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Efficient Learning in Stochastic Combinatorial Semi-Bandits

by Pierre Perrault

Combinatorial stochastic semi-bandits appear naturally in many contexts where the
exploration/exploitation dilemma arises, such as web content optimization (recom-
mendation/online advertising) or shortest path routing methods. This problem is
formulated as follows: an agent sequentially optimizes an unknown and noisy objec-
tive function, defined on a power set P([n]). For each set A tried out, the agent
suffers a loss equal to the expected deviation from the optimal solution while obtain-
ing observations to reduce its uncertainty on the coordinates from A. Our objective
is to study the efficiency of policies for this problem, focusing in particular on the
following two aspects: statistical efficiency, where the criterion considered is the re-
gret suffered by the policy (the cumulative loss) that measures learning performance;
and computational efficiency. It is sometimes difficult to combine these two aspects
in a single policy. In this thesis, we propose different directions for improving statis-
tical efficiency, while trying to maintain the computational efficiency of policies. In
particular, we have improved optimistic methods by developing approximation algo-
rithms and refining the confidence regions used. We also explored an alternative to
the optimistic methods, namely randomized methods, and found them to be a serious
candidate for combining the two types of efficiency.
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Chapter 1

Introduction

1.1 Notations
We present here the general notation used in this thesis. We will also add more
specific notations when the corresponding concepts are introduced.

For two real numbers x and y, we use the notation x∨ y , max{x, y} and x∧ y ,
min{x, y}. We also define sign(x) to be 0 if x = 0 and x/|x| otherwise. We denote
by |A| the cardinality of a set A, and by Ac the complement of A when the ground
set is clear from the context. For any integer n ∈ N∗, the set of integers between
1 and n is denoted by [n] , {1, . . . ,n}, and the associated power set is denoted
P([n]) , {A, A ⊂ [n]}. We denote the Minkowski sum of two sets Z,Z ′ ⊂ Rn

as Z + Z ′ , {z + z′, z ∈ Z, z′ ∈ Z ′}, and z + Z ′ , {z} + Z ′. We typeset vectors
and matrices in bold and indicate components with indices, e.g., for some set I,
a = (ai)i∈I ∈ RI is a vector on I. When there is no ambiguity on the index set, we
simply use the notation (ai). We denote by a�b , (aibi) the Hadamard product of
two vectors a and b. The Hadamard product of two matrices is simply the entrywise
product, producing another matrix of the same dimension as the operands. We
let en,i be the ith canonical unit vector of Rn. The incidence vector of any subset
A ∈ P([n]) is en,A ,

∑
i∈A en,i. When the dimension is clear from the context,

we omit the n and use the notation eA and ei. If x, y are two real-valued vectors,
we write x ≥ y if x− y has components in R+, and use x ∨ y , (xi ∨ yi)i (resp.
x ∧ y , (xi ∧ yi)i). For a vector a, and p ≥ 1, we define the `p-norm of a as
‖a‖p , (

∑
i|ai|

p)1/p, and the `∞-norm of a as ‖a‖∞ , supi|ai|. We also define
‖a‖0 , |{i, ai 6= 0}|. We denote by diag(a) the diagonal matrix with the elements
a = (ai) on the diagonal. We write In , diag

(
en,[n]

)
, and only I when the dimension

is clear from the context. We use A � B to indicate the Löwner ordering of two n×n
matrices (Horn and Johnson, 1990), i.e., that A−B is a positive semi-definite (PSD)
matrix. Furthermore, A �+ B means λT(A−B)λ ≥ 0 for all λ ∈ Rn

+, and A �A B
(resp. A �+A B) means λT(A−B)λ ≥ 0 for all λ ∈ Rn (resp. λ ∈ Rn

+), with
λi = 0 for i /∈ A. Obviously, we also use the notations y ≤ x, B �,�+,�A,�+A A.
For any n× n matrix A � 0, we define the euclidean seminorm associated to A as
‖x‖A ,

√
xTAx, where x is a vector of Rn.

Events are indicated using the fraktur font A. I{A} is the {0, 1} indicator of the
event A, i.e.,

I{A} =
{

1 if A holds
0 otherwise.

We denote by ¬A the complementary event of A. The following definitions are stated
for a random variable X ∈ R but can also be extended for a random vector X ∈ Rn.
We denote by PX the probability distribution of X. For another random variable Y ,
we write Y ∼ PX (or Y ∼ X) to indicate that PY = PX . For a sequence of random
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variables (Xt), σ(X1, . . . ,Xt) is the sigma-algebra generated by random variables
X1, . . . ,Xt. We write (Xt) ∼ PX to indicate that PXt = PX for all t ∈ N∗, and
(Xt)

iid∼ PX to indicate that P(X1,X2,...,Xt) = P⊗tX for all t ∈N∗. For two familly of dis-
tributions D1,D2, we use the notation D1 ⊗D2 , {P1 ⊗ P2, P1 ∈ D1 and P2 ∈ D2}.

For any finite set X , and any p ∈ [0, 1]X , such that∑x∈X px = 1, the distribution∑
x∈X pxδx is a discrete probability measure on X . For example, δx is the Dirac

distribution at x, and for some p ∈ [0, 1], Bernoulli(p) = pδ1 + (1− p)δ0. For x ∈
[0, 1]n with ∑i xi ≤ 1, we define the multinoulli distribution (also called categorical
distribution) as Multinoulli(x) =

∑
i xiδei + (1−∑i xi)δ0Rn

.

1.2 Présentation du contenu de la thèse (en Français)
Cette thèse étudie les problèmes d’optimisation combinatoire séquentielle dans un en-
vironnement stochastique, avec des observations que l’on qualifie de "semi-bandits".
La terminologie "semi-bandits" fait reférence au fameux problème du bandit manchot
stochastique (aussi appelé bandit stochastique à plusieurs bras). Les problèmes de
bandit forment une classe importante de problèmes d’optimisation séquentielle, et
ils ont été largement étudiés dans le domaine des statistiques et de l’apprentissage
automatique. A l’origine, ils ont été introduits dans l’article fondateur de Robbins
(1952) pour étudier les plans d’expériences séquentielles. La version classique du
problème est formulée comme un système de n bras (ou machines). Un agent doit
sélectionner à plusieurs reprises un bras parmi les n disponibles. Chaque bras i a une
loi de probabilité inconnue PXi , de moyenne inconnue µ∗i , où la variable Xi encode
une récompense. Après avoir sélectionné un bras, l’agent observe une réalisation in-
dépendante de la distribution de récompense correspondante. Chaque décision est
basée sur les décisions passées et les récompenses observées. La tâche pour l’agent
consiste à jouer tour à tour les bras de manière à maximiser l’espérance de la ré-
compense cumulée. L’agent doit jouer en équilibrant l’exploitation et l’exploration.
En effet, les bras dont les récompenses observées sont les plus élevées doivent être
sélectionnés souvent, tandis que tous les bras doivent être explorés pour connaître
leurs récompenses moyennes. De manière équivalente, la performance de l’agent (ou
de la politique) peut être évaluée par son regret RT , définie comme l’espérance de
l’écart sur T tours (T ∈ N∗ étant appelé l’horizon) entre la récompense accumulée
par la politique et celle accumulée par une politique oracle sélectionnant toujours le
meilleur bras. Le regret peut se réécrire comme

RT ,
∑
i∈[n]

E[Ni,T ]∆i,

où ∆i , maxj µ∗j − µ∗i est l’écart des moyennes entre le bras optimal et le bras i,
et où Ni,t est le nombre de fois où le bras i a été tiré jusqu’à l’instant t ∈ N∗. La
notion de regret quantifie ainsi la perte due à la nécessité d’apprendre les récompenses
moyennes des différents bras.

Le problème défini ci-dessus est un exemple de problème d’apprentissage par ren-
forcement. En effet, un problème de bandit manchot peut être vu comme un proces-
sus de décision markovien avec un seul état. Mentionnons au passage que le nom du
problème vient du fait d’imaginer un joueur face à une rangée de machines à sous,
devant décider quelles machines jouer, combien de fois jouer à chaque machine et
dans quel ordre les jouer. Bien entendu, il ne s’agit que d’une modélisation, et ce
problème aborde en pratique tout type de situation où un agent tente simultanément
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d’acquérir de nouvelles connaissances (exploration) et d’optimiser ses décisions sur la
base des connaissances existantes (exploitation). Il existe de nombreuses applications
pratiques du modèle du bandit (manchot), par exemple :

• Les essais cliniques qui étudient les effets de différents traitements expérimen-
taux tout en minimisant les vies humaines perdues (Thompson, 1933; Gittins,
Weber, et Glazebrook, 1989; Berry et Fristedt, 1985).

• La conception de portefeuilles financiers (Hoffman, Brochu, et Freitas, 2011).

• La prise de décision pour l’accès dynamique au spectre dans le contexte des
radios cognitives (Lai, Jiang, et Poor, 2008).

Le problème des bandits a notamment été étudié par Lai et Robbins (1985). Ils
ont prouvé une borne inférieure asymptotique sur le regret RT . Cette borne indique
que toute politique "raisonnable" (en un certain sens) doit subir au moins un regret
logarithmique par rapport à l’horizon T . Elle fournit ainsi une limite de performance
fondamentale qu’aucune politique "raisonnable" ne peut battre. La constante dans
la borne inférieure est linéaire en n, le nombre de bras. Plus précisement, elle vaut
la somme sur les bras sous-optimaux i de l’écart ∆i fois l’inverse de la divergence
de Kullback-Leibler (KL) (Kullback et Leibler, 1951) entre la distribution du bras i
et celle du bras optimal. Grossièrement, log(T ) fois l’inverse de la KL représente
le nombre de tours nécessaires pour distinguer le bras i du bras optimal, donnant
ainsi une interprétation claire de la borne inférieure. Dans le cas de distributions
Gaussiennes, l’inverse de la KL est minoré (à une constante multiplicative près) par
la variance σ2

i du bras i divisée par ∆2
i . En simplifiant, la borne inférieure devient

donc

Ω

log(T )
∑

i∈[n], ∆i>0

σ2
i

∆i

. (1.1)

Il n’est pas surprenant que la variance apparaisse, car elle peut être considérée
comme une mesure de l’incertitude des échantillons : plus la variance est élevée, plus
l’estimation est difficile, et donc plus le regret doit être élevé. Lai et Robbins (1985)
ont également élaboré des politiques pour certaines distributions de récompense et
ont montré qu’elles atteignent asymptotiquement la borne inférieure. En effet, ces
politiques ont une borne supérieure sur leur regret qui est logarithmique en T , avec
une constante du même ordre que dans la borne inférieure. Dans le cas où les bras
ont des distributions σ2

i -sous-Gaussiennes, la stratégie ucb (pour Upper Confidence
Bound (Auer, Cesa-Bianchi, et Fischer, 2002)) atteint asymptotiquement la borne
(1.1). Elle consiste à choisir, au tour t, le bras it maximisant la borne supérieure de
l’intervalle de confiance µi,t−1 +

√
2 log(t)/Ni,t−1, où µi,t−1 est la moyenne empirique

des récompenses reçues en ayant tiré le bras i. Il s’agit d’une stratégie dite optimiste
dans l’incertain, car elle choisit le bras qui serait le meilleur si les moyennes vallaient
leurs estimations optimistes.

Bandit stochastique combinatoire Pour revenir au sujet de cette thèse, à savoir
les problèmes d’optimisation séquentielle combinatoire, nous pouvons étendre le cadre
mentionné ci-dessus : l’agent peut désormais, lors d’un tour, choisir plusieurs bras au
lieu d’un seul (avec éventuellement quelques contraintes sur les ensembles de bras pos-
sibles). La récompense obtenue est fonction de la réalisation individuelle de chaque
bras choisi. Ceci est bien adapté aux applications où les actions dont dispose l’agent
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Figure 1.1: Exemple d’un réseau (graphe) où chaque arête est un
bras. Le nœud en bleu représente l’origine, et le nœud en rouge la
destination. Les arêtes représentées par des lignes en gras forment un
chemin entre l’origine et la destination : il s’agit donc d’une action que
l’agent peut décider de jouer lors d’un tour. Se faisant, chaque bras
du chemin produit une réalisation, et la récompense peut alors être la

somme des réalisations du chemin.

appartiennent à un espace combinatoire et sont construites à partir de plusieurs pe-
tites actions (les bras). Mentionnons par exemple le problème du plus court chemin
entre deux points d’un réseau (qui a été étudié notamment par Liu et Zhao (2012),
Talebi, Zou, et al. (2013)). Chaque arête du réseau est un bras auquel est associé une
loi de probabilité, modélisant par exemple la fluidité du trafic sur cette arête. L’agent
choisit à chaque tour un chemin reliant les deux points, et obtient en récompense une
réalisation indépendante de la fluidité globale du chemin choisi. Cette fluidité globale
est définie selon le contexte, et peut être par exemple la somme des fluidités des arêtes
du chemin (voir Figure 1.1). Ce cas particulier où la récompense est la somme des
réalisations des bras choisis correspond à un problème d’optimisation combinatoire
séquentiel avec une fonction objectif linéaire, et il s’agit du scénario le plus répandu
parmi ces types de problèmes. Il est étudié, par exemple, par Abernethy, Hazan, et
Rakhlin (2008), Dani, Hayes, et Kakade (2008), ou encore Bubeck, Cesa-Bianchi, et
Kakade (2012). De manière générale, l’extension combinatoire du problème de bandit
est connue dans la littérature sous le nom de bandit stochastique combinatoire. Elle
implique (au moins) deux cadres distincts concernant les observations dont dispose
l’agent sur les réalisations des bras à chaque tour :

• Observation "semi-bandit" : toutes les réalisations des bras choisis sont observées
par l’agent.

• Observation "bandit" : seule la récompense (qui est fonction des réalisations des
bras choisis) est observée.

Comme nous l’avons déjà mentionné, nous nous intéressons ici au premier cadre,
communément appelé semi-bandits stochastiques combinatoires (que nous abrégerons
en CMAB dans cette thèse, pour combinatorial multi-armed bandits, le "semi" étant
omis par souci de concision). Puisque l’agent a plus d’observations, cette hypothèse
peut être plus difficile à satisfaire dans la pratique, mais peut conduire à des politiques
plus performantes. Notons aussi que le second cadre est en fait un cas particulier du
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problème de bandit introduit plus haut, où le nombre de bras est certes combinatoire,
mais où une certaine structure est spécifiée entre les récompenses.

1.2.1 Observation "semi-bandit"

Nous formalisons ici le problème CMAB. La réalisation du bras i ∈ [n] au tour t est
notée Xi,t ∈ R. Les vecteurs aléatoires (Xt)t≥1 de Rn sont i.i.d., avec une distribution
inconnue PX, de moyenne µ∗ ∈ Rn. Néanmoins, sauf mention contraire, Xi et Xj

pour deux bras distincts i 6= j peuvent être arbitrairement corrélées. L’action (aussi
appelée super-bras) sélectionnée par l’agent au tour t (i.e., l’ensemble des bras choisis)
est notée At. L’ensemble des super-bras possibles est appelé espace d’action, et est
noté A. C’est un sous-ensemble fixé de P([n]), tel que chacun de ses éléments A est
un sous-ensemble d’au plus m bras. Après avoir sélectionné un bras At au tour t,
l’agent reçoit comme retour d’information eAt �Xt. Bien que nous considérons un
cadre plus général dans la thèse, afin de simplifier les explications, nous nous limitons
ici au cas d’une fonction de récompense linéaire : la récompense au tour t est donc
eT
At

Xt. Nous supposons aussi que A est tel que l’optimisation de fonctions linéaires
peut être fait de manière efficace (en temps polynomial en n).

L’objectif est d’identifier une politique qui maximise la récompense cumulée es-
pérée sur l’ensemble des T tours. L’espérance est prise sur l’aléa des récompenses
et sur l’éventuel aléa de la politique suivie par l’agent (une action peut être choisie
au hasard). De manière équivalente, nous visons à concevoir une politique π qui
minimise le regret, défini par :

RT (π) , max
A∈A

E

[
T∑
t=1

(eA − eAt)
TXt

]
.

Contrairement au problème de bandit classique, nous pouvons remarquer qu’il y
a une notion de similarité entre les actions. En effet, deux actions "proches", c’est-
à-dire ayant beaucoup de bras en commun, ont tendance à avoir une récompense
"proche". Cette structure peut être exploitée dans l’apprentissage, afin de contrebal-
ancer la taille combinatoire de l’espace d’action. Il en résulte la conception de poli-
tiques efficaces de sélection des super-bras, basée sur le principe d’optimisme dans
l’incertain, dont le regret est de l’ordre de O(n ·m log(T )/∆) (Kveton, Wen, Ashkan,
and Szepesvari, 2015b), où ∆ > 0 est la différence minimale entre la moyenne d’un
super-bras optimal et la moyenne d’un super-bras sous-optimal. Ces politiques at-
teignent asymptotiquement une borne inférieure : en considérant l’espace d’action
A = {A1, . . . ,An/m} avec Ak = {(k− 1)m+ 1, . . . , km}, et en posant pour tout k,
X(k−1)m+1 = · · · = Xkm, tirée selon une Gaussienne de variance 1, on réduit le prob-
lème à un problème de bandit classique, permettant d’appliquer la borne (1.1), avec
σ2
i = m2. La politique la plus connue de ce type est cucb (Combinatorial Upper

Confidence Bound), et est fortement inspirée de ucb. En effet, elle joue au tour t

At ∈ arg max
A∈A

eT
A

(
µi,t−1 +

√
2 log(t)
Ni,t−1

)
i

,

en d’autres termes, les estimations optimistes sont les mêmes que pour ucb. Notons
que dans les problèmes CMAB, la distribution conjointe tout entière du vecteur des
réalisations X a de l’importance, contrairement aux bandits classiques où seulement
les marginales sont suffisantes pour caractériser une instance d’un problème. Ainsi,
lorsqu’il est question d’estimer le vecteur des moyennes µ∗, nous sommes davantage
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µt−1
•

Figure 1.2: La région de confiance de type hypercube (en noir) cor-
respond à un a priori Gaussien pour chaque marginale. La corrélation
entre ces marginales peut cependant être arbitraire : voici plusieurs
exemples, de très négativement corrélées (en orange) à très positive-
ment corrélées (en rouge), en passant par indépendantes (en vert).
On voit donc que tout l’hypercube est susceptible de contenir la vraie
moyenne µ∗ tant que l’on ne spécifie pas (et que l’on n’apprend pas)

les corrélations entre les marginales.

intéressés par une région de confiance que par la simple collection de n intervalles
de confiance. Une autre manière de voir cucb est donc de considérer la région de
confiance Ct qui lui est associée : il s’agit ni plus ni moins que du produit cartésien
des intervalles de confiance qui étaient considérés par ucb. Voici une façon de décrire
différemment cucb en terme de région de confiance :

At ∈ arg max
A∈A

max
µ∈Ct

eT
Aµ.

Nous avons donc deux aspects dans les méthodes optimistes : on peut soit regarder le
bonus d’exploration qui est ajouté à l’estimation empirique (ici, le bonus est linéaire et
vaut eT

A

(√
2 log(t)
Ni,t−1

)
i
, on parle également de bonus de type `1), soit regarder la région

de confiance autour du vecteur des moyennes empiriques µt−1 (ici, la région est un
hypercube, on parle également de région de type `∞).

Nous pouvons remarquer que le problème d’optimisation ci-dessus peut être ré-
solu efficacement (c’est un problème d’optimisation linéaire sur A) : cucb est donc
efficiente sur le plan statistique (parce qu’elle atteint la borne inférieure) et sur le
plan computationnel.

Notons que la distribution PX choisie pour établir la borne inférieure ci-dessus
est extrême : elle représente une situation où les bras appartenant à une même action
sont parfaitement corrélés. Ce comportement extrême est également mis en évidence
lorsque l’on regarde la région de confiance considérée par cucb : on ne s’attend
pas vraiment à avoir une zone de confiance ayant la forme d’un hypercube, mais
plutôt ayant la forme d’une ellipsoïde, en prenant comme a priori une distribution
Gaussienne multivariée. L’hypercube vient du fait que l’orientation et l’excentricité
de l’ellipsoïde peuvent être arbitraire (voir Figure 1.2). Si, par exemple, nous nous
limitons à la classe des distributions satisfaisant PX = ⊗i∈[n]PXi (ce qui signifie que
les distributions des bras sont mutuellement indépendantes), alors la borne inférieure
devient Ω(n log(T )/∆) (car σ2

i = m dans ce cas). Cela signifie que cucb n’est
plus efficiente sur le plan statistique, et que nous pouvons potentiellement gagner un
facteur m dans la borne supérieure du regret. Combes et al. (2015) ont étudié ce
problème, et ont donné une politique qui s’appuie effectivement sur l’indépendance
des réalisations pour réduire la région de confiance utilisée. Plus précisément, ils
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proposent une politique, appelée escb (pour Efficient Sampling for Combinatorial
Bandit), qui jouent au tour t l’action

At ∈ arg max
A∈A

eT
Aµt−1 +

√√√√∑
i∈A

f(t)

Ni,t−1
,

où f(t) est de l’ordre de O(log(t)). On remarque cette fois-ci qu’on a affaire à un
bonus de type `2, correspondant à la région de confiance de type `2 (ici, l’ellipsoïde
de confiance) suivante :

Ct , µt−1 +

ξ ∈ Rn,
∑
i∈[n]

Ni,t−1ξ
2
i ≤ f(t)

.

Remarquons que l’ellipsoïde ci-dessus est alignée par rapport aux axes (ce qui est
cohérent avec l’hypothèse d’indépendance). Degenne et Perchet (2016b) sont allés
plus loin en considérant la classe des distributions PX qui sont C-sous-Gaussiennes
(multivariées), pour une matrice C � 0, i.e., telles que

∀λ ∈ Rn, E
[
eλ

T(X−µ∗)
]
≤ eλ

TCλ/2.

Dans ce cas, ils ont construit une politique, ols-ucb, nécessitant la connaissance
d’une autre matrice Γ � 0 à coefficients positifs telle que Γ �+ C. Cette politique
considère une ellipsoïde de confiance basée sur la matrice Γ (i.e., non alignée par
rapport aux axes quand Γ n’est pas diagonale). Elle se réduit essentiellement à la
politique escb dans le cas spécifique où la matrice Γ est diagonale. ols-ucb a une
borne sur le regret de l’ordre de

O

 log T
∆

∑
i∈[n]

Γii
(
(1− γ) log2(m) + γm

),

où γ , max
A∈A

max
(i,j)∈A2,i 6=j

Γij/
√

ΓiiΓjj . On voit donc que escb, dans le cas de distri-

butions mutuellement indépendantes, est efficiente sur le plan statistique (d’où son
nom). En effet, on a alors γ = 0 dans la borne ci-dessus, donnant un regret pour
escb de l’ordre de O(log2(m)n log(T )/∆), qui est serré à un facteur polylogarith-
mique en m près. Degenne et Perchet (2016b) ont aussi montré que leur politique
ols-ucb était efficiente sur le plan statistique pour la classe des distributions sous-
Gaussiennes multivariées considérées : ils ont en effet prouvé une borne inférieure de
l’ordre de Ω

(
n log T

∆ ((1− γ) + γm)
)
. On voit en particulier apparaître une interpola-

tion entre deux régimes : pour γ proche de 0, on retrouve la même borne inférieure
que dans le cas où les bras ont des distributions mutuellement indépendantes, et pour
γ proche de 1, on retrouve la borne inférieure qui correpond au cas où les bras sont
parfaitement corrélés.

Nous pouvons enfin remarquer que les politiques escb et ols-ucb ne sont pas
efficientes sur le plan computationnel en général (car le problème combinatoire à ré-
soudre à chaque tour n’est plus linéaire, et est même NP-difficile en général (Atamtürk
and Gómez, 2017)).



12 Chapter 1. Introduction

1.2.2 Un bref aperçu sur les récompenses non linéaires et les con-
traintes de budget

Généralement, on suppose que la récompense espérée lorsque l’agent choisit une action
A est de la forme r(A;µ∗). Si telle est le cas, la fonction r est appellée fonction de
récompense. Elle est dite linéaire lorsque r(A;µ∗) = eT

Aµ
∗. On suppose ici, pour

simplifier, que pour un vecteur µ fixé, la fonction A 7→ r(A;µ) peut être maximisé
exactement et efficacement sur A. Nous avons déjà mentionné que cette thèse ne
se concentrait pas sur les fonctions de récompense linéaires. Néanmoins, la plupart
des fonctions de récompense que nous rencontrerons ont un comportement semblable
au cas des récompenses linéaires. Pour être plus précis, nous verrons qu’il existe
fréquemment un contrôle en norme `1 sur la déviation de la récompense lorsque
le paramètre que l’on désire apprendre (ici la moyenne) varie. Par exemple, une
hypothèse usuelle, considérée par Wang et Chen (2017), est∣∣r(A;µ)− r(A;µ′)

∣∣ ≤ ∥∥eA � (µ−µ′)
∥∥

1. (1.2)

Lorsque cette hypothèse est vérifiée, les approches optimistes ci-dessus restent valables
(c’est-à-dire que les bornes sur le regret sont du même ordre) en considérant, dans
les politiques, le problème d’optimisation

max
A∈A, µ∈Ct

r(A;µ)

afin de choisir At. Une difficulté des récompenses non linéaires dans les approches
optimistes est que la quantité maxµ∈Ct r(A;µ) peut ne pas être simple à calculer (et
encore moins à optimiser sur A ∈ A). Néanmoins, il existe des cas où c’est possible.
Par exemple, si nous avons une propriété de croissance (composante par composante)
de la fonction µ 7→ r(A;µ), alors, pour une région de confiance de type `∞, on
peut directement appliquer le vecteur des estimations optimistes au lieu de la vraie
moyenne afin de sélectionner l’action At à prendre (Chen, Wang, et Yuan, 2013, 2016),
il en résulte donc que cette politique est efficiente sur le plan computationnel.

Un cas particulièrement intéressant de fonction de récompense non linéaire ap-
paraît lorsque nous considérons un problème de bandit combinatoire à budget (Xia,
Qin, et al., 2016). Pour expliquer brièvement ce cadre, il n’y a plus d’horizon T ,
mais plutôt un budget B, et chaque action qui est prise lors d’un tour est coûteuse.
Nous verrons que ce cadre peut être essentiellement résolu de la même manière que
le problème standard. Une différence notable est que la fonction objectif à optimiser
au sein de chaque tour n’est plus une fonction de récompense, mais un rapport entre
une fonction de récompense et une fonction de coût. Ce type de problème est donc à
l’origine de nombreuses fonctions objectifs non linéaires dans les problèmes CMAB,
même si les fonctions de récompense et de coût étaient initialement linéaires.

1.2.3 Bras à déclenchement probabiliste

Dans le cadre typique du problème CMAB, l’ensemble des bras déclenchés et l’action
joué par l’agent sont confondus. Plus précisément, l’agent sélectionne une action à
jouer à chaque tour, déclenchant un ensemble de bras, et les réalisations de ces bras
sont alors observées. Une généralisation intéressante, appelé bras à déclenchement
probabiliste (que nous abrégeons en CMAB-T dans cette thèse), a été introduite par
Chen, Wang, et Yuan (2016) et Wang et Chen (2017). L’idée est que l’action sélec-
tionnée par l’agent n’est plus réduite à un ensemble de bras observés, mais appartient
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à un espace extérieur. Après qu’une action soit sélectionnée, certains bras sont dé-
clenchés de manière probabiliste. Ce cadre a notamment été utilisé afin d’aborder
des problèmes comme les bandits en cascade (portant sur la sélection des pages web
à afficher pour une requête sur un moteur de recherche, Kveton, Szepesvari, et al.
(2015) et Kveton, Wen, Ashkan, and Szepesvari (2015a)) ou encore la maximisation
d’influence incrémentielle (portant sur la sélection d’influenceurs dans un réseau so-
cial, Chen, Wang, et Yuan (2016), Wen, Kveton, Valko, et al. (2017) et Wang et Chen
(2017)).

Une hypothèse très pratique pour conserver la borne sur le regret obtenue plus
haut pour les régions de type `∞ est de considérer la même relation de régularité que
(1.2), mais en pondérant chaque terme (correspondant à un bras) dans la norme par la
probabilité d’observer le bras correspondant en choisissant l’action. Cette hypothèse
est vérifiée notamment dans les problèmes de bandit en cascade et de maximisation
d’influence incrémentielle (Wang et Chen (2017)).

1.2.4 Problématiques de la thèse et contributions

Après l’état des lieux qui précède, de nombreuses questions se posent, et chercher à y
répondre constitue les objectifs de cette thèse. De manière générale, on s’intéressera
à améliorer l’efficience des politiques, tant du point de vue computationnel que du
point de vue statistique. Plus précisément, nous porterons un intérêt particulier pour
les questions suivantes :

• Pouvons-nous espérer implémenter une version efficiente des politiques escb et
ols-ucb ? Existe-t-il des alternatives qui sont efficientes tant sur le plan compu-
tationnel que sur le plan statistique (dans le cas de distributions indépendantes,
ou sous-Gaussiennes multivariées) ?

• Est-il possible d’associer l’analyse `2 avec le cadre des contraintes de budget
ou des bras à déclenchement probabiliste ? Quel genre de borne sur le regret
pouvons-nous obtenir ? Une telle analyse peut-elle contribuer à améliorer les
politiques existantes (et le regret qu’elles suscitent) pour des problèmes connus,
comme la maximisation d’influence incrémentielle ?

• Pouvons-nous optimiser l’analyse de Degenne et Perchet (2016b) ? Par exemple,
pouvons-nous assouplir l’hypothèse selon laquelle la matrice de sous-Gaussianité
Γ est connue ? Existe-t-il une alternative à la famille des variables aléatoires
sous-Gaussiennes multivariées ? Est-il possible d’expliciter le comportement
d’interpolation dans le regret, par exemple en remplaçant Γii(1− γ + γm) par
la quantité plus faible maxA∈A: i∈A

∑
j∈A Γij ?

Nous allons maintenant présenter le contenu de la thèse, chapitre par chapitre, en
mettant l’accent sur les aspects liés aux questions soulevées ci-dessus.

Chapitre 2, Bandit Manchot Stochastique Nous passons d’abord en revue les
résultats de base du problème classique des bandits à plusieurs bras. Certains d’entre
eux seront utiles plus tard dans le contexte combinatoire.

Chapitre 3, Cadre Général pour les Observations Semi-Bandits Nous for-
malisons ici le cadre des semi-bandits stochastiques combinatoires avec bras à dé-
clenchement probabiliste (qui, on le rappelle, englobe le cadre habituel). Nous don-
nons ensuite une multitude d’applications de ce cadre que l’on trouve dans la littéra-
ture. Enfin, nous fournissons des résultats techniques généraux qui seront utiles tout
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au long de la thèse pour prouver des bornes supérieures sur le regret des politiques.
Plus précisément, les théorèmes énoncés dépendent du type d’erreur que l’on veut
contrôler (qui n’est rien d’autre que le type de bonus que l’on utilise). Pour l’analyse
`∞ (i.e., basée sur une région de confiance de type `∞, ou d’une manière équiva-
lente sur un bonus de type `1), nous avons un théorème qui améliore légèrement (et
surtout simplifie grandement) l’analyse `∞ de Wang et Chen (2017). Pour ce qui est
de l’analyse `2, nous fournissons plusieurs nouveaux résultats, étendant le travail de
Degenne et Perchet (2016b), et surpassant l’analyse `∞ (gagnant un facteur m, à un
facteur polylogarithmique près). Ce faisant, nous parvenons à associer l’analyse `2
avec le cadre des bras à déclenchement probabiliste. Ce chapitre contient quelques
résultats non publiés, et quelques améliorations de résultats publiés dans :

• Pierre Perrault, Jennifer Healey, Zheng Wen, Michal Valko (2020a) “Budgeted
Online Influence Maximization”, dans 37th International Conference on Ma-
chine Learning (ICML).

• Pierre Perrault, Vianney Perchet, Michal Valko (2020) “Covariance-adapting
algorithm for semi-bandits with application to sparse rewards”, dans 33rd Con-
ference on Learning Theory (COLT).

• Pierre Perrault, Etienne Boursier, Vianney Perchet, Michal Valko (2020) “Sta-
tistical Efficiency of Thompson Sampling for Combinatorial Semi-Bandits”,
dans 34th Conference on Neural Information Processing Systems (NeurIPS).

Chapitre 4, Un Exemple de Problème de type CMAB-T : Recherche-
et-Arrêt Séquentiels Nous présentons ici un nouvel exemple de problème qui se
situe à la fois dans le cadre du bras à déclenchement probabiliste et dans le cadre
à budget. Nous appelons ce problème recherche-et-arrêt séquentiels. Il est décrit de
la manière suivante : on considère un graphe acyclique dirigé, où chaque nœud est
un bras associé à un coût. Il y a un objet qui est caché au hasard dans l’un des
nœuds (selon une distribution inconnue à apprendre). Dans un tour, l’agent peut
inspecter des nœuds, choisis un par un, avec la contrainte qu’un nœud est accessible
si ses voisins entrants ont déjà été inspectés. Il peut décider à tout moment d’arrêter
sa recherche, et ainsi passer à une nouvelle instance indépendante (où l’objet est
replacé au hasard). L’agent dispose d’un budget initial, et chaque fois qu’un nœud
est inspecté, son prix est payé. L’objectif de l’agent est de trouver un nombre maximal
d’objet (en espérance). Nous fournissons une politique basée sur une approche `∞, en
décrivant notamment un stratégie quasi-optimale et efficace pour le problème "hors-
ligne" (i.e., lorsque la distribution est connue par l’agent, qui doit alors se focaliser
sur l’exploitation). Ce chapitre est adapté de la publication suivante :

• Pierre Perrault, Vianney Perchet, Michal Valko (2019b) “Finding the bandit in
a graph: Sequential search-and-stop”, dans 22nd International Conference on
Artificial Intelligence and Statistics (AIStats).

Chapitre 5, La Structure de l’Incertitude Nous commençons par rappeler les
deux principales méthodes pour obtenir des zones de confiance `2 : la méthode de
Laplace, et l’argument de la couverture. Nous étudions ensuite plus en profondeur la
structure des bonus `2, et nous prouvons qu’en tant que fonctions sur P([n]), elles
sont sous-modulaires. Nous nous appuyons ensuite sur cette structure pour proposer
plusieurs algorithmes d’approximation afin de maximiser la somme d’une fonction
linéaire (A 7→ eT

Aµt−1) et d’une fonction sous-modulaire (le bonus d’exploration). Ceci
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nous permet d’obtenir des approximations de escb pour des contraintes de matroïde
(un certain type d’espace d’action A généralisant la contrainte sur le cardinal). Ces
approximations sont efficientes sur le plan computationnel et ne dégradent pas l’ordre
du regret. Nous fournissons également une extension de cette méthode au cadre à
budget. Ce chapitre est basé sur la publication suivante :

• Pierre Perrault, Vianney Perchet, Michal Valko (2019a) “Exploiting structure
of uncertainty for efficient matroid semi-bandits”, dans 36th International Con-
ference on Machine Learning (ICML).

Chapitre 6, Maximisation d’Influence Incrémentielle Budgétisée Ce chapitre
vise à approfondir l’étude d’un autre exemple bien connu de problème impliquant des
bras à déclenchement probabiliste, à savoir la maximisation d’influence incrémen-
tielle. Pour rappel, dans ce problème, un agent apprend activement à connaître un
réseau social en interagissant avec lui de manière répétée, en essayant de trouver les
meilleurs ensembles d’influenceurs. Nous incorporons un cadre à budget à ce prob-
lème, en considérant le coût total d’une campagne publicitaire au lieu de la contrainte
(par tour) de cardinalité. Notre approche modélise ainsi mieux le contexte du monde
réel où le coût des influenceurs varie et où les publicitaires veulent trouver le meilleur
rapport qualité-prix pour leur budget global. Nous proposons des politiques de types
`∞ et `2, en utilisant la sous-modularité d’une borne supérieure sur les bonus `2. Ce
chapitre est adapté de la publication et de la prépublication suivantes :

• Pierre Perrault, Jennifer Healey, Zheng Wen, Michal Valko (2020a) “Budgeted
Online Influence Maximization”, dans 37th International Conference on Ma-
chine Learning (ICML).

• Pierre Perrault, Jennifer Healey, Zheng Wen, Michal Valko (2020b) “On the
Approximation Relationship between Optimizing Ratio of Sub-modular (RS)
and Difference of Submodular (DS) Functions”, en cours de révision.

Chapitre 7, Politique Adaptative à la Covariance Le but ici est d’offrir une
solution plus pratique, et plus précise pour construire une région de confiance `2. En
effet, celles que nous avons vues jusqu’à présent sont soit basées sur l’indépendance
mutuelle des réalisations, soit dues à la connaissance irréaliste d’une matrice de sous-
Gaussianité Γ. Nous considérons une nouvelle famille générale de distributions sous-
exponentielles paramétrée par la matrice de covariance, supposée inconnue. Cette
famille contient les distributions à support borné et les Gaussiennes. Nous prouvons
une nouvelle borne inférieure sur le regret de cette famille, qui est paramétrée par
la matrice de covariance, et non plus la matrice de sous-Gaussianité. Nous constru-
isons ensuite un algorithme qui utilise des estimations de la covariance, et fournissons
une analyse asymptotique du regret, atteignant la borne inférieure. Enfin, nous ap-
pliquons et étendons nos résultats à la famille des réalisations parcimonieuses, qui
a des applications dans de nombreux systèmes de recommandation. Ce chapitre est
adapté de la publication suivante :

• Pierre Perrault, Vianney Perchet, Michal Valko (2020) “Covariance-adapting
algorithm for semi-bandits with application to sparse rewards”, dans 33rd Con-
ference on Learning Theory (COLT).

Chapitre 8, Efficience Statistique et Computationnelle de l’Echantillonnage
de Thompson Dans ce chapitre, nous étudions une alternative intéressante aux



16 Chapter 1. Introduction

méthodes optimistes envisagées jusqu’à présent, à savoir l’échantillonnage de Thomp-
son. Outre sa supériorité empirique (Chapelle et Li, 2011), l’échantillonnage de
Thompson est intéressant dans le contexte des bandits combinatoires car l’action
à jouer est facile à calculer : il ne faut considérer ni bonus, ni maximum sur une ré-
gion de confiance, car le paramètre à utiliser dans la fonction objectif est simplement
pris au hasard, selon un a priori bien choisi. L’échantillonnage de Thompson pourrait
donc répondre à la question de l’existence d’une politique efficace (computationnelle-
ment) avec un regret asymptotique optimal (à un facteur polylogarithmique en m
près), qui est encore ouverte pour de nombreuses familles de distributions, incluant
les réalisations mutuellement indépendantes, et plus généralement la famille des réal-
isations sous-Gaussiennes multivariées. Nous proposons de répondre à la question
ci-dessus pour ces deux familles en analysant des variantes de la politique Combina-
torial Thompson Sampling (cts). Pour des réalisations mutuellement indépendantes
dans [0, 1], nous proposons une borne serrée pour le regret de cts, en utilisant la loi
bêta comme a priori. Nous examinons ensuite le cadre plus général des réalisations
sous-Gaussiennes multivariées et proposons une borne serrée pour le regret de cts à
l’aide d’un a priori Gaussien. Ce dernier résultat nous donne une alternative efficiente
à la politique escb. Ce chapitre est adapté de la publication suivante :

• Pierre Perrault, Etienne Boursier, Vianney Perchet, Michal Valko (2020) “Sta-
tistical Efficiency of Thompson Sampling for Combinatorial Semi-Bandits”,
dans 34th Conference on Neural Information Processing Systems (NeurIPS).

Chapitre 9, Conclusions et Perspectives Ce chapitre tire les conclusions de la
thèse et fournit quelques orientations pour les futurs travaux.

1.3 Presentation of the thesis content (in English)
This thesis studies sequential combinatorial optimization problems in a stochastic
environment, with observations that we call "semi-bandit". The terminology "semi-
bandit" refers to the famous stochastic multi-armed bandit problem. Bandit problems
are an important class of sequential optimization problems and have been widely
studied within the field of statistics and machine learning. They were originally
introduced in the seminal paper of Robbins (1952) to study sequential experimental
designs. The classical version of the problem is formulated as a system of n arms
(or machines). An agent must repeatedly select an arm from the n. Each arm i has
an unknown probability distribution PXi , of unknown mean µ∗i , where the variable
Xi encodes a reward. After selecting an arm, the agent observes an independent
realization (also called outcome) of the corresponding reward distribution. Each
decision is based on past decisions and observed rewards. The agent’s task is to
sequentially play the arms in order to maximize the expectation of the cumulative
reward. The agent must play by balancing exploitation and exploration. Indeed, the
arms with the highest observed rewards must be selected often, while all arms must
be explored to know their mean rewards. Equivalently, the performance of the agent
(or policy) can be evaluated by its regret RT , defined as the expectation of the gap
on T rounds (T ∈N∗ is called the horizon) between the reward accumulated by the
policy and that accumulated by a policy that always selects the best arm. Regret can
be rewritten as

RT ,
∑
i∈[n]

E[Ni,T ]∆i,
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where ∆i , maxj µ∗j − µ∗i is the difference in expectation between the optimal arm
and the arm i, and where Ni,t is the number of times the arm i has been pulled until
the round t ∈ N∗. The notion of regret thus quantifies the loss due to the need to
learn the mean rewards of the different arms.

The problem defined above is an example of a reinforcement learning problem.
Indeed, a multi-armed bandit problem can be seen as a Markov decision process with
a single state. Let’s mention in passing that the name of the problem comes from
imagining a player facing a row of slot machines, having to decide which machines
to play, how many times to play each machine, and in what order to play them.
Of course, this is only a model, and in practice this problem addresses any kind of
situation where an agent simultaneously tries to acquire new knowledge (exploration)
and to optimize its decisions on the basis of existing knowledge (exploitation). There
are many practical applications of the bandit model, for example:

• Clinical trials that study the effects of different experimental treatments while
minimizing the loss of human life (Thompson, 1933; Gittins, Weber, and Glaze-
brook, 1989; Berry and Fristedt, 1985).

• The design of financial portfolios (Hoffman, Brochu, and Freitas, 2011).

• Decision-making for dynamic spectrum access in the context of cognitive radios
(Lai, Jiang, and Poor, 2008).

Multi-armed bandit has been studied by Lai and Robbins (1985). They proved an
asymptotic lower bound on the regret RT . This bound indicates that any "reasonable"
policy (in a certain sense) must have at least a logarithmic regret with respect to the
horizon T . It thus provides a fundamental performance limit that no "reasonable"
policy can beat. The constant in the lower bound is linear in n, the number of arms.
More precisely, it is worth the sum on the sub-optimal arms i of the difference ∆i times
the inverse of the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)
between the distribution of the arm i and that of the optimal arm. Roughly, log(T )
times the inverse of the KL represents the number of rounds needed to distinguish
the arm i from the optimal one, giving a clear interpretation of the lower bound. In
the case of Gaussian distributions, the inverse of the KL is lower bounded (up to a
multiplicative constant) by the variance σ2

i of the arm i divided by ∆2
i . To simplify,

the lower bound thus becomes

Ω

log(T )
∑

i∈[n], ∆i>0

σ2
i

∆i

. (1.3)

It is not surprising that the variance appears, as it can be seen as a measure of
the uncertainty we have in our samples: the higher the variance, the more difficult
the estimation, and therefore the higher the regret. Lai and Robbins (1985) also
developed policies for some reward distributions and showed that they asymptotically
reach the lower bound. Indeed, these policies have an upper bound on their regret
which is logarithmic in T , with a constant of the same order as in the lower bound.
In the case where the arms have distributions σ2

i -sub-Gaussian, the strategy ucb
(Upper Confidence Bound (Auer, Cesa-Bianchi, and Fischer, 2002)) asymptotically
reaches the bound (1.3). It consists in choosing, in round t, the arm it maximizing
the upper confidence bound µi,t−1 +

√
2 log(t)/Ni,t−1, where µi,t−1 is the empirical

average of the rewards of the arm i. This is a strategy based on the optimistic in face
of uncertainty principle, because it chooses the arm that would be best if the means
were worth their optimistic estimates.
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Figure 1.3: Example of a network (graph) where each edge is an
arm. The node in blue represents the origin, and the node in red
represents the destination. The edges represented by bold lines form a
path between the origin and the destination: it is therefore an action
that the agent can decide to play during a round. Doing so, each arm
of the path produces one outcome, and the reward can then be the

sum of the outcomes of the path.

