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Nano-rhéologie aux interfaces molles sondées par microscope à force atomique

Résumé: Des progrès récents dans les études expérimentales et théoriques ont montré que l’écoulement liquide à l’échelle
micro/nano se comporte différemment de celui à l’échelle macroscopique. À l’échelle microscopique, les propriétés de surface
sont prédominantes pour le comportement d’écoulement proche des parois. Pour un confinement élevé, non seulement la
physico-chimie des surfaces de confinement est importante, mais leur comportement élastique doit également être pris en
compte. Dans cette thèse, nous avons utilisé l’AFM dynamique pour sonder l’écoulement confiné sur des surfaces molles
(bulles d’air et échantillons PDMS) et nous avons montré que:

• A l’interface air-eau, la présence d’impuretés tensioactives modifie le flux à proximité des interfaces de manière drastique,
ce qui conduit aux réponses viscoélastiques. Les forces visqueuses et élastiques agissant sur la sphère sont extraites
de la mesure du mouvement de la sphère. En raison de la contamination par l’agent tensioactif, la force visqueuse
présente un croisement des conditions aux limites antidérapantes aux conditions limites de glissement complet et la
force élastique apparaît également avec une valeur comparable à la force visqueuse.

• A faible distance, la pression visqueuse induite par la vibration de la sonde colloïdale déforme la surface de la bulle et
donne lieu à l’interaction visco-capillaire. Une excitation par bruit thermique ou une excitation acoustique externe sont
utilisées pour entraîner la sonde AFM. Pour expliquer nos mesures, nous avons développé un modèle simplifié basé sur
un ressort-dashpot en série et nous avons également effectué la résolution numérique de l’équation de Navier-Stokes
combinée à l’équation de Young-Laplace. L’ajustement de nos résultats expérimentaux nous permet de mesurer la
tension superficielle de l’interface de la bulle sans contact.

• Le cantilever AFM est un outil puissant pour sonder le mouvement thermique de l’interface de la bulle hémisphérique.
Le spectre de telles oscillations thermiques nanométriques de la surface de la bulle présente plusieurs pics de résonance
et révèle que la ligne de contact de la bulle hémisphérique est fixée sur le substrat. La viscosité de surface de l’interface
bulle due à la contamination par le tensioactif est obtenue à partir de l’analyse de ces pics.

• Une force de portance élastohydrodynamique agit sur la sphère se déplaçant à proximité et le long d’un substrat mou
dans un liquide visqueux. La force de levage est sondée en fonction de la taille de l’espace, pour diverses vitesses
d’entraînement, viscosités du liquide et rigidité de l’échantillon. À grande distance, les résultats expérimentaux sont en
excellent accord avec un modèle développé à partir de la théorie de la lubrification douce. À petite distance de l’espace,
une saturation de la force de portance est observée et une loi d’échelle pour cette saturation est donnée et discutée.

Mots-clés : AFM dynamique, Nano-rhéologie, Interfaces molles, Écoulement visqueux, Accouchement, Réponses viscoélas-
tiques

Nano-rheology at soft interfaces probed by atomic force microscope

Abstract: Recent progresses in experimental and theoretical studies have shown that the liquid flow at micro/nano scale
behaves differently from that at macroscale. At microscale, surface properties are predominant for the flow behavior at
the boundaries. For high confinement, not only the physico-chemistry of the confining surfaces are important, their elastic
behavior should also be taken into account. In this thesis, we used the dynamic AFM to probe the confined flow at soft
surfaces (Air bubbles and PDMS samples) and we have shown that:

• At the air-water interface, the presence of surfactant impurities modifies the flow near the interfaces in a drastic manner,
which leads to the viscoelastic responses. The viscous and elastic forces acting on the sphere are extracted from the
measurement of the sphere motion. Due to the surfactant contamination, the viscous force shows a crossover from
non-slip to full slip boundary conditions and the elastic force also appears with a comparable value to the viscous force.

• At small distance, the viscous pressure induced by the colloidal probe vibration deforms the bubble surface and gives
rise to the visco-capillary interaction. Thermal noise excitation or external acoustic excitation are used to drive the
AFM probe. To explain our measurements, we have developed a simplified model based on a spring-dashpot in series
and we have also performed numerical solution of the Navier-Stokes equation combined with Young-Laplace equation.
Fitting our experimental results allow us to measure the surface tension of bubble interface without contact.

• The AFM cantilever is a powerful tool to probe the thermal motion of the hemispherical bubble interface. The spectrum
of such nanoscale thermal oscillations of the bubble surface presents several resonance peaks and reveals that the
contact line of the hemispherical bubble is fixed on the substrate. The surface viscosity of the bubble interface due to
the surfactant contamination is obtained from the analysis of these peaks.

• An elastohydrodynamic lift force is acting on a sphere moving near and along a soft substrate within a viscous liquid.
The lift force is probed as a function of the gap size, for various driving velocities, liquid viscosities, and sample
stiffnesses. At large distance, the experimental results are in excellent agreement with a model developed from the soft
lubrication theory. At small gap distance, a saturation of the lift force is observed and a scaling law for this saturation
is given and discussed.

Keywords: Dynamic AFM, Nano-rheology, Soft interfaces, Viscous flow, Confinement, Viscoelastic responses
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Introduction

Recent progresses in experimental and theoretical studies have shown that the liquid flow at
micro and nano scales behaves differently to that at macroscale [1, 2]. At microscale, for ex-
ample, for microfluidic devices, surface properties are predominant for the flow behavior [1, 3].
Such like, the Navier slip length of water, which quantifies the hydrodynamic boundary condi-
tion, has been shown with strongly vary with the surface hydrophobicity [4, 5, 6, 7]. In many
instances, the liquid-boundary interactions are caused by the presence of molecular solutes or
surface charges.

Due to the very low viscosity of the air, an air-water interface is expected to behave as a
free surface. In ideal case, the liquid flow should satisfy the full-slip boundary conditions at
the air-water interface [8, 9, 10, 11]. However, a recent experimental study showed that the
full-slip condition is not realized in general. Measurements of the drag force acting on sphere
moving toward the interface corresponds to an intermediate situation [12, 13, 14]. As a possible
explanation for this increase of viscous force for the ‘bare’ water surface, the authors invoked
the presence of impurities. Surfactant molecules adsorbed at the interface induce a shear stress
that corresponds to the gradient of surface tension and leads to the modification of the flow
profile. In some cases, it also leads to viscoelastic behavior. Moreover, surfactant molecules at
interfaces give rise to a surface shear viscosity which has been observed through the damping of
surface waves [15, 16], the enhancement of the drag coefficient of floating beads [17] or disks
[18] and the self-propulsion velocity of colloidal micro-swimmers [19].

For high confinement, not only the physico-chemistry of the confining surfaces are im-
portant, their elastic behavior also should be taken into account. Indeed, at small gap, the
hydrodynamic pressure between the confining surfaces can be very large, which may induce
elastic deformation of the surfaces. Elastohydrodynamic is the generic term used to describe
the hydrodynamic coupling between the liquid flow and the elastic deformation of the confining
surfaces. Much attention was given to the study of this effect at microscale in the last decade us-
ing optical microscopy, Surface Force Apparatus (SFA) and Atomic Force Microscopy (AFM).
Based on this elastohydrodynamic coupling, new tools were developed to probe the mechanical
properties of soft interfaces without contact. For example, using dynamic SFA [20, 21, 22] and
AFM [23, 24], the mechanical properties of several surfaces have been measured.

In such a context, a novel elastohydrodynamic lift force was theoretically predicted for an
object moving past soft surface within a fluid. This force arises from a symmetry breaking in
the contact shape and the associated flow, due to the elastohydrodynamic coupling introduced

1



above. Specifically, for a non-deformable surface (rigid surface), the contact shape and even the
lubrication pressure field (i.e. the dominant hydrodynamic stress) are antisymmetric, resulting
in no normal force. In contrast, a soft surface is deformed by the pressure field which then
loses its symmetry, resulting in a finite normal lift force. The lift force effect was calculated for
different elastic media and geometries [25, 26, 27], added effects of intermolecular interactions
[28], self-similar properties of the soft lubricated contact [29], the inertial-like motion of a
free particle a [30], viscoelastic effects [31], the motion of vesicles along a wall [32, 33], and
the case of membranes [34, 35]. Theoretical calculations show that, as the gap between the
object and the soft substrate reduces, the force increases. Eventually, at very small gap, the
competition between symmetry breaking and decreasing pressure leads to a saturation of the
lift force [25, 26, 27, 28]. Despite the abundant theoretical literature, experimental evidence for
such an elastohydrodynamic lift force remains recent and scarce [36, 37].

In this thesis, we have used AFM to study some aspects of soft interfaces introduced above.
The manuscript is organized as follows:

• In chapter 1, we will address the tools and methods used during this thesis. First, I will
introduce, the experimental setup, the process of preparation of the colloidal probe, the
calibration of the piezo stage and the Wilhelmy plate method used to measure the surface
tension. Second, two methods of AFM cantilever calibration will be presented: thermal
noise method and the drainage method.

• Chapter 2 is dedicated to the study of the viscoelastic properties of the air-water interfaces
due to the surfactant contamination. We will show that vibrating a small sphere mounted
on an AFM cantilever near a gas bubble immersed in water is an excellent probe of surface
contamination. Both viscous and elastic forces are exerted by an air-water interface on the
vibrating sphere even when very low doses of contaminants is present. The viscous drag
force shows a crossover from no-slip to slip boundary conditions while the elastic force
shows a nontrivial variation as the vibration frequency changes. We provide a model to
explain these results and propose a simple way of evaluating the concentration of such
surface impurities.

• In chapter 3, the study of the visco-capillary coupling between an oscillating colloidal
probe and a bubble will be presented. The measurements are performed using two differ-
ent methods for the cantilever driving, one with a thermal noise driving and the other one
with acoustic external driving. To investigate the interaction at very small distance, we
have performed numerical calculation to solve the combined Navier-Stokes and Young-
Laplace equations in the frame of lubrication approximation. The numerical calculations
are in a good agreement with the experimental results and allow us to measure the surface
tension of bubble interface without contact.

• In chapter 4, we will present the measurements of the thermal capillary fluctuation of
a bubble deposited on solid substrates. The cantilever deflection signal can reflect the
thermal fluctuation of the bubble surface directly. The spectrum of the thermal fluctuation
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presents sharp resonance peaks for specific frequencies where the motion of the interface
is much more important than that for other frequencies. The analysis of these peaks
allows to measure the resonance frequencies, effective mass and the damping coefficient
for each mode of oscillation. To explain the experimental results, we will present a model
for the bubble shape oscillation. The experimental results show that the contact line of a
hemispherical bubble resting on a solid surface is fixed on the substrate. The measurement
of additional damping due to the presence of minute amounts of contaminants allows us
to extract the surface viscosity of the bubble surface

• In chapter 5, we will report the experimental study of the lift force acting on spherical
particle moving along thick, soft samples in viscous liquid. We will show that, as the
gap between the sphere and the sample is reduced, a lift force acting on the sphere is ob-
served, and increases with a power law of -5/2. Moreover, the measurements for various
amplitudes, frequencies, viscosities, and Young moduli collapse will be shown and the
experimental results will be compared with the prediction based on the soft lubrication
theory. At small distance, a saturation of the lift force is observed and a scaling law will
be discussed.
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Chapter 1

General Methods Used in the Thesis

Contents
1.1 Description of the AFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Attachment of colloidal probe to AFM cantilever . . . . . . . . . . . 10

1.2.2 Roughness of the colloidal probes . . . . . . . . . . . . . . . . . . . 12

1.2.3 Calibration of the piezo . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Surface tension measurement: Wilhelmy plate method . . . . . . . . 15

1.3 Calibration of the Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Cantilever motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Thermal noise method . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 The drainage method . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1 Description of the AFM

Since the invention of Atomic Force Microscope (AFM) by Binning et al. [38] in 1986, it
has been widely used for topography imaging of both conducting and insulating surfaces up to
atomic resolution. AFM exceeds the limitation of Scanning Tunneling Microscope (STM) [39]
which only allows the imaging of conducting and semiconducting surfaces.

Figure 1.1 shows the Bioscopy II AFM (Bruker, USA) that is used for experimental work
presented in this thesis. The schematic of an AFM is shown in Fig. 1.2. A cantilever with a sharp
tip (see Fig. 1.3a) is fixed on a cantilever holder (see Fig. 1.3b) or a liquid cell (see Fig. 1.3c).
The backside of the cantilever is usually coated with a thin gold or aluminum layer to enhance
its optical reflectivity. When it works, a laser beam is focused on the end of the cantilever which
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CHAPTER 1. GENERAL METHODS USED IN THE THESIS

is placed on the AFM’s head scanner. Then the position of the reflected laser beam is monitored
by a four quadrant photo detector. For any variation of the cantilever deflection, the position
of reflected laser beam on the the photo detector will change. Therefore, the motion of the
cantilever can be traced by the photo detector signal.

Figure 1.1: The Bioscope II AFM.

Photo Detector

Cantilever

Sample

Laser beam

Scanner

Controller

Feedback

Tip

Figure 1.2: Schematic of AFM.
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1.1. DESCRIPTION OF THE AFM

Figure 1.3: a) A SEM image of cantilever (LRCH tip, 225 C3.0-R). b) A cantilever holder for
imaging in air or in vacuum. c) A liquid cell for imaging in liquid medium.

AFM imaging

The imaging by AFM is usually operated in one of two modes: contact mode (static mode) or
dynamic mode.

Contact mode is the basic mode in which the cantilever probe is in contact with the sample
during the scanning. As the tip moves along the surface, the topography of sample induces a
vertical deflection of the cantilever. To maintain the deflection at a constant value during the
scanning, the feedback loop imposes to the piezo a vertical displacement that corresponds to
the local height of the topography of the imaged sample. By recording the height information
at each point of the sample, the topographic image is generated. Generally, in contact mode, a
soft cantilever is used to avoid the deformation of the sample.

Dynamic modes are emerging as powerful tools for nanometer and atomic scale characteri-
zation and manipulation of a wide variety of surfaces. One of the major dynamic AFM modes
is Amplitude Modulation Atomic Force Microscope (AM-AFM, tapping mode AFM) [38], and
the other one is Frequency Modulation Atomic Microscope (FM-AFM) [40]. In AM-AFM, a
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CHAPTER 1. GENERAL METHODS USED IN THE THESIS

stiff cantilever is excited near its free resonance frequency, and the amplitude and phase of the
cantilever oscillation are measured. For the acquisition of the image, the amplitude is kept as
constant at a given value via the feedback loop [41]. In AM-AFM mode, in addition to the to-
pography image, a phase image is recorded which corresponds to the variation of the properties
in heterogeneous sample. The AM-AFM is usually used to image the soft material without de-
stroying the interface. Figure 1.4 shows an example of AM-AFM mode image of nanobubbles
on a polystyrene surface.

In contrast to AM-AFM, in FM-AFM mode, the cantilever acts as the oscillator in an active
feedback loop (Phase-Locked Loop, PLL). The resonant frequency value of the cantilever de-
pends on the interaction force between the cantilever tip and sample. Changes in the resonant
frequency are detected by a frequency modulation demodulator of the PLL. The feedback is
used to keep the cantilever oscillating at the given resonant frequency during the acquisition of
the image. To compensate the dissipation due to the interaction with the sample that reduces
the amplitude of the cantilever, the feedback monitors the excitation force to keep constant
oscillation amplitude [40, 42].

500 nm

10nm

-10nm

Figure 1.4: An AFM image of nanobubbles on polystyrene surface measured in AM-AFM mode.

Force curve

AFM is a powerful tool, not only can image the topography of surfaces but also measure surface
forces. The colloidal probe AFM measurement was first introduced by Ducker et al. [43, 44]
and then by Butt [45], and now it becomes a well-established and powerful tool for the study
of surface forces [46]. The force versus distance curves (i.e. force curves) record the vertical
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1.1. DESCRIPTION OF THE AFM

position of the tip and the deflection of cantilever in contact mode. Data from such force curves
provides valuable information for studing surface forces and material properties like elasticity,
hardness, Hamaker constant, adhesion and surface charge densities, etc [47]. By analyzing the
force curve, we can study the interaction between particles or between particle and interface in
a fluid. When a force is applied to the probe, the cantilever deflects and the reflected light beam
moves on the four quadrant photo detector.

Figure 1.5: The force curve obtained with cantilever (MLCT type B, Bruker) on mica surface in
air using the Bioscope II AFM (Bruker). a) The cantilever deflection (Zc) in volts versus piezo
displacement (Zp) that was obtained directly from the photo detector. b) The deflection is con-
verted into nm by multiplying the measured deflection in volts with the value of the sensitivity
(sens = 58.4 nm/V). c) The corresponding Zc versus d plot, with d = Zp + Zc.

The detector measures the deflection of the cantilever(Zc) in voltage versus the piezo dis-
placement (Zp) (see Fig. 1.5a). To obtain the force curve, the deflection has to be converted into
nm by multiplying the measured deflection in volts with the value of the sensitivity expressed
in nm/V. To get the value of the sensitivity, we fit the linear contact regime (hard contact be-
tween the tip and hard sample, see Fig. 1.5a), and we get the relation between the measured
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deflection in volts and the piezo displacement in nm, Zc(V ) = kZp. For a hard sample, the
piezo displacement should be equal to the cantilever deflection, Zc(nm) = Zp = Zc(V )/k in
the hard contact regime, and then the sensitivity is equal to: sens = 1/k. Finally, the tip-sample
separation distance is obtained by adding the cantilever deflection to the piezo displacement (ie.
d = Zp + Zc) (see Fig. 1.5c). Knowing the spring constant of the cantilever (kc), the deflection
can easily be converted into a force: F = kcZc.

1.2 Experimental Methods

1.2.1 Attachment of colloidal probe to AFM cantilever

The colloidal probe has the advantage of well-defined geometry and controllable size, which
simplifies the modeling of the interaction forces. Furthermore, for large sphere size, the lu-
brication approximation is also satisfied even for large separations. Successful and accurate
measurement at nano-metric scale requires appropriate preparation of colloidal probes and free
from contamination at their surfaces. A home made three-axis motion stage is used to attach the
sphere to the end of the cantilever. As shown in Fig. 1.6, the stage is placed on the optical mi-
croscope (B2 series, Motic microscope). The attachment process is performed in the following
steps:

13o

a

b

Figure 1.6: The stage used to make colloidal probes.
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• Step 1: The particles are first washed with hellmanex solution followed by a rinsing with
pure water and then cleaned with anhydrous ethanol solution under ultrasonic treatment
for tens of minutes. The process of cleaning with ethanol is repeated several times.

• Step 2: We shake the ethanol solution containing the particles gently to make the particles
more evenly distributed in the solution, and spread a drop of this solution on cleaned glass
surface. After the evaporation of the ethanol, the cleaned particles are left on the glass
surface (see Fig. 1.7 a-b).

(a) (b)

Mica wafer

Spherical particlesEthanol

(c)

Epoxy glue

(d)
AFM cantilever

(e) (f)

Epoxy glue

Figure 1.7: The process of making colloidal probes. a) The colloidal particles in ethanol solu-
tion are spread on the mica surface. b) After the evaporation of the ethanol, the particles are
left on the surface. c) The AFM cantilever contacts with epoxy glue to wet the cantilever. d)
The glue is attached on the cantilever. e) The wetted cantilever contacts the colloidal particle.
f) The colloidal particle is glued to the end of the cantilever.

