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Abstract

Long term storage of episodic memories requires memory formation during awake
experience as well as memory consolidation, a process strengthening the memory
taking place during sleep. The rapid encoding of memory traces takes place in the
hippocampus during awake behaviour. In sleep, hippocampal memory traces are
‘replayed’ during sharp wave-ripples – brief (50-150 ms) high-frequency oscillatory
patterns of high synchronous activity. The synchronous bursting of hippocampal
neurons during ripples makes them a key player in systems memory consolidation
– the process of communicating memories to the neocortex for long-term storage.

Cortical activity in sleep is dominated by the slow oscillation – the synchronous
alternation of cortical neurons between a depolarized (UP) state associated
with high levels of endogenous activity, and a brief (∼200 ms) hyperpolarized
(DOWN) state when neurons remain silent. DOWN states are accompanied
by large deflections of the local field potential – delta waves, while UP states
bring elevated activity and thalamocortical spindles, both of which can drive
synaptic plasticity. Systems memory consolidation is thought to involve the
coordination between hippocampal and cortical rhythms – notably, hippocampal
ripples precede (∼130 ms) cortical delta waves, which are then followed by
thalamocortical spindles.

To test if this temporal coupling drives memory consolidation, we triggered
cortical delta waves following ripples to enhance the co-occurrence of coupled
ripple-delta events. This boosted memory consolidation and rat performance
on a spatial memory task, and resulted in a reorganization of prefrontal cortical
networks following induced delta waves as well as increased prefrontal responsivity
to the task on the next day. Crucially, these enhancements were not observed
when a small delay (160-240 ms) was introduced in addition to the endogenous
coupling, indicating the stabilization of memory traces requires a very fine-tuned
interaction between ripples and delta waves.

How can the ‘interruption’ of cortical activity by generalized periods of silence
during delta waves underlie memory consolidation when it occurs precisely
between information transfer (hippocampal replay) and network plasticity (UP
state)? Contrary to a generally accepted tenet, we found that delta waves
are not periods of complete silence, and that the residual activity is not mere
neuronal noise. Instead, cortical cells fired ‘delta spikes’ during delta waves in
response to transient reactivation of hippocampal ensembles during ripples, and
this occurred selectively during endogenous or induced memory consolidation.
This suggests a new role for delta waves – namely, that the synchronized silence
of the large majority of cells isolates the network from competing inputs, while a
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select subpopulation of neurons remain active in response to hippocampal replay,
bridging information between UP states and coordinating memory consolidation.
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Résumé

Le stockage à long terme des souvenirs épisodiques requiert la formation
de la mémoire pendant l’expérience d’éveil ainsi que la consolidation de la
mémoire, un processus de renforcement de la mémoire qui a lieu pendant le
sommeil. L’encodage rapide des traces mnésiques a lieu dans l’hippocampe
pendant l’éveil. Pendant le sommeil, les traces mnésiques de l’hippocampe
sont « rejouées » pendant les ondulations – de brefs motifs oscillatoires
hippocampiques (50-150 ms) à haute fréquence associés à une activité synchrone
élevée. Les bouffées d’activité synchrone des neurones de l’hippocampe pendant
les ondulations font d’eux des acteurs clés dans la consolidation de la mémoire
des systèmes – le processus de communication des mémoires vers le néocortex
pour un stockage à long terme.

L’activité corticale dans le sommeil est dominée par l’oscillation lente –
l’alternance synchrone des neurones corticaux entre un état dépolarisé (état
HAUT) associé à des niveaux élevés d’activité endogène, et un état bref (∼200 ms)
hyperpolarisé (état BAS) lorsque les neurones restent silencieux. Les états
BAS sont accompagnés de grandes déviations du potentiel de champ local –
ondes delta, tandis que les états HAUTS sont associés à une activité élevée et
des fuseaux thalamocorticaux, deux processus pouvant entraîner une plasticité
synaptique. On pense que la consolidation de la mémoire des systèmes implique
une coordination entre les rythmes hippocampiques et corticaux – notamment,
les ondulations hippocampiques précèdent (∼130 ms) les ondes delta corticales,
qui sont ensuite suivies par des fuseaux thalamocorticaux.

Pour vérifier si ce couplage temporel entraîne une consolidation de la mémoire,
nous avons déclenché des ondes delta corticales suite à des ondulations
hippocampiques afin d’améliorer la cooccurrence d’événements ondulation-delta
couplés. Cela a augmenté la consolidation de la mémoire et la performance
du rat sur une tâche de mémoire spatiale, et a entraîné une réorganisation des
réseaux corticaux préfrontaux suite à des ondes delta induites ainsi qu’une réponse
accrue du cortex préfrontal à la tâche le lendemain. De manière cruciale, ces
améliorations n’ont pas été observées lorsqu’un retard (160-240 ms) a été introduit
en plus du couplage endogène, indiquant que la stabilisation des traces mnésiques
nécessite une interaction très fine entre les ondulations et les ondes delta.

Comment l’interruption de l’activité corticale par des périodes de silence
généralisées pendant les ondes delta peut-elle sous-tendre la consolidation de
la mémoire lorsqu’elle se produit précisément entre le transfert d’informations
(réactivation hippocampique) et la plasticité du réseau (état HAUT) ?
Contrairement à un principe généralement accepté, nous avons constaté que les
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ondes delta ne sont pas des périodes de silence complet, et que l’activité résiduelle
n’est pas un simple bruit neuronal. Au lieu de cela, nous avons montré que les
cellules corticales émettent des « delta spikes » pendant les ondes delta en réponse
à la réactivation transitoire d’ensembles hippocampiques pendant les ondulations,
et que cela se produit sélectivement pendant la consolidation endogène ou induite
de la mémoire. Ces résultats suggèrent un nouveau rôle pour les ondes delta, à
savoir que le silence synchronisé de la grande majorité des cellules isole le réseau
des entrées concurrentes, tandis qu’une sous-population sélectionnée de neurones
reste active en réponse aux réactivations de l’hippocampe, faisant le pont entre
les états HAUTs et coordonnant la consolidation de la mémoire.
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Résumé détaillé des chapitres

Chapitre 1 : Consolidation de la mémoire et ondulations
hippocampiques

L’hippocampe est une structure cérébrale qui joue un rôle central dans la mémoire
épisodique. L’activité hippocampique dans les états « déconnectés » comme le
sommeil et le repos est caractérisé par les « ondulations » – des brefs motifs
oscillatoires hippocampiques (50–150 ms) à haute fréquence (110–200 Hz) associés
à une activité synchrone élevée. Les poussées de potentiels d’action qui se
suivent à une courte échelle de temps créent des conditions favorables qui lient les
ondulations hippocampiques à la plasticité synaptique. Les ondulations qui ont
lieu pendant le sommeil sont associés à la réactivation des séquences neuronales
potentiés pendant l’apprentissage et des études causales ont démontré que ces
ondulations sont essentielles à la consolidation de la mémoire spatiale chez le rat.
Les ondulations qui ont lieu pendant l’éveil servent des fonctions différentes –
notamment, elles ont été impliquées dans la mémoire de travail, la planification
de la navigation ainsi que la stabilisation de la carte cognitive.

Chapitre 2 : Réactivations extra-hippocampiques de concert avec des
ondulations

Au-delà de leur impact local, les sorties synchrones de l’hippocampe au cours
d’ondulations entraînent une forte dépolarisation des régions cibles de CA1,
y compris le subiculum, les couches profondes du cortex entorhinal et de
multiples zones néocorticales et sous-corticales. Des effets directs et indirects des
ondulations hippocampiques ont été rapportés : la réactivation de l’hippocampe
souvent précédant, mais parfois suivant, la réactivation neuronale dans d’autres
zones du cerveau.

Ainsi, les ondulations ne sont pas des événements isolés de l’hippocampe, mais
un élément essentiel d’un processus couvrant plusieurs régions du cerveau. Les
ondulations de l’éveil sont suivies de réponses dans l’aire tegmentaire ventrale,
le striatum ventral, le cortex préfrontal, mais pas dans le cortex entorhinal (sauf
pendant des périodes d’immobilité prolongées). Les ondulations du sommeil,
éventuellement biaisées par les entrées corticales, peuvent initier la réactivation
d’ensembles corticaux et même des réactivations inter-structurelles impliquant
d’autres zones, notamment les couches profondes du cortex entorhinal, le cortex
préfrontal, le striatum ventral et l’amygdale, qui fournissent un contexte spatial,
appétitif et aversif pour compléter les signaux de l’hippocampe.
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Chapitre 3 : Rythmes corticaux du sommeil

Sur la base des enregistrements EEG, le sommeil a été divisé en sommeil à
mouvement rapide (REM) et sommeil non-REM, également appelé sommeil lent.
Le sommeil lent est associé à l’oscillation lente, aux fuseaux du sommeil dans le
cortex et aux ondulations dans l’hippocampe.

L’oscillation lente est l’alternance généralisée entre un état dépolarisé (HAUT)
et un état hyperpolarisé (BAS) de neurones corticaux synchronisés. En revanche,
les fuseaux du sommeil sont des événements thalamocorticaux oscillatoires (10–15
Hz) qui se produisent enchâssés dans l’oscillation lente corticale. Comme les
ondulations de l’hippocampe, les rythmes du sommeil lent sont étroitement
associés à la consolidation de la mémoire. En particulier, l’entrée du calcium
pendant les fuseaux du sommeil ainsi que l’activité élevée et les séquences de
décharge lors de la transition BAS-HAUT permettent d’obtenir des fenêtres
optimales pour la plasticité synaptique.

Chapitre 4 : Couplage hippocampo-corticale

L’efficacité du dialogue hippocampo-cortical dans la consolidation de la mémoire
reposerait sur la coordination temporelle de l’activité de ces régions. La
synchronisation des ondulations est influencée par l’oscillation lente du néocortex
et par les fuseaux du sommeil thalamocortical, éventuellement grace aux
entrées dans l’hippocampe qui peuvent faire avancer ou retarder l’apparition
d’ondulations à venir. À son tour, l’activité des ondulations peut influer sur
la synchronisation de ces deux rythmes du sommeil. Le couplage des rythmes
hippocampo-corticaux serait impliqué dans la consolidation de la mémoire des
systèmes.

Les ondes delta ont tendance à suivre les ondulations de l’hippocampe, ce qui
suggère que ces ondulations pourraient faciliter une transition HAUT–BAS à
venir. On signale également des ondulations immédiatement après les ondes
delta; cela est probablement lié à l’augmentation de l’activité corticale pendant la
transition BAS–HAUT. Par rapport aux fuseaux thalamo-corticaux, les rapports
de couplage avec les ondulations s’étendent sur plusieurs échelles de temps.
À l’échelle des secondes, les fuseaux ont tendance à suivre les ondulations de
l’hippocampe. À l’échelle de temps plus fine, les ondulations sont verrouillées en
phase sur les cycles individuels des fuseaux.

Par conséquent, la consolidation de la mémoire pendant le sommeil s’accompagne
d’un dialogue hippocampo-cortical orchestré par un couplage ondulation–onde
delta–fuseau affiné. Les ondulations du sommeil peuvent précéder les ondes
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delta, les suivre, précéder les fuseaux ou se produire pendant les fuseaux, en
phase verrouillée à des cycles individuels. Le rôle de l’association des rythmes
hippocampo-corticaux pour la consolidation de la mémoire a été au centre des
travaux de cette thèse.

Chapitre 5 : Rôle du couplage ondulation-delta dans la consolidation
de la mémoire

Pour vérifier si le couplage temporel entre les ondulations hippocampiques et les
ondes delta entraîne une consolidation de la mémoire, nous avons déclenché des
ondes delta corticales suite à des ondulations hippocampiques afin d’améliorer
la cooccurrence d’événements ondulation-delta couplés. Cela a augmenté la
consolidation de la mémoire et la performance du rat sur une tâche de mémoire
spatiale, et a entraîné une réorganisation des réseaux corticaux préfrontaux suite
à des ondes delta induites ainsi qu’une réponse accrue du cortex préfrontal à la
tâche le lendemain. De manière cruciale, ces améliorations n’ont pas été observées
lorsqu’un retard (160–240 ms) a été introduit en plus du couplage endogène,
indiquant que la stabilisation des traces mnésiques nécessite une interaction très
fine entre les ondulations et les ondes delta.

Chapitre 6 : Rôle des discharges pendant les ondes delta dans la
consolidation de la mémoire

Comment l’interruption de l’activité corticale par des périodes de silence
généralisées pendant les ondes delta peut-elle sous-tendre la consolidation de
la mémoire lorsqu’elle se produit précisément entre le transfert d’informations
(réactivation hippocampique) et la plasticité du réseau (état HAUT) ?
Contrairement à un principe généralement accepté, nous avons constaté que les
ondes delta ne sont pas des périodes de silence complet, et que l’activité résiduelle
n’est pas un simple bruit neuronal. Au lieu de cela, nous avons montré que
les cellules corticales émettent des « décharges delta » pendant les ondes delta
en réponse à la réactivation transitoire d’ensembles hippocampiques pendant
les ondulations, et que cela se produit sélectivement pendant la consolidation
endogène ou induite de la mémoire. Ces résultats suggèrent un nouveau
rôle pour les ondes delta, à savoir que le silence synchronisé de la grande
majorité des cellules isole le réseau des entrées concurrentes, tandis qu’une
sous-population sélectionnée de neurones reste active en réponse aux réactivations
de l’hippocampe, faisant le pont entre les états HAUTs et coordonnant la
consolidation de la mémoire.
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Chapitre 7 : Ondes delta

Les ondes delta sont souvent précédées par la réponse corticale substantielle
aux ondulations de l’hippocampe. Le contenu de ces ondulations pourrait donc
entraîner l’activité corticale qui suit, y compris les décharges émises dans les
ondes delta suivantes. Dans cette vue, les décharges delta peuvent refléter les
entrées arrivant juste avant la fin de l’état HAUT. Cela correspond souvent à
des entrées fortes telles que des ondulations, car elles peuvent déclencher une
transition HAUT-BAS.

De cette manière, les décharges delta peuvent servir de pont entre l’activité à la
fin d’un état HAUT (reflétant les entrées à la fin de l’état HAUT) et le début
de l’état HAUT suivant, où la plasticité a lieu. Selon cette hypothèse, les pics
delta lors des ondes delta précédées d’ondulations devraient refléter le contenu
de l’hippocampe, mais les décharges delta lors d’autres ondes delta devraient
refléter l’activité d’autres zones partenaires en dehors de l’hippocampe. Ceci
soulève l’idée des décharges delta en tant que mécanisme général permettant de
relier les informations entre les états HAUTs impliqués dans la communication
avec de multiples zones partenaires corticales.

Chapitre 8 : Mécanismes alternatifs pour le dialogue
hippocampo-cortical

Il existe des formes de couplage hippocampo-corticaux au-delà du couplage
ondulation-delta qui a été au centre de cette thèse. Notamment cela inclut le
couplage delta-ondulation et le couplage ondulation-fuseaux. Ces autres formes
de couplage ne peuvent expliquer les effets du couplage ondulation-delta sur la
consolidation de la mémoire, car ils ne différaient pas entre les conditions de
stimulation couplée et retardée. Bien que ces formes de communication n’aient
pas été affectées par le couplage ondulation-delta, elles ne sont nullement hors
de propos pour le dialogue hippocampo-cortical. Une consolidation réussie de la
mémoire peut nécessiter l’intégration de tous ces facteurs. Comprendre le rôle de
chaque phénomène nécessiterait des recherches supplémentaires.

Chapitre 9 : Rôle des séquences thêta dans la formation de la
mémoire

Pendant l’exploration, les séquences thêta permettent la compression des
trajectoires de l’animal à une échelle de temps compatible avec des processus de
plasticité. Par conséquent, ces séquences thêta pourraient soutenir l’apprentissage
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séquentiel pendant l’exploration, et pourraient sous-tendre le codage initial des
traces mnésiques. Toutefois, des preuves directes en faveur de ce scénario
n’ont pas été fournies. Dans cette étude causale, nous avons sélectivement
perturbé les séquences thêta tout en préservant les séquences de champs d’activité.
Nos résultats montrent que les séquences thêta des assemblées cellulaires
hippocampiques pendant l’exploration sous-tendent les réactivations ultérieures
pendant le sommeil, et font valoir l’idée que les séquences thêta sont à la base de
la formation initiale des traces mnésiques consolidées ultérieurement pendant le
sommeil.
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Chapter 1

Memory consolidation
and hippocampal ripples

Early clinical work and animal studies have established the hippocampus as
a key structure in the formation and consolidation of episodic and spatial
memory (Scoville and Milner, 1957; Morris et al., 1982). Investigations into
the neurophysiological mechanisms underlying these functions are largely based
on the discovery of place cells, hippocampal pyramidal cells that fire selectively
in a specific locations as a rat freely explores an environment (O’Keefe and
Dostrovsky, 1971; O’Keefe and Nadel, 1978).

While the theta rhythm (7–14 Hz) dominates rodent hippocampal local field
potentials (LFPs) during exploration, in moments of consummatory behaviour,
awake immobility, and slow-wave sleep, the network switches to a mode of
large irregular activity, in which sharp wave-ripples occur (Figure 1.1). Sharp
wave-ripples are brief (50–150 ms) events with two components: a large amplitude
negative polarity deflection (sharp wave) in the stratum radiatum (Buzsáki et al.,
1983; Buzsáki, 1986), and a high frequency (110–200 Hz) oscillation (ripple)
originating in the CA1 pyramidal layer (Buzsáki et al., 1992).

Sharp waves are immediately preceded by extensive bursts of activity in CA3,
with up to 10%–20% of CA3 neurons participating in a single sharp wave event
(Csicsvari et al., 2000). These bursts result in massive excitation of CA1 neurons
through CA3 Schaffer collaterals, recruiting CA1 pyramidal cells and interneurons
that fire synchronously. The interplay of interconnected interneuronal networks
and widespread excitatory activity results in an oscillatory event – a ripple.

While the heavily interconnected CA3 region has long been considered the
source of ripple events, a subpopulation of CA2 cells play an important role
in triggering ripples (Oliva et al., 2016). In CA3, recent data suggests that the
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CHAPTER 1. MEMORY CONSOLIDATION AND HIPPOCAMPAL RIPPLES

Figure 1.1: A hippocampal ripple recorded in CA1 in the dorsal hippocampus. LFP
from the pyramidal layer (top) and the stratum radiatum (bottom) of CA1 of the dorsal
hippocampus. Reproduced from Buzsáki et al. (1992).

bursting of a subpopulation of deep-layer stratum radiatum cells with distinct
morphology (‘athorny’, as they have no mossy-fiber synapses which appear as
thorny excrescences) may trigger ripples (Hunt et al., 2018). The particular
spiking sequences observed in CA1 during ripples appears to result mainly from
local circuit dynamics (Stark et al., 2015), although this activity may be biased by
upstream activity (Ellender et al., 2010; Rothschild et al., 2017). Ripple timing
may also be influenced by extra-hippocampal inputs (discussed in chapter 4),
including neuromodulatory tone1.

Ripples can be either local, or propagate in diverse patterns along the
septo-temporal axis of the hippocampus, although the ventral pole seems
independent from the dorsal and intermediate poles (Csicsvari et al., 2000; Patel
et al., 2013).

This chapter presents research into the function of these highly synchronous
events, with a special focus on studies testing the causal role of ripple-related
activity in cognitive processes. First, I briefly present the theoretical framework
that forms the basis for studies of ripple function. I then review seminal work
and more recent studies on the functional content of ripple activity in slow-wave
sleep and its relation to experience and memory. Finally, I discuss the properties
and function of ripples in the awake state.

1While dopamine can promote ripple generation (Miyawaki et al., 2014), activation of the
cholinergic (Vandecasteele et al., 2014), serotonergic (Wang et al., 2015a), and noradrenergic
(Novitskaya et al., 2016; Ul Haq et al., 2012) pathways has been shown to suppress ripples.
These pathways may promote wakefulness and memory encoding, rather than memory
consolidation during slow-wave sleep.
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1.1 Theoretical framework

Since ripples have been shown to play a critical role in memory consolidation,
this section provides a brief overview of the most prominent theories of systems
memory consolidation, as well as the relation between ripples and plasticity
processes likely to underlie learning and memory.

1.1.1 Systems consolidation theories

Marr (1971) first proposed that information could be cleared from temporary
hippocampal storage as it is stored in more permanent neocortical
representations; moreover, he put forth the notion that this process should take
place during sleep, free from sensory interference. This hypothesis is the base of
the standard theory of systems consolidation, which holds that memory traces are
initially formed in the hippocampus, then gradually transferred to the neocortex,
and ultimately become independent of the hippocampus (Squire and Alvarez,
1995).

Alternatively, the multiple trace theory posits that each time an episodic memory
is recalled, it generates an additional trace in the hippocampus, each with
a spatio-temporal context, while the neocortex stores context-free, semantic
features; retrieval of episodic memories would always require the hippocampus
(Nadel and Moscovitch, 1997). This led to the transformation hypothesis, which
states that context-bound hippocampal memory traces support the development
of a schematic neocortical trace (Winocur et al., 2010).

While these theories might disagree about the nature of the memories stored in
the hippocampus and the neocortex, the underlying mechanisms for memory
consolidation are the same – that an interplay between the hippocampus
and the cortex results in connectivity changes in cortical networks. Buzsáki
(1989) proposed that ripple-associated hippocampal outputs would communicate
information to a stabilized neocortical memory trace. Synapses would be weakly
potentiated during exploration, when the hippocampus oscillates at the theta
frequency. In the subsequent consolidation stage, the strong excitatory drive
occurring during ripples would induce the long-term synaptic modifications
required to induce long-lasting memories, both in the hippocampus and its target
areas. (Buzsáki, 1989)
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1.1.2 Ripples and synaptic plasticity

There is a vast literature on general plasticity mechanisms at intra-hippocampal
synapses. At the CA3-CA1 synapse, long-term potentiation (LTP) can be
induced by tetanic stimulation of Schaffer collaterals at 200 Hz (Buzsáki, 1984),
as well as by pharmacological induction of CA3 bursting in vitro (Buzsáki
et al., 1987). Stimulating CA1 cells during spontaneous ripples detected
on-line (by micro-stimulation adjacent to the cell body) increases the probability
that the selected neurons participate in future ripples without affecting overall
cell excitability, indicating potentiation of the synaptic inputs to CA1 (King
et al., 1999). This potentiation of the CA3-CA1 synapse by stimulating the
post-synaptic cell is likely to reflect the Hebbian mechanism of spike-timing
dependent plasticity (STDP), in which the temporal order and precise timing
of pre- and postsynaptic spikes determine the extent and polarity of synaptic
plasticity (Magee and Johnston, 1997; Markram et al., 1997). The classical
STDP learning rule states that pre-then-post paired excitation induces LTP, while
post-then-pre pairings result in long term depression (LTD).

Modelling work based on this classical rule has suggested that synchronous firing
during ripples could result in decoupling of coactive neurons in CA3 (Lubenov and
Siapas, 2008), consistent with the theory that hippocampal memory traces could
be erased upon transfer to the neocortex (Squire and Alvarez, 1995). However, a
variety of factors can influence the learning rule. Wittenberg and Wang (2006)
showed that in hippocampal slices, a few pairings of CA3 presynaptic spikes and
CA1 postsynaptic bursts cause LTP even when the postsynaptic burst precedes
the presynaptic spike. Conversely, prolonged synaptic pairings involving CA1
single spikes, rather than bursts, led to LTD (Wittenberg and Wang, 2006).
Moreover, the learning rule for isolated pairs of spikes cannot be extrapolated for
spike trains composed of multiple spikes (Froemke and Dan, 2002). Besides local
circuit dynamics, STDP also depends on neuromodulatory tone. For instance, in
hippocampal slices noradrenaline can widen the time window between a pre-post
pairing that can still successfully induce LTP (Lin et al., 2003). In hippocampal
cultured neurons and slices, dopamine can also widen this window, and alter the
STDP learning rule such that a post-then-pre stimulation protocol induces LTP
rather than LTD (Zhang et al., 2009; Brzosko et al., 2015). This indicates that
the potential synaptic plasticity mechanisms triggered by ripples may depend on
ongoing neuromodulatory activity, which in turn would vary with the behavioural
context.

What learning rule is promoted by the timing of spikes during hippocampal
ripples? In rat hippocampal slices, Sadowski et al. (2016) stimulated CA3
presynaptic and CA1 postsynaptic cells to replicate activity patterns recorded
in vivo. This was not sufficient to reliably evoke LTP. However, when the same
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protocol was complemented by stimulation of the Schaffer collateral pathway
at 100 Hz, mimicking ripple activity recorded in vivo, LTP could be reliably
induced. The dendritic depolarization associated with sharp-wave ripples was
concluded to be crucial for the induction of synaptic plasticity (Sadowski et al.,
2016). Moreover, the change in synaptic strength was well correlated with the
number of pairings of CA3 spikes followed by CA1 spikes, indicating that pairs of
single spikes are sufficient to bring about LTP during a ripple. The reverse order,
CA3 spikes following CA1 spikes, resulted in neither LTP nor LTD. This argues
for a modified learning rule during ripples, involving a potentiation component
resembling classical STDP but with no depression component.

In a recent study, Norimoto et al. (2018) suggested that ripple activity can
lead to synaptic depression of neurons that are not active during the ripple. In
mouse hippocampal oblique slices (in which ripples occur spontaneously), they
observed that the network response (in the form of field excitatory postsynaptic
potentials) to Shaffer collateral stimulation decreased over time in an NMDA
receptor-dependent mechanism, indicative of synaptic plasticity. A closed-loop
optogenetic stimulation of somatostatin neurons upon ripple detection blocked
ripples and prevented this spontaneous synaptic depression, whereas control
stimulation with a delay of 100 ms, leaving ripples intact, had no effect.
Two-photon imaging of dendritic spines revealed that while the majority of
spines (‘thin’ and ‘stubby’ type spines) shrank in size, some dendritic spines
(‘mushroom’ type spines) remained unaffected by this net synaptic depression.
The authors suggested that ripples cause net depression through the removal of
unused synapses, while synapses active during ripples are spared and potentiated.

In addition to modifying local hippocampal circuitry, ripples are also expected
to yield plasticity in output structures. Although studies reproducing the
physiological conditions during ripples are lacking, high frequency stimulation
protocols (200 Hz) typically used to induce LTP are reminiscent of hippocampal
ripple activity. Such protocols have been demonstrated to induce synaptic
potentiation at the CA1-prefrontal cortical synapse (Laroche et al., 1990) and
at the CA1-subiculum synapse (O’Mara et al., 2000) in vitro. It has been
hypothesized that the physiological role of the population bursts associated with
hippocampal ripples might be to modify synaptic connectivity at downstream
targets (Chrobak and Buzsaki, 1994) – changes that the relatively low firing
rates of hippocampal neurons during awake behaviour would be insufficient to
trigger.

Hippocampal activity patterns during ripples appear well suited to promote
synaptic potentiation in downstream structures, which would support the theory
that ripples play a role in consolidating labile memory traces. The results of
Norimoto et al. (2018) argue for a role for ripples in erasing inactive hippocampal
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CHAPTER 1. MEMORY CONSOLIDATION AND HIPPOCAMPAL RIPPLES

memories leading to the gradual hippocampal disengagement posited by the
standard theory of memory consolidation. On the other hand, neurons active
together during hippocampal ripples would strengthen their synaptic connections.
To address the question of what information is consolidated, the next section
examines the neuronal activity during ripples and its behavioural correlates.

1.2 Hippocampal activity during ripples

Given that ripples occur in both sleep and waking states, a discussion of the
function of ripples must take brain state into account. While both sleep and
awake ripples have been shown to be involved in memory processes, evidence
suggests that they might have distinct roles in addition to potentiating previously
activated synapses. In sleep, free from interference, ripples are well suited for
communicating a memory trace to be consolidated into a framework of existing
memories possibly involving multiple regions (Frankland and Bontempi, 2005; Tse
et al., 2007; Girardeau et al., 2009; Ego-Stengel and Wilson, 2010), while awake
ripples may be involved in processes immediately relevant to ongoing behaviour,
such as navigational planning (Carr et al., 2011; Jadhav et al., 2012; Roumis and
Frank, 2015).

1.2.1 Sleep ripples

Coactivation of cell pairs

Early studies provided the first evidence that activity in CA1 during sleep reflects
activity during behaviour. More specifically, cofiring patterns established in
awake behaviour are reinstated during sleep. Pavlides and Winson (1989) showed
that place cells active during behaviour subsequently fired at higher rates during
sleep. Building on this work, Wilson and McNaughton (1994) provided the first
large-scale recordings of hippocampal neurons, allowing them to quantify the
tendency of multiple cell pairs to fire together (within 100 ms of each other).
They showed that pairs of place cells coactive during exploration (i.e. with
overlapping place fields) retained an increased tendency to coactivate in sleep
after the task, compared to sleep before the task. This increase was strongest in
sleep immediately following the task and decayed over time. Importantly, this
reactivation took place preferentially during ripples.

Given that hippocampal place cells together form a cognitive map of the
environment, the question arises whether this reinstatement of correlated activity
reflects the reactivation of the spatial representation of the most recently visited
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Figure 1.2: Replay in sleep ripples. Top: Raster plot of place cell activity for 30 laps
on the track. Each color corresponds to a different cell, and responses for the respective
laps are stacked for each cell. Nonuniform time axis below shows time within average
lap. Bottom: examples of compressed replay during sleep. Note the CA1 pyramidal layer
LFP trace displayed on the right panel, indicating that replay events coincide with ripples.
Adapted from Lee and Wilson (2002).

environment (semantic memories), or of specific trajectories and behaviours
experienced in this environment (episodic-like memories). O’Neill et al. (2008)
provided compelling evidence that the coactivation of cell pairs during sleep is a
direct consequence of their coactivation in awake behaviour. They showed that
the number of times two place cells fired together during exploration predicted
the increase of the pair’s cofiring during sleep ripples after the task, compared to
sleep before (conversely, the number of times the pair fired independently resulted
in the opposite trend). This suggests that an associative learning process takes
place during behaviour, leading to future reactivations. Conditions leading to
increased ripple incidence is further discussed below.
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Replay of neuronal sequences

Beyond coactivation of cell pairs, further studies have investigated replay of entire
sequences of activity observed during behaviour. Skaggs and McNaughton (1996)
trained rats to run on a triangular track repeatedly in the same direction, so that
pairs of place cells would always be activated in the same order. This temporal
bias during awake behaviour was reinstated during subsequent sleep, but was
absent in sleep before the task. Nádasdy et al. (1999) extended these findings from
cell pairs to cell triplets and to spiking sequences of multiple neurons (‘templates’).
They found that such sequences were overrepresented during active behaviour (as
rats ran on a running wheel) and also during sleep, when they were replayed on
a faster timescale during ripples. To investigate replay of spatial trajectories,
Lee and Wilson (2002) recorded place fields of many neurons covering a linear
track. They defined the order of the place fields on the track as a template,
and found population bursts that matched the template during sleep, coinciding
with ripples (Figure 1.2). These replay events were compressed by a factor of
10–20 relative to behaviour, a timescale compatible with synaptic plasticity. The
authors suggested that replay sequences could broadcast learned information to
target structures, reinstating and strengthening the memory trace.

One caveat of these studies is that they investigated the network mechanisms
of memory consolidation in rats performing stereotypical and over-trained
behaviours in familiar environments, rather than performing elaborate learning
tasks (with the exception of one of the three rats in Lee and Wilson, 2002). In
order to probe the potential role of hippocampal ripples in memory processes,
the next step was to study replay in the context of encoding novel experiences.

