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Abstract

Particle-filled magnetorheological elastomers (MREs) are essentially two-phase composites compris-
ing magneto-active metallic inclusions in a mechanically soft elastomer matrix. This work provides
a set of equivalent microstructurally-guided constitutive models for the isotropic MREs in the F−H,
F−h, F−B and F−b variable spaces. Depending on the magnetic properties of the inclusion phases,
the MREs are referred to as soft (s-MRE) or hard (h-MRE), in they contain, respectively, magneto-
active (e.g., iron) or, permanently magnetizable (e.g., NdFeB) particles. In turn, the non-coercive,
“soft” magneto-active particles exhibit a saturation-type magnetization response, whereas the highly
coercive, permanently magnetizable “hard” magnetic particles exhibit ferromagnetic hysteresis.

Two equivalent, h and b-based, thermodynamically consistent, rate-independent models for the
ferromagnetic hysteresis are proposed herein. Furthermore, the non-hysteretic saturation-type soft
magnetic response is observed to be a special case of the hysteresis response, in the limit of vanishing
coercivity. A full-field numerical homogenization is subsequently carried out, in order to estimate
the macroscopic response of the s- and h-MREs. In particular, an augmented, incremental numerical
homogenization framework is proposed, that is suitable for the h-MREs. This proposed incremental
framework simplifies further in the limit of vanishing particle coercivity, thus leading to a purely
energetic homogenization problem for the s-MREs. Numerical homogenization estimates for both s-
and h-MREs provide crucial insights into the particle rearrangements and rotations under various
loading conditions.

Fully objective, explicit macroscopic models, that become exact to the analytical homogenization
estimates in certain limits, are proposed for the s-MREs in both F−H and F−B variable spaces. Since
most of the effective properties are estimated from the limiting cases of analytical homogenization,
the number of model parameters to be estimated via model response fitting reduces to one. Similarly,
fully objective, equivalent constitutive models in the F−H, F−h, F−B and F−b variable spaces are
proposed for the h-MREs, where the internal variables in the Lagrangian F − H and F − B-based for-
mulations are considered to be in a stretch-free, intermediate configuration. Consequently, the total
Cauchy stress derived from the Clausius-Duhem inequalities via employing the classical Coleman-
Noll-Gurtin method is found to be consisting of the mechanical stress, the energetic and remanent
Maxwell stresses, where the last is an additional stress contribution, obtained for the h-MREs. Fur-
thermore, the evolution equation for the current internal variables are defined to be in terms of their
objective Green-Naghdi rates. Here also, only one additional model parameter, to be identified via
fitting the model response, is introduced.

Excellent agreements are obtained between the proposed models for the s- and h-MREs and the
numerical homogenization estimates for all particle volume fractions of interest, i.e., up to 30%, and
for moderately-soft to relatively stiff matrix phases having shear moduli Gm > 0.3 MPa. In turn, the
proposed s-MRE models also perform very well for softer matrices having moduli Gm < 0.1 MPa.



Résumé

Les élastomères magnétorhéologiques (MREs) remplis de particules sont essentiellement des com-
posites à deux phases comprenant des inclusions métalliques magnéto-actives dans une matrice
d’élastomère mécaniquement souple. Ce travail fournit un ensemble de modèles constitutifs équiva-
lents guidés microstructurellement pour les MREs isotropes dans les espaces de variables F−H, F−h,
F−B et F−b. En fonction des propriétés magnétiques des phases d’inclusion, les MREs sont appelés
doux (s-MREs) ou durs (h-MREs), s’ils contiennent, respectivement, des particules magnéto-actives
(par exemple, fer) ou des particules magnétisables de façon permanente (par exemple, NdFeB). À
leur tour, les particules magnéto-actives “douces” non-coercitives présentent une réponse de mag-
nétisation de type saturation, tandis que les particules magnétiques “dures” fortement coercitives et
magnétisables de façon permanente présentent une hystérésis ferromagnétique.

Deux modèles équivalents, basés sur h et b, thermodynamiquement cohérents et indépendants
de la vitesse sont proposés ici pour l’hystérésis ferromagnétique. De plus, la réponse magnétique
douce de type non-hystérétique à saturation apparaît comme un cas particulier de la réponse hys-
térétique lorsque la coercivité tend vers zéro. Une homogénéisation numérique à champ complet
est ensuite réalisée afin d’estimer la réponse macroscopique des s- et h-MREs. En particulier, un
cadre d’homogénéisation numérique incrémental augmenté est proposé, qui convient aux h-MREs.
Ce cadre incrémental peut être davantage simplifié lorsque la coercivité des particules tend vers zéro,
conduisant ainsi à un problème d’homogénéisation purement énergétique pour les s-MREs. Les esti-
mations numériques d’homogénéisation pour les s- et h-MREs fournissent des informations cruciales
sur les réarrangements et les rotations des particules dans diverses conditions de chargement.

Des modèles macroscopiques explicites et entièrement objectifs, qui deviennent identiques aux
estimations analytiques d’homogénéisation dans certaines limites, sont proposés pour les s-MREs
dans les deux espaces de variables F−H et F−B. Étant donné que la plupart des propriétés effectives
sont estimées à partir des cas limites d’homogénéisation analytique, le nombre de paramètres du
modèle à estimer via l’ajustement de la réponse du modèle se réduit à un. De la même manière, des
modèles constitutifs entièrement objectifs et équivalents dans les espaces de variables F − H, F − h,
F − B et F − b sont proposés pour les h-MREs, où les variables internes dans le Lagrangien F − H
et F − B sont considérées comme étant dans une configuration intermédiaire sans étirement. Par
conséquent, la contrainte totale de Cauchy dérivée des inégalités de Clausius-Duhem via l’utilisation
de la méthode classique de Coleman-Noll-Gurtin trouve être constituée de la contrainte mécanique et
des contraintes énergétiques et rémanentes de Maxwell, la dernière contrainte étant une contribution
supplémentaire obtenue pour les h-MREs. De plus, l’équation d’évolution des variables internes
actuelles est définie en fonction de leurs taux objectifs de Green-Naghdi. Ici aussi, un seul paramètre
supplémentaire, à identifier via l’ajustement de la réponse du modèle, est introduit.

D’excellents accords sont obtenus entre les modèles proposés pour les s- et h-MREs et les estima-



tions numériques d’homogénéisation pour toutes les fractions volumiques de particules considérées,
c’est-à-dire jusqu’à 30%, et pour des matrices allant de modérément souples à relativement rigides
ayant des modules de cisaillement Gm > 0, 3 MPa. À leur tour, les modèles s-MREs proposés fonc-
tionnent également très bien pour des matrices plus souples de modules Gm < 0, 1 MPa.

iv
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(�)p Properties/potentials of the particle phase (�)m Properties/potentials of the matrix phase
(�)mech Mechanical part of (�) (�)mag Magnetic part of (�)
(�)enmag Energetic part of (�)mag (�)remmag Remanent part of (�)mag

Magnetic and mechanical field variables
b Current magnetic induction h Current magnetic field
m Current magnetization br Current remanent b-field
hr Current remanent h-field B Reference magnetic induction
H Reference magnetic field Br Reference remanent b-field
Hr Reference remanent h-field Br Intermediate remanent b-field
Hr Intermediate remanent h-field ϕ(X) Reference scalar potential
A(X) Reference vector potential ha Applied Eulerian magnetic field
F Mechanical deformation gradient u Mechanical displacement field

1Representative Volume Elements in the numerical homogenization.



C Right Cauchy-Green tensor B Left Cauchy-Green tensor
U Right stretch tensor V Left stretch tensor
R Mechanical rotation tensor l Mechanical deformation rate tensor
d Mechanical stretch rate tensor Ω Mechanical spin tensor
λi, i = 1− 3 Principal mechanical stretches γij, i 6= j Mechanical shear strain
S Total first Piola-Kirchhoff (P-K) stress Smech Mechanical part of 1st P-K stress
Sen
maxw Energetic Maxwell 1st P-K stress Smech

a Applied mechanical 1st P-K stress
σ Total Cauchy stress σmech Mechanical part of Cauchy stress
σen
maxw Energetic Maxwell Cauchy stress σrem

maxw Remanent Maxwell Cauchy stress
T Reference total traction vector t Current total traction vector
q Current heat flux vector p Current magnetic flux vector

Potentials and switching surfaces
WH Potential energy in the F − H model wh Potential energy in the F − h model
WB Potential energy in the F − B model wb Potential energy in the F − b model
DH Dissipation potential in the F − H model Dh Dissipation potential in the F − h model
DB Dissipation potential in the F − B model Db Dissipation potential in the F − b model
ψH Helmholtz free energy2in F − H model ψB Helmholtz free energy in F − B model
ΦH Switching surface in the F − H model φh Switching surface in the F − h model
ΦB Switching surface in the F − B model φb Switching surface in the F − b model
WH Incremental potential in the F − H model PH Augmented incremental potential

Properties
ρ0 Reference material density ρ Current material density
c Particle volume fraction µ0 Magnetic permeability of vacuum
µ Magnetic permeability of a material µe Energetic permeability of a material
χ Magnetic susceptibility χe Energetic magnetic susceptibility
ms Saturation magnetization bc Coercive field
κh Hysteresis shape parameter (h-model) κb Hysteresis shape parameter (b-model)
G Mechanical shear modulus G ′ Mechanical bulk modulus
βH1 Coupling parameter in F − H/h s-MRE model βB1 Coupling parameter in F − B/b s- model
βHr Coupling parameter in F − H/h h-MRE model βBr Coupling parameter in F − B/b h- model
p,q Rate exponents in dissipation potentials ζ Penalty parameter in FE computations

2specific Helmholtz free energy, i.e. per unit mass.
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Chapter

1
Introduction

Chapter summary: This chapter summarizes the key aspects in the fabrication and modeling of magnetorhe-
ological elastomers (MREs), reported in the literature. In particular, a comparison is drawn between the
MREs comprising soft and hard ferromagnetic particles vis-a-vis different fabrication techniques and modeling
approaches. Both microscopic and macroscopic modeling approaches for these soft and hard MREs are summa-
rized subsequently. The detailing of the state-of-the-art is followed by a discussion on the scope of the present
work and the organization of the thesis.

Chapter content
1.1 Fabrication and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 MREs with iron particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 MREs with NdFeB particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Theoretical and numerical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 s-MREs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Ferro-electric/magnetic switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Scope of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Magneto-active particle-filled magnetorheological elastomers (MREs) are being explored since the
last two decades due to its excellent magnetic field-driven mechanical tuning properties (Jolly et al.,
1996; Ginder et al., 1999, 2000; Bodelot et al., 2017). This property of the MREs enable it to find
its potential applications in vibration absorbers (Lerner and Cunefare, 2007; Li et al., 2014; Ahamed
et al., 2018), active surface pattern controllers (Danas and Triantafyllidis, 2014; Huang et al., 2016a;
Psarra et al., 2017, 2019), soft robotic actuators (Manti et al., 2016; Kim et al., 2018; Zhao et al., 2019;
Sitti and Wiersma, 2020), microfluidic separators (Hilber and Jakoby, 2012; Royet et al., 2017; Zhou
et al., 2020), bio-inspired magnetic sensors (Kaidarova et al., 2018), etc. The MREs are essentially
two phase composites having metallic magneto-active particles suspended in a magnetically passive
but mechanically soft elastomer matrix (see Fig. 1.1). Depending on the magnetic coercivity of the
particle phase, the MREs are broadly classified under two heads listed in the following.

• Soft magnetic (e.g., carbonyl iron) particle-filled MREs, or s-MREs.

• Hard magnetic (e.g., NdFeB) particle-filled MREs, or h-MREs.

Figure 1.1 shows the typical microstructures of soft (Fig. 1.1a) and hard (Fig. 1.1b) MREs with com-
mercially available carbonyl iron (CI) and MQP-S-11 NdFeB particles, respectively. We observe from
Fig. 1.1 that, both the CI and NdFeB microstructures have spherical morphologies with the median
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Figure 1.1: Scanning electron microscopy (SEM) images of (a) commercially available carbonyl iron (CI) parti-
cles from MilliporeSigma in silicone matrix (Perales-Martínez et al., 2017) and (b) magnetic MQP-S-11 NdFeB
particles from Magnequench in PDMS matrix (Linke et al., 2016).

particle radius of ∼ 4 µm and ∼ 20 µm, respectively. Nevertheless, it should be noted that a number
of commercially available NdFeB powders also exhibit highly amorphous, sometimes rod-like mor-
phologies (Stepanov et al., 2017; Schümann and Odenbach, 2017; Schümann et al., 2017; Kim et al.,
2018). Although, the average macroscopic responses of the statistically isotropic h-MREs do not exhibit
a strong dependence on the morphology of the underlying NdFeB particles.

In contrast to the s-MREs (Danas et al., 2012b; Bodelot et al., 2017), the NdFeB particle-filled
h-MREs (Kalina et al., 2017; Kim et al., 2018; Zhao et al., 2019) exhibit remanent magnetization,
which is defined by the magnetization left after the initial loading and subsequent unloading of a
demagnetized sample. Such magnetic properties of the s- and h-MREs are direct consequences of the
different magnetic coercivities of the underlying micro-particles. Typical magnetization responses
of commercial CI and NdFeB particles and their comparison are shown in Fig. 1.2. Notice from

Figure 1.2: Measured magnetization responses of (a) carbonyl iron (CI) particles (Sugawa et al., 2013) and (b)
NdFeB particles (Deng et al., 2015). (c) Comparison between CI and NdFeB magnetization responses.

Fig. 1.2a that the CI particles magnetize and demagnetize following almost the same path, thus,
retain no remanent magnetization. The NdFeB particles, on the other hand, do not demagnetize
on the removal of the applied external magnetic field, thus, exhibiting ferromagnetic hysteresis, as
shown in Fig. 1.2b. In turn, this remanent magnetization is caused by a crucial property of the hard
magnets, namely the coercivity, which is typically defined in terms of the coercive field associated with
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a hard magnet. As indicated by hc on Fig 1.2b, the coercive field is defined to be the reverse magnetic
field that is needed to demagnetize a permanent magnet completely. Evidently, hc is negligibly small
for the soft CI particles and remains in the order of 0.8− 1.2 MA/m for the NdFeB particles (see the
particles catalogs of Magnequench). Finally, a comparison between the magnetization responses of
CI and NdFeB particles is shown in Fig. 1.2c, where we observe that, in spite of having a vanishingly
small coercivity, the CI particles magnetize to a greater extent before its saturation as compared to
the NdFeB particles. Hence, under external magnetic fields, the inter-particle attraction forces are
greater in the s-MREs than in the h-MREs.

The choice for a suitable material for the elastomer matrix is not straightforward. In spite of
having a number of commercially available curable elastomers, a many among them suffer from the
particle debonding, excessive viscosity and other issues. Engineering stress-strain responses of a
subset of these elastomers are shown in Fig. 1.3. In turn, the detailed investigations of Park et al.

Figure 1.3: Engineering stress-strain responses of various commercially available elastomers (Park et al., 2018).

(2018) suggests that Sylgard-184, Elastosil-M4130 and Elastosil-M4630, having the shear moduli of
∼ 1.0, 0.3 and 0.6 MPa, respectively, are the most suitable elastomers for the s- and h- MREs. Even
though the Ecoflex elastomers also exhibit high stretchability, they are extremely soft and thus, are
not suitable for most of the applications where an inherent structural strength is required to stay firm
against the gravity. Recent work of Wang et al. (2019) show that depending on the composition and
curing temperature, a range of different elastic properties of Sylgard-184 can be achieved. Specific
details on the material selection for the s- and h- MREs and their testing methods are summarized
in the following.

1.1 Fabrication and testing

The fabrication of both s- and h-MREs are mostly done by mixing the metallic fillers with the
monomer of the elastomer and the curing agent, followed by curing the suitably-molded mixture
at a temperature of 60o − 120oC for 1− 8 hours (Jolly et al., 1996; Ginder et al., 1999; Danas et al.,
2012b; Bodelot et al., 2017; Psarra et al., 2017; Zhao et al., 2019). More sophisticated 3D printing
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techniques for the fabrication of s- and pre-magnetized h-MREs have been reported recently (Kim
et al., 2018). However, the 3D printing technique imposes additional constraint on the choice of the
elastomer matrix, since not all of the aforementioned elastomers are suitable for 3D printing (Kim
et al., 2018). Thus, the standard mixing and curing technique still remains the primary technique for
all the MREs (Linke et al., 2016; Stepanov et al., 2017; Schümann and Odenbach, 2017; Schümann
et al., 2017). Specific material selections and testing techniques for the s- and h-MREs are discussed
in the following.

1.1.1 MREs with iron particles

Fabrication of the iron particle-filled s-MREs were initiated by Rigbi and Jilkén (1983), who cured soft
ferrite particles in a natural rubber matrix and consequently tested its mechanical properties under
applied magnetic field. Since then, numerous fabrication techniques and experimental probes for the
soft MREs have been reported (Jolly et al., 1996; Ginder et al., 1999, 2000; Lokander and Stenberg,
2003; Danas et al., 2012b; Bodelot et al., 2017). While the earlier fabrications of s-MREs mostly use
the natural rubber-like materials to be the matrix (Jolly et al., 1996; Ginder et al., 1999, 2000; Danas
et al., 2012b), the recent works consider the very soft Ecoflex (shear modulus ∼ 0.003− 0.01 MPa) to
be the matrix material (Bodelot et al., 2017; Psarra et al., 2017). The latter provides highly compliant
s-MREs, which also ensure high stretchability and high magneto-mechanical coupling.

Measurement of the coupled magneto-mechanical response of the s-MREs are not straightfor-
ward. In this context, the measurement techniques of Bodelot et al. (2017) employ highly sensitive
hall probes to measure the magnetic b and h fields across the ellipsoidal specimens. Also, the as-
sociated magnetostrictions are measured via clever positioning of mirrors and sophisticated image
processing techniques. The measured magnetization and magnetostriction responses by Bodelot
et al. (2017) for isotropic s-MREs are shown in Fig 1.4, where we observe fully reversible magneti-

Figure 1.4: Measured (a) magnetization and (b) magnetostriction responses of a cylindrical specimen of s-MRE
comprising CI particle in the Ecoflex matrix (Bodelot et al., 2017).

zation/demagnetization response in Fig 1.4a. The magnetostriction response in Fig 1.4b in terms of
three orthogonal stretch ratios are, however, not representative of the local magnetostriction char-
acteristics of the s-MREs. In fact, strong shape effects of the MRE samples play crucial roles in the
measured magnetostriction response. On the other hand, Kankanala (2007) and Danas et al. (2012b)
present an alternative method to measure the magnetization and magnetostriction responses of the
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natural rubber-based s-MREs. Of course, the order of magnetostriction becomes less than 1% in these
relatively stiff natural rubber-based MREs.

1.1.2 MREs with NdFeB particles

NdFeB particles bonded in polymers, on the other hand, are fabricated to replace the traditional
permanent magnets in various applications (Garrell et al., 2003). The polymer matrix used by Garrell
et al. (2003) and its contemporary investigations are highly stiff with negligible mechanical compli-
ance. Thus, such composites are typically referred to be the “polymer bonded magnets” instead of
h-MREs (Huber et al., 2017; Taylor et al., 2019; Lantean et al., 2019). Recently, a number of stud-
ies report various 3D printing methods to manufacture bonded NdFeB magnets, where highly stiff
and brittle polymer matrix materials, such that epoxy resin, PEEK, etc. are used (Taylor et al., 2019;
Lantean et al., 2019; Pigliaru et al., 2020).

The term h-MRE is coined since the fabrication and testing of the NdFeB particles suspended in
the soft PDMS matrix are reported (Linke et al., 2016; Schümann and Odenbach, 2017; Kalina et al.,
2017; Sánchez et al., 2018). However, the h-MREs made of such soft PDMS or silicone elastomers
are often too soft to be used as a structural element. Moreover, the strongly magnetic NdFeB par-
ticles typically end-up damaging considerably such soft elastomeric matrices having shear modulus
G ∼ 0.04− 0.001 MPa (Schümann and Odenbach, 2017). Thus, recent investigations on the coupled
structural response of h-MREs use a moderately soft commercially available Sylgard-184 (10:1) PDMS
matrix (Kim et al., 2018; Kaidarova et al., 2018; Zhao et al., 2019; Sitti and Wiersma, 2020). Such a
flexible cured h-MRE sample made of the commercially available Magnequench MQP-16-7FP parti-
cles and Sylgard-184 is shown in Fig. 1.5a and various other shapes of the cured samples are shown

Figure 1.5: (a) Flexible h-MRE ribbon, cured Magnequench MQP-16-7FP NdFeB particles in Sylgard-184 (10:1)
matrix at 90oC for 1 hour, bent by hand. (b) Examples of different shapes and sizes of cured h-MREs having
the same particle-matrix combination (Kaidarova et al., 2018).

in Fig. 1.5b. Sylgard-184, having a mechanical shear modulus in the range of G ∼ 0.4− 1.2 MPa (Choi
and Rogers, 2003; Johnston et al., 2014; Park et al., 2018; Wang et al., 2019) serves as an excellent
matrix material that provides the perfect level of compliance in the h-MREs.

The magnetic hysteresis response of h-MREs are typically measured in the vibrating sample
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magnetometers (VSMs), which require flat, cylindrical specimens (Linke et al., 2016; Stepanov et al.,
2017). The commercially available VSMs (e.g., Lakeshore 7400), however, do not provide the setup
to measure the magnetostriction responses. Thus, the measurement of magnetostrictions in the h-
MREs still require rigorous investigations. In turn, Kim et al. (2018) and Zhao et al. (2019) measure
structural deformations of the slender h-MRE structures under applied magnetic field having very
small amplitude in the order of ∼ 20 − 200 mT. This particular loading path ensures a perfectly
reversible magneto-structural response and thus, one can repeat the experiments with the same
samples without any pre/post treatment.

1.2 Theoretical and numerical modeling

The continuum magneto-elastic modeling of bulk metallic soft and hard magnets traces its way back
to Brown (1966). Since then, a set of different continuum models for the static and dynamic re-
sponse of the metallic magnets has been proposed (see the books by Hutter and van de Ven (1978);
Kovetz (2000)). The MREs are, in contrast, two phase composites having both metallic magnetic and
mechanically soft elastomeric phases. Thus, both microscopic (models for the individual phases)
and macroscopic modeling of the MREs require finite strain-based continuum settings. In the fol-
lowing, we discuss such micro and macroscopic modeling and numerical computation frameworks
developed in the context of s- and h-MREs.

1.2.1 s-MREs

The finite-strain framework of soft magneto-elasticity is a relatively recent development introduced
by Dorfmann and Ogden (2003, 2004) and Kankanala and Triantafyllidis (2004, 2008). A contin-
uum model for the anisotropic soft MREs is subsequently proposed by Danas et al. (2012b). These
so called “top-down” phenomenological models propose the constitutive framework by observing
macroscopic experimental observations.

On the other hand, a “bottom-up” approach towards the macroscopic response of the soft MREs
has been developed via the variational homogenization of local microscopic potentials associated
with the two phase composite. Analytical homogenization estimates for the “effective response”
of mechanically incompressible, soft magnetic composites are provided by Ponte Castañeda and
Galipeau (2011) and Lefèvre et al. (2017), while the numerical homogenization estimates for the
same are provided by Kalina et al. (2016) and Danas (2017). In particular, Danas (2017) provides
an augmented variational principle that ensures no boundary and specimen shape effects on the
numerical resolutions of homogenization problems for s-MREs. Recently, Keip and Rambausek (2016,
2017) and Zabihyan et al. (2020) have developed a multi-scale (FE2) computational technique for the
soft MREs.

None of the aforementioned analytical or numerical homogenization framework provide an ex-
plicit macroscopic model that can be readily applied to a macroscopic boundary value problem. Thus,
a “microstructure-guided” phenomenological models have been proposed recently by Mukherjee
et al. (2020) and Lefèvre et al. (2019) that essentially leads exactly to the analytical homogeniza-
tion model of Lefèvre et al. (2017) in some limiting cases. An alternative approach towards such
microstructurally-guided models has been developed recently by Kalina et al. (2020), which however,
requires expensive computations in order to fit a comparatively large set of model parameters. It
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is noted that the top-down and bottom-up approaches employ either F − H (Keip and Rambausek,
2016, 2017; Lefèvre et al., 2017; Lefèvre et al., 2019; Kalina et al., 2020) or F − B (Kankanala and
Triantafyllidis, 2004; Dorfmann and Ogden, 2004, 2005; Danas, 2017; Psarra et al., 2019) based mod-
eling frameworks, where F is the mechanical deformation gradient, H and B are the magnetic field
and induction, respectively. Here we indicate the independent primary variables of the modeling
framework by the suffix F − H or F − B. Of course, the relative advantage of one framework over the
another depends on the objective of the study under consideration. In particular, the F − H model
leads to a scalar potential-based finite-element computation framework and thus, facilitates the com-
putations by reducing the nodal degrees of freedom. On the other hand, the F − B-based models are
advantageous when performing a stability and post-bifurcation analysis by the numerical FE method
(Psarra et al., 2017, 2019).

1.2.2 Ferro-electric/magnetic switching

Thermodynamically consistent modeling of the remanent magnetization is typically carried out via
introducing a remanent internal variable. Such thermodynamic formalism has been first introduced
in the context of remanent polarization in ferroelectric ceramics (Huber et al., 1999; Huber and
Fleck, 2001; McMeeking and Landis, 2002; Landis, 2002; Klinkel, 2006). Subsequently, this frame-
work has been extended for the ferromagnetic materials as well (Linnemann et al., 2009; Mukherjee
and Danas, 2019). All the aforementioned works, however, have been developed in a small strain
setting. Miehe et al. (2011) provides a numerical implementation procedure for the general dissipa-
tive electro-magneto-elastic materials at small strains. Subsequently, Rosato and Miehe (2014) have
proposed a “top-down” approach towards modeling the remanent polarization in a material at finite
strains. Therein, the coupled polarization strain is modeled via constituting a polarization tensor that
is defined to have the principal directions along the direction of the polarization vector. In their
recent attempt to macro-model the h-MREs, Zhao et al. (2019) have considered a linearization of the
hysteretic response near the zero applied h-field and subsequently carried out the coupled structural
computations under a small applied magnetic field (∼ 0.04− 0.12 T). However, this model remains
relevant only for specific loading paths having small magnetic loading amplitudes.

Numerical computations for the effective response of the h-MREs via numerically resolving the
local mechanical and magnetic fields in a representative volume element have not been investigated
in detail. Although the numerical simulations of the internal particle rotations in the h-MREs have
been carried out by Kalina et al. (2017), an incremental homogenization formalism for the hard
magnetic microstructures yet needs to be stated. In this regard, it is noted that the incremental
variational homogenization framework has already been employed to compute the effective response
of elasto-plastic composites (Miehe, 2002; Miehe et al., 2002). Again, it is noted from Danas (2017) that
the numerical homogenization for the MREs necessitates suitable augmentations to the variational
homogenization problem, that, in turn, leads to a “pure” magneto-mechanical response, which is
free from the geometric shape effects in the MRE sample.

1.3 Scope of the present work

Keeping in mind the variety of possible applications of the s- and h-MREs, the central idea of this
work is to provide rigorous yet simple models for the macroscopic computations of the boundary
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value problems (BVPs) that, in general, involve remanent (residual) magnetization and are subjected
to arbitrary magneto-mechanical loading paths. Such macroscopic BVPs are of direct interest in the
design of MRE-based sensors, actuators and other devices. In particular, the macroscopic models
those are sought for, must reflect the effects from the underlying microstructure and its evolution
sufficiently well. Thus, emphasis are given on both microscopic and macroscopic modeling of s- and
h-MREs. Specifically, the present work provides the following ingredients towards an efficient micro
and macroscale modeling for s- and h-MREs.

� Two equivalent h and b-based constitutive models for the metallic hard magnets with negligibly
small strain are developed. These models involve suitable definitions of the thermodynamic
internal variables and the associated constitutive laws from the Clausius-Duhem inequality and
the generalized standard material (Halphen and Nguyen, 1975) framework. Moreover, we seek
to have a non-hysteretic, saturation-type magnetization response from the proposed hysteresis
models under the limit of vanishing coercivity (see Fig. 1.2a and b), so that the soft magnetic
response can be treated to be a special case of the hard hysteresis response.

� We develop an incremental numerical homogenization method in order to compute the effec-
tive response of the h-MREs, so that the effective response of the s-MREs can also be estimated
from the same model under the limit of vanishing coercivity. Such general incremental homog-
enization framework enables us to estimate the effective macroscopic responses emerging from
a wide range of microstructures having different magnetic (hard/soft) and mechanical prop-
erties of the underlying constituents. We employ a fully Lagrangian finite-element method to
locally resolve the microscopic magnetic and mechanical fields in a representative volume ele-
ment (RVE) of the microstructure. The ensemble averages of these local field variables are then
numerically computed to obtain the effective response of the composite as a whole.

� In order to bridge the gap between the explicit “top down” (Kankanala and Triantafyllidis, 2004)
and implicit “bottom up” (Ponte Castañeda and Galipeau, 2011; Galipeau and Ponte Castañeda,
2013; Lefèvre et al., 2017) modeling approaches, we propose microstructurally-guided macro-
scopic phenomenological models for the s-MREs in both F−H and F−B modeling frameworks.
The proposed models are designed to yield the exact analytical homogenization estimates in
the limit of small magnetic field/induction.

� Finally, we propose macroscopic models for the h-MREs in both F−H and F−B variable spaces.
The model is designed to take care of the underlying microstructure evolutions under different
magneto-mechanical loading paths. The models are designed to satisfy various limiting con-
ditions, that, in turn, enable us to reduce the number of model parameters in these models.
Specifically, in the limit of a vanishing coercivity, the proposed models for h-MREs are set to
approach the analytical homogenization model of Lefèvre et al. (2017) for the s-MREs.

As per the best of our knowledge, these aforementioned aspects in the modeling of s- and h-MREs
did not receive sufficient attention in the literature, yet are of paramount interest in the theoretical
and numerical modeling of them. This thesis is therefore dedicated towards addressing all these
issues, step-by-step as listed in the above.
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1.4 Organization of the thesis

Following this introduction, we divide the thesis in five chapters, which are dedicated towards the
step-by-step development of the theoretical and numerical modeling of the effective response of
MREs. The contents of these chapters are briefly described in the following.

� Local balance laws for the magnetic b and h fields, mass, linear and angular momentum are
derived from the global balance laws in Chapter 2. The localized versions of the energy balance
and the entropy imbalance are also developed therein and combining these two, we also derive
the local Clausius-Duhem inequality. Specifically, Section 2.1 develops the local balance laws
in the current configuration in terms of the current magnetic and mechanical variables. The
current Clausius-Duhem inequality is also derived therein by combining the current energy
balance and entropy imbalance laws. In turn, the referential counterparts of these balance laws
and the Clausius-Duhem inequality are derived in Section 2.2.

� Chapter 3 is associated with the development of “switching surface”-type ferromagnetic hys-
teresis models both by considering h (Section 3.1) and b (Section 3.2) to be the primary vari-
ables. Important limiting cases, under which the hysteresis model yields the non-hysteretic
saturation-type magnetization response, are discussed therein for both models. Finally, in Sec-
tion 3.3, we identify the model parameters by fitting the model responses with the measured
hysteresis loops for the NdFeB magnets.

� An incremental numerical homogenization framework for the computations of the effective
response of h-MREs is developed in Chapter 4. Specifically, we derive the local constitutive re-
lations in the microstructure from the Clausius-Duhem inequality and the generalized standard
material relations in Section 4.2. This is followed by the definitions of the incremental microscopic
potential and the effective (homogenized) incremental potential in Section 4.3 and 4.4, respec-
tively. An augmented variational principle for the numerical homogenization fo the MREs is
defined in Section 4.5. This variational principle ensures a magneto-mechanical response free
from the specimen boundary and shape effects. Subsequently, a fully Lagrangian finite-element
computation framework is developed in Section 4.6. Finally, the computed effective response
for various s- and h-MREs under different loading conditions are provided in Section 4.7. In
addition, the mesh convergence studies for both s- and h-MREs are presented therein.

� Chapter 5 provides microstructurally-guided explicit phenomenological models for the s-MREs
in both F−H and F−B variable spaces. The model is proposed to replicate the response of the
implicit, analytical homogenization model of Lefèvre et al. (2017), which is discussed in brief in
Section 5.1. This is followed by the proposition of the F − H and F − B models in Section 5.2.1
and 5.2.2, respectively. Finally, the proposed models are probed against the full field numerical
homogenization estimates and the analytical homogenization model in Section 5.3.

� Microstructurally-guided continuum modeling frameworks for the h-MREs are provided in
Chapter 6. Specifically the Lagrangian and Eulerian modeling frameworks in, respectively, the
F − H and F − h variable spaces are discussed in Section 6.1. The modeling is carried out in
a step-by-step way by suitably defining the intermediate and current internal variables and
then deriving the constitutive equations from the Clausius-Duhem inequalities and generalized
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standard material relations. An equivalent set of F − B and F − b-based constitutive models
are proposed in Section 6.2, where we follow a similar procedure in deriving the constitutive
relations. The magneto-mechanical coupling parameter is estimated via fitting the model re-
sponses with the numerically computed ones in Section 6.4. This is followed by a rigorous
probe of the model performance against full-field microscopic numerical simulations under
various non-proportional magneto-mechanical loading cycles.

� Key features of the developed numerical homogenization framework and the proposed models
for s- and h-MREs are summarized in Section 7. Finally, we propose some improvement strate-
gies of the proposed model performances and their numerical implementation schemes as the
possible future directions of research.

� Appendix A provides an evolving switching surface model that enables the proposed switching
surface model to model the magnetic minor loops under partially-reversed loading cycles. The
evolution in the switching surface is defining via proposing suitable evolution laws for the
coercive field in terms of various history-dependent, scalar variables. Finally, the proposed
evolving switching surface model is fitted and probed against the experimentally measured
minor loops and first-order reversal curves (FORCs).

These summarizes the organization of the thesis. We also use chapter wise appendices wherever
necessary. Finally, specific concluding remarks are also provided by the ending of each chapter.
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Chapter

2
Balance Laws and Dissipation Ther-
modynamic Frameworks

Chapter summary: This chapter provides the set of balance laws along with the boundary/interface conditions
and the thermodynamic Clausius-Duhem inequalities in the context of a general dissipative magneto-elastic
solid. Both current (Eulerian) and reference (Lagrangian) formulations, provided herein, are derived via the
direct formulation in terms of the balance laws of various field variables and the total specific energy along with
the entropy inequality leading from the second law of thermodynamics.
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This section develops the governing equations and the constitutive laws for a magneto-active
solid under finite strains. It is noted that a typical magneto-mechanical problem at the finite strains
can be developed via considering either the current magnetic field h(x) or the magnetic induction
b(x). Equivalently, the Lagrangian counterpart of the model can be developed via considering the
referential H(X) or B(X) to be the primary magnetic variables. This chapter first derives the current
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(Eulerian) version of the governing equations and thermodynamic inequalities. Their Lagrangian
counterpart is subsequently provided by the end of this chapter.

We consider a deformable solid occupying a volume V0 ∈ R3 with boundary ∂V0 ∈ R2 in its
reference configuration. The deformation of the solid from its reference configuration V0 to the
current configuration V is defined in terms of a continuous and one-to-one mapping y(X). We assume
y to be continuous and twice differentiable in V0, except at the material interfaces. Thus, the position
vector of a material point in the current configuration is given by x = y(X). The deformation gradient
is therefore defined as F(X) = Grady with J = det F > 0, where “Grad” denotes the gradient operator
with respect to X. We consider a quasi-static modeling with no inertial effects.

2.1 Current configuration (Eulerian) formulation

This formulation employs a direct approach, which, in turn, is associated with expressing the balance
laws for the magnetic and mechanical quantities in the current configuration V. The magneto-static
balance laws for the current h and b along with the mechanical mass, momentum balance laws are
developed via considering a closed current surface S and a current volume V, both residing in a
3-dimensional Eucledian space R3. The current energy balance and entropy imbalance laws also
follow an identical framework and thus are defined in the current volume V. The present framework
is developed by following closely the monograph of Kovetz (2000) and the articles by Dorfmann and
Ogden (2004, 2005), and Kankanala and Triantafyllidis (2004).

2.1.1 Ampère’s law

In the context of a magneto-active solid under the quasi-static loading and in absence of any space/surface
charge, the sufficiently smooth magnetic induction h(x) satisfies the Ampère’s law, which under the
aforementioned condition is given by1

∫
∂S

h(x) • s(x)d` = 0, (2.1)

where s(x) is the direction of tangent to the path ∂S at the point x and d` is an infinitesimally small
line element around x. The path integral (2.1) upon applying the Stokes’ theorem can be rephrased
in terms of a surface integral, so that ∫

S

curl h • n da = 0, (2.2)

where “curl” represents the curl operation with respect x, S is an arbitrary closed surface in R3

having an unit outward normal n at x and da is an infinitesimal area around the point x on the
surface S. We henceforth suppress the x-dependence of h for brevity. Applying subsequently the
localization theorem we obtain the local (point-wise) form of the Ampère’s law, such that

curl h = 0, ∀ x ∈ R3 (2.3)

1The vector inner product of two vectors α and β is defined in terms of the index notation via α •β = αiβi.
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2.1. Current configuration (Eulerian) formulation

along with the interface/jump conditions

n× [[h]] = 0, (2.4)

where [[�]] represents the jump in the field (�) across the boundary/interface ∂V. The last is derived
via applying equation (2.1) along a closed loop comprising parts just above and just below a boundary
(see e.g. Kovetz (2000)). It is noted that in the jump condition (2.4), we have assumed no surface
charge and electric displacement fields. Next, we set forth the balance law for the magnetic field b.

2.1.2 Absence of magnetic monopole

In absence of magnetic monopole, the normal component of the sufficiently smooth magnetic induc-
tion b(x) integrated over a closed surface ∂V vanishes identically, such that∫

∂V

b(x) • n(x) da = 0, (2.5)

where n(x) is an unit outward normal on ∂V ≡ S. The surface integral (2.5), upon applying the
divergence theorem leads to ∫

V

div b dv = 0, (2.6)

where “div” denotes the divergence operator with respect to x. Localizing (2.6) via considering a
vanishing current volume V, the point-wise form of the balance law for the b field is obtained to be

div b = 0, ∀ x ∈ R3. (2.7)

The interface/jump condition for b across the surface ∂V is subsequently obtained via applying (2.5)
in a “pill box” having its parts just above and just below an elementary boundary ∂V, such that

n • [[b]] = 0, (2.8)

Thus, the local governing equations and jump conditions for the two conjugate magnetic field
variables h and b are derived from the global balance laws. Prior to the description of mechanical
balance laws, it is crucial to introduce the notion of the magnetization m per unit current volume,
which is defined in terms of the magnetic field variables via

b = µ0(h + m), (2.9)

where µ0 is the magnetic permeability of the vacuum, whose value is given by 4π× 10−7 N A−2.
Notably, the magnetization m vanishes identically in any non-magnetizable media, leading to the
constitutive relation b = µ0h.

Remark 2.1. The magnetization m, unlike the magnetic field h or magnetic induction b, is a derived
quantity and hence, is not subjected to any differential or boundary constraints. Nevertheless, m is
a crucial quantity in magnetism that is used to represent the “magnetization response” of a material
under externally applied magnetic h or b fields.

13
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2.1.3 Balance of mass

The mass balance law postulates that the total mass associated with the current volume V remains
unchanged in time, such that

d
dt

ï ∫
V

ρ dv
ò
= 0, (2.10)

where ρ is the current density of the solid and the operator d(�)/dt represents the material time
derivative. Since the current volume element dv is related to the referential volume element dV via
dv = JdV , (2.10) is now recast in the form

d
dt

ï ∫
V

ρJ dV
ò
= 0 ⇒

∫
V0

.
ρJ dV = 0, (2.11)

where the
.

(�) symbol is introduced to be an alternative representation for the material time derivative
d(�)/dt for brevity. Due to the arbitrariness of the reference volume V0, one can express the localized
(point-wise) mass balance law to be

.
ρJ = ( .

ρ+ ρ grad
.x)J = 0, (2.12)

where we utilize the relation
.
J = J grad

.x, with the operator “grad” representing the gradient with
respect to x. Furthermore, the kinematic constraints on J leads to the condition J > 0. Thus, (2.12)
can be recast to be

.
ρ0 = ( .

ρ+ ρ grad
.x) = 0 ∀ x ∈ R3, (2.13)

where ρ0 = ρJ is the reference material density.

2.1.4 Balance of linear momentum

In the linear and angular momentum balance laws, we follow the approach of Kovetz (2000) and
Kankanala and Triantafyllidis (2004) in terms of considering a “total” Cauchy stress σ in the solid that
comprises both mechanical and magnetic stress contributions. The body force per unit mass f, thus,
does not contain any magnetic body force term. It is noted that the earlier formulations for magneto-
elasticity starting from Brown (1966) have considered the magnetic body forces and couples explicitly
in addition to the general asymmetric mechanical Cauchy stress σmech. Nevertheless, the present
approach, as would be observed in the subsequent sections, takes the magnetic stress contributions
into account due to its very construction.

For a non-accelerating solid, the mechanical force equilibrium equation in an arbitrary current
volume element V reads ∫

V

ρf dv+
∫
∂V

t da = 0, (2.14)

where t is the boundary traction on the surface ∂V. The current surface traction t on a surface
element having unit normal n is related to the Cauchy stress at that point via the well-known Cauchy
tetrahedron relation σ • n = t. Substituting this relation into (2.14) and subsequently applying the
divergence theorem, we obtain ∫

V

(ρf + divσ) dv = 0, (2.15)

14



2.1. Current configuration (Eulerian) formulation

which, owing to the arbitrariness of the volume element V, readily leads to the point-wise form of
the linear momentum balance law, such that

ρf + divσ = 0, ∀ x ∈ R3. (2.16)

Notice that, the “total stress” σ is non-zero in both MRE and the surrounding air (Kankanala and
Triantafyllidis, 2004). Applying (2.14) in a “pill box” across the boundary, the jump condition across
an elementary boundary surface ∂V is obtained to be

[[σ]] • n + tmech = 0, (2.17)

where tmech is the applied traction on the boundary ∂V. We assume no propagating discontinuity
surface in the continuum.

2.1.5 Balance of angular momentum

During the quasi-static deformation of a solid, the balance law for the angular momentum postulates
that the moment of all the forces with respect to a fixed point mush vanish. Without loss of generality,
the fixed point is considered to be the origin of the coordinate system x. Thus, in absence of body
couples, the angular momentum balance in an elementary current volume V reads∫

V

x ∧ ρf dv+
∫
∂V

x ∧ (σ • n) da = 0, (2.18)

where the wedge ”∧” symbol denotes the exterior tensor product, such that α∧β = α⊗β−β⊗α.
Eq. (2.18) upon algebraic manipulations followed by the application of the divergence theorem leads
to ∫

V

x ∧ ρf dv+
∫
V

[
x ∧ (divσ) +σ−σT

]
dv = 0. (2.19)

Substituting (2.15) into the last equation and due to the arbitrariness of V, one obtains the point-wise
form of the angular momentum balance given by

σ = σT . (2.20)

Thus, in absence of body couples, the angular momentum balance law dictates the Cauchy stress
to remain identically symmetric. Again, the symmetry of σ is a direct consequence of considering
it to be comprised of both mechanical and magnetic contributions (Robinson, 1975; Kovetz, 2000;
Kankanala and Triantafyllidis, 2004). A different set of theories in magneto-elasticity considers σ
to be purely σmech and considers the magneto-mechanical interactions in terms of body forces and
couples, leading to an asymmetric σ (Pao and Hutter, 1975).

2.1.6 Energy balance

The total energy associated with an arbitrary current volume V is given by ρε, where ε is the specific
energy (per unit mass) associated with the system. The law of energy balance postulates that the
rate of change of the total energy in an arbitrary volume V is a sum of three contributions, namely
i) mechanical power associated with the body force f and surface traction t, ii) thermal power

15



Chapter 2. Balance Laws and Dissipation Thermodynamic Frameworks

associated with the internal heat generation per unit mass r and the surface heat flux and iii)
magnetic power associated with the surface magnetic flux. The energy balance law is therefore
expressed to be

d
dt

ï ∫
V

ρεdv
ò
=

ï ∫
V

.x • ρf dv+
∫
∂V

.x • t da
ò

︸ ︷︷ ︸
mechanical power

+

ï ∫
V

ρr dv−
∫
∂V

n • q da
ò

︸ ︷︷ ︸
thermal power

−

∫
∂V

n • p da︸ ︷︷ ︸
magnetic power

, (2.21)

where q is the heat flux vector and p = (
.x× b)× h is the Poynting vector that denotes the magnetic

energy flux. Both, the thermal and magnetic energy flowing outside the volume V are considered to
be positive, which, in turn, justifies the negative signs associated with the energy flux associated to
q and p in (2.21). Localizing subsequently (2.21) leads to the point-wise energy balance equation, so
that

ρ
.
ε = ρ(

.x • f + r) + div(
.xσ− q − p). (2.22)

The term div(
.xσ) in the last equation can be expanded further to be div(

.xσ) =
.x • div(σ) +σ : grad

.x2.
The divergence of the Poynting vector is further expanded, such that

div[(
.x× b)× h] = h • curl(

.x× b) − (
.x× b) · curl h

= h •
[
b • (grad

.x) − b (div
.x) − (grad b) •

.x + (div b)
.x
]

= [h⊗ b − (h • b)I] : grad
.x − h • grad b •

.x, (2.23)

where we have substituted the balance laws (2.3) and (2.7), respectively in the first and second steps.
Subsequently, (2.22) upon simplification in terms of substituting div(

.xσ) =
.x • div(σ) + σ : grad

.x,
(2.16) and (2.23), yields

ρ
.
ε = ρr+ [σ− h⊗ b + (h • b)I] : l+ h •

.
b − divq, (2.24)

where I is the second order identity tensor, l = grad
.x is the deformation rate tensor and the rate

gradb •
.x is replaced by the material time derivative

.
b since the time rate ∂b/∂t vanishes identically

in the MREs (Kankanala and Triantafyllidis, 2004).

2.1.7 Entropy imbalance

The entropy imbalance law dictates the rate of change of the entropy associated with an arbitrary
volume V to be always positive. Thus, the entropy inequality in terms of the specific entropy η (per
unit mass), absolute temperature ϑ, the heat generation r and the heat flux q is given by the classical
Clausius-Duhem inequality

d
dt

ï ∫
V

ρηdv
ò
>

∫
V

ρr

ϑ
dv−

∫
∂V

n •
1

ϑ
qda. (2.25)

The localized Clausius-Duhem inequality hence reads

ρθη̇− ρr+ ϑdiv(ϑ−1q) > 0. (2.26)

2The tensor inner product is defined via A : B = AijBij
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2.1. Current configuration (Eulerian) formulation

Substituting the heat generation rate r from (2.24) into the last equation and simplifying we obtain

ρ0ϑ
.
η− ρ0

.
ε+ J[σ− h⊗ b + (h • b)I] : l+ Jh •

.
b + Jϑq • div(ϑ−1) > 0. (2.27)

For the quasi-static model the kinetic energy contribution to the specific energy ε is neglected. There-
fore, ε becomes identical to the specific internal energy associated with the material, which we define
to be comprised of i) the specific free energy density wb(F, b, ϑ,ξ)/ρ0 and ii) specific thermal energy
ηϑ, such that

ε =
1

ρ0
wb(F, b, ϑ,ξ) + ηϑ. (2.28)

The general set ξ comprising of scalar, first and second order tensors in the definition of wb repre-
sents a set of thermodynamic internal variables, which are, in turn, crucial in the modeling of history-
dependent dissipative thermodynamic processes. It is noted that (2.28) is a constitutive choice for ε,
which may have other energy density functions in terms of h or m as well (Kankanala and Triantafyl-
lidis, 2004). This thesis considers the magneto-elastic models via considering the F − b and F − h to
be the set of primary variables. Consequently, two different versions of the local Clausius-Duhem
inequality (2.27) would surface.

F −b model : Further specialization of (2.27) for the F −b model can be obtained via substituting
(2.28) into it. Thus, (2.27) reads upon simplification

J[σ− h⊗ b + (h • b)I] : l+ Jh •
.
b −

.
wb − ρ0η

.
ϑ+ Jϑq • div(ϑ−1) > 0. (2.29)

F − h model : In order to specialize (2.27) for the F − h model, we first rephrase (2.28) in terms
of wh(F, h, ϑ,ξ), which is the complimentary energy density to wb, obtained via a partial Legendre-
Fenchel transformation of it with respect to b such that (Bustamante et al., 2008; Danas, 2017)

wh(F, h, ϑ,ξ) = wb(F, b, ϑ,ξ) − Jh • b. (2.30)

Furthermore, from the above relation, we rephrase (2.28) to be

ε =
1

ρ0
wh(F, h, ϑ,ξ) +

J

ρ0
h • b + ηϑ. (2.31)

Substitution of the last into (2.27) followed by simplification leads to the Clausius-Duhem inequality
specialized for the F − h formulation, given by

J[σ− h⊗ b] : l− Jb •
.
h −

.
wh − ρ0η

.
ϑ+ Jϑq • div(ϑ−1) > 0. (2.32)

To this end, the Clausius-Duhem inequality is specialized for the energy density functions defined
in terms of F − b and F − h, respectively. Specific form of the constitutive relations necessitates the
definition of the internal variables and the functional forms of wb(F, b, ϑ,ξ) or wh(F, h, ϑ,ξ). No
attempt is made in this chapter to set forth the specific constitutive relations emerging from (2.29)
and (2.32). Rather, the specific constitutive relations will be provided while defining the specific
material properties of the magneto-active solid in the subsequent sections.

Remark 2.2. Most of the existing models for the MREs consider a further decomposition of the
energy densities wb and wh into the specific Helmholtz free energy ψb and ψh, respectively, and the
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corresponding potential associated with the free space, so that (Kankanala and Triantafyllidis, 2004;
Bustamante et al., 2008; Danas, 2017)

wb(F, b, ϑ,ξ) = ρ0ψb(F, b, ϑ,ξ) +
J

2µ0
b • b (2.33)

and
wh(F, h, ϑ,ξ) = ρ0ψh(F, h, ϑ,ξ) −

Jµ0
2

h • h. (2.34)

Finally, substituting (2.33) and (2.34) into (2.29) and (2.32), respectively, we obtain the modified
Clausius-Duhem inequalities in terms of the Helmholtz free energy ψb and ψh, so that

J

ï
σ− h⊗ b +

µ0
2

(|h|2 − |m|2)I
ò
: l+ Jm •

.
b − ρ0

.
ψb − ρ0η

.
ϑ+ Jϑq • div(ϑ−1) > 0 (2.35)

and
J

ï
σ− h⊗ b +

µ0
2
|h|2I
ò
: l− Jm •

.
h − ρ0

.
ψh − ρ0η

.
ϑ+ Jϑq • div(ϑ−1) > 0, (2.36)

respectively, for the F − b and F − h-based models. We note that (2.35) and (2.36) are identical to the
Clausius-Duhem inequalities obtained by Kankanala and Triantafyllidis (2004).

2.1.8 Generalized standard materials framework

It is emphasized that the constitutive model for the dissipative MREs involve an additional po-
tential, namely the dissipation potential apart from the energy density wb(F, b, ϑ,ξ) or wh(F, h, ϑ,ξ).
In this context, the generalized standard materials (GSM) framework provides a constitutive rela-
tion connecting the dissipation (Db(F, b, ϑ,ξ,

.
ξ) and Dh(F, h, ϑ,ξ,

.
ξ)) and energetic (wb(F, b, ϑ,ξ) or

wh(F, h, ϑ,ξ)) potentials, such that (Halphen and Nguyen, 1975)

∂wb

∂ξ
+
∂Db

∂
.
ξ

= 0 or
∂wh

∂ξ
+
∂Dh

∂
.
ξ

= 0, (2.37)

respectively. Notice that, the last relations holds for each individual element of ξ. These relations
are also referred to be the Biot’s relation (Miehe et al., 2011; Rosato and Miehe, 2014). Finally, the
ensemble of the Clausius-Duhem inequality (2.35) or (2.35) and the relation for generalized standard
materials (2.37) upon the application of the standard Coleman-Noll-Gurtin (Coleman and Gurtin,
1967; Coleman and Noll, 1974) arguments lead to the constitutive relations along with the evolu-
tion equations for ξ. Finally, the key balance laws, boundary/interface conditions, thermodynamic
inequalities and the generalized standard material laws are summarized in Box 2.1

2.2 Reference configuration (Lagrangian) formulation

The reference configuration formulation considers the reference coordinate X to be the primary co-
ordinate system and thus, the referential magnetic fields B(X) and H(X) to be the primary field
variables. In this regard, both, the balance law-based direct formulation and the energy-based varia-
tional formulations are reported in the literature (Kankanala and Triantafyllidis, 2004; Dorfmann and
Ogden, 2004; Bustamante et al., 2008). In this work we follow Steigmann (2004) in order to perform
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transformation of each individual balance laws in Section 2.1 into the reference configuration. Con-
sequently, the Lagrangian equivalent of the current magnetic and stress fields would be defined at
relevant places.

Box 2.1: Balance laws and thermodynamic inequalities in the current configuration

Ampère’s Law: curl h = 0, boundary/interface condition: n× [[h]] = 0

Absence of magnetic monopole: div b = 0, boundary/interface condition: n • [[b]] = 0

Linear momentum balance: div σ+ ρf = 0, boundary/interface condition: [[σ]] • n + tmech = 0

Angular momentum balance: σ = σT

Clausius-Duhem inequality:

F − b model: J
[
σ− h⊗ b +

µ0
2

(|h|2 − |m|2)I
]
: l+ Jm •

.
b − ρ0

.
ψb − ρ0η

.
ϑ+ Jϑq • div(ϑ−1) > 0

F − h model: J
[
σ− h⊗ b +

µ0
2
|h|2I

]
: l− Jm •

.
h − ρ0

.
ψh − ρ0η

.
ϑ+ Jϑq • div(ϑ−1) > 0

Generalized standard material relation:

F − b model:
∂wb

∂ξ
+
∂Db

∂
.
ξ

= 0

F − h model:
∂wh

∂ξ
+
∂Dh

∂
.
ξ

= 0

2.2.1 Ampère’s law

The infinitesimal tangent vector s0dl along a closed path ∂S0 in the reference configuration is related
to its current description via Fs0dl = sd`. Thus, the Ampère’s law (2.1) along a referential closed
path ∂S0 is expressed to be∫

∂S0

h • Fs0dl = 0 ⇒
∫
S0

Curl(FTh) •NdA = 0, (2.38)

where “Curl” represents the curl operator with respect to the reference coordinate X and N is the unit
normal on the infinitesimal reference surface dA. The localization of (2.38)2 leads to the point-wise
form of the Ampère’s law, so that

Curl(FTh) = 0. (2.39)

The curl-free reference magnetic h-field H is thus defined to be

H = FTh, (2.40)

which is, in turn, the “pull-back” of the current h to the reference configuration. Hence, the local
Ampere’s law in terms of the referential H reads

Curl H = 0, ∀ X ∈ R3 (2.41)

Similarly, the Lagrangian counterpart of the jump condition (2.4) is given by

N× [[H]] = 0. (2.42)
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The last can be derived directly by applying (2.38) along a closed line element, that has its segments
across the boundary surface. Again, no propagating surface discontinuity and no free surface charges
are considered in this case.

2.2.2 Absence of magnetic monopole

The balance law associated with the preservation of magnetic dipoles in a closed surface ∂V0 in the
reference configuration is obtained from its current form (2.7) via substituting the Nanson’s formula
nda = JF−TNdA, connecting the current and referential description of an area element. The balance
of magnetic dipoles in a closed reference surface ∂V0 thus reads∫

∂V0

b • JF−TNdA = 0 ⇒
∫
V0

Div
(
JF−1b

)
dV = 0, (2.43)

where “Div” represents the divergence operator with respect to X. The arbitrariness of the reference
volume V0 leads to the local point-wise form of the last, such that

Div B = 0, ∀ X ∈ R3, (2.44)

where the Lagrangian magnetic field B is defined via the pull-back transformation

B = JF−1b. (2.45)

The Lagrangian version of the jump conditions can also be obtained via direct substitution of the
Nanson’s formula into (2.8), which upon simplification reads

N • [[B]] = 0. (2.46)

We note that, the last can also be equivalently derived via applying (2.43)1 in a “pill box”, considered
across the reference boundary surface.

One can, in principle, define a Lagrangian counterpart of m via postulating a definition of the
Lagrangian magnetization per unit volume via a relation like (2.9). However, thorough investigations
of Dorfmann and Ogden (2004, 2005) show that (2.9) does not lead exactly to the same relation
between the Lagrangian B, H and magnetization upon a pull-back transformation. Rather, some
additional terms consisting F show up. Thus, in this work, we refrain from defining any Lagrangian
definition of the magnetization. In turn, usage of the term “magnetization” henceforth would refer
identically to the current magnetization m.

2.2.3 Linear momentum balance

The condition for mass balance in the reference configuration simply reads .
ρ0 = 0. The linear

momentum balance in a reference volume V0 is expressed from (2.14) via transforming the integrals
therein via expressing the current volume element to be dv = JdV and using the Nanson’s formula,
so that ∫

V0

ρ0f dV +

∫
∂V0

Jσ • F−TNdA = 0 ⇒
∫
V0

(ρ0f + Div S)dV = 0, (2.47)
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2.2. Reference configuration (Lagrangian) formulation

where S is the first Piola-Kirchhoff stress defined via

S = JσF−T . (2.48)

The arbitrariness of the elementary reference volume V0 eventually leads to the point-wise form of
the linear momentum balance, such that

ρ0f + Div S = 0, ∀ X ∈ R3. (2.49)

A similar application of the Nanson’s formula leads to the transformation of the jump condition
(2.17) now reads

[[S]] •N+ Tmech = 0, (2.50)

where Tmech is the total externally applied traction on the reference boundary ∂V0. It is important to
note that Tmech is the total traction vector and it is impossible to apply traction that would be equi-
libriated via the purely mechanical or magnetic stress components (McMeeking and Landis, 2005;
McMeeking et al., 2007). Nevertheless, a proper augmentation to the underlying variational princi-
ple may allow the application of “purely mechanical” external tractions (Danas, 2017). A thorough
discussion on this will be provided in the subsequent chapters.

2.2.4 Angular momentum balance

The angular momentum balance law in the reference configuration can be expressed via simply
taking moment of the linear momentum in (2.47)1 with respect to the reference origin, such that∫

V0

y∧ ρ0f dV +

∫
∂V0

y∧ S •NdA = 0, (2.51)

where y(X, t) is the position of the volume element V0 with respect to the reference origin. Applying
the divergence theorem and after thorough algebraic manipulations, we rephrase (2.51) to be∫

V0

(y∧ ρ0f +y∧ Div S + SFT − FST )dV = 0. (2.52)

Localizing (2.52) after substituting (2.49) into it leads to the point-wise form of the angular momen-
tum balance law in the reference configuration

SFT = FST . (2.53)

2.2.5 Energy balance

The Lagrangian description of the energy balance law is obtained via directly rephrasing (2.21) into
the reference form, so that

d
dt

ï ∫
V0

ρ0εdV
ò
=

ï ∫
V0

.
y • ρ0f dV +

∫
∂V0

.
y •σ • JF−TNdA

ò
+ï ∫

V0

ρ0r dV −

∫
∂V0

JF−TN • qdA
ò
−

∫
∂V0

p • JF−TNdA. (2.54)
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Application of the divergence theorem followed by localization of (2.54) leads to the point-wise
energy balance equation given by

ρ0
.
ε = ρ0f • .

y+ ρ0r+ Div
[ .
yS −Q− p(JF−T )

]
, (2.55)

where Q = JF−1q is the reference heat flux across the surface ∂V0. Similar to the current energy
balance, the term Div( .

yS) can further be expanded, such that Div( .
yS) =

.
y • Div S + S : Grad .

y =
.
y • Div S + S :

.
F. Moreover, it can be shown that the reference divergence of the referential Poynting

flux Div[p(JF−T )] reduce identically to −H •
.
B (see Appendix 2.A for details). Finally, the substitution

of (2.49) into (2.55) leads to a further simplification of (2.55), which now reads

ρ0
.
ε = ρ0r+ S :

.
F + H •

.
B − Div Q. (2.56)

In fact, one recovers (2.56) directly from its Eulerian counterpart (2.22) by substituting the pull-back
transformations (2.40), (2.45) and (2.48) of the current field variables into it followed by simplification.