Stochastic combinatorial bandit To come back to the subject of this thesis, i.e.,
sequential combinatorial optimization problems, we can extend the above-mentioned
framework: the agent can now, during a round, choose several arms instead of one
(with possibly some constraints on the possible sets of arms). The reward obtained
depends on the individual outcome of each chosen arm. This is well adapted to
applications where the actions available to the agent belong to a combinatorial space
and are built from several small actions (the arms). Let us mention for example the
problem of the shortest path between two points of a network (which has been studied
in particular by Liu and Zhao (2012) and Talebi, Zou, et al. (2013)). Each edge of
the network is an arm associated to a probability distribution, modelling for example
the traffic flow on this edge. The agent chooses at each round a path connecting the
two points, and is rewarded with an independent realization of the overall traffic flow
of the chosen path. This overall traffic flow is defined according to the context, and
can be for example the sum of the path’s edge flows (see Figure 1.3). This particular
case where the reward is the sum of the outcomes of the chosen arms corresponds
to a sequential combinatorial optimization problem with a linear objective function,
and it is the most common scenario among these types of problems. It is studied,
for example, by Abernethy, Hazan, and Rakhlin (2008), Dani, Hayes, and Kakade
(2008), and Bubeck, Cesa-Bianchi, and Kakade (2012). In general, the combinatorial
extension of the bandit problem is known in the literature as stochastic combinatorial
bandit. It implies (at least) two distinct frameworks concerning the observations
available to the agent on the outcomes of the arms at each round:

• Semi-bandit feedback: all the outcomes of the selected arms are observed by the
agent.

• Bandit feedback: only the reward (which is a function of the outcomes of the
chosen arms) is observed.
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As we have already mentioned, we are interested here in the first framework, com-
monly called stochastic combinatorial semi-bandits (which we will abbreviate to CMAB
in this thesis, for combinatorial multi-armed bandits, the "semi" being omitted for sake
of brevity). Since the agent has more observations, this assumption may be more dif-
ficult to satisfy in practice, but may lead to better policies. Note also that the second
framework is in fact a special case of the bandit problem introduced above, where the
number of arms is combinatorial, but where a certain structure is specified between
rewards.

1.3.1 Semi-bandit feedback

Here we formalize the CMAB problem. The outcome of the arm i ∈ [n] in round t is
denoted as Xi,t ∈ R. The random vectors (Xt)t≥1 of Rn are i.i.d., with an unknown
distribution PX, of mean µ∗ ∈ Rn. Nevertheless, unless otherwise stated, Xi and
Xj for two distinct arms i 6= j can be arbitrarily correlated. The action (also called
super-arm) selected by the agent at round t (i.e., the set of arms selected) is denoted
At. The set of possible super-arms is called action space, and is noted A. It is a fixed
subset of P([n]), such that each of its elements A is a subset of at mostm arms. After
selecting an arm At in round t, the agent receives as feedback eAt �Xt. Although we
consider a more general framework in the thesis, in order to simplify the explanations,
we limit ourselves here to the case of a linear reward function: the reward at round t
is therefore eT

At
Xt. We also assume that A is such that the optimization of linear

functions can be done efficiently (in time polynomial in n).
The objective is to identify a policy that maximizes the expected cumulative

reward over the T rounds. The expectation is taken on the randomness of the rewards
and on the possible randomness of the policy followed by the agent (an action can
be chosen at random). In an equivalent way, we aim at designing a policy π that
minimizes the regret, defined as:

RT (π) , max
A∈A

E

[
T∑
t=1

(eA − eAt)
TXt

]
.

Contrary to the classic bandit problem, there is a notion of similarity between actions.
Indeed, two "close" actions, i.e., having many arms in common, tend to have a "close"
reward. This structure can be exploited in the learning process, in order to counterbal-
ance the combinatorial size of the action space. This results in the design of efficient
super-arm selection policies, based on the principle of optimism in face of the uncer-
tainty, whose regret is of the order of O(n ·m log(T )/∆) (Kveton, Wen, Ashkan, and
Szepesvari, 2015b), where ∆ > 0 is the minimum difference between the mean of an
optimal super-arm and the mean of a sub-optimal super-arm. These policies asymp-
totically reach a lower bound: considering the action space A = {A1, . . . ,An/m} with
Ak = {(k− 1)m+ 1, . . . , km}, and posing for all k, X(k−1)m+1 = · · · = Xkm, drawn
according to a Gaussian of variance 1, we reduce the problem to a classical bandit
problem, allowing us to apply the bound (1.3), with σ2

i = m2. The best-known pol-
icy of this kind is cucb (Combinatorial Upper Confidence Bound), which is heavily
influenced by ucb. Indeed, it plays at round t the action

At ∈ arg max
A∈A

eT
A

(
µi,t−1 +

√
2 log(t)
Ni,t−1

)
i

,
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µt−1
•

Figure 1.4: The hypercube type confidence region (in black) corre-
sponds to a Gaussian prior for each marginal. However, the correlation
between these marginals can be arbitrary: here are several examples,
from very negatively correlated (in orange) to very positively corre-
lated (in red), through independent (in green). We can see that the
whole hypercube is likely to contain the true mean µ∗ as long as we
do not specify (and learn) the correlations between the marginals.

in other words, the optimistic estimates are the same as for ucb. Note that in CMAB
problems, the entire joint distribution of the random vector X matters, unlike in
classical bandits where only the marginals are sufficient to characterize a problem
instance. Thus, when estimating the vector of means µ∗, we are more interested in
a confidence region than just a collection of n confidence intervals. Another way to
look at cucb is therefore to consider the confidence region Ct associated with it: it is
no more than the Cartesian product of the confidence intervals that were considered
by ucb. Here is a way of rewriting cucb in terms of confidence region:

At ∈ arg max
A∈A

max
µ∈Ct

eT
Aµ.

We thus have two view points in the optimistic methods: We can either look at the
exploration bonus that is added to the empirical estimate (here, the bonus is linear
and is worth eT

A

(√
2 log(t)
Ni,t−1

)
i
, we also say the bonus is of type `1), or look at the

confidence region around the vector of empirical means µt−1 (here, the region is a
hypercube, we also say the region is of type `∞).

We can notice that the above optimization problem can be solved efficiently (it is
a linear optimization problem on A): cucb is therefore statistically efficient (because
it reaches the lower bound) and computationally efficient.

Note that the distribution PX chosen to establish the above lower bound is ex-
treme: it represents a situation where the arms belonging to the same action are
perfectly correlated. This extreme behavior is also highlighted when we look at the
confidence region considered by cucb: we do not really expect to have a confidence
zone having the shape of a hypercube, but rather having the shape of an ellipsoid,
taking as prior a multivariate Gaussian distribution. The hypercube comes from the
fact that the orientation and eccentricity of the ellipsoid can be arbitrary (see Fig-
ure 1.4). If, for example, we limit ourselves to the class of distributions that satisfy
PX = ⊗i∈[n]PXi (which means that the distributions of the arms are mutually in-
dependent), then the lower bound becomes Ω(n log(T )/∆) (because σ2

i = m in this
case). This means that cucb is no longer statistically efficient, and that we can po-
tentially gain a factorm in the regret upper bound. Combes et al. (2015) have studied
this problem, and have come up with a policy that indeed relies on the independence
of the outcomes to reduce the confidence region used. Specifically, they proposed a
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policy, called escb (for Efficient Sampling for Combinatorial Bandit), which plays at
round t the action

At ∈ arg max
A∈A

eT
Aµt−1 +

√√√√∑
i∈A

f(t)

Ni,t−1
,

where f(t) is of order O(log(t)). This time we notice that we’re dealing with an
`2 bonus, corresponding to the following `2 confidence region (here, a confidence
ellipsoid):

Ct , µt−1 +

ξ ∈ Rn,
∑
i∈[n]

Ni,t−1ξ
2
i ≤ f(t)

.

Note that the above ellipsoid is aligned with respect to the axes (which is consistent
with the independence assumption). Degenne and Perchet (2016b) went further by
considering the class of distributions PX which are C-sub-Gaussian (multivariate),
for a matrix C � 0, i.e., such that

∀λ ∈ Rn, E
[
eλ

T(X−µ∗)
]
≤ eλ

TCλ/2.

In this case, they provided a policy, ols-ucb, requiring knowledge of another matrix
Γ � 0 with non-negative coefficients such that Γ �+ C. This policy considers a
confidence ellipsoid based on the matrix Γ (i.e., not aligned with respect to the axes
when Γ is not diagonal). It essentially boils down to the policy escb in the specific
case where the matrix Γ is diagonal. ols-ucb has a regret bound of order

O

 log T
∆

∑
i∈[n]

Γii
(
(1− γ) log2(m) + γm

),

where γ , max
A∈A

max
(i,j)∈A2,i 6=j

Γij/
√

ΓiiΓjj . So we can see that escb, in the case of

mutually independent distributions, is statistically efficient (hence its name). Indeed,
we then have γ = 0 in the above bound, giving a regret for escb of the order of
O(log2(m)n log(T )/∆), which is tight up to a polylogarithmic factor in m. Degenne
and Perchet (2016b) also showed that their policy was statistically efficient for the
class of multivariate sub-Gaussian distributions under consideration. They proved a
lower bound on the order of Ω

(
n log T

∆ ((1− γ) + γm)
)
. In particular, an interpolation

between two regimes appears: for γ close to 0, we find the same lower bound as in
the case where the arms have mutually independent distributions, and for γ close
to 1, we find the lower bound corresponding to the case where the arms are perfectly
correlated.

We can finally notice that the policies escb and ols-ucb are not computationally
efficient in general (because the combinatorial problem to be solved at each round is
no longer linear, and is even NP-hard in general (Atamtürk and Gómez, 2017)).

1.3.2 A brief look at non-linear rewards and budget constraints

Generally, it is assumed that the expected reward when the agent chooses an action A
is in the form r(A;µ∗). If this is the case, the function r is called reward function. It is
linear when r(A;µ∗) = eT

Aµ
∗. It is assumed here, for simplicity, that for a fixed vector

µ, the function A 7→ r(A;µ) can be maximized exactly and efficiently on A. We have
already mentioned that this thesis did not focus solely on linear reward functions.
Nevertheless, most of the reward functions we will encounter behave similarly to
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linear rewards. To be more precise, we will see that there is frequently an `1-norm
control on the deviation of the reward when the parameter we want to learn (here
the mean) varies. For example, a common assumption considered by Wang and Chen
(2017) is ∣∣r(A;µ)− r(A;µ′)

∣∣ ≤ ∥∥eA � (µ−µ′)
∥∥

1. (1.4)

Under this assumption, the optimistic approaches above remain valid (i.e. the bounds
on the regret are of the same order) by considering, in policies, the optimization
problem

max
A∈A, µ∈Ct

r(A;µ)

in order to select At. One difficulty with non-linear rewards in optimistic approaches
is that the quantity maxµ∈Ct r(A;µ) may not be simple to compute (and even less
to optimize over A ∈ A). Nevertheless, there are cases where this is possible. For
example, if we have a monotonicity property (component-wise) of the function µ 7→
r(A;µ), then, for a confidence region of type `∞, we can directly plug the vector of
optimistic estimates instead of the true mean in order to select the action At (Chen,
Wang, and Yuan, 2013; Chen, Wang, and Yuan, 2016), the result is that this policy
is computationally efficient.

A particularly interesting case of a non-linear reward function arises when we
consider a budgeted combinatorial bandit problem (Xia, Qin, et al., 2016). To briefly
explain this framework, there is no longer a time horizon T , but rather a budget B,
and every action that is taken in a round is costly. We will see that this framework can
be essentially solved in the same way as the standard problem. A notable difference
is that the objective function to be optimized within each round is no longer a reward
function, but a ratio between a reward function and a cost function. This type of
problem is therefore at the origin of many non-linear objective functions in CMAB
problems, even if the reward and cost functions were initially linear.

1.3.3 Probabilistically triggered arms

In the typical CMAB problem, the set of triggered arms and the action played by
the agent coincide. Specifically, at each round, the agent selects an action to play,
which triggers a set of arms, and the outcomes of these arms are then observed. An
interesting generalization, called probabilistically triggered arms (which we abbreviate
to CMAB-T in this thesis), was introduced by Chen, Wang, and Yuan (2016) and
Wang and Chen (2017). The idea is that the action selected by the agent is no longer
reduced to a set of observed arms, but belongs to an external space. After an action
is selected, some arms are triggered probabilistically. In particular, this framework
has been used to address problems such as Cascading bandits (about the selection
of web pages to be displayed for a search engine query (Kveton, Szepesvari, et al.,
2015; Kveton, Wen, Ashkan, and Szepesvari, 2015a)) or online influence maximization
(about selecting influencers in a social network (Chen, Wang, and Yuan, 2016; Wen,
Kveton, Valko, et al., 2017; Wang and Chen, 2017)). A very practical assumption so
that the above regret bound still (for `∞ type regions) holds is to consider the same
smoothness relation as (1.4), but by weighting each term (corresponding to an arm)
in the norm by the probability of observing the corresponding arm when choosing the
action. This assumption is verified in particular in the problems of cascading bandit
and online influence maximization (Wang and Chen, 2017).
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1.3.4 Challenges of the thesis and contributions

After the above overview, several questions can be asked, and trying to answer them
constitutes the objectives of this thesis. In general, the focus will be on improving
the efficiency of policies, both from a computational and statistical point of view.
Specifically, we will be particularly interested in the following questions:

• Can we hope to implement an efficient version of the escb and ols-ucb policies?
Are there alternatives that are computationally as well as statistically efficient
(in the case of independent, or multivariate sub-Gaussian distributions)?

• Is it possible to associate the `2 analysis with the budgeted or the probabilis-
tically triggered arms frameworks? What kind of bound on the regret can we
get? Can such an analysis help improve existing policies (and the regret they
have) for known problems, such as online influence maximization?

• Can we optimize the analysis from Degenne and Perchet (2016b)? For exam-
ple, can we relax the assumption that the sub-Gaussianity matrix Γ is known?
Is there an alternative to the family of multivariate sub-Gaussian random vari-
ables? Is it possible to explicit the interpolation behavior in the regret, for exam-
ple by replacing Γii(1− γ+ γm) by the smaller quantity maxA∈A: i∈A

∑
j∈A Γij?

We will now present the contents of the thesis, chapter by chapter, focusing on aspects
related to the issues raised above.

Chapter 2, Multi-Armed Bandits We first review the basic results of the clas-
sical multi-armed bandit problem. Some of them will be useful later in the combina-
torial context.

Chapter 3, General Framework for Semi-Bandit Feedback We formalize
here the framework of combinatorial stochastic semi-bandits with probabilistically
triggered arms (which, we recalled, encompasses the usual framework). We then give
a multitude of applications of this framework that can be found in the literature.
Finally, we provide general technical results that will be useful throughout the thesis
to prove upper bounds on policy regrets. More precisely, the theorems stated depend
on the type of error we want to control (which is nothing else than the type of bonus
we use). For the `∞ analysis (i.e., based on an `∞ type confidence region, or in an
equivalent way on an `1 type bonus), we have a theorem that slightly improves (and
also simplifies) the `∞ analysis of Wang and Chen (2017). As for the `2 analysis,
we provide several new results, extending the work of Degenne and Perchet (2016b),
and surpassing the `∞ analysis (gaining a factor m, up to a polylogarithmic factor).
In doing so, we manage to associate the `2 analysis with the probabilistically trig-
gered arms framework. This chapter contains some unpublished results, and some
improvements of results published in:

• Pierre Perrault, Jennifer Healey, Zheng Wen, Michal Valko (2020a) “Budgeted
Online Influence Maximization”, in 37th International Conference on Machine
Learning (ICML).

• Pierre Perrault, Vianney Perchet, Michal Valko (2020) “Covariance-adapting
algorithm for semi-bandits with application to sparse rewards”, in 33rd Confer-
ence on Learning Theory (COLT).
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• Pierre Perrault, Etienne Boursier, Vianney Perchet, Michal Valko (2020) “Sta-
tistical Efficiency of Thompson Sampling for Combinatorial Semi-Bandits”, in
34th Conference on Neural Information Processing Systems (NeurIPS).

Chapter 4, An Example of CMAB-T Problem: Sequential Search-and-Stop
Here we present a new example of a problem that falls within both the probabilistically
triggered arms and the budget frameworks. We call this problem sequential search-
and-stop. It is described as follows: we consider a directed acyclic graph, where each
node is an arm associated with a cost. There is an object that is randomly hidden in
one of the nodes (according to an unknown distribution to be learned). In a round,
the agent can inspect nodes, chosen one by one, with the constraint that a node is
accessible if its in-neighbors have already been inspected. It can decide at any time
to stop its search, and thus move to a new independent instance (where the object
is randomly placed again). The agent has an initial budget, and each time a node is
inspected, its price is paid. The objective of the agent is to find a maximum number
of objects (in expectation). We provide a policy based on an `∞ approach, describing
in particular a quasi-optimal and efficient strategy for the "offline" problem (i.e., when
the distribution is known to the agent, who must then focus on exploitation). This
chapter is adapted from the following publication:

• Pierre Perrault, Vianney Perchet, Michal Valko (2019b) “Finding the bandit
in a graph: Sequential search-and-stop”, in 22nd International Conference on
Artificial Intelligence and Statistics (AIStats).

Chapter 5, The Structure of Uncertainty We begin by recalling the two main
methods for obtaining `2 confidence regions: the Laplace method, and the covering
argument. We then look more deeply into the structure of the `2 bonuses, and discover
that as functions on P([n]), they are submodular. We then use this structure to
propose several approximation algorithms to maximize the sum of a linear function
(A 7→ eT

Aµt−1) and a submodular function (the exploration bonus). This allows us
to obtain approximations of escb for matroid constraints (a certain type of action
space A generalizing the constraint on the cardinality). These approximations are
computationally efficient and do not degrade the regret rate. We also provide an
extension of this method to the budgeted framework. This chapter is based on the
following publication:

• Pierre Perrault, Vianney Perchet, Michal Valko (2019a) “Exploiting structure of
uncertainty for efficient matroid semi-bandits”, in 36th International Conference
on Machine Learning (ICML).

Chapter 6, Budgeted Online Influence Maximization The purpose of this
chapter is to further investigate another well-known example of a problem involv-
ing probabilistically triggered arms, namely online influence maximization. As a re-
minder, in this problem, an agent actively learn a social network by interacting with
it repeatedly, trying to find the best sets of influencers. We incorporate a budgeted
framework to this problem, considering the total cost of an advertising campaign in-
stead of the (per round) cardinality constraint. Our approach thus better models the
real-world context where the cost of influencers varies and where advertisers want to
find the best value for their overall budget. We propose `∞ and `2 policies, using the
submodularity of an upper bound on `2 bonuses. This chapter is adapted from the
following publication and prepublication:
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• Pierre Perrault, Jennifer Healey, Zheng Wen, Michal Valko (2020a) “Budgeted
Online Influence Maximization”, in 37th International Conference on Machine
Learning (ICML).

• Pierre Perrault, Jennifer Healey, Zheng Wen, Michal Valko (2020b) “On the
Approximation Relationship between Optimizing Ratio of Sub-modular (RS)
and Difference of Submodular (DS) Functions”, submitted.

Chapter 7, Covariance-Adapting Policy The goal here is to offer a more prac-
tical, and more accurate solution to build an `2 confidence region. Indeed, the ones
we have seen so far are either based on mutual independence of outcomes, or due to
the unrealistic knowledge of a sub-Gaussianity matrix Γ. We consider a new general
family of sub-exponential distributions parameterized by the covariance matrix, as-
sumed to be unknown. This family contains the bounded support distributions and
the Gaussian distributions. We prove a new lower bound on the regret of this family,
which is parameterized by the covariance matrix, instead of the sub-Gaussianity ma-
trix. We then construct an algorithm that uses covariance estimates, and provide an
asymptotic analysis of the regret, reaching the lower bound. Finally, we apply and
extend our results to the family of sparse outcomes, which has applications in many
recommender systems. This chapter is adapted from the following publication:

• Pierre Perrault, Vianney Perchet, Michal Valko (2020) “Covariance-adapting
algorithm for semi-bandits with application to sparse rewards”, in 33rd Confer-
ence on Learning Theory (COLT).

Chapter 8, Statistical and Computational Efficiency of Thompson Sam-
pling In this chapter, we consider an interesting alternative to the optimistic meth-
ods considered so far, namely Thompson sampling. In addition to its empirical su-
periority (Chapelle and Li, 2011), Thompson sampling is interesting in the context
of combinatorial bandits because the action to be played is easy to compute: one
should consider neither bonus nor maximum on a confidence region, because the pa-
rameter to be used in the objective function is simply taken at random, according to
a well-chosen prior. Thompson sampling could thus answer the question of the ex-
istence of a (computationally) efficient policy with optimal asymptotic regret (up to
a polylogarithmic factor in m), which is still open for many families of distributions,
including mutually independent outcomes, and more generally the family of multi-
variate sub-Gaussian outcomes. We propose to answer the above question for these
two families by analyzing variants of the Combinatorial Thompson Sampling policy
(cts). For mutually independent outcomes in [0, 1], we propose a tight bound for the
regret of cts, using a beta prior. We then examine the more general framework of
multivariate sub-Gaussian outcomes and propose a tight bound for the regret of cts
using a Gaussian prior. This latter result gives us an efficient alternative to the escb
policy. This chapter is adapted from the following publication:

• Pierre Perrault, Etienne Boursier, Vianney Perchet, Michal Valko (2020) “Sta-
tistical Efficiency of Thompson Sampling for Combinatorial Semi-Bandits”, in
34th Conference on Neural Information Processing Systems (NeurIPS).

Chapter 9, Conclusion and Perspectives This chapter draws conclusions from
the thesis and provides some directions for future work.
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Chapter 2

Multi-Armed Bandits

This chapter is an introduction to the theory of stochastic multi-armed bandits (MAB),
that is the simplest setting of reinforcement learning (Sutton and Barto, 1998). It is
organized as follows: we first formally introduce the MAB problem. Next, we present
different examples of motivation. Then we provide the basic theoretical results and
introduce some MAB policies by giving guarantees on their performance. At the end
of this chapter, we examine possible extensions of the classical MAB problem that
are of particular interest in this thesis.

2.1 The stochastic multi-armed bandits problem
We consider a statistical model with incomplete observations. An automated agent
partially observes a certain random phenomenon, described by a random vector X ∈
Rn, for a fixed integer n ∈ N∗. We assume for the moment that the agent has no
prior information on the distribution PX, except that the mean µ∗ , E[X ] exists but
is unknown. As usual in statistics, the phenomenon is accessible through a random
process (Xt)

iid∼ PX. The observations are incomplete in the sense that the vector Xt

is never observed entirely by the agent at any round t, but only one of its components,
Xit,t, where the index it is selected by the agent at the beginning of round t. The
quantity Xit,t also represents a gain, or reward for the agent.

The objective is not directly to correctly estimate the distribution PX (so it is
not really a statistical problem in the traditional sense), but rather to maximize the
expected cumulative reward

E

[
T∑
t=1

Xit,t

]
over the sequence of index choices (it), for a fixed unknown time horizon T . This
is a learning problem called stochastic multi-armed bandits (MAB), which was first
introduced in Robbins (1952). It takes its name from a casino slot machine. Indeed,
it is worth remembering that a synonym for "slot machine" is "one-armed bandit": a
slot machine has only one arm. Another view on the MAB problem is the following:
we consider that the agent is facing n machines, or, more simply, an unusual machine,
with n arms (numbered from 1 to n), which is why we talk about multi-armed bandits.
Each of the n arms i, as soon as it is pulled, draws a reward from PXi at random.
Distributions PX1 , . . . , PXn are unknown and may be different from each other. In
particular, some arm might be better for the agent, that is, they might return a higher
reward. The machine is without memory: this ensures that the payment vectors Xt

are effectively iid when t varies. Imagine now that the agent wants to play T times
on the casino slot machines. The MAB problem raises the following natural question
for the agent: what strategy to adopt for these T draws in order to maximize the
expected total gain?
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We will see that a smart allocation strategy for the agent has to trade-off between
two behaviors:

• Exploring to collect information on the distribution PX, and in particular, to
estimate µ∗ effectively.

• Exploiting the arm that seems to be better given the rewards already observed.

Unlike the usual statistical problems, the agent is not interested in the proper de-
scription of the underlying stochastic phenomenon, but rather in the consequences of
this good modeling in terms of reward.

Remark 1. Although we use the notation PX, we must keep in mind that an MAB
problem is defined only by the marginals PX1 , . . . , PXn. Indeed, we saw above tow ways
of simulating the sequence (i1,Xi1,1, i2,Xi2,2, . . . ): at each round, the first uses PX,
whereas the second only uses a single marginal. As a consequence, for any distribution
PX, the two MAB instances defined by reward distributions PX and PX1 ⊗ · · · ⊗PXn

are the same. In particular, we can assume that PX = PX1 ⊗ · · · ⊗ PXn in this
chapter. We’ll see that this is no longer the case in stochastic combinatorial semi-
bandits.

2.1.1 The feedback

In our description of the MAB problem, the agent observes only the reward for the
selected arm it, and nothing else. In particular, it does not observe rewards for
other actions that could have been selected. This type of feedback is called bandit
feedback. Another well-known type of feedback is called full information, where the
whole vector Xt is observed by the agent at every round t (the observation is thus
no longer partial), allowing it to focus on exploitation only. In this chapter, we will
always assume that the agent has bandit feedback, that is a more realistic scenario
(yet more challenging).

2.1.2 Mathematical definition of a policy

We mentioned the term "strategy" above, without really defining it formally. First
of all, we will rather use the term policy, to emphasize that it gives the agent’s way
of behaving at a given time. We already have a pretty good intuition about what
a policy is allowed to do, namely that the arm it is chosen in the round t based
only on the information available at the beginning of the round, which is formed
by past actions and gains. The arm it can also be chosen using an extra source
of randomness. As a result, the agent chooses it ∈ [n] according to a probability
distribution Pit built with the past information. By universality of the standard
uniform distribution, we can model the extra source of randomness needed to sample
from Pit by the random variable Ut, where (Ut) iid∼ U(0, 1), independently from (Xt).
Here is the same definition of a policy, but formulated in a rigorous mathematical
way.

Definition 1 (Policy). A policy π is a sequence of random variables π = (it) ∈ [n]N
∗

such that for all t ≥ 1, it is Ft-measurable, where (Ft) is the filtration defined by

Ft =
{
σ(U1) if t = 1
σ(U1,Xi1,1, . . . ,Ut−1,Xit−1,t−1,Ut) if t ≥ 2.

When Ut is actually used in the choice of it, the policy is referred to as randomized.
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Remark 2. In addition to being measurable with respect to Ft, the choice it can also
depend on n and t. However, since T is unknown, it can’t depend on it.

2.1.3 A performance metric: the regret

The expected cumulative reward provides only an absolute assessment of the agent’s
total gain, but does not directly measure the relative deviation of this gain from the
optimal total gain. From Definition 1, we can rewrite the expected cumulative reward
of a policy π = (it) as

E

[
T∑
t=1

Xit,t

]
= E

[
T∑
t=1

E[Xit,t|Ft]
]
= E

[
T∑
t=1

µ∗it

]
.

We see that the optimal policy for the MAB problem is π∗ , (i∗, i∗, . . . ), where
i∗ ∈ arg maxi∈[n] µ∗i . In other words, when the distribution PX is known, the best
choice is to pull at each round the arm with the largest mean. But since the agent
first has to explore the environment to get information about the reward distribution
of each arm, unavoidably some sub-optimal arms will be pulled. Thus, to evaluate the
performance of a given policy π, we consider the regret of the agent for not playing
optimally:

Definition 2 (Expected cumulative regret). The expected cumulative regret (that
we shall simply call regret) for a policy π = (it) is

RT (π) , Tµ∗i∗ −E

[
T∑
t=1

Xit,t

]
= E

[
T∑
t=1

∆it

]
,

where for any i ∈ [n], we define the gap between means of arm i∗ and arm i as
∆i , µ∗i∗ − µ∗i .

The goal for the agent is to play according to a policy π such that RT (π) is as
small as possible.

Remark 3. The regret (for a policy π = (it)) can be rewritten as π = (it) is

RT (π) =
∑
i∈[n]

∆iE[Ni,T ],

where for any round t ∈ [T ], and any arm i ∈ [n], Ni,t ,
∑t
t′=1 I{it = i} is the

counter of the number of times arm i was chosen by π during the t first rounds. This
expression follows from Wald’s identity.

2.1.4 A simple example: the Bernoulli bandit problem

As we will see in the next section, perhaps the simplest and most widely used reward
distribution is the Bernoulli distribution, when the reward of each arm is either 0 or 1
("failure or success", "heads or tails", etc.). This reward distribution is fully specified
by the mean reward µ∗. We present in Figure 2.1 a very simple example of MAB
problem with n = 4 arms and T = 50, with a naive policy πrand that selects the arm
it uniformly at random.
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Figure 2.1: A Bernoulli bandit toy example. At the top, the points
represent the choices it. When they are "full", the corresponding re-
ward is 1, and when they are "empty", it is 0. At the bottom, we have
plotted two types of cumulative regret curves that are both worth

Rt(πrand) in expectation.

2.2 Some real world applications
This section presents some of the applications found in the MAB literature. This list
(far from exhaustive) is intended to illustrate the great diversity of applications of
the MAB framework and to motivate its study in this thesis.

2.2.1 Clinical trials

MAB models are historically guided by clinical trials (Thompson, 1933). Optimal
clinical trial design is indeed a typical motivating application (Villar, Bowden, and
Wason, 2015; Aziz, Kaufmann, and Riviere, 2019), although very little of the resulting
theory has actually been used in clinical trial design and analysis. On the contrary,
MAB models are now widely studied with completely different applications in mind
(as we will see in the next subsections).

In a clinical trial, a set of n different drugs are tested to treat a disease. The most
typical application is the choice between an old and a new drug (i.e., n = 2). It must
be determined as soon as possible whether the new drug should be adopted or the
old one maintained. Any error would result in lost human lives (or, at least in people
suffering from disorders resulting from either incomplete treatment or excessive side
effects). During the test phase, patients come sequentially to be administered one
drug. It is assumed that the success of a drug on a patient is a random variable
whose distribution depends on the drug in question. This variable can, for instance,
be drawn from a Bernoulli distribution, and be worth 1 if the patient survives and 0
otherwise. The objective is then to maximize the total number of patients cured, or
more precisely to achieve results that are almost as good as the best drug among the
two. In particular, it is important to avoid using the sub-optimal drug too often, but
rather to focus as soon as possible on the best one. Thus, a trade-off appears between
collecting information about the two drugs to estimate their performance and using
the information obtained so far to be efficient.
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2.2.2 Web document ranking

MABs can also be used to rank web documents (Radlinski, Kleinberg, and Joachims,
2008) and more specifically web pages. The objective is to improve the performance of
a Web search engine by increasing the probability that users will click on the highest-
ranked results. The problem can be formalized as follows. We consider a fixed set of
n documents and a fixed search query. Suppose we have a population of users, where
each user has a personal set of documents considered as relevant with regard to the
query, as well as a tolerance threshold giving the maximum number of documents the
user is willing to check. Intuitively, users with different interpretations of the query
have different relevant sets. At any round t, a (random) user comes hoping to find
a document related to the query. An ordered set of m documents (among the n) is
then proposed to the user. Results are consulted in order, and the goal is to avoid
as much as possible the abandonment phenomenon, where no relevant document is
presented before the user has reached its tolerance on the number of documents seen.
The reward gained at round t is 1 if the user clicks on some document proposed, and
0 otherwise.

A first approach would be to consider each possible m-ordered set as an arm.
However, Radlinski, Kleinberg, and Joachims (2008) rather proposed a more efficient
method that runsmMAB instances in parallel. Each instance i ∈ [m] has n arms and
is in charge of choosing the document presented at rank i. If an MAB instance selects
a document that has already been selected, the choice is saved, but another arbitrary
unselected document is proposed instead. When the user clicks on document i, all
the MAB instances that had selected the arm i as their first choice receive a reward
of 1, and the others receive a reward of 0.

We will see in subsection 3.3.1 that this problem can be formulated as a stochastic
combinatorial semi-bandit called "Cascading bandits".

2.2.3 Algorithm selection and black-box stochastic optimization

MABs have been used for algorithm selection in Gagliolo and Schmidhuber (2010).
We give a description of the setting in the following. Let’s consider a problem for
which one can easily evaluate the quality of an algorithm to solve it. For example,
the quality can be assessed by the processing time to deliver a solution, or by the
value that an objective function takes at that solution. Suppose we have n algorithms
(which may differ only by an extra parameter to tune), candidates to solve the prob-
lem, and that algorithms have some internal stochasticity, or that they can only be
evaluated with additional noise (this is often the case for the running time). We
can consider this setting as an MAB problem, where arms are the n algorithms, and
rewards are (for instance) minus the time needed for the selected algorithm to run on
the problem. MAB policies thus translate into strategies to automatically select the
best algorithm among the n.

Web-based recommendation of products (films, music, articles, etc.) is an example
where this method might be used. Indeed, in order to design a recommender system
on their platform, companies collect enough data on their customers’ preferences, as
well as contextual metadata, and use collaborative or content-based filtering methods
to deliver a recommendation. Now, if n recommender systems are designed in different
ways, a company might want to know which one is the best to use, which is nothing
more than an algorithm selection problem.
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2.2.4 Online advertising

MABs represent a natural framework for expressing problems related to advertise-
ment placement on a web page. This type of application has been widely and inten-
sively studied over the last decade (Pandey and Olston, 2007; Babaioff, Sharma, and
Slivkins, 2009; Li, Chu, et al., 2010; Li, Karatzoglou, and Gentile, 2016), stimulated
by e-commerce and the need for many companies to provide personalized content.
The problem can be described as follows. Given a fixed search query, there are n
advertisers who wish to advertise on the search engine result for this query. The
search engine wants to know which ad is the best to display, i.e., which one generates
the most clicks from users. Specifically, when a user arrives hoping to find a web page
related to the query, the search engine may display one of the n ads, hoping that the
user will click on it. The objective in selecting ads is to maximize the total income
of the search engine (each click on an advertisement proposed by the search engine
yields a certain income).

It is sometimes simpler to break down the rounds not according to users (because
the search engine cannot necessarily afford to change the advertising decision to each
user, mainly for computing time reasons), but according to time (e.g., a round equals
a day). Thus, for a given day t, the engine will choose the ad it will display throughout
the day. A standard measure of the displayed ad performance at the end of the day is
the click-through rate (CTR), defined as the ratio between the number of clicks and
the number of users who saw the ad.

2.2.5 Cognitive radios

Opportunistic access to spectrum is the most common application context for cogni-
tive radios. In telecommunications, certain frequency bands are reserved for certain
uses, such as mobile communications, television or military communications. These
uses are called primary uses and require a license. Although most of the spectrum
that can be used for communications today is already allocated, it is left free most
of the time by the primary users. It is to compensate for this under-use of spectrum
that opportunistic access to spectrum has been considered. It allows secondary users
to use licensed bands left free by primary users. Typically, a secondary user has a set
of n frequency channels in which to transmit. Each of these channels is more or less
used by primary users. The secondary user must then use the most vacant channel
for its communications. At each round t, the secondary user chooses to transmit
through one of the n channels, and receives a reward of 1 if the selected transmission
channel is vacant (not used by a primary user, the transmission is effective), and 0
if that channel is busy (no communication is possible through the selected channel).
This setting can be seen as an MAB problem when the use of a channel by primary
users is uncertain, and the reward received can, therefore, be modeled as a Bernoulli
random variable.

The applications of MABs to cognitive radios have been studied in a more general
context of multiplayer bandits, where several secondary users want to use the telecom-
munication network simultaneously (Rosenski, Shamir, and Szlak, 2016; Besson and
Kaufmann, 2017; Lugosi and Mehrabian, 2018; Boursier and Perchet, 2019). Oppor-
tunistic access to spectrum is a major issue for wireless technologies, in particular for
5G technology (Wang, Song, et al., 2019).
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Algorithm 1 A MCTS algorithm
Initially, the tree has a single node (the root r, the current state of the game).
The following steps are repeated T times, and ultimately, the most vis-
ited child of r is returned.
Selection: From r, use successively the MAB algorithm assigned to the current
node to select a next child node until a leaf ` is reached.
Expansion: Unless ` is terminal, create a child node c in the tree that is any valid
move from the game position defined by `.
Simulation: Complete a random play-out from c by choosing uniform random
moves until the game is decided.
Back-propagation: Use the result of the play-out as a reward for each MAB
algorithm on the path from c to r.

2.2.6 Monte-Carlo tree search

Monte Carlo tree search (MCTS) is a heuristic search algorithm used in some kind
of decision processes. It is notably used in games (see Browne et al. (2012) and the
references therein for different variants of MCTS and applications to games and other
search, optimization, and control problems). We can mention its implementation in
recent computer programs of Go, such as Crazy-Stone (Coulom, 2007), MoGo (Gelly
et al., 2006; Wang and Gelly, 2007), AlphaGo (Silver, Huang, et al., 2016), and
AlphaGoZero (Silver, Schrittwieser, et al., 2017). Given the current state of the
game, the goal is to determine the next action to be selected by the player. MCTS
algorithms explore the tree of possibilities in a non-symmetric way. The root is the
current configuration of the game, and each node is a configuration and its children
are the following possible configurations. The MAB setting has been used to guide
exploration in the tree structure, allowing to perform efficient tree search by assigning
an MAB algorithm to each node and following an optimistic search strategy that
explores in priority the most promising branches (see Algorithm 1).

The intuition of Algorithm 1 is that at a given node there are some possible
choices, i.e., arms, corresponding to the child nodes, and the use of an MAB algo-
rithm should enable the selection of the best arm given noisy rewards samples. The
reason why this algorithm has shown good performance in practice in several large
tree search problems is that it prioritizes the most promising branches according to
previously observed sample rewards. This is very useful in situations where the re-
ward function has some smoothness property (i.e., the initial random reward samples
provide information on where the search should focus). Theoretically, however, since
the reward samples obtained from any node are not iid, the algorithm does not have
nice finite-time performance guarantees (see Coquelin and Munos (2007)).

One of the best known algorithms extends the Upper Confidence Bound algorithm
(ucb) of Auer, Cesa-Bianchi, and Fischer (2002) (which we will explore in more detail
in section 2.4) to tree-structured search, defining the Upper Confidence bound applied
to Trees algorithm (uct) (Kocsis and Szepesvári, 2006).

2.2.7 Network exploration

Madhawa and Murata (2019) studied the problem of exploring a large unweighted
and undirected graph G = (V ,E). This has applications in collecting information
about user profiles and their friends in a social network G. In their setting, G cannot
be fully observed, and only a subgraph G′t = (V ′t ,E′t) is available to the agent at
time t. Initially, G′0 is only composed of a single node. At each round t, the agent
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Figure 2.2: Example of an exploration graph G′t. Red nodes are
probed, blue nodes are only observed, grey nodes exist in the original
graph G and are yet to be observed. Vertices of the graph G′t are red
and blue nodes, and edges of G′t are represented with bold lines. Dash
lines are used to denote unobserved links at the given moment t. To
build G′t+1, the agent has to choose a blue node. Then, it becomes red

and its neighborhood in G becomes blue.

selects a node it ∈ V ′t to probe in order to expand G′t by adding the neighbors of it.
More precisely, when it is selected, G′t+1 is obtained from G′t as follows. V ′t+1 =

V ′t ∪ Nit , where Nit , {j ∈ V , {it, j} ∈ E} is the neighbourhood of it in G, and
E′t+1 = E′t ∪ {{it, j}, j ∈ Nit}. An example of the graph G′t is given in Figure 2.2.
The goal for the agent is to discover as many nodes as possible within a limited time
budget T , i.e., |V ′T | has to be maximized.

As for MCTS, MAB algorithms might be useful heuristics, although the problem
watched is not strictly speaking an MAB problem. In order to do so, Madhawa and
Murata (2019) considered that each node i is associated with a certain set of features
Fi (e.g., interests, liked pages, etc.), and that the neighborhood size of i (which is
a reward for the agent if it probes i) could be represented as a sample according to
an unknown distribution PFi depending on Fi. In other words, nodes with similar
features in the observed network will result in similar rewards. The trade-off between
exploration and exploitation thus comes naturally. Indeed, for exploitation, the agent
can consider choosing it = i based on the a priori quality of Fi, which can be estimated
by looking at the past performance of nodes j, with Fj close to Fi. For exploration,
the criterion to be taken into account is the amount of information brought by a
new reward sampled from PFi , or equivalently how much information the agent has
already collected on features close to Fi.

2.3 Regret lower bounds
Before giving examples of MAB policies, it is important to know to what extent the
agent can hope to minimize the expected cumulative regret. Indeed, we already saw
that the agent, not knowing which arm is the best, must inevitably suffer some regret.
A lower bound on the regret would, therefore, provide information on what the agent
can aim for. However if one considers, as a performance measure, RT (π) for a single
reward distribution PX without restricting the class of admissible policies π, then
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it is clear that we can achieve RT (π) = 0. Indeed, policies that always chose the
same arm are admissible, and one of them has a 0 regret (it is obvious that these
policies are of no interest because they do not learn, and although they are very good
on a specific problem, they are very bad on the others). Thus, the regret must be
considered either in more than one instance PX at the same time (Definition 3), or
by limiting the class of policies allowed (Definition 4). This gives two kinds of regret
lower bound.

Definition 3 (Distribution-free lower bound). A distribution-free lower bound is a
lower bound on

inf
π

sup
PX∈D

RT (π),

where D is a family of reward distributions.

Definition 4 (Distribution-dependent lower bound). A distribution-dependent lower
bound is a lower bound on RT (π) that holds for any distribution PX ∈ D and any
policy π ∈ Π, where Π is a family of admissible policies and D is a family of reward
distributions.

For distribution-free lower bounds, the performance is measured considering the
worst possible reward distribution PX (specific to the policy and the horizon T ).
This kind of lower bound doesn’t depend on PX. On the other hand, distribution-
dependent lower bounds hold for a fixed distribution PX and depend on it. Only a
restricted class of policies Π is considered in order to avoid the consideration of policies
of little interest that gives a small regret for the distribution PX, but perform badly
on other instances.

We will see in the following that these two measures may have very different
behaviors in T .

2.3.1 Distribution-dependent lower bound

Lai and Robbins (1985) proved a lower bound of the expected cumulative regret of
order log(T ) in a particular parametric framework. This work has then been extended
by Agrawal (1995) and Burnetas and Katehakis (1996). These papers deal with the
class of consistent policies, defined as follows.

Definition 5 (Consistent policies). A consistent policy π (with respect to D =
D1 ⊗ . . . ⊗ Dn) is such that for all a > 0 and all reward distribution PX ∈ D, the
expected cumulative regret satisfies

RT (π) =T→∞ o(T a).

Consistent policies offer good performance for all arm distribution in D. The
authors were interested in the price to be paid for a policy to be consistent. In other
words, they ask the question What is the minimum regret that a consistent policy
must suffer? The logarithmic bound of Agrawal (1995) and Burnetas and Katehakis
(1996) answers this question. It uses the Kullback–Leibler divergence (KL) (Kullback
and Leibler, 1951), defined in Definition 6.

Definition 6 (Kullback–Leibler divergence (KL)). The Kullback–Leibler divergence
between two probability distributions P and Q is defined as

KL(P‖Q) ,
{ ∫

log
(
dP
dQ

)
dP , if P is absolutely continuous with respect to Q

+∞ otherwise,
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where dP
dQ is the Radon–Nikodym derivative of P with respect to Q.

The KL is a measure of how one probability distribution is different from a second
one. Intuitively, it measures the rate (in terms of the number of samples) at which
the two distributions can be distinguished based on the samples from the first dis-
tribution. The smaller the KL divergence, the more difficult it is to distinguish the
two distributions. The KL divergence is non-negative, and the value zero is reached
if and only if the distributions are identical. it is generally asymmetric in the two
distributions.