• Step 3: We deposit a very thin layer of epoxy glue (Araldite Rapid) on another piece
of glass surface, and place an AFM cantilever on the leg of the three-axis platform with
an angle around 13 ◦ with respect to the horizontal direction (see Fig. 1.6b). Under the
microscope, bring down the AFM cantilever to touch with the epoxy glue layer. After
lifting the cantilever up, a small amount of glue is attached on the edge of the cantilever
(see Fig. 1.7 c-d).
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• Step 4: We replace glass surface containing the glue with that containing particles, and
bring down the cantilever to be in contact with one of the particles. After several minutes
for the cross-link of the epoxy glue, the cleaned particle will be glued on the AFM can-
tilever (see Fig. 1.7 e-f). An attached colloidal probe is shown in Fig. 1.8. The size of the
particle can be obtained from this optical image.

100 µm 100 µm

Figure 1.8: Optical images of the particle which was glued on the end of a V-shaped cantilever
(SNL-10, Bruker).

1.2.2 Roughness of the colloidal probes

Using AFM, the roughnesses and the radius of the colloidal probe can easily be obtained. Fig-
ure 1.9a shows the 3D AFM image of a spherical borosilicate particle (MO-Sci Corporation)
obtained in contact mode. The size of the imaged area is 10 µm× 10 µm. In Fig. 1.9b, the open
circles shows the height section (the red line in Fig. 1.9a) and the solid line represents the fitting
curve using the circle equation. The fitted radius for this colloidal sphere is R = 47± 0.5 µm.

Figure 1.9c shows the plane fitted image with a size of 1 µm× 1 µm and Fig. 1.9d shows
the height section (the green line in Fig. 1.9c), where the modulation of the surface height is
presented clearly. The roughness measured on this image is Rq = 0.5 ± 0.1 nm, where Rq is
the root mean squared roughness.
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Figure 1.9: a) The 3D AFM height image for a spherical colloidal particle with a size of
10 µm× 10 µm. b) The plot of height section along the direction of the red line in a. From
the fitting of the height section using circle equation, the radius of the particle is obtained as
R = 47± 0.5 µm. c) The plane fitted height image of the particle with a size of 1 µm× 1 µm,
from which we get the roughness is Rq = 0.5± 0.1 nm. d) The height section of the plane fitted
image at the positioin of the green line in c.

1.2.3 Calibration of the piezo

In the measurement by AFM, a piezoelectric system is used to scan the sample in either vertical
direction or lateral direction. In this thesis, a piezo from MAD CITY LABS with a large travel
range (see Fig 1.10) is used to control the position of the samples. An accurate calibration
of the displacements of the piezo as a function of the applied voltage is necessary to obtain
quantitative information about the motion. A number of methods [48, 49, 50, 51, 52] have been
developed to calibrate the piezo. We have calibrated the piezo using optical camera, which is
simple and with a good accuracy.

A microscopic calibrated slide (Motic) is chosen and fixed on the piezo stage. The calibrated
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Figure 1.10: Image of the piezo (NanoT series, MAD CITY LABS) used in the thesis.

slide contains calibrated girds and several disk with different sizes. We apply voltage to the
piezo at a given frequency. A camera (DCC1545M, Thorlabs) is used to track the motion of one
of the disks. As shown in Fig. 1.11, the image of the calibrated disk with a radius of 75 µm is
obtained. From the image, we calibrate the pixel. The displacement of the piezo can be obtained
from two extreme positions of the disk.

Figure 1.11: Image of the disk driven by the piezo.

We calibrate the piezo at 0.1 Hz with different driving amplitudes. The results are shown
in Fig 1.12. From the linear fitting of results, we get the piezo displacement per volt equals to
4.9± 0.03 µm/V.
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Driving amplitude (V)
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Figure 1.12: The amplitudes of the piezo displacement measured by the camera versus driving
amplitudes in volt (at 0.1 Hz). The black line is the linear fitting curve from which we get the
displacement of the piezo per unit voltage equals to 4.9± 0.03 µm/V.

1.2.4 Surface tension measurement: Wilhelmy plate method

In this thesis, the Wilhelmy plate method is used to measure the surface tension of air-water
interface. Figure 1.13 shows the schematic of the static Wilhelmy plate measurement. A thin
plate is held at the air-water interface, which gives rise to the capillary force F :

F = σlp cos(θc), (1.1)

water

ep
wp

c

air

Figure 1.13: The schematic of static Wilhelmy plate measurement.
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where σ is the surface tension of the interface, lp = 2(wp + ep) is the perimeter of the contact
line on the plate, ep is the thickness of the plate, wp is the width of the plate, and θc is the contact
angle between the water and the plate as shown in Fig. 1.13.

In the laboratory, a tensiometer from Nima technology (see Fig. 1.14) with a Whatman
chromatography paper is used to perform the Wilhelmy plate measurement. As the paper is
brought into contact with the water surface, the tensiometer will detect the exact amount of the
tension acting on the plate at the position of the plate before it snaps off from the surface. The
contact angle here is equal to 0◦.

Figure 1.14: The system to perform Wilhelmy plate measurement. a) The tensiometer from Nima
technology. b) The operation software for the tensiometer.
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Figure 1.15: The measured surface tension as a function of the concentration of SDS solutions.

Figure 1.15 shows the measured surface tension with different concentrations of SDS (Sodium
Dodecyl Sulfate) solutions. In this measurement, a paper plate with a thickness of ep = 918 nm
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and width of wp = 20.50 mm was used as Wilhelmy plate. In order to minimize the error, the
measurements were performed from low concentrations to high concentrations of SDS solu-
tions.

1.3 Calibration of the Cantilever

1.3.1 Cantilever motion

As shown in Fig. 1.16, the cantilever is considered as a beam with length of l, width of w and
thickness of e.

Figure 1.16: Schematic of the cantilever with a length of l, a width of w and a thickness of e. A
force F is applied to the end of the cantilever in z direction.

In the static situation, the cantilever is deflected by a constant force F , and we have

EI
∂3Z(x)

∂x3
= −F, (1.2)

where E is the Young’s modulus of the cantilever, I = we3/12 is the area moment of inertia
of the beam, and Z is cantilever deflection in z direction. Integrating Eq. (1.2) with boundary
conditions of ∂z(x=0)

∂x
= 0, ∂

2z(x=l)
∂x2 = 0, we have

∂Z (x)

∂x
=

F

EI
(lx− x2

2
). (1.3)

At the end of the beam, Eq. (1.3) becomes to

∂Z (x = l)

∂x
=

Fl2

2EI
=
F

kc

3

2l
=

3

2l
Z(x = l), (1.4)
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where

kc =
3EI

l3
=
Ewe3

4l3
(1.5)

is the definition of the cantilever stiffness, and Z (x = l) = F/kc is the deflection of the can-
tilever induced by the applied force.

Standard AFM uses optical deflection method to measure the motion of the cantilever. In
this method, the inclination at the end of the cantilever dZ(x = l)/dx is measured rather than
the cantilever deflection Z(x = l) itself. The corresponding deflection Zc1 is determined by the
inclination dZ(x = l)/dx of the cantilever at the end, multiplied by the factor 2l/3 [53], i.e.

Zc = Z(x = l) =
2l

3

∂Z(x = l)

∂x
. (1.6)

For the dynamic motion of the cantilever, the bending of the cantilever is described by
Euler-Bernoulli theory, which is given by

EI
∂4Z

∂x4
+ ρcwe

∂2Z

∂t2
= 0, (1.7)

where ρc is the density of the cantilever material. The solution of Eq. (1.7) is given in the form:

Z(x, t) = χ(x)a(t), (1.8)

with a(t) is the amplitude of the cantilever vibration and χ(x) is the beam profile of the can-
tilever. Substituting Eq. (1.8) into Eq. (1.7), we have

∂4χ(x)

∂x4
=
α4

l4
χ(x), (1.9)

where

α4 =
12ρcω

2l4

Ee2
(1.10)

and ω is the angular frequency of cantilever. For the cantilever with a free end, χ(x) must
satisfies the boundary conditions [53, 54, 55]:

χ(0) = 0,
dχ(0)

dx
= 0,

d2χ(l)

dx2
= 0,

d3χ(l)

dx3
= 0.

Using the normalization of χ (x = l) = 1, we get

χ(x) =
1

2

((
cos

α

l
x− cosh

α

l
x
)
− (cosα + coshα)

(sinα + sinhα)

(
sin

α

l
x− sinh

α

l
x
))

, (1.11)

with
cosα coshα + 1 = 0. (1.12)
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i 1 2 3 4 5 6
αi 1.875 4.694 7.855 10.995 14.137 17.279

Table 1.1: The values of αi for free end cantilever, and the subscript of i indicates the mode
number.

The solutions of Eq. (1.12) give different values of α corresponding to each mode of the can-
tilever vibration. The values of α for the first six modes are presented in Tab. 1.1. Here we
denote i as the mode number of the cantilever vibration.

From Eq. (1.10), the resonance frequencies of the cantilever for each mode can be obtained
as

ω2
i =

Ee2α4
i

12ρcl4
. (1.13)

Here, we introduce the effective mass m∗ = ρcwe
∫ l

0
(χ(x))2dx = ρclwe/4 of the cantilever

[47, 54]. Eq. (1.13) becomes to

ω2
i =

ki
m∗

, (1.14)

where the cantilever stiffness for mode i is given by

ki =
α4
i

12
kc. (1.15)

In Fig. 1.17, the cantilever shapes for the first six modes are presented.

mode 1 mode 2

mode 3

mode 5 mode 6

mode 4

Figure 1.17: The cantilever shape for the first six modes of a rectangular cantilever with a free
end.

Finally, we inject Eq. (1.11) and Eq. (1.8) into Eq. (1.6), to express the time dependent

1Notice that Zc is not measured directly, but it is deduced from the measurement of the inclination at the end
of the cantilever.
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deflection of the cantilever for the mode corresponding to αi,

Zc(t)i =
2αi
3

sinαi sinhαi
sinαi + sinhαi

a(t)i, (1.16)

Note here, the prefactor of 2/3 in Eq. (1.16) comes from the fact that the deflection is inferred
from the inclination of the cantilever.

1.3.2 Thermal noise method

As described in the previous section, to extract accurate values for the forces from the cantilever
deflection, the spring constant of the cantilever kc has to be determined precisely. In principle,
the spring constant of the cantilever can be calculated from the geometric dimensions and the
properties of the material (Young’s modulus) by Eq. (1.5) [56, 57, 58]. However, the thickness
and elastic modulus of the cantilever are not easy to be measured. Additionally, the cantilever is
usually coated with aluminum or gold on the backside to increase the optical reflectivity. These
coatings increase the complexity to determine the elastic properties of cantilever. Therefore it
is desirable to measure the spring constants experimentally.

In the thesis, thermal noise methods [59] and drainage method [60] are both used to deter-
mine the stiffness of the cantilever.

Equipartition theorem method

Considering the contributions of all the modes to the deflection, we have [59, 53]

Zc(t) =
∞∑
i=1

Zci(t) =
∞∑
i=1

2αi
3

sinαi sinhαi
sinαi + sinhαi

a(t)i. (1.17)

Each mode i is described by harmonic oscillator driven by a fluctuating noise force which is
independent for each mode. In thermal equilibrium, each vibration mode has a mean thermal
energy of 1

2
kBT . Thus the mean square amplitude at the end of the cantilever for the mode i

< a2
i > has to satisfy

< a2
i >=

kBT

ki
, (1.18)

where kB is Boltzmann constant, T is the absolute temperature. ki is the cantilever stiffness for
mode i. From Eq. (1.17) and Eq. (1.15), we have

< Z2
c > =

∞∑
i=1

4

9α2
i

(
sinαi sinhαi

sinαi + sinhαi

)2

< a2
i >

=
16kBT

3kc

∞∑
i=1

1

α2
i

(
sinαi sinhαi

sinαi + sinhαi

)2

.

(1.19)
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With the values of αi given in Tab. 1.1, we have

∞∑
i=1

1

α2
i

(
sinαi sinhαi

sinαi + sinhαi

)
=

1

4
. (1.20)

Finally, we get [53]

kc < Z2
c >=

4

3
kBT. (1.21)

From the measurement of < Z2
c >, one can deduce kc. An example of the thermal noise for a

cantilever (MLCT type B, Bruker) measured in pure water at the room temperature (T = 297 K)
is shown in Fig 1.18 . The value of < Z2

c > is calculated as 0.22 ± 0.03 nm2, which gives the
cantilever stiffness of kc = 0.022± 0.003 N/m.

Figure 1.18: The temporal thermal fluctuation of the cantilever (MLCT type B, Bruker) in pure
water (sampling frequency: 200 kHz).

Power spectral density method

The stiffness of cantilever can be obtained by fitting the power spectral density of the cantilever
thermal fluctuation. The equation of the cantilever motion for mode i can be expressed as

m∗äi + γbulkȧi + kiai = FThermali, (1.22)

where m∗ is the effective mass of the cantilever, γbulk is the bulk damping and FThermali is the
thermal noise force. By Fourier transform, Eq. (1.22) becomes:(

−m∗ω2 + jωγbulk + ki
)
ai(ω) = FThermali(ω). (1.23)
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Then, we have

|ai(ω)|2 =
|FThermali(ω)|2/m∗

((ω2
i − ω2)2 + (ωωi/Qi)2)

, (1.24)

whereQi = m∗ωi/γbulk is the quality factor for mode i. Using the notation of |FThermali(ω)|2 =
γbulkkBT , we obtain

PSD(ai, ω) =
2kBTωi/Qi

πm∗[(ω2
i − ω2)2 + (ωiω/Qi)2]

. (1.25)

Since the cantilever deflection is deduced from the measurement of the cantilever inclination,
using Eq. (1.16), The power spectral density for the deduced cantilever deflection Zci for mode
i is given by

PSD(Zci, ω) =
4α2

i

9

(
sinαi sinhαi

sinαi + sinhαi

)2
2kBTωi/Qi

πm∗[(ω2
i − ω2)2 + (ωiω/Qi)2]

. (1.26)

Finally, the measured power spectral density PSD(Zc, ω) is expressed as

PSD(Zc, ω) =
∞∑
i=1

4α2
i

9

(
sinαi sinhαi

sinαi + sinhαi

)2
2kBT/Qi

πkiωi

[(
1−

(
ω
ωi

)2
)2

+
(

ω
ωiQi

)2
]
 .

(1.27)
From the fitting of power spectral density of the cantilever thermal motion by Eq. (1.27), we
can obtain the effective stiffness ki, the resonance frequency ωi and quality factor Qi for each
mode. In frequency domain, the power spectral density is expressed as

PSD(Zc, f) = 2πPSD(Zc, ω)

=
∞∑
i=1

4α2
i

9

(
sinαi sinhαi

sinαi + sinhαi

)2
2kBT/Qi

πkifi

[(
1−

(
f
fi

)2
)2

+
(

f
fiQi

)2
]
 ,

(1.28)

with ω = 2πf and ωi = 2πfi.

In Fig 1.19, we present the power spectral density for the cantilever motion calculated
from the temporal signal of thermal fluctuation shown in Fig 1.18. The first three modes of the
cantilever vibration are well defined. Figure 1.20 shows the fitting curve for the first mode in
Fig 1.19 using Eq. (1.28). From the fitting, we get k1 = 0.019± 0.005 N/m, f1 = 3070 Hz and
Q1 = 1.46. Similarly, by fitting the second mode, we obtain the values: k2 = 0.78± 0.01 N/m,
f2 = 25490 Hz and Q2 = 2.34. Using Eq. (1.15), we conclude that the cantilever stiffness is
calibrated as kc = 0.02± 0.005 N/m.

22



1.3. CALIBRATION OF THE CANTILEVER

Figure 1.19: The power spectral density measured for the cantilever (MLCT type B, Bruker)
calculated from the thermal fluctuation shown in Fig 1.18.

Figure 1.20: The fitting curve for the first mode shown in Fig 1.19 by Eq. (1.28). The extracted
stiffness k1 = 0.019± 0.005 N/m, resonance frequency f1 = 3070 Hz and quality factor Q1 =
1.46 for the first mode.
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1.3.3 The drainage method

When a spherical colloidal particle has been fixed on the end of the cantilever, the drainage
method is applicable and simple. This method is suitable to all kinds of cantilevers but it
requires the known radius of the sphere and the viscosity of the fluid [60]. This method employs
the hydrodynamic drag force on a sphere approaching perpendicularly a flat surface immersed
in a viscous liquid.

r

R

Sphere

Liquid

hydrophilic surface

r

z

vrd

V

Figure 1.21: Schematic of cantilever calibration by drainage force method. A spherical col-
loidal probe with a radius of R is approaching a hydrophilic surface with a velocity V in z
direction in viscous liquid.

As shown in Fig 1.21, a sphere with a radius of R is approaching a hydrophilic surface in a
viscous liquid with a velocity of V . When the Reynolds number Re is small, and in the case of
d �

√
2Rd, the confined fluid flow between the sphere and surface can be described by conti-

nuity equation and Navies-Stokes equation in the framework of the lubrication approximation:

∂vz
∂z

= −1

r

∂

r
(rvr), (1.29a)

∂p

∂r
= η

∂2vr
∂z2

, (1.29b)

∂p

∂z
= 0, (1.29c)

where η is the dynamic viscosity of the fluid, vr, vz are the radical and vertical velocities of the
fluid. Using parabolic approximation, the confined liquid thickness is given h(r) = d+ r2/2R
and d is the distance between the spherical particle and the flat surface. When the sphere and
the wall are both hydrophilic, we have the boundary conditions of

• On the flat surface: vr(z = 0) = 0, vz(z = 0) = 0.

• On the sphere: vr(z = h) = 0, vz(z = h) = −V .
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The solution of Eq. (1.29b) taking into account the boundary conditions leads to

vr(z) =
1

2η

∂p

∂r

(
z2 − hz

)
. (1.30)

By injecting Eq. (1.30) into the continuity equation of Eq. (1.29a), we get the expression for
approaching velocity of the sphere as

V = −
∫ h

0

∂vz
∂z

dz =
1

12ηr

∂

∂r

(
rh3∂p

∂r

)
. (1.31)

Then, the hydrodynamic force F0 between the sphere and hydrophilic surface can be calculated
by

F0 = 2π

∫ ∞
0

rp(r)dr. (1.32)

As a result, the drainage force reads [61],

F0 = −6πηR2

d
V. (1.33)

Here, we take a V-shaped cantilever (SNL-10, Bruker, USA) as an example. As shown in
Fig. 1.8, a smooth spherical borosilicate sphere (MO-Sci Corporation) with a radiusR = 56.2±
2 µm was glued to the end of the cantilever. The roughness of this sphere is 0.9 nm measured
over a 1 µm2 surface area which was determined using the method shown in Sec. 1.2.2. The
cantilever is placed on a liquid cell (see Fig. 1.3) which allows working in liquid environment.
A freshly cleaved sheet of muscovite mica was used as a flat substrate. The bioscope II AFM
(see Fig. 1.1) was used for force measurement. The measurement was carried on in 1 M NaCl
solution in order to eliminate the effect of electrical double layer force. At room temperature
(21 ◦C), the viscosity of 1 M NaCl solution is η = 1 mPa · s. The approaching velocity of the
flat surface is controlled by a piezo (NanoT series, Mad City Labs). The data was captured by an
analog to digital (A/D) acquisition board (PCI-4462, National Instrument, USA).The deflection
versus piezo displacement was converted to deflection versus separation using the method given
in Sec.1.1. The relative velocity for each separation is obtained from the time derivative of the
separation distance [62].