Novelty increases replay

Kudrimoti et al. (1999) compared reactivation during sleep following exploration
of familiar vs novel zones of an environment (based on simple firing rate
correlations between CA1 cell pairs). In both the familiar and the novel zones,
reactivation increased after exploration, was most pronounced during ripples,
and declined quickly over the first hour of sleep. Unlike previous studies, the
correlations in sleep before exploration of the familiar area already resembled
those observed during the actual exploration episode. Notably, this was not the
case for exploration of the novel area, indicating that a novel experience can
introduce new correlation patterns in the hippocampal network. Consistent with
this view, O’Neill et al. (2008) directly compared reactivation quality following
exploration of a novel vs familiar environment, and reported that reactivation of
coactivity patterns was more pronounced during ripples following exploration of
the novel environment. This may be due to increased synaptic plasticity in the
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novel environment, an effect dependent on dopamine (discussed in section 2.4).

In addition, Hirase et al. (2001) reported that exploration of a novel environment
altered the firing rates of single CA1 neurons during behaviour and subsequent
sleep, compared to sleep preceding exploration. Because the global firing
rate remained stable between the two sleep sessions, the authors hypothesized
that a subset of neurons increase their firing rates in the novel environment,
compensated by a commensurate decrease of the remaining neurons, by a
homeostatic mechanism. This may have implications on the structure of
correlations described by Kudrimoti et al. (1999), since correlations can be biased
by firing rates (de la Rocha et al., 2007).

These studies indicate that awake exploration, especially in novel environments,
reshapes the structure of spontaneous activity during subsequent sleep. However,
this notion was challenged by reports of hippocampal sequences representing
spatial trajectories in an environment that the animal had never experienced
before, but was about to explore – as if anticipating the future exploration (Dragoi
and Tonegawa, 2011, 2013). Such sequences were termed ‘preplay’ (not to be
confused with awake preplay, discussed in section 1.2.2). Hence, hippocampal
sequences be would selected from a pre-existing, pre-wired repertoire, rather than
formed de novo during experience.

This remains debated. On the one hand, preplay was confirmed by Grosmark
and Buzsáki (2016), who further documented a distinction between subsets of
cells, ‘plastic’ or ‘rigid’, based on their relative contributions to preplayed vs
(novel) replayed sequences. According to these authors, ‘plastic’ cells have lower
firing rates and higher spatial specificity during exploration, as well as increased
firing in ripples in post-task sleep, suggesting that a memory trace would involve a
specific subset of plastic neurons preferentially reactivated in ripples in subsequent
sleep. On the other hand, Ólafsdóttir et al. (2015) reported that preplay of
previously unexplored zones occurred only under very specific conditions – the
unexplored zones were visible through a barrier, and baited with food. The
authors hypothesized that preplay may be formed only when the anticipated
experience is relevant to the motivation of the animal. Further, using much
larger numbers of neurons in multiple environments, Silva et al. (2015) found that
preplay sequences do not occur more often than chance, and that the formation
of replay sequences during the first exploration of a novel environment required
NMDA receptor-dependent synaptic plasticity. Settling this question will require
additional experiments (Dragoi et al., 2017).
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Learning increases ripple incidence

An ideal protocol to evaluate the role of ripples and associated replay in memory
consolidation should include a reasonably elaborate learning task. Whereas mere
exposure to a novel environment does not affect the ripple rate during subsequent
sleep (Kudrimoti et al., 1999; Hirase et al., 2001), training on memory tasks does
induce an increase in ripple incidence (Eschenko et al., 2008; Ramadan et al.,
2009). Eschenko et al. (2008) trained rats in an odor discrimination task and
found that the ripple incidence, duration and amplitude increased for 2 hours
after the learning session; this increase correlated with behavioural performance,
as it was more pronounced in rats that improved during the session. Ramadan
et al. (2009) trained rats on an eight-arm radial maze task, and reported that
ripple incidence in sleep increased on the day when rats started to perform above
chance.

Ripple facilitation may be a direct consequence of learning-related synaptic
changes. In vitro, stimulation protocols that induce LTP in CA3 also lead
to increased ripple incidence (Behrens et al., 2005). Although a similar effect
was not observed for LTP induction in vivo (Dragoi et al., 2003), endogenous
plasticity mechanisms do appear to regulate ripple incidence, and this could be
a part of a regulatory process related to ongoing consolidation. During rest
following training on a memory task, Girardeau et al. (2014) interfered with
ripple activity using a closed-loop single-pulse electrical stimulation protocol.
Ripple disruption triggered a dynamic compensatory increase in subsequent ripple
incidence. Blocking NMDA receptors during training, but not after, abolished
this response, indicating that NMDA receptor-dependent plasticity processes
taking place during learning regulate ripple dynamics and enhance ripple rate
in subsequent sleep. Such a process would ensure that memory consolidation
is enhanced in sleep after an episode of learning, when there would be more to
consolidate than after routine behaviour.

Memory performance is not only related to ripple incidence, but also to the
reactivation of specific place cells during ripples. Dupret et al. (2010) trained
rats to visit three goal locations on a ‘cheeseboard’ maze, and reported that
hippocampal activity during sleep ripples often represented one of the goal
locations. Importantly, subsequent memory performance for a given goal was
correlated with the proportion of sleep ripples in which the goal location had
been reactivated. This argues for a role of ripple-associated reactivations in
strengthening neuronal representations of memories.
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Figure 1.3: Suppression of sleep ripples interferes with memory consolidation. Top: Test
rats (red) were significantly impaired in the radial maze task compared with control rats
(blue, stimulated; black, unimplanted). Bottom left: in the test condition (red), ripples
were immediately disrupted upon detection; in the control condition (blue), a random delay
was introduced before stimulation. Unperturbed ripples are shown to the left, example
stimulations to the right. Dashed vertical lines, ripple detection; black triangles, stimulation;
box inset shows magnified trace. Bottom right: the effect of complete hippocampal lesion
on radial maze (Jarrard, 1995). Note that the y-axis (number of events) is reversed to allow
for the comparison with Girardeau et al. (2009)’s results. Adapted from Girardeau et al.
(2009) and Jarrard (1995).
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A causal role for sleep ripples in memory consolidation

Overall, there is abundant evidence that neuronal activity of past experiences is
replayed during sleep ripples. Crucially, the causal relationship between ripples
and memory consolidation was demonstrated in two independent studies where
sleep ripples were perturbed by precisely timed electrical stimulation of the
ventral hippocampal commissure (Girardeau et al., 2009; Ego-Stengel and Wilson,
2010). In both studies, the rats were trained on a spatial memory task where they
learned across days to preferentially visit the baited arms of a maze. In the first
hour of sleep following training, ripples were detected on-line and interrupted
by precisely timed single pulse stimulation, briefly suppressing ongoing neuronal
activity and preventing further development of the ripple (Figure 1.3). This
closed-loop protocol impaired subsequent performance on the task (Girardeau
et al., 2009; Ego-Stengel and Wilson, 2010) to levels comparable to complete
hippocampal lesions (Jarrard, 1995). Importantly, non-specific effects of the
stimulation were ruled out as no impairment was observed in a group of control
animals that underwent the same stimulation protocol, but with a random
delay between ripple detection and the stimulation, thus leaving ripples intact
(Girardeau et al., 2009). This established that ripple activity is critical for
memory consolidation.

On the other hand, Kovács et al. (2016) provided evidence that that CA1 activity
during sleep ripples is not essential for place field stability. In this study, mice
explored a novel environment, then underwent a sleep session where pyramidal
cells in CA1 were optogenetically silenced during ripples (or outside ripples in the
control condition). During the second exploration session, firing maps remained
stable, indicating that CA1 pyramidal activity in sleep ripples is not essential
for the formation of a stable spatial representation of a novel environment.
The authors suggested that this function might be carried out during awake
ripples (see section 1.2.2), while the main role of sleep ripples would be the
communication of information to extra-hippocampal areas.

Furthermore, Kovács et al. (2016) found that pairwise firing rate correlations of
CA1 pyramidal cells were unaffected by ripple suppression. This is at odds with
the results of van de Ven et al. (2016), who reported that neuronal coactivation
patterns (cell assemblies detected using independent component analysis of
the binned multiunit spiking activity) were considerably less reactivated upon
re-exposure to the environment when CA1 pyramidal cells were optogenetically
silenced upon ripple detection during intervening sleep epochs. Interestingly,
the authors reported two different kinds of encoding dynamics during the first
exploration of a novel open field. While some assemblies stabilized in the first
few minutes of exposure, after which their activity plateaued, other assemblies
gradually strengthened – their activity continually increased throughout the
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first exploration2. Ripple suppression selectively altered the reactivation of the
gradually stabilized assemblies. The authors suggested that early stabilized
patterns might provide a ‘ready to use’ representation of space needed for
navigation, while the gradually strengthened assemblies might reflect the memory
trace of the experience.

While experiments suppressing sleep ripples have provided invaluable information
about the functional role of ripples, to gain further insight about the specific
role of different replay events, either with respect to network changes or on
the level of memory consolidation, it will be necessary to selectively enhance
or suppress specific ripples based on their associated patterns of activity. It is
possible that not all ripples participate equally in this function, since in most
cases the associated activity patterns do not match identified patterns of wake
activity and appear ‘noisy’. Alternatively, all ripples do participate in valuable
information exchanges, although we are simply unable to recognize the underlying
patterns of activity. Further experiments will be required to address these open
questions.

1.2.2 Awake ripples

Awake ripples occur during prolonged periods of immobility, but also during
brief pauses in exploration, while the rat is engaged in the task. Several studies
have reported differences between these two types of ripples, suggesting that
ripples during prolonged immobility may resemble sleep ripples, while exploration
ripples tend to encode representations relevant to the ongoing (O’Neill et al., 2006;
Csicsvari et al., 2007; Dupret et al., 2010; Ólafsdóttir et al., 2017). Notably, there
are reports of replayed trajectories both in the forward and in the reverse direction
(Figure 1.4).

Reverse replay

Foster and Wilson (2006) reported replay events in CA1 when rats stopped to
consume food at the end of a linear track. Interestingly, hippocampal sequences
replayed the preceding trajectory in reverse order, from the reward zone to the
starting point. Such reverse sequences were more prevalent in novel environments,
suggesting a potential role in learning. The authors proposed that reverse replay,
accompanied by a reward signal such as dopamine, could retroactively assign
value to behaviourally relevant locations.

2One can perhaps relate the early stabilized and gradually strengthened assemblies to the
rigid and plastic cells in Grosmark and Buzsáki (2016), although van de Ven et al. (2016) did
not report a difference in firing rates and spatial information between the two populations.
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Figure 1.4: Forward and reverse replay. CA1 LFP and CA3 place cell spiking activity
before, during, and after a single lap on a linear track. Ripple sequences are highlighted
before (blue) and after (orange) the lap and are magnified at the bottom. Note that forward
replay tends to occur immediately before a lap (’preplay’), while reverse replay takes place
after a lap. Reproduced from Diba and Buzsáki (2007).
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What is the mechanism of reverse replay? Buzsáki (1989) had predicted reverse
sequences during awake ripples, hypothesizing that the activity would sweep
from the most excitable neurons (those receiving spatially tuned inputs for the
current location of the animal) backwards to previously activated neurons, whose
excitability slowly decays. Consistent with this prediction, O’Neill et al. (2006)
reported that ripples occurring during brief pauses in exploration (but not during
prolonged periods of immobility) were often accompanied by replay of trajectories
involving the current location of the rat. Extending these findings, Csicsvari
et al. (2007) reported that, in addition to cells with nearby place fields, more
recently activated neurons tended to fire earlier in ripples, again during brief
pauses but not prolonged immobility. This effect of recent firing history may
favor participation of neurons carrying relevant information about the most recent
events. However, decreasing excitability cannot account for reverse replay of
remote experiences, i.e. replay in one environment of trajectories experienced
long before in a different environment (Karlsson and Frank, 2009).

Further studies have linked reverse replay with rewarding experiences. Singer and
Frank (2009) trained rats on a maze where reward sites could be baited or not
depending on an ongoing rule. Most reactivations when rewards were available
(68%) included reverse replay. Ripple incidence and participation of CA3 neurons
in replay increased in rewarded trials. Moreover, rule changes induced increases
in ripple activity at reward sites. This is consistent with the notion that reverse
replay at reward sites may bind memories of actions with the resulting reward
outcomes, since the need for binding would decrease with familiarity.

Ambrose et al. (2016) further investigated the link between replay and reward by
varying the amount of reward. The number of ripples increased with increased
reward and decreased when reward was removed. Interestingly, this effect
was entirely driven by ripples containing reverse replay, as forward replay was
unaffected by changes in reward. This further supports the idea that reverse
replay plays a role in encoding advantageous experiences.

Forward preplay

Diba and Buzsáki (2007) recorded CA3 place cell activity as rats ran on a
linear track. In addition to reverse replay at reward sites, they also observed
sequences proceeding in the forward direction, describing the future trajectory.
Such forward preplay occurred as rats were facing the track, just before initiating
the next lap.

Forward preplay has also been linked with future behaviour in spatial navigation
tasks. In the early learning phases of a spatial alternation task, forward preplay
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preceded correct trials (Singer et al., 2013). In particular, the proportion of cell
pairs that fired together predicted performance on a trial-by-trial basis. Pfeiffer
and Foster (2013) trained rats to retrieve food rewards on a cheeseboard maze
and compared replay during pauses when rats foraged for food (random walk),
and before they returned to their home cage (goal-based navigation). Forward
preplay selectively occurred during goal-based navigation. Recently, Wu et al.
(2017) placed rats on a track where a restricted zone was associated with mild
electric foot shocks. They described reactivation of place cells representing the
shock zone in ripples occurring as the animal stopped on its way towards the
shock zone, and turned back to avoid it. Collectively, these results suggest a
potential role of hippocampal ripples in memory retrieval, working memory, and
navigational planning.

Extended, remote, and ‘noisy’ replay

In larger environments, replay can span multiple ripples (‘extended replay’,
Davidson et al., 2009). In addition to sequences extending (in the forward or
reverse direction) from the current position of the rat, a considerable proportion
of replay events involve distant trajectories on the track, which do not appear
to be related to the ongoing behaviour (Davidson et al., 2009; Gupta et al.,
2010). In more elaborate environments, sequences can code for never-experienced
‘shortcut’ trajectories, indicating that awake replay does not simply reflect recent
experience, but instead may serve to maintain a complete representation of
the environment (a cognitive map) and possibly retrieve information from this
representation to support goal-driven behaviour (Gupta et al., 2010).

It is important to note that a substantial proportion of ripple activity cannot
be matched to known trajectories. As mentioned earlier, Karlsson and Frank
(2009) documented replay of remote experiences (trajectories). This suggests
that at least some of the ‘noisy’, non-decodable sequences in ripples, correspond
to replay of past experiences, possibly unknown to the experimenter.

Ripples during prolonged immobility

In addition to brief pauses in task-related behaviour, ripples can occur during
longer periods of immobility. Their content is no longer biased to include the
current position of the animal or recently activated neurons (O’Neill et al., 2006;
Csicsvari et al., 2007). Ólafsdóttir et al. (2017) confirmed and extended these
results, providing evidence that cortical responses to CA1 ripples occurring during
prolonged periods of immobility (‘disengaged’) were followed by cortical responses
similar to immobility and sleep ripples, contrary to ripples occurring within 5 s
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before or after movement (‘engaged’). The authors suggested that ‘disengaged’
replay resembles sleep replay and might also be involved in memory consolidation.

Manipulating awake ripples

While studies describing hippocampal activity during awake ripples point to
potential functional roles for these events, manipulation of awake ripples and the
ongoing activity is required to conclusively determine which processes they are
critical for. In a spatial alternation working memory task, Jadhav et al. (2012)
interrupted awake ripples via electrical pulses triggered upon ripple detection.
This impaired performance on the task, indicating that awake ripples play
a role in navigational decision making, which requires integrating immediate
past experience with a known rule. Consistently, perturbation of awake
replay increases vicarious trial and error (Papale et al., 2016), an exploratory
behaviour related to decision making (Tolman, 1938). Future studies will need
to determine whether awake ripples at trial onset (mostly forward replay) vs at
reward consumption (mostly reverse replay) contribute equally to navigational
planning. On the other hand, Wang et al. (2016) reported that muscimol
inactivation of the medial septum resulted in impaired performance, although
awake replay was not affected by the pharmacological treatment. Thus, while
awake replay contributes to navigational planning, additional mechanisms appear
to be required. Incidentally, perturbation of awake replay did not seem to affect
post-task reactivation (Jadhav et al., 2012), which also argues for complementary
mechanisms to bridge the gap between awake and sleep processes (see chapter 9).

Recently, Roux et al. (2017) directly tested another proposed role of awake replay,
namely in constructing and stabilizing the cognitive map of the environment
(Gupta et al., 2010). In rats performing a spatial memory task, they
optogenetically inhibited hippocampal neurons during awake ripples occurring
at goal locations. During subsequent exploration, the place fields of the inhibited
neurons were destabilized, while the place fields of the remaining neurons
remained stable. Intriguingly, optogenetic inhibition during sleep ripples does
not trigger a similar perturbation of place fields (Kovács et al., 2016), suggesting
a specific role of awake ripples in the immediate stabilization of hippocampal
spatial representations.

Conclusion

Hippocampal sharp wave-ripple complexes are transient events of highly
synchronous neuronal activity that typically occur during ‘offline’ brain states.
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This endogenous surge of activity consists in behaviourally relevant spiking
patterns, describing spatial trajectories. They have been shown to play a critical
role in memory consolidation during sleep and in navigational planning during
awake behaviour. These processes may require the involvement of multiple
brain areas beyond the hippocampus. In the next chapter, I discuss the direct
and indirect effects ripples exert on target cortical and subcortical areas, which
are thought to play a key role in information processing and semantic network
reconfiguration.
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Chapter 2

Extrahippocampal reactivations
in concert with ripples

Beyond their local impact within the hippocampal formation, synchronous
hippocampal outputs during ripples strongly depolarize CA1 target regions,
including the subiculum, deep layers of the entorhinal cortex, and multiple
neocortical and subcortical areas. Both direct and indirect effects of hippocampal
ripples have been reported, with hippocampal replay often leading, but in some
cases following, neuronal reactivations in other brain areas. This chapter presents
the evidence for a functional interplay between hippocampal ripples and patterns
of cortical and subcortical activity.

2.1 Entorhinal cortex

The subiculum and the deep layers of the entorhinal cortex are prominent
targets of CA1 outputs. In awake rats, Chrobak and Buzsaki (1994) recorded
increased activity in response to ripples in the subiculum and deep (V/VI) but
not superficial (II/III) layers of the entorhinal cortex. Chrobak and Buzsáki
(1996) extended these findings in awake and sleeping rats, showing that the
highly synchronous resultant activity, in both the subiculum and the deep layers
of the entorhinal cortex, led to local ripples which followed hippocampal CA1
ripples with a 5–30 ms lag. The authors suggested that this strong depolarization
might represent a physiological mechanism for relaying memory traces from the
hippocampus to other brain areas such as the neocortex.

Recently, two studies have addressed a possible coupling between entorhinal and
hippocampal neuronal activities during replay of memory traces. Ólafsdóttir
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et al. (2016) simultaneously recorded hippocampal place cells and grid cells
from deep layers of the medial entorhinal cortex (MEC). While the number
of simultaneously recorded grid cells was limited (in many cases three at a
time) due to the challenging nature of the recordings, using clever analyses
the authors were able to quantify cross-structural replay. They first detected
hippocampal reactivation events and decoded neuronal activity as a spatial
trajectory. They then showed that the grid cell representation was spatially
coherent with the hippocampal template. The position encoded by the entorhinal
cortex lagged behind hippocampal replay by ∼11 ms, which is consistent with
monosynaptic propagation delays from CA1. This suggests that hippocampal
replay is translated into replay in deep layers of the MEC, possibly relaying spatial
information to the neocortex. Interestingly, in a follow-up study, Ólafsdóttir et al.
(2017) reported that a similar coordination takes place in awake ripples during
prolonged (>10 s) but not brief periods of immobility (although the number of
recorded replay events was small: prolonged <400; brief <150). They concluded
that awake ripples during rest periods might contribute to systems memory
consolidation by communicating information to downstream targets through the
deep layers of the MEC. On the other hand, ‘engaged’ ripples (during brief periods
of immobility) may play a role in navigational planning through a pathway
independent of the MEC; this pathway is likely to involve the prefrontal cortex
(see section 2.2).

In a complementary study, O’Neill et al. (2017) compared reactivations between
the hippocampus and the superficial layers of the MEC. While they did report
replay in both regions, these were not temporally coupled. Moreover, the
decoded spatial representations of the two regions did not overlap. These
findings indicate that, unlike cells in deep layers of the entorhinal cortex,
neurons in superficial layers replay task-related trajectories independently of
the hippocampus. Surprisingly, superficial MEC replay events were not more
likely than chance to be preceded or followed by hippocampal ripples. This
is puzzling given that the superficial MEC is the main input area of the
hippocampus, suggesting that ripples should at least be biased by strong
synchronous inputs. Similarly, some of the areas projecting to the MEC
respond to hippocampal ripples, so one might expect increased ripple probability
preceding MEC events. Neither of these expected relationships was observed,
and the authors proposed that superficial MEC replay may represent a parallel
reactivation system with a role different from that of hippocampal ripples. Given
the extensive multi-regional effects of hippocampal ripples, it is unclear how such
a system may remain independent of hippocampal ripples. Investigating the
timing of superficial MEC replay relative to prominent field events in its input
areas, notably delta waves or spindles, may provide informative cues. Crucially,
determining the potential behavioural impairments resulting from blockade of
superficial MEC replay may give insight into the possible functions of this
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hypothesized system.

In summary, while the deep layers of the MEC may relay hippocampal
information to the neocortex, the role of reactivations in superficial layers remains
unknown. In both cases, experiments manipulating neuronal activity in the
respective layers will be required to shed light on the functional roles of these
reactivation patterns.

2.2 Associative cortices

The medial prefrontal cortex (mPFC) receives direct projections from the
intermediate and ventral CA1 regions, as well indirect hippocampal projections
through the subiculum, the entorhinal cortex, and multiple subcortical areas
(Cenquizca and Swanson, 2007). In sleeping rats, Siapas and Wilson (1998)
showed increased activity in the mPFC up to a second after the onset of
hippocampal ripples. Wierzynski et al. (2009) found that during sleep a subset
of mPFC cells reliably respond to hippocampal firing with a short latency of
11-18 ms, consistent with known monosynaptic delays (Tierney et al., 2004)
while a larger population response follows ∼100 ms later. Both responses were
most prominent for hippocampal spikes during ripples, supporting the notion that
ripple activity communicates information to the prefrontal cortex during sleep.

Peyrache et al. (2009) recorded neuronal activity from the mPFC and the
hippocampus of rats trained on a set-shifting task, and provided the first
evidence for a temporal coupling between hippocampal ripples and reactivation
of task-related mPFC assemblies. In the mPFC, reactivation strength of
task-related co-activity patterns increased around hippocampal sleep ripples,
reaching a peak 40 ms after the ripple peak. One can speculate that this
is indicative of a polysynaptic response, either within the local prefrontal
network, or (this is not mutually exclusive) through the entorhinal cortex or
the thalamic nucleus reuniens. The finding that mPFC reactivation closely
follows hippocampal ripples lends support to the notion that ripples can trigger
reinstatement of neocortical assemblies in a process that would underlie the
reorganization and stabilization of neocortical memory traces (Frankland and
Bontempi, 2005).

A substantial fraction (∼35%, excitatory and inhibitory) of mPFC neurons also
respond to awake hippocampal ripples (Jadhav et al., 2016). This coordination
might contribute to decision-making and deliberation dependent on awake ripples
(Jadhav et al., 2012). In this view, ripples during brief pauses in exploration would
select prefrontal representations that are relevant to ongoing behaviour, including
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working memory retrieval and navigational planning. Interestingly, Tang et al.
(2017) showed that responses of a prefrontal neuron to awake and to sleep ripples
are not correlated, and thus awake and sleep ripples appear to modulate distinct
neuronal populations. In light of the results of Ólafsdóttir et al. (2017) presented
above (section 2.1), one could speculate that the responses to sleep and awake
ripples may reach the prefrontal cortex through different pathways. Sleep and
prolonged immobility ripples might modulate the prefrontal cortex directly or via
the deep layers of the entorhinal cortex, whereas awake ripples might modulate
prefrontal neurons through a different pathway, either via direct projections or a
relay area such as the nucleus reuniens.

The parietal cortex, although it receives no direct projections from the
hippocampus, has also been shown to reactivate task-related activity following
sleep ripples. Wilber et al. (2017) recorded in multiple sites (300 µm apart) in
the parietal cortex, and found that the multiunit activity on a given site encoded
movements as the animals were performing a navigation task. Treating each
parietal recording site as a unit, they found reactivation of compressed (4–10 fold)
sequences of activity that followed hippocampal ripples by ∼100 ms. Their
functional role in memory consolidation remains unknown.

Another cortical area that has received limited attention in its relation to the
hippocampus is the retrosplenial cortex, where place cells have been recorded.
These have been shown to reflect direct hippocampal inputs (Mao et al., 2017),
and are therefore likely to reactivate during ripples, although to my knowledge
no studies have yet investigated this.

2.3 Sensory cortices

While many regions that receive direct CA1 projections respond to hippocampal
ripples with brief delays, the temporal relationship between ripples and activity
in sensory cortices appears more variable. In the somatosensory cortex, neuronal
activity peaks ∼100 ms before hippocampal ripples (Sirota et al., 2003).
DOWN-UP transitions in the visual cortex lead hippocampal periods of elevated
activity (‘frames’) by ∼50 ms, and reactivation can be observed simultaneously
in the hippocampus and visual cortex (Ji and Wilson, 2007), consistent with the
idea that that replay-rich periods are initiated by the neocortex, which would
provide context and thus bias hippocampal activity; hippocampal replay, via
some intermediary region, would then bias cortical activity towards a matching
cortical replay, resulting in systems consolidation.

Bi-directional information flow was also documented between the hippocampus
and the auditory cortex (Rothschild et al., 2017). Not only did CA1 activity
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during sleep ripples predict subsequent cortical activity, but in addition, a
subpopulation of cortical neurons elevated their firing rates prior to ripple onset,
effectively predicting ripple occurrence and even replay content. To probe this
potential cortico-hippocampal communication, task-related sounds were played
during sleep. The sounds biased neuronal activity in the auditory cortex as well as
subsequent hippocampal ripple activity, supporting the notion that during ripples
information can flow from the cortex to the hippocampus. This extends previous
results by Bendor and Wilson (2012), who trained rats to retrieve food rewards on
the left or right side of a track, depending on instructing sounds. Playing the same
instructing sounds during slow-wave sleep biased subsequent reactivation events
– for at least 10 s following sound presentation, replay was ∼10% more likely
to involve the trajectory associated with the respective sound. Together, these
studies provide evidence that cortico-hippocampal communication can affect
ripple activity.

While the above studies did not include behavioural readouts of effective memory
consolidation, they provide a plausible mechanism for the intriguing phenomenon
of targeted memory consolidation. A body of work in humans has established
that after a task involving the presentation of cues such as odors (Rasch et al.,
2007) or sounds (Rudoy et al., 2009), re-exposing subjects to the cues during
slow-wave sleep can selectively strengthen cue-associated memories and improve
recall performance. Evidence from rodent studies suggests that targeted memory
consolidation is related to the ability of sensory cortices to bias hippocampal
replay during sleep ripples. Causal studies blocking or enhancing cortical activity
assumed to bias ripple content will be required to provide conclusive support for
this hypothesis.

2.4 Subcortical areas

A number of studies have addressed how hedonic values (representations of
rewarding versus aversive stimuli) are integrated into memory traces, and how
activity in relevant subcortical areas is related to hippocampal replay during
ripples.

Ventral tegmental area

The ventral tegmental area (VTA) has long been known to be involved in reward
associations. During awake behaviour, ripples are more prevalent at reward
sites (Singer and Frank, 2009), and reward-responding neurons in the VTA fire
in coordination with hippocampal ripples, especially during replay of rewarded
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locations (Gomperts et al., 2015). Could such coupling be instrumental in forming
reward-place associations? De Lavilléon et al. (2015) used a closed-loop protocol
that paired the activity of one place cell with stimulation of the medial forebrain
bundle, known to elicit reward signals, in particular via the VTA. During the
subsequent test session, mice headed directly toward the place field of the paired
neuron, attesting that a memory trace had been formed during sleep. This
indicates that VTA activation during hippocampal ripples is sufficient to establish
new associations, most likely involving multiple brain areas1. But does such
associative memory consolidation actually take place during natural sleep? While
the VTA does reactivate reward-related firing patterns in post-task sleep (Valdés
et al., 2015), there is no evidence that such reactivations are coordinated with
hippocampal ripples. On the contrary, Gomperts et al. (2015) reported that the
coordination between VTA firing and ripples observed in the awake state is greatly
diminished during sleep. Instead, they suggested that VTA activity during awake
ripples may serve to link reward representations across brain regions, setting the
stage for subsequent consolidation.

Ventral striatum

The ventral striatum is a candidate region for such a process. Pennartz et al.
(2004) showed that activation patterns observed in the ventral striatum during
behaviour are reactivated in post-task sleep and also that reactivated neurons
fire more around sleep ripples. In a follow-up study, Lansink et al. (2009)
reported cross-structural replay on a compressed (10-fold) timescale, where
hippocampal place cells fire in sequence, replaying the trajectory leading up to
a goal zone, followed by reward-responding cells in the ventral striatum. Such
joint reactivation of hippocampal and ventral striatal neurons may underlie the
off-line consolidation of memories associating a place with a reward. Awake
ripples may play a role in the initial formation of such memories – recently, Sosa
et al. (2017) reported neurons in the ventral striatum that respond to awake
ripples. These studies are consistent with the hypothesized VTA-dependent
mechanism described above. In this proposed scenario, the associative memory
is formed as neurons from the hippocampus and the striatum are active
together during awake ripples in reward zones, memory-trace formation is
facilitated by the concurrent dopaminergic drive from the VTA, and the linked
hippocampo-striatal representations are consolidated in cross-structural replay
during sleep ripples. Validating this hypothesis will require testing whether
joint VTA–hippocampus–striatum activity during awake ripples is required for
cross-structural replay in sleep ripples and whether such cross-structural replay

1In addition, this study was the first to show that a place cell’s activity during sleep conveys
the same spatial information as during behaviour.
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is crucial for memory consolidation and thus future retrieval.

Locus coeruleus

In addition to memory of reward associations, dopamine mediates the facilitation
of synaptic plasticity induced by novelty (Li et al., 2003). This is expected
to have an impact on memory consolidation, as optogenetic stimulation of
VTA dopaminergic terminals enhances hippocampal ripple reactivations and
memory performance (McNamara et al., 2014). Indeed, mere exposure to a
novel environment can promote the retention of recent memories preceding
the novel experience (Ballarini et al., 2009). While the VTA has long been
thought to mediate the effects of novelty, recently Takeuchi et al. (2016) reported
that memory enhancement is instead induced by dopamine co-released from
noradrenergic terminals of the locus coeruleus (LC). It is not yet known how
this activity is related to awake ripples.

Basolateral amygdala

The interactions between hippocampal ripples and activity patterns in the
basolateral amygdala (BLA) were investigated by Girardeau et al. (2017), who
studied the consolidation of aversive associations. They trained rats on a
place-threat association task, in which an aversive air puff was delivered at a
specific location on a linear track, in one running direction only, resulting in
one ‘air puff’ and one ‘safe’ trajectory per complete lap. The location of the
air puff was changed every day, and thus the rats had to learn a new location
in each recording session. The authors documented hippocampo-amygdalar
co-activation patterns during subsequent sleep, coinciding with sleep ripples.
Notably, only patterns observed in the ‘air puff’ direction were enhanced relative
to pre-task sleep. These results suggest that the hippocampus reactivates
contextual information while the amygdala reactivates the emotional value of
the memory, and that these two components are integrated during ripples to
consolidate aversive memories.