We are now ready to state the lower bound of Agrawal (1995) and Burnetas and
Katehakis (1996), in Theorem 1.

Theorem 1 (Agrawal (1995) and Burnetas and Katehakis (1996)). Let π be a con-
sistent policy with respect to a distribution family D = D1 ⊗ . . . ⊗ Dn. Then we
have, for all PX ∈ D,

RT (π) ≥
∑

i∈[n], ∆i>0

log(T )(1− o(1))∆i
infP∈Di(µ∗i∗ ) KL(PXi‖P )

,

where Di(µ) ,
{

PX′i
∈ Di, E[X ′i] > µ

}
.

Proof. We fix PX ∈ D and i ∈ [n] such that ∆i > 0. In the proof, we use the notation
di = infP∈Di(µ∗i∗ ) KL(PXi‖P ). To get the desired result, it is sufficient to prove the
following lower bound (and then sum over i, weighting by ∆i)

lim inf
T→∞

E[Ni,T ]

log(T ) ≥ di
−1.

Notice that it is equivalent to prove that

∀ε ∈ (0, 1), lim inf
T→∞

E[Ni,T ]

log(T ) ≥ (1− ε)di−1.

We thus fix ε ∈ (0, 1). From Markov’s inequality we get

E[Ni,T ]

log(T ) ≥
(1− ε)P

[
Ni,T/log(T ) ≥ (1− ε)di−1

]
di

.

Thus, it suffices to show that

lim
T→∞

P

[
Ni,T

log(T ) ≥
1− ε
di

]
= 1,

or equivalently that

lim
T→∞

P

[
Ni,T

log(T ) <
1− ε
di

]
= 0. (2.1)

Let δ > 0 be such that (1− δ)/(1 + δ) > 1− ε. By definition of di, there exists
P ∈ Di(µ∗i∗) such that

di < KL(PXi‖P ) < (1 + δ)di. (2.2)
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Define the events

AT ,
{
Ni,T

log(T ) <
1− δ

KL(PXi‖P )

}
, CT ,

{
LNi,T ≤ (1− δ/2) log(T )

}
,

where

Lt ,
t∑

t′=1
log
(
dPXi

dP
(Xi,t′)

)
.

We write P′, E′ the probability and expectation when samples from arm i are drawn
from P instead of PXi (i is thus the best arm in this new environment). Notice, since
D = D1 ⊗ . . . ⊗ Dn, and P ∈ Di, we have that

PX1 ⊗ · · · ⊗PXi−1 ⊗ P ⊗PXi+1 ⊗ · · · ⊗PXn

(2.3)
∈ D.

We now show that P[AT ] = P[AT ∩ CT ] + P[AT \CT ]→T→∞ 0, which together with
(2.2) proves (2.1). On the one hand, we have

P[AT ∩ CT ] ≤ e(1−δ/2) log(T )P′[AT ∩ CT ] (2.4)
≤ T 1−δ/2P′[AT ]

= T 1−δ/2P′
[
T −Ni,T > T − 1− δ

KL(PXi‖P )
log(T )

]
≤ T 1−δ/2E′[T −Ni,T ]

T − 1−δ
KL(PXi‖P)

log(T )
(2.5)

=
T−δ/2∑

j 6=i E′[Nj,T ]

1− 1−δ
KL(PXi‖P)

log(T )/T
→T→∞ 0. (2.6)

(2.4) is from a change of measure: the random variable I{CT ∩ {Ni,T = t}} is mea-
surable with respect to Xi,1, . . . ,Xi,t and Xj,1, . . . ,Xj,T (j 6= i) (and a possible extra
source of randomness). Its partial integral against ∏t

t′=1 dPXi(xi,t′) is lower than
the one against e(1−δ/2) log(T )∏t

t′=1 dP (xi,t′), by virtue of the event CT . (2.5) is a
consequence of Markov’s inequality, and the limit in (2.6) is by consistency of π and
by (2.3).

On the other hand, letting bT , log(T )(1− δ)/KL(PXi‖P ), we have

P[AT \CT ] ≤ P

[
max
t<bT

Lt > (1− δ/2) log(T )
]

= P

[
b−1
T max

t<bT
Lt >

1− δ/2
1− δ KL(PXi‖P )

]
.

This last term tends to zero, as a consequence of the law of large numbers.

Example 1 (The Bernoulli bandit case). As we already saw in the previous section,
a well studied particular case of MAB setting is where D is the family of distributions
PX such that X ∈ {0, 1}n, i.e, Xi follows a Bernoulli distribution for all i ∈ [n].
In this case, Theorem 1 is reformulated as follows: Let π be a consistent policy with
respect to a distribution family D. Then we have, for all PX ∈ D,

RT (π) ≥
∑

i∈[n], ∆i>0

log(T )(1− o(1))∆i
kl(µ∗i ,µ∗i∗)

,
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where kl(x, y) , KL(Bernoulli(x)‖Bernoulli(y)) = x log
(
x
y

)
+(1−x) log

(
1−x
1−y

)
, x, y ∈

[0, 1].

In Example 1, the result can be interpreted as follows: To achieve good per-
formance for all arm distributions, each sub-optimal arm i needs to be explored,
asymptotically, no fewer than log(T )/kl(µ∗i ,µ∗i∗) times, which grows in a logarithmic
order with T and is inversely proportional to the distribution divergence kl(µ∗i ,µ∗i∗)
between this sub-optimal arm i and the optimal arm i∗. Another classical example is
given by Gaussian distributions.

Example 2 (The Gaussian bandit case). Consider the MAB setting where D is the
family of distributions such that Xi follows a Gaussian distribution of variance σ2

i for
all i ∈ [n]. In this case, Theorem 1 is reformulated as follows: Let π be a consistent
policy with respect to a distribution family D. Then we have, for all PX ∈ D,

RT (π) ≥
∑

i∈[n], ∆i>0

2σ2
i log(T )(1− o(1))

∆i
.

In case the distribution family D has not a product form, one can still obtain lower
bounds, where the change of distribution argument is done in several arms instead of
one. The important thing is to change the distribution while remaining within the
family under consideration. We give in the following an example of such lower bound
result in the Bernoulli bandit problem.

Theorem 2 (Graves and Lai (1997)). Let π be a consistent policy with respect to a
distribution family D such that for all PX ∈ D, X ∈ {0, 1}n. Then we have, for all
PX ∈ D,

lim inf
T→∞

RT (π)

log(T ) ≥ inf
c∈C

∑
i∈[n], ∆i>0

ci∆i,

where
C ,

{
(ci)i ∈ Rn

+, ∀PX′ ∈ B(µ∗),
∑
i

cikl(µ∗i , E[X ′i]) ≥ 1
}

,

B(µ∗) ,
{

PX′ ∈ D, s.t. max
i

E[X ′i] > µ∗i∗ and E[X ′i∗ ] = µ∗i∗

}
.

2.3.2 Distribution-free lower bound

We are now stating a distribution-free lower bound for the expected cumulative regret,
in Theorem 3. This result dates back to Vogel (1960), and was more recently improved
by Bubeck and Cesa-Bianchi (2012).

Theorem 3 (Bubeck and Cesa-Bianchi (2012)). Assume that n ≥ 2. Let D be the
family of distributions PX such that PXi is a Bernoulli distribution for all i ∈ [n].
Then we have

inf
π

sup
PX∈D

RT (π) ≥
1
20
√
nT .

Proof. For i ∈ {0, . . . ,n}, we consider the bandit problem Pi ∈ D where all arm
rewards are sampled from a Bernoulli distribution of mean 1/2, except for one arm
i that follows a Bernoulli distribution of mean 1/2 + ε, for ε > 0 to be stated later
(thus, for i = 0, all arms have the same distribution). We denote (respectively)
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P(i), E(i) and R(i)
T the probability, the expectation, and the regret when rewards are

sampled from the distribution Pi. We have for all policy π

sup
PX∈D

RT (π) ≥ sup
i∈[n]

R
(i)
T (π)

≥ 1
n

∑
i∈[n]

R
(i)
T (π)

=
ε

n

∑
i∈[n]

(
T −E(i)[Ni,T ]

)
. (2.7)

Notice that
inf
π

1
n

∑
i∈[n]

R
(i)
T (π) = inf

π deterministic

1
n

∑
i∈[n]

R
(i)
T (π),

since a randomized policy is a convex combination of deterministic ones. We thus
assume that π is deterministic in the following. We can bound the difference between
E(i)[Ni,T ]−E(0)[Ni,T ] for all i ∈ [n] as

E(i)[Ni,T ]−E(0)[Ni,T ] =
T∑
t=1

(
P(i)[it = i]−P(0)[it = i]

)
≤ T

∥∥∥P(i) −P(0)
∥∥∥

TV

≤ T
√

KL
(

P(0)‖P(i)
)

/2,

where, for two probability distributions P and Q on a measurable space (Ω,A),
‖P −Q‖TV , supA∈A|P (A)−Q(A)| is the total variation distance between P and
Q, and where the last inequality is from Pinsker’s inequality (see Proposition 1).
Since π is a deterministic policy, we get from the chain rule for the KL that

KL
(

P(0)‖P(i)
)
= E(0)[Ni,T ]KL(P0‖Pi)

= E(0)[Ni,T ]KL(Bernoulli(1/2)‖Bernoulli(1/2 + ε))

= E(0)[Ni,T ] log(1/(1− 4ε2))/2

Substituting the obtained upper bound on E(i)[Ni,T ] in (2.7) gives

sup
PX∈D

RT (π) ≥ εT −
ε

n

∑
i∈[n]

E(0)[Ni,T ]−
εT

2n

√
log
( 1

1− 4ε2

) ∑
i∈[n]

√
E(0)[Ni,T ]

≥ εT − ε

n
T − εT

2n

√
log
( 1

1− 4ε2

)√
nT ,

where this last inequality uses ∑i∈[n] E(0)[Ni,T ] = T and the Cauchy–Schwarz type
inequality ∑i∈[n]

√
E(0)[Ni,T ] ≤

√
n
∑
i∈[n] E(0)[Ni,T ]. Setting ε =

√
n/T/4 and

using − log(1− y) ≤ 4 log(4/3)y for y ∈ [0, 1/4] gives the final result.

Proposition 1 (Pinsker’s inequality, see e.g. Tsybakov (2009)). Let P and Q be two
distributions over some measurable space (Ω,A), then

KL(P‖Q) ≥ 2‖P −Q‖2TV.
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Proof. Without loss of generality, we can assume that P is absolutely continuous
with respect to Q, since otherwise KL(P‖Q) = ∞. Recall that ‖P −Q‖TV =

supA∈A|P (A)−Q(A)| = 1
2
∫ ∣∣∣dPdQ − 1

∣∣∣dQ. We thus have, with r = dP/dQ− 1, f =

|r|/g and g =
√

1 + r/3,

2‖P −Q‖2TV =
1
2

(∫ ∣∣∣∣dPdQ − 1
∣∣∣∣dQ)2

=
1
2

(∫
fg dQ

)2

≤ 1
2

(∫
f2 dQ

)(∫
g2 dQ

)
(2.8)

=
1
2

∫
f2 dQ

=
∫

r2

2(1 + r/3)dQ

≤
∫
((1 + r) log(1 + r)− r) dQ = KL(P‖Q), (2.9)

where (2.8) is from Cauchy–Schwarz inequality, and (2.9) is from

0 ≤ h(x) = −x2

2(1 + x/3) + (1 + x) log(1 + x)− x ∀x ≥ −1,

indeed, h′(x) = log(1 + x)− 3x(x+ 6)/(2(x+ 3)2) and h′′(x) = x2(x+ 9)/((x+
3)3(x+ 1)) ≥ 0 (and equals 0 only for x = 0), so h′ is increasing and h′(x) ≥ h′(0) = 0
if and only if x ≥ 0, so minx≥−1 h(x) = h(0) = 0.

The minimax nature of the formulation implies that the lower bound in Theo-
rem 3 holds for all distribution families that include those with {0, 1} support, for
example distributions with bounded support on [0, 1]n or more generally distribu-
tions whose marginals are 1/4-sub-Gaussian (see Definition 7 for the definition of a
κ2-sub-Gaussian distribution, and Proposition 2 for the fact that a random variable
in [0, 1] is 1/4-sub-Gaussian). The question is in the achievability of this lower bound
for these more general sets of distributions.

Definition 7 (κ2-sub-Gaussian distribution, Buldygin and Kozachenko (1980)). We
say that a random variable X ∈ R (or a distribution PX) is κ2-sub-Gaussian if

∀λ ∈ R, E
[
eλ(X−E[X ])

]
≤ eλ2κ2/2.

Proposition 2 (Hoeffding’s Lemma, Hoeffding (1963)). Let X be a random variable
almost surely in [a, b], with a < b ∈ R. Then, X is (b− a)2/4-sub-Gaussian.

Proof. Let λ ∈ R. We can assume that E[X ] = 0 by replacing a by a−E[X ] and b
by b−E[X ]. By convexity of the function x 7→ eλx, we have for all x ∈ [a, b],

eλx ≤ b− x
b− a

eλa +
x− a
b− a

eλb.

Evaluating this inequality in X and taking the expectation, we get

E
[
eλX

]
≤ eψ(λ(b−a)) = b

b− a
eλa − a

b− a
eλb,
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with
ψ(u) = −pu+ log(1− p+ peu), p =

−a
b− a

.

We see that ψ(0) = ψ′(0) = 0. In addition,

ψ′′(u) =
(1− p)peu

(1− p+ peu)2 ≤
1
4.

Finally, thank to Taylor’s theorem, there is θ ∈ (0, 1) such that

ψ(u) = ψ(0) + ψ′(0)u+ ψ′′(θu)
u2

2 ≤
u2

8 .

Remark 4. In Theorem 3, when instead D is the family of distributions PX such
that X is in {a, b}n almost surely, for a < b ∈ R, we have the lower bound

inf
π

sup
PX∈D

RT (π) ≥
b− a

20
√
nT .

Indeed, we can trivially reduce to the case X
a.s.
∈ {0, 1}n by translating and scaling up

all rewards Xi as
Xi − a
b− a

a.s.
∈ {0, 1}.

This simply has the effect of dividing the regret by b− a, and can be seen as a simple
convention taken on the unit of the rewards.

2.4 Policies
In this section, we review some examples of well known MAB policies. We will see in
particular that the proposed policies have one thing in common, namely that they all
make the decision it by maximizing a certain function defined on [n] that depends on
the agent observation history up to the round t− 1. We refer to this kind of policy
as index-based (the function value is the index that guides the decision).

2.4.1 Index-based MAB policies

A large majority of existing MAB policies are based on a scoring index maintained
across rounds, which gives for each arm i and each round t a numerical value rep-
resenting the potential quality of arm i after t− 1 rounds. The score of the arm i
can be computed from n, t, the history and a possible source of randomness, i.e.,
is measurable with respect to Ft. These policies are described in the Algorithm 2
and work as follows. During the first n rounds, they sequentially play arms 1, 2, ...,n
to perform the initialization. In all subsequent rounds, they compute for each arm
the corresponding score and select the arm with the greatest one (ties are broken at
random). The scoring index of arm i at round t can generally be seen as a proxy
or estimates of the true mean µ∗i . Indeed, ultimately, when the agent have collected
enough knowledge to know the mean vector µ∗, the policy should behave as the op-
timal policy π∗, that is nothing else than Algorithm 2 with µ∗i as the score of arm i.
This is the reason why we sometimes use the notation µi,t for the score of arm i at
round t.
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Algorithm 2 Generic index-based MAB policy
Initialization: Play each arm once.
for t ∈ {n+ 1, . . . ,T} do
For all i ∈ [n], compute µi,t, the score of arm i at round t.
Play the arm it , arg maxi∈[n] µi,t, ties are broken at random.

end for

2.4.2 Examples

We give in Table 2.1 some well-known examples of index-based MAB policies. The
indexes provided are valid when the reward vector X is in [0, 1]n almost surely (for the
sake of simplicity, we limit ourselves to this case here). There are several quantities
that we have to define in order to be able to read Table 2.1. First, the agent can
estimate the mean µ∗i of every arm i with their corresponding empirical averages
defined as

µi,t−1 ,

∑
t′∈[t−1] I{i = it′}Xi,t′

Ni,t−1
,

for t ≥ 1, where Ni,t−1 ,
∑
t′∈[t−1] I{i = it′} is the number of time arm i have been

drawn for the first t− 1 rounds, as mentioned above in Remark 3. Another quantity
that can be used is the empirical variance of an arm i, defined as

σ2
i,t−1 ,

∑
t′∈[t−1] I{i = it′}

(
Xi,t′ − µi,t−1

)2

Ni,t−1
,

for t ≥ 1. Notice that another expression for the empirical variance (that is more
practical to maintain for a policy) is

σ2
i,t−1 =

∑
t′∈[t−1] I{i = it′}X2

i,t′

Ni,t−1
− µ2

i,t−1.

The advantage of maintaining such a quantity is that it allows the agent to measure
how uncertain the rewards obtained are, and can therefore be useful in the control of
the estimation error. For example, when the rewards of an arm i are deterministic, the
corresponding empirical variance is zero, allowing the agent to limit its exploration
on this arm.

We begin by describing ε-greedy (see Watkins (1989)), that is probably one
of the simplest MAB policy. Then, we describe policies which can be qualified as
optimistic, since they rely on the optimism in face of uncertainty principle (OFU
principle). We then provide a Bayesian randomized policy, thompson sampling
(ts), that maintain an estimated payoff distribution for each arm. Finally, we notice
that these previous policies are rather destined to satisfy the obtimality criterion
given in Theorem 1, and give moss, an example of a policy satisfying the second
criterion of optimality, given by Theorem 3.

ε-greedy

ε-greedy is easy to understand, since it simply chooses the arm uniformly at random
with probability ε, and choose the leader arm (the one with the highest empirical
average) with probability 1− ε. The exploration/exploitation phases are thus clearly
separated. A typical parameter value might be ε = 0.1, but, actually, any fixed
value of ε that is independent of T gives an expected cumulative regret that scales
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Name of the policy The score µi,t
ε-greedy µi,t−1I{Ut ≥ ε}

ucb 1∧
(
µi,t−1 +

√
0.5δ(t)
Ni,t−1

)

ucb-v 1∧

µi,t−1 +

√√√√2σ2
i,t−1δ(t)

Ni,t−1
+

3δ(t)
Ni,t−1


ucb-kl

The largest x ∈ [µi,t−1, 1] such that
Ni,t−1kl

(
µi,t−1,x

)
≤ δ(t)

thompson
sampling

An independent sample from
Beta(α,Ni,t−1 − α),

where α = Ni,t−1µ̃i,t−1

moss 1∧
(
µi,t−1 +

√
0∨ log(T/(nNi,t−1))

Ni,t−1

)

Table 2.1: Some examples of popular index score for rewards in
[0, 1]. δ(t) is an exploration function, that can be of the form δ(t) =
ζ log(t), with ζ > 1, or δ(t) = log(t) + 3 log log(t), for t ≥ 3, with
δ(1) = δ(2) = δ(3). For ts, µ̃i,t−1 can be µi,t−1 in practice. In
theory, when rewards are not binary, it is maintained replacing each

received reward Xi,t′ by a sample Yi,t′ ∼ Bernoulli
(
Xi,t′

)
.

linearly with T . Thus, since T is unknown, a value of ε decreasing as the experiment
progresses is more judicious (Cesa-Bianchi and Fischer, 1998; Auer, Cesa-Bianchi,
and Fischer, 2002), leading to very exploratory behavior at the beginning and very
exploitative behavior at the end. We can also comment on why ε = 0 is a policy that
will also have a linear regret in T . Let’s consider to illustrate this fact the example
of the Bernoulli bandit problem, with means in (0, 1). With a positive probability,
after the initialization phase, the empirical average of the best arm will be 0 and that
of all the others will be 1. From then on, the agent will never choose the best arm
again, because there will always be another sub-optimal arm with a positive empirical
average.

Optimistic policies

ucb, ucb-v and ucb-kl belongs to the family of optimistic policies, which proceed by
maintaining a confidence region for each arm expected payoff. For an arm i, we con-
struct the score µi,t as the supremum of the corresponding region. Thus defined, the
arms score can also be interpreted as the largest statistically plausible mean value of
the arm, given the currently available observation. Key ingredients in the construc-
tion of these algorithms (and also in their analysis) are concentration inequalities
(see subsection 2.5.1), used to upper bound the estimation error with high proba-
bility (which is equivalent to constructing the confidence region). The terminology
"optimistic" comes from the fact that for each arm i, the score µi,t is an upper confi-
dence bound (UCB) on the true mean µ∗i at round t, i.e., it is a slight overestimate of
µ∗i , with high probability. This overestimation is actually intended to counterbalance
the fact that the empirical mean is negatively biased as an estimator for the true
mean (Nie et al., 2017). This principle thus suggests to follow what seems to be the
best arm, based on the optimistically constructed arm-scores. In other words, the
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agent chooses the arm it by considering the most favorable environment among those
that seem likely, i.e., chooses in an optimistic way.

Upper Confidence Bound (ucb) Introduced by Auer, Cesa-Bianchi, and Fischer
(2002), the ucb algorithm relies essentially on the Hoeffding’s inequality (see Theo-
rem 5) to derive an upper bound on the regret (see Theorem 10). It derives for each
arm a confidence interval around the empirical mean, and chooses at each round the
arm with the highest UCB. Hoeffding’s inequality allows a close form for the UCB
of each arm i. More precisely, if we do not take into account that the final score is
capped at 1 (which is a simple consequence of the assumption that the variables are in
[0, 1]), it is the sum of two terms: the empirical mean µi,t−1 and the exploration bonus√

0.5δ(t)/Ni,t−1, that is a high probability upper bound on the estimation error of∣∣∣µi,t−1 − µ∗i
∣∣∣. The empirical mean is intended to guide the exploitation, measuring

which arm is the best given the observed history. The exploration bonus is intended
to guide exploration by indicating which arm has not been sampled much in the past.
Indeed, the less an arm i has been sampled, the lower its counter Ni,t−1 will be and
the bigger the bonus will be.

We will see later that the ucb algorithm can be analyzed relatively easily, and
that its theoretical performance is very close to the lower bound given in Theorem 1.
This makes ucb an ideal candidate for designing policies in many generalizations of
MABs, such as stochastic combinatorial semi-bandits.

Upper Confidence Bound with Variance estimates (ucb-v) Auer, Cesa-
Bianchi, and Fischer (2002) were the first to have the idea of exploiting the empirical
variance of the arm in order to design the exploration bonus. Informally, as we have
seen, an arm with a large variance should be explored more often than an arm with
a small variance. Thus, the ucb policy that we presented in the previous paragraph
explores too much, in the sense that the exploration bonus can be reduced in or-
der to improve policy performance. The formal study of variance estimation in ucb
type policies has been encouraged by the empirical superiority of such an approach
(Audibert, Munos, and Szepesvári, 2009b). The resulting policy, known as the Up-
per Confidence Bound with Variance estimates (ucb-v), is based on the Bernstein’s
concentration inequality, sharper than that of Hoeffding (see Theorem 6). Since an
approach considering a variance-dependent exploration bonus is not possible to con-
struct for the agent (because the true variances are unknown), confidence regions
around the empirical variances are also considered, giving in sum an approach based
on an empirical Bernstein inequality, where the exploration bonus depends on the
empirical variance (see Theorem 8). The gain in the exploration bonus compared to
the ucb policy is immediately reflected on the regret bound (see Theorem 10).

Upper Confidence Bound using the Kullback–Leibler divergence (ucb-kl)
The ucb-kl policy (also called kl-ucb in the literature (Garivier and Cappé, 2011))
uses an approach other than variance estimation in order to improve ucb, and is based
on a KL confidence region for bounded random variables in [0, 1] (see Corollary 2).
This policy and its analysis simultaneously appeared in Garivier and Cappé (2011)
and Maillard, Munos, and Stoltz (2011), and was latter unified by Cappé et al. (2013).
It is inspired by the seminal papers of Lai and Robbins (1985) and Burnetas and
Katehakis (1996). As Maillard, Munos, and Stoltz (2011) indicate, it aims to achieve
optimality guarantees in the sense of Burnetas and Katehakis (1996), i.e., to match
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the asymptotic regret lower bound by deriving an upper bound of the form

RT (π) ≤
∑

i∈[n], ∆i>0

log(T )(1 + o(1))∆i
kl(µ∗i ,µ∗i∗)

.

To give an intuition about the algorithm, ucb-kl treats the problem as if it were
a Bernoulli bandit one, and uses a confidence region specially adapted to this case.
Noticing that binary rewards is a kind of worst case, the method extends to any
variable in [0, 1]. More concretely, as we will see in subsection 2.5.1, the crucial step
for deriving a concentration inequality relies on a bound on the Moment-generating
function (MGF) λ 7→ E

[
eλX

]
. This bound is of the same type as the one given for

sub-Gaussian random variables (Definition 7). Thus, from random variables in [0, 1],
we can go back to binary variables thanks to the following Lemma.

Lemma 1. If X is a random variable in [0, 1] and Y ∼ Bernoulli(E[X ]), then, for
all λ ∈ R,

E
[
eλX

]
≤ E

[
eλY

]
.

Proof. If λ ≥ 0, we have from X ∈ [0, 1],

E
[
eλX

]
=
∑
k≥0

λkE
[
Xk
]

k!
≤ 1 +

∑
k≥1

λkE[X ]

k!
= 1 + E[X ]

(
eλ − 1

)
= E

[
eλY

]
.

In the case λ < 0, we first write E
[
eλX

]
= E

[
e−λ(1−X)

]
eλ. Using the above re-

sult with 1−X ∈ [0, 1] and −λ > 0, we have E
[
e−λ(1−X)

]
≤ E

[
e−λ(1−Y )

]
. Thus,

E
[
e−λ(1−X)

]
eλ ≤ E

[
e−λ(1−Y )

]
eλ = E

[
eλY

]
.

We can easily compare ucb-kl to ucb, since we can go from the first to the
second by considering the quadratic divergence 2(p− q)2 instead of the Kullback-
Leibler divergence kl(p, q). From Pinsker’s inequality (giving kl(p, q) ≥ 2(p − q)2

in this context), the KL confidence region is tighter, so the policy explores less,
resulting in a better bound on the regret (see Theorem 10, one can also see Cappé
et al. (2013) for an improved regret upper bound). Comparing ucb-kl to ucb-v is
not straightforward, because ucb-kl treats the problem as if rewards were binary,
leading to an overestimation of the variance. For instance, if rewards are deterministic
in (0, 1), then ucb-v is better. On the other hand, if rewards are binary, then ucb-kl
is better.

Thompson sampling

thompson sampling (ts) is an example of Bayesian randomized policy, introduced
by Thompson (1933) (see also Thompson (1935)), simultaneously with the MAB
problem. They have since been widely studied. Chapelle and Li (2011) provided a
thorough empirical evaluation of the policy, highlighting its advantages. Agrawal and
Goyal (2012b) gave an important first theoretical result, establishing a logarithmic
regret bound. Latter, Kaufmann, Korda, and Munos (2012) proved that ts is actually
matching the Lai and Robbins lower bound.

ts policy follows the Bayesian inference framework. The unknown distributions
are parameterized with an assumed prior distribution. ts uses the prior distribution in
each round with two phases: first it uses the prior distribution to sample a parameter,
which is used to determine the action to play in the current round; second it uses the
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feedback obtained in the current step to update the prior distribution to posterior
distribution according to the Bayes’ rule.

The use of Beta prior distribution is convenient as it is a conjugate distribution of
the Bernoulli distribution. This allows easy computations of the posterior distribution
after the observation of a Bernoulli realization. As for ucb-kl, we can extend the
algorithm for non-binary rewards. The trick here is to update the model using another
binary sample having the same mean as the true reward sample received. Indeed, in
terms of expected regret, suffering the binary sample instead of the true reward is
identical. Note that ts defines a family of algorithms as the choice of the priors is
left to the user.

Policy for the distribution-free case

Let us mention here that there are also policies being optimal in the minimax sense,
i.e., uniformly on all problems (they are matching the lower-bound from Theorem 3).
The most well-known such policy is moss (Minimax Optimal Strategy in the Stochas-
tic case) (Audibert and Bubeck, 2010; Degenne and Perchet, 2016a). This policy is
very similar to ucb, involving a modified exploration function for each arm.

2.4.3 Low/high probability events

In designing the above policies (particularly those that are optimistic), we have re-
ferred to events that have a high probability of occurring. We give here a more precise
meaning of this. For a round t, saying that an event At holds with low probability
means that P[At] = o(1/t) (and high-probability events are those whose complement
holds with a low probability). We justify this now: By taking out events occurring
with low probability, we wish to restrict the scope of possibilities to a high probability
event in order to better guide the choice it. Specifically, the choice it will be relevant
only under the high probability event ¬At, and will be meaningless otherwise. So if
we decompose the regret as follows

E

[
T∑
t=1

∆it

]
= E

[
T∑
t=1

∆itI{At}
]
+ E

[
T∑
t=1

∆itI{¬At}
]
,

then the first term can be bounded by maxi∈[n] ∆i
∑T
t=1 P[At]. We thus want

T∑
t=1

P[At] = o(log(T )),

in order to be certain that it will be negligible compared to the second term, which
we have seen must grow at least logarithmically (Theorem 1). One way to ensure this
is to require P[At] = o(1/t).

2.5 Regret upper bound analysis
There are two types of upper bounds we can provide, exactly as for lower bounds.
The first one is referred to as gap-dependent, because it depends explicitly on the
underlying gaps ∆i, i ∈ [n]. The second type is independent of the gaps, and is
referred to as gap-independent, or gap-free. A gap-free bound gives more general
guarantees as it would apply to several problem instances. However, the bound is
then the worst case among these instances. On the other hand, a gap-dependent
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bound depends on the problem instance and, in particular, helps to understand how
fast the policy can learn in the easier problem instances (i.e., those with large gaps).

We will only give an analysis of the regret of the optimistic policies we presented
above, for brevity’s sake. As already mentioned, this kind of analysis is simpler
to implement in the generalizations of the MAB setting to semi-bandit feedback
and is therefore of primary interest for our presentation. We will also focus on the
gap-dependent bounds. Indeed, we have just seen that gap-free bounds were not
informative about the difficulty of the problem at hand, so we have chosen not to
give priority to this kind of bound. Of course, when we have the opportunity to do
so, we will indicate the extent to which policies behave from a minimax point of view.
We refer the reader to the references given above for each policy for a case-by-case
analysis.

Before going into more details about regret upper bounds, we first give an overview
of the essential results allowing these bounds, namely concentration inequalities.

2.5.1 A tour of concentration inequalities

In this subsection, we prove the main results on the concentration of the empirical
mean towards the true mean. Concentration is a phenomenon concerning the behavior
of the distribution of the empirical mean. In order to quantify how the empirical mean
converges to the true mean, we look at a region around the empirical mean that
contains the true mean with high probability. The smaller this region is, the more
the empirical mean has concentrated towards the true mean. In the MAB context,
these regions are confidence intervals. They will not only serve to prove regret upper
bounds, but are also useful in understanding how policies are designed. Indeed, for
an arm i, the policy will choose the score µi,t as the UCB of the confidence interval
around µi,t−1. Thus, the challenge is to build a confidence interval — containing the
true mean with high probability — which is as tight as possible, because it would
determine how the policy will explore. A region that is too big leads to a policy
exploring too much. If the region is too small, the probability that the true mean does
not belong to the region becomes non-negligible, and gives rise to poor performance
as well.

In the whole subsection, we fix i ∈ [n], t ∈ N∗, and assume that Ni,t−1 ≥ 1. We
start with two definitions. The first defines the cumulant-generating function of the
random variable Xi as the logarithm of the MGF. The second defines the Legendre-
Fenchel conjugate of this function. We will use the latter, evaluated as the empirical
mean, to quantify the deviation from the true mean.

Definition 8 (Cumulant-generating function). The cumulant-generating function of
Xi is

φi(λ) , log E
[
eλXi

]
,

defined for all λ ∈ R where it is finite, which includes at least λ = 0. If it exists on
(λ1,λ2) containing 0, then φi is infinitely differentiable and is strictly convex on this
interval (if Xi is not deterministic).

Definition 9 (Convex conjugate of φi). If φi is defined on an open interval (λ1,λ2)
containing 0, then φ∗i : R→ R∪ {∞} is the convex conjugate of φi, defined by

φ∗i (z) , sup
λ∈(λ1,λ2)

(λz − φi(λ)) ≥ 0.
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It is strictly convex on {φ∗ < +∞}, and φi(µ∗i ) = 0 (by Jensen’s inequality). In par-
ticular, it is continuous and decreasing (resp. increasing) on the interval (−∞,µ∗i )∩
{φ∗i <∞} (resp. (µ∗i ,+∞) ∩ {φ∗i <∞}).

Before moving on to the central result of this subsection, it is useful to notice a
link between the sign of z − µ∗i and and the side where the maximizer λ should be
taken.
Lemma 2. If z < µ∗i , then

φ∗i (z) = sup
λ∈(λ1,0), λz−φi(λ)>0

(λz − φi(λ)),

and if z > µ∗i , then

φ∗i (z) = sup
λ∈(0,λ2), λz−φi(λ)>0

(λz − φi(λ)).

Proof. We only prove the first part, since the second uses symmetric arguments. The
function to maximize ψz : λ 7→ λz− φi(λ) is strictly concave. If there is a maximizer
λ ∈ (λ1,λ2), then the first order condition ψ′z(λ) = 0 gives φ′i(λ) = z < µ∗i = φ′i(0).
Since φ′i is increasing, this means that λ < 0. By strict concavity, we necessarily have
ψz(λ) > 0, proving the lemma in this case. If no maximizer exists, since ψ′z(0) =
z − µ∗i < 0, we have by continuity that ψ′z < 0 on (λ1,λ2), so ψz is decreasing and
φ∗i (z) = limλ→λ1(λz − φi(λ)). Since ψz(0) = 0, all the values λ ∈ (λ1, 0) are such
that ψz(λ) > 0, while values λ ∈ [0,λ2) are such that ψz(λ) ≤ 0, so the lemma is
proved in this case as well.

We now state the following theorem, which gives a bound on the probability that
the gap between the empirical mean and the true mean is greater than a certain
quantity. As we announced, the gap is measured with the function φ∗i . The preceding
Lemma 2 allows us to distinguish two cases, depending on whether the empirical
mean is smaller or larger than the true mean. As usual, we can group these two
cases together and end up with a probability multiplied by 2. The proof uses several
ingredients, including a peeling to deal with the random counters Ni,t−1.
Theorem 4. Assume that φi is finite on an open interval (λ1,λ2) containing 0.
Then, for δ > 1, the event

At ,
{
µ∗i > µi,t−1 and Ni,t−1φ

∗
i

(
µi,t−1

)
≥ δ

}
holds with probability lower than dδ log(t)ee1−δ. In a same way,

A′t ,
{
µ∗i < µi,t−1 and Ni,t−1φ

∗
i

(
µi,t−1

)
≥ δ

}
holds with probability lower than dδ log(t)ee1−δ.

Proof. As for Lemma 2, we only prove the first bound. We use a peeling argument
in order to deal with the random counter Ni,t−1. For this, let γ = δ/(δ− 1) > 1, and
consider the partition given by

Bd,t ,
{
Ni,t−1 ∈ (γd−1, γd]

}
,

for d ∈
{

1, . . . ,
⌈
logγ(t)

⌉}
. We now want to bound the probability of the event At ∩

Bd,t and then use an union bound on d ∈
{

1, . . . ,
⌈
logγ(t)

⌉}
. Since φ∗i is decreasing
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and continuous on the interval (−∞,µ∗i )∩ {φ∗i <∞}, we can define xi(N) for N ≥ 1
as xi(N) = −∞ if φ∗i < δ/N on this interval, and as the unique solution x ∈ (−∞,µ∗i )
to the equation Nφ∗i (x) = δ otherwise. Consider now that At ∩Bd,t holds. We have
from

γdφ∗i

(
µi,t−1

)
≥ γdδ/Ni,t−1 ≥ δ,

that µi,t−1 ≤ x
(
γd
)
. Taking some λ ∈ (λ1, 0) such that λx

(
γd
)
> φi(λ) thus gives

exp
(
λNi,t−1µi,t−1 − λNi,t−1x

(
γd
))
≥ 1,

i.e.,

exp
(
Ni,t−1

(
λµi,t−1 − φi(λ)

))
≥ exp

(
Ni,t−1

(
λx
(
γd
)
− φi(λ)

))
≥ exp

(
γd−1

(
λx
(
γd
)
− φi(λ)

))
.

We can thus bound the probability of the event At ∩Bd,t by the probability that the
above inequality holds. The definition of φi implies that

E
[
exp

(
Ni,t−1

(
λµi,t−1 − φi(λ)

))]
= E

[
t−1∏
u=1

exp(I{iu = i}(λXi,u − φi(λ)))
]

= E

[
E

[
t−1∏
u=1

exp(I{iu = i}(λXi,u − φi(λ)))
∣∣∣∣∣Ft−1

]]

= E

 t−2∏
u=1

exp(I{iu = i}(λXi,u − φi(λ)))E[exp(I{it−1 = i}(λXi,t−1 − φi(λ)))|Ft−1]︸ ︷︷ ︸
=1


= · · · = 1.

where we used that I{it = i} ∈ Ft, and Xi,t is independent of Ft. So from Markov
inequality,

P[At ∩Bd,t] ≤ P
[
exp

(
Ni,t−1

(
λµi,t−1 − φi(λ)

))
≥ exp

(
γd−1

(
λx
(
γd
)
− φi(λ)

))]
≤ exp

(
−γd−1

(
λx
(
γd
)
− φi(λ)

))
.

Notice that we can take the supremum of λx
(
γd
)
− φi(λ) over λ ∈ (λ1, 0) such that

λx
(
γd
)
> φi(λ), thus giving using Lemma 2 with x

(
γd
)
< µ∗i that

P[At ∩Bd,t] ≤ exp
(
−γd−1φ∗i

(
x
(
γd
)))

= e−δ/γ .

Putting everything together with an union bound, we have using log(δ/(δ − 1)) ≥
1/δ, that

P[At] ≤
dlogγ (t)e∑
d=1

P[At ∩Bd,t] ≤
⌈
logγ(t)

⌉
e−δ/γ = dδ log(t)ee1−δ.
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As we’ve seen, the event At defined in the previous theorem must be such that
P[At] = o(1/t). This determines which choice for δ > 1 we’re going to take. Indeed,
taking δ = δ(t) = log(t) + 3 log log(t), for t ≥ 3, with δ(1) = δ(2) = δ(3), gives for
t ≥ 3

dδ log(t)ee1−δ = e
⌈
log2(t) + 3 log(t) log log(t)

⌉
t−1 log−3(t) = o(1/t).

Notice also that δ = δ(t) = ζ log(t) for ζ > 1 also gives

dδ log(t)ee1−δ = e
⌈
ζ log2(t)

⌉
t−ζ = o(1/t).

One last ingredient needed in order to effectively use At in policy design is the
actual construction of φ∗i . This is where the hypothesis on the family of random
variables under consideration has an impact. In fact, we are not going to use φ∗i
directly, but rather another function also measuring the gap to the true mean and
which bounds inferiorly φ∗i . Indeed, φ∗i can be directly replaced by this lower bound
in the event At, as this can’t increase the probability of At. One way to build a lower
bound on φ∗i is to build an upper bound on φi, which coroborates the discussion
before Lemma 1, where we mention the importance of upper bounding the MGF in
order to have a concentration inequality. The simpler example of such upper bound
is the one given in Definition 7, leading to the following well-known theorem, the
Hoeffding’s inequality.
Theorem 5 (Hoeffding’s inequality, Hoeffding (1963)). If Xi is κ2-sub-Gaussian,
then

P

[
µ∗i − µi,t−1 ≥

√
2κ2δ(t)

Ni,t−1

]
≤ dδ(t) log(t)ee1−δ(t),

P

[
µi,t−1 − µ∗i ≥

√
2κ2δ(t)

Ni,t−1

]
≤ dδ(t) log(t)ee1−δ(t),

where δ(t) > 1.
Proof. We prove the first inequality, the second is obtained symmetrically. The event
can be rewritten as

At ,
{
µ∗i > µi,t−1, 0.5Ni,t−1

(
µ∗i − µi,t−1

)2
/κ2 ≥ δ(t)

}
.

Thus, from Theorem 4, it is sufficient to prove that φ∗i is lower bounded by z 7→
0.5(µ∗i − z)2/κ2. For this, we use the upper bound ψ(λ) = λµ∗i + κ2λ2/2 on φi(λ),
valid for all λ ∈ R, thanks to the sub-Gaussianity assumption. Since we have
ψ∗(z) ≤ φ∗i (z), it is sufficient to prove that ψ∗(z) = 0.5(µ∗i − z)2/κ2. This is a
direct consequence of ψ∗(z) = supλ∈R

(
λz − λµ∗i − κ2λ2/2

)
, where the maximizer is

λ = (z − µ∗i )/κ2.

Remark 5. Note that our definition of the κ2-sub-Gaussianity gives a bound on the
MGF of the centered version of Xi. However, Theorem 5 also holds when for all
λ ∈ R, E

[
eλXi

]
≤ eλ2κ2/2, with the same arguments.

Using Hoefding’s lemma (Proposition 2), we can state the following corollary.
Corollary 1. If Xi ∈ [0, 1], then

P

[
µ∗i − µi,t−1 ≥

√
0.5δ(t)
Ni,t−1

]
≤ dδ(t) log(t)ee1−δ(t),
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P

[
µi,t−1 − µ∗i ≥

√
0.5δ(t)
Ni,t−1

]
≤ dδ(t) log(t)ee1−δ(t),

where δ(t) > 1.

Due to its generality, Hoeffding’s inequality has been widely used in MAB scenar-
ios (the archetype is ucb). As mentioned before, a drawback of the bound is that it
does not scale with the variance of Xi. If the variance is known, Bernstein’s inequality
can be used instead, which can yield significant improvements when the variance is
small (as we will see in Chapter 4). In a more concrete way, in the case of bounded
random variables in [0, 1], there exist better bounds on the MGF than the one given
by sub-Gaussianity, and thus better concentration inequalities. Indeed, we provide
the following lemma, giving that bounded random variables satisfies an MGF bound
called Bernstein’s condition, which will be useful in the derivation of the Bernstein’s
inequality.

Lemma 3 (Bernstein’s condition for bounded random variables, see Vershynin (2009)).
If X is a random variable such that |X −E[X ]| ≤ c, for some c > 0, then for all
λ ∈ (−3/c, 3/c),

E
[
eλ(X−E[X ])

]
≤ e

λ2V[X ]/2
1−|λ|c/3 .

Proof. Let |λ| < 3/c, then

log E
[
eλ(X−E[X ])

]
= log

1 +
∑
k≥2

λk

k!
E
[
(X −E[X ])k

]
≤
∑
k≥2

λk

k!
E
[
(X −E[X ])k

]
log(x) ≤ x− 1 ∀x > 0,

≤ λ2V[X ]
∑
k≥2

|cλ|k−2

k!
|X −E[X ]| ≤ c

≤ 0.5λ2V[X ]
∑
k≥2

(
c|λ|
3

)k−2
k!/2 ≥ 3k−2, ∀k ≥ 2

=
λ2V[X ]/2
1− |λ|c/3 .

We see that making the second order moment appear helps us to bound the MGF
more precisely. We can also give a bound depending on the non-centered second order
moment.

Lemma 4 (Non-centered one-sided Bernstein’s condition). If X is a random variable
such that X ≤ c a.s., for some c ≥ 0, then for all λ ∈ (0, 3/c),

E
[
eλ(X−E[X ])

]
≤ e

λ2E[X2]/2
1−λc/3 .

Proof. Notice that g(x) = x−2(ex − 1 − x) is increasing on R. We have eλX =
1 + λX + λ2X2g(λX) ≤ 1 + λX + λ2X2g(λc). Then, taking the expectation and
using log(x) ≤ x− 1 ∀x > 0, we have

log E
[
eλX

]
≤ λE[X ] + λ2E

[
X2
]
g(λc).
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Now, in the same way as previously, using k!/2 ≥ 3k−2, ∀k ≥ 2, we have g(λc) =∑
k≥2(λc)

k−2/k! ≤ 1/(2(1− λc/3)), giving the result.

