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Metamaterials with extreme

Acoustic and elastic metamaterials have attracted considerable attention in the last few decades, certainly fueled by the possibilities of tailoring their wave-dispersion properties and making previously unexpected behaviors real. Actually, a plethora of applications have been motivated from these new ways of controlling always further the sound. These include perfect absorbers, topological systems, acoustic diodes, wavefront shaping devices, or cloaking systems, among others. This PhD work focuses on the acoustic wave propagation in media with almost zero refraction index, i.e., zero-index media, in which at least one of the effective constitutive parameters (homogenized density and/or compressibility) vanishes. In particular, plate-type acoustic metamaterials, i.e., metamaterials consisting in a periodic arrangement of thin elastic plates, are deeply studied and specific attention is paid to the impact of viscothermal and viscoelastic losses on the resulting applications.

In this first Chapter, we present a non-exhaustive historical overview of the concept of metamaterials and remind some elements of the analogy between acoustics and electromagnetism. Then, we review the main applications associated with the different operating regimes of these artificial materials. Finally, we highlight the objectives and organization of this PhD thesis. 1 I.1 Definition and historical background of metamaterials "Metamaterials"... This new type of architectured medium has allowed a breakthrough in the field of wave physics in recent decades. Despite the appealing number of publications, its definition is still not universal, remains evasive, and sometimes controversial. Most of the time, the definition is contrasted with conventional materials, the constitutive parameters of which solely depend on the atomic composition of the material. Conversely, metamaterials are generally defined as artificial, i.e., man-made structures designed to make a hitherto unprecedented behavior real by overcoming the physical constraints of conventional materials.

These unusual properties are produced by the careful design of the meta-atoms, i.e., the elementary subwavelength building blocks constituting the locally resonant structure. If the size of the meta-atoms and the distance between them are both smaller than the incident wavelength, a homogenization scheme can be applied. The metamaterials can then be characterized by using effective constitutive dynamic parameters, depending on both the properties of the constituent materials and the resonance of the meta-atoms. If non-resonant atoms (conventional material) are considered, both constitutive parameters are positive. On the contrary, the constitutive dynamic parameters of a metamaterial are frequency-dependent and can take negative values. The resonant aspect of the building blocks is therefore essential. A more refined definition of metamaterials could therefore be "Heterogeneous artificial devices that present new responses that could not occur in the resonant constituent elements alone due to physical constraints" [1,2].

Metamaterials are grounded on electromagnetic periodic media (referred to as photonic crystals hereafter), i.e., a periodic lattice of scatterers embedded in a host medium. In the diffraction regime, i.e., when the lattice constant is of the order of magnitude of the wavelength, destructive interferences open electromagnetic bandgaps, in which waves cannot propagate, and produce a strong dispersion allowing to tailor the refraction [3,4]. The first theorizing of metamaterials dates back to 1968 [5]. A Russian physicist, Victor Veselago, considered in a pioneering theoretical work that an electromagnetic medium could simultaneously have a negative permittivity , and permeability µ, thus having a negative refractive index n = √ µ = -| ||µ|. In these materials, named double negative (or lefthanded) metamaterials, the phase velocity of a wave is antiparallel to its group velocity. The resulting unconventional propagation had to wait nearly 30 years to be successfully demonstrated using the prototype proposed by Sir John Pendry's research group: meta-atoms made of split metal wires and rings. This simple design provided experimental evidence of the existence of double negative metamaterials [6,7], setting a turning point for the community and attracting much attention and research work for the following decades [8,9].

I.2 Analogy Acoustics/Electromagnetism

The craze generated by these major discoveries has not been limited to electromagnetism and has also taken hold of the acoustics and elasticity community [1,2] fueled by the mathematical similarities between the governing equations.

In particular, a strong analogy [10] can be drawn between Maxwell's lossless equations linking the electric E and magnetic H fields in electromagnetism through the permeability and the permittivity µ Despite the different types of solutions involved -longitudinal scalar for acoustic waves in fluids and transverse vector with two polarizations for electromagnetic waves -it is therefore not surprising that researchers in each community are looking for similar exotic properties, by acting on ρ (resp. ) and/or C (resp. µ).

- ∂E ∂t + ∇ × H =
As a first step, the concept of photonic crystals was translated into elastic and acoustic media through the work of Kushwaha et al. [11] and Economou et al. [12,13] in 1993 thus implying the appearance of the term phononic crystals. In 2000, the Professor Ping Sheng's research group added inner local resonances in phononic crystals [14], enabling to open bandgaps at frequencies much lower than that of the Bragg scattering, thus allowing negative dynamic acoustic properties, and paving the way for the development of acoustic metamaterials [15][16][17].

I.3 Extreme constitutive parameters: different operating regimes

Acoustic metamaterials can be classified depending on the operating regime of the constitutive parameters, that is positive, negative or near-zero, as it can be summarized in the diagram of Fig. I.1. It is worth noting that in the longwavelength limit, i.e., when both the periodicity and the dimensions of the meta-atoms are small compared to the acoustic wavelength, the meta-structure can be considered as an effective medium characterized by the effective constitutive dynamic parameters ρ(ω) and C(ω)

determined by a homogenization process. [17]). Left upper quadrant: single-negative metamaterials with a negative effective dynamic mass density. (a) 3D deeply subwavelength lattice made of metallic spheres coated with a soft layer of sillicon rubber [14], (b) normal velocity field of a membrane-type metamaterial [18].

Left lower quadrant: double negative metamaterials with simultaneously negative compressibility and mass density. (c) Acoustic waveguide loaded with both side holes (responsible for the negative compressibility) and resonant membranes (responsible for the negative dynamic density) [19]. Right lower quadrant: single negative metamaterials with a negative compressibility. (d) 2D lattice of borehole resonators [20], 1D waveguide loaded with a periodic array of Helmholtz resonators [21]. Right upper quadrant: conventional materials or structured materials with gradient properties with positive constitutive parameters. (e) 3D printed graded porous material for broadband perfect absorption of sound [22], (g) axisymmetric gradient index lens made of rigid toroidal scatterers embedded in air [23]. (h) Zero index media with an almost zero mass density, made of a periodic array of anisotropic scatterers (structured cylinders) embedded in a 2D waveguide [24] (i) Zero index media with an almost zero compressibility composed of a Helmholtz resonator loaded in parallel to a waveguide [25]. (j) Double zero metamaterials with simultaneous zero compressibility and density made of an array of cylindrical bling holes [26].

I.3.1 Double positivity: conventional materials

The upper right quadrant of the diagram represents the class of conventional materials with positive mass density and compressibility. As previously mentioned, these materials, grouped under the term "conventional", include natural media (glass, metals,...), but also man-made structured media that do not have inner local resonances but overcome the constraints encountered with natural materials. We can cite for example the realization of 3D printed porous materials illustrated in Fig. I.1(f), in which the microstructure is made up of an optimized gradient of properties enabling broadband absorption [22].

Besides, wave focusing leading to sound amplification can be achieved by using an axisymmetric gradient index lens consisting of rigid toroidal scatterers embedded in air [23]. Improved media can therefore be obtained using non resonant structured systems (gradient of properties or periodicity).

I.3.2 Single negativity

The introduction of local resonances in periodic media and the use of the produced extreme constitutive dynamic parameters is another strategy that will be detailed in the following.

The constitutive parameters of a medium have a direct impact on the propagation of an acoustic wave, the effective wavenumber of which reads as k(ω) 2 = ω 2 ρ(ω)C(ω). If only one constitutive parameter is negative, the effective wavevector becomes purely imaginary. Consequently, the acoustic waves become evanescent and bandgaps, in which waves cannot propagate, are opened. Such condition can be achieved acting on either the compressibility or the mass density.

I.3.2.1 Negative dynamic mass density

To understand what negative mass density means, we should start again with the locally resonant sonic crystals designed by Liu et al. in 2000 [14]. In that cubic lattice illustrated in Fig. I.1(a), the soft coated metal spheres are acting as local mass-spring resonators. Under harmonic excitation F , the heavy metal sphere, acting as mass m 2 , can have a displacement x 2 around its steady position within the cavity formed by the soft silicone rubber shell. The coating, playing the role of a spring with a constant K and a mass m 1 , also moves with a displacement x 1 . By solving Newton's laws, the dynamics of the system can be modeled as

F = m 1 + K ω 2 r -ω 2 ẍ1 , (I.5)
where the inner resonance pulsation ω 2 r = K/m 2 is clearly apparent. From an external point of view, i.e., when the inner structure cannot be seen, the system appears to react to a frequency dependent dynamic effective mass of the form M (ω) = m 1 + K/(ω 2 r -ω 2 ). At the metamaterial level, one can define an effective dynamic mass density accounting for the relative motion of each meta-atom

ρ(ω) = f d ẍ , (I.6)
linking the average (over the unit cell surface area) force density f d with the second order time derivative of the meta-atom displacement x. Further details on dynamic effective mass and effective mass density can be found in the work of Milton and Willis [27], Mei et. al [28], and in Yao et al. for an experimental verification on a 1D mass-spring system [29].

Examining equation (I.6), the negative dynamic mass density implies that the directions of force and acceleration are antiparallel. In the case of the considered resonant sonic crystals, negative density occurs above the inner resonance frequency. The out-of-phase motion of the masses produces Fano interferences, responsible for the opening of a low frequency stopband. In contrast to the Bragg bandgaps produced by the periodicity-dependent destructive interferences in the diffraction regime, Fano interferences are only due to the inner resonances. The independence on the spatial periodicity further allows the design of deep subwavelength structures.

Similar behaviors can also be obtained with membrane-type metamaterials in air, as demonstrated by the pioneering work of Yang et al. in 2008 [18]. A more thorough exploration of membrane-and plate-type metamaterials is presented in Chapter II.

I.3.2.2 Negative dynamic compressibility

Negative dynamic compressibility can be interpreted in opposite, as an unintuitive behavior: the expansion of a medium when compressed. Acoustic resonators such as quarter-wavelength or Helmholtz resonators are very good candidates since the underlying physics involves compression and expansion of air. and working in the kHz frequency range [21]. Another example with a 2D periodic arrangement of bored hole resonators can be found in [20]. In both cases, the collective resonance produces a strong dispersion making the dynamic compressibility negative and leading to evanescent waves in the opened bandgap.

It should be noted here that the dispersion of systems composed of periodically loaded resonators was already previously studied in the pioneering work of Bradley [30] and Sugimoto [31], although they introduced neither the homogenization procedure nor the effective dynamic properties.

Symmetry of the resonances:

To summarize, single negativity can be achieved by introducing local resonances in periodic structures. In doing so, the strong dispersion induced by the resonances gives rise to Fano destructive interferences, generating bandgaps in which the waves are evanescent.

Resonance-induced effective abnormal constitutive parameters can be classified into two categories according to the symmetry of resonance. Li et al. have indeed theoretically proved in 2004 that monopolar symmetry modes have mainly an impact on compressibility, since it leads to a compressiondilatation response, while dipolar symmetry resonances produce a dispersive effective dynamic mass density, with a localized contribution at the center of mass [32].

The development of single negative metamaterial has led to a plethora of applications including but not limited to deep-subwavelength perfect absorbers and high efficiency isolation devices involving either monopolar inclusions [33][34][35][36] or dipolar ones [18,[37][38][39][40][41][42].

I.3.3 Double negativity

The last quadrant (lower left) of Fig. I.1, represents certainly the most unexpected regime for acoustic metamaterials, double negativity. This regime, in which both constitutive parameters are negative, is analogous to negative-index in electromagnatism, leading to negative phase velocity and abnormal refraction. Interestingly and counter-intuitively, despite the fact that a single negativity prevents the waves from propagating, the simultaneous combination of the two negative constitutive parameters switches the medium from opaque to transparent, allowing the waves to propagate.

Double negativity requires coupling monopolar and dipolar resonances in the same frequency range. Two strategies can be employed. First, a combination of different types of resonators can be used to overlap the frequency response related to each symmetry [43][44][45]. Lee et al. experimentally realized the first double negative acoustic metamaterial [19] with an air filled waveguide periodically segmented with clamped membranes and loaded by periodic side holes (see Fig I .1(c)), generating respectively frequency dependent effective density (dipolar response) [37] and effective compressibility (monopolar response) [46]. The second strategy is to design resonators exhibiting eigenmodes with distinct symmetries. Careful tuning of these eigenmodes can then enable to control dispersion so that the effective density and compressibility are simultaneously negative, as demonstrated with coupled membranes with attached masses [47] or with soft 3D metamaterials consisting of sub-wavelength macroporous silicone rubber microbeads [48], exploiting the Mie resonance phenomenon [32].

How does such a medium behave physically speaking? Conciliating negative effective density and compressibility requires that the metamaterial expands upon compression as it moves in the opposite direction to that of the excitation for certain frequency ranges. This peculiar response has drawn considerable attention and inspired many applications such as reverse Doppler effect [49,50], cloaking [51], super-focusing [52,53], and subwavelength imaging [54,55]. However, these structures also face the constant challenge of managing viscothermal losses. Cutanda et al. [56] demonstrated numerically, for example, the total disappearance of the double negativity features in metamaterials consisting of structured rigid cylinders [24], solely due to losses.

I.3.4 Zero-Index

Another interesting class of metamaterials is that of Zero-Index Metamaterials (ZIMs), in which one or both of the constitutive dynamic parameters are almost zero. We have seen in the aforementioned works that resonances induce a strong dispersion in the system, resulting in frequency-dependent effective parameters that may vary from positive to negative, thus passing through zero.

First discussed in plasmonics and electromagnetism [57,58], theorized by Ziolkowski in 2004 [59],

and extensively developed thanks to the pioneering work of Professor Engheta's research group [60],

ZIMs have shown their ability to considerably extend the possibilities of wave manipulation. For instance, epsilon near zero metamaterials have been used to squeeze electromagnetic energy through narrow waveguide channels [61][62][63][64][65], to reduce scattering induced by sharp bends [66], to achieve transparency and cloaking [67,68], or to tailor the radiation phase pattern [69]. Acoustics ZIMs can also be designed seeking out similar properties.

The waves propagate in ZIMs with an extremely high phase velocity (almost infinite in the lossless case), c(ω) = [ρ(ω)C(ω)] -1/2 . As a result, the effective wavelength is stretched and gives rise to quasi-static field distribution, providing a wide scope for wave manipulation. It allows, among others, radiation patterning and phase front manipulation, extraordinary propagation through corners and perfect power divider [24], supercoupling and tunneling effects [70,71], or cloaking [72].

Single near-zero metamaterials, i.e., in which only one of the constitutive parameters is almost zero, can be obtained on the one hand by using anisotropic scatterers [24] (see Fig. I.1(h)) or membranetype metamaterials [70] for near-zero density. On the other hand, the use of Helmholtz resonators allows the compressibility to vanish [25] as depicted in Fig. I.1(i). Nonetheless, every application of a single near-zero acoustic metamaterial is limited because of a strong impedance mismatch with the surrounding fluid; the effective impedance Z(ω) = ρ(ω)/C(ω) being either nearly zero (ρ(ω) ≈ 0)

or nearly infinite (C(ω) ≈ 0).

Double near-zero metamaterials provide a solution to this impedance mismatch. These media simultaneously have a density and a compressibility close to zero, which makes it possible to maintain a constant finite effective impedance that can match that of the surrounding medium. In this way, perfect transmission can be achieved while maintaining the above-mentioned properties. shows an experimental realization of double zero acoustic metamaterials made of a 2D square lattice of symmetric blind holes, evidencing the total transmission and revealing a Dirac-like cone [26].

Other kinds of metamaterials

The previous review on metamaterials focuses only on passive acoustic metamaterials with extreme parameters. It is worth noting here, that many other types exist, including, but not limited to, Willis, topological, or active metamaterials, which are out of the scope of this manuscript. Thorough reviews can be found in Refs. [15,17].

I.4 Objective of the thesis

As we have seen, a substantial work has already been done on the developments of acoustic metamaterials using extreme parameters, however, much remains to be done.

The objective of this PhD thesis is to study analytically, numerically, and experimentally the specific case of a realistic Plate-type Acoustic Metamaterial (PAM), i.e., a periodic arrangement of thin clamped elastic plates, paying careful attention to the role of losses inherent to such systems.

Although the plates are governed by a 4th order differential equation, unlike a 2nd order differential equation for a membrane, PAMs are also exhibiting near zero effective dynamic mass density around the resonance frequency of the plates. Through an in-depth examination of the behavior of these metamaterials, we will pay particular attention to three main phenomena: zero-phase propagation, acoustic doping, and hiding/cloaking.

Due to the strong dispersion around the resonance frequency, a near-zero density leading to a stretching of the effective wavelength is expected. As a result, the metamaterial displays a quasistatic field distribution making zero-phase propagation possible. Nevertheless, to what extent can this zero-phase propagation be effectively observed and measured?

Two main limitations will be encountered: first, the impedance mismatch related to the single nearzero condition. Second, losses, not avoidable in real operating systems, are a constant and crucial challenge in the design of acoustic devices and perhaps even more so in the case of metamaterials, in that they have a considerable impact on dispersion. As a result, the expected unusual phenomenon can be radically altered and even annihilated. The origin and influence of losses in Plate-type Acoustic Metamaterials must then be thoroughly investigated and characterized, so that the design of the realistic sample accounts for this as a key factor.

The design and realization of a sample allowing experimental demonstration of the relevant properties will then pave the way for the conceptualization of potential applications using the unique zero-phase propagation property. Special attention will be devoted to phase patterning and wavefront shaping with the design of a subwavelength acoustic dipole. Moreover, other useful applications could arise from these extreme media. One can easily imagine that due to acoustic wavelength stretching, the embedment of scatterers could have a limited impact on the behavior of the metamaterial if the longwavelength constraint is met, i.e., if the dimensions of the embedded scatterers are very small relative to the wavelength. Such promising conditions could set the stage for the design of hiding and/or cloaking devices.

Double zero metamaterials have the particularity of conciliating both the exotic properties of DNZ media and impedance matching, thus alleviating the constraints for realistic applications. It is therefore of great interest to find a way to transform our single near-zero medium, the PAM, into a Density and Compressibility Near Zero (DCNZ) medium. By examining what is being developed in electromagnetism, we will propose an acoustic analogous of photonic doping which consists in adding a single impurity to a single near-zero medium to convert it to double near-zero. In doing so, we expect to meet the requirements for achieving super-coupling, i.e., total transmission, zero density, and zero-phase propagation simultaneously.

I.5 Organization of the manuscript

This manuscript is divided into 7 Chapters including the introduction, the conclusion, and a sidework highlight.

This first Chapter sets out the general paradigm of this work and reviews the historical background of metamaterials in general, focusing on the extreme values of the constitutive parameters achievable in acoustics.

II.1 Introduction

In number of additional masses, number of cells in the plane or stacking units,...) on the attenuation efficiency and frequency range followed [4][5][6][7][8].

In parallel, absorbing metamaterials have also been designed using DM. The optimization of the absorption of a structure is based on the concept of critical coupling. Total losses in resonators can be characterized by a quality factor Q, related to the half bandwidth of the resonance peak, and broken down into a dissipative part Q diss and a leakage part Q leak . The maximum absorption of a structure is reached when the inherent dissipation balances the energy leakage rate Q diss = Q leak , i.e., when the critical coupling condition is met [9][10][11][12][13]. In the problem of pure reflection, the critical coupling condition means perfect absorption regardless of the type of resonators (monopolar or dipolar). However, in the transmission problem with point resonators, the problem is more complicated as the critical coupling condition does not mean perfect absorption. If the resonators are monopolar (resp. dipolar), i.e., symmetric (resp. antisymmetric), the critical coupling condition implies that only 50% of the energy can be absorbed since only half of the problem is critically coupled. Therefore, in the case of a membrane or plate resonator, critical coupling means |R| = |T | = 0.5. This can be achieved by using membranes with semi-circular mass platelets as theoretically developed in Refs. [14,15] and experimentally demonstrated in Ref. [16]. Fortunately, different strategies can be used to overcome this upper limit of absorption. On the one hand, one can use the anti-symmetric (resp. symmetric) coherent perfect absorption [13,16,17] by eliminating the monopolar (resp. dipolar) component of the incident wave. On the other hand, dipolar and monopolar motions being decoupled, the 50% absorption threshold can be exceeded until perfect absorption is reached, by combining these two types of resonance, i.e., by designing degenerated resonators [18,19] or by using hybrid resonances [20]. All these studies have proven that membrane-type metamaterials have high absorption and insulation properties despite their subwavelength dimension, thus breaking the mass density law, stating that acoustic transmission through a layer of material is inversely proportional to the product of the layer thickness, mass density and sound frequency.

Besides decorated membranes, a second main type of membrane/plate-based metamaterial is a structure consisting of a periodic series stacking of membranes, which revealed exciting behaviors such as extraordinary transmission [21], tunneling effect [22], negative and almost zero density [23,24] which will be further developed in Chapter III. In this work, the term "Plate-type Acoustic

Metamaterial" (PAM) will refer to a periodic arrangement of thin clamped elastic plates, that is a one dimensional (1D) resonant sonic crystal. This Chapter aims to show the general acoustic behavior of a PAM and to explain how such a system can be modeled analytically, following the theory of sonic crystals and periodic media. It is organized as follows. First, we will focus on the simple case of a 1D non-resonant sonic crystal so as to introduce some generalities on periodic media, such as the derivation of the dispersion relation, the significance of the bandgaps, the transfer matrix method (TMM), ... Then, we will develop precisely the particular case of PAM modeling and the general behavior of such systems. Finally, we will present the experimental method for the acoustic characterization of the plates and the experimental set-up used.

II.2 "Non-resonant" 1D sonic crystals: General approach "Crystals are solid materials whose constituents, such as atoms, molecules or ions, are arranged in a highly ordered microscopic structure, forming a lattice that extends in all directions". Periodic media can therefore be classified under this general definition [25].

At the end of the 19th century, Lord Rayleigh studied wave propagation in one-dimensional (1D) periodic stacks made of multilayer dielectric media and showed that over certain frequency ranges, named band-gaps, the incident waves undergo strong reflection [26,27]. Due to the periodic spacing, destructive interference occurs with the multiple reflection at each layer, preventing propagation. This research laid the groundwork for the development of photonic crystals about one hundred years before the birth of the official denomination, with the simultaneous work of Yablonovitch [28] and John [29] in 1987. The periodic variation of the dielectric constant in photonic crystals produces similar effects to those of the periodic potential in semiconductor crystals, i.e., it allows or prevents the propagation of light (resp. electrons) in the passband or bandgap (resp. in the allowed or forbidden electronic energy bands).

Simultaneously with these works on electromagnetic waves [30][31][32], similar crystals have been developed with mechanical waves [33,34]. The year 1993 marked the first design of a phononic crystal, i.e., a periodic distribution of solid scatterer embedded in a solid host medium [35,36], followed two years later by sonic crystals, i.e., particular cases of phononic crystals in which the host medium is a fluid [37][38][39]. Sonic crystals can be designed in one or several dimensions of the space (1D, 2D or 3D), depending on the dimensions in which the periodic variation of the density ρ and/or the compressibility C occurs as sketches by figure II.1.
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II.2.1 Propagation in an air-filled waveguide

If the waveguide is first only filled with air (density ρ 0 and compressibility C 0 ), the lossless propagation over a length L unit of a plane wave, the frequency of which is lower than the waveguide cut-off frequency, is governed by the constitutive equations

∂p ∂x = -iω ρ 0 S U, (II.1) ∂U ∂x = -iω S κ 0 p, (II.2)
written under the time convention e iωt , where ω is the circular frequency, κ 0 = 1/C 0 is the air bulk modulus, p is the sound pressure, and U = Sv is the flux, with v being the particle velocity.