The deflection Zc and the relative velocity V versus distance for a typical measurement are
shown in Fig. 1.22. As the surface approaches the particle, the cantilever starts to deflect away
due to the hydrodynamic drag force. The relative velocity (time derivative of the distance) is
the difference between the velocity of the piezo and the velocity at which the cantilever deflects
away. At the small separation where the cantilever deflection is large, the relative velocity
reduces.
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Figure 1.22: The cantilever deflection (red circle) and relative velocity (blue square) versus
the seperation distance. The relative velocity V is obtained from the time derivative of the
separation distance.

The measured force F = kcZc is equal to the drainage drag force acting on the particle:

kcZc =
6πηR2

d
V.

Then we have
V

Zc

=
kc

6πηR2
d. (1.34)

Taking into account the values of the particle radius and the liquid viscosity, from the linear
fitting (Eq. (1.34)) of the data of V/Zc versus d shown in Fig. 1.23, we obtain the value of the
cantilever stiffness kc = 0.16± 0.01 N/m.

However, at smaller separation distance the validity of Eq. (1.33) which is formulated using
the no-slip boundary condition may be affected due to the contribution of partial boundary slip
[63]. Additionally, roughness of the surfaces may also affect the accuracy at small separation
distance. In order to avoid these effects at small distance, we just use the data from where the
distance is large enough (> 200 nm) to extract the cantilever stiffness.
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Figure 1.23: The velocity divided by deflection versus distance. The solid line is the linear fitting
by Eq. (1.34), which gives us the cantilever stiffness kc = 0.16± 0.01 N/m.

1.4 Conclusion

In this chapter, we introduced the AFM for topographic imaging and surface force measure-
ment. The techniques: the attachment of the colloidal probe, the roughness characterization of
the surface, the calibration of the piezo and the surface tension measurement were presented.
Successively, we introduced thermal noise methods and the drainage method for the calibration
of the cantilever.
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Visco-Elastic Effects at Air-Water
Interface: Contamination Effect
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2.1 Context

Recently, much progress has been achieved in the study of fluid flow in the vicinity of interfaces
[64, 65]. Colloidal probe atomic force microscopy is one of the techniques used to characterize
fluid flows on the nano-scale [65], such as to study capillary phenomena such as the interaction
between bubbles [66, 67] or droplets [68, 69, 70], the hydrodynamic boundary condition at a
water-air interface [13], and dynamical wetting [71, 72, 73, 74, 75, 76]. Assuming that the
shear stress continues at liquid-gas interfaces, the much lower viscosity of the gas theoretically
makes them behave as shear free interfaces. As a result, liquid-gas interfaces are thought to
be good candidates for perfect slipping interfaces [8, 9, 10, 11]. However, Manor et al. [12,
13, 14] have experimentally shown that the slip length at liquid-gas interfaces is moderate (a
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few of tens of nanometers) but not infinite as expected. This finite slip length value is due to
the presence of the impurities at the liquid-gas interfaces. The air-water interface is generally
prone to be contaminated by the surface impurities such as surfactant, particles or other surface
active agents. The presence of such impurities can modify flow near such interfaces in a drastic
manner.

In this chapter, the visco-elastic effect of air-water interfaces due to the surfactant con-
tamination is studied by dynamic AFM method. From the measurement of the amplitude
and phase of the sphere, we extract the viscous and elastic forces acting on the sphere.
In the framework of the lubrication approximation, we developed a model that takes into
account the advection of the impurities at the air-water interface to explain the measure-
ments. In this study, we focus only on large distance between the sphere and the bubble
where capillary deformation of the bubble surface due to the hydrodynamic pressure is very
small (probe-bubble distance d > 6πηR2ω/σ [77], where σ is the surface tension of water,
η is the water viscosity, R is the radius of the sphere and ω is the oscillation frequency of
sphere.).

2.2 Theoretical Model

We assume that the liquid-gas interface of the bubble may contain a very small quantity of
insoluble surfactants. The presence of the surfactants with a local concentration c decreases
the interfacial surface tension from a value σ to a value σ − Π. At low concentration, the
surfactant behaves as dilute gas without interaction, and the surface pressure Π is related to
the concentration by: Π = ckBT . The sketch of the study is shown in Fig. 2.1. The air-water
interface is prepared by injecting an air bubble on PS surface in pure water. The sphere vibrates
with frequency ω. We use cylindrical coordinate to describe the flow.

During the fluid flowing at the interface, some surfactant molecules (impurities) are driven
by advection and diffusion. The concentration of surfactant is described by the advection-
diffusion equation [12, 13, 14]:

∂c

∂t
+∇ · (vsc) = D∆c, (2.1)

where D is the diffusion coefficient, and the advection term arises from the radial velocity at
the surface of the bubble, vs = vr(z = 0).

The confined fluid flow between the sphere and bubble is described by continuity and
Navies-Stokes equations. Using the lubrication approximation, they can be expressed by Eqs. 1.29.

On the surface of the sphere, the radial and vertical velocities of the fluid satisfy the bound-
ary conditions: vr(z = h) = 0, vz(z = h) = V , where V is the vertical velocity of the sphere
glued at the end of the cantilever and h is the confined fluid thickness between the sphere and
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Figure 2.1: a) Sketch of the hydrodynamic interaction measurement between a colloidal
sphere and air-water interface. The interface is prepared by deposing a spherical bubble on
polystyrene surface. A glass sphere glued at the end of the AFM cantilever vibrates at the
distance d. b) The optical image of the experimental setup (top view).

bubble, which is given by: h(r) = d + r2/2Reff , Reff = 1/(R−1
b + R−1) is the effective radius

and Rb, R are the radii of the bubble and sphere, respectively. d is the gap distance. On the
bubble surface, shear stress is equal to the tangential stress induced by the Marangoni effect:
η ∂vr(z=0)

∂z
= ∂Π

∂r
. The vertical velocity should be equal to zero: vz(z = 0) = 0 (we neglect the

bubble deformation). Integrating Eq. (1.29b) with respect to z and using these above boundary
conditions for the radial velocity on the sphere and bubble surface, we get:

vr(z) =
1

η

[
1

2
(z2 − h2)

∂p

∂r
+ (z − h)

∂Π

∂r

]
, (2.2)

Inserting Eq. (2.2) into the continuity equation of Eq. (1.29a) and integrating with respect to z,
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we get:

vz(z)−vz(z = 0) =

∫ z

0

∂vz(z)

∂z
dz = − 1

ηr

∂

∂r

[
r

(
(
z3

6
− h2z

2
)
∂p

∂r
+ (

z2

2
− hz)

∂Π

∂r

)]
. (2.3)

Using the boundary conditions for the vertical velocity on the sphere and bubble surface,
Eq. (2.3) can be rewritten as:

V =
dZ

dt
= jωZ =

1

3ηr

∂

∂r
(rh3∂p

∂r
) +

1

2ηr

∂

∂r
(rh2∂Π

∂r
), (2.4)

where Z = Z0e
jωt is the instantaneous position of the sphere. Eq. (2.4) can be integrated with

respect to radial coordinate r and rearranged to get the expression for the pressure p in the form
of:

∂p

∂r
=

3ηV r

2h3
− 3

2h

∂Π

∂r
, (2.5)

Injecting Eq. (2.5) into Eq. (2.2), we get the value of the radial velocity of the fluid on bubble
surface,

vs = vr(z = 0) = −3V r

4h
− h

4η

∂Π

∂r
. (2.6)

Equation (2.6) shows that the advection of the surfactants acts as a feedback on the velocity on
the bubble surface.

In our study, the diffusion term in Eq. (2.1) is irrelevant. Indeed, with Reff ∼ 50 µm,
d = 1 ∼ 10 µm and D ∼ 10−10 m2/s, one finds that the diffusion time τ = L2/D over
the lubrication length L =

√
2Reffd exceeds the period of the cantilever vibration. For weakly

soluble impurities, the characteristic relaxation time which results from diffusion in the aqueous
phase over the distance L turns into τb = L2/Db with the bulk diffusion coefficient Db that is
Db < D. For the range of the oscillation frequencies used in the experiment, both ωτ and ωτb

are significantly smaller than unity. Thus surfactants diffusion along the interface, or in the thin
fluid film, is slow compared to the advection, and may be discarded in the Eq. (2.1).

Writing ∇ · (vsc) = vs · ∇c + c∇ · vs, and neglecting small terms proportional to the
concentration gradient ∇c or to the concentration modulation with respect to the equilibrium
value c0, Eq. (2.1) is simplified to:

∂c

∂t
− c0kBT

4η

∂

r∂r
(rh

∂c)

∂r
= c0

3V d

2h2
. (2.7)

where the second term on the left hand side arises from ∇Π = kBT∇c and the right hand side
term arises from the divergence of the unperturbed surface velocity. By solving Eq. (2.7), we
get the value of the surfactant pressure Π = ckBT which can be injected in to Eq. (2.5) and we
obtain the hydrodynamic pressure p(r). According to Eq. (1.29c), p is constant in z direction,
and the hydrodynamic force acting on the sphere is calculated from the expression of p(r) by

Fh = 2π

∫ ∞
0

rp(r)dr. (2.8)
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From the ansatz ∂c
∂t

= jωc, and using dimensionless variable r = r√
2Reffd

, we transform
Eq. (2.7) to

1

r

∂

r

[
r(1 + r2)

∂c

∂r

]
− j ω

ω0

c =
12ηRV

kBTd

1

(1 + r2)2
(2.9)

where
ω0 =

c0kBT

8ηReff

(2.10)

is a characteristic frequency that depends on surfactant pressure Π0 = c0kBT , the viscosity of
the liquid η and the effective bubble radius Reff .

Equation (2.9) is solved numerically (Sec. 2.2.2) using finite-element method to get the
value of the surface pressure Π = ckBT and then the hydrodynamic drag force Fh applied on
the sphere. For only two limiting case ω � ω0 and ω � ω0, the expression of the hydrody-
namic drag force can be calculated analytically (Sec.2.2.2). In Sec. 2.2.3, we use an analogy
between the sphere-bubble interaction and the disc-bubble interaction to derive an approximated
analytical expression for the hydrodynamic drag force for any given frequency of oscillation.

2.2.1 Numerical Calculations

Using the finite element method, we solve Eq. (2.9) numerically to get the value of surfac-
tant concentration c(r) on bubble surface and the gradient of the surface pressure ∇Π(r) =
kBT∇c(r). Injecting these values into Eq. (2.5) and integrating Eq. (2.8) over the sphere sur-
face, we get the hydrodynamic force Fh. Our numerical results suggest that the general behavior
of the hydrodynamic force is the in form of

Fh = g(
ω

ω0

)F0, (2.11)

where F0 = −6πηR2
eff

d
V is the non slip hydrodynamic force [61] and g( ω

ω0
) is a complex number,

which is distance independent, and depend only on the ratio between the working frequency ω
and the characteristic frequency ω0 that depends on the surfactant concentrations.

The hydrodynamic force can be written as: Fh = Fvis+jFel with Fvis and Fel are the viscous
and elastic hydrodynamic components respectively which are related to the function g( ω

ω0
) by

∣∣∣∣Fvis

F0

∣∣∣∣ =

∣∣∣∣Re

(
g

(
ω

ω0

))∣∣∣∣ (2.12a)∣∣∣∣Fel

F0

∣∣∣∣ =

∣∣∣∣Im(g( ω

ω0

))∣∣∣∣ (2.12b)

In Fig. 2.2, the numerical calculation results for the viscous and elastic components divided
by the non-slip hydrodynamic force are presented. These numerical calculation results can be
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Figure 2.2: Numerical results of the viscous component Fvis and elastic component Fel of the
hydrodynamic force divided by the viscous non-slip hydrodynamic drag force F0. And the con-
tinuous line in a) and b) are the fitting curves by the real and the imaginary terms of Eq. (2.13),
respectively.

approximated by an equation in the form of

g(
ω

ω0

) =
1

4
+

3
4

a1 + a2( ω
ω0

)2 + a3( ω
ω0

)3
− j

3
4
ω
ω0

a4 + a5( ω
ω0

)2 + a6( ω
ω0

)3
. (2.13)

From the fitting, we get the value of the constants, a1 = 1.01, a2 = 1.01, a3 = −0.01, a4 =
1.08, a5 = 0.29 and a6 = −0.01.

2.2.2 Limiting Cases ω � ω0 and ω � ω0: Asymptotic Calculation

In the quasi-static limit of small working frequency or for high impurity concentrations, ω �
ω0, we treat ω

ω0
c in Eq. (2.9) as a perturbation, Solving the differential equation to linear order

of the parameter of ω
ω0

by iteration, and then integrating Eq. (2.5) and Eq. (2.8), we get

Fvis = F0, Fel = F0
3ω

8ω0

, (ω � ω0), (2.14)

with non-slip hydrodynamic force F0 = −6πηR2
effV

d
. The viscous term of the hydrodynamic

drag force corresponds to that on solid surface with non-slip boundary conditions, which is four
times larger than on a free surface [61]. This is arises from the surfactant-induced surface stress
∇Π = kBT∇c and its back reaction on the surface flow.

On the contrary, at high working frequency or for sufficiently low impurity concentration,
ω � ω0, the first term on the left-hand side in Eq. (2.9) can be treated as a perturbation.
Evaluating to second order and integrating Eq. (2.5) and Eq. (2.8), we obtain

Fvis = F0(
1

4
+ 8

ω2
0

ω2
), Fel = F0

2ω0

ω
, (ω � ω0). (2.15)
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In this limiting case, the surface stress ∇Π = kBT∇c is of less importance, and for ω/ω0 →
∞, we recover the hydrodynamic drag force for full slip boundary condition, Fvis/F0 = 1/4.
Meanwhile, the elastic component Fel/F0 varies linearly with ω0/ω.

2.2.3 Analytical Calculations using analogy with the disc bubble interac-
tion

The hydrodynamic squeezing force between a disc and flat substrate is equivalent to the squeez-
ing force between a sphere and flat substrate, provided that the disc radius Rdisc is replaced by
the hydrodynamic radius

√
2Rd, where R is the sphere radius and d is the distance between the

sphere and the substrate:

FD = −3π

2
η
R4

disc

d3
V

Rdisc=
√

2Rd←→ FS = −6πη
R2

d
V, (2.16)

where FD is the drag force between disc and flat substrate, Fs is the drag force between sphere
and substrate. To get the expression of the drag force between the sphere and the bubble in the
presence of the surfactants, we will take advantage of this analogy. We calculate first the drag
force for disc geometry and then replace in the obtained expression the disc radius Rdisc by the
hydrodynamic radius

√
2Reffd

1.

Eq. (2.5) and Eq. (2.7) that describe the hydrodynamic pressure and the surfactant concen-
tration for the sphere-bubble interaction are still valid for the disc-bubble interaction provided
the gap h is taken constant and independent of the radial coordinate, h(r) = d. Eq. (2.5) reads

∂p

∂r
=

3ηV r

2d3
− 3

2d

∂Π

∂r
, (2.17)

and Eq. (2.7) reads
∂c

∂t
− c0kBTd

4η

∂

r∂r
(r
∂c)

∂r
= c0

3V

2d
, (2.18)

here, V is denoted as the velocity of the disc instead of the sphere.

Solving Eq. (2.18) and imposing the condition for the surfactant concentration c(r ≥ Rdisc) =
0, we get

c(r) = −3jc0V

ω

[
1−

I0(
√
jk r

Rdisc
)

I0, (
√
jk)

]
(2.19)

and

Π(r) = kBTc(r) = −3jkBTc0V

ω

[
1−

I0(
√
jk r

Rdisc
)

I0(
√
jk)

]
, (2.20)

1We have used the effective radiusReff instead of the sphere radiusR in the expression of hydrodynamic radius
because we investigate the drag force on spherical bubble surface.
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where k2 =
4ωηR3

disc
c0kBTd

, I0 and I1 are the modified Bessel function of the first kind with index 0 and
1, respectively. Injecting Eq. (2.20) into Eq. (2.17) and integrating the pressure over the surface
of the disc, we get the the hydrodynamic force:

FhD = −3π

2
η
Rdisc

d3
V

{
1

4
+

12j

k2

[
1√
jk

I1(
√
jk)

I0(
√
jk
− 1

2

]}
. (2.21)

Using the analogy described above and replace Rdisc by
√

2Reffd, we get k2 =
2ωηR2

disc
c0kBTd

→ ω
ω0

,
with ω0 = c0kBT

8ηReff
as defined before, and the hydrodynamic force acting on the sphere is equal to

FhS = −6πη
R2

d
V

1

4
+

12j

( ω
ω0

)

 1√
j ω
ω0

I1(
√
j ω
ω0

)

I0(
√
j ω
ω0

)
− 1

2

 . (2.22)

Fig. 2.3a presents the analytically calculated hydrodynamic coefficient Fvis

F0
and Fel

F0
using the

analogy described above. We have also reported the numerical calculation of Sec. 2.2.1. The
curves obtained from the analogy have the same profile of the curves obtained from numerical
calculation, but they do not coincide each other. In order to superimpose the curves, we have to
modify the value of ω0 in Eq. (2.22) and make it equal to ω′0 = 2.72ω0 as shown in Fig. 2.3b.
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Figure 2.3: a) Hydrodynamic force Fvis/F0 and Fel/F0 calculated analytically using the anal-
ogy described in this section (solid lines). We also report on the same figure the numerical
calculation of Sec. 2.2.1(dots). b) In order to superimpose the curves, the value ω0 in Eq. (2.22)
was modified to ω′0 = 2.72ω0.
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2.3 Experiment

2.3.1 Dynamic AFM method with colloidal probe

In this study, the dynamic AFM method with colloidal probe was addressed to probe the vis-
coelastic responses of the bubble surface. Figure 2.4 shows the sketch for dynamic atomic force
microscope measurement. Basically, a piezoelectric actuator is used to excite the vibration of
the cantilever with driving amplitude Ad and driving frequency ω. The gap between the sphere
and substrate is controlled by displacing the sample using a piezo stage. The amplitude A and
phase ϕ of the cantilever oscillation versus the piezo displacement are recored. Meanwhile,
the DC deflection is also recorded and used to determine the separation distance following the
method shown in Sec. 1.1.

Zd=Adejωt

X=Aej(ωt+φ)

d

Piezo

Sample

z

Figure 2.4: Sketch of the dynamic AFM method. A cantilever is excited by external acoustic
excitation with oscillation of Zd = Ade

jωt. A piezo stage is used to control the distance between
the probe and the sample surface.

The instantaneous displacement of the cantilever base can be described by Zd = Ade
jωt,

j is the imaginary unit. The instantaneous deflection of the cantilever is described as X =
Aej(ωt+ϕ). Therefore, the total oscillation of the cantilever is given by

Z = X + Zd = Aej(ωt+ϕ) + Ade
jωt. (2.23)

The motion of the cantilever can be simplified to a point mass model given by

m∗Z̈ + γbulkŻ + kcX = Fh, (2.24)

where Fh is the interaction force between the colloidal probe and the interface.

For a probe oscillating with a small amplitude compared to the size of probe and the range of
the interaction length, the instantaneous interaction force can be linearised and has two contribu-
tion: conservation term (−kintZ) and dissipative term (−γintŻ), namely Fh = −kintZ − γintŻ,
where kint and γint are the interaction stiffness and damping coefficient, respectively. Then, Eq.
2.24 can be rewritten as:

m∗Ẍ + γbulkẊ + kcX = Fd − kintZ − γintŻ, (2.25)
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Fd is driving force induced by the displacement of the cantilever base and can be calculated
using Euler-Bernouli beam theory. The analytical expression for Fd is

Fd = (m∗ω2 − jωγbulk)βdAde
jωt, (2.26)

with a coefficient βd ≈ 1.565 [78].

