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FOREWORD

Following studies in biology carried out in Benin, then in molecular biology at the University of Evry
Val d’Essonne, I started my training in bioinformatics and associated fields in 2014 by integrating the
Master 1 mention bioinformatics, GENomics, Informatics and Mathematics for Health and Environment

(GENIOMHE) of Paris-Saclay University.

During this course, I realized two internships including one in Germany at the department of
bioinformatics within the Institute for Microbiology and Genetics, a component of Georges-August
University of Gottingen. The second internship was with the INSERM UI1018, “Health across
generations” team of Gustave Roussy Institute, directed by Dr. Gianluca Severi. Under his supervision,

I investigated the association between circulating levels of B vitamins and DNA methylation.

The “Health across generations” team conducts research projects related to the identification and
analysis of the role of environment and lifestyle in the occurrence of women's cancers and other non-
communicable diseases through E3N, a prospective cohort of almost 100.000 women. The team has
recently started the recruitment of their husbands (E4N-G1), children (E4N-G2) and grandchildren
(E4N-G3).

My pre-doctoral internships allowed me to gain experience in the analysis of genomics, epigenomics
and epidemiological data and in the design of related studies. Following the obtention in july 2016 of a
grant from the French National Institute of Cancer (INCa), I wanted to continue my research in the

“Health across generations” team.

I did my thesis under the joint supervision of Drs. Gianluca Severi and Vittorio Perduca.

My doctoral work has been focused on the applications of genomic and epigenomic signatures to
identify markers of exogenous exposures and elucidate their potential role in cancer aetiology. Data used
included simulations, public repositories such as The Cancer Genome Atlas and those from to the French

E3N prospective cohort.

This thesis is divided into 5 chapters. After a review of the concepts related to my work, recent advances
in the study of mutational and epigenetic signatures in tumours will be described, followed by a chapter
covering one most the most recent developments with regards to cancer genomics. The fourth chapter
will report the investigations performed for the identification of novel markers of exposition to endocrine

disruptors. And finally, a summary of the findings and the research perspectives will be presented.






ABSTRACT

Background: Several risks factors have been identified for cancer, and it has been estimated that more
than 40% of cases in developed countries are preventable through the modulation of known modifiable

risk factors.

Objectives: The overall objective of this thesis was to demonstrate that the analysis of genomic and
epigenomic data integrated with well-characterised exposure and lifestyle data may be used to identify
markers of environmental exposures and lifestyle and may contribute to increase our understanding of

cancer aetiology.

Results: We first describe how genomic and epigenomic signatures can be used to identify markers of
exposure and decipher the aetiology of cancer. Then, we adopt the mutational signatures framework to
contribute to the debate about the “bad luck” hypothesis for cancer and demonstrate that tobacco-related
mutations are more strongly correlated with cancer risk than random mutations. We introduce a
probabilistic model for the simulation of mutational signature data and compare the performance of the
available methods for the identification of mutational signatures using both simulated and real data.
Additionally, we introduce a new method for the identification of such signatures. Finally, we use
methylation array data in an epidemiological study within the E3N cohort to investigate the association
between exposure to Brominated Flame Retardants and Per- and polyfluoroalkyl substances, two
organic pollutants that are known endocrine disrupting chemicals, and methylation in DNA from blood.
Overall, our study does not provide evidence of methylation alterations at the level of the whole genome,
in regions or in single CpGs. Suggestive evidence of alterations in the methylation of genes within

plausible biological pathways (e.g. androgen response) warrants further investigations.

Conclusions: Our work on the methodological aspects of mutational signature research introduces an
original framework for measuring the performance of tools for the identification of mutational signatures
that may serve as reference for future methodological or applied research. Our applications of both
mutational signature and methylome research demonstrate the usefulness of such tools to assess

exposures and elucidate their role in cancer aetiology.

Keywords : mutational signatures, DNA methylation, endocrine disruptors, epidemiology, lifestyle
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RESUME

Contexte : Plusieurs facteurs de risque de cancer ont été identifiés et il a été estimé que plus de 40% des

cas dans les pays développés pourraient étre évités en modifiant les facteurs de risque connus

Objectifs : L'objectif général de cette thése était de démontrer que I’intégration de données génomiques
et épigénomiques aux données détaillées sur les expositions environnementales et le mode de vie peut
étre utile pour identifier des biomarqueurs de ces facteurs et contribuer a augmenter notre connaissance

de I'étiologie du cancer.

Résultats : Dans un premier temps, nous décrivons comment les signatures génomiques et
épigénomiques peuvent étre utilisées pour identifier des marqueurs d’exposition et déchiffrer I’étiologie
du cancer. Ensuite, nous contribuons au débat relatif a I’hypothése de la chance dans le développement
du cancer et démontrons que les mutations induites par le tabagisme sont plus prédictives du risque de
cancer que les mutations aléatoires. Nous introduisons un mod¢le probabiliste pour la simulation de
données mutationnelles et comparons la performance des outils d’identification de ces signatures avec
des données réelles et simulées. De plus, nous introduisons une nouvelle méthode pour 1’identification
des signatures mutationnelles. Enfin, nous utilisons les données de méthylation de la cohorte E3N pour
¢tudier le lien entre 'exposition aux retardateurs de flamme bromés et aux composés perfluorés, deux
substances classées parmi les perturbateurs endocriniens, et la méthylation de ’ADN sanguin.
Globalement, notre étude ne fournit aucune preuve d'altérations globales du méthylome ou d'altérations
a I’échelle des CpGs. Cependant, certains résultats suggérent I’existence d'altérations de la méthylation
de genes impliqués dans des voies biologiques (ex., la réponse aux androgénes) et nécessitent des

recherches supplémentaires.

Conclusions : Ce travail contribue a la recherche méthodologique portant sur les signatures
mutationnelles en introduisant un protocole de mesure de performance et d’identification des signatures
mutationnelles pouvant servir de référence a de futures études méthodologiques ou appliquées. Nos
recherches sur les signatures mutationnelles et le méthylome démontrent I'utilité¢ de tels outils pour

¢évaluer les expositions et ¢lucider leur role dans I'étiologie du cancer.

Mots clés : signatures mutationnelles, méthylation de I’ADN, perturbateurs endocriniens,

¢pidémiologie, mode de vie
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This chapter serves as an introduction to most of the concepts discussed in my dissertation and will be
divided into four sections, with the first three presenting background knowledge and recent advances
about genomic and epigenomic signatures, and the last outlining the specific objectives and results of
my thesis. Firstly, this introductive chapter will focus on genomics signatures, and in particular cancer
mutational signatures, with a brief summary of concepts behind their definitions, mathematical
modeling and identification. Next, we will discuss the best-studied epigenetic signatures, DNA
methylation, focusing on methodological aspects and the influence lifestyle has on it. Finally, the third
section will summarize current knowledge about brominated flame retardants and Per- and
polyfluorinated alkylated substances, two classes of endocrine disrupting chemicals, and provide
information about their impact on human health, as well as current developments in their molecular

epidemiology.

This chapter does not review any of the articles that have been published or submitted as part
of this thesis as these will be presented in the following chapters.
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1. GENOMIC SIGNATURES

1.1 BEHIND THE CONCEPT OF “MUTATIONAL SIGNATURES”

1.1.1 HALLMARKS OF CANCER

Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health
and modulate disease-states' such as cancer which induce modifications in human genome resulting in

an abnormal cell growth. In France, 382,000 new cases and 157,400 deaths have been observed in 20187

Cancer encompasses more than 100 distinct diseases with diverse risk factors and epidemiology which
originate from most of the cell types and organs of the human body and which are characterized by
relatively unrestrained proliferation of cells that can invade beyond normal tissue boundaries and
metastasize to distant organs®. This complexity points to a set of questions and investigations mainly
related to regulatory mechanisms carcinogenesis that further lead to the identification of ten alterations
in cell physiology that collectively dictate malignant growth and are shared by most and perhaps all

types of human tumours®.

Also known as “hallmarks of cancer”, each of these physiologic changes represents novel capabilities
acquired during tumour development and in particular the successful breaching of anticancer defense
mechanisms hardwired into cells and tissues. These subsequent changes may explain why cancer is
relatively rare during an average human lifetime. Six years later after the introduction of the original
hallmarks, a revisited version consisting in seven categories was further proposed by Fouad and Aanei’.
These hallmarks were defined as acquired evolutionary, advantageous characteristics that
complementarily promote transformation of phenotypically normal cells into malignant ones and that

promote progression of malignant cells while sacrificing/exploiting host tissue (Figure I.1).

Genetic and Epigenetic Alterations
Chromosomal Aberrations = ————————————————— S

Replication Errors Altered Heterotypic Interactions c :
\ O @ Evolution and Clonal Selection

Environmental Exposure m—) O O Acquired Traits (Hallmarks)

Oncoviruses / MALIGNANT

Figure I.1. The transformation process of normal cells to malignant cells.
Adopted from Fouad and Anei’
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1.1.2 SOMATIC MUTATIONS AND RELATED THERORIES

Somatic mutations are defined as changes in the DNA sequence that are not passed on to the offspring
through the germline®. Most current approaches in cancer research are based on Somatic Mutation
Theory (SMT) that views somatic mutations as an epiphenomenon or a post-carcinogenesis event™®.

Briefly, cellular defects (mainly through to DNA damage) induce uncontrolled cell divisions that lead
to the development of carcinogenesis suggesting that cancer is due to the accumulation of somatic

mutations’ (Figure 1.2).

DNA { Cell
Damage | Division

Mutation
L
) Accumulation

O
O

€e

Figure 1.2. Somatic mutations leading to carcinogenesis
Adopted from Kennedy and colleagues’

Historically, the SMT was first postulated in 1914 suggesting that a combination of chromosomal

defects should result in cancer, followed by a proposal that mutations could cause cancer.

Two decades later, the understanding of the molecular structure of DNA lead to the 1-hit (mutation), 2-
hit and hyper-mutation theories First, it was postulated that a person who inherits a mutant allele (1-hit)
must experience a second somatic mutation (2-hit) to initiate carcinogenesis before further studies
shown that for most cancer, more mutations are required (1953-2014). In 2007, they were categorized
in two groups termed as “drivers”, those that confer a large selective advantage for tumour development
and progression, and “passengers”, those that confer weaker selective advantage or are truly neutral in

that they do not affect cancer cells’ survival.

Together, they both constitute a record of all cumulative DNA damage and repair activities occurred
during the cellular lineage of the cancer cell®. A recent elaboration on the SMT was proposed in 2015
by Vogelstein and Tomasetti’ who suggested that cancer development is an event that can be attributed

to “bad luck” through accumulation of “enough” mutations that cause cancer.



This controversial claim will be discussed in chapter Il and a summary of 100 years of research on the

SMT can be found below'’ (Figure 1.3).

Hper
Chromosome DNA 2-hit mutation
defects Doppelhelix theory theory
1914 1952/1953 1971 2014

Mutation 1-hit Driver and Bad
theory passenger luck
mutations
1928
1953 2015
2007

Figure 1.3. 100 years of somatic mutations theory
Modified from Briicher and Jamall"

1.1.3 BASE SUBSTITUTIONS AND GENOMIC ALTERATIONS

Cancer is a complex disease that involves mutant cells originating from a DNA modification in a single
normal cell. Such modification is then propagated through cell divisions and accumulates with further
DNA modifications finally leading to abnormal, cancerous cells®. Such somatic mutations include Single
Nucleotide Variants (SNVs), insertions or deletions, Copy Number Variation (CNV) and chromosomal
aberrations and are not to be confounded with those inherited and transmitted from parents (germline
mutations). It is important to note that SNVs are different from SNPs (Single Nucleotide
Polymorphisms). SNPs are single nucleotides substitutions expected to be present in a certain fraction
of a given population and at the same position in both normal or cancer cells, while SNVs are only

present in tumour cells and are likely shared in individuals with the same cancer.