These governing equations can be rearranged in the following matrix form

∂ ∂x p U = 0 -iω ρ 0 S -iω S κ 0 0 p U = M p U , (II.3)
the solution of which being

p U L unit = exp(ML unit ) p U 0 = V • e Λ 1 L unit 0 0 e Λ 2 L unit • V -1 p U 0 = T p U 0 , (II.4)
with Λ j the eigenvalues of M, and V the corresponding eigenvector matrix.

The transfer matrix T unit linking pressure and flux at one side and at the other of the L unit -long slab reads as follows (the detailed calculation can be found in Appendix A)

T unit = cos (k 0 L unit ) -iZ 0 sin (k 0 L unit ) -iZ -1 0 sin (k 0 L unit ) cos (k 0 L unit ) , (II.5)
with k 0 = ω/c 0 = ω ρ 0 /κ 0 the wavenumber and Z 0 = √ ρ 0 κ 0 /S the acoustic characteristic impedance.

The dispersion relation of an infinite periodic system can then be deduced from the total matrix of a single unit cell T unit by applying the Bloch-Floquet theorem

cos (qL unit ) = Tr(T unit ) 2 , (II.6)
with q the Bloch wavenumber (details can be found in Appendix A).

In the present case of an air-filled waveguide with an "artificial" periodicity, this operation leads to the straightforward dispersion relation 

ω = cq = c (k 0 + 2mπ/L unit ) , ( 
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II.2.2 Propagation in a bi-layer periodic medium

We now consider a real periodic medium made of alternating L unit /2-long layers of two different materials (ρ 0 , κ 0 and ρ 1 = 2ρ 0 , κ = 18κ 0 ) arranged with a periodicity L unit = 1 cm as sketched in The total transfer matrix of the unit-cell T unit is now the matrix product of the elementary transfer matrices in the air T 0 and in the material

T 1 P U L unit = T 0 • T 1 P U 0 = T unit P U 0 , (II.9)
with

T unit =   cos k 0 L unit 2 -iZ 0 sin k 0 L unit 2 -iZ -1 0 sin k 0 L unit 2 cos k 0 L unit 2   •   cos k 1 L unit 2 -iZ 1 sin k 1 L unit 2 -iZ -1 1 sin k 1 L unit 2 cos k 1 L unit 2   . (II.10)
The dispersion relation shown in Constructive interference of the reflected waves, i.e., when the path difference 2L unit is a multiple of the wavelength, leads to total reflection while destructive interference allows total transmission through the crystal. The first condition results in the generation of a bandgap, while the second leads to a propagating band. It should be noted here that higher order Bragg bandgaps are also opened around odd multiples of f B , i.e., for integer multiples of the wavelength.

Changing the periodicity of the system thus results in a shift of the bandgap, the center frequency of which is inversely proportional to L unit . In the opposite, the width of the bandgap is related to the impedance contrast between each layer: the greater the contrast, the wider the bandgap. In addition 

to

II.3 Resonant sonic crystal: Modeling of a PAM

As demonstrated in the previous Section, non-resonant sonic crystals have opened up a new field of research for tailoring the propagation of sound waves. However, these applications are severely limited in the low-frequency regime, since the diffraction regime, in which Bragg bands can be generated, requires the crystal periodicity to be of the same order of magnitude as the wavelength. The pioneering works of Bradley [40], Sugimoto [41], Liu [42] and the large number of publications that have followed, have shown that introducing local resonances in a sonic crystal allows the opening of similar forbidden frequency bands in which waves cannot propagate, at frequencies much lower than that of Bragg. One of the main advantage of such resonant sonic crystals is that the stopband location can be shifted independently of the periodicity, thus allowing deep subwavelength designs.

In this work, we will use a thin elastic plate as the resonant element of our one dimensional sonic crystal. The TMM-based analytical modeling of the system will be first presented, followed by the thin plate theory derivation, and the viscoelastic and viscothermal models to account for the losses in the system.

II.3.1 Analytical model

A periodic arrangement of N thin elastic plates clamped in a circular waveguide of cross-sectional section S = πR 2 a , similar to that sketched in Fig. II.4 is considered. The metamaterial unit cell is symmetric and consists in a thin plate of thickness h p surrounded by two air layers of length L gap /2, giving a periodicity L unit = L gap + h p to the system. The metamaterial is modeled with the TMM.

We thus only consider plane wave propagation and neglect the mutual coupling between the elements, which is a good approximation for the objectives of this work. 

T SB = 1 0 1/Z SB 1 , Series element: T S = 1 Z S 0 1 . (II.11)
A plate laterally clamped into a 1D waveguide causes pressure discontinuity and acoustic velocity continuity [24], i.e., a element in series, the transfer matrix of which is

T p = 1 Z p 0 1 , (II.12)
involving the acoustic impedance Z p of the circular plate considered as punctual (h p << λ 0 ) and defined in Subsection II.3.2.

The air gaps are defined by the elementary transfer matrix of a circular waveguide of length L gap /2,

T cav = cos k 0 Lgap 2 -iZ 0 sin k 0 Lgap 2 -iZ -1 0 sin k 0 Lgap 2 cos k 0 Lgap 2 , (II.13)
with Z 0 and k 0 the acoustic impedance and wavenumber of the fluid respectively.

The matrix representing the unit cell is then obtained by multiplying the above-mentioned elementary matrices

T unit = T cav • T p • T cav , (II.14)
while that of the L-long metamaterial composed of N unit cells read as

T = T unit N = T 11 T 12 T 21 T 22 , (II.15)
and connects pressure and flux to the input (x = 0) and output (x = L) of the finite system. 

II.3.2 Thin plate impedance

The transverse displacement w of a thin circular plate of section S = πR 2 a , thickness h p , Young modulus E p , Poisson's ratio ν p , and density ρ p satisfies the flexural wave equation

D∇ 4 w(r, θ, t) + ρ p h p ∂ ∂t w(r, θ, t) = ∆P (t), (II.16) with ∇ 4 = ∇ 2 2 = ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 2
the bilaplacian in polar coordinates, ∆P = p(x+h p )-p(x)

the pressure difference applied on the plate, where p(x) and p(x + δx) are the acoustic pressure on the upstream and downstream faces respectively, and D the flexural rigidity D = 

(r = R a , θ) = ∂ ∂r w(r = R a , θ) = 0 Z p = S ∆P (r)dS iωwS 2 = - iωm S 2 I 1 (k p R a )J 0 (k p R a ) + J 1 (k p R a )I 0 (k p R a ) I 1 (k p R a )J 2 (k p R a ) -J 1 (k p R a )I 2 (k p R a ) , (II.17)
where w is the cross-sectional average of the displacement and k p = ω 2 ρ p h p /D 

II.3.3 Losses modeling

As most acoustic systems, PAM presents unavoidable losses. In this case, two main loss sources have to be accounted for.

First, viscothermal losses should be considered near the guide walls, within the viscous penetration thickness δ ν = 2µ 0 /ρ 0 ω (where µ 0 is dynamic viscosity, ρ 0 is the density of air). Propagation in the waveguide is thus modeled by complex wavenumbers k 0 and impedance Z 0 , as defined by Zwikker

and Kosten [43,44] 

k 0 = ω c 0 1 + (1 -i) √ 2R a /δ ν (1 + (γ -1) √ P r , (II.18) Z 0 = ρ 0 c 0 πR 2 a 1 + (1 -i) √ 2R a /δ ν (1 -(γ -1) √ P r , (II.19)
with P r the Prandtl number, γ the ratio of the thermal capacity of the air and c 0 the sound speed in the air. It should be noted here that the losses in the bulk are neglected in front of those in the penetration thickness.

Second, the plates also introduce dissipation. The viscoelastic losses inherent to the plates are modeled assuming a loss factor β, i.e., by adding an imaginary part to the Young's modulus

E p = E p 0 (1 + iβ). (II.20)
The loss factor β is defined as frequency-independent since the study focuses only on a narrow frequency range in the vicinity of resonance.

II.3.4 Scattering coefficients and effective properties

The total transfer matrix can be related to the scattering coefficients, i.e., the transmission T and reflection R coefficients of the metamaterial.

T = 2 T 11 -T 12 /Z 0 -Z 0 T 21 + T 22 , (II.21) R = T 11 -T 12 /Z 0 + Z 0 T 21 -T 22 T 11 -T 12 /Z 0 -Z 0 T 21 + T 22 , ( 

Homogenization

Moreover, in the long wavelength approximation, i.e., when the condition L unit λ is fulfilled, a sonic crystals can be homogenized, the result of which is an equivalent medium with effective properties [47][48][49][50][51][52][53]. Our system may also be considered as an equivalent, homogeneous medium of length L Two approaches can be followed to retrieve the effective properties of the homogenized medium.

First, one can consider an infinite system and then extract directly the effective impedance Z(ω) and effective wavenumber k(ω) from the unit cell transfer matrix T unit [46] k

(ω)L unit = cos -1 Tr[T unit ] 2 , (II.24) Z(ω) = ± T unit 12 T unit 21 . (II.25)
The sign of Z(ω) has to be chosen to fulfill the passivity condition, that is Re (Z(ω)) 0.

These effective parameters do not account for the effect of the finite number of unit cells. Another option is to determine the effective parameters using the transmission and reflection coefficients of the finite system [47,48,54,55].

The derivation of the effective impedance is rather direct,

Z(ω) = ±Z 0 (1 + R) 2 -T 2 (1 -R) 2 -T 2 , (II.26)
while the effective wavenumber

k(ω) = - ln(|e ik(ω)L |) + iarg(e ik(ω)L ) iL + 2πm L , (II.27)
results from the inversion of

e ik(ω)L = T [1 -Z(ω)/Z 0 ] R [1 + Z(ω)/Z 0 ] -Z(ω)/Z 0 + 1 , (II.28)
with m a natural integer to correct the phase after inversion, the exponential being 2π periodic.

Knowing the effective impedance and the wavenumber, by either method, the effective density ρ(ω) and bulk modulus κ(ω) can then be determined

ρ(ω) = S Z(ω) c(ω) = SZ(ω) k(ω) ω , (II.29) κ(ω) = ρ(ω)c(ω) 2 = SZ(ω) ω k(ω)
.

(II.30)

II.4 Resonant sonic crystal: acoustic behavior of a PAM

The comprehensive analytical model developed in the previous Section now allows for an in-depth study of the behavior of a PAM. We will first focus on an infinite system, with the study of both its dispersion relation and its homogenized equivalent medium. Then, the influence of the design parameters of a finite PAM will be studied.

II.4.1 Dispersion relation and effective parameters

Following a procedure similar to that used for non-resonant sonic crystals (Section II.2), we will first derive the dispersion relation of an infinite number of plates arranged with a periodicity L unit = 1 cm, using Eq. (II.24). Note that for an infinite system, the effective and Bloch wavenumbers are equal, Each type of bandgaps can either exist independently or be coupled to each other. To prevent any confusion, the term bandgap will be kept for the Bragg type interferences while stopband will refer to to the scattering gaps (dotted line). Well designed coupling can lead to highly dissipative devices that can be used for broadband absorbing structures [59,71,72].

Focus on the first passband

Although the unique properties resulting from this coupling may allow the design of promising applications, we will only focus on the first PAM passband in the following, i.e., within the low-frequency The dispersion being closely related to the resonance of the plate, the study of the infinite system effective properties is performed with respect to the plate resonance frequency f p , which corresponds to a cancellation of the imaginary part of the acoustic impedance as shown in II.4.2 Finite size system: influence of the number of plates, the periodicity and the losses

We now consider a finite thickness PAM composed of N plates. In this Section, we will study the behavior of our system as a function of the number of unit cells, the periodicity L unit , and the thickness of the plate h p . 

Stop bands highlight for each cases L unit = 5L unit , and L unit = 10L unit for (c), and finally h p = 0.5h p , h p = h p , and h p = 2h p . In each case, only one parameter varies. The variation of the periodicity L unit and the plate thickness h p is defined according to the reference periodicity L unit and thickness h p used for all other cases. An indication of the width and location of the hybridization bands is given by the thick solid, dashed and dotted lines between the subplots and corresponding to each value of the variable.

The subplots (a1-4) in Fig. II.7 show that controlling viscoelastic losses is a key element in the design of the PAM, as it can lead to high dissipation in the system and thus to low transmission accompanied by a broadening of the Fabry-Perot peaks (lower quality factor). Depending on the intended applications, these inherent losses can be an advantage or a disadvantage. In this work, we will focus on the properties resulting from transmission in the density-near-zero region. We should therefore use plates with low viscoelastic losses in order to be able to measure a sufficiently high transmission. Nevertheless, viscoelastic losses only have a small effect on the first stopband, and smoothen the dispersion relation at the end of the stopband as we can observe in Figs. II.7 (a1-2). In parallel, the number of unit cells, i.e., the number of plates composing the system have a drastic effect on the transmission amplitude. As expected, Figs. II.7 (b1-4) show that the increase of the number of plates leads to an increase of the viscoelastic losses sources, and thus to a decrease in transmission.

In contrast to the number of plates which have only a limited impact on the location and width of the stopbands (represented by the thick solid, dashed and dotted line between the subplots), the increase of the periodicity constant greatly reduces the stopbands and passbands width. Consequently, an increase of the periodicity constant shifts down the zero density frequency while the frequency and amplitude of the first Fabry-Perot mode remain unchanged, as evidenced in Figs. II.7 (c1-4). Finally, the plate thickness is also an important element of the design, see Figs. II.7 (d1-4), as it directly influences the resonance frequency and losses amount. Changing the plate thickness then results in a change in the location and width of the stopbands, a change in the zero density frequency, and in the amplitude and frequency of the transmission maxima.

To summarize, the structure must be carefully designed for the intended application. In order to be able to measure a maximum of transmission in the vicinity of the DNZ region, plates with low viscoelastic losses and a resonance frequency in the target frequency range should be preferred. This can be achieved by varying both the mechanical properties of the material as well as the thickness of the plates, the fundamental resonance frequency being approximated by [24,[START_REF] Morse | Methods of theoretical physics[END_REF] 

f p = 0.4694 h p R 2 a E p ρ p (1 -ν 2 p ) . (II.31)
Second, it appears from the previous study that increasing the periodicity constant is a better option for covering a given length with the PAM than multiplying the number of unit cells. Nevertheless, a compromise has to be found between these two options since the frequency of the zero density is also shifted according to the periodicity constant of the system.

II.5 Plate characterization

The choice of the plate is the key element of our design to be able to measure properly the peculiar phenomena related to the Density Near Zero (DNZ) regime. A prior characterization of the plate is thus required to estimate its mechanical properties and particularly its loss factor. In this Section, we will present an acoustic characterization procedure, as well as the experimental set-up used.

II.5.1 Experimental set-up

The plate characterizations and the measurements of the scattering parameters are performed in a 4 Plates or membranes can be clamped either by permanently gluing them to a ring support or by applying pressure between two surrounding rings. In order to obtain a non-destructive characterization, the second solution is preferred. The clamping condition is hard to achieve, although essential for good reproducibility of the measurements.

A sample holder shown in Fig. II.8 (d) is placed between the two microphone pairs of the impedance tube. One end of the sample holder is fixed. The plates are clamped between annular rings placed in this sample holder. The second end is screwed on so that the rings are compressed together.

The sample holder and the rings have been dimensioned to ensure a continuity of section within the impedance tube.

The main difficulty of these measurements is to achieve reproducibility. A lot of attention has been devoted to the design of the sample holder so as to improve it. A brief history of the evolution of the set-up is reminded in the following. In the first holder shown by 

P 1 =(Ae -ikx 1 + Be ikx 1 ), (II .32) 
P 2 =(Ae -ikx 2 + Be ikx 2 ), (II.33)

P 3 =(Ce -ikx 3 + De ikx 3 ), (II.34) P 4 =(Ce -ikx 4 + De ikx 4 ). (II.35)
The scattering matrix connects, through the transmission and reflection coefficients, the incoming A, D and outgoing waves B, C from the metamaterial

B C = R T T R A D . (II.36)
R and T therefore read as

R = AB -CD A 2 -D 2 , (II.37) T = AC -BD A 2 -D 2 , (II.38)
and enable to recover the effective properties of the sample by using equations (II.30). More details on the measurement principle can be found in Appendix C.

II.5.1.2 Characterization principle

Before any further measurement, the plates are characterized experimentally to estimate their mechanical properties [START_REF] Geslain | Acoustic characterization of silica aerogel clamped plates for perfect absorption[END_REF]. Each plate of radius R = 1.615 cm used in the PAM is clamped between the two Téflon/aluminum rings with an inner radius of R i = 1.5 cm and an outer radius of R o = 1.615 cm.

Each of the unit cell is placed one after the other into the impedance tube. The characterization is then performed using a multi-objective optimization based on a least mean square procedure, the cost function of which is given by

C(ρ p , E p , β, ν p ) = min ||R meas -R T M M || 2 + ||T meas -T T M M || 2 , (II.39)
between the measured R meas , T meas (Eq. (C.11)) and the analytical R T M M , T T M M (Eq. (II.22))

reflection and transmission coefficients.

Measurements are conducted in a temperature-controlled room so as to limit the impact of weather fluctuation on the measurements. In parallel, temperature, relative humidity and atmospheric pressure are collected during measurements to evaluate the air parameters (density, dynamic viscosity, thermal conductivity, velocity, ...) [START_REF] Tsilingiris | Thermophysical and transport properties of humid air at temperature range between 0 and 100 degree Celsius[END_REF]. The thinner the plates, the more difficult to get reproducible measurements. Indeed, a plastic deformation of the plate modifying the resonant behavior, appears as soon as the pressure applied to the rings is too important for the thinner plates. In the opposite, the thicker the plates, the greater the losses. A compromise must therefore be found between good reproducibility enabling to have a metamaterial made of identical unit cells and reasonable losses. The best option found with the tested samples are plastic shim of thickness h p = 102 μm (yellow plates), the mechanical properties of which 

II.5.2 Choice of the plates

II.6 Conclusion

In this Chapter, the general TMM is presented through the prism of sonic crystals. A general derivation of the dispersion relation of an infinite bilayer acoustic medium is used to introduce the Bragg bandgaps generated in the sonic crystals at frequencies within the diffraction regime, i.e., when the acoustic wavelength is of the order of the lattice constant. We then introduced the analytical models of a PAM and showed that the introduction of local resonances in a periodic medium results in the opening of the hybridization stopbands at lower frequencies. Derivation of the effective properties of an infinite PAM showed that the series arrangement of the plates has a predominant effect on the effective density as compared to the effective bulk modulus. The hybridization stopband corresponds to negative effective density regime, while a positive density is found in the passband. A density near zero regime is therefore observed at the transition between the stopband and the passband, occuring in the vicinity of the plate resonance. This almost zero density is accompanied by a high phase velocity, which can give rise to zero-phase propagation which will be studied in the next Chapter III.

The study of a finite thickness PAM revealed that transmission maxima are observed in the passbands at frequencies corresponding to Fabry-Perot interferences, the number of which is related to the number of unit cells composing the system. The predominant losses are due to the inherent viscoelasticity of the plates and can significantly alter the magnitude of the transmission. It is therefore a key element of our device. A parametric analysis of the design parameters, such as the plate thickness, the periodicity, the number of unit cells and the losses, allows us to define the requirements of an optimal PAM to measure the particular properties in DNZ regimes. In the following, we will focus on exciting applications related to the stretching of the acoustic wavelength and the high phase velocity, e.g., zero-phase propagation, supercoupling effect or hiding capabilities, using a periodic arrangement made of the thin elastic plates characterized acoustically in this Chapter. 

Chapter III

Zero-phase propagation

III.1 Introduction

As pointed out in the previous Chapter, the strong dispersion generated in a Plate-type Acoustic Metamaterial allows the effective dynamic mass density to be controlled so that zero values can be achieved at specific frequencies.

In the density near zero regime, that is ρ(ω) ≈ 0, the effective acoustic wavelength λ(ω) and therefore the phase velocity c(ω) tend towards infinity

λ(ω) = c(ω) f = κ(ω) ρ(ω)f 2 → ∞. (III.1)
An almost zero density (resp. compressibility) also implies a decoupling of the spatial and temporal field variations (see Eqs. (I.3)-(I.4)) and results in a static-like spatial distribution and an almost constant phase distribution in the steady-state regime [1][2][3][4]. It is worth noting here that although the spatial distribution of the field has a static character, the monochromatic field still dynamically oscillates in time. Moreover, it is important to bear in mind that causality compliance is always ensured by the transient time needed to reach the steady-state regime necessary for the establishment of such behaviors.

In light of these features, various extraordinary properties have either been experimentally observed, like the measurement of a giant acoustic transmission through rigid diaphragms covered with membranes [5], or numerically predicted considering lossless metamaterials, such as unity transmission through sharp bends and perfect power dividers [6], or extraordinary sound transmission through ultranarrow channels, referred as the supersqueezing effect [3]. This latter has drawn lots of attention and will be briefly developed now.

III.1.1 Supersqueezing effect

The supercoupling or supersqueezing phenomenon, demonstrated in electromagnetism with Epsilon Near Zero metamaterials (ENZ) [7][8][9][10] and adapted to the acoustic field with DNZ metamaterials by Fleury and Alù [3] in 2013, consists in counterbalancing a strong impedance mismatch making use of the extreme value of one of the effective constitutive parameters.

The demonstration of this phenomenon, although not limited to that configuration, is made on two large waveguides of section S lg connected by a very narrow duct of section S ch . The reflection and coefficient at the entrance and exit of the narrow duct are given by

R = (Z 2 ch -Z 2 lg ) tan(k ch L ch ) (Z 2 ch + Z 2 lg ) tan(k ch L ch ) -2iZ ch Z lg , (III.2) T = -2iZ ch Z lg cos -1 (k ch L ch ) (Z 2 ch + Z 2 lg ) tan(k ch L ch ) -2iZ ch Z lg , (III.3)
with Z = √ ρκ/S being the acoustic impedance and k being the wavenumbers of the narrow . ch and wide . lg waveguides.

When the section of the wide guide is very large ahead of the channel section, S lg S ch , the section discontinuity results in a large impedance mismatch Z lg Z ch . Almost all of the incident wave is therefore reflected. However, two solutions can be considered according to Eq. III.3 to obtain a total transmission. The first solution is to use the Fabry-Perot resonances of the duct (tan (k ch L ch ) = 0), the resonance frequencies of which are determined by k ch = mπ/L ch , where m is an integer. The other way to cancel the reflection coefficient and thus to have perfect transmission is to fulfill the impedance matching condition between the two guides, namely

Z lg = Z ch . (III.4)
If the large waveguide is filled with a conventional material, e.g., air, the cross-sectional discontinuity can be counterbalanced by filling the narrow channel with a very low impedance metamaterial,

i.e., √ ρ ch κ ch √ ρ lg κ lg , (III.5) since S ch S lg .
Two options are possible if only one of the two parameters is used to lower the effective impedance:

a metamaterial with almost zero bulk modulus κ(ω) → 0 [11][12][13] or a metamaterial with almost zero density ρ(ω) → 0 [14]. However, effective parameters can only be defined within the long wavelength limit compared to the system periodicity L unit . When the bulk modulus of a metamaterial tends towards extremely low values, its acoustic wavenumber increases and therefore its wavelength decreases. Above a certain limit, the wavenumber becomes of the same order of magnitude as the periodicity constant of the structure. Homogenization of the metamaterial can no longer be applied and thus its effective properties cannot be defined anymore. Therefore, the cross-sectional area ratio cannot exceed a limit value in order to observe the phenomenon of supersqueezing and tunneling with a metamaterial with zero bulk modulus.

