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Abstract

Recent objectives for power systems sustainability and mitigation of climate change
threats are modifying the breadth of power systems planning requirements. On
one hand, sustainable low carbon power systems which have a high share of inter-
mittent renewable energy sources (IRES) are characterized by a sharp increase in
inter-temporal variability, and require flexible systems able to cope and ensure the
security of electricity supply. On the other hand, the increased frequency and sever-
ity of extreme weather events threatens the reliability of power systems operation,
and require resilient systems able to withstand those potential impacts. All of which
while ensuring that the inherent system uncertainties are adequately accounted for
directly at the issuance of the long-term planning decisions.

In this context, the present thesis aims at developing a techno-economic model-
ing and robust optimization framework for multi-period power systems planning
considering a high share of IRES and resilience against extreme weather events. The
specific planning problem considered is that of selecting the technology choice, size
and commissioning schedule of conventional and renewable generation units un-
der technical, economical, environmental and operational constraints. Within this
problem, key research questions to be addressed are: (i) the proper integration and
assessment of the operational flexibility needs due to the increased variability of the
high shares of IRES production, (ii) the appropriate modeling and incorporation of
the resilience requirements against extreme weather events within the power system
planning problem and (iii) the representation and treatment of the inherent uncer-
tainties in the system supply and demand within this planning context.

To this end, we first introduce an integrated framework for operational flexibility
assessment in power system planning with a significant share of IRES. The frame-
work stands on: (i) the formulation of an integrated generation expansion planning
(GEP) and unit commitment (UC) model accounting for key short-term technical
constraints, (ii) the elaboration of accurate and systematic horizon reduction meth-
ods to alleviate the computational burden of the resulting large-sized optimization
problem and (iii) the definition of suitable metrics for the operational flexibility as-
sessment of the obtained plans. The framework is applied to the multi-annual plan-
ning horizon of a realistically sized case study, under several scenarios of IRES pene-
tration levels and carbon limits to validate its superiority in accounting for the needs
of operational flexibility compared to conventional planning methods.

The framework proposed is, then, extended to incorporate the system resilience
against extreme weather events. Specifically, a set of piece-wise linear models are
developed to calculate the impact of extreme heat waves and drought events on
the performance of the power generation units and on the system load. A method
for integrating this impact within a resilient planning approach is, then, proposed
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and the results are analyzed for case studies under real future climate projections
obtained from the Coupled Model Intercomparison Project phase 5.

Finally, to account for the various supply and demand uncertainties, the power
system planning model with dynamic constraints is treated within a multi-stage
adaptive robust optimization. The uncertainty of electricity demand and renewable
power generation is taken into account through distribution-free bounded intervals,
with parameters that permit control over the level of conservatism of the solution. A
solution method based on linear decision rules and information-level approximation
is also presented. The method is, then, applied to the case study and the results con-
firm the effectiveness of the proposed approach especially in coping with multi-fold
short-term ramping uncertainties in power systems planning.

In summary, the original contributions of this thesis are:

• Proposing a computationally efficient multi-period integrated generation ex-
pansion planning and unit commitment model that accounts for key short-
term constraints and chronological system representation to derive the plan-
ning decisions under a high share of renewable energy penetration.

• Introducing the expected flexibility shortfall metric for operational flexibility
assessment.

• Proposing a set of piece-wise linear models to quantify the impact of extreme
heat waves and water availability on the derating of thermal and nuclear power
generation units, renewable generation production and system load.

• Presenting a method for explicitly incorporating the impact of the extreme
weather events in a modified power system planning model.

• Treating the inherent uncertainties in the electric power system planning pa-
rameters via a novel implementation of a multi-stage adaptive robust opti-
mization model.

• Proposing a novel solution method based on “information basis” approxima-
tion for the linear decision rules of the affinely adjustable robust planning
model.

• Applying the framework proposed to a practical size case studies based on
realistic climate projections and under several scenarios of renewable penetra-
tion levels and carbon limits to validate the relevance of the overall modeling
for real applications.



Résumé

Les objectifs récents en ce qui concerne la durabilité des systèmes électriques et l’at-
ténuation des menaces liées au changement climatique modifient la portée des exi-
gences de planification des systèmes électriques. D’une part, les systèmes durables
d’énergie à faible émission de carbone qui comportent une part élevée de sources
d’énergie renouvelables intermittentes (IRES) se caractérisent par une forte augmen-
tation de la variabilité intertemporelle et nécessitent des systèmes flexibles capables
d’assurer la sécurité de l’approvisionnement électrique. D’autre part, la fréquence
et la gravité accrues des phénomènes climatiques extrêmes menacent la fiabilité du
fonctionnement des réseaux électriques et exigent des systèmes résilients capables
de résister à ces impacts potentiels. Tout en s’assurant que les incertitudes inhérentes
au système sont bien prises en compte directement au moment de la prise des déci-
sions de planification à long terme.

Dans ce contexte, la présente thèse vise à développer une modélisation technico-
économique et un cadre d’optimisation robuste pour la planification des systèmes
électriques multi-périodes en considérant une part élevée d’IRES et la résilience aux
phénomènes climatiques extrêmes. Le problème spécifique de planification consi-
déré est celui du choix de la technologie, de la taille et du programme de mise en ser-
vice des unités de production conventionnelles et renouvelables sous des contraintes
techniques, économiques, environnementales et opérationnelles. Dans le cadre de ce
problème, les principales questions de recherche à aborder sont : (i) l’intégration
et l’évaluation appropriées des besoins de flexibilité opérationnelle en raison de la
variabilité accrue des parts élevées de la production d’IRES, (ii) la modélisation et
l’intégration appropriées des exigences de résilience contre les phénomènes clima-
tiques extrêmes dans la planification du système électrique et (iii) le traitement des
incertitudes inhérentes de l’offre et la demande dans ce cadre de planification.

Dans ce but, nous introduisons d’abord un cadre intégré pour l’évaluation de
la flexibilité opérationnelle dans la planification des systèmes électriques avec une
part élevée de l’IRES. Le cadre comprend : (i) la formulation d’un modèle intégré de
planification de l’expansion de la production (GEP) et d’engagement unitaire (UC)
tenant compte des principales contraintes techniques à court terme, (ii) l’élabora-
tion de méthodes précises et systématiques de réduction de l’horizon pour alléger
la charge de calcul du problème d’optimisation à grande échelle qui en résulte et
(iii) la définition des métriques adaptées pour évaluer la flexibilité opérationnelle
des plans. Le cadre est appliqué à une période de planification pluriannuelle d’une
étude de cas de taille réaliste, dans le cadre de plusieurs scénarios de taux de péné-
tration IRES et de limites de carbone, afin de valider sa supériorité pour tenir compte
des besoins de flexibilité opérationnelle par rapport aux méthodes de planification
classiques.
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Le cadre proposé est ensuite prolongé pour intégrer la résilience du système face
aux phénomènes climatiques extrêmes. Plus précisément, un ensemble de modèles
linéaires sont développés pour calculer l’impact des vagues de chaleur extrême et
des épisodes de sécheresse sur la performance des générateurs électriques et sur la
demande du système. Une méthode d’intégration de cet impact dans le model de
planification est ensuite proposée et les résultats sont analysés pour des études de
cas sous des projections climatiques futures réelles obtenues de la Coupled Model
Intercomparison Project phase 5 .

Enfin, pour prendre en compte les différentes incertitudes de l’offre et de la de-
mande, le modèle de planification du système électrique à contraintes dynamiques
est traité dans une optimisation adaptative robuste et multi-étape. L’incertitude de la
demande d’électricité et de la production d’énergie renouvelable est prise en compte
par le biais d’intervalles délimités sans distribution, avec des paramètres qui per-
mettent de contrôler le niveau de conservatisme de la solution. Une méthode de so-
lution basée sur des règles de décision linéaires et une approximation au niveau de
l’information est également présentée. La méthode est ensuite appliquée à l’étude
de cas et les résultats confirment l’efficacité de l’approche proposée, en particulier
pour ce qui est de faire face aux incertitudes à court terme de la planification des
systèmes électriques qui sont multiples et variables.

En résumé, les contributions originales de cette thèse sont :
• Proposer un modèle de planification du système électrique intégré multipé-

riode avec des contraintes dynamiques et en considérant un pourcentage élevé
de pénétration des énergies renouvelables.

• Introduire la mesure du déficit de flexibilité prévu pour l’évaluation de la flexi-
bilité opérationnelle.

• Proposer un ensemble de modèles linéaires pour quantifier l’impact des vagues
de chaleur extrêmes et de la disponibilité de l’eau sur le déclassement des uni-
tés de production d’énergie thermique et nucléaire, la production d’énergie
renouvelable et la consommation électrique du système.

• Présenter une méthode permettant d’intégrer explicitement l’impact des phé-
nomènes climatiques extrêmes dans le modèle de planification du système
électrique.

• Traiter les incertitudes inhérentes aux paramètres de planification du système
électrique par la mise en œuvre d’un nouveau modèle d’optimisation adaptatif
robuste à plusieurs phases.

• Proposer une nouvelle méthode de solution basée sur l’approximation des
règles de décision linéaires du modèle de planification robuste.

• Appliquer le cadre proposé à des études de cas de taille pratique basées sur
des projections climatiques réalistes et selon plusieurs scénarios de niveaux de
pénétration des énergies renouvelables et de limites de carbone pour valider
la pertinence de la modélisation globale pour des applications réelles.
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1 Introduction

Electric power systems are at the heart of any modern society. These are inherently large-
scale dynamic systems with a high degree of spatio-temporal complexity. Their reliability
and security of supply are central considerations in any regional or global energy-related
policy. Methods for power systems planning have typically ensured key operational reli-
ability aspects under normal operating conditions and in response to anticipated demand
variability, uncertainty and supply disruptions, e.g. due to errors in load forecasts and to
unexpected generation units outages. Solutions have been commonly built on capacity ad-
equacy and operating reserves requirements, among others. However, recent objectives for
environmental sustainability and the threats of climate change are challenging the reliabil-
ity requirements of power systems in various new ways and necessitate adapted planning
methods.

The present thesis describes the research work done towards the development of an in-
tegrated techno-economic modeling and robust optimization framework for power systems
planning adapted to this new context. Specifically, the planning framework seeks to address
the challenges associated with the sustainability targets of future power systems, most no-
tably: ensuring operational flexibility against the variability of renewable energy sources,
ensuring resilience against extreme weather events and ensuring robustness against the un-
certainties inherent in both the electric power supply and system load.

This introductory chapter will present to the reader the context and contributions of this
work, and is organized as follows. Section (1.1) summarizes the main sustainability drivers
for the current (and future) power systems planning and operation. These well-known sus-
tainability targets have become a worldwide imperative in all sectors of economic activity,
and are embedded within almost any regulatory or policy dialogue. Section (1.2) briefly re-
views the particular transformation related to the electric power sector planning, not only
driven by the sustainability goals, but also by the more general technological and/or regula-
tory advancements. In section (1.3) the main power systems planning challenges addressed
in this work are detailed, along with a thorough review of previous research works and re-
search gaps. Then, section (1.4) formulates the key research questions and ensuing objectives
as well as the original contributions of the work. Finally, a schematic representation of the
overall structure of the thesis is provided in section (1.5).

1.1 Sustainability of future electric power systems

The electric power industry is both a major contributor to climate change and a sector that
will be deeply disrupted by the effects of climate change. The role of the power sector to-
wards climate change stems from the fact that it is the largest contributor to global green
house gas (GHG) emissions. From 2000 to 2010, the increase in the power sector emis-
sions outpaced the increase in overall emissions by around 1% per year [1]. In 2018, global
energy-related CO2 emissions rose 1.7% to a historic high of 33.1 Gt CO2. The power sector
accounted for nearly two-thirds of this emissions growth [2]. To reduce emissions to levels
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equivalent with the internationally agreed goal of keeping the temperature increase below
2°C of that of pre-industrial levels, the share of low-carbon electricity generation will need
to triple or quadruple by 2050 [2].

Moreover, over the coming decades, the power sector may be disrupted by climate
change impacts. For example, power plants, especially those in coastal areas, may be af-
fected by extreme weather events and rising sea levels. Electricity grids may be impacted by
storms, and the rise in global temperature may affect electricity generation including ther-
mal and hydroelectric stations in many locations. And while the industry may have options
for adapting to climatic changes, significant costs are likely to be incurred [3]. Several ac-
tions are, therefore, urgently needed if the reliability and sustainability targets for the power
sector are to be achieved.

1.1.1 Greenhouse gas emissions

Controlling GHG emissions ultimately requires “de-carbonizing” the power sector, both by
reducing the high demand for energy and by supplying power that generates much less
GHG. A clear path for de-carbonizing power production is through what the Intergovern-
mental Panel on Climate Change (IPCC) describes as a fundamental shift in global invest-
ment from fossil fuel to renewable energy [1]. Renewable energy sources have significant
potential for reducing GHG emissions and are becoming mainstream investment choices
as they are becoming more competitive. In 2012, they accounted for just over half of the
new electricity-generating capacity investments globally while electricity generation from
renewable sources increased by over 7% in 2018 alone [2]. Yet only a small fraction of re-
newable potential has been exploited so far; estimates suggest that in different regions of the
world, renewable energy sources can produce more than 2.6 times the energy demand [1].
Another path for supporting the reduction of GHG is placing more stringent limits on car-
bon emissions for existing or new thermal plants. This can be possibly achieved by a wider
implementation of carbon capture and storage (CCS) technology.

1.1.2 Climate change

Ensuring the resilience of the power system against the adverse effects of climate change is
another key element for ensuring the sustainability and reliability of power supply. The past
decade has seen a rising frequency in weather-related natural disasters. Damage and loss
associated with these extreme events resulted in millions of victims and billions of dollars in
losses. There are various ways in which climate change affects the power sector [4]:

• Extreme weather events such as storms, floods and extreme temperatures can impact
the power production and delivery, causing supply disruptions and infrastructure
damage.

• The reduction in water availability can constrain hydropower as well as the operation
of the thermal power plants (fossil fuel and nuclear) which require water for cooling.

• Unusual seasonal temperatures can impact the electricity demand patterns due to the
increased need for cooling during summer heat waves, or the increased demand for
heating in excessively cold winters.

Although thermal power plants are designed to operate under diverse climatic condi-
tions, they will be particularly affected by the decreasing efficiency of thermal conversion as
a result of rising ambient temperatures. In addition, in many regions, decreasing volumes of
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water available for cooling and increasing water temperatures could lead to reduced power
operations, operations at reduced capacity or even temporary shutdowns [5]. The rising
temperatures also create challenges for meeting river temperature regulations. For example,
in 2009, the French power system at one time lost one third of its nuclear capacity, to respect
thermal discharge limits [4].

Within this context, it is clear that current power system planning efforts must be able to
account for these future challenges or, otherwise, they run the risk of leading to inadequate
and unreliable investments.

1.2 Electric power systems planning

Power system planning is an important techno-economic problem, which has been addressed
extensively both by the sector stakeholders and by academics. Research on power system
planning is carried out by governments and power system operators for future system-wide
expansion, and for deciding on optimal policies and regulations. It is also carried out within
privately owned power utilities in countries which have liberalized the energy sector, to plan
for future investments.

Electric power systems planning can be divided into two main problems: generation ex-
pansion planning (GEP) and network expansion planning (NEP). Both are typically formu-
lated as optimization problems, seeking to determine the optimal technology mix, location
and construction time of new generation units, as well as the optimal size and location of
the power lines. Albeit being highly intertwined, the complexity and scale of each problem
has led research work to often focus on addressing each of them separately [6].

The present work focuses on the modeling of the GEP problem and the optimization of
its solution, as it is considered most critically affected by the future context, both from the
economic (costs) and technical (service provision) aspects. In literature, GEP modeling in a
centralized planning context can be traced back to the seminal paper [7]. With the power
sector being constantly subjected to changes driven by economical, technical, technological
and environmental issues, the body of GEP literature has persistently expanded to accom-
modate the new requirements, through a variety of modeling and solution methods. Some
of the developments include: improvements in the details considered, such as reserve re-
quirements [8, 9], reliability and maintenance [8, 10–12], policy developments such as the
restructuring of the power sector and the introduction of competition [10, 13–15], CO2 mit-
igation solutions [16, 17], renewable energy resources integration and support schemes [15,
18–21], uncertainty and stochasticity in generation production and demand [10, 19, 22–25],
demand side management (DSM) [26, 27], and smart-grids [28], among others. Reviews of
the GEP problem can be found in [29–31], and a comprehensive recent review in [32].

In particular, as noted in the previous section, the need to combat climate through the
de-carbonizatoin of the sector, as well as the advancements in the information and commu-
nication technology (ICT) has paved the way to fundamental transformations in both the
electricity supply and demand of electricity (schematically illustrated in Figure (1.1)):

On the supply side:

• There is an increased shift from large synchronous generators to light-weight decen-
tralized ones.

• There is an increased penetration of intermittent renewable energy sources (IRES),
for which the investments are getting cheaper and the remuneration programs are
becoming more attractive.
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• There is an increased threat of power disruption due to extreme weather events.

On the demand side:

• There is a growing number of distributed variable generation resources, in the form
of electric vehicles, electric solar production roof-tops, micro-grids, energy storage
systems, among others.

• There is a usage shift of the demand from being passive (pure consumers) to being
active (both consumers and small-scale producers, i.e. “prosumers”).

• There is a strong potential for unusual demand patterns due to climate change effects.
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The electric power system is transforming due to fundamental changes in both supply and demand.

CONTEXT: WHERE ARE OUR ELECTRIC POWER SYSTEMS HEADING?

FRANCE ELECTRICITY FUTURE

RESEARCH DEVELOPMENT

Objective function aims at the minimization of the discounted total cost 

over the planning horizon comprising:

 Cost of investments in new capacity

 Fixed operation and maintenance costs

 Decommissioning and refurbishment costs

Objective function aims at minimizing the short term operation costs 

including:

 Unit commitment and hourly production

 Ramping capabilities of the units

 Start-up and shut-down of units

Subject to flexibility targets

These developments are putting the electric power systems under increasing stress. As they are being

asked to perform in a context for which they were not designed.

 The increased variability necessitates that future system

planning puts an emphasis on flexibility, agility, and

resilience4,5. Next to the typical adequacy and reliability

considerations.

 The change in system usage towards decentralized

production and smart usage raises important economic

questions regarding service pricing, and costs

allocation6, among others.

There is a need for integrated planning tools which would

allow us to investigate and take suitable decisions.

Our aim is to develop such a modeling framework.

First research efforts:

 Focus on evaluating the impact of operational

flexibility on long-term generation expansion planning.

 Generation units within a context of increased variable

resource deployment faces three main challenges7:

1. Shorter peaks

2. Steeper ramps

3. Shorter turn-down time

1 2 3

 Failure to consider these aspects in

future system design could result in:

• Extra incurred costs (up to 7% in

reported studies8)

• Large errors in estimating carbon emission4 (35-60%),

among others.

On the supply side:

• Shift from large synchronous generators to light-weight ones.

• Increased penetration of intermittent renewable resources.

On the demand side:

• Growing number of distributed variable generation resources.

• Usage shift of the demand from passive (pure consumers) to active (both

consumers and small scale producers, i.e. “pro-sumers”).

This transformation is driven by technological advancement (e.g. the developments in the communication and control

systems, affordable investments in renewable technologies), as well as by global energy policies with the aim of

decarbonizing the energy systems.

 A Long Term Generation Expansion Planning (GEP) Model

 A short term Unit Commitment (UC) Model

Model formulation

(MILP)

Identification of a 

suitable flexibility metric

Insufficient Ramping

Resource Expectation

(IRRE)

Periods of Flexibility 
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FIGURE 1.1 – Schematic illustration of power systems transformation
towards decentralized power generation and bi-directional power

flow

These developments are posing a number of pressing challenges that need to be ade-
quately and methodologically incorporated and addressed within the power systems plan-
ning framework. The next section details the key challenges addressed in this work and
reviews the relevant studies that have previously treated them.

1.3 Electric power systems planning challenges

1.3.1 Operational flexibility

One of the most recent concerns in power systems planning with high shares of IRES pen-
etration is whether or not these systems are able to answer to the operational flexibility re-
quirements, generally described as the ability of the system to respond to the inter-temporal
variability rising from both intermittent IRES production and demand. The variability in the
net load (demand minus RES production), requires that the remainder of the hydro-thermal
1 units cope with tighter flexibility requirements [33–37]. Answering to such requirements is
clearly a function of the short-term operational status of these units and their technical abil-
ities: ramping rates, unit commitment states, minimum up and down times, start-up time
and minimum stable load, to name a few. In this respect, traditional long term GEP models
that do not consider the chronological representation of net load variations, nor these short
term technical constraints, but instead rely on merit order dispatch, would fail to provide
any information on whether the investment plans obtained are sufficiently sensible and flex-
ible to these variations. This type of evaluation is, instead, typically performed by the well
known unit commitment (UC) problem, which does not consider investment decisions [38–
40].

1In the remainder of the thesis, the term “thermal” is used to refer to oil, gas, coal as well as nuclear
generation technologies
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Traditional GEP models, based on step-wise load duration curves or other non chrono-
logical approximations, have for long been appropriate for power systems planning, espe-
cially in systems dominated by dispatchable hydro-thermal units and with the primary con-
cern of generation adequacy (e.g. [41–43]). These models have the main advantage of being
computationally cheap, and therefore large sized systems and long term planning horizons
up to several decades can be easily optimized. However, when it comes to planning for sys-
tem flexibility under IRES penetration, recent studies have started to show the importance
of integrating the UC short-term constraints within the long-term planning model [44–52].

Study [44] considers a combined GEP-UC model for planning over a single year, reduced
to 4 weeks with chronological hourly representation, each week representing a season. In
[45] a detailed formulation of the combined GEP-UC problem is provided and employed for
the analysis of the Greek power system, under several scenarios of carbon emission pricing,
emission caps, and IRES penetration targets. A multi-annual planning horizon is considered,
where the year is approximated to 12 days, each one representing a month. The results re-
veal the correlation between significant IRES penetration with large amounts of natural gas
production, which offers more flexibility to the power system. Similarly, in [46] a combined
model for multi-annual planning is proposed and a clustering representation of the units
in integer variables is presented. Several planning horizons are considered, where annual
demand is reduced to a number of representative weeks selected in an ad-hoc manner. The
comparison on the case study shows that when short-term constraints are considered, higher
investments are driven to flexible peaking plants. In [47], a soft-linking between long-term
and short-term models is implemented. The framework is to solve a long-term low reso-
lution model to obtain a generation portfolio under a single IRES penetration scenario and
to embed this portfolio in a short-term chronological model, which is solved multiple times
with increasing level of technical constraints. It considers a case study for a single year
and uses the number of units start-ups as a proxy for flexibility evaluation. A very similar
approach is implemented in [48], but also varying the IRES penetration level. The impact
of including several short-term constraints (most notably: startups/shutdowns, minimum
stable load, ramping rates and operating reserves) is analyzed for a future planning year.
Study [49] solves a planning model based on a basic screening curve method and proposes
a perturbation algorithm with embedded short-term constraints to improve the plans ob-
tained. A single future year is considered under different IRES penetration scenarios. A
brief comparison of the results obtained pre and post the implementation of the perturba-
tion algorithm, in terms of the installed capacity, is discussed. It shows that considering the
short-term constraints results in less installation of base load capacity compared to mid and
peak load ones. Finally, studies [50] and [51] compare the results of a fully integrated model
to those of a traditional planning only model. The former work considers only a single fu-
ture planning year, whereas the latter considers a multi-annual planning horizon of 10 years,
where each year is approximated to 4 days in an ad-hoc manner. The comparison is based on
the costs and emission levels resulting from both models, and shows that neglecting these
constraints underestimates both attributes. A summary of the main differences among the
reviewed literature is given in Table (1.1).
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TABLE 1.1 – Summary of the relevant literature regarding the inte-
grated electric power system planning models

Reference Horizon consid-
ered

Horizon reduc-
tion

Model type Scenarios con-
sidered

System consid-
ered

[44] Single year 4 weeks, each
representing a
season

Integrated GEP-
UC

Different wind
production
profiles

Grey-field

[45] Multi-annual 12 days per year,
each represent-
ing a month

Integrated GEP-
UC

RES penetration
levels, carbon
pricing, carbon
cap

Grey-field

[46] Multi-annual 13 typical weeks
per year, one for
each month plus
one containing
the peak load

Integrated GEP-
UC

Different time
horizons

Grey-field

[47] Single year Full representa-
tion

Soft linking be-
tween GEP and
UC

Single RES pen-
etration level,
increased con-
sideration of
short-term tech-
nical constraints

Grey-field

[48] Single year Full representa-
tion

Soft linking be-
tween GEP and
UC

Different RES
penetration
levels

Grey-field

[49] Single year Full representa-
tion

Integrated GEP-
UC

Different wind
penetration
levels

Grey-field

[50] Single year Full representa-
tion

Integrated GEP-
UC

RES penetration
levels, carbon
pricing

Grey-field

[51] Multi-annual 4 days per year,
each represent-
ing a season

Integrated GEP-
UC

Wind pene-
tration levels,
carbon emission

Grey-field

Operational flexibility

Properly quantifying operational flexibility is critical for evaluating the overall system re-
liability. Whereas reliability relates to the fact that sufficient firm-capacity2 is available at
each time period to satisfy the system load, as measured by typical metrics, such as loss of
load expectation (LOLE) and expected energy not supplied (EENS), operational flexibility
considers how a specific operational state of the system at a given period would contribute
to (or hinder) its ability to deploy its resources for accommodating variations in subsequent
periods: for this, no time period can be assessed in isolation of the others, nor without de-
tailed knowledge of the exact system state and technical characteristics at the given period.
Therefore, metrics to describe operational flexibility have been proposed in the literature,
varying in the degree of complexity and in the data required for their estimation. The work
in [53] proposes a probabilistic metric that takes into account key technical characteristics of
the generation units and aggregates them for a system-level assessment. In [54], a number of
interdependent metrics are defined for individual generation units to assess their available
flexibility in real time. Study [55] proposes two flexibility indices to provide an offline esti-
mation of the flexibility level of power systems. The first metric is obtained by analyzing the

2Available generation capacity excluding failed units, units in maintenance, offline units, etc.
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adjustable space of generators, whereas the second assesses the flexibility level of a system
by its capability for accommodating wind. Finally, [56] proposes a metric which additionally
considers the impacts of the transmission network on the flexibility levels.

Research gap

As shown, most of the studies reviewed argue for the benefit of including the short-term
unit-commitment constraints within the long-term planning framework, especially in terms
of answering to the flexibility requirements under increased IRES penetration, by analyzing
the differences in capacity installation, production profile, emission and curtailment levels,
system costs, or a combination of these. Those studies, however, do not resolve to using
quantitative flexibility metrics to formally assess and compare the benefits of their proposed
approaches. On the other hand, studies that have proposed quantitative flexibility metrics
have often considered existing systems for the application and do not integrate those meth-
ods within the expansion planning problem itself. Furthermore, since the resulting expan-
sion problem with unit-commitment constraints is computationally intensive, each study
has resorted to a different combination of horizons reduction or ad-hoc approximation, ne-
glecting to address the bias that this can impose on the results.

1.3.2 Resilience

Increasingly frequent and extreme weather events, such as heat waves, droughts, floods
and storms, significantly affect the operational status of power systems. Evidence of power
generation disruptions due to such events highlights the fragility of the existing systems and
the need of considering resilience within the planning of future power systems [57].

Particularly, heat waves are among the most worrying weather extremes, due to the ex-
pected increase in their frequency and severity in the 21st century [58, 59]. For example,
France was particularly impacted by the 2003 summer heat wave, which caused an excess of
about 15,000 deaths from 4th to 18th August directly attributable to the heat [60]. By combin-
ing peaks of extreme temperature and severe soil and hydrological droughts, this event also
affected significantly the energy production sector (mainly because of the cooling process of
thermal power plants). These last years, numerous regions of the world experienced severe
heat waves with comparable effects: Russia in 2010, Texas in 2011, Australia in 2012, India
and Southern Pakistan in 2015. Therefore, it is of great importance to design the ability of
the energy systems for coping with future heat wave events.

Among the research that studied the impacts of extreme weather events on power sys-
tems, [61] presents a multi-objective optimization of distributed power generation systems
considering extreme wind and lightning events. [62] proposes a probabilistic methodol-
ogy to assess the resilience degradation of transmission networks subject to extreme wind
events. In [63], an extreme weather stochastic model is applied to a realistic cascading fail-
ure simulator of power grids, accounting for the operating conditions that a repair crew may
encounter during an extreme weather event. The impacts of water availability on the gener-
ation capacity expansion planning is investigated in [64] and the electricity sector growth is
compared under different scenarios of water rights. [65] proposes an integrated electricity
and natural gas planning model taking into consideration the power grid resilience against
storms, earthquakes and floods. [66] studies the potential impacts of heat waves on power
grid operation, by quantifying the capacity of thermal power plants as a function of ambient
temperature.
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Research gap

Whereas most of those studies focus on evaluating the impact of extreme weather threats
on the operation of power systems, there exist very few studies that incorporate resilience
within the power system planning problem itself. Moreover, no study explicitly considers
flexibility and resilience within a unified planning and assessment framework.

1.3.3 Uncertainties

Accounting for the inherent uncertainties in IRES supply and system load is another sig-
nificant concern for ensuring reliable system performance. Two popular approaches have
been often applied to address the uncertainties for the GEP and UC problems, separately.
One is stochastic optimization (SO) [67–71], which models uncertain parameters by means
of scenarios generated from probability distribution functions. This method may be suit-
able if the probability functions are available, which is not always the case, and especially
when considering long-term uncertainties such as in a GEP problem. Moreover, SO does
not guarantee the feasibility of the solution under any uncertainty realization within the
uncertainty range [72], which is a significant limitation in addressing the operational flexi-
bility attribute that depends on the specific realization of uncertainties among time-coupled
constraints. The other popular approach is robust optimization (RO) [73], which models un-
certain parameters by means of distribution-free bounded intervals. RO is attractive in that
it avoids the above-mentioned limitations of SO, but, it has been often criticized for resulting
in over-conservative solutions and for being computationally intensive. State-of-the art RO
methods deal with these problems by introducing an uncertainty budget parameter to con-
trol the conservatism of the solution and by resorting to efficient solution methods (such as
Column and Constraint Generation (CCG) [74] or affine simplification of the recourse action
[75]) to accelerate the solution.

Research gap

Some research works have focused on RO-based approaches to handle uncertainties and
address operational flexibility in power systems planning and operation. In [76], a two-
stage adaptive RO model is proposed for long term generation and transmission expansion
under generator output uncertainties but with no explicit consideration of the ramping re-
quirements. Ramping was considered in [77] for power system planning but only through
an approximated hourly load ramping uncertainty that is based on average net-load levels.
Detailed ramping constraints were considered in robust unit commitment models such as in
[78–81], but without considering the impact on power systems planning. Moreover, [80] has
demonstrated how the two-stage robust UC model can lead to infeasibility in the dispatch
problem when the generation ramping capability is limited. This showed the importance of
considering non-anticipativity constraints in power systems operations within a multistage
robust optimization. Yet, these results were not extended to investigate their impact on the
power systems investment decisions.

1.4 Thesis objectives and original contributions

To address the above-mentioned challenges, the present thesis aims at developing a techno-
economic modeling and robust optimization framework for multi-period generation ex-
pansion planning considering a high share of IRES and resilience against extreme weather
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events. The specific planning problem considered is that of selecting the technology choice,
size and commissioning schedule of conventional and renewable generation units under
technical, economical, environmental and operational constraints. Within this problem, key
research objectives addressed are (Figure (1.2): (i) the proper integration and assessment of
the operational flexibility needs due to the increased variability from the high shares of IRES
penetration, (ii) the appropriate modeling and incorporation of the resilience requirements
against extreme weather events within the power system planning model and (iii) the rep-
resentation and treatment of the inherent uncertainties in the system supply and demand
within this planning context.

Short-term unit commitment 
model

Long-term generation expansion 
model

ROBUSTNESS

Multi-stage adaptive robust optimal 
power system planning considering 
uncertainties in renewables supply 

and system demand

P3 – UNCERTAINTIES

FLEXIBILITY RESILIENCE

P2 - RESILIENCE

Resilience modeling of power system 
expansion against extreme heat wave 

and drought events

P1 – OPERATIONAL FLEXIBILITY

Integrated flexibility assessment of 
power systems planning with a high 
share of renewable energy sources

INTEGRATED ELECTRIC POWER

SYSTEM PLANNING MODEL

Chapter 6 - Paper (iii)

Chapter 4 - Paper (i) Chapter 5 - Paper (ii)

FIGURE 1.2 – Research objectives of the present thesis

1.4.1 Thesis contributions

To overcome the above mentioned limitations and fill the research gaps, the original contri-
butions towards each of the ensuing objectives are summarized below:

Managing operational flexibility in GEP: [Chapter 4, Paper (i)]

• The thesis contributes to electric power systems planning with high shares of IRES
penetration and stringent carbon targets, by proposing a computationally efficient,
multi-period integrated GEP-UC model that accounts for key short-term constraints
and chronological net load representation. In particular:
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* The importance of considering these constraints to account for operational flexi-
bility under high IRES penetration is demonstrated quantitatively by comparing
the output of the integrated model to that of the traditional GEP, which leads to
investment decisions based on average system operating conditions.

* For computational tractability, horizon reduction is introduced by systematic op-
timization, to avoid biases on the results obtained by ad-hoc methods.

• The thesis introduces the expected flexibility shortfall (EFS) metric for operational flex-
ibility assessment to capture the expected amount of load loss specifically due to in-
sufficient flexibility. We analyze the complementarity of this metric to other metrics
of literature, most notably the insufficient ramping resource expectation (IRRE) pro-
posed in [53], which considers the expected frequency of flexibility shortage rather
than its magnitude.

• The relevance of the overall modeling for real applications is shown by its application
to a realistic case study representing the national system of France, with load and IRES
capacity-factor data spanning a 10-years planning period. Sensitivity to key supply
and demand parameters is also performed.

• The results of the framework for a wide range of IRES penetration targets and carbon
emission limits allows highlighting the importance of relying on suitable metrics for
the operational flexibility assessment rather than on quantities typically considered for
power system planning, like generation mixes, system costs and amount of renewable
curtailment, which are not capable to reflect the true flexibility levels of the obtained
plans.

Ensuring resilience against extreme weather events in GEP: [Chapter 5, Paper (ii)]

• The thesis proposes a set of piece-wise linear models to describe the impact of different
scenarios of extreme heat waves and water availability on the derating of thermal
power units operation, renewable generation production and system load.

• The work presents a method for explicitly incorporating the extreme weather im-
pact in a modified mixed integer linear programming (MILP) power system planning
model to derive adequate system investment decisions.

• The work extends the previously proposed quantitative framework for operational
flexibility assessment of power systems with a high share of IRES penetration to also
include their resilience against extreme heat waves and drought events.

• The framework is applied to a practical-sized power system planning problem with
realistic future climate projections obtained from the Coupled Model Intercomparison
Project Phase 5 (CMIP5), for demonstrating the relevance of the proposed planning
approach in terms of system costs and technology choices.

Treatment of uncertainties in the GEP: [Chapter 6, Paper (iii)]

• The thesis presents a multiperiod multi-stage affinely adjustable robust optimization
(AARO) model for long-term integrated generation expansion planning and unit com-
mitment to explicitly account for detailed ramping uncertainties. The uncertainty
characterization of the system load and IRES capacity factor (IRES-CF) takes the form
of a deterministic uncertainty set with a controllable level of conservatism.
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• The thesis discusses the dimensionality problem of the fully adjustable model along
with the concept of “information basis level” of the resulting problem.

• To resolve the dimensionality issue, a novel approximation method is proposed by
introducing a new parameter which controls the level of affine dependency (informa-
tion level) of the problem. A sensitivity analysis is conducted on this parameter and
it is shown that significant computational gains can be achieved while keeping the
significance of the results.

• The proposed approach is applied for investment decisions in a practical-sized case
study with a high share of IRES penetration, under realistic assumptions. The impor-
tance of explicitly considering the detailed ramping constraints for robust long-term
planning is shown and discussed in details. The superiority of considering multi-stage
AARO over other methods to account for ramping effects in power systems planning
with high shares of IRES production is demonstrated.
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2 Integrated model for
multi-period generation expansion
planning (GEP) and unit
commitment (UC)

2.1 Overview

In this chapter, the formulation of the integrated multi-period power system planning model
proposed and used throughout this thesis is presented. First, a typical formulation of the
long-term generation expansion planning (GEP) model is described. This model derives
investment decisions based on an approximated step-function of the load duration curve
(LDC). Hence, no short-term related constraints are directly incorporated and the chrono-
logical order of load and dispatch data is ignored. Second, a short-term unit-commitment
(UC) model is formulated. This model accounts for the chronological evolution of the sys-
tem operation and includes key short-term commitment and dispatch constraints, such as
the minimum up and down times and the thermal units ramping capabilities. The UC model
by itself, however, does not consider the generation units investment and commissioning
decisions.

Two methods for integrating the GEP and UC models are, then, described: the first is
the soft-linking of the models and the second is their full integration in a single optimization
model. In Chapter (4), the two methods will be compared for power systems planning under
a high share of IRES penetration to show the superiority of the integrated model with respect
to the different key performance indicators considered, most notably also with respect to
operational flexibility.

2.2 Model formulation

2.2.1 Traditional GEP mixed integer linear programming model

The long-term GEP model has the objective of minimizing the total discounted cost over the
planning horizon under typical long-term simplified constraints. No hourly chronological
order is considered and load is represented as load blocks derived from the LDC with du-
ration (Dury,h) and load levels (Ly,h). This model is formulated as a mixed integer linear
program (MILP) and is described as follows:
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(GEP) and unit commitment (UC)

GEP objective function

The objective function seeks to minimize the total discounted costs over the planning hori-
zon. Equation (2.1) represents the total investment costs in new units, equation (2.2) repre-
sents the total production costs calculated on the basis of the yearly LDCs, and equation (2.3)
represents the fixed operation and maintenance (O&M) costs:

min
Ω

∑
y∈Y

(1 + DR)−y ·∑
i∈I

Cinv
i · Pmax

i · qi,y (2.1)

+ ∑
y∈Y

(1 + DR)−y · ∑
m∈M

Dury,m ·
[
∑
i∈I

(
Cmrgl

i,y · pi,y,m

)
+ Clns · lnsy,m

]
(2.2)

+ ∑
y∈Y

(1 + DR)−y ·∑
i∈I

C f om
i,y · Pmax

i ·
y

∑
l=1

qi,l (2.3)

where Ω 3
{

qi,y, xi,y, pi,y,m, lnsy,m
}

.

GEP constraints

1. Units availability and construction time: units are only available to operate if they are
commissioned:

xi,y ≤
y

∑
l=1

qi,l , ∀i ∈ Inew, y ∈ Y (2.4)

2. Annual budget constraint: an upper limit is imposed on the annual budget:

∑
i∈Inew

Cinv
i · Pmax

i · qi,y ≤ Bmax
y , ∀y ∈ Y (2.5)

3. Supply-demand balance constraint: the total energy generated plus the load not served
(LNS) should be equal to the respective load level, for each block n of the annual LDC:

Dury,m ·
(

∑
i∈I

pi,y,m + lnsy,m

)
= Dury,m · Ly,m, ∀m ∈ M, y ∈ Y (2.6)

4. Maximum output levels: thermal units power output is limited by the maximum ca-
pacity and the expected forced outage rate ε:

pi,y,m ≤ (1− εi) · Pmax
i · xi,y, ∀i ∈ Ith, m ∈ M, y ∈ Y (2.7)

5. Design reserve margin (system adequacy): yearly available capacity should be greater
than the maximum load level plus a reserve margin, for adequacy considerations:

∑
i∈I

(
Pmax

i · xi,y
)
≥
(

1 + rmin
)
·max

m∈M
(Ly,m), ∀y ∈ Y (2.8)

6. Minimum annual renewable penetration: annual IRES production should be higher
than the required penetration level, effective from the desired year Yres:

∑
i∈Ires

∑
m∈M

(
Dury,m · pi,y,m

)
≥ Penlvl

y · ∑
m∈M

(
Dury,m · Ly,m

)
, ∀y ∈ [Yres, Yend] (2.9)
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7. Renewable energy production: IRES production is typically represented through an
hourly availability or hourly capacity factor (CF). Since in the GEP problem no hourly
representation is considered, an approximation method is used to obtain what we
refer to as the IRES capacity factor duration curve (IRES-CFDC):

Dury,m · pi,y,m ≤ xi,y · Pmax
i · Dury,m · CFi,y,m ∀i ∈ Ires, m ∈ M, y ∈ Y (2.10)

8. Allowable emission: yearly carbon emission for thermal units production is limited to
a maximum amount:

∑
i∈Ith

(
Ei · ∑

m∈M

(
Dury,m · pi,y,m

)
)
≤ Emax

y , ∀y ∈ Y (2.11)

It should be noted that since the penetration of IRES by itself might not necessarily corre-
spond to lower carbon emissions in the system (as the choice of the remaining investments
may fall on highly emitting technologies), it is important to set an emission target. There are
two main ways to do so: either by setting a carbon cost/tax in the objective function to be
minimized or by setting an emission limit as a constraint. The former might not be suitable
for long-term, system-wide planning, as it presupposes the main aim of ensuring a certain
limit on these emissions from which the carbon tax is derived, and could be more meaning-
ful within a multi-objective optimization framework where sensitivity to different carbon
tax can be investigated. We, therefore, opt for the latter and explore the effect of setting a
carbon emission limit as constrained by Eq. (2.11)

2.2.2 Traditional UC mixed integer linear programming model

The UC model, which has the objective of minimizing the short-term operational costs, takes
into account the detailed hourly technical capabilities of the units, the chronological demand
and the IRES availability (IRES-CF). All the units commissioning decisions are considered
to have been taken beforehand (from the GEP model) and the model seeks only to find the
optimal short-term commitment and dispatch decisions. The model is formulated as an
MILP problem as follows:

UC objective function

The objective function seeks to minimize the total discounted operating costs of the systems,
including the hourly variable production cost, start-up cost and LNS cost:

min
Θ

∑
y∈Y

(1 + DR)−y ·∑
s∈S

∑
t∈T

[
∑
i∈I

(
Cmrgl

i,y · pi,y,s,t + Cstup
i · zi,y,s,t

)
+ Clns · lnsy,s,t

]
(2.12)

where Θ 3
{

pi,y,s,t, lnsy,s,t, ui,y,s,t, zi,y,s,t, vi,y,s,t, pri,y,s,t, srup
i,y,s,t, srdn

i,y,s,t

}
.

