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Synthèse

Au sein des systèmes avancés d’aide à la conduite (Advanced Driver Assistance Systems
- ADAS) pour les systèmes de transport intelligents (Intelligent Transport Systems - ITS),
les systèmes de positionnement, ou de localisation, du véhicule jouent un rôle primor-
dial. Le système GPS (Global Positioning System) largement employé ne peut donner seul
un résultat précis à cause de facteurs extérieurs comme un environnement contraint ou
l’affaiblissement des signaux. Ces erreurs peuvent être en partie corrigées en fusionnant
les données GPS avec des informations supplémentaires provenant d’autres capteurs. La
multiplication des systèmes d’aide à la conduite disponibles dans les véhicules nécessite de
plus en plus de capteurs installés et augmente le volume de données utilisables. Dans ce
cadre, nous nous sommes intéressés à la fusion des données provenant de capteurs bas cout
pour améliorer le positionnement du véhicule.

Parmi ces sources d’information, en parallèle au GPS, nous avons considérés les caméras
disponibles sur les véhicules dans le but de faire de l’odométrie visuelle (Visual Odometry
- VO), couplée à une carte de l’environnement. Nous avons étudié les caractéristiques de
cette trajectoire reconstituée dans le but d’améliorer la qualité du positionnement latéral et
longitudinal du véhicule sur la route, et de détecter les changements de voies possibles.

Après avoir été fusionnée avec les données GPS, cette trajectoire générée est couplée
avec la carte de l’environnement provenant d’Open-StreetMap (OSM). L’erreur de position-
nement latérale est réduite en utilisant les informations de distribution de voie fournies par
OSM. Dans ce but, nous avons proposé une méthode basée sur les facteurs de distribution
(RPDF). Tandis que le positionnement longitudinal est optimisé avec une correspondance
de courbes entre la trajectoire provenant de l’odométrie visuelle et les routes segmentées
décrites dans OSM par un ensemble de trois nœuds connectés.

Pour vérifier la robustesse du système, la méthode a été validée avec des jeux de don-
nées KITTI en considérant des données GPS bruitées par des modèles de bruits usuels no-
tamment les bruits blanc, un biais de mesure et une perte de signal GPS. Plusieurs méth-
odes d’odométrie visuelle ont été utilisées pour comparer l’influence de la méthode sur
le niveau d’amélioration du résultat après fusion des données. En utilisant la technique
d’appariement des courbes que nous proposons, la précision du positionnement connait
une amélioration significative, en particulier pour l’erreur longitudinale. Les performances
de localisation sont comparables à celles des techniques SLAM (Simultaneous Localization
And Mapping), corrigeant l’erreur d’orientation initiale provenant de l’odométrie visuelle.
Les différents bruits modélisés sur les données GPS n’influent pas sur les performances du
résultat de la localisation et la robustesse de la méthode proposée a été éprouvée dans le cas
de routes divergentes nécessitant un choix sur la voie suivie par le véhicule.
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Nous avons ensuite employé la trajectoire provenant de l’odométrie visuelle dans le
cadre de la détection de changement de voie. Cette indication est utile pour les systèmes de
navigation des véhicules. La détection de changement de voie a été réalisée par une somme
cumulative et une technique d’ajustement de courbe et obtient de très bon taux de réussite.
Des perspectives de recherche sur la stratégie de détection sont proposées pour déterminer
la voie initiale du véhicule en particulier dans le cas d’un changement de nombres de voie
sur la même route. De plus, des statégies d’optimisation des résultas sont proposés quant
à la précision des données OSM, notamment sur la position de voie additionnelle ou en
détectant du marquage au sol, au besoin.

En conclusion, les résultats obtenus lors de ces travaux montrent l’intérêt de l’utilisation
de la trajectoire provenant de l’odométrie visuelle comme source d’information pour la fu-
sion de données à faible coût pour la localisation des véhicules. Cette source d’information
provenant de la caméra est complémentaire aux données d’images traitées qui pourront par
ailleurs être utilisées pour les différentes taches visée par les systèmes d’aides à la conduite.
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Chapter 1

Introduction on Vehicle Localization

“When Henry Ford made cheap, reliable cars people said, “Nah, what’s wrong with a horse?” That
was a huge bet he made, and it worked.”

— Elon Musk
As quoted from the co-founder, CEO and product architect of Tesla Incorporation, it

proves that with innovation and technology, the quality of life is improved, although it
might seem dispensable in the beginning. Indeed, humans – whether consciously or not –
have always desired for more comfortable life by putting great effort on technology devel-
opment. That is the reason why technology development has never stopped emerging and
researchers are working with each other in their own respective fields.

Vehicle technology has been developing immensely as it is one of the important neces-
sities in daily life. It is the second most expensive commodity purchased by an adult after
residential property. People commute either by public transport or personal vehicle from
one point to another and safety is among the main concerns. Besides, with urban develop-
ment and advanced road network, using the most efficient route in terms of journey time
and fuel consumption is of the huge factor to be taken into consideration in our hectic life.
Thus, the need for high safety vehicles with accurate positioning technology and uninter-
rupted routing service are constantly in high demand.



2 Chapter 1. Introduction on Vehicle Localization

1.1 Background

Recent decade has shown massive development in intelligent vehicles and Advanced Driver
Assistance Systems (ADAS) with the birth of autonomous vehicles. These vehicles are ca-
pable of ’self-driving’ without human input by sensing its environment from sensors. This
includes Tesla cars, Google self-driving car (Waymo) and cruise-control systems introduced
by high-end car manufacturers like Mercedes and Audi. These vehicles are equipped with
sensors for various techniques of sensing their surroundings, such as odometry, GPS, radar,
laser sensor, and computer vision.

FIGURE 1.1: Sensors equipped on a Tesla model S

FIGURE 1.2: Sensors equipped on a Waymo autonomous car

The sensed surroundings are then interpreted into information for vehicle’s safety as-
sessment in terms of collision probability, speed limit, and allows the vehicle to localize its



1.1. Background 3

position accurately for navigation and routing. To enable the functionality of all these as-
sessments, it relies on the key component in an intelligent vehicle which is its navigation
system. Without a correct navigation, it might affect the vehicle routing choice for the driver
to arrive at certain destination. Accurate localization is also a requirement for ADAS and Lo-
cation Based Services (LBS) that recently emerges to provide information or entertainment
for users. Localization plays a crucial role in determining the exact position of the vehicle in
the global coordinate to liaise with the navigating system and obtain accurate information
for LBS.

1.1.1 GPS

Vehicle navigation system is part of the automobile controls (can also be a third-party de-
vice) used to find direction from a location to certain destination. It typically uses a satellite
navigation device to obtain its position data which is then correlated to a position on a road.
Then, routing can be calculated when the driver needs to know the advised direction of
taken route. These days, we are able to obtain our position from the widely available Global
Positioning System (GPS) devices, provided in a handheld device or equipped in the ve-
hicle. Initially, the GPS was designed only for military purposes until in the 1980’s, it was
made available for public use.

The GPS communicates with satellites to estimate our coordinates on earth. It consists
of 24 satellites, that circle the earth twice a day, to provide one’s position, at a specific time,
with velocity information. Through GPS, we are able to locate positions on the earth based
on the distance measurement from the satellites. This allows us to record or find locations
coordinates on the earth and with the use of a map, we can navigate from a point to another
point. Therefore, GPS devices are also typically used for vehicle navigation purposes with
routing services. In order to determine one’s two-dimensional position (latitude and longi-
tude), the GPS receiver must be locked with the signal of at least three satellites. With four
or more satellites in view, the receiver can calculate position in three-dimensional (latitude,
longitude and altitude). GPS satellites transmit at least two low-power radio signals that
travel by line of sight, which means they can pass through clouds, glass and plastic. How-
ever, the signals will not go through most solid objects, such as buildings and mountains.

However, relying on GPS alone may result in localization failure due to errors in GPS
signal. The factors that reduce GPS signal accuracy include:

• Ionosphere and troposphere delays: The ionosphere is the atmosphere layer from 50 to
500 km altitude that consists mostly of ionized air, while the troposphere is the lower
layer of the atmosphere (below 13 km) that faces variations in temperature, pressure,
and humidity associated according with weather conditions. Satellite signals tend
to be refracted as they pass through the earth’s atmosphere – causing the signals to
slow down or speed up. Since the satellite signals contain correction information for
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ionospheric interference, the GPS system is able to partially correct the error, and this
leaves up to a 10m of horizontal error on the ground.

• Signal multipath interference: This is caused by the reflected signals from surfaces near
the GPS receiver that can either interfere with or be mistaken for the true uninterrupted
signal from a satellite.

• Receiver clock errors: The receiver’s built-in clock may have slight timing error because
it is less accurate than the atomic clocks on GPS satellites.

• Orbital errors: Satellite orbit (‘satellite ephemeris’) pertains to the altitude, position and
speed of the satellite and it varies due to gravitational attraction and solar pressure
fluctuations.

• Number of visible satellites: GPS accuracy relies on the number of satellites that are in
view with the receiver (the more, the better). When a signal is obstructed, users will
get position errors or possibly no position reading at all.

• Satellite geometry: Satellite signals are more effective when satellites are located at wide
angles in relative to each other, rather than in a line or tight grouping.

• Selective availability (S/A): It is the intentional degradation of the satellite signals by a
time varying bias, applied by the U.S. Department of Defense before, which makes
signals less accurate for non - U.S. military and government users for security reasons.
The government reduced the amount of signal interference to 0m in May 2000, which
improved the accuracy of civilian GPS receivers. However, they retain the ability to
reactivate S/A without notice to the GPS users.

To overcome these problems, GPS error compensation techniques have been proposed.
For instance, (Bétaille et al., 2015) presented positioning improvement by 3D geometrical
city modelling. From the modelling, it is possible to identify line-of-sight or non-line-of-
sight satellite signals, hence allowing correction of pseudo-range measurements. Then, the
urban trenches were created automatically from a rover trajectory as a reference to match
with the nearest road arc segment. It is an interesting approach of integrating trajectory,
map, and GPS data correction. However, the modelling is based on the BD Topo map
database for France, thus it is not practical for global use.

Besides, another option is to have a backup system by fusing GPS data with other ad-
ditional information from sensors or map to obtain one’s position correctly. Therefore, it is
recommended to explore the available sensors typically used in vehicle that can provide ad-
ditional information for localization to design a strategy in improving localization accuracy.
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1.1.2 Sensors

Sensors are an important component of automotive electronic control systems, defined as
‘devices that transform (or transduce) physical quantities such as pressure or acceleration
(called measurands) into output signals (usually electrical) that serve as inputs for control
systems’ (Norton, 1989). In other words, it is a device that measures certain quantity and
converts it into a signal that can be read by an observer, an instrument or a computer. Sen-
sors apply physical properties of matter and laws of physics to perform and they are capable
of perceiving properties or environmental attributes. These attributes include light, heat,
pressure, sound, electromagnetism or motion. Generally, sensors can be classified into two
categories: passive and active. A passive sensor only measures the energy or information
obtained from the objects in the environment for observation. Meanwhile, an active sensor
emits energy and then observes any change in the reflected energy to estimate the state of
the environment.

Today, most vehicles already incorporated many types of sensors such as the Mass Air
Flow Sensor (MAF), engine speed sensor, fuel temperature sensor, and voltage sensor. These
sensors are mainly built into vehicle’s engine to ensure that the driver can identify and
prevent possible issues before they result in breakdowns that consumes expensive repairs.
Besides, these engine sensors are also to ensure that the vehicle is operating efficiently.
Aside from engine sensors, vehicles are more and more equipped with either built-in or
autonomous sensor for environment perception purposes. This enables the system to ob-
tain information from the surrounding environment, in terms of distance with other ob-
jects/vehicles, pedestrian or road signs detection, map building, and localization.

A. Wheel Odometry (ABS)

It is the most widely used method to estimate the position of mobile robots from the number
of rotations of the wheels. Braking in vehicles today is commonly assisted with Anti-Lock
Braking System (ABS) that uses angular encoders attached to the wheels. With this system,
wheel rotation is translated into linear displacement relative to the ground while the en-
coder as shown in Figure 1.3 is utilized for rotation measurement. Since wheel odometry
is a relative positioning technique, it faces positioning accuracy problems due to the drift
caused by wheel slippage. This error is accumulated over time for both translational and
orientational errors that worsens the positioning performance without proper correction.

B. INS

Inertial navigation system (INS) as shown in Figure 1.4 is a navigation tool that utilizes
motion sensors (accelerometers), rotation sensors (gyroscopes) and embedded systems to
calculate the position, orientation and velocity of a moving object continuously. It has the
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FIGURE 1.3: Wheel odometry encoder (Pololu Corporation 2016)

advantage of being self-contained, without requiring external references. Unfortunately,
INS is also prone to drift accumulation because the velocity and position change calculation
is performed by mathematical integrations of acceleration. While accelerometer data has to
be integrated twice to obtain the position, rate-gyro data are only integrated once for orien-
tation tracking. Thus, resulting small errors in the acceleration measurement and angular
velocity will contribute in velocity data errors. This are then compounded into larger errors
in position results (Wang et al., 2014; Woodman, 2007). These errors are also increased with
time and the position needs to be corrected periodically.

FIGURE 1.4: Block diagram of inertial navigation system (Gade, 2005)

C. Radar

In the beginning of the 20th century, an early implementation of radar technology (an acronym
for Radio Detection And Ranging) was meant to detect the presence of ships in fog. Nowa-
days, radar is still highly valued because it can provide distance and velocity information,
even in challenging environmental conditions. Radar can function even in fog, rain, wind,
darkness, or blinding sun. As an active sensor, radar uses a transmitter that emits radio
waves and a receiver that collects the reflected waves. Radar uses the Doppler Effect to
accurately measure the object’s velocity by detecting changes in the reflected wavelengths.
Object detection quality highly relies on the wave reflection strength which is influenced by
factors such as the distance, the object’s size, its absorption characteristics and the reflection
angle.
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FIGURE 1.5: Examples of medium- and long-range automotive radar sensors
operating up to 250 meters. (Bosch radar)

In automotive application of radars, challenging scenarios result in problems especially
when two objects are located too close next to each other on the road. This is because it
would provide a very similar reflections making it difficult to distinguish. Besides, large
objects that are close to the transmitter can saturate the receiver and a radar usually cannot
resolve the type of the object. Signals received from radar are not intelligent enough to
resolve small details of objects which would be useful in object identification. Therefore,
without this qualitative information, the application for this sensor is limited to detected
object’s distance and speed measurement.

There are also characteristic trade-off in radar range versus field of view as indicated in
Figure 1.5. In order to identify objects at further distance (for higher-speed traffic), long-
range radar systems that are capable of measuring distances exceeding 250m would have
a narrow beam width of only about 15◦. As a result, although it allows measurements of
objects directly in front of the car up to a long distance, it will not be able to detect vehicles
or other objects nearby outside the beam angle. There are mechanical and multi-beam solu-
tions that may increase the systems’ field of view, but they require larger sensors, and more
complex in computation and systems.

D. Camera

While radar is good at detecting objects physically, the systems are not able to identify ob-
jects and visible messages like road signs, road markings, and traffic light colours. Video
images captured from cameras on the other hand support the driver with a better rep-
resentation of the environment outside the vehicle. Today, two-dimensional cameras are
widely available to display images while luxury class car makers are beginning to install
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cameras with virtual, three-dimensional image displays. Besides, many drivers have in-
stalled plugged in camera that records video as a proof for safety purposes. Camera also
helps to overcome blind-spot problem typically faced by human drivers that contributes to
the major traffic accident factors.

Aside from security measures, with computer vision, cameras are also able to automat-
ically detect objects, classify them, and determine the distance from them, provided that
the calibration parameters are carefully calculated. For example, from cameras, we are able
identify pedestrians and cyclists, motor vehicles, side strips, bridge abutments, and road
margins. The algorithms are also used to detect traffic signs and signals as an additional
information of the road rules. These information are useful to provide knowledge on the
surrounding environment to be integrated in the driver safety system.

With the technology advancement, cameras today can also be utilized for vehicle trajec-
tory generation from visual odometry. This is achieved by the feature detection by image
processing, and with vehicle movement, the same features can be matched in the preceding
frames. The matched and tracked features contain the information of vehicle ego-motion,
which can be translated into trajectory. This allows for enhanced navigational accuracy in
vehicles on any surface for localization purposes.

Cameras utilized in vehicles can be divided into monocular and stereo vision. Monoc-
ular vision only requires a single camera for image processing while stereo vision uses two
cameras, placed horizontally, in the system. With stereo camera, scene depth information
can be estimated from the calculation of the object’s distance from multiple captures of the
same scene from different viewpoints. Although it consumes slightly higher implementa-
tion cost compared to monocular vision, the stereo vision is highly advantageous to extract
information about the relative position of 3D objects in the vicinity of the system.

Since a full high-definition (HD) image equals to millions of pixels at each frame, use of
cameras in ADAS produces massive amounts of data for image processing. This makes pro-
cessing a computationally intense and algorithmically complex job. Despite of this, cameras
are by far the cheapest and the most available sensor in automotive application. Besides, un-
like radar, cameras can see colour, making them the best candidate for scene interpretation
in intelligent vehicles.

E. Lidar

Lidar, an acronym for Light Detection and Ranging, is a remote sensing method that uses
light in the form of a pulsed laser to measure ranges. It is originally developed over 40
years ago to track lunar and satellite distances. However, as the lidar systems become more
compact, many applications have been unveiled. Lidar was first utilized on cars in the 2005
Grand DARPA challenge that makes the innovator, Stanley, won the challenge by using 5
lidar sensors mounted on the car roof.
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A lidar system consists of four key components: a) a transmitter to emit laser pulses, b) a
receiver to intercept pulse echoes, c) an optical analysing system to process input data, and
d) a powerful computer to visualize a live, 3D image of the system’s surroundings. Lidar
systems emit light waves that travel outwards in all directions until making contact with an
object, resulting in a reflected light wave that is redirected back to the source. The distance
of that object is then calculated based on the time it took for the echo to return, in relation to
the known speed of light.

These years, lidar is widely used in self-driving car, owing to its capability to generate
huge 3D maps to allow the car or robot navigate within it. By using a lidar to map and
navigate an environment, it allows the system to know ahead of time the bounds of a lane,
or if there is a stop sign or traffic light a few hundreds of metres ahead. This kind of pre-
dictability is what a technology like self-driving cars requires, and has been a big reason for
the progress over the last five years.

However, this great performance does not come without a high cost. In order to achieve
a 360◦ horizontal field-of-view depth map around a car, current LIDAR systems such as that
from Velodyne utilize a mechanical, rotating system that rotates the laser in all directions
which is neither aesthetically pleasing nor aerodynamic. These 360◦ lidar systems are also
quite expensive, with prototype systems today costing about $70,000. Besides, lidar faces
a challenge with its vertical resolution where the Velodyne’s lidar for instance, only has a
vertical resolution of 64 pixels. To achieve adequate vertical pixel density, the field-of-view
is limited to 26◦, resulting in detection failure of objects directly in front of a vehicle like a
curb or pothole.

1.1.3 Harvesting Information from Digital Maps

Aside from the perceptive properties obtained from the sensors equipped to a vehicle, we
also have abundant information of the surrounding environment provided by digital maps.
A digital map may contain information such as road connectivity, traffic signs, speed limit,
public transport stations, and geographical structure. Data provided by the digital map is
growing rapidly with the crowdsourcing and is expected to improve the map’s information
accuracy. This allows the possibility to harvest the information provided by the digital map
as an additional input for vehicle localization by data fusion. Inputs obtained from sensors
or GPS data could be a complimentary information for map matching which will further
increase localization accuracy effectively.

Nowadays, the whole world map is digitalized and accessible from map service providers
on the web. Among the widely known digital mapping services utilized in navigation sys-
tem development are the Google Maps, Bing Maps, Apple Maps and OpenStreetMap. Here,
each service will be described and compared in terms of the service availability and infor-
mation accuracy.
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A. Bing Maps

Bing Maps is a web mapping service provided as part of the Microsoft’s Bing suite of search
engines which was initially known as Live Search Maps. With Bing Maps, users can browse
and search topographically shaded street maps for many cities worldwide. It is also pos-
sible to browse public user-created points of interest and searches cover public collections,
businesses or types of business, locations, and people. Five street map views are available:
Road View, Aerial View, Bird’s Eye View, Street Side View, and 3D View.

Road view is the default map view that displays vector imagery of roads, buildings, and
geography. The data from which the default rendered road map is licensed from Navteq.
In some places, road view maps from alternative data providers are also available. For
instance, in the UK, road data from the Ordonnance Survey can also be displayed. There
are also 1st and 3rd party applications that can add additional functionality and content to
Bing Map such as parking finder, taxi fare calculator and Facebook friends map. Bing Maps
updates are being released on a monthly basis and each imagery release may contain more
than 10TB of imagery data.

B. Google Maps

As recognized from its name, Google develops the Google Maps service since 2005, that
currently offers satellite imagery, street maps, 360◦ panoramic street view, real time traffic
updates and route planning. The service’s front end utilizes JavaScript, XML and Ajax. In
2008, Google Map Maker was launched to allow users to contribute in mapping service
update, but it was discontinued from March 2017. However, any errors such as inaccurate
geographical locations or location names can be reported by users by suggesting corrections
through the ’send feedback’ button which will then be reviewed before accepted or declined.

Google Maps might have a lot of useful information and services, but it is not open at
the level of raw map data, in order to maintain its commercial advantage. They only expose
their downstream products and services from the map data. However, with the growing
tendency among developer communities to explore on the innovation possibilities from the
raw map data, it is not feasible on the Google’s restricted platform.

C. Apple Maps

Apple Inc. launched Apple Maps in September 2012 in iOS to replace Google Maps as the
default mapping service for Apple operating systems. This is due to the growing tensions
between Google and Apple in late 2009 when Android version of Google Maps featured
turn-by-turn navigation, which the iOS version lacked. Thus, Apple announced the initial
release of Apple Maps that include turn-by-turn navigation, 3D maps, Flyovers (3D photo-
realistic views of big cities and landmarks), and virtual assistance Siri. At first, Google
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did not immediately launch a mapping application on its own on mobile. Not until three
months after Apple Maps announcement, Google Maps was released in the App Store with
new features. The largest selling point for Apple Maps’ turn-by-turn navigation is the 3D
maps (activated by swiping up with two fingers during a journey). While it is currently
available in only certain locations around the world, Apple is constantly updating its 3D
maps and adding new locations. Users can see surrounding building in 3D, which makes it
easier to figure out exactly where they are in relation to the position displayed on the screen.

