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Nano-rhéologie aux interfaces molles sondées par microscope à force atomique Résumé: Des progrès récents dans les études expérimentales et théoriques ont montré que l'écoulement liquide à l'échelle micro/nano se comporte différemment de celui à l'échelle macroscopique. À l'échelle microscopique, les propriétés de surface sont prédominantes pour le comportement d'écoulement proche des parois. Pour un confinement élevé, non seulement la physico-chimie des surfaces de confinement est importante, mais leur comportement élastique doit également être pris en compte. Dans cette thèse, nous avons utilisé l'AFM dynamique pour sonder l'écoulement confiné sur des surfaces molles (bulles d'air et échantillons PDMS) et nous avons montré que:

• A l'interface air-eau, la présence d'impuretés tensioactives modifie le flux à proximité des interfaces de manière drastique, ce qui conduit aux réponses viscoélastiques. Les forces visqueuses et élastiques agissant sur la sphère sont extraites de la mesure du mouvement de la sphère. En raison de la contamination par l'agent tensioactif, la force visqueuse présente un croisement des conditions aux limites antidérapantes aux conditions limites de glissement complet et la force élastique apparaît également avec une valeur comparable à la force visqueuse.

• A faible distance, la pression visqueuse induite par la vibration de la sonde colloïdale déforme la surface de la bulle et donne lieu à l'interaction visco-capillaire. Une excitation par bruit thermique ou une excitation acoustique externe sont utilisées pour entraîner la sonde AFM. Pour expliquer nos mesures, nous avons développé un modèle simplifié basé sur un ressort-dashpot en série et nous avons également effectué la résolution numérique de l'équation de Navier-Stokes combinée à l'équation de Young-Laplace. L'ajustement de nos résultats expérimentaux nous permet de mesurer la tension superficielle de l'interface de la bulle sans contact.

• Le cantilever AFM est un outil puissant pour sonder le mouvement thermique de l'interface de la bulle hémisphérique. Le spectre de telles oscillations thermiques nanométriques de la surface de la bulle présente plusieurs pics de résonance et révèle que la ligne de contact de la bulle hémisphérique est fixée sur le substrat. La viscosité de surface de l'interface bulle due à la contamination par le tensioactif est obtenue à partir de l'analyse de ces pics.

• Une force de portance élastohydrodynamique agit sur la sphère se déplaçant à proximité et le long d'un substrat mou dans un liquide visqueux. La force de levage est sondée en fonction de la taille de l'espace, pour diverses vitesses d'entraînement, viscosités du liquide et rigidité de l'échantillon. À grande distance, les résultats expérimentaux sont en excellent accord avec un modèle développé à partir de la théorie de la lubrification douce. À petite distance de l'espace, une saturation de la force de portance est observée et une loi d'échelle pour cette saturation est donnée et discutée.

Introduction

Recent progresses in experimental and theoretical studies have shown that the liquid flow at micro and nano scales behaves differently to that at macroscale [START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF][START_REF] Jacob | Intermolecular and surface forces[END_REF]. At microscale, for example, for microfluidic devices, surface properties are predominant for the flow behavior [START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF][START_REF] Howard A Stone | Engineering flows in small devices: microfluidics toward a lab-on-a-chip[END_REF]. Such like, the Navier slip length of water, which quantifies the hydrodynamic boundary condition, has been shown with strongly vary with the surface hydrophobicity [START_REF] David | Water slippage versus contact angle: A quasiuniversal relationship[END_REF][START_REF] Sendner | Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion[END_REF][START_REF] C Cottin-Bizonne | Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts[END_REF][START_REF] Maali | Measurement of the slip length of water flow on graphite surface[END_REF]. In many instances, the liquid-boundary interactions are caused by the presence of molecular solutes or surface charges.

Due to the very low viscosity of the air, an air-water interface is expected to behave as a free surface. In ideal case, the liquid flow should satisfy the full-slip boundary conditions at the air-water interface [START_REF] De | On fluid/wall slippage[END_REF][START_REF] Zhu | Rate-dependent slip of newtonian liquid at smooth surfaces[END_REF][START_REF] Ybert | Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries[END_REF][START_REF] Derek | A generating mechanism for apparent fluid slip in hydrophobic microchannels[END_REF]. However, a recent experimental study showed that the full-slip condition is not realized in general. Measurements of the drag force acting on sphere moving toward the interface corresponds to an intermediate situation [START_REF] Manor | Hydrodynamic boundary conditions and dynamic forces between bubbles and surfaces[END_REF][START_REF] Manor | Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions[END_REF][START_REF] Manor | Influence of surfactants on the force between two bubbles[END_REF]. As a possible explanation for this increase of viscous force for the 'bare' water surface, the authors invoked the presence of impurities. Surfactant molecules adsorbed at the interface induce a shear stress that corresponds to the gradient of surface tension and leads to the modification of the flow profile. In some cases, it also leads to viscoelastic behavior. Moreover, surfactant molecules at interfaces give rise to a surface shear viscosity which has been observed through the damping of surface waves [START_REF] Lucassen | Damping of waves on monolayer-covered surfaces: I. systems with negligible surface dilational viscosity[END_REF][START_REF] Earnshaw | Surface viscosity of water[END_REF], the enhancement of the drag coefficient of floating beads [START_REF] Jordan T Petkov | Precise method for measuring the shear surface viscosity of surfactant monolayers[END_REF] or disks [START_REF] Barentin | Shear viscosity of polymer and surfactant monolayers[END_REF] and the self-propulsion velocity of colloidal micro-swimmers [START_REF] Dhar | Autonomously moving nanorods at a viscous interface[END_REF].

For high confinement, not only the physico-chemistry of the confining surfaces are important, their elastic behavior also should be taken into account. Indeed, at small gap, the hydrodynamic pressure between the confining surfaces can be very large, which may induce elastic deformation of the surfaces. Elastohydrodynamic is the generic term used to describe the hydrodynamic coupling between the liquid flow and the elastic deformation of the confining surfaces. Much attention was given to the study of this effect at microscale in the last decade using optical microscopy, Surface Force Apparatus (SFA) and Atomic Force Microscopy (AFM). Based on this elastohydrodynamic coupling, new tools were developed to probe the mechanical properties of soft interfaces without contact. For example, using dynamic SFA [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF][START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF][START_REF] Leroy | Hydrodynamic interaction between a spherical particle and an elastic surface: a gentle probe for soft thin films[END_REF] and AFM [START_REF] Dongshi Guan | Noncontact viscoelastic measurement of polymer thin films in a liquid medium using long-needle atomic force microscopy[END_REF][START_REF] Guan | Noncontact viscoelastic imaging of living cells using a long-needle atomic force microscope with dualfrequency modulation[END_REF], the mechanical properties of several surfaces have been measured.

In such a context, a novel elastohydrodynamic lift force was theoretically predicted for an object moving past soft surface within a fluid. This force arises from a symmetry breaking in the contact shape and the associated flow, due to the elastohydrodynamic coupling introduced 1 above. Specifically, for a non-deformable surface (rigid surface), the contact shape and even the lubrication pressure field (i.e. the dominant hydrodynamic stress) are antisymmetric, resulting in no normal force. In contrast, a soft surface is deformed by the pressure field which then loses its symmetry, resulting in a finite normal lift force. The lift force effect was calculated for different elastic media and geometries [START_REF] Skotheim | Soft lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF][START_REF] Urzay | The elastohydrodynamic force on a sphere near a soft wall[END_REF], added effects of intermolecular interactions [START_REF] Urzay | Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low reynolds numbers[END_REF], self-similar properties of the soft lubricated contact [START_REF] Hendrikus Snoeijer | Similarity theory of lubricated hertzian contacts[END_REF], the inertial-like motion of a free particle a [START_REF] Salez | Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall[END_REF], viscoelastic effects [START_REF] Pandey | Lubrication of soft viscoelastic solids[END_REF], the motion of vesicles along a wall [START_REF] Beaucourt | Optimal lift force on vesicles near a compressible substrate[END_REF][START_REF] Abkarian | Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force[END_REF], and the case of membranes [START_REF] Daddi-Moussa-Ider | Mobility of an axisymmetric particle near an elastic interface[END_REF][START_REF] Daddi-Moussa-Ider | Reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane[END_REF]. Theoretical calculations show that, as the gap between the object and the soft substrate reduces, the force increases. Eventually, at very small gap, the competition between symmetry breaking and decreasing pressure leads to a saturation of the lift force [START_REF] Skotheim | Soft lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF][START_REF] Urzay | The elastohydrodynamic force on a sphere near a soft wall[END_REF][START_REF] Urzay | Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low reynolds numbers[END_REF]. Despite the abundant theoretical literature, experimental evidence for such an elastohydrodynamic lift force remains recent and scarce [START_REF] Wang | Elastic deformation during dynamic force measurements in viscous fluids[END_REF][START_REF] Karan | Small-scale flow with deformable boundaries[END_REF].

In this thesis, we have used AFM to study some aspects of soft interfaces introduced above. The manuscript is organized as follows:

• In chapter 1, we will address the tools and methods used during this thesis. First, I will introduce, the experimental setup, the process of preparation of the colloidal probe, the calibration of the piezo stage and the Wilhelmy plate method used to measure the surface tension. Second, two methods of AFM cantilever calibration will be presented: thermal noise method and the drainage method.

• Chapter 2 is dedicated to the study of the viscoelastic properties of the air-water interfaces due to the surfactant contamination. We will show that vibrating a small sphere mounted on an AFM cantilever near a gas bubble immersed in water is an excellent probe of surface contamination. Both viscous and elastic forces are exerted by an air-water interface on the vibrating sphere even when very low doses of contaminants is present. The viscous drag force shows a crossover from no-slip to slip boundary conditions while the elastic force shows a nontrivial variation as the vibration frequency changes. We provide a model to explain these results and propose a simple way of evaluating the concentration of such surface impurities.

• In chapter 3, the study of the visco-capillary coupling between an oscillating colloidal probe and a bubble will be presented. The measurements are performed using two different methods for the cantilever driving, one with a thermal noise driving and the other one with acoustic external driving. To investigate the interaction at very small distance, we have performed numerical calculation to solve the combined Navier-Stokes and Young-Laplace equations in the frame of lubrication approximation. The numerical calculations are in a good agreement with the experimental results and allow us to measure the surface tension of bubble interface without contact.

• In chapter 4, we will present the measurements of the thermal capillary fluctuation of a bubble deposited on solid substrates. The cantilever deflection signal can reflect the thermal fluctuation of the bubble surface directly. The spectrum of the thermal fluctuation presents sharp resonance peaks for specific frequencies where the motion of the interface is much more important than that for other frequencies. The analysis of these peaks allows to measure the resonance frequencies, effective mass and the damping coefficient for each mode of oscillation. To explain the experimental results, we will present a model for the bubble shape oscillation. The experimental results show that the contact line of a hemispherical bubble resting on a solid surface is fixed on the substrate. The measurement of additional damping due to the presence of minute amounts of contaminants allows us to extract the surface viscosity of the bubble surface

• In chapter 5, we will report the experimental study of the lift force acting on spherical particle moving along thick, soft samples in viscous liquid. We will show that, as the gap between the sphere and the sample is reduced, a lift force acting on the sphere is observed, and increases with a power law of -5/2. Moreover, the measurements for various amplitudes, frequencies, viscosities, and Young moduli collapse will be shown and the experimental results will be compared with the prediction based on the soft lubrication theory. At small distance, a saturation of the lift force is observed and a scaling law will be discussed.

Chapter 1

General Methods Used in the Thesis 

Description of the AFM

Since the invention of Atomic Force Microscope (AFM) by Binning et al. [START_REF] Binnig | Atomic force microscope[END_REF] in 1986, it has been widely used for topography imaging of both conducting and insulating surfaces up to atomic resolution. AFM exceeds the limitation of Scanning Tunneling Microscope (STM) [START_REF] Binnig | Tunneling through a controllable vacuum gap[END_REF] which only allows the imaging of conducting and semiconducting surfaces.

Figure 1.1 shows the Bioscopy II AFM (Bruker, USA) that is used for experimental work presented in this thesis. The schematic of an AFM is shown in Fig. 1.2. A cantilever with a sharp tip (see Fig. 1.3a) is fixed on a cantilever holder (see Fig. 1.3b) or a liquid cell (see Fig. 1.3c). The backside of the cantilever is usually coated with a thin gold or aluminum layer to enhance its optical reflectivity. When it works, a laser beam is focused on the end of the cantilever which is placed on the AFM's head scanner. Then the position of the reflected laser beam is monitored by a four quadrant photo detector. For any variation of the cantilever deflection, the position of reflected laser beam on the the photo detector will change. Therefore, the motion of the cantilever can be traced by the photo detector signal. 

AFM imaging

The imaging by AFM is usually operated in one of two modes: contact mode (static mode) or dynamic mode.

Contact mode is the basic mode in which the cantilever probe is in contact with the sample during the scanning. As the tip moves along the surface, the topography of sample induces a vertical deflection of the cantilever. To maintain the deflection at a constant value during the scanning, the feedback loop imposes to the piezo a vertical displacement that corresponds to the local height of the topography of the imaged sample. By recording the height information at each point of the sample, the topographic image is generated. Generally, in contact mode, a soft cantilever is used to avoid the deformation of the sample. Dynamic modes are emerging as powerful tools for nanometer and atomic scale characterization and manipulation of a wide variety of surfaces. One of the major dynamic AFM modes is Amplitude Modulation Atomic Force Microscope (AM-AFM, tapping mode AFM) [START_REF] Binnig | Atomic force microscope[END_REF], and the other one is Frequency Modulation Atomic Microscope (FM-AFM) [START_REF] Tr Albrecht | Frequency modulation detection using high-q cantilevers for enhanced force microscope sensitivity[END_REF]. In AM-AFM, a CHAPTER 1. GENERAL METHODS USED IN THE THESIS stiff cantilever is excited near its free resonance frequency, and the amplitude and phase of the cantilever oscillation are measured. For the acquisition of the image, the amplitude is kept as constant at a given value via the feedback loop [START_REF] García | Dynamic atomic force microscopy methods[END_REF]. In AM-AFM mode, in addition to the topography image, a phase image is recorded which corresponds to the variation of the properties in heterogeneous sample. The AM-AFM is usually used to image the soft material without destroying the interface. Figure 1.4 shows an example of AM-AFM mode image of nanobubbles on a polystyrene surface.

In contrast to AM-AFM, in FM-AFM mode, the cantilever acts as the oscillator in an active feedback loop (Phase-Locked Loop, PLL). The resonant frequency value of the cantilever depends on the interaction force between the cantilever tip and sample. Changes in the resonant frequency are detected by a frequency modulation demodulator of the PLL. The feedback is used to keep the cantilever oscillating at the given resonant frequency during the acquisition of the image. To compensate the dissipation due to the interaction with the sample that reduces the amplitude of the cantilever, the feedback monitors the excitation force to keep constant oscillation amplitude [START_REF] Tr Albrecht | Frequency modulation detection using high-q cantilevers for enhanced force microscope sensitivity[END_REF][START_REF] Kilpatrick | Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning[END_REF]. 

nm

Force curve

AFM is a powerful tool, not only can image the topography of surfaces but also measure surface forces. The colloidal probe AFM measurement was first introduced by Ducker et al. [START_REF] William A Ducker | Direct measurement of colloidal forces using an atomic force microscope[END_REF][START_REF] Ducker | Measurement of forces in liquids using a force microscope[END_REF] and then by Butt [START_REF] Butt | Measuring electrostatic, van der waals, and hydration forces in electrolyte solutions with an atomic force microscope[END_REF], and now it becomes a well-established and powerful tool for the study of surface forces [START_REF] Kappl | The colloidal probe technique and its application to adhesion force measurements[END_REF]. The force versus distance curves (i.e. force curves) record the vertical 1.1. DESCRIPTION OF THE AFM position of the tip and the deflection of cantilever in contact mode. Data from such force curves provides valuable information for studing surface forces and material properties like elasticity, hardness, Hamaker constant, adhesion and surface charge densities, etc [START_REF] Butt | Force measurements with the atomic force microscope: Technique, interpretation and applications[END_REF]. By analyzing the force curve, we can study the interaction between particles or between particle and interface in a fluid. When a force is applied to the probe, the cantilever deflects and the reflected light beam moves on the four quadrant photo detector. The detector measures the deflection of the cantilever(Z c ) in voltage versus the piezo displacement (Z p ) (see Fig. 1.5a). To obtain the force curve, the deflection has to be converted into nm by multiplying the measured deflection in volts with the value of the sensitivity expressed in nm/V. To get the value of the sensitivity, we fit the linear contact regime (hard contact between the tip and hard sample, see Fig. 1.5a), and we get the relation between the measured deflection in volts and the piezo displacement in nm, Z c (V ) = kZ p . For a hard sample, the piezo displacement should be equal to the cantilever deflection, Z c (nm) = Z p = Z c (V )/k in the hard contact regime, and then the sensitivity is equal to: sens = 1/k. Finally, the tip-sample separation distance is obtained by adding the cantilever deflection to the piezo displacement (ie. d = Z p + Z c ) (see Fig. 1.5c). Knowing the spring constant of the cantilever (k c ), the deflection can easily be converted into a force:

F = k c Z c .

Experimental Methods

Attachment of colloidal probe to AFM cantilever

The colloidal probe has the advantage of well-defined geometry and controllable size, which simplifies the modeling of the interaction forces. Furthermore, for large sphere size, the lubrication approximation is also satisfied even for large separations. Successful and accurate measurement at nano-metric scale requires appropriate preparation of colloidal probes and free from contamination at their surfaces. A home made three-axis motion stage is used to attach the sphere to the end of the cantilever. As shown in Fig. 1.6, the stage is placed on the optical microscope (B2 series, Motic microscope). The attachment process is performed in the following steps: 

EXPERIMENTAL METHODS

• Step 1: The particles are first washed with hellmanex solution followed by a rinsing with pure water and then cleaned with anhydrous ethanol solution under ultrasonic treatment for tens of minutes. The process of cleaning with ethanol is repeated several times.

•

Step 2: We shake the ethanol solution containing the particles gently to make the particles more evenly distributed in the solution, and spread a drop of this solution on cleaned glass surface. After the evaporation of the ethanol, the cleaned particles are left on the glass surface (see Fig. The glue is attached on the cantilever. e) The wetted cantilever contacts the colloidal particle. f) The colloidal particle is glued to the end of the cantilever.

• Step 3: We deposit a very thin layer of epoxy glue (Araldite Rapid) on another piece of glass surface, and place an AFM cantilever on the leg of the three-axis platform with an angle around 13 • with respect to the horizontal direction (see Fig. 1.6b). Under the microscope, bring down the AFM cantilever to touch with the epoxy glue layer. After lifting the cantilever up, a small amount of glue is attached on the edge of the cantilever (see Fig. 1.7 c-d).

• Step 4: We replace glass surface containing the glue with that containing particles, and bring down the cantilever to be in contact with one of the particles. After several minutes for the cross-link of the epoxy glue, the cleaned particle will be glued on the AFM cantilever (see Fig. 1.7 e-f). An attached colloidal probe is shown in Fig. 1.8. The size of the particle can be obtained from this optical image. 

Roughness of the colloidal probes

Using AFM, the roughnesses and the radius of the colloidal probe can easily be obtained. Figure 1.9c shows the plane fitted image with a size of 1 µm × 1 µm and Fig. 1.9d shows the height section (the green line in Fig. 1.9c), where the modulation of the surface height is presented clearly. The roughness measured on this image is Rq = 0.5 ± 0.1 nm, where Rq is the root mean squared roughness.

EXPERIMENTAL METHODS

Figure 1.9: a) The 3D AFM height image for a spherical colloidal particle with a size of 10 µm × 10 µm. b) The plot of height section along the direction of the red line in a. From the fitting of the height section using circle equation, the radius of the particle is obtained as R = 47 ± 0.5 µm. c) The plane fitted height image of the particle with a size of 1 µm × 1 µm, from which we get the roughness is Rq = 0.5 ± 0.1 nm. d) The height section of the plane fitted image at the positioin of the green line in c.

