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Thèse présentée et soutenue à Evry, le le 6 Novembre 2020, par

ABDALLAH SOBEHY

Composition du Jury :

Nadjib AIT SAADI
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Titre : Localisation basée sur l’apprentissage artificielle en 5G
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Résumé : La localisation est le processus d’esti-
mation de la position d’une entité dans un système
de coordonnées. Les applications de localisation sont
largement réparties dans des contextes différents.
Dans les événements, le suivi des participants peut
sauver des vies pendant des crises. Dans les en-
trepôts, les robots transférant des produits d’un en-
droit à un autre nécessitent une connaissance précise
de ses positions, la position des produits ainsi que
des autres robots. Dans un contexte industriel, la lo-
calisation est essentielle pour réaliser des proces-
sus automatisés qui sont assez flexibles pour être
reconfiguré à diverses missions. La localisation est
considérée comme un sujet de grand intérêt tant
dans l’industrie que dans l’académie, en particulier
avec l’avènement de la 5G avec son ”Enhanced
Mobile Broadband (eMBB)” qui devrait atteindre 10
Gbits/s, ”Ultra-Reliable Low-Latency Communication
(URLLC)” qui est moins d’une milliseconde et ”mas-
sive Machine-Type Communication (mMTC)” permet-
tant de connecter ≈ 1 million d’appareils par ki-
lomètre. Dans ce travail, nous nous concentrons sur
deux principaux types de localisation; la localisation
basée sur la distance entre des appareils et la loca-

lisation basée sur les empreintes digitales. Dans la
localisation basée sur la distance, un réseau d’ap-
pareils avec une distance de communication maxi-
male estime les valeurs de distances par rapport à
leurs voisins. Ces distances ainsi que la connais-
sance des positions de quelques nœuds sont uti-
lisées pour localiser d’autres nœuds du réseau à
l’aide d’une solution basée sur la triangulation. La
méthode proposée est capable de localiser ≈ 90%
des nœuds d’un réseau avec un degré moyen de 10.
Dans la localisation basée sur les empreintes digi-
tales, les réponses des chaı̂nes sans fil sont utilisées
pour estimer la position d’un émetteur communiquant
avec une antenne MIMO. Dans ce travail, nous ap-
pliquons des techniques d’apprentissage classiques
(K-nearest neighbors) et des techniques d’apprentis-
sage en profondeur (Multi-Layer Perceptron Neural
Network et Convolutional Neural Networks) pour lo-
caliser un émetteur dans des contextes intérieurs et
extérieurs. Notre travail a obtenu le premier prix au
concours de positionnement préparé par IEEE Com-
munication Theory Workshop parmi 8 équipes d’uni-
versités de grande réputation du monde entier en ob-
tenant une erreur carrée moyenne de 2,3 cm.

Title : Machine Learning based localization in 5G

Keywords : Localization, Machine Learning, 5G

Abstract : Localization is the process of determining
the position of an entity in a local or global coordi-
nate system. The applications of localization are wi-
dely spread across different contexts. For instance, in
events, tracking the participants can save lives during
crises. In warehouses, robots transferring products
from one place to another require accurate knowledge
of products’ positions as well as other robots. In in-
dustrial context of the factory of the future, localiza-
tion is invaluable to achieve automated processes that
are flexible enough to be reconfigured for various pur-
poses. Localization is considered a topic of high inter-
est both in the academia and industry especially with
the advent of 5G. The requirements of 5G pave the
way for revolutionizing localization capabilities; En-
hanced Mobile Broadband (eMBB) that is expected
to reach 10 Gbits/s, Ultra-Reliable Low-Latency Com-
munication (URLLC) which is less than 1 ms and
massive Machine-Type Communication (mMTC) allo-
wing to connect around 1 million devices per km. In
this work, we focus on two main types of localization;
range-based localization and fingerprinting based lo-

calization. In range-based localization, a network of
devices with a maximum communication range esti-
mate inter-distance values to their first-hop neighbors.
These distances along with knowledge of positions of
few anchor nodes are used to localize other nodes in
the network using a triangulation based solution. The
proposed method is capable of localizing ≈ 90% of
nodes in a network with an average degree of ≈ 10. In
the second contribution, wireless channel responses,
aka. Channel State Information (CSI) is used to esti-
mate the position of a transmitter communicating with
a MIMO antenna. In this work, we apply classical lear-
ning techniques (K-nearest neighbors) and deep lear-
ning techniques (Multi-Layer Perceptron Neural Net-
work and Convolutional Neural Networks) to localize
a transmitter in indoor and outdoor contexts. Our work
achieved the first place in the indoor positioning com-
petition prepared by IEEE’s Communication Theory
Workshop among 8 teams from highly reputable uni-
versities worldwide by achieving a Mean Square Error
of 2.3 cm.
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Abstract

Localization is the process of determining the position of an entity in a local or
global coordinate system. The applications of localization are widespread across
different contexts. For instance, in events, tracking the participants can save lives
during crises. In health-care, elderly people can be tracked to respond to their needs
in critical situations. In warehouses, robots transferring products from one place
to another require accurate knowledge of products’ positions as well as humans’
and other robots’ to achieve their tasks. In the industrial context of the factory
of the future , localization is invaluable to achieve automated processes that are
flexible enough to be reconfigured for various purposes. Localization is considered a
topic of high interest both in academia and industry especially with the advent of
5G. Localization accuracy can be enhanced by exploiting the unprecedented 5G’s
requirements: Enhanced Mobile Broadband (eMBB) that is expected to reach 10
Gbits/s, Ultra-Reliable Low-Latency Communication (URLLC) which is less than
1 ms, and massive Machine-Type Communication (mMTC) allowing to connect
around 1 million devices per km. We exploit machine learning frameworks to model
the relation between communication-related measurements such as Channel State
Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve accurate
localization. In this work, we focus on two main types of localization: range-based
localization and fingerprinting based localization. In range-based localization, we
aim to localize nodes in MANETs with known maximum communication range and
distances between first-hop neighbors. These distances along with the knowledge of
the positions of few anchor nodes are used to localize other nodes in the network
using a triangulation based solution. The proposed method is capable of localizing
≈ 90% of nodes in a network with an average degree of ≈ 10. In the second
contribution, CSI is used to estimate the position of a transmitter communicating
with a MIMO antenna. This is achieved by applying classical learning techniques
(K-nearest neighbors) and deep learning techniques (Multi-Layer Perceptron Neural
Network and Convolutional Neural Networks) to localize a transmitter in indoor
and outdoor contexts. Our work achieved the first place in the indoor positioning
competition [1] prepared by IEEE’s Communication Theory Workshop among 8
teams from highly reputable universities worldwide by achieving a Mean Square
Error of 2.3 cm. Finally, the generalization capability is evaluated for machine
learning models: MLP NNs and KNNs. We propose enhancements to the proposed
machine learning models to achieve better localization. These enhancements are
applied to an outdoor localization problem [2] achieving a 10 cm distance error
estimation between locations up to 3 m apart.
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Chapter 1

Introduction

The recent resurrection of AI and machine learning ignited innovations in multiple
areas including computer vision, communications, mobility, industrial processes, and
others. This technological boom was made possible thanks to advances in computers
and algorithms. Meanwhile, the fifth generation (5G) of cellular networks technology
was on the rise. 5G promises unprecedented capabilities in cellular communications
especially on the data rate and reliability fronts. The combined capabilities of AI
and 5G pave the way for breakthroughs in plenty of applications. 5G and AI have a
strong synergy between them as they play integral roles in improving each other.
For instance, heavy duty AI tasks are not suitable to be processed on mobile devices
due to computational and energy constraints. That is when 5G comes in to provide
a reliable and fast connection to allow AI tasks to be processed on the cloud or the
edge cloud in real time. On the other hand, AI improves the network tasks such as
beam management and routing decisions by predicting the location and velocity of
users. Machine learning achieves this by fitting a highly complex model to collected
data and extracting patterns that allow it to forecast future events. Predicting
user demands in different areas helps in deciding the locations of new cells in the
environment and thus enhancing the user experience.

In this work, we attempt to exploit the combined strengths of 5G and AI to
solve the localization problem. In Mobile Adhoc Networks (MANETs), for instance,
devices communicate directly to achieve a certain task. These networks are highly
dynamic in terms of nodes’ mobility and nodes entering or exiting the network.
Location awareness helps in enhancing the performance for multiple applications
such as routing. Communication signals offer accessible and reliable measurements
to achieve localization such as Channel State Information (CSI) and Received Signal
Strength Indicator (RSSI). Machine learning techniques can be used to extract
patterns in order to model the relation between such measurements and the location
of the device of interest. High localization accuracy often leads to high performance
in multiple contexts as illustrated in this work.
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1.1 Localization

Localization refers to the determination of the position of an entity with respect
to a reference coordinate system. The entity to be localized can be a communication
device, a robot, a human, or any object of interest. The localization accuracy can
vary from pin pointing the position with an error of few millimeters to rough position
estimation with high error of hundreds of meters, or estimating a region where the
entity exists such as a room or a floor in a building. The localization accuracy
depends heavily on the available measurements and the application that uses the
location information. Some measuring technologies enable direct location estimation
such as the Global Positioning System (GPS). Other measurements are used to
estimate the location of the entity indirectly, e.g., cameras, Received Signal strength
Indicator, LiDAR sensors, etc. Location services play an important role in many
applications in industrial, civilian, and military contexts.

1.2 Applications

One of the earliest and most widespread uses of location based services is
the Global Positioning System (GPS) which was devised by the U.S. Department
of Defense in the 1970s for military purposes [3]. The GPS relies on a satellite
infrastructure with the aim of localizing devices. In the 1980s, it was made available
for civilian and industrial consumption. This decision opened doors for innovations
that shapes the world we live in. For instance, one of the most successful commercial
exploitations of GPS that revolutionized how people commute is achieved by Uber,
the ride sharing application [4]. By knowing the location of users who are interested
in commuting from one place to another and the location of captains who drive
cars, Uber matches the commute requests between users and nearby captains. In
their 2019 annual report, Uber reported their presence in more than 10k cities
rising 65B $ gross bookings from 7 billion trips. Autonomous driving is one of
the hot technologies that relies heavily on location information of the vehicle and
the surrounding objects. Figure 1.1 illustrates the need for location information to
achieve autonomous driving. The vehicle has to know its own location, the location
of other cars, and the location of other objects including pedestrians. This knowledge
is essential in order acquire enough environmental awareness to be able to navigate.

Autonomous driving attracted a lot of research efforts from academia and industry.
While GPS information can provide valuable information, it is not enough to acquire
location awareness of surrounding objects such as pedestrians or sidewalks. Hence,
other forms of measurements are needed such as vision based sensors (e.g., cameras
and LiDAR sensors). Integrating information from different sensors in order to
build an accurate understanding of the environment elevates the complexity of the
problem.

Location information plays a vital role in saving lives in emergency situations.
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Figure 1.1: Autonomous Driving example [5]

In the USA alone, around 200k emergency calls are made daily, one-third of which
are via mobile devices where most of the people requesting help are not fully aware
of their locations. Having the location information readily available when the
emergency call is initiated accelerates the arrival of help. In Europe, industrial
resources estimate that 5000 lives could be saved every year with the knowledge of
position information. This valuable effect of location information led authorities
in Europe and the USA to oblige commercial wireless carriers to provide location
information automatically with emergency calls [3].

In networking, packets transmission between devices depend on different routing
techniques. Location information has been intensively used to enhance routing
algorithms to decrease network congestion. Figure 1.2 displays a simple example
where location information can be used to prioritize one path over the other using
the position information. In this simple example, node x needs to send a packet to
node D; knowing the location of intermediate node helps in refining the chosen path
[6].

In this work, we investigate the localization problem where measurements come
from communication between devices, especially the technologies related to 5G. The
synergy between communication reliability and location services is very strong as bet-
ter location awareness enhances communication and vice versa. More revolutionizing
applications will arise with 3GPP’s [7] three requirements for 5G:

1. Enhanced Mobile Broadband (eMBB): High data rates within the range of 10
to 20 Gbits/s.

2. Ultra-Reliable Low-Latency Communication (URLLC): Communication la-
tency expected to be less than 1 ms.

3. massive Machine-Type Communication (mMTC): Highly dense machine to
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Figure 1.2: Routing example [6]

machine communication with up to 1 million connected devices per km.

These new capabilities of 5G paves the way for a lot of enhancements on the
industrial level. One highly anticipated application is known as the factory of the
future which refers to re-configurable factories that make use of 5G and AI advances.
In such factory, plenty of sensors, actuators, and robots need to be connected
to monitor different processes and adapt the factory to real time situations and
objectives. Localization is a fundamental aspect of these factories as robots would
need real-time instructions to avoid accidents and achieve tasks seamlessly. A peak
on the need for localization in such context can be seen in Amazon’s warehouses
where robots transfer products in a highly dynamic environment shown in figure
1.3. The robots need to identify products and precisely know their position as
well as their own to place themselves accurately under the shelf to be able to lift
it. Furthermore, they need to be aware of the location of other robots to avoid
accidents; this information needs to be communicated reliably and with low latency
to implement the process successfully.

1.3 Localization Challenges

The localization problem has been intensively studied for decades; however, it is
not considered as a solved problem [8]. This can be explained by the multitude of
different contexts where localization can be applied making it difficult to come up
with one accepted solution. Moreover, the advancements in hardware and software
technologies open the door to pushing existing solution to unprecedented limits. The
contexts depend on multiple factors including: the environment, whether indoors or
outdoors, used measurements such as GPS, RSSI, or CSI, and the mobility of nodes,
etc.

4



Figure 1.3: Amazon’s warehouse order picking robots [6]

An adequate localization solution has to consider different contexts. One of the
principal variables is the environment. Indoor environment has been a challenging
problem for decades and is yet to settle on a widely accepted solution that meets
both cost and accuracy requirements [9]. One of the challenges in indoor positioning
is that it lacks access to GPS service. On the other hand, outdoor positioning
has an upper hand due to its access to GPS readings from line-of-sight (LOS)
communication. Other aspects of the environment include the stability of objects
around the devices. Highly dynamic environment induces noise in the localization
process. Also, the mobility of the nodes makes the problem more challenging.

The solution is also dependent on the available sensors or measurements used
to localize. Environment detecting sensors such as cameras, LiDARs, and sonar
sensors fall under the category of visual localization. In this case, the environment
is frequently scanned, and any change in the scanned scene is translated to a
change of the position of the device. Inter-node communication is another source of
measurements to deduce distances between nodes through Received Signal Strength
Indicator (RSSI), Time Of Arrival (TOA), or Time Difference Of Arrival (TDOA).
The estimated distances are then used to locate nodes in what is known as range-
based localization. Recently, with the increasing demand for high throughput
data transmission, massive Multiple Input Multiple Output (MIMO) systems are
spreading and becoming a viable option to power 5G wireless communication systems
[10]. Information is sent on multiple subcarriers, and the Channel State Information
(CSI) can be estimated at each subcarrier. The CSI, or channel’s frequency response,
describes the change that occurs to the transmitted signal due to the channel nature,
frequency, and antenna’s quality. This kind of richer information has been shown in
[11] to be stable with respect to time, and robust against environmental changes.
Thus, CSI is a reliable measurement to use for position fingerprinting.

In almost all estimation contexts, there are some state variables of interest to
measure (e.g., location of nodes) based on some measurements/inputs. The input
values vary largely in terms of their accuracy of presenting the truth values. Thus,
their uncertainty has to be considered as they are used to compute the output and

5



have direct impact on its uncertainty. The output is often a function of the input.
Sometimes, the functions parameters are unknown or need to be tweaked to match
available data. In Appendix A, we present some of the fundamental frameworks for
uncertainty propagation from input to output, and model parametrization.

In other cases, the function relating the input to output is unknown, and a
general complex function is optimized to approximate the relation between input
and output data. Appendix B introduces basic machine learning building blocks
starting from linear regression up to Multi Layer Perceptron Neural Networks (MLP
NN) used in deep learning.

1.4 Thesis outline

The rest of the thesis is organized as follows: Chapter 2 presents state-of-the-art
localization solutions. Chapter 3 and 4 introduce our contributions in range-based
localization and machine learning based localization, respectively. In Chapter 5,
we discuss the issue of generalization of deep learning models when applied to the
localization problem. Chapter 6 encompasses the conclusion and our suggestions for
future work.
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Chapter 2

Literature Review

2.1 Range-based Localization

Range-based localization is based on knowing the distance between nodes in
a network. The network is commonly presented as a graph structure G = (V,E)
where vertices represent nodes, and edges represent the knowledge of the distance
between connected node pairs which are in the communication vicinity of one
another. Localization of network nodes is crucial for a plethora of applications,
such as improvement of routing techniques [12–14] A straightforward method to
address the localization problem is to equip all nodes with a location sensor (e.g., a
GPS) and share the location information. There are two main paradigms to share
position information: Rendez-vous-based and flooding-based. In rendez-vous-based
methods, some nodes are elected to store node position information and respond
to inquiries when position information is requested. The disadvantage of such a
method is that it centralizes the information in only a few nodes, thus there is a risk
of information loss if such nodes break down [15]. Flooding-based methods overcome
this by broadcasting node position information to the network. The cost involved in
such an approach is excessive message exchange, contributing to network overhead.
In Semi-Flooding based Location Service (SFLS) [15], the location information is
forwarded with higher frequency to close neighbors (in terms of the number of hops)
and lower frequency to further nodes. This decreases bandwidth consumption while
maintaining adequate knowledge of neighbors’ positions.

In the case where not all nodes are equipped with a GPS, localizing non-anchor
nodes require additional information to relate nodes to each other. According to
the classification specified in [16], node relations can be connectivity-based, which
simply indicates if a node is in connection with anchor nodes. This is used in [17]
where a node’s position is assumed to be the average of the known positions of the
other nodes. Another type of inter-node relation is the distance between one-hop
neighbors which is widely used to estimate the positions of non-anchor nodes [18,
19] . Relative distance information helps to improve the accuracy of the location. In
addition, some solutions use the Angle-of-Arrival to relate nodes, or a combination
of the aforementioned measurement types [20].

Some works consider the knowledge of positions of a subset of nodes known as
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anchor nodes along with the distances and formulate an optimization problem to
solve for the positions of non-anchor nodes. Different numerical techniques can then
be applied to estimate positions, such as semidefinite programming [21] or linear
programming [22]. Using Received Signal Strength Indicator (RSSI) to deduce the
distance between nodes yields inaccurate and often unstable indications. Thus, some
works defer from using the estimated distance values directly and utilize interval-
analysis [23–25]. In interval-based analysis, instead of computing direct distances
from RSSI, a set of inequalities is formulated to indicate that a node is on a ring
between 2 radii based on its relative position to other nodes. Then, the defined
areas for nodes can be further restrained using the Waltz algorithm [26].

Some approaches divide the problem into subproblems as in [27] where 1) base
stations classify ordinary nodes into clusters based on their proximity to anchor
nodes and 2) within each cluster, a node seen by three anchor nodes is located using
a simple geometrical computation. In [28] , the region where the network is deployed
is divided into rectangular grids as a first step, then, within each small grid, the
location is refined. However, in the previously mentioned approaches, the number of
GPS nodes needs to be high in order to satisfy the necessary constraints.

Generally speaking, if the distance of a non-anchor node to three anchor nodes
is known, it can be located with simple geometric computations, except in the rare
cases where the nodes are collinear or when some nodes overlap. This might imply
a conclusion that at least three GPS nodes in the network are needed for location.
However, in [16] , the proposed solution attempts to locate the network with a single
anchor node. The position of each node is initially estimated as a uniform probability
distribution over the deployment region. As the roaming anchor node passes by
the ordinary nodes, it tweaks the distribution to locate nodes. In this context, the
authors experiment their solution where the anchor nodes use a random model to
traverse the network; they have a reasonable claim that traversing the network
can be optimized to improve the location process. In [16, 29, 30] the probability
distribution is integrated in the location process, rather than attributing a single
position for each node. Such a method allows the uncertainty of measurements to be
taken into account—be it the GPS position or the relative distance between nodes
[16]. In [16, 29] negative information about the absence of a node in the proximity
of the anchor nodes is used in the location process. This kind of information is used
as a basis for our algorithm.

An approach which is seemingly far from the mentioned methods, yet can be used
to address the node location problem, is Graph Layout Algorithms, such as FDP
[31] and neato [32]. Even though the objective of these algorithms is generally to
create an easy-on-the-eye graph, some variations make it possible to fix the positions
of some nodes (the anchor nodes) and to set the suitable edge length (i.e., the
distance between nodes). We have tested these algorithms using graphviz [33] and
the estimated node positions are satisfactory.

Methods that use a set of distance equations and optimization techniques usually
require high computation power, which is impractical for these IoT networks. In
this case, the computation is done remotely in a centralized fashion. The graph
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structure might not yield a unique solution. Even if the graph has a unique solution,
finding this solution is proved to be NP-hard [34].

Table 2.1 summarizes different approaches to solve the localization problem.

Table 2.1: Localization approaches.

Approach Sensors Cost Comments
Flooding based Expensive Information well distributed, but

bandwidth-consuming.
Rendez-vous
based

Expensive Centralized, but bandwidth-friendly.

Semi-Flooding Expensive Sweet spot between flooding and rendez-
vous.

Connectivity
based

Not Expensive Low complexity, but low accuracy.

Optimization Not Expensive Adequate accuracy, but dependent on en-
vironment noise.