However, Apple Maps has also been criticized for numerous errors and poor map de-
talization since its launch. Since then, some errors have been corrected, but the problem of
detalization is still relevant for the USA, Western Europe, and some Asian countries. For
example, in Moscow, Russia, according to Apple Maps, there are no buildings, and some
cities look like cross-roads in the fields. Another drawback of Apple maps is that it is not
accessible for use in the offline mode. The system can display the cached data without in-
ternet connection, but it displays only those regions that a user has viewed before and will
not work at a new place.

D. OpenStreetMaps

OpenStreetMap (OSM) is an open project that was aimed at providing a free detailed map
of the world. The project is constantly updated and improved by users around the world
where any registered user can edit and make additions to the map. This ensures high ac-
curacy and detalization of cartographic data. OSM was initiated by Steve Coast in 2004,
inspired by the success of Wikipedia and the predominance of proprietary map data. Since
then, it has grown to over 4 million registered users as of November 2017, who can collect
data using manual survey, GPS devices, aerial photography, and other free sources for map
update. This crowdsourced data is made available under the Open Database Licence that
allows everyone to access, download, store, and use the data freely without restrictions.
Aside from the free access, here are several advantages of OSM in comparison with other
commercial map service providers:

• Users can style their map to look how they want, while with other map providers, the
map style is fixed by the provider.

• With OSM, users are in control of viewing things as wished. They can choose to em-
phasize cycle routes (where most of other maps do not even have cycle routes) and
play down motorways or only want to label subway stops but ignore bus stops by
filtering the raw map data.

• Most commercial providers just do streets but OSM do much more which includes nat-
ural features, bus routes, footpaths and cycleways, administrative boundaries, shops,
rivers and canals.
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• Maps from commercial providers are updated every month based on the region, or
less. New roads and buildings can be missing long after they are built without frequent
update. OSM data is constantly updated, any minute or users can opt to update the
map themselves.

• There is no limit to what users can do with OSM as the data keeps on growing every
second and raw data is always easily available for use.

• Users can download all or some of the map for offline use, meaning we can safely
use OSM information to find our way around without having to reveal our location to
anybody.

In fact, more major organizations have been choosing OSM for their maps. For instance,
Foursquare switched to the OSM powered Mapbox platform in February 2012 and since
March 2013, Wikipedia has also started using OSM as well. Craigslist currently uses OSM
for apartment searches and even Apple has used OSM data in its maps. There are also other
popular platforms using OSM powered maps such as Github, Pinterest, Roadtrippers and
Strava. The main reasons for this progress are OSM’s style flexibility and the fact that OSM
is always free to users, developers and companies.

FIGURE 1.6: Cartography differences at Digiteo building, Universite Paris-
Saclay
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FIGURE 1.7: Cartography differences at Pyongyang, North Korea

1.1.4 Digital Maps Comparison

In order to illustrate map accuracy and cartography data, snapshots of similar area are taken
as shown in Figure 1.6 and Figure 1.7 as of 9 March 2018. The first set of images are taken to
compare map updates since the area has undergone development over the past two years.
Meanwhile map of Pyongyang city of North Korea is also used to observe the map detalaza-
tion in a secretive state. Apparently, Google Map manages to obtain detailed map of the city
which was released in 2013 – thanks to the citizen cartographers that contributed through
Google Map Maker although OSM has more information.

It is obvious that public contribution on map data is the most effective way to acquire
an up-to-date information as portrayed by maps from OpenStreetMap. This information
is very useful in LBS and also aiding vehicle localization if utilized correctly. Besides, the
availability of information provided by the digital maps to public allows rapid development
in map-based applications.
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1.2 Contributions

Certainly, an autonomous car might have solved the main problems in localization and risk
assessments, but it owes to the equipped sensors performance with higher computational
and financial cost. The objective in our research has been to develop an accurate low-cost
localization in urban environment for common vehicle. Without requiring built-in sensors
installation on vehicle, we aim to develop a standalone system that is autonomous and can
be widely used in ADAS. The main problems in GPS data are studied and information pro-
vided by available sensors are carefully considered and selected to achieve our objectives.
There are three hypothesis that we can state in this work:

• GPS is the most widely used system as a base for vehicle positioning due to its low-cost
and availability,

• digital map is rich with useful information for vehicle navigation which is expected to
continuously improve, and

• the use of cameras on a car has become more common which can be utilized for visual
odometry trajectory, aside from safety system and road features / symbolic / markings
detection purposes.

In this study, we try to explore how the data fusion of low-cost GPS, digital map and
visual odometry trajectory can contribute in vehicle localization improvement. As a com-
plementary information to overcome GPS flaws, vehicle ego-motion from visual odometry
trajectory is used for pose prediction. Then, the trajectory is also matched with road infor-
mation from the OSM. Visual odometry has been widely studied by researchers that either
improves its performance in monocular system (Scaramuzza et al., 2009, Forster et al., 2014,
Engel et al., 2013), or stereo system (Kitt et al., 2010, Geiger et al., 2011, Wang et al., 2017).

Meanwhile, there are also works that proposed application in Simultaneous Localization
and Mapping (SLAM) (Cvišić et al., 2017; Esparza-Jiménez et al., 2016; Moreno et al., 2016;
Mur-Artal et al., 2015) which is particularly useful in robotic mapping of an unknown region
with drift correction from loop-closure detection. However, in vehicle navigation, we can
simplify the mapping problem since the map data can be obtained beforehand from the
available resources. Therefore, our method only requires the visual odometry trajectory as
an additional information in data fusion with GPS and map.

In the end, this thesis has contributed in:

• providing the proof of accountability in utilizing visual odometry trajectory in data
fusion for positioning error optimization in both latitudinal and longitudinal,

• the probability of utilizing visual odometry trajectory curve in determining lane-changing
events
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• a practical low-cost solution in accurate localization with high robustness against dif-
ferent types of GPS error

1.3 Thesis Outline

This thesis consists of six chapters. The first chapter gives general introduction on the re-
search background, motivation, and contribution of the thesis.

In Chapter 2, literature review of related works on visual odometry are presented, to
provide deeper understanding of limitations faced and the research gap that we would like
to address in our work. Here we also provide a review in multisensor data fusion, with
benchmark scoreboard analysis.

Then in Chapter 3, we present the first approach in our method by further explaining
about the fusion technique used on VO trajectory, noisy GPS and OSM data. We imple-
mented the particle filter method and tested on a simple drive to study the localization
performance. Then, a Road Probability Distribution Factor (RPDF) method is proposed and
explained in this chapter to further improve the localization accuracy.

Meanwhile in the following Chapter 4, we continue to develop our fusion technique by
adding another fusion level for trajectory curve comparison in order to optimize positioning
accuracy. This is called the Segmented Curve Matching (SCM) since the visual odometry tra-
jectory trail is compared with segmented roads from OSM. System robustness against severe
GPS noise is also evaluated in this chapter. For performance comparison, we tested different
VO approaches as the trajectory input to study the degree of improvement in accuracy.

Next, in Chapter 5, a study on lane-changing/lane-keeping detection by VO trajectory
curve analysis is presented with two different approaches. We would like to show that it is
possible to utilize VO trajectory in lane-changing detection, provided scale ambiguity and
heading error are not too severe.

Finally, Chapter 6 will conclude this thesis and provides future works in this research.
As an academician, this research does not stop upon submission of this thesis, but I will
seek further knowledge and looking forward to collaborate with other researchers for future
research development.





17

Chapter 2

Related Works on Localization with
Visual Odometry

Accurate vehicle localization is a fundamental challenge in intelligent vehicle applications.
It is highly desirable to have the information of one’s position accurately to achieve au-
tonomous navigation and integration with location-based services. Thus, various sensors
are equipped to vehicles as mentioned in previous chapter and researchers have developed
approaches for vehicle positioning from information obtained from wheel odometry, GPS,
INS, radar, laser and visual odometry (VO). Each technique has its own advantages and
weaknesses in terms of reliability, precision, cost, and feasibility.

In our work, we propose to focus on the employability of VO trajectory curve in our
low-cost vehicle localization system. This chapter will present the related works conducted
in recent years to assess merits of each technique.

2.1 Visual Odometry

The term "odometry" actually originated from the combination of two Greek words hodos
that means "journey" and metron which means "measure" (Fernandez et al., 2004). Thus,
measuring one’s journey by estimating the change in an object’s pose over time is defined
as odometry. Visual odometry (VO) is a positioning technique by using a stream of images
acquired from visual sensor (camera). These images contain environment information pre-
sented in colour, texture and shape that are useful for feature tracking to estimate camera
movement.
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The idea of vehicle positioning estimation based on visual input was firstly introduced
and suggested in the early 1980s by (Moravec, 1980). Since then until the new millennia,
NASA dominated VO research in preparation for Mars Mission in 2004. The term ’visual
odometry’ coined by (Nistér et al., 2004) was chosen due to its similarity with wheel odom-
etry. However, wheel odometry incrementally estimates one’s position or motion by inte-
grating the number of turns of wheels over time, while VO integrates pixel displacements
between image frames over time for state estimation.

VO is clearly an inexpensive option in odometry technique that yields higher accuracy
than conventional techniques such as INS and wheel odometry. VO has a relative position
error ranging from 0.1% to 2% (Scaramuzza et al., 2011). It can be characterized with bal-
anced trade-off among cost, reliability and complexity of its implementation (Nistér et al.,
2004). The utilization of consumer-level camera is a straightforward and low-cost solution
compared with the expensive sensors or systems in laser-based localization (González et al.,
2012; Nourani-Vatani et al., 2009). Although GPS are widely used and available for outdoor
localization, from time to time, it still suffers from lost GPS information or signal noise that
cause positioning errors. Hence, with camera as the sensor, VO can work effectively in the
GPS-denied environment (Scaramuzza et al., 2011). Besides, the local drift rate under VO is
much smaller that drift of wheel encoders and low precision INS (Howard, 2008). To achieve
maximum accuracy, VO can be integrated with other existing system such as GPS or INS as
an additional information input.

2.1.1 VO Approaches

Position estimation by VO can be mainly categorized in three approaches:

• feature-based,

• appearance-based, and

• hybrid of feature/appearance-based

A. Feature-based approach

Self-explained by its name, this method involves extracting image features such as lines,
corners and curves in each image frame, that are then matched and tracked in between se-
quential images. This approach was previously adapted by (Benseddik et al., 2014; Cumani,
2011; Howard, 2008; Jiang et al., 2014; Naroditsky et al., 2012; Nistér et al., 2006; Parra et
al., 2010). Feature matching and tracking are performed only on the distinctive features to
estimate the vehicle motion. In this approach, image matching with previous frame is con-
ducted by feature points comparison in both image frames and Euclidean distance of feature
vectors are calculated in order to find candidate matching features. Then, camera (vehicle)



2.1. Visual Odometry 19

displacement is estimated from the velocity vector calculation between the pairs of matched
feature points (Lowe, 2004; Nistér, 2003; Nistér et al., 2006).

For stereo vision system, the extracted features from the first image are matched with
the corresponding points in the next frame, that will provide the 3D position of the points
in space. With this, camera motion can be estimated from the feature points displacement
where the camera relative pose is calculated by finding the geometric transformation be-
tween two images using a set of corresponding feature points. Nearest neighbour pairs
among feature descriptors are determined to compute the matching between the feature
points of two images. To achieve this, Longuet-Higgins in 1987 proposed an 8-point al-
gorithm to compute camera pose via essential matrix (Longuet-Higgins, 1987). Other re-
searchers had also done studies to improve the robustness of the 8-point algorithm method
(Hartley, 1997; Wu et al., 2005) and efficiently solve it in a closed-form algorithm with mini-
mal set of 5-points as proposed by (Nistér, 2003). Nister suggested that the relative camera
pose can be obtained from five matching feature points while (Stewénius et al., 2006) used
6,7 and 8 feature pairs for motion estimation. This feature-based VO approach has been
succesfully implemented in the navigation system of Mars exploration rovers as reported in
(Maimone et al., 2007).

There are several feature detection methods usually used in this approach such as FAST,
SIFT and SURF. FAST is an acronym for ‘Feature from Accelerated Segment Test’, which
is a quick corner detection (Rosten et al., 2006). It uses a circle constructed from 16 pixels
(with 3 pixels radius) around a centre pixel p to determine if p is a corner. The detection is
performed by comparing pixel intensity of adjacent pixels in the ring with intensity of p as
shown in Figure 2.1 below.

FIGURE 2.1: FAST corner detector: Pixels 11-16 and 1-6 are brighter than p,
hence p is detected as a feature point.

On the other hand, SIFT (stands for Scale Invariant Feature Transform) detector is based
on Difference-of-Gaussians (DoG) where it detects the centres of blob-like structures (Lowe,
1999). Even though SIFT is very efficient in object recognition applications, it requires a high
computational cost which is a disadvantage for real-time applications (Lowe, 2004; Miksik et
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al., 2012). Then, SURF (Speeded Up Robust Features) was proposed to improve computation
efficiency of SIFT (Bay et al., 2008). SURF detect features from a blob detector based on the
Hessian matrix approximation to find points of interest. However, studies conducted on
feature detectors comparison show that FAST has the best overall performance above SIFT
and SURF in terms of accuracy, robustness and speed (Ali et al., 2016; Guerrero, 2011; Işık,
2014).

B. Appearance-based approach

The appearance-based approach is a more recent approach, also known as direct-based ap-
proach, proposed in several VO techniques (González et al., 2012; Lovegrove et al., 2011;
McManus et al., 2013; Nourani-Vatani et al., 2009; Yu et al., 2011). Appearance-based ap-
proach generally monitors the changes in image appearance and its intensity of pixel infor-
mation instead of extracting and tracking image features. While focusing on the information
extracted from pixel intensity, the camera motion is estimated by using optical flow. Optical
flow algorithm applies the intensity values of neighbouring pixels to find the displacement
of brightness patterns from an image frame to another (Barron et al., 1992; Campbell et al.,
2004).

There are two types of optical flow algorithms. The first one is the dense optical flow
(DOF) algorithm, introduced by (Horn et al., 1981) that calculates all image pixels’ displace-
ment by using global constraints. Another algorithm is called sparse optical flow (SOF) that
only calculate the displacement of a selected number of pixels in the image, such as the
Lucas-Kanade method (Lucas et al., 1981). It was found that SOF is more desirable over
DOF for many VO applications due to the fact that dense algorithms are less robust to noise
compared to SOF (Campbell et al., 2004; Corke et al., 2004; Nourani-Vatani et al., 2009). In
SOF, the features are selected carefully based on higher variance between neighbour pixels,
hence resulting in more reliable motion estimation.

One of the common method used in this approach is the template matching method.
The template matching method attempts to match a selected patch or template of the cur-
rent image frame with the next frame. From the template matching, vehicle displacement
and rotation angle can be retrieved. Thus, template matching is an important task in this
approach. It is also useful in other computer vision applications such as object detection,
video compression and automatic inspection. It is the process of determining the existence
and position of an object (template) inside a large scene image (search area) (Choi et al., 2002;
Goshtasby et al., 1984). Template matching computes the similarity between the template
and search area by moving the template over the search area and calculate the similarity de-
gree in each location based on various measures. The shift position with highest degree of
similarity is the most likely position of the template found in the search area. The template
matching can be obtained through the normalized cross correlation (Aqel et al., 2016).
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From the identified template location, pixel displacement between the template and the
maximum correlation point is calculated to obtain the horizontal and vertical pixel displace-
ments (∆u and ∆v). In order to achieve measurements in metres, the pixel displacements
are converted from the intrinsic and extrinsic camera calibration parameters through the
following equations:

∆Xc = −∆u

(
Zc
fx

)
, (2.1)

∆Yc = −∆v

(
Zc
fy

)
, (2.2)

where fx and fy both represent the camera focal length which typically have the same
value. As for the camera coordinate plane (Xc, Yc, Zc), it will be converted to the vehicle
coordinate plane (Xv, Yv, Zv) based on rotation matrix Rc obtained from when the camera
rotation is 180◦ around Z-axis and then 180◦ around Y-axis. This computation is depicted in
equation below:

Rc = Rz ×Ry =

cos(θz) − sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

×
 cos(θy) 0 sin(θy)

0 1 0

− sin(θy) 0 cos(θy)

 . (2.3)

Therefore, the vehicle coordinate plane conversion at frame i can be calculated as:∆Xvi

∆Yvi
∆Zvi

 = Rc ×

∆Xci

∆Yci
∆Zci

 . (2.4)

Assuming the motion model is based on Ackermaan-steered model, translation ∆Xi is
considered from ∆Xvi and rotation ∆θi is obtained from:

∆θi = tan−1
(

∆Yvi
Lcam

)
, (2.5)

where Lcam is a parameter defined by the distance between camera center and the ve-
hicle’s center of rotation. Thus, the new position of the vehicle, Pnew is calculated from the
previous position, Pprev and incremental translation in the X-axis, T and rotation matrix R
rotated around the Z-axis by a heading angle when θi+1. This final output is derived from
the following equation:

Pnew = Pprev +R× T. (2.6)
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C. Hybrid approach

This approach is a hybrid of feature-based and appearance based. The feature-based ap-
proach gives better results with textured images, such as urban environments with rough
textures than in environments of a single pattern that have low textures (i.e: concrete, sandy
soil). The lack of salient features to be detected in the images resulted in inefficiency of
feature-based approach in such environments (González et al., 2012; Johnson et al., 2008;
Nourani-Vatani et al., 2011).

On the other hand, appearance-based approach seems to be more robust and superior in
low-textured images (Kicman et al., 2013). Therefore, in certain scenarios, hybrid approach
appears to be the best solution by combining both techniques. This approach integrates
tracking features between frames and at the same time use pixel intensity information of
the image to obtain the optical flow. For instance, (Scaramuzza et al., 2008) implemented a
hybrid-based approach where they utilized image features from the ground plane in esti-
mating vehicle translation while vehicle rotation was estimated from the image appearance.

2.1.2 Prior VO Works

Majority of VO methods proposed in previous literature use either stereo or monocular cam-
era in their systems. Monocular camera means that the system only utilizes a single camera
for capturing surrounding images. Meanwhile, stereo systems use two cameras that for im-
age capture that resembles human eyes in order to obtain object information in 3D. Both
methods have advantages and disadvantages that will be explained in this subchapter.

A. Stereo system

During the early days of vehicle ego-motion system by visual inputs in the 1980s introduced
by Moravec, a planetary rover with a single camera sliding on a rail was used (Moravec,
1980). The slider is called a slider stereo and the rover moved and stopped periodically.
In each stop, the camera slid and captured nine images at an equal intervals. Motion was
estimated by triangulation of 3D points seen at two consecutive positions after corners are
detected and matched through normalized cross correlation (NCC). Although only one cam-
era was used in this approach, it is classified as stereo VO algorithm due to the triangulation
step. Basically, stereo cameras have been widely used in VO systems to capture a pair of
RGB images at the same instant, thus the image scale can be retrieved by a given baseline.

Nister et al., who named the term ‘visual odometry‘ was the first to demonstrate a real-
time long-run implementation with a robust outlier rejection scheme (Nistér, 2003). They
detected features independently in all frames and only allowed matches between features
to avoid feature drift during cross correlation-based tracking. Since then, VO has received
an increasing interest among researchers that proposed various stereo VO implementations
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as presented by (Azartash et al., 2014; Geiger et al., 2011; Gomez-Ojeda et al., 2016; Howard,
2008; Kitt et al., 2010; Wang et al., 2017).

Algorithm proposed by Howard is generally consisted of feature detection in each frame
pair, followed by feature matching. Then, the largest set of self-consistent matches (inliers)
are identified. Finally, it calculates the frame-to-frame motion that minimizes re-projection
error for features in the inlier set (Howard, 2008). In this method, the inlier detection step
is the most important to distinguish feature, hence it is best described as ‘inlier detection‘
method rather than ‘outlier rejection‘. On the other hand, (Kitt et al., 2010) suggested VO
method with outlier rejection scheme by RANSAC. It is directly based on the trifocal geom-
etry between image triples, resulting in less time consumption required for 3D scene struc-
ture recovery. Camera geometry is assumed to be known in this approach, and the authors
employed an Iterated Sigma Point Kalman Filter (ISPKF) combined with RANSAC-based
outlier rejection scheme to obtain robust motion estimation even in dynamic environments.
This VO algorithm (known as Libviso) is made open-source which then allows further tech-
nique improvement as proposed by (Geiger et al., 2011).

Geiger et al. improved Libviso’s performance by implementing ‘stereoscan‘ where they
proposed a sparse feature matcher for robust VO algorithm by dense 3D reconstruction from
stereo sequences. The presented reconstruction pipeline combines four stages: sparse fea-
ture matching, ego-motion estimation, dense stereo matching and 3D reconstruction. This
method managed to reduce running times of feature matching while at the same time al-
lows real-time 3D reconstructions from large-scale imagery. It is then published publicly as
Libviso2 that is still widely used for benchmarking.

Later in 2013, VO with Iterative Closest Multiple Lines (ICML) algorithm was proposed
for an efficient line matching (Witt et al., 2013). This method contributed in fast and robust
hypothesize-and-test algorithm which can act as a fallback for challenging frame pairs with
textureless scenarios where pure gradient-based optimization fails. Since lines have proven
to be an interesting alternative to points in man-made environments, Azartash then explored
the combination of point and line features to robustly compute the six degree of freedom mo-
tion transformation between consecutive image pairs. This method, named MEVO (stands
for ‘multi-environment visual odometry‘), achieved real-time speed of over 10 frames per
second with good localization performance compared with Libviso2.

While MEVO proposed a direct combination of point and line features, (Gomez-Ojeda
et al., 2016) proposed a probabilistic approach on the combination of both point and line
segment for stereo VO. In order to effectively combine both types of features, projection er-
rors of both point and line segment features were weighted according to their covariance
matrices, computed from the propagation of Gaussian distribution errors in the sensor mea-
surements. This resulted in more expensive computational cost, but it could still run in
real-time and it provided an advantage of being able to be integrated straightforward into
any probabilistic framework.
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Recently, (Wang et al., 2017) had proposed a Stereo Direct Sparse Odometry (Stereo DSO)
that aimed to integrate constraints from static stereo into the bundle adjustment pipeline of
temporal multi-view stereo. With a system that combined static stereo with multi-view
stereo, the absolute scale could be directly calculated, and initial depth could be estimated
from the static stereo. Due to the fixed baseline, static stereo could only accurately triangu-
late 3D points within a limited depth range and this limit was resolved by temporal multi-
view stereo.

