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Introduction 

The high velocity oxygen fuel (HVOF) spray technique is performed by confining combustion 

gases and particles within a high-pressure chamber to produce a high-velocity jet. This technique has 

been extensively developed and is now widely used in all major engineering sectors. The HVOF spray 

process is capable of depositing a high-quality, high-performance HVOF coating that satisfies various 

industrial applications. In the HVOF spray process, coating properties are sensitive to the 

characteristics of in-flight particles, which are mainly determined by process parameters. Obtaining a 

comprehensive multi-physical model or analysis of the HVOF process remains challenging because of 

the complex chemical and thermodynamic reactions that occur during the deposition procedure. 

However, although industrial automation has transformed thermal spraying into a highly automated 

process, modern thermal spraying applications must also be intelligent. Thus, the development of a 

central automated system to research and analyze the correlation between operating parameters, 

behaviors of in-flight particles, and coating properties would yield particularly interesting results, as 

this could then predict coating properties that correlate with predefined parameters. 

This background has driven researchers to develop a robust methodology that uses artificial 

neural networks (ANN) to solve issues related to HVOF-sprayed NiCr-Cr3C2 coatings under different 

operating parameters. Moreover, ANN models can be programmed and integrated into the HVOF 

spray control system, which subsequently creates an intelligent control system. 

This dissertation is organized into six chapters, as follows: 

 Chapter 1 presents a bibliographic study of thermal spray technologies, the measurement of 

in-flight particles’ behaviors during thermal spray processes, and HVOF spray optimization 

methods. This chapter focuses specifically on the application of ANN models in thermal spray 

technologies. Additionally, a mean impact value (MIV)-based analysis is employed to 

quantitatively explore the relative importance of each input variable in an ANN model. This 

demonstrates the necessity of applying ANN models to HVOF spray processes while also 

highlighting the objectives and strategies of this work. 

 Chapter 2 explores the details and setup of HVOF processes, including the feedstock, substrates, 
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characterization method of in-flight particles, coatings’ characterization methods and 

performance evaluation methods of coatings as well as the environment to implement ANN 

models. 

 Chapter 3 outlines the 40 sets of HVOF spray experiments and coating property tests that were 

conducted for analysis and to compile the data set for ANN models. The relationship between 

process parameters, behaviors of the in-flight particles, and coating properties were investigated 

from an intuitive point of view, which provided a preliminary understanding of the HVOF 

process and sprayed coatings. This revealed a tendency for the temperature to increase as the O2 

flow rate increases, as well as a trend for the temperature to initially increase and then decrease 

as the stand-off distance (SOD) increases. The increased O2 flow rate increases the velocity of the 

in-flight particles. However, with the increase of SOD, the effect of the O2 flow rate on the 

velocity of the in-flight particles gradually disappears. The velocity decreases progressively as 

SOD increases. Furthermore, both the velocity and temperature of in-flight particles have an 

impact on coating properties. Although the effect of process parameters on the behaviors of 

in-flight particles, and thus on the coating properties, can be generally summarized, it is 

impossible to establish direct connections between them. Thus, as a more precise prediction is 

necessary, the following chapters introduce machine learning methods, particularly ANN models, 

to address this challenge. 

 Chapter 4 describes the different machine learning methods that were employed and compared to 

demonstrate the ANN model’s superiority and necessity. Then, two ANN models were developed 

and implemented to predict coatings’ performance (in terms of microhardness, porosity, and wear 

rate) and to analyze the influence of operating parameters (SOD, oxygen flow rate, and fuel flow 

rate), while considering intermediate variables (the temperature and velocity of in-flight 

particles). A set of additional experiments were also conducted to validate the reliability and 

accuracy of the ANN models. The chapter concludes that the implicit models that have been 

developed can satisfy the prediction requirements. Clarifying the interrelationships between the 

spraying conditions, behaviors of in-flight particles, and the final coating performances will 

provide better control of HVOF-sprayed coatings. The MIV-based analysis was also conducted to 

evaluate the factors’ importance. The results indicate a number of important sequences of the 
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factors, including for the velocity of the in-flight particles (SOD > O2 flow rate > CH4 flow rate), 

temperature (SOD > CH4 flow rate > O2 flow rate), the coating’s microhardness (V > T), and the 

coating’s porosity and wear rate (T > V). These well-trained ANN models were programmed and 

integrated into the HVOF spray’s control system, in order to create the intelligent control system 

that is the focus of the next chapter. 

 Chapter 5 focuses on the development of the HVOF spray’s control system and the integration of 

the packaged ANN models, which are utilized to realize an intelligent control system. First, the 

chapter presents a detailed introduction to the hardware and software architectures, the principle, 

and the programming language. This provides the foundation for developing the control system. 

The operation is clearly explained, ensuring the corrected operation of the system. In addition, a 

data-recording system was programmed, which runs in the background to monitor the spray 

process and observe potential fluctuations. For the integration of the ANN models, the 

information that is stored in the two packaged ANN models was first extracted in MATLAB. This 

information, together with the specific functions used, helped to encode the ANN models using 

MATLAB code. Finally, the ANN models were programmed and integrated into the HVOF 

spray’s control system. With this system, the temperature and velocity of in-flight particles can be 

calculated by entering process parameters and subsequently obtaining specific coating properties. 

This integration provides a preliminary idea for the construction of an intelligent control system 

for the HVOF spray process, which can be applied to other thermal spray technologies. 

 Chapter 6 presents this work’s conclusions and perspectives. 

Overall, this work not only analyzes the relationship between process parameters, behaviors of 

in-flight particles, and coating properties, but also provides a prediction method for the HVOF spray 

process and HVOF-sprayed coatings that utilizes optimized and well-trained ANN models. In addition, 

the work also suggests a prototype for an intelligent control system for the HVOF spray process. 

Therefore, further integrating an ANN model into the HVOF spray process is warranted and should be 

more thoroughly investigated. 
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1.1. Introduction to thermal spray technology 

1.1.1. The principle of thermal spray technologies 

Thermal spraying processes are a group of coating technologies, through which a stream of 

finely divided metallic and nonmetallic particles are deposited, in a molten or semi-molten condition, 

onto a prepared substrate to form a coating [1]. 

The core device of the thermal spraying process is the thermal spray torch, which is used to heat 

the feedstock to a molten or semi-molten state and to accelerate it towards the substrates. This 

ultimately forms featured morphologies known as “splats” or “lamellar structures” [1-3]. The heat 

source can be a combustion flame, a plasma jet, or an arc struck between two consumable wires. The 

general schematic of the thermal spraying process is shown in Figure 1.1. The final coatings can be 

built-up by depositing the feedstock across a certain number of passes. The heated and accelerated 

droplets or particles are then able to perform three actions: they can plastically deform or rapidly cool 

into thin lamellae on impact, they can adhere to the surface, and they can overlap and interlock into a 

consolidated coating during the rapid solidification process [2]. A more detailed outline of the 

interaction between particles and substrates is presented in Figure 1.2. In order to improve mechanical 

bonding between splats and substrates, the substrates are normally pre-treated by sandblasting, as this 

increases their surface roughness. The substrate can be kept at a relatively low temperature, using 

specific cooling devices. The number of deposition passes depends on the required coating thickness. 

 

Figure 1.1 Schematic of the thermal spraying process [4] 
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Figure 1.2 Principle for the formation of coatings by thermal spray processes [5] 

1.1.2. Development of thermal spray technologies 

The Swiss inventor Max Ulrich Schoop is believed to be the “father” of thermal spraying 

technology, when he established thermal spraying in early 1900s [6]. During his early experiments, 

low melting point metals were atomized by pouring a stream of molten metal into a jet of 

high-pressure gas [7]. In its infancy, thermal spraying technology was limited to low melting point 

materials, such as lead, tin, and zinc, but this subsequently extended to steels. Wire flame spraying 

was developed to avoid un-melted particles in the spray jet, as the wire feedstock was drawn by drive 

rolls into the rear of the gun. The melting temperature for materials was initially limited to 1,500–

1,600℃ [8]. Until the 1950s, thermal spray technology essentially consisted of flame spraying. Wire 

and powder flame sprays were the principle thermal sprays in the process, between the 1910s and 

1950s. Materials’ reclamation was the key driver in these early years, particularly that of large 

industrial machinery and the cathode corrosion protection of very large steel structures. 

In the mid-1950s, the first plasma spray torch was developed by the Thermal Dynamics 

Corporation (Lebanon, NH), which was followed by developments by Metco and Plasmadyne [1]. 

These torches form the basis of many of the torches that remain in use today. Thereafter, plasma 

spraying became an attractive option for the aeronautics industry and later for the aircraft industry. 

The thermal plasma heat source (the direct current [DC] arc or the radio frequency [RF] discharge), 

which have temperatures of over 8,000 K at atmospheric pressure, dramatically extended the 

technology’s possibilities to include any material that could melt (i.e., the difference between a 

material’s melting and decomposition or evaporation temperatures was preferably greater than 300 K) 

[9]. Roughly a decade later, soft vacuum plasma spraying was introduced in to the industry, which 

made it possible to suppress some important drawbacks of atmospheric plasma spraying (APS) [10]. 
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The emergence of these developments led to the thermal spray becoming a process of choice in the 

1970s and 1980s, particularly for component protection and performance enhancement in the 

aero-engine industry. 

In the early 1980s the high velocity oxy-fuel flame (HVOF) (Jet Kote, Doloro-Stellite, Goshen, 

IN) was introduced by Browning and Witfield [8, 11], who used rocket engine technologies to 

develop a new way of spraying metal powders. Different kinds of HVOF torches then became 

available, whose combustion pressure increased from 0.4 to 1.35 MPa. Furthermore, values of up to 4 

MPa are expected [12]. High velocity air fuel (HVAF) torches were also designed, through which 

pressures of 0.8 MPa were achieved, with high-inlet air pressure (1 MPa) providing most of the 

burner cooling (i.e., only 10% of the energy was lost in the cooling system) [13]. The HVOF process 

can increase chamber pressure, theoretically achieve higher particle velocity, and therefore obtain 

desired coatings, particularly metallic and cermet coatings. These coatings have long been the goal of 

all other coating processes, as they are higher density, have improved corrosion barrier, higher 

hardness, better wear resistance, higher bonding and cohesive strength, almost no oxidation, thicker 

coatings, and smoother as-sprayed surfaces [8]. 

Figure 1.3 illustrates the history of the thermal spray and improvements in its performance 

through new developments. Additionally, after decades of development, thermal spray technologies 

have developed in various categories. 

 

Figure 1.3 Milestones in the development of the thermal spray industry [1] 
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1.1.3. Classification of thermal spray technologies 

Thermal spray coatings can be formed in two ways: through the deposition of molten or 

semi-molten particles that have passed through heat sources, such as in a flame spray, plasma spray, 

HVOF, HVAF, or wire arc spray; and through the deposition of ductile metallic or plastic particles in a 

solid state (cold gas spray [CGS] gun), or metallic or ceramic particles in a plastic state (detonation 

gun [D-gun]) [14]. Thermal spraying processes can be classified as either combustion, electric arc, or 

kinetic, according to the source of energy, as shown in Figure 1.4 [2, 15]. For the kinetic thermal 

spray (also known as a “cold spray”), coatings are formed through the plastic deformation of ductile 

metallic or alloyed powders, which is different from combustion spraying or electrical-discharge 

plasma spraying [1]. The following section will concentrate on the combustion spray and 

electrical-discharge thermal spray routes. 

 

Figure 1.4 Classification of thermal spray processes [15] 

Combustion spraying 

Conventional flame spraying is the oldest thermal spraying technology, which is characterized by 

low cost, high deposition rates and efficiencies, and relative ease of both operation and cost of 

equipment maintenance [16]. It is conducted at atmospheric pressure through the combustion of 

oxyacetylene mixtures to achieve a temperature of up to approximately 3,000 K. Flame temperatures 

and characteristics depend on the oxygen-to-fuel gas ratio and pressure. The corresponding flame 

velocities are below 100 m/s, and a wide variety of feedstock (such as metals and polymers) can be 

deposited in rods, wires, or powder to form the coatings [1, 16]. The flame spraying process, using 

wires and powders as feedstock, is illustrated in Figure 1.5 [16]. 
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Figure 1.5 Schematic diagram of (A) wire flame and (B) powder flame processes [16] 

High velocity flame spraying (HVFS) involves several different combustion flame spray 

processes, during which a gaseous or liquid fuel is combusted in the combustion chamber of the spray 

gun, with oxygen or air as the oxidizer. This involves techniques such as HVOF spraying, 

high-pressure high velocity oxygen fuel (HP-HVOF) spraying, HVAF spraying, high velocity 

impact-fusion spraying, and other novel techniques (e.g., the warm spraying process) [17]. All these 

techniques are similar, but they differ from each other in terms of gun design, type of fuel (gas or 

liquid), type of oxidizer (oxygen or air), particle temperature and velocities, and in other less 

important characteristics. Both HVOF and HVAF spraying processes employ combustion energy from 

gas or liquid fuel to heat the injected powders, in which a Laval-type nozzle is used to achieve high 

gas velocity. The usage of air instead of oxygen means that HVAF generates a lower gas temperature 

and higher gas velocities, compared to HVOF [1, 16]. In addition, the D-gun can be considered an 

intermittent HVOF process, with the difference that the explosion of fuel and oxygen creates a 

detonation-pressure wave, instead of the continuous steady state characteristic of the HVOF process 

[15]. All of the HVOF, HVAF, and D-gun routes focus on the high speed of particles and a stronger 

impact on the substrate, in order to form reasonably dense coatings. Figure 1.6 schematically presents 

an HVOF spray gun [16], which consists of a fuel gas/oxygen mixer, a combustion chamber, and an 

expansion nozzle. In modern HVOF guns, the expansion nozzle is usually a converging/diverging 

de-Laval type nozzle. Such nozzles lead to high gas velocities, which in turn accelerate the powder 

particles to very high velocities in the order of 600–800 m/s [17]. 
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Figure 1.6 Schematic presentation of an HVOF spray torch [16] 

Electrical-discharge thermal spray 

The electrical-discharge thermal spray process also employs electrical energy to heat the 

feedstock, either in the form of an arc or plasma, as illustrated in Figure 1.4. Based on the different 

plasma types, the plasma spray involves both DC and RF inductively coupled plasma. 

In DC-plasma spraying, an electric arc generates plasma within a plasma torch. The torch is 

mainly comprised of a tungsten cathode and a cylindrical copper anode as the nozzle, which are 

cooled by water during deposition. The plasma gas is injected at the base of the cathode, heated by the 

arc, and exits the nozzle in the form of a high-temperature, high-velocity jet. The normal working 

gases for DC-plasma spray are Ar–H2, Ar–He–H2, and N2–H2 mixtures, which result in a core 

temperature as high as 15,000 K inside the plasma plume at the nozzle exit [1]. Figure 1.7 is a 

schematic diagram of the DC-plasma spraying route. When the deposition procedure is operated under 

atmospheric pressure, the process is commonly called APS. When under soft vacuum conditions, this 

is commonly referred to as vacuum plasma spraying (VPS), which is able to efficiently avoid the 

formation of secondary phases in the coatings. Since the vacuum system is expensive, the gas shroud 

system has been also introduced in to the APS process, where an inter gas from a shroud system 

restricts the amount of entrained air and oxygen [15]. Generally, APS is used for depositing 

ceramic-based coatings, due to the high temperature of the plasma plume, and the feedstock are 

normally in powder-form and in tens of micrometers. More recently, solution or suspension precursors 

have also been used to deposit finely structured films. 
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Another type of plasma source, which is generated though the electromagnetic coupling of 

energy into the discharge cavity, is RF inductively coupled plasma [1]. Similar to the DC-plasma 

spray process, the deposition atmosphere can be adjusted according to the requirements of the 

coatings. Compared to DC-plasma spraying, the greatest advantage of RF inductively coupled plasma 

is that it is adept at melting larger particles in materials of low thermal conductivity [1]. 

 

Figure 1.7 Schematic diagram of DC-plasma spraying process [16] 

The wire arc spray process is also known as the twin-wire arc process, since the arc is struck 

between two continuously advancing wires, one of which is the cathode and the other the anode. 

Feedstock in wire form is continuously fed into the arc zone for melting and the subsequent droplets 

are further atomized and accelerated by the carrier gas. Arc spraying is used to apply only electrically 

conductive materials, including different metals, metal alloys, and metal-metal oxide or metal-carbide 

mixtures (cord wires). This type of process is extensively employed for the protection of steel bridges 

[1, 16]. Figure 1.8 schematically presents an electric arc two-wire spray gun. 

 
Figure 1.8 Schematic diagram of electric arc wire spray process [16] 
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1.1.4. HVOF thermal spray technology 

Introduction to the HVOF spray process 

Since first being introduced in the early 1980s, the HVOF spray technique has been extensively 

developed, compared to other thermal spray technologies, and it is now widely applied throughout all 

major engineering industry sectors. Indeed, different kinds of HVOF spray systems with different gun 

designs and capacities have been examined. Yet these are all based on the same fundamental 

principles. The HVOF spray process works by confining combustion gases and particles in a 

high-pressure chamber, in order to produce a high-velocity jet. As shown in Figure 1.9, oxygen and 

fuel gas or liquid, such as hydrogen, kerosene, propane, propylene, natural gas, ethylene, acetylene, or 

alcohol, are introduced into the combustion chamber and ignited. The combustion of the gases 

produces a high temperature and high pressure in the chamber, which causes the supersonic flow of 

the gases through the nozzle. After the powder particles are fed into the combustion chamber, they 

melt or partially melt there and during their flight through the nozzle. The feedstock powder can be 

fed into the system axially or radially, entrained into the high-velocity jet, and accelerated through the 

barrel to deposit onto a substrate [15]. 

 

Figure 1.9 Schematic of commercial high-pressure HVOF (JP5000) [18] 

Although this process benefits from a reasonable process temperature, the particle velocity on 

impact is very high. In the HVOF spray process, the flame temperature varies in the range of 2,700–

3,500 K, depending on the fuel, the fuel gas/oxygen ratio, and the gas pressure. Particles melt 

completely or only partially, depending on the flame temperature, particle dwell time, material 

melting point, and thermal conductivity [19]. As this uses a supersonic jet, which differentiates it from 

the conventional flame spray, the speed of particle impact on the substrate is much higher, resulting in 

improved coating characteristics. The mechanism differs from flame spraying because of an 
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expansion of the jet at the exit of the gun [16]. Different kinds of HVOF spray systems with different 

gun designs and capacities will be introduced in subsequent sections. 

Introduction to the HVOF spray system 

Various HVOF spray systems have been developed with different gun designs and capacities, all 

of which satisfy different industries requirements. Full HVOF spray systems consist of different units 

[20], including: gas supplies (fuel gas/liquid fuel, oxygen); air supply (compressed air); gas hoses; gas 

regulators for oxygen, fuel, and air (if used); rotameters or mass flow controllers for gas flow controls; 

flashback arrestors at the gun and regulators; HVOF spray torch composed of a torch body, gas mixer, 

combustion chamber, de-Laval nozzle, and gun cooling; powder feeding system; and a spray gun 

manipulator/robot (unless manually operated). 

These systems can be roughly divided into the first, second, and third generation. Jet Kote is the 

typical representative in first-generation guns [21], in which oxygen and gas are combusted in the 

combustion chamber (located in the vertical handle) and high-temperature gas (roughly 2,800℃) 

reaches the barrel through a ring of annular holes at a certain angle. The powder is fed into the center 

of the bore of the barrel axially, where the hot gas heats the powder and accelerates it out of the barrel. 

Both the combustion chamber and the barrel are water-cooled, as displayed in Figure 1.10. 

First-generation HVOF systems typically feature a relatively large combustion chamber and a straight 

nozzle. With this design maximum of 1 Mach (where gas velocity is related to the sonic speed), 

velocities can be produced. The temperature of the powder particles can be above 2,000℃. 

 

Figure 1.10 Schematic of Jet Kote II HVOF thermal spray gun and three main modeling steps 
[21] 
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In both first- and second-generation guns, the pressurized burning of gaseous fuel with oxygen is 

used to produce an exhaust jet that travels at a speed of around 2,000 m/s. The main fundamental 

difference between the first and second generation is the design of the nozzle. Second-generation guns, 

such as the Diamond Jet Standard, the Top Gun (Figure 1.11), and the continuous detonation system 

(CDS), are characterized by a de-Laval nozzle. The de-Laval nozzle enables over 1 Mach velocities at 

the diverging part of the nozzle. Under standard spray conditions, the systems are operated at a power 

level of about 100 kW and are capable of spraying about 2–3 kg/h of WC-Co powders [19]. 

 

Figure 1.11 Schematic of Top-Gun-G [22] 

The development of HVOF systems has aimed to reduce the temperature of particles and 

increase their velocity, which is shown in Figure 1.12 [1, 23]. Higher particle velocities were obtained 

using converging-diverging de-Laval type nozzle designs and higher gas pressures. Third-generation 

systems are used for power levels that range from 100–300 kW and for higher chamber pressures that 

range from 8 bars up to as much as 25 bars. This is because they are capable of spray rates of up to 

roughly 10 kg/h [19]. With these features, third-generation systems, such as the DJ2700 (Figure 1.13), 

DJ2800, and JP5000, accelerate spray particles to velocities of about 650 m/s. 

Table 1.1 summarizes the key differences between generations [19]. HVOF process development 

has seen a trend towards higher gas pressures, faster particle velocities, and lower particle 

temperatures. This has a clear influence over the coating microstructure, where the amount of 

oxidation in the lamella boundary is decreased and the flattening rate is increased, and the coating 

density is subsequently improved from generation to generation [19]. A further reduction in particle 

temperatures, below the melting temperatures of metals, requires a substantial increase in velocity, 

which can only be realized by optimizing the expansion ratio in the diverging nozzle section and by 
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using higher chamber pressures through the injection of noncombustible gases [1]. 