Calibration of the piezo

In the measurement by AFM, a piezoelectric system is used to scan the sample in either vertical direction or lateral direction. In this thesis, a piezo from MAD CITY LABS with a large travel range (see Fig 1.10) is used to control the position of the samples. An accurate calibration of the displacements of the piezo as a function of the applied voltage is necessary to obtain quantitative information about the motion. A number of methods [START_REF] Riis | Calibration of the electrical response of piezoelectric elements at low voltage using laser interferometry[END_REF][START_REF] Banerjee | A simple technique for height calibration for z piezo with angstrom resolution of scanning probe microscopes[END_REF][START_REF] Alliata | A simple method for preparing calibration standards for the three working axes of scanning probe microscope piezo scanners[END_REF][START_REF] Vieira | The behavior and calibration of some piezoelectric ceramics used in the stm[END_REF][START_REF] Castellanos-Gomez | Calibration of piezoelectric positioning actuators using a reference voltage-todisplacement transducer based on quartz tuning forks[END_REF] have been developed to calibrate the piezo. We have calibrated the piezo using optical camera, which is simple and with a good accuracy.

A microscopic calibrated slide (Motic) is chosen and fixed on the piezo stage. The calibrated slide contains calibrated girds and several disk with different sizes. We apply voltage to the piezo at a given frequency. A camera (DCC1545M, Thorlabs) is used to track the motion of one of the disks. As shown in Fig. 1.11, the image of the calibrated disk with a radius of 75 µm is obtained. From the image, we calibrate the pixel. The displacement of the piezo can be obtained from two extreme positions of the disk. We calibrate the piezo at 0.1 Hz with different driving amplitudes. The results are shown in Fig 1 .12. From the linear fitting of results, we get the piezo displacement per volt equals to 4.9 ± 0.03 µm/V.

EXPERIMENTAL METHODS

Driving amplitude (V) Amplitude of the piezo (µm) Figure 1.12: The amplitudes of the piezo displacement measured by the camera versus driving amplitudes in volt (at 0.1 Hz). The black line is the linear fitting curve from which we get the displacement of the piezo per unit voltage equals to 4.9 ± 0.03 µm/V.

Surface tension measurement: Wilhelmy plate method

In this thesis, the Wilhelmy plate method is used to measure the surface tension of air-water interface. Figure 1.13 shows the schematic of the static Wilhelmy plate measurement. A thin plate is held at the air-water interface, which gives rise to the capillary force F : where σ is the surface tension of the interface, l p = 2(w p + e p ) is the perimeter of the contact line on the plate, e p is the thickness of the plate, w p is the width of the plate, and θ c is the contact angle between the water and the plate as shown in Fig. 1.13.

F = σl p cos(θ c ), (1.1 
In the laboratory, a tensiometer from Nima technology (see Fig. 1.14) with a Whatman chromatography paper is used to perform the Wilhelmy plate measurement. As the paper is brought into contact with the water surface, the tensiometer will detect the exact amount of the tension acting on the plate at the position of the plate before it snaps off from the surface. The contact angle here is equal to 0 • . In the static situation, the cantilever is deflected by a constant force F , and we have

EI ∂ 3 Z(x) ∂x 3 = -F, (1.2)
where E is the Young's modulus of the cantilever, I = we 3 /12 is the area moment of inertia of the beam, and Z is cantilever deflection in z direction. Integrating Eq. (1.2) with boundary conditions of ∂z(x=0

) ∂x = 0, ∂ 2 z(x=l) ∂x 2
= 0, we have

∂Z (x) ∂x = F EI (lx - x 2 2 
).

(1.3)

At the end of the beam, Eq. (1.3) becomes to

∂Z (x = l) ∂x = F l 2 2EI = F k c 3 2l = 3 2l Z(x = l), (1.4) 
where

k c = 3EI l 3 = Ewe 3 4l 3 (1.5)
is the definition of the cantilever stiffness, and Z (x = l) = F/k c is the deflection of the cantilever induced by the applied force.

Standard AFM uses optical deflection method to measure the motion of the cantilever. In this method, the inclination at the end of the cantilever dZ(x = l)/dx is measured rather than the cantilever deflection Z(x = l) itself. The corresponding deflection Z c 1 is determined by the inclination dZ(x = l)/dx of the cantilever at the end, multiplied by the factor 2l/3 [START_REF] Butt | Calculation of thermal noise in atomic force microscopy[END_REF], i.e.

Z c = Z(x = l) = 2l 3 
∂Z(x = l) ∂x . (1.6)
For the dynamic motion of the cantilever, the bending of the cantilever is described by Euler-Bernoulli theory, which is given by

EI ∂ 4 Z ∂x 4 + ρ c we ∂ 2 Z ∂t 2 = 0, (1.7) 
where ρ c is the density of the cantilever material. The solution of Eq. (1.7) is given in the form:

Z(x, t) = χ(x)a(t), (1.8) 
with a(t) is the amplitude of the cantilever vibration and χ(x) is the beam profile of the cantilever. Substituting Eq. (1.8) into Eq. (1.7), we have

∂ 4 χ(x) ∂x 4 = α 4 l 4 χ(x), (1.9) 
where

α 4 = 12ρ c ω 2 l 4 Ee 2 (1.10)
and ω is the angular frequency of cantilever. For the cantilever with a free end, χ(x) must satisfies the boundary conditions [START_REF] Butt | Calculation of thermal noise in atomic force microscopy[END_REF][START_REF] Bd Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF][START_REF] Rabe | Acoustic microscopy by atomic force microscopy[END_REF]:

χ(0) = 0, dχ(0) dx = 0, d 2 χ(l) dx 2 = 0, d 3 χ(l) dx 3 = 0.
Using the normalization of χ (x = l) = 1, we get

χ(x) = 1 2 cos α l x -cosh α l x - (cos α + cosh α) (sin α + sinh α) sin α l x -sinh α l x , (1.11) 
with cos α cosh α + 1 = 0.

(1.12) The solutions of Eq. (1.12) give different values of α corresponding to each mode of the cantilever vibration. The values of α for the first six modes are presented in Tab. 1.1. Here we denote i as the mode number of the cantilever vibration.

From Eq. (1.10), the resonance frequencies of the cantilever for each mode can be obtained as

ω 2 i = Ee 2 α 4 i 12ρ c l 4 . (1.13)
Here, we introduce the effective mass m * = ρ c we l 0 (χ(x)) 2 dx = ρ c lwe/4 of the cantilever [START_REF] Butt | Force measurements with the atomic force microscope: Technique, interpretation and applications[END_REF][START_REF] Bd Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]. Eq. (1.13) becomes to

ω 2 i = k i m * , (1.14)
where the cantilever stiffness for mode i is given by

k i = α 4 i 12 k c . (1.15) 
In Fig. 1.17, the cantilever shapes for the first six modes are presented. 

Z c (t) i = 2α i 3 sin α i sinh α i sin α i + sinh α i a(t) i , (1.16) 
Note here, the prefactor of 2/3 in Eq. (1.16) comes from the fact that the deflection is inferred from the inclination of the cantilever.

Thermal noise method

As described in the previous section, to extract accurate values for the forces from the cantilever deflection, the spring constant of the cantilever k c has to be determined precisely. In principle, the spring constant of the cantilever can be calculated from the geometric dimensions and the properties of the material (Young's modulus) by Eq. (1.5) [START_REF] Tr Albrecht | Microfabrication of cantilever styli for the atomic force microscope[END_REF][START_REF] Elie | Theoretical analysis of the static deflection of plates for atomic force microscope applications[END_REF][START_REF] Jonas | Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers[END_REF]. However, the thickness and elastic modulus of the cantilever are not easy to be measured. Additionally, the cantilever is usually coated with aluminum or gold on the backside to increase the optical reflectivity. These coatings increase the complexity to determine the elastic properties of cantilever. Therefore it is desirable to measure the spring constants experimentally.

In the thesis, thermal noise methods [START_REF] Hutter | Calibration of atomic-force microscope tips[END_REF] and drainage method [START_REF] Vincent | In situ calibration of colloid probe cantilevers in force microscopy: Hydrodynamic drag on a sphere approaching a wall[END_REF] are both used to determine the stiffness of the cantilever.

Equipartition theorem method

Considering the contributions of all the modes to the deflection, we have [START_REF] Hutter | Calibration of atomic-force microscope tips[END_REF][START_REF] Butt | Calculation of thermal noise in atomic force microscopy[END_REF] 

Z c (t) = ∞ i=1 Z ci (t) = ∞ i=1 2α i 3 sin α i sinh α i sin α i + sinh α i a(t) i . (1.17) 
Each mode i is described by harmonic oscillator driven by a fluctuating noise force which is independent for each mode. In thermal equilibrium, each vibration mode has a mean thermal energy of 1 2 k B T . Thus the mean square amplitude at the end of the cantilever for the mode i < a 2 i > has to satisfy

< a 2 i >= k B T k i , (1.18) 
where k B is Boltzmann constant, T is the absolute temperature. k i is the cantilever stiffness for mode i. From Eq. (1.17) and Eq. (1.15), we have

< Z 2 c > = ∞ i=1 4 9α 2 i sin α i sinh α i sin α i + sinh α i 2 < a 2 i > = 16k B T 3k c ∞ i=1 1 α 2 i sin α i sinh α i sin α i + sinh α i 2 .
(1.19)

CALIBRATION OF THE CANTILEVER

With the values of α i given in Tab. 1.1, we have

∞ i=1 1 α 2 i sin α i sinh α i sin α i + sinh α i = 1 4 . (1.20)
Finally, we get [START_REF] Butt | Calculation of thermal noise in atomic force microscopy[END_REF] 

k c < Z 2 c >= 4 

Power spectral density method

The stiffness of cantilever can be obtained by fitting the power spectral density of the cantilever thermal fluctuation. The equation of the cantilever motion for mode i can be expressed as

m * äi + γ bulk ȧi + k i a i = F Thermali , (1.22) 
where m * is the effective mass of the cantilever, γ bulk is the bulk damping and F Thermali is the thermal noise force. By Fourier transform, Eq. (1.22) becomes:

-m * ω 2 + jωγ bulk + k i a i (ω) = F Thermali (ω). (1.23)
Then, we have

|a i (ω)| 2 = |F Thermali (ω)| 2 /m * ((ω 2 i -ω 2 ) 2 + (ωω i /Q i ) 2 ) , (1.24) 
where Q i = m * ω i /γ bulk is the quality factor for mode i. Using the notation of |F Thermali (ω)| 2 = γ bulk k B T , we obtain

PSD(a i , ω) = 2k B T ω i /Q i πm * [(ω 2 i -ω 2 ) 2 + (ω i ω/Q i ) 2 ]
.

(1.25)

Since the cantilever deflection is deduced from the measurement of the cantilever inclination, using Eq. (1.16), The power spectral density for the deduced cantilever deflection Z ci for mode i is given by

PSD(Z ci , ω) = 4α 2 i 9 sin α i sinh α i sin α i + sinh α i 2 2k B T ω i /Q i πm * [(ω 2 i -ω 2 ) 2 + (ω i ω/Q i ) 2 ]
.

(1.26)

Finally, the measured power spectral density PSD(Z c , ω) is expressed as

PSD(Z c , ω) = ∞ i=1       4α 2 i 9 sin α i sinh α i sin α i + sinh α i 2 2k B T /Q i πk i ω i 1 -ω ω i 2 2 + ω ω i Q i 2      
.

(1.27) From the fitting of power spectral density of the cantilever thermal motion by Eq. (1.27), we can obtain the effective stiffness k i , the resonance frequency ω i and quality factor Q i for each mode. In frequency domain, the power spectral density is expressed as

PSD(Z c , f ) = 2πPSD(Z c , ω) = ∞ i=1       4α 2 i 9 sin α i sinh α i sin α i + sinh α i 2 2k B T /Q i πk i f i 1 -f f i 2 2 + f f i Q i 2       , (1.28) 
with ω = 2πf and ω i = 2πf i .

In Fig 1 .19, we present the power spectral density for the cantilever motion calculated from the temporal signal of thermal fluctuation shown in Fig 1 .18. The first three modes of the cantilever vibration are well defined. Figure 1.20 shows the fitting curve for the first mode in Fig 1 .19 using Eq. (1.28). From the fitting, we get k 1 = 0.019 ± 0.005 N/m, f 1 = 3070 Hz and Q 1 = 1.46. Similarly, by fitting the second mode, we obtain the values: k 2 = 0.78 ± 0.01 N/m, f 2 = 25490 Hz and Q 2 = 2.34. Using Eq. (1.15), we conclude that the cantilever stiffness is calibrated as k c = 0.02 ± 0.005 N/m. 

The drainage method

When a spherical colloidal particle has been fixed on the end of the cantilever, the drainage method is applicable and simple. This method is suitable to all kinds of cantilevers but it requires the known radius of the sphere and the viscosity of the fluid [START_REF] Vincent | In situ calibration of colloid probe cantilevers in force microscopy: Hydrodynamic drag on a sphere approaching a wall[END_REF]. This method employs the hydrodynamic drag force on a sphere approaching perpendicularly a flat surface immersed in a viscous liquid. As shown in Fig 1 .21, a sphere with a radius of R is approaching a hydrophilic surface in a viscous liquid with a velocity of V . When the Reynolds number Re is small, and in the case of d √ 2Rd, the confined fluid flow between the sphere and surface can be described by continuity equation and Navies-Stokes equation in the framework of the lubrication approximation:

∂v z ∂z = - 1 r ∂ r (rv r ), (1.29a 
)

∂p ∂r = η ∂ 2 v r ∂z 2 , (1.29b 
)

∂p ∂z = 0, (1.29c) 
where η is the dynamic viscosity of the fluid, v r , v z are the radical and vertical velocities of the fluid. Using parabolic approximation, the confined liquid thickness is given h(r) = d + r 2 /2R and d is the distance between the spherical particle and the flat surface. When the sphere and the wall are both hydrophilic, we have the boundary conditions of

• On the flat surface: v r (z = 0) = 0, v z (z = 0) = 0.

• On the sphere: (1.31)

v r (z = h) = 0, v z (z = h) = -V .
Then, the hydrodynamic force F 0 between the sphere and hydrophilic surface can be calculated by

F 0 = 2π ∞ 0 rp(r)dr. (1.32)
As a result, the drainage force reads [START_REF] Vinogradova | Drainage of a thin liquid film confined between hydrophobic surfaces[END_REF],

F 0 = - 6πηR 2 d V. (1.33) 
Here, we take a V-shaped cantilever (SNL-10, Bruker, USA) as an example. As shown in Fig. 1.8, a smooth spherical borosilicate sphere (MO-Sci Corporation) with a radius R = 56.2± 2 µm was glued to the end of the cantilever. The roughness of this sphere is 0.9 nm measured over a 1 µm 2 surface area which was determined using the method shown in Sec. 1.2.2. The cantilever is placed on a liquid cell (see Fig. 1.3) which allows working in liquid environment. A freshly cleaved sheet of muscovite mica was used as a flat substrate. The bioscope II AFM (see Fig. 1.1) was used for force measurement. The measurement was carried on in 1 M NaCl solution in order to eliminate the effect of electrical double layer force. At room temperature (21 • C), the viscosity of 1 M NaCl solution is η = 1 mPa • s. The approaching velocity of the flat surface is controlled by a piezo (NanoT series, Mad City Labs). The data was captured by an analog to digital (A/D) acquisition board (PCI-4462, National Instrument, USA).The deflection versus piezo displacement was converted to deflection versus separation using the method given in Sec.1.1. The relative velocity for each separation is obtained from the time derivative of the separation distance [START_REF] Christopher | No-slip hydrodynamic boundary condition for hydrophilic particles[END_REF].

The deflection Z c and the relative velocity V versus distance for a typical measurement are shown in Fig. 1.22. As the surface approaches the particle, the cantilever starts to deflect away due to the hydrodynamic drag force. The relative velocity (time derivative of the distance) is the difference between the velocity of the piezo and the velocity at which the cantilever deflects away. At the small separation where the cantilever deflection is large, the relative velocity reduces. The measured force F = k c Z c is equal to the drainage drag force acting on the particle:

k c Z c = 6πηR 2 d V.
Then we have

V Z c = k c 6πηR 2 d.
(1.34)

Taking into account the values of the particle radius and the liquid viscosity, from the linear fitting (Eq. (1.34)) of the data of V /Z c versus d shown in Fig. 1.23, we obtain the value of the cantilever stiffness k c = 0.16 ± 0.01 N/m. However, at smaller separation distance the validity of Eq. (1.33) which is formulated using the no-slip boundary condition may be affected due to the contribution of partial boundary slip [START_REF] Olga | Implications of hydrophobic slippage for the dynamic measurements of hydrophobic forces[END_REF]. Additionally, roughness of the surfaces may also affect the accuracy at small separation distance. In order to avoid these effects at small distance, we just use the data from where the distance is large enough (> 200 nm) to extract the cantilever stiffness. 

Conclusion

In this chapter, we introduced the AFM for topographic imaging and surface force measurement. The techniques: the attachment of the colloidal probe, the roughness characterization of the surface, the calibration of the piezo and the surface tension measurement were presented. Successively, we introduced thermal noise methods and the drainage method for the calibration of the cantilever. 

Context

Recently, much progress has been achieved in the study of fluid flow in the vicinity of interfaces [START_REF] Lauga | Microfluidics: the no-slip boundary condition[END_REF][START_REF] Neto | Boundary slip in newtonian liquids: a review of experimental studies[END_REF]. Colloidal probe atomic force microscopy is one of the techniques used to characterize fluid flows on the nano-scale [START_REF] Neto | Boundary slip in newtonian liquids: a review of experimental studies[END_REF], such as to study capillary phenomena such as the interaction between bubbles [START_REF] Ivan | Bubble colloidal afm probes formed from ultrasonically generated bubbles[END_REF][START_REF] Ivan U Vakarelski | Dynamic interactions between microbubbles in water[END_REF] or droplets [START_REF] Derek Yc Chan | Film drainage and coalescence between deformable drops and bubbles[END_REF][START_REF] Rico F Tabor | Measurement and analysis of forces in bubble and droplet systems using afm[END_REF][START_REF] Raymond R Dagastine | Dynamic forces between two deformable oil droplets in water[END_REF], the hydrodynamic boundary condition at a water-air interface [START_REF] Manor | Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions[END_REF], and dynamical wetting [START_REF] Ecke | Microsphere tensiometry to measure advancing and receding contact angles on individual particles[END_REF][START_REF] Xiong | Development of an atomic-force-microscope-based hanging-fiber rheometer for interfacial microrheology[END_REF][START_REF] Delmas | Contact angle hysteresis at the nanometer scale[END_REF][START_REF] Guo | Direct measurement of friction of a fluctuating contact line[END_REF][START_REF] Dupré De Baubigny | Shape and effective spring constant of liquid interfaces probed at the nanometer scale: Finite size effects[END_REF][START_REF] Mortagne | Dynamics of anchored oscillating nanomenisci[END_REF]. Assuming that the shear stress continues at liquid-gas interfaces, the much lower viscosity of the gas theoretically makes them behave as shear free interfaces. As a result, liquid-gas interfaces are thought to be good candidates for perfect slipping interfaces [START_REF] De | On fluid/wall slippage[END_REF][START_REF] Zhu | Rate-dependent slip of newtonian liquid at smooth surfaces[END_REF][START_REF] Ybert | Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries[END_REF][START_REF] Derek | A generating mechanism for apparent fluid slip in hydrophobic microchannels[END_REF]. However, Manor et al. [START_REF] Manor | Hydrodynamic boundary conditions and dynamic forces between bubbles and surfaces[END_REF][START_REF] Manor | Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions[END_REF][START_REF] Manor | Influence of surfactants on the force between two bubbles[END_REF] have experimentally shown that the slip length at liquid-gas interfaces is moderate (a few of tens of nanometers) but not infinite as expected. This finite slip length value is due to the presence of the impurities at the liquid-gas interfaces. The air-water interface is generally prone to be contaminated by the surface impurities such as surfactant, particles or other surface active agents. The presence of such impurities can modify flow near such interfaces in a drastic manner.

In this chapter, the visco-elastic effect of air-water interfaces due to the surfactant contamination is studied by dynamic AFM method. From the measurement of the amplitude and phase of the sphere, we extract the viscous and elastic forces acting on the sphere. In the framework of the lubrication approximation, we developed a model that takes into account the advection of the impurities at the air-water interface to explain the measurements. In this study, we focus only on large distance between the sphere and the bubble where capillary deformation of the bubble surface due to the hydrodynamic pressure is very small (probe-bubble distance d > 6πηR 2 ω/σ [START_REF] Maali | Viscoelastic drag forces and crossover from no-slip to slip boundary conditions for flow near air-water interfaces[END_REF], where σ is the surface tension of water, η is the water viscosity, R is the radius of the sphere and ω is the oscillation frequency of sphere.).