Zero-density metamaterials do not have this limitation. The zero density regime corresponds to an infinite wavelength leading to a quasi-static pressure field, thus respecting the conditions necessary for homogenization. In their work, Fleury and Alù used a membrane-type metamaterial to achieve the supercoupling condition. With their configuration (geometries and mechanical properties of the membranes), two distinct total transmission peaks were identified. One of them depends on the number of unit cells (on the total length L of the channel) and thus corresponds to a Fabry-Perot frequency. The other transmission peak is independent of the unit cells number and corresponds to the impedance matching condition related to the DNZ regime. It is worth noting here that the mass density should not be zero, since it would imply an infinite impedance mismatch, but its value needs to be in the near zero region in order to compensate the cross-sectional ratio. In the absence of huge cross-sectional change, the impedance matching should be achieved when the bulk modulus is in addition nearly infinite [15].

As a result of the quasi-static pressure field distribution when the narrow channel is filled with a lossless DNZ medium, the impedance matching and the wave tunneling depend on neither the channel length nor the presence of bends, twists, and even absorbing sections, along the channel. Supercoupling is thus ideal for long-distant waveguide coupling with a high transmittance and no phase delay [3,16],

light concentration and harvesting [7,8,17], sensing [18], filtering [1] and nonlinear applications [19,20].

III.1.2 Zero-phase propagation

Both the numerical work on supercoupling with membranes discussed in the previous paragraph, and the work of Gracia-Salgado et al.. [6] on zero density metamaterials obtained from a periodic distribution of structured cylindrical scatterers, have evidenced that zero-phase propagation was made possible with the stretching of the effective wavelength in the DNZ medium.

This Chapter aims at evaluating the feasibility of an experimental observation of this peculiar transmission making use of the PAM developed in the previous Chapter. In the considered case, the absence of the cross-sectional variation will induce impedance mismatch.

We will thus propose a design enabling the measurement of a zero-phase propagation within the PAM, through an in-depth comprehension of the underlying physics, and parametric studies from the lossless case to the full lossy problem, paying considerable attention on both the magnitude and the phase of the transmission coefficient of a L-long PAM surrounded by air

|T | = cos 2 (k(ω)L) + 1 4 Z(ω) Z 0 + Z 0 Z(ω) 2 sin 2 (k(ω)L) -1/2 , (III.6) φ = -atan 1 2 Z(ω) Z 0 + Z 0 Z(ω) tan (k(ω)L) . (III.7)
The different operating regimes of the PAM will be analyzed in a first Section. The study of the dependence of three characteristic frequencies on the number of unit cells and the viscoelastic loss factor will lead to an optimized configuration for the intended application, i.e., the measurement of a zero-phase propagation in a realistic PAM. In the second Section, a twofold procedure including full-wave numerical simulations and experiments will then be used to validate the analytical predictions. Finally we will show that the optimized PAM enables to experimentally evidence a zero-phase propagation, with a sufficiently high transmission to be used in realistic applications. As an example, a sub-wavelength acoustic dipole is designed numerically using that peculiar transmission property.

III.2 Classification of the PAM operating regimes

In order to optimize our design for the experimental observation of a zero-phase transmission with a PAM, the different operating regimes of the metamaterial under consideration are studied analytically, numerically, and experimentally. The PAM is composed of the 102 μm thick plates characterized in the previous Chapter (ρ p = 1400 kg.m -3 , ν p = 0.41, E p = 4.6(1 + 0.13i) GPa), the resonance frequency of which is measured at f r = 438 Hz and analytically estimated at f r = 423 Hz in the lossless case.

III.2.1 Lossless PAM behavior

We first consider an arrangement of N = 1, 3, 6 and 9 plates omitting the viscoelastic and viscothermal losses. The periodicity constant of the system is L unit = 1 cm. In the frequency range of interest, three frequencies relevant for the analysis of the effective density can be identified: the impedance matching frequency f m , the exact zero-density frequency f ρ=0 and the zero-phase frequency f φ=0 . ] coefficients as well as the normalized phase of the transmission coefficient for a finite PAM made of N = 1, 3, 6 and 9 plates respectively. Vertical blue, gray and green lines in (a), (b) and (c) represent the frequencies for the zero-phase, f φ=0 , zero mass density, f ρ=0 , and impedance matching, f m , respectively. The grey mapped area delimits the zero-frequency stopband of an infinite system.

First, the impedance matching frequency is reached at the resonance frequency of a single plate, f m = 423 Hz in the lossless case. At this frequency, the effective density of the metamaterial is equal to that of the surrounding fluid, in this case the air medium, which leads to perfect transmission and zero reflection (III.1(b)). The unit transmission is accompanied by a phase shift related to the number of unit cells and therefore to the length L = N L unit of the PAM. In other words, the phase of the transmission coefficient equals the one produced in an air-filled cavity of same length at f m .

The second important frequency is that at which the effective dynamic mass density cancels out, f ρ=0 . At this particular frequency, zero-phase delay propagation and a constant wave field in the metamaterial are expected, yet the PAM is not impedance matched to the surrounding environment.

Therefore, the amplitude of the transmission coefficient is not unitary. Moreover, although a weaker phase shift is found at f ρ=0 than at the impedance matching frequency f m , propagation without phase change is still not supported by the system. More importantly, both the modulus and the phase of the transmission coefficient depend on the number of unit cells forming the PAM.

The last frequency of interest is the zero-phase frequency f φ=0 , that is the frequency at which the phase of the transmission coefficient is exactly zero. At this frequency, the effective density is negative and equal to ρ(f φ=0 ) = -ρ 0 κ 0 /κ(f φ=0 ). This can indeed also be seen by examining Eq. (III.7). The phase of the transmission coefficient

φ vanishes if either k(2πf φ=0 )L = nπ, n ∈ Z or Z(ω) 2 = -Z 2 0 . The later condition provides ρ(ω) = - ρ 0 κ 0 κ(ω) . (III.8)
The effective bulk modulus being always positive in the case of a PAM (see Chapter II), Eq. (III.8) implies a negative value of ρ(ω). The negative effective density regime (grey mapped areas in Fig.

III.1)
corresponds to a stopband for an infinite system. Although f φ=0 lies in the negative effective density range, the transmission remains considerable due to the small size of the considered PAM. The modulus of the transmission (resp. reflection) coefficient is highly dependent on the number of unit cells, contrary to its phase, which remains constant and equal to 0. When no losses are considered, there is therefore a frequency, close to the zero-density frequency, for which a wave can propagate in the PAM without phase change and regardless of its length.

In the lossless case, a system made of 6 unit cells allows to transmit 90% of the incident wave through the metamaterial at the zero-phase frequency. This number of unit cell is a good compromise between finite size of the system and sufficiently high transmission magnitude. This target configuration is therefore the one considered in the following with the study of the influence of losses.

III.2.2 Effect of the losses

We now analyze the limits of zero-phase transmission in the presence of losses when N = 6. Both viscothermal losses in the waveguide and viscoelasticity of the plastic shims are accounted for. We first start by investigating the dependence of the zero-phase frequency, f φ=0 , on the viscoelastic loss factor β only, the viscoelasticity being the predominant loss source in usual PAM. The transmitted amplitude is reduced because of the losses but remains reasonable to allow experimental observation of this phenomenon. The red curves show the particular case of the selected plates (β = 0.13) for which the zero-phase frequency is obtained at 390 Hz (marked by the blue horizontal and vertical lines). At this frequency, the amplitude of the transmission coefficient is sufficient for the application of zero-phase propagation in realistic situations. In contrast to the lossless case, the zero-phase frequency now varies with the number of unit cells.

Moreover, we represent in

There is no longer a frequency for which, whatever the number of unit cells considered, the phase of the coefficient maintains a constant value. However, it should be noted that the variation remains lower than 8% for metamaterials composed of up to 6 plates, with the considered losses.

III.3 Experimental observation of the zero-phase propagation

Given the previous observations, a 6-unit long PAM is being studied experimentally and numerically in order to validate the analytical results (twofold validation).

III.3.1 Numerical modeling of the PAM

First, we perform a full-wave numerical simulation in a 2D-axisymmetric configuration using the finite element method. The plates are modeled as elastic solids of thickness h p , filled with a viscoelastic material of aforementioned properties, clamped at the outer boundary of the guide, and interacting with a fluid domain on both sides. The vibroacoustic coupling of the plates is thus fully accounted for.

Frequency-dependent density and compressibility (derived from Eq. (II. 19)) are assigned to the fluid domains to account for the viscothermal losses in the vicinity of the circular duct walls. The system is numerically meshed with 4961 structured quadrangles and is excited by a plane wave incident from the left end of the structure. As the maximum frequency of the study is lower than the cut-off frequency of the duct, only the plane mode is excited. A plane wave radiation condition is therefore applied at the other end of the guide in order to achieve an anechoic termination and thus to prevent from spurious reflection. The scattering parameters, and the effective properties are then obtained from four pressure measurements, two upstream and two downstream of the metamaterial, as measured experimentally.

III.3.2 Experimental demonstration of the acoustic wave propagation without phase change

The metamaterial is mounted in the impedance tube presented in Section II. In the propagative regime, the real part of the effective dynamic mass density is positive while its imaginary counterpart is negative, thus fulfilling the causality principle. In contrast, both real and imaginary parts of the density are negative in the forbidden stopband. Moreover, the real and imaginary parts of the density are of the same order of magnitude over the frequency range of interest, contrary to the bulk modulus, the imaginary part of which is much smaller than its real part (b).

Thus, most of the losses can be attributed to the complex effective density.

III.3.3 Applications of zero-phase propagation: control of the directivity

Since propagation without phase change is supported within a PAM, a potential use of this kind of metamaterials to control the outgoing wavefront is also possible. For example, imagine an "aug-mented" metamaterial consisting of a lateral juxtaposition of several PAMs, each composed of a different number of unit cells. A plane wave incident on that "super-metamaterial" can theoretically emerge distorted since the zero-phase transmission will not occur on the same length in each PAM.

Alternatively, an acoustic dipole can also be designed using a propagation without phase change.

A dipole source can be approximated by two out-of-phase monopoles of equal flow rates, resulting into two symmetric lobes in the polar directivity pattern. One possibility to reach this condition is to use two waveguides, excited by the same incident plane wave and opening out into a semi-infinite space. One of the waveguide is filled with the PAM, the other being a coiled-up Fabry-Perot resonator (FPR). By designing the length of this FPR such as its first resonance coincides with the zero-phase frequency of the PAM, a phase shift of π will be encountered by the wave propagating in the FPR, while there will be no phase change in the PAM. As a result, the acoustic fields at both waveguide boundaries are out-of-phase at f φ=0 . Then, the output flow rate of each guide must be adjusted, i.e., the attenuation and the cross-section of the Fabry-Perot resonator must be corrected, so that the absolute value of the two output flows is equal. The full-wave simulation displayed in to that of the PAM to ensure an equal flow at the output of both guides. To reproduce the sound attenuation of the PAM, the Fabry-Perot waveguide is filled with a porous medium (porosity 0.96, flow resistivity 2847 Pa.s.m -2 , viscous length 273 μm, thermal length 672 μm, and tortuosity 1.07).

This porous material has a viscoinertial transition frequency (transition between the diffusive and propagative regimes) of f Biot = 334 Hz [21][22][23] and is therefore efficient at the dipole operating frequency f φ=0 = 489 Hz. 

III.4 Conclusion

This Chapter has evidenced the feasibility of achieving zero-phase propagation within a PAM. A careful investigation of the effects of the design parameters has been carried out with a particular attention paid on the impact of the viscothermal and viscoelastic losses on the zero-phase propagation regime of a PAM. We have shown that the zero-phase propagation appears at frequencies in the negative mass density regime. In this regime, corresponding to the stopband, the amplitude of the transmission coefficient depends on the number of the unit cells in the system. In contrast, the phase of the transmission coefficient remains constant in the lossless case. Therefore a compromise between the number of unit cells and the variation of the amplitude should be reached. In this case, we consider systems made of N ≤ 6, leading to a lossless transmission amplitude of |T | ≥ 0.9. Once the losses are introduced in the system, a weak dependence of both the zero-phase frequency, f φ=0 , and the phase of the transmission coefficient, φ, on the number of unit cells and the amount of losses is observed. In the two cases, the variation is less than 10%. These analytical results have been numerically reproduced by full-wave simulations and experimentally validated by measuring the scattering parameters of a PAM made of N = 6 plates as well as the effective mass density. The agreement between the analytical predictions, the numerical simulations and the experimental results are found very good. The results of this Chapter pave the way to design devices based on PAM with zero-phase propagation. As an example, a subwavelength acoustic dipole has been designed through numerical simulations. The content developed in this Chapter was published in Applied Physics Letter: "Zero-phase propagation in realistic Plate-type Acoustic Metamaterials" [24].

IV.1 Introduction

The detailed study of the density near zero regime of a plate-type acoustic metamaterials, carried out in the previous Chapters, has highlighted the possibility of experimentally demonstrating zerophase propagation due to the stretching of the wavelength and the high phase velocity generated in such metamaterials. Nevertheless, the frequency at which this specific transmission occurs lies in the negative density regime, i.e., in the PAM stopband. In addition, the metamaterial is not impedance matched to the surrounding environment, which prevents unitary transmission. Consequently, the requirement of a supercoupling effect, that is perfect transmission without phase change, cannot be met. The expressions of the amplitude and phase of the transmission coefficient, rewritten to make the effective parameters appear explicitly,

|T | =   cos 2 ω ρCL + 1 4 ρC 0 Cρ 0 S 0 S + ρ 0 C C 0 ρ S S 0 2 sin 2 ω ρCL   -1/2 , (IV.1) φ = -atan 1 2 ρC 0 Cρ 0 S 0 S + ρ 0 C C 0 ρ S S 0 tan ω ρCL , (IV.2)
give only two solutions to meet the supercoupling condition.

The first one consists in compensating the extreme value of the density by an important crosssectional ratio, S/S 0 → 0, between the surrounding medium of section S 0 and the PAM of section S, as done in the work of Fleury and Alù [1] that was discussed in the previous Chapter. Please note that if a metamaterial with zero compressibility is considered instead of DNZ, the solution to obtain a supercoupling will still be to have a strong cross-sectional difference, but with an inverse ratio S 0 /S → 0, i.e., narrow surrounding waveguides connected to a large waveguide filled with the Compressibility Near Zero medium [2].

The second alternative, which does not require a change in cross-section (S = S 0 ), is to transform the DNZ medium into a medium with an effective density and compressibility close to zero. Similarly to their electromagnetic counterpart, the Epsilon and Mu Near Zero (EMNZ) metamaterials [3][4][5][6],

DCNZ media have the particularity of being able to satisfy both the zero phase propagation, associated with the static-like DNZ field distribution, and the impedance matching condition to free space, given for a normal incidence by Z(ω) = ρ(ω)/C(ω)/S = Z 0 . This can be achieved by combining two types of resonators, that is resonators giving rise either to almost zero compressibility [2,7] (resp.

an almost zero permeability [8][9][10], µ ≈ 0) or to an almost zero density (resp. to an almost zero permittivity [11][12][13][14][15][16], ≈ 0) .

Another interesting way to design EMNZ structures is to use doping, i.e., a control of the material macroscopic parameters by embedding locally appropriate inclusions/impurities, in an ENZ metamaterial [17][18][19][20]. Liberal et al. [21] showed that the inclusion of a single well-designed impurity can transform the effective properties of an ENZ body into those of an EMNZ, thus leading to full transmission without phase delay, regardless of the host geometry and of the location of the doping impurity. It is important to note here that homogenization remains possible even with a small number of potentially large impurities thanks to the DNZ effective stretching of the wavelength [21]. Moreover, although there is almost no spatial variation, the field still oscillates in time. The wavelength enlargement is accompanied by a decoupling of the spatial and temporal field variations.

The objective of this Chapter is to transpose the doping phenomenon to acoustics and implement it to transform the PAM, i.e., a DNZ body, into a DCNZ metamaterial (ρ(ω) ≈ 0, C(ω) ≈ 0), thereby enabling supercoupling.

A first Section will be devoted to a numerical study of the feasibility of an acoustic analogue of the photonic doping effect on a two-dimensional DNZ system. Then, we will show that our onedimensional lossless PAM can be efficiently doped using a single doping impurity: a tuned Helmholtz resonator. Finally, the effect of both the dopant location and losses will be discussed in a final Section, accompanied by experiments.

IV.2 Evidence of acoustic doping

The strong analogy between the constitutive equations of acoustics and of the transverse magnetic mode in electromagnetism, enables in many cases to adapt phenomena observed with light to sound waves. This Section aims at evidencing numerically an acoustic equivalent to that of photonic doping on a random DNZ medium.

We start by a full-wave simulation of the doping phenomenon on a two-port random 2D medium. We propose to reproduce the DCNZ behavior by doping the DNZ host using only a single impurity, i.e., by attributing different medium properties only to a small part of the geometry. We choose here host is H = 10.1 cm, that is the width for which the system effective bulk modulus is the largest, i.e., an almost zero effective compressibility, while the zero effective density remains unchanged. It is worth noting here, that the sensitivity of doping to the dopant geometry directly depends on the variation of the bulk modulus. Sharp variation requires a high degree of design precision to achieve a maximum value of κ(ω). Figure IV.1(e) depicts the pressure field obtained for the doped DNZ host.

The system "DNZ & dopant" exhibits a similar response to that of a medium integrally filled with a DCNZ material, thus evidencing acoustic doping. Videos of the harmonic evolution of the pressure field in each cases can be found in Appendix D (the use of Acrobat Reader is required to see the videos).

IV.3 Doping of a lossless PAM

Now that we have proven the existence of the doping analogue in acoustics, we will apply this phenomenon to our plate-type acoustic metamaterial, first in the lossless case. We consider a periodic arrangement made up of 20 units of the plastic shims used previously and spaced with a periodicity constant of 1 cm. Impedance matching, zero-density, and zero-phase propagation occur at three different frequencies, respectively f m = 422 Hz, f ρ=0 = 414 Hz, and f φ=0 = 405 Hz. As expected, an impedance mismatch at the zero-phase propagation frequency prevents such a PAM from total transmission.

IV.3.1 Design of the doping element

Doping the PAM should result in shifting both the zero-phase and the impedance-matching frequencies towards the zero-density one. Therefore, doping should allow to achieve supercoupling effect with a PAM even without a large section change. As evidenced in Section IV.2, doping a DNZ medium requires to produce a zero compressibility, that is an infinite bulk modulus, simultaneously to the zero density.

Since the effective bulk modulus is mainly sensitive to parallel elements (quarter wavelength resonators, side holes, Helmholtz resonators) [7,[22][23][24], a doping inclusion mounted in parallel to the waveguide is considered in this system. The chosen dopant is a Helmholtz resonator, which is easily tunable in practice and is of subwavelength dimensions in contrast to side holes or quarter wavelength resonators that require large volumes in this frequency range.

The elementary transfer matrix of this element is given by

T HR = 1 0 1/Z HR 1 , (IV.3) with Z HR = 1 i cos(k n L n ) cos(k c L c ) -Z n k n ∆L cos(k n L n ) sin(k c L c )/Z c -Z n sin(k n L n ) sin(k c L c )/Z c sin(k n L n ) cos(k c L c )/Z n -k n ∆L sin(k n L n ) sin(k c L c )/Z c + cos(k n L n ) sin(k c L c )/Z c , (IV.4)
the impedance of the Helmholtz resonator, where ∆L stands for the correction length of the neck accounting for the radiation at both ends

∆L =0.82 1 -1.35R n /R c + 0.31 (R n /R c ) 3 R n (IV.5) +0.82 1 -0.235R n /R a -1.32 (R n /R a ) 2 + 1.54 (R n /R a ) 3 -0.86 (R n /R a ) 4 R a .
(IV.6)

The total transfer matrix T of the N unit cells metamaterial, with a dopant element placed in the 

= (T cav • T p • T cav ) N/2 • T HR • (T cav • T p • T cav ) N/2 p U 0 . (IV.8)
To find the optimal dimensions for achieving doping, we vary one parameter of the geometry, here A zero-density accompanied by a maximum of bulk modulus is found at f = 414 Hz. At this particular frequency, the total system behaves as a DCNZ metamaterial as evidenced by the scattering parameters. The zero value of the transmission phase occurs with a zero reflection and an unitary transmission, i.e., non-delayed propagation and impedance matching are combined. We thus confirm the possibility to realize supercoupling with a PAM using doping.

Figures IV.3 (g,h)

show the total pressure field, respectively without and with the doping impurity, to illustrate the impact of the dopant at the zero-phase frequency. In both cases, we observe a quasi static field distribution, giving rise to a non-delayed propagation either with an impedance mismatch or with a full transmission. In the latter case, the pressure field is perfectly symmetric with respect to the PAM, which is characteristic of the supercoupling effect. In contrast, although zero-phase propagation is satisfied when doping is not reached, the pressure field is not symmetric (see Fig. 2(g))

due to the non-unitary transmission (impedance mismatch).

IV.3.2 Independence of the dopant location

Another property of interest of DCNZ doping is its independence from the dopant location. Whatever the Helmholtz resonator location in the PAM, doping should occur [21]. To illustrate this property, It is worth noting here that the system remains reciprocal despite the breaking of the symmetry.

The reflection coefficient of a wave incoming the system from the left R + is no longer equal to that of a wave incoming from the opposite side R -. As a result, the scattering parameters now read as

T = 2 T 11 -T 12 /Z 0 -Z 0 T 21 + T 22
, (IV.9)

R + = T 11 -T 12 /Z 0 + Z 0 T 21 -T 22 T 11 -T 12 /Z 0 -Z 0 T 21 + T 22 , (IV.10) R -= -T 11 -T 12 /Z 0 + Z 0 T 21 + T 22 T 11 -T 12 /Z 0 -Z 0 T 21 + T 22 , (IV.11)
and the effective parameters as [25] Z(ω

) ± = ±Z 0 (1 -R + R -+ T 2 ) 2 -4T 2 (1 -R + )(1 -R -) -T 2 (±1 -iW ) , (IV.
12) The choice of sign for Z(ω) ± and k(ω) are dictated by the fact that for a passive system the real part of Z(ω) must be positive. The sign of W must be positive within the quasi-static limit and may fluctuate at higher frequencies to ensure a continuous function of the frequency.

e ik(ω)L = 1 -R + R -+ T 2 ± (1 -R + R -+ T 2 ) 2 -4T 2 2T , (IV.13) with W = ± √ R + -R -/ (1 -R + R -+ T 2 ) 2 -
Zero-phase total transmission is observed in both configurations at f = 414 Hz. The location of the dopant does not affect the supercoupling condition. The two systems respond with a similar acoustic signature in terms of scattering and effective properties as evidenced in Fig. IV.4. This independence on the location is due to the large wavelength in the PAM and allows a high freedom in the design of the system.

IV.4 Doping of a lossy PAM

We now analyze the robustness of doping on the presence of losses. The full lossy problem is solved with both the viscothermal losses in the main waveguide as well as in the Helmholtz resonator and the viscoelastic losses in the plates.