Remark 6. Notice that we can have c = 0 in Lemma 4, in which case the result hold
for any positive λ. This will be particularly useful in the proof of empirical Bernstein
bound, using it with variables −(Xi − µ∗i )2 ≤ c = 0.

We are now ready to state Bernstein’s inequality. We also give a non-centered
one-sided version. In a same way as for the Hoeffding’s inequality, we prove the
following Theorem 6 using the MGF bound given in Lemma 3.

Theorem 6 (Bernstein’s inequality, Bernstein (1924)). If |Xi − µ∗i | ≤ c, then

P

[
µi,t−1 − µ∗i ≥

cδ(t)

3Ni,t−1
+

√
2V[Xi]δ(t)

Ni,t−1

]
≤ dδ(t) log(t)ee1−δ(t),

P

[
µ∗i − µi,t−1 ≥

cδ(t)

3Ni,t−1
+

√
2V[Xi]δ(t)

Ni,t−1

]
≤ dδ(t) log(t)ee1−δ(t),

where δ(t) > 1.

Proof. As previously, we only prove the first inequality (in fact, the second inequality
can be found from the first replacing Xi by −Xi, and noticing that the upper bound
given in the previous Lemma 3 remains valid, as |−Xi −E[−Xi]| ≤ c). We assume
that V[Xi] > 0, since otherwise µi,t−1 = µ∗i a.s., and the result trivially holds. We
can derive the following lower bound on the function φ∗i (z), z > µ∗i ,

ψ∗(z) = sup
λ∈(0,3/c)

(
(z − µ∗i )λ−

λ2V[Xi]/2
1− |λ|c/3

)
= V[Xi] sup

λ∈(0,3/c)

(
3uλ/c− λ2/2

1− λc/3

)
,

where u = c(z−µ∗i )/(3V[Xi]). The objective is concave in (0, 3/c), so it is sufficient
to find a critical point in (0, 3/c). The critical points are given by

3u/c− λ

1− λc/3 −
λ2/6

(1− λc/3)2 = 0, i.e., λ2 − 6λ
c

+
18u

c2(1 + 2u) = 0.

Solving the two degree polynomial gives λ = 3c−1
(
1±

√
1/(1 + 2u)

)
, so there is a

single critical point in (0, 3/c), given by λ = 3c−1
(
1−

√
1/(1 + 2u)

)
. Injecting this

λ into the objective gives

ψ∗(z) = 9c−2V[Xi]h

(
c(z − µ∗i )
3V[Xi]

)
,

where h(x) , 1 + x−
√

1 + 2x for x ≥ 0. Notice that h : R+ → R+ is an increasing
function, and h−1(x) = x+

√
2x, x ≥ 0. Applying Theorem 4, we get that

At ,
{
µ∗i < µi,t−1 and Ni,t−1ψ

∗
(
µi,t−1

)
≥ δ(t)

}
holds with probability lower than dδ(t) log(t)ee1−δ(t). We can rewrite the condition
Ni,t−1ψ

∗
(
µi,t−1

)
≥ δ(t), using h−1, as

c(µi,t−1 − µ∗i )
3V[Xi]

≥ h−1
(

c2δ(t)

9V[Xi]Ni,t−1

)
,
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i.e.,

µi,t−1 − µ∗i ≥
cδ(t)

3Ni,t−1
+

√
2V[Xi]δ(t)

Ni,t−1
> 0.

Theorem 7 (Non-centered one-sided Bernstein’s inequality). If Xi ≤ c ∈ [0,∞),
then

P

[
µi,t−1 − µ∗i ≥

cδ(t)

3Ni,t−1
+

√
2E[X2

i ]δ(t)

Ni,t−1

]
≤ dδ(t) log(t)ee1−δ(t),

where δ(t) > 1.

Proof. We assume that E
[
X2
i

]
> 0, since otherwise µi,t−1 = µ∗i a.s., and the result

trivially holds. We can derive the same lower bound as previously on the function
φ∗i (z), z > µ∗i , except that the variance is replaced by the second order moment
E
[
X2
i

]
using Lemma 4.

ψ∗(z) = sup
λ∈(0,3/c)

(
(z − µ∗i )λ−

λ2E
[
X2
i

]
/2

1− λc/3

)
= E

[
X2
i

]
sup

λ∈(0,3/c)

(
3uλ/c− λ2/2

1− λc/3

)
,

where u = c(z − µ∗i )/(3E
[
X2
i

]
). All the remaining of the proof is the same as in

Theorem 6, giving the desired result.

Since a priori knowledge of each arm variance is rarely available, this approach is
not practical. A more suitable approach for MAB scenarios is to apply the previous
Bernstein’s inequality also to the empirical variance σ2

i,t−1. This results in a bound,
which we will call the empirical Bernstein bound (Audibert, Munos, and Szepesvári,
2009b) that we now state.

Theorem 8 (Empirical Bernstein inequality). Assume Xi ∈ [0, 1] and let δ(t) > 1.
With probability 1− 3dδ(t) log(t)ee1−δ(t), we have

∣∣∣µ∗i − µi,t−1

∣∣∣ ≤ 3δ(t)
Ni,t−1

+

√√√√2σ2
i,t−1δ(t)

Ni,t−1
.

Proof. We do not directly apply Bernstein’s inequality to the empirical variance,
because the latter looks at the deviations from the empirical mean, whereas we wish
to have the deviations from the true mean, in order to be able to apply the previous
result replacingXi by−(Xi−µ∗i )2. Indeed, this is possible since−(Xi−µ∗i )2 ≤ c = 0.
We thus get the two following inequalities, with probability 1− 3dδ(t) log(t)ee1−δ(t),

∣∣∣µ∗i − µi,t−1

∣∣∣ ≤ δ(t)

3Ni,t−1
+

√
2V[Xi]δ(t)

Ni,t−1
(2.10)

−σ̃2
i,t−1 − (−V[Xi]) ≤

√
2E[(Xi − µ∗i )4]δ(t)

Ni,t−1
≤
√

2V[Xi]δ(t)

Ni,t−1
, (2.11)

where σ̃2
i,t−1 = (1/Ni,t−1)

∑t
t′=1 I{it = i}(Xi,t′ − µ∗i )2. We can notice that

σ̃2
i,t−1 − σ2

i,t−1 =
(
µ∗i − µi,t−1

)2
,
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so, using (2.11),

V[Xi]− σ2
i,t−1 = V[Xi]− σ̃2

i,t−1 +
(
µ∗i − µi,t−1

)2

≤
√

2V[Xi]δ(t)

Ni,t−1
+
(
µ∗i − µi,t−1

)2
. (2.12)

Letting ` = δ(t)/Ni,t−1, we now prove that√
V[Xi] ≤

√
σ2
i,t−1 + 1.8

√
`. (2.13)

Since variables Xi are in [0, 1], we have
√

V[Xi] ≤ 1/2. If ` > 1/(3.6)2, then

1.8
√
` ≥ 1/2 ≥

√
V[Xi] and the inequality (2.13) holds. If ` ≤ 1/(3.6)2, then,

plugging (2.10) into (2.12) gives

V[Xi]− σ2
i,t−1 −

√
2V[Xi]` ≤

(
`

3 +
√

2V[Xi]`

)2

=
`2

9 +
2`
√

2V[Xi]`

3 + 2V[Xi]`

≤ `

9 · (3.6)2 +
2
√

2V[Xi]`

3 · (3.6)2 +

√
`V[Xi]

3.6

≤ `

100 + 1.77
√
`V[Xi].

This gives a second order polynomial inequality in
√

V[Xi], thus giving the bound√
V[Xi] ≤ 0.5 · 1.77

√
` +

√
σ2
i,t−1 + 0.8` ≤

√
σ2
i,t−1 + 1.8

√
`, finishing the proof of

(2.13). We finally plug (2.13) into (2.10) to get:∣∣∣µ∗i − µi,t−1

∣∣∣ ≤ √2σ2
i,t−1`+

(
1.8
√

2 + 1/3
)
` <

√
2σ2

i,t−1`+ 3`.

This proves the inequality of Theorem 8.

Note that in the previous Theorem 8, we manage to quantify the error committed
during the empirical estimation of the true mean, using an empirical quantity itself
(the empirical variance). This is essential because it allows the agent to efficiently
calculate and use the exploration bonus. However, once the choice it has been made
using this empirical bonus, we wish to express a bound on the regret that can account
for the advantage of using variance estimation. It may then be useful to further upper
bound the empirical variance to bring out the true variance. This is the purpose of
the next Proposition 3

Proposition 3 (Empirical variance concentration). Assume Xi ∈ [0, 1] and let
δ(t) > 1. With probability 1− dδ(t) log(t)ee1−δ(t), we have

√
σ2
i,t−1 ≤

√
V[Xi] +

√
0.5δ(t)
Ni,t−1

.

Proof. We use the same notations than in the proof of Theorem 8 concerning σ̃2
i,t−1

and `. Using Theorem 6 with Xi replaced by (Xi− µ∗i )2 ∈ [0, 1], we can consider the
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following event, which holds with probability 1− dδ(t) log(t)ee1−δ(t).

σ̃2
i,t−1 −V[Xi] ≤

`

3 +
√

2V[Xi]`.

The above inequality is obtained noticing that V
[
(Xi − µ∗i )2] ≤ V[Xi]. We assume

that this event holds. Since σ̃2
i,t−1 − σ2

i,t−1 =
(
µ∗i − µi,t−1

)2
, we can write

σ2
i,t−1 −V[Xi] ≤ σ2

i,t−1 −V[Xi] +
(
µ∗i − µi,t−1

)2
≤ `

3 +
√

2V[Xi]`.

This is again a second order polynomial inequality in
√

V[Xi], giving

√
V[Xi] ≥

−
√

2`+
√

2`/3 + 4
√
σ2
i,t−1

2 or
√

V[Xi] ≤
−
√

2`−
√

2`/3 + 4
√
σ2
i,t−1

2 .

Since the second inequality is impossible, we have

√
V[Xi] ≥

−
√

2`+
√

2`/3 + 4
√
σ2
i,t−1

2 ≥
√
σ2
i,t−1 −

√
2`
2 .

The inequalities of Hoeffding and Bernstein are, as we have seen, obtained from a
bound on the MGF. The tighter the bound, the more precise the inequality obtained.
It is then legitimate to wonder if it is really necessary to bound this function, and
if it is not possible to express it exactly. For some random variables (e.g., Gaussian
random variables), the MGF is easy to express:

if X ∼ N (0, V[X ]), E
[
eλX

]
= eλ

2V[X ]/2.

However, we often wish we could consider a family that is as general as possible.
Actually, in the vast majority of MAB problems, we only know that the variables
are bounded. Hoeffding’s idea is then to look at what this boundedness can give as
an upper bound on the MGF. He discovered (see Hoeffding’s lemma, Proposition 2)
that bounded variables MGF are bounded by that of a Gaussian, i.e., that they were
sub-Gaussian. In Lemma 1, we have seen that the MGF of a random variable in [0, 1]
is bounded by that of a Bernoulli distribution. This seems better than Hoeffding’s
result because a Gaussian random variable is no longer bounded, whereas a Bernoulli
one is. So the question is: can we simply express the MGF of a Bernoulli random
variable? The answer is yes, and we’ll even see that we can calculate φ∗i easily in this
case.

Proposition 4. If Xi is a Bernoulli distribution, then φ∗i (z) = kl(z,µ∗i ).

Proof. We want to prove that for all z ∈ R, supλ λz − log E
[
eλXi

]
= kl(z,µ∗i ). First

order condition implies

z =
E
[
Xie

λXi
]

E[eλXi ]
=

µ∗i e
λ

µ∗i e
λ + (1− µ∗i )

.
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Thus,

kl(z,µ∗i ) = z log
(
z

µ∗i

)
+ (1− z) log

(
1− z
1− µ∗i

)

= z log
(

eλ

µ∗i e
λ + (1− µ∗i )

)
+ (1− z) log

(
1

µ∗i e
λ + (1− µ∗i )

)
= zλ− log

(
µ∗i e

λ + (1− µ∗i )
)
.

We can thus adapt Theorem 4 together with the previous Proposition 4 and
Lemma 1 to get the following Corollary 2.

Corollary 2. If Xi ∈ [0, 1], then the event

At ,
{
µ∗i > µi,t−1 and Ni,t−1kl

(
µi,t−1,µ∗i

)
≥ δ(t)

}
holds with probability lower than dδ(t) log(t)ee1−δ(t). In a same way,

A′t ,
{
µ∗i < µi,t−1 and Ni,t−1kl

(
µi,t−1,µ∗i

)
≥ δ(t)

}
holds with probability lower than dδ(t) log(t)ee1−δ(t), with δ(t) > 1.

2.5.2 Regret upper bounds

In this section, we focus on proving gap dependent regret bounds for the optimistic
policies we previously introduced in section 2.4. To do so, we will make extensive
use of the previously introduced concentration inequalities. The scheme of the proof
is quite similar for the three algorithms, so we will unify the method used. More
concretely, each algorithm considers, for each arm i a confidence region, which we
will note Ci,t. The score µi,t of the i arm is then the sup of the region Ci,t. We recall
in the Table 2.2 the definition of Ci,t for each of the three algorithms. The tighter
the confidence region around the empirical average will be, the tighter the bound
will be. Since confidence intervals are only used on one side (because the policy is
characterized by the sup of the n intervals), we need a second ingredient to control
the behavior of the empirical mean on the left side of the true mean. This is the
purpose of Theorem 9.

Theorem 9. Let i be a sub-optimal arm. Let f be a non negative, decreasing and
continuous function defined on the interval [µ∗i ,µ∗i∗ ], with f(µ∗i∗) = 0. Then for all
t′ ≤ t, ε > 0, the event

At,t′ ,
{
Ni,t−1 = t′, f(µi,t−1)I

{
µi,t−1 < µ∗i∗

}
< f(µ∗i )/(1 + ε)

}
holds with probability lower than exp(−t′r(ε,µ∗i∗ ,µ∗i )), where r(ε,µ∗i∗ ,µ∗i ) is a positive
constant dependent of ε,µ∗i∗ ,µ∗i . In particular, we have that

E

∑
t∈[T ]

I
{
it = i, f(µi,t−1)I

{
µi,t−1 < µ∗i∗

}
< f(µ∗i )/(1 + ε)

}
= E

[∣∣∣{t ∈ [T ], it = i, f(µi,t−1)I
{
µi,t−1 < µ∗i∗

}
< f(µ∗i )/(1 + ε)

}∣∣∣]
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Name of the policy The region Ci,t
ucb

{
x ∈ [0, 1], 2Ni,t−1

(
x− µi,t−1

)2
≤ δ(t)

}

ucb-v

x ∈ [0, 1],
∣∣∣x− µi,t−1

∣∣∣ ≤
√√√√2σ2

i,t−1δ(t)

Ni,t−1
+

3δ(t)
Ni,t−1


ucb-kl

{
x ∈ [0, 1], Ni,t−1kl

(
µi,t−1,x

)
≤ δ(t)

}
Table 2.2: Confidence intervals for optimistic policies.

= E[
∣∣{t′ ∈ [T ], ∃t ≥ t′,At,t′

}∣∣] ≤ ∑
t′∈[T ]

exp(−t′r(ε,µ∗i∗ ,µ∗i )) ≤ 1/(1− e−r(ε,µ∗i∗ ,µ∗i ))

is bounded by a constant dependent of ε,µ∗i∗ ,µ∗i .

Proof. We can define x(ε) as the unique solution x ∈ (µ∗i ,µ∗i∗) to the equation f(x) =
f(µ∗i )/(1 + ε). Under the event At,t′ , we necessarily have µi,t−1 > x(ε), and so
exp

(
Ni,t−1(λµi,t−1 − φi(λ))

)
≥ exp(t′(λx(ε)− φi(λ))) for all λ ≥ 0. By Markov

inequality, the probability is thus bounded by exp(−t′(λx(ε)− φi(λ))), since the
expectation of the LHS is 1:

E
[
exp

(
Ni,t−1(λµi,t−1 − φi(λ))

)]
= E

[
t−1∏
u=1

exp(I{iu = i}(λXi,u − φi(λ)))
]

= E

[
E

[
t−1∏
u=1

exp(I{iu = i}(λXi,u − φi(λ)))
∣∣∣∣∣Ft−1

]]

= E

 t−2∏
u=1

exp(I{iu = i}(λXi,u − φi(λ)))E[exp(I{it−1 = i}(λXi,t−1 − φi(λ)))|Ft−1]︸ ︷︷ ︸
=1


= · · · = 1.

Using the fact that x(ε) > µ∗i in Lemma 2, we can take the supremum of λx(ε)−φi(λ)
over λ, which gives a probability bound of exp(−t′φ∗i (x(ε))).

Theorem 10. Assume that rewards are bounded in [0, 1]. Let δ(t) = log(t) +
3 log log(t), for t ≥ 3, with δ(1) = δ(2) = δ(3), and ε > 0. If π is the policy
described by ucb, then

RT (π) ≤ (1 + ε)
∑

i ,∆i>0

log(T )(1 + o(1))
2∆i

.

If π is the policy described by ucb-v, then there exists a constant c such that

RT (π) ≤ c
∑

i ,∆i>0

log(T )(V[Xi] + ∆i + o(1))
∆i

.

If π is the policy described by ucb-kl, then

RT (π) ≤ (1 + ε)
∑

i ,∆i>0
∆i

log(T )(1 + o(1))
kl(µ∗i ,µ∗i∗)

.
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Proof. Fixing any sub-optimal arm i, we can write

Ni,T = 1 +
T∑

t=n+1
I{it = i}.

The goal is to bound the expectation of this sum. Indeed, this then induces a bound
on the regret using the expression given in Remark 3. Let t ≥ n+ 1 be some round
where it = i. The confidence region of the optimal arm i∗ satisfies

P[µ∗i∗ ∈ Ci∗,t] ≥ 1− c′dδ(t) log(t)ee1−δ(t),

with c′ being a universal constant, so we assume that this event holds at round t (the
regret under its complementary is o(log(T ))). In addition, we can also assume that
the event {

f(µi,t−1)I
{
µi,t−1 < µ∗i∗

}
≥ f(µ∗i )/(1 + ε)

}
(2.14)

holds at round t, since the regret under its complementary is bounded by a constant
thanks to Theorem 9. We will chose f to be either f(x) = kl(x,µ∗i∗) or f(x) =
(x− µ∗i∗)

2 depending if we consider the policy ucb-kl or ucb/ucb-v respectively.
Using µ∗i∗ ∈ Ci∗,t and the definition of µt, the following holds at round t

µi,t = sup
j∈[n]

sup Cj,t ≥ sup Ci∗,t ≥ µ∗i∗ .

Using that µ∗i∗ ≥ µi,t−1 (thanks to the event (2.14)), this rewrite as

kl
(
µi,t−1,µi,t

)
≥ kl

(
µi,t−1,µ∗i∗

)
, for ucb-kl

and (
µi,t−1 − µi,t

)2
≥
(
µi,t−1 − µ∗i∗

)2
, for ucb/ucb-v.

The event (2.14) also gives a lower bound on the RHS of the two inequalities above:

kl
(
µi,t−1,µi,t

)
≥ kl(µ∗i ,µ∗i∗)/(1 + ε), for ucb-kl

and (
µi,t−1 − µi,t

)2
≥ ∆2

i /(1 + ε), for ucb/ucb-v.

If Λf ,ε,i denotes the square root of the RHS in the above inequalities, we can use the
definition of the confidence intervals to further upper bound Λf ,ε,i by some quantity
Di,t. When the policy is ucb-v, we first use the high probability bound on the
empirical variance given by Proposition 3. We thus obtain the bound with Di,t =√

2V[Xi]δ(t)/Ni,t−1 + 4δ(t)/Ni,t−1. To sum up, it is sufficient to bound

T∑
t=n+1

I{it = i, Di,t ≥ Λf ,ε,i}.

If the case of ucb-v, we use that I{it = i, Di,t ≥ Λf ,ε,i} is upper bounded by

I

{
it = i,

√
2V[Xi]δ(t)/Ni,t−1 ≥ Λf ,ε,i/2

}
+ I{it = i, 4δ(t)/Ni,t−1 ≥ Λf ,ε,i/2},
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and treat each case separately. So, let’s note that all that’s left to do is to bound a
term of the form

T∑
t=n+1

I
{
it = i, aδ(t)/Λα

f ,ε,i ≥ Ni,t−1
}

,

with a ≥ 0 and α ∈ {1, 2}. Noticing that it = i implies that Ni,t = Ni,t−1 + 1,
by bounding δ(t) by δ(T ), we get that the term above is lower than the number of
integers in [1, aδ(T )/Λα

f ,ε,i], so is bounded by aδ(T )/Λα
f ,ε,i.

We can notice that the asymptotic bounds above give a logarithmic rate of regret
when T is large. One question is what happens when T is relatively small compared
to the terms 1/∆i. The minimax performance measure is then in this case more
desirable. Results as Theorem 9 are not useful in this case, because although they
allow to bound the regret under the corresponding event by a constant, the latter
depends on the gaps ∆i, and we rather wish to have a universal constant, even if
it means having a greater multiplicative factor in front of the regret. We illustrate
here how a logarithmic but not asymptotic bound on ucb can be converted into a
minimax upper bound. This kind of conversion can also be derived for ucb-v and
ucb-kl.

Theorem 11 (Minimax upper bound for ucb). Assume that rewards are bounded in
[0, 1]. Let δ(t) = ζ log(t), with ζ > 1. If π is the policy described by ucb, then

RT (π) ≤ c+ c′
∑

i ,∆i>0

log(T )
∆i

,

where c, c′ are two universal constants.
Letting η > 0, we can thus write

RT (π)=E

∑
t∈[T ]

I{∆it ≤ η}∆it

+E

∑
t∈[T ]

I{∆it > η}∆it

≤Tη+ c+ c′(n−1) log(T )
η

.

Taking η = (c′(n− 1) log(T ))1/2T−1/2 gives

RT (π) ≤ c+ 2(c′(n− 1) log(T )T )1/2.

Proof. The proof is similar to the one given for Theorem 10. For a round t, we can
write

P[∀i ∈ [n], µ∗i ∈ Ci,t] ≥ 1− 2ndδ(t) log(t)ee1−δ(t).

We now assume that this high probability event holds at round t (the regret under
the complementary is bounded by a constant independent of ∆i), and use it to have
µi,t ≥ µ∗i∗ , i.e.,

√
2δ(t)/Ni,t−1 = diam Ci,t ≥ µi,t − µ∗i ≥ ∆i, since both µi,t and µ∗i

belongs to Ci,t. Exactly as for Theorem 10, we obtain the main term rate.

2.6 Some extensions
This section presents two specific extensions of the MAB problem found in the liter-
ature, namely, stochastic linear bandits and budgeted multi-armed bandit. We chose
to focus on these two extensions because they find applications in stochastic combi-
natorial semi-bandits, as we will see in upcoming chapters.
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2.6.1 Stochastic linear bandits

An interesting variant of MAB is the stochastic linear bandit problem, introduced
by Auer (2002). In this setting, the set of arms is no longer [n] but a subset X of
Rn. The set X is fixed and revealed to the agent. Pulling an arm x ∈ X , the agent
observes a noisy reward whose expected value is the dot product between x and an
unknown parameter θ∗ ∈ Rn,

Xxt,t = xT
t θ
∗ + ηt,

where xt is the arm pulled at round t and ηt is a centered noise affecting the reward
observation at round step t. Usually, more details about the noise models are specified
in each problem definition.

The above setting is intended to impose a linear structure on the reward received
by the agent. It becomes particularly interesting in applications where the number
of arms is very important compared to n. Indeed, we can see that the rewards are
linearly parameterized in a fixed n-dimensional space that does not depend on the
number of arms, contrary to classical MABs. On the other hand, in linear bandits,
pulling one arm gives information on the parameter θ∗ and thus indirectly, on the
reward value of the other arms. Therefore, the estimate of the average reward in
MAB is replaced here by the estimate of the components of θ∗. To put it plainly, by
modelling such a structure, the agent will be able to take advantage not only of the
dimension reduction imposed by the latent parameter, but also of the assumption of
linearity of the reward.

In this context, to guide the sample allocation strategy, the agent has to rely
on the estimation of θ∗ obtained from the observed rewards. More precisely, after
observing a sequence of rewards Xx1,1, . . . ,Xxt,t, an ordinary least squares (OLS)
estimator can be defined for the sample parameter θ∗ as

θ̂t , V −1
t

∑
t′∈[t]

xt′Xxt′ ,t′

,

where the matrix Vt ,
∑
t′∈[t] xt′xt′T is called the design matrix, and is an agglom-

eration of the pulling strategy up to round t. The OLS estimate enjoys a series of
interesting properties, such as concentration inequalities, that we are not going to de-
tail here, but that can be found for instance in Abbasi-Yadkori, Pál, and Szepesvári
(2011). It is by using the concentration inequalities on θ̂t−1 that the bandit policies
can be designed, and select which arm xt to play. Specifically, we can construct a
confidence ellipsoid whose center is the empirical estimate θ̂t−1 and which containing
the true parameter θ∗ with high probability. The confidence ellipsoid is usually with
respect to the euclidean norm associated to the design matrix Vt−1, i.e., of the form

Ct ,
{
θ ∈ Rn,

∥∥∥θ− θ̂t−1
∥∥∥2

Vt−1
≤ δ(t)

}
.

In fact, since the uncertainty here comes from the n components of θ∗, the width of
the ellipsoid in a certain direction is determined by the precision of the estimates cor-
responding to that direction. Thus, the goal is to be able to shrink as fast as possible
the volume of the confidence ellipsoid as the agent observes more and more samples.
Similarly to the MAB setting, the policies for cumulative regret minimization can use
a UCB strategy: they construct upper-bounds on the arms values using the margins
of the confidence ellipsoids. Then, according to the OFU principle, the policies pull
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the arms with the largest index. This is a direct adaptation of the ucb policy, that
start from the empirical estimate on the arm value xTθ̂t−1, to which an exploration
bonus is added, based on the uncertainty of estimating the reward of x. Specifically,
here the uncertainty is captured in the width of the confidence ellipsoid in direction
x. In other word, the UCB of the arm x is

xTθ̂t−1 +
√
δ(t)‖x‖V −1

t−1
.

This arm index construction has been introduced in Auer (2002). The good empirical
performance of an index-based policy following this type of construction was shown
in Li, Chu, et al. (2010).

The construction of the arm indices can also be seen as a bilinear optimization
problem

max
x∈X , θ∈Ct

xTθ = max
x∈X

(
xTθ̂t−1 +

√
δ(t)‖x‖V −1

t−1

)
.

We can finish by noticing that when X is large, the above optimization problem is
usually difficult to solve (it is in general NP-Hard, see Atamtürk and Gómez (2017)).
Thus, methods of the type ts may be preferred (Agrawal and Goyal, 2012b; Abeille
and Lazaric, 2017), because, in this context, the above optimization problem becomes
a linear program over X , since instead of maximizing over θ, we rather sample this
vector from a prior belief, and then simply optimize maxx∈X xTθ.

2.6.2 Budgeted Multi-armed Bandit

In budgeted MABs, to play an arm, the agent needs to pay a cost while receiving the
reward. In this new context, the agent targets at maximizing the cumulative reward
under a budget constraint for the total costs. This setting has been first studied by
Tran-Thanh, Chapman, et al. (2012), Ding, Qiny, et al. (2013), Vanchinathan et al.
(2015), and Xia, Ding, et al. (2016). The budgeted MAB problem can be formally
defined as follows. At round t, the agent pulls an arm it ∈ [n], receives a random
reward Xit,t, and pays a random cost Cit,t. Usually, we assume that both Xi,t and
Ci,t are supported in [0, 1] for all arm i ∈ [n], and have mean µ∗i and c∗i respectively.
The agent can keep pulling until the budget, B, runs out. B is a positive number
and does not need to be known to the agent in advance. Note that we do not assume
that the rewards of an arm are independent of its costs. The agent wants to follow a
policy π that minimizes the regret, which is usually defined as the differences between
F ∗B, the maximum expect cumulative reward that a pulling policy can obtain within
a budget B when the reward/cost distributions of all the arms are known, and the
expected reward that the policy π obtains under the budget constraint B. Formally,

RB(π) , F ∗B − FB(π),

where, for a policy π selecting arm it at round t,

FB(π) , E

[
τB−1∑
t=1

Xit,t

]
,

τB being the random round at which the remaining budget becomes negative: if
Bt , B −

∑
t′≤tCit′ ,t′ , then BτB−1 ≥ 0 and BτB < 0.

It is hard to find the optimal policy for the above setting. Even for the offline
setting in which the reward and cost of each arm are deterministic and known, the
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problem is an unbounded knapsack problem, which is NP-hard (Lueker, 1975). We
can nevertheless define a quasi-optimal policy, in the sense that its regret is bounded
by a constant. The quasi-optimal policy can simply be described as an index policy:
as long as the budget is not exhausted, the agent pulls the arm i = arg max µ∗i /c∗i .
As in standard MAB, this offline policy can inspire online policies. Indeed, in a
learning context, the constant due to the non-optimality of the offline policy will be
relatively small compared to the exploration/exploitation error that appears when B
is sufficiently large (more precisely, this error is logarithmic in B). Thus, to be more
specific, a ucb type policy can be used: the agent chooses in each round t the arm
maximizing the ratio µi,t/ci,t, where µi,t is a UCB on the true mean µ∗i , and ci,t is a
lower confidence bound (LCB) on the true expected cost c∗i . Note here that the OFU
principle results in an overestimation of the gains, but in an underestimation of the
costs.
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Chapter 3

General Framework for
Semi-Bandit Feedback

This chapter is an introduction to the framework of stochastic combinatorial multi-
armed bandits with semi-bandit feedback (CMAB), called more concisely stochastic
(combinatorial) semi-bandits. We organize it in the following way: first of all, we
formulate the CMAB setting in a general way, thus allowing a large number of problem
to be expressed. Then we give concrete examples of real-life use to motivate the
framework introduced. Finally, we present some general results that will be useful to
obtain regret upper bound for CMAB.

3.1 The stochastic combinatorial semi-bandits problem
The extension of MAB to the CMAB framework can be described in a few words:
the agent can now choose more than one arm in the same round. We call super-
arm or action a set of arm that the agent is allowed to play. The set of actions is
denote by A ⊂ P([n]) and is called the action space. This makes it possible to model
more complex situations, where the actions given to the agent are complex and can
be broken down into several small actions (the arms). In addition to the trade-off
between exploration and exploitation, CMAB must also deal with the exponential
explosion of possible actions that makes the exploration of all actions unfeasible. The
feedback received by the agent at round t is composed of the individual feedback
of each arm in the chosen super-arm At ∈ A, i.e., the agent observes eAt �Xt =
(Xi,tI{i ∈ At})i∈[n] (it observes only the outcomes of played arms in one round of
play). The reward obtained is a function of the individual outcomes. In the majority
of cases, the most natural reward to consider is linear with respect to the chosen action
(Kveton, Wen, Ashkan, and Szepesvari, 2015a), i.e., it is the sum of the individual
outcomes:

eT
AtXt =

∑
i∈At

Xi,t.

Remark 7. We can note that the distribution PX is no longer reduced to the collection
of the marginals. Indeed, since several arms are played together in one round, the
entire joint distribution of rewards plays a role. In particular, the correlations between
the arms matter. We will come back to this point in Chapter 7.

In the literature, the CMAB setting was first considered through some specific
instances of the problem. A number of studies considered simultaneous plays of any
subset of m arms among the n arms that are available (Anantharam, Varaiya, and
Walrand, 1987; Caro and Gallien, 2007; Liu, Liu, and Zhao, 2011). More complex
scenarios include:
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• The matching bandit problem (Gai, Krishnamachari, and Jain, 2010), where
the set of arms is the set of edges in a fixed bipartite graph, and A is the set
of matchings in this bipartite graph (we recall that a matching is a set of edges
without common vertices).

• The online shortest path problem (Liu and Zhao, 2012; Talebi, Zou, et al.,
2013), where the set of arms is the set of directed edges in a fixed directed
acyclic graph with a given source and destination, and A is the set of path from
the source to the destination.

We will give in sections 3.2 more scenarios of application for the CMAB setting. In the
following subsection we formalize more precisely the CMAB problem, incorporating
a generalization that will allow us to consider more application cases: we will assume
that the feedback obtained by the agent is random. This semi-bandit setting is known
as Semi-Bandits with Probabilistically Triggered Arms (Chen, Wang, and Yuan, 2016;
Wang and Chen, 2017), and is denoted CMAB-T.

3.1.1 Probabilistically triggered arms

We consider the setting in which actions may trigger arms probabilistically. In this
context, we denote the action space S, which is no longer necessarily a subset of
P([n]), but rather an external set that we allow to be infinite. At round t, the agent
selects an action St ∈ S, based on the feedback history from the previous rounds and
a possible extra source of randomness. Then, the environment draws an independent
sample Xt ∼ PX, Xt ∈ Rn. Then, a random subset of arms At ⊂ [n] are triggered.
The set At depends on St and Xt, but may have additional randomness. In other
words, we assume that At is drawn independently from a distribution Dtrig(St, Xt).
The outcomes of each triggered arm is observed as the feedback to the agent, i.e.,
eAt �Xt is observed. The agent finally obtains a reward ρ(St,At, Xt). Quantities
S,Dtrig, ρ are known to the agent.

This setting notably captures the CMAB framework (without probabilistically
triggered arms) described at the beginning of the section, taking S = A and Dtrig the
Dirac measure at St. More generally, it also encodes randomized policies, taking S
equal to the set of probability measures on A, and Dtrig(St, Xt) = St. It is sometimes
convenient to consider randomization as "undergone" by the agent, meaning that it is
encoded in At whereas St is deterministic. This is the case when the good properties
of the policy (such as being a solution to a certain optimization problem) are carried
by the distribution St used by the agent to generate At rather than by At itself.
Conversely, it is sometimes more practical to consider randomization as "controlled"
by the agent, meaning that it is encoded in the action St, as in the previous chapter.
This is the case when the random action St bears the good properties of the policy
(i.e., St satisfies some criterion, such as being solution to some optimization problem,
but is generated with a distribution that is not easy to describe otherwise). In any
case, we can extend the definition of the filtration (Ft) as

Ft ,
{
σ(U1) if t = 1
σ
(
U1,A1, eA1 �X1, . . . ,Ut−1,At−1, eAt−1 �Xt−1,Ut

)
if t ≥ 2.

When we do not want to consider the randomization in the filtration, we use Ht
instead, that we call history:

Ht ,
{
σ(∅) if t = 1
σ
(
U1,A1, eA1 �X1, . . . ,Ut−1,At−1, eAt−1 �Xt−1

)
if t ≥ 2.
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We will give in section 3.3 more examples of application for CMAB-T, where Dtrig
also depends on the sample Xt.

Remark 8. In the following, we will use the notation At to designate the set of arms
that is sampled in round t, and St the action that is chosen by the agent. In the
classical CMAB setting (without probabilistically triggered arms), we can notice that
At and St coincides. In this case, we will often use the notation At only, for the sake
of simplicity. Nevertheless, in some contexts it is convenient to distinguish the set At
(the coordinates of the vector Xt which are revealed to the agent) from the action St
(the action chosen by the agent). This is notably the case when the action St can be
described more succinctly than by the set At of arms associated with it.

3.1.2 The (approximation) regret

The performance of a policy is measured by its regret, which is the difference in ex-
pected cumulative reward between always playing the best action and playing actions
selected by the policy. Note, however, that even when the agent can compute exactly
the expected reward E[ρ(S,A, X)] for any S ∈ S, i.e., even when the learning process
of the distribution PX is completed, maximizing the quantity E[ρ(S,A, X)] for S ∈ S
can be hopeless. In some cases, there exist efficient approximation algorithms, that
we call oracles, outputting S ∈ S such that

E[ρ(S,A, X)] ≥ α sup
S′∈S

E[ρ(S′,A′, X)],

where α ∈ (0, 1] is an approximation ratio, and A ∼ Dtrig(S, X), A′ ∼ Dtrig(S′, X).
Under an α-approximation oracle, the benchmark cumulative reward should be the
α fraction of the optimal reward. Thus to evaluate the performance of a learning
policy π, we use the notion of approximation regret (Kakade, Kalai, and Ligett,
2009; Streeter and Golovin, 2009; Chen, Wang, and Yuan, 2016), defined as follows.

Definition 10 (Approximation regret). The T -round α-approximation regret of a
learning policy π that selects action St ∈ S at round t is defined as

RT ,α(π) , E

∑
t∈[T ]

∆(St)

,

where the approximation gap is defined as

∆(S) , 0∨
(
α sup
S′∈S

E[ρ(S′,A′, X)]−E[ρ(S,A, X)]

)
.

We also use the shortcut ∆t , ∆(St). When α = 1, meaning that one can efficiently
maximize E[ρ(S,A, X)], we denote the regret as RT = RT ,1.

Definition 11 (Reward function). Generally, the expected reward E[ρ(S,A, X)] is
a function of some unknown parameter vector w∗ related to the distribution PX, in
which case we use the notation r(S; w∗) , E[ρ(S,A, X)]. The agent thus aims to
minimize the (approximation) regret by learning this unknown vector. For instance,
the mean vector µ∗ can be this parameter vector when PX = ⊗i∈[n]Bernoulli(µ∗i ).
The function r is called the reward function. A first example (that does not involves
probabilistically triggered arms) is when the reward is linear: we have r(A;µ) , eT

Aµ,
because E[eT

AX] = eT
Aµ
∗.
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3.1.3 Other types of feedback

There exists other type of feedback in combinatorial bandits (Audibert, Bubeck,
and Lugosi, 2011), that include: full information, in which the player observes the
outcomes of all arms, and bandit, in which the player only observes the final reward
but no outcome of any individual arm. More complicated feedback dependences are
also considered in Mannor and Shamir (2011). In the whole thesis, we focus on the
semi-bandit feedback we introduced above.

3.2 Real world applications of CMAB
CMAB problems are driven by a wide range of real-world situations. Although many
models are quite simplistic to fully solve real world scenarios, they provide a very good
benchmark for providing effective solutions to these problems. In this section, we will
describe some examples of applications of the CMAB framework. We recall that the
feedback is semi-bandit: the agent observes the outcomes of the arms belonging to
the chosen action St = At. The last two applications (about maximum coverage)
are examples where it is convenient to have St 6= At, although they do not involves
probabilistically triggered arms.

In each of the following settings (except for the last two), note that we have
the choice to take a linear reward function depending on the need and the context.
When we choose a linear reward function, we take α = 1 in the definition of the regret,
because there is an offline algorithm that can optimize exactly the reward function
in a time polynomial in n. For example, the maximum weighted bipartite matching
problem (also called the assignment problem) can be solved in polynomial time using
the Hungarian algorithm (Kuhn, 1955). For the shortest path problem, many efficient
algorithms exists, and the most important are the Dijkstra’s algorithm (Dijkstra et
al., 1959) (with non-negative edge weight) and the Bellman–Ford algorithm (see e.g.,
Jukna and Schnitger (2016)).

3.2.1 More on the matching bandit problem

There is considerable interest in the development of mechanisms to access the digital
spectrum for more efficient use (as we saw earlier for the application of MAB to
cognitive radios). Indeed, cognitive radio networks, characterised by higher levels of
autonomy, intelligence and learning, are expected to play an important role in this
area. The matching bandit setting described in the previous section can model a type
of problem that can occur when optimizing the use of the communication network.
More precisely, the bipartite graph might represent, on the one hand, the users, and
on the other hand, the channels in which these users want to transmit. At each round,
a central instance (the agent) must assign each user to a channel, so that there is no
collision (i.e., if an user is assigned to some channel, there is no other conflicting user
on that channel). Notice that we thus implicitly assume that there are more channels
than users. Each edge of the graph is associated to a random outcome, and the
goal for the agent is to choose its matching so as to maximize the sum over the edges
belonging to the matching of the corresponding outcomes (notice, the reward function
is thus linear here). These outcomes represent the quality of the transmission made by
the user. The difference between the outcomes encodes the geographical dispersion of
the users: the channels are more or less accessible depending on many factor related
to the user behaviour. We give in Figure 3.1 an example of a bipartite graph encoding
an instance of the setting just described.
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Figure 3.1: Example of a bipartite graph considered in the matching
bandit problem. Red nodes are users, blue nodes are channels. Edges
represents the base arms. When an edge between a user and a channel
is present in the graph, it means that the user can transmit through
that channel. An example of matching is formed by the bold edges.

Another problem falling into the same type of combinatorial optimization is the
following: the agent is an online dating site, and it is earning at each round an
uncertain gain for each match made in that round. In addition to the dating market,
we can imagine other scenarios where finding a maximum weight match is a goal for
the agent.

3.2.2 More on the online shortest path problem

Routing is the mechanism by which paths are selected in a network to route data from
a sender to one or more recipients. Broadly, routing is performed in many types of
networks, including circuit-switched networks, such as the public switched telephone
network (PSTN), and computer networks, such as the Internet. Its performance is
important in decentralized networks, i.e., where information is not distributed by
a single source, but exchanged between independent nodes. Here, we consider, as
introduced in the previous section, a multi-hop communication network represented
by a directed graph. Assume that we have to send a stream of packets from the source
node to the destination node. At each round, a packet is sent along a chosen route
connecting the source to the destination. Depending on the network traffic (and other
factors, such as signal strength in wireless networks), each edge in the network may
have a different delay (the random outcome is usually minus the delay, to transform
the minimization problem into a maximization one), and the total delay the packet
suffers on the chosen route is the sum of delays of the edges composing the route (i.e.,
again, the reward function is linear).

The setting can also benefit when searching for the shortest route in a road net-
work. With increasing urbanisation and the growth of cities with several million
inhabitants, road networks are under great pressure. The problem of traffic alloca-
tion concerns the allocation of routes on a network that seeks to minimise a cost
defined by the instance of the problem (normally travel time is used). In order to
assign the shortest route to a user, the route planner (the agent) can use the outputs
of the previous recommendations (such as the speed of the vehicle along the route)
to optimize the proposed itinerary.
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3.2.3 Dynamic assortment

We consider a price-taking retailer (the agent) that has n products to sale. We assume
that each product has a fixed known marginal profit resulting from selling it. For
instance, the marginal profit can be the price at which the product is sold minus the
marginal cost paid by the agent for offering the product. At each round, a customer
arrives, with some unknown random valuation vector over products. Then, the agent
offers any subset ofm products (due to display space constraints, the retailer can offer
at most m products simultaneously), and the customer buys an offered product if and
only if its valuation is greater than its price. The agent is interested in maximizing
the total profit (revenue minus cost) from sales over T rounds, where T denotes the
total number of customers that arrive during the selling season. This setting have
been studied for instance in Sauré and Zeevi (2013).

3.2.4 Web page optimization

Building web pages that match user preferences is a major issue in a variety of situa-
tions: online advertising is an important application, as is the customization of home
pages or search engine results (Lagrée, Vernade, and Cappe, 2016). Learning how to
place items in multi-position displays or lists is a task that can be integrated into the
semi-banded framework. To be more precise, our agent here is the designer of the
web page in question. At the beginning of each round (a round can be for instance
an hour, a day, or simply a user reaching the page), the agent chooses a design for
the web page: it chooses which elements (clickable) and where to place them. At the
end of the round, the agent observes the outcomes corresponding to the number of
clicks (or the click-through-rate) on each element placed, and can update the design
for a new round. The agent’s goal is to maximize the total number of clicks. In this
setting, arms are pairs (item, position), and super-arms are a set of m arms with
pairwise disjoint positions and items. Depending on the setting considered, several
types of reward functions can be used: we can for example associate to each pair
(item, position) an outcome, in which case we have a linear reward function. Note
that this setting is similar to the matching bandit setting, where the items form one
part of the bipartite graph, and the positions form the second part.

