2π

3∑
j=1

Mjβj
Nj

+ Φb

)
exp

(
i2π

3∑
j=1

bjβj
Ni

)
(51)

Which can be seen as a discrete inverse Fourier transform of array

(
Ŷb

)
where b ∈ [0, N1]× [0, N2]× [0, N3]

such that:

Ŷ (xβ) =
√

2 exp
(
− i2π

3∑
j=1

Mjβj
Nj

)
DFT−1

[
(Ŷb)

]
(52)

where:
Ŷb =

√
ρ̃b−MZb exp

(
iΦb

)
(53)

III.B Fast-Fourier Transform based method

This section presents the some results related to the discretization of RSA isolated pore mi-
crostructures for Fast-Fourier Transform (FFT) based methods. First, the bounding box procedure
for discretizing the microstructures in regular grids is presented and the sensitivity of the effective
properties computed on these grids is conducted in order to define the grid size and parameter of the
composite voxels to use in our FFT simulations.
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III.B.1 Discretization of RSA microstructures using the bounding box proce-
dure

The local attribution of voxels is conducted by defining the smallest cuboidal box containing
each ellipsoidal inclusion and loop around this subset of voxels to associate each voxel with the phase
lying at its center.
Consider a randomly oriented ellipsoid Ei characterized by its center position vi and its characteristic
matrix Zi as defined in Sec.II.1.1.a. The determination of the smallest cuboidal box containing this
quadric geometry uses the property that the tangent vector at the extremal points is colinear to the
directional vector in the Cartesian basis e1, e2 or e3. The extremal points xext verify the boundary
equation of the ellipsoid and the colinearity condition such that:

Qi(xext) =
(
xext − vi

)TZi(xext − vi
)

= 1 (54)

∆Qi(xext) = λjej with j = 1, 2 or 3 (55)

By inserting the second equation into the first one, the six extremal points are expressed by (for
i = 1, 2 and 3):

xmax,i = vi +
1√

Z−1ei · ei
(56)

xmin,i = vi −
1√

Z−1ei · ei
(57)

The smallest cuboidal box containing the ellipsoid is that defined by the two points M1 =

(xmin,1, ymin,2, zmin,3) and M1 = (xmax,1, ymax,2, zmax,3).
To mesh a microstructure of N randomly in a grid of size N1 ×N2 ×N3, the algorithm defines the
voxel size h1, h2, h3 such that hi = L/Ni and operates N loop with the following steps:

- step 1: Compute the extremal points of the ellipsoid xmax,1,xmin,1,xmax,2,xmin,2,xmax,3,xmin,3.

- step 2: Build the bounding box by discretising [xmin,1, xmax,1] with a step size h1, [ymin,1, ymax,1]

with a step size h2 and [zmin,1, zmax,1] with a step size h3 and then creating the corresponding
grid Gα . In order to ensure that the grid contains all points lying in that volume, the minimum
numbers are taken as the ceil part and the maximum ones are taken the floor part.

- step 3: Compute the value of Qi(xα) for each voxel of this grid such that:

Qi(xα) = (xα − vi)TZi(xα − vi)− 1 (58)

- step 4: Apply a threshold process to the latter valued box such that:

Gα = 1 if Qi(xα) ≤ 0 (59)

The algorithm output the discretized ellipsoid grid and the position M1 as the origin point of the
bounding box. This latter grid is in turn inserted inside the global grid by performing a voxel by voxel
addition. This includes translating the voxel when its central point lies outside the box conforming
to the periodicity of the microstructure.
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III.B.2 Effective properties sensitivity to the grid size and composite voxels

Prior to the use of the FFT computation for the determination of effective properties of porous
materials, sensitivity analysis on the FFT results is conducted to define the size of grid that should
be used for microstructures under investigation. Two parameters of the microstructures have to
be defined sufficiently well to minimize the errors on the FFT computations, namely the minimum
number of voxels needed to mesh a characteristic length of inclusions and the minimum number of
voxels in a matrix ligament. To isolate the contribution of each of these parameters, we generate two
types of microstructures for aspect ratios ω1 = ω2 = 1 and ω1 = ω2 = 0.1 to ensure a result that
works for all investigated aspect ratios; the first one consists of inclusions separated by a big distance
to neglect the influence of the ligament and the second type consists of large inclusions distant by
the minimum size of ligament.
We compute the effective properties on grid sizes in range between 16 and 512 for all four

a) b)

Figure III.B.1 – Illustration of the microstructures consisting of ordered distribution of ellipsoidal inclusions
of aspect ratio ω = 1 or ω = 0.1 sufficiently distant from each other to neglect uncertainties related to
inter-pores distance in order to determine the number voxel size needed to obtain accurate enough effective
elastic estimates.

microstructures displayed in Fig.III.B.1 following the procedure described in Sec.III.3.3. The effective
properties obtained for the finest grid (5123) are taken as a reference to compute the error of
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discretization on the effective stiffness tensor δC and on the elastic moduli δκ and δµ such that:

δC =
|C− C(512)||F
||C(512)||F

(60)

δκ =
|κ̃− κ̃(512)|
κ̃(512)|

(61)

δµ =
|µ̃− µ̃(512)|
µ̃(512)|

(62)

The results plotted in Fig.III.B.2a) show that both aspect ratios converge to an error less than 2%
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Figure III.B.2 – Evolution of the deviation in the elastic properties of the same microstructure meshed for
different sizes of grid (a) Microstructures consist of ordered distribution of ellipsoidal inclusions of aspect ratio
ω = 1 or ω = 0.1 sufficiently distant from each other to neglect uncertainties related to inter-pores distance
(b) Microstructures consist of ordered densed distribution of ellipsoidal inclusions of aspect ratio ω = 1 or
ω = 0.1 with ligament size corresponding to the minimum distance accepted by RSA algorithm.

for grid size around 1283 which in both cases correspond to a 13 voxels on the longest semi-length of
the microstructure. On the other hand, Figure III.B.2b) shows that microstructures with minimum
distance between inclusions start to be insensitive to the grid size for grids beyond 2563 for both
aspect ratios which correspond to having at least three voxels between two inclusions. These results
highlight the fact that in linear elasticity, the mesh sensitivity to the aspect ratio is negligible as long
as we are dealing with aspect ratios in the range of the study, i.e. 0.1 ≤ ω ≤ 1, and that the number
of voxels used to mesh the ligament wall between inclusions have to be carefully selected to avoid
errors that can easily reach beyond 10%.
A second analysis is related to the elastic properties assigned to each voxel. Associate the elastic
properties of the voxel to the elastic properties of the phase lying at its center has been the subject
of discussion in the analysis of local errors related to the FFT computations, and methods have
been proposed to account for the partition of volume fractions in the sub-volume corresponding to
the voxel size (Gélébart and Ouaki, 2015; Kabel et al., 2015; Mareau and Robert, 2017). In the
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a) b)

Figure III.B.3 – Illustration of the 3D microstructures consisting of ordered densed distribution of ellipsoidal
inclusions of aspect ratio ω = 1 or ω = 0.1 with ligament size corresponding to the minimum distance accepted
by RSA algorithm in order to determine the number voxel size needed to obtain accurate enough effective
elastic estimates.

variational scheme used for our study, a rigorous formula for the assignation of the local elastic
properties to each voxel is derived from the discretization of the method such that:

(Cα − C0)−1 =
n∑
i=1

cα,i(Ci − C0)−1 (63)

This scheme has been applied in the work on simple microstructures by Brisard and Dormieux (2012)
and highlighted the importance of voxel composites for conserving the bounding properties of the
scheme and showed an improvement of the convergence of the effective elastic properties as a function
of the grid size. In order to determine the procedure to use for the interface voxels, the previous
microstructures are generated on binary grids from 163 to 20483 and the mesh is then compressed by
a ratio r = 1, 2 or 4. This procedure consists of dividing the size of the array on each direction by the
given ratio and associating the new voxel [i, j, k] with the average of the voxels lying in the positions
x ∈ Jri, r(i+ 1)K× Jrj, r(j + 1)K× Jrk, r(k + 1)K. For example, taking an initial discretization (grid
with voxels valued 1 or 0) of size 10243 and a ratio r = 2, the final grid is 5123 with voxels containing
a value ∈ {0, 1/23, 2/23, . . . , 1}.
Results depicted in Fig. III.B.4 show that results from the different strategies of voxel properties
assignation all converge to the same effective properties. On one hand, these results show similarly
to the observations made in the work by (Brisard and Dormieux, 2012), assignation of the voxel
with the elastic properties of its central phase gives increasing effective properties and breaks the
bounding property of the solution. The property of this computational scheme to produce a bound
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a) b)

0 100 200 300 400 500 600
0

10

20

30

40

50

60

0 100 200 300 400 500 600
0

5

10

15

20

Figure III.B.4 – Evolution of the deviation in (a) the effective bulk modulus (b) the effective shear modulus
of the same microstructure meshed on different grid size obtained after compression an initial grid by a ratio
r = 1, 2, 4 to obtain voxel composites at the interface.

on the effective properties is only valid when using composite voxels with ratio r ≥ 2 is used. On the
other hand, the results shows, surprisingly, that no clear improvment of the convergence is observed
by introducing information on interface voxels. On the contrary, increasing the ratio of coarsening
leads to stiffer results and thus bigger deviation from the converged effective properties.