The number of plates is reduced to 6, so as to control the overall viscoelastic losses To confirm the analytical and numerical simulations, the scattering of the real doped system is also measured using the set-up previously presented with a modified plate holder including the adjustable Helmholtz resonator as shown in Fig. IV.5.

In the following, solid lines, dashed lines and circle symbols represent the analytical, numerical, and experimental results respectively, the agreement of which is found to be very good. The careful design of the dopant thus allows to strongly reduce the frequency offset between zerophase, maximum of transmission, and zero-density frequencies. As a result the zero-phase propagation frequency f φ=0 gets closer to f m . In contrast to the lossless case, the losses prevent from a perfect coincidence of maximal transmission and zero-phase propagation frequencies. As such, losses that are inherently present in any acoustic system can clearly limit the effectiveness of doping. Nonetheless, it is worth noting here that the doping condition allows to have a non-delayed propagation with a 13% higher transmission (according to the analytical and numerical, and 40% according to the measurements), the measured (resp. analytical and numerical) magnitude of which goes from 0.42 (resp. 0.47) without dopant to 0.59 (resp. 0.53) in the doped configuration. Reducing the losses, i.e., finding plates with lower viscoelastic losses, would lead to a better efficiency of the process.

IV.5 Conclusion

This Chapter demonstrates theoretically and numerically and shows experimentally the evidence for acoustic doping, i.e., the modification of the effective parameters of a complex medium by incorporating a single well-designed impurity. This equivalent phenomenon is based on previous works on the electromagnetic equivalent: the photonic doping of Epsilon Near Zero media. Based on the analogy between the constitutive equations of electromagnetism and acoustics, we have adapted the concept to acoustics and revealed the specific methodology to optimize the effect with the doping of a DNZ metamaterial, highlighting the limitation due to losses.

By combining analytical and numerical tools, we have unveiled the possibility of doping an entire DNZ medium, here a PAM, through the careful design of a single embedded element, a Helmholtz resonator. The dopant can be designed on the basis of its effective bulk modulus value or its geometry. As a result, the overall effective compressibility of the system is changed, and the behavior of the PAM switches from DNZ to Density and Compressibility Near Zero (DCNZ) at the exact zero density frequency of the non-doped system, thus combining acoustic wavelength stretching, zero-phase propagation and impedance matching. Moreover, the DCNZ condition is achieved independently of both the host geometry and the dopant location. Doping is therefore a good alternative to the large cross-sectional change required to observe supercoupling with a PAM, since it requires only one element to be added to the system. The realistic design and manufacture of this device is therefore greatly simplified.

In addition, the effect of losses on doping is being studied. We have found that losses, mainly those of plate viscoelasticity for a PAM, prevent from achieving exact zero compressibility together with zero density. Although the doping efficiency of the system is limited by the losses, a noticeable enhancement in the zero-phase transmission amplitude is experimentally evidenced. In the considered case of a 6-unit long PAM, doping significantly reduces the frequency offset between the zero-phase, zero-density, and maximum of transmission frequencies. As a result, the transmission amplitude of the zero-phase wave is increased by 13% compared to the non-doped system. The choice of plates with lower losses would increase the effectiveness of doping. Although complex geometries with sharp angles may restrict the use of PAMs, the doping phenomenon can be applied to any other DNZ systems, thus enabling a high freedom in the design as well as the filling of more complex geometries such as the 2D "LAUM" shape.

This work paves the way for further engineering of acoustic metamaterials and has the potential to lead to several new applications such as acoustic tunneling devices, which were previously limited by the transmission drop induced by the impedance mismatch at the DNZ interface, or other acoustic elements aiming at controlling always further the sound. Another interesting application that could result from doping is the phenomenon of hiding or cloaking, which will be discussed in the next Chapter. This work has been published in Physical Review B: Rapid Communication, "Doping of a plate-type acoustic metamaterial" [26].

V.1 Introduction

The extraordinary large phase velocity, generated in the near-zero density regime of the PAM, revealed interesting behaviors discussed in Chapters III and IV, leading to zero-phase propagation and a supercoupling effect. The stretching of the effective acoustic wavelength should also enable to dissimulate an obstacle inside the PAM, since the embedded object would be small compared to the wavelength, and thus to realize cloaking devices.

Cloaking is perhaps one of the most intriguing phenomenon achieved through the development of metamaterials. Several strategies [1,2] have been considered to reach the quest of invisibility including both passive designs based on transformation acoustics, carpet cloaking, or extreme parameters and active ones [3] including parity-time symmetry designs [4,5]. Transformation acoustics consists in using a coordinate transformation [6][7][8][9][10], as it is done in transformation optics [11,12], to deeply control the propagation of an acoustic wave. The aim is to reroute the incident wave around the obstacle to avoid any disturbance of the external field, including scattering and shadowing. A metafluid, i.e., a fluid-like material, with a controllable anisotropic (directionally varying) density and a controllable inhomogeneity (spatially varying properties) is required to achieve that goal [13]. These particular features can be obtained with a careful design of metamaterials based on either a solid inclusion-type unit cell (inertia metafluids) [7,[14][15][16][17] or an interconnected network of solid bridges (pentamode metafluids) [18][19][20][21]. An alternative path to attain cloaking, is to use topological-optimization to control wave interference in order to cancel the acoustic scattering induced by the presence of an obstacle [22,23]. Another cloaking strategy, known as carpet or ground cloaking, is to cover an object placed on a reflective surface with a designed shield to make it invisible [24][25][26]. The main limitation of this "carpet cloaking" is the large size of the device compared to the object to be masked. The development of thin metasurfaces overcomes this difficulty by using either Helmholtz resonators [27][28][29] or membranes [30,31].

An additional approach is to use extreme parameters [32,33] to cloak an obstacle from an incoming field. Since the acoustic wavelength is strongly stretched in zero-index metamaterials, the presence of an obstacle inside the DNZ medium becomes almost imperceptible to an external observer. Different designs can be considered. Zhao et al. proposed a device based on elastic copper pieces [33],

which allows at one particular frequency to achieve extraordinary transmission while maintaining an unchanged wave front and phase in presence of scatterer. Gu et al. states that cloaking is achievable in a membrane-type metamaterial and reports numerically an enhanced transmission through obstacles embedded in a two dimensional square arrangement of lossless membranes [34]. Nevertheless, a trade-off has to be made between the transmission magnitude and the phase shift induced by the membranes array. Yet, a perfect cloak requires canceling the effect of the object to be hidden both in amplitude and phase. Conciliating the static-like field distribution and the impedance matching condition offered by acoustic doping (developed in the previous Chapter) should provide a way to exceed this limit and achieve cloaking with a periodic arrangement of plates.

The purpose of this Chapter is to assess the feasibility of such an application with our 1D PAM.

It will be divided into two main Sections, including numerical simulations and analytical predictions as well as experimental validation.

We investigate in a first Section the ability to perfectly cloak a diaphragm using a one dimensional lossless PAM. Two distinct strategies are envisaged. The first consists in using the diaphragm itself as an impurity to realize doping and thus cloaking, while a configuration with a Helmholtz resonator, similar to that investigated in Chapter V, is used to dope the system, leading to a full cloak of the diaphragm in the second case. As in most acoustic systems, viscothermal and viscoelastic losses cannot be neglected and are moreover known to potentially lead to the drastic annihilation of the expected phenomenon [35]. In the case of doping, even if the efficiency is also limited by the losses, an enhanced transmission at the zero-phase frequency has been reported. The impact of losses on the effectiveness of cloaking for the two strategies considered is studied here.

Giving the difficulty of achieving cloaking with a realistic PAM, emphasis is placed on the possibility of hiding a diaphragm into a PAM in the second Section. The strategy is different from cloaking.

Instead of trying to shield the diaphragm in the PAM to turn the whole system undetectable, we use the peculiar DNZ property to maintain the same acoustic behavior of the PAM (scattering and phase)

with and without the embedded diaphragm. In this case, perfect transmission is no longer required, and a realistic (lossy) application can be considered. Finally a hiding zone is reported experimentally.

V.2 Cloaking

We first study the cloaking capability of our 1D PAM. We start by presenting the design of the obstacle to be masked, its analytical modeling as well as its acoustic behavior. Then, we study the cloaking efficiency from the lossless to the full lossy system and for the two doping configurations considered, that is with only the diaphragm impedance control or with the addition of a Helmholtz resonator.

V.2.1 Design of the object to cloak

Among the many possibilities of obstacles to conceal, the choice made in this study is a rigid diaphragm of orifice radius R d (sketched in Fig. V.1 (a)) because of the ease of controlling the scattering properties and of manufacturing. Depending on its aperture, the diaphragm switches from transparent (transmission close to 1 for large R d ) to opaque (reflection close to 1 for small R d ), thus adjusting its influence on scattering.

The rigid diaphragm is modeled as a short waveguide of radius R d and length L d = 2 mm. An end correction ∆L d = 8 3π 2R d accounting for the radiation at both ends is considered and leads to an elementary transfer matrix of the form 

T d = 1 iZ d k d L d + iωρ 0 ∆L d i Z d k d L d + iω [κ 0 ] -1 ∆L d 1 , (V.1)

V.2.2 Lossless system

In a first step, we analyze the lossless case, i.e., when neither the viscoelastic losses of the plates nor the viscothermal losses in both the diaphragm orifice and the waveguide are accounted for. The diaphragm to be concealed is embedded in the middle of a 6-unit long PAM, i.e., between the 3rd and 4th plates. The two cloaking configurations under examination are optimized to find the ideal geometry to cloak the diaphragm. The efficiency of these lossless optimized systems is then tested.

V.2.2.1 Cloaking configurations

The first approach, depicted in Fig. V.2(a) is to use the diaphragm itself as a dopant to match the total system impedance to the surrounding waveguide impedance. This impedance matching condition would lead to full transmission, zero reflection, and zero-phase propagation, as if the diaphragm was not present in the waveguide.

The total transfer matrix characterizing the whole system reads as The total transfer matrix can then be defined as follows

p U L = (T cav • T p • T cav ) 3 • T d • (T cav • T p • T cav ) 3 p U 0 . (V.
p U L = (T cav • T p • T cav ) • T HR • (T cav • T p • T cav ) 2 • T d • (T cav • T p • T cav ) 3 p U 0 . (V.3)
The cloaking condition is found in with zero-phase propagation could be achieved.

V.2.2.2 Cloaking efficiency

The two cloaking configurations being now designed, an analytical (solid line) and a three dimensional The pressure field is constant (quasi-static distribution) along the system in the "Helmholtz doped configuration". In contrast, the pressure varies within the metamaterial in the "self-doped configuration" (when the diaphragm itself enables cloaking). That change in the pressure field is however imperceptible to an outside observer.

Although the presence of the diaphragm becomes imperceptible in terms of scattering magnitude, both configurations do not reproduce the correct apparent phase produced by wave propagation.

Indeed, measuring the phase advance of a wave propagating over a length L = 6 cm in an air-filled waveguide or through the proposed designs (PAM + diaphragm + potentially an additional dopant) lead to different results. The current configurations give a non-delayed propagation, that is ∆φ ≈ 0, while the phase shift to be reproduced with the device should be ∆φ = k 0 L = 2πf φt=0 /c 0 (with f φt=0 = 88.3 Hz or f φt=0 = 403 Hz depending on the configuration) to account for the propagation.

The realization of a full cloak then requires the addition of another constraint. As the whole system (PAM & obstacle) must be undetectable both in terms of scattering and phase, the total length L of the PAM must be chosen so that propagation over a L-thick slab of filling material (here air) results in a phase advance of ∆φ = m2π, with m an integer. Consequently, the length of the PAM must be

L opt = 2mπ c 0 ω φt=0 , (V.4)
that is L opt = 3.88 m for the first configuration, and L opt = 85.11 cm for the second. As indicated in Chapter II, the increase in periodicity would not greatly affect the DNZ regime of the PAM and in particular the zero-phase propagation. The geometries described in Fig. V.4 can then be easily adapted to the optimal length of the device by changing the periodicity only. Nevertheless, the overall dimensions of the cloaking device are no longer subwavelength.

V.2.3 Lossy system

Whilst cloaking seems to occur in lossless PAMs, we now consider the case of a realistic system, with the impact of losses, the role of which has been crucial in the designs presented in the previous Chapters. realistic diaphragm with such orifice then totally annihilate the cloaking effect.

In the second configuration, the viscoelasticy of the plates limits the doping efficiency as already observed in Chapter V. As a result, the presence of the system in the waveguide induces a scattering (non zero reflection). Losses thus also prevent cloaking in the second configuration.

V.2.4 Feasibility of cloaking

To summarize on the feasibility of cloaking, despite claims in the literature on the subject, this work

shows that realistic applications of cloaking with membranes or plate-type metamaterials are in fact very limited. First of all, the presence of losses in the system prevents total transparency, i.e., perfect transmission. Moreover, although the stretching of the effective wavelength produces a static-like field distribution making the obstacle imperceptible in terms of apparent phase to an outside observer, full cloaking requires, on the contrary, reproducing the phase of an air-filled waveguide of the same length, as if the object to be cloaked and the occultation device were both non-existent. Full cloaking therefore requires specific lengths of the PAM, which are for low frequencies very large, i.e., no longer sub-wavelength.

V.3 Hiding

Although PAM can lead to full cloaking in the lossless case, losses in both conventional and doped PAM have been shown to prevent the peculiar propagation intended. Another application of PAMs is now studied: the phenomenon of hiding. The philosophy of hiding differs from that of cloaking in the sense it does not aim to render an external field unchanged by the presence of both the obstacle and the masking device. The goal here is to use the stretch of the effective wavelength in the metamaterial to hide the diaphragm (or any other obstacle) inside, without disturbing the acoustic scattering of the PAM itself, i.e., by maintaining a constant magnitude of reflection and transmission at the zero-phase frequency f φ=0 .

V.3.1 Centered diaphragm

The phase shift induced by the presence of the diaphragm in a waveguide (observable in Fig.

V.1(d))
can be inhibited by the presence of a PAM in the DNZ regime. A twofold procedure, including 2D axisymmetric full-wave simulations (dashed line) and experimental measurements (circle symbols), is followed to valid the TMM-based analytical predictions. A very good agreement between the numerical results, the analytical calculation, and the measurements is found. The weak discrepancies on the reflection coefficient are attributed to a remaining variability on the unit cells, due to either the clamping condition or the intrinsic properties of the plates as previously observed.

The presence of the DNZ metamaterial makes it possible to lower and even to cancel the scattering effect induced by the diaphragm. The total system (metamaterial and diaphragm) indeed achieves the non-delayed propagation property. The zero-phase frequency of the whole system f φt=0 depends directly on the impedance of the obstacle, related here to the open area ratio R d /R a . As shown in At the zero-phase frequency of the system with a R d = 4 mm diaphragm, f φt=0 = 373 Hz, the amplitude of the measured (respectively analytical and numerical) transmission and reflection coefficients are 0.45 (resp. 0.47) and 0.75 (resp. 0.57), and are equal (approximately for experimental data) to that of the metamaterial alone at its zero-phase frequency f φ=0 , respectively 0.42 (resp. 0.47) and 0.79 (resp. 0.57). For the 1 mm diaphragm, the scattering parameters of the total system and of the metamaterial alone at their respective zero-phase frequencies f φt=0 and f φ=0 are not exactly the same with a transmission of 0.39 (resp. 0.38) and a reflection of 0.59. (resp. 0.62). The efficiency of the hiding phenomenon is therefore restricted when the impedance of the obstacle is excessively large. A trade-off need to be found between the diaphragm scattering power related to its acoustic impedance, i.e., its opening area ratio, and the efficiency of the PAM to hide the scatterer, as investigated in and equal to those of the metamaterial alone at f φ=0 as long as the ratio orifice/total cross-section remains larger than 12% (grey mapped surface). Due to the slight change of the zero-phase frequency in that range, a small phase shift is noticeable for the PAM alone at the zero-phase frequency of the whole system f φt=0 in Fig. V.7(c). Beyond that 12% ratio, the impedance of the diaphragm becomes too large. The zero-phase frequency of the whole system is consequently significantly down shifted.

The 12% cross-sectional area ratio corresponds to a variation of f φt=0 of 10% with respect to the zero-phase frequency of the metamaterial alone f φ=0 . Due to this frequency shift, the DNZ power of the PAM is no longer sufficient to allow a proper hiding phenomenon. The system behaves like two distinct DNZ media separated by an obstacle of a given impedance. The scattering amplitude then varies drastically with the variation of f φt=0 . Influence of the diaphragm aperture ratio on its scattering parameters (analytically calculated): Variation of the zero-phase frequency (a), evolution of the amplitude of the scattering parameters: transmission (black, left axis) and reflection (red, right axis) at the zero-phase frequency of the total system f φt=0 (b) and phase of the transmission coefficient of the metamaterial alone at the zero-phase frequency of the global system f φt=0 for the different diaphragm radii (c). The shaded area shows the aperture range for which the amplitude of the scattering parameters is independent of the orifice radius.

However, it is interesting to note that the hiding of a diaphragm (or any other obstacle) is possible with a lossy DNZ metamaterial, as soon as the impedance of the object to be hidden is well controlled.

In this periodic arrangement of plates, despite the small variation of the zero-phase frequency (10% in the operating range) which results in a small phase change, the effect of the diaphragm is very limited. It is then possible to hide the diaphragm in the metamaterial in this frequency range even in the presence of losses.

V.3.2 Hiding zone

Moreover, the stretch of the effective wavelength in the PAM should allow to expand the hiding phenomenon to different locations of the scatterer. The presence of a non centered obstacle causes an asymmetry in the system. It is then necessary to differentiate the reflection coefficients of the waves incident from each side of the device. The reflection coefficient R + refers to the incidence from the left, while R -refers to the incidence from the right. Since only one obstacle is considered here, the reflection R + generated by an obstacle placed between the 5th and 6th plates for a wave incident from the left is equivalent to the reflection R - generated by an obstacle placed between the 1st and 2nd plates for a wave incident from the right. In the following only the coefficient R + will thus be presented. In addition, it is worth noting here that the system preserves its reciprocity condition, but not the symmetry. Sketches of the considered system (a,d), magnitude of the scattering parameters (transmission, black, left axis and reflection, red right axis) at the zero-phase frequency of the system (b,e) and zero-phase frequency of the system (c,f). The circles, dots symbols and dotted lines represent respectively the experimental, analytical data for the total system and the experimental amplitude of the scattering parameters of the metamaterial alone at its zero-phase frequency.

In the lossless case, no matter where the 4 mm radius diaphragm is along the metamaterial, the amplitudes of transmission and reflection remain constant and equal to those of the metamaterial alone. The hiding phenomenon covers the entire structure which acts as a homogeneous and almost symmetric material (R + ≈ R -≈ R). As soon as the viscothermal and viscoelastic losses are accounted for, the asymmetry of the system becomes much more visible, According to these results it is therefore possible to define a hiding zone corresponding to the whole metamaterial. The diaphragm can be dissimulated when placed between any plates, as long as the losses and impedance of the object to hide are controlled.

R + = R -,

V.4 Conclusions

In this Chapter, both the cloaking and hiding efficiency of a plate-type metamaterial device have been investigated, using the DNZ regime associated with such systems. The study has been restricted to the case of a thin rigid diaphragm to be hidden due to the ease of manufacturing, but can nevertheless be extended to any other obstacle.

We have shown that acoustic doping can be used to attain full cloaking in the lossless case, i.e., canceling any scattering from the diaphragm (total transmission, zero reflection, and zero-phase), by using either the impedance of the element to be concealed or an external impurity such as a designed Helmholtz resonator. We have reported that both configurations have transformed the DNZ regime into DCNZ, thus fulfilling the requirement for cloaking. However, the effectiveness is significantly altered when the full viscothermal and viscoelastic losses are turned on. In addition, the length of the DNZ medium required, for the apparent phase to be equal with and without the cloaking device, results in a system size that is no longer subwavelength. In the self-doped configuration, the diaphragm aperture necessary to have a strong enough impedance to dope the system is so small that the viscothermal losses in the orifice make the diaphragm opaque. When doping is accomplished using a Helmholtz resonator impurity, the viscoelastic losses have been shown to avoid impedance matching, thus preventing full transmission and cloaking.

Accounting for the difficulties of obtaining cloaking condition using a device based on a 1D realistic PAM, we have shown that instead of using the PAM to suppress any scattering of the external sound field, the effective wavelength stretch produced by the DNZ regime of the PAM can be used to hide an obstacle inside. In doing so, the acoustic behavior of a medium filled with DNZ material (here the PAM) remains unchanged regardless of whether an obstacle is present inside or not, as soon as its impedance is controlled. Furthermore, we have shown that the long effective wavelength allows to change the position of the obstacle inside the metamaterials without affecting the effectiveness of the hiding at all in the lossless case, and with only a slight impact on the reflection in the lossy case. We were thus able to report analytically, numerically and, experimentally the presence of a hiding zone along the entire PAM. These promising results could help in the design of new acoustic metamaterials and pave the way for improved hiding strategies using DNZ metamaterials involving plates or membranes.

Chapter VI

General conclusion

In conclusion, this work is devoted to the near-zero index regime in a 1D Plate-type Acoustic Metamaterial and the underlying applications offered by the stretching of the effective wavelength characteristic of these media.

By the mean of analytical calculation, numerical simulation and experimentation, we first designed a PAM evidencing some of the specific features related to this stretching. In particular we studied and measured three main phenomena: (i) the zero-phase propagation (ii) the acoustic doping of a PAM allowing to meet the requirements of supercoupling, and (iii) the effectiveness of a PAM in cloaking or hiding an obstacle. Throughout this work, we have paid great attention to the study and demonstration of the limitation induced by the inherent losses, which are too often neglected in many studies even though they can have drastic effects if they are not properly accounted for as a key element of the design.

This sixth chapter gathers a general conclusion, a discussion and some prospects to the presented work. We also quickly discuss and present some side works that have been done during this PhD.

As each Chapter ends with its own conclusion, we do not recall here the details of the results obtained, but give a general overview of the work. 

Overview

VI.1 Conclusion

VI.1.1 Summary of the main results

In this PhD thesis, we studied various effects of the wavelength stretching in acoustics near-zero index media, with a simple device: a one dimensional Plate-type Acoustic Metamaterials. The strong dispersion produced in the periodic arrangement of clamped elastic plates around the resonance, mostly affects its effective dynamic mass density which varies with frequencies from negative to positive

values. An hybridization stopband, corresponding to a negative effective density regime, is opened below the resonance, while a positive density is found in the passband. A Density Near Zero regime is therefore observed at the transition between the stopband and the passband, occuring near the plate resonance. This almost zero density is accompanied by a high phase velocity. As a result, the effective wavelength is stretched and becomes large compared to the system. The acoustic pressure field can therefore present a quasi-static distribution allowing zero-phase propagation. This latter property can be used to tailor the directivity of a source, as evidenced numerically in Chapter III with the design of an acoustic dipole with a 1D PAM. The large stretching of the effective wavelength also enables dissimulation applications, the dimensions of the object to conceal being small relatively to the acoustic wavelength.