UC constraints

1. Only units commissioned can be operated: for thermal units, only existing units in
year y are available to be committed for year y, sub-period s, hour t:

ui,y,s,t ≤ x∗i,y, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (2.13)
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(GEP) and unit commitment (UC)

2. Supply-demand balance constraint:

∑
i∈I

pi,y,s,t + lnsy,s,t = Ly,s,t, ∀y ∈ Y, s ∈ S, t ∈ T (2.14)

3. Unit-commitment constraint: this constraint regulates and keeps track of the start-up
and shut-down decisions of the thermal power plants:

ui,y,s,t − ui,y,s,t−1 = zi,y,s,t − vi,y,s,t, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (2.15)

4. Minimum up-time and down-time: thermal power plants can only be turned off after
their minimum up time has elapsed (2.16). Similarly, units can only start-up when
their minimum down time has elapsed (2.17):

ui,y,s,t ≥
t

∑
τ≥t−Mu

i

zi,y,s,τ , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1, ..., Mu
i } (2.16)

x∗i,y − ui,y,s,t ≥
t

∑
τ≥t−Md

i

vi,y,s,τ , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1, ..., Md
i } (2.17)

5. Ramping constraints: system flexibility is directly affected by how fast the existing
thermal units can adjust their production levels to accommodate for changes in net
load variation; these changes are limited by each generation technology ramping ca-
pabilities, both upwards (2.18) and downwards (2.19):

pi,y,s,t − pi,y,s,t−1 ≤ ui,y,s,t−1 · RUmax
i + zi,y,s,t · Pstart

i , ∀i ∈ Ith,

y ∈ Y, s ∈ S, t ∈ T \ {1} (2.18)

pi,y,s,t−1 − pi,y,s,t ≤ ui,y,s,t−1 · RDmax
i , ∀i ∈ Ith, y ∈ Y,

s ∈ S, t ∈ T \ {1} (2.19)

6. Maximum, minimum output levels: thermal units output, including reserve require-
ments, is limited by their maximum capacity (2.20) and their minimum stable produc-
tion level (2.21):

pi,y,s,t + pri,y,s,t + srup
i,y,s,t ≤ (1− εi) · Pmax

i · ui,y,s,t, ∀i ∈ Ith,

y ∈ Y, s ∈ S, t ∈ T (2.20)

pi,y,s,t ≥ ui,y,s,t · Pmin
i + srdn

i,y,s,t, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (2.21)

7. Operating reserves: three types of operating reserves are considered, according to a
defined percentage of hourly load and of renewable generation: those are primary
reserve (2.22), secondary upwards reserve (2.23), and secondary downwards reserve
(2.24):

∑
i∈Ith

pri,y,s,t ≥ Prr · Ly,s,t, ∀y ∈ Y, s ∈ S, t ∈ T (2.22)

∑
i∈Ith

srup
i,y,s,t ≥ Srrup · Ly,s,t + ∑

i∈Ires

(
ares · pi,y,s,t

)
, ∀y ∈ Y, s ∈ S, t ∈ T (2.23)

∑
i∈Ith

srdn
i,y,s,t ≥ Srrdn · Ly,s,t + ∑

i∈Ires

(
ares · pi,y,s,t

)
, ∀y ∈ Y, s ∈ S, t ∈ T (2.24)
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8. Reserve capabilities: Each unit hourly reserve provision is limited by a maximum
technical limit:

pri,y,s,t ≤ ui,y,s,t · Prmax
i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (2.25)

srup
i,y,s,t ≤ ui,y,s,t · Srmax,up

i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (2.26)

srdn
i,y,s,t ≤ ui,y,s,t · Srmax,dn

i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (2.27)

9. Renewable energy production: IRES production is limited by the hourly capacity fac-
tor CF and the commissioning of the units 1

pi,y,s,t ≤ x∗i,y · Pmax
i · CFi,y,s,t, ∀i ∈ Ires, y ∈ Y, s ∈ S, t ∈ T (2.28)

10. Maximum allowable emissions: The maximum emission constraint is also similarly
implemented in the UC model but with hourly resolution:

∑
i∈Ith

(
Ei ·∑

s∈S
∑
t∈T

pi,y,s,t

)
≤ Emax

y , ∀y ∈ Y (2.29)

2.3 Integrating GEP and UC models

Below we describe two different schemes for coupling the long-term GEP and short-term
UC models: i) via soft-linking the two models (S-GEP), and ii) via fully integrating the two
models within a single optimization problem (C-GEP).

2.3.1 Soft-linked GEP-UC model (S-GEP)

The S-GEP model consists of two mixed integer linear programming problems which are
successively solved:

1. The long-term GEP model, which has the objective of minimizing the total discounted
cost over the planning horizon under typical long-term simplified constraints. No
hourly chronological order is considered and load is represented as load blocks.

2. The short-term UC model, which has the objective of minimizing the short-term oper-
ational costs, taking into account the detailed short-term technical capabilities of the
units, the chronological demand and IRES availability.

The soft linking of the two problems is achieved by:

1. Solving the long-term GEP problem first, under the simplified system representation;

2. Populating the obtained investment plans within the UC problem, which is, then,
solved to obtain the detailed operation of these plans.

2.3.2 Integrated GEP-UC model (C-GEP)

The C-GEP model is the straightforward integration of the two models described above into
a single optimization model, with the following adjustments:

1Notice that this constraint is formulated as an inequality and allows for IRES shedding.
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(GEP) and unit commitment (UC)

• The load-duration step representation indexed by (m) in the GEP model is replaced by
the sub-period index (s) and the hourly chronological index (t), for all parameters and
decision variables.

• The detailed operating cost equation of the UC objective function replaces that of the
traditional GEP model.

• It should be noted that the investment cost considered in the integrated model should
be adjusted to ensures the proper relationship between the annual investment and
operational costs and the correct evaluation of the different investment options hav-
ing different life spans Tli f ei. This is achieved by adjusting the investment cost Cinv

i
to represent the Equivalent Annual Cost (EAC) that is obtained by multiplying the

AnnuityFactori calculated as: AnnuityFactori =
1− (1 + DR)−Tli f ei

DR
.

2.4 Model implementation

All optimization problems are modeled in the Python programming language. The MILP
problems are programmed using the Pyomo software package [82, 83] and solved on a PC
with Intel Core i7 at 3.2GHz and 8GB memory using IBM ILOG-CPLEX with an optimality
gap of 0.01%.

As can be seen, the integrated high resolution MILP problem is computationally chal-
lenging, especially when considering a multi-annual planning horizon. The next Chapter
describes methods to address the computational complexity by systematic and accurate sim-
plifications of the model.
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3 Computational challenges

3.1 Overview

The integrated multi-annual planning problem proposed in this work is a very large MILP
and solving it with over-the-counter solvers can be computationally challenging at best, if
not infeasible. This is specifically because of the hourly decisions resolutions within the long-
term planning horizon. For this, efficient approximation methods are needed to alleviate the
computational burden while ensuring that the integrity of the results are maintained. This
chapter summarizes the different methods developed in this work or adapted from the ex-
isting literature to address this issue. Although these methods are not the main focus of the
work, they remain important to handle the computational complexity of the model proposed
and its computation for practical application. To this end, in Section (3.2) the integer clus-
tering method implemented in the planning model to handle the discrete decision variables
is described. Then, in Section (3.3), three different approaches for the optimal horizon re-
duction are described: i) a dynamic programming model for the optimal LDC step-function
approximation, ii) an optimal sample weeks selection reliant on an exhaustive search algo-
rithm, and iii) an optimal sample days selection model.

3.2 Power generation units clustering

The integrated power system planning model formulated in the previous chapter employs
the integer clustering method to handle discrete decision variables [84]. In the literature,
this method has been primarily developed to reduce the computational complexity in UC
problems and has found applications for the power systems planning models. Typically,
many decision variables, such as the commissioning and commitment decisions, start-up
and shut-down decisions, are binary variables that consider each generation unit individu-
ally. Even for moderate size planning or operational horizon, this can quickly scale up to
significantly large MILP problems that are computationally infeasible. The integer cluster-
ing method addresses this issue by grouping the decisions for similar and/or identical units
in a single integer variable, instead of many binary ones. The generation units clustering can
follow different approaches: for example, grouping only identical units, grouping units by
location and/or by some specific economic or technical criteria, such as the production costs
or technical ramping rates. Clustering can be most directly achieved by grouping genera-
tion units belonging to the same technology type (i.e. nuclear, combined cycle gas turbine
(CCGT), solar-pv, etc.) as those units would share, on average, many similar characteristics.
The cluster characteristics are, then, defined as the means of the technical and economic pa-
rameters values of the units within the cluster. Clearly, this would lead to losing specific
plant-level information in exchange to significantly improving the calculation time. One can
argue, however, that while detailed plant-level characteristics are significant for decisions re-
lated to short-term operation, they are less relevant for long-term planning, where the mean
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values of the parameters would still reasonably represent the units in the cluster, with little
trade-off in the solution accuracy [84].

Computationally, the integer clustering of the discrete decisions variables provides a
problem structure that significantly reduces the combinatorial state space. The number of
possible discrete combinations of the typical binary variables scales exponentially 2Ni with
the number of units per cluster Ni, whereas clustering scales as the product of the cluster
sizes ∏ Ni, where i is the index representing each cluster. For example, a CCGT cluster com-
prising 20 individual units only contains 21 possible states for any discrete decision variable
in the clustered model, whereas the number of the potential binary states is approximately
220 ≈ 1 · 106, with an exponential growth for each additional unit. In addition, clustering
also reduces the number of continuous constraints and variables, since all relations apply
over the smaller set of clusters [85].

For the mathematical formulation, little of the traditional GEP or UC formulation changes
with clustering. The key exceptions is to represent each technology cluster with the cluster
identifier. Discrete variables in the problem are, then, no longer binary but can take any
positive integer value:

qi,y, xi,y, ui,y,s,t, zi,y,s,t, vi,y,s,t ∈W, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (3.1)

where W is the set of whole numbers (including 0).
Notice that according to that definition, each unit is still represented individually within

each decision variable (such as commitment or commissioning state), but handled collec-
tively within the cluster in the optimization model. Some small adjustments are, then, nec-
essary within the respective constraints compared to the non-clustered formulations, as ap-
plied in the model formulation proposed in the previous chapter. All of the other continuous
variables, such as power output level, reserves contribution, etc., and constraints, are also
aggregated for the entire cluster i.

3.3 Time horizon reduction

Another approach to reduce the computational complexity of the integrated planning and
operational problems is to resort to a simplification of the time horizon considered. Within
the multi-annual integrated planning model, even a single planning year fully represented
via 8760 hours scales up immensely with the number of discrete and continuous decisions
required to be taken for each time step. However, there is no need to consider the full horizon
as it is reasonable to expect that many of those hours are identical or very similar in the load
levels or the IRES-CF levels.

Indeed, for the typical GEP problem without short-term constraints, the decisions are
typically derived based on average values for the system load. The so called LDC for these
systems is approximated via a step-function, where the number of steps and their values
are often selected in an ad-hoc manner. This approach significantly simplifies the system
representation, with the main disadvantage being that it loses all chronological information
related to the load or IRES-CF evolution. However, this approach has many relevant appli-
cations and in the next section we describe an optimization model that optimally finds this
step-function approximation.

However, the aim of the integrated planning model is to preserve the chronological order
of the load and IRES-CF evolution, especially for capturing the realistic ramping evolution
of the system. Two methods are, then, presented that optimally approximate the yearly load
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by selecting a subset of weeks or days representative of the full horizon, while preserving
the chronological order.

It should be noted that the optimal approximation in this context refers to minimizing the
error between the original LDC and the approximated LDC obtained from the subset of
selected weeks or days, as will be explained in the next sections. In this sense, the error def-
inition remains consistent among all the different approaches proposed in the next sections.

3.3.1 Optimal load duration curve approximation

To obtain the investment decisions in the traditional GEP model, the yearly load is typically
sorted to be represented as a LDC, which is approximated by a step-function, where each
step represents an average load-level and duration. This function is typically obtained by
deciding in an ad-hoc manner the number of steps and segmenting the LDC accordingly.
Depending on the choice of segmentation, the outcome of the model can greatly differ, for
instance, if more steps are introduced for the peak load hours or the base ones. Moreover, in
a multi-annual planning context the LDC forecast varies among the different years, so that a
segmentation strategy for a year might not be optimal for other years. A consistent method
for the LDC approximation is, therefore, necessary.

Dynamic programming model

The seminal work of [86] is one of very few studies in power systems planning found to
address this issue. We define a similar optimization problem where the objective of the step
function approximation is the minimization of the energy mismatch between each approx-
imated step and its actual corresponding segment in the original LDC. The optimization
problem can be formulated as:

min
k

Nstep

∑
n=1

kn

∑
ξ=kn−1

(F(ξ)− hn)
2 (3.2)

subject to:

hn =
1

kn − kn−1
·

kn

∑
ξ=kn−1

F(ξ), n = 1, 2, ..., Nstep (3.3)

where F(ξ) represents the actual LDC function, Nstep is the total number of steps speci-
fied for the approximation, n is the index of the current approximation step, hn is the height
(load level) of the step function for step n and kn is the breakpoint at which the step function
changes value from step n to step n + 1. A schematic illustration of the LDC step-function
approximation is given in Figure (3.1).
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FIGURE 3.1 – Illustrative example of LDC step function approxima-
tion

Notice that the breakpoint vector k, which indicates the point at which the height of
the step-function changes, fully defines the step-function. This is because as soon as kn is
defined, the step height hn is simply calculated as the mean value of the segment F(ξ), ξ ∈
[kn−1, kn]. The objective is, then, to find the breakpoints vector k, which fully defines the
approximated step function and is such to minimize the mismatch of equation (3.2). This
problem can be stated as a dynamic programming problem, where the backward recursive
functional equation is defined as:

fn(χ) = min
χ≤k≤T

[
k

∑
ξ=χ

(
F(ξ)− hNstep−n+1

)2
+ fn−1(k)

]
, n = 1, 2, ..., Nstep (3.4)

for which hNstep−n+1 can be calculated as given in equation (3.3).

For the simplified GEP model, it is important to note that since we consider the invest-
ment in IRES capacity as a decision variable, the average capacity factor (CF) of each IRES
technology should be properly represented. Neglecting this consideration within the sim-
plified long-term GEP problem is equivalent to assuming that wind and solar technologies
are fully dispatchable. Constraint (2.9) in the model formulation is, therefore, introduced to
avoid this inaccuracy. Similar to the LDC approximation, the CF of each IRES technology can
be approximated by a level and a duration. However, the real average correlation between
the load and the IRES-CF should be maintained to avoid unrealistic and biased results. An
illustration of the approach followed in this work to account for this correlation is given in
Appendix (A).

3.3.2 Optimal sample weeks selection

The horizon reduction for the integrated GEP-UC models need to maintain the real hourly
chronological order of both the load and the IRES-CF. This is typically achieved by approxi-
mating the full year to a number of days, weeks or months while preserving the sub-period
chronological order. To approximate a year by a number of sampled weeks, the optimal
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weeks can be obtained by solving an optimization problem similar to that proposed in [87],
which reported superior approximations than other ad-hoc methods.

Exhaustive search algorithm

The weeks are selected with the objective of minimizing the energy mismatch between the
original LDC and the approximated one (LDCaprox), obtained through scaling up the weeks
sampled to the full year length. Mathematically, this is represented by [87]:

φ∗ ∈ arg min
φ

T

∑
τ=1

(LDCτ − LDCaprox
φ,τ )2 (3.5)

where T is the total number of hours in each planning year and φ is a vector representing
the set of decisions of the selected weeks (φw ∈ {0, 1} for each week w). For a reasonably
low number of weeks, the optimization can be solved using an exhaustive search algorithm
that evaluates all possible combinations of the Nweeks specified weeks and selects those that
minimize the LDC energy mismatch. Once the optimal weeks are obtained for the load, the
same weeks are selected for the IRES-CF data to ensure that the correlation between the two
is maintained.

3.3.3 Optimal sample days selection

In many cases, even a representative number of weeks can be computationally challenging
for finding a solution to the integrated planning problem. In these cases, a more compact
time horizon that captures the same essential features is needed. While it can be argued
that in these cases a simple reduction in the number of weeks considered is sufficient (e.g.
1 sample week instead of 4), it is obvious that such a solution is sub-optimal compared to
selecting a similar number of days independently. However, it is computationally infeasible
to use the same exhaustive search method to select a number of days instead of weeks. As
an example, the number of possible solutions for different reduction intervals is:

• for 4 weeks approximation: 1,326 possible solutions

• for 4 days approximation: 727,441,715 possible solutions

• for 5 days or more: > 52 billions possible solutions

The work in [88] proposes another method for selection of number of days which re-
lies on altering the original definition of the optimization problem so that it can be solved
using MILP techniques. The alternative formulation is important since obtaining the ap-
proximation of the LDC requires sorting the hourly load-level values of the selected days
in an ascending order, to compare the error to the original LDC. This sorting is difficult to
integrate within a MILP problem. The solution proposed for this problem relies on segment-
ing the LDC into a number of bins b ∈ B. Each of these bins represent the share of time
during which the time series has a value greater than or equal to the lowest value in the
range corresponding to bin b. These values can be easily calculated for any range of bins
segmentation and can be represented by a parameter ϑ(c,b), where c denotes the respective
LDC being approximated. Similarly, for every potential representative day, the share of time
in day d during which the time series exceeds the lowest value of the range corresponding
to the same bin b can be calculated. This information is represented by the parameter µ(c,b,d).
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Note that, when selecting the set of representative days, a weight should be assigned to
each of them as to scale them up to be equivalent to the total energy of the original LDC.
While this can be set as a decision variable (as in [88]), we adapt the formulation to as-
sume a constant weight pre-defined for the set of representative days. For this, we assume
a uniform weight calculated as the ratio between the number of days indicated for the ap-
proximation and the total number of days of the respective LDC (365 days for a yearly LDC).
Now, assuming that a subset of representative days D′ ⊂ D is selected and is represented
by a variable λd = 1 , the share of the time during which the approximated LDC has a
value greater than or equal to the lowest value in the range of bin b is also known and is
equal to ∑

d∈D
(weightd · λd · µc,b,d). For clarity, an illustration of these descriptions is shown

in Figure (3.2)1.
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FIGURE 3.2 – Illustrative example of approximation error based on
the definition of the partitioning bins.

Then, the error to be minimized can be described as the difference between the original
and the approximated LDC in the share of time that the lowest value in the range of bin b is ex-
ceeded. This eliminates the need to sort the data of the selected days within the optimization.
Mathematically, this error function is defined as:

errorc,b =| ϑc,b − ∑
d∈D

(weightd · λd · µc,b,d) |, ∀c ∈ C, b ∈ B (3.6)

from which the MILP problem that follows can be formulated.

Adapted mixed integer linear programming model

The sample days selection optimization problem following the above adaptations can be
formulated as:

1Figure adapted from [88]
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min
λd

∑
c∈C

∑
b∈B

(
error+c,b + error−c,b

)2
, (3.7)

s.t.,

error+c,b − error−c,b = ϑc,b − ∑
d∈D

(weightd · λd · µc,b,d) , ∀c ∈ C, b ∈ B (3.8)

∑
d∈D

λd = Ndays, (3.9)

λd ∈ {0, 1}, ∀d ∈ D; (3.10)

error+c,b, error−c,b ∈ R+
0 , ∀c ∈ C, b ∈ B. (3.11)

Note that the variables error+ and error− are used for the proper handling of the absolute
term in equation (3.6).

The MILP model seeks to find the vector of selected days (λd = 1) with the objective of
minimizing the mismatch error (3.7). Equation (3.8) defines the mismatch error considered
and described in the previous section. Equation (3.9) imposes the number of selected days
which corresponds to the predefined number of periods required Ndays. Equations (3.10) and
(3.11) restrict the domains of the respective variables. The MILP model can, then, be solved
with over-the-counter solvers and is able to optimize a reasonable set of days selection (up
to 11 days, in our experience) in the order of hours.

3.4 Comparison of the horizon reduction methods

This section provides a brief illustration and comparison between the approximations achieved
using the three different horizon reduction approaches described in this chapter. The aim of
this comparison is to provide an overview of the approximation quality and an overall vali-
dation for the use of these approaches within the context of the thesis.

To effectively quantify the accuracy of the different approximations by a step-function
or a set of representative periods, appropriate metrics should be used. Most notably, the
approximation should preserve the annual electricity load (and IRES-CF) for each planning
year. Moreover, the metric should evaluate the information regarding the distribution of
load (and IRES-CF) and their respective frequency of occurrence. This is especially impor-
tant when considering high inter-temporal variations, such as the case with a high share of
IRES penetration [89]. This information can be evaluated by comparing the original and ap-
proximated time series in terms of the LDC approximation accuracy (i.e. by sorting the data
from high to low and evaluating the sorted data). To this end, the normalized-root-mean-
square-error (NRMSE) metric is used to evaluate the quality of the approximation relative
to the original LDC. The root-mean-square error (RMSE) is first calculated, from which the
(NRMSE) can be obtained:

RMSE =

√√√√√∑
t∈T

(
LDCt − LDCaprox

t

)2

| T | (3.12)

NRMSE =
RMSE

max (LDC)−min (LDC)
· 100 [%] (3.13)
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Next, we evaluate and compare the error of the approximations achieved by the three
above-mentioned approaches. Most notably:

• Step-function approximation (12 steps)

• Sample days approximation (4 days)

• Sample weeks approximation (4 weeks)

The results are given for the approximations of the 10 planning years considered in
this work (more details on the system description can be found in Chapter (4.4.1)). Ta-
ble (3.1) summarizes the NRMSE value for each approximated, as given by the three ap-
proaches: step-function approximation, optimal representative days and optimal represen-
tative weeks. The mean and standard deviations of the results across the whole planning
horizon are also given.

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Mean Std. Dev

Step-Aproximation 
(12 steps)

4.09% 4.11% 4.29% 3.87% 3.81% 3.86% 3.49% 3.78% 4.10% 3.75% 3.91% 0.23%

Representative days
(4 days)

1.50% 1.73% 1.40% 2.13% 1.57% 2.03% 3.07% 1.34% 1.51% 2.02% 1.83% 0.52%

Representative weeks
(4 weeks)

0.76% 0.96% 0.63% 1.05% 0.92% 1.46% 1.63% 0.80% 0.64% 0.75% 0.96% 0.34%

NRMSE

TABLE 3.1 – Comparison of the NRMSE for the different approxima-
tion methods and for all planning years considered.

It can be seen that, in the worst case, the error of the approximations obtained does not
exceed 4.3% for -low resolution- step-approximation. As expected, the error improves as
a higher resolution approximation is used, reaching levels as low as 0.63% for the 4 weeks
approximation of year 3. The mean value across the whole planning horizon confirms these
results, with a significant improvement the higher the approximation time-step considered.
Notice how the standard deviation of the NRMSE across the whole planning horizon is
reasonably low, confirming the consistency of these results for a wide range of LDC charac-
teristics. As an example, Figure (3.3) visually illustrates the quality of the approximations
and compares it for the three approaches proposed and for two different planning years.
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(B) Year 2 - Step approximation
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FIGURE 3.3 – Graphical illustration for the comparison of the qual-
ity of the approximations obtained by the different horizon reduction

approaches and for two distinct planning years (Year 1 and Year 2)
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4 An integrated planning and
assessment method for electric
power systems operational
flexibility

4.1 Overview

This chapter details the integrated framework for operational flexibility assessment in power
systems planning and its application to a realistically sized case study to derive the system
investment decisions under a high share of IRES penetration. Most notably, two probabilistic
metrics are introduced in this chapter for the quantitative operational flexibility assessment,
: the insufficient ramping resource expectation (IRRE) proposed in [53] and the originally
introduced expected flexibility shortfall (EFS) metric, which quantifies the expected load
loss when the system is not able to adequately respond to the inter-temporal variability.

The numerical example considers a single-region green-field planning problem. On one
hand, this is done to avoid any bias that existing units may impose on the expansion plans
and, therefore, to be able to focus solely on the models outcomes; on the other hand, it is
done to validate the framework capability for efficiently addressing large-sized instances.
The framework, however, is straightforwardly applicable to grey-field planning problems,
where some of the decision variables related to the unit commissioning decisions will be set
as fixed parameters representing the existing system units. Those will be only considered
for the operational decisions, such as, commitment and production levels. In the same way,
the framework is, also, easily extendable to multi-regional planning, where a set of regions
would be defined and commissioning and commitment decisions would be taken for each
region separately. In this case, additional power flow constraints between the regions should
be defined, as widely discussed in the literature. Finally, a wide range of IRES penetration
levels (0% to 50%), most notably wind and solar, is considered, as well as different scenarios
for carbon emission limits.

The results highlight the importance of relying on suitable quantitative metrics for opera-
tional flexibility assessment in power systems planning rather than solely relying on generic
performance measures, such as system costs and mixes of power plants technologies, which
are shown not to sufficiently reflect the flexibility levels of the obtained plans.

4.2 Integrated flexibility assessment framework

The integrated operational flexibility assessment framework proposed is described in the
next sections. For comparison purposes, it will be applied to the two types of power system
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planning models formulated in Chapter (2): the traditional GEP model soft-linked with a UC
model (denoted S-GEP) and the integrated GEP-UC model solved as a single optimization
(denoted C-GEP). Section (4.2.1) describes the assessment framework applied to the former,
and Section (4.2.2) that applied to the latter. The comparison aims at validating and quanti-
fying the superiority of the C-GEP planning model in accounting for the short-term ramping
variability, compared to classical planning models in a systematic manner. For both cases,
the framework stands: i) the formulation of the optimization planning models, ii) the ap-
plication of accurate horizon reduction approximation methods and iii) the application of
quantitative metrics for assessment of the operational flexibility of the of the obtained plans.

4.2.1 Assessment framework for soft-linked planning model

For the S-GEP model, the integrated planning and assessment framework follows:

1. Solving the simplified GEP model (2.1)-(2.11). This model derives the system invest-
ment decisions from the traditional LDC approximation. For this, instead of relying
on ad-hoc methods to approximate the LDC, the dynamic programming algorithm
(3.4) is used. This guarantees the optimal representation of the different load levels
for evaluation and comparison purposes.

2. The optimal yearly investment decisions (Ω∗) are, therefore, obtained. Those include
the optimal annual commissioning decisions per generation technology (q∗i,y) and sub-
sequently the availability of the generation units per technology and per year (x∗i,y).

3. The UC model (2.12)-(2.29) is, then, solved considering the generation units avail-
ability as a parameter to obtain their optimal operational decisions throughout the
planning horizon.

4. To solve the UC model in a tractable and consistent manner, the approximation meth-
ods described in (3.3.2) and (3.3.3) are used for the optimal sample weeks or days
selection to represent the system load and IRES-CF. The solution of the UC problem
results in the optimal system operational decisions (Θ∗).

5. The flexibility of the investment and operational decisions (Ω, Θ) are, then, evaluated
by the quantitative metrics (IRRE, EFS), described in this section, to obtain the flexi-
bility levels of the plans.

6. The process can, then, be repeated to plan and evaluate the flexibility under differ-
ent scenarios (e.g. IRES penetration levels, emission limits, system costs, etc.). This
framework is schematically illustrated in Figure (4.1).



4.3. Operational flexibility assessment metrics 33
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FIGURE 4.1 – Operational flexibility assessment framework: Soft-
linked planning model

4.2.2 Assessment framework for integrated planning model

The framework for the integrated planning model follows the same steps as described above,
with the exception that both the investment and operational decisions are optimized within
the same problem. This means that only the chronological horizon approximation method
is used as illustrated in Figure (4.2).

Integrated planning model with short-term 
constraints

Yearly investment and operating plans

Quantitative operational flexibility assessment

Chronological approximation of load and 
renewable sources capacity factor

Systematic time horizon reduction

(Chapter 2.3.2)

Ω∗, Θ∗

C-GEP

IRRE, EFS

𝝋∗ (Chapter 3.2.2)

Planning tool

(Chapter 4.3)

FIGURE 4.2 – Operational flexibility assessment framework: Inte-
grated planning model

4.3 Operational flexibility assessment metrics

4.3.1 Insufficient ramping resource expectations (IRRE)

The IRRE is the expected number of instances in which the generation units in a power
system cannot answer to the changes in net load. The metric is generally obtained by [53]:
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1. Calculating the net load ramping time series for the whole planning horizon in both
upwards (up) and downwards (dn) directions.

2. Calculating the up/dn available flexible resources within a specified time horizon of
interest (e.g. one hour), given the availability and commitment status of each genera-
tion unit, its start-up time, its actual production level and its total upwards or down-
wards ramping capabilities for the next period.

3. Aggregating all the time series for all resources to obtain the total up/dn available
flexibility time series.

4. Calculating the up/dn available flexibility empirical cumulative distribution function
from the total available flexibility time series.

5. Calculating the probability of insufficient ramping by substituting the required net
load ramping in the obtained distribution function. The sum of the up/down proba-
bilities time series gives the IRRE+/-.

4.3.2 Expected flexibility shortfall (EFS)

While the IRRE indicates the expected frequency for not meeting the flexibility requirements,
it does not give any information about how short the system is on average when not able
to meet these requirements. This can be calculated through the expected flexibility shortfall
(EFS) metric.

The EFS metric builds on the value-at-risk (VaR) measure defined as the “possible maxi-
mum loss over a given holding period within a fixed confidence level” [90]. Mathematically,
this is defined as:

VARα(X) = sup {x | P[X ≥ x] > α} (4.1)

where X in our context is a variable denoting the loss of load due to insufficient flexibility
and sup {x | P[X ≥ x] > α} indicates the highest 100α percentile of the loss distribution.
The expected flexibility shortfall (EFS) is, thus, the conditional expectation of load loss due
to insufficient flexibility, given that it is beyond the VaR level, or:

EFSα(X) = E [X | X ≥ VaRα(X)] (4.2)

The EFS is calculated by performing steps (1) to (3) of the IRRE calculations, followed by:

4. Calculating the up/dn losses time series as the absolute difference between the up/dn
net load ramping series and the respective total available flexibility resources.

5. Calculating the VaR at the desired 100(1− α)% confidence levels.

6. Calculating the EFS as the average loss for observations exceeding the VaR level, at
the respective confidence levels.
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INPUT: thermal units hourly production, unit availability, 
unit commitment status, technical units characteristics

Calculate actual hourly unit availability (HUA) based on start-up and 
shut-down decisions, and minimum down times

Calculate available flexible resources at each hour based on HUA 
maximum ramping capacity and production limits

Calculate hourly net-load ramping time series as:
Hourly load – IRES production

Calculate the time series of hourly flexibility losses as:
|net load ramping – available flexible resources|

Calculate the Value-at-Risk (VaR) for the losses time series 
at the desired confidence level

Calculate the EFS as the average loss for observations 
exceeding the VaR level, at the respective confidence interval.

INPUT: IRES units hourly 
production, system load

Aggregated for all thermal units Aggregated for the whole planning horizon

FIGURE 4.3 – Schematic illustration for the EFS calculation steps

4.4 Application

4.4.1 System description and implementation notes

For the multi-annual demand representation, we have taken the 10 years load data of France,
from 2006 to 2015, which are publicly available at [91], to represent a realistic system demand
for 10 planning years. We have similarly calculated the IRES-CF, namely wind and solar
power, from the actual yearly production time series, by dividing each hourly production by
the total installed capacity of each technology. This results in the hourly CF time series per
renewable technology and for each year. Forecasting methods for long-term data prediction
can be used to estimate these parameters, but is beyond the objectives of this work, instead
we focus on showing the accuracy and relevance of the assessment results when applied to
realistic data that do not require further validation.

Table 4.1 summarizes the technical and cost data for the generation technologies consid-
ered in the expansion planning. The cost data and units capacities are obtained from the
IEA/NEA Projected Costs of Generating Electricity report (2015 edition) [92]; the remaining
technical characteristics are largely based on data described in [93] to maintain consistency
with characteristics relevant to the French power system. The discount rate is assumed to
be 3% in accordance to the IEA/NEA estimations for government-owned utilities in coun-
tries with good bond ratings or ones with stable rate-of-return regulation, such as the case
in most developed economies. The minimum design reserve margin rmin is set to 15% of the
maximum annual load, operating reserves are set to cover 1% of the hourly load for primary
and secondary reserves, and 10% of the hourly IRES production for upwards and down-
wards secondary reserves. The penalty for not meeting demand (Clns) is set to 4ke/MWh
to discourage load shedding. Finally, the construction time of new units is neglected , as we
are considering a relatively concise planning horizon.
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TABLE 4.1 – Technical and economic characteristics for the different
generation technologies

Technology Pmax
i Pmin

i RUmax
i RDmax

i Mu
i Md

i Ei εi Cinv
i Cmrgl

i Cs
i

[i] [MW] [MW] [MWh/min] [MWh/min] [hours] [hours] [tCO2/MWh] [Me] [e/MWh] [ke]

Nuclear 1400 700 0.5%Pn/min 0.5%Pn/min 12 48 0 0.01 3.95 9.33 15.0
Fossil Hard Coal 1100 550 1.5%Pn/min 1.5%Pn/min 6 10 0.96 0.06 2.08 36.67 11.26
Fossil Gas (CCGT) 550 165 5%Pn/min 5%Pn/min 3 5 0.46 0.04 1.02 69.00 7.53
Fossil Gas (OCGT) 270 54 20%Pn/min 20%Pn/min 1 2 0.67 0.08 0.7 110.00 3.79
On-Shore Wind 80 0 / / / / 0 * 1.9 0 /
Solar-PV 60 0 / / / / 0 * 1.5 0 /

4.5 Results and discussion

4.5.1 IRES penetration and carbon emission policy scenarios

We first explore 12 scenarios covering a wide range of IRES penetration and carbon emission
targets: a base case with no IRES nor emission targets, in addition to all remaining combina-
tions of 0%, 25%, 35% and 50% binding IRES penetration targets (represented as a percentage
of total electricity demand) and 0%, 75% and 50% emission limit (calculated as a percentage
of each corresponding no emission limit scenario). We apply the assessment framework on
the two types of planning models considered (C-GEP and S-GEP), for comparing the effect
of integrating the short-term constraints within the long-term investment planning problem
and primarily in terms of operational flexibility. For the S-GEP model, each annual LDC
is approximated by twelve load-duration steps, while for the C-GEP model, each year is
approximated by four optimal weeks.

Base case

For the base case, Figure (4.4) illustrates the total capacity installed of each generation tech-
nology, at the end of each year, obtained by each model. The bulk of the investments is
done in the first year, where 82.01 GW and 80.59 GW total capacities are installed by the
S-GEP and the C-GEP model, respectively, and gradually increase to the end of the planning
horizon. The final total capacities installed are 87.14 GW and 85.72 GW for S-GEP and C-
GEP, respectively. The additional capacities in both cases are in the Fossil OCGT technology.
It can be observed that, in the case with no requirement on IRES penetration, the capacity
investments given by both models are very similar.



4.5. Results and discussion 37

0

10

20

30

40

50

60

70

80

90

100

 Y
e

ar
 1

 Y
e

ar
 2

 Y
e

ar
 3

 Y
e

ar
 4

 Y
e

ar
 5

 Y
e

ar
 6

 Y
e

ar
 7

 Y
e

ar
 8

 Y
e

ar
 9

 Y
e

ar
 1

0

 Y
e

ar
 1

 Y
e

ar
 2

 Y
e

ar
 3

 Y
e

ar
 4

 Y
e

ar
 5

 Y
e

ar
 6

 Y
e

ar
 7

 Y
e

ar
 8

 Y
e

ar
 9

 Y
e

ar
 1

0

S-GEP C-GEP

C
ap

ac
it

y 
(G

W
)

PV-Solar

On-Shore Wind

Fossil OCGT

Fossil CCGT

Fossil Coal

Nuclear

FIGURE 4.4 – Cumulative yearly installed capacity for the base case
obtained through the S-GEP (left) and C-GEP (right) models

TABLE 4.2 – Results of different performance measures and opera-
tional flexibility metrics for the plans obtained through the S-GEP
and C-GEP models for the base case (No IRES requirement, no car-

bon limits) (worse performance highlighted).

(A) Installed capacities and generic performance mea-
sures results

S-GEP C-GEP
Total IRES Installed Capacity [GW] 7.60 0.14 Difference [%]
Total Installed Capacity [GW] 87.14 85.72 (C-GEP relative to S-GEP)
Total Cost (excluding LNS) [Be] 313.00 310.59 -0.77%
Load Not Served [% of total load] 0.12% 0.01% -89.38%
RES shedding [% of total IRES] 0.00% 0.00% /
Carbon Emission [Mtons] 1379.60 1699.93 +23.22%

(B) Operational flexibility metrics results

Difference [%]
S-GEP C-GEP (C-GEP relative to S-GEP)

IRRE+ (% of upwards ramps) 7.38% 2.20% -70.13%

EFS+ (MW)
EFS+ (95%) 512.70 90.53 -82.22%
EFS+ (99%) 2402.85 451.31 -38.08%

IRRE- (% of downwards ramps) 0.01% 0.00% -42.52%

EFS- (MW)
EFS- (95%) 0.00 0.00 /
EFS- (99%) 0.00 0.00 /

To better assess the S-GEP and C-GEP obtained plans, a number of performance mea-
sures are compared. Most notably, we compare the amount of load not served (LNS), the
amount of IRES shedding, the total carbon emission and the total cost (investment + op-
erating costs)1 of the plans obtained through each model for the whole planning horizon.
Table (4.2a) summarizes the results of the different measures for the base case. The C-GEP
model outperforms the S-GEP in the resulting LNS, amounting to only 0.01% of the total
load for the former as opposed to 0.12% for the latter. Since only a small fraction of the ca-
pacities installed are in IRES technologies, no amount of IRES shedding was required. Wind

1excluding the cost of LNS to avoid redundancy
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and solar shedding would typically be decided if large energy quantities are produced, lead-
ing to very large inter-temporal variability so that it becomes more cost effective to shed the
cheap IRES energy than to adapt the rest of the thermal units (e.g. turn on or shut down
some of those units). Regarding carbon emission, operating the C-GEP obtained plan ev-
idently results in higher total emission (≈ 1700 Mtons compared to ≈ 1380 Mtons by the
S-GEP model), which is explained by the overall higher fossil capacities installed. The total
investment and operating cost is lower for the C-GEP plan (310.59 Bne) compared to the
S-GEP one (313.00 Bne). This, together with the lower amount of LNS, indicates that the
C-GEP plan is better adapted to satisfy the load at lower cost, but results in higher carbon
emission than the S-GEP one.

The operational flexibility assessment of the resulting plans using the proposed metrics
is summarized in Table (4.2b) . The IRRE and EFS results (at the 95% and 99% confidence
intervals) are reported for the total increasing (+) and decreasing (-) net load variations.
The results show that operating the S-GEP obtained plan is expected not to satisfy 7.38% of
the total number of upwards ramps (IRRE+) as opposed to only 2.20% for the C-GEP plan.
Moreover, the EFS is more than 5 times higher for the S-GEP plan, averaging around 512.00
MW and 2400 MW, at the 95% and the 99% confidence intervals, respectively, as opposed to
an expectation of only 90 MW and 450 MW for the C-GEP obtained plan, at the respective
confidence intervals. Regarding the negative ramps, it is shown that the operational flexi-
bility shortages are of much less significance for both models plans, albeit still being slightly
worse for the S-GEP one.

Increased IRES penetration and emission limit policies

Table (4.3) summarizes the results of the different performance measures analyzed for the
base-case scenario (top-left corner), along with the different combinations of IRES penetra-
tion (horizontally) and emission limit (vertically) policies considered. First, we notice how
an increased IRES penetration requirement leads to a significant difference in the final ca-
pacity mix given by the S-GEP and the C-GEP models compared to when such requirement
is not imposed. Moving horizontally across the Table, i.e. to higher IRES requirements, the
“short-term aware” C-GEP model results in mixes with much higher fossil capacities and
much less nuclear than to the S-GEP one. These fossil technologies possess overall better
short-term dynamic properties, such as ramping capabilities and shorter minimum up and
down times. Such an investment choice can be, therefore, attributed to the ability of the
integrated C-GEP model to derive decisions better adapted to the increased short-term vari-
ations imposed by the IRES penetration. Moreover, the total capacity installed increases
significantly for the C-GEP plans compared to the S-GEP ones. The S-GEP model overes-
timates the actual IRES availability since it considers average capacity factor values, so it
invests in overall less capacities in the other technologies. This gap increases with higher
IRES penetration, from around 10 GW difference for the 25% IRES cases, to 15 GW for those
with 35% IRES and up to 30 GW difference for the 50% IRES penetration plans. It is clear
that such capacity differences are non-negligible and that they would significantly affect the
reliability of the power system, if not adequately accounted for.

This becomes even clearer as we consider the resulting LNS percentage. There is a steep
increase in the amount of LNS for the S-GEP plans with higher IRES levels, from 0.12%
of the total load on average and up to 2.7% for the highest IRES penetration levels. As
predicted from the capacity difference, this represents an unacceptably high level of LNS
and defies the security of supply of the plans. The C-GEP plans, on the other hand, maintain
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a low average LNS percentage of 0.02%, with negligible variation across all scenarios. IRES
shedding exhibits a similar steep increase with the higher IRES penetration levels; however,
it remains comparable for both the C-GEP and S-GEP plans with only a few percentage
points difference in each respective scenario. As previously explained, shedding decisions
are taken when they are more cost effective, the C-GEP model accounts for these sheds when
deciding on the investment plans, and ensures that the plans obtained would still meet the
IRES quota requirements. This is not the case for the S-GEP plans, which could lead to final
plans that are theoretically meeting these requirements, but practically are not.

By looking at the differences in the performance measures of the C-GEP and S-GEP
plans, especially the total installed capacities, one would expect a much higher total cost
(not including LNS cost) for the C-GEP plans compared to the S-GEP ones. This is in fact not
the case: while indeed the C-GEP plans with significant IRES penetrations result in higher
costs, these are not proportional to the additional investments made and the amount of LNS
avoided. The maximum cost difference reached at 50% IRES penetration averaged around
only +6.31% more for the C-GEP plans than for the S-GEP ones, whereas the capacities were
on average +20% higher.

Again, the amount of carbon emission is consistently higher for all C-GEP plans com-
pared to the S-GEP ones, which is not surprising as the amount of fossil capacity installed is
higher in those plans. This was optimally obtained through the C-GEP model as those units
possess faster dynamic capabilities that are needed to counterbalance the higher net load
variability as more IRES penetrate the system. Furthermore, this leads to the observation
that increasing IRES penetration levels by itself does not necessarily indicate lower carbon
emission levels in the system, since the rest of the investments are counterbalancing with
more dynamic yet more emitting units. In this respect, the S-GEP model can be considered
to be underestimating the actual emission levels as higher IRES penetrate the systems. For
our numerical example, these underestimations are found to be in the range of 14% (No
IRES, 50% emission limit case) to 60% (35% IRES, no emission limit case).