III.C Hashin-Shtrikman estimates for randomly oriented ellipsoidal
inclusions

Following the celebrated work of (Willis, 1978), the Hashin and Shtrikman (1963a) bound for
isotropic composites has been extended to anisotropic microstructures and more specifically to
ellipsoidal microstructures. In the particular case of microstructures consisting of aligned ellipsoidal
pores of the same aspect ratio ω, the effective compliance tensor S̃HSW = C̃−1HSW takes the form :

S̃ = Sm +
c

1− c
Q−1m (64)

Where Sm = C−1m is the compliance tensor of the matrix and Qm is related to the Hill tensor of the
ellipsoidal pores by Qm = Cm − CmPmCm and is expressed by:

Qm =
1

4πω2

∫
|ζ|=1

[Cm − CmH(ζ)Cm]|Z−1ζ|−3dS (65)

where Z is the characteristic matrix of the ellipsoidal pores which depends on their shape and
orientation as expressed in Sec.II.1.1.a.
In this work, the tensor Qm has been computed based on Gauss integration of the Eq.III.C as detailed
in Danas (2008)(Section 2.11).
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Using the equivalence between orientational averaging and projection on the isotropic basis (J and K
in Sec.II.2.1) for fourth-order tensors (Gatt et al., 2005), the estimate in Eq.III.C can be used for
effective properties of two phase porous materials with ellipsoidal inclusions randomly oriented and
distributed in the unit cell:

S̃ = Sm +
c

1− c
(
Qiso
m

)−1 (66)

where Qiso
m = 3κ̂mJ + 2µ̂mK with :

κ̂m =
Qm
i,kkll

9
(67)

µ̂m =
3Qm

i,klkl − 9κ̂m

30
(68)

Since the matrix phase is isotropic with bulk modulus κm and shear modulus µm, the effective bulk
and shear estimates of Willis are expressed using κ̂m and µ̂m such that:

κ̃HSW =
κmκ̂m(1− c)

κ̂m + c(κm − κ̂m)
(69)

µ̃HSW =
µmµ̂m(1− c)

κ̂m + c(µm− µ̂m)
(70)



CHAPTER IV

A POSSIBLE EXTENSION OF RSA MICROSTRUCTURES TO THE
CONNECTED NETWORKS

Summary of the chapter: This chapter aims at characterizing the effect of connectivity on both
the effective elastic properties and low order statistical descriptors. To that aim, we first introduce a
simple model of connected pores based on the RSA algorithm with additional cylindrical channels
connecting the isolated ellispoidal pores. The influence on the effective elastic properties of the
parameters used to generate the connectivity in the porous phase, namely the throat size and the
number of channels per pore, are investigated using an FFT computational procedure. Next, the
porous space of the three types of microstructures generated in this thesis are analyzed and compared
for the same volume fraction, using the two-point correlation function, the chord-length distribution
and the local strain field as a function of the Euclidean map transform. This analysis emphasizes the
sensitivity of the effective elastic properties to local features of the microstructure which are lacking
from the statistical descriptors investigated in this thesis.

IV.1 Generation of controlled porous network microstructures

In order to create relatively simple connected porous microstructures that enable to investigate
quantitatively the effect of some parameters of the connectivity in random porous materials, we
extend the RSA algorithm defined in Sec.II.1.2 to generate porous network microstructures. The
porous network is a class of geometric models that can be extracted from image analysis of real rocks
(Chatzis and Dullien, 1977; Dong and Blunt, 2009; Xiong et al., 2016) and that have been widely
used to understand physical properties of porous media (Diaz et al., 1987; Bear et al., 1987; McCall
et al., 1991; Al-Kharusi and Blunt, 2007). They are not only developed for theoretical calculations
but also to generate realistic models from experimental observations as they propose more complex
microstructures than the simple pore-space geometries previously used such as packing spheres or
boolean models (Fatt, 1956; Blunt, 2001). A popular representation of a porous network is to fill

89
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the void space by a regular 3D lattice of wide pores connected by narrower throats. The inclusions
represent large regions of pores for which we can define an equivalent shape, size and orientation. In
turn, the connecting channels represent smaller pores forming a connection path between the larger
pores.
For modeling real materials, both positions of the pores and the throat can be chosen according
to some deterministic or random procedure based on direct topological analysis on X-ray micro-
tomography images of real materials using algorithms to determine inclusions and throats parameters.
Although these models do not conform to the internal morphology of all random material, they have
proven to be efficient in estimating the physical properties of porous rocks (Patzek, 2001; Oren et al.,
1992). For detailed description on the pore network extraction algorithms, the reader is referred to
the reviews proposed by Dong and Blunt (2009) and Xiong et al. (2016). In this work, the porous
network microstructures are generated using a random distribution of the porous phase based on
input parameters describing the pores (as detailed in Sec.II.1.2.a) and those describing the cylindrical
channels detailed in the following section.
The objective of this section is to introduce the parameters used to build porous network microstruc-
tures and to detail their implementation in the RSA algorithm. Subsequently, a parametric study is
conducted to assess the influence of the radius of the connecting cylinders and their average number
per pore on the effective elastic properties. This has been carried out using numerical computations
for different configurations of connected microstructures.

IV.1.1 Implementation of connectivity parameters in RSA algorithm

In this work, we propose a porous network model that extends the description of the inclusions
to ellipsoids of random orientation so that the pore families are described by the discrete distribution
of their sizes and shapes as it was presented in Sec.II.1.1.b. In order to introduce connectivity
in the microstructures, cylindrical channels are introduced between neighboring pores using the
minimum distance between the two inclusions. The parameters that are chosen in order to control
the connectivity are:

• The ratio Sth of the diameter of the cylinder Dth to the smallest characteristic length of the
two ellipsoidal inclusions Ei and Ej they connect expressed as:

Sth =
Dth

min(ai,1, ai,2, ai,3, aj,1, aj,2, aj,3)
(1)

• The mean and the standard deviation of the coordination number, which represents the number
of throats connected to a pore by a Gaussian distribution as it is usually observed in the image
analysis of real rocks(Dong et al., 2008; Jivkov et al., 2013).
This parameter gives an overall information on how pores are connected to each others and has
been largely used in the study of its influence on the topology of the random medium and the
dispersivity of materials (Vasilyev et al., 2012) as well as the transport properties such as the
relative permeability in porous materials (Arns et al., 2004).
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The connectivity parameters are introduced into the RSA algorithm using variables computed during
the procedure for the determination of the minimum distance between two inclusions (presented in
Sec.II.B.1).
For each newly generated inclusion Ei in the unit cell, the algorithm computes the minimum distance
between Ei and all previously accepted inclusions (Ej)1≤j≤i−1 and their 26 periodic images. Besides
the minimum distance, the algorithm outputs the two points xi,j ∈ Ei and yi,j ∈ Ej for which this
minimum distance is obtained. Once the current inclusion verifies all constraints to be accepted in
the microstructure, as stated in Sec.II.1.2, the algorithm stores the characteristic information about
its distance to the other accepted inclusions (and periodic images) in a list.
When the total volume fraction of isolated inclusions is reached, the list of distance is sorted in an
increasing order of the minimum distance. Subsequently, the algorithm computes the total number
of connections Nth in the microstructure using the input parameter Ncon and the total number of
inclusions generated Ntot such that:

Nth = Ncon ×Ntot (2)

The Nth channels are built using cylinders obtained from the Nth first connections in the sorted
distance list. For two connected inclusions Ei and Ej , the cylindrical throat is directed by the vector
w = xi − xj and has a radius defined by the input paramater Sth. Periodic images of the throats are
ensured by the construction of the distance list that includes distances between the inclusions and
the periodic images of previous inclusions.
Figure IV.1.1 shows realizations of porous network microstructures obtained for different aspect
ratios of inclusions and with different setting parameters, i.e. Ncon and Sth.
It is worth mentioning that this procedure enables to build a maximum number of throats equal
to Ntot! by connecting all inclusions to each others, which creates a theoretical limit to the input
parameter Ncon such that

Ncon ≤ (Ntot − 1)! (3)

However, in order to ensure that the throats do not cross inclusions, the generated connexions are
constrained to allow only those corresponding to a minimum distance below twice the radius of the
smallest inclusion they are attached to. With this additional constraint, the effective number of
connections Ncon may differ from the input parameter.

IV.1.2 Effective elastic properties of porous network microstructures

Once these connected porous models are generated, the objective is to study the influence of each
morphological descriptor of the connectivity on the effective elastic properties of porous materials.
To that aim, different configurations of microstructures consisting of a total porosity c = 15% have
been generated by changing one of the connectivity parameters (Coordination number Ncon or throat
size Sth) while keeping all other microstructural descriptors fixed. The microstructures are then
discretized and their effective elastic properties are computed using FFT based simulations on grids
of 2563. The coming sub-section details the configurations parameters, the meshing procedure of the
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a) b) c)

Figure IV.1.1 – RVEs of unit volume L3 with N = 150 randomly distributed pores polydispersed in size for
a total porosity (a) c = 15% and ω = 1, (b) c = 15% and ω = 0.4, (c) c = 15% and ω = 0.2. The connectivity
parameters for the three realizations are chosen such that the coordination number Nth = 3 and the throat
size ratio Sth = 0.2.

porous network and shows the evolution of the effective elastic isotropic moduli with the change of
the connectivity parameter.