Interval analysis Moderately Ex-
pensive

Adequate accuracy, and mitigates environ-
ment noise.

GPS-less Not Expensive Adequate accuracy, and position informa-
tion is in a local coordinate system.

PCP (proposed
method)

Not Expensive Adequate accuracy, and high localization
percentage.

2.2 CSI Localization

While range-based localization has been the focus of many research works for
decades [35] , the demand for higher accuracy localization requires measurements
more accurate than RSSI. As discussed, RSSI shows instability and is sensitive
to environmental changes and various sources of noise, such as fading, distortion,
and multi-path effect [11]. One attempt to overcome the noisy nature of RSSI is
to incorporate some assumptions like dead reckoning [36] where the estimation of
the current position is partially dependant on the previous position assuming some
motion model (e.g., constant velocity). Another way is to enrich the measurement
set by using different sensor data and fusing them using Bayesian methods, such as
Kalman filters [37].

Channel State Information (CSI) is a more granular and stable measurement
that allows for fingerprinting based localization. Fingerprinting is a method to map
from a large subset of input data to an output of smaller dimension. CSI represents
the effect of the channel on the transmitted signal and is represented by a complex
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number as follows:

Ri,j = Ti,j ·CSIi,j +N (2.1)

The transmitted signal Ti,j from antenna i at subcarrier frequency j is multiplied
by CSIi,j , and white noise N is added to form the received signal Ri,j . CSI is
mostly used in the context of MIMO antennas where the diversity of multiple
antennas and the large number of subcarriers are exploited to provide a rich granular
information per position. For instance, for a 2 × 8 MIMO antenna with 1024
subcarriers, one transmission from a particular position yields 2×8×1024 CSI values.
MIMO antennas are gaining more popularity as they pave the way for attaining
5G’s unprecedented data rate requirement of 10 Gbps [38]. Multiple simultaneous
transmissions over adjacent subcarriers on the same antenna is made possible through
orthogonal frequency-division multiplexing (OFDM). The fingerprinting trend has
been steadily moving towards CSI and away from RSSI to achieve higher localization
accuracy [39]. This is due to the richer information content provided by CSI since it
is calculated per subcarrier, while the RSSI is calculated per packet. Moreover, CSI
shows higher temporal stability as opposed to the high variability of RSSI.

FIFS [40] and FILA [41] are examples of the early attempts to use CSI-based
indoor localization. The former utilizes MIMO antennas from several access points
to build an offline radio map of CSI fingerprints to user position. This is followed by
an online prediction phase where the input CSI readings are compared to the map
using a probabilistic method [42]originally designed for RSSI fingerprinting. The
FILA solution [41]is one of the very first initiatives to use CSI for localization in
complex indoor environments. The CSI of 30 adjacent subcarriers are reduced to
CSIeffective which is then used in a parametric equation to compute the distance
to target node. The parameters of the equation are deduced using a supervised
learning method. Finally, using a simple trilateration method [43], the position of
the target node is estimated from the computed distances to three anchor nodes.
FILA’s closest experimental setup to ours is a 3×4 empty room where it is safe to
assume that the received signals were LOS. They attained a mean error less than
0.5 m and they reasonably argued that with the availability of more anchor nodes
and with the use of a more accurate trilateration method, the error can be further
reduced. In [44],a k-nearest neighbor method is used on a fingerprinting database
based on the magnitude of CSI. Their estimation results outperforms FILA [41] and
FIFS [40].

K-nearest neighbours algorithm estimates the position by computing a weighted
average of k-nearest positions. However, this introduces a complexity due to the
need to store the training samples used in the off-line learning phase which can
be a critical memory and processing limitation in some applications. In [45], the
correlation between CSI values is captured by creating a visibility graph. Statistical
features of the graph (e.g., degree deviation, degree assortativity coefficient) are then
used as input features to different learning techniques (e.g., SVM, random forest).

In [46] , the authors propose a channel sounder and utilize both real and imaginary
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components of CSI with a Convolutional Neural Network (CNN) to achieve position
fingerprinting. CNNs are able to extract more complex and descriptive higher-level
features by processing a window of input features all together [47]. In this work
the authors mainly focused on creating a flexible channel sounder architecture that
allows for CSI estimation at various frequency bands and environments. More
importantly, the dataset collected from their experiments is publicly available to
the scientific community. This allows for making fair comparison between different
methods using the same testbed. We use their public dataset to verify the accuracy
of the proposed method.

Their proposed CNN with input features being the real and imaginary components
yields an estimation error of 32 cm in a Line-Of-Sight (LOS) scenario. With the
2×8 MIMO antenna and 924 subcarriers per antenna, their input dimension is 2×
8×924×2 (the last dimension represents both the real and imaginary components).
With such high dimensional input along with the use of CNN, the learning and
inference processes become more computationally demanding. By selecting the
magnitude of the CSI as the input feature and using polynomial regression, we are
able to reduce the input dimension by a factor of 38 and use a lighter weight MLP
neural network and still achieve ≈ 8 times better accuracy.

Other works have used different components to achiever better accuracy. One of
the very first attempts to use the phase component is PhaseFi [48]. The authors
used linear transformation to calibrate the phase component estimated at thirty
subcarriers and three antennas of Intel’s WiFi Link 5300 NIC. The calibrated phase is
then used as input to a three-layer Neural Network to achieve position fingerprinting.
The authors showed that localization using CSI with commodity hardware is more
accurate than using RSSI. The mean error in the Line-Of-Sight experiment is ≈
1 m. Direct comparison with our results is not feasible due to the differences in
the experimental area, the number of subcarriers, and the antennas. However, an
important point of comparison with our method is the choice of the phase component.
Their reasoning in choosing the phase over the magnitude is that it is less sensitive
to obstacles and that it is more stable in general. Nevertheless, we show that the
magnitude is more stable through a statistical analysis of the dataset.

In DeepFi [11], Intel’s WiFi link 5300 NIC with three antennas and 90 subcarriers
per antenna is used for localization. They reached a similar conclusion to use the
magnitude of CSI as the input features. They use trained weights between layers in
a four-layer MLP as fingerprints to the position of the transmitter. This is achieved
through a greedy learning method that trains the weights of one layer at a time based
on a stack of Restricted Bolzmann Machines (RBMs) to reduce the complexity [49] .
Our method of complexity reduction is based on a simpler process using polynomial
regression. It is difficult to compare the estimation error between our method and
theirs because of the difference in the number/quality of antennas, environmental
noise level, etc. However, the mean error obtained using our proposed method with
two antennas and 924 subcarriers is ≈ 6 times less than their mean error which
is relatively large, giving us some confidence that our method outperforms theirs.
Similar accuracy is achieved using both the magnitude and the phase of CSI fed into
the K-nearest neighbours algorithm [50].
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2.3 Deep Learning Enhancements

Traditional MLP NN has been proved in [51] to be a universal approximator.
Concretely, for any continuous hypercube function with d dimensional input within
the range [0,1]d, real number output and every positive ε, there exists a 1-hidden
layer neural network with a sigmoid activation that can approximate the function
with at most ε error in functional space. This proof shows the strength of NN
approximation capabilities, especially since ε can be chosen to be infinitesimal (very
close to zero) which would mean a highly accurate approximation of the function.
However, it does not tell us anything about the needed number of units in the 1
hidden layer which could be exponentially large and infeasible to train. Also, fitting
a set of data points representing a function does not necessarily mean that the
approximation would fit well the data points to be predicted.

The fundamental end goal of artificial intelligence is to mimic human intelligence
in adapting and reacting to new experiences based on previous ones that might not
be strongly related. Thus making "infinite use of finite means" is a principal aspect of
human intelligence [52]; this reflects the use of few resources to learn new references
and relations, for example, having knowledge about the meaning of few English
words (finite means) and being able to generate lots of sentences with different
meaning (infinite use). This general aim remains out of reach for the current AI
despite the unprecedented advancements in the last decade [53]. Prior to the recent
boom of AI, models relied on engineered features that are chosen by experts in the
field of application. This method achieved decent success since experts are able to
choose adequate features capable of expressing the transfer from input to output.
However, the choice of features is limited by the experts’ knowledge of the problem
which is seldom complete. Deep NN on the other hand delegate the feature selection
to the optimization process adding flexibility that allows for discovering interesting
features beyond experts’ knowledge.

With cheap data and computational resources, many AI approaches switched
from the manual feature engineering part of the spectrum to the end-to-end learning
without restrictions or bias on the learnt features [54–56]. We believe that both
paradigms have their pros and cons and the best of interest of AI is to combine
their strengths to take one step towards human intelligence. The midway between
manually choosing features by experts and complete flexibility of MLP NN to find
features can be achieved by inducing some bias in the deep learning model to learn
features about the relation between input features. In this paradigm, the experts
contribute by suggesting meaningful connections between input features, and the
deep learning model architecture is altered accordingly. The architecture does not
enforce selecting some specific features but rather shifts the focus to interesting
relations and the model uses its flexibility to find interesting features in the focused
area. This paradigm led to the emergence of several variants of MLP NN which
achieved major breakthroughs in different applications, such as Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), Graph Neural Networks
(GNNs).

12



2.3.1 Convolutional Neural Networks

In appendix B, we give a basic introduction to the traditional multi-layer percep-
tron Neural Networks. MLP NN is able to achieve highly accurate results in some
tasks like recognizing hand written digits [57]. The input features in this case are
individual pixels in a low resolution image where the value of each pixel represents
the grayscale value. However, the general form fails to achieve accurate results
for more complex tasks [53]. Thus, several attempts have been made to enhance
the general NN form to adapt it to the nature of input features. Let us take the
MNIST dataset as an example for hand written digit detection [58]. This dataset
is composed of 60,000 train set samples and 10,000 test set samples hand written
by hundreds. Each sample is a 28 × 28 grayscale image. Figure 2.1 shows several
image examples. A reduced numerical visualization of the digit "One" is shown in a
14 × 14 matrix where the grayscale is normalized between 0 and 1.

Figure 2.1: MNIST dataset written digit example [59]

While our brains are able to analyze the images quickly, the problem is far
from being easy. To appreciate the underlying complexity of such operation, one
has to think of the actual representation of the image. The computer sees the set
of numbers represented in the matrix at each pixel. Our brain receives similar
information and translates them quickly to the colors that form our visualized world.
However, if we are just to see a set of numbers, especially if the pixel values are
RGB and the background is not zeros but has some color, the problem’s complexity
would probably be unsolvable by our brains.

Keeping in mind that each pixel is an individual input feature, concluding the
digit depends on a set of neighboring lit features. The architecture MLP NN does
not enforce any bias towards neighboring pixels. Rather, it attempts to learn weights
and biases relating all pixels equally important whether close or not. This is due to
the fully connected architecture. This makes the learning process much less efficient.
Take the digit "one" example in figure 2.1, the MLP NN can learn that this specific
combination of pixels outputs "one" as it sees the pixel values as 1D vector. If the
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digit is shifted right or left, the model would treat shifted "ones" as different and
would have to learn separate weights and biases to estimate "one". It will be very
difficult to capture the similarity between the original digit and the shifted one in
the MLP NN 1D input format. Thus, to generalize the learning, each image should
be shifted right and left for the model to learn all possible shifts. However, this
is inefficient because the number of learning examples could explode making the
learning process infeasible in terms of time.

Several deep learning architectures have emerged to introduce a bias depending
on the nature of the problem. One heavily used NN architecture especially in
image processing context is Convolutional Neural Networks (CNN) [60]. CNNs’
architecture is especially resilient to the shift problem. CNN makes use of two main
characteristics of images: locality and translation invariance. Locality means that
nearby pixels tend to be correlated, while location invariance corresponds to the
invariance of output when objects are shifted in the image [61]. This is achieved by
moving from the fully connected architecture of MLP NN to a locally connected one
in CNNs. The local connection is achieved by sliding a 2D kernel over the image and
convolving the kernel weights with the pixel values using dot product. The side of
the kernel is a design choice but it is commonly of a small size (e.g., 3 × 3 or 5×5).
Multiple kernels are convolved with the image to produce multiple feature maps. If
the kernel values highly match the pixel window of the image, this means that the
feature of the kernel exists in this particular region of the image. Figures 2.2 and
2.3 from Deepmind’s lecture on CNN at UCL illustrate the difference between input
for one unit in MLP NN and CNN.

Figure 2.2: MLP NN unit input [61]

The reduced number of input to each unit in the CNN paradigm has two
main advantages. First, the number of weights is reduced which leads to faster
computations. Second, it introduces a kind of bias or focus to extract features from
nearby pixels and excludes relating far pixels which is a sensible bias in the image
recognition context. The kernel weights are learnt in a similar fashion to that of the
MLP NN explained in chapter 1. This change of architecture which introduces a
relational bias between nearby pixels has revolutionized the image recognition field.

Probably the highest impact of deep learning on image recognition capability
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Figure 2.3: CNN unit input [61]

can be seen by analyzing the methods used in the ImageNet challenge [62]. This
competition provides for competitors a set of ≈ 1.4 M images that belongs to 1000
classes. The challengers are expected to build a model to predict classes from images
by learning from the provided dataset. This large pool of images attracted numerous
researchers from different institutes in the industry and the academia. Back when the
competition was first launched in 2010, the dominant image classification techniques
were feature engineering based. In those techniques, features were manually designed
or chosen by competitors and used to differentiate between classes. These features
are selected based on intuition or experience of the participant; thus, there is almost
no learning involved by the model [61]. These methods were able to achieve an error
rate around 27 %. In 2012, one of the first CNNs used at this scale, AlexNet [63],
achieved a remarkable jump in error rate reducing it to 16 %. The unprecedented
success of AlexNet lead to a drastic increase in the use of CNNs in the years to follow
over traditional computer vision techniques [61]. VGGNet [64] and GoogLeNet [65]
are prominent examples of the evolution of CNNs using different architectures and
increasing the network depth, achieving ≈ 7 % error rate. Residual connections
technique was a particular innovation in CNNs that lead ResNet [66] to decrease the
error to 4 %. Improving error rate was marginal after ResNet [66] in subsequent years.
The takeaway from the evolution of ImageNet challenge [62] over the years is that
hand crafted features are far less efficient that automatically learnt features by deep
learning models. More importantly, altering the deep learning model architecture
to bias it towards learning features based on the nature of the problem can lead to
breakthroughs in the learning process.

2.3.2 Graph Neural Networks

As previously seen, the availability of data in the ImageNet challenge drove a huge
amount of research and innovation over the years. Besides data availability, powerful
computation resources opened new horizons for model complexity and accuracy.
Computational capabilities drove one interesting trend in deep learning research
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which is building a deeper and more complex networks to improve performance.
To put things into perspective, accurate models in the ImageNet challenge [62]
encompassed a large number of weights, in the order of hundreds of millions of
parameters [64]. Paradigm changes lead to breakthrough improvements (e.g., using
deep learning instead of feature engineering or innovating in CNNs architecture with
residual connections). Increasing the complexity of the model especially by going
deeper can lead to accuracy improvements [67]. However, the model could easily
suffer from incapability to generalize.

Other biased forms of deep learning have emerged for other types of data. While
CNNs handle space invariance, Recurrent neural networks (RNNs) are structured
in a way that conserves time invariance and generally deals with sequences [68].
Natural Language Processing [69–71] is one application where RNNs are used to
understand spoken languages. In this paradigm, instead of enforcing relational
learning between nearby pixels, the current state is related to previous states. Object
tracking is another form of sequence where consecutive positions of a moving object
are strongly correlated.

In spite of the unprecedented success achieved using deep learning models, more
complex contexts in language and scene understanding remain challenging to solve
[72–75]. Adding to the problem’s complexity is the fact that not all problems are
structured in a matrix format (2D image) or in some ordered sequence. This raises a
demand for a flexible framework that is able to introduce the bias in finding relations
between inputs depending on the nature of the problem. This direction hits the
sweet-spot between full manual feature engineering, and complete end-to-end fully
connected MLP NN where no bias is included in the architecture. Graph structure
is a flexible framework that can be used to introduce this relational bias for the NN
to learn more meaningful features that are able to generalize beyond the training
data. The family of neural networks with the graph architecture are often referred
to as Graph Neural Networks [53].

Deepmind’s graph_nets open source framework is one of the recent powerful
implementations of GNNs [76]. In their demo, a GNN is trained to predict the
shortest path between two given nodes in an 8 to 16 node graph. The generalization
capability is vividly highlighted where the GNN is able to accurately predict the
shortest path in graphs that are twice as large as the graphs used to train the model.
The main aspect that GNNs aim to satisfy is combinatorial generalization which is
considered a key true generalization [53]. The relational bias included in the GNN
architecture which relates some entities forces the choice of a solution over another
without depending on the specific training value [77]. Abstracting away from the
training set values is a crucial step towards generalization which is depicted in the
example of training to estimate the shortest path in small graphs and being able to
generalize to larger ones.
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Chapter 3

Position Certainty Propagation in
MANETs

MANETs are characterized by the highly dynamic nature of their nodes in terms
of mobility as well as entering and exiting the network. Thus, realizing a service in
such context requires a distributed solution. Moreover, in some cases such as IOT,
the solution needs to be light to avoid high energy consumption. In this chapter, we
introduce a location service (PCP) for MANETs that takes into consideration the
distributive and lightweight requirements. Furthermore, the localization problem is
solved on two levels:

1. Self-localization where nodes estimate their own positions when enough first
hop neighbors have their positions estimated.

2. Global localization where the estimated positions of nodes are shared among
nodes using an efficient algorithm SFLS [15].

3.1 Problem Formulation

To address the localization problem, the network is modeled as an undirected
graph G = (V,E) where V = {0,1, ...,n} are the nodes of the network and E =
{(0,1),(0,2)...} are edges connecting two nodes located within the communication
range of each other [78]. The edges connecting nodes have weights representing the
distance between communicating nodes. Nodes have two types: anchor nodes whose
positions are known in advance and non-anchor nodes whose positions are unknown.
The network is assumed to be composed of m anchor nodes and n non-anchor nodes.
The proposed solution requires two constraints in the network:

(a) The network has a minimum of three anchor nodes.

(b) Three anchor nodes are in the communication range of at least one non-anchor
node.
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In order to illustrate the proposed solution, consider a small network example
shown in figure 3.1. The network is composed of 15 nodes. Each node is labelled
with a unique id where blue colored nodes are anchor nodes and the red ones are
non-anchor nodes. The nodes are distributed uniformly over a 20m × 20m region.
All nodes have a communication range of 8 m. An edge between two nodes indicates
that the distance between them is less than the communication range. The objective
is to localize as many non-anchor nodes as possible exploiting the prior knowledge
which is composed of the positions of the anchor nodes and the distance between
nodes within the communication range of each other.

Figure 3.1: 15-node network example

3.2 Position Certainty Propagation

The distance between nodes are conventionally estimated in range-based localiza-
tion techniques through the measurements of RSSI, TOA, AoA etc. In this section,
we do not address this part of distance estimation and assume that the distance
information is readily available. The algorithm of two main cases, the first is when
a non-anchor node is in vicinity of three or more anchor nodes or nodes whose
positions have been computed. The second case is when a non-anchor node is in the
vicinity of exactly two nodes with known positions.

3.2.1 Three nodes with known position in their vicinity

Consider the "three nodes in vicinity" case which at the start of the algorithm
has to be satisfied based on the two mentioned constraints in section 3.1.
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Each node communicates with nodes within the communication range and counts
how many of them have their positions determined. Lets take the network example
in figure 3.1, initially, the only nodes with known positions are the three anchor
nodes 10, 3, 13. The number of first hop neighbors with known positions is shown
for all non-anchor nodes in figure 3.2. Two nodes are within communication range
with three nodes with known positions which are the three anchor nodes. Those two
nodes attempt to compute their own positions via triangulation using the position
of their neighbors and the distance between them.

Figure 3.2: Counting number of known position neighbours

In order to visualize the self localization process, let’s take node 12 as an example.
Knowing the position of the anchor nodes, three circle are constructed centered at
each of the anchor nodes with radii equal to the distance from each anchor node
to node 12. Figure 3.3 shows the intersection of the three circles that is used to
compute the position of node 12. The intersection of the three circles is calculated
via triangulation and is chosen as the node position.

Since the distance measurements are not certain, their errors are modeled with a
Gaussian distribution with a zero mean and a standard deviation that represents the
degree of noise in the environment. The Gaussian assumption is is a widely accepted
model that is also experimentally validated in [79]. Due to measurements errors, the
three circles do not necessarily intersect at one exact point. To overcome this, we
use a variant of the residual weight algorithm [80]. This algorithm was originally
implemented to mitigate the effect of Non-Line-Of-Sight (NLOS) measurement
errors. When the distance and position information of more than three nodes
is collected, an estimated position is computed for each possible combination of
three or more nodes using least square error minimization. To illustrate this, for
position/distance information of four nodes,

(
4
3

)
positions are computed for all three
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Figure 3.3: Computing position from the intersection of three circles

node combinations and one position for the four nodes together. Each estimated
position is given a weight that is inverse to the normalized residual error. Finally,
the chosen position is the weighted average of all positions. Another possibility is to
choose the position with the minimum residual error. Since minimizing the error
does not always guarantee an estimation that is the closest to the actual position
[18], we choose not to do the least-square error minimization in order to minimize
computation effort. Rather, for position/distance information for three nodes, we
compute a position for each combination of node pairs (in this case 3 combinations)
by computing two intersections of the two circles and eliminating one of the positions
using the third circle. Then the weighted average of the three positions is chosen to
be the estimation. The weight is the inverse of the error between the distances to
the computed position and the measured distance.