2.2.6 Entropy imbalance

The second law of thermodynamics postulates that the rate of generation of the specific entropy η in
an arbitrary reference volume V0 must always remain positive. Thus, the entropy imbalance equation
in the reference configuration is given by the Clausius-Duhem inequality

d
dt

ï ∫
V0

ρ0ηdV
ò
>

∫
V0

ρ0r

ϑ
dV −

∫
∂V0

N •
1

ϑ
QdA, (2.57)

where ϑ is the absolute temperature. The last equation, upon localization leads to

ρ0
.
ηϑ− ρ0r+ Div

[
ϑ−1Q

]
> 0. (2.58)

We now rephrase (2.58) by substituting the heat rate ρ0r from (2.56) into it, such that

ρ0
.
ηϑ− ρ0

.
ε+ S :

.
F + H •

.
B + JϑQ • Div

(
ϑ−1

)
> 0. (2.59)

It remains to specify the energy ε, which is, in turn, identical to the internal energy of the system
in the present quasi-static case. As discussed in the context of current configuration formulation, a
natural choice for ε is in terms of a energy density WB(F, B, ϑ,Ξ) and the specific thermal energy ηϑ,
such that

ε =
1

ρ0
WB(F, B, ϑ,Ξ) + ηϑ, (2.60)

where Ξ denotes a set of thermodynamic internal variables to be specified depending on the specific
feature of any dissipative process under consideration. Nevertheless, one can find the complimentary
energy density to WB(F, B, ϑ,Ξ) via a partial Legendre-Fenchel transformation, such that (Bustamante
et al., 2008)

WH(F, H, ϑ,Ξ) =WB(F, B, ϑ,Ξ) − H • B, (2.61)
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2.2. Reference configuration (Lagrangian) formulation

which leads to an alternative expression for the specific energy ε given by

ε =
1

ρ0
WH(F, H, ϑ,Ξ) +

1

ρ0
H • B + ηϑ. (2.62)

Thus, the substitution of (2.60) or (2.62) into (2.59) yields two different Clausius-Duhem inequalities
leading to, respectively, the F−B or F−H-based constitutive models. These specific Clausius-Duhem
inequalities for F − B or F − H-based models reads

S :
.
F + H •

.
B −

.
WB − ρ0η

.
ϑ+ JϑQ • Div

(
ϑ−1

)
> 0 (2.63)

and
S :

.
F − B •

.
H −

.
WH − ρ0η

.
ϑ+ JϑQ • Div

(
ϑ−1

)
> 0, (2.64)

respectively. Again, specific constitutive relations would require the definition of the set of internal
variables Ξ. However, the specific choices for Ξ will be defined at relevant points in Chapter 4 and 6.

2.2.7 Generalized standard materials framework

The evolution equations for the individual elements of Ξ is obtained from the referential standard
material relations which are given in terms of the energetic potentialsWB(F, B, ϑ,Ξ) andWH(F, H, ϑ,Ξ)
and the corresponding dissipation potentials, namely DB(F, B, ϑ,Z,

.
Ξ) and DH(F, H, ϑ,Z,

.
Ξ), which

reads, respectively,
∂WB

∂Ξ
+
∂DB

∂
.
Ξ

= 0 and
∂WH

∂Ξ
+
∂DH

∂
.
Ξ

= 0. (2.65)

Thus, the set of referential constitutive relations are obtained from the Clausius-Duhem inequali-
ties (2.63), (2.64) and the relation for generalized standard materials (2.65) via applying the classical
Coleman-Noll-Gurtin method. Finally, Box 2.2 provides a summary of the balance laws and thermo-
dynamic inequalities.

Box 2.2: Balance laws and thermodynamic inequalities in the reference configuration

Ampère’s Law: Curl H = 0, boundary/interface condition: N× [[H]] = 0

Absence of magnetic monopole: Div B = 0, boundary/interface condition: N • [[B]] = 0

Linear momentum balance: Div S + ρ0f = 0, boundary/interface condition: [[S]] •N+ Tmech = 0

Angular momentum balance: SFT = FST

Clausius-Duhem inequality:

F − B model: S :
.
F + H •

.
B −

.
WB − ρ0η

.
ϑ+ JϑQ • Div

(
ϑ−1

)
> 0

F − H model: S :
.
F − B •

.
H −

.
WH − ρ0η

.
ϑ+ JϑQ • Div

(
ϑ−1

)
> 0

Generalized standard material relation:

F − B model:
∂WB

∂Ξ
+
∂DB

∂
.
Ξ

= 0

F − H model:
∂WH

∂Ξ
+
∂DH

∂
.
Ξ

= 0
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Appendix 2.A. Divergence of the Poynting vector

This appendix provides a derivation for the relation Div[JF−Tp] = −H · Ḃ, where p = (ẋ× b)× h is
the Poynting vector. Firstly, Div[JF−Tp] is expanded, such that

Div[JF−Tp] = Div[JF−T ] · p + JF−T : Grad p. (2.A.1)

We notice that Div[JF−T ] = 0, whose proof is discussed in the following. Prior to the proof, we
rephrase JF−T , so that

JF−T =
∂J

∂F
. (2.A.2)

Furthermore, the expression of J is given by the index notations, so that

J =
1

6
εijkεpqryi,pyj,qyk,r, (2.A.3)

where ε represents the permutation symbol and ym,n = ∂ym/∂Xn = Fmn.
Divergence of ∂J/∂F: The tensor ∂J/∂F is readily evaluated from (2.A.3), such that

∂J

∂Fmn
=
1

2

ñ
εmjkεnqryj,qyk,r

ô
. (2.A.4)

In turn, Div(∂J/∂F) can be computed by taking the divergence on both sides of the above equation,
such that Å

∂J

∂Fmn

ã
,n

=
1

2

ñ
εmjkεnqryj,qnyk,r + εmjkεnqryj,qyk,rn

ô
.

By interchanging the dummy indices in the previous equation, one gets the desired divergence-free
result Å

∂J

∂Fmn

ã
,n

=
1

2
εmjkyj,q

ñ
εnqryk,rn − εnqryk,nr

ô
= 0. (2.A.5)

Hence, substituting the last into (2.A.1) we obtain

Div[JF−Tp] = JF−T : Grad p = JF−T : (grad p)F = Jtr(grad p) = Jdiv p. (2.A.6)

Notice that div p is given by (2.23), so that

Div[JF−Tp] = [h⊗ b − (h · b)I] : l− h · ḃ. (2.A.7)

Finally, substituting (2.45) and (2.40) into the last and simplifying we obtain

Div[JF−Tp] = −H · Ḃ. (2.A.8)

Notably, (2.A.6) leads to an important relation between the divergence of the referential and current
Poynting vectors taken with respect to X and x, respectively.
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Chapter

3
Ferromagnetic Hysteresis Model

Chapter summary: We propose two equivalent, thermodynamically consistent, rate-independent, three di-
mensional models for ferromagnetic hysteresis in both h and b variable spaces. Constitutive choices for the
independent internal variables are done via proposing additive decompositions of the primary h and b fields,
each into energetic and remanent parts. In turn, the models are proposed in terms of energetic and dissipation
potentials, those are the functions of primary and internal variables by using a relatively small number of model
parameters that is capable of being implemented in a general incremental numerical setting. The dissipation
process occurring during magnetization/demagnetization is described by a power-law potential, which leads to
rate-independence at a certain limit of the rate-dependent exponent. Two limiting conditions, under which the
hysteresis models yield non-dissipative magnetization responses are discussed thereafter. Finally, the proposed
h and b-based model parameters are computed via fitting the model response to the experimental data. The
proposed models show very good agreements with the experiments for spark plasma sintered NdFeB magnets
and also for commercially-available melt-spun NdFeB ribbons and powders.
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As discussed in the introduction, the h-MREs with NdFeB particles exhibit rate-independent hys-
teresis behavior, which is, in turn, a dissipative phenomena. Hence, this chapter is devoted towards
developing an isotropic ferromagnetic hysteresis model in terms of the energetic wi and dissipation
Di (i = b,h) potentials. No effect of mechanical deformation is considered herein. We start from the
Clausius-Duhem inequalities and the relations for generalized standard materials provided in Chap-
ter 2 and propose specific energetic and dissipation potentials to obtain the desired model features.
Both, h and b-based models are proposed hereby. We first propose a model by considering h to be
the primary variable followed by a b-based model.



Chapter 3. Ferromagnetic Hysteresis Model

3.1 Hysteresis model based on h

Air and other magnetically inert media with no magnetization, are typically modeled by a linear
constitutive relation b = µ0h. The constitutive relation for magnetically soft iron with no significant
hysteresis is typically given by an inverse sigmoid function like the inverse Langevin function or
the inverse hyperbolic tangent function or any combination of them (Danas, 2017). In turn, the
constitutive modeling of hard magnets that dissipate energy via hysteresis is not straightforward.
The following discuss a step-by-step approach towards modeling the hysteresis response of hard
magnets by considering h to be the primary variable.

3.1.1 Choice of the internal variable

The identification of the internal variable is carried out after an additive decomposition of the local
h field into an energetic and a remanent part, such that (Linnemann et al., 2009; Miehe et al., 2011)

h = he + hr, (3.1)

where the superscripts “e” and “r” represent the energetic and remanent components, respectively.
It is emphasized that the choice of internal variable is constitutive and thus, one can, in principle,
choose either the energetic or the remanent component from (3.1). Nonetheless, to be consistent with
the dissipative continuum electro-magnetism literature (Huber and Fleck, 2001; Landis, 2002; Klinkel,
2006; Miehe et al., 2011), this work considers ξ ≡ hr to be the internal variable while leaving he as a
“derived” quantity to be determined from the primary variable h and the internal variable hr.

3.1.2 Constitutive relations

Given the energy density function wh(h, hr) and assuming further no mechanical deformation (F = I)
and steady (

.
ϑ = 0), isothermal magnetization process (q = 0) the Clausius-Duhem inequality (2.32)

can be rephrased, so that
−b •

.
h −

.
wh > 0. (3.2)

Expanding .
wh in terms of its arguments followed by rearrangements lead to

−

ï
b +

∂wh

∂h

ò
•

.
h −

∂wh

∂hr
•

.
hr > 0. (3.3)

Since h is the primary variable then can vary arbitrarily, the standard arguments of the Coleman-
Noll-Gurtin (Coleman and Noll, 1959; Coleman and Gurtin, 1967) approach suggest that, in order to
hold the inequality (3.3) for all h, the coefficient of

.
h must vanish, leading to the constitutive relation

b = −
∂wh

∂h
. (3.4)

The remaining term in (3.3) therefore reads

br •
.
hr > 0, with br = −

∂wh

∂hr
, (3.5)
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3.1. Hysteresis model based on h

where the remanent b-field br is the energetic work conjugate of hr. In turn, the constitutive relation
(2.37) for generalized standard materials with this specific choice of ξ ≡ hr reads

∂wh

∂hr
+
∂Dh

∂
.
hr

= 0, (3.6)

where Dh(h, hr,
.
hr) is the specific choice for the dissipation potential for the present h-based model.

Furthermore, substituting (3.5)2 into (3.6) leads to the familiar form of dissipation inequality in the
context of standard material models, given by

∂D

∂
.
hr

•
.
hr > 0, with br =

∂D

∂
.
hr

. (3.7)

Evidently, (3.7)2 imply that the remanent br is also the dissipation work conjugate of
.
hr, which is a

crucial observation as will be referred back to in the subsequent sections. Moreover, in order to the
dissipation inequality (3.7)1 hold, Dh(h, hr,

.
hr) must be a convex function of

.
hr.

An additional desirable property ofwh(h, hr) and Dh(h, hr,
.
hr) in the context of modeling isotropic

ferromagnets at negligibly small strains and rotations is, namely, an even magnetic response un-
der the reversal of the loading direction. This property is ensured via satisfying the conditions
(Kankanala and Triantafyllidis, 2004)

wh(−h,−hr) = wh(h, hr) and Dh(−h,−hr,−
.
hr) = Dh(h, hr,

.
hr). (3.8)

Of course, additional constraints on these energy functions are further imposed during the propo-
sition of a finite-strain coupled magneto-mechanical model (Kankanala and Triantafyllidis, 2004;
Dorfmann and Ogden, 2004). A detailed account on such constraints/properties on/of wh and Dh

will be provided in the subsequent chapters.

3.1.3 Choice of potentials

This section provides the specific functional forms for wh(h, hr) and Dh(h, hr,
.
hr) that would es-

sentially lead to a rate-independent ferromagnetic switching surface model. This particular model of
hysteresis considers the magnetization to be separated in two distinct regimes, namely, the energetic
and switching regimes, which, in turn, are determined by the switching criteria obtained from Dh.
Specifically, the model considers a linear magnetization response while the state of local magnetic
field is prior to switching, whereas a saturation magnetization response is considered when the
switching criteria is satisfied.

Energy density wh : The aforementioned considerations leads to a natural choice for the additive
decomposition of the free energy density wh(h, hr) into an energetic and a remanent component,
such that, (Klinkel, 2006; Linnemann et al., 2009)

wh(h, hr) = whe (h − hr) +whr (hr). (3.9)

Notice during the energetic response (i.e., for a non-evolving hr), only whe evolves in (3.9), whereas,
both whe and whr evolve during the switching regime.

Owing to the aforementioned observations along with satisfying (3.8)1 as well, a natural choice
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forwhe is quadratic in terms of (h−hr), such that (McMeeking and Landis, 2002; Landis, 2002; Klinkel,
2006; Linnemann et al., 2009)

whe (h − hr) = −
µe

2
(h − hr) • (h − hr) with µe = µ0(1+ χe), (3.10)

where µe and χe are, respectively, the energetic permeability and energetic susceptibility of the magnet.
The choice of the remanent potential, by contrast, is not straightforward. A typical remanent potential
for the switching surface model consists of a quadratic part in hr along with an additional non-
quadratic term in hr such that (Klinkel, 2006; Linnemann et al., 2009)

whr (hr) =
µe

2
hr • hr +

µ0(ms)2

χ
fh
Å
|hr|
ms

ã
, (3.11)

where ms and χ are the saturation magnetization and magnetic susceptibility of a permanent magnet,
respectively. Inverse saturation-type functions are typically employed as fh for the modeling the
saturation-type magnetization response of hard magnets (Huber and Fleck, 2001; McMeeking and
Landis, 2002; Landis, 2002; Klinkel, 2006; Linnemann et al., 2009; Miehe et al., 2011; Rosato and
Miehe, 2014; Bottero and Idiart, 2016). In turn, fh is defined to be a linear combination of three
sufficiently smooth functions, so that

fh
Å
|hr|
ms

ã
=

3∑
α=1

κ
(α)
h f (α)

Å
|hr|
ms

ã
with

3∑
α=1

κ
(α)
h = 1, κ

(α)
h > 0, (3.12)

where κ(α)
h are the weight parameters that sum identically to 1. A set these three f (α)(|hr|/ms) along

with their first derivatives with respect to their arguments is provided in Table 3.1.

Table 3.1: Different inverse saturation functions used in the remanent potential (3.11)

α f (α)(|hr|/ms) (f (α)) ′(|hr|/ms)

1 −

ñ
log
ß
1−

|hr|
ms

™
+

|hr|
ms

ô
|hr|/ms

1− |hr|/ms

2 −
4

π2
log

ñ
cos
ß
π

2

|hr|
ms

™ô
2

π
tan
ß
π

2

|hr|
ms

™
3 −

ïÅ
1−

|hr|
ms

ã
tanh−1

ß
|hr|
ms

™
− log

ß
|hr|
ms

+ 1

™ò
tanh−1

ß
|hr|
ms

™
Notice that all the f (α) in Table 3.1 reduce identically to |hr|2/2(ms)2 in the limit of |hr| → 0. Conse-
quently, one obtains the identical initial slopes of (f (α)) ′ for all three functions in Table 3.1. Moreover,
in the limit of |hr|/ms → 1, all these functions identically approach +∞, although, at different rates.
Finally, the local primary and remanent magnetic fields are obtained via substituting (3.9) into, (3.4)
and (3.5), which yields, respectively,

b = µe(h − hr) and br = −µeh −
µ0ms

χ
fh ′
Å
|hr|
ms

ã
hr

|h|r
. (3.13)
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The magnetization m can therefore be obtained via substituting (2.9) into (3.13), so that

m = χeh − (χe + 1)hr. (3.14)

In turn, it is observed from (3.14) that m is given by m = −hr for “ideal” ferromagnets having χe = 0.
Nonetheless, most of the permanent magnets existing in nature exhibit a χe 6 0.15. Hence, the
remanent field hr may be considered to be a “magnetization-like” variable in the context of h-MREs.

Dissipation potential Dh : It remains to obtain the evolution equation for hr, which is, in turn,
obtained via the generalized standard material relation (3.6). A convex dissipation potential that also
satisfies (3.8)2 is therefore defined in terms of a power law in |

.
hr|, such that (Danas et al., 2012a)

Dh(
.
hr) =

bc
.
hr0

p+ 1

ï
|
.
hr|
.
hr0

òp+1
, (3.15)

where bc is the coercive field of the magnet and
.
hr0 is a reference rate of evolution of hr. The

rate sensitivity exponent p in (3.15), for the specific value of p = 1 leads to a linear viscosity-type
magnetization response, whereas, a dry friction-type rate-independent response is obtained for p = 0.
The dissipation potential (3.15), by virtue of its convexity, admits to an explicit Legendre transform
with respect to

.
hr, which in turn leads to its conjugate dissipation potential given by

Dh∗(br) =
bc

.
hr0

q+ 1

ï
|br|
bc

òq+1
, (3.16)

where the rate sensitivity index q = 1/p. Thus, a rate-independent response is obtained from (3.16)
for the special case of q = +∞, which leads to the definition of a ferromagnetic switching surface
given by (McMeeking and Landis, 2002; Landis, 2002; Klinkel, 2006; Linnemann et al., 2009; Miehe
et al., 2011)

φh := br • br − (bc)2 = 0. (3.17)

Finally, the evolution equation for
.
hr is obtained via defining the associated switching rule

.
hr =

.
λh
∂φh

∂br
, (3.18)

where the switching multiplier is given by
.
λ. Thus, during a cyclic loading, the evolution of hr is

obtained via (3.18) along with the associated Kuhn-Tucker conditions, which read
.
λ = 0 if φ < 0 and.

λ > 0 if φ = 0. To solve (3.18) incrementally, we employ an implicit radial return-based algorithm,
which was originally proposed by Ortiz and Simo (1986) in the context of mechanical plasticity.

A number of representative m−h hysteresis loops obtained from the proposed switching surface
model is shown in Fig. 3.1. Specifically, Fig. 3.1a shows the “ideal” hysteresis loops with a vanishing
χe for different choice of the inverse saturation function fh, defined in terms of setting κ(1)

h = 1, κ(2)
h =

1 and κ
(3)
h = 1. Here we apply a fully reversed ramp-type cyclic loading along the e1 direction, so

that h = he1 and consequently the resulting magnetization is obtained to be m = me1. Notice from
Fig. 3.1a that during the initial loading m remains identically zero until the state of remanent br

hits the switching surface at h = bc/µ0. Furthermore, the initial switching susceptibility χ and the
saturation magnetization ms remain the same for any choice of κ(α)

h . In turn, the coefficients κ(α)
h

29



Chapter 3. Ferromagnetic Hysteresis Model

Figure 3.1: Hysteresis loops of (a) “ideal” magnets with χe = 0 and (b) actual magnets having χe > 0.
Comparison of the hysteresis loops for χ = 5, bc = µ0ms and three distinct choices of fh defined by κ(1)

h =

1, κ(2)
h = 1 and κ(3)

h = 1 are shown herein.

control the “rate” of magnetic saturation as a rapid saturation is observed in Fig. 3.1a for κ(3)
h =

1, whereas, the saturation is more gradual for the choice κ(1)
h = 1. Notice that the term “rate of

saturation” indicates how fast the magnetization response saturates with increasing h and has no
explicit relation with the time in the context of this rate-independent model.

Indeed, the natural rare-earth magnets exhibit slightly “inclined” hysteresis loops having χe > 0
as shown in Fig. 3.1b. We note that all the features of Fig. 3.1b remain identical to Fig. 3.1a, except the
initial energetic magnetization with a susceptibility χe, which, in turn, leads to an overall inclination
in the resulting hysteresis loops. The hysteresis loops in Fig. 3.1 are depicted for the illustration of
the model features and thus, computed for arbitrary model parameters χe, χ, bc. Model parameter
identification via fitting with experimental responses will be provided in the next section.

3.1.4 Limiting cases

The dissipative hysteresis model defined in terms of the potential energy (3.9) and the switching
surface (3.17) leads to non-dissipative responses under a couple of limiting conditions, namely (i)
bc → +∞ and (ii) bc → 0.

(i) The limit of bc → +∞ : Under this limit the switching surface radius becomes +∞ resulting in
φ < 0 for all possible loading paths. Consequently, following the Kuhn-Tucker conditions,

.
λ vanishes

identically, leading to
.
hr = 0. Thus, the dissipation potential (3.15) vanishes in this limit, leading to a

linear magnetization response in h having a slope χe (see Fig. 3.2a). Moreover, m vanishes identically
in this limit for any non-magnetic media having χe = 0. Hence, as shown in Fig. 3.2a, for χe = 0,
in the limit of bc → +∞ one recovers the magnetic constitutive relation in any non-magnetic media,
given by b = µ0h.

(ii) The limit of bc → 0 : The limiting response of the hysteresis model under bc → 0 is rather
involved. We observe that (3.15) also vanishes in the limit of bc → 0, thus, resulting an energetic
response. Consequently, the switching surface (3.17) now leads to br = 0. Therefore, the remanent
field hr no longer remains independent of h, rather, is expressed explicitly in terms of h, so that
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(3.13)2 now reads

(1+ χe)χ
h

ms
= −fh ′

Å
|hr|
ms

ã
hr

|h|r
. (3.19)

Notice that here the direction of h and −hr becomes identical for the present choice of isotropic
magnets. Inverting (3.19) we obtain the expression for hr, such that

hr

ms
= −(fh ′)−1

ß
(1+ χe)χ

|h|
ms

™
h
|h|

. (3.20)

The potential energy (3.9) in this particular limit thus reads

wh(h) = −µe
ï
1+ 2

ms

|h|
(fh ′)−1

ß
(1+ χe)χ

|h|
ms

™ò
h • h +

µ0(ms)2

χ
fh
ï
(fh ′)−1

ß
(1+ χe)χ

|h|
ms

™ò
. (3.21)

This potential energy, in turn, leads to a non-hysteretic saturation magnetization response. In this
context, the experimental observations (Danas et al., 2012b; Bodelot et al., 2017) dictates that the
saturation magnetic response of non-dissipative soft magnets exhibit no magnetic susceptibility after
the saturation is achieved (see Fig. 1.2a). Thus, we set the energetic susceptibility χe = 0 in this
limiting case, which simplifies (3.21), so that

wh(h) = −
µ0
2

h • h −
µ0(ms)2

χ
gh
Å
χ
|h|
ms

ã
, (3.22)

where the nonlinear energy function is now denoted by g, which is, in turn, a function of χ|h|/ms,
such that

gh
Å
χ
|h|
ms

ã
= (fh ′)−1

Å
χ
|h|
ms

ã
χ
|h|
ms

− fh
ï
(fh ′)−1

Å
χ
|h|
ms

ãò
. (3.23)

Indeed, the function fh ′ computed from fh given by (3.12) cannot be inverted in a closed form. Con-
sequently, no simplified expression for gh can be obtained for a general fh. Nevertheless, evaluating
gh ′ from (3.23) we obtain a straightforward relation between gh ′ and fh ′ given by

gh ′
Å
χ
|h|
ms

ã
= (fh ′)−1

Å
χ
|h|
ms

ã
. (3.24)

Thus, the magnetic b-field evaluated in this limit is obtained via substituting (3.22) into (3.4), so that

b = µ0

ï
h + ms(fh ′)−1

Å
χ
|h|
ms

ãò
⇒ m = ms(fh ′)−1

Å
χ
|h|
ms

ã
. (3.25)

Hence, it is proved that a remanent potential that employ the inverse saturation-type potential char-
acterized by fh, in turn, leads to a saturating magnetization response (|m|→ ms) following (fh ′)−1 in
the limiting case of bc = χe = 0. Moreover, three special choices for κ(j)

h = 1 with j = 1, 2 or 3 leads to
the three distinct and readily invertible f ′ functions, which are listed in the third column of Table 3.1.
Thus, both gh and gh ′ can be expressed explicitly in such special cases, which are listed in Table 3.2.

It is emphasized that such explicit form of the saturation-type potential energy (3.22) and the
expressions for b and m in (3.25) cannot be obtained for any arbitrary choice of the remanent potential
whr . Rather, the specific choice in (3.11) eventually leads to the saturation-type energetic limiting
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response. Moreover, some of the inverse-sigmoid functions (not listed in Table 3.1) are not invertible
explicitly to a closed algebraic form. Thus, one should treat the functions in Table 3.2 to be the special
cases of the general dissipative framework, that, in turn lead to the “familiar” saturation functions.

Table 3.2: Expressions for gh and gh ′

Choice of κh gh(χ|h|/ms) gh ′(χ|h|/ms)

κ
(1)
h = 1 −

ñ
log
ß
1+ χ

|h|
ms

™
− χ

|h|
ms

ô
χ|h|/ms

1+ χ|h|/ms

κ
(2)
h = 1 tan−1

ß
χ
π

2

|h|
ms

™
χ
|h|
ms

−
1

2
log
ï
1+ χ2

π2

4

Å
|h|
ms

ã2ò
2

π
tan−1

ß
χ
π

2

|h|
ms

™
κ

(3)
h = 1 log

ï
cosh

ß
χ
|h|
ms

™ò
tanh

ß
χ
|h|
ms

™
A comparison of the full hysteresis model having bc = 0.1µ0ms with the corresponding ener-

getic approximations for κ(j)
h = 1 with j = 1, 2 or 3 is shown in Fig. 3.2b. Consequently, we infer

from Fig. 3.1a and Fig. 3.2b that the “ideal” hysteretic m − h response can be regarded as a “de-
layed magnetization”, where the initiation of the magnetization/demagnetization is dictated by the
coercive field bc of the magnet. The ideal hysteretic response Fig. 3.1a eventually coincides with the
non-dissipative saturation magnetization response in the limit of bc → 0.

Figure 3.2: Model response in the two limiting cases (a) bc = +∞ and (b) bc → 0. (a) Model response for
two representative χe, while the parameters χ and ms remain inconsequential. (b) Saturation magnetization
response for χe = 0, χ = 5 and three distinct choices κ(1)

h = 1, κ(2)
h = 1 and κ(3)

h = 1 and comparison with the
corresponding energetic models given by (3.22) and Table 3.2.

Remark 3.1. A number of reported models for the s-MREs employ a potential wh(χ|h|/ms) that leads
to the Langevin-type saturation magnetization response (Lefèvre et al., 2017; Danas, 2017; Psarra
et al., 2019). The Langevin saturation function reads

L

Å
χ
|h|
ms

ã
= coth

Å
3χ

|h|
ms

ã
−
1

3χ

ms

|h|
. (3.26)
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We observe that (3.26) is not invetible in a closed from. Thus, we refrain form defining a f , such that
f ′ ≡ L−1 in Table 3.1. Nevertheless, as observed in the following model fitting section, (3.12) provides
a sufficiently rich set of functions to model the major hysteresis loops of the NdFeB magnets.

3.2 Hysteresis model based on b

The equivalent b-based model is proposed herein. The “structure” of the constitutive modeling is
allowed to remain the same, i.e, starting from choosing an internal variable, followed by obtaining
the constitutive relation from the Clausius-Duhem inequality (2.29) via applying the Coleman-Noll-
Gurtin method. This will be followed by the proposition of the specific forms of wb and Db. In
this section we would use the same model parameters defined in the preceding section except one.
Specific details if such difference will be provided at relevant places.

3.2.1 Constitutive relations

We first propose an additive decomposition to the primary b field into an energetic and a remanent
part, so that

b = be + br. (3.27)

It is emphasized that in this model br is an independent internal variable and thus, should not be
confused with same notation used in the previous section, where br was used to denote the work
conjugate of the remanent internal variable hr. Hence, br defined here is not an energy conjugate to
hr defined in the previous section. Therefore, the internal variables should be treated independently
in the h and b-based models. Subsequently, the Clausius-Duhem inequality for a non-deformable
magnetic solid in isothermal, steady state is obtained via simplifying (2.29), so that

h •
.
b −

.
wb > 0. (3.28)

Expanding .
wb(b, br) in terms of its arguments followed by the rearrangements lead toï

h −
∂wb

∂b

ò
•

.
b −

∂wb

∂br
•

.
br > 0. (3.29)

Consequently, the standard arguments of the Coleman-Noll-Gurtin approach leads to the constitutive
relation

h =
∂wb

∂b
. (3.30)

Subsequently, the Clausius-Duhem inequality (3.29) reads

hr •
.
br > 0, where hr = −

∂wb

∂br
. (3.31)

is the energetic work conjugate of br. Again, the conjugate internal variable hr defined in (3.31) is not
related to the hr of the h-based model. The dissipation inequality therefore yields from (3.31) via
substituting the constitutive relation (2.37) for generalized standard materials (with ξ ≡ br), such
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that
∂Db

∂
.
br

•
.
br > 0, hr =

∂Db

∂
.
br

, (3.32)

which, in turn, imposes the convexity condition on Db(b, br,
.
br) in terms of

.
br. Furthermore, the

condition for even magnetization along the loading direction imposes further constraints on wb and
Db, which read, respectively, (Kankanala and Triantafyllidis, 2004)

wb(−b,−br) = wb(b, br) and Db(−b,−br,−
.
br) = Db(b, br,

.
br). (3.33)

Specific functional forms for the potentials wb(b, br) and Db(b, br,
.
br) those satisfy the constraints

(3.32) (specifically on Db) and (3.33) are provided in the following.

3.2.2 Energy functions

The specific functional choices for wb(b, br) and Db(b, br,
.
br) proposed here resemble closely to (3.9)

and (3.15), respectively, except the arguments. In turn, the model parameters are kept identical to
the h-based model except the inverse saturation function parameters κ(α).

Energy density wb : Following (3.9) the full energy density wb(b, br) is decomposed into the
energetic and remanent contributions, so that (McMeeking and Landis, 2002; Landis, 2002)

wb(b, br) = wbe (b − br) +wbr (br). (3.34)

As observed in Section 3.1.3, in the energetic regime, with no evolution of the internal variable (br

in the present case), the magnetization response is linear in h defined by the linear slope χe. A
complementary energy to the quadratic energy function whe (h−hr) can therefore be obtained via the
Legendre transform of (3.10) with respect to he, such that

wbe (b − br) =
1

2µe
(b − br) • (b − br). (3.35)

In the switching regime, in contrast, the magnetization response is non-linear and dictated by the
remanent potential. Thus, no attempt is made to transform the full energy (3.9) in the case of a
switching response. Instead, wbr (br) is proposed to be

wbr (br) = −
1

2µe
br • br + µe(ms)2

(1+ χ)
χ

fb
Å

|br|
µems

ã
. (3.36)

Notice that here we utilize the same modeling parameters µe,χ and ms in (3.36). However, the inverse
saturation function is now given by fb(|br|/µems), which is defined to be

fb
Å

|br|
µems

ã
=

3∑
α=1

κ
(α)
b f (α)

Å
|br|
µems

ã
with

3∑
α=1

κ
(α)
b = 1, κ

(α)
b > 0, (3.37)

where the set of f (α) with α = 1− 3 is defined in Table 3.1 is employed here, of course, here with
a different argument. Thus, the only set of new parameters introduced herein are κ(α)

b (α = 1− 3).
Nevertheless, (3.36) ensures that the switching magnetization response has the same susceptibility of
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3.2. Hysteresis model based on b

χ and saturation magnetization ms. However, the function fb that dictates the rate of saturation of
the m− h response, is now different from the h model.

Eventually, the expressions for the full and remanent h-fields are obtained via substituting (3.34)
into the constitutive relations (3.30) and (3.31)2, respectively, such that

h =
1

µe
(b − br) and hr =

1

µe
b − ms

(1+ χ)
χ

fb ′
Å

|br|
µems

ã
br

|br|
. (3.38)

The expression for m is obtained subsequently by substituting (3.38)1 into (2.9), which leads to

m =
1

µe
(χeb + br). (3.39)

We note that for an “ideal” magnetic switching response (i.e., χe = 0), the magnetization reads simply
m = br/µ0. Hence, in analogy to the h model, here also the internal variable br can be regarded as
the “magnetization like” variable.

Dissipation potential Db : In analogy to the h-based model, the dissipation potential Db is
defined herein to be a power law in |

.
br| that satisfy the conditions (3.32)1 and (3.33)2, such that

Db(
.
br) =

bc
.
hr0

p+ 1

ï
|
.
br|
µe

.
hr0

òp+1
, (3.40)

which, in turn, leads to a linear viscosity-like switching response for p = 1 and to a rate-independent
magnetic switching response for the limiting case of p = 0. The conjugate to the convex potential
(3.40) can subsequently be obtained via a Legendre transform of (3.40) with respect to

.
br. Straight-

forward algebraic manipulations thus lead to the conjugate potential to Db, which reads

Db∗(hr) =
bc

.
hr0

q+ 1

ï
µe|hr|

bc

òq+1
, with q =

1

p
. (3.41)

Finally, is is noted that in the rate-independent limit, i.e., q → +∞, (3.41) eventually reduce to a
ferromagnetic switching surface defined via (Landis, 2002; Klinkel, 2006)

φb = (µe)2hr • hr − (bc)2 = 0. (3.42)

The rate-independent evolution equation for the remanent field br is hence proposed in terms of the
associated switching rule that ensures maximum energy dissipation (Lubliner, 1986), so that

.
br =

.
λb
∂φb

∂hr
, (3.43)

where
.
λb is the switching Lagrange multiplier that must satisfy the Kuhn-Tucker conditions given

by i)
.
λb = 0 if φb < 0 and ii)

.
λb > 0 while φb = 0, i.e., during the magnetic switching response.

Again, the incremental solution of (3.43) is carried out via employing the classical radial-return-type
implicit backward Euler method. The solution algorithm will provided in the following chapter.

In turn, the features of the b-based model response remain identical to those shown in Fig. 3.1,
except the rate of saturation, which becomes different for this model. Nonetheless, quantitative
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estimates of the coefficients κ(j)
b , with j = 1, 2 and 3 will be provided in the following section where

the best fit to the experimental data would be investigated.

3.2.3 Limiting cases

The two limiting cases, namely, (i) bc → +∞ and (ii) bc = 0, as discussed in Section 3.1.4, lead to non-
dissipative magnetization responses. The limiting case (i), in turn, leads to the linear constitutive law
h = b/µe, which is identical to the one obtained in Section 3.1.4. The second case, on the other hand,
leads to a saturating magnetization response for χe = 0. Carrying out a similar set of manipulations
as presented in Section 3.1.4, we obtain the potential energy in the limiting case (ii) to be

wb(b) =
1

2µ0
b • b − µ0(ms)2

1+ χ

χ
gb
Å

χ

1+ χ

|b|
µ0ms

ã
, (3.44)

where the functional form of gb remains identical to (3.23), so that

gb
Å

χ

1+ χ

|b|
µ0ms

ã
= (fb ′)−1

Å
χ

1+ χ

|b|
µ0ms

ã
χ

1+ χ

|b|
µ0ms

− fb
ï
(fb ′)−1

Å
χ

1+ χ

|b|
µ0ms

ãò
. (3.45)

Again, the specific choices of κ(α)
b = 1, where α = 1, 2 or 3 leads to a closed form representation of the

functions gb as provided in Table 3.2.
The limiting case (i) response matches identically to Fig. 3.2a, whereas a qualitative agreement to

Fig. 3.2b is achieved for the limiting case (ii). Of course, by construction, the magnetic susceptibility
and the saturation magnetization for case (ii) remains identical to the magnetization response in
Fig. 3.2b. However, the rate of magnetic saturation becomes different in the present b-based model.
Thus, the hysteresis loop shape parameters κ(α)

b are expected to be different from its counterparts in
the h-based model.

Remark 3.2. The b-based constitutive models of the s-MREs often employ a different magnetic sus-
ceptibility, defined via χ̂ = χ/(1 + χ) (Ponte Castañeda and Galipeau, 2011; Galipeau and Ponte
Castañeda, 2013; Danas, 2017; Psarra et al., 2019). Nevertheless, in this text we refrain from defining
two different susceptibility measures for clarity.

3.3 Model fitting with experiments

This section is devoted towards the model parameter identifications via fitting it to the experimentally-
obtained m−h hysteresis loops of NdFeB magnets. Till date, a handful of experimental data is avail-
able they report the major hysteresis loops of bulk and powdered NdFeB magnets (Périgo et al., 2012;
Deng et al., 2015; Huang et al., 2016b). In particular, we estimate the model parameters by fitting
the model response with the measured hysteresis loops for (a) isotropic NdFeB powders (Deng et al.,
2015) and (b) spark plasma sintered, isotropic NdFeB bulk magnets (Huang et al., 2016b). As reported
in these experiments, the magnetization/demagnetization responses remain rate-independent while
loading at a low-to-moderate frequency (up to 1 kHz), which is, in turn, well above the working
loading/unloading frequencies for the h-MREs (Linke et al., 2016; Kalina et al., 2017; Kim et al., 2018;
Zhao et al., 2019; Sitti and Wiersma, 2020).
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3.4. Concluding remarks

Table 3.3 provides the estimated model parameters, which are obtained via fitting the model pre-
dictions with the experiments of Deng et al. (2015) (Table 3.3.1) and Périgo et al. (2012) (Table 3.3.2).
Notice that the general model parameters remain the same for the h and b-based models, while the
fitted shape parameters κ(α)

h and κ(α)
b differ considerably.

Table 3.3: Model parameters for NdFeB magnets

3.3.1 NdFeB powder 3.3.2 Sintered NdFeB
Gen. parameters h model b model Gen. parameters h model b model
χe = 0.105 κ

(1)
h = 1.0 κ

(1)
b = 0.0 χe = 0.078 κ

(1)
h = 0.5 κ

(1)
b = 0.0

χ = 8.0 κ
(2)
h = 0.0 κ

(2)
b = 0.1 χ = 4.5 κ

(2)
h = 0.5 κ

(2)
b = 0.3

ms = 0.67 MA/m κ
(3)
h = 0.0 κ

(3)
b = 0.9 ms = 0.68 MA/m κ

(3)
h = 0.0 κ

(3)
b = 0.7

bc = 0.845µ0 T bc = 1.30µ0 T

Here we employ a least square-based curve fitting algorithm lsqcurvefit of MATLAB (2017) ,
which – given a proper initial guess – is very efficient in estimating the optimal fitting parameters.
The fitted h and b models with these experimental data are shown in Fig. 3.3, where we observe an

Figure 3.3: Experimental m−h response of (a) NdFeB powder (Deng et al., 2015) and (b) spark plasma sintered
NdFeB magnet (Huang et al., 2016b) along with the fitted rate-independent h and b models.

excellent agreement between these two. Moreover, as discussed in Section 3.2.2, the b model is pro-
posed in such a way that it coincides with the h model in terms of the initial energetic and switching
magnetization slopes, coercive field and saturation magnetization. However, the inverse saturation
function emerging from the remanent potentials differ in these models terms of the difference in κ(j)

h

and κ(j)
b , whose fitted values (rounded-off after the first decimal place) are given in Table 3.3.

3.4 Concluding remarks

Two equivalent thermodynamically consistent, rate-independent ferromagnetic hysteresis models
considering h and b to be the primary variables are proposed. Suitable choices for the remanent
internal variable are made independently in both of them. The number of parameters in the model
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has been kept relatively small, while making it rich enough to capture different rates of magnetic
saturation. Both the models are shown to be leading to the non-hysteretic, saturation-type magne-
tization models in the limit of bc → 0. Finally, we find the model to capture considerably well the
measured major hysteresis loops of NdFeB powders and sintered NdFeB magnets.

To this end, the developed ferromagnetic switching surface framework does not capture the ini-
tial magnetization response and minor hysteresis loops, which arise during a partially-reversed cyclic
loading. Nevertheless, these effects can be incorporated in the present switching surface framework
via proposing suitable phenomenological evolution laws for the coercive field bc in terms a set of
history-dependent parameters that take care of the whole loading/unloading history of the material.
A proposal for such history-dependent phenomenological evolution laws of bc for the h-based model
and subsequently, the probe of the evolving switching surface model performance against the exper-
imental data, are provided in Appendix A. Similar evolution equations can be proposed mutatis
mutandis for the b-based model.
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Chapter

4
Microscopic Model and Numerical
Homogenization

Chapter summary: An incremental numerical homogenization scheme for dissipative, hard-magnetic magneto-
elastic composites is proposed herein. The microstrucutre of the two-phase composite is considered to be uni-
formly distributed spherical inclusions in a matrix, so that the statistical isotropy of the microstructure is
ensured. An incremental variational principle is framed subsequently, that is employed to carry out the nu-
merical homogenization computations. The variational principle is augmented thereafter in order to capture
the magneto-mechanical coupling arising exclusively due to the particle rearrangements and particle rotations
in the composite, without any macroscopic shape-effect. Besides the details of finite-element computations and
local evolution algorithm for the internal variables, an account on the application of augmented potentials are
also provided. Finally, the numerically computed effective magneto-mechanical responses along with the mesh
convergence studies are presented.
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Appendix 4.C. Residue and derivatives in local Newton iterations . . . . . . . . . . . . . . 85

In this chapter we develop an incremental numerical homogenization framework for the isotropic
h-MREs which is, in turn, a two phase composite having hard magnetic particles inside a soft elas-
tomeric matrix. As discussed in Chapter 3, the soft magnetic response can be obtained as a limiting
case of the dissipative hard magnetic models. Therefore, here we propose a numerical homogeniza-
tion method for the h-MREs, whose limiting cases, those are relevant to the s-MREs, will also be
provided therein. In this chapter, we follow Miehe et al. (2002), where an incremental numerical
homogenization framework for the dissipative elasto-plastic composites is provided. We recast the
same formalism for the dissipative magneto-hyperelastic two phase composites. The numerical real-
ization of this incremental homogenization problem will be discussed thereafter. We start by defining
the microstructure and properties of the individual phases therein.

4.1 Definition of the microstructure

We consider a macroscopic MRE sample1 occupying a reference material volume V0 comprising nu-
merous representative volume elements (RVEs) V#

0, so that V#
0 � V0 (see Fig. 4.1). Thus, a complete

Figure 4.1: Schematic diagram of (a) macroscopic boundary value problem involving a MRE sample in air
having a reference volume V0, (b) periodic arrangement of the statistically identical RVEs with polydisperse
spherical inclusions and (c) a RVE occupying a reference volume V#

0 and boundary ∂V#
0.

separation in the length scales between V0 and V#
0 is assumed in the case of MREs. Moreover, the

RVEs are assumed to situate far from the macroscopic boundary ∂V0, on which, the macroscopic dis-
placement and traction boundary conditions are applied (see Fig. 4.1a). Furthermore, a slowly varying
microstructure is assumed, such that, as shown in Fig. 4.1b, the neighboring RVEs remain identical.
It is emphasized that the RVEs must be rich enough to reflect the proper material proportions at the
macroscale. Also, the distribution of the inclusion phases remains an important property of the RVE.
Nevertheless, assuming a comprehensive representativity, the magnetic particles are considered to be
occupying a reference volume V#

0p, whereas the elastomeric matrix phase occupies a volume of V#
0m,

1In a general discussion, we drop the prefixes s- and h- while referring to the MREs.
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4.2. Local constitutive model

such that V#
0 = V#

0p ∪V#
0m (see Fig. 4.1c). Consequently, the particle volume fraction c is defined via

c =
V#
0p

V#
0

. (4.1)

We henceforth denote the quantities/properties associated with the particle and matrix phases by the
subscripts “p” and “m”, respectively. Motivated from the observed microstcuctures of the isotropic
MREs in Fig. 1.1, the microstructure for RVE computations are defined to be a cubic volume having
sides of length `#0 (so that V#

0 = (`#0)3) in the reference configuration, where the spherical inclusions are
uniformly distributed in the matrix phase (see Fig. 4.1c). Moreover, these inclusions are considered
to have several families, all of whose members are uniformly distributed in the cubic RVE, so that
the statistical isotropy is ensured. Specific algorithms to generate such microstructures are discussed
in Section 4.7.1.

In addition to the definition of the microstructure, it remains crucial to select a modeling frame-
work, which must be straightforward to implement and also would lead to less expensive numerical
computations. A complete account on the modeling framework selection and the specific ener-
getic/dissipation energy functions associated with it are discussed in the following.

4.2 Local constitutive model

This section provides a microscopic constitutive model for the h-MREs in terms of energetic and
dissipation potentials. A specific choice for the microscopic modeling of the s-MREs is provided
thereafter. As discussed in Chapter 2, there exist several modeling frameworks, namely, the La-
grangian F−B, F−H, the Eulerian F−b, F−h and the magnetization-based models (Kankanala and
Triantafyllidis, 2004; Danas et al., 2012b; Lefèvre et al., 2017; Lefèvre et al., 2019; Keip and Rambausek,
2016, 2017; Kalina et al., 2016, 2020) for the MREs. In particular, we perform the present numerical
homogenization investigations via considering the Lagrangian F − H model. The advantage of this
specific choice is two fold, namely, i) evolution of the internal variables are easy to compute in a
Lagrangian setting, where the variables are expressed in terms of the reference coordinate X and ii)
due to its curl-free nature (2.41), the local

“
H2 can be expressed in terms of the gradient of a scalar

potential ϕ̂, such that, “
H = −Grad ϕ̂, (4.2)

which serve as local unknowns to be solved-for in a finite-element (FE) solution routine. In contrast,
the divergence-free B field leads to a vector potential

“
A, so that

B̂ = Curl
“
A, (4.3)

which is then solved-for in a FE solver (Danas, 2017; Psarra et al., 2019). Moreover, in order to ensure
the uniqueness of

“
A, this vector potential-based formulation requires an additional constraint on

it, namely, the Coulomb gage (Danas, 2017; Psarra et al., 2019). Thus, it is evident that, the scalar
potential-based formulation results in substantially cheaper numerical computations by reducing the
total degrees of freedom of the system, which is in the range of 1− 15 million for the present case

2All the microscopic fields are denoted by the (�̂) symbol in this text.
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Chapter 4. Microscopic Model and Numerical Homogenization

of scalar potential-based 3D RVE computations with polydisperse spherical inclusions. Thus, the
following discussion is based entirely on the F − H framework.

We propose the microscopic constitutive model by considering nearly incompressible matrix and
particle phases, whereas, both pure and nearly incompressible models would be provided in the
proposition of macroscopic models in the Chapters 5 and 6. Since the microstructure is locally het-
erogeneous, the referential representation of the local energetic (

“
WH) and dissipation (

“
DH) potentials

depend on the reference coordinate X, so that“
WH(X, Ĉ,

“
H, Ξ̂) = Θ(X)

“
WH

m (Ĉ,
“
H, Ξ̂) + (1−Θ(X))

“
WH

p (Ĉ,
“
H, Ξ̂) (4.4)

and “
DH(X, Ĉ,

“
H, Ξ̂, Ξ̂

.
) = Θ(X)

“
DHm (Ĉ,

“
H, Ξ̂, Ξ̂

.
) + (1−Θ(X))

“
DHp (Ĉ,

“
H, Ξ̂, Ξ̂

.
), (4.5)

respectively, where the F̂-dependence of
“
WH is considered in terms of the right Cauchy-Green tensor

Ĉ = F̂T F̂3 that ensures objectivity (Coleman and Gurtin, 1967; Dorfmann and Ogden, 2004; Kankanala
and Triantafyllidis, 2004), Ξ̂ is a thermodynamic internal variable,

.
(�) represents the material time

derivative, and Θ(X) indicates the characteristics function taking the value Θ(X) = 1 if X ∈ Vm
0 and

Θ(X) = 0 if X ∈ V
p
0 (Ponte Castañeda and Galipeau, 2011; Danas, 2017). Notice that the length scale

of fluctuation of Θ(X) must be several order smaller than the macroscopic length scale, so that the
hypothesis of separation of length scales holds.

Next, we propose a choice for the microscopic internal variable Ξ̂ followed by setting forth the
thermodynamic inequalities associated with this microscopic model. Afterwards, specific choices for
the local potentials

“
WH

i and
“
DHi , i = m, p will be provided.

4.2.1 Additive decomposition of the microscopic h-field

The constitutive definition of a hard magnetic constitutive model first assumes an additive decom-
position of the total h-field into an “energetic” (denoted by the superscript e) and a “remanent”
(denoted by the superscript r) part, which, in the reference and the current configurations read“

H =

“
He +

“
Hr ≡ ĥ = ĥe + ĥr, (4.6)

respectively. Besides the reference
“
H is related to the current ĥ via (2.40), we define ĥe = F̂−T

“
He and

ĥr = F̂−T

“
Hr to obtain (4.6). Of course, the latter two definitions are constitutive choices and may be

altered if necessary. In addition to F̂ and
“
H to be the independent primary variables, we consider the

reference
“
Hr to be the internal variable that evolves with F̂ and

“
H. Next, we derive the microscopic

(local) constitutive relations from the localized entropy inequality.

4.2.2 Constitutive relations

Herein, we derive the microscopic Lagrangian constitutive equations from the Clausius-Duhem in-
equality. We assume the dissipative hard magneto-mechanical process to be isothermal and conse-

3We use the “blackboard bold” symbols for the right (Ĉ) and the left Cauchy-Green (B̂) tensors in order to distinguish
them from the magnetic B̂ field.
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4.2. Local constitutive model

quently, no heat flux in/out is considered. Thus, (2.64) simplifies to

Ŝ : F̂
.
− B̂ •

“
H
.

−

“
W
.
H
i > 0, i = m, p, (4.7)

with the equality holding exclusively for non-dissipative thermodynamic processes. Expressing the
derivative

“
W
.
H
i in terms of the time derivatives of its arguments, followed by a rearrangement in the

terms leads to ï
Ŝ − 2F̂

∂

“
WH

i

∂Ĉ

ò
: F̂

.
−

ï
B̂ +

∂

“
WH

i

∂

“
H

ò
•

“
H
.

−
∂

“
WH

i

∂

“
Hr

•

“
H
.
r > 0. (4.8)

Since the primary state variables F̂ and
“
H are independent, they can be varied in an arbitrary fashion.

Hence, the standard arguments of the Coleman-Noll-Gurtin framework (Coleman and Noll (1959);
Coleman and Gurtin (1967); see also the notes by Hütter (2017)) lead to the constitutive relations for
the microscopic first Piola-Kirchhoff stress and the magnetic b-field are given by

Ŝ = 2F̂
∂

“
WH

i

∂Ĉ
and B̂ = −

∂

“
WH

i

∂

“
H

, (4.9)

respectively. Subsequently, the microscopic Cauchy stress σ̂ is obtained via substituting (4.9)1 into
(2.48), so that

σ̂ =
2̂

J
F̂
∂

“
WH

i

∂Ĉ
F̂T , (4.10)

which is, in turn, symmetric for any
“
WH

i and hence, satisfies the angular momentum balance law
(2.20) (or, equivalently (2.53)). With these, the remaining part of the Clausius-Duhem inequality reads

B̂r •
“
H
.
r > 0, with B̂r = −

∂

“
WH

i

∂

“
Hr

, (4.11)

where the latter is the remanent Lagrangian b-field, which is, in turn, the energetic work conjugate
of
“
Hr. Moreover, the relation (2.65)2 for generalized standard materials with this specific choice of

the internal variable reads
∂

“
WH

i

∂

“
Hr

+
∂

“
DHi

∂

“
H
.
r
= 0. (4.12)

Finally, by combining (4.11) and (4.12), we obtain the dissipation inequality in terms of
“
DHi , such that

∂

“
DHi

∂

“
H
.
r

•

“
H
.
r > 0, (4.13)

which imposes a thermodynamic constraint on
“
DHi in terms of constraining it to be a convex function

of
“
H
.
r. Thus, by proposing a convex

“
DHi in terms of

“
H
.
r a positive energy dissipation is ensured via

(4.13) for any magneto-mechanical loading path.
It remains to propose specific forms for

“
WH

i and
“
DHi given the thermodynamic restriction (4.13)

is satisfied. Furthermore, it is noted that, in a finite strain setting, the choices for
“
WH

i and
“
DHi are

restricted further via the conditions of (i) even magneto-mechanical coupling, (ii) material frame
indifference and (iii) material symmetry (Kankanala and Triantafyllidis, 2004; Dorfmann and Og-
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Chapter 4. Microscopic Model and Numerical Homogenization

den, 2004, 2005). In the following, we specify functional forms of
“
WH

i and
“
DHi that satisfy the three

aforementioned conditions.

4.2.3 Energy functions

Here we propose the specific functional forms of the local
“
WH

i (Ĉ,
“
H,
“
Hr) and

“
DHi (Ĉ,

“
Hr,
“
H
.
r) for the

phase i. All phases are considered to be isotropic. To ensure the objectivity of the model, the
two potentials must satisfy the material frame indifference and the material symmetry conditions.
These conditions are in turn ensured via the proposition of

“
WH

i in terms of several mechanical and
magneto-mechanical invariants listed in Table 4.1.

Table 4.1: Invariants associated with isotropic hard magneto-elastic phases

Mechanical Magneto-mechanical
Invariant Lagrangian Eulerian Invariant Lagrangian Eulerian

Î1 = tr(Ĉ) tr(B̂) ÎH4 =

“
H •

“
H ĥ • B̂ĥ

2̂I2 = tr(Ĉ)2 − tr(Ĉ2) tr(B̂)2 − tr(B̂2) ÎHHr
4 =

“
H •

“
Hr ĥ • B̂ĥr

Î3 = Ĵ =

»
det Ĉ

»
det B̂ ÎHr

4 =

“
Hr •
“
Hr ĥr • B̂ĥr

Magneto-mechanical Magneto-mechanical
Invariant Lagrangian Eulerian Invariant Lagrangian Eulerian

ÎH5 =

“
H • Ĉ−1

“
H ĥ • ĥ ÎH6 =

“
H • Ĉ−2

“
H ĥ • Ĉ−1ĥ

ÎHHr
5 =

“
H • Ĉ−1

“
Hr ĥ • ĥr ÎHHr

6 =

“
H • Ĉ−2

“
Hr ĥ • Ĉ−1ĥr

ÎHr
5 =

“
Hr • Ĉ−1

“
Hr ĥr • ĥr ÎHr

6 =

“
Hr • Ĉ−2

“
Hr ĥr • Ĉ−1ĥr

Notice in Table 4.1 that the mechanical invariants Î1 − Î3 and the magneto-mechanical invariant ÎHj
with j = 4− 6 are identical to those used in the modeling of s-MREs (Kankanala and Triantafyllidis,
2004; Lefèvre et al., 2017; Mukherjee et al., 2020). In addition, four new invariants, namely the
“mixed” invariant ÎHHr

j and the “remanent” invariant ÎHr
j (j = 4− 6) are introduced. Since the internal

variable
“
Hr is assumed to have the same push-forward transformation ĥr = F̂−T

“
Hr as the primary“

H, the mixed and remanent invariants can be readily shown to satisfy the material frame indifference
and symmetry conditions.

Energy density : The energy density
“
WH

i is now proposed in terms of the Helmholtz free energy
associated with the mechanical and magnetic parts, that read“

WH
i (̂I1, Ĵ, ÎHHr

4 , ÎHr
4 , ÎH5 , ÎHHr

5 ) = ρ̂0ψ̂mech,i(̂I1, Ĵ) + ρ̆0ψ̂Hmag,i(̂I
HHr
4 , ÎHr

4 , ÎH5 , ÎHHr
5 ) −

µ0
2
Ĵ̂IH5 , (4.14)

where the subscripts “mech” and “mag” indicate the mechanical and magnetic parts, respectively and
the last term is the magnetostatic energy associated with any non-magnetic (ether) medium. Such
assumption of a decoupled energy associated with the individual phases is sufficient to model the
local microscopic behavior of the MREs, since its mechanically compliant matrix phase is magneti-
cally inert, whereas the hard magnetic inclusions are mechanically stiff.

The mechanical free energy associated with the hard magnetic phases are typically expressed in
terms of a Neo-Hookean energy, so that (Danas, 2017; Keip and Rambausek, 2017; Kalina et al., 2017;
Lefèvre et al., 2017)

ρ̂0ψ̂mech,i(̂I1, Ĵ) =
Gi

2
(̂I1 − 3− 2 ln Ĵ) +

G ′i
2

(̂J− 1)2, (4.15)
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4.2. Local constitutive model

where Gi is the shear modulus and G ′i is the Lamé constant associated with the compressibility of
each phase. This simple Î1-based Neo-Hookean model is a constitutive choice. In fact, while propos-
ing the phenomenological models in the following sections, we will use a homogenized version of
the mechanical free energy ψ̂mech,i that works for any Î1-based hyperelastic model (Lopez-Pamies
et al., 2013). Thus, the choice (4.15) remains open to be replaced with the other Î1-based hyperelastic
models (e.g., Gent model, Ogden model) without altering the other parts of (4.14).

The magnetic free energy is further decomposed into an energetic and a remanent part, which are,
in turn, the functions of energetic invariants and the mixed and remanent invariants, respectively.
Thus, ψ̂Hmag,i reads

ρ̂0ψ̂
H
mag,i(̂I

HHr
4 , ÎHr

4 , ÎH5 , ÎHHr
5 ) = ρ̂0ψ̂

H,en
mag,i(̂I

H
5 ) + ρ̂0ψ̂

H,rem
mag,i (̂IHHr

4 , ÎHr
4 , ÎHHr

5 ). (4.16)

Specific choices for ψ̂mag
en,i and ψ̂mag

rem,i are given by

ρ̂0ψ̂
H,en
mag,i(̂I

H
5 ) = −

µ0
2
χei Î

H
5 (4.17)

and

ρ̂0ψ̂
H,rem
mag,i (̂IHHr

4 , ÎHr
4 , ÎHHr

5 ) =
µ0
2

(1+ χei )
(̂
IHHr
5 + ÎHHr

4

)
+
µ0
χi

(msi)2fhi

Ç»
ÎHr
4

msi

å
, (4.18)

respectively. Note that the magnetic model parameters remain the same as in Chapter 3 in the
present context of a finite-strain microscopic model. Of course, here the parameters are demarcated
by an additional subscript “i” that indicates the phase i = m or p, to which the magnetic property is
associated with. The function fhi is defined via (3.12), where the coefficients are indicated via κ(α)

h,i,
with α = 1− 3 and the additional subscript i indicating the phase. Thus, we note that, in the limit of
zero local strain, i.e., Ĉ = I, (4.14) reduces identically to (3.9).

Dissipation potential : The dissipation potential in this finite strain setting is defined in terms of
a power law in |

“
H
.
r|, so that “

DHi (|
“
H
.
r|) =

bci
.
hr0i

pi + 1

ï
|

“
H
.
r|

.
hr0i

òpi+1

, (4.19)

where the parameters bci ,
.
hr0i and pi remain identical to those in (3.15). Similar to (3.15), a partial

Legendre transform of (4.19) followed by taking the limiting case of rate-independence leads to the
local microscopic ferromagnetic switching surface, which reads“

ΦHi := B̂r • B̂r − (bci )2 = 0. (4.20)

Consequently, the evolution equation for
“
Hr is given the associated switching rule that ensures max-

imum energy dissipation, so that“
H
.
r =

.
λHi
∂

“
ΦHi

∂B̂r
, with

.
λHi = 0 if

“
ΦHi < 0 and

.
λHi > 0 if

“
ΦHi = 0, (4.21)

indicating the Kuhn-Tucker conditions on the Lagrange multiplier
.
λHi .

Potential for soft magnetic phases : As discussed in Chapter 3, the hysteresis model therein leads
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Chapter 4. Microscopic Model and Numerical Homogenization

to the non-hysteretic, saturation-type soft magnetic response in the limit of bci → 0. Thus, following
(3.9) and (3.22), we recast (4.14) in terms of the purely energetic invariants of Table 4.1, such that“

WH
i (̂I1, Ĵ, ÎH5 ) = ρ̂0ψ̂mech,i(̂I1, Ĵ) + ρ̂0ψ̂Hmag,i(̂I

H
5 ) −

µ0
2
Ĵ̂IH5 , (4.22)

where the mechanical free energy ψ̂mech
i and the magnetostatic energy of the free space remain identi-

cal to (4.15). Nevertheless, the magnetic free energy, which is now expressed in terms of ÎH5 is simply
given in terms of the Langevin-type saturation energy function (3.26), so that (Lefèvre et al., 2017)

ρ̂0ψ̂
H
mag,i(̂I

H
5 ) = −

µ0(msi)2

3χi

®
log

ñ
sinh

Ç
3χi

msi

»
ÎH5

å
− log

ñ
3χi

msi

»
ÎH5

ô´
. (4.23)

Instead, any saturation energy function listed in Table 3.2, or a linear combination of those can
be used in equation (4.23). However, the saturation magnetization response of the commercially
available carbonyl iron particles are observed to be modeled best by the Langevin-type saturation
functions (Psarra et al., 2017; Bodelot et al., 2017). Furthermore, in this limiting case, the definition
and evolution of the internal variables become inconsequential. Thus, the local constitutive relations
are now given by (4.9).