Imposing carbon emission limits, as shown by moving vertically across the table does
not have a significant impact on most of these measures. It does, however, considerably
affect the capacity mix obtained through the different models. Evidently, as more stringent
carbon limits are imposed, the capacity mix shifts towards less emitting technologies and,
most notably, nuclear. Most of the fossil capacity reduction is in the fossil coal capacity since
it is the most emitting one; the total capacity installed, however, remains almost constant.
Furthermore, despite the large differences in the capacity mixes, the total costs of the plans
do not heavily vary, averaging around +1% increase in most cases, as higher emission limits
are imposed.
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TABLE 4.3 – Results of the different performance measures for the
plans obtained through the S-GEP and C-GEP models for the range of
IRES penetration and carbon emission limits considered (worse per-

formance highlighted)

No IRES 25% IRES 35% IRES 50% IRES
S-GEP C-GEP S-GEP C-GEP S-GEP C-GEP S-GEP C-GEP

N
o

em
is

si
on

li
m

it

Installed
Capacity
(GW)

Nuclear 33.60 32.20 23.80 2.80 19.60 0.00 12.60 0.00
Fossil Coal 16.50 22.00 15.40 39.60 13.20 37.40 11.00 28.60

Fossil CCGT 15.40 18.15 13.20 17.05 12.65 18.70 10.45 19.80
Fossil OCGT 14.04 13.23 17.28 21.06 17.01 22.41 18.09 25.65

On-Shore Wind 7.60 0.08 56.96 54.48 79.76 75.20 113.92 108.24
PV-Solar 0.00 0.06 0.00 0.06 0.00 3.12 0.00 18.00

Total IRES Installed Capacity [GW] 7.60 0.14 56.96 54.54 79.76 78.32 113.92 126.24
Total Installed Capacity [GW] 87.14 85.72 126.64 135.05 142.22 156.83 166.06 200.29

Load Not Served [%] 0.12% 0.01% 0.61% 0.01% 1.21% 0.02% 1.62% 0.02%
RES Shedding [%] 0.00% 0.00% 2.31% 0.44% 5.89% 2.48% 12.59% 9.56%

Carbon Emission [Mtons] 1379.60 1699.93 1177.23 2920.81 1074.35 2648.64 1007.95 1876.63
Total Cost (excluding LNS) [Be] 313.00 310.59 354.19 359.68 375.28 383.58 409.32 435.14

75
%

em
is

si
on

li
m

it

Installed
Capacity
(GW)

Nuclear 37.80 37.80 28.00 11.20 22.40 8.40 15.40 4.20
Fossil Coal 12.10 17.60 11.00 28.60 8.80 27.50 7.70 16.50

Fossil CCGT 15.40 16.50 13.20 19.80 14.30 19.80 11.00 28.05
Fossil OCGT 14.31 14.04 17.28 21.33 17.01 22.95 18.09 25.11

On-Shore Wind 7.52 0.08 56.96 54.56 79.76 74.88 113.92 107.44
PV-Solar 0.06 0.06 0.00 0.06 0.00 3.84 0.00 19.02

Total IRES Installed Capacity [GW] 7.58 0.14 56.96 54.62 79.76 78.72 113.92 126.46
Total Installed Capacity [GW] 87.19 86.08 126.44 135.55 142.27 157.37 166.11 200.32

Load Not Served [%] 0.11% 0.01% 1.19% 0.02% 2.71% 0.02% 2.71% 0.03%
RES Shedding [%] 0.00% 0.00% 2.81% 0.91% 6.25% 3.41% 13.06% 9.70%

Carbon Emission [Mtons] 1047.78 1272.76 890.20 2180.01 857.71 1966.52 831.14 1407.10
Total Cost (excluding LNS) [Be] 313.63 311.11 355.75 360.35 377.05 385.04 411.22 439.54

50
%

em
is

si
on

li
m

it

Installed
Capacity
(GW)

Nuclear 40.60 43.40 30.80 22.40 26.60 18.20 18.20 12.60
Fossil Coal 5.50 12.10 6.60 20.90 5.50 19.80 4.40 9.90

Fossil CCGT 18.70 19.80 16.50 15.95 13.20 17.60 11.55 26.40
Fossil OCGT 14.85 10.80 15.66 21.06 17.28 22.68 17.82 25.11

On-Shore Wind 7.52 0.16 56.96 54.16 79.76 74.00 113.92 106.40
PV-Solar 0.06 0.00 0.00 0.06 0.00 4.92 0.00 20.64

Total IRES Installed Capacity [GW] 7.58 0.16 56.96 54.32 79.76 78.92 113.92 127.04
Total Installed Capacity [GW] 87.23 86.26 126.52 135.07 142.34 157.20 165.89 201.05

Load Not Served [%] 0.11% 0.02% 0.60% 0.02% 1.19% 0.02% 2.70% 0.01%
RES Shedding [%] 0.00% 0.00% 3.04% 1.77% 6.72% 4.47% 13.47% 11.34%

Carbon Emission [Mtons] 737.05 849.79 670.82 1392.25 631.64 1323.82 660.86 937.32
Total Cost (excluding LNS) [Be] 315.71 312.59 356.99 361.39 379.31 387.85 413.05 442.17

Let us now analyze how increased IRES penetration and stringent emission limit policies
impact the operational flexibility of the capacity expansion plans. The operational flexibility
metrics values for all cases considered are summarized in Table (4.4)

For the upwards ramping requirements, the results show that the S-GEP plans become
significantly short on flexibility as higher percentages of IRES penetrate the system. A linear
and steep increasing trend of the flexibility shortage, reaching an IRRE+ of up to 47% (for
the 50% IRES case), represents a failure to answer to almost half of the number of times the
system is expected to provide upwards flexibility. The EFS+ similarly reaches multiples of
its value for the plan with lower IRES penetrations (e.g. EFS value of 8157.30 MW compared
to 2402.85 MW with 99% confidence, for the 50% and 0% IRES cases, respectively). For
the C-GEP plans, the different metrics indicate very low expected shortages compared to
the S-GEP ones. The IRRE+ does not exceed 2.20% for all cases considered and remains
almost constant at an average of 1.30%. On the other hand, the EFS+ does not exceed a
comparatively smaller value up to the 99% confidence, for all cases considered.

For the downwards ramping requirements, as with the base case, the results are much
less significant, with no shortage expected in most of the cases. This is reasonably justi-
fied since we consider a single-region planning where as a consequence of considering all
generation units sitting at the same region, at any given moment, enough generation units
are online and can reduce their production to answer to downward ramps. It is still seen
through the IRRE- metric results that systems with very large IRES presence would exhibit
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some flexibility shortage. Generally, it should be noted that the downwards flexibility short-
age would become more relevant considering multi-regional planning, since the available
downwards resources will be limited to those belonging to the same region.

It is shown that the flexibility shortage of the C-GEP plans remain low and almost con-
stant across all the different cases considered, while that of the S-GEP plans are much more
affected by the IRES penetration levels than by carbon emission limits. The consistently low
C-CEP shortage values do not only indicate this model superior adequacy in accounting for
the different IRES and carbon requirements, but that it is also able to fully cope to the vari-
ations in the different policy requirements, while ensuring adequate operational flexibility
levels.

TABLE 4.4 – Results of the operational flexibility metrics for the plans
obtained through the S-GEP and C-GEP models for the range of IRES
penetration and carbon emission limits considered (worse perfor-

mance highlighted).

No IRES 25% IRES 35% IRES 50% IRES
S-GEP C-GEP S-GEP C-GEP S-GEP C-GEP S-GEP C-GEP

N
o

em
is

si
on

li
m

it

IRRE+ (% of upwards ramps) 7.38% 2.20% 16.13% 1.20% 26.74% 1.12% 46.71% 1.13%

EFS+
(MW)

EFS+ (95%) 512.70 90.53 1681.61 34.37 3118.14 38.76 4275.79 70.53
EFS+ (99%) 2402.85 451.31 5781.33 171.33 8670.87 193.24 8157.30 351.60
EFS+ (99.9%) 5212.17 3227.19 10704.63 1278.89 17876.77 1602.35 14674.80 2977.76

IRRE- (% of downwards ramps) 0.01% 0.01% 0.01% 0.01% 0.04% 0.04% 0.23% 0.2%

EFS-
(MW)

EFS- (95%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EFS- (99%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EFS- (99.9%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

75
%

em
is

si
on

li
m

it

IRRE+ (% of upwards ramps) 7.27% 2.15% 16.30% 1.07% 26.82% 1.02% 46.86% 1.17%

EFS+
(MW)

EFS+ (95%) 497.39 84.57 1862.13 24.49 3128.12 35.51 4782.05 77.56
EFS+ (99%) 2345.28 421.59 6587.33 122.06 8725.54 177.04 8983.71 386.65
EFS+ (99.9%) 5117.10 3061.18 13561.78 1049.74 19269.63 1521.26 15706.40 3169.95

IRRE- (% of downwards ramps) 0.01% 0.01% 0.01% 0.01% 0.04% 0.04% 0.23% 0.22%

EFS-
(MW)

EFS- (95%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EFS- (99%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EFS- (99.9%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50
%

em
is

si
on

li
m

it

IRRE+ (% of upwards ramps) 7.24% 2.04% 16.43% 1.37% 27.34% 1.43% 47.56% 1.23%

EFS+
(MW)

EFS+ (95%) 484.50 75.20 1927.50 37.60 3586.40 179.40 5107.20 132.00
EFS+ (99%) 2293.33 374.74 6702.66 187.55 9670.93 894.45 9969.54 658.18
EFS+ (99.9%) 5069.55 2963.69 14665.06 1359.96 20659.63 5378.26 16145.05 3692.00

IRRE- (% of downwards ramps) 0.01% 0.01% 0.01% 0.01% 0.05% 0.03% 0.22% 0.19%

EFS-
(MW)

EFS- (95%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EFS- (99%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EFS- (99.9%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

These results are consistent with those of the other studies reviewed. Most notably, in
Palmintier and Webster [50] where an overall similar investigation was conducted to com-
pare two model types similar to those presented in this work which considers a grey-field
planning framework. The following similarities also highlights the relevance and consis-
tency of the framework considered in this thesis for the grey-field system planning prob-
lems. Their investigation over a range of IRES and carbon levels revealed the same trends in
the capacity mixes obtained, most notably, that with higher IRES penetration, the mix shifts
to include more units with faster dynamic properties (typically fossil peaking units). They
also showed that carbon emission can be underestimated by 30-60% by planning models
that do not consider short-term system representation. However, they considered only a
single-period optimization problem with wind penetration as an exogenous parameter, and
did not consider quantitative metrics for the operational flexibility assessment. The multi-
period planning considered here allows more realistic planning paradigms, where invest-
ment decisions can be optimally taken at different periods, and allows a wide variation in
the system parameters at the different periods (see for example the wide spectrum of inter-
temporal load variations of the four weeks sampled per year in Appendix (B)). Moreover,
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it is observed in the results, that although the resulting capacity mixes give an indication of
the flexibility levels of the plans obtained, they do not capture to what extent these plans
are short on operational flexibility. Which becomes more clear when suitable quantitative
metrics are used, as shown in these results.

4.5.2 Effect of fuel cost on operational flexibility

The investment plans obtained are evidently dependent on the set of system parameters ini-
tially chosen. Since we consider a deterministic problem, the variation in those parameters
could admittedly alter the results obtained, most notably, the uncertainties regarding fuel
costs and load evolution trend. We, therefore, opt for exploring selected scenarios represent-
ing a wide variation in those parameters, and investigating their effect on the operational
flexibility levels of the plans obtained. In this section two scenarios of fuel costs (coal and
natural gas costs) are explored: 50% increase and 50% decrease, to cover a wide variation of
the base case, and consistent with the percentages considered in the IEA report for sensitiv-
ity analysis [92]. For clarity, only the results of the C-GEP model are reported for the median
35% IRES penetration level. However, all emission limit scenarios are investigated, since it is
reasonable to assume that fuel costs could have a higher impact on the plans obtained when
combined with stringent emission limits.

The installed capacities for all fuel cost and emission limit scenarios are illustrated in
Figure (4.5). For the highest fuel cost scenario, much of the coal and -to a lesser extent- CCGT
capacities are substituted by the less emitting nuclear units, more so as tighter emission
limits are enforced. For the lower prices, the coal capacity is still substituted, but this time by
the peaking CCGT and OCGT units. The lower emission requirements are attained through
progressive substitution of fossil units by nuclear ones, as can be observed within each fuel
cost scenario. The total installed capacity across all scenarios, however, remain constant.
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FIGURE 4.5 – Total installed capacity as given by the C-GEP model
under 35% IRES penetration and for the different fuel cost scenarios

In terms of operational flexibility, Figures (4.6a) and (4.6b) illustrate the results for the
IRRE+ and EFS+, respectively. As can be expected, plans obtained under the highest fuel
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cost have the highest expectation of upwards flexibility shortages. This is because much of
the fossil units, which possess better dynamic properties, are replaced by the less flexible nu-
clear ones. The opposite is observed for the plans obtained at the lowest fuel cost driven by
the higher capacities of those peaking units. Notice, again, that despite this significant varia-
tion in the capacity mix across the different fuel scenarios, the IRRE of the integrated C-GEP
model plans did not exceed 2.05% of the total number of upwards ramps, with a quasi-
linear decreasing trend as a function of less stringent emission limits and decreasing fuel
costs. This remains a very small percentage point relative to any shortage value observed
for the S-GEP model under IRES penetrations. The EFS+ confirms the trends observed using
the IRRE metric, however, at the highest fuel cost scenario it signaled a relatively high short-
age expectations that could go up to the order of several GWs at the 99% confidence level.
Such a magnitude is significant and would be important to account for, and highlights the
complementarity of the two measurement approaches for giving an accurate assessment.
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FIGURE 4.6 – Results of operational flexibility assessment on the
plans obtained through the C-GEP model under 35% IRES penetra-

tion and for the different fuel cost scenarios

4.5.3 Effect of load evolution on operational flexibility

The load evolution trends could be another source of influence on the plans obtained. In
this respect, in their 2016 ”Generation Adequacy Report”, RTE [94] presented future load
projections for France and Europe, with high and low growth scenarios of roughly +2% and
-1%, respectively, accounting for all different sectors. For the purpose of sensitivity analysis,
for the high an low load scenarios, we have amplified these values considering a +20% and
a -10% linear load growth starting of the fifth year of the planning horizon. The negative
scenario being a proxy for stringent energy efficiency driven policies. For clarity, only the
results of the C-GEP model are reported for the median 35% IRES penetration level and for
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the no emission limit policy. It should also be noted that no changes are assumed for the
hourly load patterns compared to the previous cases considered.

The total power generation per technology and per load evolution scenario is illustrated
in Figure (4.7). The Figure shows that, overall, there are no changes in the capacity mixes
obtained, but that only the total capacities and production quantities vary per technology.
Naturally, the installed capacities and power generation decrease as the total system load
decreases. The reduction is mostly in the IRES technologies amounting to more than 50%
of the total generation decrease across scenarios. This can be explained through two effects:
lower load means that less IRES is required to satisfy the 35% penetration requirement, and
it is more cost efficient (subject to the given assumptions) to reduce the IRES levels than to
answer to the increased net load variability by cycling thermal units.
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FIGURE 4.7 – Total energy production per technology for the plans
obtained by the C-GEP model under 35% IRES penetration and for

the different load growth scenarios

Regarding how the load evolution trend affects the obtained plans, Table (4.5a) sum-
marizes the results of some of the performance measures previously considered. Overall, a
gradual decreasing trend can be observed in all measurements with respect to the decreasing
load scenario. This is also true for the operational flexibility results reported in Table (4.5b).
While the absolute difference in those results would be important to consider for actual
system planning, the linear gradual trend found suggests that the overall load evolution ex-
hibits a less significant effect on the operational flexibility of the plans than the variations in
the inter-temporal load patterns.
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TABLE 4.5 – Results of different performance measures and opera-
tional flexibility metrics for the plans obtained through the C-GEP
models under 35% IRES penetration for the different load growth sce-

narios

(A) Generic performance measures results

High load (+20%) Baseline load Low load (-10%)
Total IRES Installed Capacity [GW] 94.24 78.32 69.6
Total Installed Capacity [GW] 188.52 156.83 142.15
Load Not Served [% of total load] 0.02% 0.02% 0.02%
RES shedding [% of total IRES] 3.43% 2.48% 2.25%
Carbon Emission [Mtons] 2818.70 2648.64 2555.18
Total Cost [Bne] 439.67 383.58 357.42%

(B) Operational flexibility metrics results

High load (+20%) Baseline load Low load (-10%)
IRRE+ [% of upwards ramps] 1.16% 1.12% 1.05%

EFS+ [MW]
EFS+ [95%] 51.10 38.76 32.30
EFS+ [99%] 254.70 193.24 161.10

IRRE- [% of downwards ramps] 0.08% 0.04% 0.04%

EFS- [MW]
EFS- [95%] 0.00 0.00 0.00
EFS- [99%] 0.00 0.00 0.00
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5 Electric power systems resilience
against extreme weather events

5.1 Overview

In the previous chapters, the integrated modeling and optimization framework used to ac-
count for the systems operational flexibility under a high share of IRES penetration has been
developed. The results analyzed in Chapter (4) have shown how the integrated C-GEP
model outperforms the traditional simplified S-GEP one in accounting for the high vari-
ability in the net-load. In this Chapter, we extend the integrated planning framework to also
include system resilience against the impact of extreme weather events. Most notably, we
consider the extreme heat wave and drought events that affect both the thermal generation
units and the system load.

5.2 Piece-wise linear models of the impact of extreme weather
events

Extreme heat waves affect thermal power plants by reducing their efficiency due to the der-
ating of their cooling capabilities during the event. Load is sensitive to heat waves as it can
significantly increase during periods of high temperatures due to increased air conditioning
usage. The following section describes the set of piece-wise linear models to quantify these
impacts and integrate them within the power system design problem.

5.2.1 Basic model of thermal plants cooling systems

Different cooling technologies exist for thermal power generation units. In the event of ex-
treme heat waves, the impact on the different technologies can vary. In a power systems
planning model the choice among the different cooling technologies is a decision variable.
In this work, we consider two main cooling technologies:

- Once-through Cooling (OTC) system: the heated cooling water is returned to the water
source. A large volume of water from the water source is required.

- Closed-loop cooling (CLC) system: water is circulated in the cooling loop including a
cooling tower, where a small portion of cooling water evaporates and is released to atmo-
sphere. Only a small volume of water has to be withdrawn from the water source.

The required volume of cooling water Vreq for operating a thermal power plant at its
maximum capacity Pmax is proportional to Pmax and inversely proportional to the increase
of the temperature in the cooling water ∆T′ [95–97], as follows:
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Vreq ∝
Pmax(1− α)

∆T′
(5.1)

∆T′ = max
(

min
(

T
′out_max − T

′in_w, ∆T
′max

)
, 0
)

(5.2)

where α is the share of waste heat released into the air [%]; this share is small for OTC
systems (α→ 0) and large for CLC ones (α→ 1). The permissible temperature increase of the
cooling water ∆T′ is limited by: 1) the regulated maximum permissible temperature increase
of the cooling water ∆T

′max, and 2) the regulated maximum permissible temperature of the
discharged cooling water T

′out_max [95].
We can see that when T

′in_w ≤ T
′out_max − ∆T

′max, the maximum permissible temper-
ature increase of the cooling water is only limited by ∆T

′max, and the required volume of
cooling water Vreq is, thus, a constant value (Vreq = V∗) for ∆T′ = ∆T

′max. However, a high
value of T

′in_w generally leads to an increase in Vreq for operating the plant at its maximum
capacity. This increase is significant for OTC systems, whereas it is moderate for CLC ones.

For thermal power plants with CLC systems, it is acceptable to assume that such plants
are robust to water shortages and are independent from water availability [95, 96]. Also, the
dependency to source water temperature can be neglected since any rise in the water tem-
perature can be compensated by increasing the volume of cooling water Vreq [96]. Instead,
CLC systems are mainly affected by the temperature of cooling water circulated back to the
condenser, T

′in_c, which can be assumed to be close to air temperature [96].

5.2.2 Extreme weather event impact models

We consider extreme heat waves and drought events during summer time (JJAS, 21 June-20
September) that may force thermal power plants to reduce production owing to scarcity and
high temperature of the cooling water. The intensity of the extreme weather event (ewe) of
heat wave and drought is modeled by:

ewe = [T′it, Ait], ∀i ∈ I, t ∈ T (5.3)

where T′it is the hourly air temperature at plant i, from which we can calculate the related
stream temperature T

′in_w
i based on air-water interaction as follows [97]:

T
′in_w
it = t

′min +
t
′max − t

′min

1 + eγ(t′ ip−T′it)
(5.4)

The parameters for the air/water temperature relationship are derived from the litera-
ture [95, 98, 99]: the minimum stream temperature is assessed to be t

′min = 0°C, the maxi-
mum stream temperature to be tmax = 30.4°C, the steepest slope to be γ = 0.14 and the air
temperature at the inflection point to be t

′ip = 16.5°C [100]. The parameter of the extreme
weather event Ait represents the hourly availability (percentage) of intake cooling flow at
plant i, time t and is defined by:

Ait =
min(Vsrc

it , Vcpty
i )

V∗i
(5.5)

where Vsrc
it is the permissible amount of water flow that can be taken from the water source

at plant i at time t, Vcpty
i represents the water extraction capacity of the plant and V∗i is the
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constant amount of the required volume of intake cooling water for plant i when the intake
water temperature T

′in_w
it ≤ T

′out_max − ∆T
′max, as previously explained in Section (5.2.1).

Thermal units

For thermal power plants using the OTC system, ∀i ∈ Ith_otc, the ratio of Pusable
it to Pmax

i as
a function of T′it and Ait can be expressed by the following piece-wise linear equations for
different ranges of T′it:

ζewe
it =





Pusable
it /Pmax

i = min(1, Ait), T
′in_w
it ≤ T′health

min(1, Ait) ·
[
1− β ·

(
T
′in_w − T′health

)]
, T′health ≤ T

′in_w
it ≤ T′risk

min(1, Ait) · δ ·

(
T
′out_max − T

′in_w
it

)

∆T′max , T′risk ≤ T
′in_w
it ≤ T′shutdown

0, T
′in_w
it ≥ T′shutdown

(5.6)

where β is the efficiency degrading rate when T
′in_w is in the range of [T′health, T′risk] and T′risk

is defined to represent the temperature when the actual maximum discharge of waste of heat
is equal to the designed value and is given by:

T′risk = T
′out_max − ∆T

′max · 1
Ait

(5.7)

Coefficient δ can be calculated based on the continuation of the piece-wise linear func-
tions (5.6) at T

′in_w
it = T′risk and is given by:

δ = Ait + β · ∆T
′max − β · Ait · (T

′out_max − T′health) (5.8)

The above piece-wise linear equations (5.6) hold when T′risk ≥ T′health, i.e., Ai ≥ ∆T
′max/(T

′out_max−
T′health). For the case where T′risk ≤ T′health, i.e., Ai ≤ ∆T

′max/(T
′out_max − T′health) , Ashtg

it , we
can simplify the piece-wise linear functions (5.6) as follows:

ζewe
it =





min(1, Ait), T
′in_w
it ≤ T′health

min(1, Ait) · Ashtg
it · (T

′out_max − T
′in_w
it )

∆T′max , T′health ≤ T
′in_w
it ≤ T′shutdown

0, T
′in_w
it ≥ T′shutdown

(5.9)

For a thermal plant using the CLC system, ∀i ∈ Ith_clc, the following piece-wise linear
functions are used to describe the impact of the air temperature (T′it ≈ T

′in_c
it ) on the usable

power capacity:

ζewe
it =





1, T′it ≤ T′health_air

1− ρ · (T′it − T′health_air), T′it ≥ T′health_air

(5.10)

Renewable energy units

For renewable generation units, wind power and solar photovoltaic (PV) systems do not
require water to generate electricity and, thus, the capacity of renewable generation will not
be affected largely by an extreme heat wave and drought event. To obtain the future PV and
wind power potential capacity factor (CF), we use the recent CMIP5 data of high-resolution
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climate projections (fully described in section (5.4.2)), together with the wind and PV power
production models proposed in the literature.

Since the wind speed at the turbine height is not a standard output of the climate pro-
jection model, we use near-surface wind speeds at 10 meters V10m and assume a power-law
relationship for extrapolating the vertical wind profile [101, 102]. The velocity at hub height
H is calculated as:

VH = V10m ·
(

H
10

) 1
7

(5.11)

Then, the wind speed VH is converted into turbine-generated electric power capacity factor
ζit, ∀i ∈ Ires−wind, t ∈ T using a standard power curve, described as follows:

∀i ∈ Ires−wind, CFwind,t =





0, if VH < Vl or VH > V0

V3
H −V3

l
V3

R −V3
l

, if Vl ≤ VH < VR

1, if VR ≤ VH < V0

(5.12)

where Vl , VR and V0 are the cut-in, rated and cut-out velocity of a wind turbine, respec-
tively. Wind power capacity factor is calculated at the grid cell level (defined in the cli-
mate projection model) assuming a unique turbine model for all grid cells (H = 80 m, Vl =

3.5 m/s, VR = 12 m/s, V0 = 25 m/s), as in [103, 104]
PV power generation potential depends on solar irradiance, named surface-downwelling

shortwave (i.e., wavelength interval 0.2-4.0 µm) radiation (Rsds) in the climate models, and
other atmospheric variables affecting panel efficiency, i.e., surface air temperature (T′as) and
surface wind velocity (V10m). The PV power generation can be expressed as [105, 106]:

∀i ∈ Ires−pv, CFsolar,t =
[
1 + γ

(
T′cell − T

′0
)]
· Rsds

R0
sds

(5.13)

where the upper script 0 refers to standard test conditions for which the nominal capacity
of a PV device is determined as its measured power output (R0

sds = 1000 Wm−2, T
′0 =

25°C). Parameter γ is set at -0.005°C−1, considering the typical temperature efficiency of
monocrystalline silicon solar panels [105]. Finally, the PV cell temperature T′cell is obtained
as:

T′cell = c1 + c2T′as + c3Rsds + c4V10m (5.14)

where c1 = 4.3°C, c2 = 0.943, c3 = 0.028°Cm2W−1 and c4 = -1.528°Csm−1 [105, 107].
After obtaining the grid cell level renewable (wind and PV) power capacity factors, then,

the regional renewable power potentials can be obtained by averaging all the grid cell levels
inside a given region.

System load

Power demand is usually sensitive to weather conditions. To capture this, the power de-
mand in the extreme weather event is represented by:

Lewe
t = Lt + Cl · (T′t − T′

re f
t ) (5.15)
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where Cl is the temperature sensitivity coefficient of power load, e.g., it is around +500MW/+

1°C during the summer time in France [108]. Here T′t and T′
re f
t represent the geographical

average values of the projected air temperature and historical reference air temperature, re-
spectively.

5.3 Integrating resilience requirements in electric power sys-
tems planning model

The impact of an extreme weather event to the power generation system is measured by the
decrease of the generation capacity of affected thermal and PV plants, and the increase of
power demand, as given above. Then, the power generation system resilience is evaluated
by a deterministic metric, which is referred to as the total load not served (LNS) during the
period of the extreme weather event, and is defined as:

LSewe
yst =

(
Lewe

yst −∑
i∈I

pewe
iyst

)
, ∀y ∈ Y, s ∈ S, t ∈ Tewe (5.16)

pewe
iyst ≤ ζewe

iyst · Pmax
i · uiyst, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ Tewe (5.17)

∑
s∈S

∑
t∈Tewe

LSewe
yst ≤ LSmax , ∀y ∈ Y (5.18)

where uiyst is the unit commitment state of generation units of technology i at time t, sub-
period s in year y, and ζewe

iyst is the efficiency factor of the generation units of technology i
during the extreme weather event, calculated using the above piece-wise linear equations
(5.6)-(5.14), and Tewe is the total duration of the event. Equation (5.16) calculates the total
amount of load shedding LSewe

yst in each year y during the extreme weather event as the
difference between the hourly demand and the total power generation from all power units.
Equation (5.17) limits the power generation output pewe

iyst of generation units of technology i at
year y during the extreme weather event s ∈ S, t ∈ Tewe to the efficiency factor ζewe

iyst. Finally,
constraint (5.18) limits the amount of load shedding allowed during the extreme weather
event LSewe

yst to a maximum limit LSmax.
It should be noted that the resilience metric used here is focused on the ability of the

power system to mitigate the impact of the extreme heat wave and drought events and
not on the recovery from those events. This is because in these specific extreme weather
events the main action is to reduce the thermal units production levels or to shut them down
completely to avoid overheating and further damages to the units, so that recovery of normal
operation is immediate once weather conditions go back to normal.

5.4 Application

5.4.1 System description

To apply the extended modeling and optimization framework considering system resilience,
we consider the multi-annual planning horizon representing the period between the year
2041 to 2046. Linear regression is used to obtain the system hourly load from the histori-
cal electricity load time series of France from the year 2008 to 2012 (previously described
in Section (4.4.1)), assuming a growth of 1% to 1.5% from the beginning to the end of the
planning horizon. Technical and cost data for the generation technologies considered for the
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expansion planning are also based on the same case study considered in Section (4.4.1) and
are summarized in Table (4.1).

Thermal generation units can be equipped with one of two different cooling technolo-
gies, that have different cost and technical characteristics. Under normal conditions, cool-
ing towers with recirculating water (CLC) reduce the overall efficiency of power plants by
2 − 5% compared to once-through use of water from lakes or large streams (OTC). Thus,
these towers are associated with larger operational/marginal costs compared to OTC sys-
tems. Moreover, the investment costs of CLC systems are around 20% higher than those
for OTC systems. Table (5.1) summarizes the specific technical and cost parameters of the
generation units equipped with each cooling technology [96, 109, 110].

TABLE 5.1 – Technical and economic characteristics for the power
generation units with different cooling technologies

Technology β/ρ/ Cpv T′health/re f _pv T′shutdown T
′out_max ∆T

′max Cinv
i Cmrgl

i
[i] [%] [°C] [°C] [°C] [°C] [Me/MW] [e/MWh]

Nuclear-OTC 0.44 15 32 32 10 3.95 13.84
Nuclear-CLC 0.44 10 / / / 4.74 14.11
Coal-OTC 0.97 15 32 32 10 2.08 38.97
Coal-CLC 0.94 10 / / / 2.60 39.75
CCGT-OTC 0.31 15 32 32 10 1.02 70.16
CCGT-CLC 0.30 10 / / / 1.22 71.50
Solar-PV 0.50 25 / / / 1.5 1.71
On-Shore Wind / / / / / 1.9 2.16

Similar to the framework followed in the previous chapter, the yearly load is optimally
approximated by four representative weeks and the chronological order within each week
is maintained. For each planning year, an additional week corresponding to that containing
the peak summer load is, then, added to simulate the impact of the heat wave and drought
events during summer time.

5.4.2 Climate projections data of heat wave and drought events

Historical baseline temperature as well as future temperature projections for the years 2041
to 2046 are based on data obtained from the Coupled Model Intercomparison Project (CMIP5)
experiments [111]. Similarly, wind speeds and solar irradiance data used to calculate the
wind and solar CF are obtained from the CMIP5 experiments, following the models pro-
posed in section (5.2.2). We consider three Representative Concentration Pathways (RCPs)
that cover the impact of different trajectories of greenhouse gas concentration on future cli-
mate, compared to pre-industrial levels. In particular, we consider the RCP 8.5, RCP 4.5
and RCP 2.6, which represent an increased in radiative forcing of +8.5 Wm−2, +4.5 Wm−2

and +2.6 Wm−2 respectively, compared to pre-industrial values. Table (5.2) summarizes the
details of the CMIP5 experiments used for the different climate projections.
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TABLE 5.2 – Details of the experiments used for the historical and
projected temperature scenarios

Experiment
type

Modeling
Center (or
group)

Institute ID Model Name Experiment Period Variable Frequency

Historical
(baseline)

Meteorological
Research In-
stitute

MRI MRI-CGCM3 historicalEXT 2008-2012 tas 3hr

Projection Centre Na-
tional de
Recherches
Météorologiques

CNRM CNRM-CM5 rcp85, rcp45,
rcp26

2041-2046 tas 3hr

Projection Meteorological
Research In-
stitute

MRI MRI-CGCM3 rcp85, rcp45,
rcp26

2041-2046 uas, vas, rsds 3hr

Since we are primarily interested in extreme weather scenarios related to the region of
southern France, the climate data considered have been limited to the geographical scope
of interest: that is, data spanning the longitudinal and latitudinal scope of approximately
(W2°35′00′′ − E8°10′00′′) and (N46°06′00′′ − N41°19′00′′), respectively. To quantify the im-
pact of an extreme heat wave, the average temperature time series as well as the average
wind and solar CF are, then, computed for the geographical area considered, for each pro-
jected climate scenarios. Regarding water availability levels, different water level scenarios
during the heat wave events are assumed to cover: high availability levels (A > 1), normal
levels (A = 1) and low availability levels (A < 1).

5.5 Results and discussion

5.5.1 Impact of extreme heat wave and drought events on system load and
efficiency of power generation

We start our investigation with a focus on future climate parameters obtained from the RCP
8.5 experiments, which is the representative concentration pathway assuming no decrease
in current carbon emission trends throughout the 21st century. Significant temperature in-
crease during the summer period is observed under the Representative Concentration Path-
way (RCP 8.5), compared to the historical baseline scenario. The impact of this temperature
increase on the load and power generation units are computed for a typical summer week
for each year of the planning horizon. As an example, Figure (5.1) illustrates the projected
temperature increase and its impact on system load during the period between the 30th of
July and the 6th of August for the year 2041 in southern France, compared to the historical
average levels in the same period and location. The temperature difference is seen to reach
levels of +9.2°C, while its impact on the system load (calculated as per the proposed impact
model) can increase up to +1840 MWh. Similar order of differences are observed for the
other planning years considered.
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FIGURE 5.1 – Temperature difference and its impact on system load
during the period between the 5th and the 12th of August, for both

the baseline and the projected scenarios

The effect of heat wave and water shortages on the efficiency of thermal units depends
on the cooling technology deployed. We consider three different levels of water availability
and calculate their impact on the efficiency of thermal units during the heat wave event.
Figure (5.2) illustrates the resulting efficiency for nuclear power plants during a heat wave
and under different water availability levels, using data for the year 2041. It can be seen that
OTC-based generators are highly affected by water shortages, compared with CLC units,
which are impacted by the heat wave but maintain the same efficiency levels regardless of
the water availability level.
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FIGURE 5.2 – Example of nuclear generation units efficiency derating
during a heat wave event for different cooling technologies (OTC and
CLC) and under different water availability scenarios (high availabil-

ity: A > 1, normal availability: A = 1, low availability A < 1)
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5.5.2 Resilient planning vs conventional planning

Resilient power systems planning should account for the impact of extreme weather events
as an integral part of the planning problem, as discussed in the previous sections. We com-
pare the resilient plans (denoted RP) to conventional plans (CP), obtained assuming no cli-
mate impact on the efficiency of the generation units. CP future investment plans are, then,
used to simulate operation under different realizations of climate scenarios, to assess oper-
ational performance. We focus first on the results obtained under no IRES penetration level
requirements.

The total amount of load not served (LNS) during the heat wave period is taken as the
primary performance measure for the plans obtained. Figure (5.3) illustrates the resulting
LNS for both RP and CP under the extreme weather events. The results show a significant
load loss for the conventionally planned systems, that sharply increases with the worsening
of the climate conditions. The loss reaches up to 851 GWh under the worst scenario of
climate impact. This is not the case for the RP, which are shown to suffer an LNS significantly
lower than CP, with a maximum of 17 GWh under the worst scenario of climate impact.
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FIGURE 5.3 – LNS during different extreme weather events. Compar-
ison between RP and CP under no IRES penetration.

In terms of system costs, RP have overall higher annualized investment and operational
costs compared to CP, as can be seen in Figure (5.4). This is directly related to the fact that for
RP the extreme weather impact on the power system is taken into account and so the plan
compensates the lower thermal units efficiency by investing in more and better performing
units. The slightly higher investment and operational costs, however, are fully offset by the
reductions in LNS costs, as can be seen in Figure (5.4). The maximum difference between
the total annualized investment and operation costs of the RP compared to the CP is equal
to 1.23 Be (low water availability scenario in Figure (5.4)), while the LNS cost saving for the
same scenario is around 9.52 Be.
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FIGURE 5.4 – Comparison between RP and CP costs subject to differ-
ent extreme weather events under no IRES penetration.

Next, we extend the analysis to evaluate the impact of increasing IRES penetration levels
on the system performance. Most notably we consider 0%, 25% and 50% IRES energy pene-
tration levels (percentages of total system load) and solve the optimization problems under
all extreme weather events, for both the RP and CP.

Figure (5.5) shows the impact of the increasing share of IRES levels on the LNS of the
system during the extreme weather events, for RP and CP. Higher IRES penetration has a
clear effect on reducing the amount of LNS during the extreme events. RP maintain low
LNS levels in all cases considered, and slightly improves with increasing IRES levels, while
CP show a significant decrease in LNS as IRES power compensates for the lack of system
resilience.
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FIGURE 5.5 – Impact of high IRES penetration on LNS during differ-
ent extreme weather events.

Moreover, it is shown that the increased IRES capacity reduces the gap between RP and
CP, in terms of annualized investment and operational costs. For example, the difference in
the total annualized investment and operation costs between the RP and CP plans decreases
from +5.70% to +1.60% under the 0% and 50% IRES levels respectively, under the “Extreme
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heat wave - Low water availability” scenario in Table (5.3). The same trends are also found
under the other extreme weather scenarios considered.

RDPM CPM
Difference 

(% wrt CPM) RDPM CPM
Difference 

(% wrt CPM) RDPM CPM
Difference 

(% wrt CPM)
0% IRES 7.19 6.95 3.52% 14.72 14.54 1.20% 1.38 2.09 -34.07%

25% IRES 9.37 9.37 0.05% 14.12 13.99 0.95% 1.21 1.46 -16.92%
50% IRES 12.92 12.92 0.04% 14.29 14.14 1.03% 0.61 0.89 -32.13%
0% IRES 7.51 6.95 8.02% 14.93 14.55 2.57% 1.20 4.15 -71.19%

25% IRES 9.55 9.37 2.00% 14.13 14.00 0.95% 1.26 2.36 -46.86%
50% IRES 13.05 12.92 0.99% 14.30 14.15 1.04% 0.65 1.61 -59.82%
0% IRES 7.55 6.95 8.63% 15.17 14.55 4.30% 1.18 10.70 -88.95%

25% IRES 9.66 9.37 3.09% 14.30 14.01 2.03% 1.22 6.15 -80.08%
50% IRES 13.17 12.92 1.92% 14.35 14.17 1.32% 0.63 4.37 -85.51%

RP CP
Difference 
(% wrt CP) RP CP

Difference 
(% wrt CP) RP CP

Difference 
(% wrt CP)

0% IRES 7.19 6.95 3.52% 14.72 14.54 1.20% 21.91 21.49 1.95%
25% IRES 9.37 9.37 0.05% 14.12 13.99 0.95% 23.49 23.35 0.59%
50% IRES 12.92 12.92 0.04% 14.29 14.14 1.03% 27.21 27.06 0.56%
0% IRES 7.51 6.95 8.02% 14.93 14.55 2.57% 22.43 21.50 4.33%

25% IRES 9.55 9.37 2.00% 14.13 14.00 0.95% 23.69 23.37 1.37%
50% IRES 13.05 12.92 0.99% 14.30 14.15 1.04% 27.34 27.07 1.01%
0% IRES 7.55 6.95 8.63% 15.17 14.55 4.30% 22.72 21.50 5.70%

25% IRES 9.66 9.37 3.09% 14.30 14.01 2.03% 23.95 23.38 2.46%
50% IRES 13.17 12.92 1.92% 14.35 14.17 1.32% 27.52 27.08 1.60%

LNS Cost [BEuro]

Total inv + op costs 
[BEuro]

 Extreme heat 
wave scenario

Normal water availability

Low water availability

Normal water availability

Low water availability

High water availability

High water availability

 Extreme heat 
wave scenario

Investment Cost [BEuro] Operating Cost [BEuro]

Annualized Investment Cost 
[BEuro]

Operating Cost (excluding LNS) 
[BEuro]

TABLE 5.3 – Comparison of RP and CP costs under different IRES
penetration levels and extreme weather events.

5.5.3 Impact of extreme weather events on technology choice and system
flexibility

The previous section has illustrated how power system RP cope with the detrimental im-
pact of extreme weather events, with no significant increase in the system cost. We analyze
in details the choices in the RP under the different scenarios. Most notably, the generation
technology choice and capacity installed are major contributors to the system performance.
Figure (5.6) summarizes the investment capacities and technologies choices under the differ-
ent extreme weather events and IRES penetration levels. For clarity, the results illustrate the
total capacity installed per each cooling technology type (OTC-based capacity vs CLC-based
capacity) summed over all thermal power plants installed, under each scenario.

35.4
31

26.6

19.6

0

7.7

15.4

21.55

0 0 0 0

0

10

20

30

40

No climate impact
considered

High water
availability

Normal water
availability

Low water
availability

 Extreme heat wave scenario

G
W

OTC-based capacity CLC-based capacity Renewable capacity
35.4

38.7
42 41.15

(A) 0% IRES penetration

33.1
28.15

21
16.8

0

5.5

12.65

16.55

31.4 30.88 31.06 32.34

0

10

20

30

40

No climate impact
considered

High water
availability

Normal water
availability

Low water
availability

 Extreme heat wave scenario

G
W

OTC-based capacity CLC-based capacity Renewable capacity
64.50 64.53 64.71 65.69

(B) 25% IRES penetration

32.75 32.75
22.3

16.80 0

10.45
15.95

68.34 68.16 68.3 68.2

0

20

40

60

80

No climate impact
considered

High water
availability

Normal water
availability

Low water
availability

 Extreme heat wave scenario

G
W

OTC-based capacity CLC-based capacity Renewable capacity
101.09 100.90 101.05 100.95

(C) 50% IRES penetration

FIGURE 5.6 – RP technology choice and capacity installed under dif-
ferent IRES penetration levels and extreme weather events.

The results show a clear shift from (the cheaper) OTC-based capacities to the (more ex-
pensive) CLC-based technology when the heat wave event is accounted for, primarily as
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a result of internalizing in the system design the impact of the extreme event. This shift
to CLC-based units further increases considering lower water availability levels during the
heat wave event. The results also show that the total capacity of all technologies installed
does not in fact vary in response to different extreme weather events but is rather signifi-
cantly impacted by the amount of IRES penetration in the system, for an average of 39.3GW,
64.8GW and 101GW for the 0%, 25% and 50% IRES penetration scenarios, respectively, with
low standard deviations of 2.9, 0.5 and 0.08 within each IRES scenario. On the other hand,
the significant increase of capacity installed across different IRES penetration scenarios is di-
rectly attributed to the increased capacity required to satisfy the operational flexibility needs
of the system under these scenarios, as has been discussed in previous work [112].

We finally explore how the operational flexibility of the RP and CP plans are affected by
the different extreme climate events. Table (5.4) summarizes the EFS results at the 99% confi-
dence level, for all IRES and climate scenarios. It can be seen that when the extreme weather
events are not taken into account in the planning phase (as per the CP), the operational flex-
ibility shortage is multiple times that of its RP counterpart under the same extreme weather
events. This flexibility shortage difference further increases considering higher levels of IRES
penetration. For instance, the EFS reaches approximately 7355 MW for CP compared to 2655
MW for RP, during the extreme weather event for a system with 50% share of IRES capacity.
The flexibility shortages, however, are significantly lower than the load losses for the CP
due to the lack of resilience, which were shown to be in the order of several hundred GWh
in the previous sections. This is important to note since both RP and CP accommodate the
operational flexibility attribute.

RP CP

High water availability 28.84 3359.03
Normal water availability 785.57 4588.56

Low water availability 1933.98 5375.94
High water availability 752.57 1732.63

Normal water availability 1472.30 5050.12
Low water availability 1621.71 4435.47
High water availability 618.18 1281.81

Normal water availability 1038.70 3981.68
Low water availability 2655.01 7354.27

EFS [MW] 
(99% condifdence level)

Extreme heat wave 
scenario

50% IRES

0% IRES

25% IRES

TABLE 5.4 – Expected Flexibility Shortfall (EFS) of RP under different
IRES penetration levels and climate scenarios.

5.5.4 Sensitivity of the results for different climate projections (RCP8.5,
RCP4.5 and RCP2.6)

In the previous sections, we have shown the improvements achieved by RP which account
for extreme heat waves and drought events. Both RP and CP were optimized and/or eval-
uated under the climate parameters of the RCP 8.5, that is the most pessimistic radiative
concentration pathway for the 21st century. In this section, we perform a sensitivity analysis
considering other RCP projections from the CMIP5 climate experiments to confirm the rele-
vance of the planning framework proposed under less pessimistic concentration pathways.

RCP 2.6 and 4.5 climate data are used to calculate future power system operating con-
ditions. Most notably, solar irradiance and wind speed data are used to obtain wind and
solar-PV CF, and temperature data during the summer period are used to simulate the fu-
ture heat wave scenarios and their impact on thermal generators. We, then, use the RP and
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CP under the RCP 8.5 scenario to check their operational performance under the other RCP
scenarios.

Figure (5.7) shows the performance of the RP and CP obtained under the RCP 8.5, in
terms of LNS during the extreme heat event under all RCP pathways considered. The val-
ues shown are the average LNS amounts for all water availability scenarios per each RCP.
The results confirm the consistently lower LNS for the RP under all RCP scenarios and for
all IRES penetration levels. In addition, as expected, the LNS decreases as less pessimistic
RCP scenarios are considered. For example, the average LNS for the RP under 0% IRES
penetration decreases from 10 GWh for the RCP 8.5 to 0.05 GWh for the RCP 2.6 scenarios.
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FIGURE 5.7 – Average amount of LNS under each RCP scenario (8.5,
4.5 and 2.6) and IRES penetration levels (0%, 25% and 50%). Compar-

ison between the results for RP and CP.