IV.1.2.a Influence of the coordination number on the effective elastic properties

Firstly, the influence of the coordination number is studied by generating different realizations of
microstructures having the same inclusions characteristics, in term of shape and size distribution. The
cylindrical channels connecting the pores have the same throat radius (corresponding to Sth = 0.3 for
spherical voids) but different coordination number Ncon ∈ {0, 1, 2, 3, 4, 5, 7}, with Ncon = 0 denoting
the isolated inclusions microstructure type. Figure IV.1.2 shows the evolution of realizations obtained
with different coordination number. Obviously, the initial volume fraction of isolated pores needed
in order to reach a total volume fraction of c = 15% decreases when increasing the number of
connections per pore but remains relatively higher than the additional porosity represented by the
channels. Indeed, the volume fraction of throats does not exceed 2.5%.
The same study is conducted for different aspect ratios of pores, ω ∈ {0.2, 0.4, , 1} to observe the
influence of connectivity along different shapes of inclusions. The throat radius is kept constant for
all microstructures in order to observe only the influence of the number of connections per pore.
Figure IV.1.2 shows realizations of microstructures with different aspect ratio and built with the
same connectivity and pore radius.
The microstructures are meshed using a regular voxel grid for which the inclusions are meshed using
the fast procedure presented in Sec.III.3.3 and the throats are meshed using the following procedure.
For a channel connecting the ellipsoids Ei and Ej , the axis line of the cylinder is directed by vector
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xi,j − yi,j and crosses the point xi,j such that the cylinder Ci,j of radius R is defined by the equation:

Ci,j = {x |
||(x− xij) ∧ (yi,j − xi,j)||2

||x2 − x1||2
≤ R} (4)

where ∧ denotes the cross-product and ||.||2 is the Euclidean norm.
For each grid voxel xα lying in the box comprised between the centers of the ellipsoids, the algorithm
attributes the value one if the voxel center is included in the cylinder and lies outside of the ellipsoids
such that Qi(xα) > 0 and Qj(xα) > 0. This discretization procedure is applied to all created channels
and FFT computations were conducted on grids of size 2563 with the same procedure as the one
presented in Sec.III.3.3. Five realizations of each configuration were computed in order to obtain
statistical mean and standard deviation on the effective elastic properties.

a) b) c)

Figure IV.1.2 – Realizations of porous network microstructures of a unit volume L3 with a total porosity
c = 15% consisting of N = 150 randomly distributed spherical pores of different sizes. The connectivity
parameters of each realization are chosen such that the throat size ratio Sth = 0.3 and the coordination
number is taken (a) Nth = 1, (b) Nth = 3, (c) Nth = 5.

The results of the evolution of the effective elastic bulk and shear moduli as a function of the
coordination number are shown in Fig.IV.1.3. For all aspect ratios ω, both effective moduli decrease
with the increase of the connectivity in the microstructure. This decrease starts with a high rate and
progressively reduces to a saturated value corresponding to a fully connected network. Depending on
the aspect ratio of the isolated inclusions, the rate of decrease can vary depending on the aspect ratio
of inclusions ω, as it is observed that the effective properties of microstructures with aspect ratio
ω = 1 drop fast as soon as a connection is generated between particules while microstructures with
aspect ratio ω = 0.4 have very small decrease due to connecting channels. In turn, the saturated
value of effective properties with coordination number falls into very close range of values for the
different aspect ratios which highlights that the aspect ratio tends to reduce the effect of connectivity.
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Figure IV.1.3 – Influence of the coordination number of porous networks generated with different aspects
ratio on effective properties normalized by the matrix properties for the three selected aspect ratios of interest
(a)the bulk modulus κ̃/κm and (b) shear modulus µ̃/µm as a function of the coordination number Ncon.

IV.1.2.b Influence of the throat size on the effective elastic properties

In order to study the effect of the throat size on the effective elastic properties of porous
network models, we generate microstructures with a total volume fraction c = 15% consisting of
polydisperse spherical inclusions with the same aspect ratio ω = 1 and connected using a coordination
number Ncon = 3 with various throat size ratios Sth ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. Realizations of the
microstructures are shown in Fig.IV.1.4, where the change in radius of channels can be observed.
Similarly to the study for the influence of the number of links per pore, the study is extended
to ellipsoidal inclusions with aspect ratios ω ∈ {0.2, 0.4, 1} in order to observe how the shape of
inclusions influences the effect of connectivity parameters on the effective elastic properties. The
throat size in that case was chosen in order to have the same initial volume fraction of isolated
inclusions, before reaching total volume fraction c = 15% using connecting channels between pores
with mean coordination number Ncon = 3. Microstructures were meshed on 2563 regular voxel grids
and their effective elastic properties were computed using the same procedure for FFT-based method
described before.
The results of this study for the effective isotropic elastic properties are plotted in Fig.IV.1.5.

Similarly to the observation made for the influence of the coordination number, the effective elastic
properties decrease with the size of the throats and reach a converged value at a size ratio of throat
Sth ≈ 0.4. In turn, the effect of the pore throat is more significant for microstructures with spherical
inclusions while it reduces with the elongated inclusions. Surprisingly, the effective bulk and shear
moduli obtained for different pore throat radius and the same aspect ratio of pores ω = 0.4 do not
vary much.
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a) b) c)

Figure IV.1.4 – Realizations of porous network microstructures of a unit volume L3 with a total porosity
c = 15% consisting of N = 150 randomly distributed spherical pores of different sizes. The connectivity
parameters of each realization are chosen such that the coordination number Nth = 3 and the throat size
ratio is taken (a) Sth = 0.2, (b) Sth = 0.3 (c) Sth = 0.5.
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Figure IV.1.5 – Influence of the throat size of the porous networks generated with different aspects on
effective properties normalized by the matrix properties for the three selected aspect ratios of interest (a)the
bulk modulus κ̃/κm and (b)the shear modulus µ̃/µm as a function of the coordination number Ncon.

IV.1.2.c Influence of the connectivity for different porosities

The evolution of the effective properties of porous network microstructures with Ncon = 3 and
Sth = 0.6 as a function of the aspect ratios ω of the ellipsoidal inclusions for c ∈ {15%, 25%} are
displayed in Figure IV.1.6 along with the RSA isolated pore microstructures and the associated
thresholded GRF microstructures. For all aspect ratios of pores and porosities, the connectivity
softens the effective elastic properties but the influence is more important for spherical inclusions as
the channels create regions with higher stress field which involve more heterogeneous local elastic
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fields. In Fig.IV.1.6 a-b) corresponding to the porosity c = 15%, the effective shear moduli of all
connected porous microstructures with aspect ratios 0.4 ≤ ω ≤ 1 seem to converge to the same value
corresponding to the RSA microstructures with ellipsoidal shape of ω = 0.4, which is also the same
for the thresholded GRF microstructure of the same volume fraction. Similar results are found for the
effective bulk moduli for which small differences exist between the porous network microstructures
for different aspect ratios but correspond to a slightly higher aspect ratio than the shear moduli. In
Fig.IV.1.6 c-d) which displays the results for c = 25% and aspect ratios of pores 0.4 ≤ ω ≤ 1, the
induced connectivity in the porous network microstructures still softens the effective behavior of the
material but remains larger than the values obtained with the thresholded GRF.
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Figure IV.1.6 – (a) Evolution of the effective Bulk modulus κ̃ obtained for the three types of microstructures
(Isolated inclusion RSA, Thresholded GRF, Porous network microstructure) as a function of the aspect ratio
of the inclusions for total porosity c = 15%. (b)Evolution of the effective Shear modulus µ̃ obtained for the
three types of microstructures (Isolated inclusion RSA, Thresholded GRF, Porous network microstructure) as
a function of the aspect ratio of the inclusions for total porosity c = 15%. (c) Similar to Figure (a) for total
porosity c = 25%. (d) Similar to Figure (b) for total porosity c = 25%.
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IV.2 Statistical analysis of microstructures

The objective of this section is to analyze the porous space of the different microstructures that
have been presented in order to find parameters influencing the effective elastic properties. To that
aim, we first extract the second-order correlation function of the porous network microstructures and
compare them with those obtained for microstructures with isolated pores and their associated GRF.
Next, the chord-length distribution of both porous and matrix phase is implemented in order to
evaluate their ability to distinguish between microstructures with different effective elastic properties.
The differences between the two-point correlation function and the chord-length distribution functions
of the three types of microstructures are uncorrelated with the differences obtained in the effective
elastic properties. Such observation highlights the fact that these partial statistical descriptors of
the microstructure miss important geometrical features of the porous phase, which highly influence
the elastic properties. In order to understand the link between the local information on the porous
phase of microstructure and the elastic response, we investigate the possible connection between the
Euclidean distance map of the matrix phase and the distribution of the fluctuation of the strain
elastic field for each distance.

IV.2.1 Comparison of the two-point correlation functions of the three types of
microstructures

In connection with the results of the observations in Sec.III.3.4, the correlation function of
porous network microstructures presented in Sec.IV.1.2.c are shown in Fig.IV.2.1 along with the
correlation function of RSA microstructures and its associated thresholded GRF. The porous network
microstructures have the same c and descriptors of the ellipsoidal inclusions as the RSA isolated pore
microstructures due to their controlled generation parameters. In turn, both types of microstructures
share the same c with the thresholded GRFs as these latter are the reconstructed fields of the RSA
isolated pore microstructures. For the different aspect ratios ω ∈ {0.2, 0.4, 1} and the two porosities
investigated in this thesis c ∈ {15%, 25%}, the correlation functions S22(r) almost overlap and very
little difference is found in the initial slope and the correlation length of the microstructures. This
can be explained by the fact that the small volume fraction of cylinders added in the microstructures
do not considerably change the overall measure of the specific surface fraction and the characteristic
length of heterogeneities that can be captured by the correlation function. These observations assess
that adding connectivity of microstructures induces large changes in the macroscopic elastic properties
of the microstructures without impacting the second-order statistical descriptors. The shape of the
correlation function does not highlight the added cylindrical connections and are therefore insufficient
for destinguishing the internal geometry of a heterogeneous material.
In order to dig deeper onto the parameters that can influence the elastic properties of the porous
materials, we turn our attention to statistical descriptors that are more related to connectivity.
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IV.2.2 Stastistical descriptor of connectivity

Considering a random two-phase medium occupying a volume V ⊂ R3, a simple statistical
measure of great interest in the analysis of the microstructure is the so-called lineal-path L(i) which
correspond to the probability that a segment of size z oriented in direction n lies in the phase i
Torquato and Lu (1993). By definition, this function contains an overall information about linear
connectivity of the phase i and has characteristic values at the origin and for large values such that:

L(i)(0) = ci and lim
|z|→∞

L(i)(z) = 0 (5)

From this probability function, the chord-length distribution function Pi(z) can be derived. This
measure represents the probability density function of finding a chord of length |z| and oriented by
the unit vector n =

z
|z|

in the phase. A chord of phase i is defined as a line segment totally contained

in phase i and for which both ends lie at the interface between the two phases. By definition of a
probability density function, the Pi(|z|) = Pi(z) verifies that:∫ ∞

0
Pi(z)dz = 1 (6)

This quantity has been applied in the characterization of microstructures of different materials
in order to capture features of the internal geometry of heterogeneous materials such as the grain
sizes in polycrystals (Latypov et al., 2018) or the lung airspace dimensions in the biological tissues
(Oldmixon et al., 1994) or the analysis of the pore network of concrete (Brisard et al., 2019). For
more information on the chord-length distribution, the reader is referred to Serra (1983) and Zähle
(1988).