Conclusion

Ripples are not isolated hippocampal events, but a vital component of a process
spanning multiple brain regions. Awake ripples are followed by responses in
the VTA, the ventral striatum, the prefrontal cortex, but not in the entorhinal
cortex (except during prolonged periods of immobility). Sleep ripples, possibly
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biased by cortical inputs, may initiate reactivations of cortical ensembles and
even cross-structural reactivations, involving other areas including the deep layers
of the entorhinal cortex, the prefrontal cortex, the ventral striatum, and the
amygdala that provide spatial, appetitive, and aversive context to complement
hippocampal signals. How are these reactivations temporally organized? The
next chapter discusses the cortical sleep rhythms which are believed to orchestrate
brain communication during slow wave sleep.
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Chapter 3

Cortical sleep rhythms

On the basis of EEG patterns, sleep has been divided into rapid eye movement
(REM) sleep and non-REM sleep, also termed slow wave sleep (SWS)1. The
electrophysiological patterns in REM sleep are markedly similar to waking
patterns, namely low amplitude, high frequency signal in the cortex, and theta
oscillations in the hippocampus. On the other hand, SWS is associated with
the slow oscillation and sleep spindles in the cortex and with ripples in the
hippocampus. SWS and REM stages alternate in cycles and the roles of these two
sleep periods and their underlying mechanisms are likely to be complementary
(Diekelmann and Born, 2010). In this chapter, I describe the rhythms that are
the hallmarks of slow wave sleep, namely, the slow oscillation and sleep spindles.

3.1 Slow oscillation

Perhaps the most prominent sleep rhythm is the cortical slow oscillation
(Figure 3.1) – the generalized alternation between a depolarized (UP) state a
hyperpolarized (DOWN) state of synchronized cortical neurons (Steriade et al.,
1993c). The DOWN state is characterized by a transient cessation of firing and
a positive deflection of the local field potential in deep cortical layers, known as
a delta wave (Sirota and Buzsáki, 2005). This is because the large neurons in
cortical layer V contribute most to the measurable extracellular currents – when
these cells become hyperpolarized during a DOWN state, current is drawn from
the superficial layers, where delta waves have reversed polarity (Figure 3.1A).

1While the term ‘SWS’ is often used to denote exclusively the deep stages of non-REM
sleep, where the slow wave amplitude is highest, in this manuscript, SWS refers to all stages of
non-REM sleep.
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Figure 3.1: The cortical slow oscillation. A. Laminar distribution of delta waves recorded
in sleeping cats (average of n=50 events). Note the potential reversal at 0.3 mm depth. B.
Example of simultaneous LFP and intracellular recordings of a layer V neocortical neuron
in a sleeping cat. Note the hyperpolarized cell membrane potential (DOWN state) and the
accompanying positive wave at the LFP level (delta wave). C. In SWS recorded in the rat,
the distribution of intervals between DOWN states is approximately exponential, indicating
that in natural sleep DOWN state occurrence is not periodic, but rather a random process,
and does not reflect a true oscillation. D. Distribution of membrane potential values of
a cortical neuron across behavioural states. Note the bimodality and in particular, that
the DOWN state is only present in SWS. A, B, C, and D are adapted from Amzica and
Steriade (1997), Johnson et al. (2010), Steriade et al. (2001), and Timofeev and Bazhenov
(2005), respectively.
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In natural slow wave sleep, the DOWN state lasts for ∼200 ms and is followed by
a much longer UP state (up to several seconds). In contrast with natural sleep,
ketamine-xylazine anaesthesia dramatically increases the duration of the DOWN
state and decreases that of the UP state; the slow oscillation also becomes more
rhythmic (Chauvette et al., 2011). However, in natural sleep, the term ‘slow
oscillation’ can be considered a misnomer given that DOWN state occurrence is
stochastic rather than rhythmic (Figure 3.1C).

The slow oscillation is generated in the cortex – it is absent in the thalamus of
decorticated cats (Timofeev and Steriade, 1996) and it persists in deafferented
cortical slabs (Timofeev et al., 2000) and cortical slices in vitro (Sanchez-Vives
and McCormick, 2000), albeit with a prolonged DOWN state lasting for tens of
seconds. The DOWN state is not caused by inhibition – interneurons are also
silent during DOWN states, and reversing the action of GABAA channels2 does
not abolish the slow oscillation (Timofeev et al., 2001b). Rather, the DOWN
state is a period of disfacilitation, a reduction of cortical synaptic excitation, and
requires leak potassium current, which reduces the resting membrane potential of
cortical neurons (Timofeev et al., 2001b). This is why DOWN states only occur
in slow wave sleep – in the awake brain and in REM sleep, increased cholinergic
activity blocks potassium conductance, preventing DOWN states from taking
place (Steriade et al., 1993a). Indeed, all brain states other than SWS can be
thought of as persistent UP states (Shu et al., 2003).

3.1.1 UP/DOWN state initiation

In isolated cortical slabs (Timofeev et al., 2000) and slices (Sanchez-Vives and
McCormick, 2000), DOWN states are prolonged, lasting up to a minute, and
UP state terminations are less synchronous than in the intact brain (Volgushev
et al., 2006). This indicates that although the slow oscillation can be sustained
by a cortical network, in natural conditions extra-cortical inputs help trigger
DOWN-UP and UP-DOWN transitions. Indeed, Shu et al. (2003) showed that
local electrical stimulation (within layer V, within layers II/III, or in the white
matter below the recording site) can terminate the current state, be it an UP
state or a DOWN state, and trigger a state change. Therefore strong synchronous
inputs to the cortex can help drive the slow oscillation.

There is strong evidence that inputs from the thalamus trigger DOWN-UP

2Timofeev et al. (2001b) recorded cortical neurons with intracellular pipettes filled with
KCl, which changes the chloride reversal potential of GABAA receptors and transforms the
membrane response to GABAA receptors from hyperpolarizing to depolarizing. While this
increased the neuronal firing rate during UP states, it did not affect DOWN state occurrence,
indicating that the DOWN state is not maintained by GABAA-mediated inhibition.
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transitions, and that the timing of thalamic activity leads to the short duration of
DOWN states (Destexhe et al., 2007). Thalamic neurons are highly synchronous
with the ongoing slow oscillation, and thalamocortical projection cells burst
at the end of the DOWN state, typically preceding the first cortical spikes
in the UP state (Contreras and Steriade, 1995). In cortical slices, Rigas and
Castro-Alamancos (2007) showed that stimulating the thalamus reliably triggered
cortical UP states, whereas cutting the connections between thalamus and cortex
reduced UP state incidence.

With respect to UP-DOWN transitions, progressive synaptic depression and
disfacilitation have been proposed to bring the network to a silent state (Timofeev
et al., 2001b; Bazhenov et al., 2002). However, Volgushev et al. (2006) showed
that UP-DOWN transitions occur very synchronously in a cortical network, even
more so than DOWN-UP transitions. The authors proposed the existence of a
subpopulation of inhibitory cells that fire synchronously at the end of UP-states,
triggering the DOWN state in all neurons including themselves. This idea
was supported by Chen et al. (2012), who found that increasing interneuronal
excitability lead to an enhanced UP-DOWN transition synchrony. They also
developed a detailed computational model which reproduced these findings and
predicted that interneuron-pyramidal connections could account for the high
synchrony of the DOWN-UP transition. Supporting this, Lemieux et al. (2015)
found increased inhibition preceding the UP-DOWN transition in sleeping cats.

Such increased inhibition is also a candidate mechanism for the synchrony of
DOWN-UP transitions in response to inputs. Shu et al. (2003) reported that
electrical stimulation during the UP state (triggering an UP-DOWN transition)
resulted in a larger response of inhibitory cells as compared to the same
stimulation during the DOWN state (triggering an DOWN-UP transition).
Jercog et al. (2017) developed a rate model which indicated that stimulation
during the DOWN state serves as a bump of activity that triggers a DOWN-UP
transition, whereas stimulation during an UP state results in excess inhibition,
triggering an UP-DOWN transition. Indeed, DOWN states can be brought about
by electrical stimulation (Amzica and Steriade, 1997; Vyazovskiy et al., 2009).
In natural conditions, DOWN states would be triggered by strong input from
cortical afferent areas. Indeed, UP-DOWN transitions are less synchronous in
deafferented cortical slabs (Lemieux et al., 2015), suggesting that inputs to the
cortex play a role in triggering UP-DOWN transitions (see section 4.1.1).

3.1.2 Extent of silence in delta waves

While delta waves represent periods of synchronized silence, as perhaps it may be
expected in a biological system, there are limits and exceptions to this synchrony.
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Figure 3.2: Examples of spikes recorded during delta waves in rats under urethane
anaesthesia. A. Wideband multichannel recording of layer V of the somatosensory cortex.
Note the spikes occurring while the rest of the network is silent (red arrows). B. Top:
population raster of 92 simultaneously recorded single units (sorted by firing rate) in the
deep layers of the somatosensory cortex. Note the spikes during the synchronized DOWN
state (red arrows). Bottom: instantaneous population rate and the detected UP states (U,
orange) and DOWN states (D, purple). A and B are adapted from Csicsvari et al. (2003)
and Jercog et al. (2017), respectively.

There are two temporal scales for considering the extent of the neuronal silence.

On the macro-scale, delta waves do not occur in the whole cortex at once. Rather,
they propagate across the cortex at 1-7 mm/ms typically in the anterioposterior
direction (Massimini et al., 2004), most likely through long-range connections
(Compte et al., 2003). While some delta waves may travel through the whole
cortex, others remain localized events (Massimini et al., 2004). In such cases, a
DOWN state may occur in one cortical area, resulting in neuronal silence and a
delta wave, but not take place in a nearby area only 1 mm away, where neurons
continue to fire and there is no delta wave (Sirota and Buzsáki, 2005).

On a smaller scale, there have been cases of ‘rogue neurons’ continuing to fire
despite the ongoing DOWN state of the rest of the population (Figure 3.2).
These have often been overlooked, and attention has been brought instead of
the relative silence of the network. Note that while Hahn et al. (2012) reported
medial entorhinal cortex (MEC) neurons remaining active during certain DOWN
states, the network DOWN states were estimated from the LFP in the medial
prefrontal cortex, and it is therefore possible that these delta waves have simply
failed to propagate to the MEC.
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CHAPTER 3. CORTICAL SLEEP RHYTHMS

3.1.3 Delta waves and synaptic plasticity

The slow oscillation has been shown to induce synaptic plasticity. In an elegant
study, Chauvette et al. (2012) recorded the spikes of a cortical neuron and the
accompanying LFP signal from a sleeping cat, and then used this SWS pattern as
a stimulation protocol in vitro – stimulation pulses were matched to replicate the
pre-recorded spike train, thus mimicking realistic input to the target cell. In the
absence of the slow oscillation, this stimulation protocol only resulted in transient
facilitation of synaptic activity but no long-term potentiation (LTP). In the
slow oscillation condition, the protocol was accompanied by introducing the slow
oscillation in the target neuron by hyperpolarizing it with an intracellular current
pattern emulating DOWN states in time with the delta waves in the pre-recorded
SWS pattern. This ‘full sleep-like protocol’ with a realistic stimulation pattern
delivered in UP states interleaved by hyperpolarized DOWN states resulted in
long-lasting synaptic plasticity in a calcium-dependent mechanism. (Chauvette
et al., 2012)

This suggests that while the cortex is largely unresponsive to outside inputs
during DOWN states (Timofeev et al., 1996), the DOWN state is required to bring
cortical neurons to a more receptive state for synaptic plasticity during the UP
state, where neuronal activity occurs, including the reactivation of awake-related
neuronal patterns (Euston et al. 2007; Ji and Wilson 2007; Johnson et al. 2010;
Peyrache et al. 2011, see chapter 2) and gamma oscillations (Mukovski et al.,
2007), possibly due to coincident cholinergic inputs (Mena-Segovia et al., 2008).
In particular, cortical neuronal activity peaks just after UP-DOWN transitions
(Destexhe et al., 1999). Destexhe et al. (2007) proposed that this synchronous
activity might represent a window of synaptic plasticity. Moreover, it has been
suggested that the thresholds for triggering synaptic plasticity might change with
the level of background activity in a network; in such a case, the silence preceding
the DOWN-UP transition might further enhance the efficacy of synaptic plasticity
as the first spikes in an UP state would occur in a context of minimal background
activity (El Boustani et al., 2012). Such a mechanism may help explain the results
of Chauvette et al. (2012) in the paragraph above.

What happens at the UP state onset? In thalamocortical slices, MacLean
et al. (2005) reported that cortical neurons fire in reproducible sequences after
DOWN-UP transitions. Importantly, the thalamocortical bursts that initiate
UP states (see section 3.1.1) would not bias the UP state activity, which is
determined by local dynamics alone (MacLean et al., 2005). Luczak et al. (2007)
first reported these sequences in vivo and showed that the average latency of
the activation of a given neuron at the UP state onset did not correlate with
cell excitability, and that sequential activations were preserved regardless of the
direction of the travelling delta wave. These sequences do not reflect delta wave
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3.1. SLOW OSCILLATION

propagation, but rather possibly synaptic weights brought about by experience
in behaviour (Buzsáki 20063, also see chapter 5). Such sequential activity also
has consequences: neurons firing in repeated sequences facilitate the emergence
of LTP at the UP state onset (Levenstein et al., 2017; Kruskal et al., 2013).

Recently, Khodagholy et al. (2017) recorded neural activity from the surface of
the brain in sleeping rats and reported cortical oscillations in the ripple band at
UP state onsets in association cortices, including parietal, retrosplenial, anterior
cingulate, and medial prefrontal cortex. The relation between these oscillatory
events and cortical sequences, synaptic plasticity, and memory consolidation
remain to be explored, but the similarities with hippocampal ripples (sequential
activity, ripple-band oscillations) make them worthy of further investigation.

3.1.4 Delta waves and memory consolidation

Whether the effects of the slow oscillation on synaptic plasticity are direct
(e.g. sequences at UP state onset) or indirect (e.g. through orchestrating
other rhythms, including sleep spindles), there is ample evidence for a role of
the slow oscillation in memory consolidation. After humans learn a declarative
memory task, slow oscillation amplitude and UP state duration have been shown
to correlate with subsequent performance after sleep (Heib et al., 2013). In an
elegant study, Huber et al. (2004) showed that learning a motor skill selectively
enhanced slow oscillation amplitude in the cortical area associated with the task,
and further, the degree of enhancement predicted performance improvement.

Beyond correlational studies, other works have addressed the causality of the
relation between the slow oscillation and memory consolidation. In sleeping
humans and rats, transcranial stimulation in sleep at the frequency of the slow
oscillation was reported to enhance memory consolidation of declarative memory
(Marshall et al., 2006; Binder et al., 2014). However, more recent studies
have failed to replicate this effect (Eggert et al., 2013; Sahlem et al., 2015)
and questioned whether transcranial stimulation can entrain the slow oscillation
(Lafon et al., 2017). Still, a different technique – closed-loop auditory stimulation
in phase with the ongoing slow oscillation – reliably boosts the slow oscillation
and enhances declarative memory retention (Ngo et al., 2013), confirming that the
slow oscillation plays a critical role in memory consolidation. The authors have
suggested that this could be mediated by increased slow wave amplitude as well
as temporal alignment of sleep spindles, although an alternative interpretation
based on the temporal coupling between the slow oscillation and hippocampal

3Although “Rhythms of the Brain” was published before the article of Luczak et al. (2007),
György Buzsáki, as one of the authors of the article, was aware of the work and discussed it in
Buzsáki (2006) on page 194.
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Figure 3.3: Sleep spindles. A. In vivo intracellular recordings of a cortical neuron, a
thalamocortical cell (TC), and a thalamic reticular neuron (RT) throughout a spindle
sequence. B. Average neocortical currend source density (CSD) centred on spindles,
highlighting deep neocortical sink-source pairs. Approximate positions of neocortical layers
are indicated on the right. A, B are adapted from Timofeev and Bazhenov (2005) and
Sirota et al. (2003), respectively.

ripples is possible (see section 7.1).

3.2 Sleep spindles

Sleep spindles are thalamocortical waxing-and-waning oscillatory events
(10–15 Hz) (Berger, 1933; Steriade et al., 1993b) which occur mostly in the light
stages of NREM sleep. Spindles are embedded in the cortical slow oscillation,
closely following delta waves, triggered by the upsurge of activity of cortical
cells after a DOWN-UP transition (Amzica and Steriade, 1997; Peyrache et al.,
2011), although some occur spontaneously in isolation (Sirota and Buzsáki, 2005;
Peyrache et al., 2011).

Spindles are thalamocortical events involving three populations of neurons:
thalamic reticular neurons, thalamocortical cells and cortical neurons
(Figure 3.3). Thalamic reticular neurons, which are densely interconnected by
gap junctions, synchronously burst and inhibit thalamocortical neurons. This
hyperpolarization de-inactivates a low-threshold Ca2+ current, which leads to low-
threshold calcium spikes and induces bursts of action potentials. Thalamocortical
bursts excite thalamic reticular neurons via a feedback mechanism and also
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project to neocortical dendrites. The neocortical afferents to both thalamocortical
cells and thalamic reticular cells synchronizes sleep spindles (Contreras et al.,
1996; Destexhe et al., 1998). Spindle termination proceeds through the waning
phase, where the network becomes desynchonized, possibly due to out-of-phase
cortical feedback (Timofeev et al., 2001a; Gardner et al., 2013).

3.2.1 Spindles and synaptic plasticity

Spindles are known to promote synaptic plasticity (Sejnowski and Destexhe, 2000;
Steriade and Timofeev, 2003). The thalamocortical inputs to cortical dendrites
result in massive calcium entry in neocortical neurons (Contreras et al., 1997;
Seibt et al., 2017). Applying spindle-like stimulation patterns in vitro induces
long-term potentiation in cortical synapses via an NMDA receptor-dependent
process (Rosanova and Ulrich, 2005).

In a recent calcium imaging study, Seibt et al. (2017) showed that spindles are
associated with calcium entry into cortical dendrites, but not into the cell bodies
of the same neocortical cells. This decoupling of dendritic and somatic activity
might be due to increased inhibitory drive during sleep spindles (Contreras et al.,
1997; Peyrache et al., 2011). This dissociation implies that dendritic synaptic
plasticity could take place in the absence of any resulting spiking activity through
a non-Hebbian mechanism, which could make it difficult to interpret the spiking
patterns recorded during sleep spindles (Seibt et al., 2017).

3.2.2 Spindles and memory consolidation

Spindle activity has been shown to play a role in memory consolidation.
The rate of spindle occurrence increases in sleep after learning a declarative
memory tasks in both humans (Gais et al., 2002) and rats (Eschenko et al.,
2006). Moreover, pharmacologically enhancing sleep spindle occurrence improves
declarative memory performance in healthy humans (Mednick et al., 2013).

Conclusion

During SWS, neocortical neurons alternate between silent DOWN states and
active UP states. Like hippocampal ripples, SWS rhythms are closely associated
with memory consolidation. In particular, the calcium entry during sleep
spindles and the elevated activity and spiking sequences at the DOWN-UP
transition result in optimal windows for synaptic plasticity. The efficacy of
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the hippocampo-cortical dialogue in the consolidation of memory would rely on
temporal coordination between these events. In the next chapter, I discuss the
coupling between ripples and these prominent sleep rhythms.
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Chapter 4

Hippocampo-cortical coupling

Ripple occurrence is irregular, yet it is coupled with other recurrent brain
rhythms. Most notably, ripple timing is influenced by the neocortical slow
oscillation and by thalamocortical sleep spindles (Figure 4.1), possibly because
inputs to the hippocampus may advance or delay the occurrence of forthcoming
ripples (Buzsáki, 2006). In turn, ripple activity may influence the timing of these
two sleep rhythms. This chapter describes the coupling of hippocampo-cortical
rhythms and its role in systems memory consolidation.

4.1 Slow oscillation

Because both ripples and delta waves are recurring events, it is difficult to infer
causal relationships between the two activity patterns based on their relative
timing. Delta waves tend to follow hippocampal ripples, suggesting that ripples
might facilitate a forthcoming UP-DOWN transition. There are also reports of
ripples immediately following delta waves; this is likely related to the surge of
cortical activity during the DOWN-UP transition, as discussed below.1

1Due to the traveling nature of cortical delta waves (with a tendency to propagate from
anterior to posterior areas), the precise timing between delta waves and hippocampal ripples
may vary between regions. However, given the estimated speeds of delta wave propagation
(1.2–7 m/s) (Massimini et al., 2004) and the duration of a typical delta wave (∼200ms), the order
of events (ripple-delta versus delta-ripple) is not expected to be affected by delta propagation.

39



CHAPTER 4. HIPPOCAMPO-CORTICAL COUPLING

100 ms

H
P

C
 L

F
P

 
(1

0
0

–
2

5
0

 H
z)

m
P

F
C

 L
F

P
(0

–
2

0
 H

z)

Figure 4.1: A representative example of hippocampo-cortical coupling, showing low-pass
filtered (0–20 Hz) prefrontal LFP and simultaneously recorded hippocampal LFP filtered in
the ripple band (100–250 Hz, ripples are highlighted in red). Note the first ripple preceding
the delta wave (blue), the second ripple following the delta wave while preceding the spindle
(green), and the last two ripples embedded in the spindle oscillation.

4.1.1 Ripples preceding delta waves

The first systematic study of a temporal coupling between delta waves and ripples
was provided by Sirota et al. (2003), who showed that while ripples follow periods
of elevated activity in the somatosensory cortex, they precede somatosensory delta
waves by 50–150 ms. The authors suggested that this coupling could mediate
coordinated information transfer between the hippocampus and the neocortex.

A possible mechanism for ripple-delta coupling is that the surge of excitatory
activity serves as a ‘kick’ that destabilizes the UP state and thus biases the
transition from an UP to a DOWN state (Jercog et al., 2017). Consistently,
hypersynchronous recruitment of hippocampal neurons through strong electrical
stimulation of the ventral hippocampal commissure leads to a decrease in
prefrontal activity lasting ∼200 ms (Girardeau et al., 2009), comparable to the
duration of a DOWN state, as well as to an increase in delta power (Gelinas et al.,
2016), consistent with a contribution of ripples in facilitating the emergence of
delta waves.

Evidence for a possible role of ripple-delta coupling in memory consolidation
was provided by Peyrache et al. (2009), who performed simultaneous recordings
in the hippocampus and the prefrontal cortex of rats trained on a set-shifting
task. The authors detected prefrontal coactivation patterns during the task
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4.1. SLOW OSCILLATION

and measured their reactivation in post-task sleep. Both the hippocampal
ripple incidence and the reactivation strength of prefrontal ensembles peaked
before delta waves. Moreover, prefrontal reactivation tended to closely follow
(by ∼40 ms) hippocampal ripples. This suggests that a hippocampo-cortical
information transfer might be preferentially initiated briefly before delta waves.
A possible role for the delta wave (neural silence) might be to avoid interference
with other, unrelated inputs (see chapter 6).

4.1.2 Ripples following delta waves

Battaglia et al. (2004) reported a higher ripple rate around DOWN-UP transitions
in multiple cortical areas. A fine timescale analysis further revealed that cortical
firing rates decreased 400-200 ms before sharp wave ripples; the authors attributed
this decrease to a consistent occurrence of delta waves before ripples. In recordings
of the prefrontal electroencephalogram (EEG) of sleeping rats, Mölle et al. (2006)
showed ripples following delta waves by 140-480 ms and suggested that the cortical
UP state following the delta wave may promote hippocampal ripples via efferent
pathways.

A thorough assessment of the influence of neocortical slow oscillations on
hippocampal activity in anesthetized and sleeping rats was provided by Isomura
et al. (2006), who reported that prefrontal DOWN-UP transitions were closely
followed by entorhinal DOWN-UP transitions and increased activity in the
dentate gyrus and CA12. Most ripples occurred ∼100 ms after entorhinal
DOWN-UP transitions and ∼200 ms after prefrontal DOWN-UP transitions. The
authors proposed that the upsurge of activity in the dentate gyrus associated with
the entorhinal UP state may activate selected populations of CA3 and suppress
the rest by feedforward inhibition, thus biasing hippocampal ripple occurrence as
well as the identity of the participating neurons.

Recently, Khodagholy et al. (2017) recorded neural activity from the surface
of the brain in sleeping rats and reported cortical oscillations in the ripple
band in association cortices, including parietal, retrosplenial, anterior cingulate,
and medial prefrontal cortex. These events took place at the DOWN-UP
transition, preceding spindles, and occurred synchronously with hippocampal
ripples. The coupling between cortical and hippocampal ripples increased in

2Surprisingly, Isomura et al. (2006) reported increased activity in CA3 during entorhinal
DOWN states (possibly due to feedforward disinhibition from the dentate gyrus) that did not
result in an increased ripple rate, which remained at its lowest. On the other hand, during
periods of reduced activity in the dentate gyrus associated with entorhinal DOWN states
Sullivan et al. (2011) reported a small decrease of CA3 activity, which would be consistent
with the concurrent low ripple rate.
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sleep following training on a cheeseboard maze task, suggesting a potential role
in memory consolidation. The authors hypothesized that such joint events
might be a substrate of communication in the hippocampo-cortical dialogue,
although it remains to be investigated in which direction information might flow.
Alternatively, this concurrence might result from a common drive orchestrated by
the cortical slow oscillation, and the ripple event in each region might consolidate
relevant information locally.

4.2 Sleep spindles

Reports of ripple-spindle coupling span multiple timescales. On the timescale
of seconds, spindles tend to follow hippocampal ripples. On a finer timescale,
ripples are phase-locked to individual spindle cycles. The implications of these
coupling relations on memory consolidation are discussed below.

4.2.1 Ripples preceding spindles

Siapas and Wilson (1998) first documented the tendency of hippocampal ripples
to precede spindles in the prefrontal cortex. Later studies have shown that the
ripple rate tends to peak ∼0.5 s before prefrontal spindles (Mölle et al., 2006;
Peyrache et al., 2009).

Sirota and Buzsáki (2005) proposed that the slow oscillation might orchestrate
both hippocampal ripples and thalamocortical spindles — ripples tend to precede
(or closely follow) cortical delta waves, which are in turn followed by spindles. It
is therefore plausible that the slow oscillation may explain the coupling of these
events on this long timescale.

When do neocortical reactivations take place with respect to ripple-spindle
events? Peyrache et al. (2009) showed that the highest spiking probability of
prefrontal units occurred during the second half of spindles. However, prefrontal
reactivation of task-related patterns peaked much earlier, before spindle onset
(almost coinciding with ripple activity). Memory-related cell assemblies would
therefore be reinstated a few hundred milliseconds before the high spiking activity
associated with spindles.

In freely moving rats trained on a spatial memory task, Novitskaya et al.
(2016) applied a closed-loop stimulation protocol in post-task sleep, where the
locus coeruleus (LC) was electrically stimulated upon ripple detection. While
stimulation did not affect the ongoing ripple, ripple-spindle coupling was reduced
and memory consolidation was impaired. Although one cannot rule out that
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the noradrenergic release following LC stimulation had widespread uncontrolled
effects beyond disrupting hippocampo-thalamic coupling, this remains consistent
with a potential role of ripple-spindle coupling in memory consolidation.

A classical account of how a hippocampo-cortical dialogue involving ripple-spindle
events can lead to memory consolidation is therefore the following: ripple-related
activity facilitates the resurgence of cortical cell assemblies relevant to a given
memory trace; this is then followed by the strong synchronized spindle activity
that induces synaptic plasticity. However, a caveat in this scenario is that these
events typically take place hundreds of milliseconds apart, which is not consistent
with classical forms of long term potentiation3. A recent study reported a long
timescale form of synaptic plasticity, where a calcium plateau potential in CA1
dendrites can potentiate inputs offset by seconds (Bittner et al., 2017). While it is
not yet known whether a similar mechanism might take place during sleep in the
neocortex, one could speculate that during spindles, the bursting of neocortical
pyramidal cells combined with the massive calcium influx may retroactively
potentiate synapses activated ∼0.5 s earlier, and that as a result ripple-triggered
reactivated cortical traces are consolidated during the following sleep spindles.

4.2.2 Ripples nested in spindle cycles

Ripples can also occur phase locked to individual spindle cycles, both in rats
(somatosensory cortex, Sirota et al., 2003) and mice (prefrontal cortex, Phillips
et al., 2012). Ripples are also phase locked to parietal spindles in humans
(Clemens et al., 2011).

Coordination on such a fine timescale indicates a thalamocortical influence on
the timing of hippocampal ripples, possibly via the entorhinal cortex (Sullivan
et al., 2014) or via the nucleus reuniens (Varela et al., 2014). It is possible that the
mechanism which promotes ripple nesting might also bias which specific neuronal
populations participate in the ripple, although this remains to be investigated.

There is causal evidence confirming that thalamocortical activity can entrain
hippocampal ripples and that this plays a role in memory consolidation. In a
recent study in mice, Latchoumane et al. (2017) manipulated thalamic activity
in sleep after contextual fear conditioning, a classical hippocampus-dependent
task. In this closed-loop stimulation protocol, detection of frontal delta waves
triggered optogenetic stimulation in the thalamic reticular nucleus simulating
spindle activity. The stimulation entrained cortical networks in the UP state,
resulted in hippocampal ripples phase-locked to the stimulation, and improved

3A further complication is that ripple-spindle sequences are often interrupted by delta waves
(see chapter 6).
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memory performance relative to non-stimulated mice. A control version of the
protocol involved stimulating during the DOWN state, when cortical networks
are silent. Memory performance was not improved, although ripples were still
locked to the stimulation. The authors concluded that the co-occurrence of
hippocampal ripples with neocortical UP state activity during sleep spindles
is instrumental to memory consolidation. One caveat however is that light
pulses were delivered at 8 Hz, rather than at spindle frequency (10–20 Hz),
making mechanistic interpretations in terms of underlying brain rhythms more
challenging.

How would spindle-nested ripples participate in memory consolidation? In one
view, this coupling could be a substrate for unidirectional cortico-hippocampal
communication. Because ripple-associated cortical reactivation is high before but
not during spindles, spindles could correspond to a period of reorganization and
plasticity at the level of cortico-cortical synapses. Ripples embedded in spindles
might then integrate this newly reconfigured information into the hippocampal
network, while the cortical network would remain dominated by local interactions
(Peyrache et al., 2011).

Alternatively, it is possible that this phenomenon allows for a bidirectional
information transfer, where in addition to cortical inputs biasing replay activity in
ripples nested in spindles, hippocampal outputs in turn modulate cortical activity
during spindles. Indeed, while hippocampal inputs would have to compete with
local inhibition to discharge prefrontal neurons during spindles (Peyrache et al.,
2011), they may nevertheless bias activity at the population level (Wierzynski
et al., 2009). Because during spindles calcium entry into the dendrites can be
decoupled from somatic firing (Seibt et al., 2017), the absence of cortical spikes
should not be interpreted as evidence that cortical networks are unaffected by
hippocampal ripples occurring during spindles.