3.2.5 Crowdsourcing

Crowdsourcing has received considerable attention in recent years and many applica-
tions have been successful, such as gathering information quickly during a disaster,
performing tasks that are difficult to automate and need to be solved by human work-
ers, conducting large-scale surveys or contributing to scientific projects. There are at
least two types of crowdsourced tasks: micro-tasks, uniformly priced at a few cents,
and expert tasks, where the employer (the agent) has much more control over the
selection of individual workers, and must also take into account the potentially very
heterogeneous and higher costs (workers often charge 10 to 50 per hour). To address
the specific challenges of crowdsourcing experts, the agent can see workers as arms.
This set of workers is usually determined by an open call for participation by the
employer, to which qualified and available workers respond. Assigning a single task
to a worker can be regarded as pulling the arm. This incurs a cost that is set by the
worker, and the assignment produces an outcome. The agent has a total budget of B
to spend on crowdsourcing the tasks, and wishes to maximize the overall sum of the
outcomes (notice, we thus here also fall into the budgeted bandit setting described
in the end of the previous chapter). Last but not least, the agent would also like to
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have completed the tasks in a minimum amount of time. Thus, at each round, the
agent pays an additional fixed cost, modeling the time. In this context, the agent
should therefore assign tasks to several workers in a single round, in order to go faster,
while taking into account the efficiency of each agent. A similar setting have been
considered in Tran-Thanh, Stein, et al. (2014).

3.2.6 Real-time strategy games

We have already seen that MCTS approaches such as uct are useful for exploring
game trees. These techniques have been successful for games with a moderate branch-
ing factor. For real-time strategy (RTS) games, where the magnitude of the branching
factor is combinatorial due to the fact that multiple units can be issued actions simul-
taneously, a CMAB approach may be preferable. Indeed, RTS games are adversarial
games, generally simulating battles or complex interactions between a large number
of units (workers, military units, ...), that pose a significant challenge to both human
and artificial intelligence (because of the enormous action and state space, and be-
cause they are real time). In addition, some RTS games are also partially observable
and non-deterministic, which further motivates the use of CMABs. More specifically,
the use of MABs in MCTS alorithms was useful to explore and evaluate the quality
of the actions available. As in the context of RTS games, the available actions are
broken down into several local actions, the MAB approach naturally translates into
a CMAB approach: the agent benefits from the estimation of a local action (i.e., an
arm) in each super-arm containing it. The internal structure of the setting is thus
exploited. The above setting have been considered in Ontanón (2013).

It should be noted, however, that the reward function may be difficult to capture
in many RTS games, and that it is generally not linear, as specific combinations
of local actions may lead to specific rewards. On the other hand, the assumption
of semi-bandit feedback is also debatable. Indeed, the outcome of a played arm
is not always observed individually, especially when other arms interfere with the
perceived outcome (which can be, depending on the situation, a gain of resources,
the destruction of strategic buildings, ...). Nevertheless, it can be argued that only the
current state of the game (which does not change during MC simulations) influences
the outcome that a certain arm produces.

3.2.7 Probabilistic maximum coverage bandit

The probabilistic maximum coverage (PMC) bandit problem is the bandit version
of the maximum coverage problem (Hochbaum, 1997). As stated previously, it is
an example where it is practical to distinguish the chosen action St from the set of
arms At that is associated to that action. The problem can be described as follows:
consider a bipartite graph G = (L,R,E), with E ⊂ L×R, where each edge ij is
an arm and has an unknown probability µ∗ij ∈ [0, 1] associated to it. The action
space S is the collection of subsets of L of size m. The random vector X ∈ RE is
sampled from ⊗ij∈EBernoulli

(
µ∗ij

)
. Each time an action S is chosen, the set of arms

A = E ∩ (S ×R) = {ij ∈ E : i ∈ S} is observed. The reward is the cardinality of the
set {j : ij ∈ A, Xij = 1}, i.e., is the number of right hand vertex that are covered
by a node from the action S (see Figure 3.2). Notice thus that the reward function
(i.e., the expected reward) is

r(S;µ) ,
∑
j∈R

1−
∏

i∈S: ij∈E
(1− µij)

.
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Figure 3.2: Example of a bipartite graph considered in the PMC ban-
dit problem. Red nodes are those in the action S. Edges ij represented
with bold lines are those with Xij = 1, and the others, represented
with dash lines, are such that Xij = 0. A bold edge adjacent to a
red node makes the other node of that edge blue. Thus, blue nodes
are those covered by the red ones. The reward is the number of blue

nodes.

As a function of S, the reward function r is monotone, meaning that r(S;µ) ≥
r(S′;µ) for S′ ⊂ S, and submodular (Fujishige, 2005), meaning that for any pair of
sets S and S′, we have

r(S;µ) + r(S′;µ) ≥ r(S ∪ S′;µ) + r(S ∩ S′;µ).

Submodularity will be further studied in chapters 5 and 6. We can say here that
the problem of maximizing r, for a certain parameter µ, over subsets of L of size
m, is inapproximable within a factor better than 1− 1/e, unless P = NP (Feige,
1998). The greedy algorithm for maximum coverage chooses sets according to one
rule: at each stage (and until the solution is of size m), add the L node to the
current solution which covers the largest number of uncovered elements. It can be
shown that this algorithm achieves an approximation ratio of 1− 1/e (Hochbaum,
1996). In conclusion, in the above Definition 10 of the approximation regret, we take
α = 1− 1/e for the PMC bandit problem.

PMC bandit have been studied by Chen, Wang, and Yuan (2013), and more
recently by Merlis and Mannor (2019). Several applications of PMC exist (McGregor
and Vu, 2019), such as sensor allocation (Krause and Guestrin, 2007), information
retrieval (Anagnostopoulos et al., 2015), ad placement (Radlinski, Kleinberg, and
Joachims, 2008), influencer marketing (Kempe, Kleinberg, and Tardos, 2015) or blog
monitoring (Saha and Getoor, 2009). We give here one real-world application of the
PMC framework introduced above.

Content delivery network A content delivery network (CDN) (Pathan, Buyya,
and Vakali, 2008) is a collaborative collection of network elements spanning the In-
ternet and arranged for more effective delivery of the content. In a CDN, content
is replicated over several mirrored Web servers in order to perform transparent and
effective delivery of content to the end users. The mirrored servers are strategically
placed at various locations to deal with sudden spikes in the requests. A critical
aspect in the operation of a CDN is how contents are placed on surrogate servers.



3.3. Real world applications of CMAB-T 71

Ideally, content is placed on a set of surrogate servers that should be chosen to max-
imize the total number of requests served. For each server hosting the content, the
list of users who have made a request to access the content from that server is known,
and may change on the fly. The same user can send a request to several servers when
possible. The PMC bandit setting can be used to sequentially select the set of servers
(L nodes). The rounds represent time steps, and in each round t, the agent selects a
set of m servers (m stands for a constraint on the maximum number of servers that
can be used). Then, for each selected server, the list of users (R nodes) submitting a
request to that server within the current round is received (modeled by Xij,t). The
goal is to maximize the total number of users covered (summing over all rounds).

3.2.8 Weighted maximum coverage bandit

For some applications, in the PMC bandit problem introduced above, the sets of R
nodes covered by a selected L node is not random. On the other hand, the gain asso-
ciated with each node can be random (no longer equal to 1). This kind of scenario can
happen for example in the above CDN example: let’s imagine that surrogate servers
are connected to several infrastructures (deterministically), but that the number of
requests linked to these infrastructures is random, and does not depend on the type
of server connected to the infrastructure. In this kind of context, the arms are no
longer the edges, but the R nodes, and the outcomes are the random gain (i.e., the
number of requests) associated to them. It is thus easier to learn how to optimize
the coverage because the number of parameters to learn is no longer |L| × |R|, but
only |R|. Moreover, the set R can in principle be much smaller than before, because
users are grouped into infrastructures (one can imagine that the total number of in-
frastructures can potentially be much smaller than the total number of users). If S is
a set of m nodes from L, and if w ∈ RR

+ is a parameter vector standing for the mean
of the R node outcomes, then the reward function is defined as

r(S; w) ,
∑
j∈R

wjI{S is connected to j}.

This function is still monotone and submodular in S, and for the same reasons as for
the PMC bandit, we take α = 1− 1/e in Definition 10.

3.3 Real world applications of CMAB-T
In this section, we give some concrete examples of use of the CMAB-T setting. We
recall that St and At are always different in this case: At is an element of P([n]),
while St belongs to an action space S that may not be a subset of P([n]).

3.3.1 Cascading bandits

Cascading bandits have been studied in Kveton, Szepesvari, et al. (2015), Kveton,
Wen, Ashkan, and Szepesvari (2015a), and Li, Wang, et al. (2016), and can be intro-
duced as follows. There are n arms, associated with independent Bernoulli outcomes.
An action is any ordered sequence of arms of cardinality m. Playing an action means
that the outcomes of the arms are revealed one by one following the sequence order
until certain stopping condition is satisfied. The feedback is the outcomes of revealed
arms and the reward is a function of these arms. There are two main forms for this
problem:
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• The disjunctive form: the agent stops when the first 1 is revealed and gains
reward of 1, or it reaches the end and gains reward 0. The reward function is
thus of the form

r(S;µ) , 1−
∏
i∈S

(1− µi).

The triggered set of arms A is a prefix set of the action S = (s1, . . . , sm):
A = {s1, . . . , sk}, such that k is the first in S with Xsk = 1.

• The conjunctive form: the agent stops when the first 0 is revealed (and receives
reward 0) or it reaches the end with all 1 outcomes (and receives reward 1).
The reward function is thus of the form

r(S;µ) ,
∏
i∈S

µi.

The triggered set of arms A is {s1, . . . , sk}, such that k is the first in S with
Xsk = 0.

Cascading bandits can be used to model online recommendation and advertising. In
this context, the agent recommend a list of m items to a user (such as web pages).
The user examines the recommended list from the first item to the last, and selects
the first attractive item (i.e., click on it for web search), or don’t select any item if
none is attractive. This is an example of the disjunctive form with an outcome 1 for
each attractive item, and a reward 1 if a click occurs. Another application is network
routing reliability. In this context, the action S represents of a path to route data
from a sender to a recipients. The goal for the agent is to be able to route the data
using a path that does not contain a defective arm (i.e., a broken edge). This is
an example of the conjunctive form with an outcome 0 for each broken arm, and a
reward of 1 when the data was successfully transmitted (i.e., no broken edge were
present in the selected path).

Let us note finally that the functions r described here are maximized exactly by
taking S containing the m arms having the largest means (we can thus take α = 1 in
the regret).

3.3.2 Weighted probabilistic maximum coverage bandit

We can mix the two maximum coverage bandit problems introduced in the previous
section. In this new setting, we have random weights associated with R nodes on the
top of the PMC bandit setting. Even if both problems were instances of CMAB, their
association becomes a CMAB-T problem, because the random weights associated
with R nodes are only observed if there is a selected L node covering it: there is
therefore randomness in the feedback the agent receives. More precisely, our set of
arms here is E, but it should be noted that each arm ij ∈ E has two outcomes: a
Bernoulli variable Xij ∈ {0, 1} encoding if the node i covers the node j, and another
variable Wj ∈ R+ encoding the weight associated with the node j. We assume that
P(W,X) = PW ⊗

(
⊗ij∈EPXij

)
, i.e., weights are assume to be independent from X

(note, however, that the weights are not assumed to be mutually independent). When
an action St ⊂ L is played at round t, the feedback received is

(Xij,tI{i ∈ S}), (Wj,tI{∃i ∈ S, Xij,t = 1}).
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We can thus see that the feedback set associated with Xt is not random (it is the
same as for the PMC bandit problem), whereas the feedback set associated with Wt

is: the randomness is given by Xt itself.
Using the independence assumption we can see that the reward function is

r(S;µ, w) ,
∑
j∈R

wj

1−
∏

i∈S: ij∈E
(1− µij)

.

As before, r is submudular, and we can define the approximation regret with α =
1− 1/e.

The types of scenarios in which this setting can occur are the same as those in
the PMC bandit problem, but where not every node has the same importance to
be covered. In the context of CDN, this can happen, for example, when users are
heterogeneous (they do not have the same type of subscription, they are willing to
pay more for access to content, ...).

3.3.3 Online influence maximization

Influence maximization (IM) is the problem of finding a small set of most influential
nodes in a social network so that their aggregated influence in the network is max-
imized. Online influence maximization (OIM) is the bandit version of this problem
(Chen, Wang, and Yuan, 2016; Wen, Kveton, Valko, et al., 2017). We refer the reader
to Chapter 6 for further details about OIM. In IM (Kempe, Kleinberg, and Tardos,
2015), we are given a directed graph G = (V ,E), where V and E are sets of vertices
and edges respectively. Each edge ij represents a connections between the two users
i and j (e.g., i follows j in the social network). An underlying diffusion model D
governs how information spreads in G. More precisely, D is a probability distribution
on subgraphs1 G′ of G. Several types of distributions D exist in the literature, and
the two best known are as follows:

• Independent cascade model (IC): the random subgraph G′ = GW is

GW , (V , {ij ∈ E : Wij = 1}),

where PW , ⊗ij∈EBernoulli
(
w∗ij

)
.

• Linear threshold model (LT): the random subgraph G′ is GW, with PW ,

⊗j∈V Multinoulli
((
w∗ij

)
i: ij∈E

)
, i.e., for every j ∈ V , select at most one of its

incoming edges at random, such that edge ij is selected with probability w∗ij ,
and no edge is selected with probability 1−∑i: ij∈E w

∗
ij ≥ 0.

Given some seed set S, the spread σ(S; w) is defined as the expected number of S-
reachable nodes in G′ ∼ D (i.e., the number of nodes in G′ that are reachable from
some node in S), where D is a distribution parameterized by w as in the IC and LT
models. IM aims to find S that is a solution to

max
|S|=m

σ(S; w). (3.1)

Although IM is NP-hard under standard diffusion models — i.e., IC and LT — σ is
a monotone submodular function of S. In particular, Kempe, Kleinberg, and Tardos

1A subgraph of a graph G is obtained by removing some edges from G.
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(2015) provide a greedy algorithm with an approximation ratio of α = 1− 1/e− ε
for all ε > 0.

For OIM, the distribution D is unknown and is parameterized by an unknown
vector w∗. D must be learned over time by repeated influence maximization tasks:
at each round t, m seed nodes St are selected, the influence propagation of St is
observed and the reward is the number of nodes activated in that round. The agent
wants to repeat this process to accumulate as much reward as possible. More precisely,
the set of arms is the set of edges E, the outcomes are Wt and the feedback set is
At =

{
ij ∈ E : St

Wt i

}
, where GWt ∼ D, and where the predicate St

Wt i holds if,
in the graph GWt , there is a forward path from a node in St to the node i. In other
word, At is the set of edges reachable from St in G′ = GWt . The reward ρ(S,A, W)
is the number of nodes that is reached from S through G′, and the expected reward
is exactly the influence spread σ(S; w∗).

3.4 General technical results: toward proving regret up-
per bounds

In this section, now that we have reviewed many applications of the CMAB and
CMAB-T settings, we will begin to see how an upper bound on the regret of a policy
can be proven. In all the thesis, we are only interested in the rate that regret has
up to a multiplicative universal factor. In other words, we are interested in proving
upper bound of the form

RT (π) = O(f(T )),

with f being a function that may depend on the input of the problem. By O, we mean
that the ratio RT (π)/f(T ) must be bounded by a universal constant for all T ∈N∗.
It should be noted that this section contains some fairly technical derivations, and
that the reader who wants to go through the thesis quickly can skip the rest of the
chapter to go to the next Chapter 4. The results that are presented here will find
applications throughout the thesis, and are stated in a general enough way so that
they can be used in a large number of applications, that may go beyond the scope of
the thesis.

In this section, for the sake of generality, and to cover also the budgeted bandit
settings, we assume that the horizon T may be random. Let’s recall the definition of
the counters:

∀i ∈ [n], ∀t ≥ 1, Ni,t−1 =
t−1∑
t′=1

I{i ∈ At′}.

There are also some other definitions that will be useful for the analysis and the regret
bound expression.

Definition 12 (Triggering probabilities). For an arm i ∈ [n] and an action S ∈ S,
we define the probability that action S triggers arm i as

pi(S) , P[i ∈ A],

where A ∼ Dtrig(S, X). In particular, since St ∈ Ft, we have

pi(St) = P[ i ∈ At|Ft].
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Several other quantities can be defined from the gaps and pi(S):

∀i ∈ [n], ∆i,min , min
S∈S : pi(S)>0, ∆(S)>0

∆(S),

∀i ∈ [n], ∆i,max , max
S∈S, pi(S)>0, ∆(S)>0

∆(S).

As a convention, if there is no action S such that pi(S) > 0 and ∆(S) > 0, we
define ∆i,min = +∞ and ∆i,max = 0. We also define ∆min , mini∈[n] ∆i,min and
∆max , maxi∈[n] ∆i,max. We define the maximum number of arms that can be trig-
gered together with some arm i as

mi , max
S∈S, pi(S)>0

∑
j∈[n]

I{pj(S) > 0}.

Finally, we let bi(St) ≥ 0 be some quantity depending on i and St, which we can
choose according to our needs.

3.4.1 How to prove regret bounds?

As we saw in the previous chapter, the regret analysis of an MAB policy is based on
high probability events. It will be the same for CMAB-T policies. To recall, at a
round t, the possibility space for this round is divided into several mutually exclusive
and exhaustive events, and the regret is filtered against each of these events. We
thus obtain a sum of several event-filtered regrets. The goal is to upper bound each of
these terms. One term dominates the others when T is large. It is called the leading
term and it summarizes the regret upper bound rate. In a sense, therefore, the other
events aim to restrict the possibilities — without their filtered regret being too large
— in order to gather the right conditions to prove the leading term upper bound.
Generally, the leading term is obtained by bounding ∆t by an error term that is easier
to apprehend when summed over t ∈ [T ]. The way to bound ∆t by an error term
depends on the policy that is under consideration. As for index-based MAB policies,
there is a usual form for CMAB-T policies, that can be described as follows:

• Consider an estimate µt of the true mean at round t.

• Plug µt into an oracle that α-approximately maximizes S 7→ r(S;µt).

Under the right conditions, the estimate µt is "close enough" to µ∗ so that we can
bound ∆t by

α sup
S′∈S

r(S′;µt)− r(St;µ∗).

Using the definition of the oracle, this is further bounded by

r(St;µt)− r(St;µ∗). (3.2)

The type of error term that we obtain in the end therefore depends on how "close
enough" µt is to µ∗. More precisely, it is necessary to arbitrate between a µt fairly
optimistic so as to provide the first bound on ∆t, and a µt not too optimistic so as
to reduce the gap (3.2) as much as possible. If, to simplify, we leave optimism aside,
the choice of the empirical average µt = µt−1 seems obvious. The gap (3.2) is thus
controlled by the concentration of µt−1 to µ∗. Therefore, we generally refer to the
error term as a bonus, even if it is not explicitly used in the policy (or if the policy is
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not even optimistic). The purpose of this section is to see what kind of regret bound
we can get depending on the type of bonus we have.

An example of bonus building There are many ways to proceed in order to
build a bonus. Generally speaking, there are two basic ingredients at work. First,
a smoothness relation to link the variation of the objective function r(S;µ) to the
variation of the parameter µ. This smoothness relation provides a bound on (3.2).
Then, a concentration inequality, in order to limit the variation of the parameter. In
the context of CMAB-T, a widespread smoothness relation allowing to treat objective
functions resembling to linear functions is the following `1-norm triggering probability
modulated condition (Wang and Chen, 2017):

∀S ∈ S, ∀µ,µ′ ∈ Rn,
∣∣r(S;µ)− r(S;µ′)

∣∣ ≤ B∑
i

pi(S)
∣∣µi − µ′i∣∣,

where B is a constant. For the right choice of B, this relation holds in all the CMAB-
T problems we considered previously. In the following, we give an example of bonus
built from such relation for the reward function. To do so, we use a confidence region
on the parameter vector together with the following Hölder’s inequality for p ≥ 1:

∑
i

pi(St)
∣∣∣µi,t−1 − µ∗i

∣∣∣ ≤
∥∥∥∥∥∥
(
pi(St)

N1/2
i,t−1

)
i

∥∥∥∥∥∥
p

∥∥∥(N1/2
i,t−1

∣∣∣µi,t−1 − µ∗i
∣∣∣)
i

∥∥∥
p
p−1︸ ︷︷ ︸

(3.3)

.

Here, the confidence region is defined as a bound on (3.3). For simplicity’s sake,
let’s assume that outcomes received are Gaussian of unit variance, and that Ni,t−1
is not random (thus, the vector inside the p/(p − 1)-norm have N (0, 1) compo-
nents). Furthermore, we consider two cases: arbitrary correlated and independent
outcomes. For arbitrary correlated outcomes, we take p = 1 and get that (3.3) =

O
(√

log(t)
)
with high probability.2 For independent outcomes, we take p = 2 so

that (3.3) follows a χ distribution. Again, with high probability, we have (3.3) ≤√
n+ 2

√
n log(t) + 2 log(t) = O

(√
log(t)

)
(Laurent and Massart, 2000). In any

case, (3.3) is bounded by O
(√

log(t)
)
with high probability. To sum up, the bonus is

an `p-norm of some error vector of the form "probability of observing i" (here, pi(St))
times "error associated with i" (here, c

√
log(t)/Ni,t−1 for some constant c). In what

follows we consider a more general form for the error vector.

3.4.2 Several types of bonuses, several types of regret rates

In this subsection, we bound the regret for various types of bonuses. We rely on some
results that we will state later in the "appendix" subsection 3.4.3.

Initialization As we will notice, in the propositions from subsection 3.4.3, the
counters start at 1. There are several ways to deal with the case where some counters
are 0. A first possibility is to use a few rounds in order to properly initialize all the
counters, for example, for t = i, by choosing St such that pi(St) = 1, we are assured
that after n rounds, all the counters are at least equal to 1. Thus, such an initialization
only adds the additive term ∑

i∈[n] ∆i,max to the regret. Another possibility is when

2Since each component is O(
√

log(t)), the `∞-norm is so.



3.4. General technical results: toward proving regret upper bounds 77

an a priori bound on ∆t of the form ∑
i∈[n] pi(St)Ki is known. This is the purpose of

the following proposition.

Proposition 5 (Initialization). For all i ∈ [n], let Ki ∈ R+. For all t ≥ 1, consider
the event

At ,

∆t ≤
∑

i∈[n], Ni,t−1=0
pi(St)Ki

.

Then, if {t ≤ T} ∈ Ft, the event-filtered regret E
[∑T

t=1 ∆tI{At}
]
is upper bounded by∑

i∈[n]Ki.

Proof. Since I{t ≤ T} ∈ Ft and by definition of pi(St) = P[ i ∈ At|Ft], we have

E

[
T∑
t=1

I{At}∆t

]
≤ E

 T∑
t=1

E

 ∑
i∈[n]

I{Ni,t−1 = 0, i ∈ At}

∣∣∣∣∣∣Ft
Ki

.

Since the counter Ni,t−1 is updated as soon as i ∈ At, we have that the event can
occur for at most one round, giving the upper bound ∑i∈[n]Ki.

Analysis for `1-bonuses We give here an analysis in the case where the bonus is
built from the `1-norm of some error vector. As we will see in Chapter 4, bonuses
based on the `1-norm are obtained with a hypercube-type confidence region. This
kind of confidence region is always possible to establish under the right concentration
conditions for the marginals. Our formulation here is general enough to include many
types of error vectors, and it will be easy to adapt each parameter to our needs. In
the proof of the following Theorem 12, we use a technique called reverse amortisation
(Wang and Chen, 2017), which replaces the analysis from (Kveton, Wen, Ashkan,
and Szepesvari, 2015b). Reverse amortisation is used to transform a bound on ∆t
by considering only the error components that are large enough. It is based on
the following observation: for a random variable Z such that E[Z] ≥ 0, we have
E[Z] ≤ E[2ZI{2Z ≥ E[Z]}]. This is tight, since taking

Z =

{
1/2− ε with probability 1− ε
ε−1(1− (1/2− ε)(1− ε)) with probability ε,

we have E[Z] = 1 and E[2ZI{2Z ≥ E[Z]}] = 1+O(ε). The fast reader can skip the
proof of the following theorem to directly go to Theorem 13.

Theorem 12 (Regret bound for `1-bonus). For all i ∈ [n], let (αi,βi,T ) ∈ (0, 1]×R+.
For all t ≥ 1, consider the event

At ,

∆t ≤

∥∥∥∥∥∥
∑

i∈[n], Ni,t−1>0

pi(St)bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
1

.

Then, if {t ≤ T} ∈ Ft, the event-filtered regret E
[∑T

t=1 ∆tI{At}
]
is upper bounded by

∑
i∈[n]

E[βi,T ]γi

(
I{αi = 1}2

(
2 + log

(
∆i,max
γiδi,min

))
+ I{αi < 1} 21/αi

1− αi
δi,min

1−1/αi

)
,

where
γi = max

S∈S, pi(S)>0
bi(S),
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δi,min = min
S∈S, pi(S)>0

∆(S)∑
j∈[n] pj(S)bj(S)

,

δi,max = max
S∈S, pi(S)>0

∆(S)∑
j∈[n] pj(S)bj(S)

.

Proof. Let t ≥ 1. The first step is the reverse amortisation technique, that allows us
to modify the upper bound on ∆t in such a way that indices i such that Ni,t−1 is high
enough are removed. Assuming that At holds, we get

∆t ≤ −∆t +

∥∥∥∥∥∥
∑

i∈[n], Ni,t−1>0

2pi(St)bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
1

(3.4)

= −
∑
i∈[n] ∆tpi(St)bi(St)∑
i∈[n] pi(St)bi(St)

+
∑

i∈[n], Ni,t−1>0

2pi(St)bi(St)βαii,T
Nαi
i,t−1

≤
∑
i∈[n]

pi(St)bi(St)0∨
(

2I{Ni,t−1 > 0}βαii,T
Nαi
i,t−1

− ∆t∑
j∈[n] pj(St)bj(St)

)
(3.5)

≤
∑

i∈[n], Ni,t−1>0
I

{
2βαii,T
Nαi
i,t−1

≥ ∆t∑
j∈[n] pj(St)bj(St)

}
2pi(St)γiβαii,T

Nαi
i,t−1

(3.6)

where (3.4) uses the event At, (3.5) uses the sub-additivity of x 7→ 0 ∨ x, (3.6) uses
the fact that 0 ∨ (x− y) ≤ xI{x ≥ y} if y ≥ 0 and x ∈ R. Now, by definition of
pi(St) = P[ i ∈ At|Ft], we can get from (3.6) that ∆t is upper bounded by

∑
i∈[n]

E

[
I

{
i ∈ At, pi(St), ∆t,Ni,t−1 > 0,

2βαii,T
Nαi
i,t−1

≥ ∆t∑
j∈[n] pj(St)bj(St)

}
2γiβαii,T
Nαi
i,t−1

∣∣∣∣∣Ft
]
.

Letting fi(x) = βi,T 21/αix−1/αi , the previous upper bound rewrites in the following
way, with δt = ∆t/

∑
j∈[n] pj(St)bj(St):

∆t ≤
∑
i∈[n]

E
[
γiI{i ∈ At, pi(St), ∆t,Ni,t−1 > 0, Ni,t−1 ≤ fi(δt)}f−1

i (Ni,t−1)
∣∣∣Ft].

Now, we want to apply Proposition 8 and Proposition 9 from the next subsection 3.4.3.
To do so, we distinguish two cases: αi = 1 and αi < 1.∑

i∈[n]
γiI{αi = 1, i ∈ At, pi(St), ∆t,Ni,t−1 > 0, Ni,t−1 ≤ fi(δt)}f−1

i (Ni,t−1)

︸ ︷︷ ︸
(3.7)t

+
∑
i∈[n]

γiI{αi < 1, i ∈ At, pi(St), ∆t,Ni,t−1 > 0, Ni,t−1 ≤ fi(δt)}f−1
i (Ni,t−1)

︸ ︷︷ ︸
(3.8)t

.

We consider the event

Bt ,
{
∀i ∈ At such that αi = 1, pi(St) > 0, we have Ni,t−1 > fi

(
∆i,max
γi

)}
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that allows us to write the following upper bound

I{At}∆t ≤ E[ (3.8)t + I{Bt}(3.7)t + I{¬Bt}∆t|Ft].

Since I{t ≤ T} ∈ Ft, we have

E

[
T∑
t=1

I{At}∆t

]
≤ E

[
T∑
t=1

E[ (3.8)t + I{Bt}(3.7)t + I{¬Bt}∆t|Ft]
]

= E

[
T∑
t=1

(3.8)t + I{Bt}(3.7)t + I{¬Bt}∆t

]
.

Using Proposition 9, we handle the sum over t of the first term:

E

[
T∑
t=1

(3.8)t

]
≤
∑
i∈[n]

γiI{αi < 1}21/αiE[βi,T ]

1− αi
δi,min

1−1/αi .

Using Proposition 8, we can handle the sum over t of the second term:

E

[
T∑
t=1

(3.7)tI{Bt}
]
≤
∑
i∈[n]

I{αi = 1}2γiE[βi,T ]

(
1 + log

(
∆i,max
γiδi,min

))
.

The choice ∆i,max/γi is justified when we handle ∑T
t=1 ∆tI{¬Bt}:

∆tI{¬Bt} ≤
∑

i∈At,αi=1
I

{
pi(St) > 0, 0 < Ni,t−1 ≤ fi

( 1
γi

∆i,max

)}
∆t

≤
∑

i∈At, αi=1
I

{
pi(St) > 0, 0 < Ni,t−1 ≤ fi

( 1
γi

∆i,max

)}
∆i,max.

So, by summing over t ∈ [T ], we get that ∑T
t=1 ∆tI{¬Bt} is upper bounded by

∑
i∈[n], αi=1

∆i,max

(
T∑
t=1

I

{
i ∈ At, 0 < Ni,t−1 ≤ fi

( 1
γi

∆i,max

)})

≤
∑
i∈[n]

∆i,maxfi

( 1
γi

∆i,max

)
I{αi = 1}

=
∑
i∈[n]

2γiβi,T I{αi = 1}.

In summary, we have that E
[∑T

t=1 I{At}∆t
]
is upper bounded by

∑
i∈[n]

E[βi,T ]γi

(
I{αi = 1}2

(
2 + log

(
∆i,max
γiδi,min

))
+ I{αi < 1} 21/αi

1− αi
δi,min

1−1/αi

)
.

Analysis for `2-bonuses We now give the analysis in the case where the bonus
is based on the `2-norm of the error vector. We will see in Chapter 5 that this kind
of bonus appears naturally when the confidence region is ellipsoidal. In this case,
there are several possibilities concerning the form of the bonus in question. Indeed,
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contrary to the `1-norm, the `2-norm does not commute with the expectation (on the
randomness of At). Here we give three different results according to the "position" of
the expectation in the bonus. Each of the three results will find applications within
the thesis.

The first result concerns the case where the expectation is within the norm. It
generalizes the result provided in Degenne and Perchet (2016b) by incorporating it in
the CMAB-T framework (their result was only stated within the CMAB setting). In
addition, we provide here a simpler proof, like the simplification that Wang and Chen
(2017) had proposed on the Kveton, Wen, Ashkan, and Szepesvari (2015b) method
for `1 type bonuses.

Theorem 13 (Regret bound for `2-bonus, with expectation inside the norm). For
all i ∈ [n], let (αi,βi,T ) ∈ [1/2, 1]×R+. For t ≥ 1, consider the event

At ,

∆t ≤

∥∥∥∥∥∥
∑

i∈[n], Ni,t−1>0

pi(St)bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

.

Then, if {t ≤ T} ∈ Ft, we have

E

[
T∑
t=1

I{At}∆t

]
≤
∑
i∈[n]

4 log2(4
√
mi)E[βi,T ] max

S∈S, pi(S)>0
bi(S)ηi,

where

ηi ,


8 log2(4

√
mi)δ

−1
i,min if αi = 1/2((

2−
1
αi − 2−2

)
(1− αi)δ

1−αi
αi

i,min

)−1

if 1/2 < αi < 1

4
(
1 + log

(
δi,max
δi,min

))
if αi = 1,

δi,min , min
S∈S, pi(S)>0

∆(S)
pi(S)bi(S)

,

δi,max , max
S∈S, pi(S)>0

∆(S)
pi(S)bi(S)

.

Looking at the two previous theorems, we can see that there is a gain in using `2
type bonuses over `1 type bonuses. Indeed, in Theorem 13, note the disappearance
of the term ∑

j∈[n] pj(S)bj(S), which could potentially be quite large. For example,
in the case where At = St is of maximum cardinality m, bi(St) = 1 and αi = 1/2,
the use of a bonus of `2 improves the regret by a factor of m log−2(m). Again, the
following proof can be skipped to directly go to Theorem 14.

Proof of Theorem 13. Let t ≥ 1, and define

Λt ,

∥∥∥∥∥∥
∑

i∈[n] Ni,t−1>0

pi(St)bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

,

such that the event At rewrites as {∆t ≤ Λt}. We will only use this event at the end
of the proof, and are focused on working with Λt for now. Our goal is first of all
to bound Λt by an `2-norm where the components are controlled from the bottom
and from the top. This then makes it possible to handle the `2-norm using a peeling
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argument by grouping the components according to their range. We start by a simple
lower bound on Λt, holding for any j ∈ [n] such that pj(St) > 0:

Λt ≥
∥∥∥∥∥pj(St)bj(St)β

αj
j,Tej

N
αj
j,t

∥∥∥∥∥
2
=
pj(St)bj(St)β

αj
j,T

N
αj
j,t

. (3.9)

We then use a similar reverse amortisation technique than in the proof of Theorem 12,
but this time with the `2-norm. For this, we define

m(St) ,
∑
i∈[n]

I{pi(St) > 0}

being the cardinality of the set of candidates to be in the triggering set At. We have
that Λt is equal to

−Λt + 2

∥∥∥∥∥∥
∑

i∈[n] Ni,t−1>0

pi(St)bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

= −

∥∥∥∥∥∥
∑
i∈[n]

ΛtI{pi(St) > 0}ei√
m(St)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈[n] Ni,t−1>0

2pi(St)bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑
i∈[n]

I{pi(St),Ni,t−1 > 0}0∨

2pi(St)bi(St)βαii,T
Nαi
i,t−1

− Λt√
m(St)

ei

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i∈[n]

0∨

2pi(St)bi(St)βαii,T
Nαi
i,t−1

− Λt√
m(St)

I{Bi,t}ei

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑
i∈[n]

I

Bi,t,
2pi(St)bi(St)βαii,T

Nαi
i,t−1

≥ Λt√
m(St)

2pi(St)bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

,

where
Bi,t ,

{
pi(St),Ni,t−1 > 0, Λt ≥

pi(St)bi(St)β
αi
i,T

Nαi
i,t−1

}
,

and where the penultimate relation uses (3.9). We now decompose the interval
[1/
√
m(St), 2] using a peeling:

[1/
√
m(St), 2] ⊂

⌈
log2
(√

m(St)
)⌉⋃

k=0
[2−k, 21−k].

This induces a partition of the set of indices:

I

i ∈ [n], pi(St),Ni,t−1 > 0, 2Λt ≥
2pi(St)bi(St)βαii,T

Nαi
i,t−1

≥ Λt√
m(St)


⊂

⌈
log2
(√

m(St)
)⌉⋃

k=0
Jk,t,
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where for all integer 1 ≤ k ≤
⌈
log2

(√
m(St)

)⌉
,

Jk,t ,

{
i ∈ [n], pi(St),Ni,t−1 > 0, 21−kΛt ≥

2pi(St)bi(St)βαii,T
Nαi
i,t−1

≥ 2−kΛt

}
.

We can thus upper bound Λ2
t using this decomposition:

Λ2
t ≤

∥∥∥∥∥∥
∑
i∈[n]

I

Bi,t, 2pi(St)bi(St)βαii,T
Nαi
i,t−1

≥ Λt√
m(St)

2pi(St)bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

2

≤

⌈
log2
(√

m(St)
)⌉∑

k=0

∥∥∥∥∥∥
∑
i∈Jk,t

2pi(St)bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

2

≤

⌈
log2
(√

m(St)
)⌉∑

k=0
22−2kΛ2

t

∥∥∥eJk,t

∥∥∥2

2
.

This last inequality implies that there must exist one integer kt such that |Jkt,t| =∥∥∥eJkt,t

∥∥∥2

2
≥ 22kt−2

(
1 +

⌈
log2

(√
m(St)

)⌉)−1
. We now use this integer to get the fol-

lowing upper bound on ∑T
t=1 I{At}∆t

T∑
t=1

⌈
log2
(√

m(St)
)⌉∑

k=0
I{kt = k, At}∆t

≤
T∑
t=1

⌈
log2
(√

m(St)
)⌉∑

k=0
I{kt = k, At}

∑
i∈[n]

I{i ∈ Jk,t}22−2k
(⌈

log2

(√
m(St)

)⌉
+ 1

)
∆t

=
∑
i∈[n]

T∑
t=1

⌈
log2
(√

m(St)
)⌉∑

k=0
I{kt = k, At, i ∈ Jk,t}︸ ︷︷ ︸

(3.10)i,k,t

22−2k
(⌈

log2

(√
m(St)

)⌉
+ 1

)
∆t.

(3.11)

Using the event At and that i ∈ Jk,t, we have

(3.10)i,k,t ≤ I

{
pi(St),Ni,t−1 > 0, Nαi

i,t−1 ≤
2k+1pi(St)bi(St)β

αi
i,T

∆t

}

= I

{
pi(St),Ni,t−1 > 0, Nαi

i,t−1 ≤
2k+1βαii,T

δt

}
︸ ︷︷ ︸

(3.12)i,k,t

,

with
δt = ∆t/(pi(St)bi(St)).

We now want to apply Proposition 7 from the next subsection 3.4.3. For this, we first
need to add the event {i ∈ At} to the previous indicator. As in Theorem 12, this will
be done using pi(St). Then, we want to invert the sum over t and the one over k. We
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thus have that (3.11) is bounded by

∑
i∈[n]

T∑
t=1

⌈
log2
(√

m(St)
)⌉∑

k=0
pi(St)(3.12)i,k,t 22−2k

(⌈
log2

(√
m(St)

)⌉
+ 1

)
bi(St)δt (3.13)

≤
∑
i∈[n]

dlog2(
√
mi)e∑

k=0

T∑
t=1

pi(St)(3.12)i,k,t 22−2k(dlog2(
√
mi)e+ 1) max

S∈S, pi(S)>0
bi(S)δt

=
∑
i∈[n]

dlog2(
√
mi)e∑

k=0
22−2k(dlog2(

√
mi)e+ 1) max

S∈S, pi(S)>0
bi(S)

T∑
t=1

pi(St)(3.12)i,k,tδt︸ ︷︷ ︸
(3.14)i,k,t

.

Using the definition of pi(St) and that {t ≤ T} ∈ Ft, we can write

E
[
(3.14)i,k,t

]
= E

[
T∑
t=1

pi(St)I

{
pi(St),Ni,t−1 > 0, Nαi

i,t−1 ≤
2k+1βαii,T

δt

}
δt

]

= E

[
T∑
t=1

E

[
I

{
i ∈ At, pi(St),Ni,t−1 > 0, Nαi

i,t−1 ≤
2k+1βαii,T

δt

}
δt

∣∣∣∣∣Ft
]]

= E

[
T∑
t=1

I

{
i ∈ At, pi(St),Ni,t−1 > 0, Nαi

i,t−1 ≤
2k+1βαii,T

δt

}
δt

]
︸ ︷︷ ︸

(3.15)i,k

Now, Proposition 7 gives

(3.15)i,k ≤ E[βi,T ]

I{αi < 1} 2
k+1
αi

1− αi
δ1−1/αi
i,min + I{αi = 1}2k+1

(
1 + log

(
δi,max
δi,min

)).

So using
⌈
log2(

√
mi)

⌉
+ 1 ≤ log2(4

√
mi), we get

E

[
T∑
t=1

I{At}∆t

]
≤
∑
i∈[n]

4 log2(4
√
mi)E[βi,T ] max

S∈S, pi(S)>0
bi(S)ηi,

where

ηi =


8 log2(4

√
mi)δ

−1
i,min if αi = 1/2

2
1
αi

((
1− 2

1
αi
−2
)
(1− αi)δ

1−αi
αi

i,min

)−1

if 1/2 < αi < 1

4
(
1 + log

(
δi,max
δi,min

))
if αi = 1.

The second result we propose starts from the previous bonus (the one provided
in Theorem 13) and uses Jensen’s inequality in order to bound it by placing the
expectation outside the norm. One can thus see that the result given in the following
Theorem 14 can be used instead of the previous one. We can nevertheless notice that
the result provided is a little less good. For example, when αi = 1/2, and bi(St) = b,
pi(St) = p, ∆(St) = ∆, we see that the factor p ∈ [0, 1] disappears in the bound of
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Theorem 14, compared to the one from Theorem 13. We can skip the proof of the
following theorem to go to Theorem 15.

Theorem 14 (Regret bound for `2-bonus, with expectation outside the norm). For
all i ∈ [n], let (αi,βi,T ) ∈ [1/2, 1)×R+. For t ≥ 1, consider the event

At ,

∆t ≤ E

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

∣∣∣∣∣∣Ft
.

Then, if {t ≤ T} ∈ Ft, we have

E

[
T∑
t=1

I{At}∆t

]
≤
∑
i∈[n]

4 log2(4
√
mi) max

S∈S, pi(S)>0
bi(S)

1
αi E[βi,T ]ηi,

where

ηi =


32 log2(4

√
mi)∆−1

i,min if αi = 1/2

2
2
αi

((
1− 2

1
αi
−2
)
(1− αi)∆

1−αi
αi

i,min

)−1

if 1/2 < αi < 1.

Proof. Let t ≥ 1. With a first reverse amortisation, we start by restricting the set
of possibles for At by only taking those whose error is at least twice as large as ∆t:
assuming that At holds, we have

∆t ≤ E

2

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

− ∆t

∣∣∣∣∣∣Ft


≤ E

I


∥∥∥∥∥∥

∑
i∈At,Ni,t−1>0

2bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

≥ ∆t


∥∥∥∥∥∥

∑
i∈At,Ni,t−1>0

2bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

∣∣∣∣∣∣Ft


We now define

Λ(At) ,

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

2bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

,

and have for any j ∈ At that

Λ(At) ≥
2bj(St)β

αj
j,T

N
αj
j,t

. (3.16)

Then, a similar technique as in Theorem 13 gives that Λ(At) equals

−Λ(At) +

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

4bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

= −

∥∥∥∥∥∥
∑
i∈At

Λ(At)ei
‖eAt‖2

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

4bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0
0∨

(
4bi(St)βαii,T
Nαi
i,t−1

− Λ(At)

‖eAt‖2

)
ei

∥∥∥∥∥∥
2
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=

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0
0∨

(
4bi(St)βαii,T
Nαi
i,t−1

− Λ(At)

‖eAt‖2

)
I

{
Λ(At) ≥

2bi(St)βαii,T
Nαi
i,t−1

}
ei

∥∥∥∥∥∥
2

(3.16)

≤

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0
I

{
2Λ(At) ≥

4bi(St)βαii,T
Nαi
i,t−1

≥ Λ(At)

‖eAt‖2

}
4bi(St)βαii,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

.

We now consider the following partition of the set of indices:

I

{
i ∈ At,Ni,t−1 > 0, 2Λ(At) ≥

4bi(St)βαii,T
Nαi
i,t−1

≥ Λ(At)

‖eAt‖2

}
⊂
dlog2(‖eAt‖2)e⋃

k=0
Jk,t,

where for all integer 1 ≤ k ≤ dlog2(‖eAt‖2)e,

Jk,t ,

{
i ∈ At,Ni,t−1 > 0, 21−kΛ(At) ≥

4bi(St)βαii,T
Nαi
i,t−1

≥ 2−kΛ(At)

}
.

We bound Λ(At)
2 as

Λ(At)
2 ≤

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0
I

{
2Λ(At) ≥

4bi(St)βαii,T
Nαi
i,t−1

≥ Λ(At)

‖eAt‖2

}
4bi(St)βαii,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

2

=

dlog2(‖eAt‖2)e∑
k=0

∥∥∥∥∥∥
∑
i∈Jk,t

4bi(St)βαii,Tei
Nαi
i,t−1

∥∥∥∥∥∥
2

2

≤
dlog2(‖eAt‖2)e∑

k=0
22−2kΛ(At)

2
∥∥∥eJk,t

∥∥∥2

2
.