However, in a real experiment, the cantilever is excited by two source: the base vibration and
an additional force from the surrounding fluid, which is driven by the piezo actuator [78, 79].
Accurate determination of the acoustic wave propagation is difficult because it depends on the
cantilever geometry and fixation of the cantilever on the liquid cell. Here the driving force
is measured experimentally. Far from the interface, the interaction force can be neglected,
assuming a general expression for the driving force in the form

Fd = (F1 + jF2)ejωt, (2.27)

where F1 is the term that is in phase with base vibration and F2 is the term that is in phase
quadrature. By inserting Eq. (2.23) and Eq. (2.27) into Eq. (2.25), and using Fh = 0, we get
the expression for the driving force:

F1 = kc · A∞

[(
1−

(
ω

ωc

)2
)

cos(ϕ∞)−
(

ω

ωcQ0

)
sin(ϕ∞)

]
, (2.28a)

F2 = kc · A∞

[(
1−

(
ω

ωc

)2
)

sin(ϕ∞) +

(
ω

ωcQ0

)
cos(ϕ∞)

]
. (2.28b)

A∞ and ϕ∞ are the amplitude and phase of the cantilever measured far from the interface, ωc
is the angular resonance frequency (ωc =

√
kc/m∗), Q0 is the bulk quality factor of the probe

(Q0 = m∗ωc/γbulk). Injecting the expression of driving force into Eq. (2.25), we get

m∗Ẍ + (γbulk + γint)Ẋ + (kc + kint)X = (F1 + jF2)ejωt − (kint + jωγint)Ade
jωt.

With the notation of X = Aej(ωt+ϕ), we get

kint + jωγint =
F1 + jF2 + (m∗ω2 − jωγbulk − kc)Ae

jϕ

Aejϕ + Ad

=

F1 + jF2 +

[(
ω
ωc

)2

− j ω
ωcQ0
− 1

]
kcAe

jϕ

Aejϕ + Ad

.

(2.29)

By separating the real and the imaginary part of Eq. (2.29), we get the desired expressions for
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the damping and stiffness of the probe-sample interaction in the forms of

ωγint

kc

=

A
Ad

F1

kcAd
sinϕ+ F2

kcAd

(
1 + A

Ad
cosϕ

)
− A

Ad
sinϕ

(
1− ω2

ω2
c

)
− A

Ad

ω
ωcQ0

(
A
Ad

+ cosϕ
)

1 +
(
A
Ad

)2

+ 2 A
Ad

cosϕ
,

(2.30a)
kint

kc

= −1 +
ω2

ω2
c

+

A
Ad

F1

kcAd
cosϕ+ A

Ad

F2

kcAd
sinϕ+

(
1 + A

Ad
cosϕ

)(
1− ω2

ω2
c

)
+ F1

kcAd
+ A

Ad

ω
ωcQ0

sinϕ

1 +
(
A
Ad

)2

+ 2 A
Ad

cosϕ
.

(2.30b)

The experimental setup is shown in Fig. 2.5. The signal access module (Nanoscope III,
Bruker) has the advantage to control the input and the output signals of the AFM (driving exci-
tation of the cantilever, vertical and lateral deflections of cantilever, etc). The lock-in amplifier
(The Signal Recovery 7280 Lock-in Amplifier) output signal excites the cantilever vibration.
The DC component of deflection is recorded, and the AC component is used as input to the lock
in amplifier to measure the amplitude and phase of the cantilever oscillation.

Display

De�ection

Amplitude

Phase

DC De�ection

AC De�ection Oscillation

Oscillation

Figure 2.5: The experimental setup for dynamic AFM method.

We used a spherical borosilicate particle(MO-Sci Corporation) with a radius of R = 53.1±
1 µm to make the colloidal probe. The sphere was glued at the end of a silicon nitride rect-
angular cantilever (ORC8, Bruker) by epoxy (Araldite, Bostik, Coubert). The colloidal probe
was fixed on the liquid cell (DTFML-DD-HE). The assembly of the probe and liquid cell were
then rinsed several times with ultra-pure water (MilliQ-Millipore). The samples were fixed on
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a multi-axis piezo system(NanoT series, Mad City Labs) that allows a large displacement (up
to 50 µm) with a high accuracy under close loop control. Using the drainage method shown
in Sec.1.3.3, the stiffness of the cantilever with an attached sphere, kc = 0.25 ± 0.005 N/m,
was determined from the drainage data at large distance (200− 10000 nm). The bubbles’ radii
Rb were measured with an optical microscope. The cantilever quality factor and resonance
frequency are respectively Q0 = 3.9, ωc/2π = 1340 Hz, which were obtained from the fitting
of the spectrum of thermal noise by Eq. (1.28) for the first mode of the cantilever vibration.
We took mica surface as the reference sample to check the validity of the this method. The
experiments were perform in ultra-pure water at room temperature (21◦C).

Figure 2.6: The amplitude (red circle) and phase (blue square) measured far from mica surface
in pure water.

Figure 2.6 shows the amplitude A∞ and phase ϕ∞ far from the surface versus the driving
frequency. Figure 2.7 shows the driving forces F1, F2 versus the frequencies calculated from
the data shown in Fig. 2.6 by Eqs. (2.28a) and (2.28b).

Figure 2.8 shows the measured DC component of deflection, amplitude and phase versus
the piezo displacement on mica surface (the driving frequency is ω/2π = 200 Hz). Close to the
contact position (d = 0), the damping is infinity, and thus the measured cantilever deflection
amplitude is equal to the driving vibration amplitude (i.e. A = Ad when d = 0) and the phase
is equal to −180◦ at contact position. In this measurement, we obtain the driving amplitude
Ad = 32 mV. Note here, the value of the driving amplitude measured on mica surface will also
be used to calculate the hydrodynamic drag force on bubble surface.

Figure 2.9 shows the calculated damping and stiffness of the probe-sample interaction versus
distance using the data shown in Fig. 2.8. The damping increases when the distance decreases
and the stiffness is equal to zero as expected (no elastic interaction).
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Figure 2.7: The real F1 and imaginary F2 components of the driving force calculated from the
amplitude and phase in Fig. 2.6 using Eqs. (2.28).

Figure 2.8: The DC component of cantilever deflection Zc as a function of the piezo displace-
ment Zp at 200 Hz. The insect shows the coresponding amplitude A and phase ϕ measured
from the AC component of the cantilever deflection versus piezo displacement Zp.

In order to check the validity of this method, we compare the measured interaction force with
hydrodynamic drag force that acts on a sphere moving perpendicular to a flat substrate such as

41



CHAPTER 2. VISCO-ELASTIC EFFECTS AT AIR-WATER INTERFACE:
CONTAMINATION EFFECT

Figure 2.9: The calculated damping ωγint and stiffness kint of probe-sample interaction at 200 Hz
on mica surface.

Figure 2.10: The damping measured in both drainage method and dynamic colloidal probe
AFM method and the black line the theoretical calculation with γ0/kc.

the drainage force in Sec. 1.3.3. In the drainage method, the hydrodynamic drag coefficient γint

that we measure: γint/kc = Zc/V should be equal to the interaction damping γint/kc in Eq.
2.30a. As shown in Fig. 2.10, the damping coefficients measured by both drainage method and
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dynamic AFM method collapse to γ0 = 6πηR2

d
calculated with non-slip boundary condition, as

expected.

2.3.2 Results & Discussion

In order to make it convenient to compare, we introduce a complex hydrodynamic drag coef-
ficient Γh(ω) = Γvis − jΓel to describe the hydrodynamic drag force. The hydrodynamic drag
coefficient is defined by Γh = −Fh/V , which is related to the damping γint and stiffness kint

coefficients by Γvis = γint, Γel = kint/ω.

Figure 2.11 presents the viscous Γel and the elastic Γvis coefficients of the hydrodynamic
drag force versus distance for the sphere vibrating at frquency of 200 Hz close to a mica surface.
As expected, the hydrodynamic interaction with the mica surface is purely viscous, and the
elastic coefficient Γel is zero for all the distances.

Figure 2.11: Viscous Γvis and elastic Γel components for the sphere vibrating at frequency
200Hz in pure water on mica surface.

Figure 2.12 shows the viscous coefficient Γvis of the hydrodynamic force versus the distance
d for different vibrating frequencies. Note that, the viscous part of the hydrodynamic drag
coefficients extracted for different vibration frequencies coincide with each other, and with the
theoretical hydrodynamic drag coefficient given by 6πηR2/d for non slip boundary conditions.

Figure 2.13 shows the viscous Γvis and elastic Γel drag coefficients measured on the bubble
at the vibration frequency of 100 Hz. Unlike the measurement on the mica surface, the results
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Figure 2.12: The hydrodynamic drag coefficient versus the distance for different vibration fre-
quencies in pure wanter with mica surface. The solid dark line is the theoretical drag coefficient
Γ0 = 6πηR2/d for no slip boundary condition on mica surface.

show that the interaction is not purely viscous, and the elastic coefficient Γel is not zero any
more.
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Figure 2.13: Viscous Γvis and elastic Γel components of the hydrodynamic drag force measured
on bubble surface in pure water. The cantilever sphere vibrates at a frequency of 100 Hz.

Furthermore, as shown in Fig. 2.14, the viscous coefficient for different frequencies of the
vibration do not coincide with each other as for mica surface. The drag coefficients correspond-
ing to full slip 3πηR2

eff/2d and no slip 6πηR2
eff/d boundary condition on the bubble are also

presented in Fig. 2.14. While for low frequencies, the viscous drag force is close to the no slip
case, with increasing frequency, the drag force decreases and finally approaches the full slip
boundary condition on the bubble surface. In our experiments, the frequency could not be in-
creased further since vibrations in bubble shape are excited at higher frequencies. For example,
for a bubble with radius of Rb = 400 µm, the first resonance occurs around 600 Hz.

We have performed two independent experiments under similar conditions, at a temporal
distance of one month. In Fig. 2.15, we present the measured viscous drag force Fvis and elastic
drag force Fel divided by the reference force F0, and we compare with numerical calculations
(solid line). The only adjustable parameter is the impurity concentration c0 that defines the
surface pressure Π0 = c0kBT . The fitted values are Π0 = (0.25 ± 0.05) mN/m for the first
experiment (see Fig. 2.15a) and Π0 = (0.35± 0.05) mN/m for the second one (see Fig. 2.15b),
corresponding to c0 = (63 ± 13) × 1015 m−2 and c0 = (87 ± 13) × 1015 m−2, or to an area
per molecule of 16 nm2and 12 nm2, thus justifying the ideal-gas picture adopted for the surface
pressure. The impurities may originate from the polystyrene substrate, from the surrounding
air (our experiments were performed at ambient conditions), or from other unknown sources,
despite the care taken in cleaning up all the equipment carefully and despite our use of ultra-pure
water for the experiments.

In order to confirm the role of impurities, we have done a control experiment in a 60 µM
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Figure 2.14: The viscous component Γvis of the hydrodynamic drag force for different oscillation
frequencies measured on bubble surface. The calculated viscous component of drag coefficient
corresponding to full slip and non slip boundary conditions on the bubble surface which are
represented by the grey and dark line, respectively.
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Figure 2.15: a) The experimental results of hydrodynamic force Fvis/F0 and Fel/F0 as a func-
tion of vibrating frequency with ultra-pure water. b) The results for the second experiment per-
formed one month later under similar conditions. The solid lines represent the numerical calcu-
lation in 2.2.1 with a fitting parameter of Π0. The fitted values of Π0 are (0.25± 0.05) mN/m
and (0.35± 0.05) mN/m for experimental results in a and b, respectively.
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Figure 2.16: The experimental results of hydrodynamic force Fvis/F0 and Fel/F0 as a func-
tion of vibrating frequency with 60 µM SDS solution. The solid lines represent the numerical
calculation in 2.2.1 with a fitting parameter of Π0, whose value is Π0 = (1.0± 0.1) mN/m.

SDS solution. The visco-elastic forces are shown in Fig. 2.16, and fitted with a surface pressure
Π0 = (1.0 ± 0.1) mN/m. The surface tension measurement using a Wilhelmy plate method,
gives a surface tension reduction of ∆σ = (1.2± 0.1) mN/m, which is close to the fitted value
of Π0. We conclude that this control experiment provides a quantitative confirmation of the
above analysis.

In Fig. 2.17, we present the measured drag forces as a function of the reduced frequency
ω/ω0. The data from the two independent experiment in ultra-pure water and the control ex-
periment in 60 µM SDS solution, collapse on a single master curve. The dashed lines are from
the numerical calculations in Sec. 2.2.1 and the continuous lines are the analytical results given
in Eq. (2.14) and Eq. (2.15). The viscous drag force shows a smooth crossover from the non
slip value at zero frequency to the full slip value at large frequency, as expected for a free sur-
face. The elastic component increases linearly, passes through a maximum at ω ≈ 2ω0. The
analytical calculations describe the asymptotic behavior rather well.
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Figure 2.17: The master curve of viscous force Fvis/F0 and elastic force Fel/F0 for these three
experimental measurements. The dashed lines are from the numerical calculations in Sec. 2.2.1
and the continuous lines are the analytical results given in Eq. (2.14) and Eq. (2.15).

2.4 Conclusion

In this chapter, we have studied the viscoelastic effect due to the presence of the surfactant con-
tamination. The measurements demonstrate that very low concentrations of surface impurities
drastically modify boundary conditions for flows near the interfaces. Both viscous and elastic
forces are exerted by the air-water interface on the vibrating sphere. Our measurements give
clear evidence for a strong elastic drag force besides the viscous drag force. When varying the
frequency from low frequency to high frequency, a crossover from no-slip to full slip boundary
conditions occurs in the viscous drag force. Besides the reduction of the viscous force, the
elastic drag force shows a nontrivial variation as the vibration frequency changes. The value of
the elastic force is comparable to the viscous force in the intermediate range. Furthermore, our
experiment methods allow to detect the impurity concentration at an air-water interface through
its viscoelastic response to a vibrating AFM probe.

48



Chapter 3
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3.1 Context

While the structure and physicochemistry of the confining surfaces are important when consid-
ering the flow of confined liquids, their elastic behavior is usually not taken into account [20].
At small gap, the hydrodynamic pressure between the confining surfaces can be very large, that
it may induce elastic deformation of the surfaces. Based on this elastohydrodynamic coupling,
new tools were developed to probe the mechanical properties of soft interfaces without con-
tact. Using dynamic SFA, Charlaix’s team has measured the mechanical properties of several
surfaces ranging from soft surface like PDMS to hard surface like glass [20, 21, 22]. Guan
et al. have used vibrating nano-needle glued to the AFM cantilever to probe the viscoelastic
properties of PDMS surfaces [23] and living cells [24].

Indeed, a sphere vibrating vertically close to bubble is a good candidate to investigate the
elastohydrodynamic interaction. At small distance the hydrodynamic pressure induced by the
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sphere vibration is so large that the bubble surface will be deformed which leads to elastohy-
drodynamic coupling.

In this chapter, we investigate the visco-capillary interaction by colloidal probe which
is driven by two methods: thermal excitation and external acoustic excitation. As we have
presented in chapter 2, the bubble surface may contain contamination which induce vis-
coelastic responses due to the advection of the surfactant by the liquid flow. In order to
measure accurately the visco-capillary response, the contribution due to advection of impu-
rities should be eliminated. For the thermal excitation experiment, a cantilever with a large
resonance frequency ωc is chosen (such that ωc � ω0, where ω0 is defined in Eq. (2.10)
) in order to satisfy the full slip boundary condition on the bubble surface. For the exter-
nal acoustic excitation experiment, the cantilever was driven at low frequencies and SDS
solutions was introduced in order to satisfy no-slip boundary condition at the air-water
interface.

3.2 Analytical Model for Visco-Capillary Effect: Simplified
Model

At small distance, the bubble deformation can not be neglected, the capillary effect will con-
tribute to the interaction between sphere and bubble. The deformation ξ(r) of bubble is related
to the hydrodynamic pressure p(r) by Young-Laplace equation:

p(r) = σ∆ξ(r) =
σ

r

∂

∂r

(
r
∂ξ(r)

∂r

)
, (3.1)

where ∆ is the Laplace operator and σ is the surface tension of bubble.

As reported in previous chapter, for large vibration frequency, a full slip boundary condition
should be satisfied on the bubble surface (i.e. (∂vr/∂z)|z=0 = 0. Therefore, the pressure in
Eq. (2.5) becomes to:

p(r) = −3jωZηReff

4h2
(3.2)

and thus the hydrodynamic interaction force

Fh = 2π

∫ ∞
0

rp(r)dr = −3πjωZηR2
eff

2d
. (3.3)

By substituting Eq. (3.2) into Eq. (3.1) and integrating Eq. (3.1), we obtain

dξ

dr
= −3jωZηrReff

8σdh
. (3.4)
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Assuming ξ(r = Rb) = 0, and integrating Eq. (3.4), we get the expression of the bubble
deformation,

ξ0 = ξ(r = 0) = −
∫ Rb

0

dξ(r)

dr
dr =

3jωZηR2
eff

8σd
ln
(

1 +
R2

b

2Reffd

)
≈ 3jωZηR2

eff

8σd
ln
(

R2
b

2Reffd

)
. (3.5)

The bubble stiffness kb can be defined as Fh = kbξ0, and then from Eq. (3.3) and Eq. (3.5), we
obtain:

kb =
Fh

ξ0

=
4πσ

ln
(

R2
b

2Reffd

) . (3.6)

Note here that in the derivation of the bubble stiffness we have assumed a flat bubble. This
assumption is thought to be valid because in our case the radius of the bubble is much larger
than the radius of the colloidal sphere.

Furthermore, by comparing Eq. (3.3) to the viscous hydrodynamic force defined by Fh =
−γhŻ = −jωγhZ, we obtain the expression of the hydrodynamic damping for a full slip sur-
face:

ωγh =
3πωηR2

eff

2d
. (3.7)

The viscoelastic responses of bubbles can be modeled using the Maxwell model: spring and
dashpot (damping) in series(see Fig. 3.1). In this simplified model, the mechanical impedance

Bubble

Sphere

spring
dashpot

Figure 3.1: Equivalent model of the viscoelastic response of the microsized bubble: spring and
dashpot in series.

are expressed as:

G′ + jG′′ =
1

1
kb

+ 1
jωγh

=
kb(ωγh)2

k2
b + (ωγh)2

+ j
k2

bωγh

k2
b + (ωγh)2

. (3.8)
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By substituting Eq. (3.6) and Eq. (3.7) into Eq. (3.8), the impendance of the elastic component
G′ and the dissipative component G′′ of the interaction can be given as

G′ =
3πηωR2

eff

2d

3ηωR2
eff

8σd
ln
(

R2
b

2Reffd

)
1 +

[
3ηωR2

eff

8σd
ln
(

R2
b

2Reffd

)]2 , (3.9a)

G′′ =
3πηωR2

eff

2d

1

1 +
[

3πηωR2
eff

8σd
ln
(

R2
b

2Reffd

)]2 . (3.9b)

From Eq. (3.9), one can expect that there should be two asymptotic behaviors,

• Far from the bubble surface: d� 3πηωR2
eff

8σ
, kb � ωγint(viscous regime) with

G′′ ≈ 3πηωR2
eff

2d
and G′ ≈ 9π(ηωR2

eff)2

16σd2
ln

(
R2

b

2Reffd

)
.