Theoretical Model

We assume that the liquid-gas interface of the bubble may contain a very small quantity of insoluble surfactants. The presence of the surfactants with a local concentration c decreases the interfacial surface tension from a value σ to a value σ -Π. At low concentration, the surfactant behaves as dilute gas without interaction, and the surface pressure Π is related to the concentration by: Π = ck B T . The sketch of the study is shown in Fig. 2.1. The air-water interface is prepared by injecting an air bubble on PS surface in pure water. The sphere vibrates with frequency ω. We use cylindrical coordinate to describe the flow.

During the fluid flowing at the interface, some surfactant molecules (impurities) are driven by advection and diffusion. The concentration of surfactant is described by the advectiondiffusion equation [START_REF] Manor | Hydrodynamic boundary conditions and dynamic forces between bubbles and surfaces[END_REF][START_REF] Manor | Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions[END_REF][START_REF] Manor | Influence of surfactants on the force between two bubbles[END_REF]:

∂c ∂t + ∇ • (v s c) = D∆c, (2.1) 
where D is the diffusion coefficient, and the advection term arises from the radial velocity at the surface of the bubble, v s = v r (z = 0).

The confined fluid flow between the sphere and bubble is described by continuity and Navies-Stokes equations. Using the lubrication approximation, they can be expressed by Eqs. 1.29.

On the surface of the sphere, the radial and vertical velocities of the fluid satisfy the boundary conditions: v r (z = h) = 0, v z (z = h) = V , where V is the vertical velocity of the sphere glued at the end of the cantilever and h is the confined fluid thickness between the sphere and bubble, which is given by: h

(r) = d + r 2 /2R eff , R eff = 1/(R -1 b + R -1
) is the effective radius and R b , R are the radii of the bubble and sphere, respectively. d is the gap distance. On the bubble surface, shear stress is equal to the tangential stress induced by the Marangoni effect:

η ∂vr(z=0) ∂z = ∂Π ∂r .
The vertical velocity should be equal to zero: v z (z = 0) = 0 (we neglect the bubble deformation). Integrating Eq. (1.29b) with respect to z and using these above boundary conditions for the radial velocity on the sphere and bubble surface, we get:

v r (z) = 1 η 1 2 (z 2 -h 2 ) ∂p ∂r + (z -h) ∂Π ∂r , (2.2) 
Inserting Eq. (2.2) into the continuity equation of Eq. (1.29a) and integrating with respect to z,
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we get:

v z (z) -v z (z = 0) = z 0 ∂v z (z) ∂z dz = - 1 ηr ∂ ∂r r ( z 3 6 - h 2 z 2 ) ∂p ∂r + ( z 2 2 -hz) ∂Π ∂r .
(2.3)

Using the boundary conditions for the vertical velocity on the sphere and bubble surface, Eq. ( 2.3) can be rewritten as:

V = dZ dt = jωZ = 1 3ηr ∂ ∂r (rh 3 ∂p ∂r ) + 1 2ηr ∂ ∂r (rh 2 ∂Π ∂r ), (2.4) 
where Z = Z 0 e jωt is the instantaneous position of the sphere. Eq. ( 2.4) can be integrated with respect to radial coordinate r and rearranged to get the expression for the pressure p in the form of:

∂p ∂r = 3ηV r 2h 3 - 3 2h ∂Π ∂r , (2.5) 
Injecting Eq. (2.5) into Eq. ( 2.2), we get the value of the radial velocity of the fluid on bubble surface,

v s = v r (z = 0) = - 3V r 4h - h 4η ∂Π ∂r .
(

Equation (2.6) shows that the advection of the surfactants acts as a feedback on the velocity on the bubble surface.

In our study, the diffusion term in Eq. (2.1) is irrelevant. Indeed, with R eff ∼ 50 µm, d = 1 ∼ 10 µm and D ∼ 10 -10 m 2 /s, one finds that the diffusion time τ = L 2 /D over the lubrication length L = √ 2R eff d exceeds the period of the cantilever vibration. For weakly soluble impurities, the characteristic relaxation time which results from diffusion in the aqueous phase over the distance L turns into

τ b = L 2 /D b with the bulk diffusion coefficient D b that is D b < D.
For the range of the oscillation frequencies used in the experiment, both ωτ and ωτ b are significantly smaller than unity. Thus surfactants diffusion along the interface, or in the thin fluid film, is slow compared to the advection, and may be discarded in the Eq. (2.1).

Writing ∇ • (v s c) = v s • ∇c + c∇ • v s ,
and neglecting small terms proportional to the concentration gradient ∇c or to the concentration modulation with respect to the equilibrium value c 0 , Eq. (2.1) is simplified to:

∂c ∂t - c 0 k B T 4η ∂ r∂r (rh ∂c) ∂r = c 0 3V d 2h 2 . (2.7)
where the second term on the left hand side arises from ∇Π = k B T ∇c and the right hand side term arises from the divergence of the unperturbed surface velocity. By solving Eq. (2.7), we get the value of the surfactant pressure Π = ck B T which can be injected in to Eq. (2.5) and we obtain the hydrodynamic pressure p(r). According to Eq. (1.29c), p is constant in z direction, and the hydrodynamic force acting on the sphere is calculated from the expression of p(r) by

F h = 2π ∞ 0 rp(r)dr. (2.8)

THEORETICAL MODEL

From the ansatz ∂c ∂t = jωc, and using dimensionless variable

r = r √ 2R eff d , we transform Eq. (2.7) to 1 r ∂ r r(1 + r 2 ) ∂c ∂r -j ω ω 0 c = 12ηRV k B T d 1 (1 + r 2 ) 2
(2.9)

where

ω 0 = c 0 k B T 8ηR eff (2.10)
is a characteristic frequency that depends on surfactant pressure Π 0 = c 0 k B T , the viscosity of the liquid η and the effective bubble radius R eff .

Equation (2.9) is solved numerically (Sec. 2.2.2) using finite-element method to get the value of the surface pressure Π = ck B T and then the hydrodynamic drag force F h applied on the sphere. For only two limiting case ω ω 0 and ω ω 0 , the expression of the hydrodynamic drag force can be calculated analytically (Sec.2.2.2). In Sec. 2.2.3, we use an analogy between the sphere-bubble interaction and the disc-bubble interaction to derive an approximated analytical expression for the hydrodynamic drag force for any given frequency of oscillation.

Numerical Calculations

Using the finite element method, we solve Eq. (2.9) numerically to get the value of surfactant concentration c(r) on bubble surface and the gradient of the surface pressure ∇Π(r) = k B T ∇c(r). Injecting these values into Eq. (2.5) and integrating Eq. (2.8) over the sphere surface, we get the hydrodynamic force F h . Our numerical results suggest that the general behavior of the hydrodynamic force is the in form of

F h = g( ω ω 0 )F 0 , (2.11) 
where

F 0 = - 6πηR 2 eff d
V is the non slip hydrodynamic force [START_REF] Vinogradova | Drainage of a thin liquid film confined between hydrophobic surfaces[END_REF] and g( ω ω 0 ) is a complex number, which is distance independent, and depend only on the ratio between the working frequency ω and the characteristic frequency ω 0 that depends on the surfactant concentrations.

The hydrodynamic force can be written as: F h = F vis +jF el with F vis and F el are the viscous and elastic hydrodynamic components respectively which are related to the function g( ω ω 0 ) by

F vis F 0 = Re g ω ω 0 (2.12a) F el F 0 = Im g ω ω 0 (2.12b)
In Fig. 2.2, the numerical calculation results for the viscous and elastic components divided by the non-slip hydrodynamic force are presented. These numerical calculation results can be approximated by an equation in the form of

g( ω ω 0 ) = 1 4 + 3 4 a 1 + a 2 ( ω ω 0 ) 2 + a 3 ( ω ω 0 ) 3 -j 3 4 ω ω 0 a 4 + a 5 ( ω ω 0 ) 2 + a 6 ( ω ω 0 ) 3 . (2.13) 
From the fitting, we get the value of the constants, a 1 = 1.01, a 2 = 1.01, a 3 = -0.01, a 4 = 1.08, a 5 = 0.29 and a 6 = -0.01.

Limiting

Cases ω ω 0 and ω ω 0 : Asymptotic Calculation

In the quasi-static limit of small working frequency or for high impurity concentrations, ω ω 0 , we treat ω ω 0 c in Eq. (2.9) as a perturbation, Solving the differential equation to linear order of the parameter of ω ω 0 by iteration, and then integrating Eq. (2.5) and Eq. (2.8), we get

F vis = F 0 , F el = F 0 3ω 8ω 0 , (ω ω 0 ), (2.14) 
with non-slip hydrodynamic force F 0 = -

6πηR 2 eff V d
. The viscous term of the hydrodynamic drag force corresponds to that on solid surface with non-slip boundary conditions, which is four times larger than on a free surface [START_REF] Vinogradova | Drainage of a thin liquid film confined between hydrophobic surfaces[END_REF]. This is arises from the surfactant-induced surface stress ∇Π = k B T ∇c and its back reaction on the surface flow.

On the contrary, at high working frequency or for sufficiently low impurity concentration, ω ω 0 , the first term on the left-hand side in Eq. (2.9) can be treated as a perturbation. Evaluating to second order and integrating Eq. (2.5) and Eq. (2.8), we obtain

F vis = F 0 ( 1 4 + 8 ω 2 0 ω 2 ), F el = F 0 2ω 0 ω , (ω ω 0 ). (2.15)

THEORETICAL MODEL

In this limiting case, the surface stress ∇Π = k B T ∇c is of less importance, and for ω/ω 0 → ∞, we recover the hydrodynamic drag force for full slip boundary condition, F vis /F 0 = 1/4. Meanwhile, the elastic component F el /F 0 varies linearly with ω 0 /ω.

Analytical Calculations using analogy with the disc bubble interaction

The hydrodynamic squeezing force between a disc and flat substrate is equivalent to the squeezing force between a sphere and flat substrate, provided that the disc radius R disc is replaced by the hydrodynamic radius √ 2Rd, where R is the sphere radius and d is the distance between the sphere and the substrate:

F D = - 3π 2 η R 4 disc d 3 V R disc = √ 2Rd ←→ F S = -6πη R 2 d V, (2.16) 
where F D is the drag force between disc and flat substrate, F s is the drag force between sphere and substrate. To get the expression of the drag force between the sphere and the bubble in the presence of the surfactants, we will take advantage of this analogy. We calculate first the drag force for disc geometry and then replace in the obtained expression the disc radius R disc by the hydrodynamic radius

√ 2R eff d 1 .
Eq. (2.5) and Eq. (2.7) that describe the hydrodynamic pressure and the surfactant concentration for the sphere-bubble interaction are still valid for the disc-bubble interaction provided the gap h is taken constant and independent of the radial coordinate, h(r) = d. Eq. (2.5) reads

∂p ∂r = 3ηV r 2d 3 - 3 2d ∂Π ∂r , (2.17) 
and Eq. (2.7) reads

∂c ∂t - c 0 k B T d 4η ∂ r∂r (r ∂c) ∂r = c 0 3V 2d , (2.18) 
here, V is denoted as the velocity of the disc instead of the sphere.

Solving Eq. (2.18) and imposing the condition for the surfactant concentration c(r ≥ R disc ) = 0, we get

c(r) = - 3jc 0 V ω 1 - I 0 ( √ jk r R disc ) I 0 , ( √ jk) (2.19)
and

Π(r) = k B T c(r) = - 3jk B T c 0 V ω 1 - I 0 ( √ jk r R disc ) I 0 ( √ jk) , (2.20) 
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where k 2 = 4ωηR 3 disc c 0 k B T d , I 0 and I 1 are the modified Bessel function of the first kind with index 0 and 1, respectively. Injecting Eq. (2.20) into Eq. (2.17) and integrating the pressure over the surface of the disc, we get the the hydrodynamic force:

F hD = - 3π 2 η R disc d 3 V 1 4 + 12j k 2 1 √ jk I 1 ( √ jk) I 0 ( √ jk - 1 2 .
(2.21)

Using the analogy described above and replace R disc by

√ 2R eff d, we get k 2 = 2ωηR 2 disc c 0 k B T d → ω ω 0 , with ω 0 = c 0 k B T
8ηR eff as defined before, and the hydrodynamic force acting on the sphere is equal to

F hS = -6πη R 2 d V    1 4 + 12j ( ω ω 0 )   1 j ω ω 0 I 1 ( j ω ω 0 ) I 0 ( j ω ω 0 ) - 1 2      . (2.22)
Fig. 2.3a presents the analytically calculated hydrodynamic coefficient F vis F 0 and F el F 0 using the analogy described above. We have also reported the numerical calculation of Sec. 2.2.1. The curves obtained from the analogy have the same profile of the curves obtained from numerical calculation, but they do not coincide each other. In order to superimpose the curves, we have to modify the value of ω 0 in Eq. (2.22) and make it equal to ω 0 = 2.72ω 0 as shown in Fig. 2 

F vis F 0 ω/ω 0 ω/ω 0 F el F 0 F vis F 0 F el F 0 Figure 2.3: a)
Hydrodynamic force F vis /F 0 and F el /F 0 calculated analytically using the analogy described in this section (solid lines). We also report on the same figure the numerical calculation of Sec. 2.2.1(dots). b) In order to superimpose the curves, the value ω 0 in Eq. (2.22) was modified to ω 0 = 2.72ω 0 .

EXPERIMENT

Experiment

Dynamic AFM method with colloidal probe

In this study, the dynamic AFM method with colloidal probe was addressed to probe the viscoelastic responses of the bubble surface. Figure 2.4 shows the sketch for dynamic atomic force microscope measurement. Basically, a piezoelectric actuator is used to excite the vibration of the cantilever with driving amplitude A d and driving frequency ω. The gap between the sphere and substrate is controlled by displacing the sample using a piezo stage. The amplitude A and phase ϕ of the cantilever oscillation versus the piezo displacement are recored. Meanwhile, the DC deflection is also recorded and used to determine the separation distance following the method shown in Sec. 1.1. The instantaneous displacement of the cantilever base can be described by Z d = A d e jωt , j is the imaginary unit. The instantaneous deflection of the cantilever is described as X = Ae j(ωt+ϕ) . Therefore, the total oscillation of the cantilever is given by

Zd=Ade jωt

Z = X + Z d = Ae j(ωt+ϕ) + A d e jωt .
(2.23)

The motion of the cantilever can be simplified to a point mass model given by

m * Z + γ bulk Ż + k c X = F h , (2.24) 
where F h is the interaction force between the colloidal probe and the interface.

For a probe oscillating with a small amplitude compared to the size of probe and the range of the interaction length, the instantaneous interaction force can be linearised and has two contribution: conservation term (-k int Z) and dissipative term (-γ int Ż), namely

F h = -k int Z -γ int Ż,
where k int and γ int are the interaction stiffness and damping coefficient, respectively. Then, Eq. 2.24 can be rewritten as:

m * Ẍ + γ bulk Ẋ + k c X = F d -k int Z -γ int Ż, (2.25) 
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F d is driving force induced by the displacement of the cantilever base and can be calculated using Euler-Bernouli beam theory. The analytical expression for F d is

F d = (m * ω 2 -jωγ bulk )β d A d e jωt , (2.26) 
with a coefficient β d ≈ 1.565 [START_REF] Jai | Analytical description of the motion of an acoustic-driven atomic force microscope cantilever in liquid[END_REF].

However, in a real experiment, the cantilever is excited by two source: the base vibration and an additional force from the surrounding fluid, which is driven by the piezo actuator [START_REF] Jai | Analytical description of the motion of an acoustic-driven atomic force microscope cantilever in liquid[END_REF][START_REF] Kiracofe | Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory[END_REF]. Accurate determination of the acoustic wave propagation is difficult because it depends on the cantilever geometry and fixation of the cantilever on the liquid cell. Here the driving force is measured experimentally. Far from the interface, the interaction force can be neglected, assuming a general expression for the driving force in the form

F d = (F 1 + jF 2 )e jωt , (2.27) 
where F 1 is the term that is in phase with base vibration and F 2 is the term that is in phase quadrature. By inserting Eq. (2.23) and Eq. (2.27) into Eq. (2.25), and using F h = 0, we get the expression for the driving force:

F 1 = k c • A ∞ 1 - ω ω c 2 cos(ϕ ∞ ) - ω ω c Q 0 sin(ϕ ∞ ) , (2.28a 
)

F 2 = k c • A ∞ 1 - ω ω c 2 sin(ϕ ∞ ) + ω ω c Q 0 cos(ϕ ∞ ) . ( 2 

.28b)

A ∞ and ϕ ∞ are the amplitude and phase of the cantilever measured far from the interface, ω c is the angular resonance frequency (ω c = k c /m * ), Q 0 is the bulk quality factor of the probe (Q 0 = m * ω c /γ bulk ). Injecting the expression of driving force into Eq. (2.25), we get

m * Ẍ + (γ bulk + γ int ) Ẋ + (k c + k int )X = (F 1 + jF 2 )e jωt -(k int + jωγ int )A d e jωt .
With the notation of X = Ae j(ωt+ϕ) , we get

k int + jωγ int = F 1 + jF 2 + (m * ω 2 -jωγ bulk -k c )Ae jϕ Ae jϕ + A d = F 1 + jF 2 + ω ωc 2 -j ω ωcQ 0 -1 k c Ae jϕ Ae jϕ + A d .
(2.29)

By separating the real and the imaginary part of Eq. (2.29), we get the desired expressions for 2.3. EXPERIMENT the damping and stiffness of the probe-sample interaction in the forms of

ωγ int k c = A A d F 1 kcA d sin ϕ + F 2 kcA d 1 + A A d cos ϕ -A A d sin ϕ 1 -ω 2 ω 2 c -A A d ω ωcQ 0 A A d + cos ϕ 1 + A A d 2 + 2 A A d cos ϕ , (2.30a) k int k c = -1 + ω 2 ω 2 c + A A d F 1 kcA d cos ϕ + A A d F 2 kcA d sin ϕ + 1 + A A d cos ϕ 1 -ω 2 ω 2 c + F 1 kcA d + A A d ω ωcQ 0 sin ϕ 1 + A A d 2 + 2 A A d cos ϕ . (2.30b)
The experimental setup is shown in Fig. 2.5. The signal access module (Nanoscope III, Bruker) has the advantage to control the input and the output signals of the AFM (driving excitation of the cantilever, vertical and lateral deflections of cantilever, etc). The lock-in amplifier (The Signal Recovery 7280 Lock-in Amplifier) output signal excites the cantilever vibration. The DC component of deflection is recorded, and the AC component is used as input to the lock in amplifier to measure the amplitude and phase of the cantilever oscillation. We used a spherical borosilicate particle(MO-Sci Corporation) with a radius of R = 53.1 ± 1 µm to make the colloidal probe. The sphere was glued at the end of a silicon nitride rectangular cantilever (ORC8, Bruker) by epoxy (Araldite, Bostik, Coubert). The colloidal probe was fixed on the liquid cell (DTFML-DD-HE). The assembly of the probe and liquid cell were then rinsed several times with ultra-pure water (MilliQ-Millipore). The samples were fixed on Figure 2.8 shows the measured DC component of deflection, amplitude and phase versus the piezo displacement on mica surface (the driving frequency is ω/2π = 200 Hz). Close to the contact position (d = 0), the damping is infinity, and thus the measured cantilever deflection amplitude is equal to the driving vibration amplitude (i.e. A = A d when d = 0) and the phase is equal to -180 • at contact position. In this measurement, we obtain the driving amplitude A d = 32 mV. Note here, the value of the driving amplitude measured on mica surface will also be used to calculate the hydrodynamic drag force on bubble surface. Figure 2.9 shows the calculated damping and stiffness of the probe-sample interaction versus distance using the data shown in Fig. 2.8. The damping increases when the distance decreases and the stiffness is equal to zero as expected (no elastic interaction). In order to check the validity of this method, we compare the measured interaction force with hydrodynamic drag force that acts on a sphere moving perpendicular to a flat substrate such as the drainage force in Sec. 1.3.3. In the drainage method, the hydrodynamic drag coefficient γ int that we measure: γ int /k c = Z c /V should be equal to the interaction damping γ int /k c in Eq. 2.30a. As shown in Fig. 2.10, the damping coefficients measured by both drainage method and 2.3. EXPERIMENT dynamic AFM method collapse to γ 0 = 6πηR 2 d calculated with non-slip boundary condition, as expected.