With regards to the operational flexibility, the results reported in Figure (5.8) show the
average EFS of the plans obtained under all extreme weather events for different IRES pen-
etration levels. Less obvious trends can be found for the operational flexibility levels of the
obtained plans across the different RCPs, as measured by the EFS metric. It can be con-
firmed, however, that RP consistently outperform CP also in terms of flexibility, as can be
seen in the overall lower shortage levels illustrated in Figure (5.8). The improved flexibility
performance of the RP highlights an important interaction between the resilience of the sys-
tem and its flexibility, and the compound impact of failing to consider either aspect in the
power system design phase.
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6 Uncertainty in electric power
systems planning and operation

6.1 Overview

The integrated planning and assessment framework developed for electric power systems
operational flexibility and resilience, thus far, has only considered deterministic optimiza-
tion. While the results obtained have clearly shown the advantages of the framework pro-
posed, it falls short of accounting for the inherent uncertainties characterizing the system
parameters. This is especially significant in a long-term planning context under a high share
of IRES penetration and extreme weather impacts, where it is obvious that the uncertain-
ties surrounding the IRES availability, the system load and the efficiency of thermal supply
may greatly influence the optimal investment decisions and their robustness against those
uncertainties.

This chapter presents the methodology developed in this thesis to treat the uncertain-
ties within the integrated power system planning problem. The long-term GEP model with
short-term UC constraints is treated via a state-of-the-art multi-stage adaptive robust op-
timization (AARO) modeling technique. Most notably, the uncertainty characterizing the
system load and IRES-CF, takes the form of a deterministic uncertainty set with a control-
lable level of conservatism. The AARO model accounts for the here-and-now commissioning
and commitment decisions made robust against the uncertainties, and the wait-and-see dis-
patch decisions subject to uncertainty realization. The dimensionality issue of the resulting
model is discussed in details and a novel approximation method based on “information
basis” approximation is proposed. The method is, then, applied for the practical-size case
study considered throughout the thesis. The results validate the superiority of considering
the proposed robust optimization approach over other stochastic methods to account for
uncertainties.

6.2 Robust optimization model

The distribution-free characterization of both load and IRES supply uncertainties is de-
scribed as follows: the sub-period load vector, L, takes on a range of possible values given
by

¯
L ≤ L ≤ L̄ and the capacity factor, CF, which models IRES supply uncertainty, varies in

the range
¯

CF ≤ CF ≤ C̄F. A polyhedral uncertainty characterization is defined as follows:

Uyst(Γ) =

{
Lyst ∈ R+, CFyst ∈ R

|Ires |
+ : L

¯ yst ≤ Lyst ≤ L̄yst, CF
¯ iyst ≤ CFiyst ≤ C̄Fiyst,

∀i ∈ Ires, Lyst − ∑
i∈Ires

CFiyst ≤ Γ · (L̄yst − ∑
i∈Ires

CF
¯ iyst)

}
, ∀y ∈ Y, s ∈ S, t ∈ T (6.1)
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where Γ(≤ 1), represents the level of conservatism of the decision maker. It is clear that
when Γ = 1, the load and IRES-CF can take on their full range of possible values. When
Γ < 1, the uncertainty set excludes the absolute worst-case situation, which is where all
sub-period load are at their highest values and all IRES-CF are at their lowest values. In-
deed, by varying Γ, the decision maker can control the level of conservatism in planning.
Moreover, the uncertainty set is non-anticipative, in the sense that in sub-period t of year
y the decision maker only has information about current and past uncertainty realizations.
The lower bound of the uncertainty budget Γ can be derived through the observation that:
L
¯ yst − ∑

i∈Ires
C̄Fiyst ≤ Lyst − ∑

i∈Ires
CFiyst ≤ Γ · (L̄yst − ∑

i∈Ires
CF
¯ iyst), ∀y, s, t. This implies that

L
¯ yst − ∑

i∈Ires
C̄Fiyst ≤ Γ · (L̄yst − ∑

i∈Ires
CF
¯ iyst), ∀y, s, t. Therefore, Γ ≥

L
¯ yst −∑i∈Ires C̄Fiyst

L̄yst −∑i∈Ires CF
¯ iyst

,

∀y, s, t, from which we can calculate the lower bound of Γ:

Γ ≥ max
y∈Y,s∈S,t∈T

{L
¯ yst −∑i∈Ires C̄Fiyst

L̄yst −∑i∈Ires CF
¯ iyst

}
. (6.2)

6.2.1 Robust model formulation

The model under uncertainty is represented by a multistage adaptive robust optimization
model, where decisions related to unit commitment, commissioning and start-up are here-
and-now decisions made robust to uncertainty realizations and the dispatch decisions are
wait-and-see decisions made subject to (and thus, flexible to) uncertainty realizations. For
simplicity and clarity, some constraints, such as the operating reserve constraints (2.22)-
(2.27), are ignored as they do not affect the core concepts addressed in this chapter. Those
can be similarly processed using the same approach described in the next sections.

The objective of the model is to minimize the total cost of here-and-now decisions plus
the worst-case total cost of wait-and-see decisions, also known as recourse decisions. An-
other important component of the model is full immunization, meaning the maintenance of
feasibility over all possible uncertainty realizations in the polyhedral uncertainty sets. Let-
ting V t

ys (= {Lt
ys, CFt

ys}), ∀y ∈ Y, s ∈ S, t ∈ T, and given that recourse decisions made in a
time period t depend on the full history of the load L and IRES-CF CF from the first time
period up to t, the formulation of the robust counterpart (RC) is:

min
Ω,Θ

∑
y∈Y

(1 + DR)−y · ∑
i∈Inew

Cinv
i · Pmax

i · qiy (6.3a)

+ ∑
y∈Y

(1 + DR)−y ·∑
s∈S
·∑

t∈T
∑

i∈Ith

(
Cstup

i · ziyst

)
(6.3b)

+ ∑
y∈Y

(1 + DR)−y ·∑
i∈I

C f om
iy · Pmax

i ·
y

∑
l=1

qil (6.3c)

+ max
V t

ys∈ U t
ys

t∈T

∑
y∈Y

(1 + DR)−y ·∑
s∈S

∑
t∈T

[
∑
i∈I

(
Cmrgl

iy · piyst(V t
ys)
)
+ Clns · lnsyst(V t

ys)

]
(6.3d)
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s.t.
Commissioning and commitment constraints

xiy ≤
y

∑
l=1

qil , ∀i ∈ Inew, ∀y ∈ Y (6.4)

∑
i∈Inew

Cinv
i · Pmax

i · qiy ≤ Bmax
y , ∀y ∈ Y (6.5)

∑
i∈I

(
Pmax

i · xiy
)
≥
(

1 + rmin
)
· Lmax , ∀y ∈ Y (6.6)

∑
i∈Ires

xiy · Pmax
i ≥ Penlvl

y ·∑
i∈I

xiy · Pmax
i , ∀y ∈ Y (6.7)

uiyst ≤ xiy, ∀ith ∈ I, y ∈ Y, s ∈ S, t ∈ T (6.8)

uiyst − uiyst−1 = ziyst − viyst, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (6.9)

uiyst ≥
t

∑
τ≥t−Mu

i

ziysτ , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1, ..., Mu
i } (6.10)

xiy − uiyst ≥
t

∑
τ≥t−Md

i

viysτ , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1, ..., Md
i } (6.11)

Full immunization

∀V t
ys ∈ ∏

t′∈[t]
U t′

ys, [t] , {1, ..., t}, ∃piyst(.), lnsyst(.) ∈ R+, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (6.12)

Dispatch constraints

∑
i∈I

piyst(V t
ys) + lnsyst(V t

ys) = Lyst, ∀y ∈ Y, s ∈ S, t ∈ T (6.13)

piyst(V t
ys) ≤ uiyst · Pmax

i · (1− εi) , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (6.14)

piyst(V t
ys) ≥ uiyst · Pmin

i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (6.15)

piyst(V t
ys) ≤ xiy · Pmax

i · CFiyst, ∀i ∈ Ires, y ∈ Y, s ∈ S, t ∈ T (6.16)

piyst(V t
ys)− piyst−1(V t−1

ys ) ≤ uiyst−1 · RUmax
i + ziyst · Pstart

i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (6.17)

piyst−1(V t−1
ys )− piyst(V t

ys) ≤ uiyst−1 · RDmax
i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (6.18)

piyst(V t
ys), lnsyst(V t

ys) ≥ 0, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (6.19)

6.2.2 Multi-stage affinely adjustable robust counterpart

Because of the full immunization constraint (6.12) and the fact that the uncertain parameters
are real-valued, the robust counterpart is semi-infinite. We propose to consider linear deci-
sion rules to make the problem tractable. This method, which results in what is known as a
multistage affinely adjustable robust counterpart (AARC), is appealing in that it results in a
linear model that can be solved using over-the-counter solvers and does not require signif-
icant tailor-made implementation efforts. The AARC is obtained by replacing the vector of
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recourse variables using the following affine relationship:

Ryst(V t
ys) = R0

yst + ∑
t′∈[t]

RL
ystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
RC

i′ ystt′
· CFi′ yst′ (6.20)

where [t] , {1, ..., t} and (R0
yst, RL

ystt′
, RC

i′ ystt′
) are the coefficients of the linear decision rule.

Then, in the model with linear decision rules, the constraints can be processed into a finite
number of linear constraints, relying on a duality-based reformulation to obtain the final
MILP problem. Below we illustrate how the processing is achieved for one equality and one
inequality constraint.

Equality constraint: Consider the supply-demand equality constraint (6.13). Replacing
the uncertainty dependent variables piyst(V t

ys) and lnsyst(V t
ys) following equation (6.20), and

re-arranging the terms, we obtain:

(
∑
i∈I

p0
iyst + lns0

yst

)
+ ∑

t′∈[t−1]

(
∑
i∈I

pL
iystt′

+ lnsL
ystt′

)
· Lyst′ +

(
∑
i∈I

pL
iystt + lnsL

ystt − 1
)

· Lyst + ∑
i′∈Ires

∑
t′∈[t]

(
∑
i∈I

pC
ii′ ystt′

+ lnsC
ystt′

)
· CFi′ yst′ = 0, ∀V t

ys ∈ U t
ys, y ∈ Y, s ∈ S, t ∈ T (6.21a)

From this we know that equality (6.21a) is valid if and only if equations (6.21b)-(6.21e) are
satisfied.

∑
i∈I

p0
iyst + lns0

yst = 0, ∀y ∈ Y, s ∈ S, t ∈ T (6.21b)

∑
i∈I

pL
iystt′

+ lnsL
ystt′

= 0, ∀y ∈ Y, s ∈ S, t
′ ∈ [t− 1], t ∈ T (6.21c)

∑
i∈I

pL
iystt′ + lnsL

ystt′ = 1, ∀y ∈ Y, s ∈ S, t′ = t, t ∈ T (6.21d)

∑
i∈I

pC
ii′ ystt′

+ lnsC
ystt′

= 0, ∀i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (6.21e)

Inequality constraint: Consider the maximum production limit inequality (6.14). The con-
straint, after applying the affine relationship (6.20), becomes:

(
p0

iyst + ∑
t′∈[t]

pL
iystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
pC

i′ iystt′
· CFi′ yst′

)
≤ uiyst · Pmax

i · (1− εi) ,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (6.22a)

Re-arranging the terms of the the constraint, given that an uncertainty-affected constraint
LHSys ≤ RHSys, where LHS contains all uncertainty terms and RHS contains the rest, is valid
∀V t

ys ∈ U t
ys, t ∈ T, if and only if max

V t
ys∈U t

ys ,t∈T
LHSys ≤ RHSys. Notice that any (≥) constraint can

easily be transformed to a (≤) one and can follow the same above logic. Applying this logic
to inequality (6.22a) we get:

max
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
pC

ii′ ystt′
· CFi′ yst′

)
≤ (1− εi) · Pmax

i ·

uiyst − p0
iyst, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (6.22b)



6.3. Robust model solution method 65

∑
t′∈[t]

(πA
iystt′ · L̄yst′ − πB

iystt′ · L¯ yst′ ) + ∑
t′∈[t]

∑
i′∈Ires

(πC
ii′ystt′ · C̄Fi′yst′ − πD

ii′ystt′ ·CF
¯ i′yst′ ) + ∑

t′∈[t]
πE

iystt′ ·

Γ · (L̄yst′ − ∑
i′∈Ires

CF
¯ i′yst′ ) ≤ (1− εi) · Pmax

i · uiyst − p0
iyst, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (6.22c)

πA
iystt′ − πB

iystt′ + πE
ystt′ ≥ pL

iystt′ , ∀i ∈ Ith, y ∈ Y, s ∈ S, t
′ ∈ [t], t ∈ T (6.22d)

πC
ii′ystt′ − πD

ii′ystt′ − πE
ystt′ ≥ pC

ii′ystt′ , ∀i
′ ∈ Ires, i ∈ Ith, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (6.22e)

πA
iystt′ , πB

iystt′ , πC
ii′ystt′ , πD

ii′ystt′ , πE
iystt′ ≥ 0, ∀i

′ ∈ Ires, i ∈ Ith, y ∈ Y, s ∈ S, t
′ ∈ [t], t ∈ T (6.22f)

Dualizing the left-hand side of the constraint and because of strong duality, this set of non-
linear inequalities can be replaced by the set of linear inequalities (6.22c)-(6.22f), where π

is the vector of dual variables associated with the bounds of the uncertainty set (6.1). Ap-
plying the same principle to all inequality and equality constraints, the semi-infinite robust
counterpart is converted into a finite mixed integer linear programming problem.

6.3 Robust model solution method

6.3.1 Problem dimensionality issues

As shown in the previous section, recourse decisions made in a time period, t, depend on
V t (= {V1, ...,Vt}), i.e., the history of load and IRES-CF realizations from the first time pe-
riod up to t. The duality-based approach used to define the equivalent deterministic prob-
lem, therefore, leads to an extremely large MILP reformulation. Take for example the max-
imum production limit constraint (6.14): in the deterministic formulation, this constraint
would have a dimension of | Ith | × | Y | × | S | × | T |, which we can denote as
| det. |. On the other hand, the set of inequalities defining the AARC of this constraint
(i.e., inequalities (6.22c)-(6.22f) have a dimension of | det. | ×

(
1 + |T|+1

2 · (1+ | Ires |)
)

, ac-
cording to the definition of the uncertainty set (6.1). That is, the dimension of each robust
constraint is multiplied by a strictly positive factor which is a function of the number of
time periods T and number of IRES units Ires, considered. Even for a moderate size prob-
lem, this can quickly lead to extremely large and intractable MILP instances. For example,
if we consider a time periods set T with a magnitude of 24 hours and an IRES units set
Ires with a magnitude of 2 (e.g. wind and solar), the number of AARC constraints would
be 38.5 multiples of the same set of constraints in the original deterministic formulation.
The same applies for the number of variables, were each AARC constraints set would re-
quire an additional 5 ×

(
|I|+ |Y|+ |S|+ |T|(|T|+1)

2

)
+ 2|Ires| dual variables and an addi-

tional |I| × |Y| × |S| × |T|(|T|+1)
2 × (1 + |Ires|) affine coefficient variables, compared to the

original deterministic constraint formulation.

6.3.2 Information basis approximation

Notice that one of the most important contributors to the above dimensionality issue is the

appearance of the triangular number
|T| · (|T|+ 1)

2
which exponentially increases with the

number of periods considered. This factor arises since in the defined linear decision rule,
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the recourse variables depend on the entire history of realized uncertainty at every time
period up to t, ∀t ∈ T. Following [75], we call this full affine dependency the “on-line
information basis“ since it -reasonably- considers that the decision maker takes into account
all historical information revealed about the uncertainty realizations to adapt the recourse
decision variables at the current time period.

We propose and investigate a solution method based on information basis level approx-
imation, where, instead of considering the full affine dependency, only the most recent un-
certainty realizations are taken into account to adjust the recourse variables at the current
time period t. For this, we introduce a new parameter representing the information level,
denoted h (≤ |T|), which will allow us to control how early the model accounts for informa-
tion on uncertainty realization, to adjust the recourse variable at the current period. In this
sense, the h parameter represents the number of most recent time periods that will be taken
into account in the linear decision rule. If h = |T|, the full historical periods will be taken
into account, which is equivalent to full affine dependency. If h < |T|, both the size of the
equivalent AARC set of constraints, the associated dual variables and the affine coefficient
variables will be reduced.

To implement this approximation method, the running index [t] needs to be re-defined

such as: [t] ,




{1, ..., t}, if t ≤ h

{t− h, ..., t}, if t > h
. As an example, the number of AARC constraints

defining inequalities (6.22c)-(6.22f) will have a dimension of: | det. | ×
(

1 + 1/|T| · (h + 1) ·
(
|T| − h

2

)
· (1 + |Ires|)

)
, compared to the previously calculated value. This leads to a re-

duction in the number of constraints by a total of: |det.|× |Ires|×
(
(0.5|T| − h− 0.5) +

h2 + h
2|T|

)

constraints, for each robust constraint reformulation. The same calculations can be made for
the reduction in the number of variables. Notice that, as logical, the reduction in the num-
ber of constraints (and variables) increases as h decreases, i.e. as we take into account less
historical information. However, the relationship is non-linear and indeed is negligeable for
h values that are close to |T|, and is only significant around low values of h. Hence, there is
a clear trade-off in the level of adjustability of the recourse variables and the computational
complexity. This might lead to the expectation that using this method, we considerably sac-
rifice optimality for computational simplicity. Indeed, we show in the next section that this
is not necessarily the case: by conducting a sensitivity analysis on the quality of solutions
obtained by varying the h parameter, we show that significant computational gains can be
achieved while still maintaining high quality of the solution.

6.4 Application

6.4.1 Power system description and implementation notes

For the application, we consider the same generation units characteristics (technical and
economic) used for previous analysis described in Section (4.4.1), and same projections for
the system load and IRES-CF for the years 2041-2046 calculated in Section (5.4.1) . To solve
the integrated multi-stage AARO model, each full year is approximated by 4 days optimally
obtained using the method proposed in Section (3.3.3). Hourly load uncertainty is set to vary
within 10% of the nominal values, while hourly IRES uncertainty is set to vary within 20%
around the nominal values. Experimental testing showed that the interior-point method
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(Barrier algorithm) should be used to find the root relaxation of the MILP, to avoid primal-
dual degeneracy.

6.5 Results and discussion

6.5.1 Sensitivity analysis on information basis approximation

We start with a reduced-size instance to conduct a sensitivity analysis on the impact of vary-
ing the information level parameter h on the planning problem solution time and quality.
The horizon considered for this purpose covers only two planning years, each represented
by 4 days of 24 hours. The parameter h, therefore, can vary from 1 to 24, representing the
lowest to the highest information levels taken into account in the linear decision rule, re-
spectively. Furthermore, since the ramping up and down constraints (6.17) and (6.18) are
the only second-level constraints that are time-coupling, and where the full value of consid-
ering detailed commitment decisions appear, we compare two variations of the problems so-
lution: one where we relax the ramping constraints and conduct the sensitivity, and the other
where the ramping constraints are enforced. To ensure the proper evaluation of the quality
of the solutions obtained, the integer-relaxed, fully affine dependent problem is solved as a
guaranteed lower bound solution for both the ramping-relaxed and ramping-enforced MILP
problems. A schematic description of how the optimality gap is compared for the purpose
of the sensitivity analysis is shown in Fig. (6.1).

Integer-relaxed
Ramping-relaxed
ℎ = 24

Integer-relaxed
Ramping-enforced
ℎ = 24

Integer-enforced
Ramping-relaxed

Integer-enforced
Ramping-enforced

Guaranteed lower bound

Optimality gap

1 2 3 24…ℎ =

FIGURE 6.1 – Schematic illustration of the process for calculating
the optimality gap for both ramping-relaxed and ramping-enforced

MILP problems.

Table (6.1) shows the optimality gap obtained for solving the problem under different
values of information level parameter h, for both the ramping-relaxed and the ramping-
enforced MILP problems. It is shown that in all cases, the objective function (total cost)
gap is at most 1%, which is an indicator of a strong performance even for low values of
h. These results are consistent with the investment decisions obtained as is shown in Ta-
ble (6.2). These decisions are identical for the solution under the lowest (h = 1) and the
highest (h = 24) information basis levels. Moreover, the standard deviation of these invest-
ment decisions across all instances is very low, indicating the consistency of these results
across all problem instances. Moreover, we have found that these observations hold across
the h sensitivity variations performed under different values of uncertainty budget (Γ). With
respect to the computational performance, Figure (6.2) shows that indeed the computational
time significantly decreases as we consider lower values of h. For both ramping-relaxed and
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ramping-enforced cases, the solution for the lowest h values is obtained within 10 to 40 sec-
onds. Notice that this range remains consistent for the ramping-relaxed problem across all
values of h, slightly increasing to a maximum of 38 seconds. For the ramping-enforced prob-
lem, a clear and significant solution time increase can be observed. For the fully adjustable
problem (h = 24), the solution time is 4375 seconds, compared to 11, 15 and 31 seconds for the
three lowest h values considered, respectively. This confirms that significant improvements
can be gained in computational time while maintaining good results by using the proposed
approximated linear decision rule.

TABLE 6.1 – Guaranteed optimality gap for the solutions obtained
with respect to the sensitivity on the h parameter, for both the

ramping-relaxed and the ramping-enforced MILP problems.

Information level (h) 1 2 3 4 5 6 7 8 9 10 11 12

Ramping-relaxed 0.37% 0.36% 0.70% 0.24% 0.40% 0.75% 0.75% 0.75% 0.16% 0.06% 0.87% 0.88%
Ramping-enforced 0.94% 0.95% 0.31% 0.50% 0.23% 0.05% 0.04% 0.49% 0.04% 0.48% 0.51% 0.26%

Information level (h) 13 14 15 16 17 18 19 20 21 22 23 24

Ramping-relaxed 0.47% 0.95% 0.80% 1.01% 0.53% 0.11% 0.26% 0.92% 0.54% 0.62% 0.40% 0.40%
Ramping-enforced 0.01% 0.03% 0.95% 0.48% 0.67% 0.61% 0.95% 0.50% 0.02% 0.97% 0.03% 0.03%

TABLE 6.2 – Number of units installed as per the ramping-enforced
robust MILP problem under the lowest and highest information lev-

els h.

Number of units

h = 1 h = 24 all h

Technology Mean Std. dev.

Nuclear Units 31 31 31 0
Coal Units 12 12 12 0
CCGT Units 27 27 27 0
Wind Units 298 298 298.8 3.97
Solar Units 0 0 0.33 0.48
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FIGURE 6.2 – Impact of varying the information level parameter
h on the computational time of the ramping-relaxed and ramping-

enforced robust MILP problems.

It should be noted that the variation in the solution time across different information
level (h) problems is not strictly increasing. This is due to the differences in the time taken for
the generic solver to solve the MILPs. Many factors, other than the problem size, can impact
the solution time; for example the quality of the initial heuristic solution and the quality of
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the cuts generated by the solver. Notice also how by considering the ramping constraints,
the computational time of the problem increases significantly even for these reduced case
studies. It is, then, worthy to investigate what value are these constraints adding to the
solutions of the robust power system planning problem.

6.5.2 Worst-case analysis for robust power systems planning with ramp-
ing constraints

Notice that according to the definition of the uncertainty set (6.1) and letting the uncertain
parameters take on their full range of values (Γ = 1), the robust solution should be expected
to be trivial and simply equivalent to the worst-case deterministic solution. This is since
any solution that satisfies the highest hourly load (L̄) and lowest IRES-CF (CF

¯
) should be

-readily- feasible to satisfy any combination of lower load and higher IRES-CF in the uncer-
tainty range. We show that this is, indeed, the case if the time-coupling ramping constraints
are ignored. However, enforcing the ramping constraints implicitly re-defines the worst-
case dispatch decisions in the AARC problem so that they are no longer simply satisfying
the worst load and IRES-CF, but rather also ensuring the ramping feasibility under all other
uncertainty realizations of those parameters. A simple example for this effect would be to
satisfy the ramping between the lowest load (L

¯ t) at t and the successive highest load (L̄t+1) at
t + 1, if the uncertainties are to be realized in such a way. More complex interactions would
occur if, in addition, we consider the uncertainty of the IRES-CF. In this case, unlike the
AARC method, no straightforward method exists to ensure the feasibility of these complex
interactions within the deterministic nor the stochastic models.

To illustrate this effect on the system investment and operation decisions, we will con-
sider the whole 5 years planning horizon previously described for the case study and anal-
ysis. To further highlight the impact of the detailed ramping constraints on the robust so-
lution obtained, we expand the hourly uncertainty of load and IRES-CF to be within 20%
and 50% of their nominal values, respectively. Finally, we will deploy the information basis
approximation method described in the previous section to find the solution to the AARC
problem. The results will be compared to the worst-case deterministic problem solution
(denoted WCD), both for the ramping-relaxed and ramping-enforced cases.

Let us first consider the ramping-relaxed case; as expected, both WCD and worst-case
AARC solutions are identical. The total objective value in both cases amounts to 63.36Billione.
The breakdown of the (annualized) investment, operational and load not served (LNS) costs
is shown in Fig. (6.3). By enforcing the ramping constraints, indeed, we find that the solu-
tions of both problems are no longer identical. Clearly, the WCD objective value in this case
is higher than the one with no ramping considered. Yet, interestingly, these values are even
higher for the AARC worst-case solution with a +3.10% and +12.43% increase in the invest-
ment and operational costs, respectively, and a−17.25% decrease in the LNS cost, compared
to the WCD solution, as shown in Fig. (6.3). It is clear that properly accounting for the uncer-
tainty withing the AARC model significantly increases the investment and operational costs
of the system because of the “implicit” worst-case ramping requirements.

To further understand how the uncertainties are driving the investment decisions within
the ramping-enforced problems, Table (6.3) compares the total capacities installed per tech-
nology type for all cases considered. First, it is shown that the capacities installed are iden-
tical for both WCD and AARC solutions when the ramping is relaxed. Then, enforcing the
ramping constraints leads to a clear shift in the installed capacities under the WCD solu-
tion, most notably, a shift from the least flexible nuclear capacity, to the most flexible CCGT
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FIGURE 6.3 – Breakdown of (annualized) investment, operational and
LNS solution costs for the ramping-relaxed and ramping-enforced

problems. Comparison between the WCD and AARC solutions.

capacity. However, the ramping-enforced AARC solution confirms that neglecting the load
and IRES-CF uncertainties underestimates the actual flexible capacity needed to account for
the implicit worst case rampings. This is verified as per the investment decisions in a lower
nuclear capacity and higher coal and CCGT ones, compared to the WCD solution.

TABLE 6.3 – Breakdown of total installed capacity per technology
type for the ramping-relaxed and ramping-enforced problems. Com-

parison between the WCD and AARC solutions.

Capacity Installed [GW]

Ramping-relaxed Ramping-enforced

Technology WCD AARC WCD AARC

Nuclear capacity 67.2 67.2 64.4 56
Coal capacity 7.7 7.7 6.6 15.4
CCGT capacity 12.1 12.1 20.3 25.3
Wind capacity 1.68 1.68 61.7 78.9
Solar capacity 85.32 85.32 29.7 19.62

Another indicator of the superiority of the AARC solution in accounting for ramping
uncertainty, is the amount of IRES shedding attained for the worst-case solution. This is be-
cause IRES shedding is another mean for managing inter-temporal ramping variability next
to thermal units ramping capacity and load shedding. Notice in Table (6.4) how the WCD
and AARC shedding amounts are identical for the ramping-relaxed case, and the improved
IRES shedding amounts as given by the AARC (total of 0.76%) compared to WCD solution
(total of 4.47%), for the ramping-enforced case.

TABLE 6.4 – Breakdown of IRES shedding for the ramping-relaxed
and ramping-enforced problems. Comparison between the WCD and

AARC solutions.

Ramping-relaxed Ramping-enforced

WCD AARC WCD AARC

Wind power shedding 2.15% 2.15% 3.02% 0.82%
Solar power shedding 1.47% 1.47% 8.67% 0.56%

Total IRES shedding 1.49% 1.49% 4.47% 0.76%

We finally discuss the solution times taken for the WCD and AARC problems. The WCD
problem takes few seconds to be solved, whereas, even for a moderate h value (h = 8),
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the AARC problem can take several hours as can be seen in Table (6.5). Clearly, account-
ing for the uncertainties under the AARC approach comes at a significant computational
price. It is important to note, however, how the proposed information basis approxima-
tion method proposed allows for tractable and high-quality solutions, whereas considering
the full AARC formulation for the ramping-enforced case does not allow us to find a root-
relaxation solution even after 40 hours of run-time.

TABLE 6.5 – Computational time for the ramping-relaxed and
ramping-enforced problems. Comparison between the WCD and

AARC solutions.

Ramping-relaxed Ramping-enforced

WCD
AARC

WCD
AARC

(h = 8) (h = 8)

Computation time [sec] 12 3060 13.3 25657.8
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7 Conclusions

Planning power systems for providing secure and reliable electricity to users is key in any
energy strategy. This is being challenged by several recent developments, most notably,
the increased penetration of variable intermittent renewable energy sources (IRES), which
is raising concerns about the ability of future power systems to effectively respond to the
high net-load variations, a system property which is referred to as operational flexibility.
Moreover, climate change threats and, particularly, the increased frequency and severity of
extreme weather events, are threatening to disrupt electric power supply and require the
consideration of system resilience right from the planning stage. Also, the inherent uncer-
tainties characterizing those systems must be inevitably considered.

In the present thesis, the research work done for developing a techno-economic model-
ing and robust optimization framework for multi-period power systems planning consider-
ing a high share of IRES and resilience against extreme weather events has been presented.
The specific planning problem considered is that of selecting the technology choice, size and
commissioning schedule of conventional and renewable generation units under technical,
economical, environmental and operational constraints. Within this problem, key research
questions addressed have been:

(i) the proper integration and assessment of the operational flexibility needs due to the
increased variability of the high shares of IRES within the power system planning
problem,

(ii) the appropriate modeling and incorporation of the requirements of resilience against
extreme weather events within the power system planning problem,

(iii) the representation and treatment of the uncertainties inherent in the system supply
and demand, within the planning context.

The next section discusses the original research contributions of the thesis with respect to
the identified research gaps as well as to the originality of the results obtained and the sig-
nificance of the conclusions drawn. These contributions are presented in three subsections,
each with regards to the respective objective of the thesis.

7.1 Thesis contributions (extended with respect to the origi-
nality of the results and analysis)

7.1.1 Operational Flexibility [Chapter 4, Paper (i)]

With respect to operational flexibility, an integrated framework for the quantitative assess-
ment of operational flexibility in power systems planning has been developed. The frame-
work stands on: (i) the development of a computationally efficient, multi-period integrated
GEP-UC model that accounts for key short-term constraints and chronological net load rep-
resentation, (ii) the elaboration of accurate and systematic horizon reduction methods to
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alleviate the computational burden of the resulting large-sized optimization problem and
(iii) the novel definition of suitable metrics for the operational flexibility assessment of the
obtained plans. A realistic size case study has been investigated under several scenarios
of IRES penetration levels and carbon reduction targets. Moreover, an investigation of the
effect of varying the fuel costs and load growth has been conducted to comprehensively
identify the most significant parameters that can affect the system operational flexibility.

The application of the framework to the case studies has shown its ability to provide
transparent and objective results for obtaining and assessing different expansion plans across
a wide range of policy requirements. The study has also allowed to highlight the importance
of integrating short-term technical constraints and chronological load patterns, within long-
term planning models and especially under significant renewable energy penetration levels.

Through the analysis of the results of the case studies considered, the following general
conclusions can be drawn:

1. The results confirm those presented in other works and, most notably, that neglect-
ing short-term constraints within long-term planning leads to an underestimation of
the investment required in peaking fossil units, unrealistic production schedules with
high amounts of load not served and an underestimation of carbon emissions.

2. Insights were gained by employing quantitative flexibility metrics for the assessment,
most notably that expansion plans obtained through the integrated model are robust
to the different renewable energy penetration and emission scenario realizations, in
terms of flexibility shortage, i.e., they maintain a constant low shortage level regard-
less of the different requirements imposed.

3. On the other hand, flexibility-neglecting generation expansion planning models have
shown a linear and significant trend of flexibility shortage with respect to the different
renewable energy sources penetration requirements, enough to offset any computa-
tional advantage they have when such requirements are binding.

4. The complementarity of the two metrics considered, with regards to the frequency of
flexibility shortage (IRRE) and its magnitude (EFS), is highlighted. It is shown that the
sensitivity of one with respect to the different scenarios can be more significant than
the other, which is important to consider for real applications.

5. Moreover, the results emphasize the importance of the use of suitable quantitative
metrics for operational flexibility assessment, as opposed to relying on other generic
indicators, such as the generation technology mix or system costs, which are not ca-
pable of reflecting the true flexibility levels of the obtained plans.

6. For real applications, the integrated framework can be used by power system planners
to rapidly and accurately evaluate the impact of different system parameters and pol-
icy requirements on the resulting generation expansion plans, most notably in terms
of operational flexibility. The planner can, then, adapt the policy requirements to en-
sure generation plans with an adequate flexibility level or set proper expectations on
which levels are attainable under a specific set of parameters and requirements.

7. Finally, several remarks are highlighted in the relevant sections regarding the proper
treatment of IRES investments as decision variables within the simplified GEP model
as well as the horizon reduction methods, which can prove useful for practitioners if
similar types of models are to be considered.
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7.1.2 Resilience [Chapter 5, Paper (ii)]

With respect to planning for resilience against extreme weather events, a set of piece-wise
linear models to quantify the impact of extreme heat waves and drought events have been
proposed, as well as a method to integrate their impacts within the power system planning
model. A practically sized case study based on realistic climate projections obtained from
the Coupled Model Intercomparison Project Phase 5 (CMIP5) and system attributes repre-
sentatives of the southern French geographical area has been investigated. Several extreme
climate scenarios related to heat waves and water shortages are investigated and the results
are compared between the resilience-driven planning framework proposed and the conven-
tional planning results.

Through the analysis of the results of the case studies considered, the following general
conclusions can be drawn:

1. The results show that significant improvements in terms of load supply during an
extreme heat wave and drought events can be achieved under the resilient planning
framework, compared to conventional planning.

2. Moreover, it is shown that although these improvements come at higher investment
and operational costs, they are fully offset by the economic savings achieved by re-
ducing the amount of load loss during those events.

3. With respect to the interaction between system resilience and operational flexibility,
the results illustrate that although the plans obtained have higher flexibility shortage
levels, they keep at least an order of magnitude lower than the load losses due to
the lack of system resilience. This further highlights the advantage of extending the
modeling to adopt a more comprehensive planning framework.

7.1.3 Uncertainties [Chapter 6, Paper (iii)]

To account for the uncertainty and intermittency of high shares of renewable energy produc-
tion and system load, the power system planning model, which accounts for detailed short-
term unit commitment and ramping constraints, has been treated via a multi-stage adaptive
robust optimization model. The model accounts for the here-and-now commissionning and
commitment decisions made robust against load and renewable generation uncertainties,
and the wait-and-see dispatch decisions subject to uncertainty realization. To alleviate the
computational burden, a novel solution method based on “information basis” level approx-
imation for the linear decision rules has been proposed and a sensitivity analysis has been
performed to confirm the effectiveness of this solution approach. A realistic-size case study
is investigated to compare the significance of using the developed approach on the results,
even in comparison to worst-case analysis of the deterministic model or other stochastic
methods.

Through the analysis of the results of the case studies considered, the following general
conclusions can be drawn:

1. the results show how the multi-stage affinely adjustable robust optimization model
can be formulated and effectively implemented to handle load and IRES uncertainties
in power system planning problems.

2. the sensitivity analysis conducted on the “information level” parameter introduced in
the proposed solution method shows how significant computational gains are achieved
using this method, with negligible loss in the solution accuracy.
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3. the results of the worst-case analysis conducted show how considering the detailed
ramping constraints within a multistage robust model significantly improves the plans
obtained in terms of operational flexibility; this is because those uncertainties re-define
the worst-case ramping requirements in such a way that would not be captured within
stochastic or non-causal planning models.

7.2 Future work

A limitation of the work presented in this thesis lies in the mixed integer linear optimization
models considered. Indeed, the economic planning parameters and the technical behavior
of energy generation are affected by nonlinear conditions. For instance, production costs
and ramping rates are nonlinear functions of the variations in partial-load levels, whereas
start-up costs and times are nonlinear functions of the shut-down duration. These condi-
tions become particularly relevant when short-term capabilities and operational flexibility
are considered in the model. In this regard, future work will be devoted to the extension of
the optimization model for accounting of nonlinearities in the system.

Moreover, the modeling and optimization framework presented here can be directly
extended to multi-regional planning, to account for the differences in weather conditions
across the different regions. Additionally, since extreme weather events are uncertain and
stochastic in nature, the presented deterministic metric for resilience can be improved by
accounting for the uncertainties within a probabilistic framework.

Finally, a natural extension of the present framework could explore the potential bene-
fits of considering demand-side management policies, and/or different storage options as
operational flexibility and resilience enabling resources for future power systems.
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A Approximating the IRES-CF for
the long-term GEP model

One way to approximate the IRES-CF is to re-order the chronological CF values in descend-
ing order and divide them into CF-blocks, each having a level and duration. A fundamental
problem with this approach is that it presumes that the highest IRES-CF is concurrent with
the highest load level and, analogously, the lowest IRES-CF is concurrent with the lowest
load level. This imposes a significant and unrealistic bias in the results. We, thus, propose to
approximate the IRES capacity factor duration curve (RES-CFDC) in a way that maintains
the real hourly correlation between the load and the IRES availability, when both chronolog-
ical time-series are available.
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FIGURE A.1 – 6 weeks representation of load and Solar CF yearly data
and their step function approximation

This can be best illustrated by means of an example: consider a 6 weeks representation
of hourly load and solar CF time series, such as that shown in Figure (A.1). This can be a
forecasted time-series or historically monitored data. Each hourly load level corresponds
to a specific solar CF for the same hour. When the load is re-ordered in descending order
into a LDC, the solar-CF is re-ordered by maintaining each CF respective value relative to
its original hourly load level. When the LDC is, then, approximated by a step-function to
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obtain average load levels and durations, the same duration blocks are used to segment and
find corresponding average values for the solar CF time-series.
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B Illustration of the high temporal
variability in the load profiles used
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FIGURE B.1 – Weekly load profile samples for each year of the plan-
ning horizon considered (illustration of the wide variation in inter-

temporal variability considered in the study)
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C Complete multi-stage adaptive
robust optimization model
formulation

C.1 Robust model formulation

Letting V t
ys (= {Lt

ys, CFt
ys}), ∀y ∈ Y, s ∈ S, t ∈ T, and given that recourse decisions made in a time period t

depend on the full history of the load L and IRES-CF CF from the first time period up to t, the formulation
of the robust counterpart (RC) is:

min
Ω,Θ

∑
y∈Y

(1 + DR)−y · ∑
i∈Inew

Cinv
i · Pmax

i · qiy (C.1a)

+ ∑
y∈Y

(1 + DR)−y ·∑
s∈S
·∑

t∈T
∑

i∈Ith

(
Cstup

i · ziyst

)
(C.1b)

+ ∑
y∈Y

(1 + DR)−y ·∑
i∈I

C f om
iy · Pmax

i ·
y

∑
l=1

qil (C.1c)

+ max
V t

ys∈ U t
ys

t∈T

∑
y∈Y

(1 + DR)−y ·∑
s∈S

∑
t∈T

[
∑
i∈I

(
Cmrgl

iy · piyst(V t
ys)
)
+ Clns · lnsyst(V t

ys)

]
(C.1d)

s.t.
Commissioning and commitment constraints

xiy ≤
y

∑
l=1

qil , ∀i ∈ Inew, ∀y ∈ Y (C.2)

∑
i∈Inew

Cinv
i · Pmax

i · qiy ≤ Bmax
y , ∀y ∈ Y (C.3)

∑
i∈I

(
Pmax

i · xiy
)
≥
(

1 + rmin
)
· Lmax , ∀y ∈ Y (C.4)

∑
i∈Ires

xiy · Pmax
i ≥ Penlvl

y ·∑
i∈I

xiy · Pmax
i , ∀y ∈ Y (C.5)

uiyst ≤ xiy, ∀ith ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.6)

uiyst − uiyst−1 = ziyst − viyst, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (C.7)

uiyst ≥
t

∑
τ≥t−Mu

i

ziysτ , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1, ..., Mu
i } (C.8)

xiy − uiyst ≥
t

∑
τ≥t−Md

i

viysτ , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1, ..., Md
i } (C.9)
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formulation

Full immunization

∀V t
ys ∈ ∏

t′∈[t]
U t′

ys, [t] , {1, ..., t}, ∃piyst(.), lnsyst(.) ∈ R+, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.10)

Dispatch constraints

∑
i∈I

piyst(V t
ys) + lnsyst(V t

ys) = Lyst, ∀y ∈ Y, s ∈ S, t ∈ T (C.11)

piyst(V t
ys) ≤ uiyst · Pmax

i · (1− εi) , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (C.12)

piyst(V t
ys) ≥ uiyst · Pmin

i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (C.13)

piyst(V t
ys) ≤ xiy · Pmax

i · CFiyst, ∀i ∈ Ires, y ∈ Y, s ∈ S, t ∈ T (C.14)

piyst(V t
ys)− piyst−1(V t−1

ys ) ≤ uiyst−1 · RUmax
i + ziyst · Pstart

i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (C.15)

piyst−1(V t−1
ys )− piyst(V t

ys) ≤ uiyst−1 · RDmax
i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (C.16)

piyst(V t
ys), lnsyst(V t

ys) ≥ 0, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.17)

C.2 Solution methodology

Because of the full immunization constraint and the fact that the uncertain parameters are real-valued,
the robust counterpart is semi-infinite, in that it has a finite number of decision variables but an infinite
number of constraints. Applying linear decision rules on continuous recourse variables, where the re-
course variables Ryst(V t

ys) = R0
yst + ∑

t′∈[t]
RL

ystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
RC

i′ ystt′
· CFi′ yst′ , where [t] , {1, ..., t} and

(R0
yst, RL

ystt′
, RC

i′ ystt′
) are the coefficients of the linear decision rule. Then, in the model with linear decision

rules, the constraints can be processed into a finite number of linear constraints, relying on a duality-based
reformulation to obtain the final MILP problem. the robust counterpart becomes:

min
Ω,Θ

∑
y∈Y

(1 + DR)−y · ∑
i∈Inew

Cinv
i · Pmax

i · qiy (C.18)

+ ∑
y∈Y

(1 + DR)−y ·∑
s∈S
·∑

t∈T
∑

i∈Ith

(
Cstup

i · ziyst

)
(C.19)

+ ∑
y∈Y

(1 + DR)−y ·∑
i∈I

C f om
iy · Pmax

i ·
y

∑
l=1

qil (C.20)

+ ∑
y∈Y

Qy (C.21)

s.t. first stage constraints (C.2)-(C.9)

s.t. ∀V t
ys ∈ ∏

t′∈[t]
U t′

ys, [t] , {1, ..., t}, ∃piyst(.) ∈ R+, lnsyst ∈ R+, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.22)

Qy ≥ (1 + DR)−y ·∑
s∈S

∑
t∈T


∑

i∈I
Cmrgl

iy ·
(

p0
iyst + ∑

t′∈[t]
pL

iystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
pC

i′ iystt′
· CFi′ yst′

)

+ Clns ·
(
lns0

yst + ∑
t′∈[t]

lnsL
ystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
lnsC

i′ ystt′
· CFi′ yst′

)