Conclusion

In summary, memory consolidation during sleep is accompanied by a
hippocampo-cortical dialogue orchestrated by fine-tuned ripple-delta-spindle
coupling. Sleep ripples precede delta waves, follow delta waves, precede spindles,
and occur during spindles, phase-locked to individual cycles. The role of the
coupling of hippocampo-cortical rhythms for memory consolidation has been the
central focus of the work in this thesis.
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Results
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According to the two-stage model of memory consolidation, memories are initially
encoded in the hippocampus and are later transferred to the cortex during slow
wave sleep (Buzsáki, 1989). Hippocampal communication to the cortex is believed
to take place during ripples (Buzsáki, 1989). This is supported by the finding
that ripple activity in post-task sleep is critical for spatial memory consolidation
(Girardeau et al., 2009). Given the tendency of delta waves to follow hippocampal
ripples and the associated cortical reactivations (Sirota et al. 2003; Peyrache et al.
2009, see section 4.1), we were interested in the role of this ripple-delta coupling
for memory consolidation.

The central focus of my thesis has been to address the question of how ripple-delta
coupling causes memory consolidation. A review (Todorova and Zugaro, 2018) as
well as the two articles presented in the following chapters have been the direct
result of this work.
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Chapter 5

Role of ripple-delta coupling in
memory consolidation

To address the possible causality of ripple-delta coupling in memory consolidation,
we (Maingret et al., 2016) tested whether memory consolidation critically
depended on the temporal coordination between ripples and delta waves, rather
than on the prevalence or strength of each of these oscillations independently.

To then demonstrate a causal link, a stimulation protocol was designed to induce
delta-spindle sequences timed on the online detection of hippocampal ripples, i.e.
to boost the coordination between these rhythms. The memory consolidation
task employed to determine whether this could potentially improve memory
consolidation was a modified version (Ballarini et al., 2009) of a classical spatial
memory task: rats were first placed in a rectangular arena with two identical
objects in adjacent corners (sampling); on the following day (recall), they were
returned to the arena, where one of the two objects had been displaced; the
critical modification compared to the classical version of the task was that the
sampling period was much briefer, actually too brief for the animals to memorize
the configuration of the objects and notice the change during recall. Yet, following
a period of stimulation enhancing hippocampo-cortical coupling during sleep, the
rats reacted to the altered arrangement of the objects, demonstrating that the
transient memory traces formed during sampling had now been consolidated.

All the experiments were performed by Nicolas Maingret. Gabrielle Girardeau
was involved in the conception of the project and the pilot experiment with
non-implanted control rats. Marie Goutierre was involved in some of the
experiments and early stages of data analysis. My contribution to the project
was to use the collected datasets to probe for possible neuronal mechanisms that
could account for the striking behavioural effect.
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CONSOLIDATION

In addition to the numerous alternative hypotheses that we tested (some of which
are discussed in chapter 8), we investigated the sequences of cortical neurons
following the DOWN-UP transition. The latency of a neuron to the UP state
does not depend on its excitability or the direction of the travelling delta wave,
but it remains stable across a sleep session (Luczak et al., 2007). We reasoned
that if sequential firing reflects network connectivity, sequences might change with
memory consolidation.

We therefore estimated the stability of each cell’s activity profile following
UP-DOWN transitions in the synchronized and delayed control stimulation
conditions. In the control condition, activity profiles following induced delta
waves remained stable, echoing Luczak et al. (2007)’s results. In contrast, a
subpopulation of cells changed their activity profiles following the delta waves
induced to follow ripples with the endogenous delay of ∼130 ms, reflecting a
selective functional reorganization of prefrontal subnetworks.

Further, to estimate the encoding of the task by the cortical network1, we divided
the arena into four quadrants and we measured the firing rate of cortical cells in
the quadrants containing the objects relative to the firing rate in empty quadrants.
While cortical cells did not respond to objects in the encoding phase of the task,
prefrontal cells responded selectively to the displaced object on the test day.
This effect was exclusive to the synchronized stimulation condition and was not
observed in the delayed stimulation condition, paralleling memory consolidation.

Our results indicate that ripple-delta coupling is sufficient to induce
reorganization of the cortical network as reflected by cortical firing in the UP
state onset2. After ripple-delta coupling, the reorganized cortical network is more
engaged in the task and memory performance is improved, demonstrating a direct
link between the fine-timescale ripple-delta coupling and memory consolidation.

1Although the spatial object recognition task can be performed by animals with prefrontal
cortex lesions (Barker and Warburton, 2011), this does not exclude the possibility that cells in
the prefrontal cortex of healthy non-lesioned animal encode and respond to ongoing experience
including the task.

2In addition to reflecting network connectivity, the sequential firing at the UP state onset
is a possible driving force of the ripple-delta coupling effect on memory consolidation, as the
firing at that period is considered to be a likely window for synaptic plasticity
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The ‘two-stage’ theory of memory posits that memory consolidation 
involves a dialog during sleep between the hippocampus, where traces 
are initially formed, and the neocortex, where they are stored for 
long-term retention1,2. Candidate target neocortical areas include 
the medial prefrontal cortex (mPFC), which receives monosynaptic 
input from the hippocampus3. Over the course of days, the mPFC 
becomes progressively involved in spatial memory recall, concomi-
tantly with a gradual hippocampal disengagement4,5. Consistent 
with the hypothesized dialog during sleep, task-related neural activ-
ity patterns are replayed during sleep, both in the hippocampus6,7 
and mPFC8,9. Coordination between the two structures could involve 
various oscillations that are known to have a causal role in memory 
consolidation. These include hippocampal sharp wave-ripples (SPW-
Rs)10,11 (150–200 Hz), cortical slow oscillations12,13 and delta waves14 
(0.1–4 Hz), and thalamo-cortical spindles15 (10–20 Hz), which  
are often observed in temporal proximity16–20. However, the causal 
role of a hippocampo-cortical dialog in memory consolidation  
has remained speculative.

To provide direct evidence for this hypothesis, we first character-
ized the endogenous temporal coordination between brain oscilla-
tions in the hippocampus and mPFC during slow-wave sleep (SWS). 
The observed coupling selectively increased following training on a 
task leading to memory consolidation, but not following time-limited 
training on the same task that did not result in memory consolidation. 
We then boosted this coupling during sleep following time-limited 
training by applying SPW-R–triggered stimulation to the neocortex, 
which induced propagating delta waves and spindles. This resulted 
in the reorganization of activity profiles in selected mPFC neurons, 
as well as a subsequent increase in prefrontal responsivity to the task 
and high recall performance on the next day, in contrast with control 
rats, which performed at chance levels.

RESULTS
Hippocampo-cortical oscillatory coupling
The hippocampal network is most active during SPW-Rs2. We there-
fore examined the temporal correlation between SPW-Rs in the hip-
pocampus and cortical delta waves and spindles in the mPFC during 
unperturbed SWS in rats. Delta waves reflect the down states of the 
slow oscillation21,22, when cortical neurons stop firing (Fig. 1a). 
Consistent with previous reports16–18, delta waves were prevalent in 
close temporal proximity to hippocampal SPW-Rs, with probability  
peaking at ~130 ms after SPW-Rs (Fig. 1b and Supplementary  
Fig. 1a), indicating that delta waves generally followed SPW-Rs.  
A lower and broader peak ~140 ms before SPW-Rs further indicated 
that delta waves were, in turn, often followed by SPW-Rs, although this 
pattern was more temporally diffuse. In most cases, spindles closely 
followed a delta wave18,23 (Supplementary Fig. 1b). Consistently, 
delta-spindle sequences were most probable ~140 ms after SPW-Rs  
(Fig. 1b). Thus, we hypothesized that the fine temporal relation 
between SPW-Rs and delta-spindle sequences is instrumental for 
communication between the hippocampus and neocortex.

Consolidation-associated increase in oscillatory coupling
A straightforward consequence of our hypothesis is that this coupling 
should increase when learning leads to memory consolidation. We 
therefore measured the incidence of coupled SPW-Rs and delta-spindle 
sequences following training on a hippocampus-dependent memory 
task24 (Fig. 1c). In the encoding phase, rats were exposed to two identi-
cal objects that were located in adjacent corners of a rectangular box for 
either 3 min (time-limited training) or 20 min (complete training). In 
the recall phase on the following day, one of the objects was moved to 
a different corner before the rats were allowed to visit the rectangular 
box. As previously reported25, only complete training yielded memory 
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Hippocampo-cortical coupling mediates memory 
consolidation during sleep
Nicolas Maingret1–4, Gabrielle Girardeau1–6, Ralitsa Todorova1–4,6, Marie Goutierre1–4 & Michaël Zugaro1–4

Memory consolidation is thought to involve a hippocampo-cortical dialog during sleep to stabilize labile memory traces for 
long-term storage. However, direct evidence supporting this hypothesis is lacking. We dynamically manipulated the temporal 
coordination between the two structures during sleep following training on a spatial memory task specifically designed to trigger 
encoding, but not memory consolidation. Reinforcing the endogenous coordination between hippocampal sharp wave-ripples, 
cortical delta waves and spindles by timed electrical stimulation resulted in a reorganization of prefrontal cortical networks, along 
with subsequent increased prefrontal responsivity to the task and high recall performance on the next day, contrary to control  
rats, which performed at chance levels. Our results provide, to the best of our knowledge, the first direct evidence for a causal 
role of a hippocampo-cortical dialog during sleep in memory consolidation, and indicate that the underlying mechanism  
involves a fine-tuned coordination between sharp wave-ripples, delta waves and spindles. 



©
20

16
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�  advance online publication nature neurOSCIenCe

a r t I C l e S

consolidation 24 h later, as measured by preferential exploration of  
the displaced object (discrimination indices: time-limited training, 
0.45 ± 0.04; complete training, 0.72 ± 0.03; Fig. 1d and Supplementary 
Table 1). Consistent with our prediction, enhanced hippocampo- 
cortical coupling co-occurred with memory consolidation, as joint 
occurrence of hippocampal and cortical rhythms selectively increased 
after complete, but not time-limited, training (Fig. 1e).

Causal role of the hippocampo-cortical dialog
To establish a causal link between increased hippocampo-cortical 
coupling and memory consolidation, we designed a closed-loop 
stimulation protocol to dynamically and selectively enhance the 
temporal coupling between SPW-Rs and delta spindles during SWS. 
SPW-Rs were detected online by band-pass filtering (100–250 Hz) and 
thresholding the hippocampal local field potential (LFP)10. Threshold 

crossing automatically triggered brief (0.1 ms, 20 V) single-pulse stim-
ulation of the neocortex, evoking propagating delta waves followed 
by spindles26. To avoid hyper-synchronous recruitment of the mPFC 
network by direct current injection and to ensure that delta waves and 
spindles would be elicited at the optimal delay, emulating endogenous 
events in the mPFC, we targeted the stimulation to the deep layers of 
the motor cortex. Delta waves would subsequently propagate across 
the cortical mantle26, including the mPFC. This protocol resulted 
in a dynamic, temporally specific reinforcement of the endogenous 
coupling between SPW-Rs and delta spindles (Fig. 2a–c).

To test the effect of increased coupling between SPW-Rs and delta 
spindles on memory consolidation, we trained rats (n = 9) on the 
time-limited (3 min) version of the task. Our goal was to potenti-
ate the consolidation of the weak memory traces by reinforcing the 
hippocampo-cortical oscillatory interactions during SWS following  
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Figure 1 Increased hippocampo-cortical 
oscillatory coupling correlates with memory 
consolidation. (a) Example traces of LFPs 
recorded in the mPFC (top trace, low-pass 
filtered) and hippocampus (center trace, low-
pass filtered; bottom trace, filtered in the ripple 
band) during a typical sleep session. Raster 
plots show action potentials (colored vertical 
ticks) emitted by individual prefrontal units. 
SPW-Rs (blue traces and asterisks), delta  
waves (brown traces and asterisk) and spindles 
(red traces and asterisk) are highlighted for 
clarity. Note the mPFC neuronal silence during 
delta waves (down states, gray shading).  
(b) Temporal cross-correlation between  
SPW-Rs and delta waves (top) or delta-spindle 
sequences (bottom) during SWS preceding  
a behavioral task (pre-sleep, n = 7 animals). 
Note the temporal proximity between these 
patterns. (c) The rats were allowed to explore 
the arena and encode the locations of the  
two objects for either 3 or 20 min. Pre- and 
post-encoding sleep recordings were carried out 
in both conditions. (d) Discrimination indices 
during the recall phase, computed during the 
first 2 min of exploration. The rats discriminated 
between the stable and displaced objects only 
after the 20-min encoding phase (3 versus  
20 min encoding, Wilcoxon rank-sum test,  
n = 8, n = 6, Z = 3.00, **P = 0.002; 3 min 
versus chance, Wilcoxon signed-rank test,  
n = 8, Z = 1.40, P = 0.161; 20 min versus 
chance, Wilcoxon signed-rank test, n = 6, 
Z = 2.20, *P = 0.028). (e) Incidence of 
hippocampo-cortical events during SWS 
following either 3- (ochre) or 20-min (orange) 
encoding (left, delta spindle; center: SPW-R–
delta; right, SPW-R–delta spindle), normalized 
to corresponding pre-sleep epochs. Note the 
increase in hippocampo-cortical event rate 
following the 20-min, but not 3-min, exposure 
to the objects. Delta-spindle incidence, 3 min 
versus 20 min encoding, Wilcoxon rank-sum 
test, n = 4, n = 6, Z = 1.81, P = 0.067; 3 min 
versus chance, Wilcoxon signed-rank test,  
n = 4, Z = 0.73, P = 0.465; 20 min versus 
chance, Wilcoxon signed-rank test, n = 6,  
Z = 1.99, *P = 0.046. SPW-R–delta incidence, 3 min versus 20 min encoding, Wilcoxon rank-sum test, n = 4, n = 6, Z = 2.45, *P = 0.014;  
3 min versus chance, Wilcoxon signed-rank test, n = 4, Z = 0.36, P = 0.715; 20 min versus chance, Wilcoxon signed-rank test, n = 6, Z = 2.20,  
*P = 0.028. SPW-R–delta-spindle incidence, 3 min versus 20 min encoding, Wilcoxon rank-sum test, n = 4, n = 6, Z = 2.45, *P = 0.014; 3 min  
versus chance, Wilcoxon signed-rank test, n = 4, Z = 0.73, P = 0.465; 20 min versus chance, Wilcoxon signed-rank test, n = 6, Z = 2.20, *P = 0.028. 
Error bars represent s.e.m.
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encoding. In the coupled stimulation condition, stimulations (n = 
1,000) were triggered following SPW-R detection to reinforce the 
coordination between SPW-Rs and delta spindles. In the delayed 
stimulation condition, the stimulations (n = 1,000) were delayed by a 
random interval (160–240 ms) to probe the functional specificity of 
a fine-tuned temporal sequence between hippocampal and neocorti-
cal events. The same animals were used in both conditions: each rat 
performed the task twice (using different object pairs), once for each 
stimulation protocol (coupled and delayed), in a pseudo-randomized  
order. In both cases, the period of stimulation corresponded to the 
first ~4,000 s of SWS following the encoding phase, when most  
hippocampal replay events were expected to occur27.

Stimulations reliably induced delta waves (stimulation efficacy: 
coupled, 66.5 ± 3.3%; delayed, 65.2 ± 4.8%) and spindles (stimula-
tion efficacy: coupled, 39.8 ± 4.0%; delayed, 41.0 ± 4.2%). Notably, 
stimulation efficacy was identical in the two stimulation protocols 
(Supplementary Fig. 2a). As a result, although the incidence of SPW-Rs  

was not affected by the stimulation (Supplementary Fig. 2b), the over-
all occurrence rates of both delta waves and spindles were higher dur-
ing stimulation periods than during baseline sleep, but were identical 
in the two stimulation protocols (Supplementary Fig. 2b). Moreover, 
delta waves and spindles had unaltered peak power across conditions 
(Supplementary Fig. 2c,d). Induced delta waves were associated with a 
near-complete cessation of mPFC spiking activity (down state; Fig. 2a  
and Supplementary Fig. 2e) and did not differentially affect hip-
pocampal firing rates (Supplementary Fig. 2f). Stimulations did not 
directly drive spiking activity in the mPFC (Supplementary Fig. 3), 
nor did the two stimulation conditions differentially alter the global 
sleep architecture (Supplementary Fig. 4).

As expected, coupled stimulations strongly enhanced the temporal 
correlation between hippocampal and cortical oscillations (Fig. 2b,c  
and Online Methods). Delta-spindle sequences were elicited ~120 ms 
after SPW-Rs, emulating endogenous patterns observed in baseline  
sleep, but the incidence of SPW-R–delta-spindle sequences was 
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Figure 2 SPW-R–triggered stimulation of 
neocortical deep layers enhances the temporal 
coupling between hippocampal and cortical 
events. (a) Example SPW-R–triggered stimulation 
of neocortical deep layers (lightning icon and 
vertical dotted line), which induced a delta wave 
followed by a spindle in the mPFC, similar to  
the endogenous pattern observed in Figure 1a. 
(b) Data presented as in Figure 1b, but during 
SWS periods when stimulation was triggered 
following SPW-R detection (green curves) or 
following a brief (160–240 ms) pseudo-random 
delay (purple curves). Pre-sleep values from 
Figure 1b are shown in gray (n = 7 animals).  
(c) Stimulation-triggered average spectrogram  
of mPFC LFPs for a coupled stimulation session 
in one rat. Note the marked increase in delta 
power (0–6 Hz), followed by spindle activity  
(10–20 Hz). (d) Incidence of hippocampo-
cortical events (left, delta spindle; center,  
SPW-R–delta; right: SPW-R–delta spindle)  
during pre-sleep (black) and stimulation periods 
(purple, delayed stimulation; green, coupled 
stimulation). Delta-spindle incidence, Friedman 
test, χ2 = 10.57, n = 7, d.f. = 2, P = 0.005; 
Wilcoxon matched pairs test, n = 7, pre-sleep 
versus coupled: Z = 2.36, *P = 0.018; pre-sleep 
versus delayed: Z = 2.36, *P = 0.018; coupled 
versus delayed: Z = 1.18, P = 0.237. SPW-
R–delta incidence, Friedman test, χ2 = 10.57,  
n = 7, d.f. = 2, P = 0.005; Wilcoxon matched 
pairs test, n = 7, pre-sleep versus coupled:  
Z = 2.36, *P = 0.018; pre-sleep versus delayed: 
Z = 0.68, P = 0.499; coupled versus delayed: 
Z = 2.36, *P = 0.018. SPW-R–delta-spindle 
incidence, Friedman test, χ2 = 11.14, n = 7,  
d.f. = 2, P = 0.004; Wilcoxon matched pairs  
test, n = 7, pre-sleep versus coupled: Z = 2.36, 
*P = 0.018; pre-sleep versus delayed:  
Z = 1.69, P = 0.091; coupled versus delayed:  
Z = 2.36, *P = 0.018. (e) Data presented  
as in d, but expressed as a proportion of  
SPW-Rs. SPW-R–delta percentage, Friedman 
test, χ2 = 11.14, n = 7, d.f. = 2, P = 0.004; 
Wilcoxon matched pairs test, n = 7, pre-sleep 
versus coupled: Z = 2.36, *P = 0.018; pre-sleep 
versus delayed: Z = 1.86, P = 0.063; coupled versus delayed: Z = 2.36, *P = 0.018. SPW-R–delta spindle percentage, Friedman test, χ2 = 11.14, n = 7, 
d.f. = 2, P = 0.004; Wilcoxon matched pairs test, n = 7, pre-sleep versus coupled: Z = 2.36, *P = 0.018; pre-sleep versus delayed: Z = 1.69, P = 0.091; 
coupled versus delayed: Z = 2.36, *P = 0.018. Error bars represent s.e.m.
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increased fivefold (Fig. 2d). The proportion of SPW-Rs followed 
by cortical patterns increased by a similar magnitude (Fig. 2e). In 
contrast, delayed stimulation evoked cortical delta waves at latencies 
of ~320 ms following hippocampal SPW-Rs (Fig. 2b), far exceeding 
the timing of endogenous SPW-R-delta pairs (~130 ms). As a result,  
joint hippocampo-cortical patterns were unchanged compared with 
baseline, both in incidence (Fig. 2d) and in proportion of SPW-Rs 
(Fig. 2e). Notably, the proportion of induced delta waves followed by 
SPW-Rs in the two conditions was unchanged compared with endog-
enous events (Supplementary Fig. 5).

How did this selective enhancement of hippocampo-cortical cou-
pling during sleep affect memory consolidation? In the absence of 
stimulation, performance was not significantly different from chance, 
that is, the animals spent as much time exploring the stable object as 
the displaced object (Fig. 1d). However, following coupled stimulation, 
the rats preferentially explored the displaced object (discrimination 
index, 0.69 ± 0.03; Fig. 3 and Supplementary Table 1), indicating that 
timed enhancement of the hippocampo-cortical dialog resulted in suc-
cessful consolidation of the weak memory traces. This bias persisted 
after 3 or 5 min of exploration (Supplementary Fig. 6). Conversely, 
delayed stimulations did not improve performance above chance level 
(discrimination index, 0.46 ± 0.04; Fig. 3 and Supplementary Table 1),  
indicating that fine-tuned temporal coordination between the two 
structures is required to promote memory consolidation, and ruling 
out the possibility that the improved performance following coupled 
stimulation could be accounted for by a mere increase in delta and 
spindle rates alone. This was further supported by the complementary 
finding that randomly timed stimulation, unrelated to (that is, uni-
formly distributed relative to) SPW-R times, also resulted in subsequent 
chance performance (random stimulation group, discrimination index, 
0.48 ± 0.03; Supplementary Fig. 7 and Supplementary Table 1).

Reorganization of the mPFC network
Systems consolidation has been hypothesized to involve reorganiza-
tion of functional cortical networks28. We carried out large-scale unit 
recordings in stimulated rats and compared spatio-temporal spik-
ing patterns of mPFC pyramidal neurons following coupled versus 
delayed induced delta waves. First, to examine potential changes in 
the sequential spread of activity in local cortical networks, we mea-
sured cell-specific activation latencies following up-state transitions29, 
when cortical activity resumes following silencing during the delta 

wave. Because latencies are independent of single-cell or global prop-
erties, such as excitability or traveling wave direction, and instead 
appear to reflect local functional connectivity29, changes in laten-
cies would reflect non-trivial network alterations that are possibly 
related to consolidation processes. Thus, for each cell, we computed 
the difference in latency following induced versus endogenous delta 
waves. Comparison of coupled and delayed stimulation revealed that 
the latencies of mPFC neurons changed following SPW-R–coupled, 
but not delayed, delta waves (Fig. 4a), suggesting that specific reor-
ganization processes result from hippocampo-cortical interactions. 
To further investigate selective reshaping of network activity, we then 
assessed changes in spike train profiles after up state onsets, reflected 
in the peri-event time histograms (PETHs) of mPFC pyramidal neu-
rons. PETHs were computed for each neuron (Fig. 4b,c) and com-
pared between coupled and delayed stimulation using a similarity 
index (uniqueness)29. PETHs remained unchanged following delayed 
stimulation, indicating that mere stimulation did not alter cell- 
specific features of mPFC spike trains. However, induced delta waves, 
when coupled to SPW-Rs, gave way to two clearly distinct responses,  
including stable and varying PETHs (Fig. 4b,c). This suggests that a 
specific subpopulation of mPFC cells selectively changed their activity 
profiles following induced hippocampo-cortical coupling. This was 
further supported by the finding that, in contrast with the rest of the 
population, these cells changed the order in which they activated fol-
lowing SPW-R–coupled delta waves (Fig. 4c). Finally, to test whether 
activity changes during sleep were subsequently reflected during 
recall, we computed an object responsivity index for each mPFC cell 
and compared the distributions of responsivity indices for each object 
following coupled versus delayed stimulation sleep sessions. Although 
mPFC cells did not respond to either object following delayed stimula-
tion sessions, responsivity to the displaced object selectively increased 
following coupled stimulation sessions, paralleling the improvement 
in memory recall (Fig. 4d and Supplementary Fig. 8).

DISCUSSION
Dynamically enhancing the coupling between hippocampal SPW-Rs 
and cortical delta waves and spindles during SWS resulted in the 
consolidation of a labile memory trace. Furthermore, this coupling 
required very fine temporal precision, as introducing a random delay 
as brief as 200 ms between hippocampal and cortical events was suf-
ficient to cancel the induction of memory consolidation. Our results 
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a bFigure 3 Enhancing the fine-tuned coupling  
of hippocampal SPW-Rs and cortical delta 
waves and spindles boosts next day performance 
in a spatial memory task. (a) Rats (n = 9)  
were exposed for 3 min to two identical  
objects located in two adjacent corners  
of a familiar arena (encoding phase) and  
then underwent SPW-R–triggered cortical 
stimulation (n = 1,000) during SWS following 
the task (~1 h). Each animal performed  
the task twice (with different object pairs),  
in pseudo-random order. In the coupled 
condition, stimulation was delivered following 
SPW-R detection. In the delayed condition, 
stimulation occurred after a random delay (160–240 ms) following SPW-R detection. Twenty-four hours after the encoding phase, one of the objects 
was displaced to the opposite corner, and the animals were allowed to explore the arena for 5 min (recall phase). Memory recall was reflected in a 
preferential exploration of the displaced object. Note that in the absence of stimulation following the encoding phase, non-implanted control animals 
performed at chance level the following day (n = 8; Fig. 1d). (b) Discrimination index for the displaced object during the recall phase, computed during 
the first 2 min of exploration. Memory recall was observed only following coupled stimulation (coupled versus delayed, Wilcoxon matched pairs test,  
n = 9, Z = 2.67, **P = 0.008; coupled versus chance, Wilcoxon signed-rank test, n = 9, Z = 2.67, **P = 0.008; delayed versus chance, Wilcoxon 
signed-rank test, n = 9, Z = 1.48, P = 0.139). Error bars represent s.e.m.
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show that long-term stabilization of memory traces is promoted by 
timed functional interactions between the hippocampus and cortex 
during offline states.

The underlying mechanism is a fine-tuned coupling between hip-
pocampal SPW-Rs and cortical delta waves and spindles, orchestrating  
local network reorganizations in selected subpopulations of mPFC 
neurons2,30. Given that delta waves and spindles are propagating pat-
terns that affect the entire neocortex26, other cortical areas, including 
rhinal cortices, may undergo similar reorganization processes.

Following SPW-R–associated replay6,7,27, cell assemblies would be reac-
tivated in the mPFC9. The following cortical delta wave would then isolate 
target synapses from competing inputs, allowing selective reorganiza-
tion of the network during the ensuing up state transition and strength-
ening by subsequent spindles31. Depending on learning requirements,  
cortical patterns could in turn regulate hippocampal SPW-Rs32.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

AcknowledgmenTS
We thank C. Drieu, V. Oberto, H.-Y. Gao, A. Cei, S. Sara, S.I. Wiener and  
K. Benchenane for advice and comments on the manuscript, and S. Doutremer, 
M.A. Thomas and Y. Dupraz for technical support. This work was supported by the 
French Ministry of Research (N.M.), a grant from the Fondation pour la Recherche 
Médicale (grant no. FDT20150532568) (N.M.), and a joint grant from École des 
Neurosciences de Paris Île-de-France and LabEx MemoLife (ANR-10-LABX-54 
MEMO LIFE, ANR-10-IDEX-0001-02 PSL*) (R.T.).

AUTHoR conTRIBUTIonS
N.M., G.G. and M.Z. designed the study. N.M., G.G. and M.G. performed the 
experiments. N.M., R.T. and M.Z. designed the analyses. N.M. and R.T. performed 
the analyses. N.M. and M.Z. wrote the manuscript with input from all authors.

comPeTIng FInAncIAl InTeReSTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

Figure 4 Changes in spatio-temporal spiking 
profiles of mPFC neurons parallel memory 
consolidation and recall improvements.  
(a) Distribution of shifts in mPFC cell latencies 
in stimulation-induced delta waves relative to 
endogenous, non-SPW-R–coupled delta waves 
in the coupled (green) and delayed stimulation 
(purple) sessions. The latencies shifted to 
more negative values in the coupled condition, 
indicating changes in the spread of activity in 
local cortical networks (coupled versus delayed,  
Wilcoxon rank-sum test, n = 70, n = 93,  
Z = 3.00, P = 0.003; coupled versus zero, 
Wilcoxon matched pairs test, n = 70, Z = 2.85, 
P = 0.004; delayed versus zero, Wilcoxon  
matched pairs test, n = 93, Z = 0.20, P = 0.845).  
Insets show the PETHs of two typical mPFC 
cells and the location of their latency 
differences on the distribution curves. 
Continuous curves and lines indicate induced 
up states. Dashed curves and lines indicate 
endogenous up states. Vertical lines represent 
mean latencies. (b) Distribution of PETH 
similarity indices (Online Methods) in both 
stimulation conditions. Bar plots on the right 
show median similarity indices (coupled versus 
delayed, Wilcoxon rank-sum test, n = 70,  
n = 93, Z = 2.12, *P = 0.034) and proportion 
of cells with a similarity index > 0.5 (two-
proportion Z-test, Z = 3.12, **P = 0.001). 
The PETH similarity index distribution was 
bimodal in the coupled condition (Hartigan’s 
dip test, dip = 0.025, P = 0.0002), but not 
in the delayed condition (Hartigan’s dip test, 
dip = 0.006, P = 0.999), indicating that a 
specific subpopulation of mPFC cells selectively 
changed their activity profiles following induced SPW-R–delta sequences. (c) Up state–triggered PETHs for all cells following endogenous (left) and 
induced (right) delta waves (top, delayed condition; bottom, coupled condition). Individual PETHs are ordered according to their mean latency following 
endogenous events. Top, delayed condition; note the consistency of cell organization in endogenous and induced events (Spearman’s rank correlation,  
ρ = 0.668, P < 0.001). Bottom, PETHs are shown separately for mPFC cells in the two subpopulations forming the bimodal distribution in b (green). 
Note the reorganization in the subpopulation with low (<0.5) (Spearman’s rank correlation, ρ = 0.001, P = 0.995), but not high (>0.5), PETH similarity 
(Spearman’s rank correlation, ρ = 0.854, P < 0.001). (d) Cumulative distributions of mPFC responsivity indices for each object during the recall phase 
of the task following both stimulation protocols. Medial prefrontal cortical cells selectively became responsive to the displaced object following coupled 
stimulations (displaced object: coupled versus delayed, Wilcoxon rank-sum test, n = 99, n = 61, Z = 2.41, P = 0.016; coupled versus zero, Wilcoxon 
signed-rank test, n = 99, Z = 2.32, P = 0.020; delayed versus zero, Wilcoxon signed-rank test, n = 61, Z = 1.21, P = 0.226; stable object: coupled 
versus delayed, Wilcoxon rank-sum test, n = 99, n = 61, Z = 0.21, P = 0.838; coupled versus zero, Wilcoxon signed-rank test, n = 99,  
Z = 0.45, P = 0.655; delayed versus zero, Wilcoxon signed-rank test, n = 61, Z = 0.31, P = 0.755). Error bars represent s.e.m.
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ONLINE METHODS
Animals. All experiments were carried out in accordance with institutional 
(CNRS Comité Opérationnel pour l’Éthique dans les Sciences de la Vie) and 
international (US National Institutes of Health guidelines) standards, legal regu-
lations (Certificat no. B751756), and ethical requirements (Ethics Committee 
approval #2012-0048) regarding the use and care of animals.

A total of 23 male Long Evans rats (René Janvier; weight, 280–350 g) were 
maintained on a 12-h:12-h light-dark cycle (lights on at 07:00 a.m.). Training 
and experiments took place during the day. Rats were group-housed until 1 week 
before surgery.