Results & Discussion

In order to make it convenient to compare, we introduce a complex hydrodynamic drag coefficient Γ h (ω) = Γ vis -jΓ el to describe the hydrodynamic drag force. The hydrodynamic drag coefficient is defined by Γ h = -F h /V , which is related to the damping γ int and stiffness k int coefficients by show that the interaction is not purely viscous, and the elastic coefficient Γ el is not zero any more. Furthermore, as shown in Fig. 2.14, the viscous coefficient for different frequencies of the vibration do not coincide with each other as for mica surface. The drag coefficients corresponding to full slip 3πηR 2 eff /2d and no slip 6πηR 2 eff /d boundary condition on the bubble are also presented in Fig. 2.14. While for low frequencies, the viscous drag force is close to the no slip case, with increasing frequency, the drag force decreases and finally approaches the full slip boundary condition on the bubble surface. In our experiments, the frequency could not be increased further since vibrations in bubble shape are excited at higher frequencies. For example, for a bubble with radius of R b = 400 µm, the first resonance occurs around 600 Hz.

Γ vis = γ int , Γ el = k int /ω.
We have performed two independent experiments under similar conditions, at a temporal distance of one month. In Fig. 2.15, we present the measured viscous drag force F vis and elastic drag force F el divided by the reference force F 0 , and we compare with numerical calculations (solid line). The only adjustable parameter is the impurity concentration c 0 that defines the surface pressure Π 0 = c 0 k B T . The fitted values are Π 0 = (0.25 ± 0.05) mN/m for the first experiment (see Fig. 2.15a) and Π 0 = (0.35 ± 0.05) mN/m for the second one (see Fig. 2.15b), corresponding to c 0 = (63 ± 13) × 10 15 m -2 and c 0 = (87 ± 13) × 10 15 m -2 , or to an area per molecule of 16 nm 2 and 12 nm 2 , thus justifying the ideal-gas picture adopted for the surface pressure. The impurities may originate from the polystyrene substrate, from the surrounding air (our experiments were performed at ambient conditions), or from other unknown sources, despite the care taken in cleaning up all the equipment carefully and despite our use of ultra-pure water for the experiments.

In order to confirm the role of impurities, we have done a control experiment in a 60 µM SDS solution. The visco-elastic forces are shown in Fig. 2.16, and fitted with a surface pressure Π 0 = (1.0 ± 0.1) mN/m. The surface tension measurement using a Wilhelmy plate method, gives a surface tension reduction of ∆σ = (1.2 ± 0.1) mN/m, which is close to the fitted value of Π 0 . We conclude that this control experiment provides a quantitative confirmation of the above analysis.

In Fig. 2.17, we present the measured drag forces as a function of the reduced frequency ω/ω 0 . The data from the two independent experiment in ultra-pure water and the control experiment in 60 µM SDS solution, collapse on a single master curve. The dashed lines are from the numerical calculations in Sec. 2.2.1 and the continuous lines are the analytical results given in Eq. (2.14) and Eq. (2.15). The viscous drag force shows a smooth crossover from the non slip value at zero frequency to the full slip value at large frequency, as expected for a free surface. The elastic component increases linearly, passes through a maximum at ω ≈ 2ω 0 . The analytical calculations describe the asymptotic behavior rather well. 

F vis /F 0 , F el /F 0 F el /F 0 F vis /F 0 ω/

Conclusion

In this chapter, we have studied the viscoelastic effect due to the presence of the surfactant contamination. The measurements demonstrate that very low concentrations of surface impurities drastically modify boundary conditions for flows near the interfaces. Both viscous and elastic forces are exerted by the air-water interface on the vibrating sphere. Our measurements give clear evidence for a strong elastic drag force besides the viscous drag force. When varying the frequency from low frequency to high frequency, a crossover from no-slip to full slip boundary conditions occurs in the viscous drag force. Besides the reduction of the viscous force, the elastic drag force shows a nontrivial variation as the vibration frequency changes. The value of the elastic force is comparable to the viscous force in the intermediate range. Furthermore, our experiment methods allow to detect the impurity concentration at an air-water interface through its viscoelastic response to a vibrating AFM probe.

Chapter 3

Visco-Elastic Effects at Air-Water Interface: Capillary Effect 

Context

While the structure and physicochemistry of the confining surfaces are important when considering the flow of confined liquids, their elastic behavior is usually not taken into account [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF]. At small gap, the hydrodynamic pressure between the confining surfaces can be very large, that it may induce elastic deformation of the surfaces. Based on this elastohydrodynamic coupling, new tools were developed to probe the mechanical properties of soft interfaces without contact. Using dynamic SFA, Charlaix's team has measured the mechanical properties of several surfaces ranging from soft surface like PDMS to hard surface like glass [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF][START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF][START_REF] Leroy | Hydrodynamic interaction between a spherical particle and an elastic surface: a gentle probe for soft thin films[END_REF]. Guan et al. have used vibrating nano-needle glued to the AFM cantilever to probe the viscoelastic properties of PDMS surfaces [START_REF] Dongshi Guan | Noncontact viscoelastic measurement of polymer thin films in a liquid medium using long-needle atomic force microscopy[END_REF] and living cells [START_REF] Guan | Noncontact viscoelastic imaging of living cells using a long-needle atomic force microscope with dualfrequency modulation[END_REF].

Indeed, a sphere vibrating vertically close to bubble is a good candidate to investigate the elastohydrodynamic interaction. At small distance the hydrodynamic pressure induced by the EFFECT sphere vibration is so large that the bubble surface will be deformed which leads to elastohydrodynamic coupling.

In this chapter, we investigate the visco-capillary interaction by colloidal probe which is driven by two methods: thermal excitation and external acoustic excitation. As we have presented in chapter 2, the bubble surface may contain contamination which induce viscoelastic responses due to the advection of the surfactant by the liquid flow. In order to measure accurately the visco-capillary response, the contribution due to advection of impurities should be eliminated. For the thermal excitation experiment, a cantilever with a large resonance frequency ω c is chosen (such that ω c ω 0 , where ω 0 is defined in Eq. (2.10) ) in order to satisfy the full slip boundary condition on the bubble surface. For the external acoustic excitation experiment, the cantilever was driven at low frequencies and SDS solutions was introduced in order to satisfy no-slip boundary condition at the air-water interface.

Analytical Model for Visco-Capillary Effect: Simplified Model

At small distance, the bubble deformation can not be neglected, the capillary effect will contribute to the interaction between sphere and bubble. The deformation ξ(r) of bubble is related to the hydrodynamic pressure p(r) by Young-Laplace equation:

p(r) = σ∆ξ(r) = σ r ∂ ∂r r ∂ξ(r) ∂r , (3.1) 
where ∆ is the Laplace operator and σ is the surface tension of bubble.

As reported in previous chapter, for large vibration frequency, a full slip boundary condition should be satisfied on the bubble surface (i.e. (∂v r /∂z)| z=0 = 0. Therefore, the pressure in Eq. (2.5) becomes to:

p(r) = - 3jωZηR eff 4h 2 (3.2)
and thus the hydrodynamic interaction force 

F h = 2π ∞ 0 rp(r)dr = - 3πjωZηR 2 eff 2d . ( 3 
ξ 0 = ξ(r = 0) = - R b 0 dξ(r) dr dr = 3jωZηR 2 eff 8σd ln 1 + R 2 b 2R eff d ≈ 3jωZηR 2 eff 8σd ln R 2 b 2R eff d . (3.5) 
The bubble stiffness k b can be defined as F h = k b ξ 0 , and then from Eq. (3.3) and Eq. (3.5), we obtain:

k b = F h ξ 0 = 4πσ ln R 2 b 2R eff d . (3.6) 
Note here that in the derivation of the bubble stiffness we have assumed a flat bubble. This assumption is thought to be valid because in our case the radius of the bubble is much larger than the radius of the colloidal sphere.

Furthermore, by comparing Eq. (3.3) to the viscous hydrodynamic force defined by F h = -γ h Ż = -jωγ h Z, we obtain the expression of the hydrodynamic damping for a full slip surface:

ωγ h = 3πωηR 2 eff 2d . (3.7) 
The viscoelastic responses of bubbles can be modeled using the Maxwell model: spring and dashpot (damping) in series(see Fig. are expressed as: 

G + jG = 1 1 k b + 1 jωγ h = k b (ωγ h ) 2 k 2 b + (ωγ h ) 2 + j k 2 b ωγ h k 2 b + (ωγ h ) 2 . ( 3 
G = 3πηωR 2 eff 2d 3ηωR 2 eff 8σd ln R 2 b 2R eff d 1 + 3ηωR 2 eff 8σd ln R 2 b 2R eff d 2 , (3.9a) 
G = 3πηωR 2 eff 2d 1 1 + 3πηωR 2 eff 8σd ln R 2 b 2R eff d 2 .
(3.9b)

From Eq. (3.9), one can expect that there should be two asymptotic behaviors,

• Far from the bubble surface:

d 3πηωR 2 eff 8σ , k b ωγ int (viscous regime) with G ≈ 3πηωR 2 eff 2d and G ≈ 9π(ηωR 2 eff ) 2 16σd 2 ln R 2 b 2R eff d .
• Close to the bubble surface:

d 3πηωR 2 eff 8σ , k b ωγ int (elastic regime) with G ≈ 32πσ 2 d 3πηωR 2 eff ln R 2 b 2R eff d 2 and G ≈ 4πσ ln R 2 b 2R eff d .
Similar calculation can be performed for no slip boundary condition, which leads to hydrodynamic damping:

ωγ h = 6πωηR 2 eff d , (3.10) 
and a new expression of the mechanical impedance:

G = 6πηωR 2 eff d 3πηωR 2 eff 2σd ln R 2 b 2R eff d 1 + 3πηωR 2 eff 2σd ln R 2 b 2R eff d 2 , (3.11a) 
G = 6πηωR 2 eff d 1 1 + 3πηωR 2 eff 2σd ln R 2 b 2R eff d 2 .
(3.11b)

Experimental Results

Visco-capillary effect studied by thermal noise excitation of the AFM probe

To probe the visco-capillary interaction with the bubble, we choose a cantilever whose resonance is large enough (Eq. (2.15)), to neglect the elastic response form the impurity contamination. In this case, the flow satisfies full slip boundary condition at the bubble interface and

EXPERIMENTAL RESULTS

Eqs. (3.9) can be use to describe the visco-capillary interaction between the oscillating sphere and the bubble.

The liquid-gas interface was prepared by placing a spherical air bubble with a radius R b = 220.0 ± 4.0 µm on PS surface using a micro-syringe in the similar way of Sec. 2.3.2. The experiment was performed using an AFM (Resolve, Bruker, USA). A spherical borosilicate particle (MO-Sci Corporation) with a radius R = 44.0 ± 0.8 µm was used. The sphere was glued to the end of a silicon cantilever (NP, Bruker) using epoxy (Araldite, Bostik, Coubert). The cantilever stiffness k c = (0.35 ± 0.02) N/m was calibrated by fitting the power spectral density far from the surface using Eq. (1.28) with resonance frequency, quality factor and bulk damping coefficient are f c = 3.48 ± 0.05 kHz, Q 0 = (4.7 ± 0.1) and

γ bulk = k c /(2πf c Q 0 ) = (3.4 ± 0.3) × 10 -6 N • s • m -1 , respectively.
The external excitation of the AFM was switched off. The cantilever was only driven by thermal noise. The maximum thermal oscillation amplitude was less than 1.0 nm. Therefore, the influence of cantilever oscillation on the separation distance can be neglected. The distance between the sphere and the bubble was controlled by the integrated stage step motor. Each separation distance was adjusted by displacing the cantilever vertically using the step motor with reproducibility less than 1.0 µm. The position at which the cantilever deflection signal changed was taken as contact point, namely, the zero separation distance. The thermal noise signal of the cantilever deflection was acquired using an analog to digital (A/D) acquisition board (PCI-4462, National Instrument, USA) with a sampling rate of 80 kHz. From the acquired data, the spectral density of the thermal noise was calculated.

For a vibrating colloidal probe interacts with a bubble interface, the motion equation of the tip Eq. (1.22) becomes to m * ä(t) + γ bulk ȧ(t) + k c a(t) = F Thermal -(G + jG )a(t).

(3.12)

And then we get

-m * ω + k c + G + jω γ bulk + G ω = F Thermal . (3.13) 
Thus the power spectral density can be fitted by equation:

PSD(X, f ) = c 1 [(f 2 c -f 2 ) 2 + (f c f /Q ) 2 ] , (3.14) 
through which the quality factor and the resonance frequency can be obtained, and c 1 is a fitting parameter. Using Eqs. (3.9), the resonance frequency f c and quality factor Q are given by:

f c ≈ f c + πηf c (3ηω c R 2 eff ) 2 32k c σd 2 ln R 2 b 2R eff d 1 + 3ηωcR 2 eff 8σd ln R 2 b 2R eff d 2 , (3.15) 
Q ≈ Q 0 1 + 3πηR 2 eff 2γ bulk d 1 1+ 3ηωcR 2 eff 8σd ln R 2 b 2R eff d 2 .
(3.16)

EXPERIMENTAL RESULTS

An example of power spectral density obtained at a distance of 14 µm from bubble surface is shown in Fig. 3.2. The solid line is the fitting curve by Eq. (3.14).

Besides air-water interfaces, here a mica surface was used to provide hydrophilic solidliquid interface for comparison. The normalized quality factor (with respect to bulk values) versus the distance for the colloidal probe on mica is shown in Fig. 3.3. The damping on mica surface is given by γ 0 = 6πηR 2 /d calculated using a non slip boundary condition. The quality factor on mica can then be fitted using the expression:

Q NS (d) = Q 0 / 1 + 6πηR 2
γ bulk d (see Fig. 3.3). The quality factor measured on the bubble is presented in Fig. 3.4, which is different from the results obtained on mica surface. The quality factor starts from the bulk value Q 0 and decreases with the decreasing of separation distance between the bubble and the sphere. After the quality factor reaches a minimum value, it begins to increase with decreasing of separation distance. At large separation the data coincide with the theoretical curve calculated assuming full slip boundary conditions on the bubble surface. Indeed the cantilever resonance frequency is very large compared with the frequency that characterize the contribution of impurities to the flow ω 0 /2π = Π 0 /16πηR eff presented in chapter 2 and the value is around 135 Hz. At small separation distance, the bubble elastic deformation accommodates the motion of the sphere.
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This cancels the viscous flow of the liquid, leading to the increase of the quality factor Q .

Moreover, as expected by Eq. (3.15), the elastohydrodynamic coupling would induce a shift of the resonance frequency of the cantilever. The change of resonance frequency of the colloidal probe with changing separation distance is shown in Fig. 3.5, which fits well with Eq. (3.15). The resonance frequency increases sharply as the sphere is very close to the bubble surface. 

Visco-capillary effect studied by acoustic excitation of the AFM probe

In this part, the cantilever is driven at the frequency much lower than the bubble vibration resonance to avoid the bubble shape oscillation that complicate the modeling of the sphere-bubble interaction. The experiment was performed using an AFM (Bruker, Bioscopy II) equipped with a liquid cell (DTFML-DD-HE). The cantilever with stiffness of k c = 0.250 ± 0.005 N/m and the sphere with radius R = 53.1 ± 1 µm were used to probe the visco-capillary effect of the bubble surface. The devices used in this experiment is same to the experiment presented in chapter 2. The bubble was deposited on PS surface in 2 mM SDS solution. The experiment was performed at room temperature (21 • C).

Due to presence of the surfactant, the characteristic frequency is ω 0 ∼ 4 kHz for 2 mM SDS solution (the driving frequencies are 50 Hz, 100 Hz and 200 Hz), in which cases the bubble surface could be considered as no slip boundary. and the elastic force due to the contamination can also be neglected. In Fig. 3.8, the mechanical impedance versus the normalized distance (d/d 0 ) are plotted for different oscillation frequencies (50 Hz, 100 Hz and 200 Hz). All the curves for these three oscillation frequencies collapse together. The simplified model is in a good agreement with the experimental results. However, in Fig. 3.6, a discrepancy is observed in both viscous and elastic
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NUMERICAL MODEL FOR VISCO-CAPILLARY EFFECT

components between the experimental results and the simplified model given by Eqs. (3.11) at small distance. Both viscous and elastic components saturate to constant values.

Numerical Model for Visco-Capillary Effect

Considering the bubble deformation ξ(r, t) due to the hydrodynamic pressure, the confined thickness h(r, t) is expressed by:

h(r, t) = d + r 2 2R eff + ξ(r, t) + Z(t). (3.18) 
where Z = Z 0 e jωt is the instantaneous position of the sphere as defined before, ξ(r, t) is the deformation of the bubble in vertical direction. Using non-slip boundary condition on both sphere and bubble surfaces, from the lubrication theory, we have

∂h(r, t) ∂t = 1 12ηr ∂ ∂r rh 3 (r, t) ∂ ∂r p(r, t) . (3.19) 
Using an harmonic decomposition ξ(r, t) = ξ(r)e jωt and p(r, t) = p(r)e jωt , and injecting Eq. The deformation field of the bubble ξ(r) is related to the pressure field p(r) by Young-Laplace equation p(r) = σ∆ξ(r) presented in Eq. (3.1). Such a visco-capillary problem is sensitive to the total size of the system: the central deformation diverges logarithmically with the system size [START_REF] Derek Yc Chan | Film drainage and coalescence between deformable drops and bubbles[END_REF][START_REF] Wang | Viscocapillary response of gas bubbles probed by thermal noise atomic force measurement[END_REF]. Therefore, it is necessary to introduce a cut-off radius b in the model. The excess pressure and the deformation fields are set to zero at radial distances larger than the cut-off radius, i.e.: p(r) = 0, ξ(r) = 0, r > b.

(3.21)

Therefore the mechanical impedance G is calculated by

G = - F h Z 0 = - 2π b 0 rp(r)dr Z 0 .
By introducing the typical visco-capillary length d c = 16ηωR 2 eff /σ, the mechanical impedance can be expressed in the form of:

G = 6πηR 2 eff ω d c g d d c . (3.22)
where g is a complex function of d/d c . Using the discrete Hankel transforms to solve theses equations, g can be obtained numerically. We have performed a series of experiments with SDS concentrations ranging from 0.2 mM to 40 mM. The sphere was driven at 200 Hz for all experiments. The fitted values of surface tension as a function of SDS concentration are presented in Fig. 3.10. We observe that the surface tension globally decreases with increasing surfactant concentration, as expected. At small concentrations, the (< 8 mM), the values of fitted surface tension are in a good agreement with the results measured using Wilhelmy plate method. However, at large SDS concentrations, the fitted values of surface tension are lower than the results measured by Wilhelmy plate method. It may result from two sources: first, the surface elasticity may need to be taken into account; second, the oscillation of the sphere may excite bubble shape oscillation (the presence of the
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In order to test the influence of bubble size, i.e. the cut-off length b, we performed an experiment with three different sizes of bubble in 1 mM SDS solution with a driving frequency of 200 Hz. In Fig. 3.11, the dimensionless mechanical impedance as a function of normalized distance are plotted for theses three bubbles. The radii of the bubbles are 240 µm, 360 µm and 544 µm, respectively. The experimental curves are shown in Fig. 3.11a, while the theoretical ones are shown in Fig. 3.11b where the cut-off length is set to half of the contour length of the undeformed bubble surface as before. The dimensionless mechanical impedance is generally found to depend on the bubble size which is correctly reproduced by the theoretical model. At small distance, the dependence on the bubble size is more important and both viscous and elastic components of the dimensionless impendance decrease as the bubble size increases. This observation highlights the importance of finite size effect in visco-capillary system.

Conclusion

In this chapter, we have studied the elastohydrodynamic coupling between the pressure of the confined flow and the capillary deformation of the bubble. We found that at large distance, the viscous component of the coupling dominates the interaction. For a distance equal to d c = 16ηωR 2 eff /σ (visco-capillary length), both components of the mechanical impedance are in the same order of magnitude. At small separation distance, the bubble elastic capillary deformation accommodates the motion of the sphere. This cancels the viscous flow of the liquid, leading to the decrease of the damping component of the interaction.