As previously mentioned, somatic mutations can be endogenous, thus resulting from genome instability
or deficiency in a DNA repair mechanism, or exogenous, that is due to environmental exposure such as
tobacco smoking or UV light. For instance, UV light is known to induce DNA damage through C>T
substitutions and could lead to a genotoxic stress that induces genome instability, while tobacco smoking

induces T>A mutations.

With the development and the improvement of sequencing technologies collectively referred to as High-
Throughput Sequencing (HTS) and the availability of cancer exome and genome data from most human

cancers, much has been learnt about somatic mutations.

Among all of them, a particular focus has been placed on Single Base Substitutions (SBS) that have
been classified in six types according to the mutated pyrimidine base (C or T) in a strand-symmetric

model of mutation. Such 6 substitutions (C>A, C>G, C>T, T>A, T>C and T>G) may be further

(O8]
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classified in different types when considering the sequence pattern in which they are located (sequence
context). For practical reasons, the sequence context is typically defined using the 5’ and 3’ bases
proximal to the mutated base, that results in substitutions being classified in 96 types (6 * 4 * 4) (Figure

1.4).
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Figure [.4. The 96 mutations types in a trinucleotide context
Considerations of the 6 types of base substitutions a DNA base is replaced by another (C>A, C>G,
C>T, T>A, T>C and T>G) and the associated sequence context.

It has been hypothesized that mutational processes leave specific patterns of somatic mutations, so-
called mutational signatures. To identify such patterns from the substitutions measured from cancer
samples, computational models, such as matrix decomposition algorithms or probabilistic models, have
been developed. The first of such methods was published in 2013 by Alexandrov and colleagues'', and,
as for most of all the other models that followed, is based on the idea that a mutational signature can be
seen as a probability distribution of the 96 types of mutations or more according to the length of the
sequence context. Mutational signatures contribute to the total mutational burden of a cancer genome,
commonly referred to as mutational “catalogue” or “spectrum” in the recent computational biology

literature.



1.2 MATHEMATICAL MODELING OF A MUTATIONAL PROCESS

1.2.1 DEFINITION OF MUTATIONAL CATALOGUES, SPECTRA AND SIGNATURES

The mutational catalogue representing the total mutational burden of a genome (or exome) g is defined
as a vector (m;, . mg )T, where each m",f is the number of mutations of type k found in the genome
and K, the number of possible mutation types, is equal to 96. The superscript 7 denotes the transpose of
a matrix so that vectors are thought as column vectors. In this setting, information about mutation
locations in the sequence is lost and the catalogue is built by comparing the sequence to a reference
sequence in order to detect mutations and then by simply counting the occurrences of each type. The
reference sequence can either be a standard reference (e.g. the assembly GRCh38 of 2013 also known
as hg38 or the previous one GRCh37 with reference to hgl9) or a sequence from a “normal” tissue from

the same individual (e.g. DNA from blood or from normal tissue surrounding tumours when available).

For the purposes of the present thesis, the generic term “samples” will be used for both genomes and

exomes as the concepts and models used may be applied to both.

The basic idea underlying all computational models proposed is that the mutational catalogue of a
sample results from the combination of all the mutational processes operative during lifetime, and
therefore it can be seen as the weighted superposition of simpler mutational signatures, each uniquely
corresponding to a specific process. The weight is larger if the process has a larger role in the final
catalogue of mutations: for example, mutagens that last longer, are more intense, generate poorly

repaired DNA lesions, mutate more genes, or also act as selection pressures favoring mutant cells.

Formally, the signature of a mutational process n is a vector p, = (p3, ..., pX)T, where each pk
represents the probability that the mutational process will induce a mutation of type k. In other words,

p¥ is the expected relative frequency of type k mutations in genomes exposed to .
Note that YX_, p¥ = 1 and 0 < p¥ < 1 for all k.

The intensity of the exposure to a mutational process n in a sample g is measured by the number of
mutations e; in g that are due to n. For this reason, e is referred to as the “exposure” of g ton.Itis
important to notice that the term “exposure” does not refer here to the exposure to a mutagen per se,
because it also includes the likelihood that an unrepaired DNA lesion will cause a mutation. The
expected number of mutations of type k due to the process n in sample g is therefore pi eg. If sample

g has been exposed to N mutational processes, then the total number of mutations of type k is :

mé = YN_1pKel + €k, (D)



where eg is an error term reflecting sampling variability and non-systematic errors in sequencing or

subsequent analyses.

Matrix notation is effectively used when dealing with several samples and signatures. In this situation,

the collection of G samples is represented by the K X G matrix, with catalogues in columns:

mi ml .. mi
M= : : : |, Figure I5.A)
mf mf mg
the N signatures are represented by the K X N matrix
1
pi P2 - Dwn
P=| : : : |, Figure 1.5.B)
pi P PN
and the exposures by the N X G matrix
el el .. e}
E=|: : : | Figure 1.5.C)
el e ed
Equation (1) then becomes: M =~ P X E where we omitted the error term.
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Figure I.5. Mutational catalogue and the individual signatures contribution to it
A) Mutational catalogue of a breast cancer genome PD4107a'%. B) The catalogue is the result of the
linear combination of COSMIC signatures 2, 3 and 8 with some additional noise. C) Relative burden of

each signature.



1.2.2 DECIPHERING THE SIGNATURES OF MUTATIONAL PROCESSES: DE NOVO VS. REFITTING

De novo signature extraction methods aim at estimating P and E given M. Non-negative matrix
factorization (NMF) is an appealing solution to this unsupervised learning problem, because, by
definition, all involved matrices are non-negative. NMF was popularized in 1999 by Lee and Seung and
has become a widely used tool for the analysis of high dimensional data, mainly image processing or
recognition and text mining.

In the context of mutational signatures, NMF identifies two matrices P and E that minimize the distance
between M and P X E . In particular, NMF finds an approximated solution to the non-convex

optimization problem:

argminpso g=ol|M — P X E||%, (2)
where the Frobenius matrix norm of the error term is considered.

We recall that the Frobenius norm of a matrix is simply the square root of the sum of the squares of all

the matrix elements.

NMF requires the number of signatures N, an unknown parameter, to be predefined or estimated. An
approach for selecting this parameter consists in obtaining a factorization of M for several of its values
and then choosing the best N with respect to some performance measure such as the reconstruction error
or the overall reproducibility. NMF is at the core of the Wellcome Trust Sanger Institute (WTSI)
Mutational Signature Framework, the first published method for signature extraction''. An alternative
to numerical approaches based on NMF is given by statistical modelling and algorithms. With these

latter approaches, the number of mutations of a given type can be modelled by a Poisson distribution

N
mg ~ P (2 pk e£>
n=1

where mutational processes are assumed to be mutually independent.

This latter independence hypothesis simplifies the mathematics but does not necessarily hold in practice,
where mutation processes are likely to interfere with each other (e.g. distinct defective DNA repair
processes). In order to estimate E and P, it has been proposed to consider E as latent data and P as a
matrix of unknown parameters and to apply an expectation-maximization algorithm'® or use Bayesian
approaches'. One important advantage of statistical approaches is the availability of model selection

techniques for the choice of N.

The refitting approaches consider that the signatures P are known and the goal is to estimate E given M
and P. Refitting can be done for individual mutational catalogues (i.e. individual samples) and, from a
linear algebra perspective, can be seen as the problem of projecting a catalogue living in the K-

dimensional vector space (the space spanned by all mutation types) onto its subset of all linear



combinations of the given mutational signatures having non-negative coefficients (the cone spanned by

the given signatures).

A current practice consists in first performing a de novo extraction of signatures followed by a
comparison of the newly identified signatures with the reference signatures (e.g. the COSMIC signatures
introduced in the next section) by means of a similarity score, typically cosine similarity ranging from
0 (completely different) to 1 (identical)'®''. A “novel” signature is considered to reflect a specific
reference signature if the similarity is larger than a fixed cut-off. If similarity is observed with more than

one reference signature, the one with the largest value of similarity is chosen (Figure 1.6).
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Figure 1.6. Comparison of newly identified signatures with COSMIC signatures

Signatures a-g were identified in a de novo extraction using the maftools'® R package from the The
Cancer Genome Atlas lung adenocarcinoma cohort which include 563 cancer genomes at the date of
selection. The novel signatures were then compared to the 30 signatures validated in the COSMIC
database in terms of cosine similarity. Each signature is then assigned to the most similar COSMIC
signature provided that their cosine similarity is above a fixed threshold. For instance, signature f is
matched to signature 5 at a cut-off of 0.75 but is considered as a completely new signature if the cut-off
is at 0.80. Also note that a unique assignment can be controversial: for instance, signature g is similar

both to signatures 12 and 26 (Figure 1.7).

This assignment step crucially depends on the choice of the cut-off h that has been so far inconsistent
in the literature with some studies using a value of 0.75'7 whereas others 0.80'*'°. Another difficulty is
that different signatures might have very close cosine similarity, as it happens also between COSMIC
signatures, so that a unique assignment is not always possible. This shows that mutational signatures are

a useful mathematical construct that, however, might have biological ambiguous meaning.
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Figure I.7. Cosine similarity plot of COSMIC signatures
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1.3 COSMIC: CATALOGUE OF SOMATIC MUTATIONS IN CANCER

The Catalogue Of Somatic Mutations In Cancer (COSMIC) available at http://
cancer.sanger.ac.uk/cosmic/signatures, is the world’s largest and most comprehensive resource for
exploring the impact of somatic mutations in human cancer. Built in 2004, the database and website
have been developed to store somatic mutation data in a single location and display the data and other
information related to human cancer.

In addition to coding mutations, COSMIC covers all the genetic mechanisms by which somatic
mutations promote cancer (Figure 1.8). In parallel, the Cancer Gene Census (CGC) describes a curated

catalogue of genes driving every form of human cancer using the ten hallmarks as proposed by Hanahan

é&gﬂ\), ” l\\l
=7 \J

Cancer Hallmarks of Genome
browser Cancer browser

and Weinberg®.

&, ) 3
i&flo ey, N
'." =& 950
Cancer Gene COSMIC-3D
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A\A\7,\"4 %
Fusion genes Drug
resistance

Mhtational signatures

Gene pages
Figure L.8. Overview of COSMIC tools
Adopted from COSMIC

Data within COSMIC are updated constantly and released on a regular, three-monthly cycle,
guaranteeing four releases per year”’. As example, one of the last updates (Table 1.1, August 2018)

includes almost 6 million coding mutations across 1.4 million tumour samples.

Table I.1. Total contents in version 86 of the COSMIC database (August 2018).
Adopted from Tate and colleagues™

1391372  Tumour samples
5977977  Coding Mutations

26 251 Manually Curated Publications
19 368 Gene Fusions
35480 Whole Genomes/Exomes across 457 studies/papers

1 179 545 Copy Number Variants

9147 833 Gene Expression Variants

7 879 142 Differentially Methylated CpGs
19 721 019  Non-coding Variants
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The application of the mutational signature’s framework to tens of thousands of genomes and exomes
from 40 different cancers types from large data repositories such as TCGA (The Cancer Genome Atlas),
has led to the identification of 30 mutational signatures (Figure 1.9) characterized by a unique probability
profile across the 96 mutation types. These validated mutational signatures are listed in a repertory on

the COSMIC website and have been widely used as references (Mutational signatures v2).
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More recently, Alexandrov et al. have introduced an updated set of signatures identified from an even
larger collection of both exome and whole-genome sequences (including the sequences from the
PanCancer Analysis of Whole Genomes also known as PCAWG project) using two different methods
(a new version of the original framework and a Bayesian alternative?'). The new repertory includes 49
mutational signatures (Mutational signatures v3, Figure 1.10) based on SBS as in the previous version,
and also mutational signatures built in the context of other types of mutations such as Double Base
Substitutions or DBS (11 signatures), clustered based substitutions (4 signatures) and small insertions

and deletions (17 signatures).
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1.4 EXPERIMENTAL VALIDATION OF MUTATIONAL SIGNATURES

Since the publication of the first work about mutational signatures in 2013"', multiple algorithms have
been developed, leading to similar but not identical results, a source of concern for researchers interested
in this type of analysis. Conceptually, this is not surprising: mutational signatures are naturally defined
in terms of non-negative matrix factorization, a well-known ill-posed problem (a unique solution does
not exist). Although this limitation has cast doubts on the biological validity of mutational signatures,
this has been somehow validated using experimental and computational approaches by Zou and
colleagues®. Sufficiently detailed tumour catalogues and mutagen spectra might yield patterns that are
unique to a tumour type or mutagen, and therefore become “true” signatures that allow backward
inference from the tumour to the mutagen. Mutational signatures data in combination with
epidemiological information may provide useful insights to identify the causes of cancer**. The utility
of the current models of substitution mutational signatures is also shown in a recent experimental work
based on a human induced pluripotent stem cell (iPSC) line that provides evidence for the possibility to
identify the agents responsible for some specific mutational signatures®. In such work, Kucab and
colleagues compared iPSCs treated and untreated with 79 known or suspected environmental
carcinogens and identified specific substitution mutational signatures for around half of such

carcinogens. Some of such signatures were similar to those identified in human tumour DNA.
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2. EPIGENOMIC SIGNATURES

2.1 INTRODUCTION TO EPIGENETICS

2.1.1 OVERVIEW

The word “epigenetics” literally means “in addition to changes in the genetic sequence” *°. Epigenetics
thus encompasses a wide range of mechanisms at the molecular level that can influence gene expression
without involving changes to the underlying DNA sequence. As a matter of fact, even if every cell in a
given individual contains the same DNA sequence, the molecular pattern leading to gene expression and
protein synthesis is different. For instance, brain and lung cells are characterized by different

physiological mechanisms and thus require different patterns of gene expression.