• Close to the bubble surface: d� 3πηωR2
eff

8σ
, kb � ωγint (elastic regime) with

G′′ ≈ 32πσ2d

3πηωR2
eff

[
ln
(

R2
b

2Reffd

)]2 and G′ ≈ 4πσ

ln
(

R2
b

2Reffd

) .
Similar calculation can be performed for no slip boundary condition, which leads to hydro-

dynamic damping:

ωγh =
6πωηR2

eff

d
, (3.10)

and a new expression of the mechanical impedance:

G′ =
6πηωR2

eff

d

3πηωR2
eff

2σd
ln
(

R2
b

2Reffd

)
1 +

[
3πηωR2

eff

2σd
ln
(

R2
b

2Reffd

)]2 , (3.11a)

G′′ =
6πηωR2

eff

d

1

1 +
[

3πηωR2
eff

2σd
ln
(

R2
b

2Reffd

)]2 . (3.11b)

3.3 Experimental Results

3.3.1 Visco-capillary effect studied by thermal noise excitation of the AFM
probe

To probe the visco-capillary interaction with the bubble, we choose a cantilever whose reso-
nance is large enough (Eq. (2.15)), to neglect the elastic response form the impurity contami-
nation. In this case, the flow satisfies full slip boundary condition at the bubble interface and
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Eqs. (3.9) can be use to describe the visco-capillary interaction between the oscillating sphere
and the bubble.

The liquid-gas interface was prepared by placing a spherical air bubble with a radius Rb =
220.0 ± 4.0 µm on PS surface using a micro-syringe in the similar way of Sec. 2.3.2. The
experiment was performed using an AFM (Resolve, Bruker, USA). A spherical borosilicate
particle (MO-Sci Corporation) with a radius R = 44.0 ± 0.8 µm was used. The sphere was
glued to the end of a silicon cantilever (NP, Bruker) using epoxy (Araldite, Bostik, Coubert).
The cantilever stiffness kc = (0.35 ± 0.02) N/m was calibrated by fitting the power spectral
density far from the surface using Eq. (1.28) with resonance frequency, quality factor and bulk
damping coefficient are fc = 3.48 ± 0.05 kHz, Q0 = (4.7 ± 0.1) and γbulk = kc/(2πfcQ0) =
(3.4± 0.3)× 10−6 N · s ·m−1, respectively.

The external excitation of the AFM was switched off. The cantilever was only driven by
thermal noise. The maximum thermal oscillation amplitude was less than 1.0 nm. Therefore,
the influence of cantilever oscillation on the separation distance can be neglected. The distance
between the sphere and the bubble was controlled by the integrated stage step motor. Each
separation distance was adjusted by displacing the cantilever vertically using the step motor with
reproducibility less than 1.0 µm. The position at which the cantilever deflection signal changed
was taken as contact point, namely, the zero separation distance. The thermal noise signal of
the cantilever deflection was acquired using an analog to digital (A/D) acquisition board (PCI-
4462, National Instrument, USA) with a sampling rate of 80 kHz. From the acquired data, the
spectral density of the thermal noise was calculated.

For a vibrating colloidal probe interacts with a bubble interface, the motion equation of the
tip Eq. (1.22) becomes to

m∗ä(t) + γbulkȧ(t) + kca(t) = FThermal − (G′ + jG′′)a(t). (3.12)

And then we get

−m∗ω + kc +G′ + jω

(
γbulk +

G′′

ω

)
= FThermal. (3.13)

Thus the power spectral density can be fitted by equation:

PSD(X, f) =
c1

[(f ′2c − f 2)2 + (f ′cf/Q
′)2]

, (3.14)

through which the quality factor and the resonance frequency can be obtained, and c1 is a fitting
parameter. Using Eqs. (3.9), the resonance frequency f ′c and quality factor Q′ are given by:

f ′c ≈ fc +
πηfc(3ηωcR

2
eff)2

32kcσd2

ln
(

R2
b

2Reffd

)
1 +

[
3ηωcR2

eff

8σd
ln
(

R2
b

2Reffd

)]2 , (3.15)

Q′ ≈ Q0

1 +
3πηR2

eff

2γbulkd
1

1+

[
3ηωcR

2
eff

8σd
ln

(
R2

b
2Reffd

)]2

. (3.16)
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Figure 3.2: The power spectral density (PSD) obtained for the sphere at a distance of 14 µm
from the bubble surface. The solid line is the fitting curve by Eq. (3.14).

Figure 3.3: The normalized quality factor versus distance measured on mica surface in pure
water. The solid line represents the fitting curve with non-slip boundary condition: Q′/Q0 =

1/
(

1 + 6πηR2

γbulkd

)
.
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An example of power spectral density obtained at a distance of 14 µm from bubble surface
is shown in Fig. 3.2. The solid line is the fitting curve by Eq. (3.14).

Besides air-water interfaces, here a mica surface was used to provide hydrophilic solid-
liquid interface for comparison. The normalized quality factor (with respect to bulk values)
versus the distance for the colloidal probe on mica is shown in Fig. 3.3. The damping on
mica surface is given by γ0 = 6πηR2/d calculated using a non slip boundary condition. The
quality factor on mica can then be fitted using the expression: QNS(d) = Q0/

(
1 + 6πηR2

γbulkd

)
(see

Fig. 3.3).

Figure 3.4: The quality factor versus distance which was measured on bubble surface in pure
water. The solid black line is the fitting curve by Eq. (3.16) and the green dotted line and
the red dashed-dotted line are the theoretical simulating curves for quality factor of the full
slip boundary condition Q′/Q0 = 1/

(
1 +

3πηR2
eff

2γbulkd

)
and non-slip boundary condition Q′/Q0 =

1/
(

1 +
6πηR2

eff

γbulkd

)
, respectively, neglecting capillary response.

The quality factor measured on the bubble is presented in Fig. 3.4, which is different from
the results obtained on mica surface. The quality factor starts from the bulk value Q0 and
decreases with the decreasing of separation distance between the bubble and the sphere. After
the quality factor reaches a minimum value, it begins to increase with decreasing of separation
distance. At large separation the data coincide with the theoretical curve calculated assuming
full slip boundary conditions on the bubble surface. Indeed the cantilever resonance frequency
is very large compared with the frequency that characterize the contribution of impurities to the
flow ω0/2π = Π0/16πηReff presented in chapter 2 and the value is around 135 Hz. At small
separation distance, the bubble elastic deformation accommodates the motion of the sphere.
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This cancels the viscous flow of the liquid, leading to the increase of the quality factor Q′.

Moreover, as expected by Eq. (3.15), the elastohydrodynamic coupling would induce a shift
of the resonance frequency of the cantilever. The change of resonance frequency of the colloidal
probe with changing separation distance is shown in Fig. 3.5, which fits well with Eq. (3.15).
The resonance frequency increases sharply as the sphere is very close to the bubble surface.

Figure 3.5: The resonance frequency of the cantilever versus the separation distance between
the sphere and the bubble interface. The solid line is the fitting curve by Eq. (3.15).The inset
figure is the zoomed one for the area selected by the rectangular box.

3.3.2 Visco-capillary effect studied by acoustic excitation of the AFM probe

In this part, the cantilever is driven at the frequency much lower than the bubble vibration res-
onance to avoid the bubble shape oscillation that complicate the modeling of the sphere-bubble
interaction. The experiment was performed using an AFM (Bruker, Bioscopy II) equipped with
a liquid cell (DTFML-DD-HE). The cantilever with stiffness of kc = 0.250 ± 0.005 N/m and
the sphere with radius R = 53.1 ± 1 µm were used to probe the visco-capillary effect of the
bubble surface. The devices used in this experiment is same to the experiment presented in
chapter 2. The bubble was deposited on PS surface in 2 mM SDS solution. The experiment was
performed at room temperature (21 ◦C).

Due to presence of the surfactant, the characteristic frequency is ω0 ∼ 4 kHz for 2 mM SDS
solution (the driving frequencies are 50 Hz, 100 Hz and 200 Hz), in which cases the bubble
surface could be considered as no slip boundary. and the elastic force due to the contamination
can also be neglected.
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Figure 3.6: The measured mechanical impedanceG′/kc,G′′/kc versus gap distance d at 200 Hz
with the bubble radius ofRb = 321±3 µm in 2 mM SDS solution. The solid lines are the fitting
curves using Eqs. (3.11). The only adjusting parameter is the surface tension σ, which gives a
value of σ = 53± 2 mN/m.

The viscous G′′ and elastic G′ component of the impendance are extracted1 from the mea-
surement of the amplitude and phase of the cantilever. Figure 3.6 shows the elastic component
G′/kc and viscous component G′′/kc versus the gap distance d between the probe and the bub-
ble. The radius of the bubble is Rb = 321± 3 µm which was deposited in 2 mM SDS solution,
and the oscillation frequency is 200 Hz. The solid lines are the fitting curves by Eqs. (3.11).
The only adjusting parameter is the surface tension σ of air-water interface, which gives us a
value of σ = 53± 2 mN/m. The surface tension was also measured by Wilhelmy plate method,
which gives the value of σ = 50 ± 2 mN/m. The surface tension values obtained by the both
methods are close to each other.

The intersection between viscous component and elastic component (i.e. G′ = G′′), leads
to relation of

6πηωR2
eff

d0

=
4σ

ln
(

R2
b

2Reffd0

) . (3.17)

Figure 3.7 shows the intersection distance d0 for different oscillation frequencies. The open
squared dots represent the measurement results, while the solid line represents the calculation
using Eq. (3.17). The intersection distances versus the frequency are in good agreement with
the calculated distance using Eq. (3.17).

1Note here, the viscous G′′ and elastic G′ components are related to the calculation in Sec. 2.3.1 by G′′ =
γintω, G′ = kint.
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Figure 3.7: The intersection distance d0 versus the working frequency ω/2π. The open squared
dots represent the experimental results measured in 2 mM SDS solution, and the bubble radius
is Rb = 321± 3 µm. The solid line shows the results calculated by Eq. (3.17).
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Figure 3.8: The measured mechanical impedance versus the normalized distance d/d0 for three
different driving frequencies ( 50 Hz, 100 Hz and 200 Hz).

In Fig. 3.8, the mechanical impedance versus the normalized distance (d/d0) are plotted for
different oscillation frequencies (50 Hz, 100 Hz and 200 Hz). All the curves for these three
oscillation frequencies collapse together. The simplified model is in a good agreement with the
experimental results. However, in Fig. 3.6, a discrepancy is observed in both viscous and elastic
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components between the experimental results and the simplified model given by Eqs. (3.11) at
small distance. Both viscous and elastic components saturate to constant values.

3.4 Numerical Model for Visco-Capillary Effect

Considering the bubble deformation ξ(r, t) due to the hydrodynamic pressure, the confined
thickness h(r, t) is expressed by:

h(r, t) = d+
r2

2Reff
+ ξ(r, t) + Z(t). (3.18)

where Z = Z0e
jωt is the instantaneous position of the sphere as defined before, ξ(r, t) is the

deformation of the bubble in vertical direction. Using non-slip boundary condition on both
sphere and bubble surfaces, from the lubrication theory, we have

∂h(r, t)

∂t
=

1

12ηr

∂

∂r

[
rh3(r, t)

∂

∂r
p(r, t)

]
. (3.19)

Using an harmonic decomposition ξ(r, t) = ξ(r)ejωt and p(r, t) = p(r)ejωt, and injecting
Eq. (3.18) into Eq. (3.19), we obtain

jω (Z0 + ξ(r)) =
1

12ηr

∂

∂r

(
rh3p(r)

)
. (3.20)

The deformation field of the bubble ξ(r) is related to the pressure field p(r) by Young-Laplace
equation p(r) = σ∆ξ(r) presented in Eq. (3.1). Such a visco-capillary problem is sensitive to
the total size of the system: the central deformation diverges logarithmically with the system
size [68, 80]. Therefore, it is necessary to introduce a cut-off radius b in the model. The excess
pressure and the deformation fields are set to zero at radial distances larger than the cut-off
radius, i.e.:

p(r) = 0, ξ(r) = 0, r > b. (3.21)

Therefore the mechanical impedance G is calculated by

G = −Fh

Z0

= −
2π
∫ b

0
rp(r)dr

Z0

.

By introducing the typical visco-capillary length dc = 16ηωR2
eff/σ, the mechanical impedance

can be expressed in the form of:

G =
6πηR2

effω

dc
g

(
d

dc

)
. (3.22)

where g is a complex function of d/dc. Using the discrete Hankel transforms to solve theses
equations, g can be obtained numerically.
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Figure 3.9 shows the dimensionless viscous and elastic components versus the normalized
distance d/dc for the bubble in 1 mM SDS solution. The bubble radius is Rb = 346 µm, the
contact angle is θc = 81.5 ◦ and the sphere is vibrated at the frequency of 200 Hz, which is
small enough to satisfy ω � ω0. The open circles represent the experimental results extracted
from the measurements of amplitude and phase of the sphere oscillation. The solid lines are
the numerical results calculated using Eq. (3.22). The fitted value of the surface tension is
σ = 58 mN/m, which is very close to the value σ = 57.5 mN/m measured by Wilhelmy plate
method presented in Sec. 1.2.4. Note here, in the numerical calculation, half of the contour
length of the bubble b = Rb(π − θc) is taken as the cut-off length.

Figure 3.9: The dimensionless mechanical impedance versus the normalized distance by typical
distance dc measured in 1 mM SDS solution. The blue and red open circle represent the elastic
and viscous parts of the experimental results respectively, and the solid lines represent the
numerical solution of Eq. (3.22). The only fitting parameter is the surface tension σ, which
gives the value of σ = 58 mN/m.

We have performed a series of experiments with SDS concentrations ranging from 0.2 mM
to 40 mM. The sphere was driven at 200 Hz for all experiments. The fitted values of surface
tension as a function of SDS concentration are presented in Fig. 3.10. We observe that the sur-
face tension globally decreases with increasing surfactant concentration, as expected. At small
concentrations, the (< 8 mM), the values of fitted surface tension are in a good agreement with
the results measured using Wilhelmy plate method. However, at large SDS concentrations, the
fitted values of surface tension are lower than the results measured by Wilhelmy plate method.
It may result from two sources: first, the surface elasticity may need to be taken into account;
second, the oscillation of the sphere may excite bubble shape oscillation (the presence of the
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surfactant at the bubble surface may results in a shift of resonance frequency of bubble oscilla-
tion).

Figure 3.10: The air-water surface tension as a function of SDS concentration as obtained from
the fits of the mechanical impedance (red dots) and measurements using Wilhelmy plate method
(blue dots).

Figure 3.11: The dimensionless mechanical impedance versus the normalized distance by char-
acteristic distance dc for three different bubbles. a) shows the experimental results and b) shows
the theoretical model calculated form Eq. (3.22).
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In order to test the influence of bubble size, i.e. the cut-off length b, we performed an
experiment with three different sizes of bubble in 1 mM SDS solution with a driving frequency
of 200 Hz. In Fig. 3.11, the dimensionless mechanical impedance as a function of normalized
distance are plotted for theses three bubbles. The radii of the bubbles are 240 µm, 360 µm and
544 µm, respectively. The experimental curves are shown in Fig. 3.11a, while the theoretical
ones are shown in Fig. 3.11b where the cut-off length is set to half of the contour length of the
undeformed bubble surface as before. The dimensionless mechanical impedance is generally
found to depend on the bubble size which is correctly reproduced by the theoretical model.
At small distance, the dependence on the bubble size is more important and both viscous and
elastic components of the dimensionless impendance decrease as the bubble size increases. This
observation highlights the importance of finite size effect in visco-capillary system.

3.5 Conclusion

In this chapter, we have studied the elastohydrodynamic coupling between the pressure of the
confined flow and the capillary deformation of the bubble. We found that at large distance, the
viscous component of the coupling dominates the interaction. For a distance equal to dc =
16ηωR2

eff/σ (visco-capillary length), both components of the mechanical impedance are in the
same order of magnitude. At small separation distance, the bubble elastic capillary deformation
accommodates the motion of the sphere. This cancels the viscous flow of the liquid, leading to
the decrease of the damping component of the interaction.

To probe the visco-capillary interaction, two methods – thermal excitation and external
acoustic excitation– have been used to excite the cantilever. To analyze our measurements,
a simplified model based the spring-dashpot in series was developed. The experimental results
obtained from both methods of cantilever excitation are in a qualitative agreement with the
simplified model. At very small distance, a discrepancy is observed between the experimen-
tal results and the simplified model. To investigate the interaction at very small distance, we
have performed numerical calculation to solve the combined Navier-Stokes and Young-Laplace
equations in the frame of lubrication approximation. The numerical calculations are in good
agreement with the experimental results and allow us to measure the surface tension of bubble
interface without contact.

Once the experimental setup is improved, it can be a powerful tool for tensiometry of air-
water interfaces. Beside the fact that the measurement can be done in no-contact (no-invasive)
between the tip and the interface, the volume of the liquid required can be as small as tens
microliters.
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Thermal Capillary Wave on
Hemispherical Bubble Probed by AFM
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4.1 Context

Molecules that lie at the interface between two phases are subject to forces that are different
from those that are in the bulk. These forces act so as to minimize the surface energy and give
rise to the surface tension of interfaces [81, 82]: the energy cost to maintain the phase separation
of the fluids. These interfaces are host to thermal fluctuations, which are at the origin of the
roughness of the interfaces: the fluctuations of the local positions of molecules distort the shape
of the interfaces. This phenomenon described using the notion of thermal capillary waves has
been the subject of theoretical studies for several decades [83, 84, 85, 86, 87, 88, 89, 90, 91, 92].
When such interfaces are confined by imposing a vanishing velocity at the ends of the interface
as in the presence of walls, the spectrum of the fluctuations will present sharp resonance peaks
for specific frequencies for which the motion of the interface is much stronger than that for
other frequencies.

Experimental studies of thermal capillary waves are mainly performed using techniques
such as X-ray reflectivity [93], surface quasi-elastic light scattering (SQELS) [94, 95], optical
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interferometry [96, 97] and high speed video imaging [91, 98]. Such techniques can also shed
light on the viscoelastic properties of surfaces and interfaces when decorated by surfactants.
These additives, even in minute quantities can alter not only the surface tension of surfaces but
render these surfaces rheologically non trivial: such surfaces may acquire a surface elasticity
and a surface viscosity [99, 100, 101, 102, 103, 104, 17, 105, 106, 107, 108].

In this chapter, an AFM measurement of the thermal capillary fluctuation on the surface
of a bubble deposited on a solid substrate is presented. A model for bubble shape oscillation
is addressed to explain the measured bubble resonance frequencies, effective mass and the
damping coefficient. The surface viscosity due to the contamination is extracted from the
measurement of the additional damping.

4.2 Modeling of Bubble Shape Vibration

We consider a hemispherical bubble which is deposited on a solid surface in water and the radius
of the undisturbed bubble is Rb. The quality factor of the resonance of the bubble oscillation
studied in this chapter is larger than 10 which means that viscous damping of the liquid flow is
rather weak. We may assume that the flow is derived from a potential ψ satisfying Laplace’s
equation, ∇2ψ = 0 [109]. The spherical coordinates (r, θ, φ) centered at the center of the
undisturbed bubble is adopted (see Fig. 4.1). For azimuthally symmetry, the solution of this
equation is given in the form of [109, 110]:

ψ(r, θ, t) =
∞∑
n=0

bn(t)

rn+1
Pn(cos θ), (4.1)

where Pn is the Legendre function, bn(t) is a coefficient which is the function of time, and n is
the order number. Legendre function satisfies the relations of:∫ 1

0

P2k (cos θ)P2l (cos θ) d (cos θ) =
δl,k

(4k + 1)
, (4.2)

and ∫ 1

0

∂P2k (cos (θ))

∂θ

∂P2l (cos (θ))

∂θ
d( cos (θ)) =

2k (2k + 1)

(4k + 1)
δk,l, (4.3)

where δl,k = 0 if k 6= l, δl,k = 1 if k = l and k, l are integer numbers.