The localization process is formally described in our work [81]. "Let us consider
for a node pair [A,B] whose known positions are [a.x,a.y] and [b.x,b.y] respectively.
The distances to node C whose position is to be computed are ac and bc respectively.
First the distance between A and B is computed:

ab=
√

(a.x− b.x)2 + (a.y− b.y)2. (3.1)

The intersection between two circles generally yield two positions. The computa-
tion of the two possible positions is easier if the two circles lie on the horizontal axis
and one of them is at the origin. Thus, ~a is to be subtracted from a and b. Next,
the rotation angle shown in Equation 3.2 is applied so that a is transferred to the
origin and b resides on the x-axis.
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θrot = arctan

(
b.y−a.y
b.x−a.x

)
(3.2)

After applying the translation and rotation, the two intersection points will have
the same x-coordinate. The y-coordinate for one intersection point is above the
x-axis and the other is below the x-axis. The rotated coordinates of the intersection
points are shown in Equations 3.3 and 3.4.

c.xrot = ab2 +ac2− bc2

2ab (3.3)

c.yrot =±

√
(ab+ac+ bc)× (ab+ac− bc)× (ab−ac+ bc)× (−ab+ac+ bc)

2ab (3.4)

Finally, to restore the intersection points in the original coordinate system, the
opposite rotation and translation are applied to the rotated coordinates as follows

c=
[
cos(θrot) −sin(θrot)
sin(θrot) cos(θrot)

][
c.xrot ±c.yrot

]
+~a (3.5)

The next step is to eliminate one of the two positions using the third posi-
tion/distance pair [d,dc] of node D, whose position is also known."

The elimination in this case is done by choosing the position whose distance
to the third node D is approximately equal to dc. This process is valid in general.
However, in some rare case this process is not applicable when the three known
position nodes are collinear or when two of the nodes have the same position. When
such cases occur, one of the known position nodes obstructing the localization is
neglected. Then other known position nodes in vicinity are utilized instead. The
error for the estimated known position is the absolute difference between dc and the
distance between the chosen position and d. The weight given for the chosen position
is 1/error. Finally, the estimated position is the weighted average of the chosen
positions. If there are more than three one-hop neighbors with known positions, the
process is done for all 3 one-hop neighbors combinations and the estimate chosen is
the one that yields the least error.

In case the three known position nodes are collinear, two of the three nodes
are chosen so that the largest angle of the triangle of the two nodes (with known
positions) and the node to be localized, is as close as possible to 90◦. This criterion is
chosen so that the two possible positions of the intersection of two circles are further
from each other, which helps in the elimination step that follows. The localization
process using the positions and distances to only two one-hop neighbors is explained
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in the following section.

3.2.2 Two nodes with known positions in vicinity

The case where there are only two known position nodes in vicinity is considered
a bottle neck which inhibits other algorithms [18, 19] from localizing nodes at
less-connected regions in the network and thus the position discovery does not
propagate. The first step is to compute the two possible positions as previously
shown in Equations (3.1) to (3.5). The information required to eliminate one of the
two positions is:

1. The maximum range of the communication.

2. The list of received positions of other nodes in the network and the IDs of
one-hop neighbors.

The position to be estimated is expected to be within the maximum range of
one-hop neighbors, and outside the maximum range for n-hop neighbors where n> 1.
This requires that the node stores the IDs of all one-hop neighbors and updates
them frequently. Also, the received positions of neighbors in the network are stored
in a table.

In order to eliminate a position, the distances to all stored positions of other
nodes in the network are computed. If a computed distance to a one-hop neighbor is
larger than the maximum range of communication, the position is eliminated because
it implies that this 1-hop neighbor is outside the maximum range of communication.
On the other hand, if the computed distance to an n-hop neighbor is smaller than
the communication range, the position is also eliminated because it implies that this
n-hop neighbor is one hop away. If one of the two positions is eliminated, the other
position is chosen to be the estimated position. If neither of the two positions is
eliminated, the estimation is discarded until more information is available.

To illustrate, we continue the localization process of nodes in the 15-node network
previously shown in Figure 3.3. The continuous localization of nodes propagates
until there are no more nodes that can be localized with three or more nodes in
the vicinity. This state is shown in Figure 3.4 where node 6 has only two nodes
with known positions in the vicinity, 9 and 13. The two possible positions from the
two circle intersections are shown as blue octagons. Since node 6 is aware that it
has only two 1-hop neighbors, computing the distance between the lower left blue
octagon to any node with known position (e.g. node 0), yields a distance smaller
than the maximum communication range. And since node 0 does not belong to the
list of 1-hop neighbors, this position is eliminated and the other position is chosen
to be the estimate as it does not introduce any conflicts. Similarly, node 1 can be
localized using nodes 5 and 8.
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Figure 3.4: Computing position based on two nodes with known positions

The algorithm continues to compute the position of nodes with the two previously
mentioned cases until no more positions can be estimated. This is the case when
a node sees two nodes with known positions within its vicinity but none of the
two possible positions introduces conflicts and thus cannot be eliminated. Also,
when a node is seen only by one neighbor with known position, it may be localized
anywhere on the circle centered at the node with known position and whose radius
is the distance between the two nodes. Therefore, its position cannot be effectively
established. This can be seen when attempting to compute the position of node 11,
where its only neighbor with known position is node 8. The final outcome of the
algorithm in Figure 3.5 shows that only node 11’s position cannot be computed.

The main advantage of this method is its lightness as it comes down to a series of
triangulation steps. The next section discusses the implementation of the proposed
solution in a distributed manner.

3.3 Algorithmic Implementation

In this section, we present the algorithm implemented on each node in the
network. The first part of the algorithm is sharing positions (if found) through
the network in a bandwidth efficient manner. The second part is the previously
described localization method.
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Figure 3.5: The final result of the algorithm

3.3.1 Semi-Flooding based Position Sharing

We use a semi-flooding method (SFLS) [15] to share known positions because
it takes advantages of flooding and rendez-vous based methods while mitigating
their drawbacks. In this method each node broadcasts its own position (if found)
with an identifier like the time-stamp or a sequence number. A node that receives
another node’s position with a higher sequence number or time-stamp re-broadcasts
once every two receivables. In other words, when a node receives a position for the
first time, it rebroadcasts, the next time it receives the new position of the same
node, it does not rebroadcast and keeps alternating the rebroadcast decision for the
following received positions. This method is bandwidth friendly and compatible
with our localization algorithm because nodes need more frequent information
about their closer neighbors. Assuming the broadcast interval is t seconds, one-
hop neighbors receive the position info every t seconds, two-hop neighbors receive
position information every 2 t seconds, three-hop neighbors receive position info
every 4 t, n-hop neighbors receive info every 2n−1 t. In [15], it has been shown
mathematically that the mean number of broadcasts mi performed to update the
position information of node i grows approximately linearly with the number of
nodes in the network where nodes are uniformly distributed. This ensures scalability
with respect to bandwidth consumption. The broadcasting of positions, receiving
them and initiating the self localization algorithm is illustrated in Algorithm 1.

Three procedures are described in Algorithm 1:

(a) broadcast own position: startup method is called every t seconds for anchor
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Algorithm 1 SFLS Position sharing
1: ownSeqNum = 0 (Sequence number starts at 0 for all nodes)
2: retransmitDecision (stores retransmission decision for all nodes, initialized to

true for all nodes)
3: N (list of received node positions) and N1 (1-hop neighbors with known positions)
4: Id1 : list of IDs of all one-hop neighbors and distanceTo stores distances to

1-hop neighbors
5: procedure broadcast_own_position
6: if nodeType == anchor then
7: ownSeqNum+ +
8: pos = anchor_pos
9: else if position is estimated then
10: pos = estimatedPos

11: end if
12: packet = [ownID, pos, ownSeq, ownID]
13: broadcast packet
14: end procedure
15: procedure receive(sendID,pos,seqNum,ID1−hop)
16: prevSeqNum= seqNum[sendID]
17: if seqNum > prevSeqNum then
18: seqNum[sendID] = seqNum

19: N [sendID] = pos

20: update distanceTo[ID1−hop]
21: if sendID == ID1−hop then
22: N1[sendID] = pos

23: end if
24: if nodeType! = anchor and seqNum > ownSeqNum and N1.size >= 2

then
25: selfLocalize()
26: end if
27: end if
28: rebroadcast(sendID,pos,seqNum,ownID)
29: end procedure
30: procedure rebroadcast(sendID,pos,seqNum,ownID)
31: if retransmitDecision[sendID] == true then
32: packet = [sendID,pos,seqNum,ownID]
33: broadcast packet
34: retransmitDescision[sendID] = false

35: else
36: retransmitDescision[sendID] = true

37: end if
38: end procedure
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nodes at the beginning of the simulation. For non-anchor nodes, it is called
once their positions are estimated to start broadcasting their positions with
the interval t . Note that the sequence number that indicates the freshness of
position information is incremented only by anchor nodes. This is because the
position information originates from the anchor nodes while the localization
of all the other nodes is more or less inherited from them. Thus, when a
non-anchor node is localized, it updates its sequence number to be equal to
that of the nodes used to localize it.

(b) receive: called every time a packet is received. The inputs to the procedure are
the ID of the original creator of the packet sendID, the position of sending
node pos, the associated sequence number seqNum, and the ID of the one-hop
neighbor that relayed the packet ID1−hop. When new information arrives, this
method checks if the gathered information is sufficient to attempt to estimate
a node’s position. If so, it calls selfLocalize method which is described in
Algorithm 2.

(c) rebroadcast: called by receive method after the received position is processed
to decide whether to forward the received packet according to the SFLS rule.

3.3.2 Self Localization

The second part of the algorithm is the localization part that was explained in
the previous section. Thus, each time updated position information is received an
attempt is made to localize node by calling selfLocalize() in receive method. The
localization procedure is further detailed in algorithm 2.

Let N1 be the list of detected neighbors with known positions within commu-
nication range of the node. When N1 includes two or three nodes, the position
of the node can be estimated using the intersection method. If N1 includes two
nodes, the intersection method returns the two possible positions, one of which is
to be eliminated if possible. Let N be the list containing position information of
all the received positions of network nodes. The first line gets the 1-hop neighbors
whose positions are known and have the highest sequence number available. This
ensures that the positions used to localize the node are from the same time step
and thus the information is coherent. Then, if the number of 1-hop node positions
is three or more, the intersection method returns one position that is stored in
estimatedPos and the sequence number is updated to be equal to sequence number
of nodes used in localization. If there were two 1-hop nodes with known positions,
the intersection method returns two possible positions which are then tested in an
attempt to eliminate one of them using the procedure explained above. Once the
estimatedPos is updated it is then used together with the sequence number in the
next broadcast_own_position call.
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Algorithm 2 Position Certainty Propagation: selfLocalize()
1: mostRecentOneHop = list of 1-hop neighbors with the highest sequence number
2: maxSeqNumFound = seqNum of any of the nodes in the mostRecentOneHop
3: if mostRecentOneHop has 3 or more nodes then
4: estimatedPos = intersection(mostRecentOneHop)
5: ownSeqNum = maxSeqNumFound

6: else if mostRecentOneHop has 2 nodes then
7: [pos1, pos2] = intersection(mostRecentOneHop)
8: P1Neighs = n for each n ∈ N where distance(n,pos1) <= CommRange

9: P1Neighs = N −P1Neighs
10: P2Neighs = n for each n ∈ N where distance(n,pos2) <= CommRange

11: P2Neighs = N −P2Neighs
12: pos1IsCompatible ⇐⇒ for each n ∈ P1Neighs, n ∈ Id1 and for each m

∈ P1Neighs, m < Id1
13: pos2IsCompatible ⇐⇒ for each n ∈ P2Neighs, n ∈ Id1 and for each m

∈ P2Neighs, m < Id1
14: if pos1IsCompatible and not pos2IsCompatible then
15: estimatedPos = pos1
16: ownSeqNum = maxSeqNumFound

17: else if pos2IsCompatible and not pos1IsCompatible then
18: estimatedPos = pos2
19: ownSeqNum = maxSeqNumFound

20: end if
21: end if
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3.4 Performance Evaluation

3.4.1 Comparison with GPS-free method

In order to assess our algorithm we compare it with an existing solution [19],
which we refer to as GPS-free. We implemented the first part of the GPS-free
algorithm where node positions are computed in a local coordinate system of one
of the nodes in the network. The paper further explains how to choose a stable
coordinate system for the network, which does not concern us since we evaluate
the solution for a static instance of the network. The algorithm compromises the
following steps:

1. Each node creates a local map composed of itself and the maximum possible
number of 1-hop neighbors via triangulation, making itself the origin.

2. Node k can transfer its coordinate system to node i if both nodes exist in the
local map of one another in addition to a third node common to both local
maps.

3. All nodes in the network attempt to transfer their coordinate system to node
i so that all node positions are computed in one common coordinate system

We refer the reader to the GPS-free article [19] for further details of how these
steps are executed. Observing the behavior of GPS-free in some graphs we figured
out an improvement that can increase the percentage of localized nodes. The
improvement concerns the condition that only nodes who cannot build a local map
are transferred to another coordinate system via triangulation. We quote from the
GPS-free paper: "The nodes that are not able to build their local coordinate system
but communicate with three nodes that already computed their positions in the
referent coordinate system can obtain their position in the Network Coordinate
System by triangulisation" [19]. We extended this behaviour to nodes that built
their local map but still cannot transfer their local coordinate system to the referent
coordinate system; in this case the node only computes its position in the reference
coordinate system. This extended version of GPS-free will be referred to as GPS-free
ext.

3.4.1.1 Experimental Setup

Our objective is to compute the positions in the global coordinate system using
GPS information of three nodes. The distances between nodes are assumed to be
certain in this experiment. In the GPS-free method, even though the positions are
computed in a local coordinate system, it is possible to transfer the node positions
to the global coordinate system if the 3 GPS nodes have their positions computed.
Similar to our approach, GPS-free is based on triangulations. However, it does
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not consider the case when a node is within the range of only two known position
nodes. The results of this study highlight the added benefit of using such a case.
Each simulation run is a connected geometric graph (aka a disc graph) where nodes
are randomly positioned in a 100×100 m grid. Three anchor nodes are randomly
chosen so that at least one non-anchor node is within their communication range.
Our algorithm is run to compute the positions of the non-anchor nodes as previously
described. GPS-free is run when the node chosen to have all nodes transferred to
its coordinate system is the one that maximizes the number of estimated nodes.
This ensures that the best possible result from the GPS-free method is obtained
without taking into account whether the GPS nodes are among the nodes with the
computed positions. The success percentage is the percentage of nodes whose their
position is computed. Two experiments are conducted, one varying the maximum
communication range [14,15,16..,23] m while keeping the average number of nodes
constant at 100 nodes. In the second experiment, the communication range is kept
constant at 14 m while the average number of nodes varies [100,115,130,145,160].
The number of nodes in each experiment follows a poisson distribution with the
given average. In each graph configuration the experiment is repeated 1000 times
and the confidence interval is shown as a vertical bar around the point.

3.4.2 Experimental Results

PCP is compared to GPS-free and the extended version GPS-free ext by com-
paring the percentage of localized nodes in different graph configurations. We
start by varying the maximum communication range in figure 3.6 from 14 m up to
23 m with 1 m increment from one experiment to the other. The x-axis shows the
average node degree at each maximum communication range. Put differently, for
the first configuration each node has a maximum communication range of 14 m and
the average node degree over the 1000 simulations is approximately 5.5; the next
configuration is with a range of 15 m which gives an average node degree of 6.3, etc.
It can be clearly seen that the maximum communication range has a direct impact
on the number of localized nodes. As the maximum communication range increases
and consequently so does the average node degree, it is possible to estimate the
positions of more nodes. When the average degree is ≈ 10, our algorithm is able to
compute the positions of ≈ 90% of nodes. Also, our algorithm shows a higher success
percentage for all configurations than GPS-free and the GPS-free extended version.
In another attempt to study the effect of varying the number of nodes while keeping
the maximum communication range constant at 14 m, increasing the number of
nodes has a similar effect to increasing the maximum communication range. Here,
the node density (nodes/m2) is shown against the success rate in figure 3.7.

3.5 Behavior in simulated network

In this section we study the behavior of our algorithm in a simulated network
created using NS-3 simulator [82].

29



Figure 3.6: Varying Max Communication Range

Figure 3.7: Varying Node Density

3.5.1 Distance Noise Effect

The network is composed of 49 nodes spread out on a 7×7 grid. The horizontal
and vertical distances between the nodes are 10 m. The anchor nodes are chosen to
be in the middle of the networks as depicted in Figure 3.8. The maximum range
of communication is set to 15 m using the RangePropagationLossModel class.
Communication between nodes is through wifi 802 11.b standard with a data rate
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equal to 1 Mbps. It is to be pointed out that WiFi is not the only standard to be used
for inter-node communication, it is provided here as an example. Generally speaking
any communication technology that allows broadcasting can be used. It is to be
noted that performing a broadcast is far easier than point-to-point communication
since the latter might need to store and update routing tables. Thus, this simplicity
of just needing broadcasts is an advantage of our solution.

Figure 3.8: Grid network

The time interval between broadcasts is 1 second. The anchor nodes start
broadcasting their own position at slightly different instants to avoid packet loss due
to multiple transmissions in the same instant. Once a non-anchor node estimates its
position it starts its own broadcast cycles with the 1 second interval. This means
that after the three anchor nodes start broadcasting their position, the first node to
be localized is node 18 which starts broadcasting its own position so that further
nodes are localized. If there are no measurement errors, all the nodes are correctly
localized within the first second by the successive localization and broadcasting
mechanism. We introduce distance measurement errors between nodes by adding
a Gaussian noise with zero mean and different standard deviation values for each
experiment. The average position error for all nodes in the network is computed over
a period of time that includes 5 broadcasts for all network nodes. The position error
for a node is the difference in the distance between the estimated and the actual
position. The results are shown in the left-hand graph of Figure 3.9. Since not all the
nodes know their position at the same instant, the average localization error is shown
against the sequence number. The ith sequence number on the x-axis indicates the
ith anchor nodes’ own position broadcast which is inherited by non-anchor nodes
when localized. Even though the nodes are localized at different time instants,
during the first second all the nodes update their position and set their sequence
number to one. The experiment is repeated 1000 times at each standard deviation
value. The distance measurements error and the confidence interval are plotted. For
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1 cm standard deviation, the average error fluctuates around 3.5 cm. For 3 cm and
5 cm, the average error is around 11 cm and 18 cm respectively. Figure 3.9 shows
the stability of position estimation over a period of time.

Figure 3.9: Stability of localization error over time

Figure 3.10 shows the average localization error during one time step for a wider
range of noise values by varying the standard deviation from 1 cm to 15 cm. The
graph shows a linear relation between noise and localization error.

Figure 3.10: Average Localization error with different standard deviation values
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3.5.2 Error propagation towards the network’s edge

To study the effect of error propagation as nodes towards the edge of the network
are localized, we repeat the experiment for different numbers of nodes in the network.
The 3 anchor nodes are always chosen to be in the center of the network and the
standard deviation for the Gaussian noise is set to 5 cm. The results are shown in
Figure 3.12. The first setup is a network with four nodes, three of which are anchor
nodes. This means that the fourth node is localized directly through anchor nodes,
yielding a very small average localization error. The second setup includes 16 nodes,
which means that the anchor nodes are surrounded by one layer of non-anchor nodes
colored in green as shown in the left part of Figure 3.11.

Figure 3.11: 16-node Network Example

Each subsequent setup adds one extra layer of nodes; a 36-node network has two
layers of nodes surrounding the anchor nodes etc. As the a further layer from the
center is added, the added nodes are expected to have larger errors due to error
propagation. This phenomenon is reflected in figure 3.12 with the increase of average
localization error with the addition of new layers. A mathematical introduction to
uncertainty propagation is presented in Appendix A.

Another aspect to look into is the network traffic consumed to maintain the
position knowledge in the network. As previously mentioned, we use SFLS to share
position information. The first broadcast is a traditional flooding because the first
request to rebroadcast is set to true for all nodes. However, the second broadcast
is limited to the 1-hop neighbors as they do not rebroadcast received positions.
Figure 3.13 shows the number of broadcasts at each time step also indicated by the
sequence number of the transmitted positions. The number of broadcasts is high for
the first broadcast as all nodes broadcast the positions of all nodes thus yielding a

33



Figure 3.12: Error Propagation

number of broadcasts equal to n2 where n is the number of nodes in the network.
The next broadcast wave includes a broadcast to one-hop neighbors only, then the
rebroadcasting is cut off yielding a small number of broadcasts. Nodes alternate
allowing and blocking rebroadcasts such that closer nodes receive higher frequency
updates while further nodes are updated less frequently. Using traditional flooding
for each position update leads to a number of broad casts ≈ n2 for all time steps
as the number of broad casts at sequence number 1 in figure 3.13. This increase in
bandwidth consumption does not yield any improvement to the localization accuracy.
Since SFLS [15] does not flood the whole network with position packets for every
position update of node i and the position update rate is relatively small compared
to channel bandwidth, the collision rate is negligible. Even in cases of losses, since
the update frequency is highest for nearby nodes, the position update re-broad-cast
will reach nearby nodes sooner than further nodes. For further nodes, in case of
nodes’ mobility the relative position change is less significant compared to nearby
nodes. Consequently, the effect of data loss on further nodes is expected to be less
significant. If for any reason, the data loss rate is significantly affecting the solution’s
accuracy, SFLS can be adjusted to increase the ratio of forwarding received positions.
In other words, instead of forwarding once every two received positions (or n times
out of p in general), the ratio n/p can be increased to account for losses.