The main motivation for this work was to analyze the effective applicability and to experimentally observe some of the consequences of such behaviors (in particular the zero phase propagation and the phenomena of doping, cloaking and hiding) with realistic designs that inevitably involve losses. Losses are however known to significantly affect the acoustic dispersion and may lead to the annihilation of the expected phenomena. We analyzed the contribution of the different sources of losses in these media, i.e., viscothermal and viscoelastic losses. We found that viscoelastic losses are the predominant loss source in PAMs and are responsible for a drastic drop in transmission, thus revealing the importance of considering it as a key design element. We developed an experimental set-up to acoustically characterize the mechanical properties and loss factor of the plates. Using a parametric analysis and a characterization of different plates (different materials and thicknesses), we designed a sample enabling experimental observation of the Density Near Zero regime specificities.

This particular regime can be described using three distinct frequencies: zero-phase, zero-density, and impedance matching frequencies. We highlighted that the zero-phase propagation does not occur at the exact zero-density frequency, but in the negative dynamic mass density regime, that is in the PAM stopband. As a result, even when losses are not accounted for, the PAM is not impedance matched to the surrounding medium. We were nonetheless able to measure a zero-phase propagation with a realistic PAM, with a trade-off on the number of plates composing the system to maintain a sufficient transmission in the system despite the viscoelastic losses and the impedance mismatch.

To overcome this mismatch at the zero-phase frequency, f φ=0 , we proposed in Chapter IV an analogue of photonic doping in acoustics. We presented a simple way and explained the methodology to transform a single near-zero medium, the PAM in the present case, into a Density and Compressibility Near Zero (DCNZ) medium by adding a single well designed impurity. In contrast to DNZ (single zero) metamaterials, double zero ones (with both zero density and zero compressibility simultaneously achieved) have the particularity of conciliating both the interesting properties of DNZ media (wavelength stretching, zero-phase propagation) and impedance matching, thus relaxing the constraints for realistic applications. A Helmholtz resonator was used as an impurity to dope the PAM and to meet the requirements for supercoupling, i.e., total transmission, zero density, and zero-phase propagation simultaneously. We showed that for specific geometries of the Helmholtz resonators mounted in parallel to the PAM, both the dynamic compressibility (corresponding to a very large bulk modulus)

and dynamic density of the overall system vanished simultaneously. Consequently, the zero-phase frequency was up-shifted towards the impedance matching frequency and a total transmission accompanied by a zero phase propagation was reached when losses were not accounted for. In contrast, we evidenced that the viscoelastic losses limited the maximum value of bulk modulus achievable and therefore restricted the doping phenomenon. Nonetheless, for the geometry producing the maximum of bulk modulus, we were able to measure a substantial increase of the transmission amplitude. Moreover we showed that the acoustic doping is independent of the location of the impurity in the system, thus giving a high freedom in the design. We have also numerically proven that acoustic doping can be applied to DNZ systems of greater dimensions, with an example on a 2D complex shape medium.

Gathering the peculiar properties highlighted in the previous chapters, we finally evaluated in Chapter V the possibility of dissimulating obstacles using the large wavelength stretching offered by the DNZ regime and the impedance matching offered by the doping of the PAM. Two strategies were investigated. First, we used the own impedance of the diaphragm to be cloaked to achieve doping and second we added another impurity in the system, a Helmholtz resonator. We evidenced analytically and numerically that in the absence of losses the diaphragm can be cloaked with both strategies (either with or without additional dopant). The diaphragm was then acoustically imperceptible to an outside observer both in term of scattering amplitude and phase. We showed that the limitation of the doping phenomenon induced by the viscoelastic losses drastically annihilates the cloaking efficiency of the device, the transmission magnitude being no longer unitary. Accounting for these limitations to observe cloaking, we studied the hiding efficiency of a PAM instead. The strategy of hiding differs from that of cloaking in the sense that the objective is no longer to make invisible the entire system, i.e., the PAM and the diaphragm, but to dissimulate an obstacle within the PAM. Impedance matching is therefore no longer required. We demonstrated that at the zero-phase frequency of the system, constant amplitudes of the scattering parameters were observed, with or without the obstacle inside, and even in presence of losses. Thus, the diaphragm was hidden in the PAM. We showed analytically, numerically and experimentally that the efficiency of the hiding phenomenon is dependent on the impedance of the obstacle to hide (here, the ratio orifice/diaphragm cross-section). We also observed experimentally that the PAM allows to hide the obstacle wherever its location within the system thanks to the stretching of the acoustic wavelength.

Although most of the phenomena related to the DNZ regime in a PAM can be strongly limited by losses in real operating systems, we were able to experimentally observe some of these interesting effects for the first time with a carefully designed realistic device.

VI.1.2 Prospects

The specific wave propagations made possible by the near-zero density and/or compressibility regimes of a PAM and highlighted in this PhD work, open up a wide range of applications, such as acoustic tunneling devices, which were previously limited by the transmission drop induced by the impedance mismatch at the DNZ interface, wavefront and directivity tailoring devices, and hiding devices.

The main limitation of this system being the viscoelasticity of the plates, a major improvement would be to find a way to ensure better reproducibility of the clamping condition even for much thinner plates (the current plastic shims are distributed with thickness up to 10 μm). During this PhD, we thought about a system consisting of a plate holder with small screws all around its outer edges in order to be able to adjust and control carefully the pressure applied on both sides of the plate. Unfortunately, this would have meant modifying the whole set-up, as it would have required a larger diameter of the clamping rings. However, the required manufacturing time was not compatible with the constraints of the three-year doctoral period.

The other solution that can be considered to reduce overall losses would be to choose another material for the plates, with lower viscoelastic losses. In doing so, it should be possible to observe all of the phenomena demonstrated here with greater amplitude and in particular to increase the doping efficiency, which could potentially make cloaking more feasible.

Moreover, both the particular properties (zero-phase propagation, doping, hiding,...) and the inherent limitations (impedance mismatch, losses,...) as well as the acoustic doping methodology presented here can be observed in and adapted to any other DNZ system, thus allowing great design freedom.

Although only a one-dimensional system is studied in this work, the evidenced peculiar behaviors can also be observed with systems of greater dimensions (as we have evidenced for the doping of a 2D DNZ system in Chapter IV). A redesign of the set-up to extend the system to two or three dimensions, as technically challenging as this may be, would pave the way for further engineering of acoustic metamaterials and metasurfaces and facilitate its applicability.

An interesting idea would also be to find a way to design a surface that could respond with a similar DNZ regime and that could support the same specific propagation.

VI.2 Side works

Besides the work on Plate-type Acoustic Metamaterials presented in this manuscript, we have also investigated other interesting behaviors obtained with acoustic metamaterials working with systems different from plates and at frequencies outside the near-zero index regime. Some of these subjects are still under study.

Although these studies do not fall within the scope of this manuscript (near-zero index Plate-type Acoustic Metamaterials), we will briefly explain the respective projects in order to draw an overall picture in this section.

VI.2.1 Reconfigurable metamaterials

Reconfigurable metamaterials have great potential as they allow to switch from one application to another by simply changing the geometry of the systems. We are particularly interested here in room acoustics applications using Helmholtz resonators.

VI.2.1.1 Accordion like Helmholtz resonators

In such structures give rise either to deep subwavelength perfect absorption devices [1][2][3][4] or to metadiffusers [5].

In this project, we intend to extend existing designs, which are generally static and intended only for a single functionality: absorption or diffusion, to reconfigurable designs, which can then operate on both. The principle used is fairly simple. A change in the geometry of the system changes the resonance frequency of the Helmholtz resonators and thus the dispersion produced. In doing so, the behavior of the medium can be passively changed from perfect absorption to controllable diffusion, i.e., from an anechoic audio sensation to that of a larger room.

Perfect absorption is achieved by critically coupling successive Helmholtz resonators of different geometries using the high dissipation and the slow sound around the resonance frequency. Careful adjustments of the resonators geometry, leakage and losses prevent reflection and result in perfect absorption over a broadband frequency range.

Conversely, the audio feel of a larger room requires the ability to control with the metasurface the reflection at the interface (wall of the room) to mimic that of a farther wall. In other words, we control the reflection of the metasurface to time-delay a pulse, as if it had propagated over a given distance.

The design is a slightly tougher challenge since it requires to achieve a deep slow sound while limiting dispersion and absorption over a frequency band corresponding to the spectral content of the pulse.

In doing so we are able to reproduce a large and almost constant group delay and prevent excessive distortion of the pulse.

This project sets a new frontier in room acoustics and would remove the significant dimensional constraints of traditional materials, which are effective at high frequencies but result in large and heavy structures at low frequencies. We are currently considering the fabrication of an accordion-like system, which would allow the desired diffusion or perfect absorption to be obtained by simply pushing on the wall.

VI.2.1.2 Multi-stable origami Helmholtz resonators

This other project, carried out in collaboration with two members of the Katia Bertholdi research group at Harvard, focuses on the design of multi-stable Helmholtz resonators using origami-like structures and tessellations. Many results are expected, some of which could be coupled to the METARoom project for an application in room acoustics. We also plan to use these bi-stable origami structures as actuators or switches. If we manage to transform the geometry from one to the other stable position, the resonance will be shifted and the amplification phenomenon will stop.

VI.2.2 Asymmetric reflection: Willis coupling

Willis coupling, analogous to bianisotropy in electromagnetic metamaterials, has recently received considerable attention. In contrast to symmetrical passive reciprocal media, where both transmission and reflection are independent of the side from which the wave is irradiated, Willis media exhibit asymmetry (lack of mirror symmetry) due to a coupling between potential and kinetic energy in the system. The Willis coupling term of a system is therefore defined as the cross-coupling parameter between stress and velocity in the acoustic constitutive equations. In this side work, we derive analytically and measure experimentally these Willis parameters for various lossy systems consisting of clamped plates, Helmholtz resonators or quarter-wavelength resonators.

VI.2.3 Broadband absorbing Plate-type Acoustic Metamaterials

Finally, we have also investigated the possibility of designing perfect broadband absorption devices with a series arrangement of annular plates.

The use of annular plates instead of circular plates allows to control both the resonance frequency and the losses, necessary to reach a critical coupling condition. In addition, annular plates are thin and are therefore perfect candidates for the design of a deep subwavelength structure for broadband sound absorption. As the system used here is similar to that presented in this manuscript, we will develop further the work done on this subject in the following. Side work highlight Decorated membranes or plates, i.e., membranes or plates with additional mass platelets, have been widely used for their high tuning, insulation and absorption capacity [1][2][3][4][5][6][7][8][9][10][11]. A brief review is also provided in the introduction to Chapter II.

Helmholtz resonators [12] are another type of resonators widely studied for sound absorption. A periodic arrangement of Helmholtz resonators produces a strong dispersion in the waveguide on which they are mounted [13], accompanied by a slow sound [14][15][16] and an increase in the density of state below resonance. Due to the dispersion in the periodic structure, the group velocity depends on the frequency and vanishes (or reaches a very low value if losses are accounted for) at the edges of the stopband, which considerably reduces the resonance frequency of the system and facilitates the design of deep subwavelength devices. In addition, the dissipation in the vicinity of the Helmholtz resonance is very high. Careful adjustment of the resonator intrinsic losses (viscothermal losses in the neck and cavity) and the energy leakage rate (coupling of the resonator with the main waveguide) can lead to perfect absorption, when one is in perfect balance with the other, i.e., when the critical coupling condition is fulfilled. This results in an impedance matching that prevents reflections and ensures energy trapping around the resonators, either in a reflection configuration (rigid backing) [17] or in a transmission configuration [18]. Moreover, broadband absorption can be achieved by successively critically coupling a set of graded Helmholtz resonators, i.e., a rainbow trapping metamaterials [19].

Here we propose an alternative strategy, which consists in arranging several annular plates in series in a 1D waveguide, instead of Helmholtz resonators, to mimic the rainbow trapping-like behavior. An annular plate is a good candidate for critical coupling since its overall losses can be adjusted by the hole diameter. In a first Section, we will briefly develop the analytical modeling of an annular plate and then analyze its acoustic signature. Then the study will be separated in two different configurations: reflection and transmission.

VII .1 Acoustic signature of an annular plate

To begin, we characterize the acoustic propagation through a thin clamped annular plate of outer radius R a and inner radius (radius of the hole) R h .

VII .1.1 Analytical modeling

The analytical modeling, based on a modal representation of the displacement w, is fully developed in Appendix B. We present only the main results in this Section.

The displacement of the plate is defined as a superposition of the displacement of an infinite number of modes (modal analysis form) and reads as follows

w(r, θ) = ∞ n=0 [A n J n (λr) + B n Y n (λr) + C n I n (λr) + D n K n (λr)] cos(nθ) = ∞ n=0 w n (r, θ), (VII .1)
with n the mode number, J and I, and Y and K the Bessel and modified Bessel functions of the first and second kind respectively.

The annular plate is clamped at its outer edge (in r = R a ), that is

w(r = a, θ) = ∂ ∂r w(r = a, θ) = 0, (VII .2)
and free at its inner edge. At r = R h , the bending moment M r and the shear forces V r should therefore vanish, i.e.,

   M r = -D ∂ 2 ∂r 2 w(r, θ) + ν( 1 r ∂ ∂r w(r, θ) + 1 r 2 ∂ 2 ∂θ 2 r=R h = 0, V r =-D ∂ ∂r ∇ 2 w(r, θ) + 1-ν r 2 ∂ 2 ∂θ 2 ( ∂ ∂r w(r, θ) -w(r,θ) r ) r=R h = 0. (VII .3)
After multiple analytical manipulations of the resulting system (integrations, symbolic resolutions,...), the use of the orthogonality of the mode, and the application of the initial conditions, the general solution to the forced vibration problem of a clamped-free annular plate in vacuum then takes the form

w(r, θ) = ∞ n=0 S ∆P (r) D w n (r, θ)dS ρphp D (ω 2 n -ω 2 ) S ∞ n=0 [w n (r, θ)] 2 dS w n (r, θ). (VII .4)
The acoustic impedance of the plate in vacuum can then be derived from the surface averaged

transverse displacement w w = 1 S 2π 0 Ra R h w( r, θ)rdrdθ, (VII .5) leading to 
Z p = Z m S 2 = S ∆P (r)dS iωw . (VII .6)
Since the plate is embedded in air, i.e., in a light fluid, the vibrations of the plate in the air-filled waveguide are considered to be those of plates in vacuum. However, the air flow through the internal orifice must be accounted for.

The orifice of section S h = πR 2 h is treated as a h p -thick tube, for which an approximation of the acoustic impedance is given by

Z h = iωρ air h p 1 1 -2 √ -ik h J 1 ( √ -ik h ) J 0 ( √ -ik h ) 1 S h + 2iωρ air ∆L S h , (VII .7)
where k h is the ratio of the radius of the hole to the viscous penetration thickness and considering length corrections of the form ∆L = 4 3π 2R h at each end. The total impedance of an annular plate is then given in the first order by

Z tot = 1 1 Z plate R 2 a R 2 a -R 2 h + 1 Z h R 2 a R 2 h . (VII .8)
This expression of the impedance depends on the open area ratio (ratio between the cross-section of the hole and that of the plate).

It is worth noting at this point that the derivation of the annular plate impedance is time consuming as it requires multiple numerical integrations and system resolutions. Moreover to be accurate, a calculation considering multiple modes is necessary (i.e., a wide frequency range required).

VII .1.2 Acoustic scattering

We first analyze the influence of the hole radius R h and the plate thickness h p on the scattering amplitude of an annular plate in parameter k p R a instead. We see that, regardless of the thickness, the greater the ratio R h /R a , the higher the resonance frequency. One can therefore tune the plate by dimensioning the orifice. As expected, the greater the thickness, the higher the resonance frequency. For very narrow apertures, the acoustic signature of an annular plates tends toward that of an ordinary circular plate, both in terms of resonance frequency and scattering amplitude, as evidenced in Figures VII .1 The analytical behavior of the annular plates, computed considering only three modes, is validated against 2D axisymmetric full-wave simulations. The agreement between the analytical and the numerical results is judged to be very good. Small discrepancies are found out of the resonance and are attributed to the low number of modes considered for the computation. As this modeling will be used for the optimization process, we had to compromise here between the number of modes accounted for, i.e., the computation time, and the accuracy out of the resonance. Moreover, Figs. VII .1(c3,d3), representing the case of a R h /R a ratio of 1/3, shows that the analytical modeling is losing some accuracy for large aperture as evidenced by the stronger deviation compared to the numerical simulation. However, it is worth noting here that the analytical model is fairly well accurate and can be used for annular plates of aperture radius of up to 5 mm.

Frequency (Hz)

Frequency (1st mode) ( The mean fluxes U p and U h , respectively generated by the plate of section S p = π(R 2 a -R 2 h ) and the hole of section S h = πR 2 h , are calculated from the mean acoustic velocity averaged over the respective cross-sectional area, that is U p = Sp v z dS p /S 2 p and U h = S h v z dS h /S 2 h . The signs of the fluxes can be classified in three categories. The frequency ranges in which both fluxes are in the same direction (same sign) correspond to high transmission bands, i.e., the uncolored areas in Figs. VII .2(a-b). In contrast, the stopband corresponds to a frequency range in which the fluxes U p and U h are antiparallel (opposite signs), preventing large transmission. The green colored area refers to the frequency range in which the flux generated by the hole is positive and that of the plate is negative, and the cyan colored area to the opposite case. The transmission minimum and reflection maximum, i.e., the antiresonance of the annular plate, are found at the frequency at which both fluxes vanish (grey dashed line between the cyan and green colored areas). The zero reflection (red dashed vertical line) is located in the negative U h range, at a frequency slightly different to that of the maximum of transmission (resonance frequency of the plate) for which the flux from the plate is positive while that of the orifice is zero. The minimum of reflection is moreover accompanied by a zero value of the transmission coefficient phase.

VII .1.2.4 Maximal absorption of an annular plate

We now investigate the maximal absorption achievable with a single annular plate.

The total losses of a resonant system can be characterized by its quality factor composed of a dissipative part Q diss and a leakage part Q leak . The maximal absorption of a structure is reached when the inherent dissipation balances the energy leakage rate Q diss = Q leak , i.e., when the critical coupling condition is met [20][21][22][23][24].

One way to visualize the optimal balance between energy leakage rate and inherent losses is to plot the eigenvalues of the scattering matrix in a complex plane, i.e., in the plane Im(f ) = F (Re(f )), with f = f r + if i the complex frequency.

The scattering matrix S connects through the transmission and reflection coefficients, the incoming complex amplitudes A, D and outgoing complex amplitudes B, C from the annular plate

B C = R + T T R - A D .
(VII .9)

The two eigenvalues of the S-matrix are therefore

Λ 1,2 = T ± √ R + R -.
For mirror-symmetric configurations, i.e, when R + = R -= R, the whole problem can be decoupled into two subconfigurations in reflection [18,25]. The two eigenvalues of the S-matrix can indeed be regarded as the reflection coefficient of the symmetric, R sym = T -R, and antisymmetric, R asym = T + R, subproblems in reflection, that is when a Neumann boundary condition (rigid wall, ∂p/∂n = 0) or a Dirichlet condition (soft boundary, p = 0) are respectively applied to the symmetry plane of the system. The absorption of the whole problem is then recovered from that of each subproblem α asym,sym = 1 -|R asym,sym | 2 , i.e., α = (α asym + α sym )/2.

In the present case, the transmission and reflection of a single punctual annular plate are given by

T = 2 2 + Z p /Z 0 , (VII .10) R = Z p /Z 0 2 + Z p /Z 0 . (VII .11) Side work highlight
The only non unitary eigenvalue thus reads as

T -R = 2 -Z p /Z 0 2 + Z p /Z 0 , (VII .12)
the pole and zero of which are found at Z p /Z 0 = ±2. The position of the poles and zeros in the complex frequency plane can help to characterize the scattering of a given problem. . The energy leakage rate of the system is given by the imaginary part of the poles complex frequency, while the resonance frequency is given by the real part. With the time convention considered here, e iωt , the poles are located in the upper half of the complex plane, i.e., the positive imaginary plane, while the zeros are located in the negative one. When losses (viscothermal and viscoelastic) are introduced , the poles and zeros are translated in the complex plane. Eventually, the zeros move towards the real frequency axis when the energy leakage rate is perfectly balanced by the resonator intrinsic losses, giving a maximum of absorption, α = 0.5. Perfect absorption would have implied having the zeros of the two eigenvalues on the real frequency axis at the same frequency, that is to critically couple the symmetric and antisymmetric problem, which is not achievable with a punctual symmetric resonator (only one non constant eigenvalue).

Different strategies can be used to overcome this upper absorption limit. In what follows, we will discuss two of them, a rigidly backed configuration and an asymmetrical configuration, coupling different resonators.

VII .2 Absorption in a rigid backing configuration

In a reflection configuration, i.e., when the system is rigidly backed, perfect absorption can be achieved by critically coupling the resonances of a single subwavelength resonator and of the cavity of length L cav separating the resonator from the rigid backing [24].

VII .2.1 Perfect absorption with a single plate

We start by optimizing the geometry of both an annular plate (thickness h p and orifice radius R h ) and the backing cavity (length L cav ) to balance the leakage with the inherent losses.

The reflection coefficient R RB of the system can be written as follow, is obtained as expected at 300 Hz. The zero of the reflection coefficient lies on the real frequency axis in the complex plane, which proves the critical coupling for this deep-subwavelength structure of dimension almost 32 times thinner than the acoustic wavelength in air at 300 Hz.

R RB = R + T 2 R term e -i2k 0 Lcav 1 -RR term e -
The dependence of the critical coupling condition on the geometrical parameters of the system is now studied. We can observe 6 zeros in the complex plane as expected. However, unlike the second optimization step, the zeros are no longer lying exactly on the real frequency axis. One of the reasons for this more chaotic behavior is the coupling between each of the plates. Each time we add a new plate, the overall acoustic behavior of the system is influenced. Since we only optimize at one single frequency at each step of the process, we do not search for new optimal geometries for the already optimized plates. However, after the 8th optimization, we carry out a final optimization using the initial values of the cascade optimization. We are then able to adjust the geometry of each plate and the length of each cavity to maximize absorption over the target frequency range, i.e., The optimized configuration gives an almost perfect absorption (for analytical, solid line) and a very strong absorption (more than 0.9 on average, for numerical, square symbols) over the frequency Side work highlight range we are interested in. The complex plane is composed of a succession of 12 zeros on (or in the vicinity of) the real frequency axis. The greater number of pairs of poles and zeros relatively to the number of plates is due to the second modes of the annular plates which are also coupled. It is worth noting here that the location of the zeros follows a logarithmic-type distribution as observed in

C(R b l , h p l , L cav l ) = min||
Refs. [19,26].

Although the total thickness L tot = 25 cm is subwavelength, i.e., a panel almost 7 times thinner than the wavelength in air at 200 Hz, the overall dimensions remains quite large for realistic applications. The reduction in thickness results in a deterioration of the absorption capacities, as predicted by the causality constraint inequality [26] 

L tot ≥ 1 4π 2 κ(ω) κ 0 ∞ 0 ln |1 -α(λ)dλ| = L min , (VII .16)
with κ(ω) and κ 0 the effective bulk modulus of the structure in the static limit and that of the air respectively, α the absorption, λ the sound wavelength of air, and L min the minimal thickness possible.

The optimal limit of inequality (VII .16) involves trade-offs between the thickness of the device, the target frequency range, and the maximum value of absorption obtained in that frequency band.

VII .3 Absorption in a transmission configuration

A similar optimization can be performed with a transmission configuration, i.e., not terminated by a rigid backing. In such configurations, perfect absorption requires that reflection and transmission vanish simultaneously. The design of degenerated resonators, e.g., decorated membranes [9], makes it possible to achieve this condition. The critical coupling of the symmetrical and antisymmetrical problems then results from the use of both the monopolar and dipolar behaviors of the degenerate resonator [27].