The flow velocities are given by:

vr (r, θ) =
∂ψ

∂r
, (4.4a)

vθ (r, θ) =
1

r

∂ψ

∂θ
. (4.4b)
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r
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Φ n=4
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ξ(θ)

Figure 4.1: A hemispherical bubble is deposited on a solid surface.

The impermeability of the substrate requires that the perpendicular velocity of the fluids
must vanish on the substrate: vθ

(
r, θ = π

2

)
= −1

r
∂ψ
∂θ

(
r, θ = π

2

)
= 0. To satisfy this equality,

the value of n should be even number, i.e. n = 2k, which means that only even modes of the
bubble shape oscillation can appear for a hemispherical bubble. And then, we have:

ψ (r, θ, t) =
∞∑
k=0

b2k (t)

r(2k+1)
P2k (cos θ). (4.5)

The deformation of the hemispherical bubble shape is given by:

ξ (θ, t) =
∞∑
k=0

c2k (t)P2k (cos θ), (4.6)

where the amplitude c2k (t) is a function of time. The radial velocity of the flow must satisfy
the boundary conditions on the surfaces of the bubble: vr (r = Rb) = ∂ψ

∂r
(r = Rb) = ξ̇ (t, θ).

And thus we can express b2k (t) as function of c2k (t) by

ċ2k = −(2k + 1)b2k

R2k+2
b

. (4.7)

Injecting Eq. (4.7) into the potential expression of Eq. (4.5), we get:

ψ (r, θ, t) = −
∞∑
k=0

R
(2k+2)
b ˙c2k (t)

(2k + 1) r(2k+1)
P2k (cos θ). (4.8)
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Volume Conservation

Neglecting the dissolution of air molecules into water, the volume of the bubble should be
constant, i.e.

∆V =
1

3

∫ π/2

0

∫ 2π

0

[(Rb + ξ)3 −R3
b] sin(θ)dθdφ

=

∫ π/2

0

∫ 2π

0

[(ξR2
b +Rbξ

2)3 −R3
b] sin(θ)dθdφ

= 2πRb
2c0 (t) + 2πRb

∞∑
k=1

c2
2k (t)

4k + 1
= 0

(4.9)

Potential Energy

The potential energy Ep of the bubble surface is given by Ep = σ∆S, here σ is the surface
tension of the bubble surface, S is the surface area of the bubble surface. The change of the
bubble surface is given by

d (∆S) =

(
2Rbξ + ξ2 +

1

2

(
∂ξ

∂θ

)2
)

sin (θ)dθ dφ

= 2π

(
2Rbξ + ξ2 +

1

2

(
∂ξ

∂θ

)2
)

sin (θ)dθ.

(4.10)

Using the bubble deformation expression of Eq. (4.6), the potential energy is expressed as:

Ep = σ

∫
d(∆S)

= 2πσ

(
2Rbc0 +

∞∑
k,l

c2kc2l

∫ 1

0

[
P2k (cos (θ))P2l (cos (θ)) +

1

2

∂P2k (cos (θ))

∂θ

∂P2l (cos (θ))

∂θ

]
d( cos (θ))

)

= 2πσ

(
2Rbc0 +

∞∑
k,l

c2kc2l

[
1

4k + 1
δl,k +

1

2

2k (2k + 1)

4k + 1
δl,k

])
.

(4.11)

Using Eq. (4.2) and Eq. (4.9), the expression of potential energy becomes:

Ep = 2πσ

(
2Rbc0 +

∞∑
k=1

2k (2k + 2) + 2

2 (4k + 1)
c2

2k

)

=
2σ∆V

Rb

+ πσ
∞∑
k=1

(2k + 2)(2k − 1)

4k + 1
c2

2k

= πσ
∞∑
k=1

(2k + 2)(2k − 1)

4k + 1
c2

2k.

(4.12)
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Kinetic Energy

Using the expression for the velocity of the fluid, we can calculate the kinetic energy Ek by
[111]:

Ek =
1

2
ρ

∫∫∫
(∇ψ)2 dV =

ρ

2

∫
(ψ∇ψ) · ~ndS =

ρ

2

∫ (
ψ
∂ψ

∂r

)
r=Rb

R2
b2π sin (θ) dθ, (4.13)

here ρ is the density of the fluid surrounding the bubble. Injecting the velocity potential Eq. (4.5)
into Eq. (4.13) and using Eq. (4.2), we get the expression for the kinetic energy Ek:

Ek = R2
bπρ

∫ (
ψ
∂ψ

∂r

)
r=Rb

sin (θ)dθ

= −πρR3
b

∞∑
k,l

ċ2kċ2l

(2k + 1)

∫ 1

0

P2k (cos (θ))P2l (cos (θ)) d(cos (θ))

= πρR3
b

∞∑
k=1

˙c2k
2

(2k + 1) (4k + 1)

(4.14)

Viscous Damping of the Bubble Shape Oscillation

To calculate the viscous damping ˙Dvis, we use the expression [111]:

˙Dvis = η

∫∫ (
∇~v2

)
· ~ndS = η

∫∫
∂~v2

∂r
dS = 2πηR2

b

∫
∂~v2

∂r
sin(θ)dθ. (4.15)

here η is the viscosity of the fluid surrounding the bubble. Using Eq. (4.4), we obtain

∂~v2

∂r
= 2vr

∂vr
∂r

+ 2vθ
∂vθ
∂r

= − 2

Rb

∞∑
k,l

(2k + 2) ċ2kċ2l

[
P2k (cos (θ))P2l (cos (θ)) +

∂P2k(cos (θ))
∂θ

∂P2l(cos (θ))
∂θ

(2k + 1) (2l + 1)

]
.

(4.16)

Injecting Eq. (4.16) in Eq. (4.15), and using Eq. (4.2), Eq. (4.3), we obtain:

˙Dvis = 4πηRb

∞∑
k,l

(2k + 2) ċ2kċ2l

∫ 1

0

[
P2k (cos (θ))P2l (cos (θ)) +

∂P2k(cos (θ))
∂θ

∂P2l(cos (θ))
∂θ

(2k + 1) (2l + 1)

]
d( cos (θ))

= 4πηRb

∞∑
k=1

(2k + 2)

(2k + 1)
ċ2

2k.

(4.17)
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Boundary damping on Solid Wall

To calculate the boundary damping Ḋb on the substrate wall, we use the expression [111]:

Ḋb =
1

2

√
ωρη

2

∫ ∞
R

~v22πrdr. (4.18)

where ~v is the velocity along the solid wall, i.e.

~v2
(
θ =

π

2

)
= v2

r

(
θ =

π

2

)
=
∞∑
k,l

R
(2k+2l+4)
b

r(2k+2n+4)
˙c2k ˙c2lP2k (0)P2l(0). (4.19)

Injecting Eq. (4.19) into Eq. (4.18), we have

Ḋb =
πη

δ

∑
k,l

∫ ∞
Rb

R(2k+2l+4)

r(2k+2l+3)
˙c2k ˙c2lP2k (0)P2l (0) dr

=
πηR2

b

δ

∑
k,l

˙c2k ˙c2lP2k (0)P2l (0)

2k + 2l + 2

=
πηR2

b

δ

∑
k

ċ2
2kP

2
2k (0)

4n+ 2
+
∑
k,l,l 6=k

˙c2k ˙c2lP2k (0)P2l (0)

2k + 2n+ 2
.

(4.20)

where δ =
√

2η/ρω is the penetrate depth. For vibration frequency close to the resonance ω2k,
the amplitude c2k is much larger than the amplitude c2l and thus we can neglect the second term
of the right hand side of the previous equation. Therefore, the boundary damping is expressed
as:

Ḋb ≈
πηR2

b

δ

∞∑
k=1

ċ2
2kP

2
2k (0)

4k + 2
. (4.21)

Lagrange equation: resonance frequency and damping coefficient

For the bubble oscillation, we have

d

dt

(
∂Ek

∂ċn

)
− ∂Ek

∂cn
+
∂Ep

∂cn
= −1

2

∂Ḋ

∂ċn
. (4.22)

The damping Ḋ is the sum of the bulk viscous damping Ḋvis and the boundary damping Ḋb on
the substrate: Ḋ = Ḋvis + Ḋb. Note here, n = 2k is the even integer numbers. Each term in
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Eq (4.22) is obtained from:

d

dt

(
∂Ek

∂ċn

)
=

2πρR3
b c̈n

(n+ 1) (2n+ 1)
, (4.23)

∂Ek

∂cn
= 0, (4.24)

∂Ep

∂cn
= 2πσ

(n− 1) (n+ 2)

(2n+ 1)
cn, (4.25)

1

2

∂Ḋ

∂ċn
= 4πηRb

(n+ 2)

(n+ 1)
ċn +

πηR2
b

δ

ċnP
2
n (0)

2(n+ 1)
. (4.26)

Substituting Eq. (4.23), Eq. (4.24), Eq. (4.25) and Eq. (4.26) into Eq. (4.22), we get

2ρπR3
b c̈n

(n+ 1) (2n+ 1)
+ 2πσ

(n− 1) (n− 2)

(2n+ 1)
cn = πηRb

(n+ 2)

(n+ 1)
ċn +

πηR2
b

δ

ċnP
2
n (0)

2(n+ 1)
. (4.27)

Eq. (4.27) can be written as

c̈n+2

[
η

ρR2
b

(n+ 2) (2n+ 1) +
η

8ρδRb
(2n+ 1)P 2

n (0)

]
ċn+

[
σ

ρR3
b

(n− 1) (n+ 1) (n+ 2)

]
cn = 0.

(4.28)
This equation is in the form of: c̈n + 2βnċn + ω̂2

ncn = 0. And the resonance ω̂n is given by
[110, 109, 112]

ω̂n = α̂ωref, (4.29)

where α̂ =
√

(n− 1)(n+ 1)(n+ 2) and

ωref =
√
σ/ρR3

b. (4.30)

The damping coefficient βn is the sum of the viscous damping and the boundary damping coef-
ficients, i.e. βn = βvis

n + βb
n, where viscous damping coefficient βvis

n is given by [109]

βvis
n =

η

ρR2
b

(n+ 2) (2n+ 1) , (4.31)

and the boundary damping coefficient βb
n is given by

βb
n =

η

8ρδRb
(2n+ 1)P 2

n (0) . (4.32)

Pinned contact line constraint

Assuming that cn (t) depends on time as cn (t) = c0
ne
jωt with oscillation amplitude of c0

n, and
the pining of the contact line imposes that the velocity of bubble oscillation on substrate is equal
to zero, therefore, we have

ξ̇
(
t, θ =

π

2

)
=
∞∑
k=0

ċnPn

(
cos
(π

2

))
= jω

∞∑
n=0

cnPn (0) = 0. (4.33)
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To take into account the pining of the contact line on resonance frequency, we introduce the
Lagrange multiplier λ and the function:

g (cn) =
∞∑
n=0

cnPn (0) = 0. (4.34)

The Lagrange equation Eq. (4.22) becomes:

d

dt

(
∂Ek

∂ċn

)
− ∂Ek

∂cn
+
∂Ep

∂cn
= −1

2

∂Ḋ

∂ċn
+ λ

∂g

∂cn
. (4.35)

Then we have

c̈n + 2

[
η

ρR2
b

(n+ 2) (2n+ 1) +
η

8ρδRb
(2n+ 1)P 2

n (0)

]
ċn +

[
σ

ρR3
b

(n− 1) (n+ 1) (n+ 2)

]
cn

=
λ

2ρπR3
b

(n+ 1) (2n+ 1)Pn (0) ,

(4.36)

which can be written in the form of

c̈n + 2βnċn + Ω2
ncn =

λ

2ρπR3
b

(n+ 1) (2n+ 1)Pn (0) . (4.37)

where Ω2
n = σ

ρR3
b

(n− 1) (n+ 1) (n+ 2). And thus, we have

cn =

λ
2ρπR3

b
(n+ 1) (2n+ 1)Pn (0)

Ω2
n − ω2 + 2jβnω

. (4.38)

Substituting Eq. (4.38) into Eq. (4.33), we get

∞∑
n=0

(n+ 1) (2n+ 1)P 2
n(0)

Ω2
n − ω2 + 2jβnω

= 0. (4.39)

If we neglect the damping term in Eq. (4.39) and using n = 2k, we get equation for the reso-
nance frequency given by [111, 109]

∞∑
k=1

(2k + 1) (4k + 1)

(2k − 1)(2k + 1)(2k + 1)− α2
n

P2k (0)2 = 0. (4.40)

The solutions of Eq. (4.40) correspond to the resonances for each mode of the bubble with fixed
contact line, i.e.

ωn = αnωref. (4.41)

The calculated values for the first six resonance modes of αn are given in Tab. 4.1.
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n 2 4 6 8 10 12
α̂n 3.46 9.49 16.73 25.10 34.47 44.74
αn 5.37 11.86 19.53 28.28 37.99 48.69

Table 4.1: Vibration resonance coefficient for a hemispherical bubble. α̂n is for a freely moving
contact line, with ω̂n = α̂nωref , and αn is for a pinned contact line, with ωn = αnωref .

It can be easily verified that Eq. (4.39) has complex valued solutions, where Im(ω) = βn is
the damping coefficient. In the Fig. 4.2, we show the calculated damping βn for a bubble with
radius Rb = 500 µm (that includes viscous Eq. (4.31) and boundary contributions Eq. (4.32)
versus the frequency for two cases, free contact line (βvis

n + βbn) and fixed contact line (Im(ω)).
We can conclude that with a good approximation, the damping of the capillary wave on the
bubble in the case of fixed contact line can be safely described by the analytical equations:
Eq. (4.31) for the viscous part and Eq. (4.32) for the boundary part.

0

2x103

4x103

6x103

0 5x103 1x104 1.5x104

free contact line
fixed contact line

Frequency (Hz)

Figure 4.2: Calculated damping coefficient βn that includes viscous term βvis
n and boundary

term βb
n versus frequency for the free contact line and the damping extracted from Eq. (4.39) for

the fixed contact line (bubble radius Rb = 500 µm).

Note here with an excellent approximation (error of the order of 1%), Eq. (4.31) can be
simplified to [111]

βvis
n ≈

η

ρR2
b
αn

4/3 =
2η

ρ1/3σ2/3
ωn

4/3. (4.42)

Then, taking into account that (2n+ 1)P 2
n(0) ≈ 1.2, Eq. (4.32) can be simplified to

βb
n ≈

1.2η

8ρδRb
=

3
√

2η1/2

40ρ1/2Rb
ωn

1/2. (4.43)
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Damping with impurities

For the general case where the flat interface is partially cover by contaminant, the damping
versus the wave number kn was calculated by by Miles [99] and Rajan et al.[108]. For lower
solubility of the surfactant, using the capillary equation of ω2

n = σ
ρ
k3
n, we can express the

damping coefficient due to contaminants as:

βs
n =

√
2η1/2ωn

7/6

4ρ1/6σ1/3

ε2 + ς(ς + 2)

(ε− 1)2 + 1 + ς(ς + 2)
, (4.44)

with the dimensionless elasticity parameter ε and dimensionless surface viscosity parameter ς ,
which are respectively given by

ε =

√
2ρ1/6

η1/2σ2/3
ωn
−1/6 es, (4.45a)

ς =

√
2ρ1/6

η1/2σ2/3
ωn

5/6 ηs, (4.45b)

where ηs is the surface viscosity, which includes both dilatation and shear viscosities and es =
c(∂σ

∂c
)0 is the surface elasticity. As defined in chapter 2, c is the surfactant surface concentration,

and the subscript 0 denotes the quantities at equilibrium.

4.3 Method and Experimental Results

4.3.1 Experimental setup and method

Figure 4.3.a shows the experimental setup used in this experiment. A micro syringe is used to
deposit an air bubble on a glass surface spin coated with a polystyrene layer, whose thickness is
100 nm. This air bubble is stable for several hours. We bring a AFM cantilever in contact with
the air bubble interface and measure its time-dependent motion, from which we determine the
power spectral density of the capillary fluctuations of the interface. The radius of the contact
line Rc is measured from the optical top-view image (see Fig. 4.3.b), and the contact angle
from the side view (see Fig. 4.3.c). Experiments were performed using an AFM (Dimension
3100, Bruker) equipped with a liquid cell (DMFT-DD-HD). Two cantilevers were used in the
experiments. One cantilever (CSG01, NT-MDT) with a stiffness of kc = 0.12 ± 0.02 N/m
is denoted as cantilever1 and the other one (MLCT, type B, Bruker) with a stiffness of kc =
0.024±0.002 N/m is denoted as cantilever2. Both cantilevers were calibrated by thermal noise
method.

The position of the cantilever was controlled by the AFM stepping motor stage allowing
to bring the tip in contact with the bubble. Once this contact was established, the cantilever
was driven solely by the vibrations of the bubble. The maximum amplitude of these vibrations
was < 1 nm. The vertical deflection of the cantilever, due to these oscillations, was acquired
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94
º Bubble

PS surface 

Water

PS surface
Bubble

Water

a

R=592μm

Cantilever

cb

Figure 4.3: a) Experimental setup. The bubble was deposited on polystyrene (PS) surface, and
the cantilever tip was used to probe the vibration of the bubble. b) Top view and c) side view
images, from which we obtain the radius of the contact line Rc = 592 ± 5µm and the contact
angle of θc = 94± 2◦.

by an A/D acquisition board (PCI-4462, National Instrument, USA). From this time series of
cantilever deflections, the power spectral density (PSD) was calculated.

Typical PSD curves probed by cantilever1 are shown in Fig. 4.4. The blue curve is measured
for the cantilever in bulk water, far from the bubble, and shows clearly the vibrational mode
of the cantilever with characteristic frequency near 4 kHz. The main driving force for these
cantilever fluctuations is the thermal noise [113, 114, 54]. By fitting the PSD of the cantilever
in bulk water by Eq. (1.28), the cantilever stiffness was obtained. The red curve displays the
PSD of the cantilever deflection when in contact with the bubble. There are at least five well-
defined peaks.

For such bubble, each vibrational mode can be described as an oscillating spring of ampli-
tude ξn(t) satisfying the equation of motion

mn

(
ξ̈n(t) + 2βnξ̇n(t) + ω2

nξn(t)
)

= Fn(t), (4.46)

with the effective mass mn, the damping coefficient βn, the resonance frequency and the mode
number n. We use the shorthand notation ξ̇n = dξ/dt. As we postulated above, the driving
force Fn(t) is due to the thermal noise, which is assumed uncorrelated in time and independent
for each mode. Taking the Fourier transform of Eq. 4.46, and using |Fn (ω) |2 = 2βnmnkBT ,
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Figure 4.4: Example of the measured PSD Curves using a cantilever with stiffness kc =
0.12 N/m. The thermal spectra of the cantilever far from the bubble (blue circles) and in
contact with the bubble (red circles) deposited on PS surface.

we obtain the one sided power spectral density PSD (ξ, ω) =
∑∞

n PSD (ξn, ω) in the form of

PSD (ξ, ω) =
∞∑
n=1

4βn

(ω2 − ω2
n)2 + 4β2

nω
2

kBT

πmn

. (4.47)

Because in our experiment, the size of the bubble is orders of magnitudes larger than that of
cantilever, the cantilever follows the motion of the bubble, i.e. PSD(Z, ω) = PSD(ξ, ω).