 

Figure 1.12 Particle temperatures and velocities obtained in different thermal spray processes, 
as measured for high-density materials. The arrow indicates the observed trend of recent 

developments (AS: powder flame spraying, FS: wire flame spraying, PS: air plasma spraying, 
VPS, CS: cold spray) [1, 23] 

 

 

Figure 1.13 Schematic of the Diamond Jet 2700 [24] 

 

Table 1.1 The differences between the three generations of HVOF systems [19] 

 

After years of evolution, HVOF spray processes are more capable of depositing HVOF coatings 

with high qualities and desired performances, which satisfies various industrial applications. 
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Performance of HVOF-sprayed coatings 

HVOF-sprayed coatings, such as WC-Co-based, NiCr-based, and Fe-based coatings, have been 

widely utilized to improve the surface quality and performance of metal parts for varied industrial 

applications, due to their excellent chemical and mechanical performance, which include high 

oxidation resistance, corrosion resistance, and wear resistance. With its high flexibility and cost 

effectiveness, the HVOF spray process is regarded as one of the most efficient techniques for 

depositing high-performance coatings. The main features of the HVOF process are its ability to 

produce dense coatings with low amounts of degradation, the oxidation of metallic materials, and 

phase transformations. As such, this is widely used to produce cermet and metal coatings, in order to 

improve the properties of substrates. Moreover, it has also been demonstrated that the HVOF process 

is able to deposit dense ceramic coatings. Table 1.2 lists part of the HVOF-sprayed coatings, along 

with their applications and relevant properties. Currently, HVOF-sprayed WC- and Cr3C2-based 

coatings are extensively considered to be an alternative to electrolytic hard chrome (EHC) coatings, as 

they have a reduced environmental impact and lower overall costs than those associated with the EHC 

process. In addition, HVOF-sprayed coatings exhibit higher corrosion resistance, higher powder 

deposition efficiency, lower density, and lower post-processing costs, compared to EHC coatings [25]. 

Different kinds of HVOF-sprayed coatings can be employed for various applications that have 

anti-wear, anti-erosion, anti-corrosion, or anti-oxidation requirements, either at room temperature or a 

high temperature. The HVOF spray process can also be used to deposit hydroxyapatite (HA) coatings, 

which satisfies biomedical applications [26, 27]. 

The NiCr-Cr3C2 powder has been selected as the feedstock for HVOF spray in this work because 

this is a typical feedstock for the HVOF spray. The coatings’ porosity, microhardness, and wear 

behaviors have been subsequently evaluated and studied. Furthermore, as previously discussed in 

Section 1.1.4.1, the behaviors exerted by in-flight particles greatly impact the coating’s performances, 

which makes it beneficial to monitor and control the behaviors of in-flight particles, in order to better 

control the coatings’ properties. 
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Table 1.2 Part of the HVOF-sprayed coatings, as well as their applications and relevant 

properties 

Material Properties Applications Reference 

WC/Co(Cr) Wear resistance, erosion wear 

resistance, high temperature wear 

resistance, cavitation erosion 

resistance, slurry erosion and 

corrosion resistance, etc. 

Airplane landing gear, turbine 

blades, diesel engines, machining 

cutters, mining tools, wear 

machine parts, fluid medium 

(such as pumps, valves and 

turbines), and carrier rollers, etc. 

[28-31] 

Cr3C2/NiCr Wear resistance, erosion–corrosion 

resistance, high temperature 

oxidation resistance, hot corrosion 

resistance, nonslip behavior, 

Impact wear resistance, etc. 

worm gears, tiller blades, 

hydraulic cylinders, flight decks, 

finned walls in fossil fuel power 

plants, etc. 

[32-36] 

WC/Ni(Cr3C2) Wear resistance, high temperature 

wear resistance, high temperature 

oxidation resistance, hot corrosion 

resistance, etc. 

gears for automotive and 

aerospace, power plant boilers 

, etc. 

[35, 37, 

38] 

NiCrBSi Wear resistance, corrosion 

resistance, hot corrosion resistance, 

etc. 

Rollers for printing machines, 

boiler tubes, worm gears for 

extrusion (rare) , etc. 

[39, 40] 

CoMoCrSi Wear resistance, high temperature 

wear resistance, corrosion and 

oxidation resistance, etc. 

Hardfacing of notches in jet 

engine turbine blades, tip shroud 

of turbine blade, etc. 

[41-43] 

Fe-based  Wear resistance, cavitation erosion 

resistance, corrosion resistance, 

etc. 

pumps, valves, turbines, ship 

propellers, pipes, etc. 

[44-46] 
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1.2. Control system and the behavior of in-flight particles  

Thermal spray technologies aim to produce coatings with the suitable properties and required 

performance for specific applications. In order to achieve this objective, a deeper understanding of the 

spray process as a whole is necessary. The starting material, spray process, and particle-substrate 

interactions all affect the formation of coatings with different microstructures, which subsequently 

affect the coating properties and, ultimately, the coating’s performance [19]. During the spray process, 

the characteristics of the in-flight particles are determined by thermal and kinetic exchanges between 

the thermal jet and the particles. The diagnosis will therefore be mainly based on the measurement of 

temperatures and the speeds of in-flight particles. 

1.2.1. Diagnostic tools for measuring the behaviors of in-flight particles 

The properties of coatings strongly depend on the molten state and velocity of the particles upon 

impact. As previously discussed in Section 1.1.4.2, the development of HVOF systems has aimed to 

reduce the temperature of particles and to increase their velocity. Modern HVOF spray guns usually 

use a converging/diverging de-Laval-type nozzle, which leads to high gas velocities and, in turn, the 

acceleration of the powder particles to very high velocities, in the order of 600–800 m/s [17]. For the 

temperature of in-flight particles, the flame temperature varies in the range of 2,700–3500 K, 

depending on the fuel, the fuel gas/oxygen ratio, and the gas pressure. This leads to a temperature of 

in-flight particles as high as 2,000℃ [1, 19, 23]. 

Two types of methods can be used to measure this speed: the probe method and the optical 

method. The first method, which includes a Pitot tube, is limited by the problems of holding these 

probes in a high-temperature environment and problems related to the introduction of disturbing 

elements in the flow, all of which make these techniques inappropriate for the HVOF spray process. 

Several measurement systems have been developed for the second optical method, which are based on 

different physical principles, such as laser Doppler velocimetry (LDV) and particle image velocimetry 

(PIV) [47]. 

Temperature diagnoses can be conducted by means of either expansion thermometers, or electric 

thermometers, or optical pyrometers. The diagnoses of the temperature of hot in-flight particles are 
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performed by optical pyrometer devices. The optical pyrometer is a method of measuring temperature 

based on the relationship between the temperature of an object and the optical radiation (infrared or 

visible) emitted by the object. Optical, photoelectric, or thermal sensors are used, as the optical 

pyrometer has the advantage of allowing the determination of a temperature without contact with the 

object. It is therefore an appropriate method for situations in which the experimental conditions do not 

allow the use of conventional thermometric sensors [48]. 

In order to better control the thermal spraying process and evaluate the on-line state of the key 

physical process variables, different sensing devices have been developed during the last decade. 

They are based on measuring techniques and monitor these characteristics. These devices have been 

designed to resist the harsh environment that exists in spray booths, and to return reliable information 

over time [8]. Currently, products are available that are based on the use of the charged coupled 

device (CCD) camera and based on the pyrometer: 

1) The DPV 2000 (Tecnar) is a robust, easy-to-use optical sensor that allows detection of the 

velocity of the in-flight particles by a time-of-flight technique, their temperature by a fast 

(100 ns) two-color pyrometer, and their diameter (starting from the thermal emission of the 

particles). An optical-fiber linear array, located in the same sensor head, is used to monitor 

the hot jet particles and to characterize the trajectories of the sprayed particles. The use of a 

CCD camera also enables the DPV to detect the position of particles [8, 48]. 

2) The Accuraspray (Tecnar) can continuously record average particle velocity and average 

particle temperature, as well as the position, width, maximum luminosity, and overall 

intensity of the spray plume. It is equipped with three sensor heads: “L” for a relatively 

low-temperature process (e.g., HVOF), “H” for high temperatures (e.g., plasma, combustion, 

and electric arc wire), and “Ti” for high-temperature processes that spray materials 

containing titanium oxide. The newest product (Accuraspray 4.0) can even be used to detect 

suspension spraying (plasma and HVOF) [49]. 

3) The SprayWatch (Oseir) can measure everything except particle size [50]. Their newest 

product (SprayWatch 4S) uses a novel, patented pyrometric filter design for repeatable 

temperature and particle measurement without frequent re-calibrations. Optics are adjusted 
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on the camera, which facilitates the diagnostics of a wide variety of processes, with the same 

system matching the measurement area to the plume width for best results [50]. 

4) The In-Flight Particle Pyrometer has a sensor head that forms a measurement volume of 5 

mm in diameter and approximately 50 mm long. This allows two-color pyrometry to 

determine the mean temperature of particles that cross the measurement volume [8, 51]. This 

has been used on NiAl in-flight particles in a plasma jet [52] and on alumina droplets 

resulting from an arc spray [53]. 

5) The Spray Deposit Control enables the calculation of velocity from the traces left by in-flight 

particles, using a CCD camera. It also enables measurement of the temperature of the coating 

and substrate during spraying, using a pyrometer. This system provides distribution of the 

heat flux that is associated with hot in-flight particles, and can deduce the thermal and 

quenching stresses (preheating, cooling, and during projection) [48, 54]. 

6) STRATONICS can measure the temperature of p in-flight articles, using a CCD camera and 

a two-color pyrometer. 

Table 1.3 lists some of the main parameters of commercial diagnostic tools that detect the 

characterization of in-flight particles. Selection of different diagnostic tools requires comprehensive 

consideration of their abilities and cost. This study has selected the Accuraspray-g3 to detect the 

characteristic of in-flight particles during the HVOF spray process, due to its cost and existing 

equipment available in the study’s laboratory. More details about this decision are given in the next 

section. 

Table 1.3 Some of the main parameters of commercial diagnostic tools 

Parameters DPV Evolution Accuraspray 4.0 SprayWatch 4s STRATONICS  

Temperature (℃) 

Precision (%) 

1000 to 4000 

2.5 

>1000 

3 

1000 to 4000 

- 

1200 to 2700 

1 

 

Velocity (m/s)  

Precision (%) 

5 to 1200 

0.5 

5 to 1200 

2 

1 to 2000 

- 

10 to 900 

- 
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Particle Size(μm) 

Precision (%) 

10 to 300 

5 to 7 

- 

- 

- 

- 

- 

- 

 

Plume intensity √ √ √ -  

Plume position √ √ √ -  

1.2.2. Introduction to the Accuraspray-g3 diagnostic tools 

The Accuraspray-g3 has been selected to detect the characteristics of in-flight particles during the 

HVOF spray process that is conducted in this study. Figure 1.14 displays the principle of the 

Accuraspray-g3. 

The Accuraspray-g3’s dual fiber optical device (1) “sees” the flow of particles at two different 

points along the spray stream (2). The signal from the detector (3) is delayed in time because it comes 

from the same particles that are detected by the detector (4), a few millimeters apart. Cross-correlation 

yields a very precise measurement of the time delay (5), from which the velocity can be calculated, 

since the gap between the measuring points is known and constant. 

The signals (7, 8) are filtered at two different wavelengths, allowing the mean particle 

temperature to be measured using the twin wavelength pyrometer principle. This assumes that the 

emissivity of the particles is the same for the two wavelengths. A value of the cross-correlation 

between 0 and 1 verifies the validity of the temperature measurement. A correlation threshold is 

typically set at 0.6, which ensures that both detectors (3, 4) see the same population of particles, and 

therefore that the twin wavelength pyrometer is working properly. 

The spray plume’s properties (i.e., width, position, and maximum luminosity) are measured from 

the digitized live video plume image that is recorded by the CCD camera (6). The spray plume’s 

optical intensity is measured at each point at a given stand-off along the “sampling line,” which 

obtains an intensity profile with a maximum value that is close to center plume. Integrating the total 

area under that curve results in a value, called intensity, which is proportional to the total optical 

energy that is radiated by the spray plume at that specific stand-off distance. Units are normalized 

intensity values that correspond to 100% of light intensity, which is just sufficient to nearly saturate 
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the CCD camera, when it is set to its minimum sensitivity (shutter speed 1/10,000s). Each CCD 

camera is calibrated in such a way that it returns the same intensity value when it is aimed at the exact 

light source. 

 

Figure 1.14 The principle of the Accuraspray-g3 

1.3. Optimization methods for HVOF spray 

HVOF spray is a very complex process, as a large variety of variables affect the deposit formation 

and, hence, the coating properties. These variables include the process parameters of the spray system 

(e.g., the flow rates of oxygen, fuel, and air, and the feed rate of powders), robot operating parameters 

(e.g., stand-off distance, spraying angle, and scanning step), feedstock powders properties (e.g., 

particle size and particle size distribution), and hardware characteristics (e.g., nozzle geometry). In the 

HVOF spray process, the powder particles experience very high speed and fast heating (up to its 

melting point or above). This high temperature and rapid reaction process may cause complex 

chemical and thermodynamic reactions, such as evaporation of the powder or some components of it, 

as well as dissolution and phase transformations [19]. Due to this complex nature of the HVOF 

technique, controlling and optimizing the process, in order to achieve the desired coating, is a highly 

challenging task. To cope with this challenge, different approaches (e.g., design of experiments [DOE], 

numerical simulation, and machine learning [ML]) have all been proposed. 
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1.3.1. Statistic optimization methods 

Statistical optimization methods have been widely employed to obtain a polynomial regression 

equation, which expresses the influence of process parameters on the response and to distinguish the 

major and minor factors. In terms of these kinds of statistic methods, DOE methods are widely 

employed, which include the Taguchi design method, analysis of variance (ANOVA), two-level 

factorial DOE, response surface modeling (RSM), and the analytic hierarchy process (AHP) method. 

The Taguchi method is the most frequently used, and this is often used together with statistical 

ANOVA. This method identifies the influence of process parameters on output response, using the 

minimum number of the experiment. Numerous applications of the Taguchi method have been 

employed in the preparation of HVOF-sprayed coatings, which have been reported in recent years. 

For example, L. Qiao et al. adjusted the three process parameters (stand-off distance, kerosene [fuel], 

and oxygen flow rate) to optimize coatings’ porosity, using the Taguchi design method [55]. Their 

results reveal that the important sequence of the spray parameters is kerosene flow > stand-off 

distance > oxygen flow rate. A similar method and analysis was conducted by Y. Qin et al., but with 

different feedstock. Their results show that the significance of spray parameters in terms of 

determining the porosity of the coatings is in the order of spray distance > oxygen flow > kerosene 

flow [56]. Considering the different spraying system, feedstock, and application, a study conducted by 

A. S. Praveen et al. demonstrates that the important sequence of the spray parameters, in order to 

obtain better erosion resistance of coatings, is stand-off distance > powder feed rate > fuel flow rate > 

oxygen flow rate [57]. S. Nourouzi et al. have also employed the Taguchi method to investigate the 

effect of the main process parameters on particle characteristics and residual stresses, concluding that 

the stand-off distance and Oxygen/Fuel (O/F) ratio are the most effective factors [58]. 

Although the Taguchi method is the most widely used, two-level factorial DOE and RSM are 

also frequently used [59-61]. For example, two-level factorial DOE, together with ANOVA, has been 

employed to determine preferred optimized settings to achieve high crystallinity and purity of HA 

coatings [59]. K. Murugan has studied the influence of process parameters on coatings’ hardness via 

RSM, summarizing that the oxygen flow rate has a predominating effect, followed by the fuel flow 

rate, powder feed rate, and then stand-off distance [62]. 

Though DOE optimization methods have been widely used to identify the sequence of 
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importance for variables in the HVOF spray process, they may not be able to achieve precise optimal 

parameters. This is because coating quality is usually influenced by a combined effect of several 

HVOF process parameters. 

1.3.2. Numerical simulation optimization methods 

The HVOF thermal spray process is extremely complex, with regards to its description in a 

theoretical model, since the process involves combustion, turbulence, compressible flow, 

multi-components, multiphase interactions, subsonic/supersonic transition, droplet deformation, and 

solidification. Mathematical/numerical modeling and simulation are also widely employed to simulate 

and control the spray process, as the fluid physics during the spraying procedure are difficult to 

research experimentally. The HVOF thermal spray process involves four main physical-chemical 

processes, which occur in the thermal and flow field [22]: 

I. The transformation of the gas’s chemical energy into thermal energy by fuel oxidation in 

the combustion chamber. 

II. The conversion of the gas flows’ thermal energy into kinetic energy by expansion 

through the nozzle, as well as the transfer of energy from the gas to the particles during 

this expansion process. 

III. The free jet flow field, whose flow patterns strongly depend on the difference between 

the pressure at the nozzle outlet and the atmospheric pressure. 

IV. When the coating is deposited, the particles’ kinetic and thermal energy are converted 

into the work of viscous deformation and surface energy. 

Various mathematical/numerical models have been constructed to study the complex flow 

physics, combustion chemistry, flame formation, and propagation involved in thermal spraying 

processes [63, 64]. The integral HVOF procedure, including the combustion processes, the heat-, mass, 

and momentum interactions between the flame, the suspension droplets (including vaporization), and 

the solid spray particles, has been modeled and analyzed by E. Dongmo, et. al [65]. E. Dongmo, et. al 

has also developed a 3D modeling and simulation approach to solve the two-phase supersonic, 

turbulent, and reacting flow, with under-expanded fluid conditions at the exit of the nozzle [22]. 
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Nevertheless, numerical modeling has difficulties modeling real behaviors, due to the complex 

multi-physical phenomenon that occurs during the thermal spray process. Furthermore, modeling is 

significantly dependent on the hardware characteristics, such as the nozzle geometry, which limits its 

promotion. 

1.3.3. ML optimization methods 

ML is the scientific study of algorithms and statistical models that computer systems use to 

perform specific tasks. This relies on patterns and inference, instead of explicit instructions [66]. ML 

algorithms can be classified into three main categories: supervised learning, unsupervised learning, 

and reinforced learning (all of which are outlined in Figure 1.15) [67]. This has been widely employed 

for various applications, parts of which are indicated in Figure 1.15. 

 

Figure 1.15 Machine learning algorithms [67] 

Recently, ML has also drawn considerable attention from the field of thermal spray technology, 

particularly the artificial neural network (ANN) model. An ANN model is a computing model that can 

self-regulate and fit various nonlinearities in a data series through training and learning, which results 

in obtaining high-quality and efficient optimal conditions for manufacturing processes [68].Therefore, 
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the ANN model is now increasingly employed to investigate the thermal spray process. 

Thermal spraying technology processes contain complex chemical and thermodynamic reactions, 

which need to be researched using a powerful computational model, such as the ANN model. 

However, it is difficult and expensive to capture sufficient datasets for thermal spraying processes and 

coatings, particularly in terms of collecting sufficient data about coating properties. Therefore, the 

application of the shallow ANN model, which normally contains less than three hidden layers to 

facilitate relatively less data applications, has also attracted increased attention in the field of the 

thermal spraying technique. 

The ANN model has been increasingly employed to investigate the thermal spray process, 

especially in the APS process. The initial idea for the neural network implementation of APS was 

presented by Einerson et al. [69]. Subsequently, many researchers have explored the applications of 

ANN models in the APS process. Significant works in this literature field are described in Table 1.4. 

S. Guessasma et al. have comprehensively investigated the relationships among APS process 

parameters, particle characterization, and coatings’ performance in the Al2O3–13wt% TiO2 feedstock. 

They examined the influence of APS processing parameters on in-flight particle characteristics in [70, 

71]. A detailed introduction to the construction and implementation of the ANN model was also 

presented in [72]. The optimization steps of an ANN model were discussed, considering different 

types of ANN architecture, learning paradigms, transfer function, performance function, and ANN 

structure [73]. Analysis and prediction of coatings’ properties and the deposit process was conducted, 

considering the impact of APS process parameters, such as coatings’ microstructure and hardness [74], 

young modulus, and interfacial toughness [75], as well as coatings’ porosity [76], deposit profile 

(footprints) [77], and heat flux during the process [78]. 

A. F. Kanta et al. implemented both the ANN model and fuzzy logic (FL) to predict coatings’ 

porosity [79] and in-flight particle characteristics [80], as a function of APS process parameters. They 

report that the ANN model is superior than that of FL, with regard to the prediction and simulation 

concept. Conversely, FL represents a better asset in the field of system control. Later, these authors 

established a coating’s structural control system that considers an optimized ANN model, in which 

process parameters were considered as output variables [81]. Finally, they developed an expert system 
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that allows full APS process control, on the basis of pre-defined rules, which combines the ANN 

model for prediction and FL operators for control [82]. 

In order to evaluate the network's performance for the APS process, T.A. Choudhury et al. 

provide a detailed illustration of the ANN model's design and network optimization procedures, as 

well as database handling, expansion steps, and analysis of the predicted values with respect to the 

experimental ones [83, 84]. These authors also used and optimized the ANN model to predict the 

output of in-flight particle characteristics for the APS process, from the power and injection 

parameters [85]. 

Other researchers have also undertaken attempts that apply ANN models to the APS process, as 

listed in Table 1.4. All of the literature indicates that the multilayer neural network structure, which 

features a back-propagation algorithm, is capable of modeling the APS process and of concurrently 

predicting in-flight particle characteristics. A shallow network, which contains hidden layers that are 

less than or equal to three, have also been widely applied. 

Table 1.4 Examples of ANN models used in APS 

Author Particle material Inputs Targets 

S. Guessasma 

et al. [71] 
Al2O3–13wt% 

TiO2 

Arc current intensity, stand-off 

distance, injector diameter, carried gas 

flow rate, H2 flow rate, and Ar flow 

rate 

Particle temperature, 

particle velocity, and 

particle diameter 

L. Wang et al. 

[86] 
WC-12%Co Arc current intensity, H2 flow rate, and 

Ar flow rate for model 1; Arc current 

intensity, H2 flow rate, Ar flow rate, 

particle temperature, and particle 

velocity for model 2 

Particle temperature 

and particle velocity 

for model 1; coating 

porosity and 

hardness for model 2 

A. F. Kanta et 

al. [79] 
Al2O3–13wt% 

TiO2 

Arc current intensity, total gas(H2 + 

Ar), and H2 content(H2/Ar) 

Coating porosity 
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M. D. Jean et 

al. [87] 
Zirconia Spraying layers, voltage, Arc current, 

travel speed, stand-off distance, powder 

feed rate, carried gas flow rate, and 

primary gas flow rate 

Wear volume 

T.A. 