Notably, the magnetic model parameters for the carbonyl iron particle-filled s-MREs reduce to
two, namely, the susceptibility χi and the saturation magnetization msi , since the coercive field bci and
energetic susceptibility χei vanish identically.

4.3 Incremental micro-potential

In general, the variation principle for the dissipative solids are expressed in terms of the local min-
imization of a set of internal variables during a finite time increment, namely [t, t+∆t] (Carstensen
et al., 2001; Miehe, 2002; Miehe et al., 2002, 2011; Rosato and Miehe, 2014). Hence, local incremental
potential

“
WH

i of the phase i at a discrete time (t+∆t) for a coupled magneto-mechanical problem
reads (Miehe, 2002; Miehe et al., 2002)“

WH
i,t+∆t(F̂,

“
H) = inf“

Hr

ï ∫t+∆t
t

(
“
W
.
H
i +

“
DHi )dt

ò
, with

“
Hr(t) =

“
Hrt (4.24)

is the given initial value of
“
Hr during this increment. In (4.24) the potentials

“
WH

i (Ĉ,
“
H,
“
Hr) and“

DHi (
“
Hr,
“
H
.
r) represent the energetic and dissipation potentials, respectively. Moreover, the subscript

t+∆t of
“
WH
i in (4.24) denotes its arguments F̂ and

“
H are evaluated at t+∆t.

The internal variable
“
Hr is not subjected to any differential or boundary constraints (Miehe, 2002;

Miehe et al., 2011; Rosato and Miehe, 2014). In turn, the evolution of
“
Hr from its previous value

“
Hrt

is determined by the minimization problem (4.24)1. Thus, we recast (4.24)1 in the form“
WH

i,t+∆t(F̂,
“
H) = inf“

Hr

ß[“
WH

i

]t+∆t
t

+

∫t+∆t
t

“
DHi dt

™
. (4.25)

Taking the variation of
“
WH

i,t+∆t while keeping F̂ and
“
H fixed leads to a stationarity condition that
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reads ï
∂

“
WH

i

∂

“
Hr

• δ

“
Hr
òt+∆t
t

+

∫t+∆t
t

®
∂

“
DHi

∂

“
H
.
r

• δ

“
H
.
r +

∂

“
DHi

∂

“
Hr

• δ

“
Hr
´

dt = 0. (4.26)

Integrating by parts the first term under the integral of (4.26) and rearranging the terms we obtain
(Miehe et al., 2002)ñ

∂

“
WH

i

∂

“
Hr

+
∂

“
DHi

∂

“
H
.
r

ô
t+∆t

• δ

“
Hrt+∆t +

∫t+∆t
t

®
−

d
dt
∂

“
DHi

∂

“
H
.
r
+
∂

“
DHi

∂

“
Hr

´
• δ

“
Hrdt = 0. (4.27)

Note that δ
“
Hrt = 0 as it is a prescribed initial value given by (4.24)2. Thus, the first bracketed term

of (4.27) is at the right boundary of the time interval [t, t+∆t], i.e., at the current time increment,
whereas the second term is integrated over the time interval [t, t+∆t]. Hence, due to arbitrariness
of the variation δ

“
Hr during the increment from t to t+∆t, the integrand in the second term of (4.27)

must vanish (Miehe et al., 2002). Consequently, (4.27) leads to the constitutive relation for generalized
standard materials (GSMs) (Halphen and Nguyen, 1975)

∂

“
WH

i

∂

“
Hr

+
∂

“
DHi

∂

“
H
.
r
= 0, ∀ t = t+∆t (4.28)

which is the constitutive law that is used to update
“
Hr from

“
Hrt to

“
Hrt+∆t. The updated

“
Hrt+∆t is

then substituted to (4.25), so that the optimal incremental potential
“
WH

i,t+∆t can be obtained. The
integrand of the second term of (4.27) leads to the Euler’s equation governing the minimization path
of
“
Hr

−
d
dt

ñ
∂

“
DHi

∂

“
H
.
r

ô
+
∂

“
DHi

∂

“
Hr

= 0, ∀ t ∈ [t, t+∆t]. (4.29)

In practice, the minimization path of
“
Hr in the time interval [t, t+∆t] carries no significance, as the

local minimization of
“
WH

i,t+∆t is carried out at each discrete time increment with a considerably small
∆t (Miehe, 2002). Thus, (4.29) is dropped henceforth from the discussion.

The general form of the local incremental potential energy in a heterogeneous microstructure as
in Fig. 4.1c can be expressed in a similar fashion to (4.4) to be a function of X, so that“

WH
t+∆t(X, F̂,

“
H) = Θ(X)

“
WH

m,t+∆t(F̂,
“
H) +

{
1−Θ(X)

}“
WH

p,t+∆t(F̂,
“
H), (4.30)

where the indicator function Θ(X) is defined in Section. 4.2. Once can, in turn, verify the last equation
via substituting (4.4) and (4.5) into (4.24).

Finally, the local incremental constitutive relations are obtained via substituting (4.25) and (4.30)
into (4.10), such that

Ŝt+∆t =
∂

“
WH
t+∆t

∂F̂t+∆t
, B̂t+∆t = −

∂

“
WH
t+∆t

∂

“
Ht+∆t

, (4.31)

which leads to, respectively, the microscopic first Piola-Kirchhoff and magnetic b-field at a dis-
crete time t+∆t. Thus, the incremental potential (4.25) (also referred as the “reduced potential”
(Carstensen et al., 2001; Rosato and Miehe, 2014)) essentially provides a “quasi-energetic” approx-

47



Chapter 4. Microscopic Model and Numerical Homogenization

imation of the dissipative model via computing a-priori the optimal internal variable
“
Hrt+∆t that

minimizes the incremental energy (4.24) (Miehe et al., 2002). Thus, while computing the local con-
stitutive response of such dissipative models for a given F̂t+∆t and

“
Ht+∆t, we first update

“
Hrt to“

Hrt+∆t from (4.28), which is followed by computing the local Ŝt+∆t and B̂t+∆t from (4.31) (Rosato
and Miehe, 2014). In turn, by computing these local Ŝt+∆t and B̂t+∆t and subsequently, the tangent
tensors, one constructs the element force and stiffness matrices in a FE numerical solution routine
(Rosato and Miehe, 2014). Further details on the FE computations are provided in Section 4.6. Next,
an incremental homogenization framework is proposed in terms of obtaining the effective incremental
potential from the local incremental potential (4.25).

4.4 Incremental homogenization framework

Since h-MREs are dissipative in nature, the microscopic primary constitutive relations in terms of a
quasi-energetic constitutive laws (4.31) depend on the specific time increment under consideration.
We henceforth denote the current time t+∆t by τ ≡ t+∆t for brevity.

The macroscopic deformation gradient F and the Lagrangian h-field H at a discrete time τ are
now expressed in terms of the volume averages of the corresponding microscopic quantities, so that
(Miehe et al., 2002; Ponte Castañeda and Galipeau, 2011; Danas, 2017; Lefèvre et al., 2017)4

Fτ =
1

V#
0

∫
V#
0

F̂τ(X) dV , Hτ =
1

V#
0

∫
V#
0

“
Hτ(X) dV , (4.32)

respectively. The periodicity of the RVE V#
0 leads to the representation of the local displacement

ûτ(X) and scalar potential ϕ̂τ(X) can be decomposed into “average” and “fluctuation” fields. The
average uτ(X) and ϕτ(X) are related to the average (macroscopic) Fτ and Hτ via uτ(X) = (Fτ − I) • X
and ϕτ(X) = −Hτ • X, respectively. Thus, the local ûτ(X) and ϕ̂τ(X) admit to the decomposition

ûτ(X) = (Fτ − I) • X + ũτ(X) and ϕ̂τ(X) = −Hτ • X +‹ϕτ(X), ∀ X ∈ V#
0, (4.33)

respectively, where ũτ(X) and ‹ϕτ(X) are the fluctuation fields, whose average in V#
0 are identically

zero. Thus, (4.32) can be verified via substituting (4.33) into it. Moreover, the average Eulerian hτ can
be related to its Lagrangian counterpart via (Ponte Castañeda and Galipeau, 2011; Chatzigeorgiou
et al., 2012; Javili et al., 2013)

hτ =
1

V#
τ

∫
V#
τ

ĥτ(xτ) dvτ = F−T
τ Hτ. (4.34)

The derivation of the last relation is provided in Appendix 4.A, where the divergence-free property
(2.A.5) of ĴτF̂−T

τ along with the periodic boundary condition on ‹ϕτ are exploited.
Having defined the RVE and the periodic boundary conditions (4.33), the incremental homoge-

nization problem is now defined as the optimization problem give by (Ponte Castañeda and Galipeau,

4Miehe et al. (2002) considers such volume averages at a specific increment in the context of mechanical plasticity.
The other references, which deal with magneto-mechanical homogenization of non-dissipative soft MREs, do not mention
specific time increments in these average estimates.
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2011; Danas, 2017; Lefèvre et al., 2017)

WH
τ (F, H) = inf

ûτ∈K(Fτ)
sup“

ϕτ∈G(Hτ)

ï
1

V#
0

∫
V#
0

“
WH
τ (X, F̂,

“
H) dV

ò
, (4.35)

where
“
WH
τ (X, F̂,

“
H) is defined in (4.30), K and G represent the sets of admissible microscopic ûτ and

ϕ̆τ fields, such that

K(Fτ) =
{

F̂τ : ∃ xτ = yτ(X) with F̂τ = I + Grad ûτ, Ĵτ > 0,

ûτ = (Fτ − I) • X + ũτ, ũτ periodic in V#
0

}
(4.36)

and

G(Hτ) =
{“

Hτ : ∃ xτ = yτ(X) with
“
Hτ = −Grad ϕ̂τ, ϕ̂τ = −Hτ • X +‹ϕτ, ‹ϕτ periodic in V#

0

}
. (4.37)

The Hill-Mandel lemma along with the incremental constitutive relations (4.31) leads to the macro-
scopic constitutive relations at the time increment τ, such that (Miehe et al., 2002)

Sτ =
∂WH

τ

∂Fτ
, Bτ = −

∂WH
τ

∂Hτ
. (4.38)

Again, notice that the incremental homogenization framework, that is proposed following (Miehe
et al., 2002), essentially considers a quasi-energetic material model in terms of the potential (4.24),
which, contains a history-dependent remanent field term. Thus, the standard, non-dissipative magneto-
mechanical homogenization framework (Ponte Castañeda and Galipeau, 2011; Javili et al., 2013;
Danas, 2017; Lefèvre et al., 2017) is employed here, except by using a history-dependent (in terms of
the microscopic internal variables) incremental potential.

The microscopic remanent field
“
Hr is not subjected to any differential/boundary constraint. Thus,

unlike the primary variables in (4.33), no direct correlation can be defined between the microscopic“
Hr and its macroscopic counterpart. Of course, due the dissipative nature of the hard magnetic
particle phase, the macroscopic response will be dissipative. However, no homogenized constitu-
tive law for the macroscopic internal variable can be obtained from this incremental homogenization
setting. Nevertheless, while defining the macroscopic model in Chapter 6, we will define indepen-
dent macroscopic internal variables and their evolution laws from the macroscopic Clausius-Duhem
inequalities.

Remark 4.1. For the special case of s-MREs (i.e., bcp = 0 and χep = 0), the microscopic dissipation
potential

“
DHi vanishes identically and thus, the relation (4.28) for generalized standard materials

yields an explicit expression for
“
Hrτ in terms of

“
Hτ. Hence, the homogenization problem (4.35) reads

for the s-MREs
WH
τ (F, H) = inf

ûτ∈K(Fτ)
sup“

ϕτ∈G(Hτ)

ï
1

V#
0

∫
V#
0

“
WH
τ (X, F̂,

“
H) dV

ò
, (4.39)

which, in turn, can be rephrased to be (Lefèvre et al., 2017)

WH(F, H) = inf
û∈K(F)

sup“
ϕ∈G(H)

ï
1

V#
0

∫
V#
0

“
WH(X, F̂,

“
H) dV

ò
, (4.40)
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where the effective potential WH(F, H) is no longer history-dependent, since the remanent field
“
Hr

becomes inconsequential. Consequently, the macroscopic constitutive relations read

S =
∂WH

∂F
, B = −

∂WH

∂H
. (4.41)

Of course, the resulting S and B are path-independent and thus, given uniquely for a given F and
H. Analytical estimates to the energetic homogenization problem (4.40) have been provided by
Ponte Castañeda and Galipeau (2011) and Lefèvre et al. (2017). However, both of these estimates are
implicit and thus, require solving additional algebraic equations along with (4.41). A brief outline of
the analytical homogenization estimates of Lefèvre et al. (2017) is provided in Section 5.1.

4.5 Augmented variational principle

In order to numerically compute the effective RVE response, one must exploit the incremental vari-
ational principle (4.35) so that the optimal microscopic ûτ and ϕ̂τ belonging to the sets K(Fτ) and
G(Hτ), respectively, can be computed. The effective responses are thence computed from (4.32) and
(4.38). Nevertheless, the numerical homogenization of the MREs should be carried out under suitably
applied macroscopic boundary conditions across the RVE. As pointed out by Danas (2017), we note
that a macroscopic MRE sample is subjected to an external magnetic field that is applied far from its
boundary, which is schematically shown by Fig. 4.2a. Moreover, the externally applied magnetic field
does not follow the deformation of the magnet. Rather, the applied field stays as a uniformly-applied

Figure 4.2: Schematic diagram of (a) macroscopic boundary value problem involving a MRE sample in air
having a reference volume V0, (b) periodic arrangement of the statistically identical RVEs with polydisperse
spherical inclusions and (c) a RVE occupying a reference volume V#

0 and boundary ∂V#
0.

background magnetic field (shown by the blue arrows in Fig. 4.2a), which is, in turn, perturbed by
the MRE sample (see Fig. 4.2b). Naturally, the applied magnetic field that is controlled remains Eu-
lerian. Hence, the macroscopic boundary conditions that are applied across the RVE in a numerical
computation must include the effects of (i) fixed magnetic poles situated far away and (ii) applied
magnetic load that does not follow the deformation.

These two boundary terms allow us to analyze the microstructurally induced magneto-mechanical
coupling in the RVE remaining free from any geometry/shape effects. The application of such
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boundary conditions in the homogenization problem (4.35) is a non-trivial operation. Such opera-
tion necessitates the evaluation of F, S, h, b and m from (4.35) followed by the application of the
macroscopic boundary conditions. Instead, an augmented variational principal (Danas, 2017), that
is capable of applying both the conditions (i) and (ii) directly to the homogenization problem, is
employed.

Specifically, in order to ensure the continuity of the energetic Maxwell stress Sen
maxw across the

neighboring RVEs (see Fig. 4.2c), one needs to deduct the average Maxwell energy, WH
maxw,τ, of the

RVE from the homogenized energy (4.35). The former is defined as

WH
maxw,τ(F, H) = −

µ0
2
JτF−T

τ Hτ • F−T
τ Hτ, (4.42)

and alone gives rise to a deformation gradient F under the application of H across the RVE. Thus, if
it is not deducted from (4.35), one obtains a fictitious F in the RVE, even when non-magnetic phases
(such as a simple polymer) are analyzed (Danas, 2017). In other words, the deduction of WH

maxw,τ

from WH
τ upholds the practical condition (i) of having fixed, far-away magnets from the sample by

not allowing the poles to move towards each other under an applied h-field H; see Fig. 4.2a. The
energy WH

τ in its original form (4.35) represents the electro-active homogenization problem, where
the electrodes are attached directly on the sample.

As noted earlier, the magnetic poles create a uniform background magnetic field, which is indeed
perturbed by the presence of the MRE sample by creating a self field around itself. Thus, a material
point in the MRE sees an Eulerian h-field and not a Lagrangian field, which is the case observed
in the electro-active problems. The application of such an average Eulerian field as the loading in
our homogenization problem can be achieved in various manners. The simplest and more practical
way we follow in this work consists in constraining the product F−TH = h to be equal to an applied
average h-field across the RVE, denoted as ha (see Fig. 4.2b).

The deduction of the average Maxwell energy, WH
maxw,τ, defined in (4.42) together with the last

constraint F−TH = ha are employed by the augmented, incremental variational principle, whose
total incremental potential reads (Danas, 2017)

PH
τ (F, H) = WH

τ (F, H) +
µ0
2
JτF−T

τ Hτ • F−T
τ Hτ +

µ0
2ζ

|F−T
τ Hτ − ha,τ|

2 − Smech
a,τ : (Fτ − I). (4.43)

Here, WH
τ (F, H) is given by (4.35), ζ is a non-dimensional penalty factor serving to enforce the ap-

plication of a Eulerian background h−field and Smech
a is the applied macroscopic stress on the RVE.

Notice that Smech
a is different from the mechanical first Piola-Kirchhoff stress Smech, which is a part

of the total S, computed from the constitutive relations. In practice, it suffices to set ζ equal to a
very small number left to be defined in Section 4.7. Also note that the last term in (4.43) should be
dropped unless a non-zero average mechanical traction is applied.

The augmented variational principle (4.43) leads to a traction boundary condition that is free
from the effect of the energetic Maxwell stress, which is uniformly present in the neighboring RVEs
as well. This observation can be demonstrated directly from (4.43) via taking the variation of it, so
that

δPH
τ (F, H) =

∂PH
τ

∂Fτ
: δFτ +

∂PH
τ

∂Hτ
• δHτ = 0. (4.44)

Consequently, the arbitrariness of the independent variations δFτ and δHτ in (4.44) leads to their
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coefficients vanish independently. First, the vanishing coefficient of δHτ yields the condition

∂PH
τ

∂Hτ
=
∂WH

τ

∂Hτ
+ µ0JτF−1

τ F−T
τ Hτ +

µ0
ζ

F−1
τ (F−T

τ Hτ − ha,τ) = 0. (4.45)

Substituting the constitutive relation (4.38)2 and employing the push-forward transformations (2.40),
(2.45), the last equation can be recast in the form

bτ = µ0hτ +
µ0
Jτζ

(hτ − ha,τ) = µ0(hτ + mτ), with mτ =
1

Jτζ
(hτ − ha,τ). (4.46)

Notice that, the difference |hτ−ha,τ| remains in the order of the penalty parameter ζ. Hence, the ratio
|hτ−ha,τ|/ζ remains in the O(1), which is proportional to the effective magnetization mτ. Finally, the
variation of PH

τ (F, H) with respect to Fτ yields the equation

∂PH
τ

∂Fτ
= Sτ − Jτ

Å
hτ ⊗ bτ −

µ0
2
|hτ|2I

ã
F−T
τ − Smech

a,τ = Sτ − Sen
maxw,τ − Smech

a,τ = 0, (4.47)

where the first Piola-Kirchhoff Maxwell stress Smaxw,τ is related to the familiar energetic form of the
Cauchy Maxwell stress σen

maxw,τ via Sen
maxw,τ = Jτσ

en
maxw,τF−T

τ . In turn, σen
maxw,τ is given by (Kankanala and

Triantafyllidis, 2004)
σen
maxw,τ = hτ ⊗ bτ −

µ0
2
|hτ|2I. (4.48)

Therefore, by employing the augmented variational principle (4.43), we practically ensure that the
incremental traction boundary condition across the RVE in the numerical computations is given by

Tτ =
[
Sτ − Sen

maxw,τ − Smech
a,τ

]
•N = 0, ∀ X ∈ ∂V#

0 (4.49)

Thus, in absence of any externally applied mechanical stress Smech
a,τ , the strain in the RVE is now

ensured to be resulting from the particle rearrangements and particle rotations, but not from the
Maxwell stress, which is uniform in the RVE and its neighbors. We conclude this section by two
remarks.

Remark 4.2. For a s-MRE with no memory of prior loading/unloading, the total σ is given by a
simple decomposition into σ = σmech + σ

en
maxw. Here, we suppress the subscript τ since no memory

dependence is present in these MREs. Thus, by applying the traction (4.49) it is ensured that the
resulting strain is due to purely mechanical rearrangements of the particles, which experience mutual
attraction/repulsion forces due to magnetization (Danas, 2017). On the other hand, in addition to
the particle-to-particle attraction/repulsion, the hard magnetic particles in the h-MREs may also
experience magnetic torques due to a misalignment in the local h and m fields, which is commonly
observed during the non-proportional loading of a h-MRE sample (Kim et al., 2018; Zhao et al., 2019).
Thus, even if the effect of the background energetic Maxwell stress is removed by applying (4.49),
in contrast to the s-MREs, the resulting strains in the h-MREs may not be only due to mechanical
rearrangements of the permanently magnetized particles. Rather, the magnetic torques in these
particles may induce their rotations, which may eventually cause mechanical strains.

Remark 4.3. The mathematical incremental homogenization problem (4.35) is well-posed and the ad-
ditional terms in (4.43) are employed after solving for WH

τ in (4.35). This is because the analytical
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estimates for energetic WH are independent of the boundary conditions (Ponte Castañeda and Gali-
peau, 2011; Lefèvre et al., 2017). However, the practical boundary conditions (i) and (ii) are crucial
for the proper interpretation of the effective Fτ, Sτ, hτ, bτ and mτ fields for a given RVE. For this
reason, in the case of analytical homogenization or phenomenological modeling of an MRE, the func-
tion WH

τ is obtained explicitly or implicitly first, while the subtraction of WH
maxw,τ together with the

application of the constraint F−T
τ Hτ = ha,τ is carried out a posteriori to extract the relevant estimates

for Fτ, Sτ, hτ, bτ and mτ during the current time increment τ. However, in a numerical simulation
of an RVE, that would require extremely long computation times since one has to obtain numerically
the incremental effective energy WH

τ (F, H) and its derivatives. The augmented potential energy (4.43)
offers a direct alternative allowing the direct evaluation of the desired estimates for Fτ, Sτ, hτ, bτ
and mτ under given loading conditions ha,τ and Smech

a,τ .

4.6 Finite-element computations

The finite-element computations of the effective response is associated with three distinct parts,
namely, (i) discretization of the microscopic boundary value problem and construction of element
force and stiffness matrices, (ii) application of the periodic boundary conditions across the opposite
facing boundaries of V#

0 and (iii) application of the macroscopic boundary conditions in terms of
employing the macroscopic variational principle (4.43). Here we employ a “total Lagrangian” finite-
element method by expressing all the field variables in terms of the fixed reference coordinate X.

4.6.1 Discretization of the microscopic boundary value problem

The spatial discretization of the microscopic boundary value problem (BVP) is obtained via proposing
a microscopic variational principle that reads

P̂H
τ (ûτ, ϕ̂τ) = inf

ûτ∈K(Fτ)
sup“

ϕτ∈G(Hτ)

ï ∫
V#
0

“
WH
τ (X, F̂,

“
H) dV

ò
, (4.50)

where the admissible sets K(Fτ) and G(Hτ) are defined via (4.36) and (4.37), respectively. Notice that
no microscopic body force or boundary traction is considered in the microscopic variational principle.
Nonetheless, the boundary displacements are controlled via the periodic boundary conditions and
the macroscopic traction boundary condition (4.49) is applied in terms of employing the macroscopic
variational principle (4.43).

The primary field variables in V#
0 at any discrete time τ are represented via a single vector q̂τ ≡

{ûτ, ϕ̂τ}, which results in easy-to-follow notations of the finite-element discretization. Moreover, q̂τ
admits to the form within each element given by

[q̂τ(ξ̂)] = [
“
Ne(ξ̂)][q̂eτ], with [X(ξ̂)] = [

“
Ne(ξ̂)][Xe], (4.51)

where [
“
Ne(ξ̂)] is the matrix containing nodal interpolation functions and [q̂eτ] is the element degrees

of freedom vector (consisting of four dofs, namely, (ûτ)1, (ûτ)2, (ûτ)3, ϕ̂τ per node) in the element e,
ξ̂ and X are the local and reference coordinates, respectively and Xe are the nodal coordinates with
respect to the reference frame. In turn, the finite-element discretization leads to a set of nonlinear
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algebraic equations emerging from the variational principle (4.50), so that

δP̂H
τ =

∂P̂H
τ

∂q̂τ
• δq̂τ ≡ [δq̂τ]T [F̂(q̂τ)] = 0, (4.52)

where [F̂(q̂τ)] is the global force vector associated with the discretized system. Consequently, owing
to the arbitrariness of δq̂τ, the resulting set of nonlinear algebraic equations read [F̂(q̂τ)] = 0, which is
solved via the Newton-Raphson method. The incremental solution of the global system of equations
necessitates the following linearization of [F̂(q̂τ)].

[F̂(q̂τ +∆q̂τ)] = [F̂(q̂τ)] + [
“
K(q̂τ)][∆q̂τ] = 0, (4.53)

where [
“
K(q̂τ)] is the global stiffness matrix, that can be obtained from the second variation of P̂H

τ ,
which follows readily from (4.52), so that

∆δP̂H
τ = δq̂τ •

∂2P̂H
τ

∂q̂τ∂q̂τ
•∆q̂τ ≡ [δq̂τ]T [

“
K(q̂τ)][∆q̂τ]. (4.54)

It is noted that the solution for the unknown primary field q̂τ in V#
0 is not trivial. Therefore, q̂τ is

described in terms of the unknown nodal variables q̂eτ and a set of prescribed interpolation functions“
Ne(ξ̂) in a finite volume element e. Since in the microscopic model of the MREs, the potential P̂H

τ

is expressed in terms of Grad q̂τ (i.e., Grad ûτ and Grad ϕ̂τ), only a C0 continuity of ûτ and ϕ̂τ is
required at the element boundaries, which must be ensured by the

“
Ne(ξ̂) functions. Consequently,

the global force and stiffness matrices can be expressed in terms of an ensemble of element force and
stiffness matrices, which are provided in the following.

Element force and stiffness matrix : In order to obtain the element force and stiffness matrices,
we first consider the RVE volume V#

0 to be consisting of a number of finite volume elements, so that

V#
0 =

nelem∑
j=1

V
#(j)
0e , (4.55)

where V
#(j)
0e is the reference volume of the jth element and nelem represents the total number of

elements. Consequently, the variational principle (4.50) can be rephrased, such that

P̂H
τ (ûτ, ϕ̂τ) = inf

ûτ∈K(Fτ)
sup“

ϕτ∈G(Hτ)

ï nelem∑
j=1

∫
V

#(j)
0e

“
WH
τ (X, F̂,

“
H) dV

ò
. (4.56)

The first variation of the total potential P̂H
τ therefore reads

δP̂H
τ (ûτ, ϕ̂τ) =

nelem∑
j=1

∫
V

#(j)
0e

ñ
∂

“
WH
τ

∂F̂τ
: δF̂τ +

∂

“
WH
τ

∂

“
Hτ

• δ

“
Hτ

ô
dV

=

nelem∑
j=1

∫
V

#(j)
0e

ñ
∂

“
WH
τ

∂F̂τ
: Grad δûτ −

∂

“
WH
τ

∂

“
Hτ

• Grad δϕ̂τ

ô
dV . (4.57)
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Notice that the incremental micro-potential
“
WH
τ does contain the contribution from the history-

dependent microscopic
“
Hrτ field. Nevertheless, by the definition of

“
WH
τ in (4.24), it is minimized

a priori with respect to
“
Hrτ, which is ensured by the evolution of

“
Hrτ from

“
Hrt via the relation (4.28) for

generalized standard materials. Thus, the derivative of
“
WH
τ with respect to

“
Hrτ vanishes identically,

leading to the first variation δ
“
WH
τ given by (4.57). Furthermore, the field variables ûτ and ϕ̂τ can be

expressed in terms of the nodal unknowns in the element (j), such that

[ûτ(ξ)] = [
“
Neu(ξ̂)][q̂eτ], [ϕ̂τ(ξ)] = [

“
Neϕ(ξ̂)][q̂eτ]. (4.58)

Substituting (4.52) and (4.58) into (4.57) we rephrase it to be

[δq̂τ]T [F̂(q̂τ)] =
nelem∑
j=1

[δq̂eτ]T
∫
V

#(j)
0e

î
(

“
Geu)T −(

“
Geϕ)T

ó
∂

“
WHτ

∂F̂τ

∂

“
WHτ

∂

“
Hτ

dV ≡
nelem∑
j=1

[δq̂eτ]T [̂fe(q̂eτ)], (4.59)

where the element force vector is denoted by [̂fe(q̂eτ)], [

“
Geu] = Grad[

“
Neu] and [

“
Geϕ] = Grad[

“
Neϕ] (see

Appendix 4.B for details).

The second variation of P̂H
τ (ûτ, ϕ̂τ) is expressed similarly in terms of an ensemble of element

stiffness matrices. To obtain this, a further variation of (4.57) is taken, which reads

∆δP̂H
τ (ûτ, ϕ̂τ) =

nelem∑
j=1

∫
V

#(j)
0e

ñ
∆F̂τ :

∂2

“
WH
τ

∂F̂τ∂F̂τ
: δF̂τ +∆

“
Hτ •

∂2

“
WH
τ

∂

“
Hτ∂F̂τ

: δF̂τ +∆
“
Hrτ •

∂2

“
WH
τ

∂

“
Hrτ∂F̂τ

: δF̂τ

+∆F̂τ :
∂2

“
WH
τ

∂F̂τ∂
“
Hτ

• δ

“
Hτ +∆

“
Hτ •

∂2

“
WH
τ

∂

“
Hτ∂
“
Hτ

• δ

“
Hτ +∆

“
Hrτ •

∂2

“
WH
τ

∂

“
Hrτ∂
“
Hτ

• δ

“
Hτ

ô
dV

≡
nelem∑
j=1

∫
V

#(j)
0e

[
∆F̂τ : L̂FF

τ : δF̂τ +∆
“
Hτ • L̂HF

τ : δF̂τ +∆
“
Hrτ • L̂

HrF
τ

• δF̂τ

+∆F̂τ : L̂FH
τ

• δ

“
Hτ +∆

“
Hτ • L̂HH

τ
• δ

“
Hτ +∆

“
Hrτ • L̂

HrH
τ

• δ

“
Hτ
]

dV , (4.60)

where we introduce the L̂
(·)(·)
τ notations for preciseness. In general, L̂

(·)(·)
τ can be second, third or

fourth order tensor depending on its superscript. Notice that here we retain the derivatives of
∂

“
WH
τ /∂F̂τ and ∂

“
WH
τ /∂

“
Hτ with respect to Hrτ, so that an algorithmically consistent global stiffness ma-

trix can be obtained (Klinkel, 2006; Linnemann et al., 2009). Furthermore, the variation ∆
“
Hrτ of the

remanent field can be expressed in terms of ∆
“
Hτ by exploiting the consistency condition of the mi-

croscopic switching surface (4.20). The consistency of the switching surface
“
ΦHτ thus reads (Lubliner,

2008, p. 145-150)
∆

“
ΦHτ = 0 ⇒ ∆B̂rτ = 0. (4.61)
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The variation ∆B̂rτ is subsequently obtained from its definition (4.11) to be

∆B̂rτ =−
∂2

“
WH
τ

∂F̂τ∂
“
Hrτ

: ∆F̂τ −
∂2

“
WH
τ

∂

“
Hτ∂
“
Hrτ

•∆

“
Hτ −

∂2

“
WH
τ

∂

“
Hrτ∂
“
Hrτ

•∆

“
Hrτ

≡− ĴFHr
τ : ∆F̂τ − ĴHHr

τ
•∆

“
Hτ − ĴHrHr

τ
•∆

“
Hrτ = 0, (4.62)

where the third ĴFHr
τ and second-order tensor notations ĴHHr

τ and ĴHrHr
τ are introduced for brevity.

Consequently, equation (4.62) yields the relation between ∆
“
Hτ and ∆

“
Hrτ, that is

∆

“
Hrτ = M̂HrF

τ : ∆F̂τ + M̂HrH
τ

•∆

“
Hτ, (4.63)

with
M̂HrF
τ = −

(
ĴHrHr
τ

)−1
ĴFHr
τ and M̂HrH

τ = −
(
ĴHrHr
τ

)−1
ĴHHr
τ . (4.64)

Thus, substituting (4.63) into (4.60), we obtain the consistent second variation ∆δP̂H
τ given by

∆δP̂H
τ (ûτ, ϕ̂τ) =

nelem∑
j=1

∫
V

#(j)
0e

[
∆F̂τ : L̂FF

Algo,τ : δF̂τ +∆
“
Hτ • L̂HF

Algo,τ : δF̂τ+

∆F̂τ : L̂FH
Algo,τ • δ

“
Hτ +∆

“
Hτ • L̂HH

Algo,τ • δ

“
Hτ
]

dV , (4.65)

where L̂
(·)(·)
Algo,τ represents the consistent algorithmic tangent tensors, which are given by

L̂FF
Algo,τ = L̂FF

τ +
(
M̂HrF
τ

)T
L̂HrF
τ , L̂HF

Algo,τ = L̂HF
τ +

(
M̂HrH
τ

)T
L̂HrF
τ ,

L̂FH
Algo,τ = L̂FH

τ +
(
M̂HrF
τ

)T
L̂HrH
τ , L̂HH

Algo,τ = L̂HH
τ +

(
M̂HrH
τ

)T
L̂HrH
τ .

Finally, the consistent element stiffness matrix is obtained via substituting (4.51) and (4.54) into (4.65),
such that

[δq̂τ]T [
“
K(q̂τ)][∆q̂τ] =

nelem∑
j=1

[δq̂eτ]T
∫
V

#(j)
0e

î
(

“
Geu)T −(

“
Geϕ)T

óL̂FF
Algo,τ L̂FH

Algo,τ

L̂HF
Algo,τ L̂HH

Algo,τ



“
Geu

−

“
Geϕ

dV [∆q̂eτ]

≡
nelem∑
j=1

[δq̂eτ]T [k̂e(q̂eτ)][∆q̂eτ]. (4.66)

It is noted that the algorithmic global stiffness matrix [
“
K(q̂τ)] is constructed to ensure a better rate

of numerical convergence of the nonlinear FE solver. The algorithmic tangent stiffness matrix in the
FE computations for rate-independent mechanical elasto-plasticity is commonly utilized in order to
ensure a quadratic rate of asymptotic convergence (Lubliner, 2008). Nonetheless, no effect on the
algorithmic tangent stiffness on the rate of convergence is investigated in the present study.

The volume integrations of (4.59) and (4.66) in the element V#(j)
0e are evaluated via using a reduced

Gaussian quadrature. The reduced integration ensures a better rate of convergence and helps to
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avoid the shear locking. Notably, the Gauss quadrature integration requires to evaluate the [̂fe(q̂eτ)]
and [k̂e(q̂eτ)] matrices only at the integration (Gauss) points. In this regard, the matrices involving“
Geu and

“
Geϕ in (4.59) and (4.66) are evaluated at the individual integration points from the defini-

tion of the element interpolation functions
“
Neu and

“
Neϕ, respectively (see Appendix 4.B for details).

Moreover, given the nodal values q̂eτ from the previous iteration of the Newton-Raphson solver at
time τ, one can evaluate F̂τ and

“
Hτ at each integration point through the interpolation functions“

Ne. Nonetheless, the evaluations of F̂τ and
“
Hτ do not complete the local definitions of [̂fe(q̂eτ)] and

[k̂e(q̂eτ)]. In addition, the remanent
“
Hr field must be updated from its last converged state

“
Hrt to

“
Hrτ

from the “inner” minimization condition of (4.24) at each integration point. Notice that the inner
minimization condition of the incremental energy

“
WH
τ is the constitutive relation (4.28) for general-

ized standard materials, which is further specialized for the present rate-independent model to be the
associated switching rule (4.21). The numerical update routine for

“
Hrτ is discussed in the following.

Evaluating the local
“
Hrτ : We employ a radial-return-type implicit backward Euler scheme to

numerically solve the associated switching equation (4.21) locally at each integration point (Ortiz
and Simo, 1986). The radial-return algorithm in the context of ferromagnetic switching relies on
the energetic predictor/remanent corrector scheme. Firstly, the energetic predictor is estimated via
computing the switching function

“
ΦHi (
“
Hτ,
“
Hrt), where we use the local

“
Hτ at the current Newton-

Raphson iteration and the remanent internal variable
“
Hrt from the previous converged state. If“

ΦHi (
“
Hτ,
“
Hrt) < 0, then the energetic prediction is considered to be correct. Consequently, the local

remanent field remains unchanged, so that“
Hrτ =

“
Hrt if

“
ΦHi (
“
Hτ,
“
Hrt) < 0. (4.67)

Notice from (4.21) that the Kuhn-Tucker condition for
“
ΦHi (
“
Hτ,
“
Hrt) < 0 is

.̂
λHi = 0, such that

“
H
.
r = 0,

which results in (4.67).

On the other hand, if the switching criteria is satisfied, such that
“
ΦHi (
“
Hτ,
“
Hrt) > 0, the energetic

predictor remains no longer correct. Rather, a correction to the remanent field
“
Hrt is required. The

corrected
“
Hrτ is computed via solving a set of nonlinear algebraic equations obtained via the temporal

discretization of (4.21), so that“
Hrτ =

“
Hrt + 2γ̂

H
i B̂rτ(

“
Hτ,
“
Hrτ) and B̂rτ(

“
Hτ,
“
Hrτ) • B̂rτ(

“
Hτ,
“
Hrτ) − (bci )2 = 0, (4.68)

where γ̂Hi = λ̂Hi,τ − λ̂
H
i,t is the increment of Lagrange multiplier λ̂Hi . The preceding set of four non-

linear algebraic equations are solved using the classical Newton-Raphson method. In this regard,
we introduce a trial remanent field

“
Hr,trialτ =

“
Hrt at the beginning of the Newton iterations, which are

essentially involved with minimizing the residues

R̂

“
Hr =

“
Hr,trialτ −

“
Hrt − 2γ̂

H,trial
i B̂rτ(

“
Hτ,
“
Hr,trialτ ) (4.69)

and
R̂

“
Φr = B̂rτ(

“
Hτ,
“
Hr,trialτ ) · B̂rτ(

“
Hτ,
“
Hr,trialτ ) − (bci )2. (4.70)

Consequently, the increments in the trial field and the Lagrange multiplier are computed from the
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following linear algebraic equations obtained via linearizing (4.69) and (4.70) with respect to the trial
fields themselves, such that∂R̂

“
Hr/∂

“
Hr,trialτ ∂R̂

“
Hr/∂γ̂H,trial

i

∂R̂

“
Φr/∂

“
Hr,trialτ ∂R̂

“
Φr/∂γ̂H,trial

i



∆

“
Hr,trialτ

∆γ̂H,trial
i

 = −


R̂

“
Hr

R̂

“
Φr

 . (4.71)

Appendix 4.C provides the specific form of (4.71) for the local constitutive model defined in Sec-
tion 4.2. The trial remanent field and Lagrange multiplier increment are subsequently updated to be“

Hr,trialτ =

“
Hr,trialτ +∆

“
Hr,trialτ , and γ̂H,trial

i = γ̂H,trial
i +∆γ̂H,trial

i , (4.72)

respectively. Finally, the updated residue vector R̂ = {(R̂
“
Hr)T , R̂

“
Φr} is computed using the updated

trial fields (4.72). At this point, if the Eulerian norm of the updated residue |R̂| becomes less than a
prescribed tolerance, the local Newton iterations are considered to be converged. Consequently, the
updated variables at the current time increment τ are given by“

Hrτ =

“
Hr,trialτ and γ̂Hi = γ̂H,trial

i . (4.73)

With these locally updated
“
Hrτ at each integration point, the element force and algorithmic stiffness

matrix are computed, respectively, from (4.59) and (4.66), which are then assembled into a global force
and algorithmic tangent stiffness for the global Newton iterations. Notice that the locally updated“
Hrτ are stored as “state-dependent variables” at the integration points only after the convergence of
the global Newton-Raphson solver is achieved. The preceding update algorithm is summarized in
Algorithm 4.1. It should be noted in the numerical computations that γ̂Hi must remain positive under
all loading conditions, so that the Kuhn-Tucker condition in (4.21) is satisfied.

Remark 4.4. One can choose two distinct strategies to compute the effective response of the s-MREs
having non-hysteretic carbonyl iron particles. Firstly, one can implement the microscopic FE compu-
tations as discussed herein, but with the particle coercivity bcp � 1 and the energetic susceptibility
χep = 0. As noted earlier, these two conditions would essentially lead to a soft magnetic response and
the same finite-element solver as developed for the h-MREs can be implemented readily. Nonethe-
less, one can avoid the expensive local storage of the remanent

“
Hr fields and the implementation

Algorithm 4.1 at each integration points during each increment for the s-MREs via considering di-
rectly the variational homogenization problem (4.40). In turn, the local potential energy associated
with this soft magnetic composite is given by (4.22), whereas the dissipation potential vanishes iden-
tically. Since in this second approach the local radial return-based update algorithm is no longer
employed, one can readily replace L̂

(·)(·)
Algo,τ in (4.66) via L̂

(·)(·)
τ . Here we employ the second method in

order to reduce the computational expense.

Remark 4.5. The reduced integration is considered further for integrating the mechanical energy
evolving the bulk modulus term. A high bulk modulus is used in these computations, in order
to achieve a nearly incompressible material response. However, such high bulk modulus leads to
volumetric locking of the finite elements in terms of hindering its deformations that are volume
preserving. In order to avoid this problem, we employ a single point Gauss integration scheme for
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4.6. Finite-element computations

Algorithm 4.1: Local update algorithm for
“
Hrτ

Set tolerance tol = 10−6

Input
“
Hτ,
“
Hrt

Initialization
“
Hr,trialτ ←

“
Hrt, γ̂

H,trial
i ← 0

Compute
“
ΦHi
(“
Hτ,
“
Hr,trialτ

)
if
“
ΦHi < 0 then“

Hrτ ←
“
Hr,trialτ % energetic predictor is correct

else
Compute R̂

“
Hr , R̂

“
Φr

R̂←
{(

R̂

“
Hr)T , R̂

“
Φr
}

% construct the residue vector
while |R̂| > tol do

Compute ∆

“
Hr,trialτ , ∆γ̂H,trial

i % compute from (4.71)“
Hr,trialτ ←

“
Hr,trialτ +∆

“
Hr,trialτ

γ̂H,trial
i ← γ̂H,trial

i +∆γ̂H,trial
i

Compute R̂

“
Hr , R̂

“
Φr

R̂←
{(

R̂

“
Hr)T , R̂

“
Φr
}

% construct the updated residue vector
end“
Hrτ ←

“
Hr,trialτ % remanent corrector added to energetic predictor

end

the local stress part that is arising from the bulk energy associated with the MREs. Such reduced
integration is used for both the hard and soft MREs.

4.6.2 Application of the periodic boundary conditions

Next, the periodic boundary conditions (PBCs) on the microscopic displacement ûτ and potential ϕ̂τ
are specified. In order to prescribe the PBCs, we further divide the surface boundaries ∂V#

0 of the
RVE into the set (see Fig. 4.3)

∂V#
0 = ∂V

#,RIGHT
0 ∪ ∂V#,LEFT

0 ∪ ∂V#,TOP
0 ∪ ∂V#,BOTTOM

0 ∪ ∂V#,FRONT
0 ∪ ∂V#,BACK

0 , (4.74)

on which ûτ and ϕ̂τ are represented by the respective superscripts (e.g., ûRIGHT
τ and ϕ̂RIGHT

τ , ûTOP
τ and

ϕ̂TOP
τ , etc.). Moreover, four corner nodes of the RVE in the present finite-element setting are denoted

via P0, P1, P2 and P3. We set both the microscopic and average displacements and potentials at P0 to
be zero, in order to prevent any rigid body motion of the RVE, so that

ûP0
τ = ũP0

τ = uP0
τ = 0 and ϕ̂P0

τ = ‹ϕP0
τ = ϕP0

τ = 0. (4.75)

In fact, the periodicity of the fluctuation fields ũτ and ‹ϕτ in V#
0 defined by, respectively, (4.36) and

(4.37) can be interpreted in this FE setting to be setting ũτ and ‹ϕτ at the opposite nodes on ∂V#
0 to be

equal.
Since the reference coordinate system is defined as in Fig. 4.3, we further exploit the periodic-

ity conditions of ũτ and ‹ϕτ along with (4.36) and (4.37) to obtain the relations of the microscopic
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Figure 4.3: Opposite facing boundaries of the RVE of volume V#
0 along with the reference coordinate system

and four key corner nodes P0, P1, P2 and P3.

displacements (scalar potentials) at P1, P2 and P3 to the effective deformation gradient Fτ (effective
h-field Hτ), so that

(ûP1τ )i = (uP1τ )i =
{

(Fτ)i1 − δi1
}
`#0, ϕ̂P1

τ = ϕP1
τ = −(Hτ)1`#0, (4.76)

(ûP2τ )i = (uP2τ )i =
{

(Fτ)i2 − δi2
}
`#0, ϕ̂P2

τ = ϕP2
τ = −(Hτ)2`#0, (4.77)

(ûP3τ )i = (uP3τ )i =
{

(Fτ)i3 − δi3
}
`#0, ϕ̂P3

τ = ϕP3
τ = −(Hτ)3`#0, (4.78)

where `#0 is the length of the sides of the cubic RVE. The last set of equations reveal that the micro-
scopic displacement and potential fields at P1, P2 and P3 are related directly to the effective Fτ and
Hτ. Thus, one can apply a macroscopic Fτ or Hτ across the RVE via specifying directly the displace-
ment and potentials at these three (P1, P2 and P3) nodes. Nevertheless, application of the traction
boundary condition (4.49) on ∂V#

0 requires the exploitation of the augmented variational principle
in the present FE setting, which will be discussed in the following. Prior to that, the PBCs on the
boundary displacements/potentials are discussed.

Again, from the periodicity of the fluctuation fields in V#
0, we can set them to be equal at the

opposite faces of ∂V#
0. Thus, the opposite face microscopic displacements and potentials are related

via

ûRIGHT
τ − ûLEFT

τ = uRIGHT
τ − uLEFT

τ = uP1
τ , ϕ̂RIGHT

τ − ϕ̂LEFT
τ = ϕRIGHT

τ −ϕLEFT
τ = ϕP1

τ , (4.79)

ûTOP
τ − ûBOTTOM

τ = uTOP
τ − uBOTTOM

τ = uP2
τ , ϕ̂TOP

τ − ϕ̂BOTTOM
τ = ϕTOP

τ −ϕBOTTOM
τ = ϕP2

τ , (4.80)

ûFRONT
τ − ûBACK

τ = uFRONT
τ − uBACK

τ = uP3
τ , ϕ̂FRONT

τ − ϕ̂BACK
τ = ϕFRONT

τ −ϕBACK
τ = ϕP3

τ . (4.81)

In practice, these conditions are applied via constraining the opposite nodal displacements and scalar
potentials on ∂V#

0 in terms of applying the multi-point constraints (MPCs) in ABAQUS (2018).

4.6.3 Application of the macroscopic boundary conditions

As discussed in Section 4.5, the macroscopic boundary conditions and the magnetic loading are ap-
plied in terms of proposing augmentations to the variational homogenization problem (4.35). Notice
that, in the present periodic homogenization setting, the effective Fτ and Hτ fields can be expressed in
terms of the microscopic displacement and the scalar potential at the three corner nodes P1, P2 and P3.
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Specifically, the set q̂P
τ =

{
(ûP1τ )1, (ûP1τ )2, (ûP1τ )3, ϕ̂P1

τ , (ûP2τ )1, (ûP2τ )2, (ûP2τ )3, ϕ̂P2
τ , (ûP3τ )1, (ûP3τ )2, (ûP3τ )3, ϕ̂P3

τ

}T
can be utilized in (4.43) replacing the effective Fτ and Hτ. Then, the first variation of (4.43) with
respect to q̂P

τ is now expressed to be

δPH
τ (q̂P

τ) = [δq̂P
τ]T [̂fPτ(q̂P

τ)] + [δq̂P
τ]T [̂fAugmτ (q̂P

τ)], (4.82)

Notice that the first term on the left hand side of (4.82) is obtained from the FE discretization of
the microscopic BVP (4.52) and the second term is obtained from the variation of the augmented
potentials, namely, the Maxwell energy, the penalty potential and the energy due to applied mechan-
ical stress Smech

a,τ . In practice, one can simply add the augmented force vector [̂fAugmτ (q̂P
τ)] to the global

microscopic force vector [F̂(q̂τ)] in order to apply the traction boundary condition (4.49) and the
Eulerian h-field ha,τ across the RVE.

Nonetheless, the convergence the implicit global FE solver is ensured via augmenting further the
global tangent stiffness matrix [

“
K(q̂τ)] with [k̂Augm

τ (q̂P
τ)], which is obtained from a further variation of

(4.82) with respect to q̂P
τ, such that

∆δPH
τ (q̂P

τ) = [δq̂P
τ]T [k̂P

τ(q̂P
τ)][∆q̂P

τ] + [δq̂P
τ]T [k̂Augm

τ (q̂P
τ)][∆q̂P

τ]. (4.83)

Of course, the contribution from the tangent stiffness [k̂P
τ(q̂P

τ)] is already present in [
“
K(q̂τ)] due

to the discretization of the microscopic BVP (4.66). In addition, the stiffness [k̂Augm
τ (q̂P

τ)] must be
augmented to [

“
K(q̂τ)] so that the convergence of the implicit global FE solver is ensured. Indeed, the

matrices [̂fAugmτ (q̂P
τ)] and [k̂Augm

τ (q̂P
τ)] can be computed directly from (4.43) via straightforward algebraic

manipulations, which are not shown explicitly in this text for brevity.

4.7 Results

This section provides a set of the numerical finite-element (FE) computations for the effective re-
sponse of s- and h-MREs. The results are provided here in three parts. First, in Section 4.7.1, we define
the RVE microsctucture in terms of specifying crucial microstructural parameters, namely, particle
volume fraction c, number of families of the spherical particles, equivalent number of monodisperse
spheres and particle size ratio. Upon this definition, in Section 4.7.2, we provide the magnetization
and magnetostriction responses of the s-MREs, having different particle volume fractions, under no
applied mechanical stress Smech

a,τ . Rigorous particle and mesh convergence studies for the computed
response are also provided. Finally, in Section 4.7.3, we provide the dissipative magnetization and
magnetostriction responses of the h-MREs under proportional cyclic loading. Also, a mesh conver-
gence study is presented. In addition, some crucial observation on the effect of mechanical stretch
and shear on the remanent magnetization is discussed by the end of this section.

4.7.1 Microstructure generation and meshing

In the numerical FE computations, we consider polydisperse spherical particles comprising three
different size families with a size ratio of 1 : 7/9 : 4/9 and whose relative proportions with respect
to the total particle volume are taken to be 0.6, 0.3 and 0.1, respectively (Lopez-Pamies et al., 2013;
Anoukou et al., 2018). We consider three distinct particle volume fractions, c = 0.1, 0.2 and 0.3.
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In order to define the maximum particle radius, we consider a reference number of monodisperse
particles, denoted with Nmono = 60. Then, the radius of the maximum particle size family is simply
Rmax/L = (3c/4πNmono)1/3. This readily leads to Rmax/L = 0.074, 0.093, 0.106 and a total number of par-
ticles Ntot ∼ 130, 280 and 290 for c = 0.1, 0.2 and 0.3, respectively. In Fig. 4.4, we show three such
representative microstructures and their corresponding meshes, which use standard 10-node tetra-
hedral quadratic elements (TET-10). Conformal meshes with TET-10 finite elements are generated in

Figure 4.4: (top) Three representative polydisperse microstructures for c = 0.1, 0.2 and 0.3 having approximate
number of polydisperse particles Ntot ∼ 130, 280 and 290, respectively. (bottom) The corresponding unstruc-
tured meshes with quadratic ten-node tetrahedral elements leading to 1.55 × 106, 1.62 × 106 and 1.50 × 106
degrees of freedom, respectively, for c = 0.1, 0.2 and 0.3.

these RVEs via employing a Python-based open source meshing software NETGEN. In particular, the
3D mesh generated with NETGEN ensures the periodicity of the RVE and also provides the multi-
point constraint (MPC) equations associated with the degrees of freedom of the boundary nodes
(4.79)-(4.81).

The same set of RVEs are used to compute the effective responses of both s- and h-MREs. Never-
theless, it is noted that, even if the total nodal degrees of freedom remain the same in these two cases,
the numerical computations with the h-MREs are way more expensive due to (i) storage of the high
number of internal variables and (ii) local update of the internal variable following Algorithm 4.1 at
each integration (Gauss) point.
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4.7.2 Effective response of s-MREs

In the numerical computations for s-MREs, we choose to work with a matrix that resembles a mod-
erately soft silicone and thus exhibits a shear modulus in the order of 0.3MPa. The particles are
made of carbonyl iron and exhibit a shear modulus in the order of ∼ 200GPa. On the other hand, the
silicone matrix is magnetically inert having zero magnetic susceptibility, whereas the iron particles
exhibit a Langevin saturating m–h response. Following the recent work of Psarra et al. (2017), the
initial susceptibility and saturation magnetization of the iron particles is reported in Table 4.2. In the
following, we have chosen the material parameters as indicated in Table 4.2. It is noted here that use
of lower shear moduli for the matrix phase leads to very large local strains, especially between two
closely adjacent particles. This, in turn, leads to an extreme distortion of the mesh in those regions
rendering the numerical simulations extremely difficult.

Table 4.2: Material parameters for the silicone matrix and the carbonyl-iron particles

Gi (MPa) G′i/Gi χi µ0msi (T) µ0 (µN·A2)
Matrix (i = m) 0.3 500 0.0 – 4π10−1

Particle (i = p) 300 500 30.0 2.5 4π10−1

Due to the large actual contrast between the matrix and the particles, it is sufficient to consider Gp =

1000Gm to ensure numerical convergence as well as a sufficiently rigid response of the particles (see
work of Lopez-Pamies et al. (2013)). The bulk modulus of the matrix and the particle phase are chosen
to be 500 times their respective shear modulus. Such a choice for G′ ensures a nearly incompressible
material response leading to Ĵ ≈ 1. In order to avoid volumetric locking, the volumetric term, i.e.,
the term involving the (̂J− 1)2 term in (4.15), is under-integrated by using a single Gauss point at
the center of the element. The remaining of the terms in (4.22) are integrated using a standard
4-point Gauss quadrature for the tetrahedral elements. Finally, as discussed in Section 4.6.3, the
effects of the two augmented terms in (4.43) are taken care of by introducing a fictitious element
connecting the master nodes. The FE computations are carried out by developing a user-element
(UEL) subroutine, which is then coupled with the commercially available finite element package
ABAQUS (2018). The developed code is rigorously benchmarked with analytical uniaxial loading
solutions under both mechanical and magnetic loading. Moreover, the computed responses are
probed against the analytical homogenization model of Lefèvre et al. (2017).

Subsequently, we prescribe a loading path where the normal components of the average mechan-
ical traction are equal to zero. In addition, the shear components of the deformation gradient are
also blocked to ensure a uniaxial magnetostriction response. The Eulerian h-field ha is applied in
direction 1, while the response in the other directions is on average the same due to isotropy of the
RVE. These boundary and loading conditions imply

Smecha,11 = S
mech
a,22 = S

mech
a,33 = 0, Fij = 0, ∀ i 6= j, h = ha = he1. (4.84)

The last condition is applied by constraining |ha − F−TH| to be zero via the penalty term in (4.43). In
all the computations, the penalty parameter ζ is taken to be 10−3.

First, we study the evolution of the effective magnetization and magnetostriction of a numerical
RVE with the applied h for volume fractions c = 0.1, 0.2 and 0.3. As discussed by Danas (2017) in the
context of 2D RVEs, a converged magnetostriction response (i.e. in terms of scatter of the response
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Figure 4.5: Numerically computed effective response of cubic RVEs comprising of random polydisperse spher-
ical magnetizable inclusions, coming from three distinct families. The composite is subjected to an Eulerian
h-field along the X1 direction and zero overall mechanical traction. The overall Eulerian h-field is applied
from 0 to 0.5msp with a maximum increment of 0.01msp . (a) The effective magnetization for different particle
volume fractions. Average of the (b) parallel and (c) transverse magnetostrictions (solid lines) obtained from
10 different realizations of the RVEs with c = 0.1, 0.2 and 0.3, along with the 95% trust regions (light patches)
associated with each estimates.

for different realizations) necessitates a substantially large number of particles in the unit cell. The
present 3D computations also show a highly fluctuating magnetostriction response in both parallel
(see Fig. 4.5b) and transverse (see Fig. 4.5c) directions of the applied h-field. Evidently, in 3D, the
computations become extremely costly by further increase of the number of particles beyond Nmono >

60. Therefore, we follow a second approach to obtain a converged average response. This consists
in computing the effective response of the unit-cells for a sufficiently large number of realizations
but a smaller number of particles (e.g., Nmono = 60, which leads to a total number of polydisperse
particles Ntot ∼ 130, 280 and 290 for c = 0.1, 0.2 and 0.3, respectively). Subsequently, by considering
the average magnetostriction out of all the realizations, we assume that the response is representative
in terms of a volume element. While this approach does not constitute a rigorous method to estimate
the response of the RVE in a highly nonlinear setting, it still provides a useful assessment tool for
the analytical solutions, even though any differences found between the numerical and the analytical
homogenization model should be rationalized with extreme caution.

In this regard, we employ 10 different realizations for each volume fraction and show the average
effective magnetization, parallel and transverse magnetostrictions in Fig 4.5a, b and c, respectively. In
accord with previous studies by Danas (2017), the fluctuations in the effective magnetization m1 are
negligible and thus are not shown in Fig. 4.5a. Therein, the effective saturation magnetization ms of
the composite is observed to be directly proportional to the particle volume fraction, i.e., ms = cmsp .
In turn, the fluctuations in the parallel magnetostriction are not negligible. The continuous lines
in Fig. 4.5b indicate the average magnetostriction extracted from 10 realizations, whereas the light
blue patches indicate the 95% trust region of the random RVE response. The trust regions of the
transverse magnetostriction components are even larger (see Fig. 4.5c) as compared to the parallel
magnetostriction one. Moreover, the transverse stretch components λ2 and λ3 of a unit cell may
differ considerably. However, the average transverse magnetostriction components are very close
indicating an acceptable convergence to isotropy (see Fig. 4.5c). Note that the scatter of the results
observed in the average magnetostriction response is substantially larger than the one observed for
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the average magnetization response as well as the average purely mechanical response (not shown
here but can be found in Lopez-Pamies et al. (2013)). Nonetheless, the scatter in the parallel and
transverse components of the magnetostriction tend to vanish with the increase of Ntot.

We attempt to rationalize further the previous results by showing in Fig. 4.6 representative con-
tour plots for the three volume fractions c = 0.1, 0.2 and 0.3 at an overall applied macroscopic field
h/msp = 0.5. The Figs. 4.6a-f, show the normalized local component b̂1/µ0msp , whereas Figs. 4.6g-l,
show the local nominal mechanical strain λ̂1 − 1. A first observation in the context of Figs. 4.6a-f
is that the particle interactions exhibit a long range, which can be larger than 4 radii of the largest
particle along the direction of the applied field. This interaction is stronger at higher volume frac-
tions (see for instance Fig. 4.6f), while it reveals that extreme caution needs to be taken when such
material systems are analyzed with simpler dipole-dipole models. Also, the concentration of the b̂1
field, which can reach rather high values, is strongly dependent on local particle distributions, thus
explaining partially the difficulty in obtaining a converged isotropic response under such loading
conditions and magneto-mechanical loads. In other words, by slightly changing the positions of the
particles, one can change substantially the corresponding interactions. Figs. 4.6g-l, reveal the strong
concentration of strains in-between particles. Due to particle rearrangement, we also observe signifi-
cant tensile strains at various points in the unit-cell. It is further noted that these strains can exceed
the value of 1 when the matrix is softer, as was recently discussed by Danas (2017). Such high strains
can lead to debonding and final loss of efficiency in the magneto-mechanical coupling, unless specific
fabrication steps are taken (for a more detailed discussion, see Bodelot et al. (2017)). Unfortunately,
in the present 3D study, we were not able to carry out such computations for softer matrices (e.g.,
Gm < 0.1MPa) due to computational convergence problems.

Convergence of the number of particles : In addition to a set of 10 realizations of the polydisperse
RVEs having Nmono = 60 (Ntot ∼ 290) considered in Fig. 4.5, we analyze here two additional sets of 10
RVEs each. As defined in Section 4.7.1, in the first set of RVEs, we use the same three different families
having the same size ratio (i.e. (1, 7/9, 4/9)) and relative volume proportion (0.6, 0.3, 0.1)c, respectively.
Furthermore, it comprises polydisperse spherical particles obtained by setting Nmono = 100, which
leads to a Rmax/L = 0.0895 (with L = 1 denoting the size of the cubic unit cell) and a total number of
actual particles Ntot ∼ 450. The last set has 10 RVE realizations with polydisperse spherical particles
from four different families of size ratio 1.0, 0.778, 0.556, and 0.333, whose relative proportion in the
total particle volume are 0.6, 0.3, 0.2 and 0.1, respectively. This last set is obtained by considering
Nmono = 120, which leads to a maximum sphere radius Rmax/L = 0.0842 and a total number of particles
Ntot ∼ 750. The average value of the total degrees of freedom for each set of RVEs is 1.5× 106, 2.7× 106

and 8.5× 105 for Ntot ∼ 290, 450 and 750, respectively. Notice that, the Ntot in these polydisperse
RVEs is not a primary variable. Rather, it is a derived quantity. The primary variables that define a
polydisperse RVE is given by the particle volume fraction c, the equivalent number of monodisperse
particlesNmono, the size ratio of different families and their relative volume proportions. For a detailed
discussion of these RVE constructions the reader is referred to the recent works of Anoukou et al.
(2018), Zerhouni et al. (2019) and Tarantino et al. (2019).