Among the proposed stereo VO, some of the works are made available to public such as
Libviso (Kitt et al., 2010), Libviso2 (Geiger et al., 2011) and stereo-DSO (Wang et al., 2017).
This allows researchers to do VO performance comparison to study the strength and weak-
ness in presented works. Besides, other well-known Simultaneous Localization and Map-
ping (SLAM) that utilized stereo VO in their algorithms are ORB-SLAM2 as proposed by
(Mur-Artal et al., 2017) and RSO by (Moreno et al., 2016). In addition to localization capabil-
ity, SLAM also performs mapping and loop closure for more accurate results although this
adds computation complexity in order to achieve accurate performance.

B. Monocular system

If the distance to the scene from the stereo camera is much larger than the stereo baseline,
stereo vision becomes ineffectual and it can be degraded to monocular system (Scaramuzza
et al., 2011; Sünderhauf et al., 2007). Both of the relative motion and 3D structure are com-
puted from 2D bearing data in monocular VO. Examples of recent VO works that imple-
mented monocular system have been conducted by (Engel et al., 2013, 2015; Forster et al.,
2014, 2017; Graeter et al., 2015; Lee et al., 2015a; Van Hamme et al., 2015).

(Van Hamme et al., 2015) had proposed a monocular VO algorithm that uses planar
tracking of feature points on the ground plane surrounding the vehicle rather than conven-
tional 3D pose estimation. To ease consistency of motion among features, tracking was ap-
plied in the ground plane coordinates instead of in the image coordinates of the perspective
camera. Meanwhile, an online self-learning approach of monocular VO and ground classi-
fication were presented by (Lee et al., 2015a). They used a constrained kinematic model to
solve the motion and structure problem besides to estimate the ground surface. The online
self-learning scheme from monocular vision was achieved by a combination of probabilistic
appearance-based ground classifier with geometric estimates.

(Graeter et al., 2015) on the other hand aimed to tackle issue on scale drift in monoc-
ular VO. To do so, the scene inherent information about the ground plane to estimate the
scale was leveraged for usage on Advanced Driver Assistance Systems. A ground plane
estimation using Structure From Motion (SFM) techniques was complemented by a vanish-
ing point estimation to render the proposed algorithm robust in urban scenarios. A novel
pitch-and-roll-tolerant scaling algorithm for monocular visual odometry, tailored for urban
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environments was also proposed in their work. This was achieved by two complementary
methods for ground plane normal estimation: a fit to reconstructed points and vanishing
points. The scale was finally obtained from a trimmed Least Squares optimization that re-
fined the plane.

Engel’s and Forster’s works are well-cited for their open-source codes on monocular VO
widely known as semi-dense VO and semi-direct VO. Semi-dense VO was introduced by
(Engel et al., 2013), where a semi-dense depth filtering formulation was presented to sig-
nificantly reduce computational complexity. Previously, it was found that only pixels with
an intensity gradient provide information for motion estimation (Dellaert et al., 1999). This
semi-dense method was proposed by estimating the depth of all pixels with non-negligible
image gradient and each estimate is represented as a Gaussian probability distribution over
the inverse depth map for the current frame. Then, (Forster et al., 2014) proposed Semi-
Direct VO combined direct tracking with keypoints, which achieved high frame-rates even
on embedded platforms. This owed to their algorithm that operated directly on pixel in-
tensities. Besides, more reliable points were obtained from a probabilistic mapping method
that models outlier measurements to estimate 3D points.

Engel then developed his work on Large-Scale Direct Monocular SLAM (LSD-SLAM)
which allowed to build large-scale, consistent maps of the environment. Along with highly
accurate pose estimation based on direct image alignment, the 3D environment was recon-
structed in real-time as pose-graph of keyframes with associated semi-dense depth maps.
Slightly different from LSD-SLAM that employed a photometric error as well as a geometric
prior to estimate dense or semi-dense geometry, (Wang et al., 2017) also proposed a novel
method namely direct sparse odometry (DSO) that took full advantage of photometric cam-
era calibration for further increase in accuracy and robustness.

2.1.3 Challenges and Limitations

While monocular system is admittedly the most efficient in terms of cost, calibration errors
and scale uncertainty are the main challenges to obtain accurate localization with monocular
camera. Furthermore, on uneven road surface, image scale has the tendency to fluctuate and
the image scaling factor is also difficult to be estimated when there is a large change in the
road slope or vehicle speed. The scale factor plays an important role in localization in order
to compute the translation length in real world from the trajectory generated from image
sequences.

Due to this, (Kitt et al., 2011) claimed that monocular vision systems are negatively af-
fected by scale uncertainty that would fail the localization system without accurate scale
factor. However, they also proposed a solution by using the Ackermann steering model and
assumed that if the vehicle moves on a planar road surface, image scale could be recovered.
(Guo et al., 2012) on the other hand proposed a monocular VO system with KLT feature
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tracker for feature extraction and RANSAC was used for outlier rejection, while solving
scale ambiguity problem by using the constraints of camera mounting and ground planar
assumption. Unfortunately, this technique does not fully solve the scale problem in monoc-
ular systems but it limits the ambiguity to a certain degree.

Stereo camera, on the other hand, has the capability to obtain scale information from the
image depth calculated by triangulation process with fixed stereo baseline size. However,
stereo system is more expensive than monocular system and it requires more computation
in calibration to obtain camera parameters. Besides, it is crucial for the pair of stereo camera
to acquire images at an exact time interval which can be achieved by shutter speed synchro-
nization or from external trigger signal. Still, many researchers prefer stereo systems due
to its accuracy in localization and ability to obtain map depth information that allows map
building in SLAM development.

2.2 Multisensor Localization

Accurate vehicle localization has been immensely researched within the last decades, in the
development towards autonomous vehicle. While the technology has started to develop
and been in the market in recent years, it does not stop the motivation for further research.
Besides its application for autonomous vehicle, the current positioning and routing technol-
ogy in vehicles should also be improved. There are still many issues need to be addressed
as road network structure is becoming more complex with the urban development and this
frequently cause interruptions in localization and path planning.

Although low-cost GPS are widely used for localization, it suffers from several condi-
tions such as the multipath and Non-Line-Of-Sight (NLOS) effect especially in urban areas
due to the dense buildings or other constructions like tunnels and bridges (Kos et al., 2010).
(Zair et al., 2016) proposed to overcome GPS signal problem to improve its accuracy by
detecting and removing the outliers. This resulted in reliable GPS data but their method
consumed complex computation and the results is inconsistent particularly in biased GPS
noise.

Therefore, data fusion with other sensors is desirable to overcome this problem. Multi-
sensor vehicle localization can be from several sensors as presented previously and among
those are lidar, GNSS receiver, camera sensor, Inertial Measuring Unit (IMU), and radar sen-
sor. In addition, digital map can also be used as an input for the data fusion. These data and
information can be used together, without requiring prior computation or data compensa-
tion, to provide a new information of an estimated state.
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2.2.1 Fusion of GPS, Camera, INS and lidar

Among the common solution approach for the GPS signal degradation problem is to fuse
GPS with other sensors, such as odometer, Inertial Measurement Unit (IMU), laser scanner
and mono/stereo camera. One of the earliest fusion approach was by fusing data from vehi-
cle GPS system and odometer data of the vehicle (Abuhadrous et al., 2003; Caron et al., 2006;
Sasiadek et al., 2001; Sukkarieh et al., 1999). While odometer might have advantage such as
minimal interference with other sensor signals, it suffers from limitations including posi-
tion divergence over time, miscalculations caused by slippage or uneven roads. Besides, the
accuracy is also affected by environment temperature and air pressure in tyres and the im-
plementation requires intervention with the existing wheel sensor for data collection making
it difficult to be built in standalone system.

Meanwhile, Inertial Navigation System (INS) which utilizes IMU sensor can also be used
to collect the position data during GPS signal outage (Bencheikh et al., 2015). Unfortunately,
its accuracy can only remain for short periods due to the accelerometer biases and gyro-
scope drifts (Caron et al., 2006). There are also studies on using laser scanner or lidar to
obtain high resolution information of vehicle surroundings with GPS data fusion (Chong
et al., 2013; Gao et al., 2015; Wolcott et al., 2014; Yoneda et al., 2014). The use of such di-
mensional sensors has been studied to find vehicle pose and brings to the implementation
of SLAM (Simultaneous Localization And Mapping) (Durrant-Whyte et al., 2006). As men-
tioned previously, lidar is an active sensor that measures range distances by estimating the
time-of-flight of laser beams to its surrounding objects. While a 2D lidar scans horizontal
planes and is usually used to localize a robot on a flat area (Zhang et al., 2000), 3D lidar has
also been studied for 6DOF localization (Moosmann et al., 2011).

In recent years, many works proposed VO fusion with GPS, odometer and lidar (Graeter
et al., 2018; Pandey et al., 2011; Wolcott et al., 2014; Zhang et al., 2015). The proposed
approaches showed performance accuracy of up to merely 0.60% in translation error as
recorded from V-LOAM method by (Zhang et al., 2015). These studies exhibited interesting
outcomes, but the high cost and long scanning period making it impractical for consumer
level application.

On the other hand, (Aynaud et al., 2017) suggested a top-down approach in multisensor
localization with triplets detection by lidar and choose the most efficient set of sensor, land-
mark, and detector. The results demonstrated that the top-down approach is applicable in
vehicle localization. However, even with lidar, there were localization errors due to lack of
landmarks detection. Another method was recently proposed by (Nguyen et al., 2017) to
overcome GPS signal problem by WiFi finger printing, fused with lidar-based SLAM. How-
ever, despite the use of high performance sensor like lidar, the fusion output reached up to
8m of localization error during weak GPS signal. Therefore, thiese methods might require
additional sensors to improve localization accuracy.
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2.2.2 Low-Cost Data Fusion with Camera

Since cameras have relatively lower-cost and can also be integrated in the localization sys-
tem, VO has become one of the popular approaches for localization. VO can be classified
into monocular or stereo vision system in which stereo system usually performs better since
it can avoid scale ambiguity inherent in monocular VO. Presented works for both monocular
and stereo VO systems have been explained in the beginning of this chapter with their chal-
lenges and limitations. Therefore, to overcome this problem and achieve better localization,
several approaches by implementing GPS fusion with VO and other sensors were proposed.
For the sake of practicality and affordable implementation, fusion with lidar sensor is not
discussed in this section.

Although VO trajectory itself is prone to accumulated drift and can be affected by scale
ambiguity, by integrating it with other sensors would possibly solve this problem. For in-
stance, in (Peker et al., 2014), monochrome camera and Kinect sensor were used to detect
traffic sign and match with map information to improve vehicle localization. This highly re-
lies on the availability of traffic sign recorded in map information hence is not optimized for
global localization. Meanwhile, (Suhr et al., 2017) proposed sensor fusion-based low-cost
vehicle localization system that fuses data from GPS, an IMU, a wheel speed sensor, a single
front camera, and a digital map via the particle filter. This requires a low-volume digital
map where road markings are expressed by a minimum number of points. However, aside
from VO purposes, we found that most of the works in vehicle localization utilized cameras
for road markings detection to improving positioning accuracy (Lee et al., 2015b; Schreiber
et al., 2015; Suhr et al., 2017; Tao et al., 2013). Stop lane marking or intersection detections are
used to correct the longitudinal position but there is a possibility of occluded lane markings
or roads without lane markings that can degrade the localization performance. Besides, we
also need to consider environmental influence such as weather and construction effects on
the visibility of the markings. Hence, relying on the symbolic road or lane markings has
some disadvantages for a robust localization.

On the other hand, other researchers such as (Floros et al., 2013) used Chamfer match-
ing on the street graph with Monte Carlo localization to match the vehicle trajectory with
the road network and (Brubaker et al., 2016) utilized road network information from Open-
StreetMap by identifying the actual link between vehicle and road map through stereo vi-
sion system during GPS signal outage. Both of these methods have shown improvised lo-
calization trajectory of the vehicle on the correct road, but lane-level and longitudinal po-
sitioning accuracy has yet to be addressed. In (Floros et al., 2013), the method performed
an exhaustive matching over all possible positions and orientations against the template
edge map. Despite this, its localization error of has yet to achieve below 10m of average on
two datasets tested as presented in the paper. As for (Brubaker et al., 2016), the proposed
approach managed to achieve an average of 3.7m positioning error but there were cases of



2.3. Datasets for VO Benchmarking 29

ambiguous road networks that resulted in failed localization.

2.3 Datasets for VO Benchmarking

For VO localization performance benchmarking, several datasets have been published to
the public that mostly contain data collected using IMU, GPS, cameras, and lidars. The
datasets are KITTI dataset (Geiger et al., 2012), CMU Visual Localization dataset (Badino
et al., 2011b), and Malaga dataset (Blanco et al., 2014). Among these, KITTI dataset has
the widest coverage, consisting sequences in city, residential, highway road and in campus
environment.

FIGURE 2.2: Top view of sensors setup

FIGURE 2.3: Front view of moving platform used to collect data

The KITTI dataset has been recorded from a vehicle driven in and around Karlsruhe,
Germany. It includes stereo camera images, laser scans, high-precision GPS measurements
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and IMU accelerations from a combined GPS/IMU system and the setup is depicted in Fig-
ure 2.2 while its real implementation can be viewed in Figure 2.3. The main purpose of this
dataset is to encourage the development of computer vision and robotic algorithms targeted
to autonomous driving. The development kit and calibration file is also made available on-
line for test validation. This makes it mostly used by researchers to evaluate and compare
their state-of-the-art computer vision methods.

VO methods that has been published are compiled for performance comparison as shown
in Table 2.1. Some of the methods also included their codes online for public reference.
From all test sequences provided by KITTI, the methods evaluation computes translational
and rotational errors for all subsequences of length (every 100 metres). The evaluation table
shows the ranking of methods according to the average of both errors. Methods marked as
(*) denote the availability of its source code online. Meanwhile, (**) indicates that the open
source methods did not use lidar in their systems. The KITTI dataset can be obtained from
http://www.cvlibs.net/datasets/kitti.

TABLE 2.1: Performance comparison on VO / SLAM methods conducted on
KITTI dataset

Method Translation Rotation

V-LOAM (Zhang et al., 2015) 0.60 % 0.0014 [deg/m]

LOAM (Zhang et al., 2014a) 0.61 % 0.0014 [deg/m]

SOFT2 (Cvišić et al., 2017) 0.65 % 0.0014 [deg/m]

IMLS-SLAM (Deschaud, 2018) 0.69 % 0.0018 [deg/m]

RotRocc+ (Buczko et al., 2016a) 0.83 % 0.0026 [deg/m]

* LIMO2_GP (Graeter et al., 2018) 0 .84 % 0.0022 [deg/m]

GDVO (Zhu, 2017) 0.86 % 0.0031 [deg/m]

* LIMO2 (Graeter et al., 2018) 0.86 % 0.0022 [deg/m]

SOFT (Cvišić et al., 2015) 0.88 % 0.0022 [deg/m]

RotRocc (Buczko et al., 2016a) 0.88 % 0.0025 [deg/m]

DVSO (Yang et al., 2018) 0.90 % 0.0021 [deg/m]

* LIMO (Graeter et al., 2018) 0.93 % 0.0026 [deg/m]

Stereo DSO (Wang et al., 2017) 0.93 % 0.0020 [deg/m]

ROCC (Buczko et al., 2016b) 0.98 % 0.0028 [deg/m]

cv4xv1-sc (Persson et al., 2015) 1.09 % 0.0029 [deg/m]

MonoROCC (Buczko et al., 2017) 1.11 % 0.0028 [deg/m]

DEMO (Zhang et al., 2014b) 1.14 % 0.0049 [deg/m]

** ORB-SLAM2 (Mur-Artal et al., 2017) 1.15 % 0.0027 [deg/m]

NOTF (Deigmoeller et al., 2016) 1.17 % 0.0035 [deg/m]

** S-PTAM (Pire et al., 2017) 1.19 % 0.0025 [deg/m]
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**S-LSD-SLAM (Engel et al., 2015) 1.20 % 0.0033 [deg/m]

VoBa (Tardif et al., 2010) 1.22 % 0.0029 [deg/m]

LiViOdo (Graeter et al., 2018) 1.22 % 0.0042 [deg/m]

SLUP (Qu et al., 2018) 1.25 % 0.0041 [deg/m]

FRVO (Wu et al., 2017) 1.26 % 0.0038 [deg/m]

MFI (Badino et al., 2013) 1.30 % 0.0030 [deg/m]

TLBBA (Lu et al., 2013) 1.36 % 0.0038 [deg/m]

2FO-CC (Krešo et al., 2015) 1.37 % 0.0035 [deg/m]

SuMa (Behley et al., 2018) 1.39 % 0.0034 [deg/m]

** ProSLAM (Schlegel et al., 2017) 1.43 % 0.0040 [deg/m]

StereoSFM (Badino et al., 2011a) 1.51 % 0.0042 [deg/m]

** SSLAM (Fanfani et al., 2016) 1.57 % 0.0044 [deg/m]

eVO (Sanfourche et al., 2013) 1.76 % 0.0036 [deg/m]

Stereo DWO (Huai et al., 2015) 1.76 % 0.0026 [deg/m]

BVO (Pereira et al., 2017) 1.76 % 0.0036 [deg/m]

D6DVO (Comport et al., 2007) 2.04 % 0.0051 [deg/m]

PMO / PbT-M2 (Fanani et al., 2017b) 2.05 % 0.0051 [deg/m]

** SSLAM-HR (Fanfani et al., 2016) 2.14 % 0.0059 [deg/m]

FTMVO (Mirabdollah et al., 2015) 2.24 % 0.0049 [deg/m]

PbT-M1 (Fanani et al., 2017a) 2.38 % 0.0053 [deg/m]

**VISO2-S (Geiger et al., 2011) 2.44 % 0.0114 [deg/m]

MLM-SFM (Song et al., 2014) 2.54 % 0.0057 [deg/m]

GT_VO3pt (Beall et al., 2010) 2.54 % 0.0078 [deg/m]

RMCPE+GP (Mirabdollah et al., 2014) 2.55 % 0.0086 [deg/m]

VO3pt (Alcantarilla, 2011) 2.69 % 0.0068 [deg/m]

TGVO (Kitt et al., 2010) 2.94 % 0.0077 [deg/m]

VO3ptLBA (Alcantarilla, 2011) 3.13 % 0.0104 [deg/m]

PLSVO (Gomez-Ojeda et al., 2016) 3.26 % 0.0095 [deg/m]

BLF (Velas et al., 2018) 3.49 % 0.0128 [deg/m]

CFORB (Mankowitz et al., 2015) 3.73 % 0.0107 [deg/m]

VOFS (Kaess et al., 2009) 3.94 % 0.0099 [deg/m]

VOFSLBA (ibid.) 4.17 % 0.0112 [deg/m]

BCC (Velas et al., 2018) 4.59 % 0.0175 [deg/m]

EB3DTE+RJMCM (Boukhers et al., 2018) 5.45 % 0.0274 [deg/m]

** VISO2-M + GP (Geiger et al., 2011) 7.46 % 0.0245 [deg/m]

BLO (Velas et al., 2018) 9.21 % 0.0163 [deg/m]

** VISO2-M (Geiger et al., 2011) 11.94 % 0.0234 [deg/m]
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OABA (Frost et al., 2016) 20.95 % 0.0135 [deg/m]

2.4 Problem Statement

From the performance evaluation data conducted on sequences provided by KITTI dataset,
we find an interesting similarity in all techniques without lidar fusion that recorded worst
performance in Sequence 01 among 11 sequences tested. In this particular sequence, the
drive was conducted on a highway with long stretch of a straight road. Other sequences
with many turns, curved roads, and junctions performed well in localization. This shows
that without high precision information from lidar, it is challenging to obtain accurate local-
ization on a straight road, most possibly due to drift and longitudinal error.

Besides, limitations in VO systems are identified regarding the scale uncertainty and cal-
ibration errors that affects its localization performance. As presented in the evaluation table,
VO methods accuracy may vary from 20.95 % & 0.0135 [deg/m] to 0.86 % & 0.0031 [deg/m]
of translational and rotation error, in accordance to system complexity. From the varying
results, rotational error of VO methods is not severe as its translational error. Therefore, we
can make three hypotheses that:

• the problem lies more on the scale ambiguity,

• trajectory direction maintains good accuracy due to small rotational error, and

• with the consistent direction accuracy, trajectories from VO method would mostly con-
cede with road network shape on map.

These hypotheses are also in line with our finding regarding the higher localization er-
ror for drive sequence on a straight road – localization performs worse when there is less
heading rotation during the drive.

2.5 Conclusion

Since its introduction in the early 21st century, VO has been studied vigorously for its ap-
plication in mobile robotics and vehicle localization. Aside from having better performance
than wheel odometer, it can even replace the use of laser scanner for map building in SLAM
methods (Cvišić et al., 2017; Engel et al., 2015; Fanfani et al., 2016; Mur-Artal et al., 2017;
Schlegel et al., 2017). At the same time, vehicle equipped with camera allows other in-
telligent systems to be deployed for advanced driver-assistance systems (ADAS) such as
pedestrian detection and road signs recognition.

Although we see vast development in SLAM research with highly accurate localization
results, it requires more complex computation for map building and with loop closure de-
tection to compensate drift error that would result in delayed localization correction. This
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is practical for mobile robot applications in an unknown environment and does not require
high accuracy positioning in real time. However, as for vehicle localization, digital map of
the world is publicly available, hence new map building is deemed unnecessary if one’s
position can be estimated on earth. Besides, with the abundant information provided by
digital map nowadays, we believe that VO trajectory can be useful for global localization
with map fusion and its performance can be on par with highly accurate GPS or lidar if op-
timized correctly. Furthermore, with the integration of low-cost GPS data, rough position of
the vehicle can be estimated and this can reduce unnecessary computation of map area out-
side region of interest. The next chapter demonstrates our fusion technique that integrates
the information from GPS, VO and digital map for localization accuracy improvement.
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Chapter 3

Data Fusion with Road Probability
Distribution Factor for Localization
Improvement

As one of the approaches to non-stationary inverse problems, state estimation has been of
a great interest in many practical applications (Kaipio et al., 2006). In such cases, the avail-
able data obtained from measurement of environment information are fused together with
the prior knowledge of state condition to continuously produce estimates of the desired dy-
namic outputs. This can be accomplished in such a manner that the error is minimized sta-
tistically after the predicted state is corrected with additional information (Maybeck, 1982).