Choudhury et 

al. [83] 

Data from Ref 

[71] 

Arc current intensity, Ar gas flow rate, 

H2 flow rate, carrier gas flow rate, 

stand-off distance, and injector diameter 

Particle velocity, 

particle temperature, 

and particle diameter 

S. Datta et al. 

[88] 
Ni–5wt% Al Primary gas flow rate, stand-off 

distance , powder flow rate, and arc 

current 

Thickness , porosity,  

and microhardness of 

the coatings 

Taikai LIU et 

al. [89] 
Al2O3–13wt% 

TiO2 

Particle temperature and particle 

velocity 

Coating porosity 

Chun-Ming 

Lin et al. [90] 
CoMoCrSi Spray distance, chamber pressure, 

current, Ar gas flow rate, and H2 gas 

flow rate 

Coating porosity 

A. H. 

Pakseresht et 

al. [91] 

Yttria-Stabilized 

Zirconia 

Input power, primary gas flow rate, 

stand-off distance, powder feed rate, 

and the carrier gas flow rate 

deposition efficiency, 

tensile bond strength, 

hardness, and surface 

roughness 

Most existing studies concentrate on the APS process, but increasing attention has also been 

given to other thermal spray technologies, albeit to a lesser extent. The APS technique has received 

the most attention, followed by HVOF spray. M. Cherigui et al. created two ANN models to research 

the magnetic properties of a HVOF-sprayed FeNb alloy: Model A was employed to relate process 

parameters to microstructure features, while Model B was used to relate process parameters to 

magnetic properties [92]. This study also explored the effect of HVOF process parameters on coating 

porosity and on the magnetic properties of FeNb coatings, using the ANN model, in [93]. R. 

Hamzaoui et al. have also studied the magnetic properties of Fe-Ni and Fe-Si alloys, using ANN 

models to research the correlation between process parameters in both milling and spraying 
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techniques, with respect to magnetic parameters [94]. G. Zhang et al. implemented an ANN model to 

predict the HVOF-sprayed NiCrAlY coating’s structural attributes (porosity, hardness) in terms of the 

function of the process parameters (oxygen/fuel gas stoichiometric ratio and stand-off distance) [95]. 

Spyros Kamnis et al. conducted an interesting study from the perspective of airborne acoustic 

emission during the HVOF spray process, using an ANN model, in order to emphasize the 

considerable influence of the spray distance and powder feed rate on coatings’ microhardness [96]. An 

ANN model has also been utilized to predict the rate of erosive wear for WC-CoCr coatings that are 

deposited by flame spray (FS) and HVOF, in research conducted by M. A. R. Mojena et. al. This 

study conclude that microhardness and fracture toughness work together to apply the greatest 

influence over the erosive rate, followed by porosity [97]. 

Limited research investigates the HVOF spray process by applying the ANN model. Thus, a 

comprehensive understanding of the relationships among HVOF process parameters, the behavior of 

in-flight particles, and coatings’ performance is needed, to thoroughly examine the HVOF process 

through an ANN methodology. Additionally, the relative importance of each input variable in the 

ANN model has seldom been studied for the thermal spray process. In this thesis, mean impact value 

(MIV)-based analysis is conducted to quantitatively explore the relative importance of each input 

variable for the improvement of the mechanical performance of coatings, as described in Section 1.5. 

1.4. Artificial intelligence 

Artificial intelligence (AI), an ever-evolving area of computer science, is devoted to production 

software that is capable of sophisticated and intelligent computations, similar to those that the human 

brain routinely performs. AI includes methods, tools, and systems that are dedicated to simulating 

human methods of logical and inductive knowledge acquisition, as well as reasoning of brain activity to 

solve problems [98]. Although AI is undoubtedly multifaceted, there are two main categories of AI 

developments. The first includes methods and systems that simulate human experience and draw 

conclusions from a set of rules, such as expert systems. The second includes systems that model the 

way the brain works; for example, ANNs [98]. 
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1.4.1. History of the artificial neural network 

ANNs have a long history, with two periods of inactivity. ANNs were first created by Warren 

McCulloch and Walter Pitts in 1943, who developed a computational model for neural networks that 

was based on algorithms called threshold logic [99]. This model paved the way for research’s split 

into two approaches: one focusing on biological processes and the other focusing on the application of 

neural networks to AI. 

Since their initial development, an increasing number of sophisticated concepts and related 

architectures have been created. For instance, D. O. Hebb created a learning hypothesis in the late 

1940s that is known as Hebbian learning, which is unsupervised learning based on the mechanism of 

neural plasticity [100]. This evolved into models for long-term potentiation, when researchers began 

applying these ideas to computational models. Various neural network computational machines were 

created for simulation [101, 102]. In a subsequent study, Rosenblatt created the first perceptron, an 

algorithm for pattern recognition. In his study, Rosenblatt described circuitry that is not in the basic 

perceptron, with the help of mathematical notation [103]. Later, in 1962, Wiesel developed the 

adaptive linear neuron (ADALINE)[104]. The first generation of neural networks was fundamentally 

limited, in terms of what these networks could learn to do. Research stagnated during the 1970s (the 

first period of inactivity), as critical focus turned to the “exclusive or” (XOR) problem [105]. Neural 

network research slowed until computers achieved far greater processing power. 

The following period focused on the emergence of more advanced neural networks, such as 

multilayer back-propagation neural networks, convolutional neural networks (CNNs), and long 

short-term memory (LSTMs) for recurrent neural networks (RNNs). A key trigger of this renewed 

interest in neural networks and learning was the back-propagation algorithm, which used 

back-propagation of the error signal to obtain derivatives for learning [106]. This distributed the error 

term back up through the layers by modifying the weights at each node. This, in turn, enabled the 

practical training of multilayer networks. During this second period of inactivity, the support vector 

machine (SVM), which is an extremely clever type of perceptron, was developed by Cortes and 

Vapnik [107]. It went on to gradually overtake neural networks. Therefore, many researchers turned 

their critical attention to researching the SVM, instead of neural networks with multiple adaptive 

hidden layers, since an SVM performs better with less computational time and training [106]. 
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The progress of graphics processing units (GPUs) and the storage of big data prompted renewed 

attention in neural networks. In 2006, Hinton et al. proposed a new training method (called 

layer-wise-greedy-learning), which marked the birth of deep learning techniques [108]. Generally 

speaking, the deep learning algorithm consists of a hierarchical architecture with many layers, each of 

which constitutes a nonlinear information processing unit. The reasons for deep learning’s popularity 

is twofold. From one perspective, the development of big data analysis techniques suggests that the 

overfitting problem in training data can be partially solved, while, conversely, the pre-training 

procedure that occurs before unsupervised learning assigns non-random initial values to the network. 

Therefore, a better local minimum can be reached after the training process and a faster converge rate 

can be achieved [109]. Until now, various deep neural networks have been developed, which can be 

classified into the following categories: restricted Boltzmann machines (RBMs), deep belief networks 

(DBNs), autoencoders (AEs) networks, and deep CNNs. In addition, deep probabilistic neural 

networks, deep fuzzy neural networks, and generative adversarial networks (GANs) can also be 

considered as other categories [105]. 

1.4.2. Principle of the artificial neural network 

ANNs are computational models that are inspired by, but not identical to, networks of biological 

neurons that constitute animal brains. As displayed in Figure 1.16, the dendrites act as the input vector, 

which permits the cell body (or soma) to take in signals from a large number of neighboring neurons. 

Axons carry signals from the neuron to other cells. The cell body, which acts as the summation 

function, processes the signals from the dendrites. The interaction of the cell body and the 

environment cause the neuron to pump either sodium or potassium in and out, increasing or 

decreasing the neuron’s electrical potential. Once the neuron’s electrical potential reaches a certain 

potential (a threshold), the neuron “fires,” creating an action potential that travels down the axons to 

the synapses and other neurons [110]. The action potential is created when the voltage across the cell 

membrane of the neuron becomes large enough to fire the cell, thus creating a spike through the axon 

to other neurons and cells. If the stimulus causing the buildup of voltage is low, then it will take a long 

time to fire the neuron. If it is high, the neuron fires much faster. 
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Figure 1.16 Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at 
axon terminals [111] 

Similarly, an ANN can be described as mapping an input space to an output space, based on a 

collection of operating elements called neurons (analogous to biological neurons) and connections 

called weights (analogous to synapses in a biological brain). During the action, the neurons send 

signals to other neurons by sending an action potential down the axon, which is modeled by a transfer 

function that mimics the firing rate of the neuron’s action potential. Different inputs to the neuron may 

have different levels of relevance, including whether the neuron should fire, which results in them 

having smaller or greater impact. This is realized by adjusting the weight. Therefore, the neuron can 

be regarded as a small computing engine that takes in inputs, processes them, and transmits an output. 

Figure 1.17 depicts an elementary neuron with R inputs 𝑝1 𝑝2  ⋯ 𝑝𝑅 , a corresponding transfer 

function f, and an output a. Each input is weighted with an appropriate w. The sum of the weighted 

inputs and the bias forms the input to the transfer function. The main function of bias is to provide 

every neuron with a trainable constant value (in addition to the normal inputs that the neuron receives). 

Neurons can use any differentiable transfer function to generate their output. The output of the neuron 

in Figure 1.17 can be given by: 

𝑎 = 𝑓(∑ 𝑤1,𝑖𝑝𝑖
𝑅
𝑖=1 + 𝑏)        Eq. (1.1) 
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Figure 1.17 The structure of an elementary artificial neuron with R inputs [112] 

The purpose of the transfer function is to introduce non-linearity into the output of a neuron. This 

is important because most real-world data is nonlinear, which means neurons need to learn these 

nonlinear representations. The different available transfer functions are depicted in Table 1.5; the 

Log-Sigmoid transfer function, the Tan-Sigmoid transfer function, and the linear transfer function are 

the most commonly used for multilayer networks. Sigmoid output neurons are often used for 

pattern-recognition problems, while linear output neurons are used for function-fitting problems. 

Table 1.5 Three different types of transfer function: step, sigmoid, and linear, in unipolar and 

bipolar formats [110] 

Name Value Representation 

Step function 𝑓(𝑢) = {
0, 𝑢 < 𝑢0

𝐿, 𝑢 ≥ 𝑢0
 

 

Bipolar step function 𝑓(𝑢) = {
−𝐿, 𝑢 < 𝑢0

𝐿, 𝑢 ≥ 𝑢0
 

 

Log-Sigmoid function 

(Logistic) 

𝑓(𝑢) =
𝐿

1 + 𝑒−𝑘(𝑢−𝑢0)
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Tan-Sigmoid function 

(Hyperbolic tangent) 

𝑓(𝑢) =
𝑒(𝑢−𝑢0) − 𝑒−(𝑢−𝑢0)

𝑒(𝑢−𝑢0) + 𝑒−(𝑢−𝑢0)
 

 

Linear threshold function 
𝑓(𝑢) = {

0, 𝑢 < 𝑢0

(𝑘(𝑢 − 𝑢0), 𝑢0 ≤ 𝑢 ≤ 𝑢1 
𝐿, 𝑢 > 𝑢1

 

 

Bipolar linear function 
𝑓(𝑢) = {

−𝐿, 𝑢 < 𝑢0

(𝑘(𝑢 − 𝑢0) − 𝐿, 𝑢0 ≤ 𝑢 ≤ 𝑢1 
𝐿, 𝑢 > 𝑢1

 

 

1.4.3. Feedforward neural network 

The feedforward neural network was the first and simplest type of artificial neural network ever 

to be devised [113]. This is an ANN in which connections between nodes do not form a cycle, which 

means that there are no cycles or loops in the network. Information only moves in a forward direction, 

flowing from the input nodes, through the hidden nodes (if any), to the output nodes, as displayed in 

Figure 1.18. The feedforward neural network can have a single-layer or multilayer structure, and the 

multilayer perceptron (MLP) is one of the most utilized feedforward ANN types for nonlinear 

function approximation tasks. This uses a variety of learning techniques, the most popular of which is 

back-propagation. 

 

Figure 1.18 Multilayer feedforward neural network [110] 
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The back-propagation algorithm, as a form of supervised training, is a particular application of 

the classical gradient-descendant optimization technique [114]. By applying a supervised learning 

method, the network must be provided with both sample inputs and experimental outputs. The 

predicted outputs are compared with the experimental outputs for given inputs. The back-propagation 

training algorithm takes a calculated error and adjusts the weights of the various layers backward from 

the output layer to the input layer, in order to reduce the value of error. Information is delivered to the 

output if it achieves the target; otherwise, it is backpropagated. The target value will only be achieved 

if the weighted sum meets the minimum threshold and hence feeds forward or back-propagates for 

further processing [115]. 

The multilayer feedforward neural network can be used for both function-fitting and 

pattern-recognition problems. With the addition of a tapped delay line, it can also be used for 

prediction problems. In this work, the MLP neural network, characterized by the back-propagation 

algorithm, has been chosen to analyze, predict, and optimize the HVOF spray process and 

HVOF-sprayed coatings. Details of this procedure to design an ANN model are presented in the 

following section. 

1.4.4. Procedure for designing an ANN model 

In this thesis, the MATLAB software has been selected to implement the design of the ANN 

model. The detailed workflow for designing a general neural network consists of seven primary steps, 

which can be summarized as: 

1. Collecting and preparing data; 

2. Creating the network; 

3. Configuring the network; 

4. Initializing the weights and biases; 

5. Training the network; 

6. Validating the network (post-training analysis); 

7. Applying the network. 
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Data collection and preparation 

The first step is to collect data, which is critical to successfully designing an ANN model, but 

which might occur outside the framework of designing an ANN model. Multilayer networks can be 

trained to perform well, within the range of inputs for which they have been trained. However, they are 

not able to accurately predict beyond this range. Therefore, it is essential that the collected data covers 

the range of inputs for which the network will be used. 

After the data has been collected, the normalization of the data should be carried out, as this will 

help improve the training efficiency of the neural network. Generally, both the input vectors and the 

target vectors need to be normalized, in order to avoid the calculation error related to different 

parameter magnitudes. Subsequently, the network output will also fall into a normalized range, which 

can then be reverse transformed back into the units of the original target data, when the network is 

applied in the field. Both the pre-processing block (which appears between the input and the first layer 

of the network) and the post-processing block (which appears between the last layer of the network 

and the output) should be considered, as displayed in Figure 1.19. The most common pre-processing 

and post-processing functions and their algorithms in the MATLAB software are listed in Table 1.6. 

 

Figure 1.19 The pre-processing and post-processing block of the network workflow [112] 

Subsequently, the dataset needs to be divided into three subsets: a training set, validation set, and 

test set. The training set is used to compute the gradient and to update the network weights and biases. 

During the initial stage of training, the error in the training and validation set normally decreases. 

However, the validation error typically begins to rise as the overfitting of the network occurs. 

Therefore, the error in the validation set is monitored during the training process, and the network 

weights and biases are saved at the minimum of the validation set error. The test set error is not used 

during the training. However, if the test set error reaches a minimum iteration number that is 
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significantly different from that of the validation set error, this might indicate a poor division of the 

dataset. Four functions for dividing the data, which are provided by MATLAB, are listed in Table 1.7. 

Table 1.6 The most common pre-processing and post-processing functions and their algorithms 

in MATLAB [112] 

Function Description 

mapminmax Normalize inputs/targets to fall in the range [−1, 1] 

mapstd Normalize inputs/targets to have zero mean and unity variance 

processpca Extract principal components from the input vector 

fixunknowns Process unknown inputs 

removeconstantrows Remove inputs/targets that are constant 

Table 1.7 Four functions for dividing data, which are provided in MATLAB [112] 

Function Description 

dividerand Divide the data randomly (default) 

divideblock Divide the data into contiguous blocks 

divideint Divide the data using an interleaved selection 

divideind Divide the data by index 

Creating and configuring the network 

In the second step, the network needs to be created and configured with appropriate parameters, 

which includes selecting the number of hidden layers and the number of neurons in each hidden layer, 

as well as choosing the training function and transfer function. 

For a multilayer feedforward network, more layers might learn complex relationships more 

quickly, whereas one hidden layer can produce excellent results for simple or linear problems. 

However, two hidden layers may also be considered, if the results of one are not adequate. The 

general suggestion is to start with two layers for most problems, which can then be increases to three 
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layers if the performance with two layers is not satisfactory. Increasing the number of neurons in the 

hidden layer increases the power of the network, but requires more computation and is more likely to 

produce overfitting. 

The selection of a suitable training function for a given problem depends on many factors, 

including the complexity of the problem, the number of data points in the training set, the number of 

weights and biases in the network, the error goal, and whether the network is being used for pattern 

recognition (discriminant analysis) or function approximation (regression) [112]. Varied training 

functions are provided for different problems in MATLAB. Table 1.8 outlines a part of the training 

function. The “trainlm” function, which performs better on function fitting (nonlinear regression) 

problems, is generally the fastest training function, but “trainbfg” is also distinctly fast. However, both 

of these functions tend to be less efficient for large networks (with thousands of weights), since they 

require more memory and more computation time. The “trainscg” and “trainrp” functions are usually 

chosen to train large networks and for pattern-recognition networks. 

Table 1.8 Part of the training function in MATLAB [112, 116] 

Function Description 

trainlm Levenberg-Marquardt back-propagation 

trainbfg BFGS quasi-Newton back-propagation 

trainbr Bayesian regularization back-propagation 

trainrp Resilient back-propagation 

traingdx Gradient descent with momentum and adaptive learning rate back-propagation 

trainscg Scaled conjugate gradient back-propagation 

Training the network and evaluating its performance 

The network is ready for training once the network is configured and the weights and biases are 

initialized. The training process involves tuning the values of the weights and biases of the network to 

optimize network performance. There are two different ways to perform this training process: the 

incremental mode and the batch mode. In the incremental mode, the gradient is computed and the 
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weights are updated after each input is applied to the network. In the batch mode, all inputs in the 

training set are applied to the network before the weights are updated. For most problems, batch 

training is significantly faster and produces smaller errors than incremental training, in a MATLAB 

environment. 

The network performance function is used to measure the network’s performance, parts of which 

are listed in Table 1.9. In MATLAB, the correct evaluation value R is an indication of the relationship 

between the outputs and targets. If R = 1, this indicates that there is an exact linear relationship 

between outputs and targets. If R is close to zero, there is no linear relationship between outputs and 

targets. Therefore, an ANN model with a higher value R is more capable of performing high-quality 

predictions. 

Table 1.9 Part of the network performance function in MATLAB [112] 

Name Description Function 

mse Mean squared normalized error performance 

function 
𝑚𝑠𝑒 =  

1

𝑁
∑(𝑡𝑖 − 𝑎𝑖)

2

𝑁

𝑖=1

 

mae Mean absolute error performance function 
𝑚𝑎𝑒 =  

1

𝑁
∑|𝑡𝑖 − 𝑎𝑖|

𝑁

𝑖=1

 

sse Sum squared error performance function 
𝑠𝑠𝑒 =  ∑(𝑡𝑖 − 𝑎𝑖)

2

𝑁

𝑖=1

 

sae Sum absolute error performance function 
𝑠𝑎𝑒 =  ∑|𝑡𝑖 − 𝑎𝑖|

𝑁

𝑖=1

 

, where 𝑡𝑖 is the target, 𝑎𝑖 is the network predicted result, and N is the number of datasets. 

Validation and application of the network 

The network’s performance can be checked and evaluated, in order to determine any necessary 

changes to the training process, the network architecture, or the datasets, all of which will improve the 

network’s accuracy. There are several approaches to improving the results in the MATLAB 

environment: 
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1. Re-initializing the network and training; 

2. Increasing the number of hidden neurons to provide the network with more flexibility; 

3. Trying different training functions; 

4. Enlarging the dataset. 

Once the network is trained and validated, the network can be used to calculate the network 

response to any input. However, it is important to note that each time a neural network is trained. This 

can result in a different solution, due to different initial weight and bias values and different divisions 

of data. Consequently, different neural networks that have been trained on the same problem can 

produce different outputs for the same input. Thus, retraining the network several times is suggested, 

in order to ensure strong neural network accuracy. 

1.5. MIV analysis approach 

It is important to introduce an appropriate method to analyze the significance of each input 

variable, which must take the error of the input variables into account. MIV-based analysis provides 

such a method, as it allows an ANN model to explore the relative importance of each input variable, 

which ultimately improves its prediction performance. 

The MIV method was first proposed by Dombi in the biomedical field. It is used to choose 

parameters or analyze independent variables that significantly impact dependent variables in an ANN 

[117]. This is currently widely employed to quantitatively feature analysis in ML applications [118, 

119]. The process of MIV-based analysis is as follows [120]: 

The first step is to obtained the trained ANN model with the input (𝑋) in the dataset, as shown in 

Eq. (1.2). 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑚
𝑥21

⋮
𝑥22 …
⋮ ⋱

𝑥2𝑚

⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

]        Eq. (1.2) 

, where n is the number of the input variables and m is the number of values of each variable. 

Then, the ith variable in 𝑋 is added and reduced by 10%, to form two new inputs, 𝑋𝑖(1) and 

𝑋𝑖(2), as displayed in Eq. (1.3–1.4). 
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𝑋𝑖(1) =  

[
 
 
 
 

𝑥11

⋮
𝑥𝑖1(1 + 10%)

⋮
𝑥𝑛1

𝑥12

⋮
𝑥𝑖2(1 + 10%)

⋮
𝑥𝑛2

…

…

…

𝑥1𝑚

⋮
𝑥𝑖𝑚(1 + 10%)

⋮
𝑥𝑛𝑚 ]

 
 
 
 

     Eq. (1.3) 

 

𝑋𝑖(2) =  

[
 
 
 
 

𝑥11

⋮
𝑥𝑖1(1 − 10%)

⋮
𝑥𝑛1

𝑥12

⋮
𝑥𝑖2(1 − 10%)

⋮
𝑥𝑛2

…

…

…

𝑥1𝑚

⋮
𝑥𝑖𝑚(1 − 10%)

⋮
𝑥𝑛𝑚 ]

 
 
 
 

      Eq. (1.4) 

Third, these two new inputs are used for simulation within the trained model. The simulated 

outputs, 𝑌𝑖(1) and 𝑌𝑖(2), which are based on 𝑋𝑖(1) and 𝑋𝑖(2), are obtained. The difference 

between 𝑌𝑖(1) and 𝑌𝑖(2) is calculated and defined as impact value 𝐼𝑖, as depicted in Eq. (1.5–1.7). 

