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Title: Metamaterials with extreme properties for the control of acous-

tic waves

Abstract:

Zero-index metamaterials, for which at least one of the effective parameters (density or dynamic com-

pressibility for acoustics) vanishes, have received considerable attention in recent years. These materi-

als have the particularity of inducing a considerable increase in the effective wavelength, thus offering

numerous application possibilities, including, among others, propagation without phase change, acous-

tic hiding of diffusers, directivity control, etc. This PhD work focuses particularly on the near-zero

effective density regime in acoustic metamaterials made of thin plates in air.

Through an in-depth study of a periodic arrangement of thin elastic plates embedded in a waveg-

uide, we have been able to explore analytically, numerically and experimentally some of the above

effects.

Particular attention is paid to the losses inherent to this type of system and their consequences

on the expected behavior.

We begin by studying numerically and experimentally observing a phase-change-free propagation

through the metamaterial at a frequency in a stopband of the finite system. We then transpose the

concept of photonic doping to acoustics. The addition of an impurity, here a well-chosen Helmholtz

resonator, to the system allows to transform the regime of zero density into one where density and

compressibility are simultaneously near zero. Thus, propagation without phase change is accompanied

by a unitary transmission, due to the impedance matching of the system with the surrounding air.

Finally, we study the possibility of performing acoustic hiding or masking of an object using the

acoustic wavelength stretching offered by the zero density.

Keywords:

Plate-type Acoustic Metamaterials, Zero-phase propagation, Doping, Hiding, Density Near Zero, Zero-

Index Medium
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Titre : Métamatériaux avec propriétés extrêmes pour le contrôle des

ondes acoustiques

Résumé :

Les métamatériaux à indice nul, pour lesquels au moins un des paramètres effectifs s’annule (densité

ou compressibilité dynamique pour l’acoustique), ont fait l’objet d’une attention considérable au cours

de ces dernières années. Ces matériaux ont la particularité d’induire une augmentation remarquable

de la longueur d’onde effective, offrant ainsi de nombreuses possibilités d’application, incluant entre

autres la propagation sans changement de phase, la dissimulation acoustique de diffuseurs, le contrôle

de la directivité, etc. Ce travail de doctorat se concentre particulièrement sur le régime de densité

effective quasi-nulle dans des métamatériaux acoustiques constitués de plaques fines dans l’air.

Grâce à une étude approfondie d’un arrangement périodique de fines plaques élastiques encastrées

dans un guide d’onde, nous avons pu explorer analytiquement, numériquement et expérimentalement

certains des effets ci-dessus. Une attention particulière est portée sur les pertes inhérentes à ce type

de système et à leurs conséquences sur les comportements attendus.

Nous débutons par l’étude numérique et l’observation expérimentale d’une propagation sans change-

ment de phase à travers le métamatériau, à une fréquence située dans une bande interdite du système

fini. Nous transposons ensuite le concept de dopage photonique à l’acoustique. L’ajout dans le sys-

tème d’une impureté, ici un résonateur de Helmholtz bien choisi, permet de transformer le régime de

densité nulle en un régime où la densité et la compressibilité sont simultanément quasi-nulles. Ainsi,

la propagation sans changement de phase est accompagnée d’une transmission unitaire, due à l’accord

d’impédance du système avec l’air environnant. Nous étudions enfin la possibilité de réaliser une

dissimulation ou un masquage acoustique d’un objet en utilisant l’extension de la longueur d’onde

acoustique, offerte par la densité nulle.

Mots-Clés :

Arrangement périodique de plaques, Propagation sans changement de phase, Dopage, Dissimulation

acoustique, Densité nulle, Matériau à index de réfraction nul

Thèse préparée au Laboratoire d’Acoustique de l’Université du Mans

(LAUM UMR CNRS 6613), Avenue Olivier Messiaen, 72085 Le Mans

Cedex 9, FRANCE.

Doctorat Bretagne Loire - École doctorale Sciences Pour l’Ingénieur

(n◦602) - Spécialité Acoustique

v





Acknowledgements

This PhD work was made possible thanks to the support of many people whom I would like to thank

for their help and support throughout these three years.

First of all, I would like to warmly thank my PhD advisors, Vincent Tournat, Jean-Philippe Groby,

and Vicent Romero-García for having proposed this research topic, for their support, their help and

their confidence. Working under their supervision was not only fruitful but also a sincere pleasure. I

am very grateful for the opportunity they gave me to collaborate with other research teams in Boston,

Madrid, and Hong-Kong. I would especially like to thank Johan Christensen, Aurélien Merkel and

Maria Rosendo López on the one hand, and Ping Sheng and all his students on the other hand for

their welcome and hospitality during my mobilities.

Apart the PhD work, Jean-Philippe and Vicent gave me the chance, through Metagenierie and

DENORMS to help organizing different scientific conferences and events. They also pushed me up to

fund and develop a network for the young researchers working on acoustic metamaterials with Théo

and Éric. Thank you to everyone who helped us to organize the first two Symposiums on Acoustic

Metamaterials, and the local organizers especially Marco, Ada and Vicent for all what they did and

for letting us discover their native regions ! These weeks will remain as wonderful souvenirs !

I would like to acknowledge Nader Engheta and Daniel Torrent for having agreed to review this

manuscript, as well as Agnès Maurel, Romain Fleury, Marco Miniaci, and Jérôme Vasseur for having

agreed to be member of my PhD committee. I would also like to thank Aroune Duclos and Benoît

Nennig for the thoughtful discussions during my "comité de suivi individuel". The PhD work has

been quite demanding on manufacturing devices, I would like to thank Hervé Mézière, Éric Egon, and

Jacky Maroudaye for their help and availability.

My whole cursus in Le Mans and particularly these three years in the LAUM have been a real

pleasure and enjoyment. I would like to thank all the LAUM members, the directors Pierrick Lotton

and Laurent Simon, all the pedagogic and administrative teams for the conviviality and accessibility.

Thank you to all the PhD candidates and post-docs that I had the chance to meet, and to discuss

with. Special thanks to my office (and floor) mates Élie, Valentin, Jangyi, Constance, and Julien, and

to Charlotte, Robin, Théo (x2), Thomas, Jean, Samuel, Paola, ... for the good vibes, the advises,

vii



the coffee breaks (thanks a lot also to Murielle for the day to day joy and happiness during these

moments), and the pub crawls,..

I would like to thank all my friends for their presence and support. Music has always been central

to my development, and perhaps even more so during these three years. These weekly music breaks

with the various orchestras in which I have had the chance to play have allowed me to escape and

take a step back from the PhD work. So I will probably never thank enough all my musician friends,

with a special thought to those of Andouillé (you are too numerous to be named here, but I’m sure

you’ll recognize yourself).

Finally, I am very grateful to my parents and sister for their constant love and support, even

though they probably don’t really understand the nature of my work yet. I owe you so much. Thank

you for allowing me to study under such good conditions.

viii



Nomenclature

List of Abbreviations

1-2-3D One-two-three dimensional

CNZ Compressibility Near Zero

DCNS Density and Compressibility Near

Zero

DM Decorated Membranes

DNZ Density Near Zero

EMNZ Epsilon and Mu Near Zero

ENZ Epsilon Near Zero

FEM Finite Element Method

MNZ Mu Near Zero

PAM Plate-type Acoustic Metamate-

rial

TMM Transfer Matrix Method

ZIM Zero Index Metamaterial

List of mathematical functions

cos Cosinus

C Cost function

F Function of

sin Sinus

tan Tangent

e. Exponential

i Imaginiry unit

arg Argument

atan Arc tangent

I Modified Bessel function of the

first kind

Im Imaginary part

J Bessel function of the first kind

K Modified Bessel function of the

second kind

ln Napierian logarithm

log Logarithm to the base 10

Re Real part

Y Bessel function of the second kind

List of Symbols

α Absorption

f̄d Averaged force density

β Loss factor

∆L Length correction

∆P Pressure difference

δν Viscous penetration depth

ix



ε Permittivity

γ Adiabatic constant

κ Bulk modulus

Λ Eigenvalues

λ Wavelength

E Electric field

H Magnetic field

T Transfer matrix

V Eigenvectors matrix

v Particle velocity

µ Permeability

µ0 Dynamic viscosity of air

ν Poisson’s ratio

ω Circular frequency

φ Phase of the transmission coeffi-

cient

ρ Density

θ Angle variable

A,B,C,D Input and output waves

C Compressibility

c Celerity

D Flexural rigidity

E Young modulus

F Harmonic excitation force

f Frequency

K Spring constant

k Wavenumber

L Length

M Dynamic effective mass

m Mass/integer

N Number of plates/unit cells

n Refraction index/mode number

p Pressure

Pr Prandtl number

Q Quality factor

q Bloch wavenumber

R Radius/Reflection coefficient

r Radius variable

S Cross-section

T Transmission coefficient

U Flux

w Transverse displacement

x Displacement

Z Acoustic impedance

List of subscripts and notations

.(ω) Effective properties

.0 Surrounding medium (air)

.a Waveguide

.d Dopant/diaphragm

.r Resonance

.asym Asymmetric

.Biot Viscothermal transition

.B Bragg

.ch Channel

.c Cut-off/cavity

.diss Disspative

.FP Fabry-Perot

.gap Air gap/band gap

.g Group

.holder Plate holder

x



.HR Helmholtz resonator

.h Inner boundary of the annular

plate (hole)

.i Inner

.leak Leakage

.lg Large guide

.meas Measurement

.m Matching

.n Normal component / Neck

.opt Optimal

.o Outer

.p Plate

.RB Rigidly-backed

.SB Side branch element

.sym Symmetric

.S Series element

.t Total

.unit Unit cell

.̄ Cross-sectional average

xi





Contents

I General paradigm 1

I.1 Definition and historical background of metamaterials . . . . . . . . . . . . . . . . . . 2

I.2 Analogy Acoustics/Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.3 Extreme constitutive parameters: different operating regimes . . . . . . . . . . . . . . 3

I.3.1 Double positivity: conventional materials . . . . . . . . . . . . . . . . . . . . . 4

I.3.2 Single negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.3.2.1 Negative dynamic mass density . . . . . . . . . . . . . . . . . . . . . . 5

I.3.2.2 Negative dynamic compressibility . . . . . . . . . . . . . . . . . . . . 6

I.3.3 Double negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.3.4 Zero-Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.4 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I.5 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Plate-type Acoustic Metamaterials 17

II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.2 "Non-resonant" 1D sonic crystals: General approach . . . . . . . . . . . . . . . . . . . 19

II.2.1 Propagation in an air-filled waveguide . . . . . . . . . . . . . . . . . . . . . . . 20

II.2.2 Propagation in a bi-layer periodic medium . . . . . . . . . . . . . . . . . . . . . 22

II.3 Resonant sonic crystal: Modeling of a PAM . . . . . . . . . . . . . . . . . . . . . . . . 23

II.3.1 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II.3.2 Thin plate impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.3.3 Losses modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II.3.4 Scattering coefficients and effective properties . . . . . . . . . . . . . . . . . . . 27

II.4 Resonant sonic crystal: acoustic behavior of a PAM . . . . . . . . . . . . . . . . . . . . 28

II.4.1 Dispersion relation and effective parameters . . . . . . . . . . . . . . . . . . . . 28

II.4.2 Finite size system: influence of the number of plates, the periodicity and the

losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II.5 Plate characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

II.5.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II.5.1.1 Measurement principle . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xiii



II.5.1.2 Characterization principle . . . . . . . . . . . . . . . . . . . . . . . . . 35

II.5.2 Choice of the plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

IIIZero-phase propagation 45

III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III.1.1 Supersqueezing effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III.1.2 Zero-phase propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

III.2 Classification of the PAM operating regimes . . . . . . . . . . . . . . . . . . . . . . . . 48

III.2.1 Lossless PAM behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III.2.2 Effect of the losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III.3 Experimental observation of the zero-phase propagation . . . . . . . . . . . . . . . . . 51

III.3.1 Numerical modeling of the PAM . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III.3.2 Experimental demonstration of the acoustic wave propagation without phase

change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III.3.3 Applications of zero-phase propagation: control of the directivity . . . . . . . . 53

III.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IVAcoustic doping of a PAM 59

IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

IV.2 Evidence of acoustic doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV.3 Doping of a lossless PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

IV.3.1 Design of the doping element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IV.3.2 Independence of the dopant location . . . . . . . . . . . . . . . . . . . . . . . . 65

IV.4 Doping of a lossy PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

IV.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

V Cloaking/Hiding zone with a PAM 73

V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

V.2 Cloaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V.2.1 Design of the object to cloak . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V.2.2 Lossless system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

V.2.2.1 Cloaking configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 77

V.2.2.2 Cloaking efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

V.2.3 Lossy system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

V.2.4 Feasibility of cloaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xiv



V.3 Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

V.3.1 Centered diaphragm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

V.3.2 Hiding zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

V.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VIGeneral conclusion 91

VI.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

VI.1.1 Summary of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

VI.1.2 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

VI.2 Side works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

VI.2.1 Reconfigurable metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VI.2.1.1 Accordion like Helmholtz resonators . . . . . . . . . . . . . . . . . . . 95

VI.2.1.2 Multi-stable origami Helmholtz resonators . . . . . . . . . . . . . . . 96

VI.2.2 Asymmetric reflection: Willis coupling . . . . . . . . . . . . . . . . . . . . . . . 96

VI.2.3 Broadband absorbing Plate-type Acoustic Metamaterials . . . . . . . . . . . . . 96

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

VIISide work highlight 99

VII .1Acoustic signature of an annular plate . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VII .1.1 Analytical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VII .1.2Acoustic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

VII .1.2.1Eigenfrequency and scattering coefficients . . . . . . . . . . . . . . . . 102

VII .1.2.2Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VII .1.2.3Role of the plate and orifice . . . . . . . . . . . . . . . . . . . . . . . . 104

VII .1.2.4Maximal absorption of an annular plate . . . . . . . . . . . . . . . . . 105

VII .2Absorption in a rigid backing configuration . . . . . . . . . . . . . . . . . . . . . . . . 106

VII .2.1Perfect absorption with a single plate . . . . . . . . . . . . . . . . . . . . . . . 106

VII .2.2Broadband absorption in a rigidly-backed configuration . . . . . . . . . . . . . 108

VII .3Absorption in a transmission configuration . . . . . . . . . . . . . . . . . . . . . . . . . 110

VII .3.1Optimization scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VII .3.2Broadband asymmetric absorber . . . . . . . . . . . . . . . . . . . . . . . . . . 112

VII .4Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendices 119

A Supplement on the Transfer Matrix Method 121

A.1 Transfer matrix of a layer of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xv



A.2 Dispersion relation of a periodic medium . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B Analytical modeling of the plate impedance 125

B.1 Analytical modeling of the acoustic impedance of a thick plate . . . . . . . . . . . . . 125

B.2 Analytical modeling of thin circular plates . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2.1 Solution for a clamped circular plate . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2.2 Solution for an annular plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.3 Vibroacoustic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C Supplement on the Measurement Principle 135

C.1 Scattering matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.2 Transfer matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

D Doping movies 139

E Extended abstract (in French) 141

xvi



Chapter I
General paradigm

Overview
I.1 Definition and historical background of metamaterials . . . . . . . . . . . . . . . . . 2

I.2 Analogy Acoustics/Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.3 Extreme constitutive parameters: different operating regimes . . . . . . . . . . . . . 3

I.3.1 Double positivity: conventional materials . . . . . . . . . . . . . . . . . . . 4

I.3.2 Single negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.3.3 Double negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.3.4 Zero-Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.4 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I.5 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Acoustic and elastic metamaterials have attracted considerable attention in the last few decades,

certainly fueled by the possibilities of tailoring their wave-dispersion properties and making previously

unexpected behaviors real. Actually, a plethora of applications have been motivated from these new

ways of controlling always further the sound. These include perfect absorbers, topological systems,

acoustic diodes, wavefront shaping devices, or cloaking systems, among others.

This PhD work focuses on the acoustic wave propagation in media with almost zero refraction in-

dex, i.e., zero-index media, in which at least one of the effective constitutive parameters (homogenized

density and/or compressibility) vanishes. In particular, plate-type acoustic metamaterials, i.e., meta-

materials consisting in a periodic arrangement of thin elastic plates, are deeply studied and specific

attention is paid to the impact of viscothermal and viscoelastic losses on the resulting applications.

In this first Chapter, we present a non-exhaustive historical overview of the concept of metama-

terials and remind some elements of the analogy between acoustics and electromagnetism. Then,

we review the main applications associated with the different operating regimes of these artificial

materials. Finally, we highlight the objectives and organization of this PhD thesis.

1
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I.1 Definition and historical background of metamaterials

"Metamaterials"...

This new type of architectured medium has allowed a breakthrough in the field of wave physics

in recent decades. Despite the appealing number of publications, its definition is still not universal,

remains evasive, and sometimes controversial. Most of the time, the definition is contrasted with

conventional materials, the constitutive parameters of which solely depend on the atomic composition

of the material. Conversely, metamaterials are generally defined as artificial, i.e., man-made structures

designed to make a hitherto unprecedented behavior real by overcoming the physical constraints of

conventional materials.

These unusual properties are produced by the careful design of the meta-atoms, i.e., the elementary

subwavelength building blocks constituting the locally resonant structure. If the size of the meta-atoms

and the distance between them are both smaller than the incident wavelength, a homogenization

scheme can be applied. The metamaterials can then be characterized by using effective constitutive

dynamic parameters, depending on both the properties of the constituent materials and the resonance

of the meta-atoms. If non-resonant atoms (conventional material) are considered, both constitutive

parameters are positive. On the contrary, the constitutive dynamic parameters of a metamaterial

are frequency-dependent and can take negative values. The resonant aspect of the building blocks

is therefore essential. A more refined definition of metamaterials could therefore be "Heterogeneous

artificial devices that present new responses that could not occur in the resonant constituent elements

alone due to physical constraints" [1, 2].

Metamaterials are grounded on electromagnetic periodic media (referred to as photonic crystals

hereafter), i.e., a periodic lattice of scatterers embedded in a host medium. In the diffraction regime,

i.e., when the lattice constant is of the order of magnitude of the wavelength, destructive interferences

open electromagnetic bandgaps, in which waves cannot propagate, and produce a strong dispersion

allowing to tailor the refraction [3, 4]. The first theorizing of metamaterials dates back to 1968 [5]. A

Russian physicist, Victor Veselago, considered in a pioneering theoretical work that an electromagnetic

medium could simultaneously have a negative permittivity ε, and permeability µ, thus having a

negative refractive index n =
√
εµ = −

√
|ε||µ|. In these materials, named double negative (or left-

handed) metamaterials, the phase velocity of a wave is antiparallel to its group velocity. The resulting

unconventional propagation had to wait nearly 30 years to be successfully demonstrated using the

prototype proposed by Sir John Pendry’s research group: meta-atoms made of split metal wires

and rings. This simple design provided experimental evidence of the existence of double negative

metamaterials [6, 7], setting a turning point for the community and attracting much attention and

research work for the following decades [8, 9].
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I.2 Analogy Acoustics/Electromagnetism

The craze generated by these major discoveries has not been limited to electromagnetism and has also

taken hold of the acoustics and elasticity community [1, 2] fueled by the mathematical similarities

between the governing equations.

In particular, a strong analogy [10] can be drawn between Maxwell’s lossless equations linking the

electric E and magneticH fields in electromagnetism through the permeability ε and the permittivity µ

−ε∂E
∂t

+∇×H = 0, (I.1)

µ
∂H

∂t
+∇×E = 0, (I.2)

and Euler’s equations and mass conservation equations linking pressure p and velocity v in acoustics

through density ρ and compressibility C,

ρ
∂v

∂t
+∇p = 0, (I.3)

C
∂p

∂t
+∇.v = 0. (I.4)

Both systems can be cast in a wave equation displaying the celerity of the respective wave in terms

of the constitutive parameters, i.e., c = (εµ)−1/2 and c = (ρC)−1/2.

Despite the different types of solutions involved - longitudinal scalar for acoustic waves in fluids and

transverse vector with two polarizations for electromagnetic waves - it is therefore not surprising that

researchers in each community are looking for similar exotic properties, by acting on ρ (resp. ε) and/or

C (resp. µ).

As a first step, the concept of photonic crystals was translated into elastic and acoustic media

through the work of Kushwaha et al. [11] and Economou et al. [12, 13] in 1993 thus implying the

appearance of the term phononic crystals. In 2000, the Professor Ping Sheng’s research group added

inner local resonances in phononic crystals [14], enabling to open bandgaps at frequencies much lower

than that of the Bragg scattering, thus allowing negative dynamic acoustic properties, and paving the

way for the development of acoustic metamaterials [15–17].

I.3 Extreme constitutive parameters: different operating regimes

Acoustic metamaterials can be classified depending on the operating regime of the constitutive pa-

rameters, that is positive, negative or near-zero, as it can be summarized in the diagram of Fig. I.1. It

is worth noting that in the longwavelength limit, i.e., when both the periodicity and the dimensions of

the meta-atoms are small compared to the acoustic wavelength, the meta-structure can be considered

as an effective medium characterized by the effective constitutive dynamic parameters ρ(ω) and C(ω)

determined by a homogenization process.
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Figure I.1: Diagram of the operating regimes of acoustic metamaterials: examples of metamaterials
with extreme constitutive parameters (adapted from [17]). Left upper quadrant : single-negative metamaterials
with a negative effective dynamic mass density. (a) 3D deeply subwavelength lattice made of metallic spheres
coated with a soft layer of sillicon rubber [14], (b) normal velocity field of a membrane-type metamaterial [18].
Left lower quadrant : double negative metamaterials with simultaneously negative compressibility and mass
density. (c) Acoustic waveguide loaded with both side holes (responsible for the negative compressibility) and
resonant membranes (responsible for the negative dynamic density) [19]. Right lower quadrant : single negative
metamaterials with a negative compressibility. (d) 2D lattice of borehole resonators [20], 1D waveguide loaded
with a periodic array of Helmholtz resonators [21]. Right upper quadrant : conventional materials or structured
materials with gradient properties with positive constitutive parameters. (e) 3D printed graded porous material
for broadband perfect absorption of sound [22], (g) axisymmetric gradient index lens made of rigid toroidal
scatterers embedded in air [23]. (h) Zero index media with an almost zero mass density, made of a periodic
array of anisotropic scatterers (structured cylinders) embedded in a 2D waveguide [24] (i) Zero index media
with an almost zero compressibility composed of a Helmholtz resonator loaded in parallel to a waveguide
[25]. (j) Double zero metamaterials with simultaneous zero compressibility and density made of an array of
cylindrical bling holes [26].

I.3.1 Double positivity: conventional materials

The upper right quadrant of the diagram represents the class of conventional materials with positive

mass density and compressibility. As previously mentioned, these materials, grouped under the term
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"conventional", include natural media (glass, metals,...), but also man-made structured media that do

not have inner local resonances but overcome the constraints encountered with natural materials. We

can cite for example the realization of 3D printed porous materials illustrated in Fig. I.1(f), in which the

microstructure is made up of an optimized gradient of properties enabling broadband absorption [22].

Besides, wave focusing leading to sound amplification can be achieved by using an axisymmetric

gradient index lens consisting of rigid toroidal scatterers embedded in air [23]. Improved media can

therefore be obtained using non resonant structured systems (gradient of properties or periodicity).

I.3.2 Single negativity

The introduction of local resonances in periodic media and the use of the produced extreme constitutive

dynamic parameters is another strategy that will be detailed in the following.

The constitutive parameters of a medium have a direct impact on the propagation of an acoustic

wave, the effective wavenumber of which reads as k(ω)2 = ω2ρ(ω)C(ω). If only one constitutive

parameter is negative, the effective wavevector becomes purely imaginary. Consequently, the acoustic

waves become evanescent and bandgaps, in which waves cannot propagate, are opened. Such condition

can be achieved acting on either the compressibility or the mass density.

I.3.2.1 Negative dynamic mass density

To understand what negative mass density means, we should start again with the locally resonant

sonic crystals designed by Liu et al. in 2000 [14]. In that cubic lattice illustrated in Fig. I.1(a), the

soft coated metal spheres are acting as local mass-spring resonators. Under harmonic excitation F ,

the heavy metal sphere, acting as mass m2, can have a displacement x2 around its steady position

within the cavity formed by the soft silicone rubber shell. The coating, playing the role of a spring

with a constant K and a mass m1, also moves with a displacement x1. By solving Newton’s laws, the

dynamics of the system can be modeled as

F =

(
m1 +

K

ω2
r − ω2

)
ẍ1, (I.5)

where the inner resonance pulsation ω2
r = K/m2 is clearly apparent. From an external point of view,

i.e., when the inner structure cannot be seen, the system appears to react to a frequency dependent

dynamic effective mass of the form M(ω) = m1 + K/(ω2
r − ω2). At the metamaterial level, one can

define an effective dynamic mass density accounting for the relative motion of each meta-atom

ρ(ω) =
fd
ẍ
, (I.6)

linking the average (over the unit cell surface area) force density fd with the second order time

derivative of the meta-atom displacement x. Further details on dynamic effective mass and effective

mass density can be found in the work of Milton and Willis [27], Mei et. al [28], and in Yao et al. for
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an experimental verification on a 1D mass-spring system [29].

Examining equation (I.6), the negative dynamic mass density implies that the directions of force

and acceleration are antiparallel. In the case of the considered resonant sonic crystals, negative density

occurs above the inner resonance frequency. The out-of-phase motion of the masses produces Fano

interferences, responsible for the opening of a low frequency stopband. In contrast to the Bragg

bandgaps produced by the periodicity-dependent destructive interferences in the diffraction regime,

Fano interferences are only due to the inner resonances. The independence on the spatial periodicity

further allows the design of deep subwavelength structures.

Similar behaviors can also be obtained with membrane-type metamaterials in air, as demonstrated

by the pioneering work of Yang et al. in 2008 [18]. A more thorough exploration of membrane- and

plate-type metamaterials is presented in Chapter II.

I.3.2.2 Negative dynamic compressibility

Negative dynamic compressibility can be interpreted in opposite, as an unintuitive behavior: the ex-

pansion of a medium when compressed. Acoustic resonators such as quarter-wavelength or Helmholtz

resonators are very good candidates since the underlying physics involves compression and expansion

of air.

Fang et al. evidenced for the first time a dispersive negative compressibility with an underwater

metamaterial made of a periodic set of coupled Helmholtz resonators loaded to a waveguide (Fig. I.1(e))

and working in the kHz frequency range [21]. Another example with a 2D periodic arrangement of

bored hole resonators can be found in [20]. In both cases, the collective resonance produces a strong

dispersion making the dynamic compressibility negative and leading to evanescent waves in the opened

bandgap.

It should be noted here that the dispersion of systems composed of periodically loaded resonators

was already previously studied in the pioneering work of Bradley [30] and Sugimoto [31], although

they introduced neither the homogenization procedure nor the effective dynamic properties.

Symmetry of the resonances: To summarize, single negativity can be achieved by introducing

local resonances in periodic structures. In doing so, the strong dispersion induced by the resonances

gives rise to Fano destructive interferences, generating bandgaps in which the waves are evanescent.

Resonance-induced effective abnormal constitutive parameters can be classified into two categories

according to the symmetry of resonance. Li et al. have indeed theoretically proved in 2004 that

monopolar symmetry modes have mainly an impact on compressibility, since it leads to a compression-

dilatation response, while dipolar symmetry resonances produce a dispersive effective dynamic mass

density, with a localized contribution at the center of mass [32].

The development of single negative metamaterial has led to a plethora of applications including

but not limited to deep-subwavelength perfect absorbers and high efficiency isolation devices involving

either monopolar inclusions [33–36] or dipolar ones [18, 37–42].
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I.3.3 Double negativity

The last quadrant (lower left) of Fig. I.1, represents certainly the most unexpected regime for acoustic

metamaterials, double negativity. This regime, in which both constitutive parameters are negative,

is analogous to negative-index in electromagnatism, leading to negative phase velocity and abnormal

refraction. Interestingly and counter-intuitively, despite the fact that a single negativity prevents the

waves from propagating, the simultaneous combination of the two negative constitutive parameters

switches the medium from opaque to transparent, allowing the waves to propagate.

Double negativity requires coupling monopolar and dipolar resonances in the same frequency

range. Two strategies can be employed. First, a combination of different types of resonators can be

used to overlap the frequency response related to each symmetry [43–45]. Lee et al. experimentally

realized the first double negative acoustic metamaterial [19] with an air filled waveguide periodically

segmented with clamped membranes and loaded by periodic side holes (see Fig I.1(c)), generating

respectively frequency dependent effective density (dipolar response) [37] and effective compressibility

(monopolar response) [46]. The second strategy is to design resonators exhibiting eigenmodes with

distinct symmetries. Careful tuning of these eigenmodes can then enable to control dispersion so that

the effective density and compressibility are simultaneously negative, as demonstrated with coupled

membranes with attached masses [47] or with soft 3D metamaterials consisting of sub-wavelength

macroporous silicone rubber microbeads [48], exploiting the Mie resonance phenomenon [32].

How does such a medium behave physically speaking? Conciliating negative effective density and

compressibility requires that the metamaterial expands upon compression as it moves in the opposite

direction to that of the excitation for certain frequency ranges. This peculiar response has drawn

considerable attention and inspired many applications such as reverse Doppler effect [49, 50], cloaking

[51], super-focusing [52, 53], and subwavelength imaging [54, 55]. However, these structures also face

the constant challenge of managing viscothermal losses. Cutanda et al. [56] demonstrated numerically,

for example, the total disappearance of the double negativity features in metamaterials consisting of

structured rigid cylinders [24], solely due to losses.

I.3.4 Zero-Index

Another interesting class of metamaterials is that of Zero-Index Metamaterials (ZIMs), in which one

or both of the constitutive dynamic parameters are almost zero. We have seen in the aforementioned

works that resonances induce a strong dispersion in the system, resulting in frequency-dependent

effective parameters that may vary from positive to negative, thus passing through zero.

First discussed in plasmonics and electromagnetism [57, 58], theorized by Ziolkowski in 2004 [59],

and extensively developed thanks to the pioneering work of Professor Engheta’s research group [60],

ZIMs have shown their ability to considerably extend the possibilities of wave manipulation. For

instance, epsilon near zero metamaterials have been used to squeeze electromagnetic energy through

narrow waveguide channels [61–65], to reduce scattering induced by sharp bends [66], to achieve
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transparency and cloaking [67, 68], or to tailor the radiation phase pattern [69]. Acoustics ZIMs can

also be designed seeking out similar properties.

The waves propagate in ZIMs with an extremely high phase velocity (almost infinite in the lossless

case), c(ω) = [ρ(ω)C(ω)]−1/2. As a result, the effective wavelength is stretched and gives rise to

quasi-static field distribution, providing a wide scope for wave manipulation. It allows, among others,

radiation patterning and phase front manipulation, extraordinary propagation through corners and

perfect power divider [24], supercoupling and tunneling effects [70, 71], or cloaking [72].