For instance, the position of a moving object can be estimated through the time integra-
tion of its velocity components since departure. In our case, the prediction of the vehicle
position is based on visual odometry displacement. Then, this prediction will go through
a correction phase, where the assumptions are measured according to the likelihood. GPS
data and information from OSM are used in this phase to narrow down the possibility of
obtaining the best position estimation. In short, the vehicle state estimation problem deals
with the combination of the movement prediction from the displacement measurements (the
integration of the velocity components may contain measurement errors), then corrected by
the GPS data that also has no guarantee to be error-free, together with OSM data. This
fusion is conducted in order to obtain more accurate estimations of the system variables,
which is the vehicle position. In this chapter, the fusion technique is presented with our pro-
posed Road Probability Distribution Factor (RPDF) method based on OSM data to observe
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the improvement in localization performance.

3.1 Filters for Data Fusion

State estimation problems are commonly solved with the Bayesian filters (Gordon et al.,
1995; Kalman, 1960; Maybeck, 1982) as a method in data fusion. In the Bayesian approach,
an attempt is made to utilize all available information in order to reduce the amount of un-
certainty present in an inferential or decision-making problem and as new information is
obtained, it is combined with previous information to form the basis for statistical proce-
dures (Orlande et al., 2008). The formal mechanism used in the information fusion with the
previously available knowledge of the system state is known as Bayes’ theorem (Bayes et al.,
1763; Winkler, 1972).

Kalman filter is the most widely known Bayesian filter method to date which has under-
gone many improvements by researchers (Kalman, 1960; Maybeck, 1982; Sorenson, 1970;
Weiss et al., 1980; Winkler, 1972). However, the application of the Kalman filter is restricted
to linear models with additive Gaussian noises. Some extensions of the Kalman filter were
developed in the past years to partly overcome the restriction by using linearization tech-
niques (Arulampalam et al., 2002; Kaipio et al., 2006; Ristic et al., 2004). The extended
Kalman filter performs linearization around the estimation state and force the filter to use
the linearized version as a model.

At the same time, Monte Carlo methods have also been developed in order to represent
the posterior density in terms of random samples with associated weights (Doucet et al.,
2001). The Monte Carlo methods, also known as particle filter among other designations
found in the literature, has the advantage of not requiring the restrictive hypotheses of the
Kalman filter. Therefore, the particle filter can be applied to non-linear models with non-
Gaussian errors and is more suitable for the real-world applications.

3.1.1 Kalman Filter

The Kalman filter (Kalman, 1960), is one of the most popular data fusion algorithms in the
field of information processing. It is typically derived by using vector algebra as a minimum
mean squared estimator from first principles considering a simple physical example exploit-
ing a key property of the Gaussian distribution (Bandemer, 1978). The approach is mean to
translate some original observables yk into Wold decomposition (Wold, 1938) of innovations
and estimates of the state xk. From the innovations, the likelihood function of the dynamic
model can be built and with the states estimates, it allows us to forecast and smooth out the
stochastic process.
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Behaving as a recursive estimator, only the estimated state from the previous time step
and the current measurement are required for the computation of the current state estima-
tion in Kalman filter. It is different with the batch estimation techniques where it requires
history of observations and its estimates. The state in this method is represented by two
variables; xk, as the posteriori state estimate at time k, provided observations up to time k,
and Pk which denotes the posteriori error covariance matrix to measure the accuracy of the
state estimation.

The Kalman filter is most often conceptualized into two distinct phases: "Prediction" and
"correction". The prediction phase uses the state estimation from the previous time step to
calculate a new estimate of the state at the current time step. This predicted state estimation
is also regarded as the a priori state estimate because although it is an estimate of the state
at the current timestep, it has yet to include observation information from the measurement
at the current timestep. Meanwhile in the correction phase, the priori predicted state is com-
bined with the current observed information to refine the state estimate. This improved
updated estimate is termed as the ’posteriori state estimate’.

With its fusion technique development, some variants such as the Extended Kalman Fil-
ter (EKF) (Groves, 2013; Hoshiya et al., 1984; Weiss et al., 1980) and unscented Kalman filter
(UKF) (Julier et al., 2004; Wan et al., 2000) that involves linearization of the problem were
developed. In systems with nonlinear dynamics, the observation equations are linearized
by Taylor series expansion or partial derivatives of nonlinear state functions. However, the
EKF is deemed to be lack of stability and converges very slowly to the correct solution. Most
of the times, it only performs well with small nonlinearities, making it impractical for highly
nonlinear models.

To solve the limitations in EKF, UKF was introduced where it is based on Unscented
Transformation (UT). It uses a deterministic sampling approach to obtain the mean and
covariance estimates from a finite set of sample points. These points are chosen determin-
istically and transformed to a new space via nonlinear process to describe the distribution
statistics. The UKF is an expansion of UT which consists of initialization, prediction and
actualization steps. Compared with EKF, the UKF has an advantage of being independent
on the local approximation, allowing it to perform in higher order nonlinear models. Unfor-
tunately, similar with other Kalman filter, the UKF can only be used for models driven by
Gaussian noises and it is not a global approximation, due to the small set of sample points.

In other cases where the hypotheses of linear Gaussian evolution-observation models
are invalid, the use of the Kalman filter does not result in optimal solutions since the pos-
terior density is not analytic - even with the use of EKF and UKF filter because they still
assume Gaussian distribution in the derivation. Thus, the application of Sequential Monte
Carlo technique appears as the most general and robust approach to non-linear and/or non-
Gaussian distributions (Arulampalam et al., 2002; Johansen et al., 2008; Kaipio et al., 2006;
Liu et al., 1998). More details on Sequential Monte Carlo are explained in the following



38
Chapter 3. Data Fusion with Road Probability Distribution Factor for Localization

Improvement

section.

3.1.2 Particle Filter

The Sequential Monte Carlo technique, also known as the particle filter method, also offers a
solution in the state estimation problem. Other names for the particle filter include bootstrap
filter, condensation algorithm, interacting particle approximations and survival of the fittest
(Arulampalam et al., 2002). The main idea is to represent the required posterior density
function by a set of random samples (particles) with associated weights, and to compute the
estimates based on these samples and weights. When the number of samples are very large,
this Monte Carlo characterization behaves as an equivalent representation of the posterior
probability function, and the solution approaches the optimal Bayesian estimate.

One of the particle filtering method is the Sequential Importance Sampling (SIS) algo-
rithm, which includes a sampling step at each instant (Arulampalam et al., 2002; Ristic et al.,
2004). This algorithm involves using importance density, which is a density proposed to
represent the sought posterior density in the present case to solve the recursion equation.
Then, samples are drawn from the importance density. In certain importance functions, the
variance of the importance weights can increase over time (Kong et al., 1994). This leads
to the degeneracy phenomenon and it has a harmful effect on the estimation accuracy be-
cause after a few steps, it is possible that all but one particle will have negligible weight.
This results in a wasteful amount of computational effort that will be devoted to updating
a contribution that has almost zero weight. One way to solve this degeneracy problem is
by increasing the number of samples, N , which is impractical and costly. Another way is
by minimizing degeneracy through a good choice of importance function and by including
a resampling step in the SIS algorithm which brings the evolution to the Sequential Impor-
tance Resampling (SIR) algorithm as illustrated in Figure 3.1.

Resampling is conducted by mapping of the random measure {xik, wik} into a new ran-
dom measure {xjk, N

−1}with uniformed importance weights. It is executed when the num-
ber of effective particles (or effective sampling size) with large weights falls below a certain
threshold number. Alternatively, resampling can also be applied indistinctively at certain
time tk, as in the Sampling Importance Resampling (SIR) algorithm described in (Arulam-
palam et al., 2002; Ristic et al., 2004). SIR algorithm is summarized in the following steps, as
applied in our data fusion in section 3.4.2:

i In the prediction stage, generate particles based on the predictive density of respective
old particles xik−1:

xik ∼ p(xk | xik−1). (3.1)
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FIGURE 3.1: Representation of the Sampling Importance Resampling (SIR)
algorithm of the Particle filter

ii The correspondent importance weights are updated based on the likelihood density up
to a normalizing constant:

wik = wik−1
p(zk | xik)p(xik | xik−1)
π(xik | xi0:k−1, z1:k)

. (3.2)

iii Total weight of all particles, Tw is calculated

Tw =

N∑
i=1

wik, (3.3)

and the particles weights are normalized

w̃ik =
wik
Tw

. (3.4)

iv Effective number of particles is computed as

Neff =
1∑N

i=0(w̃
i
k)

2
. (3.5)

v When the effective number of particles is smaller than given threshold, Ness < Nthres,
resampling occurs where samples with lower weights are removed and replaced by du-
plicating those with higher weights. This is done by constructing the cumulative sum of
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weights with c0 = 0, for i = 1, ..., N ;

ci = ci−1 + wik. (3.6)

Then, new particles are assigned with probabilities proportional to their importance
weights while particles with lower weight are dismissed. Then, after resampling, all
particles has uniformed weight of N−1.

3.1.3 Summary

There has been extensive research on the usage of filter techniques for position estimation.
State estimation by means of Kalman Filter (KF), as well as Extended Kalman Filter (EKF)
and Particle Filter (PF) have been reported in studies for several applications. Brief compar-
ison between filter techniques for position estimation was presented in (Toro et al., 2015). It
shows that PF does not require the restrictive hypotheses of the KF approaches, which makes
PF a better solution approach for non-linear models for multi-sensor data fusion (Cappello
et al., 2015). Besides, PF provides a natural way to incorporate road map information into
vehicle position estimation and it is capable of handling multi-modal distributions.

Thus, in this research, PF is chosen over other fusion technique for its ability to perform
multimodal and non-linear estimation. Besides, PF is proved to be more robust and supe-
rior than the EKF in terms of the accuracy of state vector estimation (Lin et al., 2002; Rigatos,
2010). PF uses random samples (particles) to represent the posterior density of vehicle posi-
tion in a dynamic state estimation framework such as a road network. With PF, we estimate
the instate-space models inference by expressing the posterior probability density in terms
of randomized particles associated with importance weights. However, due to the random-
ized nature of PF, it has a drawback where the exact result generation is impossible. Every
new run of the program will produce different set of results for evaluation.

3.2 Conventional Visual Odometry

The initial approach of our research adopted a conventional visual odometry technique to
fuse with GPS data for vehicle localization. Visual odometry, as illustrated in Figure 3.2,
is the estimation of position and orientation of a moving object by analysing sequence of
images from visual sensor attached to the object. The input would be a stream of images,
captured at time k and k + 1, referred as Ik and Ik+1. These image pairs are compared to
obtain translation vector t and rotation matrix R to describe object movement whereby with
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heading rotation θ, rotation matrix is represented as

R =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , (3.7)

and vehicle pose can be defined as X>k = [xk, yk, zk]
>.

For image feature detection, FAST algorithm (Rosten et al., 2006) is applied in our ap-
proach due to its computational efficiency compared with other feature detection methods
such as SIFT (Lowe, 1999) and SURF (Bay et al., 2008) as described in Chapter 2. The features
detected by FAST are then tracked on the preceding image by using Kanade-Lucas-Tomasi
(KLT) feature tracker algorithm (Tomasi et al., 1991). The tracker utilizes spatial intensity
to approximate the search for the position that yields the best match by finding sparse pixel
wise correspondences. It is expected to work well with corner-like features for matching and
tracking. New feature detection in images is only repeated after number of tracked features
falls below a certain value.

From the tracked features, the Essential Matrix E is computed by random sample con-
sensus (RANSAC) method which has an iterative algorithm (Nistér, 2003). For every iter-
ation, five points are sampled from the set of correspondences, and the essential matrix is
estimated. Then, total number of other points which are inliers when using the essential ma-
trix is accumulated. After a fixed number of iteration, the essential matrix with maximum
number of inlier points is selected. The essential matrix can be decomposed into rotation
and translation as described in (Hartley, 1995)

E = [t]×R, (3.8)

where [t]× denotes the cross product matrix with translation vector t = [tx, ty, tz]
> and can

also be written as

[t]× =

 0 −tz ty

tz 0 −tx
−ty tx 0

 . (3.9)

FIGURE 3.2: Conventional VO algorithm applied in our approach
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Taking singular value decomposition of essential matrix (Longuet-Higgins, 1987) with
two equal singular values (D : diag(1, 1, 0)) this can be solved by

E = UDV >, (3.10)

where the columns of U and V are 3 × 3 orthogonal matrices which consist of the left and
right singular vectors. Here, W is defined as

W =

 0 ±1 0

∓1 0 0

0 0 1

 . (3.11)

There are two possibilities of rotation matrix, R value as R1 = UWV > and R2 = UW>V >.
However, via triangulation, only one solution is feasible from the condition called cheirality
constraint and an efficient decomposition of E into R and t is further described in (Nistér,
2003).

Translation matrix can then be computed from the obtained R as shown in 3.12.xkyk
zk

 =

xk−1yk−1

zk−1

+

cos θk − sin θk 0

sin θk cos θk 0

0 0 1


txty
tz

 . (3.12)

Then, output trajectory of the visual odometry for the current image sequence Ik is pre-
sented as

Xk = Xk−1 +R′kt, (3.13)

where the rotation matrix Rk is updated from the relative rotation matrix of each image pair
as

R′k = Rk ×Rk−1. (3.14)

Here, we implemented a conventional visual odometry approach without accuracy op-
timization with the objective of obtaining the trajectory. We assumed that even without
proper optimization, the trajectory curve has enough information to describe the position
estimate of the vehicle with data fusion.

3.3 OSM Data Structure

Map-matching is a process to match a sequence of real-world coordinates into a digital map.
Its main purpose is to identify the correct road link on which the vehicle is moving and to
determine the vehicle location on that link (Quddus et al., 2006). Map-matching is not only
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able to localize the vehicle position, but also improves the positioning accuracy as long as
good spatial road network data are available.

The OSM uses a topological data structure with four core elements:

• Nodes: points with a geographic position coordinate stored in latitude and longitude
according to WSG84.

• Ways: ordered lists of nodes representing a polyline, or a polygon if they form a closed
loop. They are used to represent linear features such as streets and rivers, and areas,
like forests and lakes.

• Relations: ordered lists of nodes, ways and relations. They are used for representing
the relationship of existing nodes and ways such as turn restrictions on roads, routes
that span several existing ways, and areas with holes.

• Tags: key-value pairs (both arbitrary strings). They are used to store metadata about
the map object properties. Tags are always attached to a node, a way or a relation.

These ways contain node reference to locate the coordinates of road connection and tags that
has the road specification. In our proposed method, other map attributes are neglected to
focus on road network to be rendered by using OSM Mapnik rendering rules so only ways of
roads labelled as tags with key=highway are extracted. These highway in map data is specified
with information that may include road name, type, number of lanes, allowed directions,
maximum speed, and even the road surface material.

An example of ways formed by connected nodes is shown in Figure 3.3 with its data
structure recorded in an .osm file. Nodes are assigned unique ref each as reference number
and the ways can be specified by their respective ids. Within the way description, metadata
is stored in tags that contain abundant information of the way.

The first step in our approach for fusion with OSM data is by filtering only the road
network and use Mapnik rendering style to estimate the road width on the map. Then,
mask image is created from the rendered map to determine road and non-road area on map.
With this, the probability factor when the particle falls within the road area, is defined as
αi = 1. Otherwise, the value falls exponentially with distance from road boundary, dr and
calculated as αi = e−dr .

3.4 Fusion Validation of VO with GPS and OSM

The conventional VO approach is our main input for state estimation during prediction for
our fusion technique. The trajectory obtained from VO is fused with noisy GPS data to ob-
tain first estimation of vehicle pose on map. Then, further correction on the state estimation
is conducted based on the road width information rendered from the OSM. The fusion is
expected to be able to reduce VO drift and increase localization accuracy at the same time.
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FIGURE 3.3: Example of road representation in OSM map and the data struc-
ture in .osm file

3.4.1 KITTI Dataset

In this work, KITTI dataset (Geiger et al., 2012) was utilized to validate the efficiency of data
fusion between VO, GPS and OSM. The database contains sequence of images along with
data from velodyne sensor and GPS. Since the GPS data is obtained from a high precision
device that has up to 0.01m accuracy, it is treated as the ground truth in method validation.
To test the ability of our method to deal with noisy low-cost GPS positions, we demonstrated
the random noise of about 10m, added to the ground truth data with 1Hz of frequency. Short
sequences were used to observe the accuracy and precision level of our proposed approach
in lane-level localization.

Our proposed approach was performed on Dataset 1 on 400 images to verify the im-
proved accuracy of visual odometry and noisy GPS fusion result on a straight road with
double lane and two-way characteristics in Dataset 1 and a multilane road that diverged to
a curved road in Dataset 2. Trajectory output was compared with ground truth data to ac-
quire the absolute distance error. In the results section, localization accuracy and precision
is defined by distance error mean and standard deviation, respectively.

3.4.2 Data Fusion by Particle Filter

Particle filtering method serves the purpose for performing inference interstate-space mod-
els where it represents the posterior density in terms of random samples and associated
weights. The first step in this research after obtaining visual odometry trajectory is to fuse
output from visual odometry with noisy GPS to determine the functionality of the filter and
compare the accuracy with visual odometry localization. Particle filter consists of several
steps as illustrated in Figure 3.4 and further described below:
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FIGURE 3.4: Data fusion steps in particle filter

i Initialization: In the beginning when time k = 0, N number of particles are generated
around X0with a non-linear model with equal weight 1/N . Therefore, for i = 1, ..., N ,
sample xi0

xi0 ∼ p(X0). (3.15)

ii Prediction: For i = 1, ..., N, particles are displaced according to the VO trajectory vector
(Equation 3.12) transition equation, fk with dynamic noise, v which is random and in-
dependently calculated for each particle i. This will disperse the sample movements to
find the probability in a wider area.

xik = fk(x
i
k−1, v

i
k) (3.16)

iii Weight update: Using GPS data and particle position on the road as the new measurement
vector, weight of each particle is updated according to probability density function as

wik = wik−1α
i e
−d2
2σ2

σ
√

2π
, (3.17)

where

• d : relative distance between particle xik and GPS coordinate,

• σ : coefficient value of the probability distribution determined from GPS error vari-
ance in the system,

• αi : particle position whether inside/outside the road area.

Before resampling, the probability distribution function particle weight is normalized to
w̃ik so that Tw = 1.
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iv Resampling: Number of effective sampling size is calculated and if Neff > Nthres, re-
sampling occurs. During the resampling step, we utilize the most common resampling
method called ‘select with replacement’ by duplicating particles with higher weight and
removing particles with negligible weights (Hoover, 2016). Firstly, the particles are
sorted according to its importance weight. Then, the resampling algorithm is shown
as follows:

Algorithm 1 Resampling steps

1: Q = cumsum(W ); # cumulative sum of particle weights
2: X = sort(x,w); # particles are sorted as an array, based on weights
3: i = j = 1; # array starts

4: while (i <= N) do
5: if (X[i] < Q[j]) then
6: index[i] = j;

7: i = i+ 1;

8: else
9: j = j + 1;

10: end if
11: end while
12: for (i = 1; i <= N ; i = i+ 1) do
13: NewP [i] = P [index[i]]; # new particles are duplicated
14: NewW [i] = 1/N ; # weights are distributed equally to 1/N
15: end for

3.4.3 Results and Discussion

Firstly, we observe that the visual odometry trajectory as shown in Figure 3.5a suffered from
drift error, due to the inaccurate scale estimation. This was expected since no optimization
was done on our visual odometry technique. However, we can see that the drift was greatly
reduced with the fusion of GPS and OSM as illustrated in Figure 3.5b, despite the trajectory
drift after frame 200. The distance error achieved for this dataset was (2.619±1.397)m.

The same test was conducted to a different dataset (Dataset 2) that has highway road
with multiple lane and vehicle movement behaviour of turning into a diverged exit as
shown in Figure 3.6a. Here, our visual odometry contained severe error that mainly af-
fected the trajectory scale on the curved road. Besides, there was also an instant of noisy
visual odometry trajectory due to the shadow and lighting condition around frame 75 to 79
but since it only occurred within a short period, this did not affect the fusion performance.
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(A) Improved vehicle trajectory (B) Distance error

FIGURE 3.5: Localization results for Dataset 1

(A) Improved vehicle trajectory (B) Distance error

FIGURE 3.6: Localization results for Dataset 2

The distance error comparing visual odometry and fusion output of GPS and visual odome-
try is displayed in Figure 3.6b, whereas the error mean and standard deviation obtained for
our data fusion was (3.608 ± 1.968)m.

3.5 Road Distribution Probability Factor

3.5.1 Fusion with OSM Data

As mentioned in Section 3.3, OSM provides map data including road information such as
road type, number of lanes, direction and maximum speed limit. Meanwhile road width
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is either specified in the .osm file itself or predefined by the rendering rule. This rule is
constantly updated and the road width is defined according to the specified road type. Pre-
viously, the validation results were generated to exhibit the localization improvement of
fusion between noisy GPS, conventional VO, and road boundary from OSM. Next, we ex-
tract number of lanes and road direction information from OSM for Road Probability Dis-
tribution Factor (RPDF) to improve positioning estimation. Generally, most of the roads are
categorized into several types:

i. One-lane road that always has one way direction.

ii. Two-lane road: can be one way direction or not (bi-direction).

iii. Three-lane road or more: can be one way direction or not. (Lane direction distribution
is provided by OSM)

Firstly, particles are defined to be on the road if they fall within the boundary line of
roadside on the rendered map, and then confirmed true if its accumulated lateral distance
between left and right boundary line is less than predefined road width. The road details
will be the main contribution in determining the RPDF along with the vehicle position ini-
tialization. Then, the RPDF, represented as α, for each event is illustrated in Figure 3.7 and
defined as:

αA = P (R|A) = m, (3.18)

αB = P (R|B) = 1−m, (3.19)

where m is the factor for the particles on the lane with rthe ight direction.The classification
of each event is described as:

• event R: particles are on the road,

• event A: particles are on the road with the right direction, and

• event B: particles are on the road but in opposite direction.

If the road has two lanes that are not ‘one-way’, m value is set to be 0.8 as the probability
on the road with correct direction. This means that we do not ignore the manuevering
probability during the drive. For multiple lane roads (ie. highway), the RPDF is estimated
further to improve the accuracy of being in the correct lane. Suppose L is the total number
of lanes with the same direction on the road, for n = 1, ..., L, the probability factor for each
lane in similar direction is

P (R|A) =
L∑
n=1

P (R|An). (3.20)
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(A) single lane, one-way road (B) double lane, two-way road (C) multiple lane, two-way
road

FIGURE 3.7: Road Probability Distribution Factor (RPDF) for different road
types

When the particle position xik is on lane n, assuming true lane lt is known, the lane difference
from the true lane lt is defined as l;

l = |lt − n|+ 1, (3.21)

and finally the RPDF for each lane with similar direction can be computed as

αAn = P (R|An) =
ml+1∑L−1
l=0 m

l
. (3.22)

While P (R|B) is as defined in Equation 3.19, for multiple lane cases the probability factor
P (R|Bn) for each lane n on opposite way will be defined as

αBn = P (R|Bn) =
1−m
L

. (3.23)

During the estimation step, RPDF factor α is multiplied to wik to increase weight of particle
that has more likelihood to be on the correct road lane.

wik = αwik. (3.24)

Meanwhile, for particles identified to be outside the road, weights are decreased exponen-
tially as in Equation 3.17 according to its distance from the road as illustrated in Figure 3.7.