To probe the visco-capillary interaction, two methods -thermal excitation and external acoustic excitation-have been used to excite the cantilever. To analyze our measurements, a simplified model based the spring-dashpot in series was developed. The experimental results obtained from both methods of cantilever excitation are in a qualitative agreement with the simplified model. At very small distance, a discrepancy is observed between the experimental results and the simplified model. To investigate the interaction at very small distance, we have performed numerical calculation to solve the combined Navier-Stokes and Young-Laplace equations in the frame of lubrication approximation. The numerical calculations are in good agreement with the experimental results and allow us to measure the surface tension of bubble interface without contact.

Once the experimental setup is improved, it can be a powerful tool for tensiometry of airwater interfaces. Beside the fact that the measurement can be done in no-contact (no-invasive) between the tip and the interface, the volume of the liquid required can be as small as tens microliters.

Chapter 4

Thermal Capillary Wave on Hemispherical Bubble Probed by AFM 

Context

Molecules that lie at the interface between two phases are subject to forces that are different from those that are in the bulk. These forces act so as to minimize the surface energy and give rise to the surface tension of interfaces [START_REF] De Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF][START_REF] Shipley | Molecular theory of capillarity[END_REF]: the energy cost to maintain the phase separation of the fluids. These interfaces are host to thermal fluctuations, which are at the origin of the roughness of the interfaces: the fluctuations of the local positions of molecules distort the shape of the interfaces. This phenomenon described using the notion of thermal capillary waves has been the subject of theoretical studies for several decades [START_REF] Turski | Dynamics of a diffuse liquid-vapor interface[END_REF][START_REF] Sferrazza | Evidence for capillary waves at immiscible polymer/polymer interfaces[END_REF][START_REF] Meunier | Liquid interfaces: role of the fluctuations and analysis of ellipsometry and reflectivity measurements[END_REF][START_REF] Kim | Surface dynamics of polymer films[END_REF][START_REF] Hennequin | Drop formation by thermal fluctuations at an ultralow surface tension[END_REF][START_REF] Derks | Suppression of thermally excited capillary waves by shear flow[END_REF][START_REF] Fukuto | Capillary wave fluctuations and intrinsic widths of coupled fluid-fluid interfaces: An x-ray scattering study of a wetting film on bulk liquid[END_REF][START_REF] Willis | Thermal capillary waves relaxing on atomically thin liquid films[END_REF][START_REF] Dirk Gal Aarts | Direct visual observation of thermal capillary waves[END_REF][START_REF] Michel | Observation of thermal equilibrium in capillary wave turbulence[END_REF]. When such interfaces are confined by imposing a vanishing velocity at the ends of the interface as in the presence of walls, the spectrum of the fluctuations will present sharp resonance peaks for specific frequencies for which the motion of the interface is much stronger than that for other frequencies.

Experimental studies of thermal capillary waves are mainly performed using techniques such as X-ray reflectivity [START_REF] Bm Ocko | X-ray reflectivity study of thermal capillary waves on liquid surfaces[END_REF], surface quasi-elastic light scattering (SQELS) [START_REF] Dma Buzza | General theory for capillary waves and surface light scattering[END_REF][START_REF] Sk Peace | Surface quasi-elastic light scattering from an amphiphilic graft copolymer at the air-water interface[END_REF], optical BY AFM interferometry [START_REF] Maayani | Cavity optocapillaries[END_REF][START_REF] Cantu | An interferometric technique to study capillary waves[END_REF] and high speed video imaging [START_REF] Dirk Gal Aarts | Direct visual observation of thermal capillary waves[END_REF][START_REF] Bolognesi | Mechanical characterization of ultralow interfacial tension oil-in-water droplets by thermal capillary wave analysis in a microfluidic device[END_REF]. Such techniques can also shed light on the viscoelastic properties of surfaces and interfaces when decorated by surfactants. These additives, even in minute quantities can alter not only the surface tension of surfaces but render these surfaces rheologically non trivial: such surfaces may acquire a surface elasticity and a surface viscosity [START_REF] Miles | Surface-wave damping in closed basins[END_REF][START_REF] Stenvot | Study of viscoelasticity of soluble monolayers using analysis of propagation of excited capillary waves[END_REF][START_REF] Scott | Square patterns and secondary instabilities in driven capillary waves[END_REF][START_REF] Lu | Shape oscillations of drops in the presence of surfactants[END_REF][START_REF] Chou | Capillary wave scattering from a surfactant domain[END_REF][START_REF] Tj Asaki | Effect of an insoluble surfactant on capillary oscillations of bubbles in water: Observation of a maximum in the damping[END_REF][START_REF] Jordan T Petkov | Precise method for measuring the shear surface viscosity of surfactant monolayers[END_REF][START_REF] Barentin | Surface shear viscosity of gibbs and langmuir monolayers[END_REF][START_REF] Giermanska-Kahn | Negative effective surface viscosities in insoluble fatty acid monolayers: Effect of phase transitions on dilational viscoelasticity[END_REF][START_REF] Zell | Surface shear inviscidity of soluble surfactants[END_REF][START_REF] Girish | Linear waves at a surfactant-contaminated interface separating two fluids: Dispersion and dissipation of capillary-gravity waves[END_REF].

In this chapter, an AFM measurement of the thermal capillary fluctuation on the surface of a bubble deposited on a solid substrate is presented. A model for bubble shape oscillation is addressed to explain the measured bubble resonance frequencies, effective mass and the damping coefficient. The surface viscosity due to the contamination is extracted from the measurement of the additional damping.

Modeling of Bubble Shape Vibration

We consider a hemispherical bubble which is deposited on a solid surface in water and the radius of the undisturbed bubble is R b . The quality factor of the resonance of the bubble oscillation studied in this chapter is larger than 10 which means that viscous damping of the liquid flow is rather weak. We may assume that the flow is derived from a potential ψ satisfying Laplace's equation, ∇ 2 ψ = 0 [START_REF] Prosperetti | Linear oscillations of constrained drops, bubbles, and plane liquid surfaces[END_REF]. The spherical coordinates (r, θ, φ) centered at the center of the undisturbed bubble is adopted (see Fig. 4.1). For azimuthally symmetry, the solution of this equation is given in the form of [START_REF] Prosperetti | Linear oscillations of constrained drops, bubbles, and plane liquid surfaces[END_REF][START_REF] Rayleigh | On the capillary phenomena of jets[END_REF]:

ψ(r, θ, t) = ∞ n=0 b n (t) r n+1 P n (cos θ), (4.1) 
where P n is the Legendre function, b n (t) is a coefficient which is the function of time, and n is the order number. Legendre function satisfies the relations of:

1 0 P 2k (cos θ) P 2l (cos θ) d (cos θ) = δ l,k (4k + 1) , (4.2) 
and

1 0 ∂P 2k (cos (θ)) ∂θ ∂P 2l (cos (θ)) ∂θ d( cos (θ)) = 2k (2k + 1) (4k + 1) δ k,l , (4.3) 
where δ l,k = 0 if k = l, δ l,k = 1 if k = l and k, l are integer numbers.

The flow velocities are given by: The impermeability of the substrate requires that the perpendicular velocity of the fluids must vanish on the substrate:

v r (r, θ) = ∂ψ ∂r , ( 4 
v θ r, θ = π 2 = -1 r ∂ψ ∂θ r, θ = π 2 = 0.
To satisfy this equality, the value of n should be even number, i.e. n = 2k, which means that only even modes of the bubble shape oscillation can appear for a hemispherical bubble. And then, we have:

ψ (r, θ, t) = ∞ k=0 b 2k (t) r (2k+1) P 2k (cos θ). (4.5)
The deformation of the hemispherical bubble shape is given by:

ξ (θ, t) = ∞ k=0 c 2k (t) P 2k (cos θ), (4.6) 
where the amplitude c 2k (t) is a function of time. The radial velocity of the flow must satisfy the boundary conditions on the surfaces of the bubble: Injecting Eq. ( 4.7) into the potential expression of Eq. (4.5), we get:

v r (r = R b ) = ∂ψ ∂r (r = R b ) = ξ (t,
ψ (r, θ, t) = - ∞ k=0 R (2k+2) b ċ 2k (t) (2k + 1) r (2k+1) P 2k (cos θ). ( 4 
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Volume Conservation

Neglecting the dissolution of air molecules into water, the volume of the bubble should be constant, i.e.

∆V = 1 3 π/2 0 2π 0 [(R b + ξ) 3 -R 3 b ] sin(θ)dθdφ = π/2 0 2π 0 [(ξR 2 b + R b ξ 2 ) 3 -R 3 b ] sin(θ)dθdφ = 2πR b 2 c 0 (t) + 2πR b ∞ k=1 c 2 2k (t) 4k + 1 = 0 (4.9)

Potential Energy

The potential energy E p of the bubble surface is given by E p = σ∆S, here σ is the surface tension of the bubble surface, S is the surface area of the bubble surface. The change of the bubble surface is given by

d (∆S) = 2R b ξ + ξ 2 + 1 2 ∂ξ ∂θ 2 sin (θ)dθ dφ = 2π 2R b ξ + ξ 2 + 1 2
∂ξ ∂θ 2 sin (θ)dθ.

(4.10)

Using the bubble deformation expression of Eq. ( 4.6), the potential energy is expressed as:

E p = σ d(∆S) = 2πσ 2R b c 0 + ∞ k,l c 2k c 2l 1 0 P 2k (cos (θ)) P 2l (cos (θ)) + 1 2 ∂P 2k (cos (θ)) ∂θ ∂P 2l (cos (θ)) ∂θ d( cos (θ)) = 2πσ 2R b c 0 + ∞ k,l c 2k c 2l 1 4k + 1 δ l,k + 1 2 2k (2k + 1) 4k + 1 δ l,k . (4.11)
Using Eq. (4.2) and Eq. (4.9), the expression of potential energy becomes:

E p = 2πσ 2R b c 0 + ∞ k=1 2k (2k + 2) + 2 2 (4k + 1) c 2 2k = 2σ∆V R b + πσ ∞ k=1 (2k + 2)(2k -1) 4k + 1 c 2 2k = πσ ∞ k=1 (2k + 2)(2k -1) 4k + 1 c 2 2k .
(4.12)

MODELING OF BUBBLE SHAPE VIBRATION

Kinetic Energy

Using the expression for the velocity of the fluid, we can calculate the kinetic energy E k by [111]:

E k = 1 2 ρ (∇ψ) 2 dV = ρ 2 (ψ∇ψ) • ndS = ρ 2 ψ ∂ψ ∂r r=R b R 2 b 2π sin (θ) dθ, (4.13)
here ρ is the density of the fluid surrounding the bubble. Injecting the velocity potential Eq. (4.5) into Eq. (4.13) and using Eq. ( 4.2), we get the expression for the kinetic energy E k :

E k = R 2 b πρ ψ ∂ψ ∂r r=R b sin (θ)dθ = -πρR 3 b ∞ k,l
ċ2k ċ2l (2k + 1)

1 0 P 2k (cos (θ)) P 2l (cos (θ)) d(cos (θ)) = πρR 3 b ∞ k=1 ċ 2k 2 (2k + 1) (4k + 1) (4.14)

Viscous Damping of the Bubble Shape Oscillation

To calculate the viscous damping Ḋ vis , we use the expression [111]:

Ḋ vis = η ∇ v 2 • ndS = η ∂ v 2 ∂r dS = 2πηR 2 b ∂ v 2 ∂r sin(θ)dθ. (4.15)
here η is the viscosity of the fluid surrounding the bubble. Using Eq. (4.4), we obtain

∂ v 2 ∂r = 2v r ∂v r ∂r + 2v θ ∂v θ ∂r = - 2 R b ∞ k,l (2k + 2) ċ2k ċ2l P 2k (cos (θ)) P 2l (cos (θ)) + ∂P 2k (cos (θ)) ∂θ ∂P 2l (cos (θ)) ∂θ (2k + 1) (2l + 1) . (4.16)
Injecting Eq. (4.16) in Eq. (4.15), and using Eq. (4.2), Eq. ( 4.3), we obtain:

Ḋ vis = 4πηR b ∞ k,l (2k + 2) ċ2k ċ2l 1 0 P 2k (cos (θ)) P 2l (cos (θ)) + ∂P 2k (cos (θ)) ∂θ ∂P 2l (cos (θ)) ∂θ (2k + 1) (2l + 1) d( cos (θ)) = 4πηR b ∞ k=1 (2k + 2) (2k + 1) ċ2 2k .
(4.17)

CHAPTER 4. THERMAL CAPILLARY WAVE ON HEMISPHERICAL BUBBLE PROBED BY AFM

Boundary damping on Solid Wall

To calculate the boundary damping Ḋb on the substrate wall, we use the expression [111]:

Ḋb = 1 2 ωρη 2 ∞ R v 2 2πrdr. (4.18)
where v is the velocity along the solid wall, i.e. 

v 2 θ = π 2 = v 2 r θ = π 2 = ∞ k,l R (2k+2l+4) b r (2k+2n+4) ċ 2k ċ 2l P 2k (0) P 2l (0). ( 4 
Ḋb = πη δ k,l ∞ R b R (2k+2l+4) r (2k+2l+3) ċ 2k ċ 2l P 2k (0) P 2l (0) dr = πηR 2 b δ k,l ċ 2k ċ 2l P 2k (0) P 2l (0) 2k + 2l + 2 = πηR 2 b δ k ċ2 2k P 2 2k (0) 4n + 2 + k,l,l =k ċ 2k ċ 2l P 2k (0) P 2l (0) 2k + 2n + 2 . (4.20)
where δ = 2η/ρω is the penetrate depth. For vibration frequency close to the resonance ω 2k , the amplitude c 2k is much larger than the amplitude c 2l and thus we can neglect the second term of the right hand side of the previous equation. Therefore, the boundary damping is expressed as:

Ḋb ≈ πηR 2 b δ ∞ k=1 ċ2 2k P 2 2k (0) 4k + 2 . (4.21)

Lagrange equation: resonance frequency and damping coefficient

For the bubble oscillation, we have

d dt ∂E k ∂ ċn - ∂E k ∂c n + ∂E p ∂c n = - 1 2 ∂ Ḋ ∂ ċn . (4.22)
The damping Ḋ is the sum of the bulk viscous damping Ḋvis and the boundary damping Ḋb on the substrate: Ḋ = Ḋvis + Ḋb . Note here, n = 2k is the even integer numbers. Each term in 4.2. MODELING OF BUBBLE SHAPE VIBRATION Eq (4.22) is obtained from: 

d dt ∂E k ∂ ċn = 2πρR 3 b cn (n + 1) (2n + 1) , (4.23) 
∂E k ∂c n = 0, (4.24) 
∂E p ∂c n = 2πσ (n -1) (n + 2) (2n + 1) c n , (4.25) 1 2 
∂ Ḋ ∂ ċn = 4πηR b (n + 2) (n + 1) ċn + πηR 2 b δ ċn P 2 n (0) 2(n + 1) . ( 4 
2ρπR 3 b cn (n + 1) (2n + 1) + 2πσ (n -1) (n -2) (2n + 1) c n = πηR b (n + 2) (n + 1) ċn + πηR 2 b δ ċn P 2 n (0) 2(n + 1)
.

Eq. (4.27) can be written as

cn +2 η ρR 2 b (n + 2) (2n + 1) + η 8ρδR b (2n + 1) P 2 n (0) ċn + σ ρR 3 b (n -1) (n + 1) (n + 2) c n = 0.
(4.28) This equation is in the form of: cn + 2β n ċn + ω2 n c n = 0. And the resonance ωn is given by [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF][START_REF] Prosperetti | Linear oscillations of constrained drops, bubbles, and plane liquid surfaces[END_REF][START_REF] Prosperetti | Free oscillations of drops and bubbles: the initial-value problem[END_REF] ωn = αω ref ,

where α = (n -1)(n + 1)(n + 2) and

ω ref = σ/ρR 3 b . (4.30) 
The damping coefficient β n is the sum of the viscous damping and the boundary damping coefficients, i.e. β n = β vis n + β b n , where viscous damping coefficient β vis n is given by [109]

β vis n = η ρR 2 b (n + 2) (2n + 1) , (4.31) 
and the boundary damping coefficient β b n is given by

β b n = η 8ρδR b (2n + 1) P 2 n (0) . (4.32) 

Pinned contact line constraint

Assuming that c n (t) depends on time as c n (t) = c 0 n e jωt with oscillation amplitude of c 0 n , and the pining of the contact line imposes that the velocity of bubble oscillation on substrate is equal to zero, therefore, we have

ξ t, θ = π 2 = ∞ k=0 ċn P n cos π 2 = jω ∞ n=0 c n P n (0) = 0. ( 4 
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To take into account the pining of the contact line on resonance frequency, we introduce the Lagrange multiplier λ and the function:

g (c n ) = ∞ n=0 c n P n (0) = 0. (4.34) 
The Lagrange equation Eq. (4.22) becomes:

d dt ∂E k ∂ ċn - ∂E k ∂c n + ∂E p ∂c n = - 1 2 ∂ Ḋ ∂ ċn + λ ∂g ∂c n . (4.35) 
Then we have

cn + 2 η ρR 2 b (n + 2) (2n + 1) + η 8ρδR b (2n + 1) P 2 n (0) ċn + σ ρR 3 b (n -1) (n + 1) (n + 2) c n = λ 2ρπR 3 b (n + 1) (2n + 1) P n (0) , (4.36) 
which can be written in the form of

cn + 2β n ċn + Ω 2 n c n = λ 2ρπR 3 b (n + 1) (2n + 1) P n (0) . (4.37) 
where

Ω 2 n = σ ρR 3 b (n -1) (n + 1) (n + 2).
And thus, we have

c n = λ 2ρπR 3 b (n + 1) (2n + 1) P n (0) Ω 2 n -ω 2 + 2jβ n ω . (4.38) 
Substituting Eq. (4.38) into Eq. (4.33), we get

∞ n=0 (n + 1) (2n + 1) P 2 n (0) Ω 2 n -ω 2 + 2jβ n ω = 0. (4.39) 
If we neglect the damping term in Eq. (4.39) and using n = 2k, we get equation for the resonance frequency given by [111,[START_REF] Prosperetti | Linear oscillations of constrained drops, bubbles, and plane liquid surfaces[END_REF] ∞ k=1

(2k + 1) (4k + 1) (2k -1)(2k + 1)(2k + 1) -α 2 n P 2k (0) 2 = 0. (4.40) 
The solutions of Eq. (4.40) correspond to the resonances for each mode of the bubble with fixed contact line, i.e.

ω n = α n ω ref . (4.41) 
The calculated values for the first six resonance modes of α n are given in Tab. 4.1: Vibration resonance coefficient for a hemispherical bubble. αn is for a freely moving contact line, with ωn = αn ω ref , and α n is for a pinned contact line, with ω n = α n ω ref .

It can be easily verified that Eq. (4.39) has complex valued solutions, where Im(ω) = β n is the damping coefficient. In the Fig. 4.2, we show the calculated damping β n for a bubble with radius R b = 500 µm (that includes viscous Eq. (4.31) and boundary contributions Eq. (4.32) versus the frequency for two cases, free contact line (β vis n + β b n ) and fixed contact line (Im(ω)). We can conclude that with a good approximation, the damping of the capillary wave on the bubble in the case of fixed contact line can be safely described by the analytical equations: Eq. (4.31) for the viscous part and Eq. (4.32) for the boundary part. Note here with an excellent approximation (error of the order of 1%), Eq. (4.31) can be simplified to [111] 

β vis n ≈ η ρR 2 b α n 4/3 = 2η ρ 1/3 σ 2/3 ω n 4/3 . (4.42) 
Then, taking into account that (2n + 1)P 2 n (0) ≈ 1.2, Eq. (4.32) can be simplified to

β b n ≈ 1.2η 8ρδR b = 3 √ 2η 1/2 40ρ 1/2 R b ω n 1/2 . ( 4 
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Damping with impurities

For the general case where the flat interface is partially cover by contaminant, the damping versus the wave number k n was calculated by by Miles [START_REF] Miles | Surface-wave damping in closed basins[END_REF] and Rajan et al. [START_REF] Girish | Linear waves at a surfactant-contaminated interface separating two fluids: Dispersion and dissipation of capillary-gravity waves[END_REF]. For lower solubility of the surfactant, using the capillary equation of ω 2 n = σ ρ k 3 n , we can express the damping coefficient due to contaminants as:

β s n = √ 2η 1/2 ω n 7/6 4ρ 1/6 σ 1/3 ε 2 + ς(ς + 2) (ε -1) 2 + 1 + ς(ς + 2) , (4.44) 
with the dimensionless elasticity parameter ε and dimensionless surface viscosity parameter ς , which are respectively given by

ε = √ 2ρ 1/6 η 1/2 σ 2/3 ω n -1/6 e s , (4.45a) 
ς = √ 2ρ 1/6 η 1/2 σ 2/3 ω n 5/6 η s , (4.45b) 
where η s is the surface viscosity, which includes both dilatation and shear viscosities and e s = c( ∂σ ∂c ) 0 is the surface elasticity. As defined in chapter 2, c is the surfactant surface concentration, and the subscript 0 denotes the quantities at equilibrium. A micro syringe is used to deposit an air bubble on a glass surface spin coated with a polystyrene layer, whose thickness is 100 nm. This air bubble is stable for several hours. We bring a AFM cantilever in contact with the air bubble interface and measure its time-dependent motion, from which we determine the power spectral density of the capillary fluctuations of the interface. The radius of the contact line R c is measured from the optical top-view image (see Fig. 4.3.b), and the contact angle from the side view (see Fig. 4.3.c). Experiments were performed using an AFM (Dimension 3100, Bruker) equipped with a liquid cell (DMFT-DD-HD). Two cantilevers were used in the experiments. One cantilever (CSG01, NT-MDT) with a stiffness of k c = 0.12 ± 0.02 N/m is denoted as cantilever1 and the other one (MLCT, type B, Bruker) with a stiffness of k c = 0.024 ± 0.002 N/m is denoted as cantilever2. Both cantilevers were calibrated by thermal noise method.