The average of the computed magnetostriction responses for the three aforementioned sets of
RVEs are shown in Fig 4.7a. Here we observe that, with increasing number of particles, the average
parallel (λ1− 1) and transverse (λ2− 1, λ3− 1) magnetostrictions converge to that reported in Fig 4.5b
and c, respectively. Furthermore, the scatter of the computed magnetostrictions are observed to
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Figure 4.6: Numerically computed (a-c) normalized local magnetic field b̂1/µ0msp and (g-i) local nominal
mechanical strain λ̂1− 1 for three particle volume fractions c = 0.1, 0.2 and 0.3 at an overall applied macroscopic
field h/msp = 0.5. (d-f) and (j-l) correspond to a given cross-section of the unit-cell as depicted in (a).
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Figure 4.7: (a) Average effective parallel and transverse magnetostriction stretches, (b) scatter in the parallel
magnetostrictions as obtained from the numerical homogenization for the particle volume fraction of c = 0.3
and the total number of particles Ntot ∼ 290 (firm lines), Ntot ∼ 450 (dashed lines) and Ntot ∼ 750 (chain-dotted
lines). Eulerian h-field is applied at a local point in the MRE, which is free from mechanical tractions.

decrease considerably (see Fig. 4.7b) with the increase of the number of particles.
It should be noted here that the convergence of the computed magnetostriction in Fig. 4.7a and

b is valid for the present use of energy functions (e.g. Neo-Hookean mechanical response defined in
(4.15)). A different hyperelastic law with more pronounced nonlinearities (such as Gent hyperelastic-
ity) for the matrix phase may need additional convergence studies and perhaps even larger number
of particles.

Mesh convergence : Next, we investigate the mesh convergence of the computed effective mag-
netization and magnetostriction for a specific RVE given by Fig. 4.5 for c = 0.3. In addition to
the given mesh in Fig. 4.5, we perform the computations for three additional meshes; one with a
coarser mesh with total number of degrees of freedom equal to 0.8× 106 and two with finer meshes
having 3.4× 106 and 5.1× 106 degrees of freedom. As shown in Fig. 4.8a, the effective magnetiza-
tion is converging rapidly for all meshes, whereas, the parallel and transverse magnetostrictions in
Fig. 4.8b and c are seen to be slightly underestimated when the coarse mesh with 0.8× 106 degrees of

Figure 4.8: Computed (a) effective magnetization and (b-c) effective parallel and transverse magnetostrictions
for a RVE with c = 0.3 and Ntot ∼ 290 having four different meshes with total degrees of freedom 0.8× 106
(dashed-dotted lines), 1.5× 106 (dotted lines), 3.4× 106 (dashed lines) and 5.1× 106 (solid lines).

freedom is used. Nevertheless, the magnetostriction response is observed to converge rapidly with
the subsequent mesh refinements. Notice that in the reported results in Fig. 4.5, we use the RVEs
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with approximately 1.5× 106 degrees of freedom, which leads to fully-converged magnetization and
magnetostriction responses as observed in Fig. 4.8.

4.7.3 Effective response of h-MREs

Next, we present the numerically computed effective response of the h-MREs under proportional
cyclic loading paths. Subsequently, we investigate a couple of cases, which consider first a mag-
netic, followed by a mechanical loading, in order to probe the effect of mechanical stresses on a
pre-magnetized h-MRE. The latter is crucial in the context of determining the dependence of resid-
ual magnetization (i.e., m0 at ha = 0) on F, which is, in turn, a key information required in the
macroscopic modeling of the h-MREs and would be utilized in Chapter 6.

Proportional cyclic loading : The schematic diagram of the proportional loading direction and
its temporal variation are shown by Fig. 4.9a and b, respectively. Notice that here the time scale
is irrelevant since both the matrix and particles are defined to exhibit rate-independent constitu-
tive responses. The proportional cyclic loading path is consider to be a simple ramp-type load-

Figure 4.9: (a) Schematic diagram of the applied ha on the RVE along e1. (b) Loading evolution with time.
The time scale is irrelevant for the present rate-independent model.

ing/unloading. The macroscopic stress and displacement boundary conditions are considered to be
identical to (4.84).

Here we perform computations for three set of polydisperse RVEs having c = 0.1, 0.2 and 0.3, all
having Nmono = 60. In fact, we use the same FE meshes shown in Fig. 4.4 for the FE computations
herein. The shear modulus of the matrix is now considered to be Gm = 0.5 MPa, which resembles
closely to the moderately-soft PDMS (Park et al., 2018; Wang et al., 2019). The shear moduli of the
particles are considered to be Gp = Gm = 500 MPa, that is sufficient in order to ensure a vanishingly
small deformation in the particles. Furthermore, the matrix and particle bulk moduli are selected
to be G ′i = 500Gi, with i = m, p, which are found to be sufficient to ensure a nearly incompressible
effective response. The magnetic properties of the hard particle phase are taken to be those of the
NdFeB powder, which are identified in Table 3.3.1. The magnetically inert matrix, on the other hand,
is modeled simply by setting bcm = 106bcp and χem = 0, such that the local constitutive response b̂ = µ0ĥ
is ensured (see Fig. 3.2a).

Since the hard magnets require a greater ha to saturate (c.f. Fig. 1.2a and b), here the loading is
performed up to h1/msp = 3.0, in order to ensure a saturated magnetic hysteresis loop. Consequently,
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a greater number of load increments are required at each step of the FE computations for the h-MREs.
Thus, the numerical computations for the h-MREs under fully-reversed, cyclic loading conditions, as
shown in Fig. 4.9b, are 16− 20 times more expensive than the s-MRE computations shown in Fig 4.5.
Moreover, the storage of the local remanent

“
Hr at each integration point and the computations for

their local evolution also add up to the storage and computation costs.
Similar to the s-MREs (see Fig. 4.5b and c), we note that, for different RVE realizations, the

effective magnetostriction responses of the h-MREs also fluctuate around an average. Hence, we
need several realizations of each RVE in order to estimate the average magnetostriction response,
that is independent of the effect of local field fluctuations. However, the numerical computations of
the h-MRE responses under a fully reversed cyclic loading is extremely expensive. Thus, in order to
reduce the computation time, we first consider the loading path to be the initial half cycle from (I)
to (II), as indicated in Fig. 4.9b and compute the effective responses for five different realizations of
the polydisperse RVEs for particle volume fractions c = 0.1, 0.2 and 0.3. Nevertheless, the numerical
computations remain 5− 6 times more expensive than their counterparts for the s-MREs.

The average magnetization and the parallel and transverse magnetostrictions computed for c =

0.1, 0.2 and 0.3 are shown in Fig 4.10, where we show the average of the five RVE computations
along with the relative scatter in the computed results with the light-colored patches around the
respective averages. Similar to the s-MREs, the scatter of the magnetization responses are observed

Figure 4.10: Numerically computed effective (a) magnetization, (b) parallel and (c) transverse magnetostric-
tions the h-MRE RVEs, subjected to uniaxial Eulerian ha = h1e1 loading from (I) to (II) as shown in Fig. 4.9b.
The average effective responses (solid lines) along with the range of their fluctuations (light patches) for dif-
ferent realizations of the respective RVEs are indicated. The RVEs of different volume fractions are comprised
of random polydisperse spherical hard-magnetic inclusions, coming from three distinct families.

to be negligibly small, whereas, those of the parallel and transverse magnetostrictions are finite.
Notice from Fig. 4.10 that, unlike the s-MRE responses, neither the effective magnetization, nor the
magnetostrictions saturates at higher h-fields. Rather, they maintain a slope with the applied h1. This
can be attributed to the inherent non-saturating magnetization response of the NdFeB particles, as
observed in Fig. 1.2b. Moreover, notice that the magnitude of the magnetostrictions are considerably
less in the h-MREs as compared to those of the s-MREs, c.f. Fig. 4.10b and Fig. 4.5b. This effect can
be attributed to the weaker magnetization of the NdFeB particles than the iron particles at higher
applied h-fields (see Fig. 1.2c), which, results in less particle-to-particle interaction forces in the h-
MREs and eventually lead to less particle rearrangements.

69



Chapter 4. Microscopic Model and Numerical Homogenization

The magnetization and magnetostriction responses under a fully reversed proportional loading
are then computed for c = 0.1, 0.2 and 0.3 by considering one RVE of each volume fraction. The

Figure 4.11: Computed hysteresis loops of effective (a) magnetization, (b) parallel and (c) transverse magne-
tostrictions of h-MRE RVEs having particle volume fractions c = 0.1, 0.2 and 0.3. The RVEs are subjected to a
fully reversed, proportional loading shown in Fig. 4.9. The average of the effective responses computed from
five realizations of a RVE are shown without the fluctuation patches for the magnetostrictions.

Figure 4.12: Contours of the numerically computed, normalized microscopic b̂1 in the RVEs after the first half
cycle, i.e., at loading point (II) indicated on Fig. 4.9b. Three different, RVEs having (a) c = 0.1, (b) 0.2 and (c)
0.3 are shown.

RVEs are selected to be those, whose responses are the closest ones to the respective averages for
each volume fractions. The resulting magnetization and magnetostriction hysteresis loops are shown
in Fig. 4.11. Notice that the effective magnetic hysteresis loops look qualitatively the same to that of
the NdFeB particles, whereas the butterfly-shaped hysteresis loops are obtained for both parallel and
transverse magnetostriction components.

Finally, we show the contours of the microscopic b̂1/µ0msp fields after the initial half-cycle (i.e.,
loading up to (II)) in the deformed RVEs for three particle volume fractions in Fig. 4.12. In accordance
with the computed effective magnetostrictions in Fig. 4.10b and c, we observe very small overall
deformation of the RVEs, although the local (microscopic) strain fields may be considerably high, as
observed in Fig. 4.6 and also in (Danas, 2017) for the s-MREs.

Mesh convergence : For completeness, we perform a mesh convergence study for one of the
representative effective response. The loading path is considered to be the same as shown in Fig. 4.9b
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and the mechanical boundary conditions are considered to be (4.84). Subsequently, we consider three
increasingly refined meshes of a RVE having c = 0.3 and Nmono = 60 having approximate number
of degrees-of-freedom Ndof = 0.8 × 106, 1.5 × 106 and 3.4 × 106. The resulting magnetization and
magnetostriction responses during the first half-cycle is plotted in Fig. 4.13. In accordance to the

Figure 4.13: Computed (a) effective magnetization and (b-c) effective parallel and transverse magnetostrictions
for a RVE with c = 0.3 and Ntot ∼ 290 having four different meshes with total degrees-of-freedom 0.8× 106
(dashed-dotted lines), 1.5× 106 (dashed lines), 3.4× 106 (solid lines).

mesh convergence study for the s-MREs in Fig. 4.8, we observe from Fig. 4.13a that, the effective
magnetization responses remain identical with the increasingly refined meshes. Furthermore, the
parallel (Fig. 4.13b) and transverse (Fig. 4.13c) magnetostriction components are also observed to be
converging with the increasing refinement of the meshes.

Effect of mechanical tension and shear : Next, we investigate the effect of mechanical tension and
shear stresses on a pre-magnetized h-MRE. To accomplish this, we consider the mechanical stress
and displacement boundary conditions to be

Smecha,11 = S
mech
a,33 = S

mech
a,32 = S

mech
a,13 = 0, Smecha,22 6= 0, Smecha,12 6= 0 and F21 = F23 = F31 = 0, (4.85)

where the specific forms of Smecha,22 and Smecha,12 will be provided at relevant places and lastly, the three
displacement conditions in therms of F are imposed to ensure no rigid-body rotations under applied
Smecha,22 or Smecha,12.

Notice that, the first half cycle (I) — (II) leads to a permanently magnetized h-MRE upon the com-
plete removal of the applied h1 at (II). The mechanical stresses are applied subsequently in terms of
applied (i) Smecha,22 = Smech22 , Smecha,12 = 0 and (ii) Smecha,22 = 0, Smecha,12 = Smech12 , while all other independent me-
chanical stress components are given by (4.85)1. We note that, unlike the magnetostriction responses,
the mechanical loading responses of a pre-magnetized h-MRE do not fluctuate with the RVE real-
izations under applied Smech22 or Smech12 . This is simply because the applied mechanical stresses induce
considerably high amount of strains in the material, as compared to the magnetostriction responses
under proportional loading, which has a maximum magnitude of 5× 10−3 (see Fig. 4.10b). Moreover,
Fig. 4.10b shows that, the maximum magnitude of fluctuations in the effective strains ae not more
than 5× 10−4. Although such fluctuations significantly modify the magnetostriction responses, their
effects on the coupled magneto-mechanical responses, having strains in the range of 0.2 − 1.0, are
negligible. Also, notice from Fig. 4.13b and c that, a relatively coarse mesh do not alter the resulting
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magnetostriction responses substantially.
Consequently, in order to reduce the computation cost, we consider a monodisperse RVE, with

Nmono = 60, having a particle volume fraction c = 0.2. Instead, the effect of matrix shear modulus
is investigated here for three distinct Gm, namely, Gm = 1.0, 0.5 and 0.3 MPa. The corresponding
shear moduli of the particle phases are considered to be Gp = 100Gm, which is a sufficient contrast to
ensure negligibly small strain components in the particle phases. All other material parameters are
considered to remain the same as defined in the previous proportional loading case.

Figure 4.14b and c shows that the current remanent magnetization remain unaffected by the
mechanical stretch, shown in Fig. 4.14a, that is induced by the applied Smech22 /Gm. Moreover, the effec-

Figure 4.14: Deformation of a magnetized RVE having c = 0.2 and monodisperse spherical inclusions with
Nmono = 60, under applied uniaxial tensile stress Smecha,22 = Smech22 , whose temporal variation is shown in the inset
of (b). Numerically computed effective (a) parallel stretch λ2 − λ02 under the applied Smech22 and variation of (b)
m1 and (c) m2 under the same are shown for the matrix shear moduli Gm = 1.0, 0.5 and 0.3 MPa. Contours
of the normalized microscopic b̂1 in the deformed RVEs having (d) Gm = 1.0, (e) 0.5 and (f) 0.3 MPa, under
applied Smech22 /Gm = 1. Directions of the microscopic

“
m in some of the particles are shown by yellow arrows.

tive magneto-mechanical responses due to the applied normalized stress Smech22 /Gm remain unaffected
by the matrix shear modulus Gm. The b̂1/µ0msp contour plots in the deformed configuration under
Smech22 /Gm = 1 in Fig. 4.14d-f show that the permanently magnetized particles only get rearranged by
the applied uniaxial tension, without being rotated. For visual illustration purpose, we indicate the
average directions of the local magnetization

“
m in the individual particles by yellow-colored arrows,

as shown in Fig. 4.14d-f. Notice that all these arrows remain aligned to the 1 direction, i.e., in the
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direction of their pre-magnetization, under applied Smech22 . Thus, since the local
“
m is finite only in the

particle phases, effectively, the average m remain independent of mechanical stretch.
To elaborate further on the effect of mechanical stretch on the average magnetic B and Hr fields,

and their Eulerian counterparts b and hr, we numerically compute the ensemble average of these
quantities over the volume V#

0 (or equivalently V# for the Eulerian fields) and plot them with respect
to Smech22 /Gm in Fig. 4.15. Subsequently, we note that, even though the mechanical stretch affects

Figure 4.15: Numerically computed (a) b1, B1 and the e1 component JF−1b and (b) average remanent fields hr1,
Hr1, the e1 components of FThr, where F and b are obtained from the numerical computations under applied
Smech22 /Gm, whose time evolution is shown in the inset of Fig. 4.14b.

the resulting Lagrangian B, the computed effective Hr remains independent of Smech22 /Gm. In turn,
Fig. 4.15a validate the fact that the pull-back transformation of b is given by B = JF−1b, since the
solid and dotted black lines coincide. In contrast, Fig. 4.15b shows that the Eulerian hr and its
Lagrangian counterpart Hr do not confirm to the pull-back transformation Hr = FThr. Instead, Hr

and hr are observed remain the same under applied Smech22 /Gm. This is a crucial observation, which we
will recall in Chapter 6, while proposing a macroscopic constitutive model for the h-MREs.

Next, the effect of applied shear stress Smech12 /Gm on the effective m is shown in Fig. 4.16. The
applied Smech12 /Gm leads to a shear strain γ12, whose evolution with Smech12 /Gm is shown in Fig. 4.16a.
Moreover, it is observed that the effect of Gm on these results remain negligibly small. We subse-
quently notice from Fig. 4.16b and c along with the inset of Fig. 4.16b that m undergoes rotation
under the applied Smech12 /Gm, resulting in non-constant m1 and m2 values, even though |m| remains
constant. Hence, the change in m1 and m2 can be clearly attributed to the particle rotations. In this
regard, Fig. 4.16d-f show the contour plots of b̂1/msp in the deformed configuration, which clearly
show the particle rotations in the RVE, as indicated by yellow arrows. We also notice that the average
particle rotation is approximately equal to the macroscopic rotation R, which can be computed from
the polar decomposition of F.

The effect of applied shear on the magnetic induction b and its Lagrangian counterpart B and the
remanent field hr and Hr are investigated subsequently by plotting their evolution under applied
Smech12 /Gm in Fig. 4.17. The comparison of the 1 and 2 components of b, B and the computed JF−1b in
Fig. 4.17a and Fig. 4.17b, respectively, ascertain that the current b transforms to the Lagrangian con-
figuration via the pull-back transformation B = JF−1b. Furthermore, Fig. 4.17c and Fig. 4.17d confirm
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Figure 4.16: Deformation of a magnetized RVE having c = 0.2 and monodisperse spherical inclusions with
Nmono = 60, under applied shear stress Smecha,12 = Smech12 , whose temporal variation is shown in the inset of (c) (time
scale is irrelevant for the rate-independent models). Numerically computed effective (a) shear strain γ12 by the
applied Smech12 and the variations of (b) m1, (c) m2 and (b)(inset) |m| under the same are shown for the matrix
shear moduli Gm = 1.0, 0.5 and 0.3 MPa. Contours of the normalized microscopic b̂1 in the deformed RVEs
having (d) Gm = 1.0, (e) 0.5 and (f) 0.3 MPa, under applied Smech12 /Gm = 1. Directions of the microscopic

“
m in

some of the particles are shown by yellow arrows.

that, the pull-back transformation of hr is given by the relation hr = RTHr and not by hr = FTHr.
In this regard, we notice that the macroscopic primary h and its conjugate b have their Lagrangian
counterparts are defined via (4.34) and (4.38)2 to be H = FTh and B = JF−1b, respectively (see also
(Ponte Castañeda and Galipeau, 2011; Javili et al., 2013)). In contrast, the remanent internal variable
hr has no such rigorous definition of its pull-back transformation. Nonetheless, the observations
from Fig. 4.17c and Fig. 4.17d along with the uniaxial stretch results in Fig. 4.16b suggest that the
Lagrangian counterpart of the current hr may be defined to be in a stretch-free intermediate configura-
tion and, consequently, the mapping between hr and Hr may be defined via an overall particle rotation
tensor Rp.

This rotation Rp is found to be identical to the macroscopic rotation tensor R under the specific me-
chanical shear loading Smech12 . This pull-back transformation may not necessarily hold for other coupled
magneto-mechanical loading paths, where the particle rotations may not be identical to R. This point
will be elaborated further in Chapter 6. In this context, we recall that there is no rigorous analytical
estimate for the microstructural particle rotations under applied magneto-mechanical loads. Thus,
to this end, one can only estimate such effective particle rotation tensor Rp via the full-field numerical
computations under a prescribed loading path.
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Figure 4.17: Numerically computed (a) b1, B1 and the e1 component JF−1b, (b) b2, B2 and the e2 component
of JF−1b, (c) average remanent fields hr1, Hr1, the e1 components of FThr and RThr and (d) hr2, Hr2, the e2
components FThr and RThr, where F, R and b are obtained from the numerical computations under applied
Smech12 /Gm, whose temporal profile is shown in the inset of Fig. 4.16c.

4.8 Concluding remarks

In summary, this chapter presents a general framework for the incremental numerical homogeniza-
tion of dissipative magneto-mechanical composites in a fully Lagrangian setting via defining an aug-
mented variational principle. Specific local (microscopic) constitutive relations for the iron/NdFeB
particles and the Neo-Hookean matrix are also provided along with the specific forms of element
force and stiffness matrices, which are utilized in the FE computations. Furthermore, the local up-
date algorithm for the microscopic internal variable

“
Hr is provided explicitly. The key advantages of

the presented incremental homogenization framework is listed in the following.

1. The presented incremental potential-based homogenization framework is the exact equivalent
of that developed in the context of mechanical elasto-plasticity (Miehe, 2002; Miehe et al., 2002).
This framework first defines an incremental potential energy (also referred to be the reduced
potential (Carstensen et al., 2001; Miehe et al., 2011; Rosato and Miehe, 2014)) as a function of
the energetic and dissipation potentials. This incremental potential is then treated as a quasi

75



Chapter 4. Microscopic Model and Numerical Homogenization

energetic equivalent of the dissipative system, specifically at the current time increment t = τ.
Subsequently, the associated homogenization problem is defined via the standard energetic
homogenization problem (Ponte Castañeda and Galipeau, 2011; Galipeau and Ponte Castañeda,
2013; Javili et al., 2013; Danas, 2017; Lefèvre et al., 2017) for magneto-active composites, but
here at the current increment t = τ. Notice that the fully energetic homogenization problem is
independent of the time increment, whereas the proposed incremental framework for h-MREs
is not.

2. Fully objective and thermodynamically consistent constitutive models for the two phase hard
magnetic composite are proposed for the matrix and particle phases in Section 4.2. A nearly
incompressible response is ensured by setting the bulk modulus G ′i = 500Gi for both i = m, p.
Furthermore, the specific form of the non-dissipative, soft magnetic model is provided therein
after taking the limit of bcp → 0. In fact, as pointed out in Remark 4.1, one can retrieve the
energetic homogenization framework of Lefèvre et al. (2017), from the proposed F − H incre-
mental homogenization setting directly via substituting bci = 0 to (4.19). Hence, one can treat
the homogenization problem for s-MREs to be a special case of that proposed in the context of
h-MREs in this chapter.

3. Suitable augmentation to the incremental homogenization variational principle is provided in
Section 4.5. This augmented variational principle, in turn, enables the numerical homogeniza-
tion to yield a coupled magneto-mechanical response, that is free from the boundary and shape
effects.

4. As detailed in Section 4.6, a fully Lagrangian F−H-based microscopic model is considered here
for the finite-element computations. Since the F − H can be treated in a numerical setting to be
in terms of the mechanical displacement field û and a scalar magnetic potential ϕ̂, it reduces
the nodal degrees-of-freedom as compared to the vector potential-based F − B model (Danas,
2017).

The resulting effective responses are shown first for the s-MREs via defining the RVEs to be com-
prised of a random polydisperse spherical inclusions, coming from three distinct families. Later, the
same RVEs are used to compute the effective response of the h-MREs under proportional magnetic
loading. The qualitative effective responses of the s- and h-MREs are observed to be the same, ex-
hibiting realization-dependent fluctuations in the magnetostriction responses, while no fluctuation
in the effective magnetization is observed. Finally, the effect of mechanical tension and shear in the
pre-magnetized h-MRE RVEs are investigated. Crucial insights on the stretch-independence of hr

is obtained therein, which will be recalled in Chapter 6 while proposing a macroscopic constitutive
model for the h-MREs.

Appendix 4.A. Pull-back transformation of effective Eulerian field h

In this appendix we drop the subscript τ from the fields for brevity. Nevertheless, the relation derived
herein holds for any discrete time τ during the entire loading/unloading path. We express (4.34) in
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terms of the index notation as

hi =
1

JV#
0

∫
V#
0

∂̂J

∂F̂ij
Ĥj dV = −

1

JV#
0

∫
V#
0

∂̂J

∂F̂ij
ϕ̂,j dV . (4.A.1)

Here, the curl-free condition on
“
H allows to write the latter in terms of a scalar potential ϕ̂ such that“

H = −Grad ϕ̂ (or equivalently, Ĥi = −ϕ̂,i). From the divergence theorem and the divergence-free
property of ∂̂J/∂F̂, we recast (4.A.1) to read

hi = −
1

JV#
0

∫
∂V#

0

∂̂J

∂F̂ij
ϕ̂Nj dS, (4.A.2)

where Nj is the unit normal on the reference boundary ∂V#
0. Notice that, in V#

0, the scalar potential
ϕ̂ is defined by (4.33)2 to be ϕ̂ = −HkXk +‹ϕ with ‹ϕ periodic (i.e. takes identical values in opposite
faces of the periodic boundary). Next, substituting this last expression in (4.A.2), we obtain

hi =
1

JV#
0

®∫
∂V#

0

∂̂J

∂F̂ij
HkXkNj dS−

∫
∂V#

0

‹ϕ ∂̂J

∂F̂ij
Nj dS

´
, (4.A.3)

where we recall that the effective Hk is constant. The second term in (4.A.3) is identically zero since‹ϕ is periodic and the term Nj∂̂J/∂F̂ij is anti-periodic (by simple use of the divergence-free property
of ∂̂J/∂F̂ij). By employing the divergence theorem in the first term of (4.A.3) together with the
divergence-free property of ∂̂J/∂F̂ij, we obtain

hi =
1

JV#
0

∫
V#
0

∂̂J

∂F̂ij
Hkδkj dV =

1

J

ï
1

V#
0

∫
V#
0

∂̂J

∂F̂ij
dV
ò
Hj. (4.A.4)

Again, using the divergence-free property of ∂̂J/∂F̂ij, the last term in the square brackets is simply
equal to the average ∂J/∂Fij, such that

hi =
1

J

∂J

∂Fij
Hj = F

−1
ji Hj, or h = F−TH. (4.A.5)

Appendix 4.B. Element force and stiffness matrices for TET-10 elements

This appendix provides the specific forms of the gradient matrices [

“
Geu] and [

“
Geϕ] and finally the

element force and algorithmic tangent stiffness matrices for a 10-node tetrahedral (TET-10) element.
The position of the nodes and the local coordinate system ξ̂ ≡ (ξ̂1, ξ̂2, ξ̂3) adhered to a TET-10 element
are shown in Fig. 4.18. Furthermore, given the nodal reference coordinates X(n), with n = 1− 10, the
global reference coordinate system X can be expressed in terms of ξ so that (4.51)2

X =

10∑
n=1

“
N(n)(ξ̂)X(n), (4.B.1)
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Figure 4.18: Local coordinate system along with the position of nodes in a 10-node tetrahedral (TET-10)
element.

where N(n)(ξ) are scalar-valued element shape functions associated with the TET-10 elements. Con-
sequently, the Jacobian matrix associated with the the last transformation is given by

Ĵ =
∂X

∂ξ̂
=

10∑
n=1

∂

“
N(n)

∂ξ̂
⊗X(n) or, Ĵij =

10∑
n=1

∂

“
N(n)

∂ξ̂i
X

(n)
j . (4.B.2)

Now, the unknown variables in the element e can be expressed in terms of the element dofs [q̂eτ],
which is a column vector having the dimension 40× 1. The element primary variables vector, namely,
{û1,τ(ξ̂), û2,τ(ξ̂), û3,τ(ξ̂), ϕ̂τ(ξ̂)}T is expressed in terms of

“
N(n) and [q̂eτ], such that


û1,τ(ξ̂)
û2,τ(ξ̂)
û3,τ(ξ̂)
ϕ̂τ(ξ̂)

 =


“
N(1)(ξ̂) 0 0 0 ...

“
N(10)(ξ̂) 0 0 0

0

“
N(1)(ξ̂) 0 0 ... 0

“
N(10)(ξ̂) 0 0

0 0

“
N(1)(ξ̂) 0 ... 0 0

“
N(10)(ξ̂) 0

0 0 0

“
N(1)(ξ̂) ... 0 0 0

“
N(10)(ξ̂)





û
(1)
1,τ

û
(1)
2,τ

û
(1)
3,τ

ϕ̂
(1)
τ

:

:

û
(10)
1,τ

û
(10)
2,τ

û
(10)
3,τ

ϕ̂
(10)
τ



,

which is equivalent to (4.51)1. The derivatives of the primary variables with respect to the local
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coordinate system is obtained from the last equation to be



∂û1,τ/∂ξ̂1

∂û1,τ/∂ξ̂2

∂û1,τ/∂ξ̂3

∂û2,τ/∂ξ̂1

∂û2,τ/∂ξ̂2

∂û2,τ/∂ξ̂3

∂û3,τ/∂ξ̂1

∂û3,τ/∂ξ̂2

∂û3,τ/∂ξ̂3

∂ϕ̂τ/∂ξ̂1

∂ϕ̂τ/∂ξ̂2

∂ϕ̂τ/∂ξ̂3



=



“
G (1)
1 0 0 0 ...

“
G (10)
1 0 0 0“

G (1)
2 0 0 0 ...

“
G (10)
2 0 0 0“

G (1)
3 0 0 0 ...

“
G (10)
3 0 0 0

0

“
G (1)
1 0 0 ... 0

“
G (10)
1 0 0

0

“
G (1)
2 0 0 ... 0

“
G (10)
2 0 0

0

“
G (1)
3 0 0 ... 0

“
G (10)
3 0 0

0 0

“
G (1)
1 0 ... 0 0

“
G (10)
1 0

0 0

“
G (1)
2 0 ... 0 0

“
G (10)
2 0

0 0

“
G (1)
3 0 ... 0 0

“
G (10)
3 0

0 0 0

“
G (1)
1 ... 0 0 0

“
G (10)
1

0 0 0

“
G (1)
2 ... 0 0 0

“
G (10)
2

0 0 0

“
G (1)
3 ... 0 0 0

“
G (10)
3





û
(1)
1,τ

û
(1)
2,τ

û
(1)
3,τ

ϕ̂
(1)
τ

:

:

û
(10)
1,τ

û
(10)
2,τ

û
(10)
3,τ

ϕ̂
(10)
τ



,

which we express in terms of compact notation, that is [∂q̂τ/∂ξ̂] = [

“
G ][q̂eτ] with [

“
G ] given by a 12× 40

matrix for the present case of 3D element having 40 dofs. Notice that, the notation

“
G (n)
i , used in the

matrix [

“
G ], essentially represents the derivative of

“
N(n)(ξ̂) with respect to ξ̂i, so that

“
G (n)
i = ∂

“
N(n)/∂ξ̂i.

Furthermore, we notice from (4.59) and (4.66) that the gradient of q̂τ is taken with respect to the
reference coordinate X. Nevertheless, [∂q̂τ/∂X] can be expressed in terms of [∂q̂τ/∂ξ̂] in terms of
utilizing the Jacobian matrix, such that



∂û1,τ/∂X1
∂û1,τ/∂X2
∂û1,τ/∂X3
∂û2,τ/∂X1
∂û2,τ/∂X2
∂û2,τ/∂X3
∂û3,τ/∂X1
∂û3,τ/∂X2
∂û3,τ/∂X3
−∂ϕ̂τ/∂X1
−∂ϕ̂τ/∂X2
−∂ϕ̂τ/∂X3



=



Ĵ−111 Ĵ−112 Ĵ−113 0 0 0 0 0 0 0 0 0

Ĵ−121 Ĵ−122 Ĵ−123 0 0 0 0 0 0 0 0 0

Ĵ−131 Ĵ−132 Ĵ−133 0 0 0 0 0 0 0 0 0

0 0 0 Ĵ−111 Ĵ−112 Ĵ−113 0 0 0 0 0 0

0 0 0 Ĵ−121 Ĵ−122 Ĵ−123 0 0 0 0 0 0

0 0 0 Ĵ−131 Ĵ−132 Ĵ−133 0 0 0 0 0 0

0 0 0 0 0 0 Ĵ−111 Ĵ−112 Ĵ−113 0 0 0

0 0 0 0 0 0 Ĵ−121 Ĵ−122 Ĵ−123 0 0 0

0 0 0 0 0 0 Ĵ−131 Ĵ−132 Ĵ−133 0 0 0

0 0 0 0 0 0 0 0 0 −Ĵ−111 −Ĵ−112 −Ĵ−113

0 0 0 0 0 0 0 0 0 −Ĵ−111 −Ĵ−112 −Ĵ−113

0 0 0 0 0 0 0 0 0 −Ĵ−111 −Ĵ−112 −Ĵ−113





∂û1,τ/∂ξ̂1

∂û1,τ/∂ξ̂2

∂û1,τ/∂ξ̂3

∂û2,τ/∂ξ̂1

∂û2,τ/∂ξ̂2

∂û2,τ/∂ξ̂3

∂û3,τ/∂ξ̂1

∂û3,τ/∂ξ̂2

∂û3,τ/∂ξ̂3

∂ϕ̂τ/∂ξ̂1

∂ϕ̂τ/∂ξ̂2

∂ϕ̂τ/∂ξ̂3



.

Again, the last can be expressed in compact form to be [∂q̂τ/∂X] = [

”
J ][∂q̂τ/∂ξ̂], where [

”
J ] is a

12× 12 matrix in terms of the inverse of Ĵ. The negative sign associated with the negative gradient of
ϕ̂τ is taken care herein with the definition of [

”
J ]. Finally, the matrix [

“
G] = [

“
Gu −

“
Gϕ]T is given by,

[

“
G] = [

”
J ][

“
G ], (4.B.3)

which relates the [∂q̂τ/∂X] with the nodal dofs, so that

[∂q̂τ/∂X] = [

“
G][q̂eτ] (4.B.4)
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Notably, here [

“
G] is a 12× 40 matrix and [q̂eτ] is a 40× 1 column of nodal dofs. The set of 10 shape

functions in terms of the local coordinate ξ̂ for the TET-10 elements read“
N(1) = (1− ξ̂)(1− 2ξ̂),

“
N(2) = ξ̂1(2ξ̂1 − 1),

“
N(3) = ξ̂2(2ξ̂2 − 1),

“
N(4) = ξ̂3(2ξ̂3 − 1),

“
N(5) = 4ξ̂1(1− ξ̂)“

N(6) = 4ξ̂1ξ̂2,
“
N(7) = 4ξ̂2(1− ξ̂),

“
N(8) = 4ξ̂3(1− ξ̂),

“
N(9) = 4ξ̂1ξ̂3,

“
N(10) = 4ξ̂2ξ̂3,

where ξ̂ = ξ̂1 + ξ̂2 + ξ̂3. The elements of the [

“
G ] matrix can then be obtained via computing the

derivatives of these shape functions with respect to ξ̂i.

Consequently, the element force vector [̂fe(q̂eτ)] and algorithmic tangent stiffness matrix [k̂e(q̂eτ)]
for the choice of TET-10 elements follow from their definitions in (4.59) and (4.66), such that

[̂
fe(q̂eτ)

]
=

ngp∑
=1

“
ω

() det
[
Ĵ(ξ̂())

][“
G(ξ̂())

]T [
∂

“
Wτ/∂q̂τ(ξ̂(), q̂eτ)

]
(4.B.5)

and [
k̂e(q̂eτ)

]
=

ngp∑
=1

“
ω

() det
[
Ĵ(ξ̂())

][“
G(ξ̂())

]T [
L̂Algo,τ(ξ̂(), q̂eτ)

][“
G(ξ̂())

]
, (4.B.6)

respectively. Here the matrices [Ĵ(ξ̂())] and [

“
G(ξ̂())] are the Jacobian and gradient matrix, respec-

tively, evaluated at ξ̂ = ξ̂() and ngp is the number of Gauss points and
“
ω() and ξ̂() are the weighting

factor and local coordinate, associated with the th Gauss point. As discussed by Zienkiewicz and
Taylor (2000, p. 223-224), a four-point Gauss quadrature is adequate to ensure convergence of the
implicit FE solver. Thus, we choose ngp = 4 and the corresponding

“
ω() and ξ̂() from the Table 9.3 of

(Zienkiewicz and Taylor, 2000). Exceptionally, we employ a 1-point Gauss quadrature scheme to inte-
grate the force and stiffness contributions from the volumetric potential involving the bulk modulus
G ′i. This is done to ensure the numerical results remain free from the volumetric locking, which arises
due to the high bulk modulus G ′i � Gi if integrated with the 4-point Gauss quadrature. Notably, the
1-point quadrature rule can also be found in the Table 9.3 of (Zienkiewicz and Taylor, 2000).

It remains to provide the explicit forms of
[
∂

“
WH
τ /∂q̂τ(ξ̂(), q̂eτ)

]
and

[
L̂Algo,τ(ξ̂(), q̂eτ)

]
. Notice from

(4.59) and (4.66) that these matrices are expressed in terms of F̂τ,
“
Hτ and

“
Hrτ. At the th Gauss point,

F̂()
τ and

“
H()
τ are computed in terms of, respectively, the nodal û(n)

τ and ϕ̂
(n)
τ along with the Gauss

point locations ξ̂() via (4.B.4). Specifically, F̂()
τ is expressed in terms of [∂ûm,τ/∂Xn]

ξ̂=ξ̂() , such that

F̂
()
ij,τ = δij +

ï
∂ûi,τ
∂Xj

ò
ξ̂=ξ̂()

. (4.B.7)

Similarly,
“
H()
τ is expressed in terms of [∂ϕ̂τ/∂Xn]

ξ̂=ξ̂() , obtained from the left-hand-side column
vector of (4.B.4), so that

Ĥ
()
i,τ = −

ï
∂ϕ̂τ

∂Xi

ò
ξ̂=ξ̂()

. (4.B.8)

Finally, provided
“
H()
τ , the local update in the remanent field is computed via Algorithm 4.1, which

takes
“
H()
τ and

“
Hr,()t as the input parameters to yield

“
Hr,()τ . Notice that,

“
Hr,()τ is stored at each

Gauss point after each converged global Newton iteration, which is then used as
“
Hr,()t during the

subsequent iteration. In practice,
“
Hr,()τ is stored by defining 12 state-dependet variables (SVARS) per
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element in the user-element (UEL), that is developed to solve implicitly the global FE equation (4.53)
in ABAQUS (2018).

Thus,
[
∂

“
WH
τ /∂q̂τ(ξ̂(), q̂eτ)

]
and

[
L̂Algo,τ(ξ̂(), q̂eτ)

]
are computed in terms of F̂()

τ ,
“
H()
τ and

“
Hr,()τ , such

that

[
∂

“
WHτ /∂q̂τ(ξ̂(), q̂eτ)

]
≡
®
∂

“
WH
τ

∂F̂τ,11
,
∂

“
WH
τ

∂F̂τ,12
,
∂

“
WH
τ

∂F̂τ,13
,
∂

“
WH
τ

∂F̂τ,21
,
∂

“
WH
τ

∂F̂τ,22
,
∂

“
WH
τ

∂F̂τ,23
,

∂

“
WH
τ

∂F̂τ,31
,
∂

“
WH
τ

∂F̂τ,32
,
∂

“
WH
τ

∂F̂τ,33
,
∂

“
WH
τ

∂Ĥτ,1
,
∂

“
WH
τ

∂Ĥτ,2
,
∂

“
WH
τ

∂Ĥτ,3

´T ∣∣∣∣∣
ξ̂=ξ̂()

, (4.B.9)

which is a 12× 1 vector evaluated at the Gauss points. Consequently, element force vector of di-
mension 40 × 1 is obtained via substituting the last and (4.B.3) into (4.B.5). Similarly, the matrix[
L̂Algo,τ(ξ̂(), q̂eτ)

]
having dimension 12× 12 is given by

[
L̂Algo,τ(ξ̂(), q̂eτ)

]
≡



(L̂FF
Algo,τ)1111 (L̂FF

Algo,τ)1112 · · · (L̂FH
Algo,τ)112 (L̂FH

Algo,τ)113
(L̂FF

Algo,τ)1211 (L̂FF
Algo,τ)1212 · · · (L̂FH

Algo,τ)122 (L̂FH
Algo,τ)123

...
...

. . .
...

...
(L̂HF

Algo,τ)211 (L̂HF
Algo,τ)212 · · · (L̂HH

Algo,τ)22 (L̂HH
Algo,τ)23

(L̂HF
Algo,τ)311 (L̂HF

Algo,τ)312 · · · (L̂HH
Algo,τ)32 (L̂HH

Algo,τ)33


ξ̂=ξ̂()

. (4.B.10)

Notice that
[
L̂Algo,τ(ξ̂(), q̂eτ)

]
is not symmetric in its general form. Nevertheless, we observe from

(4.60) that, for purely energetic s-MREs
[
L̂Algo,τ(ξ̂(), q̂eτ)

]
becomes symmetric. Also, some specific

choice of the microscopic potential energy
“
WH

i are found to yield a symmetric
[
L̂Algo,τ(ξ̂(), q̂eτ)

]
for

the general dissipative case. However, this is not a general observation.
Derivatives in (4.B.9) and (4.B.10): Notice that the computations of (4.B.9) and (4.B.10) require

the first and second derivatives of the incremental energy
“
WH
τ with respect to F̂τ and

“
Hτ. The

first derivative is given in terms of the index notation by (for clarity in the notations we henceforth
suppress the subscript τ)

∂

“
WH

∂F̂ij
=
∂

“
WH

∂F̂ij
=

3∑
p=1

∂

“
WH

∂̂Ip

∂̂Ip

∂F̂ij
+

®
∂

“
WH

∂̂IH5

∂̂IH5

∂F̂ij
+
∂

“
WH

∂̂IHHr
5

∂̂IHHr
5

∂F̂ij
+
∂

“
WH

∂̂IHr
5

∂̂IHr
5

∂F̂ij

´
(4.B.11)

and
∂

“
WH

∂Ĥi
=
∂

“
WH

∂Ĥi
=

5∑
q=4

®
∂

“
WH

∂̂IHq

∂̂IHq

∂Ĥi
+
∂

“
WH

∂̂IHHr
q

∂̂IHHr
q

∂Ĥi
+
∂

“
WH

∂̂IHr
q

∂̂IHr
q

∂Ĥi

´
, (4.B.12)

where we drop the ÎH4 , ÎHHr
4 and ÎHr

4 terms from the former and the mechanical invariant dependence
from the latter since they are independent of F̂τ and

“
Hτ, respectively. The second derivatives can

then be computed leading to the expressions in terms of index notations

L̂FF
ijkl =

∂2

“
WH

∂F̂ij∂F̂kl
=

3∑
p=1

®
∂

“
WH

∂̂Ip

∂2Îp

∂F̂ij∂F̂kl

´
+

3∑
p=1

3∑
q=1

®
∂2

“
WH

∂̂Ip∂̂Iq

∂̂Ip

∂F̂ij

∂̂Iq

∂F̂kl

´
+

®
∂

“
WH

∂̂IH5

∂2ÎH5

∂F̂ij∂F̂kl
+
∂

“
WH

∂̂IHHr
5

∂2ÎHHr
5

∂F̂ij∂F̂kl
+
∂

“
WH

∂̂IHr
5

∂2ÎHr
5

∂F̂ij∂F̂kl
+
∂2

“
WH

∂(̂IH5 )2
∂̂IH5

∂F̂ij

∂̂IH5

∂F̂kl
+

∂2

“
WH

∂(̂IHHr
5 )2

∂̂IHHr
5

∂F̂ij

∂̂IHHr
5

∂F̂kl
+
∂2

“
WH

∂(̂IHr
5 )2

∂̂IHr
5

∂F̂ij

∂̂IHr
5

∂F̂kl

´
, (4.B.13)
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L̂FH
ijk =

∂2
“
WH

∂F̂ij∂Ĥk
=

®
∂

“
WH

∂̂IH5

∂2ÎH5

∂F̂ij∂Ĥk
+
∂

“
WH

∂̂IHHr
5

∂2ÎHHr
5

∂F̂ij∂Ĥk
+
∂

“
WH

∂̂IHr
5

∂2ÎHr
5

∂F̂ij∂Ĥk

+
∂2

“
WH

∂(̂IH5 )2
∂̂IH5

∂F̂ij

∂̂IH5

∂Ĥk
+

∂2

“
WH

∂(̂IHHr
5 )2

∂̂IHHr
5

∂F̂ij

∂̂IHHr
5

∂Ĥk
+
∂2

“
WH

∂(̂IHr
5 )2

∂̂IHr
5

∂F̂ij

∂̂IHr
5

∂Ĥk

´
, (4.B.14)

L̂HH
ij =

∂2
“
WH

∂Ĥi∂Ĥj
=

5∑
q=4

®
∂

“
WH

∂̂IHq

∂2ÎHq

∂Ĥi∂Ĥj
+
∂

“
WH

∂̂IHHr
q

∂2ÎHHr
q

∂Ĥi∂Ĥj
+
∂

“
WH

∂̂IHr
q

∂2ÎHr
q

∂Ĥi∂Ĥj

+
∂2

“
WH

∂(̂IHq )2
∂̂IHq

∂Ĥi

∂̂IHq

∂Ĥj
+

∂2

“
WH

∂(̂IHHr
q )2

∂̂IHHr
q

∂Ĥi

∂̂IHHr
q

∂Ĥj
+
∂2

“
WH

∂(̂IHr
q )2

∂̂IHr
q

∂Ĥi

∂̂IHr
q

∂Ĥj

´
. (4.B.15)

Notice that, we only show the second-order tangent derivatives those are relevant to the proposed
constitutive model given by equation (4.14). Thus, all the second-order derivatives of

“
WH with respect

to two different Î(•)5 and Î
(•)
4 are dropped henceforth. Also, note that the second-order derivative of“

WH with respect to Î3 and ÎH5 is dropped from (4.B.13), since it vanish identically, given the form of“
WH in (4.14).

Since the partial derivatives commute, one can set L̂HF
ijk = L̂FH

ijk. However, we note from (4.65)

that the algorithmic (L̂HF
Algo)ijk 6= (L̂FH

Algo)ijk. The algorithmic consistent linearization (4.60) leads to two
additional tensors of second derivatives given by

L̂HrF
ijk =

∂2
“
WH

∂F̂ij∂Ĥ
r
k

=

®
∂

“
WH

∂̂IH5

∂2ÎH5

∂F̂ij∂Ĥ
r
k

+
∂

“
WH

∂̂IHHr
5

∂2ÎHHr
5

∂F̂ij∂Ĥ
r
k

+
∂

“
WH

∂̂IHr
5

∂2ÎHr5

∂F̂ij∂Ĥ
r
k

+
∂2

“
WH

∂(̂IH5 )2
∂̂IH5

∂F̂ij

∂̂IH5

∂Ĥrk

+
∂2

“
WH

∂(̂IHHr
5 )2

∂̂IHHr
5

∂F̂ij

∂̂IHHr
5

∂Ĥrk

+
∂2

“
WH

∂(̂IHr
5 )2

∂̂IHr
5

∂F̂ij

∂̂IHr
5

∂Ĥrk

´
, (4.B.16)

L̂HrH
ij =

∂2
“
WH

∂Ĥi∂Ĥ
r
j

=

5∑
q=4

®
∂

“
WH

∂̂IHq

∂2ÎHq

∂Ĥi∂Ĥ
r
j

+
∂

“
WH

∂̂IHHr
q

∂2ÎHHr
q

∂Ĥi∂Ĥ
r
j

+
∂

“
WH

∂̂IHr
q

∂2ÎHr
q

∂Ĥi∂Ĥ
r
j

+
∂2

“
WH

∂(̂IHq )2
∂̂IHq

∂Ĥi

∂̂IHq

∂Ĥrj

+
∂2

“
WH

∂(̂IHHr
q )2

∂̂IHHr
q

∂Ĥi

∂̂IHHr
q

∂Ĥrj

+
∂2

“
WH

∂(̂IHr
q )2

∂̂IHr
q

∂Ĥi

∂̂IHr
q

∂Ĥrj

´
. (4.B.17)

Since the dissipation potential (4.19) is defined only in terms of the material rate of
“
Hrτ, we observe

no
“
DH to appear in (4.B.11) − (4.B.17). Also, the evaluation of L̂(·)(·)

Algo necessitates the evaluation of the

local remanent b-field B̂r and its first variation thereafter. The former is given by (4.11), which now
reads

B̂ri = −
∂

“
WH

∂Ĥri

= −

5∑
q=4

®
∂

“
WH

∂̂IHq

∂̂IHq

∂Ĥri

+
∂

“
WH

∂̂IHHr
q

∂̂IHHr
q

∂Ĥri

+
∂

“
WH

∂̂IHr
q

∂̂IHr
q

∂Ĥri

´
. (4.B.18)

A variation in B̂r is then given by (4.62), such that

∆B̂ri = −L̂HrF
ijk ∆F̂jk − L̂HrH

ij ∆Ĥj − L̂HrHr
ij ∆Ĥrj , (4.B.19)
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where we use the commutative property of the subsequent partial derivatives and L̂HrHr
ij is given by

L̂HrHr
ij =

∂2

“
WH

∂Ĥri∂Ĥ
r
j

=

5∑
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∂
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∂̂IHq

∂2ÎHq

∂Ĥri∂Ĥ
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q
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∂Ĥri∂Ĥ
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j
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q

∂Ĥri∂Ĥ
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j

+
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∂̂IHq

∂Ĥrj

+
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WH

∂(̂IHHr
q )2

∂̂IHHr
q

∂Ĥri

∂̂IHHr
q
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+
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“
WH

∂(̂IHr
q )2

∂̂IHr
q

∂Ĥri

∂̂IHr
q

∂Ĥrj

´
. (4.B.20)

The tensors (4.B.11) − (4.B.20) are evaluated at each individual Gauss points and subsequently used
in (4.B.5) and (4.B.6) to finally compute the element force vector and algorithmic tangent stiffness.
We write the expressions (4.B.11) − (4.B.20) explicitly in the ABAQUS UEL routine. The algorith-
mic tangent stiffness tensors are then numerically computed via substituting (4.B.13) − (4.B.17) and
(4.B.20) into (4.65). The scalar derivatives of

“
WH with respect to the invariants in (4.B.11) − (4.B.20)

are straightforward to evaluate. On the other hand, the expressions for the first and second deriva-
tives of the invariants in Table 4.1 with respect to F̂,

“
H and

“
Hr are rather involved. These derivatives

are provided in the following.
Derivatives of the invariants with respect to F̂,

“
H and

“
Hr : For ease in the numerical implemen-

tations, we provide the derivatives in terms of the index notations. First, the derivative of the purely
mechanical invariants with respect to F̂ij are given by

∂̂I1

∂F̂ij
= 2F̂ij,

∂̂I2

∂F̂ij
= 2(̂I1F̂ij − F̂iaF̂abF̂bj),

∂̂I3

∂F̂ij
=

∂̂J

∂F̂ij
= ĴF̂−1ji .

Evidently, the derivatives of the mechanical invariants with respect to Ĥi and Ĥri vanish identically
and hence, are not provided explicitly. The derivatives of the magneto-mechanical invariants are now
given by

∂̂IH4

∂F̂ij
= 0,

∂̂IHHr
4

∂F̂ij
= 0,

∂̂IHr
4

∂F̂ij
= 0,

∂̂IH4

∂Ĥi
= 2Ĥi,

∂̂IHHr
4

∂Ĥi
= Ĥri ,

∂̂IHr
4

∂Ĥi
= 0,

∂̂IH4

∂Ĥri

= 0,
∂̂IHHr
4

∂Ĥri

= Ĥi,
∂̂IHr
4

∂Ĥri

= 2Ĥri ,

∂̂IH5

∂F̂ij
= −2F̂−Tia ĤaF̂
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jb F̂

−T
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5

∂F̂ij
= −F̂−Tia ĤaF̂
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jb F̂

−T
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r
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−T
ia Ĥ

r
aF̂
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jb F̂

−T
bc Ĥc,

∂̂IHr
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∂F̂ij
= −2F̂−Tia Ĥ

r
aF̂
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jb F̂

−T
bc Ĥ

r
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∂Ĥi
= 2F̂−1ia F̂
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ab Ĥ

r
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∂̂IHr
5
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= F̂−1ia F̂
−T
ab Ĥb,

∂̂IHr
5

∂Ĥri

= 2F̂−1ia F̂
−T
ab Ĥ

r
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Subsequently, the second derivative of the mechanical invariants with respect to F̂ij are given by

∂2Î1

∂F̂ij∂F̂kl
= 2δikδjl,

∂2Ĵ

∂F̂ij∂F̂kl
= Ĵ(F̂−1ji F̂

−1
lk − F̂−1jk F̂

−1
li ),

∂2Î2

∂F̂ij∂F̂kl
= 2(2F̂ijF̂kl + Î1δikδjl − F̂ilF̂kj − δikF̂ajF̂al − δjlF̂ibF̂kb).

Notice that all the second order derivatives of all ÎH4 , ÎHHr
4 and ÎHr

4 with respect to F̂ij vanish identically.
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Next, the second order derivatives of the ÎH5 , ÎHHr
5 and ÎHr

5 invariants are given by
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r
b

)(
F̂−Tkc Ĥc
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r
c

)
+
(
F̂−Tia Ĥ
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)(
F̂−1jb F̂

−T
bk

)}
,

∂2ÎH5
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∂2ÎHHr
5

∂F̂ij∂Ĥ
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r
a)(F̂−1jb F̂

−T
bk )
}

.

Finally, the second-order derivatives of ÎH4 , ÎHHr
4 , ÎHr

4 and ÎH5 , ÎHHr
5 , ÎHr

5 invariants with respect to Ĥj and
Ĥrj read
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∂2ÎHr

5
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Appendix 4.C. Residue and derivatives in local Newton iterations

This appendix provides the expressions for the vector (R̂
“
Hr) and scalar (R̂

“
Φr) residues associated

with the computation of local increment in
“
Hr via Algorithm 4.1. Notice from (4.69) and (4.70) that

both R̂

“
Hr and R̂

“
Φr require the expression of B̂rτ in terms of

“
Hτ and

“
Hr,trialτ . The expression for B̂rτ

is obtained via substituting (4.14) into (4.B.18) along with the relevant derivatives of the invariants
given in Appendix 4.B, such that

B̂rτ(
“
Hτ,
“
Hr,trialτ ) = −

µep
2

(
I + C−1

τ

)“
Hτ −

µ0msp
χp

(fhp ) ′
Ç
|

“
Hr,trialτ |

msp

å “
Hr,trialτ

|

“
Hr,trialτ |

. (4.C.1)

Since the evolution of
“
Hr is only relevant in the particle phase, the material properties of the hard

magnetic particles are used in (4.C.1). Consequently, the residues are computed via (4.69) and (4.70).
In turn, the local Newton iterative solver (4.71) requires computing the derivatives of R̂

“
Hr and R̂

“
Φr

with respect to
“
Hr,trialτ and γ̂H,trial

i , so that

R̂

“
Hr
“
Hr ≡ ∂R̂

“
Hr

∂

“
Hr,trialτ

= I − 2γ̂H,trial
i

∂B̂rτ
∂

“
Hr,trialτ

, R̂

“
Hr
“
Φr ≡

∂R̂
“
Hr

∂γ̂H,trial
i

= −2B̂rτ,

R̂

“
Φr

“
Hr ≡

∂R̂
“
Φr

∂

“
Hr,trialτ

= 2
∂B̂rτ

∂

“
Hr,trialτ

· B̂rτ, R̂

“
Φr

“
Φr ≡

∂R̂
“
Φr

∂γ̂H,trial
i

= 0.

Note that the last set of derivatives require the evaluation of the derivative of B̂rτ with respect to“
Hr,trialτ , which from (4.C.1) reads

∂B̂rτ
∂

“
Hr,trialτ

= −
µ0
χp

®
(fhp ) ′′

Ç
|

“
Hr,trialτ |

msp

å
−

msp
|

“
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Ç
|

“
Hr,trialτ |

msp

å´® “
Hr,trialτ

|

“
Hr,trialτ |

⊗

“
Hr,trialτ

|

“
Hr,trialτ |

´
. (4.C.2)

Finally, the linear set of equations to compute the increments ∆
“
Hr,trialτ and γ̂H,trial

i reads from (4.71)
to be 

R̂

“
Hr
“
Hr

11 R̂

“
Hr
“
Hr

12 R̂

“
Hr
“
Hr

13 R̂

“
Hr
“
Φr

1

R̂

“
Hr
“
Hr

21 R̂

“
Hr
“
Hr

22 R̂

“
Hr
“
Hr

23 R̂

“
Hr
“
Φr

2
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“
Hr
“
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31 R̂
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“
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32 R̂

“
Hr
“
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33 R̂

“
Hr
“
Φr

3

R̂

“
Φr

“
Hr

1 R̂

“
Φr

“
Hr

2 R̂

“
Φr

“
Hr

3 R̂

“
Φr

“
Φr



∆(Ĥr,trialτ )1
∆(Ĥr,trialτ )2
∆(Ĥr,trialτ )3
∆γ̂H,trial

i

 = −


R̂

“
Hr
1

R̂

“
Hr
2

R̂

“
Hr
3

R̂

“
Φr

 . (4.C.3)

The last is solved in the UEL at each Gauss point in order to implement the Algorithm 4.1.
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Chapter

5
Microstructurally-guided Continuum
models for s-MREs

Chapter summary: Explicit, phenomenological models for the s-MREs are proposed here in both F − H and
F − B (or equivalently, F − h and F − b) variable spaces. These models are constructed so that they recover
the same purely mechanical, initial and saturation magnetization and initial magnetostriction response of
the analytical homogenization model of Lefèvre et al. (2017) for all sets of material parameters, such as the
particle volume fraction and the material properties of the constituents (e.g., the matrix shear modulus, the
magnetic susceptibility and magnetization saturation of the particles). The functional forms of the proposed
phenomenological models are based on simple energy functions with small number of calibration parameters
thus allowing for the description of magnetoelastic solids in a more general setting. This, in turn, makes them
suitable to probe a large set of experimental or numerical results. The models of the present study show that in
isotropic MREs, the entire magnetization response is insensitive to the shear modulus of the matrix material
even when the latter ranges between 0.003-0.3MPa, while the magnetostriction response is extremely sensitive
to the mechanical properties of the matrix material.
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In this chapter, we present two distinct families of theoretical models; an “implicit” one obtained
by a rigorous homogenization analysis (Lefèvre and Lopez-Pamies, 2016; Lefèvre et al., 2017) and
“explicit” homogenization-guided phenomenological models, which are calibrated to recover the
implicit homogenization estimates for a very large range of material parameters. In particular, mo-
tivated by microscopic images of standard MREs (Semisalova et al., 2013), we consider in this study



only the case of spherical mechanically stiff but magnetically soft inclusions that are isotropically and
uniformly distributed in a non-magnetic matrix phase. Nevertheless, the same ideas may apply to
other composites such as polymers comprising ferrofluid inclusions (Lefèvre et al., 2017). Notice that
the macroscopic constitutive relations for the s-MREs are given by (4.41). Nonetheless, the macro-
scopic constitutive relations in the Lagrangian (Eulerian) setting can equivalently be obtained from
the macroscopic Clausius-Duhem inequalities (2.64) and (2.63) ((2.36) and (2.35)) (Kankanala and Tri-
antafyllidis, 2004). Since similar to the microscopic model (4.22), the potential energy functions are
defined in terms of the invariants, it can be equivalently expressed in terms of both, the Lagrangian
(H or B) and Eulerian (h or b) magnetic fields.

In the original work of Lefèvre et al. (2017), the variational homogenization-based models for both
WH(F, H) and WB(F, B) were proposed. In the first case, an explicit estimate has been proposed for
linear magnetic particles (i.e. linear local magnetic response of the particles) and an implicit one for
nonlinearly saturating ones. However, only an explicit model for linear magnetic particles has been
proposed for WB(F, B), which resulted by a partial Legendre-Fenchel transform of the corresponding
WH(F, H) model.

To fill this gap and simplify possible numerical implementations of such models in general pur-
pose finite element codes, we propose simple explicit energy densities WH(F, H) and WB(F, B) for
nonlinearly saturating magnetic particles that are calibrated by using the analytical explicit and im-
plicit homogenization models. Note, however, that the free parameters in the phenomenological
models can be calibrated independently by available experiments or other numerical calculations,
thus offering a well-designed yet simple energy description for MREs.