 , ∀y ∈ Y (C.23)
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∑
i∈I


p0

iyst + ∑
t′∈[t]

pL
iystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
pC

i′ iytt′
· CFi′ yst′


+


lns0

yst + ∑
t′∈[t]

lnsL
ystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
lnsC

i′ ystt′
· CFi′ yst′


 = Lyst, ∀y ∈ Y, s ∈ S, t ∈ T (C.24)


p0

iyst + ∑
t′∈[t]

pL
iystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
pC

i′ iystt′
· CFi′ yst′


 ≤ uiyst · Pmax

i · (1− εi) ,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (C.25)


p0

iyst + ∑
t′∈[t]

pL
iystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
pC

i′ iystt′
· CFi′ yst′


 ≥ uiyst · Pmin

i ,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (C.26)


p0

iyst + ∑
t′∈[t]

pL
iystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
pC

i′ iystt′
· CFi′ yst′


 ≤ xiy · Pmax

i · CFiyst,

∀i ∈ Ires, y ∈ Y, s ∈ S, t ∈ T (C.27)


p0

iyst + ∑
t′∈[t]

pL
iystt′
· Lyst′ + ∑

i′∈Ires
∑

j′∈[j]
pC

i′ iystt′
· CFi′ yst′


−

(
p0

iyst−1 + ∑
t′∈[t−1]

pL
iyst−1t′

· Lyst′

+ ∑
i′∈Ires

∑
t′∈[t−1]

pC
i′ iyst−1t′

· CFi′ yst′

)
≤ uiyst−1 · RUmax

i + ziyst · Pstart
i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1}

(C.28)


p0

iyst−1 + ∑
t′∈[t−1]

pL
iyst−1t′

· Lyst′ + ∑
i′∈Ires

∑
t′∈[t−1]

pC
ii′ yst−1t′

· CFi′ yst′


−

(
p0

iyst + ∑
t′∈[t]

pL
iystt′
· Lyst′

+ ∑
i′∈Ires

∑
t′∈[t]

pC
ii′ ystt′

· CFi′ yst′

)
≤ uiyst−1 · RDmax

i , ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (C.29)


p0

iyst + ∑
t′∈[t]

pL
iystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
pC

ii′ ystt′
· CFi′ yst′


 ≥ 0, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.30)


lns0

yst + ∑
t′∈[t]

lnsL
ystt′
· Lyst′ + ∑

i′∈Ires
∑

t′∈[t]
lnsC

i′ ystt′
· CFi′ yst′


 ≥ 0, ∀y ∈ Y, s ∈ S, t ∈ T (C.31)

Re-arranging the terms of the the constraint, given that an uncertainty-affected constraint LHSys ≤
RHSys, where LHS contains all uncertainty terms and RHS contains the rest, is valid ∀V t

ys ∈ U t
ys, t ∈ T, if
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and only if max
V t

ys∈U t
ys ,t∈T

LHSys ≤ RHSys. Notice that any (≥) constraint can easily be transformed to a (≤)

one and can follow the same above logic. The model, thus, becomes:

min
Ω,Θ

∑
y∈Y

(1 + DR)−y · ∑
i∈Inew

Cinv
i · Pmax

i · qiy (C.32)

+ ∑
y∈Y

(1 + DR)−y ·∑
s∈S
·∑

t∈T
∑

i∈Ith

(
Cstup

i · ziyst

)
(C.33)

+ ∑
y∈Y

(1 + DR)−y ·∑
i∈I

C f om
iy · Pmax

i ·
y

∑
l=1

qil (C.34)

+ ∑
y∈Y

Qy (C.35)

s.t. first stage constraints (C.2)-(C.9)

s.t. ∀V t
ys ∈ ∏

t′∈[t]
U t′

ys, [t] , {1, ..., t}, ∃piyst(.) ∈ R+, lnsyst ∈ R+, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.36)

max
V t

ys∈ U t
ys

t∈T

(1 + DR)−y ·∑
s∈S

∑
t∈T


 ∑

t′∈[t]

(
∑
i∈I

pL
iystt′

+ lnsL
ystt′

)
· Lyst′ + ∑

t′∈[t]
∑

i′∈Ires

(
∑
i∈I

pC
ii′ystt′

+ lnsC
ystt′

)
· CFi′ yst′




≤ Qy − (1 + DR)−y ·∑
s∈S

∑
t∈T

[
∑
i∈I

(
Cmrgl

iy · p0
iyst

)
+
(

Clns · lns0
yst

)]
, ∀y ∈ Y. (C.37)

(
∑
i∈I

p0
iyst + lns0

yst

)
+ ∑

t′∈[t−1]

(
∑
i∈I

pL
iystt′

+ lnsL
ystt′

)
· Lyst′ +

(
∑
i∈I

pL
iystt + lnsL

ystt − 1

)
· Lyst+

∑
i′∈Ires

∑
t′∈[t]

(
∑
i∈I

pC
ii′ ystt′

+ lnsC
ystt′

)
· CFi′ yst′ = 0, ∀V t

ys ∈ U t
ys, y ∈ Y, s ∈ S, t ∈ T (C.38)

max
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
pC

ii′ ystt′
· CFi′ yst′

)
≤ (1− εi) · Pmax

i · uiyst − p0
iyst,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (C.39)

min
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
pC

ii′ ystt′
· CFi′ yst′

)
≥ uiyst · Pmin

i − p0
iyst,

∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.40)

max
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑
{i′∈Ires ,t

′∈[t]:
i
′ 6=i,t

′ 6=t}

(
pC

ii′ ystt′
· CFi′ yst′

)
+
(

pC
iiystt − ·xiy · Pmax

i

)
·

CFiyst ≤ −p0
iyst, ∀i ∈ Ires, y ∈ Y, s ∈ S, t ∈ T (C.41)
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max
V t

ys∈U t
ys

∑
t′∈[t−1]

(
pL

iystt′
− pL

iyst−1t′
)
· Lyst′ + pL

iystt · Lyst + ∑
i′∈Ires

(
∑

t′∈[t−1]

(
pC

ii′ ystt′
− pC

ii′ yst−1t′

)
· CFi′ yst′

+ pC
ii′ ystt

· CFi′ yst

)
≤ uiyst−1 · RUmax

i + ziyst · Pstart
i − p0

iyst + p0
iyst−1, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1}

(C.42)

max
V t

ys∈U t
ys

∑
t′∈[t−1]

(
pL

iyst−1t′
− pL

iystt′
)
· Lyst′ − pL

iystt · Lyst + ∑
i′∈Ires

(
∑

t′∈[t−1]

(
pC

ii′ yst−1t′
− pC

ii′ ystt′

)
· CFi′ yst′

− pC
ii′ ystt

· CFi′ yst

)
≤ uiyst−1 · RDmax

i − p0
iyst−1 + p0

iyst ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (C.43)

min
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
pC

ii′ ystt′
· CFi′ yst′

)
≥ −p0

iyst, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T

(C.44)

min
V t

ys∈U t
ys

∑
t′∈[t]

(
lnsL

ystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
lnsC

i′ ystt′
· CFi′ yst′

)
≥ −lns0

yst, ∀y ∈ Y, s ∈ S, t ∈ T (C.45)

C.3 Constraint Processing

Dualizing the left-hand side of the constraint and because of strong duality, this set of non-linear inequal-
ities can be replaced by the set of linear inequalities, where π is the vector of dual variables associated
with the bounds of the uncertainty set. Below we illustrate how the semi-infinite robust counterpart is
converted into a finite mixed integer linear programming problem.

1. Dualizing constraint (C.37):

max
V t

ys∈ U t
ys

t∈T

(1 + DR)−y ·∑
s∈S

∑
t∈T


 ∑

t′∈[t]

(
∑
i∈I

pL
iystt′

+ lnsL
ystt′

)
· Lyst′ + ∑

t′∈[t]
∑

i′∈Ires

(
∑
i∈I

pC
ii′ystt′

+ lnsC
ystt′

)
· CFi′ yst′




≤ Qy − (1 + DR)−y ·∑
s∈S

∑
t∈T

[
∑
i∈I

(
Cmrgl

iy · p0
iyst

)
+
(

Clns · lns0
yst

)]
, ∀y ∈ Y.

Becomes the set of equations:

∑
s∈S


∑

t′∈T

(πA
yst′
· L̄yst′ − πB

yst′
· L

¯ yst′ ) + ∑
t′∈T

∑
i′∈Ires

(πC
i′ yst′
· C̄Fi′ yst′ − πD

i′ yst′
·CF

¯ i′ yst′ )

+ ∑
t′∈T


πE

yst′
· Γ · (L̄yst′ − ∑

i′∈Ires

CF
¯ i′ yst′ )




 ≤ Qy − (1 + DR)−y ·∑

s∈S
∑
t∈T

[
∑
i∈I

Cmrgl
iy · p0

iyst + Clns · lns0
yst

]
,

∀y ∈ Y. (C.46a)

πA
yst′
− πB

yst′
+ πE

yst′
≥ (1 + DR)−y ·

T

∑
t=t′

(
∑
i∈I

Cmrgl
iy · pL

iystt′
+ Clns · lnsL

ystt′

)
,

∀y ∈ Y, s ∈ S, t
′ ∈ T (C.46b)
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πC
i′ yst′
− πD

i′ yst′
− πE

yst′
≥ (1 + DR)−y ·

T

∑
t=t′

(
∑
i∈I

Cmrgl
iy · pC

ii′ystt′
+ Clns · lnsC

ystt′

)
,

∀i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′ ∈ T (C.46c)

πA
yst′

, πB
yst′

, πC
i′ yst′

, πD
i′ yst′

, πE
yst′
≥ 0, ∀i

′ ∈ Ires, y ∈ Y, s ∈ S, t
′ ∈ T (C.46d)

2. Constraint (C.38):

(
∑
i∈I

p0
iyst + lns0

yst

)
+ ∑

t′∈[t−1]

(
∑
i∈I

pL
iystt′

+ lnsL
ystt′

)
· Lyst′ +

(
∑
i∈I

pL
iystt + lnsL

ystt − 1

)
· Lyst+

∑
i′∈Ires

∑
t′∈[t]

(
∑
i∈I

pC
ii′ ystt′

+ lnsC
ystt′

)
· CFi′ yst′ = 0, ∀V t

ys ∈ U t
ys, y ∈ Y, s ∈ S, t ∈ T

Becomes the set of equations:

∑
i∈I

p0
iyst + lns0

yst = 0, ∀y ∈ Y, s ∈ S, t ∈ T (C.47a)

∑
i∈I

pL
iystt′

+ lnsL
ystt′

= 0, ∀y ∈ Y, s ∈ S, t
′ ∈ [t− 1], t ∈ T (C.47b)

∑
i∈I

pL
iystt′ + lnsL

ystt′ = 1, ∀y ∈ Y, s ∈ S, t′ = t, t ∈ T (C.47c)

∑
i∈I

pC
ii′ ystt′

+ lnsC
ystt′

= 0, ∀i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (C.47d)

3. Constraint (C.39):

max
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
pC

ii′ ystt′
· CFi′ yst′

)
≤ (1− εi) · Pmax

i · uiyst − p0
iyst,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T

Becomes the set of linear inequalities:

∑
t′∈[t]

(πA2
iystt′
· L̄yst′ − πB2

iystt′
· L

¯ yst′ ) + ∑
i′∈Ires ,t′∈[t]

(πC2
ii′ ystt′

· C̄Fi′ yst′ − πD2
ii′ ystt′

·CF
¯ i′ yst′ )

+ ∑
t′∈[t]

πE2
iystt′
· Γ · (L̄yst′ − ∑

i′∈Ires

CF
¯ i′ yst′ ) ≤ (1− εi) · Pmax

i · uiyst − p0
iyst,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (C.48a)

πA2
iystt′
− πB2

iystt′
+ πE2

iystt′
≥ pL

iystt′
, ∀i ∈ Ith, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (C.48b)
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πC2
ii′ ystt′

− πD2
ii′ ystt′

− πE2
iystt′

≥ pC
ii′ ystt′

, ∀i
′ ∈ Ires, i ∈ Ith, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (C.48c)

πA2
iystt′

, πB2
iystt′

, πC2
ii′ ystt′

, πD2
ii′ ystt′

, πE2
iystt′

≥ 0, ∀i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (C.48d)

4. Constraint (C.40):

min
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
pC

ii′ ystt′
· CFi′ yst′

)
≥ uiyst · Pmin

i − p0
iyst,

∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T

Can be written as:

max
V t

ys∈U t
ys

∑
t′∈[t]

(
−pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
−pC

ii′ ystt′
· CFi′ yst′

)
≤ p0

iyst − uiyst · Pmin
i ,

∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.49a)

and becomes the set of linear inequalities:

∑
t′∈[t]

(πA3
iystt′
· L̄yst′ − πB3

iystt′
· L

¯ yst′ ) + ∑
i′∈Ires

∑
t′∈[t]

(πC3
ii′ ystt′

· C̄Fi′ yst′ − πD3
ii′ ystt′

·CF
¯ i′ yst′ )

+ ∑
t′∈[t]

πE3
iystt′
· Γ · (L̄yst′ − ∑

i′∈Ires

CF
¯ i′ yst′ ) ≤ p0

iyst − uiyst · Pmin
i , ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.49b)

πA3
iystt′
− πB3

iystt′
+ πE3

iystt′
≥ −pL

iystt′
, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T, t

′ ∈ [t] (C.49c)

πC3
ii′ ystt′

− πD3
ii′ ystt′

− πE3
iystt′

≥ −pC
ii′ ystt′

, ∀i ∈ I, i
′ ∈ Ires, y ∈ Y, s ∈ S, t ∈ T, t

′ ∈ [t] (C.49d)

πA3
iystt′

, πB3
iystt′

, πC3
ii′ ystt′

, πD3
ii′ ystt′

, πE3
iystt′

≥ 0, ∀i ∈ I, i
′ ∈ Ires, y ∈ Y, s ∈ S, t ∈ T, t

′ ∈ [t] (C.49e)

5. Constraint (C.41):

max
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑
{i′∈Ires ,t

′∈[t]:
i
′ 6=i,t

′ 6=t}

(
pC

ii′ ystt′
· CFi′ yst′

)
+
(

pC
iiystt − ·xiy · Pmax

i

)
·

CFiyst ≤ −p0
iyst, ∀i ∈ Ires, y ∈ Y, s ∈ S, t ∈ T

Becomes the set of equations:

∑
t′∈[t]

(πA4
iystt′
· L̄yst′ − πB4

iystt′
· L

¯ yst′ ) + ∑
i′∈Ires ,t′∈[t]

(πC4
ii′ ystt′

· C̄Fi′ yst′ − πD4
ii′ ystt′

·CF
¯ i′ yst′ )

+ ∑
t′∈[t]

πE4
iystt′
· Γ · (L̄yst′ − ∑

i′∈Ires

CF
¯ i′ yst′ ) ≤ −p0

iyst, ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T (C.50a)

πA4
iystt′
− πB4

iystt′
+ πE4

iystt′
≥ pL

iystt′
, ∀i ∈ Ith, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (C.50b)
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πC4
ii′ ystt′

− πD4
ii′ ystt′

− πE4
iystt′

≥ pC
ii′ ystt′

, ∀{i′ ∈ Ires, j
′ ∈ [j] : i

′ 6= i, j
′ 6= j}, i ∈ Ires, j ∈ J, y ∈ Y (C.50c)

πC4
ii′ ystt′

− πD4
ii′ ystt′

− πE4
iystt′

≥ pC
ii′ ystt′

− xi,y · Pmax
i , ∀i ∈ Ires, j ∈ J, y ∈ Y, i

′
= i, j

′
= j (C.50d)

πA4
iystt′

, πB4
iystt′

, πC4
ii′ ystt′

, πD4
ii′ ystt′

, πE4
iystt′

≥ 0, ∀i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (C.50e)

6. Constraint (C.42):

max
V t

ys∈U t
ys

∑
t′∈[t−1]

(
pL

iystt′
− pL

iyst−1t′
)
· Lyst′ + pL

iystt · Lyst + ∑
i′∈Ires

(
∑

t′∈[t−1]

(
pC

ii′ ystt′
− pC

ii′ yst−1t′

)
· CFi′ yst′

+ pC
ii′ ystt

· CFi′ yst

)
≤ uiyst−1 · RUmax

i + ziyst · Pstart
i − p0

iyst + p0
iyst−1,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1}

Becomes the set of inequalities:

∑
t′∈[t]

(πA5
iystt′
· L̄yst′ − πB5

iystt′
· L

¯ yst′ ) + ∑
i′∈Ires

∑
t′∈[t]

(πC5
ii′ ystt′

· C̄Fi′ yst′ − πD5
ii′ ystt′

·CF
¯ i′ yst′ )

+ ∑
t′∈[t]

πE5
iystt′
· Γ · (L̄yst′ − ∑

i′∈Ires

CF
¯ i′ yst′ ) ≤ uiyst−1 · RUmax

i + ziyst · Pstart
i − p0

iyst + p0
iyst−1,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (C.51a)

πA5
iystt′
− πB5

iystt′
+ πE5

iystt′
≥ pL

iystt′
− pL

iyst−1t′
, ∀i ∈ Ith, y ∈ Y, s ∈ S, t

′ ∈ [t− 1], t ∈ T \ {1} (C.51b)

πA5
iystt′
− πB5

iystt′
+ πE5

iystt′
≥ pL

iystt′
, ∀i ∈ Ith, y ∈ Y, s ∈ S, t

′
= t, t ∈ T \ {1} (C.51c)

πC5
ii′ ystt′

− πD5
ii′ ystt′

− πE5
iystt′

≥ pC
ii′ ystt′

− pC
ii′ yst−1t′

, ∀i ∈ Ith, i
′ ∈ Ires, y ∈ Y,

s ∈ S, t
′ ∈ [t− 1], t ∈ T \ {1} (C.51d)

πC5
ii′ ystt′

− πD5
ii′ ystt′

− πE5
iystt′

≥ pC
ii′ ystt′

, ∀i ∈ Ith, i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′
= t, t ∈ T \ {1} (C.51e)

πA5
iystt′

, πB5
iystt′

, πC5
ii′ ystt′

, πD5
ii′ ystt′

, πE5
iystt′

≥ 0, ∀i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (C.51f)

7. Constraint (C.43):

max
V t

ys∈U t
ys

∑
t′∈[t−1]

(
pL

iyst−1t′
− pL

iystt′
)
· Lyst′ − pL

iystt · Lyst + ∑
i′∈Ires

(
∑

t′∈[t−1]

(
pC

ii′ yst−1t′
− pC

ii′ ystt′

)
· CFi′ yst′

− pC
ii′ ystt

· CFi′ yst

)
≤ uiyst−1 · RDmax

i − p0
iyst−1 + p0

iyst ∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1}
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Becomes the set of inequalities:

∑
t′∈[t]

(πA6
iystt′
· L̄yst′ − πB6

iystt′
· L

¯ yst′ ) + ∑
i′∈Ires

∑
t′∈[t]

(πC6
ii′ ystt′

· C̄Fi′ yst′ − πD6
ii′ ystt′

·CF
¯ i′ yst′ )

+ ∑
t′∈[t]

πE6
iystt′
· Γ · (L̄yst′ − ∑

i′∈Ires

CF
¯ i′ yst′ ) ≤ uiyst−1 · RDmax

i − p0
iyst−1 + p0

iyst,

∀i ∈ Ith, y ∈ Y, s ∈ S, t ∈ T \ {1} (C.52a)

πA6
iystt′
− πB6

iystt′
+ πE6

iystt′
≥ pL

iyst−1t′
− pL

iystt′
, ∀i ∈ Ith, y ∈ Y, s ∈ S, t

′ ∈ [t− 1], t ∈ T \ {1} (C.52b)

πA6
iystt′
− πB6

iystt′
+ πE6

iystt′
≥ −pL

iystt′
, ∀i ∈ Ith, y ∈ Y, s ∈ S, t

′
= t, t ∈ T \ {1} (C.52c)

πC6
ii′ ystt′

− πD6
ii′ ystt′

− πE6
iystt′

≥ pC
ii′ yst−1t′

− pC
ii′ ystt′

,∀i ∈ Ith, i
′ ∈ Ires, y ∈ Y,

s ∈ S, t
′ ∈ [t− 1], t ∈ T \ {1} (C.52d)

πC6
ii′ ystt′

− πD6
ii′ ystt′

− πE6
iystt′

≥ −pC
ii′ ystt′

, ∀i ∈ Ith, i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′
= t, t ∈ T \ {1} (C.52e)

πA6
iystt′

, πB6
iystt′

, πC6
ii′ ystt′

, πD6
ii′ ystt′

, πE6
iystt′

≥ 0, ∀i
′ ∈ Ires, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (C.52f)

8. Constraint (C.44):

min
V t

ys∈U t
ys

∑
t′∈[t]

(
pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
pC

ii′ ystt′
· CFi′ yst′

)
≥ −p0

iyst,

∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T

Can be written as:

max
V t

ys∈U t
ys

∑
t′∈[t]

(
−pL

iystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
−pC

ii′ ystt′
· CFi′ yst′

)
≤ p0

iyst,

∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.53a)

and becomes the set of linear inequalities:

∑
t′∈[t]

(πA7
iystt′
· L̄yst′ − πB7

iystt′
· L

¯ yst′ ) + ∑
i′∈Ires

∑
t′∈[t]

(πC7
ii′ ystt′

· C̄Fi′ yst′ − πD7
ii′ ystt′

·CF
¯ i′ yst′ )

+ ∑
t′∈[t]

πE7
iystt′
· Γ · (L̄yst′ − ∑

i′∈Ires

CF
¯ i′ yst′ ) ≤ p0

iyst, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (C.53b)

πA7
iystt′
− πB7

iystt′
+ πE7

iystt′
≥ −pL

iystt′
, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T, t

′ ∈ [t] (C.53c)

πC7
ii′ ystt′

− πD7
ii′ ystt′

− πE7
iystt′

≥ −pC
ii′ ystt′

, ∀i ∈ I, i
′ ∈ Ires, y ∈ Y, s ∈ S, t ∈ T, t

′ ∈ [t] (C.53d)
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formulation

πA7
iystt′

, πB7
iystt′

, πC7
ii′ ystt′

, πD7
ii′ ystt′

, πE7
iystt′

≥ 0, ∀i ∈ I, i
′ ∈ Ires, y ∈ Y, s ∈ S, t ∈ T, t

′ ∈ [t] (C.53e)

9. Constraint (C.45):

min
V t

ys∈U t
ys

∑
t′∈[t]

(
lnsL

ystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
lnsC

i′ ystt′
· CFi′ yst′

)
≥ −lns0

yst,

∀y ∈ Y, s ∈ S, t ∈ T

Can be written as:

max
V t

ys∈U t
ys

∑
t′∈[t]

(
−lnsL

ystt′
· Lyst′

)
+ ∑

i′∈Ires
∑

t′∈[t]

(
−lnsC

i′ ystt′
· CFi′ yst′

)
≤ lns0

yst,

∀y ∈ Y, s ∈ S, t ∈ T (C.54a)

and becomes the set of linear inequalities:

∑
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πE8
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CF
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yst, ∀y ∈ Y, s ∈ S, t ∈ T (C.54b)

πA8
ystt′
− πB8
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+ πE8
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ystt′
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′ ∈ [t] (C.54c)

πC8
i′ ystt′

− πD8
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Abstract

This paper proposes an integrated framework for operational flexibility assessment

in power system planning with a significant share of intermittent renewable energy

sources (RES). The framework proposed includes: (i) the formulation of an integrated

generation expansion planning (GEP) and unit commitment (UC) model accounting

for key short-term technical constraints, (ii) the elaboration of accurate and system-

atic horizon reduction methods to alleviate the computational burden of the resulting

large-sized optimization problems and (iii) the definition of suitable metrics for the

operational flexibility assessment of the obtained plans. The framework is applied

to a ten year planning horizon of a realistically sized case study representing the

national power system of France, under several scenarios of RES penetration levels

and carbon limits, spanning levels of up to 50%. The importance of incorporating

the detailed short-term constraints within long-term planning models is investigated

and the results of the assessment clearly show that neglecting them leads to plans

significantly short on flexibility, and more so for high renewable energy penetration

levels. Moreover, the results highlight the importance of relying on suitable quanti-

tative metrics for operational flexibility assessment in power systems planning rather

Email addresses: islam.abdin@centralesupelec.fr (Islam F. Abdin),
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than solely relying on generic performance measures, such as system costs and mixes

of power plants, which are shown not to sufficiently reflect the flexibility levels of the

obtained plans.

Keywords:

Operational Flexibility, Flexibility Metrics, Generation Expansion Planning, Unit

Commitment, Renewable Energy Penetration, Optimization

List of symbols

Indexes:

i index of power plant cluster

j index of sub-periods (hours)

s index of sub-periods (load-levels)

y index of planning year

Sets:

I set of power plant clusters

Inew subset of new power plants cluster

Ires subset of renewable energy units cluster

Ith subset of thermal and nuclear units cluster

J set of hourly sub-periods

S set of load-levels sub-periods

Y set of years in the planning horizon

Θ set of investment decision variables

Ω set of operation decision variables

Parameters:

Y end end year of the planning horizon

Y res first year during which the RES quota target is binding
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Ly,∗ demand at sub-period j or s in year y (MW)

Dury,s duration of load block s in year y (hours)

Pmaxi maximum capacity of power plant i (MW)

Pmini minimum stable power output of power plant i ∈ Ith (MW/h)

Cinvi investment cost of unit i (Me)

Imaxi maximum allowable units to be commissioned within the planning horizon

T lifei expected life-time of new power plant i (years)

T consti construction time of power plant i (years)

RUmaxi maximum upwards ramping capability of power plant i ∈ Ith (MW/h)

RDmaxi maximum downwards ramping capability of power plant i ∈ Ith (MW/h)

P starti maximum output of power plant i ∈ Ith when started (MW)

CFi,y,∗ capacity factor of renewable energy sources i ∈ Ires during sub-period j or s,

of year y (%)

Ei amount of carbon emission per MWh of power plant i (tCO2 / MWh)

Emaxy maximum total allowable emission per year y (tCO2)

EFORi Expected forced outage rate of power plant i (%)

Mu
i minimum up-time for power plant i ∈ Ith (hours)

Md
i minimum down-time of power plant i ∈ Ith (hours)

DRy discount rate for year y (%)

Cmrgli,y marginal cost of power plant i including the variable O&M and CO2 costs,

considering inflation (e/ MWh)

Csi start-up cost of power plant i (e)

C lns cost of load not served (e/ MWh)

Cfomi fixed O&M costs of power plant i (e)

Penlevely annual renewable penetration level requirement (%)

Prr percentage of the load required to be covered by primary reserve (%)

Srrup percentage of the load required to be covered by the secondary upwards reserve

(%)

Srrdn percentage of the load required to be covered by the secondary downwards

reserve (%)

ares percentage of the variable generation output covered by secondary reserve (%)
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rmin minimum planning reserve margin (MW)

Continuous Variables:

pi,y,∗ energy output of power plant i at sub-period j or s, during year y (MWh)

pri,y,j primary reserve of unit i at sub-period j during year y (MWh)

srupi,y,j secondary upwards reserve of unit i at sub-period j during year y (MWh)

srdni,y,j secondary downwards reserve of unit i at sub-period j during year y (MWh)

lnsy,∗ load not served at sub-period j or s, during year y (MW)

vi,y,j shut-down decision of unit i during sub-period j in year y

Discrete Variables:

xi,y availability (commissioning) state of power plant i in year y

qi,y commissioning decision of power plant i in year y

ui,y,j commitment status of power plant i during sub-period j in year y

zi,y,j start-up decision of power plant i during sub-period j in year y

Acronyms:

CF Capacity Factor

EFS Expected Flexibility Shortfall

GEP Generation Expansion Planning

IRRE Insufficient Ramping Resources Expectation

LDC Load Duration Curve

LNS Load Not Served

MILP Mixed Integer Linear Programming

O&M Operation and Maintenance

RES Renewable Energy Sources

UC Unit Commitment
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I. Introduction

Generation expansion planning (GEP) is a well studied techno-economic problem, which

relates to determining the optimal of generation technologies mix, their siting and their in-

vestment schedules, for ensuring that the electricity demand over a certain time horizon

can be satisfied. With the power sector being constantly subjected to changes, driven by

economical, technical, social and environmental issues, GEP modeling techniques have con-

tinuously evolved to accommodate the newly arising requirements. Such modeling advance-

ments have been covered in recent literature reviews and include, among others (Sadeghi

et al., 2017; Oree et al., 2017): improvements in the details considered (e.g. reliability and

maintenance), policy developments, such as the restructuring of the power sector, renew-

able energy sources (RES) integration and support schemes, uncertainty and stochasticity

modeling, and the consideration of real-options for adaptive power systems design (Caunhye

and Cardin, 2017).

One of the most recent concerns in power systems planning is dealing with the high share

of intermittent RES penetration required in the system, driven by strict environmental poli-

cies, such as the EU renewable energy directive (European Council, 2009) and its proposed

revision (European Council, 2016), and other regional and national targets. The resulting

increased variability in the net load (system demand minus RES production) requires that

the remainder of the thermal units cope with tighter operational flexibility requirements

(Brouwer et al., 2015; Kubik et al., 2015), generally defined as the ability of the system to

respond to the inter-temporal variability rising both from intermittent RES production and

from variations in electricity demand. In this respect, operational flexibility regards the

short-term operation of those generation units and their technical characteristics: ramping

rates, unit commitment states, minimum up and down times, start-up times and minimum

stable load, to name a few.

From an assessment point of view, accounting for operational flexibility in this new

context is a critical element for overall system reliability (see for example Fulli et al. (2017)

for a discussion on these requirements in Europe). Whereas reliability relates to the fact
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that sufficient firm-capacity1 is available at each time period to satisfy the system load, as

measured by typical metrics, such as loss of load expectation (LOLE) and expected energy

not supplied (EENS), operational flexibility considers how a specific operational state of the

system at a given period would contribute to (or hinder) its ability to deploy its resources

for accommodating variations in subsequent periods: for this, no time period can be as-

sessed in isolation of the others, nor without detailed knowledge of the exact system state

and technical characteristics at the given period. Therefore, metrics to describe operational

flexibility have been recently proposed in the literature, varying in the degree of complexity

and in the data required for their estimation. Lannoye et al. (2012) proposes a probabilistic

metric that takes into account key technical characteristics of the generation units, and

aggregates them for a system-level assessment. In (Ulbig and Andersson, 2015) a number of

interdependent metrics are defined for individual generation units to assess their available

flexibility in real time. Oree and Hassen (2016) proposes a composite metric which aggre-

gates a set of the generation units flexibility parameters through normalization, weighting

and correlation analysis, while (Zhao et al., 2016) proposes a metric which additionally

considers the impacts of the transmission network on the flexibility levels.

With respect to power systems planning, traditional long-term GEP models do not con-

sider the chronological representation of net load variations, nor the short-term technical

constraints of the generation units, but rather rely on average system representations. The

generation plans obtained are, therefore, not explicitly driven by the requirement to deal

with short-term variations. This type of evaluation is, on the contrary, typically performed

by the well known unit commitment (UC) problem, which does not consider investment

decisions (Abujarad et al., 2017). Accordingly, to account for the operational flexibility as-

pect, recent planning studies have started to investigate the importance of integrating the

short-term constraints within long-term planning models. Belderbos and Delarue (2015)

solve a traditional GEP model based on a basic screening curve method and propose a per-

turbation algorithm with embedded short-term constraints to improve the plans obtained.

They show that considering the short-term constraints results in the installation of more

1Available generation capacity excluding failed units, units in maintenance, offline units, etc.
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mid and peak load capacities than the case of neglecting them. Similar results are reported

in (Palmintier and Webster, 2016), who solve a combined GEP-UC model for a single fu-

ture year, under several wind penetration and carbon pricing scenarios. Additionally they

show that neglecting short-term constraints leads to an underestimation of carbon emission

and wind curtailment levels of the obtained plans. The same general trends are shown in

(Welsch et al., 2014) and (Wierzbowski et al., 2016) for case studies on Ireland and Poland,

respectively. For multi-annual planning studies, Koltsaklis and Georgiadis (2015) propose

a combined model and use it for the future planning of the Greek power system, while

Guo et al. (2017) propose a similar investigation applied to the Chinese power system. In

both cases the results revealed the correlation between significant RES penetration with

increased amounts of peaking units investments. Finally, Pereira et al. (2017) compare an

integrated model to a classical one for a ten year planning period and show that neglecting

these constraints underestimates both the investment costs and the emissions levels.

The above studies have investigated the importance of including the short-term con-

straints within long-term planning models to account for the operational flexibility in power

systems planning by analyzing the differences in generation mixes, system costs, curtail-

ment levels, or a combination of these. None of those studies, however, have performed a

quantitative assessment using metrics that are specifically designed to evaluate the opera-

tional flexibility aspect. Furthermore, the mentioned planning models are computationally

intensive, so that different ad-hoc methods for the horizon reduction have been used but

neglecting to address the bias that these could introduce on the results of the assessment.

Research objectives and contributions

To overcome these limitations, in this paper we introduce an integrated operational

flexibility assessment framework that i) is based on consistent horizon reduction methods

driven by an explicit optimization objective to avoid biases that can arise from ad-hoc

approximations and ii) adopts suitable metrics to quantitatively assess the flexibility level

of the obtained plans.

Within the framework presented, an integrated GEP-UC model is proposed, cast as a

mixed integer linear programming (MILP) problem, and we employ the integer clustering
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method for handling discrete decision variables (Palmintier and Webster, 2014), which pro-

vides a good approximation and a significant reduction of the computational complexity. A

10 years planning horizon is considered based on realistic load and RES capacity factor data

obtained for the national system of France. The horizon reduction is systematically dealt

with by the implementation of a dynamic programming algorithm that optimizes the step-

function approximation of the traditional GEP model and an exhaustive search algorithm

for the chronological load approximation of the integrated GEP-UC model. For the quan-

titative operational flexibility assessment, the probabilistic metric of insufficient ramping

resource expectation (IRRE) proposed in (Lannoye et al., 2012) is used. We complement

this measure by originally introducing the expected flexibility shortfall (EFS) metric, which

indicates the expected load loss when the system is not able to adequately respond to the

inter-temporal variability.

The numerical examples consider a single-region green-field planning problem with no

generation units existing in the system. On one hand, this is done to avoid any bias those

existing units may impose on the expansion plans and, therefore, to focus solely on the

models outcomes; on the other hand, it is done to validate the framework capability for

efficiently addressing large-sized instances. The framework, however, is straightforwardly

applicable to grey-field planning problems and easily extendable to muli-regional planning.

A wide range of RES penetration levels (0% to 50%), most notably wind and solar, is

considered and the same for carbon emission limits.

The original contributions of the work are:

• The paper contributes to power systems planning with high shares of RES penetration

and stringent carbon targets, by proposing a computationally efficient, multi-period

integrated GEP-UC model that accounts for key short-term constraints and chrono-

logical net load representation. In particular,

* The importance of considering these constraints to account for operational flex-

ibility under high RES penetration has been demonstrated quantitatively by

comparing the output of the integrated model to that of the traditional GEP,

which leads to investment decisions based on average system operating condi-
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tions.

* For computational tractability, horizon reduction is introduced by systematic

optimization, to avoid biases on the results obtained by ad-hoc methods.

• The paper introduces the expected flexibility shortfall (EFS) metric for operational

flexibility assessment to capture the expected amount of load loss specifically due to

insufficient flexibility. We analyze the complementarity of this metric to other metrics

of literature, most notably the insufficient ramping resource expectation (IRRE) pro-

posed in (Lannoye et al., 2012) which considers the expected frequency of flexibility

shortage rather than its magnitude.

• The relevance of the overall modeling for real applications is shown by its application

to a realistic case study representing the national system of France, with load and

RES capacity-factor data spanning a 10-years planning period. Sensitivity to key

supply and demand parameters is also performed.

• The results of the paper for a wide range of RES penetration targets and carbon

emission limits allows highlighting the importance of relying on suitable metrics for

the assessment rather than on quantities typically considered for power system plan-

ning, like generation mixes, system costs and amount of renewable curtailment which

are not capable to reflect the true flexibility levels of the obtained plans.

For real applications, the integrated framework can be used by power system planners

to rapidly and accurately evaluate the impact of different system parameters and policy

requirements on the resulting generation expansion plans, most notably in terms of opera-

tional flexibility. The planner can, then, adapt the policy requirements to ensure generation

plans with an adequate flexibility level or set proper expectations on which levels are at-

tainable under a specific set of parameters and requirements. Moreover, several remarks

are highlighted in the relevant sections regarding the proper treatment of RES investments

as decision variables within the simplified optimization model as well as the horizon reduc-

tion method, which can prove useful for practitioners if similar types of models are to be

considered.
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II. Operational flexibility assessment framework

A. Overview

The integrated operational flexibility assessment framework proposed is schematically

illustrated in Figure (1). For comparison purposes, it will be applied to two types of power

system planning models: the traditional GEP model soft-linked with a UC model (de-

noted S-GEP) and the integrated GEP-UC model solved as a single optimization (denoted

C-GEP). Figure (1a) illustrates the assessment framework applied to the former, and Fig-

ure (1b) that applied to the latter. The framework stands: i) the formulation of the models,

ii) the elaboration of accurate horizon reduction approximation methods and iii) the elabo-

ration of suitable metrics for assessment of the operational flexibility of the of the obtained

plans, described in details in the following sections.

Short-term operational model (UC)

Optimal yearly operating plans

Chronological approximation of load and 
renewable sources capacity factor

Systematic time horizon reduction

𝝋∗ (Section II.C.2)

Planning tool

Step approximation of load and renewable 
sources capacity factor

(Section II.C.1)𝒉𝒏
∗ , 𝒕𝒏

∗

Long-term investment model (GEP)

Optimal yearly investment plans

Ω∗

So
ft

-l
in

ki
n
g

Quantitative operational flexibility assessment

Θ∗

IRRE, EFS (Section II.D)

(Section II.B.1)

S-GEP

(a) Soft-linked planning models
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Integrated planning model with short-term 
constraints

Yearly investment and operating plans

Quantitative operational flexibility assessment

Chronological approximation of load and 
renewable sources capacity factor

Systematic time horizon reduction

(Section II.B.2)

Ω∗, Θ∗

C-GEP

IRRE, EFS

𝝋∗ (Section II.C.2)

Planning tool

(Section II.D)

(b) Integrated models

Figure 1: Operational flexibility assessment framework

B. Power system planning models formulation

As previously mentioned, two types of power system planning models are considered for

operational flexibility assessment:

B.1. Soft-linked GEP-UC model (S-GEP)

The S-GEP model consists of two mixed integer linear programming problems which

are successively solved:

i. A long-term GEP model, which has the objective of minimizing the total discounted

cost over the planning horizon under typical long-term simplified constraints. No hourly

chronological order is considered and load is represented as load blocks derived from

a load-duration curve (LDC) with duration (Dury,s) and levels (Ly,s). The detailed

model formulation can be found in Appendix (A.A)

ii. A short-term UC model, which has the objective of minimizing the short-term oper-

ational costs, taking into account the detailed short-term technical capabilities of the

units, the chronological demand and RES availability. The detailed model formulation

can be found in Appendix (A.B)

The soft linking of the two problems is achieved by:
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1. Solving the long-term GEP problem first, under the simplified system representation;

2. Populating the obtained investment plans within the UC problem, which is, then,

solved to obtain the detailed operation of these plans.

B.2. Combined GEP-UC model (C-GEP)

The C-GEP model is the straightforward integration of the two models described above

into a single optimization model, with the following adjustments:

• The load-duration step representation indexed by (s) in the S-GEP model is replaced

by the hourly chronological representation (j), for all parameters and decision vari-

ables.

• The detailed operating cost equation of the UC objective function replaces that of

the traditional GEP model.

The resulting high resolution MILP problem is known to be computationally challenging,

especially when considering a multi-annual planning horizon: (i) the formulation has been,

therefore, adapted to handle discrete decision variables by means of the integer clustering

method proposed in (Palmintier and Webster, 2014); (ii) and time horizon reduction is

introduced systematically, as explained in the next section.

C. Time horizon reduction

The traditional GEP, UC and integrated GEP-UC models have different natures, no-

tably in the time resolution considered for the load and RES capacity factor (CF). Different

approximation methods are, therefore, employed for the horizon reduction.

C.1. Load and RES-CF approximations for the GEP model

To obtain the investment decisions in the traditional GEP model, yearly load is typically

represented as a load-duration curve (LDC), which is approximated by a step-function,

where each step represents an average load-level and duration. This function is typically

obtained by deciding in an ad-hoc manner the number of steps and segmenting the LDC

accordingly. Depending on the choice of segmentation, the outcome of the model can greatly

differ, for instance, if more steps are introduced for the peak load hours or the base ones.
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Moreover, in a multi-annual planning context the LDC forecast varies among the different

years, so that a segmentation strategy for a year might not be optimal for other years. A

consistent method for the LDC approximation is, therefore, necessary.

The seminal work of Maybee et al. (1979) is one of very few studies in power systems

planning found to address this issue. We define a similar optimization problem where the

objective of the step function approximation is the minimization of the energy mismatch

between each approximated step and its actual corresponding segment. The optimization

problem can be formulated as:

min
t

N∑

n=1

tn∑

i=tn−1

(F (i)− hn)2 (1)

subject to:

hn =
1

tn − tn−1
·

tn∑

i=tn−1

F (i), n = 1, 2, ..., N (2)

where F (i) represents the actual LDC function, N is the total number of steps specified

for the approximation, n is the index of the current approximation step, hn is the height

(load level) of the step function for step n and tn is the breakpoint at which the step function

changes value from step n to step n + 1. The objective is to find the breakpoints vector t

which fully defines the approximated step function and is such to minimize the mismatch

of equation (1). This problem can be stated as a dynamic programming problem, where

the backward recursive functional equation is defined as:

fn(x) = min
x≤t≤T

[
t∑

i=x

(F (i)− hN−n+1)
2 + fn−1(t)

]
, n = 1, 2, ..., N (3)

for which hN−n+1 can be calculated as given in equation (2).

It is important to note that since we consider the investment in RES capacity as a

decision variable, it heavily depends on the average capacity factor (CF) of each RES

technology. Neglecting this consideration within the simplified long-term GEP problem is

equivalent to assuming that wind and solar technologies are fully dispatchable. Constraint
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(A.11) in the Appendix is, therefore, introduced to avoid this inaccuracy. Similar to the

LDC approximation, the CF of each RES technology can be approximated by a level and a

duration. However, the real average correlation between the load and the RES-CF should be

maintained to avoid unrealistic and biased results. An illustration of the approach followed

in this work to achieve this is given in Appendix B.

C.2. Load and RES-CF approximations for the UC and GEP-UC models

The horizon reduction for the C-GEP and UC models need to maintain the real hourly

chronological order of both the load and the RES-CF. This is typically achieved by approx-

imating the full year to a number of days, weeks or months while preserving the sub-period

chronological order. We opt to represent a year by a number of sampled weeks obtained

by solving an optimization problem similar to that proposed by De Sisternes and Webster

(2013), which reported superior approximations than other ad-hoc methods.

The weeks are selected with the objective of minimizing the energy mismatch between

the actual LDC and the approximated one (LDCaprox) obtained through scaling up the

weeks sampled to the full year length. Mathematically this is represented by (De Sisternes

and Webster, 2013):

φ∗ ∈ argmin
φ

T∑

i=0

(LDCi − LDCaproxφ,i )2 (4)

where T is the total number of hours in each planning year and φ is a vector containing the

set of indexes of the selected weeks. The optimization can be solved using an exhaustive

search that evaluates all possible combinations of the n specified weeks and selects those

that minimizes the energy mismatch. Once the optimal weeks are obtained for the load,

the same weeks are selected for the RES-CF data to ensure that the correlation between

the two is maintained.

D. Flexibility assessment metrics

To quantify the flexibility of the system, we adopt two probabilistic metrics: the insuf-

ficient ramping resource expectation (IRRE) proposed in (Lannoye et al., 2012), and the

originally introduced expected flexibility shortfall (EFS) metric.
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D.1. Insufficient Ramping Resource Expectation (IRRE)

The IRRE is the expected number of instances in which the generation units in a power

system cannot answer to the changes in net load. The metric is generally obtained by

(Lannoye et al., 2012):

1. Calculating the net load ramping time series for the whole planning horizon in both

upwards (up) and downwards (dn) directions.

2. Calculating the up/dn available flexible resources within a specified time horizon

of interest (e.g. one hour), given the availability and commitment status of each

generation unit, its start-up time, its actual production level and its total upwards or

downwards ramping capabilities for the next period.