Surgery. Electrophysiological signals were acquired using tetrodes (groups of four 
twisted 12-µm tungsten wires, gold-plated to ~200 kΩ). The rats (n = 15) were 
deeply anesthetized (xylazine, 0.1 ml intramuscular; pentobarbital, 40 mg per kg 
of body weight, intraperitoneal; 0.1 ml pentobarbital supplemented every hour) 
and implanted with a custom-built microdrive allowing for the adjustment of up 
to 16 individual tetrodes. Rats were implanted with 6 (n = 3 rats, Fig. 1d,e; n = 3 
rats, Supplementary Fig. 7) or 16 (n = 9 rats, Figs. 2 and 3) tetrodes targeted at  
the prelimbic and infralimbic regions of the right mPFC (AP: +2.7 mm from 
bregma; ML: +1.5 mm, angled at 10° from the sagittal plane) and the CA1 subfield 
of the right hippocampus (AP: −3.5 to −5.5 mm; ML: +2.5 to +5 mm). For the 
animals that underwent stimulation, a custom-built bipolar electrode consisting 
of two stainless steel wires (total length, 1.5 mm; inter-wire interval, 0.5 mm; wire 
diameter, 70 µm) was implanted in the contralateral neocortex (AP: +2 mm;  
ML: −2 mm; DV: −1.5 mm from the dura (motor area); n = 9 rats for coupled 
and delayed stimulation, n = 3 rats for random stimulation). Miniature stainless 
steel screws (reference and ground) were implanted above the cerebellum. During 
recovery from surgery (minimum 3 d), the rats received food and water ad libitum.  
The recording electrodes were then progressively lowered until they reached their 
targets and then adjusted every day to optimize yield and stability.

Recording and stimulation. All training and recording sessions took place in the 
same dimly lit room, enclosed by black curtains. Behavior was monitored using 
an overhead video camera. One red light–emitting diode was fixed on the front 
of the microdrive to track the position of the animal. For rest and sleep sessions, 
rats were secluded in a familiar flower pot in the center of the recording arena. 
All analyses were conducted offline. Brain signals were preamplified (unity-gain 
headstage, Noted Bt), amplified 500× (Neuralynx L8), acquired and digitized 
with two synchronized Power1401 systems (CED). During stimulation periods, 
threshold crossing on the ripple band-filtered hippocampal signal automatically 
triggered a monophasic single-pulse (0.1 ms) stimulation of the deep layers of 
the motor cortex, delivered by a constant current stimulator (SD9 square pulse 
stimulator, Grass Technologies). This induced the initiation and propagation of 
a delta wave across neocortical areas26. For each animal, the optimal stimulation 
voltage was defined as the minimum voltage necessary to reliably induce propa-
gating delta waves, and was determined before training (range: 17.5–22.5 V).  
In the test condition (coupled), stimulation was used to emulate the endog-
enous fine-tuned coordination between hippocampal and cortical rhythms, and 
were therefore triggered 20 ms after SPW-R detection. In the control condition 
(delayed), an additional random delay ranging from 160–240 ms was intro-
duced between SPW-R detection and stimulation onset. In both coupled and  
delayed conditions, the number of stimulations was limited to one every 2 s to 
ensure that a stimulation would not be triggered before the end of the previous 
elicited spindle (see Fig. 2c), and the total number of stimulations was set to 
1,000, yielding a stimulation period of ~4,000 s during which most replay events 
were expected to occur27.

Behavioral protocol. All experiments (behavior and sleep sessions) took place in 
a dimly lit area enclosed by dark curtains. A 70-cm × 50-cm arena with 50-cm-
high black plastic walls (Fig. 1c) was used for the behavioral task. A white card 
(20 × 30 cm) on one wall served as a visual reference cue. During the habituation 
phase, the rats were allowed to freely explore the empty arena for 20 min once 
a day for 3 consecutive days. The spatial object recognition task consisted of an 
encoding and a recall phase, separated by a ~24-h interval. Both phases took place 
at the same time of the day. During the encoding phase, two identical objects 
were placed in two adjacent corners. The rats were released in the center of the 
arena and allowed to explore for either 3 min (time-limited training) or 20 min  

(complete training). Time-limited training was intended to foil recall of the spa-
tial configuration of the objects on the next day25 (Fig. 1d; if the rats expressed 
a preference for one of the two objects during the encoding phase, the trial was 
aborted, and the rats were tested again 48 h later with different objects). The rats 
were then placed in a flower pot for sleep sessions, which lasted until 1,000 stimu-
lations had been delivered (~4,000 s of SWS), then returned to their home cage. 
The recall phase took place the following day. One of the objects was displaced 
to the opposite corner and the animals were allowed to freely explore the arena 
for 5 min. The same rats (n = 9) underwent coupled and delayed stimulation: 
they performed the task twice (with different objects), in a pseudo-random order,  
at an interval of at least two days. Rats used for the random stimulation protocol 
(n = 3) and unimplanted rats used for the complete training protocol (n = 3) also 
performed the task twice. Data collection and analysis were not performed blind 
to the conditions of the experiments.

The discrimination index was defined as the time spent exploring the displaced 
object divided by the total time of exploration of both objects. The rats were 
considered to be exploring an object whenever their head was oriented toward 
and located within 2 cm of the object. Exploration time was measured from 
video files, both automatically and manually by two independent experimenters.  
All three measures yielded equivalent results (Friedman test, χ2 = 1.56, n = 9, 
d.f. = 2, P = 0,459), and the data presented here were derived with the automatic 
detection algorithm.

data processing and spike sorting. A red LED was used to track the instan-
taneous position of animals (recorded at 25 Hz, resampled at 39.0625 Hz). For 
off-line spike sorting, the wide-band signals were converted, digitally high-pass 
filtered (nonlinear median-based filter) and thresholded, and waveforms were 
extracted and projected to a PCA subspace using NDManager (L. Hazan and 
M.Z., http://neurosuite.sourceforge.net)33. Spike sorting used a semi-automatic 
cluster cutting procedure combining KlustaKwik (K.D. Harris, http://klustakwik. 
sourceforge.net) and Klusters (L. Hazan, http://neurosuite.sourceforge.net)33.  
Putative interneurons and pyramidal cells were discriminated based on spike 
width34. Neurophysiological and behavioral data were explored using NeuroScope 
(L. Hazan, http://neurosuite.sourceforge.net)33. LFPs were derived from wide-
band signals by downsampling all channels to 1,250 Hz.

data analysis Statistics. Data were analyzed using Matlab (Statistical Toolbox; 
FMAToolbox, M.Z., http://fmatoolbox.sourceforge.net). Spectrograms were con-
structed using Chronux (http://chronux.org/). No statistical methods were used 
to pre-determine sample sizes, but our sample sizes are similar to those generally 
employed in the field. All statistical tests were non-parametric and two-tailed. 
In accordance with standard procedures, proportional data were transformed 
as ′ =P arcsin( )P , before performing non-parametric (for example, Wilcoxon 
matched pairs or Friedman) tests.

SPW-Rs, delta waves and spindles. For offline SPW-R detection, the LFP 
recorded in CA1 pyramidal layer was band-pass filtered (150–250 Hz), squared, 
low-pass filtered (8.8 ms running average) and normalized, yielding a trans-
formed signal R(t). SPW-Rs were defined as events where R(t) remained above 
2 for 30 ms to 100 ms, and peaked at >5.

To detect delta waves, the LFP recorded in the mPFC was filtered (0–6 Hz) and 
z-scored, yielding D(t). We extracted sequences (tbeginning, tpeak, tend) of upward-
downward-upward zero-crossings of D′(t), corresponding to the putative begin-
ning, peak and end of delta waves, respectively. Sequences lasting less than 150 
ms or more than 500 ms were discarded. Delta waves corresponded to epochs 
where D(tpeak) > 2, or D(tpeak) > 1 and D(tend) < −1.5.

For spindle detection, the LFP recorded in the mPFC was band-pass filtered 
(9–17 Hz) and z-scored. The squared magnitude of its Hilbert transform was 
smoothed using a 100-ms Gaussian window, yielding S(t). Spindles corresponded 
to epochs where S(t) remained above 2.5 for more than 0.5 s, and peaked at >5. 
Events separated by less than 0.4 s were merged, and combined events lasting 
more than 3 s were discarded.

Delta-spindle sequences were defined as epochs where spindle peaks occurred 
between 100 ms and 1.3 s following delta peaks. SPW-R–delta sequences  
corresponded to epochs where delta peaks occurred between 50 ms and  
250 ms following ripple peaks. SPW-R–delta-spindle sequences corresponded 
to the conjunction of these events. Delta–SPW-R sequences corresponded to 
occurrences of ripple peaks between 50 ms and 400 ms following delta peaks. 
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Only sleep epochs preceding the encoding phase and lasting more than 1,200 s 
were used for these analyses.

Sleep scoring. Sleep stages (SWS/rapid eye movment) were determined  
by automatic K-means clustering of the theta/delta ratio extracted from the  
power spectrograms during the episodes where the animal was immobile (linear 
velocity <3 cm s−1 for at least 30 s, with brief movements <0.5 s).

Down states. Down states were defined as delta-wave centered epochs  
lasting 100–300 ms containing a maximum of three spikes. Only sessions with  
nPFC neurons >7 (average number of mPFC cells = 19, range 7–31) were used  
for down state detection and subsequent cross-correlation with delta waves.

Network activity during up-state transitions. For each cell, the activation latency 
was measured as its mean spike time within 200 ms of up state onset29. To com-
pare PETHs triggered by up state transitions following induced versus endog-
enous, non-ripple-coupled delta waves, we computed the similarity index (PETH 
uniqueness) for each neuron as described previously29. Briefly, for each pair of 
neurons i and j, we computed the Euclidean distance dij between the PETH of  
i in endogenous up states, and the PETH of j in induced up states. The similarity  
index of neuron i is the proportion of neurons j for which dii < dij. Thus, a neu-
ron with a similarity index greater than 0.5 has PETH features remaining con-
sistent across endogenous and induced up states that can differentiate it from 
more than half of the other neurons. Bimodality in similarity index distributions  
was assessed using Hartigan’s dip test on smoothed bootstrapped (n = 10,000) 
similarity indices35.

Object responsivity. The arena was divided into four quadrants, two of which 
contained the objects. Distributions of firing rates in the empty quadrants were 
first estimated for each cell. Briefly, a random number of non-overlapping epochs 
of random durations were selected, adding up to 50% of the total time spent in 
the empty quadrants. This constituted one ‘sample’ over which the firing rate 
was computed. The procedure was repeated 1,000 times, yielding an estimated 

distribution F of firing rates in the empty quadrants. The responsivity index R to 
a given object was defined as the mean firing rate r over the corresponding quad-
rant, z-scored relative to F; that is, R = (r − µ)/σ where µ and σ are the mean and 
s.d. of F. Thus, the object responsivity index R measured by how much, relative 
to its baseline variability, a cell increased its firing rate around the object. Because 
inevitable micro-movements of the independently movable electrodes precluded 
reliable tracking of single cells over successive days, comparisons between the 
encoding and recall phases were performed at the population level.

Histology. At the end of the experiments, electrolytic lesions were made at the tip 
of the electrodes to verify their precise location (CA1 pyramidal layer and deep 
layers of the prelimbic mPFC). Rats were deeply anesthetized with a lethal dose of 
pentobarbital, and intracardially perfused with saline (0.9%, wt/vol) followed by 
400 ml of paraformaldehyde (10%, wt/vol). Brains were then sliced into coronal 
sections (40 µm) and stained with cresyl-violet.

data availability. The data that support the findings of this study are available 
from the corresponding author upon request.

A Supplementary methods checklist is available.

33. Hazan, L., Zugaro, M. & Buzsáki, G. Klusters, NeuroScope, NDManager: a free 
software suite for neurophysiological data processing and visualization. J. Neurosci. 
Methods 155, 207–216 (2006).

34. Barthó, P. et al. Characterization of neocortical principal cells and interneurons by 
network interactions and extracellular features. J. Neurophysiol. 92, 600–608 
(2004).

35. Hartigan, J. & Hartigan, P. The dip test of unimodality. Ann. Stat. 13, 70–84 
(1985).



 

Supplementary Figure 1 

Hippocampo-cortical oscillatory interactions during unperturbed SWS. 

a. Temporal cross-correlation between SPW-Rs and delta waves at different timescales. The two peaks around SPW-R times indicate 
that SPW-Rs are both preceded and followed by delta waves. b. Temporal cross-correlation between delta waves and spindles. Note 
the increased spindle probability immediately following delta waves.  
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Supplementary Figure 2 

Incidence of hippocampo-cortical rhythms is unchanged between coupled and delayed stimulation epochs. 

a. A large fraction of the applied stimulations efficiently triggered delta waves (left) or delta -spindle sequences (right) in both delayed 

(purple bars) and coupled (green bars) conditions. Stimulation efficacy was identical across conditions (delta waves efficacy, coupled vs 

delayed, Wilcoxon matched pairs test, n = 9, Z = 0.18, P = 0.859; delta-spindle efficacy, coupled vs delayed, Wilcoxon matched pairs 

test, n = 9, Z = 0.06, P = 0.953). b.  SPW-R, delta wave and spindle occurrence rates during Pre-sleep (black bars) and during 

stimulation epochs (purple and green bars). As expected, delta waves and spindles were more frequent during stimulation than Pre-

sleep epochs, but their occurrence rates were identical between stimulation conditions. SPW-R incidence, Friedman test, χ
2 
= 2.57, 

n = 7, d.f. = 2, P = 0.277. Spindle incidence, Friedman test, χ
2 
= 10.57, n = 7, d.f. = 2, P = 0.005; Wilcoxon matched pairs test, n = 7, 

Pre-sleep vs. coupled: Z = 2.36, *P = 0.018; Pre-sleep vs. delayed: Z = 2.36, *P = 0.018; coupled vs. delayed: Z = 0.17, P = 0.866. 
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Delta incidence, Friedman test, χ
2 
= 10.57, n = 7, d.f. = 2, P = 0.005; Wilcoxon matched pairs test, n = 7, Pre-sleep vs. coupled: 

Z = 2.36, *P = 0.018; Pre-sleep vs. delayed: Z = 2.36, *P = 0.018; coupled vs. delayed: Z = 0.34, P = 0.735. c. Delta power was similar 

between naturally occurring and induced events (black, Pre-sleep; green, coupled stimulation; purple; delayed stimulation) Friedman 

test, χ
2 
= 0.89, n = 9, d.f. = 2, P = 0.641. d. Same as in c for spindle peaks. Friedman test, χ

2 
=

 
0.67, n

 
=

 
9, d.f.

 
=

 
2, P

 
=

 
0.716. 

e.
 
Proportion of endogenous (black) and induced (gray) delta waves associated with a down state r evealing a strong correlation 

between these events (Wilcoxon matched pairs test, n
 
=

 
11 sessions with nPFC neurons>

 
7, Z

 
=

 
0.27, P

 
=

 
0.790). f.

 
Mean HPC population 

activity during delta-down events identified in e, relative to the firing rate outside of these events during SWS (Wilcoxon matched pairs 

test, n
 
=

 
11 sessions with nPFC neurons & nHPC neurons >

 
7, Z

 
=

 
0.27, P

 
=

 
0.790). Error bars represent s.e.m. 

Nature Neuroscience: doi:10.1038/nn.4304



 

Supplementary Figure 3 

Stimulation did not trigger direct, hyper-synchronous activation of mPFC neurons. 

a. Average local field potential recorded in the mPFC (top trace, low-pass filtered) around stimulations (n
 
=

 
1,000) in one example 

session. b. Top, Multiunit activity of mPFC pyramidal cells. Bottom, average population  firing rate across stimulations. c.
 
Same as in b 
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for mPFC interneurons. While stimulation-induced delta waves are accompanied by neuronal silence characteristic of endogenous 

down states, neither pyramidal cells nor interneurons dramatically increase thei r firing rates at the time of stimulation. 
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Supplementary Figure 4 

Stimulation conditions and global sleep architecture. 

a.
 
The duration of uninterrupted SWS epochs was similar during delayed (purple) and coupled (green) stimulation sessions (coupled vs 

delayed, Wilcoxon matched pairs test, n = 9, Z
 
=

 
0.56, P

 
=

 
0.575). b.

 
Same as in a, for REM epochs (coupled vs delayed, Wilcoxon 

matched pairs test, n = 9, Z
 
=

 
0.98, P

 
=

 
0.327). c.

 
Average REM/SWS ratios were similar across stimulation conditions (coupled vs 

delayed, Wilcoxon matched pairs test, n = 9, Z
 
=

 
0.70, P

  
=

 
0.484). Error bars represent s.e.m. 
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Supplementary Figure 5 

Stimulation-induced delta waves did not alter subsequent SPW-R occurrence rates. 

a.
 
Proportion of delta waves preceded by SPW-Rs during Pre-sleep (black) and coupled (green bars) and delayed (purple bars) 

stimulation periods (only stimulation-evoked delta waves were counted in post-exploration sleep sessions). Friedman test, χ
2 
=

 
11.14, 

n
 
=

 
7, d.f.

 
=

 
2, P

 
=

 
0.004; Wilcoxon matched pairs test, n

 
=

 
7, Pre-sleep vs. coupled: Z

 
=

 
2.36, *P

 
=

 
0.018; Pre-sleep vs. delayed: Z

 
=

 
1.18, 

P
 
=

 
0.237; coupled vs. delayed: Z

 
=

 
2.36, *P

 
=

 
0.018. b.

 
The proportion of delta waves followed by SPW-Rs was similar across 

conditions (only stimulation-evoked delta waves were counted in post-exploration sleep sessions). Friedman test, χ
2 
=

 
0.29, n

 
=

 
7, 

d.f.
 
=

 
2, P

 
=

 
0.867. Error bars represent s.e.m. 
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Supplementary Figure 6 

Coupling hippocampal and cortical oscillations enhances recall above chance level and induces preferential exploration of 

the displaced object. 

Memory performance remained significantly above chance level in the coupled condition for the whole  duration (5 minutes) of the recall 

phase, whereas in the delayed condition, performance did not differ from chance (2  min coupled vs delayed, Wilcoxon matched pairs 

test, n = 9, Z = 2.66, **P = 0.008; 2 min coupled vs chance, Wilcoxon signed-rank test, n = 9, Z = 2.66, **P = 0.008; 2 min delayed vs 

chance, Wilcoxon signed-rank test, n = 9, Z = 1.48, P = 0.139. 3 min coupled vs delayed, Wilcoxon matched pairs test, n = 9, Z = 2.66, 

**P = 0.008; 3 min coupled vs chance, Wilcoxon signed-rank test, n = 9, Z = 2.66, **P = 0.008; 3 min delayed vs chance, Wilcoxon 

signed-rank test, n = 9, Z = 0.65, P = 0.515. 5 min coupled vs delayed, Wilcoxon matched pairs test, n = 9, Z = 2.31, *P = 0.021; 5 min 

coupled vs chance, Wilcoxon signed-rank test, n = 9, Z = 2.66, **P = 0.008; 5 min delayed vs chance, Wilcoxon signed-rank test, n = 9, 

Z = 0.889, P = 0.374). Error bars represent s.e.m. 
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Supplementary Figure 7 

Random, non SPW-R–triggered stimulation does not lead to memory consolidation on the spatial object recognition task. 

a.
 
Random stimulation protocol (top) and temporal cross -correlation between SPW-Rs and stimulation onset (bottom). b.

 
Stimulation 

efficacy for the random stimulation protocol. c.
 
Incidence of hippocampo-cortical events (left: SPW-R-delta, right: SPW-R-delta-spindle) 

during Pre-sleep (black) and random stimulation periods (blue). SPW-R-delta incidence, Wilcoxon matched pairs test, n
 
=

 
6, Z

 
=

 
1.57, 

P
 
=

 
0.116; SPW-R-delta-spindle incidence, Wilcoxon matched pairs test, n

 
=

 
6, Z

 
=

 
1.36, P

 
=

 
0.173. d.

 
Performance did not differ from 

chance during recall following the random stimulation protocol (2  min random vs chance, Wilcoxon signed-rank test, n = 6, Z = 0.73, 

P = 0.463; 3 min random vs chance, Wilcoxon signed-rank test, n = 6, Z = 0.52, P = 0.600; 5 min random vs chance, Wilcoxon signed-

rank test, n = 6, Z = 1.57, P = 0.116) Error bars represent s.e.m. 
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Supplementary Figure 8 

Medial prefrontal cortical cells were not responsive to the objects during the encoding phase. 

Cumulative distributions of mPFC responsivity indices to each object during the encoding phase of the task preceding each sti mulation 

condition. mPFC cells were not responsive to any object in any condition (displaced object: coup led vs delayed, Wilcoxon rank-sum 

test, n = 77, n = 93, Z = 1.14, P = 0.255; coupled vs zero, Wilcoxon matched pairs test, n = 77, Z = 1.32, P = 0.188; delayed vs zero, 

Wilcoxon matched pairs test, n = 93, Z = 0.14, P = 0.890; stable object: coupled vs delayed, Wilcoxon rank-sum test, n = 77, n = 93, 

Z = 0.79, P = 0.432; coupled vs zero, Wilcoxon matched pairs test, n = 77, Z = 1.65, P = 0.099; delayed vs zero, Wilcoxon matched 

pairs test, n = 93, Z = 0.65, P = 0.516). 
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Supplementary Table 1 | Object exploration times. Time spent exploring the objects during

the recall phase for each condition, and corresponding discrimination index. Errors are s.e.m.

Condition n Displaced object (s) Stable object (s) Discrimination index

Naive (3 min encoding) 8 9,57 ± 0,99 11,73 ± 1,35 0,45 ± 0,04

Trained (20 min encoding) 6 13,74 ± 2,04 5,22 ± 0,81 0,72 ± 0,03

Coupled stimulation  (3 min encoding) 9 14,77 ± 1,55 6,67 ± 1,19 0,69 ± 0,03

Delayed stimulation  (3 min encoding) 9 9,94 ± 1,48 11,75 ± 1,98 0,46 ± 0,04

Random stimulation  (3 min encoding) 6 10,17 ± 2,00 10,00 ± 1,25 0,48 ± 0,03

Nature Neuroscience: doi:10.1038/nn.4304
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Chapter 6

Role of delta spikes in memory
consolidation

In Maingret et al. (2016), we demonstrated the causal link between ripple-delta
coupling and memory consolidation. The acute cortical response to hippocampal
ripples in the form of ripple- triggered reactivations takes place before the delta
wave (Peyrache et al., 2009). Yet cortical synaptic plasticity is believed to take
place after the delta wave, in the surge of activity at the UP state onset (Destexhe
et al., 2007; Kruskal et al., 2013; Levenstein et al., 2017) and in sleep spindles
(Sejnowski and Destexhe, 2000; Rosanova and Ulrich, 2005) that closely follow
delta waves. How does the hippocampal information persist in the network during
the synchronized silence of the network during the delta wave? We considered the
possibility that the occasional “rogue spikes” we observed in the literature (see
section 3.1.2) and in our recordings may represent a residual signal that retains
information about the previous UP state.

First, we addressed whether spiking during delta waves is a robust phenomenon.
In ∼10% of delta waves, we detected spikes on the same electrode as the delta
wave. We probed if these events might be distinct from classical delta waves
associated with complete silence, but silent and non-silent delta waves had
the same characteristics (waveform, coupling with ripples, spindles and gamma
oscillations). We then considered that all delta waves may have some spiking
activity, which may or may not be detected depending on the recording range.
Consistent with this, we detected less non-silent delta waves in experiments with
fewer recorded cortical neurons.

We then investigated if this neuronal activity in delta waves could represent
a signal rather than noise. In particular, we addressed if delta wave neuronal
activity could be a part of the hippocampal-cortical dialogue. Supporting this
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CHAPTER 6. ROLE OF DELTA SPIKES IN MEMORY CONSOLIDATION

hypothesis, hippocampal ripple activity preceding the delta wave could predict
the delta spikes. Strikingly, the cortical cells that were predicted by the
hippocampal ripple content were the ones that had responded more to the objects
during the task, further supporting a possible role of delta spikes in memory
consolidation.

In the rare cases when we detected spikes from more than one cell, we found that
the neurons remaining active in the same delta wave were not independent, but
formed correlated cell assemblies. This suggests that while the rest of the network
is silent, select subpopulations of neurons may perform cortical computations in
isolation from interfering inputs.

Finally, we asked if this spiking in delta waves may explain the results in Maingret
et al. (2016). If delta spikes represent a cortical signal that reflects the preceding
hippocampal ripple activity and retains the information for synaptic plasticity,
we should see a breakdown of the hippocampal bias of delta spikes in the delayed
delta wave condition. Indeed, while hippocampal activity preceding delta waves
coupled to ripples could predict delta spikes in the synchronized condition, delta
spikes of delayed delta waves were no longer correlated with hippocampal activity.

In conclusion, hippocampal ripple activity can bias cortical activity at the
optimal window of delta waves following ripples. In the absence of a delta
wave to isolate the computation from ongoing cortical inputs, interference occurs
and information is lost before the delayed delta wave, preventing memory
consolidation. In contrast, when a delta wave follows the hippocampal ripple, a
synchronized DOWN state of the majority of neurons isolates the cortical network
while a selected subpopulation of cells remain active, retaining the information
throughout the delta wave and resulting in memory consolidation.
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Delta waves have been described as periods of generalized silence

across the cortex, and their alternation with periods of endogenous

activity results in the slow oscillations of slow wave sleep. Despite

clear evidence that delta waves are instrumental for memory con-

solidation, the specific role for neuronal silence in reshaping cortical

functional circuits remains puzzling. Here, we report that contrary

to a generally accepted tenet, delta waves are not periods of com-

plete silence, and the residual activity is not mere neuronal noise.

Instead, cortical cells involved in learning a spatial memory task

subsequently formed cell assemblies during delta waves in response

to transient reactivation of hippocampal ensembles during ripples,

and this occurred selectively during endogenous or induced memory

consolidation. Thus, delta waves represent isolated cortical compu-

tations tightly related to ongoing information processing underlying

memory consolidation.
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Most of our time spent asleep is dominated by the slow oscillation (0.1–1 Hz), when

cortical neurons synchronously alternate between a depolarized (UP) state associated with

high levels of endogenous activity, and a hyperpolarized (DOWN) state when neurons re-

main silent (1). Delta waves are large deflections of the local field potential (LFP) which

correspond to the DOWN states of the slow oscillation, and are thus considered periods of

generalized cortical silence. The slow oscillation plays a causal role in memory consolida-

tion (2–5) possibly by orchestrating an information transfer between the hippocampus and

the neocortex (6). Indeed, recent research suggests that hippocampal replay (7) initiates

reactivation of cortical cell assemblies (8) just before the occurrence of a delta wave (9),

and that synaptic plasticity subsequently takes place during network reorganization early

in the following UP state (10, 11) and during massive calcium entry accompanying the

ensuing sleep spindle (12,13). This hippocampo-cortical dialogue (14,15) is instrumental

for memory consolidation (5).

While recent investigation has progressively unravelled these delicate network mech-

anisms and their temporal relations, the incursion of generalized silence (delta wave)

precisely between information transfer and network plasticity remains puzzling. Here, we

report that contrary to a generally accepted tenet (1, 6, 16), spiking activity does take

place during delta waves, and that this overlooked activity underlies cortical computation

involved in the hippocampo-cortical dialogue.

We recorded prefrontal cortical activity in 9 rats during slow wave sleep (5). Neuronal

activity occurred consistently in a substantial fraction of delta waves (9.2±2.7 %), with

one or a few neurons remaining active while the rest of the population became silent

(Fig. 1A,B). This activity (‘delta spikes’) was not restricted to a particular subset of

neurons, as persisting firing during delta waves involved all recorded neurons (Fig. 1C,

Suppl. Fig. S1).

Conversely, to test whether delta spikes were restricted to a subset of delta waves
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with distinct characteristics, we compared delta waves in which we did or did not detect

cortical spikes, and found no significant difference between the two groups in terms of LFP

waveform (Fig. 1D), decreased gamma power, coupling with thalamocortical spindles,

and coupling with hippocampal ripples (Suppl. Fig. S2). It is therefore conceivable that

spikes could take place during virtually all delta waves, but remain undetected given the

limited number of recorded neurons relative to the entire population of cells. To test this

hypothesis, we first compared sessions with different numbers of recorded neurons. The

proportion of non-silent delta waves increased with greater numbers of recorded neurons

(Suppl. Fig. S3A). To confirm this trend, we used a Monte-Carlo approach to generate

progressively larger populations of neurons by iteratively subsampling greater fractions of

the recorded population and estimating the resulting proportion of non-silent delta waves.

Again, this proportion increased with the number of neurons (Suppl. Fig. S3B). We

therefore propose that firing during delta waves is an overlooked phenomenon manifested

in possibly all delta waves.

This suggests that during any given delta wave, the cortical network becomes silent,

except for a small but ever-changing minority of cells. The most parsimonious explanation

would be that delta spikes constitute random activity reflecting imperfections in the cor-

tical alternation between UP and DOWN states. Yet, an alternative intriguing possibility

is that this persistent activity actually serves a well-defined computational function. A

hallmark of cortical computation is the emergence of cell assemblies. We thus tested for

the presence of recurring co-active cell ensembles. Using independent component analysis

(ICA), we found multiple significant assemblies active during delta waves (Fig. 2). This

shows that delta spikes do form assemblies (‘delta assemblies’) and suggests that they are

not random activity but genuine computations.

We then asked if delta spikes were involved in the hippocampo-cortical dialogue under-

lying memory consolidation. This would have two implications: 1) hippocampal activity
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during ripples should predict which neurons (ideally, which assemblies) fire during the fol-

lowing delta wave, and 2) predictable cortical cells should be involved in the reactivation

of previous wake experience.

The rats were trained on a spatial memory task, and hippocampal and cortical activity

was recorded both during behavior and subsequent memory consolidation during sleep (5).

Hippocampal spiking activity during ripples was significantly correlated with cortical

spikes emitted during immediately (50–200 ms) following delta waves (Fig. 3A). This was

due to a large proportion of positively correlated inter-regional pairs of neurons (Fig. 3B).

Further, a generalized linear model (GLM) analysis showed that delta spikes could be

significantly predicted from the spike counts of the ensemble of individual hippocampal

units (Fig. 3C). In contrast, delta spikes could not be predicted from the combined spike

count of all units (multiunit activity) that ignored cell identity (Fig. 3C), ruling out

that delta spikes merely reflect the overall level of hippocampal activity during ripples.

Finally, the same GLM analysis applied to hippocampal and cortical ensembles showed

that hippocampal activity could even predict delta assemblies (Fig. 3D). Thus, delta

spikes and assemblies reflect the specific information content of the ripple preceding the

delta wave.

Our second prediction concerned the behavioral correlates of the prefrontal units whose

delta spikes were significantly predicted by hippocampal ripple activity. Strikingly, these

cortical cells displayed higher levels of task-relevant firing during behavior immediately

preceding sleep (Fig. 3E; we failed to find a similar effect for delta assemblies, possibly

because of low statistical power due to their limited number: n = 14 assemblies, n =

9 predicted).

These observations suggest that in addition to triggering the reorganization of cortical

subnetworks during the transition to the UP state (5), a critical role of the delta wave

may be to isolate from interference specific cortical computations taking place in response

4



to hippocampal replay. This yields two predictions that we test below: 1) in natural

sleep, hippocampal activity during ripples should predict cortical activity at the time of

the delta wave (∼130 ms later) whether the delta wave does in fact occur or not, but the

occurrence of the delta wave (isolation) should be critical for memory consolidation, and

2) isolating cortical assemblies by experimental induction of delta waves should trigger

memory consolidation, but only if the isolated activity is relevant to the hippocampo-

cortical dialogue. Note that if verified, prediction 1 would provide correlative support,

and prediction 2 complementary causal evidence, for our hypothesis that isolation of delta

assemblies is instrumental for memory consolidation.