IV.2.2.a Application to the three types of generated microstructures

The chord-length distribution code has been applied to microstructures presented in sections
III.3 and IV.1 in order to compare the distribution of chords in microstructures that have the same
two-point correlation functions but important differences in their effective elastic properties. We
chose to analyze configurations related to the pore aspect ratios ω = {0.2, 0.4, 1} for volume fractions
c = {15%, 25%}. The measures were generated for both the porous and matrix phase based on 50
realizations of each configuration binarized in grids of size 2563. Figures IV.2.2 and IV.2.3 show the
probability density functions that correspond to all chords measured in the 50 realizations and their
associated frequencies.

On one hand, the chord-length distributions of the matrix phase for the three microstructures display
a distribution of chord lengths with small differences appearing at small lengths. The functions
measured for all volume fractions are quiet similar and do not display significant deviations between
the three types of microstructures neither for aspect ratio ω = 0.4 where the elastic results concord
nor for aspect ratios ω = 0.2 and ω = 1. where high differences of elastic properties were observed.
On the other hand, the chord-length distributions of the porous phase display interesting features
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about the internal geometry of microstructures. The plots related to the matrix-inclusion type of
microstructures display a pronounced peak for a characteristic length that is close to the characteristic
size of the inclusions. For spherical pores, this size correspond to the diameter of the smallest inclusions
while for the ellipsoidal inclusions, this correspond to the smallest characteristic length axis. After
this peak, the chord-length distribution of microstructures with spherical inclusions ω = 1. are
characterized by a sharp drop followed by a branch that decreases more gently, which acknowledges
for the polydispersity in size of inclusions. For the elongated inclusions, a smoother decrease in the
distribution is observed which is related to the polydispersity in size and orientation of the pores.
For the thresholded GRF microstructures, the chord-length distribution is more diffuse and erases
the dominant characteristic size observed in the case of RSA microstructures.
In order to compare the three types of microstructures, the deviation in the chord-length distribution
of the phase i between two types of microstructure is computed using the estimator proposed in the
work of Roberts (1997):

δCLDi =

√√√√∑
zl

|PM1
i (zl)− PM2

i (zl)|2

|PM1
i (zl)|2

(7)

whereM1 andM2 refer to the two types of microstructure compared and i denotes the phase (Matrix
or pores) on which chord-length distribution has been measured. Table IV.2.1 shows the result
of this estimator applied on microstructures with isolated pores and their associated thresholded
GRFs for the chord-length distributions of the matrix and the porous phases. Similarly, Table IV.2.3
corresponds to the result of this estimator on Isolated pore microstructures and the porous network
with the same pore aspect ratio and Table IV.2.2 gives the comparison between the thresholded
GRFs and the porous network.

Porous phase Matrix phase

c

ω
1. 0.4 0.2

15% 37.16 13.67 11.21
25% 32.07 10.24 10.17

c

ω
1. 0.4 0.2

15% 44.26 22.89 17.92
25% 28.79 12.81 15.39

Table IV.2.1 – The deviation between the chord length distribution obtained for RSA microstruc-
tures and their reconstructed second-order thresholded GRF. (Left) shows the deviation δCLDi (%)
measured for the porous phase for different aspect ratio of pores in RSA microstructures and for
porosity c = 15% and 25%. (Right) shows the deviation δCLDm (%) measured for the matrix phase
for different aspect ratio of pores in RSA microstructures and for porosity c = 15% and 25%.

From these tables, it can be noted that the smallest differences are observed for microstructures
corresponding to ω = 0.4. In turn, the deviations in the chord-length distribution for aspect ratios
ω = 0.2 and ω = 1. are in opposition with the deviation observed on the elastic properties as the
differences in the effective properties of spherical inclusions are smaller than those observed for
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Porous phase Matrix phase

c

ω
1. 0.4 0.2

15% 35.55 16.06 14.98
25% 29.89 7.56 8.44

c

ω
1. 0.4 0.2

15% 44.41 13.35 18.98
25% 18.19 10.06 13.68

Table IV.2.2 – The deviation in the chord length distribution obtained for porous network microstruc-
tures and their reconstructed second-order thresholded GRF. (Left) shows the deviation δCLDi (%)
measured for the porous phase for different aspect ratio of pores in RSA microstructures and for
porosity c = 15% and 25%. (Right) shows the deviation δCLDm (%) measured for the matrix phase
for different aspect ratio of pores in RSA microstructures and for porosity c = 15% and 25%.

Porous phase Matrix phase

c

ω
1. 0.4 0.2

15% 25.41 14.18 9.40
25% 17.17 8.67 7.02

c

ω
1. 0.4 0.2

15% 38.29 21.88 16.05
25% 18.01 13.50 17.37

Table IV.2.3 – The deviation in the chord length distribution obtained for RSA microstructures and
porous network with similar total porosity and aspect ratio of pores. (Left) shows the deviation
δCLDi (%) measured for the porous phase for different aspect ratio of pores in RSA microstructures
and for porosity c = 15% and 25%. (Right) shows the deviation δCLDm (%) measured for the matrix
phase for different aspect ratio of pores in RSA microstructures and for porosity c = 15% and 25%.

ellipsoidal inclusions while the deviation in the chord-length distribution of spherical inclusions is
more important than ω = 0.2. Previous studies (Roberts, 1997; Levitz, 1998) have observed that
microstructures having small differences in the chord-length had similar effective properties. The
observations of this work show, on the contrary, that microstructures having different chord-length
distributions ( such as Thresholded GRF and porous network) can have similar effective properties
and inversely microstructures with small differences in the chord-length distributions (such as RSA
microstructures and porous network) can have large differences in the effective properties.

IV.2.3 Statistical analysis of the effect of the local morphology on the elastic
strain field

In order to analyze the link between the local morphology of microstructures and the effective
elastic properties, we use the Euclidean distance transform. This morphological measure contains
information about the distribution of the pore space around a given point of the matrix phase and
can only be applied to binary image. The output of such measure on a binary image is a graylevel
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map representing, for each voxel, the distance to the closest interface.
The choice of the Euclidean norm is related to the fact that this metric is isotropic in the sense that
the measured distance does not favour a particular direction around the point of measure.
In this study, the Euclidean distance map is obtained using the corresponding function in scipy. This
measure is computed by finding the coordinate of the closest background point at each direction of
the Cartesian system and then performing a L2 norm distance between the point x and the point
corresponding of bi at each direction and then normalized by the characteristic size of the cubic cell
L such that it is dimensionless:

D||.||2(x) =
1

L

√√√√ 3∑
i=1

(xi − bi)2 (8)

where b = (bi)i∈1..3 is the boundary point with the smallest Euclidean distance along principal
directions.
Figure IV.2.4 shows 2D slices of the three different types of microstructures associated to the aspect
ratio ω = 1 and the porosity c = 15% with the corresponding Euclidean distance map. Contrary
to the indicator function representation of the microstructure which considers all matrix points
as similar, the Euclidean map displays a gradient of values in the matrix phase and reflects on
the 3D morphology of the porous phase. It can be already observed from the 2D slices that the
range of distances measured in the thresholded GRFs is smaller than those obtained from porous
networks and microstructures with isolated inclusions. Similar observations can be done from Figure
IV.2.5 which displays the 2D slices and correponding Euclidean distance map for RSA isolated pore
microstructures with different aspect ratios of pores ω = {0.2, 0.4, 1}.
In turn, Figure IV.2.6 shows the probability density function of the Euclidean distance map for the
three types of microstructures generated with different aspect ratio of inclusions ω = {0.2, 0.4, 1}.
These probability density functions are obtained from the histograms of the Euclidean distance map
measured on four realizations of each configuration meshed on grids of size 2563. These histograms
highlight the differences in the measures obtained from thresholded GRFs and the two other types of
microstructures as observed from the 2D slices. On the other hand, the porous networks and the
isolated pores microstructures have similar probability density functions with those of the porous
networks having lower values at small and middle range of Euclidean distances than the one of
isolated pores.