3. Aggregating all the time series for all resources to obtain the total up/dn available

flexibility time series.

4. Calculating the up/dn available flexibility empirical cumulative distribution function

from the total available flexibility time series.

5. Calculating the probability of insufficient ramping by substituting the required net

load ramping in the obtained distribution function. The sum of the up/down proba-

bilities time series gives the IRRE+/-.

D.2. Expected Flexibility Shortfall (EFS)

While the IRRE indicates the expected frequency for not meeting the flexibility require-

ments, it does not give any information about how short the system is on average when not

able to meet these requirements. This can be calculated through the expected flexibility

shortfall (EFS) metric.

The EFS metric builds on the value-at-risk (VaR) measure defined as the “possible

maximum loss over a given holding period within a fixed confidence level” (Yamai and

Yoshiba, 2005). Mathematically, this is defined as:

V ARα(X) = sup {x | P [X ≥ x] > α} (5)

where X in our context is a variable denoting the loss of load due to insufficient flexibility

and sup {x | P [X ≥ x] > α} indicates the highest 100α percentile of the loss distribution.
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The expected flexibility shortfall (EFS) is, thus, the conditional expectation of load loss due

to insufficient flexibility, given that it is beyond the VaR level, or:

EFSα(X) = E [X | X ≥ V aRα(X)] (6)

The EFS is calculated by performing steps (1) to (3) of the IRRE calculations, followed by:

4. Calculating the up/dn losses time series as the absolute difference between the up/dn

net load ramping series and the respective total available flexibility resources.

5. Calculating the VaR at the desired 100(1− α)% confidence levels.

6. Calculating the EFS as the average loss for observations exceeding the VaR level, at

the respective confidence levels.

III. Numerical Example

A. Test system

For the multi-annual demand representation, we have taken the 10 years load data of

France, from 2006 to 2015, which are publicly available at (RTE-France, 2017), to represent

a realistic system demand for 10 planning years. We have similarly calculated the RES-CF,

namely wind and solar power, from the actual yearly production time series, by dividing

each hourly production by the total installed capacity of each technology. This results in

the hourly CF time series per renewable technology and for each year.

Table 2 summarizes the technical and cost data for the generation technologies con-

sidered in the expansion planning. The cost data and units capacities are obtained from

the IEA/NEA Projected Costs of Generating Electricity report (2015 edition) (IEA/NEA,

2015); the remaining technical characteristics are largely based on data described in (Cany

et al., 2016) to maintain consistency with characteristics relevant to the French power sys-

tem. The discount rate is assumed to be 3%, the minimum design reserve margin rmin

is set to 15% of the maximum annual load, operating reserves are set to cover 1% of the

hourly load for primary and secondary reserves, and 10% of the hourly RES production for

upwards and downwards secondary reserves. The penalty for not meeting demand (C lns) is

set to 4ke/MWh to discourage load shedding. Finally, the construction time of new units

is neglected , as we are considering a relatively concise planning horizon.
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Table 2: Technical and economic characteristics for the different generation technologies

Technology Pmax
i Pmin

i RUmax
i RDmax

i Mu
i Md

i Ei EFORi Cinv
i C

mrgl
i Cs

i

[i] [MW ] [MW ] [MWh/min] [MWh/min] [hours] [hours] [tCO2/MWh] [Me] [e/MWh] [ke]

Nuclear 1400 700 0.5%Pn/min 0.5%Pn/min 12 48 0 0.01 3.95 9.33 15.0

Fossil Hard Coal 1100 550 1.5%Pn/min 1.5%Pn/min 6 10 0.96 0.06 2.08 36.67 11.26

Fossil Gas (CCGT) 550 165 5%Pn/min 5%Pn/min 3 5 0.46 0.04 1.02 69.00 7.53

Fossil Gas (OCGT) 270 54 20%Pn/min 20%Pn/min 1 2 0.67 0.08 0.7 110.00 3.79

On-Shore Wind 80 0 / / / / 0 * 1.9 0 /

Solar-PV 60 0 / / / / 0 * 1.5 0 /

B. Implementation notes and remarks

All optimization problems are modeled in the Python programming language. The

MILP problems are programmed using the Pyomo software package (Hart et al., 2012,

2011) and solved using IBM ILOG-CPLEX with an optimality gap of 0.1%. It is important

to note that for the UC and the GEP-UC models, the yearly demand is approximated by 4

representative weeks and the chronological order within each week is maintained; however,

the immediate demand profile change between one week and the next may not reflect the

realistic variation that could occur in the system. It is important, therefore, to decouple

the operational decision variables from one week to the next, to eliminate any bias from

incorrect initialization. In this respect, unit states are constrained to be identical at the

beginning and end of each week, which reasonably assumes that each week is followed by a

similar one.

IV. Results and discussion

A. RES penetration and carbon emission policy scenarios

We first explore 12 scenarios covering a wide range of RES penetration and carbon

emission targets: a base case with no RES nor emission targets, in addition to all remaining

combinations of 0%, 25%, 35% and 50% binding RES penetration targets (represented as a

percentage of total electricity demand) and 0%, 75% and 50% emission limit (calculated as

a percentage of each corresponding no emission limit scenario). We apply the assessment

framework on the two types of planning models considered (C-GEP and S-GEP), for com-

paring the effect of integrating the short-term constraints within the long-term investment
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planning problem and primarily in terms of operational flexibility. For the S-GEP model,

each annual LDC is approximated by twelve load-duration steps using the dynamic program-

ming optimization described in Section (II.C.1). The normalized root mean squared error

(NRMSE) of the energy mismatch for the ten approximated yearly LDC have a mean of

3.91% and a standard deviation of 0.002. For the C-GEP model, each year is approximated

by four weeks through the optimization problem described in Section (II.C.2), where within

each week, hourly chronological order is maintained. The NRMSE of the 10 approximated

yearly loads have a mean of 0.63% and a standard deviation of 0.003.

A.1. Base case

We start by investigating the results of the base case for both S-GEP and C-GEP

models. Figure (2) illustrates the total capacity installed of each generation technology, at

the end of each year, obtained by each model. The bulk of the investments is done in the

first year, where 82.01 GW and 80.59 GW total capacities are installed by the S-GEP and

the C-GEP model, respectively, and gradually increase to the end of the planning horizon.

The final total capacities installed are 87.14 GW and 85.72 GW for S-GEP and C-GEP,

respectively. The additional capacities in both cases are in the Fossil OCGT technology. It

can be observed that, in this case with no requirement on RES penetration, the capacity

investments given by both models closely resemble to each other.
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Figure 2: Cumulative yearly installed capacity for the base case obtained through the S-GEP (left)

and C-GEP (right) models
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Table 3: Results of different performance measures and operational flexibility metrics for the plans

obtained through the S-GEP and C-GEP models for the base case (No RES requirement, no carbon

limits) (worse performance highlighted).

(a) Installed capacities and generic performance measures results

S-GEP C-GEP

Total RES Installed Capacity [GW] 7.60 0.14 Difference [%]

Total Installed Capacity [GW] 87.14 85.72 (C-GEP relative to S-GEP)

Total Cost (excluding LNS) [Be] 313.00 310.59 -0.77%

Load Not Served [% of total load] 0.12% 0.01% -89.38%

RES shedding [% of total RES] 0.00% 0.00% /

Carbon Emission [Mtons] 1379.60 1699.93 +23.22%

(b) Operational flexibility metrics results

Difference [%]

S-GEP C-GEP (C-GEP relative to S-GEP)

IRRE+ (% of upwards ramps) 7.38% 2.20% -70.13%

EFS+ (MW)
EFS+ (95%) 512.70 90.53 -82.22%

EFS+ (99%) 2402.85 451.31 -38.08%

IRRE- (% of downwards ramps) 0.01% 0.00% -42.52%

EFS- (MW)
EFS- (95%) 0.00 0.00 /

EFS- (99%) 0.00 0.00 /

To better assess the S-GEP and C-GEP obtained plans, a number of performance mea-

sures are compared. Most notably, we compare the amount of load not served (LNS), the

amount of RES shedding, the total carbon emission and the total cost (investment + op-

erating costs)2 of the plans obtained through each model for the whole planning horizon.

Table (6a) summarizes the results of the different measures for the base case. The C-GEP

model outperforms the S-GEP in the resulting LNS, amounting to only 0.01% of the to-

tal load for the former as opposed to 0.12% for the latter. Since only a small fraction of

the capacities installed are in RES technologies, no amount of RES shedding was required.

Wind and solar shedding would typically be decided if large energy quantities are produced,

leading to very large inter-temporal variability so that it becomes more cost effective to shed

the cheap RES energy than to adapt the rest of the thermal units (e.g. turn on or shut

down some of those units). Regarding carbon emission, operating the C-GEP obtained plan

evidently results in higher total emission (≈ 1700 Mtons compared to ≈ 1380 Mtons by the

2excluding the cost of LNS to avoid redundancy
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S-GEP model), which is explained by the overall higher fossil capacities installed. The total

investment and operating cost is lower for the C-GEP plan (310.59 Bne) compared to the

S-GEP one (313.00 Bne). This, together with the lower amount of LNS, indicates that the

C-GEP plan is better adapted to satisfy the load at lower cost, but results in higher carbon

emission than the S-GEP one.

The operational flexibility assessment of the resulting plans using the proposed metrics

is summarized in Table (6b) . The IRRE and EFS results (at the 95% and 99% confidence

intervals) are reported for the total increasing (+) and decreasing (-) net load variations.

The results show that operating the S-GEP obtained plan is expected not to satisfy 7.38%

of the total number of upwards ramps (IRRE+) as opposed to only 2.20% for the C-GEP

plan. Moreover, the EFS is more than 5 times higher for the S-GEP plan, averaging around

512.00 MW and 2400 MW, at the 95% and the 99% confidence intervals, respectively, as

opposed to an expectation of only 90 MW and 450 MW for the C-GEP obtained plan,

at the respective confidence intervals. Regarding the negative ramps, it is shown that the

operational flexibility shortages are of much less significance for both models plans, albeit

still being slightly worse for the S-GEP one.

A.2. Increased RES penetration and emission limit policies

Table (4) summarizes the results of the different performance measures analyzed for the

base-case scenario (top-left corner), along with the different combinations of RES penetra-

tion (horizontally) and emission limit (vertically) policies considered. First, we notice how

an increased RES penetration requirement leads to a significant difference in the final ca-

pacity mix given by the S-GEP and the C-GEP models compared to when such requirement

is not imposed. Moving horizontally across the Table, i.e. to higher RES requirements, the

“short-term aware” C-GEP model results in mixes with much higher fossil capacities and

much less nuclear than to the S-GEP one. These fossil technologies possess overall bet-

ter short-term dynamic properties, such as ramping capabilities and shorter minimum up

and down times. Such an investment choice can be, therefore, attributed to the ability of

the integrated C-GEP model to derive decisions better adapted to the increased short-term

variations imposed by the RES penetration. Moreover, the total capacity installed increases
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significantly for the C-GEP plans compared to the S-GEP ones. The S-GEP model over-

estimates the actual RES availability since it considers average capacity factor values, so it

invests in overall less capacities in the other technologies. This gap increases with higher

RES penetration, from around 10 GW difference for the 25% RES cases, to 15 GW for

those with 35% RES and up to 30 GW difference for the 50% RES penetration plans. It

is clear that such capacity differences are non-negligible and that they would significantly

affect the reliability of the power system, if not adequately accounted for.

This becomes even clearer as we consider the resulting LNS percentage. There is a steep

increase in the amount of LNS for the S-GEP plans with higher RES levels, from 0.12%

of the total load on average and up to 2.7% for the highest RES penetration levels. As

predicted from the capacity difference, this represents an unacceptably high level of LNS

and defies the security of supply of the plans. The C-GEP plans, on the other hand, maintain

a low average LNS percentage of 0.02%, with negligible variation across all scenarios. RES

shedding exhibits a similar steep increase with the higher RES penetration levels; however,

it remains comparable for both the C-GEP and S-GEP plans with only a few percentage

points difference in each respective scenario. As previously explained, shedding decisions

are taken when they are more cost effective, the C-GEP model accounts for these sheds

when deciding on the investment plans, and ensures that the plans obtained would still

meet the RES quota requirements. This is not the case for the S-GEP plans, which could

lead to final plans that are theoretically meeting these requirements, but practically are

not.

By looking at the differences in the performance measures of the C-GEP and S-GEP

plans, especially the total installed capacities, one would expect a much higher total cost

(not including LNS cost) for the C-GEP plans compared to the S-GEP ones. This is in

fact not the case: while indeed the C-GEP plans with significant RES penetrations result in

higher costs, these are not proportional to the additional investments made and the amount

of LNS avoided. The maximum cost difference reached at 50% RES penetration averaged

around only +6.31% more for the C-GEP plans than for the S-GEP ones, whereas the

capacities were on average +20% higher.

Again, the amount of carbon emission is consistently higher for all C-GEP plans com-
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pared to the S-GEP ones, which is not surprising as the amount of fossil capacity installed is

higher in those plans. This was optimally obtained through the C-GEP model as those units

possess faster dynamic capabilities that are needed to counterbalance the higher net load

variability as more RES penetrate the system. Furthermore, this leads to the observation

that increasing RES penetration levels by itself does not necessarily indicate lower carbon

emission levels in the system, since the rest of the investments are counterbalancing with

more dynamic yet more emitting units. In this respect, the S-GEP model can be considered

to be underestimating the actual emission levels as higher RES penetrate the systems. For

our numerical example, these underestimations are found to be in the range of 14% (No

RES, 50% emission limit case) to 60% (35% RES, no emission limit case).

Imposing carbon emission limits, as shown by moving vertically across the table does

not have a significant impact on most of these measures. It does, however, considerably

affect the capacity mix obtained through the different models. Evidently, as more stringent

carbon limits are imposed, the capacity mix shifts towards less emitting technologies and,

most notably, nuclear. Most of the fossil capacity reduction is in the fossil coal capacity

since it is the most emitting one; the total capacity installed, however, remains almost

constant. Furthermore, despite the large differences in the capacity mixes, the total costs

of the plans do not heavily vary, averaging around +1% increase in most cases, as higher

emission limits are imposed.

22

125



Table 4: Results of the different performance measures for the plans obtained through the S-GEP

and C-GEP models for the range of RES penetration and carbon emission limits considered (worse

performance highlighted)

No RES 25% RES 35% RES 50% RES

S-GEP C-GEP S-GEP C-GEP S-GEP C-GEP S-GEP C-GEP

N
o

e
m

is
s
io

n
li

m
it

Installed

Capacity

(GW)

Nuclear 33.60 32.20 23.80 2.80 19.60 0.00 12.60 0.00

Fossil Coal 16.50 22.00 15.40 39.60 13.20 37.40 11.00 28.60

Fossil CCGT 15.40 18.15 13.20 17.05 12.65 18.70 10.45 19.80

Fossil OCGT 14.04 13.23 17.28 21.06 17.01 22.41 18.09 25.65

On-Shore Wind 7.60 0.08 56.96 54.48 79.76 75.20 113.92 108.24

PV-Solar 0.00 0.06 0.00 0.06 0.00 3.12 0.00 18.00

Total RES Installed Capacity [GW] 7.60 0.14 56.96 54.54 79.76 78.32 113.92 126.24

Total Installed Capacity [GW] 87.14 85.72 126.64 135.05 142.22 156.83 166.06 200.29

Load Not Served [%] 0.12% 0.01% 0.61% 0.01% 1.21% 0.02% 1.62% 0.02%

RES Shedding [%] 0.00% 0.00% 2.31% 0.44% 5.89% 2.48% 12.59% 9.56%

Carbon Emission [Mtons] 1379.60 1699.93 1177.23 2920.81 1074.35 2648.64 1007.95 1876.63

Total Cost (excluding LNS) [Be] 313.00 310.59 354.19 359.68 375.28 383.58 409.32 435.14

7
5
%

e
m

is
s
io

n
li
m

it

Installed

Capacity

(GW)

Nuclear 37.80 37.80 28.00 11.20 22.40 8.40 15.40 4.20

Fossil Coal 12.10 17.60 11.00 28.60 8.80 27.50 7.70 16.50

Fossil CCGT 15.40 16.50 13.20 19.80 14.30 19.80 11.00 28.05

Fossil OCGT 14.31 14.04 17.28 21.33 17.01 22.95 18.09 25.11

On-Shore Wind 7.52 0.08 56.96 54.56 79.76 74.88 113.92 107.44

PV-Solar 0.06 0.06 0.00 0.06 0.00 3.84 0.00 19.02

Total RES Installed Capacity [GW] 7.58 0.14 56.96 54.62 79.76 78.72 113.92 126.46

Total Installed Capacity [GW] 87.19 86.08 126.44 135.55 142.27 157.37 166.11 200.32

Load Not Served [%] 0.11% 0.01% 1.19% 0.02% 2.71% 0.02% 2.71% 0.03%

RES Shedding [%] 0.00% 0.00% 2.81% 0.91% 6.25% 3.41% 13.06% 9.70%

Carbon Emission [Mtons] 1047.78 1272.76 890.20 2180.01 857.71 1966.52 831.14 1407.10

Total Cost (excluding LNS) [Be] 313.63 311.11 355.75 360.35 377.05 385.04 411.22 439.54

5
0
%

e
m

is
s
io

n
li
m

it

Installed

Capacity

(GW)

Nuclear 40.60 43.40 30.80 22.40 26.60 18.20 18.20 12.60

Fossil Coal 5.50 12.10 6.60 20.90 5.50 19.80 4.40 9.90

Fossil CCGT 18.70 19.80 16.50 15.95 13.20 17.60 11.55 26.40

Fossil OCGT 14.85 10.80 15.66 21.06 17.28 22.68 17.82 25.11

On-Shore Wind 7.52 0.16 56.96 54.16 79.76 74.00 113.92 106.40

PV-Solar 0.06 0.00 0.00 0.06 0.00 4.92 0.00 20.64

Total RES Installed Capacity [GW] 7.58 0.16 56.96 54.32 79.76 78.92 113.92 127.04

Total Installed Capacity [GW] 87.23 86.26 126.52 135.07 142.34 157.20 165.89 201.05

Load Not Served [%] 0.11% 0.02% 0.60% 0.02% 1.19% 0.02% 2.70% 0.01%

RES Shedding [%] 0.00% 0.00% 3.04% 1.77% 6.72% 4.47% 13.47% 11.34%

Carbon Emission [Mtons] 737.05 849.79 670.82 1392.25 631.64 1323.82 660.86 937.32

Total Cost (excluding LNS) [Be] 315.71 312.59 356.99 361.39 379.31 387.85 413.05 442.17

Let us now analyze how increased RES penetration and stringent emission limit policies

impact the operational flexibility of the capacity expansion plans. The operational flexibility

metrics values for all cases considered are summarized in Table (5)

For the upwards ramping requirements, the results show that the S-GEP plans become

significantly short on flexibility as higher percentages of RES penetrate the system. A linear

and steep increasing trend of the flexibility shortage, reaching an IRRE+ of up to 47% (for
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the 50% RES case), represents a failure to answer to almost half of the number of times the

system is expected to provide upwards flexibility. The EFS+ similarly reaches multiples of

its value for the plan with lower RES penetrations (e.g. EFS value of 8157.30 MW compared

to 2402.85 MW with 99% confidence, for the 50% and 0% RES cases, respectively). For

the C-GEP plans, the different metrics indicate very low expected shortages compared to

the S-GEP ones. The IRRE+ does not exceed 2.20% for all cases considered and remains

almost constant at an average of 1.30%. On the other hand, the EFS+ does not exceed a

comparatively smaller value up to the 99% confidence, for all cases considered.

For the downwards ramping requirements, as with the base case, the results are much less

significant, with no shortage expected in most of the cases. This is reasonably justified since

we consider a single-region planning where as a consequence of considering all generation

units sitting at the same region, at any given moment, enough generation units are online

and can reduce their production to answer to downward ramps. It is still seen through the

IRRE- metric results that systems with very large RES presence would exhibit some flexi-

bility shortage. Generally, it should be noted that the downwards flexibility shortage would

become more relevant considering multi-regional planning, since the available downwards

resources will be limited to those belonging to the same region.

It is shown that the flexibility shortage of the C-GEP plans remain low and almost con-

stant across all the different cases considered, while that of the S-GEP plans are much more

affected by the RES penetration levels than by carbon emission limits. The consistently

low C-CEP shortage values do not only indicate this model superior adequacy in account-

ing for the different RES and carbon requirements, but that it is also able to fully cope

to the variations in the different policy requirements, while ensuring adequate operational

flexibility levels.
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Table 5: Results of the operational flexibility metrics for the plans obtained through the S-GEP

and C-GEP models for the range of RES penetration and carbon emission limits considered (worse

performance highlighted).

No RES 25% RES 35% RES 50% RES

S-GEP C-GEP S-GEP C-GEP S-GEP C-GEP S-GEP C-GEP

N
o

e
m

is
s
io

n
li

m
it

IRRE+ (% of upwards ramps) 7.38% 2.20% 16.13% 1.20% 26.74% 1.12% 46.71% 1.13%

EFS+

(MW)

EFS+ (95%) 512.70 90.53 1681.61 34.37 3118.14 38.76 4275.79 70.53

EFS+ (99%) 2402.85 451.31 5781.33 171.33 8670.87 193.24 8157.30 351.60

EFS+ (99.9%) 5212.17 3227.19 10704.63 1278.89 17876.77 1602.35 14674.80 2977.76

IRRE- (% of downwards ramps) 0.01% 0.01% 0.01% 0.01% 0.04% 0.04% 0.23% 0.2%

EFS-

(MW)

EFS- (95%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EFS- (99%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EFS- (99.9%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7
5
%

e
m

is
s
io

n
li

m
it

IRRE+ (% of upwards ramps) 7.27% 2.15% 16.30% 1.07% 26.82% 1.02% 46.86% 1.17%

EFS+

(MW)

EFS+ (95%) 497.39 84.57 1862.13 24.49 3128.12 35.51 4782.05 77.56

EFS+ (99%) 2345.28 421.59 6587.33 122.06 8725.54 177.04 8983.71 386.65

EFS+ (99.9%) 5117.10 3061.18 13561.78 1049.74 19269.63 1521.26 15706.40 3169.95

IRRE- (% of downwards ramps) 0.01% 0.01% 0.01% 0.01% 0.04% 0.04% 0.23% 0.22%

EFS-

(MW)

EFS- (95%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EFS- (99%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EFS- (99.9%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5
0
%

e
m

is
s
io

n
li
m

it

IRRE+ (% of upwards ramps) 7.24% 2.04% 16.43% 1.37% 27.34% 1.43% 47.56% 1.23%

EFS+

(MW)

EFS+ (95%) 484.50 75.20 1927.50 37.60 3586.40 179.40 5107.20 132.00

EFS+ (99%) 2293.33 374.74 6702.66 187.55 9670.93 894.45 9969.54 658.18

EFS+ (99.9%) 5069.55 2963.69 14665.06 1359.96 20659.63 5378.26 16145.05 3692.00

IRRE- (% of downwards ramps) 0.01% 0.01% 0.01% 0.01% 0.05% 0.03% 0.22% 0.19%

EFS-

(MW)

EFS- (95%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EFS- (99%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EFS- (99.9%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

These results are consistent with those of the other studies reviewed. Most notably,

in Palmintier and Webster (2016) where an overall similar investigation was conducted to

compare two model types similar to those presented in this work. Their investigation over

a range of RES and carbon levels revealed the same trends in the capacity mixes obtained,

most notably, that with higher RES penetration, the mix shifts to include more units with

faster dynamic properties (typically fossil peaking units). They also showed that carbon

emission can be underestimated by 30-60% by planning models that do not consider short-

term system representation. However, they considered only a single-period optimization

problem with wind penetration as an exogenous parameter, and did not consider quantita-

tive metrics for the operational flexibility assessment. The multi-period planning considered

here allows more realistic planning paradigms, where investment decisions can be optimally

taken at different periods, and allows a wide variation in the system parameters at the
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different periods (see for example the wide spectrum of inter-temporal load variations of

the four weeks sampled per year in Appendix C). Moreover, it is observed in the results,

that although the resulting capacity mixes give an indication of the flexibility levels of the

plans obtained, they do not capture to what extent these plans are short on operational

flexibility. Which becomes more clear when suitable quantitative metrics are used, as shown

in these results.

B. Exploring the effect of fuel cost variation on operational flexibility

The investment plans obtained are evidently dependent on the set of system parameters

initially chosen. Since we consider a deterministic problem, the variation in those parame-

ters could admittedly alter the results obtained, most notably, the uncertainties regarding

fuel costs and load evolution trend. We, therefore, opt for exploring selected scenarios

representing a wide variation in those parameters, and investigating their effect on the op-

erational flexibility levels of the plans obtained. In this section two scenarios of fuel costs

(coal and natural gas costs) are explored: 50% increase and 50% decrease, to cover a wide

variation of the base case, and consistent with the percentages considered in the IEA report

for sensitivity analysis (IEA/NEA, 2015). For clarity, only the results of the C-GEP model

are reported for the median 35% RES penetration level. However, all emission limit sce-

narios are investigated, since it is reasonable to assume that fuel costs could have a higher

impact on the plans obtained when combined with stringent emission limits.

The installed capacities for all fuel cost and emission limit scenarios are illustrated in

Figure (3). For the highest fuel cost scenario, much of the coal and -to a lesser extent-

CCGT capacities are substituted by the less emitting nuclear units, more so as tighter

emission limits are enforced. For the lower prices, the coal capacity is still substituted, but

this time by the peaking CCGT and OCGT units. The lower emission requirements are

attained through progressive substitution of fossil units by nuclear ones, as can be observed

within each fuel cost scenario. The total installed capacity across all scenarios, however,

remain constant.
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Figure 3: Total installed capacity as given by the C-GEP model under 35% RES penetration for the

different fuel cost scenarios

In terms of operational flexibility, Figures (4a) and (4b) illustrate the results for the

IRRE+ and EFS+, respectively. As can be expected, plans obtained under the highest

fuel cost have the highest expectation of upwards flexibility shortages. This is because

much of the fossil units, which possess better dynamic properties, are replaced by the less

flexible nuclear ones. The opposite is observed for the plans obtained at the lowest fuel

cost driven by the higher capacities of those peaking units. Notice, again, that despite this

significant variation in the capacity mix across the different fuel scenarios, the IRRE of

the integrated C-GEP model plans did not exceed 2.05% of the total number of upwards

ramps, with a quasi-linear decreasing trend as a function of less stringent emission limits and

decreasing fuel costs. This remains a very small percentage point relative to any shortage

value observed for the S-GEP model under RES penetrations. The EFS+ confirms the

trends observed using the IRRE metric, however, at the highest fuel cost scenario it signaled

a relatively high shortage expectations that could go up to the order of several GWs at the

99% confidence level. Such a magnitude is significant and would be important to account

for, and highlights the complementarity of the two measurement approaches for giving an
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accurate assessment.
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Figure 4: Results of operational flexibility assessment on the plans obtained through the C-GEP

model under 35% RES penetration and for the different fuel cost scenarios

C. Exploring the effect of load evolution on operational flexibility

The load evolution trends could be another source of influence on the plans obtained. In

this respect, in their 2016 ”Generation Adequacy Report”, RTE (2016) presented future load

projections for France and Europe, with high and low growth scenarios of roughly +2% and

-1%, respectively, accounting for all different sectors. For the purpose of sensitivity analysis,

for the high an low load scenarios, we have amplified these values considering a +20% and

a -10% load growth starting of the fifth year of the planning horizon. The negative scenario

being a proxy for stringent energy efficiency driven policies. For clarity, only the results of

the C-GEP model are reported for the median 35% RES penetration level and for the no

emission limit policy. It should also be noted that no changes are assumed for the hourly

load patterns compared to the previous cases considered.
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The total power generation per technology and per load evolution scenario is illustrated

in Figure (5). The Figure shows that, overall, there are no changes in the capacity mixes

obtained, but that only the total capacities and production quantities vary per technology.

Naturally, the installed capacities and power generation decrease as the total system load

decreases. The reduction is mostly in the RES technologies amounting to more than 50% of

the total generation decrease across scenarios. This can be explained through two effects:

lower load means that less RES is required to satisfy the 35% penetration requirement, and

it is more cost efficient (subject to the given assumptions) to reduce the RES levels than to

answer to the increased net load variability by cycling thermal units.
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Figure 5: Total energy production per technology for the plans obtained by the C-GEP model under

35% RES penetration for the different load growth scenarios

Regarding how the load evolution trend affects the obtained plans, Table (6a) sum-

marizes the results of some of the performance measures previously considered. Overall,

a gradual decreasing trend can be observed in all measurements with respect to the de-

creasing load scenario. This is also true for the operational flexibility results reported in

Table (6b). While the absolute difference in those results would be important to consider

for actual system planning, the linear gradual trend found suggests that the overall load
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evolution exhibits a less significant effect on the operational flexibility of the plans than the

variations in the inter-temporal load patterns.

Table 6: Results of different performance measures and operational flexibility metrics for the plans

obtained through the C-GEP models under 35% RES penetration for the different load growth

scenarios

(a) Generic performance measures results

High load (+20%) Baseline load Low load (-10%)

Total RES Installed Capacity [GW] 94.24 78.32 69.6

Total Installed Capacity [GW] 188.52 156.83 142.15

Load Not Served [% of total load] 0.02% 0.02% 0.02%

RES shedding [% of total RES] 3.43% 2.48% 2.25%

Carbon Emission [Mtons] 2818.70 2648.64 2555.18

Total Cost [Bne] 439.67 383.58 357.42%

(b) Operational flexibility metrics results

High load (+20%) Baseline load Low load (-10%)

IRRE+ [% of upwards ramps] 1.16% 1.12% 1.05%

EFS+ [MW]
EFS+ [95%] 51.10 38.76 32.30

EFS+ [99%] 254.70 193.24 161.10

IRRE- [% of downwards ramps] 0.08% 0.04% 0.04%

EFS- [MW]
EFS- [95%] 0.00 0.00 0.00

EFS- [99%] 0.00 0.00 0.00

V. Conclusions

In this work, an integrated framework for the quantitative assessment of operational

flexibility in power systems planning has been presented and a realistic size case study has

been investigated under several scenarios of renewable energy sources penetration levels

and carbon reduction targets. Moreover, an investigation of the effect of varying the fuel

costs and load growth has been conducted to comprehensively identify the most significant

parameters that can affect the system operational flexibility.

The application of the framework to the case studies has shown its ability to provide

transparent and objective results for obtaining and assessing different expansion plans across

a wide range of policy requirements. The study has also allowed to highlight the importance

of integrating short-term technical constraints and chronological load patterns, within long-

term planning models and especially under significant renewable energy penetration levels.
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Through the analysis of the results of the case studies considered, the following general

conclusions can be drawn:

• The results confirm those presented in other works and, most notably, that neglecting

short-term constraints within long-term planning leads to an underestimation of the

investment required in peaking fossil units, unrealistic production schedules with high

amounts of load not served and an underestimation of carbon emissions.

• Insights were gained by employing quantitative flexibility metrics for the assessment,

most notably that expansion plans obtained through the integrated model are robust

to the different renewable energy penetration and emission scenario realizations, in

terms of flexibility shortage, i.e., they maintain a constant low shortage level regard-

less of the different requirements imposed.

• On the other hand, flexibility-neglecting generation expansion planning models have

shown a linear and significant trend of flexibility shortage with respect to the different

renewable energy sources penetration requirements, enough to offset any computa-

tional advantage they have when such requirements are binding.

• The complementarity of the two metrics considered, with regards to the frequency of

flexibility shortage and its magnitude, is highlighted. It is shown that the sensitivity

of one with respect to the different scenarios can be more significant than the other,

which is important to consider for real applications.

• Moreover, the results emphasize the importance of the use of suitable quantitative

metrics for operational flexibility assessment, as opposed to relying on other generic

indicators, such as the generation mix or system costs, which are not capable of

reflecting the true flexibility levels of the obtained plans.

Finally, a limitation of the presented work lies in the mixed integer linear optimization

models considered. Indeed, the economic planning parameters and the technical behavior

of energy generation are affected by nonlinear conditions. For instance, production costs

and ramping rates are nonlinear functions of the variations in partial-load levels, while

start-up costs and times are nonlinear functions of shut-down duration. These conditions
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become particularly relevant when short-term capabilities and operational flexibility are

considered in the model. In this regard, future work will be devoted to the extension of the

optimization model for accounting of nonlinearities in the system. Moreover, the model can

be further extended by considering muti-regional planning, network representation and the

uncertainties in the load and renewable energy generation.
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Andreas Ulbig and Göran Andersson. Analyzing operational flexibility of electric power

systems. International Journal of Electrical Power & Energy Systems, 72:155–164, 2015.

Vishwamitra Oree and Sayed Z. Sayed Hassen. A composite metric for assessing flexibility

available in conventional generators of power systems. Applied Energy, 177:683–691, 2016.

Jinye Zhao, Tongxin Zheng, and Eugene Litvinov. A unified framework for defining and

measuring flexibility in power system. IEEE Transactions on Power Systems, 31(1):

339–347, 2016.

Saleh Y. Abujarad, M.W. Mustafa, and J.J. Jamian. Recent approaches of unit commitment

in the presence of intermittent renewable energy resources: A review. Renewable and

Sustainable Energy Reviews, 70:215 – 223, 2017.

Andreas Belderbos and Erik Delarue. Accounting for flexibility in power system planning

with renewables. International Journal of Electrical Power & Energy Systems, 71:33–41,

2015.

Bryan S. Palmintier and Mort D. Webster. Impact of operational flexibility on electricity

generation planning with renewable and carbon targets. IEEE Transactions on Sustain-

able Energy, 7(2):672–684, 2016.

Manuel Welsch, Paul Deane, Mark Howells, Brian Ó Gallachóir, Fionn Rogan, Morgan
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Réseau de transport d’eélectriciteé RTE. Generation adequacy report on the

electricity supply-demand balance in france - 2016 edition. http://www.rte-

france.com/en/article/forecast-assessment-electricity-supply-demand-balance, 2016. (Ac-

cessed on 02-12-2017).

Appendix A. Models formulation

A. Long-term GEP model with no short-term constraints

The model is formulated as a mixed integer linear program (MILP), with the main

characteristics that no hourly chronological order is considered and demand is represented

as load blocks derived from a load-duration curve with durations (Dury,s) and levels (Ly,s).

GEP objective function

The objective is the minimization of the total discounted costs over the planning horizon.

Equation (A.1) represents the total investment costs in new units, equation (A.2) represents

the total production costs calculated on the basis of the yearly load-duration curves, and

equation (A.3) represents the fixed operation and maintenance (O&M) costs:

min
cost

∑

y∈Y
(1 +DR)−y ·

∑

i∈I
Cinvi · Pmaxi · qi,y (A.1)
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+
∑

y∈Y
(1 +DR)−y ·

∑

s∈S
Dury,s ·

[∑

i∈I

(
Cmarginali,y · pi,y,s

)
+ C lns · lnsy,s

]
(A.2)

+
∑

y∈Y
(1 +DR)−y ·

∑

i∈I
Cfomi,y · Pmaxi ·

y∑

l=1

qi,l (A.3)

GEP constraints

1. Units commissioning and construction time:

xi,y =

y∑

l=1

qi,l−T const
i +1 ∀i ∈ Inew, y ∈ Y (A.4)

2. Annual budget constraint:

∑

y∈Y
qi,y ≤ Imaxi ∀i ∈ Inew (A.5)

3. Lifetime of new units:

y∑

τ=y−T life
i +1

qi,τ = xi,y ∀i ∈ Inew, y ∈ Y (A.6)

4. Supply-demand balance constraint:

Dury,s ·
(∑

i∈I
pi,y,s + lnsy,s

)
= Dury,s · Ly,s ∀s ∈ S, y ∈ Y (A.7)

5. Maximum generation output levels:

pi,y,s ≤ (1− EFORi) · Pmaxi · xi,y ∀i ∈ Ithermal, s ∈ S, y ∈ Y (A.8)

6. Adequacy reserve margin:

∑

i∈I
(Pmaxi · xi,y) ≥

(
1 + rmin

)
·max

s
(Ly,s), ∀y ∈ Y (A.9)

7. Minimum annual renewable penetration:

∑

i∈Ires

∑

s∈S
(Dury,s · pi,y,s) ≥ Penlevely ·

∑

s∈S
(Dury,s · Ly,s) , ∀y ∈ [Y res, Y end] (A.10)

8. Renewable energy production: RES production is typically represented through an

hourly availability or hourly capacity factor (CF). Since in the S-GEP problem no

chronological hourly representation is considered, an approximation method is used
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to obtain what we refer to as the RES capacity factor duration curve (RES-CFDC),

described in details in Appendix B:

Dury,s · pi,y,s ≤ xi,y · Pmaxi ·Dury,s · CFi,y,s ∀i ∈ Ires, s ∈ S, y ∈ Y (A.11)

9. Allowable emission:

∑

i∈I

(
Ei ·

∑

s∈S
(Dury,s · pi,y,s)

)
≤ Emaxy , ∀y ∈ Y (A.12)

B. Short-term operational model with no design variables (UC)

For the UC model, all the commissioning decisions are considered to have been taken

beforehand (from the GEP model) and the model seeks only to find the optimal short-term

system operation.

UC objective function

The objective is the minimization of the total discounted operating costs of the systems,

including variable production cost, start-up cost and LNS cost:

min
cost

∑

y∈Y
(1 +DR)−y ·

∑

j∈J

[∑

i∈I

(
Cmarginali,y · pi,y,j + Csi · zi,y,j

)
+ C lns · lnsy,j

]
(A.13)

UC constraints

1. Only units commissioned can be operated: this constraint represents the link between

the long-term investment and the operating decisions:

ui,y,j ≤ xi,y ∀i ∈ Ithermal, j ∈ J, y ∈ Y (A.14)

2. Supply-demand balance constraint:

∑

i∈I
pi,y,j + lnsy,j = Ly,j ∀j ∈ J, y ∈ Y (A.15)

3. Unit-commitment constraint:

ui,y,j − ui,y,j−1 = zi,y,j − vi,y,j ∀i ∈ Ith, j ∈ J/{1}, y ∈ Y (A.16)
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4. Minimum up-time (A.17) and down-time (A.18) of generation units:

ui,y,j ≥
j∑

τ≥j−Mu
i

zi,y,τ ∀i ∈ Ith, j ∈ J, y ∈ Y (A.17)

xi,y − ui,y,j ≥
j∑

τ≥j−Md
i

vi,y,τ ∀i ∈ Ith, j ∈ J, y ∈ Y (A.18)

5. Upwards (A.19) and downwards (A.20) ramping capabilities of generation units:

pi,y,j−pi,y,j−1 ≤ ui,y,j−1 ·RUmaxi +zi,y,j ·P starti ∀i ∈ Ith, j ∈ J/{1}, y ∈ Y (A.19)

pi,y,j−1 − pi,y,j ≤ ui,y,j−1 ·RDmaxi ∀i ∈ Ith, j ∈ J/{1}, y ∈ Y (A.20)

6. Maximum (A.21) and minimum (A.22) output levels of generation units:

pi,y,j+pri,y,j+srupi,y,j ≤ (1− EFORi) ·Pmaxi ·ui,y,j ∀i ∈ Ith, j ∈ J, y ∈ Y (A.21)

pi,y,j ≥ ui,y,j · Pmini + srdni,y,j ∀i ∈ Ith, j ∈ J, y ∈ Y (A.22)

7. Operating reserves: three types of operating reserves are considered, according to a

defined percentage of hourly load and of renewable generation: those are primary

reserve (A.23), secondary upwards reserve (A.24), and secondary downwards reserve

(A.25):

∑

i∈Ith
pri,y,j ≥ Prr · Ly,j ∀j ∈ J, y ∈ Y (A.23)

∑

i∈Ith
srupi,y,j ≥ Srrup · Ly,j +

∑

i∈Ires
(ares · pi,y,j) ∀j ∈ J, y ∈ Y (A.24)

∑

i∈Ith
srdni,y,j ≥ Srrdn · Ly,j +

∑

i∈Ires
(ares · pi,y,j) ∀j ∈ J, y ∈ Y (A.25)

8. Renewable energy production:

pi,y,j ≤ xi,y · Pmaxi · CFi,y,j ∀i ∈ Ires, j ∈ J, y ∈ Y (A.26)
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Appendix B. RES-CF approximation for the long-term GEP model

One way to approximate the RES-CF is to re-order the chronological CF values in

descending order and divide them into CF-blocks, each having a level and duration.

A fundamental problem with this approach is that it presumes that the highest RES-

CF is concurrent with the highest load level and, analogously, the lowest RES-CF is

concurrent with the lowest load level. This imposes a significant and unrealistic bias

in the results. We, thus, propose to approximate the RES capacity factor duration

curve (RES-CFDC) in a way that maintains the real hourly correlation between the

load and the RES availability, when both chronological time-series are available.

This can be best illustrated by means of an example: consider a 6 weeks representation

of hourly load and solar CF time series, such as that shown in Figure (B.6). This

can be a forecasted time-series or historically monitored data. Each hourly load level

corresponds to a specific solar CF for the same hour. When the load is re-ordered

in descending order into a LDC, the solar-CF is re-ordered by maintaining each CF

respective value relative to its original hourly load level. When the LDC is, then,

approximated by a step-function to obtain average load levels and durations, the

same duration blocks are used to segment and find corresponding average values for

the solar CF time-series.
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Figure B.6: 6 weeks representation of load and Solar CF yearly data and their step function approx-

imation
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Appendix C. Load profiles
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Figure C.7: Weekly load profile samples for each year of the planning horizon considered (illustration

of the wide variation in inter-temporal variability considered in the study)
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Abstract

Operational flexibility is an integral part of the design of power systems with a high share of

renewable energy sources. Resilience against severe weather is also becoming an important

concern. In this paper, we propose a comprehensive framework for power systems plan-

ning which considers both flexibility and resilience against extreme weather events. A set

of piece-wise linear models are developed to calculate the impact of extreme heat waves

and drought events on the performance of the power generation units and on the system

load. We analyze the results obtained on a case study under real future climate projections

from the Coupled Model Intercomparison Project phase 5 and compare them to those from

conventional planning methods.