We first assessed the correlation between hippocampal activity during ripples and

cortical activity at the expected time of delta waves (∼130 ms later). This correlation

remained significant even in the absence of a delta wave (Suppl. Fig. S4). On the other

hand, we have previously shown (using the same data set) that memory consolidation took

place only if delta waves repeatedly occurred ∼130 ms after ripples (5). This suggests

that the critical difference between experimental conditions that do or do not lead to

memory consolidation is not the hippocampo-cortical correlation (which is maintained in

both conditions), but their isolation from competing inputs by delta waves.

Providing causal evidence requires experimentally isolating cortical computation, i.e.

triggering delta waves, at times when endogenous mechanisms fail to do so (Fig. 4A).

We have already shown that triggering timed delta waves does boost memory consolida-

tion (5). We thus tested whether delta spikes did occur during experimentally induced

delta waves, and whether they were predicted by hippocampal activity. Similar to our

observations in natural sleep (above), stimulation-induced delta waves did feature spiking

activity, and these delta spikes were predicted by preceding hippocampal activity coin-

ciding with the time of ripple (Fig. 4B-D). In contrast, slightly delaying the induction of

delta waves (by ∼200 ms, see Suppl. Fig. S4) so that delta spikes were no longer predicted
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by hippocampal ripple activity (Fig. 4B-D) failed to induce memory consolidation (5),

suggesting that isolation of cortical activity unrelated to the hippocampo-cortical dialogue

did not favor memory consolidation processes.

In summary, our results challenge the generally accepted tenet that delta waves, re-

flecting the DOWN states of the sleep slow oscillation, are periods of complete cortical

silence (1, 6, 17) — to the point that they have sometimes been defined as such (18, 19),

and that occasional spikes have been routinely ignored when detected (20, 21). Here,

we focused on delta spikes and showed that they are not exceptional, that they are not

neuronal noise due to imperfect silencing of the cortical mantle, but on the contrary that

they constitute a common phenomenon potentially implicating all neurons and all delta

waves, and that they reflect genuine processing involved in memory consolidation. This

also provides a mechanism for the documented but puzzling role of delta waves in memory

consolidation: synchronized silence across most of the cortex isolates the network from

competing inputs, while a select subpopulation of neurons maintains relevant spike pat-

terns active between epochs of hippocampo-cortical information transfer (7, 8, 22), and

epochs of cortical plasticity (10,11) and network reorganization (5,12,13). It seems likely

that delta spikes and assemblies also constitute a more general mechanism of isolated

cortical computations during slow wave sleep, as many cortical neurons active during

delta waves could not be predicted from hippocampal ripple activity and may have been

prompted by other input areas.
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Fig. 1. Firing during delta waves. (A) An example recording of a non-silent and a silent
delta wave. Above: local field potential (black trace) recorded in the deep layers of the medial
prefrontal cortex. Below: raster plot of the activity of the simultaneously recorded prefrontal
units. Grey bars mark the 30 ms window centered around delta waves. Note the delta spike
(red circle) during the first delta wave. (B) Distribution of the closest spike emitted by each
prefrontal neuron to each delta wave. Note that beside the large peak at ∼100 ms due to
activity in the UP state, there is a smaller peak of spikes occurring during delta waves with a
temporal distance below our threshold of 15 ms (red line). (C) Left: distribution of the number
of delta waves in which each unit emitted delta spikes was log-normal. Right: distribution
of the number of delta spikes detected in each delta wave. (D) Waveform of silent (black,
n=101,161) and non-silent (red, n=12,205) delta waves were not different (Monte-Carlo test,
p>0.05).
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200 ms

A

B

Fig. 2. Activity components during delta waves. (A) Examples of correlated firing of mul-
tiple units during delta waves (red circles). (B) Examples of significant templates representing
cell assemblies identified using independent component analysis (ICA).
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Fig. 3. Hippocampal ripple activity predicts delta spikes. (A) Cross-structural correla-
tions between hippocampal ripple activity (sliding window) and delta spikes (fixed, 0 s). Real
cross-correlations (red) were significantly different from a shifted control (grey) for hippocam-
pal ripple activity preceding delta waves (red line).(B) Enrichment (see Methods) comparing
the distributions in (A). Relative to the distribution of shifted cross-correlation values, in the
original non-shifted data there was an enrichment of positively correlated pairs of neurons when
the hippocampal activity preceding the delta wave was correlated to delta spikes of prefrontal
units. (C) Predictive performance of a GLM trained to predict delta spikes based on multiu-
nit (grey, p=0.2597, Wilcoxon signed rank test) and single-unit (blue, p=0.0403, Wilcoxon
signed rank test) hippocampal ripple activity within a 200 ms window preceding delta waves
measured as percent improvement relative to a shuffled control (see Methods).(D) Predic-
tive performance of a GLM trained to predict template activation during delta waves based
on multiunit (grey, p=0.1638, Wilcoxon signed rank test) and single-unit (blue, p=0.0092,
Wilcoxon signed rank test) hippocampal ripple activity within a 200 ms window preceding
delta waves. (E). Cumulative distribution of the responsivity index of prefrontal units either
significantly predicted (red) or not significantly predicted (grey) by the preceding hippocampal
ripple activity. Only predicted prefrontal units showed positive object responsivity (predicted
units, p=0.0162; non-predicted units, p=0.5967, Wilcoxon signed rank test).
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Fig. 4. Ripple-delta coupling is instrumental to predicting delta spikes. (A) Left: stim-
ulation protocol. Ripple-triggered stimulation induced delta waves coupled to ripples (green)
or delayed by 160–240 ms (purple) during sleep after rats explored two identical objects for
3 minutes. Right: Object discrimination index during the recall phase after each stimulation
condition. Only coupled stimulation resulted in memory consolidation and enhanced task per-
formance. (B) Performance of GLM trained to predict delta spikes in each of the stimulation
conditions using the single unit (colored bars) or multiunit (grey bars) hippocampal activity in
a 200 ms window preceding delta waves. Delta spikes during coupled (p=0.0030, Wilcoxon
signed rank test), but not delayed (p=0.1301, Wilcoxon signed rank test) delta waves could be
predicted by the preceding hippocampal activity. (C) Cross-correlation (shaded areas, mean
± s.e.m.) of the hippocampal activity and delta spikes in the coupled (green) and delayed
(purple) condition. The green line highlights the interval where the cross-correlation in the
coupled condition are significantly (p<0.05, Wilcoxon rank sum test) greater than the shifted
control (grey). (D) Enrichment plots for the distributions of the cross-correlation values for
the coupled (top) and delayed (bottom) condition relative to the shifted control.
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Materials and Methods
Animals

The analyses presented here were performed on data collected for a previous study by (5).

Briefly, a total of 9 male Long Evans rats (René Janvier, Le Genest, St Isle, France;

weight, 280–350 g) were maintained on a 12h:12h light-dark cycle (lights on at 07:00

a.m.). Training and experiments took place during the day. Rats were group-housed until

one week before surgery. All experiments were in accord with institutional (CNRS Comité

Opérationnel pour l’Éthique dans les Sciences de la Vie) and international (US National

Institutes of Health guidelines) standards, legal regulations (Certificat no. B751756), and

ethical requirements (Ethics Committee approval #2012-0048) regarding the use and care

of animals.

Surgery

The rats were deeply anesthetized (xylazine, 0.1 ml intramuscular; pentobarbital, 40 mg

per kg of body weight, intraperitoneal; 0.1 ml pentobarbital supplemented every hour)

and implanted with a custom-built microdrive with 16 individual tetrodes (groups of four

twisted 12 µm tungsten wires, gold-plated to 200 kΩ), of which 8 targeted the prelimbic

and infralimbic regions of the right mPFC (AP: +2.7 mm from bregma; ML: +1.5 mm,

angled at 10° from the sagittal plane), and the other 8 targeted the CA1 subfield of the

right hippocampus (AP: -3.5 to -5.5 mm; ML: +2.5 to +5 mm). A custom-built bipolar

stimulation electrode consisting of two stainless steel wires (total length 1.5 mm, inter-

wire interval 0.5 mm, wire diameter 70 µm) was implanted in the left neocortex (AP:

+2 mm; ML: -2 mm; DV: -1.5 mm from the dura – motor area). Miniature stainless

steel screws (reference and ground) were implanted above the cerebellum. During recov-

ery from surgery (minimum 3 days), the rats received food and water ad libitum. The

recording electrodes were then progressively lowered until they reached their targets and

13



then adjusted every day to optimize yield and stability.

Behavioral task

During a 3-minute encoding phase rats explored a 70 cm ×  50 cm arena with two

identical objects placed in two adjacent corners. The rats were then placed in a flower

pot for sleep sessions, which lasted until 1,000 stimulations had been delivered (∼4,000 s

of SWS), then returned to their home cage. On the following day, during a 5-minute recall

phase rats explored the same arena, in which one of the objects had been displaced to the

opposite corner. The rats were then placed in a flower pot for uninterrupted sleep sessions

without stimulation. After an interval of at least two days, each rat performed the task

a second time with different objects. The order of the stimulation conditions (coupled-

then-delayed versus delayed-then-coupled) was pseudo-randomly distributed among rats.

Stimulation protocol

The stimulation protocol has been described previously (5). Briefly, threshold crossing on

the ripple band-filtered hippocampal signal automatically triggered a monophasic single-

pulse (0.1 ms) stimulation of the deep layers of the motor cortex, delivered by a constant

current stimulator (SD9 square pulse stimulator, Grass Technologies). For each animal,

the optimal stimulation voltage (the minimum voltage necessary to reliably induce prop-

agating delta waves) was determined prior to training (range: 17.5–22.5 V). The number

of stimulations was limited to one every two seconds, and the total number of stimula-

tions was set to 1,000, yielding a stimulation period of ∼4,000 s. For coupled stimulation,

pulses were triggered 20 ms after SPW-R detection to emulate endogenous fine-tuned

SPW-R-delta coordination. For delayed stimulation, an additional random delay (range:

160-240 ms) was introduced between SPW-R detection and stimulation onset.
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Data acquisition and processing

Brain signals were preamplified (unity-gain headstage, Noted Bt, Pécs, Hungary), am-

plified 500x (Neuralynx L8, Bozeman, MT, USA), acquired and digitized with two syn-

chronized Power1401 systems (CED, Cambridge, UK). A red LED was used to track

the instantaneous position of the animals (25 Hz). For off-line spike sorting, the wide-

band signals were converted, digitally high-pass filtered (nonlinear median-based fil-

ter) and thresholded, and waveforms were extracted and projected to a PCA subspace

using NDManager (L. Hazan and M. Zugaro, http://neurosuite.sourceforge.net

(23)). Spike sorting used a semi-automatic cluster cutting procedure combining Klus-

taKwik (K.D. Harris, http://klustakwik.sourceforge.net and Klusters (L. Hazan,

http://neurosuite.sourceforge.net (23)). In the prefrontal cortex, excitatory and

inhibitory cells were discriminated based on significant short-latency peaks and trough

in cross-correlograms (24) that were validated by visual inspection. In the hippocam-

pus, putative pyramidal cells were identified based on firing rate and bursting proper-

ties. Neurophysiological and behavioral data were explored using NeuroScope (L. Hazan,

http://neurosuite.sourceforge.net (23)). LFPs were derived from wideband signals

by downsampling all channels to 1,250 Hz.

At the end of the experiments, recording sites were marked with small electrolytic

lesions. Rats were deeply anesthetized with a lethal dose of pentobarbital, and intrac-

ardially perfused with saline (0.9%) followed by paraformaldehyde (10%). Coronal slices

(40 µm) were stained with cresyl-violet.

Data analysis and statistics

Data were analyzed in Matlab (MathWorks, Natick, MA), using Freely Moving Animal

Toolbox (M.Zugaro, http://fmatoolbox.sourceforge.net) and custom written pro-

grams. Spectrograms were constructed using chronux (http://www.chronux.org).
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Object responsivity

To asses how cells in the medial prefrontal cortex responded to objects, the responsivity

index R was defined as the mean firing rate r over the quadrants containing the objects,

z-scored relative to distribution F of firing rates in the empty quadrants, i.e. R = (r-µ)/σ

where µ and σ are the mean and standard deviation of F. Thus, the object responsivity

index R measured by how much, relative to its baseline variability, a cell increased its

firing rate around the objects.

Sleep scoring

Sleep stages (SWS/REM) were determined by automatic K-means clustering of the theta/delta

ratio extracted from the power spectrograms during the episodes where the animal was

immobile (linear velocity < 3 cm/s for at least 30 s, with brief movements < 0.5 s).

Ripple detection

To detect ripple events, we first detrended the LFP signal and used the Hilbert trans-

form to compute its ripple band (100–250 Hz) amplitude. We then averaged the ripple

amplitudes across the channels recorded in the CA1 pyramidal layer, yielding the av-

erage ripple amplitude Aripple. To exclude events of high-spectral power non-specific to

the ripple-band, we subtracted the average high-frequency (300-500 Hz) amplitude Anoise

from Aripple, and when Anoise was higher than Aripple, we set Aripple to 0. We then z-

scored Aripple, yielding a transformed signal R(t). Ripples were defined as events where

R(t) crossed the threshold of 3 s.d. and remained above 1 s.d. for 30 ms to 110 ms.

Delta wave detection

Delta wave detection was based on combination of LFP signal and spiking information.

The LFP recorded on each tetrode in the mPFC was filtered (0–6 Hz) and z-scored,

yielding D(t). We extracted sequences of local minima and maxima (tbeginning, tpeak, tend,

16



corresponding to the putative beginning, peak and end of delta waves, respectively) by

detecting upward-downward-upward zero-crossings of D′(t). Delta waves corresponded

to epochs where D(tpeak) > 2, or D(tpeak) > 1 and D(tend) < −1.5. Detected events

lasting less than 150 ms or more than 500 ms were discarded. Detected events in which

the instantaneous smoothed (60 ms Gaussian window) mPFC multiunit activity decreased

(relative to a 2-s period around each tpeak) were defined as delta waves.

Activity during delta waves

To quantify spiking during delta waves, we computed the distribution of delays between

a delta wave peak and the nearest spike emitted by each neuron detected on the same

tetrode as the delta wave. This yielded a bimodal distribution (Fig. 1B): while in the

majority of cases, the nearest spike was 100-200 ms from the delta wave (i.e. in the

upstate), we saw a fraction of delta waves in which a spike occurred within 15 ms of

the delta wave peak. We used this window as a conservative estimate for the activity

occurring during delta waves, and defined delta spikes as spikes emitted within 15 ms of

the peak of a delta wave detected on the same tetrode as the active neuron.

We used independent component analysis (ICA) to detect significant cell assem-

blies (25). We computed a delta spike matrix M , where M(i, j) is the number of spikes

emitted by neuron i within 15-ms of delta wave j. We z-scored M for each neuron and

projected it onto its significant principle components – the first n components after prin-

ciple component analysis (PCA), where n is equal to the number of eigenvalues exceeding

the Marcenko-Pastur threshold λmax. We then ran ICA (using the FastICA package for

Matlab, http://research.ics.aalto.fi/ica/fastica/) on the projection matrix to

obtain the weight vectors describing the assemblies.

To assess the activation of a given cell assembly k, we computed its projection operator

P k – the outer product of its weight vector – and set its diagonal to zero. Component
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activation A was defined as A = MTP kM .

Predicting delta spikes from hippocampal activity

Cross-correlations To compute the correlation of hippocampal ripple activity and

delta spikes with a temporal delay k (between -500 ms and 500 ms with a step of 10 ms),

we considered each cross-structural pair of neurons i and j, where i is a prefrontal neuron

and j is a putative pyramidal neuron in the hippocampus. We first discarded delta

waves which did not involve hippocampal activity within a 200 ms window centered on

(tdelta + k). We then counted the number of spikes emitted by neuron i within 15 ms of

each remaining tdelta, producing the delta spike vector Di. We also counted the number

of spikes emitted by j in a 200-ms window centered on (tdelta + k), yielding a spike vector

Hkj. We computed the Spearman’s rank-order correlation between Di and Hk
j , yielding

ρijk. To produce the plots in Figs. 3A and 4C, we took the average and s.e.m. of ρijk

over all the values of i and j for a given temporal distance k.

To compute the correlation of hippocampal ripple activity and the activation of a

given component, we repeated the above procedure, replacing the delta spike count of the

ith neuron Di with the activation of the ith cell assembly Ai.

To assess the significance of the cross-correlation, we repeated the above procedure

introducing a shift in the events, measuring the correlation between the hippocampal

activity centered on (tdelta + k) and the delta spikes emitted during tdelta+1, producing

the control correlations ρshiftedijk . The advantage of this approach relative to shuffling all

events randomly is that it only disrupts fine timescale correlations and preserves slow

correlations, which may be due to other factors that cells are independently modulated

by, such as sleep progression or depth.

To compute the enrichment plots in Figs. 3B and 4D, we computed the distribution

of correlation values of ρijk for a given k, and subtracted from it the distribution of
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correlation values of shifted control data ρshiftedijk .

Generalized Linear Model (GLM) To estimate the predictive power of hippocampal

ripple activity, we used prediction gain defined by (22). Briefly, for each prefrontal neuron

i we trained a Generalized Linear Model (GLM) to predict its binary delta spike vector

Di, using the matrix H containing the spike count of each hippocampal pyramidal neuron

in the 200 ms window preceding the delta wave (Hmj is the number of spikes emitted by

neuron j before themth delta wave). For each prediction of the GLM, we performed multi-

fold cross-validation, where we split the delta waves into n non-overlapping groups, where

n is the number of delta waves in which neuron i fired, such that each of the partitions

had the same number of silent and non-silent delta waves. When predicting the activity

of a given partition to test the model, we used the other partitions to training the model.

The quality of the prediction was estimated by comparing the average prediction error e

to the average error eshuffled given by shuffling the predictions relative to the real data

Di 1,000 times. Prediction gain g was then g = eshuffled/e (22).
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Fig. S1. Neuronal firing in delta waves. A. Distribution of the delta participation rate (the
proportion of delta waves in which a neuron emitted a delta spikes) in sleep before and after
a memory task. B. Delta participation rate for inhibitory (n=17), excitatory (n=57), and
unclassified cells (n=360), for which no local monosynaptic connections were found. There
was no difference between the groups (Kruskal-Wallis test, p>0.05). C. The proportion of
slow-wave sleep spikes emitted in delta waves was not correlated with firing rate for inhibitory
(left), excitatory (middle), or unclassified cells (right).
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Fig. S2. Properties of delta waves with detected spikes in endogenous sleep. A. Gamma
power (z-scored) around delta waves. Note that the gamma power decrease during delta
waves was similar regardless of whether spikes were detected during the delta wave. B. Ripple
coupling around delta waves. The prevalence of ripples preceding and following the delta wave
did not depend on whether spikes were detected during the delta wave. C. Event-centered
spectrograms centered on the delta wave peak. The signal in each frequency bin has been
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Left: delta waves with detected spikes. Right: silent delta waves. Note the spindle following
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Fig. S3. Delta spike detection. A. The number of recorded neurons in each session and the
proportion of delta waves in which spikes were detected. Note the correlation (r=0.7456,
p=0.0014, regression line shown). B. Detection of non-silent delta waves after limiting the
number of recorded neurons. For each session, delta wave detection was repeated after ignoring
a recorded neuron. This was repeated progressively until no neurons remained. Non-silent
delta wave detection is computed as the proportion of non-silent delta waves in these limited
datasets compared to baseline, where all recorded neurons were taken into account. Sessions
are colour-coded based on the total number of neurons recorded in the session (range, 4–68).
Note that the proportion of delta waves with detected delta spikes is greatly underestimated
in limited datasets.
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the timing of coupled delta waves relative to ripples.
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CHAPTER 6. ROLE OF DELTA SPIKES IN MEMORY CONSOLIDATION

The articles presented above have implications for systems memory consolidation
through sleep rhythms and in particular for the role of delta waves. The following
chapters present a discussion of those findings, accompanied by illustrations from
our data where they relate to the subject at hand.
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Part III

Discussion
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Chapter 7

Delta waves

In the articles presented here, we have shown that delta waves following
hippocampal ripples cause memory consolidation and reorganization of cortical
networks, and that delta spikes, emitted while the rest of the network is silent,
contain information about the preceding ripple. In this chapter, I discuss the
implications of these findings on the role of delta waves in memory consolidation.

7.1 Ripple-delta coupling

In Maingret et al. (2016), we showed that boosting ripple-delta coupling by
inducing delta waves upon ripple detection results in memory consolidation, but
introducing a brief random delay (∼200 ms) was introduced between ripples
and triggered delta waves abolished this effect. These results indicate that the
underlying mechanism was a remarkably fine temporal precision of ripple-delta
coupling and that memory consolidation could not be accounted for by increased
occurrences of delta waves, since the number of these events was unchanged
between test and control conditions. This appears to be at odds with previous
studies documenting a direct role for delta waves in memory consolidation (see
section 4.1). One possibility that could explain this apparent discrepancy would
be that in previous studies, boosting slow oscillations incidentally increased
their coupling to hippocampal ripples, and that this coupling, rather than the
reinforced slow oscillations per se, was instrumental in triggering improvements
in memory performance.
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CHAPTER 7. DELTA WAVES

The work presented in this thesis suggests the following sequence of events as a
possible scenario for how a hippocampo-cortical dialogue involving ripple-delta
coupling can lead to memory consolidation. Ripple-related activity facilitates the
resurgence of cortical cell assemblies relevant to a given memory trace (Peyrache
et al., 2009). This is followed by a delta wave, which isolates the cortical
network from competing inputs. During the delta wave, information about the
memory trace remains reflected in the activity of a minority of neurons that
don’t transition into a DOWN state with the rest of the network (chapter 6).
This would bias the network towards information related to the memory trace at
UP-state onset, which would lead to the selective reorganization of the network
and memory consolidation (Maingret et al., 2016).

7.2 Delta spikes

While delta waves are characterized by silence, we observed neuronal activity
persistent through some delta waves. It is possible that this only affects a minority
of delta waves; however, we observed no differences between delta waves where we
observed delta spikes (spikes from the same recording site as the delta wave was
detected) and delta waves where we observed no activity. In addition to having
the same waveform (see chapter 6, Fig. 1D) and the same relation with ripples,
spindles, and gamma power (see chapter 6, Supp. Fig. 1) as silent delta waves,
non-silent delta waves were also induced by cortical stimulation (Figure 7.1).
Moreover, in one rat implanted in the thalamic reticular nucleus in addition to
the prefrontal cortex, we observed the same thalamic notion that there is no
inherent difference between apparently silent and non-silent delta waves apart
from whether delta spikes happen to be recorded.

What is the mechanism for persistent firing during delta waves? The network
hyperpolarisation at the UP-DOWN transition results from a reduction of
synaptic excitation (Timofeev et al., 2001b; Bazhenov et al., 2002). Neurons
particularly depolarized before the network transition might be less affected by
the net decrease in synaptic, possibly enough to skip a population DOWN state.
Indeed, a neuron’s activity during delta waves was positively correlated with its
firing before the delta wave (data not shown).
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Figure 7.1: Non-silent delta waves. A. Non-silent delta waves were induced by cortical
stimulation. Left: delta wave rate (mean ± s.e.m., normalised by the total number of
silent and non-silent delta waves, respectively) following cortical stimulation. Note that
non-silent delta waves had the same Right: Bottom right: Proportion of delta waves
(median ± s.e.median) following stimulation pulses within 200 ms. The proportion of
induced delta waves was not different between conditions (Wilcoxon signed rank test,
p>0.05). Open circles represent individual sessions. B. Multiunit activity (mean ± s.e.m.)
from the thalamic reticular nucleus relative to the onset of delta waves recorded in the
prefrontal cortex. Data is from a single session from one animal.

7.2.1 Influence on delta spikes

It is perhaps not surprising that delta spikes reflect cortical inputs. Past activity
of an interconnected network influences future activity, and delta waves are often
preceded by the substantial cortical response to hippocampal ripples. This can
lead to the content of such ripples biasing the delta spikes emitted in the following
delta waves. In this view, delta spikes may reflect the inputs arriving just before
UP state termination. This often corresponds to strong inputs such as ripples,
as they can trigger an UP-DOWN transition (see section 3.1.1).

In this manner, delta spikes may serve as a bridge between the activity at the
end of one UP state (reflecting inputs at the UP state termination) and the
onset of the following UP state, where plasticity takes place. According to
this hypothesis, delta spikes during ripple-preceded delta waves should reflect
hippocampal content, but delta spikes during other delta waves should reflect
the activity of other partner areas beside the hippocampus. In a project with
Céline Boucly and Virginie Oberto, we are investigating the interplay between
the striatum and the prefrontal cortex in sleep, and preliminary analysis is in
agreement with the possibility that delta spikes may also reflect striatum activity.
This supports idea of delta spikes as an general mechanism for linking information
between UP states involved in the communication with multiple cortical partner
areas.
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CHAPTER 7. DELTA WAVES

7.2.2 Influence of delta spikes

The scenario proposed in section 7.1 requires that delta spikes exert influence on
the following UP state. In the coupled stimulation condition, delta spikes reflect
the preceding hippocampal activity and cortical sequences at the DOWN-UP
transition are modified, while in the delayed stimulation condition, delta spikes
do not reflect the preceding hippocampal activity and cortical sequences at the
DOWN-UP transition remain stable. Yet a direct link between the recorded delta
spikes in a given delta wave and the spike sequence following that delta wave
remains to be demonstrated. The method we employed to measure the stability
of DOWN-UP sequences does not allow for the examination of sequences on the
scale of single events. Investigating this question would therefore require the
development of new data analysis tools.

What would be the impact of delta spikes on synaptic plasticity? Chauvette et al.
(2012) showed that hyperpolarisation of the post-synaptic cell during DOWN
states is required component for long-lasting synaptic plasticity. A synapse is
thus more likely to be modified if the post-synaptic cell was hyperpolarized and
therefore silent during a delta wave. Cells emitting spikes during a delta wave
could participate in synaptic plasticity either as pre-synaptic cells or indirectly,
by biasing network activity. Throughout the course of sleep, a cell would emit
delta spikes during a minority of delta waves and undergo synaptic plasticity
following delta waves in which it was silent.

Delta spikes represent an intriguing candidate mechanism for how hippocampal
ripples preceding delta waves would affect the network beyond the silence.
However, a causal role of delta spikes remains to be demonstrated.
Electrophysiological studies in slices may elucidate how activity during delta
waves may bias the following UP state, and research in in freely moving
animals involving closed-loop experiments silencing cells during delta waves could
demonstrate the impact of delta spikes on memory consolidation.
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Chapter 8

Alternative mechanisms for
the hippocampo-cortical dialogue

The proposed scenario for memory consolidation through ripple-delta coupling
involves (1) ripples preceding delta waves stimulating relevant cortical ensembles,
(2) delta waves isolating the network from competing inputs while persistent
activity of small subpopulations of neurons bridges the information to the
upcoming UP state, and (3) synaptic plasticity mechanisms taking place through
neuronal sequences at the DOWN-UP transition as well as spindles following
the delta wave. However, the hippocampo-cortical dialogue is not limited to
ripple-delta-spindle coupling; notably, it includes ripples following delta waves
(Isomura et al., 2006) and ripples embedded in spindles (Sirota et al., 2003). This
chapter discusses these other modes of hippocampo-cortical communication as
alternative mechanisms that could drive the memory consolidation effects brought
about by ripple-delta coupling.

8.1 Delta-ripple coupling

While the information communicated to the cortex through a ripple preceding the
delta wave needs to be retained within the network for the next UP state where
synaptic plasticity occurs, this caveat does not apply to ripples following the
delta wave. Ripples occurring immediately following delta waves and preceding
spindles are well-timed to influence spindle-mediated synaptic plasticity. I
therefore considered succeeding ripples as a possible mechanism driving the
memory consolidation we observed in the coupled stimulation condition.

One hypothesis for how ripple-delta coupling results in memory consolidation was
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that the ripple preceding the delta wave (‘first ripple’) serves simply to trigger
a delta wave, initiating a window of communication during the subsequent UP
state. In this view, the information content of the first ripple is irrelevant and need
not be preserved during the delta wave to consolidated in the cortical network;
rather, the first ripple increases the likelihood that the cortex would be in a more
receptive state during a subsequent ripple (‘second ripple’), which would follow
the first ripple. In support of this hypothesis, ripple-preceded delta waves are
more likely to be immediately followed by another ripple (Figure 8.1A). This
may be accounted for by delta wave amplitude: ripple-preceded delta waves are
more likely to be stronger (involving the synchronized DOWN state of a more
extensive area around the recording site than lower-amplitude delta waves), and
stronger delta waves are more likely to be immediately followed by hippocampal
ripples (Figure 8.1C). This is in agreement with the hypothesis that the role
of ripple-delta coupling is to ensure that delta-ripple-spindle sequences occur.
However, delta waves induced by delayed stimulation were equally likely to be
followed by a ripple as coupled delta waves (Figure 8.1B), and these delayed
delta-ripple-spindle sequences were not sufficient to boost memory consolidation.
Therefore the presence of delta-ripple-sequences cannot account for the effect of
ripple-delta coupling on memory consolidation.

In an amended version of this hypothesis, the temporal proximity of the two
ripples (∼250-300 ms for a ripple preceding and a ripple following the same
delta waves) could affect the efficacy of the delta-ripple-spindle sequence. If
recently active neurons remain more excitable in the hippocampal network,
perhaps the second ripple (∼250 ms following the first ripple) would be more
likely to replay the same memory trace – restating the relevant information to
the cortex (preventing the need for the cortex to retain the information during
the delta wave), and also consolidating it in the hippocampus. To test this
hypothesis, I directly compared the neurons active in such pairs of ripples1.
Indeed, hippocampal neurons were more likely to fire in the second ripple if they
had already fired in the first ripple (Figure 8.1D,E). However, this was true both
in the coupled and the delayed stimulation conditions, leading me to reject the
hypothesis that the second ripple is driving the effect of ripple-delta coupling on
memory consolidation. The role of this second ripple in the hippocampo-cortical
dialogue remains unknown.

1Correlations: for a given neuron, its firing rate within each ripple (100 ms window centered
on the ripple peak) forms a firing rate vector V 1. Each of these initial ripples is paired
with the first ripple in a 200-ms temporal window fixed at a given delay d from the initial
ripple. The neuron’s firing rate within these partner ripples forms a firing vector V 2. The
correlation between V 1 and V 2 is shown for varying distances d in Figure 8.1D. Note that to
avoid overlapping activity, d ≥200 ms. For computing control correlations, the partner ripples
are shuffled.
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Figure 8.1: Ripples following ripple-coupled delta waves. A. Ripple rate (mean ±s.e.m.,
z-scored with respect to the ripple rate 0.5–2 s away from delta waves) following delta waves
preceded (<0.5 s) by ripples (solid) or delta waves not preceded by ripples (pale grey). Top:
non-stimulated sleep (test day in (Maingret et al., 2016)); middle: coupled stimulation;
bottom: delayed stimulation. Ripple-preceded delta waves were more likely to be followed by
ripples in all conditions (Monte-Carlo test, interval of significant (p<0.05) difference marked
by line above). B. Ripple rate around delta waves. The two stimulation condition had
more ripple-preceded delta waves than natural sleep (Monte-Carlo test, respective intervals
of significant (p<0.05) difference marked by lines above), but the ripple rate following
delta waves was the same in all conditions (Monte-Carlo test, p>0.05). C. Ripple rate
depending on delta wave strength. Left: non-stimulated sleep; middle, coupled stimulation;
right, delayed stimulation. In each session, delta waves have been divided in 20 quantiles
depending on delta wave strength, defined as the difference in voltage between the peak
and the trough. Note that ripples tend to precede and follow stronger delta waves (located
at the bottom). D. Correlation between each hippocampal neuron’s activity () in pairs
of ripples. Top: The correlation between the activity of each neuron in one ripple and
another ripple as a function of the delay between the two ripples. Bottom: The correlation
(median±s.e.median) between the activity of each neuron in the last ripples preceding
(within 500 ms) delta waves and the first ripples following (within 500 ms) delta waves.
Activity was correlated between these pairs of ripples in both stimulation conditions, but
not different between conditions. Note that correlations are lower than expected for the
temporal distances between the pairs ripples (see Top) possibly due to effects of the delta
wave on hippocampal activity. E. For a given neuron active in a ripple preceding a delta
wave, the probability that it will fire again in the ripple following the delta wave. Top: such
repeating activity was significantly different from shuffled data (shuffled ripples following
delta waves) in both conditions. Bottom: the improvement from shuffle was not different in
the delayed and the coupled stimulation conditions. Shaded plots in A, B and D represent
mean ±s.e.m. Bars in D and E represent median±standard error of the median. Tests in
D and E are Wilcoxon rank-sum tests, where *p<0.05; **p<0.01, ***; p<0.001.
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Figure 8.2: Spindle properties in the coupled and delayed delta stimulation conditions.
A. Spindle rate centered on delta waves. B. Spindle power as detected at the spindle
peak (z-scored over the whole recording session). C. Average spindle frequency (number
of cycles divided by spindle duration). D. Spindle duration. Shaded plots in A represent
mean ±s.e.m. Bars in B, C and D represent median±standard error of the median. Tests
in B, C, and D are Wilcoxon rank-sum tests, p>0.05 in all panels.