𝑌𝑖(1) =  

[
 
 
 
 
𝑦11(1)

⋮
𝑦12(1)

⋮
⋯ 𝑦1𝑚(1)

⋮
𝑦𝑘1(1)

⋮
𝑦𝑘2(1) …

⋮ ⋱
𝑦𝑘𝑚(1)

⋮
𝑦𝑙1(1) 𝑦𝑙2(1) ⋯ 𝑦𝑙𝑚(1)]

 
 
 
 

         Eq. (1.5) 

 

𝑌𝑖(2) =  

[
 
 
 
 
𝑦11(2)

⋮
𝑦12(2)

⋮
⋯ 𝑦1𝑚(2)

⋮
𝑦𝑘1(2)

⋮
𝑦𝑘2(2) …

⋮ ⋱
𝑦𝑘𝑚(2)

⋮
𝑦𝑙1(2) 𝑦𝑙2(2) ⋯ 𝑦𝑙𝑚(2)]

 
 
 
 

         Eq. (1.6) 

𝐼𝑖 = 𝑌𝑖(2) − 𝑌𝑖(1)         Eq. (1.7) 

, where l is the number of the output variable. 

Therefore, the MIV of the ith input variable on the kth output variable could be calculated 

according to Eq. (1.8). The sequence of the input variables is sorted according to their absolute MIVs. 

𝑀𝐼𝑉𝑖(𝑘) =
1

𝑚
∑ (𝐼𝑖)𝑘𝑗

𝑚
𝑗=1          Eq. (1.8) 

The contribution rate to the kth output variable from the ith input variable can be further 

calculated as following [121]: 

𝐶𝑖(𝑘) =
|𝑀𝐼𝑉𝑖(𝑘)|

∑ |𝑀𝐼𝑉𝑖(𝑘)|𝑛
𝑖=1

∗ 100%        Eq. (1.9) 

Both the MIV and contribution rate (C) indicators can be applied to quantitatively characterize 
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the importance of the input variables. The higher the absolute MIV is, the more important the input 

variable will be. The C is derived from the MIV, in order to identify the contribution percentages of 

the input variables on the output variables. With these indicators, the ANN model can not only predict 

the outputs, but can also calculate the influence level of the input variables, which compensates for 

the deficiencies of the application of the ANN model in thermal spray technologies. 

1.6. Research objectives 

The above discussion highlights the need for a comprehensive understanding of the relationship 

among HVOF process parameters, the behavior of in-flight particles, and coatings’ performance. As a 

result, the present work focuses on thoroughly investigating the HVOF spray process, by applying 

ANN models. In addition, MIV-based analysis will be conducted to quantitatively explore the relative 

importance of each input variable, in order to improve the mechanical performance of the coatings. 

This dissertation is structured into four parts.  

 In the first part, a recompiled control system for the HVOF spray will be developed to control 

and record the spraying process. In this system, control systems for the CDS torch and Diamond Jet 

2700 torch will both be developed, taking different spraying requirements into consideration. This 

will also provide an interface to integrate ANN models into the HVOF control system, which will 

subsequently realize the “real-time” control of the spraying process. Experiments with varied process 

parameters will then be conducted, using this recompiled control system. The behaviors of in-flight 

particles will be monitored during the spraying process. Together with the coatings’ performance, all 

of this data will be recorded and collected for further analysis and research. 

In the second step, the behaviors of in-flight particles and the coatings’ properties will be 

analyzed from the perspective of the HVOF spray technology. As the coatings’ properties are sensitive 

to the behaviors of in-flight particles, which are mainly influenced by the processing parameters, it is 

useful to preliminarily analyze the relationship between them. 

Third, the detailed construction and optimization of ANN models will be presented. Two ANN 

models will be created, trained, and tested, in order to thoroughly examine the HVOF spray process 

and HVOF-sprayed coatings. The ANN1 model will be used to relate the behaviors of in-flight 
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particles to the process parameters. The ANN2 model will then be applied, in order to research the 

influence of process parameters on the coatings’ properties. Furthermore, MIV analysis will be 

conducted for both of the ANN models, in order to quantitatively analyze the significance of each 

input variable, taking the error of the input variables into account. 

Finally, an intelligent HVOF spray system, which integrates ANN models to process and control 

the coatings, which will be constructed and optimized to realize the “on-line” regulating and 

optimizing of the coatings’ quality. This system will be created based on the recompiled control 

HVOF system in the first step. In addition, this section will provide useful ideas about future 

constructions of an intelligent thermal spray system for other thermal spray technologies. 
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Introduction 

As discussed in Chapter 1, this present work thoroughly investigates the HVOF spray process by 

applying ANN models. Therefore, a series of physical experiments and characterizations need to be 

carried out in order to obtain data to implement ANN models. This section presents all relevant 

experimental equipment and characterized methods. First, a homemade HVOF control system is 

briefly introduced, which controls and records the HVOF process, and also integrates ANN models. 

Then, the details for elaborating HVOF sprayed coatings are given, including the setup of the HVOF 

spray, the selection of powders, and the preparation of substrates. In addition, the characterizations of 

in-flight particles and coatings’ performances are displayed separately. The environment for 

implementing ANN models is also been briefly introduced. Finally, a conclusion is given. 

2.1. Coatings elaborating via HVOF spray 

2.1.1. Setup of the HVOF spray process 

In order to control and record the HVOF process, a recompiled control system has been 

developed for the HVOF thermal spray process. This control system was programmed using the 

Programmable Logic Controller (PLC, B&R Industrial Automation GmbH, Eggelsberg, Austria), as 

shown in Figure 2.1. Both systems for controlling the CDS torch and Diamond-Jet 2701/2702 torch 

were developed and integrated into the same controller. Details about how the intelligent HVOF spray 

control system was constructed will be presented in Chapter 5. In addition to controlling the spray 

process, this also provides the interface that relates the relationships among the HVOF spray process 

parameters, behaviors of the in-flight particles, and coating properties. 
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Figure 2.1 Interface of the HVOF spray control system 

The recompiled control system enables the HVOF spray experiments to be carried out. The 

HVOF spray experiment was conducted using the experimental setup that is shown in Figure 2.2. The 

HVOF spray system consists of the commercial DJ-2701 hybrid gun (Sulzer-Metco, Westbury, NY) 

and the homemade recompiled control system as previously mentioned. Methane (CH4) was 

employed as the fuel gas to produce the flame, using as the heat source for the HVOF spray process. 

The hybrid gun was carried by a six-axis industrial robot (IRB2600-20 ABB, Switzerland), to control 

the moving trajectory and velocity of the depositing coatings, while also horizontally and vertically 

scanning the substrate surface. Multiple scans were adopted to produce suitable coatings. The 

feedstock was fed by the powder feeder. Characterizations of the in-flight particles were detected by 

the Accuraspray-g3 system. 
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Figure 2.2 Schematic diagram of the experimental setup 

2.1.2. Selection and treatment of powder 

The commercial Cr3C2-25(Ni20Cr) powder (METCO 81 VF-NS: Oerlikon Metco AG, Wohlen, 

Switzerland), with particle size ranges -45+5 μm, were used as feedstock powders in this study. These 

chromium carbide materials are blends of chromium carbide and nickel-chromium powders, the 

density of which is 7.04 g/cm3. The nickel-chromium alloy, with melting point of 1374 to 1420℃, 

serves as a matrix that improves overall coating integrity and corrosion resistance, while the 

chromium carbide constituent, with melting point of 1890℃, serves as a hard phase that assures wear 

resistance. The chemical composition of feedstock is given in Table 2.1 [1]. 

Table 2.1 Chemical composition of the feedstock powder 

Product Nominal chemistry Weight percent (nominal) 

Cr Ni C Other (max) 

Metco 81VF-NS Cr3C2-25(Ni20Cr) Balance 18.75 9.75 2.25 

The feedstock’s morphology was captured by a scanning electron microscope (SEM, 

JSM-5800LV, JEOL) with a secondary electronic mode, which is presented in Figure 2.3 (a). This also 

shows that the feedstock contains a mixture of fine and coarse particles. The size distribution was 

measured by a laser diffraction particle size measuring instrument (Mastersizer 2000, Malvern 

Instruments Ltd). This is presented in Figure 2.3 (b), which indicates that the particle size featured is 

D10 = 5 μm, D50 = 22.6 μm, and D90 = 45 μm. 
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Figure 2.3 The feedstock’s morphology (a) and diameter distribution (b) 

2.1.3. Selection and treatment of substrate 

Coatings were sprayed on 316L stainless steel substrates (Ø25 mm×10 mm), which originated 

from a cylinder bar (Ø25 mm×3000m) that had undergone cutting and turning procedures. The 

substrates had been grit-blasted and then ultrasonically cleaned in ethanol for ten minutes, before 

spraying. The roughness of the substrate’s surface was about Ra = 5.0μm. 

2.2. Characterization of in-flight particles 

During the HVOF spray process, the behaviors of in-flight particles were observed and recorded. 

A commercial diagnostic system, Accuraspray-g3 (Tecnar, St-Bruno, PQ, Canada), was employed to 

capture the average velocity and temperature of the in-flight particles. The sensor was oriented 

perpendicularly to the spray stream and placed at a laterally distance of 20cm from the spray stream, 

and with an axial distance of stand-off distance from the torch outlet, as shown in Figure 2.4. The 

particle surface temperature measurement is based on the twin wavelength pyrometer principle. The 

particle flying velocity was detected by a dual fiber optical device. 
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Figure 2.4 Installation of Accuraspray-g3 sensor 

2.3. Characterization of coatings 

After the HVOF spray process, the coatings were treated and their properties were characterized. 

From the perspective of this work’s materials science and research requirements, the morphologies, 

phase compositions, microhardness, and wear resistance were observed and measured. 

2.3.1. Preparation of samples 

Both the coatings’ surface and cross section need to be characterized for subsequent performance 

characterization. The samples were prepared with the sequential grinding procedure, with P220 SiC 

paper and MD-Largo disc, and were then polished with 3 μm diamond suspensions and 0.04 μm 

non-drying colloidal silica suspensions. This pre-treatment was applied to all the samples, in order to 

test porosity, microhardness, and wear test. 

2.3.2. Observation of the morphologies of coatings 

In order to calculate the porosity of coatings, the cross-sectional microstructure of prepared 

coatings was examined by the SEM with a secondary electronic mode. More than 15 consecutive 

pictures were captured and an average value was calculated using imaging software (Image J). 

2.3.3. Determination of the phase compositions 

The phase compositions of the films were determined by X-ray diffraction (XRD, Bruker AXS D8 

focus, Germany) with a cobalt anticathode (λ = 1.78897 Å) at 35 kV, 40 mA. The fast-scanning speed of 

0.1o/s was used to determine the phase composition, to calculate the relative intensities of the different 
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diffraction peaks, and to evaluate the crystal size. 

2.3.4. Measurement of the microhardness 

The microhardness of the coatings was measured on the coating’s cross-section by a Vickers 

microhardness indenter (Leiz-Wetzlar, Germany), with a load of 300 gf (i.e., 2.94 N) and a dwelling 

time of 25 s. Twenty indentations were randomly measured, which subsequently gave an average 

microhardness value for each coating.. 

2.3.5. Abrasive test of coatings 

Dry sliding wear tests were carried out in a CSEM tribometer (Switzerland), which had a 

ball-on-disc configuration, as shown in Figure 2.5 (a). The tests were performed in an atmospheric 

environment with a temperature of 15-20℃ and humidity of 40–50%. An Al2O3 ball (6 mm diameter) 

was employed as the counterpart material and was cleaned with alcohol before the test. This was fixed 

on the stationary shaft, while the sample was mounted on the rotating shaft. The test was then 

conducted at the same sliding condition with a normal load (FN) of 5 N, a rotation radius (R) of 7 mm, 

a linear rotation speed (v) of 10 mm/s, and a sliding distance (S) of 500 m, as displayed in Figure 2.5 

(b). An example of the sample mounted on the fixture is shown in Figure 2.5 (c). 

 

Figure 2.5 Equipment setup of ball-on-disc CSEM Tribometer (a), schematic diagram (b), and 
physical sample (c) 

The cross-sectional profiles of the worn track were measured using a profilometer (Altisurf 500, 

France). At least ten profiles were conducted, in order to obtain an average wear volume. Then, the 

wear rate of the samples, which indicates the amount of material removed from the surface, was used 
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to evaluate the wear resistance of the coatings. This is expressed by: 

𝐾 =
∆𝑉

𝑆𝐹𝑁
          Eq. (2.1) 

, where ∆𝑉is the volume loss of the material [mm3], S is the sliding distance [m], and 𝐹𝑁 is the 

applied normal load [N]. 

2.4. Environment for implementing ANN models 

In this work, MATLAB software was chosen to design, train, and test the ANN models. 

MATLAB is an advanced technical computing language and interactive environment, which can be 

used for algorithm development, data visualization, data analysis, and numerical computing. In 

addition to common functions, such as matrix operations and drawing functions/data images, 

MATLAB can also be used to create user interfaces and programs that are written in other languages 

(including C, C++, Java, Python, and FORTRAN). The ANN models were implemented with the 

Neural Network Toolbox in MATLAB. Finally, the trained ANN models were integrated into the 

recompiled HVOF control system. 

2.5. Conclusions 

This chapter has presented the deposition method (HVOF) that was used in this study, as well as 

the corresponding setups and feedstock. The characterization methods and performance tests of the 

coatings have also been outlined, which incorporates the different experimental aspects of this thesis. 

The environment for designing the ANN models was also briefly described. All these pieces of 

physical and virtual equipment provide the foundation for further experiments and analysis, which are 

presented in the following sections. 
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Introduction 

The instruments that were introduced in Chapter 2 enable the implementation of the HVOF spray 

experiments, the characterizations of in-flight particles, and tests of coating properties. Consequently, 

this chapter explains how the process parameters were selected and then the experimental results will 

be displayed. The behaviors of in-flight particles and the coating performances will be discussed, in 

order to obtain a preliminary understanding of the correlation among the process parameters, 

behaviors of in-flight particles, and coating properties. A brief conclusion will subsequently be given. 

3.1. Selection of HVOF process parameters and experimental procedure 

3.1.1. HVOF spray process parameters 

HVOF spray process parameters are known to significantly influence the velocity and 

temperature of in-flight particles and, thus, coating performances. A large number of variables are 

involved in the process, including spray process parameters (e.g., oxygen flow rates, fuel and air flow 

rate, and powders’ feed rate), robot operating parameters (e.g., stand-off distance, spraying angle, and 

scanning step), feedstock powders properties (e.g., particle size and particle size distribution), and 

hardware characteristics (e.g., nozzle geometry). Some of these variables are shown in Figure 3.1. 

 

Figure 3.1 Some of the variables involved in the HVOF spray process 
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Since the feedstock powders’ properties and the hardware characteristics are unchangeable in this 

study and the robot operating parameters (except stand-off distance) mostly affect the surface 

topography and deposition rate of coatings [1-3], attention is mainly concentrated on the influence of 

the process parameters and stand-off distance. This illustrates that the powder feed rate and stand-off 

distance are the main factors that affect particle temperature, and, for the particle speed, these are the 

stand-off distance and oxygen flow rate in the HVOF process [4]. The important sequences of the 

spray parameters on the performance of coatings can also be concluded, which are as follows: fuel 

flow rate ˃ spray distance ˃ powder feed rate ˃ oxygen flow rate for hardness, spray distance ˃ fuel 

flow rate ˃ powder feed rate ˃ oxygen flow rate for porosity, oxygen flow rate ˃ fuel flow rate ˃ 

powder feed rate ˃ spray distance for fracture toughness [5]. However, another study asserts a 

different importance sequence of the spray parameters for the HVOF spray, which is: stand-off 

distance ˃ powder feed rate ˃ fuel flow rate ˃ oxygen flow rate [6]. Although the powder feed rate has 

an obvious effect on the properties of the coatings in these pieces of research [5-7], this will not be 

considered, due to economic reasons. To summarize, only focusing on the most influential parameters, 

the experiments were conducted by varying three process parameters: namely, O2 flow rate, fuel (CH4) 

flow rate, and stand-off distance. 

According to existing knowledge and analysis of the parameters outlined above, the full DOE 

was not conducted in this work, in order to save both costs and time. As previously discussed, only the 

most important parameters were considered and used to build the experiment setup. With these 

selected process parameters, the experimental procedure and its results are outlined in the following 

sections. 

3.1.2. Experimental procedure 

After selecting the most influential parameters, the HVOF spray experiments were conducted 

according to the parameters that are listed in Table 3.1. Considering the capacity of the gas that was 

supplied in the HVOF spray system, the O2 flow rate (i.e., Q(O2)) varies from 200 to 240 slpm, and 

the fuel (CH4) flow rate (i.e. Q(CH4),) varies from 120 to 200 slpm. Existing literature asserts that the 

stand-off distance (SOD) of the HVOF spray varies from 160 to 400 mm [8-12], wherein the stand-off 

distance of 200 to 350 mm is most frequently employed. Considering the literature’s conclusions and 
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the performance of the torch used, in this work the SOD was set from 200 to 320 mm, with an 

increment of 40 mm. The air flow rate was set as 300 slpm, which is the highest value supplied by the 

spray system under a steady state. The flow rate of the carrier gas was 40slpm, which resulted in a 

continuous supply of powder. Other optimized values were set as 400 mm/s for the gun traverse speed, 

6 mm for the scanning step, and 30 g/min for the powder feed rate. 

Table 3.1 HVOF spray process parameters 

Parameters Levels 

CH4 flow rate (slpm) 120 140 160 180 200 

O2 flow rate (slpm) 200 240    

Stand-off distance(mm) 200 240 280 320  

Air flow rate(slpm) 300     

Flow rate of carrier gas(slpm) 40     

Gun traverse speed(mm/s) 400     

Scanning step (mm) 6     

Powder feed rate(g/min) 30     

With the selected parameters and parameter values, 40 sets of experiments were conducted to 

investigate their interrelationships and combined impacts on the behavior of in-flight particles and 

coating properties. The experiment was designed as outlined in Table 3.2. However, due to the low 

capacity of the gas supplied in the HVOF system, some of the nominal values of the gas flow rates 

were not achieved, as marked in red in Table 3.2. Analysis of the behaviors of in-flight particles and 

coating properties will be presented and discussed in Sections 3.2 and 3.3. 

Table 3.2 Experimental design of the HVOF spray process 

No. 
Parameters 

No. 
Parameters 

SOD/mm Q(O2)/slpm Q(CH4)/slpm SOD/mm Q(O2)/slpm Q(CH4)/slpm 

1 200 200 120 21 280 200 120 

2 200 200 140 22 280 200 140 

3 200 200 160 23 280 200 160 

4 200 200 180 24 280 200 180 
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5 200 200 200 25 280 200 200 

6 200 240 120 26 280 240 120 

7 200 240 140 27 280 240 140 

8 200 240 160 28 280 240 160 

9 200 240 180 29 280 230 180 

10 200 240 186 30 280 225 200 

11 240 200 120 31 320 200 120 

12 240 200 140 32 320 200 140 

13 240 200 160 33 320 200 160 

14 240 200 180 34 320 200 180 

15 240 200 200 35 320 200 200 

16 240 240 120 36 320 240 120 

17 240 240 140 37 320 240 140 

18 240 240 160 38 320 240 160 

19 240 240 180 39 320 233 180 

20 240 240 188 40 320 230 200 

, where SOD stands for stand-off distance, Q(O2) for O2 flow rate, and Q(CH4) for CH4 flow rate. 

3.2. Analysis of the behaviors of in-flight particles 

The temperature and velocity of in-flight particles were detected and recorded by 

Accuraspray-g3. Forty sets of experimental results were tabulated, as presented in Table 3.3. The 

values were organized according to the order shown in Table 3.2. From this, it can be summarized that 

the velocity of in-flight particles varies from 254 m/s to 531 m/s, with an average of 373 m/s. In 

addition, the temperature of in-flight particles varies from 2064 K to 2460 K, with an average of 

2284K. The maximums of the standard deviation for velocity and temperature were 5.0 m/s and 9.0 K, 

respectively, which indicates that the Accuraspray-g3 is a reliable means of carrying out these 

measurements. A detailed analysis of the behaviors of in-flight particles is presented in the following 

section. 
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Table 3.3 The temperature and velocity of in-flight particles 

No. Behaviors of in-flight particles No. Behaviors of in-flight particles 

 v/[m/s] T/K  v/[m/s] T/K 

1 467±1.9 2223±2.4 21 292±3 2455±4 

2 476±0.3 2186±2.1 22 298±5 2432±7.5 

3 468±0.1 2139±1.8 23 300±1 2390±4.5 

4 461±0.8 2099±2.3 24 314±2.7 2400±4.4 

5 455±0.4 2064±3.1 25 297±0.6 2354±1.5 

6 508±0.3 2239±1.4 26 301±1 2457±5 

7 509±0.7 2204±1.8 27 312±1.8 2460±3.4 

8 531±1.1 2170±2.3 28 328±1.3 2453±3.4 

9 518±0.9 2120±1.7 29 317±0.7 2433±5 

10 515±0.4 2096±0.6 30 306±1.1 2406±9 

11 389±3.2 2234±1.6 31 269±2 2395±5 

12 409±0.6 2201±1.4 32 270±1 2388±5 

13 404±1.5 2151±2 33 265±2 2350±4 

14 400±0.2 2127±1.7 34 263±1.5 2341±2.5 

15 399±0.8 2097±3.4 35 254±4.5 2269±2.5 

16 423±0.2 2256±1.5 36 274±1 2405±2.5 

17 450±0.1 2233±1.6 37 281±1.5 2432±4 

18 462±1.9 2204±1.2 38 278±0.5 2423±2 

19 463±1.2 2167±1.4 39 273±1.5 2406±4 

20 468±0.4 2145±4.1 40 269±1 2368±5 

, where v and T stand for the velocity and temperature of in-flight particles, respectively. 