Single near-zero metamaterials, i.e., in which only one of the constitutive parameters is almost zero,

can be obtained on the one hand by using anisotropic scatterers [24] (see Fig. I.1(h)) or membrane-

type metamaterials [70] for near-zero density. On the other hand, the use of Helmholtz resonators

allows the compressibility to vanish [25] as depicted in Fig. I.1(i). Nonetheless, every application of

a single near-zero acoustic metamaterial is limited because of a strong impedance mismatch with the

surrounding fluid; the effective impedance Z(ω) =
√
ρ(ω)/C(ω) being either nearly zero (ρ(ω) ≈ 0)

or nearly infinite (C(ω) ≈ 0).

Double near-zero metamaterials provide a solution to this impedance mismatch. These media

simultaneously have a density and a compressibility close to zero, which makes it possible to maintain

a constant finite effective impedance that can match that of the surrounding medium. In this way,

perfect transmission can be achieved while maintaining the above-mentioned properties. Figure I.1(j)

shows an experimental realization of double zero acoustic metamaterials made of a 2D square lattice

of symmetric blind holes, evidencing the total transmission and revealing a Dirac-like cone [26].

Other kinds of metamaterials

The previous review on metamaterials focuses only on passive acoustic metamaterials with extreme

parameters. It is worth noting here, that many other types exist, including, but not limited to, Willis,

topological, or active metamaterials, which are out of the scope of this manuscript. Thorough reviews

can be found in Refs. [15, 17].

I.4 Objective of the thesis

As we have seen, a substantial work has already been done on the developments of acoustic metama-

terials using extreme parameters, however, much remains to be done.

The objective of this PhD thesis is to study analytically, numerically, and experimentally the

specific case of a realistic Plate-type Acoustic Metamaterial (PAM), i.e., a periodic arrangement of

thin clamped elastic plates, paying careful attention to the role of losses inherent to such systems.

Although the plates are governed by a 4th order differential equation, unlike a 2nd order differential

equation for a membrane, PAMs are also exhibiting near zero effective dynamic mass density around

the resonance frequency of the plates. Through an in-depth examination of the behavior of these
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metamaterials, we will pay particular attention to three main phenomena: zero-phase propagation,

acoustic doping, and hiding/cloaking.

Due to the strong dispersion around the resonance frequency, a near-zero density leading to a

stretching of the effective wavelength is expected. As a result, the metamaterial displays a quasi-

static field distribution making zero-phase propagation possible. Nevertheless, to what extent can

this zero-phase propagation be effectively observed and measured?

Two main limitations will be encountered: first, the impedance mismatch related to the single near-

zero condition. Second, losses, not avoidable in real operating systems, are a constant and crucial

challenge in the design of acoustic devices and perhaps even more so in the case of metamaterials, in

that they have a considerable impact on dispersion. As a result, the expected unusual phenomenon can

be radically altered and even annihilated. The origin and influence of losses in Plate-type Acoustic

Metamaterials must then be thoroughly investigated and characterized, so that the design of the

realistic sample accounts for this as a key factor.

The design and realization of a sample allowing experimental demonstration of the relevant prop-

erties will then pave the way for the conceptualization of potential applications using the unique

zero-phase propagation property. Special attention will be devoted to phase patterning and wavefront

shaping with the design of a subwavelength acoustic dipole. Moreover, other useful applications could

arise from these extreme media. One can easily imagine that due to acoustic wavelength stretching,

the embedment of scatterers could have a limited impact on the behavior of the metamaterial if the

longwavelength constraint is met, i.e., if the dimensions of the embedded scatterers are very small

relative to the wavelength. Such promising conditions could set the stage for the design of hiding

and/or cloaking devices.

Double zero metamaterials have the particularity of conciliating both the exotic properties of

DNZ media and impedance matching, thus alleviating the constraints for realistic applications. It is

therefore of great interest to find a way to transform our single near-zero medium, the PAM, into a

Density and Compressibility Near Zero (DCNZ) medium. By examining what is being developed in

electromagnetism, we will propose an acoustic analogous of photonic doping which consists in adding

a single impurity to a single near-zero medium to convert it to double near-zero. In doing so, we

expect to meet the requirements for achieving super-coupling, i.e., total transmission, zero density,

and zero-phase propagation simultaneously.

I.5 Organization of the manuscript

This manuscript is divided into 7 Chapters including the introduction, the conclusion, and a sidework

highlight.

This first Chapter sets out the general paradigm of this work and reviews the historical background

of metamaterials in general, focusing on the extreme values of the constitutive parameters achievable

in acoustics.
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In Chapter II, we remind the features related to periodic and locally resonant periodic structures

with the prism of a Plate-type Acoustic Metamaterial.

Chapter III is dedicated to the classification of the Density Near Zero regime of the PAM and of

the experimental observation of a zero-phase propagation.

In Chapter IV, we transpose the concept of photonic doping to acoustics so as to transform the

Density Near Zero regime into Density and Compressibility Near Zero and enable to impedance match

the PAM to the surrounding medium at the zero-phase frequency.

We explore analytically and numerically in Chapter V the feasibility to cloak an obstacle in the

PAM making use of doping. Accounting for the strong limitation induced by the losses, we evidence

experimentally a hiding zone.

Finally, Chapter VI gathers a general conclusion, a discussion and some prospects to the presented

work as well as a presentation of the PhD work realized in parallel to the Near-zero regime in Plate-

type Acoustic Metamaterials, with a focus on sound absorption devices made of annular plates in

Chapter VII .
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II.1 Introduction

In the development of locally resonant acoustic metamaterials, membranes and plates have played a

central role, certainly because of their high tunability and their small size and weight, allowing deep

subwavelengths and lightweight designs that meet the requirements of very demanding applications

such as in the aeronautics or aerospace industry.

Two main types of membrane-type acoustic metamaterials have been developed. The first type,

based on decorated membranes (DM), composed of a clamped stretched membrane with additional

mass platelets, are widely used for high insulation and sound absorption. The noise attenuation

efficiency of weighted membranes was demonstrated, in building acoustics, in 1996 by Hashimoto et

al.. [1, 2] on a large-scale membrane with attached additional masses. The real development of DM

had to wait until 2008 with the pioneering work of Yang [3], in which a simple membrane with a

small attached mass acts counter-intuitively as an efficient sound reflector at frequencies between the

first two eigenmodes of the structure. The coupling of the membrane and the added mass platelets

gives rise to two simple vibration modes. The first eigenmode, the frequency of which depends on

the weight of the mass, corresponds to an in-phase vibration of the mass and the membrane, while

the mass platelet is motionless in the second. The out-of-phase superposition of the two eigenmodes

amplitude at the antiresonance results in an averaged almost zero in-plane displacement, i.e., almost

zero transmission. Detailed studies on the influence of the different design parameters (position, shape,

number of additional masses, number of cells in the plane or stacking units,...) on the attenuation

efficiency and frequency range followed [4–8].

In parallel, absorbing metamaterials have also been designed using DM. The optimization of the

absorption of a structure is based on the concept of critical coupling. Total losses in resonators

can be characterized by a quality factor Q, related to the half bandwidth of the resonance peak,

and broken down into a dissipative part Qdiss and a leakage part Qleak. The maximum absorption

of a structure is reached when the inherent dissipation balances the energy leakage rate Qdiss =

Qleak, i.e., when the critical coupling condition is met [9–13]. In the problem of pure reflection, the

critical coupling condition means perfect absorption regardless of the type of resonators (monopolar or

dipolar). However, in the transmission problem with point resonators, the problem is more complicated

as the critical coupling condition does not mean perfect absorption. If the resonators are monopolar

(resp. dipolar), i.e., symmetric (resp. antisymmetric), the critical coupling condition implies that only

50% of the energy can be absorbed since only half of the problem is critically coupled. Therefore, in the

case of a membrane or plate resonator, critical coupling means |R| = |T | = 0.5. This can be achieved

by using membranes with semi-circular mass platelets as theoretically developed in Refs. [14, 15] and

experimentally demonstrated in Ref. [16]. Fortunately, different strategies can be used to overcome

this upper limit of absorption. On the one hand, one can use the anti-symmetric (resp. symmetric)

coherent perfect absorption [13, 16, 17] by eliminating the monopolar (resp. dipolar) component

of the incident wave. On the other hand, dipolar and monopolar motions being decoupled, the 50%
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absorption threshold can be exceeded until perfect absorption is reached, by combining these two types

of resonance, i.e., by designing degenerated resonators [18, 19] or by using hybrid resonances [20]. All

these studies have proven that membrane-type metamaterials have high absorption and insulation

properties despite their subwavelength dimension, thus breaking the mass density law, stating that

acoustic transmission through a layer of material is inversely proportional to the product of the layer

thickness, mass density and sound frequency.

Besides decorated membranes, a second main type of membrane/plate-based metamaterial is a

structure consisting of a periodic series stacking of membranes, which revealed exciting behaviors

such as extraordinary transmission [21], tunneling effect [22], negative and almost zero density [23,

24] which will be further developed in Chapter III. In this work, the term "Plate-type Acoustic

Metamaterial" (PAM) will refer to a periodic arrangement of thin clamped elastic plates, that is a one

dimensional (1D) resonant sonic crystal. This Chapter aims to show the general acoustic behavior of

a PAM and to explain how such a system can be modeled analytically, following the theory of sonic

crystals and periodic media. It is organized as follows. First, we will focus on the simple case of a 1D

non-resonant sonic crystal so as to introduce some generalities on periodic media, such as the derivation

of the dispersion relation, the significance of the bandgaps, the transfer matrix method (TMM), ...

Then, we will develop precisely the particular case of PAM modeling and the general behavior of such

systems. Finally, we will present the experimental method for the acoustic characterization of the

plates and the experimental set-up used.

II.2 "Non-resonant" 1D sonic crystals: General approach

"Crystals are solid materials whose constituents, such as atoms, molecules or ions, are arranged in a

highly ordered microscopic structure, forming a lattice that extends in all directions". Periodic media

can therefore be classified under this general definition [25].

At the end of the 19th century, Lord Rayleigh studied wave propagation in one-dimensional (1D)

periodic stacks made of multilayer dielectric media and showed that over certain frequency ranges,

named band-gaps, the incident waves undergo strong reflection [26, 27]. Due to the periodic spacing,

destructive interference occurs with the multiple reflection at each layer, preventing propagation. This

research laid the groundwork for the development of photonic crystals about one hundred years before

the birth of the official denomination, with the simultaneous work of Yablonovitch [28] and John [29]

in 1987. The periodic variation of the dielectric constant in photonic crystals produces similar effects

to those of the periodic potential in semiconductor crystals, i.e., it allows or prevents the propagation

of light (resp. electrons) in the passband or bandgap (resp. in the allowed or forbidden electronic

energy bands).

Simultaneously with these works on electromagnetic waves [30–32], similar crystals have been

developed with mechanical waves [33, 34]. The year 1993 marked the first design of a phononic

crystal, i.e., a periodic distribution of solid scatterer embedded in a solid host medium [35, 36],
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followed two years later by sonic crystals, i.e., particular cases of phononic crystals in which the host

medium is a fluid [37–39]. Sonic crystals can be designed in one or several dimensions of the space

(1D, 2D or 3D), depending on the dimensions in which the periodic variation of the density ρ and/or

the compressibility C occurs as sketches by figure II.1.

1-D 2-D 3-D

Periodic in one
direction

Periodic in two
directions

Periodic in three
directions

Figure II.1: Examples of 1D, 2D and 3D crystals: the density or compressibility of which varies periodically
along one, two or three spatial axes respectively. Each color represents a material with different constitutive
parameters (ρ and C). The figure is taken from Ref. [30].

In this work, we will only focus on a 1D sonic crystal. Let us first consider a cylindrical waveguide

of section S = πR2
a, filled with one or two different materials as shown in Fig. II.2(b). We will use

this simple example to introduce the Transfer Matrix Method (TMM) and the dispersion relation

calculation.

II.2.1 Propagation in an air-filled waveguide

If the waveguide is first only filled with air (density ρ0 and compressibility C0), the lossless propagation

over a length Lunit of a plane wave, the frequency of which is lower than the waveguide cut-off

frequency, is governed by the constitutive equations

∂p

∂x
= −iωρ0

S
U, (II.1)

∂U

∂x
= −iω S

κ0
p, (II.2)

written under the time convention eiωt, where ω is the circular frequency, κ0 = 1/C0 is the air bulk

modulus, p is the sound pressure, and U = Sv is the flux, with v being the particle velocity.

These governing equations can be rearranged in the following matrix form

∂

∂x

{
p

U

}
=

[
0 −iω ρ0S

−iω S
κ0

0

]{
p

U

}
= M

{
p

U

}
, (II.3)
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the solution of which being{
p

U

}
Lunit

= exp(MLunit)

{
p

U

}
0

= V ·

[
eΛ1Lunit 0

0 eΛ2Lunit

]
·V−1

{
p

U

}
0

= T

{
p

U

}
0

, (II.4)

with Λj the eigenvalues of M, and V the corresponding eigenvector matrix.

The transfer matrix Tunit linking pressure and flux at one side and at the other of the Lunit-long

slab reads as follows (the detailed calculation can be found in Appendix A)

Tunit =

[
cos (k0Lunit) −iZ0 sin (k0Lunit)

−iZ−1
0 sin (k0Lunit) cos (k0Lunit)

]
, (II.5)

with k0 = ω/c0 = ω
√
ρ0/κ0 the wavenumber and Z0 =

√
ρ0κ0/S the acoustic characteristic impedance.

The dispersion relation of an infinite periodic system can then be deduced from the total matrix

of a single unit cell Tunit by applying the Bloch-Floquet theorem

cos (qLunit) =
Tr(Tunit)

2
, (II.6)

with q the Bloch wavenumber (details can be found in Appendix A).

In the present case of an air-filled waveguide with an "artificial" periodicity, this operation leads

to the straightforward dispersion relation

ω = cq = c (k0 + 2mπ/Lunit) , (II.7)

with m an integer.

As demonstrated in Fig. II.2(c), thanks to the symmetry of the system, all relevant information on

the dispersion relation is located within the [−π/Lunit π/Lunit] k-space band, named the 1st Brillouin

zone and bounded by the red dashed vertical lines. Figure II.2(h) is another representation of the

dispersion relation with normalized axes, i.e., ω/ωB = F (Re(qLunit/π)). By doing so, we can clearly

see that the degeneracy point (where the scattering curve is folded on the edges of the Brillouin zone,

i.e., Re(qLunit/π) = 1) is located at the Bragg frequency ωB = πc0/Lunit. The acoustic wavelength λ

at the degeneracy is therefore

λ = 2Lunit. (II.8)

It is worth noting here that no dispersion is encountered, since lossless propagation in the air is

considered. Therefore, the phase velocity c = ω/Re(q) and the group velocity cg = ∂ω/∂Re(q) are

equal and constant (Fig. II.2(d)).
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Figure II.2: 1D non resonant sonic crystals: "artificial" periodic medium made of a single material
(a,c,d,g,h,i) and bi-layer periodic medium (b,e,f,j,k,l). Sketch of the considered media (a,b). Real part (c,e,h,k),
and imaginary part (i,l) of the dispersion relation ω/ωB = F (Re(qLunit/π)), phase (black solid line) and group
(red dashed line) velocity (d,f). Red vertical dashed lines in Figs. (c, e) delimits the 1st Brillouin zone. Red
color surfaces in Figs. (e,f,j,k,l) represent the location of the Bragg bandgaps.

II.2.2 Propagation in a bi-layer periodic medium

We now consider a real periodic medium made of alternating Lunit/2-long layers of two different

materials (ρ0, κ0 and ρ1 = 2ρ0, κ = 18κ0) arranged with a periodicity Lunit = 1 cm as sketched in

Fig. II.2(b).

The total transfer matrix of the unit-cell Tunit is now the matrix product of the elementary

transfer matrices in the air T0 and in the material T1{
P

U

}
Lunit

= T0 ·T1

{
P

U

}
0

= Tunit

{
P

U

}
0

, (II.9)

with
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Tunit =

 cos
(
k0

Lunit
2

)
−iZ0 sin

(
k0

Lunit
2

)
−iZ−1

0 sin
(
k0

Lunit
2

)
cos
(
k0

Lunit
2

)  ·
 cos

(
k1

Lunit
2

)
−iZ1 sin

(
k1

Lunit
2

)
−iZ−1

1 sin
(
k1

Lunit
2

)
cos
(
k1

Lunit
2

)  . (II.10)

The dispersion relation shown in Fig. II.2 (e,j,k,l) is derived by applying Eq. (II.6). Contrary to

the previous case, cos (qLunit) now can take values larger or smaller than 1 or -1 respectively over

some frequency bands (see Fig.. II.2 (j)), giving a purely imaginary wavevector q (see Fig. II.2 (l)). As

a result, the waves become evanescent and a Bragg bandgap (red-mapped surface) is opened around

the Bragg frequency, that is fB = 17.15 kHz. The formation of a bandgap can be understood as

a consequence of the multiple reflections induced by the periodicity. At each layer interface, part

of the incident energy is reflected, generating multiple reflected waves interacting with each other.

Constructive interference of the reflected waves, i.e., when the path difference 2Lunit is a multiple

of the wavelength, leads to total reflection while destructive interference allows total transmission

through the crystal. The first condition results in the generation of a bandgap, while the second leads

to a propagating band. It should be noted here that higher order Bragg bandgaps are also opened

around odd multiples of fB, i.e., for integer multiples of the wavelength.

Changing the periodicity of the system thus results in a shift of the bandgap, the center frequency

of which is inversely proportional to Lunit. In the opposite, the width of the bandgap is related to the

impedance contrast between each layer: the greater the contrast, the wider the bandgap. In addition

to the opening of the forbidden bands, where the waves cannot propagate, a strong dispersion occurs

in the vicinity of the degeneration point. Phase and group velocities are no longer equal and vary

with frequency as shown in Fig. II.2(f). These outstanding features and the high tunability initiate a

wide range of applications, including isolation devices and sound barriers.

II.3 Resonant sonic crystal: Modeling of a PAM

As demonstrated in the previous Section, non-resonant sonic crystals have opened up a new field of

research for tailoring the propagation of sound waves. However, these applications are severely limited

in the low-frequency regime, since the diffraction regime, in which Bragg bands can be generated,

requires the crystal periodicity to be of the same order of magnitude as the wavelength. The pioneering

works of Bradley [40], Sugimoto [41], Liu [42] and the large number of publications that have followed,

have shown that introducing local resonances in a sonic crystal allows the opening of similar forbidden

frequency bands in which waves cannot propagate, at frequencies much lower than that of Bragg. One

of the main advantage of such resonant sonic crystals is that the stopband location can be shifted

independently of the periodicity, thus allowing deep subwavelength designs.

In this work, we will use a thin elastic plate as the resonant element of our one dimensional sonic

crystal. The TMM-based analytical modeling of the system will be first presented, followed by the

thin plate theory derivation, and the viscoelastic and viscothermal models to account for the losses in
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the system.

II.3.1 Analytical model

A periodic arrangement of N thin elastic plates clamped in a circular waveguide of cross-sectional

section S = πR2
a, similar to that sketched in Fig. II.4 is considered. The metamaterial unit cell is

symmetric and consists in a thin plate of thickness hp surrounded by two air layers of length Lgap/2,

giving a periodicity Lunit = Lgap + hp to the system. The metamaterial is modeled with the TMM.

We thus only consider plane wave propagation and neglect the mutual coupling between the elements,

which is a good approximation for the objectives of this work.

(a) (b)

Figure II.3: Side branch and series elements: schematic drawing of the side branch (parallel) resonator
(a) and the series resonator (b)

Two types of elements can be considered: parallel or series elements, both of which are considered

punctual, i.e., of dimension ∆x = 2δx much smaller than the acoustic wavelength as illustrated

in Fig. II.3. Parallel or side branch resonators of acoustic impedance ZSB are characterized by a

constant pressure p(x + δx) = p(x − δx) and a flux balance U(x + δx) = USB(x) + U(x − δx),

with USB(x) = p(x)/ZSB the flux entering the resonator. In contrast, series resonator of acoustic

impedance ZS are characterized by a constant flux U(x + δx) = U(x − δx) and a discontinuity of

pressure p(x + δx) = p(x − δx) + ZSUS , with US = p(x)/ZS . As a result, the elementary transfer

matrix of both elements reads as

Side branch element: TSB =

[
1 0

1/ZSB 1

]
, Series element: TS =

[
1 ZS

0 1

]
. (II.11)

A plate laterally clamped into a 1D waveguide causes pressure discontinuity and acoustic velocity

continuity [24], i.e., a element in series, the transfer matrix of which is

Tp =

[
1 Zp

0 1

]
, (II.12)

involving the acoustic impedance Zp of the circular plate considered as punctual (hp << λ0) and

defined in Subsection II.3.2.
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The air gaps are defined by the elementary transfer matrix of a circular waveguide of length Lgap/2,

Tcav =

[
cos

k0Lgap
2 −iZ0 sin

k0Lgap
2

−iZ−1
0 sin

k0Lgap
2 cos

k0Lgap
2

]
, (II.13)

with Z0 and k0 the acoustic impedance and wavenumber of the fluid respectively.

The matrix representing the unit cell is then obtained by multiplying the above-mentioned ele-

mentary matrices

Tunit = Tcav ·Tp ·Tcav, (II.14)

while that of the L-long metamaterial composed of N unit cells read as

T = Tunit
N =

[
T11 T12

T21 T22

]
, (II.15)

and connects pressure and flux to the input (x = 0) and output (x = L) of the finite system.

(c)(b)(a)

Figure II.4: 3D sketch of the 1D PAM: whole system (a), close-up on the unit cell with a compacted (b)
or exploded (c) view.

II.3.2 Thin plate impedance

The transverse displacement w of a thin circular plate of section S = πR2
a, thickness hp, Young

modulus Ep, Poisson’s ratio νp, and density ρp satisfies the flexural wave equation

D∇4w(r, θ, t) + ρphp
∂

∂t
w(r, θ, t) = ∆P (t), (II.16)

with ∇4 =
(
∇2
)2

=
(
∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂θ2

)2
the bilaplacian in polar coordinates, ∆P = p(x+hp)−p(x)

the pressure difference applied on the plate, where p(x) and p(x + δx) are the acoustic pressure on

the upstream and downstream faces respectively, and D the flexural rigidity D =
Eph3p

12(1−ν2p)
.

The full derivation of the solution can be found in Appendix B. We only remind here the Kirchhoff-

Love plate acoustic impedance Zp resulting from a separation of variables and the application of the
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clamped boundary condition w(r = Ra, θ) = ∂
∂rw(r = Ra, θ) = 0

Zp =

∫
S ∆P (r)dS

iωwS2
= − iωm

S2

I1(kpRa)J0(kpRa) + J1(kpRa)I0(kpRa)

I1(kpRa)J2(kpRa)− J1(kpRa)I2(kpRa)
, (II.17)

where w is the cross-sectional average of the displacement and kp =
(
ω2ρphp/D

)1/4 is the wavenumber

of the flexural waves in the plate, with m = ρpShp the mass of the plate, and J and I respectively the

Bessel and modified Bessel functions of the 1st kind. A uniform pressure distribution over the plate

(only small displacements and plane wave excitation), and only axi-symmetric modes are assumed in

this expression. Please note that although the plate introduces a discontinuity of pressure ∆P , the

normal velocity and the mean flow U = iωwS are continuous across the plate.

II.3.3 Losses modeling

As most acoustic systems, PAM presents unavoidable losses. In this case, two main loss sources have

to be accounted for.

First, viscothermal losses should be considered near the guide walls, within the viscous penetration

thickness δν =
√

2µ0/ρ0ω (where µ0 is dynamic viscosity, ρ0 is the density of air). Propagation in

the waveguide is thus modeled by complex wavenumbers k0 and impedance Z0, as defined by Zwikker

and Kosten [43, 44]

k0 =
ω

c0

(
1 +

(1− i)√
2Ra/δν

(1 + (γ − 1)√
Pr

)
, (II.18)

Z0 =
ρ0c0

πR2
a

(
1 +

(1− i)√
2Ra/δν

(1− (γ − 1)√
Pr

)
, (II.19)

with Pr the Prandtl number, γ the ratio of the thermal capacity of the air and c0 the sound speed

in the air. It should be noted here that the losses in the bulk are neglected in front of those in the

penetration thickness.

Second, the plates also introduce dissipation. The viscoelastic losses inherent to the plates are

modeled assuming a loss factor β, i.e., by adding an imaginary part to the Young’s modulus

Ep = Ep0(1 + iβ). (II.20)

The loss factor β is defined as frequency-independent since the study focuses only on a narrow fre-

quency range in the vicinity of resonance.
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II.3.4 Scattering coefficients and effective properties

The total transfer matrix can be related to the scattering coefficients, i.e., the transmission T and

reflection R coefficients

T =
2

T11 − T12/Z0 − Z0T21 + T22
, (II.21)

R =
T11 − T12/Z0 + Z0T21 − T22

T11 − T12/Z0 − Z0T21 + T22
, (II.22)

for symmetric T11 = T22 and reciprocal T11T22−T12T21 = 1 systems [45, 46] . These two coefficients are

then used to define the reflectance |R|2, the transmittance |T |2 and the absorbance α = 1−|R|2−|T |2

of the metamaterial.

Homogenization

Moreover, in the long wavelength approximation, i.e., when the condition Lunit � λ is fulfilled, a sonic

crystals can be homogenized, the result of which is an equivalent medium with effective properties

[47–53]. Our system may also be considered as an equivalent, homogeneous medium of length L{
p

U

}
L

=

[
T11 T12

T21 T22

]{
p

U

}
0

=

[
cos k(ω)L −iZ(ω) sin k(ω)L

−iZ(ω)−1 sin k(ω)L cos k(ω)L

]{
p

U

}
0

. (II.23)

Two approaches can be followed to retrieve the effective properties of the homogenized medium.

First, one can consider an infinite system and then extract directly the effective impedance Z(ω) and

effective wavenumber k(ω) from the unit cell transfer matrix Tunit [46]

k(ω)Lunit = cos−1

(
Tr[Tunit]

2

)
, (II.24)

Z(ω) = ±

√
Tunit12
Tunit21

. (II.25)

The sign of Z(ω) has to be chosen to fulfill the passivity condition, that is Re (Z(ω)) > 0.

These effective parameters do not account for the effect of the finite number of unit cells. Another

option is to determine the effective parameters using the transmission and reflection coefficients of the

finite system [47, 48, 54, 55].

The derivation of the effective impedance is rather direct,

Z(ω) = ±Z0

√
(1 +R)2 − T 2

(1−R)2 − T 2
, (II.26)
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while the effective wavenumber

k(ω) = − ln(|eik(ω)L|) + iarg(eik(ω)L)

iL
+

2πm

L
, (II.27)

results from the inversion of

eik(ω)L =
T [1− Z(ω)/Z0]

R [1 + Z(ω)/Z0]− Z(ω)/Z0 + 1
, (II.28)

with m a natural integer to correct the phase after inversion, the exponential being 2π periodic.

Knowing the effective impedance and the wavenumber, by either method, the effective density

ρ(ω) and bulk modulus κ(ω) can then be determined

ρ(ω) = S
Z(ω)

c(ω)
= SZ(ω)

k(ω)

ω
, (II.29)

κ(ω) = ρ(ω)c(ω)2 = SZ(ω)
ω

k(ω)
. (II.30)

II.4 Resonant sonic crystal: acoustic behavior of a PAM

The comprehensive analytical model developed in the previous Section now allows for an in-depth

study of the behavior of a PAM. We will first focus on an infinite system, with the study of both

its dispersion relation and its homogenized equivalent medium. Then, the influence of the design

parameters of a finite PAM will be studied.

II.4.1 Dispersion relation and effective parameters

Following a procedure similar to that used for non-resonant sonic crystals (Section II.2), we will first

derive the dispersion relation of an infinite number of plates arranged with a periodicity Lunit = 1 cm,

using Eq. (II.24). Note that for an infinite system, the effective and Bloch wavenumbers are equal,

i.e., qLunit = k(ω)Lunit.

The introduction of local resonances in a periodic structure induces multiple modifications in

the dispersion relation. Some of these can be seen with a comparison of the solid and dashed lines

in subplots (a-b) of Fig. II.5, that are respectively the analytical dispersion relations of an infinite

PAM (considering only the axisymmetric modes of the plate) and of a geometrically similar two-layer

infinite periodic medium with similar mechanical properties (except for the resonance behavior of the

plate). First, the plate resonance opens a forbidden band [42, 56–58], named hybridization stopband,

in frequency regions that are significantly lower than the Bragg bandgap, e.g., [0.04, 0.05]fB in this

case. The hybridization stopbands are due to resonance-induced scattering of local inclusions contrary

to the Bragg bandgaps which are due to Bragg scattering.

Each type of bandgaps can either exist independently or be coupled to each other. To prevent any

confusion, the term bandgap will be kept for the Bragg type interferences while stopband will refer to
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Figure II.5: Dispersion relation and effective parameters of an infinite PAM. Normalized by the Bragg
frequency: real (a) and imaginary (b) part of the normalized dispersion relation ω/ωB = F(qLunit/π) of an
infinite PAM. The black dashed lines represent the dispersion for an equivalent two-layers system with similar
dimensions and mechanical properties as the PAM, but without the resonance behavior.
Close-up around the first pass band, normalization by the plate resonance frequency: real part (c) and imaginary
part (d) of the dispersion relation, real part of the effective density (e), phase (black) and group (red) velocity
(g), real part of the effective bulk modulus (f).The red-colored areas represent the stopbands. The frequency
range of the close-up is represented by the dotted orange frame in (a-b).
Single plate: Imaginary part of the plate acoustic impedance (f), and transmission (black), reflection (red)
magnitude (i).

the hybridization type. The strong dispersion induced by the resonances affects the phase velocity [59,

60] as we can see in Fig. II.5 (f). As a result, the Bragg bandgaps can be shifted to lower frequencies

approaching those of hybridization. Efficient coupling can lead to specific features such as a widening

of the forbidden bands, which can be in the opposite very narrow and sharp due to the resonance

mechanism involved [59, 61–64]. Another interesting outcome of the coupling, highlighted with the

current system, is the generation of local resonance-induced acoustic transparency bands within the

Bragg bandgaps [60, 65–67], analogously to the electromagnetic induced transparency phenomenon

[68, 69]. It can indeed be observed that narrow passbands can be opened in the Bragg bands (non-

zero dotted line in Fig. II.5 (b)), where in the absence of local resonance a total reflection would

occur. In addition, the strong dispersion enables the control of the attenuation [62, 70]. The sharp

and asymmetric attenuation (proportional to the imaginary part of the dispersion relation) generated

around the resonance in the hybridization gaps contrasts with the smoothly-varying dissipation due

to the scattering gaps (dotted line). Well designed coupling can lead to highly dissipative devices that

can be used for broadband absorbing structures [59, 71, 72].

Focus on the first passband

Although the unique properties resulting from this coupling may allow the design of promising appli-

cations, we will only focus on the first PAM passband in the following, i.e., within the low-frequency
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range delimited by the dotted orange box in Fig. II.5 (a-b).