IV.2.3.a Application to the three types of generated microstructures

To analyze the effect of the local distribution of the porous phase inside microstructures presented
in this thesis, namely the RSA microstructures with isolated pores, the associated thresholded GRFs
and the porous networks, components of the elastic strain field measured at each value found in the
Euclidean distance map are recorded. For each Euclidean distance measured over four realizations
of the same random microstructure, the mean value and the standard deviation of the recorded
elastic strain field are computed in order to be compared for the different microstructures. The three
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types of microstructures studied in this thesis, namely the RSA microstructures with isolated pores,
the associated thresholded GRFs and the porous networks with similar pore aspect ratio than the
isolated pores microstructures, are analyzed for the porosity c = 15% and with different values of
the aspect ratio ω = {0.2, 0.4, 1}. In this section, we investigate the hydrostatic strain field Tr(ε)
defined by the trace of the local strain field obtained from the FFT computations of a hydrostatic
loading ε = (1, 1, 1, 0, 0, 0) and the shear strain field ε12 is obtained from the FFT simulations on
the same microstructures with a macroscopic strain loading imposed as ε = (0, 0, 0, 0, 0,

√
2). The

FFT computations are conducted on binary discretization of the microstructures on grids of size
2563 because the Euclidean distance transform can only be computed on binary images.

As shown in Figure IV.2.7, there is no apparent correlation between the mean value of the
hydrostatic and the shear strain component and the Euclidean distance. On one hand, the average
value of the hydrostatic strain component is dependent on the microstructure type and morphology of
inclusions embedded inside the heterogeneous microstructure. The evolution of the average hydrostatic
field as a function of the Euclidean distance is similar for the different aspect ratio of inclusions and
is almost constant except for short range distances where higher deviations are observed around
the inclusions for similar range of distance. The differences in the mean between the three types of
microstuctures are consistent with the differences in the effective bulk moduli. For microstructures
that have similar effective bulk moduli such as the thresholded GRF microstructures for different
associated aspect ratios ω or the three types of microstructures for ω = 0.4, the hydrostatistic strain
component has close values as a function of the Euclidean distance. In turn, the higher the differences
in the effective bulk moduli are the larger the deviation in the mean hydrostatic strain is, as it can
be observed from the comparison between isolated pore microstructures with ω = 0.2 and ω = 1.
On the other hand, as depicted in Fig.IV.2.7 -2), the shear component of the strain field ε12 has a
mean value close to null for all microstructures. Since the differences in the effective shear moduli
are not as significant as those observed for the effective bulk moduli, the first moment of the shear
strain field component is similar for all Euclidean distances and no distinction between the internal
geometry of the porous materials can be drawn from it.

Subsequently, we analyze the second-moment of the strain field components obtained from the
same realizations as the mean value. Figure IV.2.8 shows the evolution of the standard deviation of
both hydrostatic strain and shear strain components as a function of the Euclidean distance of the
point of interest. For both components, it can be observed that the standard deviation decreases
towards a constant value. The amplitude of the deviation around the porous phase, the rate of this
decrease and the value of the deviation at long-range Euclidean distances depend on the type of
microstructures and the aspect ratio of pores ω. These differences highlight the intensity of the
interactions around the heterogeneities specific to each configuration and enable to qualitatively link
between the elastic field and the morphology of pore space such that:

- At short-range distances, the amplitude of the standard deviation is related to the local
morphology of the pores. For isolated pores microstructures (red curves), the more the pores
have a spherical shape, the lower the intensity of the field around the pore is. This observation is
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valid for both the hydrostatic and the shear components of the local strain field and the effective
elastic moduli is more reduced when the fluctuations around the pore are low. The standard
deviation measured at short Euclidean distance in the connected networks with ellipsoidal pores
has trends similar to the isolated pores but higher amplitude due to the cylindrical connexions.
In turn, all thresholded GRF microstructures depict similar amplitude of the deviation of
the strain field components around the porous phase which assesses that the morphology of
the porous phase in these microstructures are similar in view of the elastic field it generates
around it. Small differences are observed in the amplitude of the deviation for the shear strain
component but are less significant than those observed for RSA microstructures and may be
assigned to the differences in the size of heterogeneities observed in the microstructure.

- At middle-range distances, the rate of decrease in the standard deviation of the strain components
highlights the polydispersity of the porous phase. For isolated pores, the rate is more important
for spherical pores as there is no dispersion in the orientation of the inclusions. On the contrary,
the more elongated the pores are, the more the rate of decrease is lower because the local
orientation of the inclusions has a larger impact. When additional cylindrical channels are
added between the pores to connect the porous phase, the changes in the rate depend on
the aspect ratio of the ellispoidal pores. For highly elongated pores ω = 0.2, the rate is
unchanged when the amplitude is higher for all Euclidean distances. For ω = 0.4 and ω = 1,
the standard deviation decreases faster with the increase of the Euclidean distance. Concerning
the thresholded GRFs, the rate of decrease appears to be the same for all microstructures, as
the complex morphology of the porous phase does not depict any preferential local orientation
of the pores.

- At long-range distances, the deviation is characterized by a constant value corresponding to
fluctuations of the elastic strain field at points lying relatively far from the pores. Similarly
to short-range distances, the order of these constant values for the different microstructure
correpond to the order of the effective elastic properties such that for the same aspect ratio ω,
the higher this value is, the lower the effective properties are, which is particularly the case
for microstructures containing elongated pores (ω = 0.2 as depicted by Fig.IV.2.8 a-c and
Fig.IV.2.8 a-c).

The qualitative differences obtained in the evolution of the second-moment of the local strain field
components as a function of the Euclidean distance shows the importance of the local information of
the microstructure on the local elastic fields and subsequently on the effective elastic moduli. The
distribution of the porous phase in periodic microstructures acts on the amplitude of the strain field
around the pore and at long-range distances. This is mostly driven by the morphology of the pores.
In turn, the distribution of porous space changes the rate of decrease of the amplitude of the strain
field in middle-range distances from the pores and this can be related to the local orientations of
the pores. These features of the internal geometry of the porous space are not clearly distinguished
by neither the two-point correlation function nor the chord-length distribution. In turn, Figures
IV.2.9,IV.2.10 and IV.2.11 show the histograms of the fluctuation of the hydrostatic and shear
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components of the strain field taken at different Euclidean distances for the aspect ratios of pores
ω = 0.2, 0.4 and 1. It can be observed that for each microstructure configuration, the shear strain
component histograms have a probability distribution function which is symmetric around the mean
m ≈ 0 and the range of values obtained depends on the Euclidean distance. On the other hand, the
probability distribution function of the hydrostastic strain component at different Euclidean distances
has a more complex shape which is non symmetric around the mean value. Clear differences in the
probability distribution functions are observed between the three types of microstructures at every
Euclidean distance. The thresholded GRFs microstructures have a probability density function that
is close to a Gaussian distribution for the three Euclidean distances of interest while the distribution
of the porous networks and microstructures with isolated pores are non symmetric around the mean
for short and middle-range distances, especially for ω = 0.2 and 0.4. This may be related to the
aspect ratio of pores and the relative distribution of the different sizes of pores.
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Figure IV.2.1 – (1) Comparison between the correlation functions of the three types of random porous
microstructures generated in this thesis with porosity c = 15% and different aspect ratios of the ellipsoidal
pores used as input parameter in the RSA algorithms (a) ω = 0.2, (b) ω = 0.4 (c) ω = 1.

(2) Comparison between the correlation functions of the three types of random porous microstructures
generated in this thesis with porosity c = 25% and different aspect ratios of the ellipsoidal pores used as input
parameter in the RSA algorithms (a) ω = 0.2, (b) ω = 0.4 (c) ω = 1.
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Figure IV.2.2 – (1) Comparison between the chord-length distributions of the matrix phase computed on
the three types of random porous microstructures generated in this thesis with porosity c = 15% and different
aspect ratios of the ellipsoidal pores used as input parameter in the RSA algorithms (a) ω = 0.2, (b) ω = 0.4

(c) ω = 1..
(2) Comparison between the chord-length distributions of the porous phase computed on the three types of
random porous microstructures generated in this thesis with porosity c = 15% and different aspect ratios of
the ellipsoidal pores used as input parameter in the RSA algorithms (a) ω = 0.2, (b) ω = 0.4 (c) ω = 1.
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Figure IV.2.3 – ((1) Comparison between the chord-length distributions of the matrix phase computed on
the three types of random porous microstructures generated in this thesis with porosity c = 25% and different
aspect ratios of the ellipsoidal pores used as input parameter in the RSA algorithms (a) ω = 0.2, (b) ω = 0.4

(c) ω = 1..
(2) Comparison between the chord-length distributions of the porous phase computed on the three types of
random porous microstructures generated in this thesis with porosity c = 25% and different aspect ratios of
the ellipsoidal pores used as input parameter in the RSA algorithms (a) ω = 0.2, (b) ω = 0.4 (c) ω = 1.
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Figure IV.2.4 – (TOP) 2D slice of RVE realizations for different types of microstructures generated based
on similar statistical descriptors with ω = 1 and c = 15%: (a) Isolated inclusion microstructure (RSA) (b)
Thresholded GRF microstructures obtained using second-order information from RSA microstructures with
ω = 1 and c = 15% (c) Porous network microstructure with total porosity of c = 15% consisting of ci = 13%

of spherical pores ω = 1 and characteristic parameters of connecting channels Sth = 0.3 and Ncon = 2.
(BOTTOM) The corresponding 2D slice of the Euclidean distance map of the RVE realizations (d) isolated
inclusion microstructure (RSA) (e) Thresholded GRF microstructure and (f) Porous network microstructure.
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Figure IV.2.5 – (TOP) 2D slice of RVE realizations of RSA microstructures with isolated polydisperse
inclusions for a total porosity of c = 15% (a) ω = 1 (b) ω = 0.4 and (c) ω = 0.2.
(BOTTOM) The corresponding 2D slice of the Euclidean distance map of the RVE realizations for (d) ω = 1