Specifically, the analytical solutions of Lefèvre et al. (2017) consider an incompressible I1−dependent
matrix phase and mechanically rigid but magnetically soft particles without magnetic hysteresis.
Thus, for the incompressible matrix phase, which is also magnetically inert (i.e., χm = 0), (4.22) along
with (4.15) and (4.23) reduce to (Lefèvre et al., 2017)“

Wm(F̂,
“
H) =

ρ̂0ψ̂mech,m(̂I1) −
µ0
2
ÎH5 if Ĵ = 1,

+∞ otherwise.
(5.1)

In the special case of an incompressible Neo-Hookean material, ρ̂0ψ̂mech,m(̂I1) = Gm(̂I1 − 3)/2, with
Gm denoting the shear modulus of the matrix. Here, the energy associated with the magneto-active
mechanically rigid particles (i.e., with shear modulus Gp = +∞) is given by“

WH
p (F̂,

“
H) =

{
−Sp(̂IH5 ) if Ĵ = 1,

+∞ otherwise.
(5.2)

where ÎH5 is the local invariant and has been defined in Table 4.1, while the function S(̂IH5 ) is any
nonlinear saturation function. In the present study, we report results for the Langevin-type saturation
function defined in (4.23) for Ĵ = 1, such that

Sp(̂IH5 ) =
µ0
2
ÎH5 +

µ0(msp)2

3χp

ß
ln
ï

sinh
Å
3χp

msp

»
ÎH5

ãò
− ln
ï
3χp

msp

»
ÎH5

ò™
. (5.3)

Here, χp and msp are the magnetic susceptibility and magnetization saturation of the particles, respec-
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tively. While the analytical homogenization model of Lefèvre et al. (2017) only provides WH(F, H)
and WB(F, B) for an incompressible material, the proposed phenomenological models also provide
the compressible versions of WH(F, H) and WB(F, B), which, in turn, ease the FE computations con-
siderably.

5.1 Analytical homogenization solutions

Given the above-described local energies for the matrix and the particle phase by (5.1) and (5.2),
respectively, the homogenized energy reads (Lefèvre et al., 2017)

WH(F, H) =

ρ0ψmech(F) − c Sp(IH5 ) +
c ξ

2
IH5 +

1

2
(v (ξ) − z (ξ)) IH4 −

v (ξ)
2
IH5 if J = 1

+∞ otherwise.
(5.4)

In this expression, the purely mechanical effective energy is given by (Lopez-Pamies et al., 2013)

ψmech(F) = (1− c)ψ̂mech,m(I1), (5.5)

where ψ̂mech,m is defined in (4.15) for a Neo-Hookean material, c denotes the particle volume fraction,

I1 = tr(FTF), IH4 = H • H = FTh • FT h, IH5 = F−TH • F−TH = h • h (5.6)

are the macroscopic invariants and

I1 =
I1 − 3

(1− c)7/2
+ 3, IH5 = −

54c(1− c)(ξ− µ0)µ20
5[(2+ c)µ0 + (1− c)ξ]3

IH4 +
9[(10− c+ 6c2)µ0 + (5+ c− 6c2)ξ]µ20

5[(2+ c)µ0 + (1− c)ξ]3
IH5 . (5.7)

The effective coefficients v(ξ) and z(ξ) are given by

v(ξ) = µ0 +
3c(10+ 2c+ 3c2)(ξ− µ0)µ20
5[(2+ c)µ0 + (1− c)ξ]2

+
3c(1− c)(5+ 3c)(ξ− µ0)µ0ξ

5[(2+ c)µ0 + (1− c)ξ]2
(5.8)

and
z(ξ) = µ0 +

3cµ0(ξ− µ0)
[(2+ c)µ0 + (1− c)ξ]

, (5.9)

respectively. The variables v and z depend also on c and implicitly via ξ on F and H but for the sake
of clarity in the notation, we have omitted this dependence in the last two equations.

Then, the variable ξ is defined implicitly as solution of the nonlinear algebraic equation

2S ′p(I
H
5 ) − ξ = 0. (5.10)

This last equation cannot be solved analytically for any standard nonlinear saturation function. It
implies that the term ξ has no explicit expression in terms of the model parameters, rather, it has
an implicit dependence on the F and H fields as well as on the volume fraction c and the magnetic
constants χp and msp . Therefore, WH in (5.4) is an implicit function of F and H.

For practical purposes, we recall the expressions used to evaluate the total stress S and Lagrangian
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magnetic field B, i.e.,

S = 2ρ0(1− c)−5/2(ψ̂mech
m ) ′(I1)F + v(ξ)F−TH⊗ F−1F−TH − pF−T , (5.11)

with p indicating an arbitrary hydrostatic pressure arising from the incompressibility constraint J = 1
and

B = (z(ξ) − v(ξ))H + v(ξ)F−1F−TH. (5.12)

Those expressions can be used appropriately to impose a Eulerian field ha together with a purely
mechanical traction as described in equation (4.49) (see the discussion under Remark 4.2). In the
following, it is necessary to remark two important limiting cases for equation (5.10).

Remark 5.1. In the limit of small h-fields and deformation gradients, i.e., ĪH4 → ĪH5 and ĪH5 → 0 or
equivalently |H| → 0 and |FH| → 0, S(IH5 ) becomes linear in IH5 , which now reads S(IH5 ) = µpI

H
5 /2,

with µp = µ0(1+ χp) or equivalently ξ = µp. This linearization of S, together with (5.10), lead to the
effective magnetic permeability µ of the MRE at small magnetic fields, which reads

µ = z(µp) = µ0 +
3 c µ0(µp − µ0)

[(2+ c)µ0 + (1− c)µp]
≡ (1+ χ)µ0, (5.13)

while

v = v(µp) = µ0 +
3c(10+ 2c+ 3c2)(µp − µ0)µ20
5[(2+ c)µ0 + (1− c)µp]2

+
3c(1− c)(5+ 3c)(µp − µ0)µ0µp
5[(2+ c)µ0 + (1− c)µp]2

. (5.14)

Both µ and v1 are of course independent of F and H. In this last expression, and for later use, we
have also defined the effective susceptibility χ = µ/µ0 − 1 of the MRE. It is also noted that (5.13)
corresponds to the well-known Maxwell-Garnett (or equivalently Hashin-Shtrikman) estimate for
purely magnetic composites (Psarra et al., 2017). As a consequence, (5.4) may be expressed explicitly
as

WH
0 (F, H) =

ρ0ψmech(F) +
v− µ

2
IH4 −

v

2
IH5 if J = 1

+∞ otherwise.
(5.15)

Here, the superscript 0 is used to denote the limiting case of |H| → 0, while the coefficient v(µp) is
given by (5.14).

Remark 5.2. In the limit of very large magnetic fields, i.e., |H| → ∞, S(IH5 ) = µ0I
H
5 /2 and hence

z = ξ = µ0. In that same limit, the effective magnetization may be found to be simply

m = ms
h
|h|

, ms = cmsp , (5.16)

which readily defines the effective saturation magnetization ms of the MRE. This result has also been
confirmed numerically by Danas (2017) in the context of MREs, where the magnetization saturation
of the MRE was shown to be independent of the microstructure itself but only function of the volume
fraction of the particles.

1Henceforth, it is implied v = v(µp).
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These last two remarks are extremely important for proposing simple and consistent phenomeno-
logical models in the following sections.

5.1.1 Explicit homogenization estimates for linear magnetic particles: F-B version

Owing to the linearity of WH
0 defined in (5.15) in the magneto-mechanical invariants IH4 and IH5 , one

can obtain the corresponding complimentary energy density WB
0 (F, B) by application of the partial

Legendre-Fenchel transform with respect to H (Bustamante and Ogden, 2012)

WB(F, B) = sup
H

[
B • H +WH(F, H)

]
, (5.17)

such that (Lefèvre et al., 2017)

WB
0 (F, B) =

ρ0ψmech(F) +
1

2v

ñ
IB5 + η2IB4 + η(I1IB5 − IB6 )
1+ η3 + η2I2 + ηI1

ô
if J = 1

+∞ otherwise,

(5.18)

where the coefficient η = (µ− v)/v is introduced for convenience in the notation. The invariants IB4 , IB5
and IB6 are the standard magneto-mechanical ones defined in terms of B and, in the incompressible
limit J = 12, they are given by

IB4 = B • B = F−1b • F−1b, IB5 = FB • FB = b • b IB6 = FTFB • FTFB = Fb • Fb, (5.19)

respectively.
As it is evident from relation (5.18), WB

0 exhibits a non-trivial coupling between purely mechanical
and magneto-mechanical invariants. Nevertheless, by a closer inspection of the expression (5.18), we

Figure 5.1: (a) Contour plot of the coefficient η as a function of the particle volume fraction c and the nor-
malized magnetic permeability of the particles µp/µ0. (b) Difference between the exact and approximate
homogenization energy functions for a representative case of c = 0.15 and µp/µ0 = 31 indicated by a red point
in part (a).

2The invariants IB4 , IB5 and IB6 are all multiplied with J2 in the case of compressible materials.
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observe that the parameter η is proportional to µ− v, which is shown in Fig. 5.1a to be significantly
smaller than unity for volume fractions c 6 0.3 and magnetic permeabilities of particles µp/µ0 < 50.
This observation allows us to approximate WB

0 even further, an operation that will prove very useful
in the next section where we propose explicit phenomenological models.

Thus, by neglecting higher order terms in O(η2) in (5.18), and keeping only the zero order term
in I1 = 3+O(|F − I|2), we obtain the approximate energy density

WB
0

∣∣
|η|�1 (F, B) =

ρ0ψmech(F) +
1

2v

ñ
τ IB5 + η(3IB5 − IB6 )

1+ 3η

ô
if J = 1

+∞ otherwise.

(5.20)

Here, the coefficient τ is introduced to ensure that the second term of (5.20) consistently leads to
IB5 /2µ in the limiting case of |b|→ 0 and is consequently evaluated to be

τ =
5vµ− 2v2 − 2µ2

vµ
(5.21)

after considering the limit |b|→ 0 in (5.20). Finally, substitution of (5.21) into (5.20) leads to

WB
app(F, B) =

ρ0ψmech(F) +
(v− µ)

2v(2v− 3µ)
(IB5 − IB6 ) +

1

2µ
IB5 if J = 1

+∞ otherwise,
(5.22)

The approximate linearized energy (5.22) is compared with the original homogenized energy (5.18)
in Fig. 5.1b. As is easily observed, the difference between those two estimates is very small and thus
allows us to use expression (5.22) to obtain the initial response of the subsequent phenomenological
model in the F − B space in a straightforward manner. It is finally noted that all energies discussed
in this section comprise the same purely mechanical part, which is explicit and has been originally
proposed in the work of Lopez-Pamies et al. (2013).

5.2 Microstructurally-guided explicit phenomenological models

In this section, we propose fully explicit, homogenization-guided phenomenological models for the
MRE using both F − H and F − B variables. The phenomenological models are proposed in terms of
two additional modeling parameters, which are subsequently obtained via consistent linearization
and fitting with the homogenized models. First, we propose models for incompressible MREs and
then extend in an ad-hoc manner those models for nearly incompressible ones. This extension serves
only practical purposes since it allows for a simpler numerical implementation. For consistency, we
impose on the phenomenological model certain important properties, which are:

1. the phenomenological models shall have the same purely mechanical part than the homoge-
nized models, i.e., ψmech(F) = (1− c)ψ̂mech,m(I1) with I1 given by (5.7).

2. for H = 0 and arbitrary F, both phenomenological models shall recover exactly the analytical
homogenization solutions (5.15) and (5.22) for the F − H and F − B versions, respectively. This
condition implies first that the phenomenological and homogenized models shall deliver the
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same initial magnetization response or equivalently give the same slope in the b − h space,
i.e., µ as defined from relation (5.13). Secondly it implies that they both result in the same
magnetostrictive response as H → 0 or whenever the magnetic particles are modeled as linear
magnetic materials without saturation.

3. for |H|→∞, both phenomenological and homogenized models shall lead to the same saturation
magnetization response, i.e., |m| = ms obtained in (5.16).

5.2.1 Explicit F-H phenomenological model

Given the above requirements, we propose a phenomenological energy function for incompressible
MREs in terms of three distinct energy contributions, namely, a fully decoupled mechanical and
magnetic energy and an additional coupling energy, which reads

WH(F, H) =

ρ0ψmech(F) + ρ0ψHmag(I
H
5 ) + ρ0ψHcouple(I

H
4 , IH5 ) −

µ0
2
IH5 if J = 1

+∞ otherwise,
(5.23)

where the effective mechanical free energy ρ0ψmech is given by (5.5), and IH4 and IH5 by (5.6). Instead,
the purely magnetic part ρ0ψHmag is given in terms of a Gaussian Hypergeometric function, denoted by
2F1, as

ρ0ψ
H
mag(I

H
5 ) = −

µ0
2
χIH5 2F1

 1

kH
,
2

kH
, 1+

2

kH
,−

Ñ
χ
»
IH5

ms

ékH ,

= −
µ0
2
χ|h|22F1

ñ
1

kH
,
2

kH
, 1+

2

kH
,−
Å
χ |h|
ms

ãkHô
= ρ0ψ

h
mag(h). (5.24)

In this expression, kH is a positive integer, ms = cmsp denotes the effective saturation magnetization
and χ = (µ/µ0 − 1) is the effective magnetic susceptibility, which is given by (5.13). The function 2F1

is typically expressed in terms of a series given by,

2F1[a,b, c; z] =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (5.25)

with
(x)0 = 1 and (x)n = x(x+ 1) · · · (x+n− 1).

It can be shown via rigorous convergence tests that the infinite series in (5.25) converge for all z < 0
and non-negative a, b and c (Abramowitz and Stegun, 1972, p. 81-86). Hence, (5.25) can be evaluated
numerically in a straightforward manner (Perger et al., 1993; Hankin, 2015). Of interest, however, are
the first and second derivatives of ρ0ψhmag(h) with respect to h, which, as shown in the following, take
very simple algebraic forms.

Subsequently, motivated by the corresponding homogenized model in equation (5.4), we express
the coupled magneto-mechanical energy as a function of the two invariants IH4 and IH5 , thus taking
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the form
ρ0ψ

H
couple(I

H
4 , IH5 ) = ρ0ψH4 (IH4 ) − ρ0ψH5 (IH5 ), (5.26)

with

ρ0ψ
H
i (IHi ) = βH1

µ0(ms)2

2χ
ln

ñ
1+

4∑
q=1

1

c

Å
4

5
χ

ãq+1Å
c

βH2

ãqÅ»IHi
ms

ã2qô
, i = 4, 5. (5.27)

In the above expressions, we have introduced three free parameters, namely, kH, βH1 and βH2 . The
evaluation and selection of these parameters using the analytical homogenization model in (5.4) is
described in detail in the following.

The selection of the parameter kH : We start by noting that the derivative of the Gaussian Hyper-
geometric function 2F1 with respect to its argument has a very simple form, which reads

m = −
ρ0
µ0

∂ψHmag

∂h
=

χh[
1+ (χ)kH

(
|h|/ms

)kH]1/kH . (5.28)

Here, the initial susceptibility is always χ irrespective of the value of kH thus leading to the correct
(in the sense of homogenization) initial effective magnetization response of the MRE. The same is
true for the saturation response, which gives |m| = ms as required by the homogenization process.
On the other hand, the rate of magnetization depends on the power coefficient kH, which may be
calibrated to follow closely the homogenized response. Specifically, by direct calibration, we find in
Section 5.3 that a value

kH = 4 (5.29)

leads to a good fit for the magnetization response for all volume fractions c ∈ [0, 0.3] and matrix

Figure 5.2: Comparison of (a) the magnetic energy functions and of (b) their derivatives obtained from and
hypergeometric ψHmag saturation function given in equation (5.28) for various exponents kH, the Langevin
function (based on definition (4.23)) and the hyperbolic tangent function (see equations (2.12) and (2.14) in
Danas (2017)).

shear moduli analyzed in the present study. Of course, given any experimental data, a different
value for kH may be used. For illustration purposes, we show in Fig. 5.2 representative curves of
the hypergeometric function and its derivative, which gives the m − h response as evaluated from
equation (5.28). For comparison, magnetization curves obtained by the Langevin (based on definition
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(3.26)) and the hyperbolic tangent functions (see equations (2.12) and (2.14) in Danas (2017)) are also
shown. The use of a hypergeometric function is done in order to allow for flexibility in the calibration
process since the homogenized response of an MRE comprising magnetic particles with Langevin-
type magnetization saturation response does not lead to an effective magnetization response of a
Langevin-type, as is discussed in Section 5.3. Before proceeding to the coupled energy part, we
note further that the decoupled mechanical and magnetic energies are expressed in terms of the
homogenized material parameters, which can be evaluated directly in terms of the constituents’
properties and the particle volume fraction c.

The evaluation of the parameter βH1 : To facilitate the relevant discussion, we show in Fig. 5.3 the
response of ρ0ψHi as a function of the invariant IHi . First, we observe that ρ0ψHi is non-convex with
respect to

»
IHi since its derivative increases rapidly from zero to a maximum and then gradually

decreases to zero (see Fig. 5.3b). As we will see in the following, such a function allows to obtain

Figure 5.3: Representative plots of (a) the function ρ0ψHi (with i = 4, 5) and (b) of its derivative with respect to»
IHi for q = 1, 2, 4.

a material magnetostriction response that is initially quadratic, subsequently increases in a non-
quadratic manner until finally reaching a saturating state.

Another important comment is related to the specific form of ρ0ψHcouple, i.e., the subtraction term
ρ0ψ

H
4 (IH4 ) − ρ0ψH5 (IH5 ). This is done for two reasons. First, the derivation of ρ0ψHcouple with respect to

h leaves the magnetization response completely unaffected at small and very large applied magnetic
fields ha, thus allowing the hypergeometric function in equation (5.24) to completely control the
m − h response at the initial regime and the saturation regime. The second reason is that only the
IH4 = FTh • FT h part of the function contributes to the magnetostriction whenever a Eulerian field ha
is applied, while the corresponding IH5 = h • h part induces no magnetostriction.

In view of the above observations, the evaluation of βH1 is readily obtained by enforcing an exact
equivalence between the phenomenological model (5.23) and the linearized homogenized model (5.4)
in the limit of |h| → 0. To achieve that, we expand WH in equation (5.23) around IH4 = IH5 = 0, to
obtain

WH
0 (F, H) =

ρ0ψmech(I1) + 16
(µ− µ0)
50

βH1
βH2

(IH4 − IH5 ) −
µ

2
IH5 if J = 1

+∞ otherwise.
(5.30)
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By direct matching of the individual coefficients of IH4 and IH5 in (5.30) with those in (5.15), one gets

βH1 =
25

16

(v− µ)
(µ− µ0)

βH2 . (5.31)

The above definition of βH1 ensures that the initial (quadratic) magnetostriction obtained from the
homogenization model (5.4) and the phenomenological model (5.23) is exactly the same. Evidently,
(5.30) becomes independent of βH2 after substitution of (5.31) for βH1 .

The selection of the parameter βH2 : The parameter βH2 affects the magnetostriction response at
larger h-fields as a result of the nonlinearity of the coupled function ρ0ψHcouple in (5.26) but not the
initial magnetostriction. Therefore, the parameter βH2 needs to be calibrated numerically by fitting the
magnetostriction response of the phenomenological model with that of the homogenized model (5.4)
at large h. It is worth noting here that the numerical fitting process is carried out by considering a
zero applied mechanical traction (see equation (4.49)) and a Eulerian applied h-field ha, as discussed
in Section 4.6.3. To achieve that, we employ the least square-based curve fitting algorithm lsqcurvefit

of MATLAB (2017).
More specifically, the coupling coefficient βH2 essentially depends on four material parameters:

the shear modulus Gm of the matrix, the initial susceptibility χp, the saturation magnetization msp
of the particles and the particle volume fraction c. In practice, most of the MREs are fabricated by
curing the commercially available carbonyl iron particles along with various elastomers in different
proportions (Danas et al., 2012b; Psarra et al., 2017; Bodelot et al., 2017; Psarra et al., 2019). Therefore,
Gm and c are the two key parameters3 that vary for different MRE samples, while we set χp = 30 and
µ0msp = 2.5T, as obtained experimentally in Psarra et al. (2017).

First, we observe that βH2 becomes almost independent of Gm and c for Gm > 1MPa. Hence, we
introduce a non-dimensional shear modulus, G∗m = Gm/G

Ref
m , where GRef

m = 1MPa. The fitting process
then involves scanning for the optimum βH2 in the 0.001 6 G∗m 6 1.5 and 0 < c 6 0.3 range, as shown
in Fig. 5.4a. The fitting of the contour in that figure gives

βH2 (G∗m , c) = αH1 (G∗m) −αH2 (G∗m)L
[
cαH3 (G∗m)

]
, (5.32)

with

αH1 (G∗m) = exp
[
− 0.29 tanh

{
0.27(lnG∗m + 7)

}
− 1.575

]
,

αH2 (G∗m) = exp
[
4.4L(−0.78 lnG∗m) − 5.2

]
,

αH3 (G∗m) =
0.1

G∗m + 0.0007
− 5.4G∗m + 6.75.

Here, L(.) is the Langevin function given by (3.26). Specifically, the evolution of βH2 with respect to
G∗m is mainly controlled by the coefficients αH1 and αH2 . The third coefficient αH3 is used to model the
variation of βH2 with respect to c for a given G∗m . The dependence of the functions αH1 and αH2 on G∗m
is shown in Fig. 5.4b, where we observe that αH2 ≈ 0 for G∗m > 1, i.e., for all Gm > G

∗
m . Hence, beyond

G∗m > 1 a constant βH2 ≈ 0.155 is sufficient. On the other hand, for very soft, gel-like MREs, i.e., in

3Different values of χp and msp are expected to change the functions obtained below but only weakly, whereas one can
always find the optimal coefficient βH2 by simply fitting the homogenized model for the given set of material properties of
interest.
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Figure 5.4: (a) Calibrated βH2 (G∗m , c) in the G∗m − c space with the smooth surface showing the profile of the
function (5.32) for βH2 (G∗m , c) and the black dots representing the optimized βH2 as obtained via fitting the
magnetostriction response with the analytical homogenization model. (b) Evolution of the functions αH1 (G∗m )
and αH2 (G∗m ) in (5.32) with G∗m .

the range of 0.01 6 G∗m 6 0.001, the coupling coefficient βH2 becomes highly sensitive to G∗m and c,
resulting in a significant variation of βH2 in this particular range (see Fig.5.4a).

Remark 5.3. In spite of the fact that the assumption of an incompressible matrix and rigid parti-
cles leads to very efficient analytical estimates of the effective response, compressible models for the
MREs are employed in most of the computational investigations due to their simplicity to incorporate
them in a finite-element solver. Unfortunately, carrying out the homogenization problem for a com-
pressible matrix is extremely difficult and no rigorous model is available up to date neither for the
purely mechanical part nor for the magneto-mechanical part. In this regard, we propose an ad-hoc
extension of the incompressible phenomenological model (5.23) that essentially relaxes the assump-
tion of incompressibility without affecting the aforementioned key features of the model at least in
the case of high bulk modulus (i.e. nearly incompressible materials). The proposed compressible
model reads

WH
comp(F, H) = ρ0ψcomp

mech(I1, J) + ρ0ψHmag(I
H
5 ) + ρ0ψHcouple(I

H
4 , IH5 ) −

J µ0
2
IH5 , (5.33)

where
ρ0ψ

comp
mech(I1, J) = ρ0ψmech(I1) −

Gm

(1− c)5/2
ln J+

G′m
2(1− c)6

(J− 1)2. (5.34)

where ρ0ψmech and I1 have been defined in (5.5) and (5.7), respectively, whereas G′m is the Lamé con-
stant associated with the compressibility modulus of the matrix. A nearly incompressible response is
obtained for values G′m > 100Gm, which is the key assumption in most of the numerical computations
associated with MREs. In that range, we observe no visible difference between the incompress-
ible and the nearly incompressible versions for both the magnetostriction and the magnetization
response. Nevertheless, as noted in Appendix 4.B, special care must be taken while computing
the element force and stiffness matrices for such nearly incompressible materials, which are prone to
volumetric locking if a standard 4-point Gauss quadrature rule is applied.
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5.2.2 Explicit F-B phenomenological model

In principle, one can obtain an equivalent F-B model via the partial Legendre-Fenchel transformation
(5.17) of (5.23) with respect to H. However, due to the severe nonlinearity of the functions associated
with the proposed F-H model (5.23), one can not obtain its complementary energy in an explicit
form. Instead, a complementary energy WB, which has the exact same form as that of WH in (5.23),
is proposed directly as

WB(F, B) =

ρ0ψmech(F) + ρ0ψBmag(I
B
5 ) + ρ0ψBcouple(I

B
5 , IB6 ) +

1

2µ0
IB5 if J = 1

+∞ otherwise,
(5.35)

where the magneto-mechanical invariants IB5 and IB6 have been defined in (5.19). Evidently, the first
term of (5.35) that represents the purely mechanical component of WB is identical to that in (5.4)
and (5.23), and is given by (5.5). Also, the last term of (5.35) represents the F-B version of the
magnetostatic energy of free space (Dorfmann and Ogden, 2004).

It remains then to prescribe the two free energies, namely, the magnetic and the coupled free
energy. Due to their intrinsic properties, ρ0ψBmag and ρ0ψ

B
couple retain the same functional form to

their F-H counterparts (5.24) and (5.26), respectively. Note that, as shown in Figs. 5.2 and 5.3, the
hypergeometric 2F1 and the ρ0ψHi functions are rich enough to model a wide variety of constitutive
responses.

In this regard, the purely magnetic part ρ0ψBmag is chosen as

ρ0ψ
B
mag(I

B
5 ) = −

χ

2µ0 (1+ χ)
IB5 2F1

 1

kB
,
2

kB
, 1+

2

kB
,−

Ñ
χ
»
IB5

(1+ χ)µ0ms

ékB
= −

χ

2µ0 (1+ χ)
|b|2 2F1

ñ
1

kB
,
2

kB
, 1+

2
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while, the coupling free energy is defined by

ρ0ψ
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B
5 , IB6 ) = ρ0ψB6 (IB6 ) − ρ0ψB5 (IB5 ), (5.37)

with
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, (5.38)

where i = 5, 6 and again ms = cmsp . Notice that (5.36) admits to a similar form as in (3.44) with a
different gb in this context of s-MREs having CI particles.

Remark 5.4. As stated earlier, (5.37) retains an identical functional form as its F-H counterpart in
(5.26) except that the magneto-mechanical coupling is now modeled in terms of the invariant IB6 . This
choice of the coupling invariant is not arbitrary. Rather, it is directly equivalent to the F-H model.
The invariant IH4 in the F-H model can be expressed in terms of the Eulerian h as IH4 = FTh • FTh.
The Legendre-Fenchel transform of that invariant leads to the invariant IB6 = FTb • FTb. In addition,
and perhaps more importantly, we have shown that, in the linearized regime, the corresponding
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homogenized model (5.18) can be approximated accurately by the model in (5.22), which in turn
depends on IB5 and IB6 .

In expressions (5.36) and (5.37), we have introduced three free parameters, namely, kB, βB1 and βB2 .
The evaluation and selection of these parameters using the analytical homogenization model defined
in (5.4) as well as the approximate linearized one in (5.22) is described in detail in the following.

The selection of the parameter kB : Similar to the F-H version, a single exponent

kB = 6 (5.39)

provides a good fit to the magnetization response for all particle volume fractions and matrix shear
moduli considered in this study. Note that the purely magnetic energy (5.36) in the F-B model is not
an exact Legendre transform of the corresponding magnetic energy (5.24) of the F-H model. Thus,
no direct correlation can be drawn between the model parameters kB and kH and their calibration
values. Nevertheless, this observation of having a relatively stiffer saturation function for the F − B
model as compared to its F − H counterpart also features in the hysteretic magnetization response,
which is detailed in Chapter 3.

The evaluation of the parameter βB1 : The evaluation of the coefficient βB1 is carried out in a
similar fashion (i.e., via consistent linearization and fitting with the homogenized response) to the
F-B homogenization model. In the limit of small |b| → 0, (5.35) can be expanded in terms of the
invariants around IBi = 0 (with i = 5, 6). Thus, retaining only the leading order terms in IBi , one can
express (5.35) as

WB
0 (F, B) =

ρ0ψmech(F) +
25

32

βB1
βB2

(µ− µ0)
µµ0

(IB6 − IB5 ) +
1

2µ
IB5 if J = 1

+∞ otherwise.
(5.40)

By direct matching of this last free energy function with the approximate linearized one defined in
equation (5.22), we obtain

βB1 =
16

25

µ0µ(v− µ)
v(µ− µ0)(3µ− 2v)

βB2 . (5.41)

The above relation for βB1 ensures that the initial (quadratic) magnetostriction obtained from the
homogenization model (5.22) and the phenomenological model (5.35) is exactly the same. Evidently,
(5.40) becomes independent of βB2 after substitution of (5.41) for βB1 .

The selection of the parameter βB2 : The parameter βB2 affects the magnetostriction response at
larger h-fields as a result of the nonlinearity of the coupled function ψBcouple in (5.37). Thus, the F-B
phenomenological model is also reduced to a single modeling parameter, βB2 . This parameter is then
obtained by fitting the material magnetostriction obtained from the phenomenological model (5.35)
with that from the homogenization model (5.4). The optimal βB2 for a given G∗m and c is shown by
black squares in Fig. 5.5, which is qualitatively similar to Fig. 5.4a. For convenience in the notation,
here we use the same non-dimensional shear modulus G∗m as defined in Section 5.2.1. Specifically, we
use two piecewise continuous functions of G∗m and c to model the variation of βB2 in the G∗m − c space,
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Figure 5.5: Calibrated βB2 (G∗m , c) in the G∗m − c space with the smooth surface showing the profile of the function
(5.42) for βB2 (G∗m , c) and the black dots representing the optimized βB2 as obtained via fitting the magnetostric-
tion response with the analytical homogenization model.

which reads

βB2 (G∗m , c) =

{
αB1 (G∗m) −αB2 (G∗m)L

[
cαB3 (G∗m)

]
, if G∗m 6 0.1

0.4055− 0.5 c
[
1− 0.67L(15G∗m)

]
otherwise

(5.42)

with

αB1 (G∗m) = exp
[
− 0.029 lnG∗m − 0.982

]
,

αB2 (G∗m) = exp
[
1.78L(−0.32 lnG∗m) − 1.78

]
,

αB3 (G∗m) = exp
[
0.14− 0.54 lnG∗m

]
.

Here, L(.) is again the Langevin function defined in (3.26). The first function is similar to βH2 with
three coefficients αB1 , αB2 and αB3 , which are functions of G∗m , whereas, the second function, which
models βB2 for all G∗m > 0.1, is rather a simple function of G∗m and c. We observe in Fig. 5.5 that
the two fitting functions for βB2 have approximately the same magnitude near G∗m = 0.1. Thus, the
particular choice of piecewise continuous βB2 ensures a constant transition from the Langevin decay
to the linear decrease regime. Again, it is emphasized that the calibration (5.42) is valid for the Neo-
Hookean hyperelastic matrices. Any other model (e.g. Gent model) for the soft matrix material may
necessitate re-calibration of βB2 .

Remark 5.5. A compressible version of (5.35) is given by

WB
comp(F, B) = ρ0ψcomp

mech(I1, J) + ρ0ψBmag

Ç
IB5
J2

å
+ ρ0ψ

B
couple

Ç
IB5
J2

,
IB6
J4

å
+

1

2µ0J
IB5 , (5.43)

where ρ0ψcomp
mech is given by (5.34). Unlike the compressible F − H model (5.33), the argument of the

magnetic energy in the F−B is not a function of the IB5 invariant alone. Rather, IB5 /J
2 is used in (5.43)
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as the argument of ρ0ψBmag, which thus ensures a nearly incompressible material response (see also
(Danas, 2017)). In turn, the IB6 -based argument of the coupled free energy ρ0ψBcouple is defined to be
in terms of IB6 /J

4 in this compressible version of the F − B model. Again, special care must be taken
while numerically integrating such nearly incompressible constitutive models while constructing
the element force and stiffness matrices. In particular, it is recommended to use the 1-point Gauss
quadrature while integrating the volumetric energy term of ρ0ψcomp

mech.

5.3 Results: assessment of the theoretical models

The assessments of the analytical homogenization and the phenomenological models are carried
out via first, probing the analytical model with the RVE computations. The responses of proposed
F − H and F − B phenomenological models are then compared with the analytical homogenization
responses under no mechanical pre-loads, i.e., in the loading path, which is considered to calibrate
βH2 and βB2 . Finally, the model response is also compared to the analytical homogenization estimates
under applied mechanical pre-loads, namely, pre-uniaxial and equibiaxial tension/compression and
pre-shear.

5.3.1 Comparison between analytical homogenization and numerical computations

First, we compare the average FE magnetization and magnetostriction response of Fig. 4.5 with those
obtained from the analytical F-H homogenization model, defined in (5.4). Note that the homogeniza-
tion model is incompressible. Thus, we consider F = λ1e1 ⊗ e1 + 1/

√
λ1e2 ⊗ e2 + 1/

√
λ1e3 ⊗ e3 and

subsequently, for a given h, we compute λ1 and the arbitrary pressure p by solving the first two equa-
tions given by the traction conditions (4.84)1. The magnetization and the magnetostriction response

Figure 5.6: (a) Effective magnetization and effective (b) parallel and (c) transverse magnetostrictions as ob-
tained from the numerical homogenization (discrete points), analytical homogenization (firm lines) for the
particle volume fractions c = 0.1, 0.2 and 0.3. Eulerian h-field is applied at a local point in the MRE, which is
free from mechanical tractions.

from the analytical homogenization model and the FE simulations are compared in Fig. 5.6. In this
figure, for volume fractions c = 0.1 and 0.2, we observe an excellent agreement between the analytical
and FE homogenization models for both the magnetization and the magnetostriction. For the higher
particle volume fractions, c = 0.3, the analytical homogenization estimates for λi (i = 1, 2, 3) are sig-
nificantly lower in absolute value than that obtained from the FE calculations, as shown in Figs. 5.6b
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and c. Instead, the agreement in the magnetization response is excellent even for c = 0.3.

In this regard, given the fact that the analytical homogenization estimates are very accurate at
volume fractions of practical interest (i.e. c 6 0.2), we choose them in the following to calibrate
our phenomenological models even for larger volume fractions but, more importantly, for much
lower matrix shear moduli, where FE calculations do not converge. Note, however, that the phe-
nomenological models may be calibrated using available experimental results or directly numerical
FE computations.

5.3.2 Comparison between the phenomenological and homogenization estimates with-
out mechanical pre-load

This section assesses the F − H (see equation (5.23)) and F − B (see equation (5.35)) incompressible
phenomenological models for a large range of matrix shear moduli, spanning a range of 0.003 < Gm <

0.3 MPa (or equivalently 0.003 < G∗m < 0.3). In particular, we choose for illustration purposes, three
shear moduli Gm = 0.003, 0.03, 0.3MPa. We set the magnetic properties of the iron particles, i.e., χp and
msp unaltered (see Table 4.2). Finally, we apply the boundary/loading conditions described in (4.84).

The effective magnetization and magnetostriction for G∗m = 0.3, 0.03 and 0.003 and four different
volume fractions c = 0.05, 0.1, 0.2 and 0.3 are shown as a function of the applied Eulerian h−field
h/msp in Figs. 5.7a,d,g and Figs. 5.7b,e,h, respectively. The transverse magnetostriction components,
λ2 and λ3, are equal to 1/

√
λ1 since we consider the MRE to be incompressible in both the analytical

homogenization and the phenomenological models. We find an excellent agreement between the
analytical homogenization estimates and the proposed phenomenological ones, both in terms of m1
and λ1 for all c considered here.

In Figs. 5.7c,f,i, we show the magnetostriction λ1− 1 at various values of the applied Eulerian field
h/msp . At h = 0.2msp , the phenomenological estimates are slightly different from the corresponding
homogenization estimates for particle volume fractions c > 0.25. At higher h-fields, such as h = 0.5msp
or h = 1.5msp , the phenomenological models are in very close agreement with the homogenization
estimates, even for higher particle volume fractions such as c = 0.35. Hence, the slight mismatch
between the phenomenological and the homogenization estimates at moderate fields and large vol-
ume fraction can be directly attributed to the specific functional form of the coupling free energy
(5.26) and (5.37). We note that the calibrated coupling coefficients βH2 and βB2 manage to model very
accurately the saturation magnetostriction, even for c > 0.25, as indicated by the almost perfect over-
lap of the λ1 curves in Figs. 5.7c,f,i at higher applied h-fields. Thus, the overall performance of the
phenomenological models is found to be excellent up to c = 0.25 and even sufficiently accurate for
particle volume fraction of c = 0.35. We recall, here, that the homogenization estimates were found to
underestimate the magnetostriction by comparison to FE results for volume fraction c = 0.3. Hence,
the use of the proposed phenomenological models for volume fractions c > 0.2 should be done with
caution.

Finally, an important observation in the context of Fig. 5.7 is that the computed magnetization
response is fairly independent of the matrix shear modulus G∗m , as easily observed by comparing
parts (a), (d) and (g). Instead, the magnetostriction response is a very strong function of G∗m .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Effective (a,d,g) magnetization and (b,e,h) magnetostriction as a function of the applied normalized
Eulerian field h/msp obtained by the analytical F−H homogenization model (5.4) (solid lines), the phenomeno-
logical F − H model (5.23) (dashed lines) and the phenomenological F − B model (5.35) (dashed-dot lines) for
particle volume fractions c = 0.05, 0.1, 0.2 and 0.3 for matrix shear moduli of Gm = 0.3, 0.03 and 0.003MPa. Zero
average axial mechanical pres-stress is applied. (c,f,i) Effect of particle volume fractions c on the magnetostric-
tions at various values of h/msp .

5.3.3 Comparison between the phenomenological and homogenization estimates with
mechanical pre-load

The final step in the assessment of the proposed phenomenological models is to probe the model
for mechanical pre-loads that lie outside the previous calibration range. We thus consider three
different mechanical pre-loads, namely, the uniaxial pre-stress, the equibiaxial pre-stress and the
pre-shear stress. In this regard, Fig. 5.8, 5.9 and 5.10 show the effective magnetization and pure
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magnetostriction (i.e. λ1 − λ
0
1 with λ01 denoting the initial pre-stretching due to the applied pre-

stress) for Gm = 0.003 and 0.03MPa at a volume fraction c = 0.2 as a function of the applied Eulerian
h−field h/msp . In all subsequent cases, the direction of magnetic loading is prescribed along e1,
while the direction of applied pre-stresses are varied. The magnitude of the applied pre-stresses is
selected in accord with experimentally-relevant pre-stress conditions (see Danas et al. (2012b)). The
corresponding pre-stretches λ0i (i = 1, 2, 3) can be easily computed numerically or analytically for
Neo-Hookean solids and are not presented explicitly here (see e.g., Danas and Triantafyllidis (2014)).

Uniaxial pre-stress load : The uniaxial pre-stresses are applied along the direction 1 or 2, i.e.,
Smech11 /Gm 6= 0 or Smech22 /Gm 6= 0, respectively, retaining the rest of the boundary conditions the same as
those described in (4.84). As discussed before and in agreement with the earlier results of Danas et al.

Figure 5.8: Effective (a,d) magnetization and (b,c,e,f) magnetostriction as a function of the applied normalized
Eulerian field h/msp obtained by the analytical F−H homogenization model (5.4) (solid lines), the phenomeno-
logical F − H model (5.23) (dashed lines) and the phenomenological F − B model (5.35) (dashed-dot lines) for
particle volume fraction c = 0.2 and for matrix shear moduli of Gm = 0.03 and 0.003MPa. (a-c) and (d-f): Two
sets of average uniaxial mechanical pres-stress are applied as Smech11 /Gm = −0.3, 0, 0.3 and Smech22 /Gm = −0.3, 0, 0.3,
respectively.

(2012b), the magnetization response in Fig. 5.8a and d are independent of the matrix shear modulus
Gm and the pre-stress (not labeled in the figure for clarity). All models are in excellent agreement in
this case of magnetization response.

In Fig. 5.8b, c, e and f, the magnetostriction response depends on the pre-stress as expected. We
observe that application of a tensile pre-stress Smech11 /Gm along the direction of the magnetic loading
leads to an enhancement of compression, while application of a compressive pre-stress moves the
magnetostriction curve upwards, i.e. to less compression. These results are in qualitative agreement
with the reported experimental results in Danas et al. (2012b). On the other hand, applied transverse
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tensile and compressive pre-stresses Smech22 /Gm leads to a reduction and an enhancement in the mag-
netostriction, respectively (see Fig. 5.8e and f). Moreover, the variability of the magnetostriction due
to the transverse pre-stress Smech22 is found to be weaker than the axial one, Smech11 .

In all these magnetostriction responses we observe that the phenomenological model, while re-
maining in very good agreement with the homogenization model for small to moderate values
of h, tends to underestimate (in absolute value) the saturating magnetostriction at higher fields.
The differences between the phenomenological and homogenization estimates are larger for the
higher matrix shear modulus Gm = 0.03MPa, while they become much smaller for the lower one
Gm = 0.003MPa. Nevertheless, the phenomenological model retains the correct characteristics even at
large pre-stresses.

Equibiaxial pre-stress load : Equibiaxial mechanical loading together with a transverse applied
magnetic field along the third direction is often encountered in layered MRE structures (Danas and
Triantafyllidis, 2014; Psarra et al., 2017, 2019). Thus, motivated from such practical loading situations,
we probe, next, the phenomenological model under applied equi-biaxial pre-stress along directions
2 and 3, such that Smech22 /Gm = Smech33 /Gm ≡ SmechBi /Gm 6= 0, while the remaining boundary conditions
are given by (4.84). Similar to the uniaxial pre-loading, no significant change in the magnetization
is observed in Fig. 5.9a. The magnetotsriction obtained from the homogenization model is found

Figure 5.9: Effective (a) magnetization and (b,c) magnetostriction as a function of the applied normalized
Eulerian field h/msp obtained by the analytical F−H homogenization model (5.4) (solid lines), the phenomeno-
logical F − H model (5.23) (dashed lines) and the phenomenological F − B model (5.35) (dashed-dot lines) for
particle volume fraction c = 0.2 and for matrix shear moduli of Gm = 0.03 and 0.003MPa. (a-c) Three average
equibiaxial mechanical pres-stress are applied, so that Smech22 /Gm = S

mech
33 /Gm = S

mech
Bi /Gm = −0.3, 0, 0.3.

to change in Fig. 5.9b and c depending on the direction of SmechBi /Gm. A very weak change is ob-
served in the phenomenolgical magnetostriction response. We note that an equibiaxial pre-tension
(pre-compression) along directions 2-3 leads to a pre-compression (pre-tension) along 1, which is
the direction of magnetic loading. Hence, the magnetostriction is observed to decrease (increase)
for SmechBi /Gm > 0 (SmechBi /Gm < 0), which is in agreement with the previous observations in the con-
text of uniaxial pre-stresses. Again the phenomenological model is in better agreement with the
homogenization model for softer matrices.

Shear pre-stress load : The magneto-mechanical measurements in (Danas, 2017) also consider me-
chanical loading paths where a shear pre-stress is applied transverse to the applied magnetic field.
Thus, a shear pre-loading is considered in this section by applying Smech21 /Gm > 0, while keeping the
rest of the boundary conditions identical to (4.84). In agreement with the previous observations, the
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magnetization remains unaffected by the applied Smech12 (see Fig. 5.10a). In Figs. 5.10b and c, the mag-

Figure 5.10: Effective (a) magnetization and (b,c) magnetostriction as a function of the applied normalized
Eulerian field h/msp obtained by the analytical F−H homogenization model (5.4) (solid lines), the phenomeno-
logical F − H model (5.23) (dashed lines) and the phenomenological F − B model (5.35) (dashed-dot lines) for
particle volume fraction c = 0.2 and for matrix shear moduli of Gm = 0.03 and 0.003MPa. (a-c) Three overall
pre-shear stresses are applied: Smech21 /Gm = 0, 0.3, 0.5.

netostriction estimates obtained by both models are completely independent of Smech21 . Furthermore,
the application of Smech21 leads to a shear stain and a transverse magnetization along e2. The result-
ing shear strain is interestingly found by both models to be completely independent of the applied
magnetic field and thus is not included in Figs. 5.10b and c. Similarly, the transverse magnetization
remains considerably lower (∼ 10−3msp) than the parallel magnetization and thus is not included in
Fig. 5.10a. We note in passing that very similar results are also obtained by both models for a shear
pre-stress Smech12 /Gm 6= 0 and thus is not included here for brevity.

In summary, the above results are in qualitative agreement with those in Danas et al. (2012b) and
suggest that MRE devices that are based on a shearing mechanical load exhibit very weak coupling
along that direction and thus negligible magnetorheological stiffening. This is one of the substantial
differences between MR elastomers and MR fluids, since the latter can mainly operate in shearing
conditions. Instead, the MR solids can mainly operate under uniaxial and multi-axial ones.

5.4 Concluding remarks

In this chapter, we present explicit phenomenological models both in the F − H and the F − B space,
which are based on a rigorous homogenization solution and lie in the space of the deformation gra-
dient, F, and Lagrangian h−field, H. We analyze the magnetization and magnetostriction problem
using an augmented variational principle in an effort to retrieve the pure microscopic “material”
magneto-mechanical coupling in magnetorheological elastomers (MREs). We then use this frame-
work to study numerically and analytically the homogenized response of isotropic MREs comprising
I1−based hyperelastic matrix and mechanically rigid iron particles that exhibit negligible magnetic
hysteresis (i.e. magnetically soft). The most important part of this study consists in proposing simple
explicit homogenization-guided phenomenological models in both F − H and F − B variable space.
Those phenomenological models are proposed both in the context of incompressible and nearly in-
compressible setting, making them highly versatile and easy-to-implement in finite element user
material subroutines.
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Specifically, we show by comparison with full-field FE RVE calculations that the analytical ho-
mogenization model of Lefèvre et al. (2017) is sufficiently accurate for small to moderate particle
volume fractions (i.e., 0 < c 6 0.2). While this model is general since it is based on a rigorous homog-
enization procedure, it is implicit for the case of magnetically saturating particles and thus requires
the solution of an additional nonlinear algebraic equation for the complete description of the MRE
response. Also it is only proposed in the F − H variable space since a Legendre-Fenchel transform
is not analytically feasible in the general nonlinear magnetic saturation context. Nonetheless, it of-
fers an extremely valuable base to investigate the response of isotropic MREs and to help calibrate
phenomenological models.

In this regard, in the present study, we propose explicit phenomenological models that are based
on the homogenization model. In particular, the proposed energy functions recover three main
features of the Lefèvre et al. (2017) homogenization model: (i) they recover the exact (in the sense
of homogenization) effective magnetization response at small and very large (i.e. at magnetization
saturation) magnetic fields, (ii) they predict the exact magnetostriction response at small-to-moderate
magnetic fields for any mechanical pre-loads and (iii) their purely mechanical response is exactly that
of the homogenization model, which has been originally obtained in Lopez-Pamies et al. (2013). In
order to maintain the simplicity of the models, we choose not to recover exactly the magnetostriction
response at very large saturating magnetic fields (but see along these directions the recent work in
the F−H space of Lefèvre et al. (2019)). In particular, in a number of applications where the geometry
plays a predominant role (see for instance Psarra et al. (2019)) or the coupling is weak (i.e., at fairly
large shear moduli of the matrix phase, e.g. larger than 0.3MPa for instance), the coupled part of
the energy can be easily dropped while maintaining the dependence on the volume fraction of the
particles in the mechanical and magnetic energy. This last modeling approach is straightforward and
fairly accurate for such applications and requires a minimum set of calibration such as the mechanical
and purely magnetic constitutive parameters of the MRE.

Specifically, in order to obtain the nontrivial behavior of the magnetostrictive response as a func-
tion of the applied Eulerian magnetic field (i.e., is initially quadratic, subsequently increases in a
slower non-quadratic manner reaching a saturating value), we propose a coupling energy that is a
nonconvex function of its argument. It is noted, however, that the coefficient multiplying this cou-
pling part is rather small thus leading to an overall convex magneto-elastic energy function. However,
it is evident from that observation that for more complex MREs (i.e. with non-spherical particles or
particle-chain distributions) such nonconvexities could lead to instabilities and loss of ellipticity (see
for instance (Danas and Triantafyllidis, 2014) and (Psarra et al., 2017, 2019)). Such an analysis is
beyond the scope of the present manuscript and is left for a future study.

Furthermore, the proposed phenomenological model comprises very few calibration parameters,
which in the present study are reduced to a single one, i.e., βH,B

2 . This parameter is then calibrated
numerically by comparison with the analytical homogenization model of Lefèvre et al. (2017). Never-
theless, the form of the phenomenological energy functions is more universal and can be used more
generally in fitting any experimental or numerical estimates that may be available. As also shown,
extrapolation of the phenomenological estimates in a regime that lies rather far from the calibration
process (e.g. significant applied pre-stresses) gives very satisfactory and accurate results at small and
moderate applied magnetic fields and even large fields particularly for softer matrices.

By using the simple explicit energy functions together with the variational framework of Danas
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(2017) that allows to study the pure material magneto-mechanical coupling, we have obtained several
interesting results. Specifically, all presented models show that in the context of isotropic MREs, the
magnetization response is insensitive to the shear modulus of the matrix material even when the
latter ranges from values between 0.003-0.3MPa (this observation is also valid for the larger range
0.001-1MPa not explicitly shown here). On the other hand, the magnetostriction response is highly
dependent of the shear modulus of the matrix Gm, as intuitively expected. A second observation,
which is consistent with the recent work of Danas (2017), is that the microscopic deformation of
isotropic MREs leads to compressive magnetostriction for zero overall mechanical tractions in the
RVE. Hence, the observed overall extensive response of MRE specimens in experiments (see for
instance Bodelot et al. (2017)) is a result of the specimen shape and the entire set of boundary
conditions and geometry of the experimental setup. This has been discussed in detail in Lefèvre
et al. (2017), who showed that in zones of (almost) zero mechanical tractions, the MRE exhibits
compressive strains. Finally, application of pre-stresses results in the phenomenological models
becoming less accurate especially at larger magnetic fields, even though their predictions become
increasingly better for softer matrices. Finally, we find that the effect of a mechanical pre-load is
maximum for uniaxial pre-stressing and negligible for shearing ones.
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Chapter

6
Microstructurally-guided continuum
models for h-MREs

Chapter summary: Microstructurally-guided, explicit continuum models for the isotropic h-MREs are pro-
posed in the F − H, F − h, F − B and F − b variable spaces. While the F − H and F − B models are proposed
in terms of the reference variables, the F − h and F − b models consider the current h and b to be the primary
variables, respectively. Specific choices for the remanent internal variables at the macroscale are proposed via
carefully observing the microstructure behaviour obtained from the numerical computations, under different
magneto-mechanical loading paths. Fully objective energetic and dissipation potentials are proposed thereafter
in terms of the microstructural model properties, the particle volume fraction and a phenomenological coupling
constant, which is the only model parameter that is computed subsequently by fitting the model response with
the numerically computed ones under a proportional cyclic loading. Rigorous probe of the proposed models are
carried out against the numerically computed effective response under several non-trivial magneto-mechanical
loading paths. Excellent agreement of all the model predictions are obtained with the numerical homogenization
results for the moderately soft to (mechanically) hard elastomeric matrices, having the shear modulus of 0.3 to
1.0 MPa.
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In this chapter, we propose a set of internal variable-based constitutive frameworks for the
macroscopic modeling of isotropic h-MREs in both Lagrangian and Eulerian settings. Specifically,
we propose four independent versions of the model, namely the F − H, F − h, F − B and F − b
model. The choice of the independent internal variables in these models play a pivotal role in
the mictostructurally-guided phenomenological modeling of the effective response. Since the in-
ternal variables do not admit any differential or boundary constraints in V0 (or V), unlike the pri-
mary variables, no constitutive relation are obtained for them from the incremental homogenization
framework presented in Chapter 4. Therefore, the macroscopic models presented herein rely on
independently-proposed thermodynamic internal variables, whose evolution laws are then obtained
from the macroscopic Clausius-Duhem inequalities and generalized standard material relations.

First, we derive the constitutive relations for F − H and F − h formulations from the Clausius-
Duhem inequality. This will be followed by the proposal of specific energetic and dissipation po-
tentials in terms of the independent primary and internal variables. The evolution equations for
the internal variables in the F − H and F − h settings are proposed thereafter. Moreover, a compre-
hensive discussion on the material objectivity and material symmetry for such models are provided.
Subsequently, the F − B and F − b-based models are proposed and a similar type of model features
regarding the material objectivity and symmetry are highlighted. In analogy to the microstructurally-
guided models for the s-MREs, the purely decoupled models are proposed here only in terms of the
microstructure material (e.g. Gm,χep ,χp, msp , etc.) and geometric (e.g. c) properties. The magneto-
mechanical coupling energy is proposed thereafter by introducing an additional model parameter,
which is estimated by fitting the model response to the numerical homogenization results or to the
experimental data. In addition, all the proposed models must satisfy the following conditions.

1. The models must lead to symmetric Cauchy stress measures and thus, satisfy the angular
momentum balance condition (2.20).

2. In absence of any magnetic field, the models should reduce to the effective hyperelastic me-
chanical model, which is given in terms of the free energy (5.5).

3. In the limit of bcp → 0, the h-MRE model responses should be identical to that of the analytical
homogenization model of Lefèvre et al. (2017), for the specific choice of χep = 0.

4. Under the special case having χep = 0, the slope of initial magnetization response after switching
shall be given by χ, which the Maxwell-Garnett lower bound for the effective susceptibility.
Also, for |H|→∞, the magnetization should saturate at |m| = ms = c msp .

5. In the limit of c → 1, the proposed models must recover the classical continuum model of
Robinson (1975) for metallic permanent magnets.

Finally, the responses from the proposed model are probed against those from the numerical homog-
enization estimates, under both proportional and non-proportional magneto-mechanical loads.
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Chapter 6. Microstructurally-guided continuum models for h-MREs

Prior to the definition of specific constitutive models, we highlight a key assumption related to
the modeling that follows. We assume affine particle rotations in the development of these constitutive
models. Under this assumption, the schematic representation of the effect of tensile and shear loading
on a pre-magnetized RVE is shown in Fig. 6.1. Specifically, it is assumed that a pure stretch of the
magnetized h-MRE leads to particle displacements, while keeping their effective (average) rotations
unaltered (see Fig. 6.1b). On the other hand, the particles do rotate under applied macroscopic shear,

Figure 6.1: Schematic diagram of affine rotation of magnetic particles in a RVE. (a) Magnetized RVE with
effective magnetization m. (b) Deformed RVE under applied traction T (2)

2 = Smech22 N2 with displaced particles.
(c) Sheared RVE under applied traction T (1)

2 = Smech12 N2 with affine particle rotation by R.

as shown in Fig. 6.1c, thus rotating the effective magnetization vector m. The present model assumes
affine rotation of the magnetized particles with the imposed macroscopic rotation R of the h-MRE
under all possible magneto-mechanical loading paths.

It is emphasized that such fully affine rotation of hard magnetic particles is a constitutive as-
sumption. Moreover, there is no rigorous analytical estimate for the average particle rotations under
applied macroscopic shear or non-proportional magnetic fields. Nonetheless, the affine rotation
assumption serves as a first approximation towards modeling the rather complicated macroscopic
behavior of the h-MREs. Rigorous probe of the model against the numerically computed effective
responses under proportional and non-proportional magneto-mechanical loading paths will be pro-
vided in Section 6.4.

In this regard, we note the works of McMeeking and Landis (2005) and McMeeking et al. (2007)
where the notion of a “rotation preserving” electric polarization has been introduced. The preset
model is cornered around the same idea, albeit considering only a rotation preserving remanent
h-field. The following elaborates on the step-by-step modeling approach towards a finite-strain dis-
sipative magneto-elasticity framework.

Remark 6.1. We will use the following identities regarding the derivative of a sufficiently smooth
scalar-valued tensor function ( � ) with respect to the strain-like variables F, C and B, where C = FTF
and B = FFT . These identities read (Steigmann, 2010)

∂(�)
∂F

= 2F
∂(�)
∂C

, and
∂(�)
∂F

= 2
∂(�)
∂B

FT . (6.1)

Notice that the derivatives ∂(�)/∂C and ∂(�)/∂B yield symmetric tensors due to the symmetry of C

and B, respectively.
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6.1 F − H and F − h constitutive models

While defining the constitutive models in the F − H and F − h space, we first select the independent
internal variables. This will be followed by the derivation of constitutive relations in the Lagrangian
(F − H) and Eulerian (F − h) settings. Finally, the specific choice for the macroscopic energetic and
dissipation potentials are provided, followed by the specific evolution laws for the Lagrangian and
Eulerian internal variables.

6.1.1 Additive decomposition of H and h

In this section, we propose an additive decomposition of the effective (macroscopic) H into an en-
ergetic and a remanent parts. In contrast to the ferromagnetic model of mechanically stiff micro-
particles (4.14), we observe in Fig. 6.1 that the remanent magnetization (in absence of h) remains
unaffected by the mechanical stretch U, but changes its orientation under a mechanical rotation R.
The macroscopic stretch U and rotation R tensors are obtained via the polar decomposition of the
macroscopic deformation gradient F = RU. Notably, we observe from (3.14) that, in absence of
any applied h, the remanent field hr is directly proportional to the current magnetization m. We
therefore propose the referential counterpart of hr in the stretch-free intermediate configuration Vi

(see Fig. 6.2). This definition leads to the intermediate remanent field Hr that is independent of the

Figure 6.2: Definition of the independent internal variable Hr at the intermediate configuration Vi.

mechanical stretch U. Thus, the additive decomposition of H reads

H = He + UHr, (6.2)

where He is the referential energetic h-field. The push-forward transformation via (2.40) of (6.2) to
the current configuration V reads

F−TH = F−THe + F−TUHr =⇒ h = he + RHr ≡ he + hr. (6.3)

Hence, it follows from the last decomposition that hr = RHr, i.e., the reference description of hr is
independent of U (see Fig. 6.2). In this context, we note that the independent internal variables in the
remanent polarization problems are typically defined in an intermediate configuration (McMeeking
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Chapter 6. Microstructurally-guided continuum models for h-MREs

and Landis, 2005; McMeeking et al., 2007; Rosato and Miehe, 2014).

6.1.2 Thermodynamic inequalities and constitutive relations

In the following, we derive the constitutive relations for the h-MREs in the reference and current
configurations. The local Clausius-Duhem inequality, which is derived from the “global” entropy
imbalance (see Chapter 2 for details), leads to the thermodynamically consistent constitutive frame-
works for the dissipative ferro-electric/magnetic materials (McMeeking and Landis, 2002; Landis,
2002; Klinkel, 2006; Rosato and Miehe, 2014). The following referential and current constitutive
frameworks for the h-MREs are henceforth developed from the Clausius-Duhem inequalities (2.64)
and (2.36), respectively. Here we consider isothermal thermodynamic processes that involve zero
heat flux and local variation in the temperature.

Constitutive relations in the reference configuration : The local form of the Clausius-Duhem
inequality for a magnetoelastic solid in the reference configuration is obtained via simplifying further
(2.64), so that

S :
.
F − B •

.
H −

.
WH > 0, (6.4)

where S is the first Piola-Kirchhoff stress and
.