So there is an integer kt such that |Jkt,t| =
∥∥∥eJkt,t

∥∥∥2

2
≥ 22kt−2(1 + dlog2(‖eAt‖2)e)

−1.

T∑
t=1

I{At}∆t ≤
T∑
t=1

E[I{Λ(At) ≥ ∆t}Λ(At)|Ft]

≤
T∑
t=1

E

dlog2(‖eAt‖2)e∑
k=0

I{kt = k, Λ(At) ≥ ∆t}Λ(At)

∣∣∣∣∣∣∣Ft


≤
T∑
t=1

E

dlog2(‖eAt‖2)e∑
k=0

I{kt=k, Λ(At)≥∆t}
∑
i∈[n] I{i ∈ Jk,t}

22k−2(1+dlog2(‖eAt‖2)e)
−1 Λ(At)

∣∣∣∣∣∣∣Ft


≤
T∑
t=1

n∑
i=1

E


dlog2(‖eAt‖2)e∑

k=0

I

{
i∈At, 0 < Nαi

i,t−1≤
2k+2bi(St)β

αi
i,T

Λ(At)
, Λ(At)≥∆t

}
22k−2(1 + dlog2(‖eAt‖2)e)

−1 Λ(At)

∣∣∣∣∣∣∣∣Ft
.

Taking the expectation of the above, and using {t ≤ T} ∈ Ft, we have the bound

E

[
T∑
t=1

I{At}∆t

]
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≤
n∑
i=1

E

 T∑
t=1

dlog2(‖eAt‖2)e∑
k=0

I

{
i∈At, 0 < Nαi

i,t−1≤
2k+2bi(St)β

αi
i,T

Λ(At)
, Λ(At)≥∆t

}
22k−2(1 + dlog2(‖eAt‖2)e)

−1 Λ(At)


≤

n∑
i=1

dlog2(
√
mi)e∑

k=0
E

[
1+
⌈
log2(

√
mi)

⌉
22k−2 (3.17)i,k

]
,

where

(3.17)i,k ,
T∑
t=1

I

{
i ∈ At, 0 < Nαi

i,t−1 ≤
2k+2bi(St)β

αi
i,T

Λ(At)
, Λ(At) ≥ ∆t

}
Λ(At).

Applying Proposition 7 from the next subsection 3.4.3 gives

(3.17)i,k ≤
maxS∈S, pi(S)>0 bi(S)

1
αi βi,T 2

k+2
αi

1− αi
∆1−1/αi
i,min ,

So using
⌈
log2(

√
mi)

⌉
+ 1 ≤ log2(4

√
mi), we get

E

[
T∑
t=1

I{At}∆t

]
≤
∑
i∈[n]

4 log2(4
√
mi) max

S∈S, pi(S)>0
bi(S)

1
αi E[βi,T ]ηi,

where

ηi =


32 log2(4

√
mi)∆−1

i,min if αi = 1/2

2
2
αi

((
1− 2

1
αi
−2
)
(1− αi)∆

1−αi
αi

i,min

)−1

if 1/2 < αi < 1.

Finally, the last result re-uses Jensen’s inequality in the bonus from Theorem 14,
with the concavity of the square root. Again, the result loses power compared to the
Theorems 13, 14. In fact, we see that by linearity of the `2-norm squared, we are
reduced to a particular form of Theorem 13 where, in the error vector, the probability
pi(St) is changed to the square root of this probability.

Theorem 15 (Regret bound for `2-bonus, with expectation between the root and
the squared norm). For all i ∈ [n], let βi,T ∈ R+. For t ≥ 1, consider the event

At ,

∆t ≤

√√√√√√E


∥∥∥∥∥∥

∑
i∈At,Ni,t−1>0

bi(St)β
1/2
i,T ei

N1/2
i,t−1

∥∥∥∥∥∥
2

2

∣∣∣∣∣∣∣Ft

.

Then, if {t ≤ T} ∈ Ft, we have that E
[∑T

t=1 I{At}∆t
]
is bounded by

∑
i∈[n]

16 log2
2(4
√
mi)E[βi,T ] max

S∈S, pi(S)>0

bi(S)2

∆(S)
(1 + log(ηi)),

where
ηi ,

maxS∈S, pi(S)>0 ∆(S)2/
(
pi(S)bi(S)2)

minS∈S, pi(S)>0 ∆(S)2/(pi(S)bi(S)2)
.
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Proof. Let t ≥ 1 and notice that√√√√√√E


∥∥∥∥∥∥

∑
i∈At,Ni,t−1>0

bi(St)β
1/2
i,T ei

N1/2
i,t−1

∥∥∥∥∥∥
2

2

∣∣∣∣∣∣∣Ft
 =

∥∥∥∥∥∥
∑

i∈[n],Ni,t−1>0

√
pi(St)bi(St)β

1/2
i,T ei

N1/2
i,t−1

∥∥∥∥∥∥
2

.

So, we can use Theorem 13 with αi = 1/2 and another bi function, that we denote
b̃i, and that is defined as

b̃i(S) = bi(S)

 1√
pi(S)

I{pi(S) > 0}+ I{pi(S) = 0}

.

We however do not use the result directly, but rather rework the end of the proof in
order to get a logarithmic dependence in pi. More precisely, the proof remains the
same until the relation (3.13). In particular, we have the definition

δt = ∆t/(pi(St)b̃i(St)).

Then, in (3.13), we bound

I{pi(St) > 0}b̃i(St)δt = I{pi(St) > 0} ∆t
pi(St)

by

max
S∈S, pi(S)>0

bi(S)2

∆(S)
I{pi(St) > 0} ∆2

t

pi(St)bi(St)2 = max
S∈S, pi(S)>0

bi(S)2

∆(S)
I{pi(St) > 0}δ2

t .

The end of the proof is the same, except from the application of Proposition 7, where
having δ2

t instead of δt gives a behavior as if αi = 1, giving the final bound

∑
i∈[n]

16 log2
2(4
√
mi)E[βi,T ] max

S∈S, pi(S)>0

bi(S)2

∆(S)

(
1 + log

(
δ2
i,max
δ2
i,min

))
.

The regret bound given in Theorem 15 has a logarithmic dependence in pi. A
question that arises then is: can we express a bound that does not depend at all
on pi? The answer is yes, and it is done using Proposition 9 instead of Proposition 7
at the end of the proof. This is the purpose of the following Theorem 16.

Theorem 16. Under the same assumptions as in Theorem 15, we have the following
upper bound on E

[∑T
t=1 I{At}∆t

]
,

∑
i∈[n]

16 log2
2(4
√
mi)E[βi,T ]ηi

(
1 + E

[
log
(

16βi,Tmi

minS∈S, pi(S)>0 ∆(S)2/bi(S)2

)])
,

where
ηi = max

S∈S, pi(S)>0

bi(S)2

∆(S)
.

Proof. We use the same proof as in Theorem 15 until before the application of Propo-
sition 7. In particular, we thus follow the beginning of the proof of Theorem 13. Before
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applying Proposition 9 instead of Proposition 7, we first upper bound δ2
t by

22k+2βi,T
Ni,t−1

,

Thanks to (3.12)i,k,t. We then use Proposition 9 from the next subsection 3.4.3 with
αi = 1, giving the logarithmic factor

1 + log
(

22k+2βi,T
δ2
i,min

)

instead of
1 + log

(
δ2
i,max
δ2
i,min

)
.

Finally, the desired result is obtained by bounding k by
⌈
log2(

√
mi)

⌉
≤ log2(2

√
mi),

and by bounding δ−2
i,min by

max
S∈S, pi(S)>0

bi(S)
2/∆(S)2.

When we derive an upper bound on ∆t, it may happen that we do not fall into
one of the cases mentioned in the above theorems. Specifically, it may be that the
bonus is composed of several terms, each of which has the proper form to be treated
as above. In addition, when initialization is handled with Proposition 5, this adds an
additional term (corresponding to zero counters), so it is useful to know how to handle
it. We will see in the following Proposition 6 that previous results are sufficient to
treat a composed bonus.

Proposition 6 (Regret bound for a composed bonus). Let K ∈ N∗. For all t ≥ 1,
consider the event

At ,

∆t ≤
∑
k∈[K]

Bk,t

,

for some Bk,t ≥ 0. Then, the event-filtered regret E
[∑T

t=1 ∆tI{At}
]
is upper bounded

by ∑
k∈[K]

E

∑
t∈[T ]

∆tI{∆t ≤ KBk,t}

.

Proof. From At, there is a k such that ∆t ≤ KBk,t. So 1 ≤ ∑k∈[K] I{∆t ≤ KBk,t},
i.e., ∆t ≤

∑
k∈[K] ∆tI{∆t ≤ KBk,t}.

We can therefore see that we can use Proposition 6 coupled with the above the-
orems in order to treat the composed bonuses. Doing so, we only lose a factor K in
the previous analyses. Typically, K is a small universal constant, so we do not lose
in the regret rate.

3.4.3 Appendix

As we have already seen in Theorem 10 for MAB, once we had managed to bound the
gap ∆t by the bonus, a rearrangement of the inequality made it possible to have that
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the counter of the chosen arm is bounded by a function of the minimal gap, leading
to the final bound by summing over t. We will see here that the same principle
also applies in the CMAB-T context. As we saw, this is due to the fact that the
bonuses are each time expressed using the counters Ni,t−1 for i ∈ At. We give in
this subsection a series of results that, for an arm i, bound the regret filtered by the
event where i ∈ At and an upper bound on a counter Ni,t−1 is known. These results
are extending those given in Chen, Wang, and Yuan (2013), Chen, Wang, and Yuan
(2016), and Wang and Chen (2017).

Proposition 7. Let i ∈ [n] and fi : R+ → R+ be a non increasing function, inte-
grable on an interval [δi,min, δi,max] ⊂ R∗+. Then for any sequence of real numbers
(δt) ∈ ([δi,min, δi,max] ∪ {0})T ,

T∑
t=1

I{i ∈ At, 1 ≤ Ni,t−1 ≤ fi(δt)}δt ≤ fi(δi,min)δi,min +
∫ δi,max

δi,min
fi(x)dx.

In particular,

• If fi(x) = βi,Tx
−1/αi, αi ∈ (0, 1) and βi,T ≥ 0, then

T∑
t=1

I{i ∈ At, 1 ≤ Ni,t−1 ≤ fi(δt)}δt ≤ δ1−1/αi
i,min

βi,T
1− αi

− δ1−1/αi
i,max

αiβi,T
1− αi

≤ δ1−1/αi
i,min

βi,T
1− αi

.

• If fi(x) = βi,Tx
−1, βi,T ≥ 0, then

T∑
t=1

I{i ∈ At, 1 ≤ Ni,t−1 ≤ fi(δt)}δt ≤ βi,T

(
1 + log

(
δi,max
δi,min

))
.

Proof. Consider δi,max = δi,1 ≥ δi,2 ≥ · · · ≥ δi,Ki = δi,min being all possible values for
δt when δt 6= 0. We define a dummy gap δi,0 = ∞ and let fi(δi,0) = 0. In (3.18), we
look at times t where δt 6= 0 and first break the range (0, fi(δt)] of the counter Ni,t−1
into sub intervals:

(0, fi(δt)] = (fi(δi,0), fi(δi,1)] ∪ · · · ∪ (fi(δi,kt−1), fi(δi,kt)],

where kt is the index such that δi,kt = δt. This index kt exists by assumption that
the subdivision contains all possible values for δt when δt 6= 0. Notice that in (3.18),
we do not explicitly use kt, but instead sum over all k ∈ [Ki] and filter against the
event {δi,k ≥ δt}, which is equivalent to summing over k ∈ [kt].

T∑
t=1

I{i ∈ At, Ni,t−1 ≤ fi(δt)}δt

=
T∑
t=1

Ki∑
k=1

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k), δi,k ≥ δt}δt. (3.18)

Over each event that Ni,t−1 belongs to the interval (fi(δi,k−1), fi(δi,k)], we upper
bound the gap δt by δi,k.
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(3.18) ≤
T∑
t=1

Ki∑
k=1

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k), δi,k ≥ δt}δi,k. (3.19)

Then, we further upper bound the summation by adding events that Ni,t−1 belongs
to the remaining intervals (fi(δi,k−1), fi(δi,k)] for kt < k ≤ Ki, associating them to
a suffered gap δi,k. This is equivalent to removing the filtering against the event
{δi,k ≥ δt}.

(3.19) ≤
T∑
t=1

Ki∑
k=1

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k)}δi,k. (3.20)

Now, we invert the summation over t and the one over k.

(3.20) =
Ki∑
k=1

T∑
t=1

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k)}δi,k. (3.21)

For each k ∈ [Ki], the number of times t ∈ [T ] that the counter Ni,t−1 belongs to
(fi(δi,k−1), fi(δi,k)] can be upper bounded by the number of integers in this interval.
This is due to the event {i ∈ At}, imposing that Ni,t−1 is incremented, so Ni,t−1
cannot be worth the same integer for two different times t satisfying i ∈ At. We use
the fact that for all x, y ∈ R, x ≤ y, the number of integers in the interval (x, y] is
exactly byc − bxc.

(3.21) ≤
Ki∑
k=1

(bfi(δi,k)c − bfi(δi,k−1)c)δi,k. (3.22)

We then simply expand the summation, and some terms are cancelled (remember
that fi(δi,0) = 0).

(3.22) = bfi(δi,Ki)cδi,Ki +
Ki−1∑
k=1
bfi(δi,k)c(δi,k − δi,k+1) (3.23)

We use bxc ≤ x for all x ∈ R. Finally, we recognize a right Riemann sum, and
use the fact that fi is non increasing to upper bound each fi(δi,k)(δi,k − δi,k+1) by∫ δi,k
δi,k+1

fi(x)dx, for all k ∈ [Ki − 1].

(3.23) ≤ fi(δi,Ki)δi,Ki +
Ki−1∑
k=1

fi(δi,k)(δi,k − δi,k+1) (3.24)

≤ fi(δi,Ki)δi,Ki +
∫ δi,1

δi,Ki

fi(x)dx. (3.25)

Proposition 8. Let i ∈ [n] and fi : R+ → R+ be a decreasing function, in-
tegrable on [δi,min, δi,max] ⊂ R∗+. Then for any sequence of real numbers (δt) ∈
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([δi,min, δi,max] ∪ {0})T ,

T∑
t=1

I{i ∈ At, δt 6= 0, fi(δi,max) < Ni,t−1 ≤ fi(δt)}f−1
i (Ni,t−1)

≤ fi(δi,min)δi,min +
∫ δi,max

δi,min
fi(x)dx.

Proof. The proof is very similar to the one for Proposition 7. The key difference will
be that instead of a right Riemann sum, this is a left Riemann sum that appears at
the end of the proof. Therefore, we can’t bound this Riemann sum directly by the
integral. However, it can be made as close as desired to the integral by making the
subdivision fine enough. This is possible since we never use any assumption on the
subdivision of [δi,min, δi,max] we consider (except that it contains all possible values
for δt when i ∈ At, which can only reinforce its refinement). In addition, at the end,
the subdivision only appears within the Riemann sum. We thus consider a general
subdivision δi,max = δi,1 ≥ δi,2 ≥ . . . δi,Ki = δi,min, that contains all possible values
for δt when δt 6= 0. Using this decomposition, we can write as previously

T∑
t=1

I{i ∈ At, δt 6= 0, fi(δi,max) < Ni,t−1 ≤ fi(δt)}f−1
i (Ni,t−1)

=
T∑
t=1

Ki∑
k=2

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k), δi,k ≥ δt > 0}f−1
i (Ni,t−1). (3.26)

Now, we can upper bound f−1
i (Ni,t−1) by δi,k−1 to recover a summation similar to

(3.19) in the proof of Proposition 7. Using the same derivations as in (3.19)-(3.22),
we get the upper bound

(3.26) ≤
Ki∑
k=2

(bfi(δi,k)c − bfi(δi,k−1)c)δi,k−1

= bfi(δi,Ki)cδi,Ki − bfi(δi,1)cδi,1 +
Ki∑
k=2
bfi(δi,k)c(δi,k−1 − δi,k)

≤ fi(δi,Ki)δi,Ki +
Ki∑
k=2

fi(δi,k)(δi,k−1 − δi,k),

where in the last inequality, we first upper bound the term −bfi(δi,1)cδi,1 by 0, and
then use bxc ≤ x for all x ∈ R. Finally, we recognize a left Riemann sum. We get the
desired result taking the infimum over all possible subdivisions containing all possible
values for δt when δt 6= 0.

Remark 9. Proposition 8 does not exactly generalizes Proposition 7 since we have
to filter against the event {fi(δi,max) < Ni,t−1}. However, for fi(x) = βi,Tx

−1/αi,
βi,T ≥ 0 and αi ∈ (0, 1), the upper bound is

δ1−1/αi
i,min

βi,T
1− αi

− δ1−1/αi
i,max

αiβi,T
1− αi

≤ δ1−1/αi
i,min

βi,T
1− αi

,

so δi,max can be taken sufficiently large without altering the desired upper bound. In
particular, for δi,max such that fi(δi,max) < 1, the event {fi(δi,max) < Ni,t−1} always
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holds (when the counter is non-zero). We will see another (simpler) proof of this fact
in the next Proposition 9.

Proposition 9. Let i ∈ [n] and fi(x) = βi,Tx
−1/αi, αi ∈ (0, 1] and βi,T ≥ 0. Then

T∑
t=1

I{i ∈ At, δt 6= 0, 1 ≤ Ni,t−1 ≤ fi(δt)}f−1
i (Ni,t−1) ≤ δ1−1/αi

i,min
βi,T

1− αi
I{αi < 1}

+I{αi = 1}βi,T
(

1 + log
(
βi,T
δi,min

))
.

Proof. We upper bound fi(δt) by fi(δi,min) directly in the event, and then simply
count the number of integers in (0, fi(δi,min)]. For each such integer s, the regret
suffered is f−1

i (s). We then upper bound the sum by an integral (using the fact that
f−1
i is decreasing), to get the final result.

T∑
t=1

I{i∈At, δt 6=0, 1 ≤ Ni,t−1≤fi(δt)}f−1
i (Ni,t−1)

≤
T∑
t=1

I{i∈At, 1 ≤ Ni,t−1≤fi(δi,min)}f−1
i (Ni,t−1)

≤
bfi(δi,min)c∑

s=1
f−1
i (s)

≤ f−1
i (1) +

∫ fi(δi,min)

1
f−1
i (s)ds

= βαii,T +
∫ βi,T δ

−1/αi
i,min

1
βαii,T s

−αids

≤ I{αi < 1}δ1−1/αi
i,min

βi,T
1− αi

+ I{αi = 1}βi,T
(

1 + log
(
βi,T
δi,min

))
.
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Chapter 4

An Example of CMAB-T
Problem: Sequential
Search-and-Stop

This chapter is based on Perrault, Perchet, and Valko (2019b), and aims to introduce
a new example of a problem falling within the CMAB-T framework.

We consider here the problem where the agent wants to find a hidden object that
is randomly located in some vertex of a directed acyclic graph (DAG) according to a
fixed but possibly unknown distribution. The agent can only examine vertices whose
in-neighbors have already been examined. We address a learning setting where we
allow the agent to stop before having found the object and restart searching on a
new independent instance of the same problem. Our goal is to maximize the total
number of hidden objects found given a time budget. The agent can thus skip an
instance after realizing that it would spend too much time on it. Our contributions
are both to the search theory and multi-armed bandits. If the distribution is known,
we provide a quasi-optimal and efficient stationary strategy. If the distribution is
unknown, we additionally show how to sequentially approximate it and, at the same
time, act near-optimally in order to collect as many hidden objects as possible.

4.1 Problem formulation and motivation
We study the setting where an object, called hider, is randomly located in one vertex
of a directed acyclic graph (DAG), and where an agent wants to find it by sequentially
selecting vertices one by one, and examining them at a (possibly random) cost. The
agent has a strong constraint: its search must respect precedence constraints imposed
by the DAG, i.e., a vertex can be examined only if all its in-neighbors have already
been examined. The goal of the agent is to minimize the expected total search cost
incurred before finding the hider. This setting is a type of single machine scheduling
problem (Lín, 2015), where a set of n jobs [n] have to be processed on a single machine
that can process at most one job at a time. Once a job processing is started, it must
continue without interruption until the processing is complete. Each job j has a
cost cj representing its processing time, and a weight wj representing its importance.
In our context, wj is the probability that j contains the hider. The aim is to find a
schedule (i.e., a permutation of jobs) that minimizes the total weighted completion
time while respecting precedence constraints.1 The setting was already shown to
be NP-hard (Lawler, 1978; Lenstra and Rinnooy Kan, 1978). On the positive side,
several polynomial-time α-approximations exist, depending on the assumption we
take on the DAG (see e.g., the recent survey of Prot and Bellenguez-Morineau, 2017).

1The standard scheduling notation (Graham et al., 1979) denotes this setting as 1|prec|
∑

wjCj .
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For instance, the case of α = 2 can be dealt without any additional assumption.
On the other hand, there is an exact O(n logn)-time algorithm when the partially
ordered set (poset) defined by the DAG is a series-parallel order (Lawler, 1978).
More generally, when the poset has fractional dimension of at most f , there is a
polynomial-time approximation with α = 2− 2/f (Ambühl, Mastrolilli, et al., 2011).
In this work, we assume the DAG is such that an exact polynomial-time algorithm
is available.2 We denote this algorithm as scheduling. For example, this is true for
two-dimensional posets (Ambühl and Mastrolilli, 2009).

The problem is also well known in search theory (Stone, 1976; Fokkink, Lidbetter,
and Végh, 2016), one of the disciplines originating from operations research. Since
in our case, the search space is a DAG, we fall within the network search setting
(Kikuta and Ruckle, 1994; Gal, 2001; Evans and Bishop, 2013). When the DAG is an
out-tree, the problem reduces to the expanding search problem introduced by Alpern
and Lidbetter (2013).

The case of unknown distribution of the hider is usually studied within the field
of search games, i.e., a zero-sum game where the agent picks the search and plays
against the hider with search cost as payoff (Alpern and Gal, 2006; Alpern, Fokkink,
et al., 2013; Hohzaki, 2016). In our work, we deal with an unknown hider distribution
by extending the stochastic setting to the sequential case, where at each round t, the
agent faces a new, independent instance of the problem. The challenge is the need
to learn the distribution through repeated interactions with the environment. Each
instance, the agent has to perform a search based on the instances observed during the
previous rounds. Furthermore, contrary to the typical search setting, the agent can
additionally decide whether it wishes to abandon the search on the current instance
and start a new one in the next round, even if the hider was not found. The goal of
the agent is to collect as many hiders as possible, using a fixed budget B. This may
be particularly useful, when the remaining vertices have large costs and it would not
be cost-effective to examine them.

As a result, the hider may not be found in each round and the agent has to make a
trade-off between exhaustive searches, which lead to a good estimation (exploration)
and efficient searches, which leads to a good benefit/cost ratio (exploitation). The
sequential exploration-exploitation trade-off is well studied in multi-armed bandits
(Cesa-Bianchi and Lugosi, 2006; Lattimore and Szepesvári, 2019) and has been ap-
plied (as we saw in Chapter 2) to many fields including mechanism design (Mohri
and Munoz, 2014), search advertising (Tran-Thanh, Stein, et al., 2014) and person-
alized recommendation (Li, Chu, et al., 2010). Since several vertices can be visited
within each round, our setting can be seen as an instance of stochastic combinatorial
semi-bandits. For this reason, we refer to a vertex j ∈ [n] as an arm. We shall
see, however, that this specific semi-bandit problem is challenging. In particular, the
agent pays a non-linear search cost at each round (with respect to the selected com-
binatorial action), that additionally depends on the ordering. Moreover, due to the
budget constraint, it is also an instance of budgeted bandits, also known as bandits
with knapsacks (Badanidiyuru, Kleinberg, and Slivkins, 2013), in the case of single
resource and infinite horizon. We thus evaluate the performance of a learning policy
with the (common) notion of budgeted regret. It measures the expected difference,
in terms of cumulative reward collected within the budget constraint B, between
the learning policy and an oracle policy that knows a priori the exact parameters
of the problem. Budgeted combinatorial semi-bandits have been already studied by

2One can notice that extending this work to the general case can be possible considering an
α-approximation regret.
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Sankararaman and Slivkins (2017) for several resources, but with a finite horizon.
Moreover, their algorithm is efficient only for some specific combinatorial structures
(such as matroids). The structure of constraints in sequential search-and-stop is in
general more complex.

Motivation There are several motivations behind this setting. One example is the
decision-theoretic troubleshooting problem of giving a diagnosis for several devices
having a malfunctioning component and arriving sequentially to the agent. In many
troubleshooting applications, we additionally face precedence constraints. These re-
strictions are imposed to the agent as the ordering of component tests, see e.g., Jensen
et al., 2001. Moreover, allowing the agent to stop gives a new alternative to the so-
called service call (Heckerman, Breese, and Rommelse, 1995; Jensen et al., 2001) in
order to deal with non-cost-effective vertices: Instead of giving a high cost to an extra
action that will automatically find the fault in the device, we give it a zero cost, but
do not reward such diagnostic failure. This way, we do not need to estimate any
call-service cost. This alternative is used, for example, when a new device is sent to
the user if the diagnostic fails, with a cost that depends on a disutility for the user:
loss of personal data, device reconfiguration, etc. Maximizing the number of hiders
found is then analogous to maximizing the number of successful diagnoses.

Another example comes from online advertisement. There are several different
actions that might generate a conversion from a user, such as sending one or several
emails, displaying one or several ads on a website, buying keywords on search engines,
etc. We assume that some precedence constraints are imposed between actions and
that a conversion will occur if some sequence of actions is made, for instance, first,
display an ad, then send the first email, and finally the second one. As a consequence,
the conversion is "hidden", the precedence constraints restrict our access to it, and
the agent aims at finding it. However, for some users, finding the correct sequence
might be too expensive and it might be more interesting to abandon that specific user
to focus on more promising ones.

Related settings Finally, there are several settings related to ours. One of them is
stochastic probing (Gupta and Nagarajan, 2013), which differs in the fact that each
arm can contain a hider, independently from each other. Another one is the machine
learning framework of optimal discovery (Bubeck, Ernst, and Garivier, 2013).

Our contributions One of our main contributions is a stationary offline policy
(i.e., an algorithm that solves the problem when the distribution is known), for which
we prove the approximation guarantees and adapt it in order to fit the online prob-
lem. In particular, we prove that it is quasi-optimal and use scheduling to prove
its computational efficiency. Next, we provide a solution when the distribution is
unknown to the agent, based on the combinatorial upper confidence bounds (cucb)
algorithm from Chen, Wang, and Yuan (2016), and ucb-variance (ucb-v) of Audib-
ert, Munos, and Szepesvári (2009a). Dealing with variance estimates allows us to
sharp the bound on the expected regret, improving the overall dependence on the
dimension n compared to the simple use of cucb. We also propose a new method
(that can be of independent interest) to avoid the typical c−2

min term in the expected
regret bound (Tran-Thanh, Chapman, et al., 2012; Ding, Qin, et al., 2013; Xia, Ding,
et al., 2016; Xia, Qin, et al., 2016; Watanabe et al., 2017), where cmin is the minimal
expected search cost paid over a single round.
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4.1.1 Background

We formalize in this subsection the setting we consider. We denote a finite DAG by
G , ([n],E), where [n] is its set of vertices, or arms, and E is its set of directed edges.
For more generality, we assume arm costs are random and mutually independent. We
denote Cj ∈ [0, 1], with expectation c∗j , E[Cj ] > 0, the cost of arm j. We thus have
c∗ = E[C] ∈ (0, 1]n. We also assume that one specific vertex, called hider, is chosen
at random, independently from C, accordingly to some fixed categorical distribution
(or Multinoulli) parameterized by vector w∗ satisfying3 ∑n

i=1w
∗
i = 1 and w∗i ∈ [0, 1].

Notice that W ∼ Multinoulli(w∗) if, given i ∈ [n] and with probability w∗i , Wi = 1
and Wj = 0 for all j 6= i.

Let G〈A〉 be the sub-DAG in G induced by A, i.e., the DAG with A as vertex set,
and with (i, j) an edge in G〈A〉 if and only if (i, j) ∈ E. We call support of an ordered
arm set S = (s1, . . . , sk) the corresponding non-ordered set. For two disjoint ordered
arm sets S and S′, we let SS′ = (s1, s2, . . . , s|S|, s′1, s′2, . . . , s′|S′|) be the concatenation
of S and S′.

We assume that G allows a polynomial-time algorithm (w.r.t.n), that takes some
parameters w, c ∈ Rn

+, and outputs S = scheduling(w, c,G) minimizing

d(S; w, c) ,
|S|∑
i=1

wsi

i∑
j=1

csj

over linear extensions4 S = (s1, . . . , sn) of the poset defined by G (that we call G-
linear extensions). Notice that d(S; w∗, c∗) represents the expected cost to pay for
finding the hider with the G-linear extension S, i.e., by searching arm s1 first and
paying Cs1 , then s2 by paying Cs2 in caseWs1 = 0, and so on until the hider is found,
i.e., the last arm i searched is such that Wi = 1.

We define a search in G as an ordering S = (s1, . . . , sk) of different arms such
that for all i ∈ [k], predecessors of si in G are included in {s1, . . . , si−1}, i.e., a search
is a prefix of a G-linear extension. We denote by S the set of searches in G. Search
supports are called initial sets.

4.1.2 Protocol

Our search setting is sequential. We consider an agent, also called a learning algorithm
or a policy that knows G but that does not know P(C,W). At each round t, an
independent sample (Ct, Wt) is drawn from P(C,W). The aim of the agent is to
search the hider (i.e., the arm i such that Wi,t = 1) by constructing a search on G.
Since the hider may be located at some arm that does not belong to the search, it is
not necessarily found over each round.

The search to be used by the agent can be chosen based on all its previous obser-
vations, i.e., all the costs of explored vertices (and only those) and all the locations
where the hider has been found or not. Obviously, the search cannot use the non-
observed quantities. For example, the agent may estimate w∗ and c∗ in order to
choose the search accordingly. Each time an arm j is searched, the feedback Wj,t and
Cj,t is given to the agent. The agent can keep searching round after round until its
global budget, B, runs out. B is a positive number and does not need to be known

3i.e., w∗ belongs to the simplex of Rn

4A linear extension of a poset is a total ordering consistent with the poset, i.e., if a is before b in
the poset, then the same has to be true for its linear extension.
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to the agent in advance. The agent wants to maximize the overall number of hiders
found under the budget constraint.

The setting described above allows the agent to modify its behavior depending
on the feedback it received during the current round. However, the only feedback on
Wi susceptible to modify the search the agent chose at the beginning of a round t
is the observation of Wi,t = 1 for some arm i. Even if nothing prevents the agent
from continuing "searching" some arms after having seen such an event, it would not
increase the number of hiders found (there is no more hider to find), while this would
still decrease the remaining budget, and therefore it would have a pure exploratory
purpose. Knowing this, for the case where costs are deterministic, an oracle policy
that knows exactly PW thus selects a search St at the beginning of round t, and then
performs the search that follows St until eitherWi,t = 1 is observed or St is exhausted
(i.e., no arms are left in St). Therefore, the performed search is composed of the set
of arms

At = {st,1, . . . , st,j},

where j is such that Wsj ,t = 1, and j = |St| if no such node exists. In the general
case of random costs, when we will design a policy, we choose to restrict ourselves
to agents that select a search St at the beginning of each round t and then performs
At over this round. As a consequence, the selected search is computed based on
observations collected during previous rounds t− 1, t− 2, . . . , denoted Ht, that we
refer to as history.

Remark 10. Since a single arm i is associated to a pair of outcomes (Ci,Wi), it
must be kept in mind that the above set At is the feedback set corresponding to the
cost C only (it is on this feedback that the above setting is of the CMAB-T type).
Concerning the feedback for W, we remark that eSt �Wt is observed at round t in
the above setting, i.e., the feedback set coincides with the action selected (i.e., this
feedback is only of the CMAB type).

Following Stone (1976), we refer to our problem as sequential search-and-stop.
We now detail the overall objective for this problem: The agent wants to follow a
policy π, that performs a search At at round t, while maximizing the expected overall
reward

FB(π) , E

τB−1∑
t=1

∑
i∈At

Wi,t

,

where τB is the random round at which the remaining budget becomes negative: In
particular, we have that if Bt , B −

∑t
t′=1 eT

At′
Ct′ , then BτB−1 ≥ 0 and BτB < 0.

We evaluate the performance of a policy using the expected (budgeted) regret with
respect to F ∗B, the maximum value of FB (among all possible oracle policies that
know P(C,W) and B), defined as

RB(π) , F ∗B − FB(π).

Example 3. One may wonder if there exist cases where it is interesting for the agent
to stop the search earlier (i.e. to select S with |S| < n). Consider for instance
the simplest non-trivial case with two arms and no precedence constraint. The costs
are deterministically chosen to be ε and 1 and the location of the hider is chosen
uniformly at random. An optimal search will always first sample the arm with ε < 1
cost. If it also samples the other one, then the hider will be found with an expected
cost of ε+ 1/2. However, if the agent always stops the search after the first arm, and
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reinitializes on a new instance by doing the same, the overall cost to find one hider is
∞∑
t=1

(1
2

)t
tε = 2ε < ε+

1
2, for ε < 1

2.

Therefore, stopping searches, even if the location of the hider is known, may be better
than always trying to find it.

4.2 Offline oracle
In this section, we provide an algorithm for sequential search-and-stop when parame-
ters w∗ and c∗ are given to the agent. We show that a simple stationary policy (i.e.,
the same search S∗ is selected at each round) can obtain almost the same expected
overall reward as F ∗B. We will denote by Oracle an algorithm that takes w∗, c∗, and G
as input and outputs S∗. This offline oracle will eventually be used by the agent for
the online problem, i.e., when parameters are unknown. Indeed, at round t, the agent
can approximate S∗ by the output St of Oracle(wt, ct,G), where wt, ct can be any
guesses/estimates of the true parameters. Importantly, depending on the estimation
followed by the agent, wt may not stay in the simplex anymore. We will thus build
Oracle such that an "acceptable" output is given for any input (w, c) ∈ (Rn

+)
2.

4.2.1 Objective design

A standard paradigm for designing a stationary approximation of the offline prob-
lem in budgeted multi-armed bandits is the following: S∗ has to minimize the ratio
between the expected cost paid and the expected reward gain, over a single round,
selecting S∗. We thus define, for S ∈ S,

J(S; w∗, c∗) , E[eT
AC]E[eT

SW]−1

=
d(S; w∗, c∗) + (1− eT

Sw∗)eT
Sc∗

eT
Sw∗

=
|S|∑
i=1

c∗si

(
1− eT

{s1,...,si−1}w
∗
)

eT
Sw∗ .

Notice that we allow J to be equal to +∞ (when eT
Sw∗ = 0). We use the convention

J(∅; w∗, c∗) = +∞, because there is no interest in choosing an empty search for a
round. We define the optimal values of J on S as

J∗ , min
S∈S

J(S; w∗, c∗), S∗ , arg min
S∈S

J(S; w∗, c∗).

We now provide guarantees for this stationary policy.

Proposition 10. If π∗ is the offline policy selecting S∗ ∈ S∗ at each round t, then

B − n
J∗

≤ FB(π∗) ≤ F ∗B ≤
B + n

J∗
.

Proof. The proof follows the one provided for Lemma 1 of Xia, Qin, et al., 2016. If
we let B0 = B, then for any offline policy π, if we denote by At,St the search selected,
resp. performed by π at round t (we saw that an optimal policy is such that St does
not depend on Wt), and if we let Bt = B −

∑t
t′=1 eT

At′
Ct′ be the remaining budget
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at time t,

FB(π) =
∞∑
t=1

E

∑
i∈St

I{Bt ≥ 0, Wi,t = 1}

 (4.1)

≤
∞∑
t=1

E

∑
i∈St

I{Bt−1 ≥ 0, Wi,t = 1}

 (4.2)

=
∞∑
t=1

E

∑
i∈St

I{Bt−1 ≥ 0}w∗i

 (4.3)

=
∞∑
t=1

E
[
I{Bt−1 ≥ 0}w∗TeSt

]
=
∞∑
t=1

E

[
I{Bt−1 ≥ 0}d(St; w∗, c∗) + (1−w∗TeSt)c∗TeSt

J(St; w∗, c∗)

]

≤
∞∑
t=1

E

[
I{Bt−1 ≥ 0}d(St; w∗, c∗) + (1−w∗TeSt)c∗TeSt

J∗

]

=
1
J∗

E

[
τB∑
t=1

(d(St; w∗, c∗) + (1−w∗TeSt)c∗
TeSt)

]
(4.4)

=
1
J∗

E

[
τB∑
t=1

c∗TeAt

]

=
1
J∗

E

[
τB−1∑
t=1

CT
t eAt + CT

τB
eAτB

]

≤ B + n

J∗
, (4.5)

where (4.2) uses Bt ≥ 0 ⇒ Bt−1 ≥ 0, (4.3) is obtained by conditioning on pre-
viously sampled arms, (4.4) uses the random round τB such that BτB−1 ≥ 0 and
BτB < 0, and (4.5) uses the definition of BτB−1 and Ci,t ≤ 1. Now, for the lower
bound, we have that

FB(π
∗) ≥

∞∑
t=1

E

[∑
i∈S∗

I{Bt−1 ≥ n, Wi,t = 1}
]

(4.6)

=
∞∑
t=1

E[I{Bt−1 ≥ n}eT
S∗w∗] (4.7)

=
1
J∗

E

[
τ∑
t=1

CT
t eA∗t

]
(4.8)

≥ B − n
J∗

, (4.9)

where (4.6) uses Bt−1 ≥ n ⇒ Bt ≥ 0, (4.7) uses the same derivation as previ-
ously, (4.8) uses τ , the random round such that Bτ−1 ≥ n and Bτ < n, and (4.9) is
by definition of Bτ . In (4.8), A∗t =

{
s∗1, . . . , s∗j

}
, where j is such that Wsj ,t = 1, and

j = |S∗| if no such node exists.

Intuitively, Proposition 10 states that the optimal overall expected reward that
can be gained (i.e., the maximum expected number of hiders found) is approximately
B/J∗ (we assume that B � n). This is quite intuitive, since this quantity is actually
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the ratio between the overall budget and the minimum expected cost paid to find a
single hider. Indeed, one can consider the related problem of minimizing the overall
expected cost paid, over several rounds, to find a single hider. It can be expressed
as an infinite-time horizon Markov decision process (MDP) with action space S and
two states: whether the hider is found (which is the terminal state) or not. The goal
is to choose a strategy S1,S2, . . . ,St, . . ., minimizing

J (S1,S2, . . .) , E

[
τ∑
t=1

eT
AtCt

]

=
∞∑
t=1

(
eT
Stw

∗
(
t−1∑
u=1

eT
Su

)
c∗ + d(St; w∗, c∗)

)
t−1∏
u=1

(
1− eT

Suw∗
)
,

where the stopping time τ is the first round at which the hider is found. The Bellman
equation is

J (S1,S2, . . .) = d(S1; w∗, c∗) +
(
1− eT

S1w∗
)(

eT
S1c∗ + J (S2, . . .)

)
,

from which we deduce there exists an optimal stationary strategy (Sutton and Barto,
1998) such that St = S for all t ∈ N∗. Therefore, we can minimize J (S,S, . . . ) =
J(S; w∗, c∗) that gives the optimal value of J∗.

As we already mentioned, Oracle aims at taking inputs (w, c) ∈ (Rn
+)

2. The first
straightforward way to do is to consider

J(S; w, c) ,
|S|∑
i=1

csi

(
1− eT

{s1,...,si−1}w
)

eT
Sw .

However, notice that with the definition above, J( · ; w, c) could output negative
values (if eT

[n]w > 1), which is not desired, because the agent would then be enticed to
search arms with a high cost. We thus need to design a non-negative extension of J to
(w, c) ∈ (Rn

+)
2. One way is to replace

(
1− eT

{s1,...,si−1}w
)
by eT

{s1,...,si−1}cw, another
is to consider 0∨J(S; w, c). There is a significant advantage of considering the second
way, even if it is less natural than the first one, which is that for (w, c) ∈ (Rn

+)
2,

0∨ J(S; w, c) ≤ J(S; w∗, c∗),

if w ≥ w∗ and c ≤ c∗. This property5 is known to be useful for analysis of many
stochastic combinatorial semi-bandit algorithms (see e.g., Chen, Wang, and Yuan,
2016). Thus, we choose for Oracle the minimization of the surrogate 0∨ J( · ; w, c).

4.2.2 Algorithm and guarantees

We now provide Oracle in Algorithm 3 and claim in Theorem 17 that it minimizes
0∨J( · ; w, c) over S. Notice that Oracle needs to call the polynomial-time algorithm
scheduling(w, c,G), that minimizes the objective function d(S; w, c) over G-linear
extensions S. Then, Algorithm 3 only computes the maximum value index of a list
of size n that takes linear time. To give an intuition, S∗ follows the ordering given
by scheduling(w, c,G), and stops at some point when it becomes more interesting
to start a fresh new instance.

5Notice this is not exactly a monotonicity property, because we compare to a single point (w∗, c∗).
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Algorithm 3 Oracle
Input: w, c and G.
S = {s1, . . . , sn} , scheduling(w, c,G).
i∗ , arg mini∈[n] 0∨ J({s1, . . . , si}; w, c) (ties may be broken arbitrarily).

Output: the search S∗ , {s1, . . . , si∗}.

Theorem 17. For every (w, c) ∈ (Rn
+)

2, Algorithm 3 outputs a search minimizing
0∨ J( · ; w, c) over S.

The proof of Theorem 17 mixes known concepts of scheduling theory, such as Sid-
ney decomposition (Sidney, 1975), with some new results for our objective function.

Until the end of this subsection, we might abbreviate 0 ∨ J( · ; w, c) into J+,
J( · ; w, c) into J and d( · ; w, c) into d, keeping in mind that our results will be
valid for all (w, c) ∈ (Rn

+)
2. To prove Theorem 17 we first define the concept of

density, well know in scheduling and search theory.

Definition 13 (Density). The density is the function defined on A ∈ P([n]) by
λ(A) , eT

Aw/eT
Ac, and λ(∅) = 0.

Density of A ⊂ [n] can be understood as the quality/price ratio of that set of
arms: the quality is the overall probability of finding the hider in it, while the price
is the total cost to fully explore it. Without precedence constraint, the so-called
Smith’s rule of ratio (Smith, 1956) gives that S minimizes d over linear orders (i.e.,
permutations of [n]) if and only if λ(s1) ≥ · · · ≥ λ(sn).6 Sidney (1975) generalized
this principle to any precedence constraint with the concept of Sidney decomposition.
Recall that an initial set is the support of a search.

Definition 14 (Sidney decomposition). A Sidney decomposition (Z1,Z2, . . . ,Zk) is
an ordered partition of [n] such that for all i ∈ [k], Zi is an initial set of maximum
density in G〈Zi t · · · tZk〉.

Notice that the Sidney decomposition defines a poset on [n], with the constraint
that an element of Zi must be processed before those of Zj for i < j. Any G-linear
extension that is also a linear extension of this poset is said to be consistent with the
Sidney decomposition. The following theorem was proved by Sidney (1975):

Theorem 18 (Sidney, 1975). Every minimizer of d over G-linear extensions is con-
sistent with some Sidney decomposition. Moreover, for every Sidney decomposition
(Z1, . . . ,Zk), there is a minimizer of d over G-linear extensions that is consistent
with (Z1, . . . ,Zk).

Notice that Theorem 18 does not provide a full characterization of minimizers of
d over G-linear extensions, but only a necessary condition. Nothing is stated about
how to chose the ordering inside each Zi’s, and this highly depends on the structure
of G (Lawler, 1978; Ambühl and Mastrolilli, 2009; Ambühl, Mastrolilli, et al., 2011).
We are now ready to prove Theorem 17, thanks to Lemma 5.

Lemma 5. For any Sidney decomposition (Z1, . . . ,Zk), there exists i ≤ k and a
search with support Z1 t · · · tZi that minimizes J+.