(d) ω = 0.4 (d) ω = 0.2.
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Figure IV.2.6 – The probability density function of the Euclidean distance map for the three types of
microstructures, namely the isolated inclusions RSA microstructures, the associated thresholded GRF and the
porous network microstructure, generated based on the similar statistical descriptors of the porous phase with
porosity c = 15% (a) aspect ratio of the inclusions ω = 1 (b) aspect ratio of the inclusions ω = 0.4 (c) aspect
ratio of the inclusions ω = 0.2.
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Figure IV.2.7 – (1) Evolution of the average value of the fluctuating part of the hydrostatic strain component
as a function of the Euclidean distance for the three types of microstructures investigated in this thesis with
porosity c = 15%. The microstructures have been generated based on similar statistical descriptors of the
porous phase for RSA microstructures with (a) aspect ratio of the inclusions ω = 1 (b) aspect ratio of the
inclusions ω = 0.4 (c) aspect ratio of the inclusions ω = 0.2.
(2) Evolution of the average value of the fluctuating part of the shear strain component as a function of the
Euclidean distance for the three types of microstructures investigated in this thesis with porosity c = 15%.
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Figure IV.2.8 – (1) Evolution of the standard deviation of the fluctuating part of the hydrostatic strain
component as a function of the Euclidean distance, for the three types of microstructures presented in thesis,
with porosity c = 15%. The microstructures have been generated based on similar statistical descriptors of
the porous phase for RSA microstructures with (a) aspect ratio of the inclusions ω = 1 (b) aspect ratio of the
inclusions ω = 0.4 (c) aspect ratio of the inclusions ω = 0.2.
(2) Evolution of the standard deviation of the fluctuating part of the shear strain component as a function of
the Euclidean distance for the same unit cell microstructures.
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Figure IV.2.9 – (1) Histograms of the fluctuating part of the hydrostatic strain component for points lying at
Euclidean distance D||.||2 = 4× 10−3 (which corresponds to the boundary of the pore). These histograms are
obtained on the three types of microstructures presented in thesis, with porosity c = 15%. The microstructures
have been generated based on similar statistical descriptors of the porous phase for RSA microstructures
with (a) aspect ratio of the inclusions ω = 1 (b) aspect ratio of the inclusions ω = 0.4 (c) aspect ratio of the
inclusions ω = 0.2. (2)Histograms of the fluctuating part of the shear strain component for points lying at
Euclidean distance D||.||2 = 4× 10−3, for the same microstructures.
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Figure IV.2.10 – (1) Histograms of the fluctuating part of the hydrostatic strain component for points
lying at Euclidean distance D||.||2 = 1.2 × 10−2 (which corresponds to the boundary of the pore). These
histograms are obtained on the three types of microstructures presented in thesis, with porosity c = 15%.
The microstructures have been generated based on similar statistical descriptors of the porous phase for RSA
microstructures with (a) aspect ratio of the inclusions ω = 1 (b) aspect ratio of the inclusions ω = 0.4 (c)
aspect ratio of the inclusions ω = 0.2. (2)Histograms of the fluctuating part of the shear strain component for
points lying at Euclidean distance D||.||2 = 4× 10−3, for the same microstructures.
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Figure IV.2.11 – (1) Histograms of the fluctuating part of the hydrostatic strain component for points
lying at Euclidean distance D||.||2 = 4. × 10−2 (which corresponds to the boundary of the pore). These
histograms are obtained on the three types of microstructures presented in thesis, with porosity c = 15%.
The microstructures have been generated based on similar statistical descriptors of the porous phase for RSA
microstructures with (a) aspect ratio of the inclusions ω = 1 (b) aspect ratio of the inclusions ω = 0.4 (c)
aspect ratio of the inclusions ω = 0.2. (2)Histograms of the fluctuating part of the shear strain component for
points lying at Euclidean distance D||.||2 = 4× 10−3, for the same microstructures.



IV.3 – Concluding remarks 115

IV.3 Concluding remarks

In this study, the effective elastic fields of random porous microstructures consisting of non-
overlapping ellipsoidal inclusions connected by cylindrical channels have been investigated for a total
volume fraction of c = 15% and c = 25%. The microstructures are generated using RSA algorithms
presented in Sec.II.1.2.a with different aspect ratios ω of the inclusions in order to study the combined
effect of the connectivity with the shape of the pores.
The chapter presents the parametric numerical study used to investigate the influence of connectivity
parameters of the periodic porous networks on the effective elastic properties of these microstructures.
This work starts from the extension of the RSA generation algorithm to account for cylindrical
connexions between the ellipsoidal pores for which the throat radius and the average number of
channels to generate for each can be triggered. Following the generation of the microstructures, an
FFT numerical study has been implemented using PBC to compute the effective elastic properties of
each microstructures. The results have shown a significant decrease of the effective bulk and shear
moduli of the porous network microstructures in comparison with the RSA microstructures of similar
volume fraction, especially for spherical inclusions for which small additional connectivity drops the
effective results away from the Hashin-Shtrikman bound.
Subsequently, the chapter analyzes the low-order stastistical descriptors of the three type of mi-
crostructures generated during this work, i.e. the isolated inclusions RSA microstructure, the
reconstructed thresholded GRF and the porous network with similar morphological parameters of
pores. The two-point correlation function of these microstructures are almost indistinguishable
assessing that this measure is unable to distinguish connectivity of microstructures precisely, which
following the elastic computations result in significant changes in the effective bulk and shear moduli.
In turn, the chord-length distribution analyzis of the porous and matrix phase shows large differences,
which can reach up to 50% following the definition of the mean square deviation, between the RSA
microstructures and the reconstructed thresholded GRFs. However, the differences found by this
measure, which is often chosen to distinguish the statistical models, are not in line with the deviations
in the effective elastic properties of materials. The largest deviation in the effective properties are
found for highly elongated inclusions ω = 0.2 while the differences in the chord-length distribution
for such microstructures are of the same order as those corresponding to aspect ratio ω = 0.4 for
which RSA model and GRFs microstructures have almost the same effective properties.
In the second part of this work, we proposed a new measure to analyze the link between the elastic
properties and the internal microstructure description. This measure is based on measuring the
Euclidean distance of each point in the matrix phase of a microstructure and relating it to the local
fluctuations of the strain field components. We applied this procedure on both shear and bulk strain
components and found qualitative correlation between the evolution of the first and second moment
of the fluctuations and the effective elastic properties of the material. Therefore, an important result
out of this part is that the local elastic fields of heterogeneous materials are highly sensitive to local
elongated heterogeneities (e.g. connections or isolated inclusions) which are not accurately measured
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by the popular low-order statistical measures. These features, though not statistically important,
have a significant effect on the mechanical fields of the material that spreads beyond their local position.



APPENDIX

IV.A Implementation of chord-length distribution in 3D microstruc-
tures:

In order to compute lineal-path function and chord-length distribution from discretized two-phase
microstructures, the procedure developed by Coker and Torquato (1995) for 2D digitized samples is
extended to 3D microstructures. The algorithm for the determination of the lineal-path is based on
an iterative procedure of randomly throwing oriented lines and can be described by the following
steps:

• Input parameters: The random lines are described by their unit directional vector t defined
by the angles θ ∈ [−π/2, π/2] and φ ∈ [0, 2π] such that:

t = [cos(θ) cos(φ), cos(θ) sin(φ), sin(θ)] (9)

Other input parameters are the phase i in which the chords are measured and the number of
iteration of random lines thrown to generate the probability function.

• Iterative procedure: For the number of iterations chosen by the user, the procedure repeats
the following:

- step 1: Create a random line oriented by its directional vector t by generating a random
point A = [a1, a2, a3] from which the line goes. A point x on this line is thus defined by
its parameteric equation:

x = a1 + αt1 (10)

y = a2 + αt2 (11)

z = a3 + αt3 (12)

α ∈ R (13)

In order to apply the following description on a discretized grid Gα of cubic size N3, the
line is formulated as three N-uplets xα,yα, zα corresponding to the position of the voxels
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of the grid that are crossed by the line. The positions of the voxels are found by writing
the parameteric equation in a discrete way such that :

α =
(xα − a1)

t1
(14)

yα = ba2 + αt2c (15)

zα = ba3 + αt3c (16)

xα ∈ {0, ..., N − 1} (17)

where bxc denotes the integer part of a number x. The following description is valid only
when t1 6= 0, otherwise the positions are found using yα ∈ {0, ..., N − 1} if t1 = 0 and
t2 6= 0, or zα ∈ {0, ..., N − 1} if t1 = 0 and t2 = 0.
For periodic microstructures, in order to make optimal use of the line drawn in the
microstructure, To change: the final positions that are checked are the [xα, yα, zα]

moduli the grid size N .

- step 2: Choose a random location on the N-uplets by picking a random number β in
1, ..., N − 1. If this point is in the phase i, i.e. the value of voxel at position [xβ, yβ, zβ]

corresponds to the value associated to phase i, the procedure goes to step 3, otherwise a
new number is picked.

- step 3: The algorithm moves along the list of voxels until it reaches another phase than i.
The number of voxel that have been crossed, noted nv, corresponds to a line length lv:

lv =
nv
t1

( if t1 6= 0) (18)

lv =
nv
t2

( if t1 = 0, t2 6= 0) (19)

lv =
nv
t2

( if t1 = 0, t2 = 0, t3 6= 0) (20)

- step 4: The algorithm increments the counter associated with lengths of line below lv.

- step 5: The procedure of generating random numbers on the same oriented line is repeated
multiple times.