The dispersion being closely related to the resonance of the plate, the study of the infinite system

effective properties is performed with respect to the plate resonance frequency fp, which corresponds

to a cancellation of the imaginary part of the acoustic impedance as shown in Fig. II.5 (f). At this

particular frequency, see Fig. II.5 (i), the plate is totally transparent with a zero reflection |Rp| = 0,

and a total transmission |Tp| = 1. The strong dispersion generated by the resonance opens two

low frequency stopbands in the investigated frequency range. These forbidden bands end around

the resonance frequency of the plates and are characterized by a negative effective mass density

(Fig. II.5 (e)). The beginning of the passbands is therefore accompanied by a frequency region, in the

vicinity of resonance, where the effective density is almost zero. Note that the effect of series inclusions

is small on the compressibility of the system. The effective bulk modulus, represented in Fig. II.5 (h),

indeed remains positive with values close to that of the air medium, and is only slightly affected at

the end of the passband and in the second stopband. We will therefore focus on the near-zero density

frequency range of the first mode of the plate.

II.4.2 Finite size system: influence of the number of plates, the periodicity and
the losses

We now consider a finite thickness PAM composed of N plates. In this Section, we will study the

behavior of our system as a function of the number of unit cells, the periodicity Lunit, and the thickness

of the plate hp.
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Figure II.6: Scattering properties of a finite PAM: (a-c) Transmission (black) and reflection (red) magni-
tude of a 4-unit long PAM, without losses (a), only with the viscothermal losses, and with both the viscothermal
and viscoelastic losses (β = 0.1). (d) Imaginary part (red dashed line) and real part (black solid line) of the
effective density of the full-lossy problem.

Considering a finite system makes it possible to study the scattering properties of a real PAM

using Eq. (II.22). Figure II.6 shows the scattering parameters, i.e., the reflection |R| and transmission

|T | magnitude of a 4 unit-long PAM. As expected, almost all of the energy is reflected in the negative

density frequency ranges (red colored areas) corresponding to the hybridization bands. The plates

are opaque, i.e., they behave as a rigid wall, below their resonance frequency. The plates begin

to vibrate for frequencies close to their resonance and allow the wave to propagate through. The



II.4 Resonant sonic crystal: acoustic behavior of a PAM 31

transmission magnitude therefore increases in the vicinity of resonance until it reaches unity in the

lossless case at the resonance frequency. In the passband, i.e., in the positive effective density regime,

high transmission and low reflection are observed. Transmission maxima and reflection minima are

obtained at Fabry-Perot frequencies that are related to the number of unit cells in the system, e.g.,

four of each in the present case.

The distinct role of the two types of losses is also examined in Figs. II.6 (b-c). The second subplot

(b) presents the scattering parameters when only viscothermal losses are accounted for (Eq. (II.19))

while the subplot (c) shows the full lossy configuration, i.e., when both viscothermal and viscoelastic

losses (Eq. (II.20), with β = 0.1) are accounted for. We can clearly see that for a circular waveguide

of radius Ra = 15 mm, viscoelastic losses are the predominant source of losses and cause a drastic

drop in the transmission amplitude.
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Figure II.7: Effective properties of a finite PAM. Effect of the design parameters: viscoelastic losses
β (a), number of unit cells N , periodicity Lunit, and plate thickness hp. Real (1) and imaginary (2)
part of the normalized dispersion relation f/fp = F(k(ω)L), transmission magnitude |T | (3), and real part
of the effective density normalized to that of the air (4). Solid, dashed, dotted lines represent respectively
the cases β = 0.01, β = 0.1, and β = 0.5 for (a), N = 2, N = 5, and N = 10 for (b), L′unit = 0.5Lunit,
L′unit = 5Lunit, and L′unit = 10Lunit for (c), and finally h′p = 0.5hp, h′p = hp, and h′p = 2hp. In each case, only
one parameter varies. The variation of the periodicity L′unit and the plate thickness h′p is defined according
to the reference periodicity Lunit and thickness hp used for all other cases. An indication of the width and
location of the hybridization bands is given by the thick solid, dashed and dotted lines between the subplots
and corresponding to each value of the variable.

The subplots (a1-4) in Fig. II.7 show that controlling viscoelastic losses is a key element in the

design of the PAM, as it can lead to high dissipation in the system and thus to low transmission
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accompanied by a broadening of the Fabry-Perot peaks (lower quality factor). Depending on the

intended applications, these inherent losses can be an advantage or a disadvantage. In this work, we

will focus on the properties resulting from transmission in the density-near-zero region. We should

therefore use plates with low viscoelastic losses in order to be able to measure a sufficiently high

transmission. Nevertheless, viscoelastic losses only have a small effect on the first stopband, and

smoothen the dispersion relation at the end of the stopband as we can observe in Figs. II.7 (a1-2). In

parallel, the number of unit cells, i.e., the number of plates composing the system have a drastic effect

on the transmission amplitude. As expected, Figs. II.7 (b1-4) show that the increase of the number

of plates leads to an increase of the viscoelastic losses sources, and thus to a decrease in transmission.

In contrast to the number of plates which have only a limited impact on the location and width of the

stopbands (represented by the thick solid, dashed and dotted line between the subplots), the increase

of the periodicity constant greatly reduces the stopbands and passbands width. Consequently, an

increase of the periodicity constant shifts down the zero density frequency while the frequency and

amplitude of the first Fabry-Perot mode remain unchanged, as evidenced in Figs. II.7 (c1-4). Finally,

the plate thickness is also an important element of the design, see Figs. II.7 (d1-4), as it directly

influences the resonance frequency and losses amount. Changing the plate thickness then results in a

change in the location and width of the stopbands, a change in the zero density frequency, and in the

amplitude and frequency of the transmission maxima.

To summarize, the structure must be carefully designed for the intended application. In order to

be able to measure a maximum of transmission in the vicinity of the DNZ region, plates with low

viscoelastic losses and a resonance frequency in the target frequency range should be preferred. This

can be achieved by varying both the mechanical properties of the material as well as the thickness of

the plates, the fundamental resonance frequency being approximated by [24, 73]

fp = 0.4694
hp
R2
a

√
Ep

ρp(1− ν2
p)
. (II.31)

Second, it appears from the previous study that increasing the periodicity constant is a better option

for covering a given length with the PAM than multiplying the number of unit cells. Nevertheless, a

compromise has to be found between these two options since the frequency of the zero density is also

shifted according to the periodicity constant of the system.

II.5 Plate characterization

The choice of the plate is the key element of our design to be able to measure properly the peculiar

phenomena related to the Density Near Zero (DNZ) regime. A prior characterization of the plate is

thus required to estimate its mechanical properties and particularly its loss factor. In this Section, we

will present an acoustic characterization procedure, as well as the experimental set-up used.
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II.5.1 Experimental set-up

The plate characterizations and the measurements of the scattering parameters are performed in a 4

microphones impedance tube of inner radius Ra = 15 mm and ended by an anechoic termination as

shown in Fig. II.8(a-b).

Plates or membranes can be clamped either by permanently gluing them to a ring support or by

applying pressure between two surrounding rings. In order to obtain a non-destructive characteriza-

tion, the second solution is preferred. The clamping condition is hard to achieve, although essential

for good reproducibility of the measurements.

A sample holder shown in Fig. II.8 (d) is placed between the two microphone pairs of the impedance

tube. One end of the sample holder is fixed. The plates are clamped between annular rings placed

in this sample holder. The second end is screwed on so that the rings are compressed together.

The sample holder and the rings have been dimensioned to ensure a continuity of section within the

impedance tube.

The main difficulty of these measurements is to achieve reproducibility. A lot of attention has been

devoted to the design of the sample holder so as to improve it. A brief history of the evolution of the

set-up is reminded in the following. In the first holder shown by Fig. II.8(c), the rings used were made of

plastic and were not perfectly flat. In view of the difficulties in obtaining satisfactory reproducibility of

the resonance frequency, a new brass sample holder with aluminum rings was manufactured. Despite

the better surface state of the aluminum rings, the reproducibility of the measurements was still

unsatisfactory. One of the reasons for this was that the upper ring was entrained during the screwing

operation, thus applying a torsional movement to the plate. Notches were therefore machined to

ensure that the rings are firmly connected to each other. In addition, two annular Teflon rings of

thickness 500 μm are placed on either side of the plates to improve the clamping surface condition.

The new unit cell is therefore composed of a plate symmetrically surrounded by Teflon ring and an

aluminum ring as shown in Figs. II.4(b-c) and II.8(b). These aluminum rings have been machined to

the exact outer and inner diameters of the Teflon pieces by 900 μm thick, so that they perfectly host

the plates surrounded by the two layers of Teflon. The plate clamped condition is ensured by applying

a uniform pressure on the metallic rings by screwing on one extremity of the holder, the other one

remaining fixed.

II.5.1.1 Measurement principle

A relative calibration is carried out between the microphones, considering the first one as a ref-

erence, in order to prevent from differences in absolute calibration and phase relationships. The

frequency band under study, f ∈ [0 − 2000] Hz, is low relative to the first cut-off frequency of the

tube (fc = 1.841c0/2πRa = 6700 Hz). A plane wave propagation is therefore considered. The use of

4 microphones makes it possible to account for the imperfection of the anechoic termination.

The pressure fields P1, P2 (microphones M1 and M2) and P3, P4 (M3 and M4), obtained from the
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Figure II.8: Experimental set-up: Sketch (a) and photography (b) of the impedance tube of inner radius
Ra = 15 mm, hold sample holder (c), exploded view of the actual plate holder (d), and different plates tested
(e).

measurements of frequency responses and relative sensitivities between microphones M2, M3, M4 and

the reference microphone M1 can be decomposed as a superposition of forward and backward waves

upstream (A and B) and downstream (C and D) of the metamaterial [46, 55]

P1 =(Ae−ikx1 +Beikx1), (II.32)

P2 =(Ae−ikx2 +Beikx2), (II.33)

P3 =(Ce−ikx3 +Deikx3), (II.34)

P4 =(Ce−ikx4 +Deikx4). (II.35)

The scattering matrix connects, through the transmission and reflection coefficients, the incoming

A, D and outgoing waves B, C from the metamaterial{
B

C

}
=

[
R T

T R

]{
A

D

}
. (II.36)

R and T therefore read as

R =
AB − CD
A2 −D2

, (II.37)

T =
AC −BD
A2 −D2

, (II.38)
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and enable to recover the effective properties of the sample by using equations (II.30). More details

on the measurement principle can be found in Appendix C.

II.5.1.2 Characterization principle

Before any further measurement, the plates are characterized experimentally to estimate their me-

chanical properties [74]. Each plate of radius R = 1.615 cm used in the PAM is clamped between the

two Téflon/aluminum rings with an inner radius of Ri = 1.5 cm and an outer radius of Ro = 1.615

cm.

Each of the unit cell is placed one after the other into the impedance tube. The characterization

is then performed using a multi-objective optimization based on a least mean square procedure, the

cost function of which is given by

C(ρp, Ep, β, νp) = min
(
||Rmeas −RTMM ||2 + ||Tmeas − TTMM ||2

)
, (II.39)

between the measured Rmeas, Tmeas (Eq. (C.11)) and the analytical RTMM , TTMM (Eq. (II.22))

reflection and transmission coefficients.

Measurements are conducted in a temperature-controlled room so as to limit the impact of weather

fluctuation on the measurements. In parallel, temperature, relative humidity and atmospheric pressure

are collected during measurements to evaluate the air parameters (density, dynamic viscosity, thermal

conductivity, velocity, ...) [75].

II.5.2 Choice of the plates

Two materials, illustrated in Fig. II.8(e), are tested: transparent plastic films, of thickness hp =

100 μm, and a plastic material, known as plastic shim, which is available in different thicknesses (each

corresponding to a different color), from 24 μm to 254 μm, thus allowing to control the resonance

frequency and the intrinsic viscoelastic losses. Figure II.9 shows several measurements of the scattering

parameters of transparent plates of thickness hp = 100 μm (a), and on plastic shims of thicknesses

hp = 76 μm (b), hp = 102 μm (c), and hp = 254 μm (d). Each color corresponds to a realization, i.e.,

a different plate is clamped into the system.

The thinner the plates, the more difficult to get reproducible measurements. Indeed, a plastic

deformation of the plate modifying the resonant behavior, appears as soon as the pressure applied to

the rings is too important for the thinner plates. In the opposite, the thicker the plates, the greater

the losses. A compromise must therefore be found between good reproducibility enabling to have a

metamaterial made of identical unit cells and reasonable losses. The best option found with the tested

samples are plastic shim of thickness hp = 102 μm (yellow plates), the mechanical properties of which

have been estimated acoustically and read as ρp = 1400 kg.m−3, νp = 0.41, Ep = 4.6(1 + 0.13i) GPa

as evidenced in Fig. II.10
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Figure II.9: Measurements of the scattering parameters of single clamped plates of different
thicknesses: transmission (solid lines) and reflection (dashed lines) magnitudes for a transparent plate of
thickness hp = 100 μm, and for plastic shims of thicknesses hp = 76 μm (b), hp = 102 μm (c), and hp = 254
μm (d). Each color corresponds to a different measurement.
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Figure II.10: Characterization of a 102 μm thick plastic shim: transmission (black) and reflection (red)
magnitude. Circle symbols and solid lines correspond to the experimental and the TMM optimized analytical
data.

II.6 Conclusion

In this Chapter, the general TMM is presented through the prism of sonic crystals. A general derivation

of the dispersion relation of an infinite bilayer acoustic medium is used to introduce the Bragg bandgaps

generated in the sonic crystals at frequencies within the diffraction regime, i.e., when the acoustic

wavelength is of the order of the lattice constant. We then introduced the analytical models of a PAM

and showed that the introduction of local resonances in a periodic medium results in the opening of the

hybridization stopbands at lower frequencies. Derivation of the effective properties of an infinite PAM

showed that the series arrangement of the plates has a predominant effect on the effective density

as compared to the effective bulk modulus. The hybridization stopband corresponds to negative

effective density regime, while a positive density is found in the passband. A density near zero regime

is therefore observed at the transition between the stopband and the passband, occuring in the vicinity

of the plate resonance. This almost zero density is accompanied by a high phase velocity, which can

give rise to zero-phase propagation which will be studied in the next Chapter III.

The study of a finite thickness PAM revealed that transmission maxima are observed in the
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passbands at frequencies corresponding to Fabry-Perot interferences, the number of which is related

to the number of unit cells composing the system. The predominant losses are due to the inherent

viscoelasticity of the plates and can significantly alter the magnitude of the transmission. It is therefore

a key element of our device. A parametric analysis of the design parameters, such as the plate

thickness, the periodicity, the number of unit cells and the losses, allows us to define the requirements

of an optimal PAM to measure the particular properties in DNZ regimes. In the following, we will

focus on exciting applications related to the stretching of the acoustic wavelength and the high phase

velocity, e.g., zero-phase propagation, supercoupling effect or hiding capabilities, using a periodic

arrangement made of the thin elastic plates characterized acoustically in this Chapter.
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III.1 Introduction

As pointed out in the previous Chapter, the strong dispersion generated in a Plate-type Acoustic

Metamaterial allows the effective dynamic mass density to be controlled so that zero values can be

achieved at specific frequencies.

In the density near zero regime, that is ρ(ω) ≈ 0, the effective acoustic wavelength λ(ω) and

therefore the phase velocity c(ω) tend towards infinity

λ(ω) =
c(ω)

f
=

√
κ(ω)

ρ(ω)f2
→∞. (III.1)

An almost zero density (resp. compressibility) also implies a decoupling of the spatial and temporal

field variations (see Eqs. (I.3)-(I.4)) and results in a static-like spatial distribution and an almost

constant phase distribution in the steady-state regime [1–4]. It is worth noting here that although

the spatial distribution of the field has a static character, the monochromatic field still dynamically

oscillates in time. Moreover, it is important to bear in mind that causality compliance is always

ensured by the transient time needed to reach the steady-state regime necessary for the establishment

of such behaviors.

In light of these features, various extraordinary properties have either been experimentally ob-

served, like the measurement of a giant acoustic transmission through rigid diaphragms covered with

membranes [5], or numerically predicted considering lossless metamaterials, such as unity transmis-

sion through sharp bends and perfect power dividers [6], or extraordinary sound transmission through

ultranarrow channels, referred as the supersqueezing effect [3]. This latter has drawn lots of attention

and will be briefly developed now.

III.1.1 Supersqueezing effect

The supercoupling or supersqueezing phenomenon, demonstrated in electromagnetism with Epsilon

Near Zero metamaterials (ENZ) [7–10] and adapted to the acoustic field with DNZ metamaterials by

Fleury and Alù [3] in 2013, consists in counterbalancing a strong impedance mismatch making use of

the extreme value of one of the effective constitutive parameters.

The demonstration of this phenomenon, although not limited to that configuration, is made on

two large waveguides of section Slg connected by a very narrow duct of section Sch. The reflection

and coefficient at the entrance and exit of the narrow duct are given by

R =
(Z2

ch − Z2
lg) tan(kchLch)

(Z2
ch + Z2

lg) tan(kchLch)− 2iZchZlg
, (III.2)

T =
−2iZchZlg cos−1(kchLch)

(Z2
ch + Z2

lg) tan(kchLch)− 2iZchZlg
, (III.3)

with Z =
√
ρκ/S being the acoustic impedance and k being the wavenumbers of the narrow .ch and
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wide .lg waveguides.

When the section of the wide guide is very large ahead of the channel section, Slg � Sch, the section

discontinuity results in a large impedance mismatch Zlg � Zch. Almost all of the incident wave is

therefore reflected. However, two solutions can be considered according to Eq. III.3 to obtain a total

transmission. The first solution is to use the Fabry-Perot resonances of the duct (tan (kchLch) = 0),

the resonance frequencies of which are determined by kch = mπ/Lch, where m is an integer. The

other way to cancel the reflection coefficient and thus to have perfect transmission is to fulfill the

impedance matching condition between the two guides, namely

Zlg = Zch. (III.4)

If the large waveguide is filled with a conventional material, e.g., air, the cross-sectional disconti-

nuity can be counterbalanced by filling the narrow channel with a very low impedance metamaterial,

i.e.,
√
ρchκch �

√
ρlgκlg, (III.5)

since Sch � Slg.

Two options are possible if only one of the two parameters is used to lower the effective impedance:

a metamaterial with almost zero bulk modulus κ(ω) → 0 [11–13] or a metamaterial with almost

zero density ρ(ω) → 0 [14]. However, effective parameters can only be defined within the long

wavelength limit compared to the system periodicity Lunit. When the bulk modulus of a metamaterial

tends towards extremely low values, its acoustic wavenumber increases and therefore its wavelength

decreases. Above a certain limit, the wavenumber becomes of the same order of magnitude as the

periodicity constant of the structure. Homogenization of the metamaterial can no longer be applied

and thus its effective properties cannot be defined anymore. Therefore, the cross-sectional area ratio

cannot exceed a limit value in order to observe the phenomenon of supersqueezing and tunneling with

a metamaterial with zero bulk modulus.

Zero-density metamaterials do not have this limitation. The zero density regime corresponds to

an infinite wavelength leading to a quasi-static pressure field, thus respecting the conditions necessary

for homogenization. In their work, Fleury and Alù used a membrane-type metamaterial to achieve

the supercoupling condition. With their configuration (geometries and mechanical properties of the

membranes), two distinct total transmission peaks were identified. One of them depends on the

number of unit cells (on the total length L of the channel) and thus corresponds to a Fabry-Perot

frequency. The other transmission peak is independent of the unit cells number and corresponds to

the impedance matching condition related to the DNZ regime. It is worth noting here that the mass

density should not be zero, since it would imply an infinite impedance mismatch, but its value needs

to be in the near zero region in order to compensate the cross-sectional ratio. In the absence of

huge cross-sectional change, the impedance matching should be achieved when the bulk modulus is

in addition nearly infinite [15].
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As a result of the quasi-static pressure field distribution when the narrow channel is filled with a

lossless DNZ medium, the impedance matching and the wave tunneling depend on neither the channel

length nor the presence of bends, twists, and even absorbing sections, along the channel. Supercoupling

is thus ideal for long-distant waveguide coupling with a high transmittance and no phase delay [3, 16],

light concentration and harvesting [7, 8, 17], sensing [18], filtering [1] and nonlinear applications [19,

20].

III.1.2 Zero-phase propagation

Both the numerical work on supercoupling with membranes discussed in the previous paragraph,

and the work of Gracia-Salgado et al.. [6] on zero density metamaterials obtained from a periodic

distribution of structured cylindrical scatterers, have evidenced that zero-phase propagation was made

possible with the stretching of the effective wavelength in the DNZ medium.

This Chapter aims at evaluating the feasibility of an experimental observation of this peculiar

transmission making use of the PAM developed in the previous Chapter. In the considered case, the

absence of the cross-sectional variation will induce impedance mismatch.

We will thus propose a design enabling the measurement of a zero-phase propagation within the

PAM, through an in-depth comprehension of the underlying physics, and parametric studies from the

lossless case to the full lossy problem, paying considerable attention on both the magnitude and the

phase of the transmission coefficient of a L-long PAM surrounded by air

|T | =

(
cos2 (k(ω)L) +

1

4

[
Z(ω)

Z0
+

Z0

Z(ω)

]2

sin2 (k(ω)L)

)−1/2

, (III.6)

φ = −atan
(

1

2

[
Z(ω)

Z0
+

Z0

Z(ω)

]
tan (k(ω)L)

)
. (III.7)

The different operating regimes of the PAM will be analyzed in a first Section. The study of the

dependence of three characteristic frequencies on the number of unit cells and the viscoelastic loss

factor will lead to an optimized configuration for the intended application, i.e., the measurement of

a zero-phase propagation in a realistic PAM. In the second Section, a twofold procedure including

full-wave numerical simulations and experiments will then be used to validate the analytical predic-

tions. Finally we will show that the optimized PAM enables to experimentally evidence a zero-phase

propagation, with a sufficiently high transmission to be used in realistic applications. As an example,

a sub-wavelength acoustic dipole is designed numerically using that peculiar transmission property.

III.2 Classification of the PAM operating regimes

In order to optimize our design for the experimental observation of a zero-phase transmission with a

PAM, the different operating regimes of the metamaterial under consideration are studied analytically,
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numerically, and experimentally. The PAM is composed of the 102 μm thick plates characterized in the

previous Chapter (ρp = 1400 kg.m−3, νp = 0.41, Ep = 4.6(1 + 0.13i) GPa), the resonance frequency

of which is measured at fr = 438 Hz and analytically estimated at fr = 423 Hz in the lossless case.

III.2.1 Lossless PAM behavior

We first consider an arrangement of N = 1, 3, 6 and 9 plates omitting the viscoelastic and viscothermal

losses. The periodicity constant of the system is Lunit = 1 cm.

Figure III.1(a) shows the effective mass density of the system ρ(ω) = SZ(ω)k(ω)/ω, derived from

the effective wavenumber k(ω) and effective impedance Z(ω) calculated over a single unit cell, i.e.,

a fully periodic structure. We parallel-up the evolution of the effective density with the scattering

amplitudes (Fig. III.1(b)) and the phase of the transmission coefficient (Fig. III.1(c)) of a finite PAM.

In the frequency range of interest, three frequencies relevant for the analysis of the effective density

can be identified: the impedance matching frequency fm, the exact zero-density frequency fρ=0 and

the zero-phase frequency fφ=0.
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Figure III.1: Effective mass density and scattering properties of the PAM in the lossless case: (a)
effective dynamic mass density, (b) and (c) represent the amplitude of the transmission [left vertical axis of
(b)] and reflection [right vertical axis of (b)] coefficients as well as the normalized phase of the transmission
coefficient for a finite PAM made of N = 1, 3, 6 and 9 plates respectively. Vertical blue, gray and green lines
in (a), (b) and (c) represent the frequencies for the zero-phase, fφ=0, zero mass density, fρ=0, and impedance
matching, fm, respectively. The grey mapped area delimits the zero-frequency stopband of an infinite system.

First, the impedance matching frequency is reached at the resonance frequency of a single plate,

fm = 423 Hz in the lossless case. At this frequency, the effective density of the metamaterial is equal

to that of the surrounding fluid, in this case the air medium, which leads to perfect transmission and
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zero reflection (III.1(b)). The unit transmission is accompanied by a phase shift related to the number

of unit cells and therefore to the length L = NLunit of the PAM. In other words, the phase of the

transmission coefficient equals the one produced in an air-filled cavity of same length at fm.

The second important frequency is that at which the effective dynamic mass density cancels out,

fρ=0. At this particular frequency, zero-phase delay propagation and a constant wave field in the

metamaterial are expected, yet the PAM is not impedance matched to the surrounding environment.

Therefore, the amplitude of the transmission coefficient is not unitary. Moreover, although a weaker

phase shift is found at fρ=0 than at the impedance matching frequency fm, propagation without phase

change is still not supported by the system. More importantly, both the modulus and the phase of

the transmission coefficient depend on the number of unit cells forming the PAM.

The last frequency of interest is the zero-phase frequency fφ=0, that is the frequency at which the

phase of the transmission coefficient is exactly zero. At this frequency, the effective density is negative

and equal to ρ(fφ=0) = −ρ0κ0/κ(fφ=0). This can indeed also be seen by examining Eq. (III.7). The

phase of the transmission coefficient φ vanishes if either k(2πfφ=0)L = nπ, n ∈ Z or Z(ω)2 = −Z2
0 .

The later condition provides

ρ(ω) = −ρ0κ0

κ(ω)
. (III.8)

The effective bulk modulus being always positive in the case of a PAM (see Chapter II), Eq. (III.8)

implies a negative value of ρ(ω). The negative effective density regime (grey mapped areas in Fig. III.1)

corresponds to a stopband for an infinite system. Although fφ=0 lies in the negative effective density

range, the transmission remains considerable due to the small size of the considered PAM. The modulus

of the transmission (resp. reflection) coefficient is highly dependent on the number of unit cells,

contrary to its phase, which remains constant and equal to 0. When no losses are considered, there is

therefore a frequency, close to the zero-density frequency, for which a wave can propagate in the PAM

without phase change and regardless of its length.

In the lossless case, a system made of 6 unit cells allows to transmit 90% of the incident wave

through the metamaterial at the zero-phase frequency. This number of unit cell is a good compro-

mise between finite size of the system and sufficiently high transmission magnitude. This target

configuration is therefore the one considered in the following with the study of the influence of losses.

III.2.2 Effect of the losses

We now analyze the limits of zero-phase transmission in the presence of losses when N = 6. Both

viscothermal losses in the waveguide and viscoelasticity of the plastic shims are accounted for. We first

start by investigating the dependence of the zero-phase frequency, fφ=0, on the viscoelastic loss factor

β only, the viscoelasticity being the predominant loss source in usual PAM. Figure III.2(c) shows that

the zero-phase frequency slightly decreases with the increase of the loss factor, thus entering more and

more in the PAM stopband. However, the frequency variation remains very limited and lower than

10% compared to the lossless case. Figures III.2(a-b) respectively depict the amplitude and the phase
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of the transmission coefficient of the N = 6 PAM for different values of the loss factor.
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Figure III.2: Analytical analysis of the zero-phase frequency and the scattering properties of the
PAM considering the viscoelastic and viscothermal losses: (a) and (b) represent the amplitude of the
transmission coefficient as well as its normalized phase for a finite PAM made of N = 6 plates depending on
the losses. (c) Dependence of the zero-phase frequency on the viscoelastic loss factor.
Analytical analysis of the zero-phase frequency depending on the number of plates: normalized
phase for a finite PAM made of N = 2, 3, 6 and 9 plates (d). Horizontal and vertical blue lines in (a-d) represent
the zero-phase frequency for the plastic shims characterized (β = 0.13).

The transmitted amplitude is reduced because of the losses but remains reasonable to allow experi-

mental observation of this phenomenon. The red curves show the particular case of the selected plates

(β = 0.13) for which the zero-phase frequency is obtained at 390 Hz (marked by the blue horizontal

and vertical lines). At this frequency, the amplitude of the transmission coefficient is sufficient for the

application of zero-phase propagation in realistic situations.

Moreover, we represent in Fig. III.2(d) the dependence of the phase of the transmission coefficient

on the number of unit cells, i.e., plates, considered in the finite length PAM.

In contrast to the lossless case, the zero-phase frequency now varies with the number of unit cells.

There is no longer a frequency for which, whatever the number of unit cells considered, the phase of

the coefficient maintains a constant value. However, it should be noted that the variation remains

lower than 8% for metamaterials composed of up to 6 plates, with the considered losses.

III.3 Experimental observation of the zero-phase propagation

Given the previous observations, a 6-unit long PAM is being studied experimentally and numerically

in order to validate the analytical results (twofold validation).
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III.3.1 Numerical modeling of the PAM

First, we perform a full-wave numerical simulation in a 2D-axisymmetric configuration using the finite

element method. The plates are modeled as elastic solids of thickness hp, filled with a viscoelastic

material of aforementioned properties, clamped at the outer boundary of the guide, and interacting

with a fluid domain on both sides. The vibroacoustic coupling of the plates is thus fully accounted for.

Frequency-dependent density and compressibility (derived from Eq. (II.19)) are assigned to the fluid

domains to account for the viscothermal losses in the vicinity of the circular duct walls. The system is

numerically meshed with 4961 structured quadrangles and is excited by a plane wave incident from the

left end of the structure. As the maximum frequency of the study is lower than the cut-off frequency

of the duct, only the plane mode is excited. A plane wave radiation condition is therefore applied

at the other end of the guide in order to achieve an anechoic termination and thus to prevent from

spurious reflection. The scattering parameters, and the effective properties are then obtained from

four pressure measurements, two upstream and two downstream of the metamaterial, as measured

experimentally.

III.3.2 Experimental demonstration of the acoustic wave propagation without
phase change

The metamaterial is mounted in the impedance tube presented in Section II.5.1 so as to analyze its

acoustic behavior. Particular attention is paid to the scattering parameters, the transmission phase,

and the effective density (Fig. III.3).
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Figure III.3: Experimental analysis of the scattering parameters and effective density of a 6-unit
long PAM made of 102 μm thick plastic shims: (a) Transmission (black, left axis) and reflection (red,
right axis) magnitude. (b) Phase of the transmission coefficient (black, left axis) and effective density (red,
right axis). The symbols represent the experimental data, the solid lines represent the analytical results (TMM)
and the dashed lines represent the numerical simulations (FEM).

Dashed lines and symbols in Fig. III.3 show respectively the full numerical and experimental vali-

dation of the analytical predictions for the 6-unit long PAM. Figure III.3(a) depicts the amplitude of

the transmission and reflection coefficients of the finite system, while Fig. III.3(b) shows the transmis-
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sion phase and the real part of the effective density. A very good agreement is observed between the

analytical and numerical results which follow well the trend of the measured modulus and phase of the

transmission coefficient (Fig. III.3(a,b), black symbols). Differences are however visible on the reflec-

tion coefficient, and consequently on the effective density (which is estimated from the two scattering

parameters). A slight remaining variability between the different unit cells, due either to clamping

defects or to the intrinsic variability of the mechanical properties of the material, is responsible for

these discrepancies.