Quasi perfect absorption in transmission configuration can also be obtained with a periodic array of identical monopolar source, e.g, Helmholtz resonators, [18]. In this case, the accumulation of the cavity resonances (Fabry-Perot), due to slow sound propagation and the strong dispersion below the Helmholtz resonance frequency, allows to almost critically couple both the symmetric and antisymmetric subproblems. As a result, a quasi perfect absorption can be reached. Another strategy consists in breaking the symmetry of the system by coupling different resonators interacting with each other. Such an asymmetrical system has been experimentally demonstrated in acoustics with Helmholtz resonators [25]. At resonance, a Helmholtz resonator has almost zero transmission, i.e., it behaves like a rigid wall. It is then possible to tune the second Helmholtz resonator to critically couple the reflection problem and achieve perfect absorption. A cascade optimization with various different Helmholtz resonators can then be used to design a rainbow-trapping absorber, i.e., broadband [19].

We will here use this latter idea to achieve perfect absorption in transmission with annular plates instead of Helmholtz resonators.

VII .3.1 Optimization scheme

In contrast to the Helmholtz resonator, the transmission of an annular plate does not vanish at its resonance frequency, but at its antiresonance. However a similar optimization to that presented with the Helmholtz resonator can be applied.

First we optimize the radius and thickness of the latter plate of the system, tagged with a subscript 1, so as to minimize its transmission (zero in the lossless case) at a given frequency. We then successively critically couple each of the following plates.

As an example, we optimize here a system made of 2 annular plates in transmission, as sketched in the insets of We then add a second plate in front and optimize its geometry (R b 2 = 1.1 mm, h p 2 = 110 μm) as well as the cavity length L cav 1 to attain a maximum of absorption, i.e., critical coupling at f target . In contrast, when the cavity length is decreased to 6 cm (see Figs. VII .5(c1-4)), the zero of the eigenvalues are effectively on the real frequency axis, but at frequency slightly different. Consequently, only a quasi perfect absorption is achieved with the system at 250 Hz. The maximum value of the absorbance is 0.97, as evidenced in Fig. . A compromise has to be found between the total thickness of the device and the maximum of absorption achievable.

One way to extend this quasi perfect absorption is to reiterate the optimization process adding plates successively and optimizing at slightly higher frequency at each step. The second step of the optimization can for example be done around 320 Hz, since the whole system present a nearly zero transmission at this frequency, as highlighted by the purple dotted circle in 

VII .3.2 Broadband asymmetric absorber

Applying the optimization scheme presented in the previous Section, we design a broadband asymmetric absorber consisting of 8 annular plates (plastic shims) with a target frequency range of f ∈ [250 -950] Hz. We constrain the optimization to a maximal thickness of L = 18 cm for the device.

After the cascade optimization, a global optimization over the whole frequency range is performed,

using as cost function C(R b l , h p l , L cav l ) = min|| 950 250 |R + | 2 + |T | 2 df ||.
The magnitude of the scattering coefficients is shown in Fig VII .6. Although perfect broadband absorption is not achieved, the device nevertheless exhibits a high absorption capacity as shown by an absorption above 0.9 over the target frequency range. A succession of 10 zeros lies in the immediate vicinity of the real frequency axis on the complex frequency plane of each of the eigenvalues of the scattering matrix. However, they are located at slightly different real frequencies. One of the reasons for the absence of critical coupling is the constraint imposed on the total thickness of the device, as discussed in the previous Section with a system consisting of two annular plates. 

VII .4 Conclusion

In this side work, we investigated the possibility of using one-dimensional arrangements of annular plates as effective sound absorption devices. After deriving the analytical acoustic impedance on an annular plate and studying the acoustic signature of various samples, we focused on two particular configurations. First, we examined a rigid backing configuration, i.e., when the plates are arranged in front of a rigid wall, and second, a transmission configuration. Both optimizations were based on critical coupling. We found that perfect absorption can be achieved at a single low frequency in both cases. However, unlike the rigidly-backed configuration, in which the critical coupling condition can be met with a deep subwavelength device (L ≈ λ 0 /32), the transmission configuration requires large dimensions (L = 17 cm). The latter configuration requires using the antiresonant frequency drop of an annular plate (behaving as a rigid wall at this particular frequency) to critically couple a second plate. To extend broadband absorption, cascade optimization was used to sequentially critically couple each of the plates. Although perfect broadband absorption was not obtained for a constrained total thickness of the device (upper limit allowed: L < 25 cm), high absorption (α > 0.9) was observed both analytically and numerically in reflection and transmission configurations for frequencies ranging from Hz and [250-950] Hz, respectively. The relatively large total thickness of the devices required to achieve such absorption may, however, limit their applicability in realistic situations where space is a major problem.

rigidity D, and the shear correction factor α are defined as follows

                               R= 1 12 h p R a 2 , F = 1 6(1 -ν p )α 2 h p R a 2 , ζ 4 = ρ p h p R 4 a ω 2 D , D= E p h 3 p 12(1 -ν 2 p ) , α = π 12 .
(B.3)

B.2 Analytical modeling of thin circular plates

Using the Kirchhoff-Love approximation, the transverse vibrations in thin circular plates of radius R a and cross-section S = πR 2 a follow the equation of plate motion in polar coordinates

D∇ 4 w(r, θ, t) + ρ p h p ∂ 2 ∂t 2 w(r, θ, t) = ∆ P (t), (B.4) with ∇ 2 = ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2
∂θ 2 the Laplacian in polar coordinates, and ∆P = p(x + h p ) -p(x) the difference of pressure applied to each side of the plate, where p(x) and p(x + δx) are the acoustic pressure on the upstream and downstream faces respectively. The . symbol is used to refer to time dependent displacement.

The use of variable separation provides a way to solve the homogeneous equation, by assuming w(r, θ, t) = R(r)Θ(θ)e iωt . The equation of motion then becomes

(∇ 4 -k 4 p )R(r)Θ(θ) = (∇ 4 -k 4 p )w(r, θ) = 0, (B.5) with k p = ω 2 ρ p h p /D 1/4 . This results in d dr 2 R(r) + 1 r d dr R(r) + (k 4 p - n 2 r 2 R(r)) = 0, (B.6) and d dr 2 R(r) + 1 r d dr R(r) -(k 4 p + n 2 r 2 R(r)) = 0, (B.7)
which leads to the solution for an axi-symmetric problem of the form

w(r, θ) = R(r)Θ(θ) = [A 1 J n (k p r) + A 2 Y n (k p r) + A 3 I n (k p r) + A 4 K n (k p r)] cos(nθ), (B.8)
where Y m and K m are the Bessel and modified Bessel functions of the second kind.

To get back to the plate impedance, it is then necessary to average the transverse displacement w over the plate surface. The acoustic impedance of the plate is then given by

Z p = Z m S 2 = S ∆P (r)dS iωw . (B.10)

B.2.1 Solution for a clamped circular plate

The clamping boundary conditions are

w(r = R a , θ) = ∂ ∂r w(r = R a , θ) = 0. (B.11)
In addition, the displacement of the plate in its center (r = 0) must remain finite w(r = 0, θ) < ∞.

Since the Bessel and modified Bessel functions of the second kind Y n and K n diverge when the arguments are zero, the coefficients B and D must disappear.

If only the first mode is considered, n = 0, the solution of the homogeneous problem becomes

w(r) = A 1 J 0 (k p r) + A 3 I 0 (k p r). (B.12)
Applying the boundary conditions in Eq. (B.11) then leads to

A 1 J 0 (k p R a ) + A 3 I 0 (k p R a ) =0, -k p A 1 J 1 (k p R a ) + k p A 3 I 1 (k p R a )=0, (B.13)
and then provides the condition

A 3 A 1 = J 1 (k p R a ) I 1 (k p R a ) . (B.14)
The homogeneous solution is then written

w h (r) = A 1 J 0 (k p r)I 1 (k p R a ) + J 1 (k p R a )I 0 (k p r) I 1 (k p R a ) , (B.15)
while a particular solution to the forced problem is

w p (r) = -∆P Dk 4 p . (B.16)
Combining the homogeneous and particular equations and applying the initial conditions ( w(r, t = 0) = ẇ(r, t = 0) = 0) on the resulting general solution [8], yields to

   A 1 = ∆P Dk 4 p I 1 (kpRa) J O (kpRa)I 1 (kpRa)+J 1 (kpRa)I 0 (kpRa) , A 3 = J 1 (kpRa) I 1 (kpRa) A 1 = ∆P Dk 4 p J 1 (kpRa)
J O (kpRa)I 1 (kpRa)+J 1 (kpRa)I 0 (kpRa) .

(B.17)

The displacement of a circular plate when it is subjected to harmonic excitation is therefore written as follows

w(r) = [ -∆P Dk 4 p + A 1 J 0 (k p r) + A 3 I 0 (k p r)]. (B.18)
By inserting the expression of w(r) in equations (B.9) and (B.10), one can derive the acoustic impedance of a thin plate, that is

Z p = S ∆P (r)dS iωwS 2 = - iωm S 2 I 1 (k p R a )J 0 (k p R a ) + J 1 (k p R a )I 0 (k p R a ) I 1 (k p R a )J 2 (k p R a ) -J 1 (k p R a )I 2 (k p R a ) , (B. 19 
)
where k p = ω 2 ρ p h p /D 1/4 is the wavenumber of the flexural waves excited in the plate, with m = ρ p Sh p the mass of the plate. This expression assumes a uniform pressure distribution over the plate (only small displacements and plane wave excitation), and considers only axi-symmetric modes.

B.2.2 Solution for an annular plate

An annular plate clamped at its outer edge (in r = R a ), that is

w(r = a, θ) = ∂ ∂r w(r = a, θ) = 0, (B.20)
and free at its inner edge (in r = R h ) is now considered. This last boundary condition results in the cancellation of the bending moment M r and of the shear forces

V r    M r = -D ∂ 2 ∂r 2 w(r, θ) + ν( 1 r ∂ ∂r w(r, θ) + 1 r 2 ∂ 2 ∂θ 2 r=R h = 0, V r =-D ∂ ∂r ∇ 2 w(r, θ) + 1-ν r 2 ∂ 2 ∂θ 2 ( ∂ ∂r w(r, θ) -w(r,θ) r ) r=R h = 0. (B.21)
The general solution for an annular plate reads as follows 

w(r, θ) = ∞ n=0 [A n J n (k pn r) + B n Y n (k pn r) + C n I n (k pn r) + D n K(k pn (r)] cos(nθ) =
             A n J n (k pn R a ) + B n Y n (k pn R a ) + C n I n (k pn R a ) + D n K n (k pn R a ) =0, A n ∂ ∂r J n (k pn r) |Ra + B n ∂ ∂r Y n (k pn r) |Ra + C n ∂ ∂r I n (k pn r) |Ra + D n ∂ ∂r K n (k pn r) |Ra =0, A n F 1 (ν, n, k pn R h ) + B n F 2 (ν, n, k pn R h ) -C n F 3 (ν, n, k pn R h ) -D n F 4 (ν, n, k pn R h ) =0, A n Φ 1 (ν, n, k pn R h ) + B n Φ 2 (ν, n, k pn R h ) -C n Φ 3 (ν, n, k pn R h ) -D n Φ 4 (ν, n, k pn R h )=0, (B.23) with              ∂ ∂r J n (k pn r) |Ra = n kp n Ra J n (k pn R a ) -J n+1 (k pn R a ), ∂ ∂r Y n (k pn r) |Ra = n kp n Ra Y n (k pn R a ) -Y n+1 (k pn R a ), ∂ ∂r I n (k pn r) |Ra = n kp n Ra I n (k pn R a ) + I n+1 (k pn R a ), ∂ ∂r K n (k pn r) |Ra = n kp n Ra K n (k pn R a ) -K n+1 (k pn R a ), (B.24)                F 1 (ν, n, k pn R h )= J n (k pn R h ) -(1 -ν) n(n-1) (kp n R h ) 2 J n (k pn R h ) + 1 kp n R h J n+1 (k pn R h ) , F 2 (ν, n, k pn R h )= Y n (k pn R h ) -(1 -ν) n(n-1) (kp n R h ) 2 Y n (k pn R h ) + 1 kp n R h Y n+1 (k pn R h ) , F 3 (ν, n, k pn R h )= I n (k pn R h ) + (1 -ν) n(n-1) (kp n R h ) 2 I n (k pn R h ) -1 kp n R h I n+1 (k pn R h ) , F 4 (ν, n, k pn R h )= K n (k pn R h ) + (1 -ν) n(n-1) (kp n R h ) 2 K n (k pn R h ) + 1 kp n R h J n+1 (k pn R h ) , (B.25)
and

             Φ 1 (ν, n, k pn R h )= nJ n (k pn R h ) -(k pn R h )J n+1 (k pn R h ) + n 2 (1-ν) (kp n R h ) 2 [(n -1)J n (k pn R h ) -(k pn R h )J n+1 (k pn R h )] , Φ 2 (ν, n, k pn R h )=nY n (k pn R h ) -(k pn R h )Y n+1 (k pn R h ) + n 2 (1-ν) (kp n R h ) 2 [(n -1)Y n (k pn R h ) -(k pn R h )Y n+1 (k pn R h )] , Φ 3 (ν, n, k pn R h )= nI n (k pn R h ) + (k pn R h )I n+1 (k pn R h ) -n 2 (1-ν) (kp n R h ) 2 [(n -1)I n (k pn R h ) + (k pn R h )Y n+1 (k pn R h )] , Φ 4 (ν, n, k pn R h )=nK n (k pn R h ) -(k pn R h )K n+1 (k pn R h ) -n 2 (1-ν) (kp n R h ) 2 [(n -1)K n (k pn R h ) -(k pn R h )K n+1 (k pn R h )] . (B.26)
The term k pn = ω 2 n ρ p h p /D 1/4 can be computed numerically from Eq.(B.23) by canceling the determinant of the resulting matrix

J n (k pn R a ) Y n (k pn R a ) I n (k pn R a ) K n (k pn R a ) n kp n Ra J n (k pn R a ) -J n+1 (k pn R a ) n kp n Ra Y n (k pn R a ) -Y n+1 (k pn R a ) n kp n Ra I n (k pn R a ) + I n+1 (k pn R a ) n kp n Ra K n (k pn R a ) -K n+1 (k pn R a ) F 1 (ν, n, k pn R h ) F 2 (ν, n, k pn R h ) -F 3 (ν, n, k pn R h ) -F 4 (ν, n, k pn R h ) Φ 1 (ν, n, k pn R h ) Φ 2 (ν, n, k pn R h ) -Φ 3 (ν, n, k pn R h ) -Φ 4 (ν, n, k pn R h ) = 0. (B.27)
and using a Muller's algorithm with as initial hypothesis 3 values around the plain circular plate resonance frequency.

Knowing the eigenvalues, it is then possible to trace back to the non-trivial eigenvectors (coefficients The orthogonality of the modal basis leads, if a harmonic excitation is considered, to

A n , B n , C n and D n ),
ρ p h p D qn (t) + k 4 p qn (t) = ρ p h p D (ω 2 n -ω 2 )q(t) = S ∆P (r) D e iωt w n (r, θ)dS S ∞ n=0 [w n (r, θ)] 2 dS . (B.31)
The general solution to the forced vibration problem of a clamped-free annular plate in vacuum then takes the form

w(r, θ) = ∞ n=0 S ∆P (r) D w n (r, θ)dS ρphp D (ω 2 n -ω 2 ) S ∞ n=0 [w n (r, θ)] 2 dS w n (r, θ). (B.32)
N.B.: This method can also be applied to solve the problem of a circular plate.

The average transverse displacement w over the plate surface

w = 1 S 2π 0 Ra R h w(r, θ)rdrdθ, (B.33)
can then lead to the acoustic impedance of the annular plate.

B.3 Vibroacoustic coupling

Since a light fluid is considered (air), a complete vibroacoustic coupling between the plate and the air is not necessary. The vibrations of the plate in the air-filled waveguide are considered to be those of plates in vacuum. Nevertheless, in the case of an annular plate, the air flow through the internal orifice should still be accounted for.

To do this, the orifice of section S h = πR 2 h is treated as a h p -thick tube, for which an approximation of the acoustic impedance is given by

Z hole = iωρ air h p 1 1 -2 √ -ik h J 1 ( √ -ik h ) J 0 ( √ -ik h ) 1 S h + 2iωρ air ∆l S h , (B.34) ≈ iρ air c air tan ω c air (h p + 2∆l) 1 S h . (B.35)
considering length corrections of the form ∆l = 4 3π 2R h at each end [10][11][12]. An often-used approximation for micro-perforated plates is

Z hole = 32µh p 4R 2 h   1 + k 2 h 32 + √ 2 32 k h 2R h h h   + iωρ air h p   1 + 1 9 + k 2 h 2 + 8 3π 2R h h p   1 S h , (B.36)
where k h is the ratio of the radius of the hole to the viscous penetration thickness [10,13].

The total impedance of an annular plate is then given in the 1st order by

Z tot = 1 1 Z plate R 2 t R 2 a -R 2 h + 1 Z hole R 2 t R 2 h . (B.37)
This expression of the impedance depends on the open area ratio (orifice to plate cross-sectional ratio).

the elements of which can be determined using the 4 complex pressure measurements

T 11 = P |x=L V |x=L + P |x=0 V |x=0 P |x=0 V |x=L + P |x=L V |x=0 , (C.13) T 12 = P 2 |x=0 -P 2 |x=d P |x=0 V |x=L + P |x=L V |x=0 , (C.14) T 21 = V 2 |x=0 -V 2 |x=d P |x=0 V |x=L + P |x=L V |x=0 , (C.15) T 22 = P |x=L V |x=L + P |x=0 V |x=0 P |x=0 V |x=L + P |x=L V |x=0 . (C.16)
The state vector w, formed by the pressure P and the normal velocity V , can be written as follows Une légère variabilité résiduelle entre les différentes cellules unitaires, due soit à des défauts de serrage, soit à la variabilité intrinsèque des propriétés mécaniques du matériau, est responsable de ces écarts.

P |x=0 = A + B = 1 + R, (C.17) V |x=0 = A -B Z 0 = 1 -R Z 0 , (C.18) P |x=L = Ce -ikL + De ikL ≈ T e -ikL , (C.19) V |x=L = Ce -ikL -De ikL Z 0 ≈ T e -ikL , Z 0 , (C.
Une fois les pertes considérées, on observe une faible dépendance de la fréquence de phase nulle, f φ=0 , et de la phase du coefficient de transmission φ, en fonction du nombre de cellules unitaires et de la quantité de pertes. Dans les deux cas, la variation est inférieure à 10%.

Un maximum de transmission est observé à f m = 439 Hz du fait de la condition de quasi-adaptation d'impédance autour de la résonance de la plaque. Une propagation sans changement de phase est mesurée à f φ=0 = 389 Hz, en accord avec les prédictions, confirmant ainsi expérimentalement la faisabilité d'une propagation sans changement de phase dans ce type de métamatériau. Cette propagation sans changement de phase peut être utilisée pour adapter la directivité d'une source et contrôler le front d'onde émergeant d'une structure. En particulier, nous montrons numériquement que notre metamatériau placé dans un guide d'onde 1D, peut-être utilisé pour créer une source acoustique dipolaire en utilisant la propagation sans changement de phase.

Dopage acoustique

Un arrangement périodique de plaque rend donc possible la propagation sans changement de phase.

Cependant, comme nous l'avons vu précédemment, cette propriété aussi intéressante soit elle, peut fortement être limitée par un désaccord d'impédance entraînant une chute de la transmission même lorsqu'aucune source de dissipation n'est considérée.

Les métamatériaux double zéro peuvent permettre de surmonter cette difficulté en cela qu'ils ont la particularité de concilier à la fois les propriétés exotiques des milieux à densité quasi-nulle et l'adaptation d'impédance, ce qui permet d'alléger les contraintes pour des applications réalistes. Il est donc très intéressant de trouver un moyen de transformer notre métamatariau pour lequel seul la densité est quasi-nulle, en un milieu où à la fois la densité et la compressibilité sont proches de zéro simultanément.

En examinant ce qui est développé en électromagnétisme, nous proposons un analogue acoustique du dopage photonique qui consiste en l'ajout d'une seule impureté à un milieu où seul l'un des paramètres dynamiques constitutifs est proche de zéro pour le convertir en un milieu double zéro. . Au-delà de ce ratio de 12%, l'impédance du diaphragme devient trop importante. La fréquence de phase nulle de l'ensemble du système est donc décalée vers les basses fréquences de manière significative. Le rapport de section de 12% correspond à une variation de f φt=0 de 10% par rapport à la fréquence de phase nulle du métamatériau seul f φ=0 . En raison de ce décalage de fréquence, la puissance du régime de densité quasi-nulle du métamatériau n'est plus suffisante pour permettre le phénomène de masquage souhaité. L'amplitude des paramètres de scattering varie alors considérablement avec la variation de

f φt=0 .
Cependant, il est intéressant de noter que le masquage d'un diaphragme (ou de tout autre obstacle) est possible avec un métamatériau à densité quasi-nulle même en présence de pertes, dès que l'impédance de l'objet à dissimuler est bien contrôlée. Avec cet arrangement périodique de plaques, malgré la faible variation de la fréquence de la phase nulle (10% dans la plage de fonctionnement) qui entraîne un faible changement de phase, l'effet du diaphragme est très limité. Il est alors possible de cacher la diaphragme dans le métamatériau dans cette gamme de fréquence même en présence de Title: Metamaterials with extraordinary properties for the control of acoustic waves Keywords: Plate-type Acoustic Metamaterials, Zero-index medium, Zero-phase propagation, Density Near Zero, Doping, Hiding Abstract: Zero-index metamaterials, for which at least one of the effective parameters (density or dynamic compressibility for acoustics) vanishes, have received considerable attention in recent years. These materials have the particularity of inducing a considerable increase in the effective wavelength, thus offering numerous application possibilities, including, among others, propagation without phase change, acoustic hiding of diffusers, directivity control, etc. This PhD work focuses particularly on the near-zero effective density regime in acoustic metamaterials made of thin plates in air.

Through an in-depth study of a periodic arrangement of thin elastic plates embedded in a waveguide, we have been able to explore analytically, numerically and experimentally some of the above effects.

Particular attention is paid to the losses inherent to this type of system and their consequences on the expected behavior.

We begin by studying numerically and experimentally observing a phase-change-free propagation through the metamaterial at a frequency in a stopband of the finite system. We then transpose the concept of photonic doping to acoustics. The addition of an impurity, here a wellchosen Helmholtz resonator, to the system allows to transform the regime of zero density into one where density and compressibility are simultaneously near zero. Thus, propagation without phase change is accompanied by a unitary transmission, due to the impedance matching of the system with the surrounding air.

Finally, we study the possibility of performing acoustic hiding or masking of an object using the acoustic wavelength stretching offered by the zero density.

4 )

 4 s equations and mass conservation equations linking pressure p and velocity v in acoustics through density ρ and compressibility C, Both systems can be cast in a wave equation displaying the celerity of the respective wave in terms of the constitutive parameters, i.e., c = ( µ) -1/2 and c = (ρC) -1/2 .