Method and Experimental Results

Experimental setup and method

The position of the cantilever was controlled by the AFM stepping motor stage allowing to bring the tip in contact with the bubble. Once this contact was established, the cantilever was driven solely by the vibrations of the bubble. The maximum amplitude of these vibrations was < 1 nm. The vertical deflection of the cantilever, due to these oscillations, was acquired Typical PSD curves probed by cantilever1 are shown in Fig. 4.4. The blue curve is measured for the cantilever in bulk water, far from the bubble, and shows clearly the vibrational mode of the cantilever with characteristic frequency near 4 kHz. The main driving force for these cantilever fluctuations is the thermal noise [START_REF] Levy | Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods[END_REF][START_REF] Heim | Direct thermal noise calibration of colloidal probe cantilevers[END_REF][START_REF] Bd Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]. By fitting the PSD of the cantilever in bulk water by Eq. (1.28), the cantilever stiffness was obtained. The red curve displays the PSD of the cantilever deflection when in contact with the bubble. There are at least five welldefined peaks.

For such bubble, each vibrational mode can be described as an oscillating spring of amplitude ξ n (t) satisfying the equation of motion

m n ξn (t) + 2β n ξn (t) + ω 2 n ξ n (t) = F n (t), (4.46) 
with the effective mass m n , the damping coefficient β n , the resonance frequency and the mode number n. We use the shorthand notation ξn = dξ/dt. As we postulated above, the driving force F n (t) is due to the thermal noise, which is assumed uncorrelated in time and independent for each mode. Taking the Fourier transform of Eq. 4.46, and using 12 N/m. The thermal spectra of the cantilever far from the bubble (blue circles) and in contact with the bubble (red circles) deposited on PS surface.

|F n (ω) | 2 = 2β n m n k B T , BY AFM
we obtain the one sided power spectral density

PSD (ξ, ω) = ∞ n PSD (ξ n , ω) in the form of PSD (ξ, ω) = ∞ n=1 4β n (ω 2 -ω 2 n ) 2 + 4β 2 n ω 2 k B T πm n . (4.47) 
Because in our experiment, the size of the bubble is orders of magnitudes larger than that of cantilever, the cantilever follows the motion of the bubble, i.e. PSD(Z, ω) = PSD(ξ, ω). 4.4 using Eq. (4.47). Such fits, which account quantitatively for the shape of the peaks, allow to determine the resonance frequency ω n as well as the effective mass m n and the damping coefficient β n for the different mode numbers n. 

METHOD AND EXPERIMENTAL RESULTS

PSD (×10

Results

The values for the first five resonance frequencies of the power spectral density in Fig. 4.4, are plotted in Fig. 4.6. The theoretical values for both free contact line case (Eq. (4.29)) and pinned contact line case (Eq. (4.41)) are displayed along with the experimental values. The results are well accounted for using non slip boundary condition which leads to the conclusion that the contact line of the bubble on PS surface does not move on the surface but is pinned on the surface, and contact line pinning stiffens the vibrations and enhances the frequencies with respect to those obtained for free contact line, i.e. a n > ân .

In order to confirm the validity of conclusion of the pinned contact line on PS surface, we have performed several measurements with different bubble sizes (the radius ranges from 424 µm to 644 µm) and two cantilevers. Figure 4.7 shows the normalized resonance frequencies ω n /ω ref versus the mode number n. All the results for different cases collapse together with the values of α n (pinned contact line). we safely conclude that the contact line of bubble on PS surface is pinned. So the effective mass of the bubble oscillation is given by: Comparison of the measured effective mass m n with Eq. (4.49) is shown in Fig. 4.8. Apart from the mode at n = 2, the data from different realizations collapse on a single curve.The effective mass has been normalized by the radius of the bubble R b . Further, the decrease of this effective mass with the mode number n as anticipated by expression Eq. (4.49) is accounted for quantitatively. While our assumption of independent modes seems plausible for higher modes, it is not for the first mode mainly because its frequency is intermediate between the first and second free modes contrary to the higher modes whose frequencies are rather close to the corresponding free mode (see Tab. 4.1).

m n = 2πρR 3 b (n + 1)(2n + 1) . ( 4 
So far, the bubble vibrations have been treated in the framework of potential flow in an inviscid fluid. Now we turn to the damping coefficient β n , which gives the width of the resonances in Fig. 4.4. Figure 4.9 shows the damping coefficient β n obtained with different bubble radii as a function of resonance frequencies ω n /2π. At clean interfaces, viscous damping of β v n is the dominant source of dissipation [START_REF] Lamb | Hydrodynamics[END_REF] which is the green curve in Fig. 4.9. Although it captures the overall trend of increasing β n versus ω n , it is about a factor 2 smaller than experimental values. Thus, viscous damping is not sufficient to explain the measurements. Further, additional damping due to the presence of the solid boundary does not contribute significantly. The blue and red lines take into account both viscous damping and boundary damping and are calculated using two different radii spanning the range of explored values in our experiments. The experimental values remain higher than expected from viscous and boundary damping indicating that additional damping is needed. The black solid line in Fig. 4.9 depicts the total damping BY AFM coefficient β tot n , including viscous damping (Eq. (4.42)), boundary damping (Eq. (4.43)) and the damping due to the surfactants (Eq. (4.44)): For lower surfactant concentration, in Eq. (4.45a) the surface elasticity e s is equal to the surfactant pressure. In chapter 2, the contamination was characterized on bubble surfaces prepared in the similar way and we found that e s = Π 0 ≈ 0.35 mN/m, which leads to a very small value of dimensionless elasticity parameter ε compared to the dimensionless surface viscosity parameter ς. Therefore, the surface elasticity can be neglected in this study.

β tot n = β vis n + β b n + β s n . ( 4 
In the above equation, the surface viscosity η s is the only adjustable parameter, taken as η s = 1.5 ± 0.2 × 10 -7 Pa • s • m. Each of the three contributions to Eq. (4.50) is necessary for a satisfactory fit of the data from different experiments but the contribution of the surface viscosity is crucial for a better agreement with experimental values. Note here the surface viscosity η s includes both dilatation and shear viscosity, which cannot be distinguished independently in our experiments. Because of the sight difference of the boundary damping β b n for different bubble sizes (the blue and red lines in Fig. 4.9), in the fitting by Eq. (4.50), we take an intermediate value of R b = 500 µm to calculate the boundary damping coefficient using Eq. (4.43).

CONCLUSION

The fitted value of η s is about ten times larger than those reported by Earnshaw [START_REF] Earnshaw | Surface viscosity of water[END_REF] for a pure water interface and Zell et al. [START_REF] Zell | Surface shear inviscidity of soluble surfactants[END_REF] for soluble surfactant covered interfaces. The discrepancy could be due to the fact that in the present work, the surface viscosity measured accounts both for surface dilatational viscosity as well as surface shear viscosity. Further, we believe that our measurements are not devoid of surface contamination. In fact, in one of our previous studies [START_REF] Maali | Viscoelastic drag forces and crossover from no-slip to slip boundary conditions for flow near air-water interfaces[END_REF] despite the fact that a careful protocol was applied to minimize surface impurities, the air-water surface was found to be prone to contamination rather quickly with drastic effects on the properties of the air-water interface even for minute quantities of contaminants. We believe that there are similar effects here. Remarkably, our experimental technique is capable of probing the surface viscosity with a high precision. This is shown by Fig. 4.9 where the bulk effects are well below the measured damping coefficient. We hypothesize that coupling such a technique with precise techniques for measuring surface shear viscosities (such as that of Zell et al. [START_REF] Zell | Surface shear inviscidity of soluble surfactants[END_REF]) provides a reliable technique to pin down the surface rheology of interfaces with various surface active agents and disentangle dilatational from shear viscosities.

Conclusion

In this chapter, we have presented the measurements of the thermal capillary fluctuation of bubbles deposited on solid substrates. The experimental data demonstrate that the soft AFM cantilevers are a powerful tool to probe the thermal motion of bubble. The cantilever deflection signal reflects the thermal fluctuation of the bubble surface directly. The spectrum of the fluctuations presents sharp resonance peaks for specific frequencies for which the motion of the interface is much more prominent than that for other frequencies. The analysis of these peaks allows to measure the resonance frequencies, effective mass and the damping coefficient for each mode of oscillation.

To explain the experimental results, we have presented a model for the bubble shape oscillation. Our measurements are in a good agreement with the model. The model allows us to measure the additional damping due to the presence of minute amounts of contaminants. The experimental results show that the contact line of a hemispherical bubble resting on a solid surface is fixed on the substrate. Moreover, our experimental method provides a useful new tool to probe the surface rheology.

In future experiments, we plan to study the variation of the surface viscosity versus the surfactant concentration. For low range of surfactant concentration, the contribution of the dilatation elasticity is very small, and any variation of the damping versus the concentration would be attributed to a variation of the shear viscosity. For higher range of concentration, the contribution of the dilatation elasticity should be taken into account.

We also project to work with surfaces that allow boundary slippage of contact line on substrates. The motion of the bubble contact line will affect the shape of the power spectrum. It may induce resonance frequency shift and additional damping that would be measured by our apparatus.

Chapter 5

Nanoscale Measurement of the Elastohydrodynamic Lift Force 

Context

Elastohydrodynamic is usually encountered for confined flow between soft interfaces. It deals with the coupling between the local pressure induced by the fluid flow and the deformation of soft samples. Recently, such a coupling was studied for much more compliant solids and smaller length scales, in the context of soft matter in confinement and at interfaces [START_REF] Brochard-Wyart | Hydrodynamics at soft surfaces: from rubber tyres to living cells[END_REF]. Such concept has been widely used to measure the response of soft surfaces using SFA [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF][START_REF] Leroy | Hydrodynamic interaction between a spherical particle and an elastic surface: a gentle probe for soft thin films[END_REF][START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF][START_REF] Wang | Out-of-contact elastohydrodynamic deformation due to lubrication forces[END_REF], AFM [START_REF] Derek Yc Chan | Dynamic deformations and forces in soft matter[END_REF][START_REF] Ivan U Vakarelski | Dynamic interactions between microbubbles in water[END_REF][START_REF] Dongshi Guan | Noncontact viscoelastic measurement of polymer thin films in a liquid medium using long-needle atomic force microscopy[END_REF][START_REF] Wang | Viscocapillary response of gas bubbles probed by thermal noise atomic force measurement[END_REF] and optical particle tracking [START_REF] Wirtz | Particle-tracking microrheology of living cells: principles and applications[END_REF].

Two decades ago a new force was theoretically predicted for an object sliding along a soft object [START_REF] Sekimoto | A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling[END_REF]. Their predictions suggest that an object moving along a soft surface in viscous fluid is repelled from the surfaces by a normal force F N exerted on the object [START_REF] Beaucourt | Optimal lift force on vesicles near a compressible substrate[END_REF][START_REF] Abkarian | Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force[END_REF][START_REF] Rallabandi | Rotation of an immersed cylinder sliding near a thin elastic coating[END_REF][START_REF] Urzay | Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low reynolds numbers[END_REF][START_REF] Hendrikus Snoeijer | Similarity theory of lubricated hertzian contacts[END_REF][START_REF] Pandey | Lubrication of soft viscoelastic solids[END_REF][START_REF] Daddi-Moussa-Ider | Reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane[END_REF][START_REF] Daddi-Moussa-Ider | Mobility of an axisymmetric particle near an elastic interface[END_REF]. Figure 5.1 summarizes scaling argument to evaluate the elastohydrodynamic lift LIFT FORCE force in the case of linear elasticity, thick soft substrate and low Reynolds number [START_REF] Skotheim | Soft lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF][START_REF] Urzay | The elastohydrodynamic force on a sphere near a soft wall[END_REF]. When a rigid cylinder moves along a rigid substrate in a viscous liquid (Fig. 5.1a), the pressure profile p(x) between the confining surfaces is antisymmetric (Fig. 5.1b). The integrated normal force F N /L = +∞ -∞ p(x)dx per unit length is zero, where L is the cylinder length. However, when the substrate is soft (Fig. 5.1c), due to the deformation δ(x) of the substrate, the pressure profile p(x) is not antisymmetric any more (Fig. 5.1d), which leads to the nonzero normal force with a scaling law of η 2 V 2 R 2 Gd 3 per unit cylinder length, where η is the viscosity of the liquid, R is the radius of the cylinder, d is the gap distance between the apex of the cylinder and the undeformed substrate and G is the shear modulus of the soft substrate [START_REF] Skotheim | Soft lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF]. When the object is spherical particle, the cylinder length L should be replaced by the hydrodynamic radius √ 2Rd (Fig. 5.1e) which gives the scaling law of

F N ∼ η 2 V 2 G R d 5/2 . (5.1)
Note here, R is the radius of the spherical particle. and d is the distance between the apex of the sphere and the undeformed substrate. Theoretical calculations show that, as the gap between the object and the soft substrate reduces, the force increases. Eventually, at very small gap, the competition between symmetry breaking and decreasing pressure leads to a saturation of the lift force [START_REF] Skotheim | Soft lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF][START_REF] Urzay | The elastohydrodynamic force on a sphere near a soft wall[END_REF][START_REF] Urzay | Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low reynolds numbers[END_REF].

Despite the fact that this lift force was studied theoretically by many researchers for different cases (thin and thick samples, compressible and incompressible materials, different shapes of surfaces), a little work was done experimentally [START_REF] Wang | Elastic deformation during dynamic force measurements in viscous fluids[END_REF][START_REF] Karan | Small-scale flow with deformable boundaries[END_REF]. Measurements of the rising speed and the distance to a vertical wall of a bubble allowed to extract an analogous normal force acting on the bubble [START_REF] Takemura | Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid[END_REF]. A qualitative observation was reported in the context of smart lubricant and elastic polyelectrolytes [START_REF] Bouchet | Experimental study and modeling of boundary lubricant polyelectrolyte films[END_REF]. A study, involving the sliding of an immersed macroscopic cylinder along an inclined plane, precoated with a thin layer of gel, showed an effective reduction of friction induced by the lift force [START_REF] Saintyves | Self-sustained lift and low friction via soft lubrication[END_REF]. The optical tracking of the driven motion of a microparticle in a microfluidic channel decorated with a polymer brush revealed the potential importance of this force in biological and microscopic settings [START_REF] Heather | Elastohydrodynamic lift at a soft wall[END_REF]. From the gravitational sedimentation of a macroscopic object along a vertical membrane under tension, another study observed an important normal drift, showing the amplification of the effect for very compliant boundaries induced by slender geometries [START_REF] Rallabandi | Membrane-induced hydroelastic migration of a particle surfing its own wave[END_REF]. The measurement of the shape deformation of a levitating droplet over a moving wall was also used to probe the effects of the lift force [START_REF] Sawaguchi | Droplet levitation over a moving wall with a steady air film[END_REF]. Their results show that the interaction between the particles and the membranes makes the normal velocity of the particles is quadratic in its sedimentation speed as predicted by calculation using soft lubrication theory. However, while this experimental literature provides confidence in the existence of the elastohydrodynamic lift force, as well as in its importance at small scales and for biology, no direct force measurement was performed to date and the saturation at the nanoscale was not yet observed. The scaling law for the elastohydrodynamic lift force acting on a spherical particle moving along substrates. a) A rigid cylinder moves along a rigid substrate laterally at a velocity of V . b) The distribution of the pressure for the cylinder moving along the rigid substrate. The resulting normal force per unit cylinder length is equal to zero. c) A rigid cylinder moves along a soft substrate laterally at a velocity of V . The soft substrate is deformed. d) The distribution of the pressure for the cylinder moving along a soft substrate. The resulting normal force per unit length is not equal to zero. e) A rigid spherical particle moves along a soft substrate. The cylinder length is replaced by the hydrodynamic radius, which leads to the expression of the normal force: [START_REF] Skotheim | Soft lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF][START_REF] Urzay | The elastohydrodynamic force on a sphere near a soft wall[END_REF]. LIFT FORCE In this chapter, a direct measurement of the elastohydrodynamic lift force acting on glass spherical particles moving in viscous fluid along soft PDMS samples is presented. Using AFM, the repelling force is probed versus the distance for different velocities, different viscosities and for different Young's moduli of the samples. Our results are in a good agreement with the model developed from the soft lubrication theory.

F N ∼ η 2 V 2 G R d 5/2

Methods

PDMS samples preparation and characterization

Soft substrates were prepared from polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning). The uncross linked PDMS and the curing agent were thoroughly mixed at mass ratios of 10 : 1, 20 : 1 and 30 : 1 followed by degassing under vacuum. The mixture was spin coated on cover slip of 24 mm × 24 mm, and was cured in the oven at 50 • C for 24 hours in order to promote an efficient cross-linking. The thickness of the samples was estimated to 25 µm -30 µm.

For materials characterization, Young's moduli were determined in an additional experiment. Through indentation experiments, the force-indentation data are fitted by Johnson-Kendall-Roberts (JKR) theory [START_REF] Langstreth | Surface energy and the contact of elastic solids[END_REF] to extract the Young's modulus (The JKR theory is suit to the application in the case of large tips and soft samples with large adhesion). As shown in Fig. 5.2, the relation between the load force F load and the indentation δ H is modeled by the JKR theory described as:

F load = a 3 πR - √ 8πa 3 E * W , (5.2) 

METHODS

δ H = a 2 R - 2πaW E * , (5.3) 
a 3 = 3R 4E * F load + 3πW R + 6πW RF load + (3πW R) 2 . (5.4)
where F load is the load force acting on the sphere, R is the radius of the spherical probe, δ H is the indentation depth of the sphere in the soft samples, a is the radius of the contact, W is the adhesive work, E * is the effective modulus with E * = E/(1 -ν 2 ), E is the Young's modulus of sample, and ν is the Poisson ratio of the sample. Since cross-linked PDMS samples are incompressible material to a very good approximation, the Poisson ratio is fixed to ν = 0.51 . Finally, we obtain

δ 3 H = 9 16 (3πW R) 2 E * 2 R 1 + F load 3πW R + 1 + 2F load 3πW R 2    1 - 2 3 2 1 + F load 3πW R + 1 + 2F load 3πW R    3 .
(5.5)

In the characterization, a stiff cantilever with a stiffness of 73 N/m was chosen such that the deflection remains small even at large indentation. A rigid sphere with a diameter of 15 µm was used to characterize the samples. Continuous force-indentation measurements were conducted by AFM in air with approaching velocity equals to 196 nm/s. 

CHAPTER 5. NANOSCALE MEASUREMENT OF THE ELASTOHYDRODYNAMIC LIFT FORCE

To extract the force-indentation curve from the force-displacement data obtain by AFM, the cantilever deflection sensitivity is first calibrated on a mica surface that is assumed to be infinitely stiff. The indentation is obtained by the relation of δ H = Z p -Z c , where Z p is the sample displacement, and Z c is the cantilever deflection. The contact position between the sphere and the sample is defined as the position where the jump occurs due to the adhesion force. 