A maximum of the transmission is found at fm = 439 Hz due to the quasi impedance matching

condition around the plate resonance. A zero-phase propagation is measured at fφ=0 = 389 Hz, in

agreement with the predictions, thus experimentally confirming the feasibility of propagation without

phase change within PAMs.

Note on the imaginary part of the effective dynamic mass density

Figure III.4 depicts the real and imaginary parts of the effective constitutive parameters characterizing

the PAM.
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Figure III.4: Analysis of the lossy effective dynamic mass density and effective bulk modulus: real
part (black color, left axis) and imaginary part (red color, right axis) of the effective dynamic mass density
(a) and effective bulk modulus (b). Continuous lines, dashed lines and symbols represent respectively the
analytical, numerical and experimental results.

In the propagative regime, the real part of the effective dynamic mass density is positive while

its imaginary counterpart is negative, thus fulfilling the causality principle. In contrast, both real

and imaginary parts of the density are negative in the forbidden stopband. Moreover, the real and

imaginary parts of the density are of the same order of magnitude over the frequency range of interest,

contrary to the bulk modulus, the imaginary part of which is much smaller than its real part (b).

Thus, most of the losses can be attributed to the complex effective density.

III.3.3 Applications of zero-phase propagation: control of the directivity

Since propagation without phase change is supported within a PAM, a potential use of this kind

of metamaterials to control the outgoing wavefront is also possible. For example, imagine an "aug-
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mented" metamaterial consisting of a lateral juxtaposition of several PAMs, each composed of a

different number of unit cells. A plane wave incident on that "super-metamaterial" can theoretically

emerge distorted since the zero-phase transmission will not occur on the same length in each PAM.

Alternatively, an acoustic dipole can also be designed using a propagation without phase change.

A dipole source can be approximated by two out-of-phase monopoles of equal flow rates, resulting

into two symmetric lobes in the polar directivity pattern. One possibility to reach this condition is

to use two waveguides, excited by the same incident plane wave and opening out into a semi-infinite

space. One of the waveguide is filled with the PAM, the other being a coiled-up Fabry-Perot resonator

(FPR). By designing the length of this FPR such as its first resonance coincides with the zero-phase

frequency of the PAM, a phase shift of π will be encountered by the wave propagating in the FPR,

while there will be no phase change in the PAM. As a result, the acoustic fields at both waveguide

boundaries are out-of-phase at fφ=0. Then, the output flow rate of each guide must be adjusted, i.e.,

the attenuation and the cross-section of the Fabry-Perot resonator must be corrected, so that the

absolute value of the two output flows is equal. The full-wave simulation displayed in Fig. III.5 attests

the feasibility of this application with a 6-unit long PAM (placed in the right waveguide).

The acoustic behavior of the dipole is simulated with a 2D finite element model. A 6 plastic shims

arrangement (of aforementioned mechanical properties) with a periodicity Lunit = 1 cm is placed in

the right guide of length L = 6 cm and width wg = 2 cm. The zero-phase frequency of the square

section metamaterial is determined at fφ=0 = 489 Hz. At this frequency, the wave propagates through

the guide with no phase shift.

The left waveguide plays the role of the FPR. To resonate at fφ=0, the resonator length must be

LFP = c/2fφ=0 ≈ 35 cm. The Fabry-Perot resonator is coiled-up to reduce the total volume of

the system (total width 19.7 cm and height 6 cm). The geometry is meshed with 53621 structured

quadrangles. Both waveguides are excited by a plane wave pressure field at the top boundary and

radiate in a semi infinite domain. The cross-section of the Fabry-Perot resonator is chosen equal
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Figure III.5: Subwavelength dipole: 2D full-wave simulation of a subwavelength dipole device built of a
coiled-up Fabry-Perot waveguide of length LFP ≈ 35 cm and a 6 plates PAM. The y component of the velocity
field is shown as well as the normalized directivity polar plot of the dipole (purple line).
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to that of the PAM to ensure an equal flow at the output of both guides. To reproduce the sound

attenuation of the PAM, the Fabry-Perot waveguide is filled with a porous medium (porosity 0.96,

flow resistivity 2847 Pa.s.m−2 , viscous length 273 μm, thermal length 672 μm, and tortuosity 1.07).

This porous material has a viscoinertial transition frequency (transition between the diffusive and

propagative regimes) of fBiot = 334 Hz [21–23] and is therefore efficient at the dipole operating

frequency fφ=0 = 489 Hz.

An out-of-phase equal mean flow rate is found at each outer boundary, leading to a two lobes

directivity pattern (purple line in Fig. III.5) and thus evidencing the efficiency of the device as a

subwavelength dipole (Lx ≈ λ/4 for the width and Ly ≈ λ/12 for the height).

III.4 Conclusion

This Chapter has evidenced the feasibility of achieving zero-phase propagation within a PAM. A

careful investigation of the effects of the design parameters has been carried out with a particular

attention paid on the impact of the viscothermal and viscoelastic losses on the zero-phase propagation

regime of a PAM. We have shown that the zero-phase propagation appears at frequencies in the

negative mass density regime. In this regime, corresponding to the stopband, the amplitude of the

transmission coefficient depends on the number of the unit cells in the system. In contrast, the phase

of the transmission coefficient remains constant in the lossless case. Therefore a compromise between

the number of unit cells and the variation of the amplitude should be reached. In this case, we consider

systems made of N ≤ 6, leading to a lossless transmission amplitude of |T | ≥ 0.9. Once the losses are

introduced in the system, a weak dependence of both the zero-phase frequency, fφ=0, and the phase of

the transmission coefficient, φ, on the number of unit cells and the amount of losses is observed. In the

two cases, the variation is less than 10%. These analytical results have been numerically reproduced

by full-wave simulations and experimentally validated by measuring the scattering parameters of a

PAM made of N = 6 plates as well as the effective mass density. The agreement between the analytical

predictions, the numerical simulations and the experimental results are found very good. The results

of this Chapter pave the way to design devices based on PAM with zero-phase propagation. As an

example, a subwavelength acoustic dipole has been designed through numerical simulations. The

content developed in this Chapter was published in Applied Physics Letter: "Zero-phase propagation

in realistic Plate-type Acoustic Metamaterials" [24].
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IV.1 Introduction

The detailed study of the density near zero regime of a plate-type acoustic metamaterials, carried

out in the previous Chapters, has highlighted the possibility of experimentally demonstrating zero-

phase propagation due to the stretching of the wavelength and the high phase velocity generated in

such metamaterials. Nevertheless, the frequency at which this specific transmission occurs lies in the

negative density regime, i.e., in the PAM stopband. In addition, the metamaterial is not impedance

matched to the surrounding environment, which prevents unitary transmission. Consequently, the

requirement of a supercoupling effect, that is perfect transmission without phase change, cannot be

met. The expressions of the amplitude and phase of the transmission coefficient, rewritten to make

the effective parameters appear explicitly,

|T | =

cos2
(
ω
√
ρCL

)
+

1

4

[√
ρC0

Cρ0

S0

S
+

√
ρ0C

C0ρ

S

S0

]2

sin2
(
ω
√
ρCL

)−1/2

, (IV.1)

φ = −atan

(
1

2

[√
ρC0

Cρ0

S0

S
+

√
ρ0C

C0ρ

S

S0

]
tan

(
ω
√
ρCL

))
, (IV.2)

give only two solutions to meet the supercoupling condition.

The first one consists in compensating the extreme value of the density by an important cross-

sectional ratio, S/S0 → 0, between the surrounding medium of section S0 and the PAM of section

S, as done in the work of Fleury and Alù [1] that was discussed in the previous Chapter. Please

note that if a metamaterial with zero compressibility is considered instead of DNZ, the solution to

obtain a supercoupling will still be to have a strong cross-sectional difference, but with an inverse

ratio S0/S → 0, i.e., narrow surrounding waveguides connected to a large waveguide filled with the

Compressibility Near Zero medium [2].

The second alternative, which does not require a change in cross-section (S = S0), is to transform

the DNZ medium into a medium with an effective density and compressibility close to zero. Similarly

to their electromagnetic counterpart, the Epsilon and Mu Near Zero (EMNZ) metamaterials [3–6],

DCNZ media have the particularity of being able to satisfy both the zero phase propagation, associated

with the static-like DNZ field distribution, and the impedance matching condition to free space, given

for a normal incidence by Z(ω) =
√
ρ(ω)/C(ω)/S = Z0. This can be achieved by combining two

types of resonators, that is resonators giving rise either to almost zero compressibility [2, 7] (resp.

an almost zero permeability [8–10], µ ≈ 0) or to an almost zero density (resp. to an almost zero

permittivity [11–16], ε ≈ 0) .

Another interesting way to design EMNZ structures is to use doping, i.e., a control of the ma-

terial macroscopic parameters by embedding locally appropriate inclusions/impurities, in an ENZ

metamaterial [17–20]. Liberal et al. [21] showed that the inclusion of a single well-designed impurity

can transform the effective properties of an ENZ body into those of an EMNZ, thus leading to full
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transmission without phase delay, regardless of the host geometry and of the location of the doping

impurity. It is important to note here that homogenization remains possible even with a small number

of potentially large impurities thanks to the DNZ effective stretching of the wavelength [21]. More-

over, although there is almost no spatial variation, the field still oscillates in time. The wavelength

enlargement is accompanied by a decoupling of the spatial and temporal field variations.

The objective of this Chapter is to transpose the doping phenomenon to acoustics and implement

it to transform the PAM, i.e., a DNZ body, into a DCNZ metamaterial (ρ(ω) ≈ 0, C(ω) ≈ 0), thereby

enabling supercoupling.

A first Section will be devoted to a numerical study of the feasibility of an acoustic analogue of

the photonic doping effect on a two-dimensional DNZ system. Then, we will show that our one-

dimensional lossless PAM can be efficiently doped using a single doping impurity: a tuned Helmholtz

resonator. Finally, the effect of both the dopant location and losses will be discussed in a final Section,

accompanied by experiments.

IV.2 Evidence of acoustic doping

The strong analogy between the constitutive equations of acoustics and of the transverse magnetic

mode in electromagnetism, enables in many cases to adapt phenomena observed with light to sound

waves. This Section aims at evidencing numerically an acoustic equivalent to that of photonic doping

on a random DNZ medium.

We start by a full-wave simulation of the doping phenomenon on a two-port random 2D medium.

The input and output ports (light blue areas in Fig. IV.1 (a)) are air-filled waveguides, plugged into

the "L" and "M" shapes respectively. A monochromatic wave of frequency lower than the cut-off

frequency of the ports (above which other modes than the plane wave one can propagate) impinges

the structure from the left ensuring plane wave propagation. The "LAUM"-shaped medium is filled

with air (b), a DNZ medium (c, e), or a DCNZ medium (f). The dimension of the "LAUM" structure

(width Lx = 3 m and height Ly = 1.15 m) is chosen much larger than the acoustic wavelength in the

air (λ0 = 27 cm).

Figure IV.1(b) shows a non-uniform pressure field distribution inside the 2D medium with high

order modes and a weak transmission (7%). The pressure field is strongly dependent on the geometry

of the host. If the host medium is replaced by either a DNZ or a DCNZ medium (Fig. IV.1(c-

f)), the pressure field becomes uniform within the medium due to the stretching of the effective

acoustic wavelength, allowing a wave propagation without phase delay. In both cases, the pressure

field is geometry independent. A tunneling effect is also achieved when the host medium is a DCNZ

(Fig. IV.1(f)) in contrast to the case of a DNZ (subplot (c)). The host medium is impedance matched

to the ports in the DCNZ case, which leads to a zero-phase total transmission.

We propose to reproduce the DCNZ behavior by doping the DNZ host using only a single impurity,

i.e., by attributing different medium properties only to a small part of the geometry. We choose here
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Figure IV.1: Full-wave simulation of a 2D acoustic doping with a single dopant: sketch of structure
(a), pressure field when the medium is filled with air (b), with a DNZ medium (c), with a doped DNZ medium
(dopant: transverse bar of the "A" letter, filled with a medium of bulk modulus κd and of width H) (e) or
with a DCNZ medium (f). Inset (d) shows the effective bulk modulus of the entire host "LAUM" depending
on the geometry of the dopant H. The doping condition to turn the host DNZ medium into an effective DCNZ
medium occurs when C ≈ 0, thus for κ→∞, at H = 10.1 cm (arrow in (d)).

to use the transverse bar of the "A" letter as a dopant. Doping can be achieved by tuning either

the bulk modulus κd or the geometry of the dopant. Figure IV.1(d) shows the dependence of the

effective bulk modulus of the whole system on the transverse bar geometry (the width H) for a fixed

value κd = 1.11 · 104 Pa. A resonant behavior is observed. The optimal geometry to dope the DNZ

host is H = 10.1 cm, that is the width for which the system effective bulk modulus is the largest,

i.e., an almost zero effective compressibility, while the zero effective density remains unchanged. It

is worth noting here, that the sensitivity of doping to the dopant geometry directly depends on the

variation of the bulk modulus. Sharp variation requires a high degree of design precision to achieve a

maximum value of κ(ω). Figure IV.1(e) depicts the pressure field obtained for the doped DNZ host.

The system "DNZ & dopant" exhibits a similar response to that of a medium integrally filled with a

DCNZ material, thus evidencing acoustic doping. Videos of the harmonic evolution of the pressure

field in each cases can be found in Appendix D (the use of Acrobat Reader is required to see the

videos).

IV.3 Doping of a lossless PAM

Now that we have proven the existence of the doping analogue in acoustics, we will apply this phe-

nomenon to our plate-type acoustic metamaterial, first in the lossless case. We consider a periodic

arrangement made up of 20 units of the plastic shims used previously and spaced with a periodicity

constant of 1 cm.

Figure IV.2 depicts the scattering properties and the effective density of the considered PAM.
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Figure IV.2: Scattering parameters of a lossless PAM composed of 20 plastic shims with a peri-
odicity constant Lunit = 1 cm: Transmission (black color) and reflection coefficients (red color) (a), phase
of the transmission coefficient (b), and real part of the effective density (c).

Impedance matching, zero-density, and zero-phase propagation occur at three different frequencies,

respectively fm = 422 Hz, fρ=0 = 414 Hz, and fφ=0 = 405 Hz. As expected, an impedance mismatch

at the zero-phase propagation frequency prevents such a PAM from total transmission.

IV.3.1 Design of the doping element

Doping the PAM should result in shifting both the zero-phase and the impedance-matching frequencies

towards the zero-density one. Therefore, doping should allow to achieve supercoupling effect with a

PAM even without a large section change. As evidenced in Section IV.2, doping a DNZ medium

requires to produce a zero compressibility, that is an infinite bulk modulus, simultaneously to the zero

density.

Since the effective bulk modulus is mainly sensitive to parallel elements (quarter wavelength res-

onators, side holes, Helmholtz resonators) [7, 22–24], a doping inclusion mounted in parallel to the

waveguide is considered in this system. The chosen dopant is a Helmholtz resonator, which is easily

tunable in practice and is of subwavelength dimensions in contrast to side holes or quarter wavelength

resonators that require large volumes in this frequency range.

The elementary transfer matrix of this element is given by

THR =

[
1 0

1/ZHR 1

]
, (IV.3)
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with

ZHR =
1

i

cos(knLn) cos(kcLc)− Znkn∆L cos(knLn) sin(kcLc)/Zc − Zn sin(knLn) sin(kcLc)/Zc
sin(knLn) cos(kcLc)/Zn − kn∆L sin(knLn) sin(kcLc)/Zc + cos(knLn) sin(kcLc)/Zc

, (IV.4)

the impedance of the Helmholtz resonator, where ∆L stands for the correction length of the neck

accounting for the radiation at both ends

∆L =0.82
[
1− 1.35Rn/Rc + 0.31 (Rn/Rc)

3
]
Rn (IV.5)

+0.82
[
1− 0.235Rn/Ra − 1.32 (Rn/Ra)

2 + 1.54 (Rn/Ra)
3 − 0.86 (Rn/Ra)

4
]
Ra. (IV.6)

The total transfer matrix T of the N unit cells metamaterial, with a dopant element placed in the

middle, as illustrated by Fig. IV.3(a), then takes the form

{
p

U

}
L

= T

{
p

U

}
0

(IV.7)

= (Tcav ·Tp ·Tcav)N/2 ·THR · (Tcav ·Tp ·Tcav)N/2
{
p

U

}
0

. (IV.8)

To find the optimal dimensions for achieving doping, we vary one parameter of the geometry, here

the cavity length. The neck length Ln = 20 mm and the radii of the neck Rn = 2 mm and of the cavity

Rc = 10 mm are fixed, while the cavity length Lc is adjustable with a piston as shown in Fig. IV.3(a).

We first analyze the lossless case depicted in Fig. IV.3, where the Helmholtz resonator is mounted

between the 10-th and 11-th plates of the PAM. In order to find the configuration where doping

occurs, we apply a similar procedure to that in Fig. IV.1(d), i.e., we look for the configuration that

produces a maximum value of effective bulk modulus. This optimal configuration corresponds to a

length Lc = 32.06 mm and requires to be dimensioned with an extreme precision. Figures IV.3(b,c,e,f)

show respectively the amplitude of the scattering parameters, the effective dynamic mass density, the

phase of the transmission coefficient and the effective bulk modulus for the configuration mentioned

above. The analytical results are validated against those from a 3D full-wave simulation shown by the

square symbols in Fig. IV.3. A zero-density accompanied by a maximum of bulk modulus is found

at f = 414 Hz. At this particular frequency, the total system behaves as a DCNZ metamaterial as

evidenced by the scattering parameters. The zero value of the transmission phase occurs with a zero

reflection and an unitary transmission, i.e., non-delayed propagation and impedance matching are

combined. We thus confirm the possibility to realize supercoupling with a PAM using doping.

Figures IV.3 (g,h) show the total pressure field, respectively without and with the doping impurity,

to illustrate the impact of the dopant at the zero-phase frequency. In both cases, we observe a quasi

static field distribution, giving rise to a non-delayed propagation either with an impedance mismatch

or with a full transmission. In the latter case, the pressure field is perfectly symmetric with respect
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Figure IV.3: Doping of a 20-unit long lossless PAM by adding a Helmholtz resonator: 3D sketches
of the unit cell, of the 20-unit long PAM doped in its middle by a Helmholtz resonator, and of a close-up on
the resonator (a). Transmission (black) and reflection (red) magnitudes (b), real part of the system effective
density (c), phase of the transmission coefficient (e), and real part of the system effective bulk modulus versus
frequency (f). Continuous lines and square symbols represent the analytical and numerical results respectively.
Inset (d) shows the dependence of the effective bulk modulus on the Helmholtz cavity length Lc. Figures (g)
and (h) depict the total pressure field of a 20-unit long PAM without and with a dopant at the zero-phase
propagation frequency f = 405 Hz and f = 414 Hz respectively (full-wave simulation).

to the PAM, which is characteristic of the supercoupling effect. In contrast, although zero-phase

propagation is satisfied when doping is not reached, the pressure field is not symmetric (see Fig. 2(g))

due to the non-unitary transmission (impedance mismatch).

IV.3.2 Independence of the dopant location

Another property of interest of DCNZ doping is its independence from the dopant location. Whatever

the Helmholtz resonator location in the PAM, doping should occur [21]. To illustrate this property,

Fig. IV.4 shows two examples with different locations of the Helmholtz resonator. The dopant is

mounted between the 2nd and 3rd plates in the first case, Figs. IV.4(a-b), while it is placed between

the 15-th and the 16-th in the second, Figs. IV.4(c-d).

It is worth noting here that the system remains reciprocal despite the breaking of the symmetry.

The reflection coefficient of a wave incoming the system from the left R+ is no longer equal to that
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of a wave incoming from the opposite side R−. As a result, the scattering parameters now read as

T =
2

T11 − T12/Z0 − Z0T21 + T22
, (IV.9)

R+ =
T11 − T12/Z0 + Z0T21 − T22

T11 − T12/Z0 − Z0T21 + T22
, (IV.10)

R− =
−T11 − T12/Z0 + Z0T21 + T22

T11 − T12/Z0 − Z0T21 + T22
, (IV.11)

and the effective parameters as [25]

Z(ω)± = ±Z0

√
(1−R+R− + T 2)2 − 4T 2

(1−R+)(1−R−)− T 2
(±1− iW ) , (IV.12)

eik(ω)L =
1−R+R− + T 2 ±

√
(1−R+R− + T 2)2 − 4T 2

2T
, (IV.13)

with W = ±
√
R+ −R−/

√
(1−R+R− + T 2)2 − 42 a parameter accounting for the asymmetry in the

system.
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Figure IV.4: Influence of the dopant position: (a,c) transmission magnitude (black) and phase of the
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results respectively. Dashed vertical lines represent the doping frequency (zero-density, infinite bulk modulus,
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The choice of sign for Z(ω)± and k(ω) are dictated by the fact that for a passive system the real

part of Z(ω) must be positive. The sign of W must be positive within the quasi-static limit and may

fluctuate at higher frequencies to ensure a continuous function of the frequency.

Zero-phase total transmission is observed in both configurations at f = 414 Hz. The location of the

dopant does not affect the supercoupling condition. The two systems respond with a similar acoustic

signature in terms of scattering and effective properties as evidenced in Fig. IV.4. This independence

on the location is due to the large wavelength in the PAM and allows a high freedom in the design of

the system.

IV.4 Doping of a lossy PAM

We now analyze the robustness of doping on the presence of losses. The full lossy problem is solved

with both the viscothermal losses in the main waveguide as well as in the Helmholtz resonator and

the viscoelastic losses in the plates.

The number of plates is reduced to 6, so as to control the overall viscoelastic losses. The realistic

PAM, characterized in the previous Chapter, is again considered. As a reminder, Figs. IV.6(b-c)

remind the scattering parameters magnitude and the phase of the transmission coefficient of the 6-

unit long PAM. The amplitude of the transmission at the zero-phase frequency fφ=0 = 390 Hz

is |Tfφ=0
| = 0.47 (0.42 measured in Chapter III). A large frequency offset separates this zero-

phase frequency from the zero-density and impedance matched frequencies, respectively occurring at

fρ=0 = 414 Hz and fm = 439 Hz.

A Helmholtz resonator is mounted between the 3rd and 4th plates of the system. The inset in

Fig. IV.6(f) shows the evolution of the effective lossy bulk modulus with respect to the length of the

Helmholtz resonator cavity. A maximum of real part of the bulk modulus is obtained for the optimal

length Lc = 36.75 mm. It is worth noting here that the value of this maximum is much lower (by a

factor 103) than in the previously presented lossless case.

Anechoic
termination

Figure IV.5: Photographs of the experimental set-up with the modified plate-holder including a
adjustable Helmholtz resonator.
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To confirm the analytical and numerical simulations, the scattering of the real doped system is also

measured using the set-up previously presented with a modified plate holder including the adjustable

Helmholtz resonator as shown in Fig. IV.5.

In the following, solid lines, dashed lines and circle symbols represent the analytical, numerical,

and experimental results respectively, the agreement of which is found to be very good.

Figures IV.6(d-f) give the response of the lossy system using this optimal configuration. The zero-

phase frequency is up shifted to fφ=0 = 412 Hz and gets closer to the zero-density frequency of the

system, i.e., fρ=0 = 414 Hz.
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Figure IV.6: Doping in presence of losses: (a,d) pressure field (full-wave simulation), (b,e) reflection (red)
and transmission (black) magnitude, and (c,f) phase of the transmission coefficient of a 6-unit long lossy PAM
(a-c) and a 6-unit long lossy PAM doped with a Helmholtz resonator (Lc = 36.75 mm, Rc = 10 mm, Ln = 20
mm, and Rn = 2 mm) mounted between plates 3 and 4 (d-f). Inset in (f) depicts the geometry optimization
on the cavity length of the dopant. Continuous lines and dashed lines represent the analytical and numerical
results. The experimental data are presented in a statistical form, with the symbols being the average of the
23 observations (system disassembled then reassembled) and the colored area the statistical standard error,
i.e., the std around the mean value.

The careful design of the dopant thus allows to strongly reduce the frequency offset between zero-

phase, maximum of transmission, and zero-density frequencies. As a result the zero-phase propagation

frequency fφ=0 gets closer to fm. In contrast to the lossless case, the losses prevent from a perfect

coincidence of maximal transmission and zero-phase propagation frequencies. As such, losses that are

inherently present in any acoustic system can clearly limit the effectiveness of doping. Nonetheless,
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it is worth noting here that the doping condition allows to have a non-delayed propagation with

a 13% higher transmission (according to the analytical and numerical, and 40% according to the

measurements), the measured (resp. analytical and numerical) magnitude of which goes from 0.42

(resp. 0.47) without dopant to 0.59 (resp. 0.53) in the doped configuration. Reducing the losses, i.e.,

finding plates with lower viscoelastic losses, would lead to a better efficiency of the process.

IV.5 Conclusion

This Chapter demonstrates theoretically and numerically and shows experimentally the evidence for

acoustic doping, i.e., the modification of the effective parameters of a complex medium by incorporat-

ing a single well-designed impurity. This equivalent phenomenon is based on previous works on the

electromagnetic equivalent: the photonic doping of Epsilon Near Zero media. Based on the analogy

between the constitutive equations of electromagnetism and acoustics, we have adapted the concept

to acoustics and revealed the specific methodology to optimize the effect with the doping of a DNZ

metamaterial, highlighting the limitation due to losses.

By combining analytical and numerical tools, we have unveiled the possibility of doping an entire

DNZ medium, here a PAM, through the careful design of a single embedded element, a Helmholtz

resonator. The dopant can be designed on the basis of its effective bulk modulus value or its geom-

etry. As a result, the overall effective compressibility of the system is changed, and the behavior of

the PAM switches from DNZ to Density and Compressibility Near Zero (DCNZ) at the exact zero

density frequency of the non-doped system, thus combining acoustic wavelength stretching, zero-phase

propagation and impedance matching. Moreover, the DCNZ condition is achieved independently of

both the host geometry and the dopant location. Doping is therefore a good alternative to the large

cross-sectional change required to observe supercoupling with a PAM, since it requires only one el-

ement to be added to the system. The realistic design and manufacture of this device is therefore

greatly simplified.

In addition, the effect of losses on doping is being studied. We have found that losses, mainly

those of plate viscoelasticity for a PAM, prevent from achieving exact zero compressibility together

with zero density. Although the doping efficiency of the system is limited by the losses, a noticeable

enhancement in the zero-phase transmission amplitude is experimentally evidenced. In the considered

case of a 6-unit long PAM, doping significantly reduces the frequency offset between the zero-phase,

zero-density, and maximum of transmission frequencies. As a result, the transmission amplitude of

the zero-phase wave is increased by 13% compared to the non-doped system. The choice of plates

with lower losses would increase the effectiveness of doping. Although complex geometries with sharp

angles may restrict the use of PAMs, the doping phenomenon can be applied to any other DNZ

systems, thus enabling a high freedom in the design as well as the filling of more complex geometries

such as the 2D "LAUM" shape.

This work paves the way for further engineering of acoustic metamaterials and has the potential
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to lead to several new applications such as acoustic tunneling devices, which were previously limited

by the transmission drop induced by the impedance mismatch at the DNZ interface, or other acoustic

elements aiming at controlling always further the sound. Another interesting application that could

result from doping is the phenomenon of hiding or cloaking, which will be discussed in the next

Chapter. This work has been published in Physical Review B: Rapid Communication, "Doping of a

plate-type acoustic metamaterial" [26].
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V.1 Introduction

The extraordinary large phase velocity, generated in the near-zero density regime of the PAM, revealed

interesting behaviors discussed in Chapters III and IV, leading to zero-phase propagation and a super-

coupling effect. The stretching of the effective acoustic wavelength should also enable to dissimulate

an obstacle inside the PAM, since the embedded object would be small compared to the wavelength,

and thus to realize cloaking devices.

Cloaking is perhaps one of the most intriguing phenomenon achieved through the development of

metamaterials. Several strategies [1, 2] have been considered to reach the quest of invisibility including

both passive designs based on transformation acoustics, carpet cloaking, or extreme parameters and

active ones [3] including parity-time symmetry designs [4, 5]. Transformation acoustics consists in

using a coordinate transformation [6–10], as it is done in transformation optics [11, 12], to deeply con-

trol the propagation of an acoustic wave. The aim is to reroute the incident wave around the obstacle

to avoid any disturbance of the external field, including scattering and shadowing. A metafluid, i.e.,

a fluid-like material, with a controllable anisotropic (directionally varying) density and a controllable

inhomogeneity (spatially varying properties) is required to achieve that goal [13]. These particular

features can be obtained with a careful design of metamaterials based on either a solid inclusion-type

unit cell (inertia metafluids) [7, 14–17] or an interconnected network of solid bridges (pentamode

metafluids) [18–21]. An alternative path to attain cloaking, is to use topological-optimization to con-

trol wave interference in order to cancel the acoustic scattering induced by the presence of an obstacle

[22, 23]. Another cloaking strategy, known as carpet or ground cloaking, is to cover an object placed

on a reflective surface with a designed shield to make it invisible [24–26]. The main limitation of this

"carpet cloaking" is the large size of the device compared to the object to be masked. The develop-

ment of thin metasurfaces overcomes this difficulty by using either Helmholtz resonators [27–29] or

membranes [30, 31].

An additional approach is to use extreme parameters [32, 33] to cloak an obstacle from an incoming

field. Since the acoustic wavelength is strongly stretched in zero-index metamaterials, the presence

of an obstacle inside the DNZ medium becomes almost imperceptible to an external observer. Dif-

ferent designs can be considered. Zhao et al. proposed a device based on elastic copper pieces [33],

which allows at one particular frequency to achieve extraordinary transmission while maintaining an

unchanged wave front and phase in presence of scatterer. Gu et al. states that cloaking is achievable

in a membrane-type metamaterial and reports numerically an enhanced transmission through obsta-

cles embedded in a two dimensional square arrangement of lossless membranes [34]. Nevertheless,

a trade-off has to be made between the transmission magnitude and the phase shift induced by the

membranes array. Yet, a perfect cloak requires canceling the effect of the object to be hidden both

in amplitude and phase. Conciliating the static-like field distribution and the impedance matching

condition offered by acoustic doping (developed in the previous Chapter) should provide a way to

exceed this limit and achieve cloaking with a periodic arrangement of plates.
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The purpose of this Chapter is to assess the feasibility of such an application with our 1D PAM.

It will be divided into two main Sections, including numerical simulations and analytical predictions

as well as experimental validation.

We investigate in a first Section the ability to perfectly cloak a diaphragm using a one dimensional

lossless PAM. Two distinct strategies are envisaged. The first consists in using the diaphragm itself

as an impurity to realize doping and thus cloaking, while a configuration with a Helmholtz resonator,

similar to that investigated in Chapter V, is used to dope the system, leading to a full cloak of the

diaphragm in the second case. As in most acoustic systems, viscothermal and viscoelastic losses cannot

be neglected and are moreover known to potentially lead to the drastic annihilation of the expected

phenomenon [35]. In the case of doping, even if the efficiency is also limited by the losses, an enhanced

transmission at the zero-phase frequency has been reported. The impact of losses on the effectiveness

of cloaking for the two strategies considered is studied here.