6One can see that
∑
{i,j}∈I(σ), i<j csicsj (λ(si)− λ(sj)) is the variation of d when swapping a

linear order S by a permutation σ, where I(σ) the set of inversions in σ.
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Proof of Theorem 17. We know from first statement of Theorem 18 that

S , scheduling(w, c,G)

given in Algorithm 3 is consistent with some Sidney decomposition (Z1, . . . ,Zk). Let
i ≤ k and S∗ minimizing J+ of support Z1 t · · · t Zi given by Lemma 5. Consider
the following decomposition of S: S = S′S′′ with S′ being the restriction of S to
Z1 t · · · tZi (and thus S′′ is its restriction to Zi+1 t · · · tZk ). Let’s prove that S′ is
also a minimizer of J+ by showing J+(S′) ≤ J+(S∗), thereby concluding the proof.
By definition of S, we have 0 ≤ d(S∗S′′)− d(S′S′′) = d(S∗)− d(S′), so

d(S′) + (1−wTeZ1t···tZi)cTeZ1t···tZi
wTeZ1t···tZi

≤ d(S∗) + (1−wTeZ1t···tZi)cTeZ1t···tZi
wTeZ1t···tZi

,

i.e., J(S′) ≤ J(S∗), and because x 7→ 0∨x is non-deacreasing on R, we have J+(S′) ≤
J+(S∗).

The proof of Lemma 5 also uses Sidney’s Theorem 18, but this time the second
statement. However, although it provides a crucial analysis, with fixed support,
concerning the order to choose for minimizing d and therefore J+, nothing is said
about the support to choose. Thus, to prove Lemma 5, we also need the following
Proposition 11, that gives the key support property satisfied by J+.

Proposition 11 (Support property). If SS′,SS′S′′ ∈ S with λ(S′′) ≥ λ(S′), then

J+(SS′) ≥ J+(S) ∧ J+(SS′S′′). (4.10)

Proof. If J(SS′S′′) < 0, then J+(SS′S′′) = 0 ≤ J+(SS′) and (4.10) is true. We thus
assume J(SS′S′′) ≥ 0. Since J(S′′) ≤ 1

λ(S′′) ,

0 ≤ J(SS′S′′) = J(SS′)wTeSS′
wTeSS′S′′

+
wTeS′′J(S′′)−wTeSS′cTeS′′

wTeSS′S′′

≤ J(SS′)wTeSS′
wTeSS′S′′

+
wTeS′′(1−wTeSS′)
λ(S′′)wTeSS′S′′

. (4.11)

If 1−wTeSS′ ≤ 0, by (4.11), we have that

0 ≤ J(SS′S′′) ≤ J(SS′)wTeSS′
wTeSS′S′′

≤ J(SS′),

so J+(SS′S′′) ≤ J+(SS′) and (4.10) is true. Thus, we suppose that 1−wTeSS′ ≥ 0.
If J(S) ≤ J(SS′), then J+(S) ≤ J+(SS′) and (4.10) is true. Else,

J(SS′) ≥ 1
wTeS′

(J(SS′)wTeSS′ − J(S)wTeS) ≥
1−wTeSS′
λ(S′)

. (4.12)

Thus, we have

J(SS′S′′)− J(SS′)

≤ J(SS′)wTeSS′
wTeSS′S′′

+
wTeS′′(1−wTeSS′)
λ(S′′)wTeSS′S′′

− J(SS′) (4.11)
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=
−wTeS′′J(SS′)

wTeSS′S′′
+

wTeS′′(1−wTeSS′)
λ(S′′)wTeSS′S′′

≤ wTeS′′
wTeSS′S′′

(−(1−wTeSS′)
λ(S′)

+
1−wTeSS′
λ(S′′)

)
≤ 0 (4.12) and λ(S′′) ≥ λ(S′).

So, J+(SS′S′′) ≤ J+(SS′) and (4.10) is true.

Example 4. Now, as a preview, we can actually derive easily the proof of Lemma 5
when there is no precedence constraints, the idea in the general case being very similar.
Let (Z1, . . . ,Zk) be a Sidney decomposition. Then, if zi,1, . . . , zi,ji are arms of Zi, we
have

λ(z1,1) = · · · = λ(z1,j1) ≥ · · · ≥ λ(zk,1) = · · · = λ(zk,jk).

Let S∗ be a maximum-size minimizer of J+ of support A∗. Assume A∗ is not of the
form given by Lemma 5, and let x be the first, for the order

(z1,1, . . . , z1,j1 , . . . , zk,1, . . . , zk,jk),

in some Zi\A∗ while A∗ ∩ (Zi t · · · tZk) 6= ∅. By Proposition 11, we keep the op-
timality by either adding x to S∗ (which contradicts the maximality of |S∗|), or by
removing the suffix defined on A∗ ∩ (Zi t · · · tZk), giving a support satisfying con-
clusion of Lemma 5.

4.2.3 Proof of Lemma 5

Before proving Lemma 5, we state some preliminaries about initial sets of the DAG G.

Fact 1. A is an initial set in G if and only if for all a ∈ A, the predecessors of a in
G are also in A.

Let us recall that L ⊂ P([n]) is a lattice if A,A′ ∈ L ⇒ (A∩A′,A∪A′ ∈ L).

Proposition 12. The set of initial sets in G is a lattice.

Proof. Let A and A′ be two initial sets in G. If a ∈ A∪A′ (respectively a ∈ A∩A′),
then the predecessors of a are included in predecessors of A or (respectively and)
the predecessors of A′, i.e., in A or (respectively and) A′, so in A ∪A′ (respectively
A∩A′).

Even if we do not use the following proposition,7 we provide it nonetheless, since
it illustrates how to handle density λ.

Proposition 13. The set of initial sets of maximum density in G is a lattice.

Proof. We use the fact that for a, b ≥ 0 and a′, b′ > 0, a+b
a′+b′ ≤

a
a′ ∨

b
b′ , with equality

if and only if a
a′ =

b
b′ . Indeed, if A and A′ are two initial sets of maximum density in

G, then

wTeA
cTeA

=
wT(eA + eA′)
cT(eA + eA′)

=
wT(eA∪A′ + eA∩A′)
cT(eA∪A′ + eA∩A′)

≤ wTeA∪A′
cTeA∪A′

∨ wTeA∩A′
cTeA∩A′

.

A∩A′ and A∪A′ are initial sets, so by maximality of density of A,

wTeA∪A′
cTeA∪A′

∨ wTeA∩A′
cTeA∩A′

≤ wTeA
cTeA

.

7Theorem 18 does need this proposition.
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Therefore, the equality holds, and it needs to be the case that

wTeA∪A′
cTeA∪A′

=
wTeA∩A′
cTeA∩A′

=
wTeA
cTeA

,

so both A∩A′ and A∪A′ have maximum density.

We now provide a proof of Lemma 5.

Proof of Lemma 5. Let j be the largest integer such that there is a search minimizing
J+ of the form S = S1 · · ·SjS′ with Si of support Zi for all i ∈ [j]. Let S =
S1 · · ·SjS′ be such search, with |S| being the smallest possible (i.e., |S′| being the
smallest possible). Let A′ be the support of S′. By contradiction, assume A′ 6= ∅.
By Theorem 18, there exists a minimizer of the form Sj+1S′′ of d

(
S1 · · ·Sj ·

)
over

G〈Zj+1 ∪A′〉-linear extensions, with Sj+1 of support Zj+1. Zj+1 ∩A′ is an initial set
(as an intersection of two initial sets) of G〈Zj+1t · · · tZk〉. Therefore, by maximiality
of the density of Zj+1 in G〈Zj+1 t · · · tZk〉, we have

λ(Zj+1 ∩A′) ≤ λ(Zj+1).

This translates, by property of the density, into

λ(Zj+1) = λ((Zj+1 ∩A′) t (Zj+1\A′)) ≤ λ(Zj+1\A′),

and thus λ(A′) ≤ λ(Zj+1) ≤ λ(Zj+1\A′). If we let S′′′ be a search of G〈(Zj+1\A′) t
Zj+2 t · · · tZk〉 with support Zj+1\A′ (one can take the order induced by Zj+1 by re-
moving the arms of A′), then by Proposition 11, associated with d

(
S1 · · ·SjSj+1S′′

)
≤

d
(
S1 · · ·SjS′S′′′

)
, we have that

J+(S) ≥ J+(S1 · · ·Sj) ∧ J+(S1 · · ·SjS′S′′′) ≥ J+(S1 · · ·Sj) ∧ J+(S1 · · ·SjSj+1S′′),

contradicting either the definition of j or the minimality of |S|.

4.3 Online search-and-stop
In this section, we consider an additional challenge where the distribution P(C,W) is
unknown and the agent must deal with it, while minimizing RB(π) over sampling
policies π, where B is a fixed budget. Recall that a policy π selects a search St ={
s1,t, . . . , s|St|,t

}
at the beginning of round t, using previous observations Ht, and

then performs the search that choose the set of arms At = {s1,t, . . . , sj,t}, where
Wj,t = 1 or j = |St|. We treat the setting as a variant of stochastic combinatorial
semi-bandits (Gai, Krishnamachari, and Jain, 2012). The feedback received by an
agent at round t is random, because it depends on Wt, and thus it is not measurable
w.r.t.Ht. More precisely, (Wi,t,Ci,t) is observed only for arms i ∈ At. Notice that
since Wt is a one-hot vector, the agent can always deduce the value of Wi,t for all
i ∈ St. As a consequence, we will maintain two types of counters for all arms i ∈ [n]
and all t ≥ 1,

N⊕i,t−1 ,
t−1∑
t′=1

I{i ∈ St′},

N	i,t−1 ,
t−1∑
t′=1

I{i ∈ At′}.
(4.13)
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wi,t−1 ,
∑t−1
t′=1 I{i ∈ St′}Wi,t′

N⊕i,t−1
,

ci,t−1 ,
∑t−1
t′=1 I{i ∈ At′}Ci,t′

N	i,t−1
.

(4.14)

We propose an approach similar to ucb-v of Audibert, Munos, and Szepesvári
(2009a), based on cucb of Chen, Wang, and Yuan (2016), called cucb-v, that uses
a variance estimation of w∗ in addition to the empirical average. Notice that the
variance of Wi for an arm i is σ2

i , w∗i (1−w∗i ). Furthermore, since Wi is binary, the
empirical variance of Wi after t rounds is wi,t(1−wi,t). For every round t and every
edge i ∈ [n], with the previously defined empirical averages, we use the confidence
bounds8 defined as

ci,t , 0∨
(
ci,t−1 −

√
0.5ζ log t
N	i,t−1

)
,

wi,t ,

(
wi,t−1 +

√
2ζwi,t−1(1−wi,t−1) log t

N⊕i,t−1
+

3ζ log t
N⊕i,t−1

)
∧ 1,

where we choose the exploration factor to be ζ , 1.2. Notice that we could take
any ζ > 1 as shown by Audibert, Munos, and Szepesvári (2009a). We provide the
policy πcucb-v that we consider in Algorithm 4.

Algorithm 4 Combinatorial upper confidence bounds with variance estimates
(cucb-v) for sequential search-and-stop
Input: G.
for t = 1..∞ do
Select St given by Oracle(wt, ct,G).
Perform the search that follows St until the hider is found, i.e., sample the arms
of At.
Collect feedback and update counters and empirical averages according to (4.13)
and (4.14).

end for

4.3.1 Analysis

Notice that since an arm i ∈ St is pulled (and thus Ci,t is revealed to the agent) with
probability 1− eT

{s1,t,...,si−1,t}w
∗ over round t, we fall, as anticipated in Remark 10,

into the setting of probabilistically triggered arms w.r.t. costs, described by Chen,
Wang, and Yuan (2016) and Wang and Chen (2017). Thus we could rely on these
prior results. However, the main difficulty in our setting is that we also need to
deal with probabilities Wi,t, that the agent actually observes for every arm i in St,
either because it actually pulls arm i, or because it deduces the value (that is thus 0)
from other pulls of round t. In particular, if we follow the analysis of Chen, Wang,
and Yuan (2016) and Wang and Chen (2017), the double sum in the definition of J
leads to expected regret bound that is quite large. Indeed, assuming that all costs
are deterministically equal to 1, if we suffer an error of δ when approximating each
w∗i , then the global error can be as large as ∑n

i=1
∑i−1
j=1 δ = O(n2δ), contrary to just

8With the convention x/0 = +∞, ∀x ≥ 0.
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O(nδ) for the approximation error w.r.t. costs, that is more common in combinatorial
semi-bandits. Thus, we rather combine their work with the variance estimates of
w∗i . Often, this does not provide a significant improvement over ucb in terms of
expected regret (otherwise we could do the same for the costs), but since in our case,
the variance is of order 1/n, the gain is non-negligible.9 We let cmin > 0 be any
deterministic lower bound on the set

{
eT
At

c∗, t ≥ 1
}
. Furthermore, we let

TB , d2B/cmine

and for any search S, we define the gap of S as

∆(S) , eT
Sw∗

(
J(S; w∗, c∗)

J∗
− 1

)

=
1
J∗

|S|∑
i=1

c∗si

1−
i−1∑
j=1

w∗sj

− |S|∑
i=1

w∗si ≥ 0,

that represents the local regret of selecting a sub-optimal search S at some round. In
addition, for each arm i ∈ [n], we define

∆i,min , inf
S/∈S∗ : i∈S

∆(S) > 0.

We provide bounds for the expected regret of πcucb-v in Theorem 19. The first bound
is gap-dependent, and is characterized by cmin, J∗, and σ2

i , ∆i,min, i ∈ [n]. Its main
term scales logarithmically w.r.t.B. The second bound is true for any sequential
search-and-stop problem instance having a fixed value of cmin > 0 and J∗ > 0.

Theorem 19. The expected regret of cucb-v satisfies

RB(πcucb-v) = O

n log TB
∑
i∈[n]

1 + (J∗ + n)2σ2
i

J∗2∆i,min
+

(J∗ + n)

J∗n
log
(
n∆i,max
∆i,min

).

In addition,

supRB(πcucb-v) = O
(√

n

(
1 + n

J∗

)√
TB log TB

)
,

where the sup is taken over all possible sequential search-and-stop problems with fixed
cmin and J∗.

In the proof (that can be found in subsection 4.5.1), the main challenge comes
from the estimation of w∗ and not from c∗. We recall that our analysis does not use
triggering probability groups of Wang and Chen, 2017 for dealing with costs, since we
succeed in dealing with the triggering probability by seeing it as the expectation of
the event where the corresponding counter is updated (see the end of Chapter 3). For
hider probabilities, there is no triggering probability (they are equal to 1).10 Notice,
the analysis of Wang and Chen, 2017 only considers a deterministic horizon. In our
case, we need to deal with a random-time horizon. For that, notice that the regret
upper bounds that hold in expectation are obtained by splitting the expectation into

9The error δ is thus scaled by the standard deviation, of order 1/
√
n, giving a global error of

O(n1.5δ). We therefore recover the factor n1.5 given in Theorem 19.
10When we select search S, all feedback Wi, i ∈ S is received with probability 1, so triggering

probabilities are not useful.
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two parts. The first part is filtered with a high-probability event on which the regret
grows as the logarithm of the random horizon and the second one is filtered with
a low-probability event, on which we bound the regret by a constant. Since the log
function is concave, we can upper bound the expected regret by a term growing as the
logarithm of the expectation of the random horizon, with Jensen’s inequality. Finally,
we upper bound the expectation of the random horizon to get the rate of log TB.

4.3.2 Tightness of our regret bounds

Since we succeeded in reducing the dependence on n in the expected regret with con-
fidence bounds based on variance estimates, we can now ask whether this dependence
in Theorem 19 is tight. We stress that our solution to sequential search-and-stop is
computationally efficient. In particular, both the offline oracle optimization and the
computation of the optimistic search St in the online part are tractable.

Whenever rewards are not arbitrary correlated (as is the case in our setting),
we can potentially exploit these correlations in order to reduce the gap-dependent
regret’s dependence on n even further. This could be done by choosing a tighter
confidence region such as a confidence ellipsoid (Degenne and Perchet, 2016b), or
a KL-confidence ball (Combes et al., 2015) instead of coordinate-wise confidence
intervals. Unfortunately, these do not lead to computationally efficient algorithms.
It also seems from our Theorem 20 that there is an extra

√
n factor in our gap-free

bound. It is an open question whether a better gap-free regret bound exists.
To show that we are only a

√
n factor away, in the following theorem we provide

a class of sequential search-and-stop problems (parameterized by n and B) on which
the regret bound provided in Theorem 19 is tight up to a

√
n factor (and a logarithmic

one).

Theorem 20. For simplicity, let us assume that n is even and that B is a multiple
of n. For any optimal online policy π, there is a sequential search-and-stop problem
with n arms and budget B such that

−4 + 1
28

√
B

n
≤ RB(π) = O

(√
B log

(
B

n

))
.

For the proof (given in subsection 4.5.2), we consider a DAG composed of two
disjoint paths (Figure 4.1), with all costs deterministically set to 1 and with the hider
located either at sn/2 or s′n/2. This information is given to the agent. We then
reduced this setting to a two-arm bandit over at least B/n rounds.

s′1 s′2 s′3 s′n
2−1 s′n

2

s1 s2 s3 sn
2−1 sn

2

path S

path S′

Figure 4.1: The DAG considered in Theorem 20.

Notice that bounds provided in Theorem 20 decrease with n. This is because, in
the sequential search-and-stop problem, the increasing dependence on n is counter-
balanced by the fact that the number of rounds is of order B/n, and that J∗ is of
order n.
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Figure 4.2: Cumulative regret for sequential search-and-stop, with
B up to 105, averaged over 100 independent simulations.

Algorithm Definition of wi,t

cucb
(
wi,t−1 +

√
0.5ζ log t
N⊕i,t−1

)
∧ 1

cucb-kl
The unique solution x to

N⊕i,t−1kl(wi,t−1,x) = ζ log t
such that x ∈ [wi,t−1, 1]

cts
An independent sample from

Beta(α,N⊕i,t−1 − α),
where α = N⊕i,t−1wi,t−1

Table 4.1: Comparison algorithms in the experiment.

4.4 Experiments and discussion
In this section, we present an experiment for sequential search-and-stop. We compare
our cucb-v with three other online algorithms, which are same as cucb-v except for
the estimator wt to be plugged in Oracle. We give corresponding definitions of wt in
Table 4.1, where we take ζ , 1.2, and where

kl(p, q) , p log
(
p

q

)
+ (1− p) log

(1− p
1− q

)
is the Kullback-Leibler divergence between two Bernoulli distributions of parame-
ters p, q ∈ [0, 1] respectively. In this table, cts stands for combinatorial Thompson
sampling (Wang and Chen, 2018).

We run simulations for all the algorithms with n = 100 and without precedence
constraints, i.e., when the DAG is an edgeless graph. Notice that in this case, a
search can be any ordered subset of arms (thus, the set of possible searches is of
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cardinality ∑n
k=0 n!/k! ≤ en!). This restriction does not remove complexity from

the online problem, but rather from the offline one, so even in that case, the online
problem is challenging. We take parameter w∗ defined as

w∗i =
1
2i for i ∈ [m− 1]

w∗m =

(1
2 + ε

)
w∗m−1

w∗i =

(1
2 − ε

)
w∗m−1
n−m

for i ∈ {m+ 1, . . . ,n},

where we chose m , 40. For ε ∈ (0, 1/2), and for all expected cost being equal
to each other, one can see that S∗ = {[m]}. Intuitively, w∗i models the proportion
of users answering i to some fixed request:11 When ε = 0, half of the population
answers 1, a quarter answers 2, . . . , until m, and remaining users answer uniformly
on remaining arms {m+ 1, . . . ,n}. We chose ε = 0.1, c∗i = 1/2 for all i ∈ [n] and
take Ci ∼ Bernoulli(c∗i ). In Figure 4.2, for each algorithm considered, we plot the
quantity

B

J∗
−
τB−1∑
t=1

eT
St[Wt]

Wt,

with respect to budget B, averaged over 100 simulations. As shown in Proposition 10,
the curves obtained this way provide good approximations to the true regret curves.
We notice that cucb-kl, cucb-v, and cts are significantly better than cucb, since
the latter explores too much. In addition, the regret curves of cucb-kl, cucb-v and
cts are quite similar. In particular, their asymptotic slopes seem equal, which hints
that regret rates are comparable on this instance.

Finally, let us note that it is not surprising that cucb-kl outperforms cucb-v,
as we have binary variables here (cf. Chapter 2). More precisely, a cucb-kl analysis
would have given a slight improvement in the regret (using the kl function), but that
the dependency in the dimension n does not change.

4.4.1 Discussion and future work

We presented sequential search-and-stop problem and provided a stationary offline
solution. We gave theoretical guarantees on its optimality and proved that it is
computationally efficient. We also considered the learning extension of the problem
where the distribution of the hider and the cost are not known. We provided cucb-v,
an upper-confidence bound approach, tailored to our case and gave expected regret
guarantees with respect to the optimal policy.

We now discuss several possible extensions of our work. We could consider several
hiders rather than just one. Another would be to explore the cts approach (Chapelle
and Li, 2011; Agrawal and Goyal, 2012a; Komiyama, Honda, and Nakagawa, 2015;
Wang and Chen, 2018) further in the learning case by considering a Dirichlet prior
on the whole arm set. The Dirichlet seems appropriate because a sample w from this
prior is in the simplex. The main drawback however is the difficulty of efficiently
updating such prior to get the posterior, because in the case when the hider is not
found, the one-hot vector is not received entirely.

11For recommender systems or search engines, w∗i can thus be seen as the probability that a user
aims to find i when entering the request.



110 Chapter 4. An Example of CMAB-T Problem: Sequential Search-and-Stop

4.5 Missing proofs

4.5.1 Proof of Theorem 19

Proof of Theorem 19. We start with showing a lower bound on the expected reward
of any policy π,

FB(π) ≥
∑
t≥1

E
[
I{Bt−1 ≥ n}eT

Stw
∗] (4.15)

=
∑
t≥1

E
[
I{Bt−1 ≥ n, St ∈ S∗}eT

Stw
∗]+∑

t≥1
E
[
I{Bt−1 ≥ n, St /∈ S∗}eT

Stw
∗]

=
1
J∗

∑
t≥1

E
[
I{Bt−1 ≥ n, St ∈ S∗}

(
d(St; w∗, c∗) + (1− eT

Stw
∗)eT

Stc
∗)]

+
1
J∗

∑
t≥1

E
[
I{Bt−1 ≥ n, St /∈ S∗}

(
d(St; w∗, c∗) + (1− eT

Stw
∗)eT

Stc
∗)]

−
∑
t≥1

E[I{Bt−1 ≥ n, St /∈ S∗}∆(St)]

=
1
J∗

∑
t≥1

E
[
I{Bt−1 ≥ n}

(
d(St; w∗, c∗) + (1− eT

Stw
∗)eT

Stc
∗)]

−
∑
t≥1

E[I{Bt−1 ≥ n, St /∈ S∗}∆(St)]

≥ B − n
J∗

−
∑
t≥1

E[I{Bt−1 ≥ n, St /∈ S∗}∆(St)], (4.16)

with (4.15) obtained as (4.6) and (4.7), and (4.16) as (4.9). Therefore, since F ∗B ≤
(B + n)/J∗ by Proposition 10, we have that

RB(π)−
2n
J∗
≤
∑
t≥1

E[I{Bt−1 ≥ n, St /∈ S∗}∆(St)]

≤
∑
t≥1

E[I{Bt ≥ 0}∆(St)] = E

[
τB−1∑
t=1

∆(St)

]
.

It is thus sufficient to bound this last expectation, which has the form of the classical
regret (the non-budgeted one), and is thus easier to handle (note that we find here a
random horizon, as anticipated in the end of the previous chapter).

For some round t ≥ 1, recall that St minimizes 0∨ J( · ; wt, ct). In particular,

0∨ J(St; wt, ct) ≤ 0∨ J(S∗; wt, ct).

We define the event
Mt , {wt ≥ w∗, ct ≤ c∗},

under which 0∨ J(S∗; wt, ct) ≤ J∗: indeed, we can first use ct ≤ c∗ to write

J(S∗; w∗, ct) ≤ J(S∗; w∗, c∗) = J∗

because w∗ belongs to the simplex (thus, 1− eT
{s1,...,si−1}w

∗ ≥ 0 for all i). Then, using
ct ≥ 0 with wt ≥ w∗, we can write J(S∗; wt, ct) ≤ J(S∗; w∗, ct). The result follows
since x 7→ x∨ 0 is non-deacreasing on R. As a consequence, under the event Mt, we
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have
0∨ J(St; wt, ct) ≤ J∗.

We thus have that ∆(St) equals

1
J∗

|St|∑
i=1

c∗si,t

(
1−w∗Te{st,1,...,st,i−1}

)
− J∗w∗TeSt


=

1
J∗

|St|∑
i=1

c∗si,t

(
1−w∗Te{st,1,...,st,i−1}

)
− J∗wT

t eSt

+ (wt −w∗)TeSt

≤ 1
J∗

|St|∑
i=1

c∗si,t

(
1−w∗Te{st,1,...,st,i−1}

)
− 0∨ J(St; wt, ct)wT

t eSt

+ (wt −w∗)TeSt

≤ 1
J∗

|St|∑
i=1

c∗si,t

(
1−w∗Te{st,1,...,st,i−1}

)
− J(St; wt, ct)wT

t eSt

+ (wt −w∗)TeSt

=
1
J∗

|St|∑
i=1

(
c∗si,t

(
1−w∗Te{st,1,...,st,i−1}

)
− csi,t,t

(
1−wT

t e{st,1,...,st,i−1}
))

+ (wt −w∗)TeSt

=
1
J∗

|St|∑
i=1

(
c∗si,t − csi,t,t

)(
1−w∗Te{st,1,...,st,i−1}

)
+
|St|∑
i=1

csi,t,t(wt −w∗)Te{st,1,...,st,i−1}


+ (wt −w∗)TeSt

≤ 1
J∗

|St|∑
i=1

(
c∗si,t − csi,t,t

)(
1−w∗Te{st,1,...,st,i−1}

)
+ (n+ J∗)(wt −w∗)TeSt

.

We now define some more events:

N1,t ,

{
∀i ∈ St, c∗i − ci,t ≤ 1∧

√
2ζ log t
N	i,t−1

}
·

N2,t ,

{
∀i ∈ St, wi,t −w∗i ≤ 1∧

(√
8ζσ2

i log t
N⊕i,t−1

+
13
3 ζ log t
N⊕i,t−1

)}
·

Nt , N1,t ∧N2,t

Under Nt, we further have

∆(St) ≤
1
J∗

|St|∑
i=1

(
1−w∗Te{st,1,...,st,i−1}

)
︸ ︷︷ ︸

P[ si∈At|Ft]

1∧
√

2ζ log t
N	si,t−1

+
n+ J∗

J∗

∑
i∈St

1∧
(√

8ζσ2
i log t

N⊕i,t−1
+

13
3 ζ log t
N⊕i,t−1

)
.

On can notice that the factor
(
1−w∗Te{st,1,...,st,i−1}

)
is actually the probability of

observing the cost of si, which is P[si ∈ At|Ft] = P[si ∈ At|Ht] (since the policy is
not randomized). If we summarize from that point on, we used the events Mt and
Nt to prove the above upper bound on ∆(St). So we can break down the regret into
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two pieces, whether or not Mt ∧Nt occurs.
Let’s first treat the case where it occurs (first piece): We want to use Theorem 12

from Chapter 3. First of all, see that τB − 1 is such that {t ≤ τB − 1} ∈ Ft+1, so we
use the horizon τB instead of τB − 1 in this theorem. We can see in the above bound
that we have a composed bonus (with 3 terms). In addition to that, we can take apart
the null counters to have an initialization term of the form of the one in Proposition 5.
We can thus use Proposition 6 to treat each of this four term separately, each one
giving a final term in the regret. From Proposition 5, the initialization term induces
the regret term ∑

i∈[n]
2
J∗ . Theorem 12 can be used for the three other terms (with

bi(St) being a constant):

• with βi,τB = log(τB)/J∗2, αi = 1/2 and psj (St) = 1−w∗Te{st,1,...,st,i−1}, the
first term induces a regret term of order

∑
i∈[n]

nE[log(τB)]
J∗2∆i,min

.

• with βi,τB = (n+ J∗)2σ2
i log(τB)/J∗2, αi = 1/2 and psj (St) = 1, the second

term induces a regret term of order

∑
i∈[n]

n(n+ J∗)2σ2
i E[log(τB)]

J∗2∆i,min
.

• with βi,τB = (n+ J∗) log(τB)/J∗, αi = 1 and psj (St) = 1, the last term induces
a regret term of order

∑
i∈[n]

(n+ J∗)E[log(τB)]
J∗

log
(
n∆i,max
∆i,min

)
.

We will now turn to the second piece. For this, we are going to use several Theo-
rems from Chapter 2. In particular, we can use Corollary 1 (Hoeffding’s inequality)
and Theorem 8 (empirical Bernstein inequality) to get that Mt holds with probabil-
ity at least 1− 4n

⌈
ζ log2(t)

⌉
t−ζ . On the other hand, using the other inequality from

Corollary 1, Theorem 6 (Bernstein’s inequality) and Proposition 3, we get that Nt

holds with probability at least 1− 3n
⌈
ζ log2(t)

⌉
t−ζ . Therefore, the event Mt ∧Nt

holds with probability at least 1− 7n
⌈
ζ log2(t)

⌉
t−ζ and the regret under the comple-

mentary event can be bounded by

7n∆max
∑
t≥1

⌈
ζ log2(t)

⌉
t−ζ <∞.

This terminates the analysis for the gap-dependent regret bound (we note that there’s
still E[log(τB)] to be bounded, which we’ll do right after we deal with the gap-free
regret bound).

Gap-free bound For the gap-free bound, we consider the event that the gap ∆(St)
is greater than

(n+ J∗)
√
n
∑
i∈[n] σ

2
i log(τB)

J∗τ1/2
B

. (4.17)
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Under this event, we have the same analysis as above, but with ∆i,min replaced by
the quantity (4.17). The obtained rate is the same under the complementary event,
since the regret is thus trivially bounded by τB times the quantity (4.17). The result
thus follows noticing that ∑i∈[n] σ

2
i ≤ 1.

Control on the random time horizon We note that in both the gap-free and
gap-dependent bound above, one must control the expectation of a concave increasing
function of τB. Thus, with Jensen’s inequality, we have to control E[τB ]. This is the
purpose of the following.

E[τB ] = 1 + E

∑
t≥1

I{Bt ≥ 0}

 = 1 +
∑
t≥1

P

[
B − tcmin + tcmin ≥

t∑
t′=1

CT
t′eAt′

]

≤ TB + 1 +
∑

t≥TB+1
exp

(
−2(B − tcmin)2

t

)
(4.18)

≤ TB + 1 +
∑

t≥TB+1
exp

(
−c2

mint

2

)
(4.19)

≤ TB + 1 + 2
c2

min
exp

(
c2

min
2 − c2

min(TB + 1)
2

)
(4.20)

≤ TB + 1 + 2
c2

min
exp(−cminB),

where (4.18) makes use of Fact 2, (4.19) is obtained because 2(B− tcmin)2 ≥ c2
mint

2/2
for t ≥ 2B/cmin and we get (4.20) since 1/(1− e−c2

min/2) ≤ 2ec2
min/2/c2

min.

Fact 2 (Hoeffding, 1963; Flajolet and Jaillet, 2015). Let X1, . . . ,Xt be the random
variables with common support [0, 1] and such that there exists a ∈ R with ∀u ∈
[t], E[Xu|X1, . . . ,Xu−1] ≥ a. Let xt , 1

t (X1 + · · ·+Xt), then

∀ε ≥ 0 , P[xt − a ≤ −ε] ≤ e−2ε2t.

The above proved upper bound on the expected horizon is sufficient for our pur-
pose, as we are interested in the asymptotic rate of regret when B is large. We can
nevertheless note that in the regime where cmin is small, our gap dependent bound
has only a logarithmic dependence in c−1

min.

4.5.2 Proof of Theorem 20

Proof of Theorem 20. Let 0 < ε < 1/4. We consider a DAG composed of two disjoint
paths (Figure 4.1), both with n/2 nodes. We denote the two paths by S and S′. We
deterministically set all the costs to 1, wi = 0 for i /∈

{
sn

2
, s′n

2

}
. All this information

is given to the agent. Notice that this does not make the problem harder.
Now consider two distributions D1 and D2 defined by

D1 : wsn
2
,

1
2 + ε, ws′n

2
,

1
2 − ε and D2 : wsn

2
,

1
2 − ε, ws′n

2
,

1
2 + ε.

Notice that an optimal online policy does not modify its behavior during a round t,
since after having seen Wi,t = 1, continuing searching would only give information
about cost distribution which is known by the problem definition, and no additional
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information about the rewards. Therefore, there is an optimal online policy that
selects some search St and perform At over round t. Observe that S∗ = SS′ for D1
and S∗ = S′S for D2. We have J∗ = 3

4n− εn ≥
1
2n for both D1 and D2.

We now show that we can restrict ourselves to policies that take searches in
{SS′,S′S}.

• First, an optimal online policy does not select a search that would not include at
least one of the leaves

{
sn

2
, s′n

2

}
for a round. Therefore, it has a full information

on W . Indeed, a search of support included in
{
sn

2
, s′n

2

}c
is noninformative and

does not bring any reward while having a cost.

• Second, for a policy π that does not select a search in {SS′,S′S} for some
round t, we construct π′ that acts like π except for this round t where it selects
SS′ if π would see the leaf sn

2
first, and S′S otherwise, i.e., if π would first see

the leaf sn
2
. Now compare both policies on the same realization of W1, W2, . . . .

We claim that the global reward of π′ is never smaller than that of π. By
symmetry, assume that π sees sn

2
first within round t and thus π′ selects SS′.

– IfWsn
2

,t = 1 or
(
Ws′n

2
,t = 1 and π visits s′n

2
within round t

)
, both policies

obtain the same reward of 1 within round t, but π′ pays less than π.
– If Ws′n

2
,t = 1 and π does not visit s′n

2
within round t, π gains 0 and pays

at least n/2, whereas π′ gains 1 and pays n within round t. Thus, the
budget of π compared to π′ is augmented by at most n/2, with which it
can increase its reward by at most 1.

The overall reward of π′ remains higher than that of π for both cases.

A direct consequence of the restriction to {SS′,S′S} is that cmin = n/2, giving
the upper bound in Theorem 20 by invoking the result of Theorem 19.

Now for a policy π using searches from {SS′,S′S}, we have

FB(π) =
∞∑
t=1

E

∑
i∈St

I{Bt ≥ 0, Wi,t = 1}


≤
∞∑
t=1

E

∑
i∈St

I{Bt−1 ≥ 0, Wi,t = 1}


=
∑
t≥1

E
[
I{Bt−1 ≥ 0, St ∈ S∗}eT

Stw
∗]+∑

t≥1
E
[
I{Bt−1 ≥ 0, St /∈ S∗}eT

Stw
∗]

=
1
J∗

∑
t≥1

E
[
I{Bt−1 ≥ 0, St ∈ S∗}

(
d(St; w∗, c∗) + (1− eT

Stw
∗)eT

Stc
∗)]

+
1
J∗

∑
t≥1

E
[
I{Bt−1 ≥ 0, St /∈ S∗}

(
d(St; w∗, c∗) + (1− eT

Stw
∗)eT

Stc
∗)]

−
∑
t≥1

E[I{Bt−1 ≥ 0, St /∈ S∗}∆(St)]

=
1
J∗

∑
t≥1

E
[
I{Bt−1 ≥ 0}

(
d(St; w∗, c∗) + (1− eT

Stw
∗)eT

Stc
∗)]

−
∑
t≥1

E[I{Bt−1 ≥ 0, St /∈ S∗}∆(St)]
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≤ B + n

J∗
−
∑
t≥1

E[I{Bt−1 ≥ 0, St /∈ S∗}∆(St)].

As a result we get

BB(π) = F ∗B − FB(π) ≥
B − n
J∗

− B + n

J∗
+
∑
t≥1

E[I{Bt−1 ≥ 0, St /∈ S∗}∆(St)]

= −2n
J∗

+
∑
t≥1

E[I{Bt−1 ≥ 0, St /∈ S∗}∆(St)]·

Since we restrict π to take a search in {SS′,S′S}, we have a single gap (the same for
D1 and D2):

∆ =

n
2

(
1
2 − ε

)
+ n

(
1
2 + ε

)
n
2

(
1
2 + ε

)
+ n

(
1
2 − ε

) − 1 =
1.5 + ε

1.5− ε − 1 =
2ε

1.5− ε ≥
4ε
3 · (4.21)

Furthermore we can bound the number of rounds from below by B/n. To proceed
we use high-probability Pinsker inequality Tsybakov, 2009, Lemma 2.6.

Fact 3 (high-probability Pinsker inequality). Let P and Q be probability measures
on the same measurable space, and let A be an event. Then

P (A) +Q(¬A) ≥ 1
2 exp(−KL(P‖Q)),

where KL is the Kullback-Leibler divergence.

We let R1,B(π) be the regret of π for distribution D1 and similarly, R2,B(π) for
D2. If P1 and P2 denote the probability when random variable are samples from D1
and D2 respectively, we have

max{R1,B(π),R2,B(π)}

≥ R1,B(π) +R2,B(π)

2 (4.22)

≥ −2n
J∗

+
∆
2

B/n∑
t=1

(P1[Bt−1 ≥ 0,St = S′S] + P2[Bt−1 ≥ 0,St = SS′])

≥ −2n
J∗

+
ε

3

B/n∑
t=1

exp
(
−KL

(
D⊗t1 ‖D

⊗t
2

))
(4.23)

= −2n
J∗

+
ε

3

B/n∑
t=1

exp(−tKL(D1‖D2)),

where (4.23) is due to Fact 3 and (4.21). Then,

KL(D1‖D2) =

(1
2 + ε

)
log
( 1

2 + ε
1
2 − ε

)
+

(1
2 − ε

)
log
( 1

2 − ε
1
2 + ε

)

≤ 2ε
( 1

2 + ε
1
2 − ε

)
− 2ε

( 1
2 − ε
1
2 + ε

)
=

4ε2

1
4 − ε2 ≤

64
3 ε

2 log(x) ≤ x− 1.
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Thus, with J∗ ≥ n
2 , we have

max{R1,B(π),R2,B(π)} ≥ −4 + ε

3

B/n∑
t=1

exp
(
−64

3 tε
2
)
≥ −4 +

ε
(
1− exp

(
−64

3
Bε2

n

))
3
(
exp

(
64
3 ε

2
)
− 1

)
≥ −4 +

1− exp
(
−64

3
Bε2

n

)
64ε

≥ −4 + min
{ 1

128ε , εB6n

}
.

Taking ε =
√
(6n)/(128B), the lower bound becomes

max{R1,B(π),R2,B(π)} ≥ −4 +
√

B

768n ≥ −4 + 1
28

√
B

n
·
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Chapter 5

The Structure of Uncertainty

This chapter aims to introduce some tools necessary to the construction of more
sophisticated confidence regions than those we saw in the previous chapter. We will
then see that although the use of these confidence regions can lead to improved regret
bounds, they also can lead to efficiency issue in the algorithms, and that in some cases,
more complex optimization methods have to be implemented. The beginning of the
chapter is mainly based on known structured bandit results. More precisely, we will
rely on Degenne and Perchet (2016b) and on Magureanu, Combes, and Proutiere
(2014). The end of the chapter is based on our article Perrault, Perchet, and Valko
(2019a).

About confidence regions Here we give a more precise idea of the type of con-
fidence region we are interested in. In the previous chapter, we could see that the
optimistic estimates of the means were constructed from either the Hoeffding in-
equality or the Bernstein’s one (in the end, we also mentioned the use of kl-based
confidence intervals). In other words, if we look at the confidence regions from the
vectorial point of view, they all have the shape of a hypercube (i.e., a Cartesian prod-
uct of confidence intervals). Note that these confidence regions are all from Chapter 2,
i.e., they are all already used for the standard MAB setting. Here we want to in-
vestigate other types of confidence regions, which will be based more on the `2-norm
(ellipsoid) rather than the `∞-norm (hypercube). Indeed, we saw in the previous
chapter that a region based on the `∞-norm induces the use of bonuses of type `1.
We’ll see that, naturally, the use of regions based on the `2-norm will induce the use
of `2-type bonuses. This is interesting because, as we saw in Chapter 3, there is a
gain in using the `2-bonuses compared to the `1-bonuses. For example, in the case
where At = St is of maximum cardinality m, bi(St) = 1 and αi = 1/2 (note that
these settings are the most standard to consider), the use of an `2-bonus improves
the regret by a factor m log−2(m) (more precisely, the linear dependence of the regret
in the batch size m can be replaced by a polylogarithmic dependence log2(m)). In
the following, we will see two methods for building ellipsoidal confidence regions. Of
course, these constructions (and the resulting gain in the regret bound) are not free.
Specifically, the `2-regions are generally based on an assumption about the outcomes
X. As a reminder, the assumptions for the `∞-regions only concern the marginals
PXi (like the κ2-sub-Gaussianity, the boundedness, ...), and nothing is said about the
type of dependence that exists between these marginals. So, by providing additional
information about these dependencies, we get more structure about the uncertainty
associated with the outcomes X. This structure of uncertainty can be exploited in
order to improve the performance of the policies. The most natural way to proceed,
which we will follow here for sub-Gaussianity, is to extend the structures used for the
marginals to the multivariate case.
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For the two methods we look at, we make the following assumption on the vector
of outcomes X.

Assumption 1 (Subgaussian outcomes). There is a matrix C � 0 and a known
matrix Γ �+ C with Γij ∈ R+ for all i, j ∈ [n], such that

E
[
eλ

T(X−µ∗)
]
≤ eλ

TCλ.

The motivation for sub-Gaussian outcomes is the following: In the same way as
boundedness generalizes to sub-Gaussianity in 1d, we have that if X is a.s. in a
compact K, it is C-sub-Gaussian, with C built from the John’s ellipsoid of K.

Here, we focus on the linear reward case, for sake of simplicity, with an optimal
action denoted A∗ (so that ∆t = µ∗T(eA∗ − eAt)). This construction will inspire us
to generalize it to a more complex reward function. A common statistic computed
from the feedback received up to the beginning of round t is the empirical average of
each arm i ∈ [n], defined as

µi,0 = 0, ∀t ≥ 2, µi,t−1 =

∑
t′∈[t−1] I{i ∈ At′}Xi,t′

Ni,t−1

where ∀t ≥ 1, Ni,t−1 ,
∑
t′∈[t−1] I{i ∈ At′}.

5.1 Laplace’s method
We review here the most used method for ellipsoidal confidence region for µ∗: the
Laplace’s method. A very detailed explanation of Laplace’s method is given in Latti-
more and Szepesvári (2019) and in Abbasi-Yadkori, Pál, and Szepesvári (2011). Here,
we are going to focus on its use in our context of semi-bandit feedback. The difficulty
of designing confidence sets for µ∗ stems from the fact that the actions are correlated
to the outcomes (because the agent is adaptive).

Since we are considering a linear reward function, we want to compare µ∗ and µt−1
in some fixed direction eA, where A ∈ A. Indeed, we can first obtain the following
proposition in the same way as Theorem 9.

Proposition 14. The regret under the event (µt−1 −µ∗)
TeAt > ∆t/2 is bounded by

∆max8nm2 maxiCii/∆2
min.

Proof. Using Assumption 1,

T∑
t=1

∆tP
[
(µt−1 −µ∗)

TeAt > ∆t/2
]

≤
T∑
t=1

∆t
∑
i∈At

P
[
µi,t−1 − µ∗i > ∆min/(2m)

]

≤
T∑
t=1

∆max
∑
i∈[n]

P
[
i ∈ At, µi,t−1 − µ∗i > ∆min/(2m)

]

≤ ∆max
∑
i∈[n]

∑
t∈[T ]

e−∆2
mint/(8m2Cii) ≤ ∆max8nm2 maxiCii

∆2
min

.
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We can thus safely assume that (µt−1 −µ∗)
TeAt ≤ ∆t/2. Then, bounding eT

A∗(µ
∗ −µt−1)

by some bonust(A∗) with high probability, and using a policy that chooses At maxi-
mizing A 7→ µT

t−1eA + bonust(A), we have

∆t = µ∗T(eA∗ − eAt)
≤ µT

t−1eA∗ + bonust(A∗)−µ∗TeAt
≤ µT

t−1eAt + bonust(At)−µ∗TeAt
≤ bonust(At) + ∆t/2,

This provides the bound ∆t ≤ 2bonust(At), which is what we want to apply theorems
from the end of Chapter 3. The bound on eT

A∗(µ
∗ −µt−1) is obtained with the

following Theorem 21.