3.2.1. Temperature of the in-flight particles 

The experimental results of the temperature of in-flight particles are shown in Figure 3.2. From 

this, it can be concluded that, along with the increase of Q(CH4), temperature exhibits an overall 

tendency of decline, particularly for the smaller SOD. When the SOD is 200 mm, the temperature 

continuously decreases from 2223 to 2064 K (7.15% variation), and from 2239 to 2096 K (6.38% 
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variation) for the Q(O2) of 200 and 240 slpm. When the SOD increases to 240 mm, the temperature 

continuously decreases from 2234 to 2097 K (6.13% variation), and from 2256 to 2145 K (4.92% 

variation) for the Q(O2) of 200 and 240 slpm. However, different tendencies occur for the longer SOD. 

For the Q(O2) of 200 slpm, with increasing Q(CH4), the temperature continuously decreases from 

2455 to 2354 K (4.11% variation), and from 2395 to 2269 K (5.26% variation) for SOD of 280 mm 

and 320 mm, respectively. However, for the Q(O2) of 240 slpm, with the increase of Q(CH4), the 

temperature increases and reaches the maximum value at Q(CH4) of 140 slpm, after which it 

decreases with variation of 2.22% and 2.70% for SOD of 280 mm and 320 mm, respectively. 

 

Figure 3.2 The experimental results of the temperature of in-flight particles for SOD from 200 
to 320 mm, Q(O2) from 200 to 240 slpm, and Q(CH4) from 120 to 200 slpm 

To better understand the influence of gas flow rate, the experimental results of the temperature of 

in-flight particles, with respect to different Q(O2) and Q(CH4), were rescheduled, as shown in Figures 

3.3 and. 3.4. Figure 3.3 indicates that, for the same SOD and Q(CH4), the red points are always higher 

than the black points. This suggests that the temperature exhibits a tendency to grow, as the Q(O2) 

increases. The impact of the Q(O2) on the behaviors of in-flight particles is complex [14]. In one 

respect, increasing Q(O2) contributes to the increased temperature of in-flight particles, due to the 

increased reaction rate of the gases. Conversely, the increasing Q(O2) increases the velocity of 

in-flight particles and enhances their cooling effect, which results in the decreased temperature of 

in-flight particles. From this perspective, it can be deduced that the influence of the reaction rate of 

the gases on the in-flight particles is greater than the cooling effect during the HVOF process. 
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Figure 3.3 Comparison of the temperature of the in-flight particles, for different O2 flow rates 

An opposing result can be obtained for Q(CH4), as indicated in Figure 3.4. Here, the temperature 

generally decreases as Q(CH4) increases, except for some fluctuations with a longer SOD. 

Different tendencies occur for the SOD of 280 and 320 mm, which can be explained considering 

the influence of the combustion reaction. The stoichiometric reaction for methane, CH4 + 2O2  →

2H2O + CO2, gives a stoichiometric ratio (QO2/QCH4)𝑠𝑡 of 0.5. The fuel-to-oxygen equivalence 

ratio (Φ), defined as Φ = (Q𝑂2/𝑄𝐶𝐻4)/(Q𝑂2/𝑄𝐶𝐻4)𝑠𝑡, gives the flame temperature profile, with 

maximum values of temperature reached for Φ close to 1.1 [13]. Compared to other sets of process 

parameters, Φ is 1.2 and 1.16 for Q(O2)/Q(CH4) flows of 200/120 slpm and 240/140 slpm, which are 

closest to Φ~1.1, resulting in a more complete combustion and thus maximum temperature, which 

explains the different tendencies for different Q(O2). 

However, Φ has no significant effect on the temperature of in-flight particles for SOD of 200 

and 240 mm, as indicated by the continuous downtrend in their temperature. This suggests that the 

influence of fuel-to-oxygen ratio is more obvious with longer SOD. 
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Figure 3.4 Comparison of the temperature of the in-flight particles for different CH4 flow rates 

In order to comprehend the influence of SOD, the experimental results of the temperature of 

in-flight particles were also rescheduled, as displayed in Figure 3.5. This illustrates that, with the 

increase of the SOD, the temperature increases for the SOD from 200 to 280 mm and then decreases 

for the SOD from 280 to 320 mm, with a nonlinear rate. Taking the condition of Q(O2) of 200 slpm 

and Q(CH4) of 120 slpm as an example, the temperature of in-flight particles increases from 2223 K 

(SOD of 200 mm) to 2234 K (SOD of 240 mm), then to 2455 K (SOD of 280 mm), and finally 

decreases to 2395 (SOD of 320 mm), responding to the increasing rate of 0.49%, 9.89%, and -2.44%. 

Variations in the temperature of in-flight particles, which is caused by the SOD, are explained in the 

following paragraph. 

The dwell time of the particles in the flame greatly impacts the temperature of in-flight particles. 

With increasing SOD, the dwell time of the in-flight particles also increases, resulting in the increased 

temperature of the in-flight particles, as the high temperature of the flame continuously exchanges 

energy with the in-flight particles. Simultaneously, there is also a continuous energy exchange 

between the flame and its surroundings during flight, which results in the decreased temperature of 

the flame and, subsequently, of the in-flight particles [15]. Furthermore, with longer SOD, the 

in-flight particles may fly out of the flame before depositing on the substrate, which also leads to a 

decrease in the temperature of the in-flight particles. The variation of the temperature of the in-flight 

particles can contribute to the coupling effect of the energy exchanges. 
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Figure 3.5 Comparison of the temperature of the in-flight particles for different SOD 

3.2.2. Velocity of the in-flight particles 

Similar analysis can be conducted for the velocity of in-flight particles. The experimental values 

of velocity of the in-flight particles are presented in Figure 3.6. Generally speaking, the velocities of 

the in-flight particles primarily increase and then decrease when the Q(CH4) increases. However, the 

process parameters that correspond to the maximums of the velocity are different. For the Q(O2) of 

200 slpm, the velocity reaches the maximum values of 476 m/s, 409 m/s, and 270 m/s for the SOD of 

200 mm, 240 mm, and 320 mm, respectively, when the Q(CH4) is 140 slpm. Meanwhile, for SOD of 

280 mm, the velocity reaches the maximum (314) when Q(CH4) is 180 slpm. The differences between 

the extreme values of velocity are 4.56%, 5.34%, 7.64%, and 6.30% for the SOD in ascending order. 

For the Q(O2) of 240 slpm,, the velocity reaches the maximum values of 531 m/s, 468 m/s, 328 m/s, 

and 281 m/s for the Q(CH4) of 160 slpm, 200 slpm, 160 slpm, and 140 slpm, respectively, with the 

increase of SOD. The differences between the extreme values of velocity are 4.52%, 10.60%, 8.95%, 

and 4.46%, with increasing SOD. 

The mounting velocity mainly contributes to the increase of the total gas flow rate, which 

provides more momentum to the in-flight particles. This can be further verified by the tendency of the 

velocity to increase as Q(O2) increases. Nevertheless, the decrease of the velocity differs substantially 

from the findings of previous research studies [16]. 
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Figure 3.6 The experimental results of velocity of the in-flight particles for SOD from 200 to 320 
mm, O2 flow rate from 200 to 240 slpm, and CH4 flow rate from 120 to 200 slpm 

Figure 3.7 presents the comparison results for different Q(O2), which clearly indicate that, for the 

same SOD and Q(CH4), the red points are always higher than the black points. This demonstrates the 

tendency of the velocity to increase as Q(O2) increases. The increase of Q(O2) increases the velocity 

of in-flight particles, which contributes to the increase of the total gas flow rate and which, in turn, 

provides more momentum to the in-flight particles. Figure 3.7 also illustrates that the difference 

between the Q(O2) of 200 slpm and 240 slpm for SOD of 200 mm and 240 mm is much higher than 

that for SOD of 280 mm and 320 mm. The maximum differences between the velocity for different 

Q(O2) are 63m/s, 68m/s, 27 m/s, and 12m/s, with increasing SOD. From this, it can be deduced that, 

with the increase of SOD, the effect of the Q(O2) on the velocity of in-flight particles fades out. 

Unfortunately, there is not an obvious tendency that can be summarized to study the impact of Q(CH4), 

as illustrated in Figure 3.8. 

 

Figure 3.7 Comparison of the velocity of the in-flight particles for different O2 flow rates 
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Figure 3.8 Comparison of the velocity of the in-flight particles for different CH4 flow rates 

The SOD clearly affects the velocity of the in-flight particles, as displayed in Figure 3.9. With 

the increase of SOD, the velocity decreases progressively. The reduction of velocity, when SOD 

increases, relates to the loss of the kinetic energy of the in-flight particles during flight, resulting from 

the loss of drag force that is generated by the expansion of gases [17]. 

 

Figure 3.9 Comparison of the velocity of the in-flight particles for different SOD 

3.3. Phase composition and coating structure 

In the HVOF spray process, the NiCr-Cr3C2 powders experience a high temperature that tends to 

modify the initial powder phases. The carbides are partially dissolved during the process, creating a 

range of Cr compositions in the matrix, from Cr-rich to the original alloy composition [18]. In 

addition, dissolved carbon may be lost as CO or CO2 [19], further promoting the formation of 



Chapter 3. Experimental procedure and analysis of the results 

74 

degradation phases Cr7C3 and Cr23C6. Furthermore, oxide formation can also occur in flight [18]. 

Upon depositing on the substrates, a non-equilibrium microstructure is formed, which is composed of 

metastable carbides (e.g., Cr7C3 and Cr23C6) and of a partly amorphous and/or nanocrystalline matrix 

[20]. 

The coating’s phase composition and microstructure have a significant influence on the coating’s 

properties. For example, plasma-sprayed coatings usually exhibit extensive carbide dissolution and 

the formation of brittle carbides and oxy-carbides during the HVOF spray processes, due to the higher 

temperature of the in-flight particles and residence time [21]. This, together with the higher porosity 

and lower hardness of the coatings, displays poorer coating performances [22]. Carbide dissolution 

acts as a key impact in terms of changing the binder hardness and the coating’s phase [20]. Therefore, 

it is necessary to analyze the phase composition and microstructure of coatings in order to analyze 

coating properties. 

3.3.1. The phase composition of coatings 

Figure 3.10 displays the XRD patterns of feedstock powers and as-sprayed coatings that result 

from different spraying conditions. The different phases are also indicated in Figure 3.10, where the 

main peaks in as-sprayed coatings are identified as Cr1.12Ni2.88, Cr7C3, and Cr23C6. the Bragg peaks 

(crystalline material) are well defined in the case of the feedstock powders, while a significant peak 

broadening is observed in all the as-sprayed coatings, due to the dissolution of the carbides and the 

presence of amorphous phases in the coatings [20, 23]. 

Strong peaks (at 2θ = 51.91°, 60.71°, and 91.23°, according to PDF#65-5559) of the phase 

Cr1.12Ni2.88 are recognizable in the coatings. Peaks (at 2θ = 45.84°, 49.83°, and 51.77°, according to 

PDF#36-1482) of the phase Cr7C3, are also obvious in the coatings that are assumed to form because 

of the decarburization of Cr3C2 during spraying. High intensity of the phase Cr7C3 has been observed 

in Figure 3.10 (a)–(d), indicating that the extent of decarburization is significant during deposition, for 

all the spraying conditions with SOD of 200 mm and 240 mm. Moreover, Figures 3.10 (a), (c), (e), 

and (g) illustrate that the intensity of the phase Cr1.12Ni2.88 in as-sprayed coatings that have an oxygen 

flow rate of 200 slpm, is higher than that in as-sprayed coatings that have an oxygen flow rate of 240 

slpm, as indicated in Figures 3.10 (b), (d), (f), and (h). This can be attributed to the higher temperature 
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of the in-flight particles during spraying with an oxygen flow rate of 240 slpm. A higher temperature 

of in-flight particles results in a lower crystallinity level, due to greater degradation of the powder 

[20]. 
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Figure 3.10 XRD patterns of feedstock powders and as-sprayed coatings 

Different process parameters produce different phase compositions and structures in the 

as-sprayed coatings. In this part, a typical morphology (Set 31 in Table 3.2) has been considered as an 

example to analyze. The Energy Dispersive Spectroscopy (EDS) analysis has also been carried out on 

the example of Set 31, to further confirm the existence of the desired elements. As shown in Figure 

3.11 (a), in the back scattered images of the section of coating, the dark area represents the pores or 

uneven carbon particles, the dark gray area is the hard carbide phase (polygonal), and the gray area is 

the NiCr binder phase. Figure 3.11 (b) shows the distribution of all the elements contained in the 

coatings, while Figure 3.11 (c)–(f) display the distribution of Ni, Cr, C, and O in the coatings. 
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Figure 3.11 EDS spectra analysis of the as-sprayed coatings section 

3.3.2. The microstructure of the coatings 

Figure 3.12 presents the microstructure of the as-sprayed coatings in Sets 8, 35, 27, and 5 in 

Table 3.2, which correspond to the spraying conditions that lead to the highest velocity, lowest 

velocity, highest temperature, and lowest temperature, respectively. Observation of the 

microstructures in different coatings reveals that the spraying process is robust, as uniform coatings, 

made of a distribution of the hard carbide phase (in dark gray) in the NiCr binder phase matrix (in 

light gray), which is obtained for all conditions. 

All the coatings are characterized with a few pores visible and with dense lamellae, which is 

elongated along the direction parallel to the coating surface. The pores are distributed throughout the 

coating and assumed to be carried into the coatings, resulting from the poor carbide/binder contact 

and insufficient melting of the binder during spraying. Moreover, upon impact, the particles deformed 

enough to become incorporated into the coating but not enough to fully collapse the porosity within 

the particles [24]. Set 8, presented in Figure 3.12 (a), corresponds to the highest particles velocity and 

exhibits less porosity than Set 35 (Figure 3.12 (b)), which is the “slowest” condition. This can be 
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attributed to the higher kinetic energy provided by the high velocity in Set 8, which collapses the 

pores in the coatings. It can also be visually observed that the percentage of the hard carbide phase (in 

dark gray) in Set 8 is higher than that of Set 35. In addition, the phases also distribute less 

homogeneously in Set 8. Figure 3.12 (c) presents Set 27, which corresponds to the highest particle 

temperature and exhibits the highest level of porosity of all the spraying conditions. A higher particle 

temperature aggregates the extent of carbide dissolution into the molten binder and the loss of 

dissolved carbon as CO/CO2, which increases the time for oxidation of the particles and generates a 

more porous feature [24]. 

  

  

Figure 3.12 Microstructure of the as-sprayed coatings in Set 8 (a), 35 (b), 27 (c), and 5 (d), which 
correspond to the spraying conditions that lead to the highest velocity, lowest velocity, highest 

temperature, and lowest temperature 

3.4. Analysis of the coating properties 

As mentioned in Section 1.1.4.3, the porosity, microhardness, and wear behavior of NiCr-Cr3C2 
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coatings are selected as the representative coating properties to be evaluated and studied. Forty sets of 

tests were carried out and their results are listed in Table 3.4, where the values are organized into the 

same order as in Table 3.2. This suggests that the coatings’ porosity (PO) varies from 0.144±0.064% 

to 1.777±0.308%, with an average of 0.850%. The coatings’ microhardness (MH) varies in the range 

of 469±33 HV0.3 to 958±53 HV0.3, with an average of 662 HV0.3. Additionally, the coatings’ wear rate 

shifts from 0.926±0.053×10-5 mm³/N/m to 15.732±3.950×10-5 mm³/N/m, with an average of 

6.244×10-5 mm³/N/m. A detailed analysis of the coatings’ performance is presented in the following 

section. 

Table 3.4 The porosity, microhardness, and wear rate of coatings 

No. 

Coatings performances 

No. 

Coatings performances 

MH 
[HV0.3] 

PO 
[%area] 

WR×10-5 
[mm³/N/m] 

MH 
[HV0.3] 

PO 
[%area] 

WR×10-5 
[mm³/N/m] 

1 664±47 1.08±0.127 6.039±0.9 21 565±39 1.473±0.23 15.589±1.561 

2 661±47 1.159±0.182 5.175±0.801 22 592±20 1.372±0.28 7.122±1.728 

3 727±66 0.204±0.065 1.516±0.335 23 706±48 1.777±0.308 6.122±1.46 

4 699±23 0.182±0.046 2.217±0.79 24 624±50 1.697±0.158 10.172±1.537 

5 678±66 0.799±0.088 1.944±0.726 25 604±56 1.231±0.19 11.741±2.263 

6 721±39 0.206±0.094 2.962±0.708 26 543±51 1.558±0.244 10.249±1.202 

7 843±40 0.151±0.027 1.624±0.663 27 659±36 0.871±0.203 4.203±2.156 

8 958±53 0.361±0.068 1.197±0.453 28 759±42 0.996±0.17 4.467±1.145 

9 893±66 0.655±0.161 0.926±0.315 29 618±58 1.03±0.233 4.997±0.859 

10 781±62 0.144±0.064 1.764±0.794 30 678±35 0.83±0.333 4.001±1.304 

11 598±23 0.731±0.063 10.587±0.865 31 469±33 1.113±0.213 5.061±0.912 

12 707±18 0.863±0.179 7.142±0.771 32 502±36 0.915±0.183 9.154±2.807 

13 625±60 1.134±0.282 10.144±0.723 33 544±45 0.671±0.124 9.698±1.606 



Chapter 3. Experimental procedure and analysis of the results 

80 

14 628±67 0.237±0.103 9.235±0.989 34 541±31 0.856±0.119 7.693±0.927 

15 650±46 0.266±0.233 6.955±0.943 35 538±18 0.977±0.308 8.92±3.063 

16 637±35 1.597±0.324 6.585±0.754 36 483±33 0.883±0.138 15.732±3.95 

17 738±38 1.274±0.121 2.802±0.326 37 598±43 0.721±0.2 9.927±3.04 

18 832±41 0.444±0.115 2.926±0.823 38 596±34 0.803±0.09 5.54±1.567 

19 833±61 0.299±0.179 2.221±0.912 39 597±41 0.995±0.084 6.941±1.646 

20 802±53 0.576±0.112 1.59±0.534 40 578±39 0.87±0.173 6.881±1.659 

, where MH, PO, and WR represent the microhardness, porosity, and wear rate of coatings, 

respectively. 

3.4.1. The porosity of the coatings 

Figure 3.13 illustrates the characterization results of coating porosity, in relation to the velocity 

and temperature of in-flight particles. In Figure 3.13 (a), the bigger symbol refers to the 

three-dimensional coordinate value and the small symbol refers to the projection on the XY plane, 

which is also clearly displayed in Figure 3.13 (b). Variations of the value of porosity are represented 

by variations of color. The porosity of coatings varies from 0.144±0.064% to 1.777±0.308%. The 

highest value occurs with a velocity of 274 m/s and a temperature of 2409 K, while the lowest value 

corresponds to the velocity of 518 m/s and temperature of 2120 K. The higher values of porosity 

mainly occur with relatively lower velocity (250 to 330 m/s) and higher temperatures (2250 to 2451 

K). However, there are also some high values located in the region of moderate velocity (380 to 480 

m/s) and moderate temperature (2100 to 2250 K). The histogram of coatings porosity is shown in 

Figure 3.14, which indicates that the majority of coating porosity values are located in the range of 0.6% 

to 1.2% and the percentage of coating porosity from 0.8% to 1.0% can reach up to 27.5%. 
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Figure 3.13 The 3D (a) and 2D (b) distribution of the coating’s porosity, with respect to the 
temperature and velocity of in-flight particles 

 

Figure 3.14 Histogram of the coating’s porosity 

It can be deduced that both velocity and temperature significantly influence coating porosity. 

However, there are no obvious relationships between the behaviors of in-flight particles and coating 

porosity. Further research needs to be undertaken that explores predicting coating porosity, with 

respect to the behaviors of in-flight particles (the temperature and velocity of in-flight particles). 

3.4.2. The microhardness of the coatings 

The distribution of the coating microhardness is mainly concentrated in the range of 469±33 to 

958±53 HV0.3, as shown in Figure 3.15. The same illustrating method is taken as in Figure 3.13. 

Figure 3.15 (a) demonstrates the 3D distribution, while Figure 3.15 (b) gives the projection on the XY 

plane. Most of the relatively higher values for microhardness are related to higher velocity (460 to 

550m/s) and lower temperature (< 2200 K). The higher values of microhardness are generally related 

to higher velocity, while the lower values normally correspond to lower velocity. The histogram of 
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coating microhardness (Figure 3.16) shows that coating microhardness is limited to the range of 400 

HV0.3 to 1000 HV0.3, with the majority from 500 HV0.3 to 700 HV0.3 (possessing proportion high up to 

62.5%). 

Although the velocity of in-flight particles obviously has a greater impact on coating 

microhardness than the temperature, it is impossible to directly correlate the performances of in-flight 

particles and microhardness. Therefore, a more precise model is needed to predict and study the 

influence of the performances of in-flight particles on coating microhardness. 

  

Figure 3.15 The 3D (a) and 2D (b) distribution of coating’s microhardness, with respect to 
temperature and velocity of in-flight particles 

 

Figure 3.16 Histogram of coating’s microhardness 

3.4.3. The wear performance of the coatings 

The HVOF sprayed NiCr-Cr3C2 coatings, with dispersion of hard ceramic particles in a relatively 

ductile and tough matrix, have been used for wear-resistant applications, as they offer considerable 

mechanical strength, hardness, and toughness. This section outlines the wear abrasive characteristic 
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for NiCr-Cr3C2 coatings. First, the coefficient of friction (COF) of the coatings is analyzed, with 

respect to different process parameters that are listed in Table 3.2, in order to observe the effect of the 

process parameters on the coatings’ wear behaviors. Then, the influence of in-flight particles on 

coating wear rate is discussed further. Finally, the investigation into the abrasive wear behavior of 

coatings is briefly described. 

Effect of process parameters on coating’ COF 

The COF vs. sliding distance plots for NiCr-Cr3C2 coatings at different process parameters are 

listed in Table 3.2 and shown in Figure 3.17 (a)–(h). This illustrates that, initially, the COF normally 

increases sharply for a sliding distance of 50–100 m, which is followed by a fluctuation, before it 

finally reaches a steady state regime, which occurs after a sliding distance of 150–200 m. Greater 

fluctuation can be observed for the CH4 flow rate of 120 slpm (black line in the figures) and for the 

average value of COF (AvgCOF), which is also higher than the other CH4 flow rates in all the figures. 