Giving the difficulty of achieving cloaking with a realistic PAM, emphasis is placed on the possibility

of hiding a diaphragm into a PAM in the second Section. The strategy is different from cloaking.

Instead of trying to shield the diaphragm in the PAM to turn the whole system undetectable, we use

the peculiar DNZ property to maintain the same acoustic behavior of the PAM (scattering and phase)

with and without the embedded diaphragm. In this case, perfect transmission is no longer required,

and a realistic (lossy) application can be considered. Finally a hiding zone is reported experimentally.

V.2 Cloaking

We first study the cloaking capability of our 1D PAM. We start by presenting the design of the obstacle

to be masked, its analytical modeling as well as its acoustic behavior. Then, we study the cloaking

efficiency from the lossless to the full lossy system and for the two doping configurations considered,

that is with only the diaphragm impedance control or with the addition of a Helmholtz resonator.

V.2.1 Design of the object to cloak

Among the many possibilities of obstacles to conceal, the choice made in this study is a rigid diaphragm

of orifice radius Rd (sketched in Fig. V.1 (a)) because of the ease of controlling the scattering prop-

erties and of manufacturing. Depending on its aperture, the diaphragm switches from transparent

(transmission close to 1 for large Rd) to opaque (reflection close to 1 for small Rd), thus adjusting its

influence on scattering.

The rigid diaphragm is modeled as a short waveguide of radius Rd and length Ld = 2 mm. An

end correction ∆Ld = 8
3π2Rd accounting for the radiation at both ends is considered and leads to an

elementary transfer matrix of the form

Td =

[
1 iZdkdLd + iωρ0∆Ld

i
Zd
kdLd + iω [κ0]−1 ∆Ld 1

]
, (V.1)
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in the kdLd � 1 approximation, with Zd and kd the characteristic impedance and wavenumber of the

orifice.
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Figure V.1: Acoustic signature of a single rigid diaphragm: (a) sketch of the diaphragm, (b) 3D plot
of the transmission magnitude versus frequency and the orifice radius Rd of the diaphragm, (c) scattering
parameters of a diaphragm of radius Rd = 4 mm, (d) phase of the transmission coefficient (black, left axis)
and normalized effective density (red, right axis). Analytical, full-wave simulation, and experimental results
are given respectively by solid lines, dashed-lines, and symbols.

Figure V.1(b) shows the dependence of the transmission magnitude through the diaphragm on

both the frequency and Rd. The smaller the orifice, the greater the reflection, thus the lower the

transmission. In addition, the transmission amplitude also decreases with frequency for a same di-

aphragm aperture, due to the frequency dependent viscothermal losses in the aperture [36].

The shaded surface in Fig. V.1 highlights the particular case of a diaphragm with a Rd = 4 mm

orifice, the scattering parameters of which are shown in Fig. V.1(c). The transmission remains high

over the considered frequency range, while the magnitude of the reflection varies from 0.2 to 0.5, thus

confirming the strong scattering power of the obstacle. Furthermore, the presence of the diaphragm

in a duct induces an increasing phase delay with frequency as shown by the phase of the transmission

coefficient in Fig. V.1(d). The designed device will then have to act on both the amplitude and phase

of the scattering coefficients to enable cloaking.

V.2.2 Lossless system

In a first step, we analyze the lossless case, i.e., when neither the viscoelastic losses of the plates

nor the viscothermal losses in both the diaphragm orifice and the waveguide are accounted for. The

diaphragm to be concealed is embedded in the middle of a 6-unit long PAM, i.e., between the 3rd

and 4th plates. The two cloaking configurations under examination are optimized to find the ideal

geometry to cloak the diaphragm. The efficiency of these lossless optimized systems is then tested.
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V.2.2.1 Cloaking configurations

The first approach, depicted in Fig. V.2(a) is to use the diaphragm itself as a dopant to match the

total system impedance to the surrounding waveguide impedance. This impedance matching condition

would lead to full transmission, zero reflection, and zero-phase propagation, as if the diaphragm was

not present in the waveguide.

The total transfer matrix characterizing the whole system reads as{
p

U

}
L

= (Tcav ·Tp ·Tcav)3 ·Td · (Tcav ·Tp ·Tcav)3

{
p

U

}
0

. (V.2)
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Figure V.2: Analytical geometry optimization for cloaking a diaphragm using a 6-unit long
lossless PAM: (a) sketch of the configuration, (b) influence of the diaphragm radius on the system’s scattering
parameters

The variation of the diaphragm geometry provides the optimal design for achieving cloaking. The

lossless scattering magnitudes of the total system, that is the PAM with the embedded diaphragm,

are calculated analytically for different orifice radii Rd as shown in Fig. V.2(b). A perfect transmission

with zero reflection is found for the optimal radius Rd = 0.15 mm.
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Figure V.3: Analytical geometry optimization for cloaking a diaphragm using a doped 6-unit long
lossless PAM: (a) sketch of the configuration, (b) optimal geometry for cloaking by doping a 6-unit long
lossless PAM with a Helmholtz resonator. Evolution of the effective bulk modulus with the cavity length of
the Helmholtz resonator.

In the second configuration, an additional dopant consisting in a cylindrical Helmholtz resonator

is used to dope the whole system, so as to enable cloaking. The doping condition is reached when

the effective density and the effective compressibility are simultaneously equal to zero. A Helmholtz

resonator (cavity length Lc, cavity radius Rc = 1 cm, neck length Ln = 2 cm, and neck radius Rn = 2
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mm) is mounted on the main waveguide, between the first two plates as sketched in Fig. V.3(a).

The total transfer matrix can then be defined as follows{
p

U

}
L

= (Tcav ·Tp ·Tcav) ·THR · (Tcav ·Tp ·Tcav)2 ·Td · (Tcav ·Tp ·Tcav)3

{
p

U

}
0

. (V.3)

The cloaking condition is found in Fig. V.3(b) by varying the length of the Helmholtz resonator

cavity and looking for a maximal bulk modulus, i.e., almost zero compressibility. A maximum is found

for a length Lc = 4.1 cm. With this particular geometry, an impedance matching condition coupled

with zero-phase propagation could be achieved.

V.2.2.2 Cloaking efficiency

The two cloaking configurations being now designed, an analytical (solid line) and a three dimensional

FEM numerical study (dashed line) of the scattering parameters (magnitude and phase) and of the

effective density are performed and presented in Fig. V.4.
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Figure V.4: Lossless cloaking of a diaphragm: Pressure field from the full-wave simulation, transmission
(black) and reflection (red) magnitudes (a,c), and phase of the transmission coefficient (black, left axis) and
normalized effective density (red, right axis) of both systems (b,d). Figures (a,b) show the cloaking of a
Rd = 0.5 mm diaphragm in a conventional 6-unit long PAM while Figs. (c,d) show the cloaking of a Rd = 4
mm diaphragm in a 6-unit long PAM doped with a Helmholtz resonator (Rn = 2 mm, Ln = 2 cm, Rc = 1 cm,
and Lc = 40.95 mm). Solid line represents the analytical results and dashed line the full-wave simulation ones.

The two lossless configurations - self-doped diaphragm (Fig. V.4(a-b)) and doped with a Helmholtz

resonator (Fig. V.4(c-d)) - lead to cloaking. In the first configuration, the full transmission (black

color) and zero reflection (red color) observed over a very narrow frequency range in Fig. V.4(a) result

from the high impedance of the diaphragm (due to its narrow aperture). The resulting transparency
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is also accompanied by zero effective density (red color) and zero-phase propagation (Fig. V.4(b)) at

fφt=0 = 88.3 Hz.

Doping occurs as expected in the second configuration, when the designed Helmholtz resonator

is mounted on the system. As a result, impedance matching (|T | ≈ 1, |R| ≈ 0) (Fig. V.4(c)) and

zero-phase propagation (Fig. V.4(d)) are also achieved at fφt=0 = 403 Hz.

The pressure field is constant (quasi-static distribution) along the system in the "Helmholtz doped

configuration". In contrast, the pressure varies within the metamaterial in the "self-doped configu-

ration" (when the diaphragm itself enables cloaking). That change in the pressure field is however

imperceptible to an outside observer.

Although the presence of the diaphragm becomes imperceptible in terms of scattering magnitude,

both configurations do not reproduce the correct apparent phase produced by wave propagation.

Indeed, measuring the phase advance of a wave propagating over a length L = 6 cm in an air-filled

waveguide or through the proposed designs (PAM + diaphragm + potentially an additional dopant)

lead to different results. The current configurations give a non-delayed propagation, that is ∆φ ≈ 0,

while the phase shift to be reproduced with the device should be ∆φ = k0L = 2πfφt=0/c0 (with

fφt=0 = 88.3 Hz or fφt=0 = 403 Hz depending on the configuration) to account for the propagation.

The realization of a full cloak then requires the addition of another constraint. As the whole system

(PAM & obstacle) must be undetectable both in terms of scattering and phase, the total length L of

the PAM must be chosen so that propagation over a L-thick slab of filling material (here air) results

in a phase advance of ∆φ = m2π, with m an integer. Consequently, the length of the PAM must be

Lopt = 2mπ
c0

ωφt=0
, (V.4)

that is Lopt = 3.88 m for the first configuration, and Lopt = 85.11 cm for the second. As indicated

in Chapter II, the increase in periodicity would not greatly affect the DNZ regime of the PAM and

in particular the zero-phase propagation. The geometries described in Fig. V.4 can then be easily

adapted to the optimal length of the device by changing the periodicity only. Nevertheless, the overall

dimensions of the cloaking device are no longer subwavelength.

V.2.3 Lossy system

Whilst cloaking seems to occur in lossless PAMs, we now consider the case of a realistic system,

with the impact of losses, the role of which has been crucial in the designs presented in the previous

Chapters.

Figure V.5 shows the effect of total losses (viscoelasticity of the plates and viscothermal losses in

both the aperture of the diaphragm and the duct) on the effectiveness of the two cloaking systems.

In the first configuration shown in Fig. V.5(a-b), viscothermal losses in the small aperture turn the

diaphragm totally opaque. The incident wave is totally reflected, as if a rigid wall were encountered.

In addition, the phase of the transmission coefficient no longer passes through zero. Considering a
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Figure V.5: Lossy cloaking of a diaphragm: Pressure field from the full-wave simulation, transmission
(black) and reflection (red) magnitudes (a,c), and phase of the transmission coefficient (black, left axis) and
real part of the normalized effective density (red, right axis) of both systems (b,d). Figures (a,b) show the
cloaking of a Rd = 0.5 mm diaphragm in a conventional 6-unit long PAM while Figs. (c,d) show the cloaking
of a Rd = 4 mm diaphragm in a 6-unit long PAM doped with a Helmholtz resonator (Rn = 2 mm, Ln = 2
cm, Rc = 1 cm, and Lc = 40.95 mm). Solid line represents the analytical results and dashed line the full-wave
simulation ones.

realistic diaphragm with such orifice then totally annihilate the cloaking effect.

In the second configuration, the viscoelasticy of the plates limits the doping efficiency as already

observed in Chapter V. As a result, the presence of the system in the waveguide induces a scattering

(non zero reflection). Losses thus also prevent cloaking in the second configuration.

V.2.4 Feasibility of cloaking

To summarize on the feasibility of cloaking, despite claims in the literature on the subject, this work

shows that realistic applications of cloaking with membranes or plate-type metamaterials are in fact

very limited. First of all, the presence of losses in the system prevents total transparency, i.e., perfect

transmission. Moreover, although the stretching of the effective wavelength produces a static-like field

distribution making the obstacle imperceptible in terms of apparent phase to an outside observer,

full cloaking requires, on the contrary, reproducing the phase of an air-filled waveguide of the same

length, as if the object to be cloaked and the occultation device were both non-existent. Full cloaking

therefore requires specific lengths of the PAM, which are for low frequencies very large, i.e., no longer

sub-wavelength.



V.3 Hiding 81

V.3 Hiding

Although PAM can lead to full cloaking in the lossless case, losses in both conventional and doped

PAM have been shown to prevent the peculiar propagation intended. Another application of PAMs is

now studied: the phenomenon of hiding. The philosophy of hiding differs from that of cloaking in the

sense it does not aim to render an external field unchanged by the presence of both the obstacle and

the masking device. The goal here is to use the stretch of the effective wavelength in the metamaterial

to hide the diaphragm (or any other obstacle) inside, without disturbing the acoustic scattering of the

PAM itself, i.e., by maintaining a constant magnitude of reflection and transmission at the zero-phase

frequency fφ=0.

V.3.1 Centered diaphragm

The phase shift induced by the presence of the diaphragm in a waveguide (observable in Fig. V.1(d))

can be inhibited by the presence of a PAM in the DNZ regime. Figure V.6 shows a comparison of

the acoustic response (scattering parameters and effective density) of a conventional 6-unit long PAM

(Figs. V.6(a-c)) and a 6-unit long PAM with an embedded diaphragm (Fig. V.6(d)), the orifice of

which is either Rd = 4 mm (Fig. V.6(e-f)) or Rd = 1 mm (Fig. V.6(h-i)). In both cases, the presence

of a PAM provides both zero-phase and zero-density to the whole system as evidenced in Fig. V.6(f,i).

A twofold procedure, including 2D axisymmetric full-wave simulations (dashed line) and experimental

measurements (circle symbols), is followed to valid the TMM-based analytical predictions. A very

good agreement between the numerical results, the analytical calculation, and the measurements is

found. The weak discrepancies on the reflection coefficient are attributed to a remaining variability

on the unit cells, due to either the clamping condition or the intrinsic properties of the plates as

previously observed.

The presence of the DNZ metamaterial makes it possible to lower and even to cancel the scattering

effect induced by the diaphragm. The total system (metamaterial and diaphragm) indeed achieves

the non-delayed propagation property. The zero-phase frequency of the whole system fφt=0 depends

directly on the impedance of the obstacle, related here to the open area ratio Rd/Ra. As shown in

Fig. V.6(g), the smaller the orifice radius, and therefore the larger the impedance of the diaphragm,

the lower the zero-phase frequency of the system. The zero-phase frequency goes from fφ=0 = 390 Hz

for the metamaterial alone to fφt=0 = 373 Hz for the system with a diaphragm of radius Rd = 4 mm

(green marker), and to fφt=0 = 303 Hz for the diaphragm of Rd = 1 mm (orange marker).

At the zero-phase frequency of the system with a Rd = 4 mm diaphragm, fφt=0 = 373 Hz,

the amplitude of the measured (respectively analytical and numerical) transmission and reflection

coefficients are 0.45 (resp. 0.47) and 0.75 (resp. 0.57), and are equal (approximately for experimental

data) to that of the metamaterial alone at its zero-phase frequency fφ=0, respectively 0.42 (resp. 0.47)

and 0.79 (resp. 0.57). For the 1 mm diaphragm, the scattering parameters of the total system and of

the metamaterial alone at their respective zero-phase frequencies fφt=0 and fφ=0 are not exactly the
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Figure V.6: Hiding of a centered embedded diaphragm: (Upper part) 6-unit long PAM behavior (hp = 102
µm, Lunit = 1 cm) a) sketch, b) modulus of the transmission (black, left label) and reflection (red, right label)
coefficients from the measurements (circle markers), the full-wave simulations (dashed line) and the TMM
(solid line), and c) phase of the transmission coefficient (black, left label) and real part of the effective dynamic
mass density (red, right label).
(Lower part) 6-unit long PAM behavior with embedded Ld = 2 mm thick annular diaphragm with an aperture of
radius Rd: d) sketch, g) relative frequency shift (ratio of the frequency of the zero of the transmission coefficient
for the total system (diaphragm embedded into the metamaterial) to the one of the metamaterial alone) versus
the diaphragm to the waveguide radii ratio (TMM), e) and h) modulus of the transmission (black, left label)
and reflection (red, right label) coefficients of the total system, metamaterial with an embedded diaphragm of
aperture Rd = 4 mm and Rd = 1 mm respectively, and f) and i) phase of the transmission coefficient (black
color) and real part of the effective dynamic mass density (red color) of the total system for Rd = 4 mm and
Rd = 1 mm respectively. Black dashed curves in Fig. e) and h) represent the transmission of the Rd = 4 mm
and Rd = 1 mm diaphragms alone.

same with a transmission of 0.39 (resp. 0.38) and a reflection of 0.59. (resp. 0.62). The efficiency of the

hiding phenomenon is therefore restricted when the impedance of the obstacle is excessively large. A

trade-off need to be found between the diaphragm scattering power related to its acoustic impedance,

i.e., its opening area ratio, and the efficiency of the PAM to hide the scatterer, as investigated in

Fig. V.7.

Figure V.7(b) shows that the amplitude of the scattering parameters at fφt=0 remains constant

and equal to those of the metamaterial alone at fφ=0 as long as the ratio orifice/total cross-section

remains larger than 12% (grey mapped surface). Due to the slight change of the zero-phase frequency

in that range, a small phase shift is noticeable for the PAM alone at the zero-phase frequency of the

whole system fφt=0 in Fig. V.7(c). Beyond that 12% ratio, the impedance of the diaphragm becomes

too large. The zero-phase frequency of the whole system is consequently significantly down shifted.

The 12% cross-sectional area ratio corresponds to a variation of fφt=0 of 10% with respect to the

zero-phase frequency of the metamaterial alone fφ=0. Due to this frequency shift, the DNZ power of

the PAM is no longer sufficient to allow a proper hiding phenomenon. The system behaves like two
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distinct DNZ media separated by an obstacle of a given impedance. The scattering amplitude then

varies drastically with the variation of fφt=0.
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Figure V.7: Influence of the diaphragm aperture ratio on its scattering parameters (analytically
calculated): Variation of the zero-phase frequency (a), evolution of the amplitude of the scattering parameters:
transmission (black, left axis) and reflection (red, right axis) at the zero-phase frequency of the total system
fφt=0 (b) and phase of the transmission coefficient of the metamaterial alone at the zero-phase frequency of
the global system fφt=0 for the different diaphragm radii (c). The shaded area shows the aperture range for
which the amplitude of the scattering parameters is independent of the orifice radius.

However, it is interesting to note that the hiding of a diaphragm (or any other obstacle) is possible

with a lossy DNZ metamaterial, as soon as the impedance of the object to be hidden is well controlled.

In this periodic arrangement of plates, despite the small variation of the zero-phase frequency (10%

in the operating range) which results in a small phase change, the effect of the diaphragm is very

limited. It is then possible to hide the diaphragm in the metamaterial in this frequency range even in

the presence of losses.

V.3.2 Hiding zone

Moreover, the stretch of the effective wavelength in the PAM should allow to expand the hiding

phenomenon to different locations of the scatterer. Figure V.8 shows the evolution of the scattering

amplitude and of the zero-phase frequency for different locations of the diaphragm along the meta-

material and in its vicinity. The two subplots Fig. V.8 (b,e) represent, in the lossy and lossless cases

respectively, the transmission magnitude (in black) and the reflection magnitude (in red) of the whole

system at the zero-phase frequency fφt=0 for each location xd of the diaphragm.

The presence of a non centered obstacle causes an asymmetry in the system. It is then necessary

to differentiate the reflection coefficients of the waves incident from each side of the device. The

reflection coefficient R+ refers to the incidence from the left, while R− refers to the incidence from the

right. Since only one obstacle is considered here, the reflection R+ generated by an obstacle placed

between the 5th and 6th plates for a wave incident from the left is equivalent to the reflection R−

generated by an obstacle placed between the 1st and 2nd plates for a wave incident from the right. In

the following only the coefficient R+ will thus be presented. In addition, it is worth noting here that

the system preserves its reciprocity condition, but not the symmetry.
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Figure V.8: Hiding zone of a 4 mm radius diaphragm in the PAM: with losses (a-c) and no losses (d-f).
Sketches of the considered system (a,d), magnitude of the scattering parameters (transmission, black, left axis
and reflection, red right axis) at the zero-phase frequency of the system (b,e) and zero-phase frequency of the
system (c,f). The circles, dots symbols and dotted lines represent respectively the experimental, analytical
data for the total system and the experimental amplitude of the scattering parameters of the metamaterial
alone at its zero-phase frequency.

In the lossless case, no matter where the 4 mm radius diaphragm is along the metamaterial, the

amplitudes of transmission and reflection remain constant and equal to those of the metamaterial

alone. The hiding phenomenon covers the entire structure which acts as a homogeneous and almost

symmetric material (R+ ≈ R− ≈ R). As soon as the viscothermal and viscoelastic losses are ac-

counted for, the asymmetry of the system becomes much more visible, R+ 6= R−, which results in a

slight change of the reflection with the location of the diaphragm as we can see in Fig. V.8(b). The

agreement of the experimental results, represented by the circle symbols, and the analytical predic-

tions, represented by the solid points, is very good on the transmission and the zero-phase frequency.

More significant differences are however noticeable on the reflection, already noted in the case of the

metamaterial alone. However, we find that regardless the location of the diaphragm, the measured

reflection and transmission of the whole system equal those of the PAM without diaphragm, the

measured values of which are reminded by the dotted horizontal lines in Fig. ??(b).

According to these results it is therefore possible to define a hiding zone corresponding to the

whole metamaterial. The diaphragm can be dissimulated when placed between any plates, as long as

the losses and impedance of the object to hide are controlled.
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V.4 Conclusions

In this Chapter, both the cloaking and hiding efficiency of a plate-type metamaterial device have been

investigated, using the DNZ regime associated with such systems. The study has been restricted to

the case of a thin rigid diaphragm to be hidden due to the ease of manufacturing, but can nevertheless

be extended to any other obstacle.

We have shown that acoustic doping can be used to attain full cloaking in the lossless case, i.e.,

canceling any scattering from the diaphragm (total transmission, zero reflection, and zero-phase), by

using either the impedance of the element to be concealed or an external impurity such as a designed

Helmholtz resonator. We have reported that both configurations have transformed the DNZ regime

into DCNZ, thus fulfilling the requirement for cloaking. However, the effectiveness is significantly

altered when the full viscothermal and viscoelastic losses are turned on. In addition, the length

of the DNZ medium required, for the apparent phase to be equal with and without the cloaking

device, results in a system size that is no longer subwavelength. In the self-doped configuration, the

diaphragm aperture necessary to have a strong enough impedance to dope the system is so small that

the viscothermal losses in the orifice make the diaphragm opaque. When doping is accomplished using

a Helmholtz resonator impurity, the viscoelastic losses have been shown to avoid impedance matching,

thus preventing full transmission and cloaking.

Accounting for the difficulties of obtaining cloaking condition using a device based on a 1D realistic

PAM, we have shown that instead of using the PAM to suppress any scattering of the external sound

field, the effective wavelength stretch produced by the DNZ regime of the PAM can be used to hide

an obstacle inside. In doing so, the acoustic behavior of a medium filled with DNZ material (here

the PAM) remains unchanged regardless of whether an obstacle is present inside or not, as soon as

its impedance is controlled. Furthermore, we have shown that the long effective wavelength allows

to change the position of the obstacle inside the metamaterials without affecting the effectiveness

of the hiding at all in the lossless case, and with only a slight impact on the reflection in the lossy

case. We were thus able to report analytically, numerically and, experimentally the presence of a

hiding zone along the entire PAM. These promising results could help in the design of new acoustic

metamaterials and pave the way for improved hiding strategies using DNZ metamaterials involving

plates or membranes.
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Chapter VI
General conclusion

In conclusion, this work is devoted to the near-zero index regime in a 1D Plate-type Acoustic Metama-

terial and the underlying applications offered by the stretching of the effective wavelength characteristic

of these media.

By the mean of analytical calculation, numerical simulation and experimentation, we first designed

a PAM evidencing some of the specific features related to this stretching. In particular we studied

and measured three main phenomena: (i) the zero-phase propagation (ii) the acoustic doping of a

PAM allowing to meet the requirements of supercoupling, and (iii) the effectiveness of a PAM in

cloaking or hiding an obstacle. Throughout this work, we have paid great attention to the study

and demonstration of the limitation induced by the inherent losses, which are too often neglected in

many studies even though they can have drastic effects if they are not properly accounted for as a key

element of the design.

This sixth chapter gathers a general conclusion, a discussion and some prospects to the presented

work. We also quickly discuss and present some side works that have been done during this PhD.

As each Chapter ends with its own conclusion, we do not recall here the details of the results

obtained, but give a general overview of the work.
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VI.1 Conclusion

VI.1.1 Summary of the main results

In this PhD thesis, we studied various effects of the wavelength stretching in acoustics near-zero

index media, with a simple device: a one dimensional Plate-type Acoustic Metamaterials. The strong

dispersion produced in the periodic arrangement of clamped elastic plates around the resonance,

mostly affects its effective dynamic mass density which varies with frequencies from negative to positive

values. An hybridization stopband, corresponding to a negative effective density regime, is opened

below the resonance, while a positive density is found in the passband. A Density Near Zero regime

is therefore observed at the transition between the stopband and the passband, occuring near the

plate resonance. This almost zero density is accompanied by a high phase velocity. As a result, the

effective wavelength is stretched and becomes large compared to the system. The acoustic pressure

field can therefore present a quasi-static distribution allowing zero-phase propagation. This latter

property can be used to tailor the directivity of a source, as evidenced numerically in Chapter III with

the design of an acoustic dipole with a 1D PAM. The large stretching of the effective wavelength also

enables dissimulation applications, the dimensions of the object to conceal being small relatively to

the acoustic wavelength.

The main motivation for this work was to analyze the effective applicability and to experimentally

observe some of the consequences of such behaviors (in particular the zero phase propagation and the

phenomena of doping, cloaking and hiding) with realistic designs that inevitably involve losses. Losses

are however known to significantly affect the acoustic dispersion and may lead to the annihilation of the

expected phenomena. We analyzed the contribution of the different sources of losses in these media,

i.e., viscothermal and viscoelastic losses. We found that viscoelastic losses are the predominant loss

source in PAMs and are responsible for a drastic drop in transmission, thus revealing the importance

of considering it as a key design element. We developed an experimental set-up to acoustically

characterize the mechanical properties and loss factor of the plates. Using a parametric analysis

and a characterization of different plates (different materials and thicknesses), we designed a sample

enabling experimental observation of the Density Near Zero regime specificities.

This particular regime can be described using three distinct frequencies: zero-phase, zero-density,

and impedance matching frequencies. We highlighted that the zero-phase propagation does not occur

at the exact zero-density frequency, but in the negative dynamic mass density regime, that is in the

PAM stopband. As a result, even when losses are not accounted for, the PAM is not impedance

matched to the surrounding medium. We were nonetheless able to measure a zero-phase propagation

with a realistic PAM, with a trade-off on the number of plates composing the system to maintain a

sufficient transmission in the system despite the viscoelastic losses and the impedance mismatch.

To overcome this mismatch at the zero-phase frequency, fφ=0, we proposed in Chapter IV an ana-

logue of photonic doping in acoustics. We presented a simple way and explained the methodology to

transform a single near-zero medium, the PAM in the present case, into a Density and Compressibility
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Near Zero (DCNZ) medium by adding a single well designed impurity. In contrast to DNZ (single

zero) metamaterials, double zero ones (with both zero density and zero compressibility simultaneously

achieved) have the particularity of conciliating both the interesting properties of DNZ media (wave-

length stretching, zero-phase propagation) and impedance matching, thus relaxing the constraints for

realistic applications. A Helmholtz resonator was used as an impurity to dope the PAM and to meet

the requirements for supercoupling, i.e., total transmission, zero density, and zero-phase propagation

simultaneously. We showed that for specific geometries of the Helmholtz resonators mounted in par-

allel to the PAM, both the dynamic compressibility (corresponding to a very large bulk modulus)

and dynamic density of the overall system vanished simultaneously. Consequently, the zero-phase

frequency was up-shifted towards the impedance matching frequency and a total transmission accom-

panied by a zero phase propagation was reached when losses were not accounted for. In contrast,

we evidenced that the viscoelastic losses limited the maximum value of bulk modulus achievable and

therefore restricted the doping phenomenon. Nonetheless, for the geometry producing the maximum

of bulk modulus, we were able to measure a substantial increase of the transmission amplitude. More-

over we showed that the acoustic doping is independent of the location of the impurity in the system,

thus giving a high freedom in the design. We have also numerically proven that acoustic doping can

be applied to DNZ systems of greater dimensions, with an example on a 2D complex shape medium.

Gathering the peculiar properties highlighted in the previous chapters, we finally evaluated in

Chapter V the possibility of dissimulating obstacles using the large wavelength stretching offered by

the DNZ regime and the impedance matching offered by the doping of the PAM. Two strategies were

investigated. First, we used the own impedance of the diaphragm to be cloaked to achieve doping and

second we added another impurity in the system, a Helmholtz resonator. We evidenced analytically

and numerically that in the absence of losses the diaphragm can be cloaked with both strategies

(either with or without additional dopant). The diaphragm was then acoustically imperceptible to an

outside observer both in term of scattering amplitude and phase. We showed that the limitation of the

doping phenomenon induced by the viscoelastic losses drastically annihilates the cloaking efficiency of

the device, the transmission magnitude being no longer unitary. Accounting for these limitations to

observe cloaking, we studied the hiding efficiency of a PAM instead. The strategy of hiding differs from

that of cloaking in the sense that the objective is no longer to make invisible the entire system, i.e.,

the PAM and the diaphragm, but to dissimulate an obstacle within the PAM. Impedance matching

is therefore no longer required. We demonstrated that at the zero-phase frequency of the system,

constant amplitudes of the scattering parameters were observed, with or without the obstacle inside,

and even in presence of losses. Thus, the diaphragm was hidden in the PAM. We showed analytically,

numerically and experimentally that the efficiency of the hiding phenomenon is dependent on the

impedance of the obstacle to hide (here, the ratio orifice/diaphragm cross-section). We also observed

experimentally that the PAM allows to hide the obstacle wherever its location within the system

thanks to the stretching of the acoustic wavelength.

Although most of the phenomena related to the DNZ regime in a PAM can be strongly limited
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by losses in real operating systems, we were able to experimentally observe some of these interesting

effects for the first time with a carefully designed realistic device.

VI.1.2 Prospects

The specific wave propagations made possible by the near-zero density and/or compressibility regimes

of a PAM and highlighted in this PhD work, open up a wide range of applications, such as acoustic

tunneling devices, which were previously limited by the transmission drop induced by the impedance

mismatch at the DNZ interface, wavefront and directivity tailoring devices, and hiding devices.

The main limitation of this system being the viscoelasticity of the plates, a major improvement

would be to find a way to ensure better reproducibility of the clamping condition even for much

thinner plates (the current plastic shims are distributed with thickness up to 10 μm). During this

PhD, we thought about a system consisting of a plate holder with small screws all around its outer

edges in order to be able to adjust and control carefully the pressure applied on both sides of the

plate. Unfortunately, this would have meant modifying the whole set-up, as it would have required a

larger diameter of the clamping rings. However, the required manufacturing time was not compatible

with the constraints of the three-year doctoral period.

The other solution that can be considered to reduce overall losses would be to choose another material

for the plates, with lower viscoelastic losses. In doing so, it should be possible to observe all of

the phenomena demonstrated here with greater amplitude and in particular to increase the doping

efficiency, which could potentially make cloaking more feasible.