• Output of the algorithm: After repeating these steps for the number of iterations defined
by the user, the probability function Li(z) = Li(zt) is obtained by computing the frequency
associated to the counter of each line segment such that:

Li(zt) =
Counter associated to z

Total number of random location drawn
(21)

The implementation of the chord-length distribution function on 3D discretized and periodic mi-
crostructures follow a similar procedure than the lineal-path:
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• Input parameters: The angles θ and φ defining the orientation of the random lines, the
phase i value in the mesh and the number of iteration of random lines are input.

• Iterative procedure: The iterative procedure repeated by the algorithm consists of:

- step 1: Creating a random line oriented by its directional vector t by generating a random
point A = [a1, a2, a3] from which the line goes and then creating the positions of the voxels
in order to move along this line.
Hereafter, the procedure of implementation lineal-path distribution and chord-length
distribution start differing:

- step 2: Starting from the initial point A = [x0, y0, z0], move along the line until encoun-
tering the desired phase. The chord length is initiated at this position by the number of
voxels nv = 1.

- step 3: The algorithm keeps browsing the line forward and incrementing the number of
voxels while phase i is still encountered. When another phase is found, the chord length lv
is found using the relation IV.A with the number of voxels nv. The chord length is added
to list of measured chords length and the number of voxels is reset to 0.

- step 4: The process is repeated while continuing to move along the line and recording the
measured chord lengths.
It should be noticed at this point that a bias in the measured chord can be introduced if
recording segments that start or end at the border of the grid. Because of the bounded
volume representing a periodic microstructure, these segments do not necessarely represent
chord but only segment of it. In order to avoid that, a possible solution way is either to
not record the boundary segments in the list of measured chord or to use periodicity of the
microstructure to extend the measurement process on the line until it corresponds to an
actual chord. In our algorithm, we choose to disregard boundary voxels on the recorded
chords.

• Outcome of the algorithm: Once all iterations on random lines are done, the histogram of
recorded chord lengths and frequency of appearance is outputted.
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CHAPTER V

CLOSURE

In the first part of this thesis, existing homogenization results inspired the design of isotropic
porous materials with nearly optimal effective elastic properties. Previous studies focused on using
ordered lattice networks and 2D bio-inspired materials to obtain low-density materials with good
elastic properties but usually the obtained results led to a loss in the stiffness of the material as a
price to pay for isotropy or the other way around. In our work, we proposed to generate random
porous materials consisting of single-size (monodisperse) and multiple-size (polydisperse) spherical
inclusions in order to reach relatively high volume fractions with microstructures having morphological
features similar to the coated sphere assemblage proposed by Hashin (1962) in an effort to reach the
optimal isotropic bound of Hashin and Shtrikman (1963b). A combined numerical and experimental
methodology has been proposed with the aim of developing computer-assisted tools that allow
complex microstructures to be 3D printed and investigated. With this regard, rapid prototyping
offers a promising technique for producing materials with controlled size, distribution and geometry
of constituents and has so far been developed to study the mechanical and transport properties of
periodic prototyped foams and controlled scaffolds. Here, we have exploited this technique to study
random porous materials, and more specifically, to obtain their effective mechanical elastic properties.
The proposed methodology can be summarized with the following steps:

— Periodic porous multiscale microstructures with controlled porosity consisting of non-overlapping
spherical inclusions have been generated by means of a Random Sequential Addition process
(RSA) that has been adapted to automatically generate high volume fractions.

— The representative volume elements (RVEs) of a porous material are generated using the
converged effective properties are then calculated numerically by using both kinematic uniform
(KU) and periodic boundary conditions (PBC).

— The relative size of the RVE, the voids and the specimen itself has been properly decided in order
to satisfy the various technical constraints such as the minimum possible accuracy provided by
the 3D-printer, as well as the maximum specimen dimension allowed by the experimental setup
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and the extensometers. Thus, the representative RVEs were assembled to form a dog-bone
specimen conforming to the standards for tensile tests on polymer materials.

— In order to experimentally measure the elastic properties of the 3D printed polymeric mi-
crostructures, we proposed a multi-step relaxation procedure that measures properly the linear
elastic fields with the viscous one completely relaxed off. This procedure has been used to
characterize the elastic properties of the matrix material (VeroWhite) and to assess the isotropy
of the printing process. In turn, the elastic properties of the support material used for printing
the closed porosity have been determined using experimental tensile tests on homogeneous
samples. The negligible effect of the support material on the effective elastic properties of the
porous material has been shown experimentally and numerically.

— The effective bulk and shear moduli of random porous samples for porosity in the range of
0 ≤ c ≤ 82% have been experimentally measured. The comparison between the effective
isotropic properties obtained from experiments, finite element (FE) computations and the upper
Hashin-Shtrikman bounds showed that these microstructures are nearly optimal and reach
experimentally unprecedented values of the effective properties for a wide range of porosity.

An important result of the work presented in this part is that RSA microstructures consisting
of spherical voids, for monodisperse moderate porosities (up to 30%) and polydisperse in size high
porosities (up to 82%), provide effective elastic moduli that lie very close to the optimal isotropic
Hashin-Shtrikman bounds. The differences between FE simulations, experimental results and Hashin-
Shtrikman bounds were analyzed using the local strain fields obtained by numerical computations.
The observations confirm that the small deviation between the experiments and the theoretical
bounds is related to the strain localization near the thinnest ligaments. Even more interestingly,
this deviation is found to be higher at moderate porosity whereas the elastic fields become more
uniform at low, i.e. c ≤ 30% and high c ≥ 70% porosities. Furthermore, the normalized effective
Young’s modulus of the presented random microstructures exhibits the stiffest value when compared
with experimentally available results on isotropic foams and lattices or trusses. Thus, the proposed
microstructures are promising candidates for lightweight highly-stiff materials provided of course
that 3D printing technology improves in such a way that no support material is needed in the zones
of closed-porosity.

This first part of the thesis shows that the optimal effective elastic moduli of isotropic materials are
almost attained by the isolated spherical pores with single-sized and polydisperse in size microstructure
for a large range of porosities. However, in some cases, one may like to be able to design microstructures
with controlled effective properties that are softer than the ones with spheres and span a large range
of moduli. In this regard, large number of studies have shown that microstructures with a random
distribution of ellipsoidal inclusions can achieve a large range of effective elastic properties while still
being isotropic. The question is therefore, which parameters and more generally statistical descriptors
of the microstroctures are significantly influencing the elastic properties of material.

In view of this question, the second part of this thesis focused on the understanding of the
link between the statistical description of random isotropic microstructures and the effective elastic
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properties of random porous materials. Such a study provided a critical assessment of the influence
of several statistical descriptors of the microstructures such as the one and two-point correlation
functions, the chord length distribution and the connectivity on the effective elastic properties. To
that aim, we first proposed a quantitative investigation of the two-point correlation function using
a reconstruction procedure which consists in applying a level-cut process on Gaussian Random
Fields (GRFs). This procedure accounts for the porosity and the correlation function extracted
from 3D two-phase materials and has been applied to RVEs of porous microstructures consisting of
isolated ellipsoidal pores. On one hand, the evolution of the isotropic elastic properties computed
from the RSA microstructures with isolated ellipsoidal pores has shown that the local information
about the shape of the pores has a large impact on the effective elastic properties even for isotropic
microstructures. This influence on the bulk and shear moduli is well captured by the Willis estimates
(Willis, 1977; Gatt et al., 2005) for isotropic microstructures with ellipsoidal inclusions that are not
highly elongated ( 0.2 ≤ ω ≤ 1)). On the other hand, the second-order modeling procedure based on
level-cut GRF as explained in Sec.III.2.2, provides a very accurate reconstruction of the the first and
second-order statistics of the reference RSA non-overlapping pores but the corresponding effective
elastic moduli can be as low as half of that of the RSA. This is directly related to the fact that
the process which generates the two-phase microstructures, i.e. the GRF and the RSA ones in this
study, induces very different local geometrical features in each case. Evidently, these more complex
geometrical features (such as ellipsoidal or non-canonical connected shapes) are not detected by the
correlation function in a sufficient manner to yield accurate prediction of the corresponding effective
elastic properties of these two types of porous materials.

In order to go deeper in the understanding of the observed differences between the non-overlapping
RSA and thresholded GRF microstructures, we have introduced a third type of microstructure. The
latter consists in adding cylindrical with circular cross-section porous channels to connect the
ellipsoidal pores generated by the RSA algorithm. The connectivity of the original ellipsoidal voids
can be fully controlled by assigning a number of connected ellipsoidal voids and a maximum distance
at which this connectivity is applied. The FFT-based computations of the elasticity problem in
these microstructures have shown that a relatively small number of connected regions in the closest
neighborhood of a given ellipsoidal void can lead to a significant drop of the effective elastic properties
as compared to the original non-overlapping RSA microstructure and for the exact same overall
porosity. In turn, the two-point correlation function is completely insensitive to that connectivity
thus implying the insufficiency of this statistical descriptor in this context.

In an attempt to identify a more relevant statistical descriptor that allows for the discrimination
between these three microstructures, we proposed to compute the chord-length distribution of
the matrix and the porous phase. The two-by-two comparison between the corresponding chord-
length distributions showed that the deviations in this measure do not directly correlate to the
deviations in the effective properties. Microstructures having similar effective properties such as
the thresholded GRFs and the porous network with spherical pores have large deviation in the
chord-length distributions of both the matrix and the porous phase. By contrast, microstructures
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having smaller deviations in the chord-length distribution of the porous and the matrix phases, such
as the RSA connected and the RSA non-overlapping porous microstructures with spherical pores,
exhibit significant differences in the effective elastic properties. Therefore, in the present study, the
chord-length distribution seems insufficient to link the statistics with the resulting effective elastic
properties of the proposed microstructures.