Reflecting how cells translate the information contained in the genetic sequence, are common to many
organisms and is essential to their physiological functions. Aberrant modifications of epigenetic
processes may have major adverse health and behavioral effects. Indeed, one of the most interesting fact
of epigenetics is that its marks or states in cells change in response to outside influences. Studying
epigenetic processes may therefore be helpful in addressing key questions such as: why are some foods
good for our health while others are unhealthy particularly for groups of individuals? How does physical
activity exert beneficial effects on several health outcomes? How do particular environmental exposures

or psycho-social stress exert their detrimental effects on health?

Epigenetics is essentially additional information layered on top of the genetic sequence of the four
nucleotides that makes up our DNA. Important modifications are the addition of molecules (methyl
groups) or proteins (called histones) to the DNA sequence. Sometimes, epigenetic modifications are
stable and passed on to future generations. Though DNA sequence is fairly permanent, and as previously
mentioned, epigenetic modifications in other instances are dynamic and change in response to
environmental stimuli. Thus, epigenetic is the study of mitotically heritable yet potentially reversible,

molecular modifications to DNA and chromatin without alteration to the underlying DNA sequence”’.

There are multiple epigenetics mechanisms that may play a role in gene regulation machinery but the
most studied and well-known remain histone modifications and DNA methylation. These are two
process crucial to normal development and differentiation of distinct cell lineages in the adult organism,
that if modified by exogeneous influences, and, as such, can contribute to or be the result of

environmental alterations of phenotype or pathophenotype®®. Other modifications include RNA
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regulations, such as long non-coding RNAs that play an essential role in imprinting and X-chromosome

inactivation or small non-coding RNAs known for their effects on transcriptional gene silencing.

Today, a wide variety of illnesses, behaviors, and other health indicators already have some level of
evidence linking them with epigenetic mechanisms, including cancers of almost all types, cognitive
dysfunction, and respiratory, cardiovascular, reproductive, autoimmune, and neurobehavioral illness®.
Also, it is increasingly recognized that epigenetic marks (methylation cytosines residues on DNA, post-
translational modification of histone tails and microRNA expression) provide a mechanistic link

between environment, nutrition and disease.

2.1.2 DNA METHYLATION AND EPIGENETIC MECHANISMS

Molecular mechanisms of DNA methylation

From a molecular point of view, DNA methylation is a biochemical process that refers to the catalytic
addition of a methyl (-CH3) group to the fifth carbon position of a DNA base, usually a cytosine residue
that is followed on the same strand by guanine, what is also known as CpG site (Figure [.11). In human
genomes, CpGs dinucleotides are asymmetrically distributed and often concentrated in dense regions
mostly unmethylated, called CpGs Islands (CGls) that span the promoter of approximately one-half of

all genes®.
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Figure I.11. DNA methylation
Credits to LabRoots
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Approximately 80% of CpG dinucleotides outside of promoter regions are methylated under normal
physiologic circumstances. Genome-wide decreases in methylation, or hypomethylation, are most
functionally relevant when they occur in coding regions of genes, leading to alternative versions or
levels of messenger RNA. In the other hand, the addition of methyl groups, or hypermethylation, can be
highly specific to a particular gene with hypermethylation of CpG islands in the promoter region of a
gene, known to result in transcriptional silencing of the gene, and subsequent loss of protein

expression’’.

The enzymes that play a key role in methylation processes are called the DNA methyltransferases

(DNMTs), with three of them DNMT1, DNMT3a and DNMT3b responsible of the establishment of



DNA methylation by catalyzing the transfer of a methyl group by the primary methyl donor named S-
Adenosyl-1-Methionine (SAM) (Figure 1.12).

DNMTT1 is the most abundant methyltransferase in somatic cells and is responsible for the maintenance
of DNA methylation during DNA synthesis for copying the original DNA methylation pattern to the
newly formed strands. DNMT3a and DNMT3b are known to perform de novo methylation during

embryonic development.
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Figure 1.12. Micronutrient donors involved in one-carbon metabolism and subsequently in DNA
methylation (one-carbon metabolism)
Adopted from Mahmoud and Ali*'

The role of DNA methylation

Over the last decades, several discoveries have been made about DNA methylation and how important
it is for a number of cellular or developmental processes including embryonic development, X-
chromosome inactivation, genomic imprinting, gene suppression, carcinogenesis and chromosome
stability by silencing repetitive elements, and in maintaining tissue-specific and appropriate patterns of
gene expression through cell division**,

One major role of DNA methylation related to genome stability is structural and involves chromosomal
and chromatin structure. Chromatin is a complex of DNA and proteins localized in the nucleus of
eukaryotic cells that play major roles in various metabolic processes such transcription, replication or
DNA repair. Chromatin can be divided into euchromatin and heterochromatin. As an example,
alterations of heterochromatin through global hypomethylation is known to be a prerequisite for genome
instability, which has been frequently reported to be associated with aging*>*® (mainly due to telomeric

chromosomal regions that represent regions of repetitive nucleotides at the end of chromosomes, known
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38,39

to be a hallmark of senescence’’) and certain pathology such as cardiovascular or

neurodegenerative®™*' diseases and cancer*’.

Traditionally, cancer has been viewed as a disease driven by accumulation of mutations with this
paradigm now expanded to incorporate disruption of epigenetic regulatory mechanisms®. As example,
studies on molecular mechanisms underlying the role of DNA methylation in gene expression identified
how epigenetic DNA modifications modulate the Transcription Factors (TFs) binding site to DNA for
activation or repression of transcription (Figure 1.13). It is now known that mutations on Tumour
Suppressor Genes (TSG) or oncogenes (genes that can potentially lead to cancer) cause either loss or
gain of function and abnormal expression. TSGs are genes usually silenced in cancerous cells due to
hypermethylation in their promoter region and it is widely accepted that this phenomenon lead to
tumourigenesis**. In a translational approach, hypermethylation of CpG promoter which is visible during
early stages of some cancers such as colon cancer has the potential to serve as a biomarker of the

disease™®.

TFs can bind the promoter region
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Figure I.13. Effect of DNA methylation on gene expression
Credits to Daniela Furrer, Laval University
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2.2 PROFILING DNA METHYLATION

2.2.1 METHODOLOGICAL ASPECTS

Methods to analyze genome-wide DNA methylation patterns is still evolving and a wide range have

been developed to generate quantitative and qualitative information on DNA methylation (Figure 1.14).
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Figure 1.14. Evolution of next-generation sequencing-based techniques applied to DNA
methylation profiling.

Adopted from Barros-Silva and colleagues*

Generally, all of the methods include two procedures: the methylation-dependent pretreatment

(including enzyme digestion, affinity enrichment or bisulfite conversion'’) of the DNA and the

following analytical step.

Then, the methods can be viewed according to the type of DNA methylation measured (global or

sequence-specific) and the pre-treatment (Figure 1.15).
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Figure 1.15. Main DNA methylation techniques according to the type of DNA methylation
measured (global or sequence-specific) and the principle of DNA methylation discrimination
Adopted from Zafon and colleagues™
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Methods related to global methylation can be subdivided into those measuring the DNA methylation of
the entire genome and those measuring the DNA methylation of a compartment of the genome used as
surrogate reporter of the genome (e.g., repeat sequences such as LINE-1 and Alu elements, which
comprise 20% and 10% of the human genome, respectively). Sequence-specific methods can also be
subdivided into those that are genome-wide (mostly based on bead arrays or NGS) and those measuring

specific regions of interest (mostly based on polymerase chain reaction)*.

Recently, with the third-generation sequencing (Nanopore-Seq), sequencers allow for direct read of
different modifications on DNA bases without DNA amplification or chemical labelling. Although these
technologies are still in the development phase, they seem promising for future methylome profiling

analysis.

The array-based methods and specifically the [llumina EPIC array used in the studies presented in the
second part of the thesis, are methods based on bisulfite conversion of DNA and fall under the category

“BeadArray”.

2.2.2 BETA-VALUES AND M-VALUES IN MICROARRAY ANALYSIS

The microarray-based Infinium methylation assay by Illumina is one platform for low-cost high-
throughput methylation profiling. Briefly, to estimate the methylation status, the [llumina Infinium assay
utilizes a pair of probes (a methylated probe and an unmethylated probe) to measure the intensities of
the methylated and unmethylated alleles at the interrogated CpG site. The methylation level is then

estimated based on the measured intensities of this pair of probes.

To date, two methods have been proposed to measure the methylation level. The first one is called Beta-
value, ranging from 0 to 1, which has been widely used to measure the percentage of methylation. The
Beta-value is the ratio of the methylated probe intensity over the overall intensity (sum of methylated
and unmethylated probe intensities) and is defined using the following formula:

max (yi,methy: 0)

Beta; =
i max(yi,unmethy, O) + max(yi,methy, 0) + «a

where y i menty ANd Y iunmensy are the intensities measured by the i methylated and unmethylated probes,

respectively. ais a constant offset and is generally equal to 100.

The second method is the log2 ratio of the intensities of methylated probe versus unmethylated probe
as shown in the following equation:

max(yi,methy, 0) + a

M; = log,(
' max(}’i,unmethy' 0) +a




M-values are related to beta-value through the following logit transformation:
2Mi Beta;

.M, =1 e
iy M= e G

)

Beta; =

Beta-values have a more intuitive biological interpretation (it corresponds roughly to the percentage of
a site that is methylated) but their distribution is not normal and is not homoscedastic (for high and low
values of betas, the standard deviation is lower than for intermediate values). The distribution of M-
values is closer to the normal and it is homoscedastic. Thus, M-values are therefore to be preferred for

example in linear regression when methylation is the dependent variable.



2.3 HOW DOES LIFESTYLE INFLUENCE DNA METHYLATION

The property of environmental factors to induce epigenetics modifications highlight how and why
monozygotic twins are not completely identical.

Exposure and lifestyle factors that modify the human epigenome are referred to as “epigenetic agents”
and include behaviors, nutrition, chemicals and industrial pollutants that result in distinct gene
expression profile. For example, nutrition is a key environmental exposure from gestation to death that
impacts our health by influencing epigenetic phenomena. Recent epidemiological data suggest that the
increased incidence of cancer observed in the developed world since the 1960s may partly be due to
exposure to Endocrine-Disrupting Chemicals (EDCs), to which humans and wildlife are exposed daily
from multiple sources*’. The implication of other epigenetic agents such as tobacco, alcohol and obesity,
in multifactorial diseases have been addressed through epidemiological studies that have shown
association between gene-specific DNA methylation patterns and cancer incidence®"** %,

Smoking is a major risk factor for tobacco related cancers and many studies have been conducted in
order to identify functional consequences of tobacco exposure and tobacco-related cancers metabolic
alterations. Altered methylation levels in thousands of CpG sites have been found to be associated with
smoking and smoking duration and intensity®®. In case—control studies nested within prospective
cohorts, some of these alterations have been found to be associated with lung-cancer risk even after
adjustment for reported history of cigarette smoking™*.