3.6 Conclusion

PCP is a lightweight, bandwidth friendly, and cost and energy efficient location
service that is suitable for MANETs. The cost and energy consumption is conserved
by requiring a minimum of three GPS-equipped nodes. The computations used to
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Figure 3.13: Trace of number of broadcasts per time step

localize nodes are not complicated and do not require many cycles as in the case
of optimization. Sharing positions with other nodes in the network is done using a
semi-flooding method to conserve network bandwidth. The solution requires that
the anchor nodes are in the vicinity of at least one non-anchor node in order to be
able to launch the algorithm. This starting condition constraint might appear to
hinder the generality of the algorithm but this can be mitigated by electing some
virtual anchor nodes that satisfy the condition. These virtual anchor nodes are given
assumed positions so that they form a triangle from the known distance between
them. For instance, let us assume non-collinear nodes i, j,k see each other and at
least a fourth node l. Node i is positioned at the origin, node j is on the horizontal
axis at a distance equal to dist(i, j) and node k is added to have a positive y-value
using triangulation. The algorithm then treats them as anchor nodes and computes
the position of the rest of the nodes as previously explained. When at least three real
anchor node positions have been computed, all the nodes can then be transferred
to the global coordinate system using the computed and actual positions of anchor
nodes [19].

The solution is compared to GPS-free [19] and it was shown that our solution is
able to localize a higher percentage of nodes. In a network with an average degree
≈ 10, around 90% of the nodes are localized. Furthermore, we tested our algorithm
using NS-3 simulator while introducing distance measurement errors and the average
error is shown to be stable for a 50-node network. Also, the average localization error
increases linearly with the standard deviation of the Gaussian measurement noise.
The used position sharing technique (SFLS [15]), conserves bandwidth by reducing
position update frequency to further nodes. For future work, the error propagation
effect towards the edge of the network needs to be mitigated. Additionally, the
impact of nodes’ mobility on the accuracy of localization is also to be considered.
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Chapter 4

CSI-based Indoor Localization

The advent of 5G is leading to higher demand in transmission throughput. One
of the principal contributors to achieving the demanded rate is Multiple-Input-
Multiple-Output (MIMO) antennas. With multiple antennas installed on 5G cells,
the transmission rate is vastly augmented [46]. In addition, the transmission at each
antenna is further accelerating by transmitting over multiple sub-carriers. This is
possible through OFDM over orthogonal sub-carriers in a given bandwidth [83].

This methodology provides rich information to be used in in localization which is
the measure of Channel State Information (CSI). In this chapter, we briefly introduce
CSI and how it can be used in localization. Then, our work in CSI-based localization
is presented along with the position estimation accuracy results when applied to an
indoors experiment. The experiment’s dataset is generated and published by the
organizers of the Communication Theory Workshop’s Indoor positioning competition
in which our solution secured the first place [1].

4.1 Channel State Information

Channel State Information (CSI) is a measure of the effect of the channel on the
transmitted signal. The alteration that occurs to the signal could be due to channel’s
noise, fading, multi-path, antenna’s quality [84], etc. In comparison with RSSI,
which has been the dominant measure for localization, CSI is more fine-grained and
stable [35]. The fine-grain characteristic is due to the possibility to compute CSI
per subcarrier per antenna whereas RSSI is a single measure per transmission. It
has been shown through experimentation that CSI exhibits more temporal stability
when compared to RSSI.

To formalize the CSI, assume a MIMO antenna with i sub-antennas which is
communicating with a device over j subcarriers. Equation 4.1 shows the relation
between the transmitted signal Ti,j and the received signal Ri,j over a wireless
channel. The transmitted signal is affected by the channel depicted by the complex
number CSIi,j then white noise N is added.
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Ri,j = Ti,j ·CSIi,j +N (4.1)

Since the CSI is a complex number it can be expressed in polar or cartesian
forms, as presented in equations (4.2) and (4.3), respectively [84]. This is interesting
to note because, at a later, a decision has to be made to choose one or more of the
components in the localization process.

CSIi,j = |Mag|∠φ (4.2)

CSIi,j =Re+ iIm (4.3)

Mag =
√
Re2 + Im2

φ= arctan(Re,Im)
(4.4)

In order to concretize the concept, an example of the four components is presented
in figure 4.1. The CSI components are computed for 924 subcarriers for one antenna
in a 2 × 8 MIMO antenna. It is to be noted that the phase is scaled to be visible in
the figure.

Figure 4.1: Real, Imaginary, Magnitude and Phase components example over 924
subcarriers.
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4.2 Experimental Setup

Before presenting our localization solution, the experiment [1] on which our
approach was tested is introduced in this section in order to put the reader in
context. The experiment is conducted in a conference room where a transmitter
traverses a 4 × 2 meter table. The transmitter uses a MIMO channel sounder [46].
Signals are received at a 2 × 8 MIMO antenna array after which the CSI is computed
per antenna per subcarrier. Figure 4.2 illustrates the environmental setup where
the sub-figure 4.2a shows a sketch of the MIMO antenna seen in the middle of the
sub-figure 4.2b. Figure 4.2a demonstrates the geometric coordinates of the MIMO
antenna as well as the distances between adjacent antennas which are set to λ/2
where the carrier frequency is 1.25 GHz.

(a) Antenna sketch [84]

(b) Indoor Environment [46]

Figure 4.2: Experimental setup

The transmission occurs over 1024 sub-carrier from which 10% are guard bands.
Thus, 924 subcarriers are effectively used over a 20 MHz bandwidth at each of the 16
sub-antennas. The ground truths positions are computed using a tachymeter with a
1 cm measurement error. For each transmission, the recorded position is matched
with the computed CSI constituting a dataset of 17k CSI to position samples. In
the subsequent sections, the steps applied to the dataset are explained and the
estimation results are plotted.
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4.3 Methodology

4.3.1 CSI Components Analysis

The first step in the proposed solution is to analyze the stability of each of the
four CSI components with respect to the position of the transmitter. A preliminary
step to test the stability of the four components is to plot each of the components
for multiple transmissions from the same position. Figure 4.3 shows four plots
corresponding to the real, imaginary, magnitude, and phase components. Each
plot contained the computed component values from different transmissions that
occurred from the same position.

Figure 4.3: Real, Imaginary, Magnitude, and phase components estimated from 4
transmissions at the same position.

The magnitude plot has the four readings almost overlapping which is a strong
sign of its stability when compared to the other three components. A more robust
test of stability is achieved by computing the correlation coefficient between CSI
readings of each component at one position and the CSI readings from the closest
position in the dataset. This process is repeated for 1000 sample pairs where the
stability of each component corresponds to the average correlation coefficient. The
results are demonstrated in figure 4.4.
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Figure 4.4: Average Correlation for Real, Imaginary, Magnitude, and Phase components.

The statistical analysis shows that the magnitude has the highest average correla-
tion coefficient which supports the result of the preliminary analysis. In conclusion,
the magnitude proves to be the most stable when compared to the other components.
Consequently, we use the magnitude as the input feature to different learning models.
Using any CSI component other than the magnitude or a combination of components
deteriorates the estimation results which further supports the use of the magnitude
component as the only feature.

4.3.2 NDR: Noise and Dimensionality Reduction

Selecting the magnitude as the input feature leads to a 16 × 924 input values for
each position to be estimated. This corresponds to a reduction of half the number of
features when compared to solutions that use a pair of components such as real and
imaginary [46]. To put this into perspective, dividing the data set into 90% training
set and 10% test set yields 15k×16×924 = 222M input features for the 15k training
samples [84]. Building a complex learning model such as Neural Networks for this
large number of features is computationally demanding. We introduce a technique
called Noise and Dimensionality Reduction (NDR) to simultaneously reduce the
number of features and noise. This method improves the training time as well as
the position estimation accuracy.

The reduction of input feature is achieved through polynomial fitting over the
magnitude values at each antenna [85]. The degree of the polynomial should not
be too low to be able to represent the variations in magnitude values. It also
should not be too high to avoid computational complexity. In order to select a
convenient polynomial degree, polynomial fitting with different degrees is attempted
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with different values: from 3 to 8. The mean fitting error and standard deviation
are calculated for all samples. The average fitting error and standard deviation for
each degree value are plotted in figure 4.5.

Figure 4.5: Average fitting error for various polynomial degrees.

The fitting error decreases as the polynomial degree increases until it stabilizes
at the degree of 6. Hence, a degree of 6 appears to be a reasonable choice. However,
in some cases, the fitting process is not able to represent the variation in magnitude
values as depicted in figure 4.6a. In order to overcome this limitation, the magnitude
values are divided into four adjacent equal chunks. Each chunk is processed solely
using various polynomial degrees and the line with the least error is chosen for each
division. This improves the fitting process but introduces discontinuities between
adjacent divisions as presented in figure 4.6b.

(a) Polynomial regression limitations. (b) Discontinuity between adjacent batches.

Figure 4.6: Underfitting example and dividing subcarrier space.

The introduced discontinuities are then suppressed by extending each of the
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batches so that they intersect in a region. Take for example; batches 2 and 3 in
figure 4.6b, when each batch is extended, both batches will have points for the same
subcarriers in the intersection region. The final magnitude values for the subcarriers
in the intersection region are computed using a weighted linear combination of the
values from both batches. At the left most subcarrier, a weight of one is given to the
value from batch 2 (left batch) and a weight of zero is given to the value from batch
3 (right batch). The following values moving to the right of the intersection region
are calculated by linearly decreasing the weight given to batch 2 until it reaches zero
at the right most point. The exact opposite occurs with the weight of batch 3 as it
increases linearly until it reaches one at the right most point. At any point the sum
of both weights is equal to one. This process mitigates the discontinuities and yields
an accurate representation of the raw CSI data as shown in figure 4.7b.

(a) Intersection between 2 adjacent batches. (b) Result after discontinuity removal.

Figure 4.7: Discontinuity Removal

The fitted line is used to reduce the number of features by choosing a subset
of the magnitude values that are equidistant instead of using all 924 magnitude
values. The number of chosen magnitude values should not be too low to maintain
the stability and accuracy of results. Nonetheless, it should not be too high to
take advantage in terms of the complexity of the learning process. The values
are tweaked and empirically chosen based on the performance of different learning
models. Moreover, this fitting mitigates the noise affecting the magnitude values
leading to a considerable gain in estimation accuracy.

4.3.3 Learning Models

In this section, we propose different learning models based on deep learning
[84, 86] and K-nearest neighbors methods [87] to estimate the transmitter position
from the CSI dataset that was presented in section 4.2. Furthermore, we introduce
some techniques to improve the learning process. Finally, the proposed methods’
results are compared with each other and with the results of the Convolutional
Neural Networks solution [46]. All experiments are conducted on a machine using
a Linux-based operating system equipped with a 3.8-GHz, 32-GB RAM Intel(R)
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Xeon(R) quad core CPU E3-1270 v6. The GPU is a 2-GB RAM NVIDIA Quadro
K420.

4.3.3.1 Multi-Layer Perceptron Neural Networks

An MLP is used to train on 90% of the dataset. The hyper-parameters are
varied in order to reach a combination of hyperparameters that yields a high position
estimation accuracy on the 10% test set. The input to the MLP is a 16× 66
magnitude values where the first dimension refers to the number of subantennas and
the second dimension refers to the number of equidistant magnitude points along the
fitted line. The output of the learning model is a 3×1 position vector representing
the 3D position of the transmitter. Table 4.1 shows the tweaked hyperparameters
and the final chosen values based on the estimation accuracy criteria.

Table 4.1: Hyperparameters selection.

Hyperparameter Tested values Best found

Number of Layers [4, 5, 6, 7, 8] 7

Units per Layer [128, 256, 512, 1024, 1200] 1024

Epochs [50, 100, 150, 200] 150

Activation Functions [relu, selu, tanh, softmax] relu

Learning Rate [25×10−5, 5×10−4, 1×10−3] 5×10−4

Optimizers [Adam, SGD, AdaDelta] Adam

L2 Regularization [without, 1×10−4, 1×10−5, 1×10−6] without L2

Dropout Percentage [1%, 2%, ..., 10%] 3%

batch sizes [128, 256, 512, 1024, 2096], [32, 64, 128,
512, 1024], [512, 1024, 2048, 4094,

8188]

[128, 256,
512, 1024,
2096]

A 10-fold cross validation is used to evaluate the performance of the MLP
constructed with the best found hyperparameters depicted in table 4.1. The time
consumed for training, polynomial fitting per antenna, and inference are 1:10 hrs.,
22 ms, and 0.1 ms, respectively. The polynomial fitting step can be accelerated to
8 ms by fixing a polynomial degree at each subset of magnitude values instead of
attempting several degrees. The evaluation of estimation accuracy is achieved by
computing the mean square error (MSE) for the 1.7k test samples. The standard
deviation is also computed. The mean error over the 10-cross validation runs and
the mean standard deviation are 0.0445 m and 0.137 m, respectively. The large
standard deviation can be explained by the outliers where the model fails to relate
the test sample to the training sample and estimates a position very far from the
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ground truths. The error distribution of the test set positions for one of the runs is
shown in figure 4.8.

Figure 4.8: Test set Error distribution.

It is clearly noticeable that most estimation errors are close to 0 whereas very
few estimations are large. These errors induce a right skew to the distribution. Thus,
the arithmetic mean and standard deviation misrepresent the error distribution. In
order to better study the distribution of errors, the log of errors is plotted in figure
4.9 when the learnt model is applied to both training and test sets, respectively. The
first remark is that both plots follow a log-normal distribution. Consequently, the
median of errors or the mean of the logged errors are better representatives of the
estimation accuracy. The second remark is that the distribution of the training set
error is smoother than that of the test set, which hints that the model is adapted to
the samples used for learning from as expected.

(a) Train set Log Error distribution. (b) Test set Log Error distribution.

Figure 4.9: Log of errors plots.
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Since the training time is relatively long, it is possible to reduce the training
time for a relatively smaller loss in accuracy. The training time can be reduced by
using a simpler MLP. We repeat the 10-fold cross validation with 100 epochs, 5
layers, and 512 units per layer. The resulting training and inference times are 0.0659
m and 0.14 m, respectively.

Another method for evaluating the performance is to vary the number of antennas
used in the localization process. The mean of log of errors is plotted against the
number of antennas in figure 4.10 along with the 95th percentile error bar to better
represent the estimation accuracy.

Figure 4.10: Log of MSE showing the 95th error bars.

The right skewed nature of the distribution is reflected in the largely skewed
error bars. Due to the large error bars, the mean values of the MSE are not clearly
distinguishable. To avoid this ambiguity, the values of MSE when using 2, 4, 8, and
16 antennas are 0.03m, 0.023 m, 0.019 m, and 0.015 m, respectively. As expected,
when using only two antennas the error is highest because less data are available for
training. When more antennas are used, the position estimation accuracy is improved.
The cumulative distribution functions when using 2, 4, 8, and 16 antennas are shown
in figure 4.11 where the x-axis representing the error values is logarithmically scaled.

46



Figure 4.11: Error Cumulative distribution.

4.3.3.2 Data Augmentation and Ensemble NNs

In this section, we examine several techniques to improve the deep learning
approach. A data augmentation technique is presented to increase the number of
training examples. In addition, the ensemble neural networks method is used to
combine the estimations from different MLPs which leads to a significant improvement
in position estimation. Furthermore, we conducted an experiment to examine the
factor affecting the position estimation accuracy in the CSI. The attempt was to
use the difference between adjacent CSI values instead of the absolute values as the
input for the learning model. Using the MLP with the best found hyperparameters
in table 4.1, a 10-fold cross validation resulted in a mean square error of 4.2 cm
which is around 3 mm lower than the estimation error when the magnitude values
are used. This is arguably a slight improvement to the performance, which might
be considered insignificant. However, it leads to an interesting conclusion that the
change of magnitude values from one subcarrier to the next is sufficient to estimate
the position rather than the absolute values.

The first technique to improve performance is data augmentation. It is based
on the fact that Neural Networks in general are sensitive to the number of training
examples. Their performance tends to improve when more training examples are
utilized for the training process. Thus, data augmentation technique is applied
in several applications to create new training examples from available ones. This
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method is especially used in image recognition applications where available images
are transformed through rotation, blurring, or zooming to create new examples.
Instead of n×m pixel values for an image, in our case there are 924×16 magnitude
vales for each position. The augmented data is generated by altering both the input
magnitude values and the output position. The output position is given in the
sample through a tachymeter with a 1 cm error as stated in [1]. We model this error
by a Gaussian distribution with a zero mean and a 1/3 cm standard deviation. The
position of the augmented sample is computed by adding the Gaussian noise to the
position of the original sample. The CSI per antenna is augmented by first fitting a
line as described in section 4.3.2. The standard deviation α of the error between the
fitted line and the actual magnitude points is used to create the augmented sample
input. Each of the magnitude values of the augmented sample input is computed by
adding a random number from a gaussian distribution with a zero mean and a 2α
standard deviation to the point on the fitted line. It can be considered equivalent to
blurring an image in the image recognition context. Figure 4.12 shows an example
of a data sample and the corresponding augmented data.

Figure 4.12: Data augmentation sample from an original training sample.

In order to test the effect of the number of augmented data on the performance
of the MLP, an MLP with the hyperparameters detailed in table 4.2 is evaluated
with percentages of augmented data added to the training set. The results are shown
in figure 4.13. With the original training samples only, the mean square error of
position estimation is approximately 8 cm. Increasing the percentage of the training
samples used to create augmented data leads to a decrease of the estimation error
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until it reaches 6.7 cm when 100% of the training samples are used.

Table 4.2: Hyperparameters selection.

Hyperparameter Value

Number of Layers 5

Units per Layer 512

Epochs 100

Activation Function relu

Learning Rate 0.0005

Optimizer Adam

L2 Regularization without L2

Dropout Percentage 0%

Batch Sizes [128, 256, 512, 1024, 2096]

Figure 4.13: Effect of data augmentation on localization accuracy.

Another method to improve the performance of neural networks is to construct
several neural networks with different characteristics and deduce the estimation from
the individual estimations. This method is known as ensemble neural networks. In
this work, different neural networks are constructed using different combinations of
hyperparameters, e.g. the neural networks constructed with parameters from tables
4.1 and 4.2. Also, using different training sets results in different NNs like the NNs
used to plot each point in figure 4.13 or the NNs used in each of the 10-fold cross
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validation experiments. The outcome of each of the neural networks contributes to
the final estimation of the ensemble. We examined different methods to process the
multiple MLP estimations [86].

1. Mean: The simplest way to mix the results is to compute the arithmetic mean
position of all the predictions.

2. Weighted mean: Each of the MLPs is given a weight that is proportional to
its individual localization accuracy. Thus, the higher the accuracy, the higher
the weight. Then the final prediction is a weighted average of the individual
predictions.

3. Weighted power mean: The effect of weights is further magnified by raising
them to a certain power before computing the weighted average.

4. Median: The idea is to pick one of the predictions that is closest to all the
other predictions. This makes sense when the ensemble has three or more
MLPs. This mitigates the effect of the large errors of some predictions.

5. Random: The final prediction is a randomly selected individual prediction.

6. Best pick: This is used as an indication of the best possible result one can
attain with the given ensemble. The final prediction is the closest individual
prediction to the actual position. This is not feasible since in normal cases the
actual position is not given.

The performance of the presented methods is evaluated in figure 4.14 as the
number of MLPs in the ensemble increases. The x-axis depicts the number of MLPs
used in the ensemble; the number between brackets shows the MSE in cm of the
added MLP if used alone. This means that the first MLP has an MSE of 3.9 cm
which is the highest accuracy achieved when augmented data is used. The MLPs
are added in ascending order of their MSE where the first MLP has the lowest MSE
and the last has the highest MSE. In addition, two methods can be combined by
averaging the outcome of both methods as in "median + wght" where the outcome
of the median and weight methods are averaged. With an exception of the random
pick method, adding an MLP to the ensemble generally improves the estimation
of the ensemble. Even though the added MLP has an individual MSE higher than
the previously added MLP, its contribution still improves the ensemble estimation.
The best result is achieved when 11 MLPs are used with the combination of the
median and weighted mean methods. It is to be noted that the estimation accuracy
begins to stabilize when four or more MLPs are used in the ensemble. The best pick
method indicates a potential room for improvement if it is possible to determine
which of the individual MLPs estimation is the closest to the real estimation.

4.3.3.3 K-Nearest Neighbors

In this section, the classical learning method "K-nearest neighbors" is used for
the position estimation process. In this method, the whole training set is traversed

50



Figure 4.14: Mixing the predictions of a neural network ensemble.

for each CSI sample in the test set. Thus, a simplification of the computational
complexity is attempted. For instance, instead of dividing the CSI into four divisions
and attempting the line fitting as presented in section 4.3.2, the fitting is achieved
using the least square optimization [88] with a fixed degree of 6 which was found
to achieve a good balance between accuracy and complexity as shown in figure 4.5.
This leads to a loss in accuracy when compared to the previously explained method.
However, the lost fitting accuracy does not affect the performance of the K-nearest
neighbors method. Also, 33 equidistant points are used instead of 66 as it was found
that the stability of the estimation can be maintained with this reduced number of
magnitude points.