3.5.2 Method Validation

Localization performance evaluation was conducted on the same datasets as the previous
validation to observe the positioning improvement. For fusion with OSM, the data was
extracted beforehand and road networks were filtered where other information other that
roads were abandoned. Then, specific useful details of the road were stored such as number
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of lanes, road type, allowed directions and speed limit. In the Dataset 2 where it contains
multiple lane road, an assumption of initial was made to observe the localization accuracy
after the RPDF implementation which includes probability of neighbouring lanes.

3.5.3 Results and Discussion

f
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FIGURE 3.8: Localization results with RPDF for Dataset 1

From the results of Dataset 1 (Figure 3.8b), in overall, VO fusion with RPDF has rela-
tively lower error than the others. However, between frame 123to 126, the result shows
error spike for the proposed method. This is due to the existence of road divergence which
affected particles weight tendency to be on the other road although the vehicle did not in-
tend to turn. This instant is illustrated in Figure 3.9. As for the distance error, mean and
standard deviation obtained for the fusion trajectory result was (2.619 ± 1.397)m. When
RPDF approach was applied to the same sequence, we managed to improve its position
error to (1.636 ± 0.851)m. This is about 38% improvement for the error mean and 39% im-
provement for the standard deviation. These results are summarized in Table 4.4 together
with results achieved in Dataset 2.

TABLE 3.1: Results summary of localization distance error

Dataset
Distance Error (µ± σ) [m]

VO+GPS VO+RPDF

Dataset 1 2.619 ± 1.397 1.636 ± 0.851

Dataset 2 3.608 ± 1.968 2.522 ± 1.566
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Meanwhile, in Dataset 2, RPDF approach achieved improved localization as shown in
the trajectory output in Figure 3.10a and the distance error is improved to (2.522 ± 1.566)m.
Despite the fact that the improvement percentage is lower than sequence with simpler road
in Dataset 1 due to RPDF influence from other lanes in the same direction, the outcome is still
better than localization results with other methods. Besides, our RPDF effects on multilane
road almost achieved lane-level accuracy where it managed to remain on the correct lane
except for two occurrences around frame 20 and 40. During these instances, the noisy GPS
data were found too far from the true position that made particles on the neighbouring lanes
had higher importance weights.

3.6 Synthesis

Our research had proposed visual odometry fusion of GPS, aided with map information and
RPDF to improve vehicle global localization. The approach combined a conventional visual
odometry system fused with GPS and road information provided by OSM to determine the

FIGURE 3.9: Error spike during wrong road choice due to GPS influence

(A) Improved vehicle trajectory during
road diversion (B) Distance error

FIGURE 3.10: Localization results with RPDF for Dataset 2
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probability factor for each lane and manipulate particles weight to get more accurate lo-
calization. This method had been evaluated and compared with the particle filter which
showed localization improvement in terms of accuracy and precision from the error analy-
sis. Although road width was predefined by rendering rule which is not guaranteed to be
error-free, this can further be improved with the crowdsourcing OSM that constantly pro-
vides up-to-date data. Besides, a consistent lane-level accuracy has yet to be achieved due
to the influence of severe GPS noise in some instances. Thus, a balance of GPS effect and
particle effective sampling size need to be considered to achieve consistency in lane-level lo-
calization. Lane-keeping and lane-changing behaviour detection may also be useful in this
case to avoid positioning error on the incorrect lane.

The outcome of this fusion technique shows that visual odometry trajectory can be an
interesting key input of a data fusion for vehicle localization. This is because despite the
drift and scale error of our conventional method, the localization accuracy and precision
can be increased with data fusion. With the fusion from OSM map data, the localization
is constantly on the road, without requiring map building or road lane detection by image
processing. From the error that occurred at road divergence, it might be interesting to utilize
the characteristic of visual odometry trajectory to compare with road shape on the digital
map. This would avoid discrepancy in vehicle route planning that affect the localization
accuracy itself. Besides, the localization accuracy is expected to be further improved if tested
in more mature visual odometry methods. In the next chapter, we will explore more on this
possibility with longer and different datasets.
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Chapter 4

Robust Localization Using VO-OSM
Segmented Curve Matching

4.1 Overview

In the previous chapter, the information from OpenStreetMap (OSM) database has been
used for lateral error correction by utilizing the predetermined road width to alter particle’s
weight distribution factor namely RPDF. This chapter proposes an improvement strategy
for longitudinal error in vehicle localization. Hence, with the map data provided by OSM,
our method exploits this information fused with VO trajectory and low-cost GPS without
utilizing additional sensor.

In localization, position difference in lateral axis (left / right of the road) is described as
lateral error, εlat and longitudinal error, εlon is the distance difference in longitudinal axis
which makes the localization to appear ahead or behind the ground truth data (Figure 4.1).
While lateral error can easily be minimized by considering the road width factor, longitu-
dinal position error has been a challenging task in localization especially because most of
the time vehicle moves in a forward heading (longitudinal) direction, unless it turns into
a junction or curve. It is not less crucial than lateral error, while the latter might affect in
precise lane localization, longitudinal error also plays an important factor to determine its
accurate position and whether or not the vehicle has passed certain features while moving
forward.

Generally, there are two strategies in order to minimize positioning error. Firstly, by
drawing a certain limit or boundary as a cutoff area for the most unlikely placement of the
state - just like lateral error correction that utilizes road width boundary (Hara et al., 2015;
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FIGURE 4.1: Localization error

Lu et al., 2014; Tao et al., 2013; Vivacqua et al., 2017); or secondly, by recognizing landmarks
and match them into the map to obtain the true current position (Hata et al., 2014; Mattern
et al., 2010; Suhr et al., 2017). Approaches have been proposed that suggested using road
lane markings, stop markings, curb curve matching and so forth, but there are pros and cons
of these methods which we will present in the next section.

In this chapter, a segmented curve matching (SCM) method is proposed that compares
VO trajectory trail with road curve segments from the digital map to reduce the longitu-
dinal error and simultaneously increase localization accuracy and precision. The ability of
improving localization is studied with common GPS noises. It is a novel approach for curve
matching as it does not require a graph-based representation of the map and the curve com-
parison is simplified into ’node-trios’ (sets of three nodes) instead of integral calculation of
the whole curve. Besides, it also does not rely on advance image processing technique to
recognize any landmarks or road lanes which makes the computation even easier.

This chapter will explain how we came up with this strategy and its validation, which
is organized as follows: Section 4.2 introduces previous approaches in multisensor data fu-
sion that addressed longitudinal error evaluation, followed by Section 4.3 that presents our
method in VO-OSM curve similarity matching in localization. Then the method validation
will be explained in detail in Section 4.4.1 with the results evaluation and analysis. Finally,
Section 4.6 concludes this chapter.

4.2 Related Works

Researchers have conducted studies on localization strategies for longitudinal error com-
pensation. Among the most common approach is by using visual sensors to detect road
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markings such as lane marks, stop lines, and symbolic marks. Localization optimization
using lane marks detection methods propose detecting and tracking white lines on the road
to estimate lateral position of the vehicle and for global localization (Hara et al., 2015; Lu
et al., 2014; Tao et al., 2013; Vivacqua et al., 2017), some works performed matching with
satellite imagery of digital map (Mattern et al., 2010). Although this method is most widely
used for vehicle localization and while it works well for lateral position correction, the infor-
mation is insufficient for longitudinal localization. This occurs especially when the specific
features are not available on digital maps used for matching and obstacles during detection
for accurate line matching.

Then, another method is by using stop lines and crosswalks for longitudinal error correc-
tion by restraining trajectory drift of inertial sensor (Hata et al., 2014). The researchers only
performed image processing during curve lane and stop line detection, thus it can save the
computational power. Experimental results showed satisfactory localization performance
of submeter accuracy but this method required in-depth road line information from pre-
generated map produced by 3D lidar for curve and stop line matching. Hence, this is not
feasible for global localization and consumes high cost sensor. Besides, stop line only exists
at intersections, thus it only corrects the longitudinal position after some period of time.

For a more cost-effective approach, (Suhr et al., 2017) proposed fusion of low-cost sensors
- GPS, IMU, speed sensor, camera - with digital map for vehicle localization by applying
symbolic road markings detection and matching with map imagery. It is an interesting
approach since although the detection was less frequent than lane line detection, it was
enough to generate accurate position without requiring the vehicle to be at intersections for
stop line detection. However, this approach is restricted to the availability and clarity of
the symbolic road markings (ie. highway roads have less symbolic marking) to be detected,
and also satellite imagery could not provide information for matching in cases of the road
is out of view (ie. tunnels or multilayer roads). Therefore, although it seems to be the most
practical solution for longitudinal error correction, road markings detection methods prove
to have a lot of limitations to achieve robust localization in various circumstances.

Multiples researchers have also proposed data fusion techniques for accurate localiza-
tion without using road markings detection. For instance, (Brubaker et al., 2016) had demon-
strated an outstanding performance of map localization in ’kidnapped scenario’ (unknown
initial position) by only matching visual odometry curve with road network from digital
map. Without any GPS data, they generated a probabilisitic map based on the travelled
visual odometry trajectory and while the vehicle turns into intersections, the probability of
the matched roads increases. Most of the experiments evaluated on KITTI dataset managed
to localize the vehicle after a few seconds with average accuracy of 4m. Unfortunately, the
system was unable to localize itself in some cases where the sequences were fundamentally
ambiguous. Besides, since the information source was solely on visual odometry and digital
map, failure in any of these inputs will severely affect localization performance. Hence, GPS
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data - albeit noisy - is required especially to provide global position of the vehicle.
Zeng et al., 2016 on the other hand implemented trajectory curve matching between GPS

and road curve in map where they introduced curvedness feature constrained map match-
ing method to retain the curveness feature in GPS tracks. This method however mainly
focused on curve matching technique in localization and does not present its contribution
in reducing positioning error. In addition, GPS data typically contains unpredictable noise
depending on the receiver type which makes it impractical for coupling GPS tracks with
road map directly for accurate localization.

Therefore, we came up with the idea of assisting GPS, and digital map data fusion with
curve matching from VO trajectory for more accurate vehicle localization with the hypoth-
esis that VO curve matching will be able to reduce longitudinal positioning error. This
method does not require image processing on road lines, thus is not restricted to out-of-
view of vehicle speed limitations. GPS data behaves as a global position reference and limit
the curve matching searching boundary. Further details of our proposed approach will be
described in the next section.

4.3 System Outline

FIGURE 4.2: System overview of proposed approach

The algorithm of our proposed system is illustrated in Figure 4.2. This method mainly
consists of three types of input for data fusion; stream of images from camera, noisy GPS
and a digital map. Firstly, the images are processed to generate trajectory based on VO that
detects and tracks moving features. It is fused with the low-cost GPS data to estimate the
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global position. Then, applying our previous approach, road information is extracted from
the map mainly for lateral error correction by road probability distribution factor (RPDF).
Then, our method is enhanced by utilizing the result of VO and GPS fusion to act as a
reference point for road segments curve estimation in the map with weight assigned based
on its distance from the centre and similarity with VO curve. From VO trajectory output,
a specified length of latest trajectory curve is compared with road segments from the map
as a weighing factor for filtering stage during the next step of data fusion. To observe the
localization robustness of our proposed method, different types of noise such as random
noise, biased noise and an instant where GPS signal is lost are simulated.

4.3.1 VO and OSM Segmentation

In our approach, we utilize the last recent segment of visual odometry to match with road
curve in OSM to find the most probable road candidates within search area. Instead of using
the road curve line from the map for matching purpose, we simplify the curve matching
by using node-trios provided by OSM. As explained in previous chapter, road networks
in OSM consist of sets of nodes that are connected as ways. The distances in between the
nodes are not fixed in specified length; the nodes are distanced further in straight roads and
closer in curved roads as shown in Figure 4.3 (nodes are represented by yellow dots). In
short, the nodes are spaced according to the road’s shape linearity. Although at first the
distance inconsistency seems to be a problem in point-to-point curve matching with visual
odometry trajectory, it is in fact a merit point. This is because our visual odometry trajectory
curve snippet is time-based, hence the distance travelled is proportional to the vehicle speed.
Since vehicle speed is decreased in curved roads, this will result in shorter trajectory and the
shorter node-trios in curve area agrees to this situation and vice versa.

In order to match trajectory curve with map, the knowledge on curve length, orientation,
and heading variation is required to optimize longitudinal positioning accuracy. Since OSM
nodes are spaced unequally, we need to define the distance threshold between nodes to
obtain node-trios with similar length with VO curve for the last m poses, especially in the
events where the nodes are too distant on a straight road. This algorithm is illustrated in
Figure 4.4 and more details are as follow:

(a) Firstly, the value of m is determined to specify the required VO length. Further details
on the determination of m value is described in Section 4.4.1 for validation part. Then,
the curve matching is performed on the last m poses, Xk−m ∼ Xk where the duration
of the curve fragment, t relies on VO’s frame rate, f .

t =
m

f
. (4.1)
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FIGURE 4.3: Node placements in OSM file

(b) Knowing the vehicle average speed v̄, the first assumption of distance threshold be-
tween nodes dnth can be calculated as in Equation 4.2. In order to obtain the distance in
metre, vehicle speed (km/h) is converted by multiplying 103

3600 . Since we utilize sets of
three nodes to define OSM curve, the distance threshold between two nodes is divided
by 2.

dnth =
1

2
v̄t× 103

3600
. (4.2)

(c) At the same time, the travelled distance of VO curve, dvo within the last m poses is
computed to find the difference with dnth.

dvo =
1

2

k∑
i=k−m

√
(xi − xi−1)2 + (yi − yi−1)2. (4.3)

(d) If the difference between dth and dvo is negligible, the larger distance threshold is used
to minimize new middle nodes generation. Hence, dth =max(dnth, d

vo). Else, VO trail
length is chosen dth = dvo to improve accuracy.

(e) With the first level fusion between low-cost GPS and VO, the vehicle position can be
estimated on the map and the nodes around the location are found. Distances between
neighbouring two nodes n from the OSM data are recorded as dn.

(f) Finally, in order to distribute road map probability with longitudinal accuracy opti-
mization, new nodes are replicated in between of nodes that are too distant with each
other. The number of new middle nodes, nm is obtained by rounding results of nodes
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FIGURE 4.4: Algorithm for nodes generation in OSM data

distance division with threshold to the nearest integer:

nm =

⌊
dn
dth

+ 0.5

⌋
× dth.

4.3.2 Curve Matching

The length of node-trio curve and VO travelled curve distance is not exactly equal all the
time, but the difference is small (less than 0.05%) and negligible. To compare the curve
similarity between fragment of VO trajectory curve and nodes of roads on OSM, the com-
putation of curve similarity score, S(n)

cs relies on two key parameters: initial orientation θink
and curve heading variation ϑk. Parameters for VO trajectory trail are defined as

θinV Ok = θk−m, (4.4)

ϑV Ok =
k∑

i=k−m
2

(θi+1 − θi). (4.5)

Three nodes curve from OSM data is illustrated in Figure 4.5 and for the n’th node found
within searching radius, it forms a node-trio with the neighbouring nodes referred as sets of
[Pn, Pn+1, Pn+2]. The initial orientation of the first pair nodes θn of the node-trio and curve
change ϑn are calculated as

θ(n) = arctan

(
∆yn,n+1

∆xn,n+1

)
, (4.6)
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FIGURE 4.5: Angle parameters from three nodes used for curve matching

(a) (b) (c) (d)

FIGURE 4.6: VO and OSM node-trio curve matching steps

ϑ(n) = arctan

(
∆yn+1,n+2

∆xn+1,n+2

)
− θ(n). (4.7)

With these parameters, curve similarity score S(n)
cs of road segment for node n is obtained

from the difference of initial orientation θin between nodes and VO curve and its heading
variation ϑ which can be written as

S(n)
cs = |θ(n) − θinV Ok | × |ϑ(n) − ϑV Ok |. (4.8)

The curve matching steps from VO trajectory curve fragment to surrounding nodes are
illustrated in Figure 4.6 where it starts from:

(a) extraction of VO trajectory trail since the last m poses, followed by

(b) connected nodes in ways are detected within searching area from lookup centre as
predetermined and explained in method validation (Section 4.4.1);

(c) then, the nodes are paired with neighbouring nodes to form ‘node-trios’. All sets
found within the area are compared with VO trajectory curve to obtain the most simi-
lar road segment to be matched.
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(d) Finally, node-trio with highest similarity score is identified and the road segment con-
tains the highest probability that would affect particles’ importance weight during
data fusion.

FIGURE 4.7: Double bend road in drive 34 with 2s of VO trajectory in
quadratic curve appended in the small box

This approach allows the curve matching to be conducted in small fragments to ob-
tain the most likely candidate of road segment and also reduce computational cost. This
is because by assessing only small fragments of trajectory within short travel periods, the
resulted curve is limited to 2nd order polynomial regardless of the overall road curve com-
plexity. Generally, only double bend roads (as in Figure 4.7) will result in 3rd order polyno-
mial curve or above. Still, since there is a minimum radius limit for each road curve (Kilinc
et al., 2012) and we are only assessing the last small fragment of pose sequence, the trajectory
curve will not be long enough to exhibit 3rd order polynomial curve.

4.3.3 Multilevel Data Fusion

Here, we used a cascaded scheme for probabilistic vehicle pose estimation by implementing
particle filter (PF) technique to integrate information inputs for fusion. PF uses random sam-
ples (particles) to represent the posterior density of vehicle position in a dynamic state esti-
mation framework such as a road network. With PF, we estimate the instate-space models
inference by expressing the posterior probability density in terms of randomized particles
associated with importance weights.

Our data fusion consists of three levels which are described as illustrated in Figure 4.8
with respective associated data and information used in each level. With the increasing
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FIGURE 4.8: Multilevel data fusion and associated inputs for each level

fusion level, particles importance weight distribution will be narrowed down according to
the road segment that has the most likelihood based on its distance from the first level output
and curve similarity. Further details for each fusion level are explained as follows:

1st Level: Global Position Estimate

The first level of fusion between GPS and VO is similar to the method presented in Chapter
3. Through this level, the rough estimation of vehicle initial position on the map is obtained.
This time, the study on system robustness is conducted by implementing different types of
typical GPS noise that is explained in Section 4.4.1. We also utilized the conventional VO
approach as described previously.

2nd Level: Lateral Position Correction by Road Probability Distribution Factor (RPDF)

Similar to our previous approach, we still use the road information obtained from OSM and
RPDF to assign particle weights accordingly. The output results of the fusion, X(C)

k is then
used as a lookup centre for road segments comparison with VO trajectory in the next level.

3rd Level: Longitudinal Position Correction with Segmented Curve Matching (SCM)

A. Step 1: Map Nodes Probability Factor Assignment

From the lookup centre X(C)
k , nodes that form candidate ways are searched within spec-

ified radius that contains all particles i (explained in validation part of Section 4.4.1).
In order to distribute the segmented roads probability factor with longitudinal accuracy
optimization, new nodes are generated in between of nodes that are too distant with
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each other as explained in 4.3.1 with distance threshold value dth and the number of
new middle nodes to be generated nm.

B. Step 2: Curve Similarity Score

To simplify calculation and improve longitudinal accuracy, the trajectory length of VO
for the lastm poses is set to be short and can only form a second order polynomial curve.
We compare the curve segment similarity between VO trajectory curve and node-trios
with the computation of curve similarity score, S(n)

cs as shown in Equation 4.8.

C. Step 3: Fusion

In the last fusion level, probability factor is assigned to each road segments constructed
by node-trios for all n’th nodes. This probability factor, denoted as γ(n)k , is estimated
based on the distance of node n from the lookup centre X(C)

k . Then, the curve similar-
ity score S(n)

cs of the node-trio is also considered. Higher S(n)
cs indicates higher similarity

between both curves and this will yield an increased probability factor of the road seg-
ment, γ(n)k . Assuming dc is the distance betweenX(C)

k and node n, γ(n)k is calculated from
Gaussian distribution as

γ
(n)
k =

e
− 1

2

(
dc
σScs

)2

σ
√

2π
, (4.9)

and the importance weight for each particle i is updated as

w
(i)′′

k = w
(i)
k−1γ

(n)
k , (4.10)

where n is the nearest node found from particle i.

With this approach, we will be able to obtain the best road segments candidates from
the node-trio probability especially on curved roads. Although it is difficult to optimize
longitudinal error on a straight road without heading variation, our fusion technique
will at least limit the longitudinal error from the probability distribution of candidate
ways within the lookup range. This is illustrated in Figure 4.9.

D. Step 4: Resampling

In order to eliminate particles with low importance weight, resampling is required as
the final step in particle filter before repeating the pose estimation steps as above again.
The resampling steps are conducted similar to the algorithm as presented in the previous
chapter.
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FIGURE 4.9: Probability distribution of candidate ways from fusion output as
lookup centre

4.4 Validation and Results Discussion

4.4.1 Method Validation

Our approach with SCM was validated by using KITTI dataset as the benchmark for local-
ization by VO. We tested our method to a highway drive found in sequence 01 and resi-
dential drive (sequence 02) for longitudinal error correction while at the same time observe
the localization performance in path selection during road divergence. This is especially
critical in highway drive where the vehicle speed is faster than those in residential or city
area that makes it more challenging to detect accurate path selection simultaneously due
to small heading variation. Then, to test the localization robustness, different noise models
were applied in both sequences such as an extreme random noise of up to 10m, biased GPS
noise and also an event of GPS signal loss.

In this work, we implemented m = 20, which means only the last 20 poses (2s of VO
trajectory with frame rate 10Hz) was considered as the curve fragment. The curve length
will differ according to vehicle travel speed and this corresponds to the node-trios that are
distanced based on threshold calculation from vehicle average speed or VO curve. In the
case of VO trajectory with severe scale ambiguity, speed can be estimated from the road
speed limit provided by OSM data. The pre-set m value was determined based on trade-
off consideration between accuracy and computational cost. In order to obtain accurate
longitudinal position, the road segments should be as short as possible.