Moreover, both the particular properties (zero-phase propagation, doping, hiding,...) and the

inherent limitations (impedance mismatch, losses,...) as well as the acoustic doping methodology

presented here can be observed in and adapted to any other DNZ system, thus allowing great design

freedom.

Although only a one-dimensional system is studied in this work, the evidenced peculiar behaviors

can also be observed with systems of greater dimensions (as we have evidenced for the doping of

a 2D DNZ system in Chapter IV). A redesign of the set-up to extend the system to two or three

dimensions, as technically challenging as this may be, would pave the way for further engineering of

acoustic metamaterials and metasurfaces and facilitate its applicability.

An interesting idea would also be to find a way to design a surface that could respond with a similar

DNZ regime and that could support the same specific propagation.

VI.2 Side works

Besides the work on Plate-type Acoustic Metamaterials presented in this manuscript, we have also

investigated other interesting behaviors obtained with acoustic metamaterials working with systems

different from plates and at frequencies outside the near-zero index regime. Some of these subjects

are still under study.
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Although these studies do not fall within the scope of this manuscript (near-zero index Plate-type

Acoustic Metamaterials), we will briefly explain the respective projects in order to draw an overall

picture in this section.

VI.2.1 Reconfigurable metamaterials

Reconfigurable metamaterials have great potential as they allow to switch from one application to

another by simply changing the geometry of the systems. We are particularly interested here in room

acoustics applications using Helmholtz resonators.

VI.2.1.1 Accordion like Helmholtz resonators

In the framework of the ANR/RGC METARoom project (ANR-18-CE08-0021), we are developing

metasurfaces consisting of periodic arrangements of Helmholtz resonators for the control of room

acoustics. This project involves the University of Science and Technology of Hong Kong (research

group of Professor Ping Sheng), the Acoustics Laboratory of Le Mans University (LAUM UMR

CNRS 6613), and two companies/start-ups: Acoustic Metamaterials Group (AMG) in Hong Kong

and Metacoustic in Le Mans.

Metamaterials or metasurfaces based on Helmholtz resonators have been shown to produce a

strong dispersion accompanied by a deep slow sound below the resonance frequency. Consequently,

such structures give rise either to deep subwavelength perfect absorption devices [1–4] or to meta-

diffusers [5].

In this project, we intend to extend existing designs, which are generally static and intended only

for a single functionality: absorption or diffusion, to reconfigurable designs, which can then operate

on both. The principle used is fairly simple. A change in the geometry of the system changes the

resonance frequency of the Helmholtz resonators and thus the dispersion produced. In doing so, the

behavior of the medium can be passively changed from perfect absorption to controllable diffusion,

i.e., from an anechoic audio sensation to that of a larger room.

Perfect absorption is achieved by critically coupling successive Helmholtz resonators of different

geometries using the high dissipation and the slow sound around the resonance frequency. Careful

adjustments of the resonators geometry, leakage and losses prevent reflection and result in perfect

absorption over a broadband frequency range.

Conversely, the audio feel of a larger room requires the ability to control with the metasurface the

reflection at the interface (wall of the room) to mimic that of a farther wall. In other words, we control

the reflection of the metasurface to time-delay a pulse, as if it had propagated over a given distance.

The design is a slightly tougher challenge since it requires to achieve a deep slow sound while limiting

dispersion and absorption over a frequency band corresponding to the spectral content of the pulse.

In doing so we are able to reproduce a large and almost constant group delay and prevent excessive

distortion of the pulse.
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This project sets a new frontier in room acoustics and would remove the significant dimensional

constraints of traditional materials, which are effective at high frequencies but result in large and

heavy structures at low frequencies. We are currently considering the fabrication of an accordion-like

system, which would allow the desired diffusion or perfect absorption to be obtained by simply pushing

on the wall.

VI.2.1.2 Multi-stable origami Helmholtz resonators

This other project, carried out in collaboration with two members of the Katia Bertholdi research group

at Harvard, focuses on the design of multi-stable Helmholtz resonators using origami-like structures

and tessellations. Many results are expected, some of which could be coupled to the METARoom

project for an application in room acoustics. We also plan to use these bi-stable origami structures as

actuators or switches. If we manage to transform the geometry from one to the other stable position,

the resonance will be shifted and the amplification phenomenon will stop.

VI.2.2 Asymmetric reflection: Willis coupling

Willis coupling, analogous to bianisotropy in electromagnetic metamaterials, has recently received

considerable attention. In contrast to symmetrical passive reciprocal media, where both transmission

and reflection are independent of the side from which the wave is irradiated, Willis media exhibit

asymmetry (lack of mirror symmetry) due to a coupling between potential and kinetic energy in the

system. The Willis coupling term of a system is therefore defined as the cross-coupling parameter

between stress and velocity in the acoustic constitutive equations. In this side work, we derive ana-

lytically and measure experimentally these Willis parameters for various lossy systems consisting of

clamped plates, Helmholtz resonators or quarter-wavelength resonators.

VI.2.3 Broadband absorbing Plate-type Acoustic Metamaterials

Finally, we have also investigated the possibility of designing perfect broadband absorption devices

with a series arrangement of annular plates.

The use of annular plates instead of circular plates allows to control both the resonance frequency

and the losses, necessary to reach a critical coupling condition. In addition, annular plates are thin

and are therefore perfect candidates for the design of a deep subwavelength structure for broadband

sound absorption. As the system used here is similar to that presented in this manuscript, we will

develop further the work done on this subject in the following.
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Decorated membranes or plates, i.e., membranes or plates with additional mass platelets, have

been widely used for their high tuning, insulation and absorption capacity [1–11]. A brief review is

also provided in the introduction to Chapter II.

Helmholtz resonators [12] are another type of resonators widely studied for sound absorption. A

periodic arrangement of Helmholtz resonators produces a strong dispersion in the waveguide on which

they are mounted [13], accompanied by a slow sound [14–16] and an increase in the density of state

below resonance. Due to the dispersion in the periodic structure, the group velocity depends on the

frequency and vanishes (or reaches a very low value if losses are accounted for) at the edges of the

stopband, which considerably reduces the resonance frequency of the system and facilitates the design

of deep subwavelength devices. In addition, the dissipation in the vicinity of the Helmholtz resonance

is very high. Careful adjustment of the resonator intrinsic losses (viscothermal losses in the neck and

cavity) and the energy leakage rate (coupling of the resonator with the main waveguide) can lead

to perfect absorption, when one is in perfect balance with the other, i.e., when the critical coupling

condition is fulfilled. This results in an impedance matching that prevents reflections and ensures

energy trapping around the resonators, either in a reflection configuration (rigid backing) [17] or in

a transmission configuration [18]. Moreover, broadband absorption can be achieved by successively

critically coupling a set of graded Helmholtz resonators, i.e., a rainbow trapping metamaterials [19].

Here we propose an alternative strategy, which consists in arranging several annular plates in series

in a 1D waveguide, instead of Helmholtz resonators, to mimic the rainbow trapping-like behavior. An

annular plate is a good candidate for critical coupling since its overall losses can be adjusted by the

hole diameter. In a first Section, we will briefly develop the analytical modeling of an annular plate and

then analyze its acoustic signature. Then the study will be separated in two different configurations:

reflection and transmission.

VII .1 Acoustic signature of an annular plate

To begin, we characterize the acoustic propagation through a thin clamped annular plate of outer

radius Ra and inner radius (radius of the hole) Rh.

VII .1.1 Analytical modeling

The analytical modeling, based on a modal representation of the displacement w, is fully developed

in Appendix B. We present only the main results in this Section.

The displacement of the plate is defined as a superposition of the displacement of an infinite

number of modes (modal analysis form) and reads as follows

w(r, θ) =

∞∑
n=0

[AnJn(λr) +BnYn(λr) + CnIn(λr) +DnKn(λr)] cos(nθ) =

∞∑
n=0

wn(r, θ), (VII .1)

with n the mode number, J and I, and Y and K the Bessel and modified Bessel functions of the first
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and second kind respectively.

The annular plate is clamped at its outer edge (in r = Ra), that is

w(r = a, θ) =
∂

∂r
w(r = a, θ) = 0, (VII .2)

and free at its inner edge. At r = Rh, the bending momentMr and the shear forces Vr should therefore

vanish, i.e.,  Mr= −D
[
∂2

∂r2
w(r, θ) + ν(1

r
∂
∂rw(r, θ) + 1

r2
∂2

∂θ2

]
r=Rh

= 0,

Vr =−D
[
∂
∂r∇

2w(r, θ) + 1−ν
r2

∂2

∂θ2
( ∂∂rw(r, θ)− w(r,θ)

r )
]
r=Rh

= 0.
(VII .3)

After multiple analytical manipulations of the resulting system (integrations, symbolic resolu-

tions,...), the use of the orthogonality of the mode, and the application of the initial conditions, the

general solution to the forced vibration problem of a clamped-free annular plate in vacuum then takes

the form

w(r, θ) =

∞∑
n=0

∫
S

∆P (r)
D wn(r, θ)dS

ρphp
D (ω2

n − ω2)
∫
S

∑∞
n=0[wn(r, θ)]2dS

wn(r, θ). (VII .4)

The acoustic impedance of the plate in vacuum can then be derived from the surface averaged

transverse displacement w

w =
1

S

∫ 2π

0

∫ Ra

Rh

w(r, θ)rdrdθ, (VII .5)

leading to

Zp =
Zm
S2

=

∫
S ∆P (r)dS

iωw
. (VII .6)

Since the plate is embedded in air, i.e., in a light fluid, the vibrations of the plate in the air-filled

waveguide are considered to be those of plates in vacuum. However, the air flow through the internal

orifice must be accounted for.

The orifice of section Sh = πR2
h is treated as a hp-thick tube, for which an approximation of the

acoustic impedance is given by

Zh = iωρairhp
1

1− 2√
−ikh

J1(
√
−ikh)

J0(
√
−ikh)

1

Sh
+

2iωρair∆L

Sh
, (VII .7)

where kh is the ratio of the radius of the hole to the viscous penetration thickness and considering

length corrections of the form ∆L = 4
3π2Rh at each end.

The total impedance of an annular plate is then given in the first order by

Ztot =
1

1
Zplate

R2
a

R2
a−R2

h
+ 1

Zh

R2
a

R2
h

. (VII .8)

This expression of the impedance depends on the open area ratio (ratio between the cross-section of

the hole and that of the plate).
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It is worth noting at this point that the derivation of the annular plate impedance is time consuming

as it requires multiple numerical integrations and system resolutions. Moreover to be accurate, a

calculation considering multiple modes is necessary (i.e., a wide frequency range required).

VII .1.2 Acoustic scattering

We first analyze the influence of the hole radius Rh and the plate thickness hp on the scattering

amplitude of an annular plate in Fig. VII .1. Plates with outer radius Ra = 15 mm and made of

plastic shims, similar to those used in the previous Chapters, are considered here.

VII .1.2.1 Eigenfrequency and scattering coefficients

Figure VII .1(a) shows the evolution of the first eigenfrequency as a function of the orifice/plate

cross-section ratio for plates of thicknesses hp = 102, 127 and 254 μm respectively represented by the

orange, green and cyan solid lines. We represent in the inset of Fig VII .1(a) the non-dimensional

parameter kpRa instead. We see that, regardless of the thickness, the greater the ratio Rh/Ra, the

higher the resonance frequency. One can therefore tune the plate by dimensioning the orifice. As

expected, the greater the thickness, the higher the resonance frequency. For very narrow apertures,

the acoustic signature of an annular plates tends toward that of an ordinary circular plate, both in

terms of resonance frequency and scattering amplitude, as evidenced in Figures VII .1(c1,d1). We find

a behavior very similar to that of the 102 μm -thick circular plate shown in Fig. II.10 of Chapter II.

Figures VII .1(c1-4) and Figs. VII .1(d1-4) respectively represent the lossless and lossy magnitude

of the scattering coefficients (transmission in black, reflection in red, and absorption in yellow) for

different orifice radii and plate thicknesses indicated by the grey dots in Fig. VII .1(a). In contrast

to the ordinary circular and very narrow orifice annular plates, the reflection (resp. transmission)

magnitude of which being unitary (resp. zero) in the very low frequency range, the annular plates

with larger apertures are transparent at low frequency with an almost unitary transmission.

The analytical behavior of the annular plates, computed considering only three modes, is val-

idated against 2D axisymmetric full-wave simulations. The agreement between the analytical and

the numerical results is judged to be very good. Small discrepancies are found out of the resonance

and are attributed to the low number of modes considered for the computation. As this modeling

will be used for the optimization process, we had to compromise here between the number of modes

accounted for, i.e., the computation time, and the accuracy out of the resonance. Moreover, Figs. VII

.1(c3,d3), representing the case of a Rh/Ra ratio of 1/3, shows that the analytical modeling is losing

some accuracy for large aperture as evidenced by the stronger deviation compared to the numerical

simulation. However, it is worth noting here that the analytical model is fairly well accurate and can

be used for annular plates of aperture radius of up to 5 mm.
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Figure VII .1: Scattering by an annular plate: (a) Evolution of the 1st eigenfrequency as a function of
the orifice to plate cross-section area ratio Rh/Ra for plates of thickness 102 μm (orange line), 127 μm (green
line), and 254 μm (cyan line). Inset of Fig. (a) shows the evolution of the dimensionless parameter kpRp
relative to Rh/Ra. (b1-2) Dispersion relation for an infinite periodic arrangement of clamped annular plates
with a periodicity Lunit = 1 cm, (b3-5) transmission, reflection magnitudes and absorption for a 102 μm-thick
annular plate. Each colored line refers to a different hole radius Rh and the colored areas to the corresponding
stopbands. (c1-c4) Lossless and (d1-d4) lossy scattering coefficients magnitude for single annular plate of
different radii and thickness represented by the grey dots in (a): Rh = 0.005 mm and h = 102 μm in (1),
Rh = 1 mm and hp = 102 μm in (2), Rh = 5 mm and hp = 102 μm in (3), and Rh = 1 mm and hp = 254 μm
in (4). The solid lines represent the analytical and the square symbols the full-wave results.

VII .1.2.2 Dispersion relation

Figures VII .1(b1-2) shows the real and imaginary part of the dispersion relation calculated on a unit

cell composed of two layers of air in the middle of which the annular plate is clamped. The width

of the unit-cell, i.e., the periodicity constant is Lunit = 1 cm. The dispersion relation is studied

in parallel to the transmission, reflection magnitude, and absorption shown in Figs. VII .2(b2-3).

A periodic arrangement of annular plates presents a successive passband and stopband below the

resonance frequency. Another passband is reopened from the resonance frequency. Thus, propagation

is almost unitary at low frequency, then passes through an anti-resonance characterized by a minimum

of transmission and a maximum of reflection below resonance, and finally reaches again a maximum

of transmission (unitary when losses are not accounted for) at the resonance frequency. The colored

areas in Figs. VII .1(b1-5) represent the stopband of the infinite system, each color corresponding to

a different radius orifice Rh. The narrower the orifice, the wider the stopband, as also evidenced by

comparing Figs. VII .1(c2,d2) and Figs. VII .1(c3,d3) corresponding respectively to an annular plate
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with an orifice Rh = 1 mm and Rh = 5 mm. It can be observed that the antiresonance is sharper in

the latter case.

VII .1.2.3 Role of the plate and orifice

So as to understand the reason for the minimum of transmission below the resonance, we plot in

Fig. VII .2(a) the numerically computed mean flux generated in the extreme vicinity of either the

plate (cyan color) or the orifice (green color). We consider here a lossless annular plate of orifice

radius Rh = 2.7 mm and of thickness hp = 76 μm. We parallel-up these results with the transmission

(black color) and reflection (red color) magnitudes as well as the phase of the transmission coefficient

in Figs. VII .2(b,c). The red, black and grey vertical lines represent respectively the zero reflection,

unitary transmission, and zero transmission frequencies.
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Figure VII .2: Fluxes and pole and zero of the scattering matrix eigenvalue of a single annular
plate (Rh = 2.7 mm and hp = 76 μm): (a) Averaged fluxes generated by the plate (cyan symbols) and by
the hole (green symbols) from full-wave simulations when neither the viscoelastic nor the viscothermal losses
are accounted for, (b) magnitude of transmission (black symbols) and reflection (red symbols), and (c) phase
of the transmission coefficient. The red, black, and grey vertical dashed lines highlight the minimum reflec-
tion, maximum transmission, and minimum transmission respectively. The cyan and green areas respectively
represent the frequency ranges with a positive flux for the plate and a negative flux for the hole and vice versa.
Analytical lossless (d) and lossy (f) transmittance (black), reflectance (red), and absorption (yellow) coupled
respectively to the complex plane representation of the eigenvalue |T − R| of the scattering matrix in (e) and
(f).

The mean fluxes Up and Uh, respectively generated by the plate of section Sp = π(R2
a − R2

h)

and the hole of section Sh = πR2
h, are calculated from the mean acoustic velocity averaged over the

respective cross-sectional area, that is Up =
∫
Sp
vzdSp/S

2
p and Uh =

∫
Sh
vzdSh/S

2
h. The signs of the

fluxes can be classified in three categories. The frequency ranges in which both fluxes are in the same

direction (same sign) correspond to high transmission bands, i.e., the uncolored areas in Figs. VII

.2(a-b). In contrast, the stopband corresponds to a frequency range in which the fluxes Up and Uh
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are antiparallel (opposite signs), preventing large transmission. The green colored area refers to the

frequency range in which the flux generated by the hole is positive and that of the plate is negative,

and the cyan colored area to the opposite case. The transmission minimum and reflection maximum,

i.e., the antiresonance of the annular plate, are found at the frequency at which both fluxes vanish

(grey dashed line between the cyan and green colored areas). The zero reflection (red dashed vertical

line) is located in the negative Uh range, at a frequency slightly different to that of the maximum

of transmission (resonance frequency of the plate) for which the flux from the plate is positive while

that of the orifice is zero. The minimum of reflection is moreover accompanied by a zero value of the

transmission coefficient phase.

VII .1.2.4 Maximal absorption of an annular plate

We now investigate the maximal absorption achievable with a single annular plate.

The total losses of a resonant system can be characterized by its quality factor composed of a

dissipative part Qdiss and a leakage part Qleak. The maximal absorption of a structure is reached

when the inherent dissipation balances the energy leakage rate Qdiss = Qleak, i.e., when the critical

coupling condition is met [20–24].

One way to visualize the optimal balance between energy leakage rate and inherent losses is to

plot the eigenvalues of the scattering matrix in a complex plane, i.e., in the plane Im(f) = F (Re(f)),

with f = fr + ifi the complex frequency.

The scattering matrix S connects through the transmission and reflection coefficients, the incoming

complex amplitudes A, D and outgoing complex amplitudes B, C from the annular plate[
B

C

]
=

[
R+ T

T R−

][
A

D

]
. (VII .9)

The two eigenvalues of the S-matrix are therefore Λ1,2 = T ±
√
R+R−.

For mirror-symmetric configurations, i.e, when R+ = R− = R, the whole problem can be decoupled

into two subconfigurations in reflection [18, 25]. The two eigenvalues of the S-matrix can indeed be

regarded as the reflection coefficient of the symmetric, Rsym = T − R, and antisymmetric, Rasym =

T +R, subproblems in reflection, that is when a Neumann boundary condition (rigid wall, ∂p/∂n = 0)

or a Dirichlet condition (soft boundary, p = 0) are respectively applied to the symmetry plane of

the system. The absorption of the whole problem is then recovered from that of each subproblem

αasym,sym = 1− |Rasym,sym|2, i.e., α = (αasym + αsym)/2.

In the present case, the transmission and reflection of a single punctual annular plate are given by

T =
2

2 + Zp/Z0
, (VII .10)

R =
Zp/Z0

2 + Zp/Z0
. (VII .11)
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The only non unitary eigenvalue thus reads as

T −R =
2− Zp/Z0

2 + Zp/Z0
, (VII .12)

the pole and zero of which are found at Zp/Z0 = ±2. The position of the poles and zeros in the

complex frequency plane can help to characterize the scattering of a given problem.

Figures VII .2(e-g) show the non-constant eigenvalue log(|T − R|) of the S-matrix represented

in the complex frequency plane. The resonance of a given system can be identified by the presence

of pairs of poles and zeros that are complex conjugates of each other in the lossless case, i.e., that

are symmetrical with respect to the real frequency axis (see Fig. VII .2(e)). The energy leakage rate

of the system is given by the imaginary part of the poles complex frequency, while the resonance

frequency is given by the real part. With the time convention considered here, eiωt, the poles are

located in the upper half of the complex plane, i.e., the positive imaginary plane, while the zeros are

located in the negative one. When losses (viscothermal and viscoelastic) are introduced , the poles

and zeros are translated in the complex plane. Eventually, the zeros move towards the real frequency

axis when the energy leakage rate is perfectly balanced by the resonator intrinsic losses, giving a

maximum of absorption, α = 0.5. Perfect absorption would have implied having the zeros of the two

eigenvalues on the real frequency axis at the same frequency, that is to critically couple the symmetric

and antisymmetric problem, which is not achievable with a punctual symmetric resonator (only one

non constant eigenvalue).

Different strategies can be used to overcome this upper absorption limit. In what follows, we

will discuss two of them, a rigidly backed configuration and an asymmetrical configuration, coupling

different resonators.

VII .2 Absorption in a rigid backing configuration

In a reflection configuration, i.e., when the system is rigidly backed, perfect absorption can be achieved

by critically coupling the resonances of a single subwavelength resonator and of the cavity of length

Lcav separating the resonator from the rigid backing [24].

VII .2.1 Perfect absorption with a single plate

We start by optimizing the geometry of both an annular plate (thickness hp and orifice radius Rh)

and the backing cavity (length Lcav) to balance the leakage with the inherent losses.

The reflection coefficient RRB of the system can be written as follow,

RRB = R+
T 2Rterme

−i2k0Lcav

1−RRterme−i2k0Lcav
, (VII .13)

with R and T the reflection and transmission coefficient of the annular plate respectively, Rterm the
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reflection coefficient of the termination (Rterm = 1 in the case of a rigid backing), and k0 the acoustic

wavenumber of the air-filled backing cavity.

We perform a multiparametric optimization to obtain a perfect absorption at f = 300 Hz, using

a cost function of the form

C(Rh, hp, Lcav) = min
(
|RRB|2

)
. (VII .14)
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Figure VII .3: Perfect absorption with an annular plate in a rigidly-backed configuration: Left:
Optimized configuration: (a) Analytical transmittance (black) and reflectance (red) of the optimized annular
plate (Rh = 0.90 mm, hp = 127 μm). (b) Absorption magnitude (yellow) and reflectance (red) of the opti-
mized whole system (plate, cavity of length Lcav = 36 mm, and rigid backing). (c) Complex frequency plane
representation of the reflection coefficient of the whole system log |RRB |.
Right: Parametric analysis of the influence of Rh, hp, Lcav on the maximum of absorption: (d) Evolution of
the zero of RRB with Rh, hp, Lcav in the complex frequency plane. (e) Absorption magnitude at f = 300 Hz
depending on Rh and Lcav. (f) Absorption magnitude for Lcav = 36 mm depending on Rh and the frequency.

The reflectance and transmittance of the optimized annular plate are given in Fig. VII .3(a). The

transmission amplitude is high while the reflection is almost minimal at the target frequency f = 300

Hz. Figure VII .3(b-c) shows respectively the reflectance and the corresponding complex plane for the

whole system (plate and backing cavity of length Lcav = 3.6 cm). Perfect absorption (zero reflectance)

is obtained as expected at 300 Hz. The zero of the reflection coefficient lies on the real frequency axis

in the complex plane, which proves the critical coupling for this deep-subwavelength structure of

dimension almost 32 times thinner than the acoustic wavelength in air at 300 Hz.

The dependence of the critical coupling condition on the geometrical parameters of the system is

now studied. Figure VII .3(d) shows a zoom on the first zero of the reflection coefficient in the complex

plane. The orange, purple, and cyan trajectories illustrate the evolution of the location of the zero of

the reflection coefficient with respect to the values of Rh, Lcav, and hp respectively. Perfect absorption



108 Chapter VII Side work highlight

and critical coupling are reached when at least one of the trajectories crosses the real frequency axis.

The only solution meeting this requirement is, in this case, the one where all the paths cross at the

same point, corresponding to the optimized configuration.

Another representation of this dependency is presented in Figs. VII .3(e-f). The first represents

the value of the absorption coefficient at 300 Hz for different pairs of values (Lcav, Rh). The absorption

magnitude is given by the color, the yellow being α ≈ 1 and the blue α ≈ 0. We can see that quasi

perfect absorption (α > 0.95) can be achieved for several pairs of orifice radii and cavity lengths around

the optimum, ranging in Lcav = [2.3 − 4.1] cm and Rh = [0.78 − 1] mm. Figure VII .3(f) gives the

absorption of the structure as a function of frequency for different Rh and a constant Lcav = 3.6 cm.

It can be observed that an almost continuous perfect absorption can be obtained over the frequency

range of interest just by varying the orifice radius and keeping the cavity length constant.

VII .2.2 Broadband absorption in a rigidly-backed configuration

We then complexify our system to achieve broadband absorption. We now consider a system composed

of N = 8 plates, stacked in front of a rigid backing as depicted in the inset of Fig. VII .4(a).
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Figure VII .4: Broadband absorption in a rigidly-backed configuration: (a) Optimized absorption. The
solid line and the square symbols represent the analytical and the numerical results respectively. The optimized
device consists in 8 annular plates of thicknesses comprised between 96 μm and 185 μm, and has a total length of
25 cm. (b) Complex frequency plane representation of the reflection coefficient of the optimized configuration.
(c) Reflectance (red), absorption (yellow) and (d) complex plane at the 2nd step of the optimization (2 plates).
(e) Reflectance (red), absorption (yellow), and (f) complex plane at the 6th step of the optimization (6 plates).
Parameters of the final optimized geometry: hp = [183.9; 186.5; 155.9; 168.4; 139.8; 117.1; 70.9; 93.1] m, Lcav =
[26.3; 36; 24; 24; 28.6; 24; 31; 56] mm, and Rh = [0.34; 0.68; 3; 2.7; 6.8; 3.8; 6.5; 7] mm.

We use a cascade optimization (step-by-step optimization) to critically couple each plate to the
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previous ones. The spirit of the optimization is to create a cascade of stopbands, so that part of the

frequency content of the incident waves is trapped at each step of the device. The dispersion relation

in Figs. VII .1(b1-2) gives us an idea on how to initialize the radius of the hole for each plate. Since

we want to decrease the frequency of the lower edge of the system’s stopband as we approach the

rigid backing, we initialize the optimization with decreasing orifice radii (from the free to the rigidly

backed end of the device).

The target frequency range for the optimization is 200-1100 Hz. We use a total of 8 plates (plastic

shims previously characterized) of different available thicknesses ranging from 25 μm to 254 μm. At

each step l of the optimization, we tune the radius orifice Rbl , the plate thickness hpl , and the cavity

length Lcavl between plate l and l − 1. We first optimize, in a similar way to the previous Section,

the plate geometry and the length of the cavity of the first resonator placed in front of the rigid

backing, to have α(ftarget1) = 1 at ftarget1 = 200 Hz. Once optimized, another plate is added and

the optimization is repeated for a frequency higher than the previous one. The result of the second

optimization is presented in Figs. VII .4(c-d). As expected, two unitary absorption peaks (black line)

are found at 200 and 335 Hz. If we look at the corresponding complex plane, we can observe two

zeros lying on the real frequency axis at these two frequencies. The first two plates are then perfectly

critically coupled to each other and to the rigid backing. The sixth optimization step is also depicted

in Figs. VII .4(e-f). We can observe 6 zeros in the complex plane as expected. However, unlike the

second optimization step, the zeros are no longer lying exactly on the real frequency axis. One of

the reasons for this more chaotic behavior is the coupling between each of the plates. Each time we

add a new plate, the overall acoustic behavior of the system is influenced. Since we only optimize at

one single frequency at each step of the process, we do not search for new optimal geometries for the

already optimized plates. However, after the 8th optimization, we carry out a final optimization using

the initial values of the cascade optimization. We are then able to adjust the geometry of each plate

and the length of each cavity to maximize absorption over the target frequency range, i.e.,

C(Rbl , hpl , Lcavl) = min||
∫ 1100

200
|RRB|2(f)df ||. (VII .15)

The resulting optimized absorption is shown in Fig. VII .4(a) together with the corresponding

representation of the optimized reflection coefficient in the complex plane in Fig. VII .4(c). The

analytical absorption is validated against a full-wave simulation on the optimized geometry. A fairly

good agreement is found. The small visible discrepancies can be attributed to the off-resonance

deviations of the annular plate modeling already observed in Figs. VII .1(c,d), due to the truncation

on the modal displacement summation. Only two modes are accounted for in the analytical modeling

because of a computational time constraint. Moreover the TMM does not account for the mutual

coupling between resonators in contrast to the Finite Element Method.

The optimized configuration gives an almost perfect absorption (for analytical, solid line) and a

very strong absorption (more than 0.9 on average, for numerical, square symbols) over the frequency



110 Chapter VII Side work highlight

range we are interested in. The complex plane is composed of a succession of 12 zeros on (or in

the vicinity of) the real frequency axis. The greater number of pairs of poles and zeros relatively to

the number of plates is due to the second modes of the annular plates which are also coupled. It is

worth noting here that the location of the zeros follows a logarithmic-type distribution as observed in

Refs. [19, 26].

Although the total thickness Ltot = 25 cm is subwavelength, i.e., a panel almost 7 times thinner

than the wavelength in air at 200 Hz, the overall dimensions remains quite large for realistic applica-

tions. The reduction in thickness results in a deterioration of the absorption capacities, as predicted

by the causality constraint inequality [26]

Ltot ≥
1

4π2

κ(ω)

κ0

∫ ∞
0

ln |1− α(λ)dλ| = Lmin, (VII .16)

with κ(ω) and κ0 the effective bulk modulus of the structure in the static limit and that of the air

respectively, α the absorption, λ the sound wavelength of air, and Lmin the minimal thickness possible.

The optimal limit of inequality (VII .16) involves trade-offs between the thickness of the device,

the target frequency range, and the maximum value of absorption obtained in that frequency band.

VII .3 Absorption in a transmission configuration

A similar optimization can be performed with a transmission configuration, i.e., not terminated by

a rigid backing. In such configurations, perfect absorption requires that reflection and transmission

vanish simultaneously. The design of degenerated resonators, e.g., decorated membranes [9], makes

it possible to achieve this condition. The critical coupling of the symmetrical and antisymmetrical

problems then results from the use of both the monopolar and dipolar behaviors of the degenerate

resonator [27].

Quasi perfect absorption in transmission configuration can also be obtained with a periodic array

of identical monopolar source, e.g, Helmholtz resonators, [18]. In this case, the accumulation of the

cavity resonances (Fabry-Perot), due to slow sound propagation and the strong dispersion below the

Helmholtz resonance frequency, allows to almost critically couple both the symmetric and antisym-

metric subproblems. As a result, a quasi perfect absorption can be reached. Another strategy consists

in breaking the symmetry of the system by coupling different resonators interacting with each other.