In order to build the learning model, two criteria have to be decided: the neigh-
boring criterion and the k value. The neighboring criterion must be computationally
light and also be able to capture meaningfuls difference between CSI values. To this
end, three neighboring criteria are examined assuming that M1 and M2 are two sets
of 33×16 magnitude values for all 16 antennas.

1. The Absolute Difference between corresponding magnitude values, which is
averaged over all magnitude values for all antennas.
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2. The Euclidean Distance between two sets of 33 magnitude values averaged for
all antennas.

distM1,M2 = 1
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)2
(4.6)

3. The Correlation Coefficient between two sets of 33 magnitude values is averaged
over all antennas.
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16

16,33∑
a=1,n=1

Cov
(
M1
a,n,M

2
a,n

)
αM1

a,n
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a,n

(4.7)

The neighboring criterion is evaluated based on the achieved MSE as well as the
computational time needed to traverse the training set. For simplicity, the k value
is set to one. This means that for each test sample, the training set sample that has
the smallest difference to the test sample is selected and the corresponding position
is chosen as the estimated position. The test is repeated using different numbers
of antennas. Figure 4.15 shows the MSE using each of the three presented criteria.
Both the Euclidean distance and absolute difference have lower MSE and are quicker
to compute when compared to the correlation coefficient criterion. The MSE is very
close between Euclidean distance and absolute difference criteria, especially when
using the 16 antennas. The Euclidean distance achieves a 2.4 cm and is fast to
compute. The absolute difference achieves a 2.5 cm. Consequently, the Euclidean
distance is selected as the neighboring criterion.

After choosing the neighboring criterion, the k value which represents the number
of neighbors used to estimate the position has to be set. When k value is larger
than one, the positions of the k neighbors are averaged to compute the estimated
position. Different k values are tested and the MSE is plotted on figure 4.16. The
MSE appears to increase along with the increase of the value of k. This can be
explained by the nature of CSI that exhibits abrupt changes from one position to
another that are not very far [11]. Thus, as more neighbors are added, the euclidean
distance between CSI values is larger and does not reflect the position closeness
leading to the deterioration of position estimation. Based on this result, the k value
is set to one for the k-nearest neighbor learning model.

With the Euclidean distance chosen to be the neighboring criteria and the k
value equals one, the 1.7k test samples are used to evaluate the learning model.
The data preprocessing step of line fitting using least square optimization takes
approximately 2.6 ms per antenna per position. The traversal of the 17k training
samples to deduce one position takes around 1.1 s. The K-nearest neighbor learning
model achieves the lowest MSE (2.4 cm) when using all the 16 antennas. Figure 4.17
relates the MSE of the test sample to the Euclidean distance between the CSI of the
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Figure 4.15: Mean Square Error using different closeness criteria.

Figure 4.16: Mean Square Error using different k values.

test and training samples. This is an interesting relation because it can be used to
predict outliers based on the value of the Euclidean distance. The x-axis shows the
Euclidean distance difference between the training and the test samples where the
y-axis shows the corresponding MSE. The right sub-figure shows the distribution of
errors of the test samples where most estimation errors are very close to zero and
few outliers have large errors. It is to be noted that the frequency is log-scaled. The
upper figure shows the distribution of the Euclidean distance values between CSI of
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the test sample and the closest training sample. A weak relation is depicted in the
plot that indicates the increase in estimation error when the Euclidean distance is
relatively high. However, this relation is difficult to define deterministically because
there are some cases where high Euclidean distance difference still yields an accurate
position estimation. This phenomenon can be further studied with a dataset where
more outlier cases are available to be able to deduce a trend or a common feature
causing this result.

Figure 4.17: Relating the Euclidean distance between the test and closest training sample
to the prediction error.

4.4 Conclusion

In this chapter, CSI-based localization in indoor environment has been studied
based on the dataset provided in the Communication Theory Workshop’s Indoors
competition [1] held in Selfoss, Iceland. The objective was to localize a transmitter
using CSI computed at a Massive MIMO antenna which is one of the main drivers of
the 5G. The evaluation criterion is the Mean Square Error (MSE) of the predicted
positions. With an MSE of 2.3 cm, the proposed solution clinched the first place
among 8 teams from top universities around the world such as: University of Toronto
(Canada), Ruhr University Bochum (Germany), Heriot-Watt University (England),
University of Padova (Italy), IMdea networks institute (Spain), Aalborg University
(Denmark), and Yuan Ze University (Taiwan).
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Several solutions were implemented based on the choice of the magnitude com-
ponent of CSI as the input feature for several learning models. The magnitude
values are preprocessed to simultaneously reduce noise and dimensionality allow
for building more complex learning models that are trained in an adequate time.
The detailed process of noise and dimentsionality reduction is presented in the
paper ”NDR: Noise and Dimensionality Reduction of CSI for Indoor Positioning
using Deep Learning” [84] as well as the construction of an MLP model to estimate
the transmitter position. Furthermore, enhancements to the learning process are
achieved through the introduction of data augmentation technique to increase the
training and improve the MLP estimation. Instead of using one MLP, several MLPs
are created by varying hyperparameters and the training set sizes and combining
their individual estimations to further improve estimation accuracy. This work has
been presented in the paper "CSI based Indoor localization using Ensemble Neural
Networks” [86]. Finally, the K-nearest neighbor technique has been used with some
alteration to the preprocessing step to improve efficiency to adapt to the fact that
the whole training set has to be traversed to estimate one position. This work has
been published in the paper "CSI-MIMO: K-nearest Neighbor applied to Indoor
Localization" [87].

In figure 4.18, we show the estimation accuracy of each of the proposed methods
as well as a state-of-the-art method. The compared solutions can be summarized as
follows:

1. CNN [46]: Convolutional Neural Network is used with the real and imaginary
components as input features.

2. NDR [84]: The magnitude component is reduced using a polynomial regression
and used as an input to one MLP.

3. Ensemble [86]: multiple MLPs are constructed with different hyperparameters
and training set along with data augmentation.

4. K-nearest [87]: K-nearest neighbor method is based on Euclidean distance as
the neighboring criterion.

The CNN solution yields higher error due to the use of real and imaginary
components as input features which we have shown to be less stable than the
magnitude component. NDR is a deep learning based solution where the preprocessed
CSI is used to train an MLP achieving a 4.5 cm MSE. Enhancing NDR with data
augmentation and ensemble neural network method improves the estimation to 3.1
cm when all the 16 antennas are used. Finally, the K-nearest neighbor method
starts with a higher error when only two antennas are used showing higher sensitivity
to the number of the train samples. However, when the training samples from all
antennas are used, it achieves the highest accuracy with a 2.4 cm MSE.

This work can be extended by studying the outlier estimations which are very
far from the average estimation error. This maybe due to some Non-Line-Of-Sight
transmissions that led to erroneous CSI. The outlier phenomenon can be studied
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Figure 4.18: Comparison between proposed solution and state-of-the-art method.

when more cases are available which might lead to further improvement of the
estimation accuracy.
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Chapter 5

Generalization of Deep Learning Lo-
calization

5.1 Motivation

In this chapter, we reflect on the results of the indoor positioning experiment
discussed in chapter 4. In particular, the different accuracy achieved by the classical
learning method (K-nearest neighbor) and the deep learning approach (MLP NN).
This analysis is useful in unraveling some mysteries concerning the behaviour of the
Deep Neural Networks which are often difficult to explain.

The fact that KNN outperformed Deep MLP NN is rather unexpected and
requires further debugging. What makes this result unexpected is that MLP NN is
a much more complex model that aims to learn a complex function between input
and output. KNN, in comparison, is a simple model. In essence, KNN is a form of
lazy learning which attempts to find the closest k training samples in the train set
and combines them to predict the test sample output, instead of inferring a general
mapping between input and output. Specifically, it can be seen as a table; when
given some input, KNN tries to pick the most matching samples in the training
table. At first glance, one would expect MLP NN to outperform KNN which is not
the case in our problem.

Let us take a step back and consider the chosen criterion to decide which approach
outperforms the other in the localization problem. The chosen criterion is the error
between estimation and actual positions which is probably the most intuitive choice.
We argue that the question that should be asked is how capable the model in
predicting the output for input samples beyond its experience with the training data.
In other words, how generalizable is the model is?

This question is different from the bias-variance trade off where a highly biased
model underfits the training data and yields a high error on both training and test set.
A model with high variance overfits the data yielding very low training error with
very high test error. This problem does not show in either KNN or MLP NN models
as they both achieve low errors on training and test sets. The difference between
the bias-variance problem and the generalization problem manifests when the test
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set comes from a different distribution than the training set. In this case, will the
learning model be able to accurately predict the output or will it fail tremendously?

In this chapter, we expose the generalization capability of both KNN and MLP
NN models for the indoor localization problem presented in chapter 4. The analysis
would lead to a more solid conclusion about the better model. We then introduce a
more challenging outdoor localization problem [2] where generalization is integral
to achieve adequate results. We then propose several attempts to achieve this
generalization.

5.2 Generalization: MLP NN vs KNN

The generalization capabilities of both MLP NN and KNN are tested by altering
the splitting technique of the train and test sets from the available dataset. Com-
monly, the splitting is achieved by a uniform random selection of samples for the
train and test sets. This was the technique used when training the learning models
in chapter 4. To test the generality of each model, we maintain the 90 %, 10 % sizes
of train and test sets, respectively. However, the test set samples are selected such
that no test set position intersects with any of the training set positions. This means
that a model that achieves generalization must be able to somehow interpolate or
extrapolate from the input CSI and the corresponding positions in the training set
to predict sensible estimations for the test set samples. We propose two methods
for test set selection, square and sequential selections, to test the extrapolation and
interpolation capabilities, respectively.

5.2.1 Square Test set selection

The test set samples in this selection technique are selected from a square in the
middle of the table which the transmitter traverses. The square size is adjusted such
that the size of the test set is ≈ 10% of the whole data set. The training set and the
test set are shown in figure 5.1.

The test sample region makes the prediction task very challenging. The blue
square area resembles a blind spot for the learning model which has to be predicted
without having any experience (data) in this region. This test set distribution
examines the extrapolation capability of the algorithm as most of the test set
samples are confined in a region where no training samples exist.

Figure 5.2 shows the predicted sample positions linked with edges to the cor-
responding ground truths. Figure 5.3 demonstrates the error distribution of the
predicted positions.

The KNN’s closeness criterion is the Euclidean distance and the value of k is
equal to one, as presented in the previous chapter. It can be seen from figure 5.2
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Figure 5.1: Square Test set selection

Figure 5.2: KNN predicted positions vs actual positions for square test set

that all predicted positions are outside the test square region. This is expected
because the value of k is one; thus, the KNN finds the closest training sample which
turns out to be like a random selection of training samples. The error distribution
illustrated in Figure 5.3 does not show a particular known distribution. The mean
error is 0.73 m and the standard deviation is 0.53 m. This is a complete failure since
the error when the test set samples were drawn randomly is 0.023 m.

The MLP NN is built with the hyperparameters from table 4.2. This MLP NN
achieved a mean error of 0.065 m with random dataset splitting and trains in a
relatively short time. Since the aim of this experiment is to test the generalization
ability, there is no need to train a very complex NN. The difference between the
error in the random test set and the square test set is enough to conclude the
generalization ability. Figure 5.4 displays a map relating the predicted positions to
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Figure 5.3: KNN error distribution for square test

the ground truths. A clear difference between the estimations of the MLP NN and
that of the KNN is that some of these estimations are inside the test set region. This
can be explained by the NN’s non-linear function that has a continuous output where
some input samples results in estimations inside the test set region. The estimated
positions still appear to be random. Figure 5.5 shows the error distribution of the
MLP NN estimations. While the mean error and standard deviation are less than
that of KNN, 0.54 m and 0.33 m respectively, the error is still much larger than that
of the random test sample selection. Even though the error distribution seems more
structured than that of the KNN, it is difficult to draw a conclusion about a decent
extrapolation ability of the model with such large error.

Figure 5.4: MLP NN predicted positions vs actual positions for square test set
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Figure 5.5: MLP NN error distribution for Square test set

5.2.2 Sequential Test set selection

The square test set selection is very challenging for the learning model because
the test set region is a relatively large blind spot. The model has to achieve a very
challenging extrapolation outside the train set region to make adequate estimations
within the square region. In the sequential test set selection, we make use of the
order in which the data set is given. As previously mentioned, the data set was
created by moving the transmitter along the table using a small vacuum cleaner
robot. The data set is provided in the order in which the transmissions were sent
while moving along the table. This means that the path of the transmitter can
be tracked by traversing the positions in order. Therefore, we set the test set to
be the first 10 % of samples read sequentially in order from the provided dataset.
This mitigates any intersection between the positions of the train and test sets since
moving randomly along the table makes it highly improbable to visit the exact same
position twice. Figure 5.6 demonstrates the train set and test set selection using the
sequential method.

The test set samples in this selection method are relatively spread along the
table. Test set positions are close to but not superposing the train set positions. The
prediction task appears easier than the square selection since the model does not need
to extrapolate in a blind region. Rather, the model needs to relate test set samples to
their nearby training samples then interpolates to estimate the test sample position.
We start with the KNN estimations; Figure 5.7 shows the KNN’s predictions and
the corresponding ground truths of the test samples. KNN predictions do not suffer
from being far from the test set region since the training sets are spread along the
table. However, it still suffers from very large errors with a mean square error of
0.72 m. The distribution of root mean square errors is shown in figure 5.8.

The mean square error of the KNN model is as large as that of the square test
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Figure 5.6: Sequential Test set selection

Figure 5.7: KNN predicted positions vs actual positions for sequential test set

selection. Using k values larger than 1 does not improve the performance. The
experiment is repeated using MLP NN, figure 5.9 shows the MLP NN predictions
and the corresponding ground truths positions. The dispersed predictions show that
even the MLP NN does not perform well for the sequential test. This conclusion is
backed up by the high mean square error of 0.55 m and the error distribution shown
in figure 5.10.

5.2.3 Conclusion

Prior to these experiments, we did not expect the KNN to be able to generalize.
However, we expected the MLP NN to show better generalization performance.
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Figure 5.8: KNN error distribution for sequential test

Figure 5.9: MLP NN predicted positions vs actual positions for sequential test set

The experimental results show large errors for both models in both test scenarios.
The obvious conclusion is that both models fail to generalize. However, there is a
considerable difference between the mean errors of KNN and MLP NN. MLP NN’s
error is approximately 25 % lower than that of KNN in both experiments. It is not
clear whether this difference gives any edge for MLP NN over KNN since their errors
are still very large. With the results in hand, we conclude that both KNN and MLP
NN fail to generalize beyond the training data even though both achieve very high
accuracy when test set is randomly selected.

These experiments explain why KNN outperformed MLP NN when the test set
was randomly selected. The sequential test selection experiment shows that both
KNN and MLP NN cannot relate the test sample to nearby train samples. However,
CSI samples measured from the same position are relatable using both models. This
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Figure 5.10: MLP NN error distribution for sequential test

is expected because we showed the stability of the magnitude component at the
same position in chapter 4, specifically in Figures 4.4 and 4.3. Since the number
of dataset samples is large with respect to the traversed area of the table, multiple
transmissions occur at the same positions. When random test sample selection
occurs, almost always at least one of the repetitions will be at the train set. Thus, at
inference time, the learning model is able to relate one of the repetitions found in the
learning phase to the test sample. However, the model fails with the proposed test
set selection methods since the repetitions at any position are all in either the train
or test set. The way KNN method works gives it an edge over the MLP NN since it
focuses on relating the test set sample to the closest one in the train set which often
turns out to be one of the repeated measurements at the same position. MLP NN,
on the other hand, forms a complex highly non-linear function where similar CSI
input results in similar output positions but not superposing. This results in a lower
mean error when KNN is used.

In the subsequent sections, we discuss a more challenging localization problem
where the generalization capability is a must to achieve decent error. We show some
attempts to improve the performance of the KNN and MLP NN models used so far.

5.3 Outdoor Localization Problem

In the previous indoor localization problem, we showed that both classical and
deep learning approaches lack generalization. While this is an interesting insight,
both models performed very well in the typical case with random selection of training
and test samples which is considered satisfactory. In this part, we introduce another
localization problem where the context makes it very difficult to achieve decent
error without the generalization aspect. A more challenging localization problem
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introduced by IEEE’s Communication Society [89] on a larger scale [2] in their
"Communication Theory Workshop 2020" event. The event was postponed due to
the COVID-19 pandemic but the experimental dataset was shared with the scientific
community.

The common aspect between the indoor positioning competition [1] introduced
in chapter 4 and the outdoor positioning competition is that both are CSI-based
localization. Table 5.1 summarizes the characteristics of both competitions:

Table 5.1: Indoor vs Outdoor characteristics

Aspect Indoor [1] Outdoor [2]

Measurements CSI + SNR CSI + SNR

Antennas 2 × 8 8 × 8

Subcarriers 924 924

Environment Conference room Residential area

Noise Low High

Area Table: 8 m2 Streets: several kms

Learning
Algorithm

Supervised Semi-supervised

5.3.1 Experimental Setup

The main component of the experiment is the massive MIMO antenna [46] which
is composed of 8 × 8 sub antennas. The available subcarriers are the same as that
of the indoor competition. The high noise aspect is caused by NLoS transmissions
because of the surrounding buildings and obstacles while traversing the road. Figure
5.11 shows the map of the traversed region in the left subfigure and the Cartesian
positions at which transmissions occurred in the right subfigure where the antenna
is positioned at the origin. The learning problem in this case is semi-supervised
since only a small percentage of the CSI readings are labelled with positions and the
rest are not. There is a total of ≈ 5k labelled samples and 36k unlabelled samples.
One more complexity aspect is that the organizers deliberately selected the labelled
samples randomly from the traversed streets except for two streets. This means that
a model should be general enough to deduce positions from two streets which were
not seen by the model in the labelled dataset.

The readings in this experiment were recorded by sending 5 transmissions to
the MIMO antenna at each position. Eight sub antennas were faulty and thus the
readings were recorded for 56 antennas. When the noise is very high, the SNR value
is manually set to -100 and CSI values are set to zero for all subcarriers. The ground

65



Figure 5.11: Traversed roads in a residential area in Stuttgart [2]

truth positions were recorded using a differential GPS with a mean error of 10 cm
and a worst case error of 1 m. For each position there are 5×56×924×2 CSI which
correspond to the 5 measurements, 56 antennas, 924 subcarriers, and Re, Im CSI
complex components.

5.3.2 Data Preprocessing

In the indoor positioning problem, we showed the stability of the magnitude
component and decided accordingly to use it as the input for the learning model.
Only a small subset of readings are labelled with positions, and most of the readings
are sparse because they are distributed along the large map. This sparsity makes
it difficult to study the component stability in time. However, by computing the
correlation coefficient between the 5 transmissions from the same position, similar
results were obtained revealing the stability of magnitude and instability of phase,
real, and imaginary components. Figure 5.12 presents the mean correlation coefficient
between the 5 transmissions at each labelled position. The magnitude component
still shows the highest stability with an average correlation coefficient very close to
one. Thus, we choose it as the input to the learning model.

5.3.2.1 Fourier based Noise and Dimensionality reduction

One of the major differences between the magnitude readings in outdoor and
indoor contexts is the variation of magnitude along the subcarriers. In the LoS
scenario indoors, the variation is less fluctuating than in the noisy outdoor case.
In addition, there are 40 more antennas than the previous case. Hence, we need a
method other than the introduced polynomial regression that is able to represent
the variation accurately in acceptable time. Figure 5.13 gives an idea of the high
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Figure 5.12: CSI components stability per position

information content for each measurement by showing the magnitude values for
the 5 transmissions from a random position in the map at the 56 antennas. The
cases where all values are zeros represent the high noise transmission that is set to
zero manually. The magnitude fluctuations are much vigorous and thus difficult
to approximate. It is possible to approximate the readings by a line using many
small subdivisions along the subcarrier spectrum. However, it is difficult to select
a suitable number of divisions because this fluctuation is not the same along all
positions. When the subdivisions are very small, the line approximation will not
be smooth. Moreover, the process will be much slower because of the polynomial
regression optimization repeated on more divisions.

Figure 5.13: Magnitude CSI readings for 5 transmissions per position

A better approximation in terms of consistency along different fluctuation cases
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and processing time is Fourier series [90]. The Fourier series approximates any
function in terms of infinite sums of sines and cosines of increasing frequencies. Thus,
we can control the fluctuation flexibility by limiting the number of used sines and
cosines. Furthermore, its computation is much faster especially with the possible
use of the Fast Fourier transform [91]. Equation 5.1 depicts the Fourier series
approximation of a function f(x) that is R periodic. Equations 5.2 and 5.3 show the
computation of the coefficients of sine and cosine waves (An and Bn), respectively.

f(x) = A0
2 +

N∑
n=1

(
Ansin

(2π
R
nx
)

+Bncos
(2π
R
nx
))

(5.1)

Ak = 2
R

∫
R
f(x)cos

(2πnx
R

)
dx (5.2)

Bn = 2
R

∫
R
f(x)sin

(2πnx
R

)
dx (5.3)

The choice of N specifies the maximum frequency of sine waves that are used
to represent f(x). Therefore, a higher value of N allows more fluctuations in the
Fourier approximation. The Fourier series can also be applied when there is a data
point representation of the f(x) rather than a closed form. We refer the reader to
[90] for more details. Choosing a low value of N can misrepresent the fluctuation
while a high value for N can unnecessarily overfit. Figure 5.14 shows the Fourier
series approximation for 5 transmissions at one antenna. The magnitude values are
averaged over the 5 transmissions and the Fourier series components are computed
with N = 5 and N = 15. In the left subfigure, it could be seen that the approximation
could not follow the variation as accurately as when N = 15 in the right sub figure.
Consequently, we use a value of N = 15. We use 66 equidistant magnitude values
along the fitted line based on the previous success in the indoor experiment.