However, if we set m = 10 (last 1s of VO trajectory), most of the resulting segments
would be mostly found as straight trajectory trail. For instance, assuming the vehicle moves
at 30km/h, 1s of displacement is only about 8.3m in length. If it is a curve road, considering
the least degree of a significant curve is 10◦, this would result in a minimum radius of 55.6m
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for the road. However, according to (Kilinc et al., 2012), the minimum road radius with
the speed limit of 30km/h is 60m. Therefore, this is sufficient for the curve analysis where
the minimum curve length would be 10.5m. Besides, this would degrade the efficiency of
finding the best road segment candidate with the lack of information in vehicle heading
change. Hence, we concluded that 2s of travel distance is ample to obtain accurate curve
segment for analysis. On the other hand, if the m value is increased to 40, the trajectory
curve length is longer and the distance between nodes will increase. As a result, longitudinal
positioning would be less accurate with longer road segment containing similar probability
distribution.

As for the search area size, candidate ways are searched within a specified radius of
about 30m from the lookup centre X(C)

k since we have an approximate location from the
noisy GPS of up to 10m accuracy. At the same time, we need to consider the possible bias or
blunders, therefore additional 20m as a buffer zone was also considered in this study. Fur-
ther distance was not considered since it might result in unnecessary road segment probabil-
ity appearance in ambiguous road network. Besides, expanding the search area to a larger
size would only increase computational cost with a greater number of nodes found in the
area for probability calculation. Therefore, we fixed it to 30m while observing the effects of
lost GPS signal on localization performance.

A. KITTI Dataset

Even though KITTI dataset contains many sequences in different types of environments,
only sequence 01 exhibits an event where the vehicle entered road divergence with high
speed at a highway exit. Other sequences have other scenarios such as environment with
lots of shadows, traffic jam, city roads with lots of other moving vehicles, and roads with
pedestrians and cyclists. In our study, we are particularly interested in this sequence. The
vehicle was driven on a highway which then exited with the speed of around 60km/h.
Besides, it is reported that this sequence had always been the one with highest translation
error from the works presented in (Cvišić et al., 2015; Engel et al., 2015; Mur-Artal et al.,
2017; Qu et al., 2018; Wang et al., 2017; Zhu, 2017) compared with other sequences. In
fact, some of the methods were not able to perform localization on this sequence due to the
typical argument of being a highway dataset and vehicle moving at higher speed resulted
in higher translation error. Therefore, the purpose of our study is to focus on optimizing
localization on this specific sequence. At the same time, dataset 02 with a drive recorded in
residential area with many intersections was also chosen to observe general improvement
of localization accuracy.
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B. GPS Noise Modeling

To test the robustness of the proposed system, we modelled three types of noisy GPS as one
of the fusion inputs during method validation. To achieve this, random noise was added to
the RTK-GPS data which is downsampled to 1~2 Hz of frequency. Albeit GPS signal noise
varies based on the receiver device specification and surrounding environment, it generally
can be characterized as a combination of flicker noise and white noise (Mao et al., 1999).
Thus, we initiated the noise with specific bias and variance with 2D Gaussian distribution
that represented the white noise and a coherent Perlin noise was added to simulate the
flickering noise behaviour. The noise is generated from equation (4.11) below, assuming
that [xRTKk , yRTKk , zRTKk ]> is the ground truth position, noisy GPS [xNk , y

N
k , z

N
k ]> is defined

as x
N
k

yNk
zNk

 =
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+ εG
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sin θp

0

 , (4.11)

where εG ∼ N(µ, σ2) is a random Gaussian noise with mean µ and standard deviation σ.
This Gaussian noise εG acts as the white noise amplitude and θp is generated from Perlin
noise.

FIGURE 4.10: GPS error sources

GPS noise can be categorized in three main error sources which are: a) noise, b) bias and
c) blunders as depicted in Figure 4.10. Noise error is the most common source that is the
combined effect of pseudo random noise (PRN) with the noise within the receiver itself. In
our validation experiment, this noise error was applied from random noise with zero bias
and extreme variance of up to 10m, similar to a low-cost GPS receiver accuracy.
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Meanwhile, bias error in GPS can be a result from Selective Availability (SA) or some
other factors. SA is the intentional degradation of the standard positioning service (SPS)
signals by a time varying bias that introduce delta error resulted from dithering the satellite
clock which is a common error to all users and epsilon error which is a varying orbital error.
Since SA is a changing bias with low frequency (excess of a few hours), position solutions or
individual satellite pseudo-ranges cannot be effectively averaged over periods shorter than
a few hours. Other factors that results in bias error include:

(a) ephemeris data errors that contains imprecise orbital data,

(b) tropospheric delays which are affected by the atmospheric pressure, temperature and
humidity experienced in the troposphere layer of the atmosphere,

(c) unmodeled ionosphere delays where the ionosphere layer bends the GPS radio signal
and changes its speed as it passes through the layer, and

(d) multipath effect caused by reflected signals from surfaces near the receiver that cause
interference or be mistaken for the signal that follows the straight line path from the
satellite. This source is difficult to detect and avoid.

We simulated the bias noise by shifting the GPS position in global lateral position from
the ground truth and add Gaussian noise with the same 10 metres variance. This would re-
sult in higher tendency of events where the GPS data falls into the road with wrong direction
or outside the road boundary.

Lastly, blunders is also one of GPS error sources where it can result in hundreds of me-
ters of error due to user mistakes, including incorrect geodetic datum selection. This kind
of large error can also be resulted from out of date GPS data due to signal unavailability
resulted from blockades. To model this noise, the GPS data was turned off for a specific time
range which made the localization can only rely on information from VO and map.

4.4.2 Results and Discussion

Sequence 01: Highway Drive

Three different noise models were applied on GPS data to imitate low-cost GPS and tested
on a subset of sequence 01 to emphasize on path selection event. The localization compares
the performance of GPS and VO fusion, then with RPDF, and finally with the SCM. The
trajectory results for each GPS noise are shown in Figure 4.11.

A. Positioning error results

We specifically chose a subset of drive in sequence 01 to observe lane changing behaviour
and localization performance from curve matching method. The test was run on 200
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(A) GPS noise

(B) Biased GPS noise

(C) GPS signal loss

FIGURE 4.11: Trajectory results for highway drive (subset of sequence 01)
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(A) GPS with random noise

(B) GPS with biased noise

(C) GPS signal loss

FIGURE 4.12: Lateral and longitudinal localization positioning error in se-
quence 01
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frames with the total distance of 340m and tested with three types of GPS noise. For
the highway drive during GPS with random noise (both unbiased and biased cases), it
can be seen from Figure 4.12a and Figure 4.12b that the longitudinal error was improved
significantly. This took place in the first 70 frames when the vehicle was driven on a
straight road and facing road divergence. Regardless of the biased applied to the GPS
noise, our method with curve matching proved to be unaffected by the noise. We are
also able to select the best candidate road segment that matches with the true trajectory.
As for the lateral positioning error, there was a brief improvement in random noise case
especially during the road divergence in between frame 45 to 55. During this time, it
showed that the lateral error tested in biased noise was significantly improved, as well
as its longitudinal error.

Meanwhile, in the case of lost GPS signal, as depicted in Figure 4.12c, our previous ap-
proach without road segment curve matching suffered horrendous positioning error.
This is as a result of the fact that the data fusion lost one of its important factors and
it solely relied on the last GPS position and VO displacement. In fact, the localization
failed to relocate its position even after the GPS signal was recovered as can be seen from
the results due to the travelled distance was too far from the ’lost’ particle cloud. How-
ever, with the curve matching approach, it was hardly affected by this problem owing to
the curve matching of VO trajectory and road segments that enabled the localization to
detect the road segment with the most probability. The longitudinal error result shows
that our method managed to maintain the error below 5m for the whole drive in op-
posed to the error of the previous method that reached up to 20m for both lateral and
longitudinal error.

The results of distance and positioning error for the compared approaches is summa-
rized in Figure 4.13 for highway drive sequence in all noise types. In the random noise
test, our proposed approach for sequence 01 showed more significant improvement in
error reduction of (34.0±21.2)% in lateral error and (33.7± 30.5)% in longitudinal error.
This improvement is owing to successful path selection in diverging road. Meanwhile,
we managed to achieve further improvement in biased noise where both datasets were
able to reduce lateral error of (59.1±41.9)%, while the longitudinal error is reduced to
(54.6±43.9)%. Finally, for the lost GPS test, the RPDF method suffered worse error than
the conventional GPS and VO fusion. However, with road curve matching, we success-
fully maintained the localization performance with average positioning error that was
constantly below 3m.

B. Path selection response

As for the path selection accuracy, we evaluated the performance of our SCM based
approach according on the moment localization is corrected to the diverging road which
is the true trajectory in this dataset compared with RPDF method (Awang Salleh et al.,
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FIGURE 4.13: Error summary for sequence 01
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2018b). Since GPS and VO fusion based localization did not include road probability
factor for path selection, it is not valid for comparison. In the random GPS test, our curve
matching technique manages to localize itself simultaneously (it entered the diverged
road in frame 32) with the ground truth while the RPDF method only corrected itself at
frame 58. This was even worse when biased noise was applied to the GPS position where
it simulated vehicle position to be on the straight road instead. Thus, it affected path
selection performance in RPDF approach by only correcting the position at frame 71. On
the other hand, the SCM showed an improved performance where it was unaffected by
this as can be seen in Figure 4.11b.

Lastly, during lost GPS signal, the proposed method with curve matching outperformed
the RPDF approach where the latter approach was unable to update localization without
GPS data as reference while being restricted to localize on road area only. Even once the
GPS signal was recovered, the particle cloud was too far from the true position due to
the high speed. Interestingly, for the GPS and visual odometry fusion, the localization
was less severe due to the non-existence of RPDF limitation localization on the road area.

Sequence 02: Residential Drive

Similarly, three different noise models of a low-cost GPS were tested on a subset of sequence
02 which is a residential drive sequence. The localization performance of GPS and VO fu-
sion, then with RPDF, and finally with curve matching method were compared to study
the improvement of each methods. The trajectory results for each GPS noise are shown in
Figure 4.14.

A Positioning error results

Our second test was conducted on a residential area for 950 frames with the total travelled
distance of 924m and error results are shown in Figure 4.15a, 4.15b, and 4.15c. During
the random noise test, it did not show remarkable improvement in positioning error be-
cause both RPDF and SCM approaches have the similar basic approach in localization;
unless it involves severe GPS error that affects path selection. Since the vehicle speed in
residential drive is lower and the intersections are easily distinguished, the localization
showed a consistent performance even without curve matching method. However, in
overall, our proposed approach still managed to reduce positioning error compared with
other methods in some instances where the RPDF longitudinal error peaked up to more
than 5m.

In the biased error test for residential drive, the results as displayed in Figure 4.15b is par-
ticularly interesting for the amount of error degradation in the result of method without
curve matching in three events. The first event was during frame 70 to 120 when the ve-
hicle moved along a straight road and there was a junction on the right where most GPS
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(A) Trajectory during random GPS noise

(B) Trajectory during biased GPS noise

(C) Trajectory during GPS signal loss

FIGURE 4.14: Trajectory results for residential drive
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points were positioned due to the bias applied; the RPDF method accidentally assumed
that the vehicle turned into the junction. While the second event happened around frame
520 to 590, where the vehicle was moving on a sharp curve that resembled making a
U-turn twice, thus resulting the biased GPS fall into the previous lane. As a result, the lo-
calization mistakenly concluded that the vehicle had made a U-turn. On the other hand,
our proposed approach with curve matching managed to cope with these situations by
integrating the VO curve with road curve fragments for all occurrences.

Lastly, we simulated an instance of GPS signal loss to the residential drive and the results
obtained are shown in Figure 4.15c. The GPS data was turned off in between frame
400 to 700 when the vehicle was moving along a curved road with multiple intersections
on its sides, turning into an intersection and it travelled on a sharp curve resembling
a U-turn. As shown in the error graph, it is clear that the recent SCM based approach
managed to obtain a consistent low positioning error and unaffected by this lack of data
compared with the results of previous fusion method. The RPDF method suffered severe
error of over 40m during the signal loss, but it was able to recover the localization after
two attempts. This is due to the slower vehicle speed and road curves, thus the travelled
distance during GPS signal loss is still reachable by the particle cloud, unlike sequence
01.

Localization error summary for the residential drive is illustrated in Figure 4.16. The
distance, lateral and longitudinal errors show declining trend except when biased noise
and signal loss were applied to the GPS. This is where the RPDF approach performance
was deteriorated in comparison with the conventional PF (visual odometry and GPS)
outcome. However, with curve matching, we were able to reduce the error further as low
as below 2m for lateral and longitudinal error in all cases. This lower mean was mainly
contributed by the road network itself and vehicle speed that was slower than in highway
drive (Awang Salleh et al., 2018a).

B Path selection response

Since the road network for the residential dataset had multiple intersections or curves,
and vehicle speed was slower, path selection performance for localization during ran-
dom GPS noise had less significant difference. However, the positioning error accuracy
and precision were slightly improved from the summarized bar graph in Figure 4.16.
Nonetheless, our proposed approach showed localization improvement in both biased
and lost GPS events. During biased GPS noise, the GPS+VO approach was affected by
the bias which showed a shifted trajectory in lateral position. Meanwhile, the RPDF ap-
proach outcome had mistakenly selected the wrong road particularly in frame 228 to 252,
520 to 581, and 646 to 666 due to the biased noisy GPS. Lastly, for the lost GPS case, both
GPS+VO and RPDF localization results were ’lost’ for a moment since frame 400 and fi-
nally managed to regain its position in frame 740 for GPS+VO approach and RPDF in



4.4. Validation and Results Discussion 75

(A) GPS with random noise

(B) GPS with biased noise

(C) GPS signal loss

FIGURE 4.15: Lateral and longitudinal localization positioning error in se-
quence 02
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FIGURE 4.16: Error summary for sequence 02
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GPS noise
Sequence 01 Sequence 02

εd[m]
Path correction

delay (ms)
εd[m]

Path correction
delay (ms)

Random 3.29±1.78 3 2.22±1.07 0

Bias 3.88±1.85 10 3.96±1.91 0

Lost 2.40±1.28 3 3.42±2.01 0

TABLE 4.1: Localization performance with SCM technique

839th frame. From the trajectory we can see that localization by RPDF snapped into near-
est roads before locating the correct road. Our proposed approach with SCM however
succeeded to perform localization with excellent path selection for the whole drive in all
noise conditions.

Summary of the localization performance with curve matching technique for both se-
quences is displayed in Table 4.1. Here, the distance error and path selection for our
proposed approach are presented with different GPS noise types.

Comparison with other VO methods

In order to study the positioning accuracy after data fusion with curve matching, we com-
pared the lateral and longitudinal error of the short trajectory results generated from several
other VO methods - Libviso2 (monocular and stereo) (Geiger et al., 2011), and ORB-SLAM2
(Mur-Artal et al., 2017). Although these VO trajectories are without fusion with GPS and
OSM data, the idea for this comparison is to find the degree of improvement in localization
performance of the published VO methods with conventional VO method with fusion.

The VO trajectories are obtained from the open source VO methods. In Chapter 2 we
also mentioned that LSD-SLAM proposed by (Engel et al., 2015) and there is also SSLAM
that provides code (Fanfani et al., 2016). However, the provided code is not suitable for
implementation with KITTI dataset due to the higher image frame rate required (above
30 fps). Besides, we would like to focus on VO method without mapping or loop closure
(SLAM). Note that Libviso2 for both monocular and stereo were purely based on VO, but
ORB-SLAM2 also performed local mapping and loop closure detection for drift correction.

Although ORB-SLAM2 also provides localization mode without local mapping and loop
closure, its localization for sequence 01 suffers severe rotation error. Therefore, we leave the
SLAM mode on and regard this as VO with the best performance in translation error of only
1.15%. ORB-SLAM2 ranked at the 30th place in KITTI evaluation scoreboard, while Libviso2
(S) and Libviso 2 (M) were placed at rank 65 and 87 respectively. This means that we can
classify ORB-SLAM2 as a high performance localization, Libviso2 (S) as the localization
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TABLE 4.2: Positioning error comparison with other VO works

Method
Sequence 01 (Highway) Sequence 02 (Residential)

εlat[m] εlon [m] εlat [m] εlon [m]

Conventional VO 9.78±15.93 8.92±16.62 5.22±16.47 5.72±17.37

Libviso2(M) 37.24±62.62 23.91±64.44 9.24±41.48 10.34±41.19

Libviso2(S) 6.45±19.93 6.83±19.68 3.09±18.71 3.00±18.7

ORB-SLAM2 1.77±6.66 2.22±6.62 2.31±14.83 2.38±14.81

SCM (random) 1.40±1.06 1.37±1.03 2.05±1.62 2.08±1.58

SCM (bias) 1.66±1.23 1.76±1.32 2.27±1.76 2.45±1.89

SCM (lost GPS) 1.41±1.37 1.30±1.48 1.34±0.93 1.42±1.25

with average performance and Libviso(M) as a low-performance localization. Meanwhile,
our conventional VO method achieves localization performance in between Libviso(M) and
Libviso(S). The comparison analysis of positioning error for each method with our proposed
approach is presented in Table 4.2.

From the comparison table, we can see that our low-performance conventional VO lo-
calization accuracy is increased drastically after data fusion. The positioning accuracy is
slightly better than ORB-SLAM2 that performs local mapping and loop closure. The fu-
sion results shows over 160% of improvement during sequence 01 while for sequence 2, the
improvement level average is around 550%.

4.4.3 Synthesis

A method with data fusion of VO, GPS and digital map for vehicle localization has been
proposed in effort to optimize localization accuracy with challenging sequence that has yet
to be addressed carefully in this research area. It is a difficult task to ensure the longitudinal
position is not affected by GPS noise and VO drift, thus our strategy is to match the last
fragment of VO curve with the road segments curve to find the most likely candidate path,
namely SCM. The SCM approach reduces the computation complexity while increasing the
probability of suitable candidate ways based on its prior curve similarity score. This resulted
in a localization system that could withstand various types of GPS noise and VO drift with
the overall mean error less than 3m. The longitudinal accuracy and precision were increased
in all cases proving that the segmentation concept was able to compensate the longitudinal
error. Not only that, it could also increase road selection accuracy immediately for swift
path planning that had been an issue during a high speed drive with diverging roads.
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TABLE 4.3: Translation error of different VO methods

trel(%) Libviso2 (M) Libviso2 (S) ORB-SLAM2

Seq. 01 25.85 5.00 1.10

Seq. 02 8.13 1.13 0.74

A quantitative analysis on the positioning accuracy in comparison with other local-
ization techniques were also presented. Our method achieved accuracy as good as ORB-
SLAM2 without requiring map building and loop detection. In fact, our localization perfor-
mance is proved to be better than ORB-SLAM2 except during severe GPS noise with bias,
where our mean longitudinal error was 3% worse than ORB-SLAM2’s, although this is con-
sidered as really small. Therefore, we expect our method can further improve the existing
VO localization accuracy, despite the accumulated drift resulted in middle or low perfor-
mance VO.

4.5 Implementation with Recent VO Methods

With the developing VO methods presented by other researchers, we are interested to know
the effect of employing VO trajectory with different performance on our fusion technique.
By doing this, we are able to tell how far our system can improve the localization error
despite trajectory drift and scale ambiguation. Therefore, we utilized methods such as Lib-
viso2 (monocular and stereo) (Geiger et al., 2011) and ORB-SLAM2 (Mur-Artal et al., 2017)
as the VO trajectory input as low-performance, average performance and high performance
visual-based localization. The system performance is evaluated from the lateral and longi-
tudinal error of both datasets, for all different GPS noise types. This time, both sequences
were tested in a longer period (1000 frames). This added a challenge in longitudinal error
optimization in sequence 01 due to the long stretch of straight road during the drive.

As a reference, Table 4.3 shows the relative translation error trel of each VO methods
for sequence 01 and 02. Obviously, monocular VO by Libviso2 had the worst translation
error for both sequences while ORB-SLAM2 performed best in sequence 02. The severity of
monocular VO is also displayed from overall trajectory comparison shown in Figure 4.17.
Localization drift by time illustrated in Figure 4.18 shows the severe error in monocular VO
mainly due to the scale inaccuracy during a high-speed drive on a highway road. Detail
positioning results are summarized in Table 4.4.
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(A) (B)

FIGURE 4.17: Trajectory of different localization methods for (a) sequence 01
and (b) sequence 02

(A) (B)

FIGURE 4.18: Trajectory accumulated drift for (a) sequence 01 and (b) se-
quence 02

4.5.1 Validation Results

From the results, we found that the positioning error for Libviso2(S) and ORB-SLAM2
achieved almost similar performance despite the differences in relative translation error of
each VO trajectory without fusion with GPS and map. Even for Libviso2(M), it performed
well in sequence 02 where the average positioning error could achieve as low as 1.7m during
random GPS noise test. However, in sequence 01, our fusion method could not improve the
localization in Libviso2(M) due to the severe drift and scale error where it resulted in earlier
highway exit as shown in Figure 4.19.
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TABLE 4.4: Comparison of positioning accuracy

Libviso2 (M) Libviso2 (S) ORB-SLAM2

εlat εlon εlat εlon εlat εlon

Random GPS

Seq 01
Mean, µ 6.78 23.30 1.54 2.29 0.78 1.87

Stddev, σ 20.43 21.18 2.77 5.38 0.59 1.36

Seq 02
Mean, µ 0.95 2.16 1.06 1.79 1.02 1.47

Stddev, σ 0.72 1.24 0.74 1.06 0.71 0.98

Biased GPS

Seq 01
Mean, µ 28.31 143.59 1.81 6.83 0.79 4.80

Stddev, σ 75.42 94.79 3.07 4.83 0.60 1.94

Seq 02
Mean, µ 1.52 4.01 1.35 3.81 1.43 2.83

Stddev, σ 1.63 2.94 1.00 2.07 1.03 1.52

Lost GPS

Seq 01
Mean, µ 24.17 96.40 1.17 2.63 0.78 1.75

Stddev, σ 64.54 74.73 1.30 2.47 0.61 1.18

Seq 02
Mean, µ 1.30 3.22 1.14 2.05 1.07 1.50

Stddev, σ 1.24 2.31 0.68 1.45 0.77 0.91

FIGURE 4.19: Severe translation error in Libviso2(M) trajectory resulted in
wrong path chosen during fusion

The localization performance for ORB-SLAM2 when applied to our fusion technique
with SCM undoubtedly showed the best accuracy especially with lateral error less than 1m
in sequence 01 and longitudinal error achieved as low as 1.47m in sequence 02. Meanwhile,
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Libviso2(S) showed impressive performance where its lateral error was constantly less than
2m and its minimum longitudinal error was 1.79m in sequence 02 during random GPS error
in sequence 02. On the other hand, Libviso2(M)’s best performance was on its lateral error
of 0.95m and 2.16m of longitudinal error for sequence 02, also during random GPS error.