The AvgCOF was also calculated and is listed in Figure 3.17 (a)–(h), which focuses on the range of 

0.57 to 0.68. Generally speaking, it can be observed that the AvgCOF increases as the SOD increases. 

An opposite result can be summarized for the influence of the O2 flow rate. Comparing the AvgCOF 

that corresponds to the O2 flow rate of 200 slpm (Figure 3.17 (a), (c), (e), (g)) with that of the O2 flow 

rate of 240 slpm, which are presented in Figure 3.17 (b), (d), (f), and (h), clearly indicates that the 

AvgCOF decreases along with the increase of the O2 flow rate. However, different tendencies of the 

AvgCOF can be concluded for the influence of variations in the CH4 flow rate. For instance, the AvgCOF 

first decreases and then increases with the increase in the CH4 flow rate, as shown in Figure 3.17 (a) 

and (e). Meanwhile, the AvgCOF continuously decreases with the increase of the CH4 flow rate which 

is presented in Figure 3.17 (g). Random fluctuation can be observed in other figures. 



Chapter 3. Experimental procedure and analysis of the results 

84 

 

Figure 3.17 Variation of COF with sliding distance at process parameters of SOD of 200 mm (a 
and b), 240 mm (c and d), 280 mm (e and f), and 320 mm (g and h), as well as an O2 flow rate of 

200 slpm (a, c, e, and g) and 240 slpm (b, d, f, and h) 

Effect of the behavior of in-flight particles on coatings’ wear rate 

The abrasive wear rates were plotted vs. the temperature and velocity of in-flight particles, as 

shown in Figure 3.18 (a) (3D distribution) and (b) (projection on the XY plane). The coating’s wear 

rate distributes randomly and varies in the range of 0.926±0.053×10-5 mm³/N/m to 15.732±3.950×10-5 

mm³/N/m. Most of the relatively higher values of the wear rate are related to lower velocity (250 to 

330m/s) and higher temperature (> 2250 K). Generally speaking, the higher values of coatings’ wear 

rate are related to lower velocity, while the lower values normally correspond to higher velocity. The 
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highest value of coatings’ wear rate occurs with the temperature of 2405 K and velocity of 274 m/s, 

while the lowest values correspond to a temperature of 2120 K and velocity of 518 m/s. The 

histogram of coatings’ wear rate (Figure 3.19) shows that the wear rate distributes nearly 

homogenously, in the range of 0 and 12 ×10-5 mm³/N/m, with the highest proportion of 22.5% for the 

wear rate from 6×10-5 mm³/N/m to 8×10-5 mm³/N/m. 

From this, it can be visually summarized that the velocity of in-flight particles has a greater 

impact on coatings’ wear rate than the temperature, even though some low values of wear rate exist in 

the region of low velocity. Overall, it is still impossible to directly relate the performances of in-flight 

particles to coatings’ wear rate. Therefore, a more precise model is needed to predict and study the 

influence of the performances of in-flight particles on coatings’ wear rate. 

Figure 3.18 The 3D (a) and 2D (b) distribution of coatings’ wear rate with respect to the 
temperature and velocity of in-flight particles 

 

Figure 3.19 Histogram of coating’s wear rate 
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3.5. Conclusions 

This chapter has introduced the experimental procedure of the HVOF spray process and 

discussed the investigation into the relationship between process parameters, behaviors of in-flight 

particles, and coating properties. Together, this offers a preliminary understanding of the HVOF 

process and HVOF sprayed coatings. 

HVOF experiments were scheduled and 40 sets of spray were subsequently conducted, based on 

the selection of three main factors: SOD, O2 flow rate, and CH4 flow rate. 

The temperature and velocity of the in-flight particles have been analyzed, with respect to the 

HVOF process parameters. From this, it can be concluded that the temperature tends to grow as the O2 

flow rate increases. In addition, an initially increasing then decreasing trend can be observed, as SOD 

increases. The increased O2 flow rate increases the velocity of the in-flight particles. However, with 

the increase of SOD, the effect of the O2 flow rate on the velocity of the in-flight particles gradually 

disappears. The velocity decreases progressively, as SOD increases. Although the effect of HVOF 

process parameters on the behaviors of in-flight particles can be approximately summarized, it is 

impossible to establish a direct connection between them. Thus, a more precise prediction is 

necessary. 

The phase components and microstructure of NiCr-Cr3C2 coatings, which has been discussed 

prior to analysis of the coating properties, provide fundamental knowledge about HVOF sprayed 

NiCr-Cr3C2 coatings. Subsequently, the porosity, microhardness, and wear rate of coatings have been 

discussed, considering the influence of the behaviors of in-flight particles. From this, it can be 

concluded that both the velocity and temperature of in-flight particles have an impact on coatings’ 

properties. However, it remains impossible to directly relate the performances of in-flight particles to 

coating properties. Thus, a more accurate model is needed to predict and study the influence of the 

behaviors of in-flight particles on coating properties. Therefore, machine learning methods, 

particularly the ANN models, are introduced in the following chapters, in order to address this 

challenge. 
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Introduction 

As discussed in Chapter 3, the coating properties are sensitive to the behaviors of in-flight 

particles, which are mainly influenced by the processing parameters of the HVOF technology. 

However, due to the complex chemical and thermodynamic reactions that occur during the deposition 

procedure, obtaining a comprehensive multi-physical modeling or analytical analysis of the HVOF 

process remains a challenge. 

This thesis develops a robust methodology via the ANN to address this problem, for the HVOF 

sprayed NiCr-Cr3C2 coatings under different operating parameters. The ANN methodology is used for 

applications in which formal analysis is difficult or impossible, such as pattern recognition and 

nonlinear system identification and control [1]. This is a powerful statistical method that recognizes 

correlations between the parameters of a given problem and its responses. This chapter reports on a 

comparison of the ANN model and other machine learning methods, which was carried out to confirm 

the superiority of ANN models. Subsequently, two ANN models have been implemented to predict 

coating performances (microhardness, porosity, and wear rate) and to analyze the influence of 

operating parameters (SOD, O2 flow rate, and CH4 flow rate), considering the intermediate process 

(temperature [T] and velocity [v] of the in-flight particles), as displayed in Figure 4.1. A detailed 

procedure was presented that considered two optimized ANN structures, which encode the implicitly 

physical phenomena that governs the HVOF process. Finally, the importance of the inputs on the 

specific output has been assessed using MIV-based analysis. 

 

Figure 4.1 Data flow diagram of ANN models 
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4.1. Collection and pre-processing of the dataset 

The first step in terms of modeling is to collect data and pre-process that data for follow-up 

learning and training. A robust and sufficiently large database is essential for the construction of a 

model that generalizes well [2]. As introduced in Chapter 3, HVOF experiments, the measurement of 

in-flight particles, and coatings’ characterization have been carried out to collect data for modeling. A 

database of 320 pieces of data that derive from 40 sets of experiments and tests were created. The data 

required a linear transformation, before being used for modeling. In this work, the data was 

normalized according to Eq. (4.1), to fall into the range [-1, 1], in order to avoid the calculation error 

related to different parameter magnitudes and to ensure equal treatment from the ANN model and 

other machine learning methods during training and learning [2]. 

𝑋𝑁𝑂𝑅𝑀 = 2 (𝑋 − 𝑋𝑀𝐼𝑁) (𝑋𝑀𝐴𝑋 − 𝑋𝑀𝐼𝑁)⁄ − 1       Eq. (4.1) 

, where, 𝑋𝑁𝑂𝑅𝑀 is the normalized value; 𝑋 is the real value; 𝑋𝑀𝐴𝑋 is the maximum of the real 

value, 𝑋𝑀𝐼𝑁 is the minimum of the real value. 

𝑋𝑀𝐴𝑋 and 𝑋𝑀𝐼𝑁 are the maximum and minimum possible values of the parameters, based on 

their physical limitations in the process, as opposed to the values from the experimental sets. In this 

work, the limitations of each input and output variable were assessed, which are presented in Table 

4.1. For the spray system that used gas as fuel, the SOD is supposed to be expanded to range from 150 

mm to 400 mm, considering the real spraying condition and the data collected from the existing 

literature [3-5]. The maximum oxygen flow rate (Q(O2)) and CH4 flow rate (Q(CH4)) were set 

according to the gas capacities that were supplied by the system. The minimum values were set 

considering the maintenance of the shock diamond, which is the symbol of the HVOF flame. The 

range of the other variables, including velocity (VE) and the temperature (TE) of the in-flight particles, 

as well as the coating’s microhardness (MH), porosity (PO), and wear rate (WR), are, were all 

expanded based on the data obtained in this work. After normalization, the datasets were employed for 

the following training and learning. 
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Table 4.1 Physical limits of the input and output variables 

 SOD 

/mm 

Q(O2) 

/slpm 

Q(CH4) 

/slpm 

VE 

/[m/s] 

TE 

/K 

MH 

HV0.3 

PO 

/% 

WR 

/[mm/N/m] 

𝑋𝑀𝐼𝑁 150 150 100 200 1500 400 0 0 

𝑋𝑀𝐴𝑋 400 300 250 600 3000 1000 2 20×10-5 

4.2. Comparison of different machine learning methods 

Machine learning methods, which are seen as a subset of artificial intelligence, are the scientific 

study of algorithms and statistical models that computer systems use to perform a specific task. This is 

completed using patterns and inference, instead of explicit instructions [6]. Thus, its powerful models 

can be applied to various applications, including ANN, decision trees, support vector machines, 

Bayesian networks, and genetic algorithms. In this work, the optimization and prediction of the 

outputs that are based on the inputs information are expected, which is a kind of regression problem. 

Therefore, various regression models are employed and the results are compared to obtain the best 

predicted model in MATLAB. 

MATLAB offers various regression models for training, including linear regression models, 

regression trees, Gaussian process regression (GPR) models, SVM, and ensembles of regression trees. 

In this work, all of these models and their sub-models have been used and trained to select a suitable 

model. The root mean square error (RMSE), which is defined by Eq. (4.2), has been chosen as an 

indicator to evaluate the performance of models. It is for sure that the smaller the RMSE, the better 

the prediction performance. 
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     Eq. (4.2) 

, where it is the experimental result; ia is the predicted result; ie is the difference between the 

experimental result and the predicted result; N is the number of the data sets. 

As depicted in Figure 4.2, the temperature and velocity of the in-flight particles have been 

predicted based on the features of the SOD, O2 flow rate, and CH4 flow rate, with 19 regression 
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models. The GPR models demonstrate better performance than the other models. A detailed 

description of these GPR models is given in [7]. The best result was obtained using the squared 

exponential GPR model with a RMSE of 0.050 for velocity and 0.034 for temperature. Generally 

speaking, the prediction accuracy for temperature is better than that for velocity, which can be 

attributed to the relatively higher regular tendency of the temperature of in-flight particles. 

 

Figure 4.2 RMSEs of some regression models for predicting the temperature and velocity of 
in-flight particles 

Similarly, the microhardness, porosity, and wear rate of coatings have been forecasted based on 

the features of the temperature and velocity of in-flight particles, as depicted in Figure 4.3. From this, 

it is clear that the best results have been obtained by the squared exponential GPR model for 

microhardness, with a RMSE of 0.206, the exponential GPR model for porosity, with a RMSE of 

0.362, and the medium tree regression model for wear rate with a RMSE of 0.267. A comparison of 

the RMSE suggests that the prediction performance for predicting coating properties is worse than 

forecasting the behaviors of in-flight particles. This can be explained by the more complex 

mechanism of the coating properties. 
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Figure 4.3 RMSEs of some regression models for predicting the microhardness, porosity, and 
wear rate of coatings 

The model with the best performance, as discussed and obtained by the aforementioned 

comparison, is compared to the performance of the ANN model to predict a specific response, as 

showed in Figure 4.4. The functions and parameters for training the ANN models were set as default, 

and the architectures were all set as five neurons in the first and second hidden layers. Figure 4.4 (a)–

(e) illustrates the comparison between the true response and predicted response of selected machine 

learning models, while Figure 4.4 (f)–(j) display that of the ANN models. The solid line represents the 

perfect result, which means the predicted results are exactly equal to the true responses. Therefore, the 

closer the point are to the solid line, the better the predict performance. From this, it is clear that the 

response predicted by the ANN model is highly consistent with the experimental values and is located 

closer to the solid line than the result of selected machine learning models. This demonstrates that the 

ANN model performs better with these prediction requirements. Consequently, the ANN model could 

be applied and further optimized to predict the in-flight particles’ behaviors and coating performances. 
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Figure 4.4 The true response vs. predicted response of selected machine learning models (a–e) 
and ANN models (f–j) for predicting velocity (a, f), temperature (b, g), microhardness (c, h), 

porosity (d, i), and wear rate (e, j) 

4.3. Implementation of ANN1 model for forecasting the behaviors of 

in-flight particles 

For the ANN1 model, three process parameters were selected as inputs: O2 flow rate (Q(O2)), 

CH4 flow rate (Q(CH4)), and SOD. In addition, the temperature and velocity of the in-flight particles 

(i.e., VE and TE) were targets. After normalization, the data was randomly divided according to the 

data division function of “dividerand”. Then, it was divided into three sets: a training set, a testing set, 

and a validation set, with the ratio of 70%, 15%, and 15%, respectively. Indicator R is an indication of 

the relationship between the predicted result and the true result, which has been selected to evaluate 

the regression performance of the models, as depicted in Eq. (4.3). Usually, the higher the correct 

evaluation value R, the better the fitting result of the ANN model. 
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, where it is the experimental result, ia is the predicted result, it  is the average of the experimental 

result, and N is the number of datasets. 

4.3.1. Optimization process for the ANN1 model 

As discussed in Section 1.4.3, the MLP neural network, which is characterized with a 

back-propagation algorithm, has been chosen to analyze, predict, and optimize the HVOF spray 

process and HVOF-sprayed coatings. The MLP ANN architecture consists of three main parts: the 

input layer, the output layer, and the layers in between, which are termed hidden layers. A typical 

architecture of the ANN1 model is shown in Figure 4.5 (a). The transfer function (f) introduces 

non-linearity into the output of a neuron, as illustrated in Figure 4.5 (b). The transfer functions used 

need to be optimized, including the function from the input layer to the first hidden layer (TF1), the 

function between hidden layers (TF2), and the function from the second hidden layer to the output 

layer (TF3). Furthermore, the learning function, performance function, and the number of neurons in 

hidden layers should all also be optimized, in order to acquire the most suitable ANN models. 

 

 

(a) (b) 

Figure 4.5 A typical architecture of the ANN1 model (a) and its transfer function (b) 

Initially, the functions and parameters were set as the default setting for solving regression 

problems, with the ANN model in MATLAB, as listed in Table 4.2. The optimizations were carried 

out by varying specific functions or parameters based on the default setting. 
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Table 4.2 Default setting for functions and parameters for the ANN models 

Function and parameter Value 

Transfer functions tansig (TF1), tansig (TF2), purelin (TF3) 

Training function trainlm 

Performance function mse 

Architecture of hidden layers 5 for 1st and 5 for 2nd hidden layers 

A full factor analysis has been carried out to select the best combination of transfer functions. As 

shown in Figure 4.6, the models taking “logsig” as the transfer function between hidden layers 

perform relatively poorly, normally returning an R of less than 0.9. The highest R (0.99973) was 

obtained with the combination of “tansig” as the transfer function from the input layer to the first 

hidden layer, “logsig” as the transfer function between the hidden layers, and “purelin” as the transfer 

layer from the second hidden layer to the output layer. Therefore, this combination of transfer 

functions has been selected for the ANN1 model. 

 

Figure 4.6 Comparing the performance of the ANN1 model with different combinations of 
transfer functions 

ANN trainings with different training functions have been conducted, the comparison results of 

which are presented in Figure 4.7. Both of the “trainlm” and “trainbr” training functions exhibit 

outstanding performance, with an R value of 0.99938 and 0.99974, respectively. These are all updates 

of weight and bias values, according to the Levenberg-Marquardt optimization. Often, “trainlm” was 

the fastest back-propagation algorithm in the toolbox. Although this requires more memory than other 
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algorithms, it is highly recommended as a first-choice supervised algorithm [8]. As a network training 

function, “trainbr” minimizes a combination of squared errors and weights, and then determines the 

correct combination, in order to produce a network that generalizes well. This process is called 

Bayesian regularization. Though the “trainbr” training function performs better than “trainlm” it 

requires almost 2–3 times more training time. Considering the tiny difference between their 

performances and the obvious difference in their training time, “trainlm” has been selected for the 

ANN1 model. 

 

Figure 4.7 Comparing the performance of the ANN1 model with different training functions 

Both the “trainlm” and “trainbr” training functions use the Jacobian calculation, which assumes 

that performance is a mean or sum of squared errors. Therefore, networks trained with these training 

functions must use either the “mse” or “sse” performance function. To compare the performance of 

ANN models with different performance functions, the default training function “trainlm” was 

replaced with “trainrp.” As Figure 4.8 indicates, the performance function has limited influence over 

the training results. However, it can help to accelerate the calculation convergence. The considered 

performance functions produce similar results, wherein the “sse” gives relatively higher accuracy in 

terms of predictions. Furthermore, the “sse” performance function is also accepted for the “trainlm” 

training function. Accordingly, “sse” has been selected to train the ANN1 model. 



Chapter 4. Setup, training, and test of the artificial intelligence 

101 

 

Figure 4.8 Comparing the performance of the ANN1 model with different performance 
functions 

In the ANN model structure, the neuron numbers in both the input and output layers are 

determined by the number of the network’s input and output variables. However, there is no general 

rule for determining the number of hidden layers and the neuron number in the hidden layer. 

Generally speaking, the number of hidden layers and the neuron number in the hidden layer are 

specified by considering the accuracy of the trained model and the complexity of the network 

structure. Higher accuracy with a lesser number of hidden layers and neurons in the hidden layer are 

expected. Several researchers have suggested that some formulas relate the neuron number in the 

hidden layer with the database size [9, 10]. S. Guessasma [11], for instance, suggests that the formula 

provided in [10] better describes the case with less of the database, which is estimated as explained in 

the following paragraph. 

𝑁H ∈ [
𝑁P𝑁S

𝑁I+𝑁S
 ,

2𝑁P𝑁S

𝑁I+𝑁S
]        Eq. (4.4) 

, where 𝑁H is the total neuron number in the hidden layers, 𝑁p is the database size, 𝑁I and 𝑁𝑆 are 

the input and output neuron size. 

In the ANN1 model, the suitable neuron number in the hidden layers is estimated to be between 

16 and 32. Therefore, 110 sets of training models with 0–10 neurons (with an interval of one neuron) 

in the first hidden layer and 1–10 in the second hidden layer were trained to optimize the architecture 

of the ANN1 model, as shown in Figure 4.9. As previously discussed, the optimized functions were 

applied directly, in order to simplify the training process. To clearly illustrate the predicted results, 
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pictures with different legends are used. Figure 4.9 (a) illustrates that two hidden layer models with 

only one neuron in the first or second hidden layer perform worse, particularly when the second 

hidden layer has one neuron (with an R value of less than 0.99). The simulation results indicate that a 

combination of six neurons in the first and second hidden layers, respectively, produces a relatively 

high R value of 0.99991 in the ANN1 model. Considering the relatively high accuracy of the model 

and the reduced complexity of the network structure, the number of hidden layers and the number of 

neurons in the hidden layer for the models are therefore selected to be six neurons in both the first and 

second hidden layer. The neuron number used in the ANN1 model (12 neurons in total) is less than the 

number estimated, which may have contributed to the regular tendency of the behaviors of the 

in-flight particles. 

  

Figure 4.9 Comparing the performance of the ANN1 model with different structures 

The functions and parameters, after optimization, are summarized in Table 4.3. The following 

analysis of the training and testing of the ANN1 model was carried out based on these functions and 

parameters. 

Table 4.3 Optimized functions and parameters for the ANN1 model 

Function and parameter Value 

Transfer functions tansig (TF1), logsig (TF2), purelin (TF3) 

Training function trainlm 

Performance function sse 

Architecture of hidden layers 6 for 1st and 6 for 2nd hidden layers 
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4.3.2. Training and testing of the ANN1 model 

The training process for the ANN1 model was carried out and an R value of 0.99991 was 

obtained during the optimization process (training and validation) of the ANN1 model, which proves 

that the model is well trained and that there is a great similarity between the experimental values and 

predicted values. 

The outputs (predicted values) of the training and validation set were inverse normalized after 

training according to Eq. (4.5). 

𝑋 = 0.5(𝑋𝑀𝐴𝑋 − 𝑋𝑀𝐼𝑁)(𝑋𝑁𝑂𝑅𝑀 + 1) + 𝑋𝑀𝐼𝑁      Eq. (4.5) 

, where, 𝑋 is the inverse normalized value; 𝑋𝑁𝑂𝑅𝑀 is the normalized value; 𝑋𝑀𝐴𝑋 is the maximum 

of the real value, 𝑋𝑀𝐼𝑁 is the minimum of the real value. 

The comparison between the experimental values and the predicted values of the ANN1 model 

are displayed in Figure 4.10, where the black and red columns in Figure 4.10 (a) represent the relative 

errors of the training and validation set for velocity and the black and orange columns in Figure 4.10 

(b) represent temperature. The relative errors between the experimental values and the predicted 

values have been calculated with respect to the experimental values. The relative error between the 

experimental and predicted values of the velocity of the in-flight particles varies from -0.76% to 

0.25%, with an average of -0.063%, as indicated in Figure 4.10 (a). The distribution of the velocity of 

the in-flight particles is larger and more scattered than that of the temperature of the in-flight particles, 

from -0.24% to 0.43%, with an average of 0.015% (Figure 4.10 (b)). This indicates that the ANN1 

model is more accurate in terms of predicting the temperature of the in-flight particles, which is 

mainly attributed to the more regular tendency of the temperature of the in-flight particles. 
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Figure 4.10 Relative error of velocity (a) and temperature (b) between experimental and 
predicted results, with respect to the experimental results 

The reliability of the ANN1 model has been verified by the performance of the test set, which is 

independent from the training and optimization process of the ANN model. The test set, which is 

composed of data from Sets 6, 12, 15, 23, 28, and 32, has been randomly allocated from the dataset. 