Figure 5.14: Fourier Series approximation of 5 transmissions with N = 5 and N = 15.

68



5.3.2.2 Missing Readings replacement

One main component of the data preprocessing pipeline in machine learning is
missing values replacement. Indeed, using the magnitude input with zero values
or SNR = -100 for noisy readings would disrupt the learning process. Hence, we
studied the effect of the manual setting of values and attempted to smooth the
manually-set values. Figure 5.15 shows the SNR color map where SNR values of
-100 db have the darkest red color and the highest SNR value (20 db) transmissions
have the lightest green color. The SNR values in between are linearly scaled. The
MIMO antenna is placed at (0,0) coordinates. It can be seen that the SNR value at
the upper right part of the map contains the lowest SNR values represented in red.
The highest SNR readings are those closest to the antenna which is expected.

Figure 5.15: SNR color map

To better understand the SNR readings of nearby positions, the SNR difference
between positions within 3m range is calculated and their frequencies are recorded.
Figure 5.16 displays the log scaled SNR differences between all position pairs within
3m range in the labelled dataset. The mean SNR difference is 20 db between
positions within 3m distance from each other. The fact that the standard deviation
is ≈ 18 db reveals the inconsistent difference in SNR values which could be a result
of the manually-set SNR values when high noise transmissions occur.

We attempted three methods of replacing the -100 db SNR values:

1. Global minimum replacement: replace the -100 SNR values in any transmission
by the minimum global SNR value less than -100 db in the dataset. This value
was found to be ≈ -40 db.

2. Minimum per sample replacement: replace the -100 SNR values at any antenna
in a given transmission by the minimum non -100 db SNR value measured
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Figure 5.16: Log scaled SNR differences between position pairs within 3m range

at other antennas of the same sample. If one antenna has -100 db SNR, this
antenna is assigned the same SNR value of the antenna with the minimum
SNR value above -100 db from the same transmission.

3. Mean per sample replacement: similar to sample minimum replacement but
instead of the minimum SNR value, the mean SNR of other antennas with
SNR above -100 db is the replacement value.

The SNR difference between nearby positions is a good measure of the smoothness
of the change of SNR along the map. Figure 5.17 demonstrates the mean and
standard deviation of the raw SNR values and the three replacement methods.
These replacement methods result in a smoother SNR variation between nearby
positions. This facilitates the learning process as the spike changes that disrupt the
learning process are mitigated. The mean replacement method results in the smallest
average SNR difference between nearby positions; thus, we believe it is a decent
choice. Figure 5.18 depicts the color map and SNR difference between positions
within 3m range when the mean per sample replacement method is applied.

The same method is applied to CSI values which are set to zero. At any given
antenna in any sample, if all 5 repeated transmissions from the same position yield
zero values, each subcarrier value is replaced with the mean of non-zero CSI values
from all other antennas at the same subcarrier in the same sample.

5.3.3 Learning from Labelled dataset

After preprocessing the data, the following step is building a learning model. We
start by trying to learn as much as possible from the labelled portion of the dataset
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Figure 5.17: SNR differences between position pairs within 3m range for each replacement
method.

Figure 5.18: mean per sample replacement method: color map (left figure) and SNR
differences between positions within 3m (right figure)

(5k samples). It is clear that a satisfactory low error estimation cannot be achieved
with the labelled dataset only due to the sparsity of readings. However, making
the best use of the labelled dataset gives interesting insights and paves the way for
exploiting the unlabelled dataset.

Starting from the best solution in terms of error in the indoor positioning
competition, we apply the K-nearest neighbor method to the labelled dataset. The
data is split into 90 % training set and 10 % test set. The value of k is set to one
and the neighboring criterion is chosen to be the Euclidean distance between CSI
magnitude component values. KNN is experimented with polynomial regression
and Fourier fitting yielding a mean error of 118 m and 130 m, respectively. The
reason of high error can be explained by the fact that the data is too sparse for
the model to learn or that KNN is too naïve to capture the effective features. The
answer to this question is a combination of both; this is evident by the performance
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of MLP NN on the labelled dataset. The MLP NN hyperparameters are the same
as those of the highest performing MLP NN in the indoor problem summarized in
table 4.1. The MLP NN achieves a mean error of 44 m with polynomial regression
approximation of the CSI magnitude values and 37 m with the use of Fourier. Using
Fourier approximation without the replacement of missing values yields an error of
47 m. The large gap between the error of KNN and MLP NN shows that MLP NN
was able to capture some interesting features that KNN’s simplistic approach failed
to detect. However, the fact that the error is still much higher than the accuracy of
the differential GPS used to record the coordinates (< 1m) shows that the sparsity
of the datapoints hinders the learning process significantly. Table 5.2 summarizes
the experiments with KNN and MLP NN with some variation of the preprocessing
steps. One phenomenon that we are not yet able to explain is why our experiment
shows a little deterioration in accuracy when SNR readings are aggregated with the
CSI readings. Hence, we focus our work on exploiting CSI only to predict positions
as we previously did in the indoor problem.

Table 5.2: Performance of different preprocessing steps

Learning
Model

Preprocessing RMSE

KNN Polynomial Regression, mean replacement 118m

KNN Fourier fitting, mean replacement 130 m

MLP NN Polynomial regression, mean replacement 44 m

MLP NN Fourier fitting, mean replacement 37 m

MLP NN Fourier fitting, no replacement 47 m

5.3.4 Generalizing to unlabelled dataset

5.3.4.1 Distance estimation between CSI pairs

Generalizing from the small portion of the labelled dataset to the unlabelled
dataset requires learning more relations and common features between CSI readings
from different samples. CNNs are deep learning models that have proven their
great potential in capturing meaningful relations from related input features. As
previously mentioned in chapter 2, CNNs have accomplished unprecedented success
in the image recognition field. While CNNs have a lot in common with MLP NNs,
their principal innovation lies in the architecture alteration that forces the model
to learn useful features from neighboring pixels in an image. Our attempt lies in
exploiting CNNs’ ability to capture effective relational features between unlabelled
dataset samples to labelled ones to fill the sparsity gap in the labelled dataset.

72



A vivid correlation to exploit is that of the magnitude value of consecutive
subcarriers. The values are generally very close to each other and a group of
values form unique shapes such as maxima, minima, lines with different slopes, etc.
However, treating the CSI readings of each antenna (figure 5.13) as a separate image
to process would lead to a very high computational demand. The fact that each
subfigure is sparse and is made up of only one line allows us to exploit this sparsity
and represent the variation in a more compact way. We propose representing the
CSI magnitude values in an A×N 2D matrix, where A is the number of antennas
(56 in our case) and N is the number of selected values along the fitted line. Looking
at the formed matrix as an image, each element in the matrix could be thought of
as the pixel’s intensity. High pixel intensity represents a high magnitude value, e.g.,
a maxima would look like a group of adjacent pixels with the highest intensity in
the middle.

Our proposal to learn from the unlabelled dataset is by learning relational
features that allow distance prediction between CSI sample pairs. Then when
enough distances are predicted between CSI pairs, whether labelled or not, the
samples from the unlabelled dataset with unknown positions can be estimated using
a variant of the range based localization presented in chapter 3. In such context,
the anchor nodes would be represented by the known positions of the labelled
samples and the non-anchor nodes would be the unlabelled samples. This approach
is based on three assumptions. First, the distance information can be deduced from
two CSI pairs up to a given distance. Second, the distance deduction is general
enough to be estimated between sample pairs from any region in the map. This is
important because it is explicity said that samples collected from two streets in the
map were purposely omitted from the labelled portion of the dataset. Third, the
dataset is dense enough to be able to predict enough distances and use a range-based
localization solution.

The arrangement of CSI pairs is selected to fit in the CNN model so that the CNN
can learn relations between consecutive CSI values in one sample and corresponding
CSI values between sample pairs. This is achieved by using a similar method as
the 2D matrix arrangement of one CSI sample. The dimension of the 2D matrix is
still A×N where A is the number of antennas and N is the number of magnitude
values along the fitted line. The difference is in the number of channels; like RGB in
the image context, we add another channel for the second pair. The reason behind
this arrangement is to enforce local neighborhood between possibly related values.
Horizontally in each row, consecutive CSI values are correlated. In the channel
depth direction, corresponding CSI values at the same antennas could be related to
deduce the distance.

It is worth mentioning that there is one degree of freedom in choosing which
of the two samples to be in the front or back channels. CNNs are sensitive to
ordering; thus, choosing one order and leaving out the other could possibly hurt
the generalization of CNNs. Therefore, each sample pair is used in both orders
for the same distance output. In order to generate a dataset with CSI pair input
and distance output, we must choose which pairs to include in the learning process.
Using all possible CSI pairs in the labelled dataset is not feasible because the number
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of possible pairs is 5k!, which is obviously a very large number. It is highly probable
that CSI values of pairs which are tens of meters apart are not relatable while pairs
which are close could be relatable.

Choosing all CSI pairs within 3m distance from each other as the new dataset
yields ≈ 17.5k samples. This number is doubled because we use both orders for
the channel arrangement of CSI pairs. Using an 80 %, 20 % split for training and
test sets respectively, a CNN is trained to predict distance from CSI sample pairs.
The CNN is made up from 3 convolutional layers, each followed by a pooling layer.
The convolutional part is then followed by 3 dense layers. Table 5.3 summarizes the
hyperparameters of the used CNN.

Table 5.3: CNN Hyperparameters

Hyperparameter Value

Conv. Layers 3

Kernel size 1 × 2

Filters per Layer 10

Pooling method Max pooling

Pool size 1 × 2

Stride size 1 × 1

Dense layers 3

Units per dense layer 256

Activation Function relu

Learning Rate 0.001

Optimizer Adam

Epochs 100

Dropout Percentage 0%

Batch Sizes [32, 64, 128, 256, 512, 1024]

The CNN was able to predict with high accuracy the distance between CSI input
pairs up to 3m. The mean error is ≈ 10 cm; Figure 5.19 shows the distribution of
the log of errors on test set predictions. The error distribution is almost following a
log-normal distribution with a small bump towards the right part of the distribution.
This could be explained by our initial hypothesis that there is possibly no relatable
features between readings which are few meters apart. Thus, we suspect that the
large errors are due to distant CSI pairs that the CNN was not able to find rules to
relate them. To evaluate this hypothesis, the estimation errors are calculated for
pairs where predicted distances are less than defined thresholds by up to 3m. We
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expect that the error would increase as the distance between pairs increases reflecting
lack of relatable features. Figure 5.20 demonstrates the mean error and standard
deviation for each maximum distance threshold. It could be clearly seen that the
error and standard deviation increase with the increase of threshold, especially after
1.5 m. The large standard deviation is due to the skewed nature of log normal
distributions. We chose to use predicted distance thresholds rather than ground
truths distances for evaluating this hypothesis. The reason is that when ground
truth is not available as in the unlabelled dataset, there would be no access to ground
truth values but the predicted distances can be an adequate criterion to accept or
reject the prediction.

Figure 5.19: CNN error distribution for distance estimation

Figure 5.20: CNN distance estimation errors per maximum predicted distance thresholds
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5.3.4.2 CNNs: Generalization Evaluation

Another important aspect that has to be considered is the generalization of
the distance estimation capability beyond the regions where training examples are
found. This could let us know if, during the learning process, the CNN memorized
the distance between each particular pair of CSI samples or if it learned general
features that are independent from the absolute CSI values and dependent on some
general difference between the CSI pair. To do so, we repeated the same concept
of separating the training set from the test set as previously experimented in the
beginning of this chapter on the indoor positioning problem. This is particularly
important in this competition because the authors purposely omitted readings from
two streets in the map. Thus, to be able to predict positions in such region, the CNN
must be able to generalize beyond the training set region. Figure 5.21 depicts the
separation between train and test sets. The training set makes up 71 % of the dataset
and the test set makes up 29 %. This separation leads to a small deterioration of
performance especially when the distance separating CSI pairs is large. However, for
predicted distances of 1 m or below, the performance is almost the same as shown
in figure 5.22.

Figure 5.21: Map train and test sets which are separated for generality evaluation.
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Figure 5.22: CNN distance estimation errors per maximum predicted distance thresholds
for the generality evaluation

5.3.4.3 From Distance estimation to position estimation

While the CNN was able to achieve high accuracy in distance estimation between
CSI pairs and showed decent generalization potential, the original aim is to predict
positions. The idea is to build a graph where all CSI samples are connected to
other sample pairs where edges would indicate distances predicted by CNN. Using
distance knowledge between CSI samples and position knowledge from the labelled
dataset, positions of unlabelled samples could be estimated using a triangulation
based method such as the one presented in chapter 3. Other solutions are possible;
for example Graph Neural Networks (GNNs) would fit nicely since the problem
is formulated as a graph. Also, an optimization framework such as factor graphs
[92]could be used to reach the positioning goal.

The current obstacle hindering the progress towards this step is the inability of
CNNs to reject very far pairs and wrongly assign small distance separations. The
fact that CNNs are trained to estimate distances for pairs which are 3 meters away
restrain its output to the 3m range. Thus, in some case where the CSI pairs are
several hundred meters apart, the CNN could still estimate a small distance between
them. These wrong estimations are catastrophic for the position estimation step
that is to follow. Given time constraints, this part is set to be solved in the future
work. We see great potential in this approach which is supported by the presented
results and generalization capability of the learning model.
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5.4 Conclusion

In this chapter we touched on an essential aspect of machine learning which is
the generalization capability of learning models. In the first part of the chapter, we
showed that despite the highly accurate position prediction results, both the KNN
and MLP NN learning methods fail to generalize in the indoor positioning problem
presented in chapter 4. This motivated the exploration of more challenging problems
where the generalization ability is essential to achieve accurate prediction results.

We then presented the CTW 2020 outdoor positioning competition [2] which is
more challenging due to noise and missing position labels for most of the dataset
samples. Thus, in order to achieve good estimation accuracy, the learning model
has to make the best use of the small labelled dataset. Also, it has to be able to
generalize and relate the labelled dataset to the unlabelled one. We present two
data preprocessing steps to accommodate for the new challenges. First, we use
Fourier based fitting instead of polynomial regression for a faster and more consistent
representation of the magnitude variation. Also, we represent a method to replace
missing readings due to high noise that leads to better learning process and more
accurate estimation.

We propose the use of CNN to relate CSI sample pairs with the aim of estimating
the distances between pairs. The objective is to build a graph where nearby CSI
sample pairs are related by distance, then using position knowledge from the labelled
dataset, the position of unlabelled samples could be deduced. CNNs showed highly
accurate distance predictions up to 3 m. Also, when the train and test datasets where
separated, the distance prediction ability was only slightly affected which shows a
good generalization potential. The current bottle neck lies in the miss-prediction of
some very far CSI sample pairs as being close in distance. These miss-predictions,
even if they are not very frequent, inhibit decent positioning prediction. The
enhancement to this issue is left for future work as the presented results of accurate
distance predictions, in our opinion show a great potential of this approach.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work entailed two principal aspects; the first focused on solving the lo-
calization problem using classical and machine learning methods under different
constraints. The second part focused primarily on enhancing the generalization
aspect of machine learning models.

The work presented in Chapter 3 targets the localization problem in a MANETs
context. The solutions assume the knowledge of distance between 1-hop neighbors
with Gaussian noise. The distances could be provided using various measurements
such as TOA or RSSI. In addition to distance knowledge, the positions of few nodes
(minimum three) are assumed to be known in order for the proposed solution to
work. This problem is known in the community as range-based localization. The
proposed solution is built with two main criteria. The first criterion is the simplicity
of the solution with respect to: required devices, computational cost, and network
bandwidth. Consequently, the proposed method suits scenarios where cost, energy,
and bandwidth are scarce. The second criterion is the distributive nature of the
solution to avoid single point of failure. The presented solution (PCP) is based on
triangulation with some variations to accommodate the nature of the problem. The
energy consumption is reduced by requiring only 3 anchor nodes which could be
achieved using GPS. Also, the triangulation computations are simple when compared
to other optimization based solutions. Finally, bandwidth is conserved by using a
semi-flooding location service [15] to share location information with other nodes
in the network. This solution was compared to GPS-free [19] and showed better
ability to localize a larger set of nodes in a fairly dense network. PCP localizes ≈ 90
% of nodes within a network with an average degree of ≈ 10. In future work, this
solution can be enhanced by incorporating the uncertainty of estimated positions
and mitigate the increased uncertainty towards the edge of the network. Also, the
solution could be improved to adapt to the mobility of nodes.

In Chapter 4, we tackled the localization problem from a machine learning
perspective where a public dataset is used to make a mapping from CSI to transmitter
position. The CSI is measured for transmissions between a massive 2 × 8 MIMO
antenna [46] and a transmitter moving along 2 × 4 meter table. The public dataset
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was made available to the community by the organizers of IEEE’s Communication
Theory Workshop for an indoor positioning competition during the event [1]. We
proposed a classical learning solution, KNN, and a deep learning solution, MLP
NN, to model the mapping between CSI and the location of the transmitter. Before
applying the models, an essential data preprocessing step is proposed which enhances
the learning process. First, the CSI complex components are studied leading
to a conclusion that the magnitude component is the most stable among others.
This conclusion is supported by statistical experiments and state-of-the-art works
which supported our choice to use the magnitude component as the input to the
learning model. This is followed by a noise and dimensionality reduction step where
polynomial regression is used to fit a line through the magnitude readings. A reduced
number of points is selected along the fitted line to be the input to the learning
model. This preprocessing step paved the way for highly accurate position estimation
using KNN and MLP NN. Our solution achieved an error 2.3 cm RMSE securing
the first place in IEEE’s CTW indoor positioning competition [1] among 8 teams
from top universities around the world such as: University of Toronto (Canada),
Ruhr University Bochum (Germany), Heriot-Watt University (England), University
of Padova (Italy), IMdea networks institute (Spain), Aalborg University (Denmark),
and Yuan Ze University (Taiwan). During the announcement ceremony, the organizer
informed Abdallah Sobehy that the estimation accuracy is better than that of the
experiment authors which is an honorable testimony.

Chapter 5 includes the second main aspect of our work which is the generaliza-
tion aspect of machine learning models. We started this study by evaluating the
generalization capability of our solutions using KNN and MLP NN which, to the
best of our knowledge, yield the highest accuracy on the introduced dataset. The
evaluation entailed the separation between the training set and test set in a way such
that the learning model would have to estimate test samples outside the training
samples region. We proposed two ways of separation to evaluate the interpolation
and extrapolation capabilities of the learning models. The estimation accuracy
deteriorated immensely with the proposed arrangement leading us to conclude that
both KNN and MLP NN fail to generalize. These experiments led to interesting
insights on the dataset and the reason that gave KNN an edge over MLP NN in the
positioning accuracy.

The last piece of this work entails the study of a more challenging outdoor
localization problem [2]. This problem entailed a high noise environment and only
a small portion of the dataset is labelled with the corresponding position which
introduces a new set of challenges. These challenges made the generalization aspect
of the learning models inevitable to achieve a decent positioning accuracy. The larger
antenna which is 8 × 8 provides more measurements that needed a quicker noise
and dimensionality reduction method. Also, the high noise aspect of the experiment
required the method to be much more flexible. We proposed the usage of Fourier
based line fitting to satisfy these requirements. Also, there were missing readings
that hindered the learning process which we mitigated by replacing the missing
value by an averaging technique. Since only a small subset of the dataset is labelled
with positions, we propose the usage of CNNs to capture relational features between
CSI pairs to estimate the distance. This distance could then be used to estimate

80



the positions of the unlabelled dataset with the help of the labelled positions. Our
solution achieves accurate distance estimation with 10 cm error between CSI pairs
up to 3m apart.

6.2 Future Work

The outdoor localization problem is yet to be solved as we are able to accurately
estimate distance between nearby samples but face some challenges in estimating
distance to further positions. We believe that there is a great potential in this
approach as it shows good generalization capability outside the training set. A more
flexible deep learning method that could be used to take one more step towards the
solution is Graph Neural Networks (GNN) [53]. GNN is a suitable framework since
the problem can be formulated as a graph where labelled positions are nodes and
estimated distances are edges. It is also possible to use the range based localization
solution (PCP) by considering the labelled dataset positions as anchor nodes and
using distances and triangulation to estimate unlabelled dataset positions. However,
this approach is sensitive to large distance errors.
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Résumé français 
Ce travail comportait deux aspects principaux; le premier s'est concentré sur la 

résolution du problème de localisation à l'aide de méthodes de triangulation et 

d'apprentissage deep et classique sous différentes contraintes. La deuxième partie était 

principalement axée sur l'amélioration de l'aspect généralisation des modèles d'apprentissage 

artificielle. 