With regards of the impact of diet on DNA methylation, and with consideration of one-carbon
metabolism, it has been reported that diet containing high concentrations of choline and betaine is
associated with reduced breast cancer mortality®® and primary liver cancer®. Strong evidence shows
that a dietary pattern inspired by Mediterranean Diet (MD) principles is associated with numerous health
benefits, by increasing life expectancy with mainly protective effects on cardiovascular diseases and
certain types of cancer’’. The MD is not only a dietary pattern but also embodies social behavior and a
way of life. Although different countries in the Mediterranean region have their own diets, they share
the following pattern such as high consumption of extra virgin olive oil, legumes and nuts, unrefined
cereals, fruits and vegetables, moderate consumption of dairy products, mainly cheese or yogurt, fish
and wine and low consumption of meat and meat products. As DNA methylation is modulated by diet,
a few studies investigated whether adherence to MD is associated with changes in DNA methylation
from peripheral blood cells with results suggesting that MD is associated with changes in the
epigenome’®,

However, “nutritional epigenetics” is a recent field of interest and the current knowledge about the
precise effects of bioactive food components on epigenome and their potential association with the

phenotype is limited.



3. ENDOCRINE DISRUPTORS

Endocrine Disrupting Chemicals (EDCs) are “exogenous substances or mixtures that alter the
function(s) of the endocrine system, causing adverse health effects in an intact organism, its progeny, or
(sub)populations™’. Such broad class of chemicals includes a variety of substances that are produced
through components such as industrial solvents, food packaged, commercial household products
(including stain- and water-repellent fabrics, polishes, waxes, paints, cleaning products), workplace
(production facilities or industries such as chrome plating, electronics manufacturing or oil recovery)

and that are released in the environment.

The effect of such substances on biological systems and their widespread presence in the environment,
including in food, have led to growing concerns about the impact of EDC exposure on population health
in industrialized countries. EDCs were indeed identified as “Substances of Very High Concern” by the
Regulation (EC) No 1907/2006 of the European Parliament but the assessment of the health effects of
specific EDCs is complex due to the vast number of such substances and their heterogeneity. In this
research project we will focus on Brominated Flame Retardants (BFRs) and Per- and polyfluoroalkyl
substances (PFASs), two classes of the broad group of EDCs called Persistent Organic Pollutants that
have the characteristic of persisting in the environment for a long period of time and may therefore pose

a hazard to human health.

3.1 INTRODUCTION TO PERSISTENT ORGANIC POLLUTANTS

Persistent Organic Pollutants (POPs) are EDCs of global concern due to their potential for long-range
transport, persistence in the environment, ability to biomagnify and bioaccumulate in ecosystems that
means they gradually accumulate in living organisms, as well as their action on the environment, on
biological systems and in humans and other animals. Humans are widely exposed to these chemicals in
a variety of ways but, due to their bioaccumulation, the most important route is through diet and, in
particular, the consumption of foods of animal origin. POPs can also be found in the air and products
used in our daily lives such as pesticides or solvents. Exposure to POPs can increase cancer risk, may
lead to reproductive disorders, and some of these substances may increase the risk of birth defects

through their genotoxic action.

Due to their bioaccumulation in the environment and the corresponding effect on human health, the
international community has called for actions to reduce and eliminate production, use and releases of

these substances through two international legally binding instruments:
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=» The global Stockholm Convention on POPs, opened for signatures in May 2001 and entered
into force on 17 May 2004;

= The Protocol to the regional UNECE Convention on Long-Range Transboundary Air
Pollution (CLRTAP) on POPs, opened for signatures in June 1998 and entered into force
on 23 October 2003.

BFRs and PFASs are two large families of environmental EDCs, for which the long-term health effects

remain unclear and not well characterized.
3.1.1 BROMINATED FLAME RETARDANTS (BFRS)

Flame Retardants (FRs) are a group of chemicals used to reduce the flammability of combustible
materials such as plastics, roots or textiles. The most abundantly used FRs contain bromine and
compounds of this family are known as BFRs. They are added to a wide variety of consumer goods,
including electronics, furniture, building materials, and automobiles, to make them less flammable.
Depending on their mode of incorporation into the polymers, BFRs can be classified as additive (the
most frequently detected in environment due to their potential to leak from treated consumer products),
reactive, or polymeric.

The most investigated additive BFRs are Polybrominated diphenyl ethers (PBDEs), polybrominated
biphenyls (PBBs) and Hexabromocyclododecane (HBCDs). Each class may include multiple congeners
(chemical substances with similar structure, origin or function) and their chemical structure and the main

physicochemical properties of these compounds are presented in Figure .16 and Table 1.2.
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Figure 1.16. Chemical structures of major BFRs compounds
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Table 1.2. Physicochemical properties of PBBs, PBDEs, and HBCDs
Adopted from The Handbook of Environmental Chemistry®

Chemical Acronym Formula Molecular Melting Decomposition Solubility  Log Kow

Mass point point (°C) H0
O (ng/L25°C)

PBBs beta-BB Ci2H4Br 627.4 124-248  300-400 11 7.20
octa-BB C12HaBrs 785.2 200-250 435 3040 5.53
nona-BB C12HBro 864.1 220-290 435 Insoluble
deca-BB Ci2Brlo 943.0 380-386 395 >400 <30 8.58

PBDEs tetra-BDE C12HeBraO  485.8 82.3 - 4.7 5.87-6.16
penta-BDE ~ CioHsBrsO ~ 564.7 81.0 >200 4.4 6.64-6.97
octa-BDE Ci2HaBrsO ~ 801.5 200 - - 8.35-8.90
deca-BDE  C12Br100 959.2 290-306 >320 20-30 9.97

HBCD o-HBCD CioHisBrs  641.7 179-181 >190 48.8 5.07
B-HBCD 170-172 14.7 5.12
y-HBCD 207-209 2.1 5.47

Source of human exposure

PBDE:s can be found in plastics, textiles, electronic castings and circuitry; HBCDs in thermal insulation
in the building industry while PBBs are used in consumer appliances, textiles and plastic foams (EFSA).
BFRs have the tendency to be extremely stable and persistent in the environment, having long half-lives
in soils, sediments, air, or biota®'. Because of their tendency to accumulate in living organisms, these

chemicals are detected in foods, mainly fish, but also meat and dairy products.

The potential for organic compounds to bioaccumulate and widespread in the environment is a direct
consequence of their physicochemical properties such as lipophilicity and resistance to degradation. One
way to obtain an estimate of the human exposure to environmental contaminants is through biomarkers
and specifically by measuring the presence of chemical compounds in storage tissues (adipose tissue,

hair, nails) in blood (i.e. levels in plasma and serum) and in excreted liquids (i.e. urine and breast milk).

BFRs are known to be extremely lipophile, this degree of bioaccumulation depending on a number of
parameters including their molecular weight and octanol-water partition coefficient (Log Kow) which
represents a measure of the tendency of a compound to move from the aqueous phase into lipids. The
half-life of BFRs appears to be related to the number of bromine atoms per molecule. For instance, the
average half-life of BDE-47, BDE-99 and BDE-153 are respectively 1.8 years (1.4 - 2.4), 2.9 years (1.8
- 4.0) and 6.5 years (3.6 - 12,4)*2. Authors also reported half-life of 64 days (range 22-210 days) for
HBCD:s.

Being excreted in breast milk, BFRs represent a significant exposure for infants and small children and

may have a significant impact on their health.



Children, as well as adults are also mainly exposed through indoor air inhalation and dermal contact but
it has been reported that dust ingestion was the dominant exposure pathway for most studied BFRs
(compared to indoor inhalation and dermal contact), especially for infants and toddlers who have higher
exposures than older children®. In the same study, findings reveal that the highest indoor house dust

concentrations of PBDEs are found in North America and for BDE-209 in Europe and China (Figure
L.17).
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Effects on human health

In terms of toxicity, particularly neurotoxicity, most studies have been conducted using animal models
such as mice or zebrafish. Mice exposed on postnatal day (PND) 10 (i.e. the peak of the brain growth
spurt) to PBDEs or HBCDs develop permanent aberrations in spontaneous behavior and habituation
(decrement in response as a result of repeated stimulation not due to peripheral process like receptor

adaptation or muscular fatigue) capability, and changes in the development of neuromotor systems®*%,

In zebrafish, it has been shown that BDE-209 congener affects expression of neurological pathways and
alters the behavior of larvae, whereas parental chronic low dose exposure affects growth and
reproduction and elicits neurobehavioral alterations in offspring®. The exposure to BDE-47 and its
metabolite 6-OH-BDE-47 also affects the locomotion behavior of both larval and juvenile zebrafish®’.

Several studies about the effects on reproduction have also been conducted using animal models.
Pregnant rats were exposed to BDE-47 from gestation day 8 until PND 21 and male reproductive
outcomes were analyzed on PND 120 in offspring®. Exposed animals had significantly smaller testes,
displayed decreased sperm production per testis weight, had significantly increased percentage of
morphologically abnormal spermatozoa, and showed an increase in spermatozoa head size. Also,
perinatal BDE-47 exposure led to significant changes in testes transcriptome, including suppression of

genes essential for spermatogenesis and activation of immune response genes.

Even if BFRs are excreted through breast milk and that therefore breastfeed infants are exposed to BFRs,
the epidemiological evidence that exposure to human milk containing background levels of such
chemicals would pose a serious health hazard is limited and insufficient®. One study reported a
correlation between infant weight at birth and length at birth with the levels of PBDEs congeners (47,
99, 100 and 153) in Northern Tanzania”. Another study conducted in China in term of occurrence and
temporal trends showed that daily dietary BFRs intake for nursing infants is much higher than that for
adults’'. As for the assessment of the potential effects on health, the current scientific literature is
contradicting. For example, in the same study, the risk assessment evaluated using the Margin Of
Exposure (MOE) approach (a tool used by risk assessors to consider possible safety concerns arising
from the presence in food and feed of substances which are both genotoxic _they may damage DNA
and carcinogenic) concluded that dietary BFRs intake for nursing infants was unlikely to pose significant
health risks while a study of BFRs in placental tissues suggest a potential alteration of thyroid hormone

function’.

Additionally, as conducted by Leonetti and colleagues’?, most studies related to health issues in
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association with PBDEs are related to a possible disruption of thyroid hormones’ "”, mainly due to the



similarity in chemical structures of PBDEs and thyroid hormones triiodothyronine (T3) and thyroxin

(T4), and thus the potential for PBDEs to mimic and disrupt homeostatic conditions®.

Finally, recent studies have suggested that BFRs could play a role in the epidemic of type 2 diabetes
(T2D). A study using the E3N prospective cohort of French women was conducted to evaluate the
association between dietary exposure to BFRs and T2D risk. Findings suggest an association (positive
linear trend) between dietary exposure to HBCDs and T2D risk starting from the 2™ quintile group (HR:
1.18; 95% CI: 1.06—1.30) to the 5th quintile group (HR: 1.47; 95% CI: 1.29-1.67) when compared to
the 1st quintile group. Authors also found positive although non-linear associations between dietary
exposure to PBDE and T2D risk, with an increased HR only for the 2nd and 4th vs. 1st quintile groups
(HR: 1.12; 95% CI: 1.02—1.24, and HR: 1.20; 95% CI: 1.08-1.34, respectively)76.

Because of the threat POPs, including BFRs, may pose to human health and the environment, such
substances are regulated under the Stockholm Convention that was adopted in 2001 including 152
signatories and 183 parties. The effectiveness of this Convention, whose broad aim is to protect human
health and the environment by controlling the releases of POPs, has been evaluated in several studies.
A time series analysis of atmospheric POP concentrations from 15 monitoring stations in North America
and Europe concluded that a decade of air monitoring data has not been sufficient for detecting general

and statistically significant effects of the Stockholm Convention’’.