Highlights

• A quantitative modeling framework for extreme heat wave and drought events

• An optimization model for resilient power system design against extreme weather im-

pact
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• High shares of renewables improve the system resilience against extreme heat wave

events

• Investigation of the interaction between the flexibility and resilience of power systems

Keywords

Power system design; renewable energy penetration; operational flexibility; extreme weather

events; power system resilience

Nomenclature

Abbreviations

CF Capacity Factor

CLC Closed-Loop Cooling

CMIP5 Coupled Model Intercomparison Project phase 5

CP Conventional Planning

EAC Equivalent Annual Cost

EFS Expected Flexibility Shortfall

HUA Hourly Unit Availability

IGEP Integrated Generation Expansion Planning

IRES Intermittent Renewable Energy Sources

LNS Load Not Served

MILP Mixed Integer Linear Programming

O&M Operation and Maintenance

OTC Once-Through Cooling

PV Photo Voltaic

RCP Representative Concentration Pathway

RP Resilient Planning

VaR Value at Risk
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Indexes:

i index of power plant cluster

j index of sub-periods (hours)

w index of sub-periods (weeks)

y index of planning year

Sets:

I set of power plant per technologies

Inew subset of new power plants technologies available

Ires subset of renewable energy units

Ith subset of thermal and nuclear units

T set of hourly sub-periods

W set of weekly sub-periods

Y set of years in the planning horizon

3
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Parameters:

Cinv
i investment cost of unit i (Me)

C lns cost of load not served (e/ MWh)

Cmarg
i,y marginal cost of power plant i including the variable O&M and CO2 costs, con-

sidering inflation (e/ MWh)

COM
i fixed O&M costs of power plant i (e)

Cstup
i start-up cost of power plant i (e)

Captmaxi maximum capacity of power plant in technology cluster i (MW)

CFi,y,w,t capacity factor of renewable energy sources i ∈ Ires during hourly sub-period t of

week w, of year y (%)

DRy discount rate for year y (%)

EFORi Expected forced outage rate of power plant i (%)

Loady,w,t system load at hour j, week w in year y (MWh)

Maxbudgety maximum budget available for investment in generation expansion for year y (in

Me)

Mup
i minimum up-time for power plant i ∈ Ith (hours)

Mdn
i minimum down-time of power plant i ∈ Ith (hours)

Pmin
i minimum stable power output of power plant in technology cluster i ∈ Ith

(MW/h)

Penlevel renewable penetration level requirement (%)

Pwrstarti maximum output of power plant i ∈ Ith when started (MW)

Resvmin minimum planning reserve margin (MW)

RmpDnmaxi maximum downwards ramping capability of power plant i ∈ Ith (MW/h)

RmpUpmaxi maximum upwards ramping capability of power plant i ∈ Ith (MW/h)

T consti construction time of power plant i (years)

T lifei expected life-time of new power plant i (years)

4

149



Continuous Variables:

lnsy,w,t load not served at hourly sub-period t of week w, during year y (MW)

pwrgeni,y,w,t energy output of power plant i at hourly sub-period t of week w, during year y

(MWh)

shtdni,y,w,t shut-down decision of unit i during hourly sub-period t of week w in year y

Discrete Variables:

avail unti,y availability (commissioning) state of power plant i in year y

invi,y commissioning decision of power plant i in year y

unt cmti,y,w,t commitment status of power plant i during hourly sub-period t of week w in year

y

strtupi,y,w,t start-up decision of power plant i during hourly sub-period t of week w in year y

1. Introduction

Reliability and security of supply are central considerations for power systems design,

and are key to regional and global energy-related policies [1]. Methods for power systems

planning have typically ensured key reliability aspects under normal operating conditions

and in response to anticipated demand variability and supply disruptions, e.g. due to errors

in load forecasts and to unexpected generation units outages. Solutions have been commonly

built on capacity adequacy and operating reserves requirements.

Recent objectives of environmental sustainability and the threats coming from severe

weather events are challenging in various ways the reliability requirements of power systems

design:

• On one hand, low carbon power systems with a high share of intermittent renewable

energy sources (IRES) are characterized by a sharp increase in inter-temporal net-load

variability. The associated difficulty in anticipating short-term variations brings the

need to consider operational flexibility as a critical design concern of future power sys-

tems [2]. Power systems operational flexibility under a large share of IRES penetration

5
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have received attention in recent years. Various studies proposed flexibility metrics

[3–6] and planning models [7–11].

• On another hand, increasingly frequent and extreme weather events, such as heat

waves, droughts, floods and storms, significantly affect the operational status of power

systems. Evidence of power generation disruptions due to such events highlights the

fragility of the existing systems. This leads to the need of considering resilience in

the planning of future power systems [12], most notably with respect to events such

as extreme heat waves, which affect both power load and generation units. Heat

waves are among the most worrying weather extremes, due to the expected increase

in their frequency and severity in the 21st century [13, 14]. For example, France

was particularly impacted by the 2003 summer heat wave, which caused an excess of

about 15,000 deaths from 4th to 18th August directly attributable to the heat [15]. By

combining peaks of extreme temperature and severe soil and hydrological droughts, this

event also affected significantly the energy production sector (mainly via the cooling

process of thermal power plants). These last years, numerous regions of the world

experienced severe heat waves with comparable effects: Russia in 2010, Texas in 2011,

Australia in 2012, India and Southern Pakistan in 2015. Therefore, it is of great

importance to design the ability of the energy systems for coping with heat waves in

the future.

Recent research has been dedicated to studying the impacts of extreme weather events on

power systems. Rocchetta et al. [16] presents a multi-objective optimization of distributed

power generation systems considering extreme wind and lightning events. Panteli et al. [17]

proposes a probabilistic methodology to assess the resilience degradation of transmission

networks subject to extreme wind events. In Cadini et al. [18], an extreme weather stochastic

model is applied to a realistic cascading failure simulator of power grids, accounting for the

operating conditions that a repair crew may encounter during an extreme weather event. The

impacts of water availability on the generation capacity expansion planning is investigated

in Cohen et al. [19], and the electricity sector growth is compared under different scenarios
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of water rights. Shao et al. [20] proposes an integrated electricity and natural gas planning

model taking into consideration the power grid resilience against storms, earthquakes and

floods. Ke et al. [21] studies the potential impacts of heat waves on power grid operation,

by quantifying the capacity of thermal power plants as a function of ambient temperature.

Whereas most of those studies focus on evaluating the impact of extreme weather threats

on the operation of power systems, there exist very few studies that incorporate resilience

within the power system design problem itself.

With regards to the above, sustainable and resilient power system design calls for 1)

developing integrated flexibility and resilience frameworks for future investment planning on

power systems with a high share of IRES penetration and 2) assessing different strategies

to mitigate the natural threats and improve system performance. With this perspective, in

this work we extend a previously proposed integrated framework for flexible power systems

planning [11] to include resilience against extreme weather events. In particular, we consider

extreme heat waves and droughts events, and propose systematic methods for assessing their

impact on the design and operation of the system. The main contributions of this work are:

• Proposing a set of piece-wise linear models to describe the impact of different scenarios

of extreme heat waves and water availability on the derating of thermal power units

operation, renewable generation production and system load.

• Explicitly incorporating the extreme weather impact in a modified mixed integer lin-

ear programming (MILP) power system planning model to derive adequate system

investment decisions.

• Extending our previously proposed quantitative framework for operational flexibility

assessment of power systems with a high share of IRES penetration (presented in [11])

to also include their resilience against extreme heat waves and drought events.

• Applying the framework to a practical sized power system planning problem with

realistic future climate projections, for demonstrating the relevance of the proposed

planning approach in terms of system costs and technology choices.
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The rest of the paper is organized as follows. In Section (2), the piece-wise linear model for

describing the impact of extreme heat waves and drought events is described and incorporated

into the power system planning problem. A practical size case study generically based on

the southern French power system is presented under different climate projections and IRES

penetration levels in Section (3). The results shown in Section (4) quantify the impact of

the climate change events from the viewpoints of system costs, flexibility and resilience of

energy supply. Section (5) presents concluding remarks.

2. Methodology

Extreme heat waves affect thermal power plants by reducing their efficiency due to the

derating of their cooling capabilities during the event. Load is sensitive to heat waves as it can

significantly increase during periods of high temperatures due to increased air conditioning

usage. The following section describes a set of piece-wise linear models to quantify these

impacts and integrate them within the power system design problem.

2.1. Piece-wise linear models of the impact of extreme weather events (high temperature and

water availability)

2.1.1. Basic model of thermal power plant cooling systems

Different cooling technologies exist for thermal power generation units. In the event of

extreme heat waves, the impact on the different technologies can be different. Since in a

power systems planning model the choice among the different cooling systems is a decision

variable, it is important to model the specific attributes of each technology separately. In

this study, we consider two main cooling technologies:

- Once-through Cooling (OTC) system: the heated cooling water is returned to the water

source. A large volume of water from the water source is required.

- Closed-loop cooling (CLC) system: water is circulated in the cooling loop including a

cooling tower, where a small portion of cooling water evaporates and is released to atmo-

sphere. Only a small volume of water has to be withdrawn from the water source.
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The required volume of cooling water V req for operating a thermal power plant at its

maximum capacity Pmax is proportional to Pmax and inversely proportional to the increase

of the temperature in the cooling water ∆T [22–24], as follows:

V req ∝ Pmax(1− α)

∆T
(1)

∆T = max
(
min

(
T out max − T in w,∆Tmax

)
, 0
)

(2)

where α is the share of waste heat released into air [%]; this share is small for OTC systems

(α→ 0) whereas it is large for CLC systems (α→ 1); the permissible temperature increase

of the cooling water ∆T is limited by: 1) the regulated maximum permissible temperature

increase of the cooling water ∆Tmax, and 2) the regulated maximum permissible temperature

of the discharged cooling water T out max [22].

We can see that when T in w ≤ T out max−∆Tmax, the maximum permissible temperature

increase of the cooling water is only limited by ∆Tmax, and the required volume of cooling

water V req is, thus, a constant value (V req = V ∗) for ∆T = ∆Tmax. However, a high value of

T in w generally leads to an increase in V req for operating the plant at its maximum capacity.

This increase is significant for OTC systems, whereas it is moderate for CLC systems.

For thermal power plants with CLC systems, it is acceptable to assume that such plants

are robust to water shortages and are independent from water availability [22, 23]. Also, the

dependency to source water temperature can be neglected since any rise in the water tem-

perature can be compensated by increasing the volume of cooling water V req [23]. Instead,

CLC systems are mainly affected by the temperature of cooling water circulated back to the

condenser, T in c, which can be assumed to be close to air temperature [23].

2.1.2. Extreme weather event impact model

We consider extreme heat waves and drought events during summer time (JJAS, 21 June-

20 September) that may force thermal power plants to reduce production owing to scarcity

and high temperature of the cooling water. The intensity of the extreme weather event (ewe)
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of heat wave and drought is modeled by:

ewe = [Tit, Ait],∀i ∈ I, t ∈ T (3)

where Tit is the hourly air temperature at plant i, from which we can calculate the related

stream temperature T in wi based on air-water interaction as follows [24]:

T in wit = tmin +
tmax − tmin

1 + eγ(tip−Tit)
(4)

The parameters for the air/water temperature relationship are derived from the literature

[22, 25, 26]: the minimum stream temperature is assessed to be tmin = 0◦C, the maximum

stream temperature to be tmax = 30.4◦C, the steepest slope to be γ = 0.14 and the air

temperature at the inflection point to be tip = 16.5◦C [27]. The parameter of the extreme

weather event Ait represents the hourly availability (percentage) of intake cooling flow at

plant i, time t and is defined by:

Ait =
min(V src

it , V cpty
i )

V ∗i
(5)

where V src
it is the permissible amount of water flow that can be taken from the water source

at plant i at time t, V cpty
i represents the water extraction capacity of the plant and V ∗i is the

constant amount of the required volume of intake cooling water for plant i when the intake

water temperature T in wit ≤ T out max −∆Tmax, as previously explained in Section (2.1.1).

For thermal power plants using the OTC system, ∀i ∈ I th otc, the ratio of P usable
it to Pmax

i

as a function of Tit and Ait can be expressed by the following piece-wise linear equations for

different ranges of Tit:

zeweit =





P usable
it /Pmax

i = min(1, Ait), T in wit ≤ Thealth

min(1, Ai) ·
[
1− β ·

(
T in w − Thealth

)]
, Thealth ≤ T in wit ≤ Trisk

min(1, Ait) · δ ·
(T out max − T in wit )

∆Tmax
, Trisk ≤ T in wit ≤ Tshutdown

0, T in wit ≥ Tshutdown

(6)

where β is the efficiency degrading rate when T in w is in the range of [Thealth, Trisk] and Trisk

is defined to represent the temperature when the actual maximum discharge of waste of heat
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is equal to the designed value and is given by:

Trisk = T out max −∆Tmax · 1

Ait
(7)

Coefficient δ can be calculated based on the continuation of the piece-wise linear functions

(6) at T in wit = Trisk and is given by:

δ = Ait + β ·∆Tmax − β · Ait · (T out max − Thealth) (8)

The above piece-wise linear equations (6) hold when Trisk ≥ Thealth, i.e., Ai ≥ ∆Tmax/(T out max−
Thealth). For the case where Trisk ≤ Thealth, i.e., Ai ≤ ∆Tmax/(T out max− Thealth) , Ashtgit , we

can simplify the piece-wise linear functions (6) as follows:

zeweit =





min(1, Ait), T in wit ≤ Thealth

min(1, Ait) · Ashtgit · (T out max − T in wit )

∆Tmax
, Thealth ≤ T in wit ≤ Tshutdown

0, T in wit ≥ Tshutdown

(9)

For a thermal plant using the CLC system, ∀i ∈ I th clc, the following piece-wise linear

functions are used to describe the impact of the air temperature (Tit ≈ T in cit ) on the usable

power capacity:

zeweit =





1, Tit ≤ Thealth air

1− ρ · (Tit − Thealth air), Tit ≥ Thealth air

(10)

For renewable generation units, wind power and solar photovoltaic (PV) systems do not

require water to generate electricity and, thus, the capacity of renewable generation will not

be affected largely by an extreme heat wave and drought event. To obtain the future PV and

wind power potential capacity factor (CF), we use the recent CMIP5 data of high-resolution

climate projections (fully described in section (3.2)), together with the wind and PV power

production models proposed in the literature.

Since the wind speed at the turbine height is not a standard output of the climate

projection model, we use near-surface wind speeds at 10 meters V10m and assume a power-

law relationship for extrapolating the vertical wind profile [28, 29]. The velocity at hub
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height H is calculated as:

VH = V10m ·
(
H

10

) 1
7

(11)

Then, the wind speed VH is converted into turbine-generated electric power capacity factor

zit, ∀i ∈ Ires−wind, t ∈ T using a standard power curve, described as follows:

∀i ∈ Ires−windzi =





0, if VH < Vl or VH > V0

V 3
H − V 3

l

V 3
R − V 3

l

, if Vl ≤ VH < VR

1, if VR ≤ VH < V0

(12)

where Vl, VR and V0 are the cut-in, rated and cut-out velocity of a wind turbine, respectively.

Wind power capacity factor is calculated at the grid cell level (defined in the climate projec-

tion model) assuming a unique turbine model for all grid cells (H = 80 m, Vl = 3.5 m/s, VR =

12 m/s, V0 = 25m/s), as in [30, 31]

PV power generation potential depends on solar irradiance, named surface-downwelling

shortwave (i.e., wavelength interval 0.2-4.0 µm) radiation (Rsds) in the climate models, and

other atmospheric variables affecting panel efficiency, i.e., surface air temperature (Tas) and

surface wind velocity (V10m). The PV power generation can be expressed as [32, 33]:

∀i ∈ Ires−pv, zi =
[
1 + γ

(
Tcell − T 0

)]
· Rsds

R0
sds

(13)

where the upper script 0 refers to standard test conditions for which the nominal capacity

of a PV device is determined as its measured power output (R0
sds = 1000 Wm−2, T 0 =

25◦C). Parameter γ is set at -0.005◦C−1, considering the typical temperature efficiency of

monocrystalline silicon solar panels [32]. Finally, the PV cell temperature Tcell is obtained

as:

Tcell = c1 + c2Tas + c3Rsds + c4V10m (14)

where c1 = 4.3◦C, c2 = 0.943, c3 = 0.028◦Cm2W−1 and c4 = -1.528◦Csm−1 [32, 34].

After obtaining the grid cell level renewable (wind and PV) power capacity factors, then,

the regional renewable power potentials can be obtained by averaging all the grid cell levels

inside a given region.
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Power demand is usually sensitive to climatic conditions. To capture this, the power

demand in the extreme weather event is represented by:

Lewet = lt + C l · (T t − T reft ) (15)

where C l is the temperature sensitivity coefficient of power load, e.g., it is around +500MW/+1◦C

during the summer time in France [35]. Here T t and T
ref

t represent the geographical average

values of the projected air temperature and historical reference air temperature, respectively.

2.2. Power system planning model with short-term operational constraints

Operational flexibility in long term planning should be accounted for by considering the

short-term technical constraints of the generating units, such as the unit commitment of gen-

eration units, their ramping capabilities and minimum up and down times, to name a few

[11]. We refer to this class of planning models as the integrated generation expansion plan-

ning (IGEP) models, since it combines both long-term investment constraints and short-term

unit commitment constraints within a single optimization. The multi-period IGEP planning

model used here seeks to minimize the total discounted system cost over the whole time

horizon. These costs include: annualized equivalent investment costs, fixed operation and

maintenance costs, and variable operation costs of the power system (fuel cost, start-up costs

and cost of load not served). The plans obtained are subject to long-term constraints in-

cluding the budget limit, adequacy requirement, renewable penetration level, and short-term

constraints including supply-demand balance, generation limits, unit commitment decisions,

ramping limits and minimum up and down times. The model is formulated as a mixed

integer linear program (MILP) considering annual long-term generation expansion planning

constraints and hourly short-term unit commitment decisions.

2.2.1. Objective function

The objective is the minimization of the total discounted costs over the planning horizon.

Equation (16) represents the total investment costs in new units, equation (17) represents the

total production costs including start-up costs and cost of LNS, and equation (18) represents

the fixed operation and maintenance (O&M) costs. It should be noted that the investment
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cost considered in this model is the Equivalent Annual Cost (EAC) that is obtained by using

the AnnuityFactori calculated as: AnnuityFactori =
1− (1 +DR)−T lifei

DR
. This ensures

the proper relationship between the annual investment and operational costs and the correct

evaluation of the different investment options having different life spans T lifei

min
cost

∑

y∈Y
(1 +DR)−y · AnnuityFactori ·

∑

i∈Inew
Cinv
i · Captmaxi · invi,y (16)

+
∑

y∈Y
(1 +DR)−y ·

∑

w∈W
Weight ·

∑

t∈T

[∑

i∈I

(
Cmarg
i,y · pwrgeni,y,w,t

)

+
∑

i∈Ith

(
Cstup
i · stupi,y,w,t

)
+ C lns · lnsy,w,t

]
(17)

+
∑

y∈Y
(1 +DR)−y ·

∑

i∈I
COM
i,y · Captmaxi ·

y∑

l=1

invi,l (18)

2.2.2. Constraints

Since we consider a multi-period planning horizon, Eq. (19) keeps track of the investment

decisions made in year y taking into account the construction time of the unit following:

avail unti,y =

y∑

l=1

invi,l−T consti +1, ∀i ∈ Inew, y ∈ Y \[T consti − 1] (19)

The maximum allowable discounted investment budget is limited in Eq (20) such as:

(1 +DR)−y ·
∑

i∈Inew
Cinv
i · Captmaxi · invi,y ≤Maxbudgety, ∀y ∈ Y (20)

Eq (21) ensures that the adequacy level requirement is met by ensuring enough firm capacity

to satisfy a reserve margin above the maximum predicted load:

∑

i∈Ith
(Captmaxi · avail unti,y) ≥

(
1 +Resrvmin

)
·max
w,t

(Loady,w,t), ∀y ∈ Y (21)

The renewable penetration level required in the system is set through Eq (22):

∑

i∈Ires
avail unti,y · Captmaxi ≥ Penlevel ·

∑

i∈I
avail unti,y · Captmaxi , ∀y ∈ Y (22)
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Eq (23) ensures the coupling between investment and operational decisions:

unt cmti,y,w,t ≤ avail unti,y ∀i ∈ I thermal, t ∈ T,w ∈ W, y ∈ Y (23)

The hourly supply and demand balance as well as the amount of LNS is constrained by

Eq (24):

∑

i∈I
pwrgeni,y,w,t + lnsy,w,t = Loady,w,t ∀t ∈ T,w ∈ W, y ∈ Y (24)

Eq (25) constraints the hourly unit commitment decisions by the startup and shutdown

decisions:

unt cmti,y,w,t − unt cmti,y,w,t−1 = stupi,y,w,t − shtdni,y,w,t, ∀i ∈ I th, t ∈ T/{1},

w ∈ W, y ∈ Y (25)

The hourly maximum and minimum production levels for thermal units are given in Eq (26)

and Eq (27), respectively:

pwrgeni,y,w,t ≤ (1− EFORi)·Captmaxi ·unt cmti,y,w,t, ∀i ∈ I th, t ∈ T,w ∈ W, y ∈ Y (26)

pwrgeni,y,w,t ≥ Pmin · unt cmti,y,w,t ∀i ∈ I th, t ∈ T,w ∈ W, y ∈ Y (27)

The renewable sources production is limited by the hourly capacity factor CF as given in

Eq (28):

pwrgeni,y,w,t ≤ avail unti,y · Captmaxi · CFi,y,w,t, ∀i ∈ Ires, t ∈ T,w ∈ W, y ∈ Y (28)

Eq (29) and Eq (30) constraint the hourly upwards and downwards ramping capabilities for

thermal units, respectively:

pwrgeni,y,w,t − pwrgeni,y,w,t−1 ≤unt cmti,y,w,t−1 ·Rmpupmaxi + strtupi,y,w,t · Pwrstarti ,

∀i ∈ I th, t ∈ T\{1}, w ∈ W, y ∈ Y (29)

pwrgeni,y,w,t−1 − pwrgeni,y,w,t ≤unt cmti,y,w,t−1 ·RmpDnmaxi ,

∀i ∈ I th, t ∈ T\{1}, w ∈ W, y ∈ Y (30)
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Finally, Eq (31) and Eq (32) ensures that the minimum allowable up and down times for

thermal units are respected:

unt cmti,y,w,t ≥
t∑

τ=t−Mup
i

strtupi,y,w,τ ∀i ∈ I th, t ∈ T\[Mup
i ], w ∈ W, y ∈ Y (31)

avail unti,y − unt cmti,y,w,t ≥
t∑

τ=t−Mdn
i

shtdni,y,w,τ , ∀i ∈ I th, t ∈ T\[Mdn
i ],

w ∈ W, y ∈ Y (32)

2.2.3. Integrating resilience requirement into system design

The impact of an extreme weather event to the power generation system is measured by the

decrease of the generation capacity of affected thermal and PV plants, and the increase of

power demand, as given above. Then, the power generation system resilience is evaluated

by a deterministic metric, which is referred to as the total load not served (LNS) during the

period of the extreme weather event, and is defined as:

LSeweyt =

(
Loadeweyt −

∑

i∈I
pwrgeneweiyt

)
, ∀y ∈ Y, t ∈ T ewe (33)

pwrgeneweiyt ≤ zeweiyt · Captmaxi · unt cmtiyt, ∀i ∈ I, y ∈ Y, t ∈ T ewe (34)

∑

t∈T ewe
LSeweyt ≤ LSmax, ∀y ∈ Y (35)

where unt cmtiyt is the unit commitment state of generation units of technology i at time t

in year y, and zeweiyt is the efficiency factor of the generation units of technology i during the

extreme weather event, calculated using the above piece-wise linear equations (6)-(14), and

T ewe is the total duration of the event. Equation (33) calculates the total amount of load

shedding LS in each year y during the extreme weather event as the difference between the

hourly demand and the total power generation from all power units. Equation (34) limits

the power generation output pwrgen of generation units of technology i at year y during the

extreme weather event t ∈ T ewe to the efficiency factor zeweiyt . Finally, constraint (35) limits
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the amount of load shedding allowed during the extreme weather event LSeweyt to a maximum

limit LSmax.

It should be noted that the resilience metric used here is focused on the ability of the

power system to mitigate the impact of the extreme heat wave and drought events and not on

the recovery from those events. This is because in these specific extreme weather events the

main action is to reduce the thermal units production levels or to shut them down completely

to avoid overheating and further damages to the units, so that recovery of normal operation

is immediate once weather conditions go back to normal.

2.2.4. Assessing the flexibility of the power system design

High shares of IRES production increase the inter-temporal variability of the remaining

net system load. Enough available thermal units, then, need to be operational and sufficiently

flexible to cope with these variations and ensure production reliability. Proper metrics are

needed to evaluate the operational flexibility of the plans obtained under different weather

and IRES scenarios.

In this work, we adopt the Expected Flexibility Shortfall (EFS) metric presented in [11].

This probabilistic metric takes into account detailed technical and temporal attributes of the

thermal units to quantify the system ability to meet inter-temporal variations. Figure (1)

shows a schematic illustration of the EFS calculation method.
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INPUT: thermal units hourly production, unit availability, 
unit commitment status, technical units characteristics

Calculate actual hourly unit availability (HUA) based on start-up and 
shut-down decisions, and minimum down times

Calculate available flexible resources at each hour based on HUA 
maximum ramping capacity and production limits

Calculate hourly net-load ramping time series as:
Hourly load – IRES production

Calculate the time series of hourly flexibility losses as:
|net load ramping – available flexible resources|

Calculate the Value-at-Risk (VaR) for the losses time series 
at the desired confidence level

Calculate the EFS as the average loss for observations 
exceeding the VaR level, at the respective confidence interval.

INPUT: IRES units hourly 
production, system load

Aggregated for all thermal units Aggregated for the whole planning horizon

Figure 1: EFS calculation

3. Power system characteristics and climate scenarios

3.1. Power system modeling

We consider a multi-annual planning horizon representing the period between the year

2041 to 2046. Linear regression is used to obtain the system hourly load from the historical

electricity load time series of France from the year 2008 to 2012 (publicly available at [36]),

assuming a growth of 1% to 1.5% from the beginning to the end of the planning horizon.

The cost data for the generation technologies considered for the expansion planning are

based on the IEA/NEA Projected Costs of Generating Electricity report (2015) [37]; the

remaining technical characteristics are assumed based on values found in the literature and

are summarized in Table (1).
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Table 1: Technical parameters for power generation technologies

Technology Nuclear Coal CCGT Solar-PV On-shore Wind

Maximum Capacity per installed unit [MW ] 1400 1100 550 60 80

Minimum stable load [MW ] 700 550 165 0 0

Maximum upward ramping [MWh/min] 0.5%Pn/min 1.5%Pn/min 5%Pn/min / /

Maximum downward ramping [MWh/min] 0.5%Pn/min 1.5%Pn/min 5%Pn/min / /

Minimum up time [hours] 12 6 3 / /

Minimum down time [hours] 24 10 5 / /

Start-up cost [ke] 15.0 11.26 7.53 / /

Thermal generation units can be equipped with one of two different cooling technologies,

that have different cost and technical characteristics. Under normal conditions, cooling

towers with recirculating water (CLC) reduce the overall efficiency of power plants by 2−5%

compared to once-through use of water from seas, lakes or large streams (OTC). Thus, these

towers are associated with larger operational/marginal costs compared to OTC systems.

Moreover, the investment costs of CLC systems are around 20% higher than those for OTC

systems. Table (2) summarizes the specific technical and cost parameters of the generation

units equipped with each cooling technology [23, 38, 39].

Table 2: Technical and economic characteristics for the different generation technologies

Technology β/ρ/ Cpv Thealth/Thealth air/T
ref pv Tshutdown Tout max ∆Tmax Cinv

i C
mrgl
i

[i] [%] [◦C] [◦C] [◦C] [◦C] [Me/MW ] [e/MWh]

Nuclear-OTC 0.44 15 32 32 10 3.95 13.84

Nuclear-CLC 0.44 10 / / / 4.74 14.11

Coal-OTC 0.97 15 32 32 10 2.08 38.97

Coal-CLC 0.94 10 / / / 2.60 39.75

CCGT-OTC 0.31 15 32 32 10 1.02 70.16

CCGT-CLC 0.30 10 / / / 1.22 71.50

Solar-PV 0.50 25 / / / 1.5 1.71

On-Shore Wind / / / / / 1.9 2.16

Within the optimization planning framework, the investment decisions are grouped by

technology option using the unit clustering method proposed in [40]. The yearly load is op-

timally approximated by four representative weeks as proposed in [41] and the chronological

order within each week is maintained. This is especially important for correctly capturing the

operational flexibility attributes of the system while ensuring the computational tractability

of the optimization problem. An additional week corresponding to the one containing the
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peak summer load is, then, added to simulate the impact of the heat wave and drought

events during summer time.

3.2. Climate projections data of heat wave and drought events

Historical baseline temperature as well as future temperature projections for the years

2041 to 2046 are based on data obtained from the Coupled Model Intercomparison Project

(CMIP5) experiments [42]. Similarly, wind speeds and solar irradiance data used to calculate

the wind and solar CF are obtained from the CMIP5 experiments, following the models

presented in section (2.1.2). We consider three Representative Concentration Pathways

(RCPs) that cover the impact of different trajectories of greenhouse gas concentration on

future climate, compared to pre-industrial levels. In particular, we consider the RCP 8.5,

RCP 4.5 and RCP 2.6, which represent an increased in radiative forcing of +8.5 Wm−2,

+4.5 Wm−2 and +2.6 Wm−2 respectively, compared to pre-industrial values. Table (3)

summarizes the details of the CMIP5 experiments used for the different climate projections.

Table 3: Details of the experiments used for the historical and projected temperature scenarios

Experiment

type

Modeling Cen-

ter (or group)

Institute ID Model Name Experiment Period Variable Frequency

Historical

(baseline)

Meteorological

Research In-

stitute

MRI MRI-CGCM3 historicalEXT 2008-2012 tas 3hr

Projection Centre Na-

tional de

Recherches

Mtorologiques

CNRM CNRM-CM5 rcp85, rcp45,

rcp26

2041-2046 tas 3hr

Projection Meteorological

Research In-

stitute

MRI MRI-CGCM3 rcp85, rcp45,

rcp26

2041-2046 uas, vas, rsds 3hr

Since we are primarily interested in extreme weather scenarios related to the region of

southern France, the climate data considered have been limited to the geographical scope

of interest: that is, data spanning the longitudinal and latitudinal scope of approximately

(W2◦35′00′′−E8◦10′00′′) and (N46◦06′00′′−N41◦19′00′′), respectively. To quantify the im-

pact of an extreme heat wave, the average temperature time series as well as the average

wind and solar CF are, then, computed for the geographical area considered, for each pro-
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jected climate scenarios. Regarding water availability levels, different water level scenarios

during the heat wave events are assumed to cover: high availability levels (A > 1), normal

levels (A = 1) and low availability levels (A < 1).

4. Results and discussion

4.1. Impact of extreme heat wave and drought events on system load and efficiency of power

generation

We start our investigation with a focus on future climate parameters obtained from

the RCP 8.5 experiments, which is the representative concentration pathway assuming no

decrease in current carbon emission trends throughout the 21st century. Significant temper-

ature increase during the summer period is observed under the Representative Concentration

Pathway (RCP 8.5), compared to the historical baseline scenario. The impact of this tem-

perature increase on the load and power generation units are computed for a typical summer

week for each year of the planning horizon. As an example, Figure (2) illustrates the pro-

jected temperature increase and its impact on system load during the period between the

30th of July and the 6th of August for the year 2041 in southern France, compared to the

historical average levels in the same period and location. The temperature difference is seen

to reach levels of +9.2◦C, while its impact on the system load (calculated as per the proposed

impact model) can increase up to +1840 MWh. Similar order of differences are observed for

the other planning years considered.

10

15

20

25

30

35

30-Jul 31-Jul 1-Aug 2-Aug 3-Aug 4-Aug 5-Aug 6-Aug

Te
m

p
e

ra
tu

re
 ∘
C

Historical Average Temperature Projected Average Temperature

max. difference = +9.2∘C

(a) Temperature difference

10

15

20

25

30-Jul 31-Jul 1-Aug 2-Aug 3-Aug 4-Aug 5-Aug 6-Aug

Lo
ad

 (
G

W
h

)

Baseline system load Projected Load (during heat wave)

max. load impact = +1840 MWh
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Figure 2: Temperature difference and its impact on system load during the period between the 5th and the

12th of August, for both the baseline and the projected scenarios
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The effect of heat wave and water shortages on the efficiency of thermal units depends

on the cooling technology deployed. We consider three different levels of water availability

and calculate their impact on the efficiency of thermal units during the heat wave event.

Figure (3) illustrates the resulting efficiency for nuclear power plants during a heat wave and

under different water availability levels, using data for the year 2041. It can be seen that

OTC-based generators are highly affected by water shortages, compared with CLC units,

which are impacted by the heat wave but maintain the same efficiency levels regardless of

the water availability level.
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No climate impact (baseline)

CLC (all water availability levels)

OTC (A=1.5)

OTC (A=1)

OTC (A=0.75)

Figure 3: Example of nuclear generation units efficiency derating during a heat wave event for different

cooling technologies (OTC and CLC) and under different water availability scenarios (high availability: A

> 1, normal availability: A = 1, low availability A < 1)

4.2. Resilient power system planning vs conventional planning

Resilient power systems planning should account for the impact of extreme weather

events as an integral part of the planning problem, as discussed in the previous sections. We

compare the resilient plans (denoted RP) to conventional plans (CP), obtained assuming no

climate impact on the efficiency of the generation units. CP future investment plans are,

then, used to simulate operation under different realizations of climate scenarios, to assess

operational performance. We focus first on the results obtained under no IRES penetration

level requirements.

The total amount of load not served (LNS) during the heat wave period is taken as the

primary performance measure for the plans obtained. Figure (4) illustrates the resulting

LNS for both RP and CP under the extreme weather events. The results show a significant
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load loss for the conventionally planned systems, that sharply increases with the worsening of

the climate conditions. The loss reaches up to 851 GWh under the worst scenario of climate

impact. This is not the case for the RP, which are shown to suffer an LNS significantly lower

than CP, with a maximum of 17 GWh under the worst scenario of climate impact.
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1000.00

A = 1.5 A = 1 A = 0.75

No climate
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High water
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availability
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0.00
8.54 14.38 16.84

0.00
65.42

253.15

851.20
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h
)
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Figure 4: LNS during different extreme weather events. Comparison between RP and CP under no IRES

penetration.

In terms of system costs, RP have overall higher annualized investment and operational

costs compared to CP, as can be seen in Figure (5). This is directly related to the fact

that for RP the extreme weather impact on the power system is taken into account and

so the plan compensates the lower thermal units efficiency by investing in more and better

performing units. The slightly higher investment and operational costs, however, are fully

offset by the reductions in LNS costs, as can be seen in Figure (5). The maximum difference

between the total annualized investment and operation costs of the RP compared to the CP

is equal to 1.23 Be (low water availability scenario in Figure (5)), while the LNS cost saving

for the same scenario is around 9.52 Be.
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Figure 5: Comparison between RP and CP costs subject to different extreme weather events under no IRES

penetration.

Next, we extend the analysis to evaluate the impact of increasing IRES penetration

levels on the system performance. Most notably we consider 0%, 25% and 50% IRES energy

penetration levels (percentages of total system load) and solve the optimization problems

under all extreme weather events, for both the RP and CP.

Figure (6) shows the impact of the increasing share of IRES levels on the LNS of the

system during the extreme weather events, for RP and CP. Higher IRES penetration has a

clear effect on reducing the amount of LNS during the extreme events. RP maintain low

LNS levels in all cases considered, and slightly improves with increasing IRES levels, while

CP show a significant decrease in LNS as IRES power compensates for the lack of system

resilience.
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Figure 6: Impact of high IRES penetration on LNS during different extreme weather events.

Moreover, it is shown that the increased IRES capacity reduces the gap between RP and

CP, in terms of annualized investment and operational costs. For example, the difference in

the total annualized investment and operation costs between the RP and CP plans decreases

from +5.70% to +1.60% under the 0% and 50% IRES levels respectively, under the “Extreme

heat wave - Low water availability” scenario in Table (4). The same trends are also found

under the other extreme weather scenarios considered.

RDPM CPM
Difference 

(% wrt CPM) RDPM CPM
Difference 

(% wrt CPM) RDPM CPM
Difference 

(% wrt CPM)
0% IRES 7.19 6.95 3.52% 14.72 14.54 1.20% 1.38 2.09 -34.07%

25% IRES 9.37 9.37 0.05% 14.12 13.99 0.95% 1.21 1.46 -16.92%
50% IRES 12.92 12.92 0.04% 14.29 14.14 1.03% 0.61 0.89 -32.13%
0% IRES 7.51 6.95 8.02% 14.93 14.55 2.57% 1.20 4.15 -71.19%

25% IRES 9.55 9.37 2.00% 14.13 14.00 0.95% 1.26 2.36 -46.86%
50% IRES 13.05 12.92 0.99% 14.30 14.15 1.04% 0.65 1.61 -59.82%
0% IRES 7.55 6.95 8.63% 15.17 14.55 4.30% 1.18 10.70 -88.95%

25% IRES 9.66 9.37 3.09% 14.30 14.01 2.03% 1.22 6.15 -80.08%
50% IRES 13.17 12.92 1.92% 14.35 14.17 1.32% 0.63 4.37 -85.51%

RP CP
Difference 
(% wrt CP) RP CP

Difference 
(% wrt CP) RP CP

Difference 
(% wrt CP)

0% IRES 7.19 6.95 3.52% 14.72 14.54 1.20% 21.91 21.49 1.95%
25% IRES 9.37 9.37 0.05% 14.12 13.99 0.95% 23.49 23.35 0.59%
50% IRES 12.92 12.92 0.04% 14.29 14.14 1.03% 27.21 27.06 0.56%
0% IRES 7.51 6.95 8.02% 14.93 14.55 2.57% 22.43 21.50 4.33%

25% IRES 9.55 9.37 2.00% 14.13 14.00 0.95% 23.69 23.37 1.37%
50% IRES 13.05 12.92 0.99% 14.30 14.15 1.04% 27.34 27.07 1.01%
0% IRES 7.55 6.95 8.63% 15.17 14.55 4.30% 22.72 21.50 5.70%

25% IRES 9.66 9.37 3.09% 14.30 14.01 2.03% 23.95 23.38 2.46%
50% IRES 13.17 12.92 1.92% 14.35 14.17 1.32% 27.52 27.08 1.60%

LNS Cost [BEuro]

Total inv + op costs 
[BEuro]

 Extreme heat 
wave scenario

Normal water availability

Low water availability

Normal water availability

Low water availability

High water availability

High water availability

 Extreme heat 
wave scenario

Investment Cost [BEuro] Operating Cost [BEuro]

Annualized Investment Cost 
[BEuro]

Operating Cost (excluding LNS) 
[BEuro]

Table 4: Comparison of RP and CP costs under different IRES penetration levels and extreme weather

events.

4.3. Impact of extreme weather events on technology choice and system flexibility

The previous section has illustrated how power system RP cope with the detrimental

impact of extreme weather events, with no significant increase in the system cost. We analyze
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in details the choices in the RP under the different scenarios. Most notably, the generation

technology choice and capacity installed are major contributors to the system performance.

Figure (7) summarizes the investment capacities and technologies choices under the different

extreme weather events and IRES penetration levels. For clarity, the results illustrate the

total capacity installed per each cooling technology type (OTC-based capacity vs CLC-based

capacity) summed over all thermal power plants installed, under each scenario.
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Figure 7: RP technology choice and capacity installed under different IRES penetration levels and extreme

weather events.

The results show a clear shift from (the cheaper) OTC-based capacities to the (more

expensive) CLC-based technology when the heat wave event is accounted for, primarily as

a result of internalizing in the system design the impact of the extreme event. This shift to

CLC-based units further increases considering lower water availability levels during the heat

wave event. The results also show that the total capacity of all technologies installed does

not in fact vary in response to different extreme weather events but is rather significantly

impacted by the amount of IRES penetration in the system, for an average of 39.3GW,
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64.8GW and 101GW for the 0%, 25% and 50% IRES penetration scenarios, respectively,

with low standard deviations of 2.9, 0.5 and 0.08 within each IRES scenario. On the other

hand, the significant increase of capacity installed across different IRES penetration scenarios

is directly attributed to the increased capacity required to satisfy the operational flexibility

needs of the system under these scenarios, as has been discussed in previous work [11].

We finally explore how the operational flexibility of the RP and CP plans are affected

by the different extreme climate events. Table (5) summarizes the EFS results at the 99%

confidence level, for all IRES and climate scenarios. It can be seen that when the extreme

weather events are not taken into account in the planning phase (as per the CP), the op-

erational flexibility shortage is multiple times that of its RP counterpart under the same

extreme weather events. This flexibility shortage difference further increases considering

higher levels of IRES penetration. For instance, the EFS reaches approximately 7355 MW

for CP compared to 27655 MW for RP, during the extreme weather event for a system with

50% share of IRES capacity. The flexibility shortages, however, are significantly lower than

the load losses for the CP due to the lack of resilience, which were shown to be in the order

of several hundred GWh in the previous sections. This is important to note since both RP

and CP accommodate the operational flexibility attribute.

RP CP

High water availability 28.84 3359.03
Normal water availability 785.57 4588.56

Low water availability 1933.98 5375.94
High water availability 752.57 1732.63

Normal water availability 1472.30 5050.12
Low water availability 1621.71 4435.47
High water availability 618.18 1281.81

Normal water availability 1038.70 3981.68
Low water availability 2655.01 7354.27

EFS [MW] 
(99% condifdence level)

Extreme heat wave 
scenario

50% IRES

0% IRES

25% IRES

Table 5: Expected Flexibility Shortfall (EFS) of RP under different IRES penetration levels and climate

scenarios.
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4.4. Sensitivity of the results for different climate projections (RCP8.5, RCP4.5 and RCP2.6)

In the previous sections, we have shown the improvements achieved by RP which account

for extreme heat waves and drought events. Both RP and CP were optimized and/or eval-

uated under the climate parameters of the RCP 8.5, that is the most pessimistic radiative

concentration pathway for the 21st century. In this section, we perform a sensitivity analy-

sis considering other RCP projections from the CMIP5 climate experiments to confirm the

relevance of the planning framework proposed under less pessimistic concentration pathways.

RCP 2.6 and 4.5 climate data are used to calculate future power system operating con-

ditions. Most notably, solar irradiance and wind speed data are used to obtain wind and

solar-PV CF, and temperature data during the summer period are used to simulate the

future heat wave scenarios and their impact on thermal generators. We, then, use the RP

and CP under the RCP 8.5 scenario to check their operational performance under the other

RCP scenarios.

Figure (8) shows the performance of the RP and CP obtained under the RCP 8.5, in

terms of LNS during the extreme heat event under all RCP pathways considered. The

values shown are the average LNS amounts for all water availability scenarios per each RCP.

The results confirm the consistently lower LNS for the RP under all RCP scenarios and for

all IRES penetration levels. In addition, as expected, the LNS decreases as less pessimistic

RCP scenarios are considered. For example, the average LNS for the RP under 0% IRES

penetration decreases from 10 GWh for the RCP 8.5 to 0.05 GWh for the RCP 2.6 scenarios.
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Figure 8: Average amount of LNS under each RCP scenario (8.5, 4.5 and 2.6) and IRES penetration levels

(0%, 25% and 50%). Comparison between the results for RP and CP.

With regards to the operational flexibility, the results reported in Figure (9) show the

average EFS of the plans obtained under all extreme weather events for different IRES

penetration levels. Less obvious trends can be found for the operational flexibility levels of

the obtained plans across the different RCPs, as measured by the EFS metric. It can be

confirmed, however, that RP consistently outperform CP also in terms of flexibility, as can

be seen in the overall lower shortage levels illustrated in Figure (9). The improved flexibility

performance of the RP highlights an important interaction between the resilience of the

system and its flexibility, and the compound impact of failing to consider either aspect in

the power system design phase.
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Figure 9: Average amount of EFS under each RCP scenario (8.5, 4.5 and 2.6) and IRES penetration levels

(0%, 25% and 50%). Comparison between the results for the RP and CP.

5. Conclusions

In this work, we propose a framework for power systems planning considering operational

flexibility and resilience against extreme weather events. Specifically, we propose a set of

piece-wise linear models to quantify the impact of extreme heat waves and drought events,

and propose methods to integrate their impacts within the power system planning models.

We investigate a practically sized case study based on realistic climate projections and

system attributes representatives of the southern French geographical area. Several extreme

climate scenarios related to heat waves and water shortages are investigated and the results

are compared between the resilience-driven planning framework proposed and the conven-

tional planning results.

The results show that significant improvements in terms of load supply during an ex-

treme heat wave and drought events can be achieved under the resilient planning framework

compared to conventional planning. It is also shown that although these improvements

come at higher investment and operational costs, they are fully offset by the economic sav-

ings achieved by reducing the amount of load loss during those events. In terms of system

flexibility, the results further show that although the plans obtained have higher flexibility

shortage levels, they keep at least an order of magnitude lower than the load losses due
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to the lack of system resilience. This further highlights the advantage of adopting such

comprehensive planning framework.