( ) represents the material time derivative. The macro-
scopic potential energy WH = WH(C, H,Hr) is expressed in terms of the right Cauchy-Green tensor
C = FTF, referential H and the internal variable Hr. Such definition of WH in terms of C ensures
the material objectivity and thus is typical in the formulation of s- and h-MREs (Kankanala and
Triantafyllidis, 2004; Rosato and Miehe, 2014; Keip and Rambausek, 2016, 2017). Expanding subse-
quently

.
W in terms of its arguments, we rephrase (6.4) to beï

S − 2F
∂WH

∂C

ò
:

.
F −

ï
B +

∂WH

∂H

ò
•

.
H −

∂WH

∂Hr
•

.
Hr > 0, (6.5)

Given the arbitrariness of the rates
.
F and

.
H, the standard Coleman-Noll-Gurtin arguments leads to

the constitutive relations in the reference configuration, given by (Keip and Rambausek, 2016, 2017;
Lefèvre et al., 2017)

S = 2F
∂WH

∂C
, B = −

∂WH

∂H
. (6.6)

Since the derivative of a scalar-valued tensor function with respect to a symmetric tensor is symmet-
ric, the Cauchy stress σ = (1/J)SFT computed from (6.6)1 remains identically symmetric, thus satis-
fying the angular momentum balance (Kankanala and Triantafyllidis, 2004; Suo et al., 2008; Rosato
and Miehe, 2014). Notice that it is difficult to express S explicitly in terms of the mechanical and the
magnetic stress contributions, unless the referential H and Hr are expressed in terms of their current
(h = h(F, H), hr = hr(R,Hr)) counterparts (Danas, 2017). Thus, by rephrasing WH in terms of the
current variables, so that WH(C, H,Hr) ≡ wh(B, h, hr; F, H,Hr)1, one can rephrase S (or equivalently
σ) explicitly in terms of the mechanical and magnetic contributions. Notice that the independent
magnetic primary and internal variables in wh still remain H and Hr. However, wh is expressed
in terms of the variables B, h and hr with the latter two being explicit functions of F, H and Hr.
Consequently, the equivalent representation of σ in terms of wh is obtained via applying the chain

1Since w(B, h, hr) is the free energy in terms current variables h and hr, it is typically expressed in terms of the left
Cauchy-Green tensor B to satisfy the objectivity conditions (Kankanala and Triantafyllidis, 2004).
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rules (6.1), such that

σ =
2

J
F
∂WH

∂C
FT =

1

J

∂wh

∂F
FT =

2

J

ï
∂wh

∂B

ò
h,hr

B +
1

J

Åï
∂wh

∂h

ò
F,hr

•
∂h
∂F

ã
FT +

1

J

Åï
∂wh

∂hr

ò
F,h

•
∂hr

∂F

ã
FT

=
2ρ0
J

ï
∂ψh

∂B

ò
h,hr

B︸ ︷︷ ︸
σmech

+

Å
h⊗ b −

µ0
2
|h|2I
ã

︸ ︷︷ ︸
σen

maxw

+
ρ0
J

ßÅï
∂ψh

∂hr

ò
F,h
⊗RThr

ã
:
∂R
∂F

™
FT︸ ︷︷ ︸

σrem
maxw

, (6.7)

where we decompose the potential wh(B, h, hr), so that wh(B, h, hr) = ρ0ψ
h(B, h, hr) − (µ0/2)Jh · h,

where ψh is the Helmholtz free energy associated with the h-MRE. The first two terms in (6.7) are
identical to the stress associated with the non-remanent, soft MREs (Kankanala and Triantafyllidis,
2004; Lefèvre et al., 2017), whereas the remanent Maxwell stress contribution σrem

maxw is an additional
stress that is not observed in the non-remanent magnetization problems. Again, the symmetry of the
“total” Cauchy stress σ is guaranteed via defining the potential energy in terms of WH(C, H,Hr) =
wh(B, h, hr; F, H,Hr), whereas its individual components σmech, σen

maxw and σrem
maxw are not, in general,

symmetric. This is an important observation, to which we will refer back while developing an
Eulerian equivalent to the proposed Lagrangian framework.

Finally, the remaining terms in (6.5) leads to the dissipation inequality, which reads

Br •
.
Hr > 0, with Br = −

∂WH

∂Hr . (6.8)

Of course, the remanent field Br is an intermediate quantity. Hence, unlike the primary constitutive
relations (6.6), the generalized standard material relation is expressed in the intermediate configura-
tion such that (Halphen and Nguyen, 1975)

∂WH

∂Hr +
∂DH

∂
.
Hr

= 0 =⇒ Br =
∂DH

∂
.
Hr

, (6.9)

where DH(C, H,Hr,
.
Hr) is the dissipation potential. We note that, this hybrid reference-intermediate

formulation leads to the primary constitutive relations (6.6) in the reference configuration, whereas
the remanent constitutive relations (6.8)2 and (6.9) are defined in the intermediate configuration.
One can develop the full constitutive framework in the intermediate configuration (see e.g., (Rosato
and Miehe, 2014)), however, the reference primary variables lead to familiar stress measures like
S and also facilitate the numerical computations (Kankanala and Triantafyllidis, 2004; Dorfmann
and Ogden, 2004, 2005; Danas, 2017; Lefèvre et al., 2017). Thus, in practice, the hybrid constitutive
framework (6.6) and (6.9) leads to an efficient but easy model.

Constitutive relations in the current configuration : The equivalent constitutive framework in the
current configuration is expressed now by considering the h and hr to be the independent primary
and internal variables, respectively. Notice that, unlike the Lagrangian formulation, here both the
primary and the internal variables are defined in the current configuration V (see Fig. 6.2). Again,
we start by considering the localized Clausius-Duhem inequality in the current configuration (2.36),
such that (Kankanala and Triantafyllidis, 2004)

J

Å
σ− h⊗ b +

µ0
2
|h|2I
ã
: l− µ0Jm •

.
h − ρ0

.
ψh > 0, (6.10)
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where l =
.
FF−1 is the mechanical deformation rate. Chapter 2 shows that (6.10) is equivalent to the

Clausius-Duhem inequality in the reference configuration given by (6.4). Expanding subsequently
the material rate of the Helmholtz free energy

.
ψh(B, h, hr) of (6.10) in terms of its arguments, we

obtain

J

Å
σ− h⊗ b +

µ0
2
|h|2I
ã
: l− µ0Jm •

.
h − ρ0

∂ψh

∂B
:

.
B − ρ0

∂ψh

∂h
•

.
h − ρ0

∂ψh

∂hr
•

.
hr > 0, (6.11)

which upon rearrangement finally reads

J

ï
σ−

2ρ0
J

∂ψh

∂B
B −

Å
h⊗ b −

µ0
2
|h|2I
ã
−
ρ0
J

ßÅ
∂ψh

∂hr
⊗RThr

ã
:
∂R
∂F

™
FT
ò
: l

−J

ï
m +

ρ0
J

∂ψh

∂h

ò
•

.
h − ρ0

∂ψh

∂hr
•
∆

hr > 0, (6.12)

where
∆

hr =
.
hr −Ωhr is the objective Green-Naghdi rate of the remanent h-field with Ω =

.
RRT is

the mechanical spin tensor (Green and Naghdi, 1965)2. Notably, the Green-Nagdi rate of the internal
variable in (6.12) ensures the energy dissipation to remain independent of the mechanical spin Ω. In
other words, the Green-Nagdi rate of hr ensures that, in the absence of external magnetic fields, a
rigid rotation of a permanently magnetized h-MRE does not add to any energy dissipation.

We now show that, besides the symmetry of σ in (6.12), the sum of the remaining three terms
inside the first square bracket of (6.12) is also symmetric. This symmetry can be readily proved
via rephrasing wh in terms of C, H and Hr, so that wh(B, h, hr) = WH(C, H,Hr; F, h, hr) and then,
by exploiting the chain rules (6.1) and the Lagrangian constitutive relations (6.6)2 and (6.8)2. The
aforementioned algebraic operations, in a conjugate sense to (6.7), finally leads to the relation

2ρ0
J

∂ψh

∂B
B +

Å
h⊗ b −

µ0
2
|h|2I
ã
+
ρ0
J

ßÅ
∂ψh

∂hr
⊗RThr

ã
:
∂R
∂F

™
FT =

2

J
F
ï
∂WH

∂C

ò
H,Hr

FT . (6.13)

The right-hand-side of the last equation proves that the sum in the first square bracket of (6.12) is
symmetric. Hence, we rephrase (6.12) to be

J

ï
σ−

2ρ0
J

∂ψh

∂B
B −

Å
h⊗ b −

µ0
2
|h|2I
ã
−
ρ0
J

ßÅ
∂ψh

∂hr
⊗RThr

ã
:
∂R
∂F

™
FT
ò
: d

−J

ï
m +

ρ0
J

∂ψh

∂h

ò
•

.
h − ρ0

∂ψh

∂hr
•
∆

hr > 0, (6.14)

where d = sym[l] is the symmetric part of the mechanical deformation rate. It is now observed that d
and

.
h are independent and thus, can be increased arbitrarily3. Therefore, owing to the arbitrariness

of d and
.
h, the standard arguments of the Coleman-Noll-Gurtin framework leads to the constitutive

relations for the total Cauchy stress and the current b-field, such that

σ =
2ρ0
J

∂ψh

∂B
B +

Å
h⊗ b −

µ0
2
|h|2I
ã
+
ρ0
J

ßÅ
∂ψh

∂hr
⊗RThr

ã
:
∂R
∂F

™
FT (6.15)

2The original work of Green and Naghdi (1965) propose objective rates in the context of mechanics. Nonetheless, the
vectorial representation of the Green-Nagdi rate is referred in this paper.

3The current stretch rate d is independent of the spin Ω =
.
RRT . Hence, the Green-Nagdi rate

∆

hr, which is a function
of the spin tensor, remains independent of d.
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and

m = −
ρ0
J

∂ψh

∂h
⇒ b = −

1

J

∂wh

∂h
, (6.16)

respectively, where the latter is obtained via the relation wh(B, h, hr) = ρ0ψ
h(B, h, hr) − (µ0/2)Jh · h.

Of course, the expression of total σ in terms of the mechanical, Maxwell and remanent parts remains
identical to (6.7). Subsequently, the dissipation inequality at the current configuration reads

br •
∆

hr > 0, with br = −ρ0
∂ψh

∂hr
= −

∂wh

∂hr
, (6.17)

where br is the remanent b-field that is the energetic work conjugate of hr. Furthermore, standard

material relation in the current configuration is given in terms of wh(B, h, hr) and Dh(B, h, hr,
∆

hr),
such that (Halphen and Nguyen, 1975)

∂wh

∂hr
+
∂Dh

∂
.
hr

= 0. (6.18)

Since the dissipation potential Dh(B, h, hr,
∆

hr) is defined in terms of the objective Green-Nagdi rate,
we can suitably rephrase the derivative of Dh with respect to

.
hr in the last equation in terms of its

derivative with respect to
∆

hr by applying the chain rule, such that

∂wh

∂hr
+
∂Dh

∂
∆

hr
= 0 =⇒ br =

∂Dh

∂
∆

hr
. (6.19)

Thus, the dissipative work conjugate of
∆

hr is obtained to be br. This property of Dh will be used in
the following section while defining the current form of the rate-independent evolution equation for
hr.

To this end, the reference and current constitutive relations, (6.6) and (6.16) along with the gen-
eralized standard material laws (6.9) and (6.18), respectively, are derived from the Clausius-Duhem
inequality. Even though the primary and internal variable arguments of the energetic (WH(C, H,Hr)

and wh(B, h, hr)) and dissipation (DH(C, H,Hr,
.

Hr) and Dh(B, h, hr,
∆

hr)) potentials are specified
herein, the aforementioned potentials cannot assume any arbitrary functional form in terms their
arguments. Instead, these choices are further constrained by a number of physically-motivated con-
ditions and the material properties. Next, we set forth all these constraints on the choice of these
potentials, which will be followed by the choice of specific energy functions.

6.1.3 Properties of the potentials WH, DH, wh and Dh

Herein, we detail the constraints on the energetic and dissipation potentials in order to ensure (a)
an even magneto-mechanical coupling and (b) material frame indifference. In addition, in order
to ensure an isotropic material response, further material symmetry restrictions are imposed on
these potentials. Furthermore, in order to ensure a positive dissipation, the potentials DH and Dh

are subjected to the thermodynamic constraints (6.8)1 and (6.17)1, respectively. It is noted that the
material objectivity and symmetry conditions are well known for the soft MREs with iron particles
(Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden, 2004). However, as shown in Fig. 6.2,
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the proposed model for h-MREs introduces the remanent internal variables that are insensitive to the
stretch U, which lead to non-familiar magneto-mechanical invariants and rates. Hence, this section
is devoted towards stating explicitly all the aforementioned constraints in the context of isotropic
h-MREs.

Even magnetomechanical coupling : The magnetomechanical potential energy WH and wh must
be exactly the same when the magnetic loading is performed in the reverse direction (Kankanala and
Triantafyllidis, 2004). The even magnetomechanical coupling conditions for the Lagrangian and the
Eulerian energetic and dissipation potentials thus read

WH(C,−H,−Hr) =WH(C, H,Hr), DH(C,−H,−Hr,−
.

Hr) = DH(C, H,Hr,
.

Hr) (6.20)

and
wh(B,−h,−hr) = wh(B, h, hr), Dh(B,−h,−hr,−

∆

hr) = Dh(B, h, hr,
∆

hr), (6.21)

respectively, for arbitrary C, B, H, Hr, h and hr.

Material frame indifference : This criteria imposes the condition that the energetic WH, wh and
the dissipation DH, Dh potentials must remain invariant under the change of observer. A change in
the observer leads to the new current position vector x∗ = c+Qx, where c is a rigid displacement field
and Q is a rotation tensor (Gurtin, 1982, p. 139-142). Standard calculations show that the invariance
of the energetic and dissipation potentials under a transformation x→ x∗ leads to the constraints on
WH, DH, wh and Dh, which read (Gurtin, 1982; Kankanala and Triantafyllidis, 2004)

WH(C, H,Hr) =WH(C, H,Hr), DH(C, H,Hr,
.

Hr) = DH(C, H,Hr,
.

Hr) (6.22)

and

wh(QBQT , Qh, Qhr) = wh(B, h, hr), (6.23)

Dh(QBQT , Qh, Qhr,
∆

Qhr) = Dh(QBQT , Qh, Qhr, Q
∆

hr) = Dh(B, h, hr,
∆

hr), (6.24)

respectively. Notice that the material frame indifference condition imposes no further restrictions on
the Lagrangian potentials WH and DH. This is because the right Cauchy-Green tensor C and the
reference H remain invariant under the operation x→ x∗. Nevertheless, it is also noted that the inter-
mediate vector Hr and its rate also remain unaltered under the same operation. This observation is
in agreement with the objectivity conditions used in mechanical visco-plasticity, where the interme-
diate strain-like variables remain unaffected by a change in the observer (Dashner, 1993; Kumar and

Lopez-Pamies, 2016). Finally, the relation
∆

Qhr = Q
∆

hr for the Green-Nagdi rate in (6.24)2 is obtained

via expressing
∆

hr = R
.

RThr and then performing the transformations R→ QR and hr → Qhr.

Material symmetry : For the isotropic MREs with material symmetry group Symm ∈ Orth+, the
energetic and dissipation potentials must remain invariant under a change in the reference config-
uration via the tensor K ∈ Symm. The material symmetry conditions on the potentials thus read

WH(KTCK, KTH, KTHr) =WH(C, H,Hr), (6.25)
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DH(KTCK, KTH, KTHr, KT
.

Hr) = DH(C, H,Hr,
.

Hr) (6.26)

and
wh(B, h, hr) = wh(B, h, hr), Dh(B, h, hr,

∆

hr) = Dh(B, h, hr,
∆

hr). (6.27)

Again, the material symmetry conditions do not impose any additional constraint on the Eulerian
description (6.27) of the potentials. Note from (6.26)1 that the intermediate Hr transforms via
Hr → KTHr, which follows from the additive decomposition (6.2) of the Lagrangian H and the
transformation of U → KTUK under a change in the reference configuration. It is also noted that
in mechanical visco-plasticity the change in the reference configuration also modifies the interme-
diate plastic internal variables (Dashner, 1993; Bennett et al., 2016). Moreover, since the symmetry
transformation tensor K is, by definition, constant in time (Malvern, 1969, p. 415-421), the material
symmetry conditions on the dissipation potentials DH and Dh take the form given by (6.26) and
(6.27)2, respectively.

Entropy imbalance : The dissipation inequalities (6.8)1 and (6.17)1 impose additional constraints

on DH(C, H,Hr,
.

Hr) and Dh(B, h, hr,
∆

hr), respectively, so that the entropy production remains al-
ways positive, thus ensuring a positive dissipation for any loading paths. These constraints on

DH(C, H,Hr,
.

Hr) and Dh(B, h, hr,
∆

hr) read

∂DH

∂
.

Hr
(C, H,Hr,

.
Hr) ·

.
Hr > 0 and

∂Dh

∂
∆

hr
(B, h, hr,

∆

hr) ·
∆

hr > 0, (6.28)

respectively. Thus, in order to satisfy (6.28), DH(C, H,Hr,
.

Hr) and Dh(B, h, hr,
∆

hr) must be convex

functions of
.

Hr and
∆

hr, respectively.
Definition of invariants : Finally, in order to satisfy the material frame indifference and the ma-

terial symmetry conditions, the energy functions are typically expressed in terms of frame invariant
quantities, which leads to identical functional forms of WH and wh in terms of these invariants. We
provide a set of invariants that are relevant to the modeling of isotropic h-MREs in Table 6.1,

Table 6.1: Invariants associated with isotropic hard magneto-elastic solids

Invariant Lagrangian Eulerian Invariant Lagrangian Eulerian
IH4 = H • H h • Bh IH5 = H • C−1H h • h
IHHr
4 = H • C1/2Hr h • Bhr IHHr

5 = H • C−1/2Hr h • hr

IHr
4 = Hr • CHr hr • Bhr IHr

5 = Hr •Hr hr • hr

where all the mechanical and the IH4 and IH5 magneto-mechanical invariants are the standard ones
that are employed in non-dissipative magnetoelasticity (Keip and Rambausek, 2016, 2017; Lefèvre
et al., 2017; Lefèvre et al., 2019). Nevertheless, the finite strain framework for h-MREs necessitates
a set of additional invariants associated with the remanent fields. In this regard, Table 6.1 shows
four additional magneto-mechanical invariants, among which IHHr

4 and IHHr
5 are the dot products of

the full h-field with the remanent h in the Lagrangian and Eulerian settings, respectively. Again, we
note from (6.2) that the Lagrangian remanent field is given by UHr, which leads to such non-trivial
expressions of IHHr

4 and IHHr
5 in Table 6.1 (note that U = C1/2)4. However, the purely remanent

4Since C1/2 and C−1/2 are symmetric, the invariants IHHr
4 and IHHr

5 can be equivalently defined via IHHr
4 =
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invariants IHr
4 and IHr

5 are straightforward to obtain in terms of their Lagrangian and Eulerian dot
products, respectively.

It is straightforward to verify that the mechanical (I1, I2, J), energetic and remanent magneto-
mechanical invariants (IHi , IHr

i with i = 4, 5) satisfy the frame indifference and symmetry conditions.
The invariance of the “mixed” invariants IHHr

i under the change of the reference configuration can
also be proved via employing the identities (KTCK)1/2 = KTC1/2K and (KTCK)−1/2 = KTC−1/2K
(Gurtin, 1982, p. 169). Of course, one can propose a number of additional magneto-mechanical
invariants involving higher powers of C (or B). Nonetheless, in the present model we limit out
choice of invariants to those given by Table 6.1.

Finally, we propose an additional scalar invariant in terms of the referential (
.

Hr) and current (
∆

hr)

rates of the internal variables. These two rates are related via |
.
Hr| = |

∆

hr|. Moreover, we note that both
|
.
Hr| and |

∆

hr| satisfy the conditions of even magneto-mechanical coupling, material frame indifference
and symmetry. Thus, a dissipation potential that is defined in terms of the invariants in Table 6.1 and

|
.
Hr| or |

∆

hr| remains fully objective and material symmetric. In the following, we define the specific
functional forms of WH and DH (or equivalently, wh and Dh).

6.1.4 Choice of energy functions : decoupled model

Here we propose fully decoupled energetic and dissipation potentials associated with an incompress-
ible h-MRE. In particular, the decoupled model ensures no mechanical deformation under applied
proportional Eulerian magnetic loading cycles (Danas, 2017). Notably, for the soft MREs, a decoupled
model ensures no mechanical deformations under any Eulerian magnetic loading path. However, as
observed in (4.43), the imposition of Eulerian h-fields does not cancel the effect of magnetic body
torques. Hence, the decoupled response in the h-MREs are obtained only under a proportional cyclic
Eulerian h-field, which ensures, on an average sense, no misalignment between the current magneti-
zation m and the applied h-field, thus leading to a vanishing remanent stress.

Energetic potential : Earlier investigations with the soft MREs (Danas, 2017; Lefèvre et al., 2017;
Lefèvre et al., 2019) show that an the IH5 -based magnetic energy leads to a decoupled magneto-
mechanical response. Thus, the incompressible potential energy reads

WH(I1, IH5 , IHHr
5 , IHr

5 ) = wh(I1, IH5 , IHHr
5 , IHr

5 ) =


ρ0ψmech(I1) + ρ0ψHmag(I

Hr
5 , IHHr

5 , IHr
5 )

−
µ0
2
IH5 if J = 1

+∞ otherwise,

(6.29)

where ψmech and ψHmag represent the mechanical and the magnetic parts of the Helmholtz free energy,
respectively. The effective mechanical energy is given by (5.5), which is the analytical homogenization
estimate, provided by Lopez-Pamies et al. (2013) for I1-based incompressible two phase composites
having rigid particulate inclusions.

The magnetic free energy is further decomposed into an energetic and a remanent part, so that

ρ0ψ
H
mag(I

H
5 , IHHr

5 , IHr
5 ) = ρ0ψH,en

mag (IH5 ) + ρ0ψH,rem
mag (IHHr

5 , IHr
5 ). (6.30)

C1/2 : sym(H⊗Hr) and IHHr
5 = C−1/2 : sym(H⊗Hr), respectively.
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6.1. F − H and F − h constitutive models

To this end, no explicit analytical homogenization model is available for remanent magnetization
response. Nevertheless, we propose an effective model that satisfies exactly two limiting conditions,
under which the analytical homogenization estimates are available. Firstly, in the limit of bcp → ∞,
the constant homogenized slope of the linear magnetic response is given by the classical Maxwell-
Garnett (M-G) lower bound (Ponte Castañeda and Galipeau, 2011; Lefèvre et al., 2017). Therefore,
the effective energetic magnetic free energy ψH,en

mag reads

ρ0ψ
H,en
mag (IH5 ) = −

µ0
2
χeIH5 with χe =

3cχep

3+ (1− c)χep
, (6.31)

where χe is the effective energetic susceptibility. Consequently, the effective energetic permeability is
obtained via µe = µ0(1+χe). Secondly, we note from Chapter 3 that, in the limit of bcp → 0 and χep = 0,
we recover the reversible saturation magnetic response. Hence, we propose a remanent potential
given by

ρ0ψ
H,rem
mag (IHHr

5 , IHr
5 ) = µ0(1+ χe)IHHr

5 +
µ0
2

Å
1− c

3c

ã
IHr
5 +

µ0
c

(ms)2

χp
fhp

Å»
IHr
5

ms

ã
, (6.32)

that leads to an excellent approximation of the analytical homogenization estimates of Ponte Cas-
tañeda and Galipeau (2011) and Lefèvre et al. (2017) in the limit of bcp → 0 and χep = 0. The effective
saturation magnetization ms in (6.32) is given by ms = c msp(µe/µep ), which leads to the “standard” ef-
fective saturation magnetization ms = cmsp for “ideal” hard magnets with χep = 0, so that µe = µep = µ0.
Finally, the function fhp remains identical to its definition in (3.12) and Table 3.1, of course, here with a
different argument in the macroscopic model. Moreover, in the limiting case of |hr|→ 0, the nonlinear
remanent potential (6.32) becomes linear in IHr

5 , so that

ρ0ψ
H,rem
mag,|hr|→0(IHHr

5 , IHr
5 ) = µ0(1+ χe)IHHr

5 +
µ0
2χ
IHr
5 with χ =

3cχp

3+ (1− c)χp
, (6.33)

that is the Maxwell-Garnett lower bound of the initial susceptibility of the composite. Hence, the
effective initial slope of the saturation magnetization response also remains identical to the analytical
estimate. Nevertheless, the probe of the full model against numerically computed effective response
will be provided in Section 6.4.

Dissipation potential : It remains to define the evolution law for the internal variables Hr and
hr, which is obtained via defining a convex magnetic dissipation potential in terms of a power law

in |
.

Hr| (or equivalently, in |
∆

hr|), which reads

DH(|
.
Hr|) =

bc
.
hr0

(p+ 1)

ñ
|
.
Hr|
.
hr0

ôp+1
=

bc
.
hr0

(p+ 1)

ñ
|
∆

hr|
.
hr0

ôp+1
= Dh(|

∆

hr|), with bc = bcp

Å
µe

µep

ã4/5
(6.34)

denoting the effective coercive field of the composite and with p is the rate exponent that leads to a
linear visco-switching response for p = 1 and a rate-independent hysteretic response for p = 0 (Danas
et al., 2012a; Rosato and Miehe, 2014). Notice that

.
hr0 in (6.34) is a reference rate parameter. The

numerical homogenization estimates (will be shown in Section 5.3) and experiments (Huber et al.,
2017; Kim et al., 2018) show that the effective coercivity bc remains nearly equal to the coercivity of
the hard magnetic inclusions bcp . Nevertheless, in order to incorporate the effect of non-zero χe, the
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factor (µe/µep )4/5 is multiplied in (6.34)2, which leads to a weak dependence of bc on c depending on
the magnitude of χe.

Notice that the dissipation potentials in (6.34) are independent of the mechanical deformations.
This is because the definition of Hr in a stretch-free intermediate configuration and consequently,
the dissipation in terms of the Green-Naghdi rate of the current hr. Therefore, it is observed that

the relation |
.

Hr| = |
∆

hr| is valid for any loading path. Hence, (6.34) is fully objective and remains
independent of both mechanical stretch U and the rotation R.

The relation (6.9)1 yields that the intermediate remanent field Br is the work conjugate of
.
Hr.

Thus, a Legendre transform DH(|
.
Hr|) with respect to

.
Hr leads to its complimentary dissipation

potential DH∗(|Br|), which is also a power law with an exponent (n+ 1)/n on |Br|. Subsequently, in

the limit of rate-independence (i.e., n → 0), the dissipation potentials DH(|
.
Hr|) and Dh(

∆

hr) lead to
the switching surface in terms of Br and br, respectively, which reads

ΦH := Br •Br − (bc)2 = 0, φh := br • br − (bc)2 = 0. (6.35)

Finally, the evolution equations for Hr and hr are obtained from the principal of maximum remanent
dissipation, that leads to the associated switching rules in the intermediate and current configura-
tions, given by (Landis, 2002; Klinkel, 2006; Linnemann et al., 2009)

.
Hr =

.
ΛH

∂ΦH

∂Br
and

∆

hr =
.
λh
∂φh

∂br
, (6.36)

respectively, where
.
ΛH and

.
λh are the Lagrange multipliers that satisfy the Kuhn-Tucker conditions

given by { .
ΛH = 0 if ΦH < 0
.
ΛH > 0 if ΦH = 0

and

{.
λh = 0 if φh < 0
.
λh > 0 if φh = 0.

(6.37)

Constitutive equations in Lagrangian and Eulerian settings : Two equivalent decoupled formu-
lations in the reference and current configurations are proposed for the h-MREs. The reference for-
mulation utilizes the constitutive laws (6.6) along with the intermediate switching surface (6.35)1 and
the corresponding associated switching rule (6.36)1, whereas, the current constitutive laws, switching
surface and switching rule are given by (6.16), (6.35)2 and (6.36)2, respectively. The set of constitu-
tive relations for the incompressible h-MREs are thereby listed in Table 6.2. Notice that an arbitrary
hydrostatic pressure contribution is added to the stresses in order to apply the incompressibility
constraint. We conclude this part by making two remarks. Moreover, the expression (6.15) for σ is
simplified further after substituting (6.17) into it (see Appendix 6.A for details).

Symmetry of σ : Given the choice of wH(I1, IH5 , IHHr
5 , IHr

5 ) for the decoupled model, we note that
all the arguments of ρ0ψH are independent of B except the mechanical invariant I1. Hence, the
mechanical Cauchy stress σmech is symmetric for this incompressible model (Ogden, 1997). Moreover,
the constitutive choice (6.29) leads to the current b and br given by

b = µ0(1+ χe)(h − hr) and br = −µ0(1+ χe)h − µ0

Å
1− c

3c

ã
hr −

µ0
c

ms

χp
(fhp ) ′

Ç»
IHr
5

ms

å
hr

|hr|
, (6.38)
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Table 6.2: Constitutive relations and associated switching rules for incompressibe h-MREs in the Lagrangian
and Eulerian frameworks

Lagrangian Eulerian

S = 2F
∂WH

∂C
− pF−T σ = 2ρ0

∂ψh

∂B
B +

Å
h⊗ b −

µ0
2
|h|2I
ã
+

2

det Z
Z skw

(
hr ⊗ br

)
VZ − pI

B = −
∂WH

∂H
b = −

∂wh

∂h

Br = −
∂WH

∂Hr br = −
∂wh

∂hr

ΦH := Br •Br − (bc)2 = 0 φh := br • br − (bc)2 = 0

.
Hr =

.
ΛH

∂ΦH

∂Br
∆

hr =
.
λh
∂φh

∂br

respectively. Substitution of (6.38) into (6.16)1 followed by some algebraic manipulations leads to the
expression for the remanent stress given by (see Appendix 6.A for details)

σrem
maxw = −

2µ0
det Z

Z skw
(
h⊗m

)
VZ, (6.39)

where V = B1/2 is the left stretch tensor and Z = tr(V)I−V. Notice that, unlike the “classical” defini-
tion (Pao and Hutter, 1975; Robinson, 1975) of the magnetic body torques, σrem

maxw is not skew-symmetric
for the h-MREs. Nevertheless, in addition to the demonstrations in Section 6.1.2, Appendix 6.A also
shows that the total σ is symmetric from its explicit expression, derived therein.

6.1.5 Coupled potential

In order to introduce a coupling potential, we follow (Mukherjee et al., 2020) and augment a coupled
free energy ψHcouple to the fully decoupled model (6.29). The full expression for WH thus reads

WH(I1, IHr
4 , IHHr

4 , IH5 , IHr
5 , IHHr

5 ) =


ρ0ψmech(I1) + ρ0ψHmag(I

H
5 , IHr

5 , IHHr
5 )+

ρ0ψ
H
couple(I

Hr
4 , IHHr

4 , IHr
5 , IHHr

5 ) −
µ0
2
IH5 if J = 1

+∞ otherwise.

(6.40)

In the absence of any energetic magnetization (equivalent to the ferroelectric hysteresis response) ,
i.e., χe = 0, the coupled energy is observed to be directly proportional to the square of the remanent
field Hr. Thus, the purely remanent ψHcouple reads

ρ0ψ
H
couple(I

Hr
4 , IHr

5 ) = cβHrµ0
(
IHr
4 − IHr

5

)
, (6.41)

4In the Lagrangian setting, the remanent fields and the associated switching rules are expressed in the intermediate
configuration.
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where βHr is a real material parameter, namely the remanent coupling coefficient. Nonetheless, the
finite energetic magnetization for χe 6= 0 necessitates the definition of an additional coupling energy.
The full ψHcouple is hence defined via

ρ0ψ
H
couple(I

Hr
4 , IHHr

4 , IHr
5 , IHHr

5 ) = cβHrµ0

{(
IHr
4 − IHr

5

)
− 2χe

(
IHHr
4 − IHHr

5

)}
. (6.42)

Notice that in (6.42) we introduce two I
(•)
4 -type invariants, namely IHr

4 and IHHr
4 . Moreover, the

(I(•)4 − I
(•)
5 ) form in (6.42) ensures a negligibly small effect of the coupled energy on the effective

magnetization m.
Since the potential WH is augmented without altering its arguments, it follows from (6.7) that σ

is symmetric. Nonetheless, the full expression of σ obtained from the proposed fully-coupled model
(6.40) and the symmetry of σ is discussed extensively in Appendix 6.A. Furthermore, we notice from
Table 6.1 and 6.2 that in the Lagrangian formulation, it is necessary to estimate the derivatives of
C1/2 and C−1/2 with respect to C, which is a non-trivial operation. Thus, complete expressions for
the derivatives of IHHr

i , (i = 4, 5) with respect to C are provided thereafter in Appendix 6.B.
It is noted that the magneto-mechanical coupling energy contribution is relatively smaller than the

decoupled energy contributions (Danas et al., 2012b). In fact, several structural problems involving
soft and hard MREs are observed to predict perfectly the magneto-mechanical structural response
while ignoring completely the coupling energy contribution (Psarra et al., 2017, 2019; Zhao et al.,
2019). Nevertheless, in order to obtain a magnetostrictive response of the h-MREs, the coupled
potential (6.40) is employed. Finally, no additional coupling is introduced in the dissipation potential,
which is still given by (6.34) in this coupled model.

Remark 6.2. We note that the nearly incompressible models of the h-MREs are often useful while
carrying out the numerical computations for a boundary value problem. Thus, we provide an equiv-
alent compressible model for the h-MREs, which is a simple extension of the proposed fully-coupled
model (6.40). The compressible counterpart of (6.40) thus reads

WH,comp(I1, J, IHr
4 , IHHr

4 , IH5 , IHr
5 , IHHr

5 ) = ρ0ψH,comp
mech (I1, J)+ρ0ψHmag(I

H
5 , IHr

5 , IHHr
5 )+

ρ0ψ
H
couple(I

Hr
4 , IHHr

4 , IHr
5 , IHHr

5 ) −
µ0
2
JIH5 , (6.43)

where ρ0ψcomp
mech(I1, J) is given by (5.34). The Lame constant G ′m is associated with the matrix phase

as defined in the microscopic model (4.15). Notably, in a nearly incompressible model, the Lame
constant is typically set to be G ′m > 100Gm, which imposes a penalty on J to constraint it to J ≈ 1.

6.2 F − B and F − b constitutive models

The proposition of constitutive models in the F − B and F − b spaces follow a similar path to the
preceding F − H and F − h-based modeling. Notice from Chapter 2 that the choice of the primary
variables are crucial and they changes the local pointwise Clausius-Duhem inequalities. Specifically,
we utilize the inequalities (2.63) and (2.35), while deriving the constitutive models in the Lagrangian
and Eulerian settings, respectively, by following the standard Coleman-Noll-Gurtin (Coleman and
Noll, 1959; Coleman and Gurtin, 1967) method. Again, in a similar note to the F − H and F − h
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models, we start by proposing an additive decomposition of the primary magnetic field variable,
which is B or b in the present case.

6.2.1 Additive decomposition of B and b

As discussed in Section 6.1.1, the additive decomposition of the primary magnetic variables must re-
spect the stretch independence of the current magnetization m, under no externally applied magnetic
field. Such condition can be obtained in the present dissipation framework via defining the indepen-

Figure 6.3: Definition of the independent internal variable Br at the intermediate configuration Vi.

dent Lagrangian remanent b-field in a stretch-free intermediate configuration Vi (see Fig. 6.3). Thus,
the additive decomposition of the total B reads

B = Be + JU−1Br, (6.44)

where Be is the energetic and Br is the intermediate remanent part of B. In turn, (6.44) can be pushed
forward via the transformation (2.45), so that

b =
1

J
FBe + FU−1Br = be + RBr ≡ be + br, (6.45)

where br = RBr. The latter ensures a stretch-free independent description of the remanent b-field in
the Lagrangian setting. Again, it is emphasized that the additive decompositions (6.44) and (6.45) are
the direct consequences of the “affine rotation” assumption. Thus, (6.44) and (6.45) remain open for
the suitable modifications considering more complicated kinematics of the rotating and rearranging
particles inside a h-MRE. Next, we derive the constitutive relations in the Lagrangian and Eulerian
settings from the respective point-wise Clausius-Duhem inequalities via considering Br and br to be
the independent internal variables, respectively.

6.2.2 Thermodynamic inequalities and constitutive relations

Here we derive the constitutive relations from the two equivalent point-wise Clausius-Duhem in-
equalities (2.63) and (2.35) in the Lagrangian (reference) and Eulerian (current) settings, respectively.
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Constitutive relations in the reference configuration : The Lagrangian formulation of the consti-
tutive framework considers F and B to be the primary variables, along with the intermediate Br to be
the independent internal variable. Under isothermal magneto-mechanical loading conditions with
no heat flux, the referential Clausius-Duhem inequality (2.63) reads (McMeeking and Landis, 2002;
Landis, 2002; Klinkel, 2006)

S :
.
F + H •

.
B −

.
WB > 0, (6.46)

where the potential energy WB = WB(C, B,Br) is considered to be a function of C, B and the in-
termediate Br. Such definition of WB ensures the material objectivity conditions (Kankanala and
Triantafyllidis, 2004; Dorfmann and Ogden, 2004, 2005). Expanding further

.
WB in terms of its argu-

ments and substituting the result into (6.46) leads toï
S − 2F

∂WB

∂C

ò
:

.
F +

ï
H −

∂WB

∂B

ò
•

.
B −

∂WB

∂Br
•

.
Br > 0. (6.47)

Again, due to the arbitrariness in the variations of the primary field variables F and B, the standard
arguments of the Coleman-Noll-Gurtin method leads to the local constitutive relations

S = 2F
∂WB

∂C
, H =

∂WB

∂B
. (6.48)

Similar to the F − H model, WB(C, B,Br) can be equivalently expressed in terms of WB(F, B,Br) ≡
wb(B, b, br; F, B,Br), where b = (1/J)FB and br = RBr are the two derived variables, depending
explicitly on F, B and Br. With this representation, the total Cauchy stress σ is expressed from
(6.48)1, so that

σ =
2

J
F
∂WB

∂C
FT =

1

J

∂wb

∂F
FT =

1

J

ï
∂wb

∂F

ò
b,br

FT +
1

J

Åï
∂wb

∂b

ò
F,br

•
∂b
∂F

ã
FT +

1

J

Åï
∂wb

∂br

ò
F,b

•
∂br

∂F

ã
FT

=
ρ0
J

ï
∂ψb

∂B

ò
b,br

B︸ ︷︷ ︸
σmech

+

ß
h⊗ b −

µ0
2

(
|h|2 + |m|2

)
I
™

︸ ︷︷ ︸
σen

maxw

+
ρ0
J

ßÅï
∂ψb

∂br

ò
F,b
⊗RTbr

ã
:
∂R
∂F

™
FT︸ ︷︷ ︸

σrem
maxw

, (6.49)

where we substitute (2.33) to further expresswb(B, b, br; F, B,Br) = ρ0ψb(B, b, br; F, B,Br)+ (J/2µ0)b ·
b, with ψb is the specific Helmholtz free energy. Notice that, unlike WB, wb is not a function that
depends explicitly on C. Rather, the latter is a function of F, B and Br (note that R is also a function
of F). Hence, we apply first the identity (6.1)1 in (6.49) to express the C derivative in terms of
the derivative with respect to F. The identity (6.1)2 is subsequently applied while expressing the F
derivative in σmech in terms of B. Furthermore, the constitutive relation (6.48)2 is also used in the
algebraic manipulations while obtaining the final expression in (6.49).

Similar to the F − H model, the total σ is thus obtained as a sum of three distinct stress con-
tributions, namely the mechanical, energetic Maxwell and the remanent Maxwell stresses, so that
σ = σmech +σ

en
maxw +σ

rem
maxw. Notably, Danas (2017) provides a similar decomposition of the total σ, de-

rived from the Lagrangian F−B model in the context of s-MREs, so that σ = σmech+σ
en
maxw. Eventually,

the remanent magnetization in the h-MREs leads to the additional stress component σrem
maxw, which is

given in (6.49) for the F − B model.

The referential angular momentum balance (2.53) is ensured via the definition ofWB =WB(C, B,Br)
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(Coleman and Gurtin, 1967; Suo et al., 2008). This specialization leads to an expression for the total
σ given by (6.49), such that

σ =
2

J
F
∂WB

∂C
FT . (6.50)

Owing to the symmetry of C, the symmetry of σ can be observed readily from the last equation.
Thus, as a direct consequence of the relations WB(F, B,Br) ≡ wb(B, b, br; F, B,Br) and (6.1), we note
that the sum σmech +σ

en
maxw +σ

rem
maxw in (6.49) remains symmetric, while the symmetry of the individual

stress components are not ensured.

With the constitutive relations (6.48), the thermodynamic Clausius-Duhem inequality (6.47) now
reads

Hr •
.
Br > 0, with Hr = −

∂WB

∂Br
, (6.51)

where Hr is the energetic work conjugate of Br. Again, similar to the F − H model, the constitutive
relation for the internal variable (6.51) in the Lagrangian formulation is given in the stretch-free inter-
mediate configuration, while the primary constitutive relations (6.48) are proposed in the reference
configuration. Finally, the evolution equation for Br is obtained from the intermediate generalized
standard material relation, which reads

∂WB

∂Br
+
∂DB

∂
.
Br

= 0, (6.52)

whereDB(C, B,Br,
.
Br) is the dissipation potential. Substituting the last equation into (6.51) we obtain

the dissipation inequality, that is
∂DB

∂
.
Br

•
.
Br > 0, (6.53)

which is satisfied for any choice of DB that is convex in
.
Br. Specific choice for DB in the context

of F − B-based model for the h-MREs is provided in the following. Prior to that, we set forth the
constitutive relation in the current configuration, i.e., in the Eulerian setting.

Constitutive relations in the current configuration : The equivalent constitutive framework in the
current configuration considers the Eulerian magnetic field b and internal variable br to be the inde-
pendent variables. Consequently, the Clausius-Duhem inequality for this F−b modeling framework
is given by (2.35), which for the present case of the isothermal magneto-mechanical modeling reads
(Kankanala and Triantafyllidis, 2004)

J

ï
σ− h⊗ b +

µ0
2

(|h|2 − |m|2)I
ò
: l+ Jm •

.
b − ρ0

.
ψb > 0. (6.54)

Expanding further the material derivative of ψb(B, b, br) in terms of its arguments, we rephrase (6.54)
to be

J

ï
σ− h⊗ b +

µ0
2

(|h|2 − |m|2)I
ò
: l+ Jm •

.
b − ρ0

∂ψb

∂B
:

.
B − ρ0

∂ψb

∂b
•

.
b − ρ0

∂ψb

∂br
•

.
br > 0, (6.55)
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which reads upon rearrangements

J

ï
σ−

2ρ0
J

∂ψb

∂B
B − h⊗ b +

µ0
2

(|h|2 − |m|2)I −
ρ0
J

ßÅ
∂ψb

∂br
⊗RTbr

ã
:
∂R
∂F

™
FT
ò
: l

+J

Å
m −

ρ0
J

∂ψb

∂b

ã
•

.
b − ρ0

∂ψb

∂br
•
∆

br > 0, (6.56)

where
∆

br =
.
br −Ωbr is the Green-Naghdi rate of the current remanent field br with Ω the spin rate

as defined in Section 6.1.2. In order to prove the symmetry of the terms in contraction with l in (6.56),
except σ, we frame an equivalent expression for wb(B, b, br) ≡ WB(C, B,Br; F, b, br) in terms of the
Lagrangian B = JF−1b and the intermediate Br = RTbr. Notice that, here the primary magnetic and
internal variables are still given by b and br, respectively. Nonetheless, in a complimentary sense to
(6.49), the expression of wb(B, b, br) in terms of WB(C, B,Br; F, b, br) leads to the relation

2ρ0
J

∂ψb

∂B
B + h⊗ b −

µ0
2

(|h|2 − |m|2)I +
ρ0
J

ßÅ
∂ψb

∂br
⊗RTbr

ã
:
∂R
∂F

™
FT =

2

J
F
ï
∂WB

∂C

ò
B,Br

FT , (6.57)

which ensures the symmetry of the sum on the left hand side of the last. Thus, the symmetry of
σ from (2.20) and the symmetry of the ensemble of the additional terms contracted with l in (6.56)
allow us to replace l by the current stretch rate d = sym[l], so that

J

ï
σ−

2ρ0
J

∂ψb

∂B
B − h⊗ b +

µ0
2

(|h|2 − |m|2)I −
ρ0
J

ßÅ
∂ψb

∂br
⊗RTbr

ã
:
∂R
∂F

™
FT
ò
: d

+J

Å
m −

ρ0
J

∂ψb

∂b

ã
•

.
b − ρ0

∂ψb

∂br
•
∆

br > 0. (6.58)

Since d and
.
b are arbitrary and

∆

br is independent of the former two, the standard arguments of
the Coleman-Noll-Gurtin method (Coleman and Noll, 1959; Coleman and Gurtin, 1967; Hütter, 2017)
leads to the constitutive relations

σ =
2ρ0
J

∂ψb

∂B
B + h⊗ b −

µ0
2

(|h|2 − |m|2)I +
ρ0
J

ßÅ
∂ψb

∂br
⊗RTbr

ã
:
∂R
∂F

™
FT (6.59)

and

m =
ρ0
J

∂ψb

∂b
=⇒ h =

1

J

∂wb

∂b
. (6.60)

Taking the relation (2.33) between wb and ψb and the constitutive relations (6.59) and (6.60) into
account, (6.58) now reads

hr •
∆

br > 0, with hr = −
∂wb

∂br
, (6.61)

where the remanent hr is defined to be the work conjugate of the current br. Finally, the evolution
equation for the br is obtained from the constitutive relation for generalized standard materials in
the current configuration, which in the context of the present F − b model reads

∂wb

∂br
+
∂Db

∂
.
br

= 0, (6.62)
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where Db = Db(B, b, br,
∆

br) is the dissipation potential, expressed in terms of current variables.

Notice that we define the explicit dependence of Db on the Green-Naghdi rate
∆

br. Furthermore, we

rephrase (6.62) by exploiting the relation
∆

br =
.
br −Ωbr, such that

∂wb

∂br
+
∂Db

∂
∆

br
= 0. (6.63)

Consequently, (6.61) along with (6.63) leads to the dissipation inequality, given by

∂Db

∂
∆

br
•
∆

br > 0, (6.64)

which constraints Db to be a convex function of
∆

br, thus ensuring a positive dissipation under any
loading path. Of course, the choice for WB, DB, wb and Db are restricted further by the conditions
discussed in Section 6.1.3. These conditions eventually lead to the definitions of invariants, which we
now define in terms of C, B and Br (or equivalently, B, b and br) in the following.

Remark 6.3. As discussed in Chapter 2, the potential energy WH (wh) can be obtained from WB (wb)
via a partial Legendre transform of WB (wb) with respect to B (b), or vice-versa. However, (2.61)
and (2.30) suggest that the independent internal variables in the F − B (F − b) model can be kept
identical to that in the F−H (F−h) model. Nonetheless, here we consider different notations for the
independent internal variable in the F − H and F − B (or equivalently, the F − h and F − b) models.
This is done in order to remain consistent with the remanent magnetization/polarization literature
that considers the independent additive decompositions H = He +Hr and B = Be +Br in the context
of F − H and F − B-based models, respectively (McMeeking and Landis, 2002; Landis, 2002; Klinkel,
2006; Linnemann et al., 2009; Miehe et al., 2011; Kalina et al., 2017). It is emphasized that no explicit
relation must be drawn between the independent and conjugate Hr and Br in the context of the
F − H model with those defined in the context of F − B model. The same is applicable for the F − h
and F−b-based models as well. Thus, one should treat the F−H, F−h and F−B, F−b-based models
independently.

6.2.3 Properties of the potentials WB, DB, wb and Db

The energetic and dissipation potentials must satisfy the conditions of (a) even magneto-mechanical
coupling, (b) material frame indifference, as discussed in Section 6.1.3 in the context of F−H model.
In addition, these potentials must satisfy the material symmetry conditions for the isotropic MREs
and the entropy imbalance conditions on DB and Db. Section 6.1.3 provides a detail on each of these
conditions. Thus, here we set forth directly the aforementioned conditions for the present context of
F − B and F − b models.

Even magneto-mechanical coupling : The even magneto-mechanical coupling is ensured if the
energetic and dissipation potential satisfy the conditions

WB(C,−B,−Br) =WB(C, B,Br), DB(C,−B,−Br,−
.
Br) = D(C, B,Br,

.
Br) (6.65)

and
wb(B,−b,−br) = wb(B, b, br), Db(B,−b,−br,−

∆

br) = Db(B, b, br,
∆

br), (6.66)
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respectively, for arbitrary C, B, B, Br,
.
Br, b, br and

∆

br.
Material frame indifference : The material frame indifference conditions on the WB, DB, wb

and Db essentially ensures that these potentials remain invariant under an arbitrary change in the
observer, whose rotation is given by Q, so that

WB(C, B,Br) =WB(C, B,Br), DB(C, B,Br,
.
Br) = DB(C, B,Br,

.
Br) (6.67)

and

wb(QBQT , Qb, Qbr) = wb(B, b, br), (6.68)

Db(QBQT , Qb, Qbr,
∆

Qbr) = Db(QBQT , Qb, Qbr, Q
∆

br) = Db(B, b, br,
∆

br). (6.69)

In analogy to Section 6.1.3, here the Green-Naghdi rate
∆

Qbr of the transformed br can be shown to

yield the relation
∆

Qbr = Q
∆

br, thus ensuring its objectivity.
Material symmetry : In order to satisfy the material symmetry conditions for the isotropic h-

MREs, the potentials must remain invariant under a transformation of the reference configuration by
an arbitrary orthogonal tensor K, so that

WB(KTCK, KTB, KTBr) =WB(C, B,Br), DB(KTCK, KTB, KTBr, KT
.
Br) = DB(C, B,Br,

.
Br) (6.70)

and
wb(B, b, br) = wb(B, b, br), Db(B, b, br,

∆

br) = Db(B, b, br,
∆

br). (6.71)

Entropy imbalance : In addition, the dissipation potentials DB(C, B,Br,
.
Br) and Db(B, b, br,

∆

br)

must be convex functions of
.
Br and

∆

br, respectively, in order to satisfy the intermediate and Eulerian
dissipation inequalities given by (6.53) and (6.64).

Definition of invariants : It is customary to express the potentials WB, DB, wb and Db in terms
of a set of purely mechanical and magneto-mechanical invariants, that satisfy the conditions of even
magneto-mechanical coupling, material frame indifference and material symmetry. The relevant me-
chanical invariants are defined via the standard I1 = tr(C) and I3 = J = (det C)1/2, while the relevant
magneto-mechanical invariants are listed in Table 6.3. Here we only prescribe the I5 and I6-type
invariants since they are the only ones which would be used while defining the energy functions.
Notice from Table 6.3 that, along with the commonly-used IB5 and IB6 invariants (Dorfmann and Og-
den, 2004, 2005; Ponte Castañeda and Galipeau, 2011; Danas, 2017), we define an additional set of
“mixed” and “remanent” invariants indicated by the superscripts “BBr” and “Br”, respectively. It is
straightforward to verify that all these invariants satisfy the set of aforementioned conditions regard-
ing the even magneto-mechanical coupling, material frame indifference and material symmetry.

Table 6.3: Invariants associated with the F − B and F − b models of isotropic h-MREs

Invariant Lagrangian Eulerian Invariant Lagrangian Eulerian
IB5 = B • CB J2b • b IB6 = B • C2B J2b • Bb
IBBr
5 = JB • C1/2Br J2b • br IBBr

6 = JCB • C1/2Br J2b • Bbr

IBr
5 = J2Br •Br J2br • br IBr

6 = J2Br • CBr J2br • Bbr
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It remains to prescribe the invariant rate. Similar to Section 6.1.3, it is observed here that the

norms |
.
Br| and |

∆

br| are equal to each other and are objective as well. Thus, the dissipation potential

that is proposed in terms of the invariants of Table 6.3 and |
.
Br| or |

∆

br| remains fully objective and
isotropic. In addition, the dissipation potentials must satisfy (6.53) or (6.64) in order to ensure a
positive dissipation. The proposition of the specific functional forms for DB and Db are given in the
following.

6.2.4 Choice of energy functions: decoupled model

In a similar note to the s-MRE models in Chapter 4 and the proposed F − H and F − h model for
the h-MREs in Section 6.1, here we propose first a decoupled model for the effective response of
incompressible h-MREs. Again, the decoupled model ensures no mechanical strains under propor-
tional magnetic loading cycles. The magnetostriction, arising due to the particle rearrangements
under proportional loading paths, will be modeled afterwards in terms of proposing the coupling
potentials. Also, we emphasize that the “decoupled” model for the h-MREs ensure a decoupled
magneto-mechanical response only under proportional magnetic loading cycles. A non-proportional mag-
netic loading or a coupled magneto-mechanical loading path may induce mechanical strains and the
change in current m obtained from the decoupled model. This is due to the existence of the history-
dependent remanent magnetization in the h-MREs that makes the effective response path-dependent
and consequently, a fully decoupled magneto-mechanical response is not, in general, ensured.

Energetic potential : The I1 and IB5-based decoupled energetic potential for the incompressible
h-MREs is defined to be

WB(I1, IB5, IBBr
5 , IBr

5 ) = wb(I1, IB5, IBBr
5 , IBr

5 ) =


ρ0ψmech(I1) + ρ0ψBmag(I

B
5, IBBr

5 , IBr
5 )

+
1

2µ0
IB5 if J = 1

+∞ otherwise,

(6.72)

where the purely mechanical effective energy ψmech(I1) is given by (5.5). Furthermore, the IB5 -based
magnetic potential is proposed herein to be comprising of energetic and remanent contributions,
such that

ρ0ψ
B
mag(I

B
5, IBBr

5 , IBr
5 ) = ρ0ψB,en

mag (IB5) + ρ0ψB,rem
mag (IBBr

5 , IBr
5 ). (6.73)

The F − B model is also designed vis-a-vis the F − H model, that match the analytical estimates for
the effective energetic and remanent susceptibilities. As detailed in Chapter 3, ψB,en

mag is associated
with the linear energetic response of the magnet outside the switching regime. Thus, the effective
linear response for this composite is given by

ρ0ψ
B,en
mag (IB5) =

1

2

Å
1

µe
−
1

µ0

ã
IB5, (6.74)

where µe = µ0(1+ χe) with χe for the composite is given by (6.31)2, which is the M-G lower bound
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for the effective energetic susceptibility. Subsequently, the remanent free energy is given by

ρ0ψ
B,rem
mag (IBBr

5 , IBr
5 ) = −

1

µe
IBBr
5 −

1

3µe

Ç
1− c

c

ã
IBr
5 +

µe

c

(1+ χp)
χp

(ms)2fbp

Å»
IBr
5

µems

å
, (6.75)

which, in the limit of c → 1, leads to the remanent free energy (3.36) associated with the metallic
magnets. Here fbp is the inverse saturation function defined by (3.37) for the particle phase, whereas
ms is the effective saturation magnetization, defined to be ms = c msp(µe/µep )0.8. Thus, in a similar
note to the decoupled F − H model in Section 6.1.4, here the decoupled F − B model is defined fully
in terms of the material and microstructural properties of the underlying microstructure, without
introducing any additional model parameters.

As discussed in the context of the effective F − H model, at the onset of switching, i.e., in the
limit of |br| → 0, one can linearize the nonlinear inverse saturation function fbp . Consequently, (6.75)
becomes linear in IBBr

5 and IBr
5 , such that

ρ0ψ
B,rem
mag,|br|→0(IBBr

5 , IBr
5 ) = −

1

µe
IBBr
5 +

1

µe

Å
1+ χ

χ

ã
IBr
5 , (6.76)

where χ is the effective susceptibility given by (6.33)2. It is noted here that the “effective susceptibil-
ity” for the F−B model is given by χ/(1+ χ), which is identical to that provided by Ponte Castañeda
and Galipeau (2011) in the context of s-MREs. Even though Ponte Castañeda and Galipeau (2011)
provide the estimate of effective susceptibility in terms of χ̂p, that is related to χp via χ̂p = χp/(1+ χp),
one recovers the effective susceptibility in (6.76) via straightforward algebraic manipulations.

Dissipation potential : The definition of the effective dissipation potential takes a similar form to

that in (6.34), except the arguments are now given in terms of |
.
Br| and |

∆

br|, so that

DB(|
.
Br|) =

bc
.
hr0

(p+ 1)

ñ
|
.
Br|

µe
.
hr0

ôp+1
=

bc
.
hr0

(p+ 1)

ñ
|
∆

br|
µe

.
hr0

ôp+1
= Db(|

∆

br|), (6.77)

where the effective coercive field bc is defined via (6.34)2. Notice that both DB(|
.
Br|) and Db(|

∆

br|) are

objective and are convex in terms of
.
Br and

∆

br, respectively. Hence, the entropy inequalities (6.53)
and (6.64) are satisfied for all bc > 0 and µe > 0. Since a rate-independent response is sought-for in
such quasi-static h-MRE responses, we obtain the ferromagnetic switching surfaces from (6.77) in the
limit of p→ 0, which are given in the reference and current configurations by

ΦB := (µe)2Hr ·Hr − (bc)2 = 0 and φb := (µe)2hr · hr − (bc)2 = 0, (6.78)

respectively. Notice that Hr and hr in the former and the latter are defined via the constitutive
relations (6.51) and (6.61), respectively. Thus, both Hr and hr can now be computed explicitly from
the potential energy (6.72). Subsequently, the evolution equations for Br and br is given by the
associated switching rules, so that

.
Br =

.
ΛB

∂ΦB

∂Hr and
∆

br =
.
λb
∂φb

∂hr
, (6.79)
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where
.
ΛB and

.
λb are the Lagrange multipliers in the context of F−B and F−b models, respectively.

Notably, both
.
ΛB and

.
λb must satisfy the Kuhn-Tucker conditions, given by{ .

ΛB = 0 if ΦB < 0
.
ΛB > 0 if ΦB = 0

and

{.
λb = 0 if φb < 0
.
λb > 0 if φb = 0,

(6.80)

respectively. Next, we provide a summary of the constitutive relations those are relevant to the F−B
and F − b models.

Remark 6.4. Experimental investigations with h-MREs typically report the effective coercivity in
terms of defining a coercive field in terms of hc, which is considered to be the h-field where the
m− h hysteresis loop crosses the h axis (Kalina et al., 2017; Kim et al., 2018). Thus, one can replace
bc by µehc in (6.78), so that the switching criteria can be set in terms of specifying hc. Nevertheless,
in this work we only specify bcp as a measure of the particle coercivity and all the effective coercivity
measures are expressed in terms of bcp , µe and c.

Constitutive equations in Lagrangian and Eulerian settings : Here we summarize the constitutive
relations in the Lagrangian and Eulerian settings. In particular, the F − B-based model is associated
with the constitutive relations given by (6.48), (6.51)2 and the local evolution equation for the rema-
nent Br is given by (6.78)1, (6.79)1. The F−b-based constitutive relations in the current configuration
is given by (6.59), (6.60) and (6.61)1. Finally, the local evolution equation for br is given in terms of
its Green-Naghdi rate (6.79)2. These constitutive relations in the Lagrangian and Eulerian settings
are summarized in Table 6.4.

Table 6.4: Constitutive relations and associated switching rules for the incompressibe b-field-based models of
h-MREs in the Lagrangian and Eulerian settings

Lagrangian Eulerian

S = 2F
∂WB

∂C
− pF−T σ = 2ρ0

∂ψb

∂B
B +

ï
h⊗ b −

µ0
2

(
|h|2 − |m|2

)
I
ò
+

2

det Z
Z skw

(
br ⊗ hr

)
VZ − pI

H =
∂WB

∂B
h =

∂wb

∂b

Hr = −
∂WB

∂Br
hr = −

∂wb

∂br

ΦB := (µe)2Hr •Hr − (bc)2 = 0 φb := (µe)2hr • hr − (bc)2 = 0

.
Br =

.
ΛB

∂ΦB

∂Hr

∆

br =
.
λb
∂φb

∂hr

Again, the constitutive relations presented here are provided for the specific case of an incompress-
ible model. Consideration of the material compressibility leads to a little alteration of the constitutive
relations for S, σ and h. However, the constitutive relations for Hr and hr and finally, the evolution
equations for Br and br remain identical to those in Table 6.4. This observation can be attributed di-
rectly to the stretch-insensitivity of br that is defined via the definition of its Lagrangian counterpart
in the stretch-free intermediate configuration Vi.
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Symmetry of σ : Even though the symmetry of σ is confirmed via (6.57) in the developed consti-
tutive framework, one can prove the symmetry of σ provided in Table 6.4 explicitly via expanding
it in terms of the invariants provided by Table 6.3. The algebraic procedure to prove its symmetry
follows the exact path as in Appendix 6.A and thus, is not shown explicitly in this text.

One can further simplify the expression for σ, given in Table 6.4 via considering the specific forms
of h and hr for the proposed decoupled potential (6.72). Specifically, the remanent stress part of σ is
now simplified via considering the expressions for h and hr in terms of b and br, such that

h =
1

µe
(b − br) and hr =

1

µe
b +

2

3µe

Å
1− c

c

ã
br −

ms

c

(1+ χp)
χp

(fbp ) ′
Å»

IBr5

µems

ã
br

|br|
. (6.81)

Substituting the last two into the expression for σ in Table 6.4, one eventually obtains the same
expression for σrem

maxw as given by (6.39). Thus, for the specific decoupled F−h and F−b models proposed in
this chapter, the expressions for σrem

maxw becomes identical.

6.2.5 Coupled potential

In order to propose the coupling potential for the F − B (or equivalently, F − b) model, we follow an
identical approach as in Section 5.2.2 in the context of s-MREs. Thus, we augment the total potential
WB (or wb) with a coupling energy that is a function of both I5 and I6-based mixed and remanent
invariants, so that

WB(I1, IB5, IBBr
5 , IBr

5 , IBBr
6 , IBr

6 ) =


ρ0ψmech(I1) + ρ0ψBmag(I

B
5, IBBr

5 , IBr
5 )

+ρ0ψ
B
couple(I

BBr
5 , IBr

5 , IBBr
6 , IBr

6 ) +
1

2µ0
IB5 if J = 1

+∞ otherwise,

(6.82)

where all the relevant invariants are listed in Table 6.3. We consider no coupling in terms of the
dissipation potential since the energy dissipation remains purely due to the magnetic switching,
whereas the other possible sources of dissipation are ignored in the micro and macroscopic models.