Figure 4.5 shows a fit to the third peak of the PSDs shown in Fig. 4.4 using Eq. (4.47). Such
fits, which account quantitatively for the shape of the peaks, allow to determine the resonance
frequency ωn as well as the effective mass mn and the damping coefficient βn for the different
mode numbers n.
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Figure 4.5: The spectrum (circles) and the fitting curve using Eq. (4.47) (solid line) for the third
peak of Fig. 4.4.

4.3.2 Results

The values for the first five resonance frequencies of the power spectral density in Fig. 4.4,
are plotted in Fig. 4.6. The theoretical values for both free contact line case (Eq. (4.29)) and
pinned contact line case (Eq. (4.41)) are displayed along with the experimental values. The
results are well accounted for using non slip boundary condition which leads to the conclusion
that the contact line of the bubble on PS surface does not move on the surface but is pinned on
the surface, and contact line pinning stiffens the vibrations and enhances the frequencies with
respect to those obtained for free contact line, i.e. an > ân.

In order to confirm the validity of conclusion of the pinned contact line on PS surface,
we have performed several measurements with different bubble sizes (the radius ranges from
424 µm to 644 µm) and two cantilevers. Figure 4.7 shows the normalized resonance frequencies
ωn/ωref versus the mode number n. All the results for different cases collapse together with the
values of αn (pinned contact line). we safely conclude that the contact line of bubble on PS
surface is pinned.

Figure 4.8 displays the effective mass mn versus mode number n. These masses are ex-
tracted from the fits of the PSD using Eq. (4.47). Here data from different bubble radii are dis-
played. If we express the kinetic energy of bubble in the form of Ek =

∑∞
n

1
2
mnċn

2, Eq. (4.14)
becomes to:

Ek =
∞∑
n

1

2

2πρR3
b

(n+ 1) (2n+ 1)
ċ2
n. (4.48)
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Figure 4.6: The results of the bubble resonance frequencies ωn/2π versus the mode numbers
n. The black solid line connects the resonance frequency for pinned contact lines, and the red
solid line for a freely moving contact line.

R=644 μm
R=607 μm
R=606 μm
R=592 μm
R=582 μm
R=578 μm
R=554 μm
R=516 μm

R=624 μm
R=492 μm
R=423 μm
 
 

ω
n/ω

re
f 

n
2 4 6 8 10

0

10

20

30

40

αn

αn

‹

50
kc=0.12 N/m kc=0.024 N/m

Figure 4.7: The normalized resonance frequencies ωn/ωref versus the mode number n for differ-
ent bubble sizes and two cantilevers. The red solid and black solid lines represent the normal-
ized resonance frequencies for free contact line α̂n and fixed contact line αn, respectively.

So the effective mass of the bubble oscillation is given by:

mn =
2πρR3

b

(n+ 1)(2n+ 1)
. (4.49)
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Figure 4.8: The results of the effective mass normalized by the cubic power of the radius of
the bubble versus the mode number for different bubbles. The dots with different colors and
shapes represent the different measurements for different bubbles. The black line represents the
theoretical results which was given by Eq. (4.49).

Comparison of the measured effective mass mn with Eq. (4.49) is shown in Fig. 4.8. Apart
from the mode at n = 2, the data from different realizations collapse on a single curve.The
effective mass has been normalized by the radius of the bubble Rb. Further, the decrease of this
effective mass with the mode number n as anticipated by expression Eq. (4.49) is accounted
for quantitatively. While our assumption of independent modes seems plausible for higher
modes, it is not for the first mode mainly because its frequency is intermediate between the first
and second free modes contrary to the higher modes whose frequencies are rather close to the
corresponding free mode (see Tab. 4.1).

So far, the bubble vibrations have been treated in the framework of potential flow in an invis-
cid fluid. Now we turn to the damping coefficient βn, which gives the width of the resonances
in Fig. 4.4. Figure 4.9 shows the damping coefficient βn obtained with different bubble radii as
a function of resonance frequencies ωn/2π. At clean interfaces, viscous damping of βvn is the
dominant source of dissipation [115] which is the green curve in Fig. 4.9. Although it captures
the overall trend of increasing βn versus ωn, it is about a factor 2 smaller than experimental val-
ues. Thus, viscous damping is not sufficient to explain the measurements. Further, additional
damping due to the presence of the solid boundary does not contribute significantly. The blue
and red lines take into account both viscous damping and boundary damping and are calculated
using two different radii spanning the range of explored values in our experiments. The ex-
perimental values remain higher than expected from viscous and boundary damping indicating
that additional damping is needed. The black solid line in Fig. 4.9 depicts the total damping
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coefficient βtot
n , including viscous damping (Eq. (4.42)), boundary damping (Eq. (4.43)) and the

damping due to the surfactants (Eq. (4.44)):

βtot
n = βvis

n + βb
n + βs

n. (4.50)
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Figure 4.9: Damping coefficient versus the frequency for different bubbles. The green solid
line corresponds to the viscous damping βvis

n as in Eq. (4.42). The red and blue solid lines
correspond to the viscous damping plus boundary damping (βvis

n +βb
n), where βb

n was calculated
forRb = 644 µm and 423 µm, respectively by Eq. (4.43). The black solid line is calculated from
Eq. (4.50) and accounts for all terms of viscous damping βvis

n (Eq. (4.42)), boundary damping
βb
n (Eq. (4.43)) and the effects of surfactants βs

n (Eq. (4.44)), with the surface viscosity is ηs =
(1.5± 0.2)× 10−7 Pa · s ·m.

For lower surfactant concentration, in Eq. (4.45a) the surface elasticity es is equal to the
surfactant pressure. In chapter 2, the contamination was characterized on bubble surfaces pre-
pared in the similar way and we found that es = Π0 ≈ 0.35 mN/m, which leads to a very small
value of dimensionless elasticity parameter ε compared to the dimensionless surface viscosity
parameter ς . Therefore, the surface elasticity can be neglected in this study.

In the above equation, the surface viscosity ηs is the only adjustable parameter, taken as
ηs = 1.5± 0.2× 10−7 Pa · s ·m. Each of the three contributions to Eq. (4.50) is necessary for a
satisfactory fit of the data from different experiments but the contribution of the surface viscosity
is crucial for a better agreement with experimental values. Note here the surface viscosity ηs
includes both dilatation and shear viscosity, which cannot be distinguished independently in our
experiments. Because of the sight difference of the boundary damping βb

n for different bubble
sizes (the blue and red lines in Fig. 4.9), in the fitting by Eq. (4.50), we take an intermediate
value of Rb = 500 µm to calculate the boundary damping coefficient using Eq. (4.43).
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The fitted value of ηs is about ten times larger than those reported by Earnshaw [16] for a
pure water interface and Zell et al. [107] for soluble surfactant covered interfaces. The discrep-
ancy could be due to the fact that in the present work, the surface viscosity measured accounts
both for surface dilatational viscosity as well as surface shear viscosity. Further, we believe
that our measurements are not devoid of surface contamination. In fact, in one of our previous
studies [77] despite the fact that a careful protocol was applied to minimize surface impurities,
the air-water surface was found to be prone to contamination rather quickly with drastic effects
on the properties of the air-water interface even for minute quantities of contaminants. We be-
lieve that there are similar effects here. Remarkably, our experimental technique is capable of
probing the surface viscosity with a high precision. This is shown by Fig. 4.9 where the bulk
effects are well below the measured damping coefficient. We hypothesize that coupling such a
technique with precise techniques for measuring surface shear viscosities (such as that of Zell
et al. [107]) provides a reliable technique to pin down the surface rheology of interfaces with
various surface active agents and disentangle dilatational from shear viscosities.

4.4 Conclusion

In this chapter, we have presented the measurements of the thermal capillary fluctuation of
bubbles deposited on solid substrates. The experimental data demonstrate that the soft AFM
cantilevers are a powerful tool to probe the thermal motion of bubble. The cantilever deflec-
tion signal reflects the thermal fluctuation of the bubble surface directly. The spectrum of the
fluctuations presents sharp resonance peaks for specific frequencies for which the motion of the
interface is much more prominent than that for other frequencies. The analysis of these peaks
allows to measure the resonance frequencies, effective mass and the damping coefficient for
each mode of oscillation.

To explain the experimental results, we have presented a model for the bubble shape oscil-
lation. Our measurements are in a good agreement with the model. The model allows us to
measure the additional damping due to the presence of minute amounts of contaminants. The
experimental results show that the contact line of a hemispherical bubble resting on a solid sur-
face is fixed on the substrate. Moreover, our experimental method provides a useful new tool to
probe the surface rheology.

In future experiments, we plan to study the variation of the surface viscosity versus the
surfactant concentration. For low range of surfactant concentration, the contribution of the
dilatation elasticity is very small, and any variation of the damping versus the concentration
would be attributed to a variation of the shear viscosity. For higher range of concentration, the
contribution of the dilatation elasticity should be taken into account.

We also project to work with surfaces that allow boundary slippage of contact line on sub-
strates. The motion of the bubble contact line will affect the shape of the power spectrum. It
may induce resonance frequency shift and additional damping that would be measured by our
apparatus.
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Nanoscale Measurement of the
Elastohydrodynamic Lift Force
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5.1 Context

Elastohydrodynamic is usually encountered for confined flow between soft interfaces. It deals
with the coupling between the local pressure induced by the fluid flow and the deformation of
soft samples. Recently, such a coupling was studied for much more compliant solids and smaller
length scales, in the context of soft matter in confinement and at interfaces [116]. Such concept
has been widely used to measure the response of soft surfaces using SFA [20, 22, 21, 117],
AFM [118, 67, 23, 80] and optical particle tracking [119].

Two decades ago a new force was theoretically predicted for an object sliding along a soft
object [120]. Their predictions suggest that an object moving along a soft surface in viscous
fluid is repelled from the surfaces by a normal force FN exerted on the object [32, 33, 121, 28,
29, 31, 35, 34]. Figure 5.1 summarizes scaling argument to evaluate the elastohydrodynamic lift
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force in the case of linear elasticity, thick soft substrate and low Reynolds number [25, 26, 27].
When a rigid cylinder moves along a rigid substrate in a viscous liquid (Fig. 5.1a), the pressure
profile p(x) between the confining surfaces is antisymmetric (Fig. 5.1b). The integrated normal
force FN/L =

∫ +∞
−∞ p(x)dx per unit length is zero, where L is the cylinder length. However,

when the substrate is soft (Fig. 5.1c), due to the deformation δ(x) of the substrate, the pressure
profile p(x) is not antisymmetric any more (Fig. 5.1d), which leads to the nonzero normal force
with a scaling law of η2V 2R2

Gd3 per unit cylinder length, where η is the viscosity of the liquid,
R is the radius of the cylinder, d is the gap distance between the apex of the cylinder and the
undeformed substrate andG is the shear modulus of the soft substrate [25, 26]. When the object
is spherical particle, the cylinder lengthL should be replaced by the hydrodynamic radius

√
2Rd

(Fig. 5.1e) which gives the scaling law of

FN ∼
η2V 2

G

(
R

d

)5/2

. (5.1)

Note here, R is the radius of the spherical particle. and d is the distance between the apex of the
sphere and the undeformed substrate. Theoretical calculations show that, as the gap between
the object and the soft substrate reduces, the force increases. Eventually, at very small gap, the
competition between symmetry breaking and decreasing pressure leads to a saturation of the lift
force [25, 26, 27, 28].

Despite the fact that this lift force was studied theoretically by many researchers for different
cases (thin and thick samples, compressible and incompressible materials, different shapes of
surfaces), a little work was done experimentally [36, 37]. Measurements of the rising speed
and the distance to a vertical wall of a bubble allowed to extract an analogous normal force
acting on the bubble [122]. A qualitative observation was reported in the context of smart
lubricant and elastic polyelectrolytes [123]. A study, involving the sliding of an immersed
macroscopic cylinder along an inclined plane, precoated with a thin layer of gel, showed an
effective reduction of friction induced by the lift force [124]. The optical tracking of the driven
motion of a microparticle in a microfluidic channel decorated with a polymer brush revealed
the potential importance of this force in biological and microscopic settings [125]. From the
gravitational sedimentation of a macroscopic object along a vertical membrane under tension,
another study observed an important normal drift, showing the amplification of the effect for
very compliant boundaries induced by slender geometries [126]. The measurement of the shape
deformation of a levitating droplet over a moving wall was also used to probe the effects of the
lift force [127]. Their results show that the interaction between the particles and the membranes
makes the normal velocity of the particles is quadratic in its sedimentation speed as predicted by
calculation using soft lubrication theory. However, while this experimental literature provides
confidence in the existence of the elastohydrodynamic lift force, as well as in its importance
at small scales and for biology, no direct force measurement was performed to date and the
saturation at the nanoscale was not yet observed.
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Figure 5.1: The scaling law for the elastohydrodynamic lift force acting on a spherical particle
moving along substrates. a) A rigid cylinder moves along a rigid substrate laterally at a velocity
of V . b) The distribution of the pressure for the cylinder moving along the rigid substrate. The
resulting normal force per unit cylinder length is equal to zero. c) A rigid cylinder moves along
a soft substrate laterally at a velocity of V . The soft substrate is deformed. d) The distribution
of the pressure for the cylinder moving along a soft substrate. The resulting normal force per
unit length is not equal to zero. e) A rigid spherical particle moves along a soft substrate. The
cylinder length is replaced by the hydrodynamic radius, which leads to the expression of the
normal force: FN ∼ η2V 2

G

(
R
d

)5/2 [25, 26, 27].
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In this chapter, a direct measurement of the elastohydrodynamic lift force acting on glass
spherical particles moving in viscous fluid along soft PDMS samples is presented. Using
AFM, the repelling force is probed versus the distance for different velocities, different
viscosities and for different Young’s moduli of the samples. Our results are in a good
agreement with the model developed from the soft lubrication theory.

5.2 Methods

5.2.1 PDMS samples preparation and characterization

Soft substrates were prepared from polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning).
The uncross linked PDMS and the curing agent were thoroughly mixed at mass ratios of 10 : 1,
20 : 1 and 30 : 1 followed by degassing under vacuum. The mixture was spin coated on cover
slip of 24 mm × 24 mm, and was cured in the oven at 50 ◦C for 24 hours in order to promote
an efficient cross-linking. The thickness of the samples was estimated to 25 µm− 30 µm.

For materials characterization, Young’s moduli were determined in an additional exper-
iment. Through indentation experiments, the force-indentation data are fitted by Johnson-
Kendall-Roberts (JKR) theory [128] to extract the Young’s modulus (The JKR theory is suit
to the application in the case of large tips and soft samples with large adhesion).

Fload

a
δHPDMS Samples 

R

Figure 5.2: Contact of a sphere with an elastic substrate.

As shown in Fig. 5.2, the relation between the load force Fload and the indentation δH is
modeled by the JKR theory described as:

Fload =
a3

πR
−
√

8πa3E∗W, (5.2)
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δH =
a2

R
−
√

2πaW

E∗
, (5.3)

a3 =
3R

4E∗

(
Fload + 3πWR +

√
6πWRFload + (3πWR)2

)
. (5.4)

where Fload is the load force acting on the sphere, R is the radius of the spherical probe, δH is
the indentation depth of the sphere in the soft samples, a is the radius of the contact, W is the
adhesive work, E∗ is the effective modulus with E∗ = E/(1 − ν2), E is the Young’s modulus
of sample, and ν is the Poisson ratio of the sample. Since cross-linked PDMS samples are
incompressible material to a very good approximation, the Poisson ratio is fixed to ν = 0.51.
Finally, we obtain

δ3
H =

9

16

(3πWR)2

E∗2R

(
1 +

Fload

3πWR
+

√
1 +

2Fload

3πWR

)2
1− 2

3

√√√√ 2

1 + Fload

3πWR
+
√

1 + 2Fload

3πWR


3

.

(5.5)

In the characterization, a stiff cantilever with a stiffness of 73 N/m was chosen such that the
deflection remains small even at large indentation. A rigid sphere with a diameter of 15 µm was
used to characterize the samples. Continuous force-indentation measurements were conducted
by AFM in air with approaching velocity equals to 196 nm/s. Figure 5.3 shows an example of
the force-indentation measurement which was performed on PDMS (10:1) sample.

Figure 5.3: Example of the force-indentation curve obtained by AFM on PDMS (10 : 1) sample.

1The shear modulus G is related to Young’s modulus by G = E/(2(1 + ν)).

85



CHAPTER 5. NANOSCALE MEASUREMENT OF THE ELASTOHYDRODYNAMIC
LIFT FORCE

To extract the force-indentation curve from the force-displacement data obtain by AFM,
the cantilever deflection sensitivity is first calibrated on a mica surface that is assumed to be
infinitely stiff. The indentation is obtained by the relation of δH = Zp − Zc, where Zp is the
sample displacement, and Zc is the cantilever deflection. The contact position between the
sphere and the sample is defined as the position where the jump occurs due to the adhesion
force.

Figure 5.4 shows the third power of the indentation δ3
H versus the load force Fload. Fitting the

curve using Eq. (5.5), and taking E∗ and W as two adjustable parameters, the effective moduli
E∗ of the PDMS samples are extracted as 1940 ± 135 kPa, 800 ± 65 kPa and 390 ± 25 kPa
for PDMS (10:1), PDMS (20:1) and PDMS (30:1), respectively. With the relationship of E∗ =
E/(1 − ν2), and ν = 0.5, the PDMS samples could be characterized with the Young’s moduli
of 1455±100 kPa, 600±50 kPa and 293±20 kPa for PDMS (10:1), PDMS (20:1) and PDMS
(30:1), respectively.

Figure 5.4: Indentation depth δH as a function of load force Fload for different PDMS samples.
The solid lines are the fitting curves by Eq. (5.5), which give us the Young’s moduli E of these
three PDMS samples of 1455 ± 100 kPa, 600 ± 50 kPa and 293 ± 20 kPa for PDMS (10:1),
PDMS (20:1) and PDMS (30:1), respectively.

5.2.2 Calibration of the piezo

In this study, the multi-axis piezo-system (NanoT series, Mad City Labs) was used, and this
piezo allows to control the gap distance d between the sphere and the sample by displacing the
sample vertically and also to vibrate the sample transversally. The former has been calibrated
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in Sec. 1.2.3, and the latter calibration will be discussed in this section. With the same driv-
ing amplitudes, the larger the driving frequency, the lower oscillation amplitude of the piezo.
Since the elastohydrodynamic lift force is scaled with V 2, in order to minimize the error in the
measurement, we need to measure the piezo velocity precisely.

Figure 5.5: a) The schematic of the calibration of the piezo using the grating. b) The recored
cantilever deflection versus driving voltage. The driving frequency of the piezo is 25 Hz, and
the amplitude is 1 V.

In this study, we use a calibrated grating to measure the motion of the piezo. As shown in
Fig 5.5a, a cantilever with a sharp tip is used to probe the motion of the piezo. A calibrated
grating is fixed on the piezo, and the topographic profile of the grating is a triangular pattern,
with a periodic length of 0.9 µm. When the cantilever is in contact with the grating, the piezo
is driven to oscillate laterally. Both cantilever deflection and driving voltage are recored. Fig-
ure 5.5b shows the recorded cantilever deflection as a function of the piezo driving voltage for
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the calibration at 25 Hz with an amplitude of 1 V. By counting the the number of peaks in
the cantilever deflection signal, the piezo displacement can be obtained by multiplying the peak
number with the periodic length. In Fig 5.5b, for the driving voltage of 2 V (peak to peak), we
have 20.2± 0.1 peaks that corresponding to a piezo displacement of 20.2× 0.9 µm = 18.2 µm.