Figure I. 1 :

 1 Figure I.1: Diagram of the operating regimes of acoustic metamaterials: examples of metamaterials with extreme constitutive parameters (adapted from[17]). Left upper quadrant: single-negative metamaterials with a negative effective dynamic mass density. (a) 3D deeply subwavelength lattice made of metallic spheres coated with a soft layer of sillicon rubber[14], (b) normal velocity field of a membrane-type metamaterial[18]. Left lower quadrant: double negative metamaterials with simultaneously negative compressibility and mass density. (c) Acoustic waveguide loaded with both side holes (responsible for the negative compressibility) and resonant membranes (responsible for the negative dynamic density)[19]. Right lower quadrant: single negative metamaterials with a negative compressibility. (d) 2D lattice of borehole resonators[20], 1D waveguide loaded with a periodic array of Helmholtz resonators[21]. Right upper quadrant: conventional materials or structured materials with gradient properties with positive constitutive parameters. (e) 3D printed graded porous material for broadband perfect absorption of sound[22], (g) axisymmetric gradient index lens made of rigid toroidal scatterers embedded in air[23]. (h) Zero index media with an almost zero mass density, made of a periodic array of anisotropic scatterers (structured cylinders) embedded in a 2D waveguide[24] (i) Zero index media with an almost zero compressibility composed of a Helmholtz resonator loaded in parallel to a waveguide[25]. (j) Double zero metamaterials with simultaneous zero compressibility and density made of an array of cylindrical bling holes[26].

Fang

  et al. evidenced for the first time a dispersive negative compressibility with an underwater metamaterial made of a periodic set of coupled Helmholtz resonators loaded to a waveguide (Fig. I.1(e))

  Figure I.1(j)

  the development of locally resonant acoustic metamaterials, membranes and plates have played a central role, certainly because of their high tunability and their small size and weight, allowing deep subwavelengths and lightweight designs that meet the requirements of very demanding applications such as in the aeronautics or aerospace industry. Two main types of membrane-type acoustic metamaterials have been developed. The first type, based on decorated membranes (DM), composed of a clamped stretched membrane with additional mass platelets, are widely used for high insulation and sound absorption. The noise attenuation efficiency of weighted membranes was demonstrated, in building acoustics, in 1996 by Hashimoto et al.. [1, 2] on a large-scale membrane with attached additional masses. The real development of DM had to wait until 2008 with the pioneering work of Yang [3], in which a simple membrane with a small attached mass acts counter-intuitively as an efficient sound reflector at frequencies between the first two eigenmodes of the structure. The coupling of the membrane and the added mass platelets gives rise to two simple vibration modes. The first eigenmode, the frequency of which depends on the weight of the mass, corresponds to an in-phase vibration of the mass and the membrane, while the mass platelet is motionless in the second. The out-of-phase superposition of the two eigenmodes amplitude at the antiresonance results in an averaged almost zero in-plane displacement, i.e., almost zero transmission. Detailed studies on the influence of the different design parameters (position, shape,

Figure II. 1 :

 1 Figure II.1: Examples of 1D, 2D and 3D crystals: the density or compressibility of which varies periodically along one, two or three spatial axes respectively. Each color represents a material with different constitutive parameters (ρ and C). The figure is taken from Ref. [30].

  II.7) with m an integer. As demonstrated in Fig. II.2(c), thanks to the symmetry of the system, all relevant information on the dispersion relation is located within the [-π/L unit π/L unit ] k-space band, named the 1st Brillouin zone and bounded by the red dashed vertical lines. Figure II.2(h) is another representation of the dispersion relation with normalized axes, i.e., ω/ω B = F (Re(qL unit /π)). By doing so, we can clearly see that the degeneracy point (where the scattering curve is folded on the edges of the Brillouin zone, i.e., Re(qL unit /π) = 1) is located at the Bragg frequency ω B = πc 0 /L unit . The acoustic wavelength λ at the degeneracy is therefore λ = 2L unit .(II.8)It is worth noting here that no dispersion is encountered, since lossless propagation in the air is considered. Therefore, the phase velocity c = ω/Re(q) and the group velocity c g = ∂ω/∂Re(q) are equal and constant (Fig.II.2(d)).

Figure II. 2 :

 2 Figure II.2: 1D non resonant sonic crystals: "artificial" periodic medium made of a single material (a,c,d,g,h,i) and bi-layer periodic medium (b,e,f,j,k,l). Sketch of the considered media (a,b). Real part (c,e,h,k), and imaginary part (i,l) of the dispersion relation ω/ω B = F (Re(qL unit /π)), phase (black solid line) and group (red dashed line) velocity (d,f). Red vertical dashed lines in Figs. (c, e) delimits the 1st Brillouin zone. Red color surfaces in Figs. (e,f,j,k,l) represent the location of the Bragg bandgaps.
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  Fig. II.2 (e,j,k,l) is derived by applying Eq. (II.6). Contrary to the previous case, cos (qL unit ) now can take values larger or smaller than 1 or -1 respectively over some frequency bands (see Fig.. II.2 (j)), giving a purely imaginary wavevector q (see Fig. II.2 (l)). As a result, the waves become evanescent and a Bragg bandgap (red-mapped surface) is opened around the Bragg frequency, that is f B = 17.15 kHz. The formation of a bandgap can be understood as a consequence of the multiple reflections induced by the periodicity. At each layer interface, part of the incident energy is reflected, generating multiple reflected waves interacting with each other.

  the opening of the forbidden bands, where the waves cannot propagate, a strong dispersion occurs in the vicinity of the degeneration point. Phase and group velocities are no longer equal and vary with frequency as shown in Fig. II.2(f). These outstanding features and the high tunability initiate a wide range of applications, including isolation devices and sound barriers.

Figure II. 3 :

 3 Figure II.3: Side branch and series elements: schematic drawing of the side branch (parallel) resonator (a) and the series resonator (b)

Figure II. 4 :

 4 Figure II.4: 3D sketch of the 1D PAM: whole system (a), close-up on the unit cell with a compacted (b) or exploded (c) view.

Eph 3 p

 3 12(1-ν 2 p ) . The full derivation of the solution can be found in Appendix B. We only remind here the Kirchhoff-Love plate acoustic impedance Z p resulting from a separation of variables and the application of the clamped boundary condition w

II. 22 )

 22 for symmetric T 11 = T 22 and reciprocal T 11 T 22 -T 12 T 21 = 1 systems [45, 46] . These two coefficients are then used to define the reflectance |R| 2 , the transmittance |T | 2 and the absorbance α = 1 -|R| 2 -|T | 2

  i.e., qL unit = k(ω)L unit . The introduction of local resonances in a periodic structure induces multiple modifications in the dispersion relation. Some of these can be seen with a comparison of the solid and dashed lines in subplots (a-b) of Fig. II.5, that are respectively the analytical dispersion relations of an infinite PAM (considering only the axisymmetric modes of the plate) and of a geometrically similar two-layer infinite periodic medium with similar mechanical properties (except for the resonance behavior of the plate). First, the plate resonance opens a forbidden band [42, 56-58], named hybridization stopband, in frequency regions that are significantly lower than the Bragg bandgap, e.g., [0.04, 0.05]f B in this case. The hybridization stopbands are due to resonance-induced scattering of local inclusions contrary to the Bragg bandgaps which are due to Bragg scattering.

Figure II. 5 :

 5 Figure II.5: Dispersion relation and effective parameters of an infinite PAM. Normalized by the Bragg frequency: real (a) and imaginary (b) part of the normalized dispersion relation ω/ω B = F(qL unit /π) of an infinite PAM. The black dashed lines represent the dispersion for an equivalent two-layers system with similar dimensions and mechanical properties as the PAM, but without the resonance behavior. Close-up around the first pass band, normalization by the plate resonance frequency: real part (c) and imaginary part (d) of the dispersion relation, real part of the effective density (e), phase (black) and group (red) velocity (g), real part of the effective bulk modulus (f).The red-colored areas represent the stopbands. The frequency range of the close-up is represented by the dotted orange frame in (a-b).Single plate: Imaginary part of the plate acoustic impedance (f), and transmission (black), reflection (red) magnitude (i).

  range delimited by the dotted orange box in Fig. II.5 (a-b).

  Fig. II.5 (f). At this particular frequency, see Fig. II.5 (i), the plate is totally transparent with a zero reflection |R p | = 0, and a total transmission |T p | = 1. The strong dispersion generated by the resonance opens two low frequency stopbands in the investigated frequency range. These forbidden bands end around the resonance frequency of the plates and are characterized by a negative effective mass density (Fig. II.5 (e)). The beginning of the passbands is therefore accompanied by a frequency region, in the vicinity of resonance, where the effective density is almost zero. Note that the effect of series inclusions is small on the compressibility of the system. The effective bulk modulus, represented in Fig. II.5 (h),indeed remains positive with values close to that of the air medium, and is only slightly affected at the end of the passband and in the second stopband. We will therefore focus on the near-zero density frequency range of the first mode of the plate.

Figure II. 6 :

 6 Figure II.6: Scattering properties of a finite PAM: (a-c) Transmission (black) and reflection (red) magnitude of a 4-unit long PAM, without losses (a), only with the viscothermal losses, and with both the viscothermal and viscoelastic losses (β = 0.1). (d) Imaginary part (red dashed line) and real part (black solid line) of the effective density of the full-lossy problem.

Figure II. 7 :

 7 Figure II.7: Effective properties of a finite PAM. Effect of the design parameters: viscoelastic losses β (a), number of unit cells N , periodicity L unit , and plate thickness h p . Real (1) and imaginary (2) part of the normalized dispersion relation f /f p = F(k(ω)L), transmission magnitude |T | (3), and real part of the effective density normalized to that of the air (4). Solid, dashed, dotted lines represent respectively the cases β = 0.01, β = 0.1, and β = 0.5 for (a), N = 2, N = 5, and N = 10 for (b), L unit = 0.5L unit ,L unit = 5L unit , and L unit = 10L unit for (c), and finally h p = 0.5h p , h p = h p , and h p = 2h p . In each case, only one parameter varies. The variation of the periodicity L unit and the plate thickness h p is defined according to the reference periodicity L unit and thickness h p used for all other cases. An indication of the width and location of the hybridization bands is given by the thick solid, dashed and dotted lines between the subplots and corresponding to each value of the variable.

  microphones impedance tube of inner radius R a = 15 mm and ended by an anechoic termination as shown in Fig. II.8(a-b).

Figure II. 8 :

 8 Figure II.8: Experimental set-up: Sketch (a) and photography (b) of the impedance tube of inner radius R a = 15 mm, hold sample holder (c), exploded view of the actual plate holder (d), and different plates tested (e).

  Two materials, illustrated in Fig.II.8(e), are tested: transparent plastic films, of thickness h p = 100 μm, and a plastic material, known as plastic shim, which is available in different thicknesses (each corresponding to a different color), from 24 μm to 254 μm, thus allowing to control the resonance frequency and the intrinsic viscoelastic losses. Figure II.9 shows several measurements of the scattering parameters of transparent plates of thickness h p = 100 μm (a), and on plastic shims of thicknesses h p = 76 μm (b), h p = 102 μm (c), and h p = 254 μm (d). Each color corresponds to a realization, i.e., a different plate is clamped into the system.

Figure II. 9 :Figure II. 10 :

 910 Figure II.9: Measurements of the scattering parameters of single clamped plates of different thicknesses: transmission (solid lines) and reflection (dashed lines) magnitudes for a transparent plate of thickness h p = 100 μm, and for plastic shims of thicknesses h p = 76 μm (b), h p = 102 μm (c), and h p = 254 μm (d). Each color corresponds to a different measurement.
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Figure III. 1 (

 1 Figure III.1(a) shows the effective mass density of the system ρ(ω) = SZ(ω)k(ω)/ω, derived from the effective wavenumber k(ω) and effective impedance Z(ω) calculated over a single unit cell, i.e., a fully periodic structure. We parallel-up the evolution of the effective density with the scattering amplitudes (Fig. III.1(b)) and the phase of the transmission coefficient (Fig. III.1(c)) of a finite PAM.

Figure III. 1 :

 1 Figure III.1: Effective mass density and scattering properties of the PAM in the lossless case: (a) effective dynamic mass density, (b) and (c) represent the amplitude of the transmission [left vertical axis of (b)] and reflection [right vertical axis of (b)] coefficients as well as the normalized phase of the transmission coefficient for a finite PAM made of N = 1, 3, 6 and 9 plates respectively. Vertical blue, gray and green lines in (a), (b) and (c) represent the frequencies for the zero-phase, f φ=0 , zero mass density, f ρ=0 , and impedance matching, f m , respectively. The grey mapped area delimits the zero-frequency stopband of an infinite system.

Figure III. 2 :

 2 Figure III.2: Analytical analysis of the zero-phase frequency and the scattering properties of the PAM considering the viscoelastic and viscothermal losses: (a) and (b) represent the amplitude of the transmission coefficient as well as its normalized phase for a finite PAM made of N = 6 plates depending on the losses. (c) Dependence of the zero-phase frequency on the viscoelastic loss factor. Analytical analysis of the zero-phase frequency depending on the number of plates: normalized phase for a finite PAM made of N = 2, 3, 6 and 9 plates (d). Horizontal and vertical blue lines in (a-d) represent the zero-phase frequency for the plastic shims characterized (β = 0.13).

  Fig. III.2(d) the dependence of the phase of the transmission coefficient on the number of unit cells, i.e., plates, considered in the finite length PAM.

Figure III. 3 :

 3 Figure III.3: Experimental analysis of the scattering parameters and effective density of a 6-unit long PAM made of 102 μm thick plastic shims: (a) Transmission (black, left axis) and reflection (red, right axis) magnitude. (b) Phase of the transmission coefficient (black, left axis) and effective density (red, right axis). The symbols represent the experimental data, the solid lines represent the analytical results (TMM) and the dashed lines represent the numerical simulations (FEM).

  Figure III.4 depicts the real and imaginary parts of the effective constitutive parameters characterizing the PAM.

Figure III. 4 :

 4 Figure III.4: Analysis of the lossy effective dynamic mass density and effective bulk modulus: real part (black color, left axis) and imaginary part (red color, right axis) of the effective dynamic mass density (a) and effective bulk modulus (b). Continuous lines, dashed lines and symbols represent respectively the analytical, numerical and experimental results.

Figure III. 5 :

 5 Figure III.5: Subwavelength dipole: 2D full-wave simulation of a subwavelength dipole device built of a coiled-up Fabry-Perot waveguide of length L F P ≈ 35 cm and a 6 plates PAM. The y component of the velocity field is shown as well as the normalized directivity polar plot of the dipole (purple line).

  An out-of-phase equal mean flow rate is found at each outer boundary, leading to a two lobes directivity pattern (purple line in Fig.III.5) and thus evidencing the efficiency of the device as a subwavelength dipole (L x ≈ λ/4 for the width and L y ≈ λ/12 for the height).

  The input and output ports (light blue areas in Fig.IV.1 (a)) are air-filled waveguides, plugged into the "L" and "M" shapes respectively. A monochromatic wave of frequency lower than the cut-off frequency of the ports (above which other modes than the plane wave one can propagate) impinges the structure from the left ensuring plane wave propagation. The "LAUM"-shaped medium is filled with air (b), a DNZ medium (c, e), or a DCNZ medium (f). The dimension of the "LAUM" structure (width L x = 3 m and height L y = 1.15 m) is chosen much larger than the acoustic wavelength in the air (λ 0 = 27 cm).

Figure IV. 1

 1 Figure IV.1(b) shows a non-uniform pressure field distribution inside the 2D medium with high order modes and a weak transmission (7%). The pressure field is strongly dependent on the geometry of the host. If the host medium is replaced by either a DNZ or a DCNZ medium (Fig. IV.1(c-f)), the pressure field becomes uniform within the medium due to the stretching of the effective acoustic wavelength, allowing a wave propagation without phase delay. In both cases, the pressure field is geometry independent. A tunneling effect is also achieved when the host medium is a DCNZ (Fig. IV.1(f)) in contrast to the case of a DNZ (subplot (c)). The host medium is impedance matched to the ports in the DCNZ case, which leads to a zero-phase total transmission.

  Figure IV.1: Full-wave simulation of a 2D acoustic doping with a single dopant: sketch of structure (a), pressure field when the medium is filled with air (b), with a DNZ medium (c), with a doped DNZ medium (dopant: transverse bar of the "A" letter, filled with a medium of bulk modulus κ d and of width H) (e) or with a DCNZ medium (f). Inset (d) shows the effective bulk modulus of the entire host "LAUM" depending on the geometry of the dopant H. The doping condition to turn the host DNZ medium into an effective DCNZ medium occurs when C ≈ 0, thus for κ → ∞, at H = 10.1 cm (arrow in (d)).

Figure IV. 2

 2 Figure IV.2 depicts the scattering properties and the effective density of the considered PAM.

Figure IV. 2 :

 2 Figure IV.2: Scattering parameters of a lossless PAM composed of 20 plastic shims with a periodicity constant L unit = 1 cm: Transmission (black color) and reflection coefficients (red color) (a), phase of the transmission coefficient (b), and real part of the effective density (c).

  middle, as illustrated by Fig. IV.3(a), then takes the form

  the cavity length. The neck length L n = 20 mm and the radii of the neck R n = 2 mm and of the cavity R c = 10 mm are fixed, while the cavity length L c is adjustable with a piston as shown in Fig. IV.3(a). We first analyze the lossless case depicted in Fig. IV.3, where the Helmholtz resonator is mounted between the 10-th and 11-th plates of the PAM. In order to find the configuration where doping occurs, we apply a similar procedure to that in Fig. IV.1(d), i.e., we look for the configuration that produces a maximum value of effective bulk modulus. This optimal configuration corresponds to a length L c = 32.06 mm and requires to be dimensioned with an extreme precision. Figures IV.3(b,c,e,f) show respectively the amplitude of the scattering parameters, the effective dynamic mass density, the phase of the transmission coefficient and the effective bulk modulus for the configuration mentioned above. The analytical results are validated against those from a 3D full-wave simulation shown by the square symbols in Fig. IV.3.

Figure IV. 3 :

 3 Figure IV.3: Doping of a 20-unit long lossless PAM by adding a Helmholtz resonator: 3D sketches of the unit cell, of the 20-unit long PAM doped in its middle by a Helmholtz resonator, and of a close-up on the resonator (a). Transmission (black) and reflection (red) magnitudes (b), real part of the system effective density (c), phase of the transmission coefficient (e), and real part of the system effective bulk modulus versus frequency (f). Continuous lines and square symbols represent the analytical and numerical results respectively. Inset (d) shows the dependence of the effective bulk modulus on the Helmholtz cavity length L c . Figures (g) and (h) depict the total pressure field of a 20-unit long PAM without and with a dopant at the zero-phase propagation frequency f = 405 Hz and f = 414 Hz respectively (full-wave simulation).

Fig. IV. 4

 4 Fig. IV.4 shows two examples with different locations of the Helmholtz resonator. The dopant is mounted between the 2nd and 3rd plates in the first case, Figs. IV.4(a-b), while it is placed between the 15-th and the 16-th in the second, Figs. IV.4(c-d).

Figure IV. 4 :

 4 Figure IV.4: Influence of the dopant position: (a,c) transmission magnitude (black) and phase of the transmission coefficient (red) (b,d) effective density (black) and effective bulk modulus (red), and pressure field along the metamaterial. Tuned Helmholtz resonator placed between the 2nd and 3rd plates (a-b) or between the 15th and 16th plates (c-d). Continuous lines and square symbols represent the analytical and numerical results respectively. Dashed vertical lines represent the doping frequency (zero-density, infinite bulk modulus, unit transmission, and zero-phase).

Figure IV. 5 :

 5 Fig. IV.6(f) shows the evolution of the effective lossy bulk modulus with respect to the length of the Helmholtz resonator cavity. A maximum of real part of the bulk modulus is obtained for the optimal length L c = 36.75 mm. It is worth noting here that the value of this maximum is much lower (by a factor 10 3 ) than in the previously presented lossless case.

Figures IV. 6 Figure IV. 6 :

 66 Figures IV.6(d-f) give the response of the lossy system using this optimal configuration. The zerophase frequency is up shifted to f φ=0 = 412 Hz and gets closer to the zero-density frequency of the system, i.e., f ρ=0 = 414 Hz.

in the k d L d 1

 1 Figure V.1: Acoustic signature of a single rigid diaphragm: (a) sketch of the diaphragm, (b) 3D plot of the transmission magnitude versus frequency and the orifice radius R d of the diaphragm, (c) scattering parameters of a diaphragm of radius R d = 4 mm, (d) phase of the transmission coefficient (black, left axis) and normalized effective density (red, right axis). Analytical, full-wave simulation, and experimental results are given respectively by solid lines, dashed-lines, and symbols.

Figure V. 1

 1 Figure V.1(b) shows the dependence of the transmission magnitude through the diaphragm on both the frequency and R d . The smaller the orifice, the greater the reflection, thus the lower the transmission. In addition, the transmission amplitude also decreases with frequency for a same diaphragm aperture, due to the frequency dependent viscothermal losses in the aperture [36]. The shaded surface in Fig. V.1 highlights the particular case of a diaphragm with a R d = 4 mm orifice, the scattering parameters of which are shown in Fig. V.1(c). The transmission remains high over the considered frequency range, while the magnitude of the reflection varies from 0.2 to 0.5, thus confirming the strong scattering power of the obstacle. Furthermore, the presence of the diaphragm in a duct induces an increasing phase delay with frequency as shown by the phase of the transmission coefficient in Fig. V.1(d). The designed device will then have to act on both the amplitude and phase of the scattering coefficients to enable cloaking.

Figure V. 2 :Figure V. 3 :

 23 Figure V.2: Analytical geometry optimization for cloaking a diaphragm using a 6-unit long lossless PAM: (a) sketch of the configuration, (b) influence of the diaphragm radius on the system's scattering parameters

  Fig. V.3(b) by varying the length of the Helmholtz resonator cavity and looking for a maximal bulk modulus, i.e., almost zero compressibility. A maximum is found for a length L c = 4.1 cm. With this particular geometry, an impedance matching condition coupled

FEM

  numerical study (dashed line) of the scattering parameters (magnitude and phase) and of the effective density are performed and presented in Fig. V.4.

Figure V. 4 :

 4 Figure V.4: Lossless cloaking of a diaphragm: Pressure field from the full-wave simulation, transmission (black) and reflection (red) magnitudes (a,c), and phase of the transmission coefficient (black, left axis) and normalized effective density (red, right axis) of both systems (b,d). Figures (a,b) show the cloaking of a R d = 0.5 mm diaphragm in a conventional 6-unit long PAM while Figs. (c,d) show the cloaking of a R d = 4 mm diaphragm in a 6-unit long PAM doped with a Helmholtz resonator (R n = 2 mm, L n = 2 cm, R c = 1 cm, and L c = 40.95 mm). Solid line represents the analytical results and dashed line the full-wave simulation ones.

Figure V. 5 Figure V. 5 :

 55 Figure V.5 shows the effect of total losses (viscoelasticity of the plates and viscothermal losses in both the aperture of the diaphragm and the duct) on the effectiveness of the two cloaking systems. In the first configuration shown in Fig. V.5(a-b), viscothermal losses in the small aperture turn the diaphragm totally opaque. The incident wave is totally reflected, as if a rigid wall were encountered.In addition, the phase of the transmission coefficient no longer passes through zero. Considering a

  Figure V.6 shows a comparison of the acoustic response (scattering parameters and effective density) of a conventional 6-unit long PAM (Figs. V.6(a-c)) and a 6-unit long PAM with an embedded diaphragm (Fig. V.6(d)), the orifice of which is either R d = 4 mm (Fig. V.6(e-f)) or R d = 1 mm (Fig. V.6(h-i)). In both cases, the presence of a PAM provides both zero-phase and zero-density to the whole system as evidenced in Fig. V.6(f,i).