Specifically, the coupling potential for this model is proposed to be

ρ0ψ
B
couple(I

BBr
5 , IBr

5 , IBBr
6 , IBr

6 ) =
c

µ0
βBr
ß(
IBr
6 − IBr

5

)
+ 2

χe

1+ χe
(
IBBr
6 − IBBr

5

)™
, (6.83)

where βBr is the coupling coefficient for the F − B model. This coefficient will be identified via fit-
ting the model magnetostriction response to that estimated from the numerical computations. It is
emphasized that (6.83) provides one possible phenomenological energy function that models the mag-
netostriction response of the h-MREs. Nevertheless, one can introduce more modeling parameters in
(6.83) whenever necessary.

We observe that explicit expression for S in case of the Lagrangian model necessitates the com-
putations of the derivatives of IB5 and IB6 with respect to C. While the C derivatives of the energetic
IB5, IB6 and remanent IBr

5 , IBr
6 are straightforward to compute, that of IBBr

5 , IBBr
6 are not trivial. Thus,

explicit expressions for the derivatives of IBBr
5 , IBBr

6 with respect to C is provided in Appendix 6.B.

Remark 6.5. In view of practical implementation of the proposed F − B constitutive model in an
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incremental FE solver, we provide a compressible version of the incompressible potential energy
(6.82), such that

WB(I1, J, IB5, IBBr
5 , IBr

5 , IBBr
6 , IBr

6 ) = ρ0ψcomp
mech(I1, J) + ρ0ψBmag

Ç
IB5
J2

,
IBBr
5

J2
,
IBr
5

J2

å
+ ρ0ψ

B
couple

Ç
IBBr
5

J2
,
IBr
5

J2
,
IBBr
6

J4
,
IBr
6

J4

å
+

1

2µ0J
IB5. (6.84)

The compressible mechanical free energy ψcomp
mech in (6.84) is given by (5.34), which leads to a nearly

incompressible effective model in the limit of G ′m � Gm, where G ′m is the bulk modulus of the matrix
phase. In a similar note to (5.43), the compressible versions of ψBmag and ψBcouple consider their argu-
ments in terms of I5/J2 and I6/J

4 invariants. Notice that, no modification in the definition of the
effective switching surface (6.78) and the associated switching rule (6.79) is carried out in the present
case of a nearly incompressible modeling.

6.3 Limiting conditions

The proposed incompressible constitutive relations in the F − h and F − b spaces, which are sum-
marized in Table 6.2 and 6.4, respectively, can be simplified under a number of limiting conditions.
Moreover, such limiting cases also show the proposed models’ capability to reproduce exactly the
previously-known models for metallic hard magnets (Robinson, 1975) and s-MREs (Kankanala and
Triantafyllidis, 2004; Dorfmann and Ogden, 2004, 2005; Steigmann, 2004). In particular, we discuss a
couple of limits, namely, (i) the limit of c → 1, where the effective models approach the magneto-
mechanical model of metallic permanent magnets and (ii) the limit of bcp → 0, which leads to a soft
magnetic response.

(i) The limit of c → 1 : In the limit of c → 1, the effective shear modulus in (5.5) approach +∞,
thus, constraining the effective strain to become infinitesimally small. Consequently, by substituting
V = I (since Grad u � I, we ignore the sym(Grad u) and the higher-order terms in Grad u in the
expression of V) in the expressions of σ in Table 6.2 and 6.4, we obtain the classical expression of the
total σ for the permanent metallic magnets, which reads (Robinson, 1975)

σ =


σmech +

Å
h⊗ b −

µ0
2
|h|2I
ã
+ skw

(
µ0m⊗ h

)
− pI for F − h model,

σmech +

ï
h⊗ b −

µ0
2

(
|h|2 − |m|2

)
I
ò
+ skw

(
µ0m⊗ h

)
− pI for F − b model,

(6.85)

where σmech can be expressed in terms of the infinitesimal strain sym(Grad u) and the effective shear
modulus G (see e.g., (Kumar and Lopez-Pamies, 2016)). Thus, in the limit of small strains, the Cauchy
stress measures in the proposed F − h and F − b frameworks lead identically to the classical small
strain theory of Robinson (1975) for the metallic permanent magnets. Notice from (6.85) that the
expressions of σ remain the same for the F − h and F − b models except the added hydrostatic stress
contribution with |m|2 that appears additionally in the F − b modeling framework.

Moreover, in this limit the Green-Naghdi rate
∆

hr (
∆

br) of the current hr (br) tends to the objective
Truesdell rate defined via

◦
hr =

.
hr − lhr (

◦
br =

.
br − lbr), which is also referred to be the Lie rate of hr
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(br) with respect to the reference configuration (Pinsky et al., 1983; Szabó and Balla, 1989). Thus the
models of metallic magnets at the current configuration typically define the dissipation potential in
terms of

◦
hr (or equivalently,

◦
br) (see e.g., (Keip and Sridhar, 2018)).

(ii) The limit of bcp → 0 : As discussed in Chapter 3, the pure magnetic hysteresis model in
the limit of bcp → 0 leads to a non-dissipative saturation magnetization model. Consequently, a
modification in the expression of σ is also obtained. Notice that, setting bcp = 0 leads to the switching
conditions given by br • br = 0 and hr • hr = 0 for the F − h and F − b models, respectively. Thus,
substituting these two switching constraints, namely, br = 0 and hr = 0 into the expressions of σ in
Table 6.2 and 6.4, respectively, we obtain the resulting expressions for σ under the aforementioned
limit, so that

σ =


2ρ0

∂ψh

∂B
B +

ï
h⊗ b −

µ0
2
|h|2I
ò
− pI for F − h model,

2ρ0
∂ψb

∂B
B +

ï
h⊗ b −

µ0
2

(
|h|2 − |m|2

)
I
ò
− pI for F − b model.

(6.86)

Notice that (6.86) provides the constitutive relations for σ identical to those provided by Kankanala
and Triantafyllidis (2004), who provide the current constitutive frameworks for s-MREs.

As noted in Chapter 3, the condition bcp = 0 leads to the explicit expressions of the internal
variables hr and br in terms of h and b, respectively. In contrast, in the effective F − h and F −

b models proposed in this chapter, one cannot express hr and br explicitly in terms of h and b,
respectively, from (6.38)2 and (6.81)2 by setting br = 0 and hr = 0, respectively. Thus, an effective
soft magnetic model cannot be put forth explicitly from the proposed hysteretic effective models.
That’s why the homogenization-based effective model of Lefèvre et al. (2017) is associated with the
solving a nonlinear transcendental equation (5.10), which takes an identical form to (6.38)2, once we
substitute br = 0 into it.

6.4 Results: assessment of the macroscopic models

The proposed F−H, F−h, F−B and F−b-based macroscopic models are now probed against the nu-
merically computed effective responses. The macroscopic model responses are computed following
a similar two step numerical computation procedure for the dissipative constitutive response. First,
we update the intermediate internal variables Hr and Br by employing directly the fully-implicit
radial-return-type scheme given in Algorithm 4.1. In contrast, we employ an incrementally objective
radial-return algorithm (Hughes and Winget, 1980) in order to update the Eulerian internal variables
hr and br, whose evolution equations are given in terms of their Green-Naghdi rates. Subsequently,
the macroscopic stress and primary magnetic fields are computed from the constitutive relations
provided in Table 6.2 and 6.4. The resulting magnetostriction components are then computed from
the macroscopic stress boundary conditions (4.84) or (4.85), depending on the loading path. Notice
from (4.84) and (4.85) that, some of the shear components are blocked in order to prevent any rigid
body rotations during the loading/unloading.

As observed in Chapter 5 and in the development of the models, we notice that the effective
magnetization response require no further fitting of the model parameters. Rather, the coupling
coefficients βHr and βBr for the F−H (or, equivalently F−h) and F−B (or, equivalently F−b) models
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are estimated via fitting the resulting magnetostriction response to the numerically computed average
response as shown in Fig. 4.11. Next, the fitted model is assessed against the computed effective
responses under a number of non-proportional magneto-mechanical loading paths.

In the following, we represent all the FE computed responses by discrete points, whereas the F−H
and F−B model responses are shown by continuous solid and dashed lines, respectively. Notice that
the equivalent F − h and F − b models yield identical results to their Lagrangian counterparts and
hence, are not shown explicitly in the following plots for brevity. Moreover, the model responses are
shown only for the purely incompressible cases.

6.4.1 Proportional cyclic magnetic loading

The fitting is performed via considering a proportional cyclic loading path as shown in Fig. 4.9b.
Here neglect any shear component and assume a form of F so that F =

∑3
i=1 λiei ⊗ ei, i.e., only in

terms of the principal stretch components, where ei are the unit vectors associated to the reference
coordinates system X.

The coupling parameters βHr and βBr are estimated subsequently, by fitting the macroscopic
parallel effective magnetostriction λ1 − 1 to that computed via the FE simulations. We employ the
lsqcurvefit algorithm of MATLAB (2017) to find the optimal coupling parameters βHr and βBr,
which are estimated for three particle volume fractions, namely, c = 0.1, 0.2 and 0.3, and a matrix
shear modulus Gm = 0.5 MPa. We subsequently fit smooth quadratic polynomials that provides the
parameters βHr and βBr as a polynomial in c, such that

βHr = 18.5c2 − 10.2c+ 1.67 and βBr = 18.0c2 − 9.8c+ 1.58, (6.87)

respectively. Notice that the last expressions for βHr and βBr are valid for Gm = 0.5 MPa and may
be modified for the other Gm values. Nonetheless, a variation in these coupling parameters does not
alter the qualitative nature of the magnetostriction responses.

Figure 6.4 shows a set of fitted model responses along with the numerical homogenization es-
timates for c = 0.1 (a-c), 0.2 (d-f) and 0.3 (g-i). We note that the effective hysteretic magnetization
responses, which remain insensitive to the parameters βHr and βBr, at least under the proportional
loading path, are predicted sufficiently well by both the F−H and F−B models for all three c values
(see Fig. 6.4a, d and g). As shown in Fig. 6.4b, e and h, the modeled effective parallel magne-
tostriction λ1− 1 fits perfectly to the corresponding numerical homogenization results. Moreover, the
Fig. 6.4c, f and i show that the transverse magnetostriction components λ2− 1 and λ3− 1 are modeled
perfectly by the proposed macroscopic framework. Notice that, due to the perfectly incompressible
constituents, the transverse magnetostriction components obtained from the proposed macroscopic
models are equal, given by λ2 = λ3 = 1/

√
λ1. Nonetheless, the numerically computed transverse

magnetostriction components exhibit minor differences between λ2 − 1 and λ3 − 1, which can be at-
tributed directly to the compressible (near incompressibility is imposed only by setting G ′m = 100Gm)
constitutive models in the numerical computations.

The effect of c on the effective responses are depicted in Fig. 6.5. Here we show only the F − H
and F − B model responses and drop the computed effective responses for brevity. Notice that, in
spite of being dissipative and path-dependent, the c-dependence of the effective responses resemble
closely to the non-dissipative effective responses of s-MREs. In particular, the effective maximum
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Figure 6.4: Comparison of the fitted F − H (solid lines) and F − B (dashed lines) model responses under pro-
portional cyclic loading along e1 with the corresponding numerical homogenization response (discrete points).
The effective magnetization (a,d,g), parallel (b,e,h) and transverse (c,f,i) magnetostrictions are compared for
three different particle volume fractions c = 0.1 (a-c), 0.2 (d-f) and 0.3 (g-i).

magnetization is observed to be approximately proportional to c (see Fig. 6.5a), whereas a nonlinear
c-dependence of the maximum magnetostriction at |h1|/msp = 3.0 is observed in Fig. 6.5b and c. Since
the local magnetization never saturates, but rather maintains a constant slope of χep in the hard-
magnetic particle phases, the effective magnetization and magnetostriction responses in Fig 6.5 do
not exhibit any saturation. Nevertheless, one can compare the magnetization and magnetostrictions
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Figure 6.5: F − H (solid lines) and F − B (dashed lines) model (a) magnetization and (b) parallel and (c)
transverse magnetostriction responses under proportional cyclic loading along e1 for three different particle
volume fractions c = 0.1, 0.2 and 0.3.

Figure 6.6: Variation of the maximum (a) magnetization, (b) parallel and (c) transverse magnetostrictions with
c (0.0 < c 6 0.3) under a proportional loading cycle having amplitude |h1|/msp = 3.0. Numerical homogenization
estimates (discrete points) along with the F − H (solid lines) and F − B (dashed lines) model predictions.

under the applied maximum |h1|/msp = 3.0 to have a notion of their dependence on c.
The variation of the effective m1 and the magnetostriction components with c are shown in

Fig. 6.6, where the effective fields are computed at an applied h1/msp = 3.0 during the first loading
cycle from 0 to 3. We note from Fig. 6.6a that, unlike the s-MREs, m1/msp is not equal to c and is
directly proportional to c with a certain constant of proportionality, which is > 1. This observation
is a direct consequence of the non-saturating effective magnetization response, while a perfectly sat-
urating effective magnetization maintains a constant of proportionality to 1. The maximum parallel
and transverse magnetostriction components, on the other hand, exhibit a nearly quadratic variation
with an increasing c up to a particle volume fraction c = 0.3. We observe from the numerical ho-
mogenization estimates for s-MREs that the effective magnetostrictions start decreasing for c > 0.35
(Danas, 2017). However, this range of volume fractions with c > 0.3 is not investigated explicitly in
the present study. Thus, it is emphasized to regard the fitting parameters in (6.87) only for the range
of 0 < c 6 0.3. Re-calibration of the coupling parameters are recommended for the h-MREs having
c > 0.3. Nonetheless, most of the h-MREs in practice have a particle volume fraction in the range of
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0.05 6 c 6 0.3 (Kim et al., 2018; Zhao et al., 2019), which is investigated in this study.

6.4.2 Non-proportional magneto-mechanical loading of h-MREs with c = 0.2

Next, we probe the proposed F − H and F − B model predictions against the numerical homoge-
nization computations under non-proportional magneto-mechanical loading paths. The boundary
conditions are kept identical to that in the RVE computations, given by (4.85). The specific form of F
is now chosen to be F =

∑3
i=1 λiei ⊗ ei + γ12e1 ⊗ e2.

We note from several experiments that the magneto-mechanical responses of a pre-magnetized h-
MRE sample are particularly of interest in most of the applications (Kim et al., 2018; Zhao et al., 2019).
Thus, here we choose to probe the performance of the proposed models when a pre-magnetized
h-MRE is subjected to various mechanical, magnetic and magneto-mechanical loadings. The pre-
magnetization process remains identical in all the results herein. We pre-magnetize the RVE from
the initial state of zero magnetization up to its saturation by applying the magnetic field ha = h1e1
having magnitude |h1|/msp = 3.0. This applied field is subsequently removed steadily at the same rate
of its application, thus leading to a remanent magnetization in the h-MREs. The magnetization and
magnetostriction responses under this initial magnetization loading step looks identical to the first
quadrants of (6.6)a-c.

Specifically, here we choose to work with a h-MRE having particle volume fraction c = 0.2 and
three distinct matrix shear moduli, namely Gm = 1.0, 0.5 and 0.3MPa. The material parameters related
to the magnetic particle phase “p” remains identical to that in Table 3.3a, whereas the coupling
coefficients βHr and βBr are considered to be defined by (6.87). Note that the optimal βHr and
βBr may vary for the matrix shear moduli Gm = 1.0 and 0.3 MPa. Nonetheless, such variations are
not expected to be drastic in these two cases. Hence, we choose to work with the same βHr and
βBr as in (6.87) for all three matrix shear moduli. Moreover, it would be observed in the subsequent
investigations that these coupling constants play minimal roles in altering the model responses under
such non-proportional loading conditions.

First, we investigate the effects of mechanical tension and simple shear on the pre-magnetized
h-MRE and also probe the model performance under these loading conditions. The effect of non-
proportional magnetic loading perpendicular to the pre-magnetization direction will be investigated
subsequently. Finally, we will investigate the effect of the simultaneous magneto-mechanical loading
paths on the response of the h-MREs.

Effect of mechanical tension : A mechanical tension is applied on the pre-magnetized h-MRE
along the e2 direction, such that Smecha,22 = Smech22 , with a maximum magnitude of Gm, while setting
Smecha,12 = 0 and all the other mechanical stress and displacement boundary conditions are considered
to be given by (4.85)1 and (4.85)4, respectively. As shown in the inset of Fig. 6.7a, the loading and
unloading path is considered to be a simple linear increase of Smech22 from 0 to Gm and its subsequent
linear decrease to 0. The resulting model and homogenization responses in terms of the mechanical
stretch λ2 and the magnetizations along the e1 and e2 directions are shown in Fig. 6.7a, b and c,
respectively. Notice that, for this specific case, the numerical results for the effective responses are
already shown in Fig. 4.14a-c, while the deformed RVEs under Smech22 are depicted in Fig. 4.14d-f.

We observe excellent agreement between the numerical homogenization computations and the
proposed F − H and F − B models in all the responses, shown in Fig. 6.7. The model predictions for
the transverse stretches λ2 and λ3 also match perfectly the numerically computed responses. These
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Figure 6.7: Evolutions of (a) mechanical stretch λ2 and magnetizations along (b) e1 and (c) e2 under applied
uniaxial tensile stress Smech22 , whose loading path is shown in the inset of (a). The inset of (c) shown a schematic
of the h-MRE with the direction of pre-magnetization m0 and the applied uniaxial tension.

comparisons are not shown explicitly for brevity. Note that the stretch-independence of the current
remanent magnetization m0 is captured perfectly by the proposed models. Again, this feature is
a direct consequence of the defining Lagrangian independent remanent variables in a stretch-free
intermediate configuration, as shown in Fig. 6.2 and 6.3.

Effect of simple shear : We now apply a simple shear stress Smecha,12 = Smech12 along the direction e1
on the surface having an unit normal along e2, while considering Smecha,22 = 0 and all other mechanical
boundary conditions given by (4.85)1 and (4.85)4. The loading path is shown in the inset of Fig. 6.8a,
which is identical to the uniaxial tension case, but now in a different direction on the surface having

Figure 6.8: Evolutions of (a) shear strain γ12 and magnetizations along (b) e1 and (c) e2 under applied simple
shear stress Smech12 , whose loading path is shown in the inset of (a), which also show a schematic of the h-MRE
with the direction of pre-magnetization m0 and the applied shear.

unit reference normal along e2.
We observe excellent agreements in Fig. 6.8a, b and c, between the model predictions and the

numerical homogenization computations for the effective shear strain γ12, effective magnetizations
along e1 and e2, respectively, which are previously shown in Fig. 4.16. Also, the inset of Fig. 6.8a
ascertains the fact that the applied simple shear stress rotates the current magnetization.

Non-proportional magnetic loading along e2 : Next, the effect of applied non-proportional mag-
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netic loading, perpendicular to the direction of the pre-magnetization is investigated. As shown in
the inset of Fig. 6.9a, the loading/unloading path remain a simple ramp-type linear increase/decrease

Figure 6.9: Evolution of the magnetization components along e1 (a,d,g) and e2 (b,e,h) and the induced shear
strain γ12 (c,f,i) under applied non-proportional magnetic loading (inset of b) of a pre-magnetized h-MRE
along e1 (inset of c). Effect of three distinct Gm, namely, Gm = 1.0 (a-c), 0.5 (d-f) and 0.3 (g-i) MPa on the
effective magnetization components and induced shear strain.

from a zero applied field to h2 = 3msp and vice-versa. In a similar note to the previous two cases,
h-MREs with a particle volume fraction c = 0.2 and three different matrix shear moduli, Gm = 1.0,
0.5 and 0.3 are considered herein. For this particular case, the applied mechanical stress Smecha,22 and
Smecha,12 considered to be zero, while the other mechanical stress and displacement conditions remain
identical to the preceding two cases of applied tension and shear.

Since all the shear degrees of freedom on the surface with reference unit normal along e2 are left
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free, the applied non-proportional loading readily induces an average shear strain along direction 1,
namely γ12, in the RVE due to the rotation of the microscopic hard magnetic particles. The evolution
of the magnetization components along e1 and e2 along with that of the induced shear under applied
h1 are shown in Fig. 6.9. Unlike the preceding two results involving mechanical tension and shear of
a pre-magnetized h-MRE, here we observe a strong dependence of the resulting magneto-mechanical
responses on Gm. First, we notice from Fig. 6.9c, f and i that the induced shear strain increases with
the decreasing shear modulus of the matrix. Furthermore, the magnitude of the induced shear strains
are one to two orders higher than those of the magnetostrictions under a proportional loading, as
observed in Fig. 6.4. The last observation suggests that the effect of particle rotations under non-
proportional magnetic loading induces way more magneto-mechanical coupling than the simple
particle rearrangements under the proportional loading paths. That is why most of the soft robotic
applications of h-MREs exploit its large deflections under non-proportional magnetic loadings (Kim
et al., 2018; Zhao et al., 2019). We also note from the numerical homogenization computations that,
under this non-proportional loading condition, the scale of variations in the magnetostriction stretch
components λi (i = 1− 3) remain less than 10−2. Being significantly smaller, such variations do not
play significant roles in the macroscopic response of the h-MREs under the non-proportional loading
paths. These variations in λi are not shown in this text for brevity.

Both the F − H and F − B model predictions agrees very well with the computed effective re-
sponses, specially for the more stiff h-MREs having Gm > 0.5 MPa. The predicted effective magnetiza-
tion and shear responses, however, start differing from the numerical computations for the relatively
softer h-MRE with Gm = 0.3 MPa. To further investigate on this disparity, we plot the relative error in
the magnitude of the predicted magnetization and the predicted direction of the magnetization with
respect to the numerical homogenization estimates in Fig. 6.10 b and c. In particular, we observe from

Figure 6.10: (a) Non-proportional loading path, (b) relative difference between the computed and model
predicted magnitudes ofm and (c) angle (in an absolute sense) between the computed and the model-predicted
effective magnetizations.

Fig. 6.10b that, the relative error in the predicted magnitude of m remains below 3% during most
of the loading/unloading. On the other hand, Fig. 6.10c shows that the absolute difference between
θFEmag and θmodelmag becomes significant at the initiation of the non-proportional loading and during the
unloading. Here the angles θmag are considered simply to be the angle with the reference X1 axis and
therefore, are computed simply via θmag = tan−1(m2/m1).

Such increasing difference between the predicted and computed directions of the effective m,
while their magnitudes match significantly well, is therefore solely due to the non-affine particle
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rotations in the microstructure. Evidently, the extent of these non-affine rotations increase with the
decreasing Gm, thus, leading to more disparity between the model predictions and the numerical
homogenization estimates. Nonetheless, the predicted induced shear strain responses for Gm = 0.3
MPa in Fig. 6.9i have a qualitative agreement in terms of their similar evolution patterns.

Figure 6.11 shows a number of representative contour plots of the local b̂2 fields in the composite
at various loading instants, indicated by (I), (II) and (III) on Fig. 6.10a. Evidently, the deformed

Figure 6.11: Contours of the numerically computed local b̆2 fields in a deformed mesh at the load-
ing/unloading instances (I) (a,d,g), (II) (b,e,h) and (III) (c,f,i) as indicated in Fig. 6.10a. Contours are shown for
three different matrix shear modulus, namely, Gm = 1.0 MPa (a-c), 0.5 MPa (d-f) and 0.3 (g-i).

configurations in Fig. 6.11 show a greater extent of induced shear in the RVEs with softer matrix (cf.,
Fig. 6.11b and h), which are in accordance with the effective responses in Fig. 6.9. Furthermore, visual
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inspections of the individual particles in Fig. 6.11b, e and h clearly show an increasing tendency of
non-proportional particle rotations. Even if the deformed configurations in state (III), i.e., Fig. 6.11c, f
and i look identical, the directions of the local magnetization in the particles differ considerably. This
is due to the higher extents of non-affine particle rotations in the softer matrix (Gm = 0.3 MPa) during
the initial non-proportional loading cycle, as shown by the initial bump in the non-affine rotations in
Fig. 6.10c.

In other words, the magnetization of h-MREs along the direction of non-proportional magnetic
loading is results from two competing mechanisms: first, the particle rotations in the soft elastomer
matrix and second, the magnetic switching in the particles. As shown in Fig 6.10c, during the initial
non-proportional loading, the particles are more susceptible to undergo rotations in order to align
themselves with the applied h-field, thus, inducing an overall shear strain γ12 in the RVE. Moreover,
the tendency of the particles to undergo additional non-affine rotations increases with the decreasing
Gm. Nevertheless, both affine and non-affine particle rotations are hindered by the elastic restoring
torques, exerted by the matrix. Such hindrance to the (affine and non-affine) particle rotations in-
crease with the increasing Gm, leading to smaller induced γ12 and also lesser non-affine rotations (see
Fig. 6.10c). Eventually, the magnetic switching mechanism wins over the particle rotations at higher
applied fields and consequently, the induced shear start saturating or having a more subtle rate of
increasing (see Fig. 6.9c, f and i). Also, we observe negligibly small non-affine particle rotations in
Fig. 6.10c during the later part of the loading half cycle, when the magnetic switching mechanism
dominates in the process of rotating the average m.

During the unloading, on the other hand, no magnetic switching takes place. Nonetheless, be-
cause of the elastic restoring torques, the rotated particles start coming back to their initial position
while the applied magnetic field h2 is removed gradually. Consequently, the induced γ12 vanishes
upon the removal of the applied h2 (see Fig. 6.9c, f, i and Fig. 6.11c, f and i). In addition, the particles
also undergo non-affine rotations while restoring back to their initial positions, in order to compen-
sate for their non-affine rotations during the initial part of the loading half cycle. Consequently, this
leads to the disparity between numerical homogenization and the affine rotation-based F − H and
F − B model predictions, specifically significant in Fig. 6.9g and h.

Simultaneous mechanical shear and non-proportional magnetic loading : We now investigate
the effect of applied mechanical shear simultaneously with the non-proportional magnetic loading,
whose loading path is considered to be the same as in Fig. 6.9a (inset). The mechanical shear loading
path is considered to be identical to Fig. 6.8a (inset). Here we use the same RVE as shown in Fig. 6.11
for the FE computations, now with an applied shear stress Smecha,12 = S

mech
12 . In addition, we set Smecha,22 = 0

and all the other macroscopic stress and displacement conditions are considered to be given by (4.85)1
and (4.85)4, respectively.

The resulting coupled magneto-mechanical responses for c = 0.2 and Gm = 1.0, 0.5 and 0.3 MPa are
compared with the corresponding FE computations in Fig. 6.12. In particular, Fig. 6.12a, b, d, e, g and
h show the same feature observed in the previous case of non-proportional magnetic loading, that is,
the affine rotation models predict the m1 and m2 components better for relatively stiff matrices, even
though, the magnetization responses are not identical to those in Fig. 6.9 due to the simultaneously
applied shear stress Smech12 .

The resulting shear strain γ12 evolves, however, in a different way in this case again due to the
applied shear stress Smech12 . As shown in Fig. 6.12c, f and i, the resulting γ12 increases with the applied
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Figure 6.12: Evolution of the magnetization components along e1 (a,d,g) and e2 (b,e,h) and the induced shear
strain γ12 (c,f,i) under applied non-proportional magnetic loading (inset of b) of a pre-magnetized h-MRE
along e1 (inset of c). Effect of three distinct Gm, namely, Gm = 1.0 (a-c), 0.5 (d-f) and 0.3 (g-i) MPa on the
effective magnetization components and induced shear strain.

Smech12 /Gm and h2/msp in an irreversible path, such that the unloading path becomes different from the
loading path. Notice that such irreversibility increases with the increasing softness of the matrix,
i.e., for a decreasing Gm, while for all three Gm values under consideration, the model predictions
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for γ12 match perfectly with the FE computations. For comparison, the purely mechanical shear
loading/unloading response is shown in Fig. 6.12c, f and i by the red dashed line. We observe that
the shear resistance of the material along the direction e1 increase substantially under the applied
magnetic load h1/msp , specially for Gm = 0.3 MPa. Such increase in the shear resistance, however,
becomes less significant for the stiffer h-MREs, as observed in Fig. 6.12c and f. This effect can be
attributed directly to the extent of induced shear, shown in Fig. 6.9c, f and i for different Gm values,
where we observe that the effect of induced shear increases with the decreasing Gm. Thus, the path-
dependent induced shear imposes the path-dependence in the present case as well. Hence, since the
amount of induced shear is greater for Gm = 0.3 MPa, we observe a greater shift of the computed
γ12 from the pure mechanical shear response in Fig. 6.12i. In this regard, we show the b̂2 contours
in the deformed RVE in Fig. 6.13, where the results for all three Gm are shown. Evidently, we see a

Figure 6.13: Contours of the numerically computed local b̆2 fields in a deformed mesh at the loading instance
h2/msp = 3.0 and Smech12

relatively less amount of overall shear for Gm = 0.3 MPa in Fig. 6.13c, as compared to Fig. 6.13a, i.e.,
for Gm = 1.0 MPa.

Again, the difference between the computed and model-predicted m1 and m2 components in
Fig. 6.12a, b, d, e, g and h can be attributed directly to the non-affine particle rotations in the matrix.
Thus, we plot the relative error in the computed and predicted magnitudes |m| and the angle between
computed and predicted m vectors in Fig. 6.14b and Fig. 6.14c, respectively, while the loading path
for h2 and S12 are shown in Fig. 6.14a. We note that the qualitative nature of the relative error
in |m| and the angle between the m vectors remain identical to those shown in Fig. 6.10b and c,
respectively. Notice from Fig. 6.14b that the relative error in the predicted |m| remains less than 5%
during most of the loading/unloading path. Moreover, the magnitude of |θFEmag−θmodelmag | remains nearly
the same as in the pure non-proportional magnetic loading case (c.f., Fig. 6.10c and Fig. 6.14c). Thus,
it can be inferred that the superimposed mechanical shear Smech12 do not affect substantially the extent
of non-affine particle rotations in the matrix. This observation may play a crucial role in quantifying
the non-affine rotations of hard-magnetic particles in a matrix under applied magneto-mechanical
loadings.

6.4.3 Non-proportional magnetic loading of h-MREs having other volume fractions

Finally, we probe the non-proportional magnetic loading responses of the proposed F − H and F −
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Figure 6.14: (a) Non-proportional loading path, (b) relative difference between the computed and model
predicted magnitudes ofm and (c) angle (in an absolute sense) between the computed and the model-predicted
effective magnetizations.

B models for two other volume fractions, namely c = 0.1 and c = 0.3 under the same boundary
conditions as defined for c = 0.2. The results are shown in Fig. 6.15 and 6.16, respectively, for c = 0.1
and 0.3, where three distinct matrix shear moduli, namely, Gm = 1.0, 0.5 and 0.3 MPa are considered.
Both, Fig. 6.15 and 6.16 exhibit qualitatively similar features to those observed in Fig. 6.9 for c = 0.2.
Thus, the proposed models are found to predict the material behavior considerably well for all
volume fractions c 6 0.3 and the matrix shear moduli Gm > 0.3 MPa.

Of interest is to investigate the effect of particle volume fractions on the overall non-affine rotation
of the particles, which is shown in Fig. 6.17. Here we plot the absolute value of the angle between the
computed and predicted m for three volume fractions c = 0.1, 0.2 and 0.3 for the matrix shear moduli
Gm = 1.0, 0.5 and 0.3, in Fig. 6.17a, b and c respectively. We notice from Fig. 6.17 that the extent of
non-affine particle rotation decreases with the increasing c, irrespective of the matrix shear modulus
Gm. Such an observation is quite intuitive since a higher c indicates more closely packed particles in
the matrix (see Fig. 4.4), which hinders the tendency of the particles to rotate in a non-affine way, that
is different from the macroscopic RVE rotation R. Moreover, notice that the amount of maximum γ12

for c = 0.3 and Gm = 0.3 MPa in Fig. 6.16i is nearly the same as that obtained for c = 0.2 in Fig. 6.9i,
although, the maximum γ12 is considerably less for c = 0.1 and Gm = 0.3, as shown in Fig. 6.15i.
However, the extent of non-affine particle rotation is less for c = 0.3 as compared to c = 0.2 (see
Fig. 6.17c). Consequently, we observe a better agreement of the computed results with the proposed
affine rotation-based models for c = 0.3 and this agreement becomes less with the decreasing c.

6.5 Concluding remarks

In this chapter, we propose a set of F − H and F − B-based constitutive models for the h-MREs
in both Lagrangian and Eulerian settings by assuming affine particle rotations in the underlying
microstructure. The key advantages of the proposed models are the following.

1. Thermodynamic consistency of the models are ensured by deriving the constitutive relations
from the localized Clausius-Duhem inequalities and employing further the generalized stan-
dard materials framework, which yields the evolution laws for the remanent internal variables.

2. The objectivity and material symmetry properties of the isotropic h-MREs are ensured by
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Figure 6.15: Evolution of the magnetization components along e1 (a,d,g) and e2 (b,e,h) and the induced shear
strain γ12 (c,f,i) under applied non-proportional magnetic loading (inset of b) of a pre-magnetized h-MRE
along e1 (inset of c). Effect of three distinct Gm, namely, Gm = 1.0 (a-c), 0.5 (d-f) and 0.3 (g-i) MPa on the
effective magnetization components and induced shear strain.

proposing the energetic and dissipation potentials in terms of the suitable invariants. Specially,
the current dissipation potentials are proposed in terms of the objective Green-Naghdi rate of
the internal variables. This rate is a direct consequence of the definition of the Lagrangian
counterparts of these internal variables in a stretch-free intermediate configuration.

3. The proposed modeling framework inherently takes care of the magnetic body force and body
torque-like terms in a magneto-active solid by incorporating their effects in the total Cauchy
stress σ. Thus, no additional body force/torque like terms are required to be incorporated in
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Figure 6.16: Evolution of the magnetization components along e1 (a,d,g) and e2 (b,e,h) and the induced shear
strain γ12 (c,f,i) under applied non-proportional magnetic loading (inset of b) of a pre-magnetized h-MRE
along e1 (inset of c). Effect of three distinct Gm, namely, Gm = 1.0 (a-c), 0.5 (d-f) and 0.3 (g-i) MPa on the
effective magnetization components and induced shear strain.

the local linear/angular momentum balance equations. The total σ remains symmetric in the
proposed modeling framework.

4. The Helmholtz free energy associated with the proposed macroscopic models of the h-MREs are
considered to be an addition of three distinct contributions, namely the mechanical, magnetic
and coupling free energies. Among these, the mechanical and magnetic free energies are pro-
posed entirely in terms of the properties of the underlying constituents and the particle volume
fraction c. Only one additional modeling parameter is introduced in the coupling energy term,
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Figure 6.17: Comparison of the non-affine overall particle rotations |θFEmag − θ
model
mag | under non-proportional mag-

netic loading along e2, as defined in Fig. 6.10, for three distinct particle volume fractions c = 0.1, 0.2 and 0.3
and three matrix shear moduli (a) Gm = 1.0, (b) 0.5 and (c) 0.3 MPa. Time scale is irrelevant for the present case
of rate-independent constitutive models.

which is then estimated via fitting the model predictions with the numerical homogenization
responses.

5. The proposition of equivalent F − H and F − B models along with their Eulerian counterparts
gives us the flexibility in terms of framing the macroscopic boundary value problems with the
h-MREs. In this regard, it is noted that both Lagrangian F − H (Keip and Rambausek, 2016,
2017; Lefèvre et al., 2017) and F − B (Danas, 2017; Psarra et al., 2017, 2019) models and also
the Eulerian F−b model (Zhao et al., 2019) are employed in solving the macroscopic magneto-
mechanical BVPs associated with the MREs.

6. The proposed models admit a number of limiting conditions and lead to the stress measures
as reported in the literature. Specifically, in the limit of soft magnetic response, i.e., bcp → 0, the
stress measures lead to those defined by Kankanala and Triantafyllidis (2004) and the resulting
effective model response reproduce exactly the response from the analytical homogenization
model of Lefèvre et al. (2017). Secondly, in the limit of c→ 1, the proposed σ yields the classical
definition of the total σ by Robinson (1975) in the context of metallic permanent magnets.

The model responses both under proportional and non-proportional loading paths show compre-
hensive agreements with the full-field numerical homogenization estimates. Specifically, the model
responses under the proportional magnetic loading and under the mechanical loadings of a pre-
magnetized h-MRE are in excellent agreement with the numerical homogenization results. The
non-proportional magnetic loading, however, leads to non-affine particle rotations in the mechan-
ically softer h-MREs. This effect leads to the disparity between the numerically computed and model
predicted results, specifically for Gm < 0.5 MPa. Nevertheless, the qualitative nature of the evolution
of the resulting mechanical and magnetic fields are predicted very well by the proposed models. The
model predictions become better with increasing c under non-proportional loading. In this context,
we observe that the extent of non-affine particle rotations become less for a denser composite, while
the overall induced shear in the RVE remains of the same order.

In this regard, it is noted that the non-affine particle rotations control the magnetization/ de-
magnetization responses of the softer, gel-like h-MREs having Gm ∼ 0.01 − 0.1 MPa (Linke et al.,
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2016; Kalina et al., 2017). Of course, the proposed affine rotation model cannot be applied readily
to model such highly compliant composites. Indeed, further augmentations to the proposed frame-
work are needed in order to take care of the high non-affine particle rotations. Nonetheless, it is
noted that most of the practical applications of the h-MREs consider a relatively stiffer PDMS matrix
having Gm ∼ 0.25− 1.5 MPa. Moreover, such h-MREs, once permanently magnetized, are typically
subjected to high mechanical but no or very low magnetic fields (Kim et al., 2018; Zhao et al., 2019;
Sitti and Wiersma, 2020). Contextually, in the aforementioned loading regime, the proposed affine
rotation model is observed to predict the microstructure response sufficiently well. Hence, it can be
employed readily to solve any magneto-mechanical boundary value problems.

Appendix 6.A. Expressions for σ

This appendix provides explicit expressions for σ arising from the proposed F−h and F−b models,
in terms of the corresponding current magnetic and remanent variables along with the left Cauchy-
Green tensor B. In this context, Dorfmann and Ogden (2003, 2004) have shown that the total σ is
symmetric for the soft MREs via expressing it in terms of the current b and the right Cauchy-Green
tensor B. This appendix takes a similar route in order to establish the symmetry of σ as defined by
(6.15) for the h-MREs. Notice that, the total σ is symmetric due to the definition of the equivalent
potential energy functions to be WH(C, H,Hr) ≡ wh(B, h, hr) and WB(C, B,Br) ≡ wb(B, b, br). Here
we show the the explicit expressions for σ can also be shown to be symmetric in its closed form.

F − h model : First, we derive the expression for σ from the proposed F − h model. Prior to
expressing explicitly the full σ, we further simplify the remanent Maxwell stress σrem

maxw via expanding
the derivative ∂R/∂F. The fourth order tensor ∂R/∂F is given in terms of index notations via (Chen
and Wheeler, 1993)

∂Rij

∂Fmn
=

1

det Y
Rip

[
YpqRmqYnj − YpnRmqYqj

]
, with Y = tr(U)I − U. (6.A.1)

Substituting (6.A.1)1 into (6.16)1 we obtain the expression for σrem
maxw that reads

σrem
maxw = −

1

Jdet Y
R
(
YRTbr ⊗YRThr − YRThr ⊗YRTbr

)
FT

= −
2

Jdet Y
RYRT skw

(
br ⊗ hr

)
RΥRT ,

where Υ = YU = UY is a symmetric tensor (follows from the definition of Y in (6.A.1)2) and skw(�)
is the skew symmetric part of (�). The tensor RΥRT in the last equation can further be decomposed
in the following form.

RΥRT = RUYRT = (RURT )(RYRT ) = VZ, (6.A.2)

where V = RURT is the right stretch tensor and Z = RYRT . It can be easily verified that Z can be
expressed in terms of V via (Chen and Wheeler, 1993)

Z = tr(V)I − V. (6.A.3)

150



6.5. Concluding remarks

Thus, the expression for σrem
maxw now reads

σrem
maxw = −

2

Jdet Z
Z skw

(
br ⊗ hr

)
VZ. (6.A.4)

Subsequently, the expression for the total σ in terms of the current magnetic and internal variables is
given via the constitutive relation (6.16)1, so that

σ =
2ρ0
J

∂ψH

∂B
B +

Å
h⊗ b −

µ0
2
|h|2I
ã
−

2

Jdet Z
Z skw

(
br ⊗ hr

)
VZ (6.A.5)

Here we assume no specific function for the free energy ψH, albeit its arguments are given in terms
of the invariants defined in Table 6.1. Thus, the expressions for b and br, obtained, respectively, from
the constitutive relations (6.16)2 and (6.17)2, such that

b = µ0h −
ρ0
J

Å
2
∂ψH

∂IH4
Bh +

∂ψH

∂IHHr
4

Bhr + 2
∂ψH

∂IH5
h +

∂ψH

∂IHHr
5

hr
ã

(6.A.6)

and

br = −ρ0

Å
∂ψH

∂IHHr
4

Bh + 2
∂ψH

∂IHr
4

Bhr +
∂ψH

∂IHHr
5

h + 2
∂ψH

∂IHr
5

hr
ã

. (6.A.7)

Subsequently, substituting (6.A.6) and (6.A.7) into (6.A.5) and simplifying we obtain

σ =
2ρ0
J

ï
∂ψH

∂I1
B + J

∂ψH

∂J
I +

∂ψH

∂IH4
(h⊗ h)B +

∂ψH

∂IHHr
4

sym(h⊗ hr)B +
∂ψH

∂IHr
4

(hr ⊗ hr)B
ò

−
ρ0
J

ï
h⊗
Å
2
∂ψH

∂IH4
Bh +

∂ψH

∂IHHr
4

Bhr + 2
∂ψH

∂IH5
h +

∂ψH

∂IHHr
5

hr
ãò

+ µ0h⊗ h −
µ0
2
|h|2I

+
ρ0
J

2

det Z
Z skw

ïÅ
∂ψH

∂IHHr
4

Bh + 2
∂ψH

∂IHr
4

Bhr +
∂ψH

∂IHHr
5

h + 2
∂ψH

∂IHr
5

hr
ã
⊗ hr
ò
VZ, (6.A.8)

where we suppress the I2 dependence of ψH for simplicity. Further simplification of (6.A.8) leads to

σ =
ρ0
J

ï
2
∂ψH

∂I1
B + 2J

∂ψH

∂J
I +

∂ψH

∂IHHr
4

B(hr ⊗ h) + 2
∂ψH

∂IHr
4

(hr ⊗ hr)B
ò
−
ρ0
J

ï
h⊗
Å
2
∂ψH

∂IH5
h +

∂ψH

∂IHHr
5

hr
ãò

+ µ0h⊗ h −
µ0
2
|h|2I +

ρ0
J

2

det Z
Z skw

ïÅ
∂ψH

∂IHHr
4

Bh + 2
∂ψH

∂IHr
4

Bhr +
∂ψH

∂IHHr
5

h
ã
⊗ hr
ò
VZ, (6.A.9)

Finally, the expression for σ in the incompressible decoupled model (6.29) can then be obtained from
(6.A.9), so that

σ =
Gm

(1− c)5/2
B +

[
µ0(1+ χe)h⊗ (h − hr) −

µ0
2
|h|2I

]
−

2

det Z
Z skw

[
− µ0(1+ χe)(h⊗ hr)

]
VZ − pI

≡ Gm

(1− c)5/2
B +

[
h⊗ b −

µ0
2
|h|2I

]
+

2

det Z
Z skw

(
µ0m⊗ h

)
VZ − pI. (6.A.10)

To this end, the explicit expression for σ is given by (6.A.9). However, the symmetry of σ is not
straightforward to follow from (6.A.9). In order to prove the symmetry of σ, we simply perform
the skw(�) operation on both sides of (6.A.9). Furthermore, during the computation of skw(σ), we
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employ the following lemma.

Lemma 6.A.1. Assuming Lin to be the set of all linear transformations (tensors) on R3, for any tensor
A ∈ Lin defined via

A =
2

det Z
ZWVZ, (6.A.11)

where W ∈ Skw, V ∈ Sym and Z = tr(V)I − V, the skew-symmetric part of A is given by skw(A) = W.

Proof: The skew symmetric part of A is obtained from (6.A.11), so that

skw(A) =
2

det Z
skw(ZWVZ) =

1

det Z
(
ZWVZ − ZTVTWTZT

)
=

1

det Z
Z
(
WV + VW

)
Z, (6.A.12)

where we utilize the symmetry of V and Z and the skew-symmetry of W. Next, we express V and
W in the eigenbasis ek of V, such that (Chen and Wheeler, 1993)

V =

3∑
k=1

vkek ⊗ ek and W =

3∑
p=1

3∑
q=1,p6=q

wpqep ⊗ eq (6.A.13)

Consequently, Z is expressed in terms of the spectral basis ej via

Z =

3∑
j=1

Å 3∑
i=1

vi − vj

ã
ej ⊗ ej (6.A.14)

Substituting (6.A.13) and (6.A.14) into (6.A.12) and simplifying we obtain

skw(A) =
1

3∏
p=1

Å 3∑
i=1

vi − vp

ã 3∑
j=1

3∑
k=1,k6=j

Å 3∑
i=1

vi − vj

ãÅ 3∑
i=1

vi − vk

ã
(vj + vk)wjkej ⊗ ek

=

3∑
j=1

3∑
k=1,k6=j

1Å 3∑
i=1

vi − vj

ãÅ 3∑
i=1

vi − vk

ã
(vj + vk)

Å 3∑
i=1

vi − vj

ãÅ 3∑
i=1

vi − vk

ã
(vj + vk)wjkej ⊗ ek

=

3∑
j=1

3∑
k=1,k6=j

wjkej ⊗ ek = W. (6.A.15)

Hence, we note that Lemma 6.A.1 is a direct consequence of the Lemma 1 of Chen and Wheeler
(1993), which reads Z

(
WV + VW

)
Z = (det Z)W for all V, W and Z as defined in the statement of

Lemma 6.A.1.
Thus, taking skw(�) on the both sides of (6.A.9) and employing Lemma 6.A.1 we obtain upon

simplification

skw(σ) =
ρ0
J

skw
ï
∂ψH

∂IHHr
4

B(hr ⊗ h) + 2
∂ψH

∂IHr
4

(hr ⊗ hr)B
ò
−
ρ0
J

skw
ï
∂ψH

∂IHHr
5

(h⊗ hr)
ò

+
ρ0
J

skw
ïÅ

∂ψH

∂IHHr
4

Bh + 2
∂ψH

∂IHr
4

Bhr +
∂ψH

∂IHHr
5

h
ã
⊗ hr
ò
= 0. (6.A.16)
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Hence, it is proved that, any choice of ψH in terms of the isotropic invariants given in Table 6.1
leads to a symmetric σ. Nevertheless, as shown in (6.7), the very definition of the current energy
functionwh(B, h, hr) leads to a symmetric σ due to its equivalence with the reference potential energy
WH(C, H,Hr). However, the symmetry of σ is not straightforward to observe from its definition
(6.16)1. Thus, this appendix shows explicitly the symmetry of σ for a fairly general choice of ψH.

F − b model : Similarly, the expression for σ from the proposed F − b model can be obtained.
In particular, we consider the specific Helmholtz free energy ψB to be an explicit function of the
invariants defined in Table 6.3. Consequently, the expression for σ is obtained via substituting (6.A.1)
into (6.59), such that

σ =
2ρ0
J

∂ψB

∂B
B + h⊗ b −

µ0
2

(|h|2 − |m|2)I +
2

Jdet Z
Zskw

(
br ⊗ hr

)
VZ, (6.A.17)

where the primary h and remanent hr are given by the constitutive relations (6.60)2 and (6.61)2,
respectively. Explicit expressions of these two fields reads

h =
1

µ0
b + ρ0J

ï
2
∂ψB

∂IB5
b +

∂ψB

∂IBBr
5

br + 2
∂ψB

∂IB6
Bb +

∂ψB

∂IBBr
6

Bbr
ò

(6.A.18)

and

hr = −ρ0J
2

ï
∂ψB

∂IBBr
5

b + 2
∂ψB

∂IBr
5

br +
∂ψB

∂IBBr
6

Bb + 2
∂ψB

∂IBr
6

Bbr
ò
, (6.A.19)

respectively. Substituting (6.A.18) and (6.A.19) into (6.A.17) we obtain the expression for σ explicitly
in terms of various tensors involved, so that

σ =
2ρ0
J

ï
∂ψB

∂I1
B + J

∂ψB

∂J
I + 2J2

∂ψB

∂IB6
sym

{
(b⊗ b)B

}
+ J2

∂ψB

∂IBBr
6

sym
{

(b⊗ br)B
}
+
J2

2

∂ψB

∂IBBr
6

(br ⊗ bB)

+ J2
∂ψB

∂IBr
6

(br ⊗Bbr)
ò
+
1

µ0
b⊗ b −

µ0
2

(
|h|2 − |m|2

)
I + ρ0J

ï
2
∂ψB

∂IB5
b⊗ b +

∂ψB

∂IBBr
5

br ⊗ b
ò

−
2

Jdet Z
Z skw

ï
∂ψB

∂IBBr
5

br ⊗ b +
∂ψB

∂IBBr
6

br ⊗Bb + 2
∂ψB

∂IBr
6

br ⊗Bbr
ò
VZ. (6.A.20)

One can eventually show that the skew part of the expression for σ in (6.A.20) vanish identically.

Appendix 6.B. Derivatives of IHHr
4 , IHHr

5 , IBBr
5 and IBBr

6 with respect to C

Computation of the first Piola-Kirchhoff stress in a Lagrangian setting from the constitutive relation
(6.6)1 is performed via finding the derivative of (6.40) with respect to C. Similar to (6.A.8), the
computation of S is involved with computing the derivatives of the invariants in Table 6.1 with
respect to C. In this regard, it is noted from Table 6.1 and 6.3 that the derivatives of all the invariants
therein with respect to C are straightforward except the mixed invariants IHHr

4 , IHHr
5 , IBBr

5 and IBBr
6 ,

which are the functions of C1/2 and C−1/2, respectively. This appendix is, therefore, devoted towards
providing the C derivatives of IHHr

4 , IHHr
5 , IBBr

5 and IBBr
6 .

In this context Hoger and Carlson (1984) provide explicit expressions for dC1/2/dC, which is
derived from the solution of the tensor equation having a general form AX + XA = Q. Thus, the

153



Chapter 6. Microstructurally-guided continuum models for h-MREs

derivative of IHHr
4 with respect to C is computed via first considering the scalar equation

C1/2C1/2 : sym(H⊗Hr) = C : sym(H⊗Hr). (6.B.1)

Differentiating both sides of the last equation with respect to C yields

C1/2
∂

∂C
[C1/2 : sym(H⊗Hr)] +

∂

∂C
[C1/2 : sym(H⊗Hr)]C1/2 = sym(H⊗Hr), (6.B.2)

which can be rephrased such that

C1/2
∂IHHr
4

∂C
+
∂IHHr
4

∂C
C1/2 = sym(H⊗Hr), (6.B.3)

having the same general form of AX + XA = Q. The solution to (6.B.3) is thus given by (Hoger and
Carlson, 1984)

∂IHHr
4

∂C
=
4

∆

[
I1C sym(H⊗Hr)C − I21

{
C sym(H⊗Hr)C1/2 + C1/2sym(H⊗Hr)C

}
+

(I1I2 − I3)
{

C sym(H⊗Hr) + sym(H⊗Hr)C
}
+ (I31 + I3)C1/2sym(H⊗Hr)C1/2−

I21I2
{

C1/2sym(H⊗Hr) + sym(H⊗Hr)C1/2
}
+
{

I21I3 + (I1I2 − I3)I2
}

sym(H⊗Hr)
]
, (6.B.4)

where I1, I2 and I3 are three principal invariants of C1/2 and ∆ = 8(I1I2 − I3)I3. Notice that ∂IHHr
4 /∂C

is symmetric.

Next, the derivative ∂IHHr
5 /∂C is computed via considering the scalar equation

C−1/2C−1/2 : sym(H⊗Hr) = C−1 : sym(H⊗Hr). (6.B.5)

Differentiating both sides of the last equation with respect to C yields

C−1/2 ∂

∂C
[C−1/2 : sym(H⊗Hr)] +

∂

∂C
[C−1/2 : sym(H⊗Hr)]C−1/2 = sym(H⊗Hr), (6.B.6)

which can be rephrased such that

C−1/2∂I
HHr
5

∂C
+
∂IHHr
5

∂C
C−1/2 = −C−1sym(H⊗Hr)C−1, (6.B.7)

having the same general form of AX + XA = Q. The solution to (6.B.7) is thus given by (Hoger and
Carlson, 1984)

∂IHHr
5

∂C
=−

4

∆∗

[
I∗1C−2sym(H⊗Hr)C−2 − (I∗1)2

{
C−2sym(H⊗Hr)C−3/2 + C−3/2sym(H⊗Hr)C−2

}
+

(I∗1I∗2 − I∗3)
{

C−2sym(H⊗Hr)C−1 + C−1sym(H⊗Hr)C−2
}
+ {(I∗1)3 + I∗3}C

−3/2

sym(H⊗Hr)C−3/2 − (I∗1)2I∗2
{

C−3/2sym(H⊗Hr)C−1 + C−1sym(H⊗Hr)C−3/2
}
+{

(I∗1)2I∗3 + (I∗1I∗2 − I∗3)I∗2
}

C−1sym(H⊗Hr)C−1
]
, (6.B.8)
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where I∗1, I∗2 and I∗3 are three principal invariants of C−1/2 and ∆∗ = 8(I∗1I∗2 − I∗3)I∗3. Notice that
∂IHHr
5 /∂C is also symmetric.

Similarly, the expressions for ∂IBBr
5 /∂C and ∂IBBr

6 /C are given by

∂IBBr
5

∂C
=
1

2
B • C−1/2Br +

4J

∆

[
I1C sym(B⊗Br)C − I21

{
C sym(B⊗Br)C1/2 + C1/2sym(B⊗Br)C

}
+

(I1I2 − I3)
{

C sym(B⊗Br) + sym(B⊗Br)C
}
+ (I31 + I3)C1/2sym(B⊗Br)C1/2−

I21I2
{

C1/2sym(B⊗Br) + sym(B⊗Br)C1/2
}
+
{

I21I3 + (I1I2 − I3)I2
}

sym(B⊗Br)
]

(6.B.9)

and

∂IBBr
6

∂C
=
1

2
B • C−1/2Br + JB • C1/2Br +

4J

∆
C
[
I1C sym(B⊗Br)C − I21

{
C sym(B⊗Br)C1/2

+ C1/2sym(B⊗Br)C
}
+ (I1I2 − I3)

{
C sym(B⊗Br) + sym(B⊗Br)C

}
+ (I31 + I3)C1/2sym(B⊗Br)C1/2 − I21I2

{
C1/2sym(B⊗Br) + sym(B⊗Br)C1/2

}
+
{

I21I3 + (I1I2 − I3)I2
}

sym(B⊗Br)
]
, (6.B.10)

respectively, where the invariants I1, I2, I3 and ∆ are the same as defined in the context of equation
(6.B.4). Again, we verify that both ∂IBBr

5 /∂C and ∂IBBr
6 /C are symmetric.
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Chapter

7
Conclusion

In this chapter, we first summarize the key outcomes of the thesis, and specifically, the important
features of the proposed microstructurally-guided constitutive models. This will be followed by a
potential definition of the future avenues that can be initiated from the outcomes of the presented
work.

7.1 Concluding remarks

With the increasing number of applications of the s- and h-MREs in soft robotic devices (Kim et al.,
2018; Sitti and Wiersma, 2020), sensors (Kaidarova et al., 2018) and actuators (Zhao et al., 2019),
the need for efficient yet straightforward macroscopic constitutive models becomes paramount. In
this context, this work provides explicit macroscopic constitutive models for the s- and h-MREs in
the F − H, F − h, F − B and F − b variable spaces, which can be readily implemented in a general
incremental finite-element setting.

The well-known balance laws for the total Cauchy stress σ and the Eulerian h and b fields
(Kankanala and Triantafyllidis, 2004) and the total first Piola-Kirchhoff stress S and the Lagrangian
magnetic fields H and B (Dorfmann and Ogden, 2004; Steigmann, 2004) are derived in Chapter 2,
along with the localized Clausius-Duhem inequalities for the F − H, F − h, F − B and F − b-based
constitutive models. We note that the localized Clausius-Duhem inequality reads differently de-
pending on the definition of the independent primary variable (H/B) and the configuration (refer-
ence/current). We avoid defining the macroscopic stress and magnetic field balance laws in the in-
termediate configurations. This is because such definition may lead to non-familiar stress measures.
Thus, in contrast to Rosato and Miehe (2014), we do not work with the intermediate constitutive
laws for the work conjugates (i.e., stress) of the primary variables (i.e., displacement). Rather, the
constitutive laws for the stresses and the conjugate magnetic fields are derived in either the refer-
ence or the current configuration from the respective Clausius-Duhem inequalities by employing the
Coleman-Noll-Gurtin (Coleman and Noll, 1959; Coleman and Gurtin, 1967) method.

Even though the non-dissipative, saturation-type constitutive models for the iron particles are
employed widely in the literature in both F − H (Keip and Rambausek, 2016, 2017; Lefèvre et al.,
2017) and F−B (Danas, 2017; Psarra et al., 2017, 2019) models, the dissipative constitutive models for
the hysteretic magnetic response of the NdFeB particles are not so well-known. Thus, in Chapter 3,
we propose two equivalent, rate-independent constitutive models in terms of considering both h and
b to be the primary variables. These models resemble closely to the “switching surface” models,
which are mostly employed in the context of ferroelectric switching (Huber et al., 1999; Huber and
Fleck, 2001; McMeeking and Landis, 2002; Landis, 2002; Klinkel, 2006; Linnemann et al., 2009; Miehe
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et al., 2011; Rosato and Miehe, 2014). Moreover, the non-dissipative saturation-type response is
shown therein to be a special case of the proposed hysteresis models. This observation becomes
crucial in inferring the limiting responses of the h-MRE models in the later sections. The constitutive
model for the matrix phase, on the other hand, is considered to be a simple I1-based Neo-Hookean
model, which is typically employed in the modeling of MREs (Ponte Castañeda and Galipeau, 2011;
Galipeau and Ponte Castañeda, 2013; Danas et al., 2012b; Danas, 2017; Lefèvre et al., 2017; Psarra
et al., 2017, 2019).

Given the constitutive models for the particle and matrix phases, the proposition of an incremen-
tal numerical homogenization framework in Chapter 4 is developed following the earlier works on
the numerical homogenization of mechanical elasto-plastic composites by Miehe (2002) and Miehe
et al. (2002). The aforementioned articles first propose an incremental potential energy for its con-
stituents and then homogenize them to obtain an effective incremental energy at a given time in-
crement t+∆t. It is noted that, unlike the non-dissipative composites, both the local and effective
incremental potentials are history-dependent in terms of their explicit dependence on the microscopic
internal variables. Furthermore, the numerical homogenization for the coupled magneto-mechanical
composites require additional augmentation in the macroscopic (global) variational principle, so that
the macroscopic boundary and shape effects are not taken into account (Danas, 2017). A detailed
account on the fully Lagrangian, F − H model-based finite-element implementation of the incremen-
tal homogenization framework is provided in Chapter 4. This framework can also be utilized in a
general macroscopic boundary value problem, of course, after certain modifications.

The non-dissipative homogenization problem for the iron particle-filled s-MREs are shown in
Chapter 4 to be a special case of the general incremental homogenization problem. In fact, for the
limiting case of zero particle coercivity, i.e., bcp = 0, we recover exactly the definition of the non-
dissipative homogenization problem for s-MREs given by Lefèvre et al. (2017) in the Lagrangian
F − H setting. Hence, our work generalizes the numerical homogenization problem for the MREs
in a broader area of hard-magnetic constituent phases, whose limiting cases, in turn, yield the well-
known definition of the homogenization problem for the s-MREs.

Even though the analytical homogenization model of Lefèvre et al. (2017) for the isotropic s-
MREs yields comprehensively good macroscopic responses as compared to the numerical compu-
tations, it is implicit, i.e., requires additional algebraic equations to be solved during the numerical
computations of the macroscopic response. A set of alternative, fully-explicit, F − H and F − B-
based constitutive models are therefore proposed for the s-MREs in Chapter 5. These models are
designed to become exact to their respective analytical homogenization estimates, given by Lefèvre
et al. (2017), specifically at small magnetic fields, i.e., in the limit of |H|, |B|→ 0. Moreover, in the limit
of |H| → ±∞, the magnetization and magnetostriction are considered to be saturating at a constant
magnitude. These considerations help us to reduce the phenomenological model parameters to one
coupling parameter, which is further estimated by fitting the model magnetostriction response to that
of the analytical homogenization model. Thus, the proposed phenomenological model becomes rich
enough to take care of different particle volume fractions and matrix shear moduli, yet having only
one parameter to estimate. This approach is advantageous over the other microstructurally-guided
phenomenological modeling approaches (Kalina et al., 2020), where the estimates for a considerably
higher number of model parameters are sought for.