As for the comparison in between localization results of different GPS noise models,
random GPS noise and lost GPS noise showed little difference in the best positioning error
recorded. This means that our fusion technique is able to compensate the absence of lost
GPS data by estimating the road segments probability and limits the positioning error with
particle filter. However, this is not the case for biased noise where the lowest longitudinal
error was 4.80m for sequence 01 and 2.83m for sequence 02 which was achieved by ORB-
SLAM2 method as trajectory input. This is due to the effect of fusion with extreme GPS bias
error that resulted in unsuitable probability distribution on the road segments. In sequence
01, since the drive is mostly on a straight road with high speed, bias could easily affect the
longitudinal error. However, this can be compensated when the heading rotation changed,
which will correct the trajectory curve with the right node-trio match. This is the reason
sequence 02 achieved better longitudinal error, because the drive itself contained multiple
turning points for curve matching.

4.5.2 Synthesis

A method with data fusion of VO, GPS and digital map for vehicle localization has been
proposed to reduce vehicle positioning error for both lateral and longitudinal. We tested
our approach by comparing several SLAM/VO methods from the publicly available codes
with difference performance level. The initial accuracy of each method varies greatly from
the monocular Libviso2 that ranked #84 (to this date) on KITTI leaderboard score, and ORB-
SLAM2 that has the highest ranking in localization without lidar usage. The robustness of
our system was tested with extreme GPS noise for random, biased, and lost signal occur-
rences.

From our positioning error results, it supported the hypothesis where accurate VO in-
put will contribute in better fusion performance as proved by results achieved from ORB-
SLAM2. Although the difference is comparatively small with those of Libviso2(S), ORB-
SLAM2 showed 100% better accuracy in sequence 01 for random GPS noise while Lib-
viso2(S) achieved better lateral error in sequence 02 during biased GPS. Furthermore, con-
sidering ORB-SLAM2 consumed higher computational cost, the localization performance
achieved by Libviso2(S) could be regarded as exemplary where its performance improved
significantly – almost on par with SLAM method.

Meanwhile, Libviso2(M) showed good localization for sequence 02 where the lateral er-
ror average was also constantly below 2m and longitudinal error average was 3.13m. How-
ever, its performance in sequence 01 was not satisfying and we think that this is due to the
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scale ambiguity problem that is often faced by monocular system. In overall, it can be con-
cluded that our fusion technique is able to improve localization accuracy despite the drift in
VO trajectory but up to the limit where the initial translation error is less than 10%.

4.6 Conclusion

This chapter presented the extended approach to our previous method with RPDF fusion.
Segmented curve matching (SCM) technique was introduced to compare VO trajectory curve
with road shape on digital map. Starting with a conventional VO approach tested on a
challenging drive on a highway road, our proposed localization performance by multilevel
data fusion achieved high accuracy, on par with localization by ORB-SLAM2 which requires
higher computation cost. Besides, our method proved to be robust against different types of
GPS noise, where we applied severe noise variance of up to 10m.

Then we performed further investigation on the effect of having various levels of posi-
tion accuracy from several VO/SLAM methods that were made available to public for eval-
uation. Based on the results obtained, the localization performance was greatly improved
especially on residential drive (sequence 02) regardless of VO drift and scale ambiguity,
thanks to the nature of trajectory shape with multiple turns matched with road shape within
the search range. This however remains a problem in the case of straight road as resulted
from sequence 01 especially for monocular VO. The lack of trajectory curve in addition to
bad scaling factor made it impossible to reduce the positioning error. This should be solved
with scaling technique designed for monocular system as proposed by other researchers
such as presented in (Fanani et al., 2017a; Zhou et al., 2016).

As a conclusion, the key to the achievement of our localization results was the VO trajec-
tory curve that complement the existing digital map road network for curve comparison. As
long as the VO trajectory drift and rotation error is not too severe, the localization accuracy
can be significantly improved with segmented curve matching. Therefore, it would be in-
teresting to know how far the trajectory generated by VO can be used for accurate low-cost
vehicle localization. Our next step is to determine whether the lane-changing behaviour can
be observed from this generated trajectory.
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Chapter 5

Lane-keeping / Lane-changing
Detection for Lane-level Localization

5.1 Overview

Navigation systems nowadays provide lane-level instructions in taking a route for complet-
ing a journey. For instance, multi-lane roads may have different destinations for each lane,
hence the routing service or navigation application could provide instructions to use the
specific lane for the driver. However, vehicle localization itself has yet to provide lane-level
position that would complement the service. Thus, lane-level positioning system would be
highly desired in outdoor localization technology where it will estimate vehicle’s current
lane correctly.

Lane-level positioning is not only useful for navigation system, but it is also required
in emerging technologies such as advanced driver assistance systems (ADAS) (Hofmann
et al., 2009), road traffic estimation in lane-level detail, and electronic toll-collection system.
The current positioning system technology can provide sub deci-meter accuracy and while it
satisfies the need for ordinary location-based services (Aly et al., 2014; Ye et al., 2010), it lacks
information on vehicle’s exact lane position. This brings to an interesting field of research
where many researchers had proposed different techniques to achieve lane-level accuracy in
localization (Cui et al., 2014; Tao et al., 2013; Toledo-Moreo et al., 2010). Unfortunately, these
systems need high specification GNSS device such as RTK-GPS or laser sensors that are
expensive and not practical for ubiquitous implementation. Meanwhile, low-cost solutions
as proposed in (Cui et al., 2014; Du et al., 2016; Rabe et al., 2016) used camera as visual
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sensor to detect road and lane markings. However, these methods will face difficulties in
case the road markings are faded, or camera’s line-of-sight is obstructed.

Besides developing localization system that is able to sense the correct lane of the ve-
hicle, lane-level accuracy can also be achieved if lane-changing or lane-keeping is detected
and correctly identified. This information can then be fused with the available road informa-
tion on lane diffusion from digital map like OpenStreetMap to obtain the lane-level position.
In this chapter, we would like to explore the possibility of employing visual odometry tra-
jectory in lane-keeping or lane-changing detection, without utilizing any additional sensor.
This study assumes that provided that the visual odometry trajectory has acceptable drift
and scale factor, the trajectory curve can provide ample information for the detection.

5.2 Related Works

Recent studies on lane-changing detection can mainly be categorized into three approaches:
trajectory prediction model and matching (Houenou et al., 2013; Salvucci, 2004; Woo et al.,
2017; Yao et al., 2012), road lane marking interception (Satzoda et al., 2015; Weidl et al., 2015),
and vehicle kimatics based characterization (Aly et al., 2015; Chen et al., 2015).

The first approach requires trained lane-changing trajectory model and matched with
the vehicle trajectory to observe driver’s intention of changing lane. For instance, (Houenou
et al., 2013) utilized the Constant Yaw Rate and Acceleration (CYRA) model for trajectory
prediction and others trained datasets of possible trajectories from experiments with differ-
ent drivers. However, the studies are more practical in the early detection of lane-changing
to prevent collision with other vehicles and the confirmation on lane-changing was not ob-
served. Besides, since predicting vehicle trajectory also relies on driver’s driving habit, it
is not a deterministic task to confirm any lane-change that actually took place at a specific
time.

Meanwhile, the second technique detects interception or vertical movement of road lane
marking to update vehicle’s lane position. Again, this is prone to the visibility state of the
markings and is challenging in bad weather conditions. This method was also meant for
early recognition of manoeuvers and risk assessment. Lastly, in the third approach, detec-
tion by characterizing vehicle kinematics technique was proposed by observing the inertial
change of the vehicle. The suggested methods used inertial sensor equipped on the vehicle’s
steering to observe yaw rate and lateral acceleration for lane-changing characterization. In
fact, the lane detection techniques as proposed in (Satzoda et al., 2015; Weidl et al., 2015) also
applied the same in-vehicle sensor to capture vehicle kinematics aside from lane-marking
cross analysis for lane-change detection. The kinematics only method as presented in (Aly
et al., 2015; Chen et al., 2015) is an interesting approach because it does not rely on prediction
model nor affected by weather constrains.



5.3. System Overview 87

Therefore, instead of using inertial sensor, our research will observe lane-changing char-
acteristics and detection visually from the trajectory of the drive. Since cameras can also be
used for lane-marking detection as suggested by (Satzoda et al., 2015; Weidl et al., 2015), our
method with visual odometry curve exploitation could be a complimentary system for them.
In this work, we analyse visual odometry trajectory curve by considering lane-changing
characteristics to study the prospective of utilizing only visual sensor to determine the com-
pleted task of lane-changes.

5.3 System Overview

Our method proposes an integration of visual odometry trajectory curve analysis with road
lane distribution from digital map. Previously, we have worked on fusion between GPS,
visual odometry and map in which we found that abundant information in digital map
should be utilized for lane-changing detection (Awang Salleh et al., 2016). Thus, without
requiring trained trajectory model and additional input sensor aside from camera, we anal-
yse the possibility of lane-changing detection by trajectory curve analysis combined with
road lane information. Unlike early detection of lane-changing possibility as presented in
previous works (Houenou et al., 2013; Salvucci, 2004; Weidl et al., 2015; Woo et al., 2017;
Yao et al., 2012), ours is a deterministic task to confirm any lane change event for lane-level
localization update that would ensure the vehicle’s accurate positioning.

The curve analysis is done by CUSUM chart (Page, 1954), for small change detection in
yaw rate, and curve-fitting error of heading angle extracted from visual odometry trajectory
points. Lane-change detection is determined from certain conditions described in Section
5.3.1 from the result of the trajectory curve analysis and the performance of both methods
are compared. Details for both curve analysis methods will be further explained in Section
5.4.

5.3.1 Lane-changing

Firstly, in order to determine an event of lane changing, it has to meet several criteria based
on lane-changing behaviour in normal circumstances. Referring to the illustration in Figure
5.1 and as reported in several studies on trajectory prediction (Houenou et al., 2013; Yao
et al., 2012), lane-changing can be described when:

(a) the vehicle movement has a small change in lateral direction (x-axis) within a limited
distance dl, assuming a normal lane-change should shift just one lane in a single oc-
curence;
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(b) its heading angle θi before and after lane-changing is almost equal (particularly on a
straight road) or the yaw rate ψi is constantly proportional (curve road):

dψi0
dt
∝ dψi1

dt
, (5.1)

(c) it happens within a limited period of time, tlc, and

(d) longitudinal speed is almost unaffected while lateral speed shows abrupt change.

FIGURE 5.1: Lane-change trajectory

Putting these characteristics into consideration, we are able to analyse vehicle lane-
changing possibility from its trajectory curve to observe its lateral speed and yaw rate. As
for the lane-changing duration, tlc, according to (Lee et al., 2004), the mean duration for lane-
changing is around 6.28s for a single lane-change. However, this includes the cases of heavy
vehicle (trucks, lorries, busses) that took longer duration for lane changing. Meanwhile,
other researchers performed study on standard vehicle lane-change duration outcome that
averaged at 4.6s (Toledo et al., 2007). In addition, the minimum average that can describe a
lane-change is 1.25s from a study conducted by (Worrall et al., 1970).

The mean differences were as a result of the definition of lane-changing start and stop
time, analysis methods, and diversity of vehicle types. In our work, we specify the lane-
changing characteristics observation within the given lane-changing duration average of
minimum 1.25s and maximum 6.28s. Therefore, we assume the lane-changing duration,
(tcl) should be in between 2s to 8s, considering some delay in detection from trajectory curve
analysis while avoiding false positive detection from the trajectory noise if the duration is
too short.

5.3.2 Visual Odometry

In this study, the existing visual odometry algorithm proposed by (Geiger et al., 2011) for
both stereo and monocular vision system was adapted as our visual odometry trajectory
input. In their proposed monocular visual odometry, the scale is estimated by assuming
that the camera is fixed on the vehicle over a certain height from the ground. Meanwhile, for
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stereo vision, the authors demonstrated accurate dense 3d reconstructions from the image
sequences to obtain vehicle trajectory.

We also tested on localization trajectory generated from ORB-SLAM2 method as recently
presented by (Mur-Artal et al., 2017) that contains three main parallel threads: 1) tracking
thread for camera localization by feature matching to the local map and applies motion-only
bundle-adjustment to minimize error, 2) local mapping thread, and 3) loop closing thread for
drift error correction when loops are detected. This method has ‘Simultaneous Localization
and Mapping (SLAM)’ mode and ‘localization’ mode. SLAM mode allows map building of
an unknown environment and localization of the sensor within the map at the same time by
performing loop closure that corrects accumulated error over time. Meanwhile, during lo-
calization mode, local mapping and loop closing threads are deactivated and tracked points
are matched between ORB in the current frame and 3d points from the previous frame. We
purposely tested in both modes to find the variation of yaw rate in different level of visual
odometry performance.

In short, the trajectory input that are used in this study greatly varies in terms of posi-
tioning accuracy. Monocular Libviso2 has the worst drift error among compared with other
methods due to the scale factor limitation, which is followed by Libviso2’s stereo visual
odometry, ORB-VO (without loop closure), and finally ORB-SLAM2 with loop closure has
recorded the highest precision in localization. With this varying visual odometry perfor-
mances, we would like to analyse the feasibility of using the trajectory curve in determining
vehicle lane changing occurrences.

5.3.3 OpenStreetMap

From the OSM file, we extract data of ways of roads that provides many information as
described in previous chapters, that includes number of lanes and the trafic distribution of
each lane. For validation, we tested on 3 sets of drive, namely Drive13, Drive29 and Drive42
where there were several instances of lane changing events in the raw KITTI dataset. The
road lane distribution and its specification found in OSM file are described in Figure 5.2.

As depicted in Figure 5.2b, the road has 3 lanes with one-way direction (3-lane highway
road). The lane traffic distribution is described in the tag k=‘turn:lanes’ where the value con-
tains ‘left|through|through’. This indicates that the most left lane is specifically for turning
left, while middle and right lane are for going straight at the traffic light. We can confirm
this from the road symbolic marking captured by camera as shown in the subfigure. This
is also the case for Drive 42 (Figure 5.2c) where the road is a two-lane one-way road with
different directions for left and right lane.

Thus, from the information on number of lanes for the specific road, we are able to deter-
mine whether lane-change is possible or not. Besides, it can differentiate between possible
lane-changing and maneuver scenario based on the allowable driving direction obtained
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(A) Drive 13

(B) Drive 29

(C) Drive 42

FIGURE 5.2: Road segments where lane-changing occurred (highlighted in
red) with respective descriptions in OSM file
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FIGURE 5.3: Lane-change decision flowchart based on lane information from
OSM

from OSM data. If the road is multiple lane but with bi-directional, there is a possibility that
the vehicle is just taking over the front vehicle and no lane-changing will be recorded since
it will return to its initial lane after maneuvering. This estimation is conducted as shown in
the flowchart (Figure 5.3) with NoLw represents number of lane at road segment w.

5.4 Trajectory Analysis

For trajectory curve analysis, we noted that vehicle’s vertical acceleration or steering angle is
most often used to observe lane-changing event (Aly et al., 2015; Satzoda et al., 2015). Since
inertial sensor was adapted in this work, we attempted to extract yaw rate ψi calculated
from trajectory point at frame i as

ψi =
δθi
δt
, (5.2)

where heading angle θi is updated from the condition

θi =

ϑi + π
2 , if ϑi < 0

π
2 − ϑi, otherwise

, (5.3)
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FIGURE 5.4: Framework overview of lane-changing detection

and ϑi is the vehicle heading variation obtained from the lateral and horizontal displace-
ment of VO points

ϑi = tan−1
(

∆yi,i−1
∆xi,i−1

)
. (5.4)

The heading angle and yaw rate will then be utilized for detecting any abrupt change
in vehicle heading variation. This change may or may not be observed visually from a raw
yaw rate graph, depending on the trajectory noise. Furthermore, a classification technique is
required to extract the time and magnitude of lane-changing possibility that occurred within
the drive.

In order to detect temporary change in vehicle heading variation during a lane-change,
we figured out two approaches that are able to classify a time-based randomized data. As
depicted in the framework overview in Figure 5.4, the trajectory analysis is conducted with
two approaches. The first method is by CUSUM chart analysis which is useful in detecting
small shifts in the mean of a data. As long as we can specify the shift duration and slack
limit, this would be a straightforward task in determining the lane-change. The second one
is by observing fitting error from curve fitting analysis. Both methods will be presented in
detail in the next subsections followed by validation and results.
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5.4.1 CUSUM Chart Method

Based on the lane-changing characteristics, it is clear that vehicle orientation change hap-
pens in a small magnitude within a short time (Worrall et al., 1970). To detect this behaviour,
firstly we proposed CUSUM (cumulative sum) analysis to observe the little change in ve-
hicle heading direction. CUSUM is a type of control chart used to monitor the deviations
of individual data or subgroup averages from a target value. These deviations are summed
cumulatively over time. A raw CUSUM chart illustrates change in average value of a data
differs from target by its slope.

For the decision making, we plotted two ‘one-side’ CUSUM chart for positive deviations
and negative deviations to detect any change that happened above or below respective tar-
get. With the decision target plotted on the chart, CUSUM resembles a Shewhart control
chart. However, Shewhart chart sometimes failed to detect small shift because it is more
effective if the shift magnitude is larger (1.5σ to 2σ).

The CUSUM value above target, C+
i and below target CUSUM value, C−i can be plotted

from Equation 5.5 below. With initial Ci values for both sides are set to 0, the succeeding
values are calculated as

C+
i = max[0, C+

i−1 + ψi − µi − ku], (5.5)

C−i = min[0, C−i−1 + ψi − µi + kl], (5.6)

where

• ψi : observed data value (yaw rate in radian) for the ith frame,

• µ : mean value for each subgroup,

• ku : upper allowable slack,

• kl : lower allowable slack.

The allowable slack k is determined based on sample size n and standard deviation σ as

k =
σi

2
√
n
. (5.7)

Then, to detect lane-changing behaviour, the slack limit, H = hσ is defined and if
CUSUM value exceeds this limit, it is considered as lane-change detected. The h value is
usually set between 4 to 5 according to (Montgomery, 2009).
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5.4.2 Curve-fitting Method

Our second approach is by 2nd order curve fitting method on the vehicle heading angle
θi, with the assumption that θi change is linear on a straight road and curve road can
be represented in 2nd degree polynomial curve. For quadratic regression, it has 3 coeffi-
cients (a2, a1, a0) that can be obtained by solving the following linear equations by inversion
method or Gaussian elimination. n

∑
xi

∑
x2i∑

xi
∑
x2i

∑
x3i∑

x2i
∑
x3i

∑
x4i


a0a1
a2

 =


∑
yi∑
xiyi∑
x2i yi

 , (5.8)

f(θi) = a0x
2
i + a1x+ a2. (5.9)

We choose to fit heading angle curve instead of trajectory curve because it can be plotted
on time-based and for its sensitivity in sensing variation. Besides, trajectory curve is suscep-
tible to accumulated drift which may result in inaccurate coefficient calculation results if it
is to be matched with the road map where scale and rotation are the main concerns. With
curve fitting, the plotted polynomial curve, f(θi) is compared with the actual heading angle
data to find any interception within the specified time range based on the error εi,

εi = θi − f(θi). (5.10)

In order to determine lane-changing behaviour, considering there is a small amount of
noise in visual odometry trajectory, we assume that:

(a) the fitting error εi has an ideal mean error of 0,

(b) εi will stay on positive/negative side within a specific time range, tlc during lane-
changing,

(c) average magnitude of εi within possible lane-changing time range is more than 1◦,
and

(d) for any adjacent occurence, lane-changing priority to the one with maximum ε̄i.

5.5 Validation and Results

5.5.1 Datasets

To compute the probability of lane-changing in a drive, we analysed visual odometry trajec-
tory according to lane-changing characteristics as mentioned in Section 5.3.1. Three datasets
(Drive 13, 29 and 42) from KITTI were identified to contain lane-changing events. Drive 42
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TABLE 5.1: Lane-changing events

Drive Start frame, is End frame, ie Lane-changing direction

13 40 80 right

29 65 90 left

42
40 70 left

190 235 right

had two lane changing events on a multi-lane highway road, while both of drive 13 and 29
changed lane once to the right and left respectively. The lane changing for each drive hap-
pens within the time range as shown in the Table 5.1 with respective direction as observed
visually from the image sequences and from the ground truth trajectory. These are also il-
lustrated as shadowed area later in results charts (Figure 5.6, 5.7, 5.8 and 5.9) for clearer
view.

For validation, the subgroup mean value µi was calculated from on a 10s window. This
was defined based on our assumption in Section 5.3.1 where considering detection delay
and VO trajectory drift, a complete lane-change should take place within 2s to 8s. Thus,
to detect a complete event of lane changing, 2s buffer time was added to the maximum
lane-change duration. As for the slack limit, we fixed h = 4 to increase detection sensitivity.

Dataset 13 had the shortest drive with 143 frames of images. It had a simple lane-
changing event where the vehicle moved from the left lane to the right lane on a two-lane
straight road. Meanwhile, drive 29 contained 430 poses where the vehicle moved along a
two-lane road that evolved to three-lane road before a traffic light stop. The drive initially
started on the left lane (L2 on two-lane) and at frame 65 it moved to the additional left lane
(L3 on three-lane road) that was specifically for turning left. The vehicle stopped at the traf-
fic light from pose 200 to 265 before turning left into a single-lane road. The third dataset,
drive 42, was taken on a highway road that started with the vehicle driven on the right lane
on a two-lane road (L1). Since the right lane was assigned for turning right to a highway
exit, but the driver intended to drive straight, at frame 40, the vehicle changed to the left
lane (L2) and kept driving on the same lane until frame 195 where it moved back to the
right lane (L1) that had the same traffic direction with other lanes. This drive consisted of
500 poses for trajectory analysis and the highway road was slightly curved along the way.

In order to test the feasibility of lane-changing detection by visual odometry curve anal-
ysis, these datasets were tested with four different visual odometry approaches - monocular
Libviso2, stereo Libviso2, ORB based VO and ORB-SLAM2 - as explained in Section 5.3.2 -
these are later indicated as Libviso2(M), Libviso2(S), ORB(VO) and ORB-SLAM2 in the re-
sults presentation respectively. Trajectories obtained from each dataset are shown in Figure
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FIGURE 5.5: Vehicle trajectories generated from VO/SLAM methods

5.5 where in drive 13, Libviso2(S) trajectory was overlapped for being too similar to ORB-
SLAM2.