Le travail présenté au chapitre 3 cible le problème de localisation dans un contexte de 

MANET. Les solutions supposent la connaissance de la distance entre les voisins à 1 saut avec 

un bruit Gaussien. Les distances peuvent être fournies à l'aide de diverses mesures telles que 

TOA ou RSSI. En plus de la connaissance à distance, les positions de quelques nœuds (au 

minimum trois) sont supposés être connus pour que la solution proposée fonctionne. Ce 

problème est connu dans la communauté scientifique sous le nom de “range based 

localization”. La solution proposée est construite avec deux critères principaux. Le premier 

critère est la simplicité de la solution en ce qui concerne: les périphériques requis, le coût de 

calcul et la bande passante du réseau. Par conséquent, la méthode proposée convient aux 

scénarios où le coût, l'énergie et la bande passante sont rares. Le deuxième critère est la 

nature distributive de la solution pour éviter le point de défaillance. La solution présentée 

(PCP) est basée sur la triangulation avec quelques variantes pour tenir compte de la nature du 

problème. La consommation d'énergie est réduite en ne nécessitant que 3 nœuds “anchor” 

qui pourraient être réalisés à l'aide du GPS. En outre, les calculs de triangulation sont simples 

par rapport à d'autres solutions basées sur l’optimisation par exemple. Enfin, la bande 

passante est conservée en utilisant un service de localisation “Semi-flooding based location 

service (SLFS)”[15] pour partager les informations de localisation avec d'autres nœuds du 

réseau. Cette solution a été comparée au solution “GPS-free” [19] et a montré une meilleure 

capacité à localiser un plus grand nombre de nœuds dans un réseau assez dense. PCP  est 

capable de localiser environ 90% des nœuds dans un réseau avec un degré moyen de 10. 

Dans les travaux futurs, cette solution peut être améliorée en incorporant l'incertitude des 

positions estimées et en atténuant l'incertitude accrue vers le bord du réseau. Aussi, la solution 

pourrait être améliorée pour s'adapter à la mobilité des nœuds. 



Dans le chapitre 4, nous avons abordé le problème de localisation dans une perspective 

d'apprentissage artificielle où un ensemble de données public est utilisé pour estimer la 

relation entre le CSI et la position de l'émetteur. Le CSI est mesuré pour les transmissions 

entre une antenne massive 2 × 8 MIMO [46] et un émetteur qui traverse une table de 2 × 4 

mètres. L'ensemble de données public a été mis à la disposition de la communauté scientifique  

par les organisateurs de l’événement “Communication Theory Workshop” de l'IEEE pour un 

concours de positionnement a l’intérieur [1]. Nous avons proposé une solution 

d'apprentissage classique, KNN, et une solution d'apprentissage en profondeur, MLP NN, 

pour modéliser la relation entre le CSI et la position de l'émetteur. Avant d'appliquer les 

modèles, une étape essentielle de prétraitement des données est proposée, ce qui améliore le 

processus d'apprentissage. Tout d'abord, les composantes complexes du CSI sont étudiées 

pour trouver la composante la plus stable. Après l’étude statistique, on arrive à la conclusion 

que la composante de magnitude est la plus stable parmi d’autres. Par conséquence, la 

magnitude est choisie comme entrée du modèle d'apprentissage. Ceci est suivi d'une étape de 

réduction du bruit et de la dimensionnalité où la régression polynomiale est utilisée pour 

ajuster une ligne à travers les mesures de magnitude. Un nombre réduit de points est 

sélectionné sur la ligne d'ajustement pour être l'entrée du modèle d'apprentissage. Cette étape 

de prétraitement a ouvert la voie à une estimation de position très précise à l'aide de KNN et 

MLP NN. Notre solution a obtenu une erreur de 2,3 cm assurant la première place au 

concours de positionnement [1] parmi 8 équipes des meilleures universités du monde entier 

telles que: University of  Toronto (Canada), Ruhr University Bochum (Allemagne), Heriot-

Watt Université (Angleterre), Université de Padoue (Italie), Institut des réseaux IMdea 

(Espagne), Université d'Aalborg (Danemark) et Université Yuan Ze (Taiwan). Lors de la 

cérémonie d'annonce, l'organisateur a informé Abdallah Sobehy que la précision de 

l'estimation est meilleure que celle des auteurs de l'expérience, ce qui est un témoignage 

honorable. 

Le chapitre 5 contient le deuxième aspect principal de notre travail qui est l’aspect de 

généralisation des modèles d'apprentissage artificielle. Nous avons commencé cette étude en 

évaluant la capacité de généralisation de nos solutions en utilisant KNN et MLP NN qui, à 

notre connaissance, donnent la plus grande précision sur l'ensemble de données introduit. 

L'évaluation impliquait la séparation entre l'ensemble d'apprentissage et l'ensemble de test 



d'une manière telle que le modèle d'apprentissage devrait estimer des échantillons de test en 

dehors de la région d'échantillons d'apprentissage. Nous avons proposé deux modes de 

séparation pour évaluer les capacités d'interpolation et d'extrapolation des modèles 

d'apprentissage. La précision de l'estimation s'est considérablement détériorée avec 

l'arrangement proposé, ce qui nous a amenés à conclure que KNN et MLP NN ne 

parviennent pas à se généraliser. Ces expériences nous ont aidées a expliquer des raisons qui 

ont donné à KNN un avantage sur MLP NN dans la précision de positionnement. 

La dernière partie de ce travail implique l'étude d'un problème de localisation en 

extérieur plus difficile [2]. Ce problème impliquait un environnement très bruyant et seule 

une partie de l'ensemble de données est étiquetée avec la position correspondante, ce qui 

introduit un nouvel ensemble de défis. Ces défis ont rendu l'aspect généralisation des modèles 

d'apprentissage inévitable pour obtenir une précision de positionnement décente. L'antenne 

qui est plus grande (8 × )8, fournit plus de mesures qui nécessitaient une méthode plus rapide 

de réduction du bruit et de la dimensionnalité. En outre, l'aspect bruit élevé de l'expérience 

exigeait que la méthode soit beaucoup plus flexible. Nous avons proposé l'utilisation d'un 

raccord de ligne basé sur “Fourier Transofrm” pour répondre à ces exigences. En outre, il y 

avait des lectures manquantes qui ont entravé le processus d'apprentissage que nous avons 

atténué en remplaçant la valeur manquante par une technique de moyenne. Étant donné que 

seul un petit sous-ensemble de l'ensemble de données est étiqueté avec des positions, nous 

proposons l'utilisation de CNN pour capturer les caractéristiques relationnelles entre les paires 

CSI afin d'estimer la distance. Cette distance pourrait ensuite être utilisée pour estimer les 

positions de l'ensemble de données non étiqueté à l'aide des positions étiquetées. Notre 

solution permet une estimation précise de la distance avec une erreur de 10 cm entre des 

paires CSI distantes de 3 m. 

Le problème de localisation à l'extérieur reste à résoudre car on est capable d’estimer 

avec précision la distance entre des échantillons à proximité. Mais on confronte des défis pour 

estimer la distance entre positions qui sont loins. Nous pensons qu'il y a un grand potentiel 

dans cette approche car elle montre une bonne capacité de généralisation en dehors de 

l'ensemble d'entraînement. Une méthode d'apprentissage en profondeur plus flexible qui 

pourrait être utilisée pour faire un pas de plus vers la solution est “Graph Neural 

Networks” (GNN) [53]. Il est également possible d'utiliser la solution proposée (PCP) en 

considérant les positions des ensembles de données étiquetées comme des nœuds d'ancrage et 

en utilisant les distances et la triangulation pour estimer les positions des ensembles de 



données non étiquetées. Cependant, cette approche est sensible aux erreurs de grande 

distance. 





Appendix A

Uncertainty Propagation

Most of the materials presented in this section are inspired by the "Uncertainty

Propagation" Doctoral course by Pascal Pernot, Université Paris-Sud [93].

A.1 Uncertainty Definition

Typically, any experiment in a given scientific field includes measurements of

some kind. In chemistry, temperature and pH of chemicals are measured. In physics,

weights, masses, velocities, and other phenomena are measured. Similarly, a plethora

of phenomena is estimated in biology, engineering, geology, etc. Even though the

measured phenomena may differ vastly in nature and quantification tools, they

all have one fundamental feature in common: uncertainty. Loosely we can say

that uncertainty measures the fluctuation of repeated measurements of the same

phenomenon. For example, consider the case of measuring the pH of a chemical

substance (measurand) using a digital pH meter (measuring device). If the pH level

is measured several times without changing the conditions of the experiment, we

expect to get different measured values fluctuating around a certain value. This

assumption is supported by the fact that on almost all measuring devices, there is

an indication of the expected measurement error in the form ±ε. One might think

that this is due to some fault in the device and thus using a more accurate device

would not result in these differences. While a more accurate device would probably

decrease the fluctuation effect, it can never completely eliminate it. The role of

uncertainty quantification is to describe this fluctuation effect.
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Uncertainty is an inherent characteristic of any measurement which quantifies

the lack of our knowledge about the behaviour of the phenomenon [94]. In other

words, it describes our belief of how close the measured value is to the truth value.

Interestingly enough, the truth value is not calculable as we need an infinite number

of repeated measurements to find it, which is of course infeasible. We can only

assume a reference value based on our knowledge of the phenomenon, repetition

of measurements, etc., and hope it is sufficiently close to the truth. This leads to

another question, how can one compute the closeness of the measured value to the

truth if the truth value itself -by definition- cannot be found? Well, there is no

mystery; we can only do an estimation of uncertainty using a best-effort approach

where we use available information to compare measurements to some reference

value.

Let’s take a step back and think, why do we get different measured values for

the same phenomenon in the first place? or in other words why does uncertainty

exist in all measurements? The answer is that no matter how stable the measured

phenomenon is or how accurate the measurement tool is, there are always some

hidden factors contributing to some kind of fluctuation of the calculated value

for repeated measurements. To our eyes, the repeated measurement values may

form a distribution of values around a mean (e.g. normal distribution) which, with

respect to our knowledge, is considered as random error or noise. The only way to

eliminate uncertainty is by having complete knowledge of all the factors affecting

the measurement process and their truth values (e.g. temperature, gravity, pressure,

humidity, etc.) for measuring the desired phenomenon. This is simply not achievable

even for the simplest phenomena. Laplace brilliantly summarized this inevitable

lack of knowledge in his philosophical essay on probability [94]:

We may regard the present state of the universe as the effect of its past

and the cause of its future. An intellect which at a certain moment would

know all forces that set nature in motion, and all positions of all items

of which nature is composed, if this intellect were also vast enough to

submit these data to analysis, it would embrace in a single formula the

movements of the greatest bodies of the universe and those of the tiniest
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atom; for such an intellect nothing would be uncertain and the future

just like the past would be present before its eyes.

One interesting result of this formulation of the uncertainty principle is that

it is subjective in nature since it depends on our knowledge of the system. This

knowledge can vary from one person to another. Take the example of the pseudo-

random generator in any programming language; if the generator is set to a normal

distribution with mean µ and standard deviation α, repeating the experiment gets

us some apparently random values with the given mean and standard deviation.

However, since a true pseudo random generator does not really exist, if we get access

to the underlying function generating the -apparently- random values, we would be

able to know exactly the next draw from the function and thus eliminate uncertainty

completely. Probability theory is used to abstractly measure the randomness of any

event including measurements. Opinions still differ on whether probability is an

objective characteristic of the system or is subjective as previously explained. Inde-

pendently from the philosophical view of probability, the math describing uncertainty

is the same.

A.2 Sources of Errors

To summarize, a measurement is described via numerical value and a description

of its uncertainty along with its unit. The uncertainty, which is our point of focus,

depends on the quality of repeated experiments, the measuring device, and our

knowledge of the reference value[95]. The following list entails some important

definitions related to uncertainty [96]:

• Accuracy Difference between the measured value and the truth value which

is not practically measurable by a numerical value. However, a measurement

is said to be more accurate if its error is smaller.

• Trueness Difference between the average of infinite measurements and a

reference value which is also not quantifiable as a numerical value.
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• Precision The level of agreement between repeated measurements of the same

phenomenon; commonly presented by the standard deviation.

• Measurement Error Difference between the measured value and the reference

value. The reference value can be a standard value with negligible uncertainty.

There are two main sources of errors: systematic errors and random errors. The

former is a type of error that is static or varies in a well predictable way. This can

be a calibration error where a weight device is always adding a certain value to the

weighted object. The latter is an error that varies randomly in an unpredictable

way. The total measurement error is a summation of both error types [96]. Since

the probability theory used to quantify uncertainty is related to random events,

commonly uncertainty is estimated after mitigating the systematic error.

It is required to put as much effort as possible to mitigate any kind of systematic

errors or any avoidable sources of uncertainty. For instance, when the measurement

is repeated, the environmental conditions that are known to affect the measurement

should be kept constant. Also, the experiment specification must be as precise as

possible to avoid errors due to misunderstanding or ill-definition of the experiment

(i.e. definitional uncertainty).

It is important to be aware of possible sources of errors whether avoidable or not.

This gives a good idea about which sources are avoidable, which are negligible, and

which can be partially mitigated. The following list presents some of the common

error sources:

1. Method The measurement method includes the device’s resolution, precision.

Also, if a computer algorithm is involved in the measurement process, its

numerical precision capability would affect the measurement value.

2. Matter This is related to the nature of measurand itself, its stability over

time or how much is it affected by slight changes in the environment.

3. Medium The environment in which the experiment is made. This includes

temperature, pressure, pollution, noise, etc.
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4. Human Factor An experienced person is more likely to introduce errors in the

measurements using a correct unbiased process to measure the phenomenon.

Clarifying the different sources of errors allows for proper modeling of the problem

with respect to the error sources. It is worth mentioning that the phenomenon of

interest can be measured directly or indirectly. In direct measurements, the target

phenomenon is measured directly using a measurement tool. However, commonly,

the desired phenomenon’s value is not directly measurable with a device. In such

case, directly measured phenomena are combined through some equation to calculate

the target value. A simple example is measuring the force F acting on an object with

mass m moving with acceleration a using Newton’s second law: F =ma. Imagine

that we have an accelerometer and a weight to measure a and m respectively. Since

the directly measured phenomena (m and a) used to estimate the target value (F )

are uncertain themselves, their uncertainties are propagated via the equation relating

them to the target value.

A.3 Uncertainty Propagation

Uncertainty quantification is a principal pillar in describing almost any experiment

and its results. This makes it invaluable for scientific advancement. Consequently,

tremendous effort has been done by the scientific community to unify the expression

of uncertainty including the ‘Guide to the Expression of Uncertainty in Measurement’

(GUM) and complementary works [97–99]. Assuming all possible ambiguities are

mitigated, let us assume that the degree of confidence in a possible value x for

phenomenon X is given by the probability P (X = x). The probabilities for all

values of X from the minimum possible value xmin to the maximum possible value

xmax form a probability density function (PDF). In indirect measurement, the

phenomenon Y can be estimated using one or more measurands X where Y = f(X).

The model function f(X) can be in the form of:

• Theoretical Model used when a physical model exists that relates the input
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measurands X to the target measurand Y as the given example of Newton’s

second law; F =ma.

• Statistical Model when there is no known accepted physical model that

accurately relates the input to the output, a general model with adjustable

parameters is attempted then the parameters are optimized to fit the measured

data. One example is polynomial equation with degree n where y = θ0 + θ1 +

...+ θn. Another popular form of this modeling is deep learning models e.g.

Multi Layer Perceptron Neural Networks and Convolutional Neural Networks.

• Hybrid Model A combination of the theoretical and hybrid models where

the theoretical model is used with the addition of some parameters to be

statistically estimated to correct the theoretical model. Consider f(x) as the

theoretical model, the target value y is estimated as y = af(x)+ b where a and

b are parameters to be estimated to statistically based on available data.

The choice of model depends on many criteria that are problem dependant

such as: the availability of an accurate theoretical model, computation power,

required precision, time constraints etc. For any of the model types and whether the

measurand is direct or indirect, the GUM [97] recommends to provide a mean value

E(X) and standard deviation u(X) to represent the measurand and its uncertainty

respectively as follows:

E(X) =
∫ xmax

xmin

xp(x)dx (A.1)

u2(X) =
∫ xmax

xmin

(x−E(X))2p(x)dx (A.2)

In the case where there are multiple variables, the probability distribution

function (PDF) is known as joint probability function or multivariate distribution.

Here, the standard deviation alone is not enough to quantify the uncertainty as we

need to incorporate the covariances between variables (variance-covariance matrix)
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which represents the correlation between variables. For two random variables X1 and

X2, their covariance u2
X1,X2 and variance-covariance matrix are defined in equations

A.3 and A.4 respectively. The variance covariance matrix for n random variables

X1,X2...Xn is a symmetric square n×n matrix where the diagonal elements are the

variances u2
X1 ,u

2
X2 ...u

2
Xn

and off-diagonal elements are the covariance between all

pairs of variables.

u2
X1,X2 = E [(X1−E(X1))(X2−E(X2))] (A.3)

Σ =


u2
X1 u2

X1,X2

u2
X1,X2 u2

X2

 (A.4)

Consider a random variable Y that is not directly measurable but is rather

estimated through a known model Y = f(X1,X2...Xn) where Xi is a random variable

with a joint probability distribution defined by p(X). The expected value of Y ,

E(Y ) and its vairance V ar(Y ) can be computed in terms of the integrals of f(X)

and p(X) as follows:

E(Y ) =
∫
f(x)p(x)dx (A.5)

u2(Y ) =
∫

(f(x)−E(Y ))2p(x)dx (A.6)

The take away from equations A.5 and A.6 is that it is possible to calculate

statistics of Y without having to formally describe the PDF p(Y ). With these

definitions in hand, we can discuss the propagation of uncertainty from inputs

to outputs. In the following sections, we present three methods to estimate the

statistical components of Y (mean and standard deviation). The first one is known

as the combination of variances where uncertainty propagation is computed for linear

models. The second method is known as Monte Carlo which can be used when the
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linearity constraint does not hold or when the derivations are very complex. Finally,

if some model parameters are not known and we need to find the optimal given a

prior and some data, the Bayesian inference is used.

A.3.1 Combination of Variances

The combination of variances method can be used in the case where the variable

of interest Y is linear in the input random variables or approximately linear in the

range of variation of X. Using the linearity assumption, the function f(X) can be

approximated to its first order taylor series around a chosen central input value x̄

(mean of X) as shown in equation A.7 where JT is the transposed jacobian vector

composed of partial derivatives of Y with respect to each random variable in Xi;

Ji = ∂Y
∂Xi

. By substituting the f(X) with its first order taylor term in equation A.5

and A.6, we can derive a simplified equation for E(Y ) and u2(Y ) in equations A.8

and A.9 respectively.

Y = f(X) = f(x̄) +JT (X− x̄) (A.7)

E(Y ) = E(f(X)) = f(E(X)) (A.8)

u2(Y ) = JTΣJ =
∑
i

(
∂Y

∂Xi

)2

x̄

u2
Xi

+
∑
i,j

(
∂Y

∂Xi

)
x̄

(
∂Y

∂Xj

)
x̄

u2(Xi,Xj) (A.9)

The second term in the variance equation A.9 is zeroed out when the input

variables are statistically independent. The partial derivative terms are evaluated at

the mean value of input variables x̄.

A.3.2 Monte Carlo

When the non-linearity constraint is not a good approximation of the model, the

combination of variances method would fail to describe the uncertainty propagation

adequatly. This is because the first order taylor expansion (A.7) used to derive
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the simplified forms of mean (A.8) and variance (A.9) does not hold anymore.

Some works have been conducted to approximate the model to higher order Taylor

expansions and derive the output variables’ statistical information [100, 101]. These

derivations become more complex as the order of Taylor’s expansion becomes higher

and are not applicable to complex models. Moreover, they are still subject to a similar

bottle neck as that of the combination of variances when the taylor approximation

is not good enough.

One method to mitigate the complex computations of the integrals of the mean

(A.5) and variance (A.6) is Monte Carlo [102]. The idea is based on using the

joint probability distribution of input variables and use it to generate a data set

D = (Xi,Yi) by applying the model f(X) on the generated input values. This results

in a sample of Y that is a representation of the actual distribution. The larger the

data set, the more accurate the representative set matches the actual distribution.

With the representative sample in hand, the mean is simply the arithmetic mean of

the representative sample and the variance can also be computed as follows:

E(Y ) = 1
n

n∑
i=1

yi (A.10)

u2(Y ) = 1
n−1

n∑
i=1

(yi−E(Y )) (A.11)

The idea behind the Monte Carlo method is simple but comes with some chal-

lenges. One main question is how many samples do we need in the dataset to

reach a good approximation of the PDF of the output? The general objective is

the convergence of mean of mean / variance when more samples are generated.

This is done for batches of data samples and using some convergence threshold the

generation stops when the values stabilize.
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A.3.3 Bayesian Inference

The bayesian framework [103] is at the heart of probability and statistical

inference. It is concerned with updating the belief (aka. posterior) that an event

(aka. hypothesis) would happen given some evidence and previous belief (aka. prior).