Till date, no macroscopic model for the NdFeB particle-filled h-MREs is available, where the
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effect of the stretch-independence of the current and reference remanent fields are considered. The
macroscopic model proposed by Zhao et al. (2019) considers a very specific loading path around
the remanent magnetization response and thus, the effect of magnetic switching is not taken care
of. The proposed models in Chapter 6, on the other hand, are applicable under any magneto-
mechanical loading condition. In this context, we also refer to the constitutive model of Rosato
and Miehe (2014) for the ferroelectric hysteresis at finite strains, who consider a fully-reversed and
proportional loading path. However, none of the aforementioned models consider both the reference
and current remanent fields to be independent of mechanical stretch, which is a key observation in
our work, yielding directly from the numerical homogenization estimates for the h-MREs. Therefore,
the Lagrangian counterparts of the current remanent fields hr and br are defined in the proposed
models to be in a stretch-free intermediate configuration Vi (see Fig. 6.2 and Fig. 6.3). Furthermore,
we observe from the full-field RVE computations that the mapping between the current hr (br) and
the intermediate Hr (Br) fields is given by the average particle rotations Rp, such that Hr = RTp hr

(Br = RTp br).

We note that the explicit analytical or phenomenological estimates for Rp = Rp(F, H,Hr) under ar-
bitrary magneto-mechanical loading paths are extremely difficult to obtain. Nevertheless, we observe
from the numerical computations for purely mechanical loading/unloading of a pre-magnetized h-
MREs (see Fig. 4.15 and Fig. 4.17) that Rp ≈ R under these specific loading conditions, where R = FU−1

is the macroscopic rotation. Motivated by such observations, we assume affine particle rotations, i.e.,
Rp = R under all possible loading paths and propose the pull-back mapping for the remanent field
to be Hr = RThr (Br = RTbr). Under this assumption, we subsequently propose fully objective,
equivalent constitutive models in the F − H, F − h, F − B and F − b variable spaces and probe the
model responses under various magneto, mechanical and combined magneto-mechanical loading
paths against the numerical homogenization estimates. The Coleman-Noll-Gurtin method is ap-
plied while deriving the constitutive laws in the reference and current configurations. Specifically,
this method applied to the current configuration formulation leads to the expression for the sym-
metric total Cauchy stress σ, which is comprised of the contributions from the mechanical stress,
energetic and remanent Maxwell stresses. Eventually, the remanent Maxwell stress vanishes for the
special case of the vanishing coercivity bcp → 0 leading to the well-known constitutive relations for
the s-MREs (Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden, 2003, 2004). Moreover, the
Coleman-Noll-Gurtin method leads to the dissipation inequality that is defined in terms of the objec-
tive Green-Naghdi rate of hr (br). Subsequently, we define the dissipation potential in terms of this
Green-Naghdi rate of hr (br), which, in the limit of rate-independent response, leads to the current
switching surface and the associated switching rule.

In a similar note to the s-MRE models, the choice of the energetic and dissipation potentials
are carried out in a way, such that the models reproduce exactly the initial slopes of magnetization
and magnetostriction responses. Consequently, there remains only one model parameter, namely
the coupling constant βHr (or, equivalently βBr), to be identified by fitting the model magnetostric-
tion response with the numerical homogenization estimates. Both F − H and F − B-based models
with the identified βHr and βBr are then probed against other coupled magneto-mechanical loading
conditions. Excellent agreement of both these model responses with the numerical homogenization
estimates are achieved for particle volume fractions in the range c 6 0.3 and for matrix shear moduli
Gm > 0.3 MPa.
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Of course, further improvement of the model is required in order to model softer h-MRE com-
posites having Gp ∼ 0.1 MPa. Such modeling would require the non-affine particle rotations to be
taken into account. Again, Rp is not known explicitly for the h-MRE composites. Nevertheless, one
can find a better approximations for Rp, those maybe valid only for certain loading paths, instead of
simply the macroscopic rotation R. In turn, the constitutive relations and the evolution equations for
the internal variables for the modified non-affine rotation model can be derived mutatis mutandis as
carried out in Chapter 6.

Finally, it is noted that most of the h-MREs in practice are fabricated with the Sylgard-184 (10:1)
PDMS, having a shear modulus Gm ∼ 0.3− 1.2 MPa, depending on the curing conditions (Park et al.,
2018; Wang et al., 2019; Kaidarova et al., 2018). Thus, the proposed models in Chapter 6 can be
applied readily to the modeling of such composites without further modifications.

7.2 Future work

Starting from this point, further investigations can be carried out on several fronts to enrich the
modeling frameworks and also to aid the design of the h-MRE components in the devices by full-
field macroscopic numerical simulations. Here we discuss three such possible future works that may
be carried out directly following this work.

(i) Modeling non-affine particle rotations : As discussed earlier in this chapter, the underlying
non-affine particle rotations start affecting the present affine rotation model performances substan-
tially. Thus, a natural extension of the present framework would be to incorporate the effect of
non-affine particle rotations. Note, however, that the explicit estimates for Rp are not available and
are extremely difficult to obtain for a general loading path. Nevertheless, from the detailed investi-
gations in Chapter 6, we observe that the mechanical loading path, with or without a simultaneous
magnetic loading, induce negligibly small non-affine particle rotations. Thus, the non-affine rota-
tions resulting from a pre-defined magnetic loading path can be modeled empirically in terms of
the local primary and remanent magnetic fields, c and Gm and, subsequently, the particle rotations
can be modeled to be Rp = RnafR, where Rnaf is the non-affine rotation tensor. Hence, definitions
of the remanent variables in different configurations for the F − H or F − h-based modeling can be
modified from Fig. 6.2 to be Fig. 7.1. Notably, the pull-back transformations for the primary h and
its conjugate b fields remain the same as defined via (2.40) and (2.45), respectively. In contrast, the
pull-back transformation of hr is now modified via Hr = RTRTnafhr. Consequently, the constitutive
relations for σ and also the evolution equation of hr would be modified, which can be obtained in
the same way as derived in Chapter 6.

(ii) Viscous dissipation and rate-dependence : Although the commercially available Sylgard-184
PDMS exhibit negligibly small amount of viscous dissipation, some of the other commercial PDMS,
e.g., Sylgard-186, exhibit considerable viscous dissipation and hence, a rate-dependent mechanical
response (Wang et al., 2019). Evidently, the h-MREs fabricated from such viscous matrix materials
are expected to exhibit rate-dependent, dissipative mechanical response along with the magnetic
dissipation arising due to the hard-magnetic particles.

A similar microstructurally-guided modeling approach can be employed for viscous h-MREs,
where a viscous matrix material must be considered in the microscopic modeling, whereas the mag-
netic hysteresis model for the particle phases would remain the same as in Chapter 4. A repre-

159



Chapter 7. Conclusion

Figure 7.1: Definition of the intermediate internal variable Hr at the intermediate configuration Vi and the
current internal variable hr in a non-affine rotated configuration.

sentative 2D RVE computation considering the hysteresis response for NdFeB particles and the two
potential-based visco-hyperelasticity model of Kumar and Lopez-Pamies (2016) for the matrix phase
is shown in Fig. 7.2. We observe considerable rate-dependence in the resulting magnetostriction

Figure 7.2: Rate-dependent effective (a) magnetostriction and (b) magnetization response of a h-MRE with
c = 0.2, having a visco-hyperelastic matrix, subjected to proportional cyclic magnetic loading. Results for three
loading/unloading rates, namely ḣ1/msp = 0.0001 /s, 0.001 /s and 0.01 /s, are shown.

response in Fig. 7.2a, whereas no effect of loading/unloading rate is observed in the computed mag-
netization hysteresis loops shown in Fig. 7.2b. Evidently, a microstructurally-guided macroscopic
modeling would necessitate a number of very expensive 3D RVE computations, along with a crucial
choice of the internal variables at the macroscale. In turn, the viscous deformation gradient Fv can be
defined via a standard multiplicative decomposition to the total F, such that F = FeFv, where Fe is the
elastic part of F (Reese and Govindjee, 1998; Kumar and Lopez-Pamies, 2016), whereas the remanent
intermediate and current magnetic fields should be defined in the same fashion as in Chapter 6.

(iii) Numerical modeling of structural boundary value problems : Finally, the proposed s- and

160



7.2. Future work

h-MRE models can be used directly in the numerical realizations of the macroscopic, coupled bound-
ary value problems (BVPs). In particular, the proposed s-MRE models can be used directly in the
structural instabilities of thin magneto-active layers (Psarra et al., 2017, 2019), field-driven deflection
of soft magnetic membranes, etc.

The macroscopic h-MRE models, on the other hand, can be applied directly to model the large
structural deflections of nearly inextensible slender structures under small applied fields (Kim et al.,
2018; Zhao et al., 2019), stretchable permanent magnetic devices (Sitti and Wiersma, 2020), bulk
magneto-mechanical responses of 3D printed h-MREs (Huber et al., 2017), etc. Notably, the proposed
fully coupled models for the h-MREs can be further simplified while modeling the large structural
deflections of inextensible slender structures at small fields. Nevertheless, the thermodynamically-
consistent constitutive relations for the stresses, conjugate magnetic and remanent fields remain iden-
tical to that in Chapter 6 for all the aforementioned structural BVPs. Eventually, one can derive the
model of Zhao et al. (2019) from the proposed F − B-based h-MRE model under specific limiting
conditions, i.e., small applied magnetic fields and inextensible, uniformly pre-magnetized structures
having locally b ≈ µ0m. Although one should be extremely careful in assuming such an uniform
filed distribution, which is not a general result even for the simplest possible MRE structures. In this
context, our models do not assume any such distribution a-priori but provides the general modeling
frameworks along with a set of equivalent ferromagnetic hysteresis models at finite strains for stiff to
moderately-soft h-MREs. These models can then be simplified accordingly, depending on the BVPs
of interest. Moreover, the proposed variational framework in Chapter 4, especially the local radial-
return type update algorithm and the estimates for the algorithmically-consistent tangent stiffness
matrices can be applied directly to the finite-element modeling of the aforementioned BVPs with
little modifications.

Finally, the thermodynamically consistent Coleman-Noll-Gurtin approach, along with the suit-
able selection for the internal variables, presented in this work may also aid the future studies on
the modeling of various dissipation mechanisms in the coupled electro-magneto-thermo-mechanical
models, considering several internal variables and their evolutions.
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Appendix

A
Evolving switching surface model
for hysteresis

Chapter summary: This appendix provides an evolving switching surface model that is capable of modeling
the initial magnetization response and the minor hysteresis loops. Phenomenological evolution laws for the
switching surface are proposed by evolving suitably the coercive field bc in terms of some history-dependent
scalar variables. In this regard, the notion of a ferromagnetic bounding surface, that resembles closely to the
well-known elasto-plastic bounding surface is proposed thereafter. Finally, we fit the proposed model with
the measured minor loops of various permanent magnets and also probe the model performance against other
experimental data. The model is observed to predict the key features of a measured first-order reversal curve
(FORC) diagram considerably well.
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The switching surface (SS) model that is developed in Chapter 3 suffers from a drawback: it
is unable to model the initial magnetization response and minor hysteresis loops accurately. In
this appendix, we propose a generic extension to the SS model of Chapter 3, so that the initial
magnetization response and the minor loops can be modeled accurately.

Here we develop an evolving switching surface (ESS) model that considers evolution of the switch-
ing surface in terms of NSS history-dependent scalar variables. In particular, we now consider the
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switching surface radius bc to be a function of ξNSS , where ξ is a set of NSS independent scalar
internal variables. Thus, the switching surface (3.17) now reads

φh := br • br − {bc(ξNSS)}2, (A.1)

whereas the associated switching rule remains the same as (3.18). Specifically, here we propose
this ESS model for the h-based model. Nonetheless, an equivalent b-based ESS framework can be
proposed in a similar fashion. Notably, a similar framework for the history-dependent evolution of
the yield surface is typically employed in mechanical elasto-plasticity in order to model the minor
loops (Dafalias and Popov, 1975, 1976; Chaboche et al., 1979; Chaboche, 1986).

A.1 Isotropic hardening and symmetric cyclic loading

In this section, we discuss in detail the evolution of the coercive field bc(ξN) in terms of two history-
dependent internal variables (N = 2), namely, ξ2 ≡ {hr, Rhr}. The first element of ξ2 is the accumu-
lated remanent h-field (similar to the accumulated plastic strain in mechanical plasticity), defined as

.
hr =

» .
hr •

.
hr with hr =

∫
t

.
hrdt. (A.2)

The second element of ξ2 is the radius of the memory surface, which is discussed later in this section.

A.1.1 Initial magnetization and hardening

It is important to note at this point that, in spite of exhibiting a qualitatively similar major hysteresis
loop, the underlying mechanisms behind the ferroelectric and ferromagnetic switching differ signif-
icantly. The ferroelectrics undergo a phase transition upon loading beyond a critical electric field
leading to switching of the polarization direction within a ferroelectric crystal (Huber and Fleck,
2001).

On the other hand, the ferromagnets consist of a large number of magnetic domains with differ-
ent directions of magnetization, whereas domain nucleation and domain wall pinning are the two
key mechanisms that cause coercivity. Experiments and micromagnetic theories suggest that the
coercivity in the rare-earth (RE) magnets arise due to a combined effect of domain wall pinning
and nucleation (Herbst, 1991). It is observed through advanced imaging techniques that reversed
domains nucleate right from the beginning of magnetization of a virgin NdFeB specimen (Li et al.,
2017). Thus, a combination of nucleation and pinning causes considerable amount of initial magneti-
zation as compared to a solely pinning-type magnet. In order to capture this microscopic phenomena
at the macroscopic level, we consider that the switching surface (3.17) evolves from a very small ra-
dius bc0 to a constant limiting surface of radius bcmax, which is the saturation coercive field, as shown in
Fig. A.1a (inset). Motivated by experimental results the switching surface radius is a function of hr

(i.e., the first element of ξ2) and can take the following form

bc(hr) = bcmax

ß
tanh

ïÅ
hr

hr0

ã8ò™1/q
. (A.3)

In this expression, hr0 is a reference accumulated remanent field (in analogy to the yield strain in
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Figure A.1: (a)(inset) Evolving switching surface (in 2D) from a radius of bc0 to bcmax. (a) Variation of bc with hr

for different hardening exponents. (b) Effect of hardening exponent q on the initial magnetization curve.

mechanical plasticity) and q is a hardening exponent. The above evolution law for the switching
surface is qualitatively similar to the isotropic hardening rules in mechanical plasticity (Chaboche
et al., 1979; Chaboche, 1986). As a consequence of the constitutive relation (A.3), the magnetic domain
nucleation is now captured by allowing switching right from the beginning. Obviously, the hardening
exponent q plays a pivotal role in the modeling of different coercivity mechanisms at the macroscopic
level. For a better understanding of this parameter, we discuss a few representative cases in the
context of Fig. A.1. We note first that for q → ∞, the coercive field bc(hr) → bcmax, which, indeed,
models the pinning type magnets. Thus, in the limit of q → ∞, the proposed model reduces to the
existing ferroelectric switching models (McMeeking and Landis, 2002; Landis, 2002; Klinkel, 2006;
Linnemann et al., 2009; Miehe et al., 2011) with no isotropic hardening.

On the other hand, a pure nucleation-type response is obtained for q = 1. In this case, as depicted
in Fig. A.1a and b, the switching surface starts growing from a radius bc ≈ 0 at a© and then evolves
through intermediate switching surfaces like b© to finally saturate to the limiting surface of radius
bcmax at c©. Practically, ferromagnets are modeled by choosing values in the range 1 6 q < ∞ as there
exists no magnet that exhibits only pure domain pinning or only pure domain nucleation.

A.1.2 Cyclic loading and symmetric minor loops

The symmetric minor loops are obtained whenever the loading/unloading amplitude is kept be-
low the saturation h-field hs. Note that the magnetic domains do not become fully aligned to the
loading direction before saturation. Thus, if a load reversal takes place at |h| < hs, then a lower
h-field is required to reverse the specimen’s magnetization direction. The minor loops during the
initial magnetization of a specimen can be obtained in the proposed phenomenological framework
by suitably defining the accumulated remanent field hr. Note further that hr is a strictly increasing,
history-dependent variable, which controls the evolution of the coercive field bc. In order to capture
the symmetric minor loops, we introduce a new history-dependent internal variable Rhr (i.e., the
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Figure A.2: (a) (inset) Cyclic loading profile. (a) Variation of hr with time. (b) (inset) Evolution of bc with hr.
(b) Resulting hysteresis loop. Time scale is irrelevant for the rate-independent model.

second element of ξ2) that memorizes the prior maximum remanent field range. The notion of such a
remanent field range memory variable was first introduced by Chaboche et al. (1979) in the context
of cyclic mechanical plasticity. Following Chaboche (1986), we allow

.
hr to evolve following equation

(A.3) only if the state of hr lies on the memory surface. The latter is a spherical surface (for isotropic
magnets) of radius Rhr defined in the hr-space by

φm := hr • hr − R2hr . (A.4)

At a given instant t0, Rhr corresponds to the maximum amplitude that hr has reached over the entire
loading history up to that time instant, i.e.,

Rhr = max ||hr(t)||, ∀ 0 < t < t0. (A.5)

The isotropic hardening is effective only if the local state of hr lies on the memory surface φm. This
feature is incorporated in the hardening rule (A.3) by modifying (A.2) as

.
hr =

® √ .
hr •

.
hr, if φm = 0

0, if φm < 0.
(A.6)

Note that bc in (A.3) is not an explicit function of Rhr . However, Rhr controls the evolution of hr

through (A.4) and (A.6). Thus, there exists an implicit dependence of bc on the second element of ξ2,
i.e., Rhr .

For a better understanding of the modified isotropic hardening law, we discuss a representative
example of magnetic cyclic loading with increasing amplitude in Fig. A.2. Temporal variation of
h/ms is shown in Fig. A.2a (inset). Specifically, we observe in Fig. A.2a that hr increases from a© to
b©. This increase in hr results in the evolution of the switching surface radius bc from a© to b© (see
Fig. A.2b (inset)), which leads to the m– h response a© – b© in Fig. A.2b. Then, unloading from b© to
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d© (beyond |h b©| = |h c©|) results in two distinct regimes. Firstly, from b© to c©, h/ms remains less than
the maximum loading amplitude of the previous half cycle a© – b©, i.e., |h| < |h b©| = |h c©|. Thus, hr

remains constant between b© – c©, which results in bc to remain the same from b© to c© (see Fig. A.2b
(inset)). In turn, going from c© to d©, |h| > |h b©| = |h c©| of the previous half cycle a© – b©, hr increases
resulting to further increase of the switching surface radius in this regime (see Fig. A.2b (inset)). The
switching surface radius continues to increase in a similar fashion during the subsequent half cycles,
e.g., d© – f©, until eventually reaching bcmax.

A.2 The extended constitutive model for asymmetric cyclic loading

So far in the proposed model, we incorporated the effect of isotropic hardening during the initial
magnetization. However, experiments show existence of minor hysteresis loops under complex cyclic
loading scenarios occuring after the initial magnetization. Clearly, from (A.3) and (A.6), we note that
bc evolves either during the initial magnetization or when h−field increases beyond the previously
maximum absolute value of |h| attained at a preceding cycle (see e.g. Fig. A.2). Nevertheless, follow-
ing available experimental observations, the switching surface can shrink backwards if more complex
minor loop loadings are considered. In view of this, we attempt to enrich further the evolution law
for bc to model more complex cyclic loading cases, especially when load-reversals may take place
before the local |h| reaches the maximum h−field values attained in the preceding cycles.

A.2.1 Notion of a bounding surface

The approach followed to model such complex minor loops is closely related to the bounding surface
idea in mechanical plasticity. In particular, it has been observed by Dafalias and Popov (1975) (see
also Chaboche (1986)) in the context of mechanical plasticity that kinematic and isotropic hardening
is not enough to model cyclic plasticity under complex loading conditions. In that regard, Dafalias and
Popov (1976) proposed a model where the evolution of the plastic internal variables (the remanent
internal variable hr in our case) depends additionally on some discrete, history-dependent parame-
ters associated with loading/unloading of the material. These history parameters are obtained in the
present work by constructing a bounding surface in the hr space. In the following, we first develop
the notion of the bounds in hr for uniaxial loading/unloading and define the history-dependent pa-
rameters. Subsequently, the notion is extended in the context of general three-dimensional multiaxial
loading/unloading cases.

A typical schematic representation of a hr–h loop, observed in a uniaxial (1D) experiment is
shown in Fig. A.3. In this figure, the hr–h loop is observed to remain confined between two bounds:
|hr| 6 hrs, namely, an upper and a lower bound. In turn, the magnitude of hrs remains identical to the
saturation magnetization ms. Nonetheless, the notations hrs is used herein to explicitly indicate the
range of variation of the remanent field hr.

It is observed that from an initial energetic regime (|
.
hr| = 0), the remanent h-field switches and

eventually saturates to the corresponding bound (|hr| = hrs), i.e, the lower bound for the loading
half-cycle and the upper bound for the unloading half-cycle, as shown in Fig. A.3 for an 1D loading
example. Studying numerous uniaxial experiments and following Dafalias and Popov (1976) and
Chaboche (1986), we conclude that the minor hysteresis loops can be modeled by considering bc to
be a function of the proximity of the current state of remanent field hr to the corresponding bounding
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Figure A.3: Schematic illustration of upper and lower bounds, δ and δ(p) for the uni-axial loading case.

(upper/lower) limit. This distance δ = AA ′, as shown in Fig. A.3 is computed by

δ = hrs + sign(ḣ)hr. (A.7)

The proximity of a state of hr to the corresponding bounding limit at the beginning of the pth half-
cycle is denoted by δ(p). The illustrative example of Fig.A.3 shows δ(p) for three half-cycles, namely
p = 1, 2 and 3, which together constitute a partially-reversed loading cycle. These initial proximity
parameters, δ(p), are the history-dependent terms, which play a pivotal role in modeling the evolution
of bc for complex loadings. It is worth noting that the initial local magnetization at the beginning of
a new half-cycle also plays a crucial role in the micromagnetic model of Fulmek and Hauser (1996),
which also models the minor loops by evolving a history-dependent material parameter. The same
notion of evolving the history-dependent coercive field bc is considered in our model, but within the
framework of the bounding surface idea, which is by default a three-dimensional framework and in
principle can also be extended to anisotropic magnetic responses.

In this regard, the computation of δ for the multiaxial case is a bit more involved but otherwise
a direct extension of the above described 1D case. For simplicity, we assume an isotropic magnetic
response to obtain a spherical bounding surface B in the hr space of diameter 2hrs (see Fig. A.4a). To
obtain δ, we first construct a plane containing both the vectors hr and n .

h
=

.
h/|

.
h| and compute θ =

cos−1(hr •n .
h
/|hr|). The intersection of this plane with B leads to a circle C, whose 3D view and the 2D

projection are shown in Fig. A.4a and b, respectively. Now, δ is obtained by computing the Eucledian
distance between AA ′, where A represents the current state of hr and A ′ is the corresponding point on
B obtained by extending a straight line from A in the direction of n .

h
(see Fig. A.4b). From the planar

geometry on the circle C (Fig. A.4b) with center O and radius hrs, we obtain δ using straightforward
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Figure A.4: (a) Schematic illustration of the bounding surface B and the circle C on the plane containing the
vectors nḣ and hr. (b) Estimation of δ(p) from the planar geometry on C.

geometrical arguments as

δ =
»

(hrs)2 − |hr|2 sin2 θ+ |hr| cos θ. (A.8)

Figure A.4b shows that the uniaxial loading and unloading cases presented in Fig.A.3 and defined
via the equation (A.7) are special cases of the more general three-dimensional framework that can be
obtained by setting θ = 0 and π, respectively, in equation (A.8).

By summarizing the above discussion, one may define the history-dependent variables to form a
set of size 2p+ 4, i.e.,

ξ2p+4 ≡ {hr,Rhr ,he, δ, δ(p),he(p), δ(p−1),he(p−1), ..., δ(1),he(1)},

where p is the number of half cycles (including the current one), and he is the accumulated ener-
getic h-field (defined later in (A.12), similar to hr). Finally, he(p) is the he at the beginning of the
pth half-cycle (similar to δ(p)). In principle, ξ is a set that has a continuously increasing number
of elements, starting from ξ6 ≡ {h

r,Rhr ,h
e, δ, δ(1),h

e
(1)}. Fortunately, real materials exhibit a fading

memory (Dafalias and Popov, 1975, 1976). As a result, one can consider gradually increasing rela-
tive weights on δ(p), δ(p−1), δ(p−2), and so on, and eventually discard the oldest history variables. A
specific functional form of bc(ξ2p+4) is proposed next, based on available experimental observations.

It should be noted that, in the general context of magnetically anisotropic materials, the bounding
surface B is expected to become non-spherical albeit remaining convex. The proposed framework can
be readily extended for such cases but would probably require additional variables and anisotropic
invariants.

A.2.2 First order minor loops

Typical experiments (Włodarski, 2007; Benabou et al., 2008; Martínez-García et al., 2013) show that
the first order minor loops (FOMLs) exhibit, in a sense, two distinct features; (i) a low |h| switching
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depends on the loading/unloading history while (ii) the switching surface radius increases from bc

to bmax
c during subsequent switching. When a load reversal takes place at a |h| < hs, both the rotation

of the magnetic domains in the previous loading direction and the pinning of domain walls remain
incomplete. Thus, one observes switching at a lower |h| during the current half cycle because of
partial rotation of the magnetic domain walls during the previous half cycle (Hauser, 2004). Then,
as switching proceeds during the current half cycle, the domain walls get rotated and pinned in the
direction of |h|, as usual. This micromagnetic phenomenon is captured in the present phenomenolog-
ical model as follows; bc is allowed to decrease during the energetic response of a partially-reversed
half-cycle, whereby it may increase up to bcmax during a subsequent switching. By recalling the ob-
servations (i) and (ii) done previously, we combine all the previous constitutive equations for bc

and extend them into three distinct evolution laws for the switching surface for the three different
regimes: (i) the initial magnetization, (ii) the energetic part, and (iii) the switching part of a half cycle.
Each one of these regimes is considered independently in the present work and their modeling can
be carried separately depending on the level of complexity one is willing to reach.

Specifically, the initial magnetization regime is indicated by a function

K = H(
.
hr), (A.9)

which is essentially a Heaviside step function with K = 1 during the initial magnetization and 0

otherwise. Similarly, the energetic and the switching regimes of a half-cycle are written in terms of a
Heaviside step function as

J = 1−H

Å
1−

δ

δ(p)

ã
, (A.10)

Recall from Section A.2.1 that δ = δ(p) during the energetic response and δ starts decreasing from
δ(p) when the switching starts. Thus, from definition (A.10), we have J = 1 and 0 to represent the
energetic and the switching regimes, respectively. We now propose a combined evolution law for bc

depending on the indicator functions K and J such that

bc =



bcmax

ß
tanh

ïÅ
hr

hr0

ã8ò™1/q
if K = 1

bc(0)

ß
1− k1

Å
1−

δ(p)

2hrs

ã
Rhr

hrs
F1

™
if K = 0, J = 1

bc(0) +

ï
bcmax

ß
tanh

ïÅ
hr

hr0

ã8ò™1/q
− bc(0)

ò
F2 if K = 0, J = 0,

(A.11)

where k1 is a material parameter, bc(0) is the initial bc at the beginning of the energetic/switching
regime, while the first law corresponding to the initial magnetization is the one proposed in (A.3).

The functions F1 and F2 are used to ensure a smooth decrease/increase in bc during the en-
ergetic and switching parts, respectively, of a partially-reversed half-cycle. Note that during the
energetic response, i.e., when the switching surface is modeled to shrink following (A.11)2, both the
accumulated remanent field hr and the proximity parameter δ remain constant. Thus, the evolution
of F1 during the energetic response may be carried out in terms of an accumulated energetic h-field,
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defined as .
he =

» .
he •

.
he, he =

∫
t

.
hedt. (A.12)

A straightforward choice is to consider F1 to be a saturation function, which evolves from 0 and
saturates at 1, such as

F1 = tanh
ß
δD(p)

2Rhr

Å
he

he0
−
he(p)

he0

ã™
, (A.13)

where the term he(p) is a history-dependent parameter, that is he at the beginning of the pth half cycle
(similar to δ(p)) and δD(p) = δ(p) + δ(p−1) − 2h

r
s is the proximity of the pth half-cycle to the (p− 1)th one,

i.e., the proximity between two subsequent half-cycles. Finally, he0 in (A.13) is a material parameter
that represents a reference accumulated energetic h-field (similar to hr0 in (A.3)). Similarly, F2 is
chosen to be a saturation function, that evolves from 0 to 1, such that

F2 = tanh

®
k2
2hrs
δM

Å
1−

δ

δ(p)

ãÅ
δD(p)

2hrs

ã−k3´
, (A.14)

where k2 and k3 are positive parameters that dictate the shape of the minor loop, and

δM = max{δ(1), δ(2), ..., δ(p)}.

Remark A.1. Note that F2 may become singular in the degenerate case of δD(p) → 0, i.e., for tiny
minor loops due to small fluctuations in the local h. This can be remedied by adding a correction
term in (A.11)2. Such a correction is shown in the following but is not necessary for well-defined
cyclic loads. Specifically, one may augment (A.11)2 with an additional term, such as

bc = bc(0)

ß
1− k1

Å
1−

δ(p)

2hrs

ã
Rhr

hrs
F3F1

™
+

ï
bcmax

ß
tanh

Å
hr

hr0

ã™1/q
− bc(0)

ò
(1−F3)F4, (A.15)

where the functions F3 and F4 are now defined by

F3 = tanh
Å
6.0
δD(p)

hrs

ã
, (A.16)

F4 = tanh

®
2Rhr

δD(p)

Å
he

he0
−
he(p)

he0

ã´
, (A.17)

respectively. Now, for δD(p) = 0, F3 vanishes, reducing (A.15) to its second term only. Therefore,
instead of decreasing, the bc rather increases to bcmax during the energetic response by virtue of the
saturation function F4.

The use of (A.11)1,3 and (A.15) to model the FOMLs arising due to partially-reversed loading
cycles are discussed next by use of two typical examples. A typical example of a first-order reversal
curve is depicted in Fig. A.5. The inset of Fig. A.5a shows the uniaxial loading profile, where a© – b©
represents the initial magnetization of a virgin sample followed by a partially-reversed cycle b© – d© –
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Figure A.5: (a) (inset) Cyclic loading profile. (a) Evolution of bc in time. (b) Resulting m – h loop. Time scale
is irrelevant for the rate-independent model.

f©. The initial magnetization from a© to b© results in the corresponding evolution of bc as evaluated
from (A.11)1 (see Fig. A.5a). The corresponding response in the m – h space is shown for the same
regime in Fig. A.5b.

At the beginning of the second half-cycle b© – d©, we have δ(2) ≈ 2hrs and bc(0) = bcmax{tanh
[(hr/hr0)8]}1/q. Thus, the evolution law for bc, i.e, (A.11)2 reduces to bc = bc(0), resulting in a con-
stant bc between b© – c©. During subsequent switching, bc evolves following (A.11)3. Note in (A.11)3
that the coefficient of F2 now vanishes as bc did not decrease from bcmax. Hence, (A.11)2 and (A.11)3
together ensure a constant bc on unloading if the preceding loading goes beyond saturation (see
Fig. A.5a). Consequently in Fig. A.5b, we obtain a m – h response in the interval b© – c© coinciding
with the major loop.

The path d© – f© represents a partially-reversed half-cycle, where the load reversal takes place
before saturation at d© and thus, δ(3) < 2hrs. During the energetic response, d© – e©, bc decreases
to values lower than bc(0) = bcmax following the constitutive expression (A.11)2 (see Fig. A.5a). Con-
sequently, the switching is initiated at e© at values lower than bcmax. From that point on, bc starts
evolving following (A.11)3 and hence increases from e© to f© approaching bcmax. The resulting m – h
response is shown by the segment d© – e© in Fig. A.5b.

Note that the shape of the minor loop d© – e© depends explicitly on the choice of the minor loop
shape parameters k1, k2 and k3. The identification of k1, k2 and k3 by use of a least-square fitting
of the model with available experimental data is discussed in Section A.4. On the other hand, the
proposed forms of the functions F1 and F2 will be shown to be sufficient to model a large number
of different magnets.

For completeness, we also investigate a more complicated loading scenario where initially the
magnet is not magnetized to saturation. That is a very important case in particle-filled magnetorheo-
logical elastomers, whereby not all particles attain the same level of magnetization given an external
overall applied magnetic field.

In particular, the loading profile is depicted in the inset of Fig. A.6a. In this case, an initial loading
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Figure A.6: (a) (inset) Cyclic loading profile. (a) Evolution of bc in time. (b) Resulting m – h loop. Time scale
is irrelevant for the rate-independent model.

from a© to b© increases bc up to a given value bc(1) resulting to an initial magnetization response
in the same shown in Fig. A.6b. The subsequent two half cycles b© – d© and d© – f© follow the
evolution equations (A.11)2 and (A.11)3 during the corresponding energetic and switching regimes,
respectively, and result in a m – h response, shown in Fig. A.6b. An interesting observation can be
made during the last unloading half-cycle f© – i©. We notice from Fig. A.6a (inset) that |h| exceeds
hmax when the magnet is unloaded beyond h©. Thus, the shrinkage f© – g© of the switching surface
is followed by its expansion in two steps. First, we get the expansion from g© to h© evaluated by
equation (A.11)3. This is followed by an expansion of bc in the interval h© to i© as computed by
equation (A.11)1. As a result, we observe a two step magnetization response g© – i© in Fig. A.6b.
Therefore, three different regimes are obtained from relation (A.11) during a half-cycle for a loading
condition in the interval f© – i©.

Accurate prediction of the higher-order minor loops necessitates a more tedious definition of bc

and, in general, it requires a metric to identify the order of the minor loop. On the other hand,
the nature of evolution of bc remains the same for the higher order loops except for the need of
additional history-dependent terms. Thus, an efficient storage of the order of the minor loop and the
set ξ requires a suitable computational algorithm, which is beyond the scope of the present work.
However, typically in engineering applications with magnets (Miyamoto et al., 1989) and MREs
(Ginder et al., 1999), the material is not loaded with a highly fluctuating magnetic field that may
cause secondary or higher order minor loops. Thus, the proposed model, that captures accurately
the FOMLs, is expected to be sufficient for the applications at hand.

A.3 Identification of model parameters

The number of model parameters to be identified depends on the complexity of the experiment we
intend to model. For the most general case, which involves modeling a magnet accurately up to its
first-order minor loops, we need to specify thirteen parameters, namely, χe, χ, ms, bcmax, κ

(1)
h , κ(2)

h , κ(3)
h ,
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h
r
0, he0, q, k1, k2 and k3. On the other hand, modeling only the major loop as carried out in Chapter 3

requires seven material parameters, namely χe, χ, ms, bcmax, κ
(1)
h , κ(2)

h and κ(3)
h with all others to remain-

ing inconsequential. Arbitrary but non-singular values of some of those inconsequential parameters
are reported in the tables of the following section. Subsequently, modeling the initial magnetiza-
tion response along with the major loop requires two additional parameters hr0 and q. Finally, for the
modeling of the minor loops, we need to specify the remaining he0, k1, k2 and k3 constants. Note that,
only data for one representative first-order minor loop of the material are required to identify the
four minor loop parameters. Any remaining first-order minor loop of the material will be predicted
directly from the model without further change of the minor loop parameters. Specific examples of
minor loop fitting and predictions are discussed in the next section.

The computed response is fitted to the corresponding experimental data using a standard least
square method in three distinct steps:

S1 – Calibration of major loop: We first find the optimal major loop parameters χe, χ, ms, bcmax, κ
(1)
h ,

κ
(2)
h and κ(3)

h (i.e. 7 parameters) by using the lsqcurvefit function of MATLAB (2017).

S2 – Calibration of initial magnetization: We then identify the parameters q and hr0 (i.e. 2 parameters)
that are necessary to fit the initial magnetization response.

S3 – Calibration of a minor loop: Finally, we identify the rest of the four minor loop parameters,
namely he0, k1, k2, k3 (i.e. 4 parameters) by fitting a single minor loop, if such information are
available from the experiments analyzed.

At this point, it is worth discussing in more detail the necessity of the above three steps and thus
the number of parameters needed to be identified in the context of four representative experimental
cases reported in the literature:

i) Only the experimental major loop is available. In this case step S1 is sufficient and hence, the
corresponding seven parameters in this step need to be identified, while those in S2 and S3

remain inconsequential.

ii) The major loop with the initial magnetization response are reported. In this case we first carry
out step S1 followed by S2, i.e., we identify nine parameters in total. The remaining four
parameters of step S3 remain inconsequential.

iii) The major loop and at least one asymmetric minor loop are reported. In this case, we first
carry out step S1 followed by S3, i.e., we identify eleven parameters. The corresponding initial
magnetization parameters remain inconsequential in this case.

iv) The major loop along with the initial magnetization and al least one symmetric or asymmetric
minor loop are available. In this case, the fitting requires all three steps (S1− S3) and has to
be carried out sequentially. It is noted further that whenever we model the major loop and
symmetric minor loops, all three steps and all thirteen parameters are required.

Hence, even if the complete theoretical model is described in terms of a total of thirteen parameters,
the number of the parameters that needs to be identified may be much less in a large number of cases
of practical interest. Specific examples involving all four cases discussed previously are investigated
in the following section.
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A.4 Assessment of the model with experiments

In the following, we compare the proposed model with the uniaxial tests of (a) sintered NdFeB
magnets by Huang et al. (2016b) and (b) NdFeB powders by Deng et al. (2015) and Périgo et al.
(2012). In those examples, we model the initial magnetization and the major loop. Subsequently,
we compare the proposed model with the experimentally observed minor loops by Włodarski (2007)
and Liu et al. (2010). Finally, we develop FORC diagram from the fitted model response and compare
it with the FORC diagram generated by Pike et al. (1999) from the experimental data. It is important
to mention that the polycrystalline magnets, used in the corresponding experiments, are typically
isotropic. Anisotropic magnets may be manufactured through dedicated manufacturing techniques
and will require additional constitutive parameters that will allow to describe properly the preferred
magnetization directions.

A.4.1 Sintered NdFeB magnets

Sintered NdFeB magnets are the classical example of nucleation-type magnets with high initial sus-
ceptibility. In Fig. A.7, we obtain two sets of experimental data from Huang et al. (2016b): (a) the
major hysteresis loop for spark plasma sintered NdFeB magnets, where the solid magnet is obtained
by sintering very fine melt-spun NdFeB ribbons of less than 40 µm diameter, and (b) the major loop
for sintered NdFeB, prepared by sintering coarse NdFeB ribbons (greater than 40 µm diameter).

Figure A.7: Experimental m-h response of a NdFeB magnet (Huang et al., 2016b) with the fitted rate-
independent SS and ESS models.

Specifically, following S1 and then S2, we obtain a least-square fit of our model with the experi-
mental data in Fig. A.7a. First, we fix κ(3)

h = 1 and carry out S1 to obtain the optimal χe, χ, ms and
bcmax, as shown in Table A.1. Next, we carry out S2 to obtain q and hr0. Due to unavailability of any
minor loop data, the step S3 is inconsequential and hence, the minor loop parameters may be set to
he0 = 1.0 MA/m and k1 = k2 = k3 = 0.

We observe that the present ESS model is capable of probing accurately the experimental data in
Fig. A.7a. Here, we note that in addition to modeling the major loops, the present model also traces
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accurately the initial magnetization response. Note that the SS model, shown for comparison, as well
as the pseudo-particle models only model the outer coercive loops accurately. Next, we probe the
hysteresis loop for a coarse-grained sintered NdFeB magnet in Fig. A.7b.

Table A.1: Material parameters for sintered NdFeB magnets

S1: Major loop
χe = 0.075 χ = 4.0 ms = 0.65 MA/m bcmax = 1.20µ0(a) | 1.52µ0(b) T
κ

(1)
h = 0.0 κ

(2)
h = 0.0 κ

(3)
h = 1.0

S2: Initial magnetization
hr0 = 0.58 MA/m q = 3.35

S3: Minor loop
he0 = 1.0 MA/m k1 = 0.0 k2 = 0.0 k3 = 0.0

The model is able to reproduce this second case by only re-identifying the parameter bcmax, keeping
the rest of the parameters the same. Thus, it is observed that different variants of magnets made of
the same material (e.g., exhibiting different grain sizes) can be modeled by a small variation of the
coercive field bcmax.

A.4.2 NdFeB powder

In Fig. A.8, we consider the experimental data of Deng et al. (2015) and Périgo et al. (2012) for quasi-
static, uniaxial loading of melt-spun NdFeB powder samples. In both cases, the proposed model is
capable of reproducing extremely well the corresponding experimental data (see Table A.2 for cor-
responding parameters). Specifically, we first identify the model parameters using the experimental
results of Deng et al. (2015). Then, the experiments of Périgo et al. (2012) are probed by re-adjusting
χe and χ, which serve to describe the shape of the hysteresis loop. Table A.2 displays the values of
the model parameters used to describe the major hysteresis loop. Note that in both experiments the
maximum coersive field bcmax is identical.

Table A.2: Material parameters for NdFeB powder

S1: Major loop
χe = 0.095(a) | 0.163(b) χ = 8.0(a) | 16.0(b) ms = 0.67 MA/m bcmax = 0.845µ0 T
κ

(1)
h = 1.0 κ

(2)
h = 0.0 κ

(3)
h = 0.0

S2: Initial magnetization
hr0 = 0.551 MA/m q = 17.5

S3: Minor loop
he0 = 1.0 MA/m k1 = 0.0 k2 = 0.0 k3 = 0.0

In addition, use of the same initial magnetization parameters hr0 and q allows us to recover accu-
rately the initial magnetization response in both samples. In Fig. A.8, the parameter q implies that
the coercivity in NdFeB powder samples can be attributed to a combined effect of nucleation and
pinning, which is in agreement with recent microscopic observations by Liu et al. (2013) in NdFeB
ribbons (from which the NdFeB powders are obtained through grinding). Finally, the four minor
loop parameters he0, k1, k2 and k3 are inconsequential due to unavailability of any minor loop data
and thus are set to he0 = 1.0 MA/m and k1 = k2 = k3 = 0.
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Figure A.8: Experimental m-h response of NdFeB powder from (a) Deng et al. (2015) and (b) Périgo et al.
(2012) with the fitted rate-independent proposed model.

A.4.3 MgMn steel

In Fig A.9, we use the complete model to probe the experimental data of Włodarski (2007) for MgMn
steel, which include several fully-reversed, uniaxial hysteresis loops with different amplitudes of
loading. Thus, in addition to the initial magnetization and major coercive loop, the latter experiments
provide also information on symmetric minor loops. We first identify bcmax, χe, χ and ms in order to
probe the experimental major loop (see Table A.3).

Table A.3: Material parameters for MgMn Steel

S1: Major loop
χe = 0.9913 χ = 0.03 ms = 1.58 kA/m bcmax = 0.72µ0 mT
κ

(1)
h = 0.0 κ

(2)
h = 0.0 κ

(3)
h = 1.0

S2: Initial magnetization
hr0 = 1.45 kA/m q = 45.6

S3: Minor loop
he0 = 0.099 kA/m k1 = 3.0 k2 = 5.0 k3 = 0.1

Subsequently, we fit the initial magnetization response by identifying the parameters q and hr0. Fi-
nally, we fit the model with one of the minor loop data to obtain he0, k1, k2 and k3 as shown in
Table A.3. In Fig. A.9b, we use the already identified model to predict two additional experimental
minor loops. We thus show that the model is able to reproduce but also to predict sufficiently well
the major and minor hysteresis loops of MgMn steel.

A.4.4 Asymmetric minor loops

In Fig. A.10, we use our model to probe the experimental data for two different magnets; (a) an-
nealed nanocrystalline Co alloy and (b) 3% silicon steel, subjected to uniaxial, partially-reversed
loading, which results in asymmetric minor loops. The experimental m – h response along with
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Figure A.9: Experimental m-h response of MgMn Steel by Włodarski (2007) with (a) the fitted model and (b)
the model predictions.

three first-order reversal curves (FORCs) for the annealed nanocrystalline Co alloy magnet is ob-
tained by Martínez-García et al. (2013). Similar to the previous figures, we carry out a two step
fitting of our model. First, we fit the major loop data of Martínez-García et al. (2013) to obtain the
model parameters except hr0 and q, which are inconsequential due to unavailability of the initial
magnetization data. We then use the model to probe one of the experimental FORC data thus iden-
tifying the parameters he0, k1, k2 and k3. The resulting values for the model parameters are given in
Table A.4.

Table A.4: Material parameters for annealed nanocrystalline Co alloy

S1: Major loop
χe = 0.855 χ = 785.0 ms = 51.5 kA/m bcmax = 12.0µ0 mT
κ

(1)
h = 1.0 κ

(2)
h = 0.0 κ

(3)
h = 0.0

S2: Initial magnetization
hr0 = 1.0 A/m q = 100.0

S3: Minor loop
he0 = 85.0 A/m k1 = 4.0 k2 = 1.85 k3 = 1.25

In Fig. A.10a, the solid lines correspond to the model response that is fitted to the corresponding
experimental data. The dashed lines correspond to predictions of the model without introduction of
additional model parameters.

Finally, Fig. A.10b shows the experimental data of Benabou et al. (2008) corresponding to the b –
h response of a 3% silicon steel sample that is subjected to a periodic h-field with the superposition
of third harmonics. This type of loading gives rise to asymmetric minor loops. Again, a two-step
fitting procedure, consisting of fitting the major loop and only one of the minor loops from the
experimental data, yields the corresponding model parameters (see Table A.5). Note again that the
initial magnetization parameters hr0 and q remain inconsequential due to unavailability of the initial
magnetization data and thus are set equal to 1 and 0, respectively. The second minor loop is then
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Figure A.10: (a)(inset) Loading profile for FORCs. (a) Experimental m-h response for nanocrystalline Co alloy
from Martínez-García et al. (2013) with the model fitting and predictions. (b)(inset) Loading profile and (b)
experimental b-h response for 0.3% silicon steel by Benabou et al. (2008) with the fitted model. Time scale is
irrelevant for the rate-independent model.

found to be well predicted by the proposed model.

Table A.5: Material parameters for 3% silicon steel

S1: Major loop
χe = 0.999 χ = 126.3 ms = 1000.0 A/m bcmax = 12.0µ0 mT
κ

(1)
h = 1.0 κ

(2)
h = 0.0 κ

(3)
h = 0.0

S2: Initial magnetization
hr0 = 1.0 A/m q = 0.0

S3: Minor loop
he0 = 100.0 A/m k1 = 8.0 k2 = 4.0 k3 = 1.34

The examples presented in this section illustrate the capabilities of the model to reproduce an predict
magnetic responses obtained by very complex loading histories and specifically resulting in asym-
metric minor loops.

A.5 Construction of FORC diagrams

In this section, we use the proposed ESS model to probe a representative experimental FORC dia-
gram. In particular, a set of FORCs, as shown in Fig. A.10a and Fig.A.11, enables us to construct the
so called FORC diagram (Pike et al., 1999; Pike, 2003; Liu et al., 2013), which is essentially a contour
plot showing the mixed derivative of the magnetization m with respect to the applied h-field h and
the reversal h-field hr. Specifically, the FORC distribution function ρ is defined by (Pike et al., 1999)

ρ(h,hr) = −
1

2

∂2m(h,hr)
∂h∂hr

. (A.18)
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The FORC diagrams are typically plotted in the hc − hu space, where hc = (h− hr)/2 is the coercive
field1 and hu = (h+ hr)/2 is termed as the interaction field (Pike et al., 1999). The distribution of ρ
as a function of hc and hu allows us to infer the characteristics of the micromagnetic interactions in
the sample. For instance, a narrow distribution of ρ along hu is typically obtained for single-domain
(SD) magnets. The reader is referred to former representative studies (Pike et al., 1999; Pike and
Fernandez, 1999; Pike, 2003; Roberts et al., 2000) for a more detailed description of a FORC diagram
and its significance in inferring the micromagnetic properties of the material under study.

In order to obtain the FORC diagrams from the present ESS framework, we carry out a fitting
methodology as proposed in Section A.4. We consider the classic example of a floppy disc material
(Pike et al., 1999; Roberts et al., 2000; Newell, 2005) and consider fitting our model with the experi-
mentally observed m− h response (Pike et al., 1999). The calibrated model with the outer loop and
with one of the representative FORCs is shown in Fig. A.11. The identified model parameters are
given in Table A.6.

Table A.6: Material parameters for floppy disc material

S1: Major loop
χe = 0.999 χ = 126.3 ms = 1000.0 A/m bcmax = 12.0µ0 mT
κ

(1)
h = 1.0 κ

(2)
h = 0.0 κ

(3)
h = 0.0

S2: Initial magnetization
hr0 = 1.0 A/m q = 0.0

S3: Minor loop
he0 = 100.0 A/m k1 = 8.0 k2 = 4.0 k3 = 1.34

Once the model parameters are identified, we then use the model to generate a data set of three
hundred FORCs, a subset of which is shown in Fig. A.11.

One of the main characteristics of the proposed ESS model is that it generated sharp corners in the
m−h response at the point of transition from the energetic to switching regime (shown in Fig. A.11 by
red line). This sharp corner in them−h space, which is an inherent feature of such phenomenological
models, results in a discontinuity in the FORC distribution ρ. For the purpose of constructing a
meaningful FORC diagram, we smooth out this discontinuity by considering a distribution (Pike
et al., 1999) of the coercive field bc around the identified bcmax as given by Table. This distribution,
chosen for simplicity to be Gaussian in the present case, serves to mimic in an approximate sense the
collective response of a large number of grains in the material. In particular, we perform N different
computations with bcmax = bci (∀i ∈ [1,N]) obtained from a Gaussian distribution G(bcmean,σb), where
the mean coercivity bcmean = 89.3 mT, as shown in Table A.11 by fitting of a constant coercive field
model while σb = 15.0 mT is the standard deviation. Finally, the resulting m field is computed as
m = 1/N

∑N
i=1mi. Considering N = 20, we obtain a sufficiently smooth FORC response as shown

in Fig. A.11. Contrary to the Preisach (1935) - Pike et al. (1999) model of the floppy disc material, in
the ESS framework, a small number of bci with a narrow standard deviation is sufficient for accurate
reproduction of the FORC diagram. This can be attributed to the observation that the proposed ESS
framework contains a-priori the complex energetic-switching response during a partially-reversed
half cycle via the use of non-trivial hardening functions.

1The coercive field hc = (h− hr)/2 should not be confused with the definition of the material parameter coercive field
in Chapter 3. One should treat the present definition of hc exclusively in the context of FORC diagrams.
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Figure A.11: Model parameter identification of the major loop and one of the representative FORC with the
experimental hysteresis data for a floppy disc material (Pike et al., 1999).

Subsequently, by use of three hundred sufficiently smooth FORC data, we evaluate numerically
the FORC distribution ρ(hc, hu) by employing a backward Euler scheme. In such FORC diagrams, the
distribution of ρ with respect to hc and hu plays a crucial role in inferring micromagnetic information
of the material, whereas the magnitude of ρ is somewhat less significant. Thus, it is customary to
normalize ρ with respect to its maximum ρmax and represent the FORC distributions in a normalized
scale of (−∞, 1] (Pike et al., 2005; Roberts et al., 2014; Pohlit et al., 2016). Figure A.12 shows the
contour plot of the normalized ρ in the µ0hc − µ0hu space. The FORC diagram in Fig. A.12 quali-
tatively matches the experimental FORC diagram developed by Pike (2003) (see inset of Fig. A.12).
Our model successfully captures three major features of the experimental FORC diagram, namely,
(a) an asymmetric reversible ridge near µ0hc = 0 mT, (b) an irreversible peak near µ0hc = 87 mT
and µ0hu = −5 mT, and (c) a region with negative ρ below the irreversible peak (see Fig. 9 of Pike
et al. (1999)). The reversible ridge near µ0hc = 0 mT and µ0hu = −80 mT is due to the change in
the slope of the FORCs during their initiation at h = hr, i.e., µ0hc = 0. Interestingly, the peak of
the reversible ridge is asymmetric with respect to µ0hu = 0 axis. The irreversible peak in Fig. A.12
indicates the coercive and interaction fields at which the maximum irreversible changes take place in
the micromagnetic domains. Our model accurately predicts the location of the irreversible peak for
the floppy disk material.

Finally, we conduct a more quantitative analysis of the modeled FORC distribution in Fig. A.13a
and b by probing the computed ρ versus the experimental observation and the Pike (2003) model.
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Figure A.12: Constructed FORC diagram for the floppy disc material from the modeled FORCs, a subset of
which is shown in Fig.A.11. (inset) FORC diagram taken from Pike (2003) using the experimental FORC data
of the floppy disc material. For consistency, the notation of the interaction field has been changed from Hb in
the original paper to Hu = µ0hu, while Hc = µ0hc.

We observe in Fig. A.13a that our model predicts fairly well the distribution of ρ along µ0hu = −5

mT. In fact, the proposed framework makes a better prediction in this case than the existing Pike
(2003) model. In turn, the Pike (2003) model is more accurate in predicting the peak of the reversible
ridge. As depicted in Fig. A.13b, our model successfully predicts the asymmetric reversible ridge
near µ0hc = 0 mT. However, the peak of the predicted ridge is slightly shifted from the experimental
observation. Perhaps, a more involved model comprising multiple switching surfaces (François-Lavet
et al., 2013) may be considered to model the reversible peak more accurately.

A.6 Concluding remarks

In this appendix, we introduce a simple yet effective framework for modeling the initial magnetiza-
tion and minor loops of a permanent bulk magnet. Specifically, we incorporate the effect of initial
magnetic hardening of a virgin specimen by introducing an isotropic hardening law, leading to the
gradual growth of the switching surface until reaching a limiting surface, which encapsulates all the
internal switching surfaces during the magnetization/demagnetization. Symmetric and asymmetric
minor loops are modeled by introducing a set of discrete, history-dependent thermodynamic vari-
ables, that control the shrinkage and expansion of the switching surface depending on the loading
history and the state of magnetization. In this context, we utilize the existing framework of the
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Figure A.13: Variation of ρ (a) with µ0hc for a constant µ0hu = −5 mT and (b) with µ0hu for a constant µ0hc = 0
mT.

bounding surface (originally used in the context of mechanical plasticity) and extend it to describe
the macroscopic response of permanent magnets. In particular, the present natural extension of the
existing switching surface framework of McMeeking and Landis (2002), Landis (2002) and Klinkel
(2006) enables us to model accurately the initial magnetization and the symmetric and asymmetric
minor loops up to first order.

One of the key advantage of the proposed ESS model is the sequential increase in the model com-
plexity depending on the experiment we intend to model. Modeling only the major hysteresis loop
does not require any isotropic hardening or shrinkage/expansion of the switching surface depending
on the loading history. Hence, only the four material parameters related to the coercive field and
the shape of the major loop are sufficient to describe the major hysteresis loop. On the other hand,
if one needs to model also the initial magnetization response, two additional hardening parameters
are further considered.

The modeling of the minor hysteresis loops necessitates a more tedious definition of the switch-
ing surface depending on the state of magnetization and the loading history, whereas it requires
the determination of three additional material parameters. This sequential increase in the model
complexity also allows us to probe various experimental data by identifying the model parame-
ters in multiple independent steps. In the present work, we use at most eleven model parameters
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to probe the most complex experimental loading history corresponding to first order asymmetric
minor loops (FOMLs). This makes the corresponding parameter identification a well-controlled and
fairly straightforward task contrary to the pseudo particle model (Bergqvist, 1997; Kalina et al., 2017),
which requires 30 to 50 parameters that need to be identified all at once.

In particular, the model has been used to probe and predict several experimental data including
the m–h responses of the purely nucleation-type sintered NdFeB magnets, the combined nucleation-
pinning-type NdFeB powder samples, the annealed nanocrystalline Co alloy and the b–h responses
of the MnMg steel and the 3% Si steel. Symmetric and asymmetric minor loop data from different
experiments are used to probe the effectiveness of the proposed evolution/shrinkage law for the
coercive field bc. Excellent recovery and prediction of available experiments, whenever available are
obtained in the present study.
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Titre : Modélisation théorique et numérique des élastomères magnéto-rhéologiques contenant des particules
ferromagnétiques douces et dures

Mots clés : Magnéto élasticité,elements finis,mécanique des matériaux,polymeres.
Résumé : Les élastomères magnétorhéologiques
(MREs) sont composites à deux phases compre-
nant des inclusions métalliques magnéto-actives dans
une matrice d’élastomère mécaniquement souple.
Ce travail fournit un ensemble de modèles consti-
tutifs équivalents guidés microstructurellement pour
les MREs isotropes dans les espaces de variables
F-H, F-h, F-b et F-b. En fonction des propriétés
magnétiques des phases d’inclusion, les MREs
sont appelés doux (s-MREs) ou durs (h-MREs),
s’ils contiennent, respectivement, des particules
magnéto-actives (par exemple, fer) ou des particules
magnétisables de façon permanente (par exemple,
NdFeB). À leur tour, les particules magnéto-actives
“douces” non-coercitives présentent une réponse de
magnétisation de type saturation, tandis que les
particules magnétiques “dures” fortement coercitives
présentent une hystérésis ferromagnétique.
Deux modèles équivalents, basés sur h et b, ther-
modynamiquement cohérents et indépendants de
la vitesse sont proposés ici pour l’hystérésis fer-
romagnétique. Une homogénéisation numérique à
champ complet est ensuite réalisée afin d’esti-
mer la réponse macroscopique des s- et h-MREs.

Ces estimates d’homogénéisation pour les s- et h-
MREs fournissent des informations cruciales sur les
réarrangements et les rotations.
Des modèles macroscopiques explicites et
entièrement objectifs, qui deviennent identiques aux
estimations analytiques d’homogénéisation dans cer-
taines limites, sont proposés pour les s-MREs dans
les deux espaces de variables F-H et F-B. Étant
donné que la plupart des propriétés effectives sont
estimées à partir des cas limites d’homogénéisation
analytique, le nombre de paramètres du modèle à
estimer via l’ajustement de la réponse du modèle
se réduit à un. De la même manière, des modèles
constitutifs entièrement objectifs et équivalents dans
les espaces de variables F-H, F-h, F-B et F-b, avec un
seul paramètre supplémentaire, sont proposés pour
les h-MREs, où les variables internes dans le Lagran-
gien F-H et F-B sont considérées comme étant dans
une configuration intermédiaire sans étirement.
D’excellents accords sont obtenus entre les modèles
proposés pour les s- et h-MREs et les estimations
numériques d’homogénéisation pour des matrices
ayant des modules de cisaillement Gm > 0,3 MPa et
pour les fractions volumiques c ≤ 30%.

Title : Theoretical and numerical modeling of magnetorheological elastomers comprising magnetically soft
and hard particles

Keywords : Magnetoelasticity, finite elements, mechanics of materials, polymers
Abstract : Magnetorheological elastomers (MREs)
are two phase composites comprising magneto-active
metallic inclusions in a mechanically soft elasto-
mer matrix. This work provides a set of equivalent
microstructurally-guided constitutive models for iso-
tropic MREs in the F-H, F-h, F-B and F-b variable
spaces. Depending on the magnetic properties of
the inclusion phases, the MREs are referred to be
the soft (s-MRE) and hard (h-MRE), comprising of,
respectively, magneto-active (e.g., iron) and perma-
nently magnetizable (e.g., NdFeB) particles. In turn,
the non-coercive, “soft” magneto-active particles ex-
hibit a saturation-type magnetization response, whe-
reas, highly coercive “hard” magnetic particles exhibit
ferromagnetic hysteresis.
Two equivalent, h and b-based, thermodynamically
consistent, rate-independent models for the ferroma-
gnetic hysteresis are proposed herein. A full field nu-
merical homogenization is carried out subsequently,
in order to estimate the macroscopic response of the
s- and h-MREs. These estimates for both s- and h-

MREs provide crucial insights on the particle rearran-
gements and rotations.
Fully objective, explicit macroscopic models, those
become exact to the analytical homogenization esti-
mates in certain limits, are proposed for the s-MREs
in both F-H and F-B variable spaces. Since most of
the effective properties are estimated from the limi-
ting cases of analytical homogenization, the number
of model parameters to be estimated via model res-
ponse fitting reduces to one. Similarly, fully objec-
tive, equivalent constitutive models in the F-H, F-h,
F-B and F-b variable spaces, having only one additio-
nal model parameter, are proposed for the h-MREs,
where the internal variables in the Lagrangian F-H
and F-B-based formulations are considered to be in
a stretch-free, intermediate configuration.
Excellent agreements of the proposed models for the
s- and h-MREs are obtained with the numerical homo-
genization estimates for moderately-soft to relatively
stiff matrix phases having shear moduli Gm > 0.3 MPa
and for particle volume fractions c ≤ 30%.
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