Results suggest that the observed changes are the result of national regulations enforced prior to the
implementation of the Stockholm Convention, rather than to the enforcement of the provisions laid out
in the Convention. Other studies on BFRs showed a decrease in the detected levels that may be
associated with the implementation of the Stockholm Convention. For example, a Californian study
published in 2015 found significant declines of some PBDEs congeners levels in breast milk between
2003-2005 and 2009-2012 (from 67.8ng/g lipid to 41.5ng/g lipid)’®. Another study conducted in China
with -47, -99 and -100 congeners showed significant relative decreases in the human milk levels with

an average of 45%, 48%, and 46% decrease from 2007 to 2011, for the three congeners respectively’



3.1.2 PER- AND POLYFLUORINATED ALKYLATED SUBSTANCES (PFASS)

Per- and polyfluoroalkylated substances (PFASs) are a vast group of chemicals widely found in a large
range of products used by consumers and industry. Most of them are impermeable to grease, water and
oil. For this reason, they are used for many different applications including in stain- and water-resistant
fabrics and carpeting, cleaning products, paints and fire-fighting foams, as well as in limited, authorized

uses in cookware and food packaging and processing (U.S Food and Drug Administration).

Among all PFASs, the perfluorooctanoic acid (PFOA) and the perfluorooctanesulfonic acid, also known
as perfluorooctanesulfonate (PFOS), have been the most widely used and are therefore the object of
monitoring and research on their effects on human health and the environment. PFOA and PFOS are
very persistent in the environment and in the human body and there is evidence that exposure to such
substances can lead to adverse human health effects. Tolerable weekly intakes of PFOA and PFOS set
up to 6ng-kg'-bw-week ' (based on the daily calculated intakes resulting in a critical serum
concentrations and outcomes, the weight and the half-life of the contaminant*®) and
13 ng-kg '-bw-week ', respectively (EFSA). The chemical structure and the main physicochemical

properties of these compounds are described in Figure 1.18 and Table 1.3.
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Figure 1.18. Chemical structures of major PFASs compounds

Table 1.3. Physicochemical properties of PFOA and PFOS

Chemical Formula Molecular Melting Decomposition Solubility Log Kow
Mass point (°C)  point (°C) H:0 (g/L)
PFOA C7HF 450 414.07 55-56 - 34 4.59

58



Source of human exposure

People can be exposed to PFASs through various ways, notably food that may be contaminated by
contaminated soil and water used to grow the food or from food packaging. The widespread use of
PFASs and their ability to remain intact in the environment mean that over time PFASs levels from past

and current uses can result in increasing levels of environmental contamination. (Figure 1.19).
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Figure 1.19. The occurrence of perfluoroalkyl acids in the global environment (including air, water,
sediment and fish)

Adapted from Liu and colleagues®'

In France, for example, Bach and colleagues®® performed a study that estimated the extent of
contamination with PFASs of the river Orge. They estimated that 4295 kg of PFHxA, 1487 kg of
6:2FTSA, 965 kg of PFNA, 307 kg of PFUnDA, and 14 kg of PFOA were discharged in the river by
two facilities in 2013. It was found that chlorination (a method of water treatment) had no removal
efficiency and even if the total PFASs concentrations were high in the treated water, ranging from 86 to

169 ng/L, they did not exceed the currently available guideline values.

Workers exposed professionally to PFASs have higher levels of PFASs exposure than a non-
occupationally exposed group®. In a retrospective U.S study of an aging population, findings showed
that participants with high cumulative workplace exposure (work in occupations and industries known
to use PFASs) had 34% higher serum PFOS levels compared to participants without occupational
exposure, adjusted for age, sex and income and serum PFOS levels were 26% higher for participants

with longer occupational exposure durations™.



To determine whether bladder cancer is associated with exposure to (PFOS) in an occupational cohort,
a study among former employees of a facility of PFOS production was conducted®. Eleven cases of
primary bladder cancer were identified from the surveys and compared with employees in the lowest
cumulative exposure category, the relative risk of bladder cancer was 0.83 (95% CI = 0.15-4.65), 1.92
(95% CI = 0.30-12.06), and 1.52 (95% CI = 0.21-10.99) with a cumulative exposure of 1, 1-5, 5-10,

and >10 years.

As for BFRs, PFASs can also be found in blood and breast milk with known adverse effects of prenatal
exposure to PFASs in developmental outcomes in offspring®®*’. In the meantime, significant correlation
was found between the parity of mothers and PFASs concentrations in human milk and it was reported
that primiparas showed higher PFASs levels in human milk than multiparas in France, Italy, and

Belgium®,

In contrast to BFRs and most other POPs, they do not tend to accumulate in fat tissues but bind to serum
albumin and other cytosolic proteins and accumulate mainly in the liver, the kidneys, and bile
secretion®. They are considered as amphiphilic (molecules having a polar water-soluble group
attached to a water-insoluble hydrocarbon chain) compounds® and their half-life in human serum was
respectively set 5.4 and 3.8 years for PFOS and PFOA in 2007 while findings from a more recent study

(2018) indicates a decrease from 3.4 and 2.7 years respectively®’.

Effects on human health

PFOS and PFOA have been associated with liver enlargement in rodents and nonhuman primates in
addition to hepatocellular adenomas in rats and a number of short-term studies in rats and mice have
shown that PFOS and PFOA are capable of inducing peroxisome (organelle involved in catabolism of
very long chain fatty acids) proliferation through the activation of PPAR-a (peroxisome proliferator—
activated receptor-alpha) known to be involved in tumour (primarily liver) induction by a number of

nongenotoxic carcinogens in the rodents’".

In term of reproduction, a study reveals that zebrafish embryos exposed to 16 uM PFOS during a
sensitive window of 48-96 hour post-fertilization (HPF) disrupted larval morphology at 120 HPF and
malformed zebrafish larvae were characterized by uninflated swim bladder, less developed gut, and
curved spine’®. Additionally, whole genome microarray was used to identify the early transcripts
dysregulated following PFOS exposure and a total of 1278 transcripts were significantly misexpressed
(p<0.05) while 211 genes were changed at least two-fold upon PFOS exposure in comparison to the
vehicle-exposed control group. Chronic exposition to PFOS have also been reported to reduce sperm

quality and expression of key genes involved in hormone pathways’.



Due to their persistence, as well as ubiquity in the environment caused by long-range transport, current
evidence suggests that the bioaccumulation of certain PFASs may cause serious health conditions in

humans.

Recently, in a case-control study nested in the French E3N cohort PFASs (PFOA and PFOS) circulating
levels were differentially associated with breast cancer risk®. Findings showed a positive linear
associations between PFOS concentrations and the risk of ER+ (3rd quartile: OR = 2.22 [CI = 1.05—
4.69]; 4th quartile: OR =2.33 [CI = 1.11-4.90]) and PR+ tumours (3rd quartile: OR =2.47 [CI = 1.07—
5.65]; 4th quartile: OR =2.76 [CI = 1.21-6.30]). When considering receptor-negative tumours, only the
2nd quartile of PFOS was associated with risk (ER—: OR = 15.40 [CI = 1.84-129.19]; PR—: OR =3.47
[CI = 1.29-9.15]). While there was no association between PFOA and receptor-positive BC risk, the
2nd quartile of PFOA was positively associated with the risk of receptor-negative tumours (ER—: OR =
7.73 [CI = 1.46-41.08]; PR —: OR =3.44 [CI = 1.30-9.10]).

Earlier in 2017, in a case control study of Inuit women from Greenland, significant, positive associations
between breast cancerrisk and both of them with other classes of PFASs (PFHpA,
PFDA,PFUnA,PFDoA) were also observed”® while in the California Teacher Study, a similar
retrospective case-control study in which PFASs levels for cases were measured after diagnosis®.
Overall, these results are limited but suggestive that exposure to PFASs may increase breast cancer risk

though further studies are necessary to strengthen the evidence.

The epidemiological evidence on PFASs exposure as a risk factor for diabetes is limited and inconsistent
although the availability of supporting data and studies. Regarding T2D, a prospective cohort study
identified an association between PFOA with incident diabetes and microvascular disease and the results
suggest that exercise and diet may attenuate the diabetogenic association of PFASs”’. Some of them

98,99

report positive associations”*’ while others report inverse'® or null associations'".



3.2 PERSISTENT ORGANIC POLLUTANTS AND DNA METHYLATION

For the purpose of this section, the term “POPs” will refer not only to BFRs and PFASs but also to other

pollutants. We are interested in studies focusing on DNA methylation.

Effect of POPs on DNA methylation is not completely established even if alterations of epigenetics
mechanisms are known to be linked to environmental exposures with adverse health effects. Also, most
of published studies were focused on prenatal and early-life exposures which can be explained by the
fact that the epigenome undergoes extensive reprogramming throughout fetal development at gametogenesis and
early embryo preimplantation, representing vulnerable stages to environmental exposure'® (Figure 1.20).
Additionally, POPs can cross the placenta and reach the newborn through breast milk. Generally, in these studies,

only global methylation is evaluated.
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Figure 1.20. Susceptibility windows of DNA-methylation due to environmental pollutants
Adapted from Alvarado-Cruz and colleagues'®*

As previously reported in the section related to DNA methylation, Alu and LINE-1 elements are widely used as
markers of global methylation. Alu elements (repetitive elements that comprise approximatively 10 % of
the human genome), have wide-ranging influences on gene expression and contribute to genome
evolution and gene regulation'®. They belong to a class of retroelements termed SINEs (Short

INterspersed elements) and are primate specific. These elements are non-autonomous, in that they
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acquire trans-acting factors for their amplification from the only active family of autonomous human

retroelements: LINE-1 that represents around 20 % of the human genome.

In a birth cohort from Mexico, findings suggested that co-effect of DDT (dichlorobiphenyl trichloroethane)

104

and PBDEs exposure induce global hypomethylation ™. This result was confirmed in another independent

study'®.

Regarding PFASs, a study of 363 mother-infants suggested that prenatal PFOS exposure may be
associated to Alu DNA hypomethylation in cord blood'® while another study from a US-based
population found that in utero PFOA exposures also induce global hypomethylation in cord blood'"’.
On the other hand, using Luminometric Methylation Assay (LUMA), which is a method that allows to
capture DNA methylation using restriction enzymes and Pyrosequencing'®, no association was found
between DNA methylation and BDE-47 congener. However, in the same study, global hypermethylation
was found to be associated with high serum levels of some POPs in contradiction to a previously

mentioned study and others that used different design.

A study conducted within the British Birth Cohort examined association between BDE-47 congener
from maternal blood and methylation Tumour Necrosis Factor alpha (TNFa) promoter in cord blood.
TNFa is a cytokine that plays important roles in inflammation and metabolism mechanisms. Results
showed that a decrease of TNFa methylation is associated with an increase in TNFa protein level in
cord blood and provided evidence that in utero exposure to PBDEs may epigenetically reprogram the
offspring’s immunological response through promoter methylation of a proinflammatory gene'®.
Finally, some studies suggest that POPs are potential germline epimutagens and could be tied to

preconception exposure''*!'2,



4. SUMMARY AND OBJECTIVES

Mutational signatures

Mutational signatures refer to patterns in the occurrence of somatic mutations that might be uniquely
ascribed to particular mutational process. Tumours mutation catalogues can reveal mutational signatures
but are often consistent with the mutation spectra produced by a variety of mutagens. To date, after the
analysis of tens of thousands of exomes and genomes from about 40 different cancer types, tens of
mutational signatures characterized by a unique probability profile across the 96 trinucleotide-based

mutation types have been identified, validated and catalogued.

After the introduction of the original framework for the formal definition and analysis of mutational
signatures, several other mathematical methods and computational tools have been proposed to detect
mutational signatures and estimate their contribution to a given catalogue as well as their potential

association with an endogenous or exogeneous exposures.