As shown in Figure 4.11, the maximum of the absolute relative errors for the velocity and 

temperature are 0.43% and 0.14%, which correspond to a difference of 3 K and 2 m/s. Additionally, 

the minimum is 0.08% and 0.01% for velocity and temperature. This indicates that the predicted 

values are consistent with the experimental values, which suggests that the ANN1 model has been 

properly trained to predict the temperature and velocity of in-flight particles from the HVOF spray 

process parameters. 

  

Figure 4.11 Comparison of the experimental and predicted values of velocity (a) and 
temperature (b), for the test set in the ANN1 model 
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4.4. Implementation of the ANN2 model for predicting coatings’ properties 

For the ANN2 model, the temperature and velocity of the in-flight particles (i.e., VE and TE) were 

selected as the inputs and three coating properties (microhardness, porosity, and wear rate) were 

chosen as targets, as depicted in Figure 4.12. Similar to the procedure outlined in Section 4.3, the data 

has been normalized and randomly divided into three sets: a training set, a validation set, and a test set, 

with ratios of 70%, 15%, and 15%, respectively. R was continuously selected as the indicator to 

evaluate the performance of the model. A similar optimization and training process of the ANN model 

are given as follows. The model was optimized by varying specific functions or parameters, based on 

the default settings that are listed in Table 4.1. 

 

Figure 4.12 A typical architecture of the ANN2 model 

4.4.1. Optimization process for the ANN2 model 

A full factor analysis has been carried out to select the best combination of transfer functions. As 

shown in Figure 4.13, the R value varies from 0.54 to 0.94. Models with “logsig” as the transfer 

function from the first hidden layer to the second hidden layer always performed worse than other 

combinations, returning an R of less than 0.75. Models with “tansig” as the transfer function from the 

input layer to the first hidden layer exhibited better performance than others. The maximum R value 

(0.93695) was obtained with “tansig” as the transfer function from the input layer to the first hidden 

layer, as the transfer function between the hidden layers, and also as the transfer layer from the second 

hidden layer to the output layer. Therefore, this combination of transfer functions has been employed 

in the ANN2 model. 
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Figure 4.13 Comparing the performance of the ANN2 model with different combinations of 
transfer functions 

The model with different training functions was trained and the results are displayed in Figure 

4.14. This indicates that the R value for different training functions concentrates in the range of 0.8–

0.93. It is evident that “trainlm” performed better than the other training functions, with an R value of 

0.92612, while the others all obtained an R value of less than 0.9. Therefore, “trainlm” has been 

chosen as the training function for the ANN2 model. 

 

Figure 4.14 Comparing the performance of the ANN2 model with different training functions 

To compare the performance of the ANN2 model with different performance functions, the 

default training function “trainlm” was replaced with “trainrp.” As depicted in Figure 4.15, the R 

value varies from 0.8462 to 0.86947, which reinforces that the performance function has limited 
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influence over the training results. Both “mse” and “sse” are relatively more accurate than the others. 

They were also accepted for the “trainlm” training function. Accordingly, “mse” was selected to train 

the ANN2 model. 

 

Figure 4.15 Comparing the performance of the ANN2 model with different performance 
functions 

The optimized functions were applied directly to simplify the training process. According to the 

Eq(4.3), the suitable neuron number in the hidden layers is estimated to be between 24 and 48. 

Therefore, 110 sets of training models with 0–20 neurons (with an interval of two neurons) in the first 

hidden layer and 2–20 neurons in the second hidden layer were trained, as shown in Figure 4.16. The 

R value varies from 0.790 to 0.999. Pictures with different legends are used to clearly display the 

evolution of the R value, based on different combinations of hidden layers. As displayed in Figure 

4.16 (a), models with only one hidden layer performed worse (with an R value of less than 0.9). For 

models with two hidden layers, the prediction accuracy increased as the number of neurons in the 

hidden layers increased (which can be seen in Figure 4.16 (a)). Models with less neurons in the hidden 

layers exhibited lower R values (which is illustrated in Figure 4.16 (a)–(b)). However, when the 

neuron number is higher than 10, the R value fluctuates and increases more slowly, as indicated in 

Figure 4.16 (b). 

The simulation results indicate that a combination of 14 neurons in the first hidden layer and 20 

neurons in the second hidden layer produces a relatively high R value of 0.99997 in the ANN2 model. 

Considering the relatively high accuracy of the model and the reduced complexity of the network 

structure, the number of hidden layers and the number of neurons in the hidden layer, for the models, 
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are determined as 14 neurons in the first hidden layer and 20 neurons in the second hidden layer. 

  

Figure 4.16 Comparing the performance of the ANN2 model with different structure 

This suggests that the R value in the ANN2 model is generally smaller than that of the ANN1 

model, even though the neuron number is higher than in the ANN1 model. This can be ascribed to the 

more complex relationship between the behaviors of the in-flight particles and the coating properties. 

The functions and parameters, after optimization, are summarized in Table 4.4. The following analysis 

of the training and testing of the ANN2 model was carried out, based on these functions and 

parameters. 

Table 4.4. Optimized functions and parameters for the ANN2 model 

Function and parameter Value 

Transfer functions tansig (TF1), tansig (TF2), tansig (TF3) 

Training function trainlm 

Performance function mse 

Architecture of hidden layers 14 for 1st and 20 for 2nd hidden layers 

4.4.2. Training and testing of the ANN2 model 

The training process for the ANN2 model has been implemented with an R value of 0.99997, 

during the optimization process (training and validation). This confirms that the model is well trained 

and that there is a considerable similarity between the experimental values and predicted values. The 

dataset No. 10, 11, 13, 14, 32, and 36 have been automatically allocated as the validation set, and 

dataset of No. 4, 6, 7, 17, 22, and 26 were selected as the test set in the ANN2 model. The remaining 
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dataset constitutes the training set. 

The targets and outputs of the training and validation set were inverse normalized after training. 

A comparison between the experimental values and the predicted values of the ANN2 model is 

displayed in Figure 4.17, where the black and green columns in Figure 4.17 (a) represent the relative 

errors of the training and validation sets for microhardness, the black and blue columns in Figure 4.17 

(b) represent porosity, and the black and violet columns in Figure 4.17 (c) represent wear rate. To 

investigate further, the local regions have been amplified, as shown in Figure 4.17 (d)–(f). The relative 

error between the experimental and predicted values of coatings’ microhardness varies from -0.52% to 

1.34% with an average of 0.05%, as indicated in Figure 4.17 (a). Coatings’ porosity is distributed 

from -1.00% to 0.69%, with an average of -0.02% (Figure 4.17 (b)) and wear rate is distributed from 

-1.55% to 3.15%, with an average of 0.09%. The wear rate distribution is larger and more scattered 

than that of the coating’s microhardness or porosity, which indicates that the ANN2 model is more 

accurate in terms of predicting the coating’s microhardness and porosity. 
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Figure 4.17 Relative error of microhardness (a, d), porosity (b, e), and wear rate (c, f), between 
the experimental and predicted results, with respect to the experimental results 

The reliability of the ANN2 model has been verified by the performance of the test set, as shown 

in Figure 4.18. This indicates that the predicted values almost all cover the experimental values (black 

points). The maximum of the absolute relative errors are 0.06%, 0.15%, and 0.31%, which correspond 

to a difference of 0.41 HV0.3, 0.0003%, and 0.009×10-5 mm3/N/m. This demonstrates that the 

predicted values are consistent with the experimental values and that the relative errors of the test set 

is within that of the training set and the validation set, which suggests that the ANN2 model has been 

properly trained to predict the coating properties according to the temperature and velocity of the 

in-flight particles. Although the relationships between the characteristics of the in-flight particles and 

the coating properties are complex, it is possible to directly predict the coating properties according to 

the input of the characteristics of in-flight particles, by employing the ANN2 model. 
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Figure 4.18 Comparison of the experimental and predicted values of microhardness (a), 
porosity (b), and wear rate (c), for the test set in the ANN2 model 

4.5. MIV analysis in the ANN models 

The MIV-based analysis method has been widely accepted as one of the evaluators of the value 

of a given coefficient for an ANN model [12-14]. The MIV value and contribution rate for each input 

variable on each output variable of both the ANN1 and ANN2 models are calculated and shown in 

Table 4.5 and Figure 4.19. 

MIV analysis on the ANN1 model reveals that the important sequence of the factors for the 

velocity of in-flight particles is SOD > O2 flow rate > CH4 flow rate, and for the temperature of 

in-flight particle is SOD > CH4 flow rate > O2 flow rate. The SOD always exhibits the greatest 

influence over both velocity and temperature of the in-flight particles, which occupies 70% and 36% 

of the contribution rate, respectively. The impact of the CH4 flow rate on velocity is limited, which 

corresponds to the irregular trend of velocity with regard to the CH4 flow rate. This is depicted in 

Figure 3.8 and discussed in Section 3.2.2. In addition, the stand-off distance has a predominant effect 

on velocity, while the influence of the inputs on temperature is quite uniform, taking 36%, 29%, and 

35% for SOD, Q(O2), and Q(CH4), respectively. This result is consistent with the analysis of the 

behaviors of in-flight particles that is presented in Section 3.2.  

As displayed in Figure 4.19 (c)–(e), MIV analysis of the ANN2 model indicates that the velocity 

of in-flight particles represents a greater influence over coatings’ microhardness, taking 72%. 

However, the temperature of the in-flight particles is more important for coatings’ porosity and wear 
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rate, occupying 79% and 82%, respectively. Although the temperature possesses a similar weight in 

terms of both porosity and wear rate, it is impossible to directly relate coatings’ porosity with wear 

rate. In addition, based on the MIV analysis, it is useful to tune the velocity for better coating 

microhardness. Conversely, in order to obtain better performance for coatings’ porosity and wear rate, 

adjusting the temperature of the in-flight particles is highly recommended. 

Table 4.5 MIV values for input variables 

Inputs 

(ANN1) 

Outputs (ANN1)  Inputs 

(ANN2) 

Outputs (ANN2) 

v T  MH PO WR 

SOD -0.404 0.071  v 0.290 -0.203 -0.088 

Q(O2) 0.161 0.058  T -0.320 0.028 0.245 

Q(CH4) -0.013 -0.068      

 

     

(a) (b) (c) (d) (e) 

Figure 4.19 The contribution rate of input variables on the velocity (a) and temperature (b) of 
in-flight particles, as well as coating microhardness (c), porosity (d), and wear rate (e) 

Previous works have also concluded that the spray distance performs greater influence over the 

microhardness and porosity of coatings than the oxygen flow rate for different kinds of feedstock, 

despite the fuel in the HVOF spray being different to that used in this study [4, 15, 16]. This indirectly 

confirms the importance of SOD on the behaviors of in-flight particles. Research [17] also suggests 

that the oxygen flow rate has a complex impact on coatings’ wear performance. From one perspective, 

increased oxygen flow rate increases the velocity of in-flight particles and enhances their cooling 

effect, which results in the decreased temperature of in-flight particles and the coating’s decreased 

wear resistance. Conversely, increasing the oxygen flow rate contributes to the increase in the 
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temperature of the in-flight particles, due to an increase in the reaction rate of the gases. Unfortunately, 

only limited research directly compares the importance of these process parameters. In this work, the 

MIV-based analysis is used to study the importance of these process parameters, particularly in terms 

of the ANN model. 

4.6. Conclusions 

In this chapter, two ANN models were developed and then optimized to predict the properties of 

HVOF sprayed NiCr-Cr3C2 coatings, and to analyze the influence of operating parameters, considering 

the intermediate process. 

The ANN1 model has been trained to predict the relationship between HVOF process parameters 

(i.e., SOD, CH4 flow rate, and O2 flow rate) and the characteristics of in-flight particles (temperature 

and velocity), with a maximum relative error of 0.76% for velocity and 0.43% for temperature. The 

prediction of the properties of the coating (i.e., microhardness, porosity, and wear rate) according to the 

characteristics of in-flight particles has been performed by the ANN2 model, within a relative error of 

1.34%, 1.00%, and 3.15% for microhardness, porosity, and wear rate of the coating, respectively. The 

reliability and accuracy of both the ANN1 and ANN2 models have been further verified by their test 

sets, where the relative errors (0.43% for velocity, 0.14% for temperature, 0.06% for microhardness, 

0.15% for porosity, and 0.31% for wear rate) were smaller than the maximum errors. 

The MIV-based analysis has been carried out to evaluate the factors’ importance. The results 

indicate that the important sequence of the factors for the velocity of the in-flight particles is SOD > 

O2 flow rate > CH4 flow rate, for the temperature is SOD > CH4 flow rate > O2 flow rate, for the 

coating’s microhardness is V > T, and for the coating’s porosity and wear rate is T > V. 

Overall, the two developed implicit models can be used to predict coatings’ properties and in-flight 

particles’ characters, as well as to optimize coatings. In addition, the MIV-based analysis explores the 

importance of the process parameters, particularly for the ANN model. These well-trained ANN 

models will be programmed and integrated into the HVOF spray control system, in order to create an 

intelligent control system. This novel ANN approach will also be promoted for other thermal spray 

techniques, which will result in better controls for coating performances.  
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Introduction 

In this chapter, the procedure to develop the HVOF spray control system and its interface will be 

introduced; this will be done using coding with the International Electrotechnical Commission (IEC) 

61131-3 language in the Automation StudioTM. The two packaged networks obtained in Chapter 4 will 

then be integrated into the developed control system to realize an intelligent HVOF spray control 

system. 

5.1. Development of the control system 

5.1.1. The principle of the HVOF spray control system 

The recompiled control system has been developed and programmed using the PLC. Two sets of 

systems for controlling the CDS and Diamond-Jet 2701/2702 torches have been developed and 

integrated using the same controller. The systems need to control the gases supply system, powder 

feeder, ventilation system, and cooling system, as displayed in Figure 5.1.The detailed principle is 

provided below. 

Although the torch and gases used for the CDS spray and Diamond-Jet spray systems are 

different, the main workflow is similar, as shown in Figure 5.2. The system will remain on “Stand by” 

until the “Start” button is pressed. The pre-defined parameters and spraying environment (e.g., 

cooling water and air compressor) will then be checked. If all of the conditions are satisfactory, the 

gases are opened and ignition is attempted. If the conditions are not satisfactory, the system returns to 

“Stand by” for modification. If the ignition is succeeds within 20 s, the system will move into the 

“Transition” stage, in which the gases flow rate will gradually increase until it reaches the pre-defined 

values. If it does not succeed, it will move to the “Purge” step and, finally, return to the “Stand by” 

state. When the pre-defined values are reached and the environment condition is stable, the system is 

ready for spraying. After pressing the “Stop” button, the powder feeder is stopped immediately and 

the gases are decreased gradually. When the gas flow rates drop to a certain value, the flame goes out 

and the system moves to the “Purge” step to push out the remaining gases in the supply pipe, then 

returns to “Stand by” for the next cycle. “Rapid stop” and “Emergency stop” buttons are provided to 
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correspond with different urgent situations. 

 

 

Figure 5.1 System architecture diagram of the HVOF spray control system 
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Figure 5.2 Workflow of the HVOF spray control system 

5.1.2. The hardware of the HVOF spray control system 

The hardware architecture of the HVOF control system is illustrated in Figure 5.3. Power panel 

(1) provides a display and touch screen, which integrates with a central processing unit (CPU) and 
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memory. The extended input/output (I/O) module includes a bus receiver (2), which is equipped with 

a multiplexer for the X2X Link as well as the internal I/O supply and is used to connect the X20 

System to the X2X Link. Digital input/output modules (3, 8/4, 7) are used to input/output digital data. 

The remote I/O module uses a field bus controller (5) to connect X2X Link I/O nodes to the local field 

bus POWERLINK; it also makes it possible to operate the X2X Link cycle synchronously or 

synchronously to POWERLINK using a prescaler. The supply module (6) is used together with an 

X20 bus controller, which is equipped with a feed for the bus controller, the X2X Link, and the 

internal I/O supply. Analog input/output modules (9/10) are employed to input/output analog signals. 

The control system is executed based on the hardware. 

 

Figure 5.3 Hardware of the HVOF spray control system 

5.1.3. The programming language of the HVOF spray control system 

The PLC has been used to control the HVOF spray system. A PLC or programmable controller is 

an industrial digital device that monitors computer processes by viewing inputs to a system and 

turning the outputs on or off, based on a set of instructions programmed using PLC languages [1, 2]. It 

has been widely employed for controlling manufacturing processes or activities that require high 

reliability control and ease of programming and process fault diagnosis [1]. 

PLC programs are typically written in a special application on a personal computer and then 

downloaded to the PLC using a direct-connection cable or over a network. Various PLC programming 
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languages are provided in Automation StudioTM. Our system has been programmed under the IEC 

61131-3 standard, in which PLCs can be programmed using standards-based programming languages 

[1]. IEC 61131-3 is the third part (of 10) of the open international standard IEC 61131 for PLC, which 

deals with basic software architecture and programming languages of the control program within PLC 

[3]. It provides two textual and three graphical programming language standards: 

1) Ladder diagram (LD), which is also known as ladder logic, is a graphical language that 

normally represents a program using a graphical diagram based on the circuit diagrams of 

relay logic hardware [4]. It is one of the most popular types of PLC programming 

languages attributing to its advantages of being intuitive, having good debugging tools, 

and its good representation for discrete logic [2].  

2) Function block diagram (FBD), which drives data from inputs to outputs by sending them 

through blocks of nested data [2], is a graphical language that can describe the function 

between input and output variables. It allows programmers to view the system being 

programmed in terms of the flow of signals between the elements being processed [2]. 

3) Sequential function chart (SFC), which is defined as preparation of function charts for 

control systems, can be used to program processes that can be broken down into steps [5]. 

It is a graphical language that allows the programmer to enter code in chronological order. 

Its visualization of what and when it is happening in the procedure of the code makes it 

easy to understand [2]. 

4) Structured text (ST/STX), which is entirely text-based PLC language, is a high-level 

language that is block structured and syntactically resembles programming languages such 

as Basic and Pascal [2]. It supports complex statements and nested instructions, such as 

iteration loops (REPEAT-UNTIL; WHILE-DO), conditional execution (IF-THEN-ELSE; 

CASE), and functions (SQRT(), SIN()) [6]. 

5) Instruction list (IL) is one of the five languages supported by the initial versions of the IEC 

61131-3 standard, and is subsequently deprecated in the third edition [7]. Because of this, 

it will not be introduced any more in this work. 

As introduced in Section 5.1.1, the control system works through the whole procedure by 
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changing from one state to another in response to external inputs and/or if a condition is satisfied. 

This is a typical finite-state machine (FSM), which is a mathematical model of computation. The 

change from one state to another in FSM is defined as a transition. An FSM is defined by a list of its 

states, its initial state, and the conditions for each transition [8]. The instruction “CASE… OF…” in 

ST language can easily realize state change in FSM. In addition, ST language is friendlier to 

programmers who are familiar with textual programming languages. Based on these points, the ST 

language has been chosen to program the HVOF spray control system. A simplified example of code 

is displayed in Figure 5.4. State (black frame) will change (orange frame) from one to another when 

the condition and/or input (blue frame) is satisfied. Corresponding actions (red frame) will be carried 

out when the system moves into a specific state. 

 

Figure 5.4 A simplified example of code for the control system 

With the basic principle, hardware, and programming language, the HVOF spray control system 

has been developed. Details about the different interfaces of the control system will be rapidly 

introduced in the following. 



Chapter 5. The development of the HVOF control system and the integration of ANN models 

125 

5.1.4. The interfaces of the HVOF spray control system 

Figure 5.5 displays the operation panel of the HVOF spray control system. The electronic control 

screen offers interfaces for the main operations. However, the “CDS” (see Figure 5.6 for details) and 

“Diamond-Jet” pages (see Figure 5.7 for details) are used to control the CDS torch and the 

Diamond-Jet 2701/2702 torch, separately. What is more, the system also provides a “Maintenance” 

page (see Figure 5.8 in details), on which users can conveniently test the electromagnetic valves and 

manually adjust the system. A “Configuration” page (see Figure 5.9 for details) was also designed for 

setting and recording the gases’ flow rates during the HVOF process. What is more, the history of the 

gases’ flow rate during the spraying process can be recorded using the background program. A variety 

of safety logic has been considered in this control system. Some mechanical buttons have been 

provided for key controls and a self-locking button for critical situations. For example, the “Start,” 

“Stop,” “Rapid stop,” and “Emergency stop” functions are controlled by mechanical buttons. The 

switches for the “CDS” and “Diamond-Jet” systems are controlled by both mechanical and virtual 

buttons. 

 

Figure 5.5 Operation panel of the HVOF spray control system 

Interfaces of the CDS system and Diamond-Jet system 

Figure 5.6 and Figure 5.7 exhibit the user interfaces of the CDS system and the Diamond-Jet 

system, respectively. Although the torch and gases used are different, the workflows and interfaces are 

similar. Part A is used to pre-define the gases’ flow-rate values and to show the status of the real gases’ 

flow rates during operation. However, A1 and A3 display the percentage and numerical value of the 
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real gas flow rate, respectively; A2 shows the difference between the pre-defined and real gas flow 

rate in color; A4 gives the pre-defined gas flow rate. Part B offers manual operating buttons for 

verification and testing under special security requirements. Part C displays the immediate warnings 

and alarms. Part D calculates the total and single spraying time. Part E shows the status of cooling 

water, including water flow rate and water temperature input and output. Part F presents the status of 

the powder feeder, containing the pre-defined and real rotation speed of the tray and stirrer, which will 

directly determine the powder feed rate. Part G is used to control the air compressor (G1) and shows 

the spraying status of the system (G2). Part H is designed to switch the interfaces. 

 

Figure 5.6 Interface of the CDS system 

 

Figure 5.7 Interface of the Diamond-Jet system 
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Interface for maintenance 

Figure 5.8 shows the interface for maintenance. The statuses of all the electromagnetic valves are 

displayed on this page, as well as the gas flow rates. Part A shows the real and set gas flow rates of all 

the gases used in this control system. Buttons are also offered for testing the gases. Part B lists all the 

electromagnetic valves used in this system, which conveniently help to detect and maintain the system. 