Calibration of the piezo

In this study, the multi-axis piezo-system (NanoT series, Mad City Labs) was used, and this piezo allows to control the gap distance d between the sphere and the sample by displacing the sample vertically and also to vibrate the sample transversally. The former has been calibrated 5.2. METHODS in Sec. 1.2.3, and the latter calibration will be discussed in this section. With the same driving amplitudes, the larger the driving frequency, the lower oscillation amplitude of the piezo. Since the elastohydrodynamic lift force is scaled with V 2 , in order to minimize the error in the measurement, we need to measure the piezo velocity precisely. In this study, we use a calibrated grating to measure the motion of the piezo. As shown in Fig 5 .5a, a cantilever with a sharp tip is used to probe the motion of the piezo. A calibrated grating is fixed on the piezo, and the topographic profile of the grating is a triangular pattern, with a periodic length of 0.9 µm. When the cantilever is in contact with the grating, the piezo is driven to oscillate laterally. Both cantilever deflection and driving voltage are recored. 

Experiment

Experimental Setup

The experimental schematic of the setup is shown in Fig. 5.7. The experiment was performed using an AFM (Bruker, Bioscope) equipped with a liquid cell (DTFML-DD-HE) that allows working in a liquid environment. We used a spherical borosilicate particle (MO-Sci Corporation) with a radius R = 60 µm and a roughness of 0.9 nm measured over a 1 µm 2 surface area. The sphere was glued on the end of a silicon nitride V-shaped cantilever (SNL, Brukerafmprobes) using epoxy glue (Araldite, Bostik, Coubert). The soft samples were fixed on the multiaxis piezo-system (NanoT series, Mad City Labs) to control and scan the gap distance d between the sphere and the sample by displacing the sample vertically, and also to vibrate the sample 5.3. EXPERIMENT transversally at a frequency f = ω/2π = 25 Hz or 50 Hz, and with an amplitude A ranging form 3.6 to 36 µm. Note that the vertical displacement speed 20 nm/s being much smaller than the smallest transversal velocity amplitude Aω = 0.36 mm/s, the former can be neglected and a quasi-static description with respect to the normal motion is valid. Using the drainage method shown in Sec. 1.3.3, the stiffness k c = 0.21 ± 0.02 N/m of the cantilever is determined using a rigid silicon wafer as a substrate and for large enough gap distances (d = 200-20000 nm). The viscous liquids employed in this study are silicone oil and 1-decanol, with dynamic viscosities η = 96 mPa • s and 14.1 mPa • s, respectively. In all experiments, the hydrodynamic radius √ 2Rd being much smaller than the thickness of the soft substrates, i.e. √ 2Rd 25 µm, the sample can indeed be considered as semi-infinite.

Piezo stage

Substrate

Sphere

Cantilever

y z θ V = A ω s i n ( ω t ) x r F N R V x z PDMS substrate b δ(r,θ) d Viscous liquid h(r,θ) a Figure 5
.7: Schematic of the experimental setup. The soft substrate is fixed to a rigid piezo stage that is transversally oscillated along time t, at angular frequency ω, and with amplitude A. A rigid borosilicate sphere is glued to an AFM cantilever and placed near the substrate, with silicone oil or 1-decanol as a viscous liquid lubricant. The normal force F N exerted on the sphere, at a gap distance d from the surface, is directly measured from the deflection of the cantilever.

Using scaling arguments, the elastohydrodynamic lift force acting on a sphere immersed in a viscous fluid with a viscosity of η and moving at constant velocity V , near and parallel to a semi-infinite incompressible elastic substrate of shear modulus G = E/[2(1 + ν)], reads [START_REF] Skotheim | Soft lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF][START_REF] Urzay | The elastohydrodynamic force on a sphere near a soft wall[END_REF]]

F lift ∼ η 2 A 2 ω 2 G R d 5/2
.

(5.6) in the limit of small dimensionless compliance, κ = ηV /(Gd 2 ) 1. Note that, in this limit, κ corresponds to the ratio between the deformation of substrate and gap distance. To go beyond the scaling analysis, we have developed a model to calculate the missing prefactor in Eq. (5.6). Based on the soft lubrication theory [START_REF] Skotheim | Soft lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF], in the case of low Reynolds number 1 and linear LIFT FORCE elasticity of the sample, we calculate the elastohydrodynamic lift force as [START_REF] Zhang | Direct measurement of the elastohydrodynamic lift force at the nanoscale[END_REF] 

F lift 0.416 η 2 A 2 ω 2 G R d 5/2
.

(5.7)

Since the lateral velocity of the samples is sinusoidal and the lift force depends on the squared velocity, Eq. (5.7) can be expressed as two additive components: A time-independent component (DC component) given by

0.416 η 2 A 2 ω 2 2G R d 5/2 , (5.8) 
and a component oscillating at double frequency (AC component), given by 0.416

η 2 A 2 ω 2 cos(2ωt) 2G R d 5/2
.

(5.9)

Focusing only on the DC component, it is measured though a temporal average F =< F N > of the instantaneous normal force F N recorded by the AFM (see Fig. 5.7a), from which the AC component will disappear in the measurement. Therefore, the temporal average F of F lift over a period 2π/ω of oscillation is given by:

F ≈ 0.416 η 2 A 2 ω 2 2G R d 5/2
.

(5.10)

Introducing parameters of κ = ηAωR/( √ 2Gd 2 ) and F * = ηAωR 3/2 /(2d) 1/2 , Eq. (5.10) becomes into the form of F F * ≈ 0.416κ.

(5.11) To determine the gap distance, we take into account the cantilever deflection induced by the normal force. As a remark, in most cases studied here, the typical substrate's deformation, ∼ F/(πE * √ 2Rd) [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF], remains much smaller than the cantilever's deflection. For the rigid case, no finite force is detected above the current nanoNewton (nN) resolution, at all distances. This is expected, since for such a hard surface (Young's modulus is in the range of 100 GPa), so there is no elastohydrodynamic effect (the deformation of the substrate induced by the flow is negligible). The elastohydrodynamic effects occur at gap distances much smaller than the ones typically probed here [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF]. As a remark, the fact that no force -even purely hydrodynamic-is measured in this case is a direct confirmation for the validity of the quasistatic description with respect to the imposed vertical displacement of the sphere. In the contrast, for the soft case, a systematic nonzero force is measured, and observed to increase as the gap distance is reduced. LIFT FORCE Furthermore, as shown in Fig. 5.9, the measured force F asymptotically scales as F ∼ d -5/2 at large gap distances, in the agreement with the prediction of Eq. (5.10). Interestingly, at smaller gap distances, a saturation of the lift effect is observed, as reported previously [START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF][START_REF] Saintyves | Self-sustained lift and low friction via soft lubrication[END_REF].

Results & Disscussion

Having tested the asymptotic dependence of the force with the main geometrical parameter, i.e., the gap distance d, which showed a first evidence of the lift, we now turn to the other key elastohydrodynamic parameters appearing in Eq. (5.10), i.e., the velocity amplitude Aω, viscosity η and shear modulus G. To test the dependences of the force with those three parameters, we use two dimensionless variables as defined above: the dimensionless compliance κ = ηAωR/( √ 2Gd 2 ) and the dimensionless force F/F * with F * = ηAωR 3/2 /(2d) 1/2 . 

Velocity effect

Discussion

In the dimensionless presentation of lift forces measured for different velocities, different viscosities and different hardness, we first observe at small κ that F/F * is linear with respect to compliance κ, and that the curves for various values of the varied parameters collapse with one another, which validates further of Eq. (5.11). Moreover, around κ ∼ 1, a deviation from the previous asymptotic behavior is observed leading to a maximum prior to an interesting decay at large κ. In addition, the collapse for various values of the varied parameter is maintained, indicating that even at large dimensionless compliance κ, the dimensionless force F/F * remains a function of κ only. This suggests that the same physics, coupling lubrication flow and linear elasticity, is at play for all value of compliance κ. In order to test this prediction, we plot F/F * as a function of κ in Fig. 5.14 for all the experiments performed in this study. First, all the experimental data collapses on a single master curve. Second, Eq. (5.11) is found to be in excellent agreement with the low-κ part of the data, with no adjustable parameter. Finally, the behavior at large κ reveals the possible existence of a power law: F/F * ∼ κ -1/4 . Indeed, at this regime, the deformation of the substrate δ is in the same order of gap distance d, i.e. δ/d ∼ 1.

The other terms in the series expansion of pressure distribution in Fig. 5.1d should be taken into account. For example, the term of (δ/h) 2 should not be neglected in the expression of the lift force, which will reduce the value of life force predicted by Eq. (5.7). Therefore a saturation may occur. The typical deformation δ ∼ RηV Gd leads to the typical distance of d ∼ RηV /G. By inserting this value to Eq. (5.1), we get F lift ∼ η 3/4 V 3/4 G 1/4 R 5/4 , which is equivalent to F/F * ∼ κ -1/4 . This gap-independent scaling suggests that the lift force saturates at small enough distances (large κ), in agreement with the observation made in Fig. 5.8. Such a result is attributed to a competition between the increase of the elastohydrodynamic symmetry breaking and the decrease of the pressure magnitude due to the substrate's deformation [START_REF] Pandey | Lubrication of soft viscoelastic solids[END_REF]. 

Conclusion

In this chapter, we have presented an experimental study of the lift force acting on spherical particle moving along thick, soft samples in viscous liquid. As the gap between the sphere and the sample is reduced, a lift force acting on the sphere is observed, and increases with a power law of -5/2. Our experiment is the first direct measurement of the elastohydrodynamic lift force at the nanoscale. Moreover, the data for various amplitudes, frequencies, viscosities, and Young's moduli collapse in a master curve. For small compliances, the results are rationalized quantitively based on the classic soft lubrication theory, and for large compliances, or equivalently at small confinement length scales, a saturation of the lift force is observed and a scaling law of -1/4 is discussed.

In this chapter, we have presented the measurement of the DC component of lift force on thick samples. For future experiment, we will investigate the behavior of this force versus the thickness of the samples. We will also study the effects of poroelasticity on the lift force, for example, using liquids that swell the samples. Using the Lock-in Amplifier, we will measure the AC component of the lift force that oscillates at the frequency of 2ω (see Eq. (5.9)). In the latter situation, for high frequencies, the sample deformation is no more pure elastic, but the loss modulus would affect the elastohydrodynamic lift force. A sphere moving along an air bubble is another configuration which is suitable to the study of the lift force that would be induced by the capillary deformation of the air-water interface.

General Conclusion and Perspective

In this thesis, we have used the dynamic colloidal AFM to probe the nano-rheology of the confined flow at soft interfaces made up of air bubbles or PDMS.

The fluid flow between the vertical oscillating sphere and bubble surface generates two effects: the advection of the surfactant impurities and the deformation of the bubble surface. At large distances, where the bubble deformation is negligible, our experimental results demonstrate that very low concentrations of surface impurities drastically modify boundary conditions for water flows near the air-water interfaces. Both viscous and elastic forces are exerted by the interface on the vibrating sphere even when very low doses of contaminants are present. When varying the frequency from low frequencies to high frequencies, a crossover from no-slip to full slip boundary conditions occurs in the viscous drag force. Besides the reduction of the viscous force, the elastic drag force shows a nontrivial variation as the vibration frequency changes. The value of the elastic force is comparable to the viscous force in the intermediate range. Furthermore, our experiment methods allow to detect the impurity concentration at an air-water interface through its viscoelastic response to a vibrating AFM probe.

At intermediate distances (d ∼ 6πηωR 2 /σ), the capillary deformation due to the hydrodynamic pressure is at play. To probe the visco-capillary interaction, the cantilever is excited by either thermal excitation or external acoustic excitation. The experimental results obtained with both methods of cantilever excitation are in a qualitative agreement with the simplified model based the spring-dashpot in series. At small distances, a discrepancy is observed between the experimental results and the simplified model. Therefore, the numerical solution of Navier-Stokes equation combined with Young-Laplace equation is calculated. The numerical calculations are in a good agreement with the experimental results and allow us to measure the surface tension of bubble interface without contact.

AFM measurements of the thermal capillary fluctuation of the bubble surfaces are presented in chapter 4. The experimental data demonstrates that the soft AFM cantilevers are a powerful tool to probe the thermal motion of bubble. The cantilever deflection signal reflects the thermal fluctuation of the bubble surface directly. The spectrum of the fluctuations presents sharp resonance peaks for specific frequencies for which the motion of the interface is much more prominent than that for other frequencies. The analysis of these peaks allows to measure the resonance frequencies, effective mass and the damping coefficient for each mode of oscillation. To explain the experimental results, we have presented a model for the bubble shape oscillation. Our measurements are in a good agreement with the model, and allows us to measure the From applied research perspectives, once the experimental setup used to probe the viscocapillary interaction (vertical oscillations) is improved, it can be a powerful tool for tensiometry of air-water interfaces. This setup allows to measures the surfaces tension of the interfaces without contact (no-invasive) and also it requires a very small volume of probed liquid (tens of microliters).
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Figure 1 . 1 :Figure 1 . 2 :

 1112 Figure 1.1: The Bioscope II AFM.

Figure 1 . 4 :

 14 Figure 1.4: An AFM image of nanobubbles on polystyrene surface measured in AM-AFM mode.

Figure 1 . 5 :

 15 Figure 1.5: The force curve obtained with cantilever (MLCT type B, Bruker) on mica surface in air using the Bioscope II AFM (Bruker). a) The cantilever deflection (Z c ) in volts versus piezo displacement (Z p ) that was obtained directly from the photo detector. b) The deflection is converted into nm by multiplying the measured deflection in volts with the value of the sensitivity (sens = 58.4 nm/V). c) The corresponding Z c versus d plot, with d = Z p + Z c .

Figure 1 . 6 :

 16 Figure 1.6: The stage used to make colloidal probes.

Figure 1 . 7 :

 17 Figure 1.7: The process of making colloidal probes. a) The colloidal particles in ethanol solution are spread on the mica surface. b) After the evaporation of the ethanol, the particles are left on the surface. c) The AFM cantilever contacts with epoxy glue to wet the cantilever. d)The glue is attached on the cantilever. e) The wetted cantilever contacts the colloidal particle. f) The colloidal particle is glued to the end of the cantilever.

Figure 1 . 8 :

 18 Figure 1.8: Optical images of the particle which was glued on the end of a V-shaped cantilever (SNL-10, Bruker).

   shows the 3D AFM image of a spherical borosilicate particle (MO-Sci Corporation) obtained in contact mode. The size of the imaged area is 10 µm × 10 µm. In Fig.1.9b, the open circles shows the height section (the red line in Fig.1.9a) and the solid line represents the fitting curve using the circle equation. The fitted radius for this colloidal sphere is R = 47 ± 0.5 µm.
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 1 Figure 1.10: Image of the piezo (NanoT series, MAD CITY LABS) used in the thesis.

Figure 1 . 11 :

 111 Figure 1.11: Image of the disk driven by the piezo.
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 air113 Figure 1.13: The schematic of static Wilhelmy plate measurement.

Figure 1 . 14 :Figure 1 . 15 :

 114115 Figure 1.14: The system to perform Wilhelmy plate measurement. a) The tensiometer from Nima technology. b) The operation software for the tensiometer.

Figure 1 .

 1 Figure 1.15 shows the measured surface tension with different concentrations of SDS (Sodium Dodecyl Sulfate) solutions. In this measurement, a paper plate with a thickness of e p = 918 nm

Figure 1 . 16 :

 116 Figure 1.16: Schematic of the cantilever with a length of l, a width of w and a thickness of e. A force F is applied to the end of the cantilever in z direction.

Figure 1 . 17 :

 117 Figure1.17: The cantilever shape for the first six modes of a rectangular cantilever with a free end.

  of < Z 2 c >, one can deduce k c . An example of the thermal noise for a cantilever (MLCT type B, Bruker) measured in pure water at the room temperature (T = 297 K) is shown in Fig 1.18 . The value of < Z 2 c > is calculated as 0.22 ± 0.03 nm 2 , which gives the cantilever stiffness of k c = 0.022 ± 0.003 N/m.

Figure 1 . 18 :

 118 Figure 1.18: The temporal thermal fluctuation of the cantilever (MLCT type B, Bruker) in pure water (sampling frequency: 200 kHz).

1. 3 .Figure 1 . 19 :

 3119 Figure 1.19: The power spectral density measured for the cantilever (MLCT type B, Bruker) calculated from the thermal fluctuation shown in Fig 1.18.

Figure 1 . 20 :

 120 Figure 1.20: The fitting curve for the first mode shown in Fig 1.19 by Eq. (1.28). The extracted stiffness k 1 = 0.019 ± 0.005 N/m, resonance frequency f 1 = 3070 Hz and quality factor Q 1 = 1.46 for the first mode.

Figure 1 . 21 :

 121 Figure1.21: Schematic of cantilever calibration by drainage force method. A spherical colloidal probe with a radius of R is approaching a hydrophilic surface with a velocity V in z direction in viscous liquid.

1. 3 .

 3 CALIBRATION OF THE CANTILEVERThe solution of Eq. (1.29b) taking into account the boundary conditions leads to v r (z. (1.30) into the continuity equation of Eq. (1.29a), we get the expression for approaching velocity of the sphere as

Figure 1 . 22 :

 122 Figure 1.22: The cantilever deflection (red circle) and relative velocity (blue square) versus the seperation distance. The relative velocity V is obtained from the time derivative of the separation distance.

Figure 1 . 23 :

 123 Figure 1.23: The velocity divided by deflection versus distance. The solid line is the linear fitting by Eq. (1.34), which gives us the cantilever stiffness k c = 0.16 ± 0.01 N/m.

2. 2

 2 Figure 2.1: a) Sketch of the hydrodynamic interaction measurement between a colloidal sphere and air-water interface. The interface is prepared by deposing a spherical bubble on polystyrene surface. A glass sphere glued at the end of the AFM cantilever vibrates at the distance d. b) The optical image of the experimental setup (top view).
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 222 Figure 2.2: Numerical results of the viscous component F vis and elastic component F el of the hydrodynamic force divided by the viscous non-slip hydrodynamic drag force F 0 . And the continuous line in a) and b) are the fitting curves by the real and the imaginary terms of Eq. (2.13), respectively.

  Fig.2.3a presents the analytically calculated hydrodynamic coefficient F vis F 0 and F el F 0 using the analogy described above. We have also reported the numerical calculation of Sec. 2.2.1. The curves obtained from the analogy have the same profile of the curves obtained from numerical calculation, but they do not coincide each other. In order to superimpose the curves, we have to modify the value of ω 0 in Eq. (2.22) and make it equal to ω 0 = 2.72ω 0 as shown in Fig.2.3b.

Figure 2 . 4 :

 24 Figure 2.4: Sketch of the dynamic AFM method. A cantilever is excited by external acoustic excitation with oscillation of Z d = A d e jωt . A piezo stage is used to control the distance between the probe and the sample surface.

Figure 2 . 5 :

 25 Figure 2.5: The experimental setup for dynamic AFM method.

CHAPTER 2 .

 2 VISCO-ELASTIC EFFECTS AT AIR-WATER INTERFACE:CONTAMINATION EFFECT a multi-axis piezo system(NanoT series, Mad City Labs) that allows a large displacement (up to 50 µm) with a high accuracy under close loop control. Using the drainage method shown in Sec.1.3.3, the stiffness of the cantilever with an attached sphere, k c = 0.25 ± 0.005 N/m, was determined from the drainage data at large distance (200 -10000 nm). The bubbles' radii R b were measured with an optical microscope. The cantilever quality factor and resonance frequency are respectively Q 0 = 3.9, ω c /2π = 1340 Hz, which were obtained from the fitting of the spectrum of thermal noise by Eq. (1.28) for the first mode of the cantilever vibration. We took mica surface as the reference sample to check the validity of the this method. The experiments were perform in ultra-pure water at room temperature (21 • C).

Figure 2 . 6 :

 26 Figure 2.6: The amplitude (red circle) and phase (blue square) measured far from mica surface in pure water.

Figure 2 .

 2 Figure 2.6 shows the amplitude A ∞ and phase ϕ ∞ far from the surface versus the driving frequency. Figure 2.7 shows the driving forces F 1 , F 2 versus the frequencies calculated from the data shown in Fig. 2.6 by Eqs. (2.28a) and (2.28b).

Figure 2 . 7 :

 27 Figure 2.7: The real F 1 and imaginary F 2 components of the driving force calculated from the amplitude and phase in Fig. 2.6 using Eqs. (2.28).