Such an asymmetrical system has been experimentally demonstrated in acoustics with Helmholtz res-

onators [25]. At resonance, a Helmholtz resonator has almost zero transmission, i.e., it behaves like a

rigid wall. It is then possible to tune the second Helmholtz resonator to critically couple the reflection

problem and achieve perfect absorption. A cascade optimization with various different Helmholtz

resonators can then be used to design a rainbow-trapping absorber, i.e., broadband [19].

We will here use this latter idea to achieve perfect absorption in transmission with annular plates

instead of Helmholtz resonators.
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VII .3.1 Optimization scheme

In contrast to the Helmholtz resonator, the transmission of an annular plate does not vanish at its

resonance frequency, but at its antiresonance. However a similar optimization to that presented with

the Helmholtz resonator can be applied.

First we optimize the radius and thickness of the latter plate of the system, tagged with a sub-

script 1, so as to minimize its transmission (zero in the lossless case) at a given frequency. We then

successively critically couple each of the following plates.

As an example, we optimize here a system made of 2 annular plates in transmission, as sketched

in the insets of Fig. VII .5(c-4), to achieve perfect absorption at a targeted frequency ftarget = 250

Hz. The dotted circle in Fig. VII .5(b-1) shows the scattering amplitude of the latter plate, after

optimization (Rb1 = 0.5 mm and hp1 = 110 μm), with a minimum of transmission at ftarget.

-2
0

2

-2
0

2

-2
0

2

 200

     0  

-200

 200

     0  

-200
-2
0

2

100 200 300 400 500 600

   1

0.5  

   0

   1

0.5  

   0

100 200 300 400 500 600

 200

     0  

-200

 200

     0  

-200

   1

0.5  

   0
   1

0.5  

   0

100 200 300 400 500 600100  200       300       400   500  600

      Plate 1

         Plate 2 Whole system: 

(a-1)

(a-2)

(b-1)

(b-2)

(d-1)

(d-2)

(d-3)

(d-4)

(c-1)

(c-2)

(c-3)

(c-4)

Figure VII .5: Perfect absorption optimization for a system composed of 2 annular plates in
transmission: (a1-2) Scattering amplitudes (transmittance in black, reflectance in red, and absorbance in
yellow) and corresponding complex frequency plane of the first eigenvalue log |T −R| of the scattering matrix of
the system’s first plate (left plate, Rb2 = 1.1 mm, hp2 = 110 μm). (b1-2) Scattering amplitudes (transmittance
in black, reflectance in red, and absorbance in yellow) and corresponding complex frequency plane of the
first eigenvalue log |T − R| of the scattering matrix of the system’s second plate (right plate, Rb1 = 0.5 mm,
hp1 = 110 μm). (c,d1-2) Scattering amplitudes (transmittance in black, reflectance in red, and absorbance in
yellow) for a left or right incidence, and (c,d3-4) complex frequency plane of the first (log |T −

√
R+R−|) and

the second (log |T +
√
R+R−|) eigenvalues of the scattering value of the whole system with a cavity length

separating the two plates of Lcav = 6 cm (c) or Lcav = 17 cm (d).

We then add a second plate in front and optimize its geometry (Rb2 = 1.1 mm, hp2 = 110 μm)

as well as the cavity length Lcav1 to attain a maximum of absorption, i.e., critical coupling at ftarget.
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Figures VII .5(a1-2) show the amplitude of the scattering parameters and the complex plane of the

non constant eigenvalue log |T −R| of the second plate.

Figures VII .5(c1-4, d1-4) show respectively two optimizations with different upper limits for the

length of the whole system, 6 cm or 17 cm. We can see that in the latter, an asymmetric perfect

absorption can be achieved at 250 Hz (see Fig. VII .5(d-1)) when the wave impinges from the left,

while a maximum of reflection is found for the opposite incidence (see Fig. VII .5(d-2)). If we look at

the pole and zero of the eigenvalues of the scattering matrix, we can observe that, in this case, the zero

of both eigenvalues (symmetric problem in Fig. VII .5(d-3) and antisymmetric problem in Fig. VII

.5(d-4)) reach the real frequency axis at ftarget, thus proving that the critical coupling condition is

fulfilled.

In contrast, when the cavity length is decreased to 6 cm (see Figs. VII .5(c1-4)), the zero of the

eigenvalues are effectively on the real frequency axis, but at frequency slightly different. Consequently,

only a quasi perfect absorption is achieved with the system at 250 Hz. The maximum value of the

absorbance is 0.97, as evidenced in Fig. VII .5(c-1). A compromise has to be found between the total

thickness of the device and the maximum of absorption achievable.

One way to extend this quasi perfect absorption is to reiterate the optimization process adding

plates successively and optimizing at slightly higher frequency at each step. The second step of the

optimization can for example be done around 320 Hz, since the whole system present a nearly zero

transmission at this frequency, as highlighted by the purple dotted circle in Fig. VII .5(c-1).

VII .3.2 Broadband asymmetric absorber

Applying the optimization scheme presented in the previous Section, we design a broadband asym-

metric absorber consisting of 8 annular plates (plastic shims) with a target frequency range of

f ∈ [250 − 950] Hz. We constrain the optimization to a maximal thickness of L = 18 cm for the

device.

After the cascade optimization, a global optimization over the whole frequency range is performed,

using as cost function C(Rbl , hpl , Lcavl) = min||
∫ 950

250 |R
+|2 + |T |2df ||.

The magnitude of the scattering coefficients is shown in Fig VII .6. Although perfect broadband

absorption is not achieved, the device nevertheless exhibits a high absorption capacity as shown by an

absorption above 0.9 over the target frequency range. A succession of 10 zeros lies in the immediate

vicinity of the real frequency axis on the complex frequency plane of each of the eigenvalues of the

scattering matrix. However, they are located at slightly different real frequencies. One of the reasons

for the absence of critical coupling is the constraint imposed on the total thickness of the device, as

discussed in the previous Section with a system consisting of two annular plates.
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Figure VII .6: Broadband absorption in a transmission configuration: (a) Optimized absorption (yel-
low), transmittance (black) and reflectance for a left incident wave. Inset of (a) shows the configuration under
study. The solid line and the square symbols represent the analytical and the numerical results respectively.
(b-c) Complex frequency plane representation of the first (b) and second (b) eigenvalues of the scattering ma-
trix of the optimized configuration. The optimized device consists in 8 annular plates of thicknesses comprised
between 90 μm and 230 μm, and has a total length of 17 cm: hp = [230; 145; 124; 171; 90; 150; 90; 190] μm,
Lcav = [6.3; 17.2; 18.5; 17.3; 39.7; 11; 62.2] mm, and Rh = [0.53; 0.541.29; 0.9; 1.5; 2.6, 3.4; 4.8] mm

VII .4 Conclusion

In this side work, we investigated the possibility of using one-dimensional arrangements of annular

plates as effective sound absorption devices. After deriving the analytical acoustic impedance on an

annular plate and studying the acoustic signature of various samples, we focused on two particular

configurations. First, we examined a rigid backing configuration, i.e., when the plates are arranged

in front of a rigid wall, and second, a transmission configuration. Both optimizations were based on

critical coupling. We found that perfect absorption can be achieved at a single low frequency in both

cases. However, unlike the rigidly-backed configuration, in which the critical coupling condition can

be met with a deep subwavelength device (L ≈ λ0/32), the transmission configuration requires large

dimensions (L = 17 cm). The latter configuration requires using the antiresonant frequency drop of

an annular plate (behaving as a rigid wall at this particular frequency) to critically couple a second

plate. To extend broadband absorption, cascade optimization was used to sequentially critically couple

each of the plates. Although perfect broadband absorption was not obtained for a constrained total

thickness of the device (upper limit allowed: L < 25 cm), high absorption (α > 0.9) was observed

both analytically and numerically in reflection and transmission configurations for frequencies ranging

from [200-1100] Hz and [250-950] Hz, respectively. The relatively large total thickness of the devices

required to achieve such absorption may, however, limit their applicability in realistic situations where

space is a major problem.
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Appendix A
Supplement on the Transfer Matrix Method

A.1 Transfer matrix of a layer of material

The propagation of a plane wave over a length Lunit in a waveguide of cross-section S filled with air

(density ρ0 and compressibility C0) is governed by the constitutive equations

∂p

∂x
= −iωρ0

S
U, (A.1)

∂U

∂x
= −iω S

κ0
p, (A.2)

written with the time convention eiωt, where ω is the circular frequency, κ0 = 1/C0 is the air bulk

modulus, p is the sound pressure, and U = Sv is the flux, with v being the particle velocity.

These governing equations can be rearranged in the following matrix form

∂

∂x

{
P

U

}
=

[
0 −iω ρ0S

−iω S
κ0

0

]{
p

U

}
= M

{
p

U

}
, (A.3)

the solution of which being{
P

U

}
Lunit

= exp(MLunit)

{
p

U

}
0

= V ·

[
eΛ1Lunit 0

0 eΛ2Lunit

]
·V−1

{
p

U

}
0

= T

{
p

U

}
0

. (A.4)

Λ1,2 refers to the eigenvalues of M, that is

det (M− ΛId) = Λ2 + ω2 ρ0

κ0
= 0, (A.5)

with det the determinant function, giving

Λ1,2 = ±iω
√
ρ0

κ0
= ik0. (A.6)
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V corresponds to the eigenvector matrix composed of the two eigenvectors of M and reads as

V =

[
V11 V21

V12 V22

]
=

[√
ρ0κ0
S −

√
ρ0κ0
S

1 1

]
=

[
Z0 −Z0

1 1

]
. (A.7)

The transfer matrix therefore becomes

T =
1

2

[
Z0 −Z0

1 1

]
·

[
e−ik0Lunit 0

0 eik0Lunit

]
·

[
Z−1

0 1

−Z−1
0 1

]
(A.8)

=
1

2

[
e−ik0Lunit + eik0Lunit Z0

(
e−ik0Lunit − eik0Lunit

)
Z−1

0

(
e−ik0Lunit − eik0Lunit

)
e−ik0Lunit + eik0Lunit

]
(A.9)

=

[
cos (k0Lunit) −iZ0 sin (k0Lunit)

−iZ−1
0 sin (k0Lunit) cos (k0Lunit)

]
. (A.10)

A.2 Dispersion relation of a periodic medium

A periodic medium of periodicity Lunit is now considered. Periodicity implies that the state vector

components, i.e., pressure and flux, are equal to those at a Lunit further position, that is{
p(x) =p(x+ Lunit),

U(x)=U(x+ Lunit).
(A.11)

.

In other words, the state vector fulfils, in a periodic medium, the Bloch-Floquet theorem and can

be analyzed only in one of the unit cells of the system.

The transfer matrix of a unit cell can therefore reads as follows{
P

U

}
Lunit

= T

{
P

U

}
0

=

[
T11 T21

T12 T22

]{
P

U

}
0

(A.12)

=

[
T11 T21

T12 T22

]
eiqLunit

{
P

U

}
Lunit

, (A.13)

where q is the Bloch Floquet wavenumber.

This equality can be rewritten in the following form([
T11 T21

T12 T22

]
−

[
e−iqLunit 0

0 e−iqLunit

]){
P

U

}
0

= 0, (A.14)
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the solution of which only exists if

det

(
T11 − e−iqLunit T21

T12 T22 − e−iqLunit

)
= 0. (A.15)

This results in

T11T22 − T12T21 − e−iqLunit(T11 + T22) + e−2iqLunit = 0 (A.16)

⇒ T11T22 − T12T21 + e−2iqLunit = e−iqLunit(T11 + T22). (A.17)

Under the reciprocity condition, i.e., T11T22 − T12T21 = 1, Eq. (A.17) leads to the dispersion

relation

cos (qLunit) =
T11 + T22

2
=

Tr (T)

2
. (A.18)





Appendix B
Analytical modeling of the plate impedance

A plate is a specific type of shell with zero curvature [1–3]. We only consider here the particular case

of thin plates, that is plates fulfilling the Kirchhoff-Love approximation. In this approximation, the

transverse vibration of a hp-thick plate is represented by the vibration of its mid-plane, neglecting

the effects of rotary inertia, shear deformations, in-plane forces, thickness variation, non-homogeneity.

Only small deflections are also considered.

We simply remind in a first section the plate impedance of a thick plate accounting for the shear

deformations through the thickness of the plate.

B.1 Analytical modeling of the acoustic impedance of a thick plate

The following thick plate acoustic impedance is based on the Mindlin and Deresiewicz [4] plate theory.

Linear variation is assumed. The thickness variation during vibration is not accounted for.

The circular plate with radius Ra, Young’s modulus Ep, Poisson’s ratio νp, density ρp, section S

and thickness hp is modeled by its averaged acoustic impedance,

Zplatethick =
iωMplate/S

2

1− 2( 1
δ1

+ 1
δ2

) J1(δ1)I1(δ2)
J0(δ1)I1(δ2)+J1(δ1)I0(δ2)

, (B.1)

where Jn and In denote the Bessel and modified Bessel functions of the first kind.

The mass of the plate is Mplate = ρphpS. The variables δ1,2 read as [5–7] δ2
1=1

2ζ
4
(

(R+ F ) +
√

(R− F )2 + 4ζ−4
)
,

δ2
2=1

2ζ
4
(√

(R− F )2 + 4ζ−4 − (R+ F )
)
,

(B.2)

where the parameters R and F as well as the non-dimensional frequency parameter ζ, the flexural
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rigidity D, and the shear correction factor α are defined as follows

R=
1

12

(
hp
Ra

)2

,

F=
1

6(1− νp)α2

(
hp
Ra

)2

,

ζ4=
ρphpR

4
aω

2

D
,

D=
Eph

3
p

12(1− ν2
p)
,

α=
π

12
.

(B.3)

B.2 Analytical modeling of thin circular plates

Using the Kirchhoff-Love approximation, the transverse vibrations in thin circular plates of radius Ra
and cross-section S = πR2

a follow the equation of plate motion in polar coordinates

D∇4w̃(r, θ, t) + ρphp
∂2

∂t2
w̃(r, θ, t) = ∆P̃ (t), (B.4)

with ∇2 = ∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂θ2
the Laplacian in polar coordinates, and ∆P = p(x + hp) − p(x) the

difference of pressure applied to each side of the plate, where p(x) and p(x + δx) are the acoustic

pressure on the upstream and downstream faces respectively. The .̃ symbol is used to refer to time

dependent displacement.

The use of variable separation provides a way to solve the homogeneous equation, by assuming

w̃(r, θ, t) = R(r)Θ(θ)eiωt. The equation of motion then becomes

(∇4 − k4
p)R(r)Θ(θ) = (∇4 − k4

p)w(r, θ) = 0, (B.5)

with kp =
(
ω2ρphp/D

)1/4.
This results in

d

dr2
R(r) +

1

r

d

dr
R(r) + (k4

p −
n2

r2
R(r)) = 0, (B.6)

and
d

dr2
R(r) +

1

r

d

dr
R(r)− (k4

p +
n2

r2
R(r)) = 0, (B.7)

which leads to the solution for an axi-symmetric problem of the form

w(r, θ) = R(r)Θ(θ) = [A1Jn(kpr) +A2Yn(kpr) +A3In(kpr) +A4Kn(kpr)] cos(nθ), (B.8)

where Ym and Km are the Bessel and modified Bessel functions of the second kind.

To get back to the plate impedance, it is then necessary to average the transverse displacement w
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over the plate surface.

w =
1

S

∫ 2π

0

∫ Ra

0
w(r, θ)rdrdθ. (B.9)

The acoustic impedance of the plate is then given by

Zp =
Zm
S2

=

∫
S ∆P (r)dS

iωw
. (B.10)

B.2.1 Solution for a clamped circular plate

The clamping boundary conditions are

w(r = Ra, θ) =
∂

∂r
w(r = Ra, θ) = 0. (B.11)

In addition, the displacement of the plate in its center (r = 0) must remain finite w(r = 0, θ) <∞.

Since the Bessel and modified Bessel functions of the second kind Yn and Kn diverge when the

arguments are zero, the coefficients B and D must disappear.

If only the first mode is considered, n = 0, the solution of the homogeneous problem becomes

w(r) = A1J0(kpr) +A3I0(kpr). (B.12)

Applying the boundary conditions in Eq. (B.11) then leads to{
A1J0(kpRa) +A3I0(kpRa) =0,

−kpA1J1(kpRa) + kpA3I1(kpRa)=0,
(B.13)

and then provides the condition
A3

A1
=

J1(kpRa)

I1(kpRa)
. (B.14)

The homogeneous solution is then written

wh(r) = A1
J0(kpr)I1(kpRa) + J1(kpRa)I0(kpr)

I1(kpRa)
, (B.15)

while a particular solution to the forced problem is

wp(r) =
−∆P

Dk4
p

. (B.16)

Combining the homogeneous and particular equations and applying the initial conditions (w̃(r, t =

0) = ˙̃w(r, t = 0) = 0) on the resulting general solution [8], yields to A1= ∆P
Dk4p

I1(kpRa)
JO(kpRa)I1(kpRa)+J1(kpRa)I0(kpRa) ,

A3=
J1(kpRa)
I1(kpRa)A1 = ∆P

Dk4p

J1(kpRa)
JO(kpRa)I1(kpRa)+J1(kpRa)I0(kpRa) .

(B.17)
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The displacement of a circular plate when it is subjected to harmonic excitation is therefore written

as follows

w(r) = [
−∆P

Dk4
p

+A1J0(kpr) +A3I0(kpr)]. (B.18)

By inserting the expression of w(r) in equations (B.9) and (B.10), one can derive the acoustic

impedance of a thin plate, that is

Zp =

∫
S ∆P (r)dS

iωwS2
= − iωm

S2

I1(kpRa)J0(kpRa) + J1(kpRa)I0(kpRa)

I1(kpRa)J2(kpRa)− J1(kpRa)I2(kpRa)
, (B.19)

where kp =
(
ω2ρphp/D

)1/4 is the wavenumber of the flexural waves excited in the plate, with m =

ρpShp the mass of the plate. This expression assumes a uniform pressure distribution over the plate

(only small displacements and plane wave excitation), and considers only axi-symmetric modes.

B.2.2 Solution for an annular plate

An annular plate clamped at its outer edge (in r = Ra), that is

w(r = a, θ) =
∂

∂r
w(r = a, θ) = 0, (B.20)

and free at its inner edge (in r = Rh) is now considered. This last boundary condition results in the

cancellation of the bending moment Mr and of the shear forces Vr Mr= −D
[
∂2

∂r2
w(r, θ) + ν(1

r
∂
∂rw(r, θ) + 1

r2
∂2

∂θ2

]
r=Rh

= 0,

Vr =−D
[
∂
∂r∇

2w(r, θ) + 1−ν
r2

∂2

∂θ2
( ∂∂rw(r, θ)− w(r,θ)

r )
]
r=Rh

= 0.
(B.21)

The general solution for an annular plate reads as follows

w(r, θ) =

∞∑
n=0

[AnJn(kpnr) +BnYn(kpnr) + CnIn(kpnr) +DnK(kpn(r)] cos(nθ) =
∞∑
n=0

wn(r, θ). (B.22)

One can insert Eq. (B.22) within the boundary conditions Eqs. (B.11)-(B.21), leading to the

following system of linear and homogeneous equations [9]
AnJn(kpnRa) +BnYn(kpnRa) + CnIn(kpnRa) +DnKn(kpnRa) =0,

An
∂
∂rJn(kpnr)|Ra +Bn

∂
∂rYn(kpnr)|Ra + Cn

∂
∂r In(kpnr)|Ra +Dn

∂
∂rKn(kpnr)|Ra =0,

AnF1(ν, n, kpnRh) +BnF2(ν, n, kpnRh)− CnF3(ν, n, kpnRh)−DnF4(ν, n, kpnRh) =0,

AnΦ1(ν, n, kpnRh) +BnΦ2(ν, n, kpnRh)− CnΦ3(ν, n, kpnRh)−DnΦ4(ν, n, kpnRh)=0,

(B.23)
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with 

∂
∂rJn(kpnr)|Ra = n

kpnRa
Jn(kpnRa)− Jn+1(kpnRa),

∂
∂rYn(kpnr)|Ra= n

kpnRa
Yn(kpnRa)−Yn+1(kpnRa),

∂
∂r In(kpnr)|Ra = n

kpnRa
In(kpnRa) + In+1(kpnRa),

∂
∂rKn(kpnr)|Ra= n

kpnRa
Kn(kpnRa)−Kn+1(kpnRa),

(B.24)



F1(ν, n, kpnRh)=
(
Jn(kpnRh)− (1− ν)

[
n(n−1)

(kpnRh)2
Jn(kpnRh) + 1

kpnRh
Jn+1(kpnRh)

])
,

F2(ν, n, kpnRh)=
(
Yn(kpnRh)− (1− ν)

[
n(n−1)

(kpnRh)2
Yn(kpnRh) + 1

kpnRh
Yn+1(kpnRh)

])
,

F3(ν, n, kpnRh)=
(
In(kpnRh) + (1− ν)

[
n(n−1)

(kpnRh)2
In(kpnRh)− 1

kpnRh
In+1(kpnRh)

])
,

F4(ν, n, kpnRh)=
(
Kn(kpnRh) + (1− ν)

[
n(n−1)

(kpnRh)2
Kn(kpnRh) + 1

kpnRh
Jn+1(kpnRh)

])
,

(B.25)

and

Φ1(ν, n, kpnRh)= nJn(kpnRh)− (kpnRh)Jn+1(kpnRh) + n2(1−ν)
(kpnRh)2

[(n− 1)Jn(kpnRh)− (kpnRh)Jn+1(kpnRh)] ,

Φ2(ν, n, kpnRh)=nYn(kpnRh)− (kpnRh)Yn+1(kpnRh) + n2(1−ν)
(kpnRh)2

[(n− 1)Yn(kpnRh)− (kpnRh)Yn+1(kpnRh)] ,

Φ3(ν, n, kpnRh)= nIn(kpnRh) + (kpnRh)In+1(kpnRh)− n2(1−ν)
(kpnRh)2

[(n− 1)In(kpnRh) + (kpnRh)Yn+1(kpnRh)] ,

Φ4(ν, n, kpnRh)=nKn(kpnRh)− (kpnRh)Kn+1(kpnRh)− n2(1−ν)
(kpnRh)2

[(n− 1)Kn(kpnRh)− (kpnRh)Kn+1(kpnRh)] .

(B.26)

The term kpn =
(
ω2
nρphp/D

)1/4can be computed numerically from Eq.(B.23) by canceling the

determinant of the resulting matrix

∣∣∣∣∣∣∣∣∣∣∣

Jn(kpnRa) Yn(kpnRa) In(kpnRa) Kn(kpnRa)
n

kpnRa
Jn(kpnRa)− Jn+1(kpnRa)

n
kpnRa

Yn(kpnRa)−Yn+1(kpnRa)
n

kpnRa
In(kpnRa) + In+1(kpnRa)

n
kpnRa

Kn(kpnRa)−Kn+1(kpnRa)

F1(ν, n, kpnRh) F2(ν, n, kpnRh) −F3(ν, n, kpnRh) −F4(ν, n, kpnRh)

Φ1(ν, n, kpnRh) Φ2(ν, n, kpnRh) −Φ3(ν, n, kpnRh) −Φ4(ν, n, kpnRh)

∣∣∣∣∣∣∣∣∣∣∣
= 0. (B.27)

and using a Muller’s algorithm with as initial hypothesis 3 values around the plain circular plate

resonance frequency.

Knowing the eigenvalues, it is then possible to trace back to the non-trivial eigenvectors (coefficients

An, Bn, Cn and Dn), and thus to obtain the eigenfunctions.

Returning to the forced problem (equation (B.4)) and projecting onto the modal basis

w̃(r, θ, t) =
∞∑
n=0

wn(r, θ)q̃n(t), (B.28)

we get

∫
S

∞∑
n=0

[∇4wn(r, θ)q̃n(t) +
ρphp
D

wn(r, θ)¨̃qn(t)]wm(r, θ)dS =

∫
S

∆P (r)

D
eiωtwm(r, θ)dS (B.29)

=

∫
S

∞∑
n=0

[
ρh

D
¨̃qn(t) + k4

p q̃n(t)]wn(r, θ)wm(r, θ)dS. (B.30)
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The orthogonality of the modal basis leads, if a harmonic excitation is considered, to

ρphp
D

¨̃qn(t) + k4
p q̃n(t) =

ρphp
D

(ω2
n − ω2)q̃(t) =

∫
S

∆P (r)
D eiωtwn(r, θ)dS∫

S

∑∞
n=0[wn(r, θ)]2dS

. (B.31)

The general solution to the forced vibration problem of a clamped-free annular plate in vacuum

then takes the form

w(r, θ) =
∞∑
n=0

∫
S

∆P (r)
D wn(r, θ)dS

ρphp
D (ω2

n − ω2)
∫
S

∑∞
n=0[wn(r, θ)]2dS

wn(r, θ). (B.32)

N.B.: This method can also be applied to solve the problem of a circular plate.

The average transverse displacement w over the plate surface

w =
1

S

∫ 2π

0

∫ Ra

Rh

w(r, θ)rdrdθ, (B.33)

can then lead to the acoustic impedance of the annular plate.

B.3 Vibroacoustic coupling

Since a light fluid is considered (air), a complete vibroacoustic coupling between the plate and the

air is not necessary. The vibrations of the plate in the air-filled waveguide are considered to be those

of plates in vacuum. Nevertheless, in the case of an annular plate, the air flow through the internal

orifice should still be accounted for.

To do this, the orifice of section Sh = πR2
h is treated as a hp-thick tube, for which an approximation

of the acoustic impedance is given by

Zhole = iωρairhp
1

1− 2√
−ikh

J1(
√
−ikh)

J0(
√
−ikh)

1

Sh
+

2iωρair∆l

Sh
, (B.34)

≈ iρaircair tan

(
ω

cair
(hp + 2∆l)

)
1

Sh
. (B.35)

considering length corrections of the form ∆l = 4
3π2Rh at each end [10–12].

An often-used approximation for micro-perforated plates is

Zhole =
32µhp
4R2

h

√1 +
k2
h

32
+

√
2

32
kh

2Rh
hh

+ iωρairhp

1 +
1√

9 +
k2h
2

+
8

3π

2Rh
hp

 1

Sh
, (B.36)

where kh is the ratio of the radius of the hole to the viscous penetration thickness [10, 13].



B.3 Vibroacoustic coupling 131

The total impedance of an annular plate is then given in the 1st order by

Ztot =
1

1
Zplate

R2
t

R2
a−R2

h
+ 1

Zhole

R2
t

R2
h

. (B.37)

This expression of the impedance depends on the open area ratio (orifice to plate cross-sectional ratio).
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Appendix C
Supplement on the Measurement Principle

A relative calibration is carried out between the microphones, taking the first one as a reference, in

order to prevent from differences in absolute calibration and phase relationships. As the frequency

band under study, f ∈ [0 − 2000] Hz, is low relative to the first cut-off frequency of the tube, that

is fc = 1.841c0/2πRa = 6700 Hz, plane wave propagation is considered. The use of 4 microphones

makes it possible to take into account the imperfection of the anechoic termination and therefore that

part of the transmitted wave is reflected at this termination.

The pressure fields P1, P2 (microphones M1 and M2) and P3, P4 (M3 and M4), obtained from

measurements of frequency responses and relative sensitivities between microphones M2, M3, M4 and

the reference microphone M1 can be decomposed as a superposition of forward and backward waves

upstream (A and B) and downstream (C and D) of the metamaterial

P1 =(Ae−ikx1 +Beikx1), (C.1)

P2 =(Ae−ikx2 +Beikx2), (C.2)

P3 =(Ce−ikx3 +Deikx3), (C.3)

P4 =(Ce−ikx4 +Deikx4), (C.4)

as illustrated in Fig. C.1.

Anechoic
termination

Anechoic
termination

(a) (b)

Figure C.1: Experimental set-up: Sketch (a) and photography (b) of the impedance tube of inner radius
Ra = 15 mm.
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The previous system of equations can be rewritten in terms of the amplitudes

A =
i
(
P1e

ikx2 − P2e
ikx1
)

2 sin k(x1 − x2)
=
P1e
−ikx1 − P2e

−ikx2

e−2ikx1 − e−2ikx2
, (C.5)

B =
i
(
P2e

ikx1 − P1e
ikx2
)

2 sin k(x1 − x2)
=
P1e

ikx1 − P2e
ikx2

e2ikx1 − e2ikx2
, (C.6)

C =
i
(
P3e

ikx4 − P1e
ikx3
)

2 sin k(x3 − x4)
=
P3e
−ikx3 − P2e

−ikx4

e−2ikx3 − e−2ikx4
, (C.7)

D =
i
(
P4e

ikx3 − P3e
ikx4
)

2 sin k(x3 − x4)
=
P3e

ikx3 − P2e
ikx4

e2ikx3 − e2ikx4
. (C.8)

C.1 Scattering matrix

The scattering matrix connects, through the transmission and reflection coefficients, the incoming A,

D and outgoing waves B, C from the metamaterial[
B

C

]
=

[
R T

T R

][
A

D

]
. (C.9)

R and T therefore reads as

R =
AB − CD
A2 −D2

, (C.10)

T =
AC −BD
A2 −D2

, (C.11)

and enables to recover the effective properties using equations (II.30).

C.2 Transfer matrix

On the other hand, both the transmission and the effective parameters can be recovered using a

transfer matrix approach.

The metamaterial transfer matrix reads as[
p

V

]
x=0

=

[
T11 T12

T21 T22

][
p

V

]
x=L

, (C.12)
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the elements of which can be determined using the 4 complex pressure measurements

T11 =
P|x=LV|x=L + P|x=0V|x=0

P|x=0V|x=L + P|x=LV|x=0
, (C.13)

T12 =
P 2
|x=0 − P

2
|x=d

P|x=0V|x=L + P|x=LV|x=0
, (C.14)

T21 =
V 2
|x=0 − V

2
|x=d

P|x=0V|x=L + P|x=LV|x=0
, (C.15)

T22 =
P|x=LV|x=L + P|x=0V|x=0

P|x=0V|x=L + P|x=LV|x=0
. (C.16)

The state vector w, formed by the pressure P and the normal velocity V , can be written as follows

P|x=0 = A+B = 1 +R, (C.17)

V|x=0 =
A−B
Z0

=
1−R
Z0

, (C.18)

P|x=L = Ce−ikL +DeikL ≈ Te−ikL, (C.19)

V|x=L =
Ce−ikL −DeikL

Z0
≈ Te−ikL,

Z0
, (C.20)

with R = B/A the reflection coefficient at x = 0 and T = C/A the transmission coefficient at x = L,

if, due to the presence of the anechoic termination, D is neglected.





Appendix D
Doping movies

This appendix shows movies of a 2D acoustic doping from the full-wave simulation.

A two-port random 2D medium is considered. The input and output ports are air-filled waveguides,

plugged into the "L" and "M" shapes respectively. A monochromatic wave of frequency lower than the

cut-off frequency of the ports impinges the structure from the left ensuring plane wave propagation.
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The "LAUM"-shaped medium is filled with air (upper left quadrant), with a DNZ medium (upper

right quadrant), with a doped DNZ medium (lower left quadrant) or with a DCNZ medium (lower

right quadrant). In the lower left quadrant, the thickness of the "A" tranverse bar is chosen so that

doping occurs. The host DNZ medium switches to an effective DCNZ medium when C ≈ 0, thus for

κ→∞ when the "A" bar have a thickness H = 10.1 cm.