In termed of association between mutational signatures and environmental exposures, most findings

were mainly related to UV light, tobacco consumption or aristolochic acid.

Epigenetic signatures of Persistent Organic Pollutants

Epigenetics is defined as the study of mitotically heritable yet potentially reversible, molecular
modifications to DNA and chromatin without alteration to the underlying DNA sequence. DNA
methylation, one of the most studied epigenetics marks is known to be dynamic in response to
environmental stimuli and have been associated with a wide range of environmental exposure and

multifactorial disease.

POPs are organic compounds that are widespread in the environment. Because of their persistence, they

are able to bioaccumulate with major impacts on human health.

Regarding’s epigenetic signatures and particularly DNA methylation, and with regards to the existing
literature that supports the role of POPs-associated methylation as a potential mediator of POP-
associated health effects in humans, more research is required as most of conducted studies were focused

on LINE-1 or Alu elements as marks of global methylation.
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Objectives and results
This thesis has two main objectives:

1. Mutational signatures: review contributions to epidemiology and evaluate existing methods
=> We review the existing literature related to mutational signatures linked to environmental
exposures and lifestyle and their implication in the development of lung adenocarcinoma
(Papers 1 and 2, published).
=» We introduce a probabilistic model for simulating mutational signatures and catalogues and
conduct an original empirical comparison of the performance of developed tools for
mutational signatures analysis (Paper 3, published).
2. Epigenetic signatures of POPs: study of the association between two important families of
EDCs and DNA methylation using the French prospective E3N cohort
=>» We evaluate the association between BFRs and DNA methylation (Paper 4, submission in
progress).
=» We evaluate the association between PFASs and DNA methylation (Paper 5, submission in

progress)
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CHAPTER II:

ENVIRONMENT AND LIFESTYLE
INFLUENCE ON MOLECULAR FEATURES
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In this chapter, we describe how recent advances in the study of mutational and epigenetic signatures in
tumours provide new opportunities to understand the role of the environment and lifestyle in cancer
development. In the first part of the chapter, that is the object of our recent publication in the journal
Current Opinions in Oncology'"®, we discuss how such recent advances in the study of mutational and
epigenetic signatures may be applied to the study of the etiology of cancer and we provide some
interesting examples. In the second part of the chapter, that has been presented in a separate publication
that has attracted media coverage (https://www.inserm.fr/actualites-et-evenements/actualites/non-
cancer-est-pas-principalement-hasard), we extend the application of mutational signatures to contribute
to the debate around the “bad luck” hypothesis related to cancer development (incorrectly popularized
as “2/3 of cancers are due to errors in DNA replication during cell division and therefore to intrinsic
and unpreventable causes”). In such work we introduce an analysis showing that smoking-induced

mutations are more predictive of cancer risk than the lifetime number of stem cell divisions.

Contribution
Co-author, contributed to the review and the figures, read and approved the final reports.
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1. ENVIRONMENTAL EXPOSURES ASSOCIATED
MUTATIONAL AND EPIGNETICS SIGNATURES

Cancer-related mutational events have been investigated for decades and, in more recent years,
numerous epigenetic hallmarks of cancer have been identified but only with the recent development of
high throughout sequencing and the resulting wider availability of genomic sequences and epigenomic
data from thousands of cancer exomes and genomes have made possible to identify numerous distinct
mutational and epigenetic signatures some of which have been associated to environmental exposures,

carcinogens and factors related to lifestyle.

1.1THE EXOGENEOUS CAUSES OF MUTATIONAL SIGNATURES

The idea that carcinogens leave fingerprints is not novel''*. The notion that exposure to ultraviolet
radiation (UV) caused predominantly the transition cytosine to thymine (C > T) and tobacco smoke
predominantly caused the transversion cytosine to adenine (C > A) has been established experimentally
several decades ago''>, well before the development of sequencing technologies. However, the
generation of a large number of tumour sequences (cancer exomes or whole genomes) and the
development of appropriate mathematical methods greatly improved the capacity to identify such
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fingerprints  °. While initially some of the mutational signatures have been linked to specific factors

only on the basis of biological prior knowledge of their mutational effects'!”

, more recently experimental
studies and studies that coupled individual information about environmental exposures and lifestyle with
tumour sequencing data are providing useful information to establish the causes of some signatures. In
the following paragraphs of this section, we review some examples of exposures proposed as the origin

of specific mutational signatures.

1.1.1 TOBACCO

To investigate mutational signatures in tobacco-related cancers, Alexandrov and colleagues studied the
cancer genomes from 2 490 smokers and 1 063 never smokers''®. For each cancer, they extracted a list
of mutational signatures and estimated their contributions to the complete mutational catalogue. By
comparing the mutational signatures identified in cancer genomes in smokers and non-smokers, they
found that signatures 2,4,5,13, and 16 in COSMIC were more prevalent in smokers than in non-smokers.
Signature 4, for example, appears to be a strong signature related to exposure to tobacco smoke as it is
observed in tumours strongly associated with tobacco smoking (e.g. lung squamous cell carcinomas,
lung adenocarcinomas, larynx and liver cancers) and its prevalence is higher in smokers than in non-
smokers. Signature 4 was associated with pack-years smoked and it was not found in tumour tissues
from organs not directly exposed to tobacco smoke. Notably, this signature is mostly characterized by

C > A transversions, an observation consistent with previous knowledge about the mutagenic effects of
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tobacco smoke, and its mutation profile is very close to that caused by exposure to some chemicals
present in tobacco smoke such as benzo[a]pyrene that earlier experimental studies have demonstrated

to be a carcinogen'".

1.1.2 AFLATOXIN B1

Another interesting example of exposure linked to specific mutational signatures is exposure to aflatoxin
B1 (AFB1), a common contaminant in a variety of foods such as peanuts, corn and grains that represents
a major public health problem in some regions of Africa and Asia as it strongly increases the risk of
hepatocellular carcinoma (HCC), especially when associated with hepatitis B. An interesting study that
investigated mutational signatures in human cell lines and liver cancers in mice exposed to AFBland
corroborated the results with analyses of signatures extracted from human HCC genomes from a
geographical region in which exposure to AFB1 is well documented, provided strong support to the
likely link between exposure to AFB1 and signature 24'%°. Such signature has been found only in the
genome of HCCs.

1.1.3 IONIZING RADIATION

The tumourigenic effect of ionizing radiation particularly in the context of the iatrogenic effects of
cancer treatment is also an interesting application of mutational signatures. Analyses of the genome of
12 second malignancies associated with radiation treatment of primary tumours identified two genomic

12! These signatures, being

imprints or signatures not present in cancers not exposed to ionizing radiation
characterized by small deletions occurring with similar density across the genome as well as by balanced
inversions, are not captured by the common methods to extract mutational signatures based on base
substitutions. To overcome the scarcity of genomic sequences for radiotherapy-induced cancers, it was
proposed to conduct combined analyses of mutational catalogues from ionizing radiation-induced
cancers in human tumour sequences and in tumour sequences from mice models'?. This type of analysis

identified two signatures linked to ionizing radiation that had not been previously identified and may

represent a useful approach also for other exposures.

1.1.4 UV LIGHT

The typical C > T transitions induced by exposing experimental systems to UV light, are characteristic
of signature 7 that is found in melanomas and head and neck cancers. These observations have led to

propose UV light as the cause of signature 7'".



1.1.5 ARISTOLOCHIC ACID

Aristolochic Acid (AA) is a natural compound contained in plants from the Aristolochiaceae family
used in some herbal remedies or traditional medicines. AA is a known nephrotoxic phytochemical
causing endemic nephropathy and a carcinogen that was previously associated with urothelial cancers
of the upper urinary tract. A study based on urothelial tumours from 15 patients with endemic

'3 An important aspect of this study

nephropathy identified signature 22 and linked it to AA exposure
is that it demonstrates that such signature can be observed with exome sequencing of DNA from
formalin-fixed paraffin-embedded tumour samples even at low sequencing coverage (less than 10X).
Signature 22 is mostly characterized by A > T or T > A transversions that were found in experimental
studies based on human renal cells exposed to AA'** and in a series of urothelial cancers in patients with
a documented exposure to AA'?. Evidence of exposure to AA was found in the genomes of a minority
of bladder cancers (4 out of 110 tumour samples) from Singapore and China'?® and, interestingly, in 11
of 93 HCCs, a type of cancer not known to be associated with exposure to AA'?*. The presence of the
AA-related signature was found also in clear cell renal cell carcinomas'*”'?%; with a particularly high
prevalence in cases from regions in Romania where Balkan Endemic Nephropathy is prevalent and due
to widespread exposure to AA'?. These studies do not refer explicitly to specific COSMIC signatures,
but their results are consistent with the proposed link between COSMIC signature 22 and exposure to

AA.



1.2 EXPOSURES RELATED EPIGENETICS SIGNATURES IN TUMOUR
TISSUE

As previously described in chapter I, DNA methylation is an epigenetic mechanism consisting in the
addition of a methyl group to the cytosine base of the CpG nucleotides of the DNA sequence. DNA
methylation modulates gene expression by influencing DNA transcription and it is involved in many
biological processes, including the response of cells to external stress. Modifications of physiologic
DNA methylation patterns are associated with the development of many diseases, including cancer for
which altered DNA methylation has been observed in early stages of carcinogenesis and for many cancer
types'*’. Features common to many cancer tissues are global hypomethylation, which causes genome
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instability”", and hypo- or hypermethylation of specific loci, causing overexpression of oncogenes and

under expression of tumour suppression genes.

Many studies have been conducted to identify methylation signatures of risk that may be used for
primary prevention or methylation markers to detect cancer in early stages and contribute to secondary
prevention. Such efforts have been supported by the increasing availability of a variety of molecular
techniques able to profile whole genome methylation or identify differentially methylated regions'**. As
far as methylation markers of risk are concerned, of particular interest are the studies that established a
relationship between some environmental and lifestyle factors and in particular cigarette smoking and
the levels of methylation in DNA from blood. The methylation levels of thousands of CpG sites have
been found to be altered in smokers compared with non-smokers and such alterations appear to be
associated with smoking duration and intensity'**'3*. There is strong evidence from analyses of tobacco-
related alterations of methylation of blood DNA from former smokers that for some CpGs methylation
levels reverse in a few years after quitting smoking to the levels observed in non-smokers while for other

CpGs the alterations are observed even decades after quitting smoking.

The study conducted by Alexandrov and colleagues that scrutinized tobacco-related mutational
signatures in 5 243 tobacco-related cancers, also analyzed methylation profiles of tumours to assess the
presence of the tobacco-related methylation signatures that have been identified in DNA from blood'®.
Average differences in DNA methylation larger than 5% between smokers and lifelong-nonsmokers
were observed in tumour tissue of lung adenocarcinomas cases and oral cancer cases, but not in tumour
tissues of other smoking-related cancer types. The main differences were observed for lung
adenocarcinomas where in smokers 369 CpGs were hypomethylated and 65 hypermethylated; for oral
cancer only 8 differentially methylated CpGs were observed, 5 of whom were hypomethylated.
Interestingly, none of these CpGs are among those found to be differentially methylated in blood or

buccal cells of smokers and non-smokers.

In another study a tobacco-related methylation index was estimated in cancer and surrounding normal

tissue of various cancer types including lung cancer. The DNA methylation-based index associated with
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exposure to cigarette smoking was developed from 1 501 differentially methylated CpGs in DNA from
epithelial buccal cells of smokers and non-smokers'*. The methylation index was then calculated using
methylome data separately for normal and cancer tissue and it was found to be extremely accurate in
discriminating between normal and cancer tissue for lung cancer and other cancer types; the index was

also able to discriminate between lung lesions that regressed from those that progressed.