Part C displays the statuses of gases and accessories used, which are connected to the sensors. Thus, 

the maintenance of the HVOF control system, and the detection of the statues of the electromagnetic 

valves, can be conveniently carried out using this “Maintenance” page. 

 

Figure 5.8 Interface of the maintenance system 

Interface for configuration 

Figure 5.9 shows the interface for configuration. This page is employed to switch languages (A) 

for the whole system and pre-define system parameters for stable ignition for the CDS (B) and 

Diamond-Jet systems (C). Generally, the gases’ flow rate values are fixed for stable ignition and 

flameout. However, the spray system may change gradually over time and use. It is necessary to set 

this page for further adjustment. 
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Figure 5.9 Interface of the configuration system 

5.1.5. Data recording system 

This control system also provides a background program for recording the process data during 

spraying. The data for the CDS and Diamond-Jet systems are recorded in the separated folders. 

Every single record is created in a single file from successful ignition to flameout. As shown in 

Figure 5.10, the spraying period, system state, set and real gases flow rates, and spraying 

environment (cooling waters’ flow rate and temperature) are recorded. The data is recorded every 

100 ms. This recording system conveniently monitors the spray process and observes potential 

fluctuations during the spraying process. These data can be also used as big data to perform future 

data mining and system analysis. 
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Figure 5.10 Data recording files for the CDS and Diamond-Jet systems 

5.2. Integration of the ANN models into the HVOF spray control system 

In Chapter 4, two ANN models have been constructed, optimized, and trained to study the HVOF 

spray process by relating the coating properties with the behaviors of in-flight particles with the 

ANN1 model and predicting particle behaviors based on the process parameters of the ANN2 model. 

This process was completed based on MATLAB software, in which two packaged ANN networks 

were obtained. In this section, two algorithms were introduced, which were permitted to convert these 

two packaged networks into the cyclic PLC program using the IEC 61131-3 language in Automation 

StudioTM. The workflow is illustrated in Figure 5.11. 
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Figure 5.11 The workflow of integrating the ANN model 

5.2.1. Extracting and programming with MATLAB code for ANN models 

Extracting information from packaged ANN models 

As introduced above, the first step is to extract information from packaged ANN models. With 

the command “genFunction,” a MATLAB function is generated for the simulation of a shallow neural 

network. Neural network constants, simulation process, and module functions are, therefore, acquired. 

Taking the ANN1 model as an example, some of the neural network constants are listed in Figure 5.12. 

Variable x1_step1 contains the constants necessary to pre-process input data in the input layer. 

Variables b1 and IW1_1 consist of the bias or weights linking the input layer and the first hidden layer. 

Similarly, b2 and LW2_1 contain the bias or weights between hidden layers and b3, and LW3_2 

provide bias or weights connecting the output layer from the second hidden layer. Variable y1_step1 

gives the constants for post-processing the output data in the output layer. Therefore, the ANN models 

can be ported to other platforms using these neural network constants, according to MATLAB codes. 
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Figure 5.12 Neural network constant of the ANN1 model 

Programming with MATLAB code for the ANN models 

According to the structure of the ANN model, the ANN1 model can be programmed with 

MATLAB code using specific parameters and functions used in the ANN1 model, as displayed in 

Figure 5.13. Matrix Xp1 stores pre-processed input data, which will be further transformed into the 

input layer. Matrix a1, a2, and a3 correspond to the value stored in neurons in the input layer, the first 

hidden layer, and the second hidden layer, respectively. The a3 matrix will be post-processed and 

stored in Y1 for exporting final predicted values. Wherein, the functions “tansig,” “logsig,” and 

“purelin” are the transfer functions used in the ANN1 model from the input layer to the first hidden 

layer, from the first hidden layer to the second hidden layer, and from the second hidden layer to the 

output layer, respectively. It should be noted that different ANN models may have various transfer 

functions. Therefore, the code needs to be adjusted accordingly. After understanding the structure and 

the procedure of the ANN model, work can continue to program the ANN model within Automation 

StudioTM, using the IEC 61131-3 language and by integrating it into the HVOF spray control system. 
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Figure 5.13 Code for constructing the ANN1 model in MATLAB 

5.2.2. The combination of ANN models with the HVOF control system 

Structured text has also been chosen to program the ANN models. Attention should be paid to the 

calculation between the matrices. It is highly recommended to include the library “MTLinAlg” to call 

functions for matrix operations in the Automation StudioTM. The ANN models have been integrated 

and the interface in the HVOF spray control system is shown in Figure 5.14. After entering the 

process parameters, the velocity and temperature of in-flight particles will be predicted and will 

further flow into the ANN2 model to serve as input. The coating properties will then be calculated and 

shown on the interface. Figure 5.14 also demonstrates a calculation example, in which the stand-off 

distance was set at 200 mm, the O2 flow rate at 200 slpm, and the CH4 flow rate at 180 slpm. The 

velocity and temperature of in-flight particles are predicted as 461 m/s and 2096 K by the ANN1 

model. The coating properties are calculated by the ANN2 model, giving the microhardness as 712 

HV0.3, porosity as 0.196%, and wear rate as 2.184 * 10-5 mm3/N/m. These values are exactly the 

values predicted by the ANN models and are consistent with experimental values. Therefore, the ANN 

models have been successfully integrated into HVOF spray control. 
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Figure 5.14 Interface of the ANN models in an HVOF control system 

5.3. Development and integration of the reversed ANN model 

A reversed ANN model (ANN3 model) has been developed to predict the process parameters 

based on the properties of the coating. By combining the ANN3 model with the integrated system 

introduced in Section 5.2, feedback control was expected. 

In the ANN3 model, microhardness has been chosen as the input. Compared to the coating’s 

wear rate, microhardness is easily available. However, it is more reliable compared to the coating’s 

porosity, which tends to be of a relative value. Process parameters (i.e., stand-off distance, O2 flow 

rate, and CH4 flow rate) have been set as outputs. The ANN3 model also went through the same 

optimization procedures as the ANN1 and ANN2 models, to obtain the most suitable functions and 

parameters. An R value of 0.97596 has been obtained based on the optimized ANN3 model, which is 

smaller than that of the ANN1 model (0.99991) and ANN2 model (0.99997). This demonstrates that 

the ANN3 model performs worse with its prediction requirements, which is mainly due to the lower 

amount of data in the input layer. Additionally, the duplicated data in the output layer also deprives the 
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prediction performance of the ANN3 model. 

In order to integrate the ANN3 model, two options have been supplied with a button “Link” in 

Figure 5.15. For the first option (without pressing the button), the ANN3 model will operate 

independently and gives the results individually, providing a reference for the comparison of the 

process parameters. Due to the relatively low accuracy of the ANN3 model, the ANN3 model is used 

as a reference in this work. As shown in Figure 5.15, the process parameters predicted by the ANN3 

model is not exactly equal to the set value. The stand-off distance is smaller than the expected value, 

while the O2 and CH4 flow rates are higher. Therefore, the set value can be adjusted to make them 

consistent. For the second option (pressing the button), the outputs of the ANN3 model will be 

transferred to the ANN1 model and works as the inputs of the ANN1 model to realize the feedback 

control. There is no doubt that the accuracy of the ANN3 model will increase with the growth of the 

data set. Therefore, although the second option has not been used here, it is useful to prepare the 

second option for further research. 

 

Figure 5.15 Integration of the ANN3 model into the HVOF control system 



Chapter 5. The development of the HVOF control system and the integration of ANN models 

135 

5.4. Conclusions 

In this chapter, the HVOF spray control system has been developed and introduced in detail. Next, 

two packaged ANN models have been extracted and reprogrammed with the PLC programming 

language defined in IEC 61131-3; this is to realize the intelligent HVOF spray control system and 

real-time prediction the HVOF process and the HVOF sprayed NiCr-Cr3C2 coating. 

In the first step, the hardware and software architectures have been decided according to the 

system requirement. The principle of the control system has been explained, offering the foundation 

for the developing control system. The operation has been clearly explained, ensuring the corrected 

operation of the system. In addition, a data recording system has been programmed and runs in the 

background during the spray process; this makes it convenient to monitor the spray process and 

observe potential fluctuations. Finally, the whole control system has been programmed using 

Structure Text (ST) language and transferred to the PLC platform. 

For the integration of the ANN models, the information stored in the two packaged ANN models 

has been firstly extracted in MATLAB. This information, together with the specific functions used, 

helps to encode the ANN models using MATLAB code. Finally, the ANN models have been 

programmed with IEC 61131-3 language in Automation StudioTM and integrated in the HVOF spray 

control system. 

A reversed ANN model (i.e., ANN3 model) has been developed to predict the process parameters 

based on coatings’ microhardness. It has been integrated into the HVOF control system, in which two 

usage modes have been supplied. In this work, the outputs predicted by the ANN3 model have been 

used as a reference due to its relative low prediction accuracy. Another option has been supplied for 

further development of a feedback control system in the future. 

This integration of ANN models into the HVOF control system provides a preliminary idea about 

constructing an intelligent control system for the HVOF spray process and can be promoted to other 

thermal spray technologies. More data and information are expected to build up ANN-assisted thermal 

spray control systems for different types of feedstock and thermal spray technologies. 
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6.1. Conclusions 

After decades of development, thermal spray technologies have been widely applied in various 

industries to deal with a range of challenges. Along with this, diverse optimization and modeling 

methods have also been developed and employed to study the mechanism and coating formation, to 

deposit the desired coatings that meet specific requirements. In this context, the ANN model can be a 

satisfied candidate and more attention should be paid to it. 

This dissertation aims to develop an intelligent HVOF spray control system via machine learning, 

specifically ANN models, to provide a comprehensive understanding of the relationship among 

HVOF process parameters, behaviors of in-flight particles, and coating performances. For the above 

purpose, 40 sets of thermal spray experiments have been carried out, as well as corresponding 

characterizations and tests. Hereafter, preliminary analyses of the behaviors of in-flight particles, as 

well as the phase components, microstructure, and properties of coating, have been given from the 

view of HVOF spray technology. The relationships among them are ambiguous and it is impossible to 

directly summarize. Therefore, ANN models were proposed, created, and trained to predict the 

properties of HVOF sprayed NiCr-Cr3C2 coating and analyze the influence of operating parameters 

considering the intermediate process. In addition, MIV-based analysis has been carried out to evaluate 

the factors’ importance in ANN models. Finally, a HVOF spray control system was programmed to 

control and record the spraying process. Based on this control system, two packaged ANN models 

have been reprogrammed and integrated into the HVOF spray control system. The detailed 

conclusions from this research are summarized below. 

Preliminary understanding of the HVOF process and HVOF sprayed coatings 

From 40 sets of experiments and corresponding tests that have been carried out based on 

different process parameters, it can be roughly summarized that: 

1. The temperature of in-flight particles shows a growing tendency with the increase of the O2 

flow rate. On the other hand, it shows an initially increasing, then decreasing, trend with an 

increasing stand-off distance. The temperature generally decreases with an increasing CH4 

flow rate, except for some fluctuations with longer stand-off distances. The increase of the O2 

flow rate would increase the velocity of in-flight particles. However, with the increase in the 
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stand-off distance, the effect of O2 flow rates on the velocity of in-flight particles fades out. 

The velocity decreases progressively with the increasing stand-off distance. The CH4 flow 

rate has a negligible impact on the velocity of in-flight particles. 

2. The analysis of phase components indicates that the coatings are mainly composed of 

Cr1.12Ni2.88, Cr7C3, and Cr23C6. The microstructure of NiCr-Cr3C2 coatings proves that the 

spraying process is robust as uniform coatings, made of a distribution of hard carbide phase in 

the NiCr binder phase matrix, are obtained for all conditions. Subsequently, the porosity, 

microhardness, and wear rate of coatings has been discussed, considering the influence of 

behaviors of in-flight particles. It can be visually summarized that both the velocity and 

temperature of in-flight particles have an impact on the properties of coatings. However, it is 

impossible to directly relate the performances of in-flight particles to coating properties. 

Therefore, machine learning methods, especially ANN models, were proposed to predict and 

study the HVOF spray process and the influence of the behaviors of in-flight particles on coating 

properties. 

Constructing and analyzing ANN models  

Two ANN models have been constructed and optimized to predict the properties of HVOF 

sprayed NiCr-Cr3C2 coating and to analyze the influence of operating parameters considering the 

intermediate process. It can be concluded that: 

1. The ANN1 model has performed to forecast the relationship between the HVOF spray process 

parameters (i.e., stand-off distance, CH4 flow rate, and O2 flow rate) and the behaviors of 

in-flight particles (temperature and velocity) with a maximum relative error of 0.76% for 

velocity and 0.43% for temperature. The reliability and accuracy of the ANN1 model has been 

verified by the test sets with a relative error of 0.43% for velocity and 0.14% for temperature. 

2. The ANN2 model has been trained to predict coating properties (i.e., microhardness, porosity, 

and wear rate) according to the characterizations of in-flight particles. A maximum relative 

error of 1.34%, 1.00%, and 3.15% for microhardness, porosity, and coating wear rate of 

coatings, respectively, have been obtained. Test sets have been used to certify the reliability 

and accuracy of the ANN2 models, for which the relative errors (0.06% for microhardness, 
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0.15% for porosity, and 0.31% for wear rate) are smaller than the maximum errors. 

3. The MIV-based analysis has been executed to evaluate the importance of these factors. 

Analysis shows that the important sequence of the factors for the velocity of in-flight particles 

are stand-off distance > O2 flow rate > CH4 flow rate; for the temperature: stand-off distance > 

CH4 flow rate > O2 flow rate; for coating’s microhardness: V > T; for coating’s porosity and 

wear rate: T > V. 

These two well-trained ANN models can be applied to the prediction of coating properties and 

in-flight particles behaviors, as well as the optimization of coatings. What is more, the MIV-based 

analysis makes up the study of the importance of the process parameters, which is lacking but is 

necessary for the ANN model. The development of ANN models in thermal spray technologies helps 

to better study thermal spray processes and controlled coating performances. 

Developing an HVOF spray control system and the integration of ANN models 

A HVOF spray control system has been developed for the HVOF thermal spray process from a 

global perspective. Most importantly, both the CDS torch and Diamond-Jet 2700 torch of the control 

systems were developed, taking different spraying requirements into account. Data recording has also 

been considered, as well as the maintenance and configuration requirement. In addition, it also 

provided an interface with which to subsequently integrate the ANN model into the HVOF control 

system.  

As introduced in Chapter 4, two packaged ANN models have been obtained. Hereafter, their 

information has been extracted and their structures have been reconstructed using MATLAB code. 

Based on this, the ANN models have been further reprogrammed using IEC 61131-3 language in 

Automation StudioTM. An intelligent HVOF spray control system has been realized and the real-time 

prediction of the HVOF process and HVOF sprayed NiCr-Cr3C2 coating has been achieved. 

6.2. Perspectives 

With the development of society, there is no doubt that machine learning, especially artificial 

intelligence, will catch more and more attention in various fields, indicating its universality and high 
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accuracy. The combination of artificial intelligence and thermal spray technologies will further 

promote the research of the thermal spray process, as well as the development of high-quality thermal 

sprayed coatings. In the author’s opinion, further work should focus on the following aspects. 

Data size is one of the most important factors influencing the applicability and accuracy of 

artificial intelligence models. Nowadays, with the development of thermal spray control systems and 

monitoring equipment, it is convenient to collect data from thermal spray processes. However, it is 

still time-consuming work to obtain enough coating information from various tests. Based on this 

point, it is recommended to first study the thermal spray processes themselves with more alternative 

artificial intelligence methods. However, eventually, with the expansion of the coating information, 

attention should be paid to developing a comprehensive artificial model considering both the thermal 

spray processes and coating properties. 

A gene database is highly recommended to construct for thermal spray technologies, considering 

all kinds of factors, such as types of thermal spray technology and torches, process parameters of the 

spray system, robot operating parameters, feedstock powders properties, hardware characteristics, and 

spraying environments. What is more, as time goes on, the performance of torch and spray systems 

may gradually change. Therefore, the duration should also be recorded and considered as a factor. 

With this all-in-one gene database, artificial intelligence methods will be more capable of studying 

thermal spray technologies
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Abstract 

In the high velocity oxygen fuel (HVOF) spray process, the coating properties are sensitive to the 

characteristics of in-flight particles, which are mainly determined by the process parameters. Due to 

the complex chemical and thermodynamic reactions during the deposition procedure, obtaining a 

comprehensive multi-physical model or analytical analysis of the HVOF process is still a challenging 

issue. This study proposes to develop a robust methodology via artificial neural networks (ANN) to 

solve this problem for the HVOF sprayed NiCr-Cr3C2 coatings under different operating parameters. 

First, 40 sets of HVOF spray experiments and coating property tests were carried out for analysis 

and to build up the data set for ANN models. The relationship among the process parameters, 

behaviors of in-flight particles, and coating properties were investigated from an intuitive view, which 

provided a preliminary understanding of the HVOF process and sprayed coatings. Even though the 

effect of process parameters on the behaviors of in-flight particles and thus on the coating’ properties 

can be roughly summarized, it is impossible to build up direct connections among them. 

Second, two ANN models were developed and implemented to predict coating’s performances 

(microhardness, porosity and wear rate) and to analyze the influence of operating parameters 

(stand-off distance, oxygen flow rate, and fuel flow rate) while considering the intermediate variables 

(temperature and velocity of in-flight particles). A detailed procedure for creating these two ANN 

models is presented in this work, which encodes the implicitly physical phenomena governing the 

HVOF process. A set of additional experiments were also conducted to validate the reliability and 

accuracy of the ANN models. The results show that the developed implicit models can satisfy the 

prediction requirements. Clarifying the interrelationships between the spraying conditions, behaviors 

of in-flight particles, and the final coating performances will provide better control of the HVOF 

sprayed coatings. Additionally, mean impact value (MIV) analysis was conducted to quantitatively 

explore the relative significance of each input on outputs for improving the effectiveness of the 

predictions. 

Lastly, the well-trained ANN models were programmed and integrated into the homemade 

HVOF spray control system to realize an intelligent control system. With this system, the temperature 
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and velocity of in-flight particles can be calculated by entering process parameters, and thereafter 

obtaining specific coating properties. A reverse ANN model was also integrated, which calculates 

process parameters based on the microhardness of the coating to guide the selection of the best 

parameters. This integration provides a preliminary idea for the construction of an intelligent control 

system for HVOF spray process and can be promoted to other thermal spray technologies. 

Overall, based on a large data set, this work not only intuitively analyzed the relationship among 

process parameters, behaviors of in-flight particles, and coating’s properties, but also provided a 

prediction method for the HVOF spray process and HVOF sprayed coatings via the optimized and 

well-trained ANN models. In addition, a prototype to realize an intelligent control system for HVOF 

spray process has also been suggested. 
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Résumé 

Dans le procédé de projection thermique de flamme d’oxygène à haute vitesse (HVOF), les 

propriétés du revêtement sont sensibles aux caractéristiques des particules en vol, qui sont 

principalement déterminées par les paramètres du procédé. En raison des réactions chimiques et 

thermodynamiques complexes au cours de la formation du dépôt, l’obtention d’un modèle 

multi-physique complet ou d’une analyse analytique du processus HVOF reste un challenge difficile. 

Cette étude propose de développer une méthodologie robuste via les réseaux de neurones artificiels 

(ANN) pour résoudre ce problème pour les revêtements NiCr-Cr3C2 élaborés par HVOF sous 

différents paramètres opératoires. 

Premièrement, 40 ensembles d’expériences de projection HVOF et tests de propriétés du 

revêtement ont été effectués pour l’analyse et la constitution des données pour les modèles ANN. La 

relation entre les paramètres opératoires, le comportement des particules en vol et les propriétés du 

revêtement a été étudiée à partir d’une vue intuitive, qui fournit une compréhension préliminaire du 

processus HVOF et des revêtements. Même si l’effet des paramètres du processus sur ces derniers peut 

être résumé sommairement, il est impossible d’établir une relation directe entre eux. 

Deux modèles ANN ont été développés et mis en œuvre pour prédire les performances du 

revêtement (micro-dureté, porosité et taux d’usure) et pour analyser l’influence des paramètres 

opératoires (distance de projection, débit d’oxygène et débit de carburant) en considérant les variables 

intermédiaires (température et vitesse de particules en vol). Une procédure détaillée de création de ces 

deux modèles ANN est présentée dans cette étude, qui encode implicitement les phénomènes physiques 

régissant le processus HVOF. Une série d’expériences supplémentaires ont également été menées pour 

valider la fiabilité et la précision des modèles ANN. Les résultats montrent que les modèles implicites 

développés peuvent satisfaire aux exigences de prédiction. La clarification des relations entre les 

conditions de projection, les comportements des particules en vol et les performances finales du 

revêtement offrira un meilleur contrôle des revêtements déposés par HVOF. De plus, l’analyse de la 

valeur d’impact moyenne (MIV) a été menée pour explorer quantitativement l’importance relative de 

chaque entrée sur les sorties pour améliorer la prédiction efficace. 
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Enfin, les modèles ANN bien formés ont été programmées et intégrés dans le système de contrôle 

de projection HVOF fait maison pour réaliser un système de contrôle intelligent. À l’aide de ce système, 

la température et la vitesse des particules en vol peuvent être calculées en saisissant les paramètres 

opératoires, puis des propriétés de revêtement spécifiques peuvent être obtenues. Un modèle ANN 

inversé a également été intégré, qui calcule les paramètres opératoires disponibles en fonction de la 

micro-dureté du revêtement pour guider la sélection des meilleurs paramètres. Cette intégration fournit 

une idée préliminaire de la construction d’un système de contrôle intelligent pour le processus de 

projection HVOF et peut être promue à d’autres technologies de projection thermique. 

Dans l’ensemble, basé sur un grand nombre de données, ce travail a non seulement analysé 

intuitivement la relation entre les paramètres du processus, les comportements des particules en vol et 

les propriétés du revêtement, mais a également fourni une méthode de prédiction pour le processus de 

projection HVOF et les revêtements déposés par HVOF via le modèle ANN optimisé et bien formé. En 

outre, un prototype pour réaliser un système de contrôle intelligent pour le processus de projection 

HVOF a également été suggéré. 

 



 

 



  

 

 