Fig. V. 6 (

 6 Fig. V.6(g), the smaller the orifice radius, and therefore the larger the impedance of the diaphragm, the lower the zero-phase frequency of the system. The zero-phase frequency goes from f φ=0 = 390 Hz for the metamaterial alone to f φt=0 = 373 Hz for the system with a diaphragm of radius R d = 4 mm (green marker), and to f φt=0 = 303 Hz for the diaphragm of R d = 1 mm (orange marker).

Figure V. 6 :

 6 Figure V.6: Hiding of a centered embedded diaphragm: (Upper part) 6-unit long PAM behavior (h p = 102 µm, L unit = 1 cm) a) sketch, b) modulus of the transmission (black, left label) and reflection (red, right label) coefficients from the measurements (circle markers), the full-wave simulations (dashed line) and the TMM (solid line), and c) phase of the transmission coefficient (black, left label) and real part of the effective dynamic mass density (red, right label). (Lower part) 6-unit long PAM behavior with embedded L d = 2 mm thick annular diaphragm with an aperture of radius R d : d) sketch, g) relative frequency shift (ratio of the frequency of the zero of the transmission coefficient for the total system (diaphragm embedded into the metamaterial) to the one of the metamaterial alone) versus the diaphragm to the waveguide radii ratio (TMM), e) and h) modulus of the transmission (black, left label) and reflection (red, right label) coefficients of the total system, metamaterial with an embedded diaphragm of aperture R d = 4 mm and R d = 1 mm respectively, and f) and i) phase of the transmission coefficient (black color) and real part of the effective dynamic mass density (red color) of the total system for R d = 4 mm and R d = 1 mm respectively. Black dashed curves in Fig. e) and h) represent the transmission of the R d = 4 mm and R d = 1 mm diaphragms alone.

Fig. V. 7 .

 7 Fig. V.7.

Figure V. 7

 7 Figure V.7(b) shows that the amplitude of the scattering parameters at f φt=0 remains constant

  Figure V.7:Influence of the diaphragm aperture ratio on its scattering parameters (analytically calculated): Variation of the zero-phase frequency (a), evolution of the amplitude of the scattering parameters: transmission (black, left axis) and reflection (red, right axis) at the zero-phase frequency of the total system f φt=0 (b) and phase of the transmission coefficient of the metamaterial alone at the zero-phase frequency of the global system f φt=0 for the different diaphragm radii (c). The shaded area shows the aperture range for which the amplitude of the scattering parameters is independent of the orifice radius.

  Figure V.8 shows the evolution of the scattering amplitude and of the zero-phase frequency for different locations of the diaphragm along the metamaterial and in its vicinity. The two subplots Fig. V.8 (b,e) represent, in the lossy and lossless cases respectively, the transmission magnitude (in black) and the reflection magnitude (in red) of the whole system at the zero-phase frequency f φt=0 for each location x d of the diaphragm.

Figure V. 8 :

 8 Figure V.8: Hiding zone of a 4 mm radius diaphragm in the PAM: with losses (a-c) and no losses (d-f).Sketches of the considered system (a,d), magnitude of the scattering parameters (transmission, black, left axis and reflection, red right axis) at the zero-phase frequency of the system (b,e) and zero-phase frequency of the system (c,f). The circles, dots symbols and dotted lines represent respectively the experimental, analytical data for the total system and the experimental amplitude of the scattering parameters of the metamaterial alone at its zero-phase frequency.

  which results in a slight change of the reflection with the location of the diaphragm as we can see in Fig. V.8(b). The agreement of the experimental results, represented by the circle symbols, and the analytical predictions, represented by the solid points, is very good on the transmission and the zero-phase frequency.More significant differences are however noticeable on the reflection, already noted in the case of the metamaterial alone. However, we find that regardless the location of the diaphragm, the measured reflection and transmission of the whole system equal those of the PAM without diaphragm, the measured values of which are reminded by the dotted horizontal lines in Fig. ??(b).

  the framework of the ANR/RGC METARoom project (ANR-18-CE08-0021), we are developing metasurfaces consisting of periodic arrangements of Helmholtz resonators for the control of room acoustics. This project involves the University of Science and Technology of Hong Kong (research group of Professor Ping Sheng), the Acoustics Laboratory of Le Mans University (LAUM UMR CNRS 6613), and two companies/start-ups: Acoustic Metamaterials Group (AMG) in Hong Kong and Metacoustic in Le Mans. Metamaterials or metasurfaces based on Helmholtz resonators have been shown to produce a strong dispersion accompanied by a deep slow sound below the resonance frequency. Consequently,

Fig. VII . 1 .

 1 Figure VII .1(a) shows the evolution of the first eigenfrequency as a function of the orifice/plate cross-section ratio for plates of thicknesses h p = 102, 127 and 254 μm respectively represented by the orange, green and cyan solid lines. We represent in the inset of Fig VII .1(a) the non-dimensional

  Figures VII .1(c1-4) and Figs. VII .1(d1-4) respectively represent the lossless and lossy magnitude of the scattering coefficients (transmission in black, reflection in red, and absorption in yellow) for different orifice radii and plate thicknesses indicated by the grey dots in Fig. VII .1(a). In contrast to the ordinary circular and very narrow orifice annular plates, the reflection (resp. transmission) magnitude of which being unitary (resp. zero) in the very low frequency range, the annular plates with larger apertures are transparent at low frequency with an almost unitary transmission.

Figure VII . 1 :

 1 Figure VII .1: Scattering by an annular plate: (a) Evolution of the 1st eigenfrequency as a function of the orifice to plate cross-section area ratio R h /R a for plates of thickness 102 μm (orange line), 127 μm (green line), and 254 μm (cyan line). Inset of Fig. (a) shows the evolution of the dimensionless parameter k p R p relative to R h /R a . (b1-2) Dispersion relation for an infinite periodic arrangement of clamped annular plates with a periodicity L unit = 1 cm, (b3-5) transmission, reflection magnitudes and absorption for a 102 μm-thick annular plate. Each colored line refers to a different hole radius R h and the colored areas to the corresponding stopbands. (c1-c4) Lossless and (d1-d4) lossy scattering coefficients magnitude for single annular plate of different radii and thickness represented by the grey dots in (a): R h = 0.005 mm and h = 102 μm in (1), R h = 1 mm and h p = 102 μm in (2), R h = 5 mm and h p = 102 μm in (3), and R h = 1 mm and h p = 254 μm in (4). The solid lines represent the analytical and the square symbols the full-wave results.

FrequencyFigure VII . 2 :

 2 Figure VII .2: Fluxes and pole and zero of the scattering matrix eigenvalue of a single annular plate (R h = 2.7 mm and h p = 76 μm): (a) Averaged fluxes generated by the plate (cyan symbols) and by the hole (green symbols) from full-wave simulations when neither the viscoelastic nor the viscothermal losses are accounted for, (b) magnitude of transmission (black symbols) and reflection (red symbols), and (c) phase of the transmission coefficient. The red, black, and grey vertical dashed lines highlight the minimum reflection, maximum transmission, and minimum transmission respectively. The cyan and green areas respectively represent the frequency ranges with a positive flux for the plate and a negative flux for the hole and vice versa. Analytical lossless (d) and lossy (f) transmittance (black), reflectance (red), and absorption (yellow) coupled respectively to the complex plane representation of the eigenvalue |T -R| of the scattering matrix in (e) and (f).

Figures VII . 2 (

 2 Figures VII .2(e-g) show the non-constant eigenvalue log(|T -R|) of the S-matrix represented in the complex frequency plane. The resonance of a given system can be identified by the presence of pairs of poles and zeros that are complex conjugates of each other in the lossless case, i.e., that are symmetrical with respect to the real frequency axis (see Fig. VII .2(e)). The energy leakage rate

Figure VII . 3 :

 3 Figure VII .3: Perfect absorption with an annular plate in a rigidly-backed configuration: Left: Optimized configuration: (a) Analytical transmittance (black) and reflectance (red) of the optimized annular plate (R h = 0.90 mm, h p = 127 μm). (b) Absorption magnitude (yellow) and reflectance (red) of the optimized whole system (plate, cavity of length L cav = 36 mm, and rigid backing). (c) Complex frequency plane representation of the reflection coefficient of the whole system log |R RB |. Right: Parametric analysis of the influence of R h , h p , L cav on the maximum of absorption: (d) Evolution of the zero of R RB with R h , h p , L cav in the complex frequency plane. (e) Absorption magnitude at f = 300 Hz depending on R h and L cav . (f) Absorption magnitude for L cav = 36 mm depending on R h and the frequency.

  Figure VII .3(d) shows a zoom on the first zero of the reflection coefficient in the complex plane. The orange, purple, and cyan trajectories illustrate the evolution of the location of the zero of the reflection coefficient with respect to the values of R h , L cav , and h p respectively. Perfect absorption previous ones. The spirit of the optimization is to create a cascade of stopbands, so that part of the frequency content of the incident waves is trapped at each step of the device. The dispersion relation in Figs. VII .1(b1-2) gives us an idea on how to initialize the radius of the hole for each plate. Since we want to decrease the frequency of the lower edge of the system's stopband as we approach the rigid backing, we initialize the optimization with decreasing orifice radii (from the free to the rigidly backed end of the device).The target frequency range for the optimization is 200-1100 Hz. We use a total of 8 plates (plastic shims previously characterized) of different available thicknesses ranging from 25 μm to 254 μm. At each step l of the optimization, we tune the radius orifice R b l , the plate thickness h p l , and the cavity length L cav l between plate l and l -1. We first optimize, in a similar way to the previous Section, the plate geometry and the length of the cavity of the first resonator placed in front of the rigid backing, to have α(f target 1 ) = 1 at f target 1 = 200 Hz. Once optimized, another plate is added and the optimization is repeated for a frequency higher than the previous one. The result of the second optimization is presented in Figs.VII .4(c-d). As expected, two unitary absorption peaks (black line) are found at 200 and 335 Hz. If we look at the corresponding complex plane, we can observe two zeros lying on the real frequency axis at these two frequencies. The first two plates are then perfectly critically coupled to each other and to the rigid backing. The sixth optimization step is also depicted in Figs. VII .4(e-f).
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  RB | 2 (f )df ||. (VII .15) The resulting optimized absorption is shown in Fig. VII .4(a) together with the corresponding representation of the optimized reflection coefficient in the complex plane in Fig. VII .4(c). The analytical absorption is validated against a full-wave simulation on the optimized geometry. A fairly good agreement is found. The small visible discrepancies can be attributed to the off-resonance deviations of the annular plate modeling already observed in Figs. VII .1(c,d), due to the truncation on the modal displacement summation. Only two modes are accounted for in the analytical modeling because of a computational time constraint. Moreover the TMM does not account for the mutual coupling between resonators in contrast to the Finite Element Method.
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 5 Figure VII .5: Perfect absorption optimization for a system composed of 2 annular plates in transmission: (a1-2) Scattering amplitudes (transmittance in black, reflectance in red, and absorbance in yellow) and corresponding complex frequency plane of the first eigenvalue log |T -R| of the scattering matrix of the system's first plate (left plate, R b2 = 1.1 mm, h p2 = 110 μm). (b1-2) Scattering amplitudes (transmittance in black, reflectance in red, and absorbance in yellow) and corresponding complex frequency plane of the first eigenvalue log |T -R| of the scattering matrix of the system's second plate (right plate, R b1 = 0.5 mm, h p1 = 110 μm). (c,d1-2) Scattering amplitudes (transmittance in black, reflectance in red, and absorbance in yellow) for a left or right incidence, and (c,d3-4) complex frequency plane of the first (log |T -√ R + R -|) and the second (log |T + √ R + R -|) eigenvalues of the scattering value of the whole system with a cavity length separating the two plates of L cav = 6 cm (c) or L cav = 17 cm (d).

Figures VII . 5 (

 5 Figures show the amplitude of the scattering parameters and the complex plane of the non constant eigenvalue log |T -R| of the second plate.

Figures VII . 5

 5 Figures show respectively two optimizations with different upper limits for the

  Figures show respectively two optimizations with different upper limits for the length of the whole system, 6 cm or 17 cm. We can see that in the latter, an asymmetric perfect absorption can be achieved at 250 Hz (see Fig. VII .5(d-1)) when the wave impinges from the left, while a maximum of reflection is found for the opposite incidence (see Fig. VII .5(d-2)). If we look at the pole and zero of the eigenvalues of the scattering matrix, we can observe that, in this case, the zero of both eigenvalues (symmetric problem in Fig. VII .5(d-3) and antisymmetric problem in Fig. VII .5(d-4)) reach the real frequency axis at f target , thus proving that the critical coupling condition is fulfilled.

  Fig. VII .5(c-1).

Figure VII . 6 :

 6 Figure VII .6: Broadband absorption in a transmission configuration: (a) Optimized absorption (yellow), transmittance (black) and reflectance for a left incident wave. Inset of (a) shows the configuration under study. The solid line and the square symbols represent the analytical and the numerical results respectively. (b-c) Complex frequency plane representation of the first (b) and second (b) eigenvalues of the scattering matrix of the optimized configuration. The optimized device consists in 8 annular plates of thicknesses comprised between 90 μm and 230 μm, and has a total length of 17 cm: h p = [230; 145; 124; 171; 90; 150; 90; 190] μm, L cav = [6.3; 17.2; 18.5; 17.3; 39.7; 11; 62.2] mm, and R h = [0.53; 0.541.29; 0.9; 1.5; 2.6, 3.4; 4.8] mm

∞w

  n=0 n (r, θ). (B.22) One can insert Eq. (B.22) within the boundary conditions Eqs. (B.11)-(B.21), leading to the following system of linear and homogeneous equations[9] 

[∇ 4

 4 and thus to obtain the eigenfunctions.Returning to the forced problem (equation (B.4)) and projecting onto the modal basisw(r, θ, t) = ∞ n=0 w n (r, θ)q n (t), w n (r, θ)q n (t) + ρ p h p D w n (r, θ) qn (t)]w m (r, θ)dS = S ∆P (r) D e iωt w m (r, θ)dS (B.29) = S ∞ n=0 [ ρh D qn (t) + k 4 p qn (t)]w n (r, θ)w m (r, θ)dS. (B.30)
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 13 Figure E.1: Vue schématique du métamatériau : système complet (a), zoom sur la cellule unitaire avec vue compacte (b) ou éclatée (c).

f

  φ=0 , c'est-à-dire la fréquence à laquelle la phase du coefficient de transmission s'annule. À cette fréquence, la densité effective est négative et égale à ρ(f φ=0 ) = -ρ 0 κ 0 /κ(f φ=0 ). Le régime de densité effective négatif (zones grisées dans la Fig.E.3) correspond à une bande d'arrêt pour un système infini. Bien que f φ=0 se situe dans la plage de densité négative, la transmission reste considérable en raison du nombre restreint de cellules unitaires du métamatériau considéré. Le module du coefficient de transmission (resp. de réflexion) dépend fortement du nombre de cellules unitaires, contrairement à sa phase, qui reste constante et égale à 0. Lorsque les pertes ne sont pas considérées, il existe donc une fréquence, proche de la fréquence de densité nulle, pour laquelle une onde peut se propager sans changement de phase et quelle que soit la longueur du système.Le nombre de plaque influant fortement l'amplitude de la transmission à la fréquence de propagation sans changement de phase, un arrangement de 6 plaques est utilisé pour la validation expérimentale. La Figure E.3(d) représente l'amplitude mesurée des coefficients de transmission et de réflexion du système fini et la Figure E.3(e) montre la phase du coefficient de transmission ainsi que la partie réelle de la densité effective. Une très bonne concordance est observée entre les résultats analytiques et numériques qui suivent bien la tendance du module et de la phase du coefficient de transmission mesuré (E.3(e,f), symboles noirs). Des différences sont cependant visibles sur le coefficient de réflexion, et par conséquent sur la densité effective (qui est estimée à partir des deux coefficients de scattering).

  Figure E.4.

Figure E. 4 :

 4 Figure E.4: Dopage d'un arrangement de 20 plaques sans perte avec dopant : un résonateur de Helmholtz: Croquis 3D de la cellule unitaire, du métamatériau composé des 20 plaques et dopé en son milieu par un résonateur de Helmholtz, et zoom sur le résonateur (a). Amplitudes de transmission (noir) et de réflexion (rouge) (b), partie réelle de la densité effective dynamique (c), phase du coefficient de transmission (e), et partie réelle du bulk modulus effectif du système en fonction de la fréquence (f). Les lignes continues et les symboles carrés représentent respectivement les résultats analytiques et numériques. L'encadré (d) montre la dépendance du bulk modulus effectif par rapport à la longueur de la cavité du résonateur de Helmholtz L c . Les Figures (g) et (h) représentent le champ de pression total d'un métamatériau composé de 20 cellules unitaires sans et avec dopant à la fréquence de propagation sans changement de phase f = 405 Hz et f = 414 Hz respectivement (simulation éléments-finis).
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 56 Figure E.5: Dissimulation acoustique d'un diaphragme sans pertes (a,c) et avec pertes (b,d) : Champ de pression (FEM), amplitudes de transmission (noir) et de réflexion (rouge) (a1,b1,c1,d1) et phase du coefficient de transmission (noir, axe gauche) et partie réelle de la densité effective normalisée (rouge, axe droit) des deux systèmes (a2,b2,c2,d2). Les figures (a,b) montrent l'occultation d'un diaphragme R d = 0, 5 mm dans un métamatériau de 6 unités tandis que les figures (c,d) montrent l'occultation d'un diaphragme R d = 4 mm dans un métamatériau composé de plaques et dopé avec un résonateur de Helmholtz (R n = 2 mm, L n = 2 cm, R c = 1 cm, et L c = 40, 95 cm). La ligne continue représente les résultats analytiques et la ligne en pointillés ceux des simulations éléments-finis.

Figure E. 7 :

 7 Figure E.7: Zone de masquage d'un diaphragme de 4 mm de rayon dans le PAM: avec (a-c) et sans pertes (d-f). Croquis du système considéré (a,d), amplitude des paramètres de scattering (transmission, noir, axe gauche et réflexion, axe droit rouge) à la fréquence de phase nulle du système (b,e) et valeur de la fréquence de phase nulle du système (c,f). Les cercles, les points et les lignes pointillées horizontales représentent respectivement les données expérimentales et analytiques pour le système total et l'amplitude expérimentale des paramètres de scattering du métamatériau seul à sa fréquence de phase nulle.
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Chapter V

Cloaking/Hiding zone with a PAM 

VII .2.2 Broadband absorption in a rigidly-backed configuration

We then complexify our system to achieve broadband absorption. We now consider a system composed of N = 8 plates, stacked in front of a rigid backing as depicted in the inset of We use a cascade optimization (step-by-step optimization) to critically couple each plate to the

Appendices

Appendix A

Supplement on the Transfer Matrix Method

A.1 Transfer matrix of a layer of material

The propagation of a plane wave over a length L unit in a waveguide of cross-section S filled with air (density ρ 0 and compressibility C 0 ) is governed by the constitutive equations

written with the time convention e iωt , where ω is the circular frequency, κ 0 = 1/C 0 is the air bulk modulus, p is the sound pressure, and U = Sv is the flux, with v being the particle velocity.

These governing equations can be rearranged in the following matrix form

the solution of which being

with det the determinant function, giving
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V corresponds to the eigenvector matrix composed of the two eigenvectors of M and reads as

The transfer matrix therefore becomes

A.2 Dispersion relation of a periodic medium

A periodic medium of periodicity L unit is now considered. Periodicity implies that the state vector components, i.e., pressure and flux, are equal to those at a L unit further position, that is

(A.11)

.

In other words, the state vector fulfils, in a periodic medium, the Bloch-Floquet theorem and can be analyzed only in one of the unit cells of the system.

The transfer matrix of a unit cell can therefore reads as follows

where q is the Bloch Floquet wavenumber.

This equality can be rewritten in the following form 

Analytical modeling of the plate impedance

A plate is a specific type of shell with zero curvature [1][2][3]. We only consider here the particular case of thin plates, that is plates fulfilling the Kirchhoff-Love approximation. In this approximation, the transverse vibration of a h p -thick plate is represented by the vibration of its mid-plane, neglecting the effects of rotary inertia, shear deformations, in-plane forces, thickness variation, non-homogeneity.

Only small deflections are also considered.

We simply remind in a first section the plate impedance of a thick plate accounting for the shear deformations through the thickness of the plate.

B.1 Analytical modeling of the acoustic impedance of a thick plate

The following thick plate acoustic impedance is based on the Mindlin and Deresiewicz [4] plate theory.

Linear variation is assumed. The thickness variation during vibration is not accounted for.

The circular plate with radius R a , Young's modulus E p , Poisson's ratio ν p , density ρ p , section S and thickness h p is modeled by its averaged acoustic impedance,

where J n and I n denote the Bessel and modified Bessel functions of the first kind.

The mass of the plate is M plate = ρ p h p S. The variables δ 1,2 read as [5-7]

where the parameters R and F as well as the non-dimensional frequency parameter ζ, the flexural 125
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Appendix C

Supplement on the Measurement Principle

A relative calibration is carried out between the microphones, taking the first one as a reference, in order to prevent from differences in absolute calibration and phase relationships. As the frequency band under study, f ∈ [0 -2000] Hz, is low relative to the first cut-off frequency of the tube, that is f c = 1.841c 0 /2πR a = 6700 Hz, plane wave propagation is considered. The use of 4 microphones makes it possible to take into account the imperfection of the anechoic termination and therefore that part of the transmitted wave is reflected at this termination.

The pressure fields P 1 , P 2 (microphones M 1 and M 2 ) and P 3 , P 4 (M 3 and M 4 ), obtained from measurements of frequency responses and relative sensitivities between microphones M 2 , M 3 , M 4 and the reference microphone M 1 can be decomposed as a superposition of forward and backward waves upstream (A and B) and downstream (C and D) of the metamaterial 
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Appendix C : Supplement on the Measurement Principle

The previous system of equations can be rewritten in terms of the amplitudes 

C.1 Scattering matrix

The scattering matrix connects, through the transmission and reflection coefficients, the incoming A, D and outgoing waves B, C from the metamaterial

R and T therefore reads as

and enables to recover the effective properties using equations (II.30).

C.2 Transfer matrix

On the other hand, both the transmission and the effective parameters can be recovered using a transfer matrix approach.

The metamaterial transfer matrix reads as Appendix D

Doping movies

This appendix shows movies of a 2D acoustic doping from the full-wave simulation.

A two-port random 2D medium is considered. The input and output ports are air-filled waveguides, plugged into the "L" and "M" shapes respectively. A monochromatic wave of frequency lower than the cut-off frequency of the ports impinges the structure from the left ensuring plane wave propagation.
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Appendix D : Doping movies

The "LAUM"-shaped medium is filled with air (upper left quadrant), with a DNZ medium (upper right quadrant), with a doped DNZ medium (lower left quadrant) or with a DCNZ medium (lower right quadrant). In the lower left quadrant, the thickness of the "A" tranverse bar is chosen so that doping occurs. The host DNZ medium switches to an effective DCNZ medium when C ≈ 0, thus for κ → ∞ when the "A" bar have a thickness H = 10.1 cm. La dernière fréquence qui nous intéresse est la fréquence de propagation sans changement de phase