The piezo is calibrated at 25 Hz and 50 Hz with different driving amplitudes. The results are
shown in Fig. 5.6. From a linear fitting (the black solid line in Fig. 5.6), we get the displacements
per volt of 9.46 µm/V for 25 Hz, and 3.02 µm/V for 50 Hz, respectively.

Figure 5.6: The calibration results at 25 Hz and 50 Hz. The solid lines are the linear fitting
curves for the results. From the fitting, we obtain the displacements per volt of 9.46 µm/V for
25 Hz, and 3.02 µm/V for 50 Hz, respectively.

5.3 Experiment

5.3.1 Experimental Setup

The experimental schematic of the setup is shown in Fig. 5.7. The experiment was performed
using an AFM (Bruker, Bioscope) equipped with a liquid cell (DTFML-DD-HE) that allows
working in a liquid environment. We used a spherical borosilicate particle (MO-Sci Corpora-
tion) with a radius R = 60 µm and a roughness of 0.9 nm measured over a 1 µm2 surface area.
The sphere was glued on the end of a silicon nitride V-shaped cantilever (SNL, Brukerafm-
probes) using epoxy glue (Araldite, Bostik, Coubert). The soft samples were fixed on the multi-
axis piezo-system (NanoT series, Mad City Labs) to control and scan the gap distance d between
the sphere and the sample by displacing the sample vertically, and also to vibrate the sample
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transversally at a frequency f = ω/2π = 25 Hz or 50 Hz, and with an amplitude A ranging
form 3.6 to 36 µm. Note that the vertical displacement speed 20 nm/s being much smaller than
the smallest transversal velocity amplitude Aω = 0.36 mm/s, the former can be neglected and
a quasi-static description with respect to the normal motion is valid. Using the drainage method
shown in Sec. 1.3.3, the stiffness kc = 0.21± 0.02 N/m of the cantilever is determined using a
rigid silicon wafer as a substrate and for large enough gap distances (d = 200−20000 nm). The
viscous liquids employed in this study are silicone oil and 1-decanol, with dynamic viscosities
η = 96 mPa · s and 14.1 mPa · s, respectively. In all experiments, the hydrodynamic radius√

2Rd being much smaller than the thickness of the soft substrates, i.e.
√

2Rd � 25 µm, the
sample can indeed be considered as semi-infinite.
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Substrate

Sphere
Cantilever

y

z

θ
V=Aω

sin
(ω
t)

x
r

FN

R

V

x

z

PDMS substrate

b

δ(r,θ)
d Viscous liquidh(r,θ)

a

Figure 5.7: Schematic of the experimental setup. The soft substrate is fixed to a rigid piezo
stage that is transversally oscillated along time t, at angular frequency ω, and with amplitude
A. A rigid borosilicate sphere is glued to an AFM cantilever and placed near the substrate,
with silicone oil or 1-decanol as a viscous liquid lubricant. The normal force FN exerted on
the sphere, at a gap distance d from the surface, is directly measured from the deflection of the
cantilever.

Using scaling arguments, the elastohydrodynamic lift force acting on a sphere immersed
in a viscous fluid with a viscosity of η and moving at constant velocity V , near and parallel
to a semi-infinite incompressible elastic substrate of shear modulus G = E/[2(1 + ν)], reads
[25, 26, 27]

Flift ∼
η2A2ω2

G

(
R

d

)5/2

. (5.6)

in the limit of small dimensionless compliance, κ = ηV/(Gd2) � 1. Note that, in this limit, κ
corresponds to the ratio between the deformation of substrate and gap distance. To go beyond
the scaling analysis, we have developed a model to calculate the missing prefactor in Eq. (5.6).
Based on the soft lubrication theory [25, 26], in the case of low Reynolds number1 and linear

1The Reynolds number of the system is equal to Re = ρV
√
2Rd/η. With the typical values: velocity V =

2.32 mm/s, hydrodynamic radius of
√
2Rd = 9 µm and kinetic viscosity η/ρ = 17mm2/s, we get Re ≈ 10−3 �

1
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elasticity of the sample, we calculate the elastohydrodynamic lift force as [129]

Flift ' 0.416
η2A2ω2

G

(
R

d

)5/2

. (5.7)

Since the lateral velocity of the samples is sinusoidal and the lift force depends on the squared
velocity, Eq. (5.7) can be expressed as two additive components: A time-independent compo-
nent (DC component) given by

0.416
η2A2ω2

2G

(
R

d

)5/2

, (5.8)

and a component oscillating at double frequency (AC component), given by

0.416
η2A2ω2 cos(2ωt)

2G

(
R

d

)5/2

. (5.9)

Focusing only on the DC component, it is measured though a temporal average F =< FN >
of the instantaneous normal force FN recorded by the AFM (see Fig. 5.7a), from which the AC
component will disappear in the measurement. Therefore, the temporal average F of Flift over
a period 2π/ω of oscillation is given by:

F ≈ 0.416
η2A2ω2

2G

(
R

d

)5/2

. (5.10)

Introducing parameters of κ = ηAωR/(
√

2Gd2) and F ∗ = ηAωR3/2/(2d)1/2, Eq. (5.10) be-
comes into the form of

F

F ∗
≈ 0.416κ. (5.11)

5.3.2 Results & Disscussion

Figure 5.8 shows the force F as a function of the gap distance d, for rigid (silicon wafer) and
soft substrates (PDMS 20:1). The liquid is silicone oil with viscosity of η = 96 mPa · s. The
amplitude of the velocity is Aω = 0.57 mm/s.

To determine the gap distance, we take into account the cantilever deflection induced by
the normal force. As a remark, in most cases studied here, the typical substrate’s deformation,
∼ F/(πE∗

√
2Rd) [21], remains much smaller than the cantilever’s deflection. For the rigid

case, no finite force is detected above the current nanoNewton (nN) resolution, at all distances.
This is expected, since for such a hard surface (Young’s modulus is in the range of 100 GPa), so
there is no elastohydrodynamic effect (the deformation of the substrate induced by the flow is
negligible). The elastohydrodynamic effects occur at gap distances much smaller than the ones
typically probed here [20]. As a remark, the fact that no force -even purely hydrodynamic- is
measured in this case is a direct confirmation for the validity of the quasistatic description with
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Figure 5.8: Measured force F averaged from FN (see Fig. 5.7) as a function of the gap distance
d to the substrate, for both rigid (silicon wafer) and soft substrates (PDMS 20:1). The liquid
is a silicone oil with a viscosity of η = 96 mPa · s. The amplitude of the velocity is Aω =
0.57 mm/s.
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Figure 5.9: A log-log representation of the data for the soft substrate in Fig. 5.8, and the solid
line therein indicates a −5/2 power law.

respect to the imposed vertical displacement of the sphere. In the contrast, for the soft case, a
systematic nonzero force is measured, and observed to increase as the gap distance is reduced.
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Furthermore, as shown in Fig. 5.9, the measured force F asymptotically scales as F ∼ d−5/2 at
large gap distances, in the agreement with the prediction of Eq. (5.10). Interestingly, at smaller
gap distances, a saturation of the lift effect is observed, as reported previously [26, 124].

Having tested the asymptotic dependence of the force with the main geometrical parame-
ter, i.e., the gap distance d, which showed a first evidence of the lift, we now turn to the other
key elastohydrodynamic parameters appearing in Eq. (5.10), i.e., the velocity amplitude Aω,
viscosity η and shear modulus G. To test the dependences of the force with those three pa-
rameters, we use two dimensionless variables as defined above: the dimensionless compliance
κ = ηAωR/(

√
2Gd2) and the dimensionless force F/F ∗ with F ∗ = ηAωR3/2/(2d)1/2.

Velocity effect

Figure 5.10a shows the force F versus the gap distance d for two different oscillation ampli-
tudes. Figure 5.10b represents the dimensionless force F/F ∗ as a function of κ for these two
oscillation amplitudes. Figure 5.11a shows measured force F for two different oscillation fre-
quencies. Figure 5.11b represents the dimensionless F/F ∗ as a function of κ for these two
oscillation frequencies. Here, the sample is the cross-linked PDMS (10:1), and the liquid is
1-decanol with viscosity of η = 14.1 mPa · s. We can see that the lift force increases as the
velocity increases, and the dimensionless forces F/F ∗ collapse in both figures of 5.10 and 5.11.
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Figure 5.10: a) Measured force F versus the gap distance d for two different amplitudes. b) The
dimensionless lift force F/F ∗ as a function of κ for these two amplitudes.

Viscosity effect

Figure 5.12 shows the results for two different liquids (silicon oil and 1-decanol) with different
associated viscosities η = 96 mPa · s and η = 14.1 mPa · s, respectively. The substrate is the
cross-linked PDMS (10:1), and the velocity amplitudes are Aω = 0.36 mm/s for silicone oil
and Aω = 2.32 mm/s for 1-decanol. Figure 5.12a shows the measured force F as a function
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Figure 5.11: a) Measured force F versus the gap distance d for two different frequencies. b)
The dimensionless lift force F/F ∗ as a function of κ for these two frequencies.

of gap distance d, and Figure 5.12b shows the dimensionless force F/F ∗ as a function of the
compliance κ. Note here the values of the velocity multiply with the viscosities in both cases
are very close, therefore the measured forces F are quite similar in both cases. In the rescaling
presentation (Fig. 5.12b), the results collapse with each other, which means that the lift force
has the same dependence on velocity and viscosity.
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Figure 5.12: a) Measured force F versus the gap distance d for two different viscosities. b) The
dimensionless lift force F/F ∗ as a function of κ for these two frequencies.

Young’s modulus effect

Figure 5.13 shows the results for three PDMS samples with shear moduli of G = 485 kPa,
200 kPa and 97.5 kPa for the cross-linked PDMS samples (10:1), (20:1) and (30:1), respec-
tively. The liquid is the silicone oil with viscosity η = 96 mPa · s and the velocity amplitude is
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Aω = 0.47 mm/s. As shown in Fig. 5.13a, at large distance, the measured lift force decreases
when the hardness of the samples increase, however at small distance, the saturated value of
the lift force is large if the hardness of sample is large. In the dimensionless representation of
Fig. 5.13b, the dimensionless forces collapse with each other.
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Figure 5.13: a) Measured force F versus the gap distance d for three different samples. b) The
dimensionless lift force F/F ∗ as a function of κ for these three samples.

Discussion

In the dimensionless presentation of lift forces measured for different velocities, different vis-
cosities and different hardness, we first observe at small κ that F/F ∗ is linear with respect to
compliance κ, and that the curves for various values of the varied parameters collapse with one
another, which validates further of Eq. (5.11). Moreover, around κ ∼ 1, a deviation from the
previous asymptotic behavior is observed leading to a maximum prior to an interesting decay
at large κ. In addition, the collapse for various values of the varied parameter is maintained,
indicating that even at large dimensionless compliance κ, the dimensionless force F/F ∗ re-
mains a function of κ only. This suggests that the same physics, coupling lubrication flow and
linear elasticity, is at play for all value of compliance κ. In order to test this prediction, we plot
F/F ∗ as a function of κ in Fig. 5.14 for all the experiments performed in this study. First, all
the experimental data collapses on a single master curve. Second, Eq. (5.11) is found to be in
excellent agreement with the low-κ part of the data, with no adjustable parameter. Finally, the
behavior at large κ reveals the possible existence of a power law: F/F ∗ ∼ κ−1/4. Indeed, at this
regime, the deformation of the substrate δ is in the same order of gap distance d, i.e. δ/d ∼ 1.
The other terms in the series expansion of pressure distribution in Fig. 5.1d should be taken into
account. For example, the term of (δ/h)2 should not be neglected in the expression of the lift
force, which will reduce the value of life force predicted by Eq. (5.7). Therefore a saturation
may occur. The typical deformation δ ∼ RηV

Gd
leads to the typical distance of d ∼

√
RηV/G.

By inserting this value to Eq. (5.1), we get Flift ∼ η3/4V 3/4G1/4R5/4, which is equivalent to
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F/F ∗ ∼ κ−1/4. This gap-independent scaling suggests that the lift force saturates at small
enough distances (large κ), in agreement with the observation made in Fig. 5.8. Such a result is
attributed to a competition between the increase of the elastohydrodynamic symmetry breaking
and the decrease of the pressure magnitude due to the substrate’s deformation [31].

Figure 5.14: Dimensionless force F/F ∗ as a function of dimensionless compliance κ in log-
arithmic scales for all the results measured in this study and the solid line is the model of
Eq.(5.11). The dashed line indicates the asymptotic behavior of F/F ∗ ∼ κ−1/4.

5.4 Conclusion

In this chapter, we have presented an experimental study of the lift force acting on spherical
particle moving along thick, soft samples in viscous liquid. As the gap between the sphere and
the sample is reduced, a lift force acting on the sphere is observed, and increases with a power
law of −5/2. Our experiment is the first direct measurement of the elastohydrodynamic lift
force at the nanoscale. Moreover, the data for various amplitudes, frequencies, viscosities, and
Young’s moduli collapse in a master curve. For small compliances, the results are rationalized
quantitively based on the classic soft lubrication theory, and for large compliances, or equiva-
lently at small confinement length scales, a saturation of the lift force is observed and a scaling
law of −1/4 is discussed.

In this chapter, we have presented the measurement of the DC component of lift force on
thick samples. For future experiment, we will investigate the behavior of this force versus the
thickness of the samples. We will also study the effects of poroelasticity on the lift force, for
example, using liquids that swell the samples. Using the Lock-in Amplifier, we will measure

95



CHAPTER 5. NANOSCALE MEASUREMENT OF THE ELASTOHYDRODYNAMIC
LIFT FORCE

the AC component of the lift force that oscillates at the frequency of 2ω (see Eq. (5.9)). In the
latter situation, for high frequencies, the sample deformation is no more pure elastic, but the loss
modulus would affect the elastohydrodynamic lift force. A sphere moving along an air bubble
is another configuration which is suitable to the study of the lift force that would be induced by
the capillary deformation of the air-water interface.
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General Conclusion and Perspective

In this thesis, we have used the dynamic colloidal AFM to probe the nano-rheology of the
confined flow at soft interfaces made up of air bubbles or PDMS.

The fluid flow between the vertical oscillating sphere and bubble surface generates two ef-
fects: the advection of the surfactant impurities and the deformation of the bubble surface. At
large distances, where the bubble deformation is negligible, our experimental results demon-
strate that very low concentrations of surface impurities drastically modify boundary conditions
for water flows near the air-water interfaces. Both viscous and elastic forces are exerted by the
interface on the vibrating sphere even when very low doses of contaminants are present. When
varying the frequency from low frequencies to high frequencies, a crossover from no-slip to full
slip boundary conditions occurs in the viscous drag force. Besides the reduction of the viscous
force, the elastic drag force shows a nontrivial variation as the vibration frequency changes.
The value of the elastic force is comparable to the viscous force in the intermediate range. Fur-
thermore, our experiment methods allow to detect the impurity concentration at an air-water
interface through its viscoelastic response to a vibrating AFM probe.

At intermediate distances (d ∼ 6πηωR2/σ), the capillary deformation due to the hydro-
dynamic pressure is at play. To probe the visco-capillary interaction, the cantilever is excited
by either thermal excitation or external acoustic excitation. The experimental results obtained
with both methods of cantilever excitation are in a qualitative agreement with the simplified
model based the spring-dashpot in series. At small distances, a discrepancy is observed be-
tween the experimental results and the simplified model. Therefore, the numerical solution of
Navier-Stokes equation combined with Young-Laplace equation is calculated. The numerical
calculations are in a good agreement with the experimental results and allow us to measure the
surface tension of bubble interface without contact.

AFM measurements of the thermal capillary fluctuation of the bubble surfaces are presented
in chapter 4. The experimental data demonstrates that the soft AFM cantilevers are a powerful
tool to probe the thermal motion of bubble. The cantilever deflection signal reflects the ther-
mal fluctuation of the bubble surface directly. The spectrum of the fluctuations presents sharp
resonance peaks for specific frequencies for which the motion of the interface is much more
prominent than that for other frequencies. The analysis of these peaks allows to measure the
resonance frequencies, effective mass and the damping coefficient for each mode of oscillation.
To explain the experimental results, we have presented a model for the bubble shape oscilla-
tion. Our measurements are in a good agreement with the model, and allows us to measure the
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additional damping due to the presence of minute amounts of contaminants. The experimental
results show that the contact line of a hemispherical bubble resting on a solid surface is fixed
on the substrate. Moreover, our experimental method provides a useful new tool to probe the
surface rheology.

Finally, we have presented an experimental study of the lift force acting on spherical particle
moving along thick, soft samples in viscous liquids. As the gap between the sphere and the
sample is reduced, a lift force acting on the sphere is observed, and increases with a power
law of −5/2. Our experiment is the first direct measurement of the elastohydrodynamic lift
force at the nanoscale. Moreover, the data for various amplitudes, frequencies, viscosities, and
Young’s moduli collapse in a master curve. For small compliances, the results are rationalized
quantitively based on the soft lubrication theory, and for large compliances, or equivalently at
small confinement length scales, a saturation of the lift force is observed and a scaling law of
−1/4 is discussed.

All these measurements demonstrate that the dynamic colloidal AFM is a well-established
and powerful tool to probe the surface properties in a confined geometry.

As a perspective of our investigation of the thermal capillary oscillation of the bubble shape,
we can use such method to probe the variation of the surface viscosity versus the concentration
of surfactants. In fact, by adding a small amount of the surfactant, the contribution of the dilata-
tion elasticity is very small, and any variation of the damping versus the concentration would
be attributed to a variation of the shear viscosity. For higher concentration of the surfactant, the
contribution of the dilatation elasticity should be taken into account. We also project to study
the dynamic friction of the contact line on the substrate. We expect that adding surfactant to
water will modify the boundary conditions of the bubble contact line, i.e. the contact line will
not be fixed on the substrate, which may induce additional damping that will be observed from
the spectrum of the bubble shape oscillation.

As the outlook for the work concerning the measurements of elastohydrodynamic lift force
we project to measure the in-phase and out-of-phase components of the force versus the driving
frequency. We will use the Lock-in-Amplifier to measure the amplitude and phase oscillations
of the cantilever at 2ω. We expect to answer the following questions:

• How does the lift force behave at high frequencies where both rheological properties,
elastic and loss moduli of the PDMS have the same magnitude?

• How does the non-stationary effect contribute to the saturation of the lift force at high
frequencies?

We project also to use air bubble as surface to probe the lift force. Indeed, at small distance
the hydrodynamic pressure induced by the lateral oscillating sphere is so large that the bubble
surface will be deformed which leads to elastohydrodynamic coupling. Beside the study of
the lift force versus the frequency and versus the surface tension of the interface, we can also
investigate the contribution of the advection of surfactants and surface charges to the lift force.
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From applied research perspectives, once the experimental setup used to probe the visco-
capillary interaction (vertical oscillations) is improved, it can be a powerful tool for tensiometry
of air-water interfaces. This setup allows to measures the surfaces tension of the interfaces
without contact (no-invasive) and also it requires a very small volume of probed liquid (tens of
microliters).
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