5.5.2 CUSUM Chart Results

For curve analysis by CUSUM, the trajectory was smoothened and noise in yaw rate was
reduced by using moving average filter. With window size N = 2k+ 1, the filtered data can
be obtained from:

Fi =
1

N

+k∑
j=−k

Si−j . (5.11)

In the following Figure 5.6, a moving average with window size of 5 points was applied
to yaw rate of the raw trajectories. It can be seen that the lane-changing is not easily dis-
tinguishable from the yaw rate obtained from visual odometry trajectory curve even after
filtering out noise. However, by plotting CUSUM chart, we will be able to detect any small
movement change in a random data.

We calculated the CUSUM value Ci in 100 frames cycle and the chart is plotted for each
dataset with visual odometry performance comparison as shown in Figure 5.7. Window size
of 100 will cause a delay of 10s from the start time of lane-change. However as mentioned
earlier, this study aimed to determine a lane-changing behaviour based on visual odometry
trajectory after any occurence to confirm the current lane position, thus the delay was not as
crucial as for application in risk assessment for lane-changing detection. The straight lane
in Figure 5.7 shows the Ci limit determined from ±4σ and any value that exceeded the limit
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(A) Drive 13

(B) Drive 29

(C) Drive 42

FIGURE 5.6: Yaw rate based on VO curve after noise filtering
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is considered as lane-change detected. The direction of lane-change was determined by the
upper limit for changing to the left lane and lower limit for changing to the right lane.

From Figure 5.7a, Libviso2(S) managed to detect lane-changing between frame 35 to 80
while Libviso(M) detected 2 false positives on the opposite direction (frame 61 and 126).
This was due to the severe residual noise in heading angle obtained from visual odometry
trajectory that could be seen on the yaw rate graph. Since the scale in Libviso2(M) was es-
timated by assuming a fixed camera height over ground, any discrepancy would result in
scaling error and drift that affected vehicle trajectory points and heading angle calculated
from these points individually. Besides, the lane-changing event was in fact followed by
gradual change in road direction (slightly curved), which caused the heading angle became
more sensitive towards the noise. On the other hand, ORB(VO) and ORB-SLAM2 both suc-
cessfully detected change in trajectory yaw rate from frame 37 to 77 and frame 39 to 81
respectively. Even though ORB(VO) showed ranging noise after frame 120, the change in its
yaw rate did not exceed the slack limit, hence this was not classified as a lane-change.

In drive 29, trajectory analysis from all methods were able to detect lane-changing to
the left lane correctly with Ci exceeding upper limit around frame 70 to 90. This dataset
exhibited a lane changing to the left lane before traffic light stop and taking a left turn later.
Peaks after frame 200 were ignored for lane-changing decision because the road’s NoL ob-
tained from OSM data confirmed that it was a single-lane road that made it impossible for a
lane-change or maneuver.

Lane-changing events for drive 42 were also detected by all visual odometry methods.
For Libviso(M) result, the exceeding peak was merely detected for the first lane-changing
to the left at frame 62 although was not as significant as peaks detected in other visual
odometry methods. There were also noise observed as small changes after frame 250 in
Libviso(M) but again, since the value did not exceed ±4σ slack limit, it was not regarded as
a lane-change. The second lane-change around frame 200 was detected from the peaks in all
methods exceeding the lower CUSUM limit, meaning it was slipping to the right lane.

5.5.3 Curve-fitting Results

For lane-detection by curve-fitting analysis, heading angle data was utilized and compared
with the 2nd order polynomial curve obtained from the quadratic coefficient that fitted the
data of 100 window. The curve fitting error graph is shown in Figure 5.8.

Assuming the error should vary around 0 during lane-keeping, if error value ε that re-
mained above/below 0 within tlc of 2 to 8s range and if 1◦< ε̄, it will be regarded as lane-
changing. As depicted in Figure 5.9, the lane confidence level in the left (upper side) and
right (lower side) lane-change was obtained from the ε̄ value.

Lane-change to the right was detected in drive 13 from Libviso2(S), ORB(VO), and ORB-
SLAM2 trajectory curve analysis where the most accurate lane-changing time was achieved
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(A) Drive 13

(B) Drive 29

(C) Drive 42

FIGURE 5.7: Lane-changing detection from CUSUM plots
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(A) Drive 13

(B) Drive 29

(C) Drive 42

FIGURE 5.8: Heading angle curve fitting error
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(A) Drive 13

(B) Drive 29

(C) Drive 42

FIGURE 5.9: Lane-changing detection results by curve-fitting
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TABLE 5.2: Overall lane-changing detection results

Drive
CUSUM chart Curve-fitting

TP FP FN TP FP FN

13 3 2 1 3 1 1

29 4 0 0 4 0 0

42 8 0 0 8 0 0

by ORB(VO) followed by ORB-SLAM2 and Libviso2(S). Meanwhile, Libviso2(M) once again
failed to detect the correct lane-changing due to the residual noise in its trajectory. Our re-
sults showed that it almost detected a lane-change in a false positive on the opposite direc-
tion around frame 51 to 61, but since the duration was only 1s, which is lower than the 2s
minimum average of lane-changing duration, it was not considered as a lane-change.

Next, trajectory analysis of all visual odometry methods were able to detect lane-changing
in drive 29 around frame 65 to 100 as seen in Figure 5.9b. Detection from Libviso2(M) was
delayed about 7ms from the original lane-changing start time due to the scale drift in the
trajectory. However, this was not affected during the first lane-changing event in drive 42
where all odometry methods achieved the most precise detection result at frame 40 to 70. As
for the second lane-changing that took place between frame 195 to 235, Libviso2(S) had the
most accurate time range followed by ORB-SLAM2, ORB(VO) and Libviso2(M). The latter
method showed delay in detection by 1s which was due to the accumulated scale error in
monocular system.

The overall results achieved by the different vehicle trajectories and lane-changing detec-
tion techniques are represented in Table 5.2. It can be concluded that curve-fitting method
has better accuracy in lane-change detection with zero false positive and only one case of
false negative in drive 13 from trajectory generated by monocular Libviso2. For this particu-
lar drive, CUSUM method unfortunately detected two false positives and one false negative
resulted also from the same visual odometry approach. This is a result of the bad scale factor
that contributed in severe drift even in a short drive for a monocular system. The short and
straight trajectory path made the lane-changing detection by CUSUM more sensitive to any
small change, causing incorrect detections. On the other hand, curve-fitting method was
less sensitive due to the buffer in fitting error that should exceed 1◦ to be regarded as lane-
change, but this also resulted in detection failure. On top of that, raw data of monocular
Libviso2 itself for drive 13 (refer Figure 5.6 and 5.8) has too much noise that was difficult to
be filtered due to the window size and trajectory span which made it impossible to detect
lane-change event correctly.
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5.6 Implementation Challenges

Although it was proved that CUSUM and curve fitting methods were able to detect lane-
changing of a vehicle from visual odometry trajectory to a certain extent, real implementa-
tion for fusion with OSM data seemed to face several difficulties. Firstly, in order to employ
our previously proposed RPDF approach, we need to know the exact lane of vehicle position
at least during initialization. Else, with wrong lane decision, this would affect probability
distribution of the neighbouring lanes and result in inaccurate lateral position estimation.

Secondly, when there is a change in number of lanes on the road, the OSM data only
provides the change in number, hence missing the information of whether the new or miss-
ing lane is on the right or left side. Without this information, we are unable to fuse with
RPDF correctly. For instance, in drive 42, the drive initially started with two lanes (for RPDF
calculation, we have L1 and L2) that became a single lane road (reduced to only L1) after
the right lane was diverged as a highway exit. Then, there was a new additional lane on the
right again (we have probability distribution for L1 and L2 again), and after some time, a
new lane was added also on the right (now we have L1, L2 and L3). Although the vehicle
actually stayed on the same lane after it became a single lane, the RPDF estimation would
be based on L1 and with a new addition of lane on the right, it would assume of being on L1
(right lane) instead of L2 without the knowledge of on which side is the new lane. The prob-
lem worsens with further additional of the third lane that will result in incorrect estimation
of probability distribution for each lane.

5.7 Synthesis

Lane-changing detection by visual odometry curve trajectory analysis from CUSUM chart
and curve-fitting method was presented in this chapter with comparison on different vi-
sual odometry approaches. CUSUM chart detected small change that happened within a
certain time range while 2nd order polynomial was fitted on vehicle heading angle data to
detect lane-change from fitting error. The analysis were conducted on three datasets with
lane-changing events and visual odometry trajectories were obtained from four VO/SLAM
trajectories. From the trajectories, heading angle and yaw rate were extracted for curve
analysis.

Results on both curve analysis showed consistent output particularly for Libviso(S),
ORB(VO) and ORB-SLAM2 approach that achieved 100% successful detection rate. Mean-
while, Libviso(M) failed to detect lane change correctly in drive 13 for both curve analysis
methods, although it performed well in the other datasets with some detection delay in
curve-fitting method. This is mostly due to monocular visual odometry performance that
only has scale factor from assumption and this affects noise in heading angle between each
image pairs.
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In overall, lane-changing detection by visual odometry trajectory analysis with curve-
fitting technique performed better than CUSUM chart analysis technique in terms of detec-
tion rate and precision. With this method, we were able to detect lane-changes correctly
with start and end time estimation especially in stereo systems. Besides, it does not require
parameters settings of k or slack limit 4σ estimation like CUSUM chart does. As for the tra-
jectory performance effects on detection accuracy, visual odometry trajectory with minimal
noise are required to acquire reliable heading angle information for more accurate results.
Nonetheless, both curve analysis techniques were able to detect most lane-changes despite
the overall trajectory drift.

However, in order to apply our method for lane-level localization, we need more in-
formation on the road lane distribution especially when there is a change in the number
of lanes. Since OSM does not contain detailed information on this, we might have to per-
form image processing in road lane marking detection to determine the current lane posi-
tion from time-to-time. This will only be required periodically or when the system received
any change in number of lanes, hence minimizing computation effort for the line detec-
tion. Therefore, we can conclude that our lane-changing detection approach could be a
complementary system with the existing road marking or line detection for an optimized
and accurate lane-level vehicle localization.
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Chapter 6

General Conclusions and Future
Works

6.1 Conclusions

The research work in this thesis was focused on the optimization of vehicle localization ac-
curacy with low-cost sensors. Our main interest was to study how visual odometry (VO)
can be used for localization with other available information such as Global Positioning Sys-
tem (GPS) and digital map. While the current most commonly used navigation system is
provided by GPS data due to its affordability, users still find inaccuracy in the data which
makes it unreliable in certain conditions due to the urban environments or signal outages.
This makes an integration with additional sensor input necessary to compensate this prob-
lem and improve vehicle localization performance.

Therefore, we proposed to utilize VO trajectory obtained from standard camera to assist
localization by fusing with GPS data and publicly available digital map. Cameras can easily
be found on vehicles for safety reasons (video recording) and in some high-end cars, cameras
perform image processing for pedestrian or lane detection. Aside from these purposes, it can
also be used to obtain the vehicle trajectory from the captured image sequences and this has
been immensely developed in recent decade. VO trajectory proved to be more accurate than
wheel odometry, hence making it an interesting subject to be studied as a fusion input.

Chapter 2 in this thesis provided a wide coverage on literature review of VO techniques
with challenges to obtain accurate localization. Besides, we also presented some of the exist-
ing works that also utilized VO with other sensors where low-cost sensors fusion techniques
have yet to achieve high localization accuracy as performed by fusion with high precision
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sensors such as LIDAR. To evaluate the proposed methods of vehicle localization, KITTI
dataset was presented and has been widely used as a benchmark and scoreboard. From the
published VO/SLAM performance, we can conclude that localization problem mostly lies
in the translation error due to scale ambiguity or drift, rather than rotational error. This re-
sulted in better localization on roads with multiple junctions or curved roads while straight
roads still face higher localization error.

Our proposed technique aims to solve positioning accuracy in localization including its
longitudinal error that remains difficult to overcome particularly on straight roads. This
study began with the data fusion of GPS with VO and OpenStreetMap (OSM) with particle
filter to verify the effectiveness of the fusion technique in improving localization accuracy as
presented in Chapter 3. A conventional VO method was applied and from the information
extracted from OSM, a Road Probability Distribution Approach (RPDF) was proposed to
enhance lateral position of the vehicle. With the assumption that initial lane is known, and
the vehicle does not change lane on a multi-lane road, our technique managed to increase
the localization accuracy as tested in two datasets despite the drift and scale error of the
conventional VO method. From the error spike occurred at a road divergence, we were
interested to utilize the characteristic of VO trajectory curve to compare with road shape on
the digital map.

In Chapter 4, we developed our multi-level fusion technique by matching VO trajectory
curve segments with road segments on OSM map to avoid discrepancy in road selection
and increase longitudinal positioning error. The proposed method called Segmented Curve
Matching (SCM), was also tested with low-cost GPS with random error, biased error and an
event of GPS signal loss to observe the robustness. Then, advanced open source VO methods
with different performance level were used as an input to the fusion and the results show
that monocular VO still faced severe localization error in straight roads due to the scale error.
However, its localization performance in residential drive was greatly improved, almost on
par with fusion output of stereo VO methods for both lateral and longitudinal positioning
error. The performance for both stereo VO methods by Libviso2 and ORB-SLAM2 in high-
way drive with long straight road and higher vehicle speed achieved sub-meter accuracy
with longitudinal error reduced to around 2m. This is a significant achievement, consider-
ing the low-cost GPS contained severe noise, no high-precision sensor was used, and the
vehicle speed was around 60 to 70 km/h.

With the difference in VO methods performance, in Chapter 5, we extended our research
scope by attempting to detect lane-changing events from the VO trajectories. Since the detec-
tion was conducted on posterior poses of vehicle, it was a deterministic task which is useful
for lane update in lane-level localization, to complement our RPDF approach. Two methods
were adopted for trajectory curve analysis by using CUSUM chart to detect small change
in yaw rate and 2nd order curve fitting of the heading angle. Again, monocular VO failed
to detect lane-changing correctly in one of the three datasets that has shorter drive range
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while it detected lane-changing events successfully in longer drives. Meanwhile, stereo VO
methods managed to detect all lane-changing events correctly in all drives, due to smaller
drift and less noise in the trajectories. This concluded that it is possible to determine when
a vehicle changes lane or manoeuvers, provided that detailed information on any change of
road lane distribution on map is known.

Our proposed method generally fuses low-cost GPS data as a reference for global posi-
tion with VO trajectory. Then, the multi-level data fusion also integrated information from
digital map to obtain probabilistic position of the vehicle on the map. It was a straightfor-
ward approach that did not require complex computation and yet it was able to achieve
high localization accuracy with an average performance VO method as the fusion input.

6.2 Future works

Despite good overall achievement in localization performance from our fusion technique,
there are still room for improvement especially in monocular VO. Due to the scale error,
monocular VO suffers from severe drift in its trajectory. This affects the fusion performance
where particles are displaced based on VO trajectory vector with randomized noise. Al-
though we also utilize GPS as position reference, the scale error is accumulated by time
which worsens the result in road segment candidates. Therefore, it would be desirable to
have a reliable scale factor estimation technique in monocular VO systems to, at least, have
an accuracy almost equivalent to stereo system with average performance (relative transla-
tion error of less than 10%). On top of that, if this can be achieved, we can further reduce the
localization system cost with only utilizing a single camera.

In terms of fusion efficiency, noisy GPS data actually affected the overall localization
performance. This should be solved by reducing the dependency of particles weight on
probability distribution with distance from GPS position or we can also only refer to GPS
points at a longer time interval. Since this study modelled GPS noise from a high precision
GPS data, it would be more realistic to use a real low-cost GPS data for validation.

In Chapter 5, challenges that we faced for the lane-changing implementation were also
mentioned. Indeed, VO trajectory with acceptable accuracy can be used to determine lane-
changing events for lane-level positioning system. However, in real life implementation
where number of lanes on the road changes frequently, we need further information to
identify the current lane position from time-to-time in order to apply RPDF approach. Thus,
future work might include lane position identification by image processing from the road
line detection to be matched with OSM data. Besides, since OSM is an open source service
with a growing community involved in its development, we can propose an additional in-
formation in their data to specify detailed information when there is a change in number of
lanes. This, would be beneficial for all.
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Although this study focused on accuracy improvement in challenging drive sequence,
the proposed system should be validated in other sequences and datasets as well. From
this, we can further analyze its robustness in different environment and with its overall
performance, we can join the leaderboard ranking of public dataset.

Finally, we also look forward to hardware implementation of the localization system
which is also included in the research future plan. Upon successful validation on the soft-
ware end, the real performance can only be evaluated on a hardware platform. For hard-
ware implementation, we can test the system with more options of driving environment
with different road network, weather conditions, and urban canyon scenarios. This will be
executed once the tasks above are completed and the localization performance is validated
with satisfying accuracy.
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Titre : Fusion de données pour la localisation de véhicule par suivi de trajectoire provenant de l’odométrie
visuelle

Mots clés : odométrie visuelle, localisation, fusion des données

Résumé : Au sein des systèmes avancés d’aide à
la conduite (Advanced Driver Assistance Systems -
ADAS) pour les systèmes de transport intelligents (In-
telligent Transport Systems - ITS), les systèmes de
positionnement, ou de localisation, du véhicule jouent
un rôle primordial. Le système GPS (Global Posi-
tioning System) largement employé ne peut donner
seul un résultat précis à cause de facteurs extérieurs
comme un environnement contraint ou l’affaiblisse-
ment des signaux. Ces erreurs peuvent être en par-
tie corrigées en fusionnant les données GPS avec
des informations supplémentaires provenant d’autres
capteurs. La multiplication des systèmes d’aide à la
conduite disponibles dans les véhicules nécessite de
plus en plus de capteurs installés et augmente le vo-
lume de données utilisables. Dans ce cadre, nous
nous sommes intéressés à la fusion des données pro-
venant de capteurs bas cout pour améliorer le posi-
tionnement du véhicule.
Parmi ces sources d’information, en parallèle au GPS,
nous avons considérés les caméras disponibles sur
les véhicules dans le but de faire de l’odométrie
visuelle (Visual Odometry - VO), couplée à une
carte de l’environnement. Nous avons étudié les ca-
ractéristiques de cette trajectoire reconstituée dans le
but d’améliorer la qualité du positionnement latéral et
longitudinal du véhicule sur la route, et de détecter les
changements de voies possibles.
Après avoir été fusionnée avec les données GPS,
cette trajectoire générée est couplée avec la carte de
l’environnement provenant d’Open-StreetMap (OSM).
L’erreur de positionnement latérale est réduite en uti-
lisant les informations de distribution de voie fournies
par OSM, tandis que le positionnement longitudinal
est optimisé avec une correspondance de courbes

entre la trajectoire provenant de l’odométrie visuelle
et les routes segmentées décrites dans OSM.
Pour vérifier la robustesse du système, la méthode
a été validée avec des jeux de données KITTI
en considérant des données GPS bruitées par
des modèles de bruits usuels. Plusieurs méthodes
d’odométrie visuelle ont été utilisées pour comparer
l’influence de la méthode sur le niveau d’amélioration
du résultat après fusion des données. En utilisant la
technique d’appariement des courbes que nous pro-
posons, la précision du positionnement connait une
amélioration significative, en particulier pour l’erreur
longitudinale. Les performances de localisation sont
comparables à celles des techniques SLAM (Simulta-
neous Localization And Mapping), corrigeant l’erreur
d’orientation initiale provenant de l’odométrie visuelle.
Nous avons ensuite employé la trajectoire provenant
de l’odométrie visuelle dans le cadre de la détection
de changement de voie. Cette indication est utile dans
pour les systèmes de navigation des véhicules. La
détection de changement de voie a été réalisée par
une somme cumulative et une technique d’ajustement
de courbe et obtient de très bon taux de réussite.
Des perspectives de recherche sur la stratégie de
détection sont proposées pour déterminer la voie ini-
tiale du véhicule.
En conclusion, les résultats obtenus lors de ces tra-
vaux montrent l’intérêt de l’utilisation de la trajectoire
provenant de l’odométrie visuelle comme source d’in-
formation pour la fusion de données à faible coût pour
la localisation des véhicules. Cette source d’informa-
tion provenant de la caméra est complémentaire aux
données d’images traitées qui pourront par ailleurs
être utilisées pour les différentes taches visée par les
systèmes d’aides à la conduite.
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Abstract : With the growing research on Advan-
ced Driver Assistance Systems (ADAS) for Intelligent
Transport Systems (ITS), accurate vehicle localization
plays an important role in intelligent vehicles. The Glo-
bal Positioning System (GPS) has been widely used
but its accuracy deteriorates and susceptible to po-
sitioning error due to factors such as the restricting
environments that results in signal weakening. This
problem can be addressed by integrating the GPS
data with additional information from other sensors.
Meanwhile, nowadays, we can find vehicles equipped
with sensors for ADAS applications. In this research,
fusion of GPS with visual odometry (VO) and the di-
gital map is proposed as a solution to localization im-
provement with low-cost data fusion.
From the published works on VO, it is interesting to
know how the generated trajectory can further im-
prove vehicle localization. By integrating the VO out-
put with GPS and OpenStreetMap (OSM) data, esti-
mates of vehicle position on the map can be obtained.
The lateral positioning error is reduced by utilizing
lane distribution information provided by OSM while
the longitudinal positioning is optimized with curve
matching between VO trajectory trail and segmented
roads.
To observe the system robustness, the method was
validated with KITTI datasets tested with different

common GPS noise. Several published VO methods
were also used to compare the improvement level af-
ter data fusion. Validation results show that the posi-
tioning accuracy achieved significant improvement es-
pecially for the longitudinal error with curve matching
technique. The localization performance is on par
with Simultaneous Localization and Mapping (SLAM)
SLAM techniques despite the drift in VO trajectory in-
put.
The research on the employability of VO trajectory is
extended for a deterministic task in lane-change de-
tection. This is to assist the routing service for lane-
level direction in navigation. The lane-change detec-
tion was conducted by CUSUM and curve fitting tech-
nique that resulted in 100% successful detection for
stereo VO. Further study for the detection strategy is
however required to obtain the current true lane of the
vehicle for lane-level accurate localization.
With the results obtained from the proposed low-cost
data fusion for localization, we see a bright prospect
of utilizing VO trajectory with information from OSM to
improve the performance. In addition, to obtain VO tra-
jectory, the camera mounted on the vehicle can also
be used for other image processing applications to
complement the system. This research will continue to
develop with future works concluded in the last chap-
ter of this thesis.
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