The modeling and optimization framework presented here can be directly extended to

multi-regional planning, to account for the differences in weather conditions across the differ-

ent regions. Moreover, since extreme weather events are uncertain and stochastic in nature,

the presented deterministic framework for resilient power system design can be improved by

accounting for the uncertainties within a probabilistic framework.
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Abstract

This paper presents a multi-stage adaptive robust power system planning model, which

accounts for detailed short-term unit commitment and ramping constraints. The uncer-

tainty of electricity demand and renewable power generation is taken into account through

distribution-free bounded intervals, with parameters that permit control over the level of con-

servatism of the solution. A solution method based on linear decision rules and information-

level approximation is also presented. The importance of considering detailed short-term

ramping constraints in ensuring proper operational flexibility of power system plans is shown

with a realistic-size case study. The results confirm the effectiveness of the proposed approach

in coping with multi-fold ramping uncertainties for power systems planning.
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s index of sub-periods (days or weeks)

t index of sub-periods (hours)

y index of planning year

Sets:

I set of power plant technologies

Ires subset of renewable energy power plants

I th subset of thermal and nuclear power plants

S set of daily or weekly sub-periods

T set of hourly sub-periods

Y set of years in the planning horizon

Parameters:

P̄i maximum output of power plant belonging to technology i (MW)

R̄Dn
i maximum downwards ramping capability of power plant i ∈ I th (MW/h)

R̄Up
i maximum upwards ramping capability of power plant i ∈ I th (MW/h)

Bmax
y maximum budget available for investment in generation expansion for year y (in Me)

C lns cost of load not served (e/ MWh)

Cmarg
i,y marginal cost of power plant technology i including the variable O&M cost (e/ MWh)

CFOM
i fixed O&M costs of power plant belonging to technology i (e)

Cinv
i investment cost of technology i (Me)

Cstup
i start-up cost of power plant belonging to technology i (e)
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CFiyst capacity factor of renewable energy sources i ∈ Ires during hourly sub-period t of day

or week s, of year y (%)

DF y discount factor for year y (%)

εi Expected forced outage rate of power plant belonging to technology i (%)

Lyst system load at hour t, day or week s in year y (MWh)

Md
i minimum down-time of power plant of technology i ∈ I th (hours)

Mu
i minimum up-time for power plant of technology i ∈ I th (hours)

Pmin
i minimum stable power output of power plant of technology i ∈ I th (MW/h)

P start
i maximum output of power plant of technology i ∈ I th when started (MW)

rmin minimum adequacy reserve margin

RESlvl renewable penetration level requirement (%)

Continuous Variables:

lnsyst load not served at hourly sub-period t of day or week s, during year y (MW)

piyst energy output of power plants belonging to technology i at hourly sub-period t of day

or week s, during year y (MWh)

viyst shut-down decision of units belonging to technology i during hourly sub-period t of

day or week s in year y

Discrete Variables:

qiy commissioning decision of power plant of technology i in year y

uiyst commitment status of power plant of technology i during hour t of day or week s in

year y
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xiy availability (commissioning) state of power plant of technology i in year y

ziyst start-up decision of power plant of technology i during hour t of day or week s in year

y

1. Introduction

Planning power systems to properly accommodate the rapid growth of intermittent re-

newable energy sources (IRES), such as wind and solar power, has received extensive atten-

tion in recent years. The challenges brought by the variability of IRES production emphasize

the need to account for operational flexibility as an integral part of power systems planning

models [1]. Operational flexibility is a time-and-state specific attribute of the power system

that most notably relates to its short-term ramping abilities. Methods have been proposed

to account for this attribute in power system planning, among which, a new class of inte-

grated generation expansion planning (GEP) and unit commitment (UC) models (IGEP-UC)

[2]. These models combine long-term investment decisions and short-term UC constraints

within a single optimization framework to explicitly ensure that ramping requirements are

respected. However, because of the computational complexity of the resulting problems,

most of the applications have been limited to deterministic instances.

Accounting for the inherent uncertainty in IRES supply and system load, however, is an-

other significant concern for ensuring adequate system flexibility. Two popular approaches

have been often applied to address these uncertainties for the GEP and UC problems, sep-

arately. One is stochastic optimization (SO) [3–7], which models uncertain parameters by

means of scenarios generated from probability distribution functions. This method may be

suitable if the probability functions are available, which is not always the case, and especially

when considering long-term uncertainties such as in a GEP problem. Moreover, SO does

not guarantee the feasibility of the solution for all possible uncertainty realizations, which

is a significant limitation in addressing the operational flexibility issue. The other popular

approach is robust optimization (RO) [8], which models uncertain parameters by means of

distribution-free bounded intervals. RO is attractive in that it avoids the above-mentioned
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limitations of SO, but, it has been often criticized for resulting in over-conservative solu-

tions and for being computationally intensive. State-of-the art RO methods deal with these

problems by introducing an uncertainty budget parameter to control the conservatism of

the solution and by resorting to efficient solution methods (such as Column and Constraint

Generation (CCG) [9] or affine simplification of the recourse action [10]) to accelerate the

solution.

Some research works have focused on RO-based approaches to handle uncertainties and

address operational flexibility in power systems planning and operation. In [11], a two-stage

adaptive RO model is proposed for long term generation and transmission expansion under

generator output uncertainties but with no explicit consideration of the ramping require-

ments. Ramping was considered in [12] for power system planning but only through an

approximated hourly load ramping uncertainty that is based on average net-load levels. De-

tailed ramping constraints were considered in robust unit commitment models such as in

[13–16], but without considering the impact on power systems planning. Moreover, [15] has

demonstrated how the two-stage robust UC model can lead to infeasibility in the dispatch

problem when the generation ramping capability is limited. This showed the importance of

considering non-anticipativity constraints in power systems operations within a multistage

robust optimization. Yet these results were not extended to investigate their impact on the

power systems investment decisions. In this work, we confirm these results and further ex-

tend the analysis showing how investment decisions for power systems planning can widely

vary as a result of accounting for detailed ramping uncertainties. The main contributions of

this work are:

1) A multiperiod multi-stage affinely adjustable robust optimization (AARO) model is for-

mulated for long term integrated generation expansion planning and unit commitment to

explicitly account for operational flexibility in power system planning. The uncertainty

characterization of the system load and IRES capacity factor (IRES-CF) takes the form of

a deterministic uncertainty set with a controllable level of conservatism. The dimensionality

problem of the fully adjustable model is discussed along with the concept of “information
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basis level” of the resulting problem.

2) To resolve the dimensionality issue, an approximation method is proposed by introducing

a new parameter which controls the level of affine dependency (information level) of the

problem. We conduct a sensitivity analysis on this parameter and show that significant

computational gains can be achieved while keeping the significance of the results.

3) The proposed approach is applied for investment decisions in a practical-sized case study

with a high share of IRES penetration, under realistic assumptions. The importance of ex-

plicitly considering the detailed ramping constraints for robust long-term planning is shown

and discussed in details. The superiority of considering multi-stage AARO over other meth-

ods to account for operational flexibility in power systems planning with high shares of IRES

production is demonstrated.

The rest of the paper is organized as follows. In Section (2) the deterministic IGEP-UC

model as a mixed integer linear programming problem is introduced. In Section (3) the

full description of the multi-stage AARO formulation is presented. The solution method

is proposed in Section (4). The results of the case study are presented and discussed in

Section (5). Section (6) offers some concluding remarks on the work.

2. Deterministic model

The multi-period power system planning model used here seeks to minimize the total

discounted system cost over the whole time horizon. These costs include: annualized equiv-

alent investment costs (1a), start-up cost. (1b), fixed operation and maintenance costs (1c)

and variable operation costs of the power system (fuel cost, start-up costs and cost of load

not served (LNS)) (1d). The objective function to minimize is, then, written as:

Objective function

min
total cost

∑

y∈Y
DF y ·

∑

i∈Inew

Cinv
i · P̄i · qiy (1a)

+
∑

y∈Y
DF y ·

∑

s∈S

∑

t∈T

∑

i∈Ith

(
Cstup
i · ziyst

)
(1b)
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+
∑

y∈Y
DF y ·

∑

i∈I
CFOM
iy · P̄i ·

y∑

l=1

qil (1c)

+
∑

y∈Y
DF y ·

∑

s∈S

∑

t∈T

[∑

i∈I

(
Cmarg
iy · piyst

)
+ C lns · lnsyst

]
(1d)

The minimization of the objective function is subject to long-term commissioning constraints,

and short-term commitment and dispatch constraints as follows:

Commissioning and commitment constraints

xiy ≤
y∑

l=1

qil,∀i ∈ Inew,∀y ∈ Y (2a)

∑

i∈Inew

Cinv
i · P̄i · qiy ≤ Bmax

y ,∀y ∈ Y (2b)

∑

i∈I

(
P̄i · xiy

)
≥
(
1 + rmin

)
· Lmax,∀y ∈ Y (2c)

∑

i∈Ires
xiy · P̄i ≥ Reslvl ·

∑

i∈I
xiy · P̄i,∀y ∈ Y (2d)

uiyst ≤ xiy, ∀ith ∈ I, y ∈ Y, s ∈ S, t ∈ T (2e)

uiyst − uiyst−1 = ziyst − viyst,∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T \ {1} (2f)

uiyst ≥
∑

τ∈[t]\[t−Mu
i −1]

ziysτ ,∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T \ [Mu
i ] (2g)

xiy − uiyst ≥
∑

τ∈[t]\[t−Md
i −1]

viysτ ,∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T \ [Md
i ] (2h)

Eq. (2a) keeps track of the investment decisions made in year y throughout the planning

horizon. The maximum allowable budget is limited in Eq (2b). Eq (2c) ensures the adequacy

reserve margin. The IRES level required in the system is ensured through Eq (2d). Eq (2e)

ensures the coupling between investment and operational decisions. Eq (2f) constrains the

hourly unit commitment decisions by the startup and shutdown decisions. Finally, Eq. (2g)

and Eq. (2h) ensure that the minimum allowable up- and down-times for thermal units are

respected:

Dispatch constraints

∑

i∈I
piyst + lnsyst = Lyst, ∀y ∈ Y, s ∈ S, t ∈ T (3a)
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piyst ≤ uiyst · P̄i · (1− εi) , ∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T (3b)

piyst ≥ uiyst · Pmin
i ,∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T (3c)

piyst ≤ xiy · P̄i · CFiyst,∀i ∈ Ires, y ∈ Y, s ∈ S, t ∈ T (3d)

piyst − piyst−1 ≤ uiyst−1 · R̄Up
i + ziyst · P start

i ,∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T \ {1} (3e)

piyst−1 − piyst ≤ uiyst−1 · R̄Dn
i , ∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T \ {1} (3f)

Regarding power dispatch, the hourly supply and demand balance is ensured by Eq. (3a).

The hourly maximum and minimum production levels for thermal units are given in Eq (3b)

and Eq. (3c), respectively. IRES production is limited by the hourly capacity factor CF as

given in Eq (3d). Finally, Eq. (3e) and Eq. (3f) constrain the hourly upwards and downwards

ramping capabilities for thermal units, respectively.

3. Robust optimization formulation

As previously mentioned, this paper proposes a distribution-free characterization of both

load and IRES supply uncertainties. The sub-period load vector, L, takes on a range of

possible values given by
¯
L ≤ L ≤ L̄ and the capacity factor, CF , which models IRES

supply uncertainty, varies in the range
¯
CF ≤ CF ≤ C̄F . A polyhedral uncertainty char-

acterization is defined as follows:

Uyst(Γ) =

{
Lyst ∈ R+,CFyst ∈ R|I

res|
+ : L

¯yst
≤ Lyst ≤ L̄yst,CF

¯ iyst ≤ CFiyst ≤ ¯CF iyst,

∀i ∈ Ires, Lyst −
∑

i∈Ires
CFiyst ≤ Γ · (L̄yst −

∑

i∈Ires
CF
¯ iyst)

}
,∀y ∈ Y, s ∈ S, t ∈ T (4)

where Γ(≤ 1), represents the level of conservatism of the decision maker. It is clear that

when Γ = 1, the load and IRES-CF can take on their full range of possible values. When

Γ < 1, the uncertainty set excludes the absolute worst-case situation, which is where all

sub-period loads are at their highest values and all IRES-CF are at their lowest values.

Indeed, by varying Γ, the decision maker can control the level of conservatism in planning.

Moreover, the uncertainty set is non-anticipative, in the sense that in sub-period t of year y
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the decision maker only has information about current and past uncertainty realizations. The

lower bound of the uncertainty budget Γ can be easily derived to show that it is equivalent

to:

Γ ≥ max
y∈Y,s∈S,t∈T

{
L
¯yst
−∑i∈Ires

¯CF iyst

L̄yst −
∑

i∈Ires CF
¯ iyst

}
. (5)

3.1. Robust Model Formulation

The model under uncertainty is represented by a multistage adaptive robust optimiza-

tion model, where decisions related to unit commitment, commissioning and start-up are

here-and-now decisions made robust to uncertainty realizations and the dispatch decisions

are wait-and-see decisions made subject to (and thus, flexible to) uncertainty realizations.

The objective of the model is to minimize the total cost of here-and-now decisions plus the

worst-case total cost of wait-and-see decisions, also known as recourse decisions. Another

important component of the model is full immunization, meaning the maintenance of fea-

sibility over all possible uncertainty realizations in the polyhedral uncertainty sets. Letting

V tys (= {Ltys,CF t
ys}), ∀y ∈ Y, s ∈ S, t ∈ T , and given that recourse decisions made in a time

period t depend on the full history of the load L and IRES-CF CF from the first time period

up to t, the formulation of the robust counterpart (RC) is:

min
total cost

(1a)-(1c) + max
Vt
ys∈ Ut

ys

t∈T

∑

y∈Y
DF y ·

∑

s∈S

∑

t∈T
[∑

i∈I

(
Cmarg
iy · piyst(V tys)

)
+ C lns · lnsyst(V tys)

]
(6)

s.t. first stage constraints (2a)-(2h)

s.t. ∀V tys ∈
∏

t′∈[t]

U t′ys, [t] , {1, ..., t},∃piyst(.), lnsyst(.) ∈ R+,∀i ∈ I, y ∈ Y,

s ∈ S, t ∈ T (7a)

∑

i∈I
piyst(V tys) + lnsyst(V tys) = Lyst,∀y ∈ Y, s ∈ S, t ∈ T (7b)
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piyst(V tys) ≤ uiyst · P̄i · (1− εi) ,∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T (7c)

piyst(V tys) ≥ uiyst · Pmin
i ,∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T (7d)

piyst(V tys) ≤ xiy · P̄i · CFiyst,∀i ∈ Ires, y ∈ Y, s ∈ S, t ∈ T (7e)

piyst(V tys)− piyst−1(V t−1
ys ) ≤ uiyst−1 · R̄Up

i + ziyst · P start
i ,

∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T \ {1} (7f)

piyst−1(V t−1
ys )− piyst(V tys) ≤ uiyst−1 · R̄Dn

i ,∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T \ {1} (7g)

piyst(V tys), lnsyst(V tys) ≥ 0,∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (7h)

3.2. Multistage affinely adjustable robust counterpart

Because of the full immunization constraint (7a) and the fact that the uncertain pa-

rameters are real-valued, the robust counterpart is semi-infinite. We propose to consider

linear decision rules to make the problem tractable. This method, which results in what is

known as a multistage affinely adjustable robust counterpart (AARC), is appealing in that

it results in a linear model that can be solved using over-the-counter solvers and does not

require significant tailor-made implementation efforts. The AARC is obtained by replacing

the vector of recourse variables using the following affine relationship:

Ryst(V tys) = R0
yst +

∑

t′∈[t]

RL
ystt′ · Lyst′ +

∑

i′∈Ires

∑

t′∈[t]

RC
i′ystt′ · CFi′yst′ (8)

where [t] , {1, ..., t} and (R0
yst,R

L
ystt′

,RC
i′ystt′

) are the coefficients of the linear decision rule.

Then, in the model with linear decision rules, the constraints can be processed into a finite

number of linear constraints, relying on a duality-based reformulation to obtain the final

MILP problem. Below we illustrate how the processing is achieved for one equality and one

inequality constraint.

Equality constraint: Consider the supply-demand equality constraint (7b). Replacing

the uncertainty dependent variables piyst(V tys) and lnsyst(V tys) following equation (8), and

re-arranging the terms, we obtain:
(∑

i∈I
p0
iyst + lns0

yst

)
+
∑

t′∈[t−1]

(∑

i∈I
pL
iystt′ + lnsL

ystt′

)
· Lyst′ +

(∑

i∈I
pLiystt + lnsLystt − 1

)
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· Lyst +
∑

i′∈Ires

∑

t′∈[t]

(∑

i∈I
pC
ii′ystt′ + lnsC

ystt′

)
· CFi′yst′ = 0,∀V tys ∈ U tys, y ∈ Y, s ∈ S, t ∈ T

(9a)

From this we know that equality (9a) is valid if and only if equations (9b)-(9e) are satisfied.

∑

i∈I
p0
iyst + lns0

yst = 0,∀y ∈ Y, s ∈ S, t ∈ T (9b)

∑

i∈I
pL
iystt′ + lnsL

ystt′ = 0, ∀y ∈ Y, s ∈ S, t′ ∈ [t− 1], t ∈ T (9c)

∑

i∈I
pLiystt′ + lnsLystt′ = 1,∀y ∈ Y, s ∈ S, t′ = t, t ∈ T (9d)

∑

i∈I
pC
ii′ystt′ + lnsC

ystt′ = 0,∀i′ ∈ Ires, y ∈ Y, s ∈ S, t′ ∈ [t], t ∈ T (9e)

Inequality constraint: Consider the maximum production limit inequality (7c). The con-

straint, after applying the affine relationship (8), becomes:
(
p0
iyst +

∑

t′∈[t]

pL
iystt′ · Lyst′ +

∑

i′∈Ires

∑

t′∈[t]

pC
i′ iystt′ · CFi′yst′

)
≤ uiyst · Pmax

i · (1− εi) ,∀i ∈ I th,

y ∈ Y, s ∈ S, t ∈ T (10a)

Re-arranging the terms of the the constraint, given that an uncertainty-affected constraint

LHSys ≤ RHSys, where LHS contains all uncertainty terms and RHS contains the rest, is

valid ∀V tys ∈ U tys, t ∈ T , if and only if max
Vt
ys∈Ut

ys,t∈T
LHSys ≤ RHSys. Notice that any (≥)

constraint can easily be transformed to a (≤) one and can follow the same above logic.

Applying this logic to inequality (10a) we get:

max
Vt
ys∈Ut

ys

∑

t′∈[t]

(
pL
iystt′ · Lyst′

)
+
∑

i′∈Ires

∑

t′∈[t]

(
pC
ii′ystt′ · CFi′yst′

)
≤ (1− εi) · Pmax

i · uiyst − p0
iyst,

∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T (10b)

Dualizing the left-hand side of the constraint and because of strong duality, this set of non-

linear inequalities can be replaced by the set of linear inequalities (10c)-(10f), where π is the

vector of dual variables associated with the bounds of the uncertainty set (4). Applying the

same principle to all inequality and equality constraints, the semi-infinite robust counterpart

is converted into a finite mixed integer linear programming problem.
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∑

t′∈[t]

(πA
iystt′ · L̄yst′ − πBiystt′ · L¯yst′ ) +

∑

t′∈[t]

∑

i′∈Ires
(πC

ii′ystt′ · ¯CF i′yst′ − πDii′ystt′ · CF
¯ i′yst′ ) +

∑

t′∈[t]

πE
iystt

′ · Γ · (L̄yst′ −
∑

i′∈Ires
CF
¯ i′yst′ ) ≤ (1− εi) · Pmax

i · uiyst − p0
iyst,

∀i ∈ I th, y ∈ Y, s ∈ S, t ∈ T (10c)

πA
iystt′ − πBiystt′ + πE

ystt′ ≥ pL
iystt′ ,∀i ∈ I th, y ∈ Y, s ∈ S, t

′ ∈ [t], t ∈ T (10d)

πC
ii′ystt′ − πDii′ystt′ − πEystt′ ≥ pC

ii′ystt′ ,∀i
′ ∈ Ires, i ∈ I th, y ∈ Y, s ∈ S, t′ ∈ [t], t ∈ T (10e)

πA
iystt′ , π

B
iystt′ , π

C
ii′ystt′ , π

D
ii′ystt′ , π

E
iystt′ ≥ 0,∀i′ ∈ Ires, i ∈ I th, y ∈ Y, s ∈ S, t′ ∈ [t], t ∈ T

(10f)

4. Solution method

4.1. Problem dimensionality issues

As shown in the previous section, recourse decisions made in a time period, t, depend

on V t (= {V1, ...,Vt}), i.e., the history of load and IRES-CF realizations from the first time

period up to t. The duality-based approach used to define the equivalent deterministic

problem, therefore, leads to an extremely large MILP reformulation. Take for example the

maximum production limit constraint (7c): in the deterministic formulation, this constraint

would have a dimension of | I th | × | Y | × | S | × | T |, which we can denote as

| det. |. On the other hand, the set of inequalities defining the AARC of this constraint (i.e.,

inequalities (10c)-(10f)) have a dimension of | det. | ×
(

1 + |T |+1
2
· (1+ | Ires |)

)
, according to

the definition of the uncertainty set (4). That is, the dimension of each robust constraint is

multiplied by a strictly positive factor which is a function of the number of time periods T and

number of IRES units Ires, considered. Even for a moderate size problem, this can quickly

lead to extremely large and intractable MILP instances. For example, if we consider a time

periods set T with a magnitude of 24 hours and an RES units set Ires with a magnitude

of 2 (e.g. wind and solar), the number of AARC constraints would be 38.5 multiples of

the same set of constraints in the original deterministic formulation. The same applies for
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the number of variables, were each AARC constraints set would require an additional 5 ×(
|I|+|Y |+|S|+ |T |(|T |+1)

2

)
+ 2|Ires| dual variables and an additional |I|×|Y |×|S|× |T |(|T |+1)

2
×

(1 + |Ires|) affine coefficient variables, compared to the original deterministic constraint

formulation.

4.2. Information basis approximation

Notice that one of the most important contributors to the above dimensionality issue

is the appearance of the triangular number
|T |·(|T |+1)

2
which exponentially increases with

the number of periods considered. This factor arises since in the defined linear decision

rule, the recourse variables depend on the entire history of realized uncertainty at every

time period up to t, ∀t ∈ T . Following [10], we call this full affine dependency the “on-line

information basis“ since it -reasonably- considers that the decision maker takes into account

all historical information revealed about the uncertainty realizations to adapt the recourse

decision variables at the current time period.

We propose and investigate a solution method based on information basis level approx-

imation, where, instead of considering the full affine dependency, only the most recent un-

certainty realizations are taken into account to adjust the recourse variables at the current

time period t. For this, we introduce a new parameter representing the information level,

denoted h (≤ |T |), which will allow us to control how early the model accounts for informa-

tion on uncertainty realization, to adjust the recourse variable at the current period. In this

sense, the h parameter represents the number of most recent time periods that will be taken

into account in the linear decision rule. If h = |T |, the full historical periods will be taken

into account, which is equivalent to full affine dependency. If h < |T |, both the size of the

equivalent AARC set of constraints, the associated dual variables and the affine coefficient

variables will be reduced.

To implement this approximation method, the running index [t] needs to be re-defined

such as: [t] ,




{1, ..., t}, if t ≤ h

{t− h, ..., t}, if t > h

. As an example, the number of AARC constraints
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defining inequalities (10c)-(10f) will have a dimension of: | det. | ×
(

1 + 1/|T |· (h+ 1) ·
(
|T |−h

2

)
·(1 + |Ires|)

)
, compared to the previously calculated value. This leads to a reduc-

tion in the number of constraints by a total of: |det.|×|Ires|×
(

(0.5|T |−h− 0.5) +
h2 + h

2|T |

)

constraints, for each robust constraint reformulation. The same calculations can be made

for the reduction in the number of variables. Notice that, as logical, the reduction in the

number of constraints (and variables) increases as h decreases, i.e. as we take into account

less historical information. However, the relationship is non-linear and indeed is negligeable

for h values that are close to |T |, and is only significant around low values of h. Hence, there

is a clear trade-off in the level of adjustability of the recourse variables and the computational

complexity. This might lead to the expectation that using this method, we considerably sac-

rifice optimality for computational simplicity. Indeed, we show in the next section that this

is not necessarily the case: by conducting a sensitivity analysis on the quality of solutions

obtained by varying the h parameter, we show that significant computational gains can be

achieved while still maintaining high quality of the solution.

5. Case Study

5.1. Power system description and implementation notes

The multi-annual planning horizon covers 5 years from 2041 to 2046. The hourly system

load is obtained through linear regression of the historical load time series of France for the

years 2008 to 2012 (publicly available at [17]), assuming a growth of 1.5% throughout the

planning years. Wind and Solar-PV capacity factors (CF ) are calculated from the wind

speeds and solar irradiance data obtained from the CMIP5 experiments [18] for the same

time period. The cost data for the power generation technologies are based on the IEA/NEA

Projected Costs of Generating Electricity report (2015) [19]. Table (1) summarizes the costs

considered and the remaining technical characteristics of the power generation units.

To solve the multi-annual IGEP-UC model, each full year is approximated by 4 days

optimally obtained using the method proposed in [20]. Hourly load uncertainty is set to
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Table 1: Technical and economic characteristics for the different generation technologies

Technology P̄i Pmin
i R̄Up

i R̄Dn
i Mu

i Md
i εi Cinv

i Cmarg
i Cs

i

[i] [MW] [MW] [MWh/min] [MWh/min] [hrs] [hrs] [Me/MW][e/MWh][ke]

Nuclear 1400 700 0.5%P̄/min 0.5%P̄/min 12 48 0.01 3.95 9.33 15.0

Coal 1100 550 1.5%P̄/min 1.5%P̄/min 6 10 0.06 2.08 36.67 11.26

CCGT 550 165 5%P̄/min 5%P̄/min 3 5 0.04 1.02 69.00 7.53

On-Shore Wind 240 0 / / / / 0 1.9 0 /

Solar-PV 180 0 / / / / 0 1.5 0 /

vary within 10% of the nominal values, while hourly IRES uncertainty is set to vary within

20% around the nominal values. The MILP optimization models are developed in the Python

programming language using the Pyomo software package [21] and solved on a PC with Intel

Core i7 at 3.2GHz and 8GB memory using IBM ILOG-CPLEX with an optimality gap

of 0.01%. Experimental testing showed that the interior-point method (Barrier algorithm)

should be used to find the root relaxation of the MILP, to avoid primal-dual degeneracy.

5.2. Sensitivity analysis on information basis approximation

We start with a reduced-size instance to conduct a sensitivity analysis on the impact of

varying the information level parameter h on the planning problem solution time and quality.

The horizon considered for this purpose covers only two planning years, each represented

by 4 days of 24 hours. The parameter h, therefore, can vary from 1 to 24, representing

the lowest to the highest information levels taken into account in the linear decision rule,

respectively. Furthermore, since the ramping up and down constraints (7f) and (7g) are the

only second-level constraints that are time-coupling, and where the full value of considering

detailed commitment decisions appear, we compare two variations of the problems solution:

one where we relax the ramping constraints and conduct the sensitivity, and the other where

the ramping constraints are enforced. To ensure the proper evaluation of the quality of

the solutions obtained, the integer-relaxed, fully affine dependent problem is solved as a

guaranteed lower bound solution for both the ramping-relaxed and ramping-enforced MILP

problems. A schematic description of how the optimality gap is compared for the purpose

of the sensitivity analysis is shown in Fig. (1).
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Optimality gap

1 2 3 24…ℎ =

Figure 1: Schematic illustration of the process for calculating the optimality gap for both ramping-relaxed

and ramping-enforced MILP problems.

Table (2) shows the optimality gap obtained for solving the problem under different

values of information level parameter h, for both the ramping-relaxed and the ramping-

enforced MILP problems. It is shown that in all cases, the objective function (total cost)

gap is at most 1%, which is an indicator of a strong performance even for low values of h.

These results are consistent with the investment decisions obtained as is shown in Table (3).

These decisions are identical for the solution under the lowest (h = 1) and the highest

(h = 24) information basis levels. Moreover, the standard deviation of these investment

decisions across all instances is very low, indicating the consistency of these results across

all problem instances. Moreover, we have found that these observations hold across the

h sensitivity variations performed under different values of uncertainty budget (Γ). With

respect to the computational performance, Figure (2) shows that indeed the computational

time significantly decreases as we consider lower values of h. For both ramping-relaxed

and ramping-enforced cases, the solution for the lowest h values is obtained within 10 to

40 seconds. Notice that this range remains consistent for the ramping-relaxed problem

across all values of h, slightly increasing to a maximum of 38 seconds. For the ramping-

enforced problem, a clear and significant solution time increase can be observed. For the fully

adjustable problem (h = 24), the solution time is 4375 seconds, compared to 11, 15 and 31

seconds for the three lowest h values considered, respectively. This confirms that significant

improvements can be gained in computational time while maintaining good results by using
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the proposed approximated linear decision rule.

Table 2: Guaranteed optimality gap for the solutions obtained with respect to the sensitivity on the h

parameter, for both the ramping-relaxed and the ramping-enforced MILP problems.

Information level (h) 1 2 3 4 5 6 7 8 9 10 11 12

Ramping-relaxed 0.37% 0.36% 0.70% 0.24% 0.40% 0.75% 0.75% 0.75% 0.16% 0.06% 0.87% 0.88%

Ramping-enforced 0.94% 0.95% 0.31% 0.50% 0.23% 0.05% 0.04% 0.49% 0.04% 0.48% 0.51% 0.26%

Information level (h) 13 14 15 16 17 18 19 20 21 22 23 24

Ramping-relaxed 0.47% 0.95% 0.80% 1.01% 0.53% 0.11% 0.26% 0.92% 0.54% 0.62% 0.40% 0.40%

Ramping-enforced 0.01% 0.03% 0.95% 0.48% 0.67% 0.61% 0.95% 0.50% 0.02% 0.97% 0.03% 0.03%

Table 3: Number of units installed as per the ramping-enforced robust MILP problem under the lowest and

highest information levels h.

Number of units

h = 1 h = 24 all h

Technology Mean Std. dev.

Nuclear Units 31 31 31 0

Coal Units 12 12 12 0

CCGT Units 27 27 27 0

Wind Units 298 298 298.8 3.97

Solar Units 0 0 0.33 0.48

It should be noted that the variation in the solution time across different information level

(h) problems is not strictly increasing. This is due to the differences in the time taken for the

generic solver to solve the MILPs. Many factors, other than the problem size, can impact

the solution time; for example the quality of the initial heuristic solution and the quality of

the cuts generated by the solver. Notice also how by considering the ramping constraints,

the computational time of the problem increases significantly even for these reduced case

studies. It is, then, worthy to investigate what value are these constraints adding to the

solutions of the robust power system planning problem.

17

200



0

2000

4000

6000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24S
o

lu
ti

o
n

 T
im

e
 [

se
c]

Information Level (h)

Ramping-relaxed Ramping-enforced

0

20

40

1 2 3

Figure 2: Impact of varying h on the computational time of the ramping-relaxed and ramping-enforced

robust MILP problems.

5.3. Worst-case analysis for robust power systems planning with ramping constraints

Notice that according to the definition of the uncertainty set (4) and letting the uncertain

parameters take on their full range of values (Γ = 1), the robust solution should be expected

to be trivial and simply equivalent to the worst-case deterministic solution. This is since

any solution that satisfies the highest hourly load (L̄) and lowest IRES-CF (CF
¯

) should

be -readily- feasible to satisfy any combination of lower load and higher IRES-CF in the

uncertainty range. We show that this is, indeed, the case if the time-coupling ramping

constraints are ignored. However, enforcing the ramping constraints implicitly re-defines

the worst-case dispatch decisions in the AARC problem so that they are no longer simply

satisfying the worst load and IRES-CF, but rather also ensuring the ramping feasibility

under all other uncertainty realizations of those parameters. A simple example for this effect

would be to satisfy the ramping between the lowest load (L
¯t

) at t and the successive highest

load (L̄t+1) at t + 1, if the uncertainties are to be realized in such a way. More complex

interactions would occur if, in addition, we consider the uncertainty of the IRES-CF. In this

case, unlike the AARC method, no straightforward method exists to ensure the feasibility

of these complex interactions within the deterministic nor the stochastic models.

To illustrate this effect on the system investment and operation decisions, we will consider

the whole 5 years planning horizon previously described for the case study and analysis.

To further highlight the impact of the detailed ramping constraints on the robust solution
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obtained, we expand the hourly uncertainty of load and RES-CF to be within 20% and

50% of their nominal values, respectively. Finally, we will deploy the information basis

approximation method described in the previous section to find the solution to the AARC

problem. The results will be compared to the worst-case deterministic problem solution

(denoted WCD), both for the ramping-relaxed and ramping-enforced cases.

Let us first consider the ramping-relaxed case; as expected, both WCD and worst-

case AARC solutions are identical. The total objective value in both cases amounts to

63.36Billione. The breakdown of the (annualized) investment, operational and load not

served (LNS) costs is shown in Fig. (3). By enforcing the ramping constraints, indeed, we

find that the solutions of both problems are no longer identical. Clearly, the WCD objective

value in this case is higher than the one with no ramping considered. Yet, interestingly,

these values are even higher for the AARC worst-case solution with a +3.10% and +12.43%

increase in the investment and operational costs, respectively, and a −17.25% decrease in the

LNS cost, compared to the WCD solution, as shown in Fig. (3). It is clear that properly ac-

counting for the uncertainty withing the AARC model significantly increases the investment

and operational costs of the system because of the “implicit” worst-case ramping require-

ments.

24.39 24.39 27.06 27.90

38.97 38.97 41.04 46.14

0.00 0.00

7.24
5.99

0.00

20.00

40.00

60.00

80.00

WCD AARC WCD AARC

Ramping-relaxed Ramping-enforced

B
€

Investment Cost Operating Cost LNS Cost

Figure 3: Breakdown of (annualized) investment, operational and LNS solution costs for the ramping-relaxed

and ramping-enforced problems. Comparison between the WCD and AARC solutions.

To further understand how the uncertainties are driving the investment decisions within

the ramping-enforced problems, Table (4) compares the total capacities installed per tech-
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nology type for all cases considered. First, it is shown that the capacities installed are

identical for both WCD and AARC solutions when the ramping is relaxed. Then, enforcing

the ramping constraints leads to a clear shift in the installed capacities under the WCD

solution, most notably, a shift from the least flexible nuclear capacity, to the most flexible

CCGT capacity. However, the ramping-enforced AARC solution confirms that neglecting

the load and RES-CF uncertainties underestimates the actual flexible capacity needed to

account for the implicit worst case rampings. This is verified as per the investment decisions

in a lower nuclear capacity and higher coal and CCGT ones, compared to the WCD solution.

Table 4: Breakdown of total installed capacity per technology type for the ramping-relaxed and ramping-

enforced problems. Comparison between the WCD and AARC solutions.

Capacity Installed [GW]

Ramping-relaxed Ramping-enforced

Technology WCD AARC WCD AARC

Nuclear capacity 67.2 67.2 64.4 56

Coal capacity 7.7 7.7 6.6 15.4

CCGT capacity 12.1 12.1 20.3 25.3

Wind capacity 1.68 1.68 61.7 78.9

Solar capacity 85.32 85.32 29.7 19.62

Another indicator of the superiority of the AARC solution in accounting for ramping

uncertainty, is the amount of RES shedding attained for the worst-case solution. This is

because RES shedding is another mean for managing inter-temporal ramping variability

next to thermal units ramping capacity and load shedding. Notice in Table (5) how the

WCD and AARC shedding amounts are identical for the ramping-relaxed case, and the

improved RES shedding amounts as given by the AARC (total of 0.76%) compared to WCD

solution (total of 4.47%), for the ramping-enforced case.

We finally discuss the solution times taken for the WCD and AARC problems. The WCD

problem takes few seconds to be solved, whereas, even for a moderate h value (h = 8), the

AARC problem can take several hours as can be seen in Table (6). Clearly, accounting for

the uncertainties under the AARC approach comes at a significant computational price. It
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Table 5: Breakdown of RES shedding for the ramping-relaxed and ramping-enforced problems. Comparison

between the WCD and AARC solutions.

Ramping-relaxed Ramping-enforced

WCD AARC WCD AARC

Wind power shedding 2.15% 2.15% 3.02% 0.82%

Solar power shedding 1.47% 1.47% 8.67% 0.56%

Total RES shedding 1.49% 1.49% 4.47% 0.76%

is important to note, however, how the proposed information basis approximation method

proposed allows for tractable and high-quality solutions, whereas considering the full AARC

formulation for the ramping-enforced case does not allow us to find a root-relaxation solution

even after 40 hours of run-time.

Table 6: Computational time for the ramping-relaxed and ramping-enforced problems. Comparison between

the WCD and AARC solutions.

Ramping-relaxed Ramping-enforced

WCD
AARC

WCD
AARC

(h = 8) (h = 8)

Computation time [sec] 12 3060 13.3 25657.8

6. Conclusions

The uncertainty and intermittency of high shares of renewable energy production presents

major challenges to the operational flexibility requirements in power systems expansion plan-

ning. Existing planning methods that do not explicitly consider the ramping events fail to

estimate to which extent the uncertainties in system load and renewable production im-

pact those flexibility requirements. To address this issue, this paper presents a multi-stage

adaptive robust power system planning model which accounts for detailed short-term unit

commitment and ramping constraints. The model accounts for the here-and-now commis-

sionning and commitment decisions made robust against load and renewable generation

21

204



uncertainties, and wait-and-see dispatch decisions subject to uncertainty realization. To

alleviate the computational burden, a solution method based on linear decision rules ap-

proximation is proposed and a sensitivity analysis is performed to confirm the effectiveness

of this solution approach. A realistic-size case study is investigated and the results show

how considering the detailed ramping constraints within a multistage robust model signifi-

cantly improves the plans obtained in terms of operational flexibility. This is because those

uncertainties re-define the worst-case ramping requirements in such a way that would not

be captured within stochastic or non-causal planning models.
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Titre : Modélisation technico-économique et optimisation robuste de la planification des systèmes de 

production électrique sous une large part de sources d'énergie renouvelables et d'événements 

climatiques extrêmes. 

Mots clés : Modélisation technico-économique, optimisation robuste, énergie renouvelables, 

incertitudes de provision, flexibilité opérationnelle, résilience, changements climatiques. 

Résumé : Les objectifs récents en ce qui 

concerne la durabilité des systèmes électriques et 

l'atténuation des menaces liées au changement 

climatique modifient la portée des exigences de 

planification de ces systèmes. D'une part, les 

systèmes durables d'énergie à faible émission de 

carbone qui comportent une part élevée de 

sources d'énergie renouvelables intermittentes 

(IRES) se caractérisent par une forte 

augmentation de la variabilité intertemporelle et 

nécessitent des systèmes flexibles capables 

d'assurer la sécurité de l'approvisionnement 

électrique. D'autre part, la fréquence et la gravité 

accrues des phénomènes climatiques extrêmes 

menacent la fiabilité du fonctionnement des 

réseaux électriques et exigent des systèmes 

résilients capables de résister à ces impacts 

potentiels. Tout en s'assurant que les incertitudes 

inhérentes au système sont bien prises en compte 

directement au moment de la prise des décisions 

de planification à long terme. 

    Dans ce contexte, la présente thèse vise à 

développer une modélisation technico-

économique et un cadre d'optimisation robuste 

pour la planification des systèmes électriques 

multi-périodes en considérant une part élevée 

d'IRES et la résilience aux phénomènes 

climatiques extrêmes. Le problème spécifique de 

planification considéré est celui du choix de la 

technologie, de la taille et du programme de mise 

en service des unités de production 

conventionnelles et renouvelables sous des 

contraintes techniques, économiques, 

environnementales et opérationnelles. Dans le 

cadre de ce problème, les principales questions 

de recherche à aborder sont : (i) l'intégration et 

l'évaluation appropriées des besoins de flexibilité 

opérationnelle en raison de la variabilité accrue 

des parts élevées de la production d'IRES, (ii) la 

modélisation et l'intégration appropriées des 

exigences de résilience contre les phénomènes 

climatiques extrêmes dans la planification du 

système électrique et (iii) le traitement des 

incertitudes inhérentes de l'offre et la demande 

dans ce cadre de planification. En résumé, les 

contributions originales de cette thèse sont : 

- Proposer un modèle de planification du système 

électrique intégré multi période avec des 

contraintes dynamiques et en considérant un 

pourcentage élevé de pénétration des énergies 

renouvelables. 

- Introduire la mesure du déficit de flexibilité 

prévu pour l'évaluation de la flexibilité 

opérationnelle. 

- Proposer un ensemble de modèles linéaires 

pour quantifier l'impact des vagues de chaleur 

extrêmes et de la disponibilité de l'eau sur le 

déclassement des unités de production d'énergie 

thermique et nucléaire, la production d'énergie 

renouvelable et la consommation électrique du 

système. 

- Présenter une méthode permettant d'intégrer 

explicitement l'impact des phénomènes 

climatiques extrêmes dans le modèle de 

planification du système électrique. 

- Traiter les incertitudes inhérentes aux 

paramètres de planification du système 

électrique par la mise en œuvre d'un nouveau 

modèle d'optimisation adaptatif robuste à 

plusieurs phases. 

- Proposer une nouvelle méthode de solution 

basée sur l'approximation des règles de décision 

linéaires du modèle de planification robuste. 

- Appliquer le cadre proposé à des études de cas 

de taille pratique basées sur des projections 

climatiques réalistes et selon plusieurs scénarios 

de niveaux de pénétration des énergies 

renouvelables et de limites de carbone pour 

valider la pertinence de la modélisation globale 

pour des applications réelles. 
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Title : Techno-economic modeling and robust optimization of power systems planning under a high 

share of renewable energy sources and extreme weather events. 

Keywords : Techno-economic modeling, robust optimization, renewable energy, supply 

uncertainties, operational flexibility, resilience, climate change. 

Abstract : Recent objectives for power systems 

sustainability and mitigation of climate change 

threats are modifying the breadth of power 

systems planning requirements. On one hand, 

sustainable low carbon power systems which 

have a high share of intermittent renewable 

energy sources (IRES) are characterized by a 

sharp increase in inter-temporal variability and 

require flexible systems able to cope and ensure 

the security of electricity supply. On the other 

hand, the increased frequency and severity of 

extreme weather events threatens the reliability 

of power systems operation and require resilient 

systems able to withstand those potential 

impacts. All of which while ensuring that the 

inherent system uncertainties are adequately 

accounted for directly at the issuance of the 

long-term planning decisions. 

     In this context, the present thesis aims at 

developing a techno-economic modeling and 

robust optimization framework for multi-period 

power systems planning considering a high 

share of IRES and resilience against extreme 

weather events. The specific planning problem 

considered is that of selecting the technology 

choice, size and commissioning schedule of 

conventional and renewable generation units 

under technical, economic, environmental and 

operational constraints. Within this problem, 

key research questions to be addressed are: (i) 

the proper integration and assessment of the 

operational flexibility needs due to the increased 

variability of the high shares of IRES 

production, (ii) the appropriate modeling and 

incorporation of the resilience requirements 

against extreme weather events within the 

power system planning problem and (iii) the 

representation and treatment of the inherent 

uncertainties in the system supply and demand 

within this planning context. 

In summary, the original contributions of this 

thesis are: 

- Proposing a computationally efficient multi-

period integrated generation expansion planning 

and unit commitment model that accounts for 

key short-term constraints and chronological 

system representation to derive the planning 

decisions under a high share of renewable 

energy penetration. 

- Introducing the expected flexibility shortfall 

metric for operational flexibility assessment. 

- Proposing a set of piece-wise linear models to 

quantify the impact of extreme heat waves and 

water availability on the derating of thermal and 

nuclear power generation units, renewable 

generation production and system load.  

- Presenting a method for explicitly 

incorporating the impact of the extreme weather 

events in a modified power system planning 

model. 

- Treating the inherent uncertainties in the 

electric power system planning parameters via a 

novel implementation of a multi-stage adaptive 

robust optimization model. 

- Proposing a novel solution method based on 

``information basis'' approximation for the 

linear decision rules of the affinely adjustable 

robust planning model. 

- Applying the framework proposed to a 

practical size case studies based on realistic 

climate projections and under several scenarios 

of renewable penetration levels and carbon 

limits to validate the relevance of the overall 

modeling for real applications. 
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