In order to link the microstructure of the porous materials and the elastic fields, we proposed to
analyze the correlation between a geometrical measure and a mechanical one. In this thesis, we chose
to relate the Euclidean distance of the solid matrix phase to the fluctuating part of the hydrostatic
and shear strain components. The values of the standard deviation of the fluctuating part of both
the hydrostatic and shear strain components taken at a given Euclidean distance depict trends which
can be linked to the local features of the different microstructures and their effective properties. At
distances close to the interface, the amplitude of the standard deviation is higher for microstructures
with elongated or connected pores and thus, more compliant effective properties are obtained in those
cases. Similarly at longer distances, the higher the constant values of the strain field components
are the lower the effective elastic properties are. The standard deviations at middle-range distances
decrease with a rate that characterizes the local orientation of the pores in the microstructure. This
measure highlights some important local geometrical features of the microstructures, which have an
important impact on the effective elastic properties of the porous materials but unfortunately are
not a all captured by more partial statistical descriptors such as the two-point correlation and the
chord-length distribution functions. The extension of this work to the porous phase is left for future
work.

At this point, it is important to address some of the future directions associated with the results
presented in this thesis. In particular,future work related to the quest for new materials can be linked
to the advances in the additive manufacturing (AM) techniques. Firstly, as it has been mentioned
in Chapter II, the current AM processes are unable to print closed-cell porosity without the use of
a support material or remaining powder in the case of metallic AM. The current work dodges this
limitation using the mechanical contrast between the support material used in photopolymerization
processes and the matrix material to obtain porous-like materials with effective properties similar
to those obtained by the numerical computations using voids. However, this limits the fabrication
of material to polymeric processes which are known to have low elastic moduli in comparison with
metals or ceramics. A possible approach would be to use a porous network to connect internal
pores to the outer surface in order to extract the support material (or unmelted powder in case of
metallic processes) from the porous phase. However, adding a small fraction of cylindrical channels
in the porous space has been shown in Sec.IV.1 to significantly affect the effective properties of
microstructures with spherical pores. An optimization procedure over the choice of the coordination
number and the cylinders radius may be used in order to minimize the drop of the effective properties
due to connected porosity.

Secondly, using spherical polydisperse inclusions, 3D printed porous microstructures reached
effective elastic properties close to the optimal bound of Hashin and Shtrikman (1963b) but only up
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to the porosity c = 82%, due to the large range of sizes of pores needed to achieve higher porosities,
which cannot be printed by current 3D printers. Alternative approaches to explore in order to increase
the current porosity ranges would consist in generating Voronoi cells or, starting from a configuration
of spherical inclusions generated by the RSA algorithm, increasing the space occupied by a pore by
evolving its shape towards a rounded polygonal inclusion. The roundness of pores corners would
limit the stress concentration around them and enable to obtain relatively high isotropic stiffness
properties (Berger et al., 2017).

The great versatility of the RSA algorithm combined with the generic workflow for 3D printing
allows to extend the generation process to anisotropic microstructures. Those microstructures could
involve ellipsoidal voids randomly (or unidirectionally) dispersed in the RVE as it is the case of the
microstructures used in the chapter III. These material can also be used as test beds to a number
of experimental procedures involving dynamic and static measurements of elastic moduli via wave
dispersion and impact loads. Extension of the present study to the nonlinear regime (nonlinear elastic
and viscoelastic (Lopez-Pamies et al., 2013b; Brenner and Suquet, 2013) as well as elasto-plastic
(Mbiakop et al., 2015) is also straightforward given of course any limitations of the AM process itself.
Another perspective for the use of such microstructures is to use them as a structuring element in
order to optimize density and stiffness for more complex macrostructures (Allaire, 2012).

In turn, the question whether there is a simple or reduced geometrical description that is sufficient
to provide quantitative estimates for the elastic properties and beyond such as non-linear elasticity,
visco-elasticity and coupled problems, remains open. The results of this thesis have shown that this is
not the case with the two-point correlation function and the chord-length distribution, at least in the
context of the cases examined here. We have shown that two-point correlation functions coupled with
the construction methodology, e.g. RSA with non-overlapping spheres, ellipsoidal inclusions, GRF
with a simple threshold or RSA with connected porosity, can lead to very different effective elastic
estimates. One of the perspectives is to use this coupling between the process of construction and
the two-point correlation function in order to trigger the effective properties of the microstructures.
Using the effect of connectivity or the size of ligament, foams and cellular material can be created in
order to enhance their effective stiffness properties.

We have shown that the parameters for a porous network comprising ellipsoidal pores connected
with cylindrical channels can reach various effective properties following the shape of pores, the
number of connecting cylinders and their radii. A possible extension of this part might be to extract
from digital image analysis of real materials the quantitative distributions of the characteristics of
pores (size, shape and orientation) and those of the throats (number of connections per pore and
throat radius). From this information, one can build a porous network and compute the effective
elastic properties of the real image and the porous network model to assess if the approximation of
local morphology does not affect the effective elastic properties of the material. Also, more complex
models with control over some geometrical measures of the connectivity, such as the tortuosity map
of the porous network or the local clustering of the porous phase, can be generated to create standard
measures of the connectivity in the microstructure. Parametric study over these measures could lead
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to empirical models of the effect of connectivity in order to predict the effective elastic properties.
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Résumé : Dans le cadre de cette thèse, la combinai-
son de plusieurs outils numériques et expérimentaux a
permis la génération de différents modèles de microstruc-
tures aléatoires afin d’étudier l’influence des descripteurs
statistiques sur les propriétés élastiques effectives des
matériaux poreux. Dans la première partie de cette thèse,
nous avons développé une procédure qui associe impres-
sion 3D, caractérisation expérimentale et numérique ainsi
que les résultats théoriques sur les propriétés effectives de
matériaux poreux désordonnés. Cette méthodologie est ap-
pliquée à la fabrication de microstructures constituées de
pores sphériques, de taille unique ou avec une distribution
de plusieurs tailles dont les propriétés élastiques effectives
sont proches de la borne supérieure de Hashin-Shtrikman
pour les matériaux isotropes pour une large gamme de po-
rosité. Dans la seconde partie de cette thèse, on cherche à
évaluer l’influence de certains descripteurs statistiques de
la microstructure sur les propriétés élastiques macrosco-
piques pour les relier à l’espace poreux aléatoire et multi-
échelle dans les carbonates. Pour cela, nous évaluons la
pertinence des fonctions de corrélation à deux points et
nous proposons une manière d’évaluer l’influence de la

connectivité sur les propriétés élastiques en considérant
un réseau connecté de pores ellipsoı̈daux reliés par des
canaux cylindriques. Les résultats montrent que la fonc-
tion de corrélation et la fonction de distribution de cordes
ne permet pas de capturer l’effet de la connectivité et de
l’élancement des pores sur les modules élastiques effec-
tifs. Pour mieux comprendre l’influence de ces paramètres
de la microstructure sur les propriétés effectives, on pro-
pose une analyse du lien entre la géométrie locale dans
l’espace poreux et les champs élastiques du matériaux.
Cela consiste à étudier la distribution des fluctuations lo-
cales du champ de déformation par rapport à la distance
euclidienne séparant un point de la phase solide de l’inter-
face avec la phase poreuse. La moyenne et l’écart type des
fluctuations de la composante hydrostatique du champ de
déformation pour un chargement hydrostatique concordent
qualitativement avec les modules de compressibilité effec-
tives obtenus. Compte tenu de ces résultats, il semble que
les propriétés élastiques effectives des différentes micro-
structures étudiées sont fortement sensibles à l’information
géométrique locale contenus dans la forme des pores et
leur connectivité.
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Abstract : In this thesis, we combine numerical and ex-
perimental tools to generate models for internal geometry
of porous materials and to assess the effect of controlled
statistical descriptors of the microstructures on their effec-
tive elastic properties. The first part of this work is devo-
ted to a methodology that allows for the combination of
3D-printing, experimental testing, numerical and analytical
analysis of random porous materials with controlled homo-
genized elastic properties. We applied this methodology to
fabricate porous material containing single-sized (monodis-
perse) or polydisperse spherical voids that have been nu-
merically and experimentally found to reach effective elastic
properties that are close to the optimal Hashin-Shtrikman
upper bound for isotropic porous material.
In the second part of this thesis, the objective is to assess
the influence of some statistical descriptors of the micro-
structure on the effective elastic properties in order to link
them with the distribution of the porous space in the multi-
scale structure of carbonate rocks. To that aim, we investi-
gate the ability of the two-point correlation function to cha-
racterize the effective elastic properties of random porous
microstructures. Furthermore, we propose a porous net-
work model to capture the influence of connectivity on the
effective elastic properties. The effective elastic properties,
computed using a Fast Fourier Transform (FFT) based me-

thod, show that the correlation function and chord-length
distribution functions are insufficient to predict the effective
elastic properties of random porous materials as they do
not capture accurately the effect of the local shape of pores
and the degree of connectivity of the porous phase. These
latter are found to be important parameters on the effective
elastic properties as a small additional fraction of porosity
to connect pores lead to important decrease in the effective
properties.
Subsequently, we propose to analyze the link between the
local geometry of the porous space and the elastic fields
in the microstructure. We study, the distribution of the fluc-
tuating part of the strain field as a function of the Eucli-
dean distance between a point in the solid phase and the
interface of the two-phase material. The average value and
the standard deviation of the fluctuations in the hydrostatic
strain component are qualitatively consistent with the ef-
fective bulk modulus obtained in the microstructure. Simi-
lar observa- tions are found for the shear strain component
with the effective shear moduli. Following these results, it
appears that the effective elastic properties of the three
types of microstructures investigated are highly related to
the local information on the porous phase which defines
the shape and the connectivity of the pores.
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