8.2 Ripple-spindle coupling

Sleep spindles, known to promote synaptic plasticity (Sejnowski and Destexhe
2000; Rosanova and Ulrich 2005, see section 3.2), are a candidate mechanism to
drive the effect of ripple-delta coupling on memory consolidation. I therefore
investigated how ripple-delta coupling affects spindles. Spindle rate, power,
frequency, and duration were not different between the coupled and the delayed
stimulation conditions (Figure 8.2), indicating the ripple-delta coupling does not
affect spindle properties. It is therefore possible that synaptic plasticity takes
place after coupled and delayed delta waves alike; however, the memory traces
being strengthened could depend on the activity of the network around and during
spindles.

It is possible that the activity immediately preceding spindles could bias neuronal
activity and the synaptic plasticity processes taking place during spindles.
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Figure 8.3: Spindles preceded by ripples. A. Ripple and spindle timing in the slow
oscillation. Left: ripple and spindle occurrence relative to delta wave. Right: Probability
of ripple and spindle occurrence within an UP state. Phases interpolated based on delta
wave occurrence: 0 rad. corresponds to a delta wave peak and π rad. corresponds to the
middle of the UP state duration. B. Left: ripple-spindle occurrence around delta waves
as represented by a two-dimensional histogram, produced by multiplying STR, where S
is a matrix of spindle occurrence and R is a matrix of ripple occurrence around delta
waves (delta waves are rows in the matrix). Right: a control histogram for the expected
distributions for independent ripple and spindle modulation around delta waves, produced
by substituting each line of R and S by the mean ripple rate and spindle rate, respectively,
removing any interactions before multiplying the matrices. Bottom: the difference between
the two matrices represents the interaction between ripples and spindles. Note the diagonal
representing ripple occurrence before spindles. C. Spindle tendency to follow ripples and
memory consolidation in natural sleep following the spatial object recognition task. Top:
two-dimensional histograms as described in B. Left: sleep following time-limited training
on the task. Right: sleep following long training on the task. Note the increased rate
of event occurrence. Bottom: interaction plots indicating the ripple-spindle relationship
independent of delta waves is not stronger in sleep following long training which leads to
memory consolidation. D. Spindle rate (mean ±s.e.m.) centred on ripples in the stimulation
and the control condition.
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Spindles are preceded by the upsurge of cortical activity at the DOWN-UP
transition and they may therefore potentiate synapses related to the memory trace
which has been kept active possibly through delta spikes. In addiction, spindles
are also preceded by ripples (Siapas and Wilson 1998; Peyrache et al. 2009, see
section 4.2). In part, this is orchestrated by delta waves, which are followed by
both ripples and spindles, with spindles occurring later (Sirota and Buzsáki 2005,
Figure 8.3A). However, ripple-spindle coupling is stronger than what would be
expected if they were independently induced by delta waves (Figure 8.3B). It is
possible that, like the cortical upsurge of activity at the DOWN-UP transition
(Amzica and Steriade, 1997; Peyrache et al., 2011), the synchronous ripple
activity may help induce sleep spindles. However, ripple-spindle coupling cannot
account for the memory consolidation effects of ripple-delta coupling, because it
was not different between the coupled and delayed stimulation conditions (Figure
8.3D).

One of the hallmarks of the hippocampo-cortical dialogue is the ripples nested
in individual spindle cycles, which has been proposed to drive to memory
consolidation (Latchoumane et al. 2017, see section 4.2). We considered
the possibility that ripple-delta coupling might maximize the coordination
between the hippocampal and the cortical networks following the delta wave
and potentially enhance this phase-locking. However, we found no differences
in ripple nesting in spindle cycles between the two conditions (Figure 8.4),
indicating that coupled and delayed delta waves alike were followed by spindles
with phase-locked ripples, and that the effects of ripple-delta coupling on
memory consolidation cannot be accounted for by differences in this fine-tuned
ripple-spindle coordination. Naturally, this does not exclude the possibility that
this intact ripple-spindle phase- locking is necessary for the effects of the coupled
stimulation on memory consolidation, but it was not sufficient.

8.3 Perspectives

While many of these alternative modes of hippocampo-cortical communications
were unaffected by ripple-delta coupling, they are by no means irrelevant to the
hippocampo-cortical dialogue. Successful memory consolidation might require
the integration of all of these factors. Understanding the role of each phenomenon
would require further investigation.

One promising line of inquiry would involve investigating the replay content
taking into account the relative timing with respect to delta waves and spindles.
Extended replay events spanning chains of ripples have been reported in awake
animals (Davidson et al., 2009), but it is unknown whether ripples following
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Figure 8.4: Ripples nested in spindles. A. Ripple rate (median±s.e.median) within spindles
was not affected by the coupling of the stimulation conditions (Wilcoxon rank-sum test,
p>0.05). B. Ripple phase-locking to individual spindle cycles. Phases were estimated by
the Hilbert transform of the filtered (9–17 Hz) signal. C. Ripple phase-locking throughout
spindle. Each spindle was divided into 20 quantiles of equal duration, and the average
ripple rate was computed for each phase bin (2π/50) and each quantile across all spindles.
Left: delayed stimulation condition; right: coupled stimulation condition. Note that in both
conditions, ripple phase-locking peaks early within a spindle and persists throughout the
spindle.
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delta waves could provide additional information complementing the preceding
ripple, and whether replay during sleep spindles is related. Moreover, only a small
proportion of ripples have decodable replay events (it is not yet known if other
ripples are noisy or have replay content we cannot decode), and it is possible that
some of the relationships with cortical rhythms described here might affect these
ripples disproportionately, possibly reflecting the direction of communication.
Due to the nature of the task requiring a short duration of exploration, we were
unable to decode replay trajectories to investigate these questions. However, new
experiments in the lab are carried out by Nadia Benabdallah to collect the data
that could answer these questions.

Future studies may also consider suppressing specific ripples based on their
timing, in particular ripples following delta waves and ripples locked to
thalamocortical spindles. Novel imaging techniques at the level of synaptic
boutons, combined with field recordings, may shed light on how ripple timing
affects synaptic plasticity during these events.
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Chapter 9

Role of awake theta sequences in
memory formation

In addition to the work on the hippocampo-cortical dialogue that has been the
main focus of this thesis, I have taken part in a project testing the role of theta
sequences on sleep replay.

When moving through an environment, a rat’s trajectory is reflected by the place
field activity on multiple timescales (Figure 9.1). On a behavioural timescale
(seconds), firing fields of multiple place fields are crossed successively, reflecting
the animal’s trajectory. During exploration, the LFP is dominated by theta
oscillations (7–14 Hz), and theta sequences reflect the trajectory on a compressed
(5–10) timescale (Skaggs et al., 1996; Foster and Wilson, 2007). Theta sequences
can emerge from the phase coding properties of individual place cells (Chadwick
et al., 2015), although additional mechanisms may be at play (Feng et al., 2015;
Middleton and McHugh, 2016).

When a rat is exploring a novel environment, NMDA receptor-dependent synaptic
plasticity is required for the formation of trajectory sequences which can be
later replayed during sleep ripples for memory consolidation (Silva et al., 2015).
Multiple lines of evidence suggest that theta sequences are the mechanism for
the initial trajectory encoding. First, the temporally compressed timescale of
theta sequences is compatible with synaptic plasticity, making them a good
candidate mechanism for memory formation (Skaggs et al., 1996; Wójtowicz and
Mozrzymas, 2015). Second, pharmacologically disrupting the theta oscillation
impairs performance on spatial memory (Robbe and Buzsáki, 2009; Wang et al.,
2015b). Incidentally, an alternative mechanism for sequence encoding has been
ruled out – perturbing awake ripples has no effect on subsequent sleep replay
sequences (Jadhav et al., 2012).
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A B C DA

A A A AB B B BC C C CD D D D

B

Figure 9.1: Hippocampal sequences during exploration. A. Behavoural sequences. Top:
Firing rates of place cells (A,B,C, and D) on a linear track. Bottom: in a given lap, the
rat crosses the place fields (ellipses) of the above place cells. B. Theta LFP and nested
theta sequences. Within a theta cycle, place cells with overlapping place fields discharge in
a sequence (∼120 ms) reflecting the order of field traversal at a compressed time-scale.

While multiple lines of evidence suggest that theta sequences are the mechanism
for the initial encoding of memory traces and trajectories that can be later
replayed in sleep, this hypothesis has never been directly tested. Moreover,
an alternative slow-timescale synaptic plasticity has been recently discovered,
providing a possible mechanism for behavioural sequences to be encoded directly
(Bittner et al., 2017).

To test the causality of theta sequences on trajectory encoding, we selectively
disrupted theta sequences while preserving firing field sequences to determine if
intact theta sequences were required for subsequent replay during sleep. We took
advantage of the fact that passive transportation retains the spatial selectivity of
place cells while perturbing their precise timing relative to theta (Terrazas et al.,
2005), except if the animals actively run on an on-board treadmill (Cei et al.,
2014). We thus transported rats on a model train with the on-board treadmill
off (‘Passive’) or on (‘Active’), to respectively perturb theta sequences or leave
them intact. Critically, the rats were tested on a single day in an entirely novel
environment (different from the training room), in order to avoid any network
plasticity changes due to previous experience of the environment. We found that
following selective disruption of theta sequences, sleep replay remained at baseline
levels observed prior to experience, while intact theta sequences resulted in
boosted replay during subsequent sleep. Our results show that theta sequences of
hippocampal cell assemblies underlie subsequent replay during sleep, supporting
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the view that theta sequences are the substrate of the initial formation of memory
traces subsequently consolidated during sleep.

All the experiments were performed by Céline Drieu. My contribution to this
project was with some of the data analyses; in particular, the implementation
of the sequence scoring measure of Davidson et al. (2009) and its adaptation for
circular data, correlations between individual sequences, the detection of LFP
events (ripples and asymmetric theta cycles), and phase precession analyses.
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Nested Sequences of Hippocampal Assemblies During
Behavior Support Subsequent Sleep Replay
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Consolidation of spatial and episodic memories is thought to rely on replay

of neuronal activity sequences during sleep. However, the network dynamics

underlying the initial storage during wake have never been tested. While slow,

behavioral timescale sequences have been claimed to sustain sequential mem-

ory formation, fast (‘theta’) timescale sequences, nested within slow sequences,

could be instrumental. We found that during passive travel, place cells formed

behavioral timescale sequences but theta sequences were degraded, resulting

in impaired subsequent sleep replay. In contrast, when the rats actively ran

during transportation, place cells generated clear theta sequences and accu-

rate trajectory replay during sleep. Our results support the view that nested

sequences underlie the initial formation of memory traces subsequently con-

solidated during sleep.

1



The sequential activation of neuronal ensembles is a ubiquitous brain coding scheme possi-

bly underlying numerous diverse behaviors (1–4). Sequential neuronal activity occurs at differ-

ent timescales, ranging from slow (‘behavioral’) timescales, where the dynamics are constrained

by stimulus or motor time constants, to fast (‘endogenous’) timescales mostly driven by intrin-

sic network properties. A prominent example is the hippocampus, where place cells code for

an animal’s location (5). As the animal explores its environment, different place cell ensembles

become successively active along the ongoing trajectory, yielding sequences of neuronal activ-

ity at the behavioral timescale. During subsequent slow wave sleep (SWS), the same sequences

are endogenously replayed during sharp-wave ripple (SWR) complexes, at a highly accelerated

(20x) timescale (6), mediating memory consolidation during sleep (7–10). How is the sequen-

tial organization of place cell assemblies maintained across these two timescales expressed at

entirely disjoint moments in time and during different brain states?

Sequential information could be readily stored during exploration in the hippocampal net-

work by the sequential activation of place cells at the behavioral timescale, via a recently un-

covered form of behavioral timescale plasticity (11). An intriguing alternative is that sequential

structure is stored via the remarkable property of the hippocampal network to generate nested

sequences of cell assemblies, whereby both slow and fast neural sequences are intermingled in

time. This occurs during spatial navigation: nested within behavioral timescale sequences, the

hippocampal network also produces sequences at the ‘theta’ timescale (one sequence per theta

cycle of ∼150 ms, (12–14)) allowing cell assemblies to fire within brief delays (∼25 ms, (15))

compatible with classical Hebbian plasticity, such as spike-timing dependent plasticity (16).

Are these nested sequences of hippocampal cell assemblies required for subsequent sleep re-

play (12,13), or are they but a stunning epiphenomenon, deriving from preexisting connectivity

within the hippocampal network (17–19)?

Contrasting these predictions requires a protocol that selectively disrupts fast, theta se-

2



quences, but preserves slow, behavioral sequences of place cell assemblies. Further crucial

constraints are the necessity to target the entire hippocampal formation (both in terms of extent,

to overcome information redundancy along the septo-temporal axis of the hippocampus, and in

terms of fields, to overcome compensatory network mechanisms such as pattern completion in

CA3 which could restore locally induced impairments), as well as the ability to trigger or re-

lease theta sequence disruption with temporal precision. During passive transportation in space,

place cells remain spatially selective, but their precise timing relative to theta (‘phase preces-

sion’, (12)) is altered (20), except if the animals actively run on an onboard treadmill (21). We

thus transported rats on a model train (Fig. S1A), and turned the onboard treadmill off (Passive)

or on (Active), to respectively perturb nested sequences or leave them intact. The goal was to

determine if intact nested sequences were required for subsequent replay during SWS. The rats

were tested in an entirely novel environment, different from the training room. Hence, hip-

pocampal activity was monitored as the animals learned a novel spatial context, which is know

to induce the formation of a novel hippocampal map, increase network coordination, boost re-

play and enhance plasticity (22–25). Further, because the rats were tested on a single day, this

avoided any confounding network changes that could have resulted from previous experience.

We recorded CA1 pyramidal units and local field potentials in five rats. Following a baseline

sleep session, the rats underwent three travel sessions (Passive 1, Active, Passive 2) interspersed

with sleep sessions (Fig. 1A). The train velocity, number of laps and recording duration were

similar in all conditions for all rats (Fig. S1B-D). We first verified the presence of place cell

sequences at the behavioral timescale in all three conditions. Pyramidal cells always coded for

the location of the animal in space (Figs. 1B and S2). Their fields remained similar in terms of

size (Figs. 1C and S3), and together covered the entire train track (Fig. S2C). However, peak

firing rates and place cell count were somewhat reduced during passive travels (Figs. 1C and

S2B; (20)); specific controls for these factors will be provided in ensuing analyses. Incidentally,

3



we also confirmed that place fields did not undergo random remapping (Figs. 1D and S2D). This

further supported that hippocampal dynamics were virtually identical at the slow timescale in

all travel sessions.

Clear theta oscillations with similar frequencies were observed in all conditions (Fig. 2A).

However, during passive travel, power was slightly reduced at both the fundamental frequency

and first harmonic, the latter resulting in decreased cycle asymmetry, indicative of a change in

the internal structure of theta cycles (Fig. 2A-B). This was expected to alter the precise spike

timing of active cell assemblies. Consistently, while place cells continued to oscillate slightly

faster than theta (‘phase precession’) during active travel, this was reduced in passive travel

(Figs. 2C-D and S4A-B), indicating an overall degradation of phase precession (Fig. 2E-F; in

phase precessing neurons, phase range was similar in all conditions (26), Fig. S4C-E). This

degradation was noteworthy, because phase precession is thought to be instrumental for the

formation of nested sequences: because place cells normally oscillate slightly faster than theta,

they emit spike bursts earlier and earlier in successive theta cycles; this (possibly combined with

additional coordinating mechanisms (27, 28)) results in newly activated cells to fire after those

that have started firing in earlier cycles, effectively resulting in temporal sequences of activity.

To directly assess how perturbation of phase precession affected theta sequences, we used a

Bayesian reconstruction approach (21, 29, 30). Briefly, theta cycles were subdivided in 6 phase

bins, and the sequential structure of reconstructed positions in these bins (‘candidate events’)

was evaluated using two previously described complementary measures (30): trajectory scores

(normalized to compare across animals and conditions, see Methods), which assess the qual-

ity (linearity) of the reconstructed events, i.e. whether the events represent spatially aligned

positions vs mere series of random locations; and slopes, which estimate the speed at which

reconstructed events are played and indicate whether the events do move through space vs re-

main merely stationary (absence of actual trajectories). Thus, clear theta sequences would be

4



characterized by both high scores and slopes, whereas static representations of current position

would result in high scores but low or zero slopes, and random activity would be associated with

low scores (but possibly spuriously high slopes). Clear sequential structure was readily visible

in individual theta cycles during active, but not passive, travel (Fig. 3A). This was confirmed

over all theta cycles for all rats (Figs. 3B and S5). While normalized trajectory scores were

significantly better than chance in all conditions (Fig. 3C), slopes were significantly steeper

during active travel (Figs. 3D and S5C-D). Joint analysis of trajectory scores and slopes re-

vealed a much greater proportion of high-value pairs during active travel (Fig. 3E). To confirm

and extend these results using an independent measure, we computed the quadrant score (27) of

each candidate event, which assessed the overall direction of reconstructed trajectories without

assuming constant velocity. Quadrant scores were significantly greater for active travel (clear

trajectories), and remained very low for passive travel (degraded trajectories) (Figs. 3F and 5B).

Hence, theta sequences were degraded during passive travel. Note that reconstruction qual-

ity and quadrant scores were higher in Passive 2 than in Passive 1 (Fig. 3E-F). This argues that

sequential structure was slightly less degraded in the second passive travel session (Fig. 3B).

This is further supported by higher self-consistency of theta sequences (see Methods) in Pas-

sive 2 compared to Passive 1, while Active sequences were the most self-consistent (Figs. 3G

and S6A).

We controlled that our results could not be accounted for by differences in the number of

simultaneously recorded place cells (Fig. S7) and their firing rates (Fig. S8). We also controlled

for decoding quality (see Methods and Fig. S9), ruling out a potential bias due to differences

in spatial coding, both at the single cell and at the population level. Finally, because small

variations in field locations between individual laps could have altered sequence detection, we

also ruled out differences in firing variability between travel conditions (see Methods; Fig. S10).

Taken together, the above results show that place cell sequences at the behavioral timescale

5



were present in all three conditions, but theta sequences were disrupted during passive travel,

when stationary network activity continued to reflect the ongoing position at the endogenous

timescale. How did this impact subsequent activity during slow wave sleep? Candidate re-

play events were defined as transient surges in aggregate firing rate (30) during SWS epochs

(Fig. S11C), which coincided with SPW-R events (Fig. S11F-G; results remained unchanged

when candidate events were restricted to ripples, Fig. S12). The average SWS duration, number

of candidate events and ripple occurrence rate were not significantly different across animals

(Figs. S11A-F). To reconstruct replayed trajectories, the Bayesian decoder was first trained us-

ing place cell activity recorded during the preceding travel session, then tested during SWS on

candidate events subdivided into 20 ms non-overlapping time windows (see Methods).

Candidate replay events were evaluated using the same method as theta sequences, whereby

genuine sequences are characterized by both high trajectory scores and slopes. While candidate

events with significant trajectory scores were present in all three sleep sessions, overall the

reconstructed trajectories were notably sharper following active travel (Figs. 4A and S13A),

and scores were significantly improved relative to baseline (see Methods) only in sleep sessions

following Active and Passive 2 (Fig 4B). In addition, slopes were significantly steeper following

Active (Figs. 4C and S13B). Joint analysis of trajectory scores and slopes confirmed a much

greater proportion of high value pairs following active travel (Figs. 4D and S13C-D).

We next addressed the critical question of whether these trajectories did constitute genuine

replay of awake behavior, or merely reflected preexisting connectivity patterns independent of

experience. We compared the proportion of significant trajectories in each sleep session relative

to baseline sleep, i.e. relative to the sleep session preceding any exploration of the environ-

ment (as pointed out above, recordings took place in an entirely novel environment). We did

not observe replay during sleep following Passive 1 (Fig. 4E), when theta sequences had been

selectively disrupted (Fig. 3). Trajectory replay was then boosted in sleep following Active

6



(Fig. 4E), when nested sequences had remained intact (Fig. 3). Finally, an intermediate but sig-

nificant level of reactivation was observed following Passive 2 (Fig. 4E), when theta sequences

had been perturbed to a lesser degree than during Passive 1 (Fig. 3). Interestingly, while for-

ward and backward trajectories were found in equal proportions during sleep following passive

travel, only active travel resulted in a greater proportion of forward replay actually reflecting

awake experience (Fig. 4F). Finally, a direct comparison of theta and replay sequences (see

Methods) highlighted a selective correlation between theta sequences in Active and candidate

replay events in subsequent sleep (Figs. 4G and S6B-C).

Our results thus show that during sleep following selective disruption of theta sequences

(Passive 1), the proportion of significant trajectories remained at baseline levels observed prior

to experience. By contrast, intact nested sequences (Active) resulted in boosted replay during

sleep, and trajectories in hippocampal space were preferentially replayed in the same direction

as in physical space. In Passive 2, theta sequences were perturbed to a lesser degree than

in Passive 1, yielding intermediate levels of trajectory replay during subsequent sleep. This

has three implications. First, repeated experience alone cannot account for the improved replay

following Active, because replay was degraded following Passive 2. Second, the improved theta

sequences during Passive 2 compared to Passive 1 are consistent with the notion that replay

following Active resulted in consolidation (7–10), possibly consisting of functional network

changes (12, 13), that carried over to subsequent sessions. Third, during Passive 2, scrambled

activation of place cells at the theta timescale appears to have interfered with previously formed

and consolidated memory traces (during Active and subsequent sleep), resulting in degraded

replay during sleep after Passive 2.

How would nested sequences be altered during passive travel? In the absence of active lo-

comotor signals, spike bursts of pyramidal cells recurred at slightly longer time intervals, con-

sistent with the fact that bursting frequency increases with running speed (12,31). As predicted
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by theoretical models (13,14,32,33), this decrease in oscillation frequency resulted in impaired

theta phase precession and prevented the formation of theta sequences. Theta sequences have

been related to memory performance (34, 35), although the underlying mechanisms have re-

mained unclear. Our results indicate a causal link between theta sequences and sleep replay for

memory consolidation, and suggest that behavioral timescale sequences are insufficient to store

sequential information for reactivation during subsequent sleep. Nested sequences, emerging

from independently phase precessing place cells (13, 33), enabled hippocampal assemblies to

fire dozens of milliseconds apart, which is optimal for classical plasticity mechanisms (16) and

can reinforce synaptic connections (13,14). This would effectively store sequential organization

as network connectivity patterns, which can later be replayed during sleep for long term con-

solidation (7–10). Spatio-temporal spike patterns supporting nested sequences have also been

reported in the striatum (36) and medial prefrontal cortex (37). This may represent a general

neural mechanism to encode and store initial memory traces, and plan future actions (34, 38).
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1322 (2008).

5. J. O’Keefe, L. Nadel, The hippocampus as a cognitive map (Clarendon Press, Oxford,

1978).

6. A. K. Lee, M. A. Wilson, Neuron 36, 1183 (2002).
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14. G. Dragoi, G. Buzsáki, Neuron 50, 145 (2006).

15. K. D. Harris, J. Csicsvari, H. Hirase, G. Dragoi, G. Buzsáki, Nature 424, 552 (2003).
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Figure Legends

Fig. 1. Maintenance of behavioral timescale properties. (A) Behavioral protocol.
In a novel environment, rats underwent three successive travel sessions (Passive 1–
Active–Passive 2), interspersed with sleep recordings (see also Fig. S1). Passive travel
was intended to selectively perturb spike timing at the theta, but not at the behavioral,
timescale. (B) Linearized normalized firing curves of place cells recorded from one
example rat across travel sessions, showing complete track coverage in all conditions.
(C) Place field size was maintained across travel conditions (KW test, P > 0.05). Peak
firing rates were somewhat lower in Passive 1 than Active (KW test, *** P < 10-4).
(D) Firing fields did not remap between Passive 1 and Active (left), nor between Active
and Passive 2 (right). Left, mean unsigned proportional shifts σ (vertical grey lines; P1–
A, **P < 0.01; P2–A, ***P ∼ 0) and σ distributions for n = 2, 000 bootstrapped remap-
ping data sets (black histograms). Insets, circular distributions of angular differences
between place field peak locations on the maze (P1–A, Rayleigh test, ***P < 0.001,
V-test against 0, ***P < 10-4; A–P2, Rayleigh test, ***P < 10-9, V-test against 0,
***P < 10-11). Right, spatial cross-correlograms of firing fields across successive travel
sessions (x axis normalized to field size; black dots represent correlogram modes; top
black histograms, mode distributions).
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Fig. 2. Perturbation of single-cell theta timescale properties. (A) Theta mainte-
nance across travel sessions. Top: example raw LFPs (duration, 1 s). Center: power
spectrograms (arrow and black dashed line, time of LFP traces shown above; black
calibration bar, 15 s). Bottom: normalized power spectra (mean ± s.e.m.). (B) While
theta frequency was unchanged across conditions (top; rmANOVA, P < 0.90), theta
power (middle; rmANOVA, ***P < -6) and shape (bottom, theta asymmetry; KW test,
P < 10-84) were altered during passive travel (frequency and power, mean ± s.e.m.)
(C–D) During passive travel, spike bursts recurred at lower rates, closer to baseline
theta frequency. (C) Distributions of spectral modes of spike trains (measured relative
to theta frequency, x axis trimmed at ± 25% around theta frequency). (D) Spectral
modes (***P < 10-6, *P < 0.02). (E–F) Theta phase precession was perturbed during
passive travel. (E) Average normalized phase precession density plots for significantly
phase-precessing cells (blue indicates minimum, and red maximum, spike density).
(F) Distribution of phase precession slopes for all place cells (KS test, **P < 0.008,
*P < 0.04; colored dashed vertical lines, medians).

Fig. 3. Perturbation of theta sequences. (A) Top: raw LFPs and place cell spikes in
6 example theta cycles (black dashed lines, theta peaks; place cells are ordered by
their place field location on the track) in each travel condition (black calibration bars,
50 ms). Bottom: Bayesian reconstruction of position encoded in the ongoing activity of
the hippocampal network (6 phase windows per theta cycle; white vertical lines, theta
peaks; white dashed lines, actual position of the animal). (B) Average Bayesian recon-
struction of position (relative to actual position of the animal) across theta subcycles
for all rats. Trajectory score and slope are indicated above each reconstruction. Two
cycles are shown for clarity. (C) Left: normalized score of theta sequences (KW test,
***P < 10-23). Right: proportion of significant theta sequences (P1: 7.95%, A: 13.61%,
P2: 9.05%; all proportions are significantly greater than shuffled control proportions,
Monte-Carlo test, ***P ∼ 0). (D) Distributions of significant theta sequence slopes (KS
tests; left: P1–A, ***P < 10-16; right: A–P2, ***P < 10-18). Colored bands indicate
significant differences. (E) Distribution of theta sequence quality assessed by joint tra-
jectory score and slope (for all animals; color codes for proportion normalized relative
to shuffled control data). (F) Quadrant score computed from individual theta cycles
(KW test, ***P < 10-24). (G) Sequences were stable only during active travel. Pair-
wise bias correlation between awake theta sequences (ordered according to time of
occurrence). Note absence of correlation during P1, and progressive decay following
A during P2.
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Fig. 4. Replay is degraded following perturbation of theta sequences. (A) Exam-
ples of significant replay events in post sleep sessions (see Fig. S13 for more exam-
ples). (B) Scores of replay events relative to baseline sleep (KW test, ***P < 10-17).
(C) Absolute slopes of replay events (KW test, ***P < 10-27). (D) Distribution of replay
quality assessed by joint trajectory score and slope (for all animals; color codes for
proportion normalized relative to shuffled control data). (E) Proportion of significant re-
play events relative to baseline sleep. Sleep replay was boosted following active travel,
compared to passive travel. (F) Proportion of forward (darker colors) vs reverse (lighter
colors) replay events. (G) Pairwise bias correlation between awake theta sequences
and sleep replay (ordered according to time of occurrence).
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Materials and Methods

Animal training

Five adult male Long-Evans rats (René Janvier, Le Genest Saint Isle, France) weighing 350–400 g

were used in this study. Two days after arrival, they were housed individually and maintained

on a 12-hour light/dark cycle. Rats were kept on a mild water restriction diet (>85% of normal

body weight) throughout the training and experiment phases. Critically, training took place in a

dedicated room, separate from that where experiments were subsequently carried out. Following

one week of daily handling, the rats were first trained to run on a regular treadmill. The speed of

the treadmill and the running duration were increased daily over 3–5 days. In parallel, in order to

familiarize the rats with the model train (LGB, Germany), they were placed in the immobile car

for 10–15 min sessions. Subsequently, the rats learned to run on the miniature treadmill located

inside the (immobile) car, as well as to be passively transported by the train (treadmill off),

before they finally learned to run on the miniature treadmill while being transported by the train

(∼3 weeks; Fig. S1A). The rats were always transported in the forward direction at constant

speed (∼45–50 cm.s−1, Fig. S1B) on the 2.20 m × 1.30 m obround-shaped track. The treadmill

and the train velocity were controlled by the same generator. The rats received sucrose water

rewards (1.25% saccharine), delivered by a solenoid valve in a fountain placed at the front of the

car (Fig. S1A, right) whenever the car arrived at one of two different reward locations on the

track. The entire experimental setup was remotely controlled in order to avoid interference with

experimenters. All procedures were in accordance with national (Comite d’Ethique #2011-0008)

and international (US National Institutes of Health guidelines) standards and legal regulations

(Certificat d’Autorisation d’Exprimenter #A75-1756) regarding the use and care of animals.

Training and experiments took place during the day.

Surgical implantation and electrode adjustment

The rats had free access to water for at least two days before surgery. They were deeply

anesthetized (xylazine, 0.12 ml intramuscular; pentobarbital, 40 mg per kg of body weight,

intraperitoneal; 0.1 ml pentobarbital supplemented every hour). Sixteen independently movable

tetrodes or octrodes (groups of four or eight twisted 13 µm tungsten wires, gold-plated to
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∼150 kΩ) were bilaterally implanted above the dorsal hippocampus (3.5 mm or 4 mm AP,

±2.5 mm ML relative to bregma). Two screws attached to the skull above the cerebellum

served as ground and reference, respectively. After a one-week recovery period, the rats were

placed back on the mild water restriction diet and retrained in the dedicated training room.