Appendix E
Extended abstract (in French)

Introduction

Les métamatériaux ont suscité beaucoup d’intérêt au cours des dernières décennies, dans les com-

munautés de l’électromagnétisme, des milieux élastiques et de l’acoustique en raison de la possibilité

qu’ils offrent de contrôler la dispersion des ondes. Ainsi certains comportements jusqu’alors inattendus

ont été rendus réalisables. Une multitude d’applications ont été motivées par ces nouvelles façons de

contrôler toujours plus le son. Citons entre autres les absorbeurs parfaits, les systèmes topologiques,

les diodes acoustiques, les dispositifs de contrôle des fronts d’onde ou les systèmes d’occultation.

Ce travail de doctorat se concentre sur la propagation des ondes acoustiques dans des milieux à

indice de réfraction nul, dans lesquels au moins un des paramètres constitutifs effectifs s’annule. En

particulier, les métamatériaux constitués d’un arrangement périodique de fines plaques élastiques en-

castrées sont étudiés et une attention particulière est portée sur l’impact des pertes sur les applications

qui en résultent.

Modélisation du métamatériau

On considère un arrangement périodique de N fines plaques élastiques encastrées dans un guide d’onde

circulaire de section transversale S = πR2
a, similaire à celui esquissé à la Figure E.1. La cellule unitaire

du métamatériau est définie symétrique et est composée d’une fine plaque d’épaisseur hp entourée de

deux couches d’air de longueur Lgap/2, ce qui donne une périodicité Lunit = Lgap + hp au système.

Le métamatériau est modélisé par la méthode des matrices de transferts, liant pression et débit

de part et d’autre de chaque élément du système. Nous ne considérons donc que la propagation des

ondes planes et négligeons le couplage mutuel entre les éléments.

Une étude paramétrique sur l’influence des différents paramètres du métamatériau (géométrie,

périodicidité, ...) et la caractérisation acoustique des propriétés mécaniques de différentes plaques

(épaisseurs, matériaux) nous a permis de dimensionner et fabriquer une structure périodique perme-
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(c)(b)(a)

Figure E.1: Vue schématique du métamatériau : système complet (a), zoom sur la cellule unitaire avec
vue compacte (b) ou éclatée (c).

ttant l’étude expérimentale de la dispersion et des propriétés liées aux régimes d’index de réfraction

nul.

Comme énoncé précédemment, une attention particulière est portée sur l’influence des pertes trop

souvent négligées et pouvant pourtant complètement détruire les comportements intéressants liés à

la dispersion dans les métamatériaux. Deux sources principales de dissipation ont été identifiées.

D’une part les pertes viscothermiques liés aux frottements à proximité des parois du guide, et d’autre

part les pertes viscoélastiques inhérentes aux plaques. L’influence de ce dernier type de pertes est

prédominant et engendre une forte diminution de la transmission. C’est donc un des paramètres

essentiels du dimensionnement de la structure. Le choix de plaques très fines, hp = 102 μm, et

d’un nombre limité de cellule unitaire (N ≤ 6) permet de contrôler cette chute de la transmission et

d’observer expérimentalement les phénomènes prédits.

Dispersion dans un arrangement périodique de plaques encastrées

La forte dispersion produite autour de la résonance dans ce métamatériau (Figs. E.2(a-b)), affecte

principalement sa densité dynamique effective ρ(ω) qui varie de valeurs négatives à positives en fonc-

tion de la fréquence (Fig. E.2(c)). Une bande interdite d’hybridation, correspondant à un régime de

densité effective négative (aplat rouge), est ouverte en dessous de la résonance, tandis que la densité

devient positive dans la bande passante. Un régime de densité quasi-nulle est donc observé à la transi-

tion entre la bande interdite et la bande passante, c’est-à-dire à une fréquence proche de la résonance

de la plaque.

Ce régime de densité quasi-nulle s’accompagne d’une vitesse de phase élevée, tendant vers l’infini

dans le cas sans pertes (Fig. E.2(f)). En conséquence, la longueur d’onde effective est étirée et devient

très grande par rapport au système. Le champ de pression acoustique peut donc présenter une

distribution quasi-statique permettant une propagation sans changement de phase. L’allongement

important de la longueur d’onde effective permet également des applications de dissimulation ou

masquage acoustique (c’est-à-dire rendant imperceptible des obstacles placés dans le métamatériau),

les dimensions de l’objet à dissimuler devenant faibles par rapport à la longueur d’onde acoustique.

Nous avons donc cherché à comprendre, étudier analytiquement et numériquement et à observer
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Figure E.2: Plaque seule (a) : amplitude de la transmission (noir) et de la réflexion (rouge)
Relation de dispersion et paramètres effectifs d’un arrangement infini de plaque (b-f) : partie
réelle (b) et partie imaginaire (c) de la relation de dispersion, partie réelle de la densité effective (d) et du bulk
modulus effectif (e), vitesse de phase (noire) et de groupe (rouge) (f). Les zones de couleur rouge représentent
les bandes d’arrêt.

expérimentalement ces comportements.

Propagation sans changement de phase

Trois fréquences pertinentes peuvent être identifiées pour l’analyse du régime de densité quasi-nulle :

la fréquence d’adaptation d’impédance fm, la fréquence à laquelle la densité s’annule exactement fρ=0

et la fréquence de propagation sans changement de phase fφ=0.

La Figure E.3(a) montre la densité dynamique effective du système ρ(ω) = SZ(ω)k(ω)/ω, obtenue

à partir du nombre d’onde effectif k(ω) et de l’impédance effective Z(ω) calculés sur une seule cellule

unitaire, c’est-à-dire une structure infiniment périodique. L’évolution de la densité est étudiée par-

allèlement avec les amplitudes de scattering (Fig. E.3(b)) et la phase du coefficient de transmission

(Fig. E.3(c)) d’un métamatériau fini.

Premièrement, l’accord d’impédance est atteint à la fréquence de résonance d’une plaque seule,

fm = 423 Hz dans le cas sans pertes. À cette fréquence, la densité effective du métamatériau est égale

à celle du fluide environnant, ici l’air, ce qui conduit à une transmission parfaite et à une réflexion

nulle (Fig. E.3(b)). La transmission unitaire s’accompagne d’un déphasage lié au nombre de cellules

unitaires et donc à la longueur L = NLunit du métamatériau. En d’autres termes, la phase du

coefficient de transmission est égale à celle produite dans une cavité remplie d’air de même longueur

à fm.

La deuxième fréquence importante pour l’étude de ce régime est celle à laquelle la densité effective

dynamique s’annule, fρ=0. À cette fréquence, on s’attend à une propagation sans changement de

phase et à un champ de pression quasi-statique dans le métamatériau. L’impédance effective du

metamatériau n’est cependant pas accordée à celle du milieu environnant. Par conséquent, l’amplitude

du coefficient de transmission n’est pas unitaire. De plus, bien qu’un déphasage plus faible soit trouvé

à fρ=0 qu’à la fréquence d’adaptation d’impédance fm, la propagation sans changement de phase

n’est toujours pas atteinte dans le système. Plus important encore, tant le module que la phase du

coefficient de transmission dépendent du nombre de cellules unitaires constituant le métamatériau.

La dernière fréquence qui nous intéresse est la fréquence de propagation sans changement de phase
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Figure E.3: Densité effective et paramètres de scattering dans le cas sans perte : (a) partie réelle
de la densité dynamique effective, (b) et (c) représentent l’amplitude des coefficients de transmission [noir,
axe vertical gauche de (b)] et de réflexion [rouge, axe vertical droit de (b)] ainsi que la phase normalisée du
coefficient de transmission pour un système fini composé de N = 1, 3, 6 et 9 plaques respectivement. Les lignes
verticales bleues, grises et vertes sur les figures (a), (b) et (c) représentent les fréquences de propagation sans
changement de phase, fφ=0, de densité effective nulle, fρ=0, et d’adaptation d’impédance, fm, respectivement.
La zone grisée délimite la bande d’arrêt d’un système infini.
Densité effective et paramètres de scattering mesurés (avec perte) : (a) amplitude des coefficients
de transmission [axe vertical gauche] et de réflexion [axe vertical droit], (b) phase normalisée du coefficient de
transmission [noir, axe vertical gauche] et partie réelle de la densité effective [rouge, axe vertical droit]. Les
symboles représentent les données expérimentales, les lignes représentent les résultats analytiques (TMM) et
les lignes pointillées les simulations numériques (FEM).

fφ=0, c’est-à-dire la fréquence à laquelle la phase du coefficient de transmission s’annule. À cette

fréquence, la densité effective est négative et égale à ρ(fφ=0) = −ρ0κ0/κ(fφ=0). Le régime de densité

effective négatif (zones grisées dans la Fig. E.3) correspond à une bande d’arrêt pour un système

infini. Bien que fφ=0 se situe dans la plage de densité négative, la transmission reste considérable en

raison du nombre restreint de cellules unitaires du métamatériau considéré. Le module du coefficient

de transmission (resp. de réflexion) dépend fortement du nombre de cellules unitaires, contrairement

à sa phase, qui reste constante et égale à 0. Lorsque les pertes ne sont pas considérées, il existe donc

une fréquence, proche de la fréquence de densité nulle, pour laquelle une onde peut se propager sans

changement de phase et quelle que soit la longueur du système.

Le nombre de plaque influant fortement l’amplitude de la transmission à la fréquence de propaga-

tion sans changement de phase, un arrangement de 6 plaques est utilisé pour la validation expérimen-

tale. La Figure E.3(d) représente l’amplitude mesurée des coefficients de transmission et de réflexion

du système fini et la Figure E.3(e) montre la phase du coefficient de transmission ainsi que la partie

réelle de la densité effective. Une très bonne concordance est observée entre les résultats analytiques
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et numériques qui suivent bien la tendance du module et de la phase du coefficient de transmission

mesuré (E.3(e,f), symboles noirs). Des différences sont cependant visibles sur le coefficient de réflexion,

et par conséquent sur la densité effective (qui est estimée à partir des deux coefficients de scattering).

Une légère variabilité résiduelle entre les différentes cellules unitaires, due soit à des défauts de serrage,

soit à la variabilité intrinsèque des propriétés mécaniques du matériau, est responsable de ces écarts.

Une fois les pertes considérées, on observe une faible dépendance de la fréquence de phase nulle,

fφ=0, et de la phase du coefficient de transmission φ, en fonction du nombre de cellules unitaires et

de la quantité de pertes. Dans les deux cas, la variation est inférieure à 10%.

Un maximum de transmission est observé à fm = 439 Hz du fait de la condition de quasi-adaptation

d’impédance autour de la résonance de la plaque. Une propagation sans changement de phase est

mesurée à fφ=0 = 389 Hz, en accord avec les prédictions, confirmant ainsi expérimentalement la fais-

abilité d’une propagation sans changement de phase dans ce type de métamatériau. Cette propagation

sans changement de phase peut être utilisée pour adapter la directivité d’une source et contrôler le

front d’onde émergeant d’une structure. En particulier, nous montrons numériquement que notre

metamatériau placé dans un guide d’onde 1D, peut-être utilisé pour créer une source acoustique

dipolaire en utilisant la propagation sans changement de phase.

Dopage acoustique

Un arrangement périodique de plaque rend donc possible la propagation sans changement de phase.

Cependant, comme nous l’avons vu précédemment, cette propriété aussi intéressante soit elle, peut

fortement être limitée par un désaccord d’impédance entraînant une chute de la transmission même

lorsqu’aucune source de dissipation n’est considérée.

Les métamatériaux double zéro peuvent permettre de surmonter cette difficulté en cela qu’ils

ont la particularité de concilier à la fois les propriétés exotiques des milieux à densité quasi-nulle et

l’adaptation d’impédance, ce qui permet d’alléger les contraintes pour des applications réalistes. Il

est donc très intéressant de trouver un moyen de transformer notre métamatariau pour lequel seul la

densité est quasi-nulle, en un milieu où à la fois la densité et la compressibilité sont proches de zéro

simultanément.

En examinant ce qui est développé en électromagnétisme, nous proposons un analogue acoustique

du dopage photonique qui consiste en l’ajout d’une seule impureté à un milieu où seul l’un des

paramètres dynamiques constitutifs est proche de zéro pour le convertir en un milieu double zéro.

Dans le cas présent, nous proposons d’ajouter un résonateur de Helmholtz comme élément dopant

afin de modifier la compressibilité effective du milieu et la faire tendre vers zéro à la fréquence de

densité nulle. Le résonateur de Helmholtz est équipé d’un piston permettant de régler la longueur de

cavité Lc, les autres dimensions restant constantes.

Nous analysons d’abord le cas d’un métamatériau constitué de 20 cellules unitaires sans pertes

illustré à la Figure E.4, sur lequel un résonateur de Helmholtz est monté entre les 10ème et 11ème
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plaques. Afin de trouver la configuration dans laquelle le dopage se produit, nous recherchons la

géométrie optimale du résonateur de Helmholtz qui produit une valeur maximale de bulk modulus

effectif. Cette configuration optimale correspond à une longueur Lc = 32, 06 mm et nécessite d’être di-

mensionnée avec une extrême précision. Les Figures E.4(b,c,e,f) montrent respectivement l’amplitude

des coefficients de transmission et de réflexion, la densité dynamique effective, la phase du coefficient

de transmission et le bulk modulus effectif pour la configuration mentionnée ci-dessus. Les résultats

analytiques sont validés par une simulation éléments-finis 3D illustrée par les symboles carrés de la

Figure E.4.
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Figure E.4: Dopage d’un arrangement de 20 plaques sans perte avec dopant : un résonateur
de Helmholtz: Croquis 3D de la cellule unitaire, du métamatériau composé des 20 plaques et dopé en son
milieu par un résonateur de Helmholtz, et zoom sur le résonateur (a). Amplitudes de transmission (noir) et de
réflexion (rouge) (b), partie réelle de la densité effective dynamique (c), phase du coefficient de transmission
(e), et partie réelle du bulk modulus effectif du système en fonction de la fréquence (f). Les lignes continues et
les symboles carrés représentent respectivement les résultats analytiques et numériques. L’encadré (d) montre
la dépendance du bulk modulus effectif par rapport à la longueur de la cavité du résonateur de Helmholtz
Lc. Les Figures (g) et (h) représentent le champ de pression total d’un métamatériau composé de 20 cellules
unitaires sans et avec dopant à la fréquence de propagation sans changement de phase f = 405 Hz et f = 414
Hz respectivement (simulation éléments-finis).

Une densité nulle accompagnée d’un module effectif maximum est trouvée à f = 414 Hz. À

cette fréquence particulière, l’ensemble du système se comporte comme un métamatériau double zero,

comme le montre l’amplitude des coefficients de transmission et réflexion. L’annulation de la phase du

coefficient de transmission est accompagnée d’une absence de réflexion et d’une transmission totale,

c’est-à-dire que la propagation sans changement de phase et l’adaptation d’impédance sont combinées.
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Les Figures. E.4(g,h) montrent le champ de pression total, respectivement sans et avec l’élément

dopant, pour illustrer l’effet de ce dernier sur le champ à la fréquence de propagation sans changement

de phase. Dans les deux cas, on observe une distribution quasi-statique du champ, donnant lieu

à une propagation sans changement de phase, soit avec un désaccord d’impédance, soit avec une

transmission totale. Dans ce dernier cas, le champ de pression est parfaitement symétrique par rapport

au metamateriau, ce qui est caractéristique de l’effet de supercouplage, c’est-à-dire une transmission

totale, une densité nulle, et une propagation sans changement de phase simultanées.

L’extension de la longueur d’onde effective engendrée permet aussi de déplacer l’élément dopant

le long du métamatériau sans influence sur l’efficacité du dopage, offrant ainsi une grande liberté dans

le design du métamatériau.

Le nombre de plaques est réduit à 6 pour l’étude du cas réaliste (avec pertes) afin de maîtriser les

pertes viscoélastiques. Un résonateur de Helmholtz (avec une longueur de cavité optimale Lc = 36, 75

mm) est monté entre les 3ème et 4ème plaques du système. Ce faisant, la fréquence de phase nulle

est décalée à fφ=0 = 412 Hz et se rapproche de la fréquence de densité nulle du système, c’est-à-dire

fρ=0 = 414 Hz.

La conception minutieuse du dopant permet donc de réduire fortement le décalage de fréquence

entre les fréquences de phase nulle, de maximum de transmission et de densité nule. En conséquence,

la fréquence de propagation sans changement de phase fφ=0 se rapproche de fm. Contrairement au cas

sans pertes, la dissipation empêche une coïncidence parfaite des fréquences de transmission maximale

et de propagation sans changement de phase. Ainsi, les pertes qui sont intrinsèquement présentes dans

tout système acoustique peuvent clairement limiter l’efficacité du dopage. Néanmoins, il convient de

noter ici que la condition de dopage permet d’avoir une propagation sans changement de phase avec

une transmission supérieure de 13%, avec une amplitude mesurée (resp. analytique et numérique)

passant de 0,42 (resp. 0,47) sans dopant à 0,59 (resp. 0,53) dans la configuration dopée. La réduction

des pertes (plaques avec des pertes viscoélastiques plus faibles) permettrait d’améliorer l’efficacité du

processus.

Masquage et dissimulation acoustique

À la lumière des propriétés mises en évidence précédemment, nous évaluons finalement la possibilité de

dissimuler des obstacles (ici un diaphragme rigide) en utilisant l’étirement de la longueur d’onde offert

par le régime de densité quasi-nulle et l’adaptation d’impédance offerte par le dopage du métamatériau.

Deux stratégies sont étudiées.

Premièrement, nous utilisons la propre impédance du diaphragme à dissimuler pour réaliser le

dopage (Figs. E.5(a-b,e-f)) et deuxièmement nous ajoutons une autre impureté dans le système, un

résonateur de Helmholtz (Figs. E.5(c-d,g-h)). Nous démontrons analytiquement et numériquement

qu’en l’absence de pertes, le diaphragme peut être dissimulé avec les deux stratégies (avec ou sans

dopant supplémentaire). Le diaphragme est alors acoustiquement imperceptible pour un observateur
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extérieur, tant en termes d’amplitude que de phase du coefficient de transmission.
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Figure E.5: Dissimulation acoustique d’un diaphragme sans pertes (a,c) et avec pertes (b,d) :
Champ de pression (FEM), amplitudes de transmission (noir) et de réflexion (rouge) (a1,b1,c1,d1) et phase du
coefficient de transmission (noir, axe gauche) et partie réelle de la densité effective normalisée (rouge, axe droit)
des deux systèmes (a2,b2,c2,d2). Les figures (a,b) montrent l’occultation d’un diaphragme Rd = 0, 5 mm dans
un métamatériau de 6 unités tandis que les figures (c,d) montrent l’occultation d’un diaphragme Rd = 4 mm
dans un métamatériau composé de plaques et dopé avec un résonateur de Helmholtz (Rn = 2 mm, Ln = 2 cm,
Rc = 1 cm, et Lc = 40, 95 cm). La ligne continue représente les résultats analytiques et la ligne en pointillés
ceux des simulations éléments-finis.

Cependant nous montrons aussi que la limitation du phénomène de dopage induite par les pertes

viscoélastiques impacte radicalement l’efficacité d’occultation du dispositif, la transmission n’étant

plus unitaire, et ce quel que soit la stratégie d’occultation envisagée.

Bien que le métamatériau puisse conduire à une occultation totale dans le cas sans pertes, nous

avons prouvé que les pertes du métamatériau avec et sans dopage empêchent la propagation unitaire

requise. Compte tenu de cette forte limitation liée intrinsèquement au métamatériau étudié et de

l’impossibilité d’occulter (au sens de cloaking) l’obstacle, une autre application est maintenant étudiée :

le phénomène de dissimulation ou de masquage. La philosophie du masquage diffère de celle de

l’occultation en ce sens qu’elle ne vise pas à rendre un champ extérieur inchangé par la présence à la

fois de l’obstacle et du dispositif d’occultation. Le but est ici d’utiliser l’étirement de la longueur d’onde

effective dans le métamatériau pour cacher le diaphragme (ou tout autre obstacle) à l’intérieur, sans

perturber la signature acoustique du métamatériau lui-même, c’est-à-dire en maintenant constante

l’amplitude de réflexion et de transmission à la fréquence de phase nulle.

La présence du métamatériau permet de diminuer et même d’annuler l’effet de diffraction induit

par le diaphragme, rendant ainsi la propagation sans changement de phase atteignable par le système

complet (métamatériau et diaphragme). La fréquence de phase nulle du système total fφt=0 dépend

directement de l’impédance de l’obstacle, liée ici au ratio de surface ouverte Rd/Ra. Comme le montre
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la Figure E.6(a), plus le rayon de l’orifice est petit, et donc plus l’impédance du diaphragme est grande,

plus la fréquence de phase nulle du système est faible. La fréquence de phase nulle varie de fφ=0 = 390

Hz pour le métamatériau seul à fφt=0 = 373 Hz pour le système avec un diaphragme de rayon Rd = 4

mm et à fφt=0 = 303 Hz pour un diaphragme de rayon Rd = 1 mm.

0

0.5

1

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0

0.5

1
(a) (b) (c)

0 0.2 0.4 0.6 0 0.2 0.4 0.6

Figure E.6: Influence du rayon de l’orifice du diaphragme sur ses paramètres de scattering (calculés
analytiquement) : Variation de la fréquence de phase nulle (a), évolution de l’amplitude des paramètres de
scattering : transmission (noir, axe gauche) et réflexion (rouge, axe droit) à la fréquence de phase nulle du
système global fφt=0 (b) et phase du coefficient de transmission du métamatériau seul à la fréquence de phase
nulle du système global fφt=0 pour différents rayons du diaphragme (c). Les zones grisées montrent la plage de
rayons d’orifice pour lesquels l’amplitude des paramètres de scattering est indépendante du rayon de l’orifice.

La Figure E.6(b) montre que l’amplitude des coefficients de transmission et reflexion à fφt=0 reste

constante et égale à celle du métamatériau seul à fφ=0 tant que le rapport orifice/section totale reste

supérieur à 12% (surface grisée). En raison de la légère modification de la fréquence de phase nulle dans

cette plage de fréquence, un léger déphasage est perceptible pour le métamatériau seul à la fréquence

de propagation sans changement de phase de l’ensemble du système fφt=0 (Fig. E.6(c)). Au-delà de

ce ratio de 12%, l’impédance du diaphragme devient trop importante. La fréquence de phase nulle de

l’ensemble du système est donc décalée vers les basses fréquences de manière significative. Le rapport

de section de 12% correspond à une variation de fφt=0 de 10% par rapport à la fréquence de phase

nulle du métamatériau seul fφ=0. En raison de ce décalage de fréquence, la puissance du régime de

densité quasi-nulle du métamatériau n’est plus suffisante pour permettre le phénomène de masquage

souhaité. L’amplitude des paramètres de scattering varie alors considérablement avec la variation de

fφt=0.

Cependant, il est intéressant de noter que le masquage d’un diaphragme (ou de tout autre ob-

stacle) est possible avec un métamatériau à densité quasi-nulle même en présence de pertes, dès que

l’impédance de l’objet à dissimuler est bien contrôlée. Avec cet arrangement périodique de plaques,

malgré la faible variation de la fréquence de la phase nulle (10% dans la plage de fonctionnement)

qui entraîne un faible changement de phase, l’effet du diaphragme est très limité. Il est alors possible

de cacher la diaphragme dans le métamatériau dans cette gamme de fréquence même en présence de

pertes.

De plus, l’extension de la longueur d’onde effective dans le métamatériau permet d’étendre le

phénomène de masquage à l’ensemble du métamatériau. Le masquage a lieu indépendamment de
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la localisation de l’obstacle. La Figure E.7 montre l’évolution de l’amplitude des coefficients de

transmission et réflexion et de la fréquence de phase nulle pour différents emplacements du diaphragme

le long du métamatériau et à son voisinage.
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Figure E.7: Zone de masquage d’un diaphragme de 4 mm de rayon dans le PAM: avec (a-c) et
sans pertes (d-f). Croquis du système considéré (a,d), amplitude des paramètres de scattering (transmission,
noir, axe gauche et réflexion, axe droit rouge) à la fréquence de phase nulle du système (b,e) et valeur de la
fréquence de phase nulle du système (c,f). Les cercles, les points et les lignes pointillées horizontales représentent
respectivement les données expérimentales et analytiques pour le système total et l’amplitude expérimentale
des paramètres de scattering du métamatériau seul à sa fréquence de phase nulle.

Dans le cas sans pertes (Figs. E.7(d-f)), quel que soit l’emplacement du diaphragme de 4 mm

de rayon le long du métamatériau, les amplitudes de transmission et de réflexion restent constantes

et égales à celles du métamatériau seul. Le phénomène de dissimulation couvre l’ensemble de la

structure qui agit comme un matériau homogène et quasiment symétrique (R+ ≈ R− ≈ R). Dès

que l’on considère les pertes viscothermiques et viscoélastiques (Fig. E.7(a-c)), l’asymétrie du système

devient beaucoup plus visible, R+ 6= R−, ce qui entraîne une légère modification de la réflexion avec

l’emplacement du diaphragme. L’accord entre les résultats expérimentaux, représentés par les cercles,

et les prédictions analytiques, représentées par les points solides, est très bonne sur la transmission et la

fréquence de propagation sans changement de phase. Des différences plus significatives sont cependant

perceptibles sur la réflexion, déjà notée dans le cas du métamatériau seul. Cependant, nous constatons

que quelle que soit la position du diaphragme, les données expérimentales des amplitudes de réflexion

et transmission de l’ensemble du système sont égales à celles du métamatériau sans diaphragme, dont

les valeurs mesurées sont rappelées par les lignes horizontales en pointillés de la Figure E.6(a).

D’après ces résultats il est donc possible de définir une zone de masquage correspondant à l’ensemble

du métamatériau. Le diaphragme peut être dissimulé peu importe sa position, à condition de contrôler

les pertes et l’impédance de la zone de dissimulation.
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Conclusions

En conclusion, ce travail est consacré au régime d’indice de réfraction quasi-nul dans un métamatériau

constitué d’un arrangement périodique de plaques fines encastrées dans un guide d’onde 1D, et aux

applications sous-jacentes offertes par l’étirement de la longueur d’onde effective caractéristique de ces

milieux.

Par le biais de calculs analytiques, de simulations numériques et d’expérimentations, nous avons

d’abord conçu un métamatériau mettant en évidence certaines des caractéristiques spécifiques liées

à cet étirement. En particulier, nous avons étudié et mesuré trois phénomènes principaux : (i) la

propagation sans changement de phase, (ii) le dopage acoustique d’un métamatériau permettant de

répondre aux exigences du supercouplage, et (iii) l’efficacité d’un arrangement de plaques à masquer

ou à cacher un obstacle. Tout au long de ce travail, nous avons accordé une grande attention à l’étude

et à la démonstration de la limitation induite par les pertes inhérentes au système, trop souvent

négligées dans de nombreuses études alors qu’elles peuvent avoir des effets drastiques si elles ne sont

pas correctement prises en compte comme un élément clé de la conception.

En parallèle de ce travail sur le régime de densité nulle, nous avons aussi exploré différents sujets

tels que l’absorption large bande à partir de plaques annulaires, le couplage de Willis dans différents

systèmes asymétriques composés de plaques ou de résonateurs de Helmholtz, le contrôle de la diffusion

et de l’absorption avec des métamatériaux reconfigurables,... Ces derniers ont un grand potentiel car

ils permettent de passer d’une application à une autre en modifiant simplement la géométrie des

systèmes. Nous nous sommes particulièrement intéressés ici à une application pour le traitement

acoustique des salles en utilisant des résonateurs de Helmholtz.
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Résumé :  Les métamatériaux à indice nul, pour 

lesquels au moins un des paramètres effectifs 
s’annule (densité ou compressibilité dynamique 
pour l’acoustique), ont fait l’objet d’une attention 
considérable au cours de ces dernières années. 
Ces matériaux ont la particularité d’induire une 
augmentation remarquable de la longueur d’onde 
effective, offrant ainsi de nombreuses possibilités 
d’application, incluant entre autres la propagation 
sans changement de phase, la dissimulation 
acoustique de diffuseurs, le contrôle de la 
directivité, etc. Ce travail de doctorat se 
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densité effective quasi-nulle dans des 
métamatériaux acoustiques constitués de 
plaques fines dans l’air.  
   Grâce à une étude approfondie d’un 
arrangement périodique de fines plaques 
élastiques encastrées dans un guide d’onde, 
nous avons pu explorer certains des effets ci-
dessus analytiquement, numériquement et 
expérimentalement. 

 

   Une attention particulière est portée sur les 
pertes inhérentes à ce type de système et à leurs 
conséquences sur les comportements attendus. 
   Nous débutons par l’étude numérique et 
l’observation expérimentale d’une propagation 
sans changement de phase à travers le 
métamatériau, à une fréquence située dans une 
bande interdite du système fini. Nous transposons 
ensuite le concept de dopage photonique à 
l’acoustique. L’ajout dans le système d’une 
impureté, ici un résonateur de Helmholtz bien 
choisi, permet de transformer le régime de densité 
nulle en un régime où la densité et la 
compressibilité sont simultanément quasi-nulles. 
Ainsi, la propagation sans changement de phase 
est accompagnée d’une transmission unitaire, 
due à l’accord d’impédance du système avec l’air 
environnant.  Nous étudions enfin la possibilité de 
réaliser une dissimulation ou un masquage 
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nulle. 
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Abstract:   Zero-index metamaterials, for which 

at least one of the effective parameters (density or 
dynamic compressibility for acoustics) vanishes, 
have received considerable attention in recent 
years. These materials have the particularity of 
inducing a considerable increase in the effective 
wavelength, thus offering numerous application 
possibilities, including, among others, propagation 
without phase change, acoustic hiding of 
diffusers, directivity control, etc. This PhD work 
focuses particularly on the near-zero effective 
density regime in acoustic metamaterials made of 
thin plates in air.  
   Through an in-depth study of a periodic 
arrangement of thin elastic plates embedded in a 
waveguide, we have been able to explore 
analytically, numerically and experimentally some 
of the above effects. 
   Particular attention is paid to the losses inherent 
to this type of system and their consequences on 
the expected behavior. 

   We begin by studying numerically and 
experimentally observing a phase-change-free 
propagation through the metamaterial at a 
frequency in a stopband of the finite system. We 
then transpose the concept of photonic doping to 
acoustics. The addition of an impurity, here a well-
chosen Helmholtz resonator, to the system allows 
to transform the regime of zero density into one 
where density and compressibility are 
simultaneously near zero. Thus, propagation 
without phase change is accompanied by a unitary 
transmission, due to the impedance matching of 
the system with the surrounding air.     
   Finally, we study the possibility of performing 
acoustic hiding or masking of an object using the 
acoustic wavelength stretching offered by the zero 

density.   
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