Stueve and colleagues searched for methylation signatures associated with tobacco smoke in normal
tissue surrounding tumour tissue in 237 lung cancer cases using methylation data generated with the
Infinium HumanMethylation450 Bead Chip array and identified 7 CpGs in which hypomethylation was
associated with cigarette smoking'*®. For all these CpGs the association between hypomethylation and
cigarette smoking was confirmed with TCGA methylation data. Five of the 7 CpGs corresponded to
CpGs for which tobacco-related hypomethylation had been previously observed in DNA from peripheral
blood. Notably, for one the 7 CpGs (i.e. cg05575921) an association between hypomethylation and lung

cancer risk independent of the exposure to tobacco smoke had been previously reported®**,

In an analysis using a line of epithelial cells exposed to cigarette smoke condensate (CSC) aimed at
understanding the possible functional consequences of hypomethylation at the identified CpGs, induced
gene expression was evaluated in the 1Mb window flanking the CpGs. Hypomethylation levels in four
CpGs were associated with induced expression of the genes AHRR, CYPIBI, ENTPD?2 in the CSC
exposed cell line. Such observation, confirmed in the TCGA data from lung cancer, is particularly
interesting as in the promoters of the AHRR, CYPIBI1, and ENTPD?2 genes are present binding sites for
the aryl hydrocarbon receptor (AHR), a transcription factor involved in detoxification and bioactivation
of pro-carcinogens in tobacco smoke, suggesting a possible pathway linking smoking induced
methylation to lung cancer. Interestingly, in addition to the observed association with tobacco-induced
hypomethylation at specific loci, Stueve and colleagues noticed that increased expression of the AHRR

and, to a lesser extent, CYPIB1 genes was also associated with the tobacco-related C > A substitutions®.

The debate about the interpretation of the associations between cigarette smoking, alterations of DNA
methylation and lung cancer risk, is still open as results from a recent Mendelian randomization study
would not be consistent with the hypothesis of a causal link between the tobacco-related alterations in

methylation levels and lung cancer risk'?’.



2. EXPOSURE TO SMOKING, LUNG ADENOCARCINOMA
DEVELOPMENT AND THE “BAD” LUCK CANCER THEORY

Lung cancer is the third most common cancer worldwide and it is well-established that tobacco smoke
is the main cause. Smoking is also a major cause of other cancers such as cancers of the bladder, oral
and nasal cavity, oropharynx, larynx, kidney, bowel, oropharynx, stomach, liver, esophagus and

pancreas 138 .

In 2017, it was estimated that over 90% of lung cancer cases among men and over 80% of cases among
women worldwide are attributable to tobacco use (WCRF). A study conducted in France in 2015

attributed 20% of new cancers cases (68 680) to tobacco consumption (Figure I1.1)"%.
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Figure II.1. Number of new cancer cases attributable to lifestyle and environmental factors
among adults aged 30 and over in France, 2015
Adopted from IARC'.
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2.1 THE “BAD LUCK” DEBATE: STEM CELL DIVISIONS, DRIVER
MUTATIONS AND CANCER RISK

Since 2015, Tomasetti and Vogelstein have published a number of papers”'**'** in which they studied
factors influencing the development of cancer and, in particular, the role of unavoidable stochastic
factors that were then popularized as “bad luck”. Their starting point is the strong correlation (R? =
2/3) observed between the lifetime cancer risk for different types of tissues and the total number of
lifetime stem-cell divisions (LSCD) in such tissues as estimated by a mathematical method they
developed. They advanced the thesis that the cause for this correlation are the driver gene mutations that
randomly occur during these divisions and that represent the necessary events leading to cancer. By
observing that on average tissues with a higher number of lifetime stem-cell divisions present a higher
cancer risk they suggested that an intrinsic and unavoidable stochastic risk factor has a major role in

cancer development.

As LSCDs are not relevant for this thesis, the mathematical model developed by Tomasetti and
Vogelstein for estimating the total number of LSCD in a tissue and its limitations will not be discussed
in detail. Here, we simply recall that this model depends on two parameters: the number s of stem cells
found in fully developed tissues and the total number d of divisions each of these cells undergo in the
lifetime of an individual. After estimating LSCD for 25 different tissues for which parameter estimates
are available, the two authors showed that the observed correlation between lifetime cancer risk (CR) in
the US and the LSCD is 0.81 which implies that the proportion of the variation of log(CR) explained by
log(LSCD) is R?*=0.66 [=0.81%]. They found similar correlations using CR figures from 68 different

countries.

Unfortunately, this result was misrepresented as if “2/3 of new cancer cases” were due to “bad luck”.
This provocative interpretation is wrong because 2/3 refers to cancer risk in tissue types and therefore it
says nothing about the probability of an individual to develop cancer. Moreover, it is not possible to
interpret this correlation as a measure of the fraction of risk attributable to some risk factor'*. These
results and their misinterpretation by some of the media sparked a debate about the role of randomness
in cancer; several authors expressed serious concerns about the potential danger that inaccurate

interpretation and dissemination of such statistical findings could bring to primary prevention'*.

In a subsequent paper published in 2017, the two authors provided a clearer conceptual distinction
between the proportion of preventable cancers and the proportion of driver mutations due to
environmental factors and, using cancer genome sequences and epidemiological data, estimated the
proportions of driver gene mutations due to environmental (E), hereditary (H) and replicative factors
(R), the latter being intrinsic random factors. In particular, they estimated the number of mutations due
to R from genomic sequences from “unexposed” individuals, while genomic sequences from exposed

individuals were used to estimate the total number of mutations. Even though in principle partitioning



causes in this way is inaccurate and unrealistic as R is likely to be modulated by the environment or the
genetic background, this approach has the advantage of establishing a quantifiable link between the
proportion of preventable cancers and the proportion of driver mutations due to E through a model
relating them to the relative risk and the prevalence of the environmental factor E. To understand this,
Tomasetti and Vogelstein proposed the conceptual example illustrated in Figure I1.2, where three driver
mutations are the necessary condition to develop cancer. Consider a cohort of 20 individuals with cancer,
where all individuals have the three mutations and all but two are exposed to a carcinogenic exposure,

such as cigarette smoking.

B B B0 B
B Be B B
B B B0 B
B Be B0 B
B B B B

) Environmental factors © Environmental (E) mutations
- O Replicative (R) mutations

Figure I1.2. Mutation aetiology in lung adenocarcinoma

Modified from Tomasetti and colleagues™.

In the example depicted in the figure, driver mutations due to the environment E are in grey and those
due to intrinsic random factors (replications, R) are in yellow, so that E accounts for 21/60=35% of the
driver mutations in the population and R for 39/60=65% of them. Even though intrinsic random factors
have thus a predominant role, 18/20=90% of new cases could be prevented by eliminating
environmental factors: if we removed E, all grey mutations would disappear and only two individuals

would remain with all the three mutations, all due to intrinsic random factors, that would lead to cancer.

This illustration shows that chance might have a large role in the appearance of deleterious mutations
and yet the majority of cases could be prevented by eliminating exposure. As a matter of fact, even if
cancer is known to be caused by uncontrolled cell divisions, the main biological cause of the disease
remains poorly understood. As argued by Kelly-Irving and colleagues'®, random occurrences of
mutations do not equate to random occurrences of cancer and mutation is a necessary, but not sufficient

condition for the development of cancer.

To put this debate into context, we note that in addition to the somatic mutation theory previously
discussed in chapter I (accumulation of somatic mutations in oncogenes and tumour suppressor genes

leading to cancer development), a stem cell division theory of cancer (SCDTC) has been advanced more
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recently. According to such theory, the risk of developing cancer is not only increased by mutagenic
factors, but also by any factor that promotes the accumulation of cell divisions in stem cells by acting
on the stem cell or on the stem cell environment such as physiological changes in the levels of hormones
and growth factors, cell death occurring during physiological tissue renewal, cell death (or cellular
damage) occurring during pathological conditions (e.g. tissue injury, inflammation and infection), and

exposure to non-mutagenic environmental factors*® (Figure I11.3).

SOMATIC MUTATION THEORY OF CANCER
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Figure I1.3. Somatic mutation and stem cell division theories of cancer
Adopted from Lopez-Lazaro'*
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2.2 PREDICTING LUNG CANCER RISK VIA EXTRINSINC MUTATIONS

Wu and colleagues proposed an alternative method to estimate the proportions of mutations due to
intrinsic and extrinsic factors that is based on mutational signatures '*’. As COSMIC signature 1
correlates with age at cancer diagnosis, Wu and colleagues used the ratio between the number of
mutations associated with such signature and the total mutation burden as a proxy for the proportion of
intrinsic mutations. Using this approach, they estimated that the vast majority of mutations (70%-90%)
is due to extrinsic factors in most cancer types, a result that contradicts the findings of the 2017 paper

by Tomasetti and Vogelstein.

We adopted a similar approach based on the use of mutational signatures to address the issue of “bad
luck” and preventable cancers. Collaborators used genome sequences data and extracted mutational
signatures obtained from previous research''®, to estimate mutation rates caused by tobacco smoking in

different tissue types.

We then compared such estimated mutation rates to cancer incidence hazard ratios and mortality rates
in smokers and non-smokers in the same tissues. As shown in Table 11, the correlation between mutation
rates in smokers and cancer incidence hazard ratios for smokers relative to non-smokers is much more
evident than the association of the latter with the stem cell lifetime divisions estimated by Tomasetti and

Vogelstein.

In particular, the correlation between the cancer incidence hazard ratio for smokers relative to non-
. . . -2
smokers and the mutation rates (per pack-year) in smokers is strong (p=0.93, p=2x 10 7). The

correlation becomes negative and weaker (p=-0.65, p=2.3% 10_1) when we compare the cancer

incidence hazard ratio for smokers with the cumulative stem cell divisions (Table II).

The pattern for former smokers is similar, with a strong correlation between the cancer incidence hazard
. . -2 . . o
ratios and mutation rates per pack-year (p=0.91, p=3% 10 7), while cumulative stem cell divisions are

only weakly negatively correlated with cancer hazard ratios (p=-0.58, p=3.1% 10_1). Similar findings

are obtained when mortality rates are used instead of cancer incidence rates, although none of the

correlation coefficients were significantly different from zero (all p>1x 10_1).

Our results reinforce the findings from Little and colleagues'*® that using data taken from the 2015
Science paper of Tomasetti and Vogelstein concluded that stem cell divisions are poorly predictive of

smoking-related risk.



Table II. Comparison between mutation rates, cumulative stem cell lifetime divisions, hazard
ratios (HR) for cancer in smokers and mortality rates in smokers and never smokers, for the
cancer sites for which information was available in all sources

Adopted from Perduca and colleagues™

Mutation ~ Cumulative  Incidence  Incidence Mortality rates

Cancer site rates in stem cell HR for HR for smokers with
smokers *  lifetime smoking former >25
divisions " men ° smoking cigarettes/day
men ° /non-smokers ¢
Lung adenocarcinoma  150.5 9.272x10°¢  23.30 5.28 4152/16.9
Larynx 137.7 3.186x 101 13.24 3.51 17.3/0
Pharynx 38.5 NA 6.67 2.06 19.4/0
Bladder 18.3 NA 3.84 2.15 51.4/13.7
Esophagus (squamous) N.S. 1203 x 10° 3.94 1.26 50.0/5.7
Liver 6.4 2,709 x 10" 2.92 2.09 313/44
Pancreas N.S. 3.428 x 10" 1.62 0.89 52.9/20.6
adenocarcinoma

2 Statistically significant average number of somatic substitutions per genome per pack-year''®

b Cumulative number of divisions of stem cells per lifetime. From Tomasetti and Vogelstein’
¢ HRs relative to non-smokers. From Agudo and colleagues'®

4 Cumulative mortality rate per 100,000 persons per year!*°

¢ Cumulative number of divisions of stem cells per lifetime®

f Adenocarcinoma (same rate in smokers and non-smokers)



3. CONCLUSION

Understanding how cancer develops is crucial for improving prevention strategies. It is well accepted
that carcinogens leave fingerprints (traces of past events, including the action of environmental factors).
The mutational and epigenetic profile of a cancer genome result respectively from the superposition of
all the traces, or signatures, left by mutational processes and the alteration of methylation levels due to
environmental, lifestyle (and random) factors. Both types of signatures represent promising areas of
research that are likely to continue to contribute novel insights into the nature of cancer and the processes
that lead to it. Such gains in new knowledge are likely to accelerate when epidemiological studies are
going to routinely collect and sequence DNA from tumour tissue allowing the analysis of mutational

signatures and the linking of such signatures to epidemiological data.