The electrodes were progressively lowered into the CA1 pyramidal layer, identified based on

both neural firing patterns (e.g. complex spikes) and local field potential (LFP) characteristics

(especially sharp wave-ripple complexes).

Behavioural task

The experiments took place in a separate, novel room. Following a baseline sleep recording

session, the rats underwent three transportation sessions: passive (treadmill off), then active

(treadmill on), then passive again (Fig. 1A). Each travel condition consisted of 2× ∼15 laps

(Fig. S1C). During the interval period, the rats stayed for less than 2 min in a flower pot while

the experimenter unrolled the recording tethers. Each travel session was followed by a sleep

epoch in the flower pot. Each sleep epoch, including baseline sleep, lasted for ∼90 minutes.

Data acquisition and preprocessing

For the three rats implanted with sixteen tetrodes, brain signals were preamplified using two

32-channel unity-gain preamplifiers (Noted Bt, Pecs, Hungary) and acquired at 32,552.083 Hz

(Digital Lynx, Neuralynx, Bozeman, MO). The head-stages were connected to the recording

setup via two custom-made tethers (New England Wire, Lisbon, NH). For the three rats im-

planted with sixteen octrodes, brain activity was recorded using a 128-channel digital data

acquisition system (KJE-1001, Amplipex, Szeged, Hungary). The signals were digitized using

two 64-channel preamplifiers (Amplipex HS2) and sampled at 20,000 Hz. In both setups, one

LED (red) or two LEDs (red and green) were used to track the head of the animal using an

overhead video camera (sampling rate 30 Hz, resampled at 39.0625 Hz).

Data were pre-processed and visualized using NeuroSuite (http://neurosuite.sourceforge.

net, (1)). Briefly, to extract spiking activity, wide-band signals were high-pass filtered (nonlin-

ear median-based filter) and thresholded using NDManager (L. Hazan and M. Zugaro, http:

//neurosuite.sourceforge.net). Extracted spike waveforms were sorted via a semi-automatic
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cluster cutting procedure using KlustaKwik (K.D. Harris, http://klustakwik.sourceforge.

net) and Klusters (L. Hazan, http://neurosuite.sourceforge.net). Neurophysiological and

behavioral data were explored using NeuroScope (L. Hazan, http://neurosuite.sourceforge.

net). Units were classified as putative interneurons or pyramidal cells using k-means clustering

based on waveform width, waveform trough-to-peak duration, and firing rate. Cluster isolation

quality was assessed using the Lratio (2, 3). Briefly, the Lratio of cluster C is:

Lratio =
1

ns

∑
i/∈C

{1− CDFχ2
df

(D2
i,C)}

where ns is the total number of spikes recorded on the tetrode throughout the recording epoch,

i /∈ C is the set of spikes that are not members of cluster C, D2
i,C is the Mahalanobis distance of

spike i from cluster C, and CDFχ2
df

is the cumulative distribution function of the χ2 distribution

with df = number of channels of the electrode × number of features. Only well-isolated clusters

with an Lratio <0.05 were included in the analyses. LFPs were derived from wideband signals

by downsampling all channels to 1,250 Hz.

Recording site verification

Upon completion of the experiments, recording sites were marked with small electrolytic lesions.

Two days later, rats were deeply anesthetized with a lethal dose of pentobarbital, and intracar-

dially perfused with saline (0.9%) followed by paraformaldehyde (10%). The desiccated brains

were post-fixed and conserved in PFA (4%) at 4°C until the histology (50 µm coronal slices,

Cresyl violet staining).

Data analysis and statistics

All analyses were performed in Matlab (MathWorks, Natick, MA), using the Freely Moving Ani-

mal toolbox (FMAToolbox, M. Zugaro, http://fmatoolbox.sourceforge.net) and additional

custom programs.

Descriptive statistics are reported as mean ± standard error of the mean when the underlying

distribution is Gaussian-shaped (Jarque-Bera test) or median ± standard error of the median

otherwise. Unless indicated otherwise, bars represent median ± standard error of the median.

Repeated measures ANOVA was used for multiple comparisons of paired Gaussian distributions,
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and differences between groups were assessed using paired Student’s t-test with Bonferroni cor-

rection for post-hoc analysis. For non-Gaussian distributions of independent (non-paired) data,

multiple comparisons were made using Kruskal-Wallis (KW) and differences between groups

were assessed using Wilcoxon rank sum test with Bonferroni-correction for post-hoc analysis.

For paired data following a non-Gaussian distribution, Friedman test was employed, with signed

rank tests with Bonferroni-correction for post-hoc analyses for assessing differences between

groups.

Proportions were compared using the binomial proportion test. Medians (of non-Gaussian

distributions) were compared to single values with Wilcoxon signed rank tests. Distributions

were compared using the Kolmogorov-Smirnov test. No statistical methods were used to pre-

determine sample sizes, but our sample sizes are similar to those generally employed in the field.

Data collection and analysis were not performed blind to the conditions of the experiments. All

statistical tests were two-tailed.

Firing fields

All analyses of spike trains emitted during the awake state were restricted to epochs in which

the linear velocity of the rat was greater than 5 cm.s−1. Firing maps and linearized firing curves

were computed using a kernel-based method (bin size: 2.4 cm). The firing rate was estimated

at each point x as:

f(x) =
∑

nt × w(|x− xt|)/
∑

dt× w(|x− xt|)

where, in a given time bin t, nt is the number of action potentials emitted, xt is the position of

the rat, and dt is the time bin size. The kernel w was a Gaussian of width 4.5 cm. Firing fields

were defined as the set of contiguous bins containing the location of maximal firing rate (min

1 Hz for Active and 0.7 Hz for Passive), for which the firing rates exceeded 30% of the peak

firing rate. Pyramidal cells with at least one firing field were defined as place cells.

The stability of firing fields between conditions was assessed using two complementary meth-

ods (Figs. 1D and S2D). We first tested for random remapping using the method described in (4).

Briefly, we measured the unsigned proportional field shifts of all the recorded place cells and

compared their average to a null distribution constructed by shuffling (n = 2, 000) the identity
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of the cells to simulate a random rearrangement of the fields. Second, for each place cell, the

location of the peak firing rate was measured as an angle on the obround-shaped track, and peak

shifts were measured as angular deviations between two conditions. After testing distribution

uniformity (Rayleigh test), the mean direction of the shift distribution was compared to zero

using a V test.

Theta power, frequency and cycles

Power spectra and spectrograms were computed from the detrended LFP signal using multitaper

estimation methods (http://chronux.org). Power spectra were normalized for each rat as

(Sij − µj)/σj , where Sij is the power spectrum for a given condition i of rat j, and µj and

σj are the mean and the standard deviation of the power spectra for all of the conditions for

rat j. Theta power was measured as the maximum power in the theta band (6–10 Hz) of

the normalized power spectrum, and frequency was measured as the mode located in the same

range (Fig. 2A-B). Theta cycles started at the peak of the LFP filtered in the theta band. Cycles

shorter than 80 ms or longer than 200 ms were discarded, and only periods containing at least

three contiguous cycles were selected for further analysis.

Theta asymmetry and phase precession

To preserve the asymmetrical shape of the theta oscillation, precise peak and trough times were

detected on the LFP filtered between 1 and 40 Hz. This was used to assess theta asymmetry

and spike phase precession. Theta asymmetry was measured as log(∆t2/∆t1), where ∆t1 is

the duration between cycle start and trough, and ∆t2 the duration between trough and cycle

end (5). Hence, a positive value indicates a shorter descending phase, a negative value indicates

a shorter ascending phase, and zero indicates symmetrical cycles (Fig. 2B).

To analyze theta phase precession, in-field spike theta phases were plotted against linearized

positions on the track. Slopes and significance were determined by linear-circular regression (6).

Average phase precession density plots were constructed by normalizing the position in the firing

field and shifting the mean spike theta phase to 180°, then normalizing by the total number of

spikes, and averaging over cells (Fig. 2E).
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Theta burst frequency

Spike times were converted to unwrapped theta phases and divided by 2π, yielding units of theta

cycles. Spectrograms computed on the resulting spike trains measured frequencies relative to

theta, compensating for moment-to-moment variations in theta frequency over the course of a

given experiment (Figs. 2C,D and S4A).

Candidate replay events

Candidate replay events were detected using place cell ensemble activity during slow wave sleep

(SWS). SWS periods were first determined by k-means clustering of the theta (6–10 Hz) /

delta (1–4 Hz) ratio computed from spectrograms during sleep sessions (min duration of SWS

epoch >120 s, permitting brief discontinuities <1 s; Fig. S11A). The method was validated by

comparing the outcome to episodes where the animal was immobile (linear velocity <0.05 cm/s

for at least 120 s, with brief movements <1 s) and by visual examination of the video recordings.

Candidate replay events were defined as epochs of elevated place cell spiking activity (7), i.e.

when the instantaneous firing rate (1-ms bins, smoothed using a Gaussian kernel of s.d.= 10 ms)

reached a peak >3 s.d. and remained greater than the mean (Fig. S11C). Candidate events

lasting >500 ms were excluded.

Bayesian trajectory decoding

To decode potential trajectories from place cell ensemble activity during both travel and sleep

conditions, we used a previously described Bayesian position reconstruction approach (8). Briefly,

in the training step, we estimated the probability P (x) that the rat visited location x as the

normalized occupancy curve, and the average firing rate probability λi(x) for each place cell i

at position x as the normalized firing curve of the cell. Then in the test step, given the in-

stantaneous firing rate vector n in each phase or time window τ (τ = π/3 for theta sequences,

τ = 20 ms for replay events), we estimated the probability P (x|n) (Figs. 3A and 4A):

P (x|n) =
P (n|x).P (x)

P (n)
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where

P (n|x) =
N∏
i=1

(λi(x).τ)ni

ni!
e−λi(x).τ

assuming that the N cells fired as independent Poisson processes. We only considered trajectory

events involving at least three units in candidate events lasting >60 ms.

To compute the average reconstructed trajectory over a given condition, reconstructions

from individual theta subcycles (i.e. phase windows) were centered on the current position of

the animal and averaged over successive cycles (4). This yielded an average estimate of theta

sequences (Figs. 3B, S5A, S7A, S8A, S9A, S10A).

To allow comparison of trajectories across conditions, the Bayesian decoding algorithm was

independently trained on each of the travel sessions (e.g. firing fields in Passive 1) and applied to

the same travel session (theta sequences in Passive 1) and subsequent sleep session (replay events

in sleep following Passive 1). One caveat was therefore that differences in training conditions

could bias the comparisons of reconstruction quality. To control for this possibility, we used four

different controls: (i) Control for cell count (Fig. S7). Passive 1 typically included fewer cells.

To control for this, analyses were restricted to matching random subsets of place cells in Active

and Passive 2. This was repeated 30 times in order to obtain a representative data set, and up to

300 theta cycles were reconstructed for a given cell subset. (ii) Control for spike count (Fig. S8).

Firing rates in Passive 1 were somewhat lower than in Active. For each rat, we randomly

downsampled the spike trains of the most active place cells in Active and Passive 2 to match the

median of the firing rate distribution in Passive 1. (iii) Control for decoding quality (Fig. S9).

To match decoding quality across conditions, reconstruction errors were first computed in 500-

ms time bins for each travel condition. For Passive 1 and Passive 2, bins with a high decoding

error were progressively excluded, until the median of the error distribution was smaller than

the median of the error distribution in Active. Finally, positions were decoded using only theta

cycles falling in these low error bins. Note that this also controlled for potential alterations

in spatial coding, both at the single cell and at the population level (i.e. including higher

order alterations that would not be manifested at the single cell level). (iv) Control for field

variability (Fig. S10). To rule out a possible effect of firing variability between successive laps
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(e.g. small changes in field locations), analyses were repeated on a lap-by-lap basis, whereby

the Bayesian decoding algorithm was retrained on each individual lap before sequences were

assessed. Together, these four controls ruled out the possibility that our main conclusions based

on direct comparisons could be accounted for by differences in training conditions.

Assessing trajectories: trajectory scores and slopes, quadrant scores

To identify trajectories, we measured the previously defined trajectory score and slope (7) of each

candidate event. These assess whether events consist of linearly aligned positions, i.e. whether

the successive reconstructed positions are tightly arranged (high score) along an oblique line

(high slope). Briefly, each candidate trajectory consisted of reconstructed positions P (x|n)

during m successive time or phase intervals ∆ξ (∆ξ = π/3 for theta sequences, ∆ξ = 20 ms for

replay events). For a given candidate trajectory, the average likelihood R that the rat is located

within a distance d of a linear trajectory defined by its velocity v and starting location ρ is:

R(v, ρ) =
1

m

m−1∑
k=0

P (|pos− (ρ+ v.k.∆ξ)| 6 d)

where the value of d was set to 45 cm to allow for small local variations in velocity (i.e. 1/3 of

the mean field size, consistent with previous studies). Because in the present experiments the

track was obround, for those time bins k when a trajectory would specify a location beyond the

end of the linearized track, the trajectory was wrapped around and continued from the start.

To find the best fit line (i.e. maximize R), we evaluated all possible combinations of v and ρ

that yielded a total distance less than the track length (6 m).

Thus, genuine trajectories would yield both high scores and slopes (R � 0, |v| � 0),

whereas static representations of current position would result in high scores but low or zero

slopes (R � 0, v ∼ 0), and random activity would be associated with low scores (R ∼ 0), but

possibly spuriously high slopes.

In order to assess the significance of trajectory scores, we used a shuffling procedure devel-

oped by (7). Briefly, we generated n = 5, 000 shuffled candidates by shifting each reconstructed

position P (x|n) by a random distance, yielding a null distribution of scores. Note that this selec-

tively scrambled the linear arrangement of reconstructed positions, while preserving the spatial

coherence of positions represented by individual cell assemblies (contrary to e.g. independent
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shuffling of individual spike trains). In other words, shuffling was applied at the level of cell

assemblies rather than single neurons.

More precisely, shuffles were generated by circularly shifting the decoded probabilities within

each phase or time window by a random number of bins. The Monte Carlo p-value was calculated

as the proportion of scores in the shuffled distribution greater than the score of the candidate

trajectory. Candidate trajectories with a p-value 6 0.05 were considered significant. In addition,

in order to compare trajectory events from different rats recorded in different conditions (i.e. with

differences in number of neurons, decoding quality, etc.), trajectory scores were normalized by

computing a non-parametric equivalent of a z-score, i.e. by subtracting the mean and dividing by

the standard deviation of the distribution of shuffled scores (Figs. 3C, S7C, S8C, S9C, S10C). In

Figure 4B, to assess changes in sleep activity induced by preceding awake behavior, for each rat,

we evaluated each score in post-sleep relative to baseline sleep by computing a non-parametric

equivalent of a z-score, i.e. by subtracting the median score in baseline sleep, and dividing by

the difference between the first and third quartiles of the distribution of scores in baseline sleep.

These scores relative to baseline were then pooled across rats and compared between conditions.

Candidate replay events during baseline sleep were decoded using the Bayesian algorithm trained

on the same travel condition as the post sleep session.

To compute the proportion of significant theta sequences (Fig. 3C), only events with signifi-

cant score and positive slope were counted (the same conclusion was reached without the slope

restriction: 14.66% in Passive 1, 20.20% in Active, 16.37% in Passive 2; all proportions were

significantly greater than shuffled control proportions and all proportions were different between

one another; data not shown).

To confirm the above trajectory assessment using an independent measure, we used the

quadrant score first described in (9). Similar to the trajectory score and slope method, each

candidate trajectory was first described by a probability matrix consisting of successive recon-

structed positions P (x|n). The central zone of this probability matrix was defined as ±1.5 m

from the current position of the animal and ±2/3 theta cycle around the cycle trough. This was

divided equally into four quadrants. The summed decoded probabilities in the top left and bot-
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tom right quadrants (opposite to the current running direction of the animal) were subtracted

from the sum in the bottom left and top right quadrants (along the current running direction),

then normalized by the sum of all four quadrants (Figs. 3F, S7D, S8D, S9D, S10D). Hence,

positive differences would correspond to theta sequences sweeping in the running direction of

the animal, whereas differences close to zero would indicate a lack of sequential structure in the

decoded probabilities.

Assessing trajectories: Z-proportions and proportion ratios

In order to simultaneously visualize the distribution of trajectory scores and slopes across can-

didate trajectories and contrast them between behavioral conditions, events were first sorted

according to their trajectory scores and slopes. Each cell of the resulting score-slope matrix

contains the number of events within that specific range of scores and slopes divided by the

total number of events. To assess the statistical significance of these proportions, we created

n = 5, 000 surrogate score-slope matrices using shuffled data as described in the previous sec-

tion. We then z-scored the proportion in each cell of the observed matrix (data) relative to the

mean and standard deviation of the 5,000 proportions located in the same cell of the surrogate

matrices (z-proportion; Figs. 3E, 4D, S7E, S8E, S9E, S10E, S12F, S13C).

A complementary approach was used in Figure S13D, where the color code indicates the

proportion ratio r defined as:

rc =
1

m

m∑
i=1

ndata
ndata + nshufflei

where m is the number of shuffles, ndata the number of events in cell c of the score-slope matrix,

and nshufflei the number of events in cell c for the i-th shuffle. Thus, a ratio of 0.5 indicates that

the cell contains the same proportion of observed and shuffled data, ratios above 0.5 indicate

that scores and slopes in cell c are enriched in the data relative to the shuffle (up to a maximum

ratio of 1 indicating that events with the corresponding score and slope were observed in the

data but in none of the 5,000 shuffle iterations), and ratios below 0.5 indicate that the scores

and slopes in c are depleted in the data relative to the shuffle (down to a minimum ratio of 0

indicating that events with the corresponding score and slope occurred in the shuffle but not in

the original data).
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Pairwise bias correlations

In order to directly compare the order between any two spike sequences, we used the pairwise

bias correlation method developed by (10). Briefly, we computed a bias matrix Bk for each

sequence k:

Bk(i, j) =
nk(i, j)− nk(j, i)
nk(i).nk(j)

where nk(i) is the number of spikes emitted by neuron i in the k-th sequence, and nk(i, j) is the

number of times neuron i spiked before neuron j in the k-th sequence. Bk(i, j) therefore reflects

the bias of i to spike before j in the k-th sequence, taking values between -1 (i never precedes j)

and 1 (i always precedes j), with 0 representing no bias (i precedes j half of the time).

The correlation between two sequences k and l is ρ(k, l) = cos θ, where θ is the angle between

the directions of Bk and Bl, when Bk and Bl are considered as vectors. Therefore

ρ(k, l) =

∑
i,j Bk(i, j).Bl(i, j)√∑

i,j Bk(i, j)
2.
√∑

i,j Bl(i, j)
2

where i and j are neurons that fired in both sequences k and l.

Comparisons within and between theta sequences and replay events were restricted to se-

quences including three or more (common) neurons. Autocorrelations (k = l) were discarded

from the analysis.

To assess significance for the correlation of a given pair (k, l) of sequences, we constructed

a surrogate distribution of pairwise bias correlations by shuffling the spike order in sequence l.

The observed pairwise bias correlation ρ(k, l) was deemed significant if it exceeded 95% of the

shuffled distribution.

In Figures 3G and 4G, each condition (baseline sleep, Passive 1, etc.) was subdivided into

20 temporal bins. To represent the similarity between two given temporal bins, we first computed

for each recording session the median correlation between individual sequences within these bins,

then took the median across all sessions.

Ripple detection

LFPs from all channels located in or close to the pyramidal layer were detrended and filtered

between 100 and 250 Hz, then averaged. In order to prevent spurious detection due to high
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frequency noise contamination, the detrended signal from the selected channels was also filtered

between 300 and 500 Hz, then averaged and subtracted from the mean filtered signal. Negative

values, reflecting high frequency noise periods, were discarded while all positive values were

z-scored, and ripples were defined as epochs during which the values remained above 1 s.d. with

a peak greater than 3 s.d. Excessively brief (6 20 ms) or long (>110 ms) epochs were excluded

from subsequent analyses.
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Fig. S7. Reduced cell count does not account for theta sequence degradation during passive
travel. For each rat, subsets of place cells were selected in Active and Passive 2 to match the number
of place cells recorded in Passive 1, and used to decode position in space. This downsampling
procedure was repeated 30 times. (A) Rat position was then estimated across individual theta
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above each reconstruction. (B) Distributions of significant theta sequence slopes (KS tests; left:
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indicate significant differences. Right, slopes of significant theta sequences (KW test, ∗∗∗P < 10−39).
(C) Normalized score of theta sequences (KW test, ∗∗∗P < 10−9). (D) Quadrant score computed
from individual theta cycles (KW test, ∗∗∗P < 10−75). (E) Distribution of theta sequence quality
assessed by joint trajectory score and slope (color codes for proportion relative to shuffled control
data).
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Fig. S8. Reduced firing rate does not account for theta sequence degradation during passive
travel. For each rat, random spikes of place cells in Active and Passive 2 were progressively removed
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firing rate of Passive 1 place cells. (A) Rat position was then estimated across individual theta
subcycles and averaged across all rats (same as in Fig. 2B; dashed white line, actual location of the
animal). Trajectory score and slope are indicated above each reconstruction. (B) Distributions of
significant theta sequence slopes (KS tests; left: P1–A, ∗∗∗P < 10−9; center: A–P2, ∗∗∗P < 10−9;
right: P1–P2, P > 0.1). Colored bands indicate significant differences. Right, slopes of significant
theta sequences (KW test, ∗∗∗P < 10−11). (C) Normalized score of theta sequences (KW test,
∗∗∗P < 10−10). (D) Quadrant score computed from individual theta cycles (KW test, ∗∗∗P < 10−7).
(E) Distribution of theta sequence quality assessed by joint trajectory score and slope (color codes
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Fig. S9. Reduced decoding quality cannot account for theta sequence degradation during
passive travel. In order to control for reduced decoding quality in passive travel sessions, the present
analyses were restricted to theta cycles in Passive 1 and Passive 2 where decoding error (estimated
in 500 ms time bins) was low, i.e. close to the error median in Active (see Methods). (A) Average
Bayesian reconstruction of position (relative to actual position of the animal) across theta subcycles
for all rats (as in Fig. 3B). Trajectory scores and slopes are indicated above each reconstruction.
(B) Distributions of significant theta sequence slopes (KS tests; left: P1–A, ∗∗∗P < 10−9; center:
A–P2, ∗∗∗P < 10−16; right: P1–P2, P > 0.05). Colored bands indicate significant differences.
Right, slopes of significant theta sequences (KW test, ∗∗∗P < 10−15). (C) Normalized score of
theta sequences (KW test, P > 0.05). (D) Quadrant score computed from individual theta cycles
(KW test, ∗∗∗P < 10−16). (E) Distribution of theta sequence quality assessed by joint trajectory
score and slope (color codes for proportion relative to shuffled control data). (F) Decoding errors were
similar in all travel conditions following the restriction procedure described here (P1: 0.802±0.018,
A: 0.80±0.023, P2: 0.802±0.014).
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Fig. S10. Trial-to-trial field variability does not account for theta sequence degradation during
passive travel. In order to control for firing variability across laps, the Bayesian decoding algorithm
was retrained on each individual lap before sequences were assessed. (A) Rat position was estimated
across individual theta subcycles and averaged across all rats (same as in Fig. 3B). Trajectory scores
and slopes are indicated above each reconstruction. (B) Distributions of significant theta sequence
slopes (KS tests; left: P1–A, ∗∗∗P < 10−12; center: A–P2, ∗∗∗P < 10−13; right: P1–P2, P > 0.05).
Colored bands indicate significant differences. Right, slopes of significant theta sequences (KW test,
∗∗∗P < 10−18). (C) Normalized score of theta sequences (KW test, ∗∗∗P < 10−27). (D) Quadrant
score computed from individual theta cycles (KW test, ∗∗∗P < 10−9). (E) Distribution of theta
sequence quality assessed by joint trajectory score and slope (color codes for proportion relative to
shuffled control data).
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Fig. S11. Candidate replay events during SWS. (A) During sleep recordings, SWS periods were
isolated based on the theta/delta ratio (black curve on power spectrogram). K-means clustering
identified epochs with the smallest ratio (min duration 120 s, brief interruptions <1 s). (B) SWS
duration was not significantly different between sleep conditions (repeated measures ANOVA, P >
0.05). (C) Detection of candidate events for an example SWS period. Top traces, raw (green) and
ripple-band filtered (black) LFP. Middle, place cell activity. Cells are ordered according the location
of their place field on the track. Bottom, multi-unit activity (MUA) of place cells (time bin, 1
ms; black line, mean of the smoothed histogram, used to define the beginning and end of selected
candidates; red line, 3 s.d. above the mean, used as a threshold for the peak). Note that candidate
events coincide with ripples.(D–F) The number of candidate events (D), their frequency (E), and
ripple rates (F) were not significantly different between sleep conditions (repeated measures ANOVA,
P > 0.05). (G) Top, peri-event time histograms of candidate replay events relative to peak ripple
power. Grey area indicates the beginning and end of ripples and 0 the time of the peak ripple power
(KS test, P > 0.05 between all condition pairs). Bottom, cumulative distribution of replay events
in ±1 s time windows centered on ripple peak.
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Résumé 
 
Le stockage à long terme des souvenirs épisodiques requiert la 
formation de la mémoire pendant l'expérience d'éveil ainsi que la 
consolidation de la mémoire, un processus de renforcement de la 
mémoire qui a lieu pendant le sommeil. L'encodage rapide des 
traces mnésiques a lieu dans l'hippocampe pendant l'éveil. 
Pendant le sommeil, les traces mnésiques de l'hippocampe sont « 
rejouées » pendant les ondulations -- de brefs motifs oscillatoires 
hippocampiques (50-150 ms) à haute fréquence associés à une 
activité synchrone élevée. Les bouffées d'activité synchrone des 
neurones de l'hippocampe pendant les ondulations font d'eux des 
acteurs clés dans la consolidation de la mémoire des systèmes -- 
le processus de communication des mémoires vers le néocortex 
pour un stockage à long terme. 
 
L'activité corticale dans le sommeil est dominée par l'oscillation 
lente -- l'alternance synchrone des neurones corticaux entre un 
état dépolarisé (état HAUT) associé à des niveaux élevés d'activité 
endogène, et un état bref (~200ms) hyperpolarisé (état BAS) 
lorsque les neurones restent silencieux. Les états BAS sont 
accompagnés de grandes déviations du potentiel de champ local -- 
ondes delta, tandis que les états HAUTS sont associés à une 
activité élevée et des fuseaux thalamocorticaux, deux processus 
pouvant entraîner une plasticité synaptique. On pense que la 
consolidation de la mémoire des systèmes implique une 
coordination entre les rythmes hippocampiques et corticaux -- 
notamment, les ondulations hippocampiques précèdent (~130ms) 
les ondes delta corticales, qui sont ensuite suivies par des fuseaux 
thalamocorticaux. 
 
Pour vérifier si ce couplage temporel entraîne une consolidation de 
la mémoire, nous avons déclenché des ondes delta corticales suite 
à des ondulations hippocampiques afin d'améliorer la cooccurrence 
d'événements ondulation-delta couplés. Cela a augmenté la 
consolidation de la mémoire et la performance du rat sur une tâche 
de mémoire spatiale, et a entraîné une réorganisation des réseaux 
corticaux préfrontaux suite à des ondes delta induites ainsi qu'une 
réponse accrue du cortex préfrontal à la tâche le lendemain. De 
manière cruciale, ces améliorations n'ont pas été observées 
lorsqu'un retard (160-240 ms) a été introduit en plus du couplage 
endogène, indiquant que la stabilisation des traces mnésiques 
nécessite une interaction très fine entre les ondulations et les 
ondes delta. 
 
Comment l'interruption de l'activité corticale par des périodes de 
silence généralisées pendant les ondes delta peut-elle sous-tendre 
la consolidation de la mémoire lorsqu'elle se produit précisément 
entre le transfert d'informations (réactivation hippocampique) et la 
plasticité du réseau (état HAUT) ? Contrairement à un principe 
généralement accepté, nous avons constaté que les ondes delta ne 
sont pas des périodes de silence complet, et que l'activité 
résiduelle n'est pas un simple bruit neuronal. Au lieu de cela, nous 
avons montré que les cellules corticales émettent des « delta 
spikes » pendant les ondes delta en réponse à la réactivation 
transitoire d'ensembles hippocampiques pendant les ondulations, 
et que cela se produit sélectivement pendant la consolidation 
endogène ou induite de la mémoire. Ces résultats suggèrent un 
nouveau rôle pour les ondes delta, à savoir que le silence 
synchronisé de la grande majorité des cellules isole le réseau des 
entrées concurrentes, tandis qu'une sous-population sélectionnée 
de neurones reste active en réponse aux réactivations de 
l'hippocampe, faisant le pont entre les états HAUTs et coordonnant 
la consolidation de la mémoire. 

 

Mots Clés 
 
Mémoire, consolidation, hippocampe, 
électrophysiologie 

 

Abstract 
 
Long term storage of episodic memories requires memory 
formation during awake experience as well as memory 
consolidation, a process strengthening the memory taking place 
during sleep. The rapid encoding of memory traces takes place in 
the hippocampus during awake behaviour. In sleep, hippocampal 
memory traces are `replayed' during sharp wave-ripples -- brief 
(50-150 ms) high-frequency oscillatory patterns of high 
synchronous activity. The synchronous bursting of hippocampal 
neurons during ripples makes them a key player in systems 
memory consolidation -- the process of communicating memories 
to the neocortex for long-term storage. 
 
Cortical activity in sleep is dominated by the slow oscillation -- the 
synchronous alternation of cortical neurons between a depolarised 
(UP) state associated with high levels of endogenous activity, and 
a brief (~200 ms) hyperpolarized (DOWN) state when neurons 
remain silent. DOWN states are accompanied by large deflections 
of the local field potential -- delta waves, while UP states bring 
elevated activity and thalamocortical spindles, both of which can 
drive synaptic plasticity. Systems memory consolidation is thought 
to involve the coordination between hippocampal and cortical 
rhythms -- notably, hippocampal ripples precede (~130 ms) cortical 
delta waves, which are then followed by thalamocortical spindles. 
 
To test if this temporal coupling drives memory consolidation, we 
triggered cortical delta waves following ripples to enhance the co-
occurrence of coupled ripple-delta events. This boosted memory 
consolidation and rat performance on a spatial memory task, and 
resulted in a reorganisation of prefrontal cortical networks following 
induced delta waves as well as increased prefrontal responsivity to 
the task on the next day. Crucially, these enhancements were not 
observed when a small delay (160-240 ms) was introduced in 
addition to the endogenous coupling, indicating the stabilization of 
memory traces requires a very fine-tuned interaction between 
ripples and delta waves. 
 
How can the 'interruption' of cortical activity by generalised periods 
of silence during delta waves underlie memory consolidation when 
it occurs precisely between information transfer (hippocampal 
replay) and network plasticity (UP state)? Contrary to a generally 
accepted tenet, we found that delta waves are not periods of 
complete silence, and that the residual activity is not mere neuronal 
noise. Instead, cortical cells fired `delta spikes' during delta waves 
in response to transient reactivation of hippocampal ensembles 
during ripples, and this occurred selectively during endogenous or 
induced memory consolidation. This suggests a new role for delta 
waves -- namely, that the synchronised silence of the large majority 
of cells isolates the network from competing inputs, while a select 
subpopulation of neurons remain active in response to 
hippocampal replay, bridging information between UP states and 
coordinating memory consolidation.. 
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