This framework is used in a tremendous number of applications including spam

detection [104] and robotics localization [105]. For a hypothesis H and evidence E,

the posterior probability representing the updated belief of H given E: P (H|E) is

computed in terms of the prior belief of H: P (H) and the likelihood of E given H:

P (E|H) as follows:

P (H|E) = P (E|H)P (H)
P (E|H)P (H) +P (E|¬H)P (¬H)

= P (E|H)P (H)
P (E)

(A.12)

In many contexts, the aim of using the Bayesian framework is to estimate some

model parameters θ such that the model would best fit the evidence (data) given

some prior knowledge of the model parameters. For example, the model can be a

second degree polynomial m= f(x;θ) = θ0 + θ1x+ θ2x2 and we are given some data

composed of a number of input, output pairs D = (xi,yi). Assume we have some

prior knowledge from experience or previously used data of rough estimates of the

distribution of θ for the model m: p(θ|m). The aim is to find a set of values for θ

parameters given the new data D: p(θ|D,m). This is achieved by maximizing the

likelihood term: p(D|θ,m) in the Bayesian equation shown in equation A.13. The

process of maximizing likelihood term in the Bayesian context is known as Maximum

a Posteriori estimation (MAP).

p(θ|D,m) = p(D|θ,m)p(θ|m)
P (D|m)

∝ p(D|θ,m)p(θ|m)
(A.13)
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Appendix B

Machine Learning

Most of the presented materials in this appendix are collected from Andrew Ng’s

Machine learning course on Coursera platform [106].

B.1 Regression and Classification

The most classical form of machine learning is Supervised learning. Its essence is

fitting a model that maps input data –which will refer to as features– to the desired

output. The output is a dependant variable which we are interested to predict in

the future depending on the application in hand. For instance, in a business context,

input features could be customers’ data (e.g. income, age, sex, location etc.) and

the output could be whether or not he/she will buy a certain product.

To be able to build a model, the first thing we need is data. This component is

usually collected from previous experiences. Again using the business use case, that

would be previous marketing campaigns where customers’ data and their decision to

buy a product are stored in some form of a data base. For simplicity, let’s assume

that input data is a vector x where each row holds data of a customer while output

is a vector y where each row is the corresponding decision of the customer to buy or

decline the product. The next component of the model would be a hypothesis, that

is the function that takes input data or features and outputs the desired output.
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B.1.1 Linear Regression

The hypothesis design choice is largely dependant on the application in hand,

and whether the output is continuous or discrete. When the output is continuous,

the simplest form of a hypothesis function can be linear: h(x) = θ0 + θ1x where x

is the input, h(x) is the output and [θ0, θ1] are the model parameters which the

machine learning model select to optimize the matching from input to output. The

process of learning in this case is known as linear regression.

To quantify how good the hypothesis function is able to map input to output

variables, we introduce the cost function. Again, the cost function can vary depending

on the use case but in its simplest form it is the sum of the square differences between

the model estimated output h(x) for each customer’s input x and the actual output

y. The learning model aims to minimize the cost function, hoping to get h(x) to be

equal to y (difference is zero) which would mean that the model is able to perfectly

match input to output. Formally, the cost function can be written as:

c(θ0, θ1) = 1
2m

m∑
i=1

(hθ(xi)−yi)2 (B.1)

where m is the total number of input output pairs. Reaching a zero cost function is

often not feasible and in some cases, getting too close to a zero cost function might

hurt the ability of the model to generalize to future data. For simplicity, we stick

with this formulation of the problem and handle extreme cases later. It is important

to note that the cost function is a function of θ0 and θ1 not x. The learning model

aims to minimize the cost function by varying θ0 and θ1.

Gradient descent is a heavily used method to minimize arbitrary functions which

in our case is the cost function. For the gradient descent to work properly, the cost

function should be differentiable. The first step is to choose initial values for θ0 and

θ1. Starting from the initial values, gradient descent attempts to make a relatively

small change to θ0 and θ1 so that the cost function value decreases. The step size is

referred to as the learning rate, which is a parameter of the gradient descent that can

be tuned. The decision to choose the direction of the step for θ0 and θ1 is computed
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using the partial derivative of the cost function with respect to each θ. The partial

derivative represents the tangent to the cost function at the current values for θ0

and θ1. Formally, the learning steps updates of thetas are computed by repeatedly

applying the following equation:

θj = θj−α
∂

∂θj
c(θ0, θ1) (B.2)

where j = [0,1] representing both thetas. The learning step equation should be

applied simultaneously to θ0 and θ1. The value of the learning rate alpha is a design

decision that is important to tune for a reasonable performance of gradient descent.

If alpha is too small, gradient descent will be slow to converge. If alpha is too

large, gradient descent might not converge and theta values overshoot away from

the minimum. One of the general behavior of gradient descent is that steps tend to

automatically get smaller when the cost function value is closer to the minimum as

the gradient value which is multiplied by α becomes closer and closer to 0.

One of the issues of gradient descent is that it is susceptible to converge to a

local minimum. However, in some cases, the cost function is a convex function

(with only one optimum), the gradient descent is a reasonable choice. Also gradient

descent performs well with cost function has multiple local minimums but they are

all almost as small as the global minimum. Using all training data for computing

the cost function at each learning step is known as batch gradient descent. One of

the advantages of gradient descent is that it is computationally scalable with respect

to training data as compared to other methods such as normal equations method.

It is also to be noted that the presented linear regression hypothesis function

is for a one feature per sample. If there were n features, then there would be n+ 1

thetas to describe the linear regression model as follows:

hθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θnxn (B.3)

For convenience, we assume that there is a feature x0 = 1 that is multiplied by
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θ0 in equation B.3 to be able to write the hypothesis function in a vector form as

follows:

hθ(x) = θTx= θx0 + θ1x1 + θ2x2 + ...+ θnxn (B.4)

The learning step used to solve the partial derivative term for each feature

variable xi can be written in the vector form as follows:

θj = θj−α
1
m

m∑
i=1

(hθ(xi)−yi)xij (B.5)

In the multivariate linear regression j ranges from 0 to n where n is the number

of input features for each sample in the dataset. The vectorized form of the learning

step is repeated iteratively until convergence. The convergence condition is another

design decision which can simply be a threshold depicting the minimum change in

the cost function after the last update beyond which the learning halts. It can also

be a minimum value for the cost function, once it is reached the learning stops.

B.1.2 Logistic Regression

In some problems, the model aims at estimating a discrete set of values e.g.

whether an image is a cat or a dog. In such cases, linear regression is not suitable.

These kind of problems are known as classification problems where one of the

methods to solve them is logistic regression. In binary classification, the output

takes one of two values [0,1] where 0 or 1 can refer to any kind of output e.g. the

image is of a cat or a dog.

The first difference to consider between hypothesis functions of linear regression

and logistic regression is that logistic regression needs to output values between

0 and 1, since those are the only two valid output. A simple way to ensure this

property is to use the hθ(x) presented in equation B.4 and as an input to another
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function g(θTx) that squishes its input value to be between 0 and 1. The sigmoid

function aka. logistic function is one popular example of such squishing functions:

hθ(x) = g(θTx) = 1
1 + e−θT x

(B.6)

The sigmoid function asymptotically reaches zero as the value of its input

approaches −∞, and asymptotically reaches one as its input approaches ∞. When

the input value increases from negative to positive values around zero, the sigmoid

function shows a smooth transition from ≈ 0 to ≈ 1 with a value of 0.5 when its

input is equal to 0. Since the sigmoid output is between 0 and 1, its output is

interpreted as the probability that it belongs to one of the two classes. For example,

hθ(x) = 0.6 means that the probability that the output belongs to class 1 is 0.6.

More formally, P (y = 1|x,θ) = 0.6. Generally, the model estimates one of the classes

if its probability is greater than 0.5. The advantage of such representation is that

we get a sense of the confidence the model has in its estimation.

As in linear regression, we need to determine the cost function that the model

sims to minimize by varying the parameters θ. While the square difference cost

function B.1 is a possible choice, it is not convex. This means that the gradient

descent is not guaranteed to converge. This non-convex property is induced due to

the non-linearity of the sigmoid function B.6. A cost function that conserves the

convex property is known as logistic, cross entropy or negative log likelihood. It

can be constructed by first establishing the cost for one sample estimation hθ(x)

and actual class y. The function is has two definitions one for y = 0 and another for

y = 1 as follows:

cost(hθ(x),y) =


−log(hθ(x)) if y = 1

−log(1−hθ(x)) if y = 0
(B.7)

The idea behind this definition, is to give a cost of zero if hθ(x) = y and a cost

approaching ∞ as hθ(x) is further from y. Note that hθ(x) varies from 0 to 1 while
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y is either 0 or 1. Equation B.7 can be written in a more compact form as follows:

cost(hθ(x),y) =−ylog(hθ(x))− (1−y)log(1−hθ(x)) (B.8)

This form leverages on the fact that when y = 0 the left term is zeroed leaving

only the right term and vice versa when the y = 1. One important aspect of this

function is that it is additive, in other words to calculate the cost over all training

samples, we simply make a summation. This allows for efficient learning. The total

cost over all training samples can be written as follows:

c(θ) = 1
m

m∑
i=1

cost(hθ(x),y)

=− 1
m

[
m∑
i=1

yilog(hθ(xi)) + (1−yi)log(1−hθ(xi))
] (B.9)

The advantage of the presented cost function B.9 is its convex property. To

minimize the cost, we need to do partial differentiation with respect to each θj in the

vector θ. Having the derivative, we can then repeat the learning steps depicted in

equation B.2. The learning step after the partial derivative the is written as follows:

θj = θj−α
1
m

m∑
i=1

(hθ(xi)−yi)xij (B.10)

Equation B.10 looks identical to B.5 of the linear regression, however, the hθ(x)

is different. Similar to linear regression, the learning step is repeated until some

measure of convergence.
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B.1.3 Remarks

Linear Regression and Logistic Regression are presented in their most basic form

to build the foundation to introduce Neural Networks in the next section. In this

section, we would like to point out to some techniques used in these methods. For

instance, we only introduced Gradient Descent as the method to minimize the cost

function by varying the parameters θ. There are other more complex methods that

achieve the same objective when the cost function and its partial derivatives are

provided (e.g. Conjugate gradient, BFGS, L-BFGS). One of the advantages of such

methods is that they do not require the manual setting of the learning parameter

alpha which, as previously mentioned, may cause the convergence to be too slow if

it is smaller than it should, or shoot out of convergence if it is too large. In terms

of performance, they are faster than Gradient Descent. However, they are more

complex than Gradient Descent.

Another important issue usually faced in the learning context is over-fitting. This

is the case when the model matches the training data very accurately but fails to

do so on test data which were not seen during train. This phenomenon tends to

appear when the number of parameters θ for instance when high polynomial degree

cost functions are used. More parameters means more degrees of freedom to shape

the hypothesis function hθ(x) to follow y(x) which leads in extreme cases to the

over-fitting phenomenon. Regularization is a well-known technique to mitigate the

effect of over-fitting by adding a term to the cost function with the role of inhibiting

the optimization method from extremely minimizing the cost function. The idea

of regularization is to counter the effect of having large number of parameters by

decreasing the effect of each parameter. This can be done by adding terms to the

cost function in terms of θ parameters so that having a lower values for θ yields a

lower cost. Let’s extend the cost functions for linear regression (B.1) and logistic

regression (B.9) respectively by adding the regularization term to each of them as

follows:
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c(θ) = 1
2m

 m∑
i=1

(hθ(xi)−yi)2 +λ
n∑
j=1

θ2
j

 (B.11)

c(θ) =− 1
m

[
m∑
i=1

yilog(hθ(xi)) + (1−yi)log(1−hθ(xi))
]

+ λ

2m

n∑
j=1

θ2
j (B.12)

The regularization term: λ∑n
j=1 θ

2
j incites the optimizer to decrease the values of

θ which neutralizes the overfitting effect coming from higher values of θ when only

the original cost function is minimized. Here we also introduce a new parameter

λ which is another design choice to quantify the effect of regularization. Caution

is important when selecting this parameter because while we pitched the use of

regularization to avoid over-fitting, it is important to point out that too much

regularization (setting a very high value for λ) would lead to under fitting. This

means that the the regularization term becomes too dominant over the original cost

function term and thus the optimizer sets very small values to θ and thus diminishes

all degrees of freedom the hypothesis function originally had.

Adding the regularization term to the cost function in both the linear regression

and logistic regression requires recalculation of the partial derivative for the optimizer

to minimize the new cost function. We refer the reader to [106] for the derivation of

the derivative. When the derivative is computed the learning steps are exactly as

previously explained.

B.2 Multi Layer Perceptron Neural Networks

B.2.1 Motivation

The linear hypothesis model can only represent simple relations between input

and output variables. In other words, when the output is directly or inversely
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proportional to the input data which is not always the case. In most use cases,

the relations are more complex than being linear which motivates the introduction

of non-linear models. A simple way to introduce non-linearity in the hypothesis

function is by using a hypothesis function with a polynomial degree higher than one.

Assuming only two input variables x1 and x2 and a polynomial degree of two for

simplicity the hypothesis can be written as follows:

h(x) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2 (B.13)

A notable difference between linear hypothesis and higher degree polynomial

hypotheses is the number of parameters (thetas) with respect to the number of

features n. In a first degree polynomial the number of thetas ≈ n. However, in

higher degree polynomials the number of theta parameters grows much faster. With

just the second or third degree polynomials, the number of thetas grows in the order

of n2 and n3 respectively. This introduces two issues especially that in most cases

n >> 2; first the large number of tune-able theta parameters would probably lead

to over-fitting of data which inhibits the model’s ability to generalize well to future

data. Second, the computation demand becomes very high for this large number of

thetas.

Neural Networks come in to find a good balance by introducing non-linearity

with a controlled increase of tune-able parameters. They were originally introduced

in the 80s in an attempt to mimic the behaviour or the thought of flow in the

brain. Back in the days, they did not receive much attention because of the lack of

computational resources to handle their complexities. However, with moore’s law

surviving the test of time, machines have come a long way since then and in the past

decade they were able to train deep neural networks in a reasonable amount of time

for multitude of applications. In addition, there has been a massive research effort

to make NNs more effecient and memory friendly. Thus, NNs became a principal

building block for performant machine learning solutions.
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B.2.2 Structure and Feed Forward

The way NNs mimic brain’s neurons is by being composed of units corresponding

to brain neurons. The neurons are organized in a form of vertical sequential layers.

The first layer receives its input from the input features x while subsequent layers

receive their input from previous layers. The output of the last layer is the model

output which we referred to previously as h(x). The input features and the last

output are referred to as input and output layers respectively while rest of the

layers are called hidden layers. In a fully connected NN, each neuron (aka. unit)

receives an input from each neuron in the previous layer. Each neuron is assigned a

tune-able parameter vector θ which is multiplied by the input vector to produce the

neuron’s output. The tune-able parameters in NN context are usually referred to

as weights. In addition to weights there is one bias parameter that is added to the

vector multiplication output. For convenience of notation in the previous section,

an additional input feature x0 is added to the input so that θ0 would represent

the bias. Since there are multiple nodes per layer, the theta parameter space will

be represented by a matrix Θ with dimensions (u×m) where u is the number of

units in the layer in question and m is the number of inputs from the previous

layer. The result of the vector multiplication at each neuron is passed through an

activation function which kind of normalizes the computed output and introduces

the non-linearity property. Examples of these functions are sigmoid, relu, selu [107].

For the time being, we will denote the activation function by act(v) where v is

the vector multiplication result at a given unit. For units from 1 to u in the first

hidden layer with m nodes in the previous input layer (input features) their output

is computed as follows:

a1 = act(Θ10x0 + Θ11x1 + Θ12x2 + ...+ Θ1mxm)

a2 = act(Θ20x0 + Θ21x1 + Θ22x2 + ...+ Θ2mxm)
...

au = act(Θu0x0 + Θu1x1 + Θu2x2 + ...+ Θumxm)

(B.14)
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For subsequent layers, x is replaced by the activation outputs [a1,a2, ...,au]. For

simplicity, the output of all units of a layer l can be expressed in a more compact

form using the Θ matrix multiplied by the output vector of the previous layer al−1

as follows:

al = act(Θlal−1) (B.15)

One should keep in mind that as we added an extra feature x0 = 1 to the input

vector to represent the bias, the same is done for all hidden layers by adding a neuron

with a0 = 1. The process of computing the output from one layer and sending its

output to the subsequent layer until reaching the output layer is known as forward

propagation. Since the processes of the forward propagation are composed of series

of matrix multiplications and additions, the computations are efficiently calculated

on CPUs and GPUs which gives NNs an edge over other methods. Also, this efficient

way introduces non-linearity which suits a multitude of problems. It is also worthy

to note that the choice of the number of layers as well as the number of units at

each layer is a design choice which is referred to as the network architecture.

B.2.3 Learning and Backward Propagation

Now that we have the basis for the neural network, we assume that an architecture

of the neural network is chosen with L layers and the number of units at each layers

is sl. The cost function for the neural network is a generalization of the logistic

regression cost function shown in equation B.11. In fact, a neural network architecture

with only one input layer connected to the output layer with one unit operates

exactly like logistic regression. The complexity and power of NNs appear when

it has more hidden layers which is known as Deep Neural Networks (DNNs). To

accommodate for the number of layers L, the number of units at each layer sl and

the number of classes K (the number of units in the output layer), the cost function

is written as follows:
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c(Θ) =− 1
m

 m∑
i=1

K∑
k=1

yiklog(hΘ(xi))k + (1−yik)log(1−hΘ(xi))k

+ λ

2m

L∑
l=2

sl∑
i=1

sl−1∑
j=1

(Θl
i,j)2

(B.16)

Here, the subscript k indicates the kth output at the output layer. In the

binary classification context where there is only one output unit at the output layer,

summing over k would not have been necessary but for the sake of generality it

is indicated. Note that the summation for the regularization parameters in the

rightmost term is from layer 2 because there are no weight parameters for layer 1

(the input layer) because these are the raw input data which are not operated upon.

We need to provide the cost function along with partial derivatives with respect to

each parameter θli,j to minimize the cost. The hypothesis function output is reached

through the feed-forward process. At each layer there is a set of parameters (weights

and biases) stored in a form of a matrix Θl
i,j where l is the layer, i is the unit in the

layer and j finally defines the weight associated with the output of the jth unit in

the previous layer. The partial derivatives for all these parameters can be computed

sequentially starting from the output layer and moving backwards one layer after

the other until the first hidden layer. Note that the first layer (input layer) does not

have a parameter matrix associated with it since its output is the raw input data.

This process is known as backward propagation

The output of unit j in layer l is denoted by alj . The starting point of the

backward propagation is the output layer. To simplify the process we first present

the derivative derivation using only one training sample. We start by first computing

the error δL at the output layer L between the prediction aL and the actual value y.

Note that aL is also the hypothesis function output hΘ(x) because it is the output

at the last layer. Note also that the that al is a vector of length equal to the number

of units at layer l. This error simply the difference between the layer output and

the actual values as depicted in the following equation:

δL = aL−y (B.17)
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The error for prior layers [L−1,L−2...,1] is computed using the output of the

error of subsequent layer. For instance the second layer to be processed by back

propagation is the last hidden layer L−1 (1 layer before the output layer). The error

calculation uses the error of the last layer, the Θ matrix of the last layer and the

output of the last hidden layer itself aL−1. The derivative of the activation function

act′(x) is also required. The error calculation for the hidden layers is computed

sequentially in the following set of equations where the .∗ operator denotes element

wise multiplication.

δL−1 = (ΘL)T δL.∗act′(ΘLaL−1)

δL−2 = (ΘL−1)T δL−1.∗act′(ΘL−1aL−2)
...

δ2 = (Θ3)T δ3.∗act′(Θ3a2)

(B.18)

The partial derivatives are easily computed from the errors (ignoring the regular-

ization terms for simplicity) as follows:

∂

∂Θl
i,j

c(Θ) = aljδ
l+1
i (B.19)

With partial derivatives and the cost function, NN weights and biases can

be updated until convergence as previously explained. Using training examples

one by one to update parameters is known as stochastic gradient descent. It is

computationally faster than batch gradient descent where the whole dataset is

collectively collectively for one learning step towards the cost function minimum.

However, accuracy is sacrificed for the gain in computational speed. A mid-way

between those two extremes is known as mini batch gradient descent is when a

subset of the training set is collectively used to update the model parameters.
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B.2.4 Remarks

We presented a basic overview of NNs to provide a decent understanding of this

powerful tool for the reader. However, many aspects are left out since the focus of

this work is not to improve the NNs’ fundamental operations but rather to make

the best use of them for the localization problem. However, we would like to point

out briefly some aspects to be considered when working with NNs.

There are many activation functions in the literature and their choice affects the

performance of NNs. For instance, the presented sigmoid function is susceptible to

the issue known as vanishing gradient. This issue appears when computing partial

derivatives where the absolute input to the activation function act(x) is very large

(approaching ∞ or −∞). In these extreme values of input the the sigmoid curve is

almost horizontally flat, meaning that the gradient ≈ 0 which in return inhibits the

ability of gradient descent to give any direction for the parameters to update. Also,

it is worth mentioning that the sigmoid function works with binary classification.

When there are more classes a generalization of the sigmoid is the softmax function.

The softmax ensures that the summation of the outputs for all classes is equal to 1

and thus maintains the probabilistic sense that was introduced with the sigmoid.

The softmax can be expressed as follows:

sig(x)j = exj∑k
j=1 e

xj
(B.20)

One of the most interesting theorems that manifest the power of NNs is the

universal approximation theorem. It states that any continuous function with any

input dimension d with domains [0,1] and a real value output, there exists a sigmoid

based NN with 1 hidden layer that approximates this function with error ε. Moreover,

epsilon can be any positive real number no matter how small. Keep in mind that

this is possible with only one hidden layer. Since more hidden layers adds more

degrees of freedom to the NN and thus increases its ability to approximate function,

the power of deep NNs are expected to be immense.
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