According to the prevailing model of carcinogenesis, cancer is primarily caused by the accumulation of
genetic mutations. However, it is increasingly accepted that the accumulation of somatic mutations alone
cannot explain the development of cancer. Evidence is accumulating that genetic and non-genetic
mechanisms such as epigenetic alterations and environmental factors may influence stem-cell divisions
and therefore cancer development. In this respect, it would be very interesting to try to estimate the
effect of such factors on the number of lifetime stem cell divisions. This would require building a model
for estimating the fraction of such events over the total number of events required for cancer
development. Other events or conditions that may play an important role but have not yet been
considered in the model of cancer development are disrupted or inefficient DNA repair mechanisms,

that may be limited to some organs, and dysfunctions of immune surveillance.
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CHAPTER III:

COMPUTATIONAL TOOLS TO DETECT
SIGNATURES OF MUTATIONAL PROCESS
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This chapter will cover one of the most recent developments with regards to cancer genomics: the
identification of mutational signatures from cancer genomes that may be linked to specific exogenous
and endogenous factors responsible for the development of cancer. This field is growing rapidly and is
leading to strong collaborations between quite diverse disciplines and in particular genomics,
bioinformatics, biostatistics and epidemiology. Major international projects such as Mutograph funded
by CRUK are collecting at the same time extensive epidemiological data as well as tumour DNA that is
then sequenced in order to try to link mutational signatures to specific exposures. In this work we
focused on the large number of analytical methods and tools that have been developed in the last few
years to extract and identify mutational signatures from sequencing data from tumour DNA. We
introduce a probabilistic model for simulating mutational catalogues and we exploit it to produce an
original empirical comparison of the performance of most of the currently available tools for the analysis

of mutational signatures.
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1. CONTEXT

After the introduction of the original framework for the identification of mutational signatures, several
other mathematical methods and computational tools have been proposed for their detection and for the
estimation of their contribution to a given catalogue. As reported in chapter I, these methods can be
grouped in two categories with different goals. The first class of methods aims to discover novel
signatures while the second class aims to detect the known and validated mutational signatures in the
mutational catalogue of a given sample. The approaches used in the first class are referred to as “de
novo” (or “signature extraction”) while those in the second class as “refitting” (or “signature fitting”).

All methods have been implemented in open source tools, mainly R packages, but some of them are

available through command line, the Galaxy project or a web interface.

Signatures identified with de novo methods can be compared to reference signatures (for instance those
listed in COSMIC) through measures such as cosine'® or bootstrapped cosine similarity'®, which is a
distance metric between two non-zero vectors. In this step of the analysis, extracted signatures are
matched to the most similar reference signature, provided that their similarity is greater than a fixed

threshold.

To date, more than twenty methods with similar aim (minimize the distance between original mutational
catalogue and the estimated one) are available. However, no systematic evaluation of the performance
of these methods has been conducted and the issue of the choice of an appropriate cosine similarity
threshold when matching a newly extracted signature to the most similar counterpart in a reference set

has not been addressed yet.
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2. OVERVIEW OF AVALAIBLE TOOLS FOR MUTATIONAL
SIGNATURE ANALYSIS

A similar number of de novo and refitting methods exist and all of them are available as open source
tools, mainly as R packages, or web interfaces (Table III). The typical input of these tools is a file
including the mutation counts but some tools derive the mutation counts from ad-hoc input files that
may include for each individual a list of mutated bases, their position within the genome and the
corresponding bases from a reference genome. The typical format of such input files is MAF, Variant
Call Format (VCF) or less common formats such as (Mutation Position Format) MPF and Mutation

Feature Vector Format (MFVF).

For biologists or those who are not familiar with programming, a set of tools were also developed and
provided with user-friendly interfaces. Some tools include additional features such as the possibility to

search for specific patterns of mutations (e.g. APOBEC-related mutations'®) and differential analysis'>'.
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Table II1. Available tools for the detection of mutational signatures.

Software

Available platform/model Input files

Additional features

de novo approaches

WTSI!! MATLAB/ NMF - Original framework
- An improved version has been recently
implemented in SigProfiler

EMu?® Command line/EM algorithm - Mutation counts file - Opportunity matrix

https://github.com/andrej-fischer/EMu

- With respect to other tools, the counts
file is transposed (the rows correspond to
the samples)

- Selection of the optimal number of signatures

SomaticSignatures'>?

https://bioconductor.org/packages/release/bioc/html/S
omaticSignatures.html

R/NMF and PCA Variant Call Format

- Group-wise comparisons
- Genomic visualization
- Hierarchical clustering

pmsignature'>®
https://github.com/friend 1 ws/pmsignature

- Mutation Position Format -
Mutation Feature Vector Format

R/mixed-membership model

- Reduction of complexity

- Mutation types defined by one or two flanking
bases

- Selection of the optimal number of signatures
- Transcriptional strand bias

- Background signature

bayesNMI?2!154-156 R/Bayesian NMF Mutation counts file - Selection of the optimal number of signatures

https://github.com/jburos/bayesNMF - Data pre-treatment with the function

https://software.broadinstitute.org/cancer/cga/msp get.lego96.hyper reduces the influence of
hypermutated catalogues

signeR!’! R/Bayesian NMF Variant Call Format - Opportunity matrix

https://bioconductor.org/packages/release/bioc/html/s - Selection of the optimal number of signatures

igneR.html - Group-wise comparison (differential analysis)

mutSignatures'’ R/NMF Mutation counts file - R-based implementation of WTSI!!

https://cran.r-

project.org/web/packages/mutSignatures/index.html

maftools'® R-Bioconductor /NMF - Mutation Annotation - Genomic visualization

https://bioconductor.org/packages/release/bioc/html/ - Format - Cosine similarity

maftools.html

- Selection of the optimal number of signatures
- Group-wise comparisons (differential
analysis)

- APOBEC enrichment analysis

Continued on the following page
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Helmsman'3 Python/ NMF and PCA - Variant Call Format - Able to run in parallel and designed for large
https:/github.com/carjed/helmsman - Mutation Annotation Format datasets

- Connection to external packages (in R)

- may generate mutational catalogues from

sequence data
SignatureAnalyzer?! R/ Bayesian NMF Mutation counts file - Automatic selection of the optimal number of
https://www.synapse.org/#!Synapse:syn11801492 signatures

- Sparse signature profiles and contributions
SigProfiler'!?! Matlab/ NMF Mutation counts file - Further development of the original

https://fr.mathworks.com/matlabcentral/fileexchange/
38724-sigprofiler

framework

- Two steps: 1) extraction of a minimal set of
signatures, 2) estimation of their contributions
to individual samples

SparseSignatues'>

https://bioconductor.org/packages/release/bioc/html/S
parseSignatures.html

R/ NMF with Lasso-penalized cost
function

Mutation counts file

- Integration of DNA replication error signature
- Sparse signature matrix

- Number of signatures estimated with cross-
validations

- Scalable to large datasets

Refitting approaches
deconstructSigs'®° R/linear regression Mutation counts file - Opportunity matrix
https://github.com/raerose01/deconstructSigs
Qpsig'®! R/quadratic programming Mutation counts file

https://f1000researchdata.s3.amazonaws.com/supple
mentary/8918/0d25¢07¢c-16ba-4b14-91e7-

71749dcbbddS.pdf

SignatureEstimation'¢’

https://www.ncbi.nlm.nih.gov/CBBresearch/Przytyck

a/index.cgi\#signatureestimation

R/quadratic programming and
simulated alienation

Mutation counts file

MutationalPatterns'¢

http://bioconductor.org/packages/release/bioc/html/M
utationalPatterns.html

R/Non-Negative Least Squares

Mutation counts file

- Also de novo identification
- Cosine similarity comparison
- Strand bias analyses

- Enrichment and depletion
YAPSA'%4 R/Linear Combination Mutation counts file - Cut-off for normalized exposure
http://bioconductor.org/packages/release/bioc/html/Y  Decomposition - Enrichment and depletion

APSA html

decompTumor2Sig'%

https://github.com/rmpiro/decompTumor2Sig

R/quadratic programming

- Variant Call Format
- Mutation Position Format
Mutation Feature Vector Format

- Converts a set of “Alexandrov’s signatures™®
to “Shiraishi’s signatures™!>

- Decomposes a mutational catalogue in
“Shiraishi’s signatures”

Continued on the following page
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MutationalCone [Appendix 2]

R/cone projection Mutation counts file

- Fast in comparison to others refitting tools

Sigfit!60
https://github.com/kgori/sigfit

R/ Bayesian NMF Mutation counts file

- Provides a new model for combining de novo
and refitting approaches

- Possible application to indel or rearrangement
count data

- Also implements EMu'3 model and allows
conversion to genome-or exome- relative
signatures

Pipelines and web-interfaces

Mutspec'¢’

https://toolshed.g2.bx.psu.edu/repository/view_reposi
tory?id=f5c1{75e9{b33{8e

Galaxy pipeline/NMF Variant Call Format

- de novo identification
- Includes MS analysis in mouse cancer

MutaGene'%
https://www.ncbi.nlm.nih.gov/research/mutagene/

Web-interface TCGA and ICGC data

- Refitting and de novo identification

- Clustering of samples according to mutational
profiles

- Identification of potential driver’s mutations

mSignatureDB'3
http://tardis.cgu.edu.tw/msignaturedb/

- Variant Call Format
- Mutation Annotation Format
- TSV

Web-interface

- Refitting and de novo identification
- Bootstrapped cosine similarity
- Comparison with either hg19 or hg38

Mutalisk'®®
http://mutalisk.org

Web-interface Variant Call Format

- Refitting and de novo identification
- Transcriptional strand bias

- Localization of kaetegis

- Histones modifications

- Cosine similarity comparison

MuSiCa!”®
http://bioinfo.ciberehd.org:3838/MuSiCa/

- Variant Call Format

- Mutation Annotation Format
-TSV

- Excel

Web-interface

- Refitting and de novo identification
- Cosine similarity
- Samples classification
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2.1 DE NOVO APPROACHES

Most tools that have been developed to identify mutational signatures were based on decomposition
algorithms including NMF or a Bayesian version of NMF. The original method developed by
Alexandrov et al. was based on NMF and was implemented in MATLAB'' and is available also as an R
package developed independently'’’. An updated and elaborated version named SigProfiler, was
proposed recently for extracting a minimal set of signatures and estimating their contribution to
individual samples®'. The latter article also discusses an alternative method based on Bayesian NMF,
called SignatureAnalyzer, that led to the identification of 49 reference signatures. Another tool that
utilizes NMF is maftools that is one of the few de novo tools that allows systematic comparison with the
30 validated signatures in COSMIC by computing cosine similarity and assigning the identified
signatures to the COSMIC one with the highest cosine similarity'®.

2 8

Other tools such as SomaticSignatures'> or the recent Helmsman'*® allows the identification of
mutational signatures through Principal Component Analysis (PCA) in addition to NMF. For the sake
of our formal comparison of the tools’ performance, we have only tested NMF implementations because
in PCA the factors are orthogonal and the values inside the matrix can potentially be null or negatives,
which is a deviation from the paradigm postulating that catalogues are the superposition of positively
weighted signatures. However, PCA could be a promising way to explore complex situations in which
mutational processes interfere with each other (e.g. relatively error free repair processes competing with
error prone repair processes). Developed in the Python language, Helmsman allows the rapid and
efficient analysis of mutational signatures directly from large sequencing datasets with thousands of

samples and millions of variants.

SparseSignatures'®® proposes an improvement of the traditional NMF algorithm based on two
innovations, namely the default incorporation of a background signature due to DNA replication errors
and the enforcement of sparsity in identified signatures through a Lasso penalty. This latter feature
allows the identification of signatures with well-differentiated profiles, thus reducing the risk of

overfitting.

In addition to decomposition methods, an approach based on the Expectation Maximization (EM)
algorithm has been proposed to infer the number of mutational processes operativ