Figure 2 . 8 :

 28 Figure 2.8: The DC component of cantilever deflection Z c as a function of the piezo displacement Z p at 200 Hz. The insect shows the coresponding amplitude A and phase ϕ measured from the AC component of the cantilever deflection versus piezo displacement Z p .

Figure 2 . 9 :

 29 Figure 2.9: The calculated damping ωγ int and stiffness k int of probe-sample interaction at 200 Hz on mica surface.

Figure 2 . 10 :

 210 Figure 2.10: The damping measured in both drainage method and dynamic colloidal probe AFM method and the black line the theoretical calculation with γ 0 /k c .

Figure 2 .

 2 Figure 2.11 presents the viscous Γ el and the elastic Γ vis coefficients of the hydrodynamic drag force versus distance for the sphere vibrating at frquency of 200 Hz close to a mica surface.As expected, the hydrodynamic interaction with the mica surface is purely viscous, and the elastic coefficient Γ el is zero for all the distances.

Figure 2 . 11 :

 211 Figure 2.11: Viscous Γ vis and elastic Γ el components for the sphere vibrating at frequency 200Hz in pure water on mica surface.

Figure 2 .

 2 Figure 2.12 shows the viscous coefficient Γ vis of the hydrodynamic force versus the distance d for different vibrating frequencies. Note that, the viscous part of the hydrodynamic drag coefficients extracted for different vibration frequencies coincide with each other, and with the theoretical hydrodynamic drag coefficient given by 6πηR 2 /d for non slip boundary conditions.

Figure 2 .

 2 Figure 2.13 shows the viscous Γ vis and elastic Γ el drag coefficients measured on the bubble at the vibration frequency of 100 Hz. Unlike the measurement on the mica surface, the results

Figure 2 . 12 :

 212 Figure 2.12: The hydrodynamic drag coefficient versus the distance for different vibration frequencies in pure wanter with mica surface. The solid dark line is the theoretical drag coefficient Γ 0 = 6πηR 2 /d for no slip boundary condition on mica surface.

Figure 2 . 13 :

 213 Figure 2.13: Viscous Γ vis and elastic Γ el components of the hydrodynamic drag force measured on bubble surface in pure water. The cantilever sphere vibrates at a frequency of 100 Hz.

Figure 2 . 14 :

 214 Figure 2.14: The viscous component Γ vis of the hydrodynamic drag force for different oscillation frequencies measured on bubble surface. The calculated viscous component of drag coefficient corresponding to full slip and non slip boundary conditions on the bubble surface which are represented by the grey and dark line, respectively.

Figure 2 . 15 :

 215 Figure 2.15: a) The experimental results of hydrodynamic force F vis /F 0 and F el /F 0 as a function of vibrating frequency with ultra-pure water. b) The results for the second experiment performed one month later under similar conditions. The solid lines represent the numerical calculation in 2.2.1 with a fitting parameter of Π 0 . The fitted values of Π 0 are (0.25 ± 0.05) mN/m and (0.35 ± 0.05) mN/m for experimental results in a and b, respectively.

F el /F 0 bFigure 2 . 16 :

 0216 Figure 2.16: The experimental results of hydrodynamic force F vis /F 0 and F el /F 0 as a function of vibrating frequency with 60 µM SDS solution. The solid lines represent the numerical calculation in 2.2.1 with a fitting parameter of Π 0 , whose value is Π 0 = (1.0 ± 0.1) mN/m.
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. 3 )

 3 By substituting Eq. (3.2) into Eq. (3.1) and integrating Eq. (3.1), we obtain dξ dr = -3jωZηrR eff 8σdh . (3.4) 3.2. ANALYTICAL MODEL FOR VISCO-CAPILLARY EFFECT: SIMPLIFIED MODEL Assuming ξ(r = R b ) = 0, and integrating Eq. (3.4), we get the expression of the bubble deformation,

Figure 3 . 1 :

 31 Figure 3.1: Equivalent model of the viscoelastic response of the microsized bubble: spring and dashpot in series.

. 8 )

 8 CHAPTER 3. VISCO-ELASTIC EFFECTS AT AIR-WATER INTERFACE: CAPILLARY EFFECT By substituting Eq. (3.6) and Eq. (3.7) into Eq. (3.8), the impendance of the elastic component G and the dissipative component G of the interaction can be given as

Figure 3 . 4 :

 34 Figure 3.4: The quality factor versus distance which was measured on bubble surface in pure water. The solid black line is the fitting curve by Eq. (3.16) and the green dotted line and the red dashed-dotted line are the theoretical simulating curves for quality factor of the full slip boundary condition Q /Q 0 = 1/ 1 + 3πηR 2 eff 2γ bulk d and non-slip boundary condition Q /Q 0 =

Figure 3 . 5 :

 35 Figure 3.5: The resonance frequency of the cantilever versus the separation distance between the sphere and the bubble interface. The solid line is the fitting curve by Eq. (3.15).The inset figure is the zoomed one for the area selected by the rectangular box.
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 363737 Figure 3.6: The measured mechanical impedance G /k c , G /k c versus gap distance d at 200 Hz with the bubble radius of R b = 321±3 µm in 2 mM SDS solution. The solid lines are the fitting curves using Eqs. (3.11). The only adjusting parameter is the surface tension σ, which gives a value of σ = 53 ± 2 mN/m.

Figure 3 . 8 :

 38 Figure 3.8: The measured mechanical impedance versus the normalized distance d/d 0 for three different driving frequencies ( 50 Hz, 100 Hz and 200 Hz).

( 3 .

 3 18) into Eq. (3.19), we obtain jω (Z 0 + ξ(r))

CHAPTER 3 .

 3 Figure 3.9 shows the dimensionless viscous and elastic components versus the normalized distance d/d c for the bubble in 1 mM SDS solution. The bubble radius is R b = 346 µm, the contact angle is θ c = 81.5 • and the sphere is vibrated at the frequency of 200 Hz, which is small enough to satisfy ω ω 0 . The open circles represent the experimental results extracted from the measurements of amplitude and phase of the sphere oscillation. The solid lines are the numerical results calculated using Eq. (3.22). The fitted value of the surface tension is σ = 58 mN/m, which is very close to the value σ = 57.5 mN/m measured by Wilhelmy plate method presented in Sec. 1.2.4. Note here, in the numerical calculation, half of the contour length of the bubble b = R b (π -θ c ) is taken as the cut-off length.

Figure 3 . 9 :

 39 Figure 3.9: The dimensionless mechanical impedance versus the normalized distance by typical distance d c measured in 1 mM SDS solution. The blue and red open circle represent the elastic and viscous parts of the experimental results respectively, and the solid lines represent the numerical solution of Eq. (3.22). The only fitting parameter is the surface tension σ, which gives the value of σ = 58 mN/m.
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Figure 4 . 1 :

 41 Figure 4.1: A hemispherical bubble is deposited on a solid surface.

  θ). And thus we can express b 2k (t) as function of c 2k (t) by

Figure 4 . 2 :

 42 Figure 4.2: Calculated damping coefficient β n that includes viscous term β vis n and boundary term β b n versus frequency for the free contact line and the damping extracted from Eq. (4.39) for the fixed contact line (bubble radius R b = 500 µm).

Figure 4 .

 4 Figure 4.3.a shows the experimental setup used in this experiment.A micro syringe is used to deposit an air bubble on a glass surface spin coated with a polystyrene layer, whose thickness is 100 nm. This air bubble is stable for several hours. We bring a AFM cantilever in contact with the air bubble interface and measure its time-dependent motion, from which we determine the power spectral density of the capillary fluctuations of the interface. The radius of the contact line R c is measured from the optical top-view image (see Fig.4.3.b), and the contact angle from the side view (see Fig.4.3.c). Experiments were performed using an AFM (Dimension 3100, Bruker) equipped with a liquid cell (DMFT-DD-HD). Two cantilevers were used in the experiments. One cantilever (CSG01, NT-MDT) with a stiffness of k c = 0.12 ± 0.02 N/m is denoted as cantilever1 and the other one (MLCT, type B, Bruker) with a stiffness of k c = 0.024 ± 0.002 N/m is denoted as cantilever2. Both cantilevers were calibrated by thermal noise method.

Figure 4 . 3 :

 43 Figure 4.3: a) Experimental setup. The bubble was deposited on polystyrene (PS) surface, and the cantilever tip was used to probe the vibration of the bubble. b) Top view and c) side view images, from which we obtain the radius of the contact line R c = 592 ± 5µm and the contact angle of θ c = 94 ± 2 • .

Figure 4 . 4 :

 44 Figure 4.4: Example of the measured PSD Curves using a cantilever with stiffness k c = 0.12 N/m. The thermal spectra of the cantilever far from the bubble (blue circles) and in contact with the bubble (red circles) deposited on PS surface.

Figure 4 .

 4 Figure 4.5 shows a fit to the third peak of the PSDs shown in Fig.4.4 using Eq. (4.47). Such fits, which account quantitatively for the shape of the peaks, allow to determine the resonance frequency ω n as well as the effective mass m n and the damping coefficient β n for the different mode numbers n.

Figure 4 . 5 :

 45 Figure 4.5: The spectrum (circles) and the fitting curve using Eq. (4.47) (solid line) for the third peak of Fig. 4.4.

Figure 4 . 1 2 m n ċn 2 ,Figure 4 . 6 : 50 k

 4124650 Figure 4.8 displays the effective mass m n versus mode number n. These masses are extracted from the fits of the PSD using Eq. (4.47). Here data from different bubble radii are displayed. If we express the kinetic energy of bubble in the form of E k = ∞ n

Figure 4 . 7 :

 47 Figure 4.7: The normalized resonance frequencies ω n /ω ref versus the mode number n for different bubble sizes and two cantilevers. The red solid and black solid lines represent the normalized resonance frequencies for free contact line αn and fixed contact line α n , respectively.

Figure 4 . 8 :

 48 Figure 4.8: The results of the effective mass normalized by the cubic power of the radius of the bubble versus the mode number for different bubbles. The dots with different colors and shapes represent the different measurements for different bubbles. The black line represents the theoretical results which was given by Eq. (4.49).

Figure 4 . 9 :

 49 Figure 4.9: Damping coefficient versus the frequency for different bubbles. The green solid line corresponds to the viscous damping β vis n as in Eq. (4.42). The red and blue solid lines correspond to the viscous damping plus boundary damping (β vis n +β b n ), where β b n was calculated for R b = 644 µm and 423 µm, respectively by Eq. (4.43). The black solid line is calculated from Eq. (4.50) and accounts for all terms of viscous damping β vis n (Eq. (4.42)), boundary damping β b n (Eq. (4.43)) and the effects of surfactants β s n (Eq. (4.44)), with the surface viscosity is η s = (1.5 ± 0.2) × 10 -7 Pa • s • m.
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  Figure 5.1:The scaling law for the elastohydrodynamic lift force acting on a spherical particle moving along substrates. a) A rigid cylinder moves along a rigid substrate laterally at a velocity of V . b) The distribution of the pressure for the cylinder moving along the rigid substrate. The resulting normal force per unit cylinder length is equal to zero. c) A rigid cylinder moves along a soft substrate laterally at a velocity of V . The soft substrate is deformed. d) The distribution of the pressure for the cylinder moving along a soft substrate. The resulting normal force per unit length is not equal to zero. e) A rigid spherical particle moves along a soft substrate. The cylinder length is replaced by the hydrodynamic radius, which leads to the expression of the normal force:F N ∼ η 2 V 2

Figure 5 . 2 :

 52 Figure 5.2: Contact of a sphere with an elastic substrate.

Figure 5 .

 5 [START_REF] Howard A Stone | Engineering flows in small devices: microfluidics toward a lab-on-a-chip[END_REF] shows an example of the force-indentation measurement which was performed on PDMS (10:1) sample.

Figure 5 . 3 :

 53 Figure 5.3: Example of the force-indentation curve obtained by AFM on PDMS (10 : 1) sample.

Figure 5 .

 5 Figure 5.4 shows the third power of the indentation δ 3 H versus the load force F load . Fitting the curve using Eq. (5.5), and taking E * and W as two adjustable parameters, the effective moduli E * of the PDMS samples are extracted as 1940 ± 135 kPa, 800 ± 65 kPa and 390 ± 25 kPa for PDMS (10:1), PDMS (20:1) and PDMS (30:1), respectively. With the relationship of E * = E/(1 -ν 2 ), and ν = 0.5, the PDMS samples could be characterized with the Young's moduli of 1455 ± 100 kPa, 600 ± 50 kPa and 293 ± 20 kPa for PDMS (10:1), PDMS (20:1) and PDMS (30:1), respectively.

Figure 5 . 4 :

 54 Figure 5.4: Indentation depth δ H as a function of load force F load for different PDMS samples. The solid lines are the fitting curves by Eq. (5.5), which give us the Young's moduli E of these three PDMS samples of 1455 ± 100 kPa, 600 ± 50 kPa and 293 ± 20 kPa for PDMS (10:1), PDMS (20:1) and PDMS (30:1), respectively.

Figure 5 . 5 :

 55 Figure 5.5: a) The schematic of the calibration of the piezo using the grating. b) The recored cantilever deflection versus driving voltage. The driving frequency of the piezo is 25 Hz, and the amplitude is 1 V.

  Figure 5.5b shows the recorded cantilever deflection as a function of the piezo driving voltage for CHAPTER 5. NANOSCALE MEASUREMENT OF THE ELASTOHYDRODYNAMIC LIFT FORCE the calibration at 25 Hz with an amplitude of 1 V. By counting the the number of peaks in the cantilever deflection signal, the piezo displacement can be obtained by multiplying the peak number with the periodic length. In Fig 5.5b, for the driving voltage of 2 V (peak to peak), we have 20.2 ± 0.1 peaks that corresponding to a piezo displacement of 20.2 × 0.9 µm = 18.2 µm. The piezo is calibrated at 25 Hz and 50 Hz with different driving amplitudes. The results are shown in Fig. 5.6. From a linear fitting (the black solid line in Fig. 5.6), we get the displacements per volt of 9.46 µm/V for 25 Hz, and 3.02 µm/V for 50 Hz, respectively.

Figure 5 . 6 :

 56 Figure 5.6: The calibration results at 25 Hz and 50 Hz. The solid lines are the linear fitting curves for the results. From the fitting, we obtain the displacements per volt of 9.46 µm/V for 25 Hz, and 3.02 µm/V for 50 Hz, respectively.

Figure 5 .

 5 Figure 5.8 shows the force F as a function of the gap distance d, for rigid (silicon wafer) and soft substrates (PDMS 20:1). The liquid is silicone oil with viscosity of η = 96 mPa • s. The amplitude of the velocity is Aω = 0.57 mm/s.

Figure 5 . 8 :

 58 Figure 5.8: Measured force F averaged from F N (see Fig. 5.7) as a function of the gap distance d to the substrate, for both rigid (silicon wafer) and soft substrates (PDMS 20:1). The liquid is a silicone oil with a viscosity of η = 96 mPa • s. The amplitude of the velocity is Aω = 0.57 mm/s.

Figure 5 . 9 :

 59 Figure 5.9: A log-log representation of the data for the soft substrate in Fig. 5.8, and the solid line therein indicates a -5/2 power law.

Figure 5 .Figure 5 .Figure 5 .

 555 Figure 5.10a shows the force F versus the gap distance d for two different oscillation amplitudes. Figure5.10b represents the dimensionless force F/F * as a function of κ for these two oscillation amplitudes. Figure5.11a shows measured force F for two different oscillation frequencies. Figure5.11b represents the dimensionless F/F * as a function of κ for these two oscillation frequencies. Here, the sample is the cross-linked PDMS (10:1), and the liquid is 1-decanol with viscosity of η = 14.1 mPa • s. We can see that the lift force increases as the velocity increases, and the dimensionless forces F/F * collapse in both figures of 5.10 and 5.11.

Figure 5 .Figure 5 . 12 :Figure 5 .Figure 5 . 13 :

 55125513 Figure 5.12 shows the results for two different liquids (silicon oil and 1-decanol) with different associated viscosities η = 96 mPa • s and η = 14.1 mPa • s, respectively. The substrate is the cross-linked PDMS (10:1), and the velocity amplitudes are Aω = 0.36 mm/s for silicone oil and Aω = 2.32 mm/s for 1-decanol. Figure5.12a shows the measured force F as a function

Figure 5 . 14 :

 514 Figure 5.14: Dimensionless force F/F * as a function of dimensionless compliance κ in logarithmic scales for all the results measured in this study and the solid line is the model of Eq.(5.11). The dashed line indicates the asymptotic behavior of F/F * ∼ κ -1/4 .

  

  

  

  

  

  

Table 1 . 1 :

 11 The values of α i for free end cantilever, and the subscript of i indicates the mode number.
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  .26) Substituting Eq. (4.23), Eq. (4.24), Eq. (4.25) and Eq. (4.26) into Eq. (4.22), we get

  .46 9.49 16.73 25.10 34.47 44.74 α n 5.37 11.86 19.53 28.28 37.99 48.69

	4.2. MODELING OF BUBBLE SHAPE VIBRATION		
	n	2	4	6	8	10	12
	αn 3Table						
							4.1.

Notice that Z c is not measured directly, but it is deduced from the measurement of the inclination at the end of the cantilever.

We have used the effective radius R eff instead of the sphere radius R in the expression of hydrodynamic radius because we investigate the drag force on spherical bubble surface.

Note here, the viscous G and elastic G components are related to the calculation in Sec.

2.3.1 by G = γ int ω, G = k int .

The shear modulus G is related to Young's modulus by G = E/(2(1 + ν)).

The Reynolds number of the system is equal to Re = ρV √

2Rd/η. With the typical values: velocity V = 2.32 mm/s, hydrodynamic radius of √ 2Rd = 9 µm and kinetic viscosity η/ρ = 17 mm 2 /s, we get Re ≈ 10 -3 1
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surfactant at the bubble surface may results in a shift of resonance frequency of bubble oscillation).

Figure 3.10: The air-water surface tension as a function of SDS concentration as obtained from the fits of the mechanical impedance (red dots) and measurements using Wilhelmy plate method (blue dots). additional damping due to the presence of minute amounts of contaminants. The experimental results show that the contact line of a hemispherical bubble resting on a solid surface is fixed on the substrate. Moreover, our experimental method provides a useful new tool to probe the surface rheology.

Finally, we have presented an experimental study of the lift force acting on spherical particle moving along thick, soft samples in viscous liquids. As the gap between the sphere and the sample is reduced, a lift force acting on the sphere is observed, and increases with a power law of -5/2. Our experiment is the first direct measurement of the elastohydrodynamic lift force at the nanoscale. Moreover, the data for various amplitudes, frequencies, viscosities, and Young's moduli collapse in a master curve. For small compliances, the results are rationalized quantitively based on the soft lubrication theory, and for large compliances, or equivalently at small confinement length scales, a saturation of the lift force is observed and a scaling law of -1/4 is discussed.

All these measurements demonstrate that the dynamic colloidal AFM is a well-established and powerful tool to probe the surface properties in a confined geometry.

As a perspective of our investigation of the thermal capillary oscillation of the bubble shape, we can use such method to probe the variation of the surface viscosity versus the concentration of surfactants. In fact, by adding a small amount of the surfactant, the contribution of the dilatation elasticity is very small, and any variation of the damping versus the concentration would be attributed to a variation of the shear viscosity. For higher concentration of the surfactant, the contribution of the dilatation elasticity should be taken into account. We also project to study the dynamic friction of the contact line on the substrate. We expect that adding surfactant to water will modify the boundary conditions of the bubble contact line, i.e. the contact line will not be fixed on the substrate, which may induce additional damping that will be observed from the spectrum of the bubble shape oscillation.

As the outlook for the work concerning the measurements of elastohydrodynamic lift force we project to measure the in-phase and out-of-phase components of the force versus the driving frequency. We will use the Lock-in-Amplifier to measure the amplitude and phase oscillations of the cantilever at 2ω. We expect to answer the following questions:

• How does the lift force behave at high frequencies where both rheological properties, elastic and loss moduli of the PDMS have the same magnitude?

• How does the non-stationary effect contribute to the saturation of the lift force at high frequencies?

We project also to use air bubble as surface to probe the lift force. Indeed, at small distance the hydrodynamic pressure induced by the lateral oscillating sphere is so large that the bubble surface will be deformed which leads to elastohydrodynamic coupling. Beside the study of the lift force versus the frequency and versus the surface tension of the interface, we can also investigate the contribution of the advection of surfactants and surface charges to the lift force.