Theorem 21 (Laplace’s method). For any A ∈ A, with probability at least 1 −
1

t log2(t)
∧ 1, we have that eT

A(µ
∗ −µt−1) is upper bounded by

√
2δ(t)

∥∥∥∥∥∥eT
Adiag

(
t−1∑
t′=1

eAt′

)−1∥∥∥∥∥∥
diag
(
ηΓii

∑t−1
t′=1 I{i∈At′}

)
i
+
∑t−1

t′=1 Γ�
(

eAt′ e
T
At′

),

for some real parameter η > 0, and where δ(t) = log(t) + (2 + m) log log(t) +
m log(1 + e/η)/2.

Proof. We can write the following using the Cauchy-Schwarz inequality.

eT
A(µ

∗ −µt−1) = eT
Adiag

(
t−1∑
t′=1

eAt′∩A

)−1 t−1∑
t′=1

eAt′∩A � (µ∗ −Xt′)

≤

∥∥∥∥∥∥eT
Adiag

(
t−1∑
t′=1

eAt′∩A

)−1∥∥∥∥∥∥
Ct−1

∥∥∥∥∥
t−1∑
t′=1

eAt′∩A � (µ∗ −Xt′)

∥∥∥∥∥
C−1
t−1

,

where the matrix Ct−1 is D +
∑t−1
t′=1 C�

(
eAt′∩AeT

At′∩A

)
, with D being a positive

definite diagonal matrix to be specified latter. Our goal is to bound the right hand
term with high probability. This is an interesting quantity for the following reason:

1
2

∥∥∥∥∥
t−1∑
t′=1

eAt′∩A � (µ∗ −Xt′)

∥∥∥∥∥
2

C−1
t−1

= max
λ∈Rn

−1
2λ

TCt−1λ+ λT
t−1∑
t′=1

eAt′∩A � (µ∗ −Xt′),

and composing by the exponential, we begin to see a form similar to the sub-Gaussianity
assumption mentioned above. More precisely, for a fixed λ, the expectation of the
exponential of the RHS is lower than 1. However, we see here that there is a max-
imum over λ. The Laplace’s method (also called method of mixtures) is precisely
a way to get rid of this maximum. Intuitively, it provides an approximation of the
maximum by integrating the exponential against a multivariate normal centered at
C−1
t−1

∑t−1
t′=1 eAt′∩A � (µ∗ −Xt′), where the maximum is attained. The integrals over

λ and the expectation can then be swapped by Fubini’s theorem, to get an approxi-
mation of the expectation of the maximum using an integral of the expectations: Let
f be the density of a multivariate normal random variable independent of all other
variables with mean 0 and covariance D−1, we have
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√
det(D)

det(Ct−1)
exp

1
2

∥∥∥∥∥
t−1∑
t′=1

eAt′∩A � (µ∗ −Xt′)

∥∥∥∥∥
2

C−1
t−1


=
∫
λ∈Rn

t−1∏
t′=1

exp
(
−1

2λ
TC�

(
eAt′∩AeT

At′∩A

)
λ+ λTeAt′∩A � (µ∗ −Xt′)

)
f(λ)dλ.

From Assumption 1, we see that the product inside the integral is a supermartingale
(with respect to Ft−1). Thus, taking the expectation, we have

E


√

det(D)

det(Ct−1)
exp

1
2

∥∥∥∥∥
t−1∑
t′=1

eAt′∩A � (µ∗ −Xt′)

∥∥∥∥∥
2

C−1
t−1


 ≤ 1.

To deal with
√

det(D)
det(Ct−1)

, we use a peeling argument: we consider the event under
which for all i ∈ A, eai ≤ Ni,t−1 ≤ eai+1. The number of a to consider to cover all
the possibilities is log(t)m. With the choice Di = I{i ∈ A}ηeaiCii+ I{i /∈ A}, we get
the lower bound √

det(D)

det(Ct−1)
≥ (1 + e/η)m.

In summary, we have using Markov’s inequality that

P

∥∥∥∥∥
t−1∑
t′=1

eAt′∩A � (µ∗ −Xt′)

∥∥∥∥∥
C−1
t−1

≥ δ(t)

 ≤ 1
t log2(t)

∧ 1,

with δ(t) = log(t) + (2 +m) log log(t) +m log(1 + e/η)/2. The proof is concluded
using the assumption that C �+ Γ.

The Laplace’s method was originally used for linear bandits (Abbasi-Yadkori,
Pál, and Szepesvári, 2011). The above proof in taken from Degenne and Perchet
(2016b), who adapted this method to the semi-bandit feedback setting. Bounds like
those given in Theorem 21 are called self-normalized bounds (Peña, Lai, and Shao,
2008), because the control is with respect to the norm associated with the inverse of
a regularized design matrix. We notice that this matrix is non-diagonal if Γ is, and
that we do not have in our arsenal a theorem dealing with bonus of this form. To the
best of our knowledge, there is no such work that treats directly this kind of bonus
for semi-bandit feedback, which represents an interesting open question.

A first way to proceed is to further bound this bonus by an `2-type one, i.e., cor-
responding to a diagonal matrix (the associated confidence region is then ellipsoidal,
but is aligned with respect to the axes). More precisely, if we define the non-diagonal
matrix M′ =

∑t−1
t′=1 Γ�

(
eAt′e

T
At′

)
, we can rely on the inequality

∥∥∥∥∥∥eT
Adiag

(
t−1∑
t′=1

eAt′∩A

)−1∥∥∥∥∥∥
2

M′
=
∑
i,j∈A

Nij,t−1Γij
Ni,t−1Nj,t−1

≤
∑
i∈A

1
Ni,t−1

∑
j∈A

Γij ≤
∑
i∈A

1
Ni,t−1

max
A′∈A, i∈A′

∑
j∈A′

Γij ,
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where Nij,t−1 =
∑t−1
t′=1 I{i, j ∈ At′}.

A second method, which has been used by Degenne and Perchet (2016b), is to
decompose the bonus as∥∥∥∥∥∥eT

Adiag
(
t−1∑
t′=1

eAt′∩A

)−1∥∥∥∥∥∥
2

M′
≤ (1− γ)

∑
i∈A

Γii
Ni,t−1

+ γ

(∑
i∈A

√
Γii

Ni,t−1

)2

, (5.1)

where γ , max(i,j)∈A2,i 6=j Γij/
√

ΓiiΓjj . We thus get this way a decomposed bonus
(with an `1 term and an `2 one).

We want to insist on the fact that the original bonus can be used in the algorithm,
and that these two processes for changing the bonus are only used in the analysis.

5.2 Covering argument
An alternative to the method previously proposed is to use a covering argument1. We
saw that the main issue is that the max and the expectation couldn’t be swapped. Put
it another way, the issue is that λ is random when we want to use the sub-Gaussianity
inequality. We have a clear expression for λ, and the randomness comes mainly from
the empirical mean (also from counters, but these are treated separately using a
peeling). A covering argument is another approach that removes the randomness
in λ by replacing, in its definition, the empirical mean by a deterministic quantity
that is provably close to it. A positive point of the covering method is that it can
be easily extended to a more general setting than the sub-Gaussian one, as we will
see in Chapter 7. A negative point is that it is tricky to use when the matrix Γ is
not diagonal. Thus, in this section, we take Γ diagonal in Assumption 1 (notice, this
happens for instance when outcomes are mutually independent and component-wise
sub-Gaussian).

The following Theorem 22 is adapted from Magureanu, Combes, and Proutiere
(2014). In particular, under the complementary event considered in the theorem, we
can use the Cauchy-Schwarz inequality to get a high probability bound on

eT
A(µ

∗ −µt−1) ≤ eT
A(µ

∗ −µt−1) ∨ 0

that has the form of an `2-bonus.

Theorem 22 (Covering argument). In the case Γ is diagonal, we have

P

∑
i∈A

I
{
µ∗i ≥ µi,t−1

}
Ni,t−1

(
µ∗i − µi,t−1

)2

2Γii
≥ δ

 ≤ em+1
(
(δ− 1) log(t)

m

)m
e−δ,

for some δ ≥ m+ 1.

Proof. We fixe some δ ≥ m+ 1, and define the following events:

At ,


∑
i∈A

I
{
µ∗i ≥ µi,t−1

}
Ni,t−1

(
µ∗i − µi,t−1

)2

2Γii
≥ δ


1Although the method presented is quite different from the classical "covering argument" used in

linear bandits, we will still call this method so, in order to distinguish it from the Laplace method.
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∀d ∈ (N∗)A, Bd,t ,
⋂
i∈A

{(
δ

δ− 1

)di−1
≤ Ni,t−1 <

(
δ

δ− 1

)di}
.

Since each number of pulls Ni,t−1 for i ∈ A is bounded by t, the number of possible
d ∈ (N∗)A such that P[Bd,t] > 0 is bounded by (log(t)/ log(δ/(δ− 1)))m. Thanks
to the following Lemma 6, and an union bound on those possible d ∈ (N∗)A, we get

P[At] ≤ em+1
(

(δ− 1) log(t)
m log(δ/(δ− 1))

)m
e−δ.

Lemma 6. Let d ∈ (N∗)A. Then, P[At ∩Bd,t] ≤
(
(δ−1)e
m

)m
e1−δ.

Proof. The idea is to get rid of randomness by replacing the empirical mean µi,t−1 by
some non-random value xi. Let ζ ∈ RA

+. For i ∈ A, we define xi(N) = µ∗i −
√

2ζiΓii
N .

Under the events Bd,t and

A′t ,
⋂
i∈A

Ni,t−1

(
0∨

(
µ∗i − µi,t−1

))2

2Γii
> ζi

,

we have

⋂
i∈A

{
µi,t−1 ≤ xi

((
δ

δ− 1

)di)}
. (5.2)

With εi , µ∗i − xi
((

δ
δ−1

)di) and λi , εi
Γii

, i ∈ A, this further implies:

δ− 1
δ

∑
i∈A

ζi =
∑
i∈A

(
δ

δ− 1

)di−1 ε2
i

2Γii

≤
∑
i∈A

Ni,t−1
ε2
i

2Γii
Bd,t

=
∑
i∈A

Ni,t−1λiεi −
∑
i∈A

Ni,t−1Γiiλ2
i /2

≤
∑
i∈A

Ni,t−1λi
(
µ∗i − µi,t−1

)
−
∑
i∈A

Ni,t−1Γiiλ2
i /2 using (5.2).

This last quantity can be rewritten as
∑

t′∈[t−1]

((
λ� eAt′∩A

)T
(µ∗ −Xt′)−

(
λ� eAt′∩A

)T
Γ
(
λ� eAt′∩A

)
/2
)

.

Since λ ≥ 0, we have using Assumption 1(
λ� eAt′∩A

)T
C
(
λ� eAt′∩A

)
≤
(
λ� eAt′∩A

)T
Γ
(
λ� eAt′∩A

)
,

Thus, still using Assumption 1, we have

δ− 1
δ

∑
i∈A

ζi ≤
∑

t′∈[t−1]

((
λ� eAt′∩A

)T
(µ∗ −Xt′)−

(
λ� eAt′∩A

)T
C
(
λ� eAt′∩A

)
/2
)
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≤
∑

t′∈[t−1]

((
λ� eAt′∩A

)T
(µ∗ −Xt′)− log E

[
e(λ�eAt′∩A)

T
(X−µ∗)

])
.

The proof now follows the usual path, and we get using Markov’s inequality that

P

⋂
i∈A

I
{
Bd,t

}
Ni,t−1

(
0∨

(
µ∗i − µi,t−1

))2

2Γii
> ζi


 ≤ e−∑i∈A ζi

δ−1
δ .

By Lemma 7 (Lemma 8 of Magureanu, Combes, and Proutiere (2014)), since δ ≥
m+ 1, we have

P[Bd,t ∩At] ≤
(
(δ− 1)e
m

)m
e1−δ.

Lemma 7. For K ≥ 2, a > 0, Z ∈ RK a random vector and ζ ∈ RK
+ a vector, if

P[Z ≥ ζ] ≤ e−a
∑

i
ζi, then for δ ≥ K/a,

P

[∑
i

Zi ≥ δ
]
≤
(
aδe

K

)K
e−aδ.

Proof. We have with λ = a−K/δ ≥ 0

P

[∑
i

Zi ≥ δ
]
≤ E

[∏
i

eλZi

]
e−λδ

=
∫

RK+

P
[
eλZ > x

]
dxe−λδ

=
∫

RK+

P[Z > log(x)/λ]dxe−λδ

≤
(

1 +
∫ ∞

1
e−a log(x)/λdx

)K
e−λδ

=

(
a

a− λ

)K
e−λδ =

(
aδe

K

)K
e−aδ.

5.3 Efficiency of algorithms
In the two previous sections, we have seen how concentration inequalities could be
derived to build `2-bonuses. Then, standard optimistic policies (e.g., escb in Combes
et al. (2015) and ols-ucb in Degenne and Perchet (2016b)) chose action At that solves
the following combinatorial optimization problem at each round t (in the case of a
linear reward function):

max
A∈A

eT
Aµt−1 + bonust(A), (5.3)

where bonust(A) is the `2-bonus, i.e., one of the high probability upper bounds on
eT
A(µ

∗ −µt−1) we considered in the previous sections.
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Class of possible
outcome distributions

Gap-dependent
lower bound

Gap-dependent
upper bound

(i) + (iii)

⇒(i) + (v)

⇒(iv)

Ω
(
n log T

∆

)
`2-bonus: O

(
n log2(m) log T

∆

)

(ii) + (iii)

⇒(ii) + (v)
Ω
(
nm log T

∆

)
`1-bonus: O

(
nm log T

∆

)
Table 5.1: Gap-dependent lower bounds proved on different classes

of possible distributions for X.

In what follows, we give a more precise overview of the improvement induced
by the use of `2-bonuses compared to `1-bonuses, stressing that this improvement is
unavoidable since the two approaches are matching two different lower bounds. Next,
we identify the inefficiency of the `2-bonus policies by noting that for many situations
that are considered in CMAB, the above combinatorial optimization problem (5.3)
is not tractable. Finally, we propose an efficient implementation in the case A has a
matroid structure.

5.3.1 Lower bounds

In an instance of a CMAB problem, we can consider different properties satisfied by
the outcomes X. For example, some properties that are commonly assumed are:

(i) X1, . . . ,Xn ∈ R are mutually independent,

(ii) X1, . . . ,Xn ∈ R are arbitrary correlated,

(iii) X ∈ [−1, 1]n,

(iv) X ∈ Rn is multivariate sub-Gaussian,
i.e., E

[
eλ

T(X−µ∗)
]
≤ e‖λ‖

2
2/2, ∀λ ∈ Rn,

(v) X ∈ Rn is component-wise sub-Gaussian,
i.e., E

[
eλi(Xi−µ

∗
i )
]
≤ eλ2

i /2, ∀i ∈ [n], ∀λ ∈ Rn.

Combining some of the above properties, we consider different classes of possible
distributions for X. In the following, we consider five examples of such combination
(classifying them by implication):

• (i) + (iii)⇒ (i) + (v)⇒ (iv),

• (ii) + (iii)⇒ (ii) + (v).

Notice, the above classes are special cases of Assumption 1. Specifically, for the first
point, we can take Γ = I, which allows the agent to use either the Laplace’s method or
a covering argument to build an `2-bonus. For the second point, even if an `2-bonus
can still be possible, the resulting bonus will be less tight than the `1 one. Thus, we
can see a difference (by a factor of m log−2(m), as mentioned before) between these
two classes in terms of regret upper bound that can be reached by the agent. We will
see here that this difference is inherent to the classes, and that the two approaches
(`1 and `2) are matching the respective lower bounds of the classes.

In Table 5.1, we show two existing gap-dependent lower bounds on RT that depend
on the respective class. They are valid for at least one combinatorial structure A ⊂
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P([n]) such that m = maxA∈A|A|, one distribution PX having all gaps equal to ∆
and for any consistent policy (Lai and Robbins, 1985), for which the regret on any
problem of the class verifies RT = o(T a) as T → ∞ for all a > 0. We also show in
Table 5.1 the regret upper bound reached by the optimistic approaches, showing that
they are essentially tight. In Table 5.1, the first lower bound is proved in Combes
et al. (2015), and the second one is proved in Kveton, Wen, Ashkan, and Szepesvari
(2015b). Each time, they use an action space A that is reducing to classical MAB,
allowing to use the Lai and Robbins (1985) lower bound (Theorem 1).

Let us note finally that in their paper, Degenne and Perchet (2016b) have unified
the two above lower bounds by interpolating between the two regimes thanks to a
parameter related to the matrix Γ. More precisely, their lower bound is of order
Ω
(∑

i
Γii log(T )

∆

)
(1 + γ(m− 1)), where we already defined γ after (5.1). Their pol-

icy, ols-ucb, uses the bonus from Laplace’s method and has a regret upper bound
matching this lower bound (up to a polylogarithmic factor in m): using the upper
bound (5.1), we can apply Theorem 12 and 13 to obtain the regret bound

O

 log T
∆

∑
i∈[n]

Γii
(
(1− γ) log2(m) + γm

). (5.4)

5.3.2 Submodular maximization

In this subsection, we discuss the efficiency of existing algorithms matching the lower
bounds in Table 5.1. We consider that an algorithm is efficient as soon as the time
and space complexity for each round t is polynomial in n and polylogarithmic2 in t.
Notice that the per-round complexity depends substantially on A. We assume A is
such that linear optimization problems on A — of the form maxA∈A eT

Aξ for some
ξ ∈ Rn — can be solved efficiently. As a consequence, an agent knowing µ∗ can
efficiently compute A∗. Assuming efficient linear maximization is crucial (cf. Neu
and Bartók, 2013; Combes et al., 2015; Kveton, Wen, Ashkan, and Szepesvari, 2015b;
Degenne and Perchet, 2016b). Without this assumption, e.g., for A being dominating
sets in a graph, even the offline problem cannot be solved efficiently, and we would
have to consider the notion of approximation regret instead, as was done by Chen,
Wang, and Yuan (2013).

Many combinatorial semi-bandit algorithms can be seen as a special case of Al-
gorithm 5 for different confidence regions Ct around µt−1.

Algorithm 5 Generic confidence-region-based algorithm.
At each round t :

Find a confidence region Ct ⊂ Rn.
Solve the bilinear program

(µt,At) ∈ arg max
µ∈Ct,A∈A

eT
Aµ .

Play At.

In particular, cucb (class (ii) + (v)), cucb-v and cucb-kl (class (ii) + (iii))
are such examples where Ct is a hypercube. escb-kl (Combes et al., 2015) (class

2In streaming settings with near real-time requirements, it is imperative to have algorithms that
can run with a complexity that stay almost constant across rounds.
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(i) + (iii)) is defined by the following kl-ball (that resembles to an ellipsoid):

Ct ,

ξ ∈ [0, 1]n,
∑
i∈[n]

kl
(
µi,t−1, ξi

)
≤ δ(t)

,

where δ(t) = log(t) + 4m log log(t). We saw that escb and ols-ucb are defined by
Algorithm 5 where Ct is an ellipsoid.

In what follows, we will focus on regions that are axis aligned. In particular, all
of the policies mentioned above have such a region, except ols-ucb when Γ is non-
diagonal (we can still use the upper bound (5.1) to get an axis aligned region). More
precisely, we assume that Ct is defined through some parameters p, r ∈ {1,∞}, and
some functions gi,t, i ∈ [n] by

Ct , [−r, r]n ∩
(
µt−1 +

{
ξ ∈ Rn,

∥∥(gi,t(ξi))i∥∥p ≤ 1
})

,

where gi,t = 0 if Ni,t−1 = 0 and, otherwise, is convex, strictly decreasing on [−r −
µi,t−1, 0] and strictly increasing on [0, r − µi,t−1] such that gi,t(0) = 0. Typically,
r = 1 under assumption (iii) and r =∞ otherwise.

In Algorithm 5, only At needs to be computed. It is a maximizer over A of the
set function

P([n]) → R

A 7→ maxµ∈Ct eT
Aµ . (5.5)

We can easily evaluate the function (5.5) above for some set A ∈ P([n]), since it
only requires solving a linear optimization problem on the convex3 set Ct. In Propo-
sition 15, we show that in some cases, the evaluation can be even simpler. However,
maximizing the function (5.5) over a combinatorial set A is not straightforward.
Yet, we can already say that when p = ∞, this function is linear in A, and there-
fore can be maximized efficiently. This attests to the efficiency of the cucb-type
approaches. When p = 1, we have that the maximization problem is NP-Hard in
general (Atamtürk and Gómez, 2017). We will nevertheless extract some interesting
properties from this function, in order to be able to maximize it in particular cases.
Before studying this function more closely, Definition 15 recalls some well-known
properties that can be satisfied by a set function F : P([n])→ R.

Definition 15. A set function F is:

• normalized, if F (∅) = 0,

• linear (or modular) if F (A) = eT
Aξ+ b, for some ξ ∈ Rn, b ∈ R,

• non-decreasing if F (A) ≤ F (B) ∀ A ⊂ B ⊂ [n],

• submodular if for all A,B ⊂ [n] ,

F (A∪B) + F (A∩B) ≤ F (A) + F (B).

Equivalently, F is submodular if for all A ⊂ B ⊂ [n], and i /∈ B, F (A∪ {i})−
F (A) ≥ F (B ∪ {i})− F (B).

3Ct is convex since functions gi,t are convex.
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The function (5.5) is clearly normalized, and it can be decomposed into two set
functions in the following way,

∀A ⊂ [n], max
µ∈Ct

eT
Aµ = eT

Aµt−1 + max
ξ∈Ct−µt−1

eT
Aξ.

The linear part A 7→ eT
Aµt−1 is efficiently maximized alone, we thus focus on the

other part, A 7→ maxξ∈Ct−µt−1 eT
Aξ (the exploration bonus). It aims to compensate

for the negative selection bias of the first term. We define

C+t , [−r, r]n ∩
(
µt−1 +

{
ξ ∈ Rn

+,
∥∥(gi,t(ξi))i∥∥p ≤ 1

})
= Ct ∩

{
µ ∈ Rn, µ ≥ µt−1

}
and rewrite A 7→ maxξ∈Ct−µt−1 eT

Aξ through Lemma 8.

Lemma 8. For all A ∈ P([n]), maxξ∈Ct−µt−1 eT
Aξ = maxξ∈C+t −µt−1

eT
Aξ.

The lemma holds as
{
(0∨ ξi)i, ξ ∈ Ct −µt−1

}
⊂ Ct − µt−1. As a corollary, this

set function is non-negative, and non-decreasing. It can be written in closed form
under additional assumptions, see Proposition 15 and Example 5.

Proposition 15. Let A ∈ P([n]), t ∈N∗, p = 1. Assume that for all i ∈ A, gi,t has
a strictly increasing, continuous derivative g′i,t defined on [0, r − µi,t−1]. For i ∈ A,
let

fi(λ) ,

{
g′−1
i,t (1/λ) if 1/λ < g′i,t(r− µi,t−1),
r− µi,t−1 otherwise,

defined for λ ≥ 0. Then, the smallest λ∗ satisfying

eT
A(gi,t(fi(λ

∗)))i ≤ 1

is such that
(ξ∗i )i , (I{i ∈ A}fi(λ∗))i ∈ arg max

ξ∈C+t −µt−1

eT
Aξ.

Proof. It suffices to maximize on the coordinates of ξ belonging to A (the others
being zero). For all i ∈ A, we let

η∗i ,
(
1− λ∗g′i,t(r− µi,t−1)

)
I
{
ξ∗i = r− µi,t−1

}
γ∗i ,

(
λ∗g′i,t(0)− 1

)
I{ξ∗i = 0} = −I{ξ∗i = 0}.

For all i ∈ A, the function fi is continuous, non-increasing on R+, hence so is λ 7→
eT
A(gi,t(fi(λ)))i. If eT

A(gi,t(fi(λ
∗)))i < 1, then necessarily λ∗ = 0. Thus, the following

KKT conditions are satisfied:

λ∗
(∑
i∈A

gi,t(ξ
∗
i )− 1

)
= 0, and

∀i ∈ A, λ∗g′i,t(ξ∗i ) + η∗i − γ∗i = 1,
η∗i (ξ

∗
i − r+ µi,t−1) = 0,

−γ∗i ξ∗i = 0,

which concludes the proof by the convexity of the constraints and the objective func-
tion.
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An important use-case example of Proposition 15 is the following

Example 5. Let A ∈ P([n]), t ∈ N∗. If for all i ∈ [n], gi,t = (·)2αi,t for some
αi,t > 0, and r =∞, p = 1, then

max
ξ∈C+t −µt−1

eT
Aξ =

√√√√eT
A

(
1
αi,t

)
i

.

Indeed, since the maximizer ξ∗ lies at the boundary,

max
ξ∈C+t −µt−1

eT
Aξ = max

ξ∈Rn+,
∑

i
αi,tξ2

i=1
eT
Aξ,

and from the first-order optimality condition we deduce that eA = 2λ∗(αi,tξ∗i )i, i.e.,
ξ∗i = I{i ∈ A}/2λ∗αi,t, where λ∗ is necessarily 1

2

√
eT
A(1/αi,t)i. We thus recover the

escb’s exploration bonus for αi,t = Ni,t−1/δ(t).

Remark 11. The proof of Proposition 15 follows the same technique as the proof of
Theorem 4 by Combes et al. (2015) for developing the computation of the escb-kl
exploration bonus.

Example 5 is a specific case where the exploration bonus A 7→ maxξ∈C+t −µt−1
eT
Aξ

has a particularly simple form: It is the square root of a non-decreasing linear set
function. Such a set function is known to be submodular (Stobbe and Krause, 2010).
This interesting property helps for maximizing the function (5.5). In Theorem 23, we
prove that A 7→ maxξ∈C+t −µt−1

eT
Aξ is in fact always submodular.

Theorem 23. A 7→ maxξ∈C+t −µt−1
eT
Aξ is submodular.

Proof. Let t ∈ N∗. We consider here the restriction of gi,t to [0, r − µi,t−1], that
we still denote as gi,t. Notice that for all i ∈ [n], gi,t is either 0 or a bijection on
[0, r− µi,t−1] by assumption. For p =∞, we have that

max
ξ∈C+t −µt−1

eT
Aξ = eT

A

(
g−1
i,t (1) ∧

(
r− µi,t−1

)
I{Ni,t−1 ≥ 1}+ rI{Ni,t−1 = 0}

)
i

is a linear set function of A. Assume now that p = 1. To show the submodularity of
A 7→ maxξ∈C+t −µt−1

eT
Aξ in this case, we will use the notion of polymatroid.

Definition 16 (Polymatroid). A polymatroid is a polytope of the forme{
ξ′ ∈ Rn

+, eT
Aξ
′ ≤ F (A), ∀A ⊂ [n]

}
,

where F is a non-decreasing submodular function.

Fact 4 (Theorem 3 of He, Zhang, and Zhang, 2012). Let P be a polymatroid, and let
h1, . . . ,hn be concave functions. Then A 7→ maxξ′∈P eT

A(hi(ξ
′
i))i is submodular.

Notice that g−1
i,t ({0}) = [0, r−µi,t−1] when Ni,t−1 = 0, and that g−1

i,t (·) is a strictly
increasing concave function on [0, gi,t(r−µi,t−1)], as the inverse function of a strictly
increasing convex function when Ni,t−1 ≥ 1. So we can rewrite C+t −µt−1 as an union
of product sets:

C+t −µt−1 =

ξ ∈ ∏
i∈[n]

[0, r− µi,t−1],
∑
i∈[n]

gi,t(ξi) ≤ 1
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µt−1

Polymatroid defined by

A 7→ maxµ∈Ct−µt−1
eT
Aµ

Ct

µt−1

Polymatroid defined by

A 7→ maxµ∈Ct−µt−1
eT
Aµ

Ct

µt−1

Ct

µt−1

Ct

Figure 5.1: Illustration of Theorem 23: The confidence region
Ct and the polymatroid defined by the submodular function A 7→

maxµ∈Ct−µt−1 eT
Aµ.

=
⋃

ξ′∈
∏
i∈[n] [0,gi,t(r−µi,t−1)],∑

i∈[n] ξ
′
i≤1

∏
i∈[n]

g−1
i,t (

{
ξ′i
}
).

We can thus rewrite our function as

max
ξ∈C+t −µt−1

eT
Aξ = max

ξ′∈
∏
i∈[n] [0,gi,t(r−µi,t−1)],∑

i∈[n] ξ
′
i≤1

eT
A

(
g−1
i,t (ξ

′
i)
)
i
,

with the convention g−1
i,t (0) = r− µi,t−1 when Ni,t−1 = 0.

The constraints’ set
{
ξ′ ∈

∏
i∈[n][0, gi,t(r− µi,t−1)],

∑
i∈[n] ξ

′
i ≤ 1

}
is equal to the

intersection between ∏i∈[n][0, gi,t(r− µi,t−1)] and the polymatroid{
ξ′ ∈ Rn

+, eT
Aξ
′ ≤ I{A 6= ∅}, ∀A ⊂ [n]

}
.

This intersection is itself equal to the polymatroid{
ξ′ ∈ Rn

+, eT
Aξ
′ ≤ min

B⊂A

{
I{B 6= A}+ eT

B

(
gi,t(r− µi,t−1)

)
i

}
, ∀A ⊂ [n]

}
.

Thus, maxξ∈C+t −µt−1
eT
Aξ is the optimal objective value on a polymatroid of a sep-

arable concave function, as a function of the index set A. Now, using Fact 4, it is
submodular.

Theorem 23 yields that when the outcome class is strengthen to target the tighter
lower bound n log(T )/∆, Algorithm 5 reduces to maximizing a submodular set func-
tion over A (the sum of a linear and a submodular function is submodular). Sub-
modular maximization problems have been applied in machine learning before (see
e.g., Krause and Golovin, 2011; Bach, 2011), however, maximizing a submodular
function F , even for A = {A ∈ P([n]), |A| ≤ m} and F non-decreasing, is NP-Hard
in general (Schrijver, 2008), with an approximation factor of 1− 1/e by the greedy
algorithm (Nemhauser, Wolsey, and Fisher, 1978).

In the next subsection, with a stronger assumption on A (but for which submod-
ular maximization is still NP-Hard), we show that both parts of the objective can
have different approximation factors. More precisely, we show how to approximate
the linear part with factor 1, and the submodular part with a constant factor. This
is enough for our purpose, since it simply means that the event {∆t ≤ 2bonust(At)}
is replaced by {∆t ≤ c · bonust(At)}, where c is a constant.
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5.3.3 Efficient algorithms for matroid constraints

In this subsection, we will consider additional structure on A, using the notion of
matroid, recalled below.

Definition 17. A matroid is a pair ([n], I), where I is a family of subsets of [n],
called the independent sets, with the following properties:

• The empty set is independent, i.e., ∅ ∈ I.

• Every subset of an independent set is independent, i.e., for all A ∈ I, if A′ ⊂ A,
then A′ ∈ I.

• If A and B are two independent sets, and |A| > |B|, then there exists x ∈ A\B
such that B ∪ {x} ∈ I.

Matroids generalize the notion of linear independence. A maximal (for the inclu-
sion) independent set is called basis and all bases have the same cardinality m, which
is called the rank of the matroid (Whitney, 1935). Many combinatorial problems such
as building a spanning tree for network routing (Oliveira and Pardalos, 2005) can be
expressed as a linear optimization on a matroid (see Edmonds and Fulkerson, 1965
or Perfect, 1968, for other examples). Let I ∈ P([n]) be such that ([n], I) forms a
matroid. Let B ⊂ I be the set of bases of the matroid ([n], I). In the following, we
may assume that A is either I or B. We also assume that an independence oracle is
available, i.e., given an input A ⊂ [n], it returns true if A ∈ I and false otherwise.
Maximizing a linear set function L on A is efficient, and it can be done as follows
(Edmonds, 1971): Let σ be the permutation of [n] and j the integer such that j = m
in case A = B and otherwise, j satisfies

`1 ≥ · · · ≥ `j ≥ 0 ≥ `j+1 ≥ · · · ≥ `n,

where `i = L({σ(i)}) ∀i ∈ [n]. The optimal S is built greedily starting from S = ∅,
and for i ∈ [j], σ(i) is added to S only if S ∪ {σ(i)} ∈ I .

Matroid bandits with A = B has been studied by Kveton, Wen, Ashkan, Eydgahi,
et al. (2014) and Talebi and Proutiere (2016). In this case, the two lower bounds in
Table 5.1 coincide to Ω(n log(T )/∆) (with ∆ being the minimal positive gap) and
cucb reaches it. Yet, the efficient implementation of escb-style policies are still
interesting in this context, for at least two reasons:

• escb is, as we’ll see, better in practice than cucb.

• It may provide ideas for efficient implementation of escb for other action spaces
where cucb is not known to reach the lower bound.

In the rest of this subsection, we provide efficient approximation routines to maximize
the function (5.5) on A = I and B within a factor 1 for the linear part, and a constant
factor for the bonus. Therefore, using these routines in Algorithm 5 do not alter its
regret upper bound rate.

Let L be a normalized, linear set function, that will correspond to the linear part
A 7→ eT

Aµt−1; and let F denote a normalized, non-decreasing, submodular function,
that will correspond to the submodular part A 7→ maxξ∈C+t −µt−1

eT
Aξ. Unless stated

otherwise, we further assume that F is positive (for A 6= ∅). This is a mild assumption
as it holds for A 7→ maxξ∈C+t −µt−1

eT
Aξ in the unbounded case, i.e., if (iii) is not

assumed and r = ∞. If (iii) is true, then adding an extra eT
A

(
1

Nit−12

)
i
term will
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Algorithm 6 LocalSearch for maximizing L+ F on I.
Input: L, F , I, m, ε > 0.
Initialization: Sinit ∈ arg maxA∈I L(A).
if Sinit = ∅ then
if ∃{x} ∈ I such that (L+ F )({x}) > 0 then
S0 ∈ arg max{x}∈I, (L+F )({x})>0 L({x}).

else
Output ∅

end if
else
S0 ← Sinit

end if
S ← S0.
Repeatedly perform one of the following local improvements while possible:

• Delete an element:
if ∃x ∈ S such that
(L+ F )(S\{x}) > (L+ F )(S) + ε

mF (S),
then S ← S\{x}.
end if

• Add an element:
if ∃y ∈ [n]\S, S ∪ {y} ∈ I, such that
(L+ F )(S ∪ {y}) > (L+ F )(S) + ε

mF (S),
then S ← S ∪ {y}.
end if

• Swap a pair of elements:
if ∃(x, y) ∈ S × [n]\S, S\{x} ∪ {y} ∈ I, such that (L+ F )(S\{x} ∪ {y}) >
(L+ F )(S) + ε

mF (S) then S ← S\{x} ∪ {y} end if
end while
Output: S.

recover positivity and increase the regret upper bound by only an additive constant.
In the following subsections, we will provide algorithms that efficiently outputs S
such that

L(S) + κF (S) ≥ L(O) + F (O), ∀O ∈ A, (5.6)

with some appropriate approximation factor κ ≥ 1. It is possible to efficiently output
S1 and S2 such that we get L(S1) ≥ L(O1) and κF (S2) ≥ F (O2) for any O1,O2 ∈ A.
Although we can take O1 = O2, S1 and S2 are not necessarily equal, and (5.6) is not
straightforward.

Local Search Algorithm

Here, we assume that A = I. In Algorithm 6, we provide a specific instance of
LocalSearch that we tailored to our needs to approximately maximize L+ F . It
starts from the greedy solution Sinit ∈ arg maxA∈I L(A). Then, Algorithm 6 repeat-
edly tries three basic operations in order to improve the current solution. Since every
S ∈ A can potentially be visited, only significative improvements are considered, i.e.,
improvements greater than ε

mF (S) for some input parameter ε > 0. The smaller ε
is, the higher complexity will be. Notice the improvement threshold ε

mF (S) does not
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depend on L. In fact, this is crucial to ensure that the approximation factor of L is 1.
However, this can increase the time complexity. To prevent this increase, the second
essential ingredient is the initialization, where only L plays a role. In Theorem 24,
we state the approximation guarantees for Algorithm 6 and its time complexity. For
Ct given by any algorithm previously considered, F (A) = maxξ∈C+t −µt−1

eT
Aξ, and

ε = 1, the time complexity is bounded by O
(
m2n log(mt)

)
, and the algorithm is thus

efficient. Theorem 24 gives a parameter κ arbitrary close to 2 in (5.6).4

Theorem 24. Algorithm 6 outputs S ∈ I such that

L(S) + 2(1 + ε)F (S) ≥ L(O) + F (O), ∀O ∈ I.

Its complexity is O
(
mn log

(
maxA∈I F (A)

F (S0)

)
/log

(
1 + ε

m

))
.

Before proving Theorem 24, we state some well known results about submodular
optimization on a matroid.

Proposition 16. Let A,B ⊂ [n]. If F is submodular, then∑
b∈B\A

(F (B)− F (B\{b})) ≤ F (B)− F (A∩B),

∑
a∈A\B

(F (B ∪ {a})− F (B)) ≥ F (A∪B)− F (B).

Proof. Let (b1, . . . , b|B\A|) be an ordering of B\A. Then, by submodularity of F ,

|B\A|∑
i=1

(F (B)− F (B\{bi})) ≤
|B\A|∑
i=1

(F (B\{b1, . . . , bi−1})− F (B\{b1, . . . , bi}))

= F (B)− F (A∩B).

In the same way, let (a1, . . . , a|A\B|) be an ordering of A\B. Then, by submodularity
of F ,

|A\B|∑
i=1

(F (B ∪ {ai})− F (B)) ≥
|A\B|∑
i=1

(F (B ∪ {a1, . . . , ai})− F (B ∪ {a1, . . . , ai−1}))

= F (A∪B)− F (B).

Fact 5 (Theorem 1 of Lee et al., 2010). Let A,B ∈ A. Then, there exists a mapping
α : B\A→ A\B ∪ {∅} such that

• ∀b ∈ B\A, A\{α(b)} ∪ b ∈ A

• ∀a ∈ A\B,
∣∣α−1(a)

∣∣ ≤ 1.

4We could design a different version of Algorithm 6, based on Non-ObliviousLocalSearch
(Filmus and Ward, 2012) , in order to get κ arbitrary close to 1 + 1/(e− 1), but with a much worst
time complexity. Actually, Sviridenko, Vondrák, and Ward (2013) proposed such an approach, with
an approximation factor for L arbitrary close to 1, but not equal, so we would get back the undesirable
term, which would require a complexity polynomial in t to control.
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Proposition 17. Let A,B ∈ A. Let F be a submodular function and α : B\A →
A\B ∪ {∅} be the mapping given in Fact 5. Then,∑

b∈B\A
(F (A)− F (A\{α(b)} ∪ {b})) +

∑
a∈A\B, α−1(a)=∅

(F (A)− F (A\{a}))

≤ 2F (A)− F (A∪B)− F (A∩B).

Proof. We decompose ∑b∈B\A(F (A)− F (A\{α(b)} ∪ {b})) into sum of two terms,∑
b∈B\A

(F (A)− F (A\{α(b)})) +
∑

b∈B\A
(F (A\{α(b)})− F (A\{α(b)} ∪ {b})).

Remark that the first part is equal to∑
a∈α(B\A)

(F (A)− F (A\{a})) =
∑

a∈A\B, α−1(a) 6=∅
(F (A)− F (A\{a})).

Thus, together with ∑a∈A\B, α−1(a)=∅(F (A)− F (A\{a})), we get that∑
b∈B\A

(F (A)− F (A\{α(b)} ∪ {b})) +
∑

a∈A\B, α−1(a)=∅
(F (A)− F (A\{a}))

is equal to∑
a∈A\B

(F (A)− F (A\{a})) +
∑

b∈B\A
(F (A\{α(b)})− F (A\{α(b)} ∪ {b})).

Finally, we upper bound the first term by F (A) − F (A ∩B) using first inequality
of Proposition 16, and the second term by F (A) − F (A ∪ B) using first, the sub-
modularity of F to remove α(b) in the summands, and then the second inequality of
Proposition 16.

Proof of Theorem 24. The proof is divided into two parts:

Approximation guarantee If Algorithm 6 outputs ∅ before entering in the while
loop, then by submodularity, for any S ∈ I,

(L+ F )(S) ≤
∑
x∈S

(L+ F )({x}) ≤ 0.

Thus, ∅ is a maximizer of L+ F .
Otherwise, the output S of Algorithm 6 satisfies the local optimality of the while

loop. We apply Proposition 17 with A = S and B = O for L and F separately,∑
b∈O\S

(L(S)−L(S\{α(b)} ∪ {b})) +
∑

a∈S\O, α−1(a)=∅
(L(S)−L(S\{a}))

≤ 2L(S)−L(S ∪O)−L(S ∩O),

∑
b∈O\S

(F (S)− F (S\{α(b)} ∪ {b})) +
∑

a∈S\O, α−1(a)=∅
(F (S)− F (S\{a}))

≤ 2F (S)− F (S ∪O)− F (S ∩O).
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Then, we sum these two inequalities,∑
b∈O\S

((L+ F )(S)− (L+ F )(S\{α(b)} ∪ {b}))

+
∑

a∈S\O, α−1(a)=∅
((L+ F )(S)− (L+ F )(S\{a}))

≤ 2(L+ F )(S)− (L+ F )(S ∪O)− (L+ F )(S ∩O)
= 2F (S)− F (S ∪O)− F (S ∩O) + L(S)−L(O),

where the last equality uses linearity of L. Since F is increasing and non-negative,
F (S ∪O) + F (S ∩O) ≥ F (O), and we get∑

b∈O\S
((L+ F )(S)− (L+ F )(S\{α(b)} ∪ {b}))

+
∑

a∈S\O, α−1(a)=∅
((L+ F )(S)− (L+ F )(S\{a}))

≤ 2F (S)− F (O) + L(S)−L(O).

From the local optimality of S, the left hand term in this inequality is lower bounded
by ∑

b∈O\S

−ε
m
F (S) +

∑
a∈S\O, α−1(a)=∅

−ε
m
F (S) ≥ −2εF (S).

The last statement finishes the proof for the approximation inequality.

Time complexity Computing S0 has a negligible complexity compared to the while
loop. The following lemma gives a characterization of S0.

Lemma 9. S0 ∈ arg max{L(A), A ∈ I, (F + L)(A) > 0}.

Proof. From Algorithm 6, if Sinit 6= ∅, then S0 = Sinit and L(S0) = maxA∈I L(A) ≥
0. Thus, F (S0) > 0 by assumption on F , giving (F + L)(S0) > 0, which ends the
proof. If Sinit = ∅, then L(S0) = max{L({x}), {x} ∈ I, (L+ F )({x}) > 0}. Let
A ∈ arg max{L(A), A ∈ I, (F + L)(A) > 0}. A is clearly non-empty, and by sub-
modularity of F + L, there exists x ∈ A such that (F + L)({x}) > 0. L is non-
increasing from Sinit = ∅, so we get L({x}) ≥ L(A), which means there is a singleton
{x} in arg max{L(A), A ∈ I, (F + L)(A) > 0}, so

S0 ∈ arg max{L(A), A ∈ I, (F + L)(A) > 0},

which finishes the proof.

From this lemma, necessarily L(S0) ≥ L(S`) for every iterations ` ≥ 1, since the
sequence (L(S`) + F (S`))` is increasing, and thus (F +L)(S`) > 0, ∀` ≥ 1. At each
iteration ` ≥ 1, Algorithm 6 constructs S` such that

F (S`) >

(
1 + ε

m

)
F (S`−1) + L(S`−1)−L(S`).

Thus, we must have

F (S`)−
(

1 + ε

m

)`
F (S0)
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Algorithm 7 greedy for maximizing L+ F on B.
Input: L, F , I, m.
Initialization: S ← ∅.
for i ∈ [m] do
x ∈ arg maxx/∈S, S∪{x}∈I(L+ F )(S ∪ {x}).
S ← S ∪ {x}.

end for
Output: S.

≥
∑̀
j=1

(
1 + ε

m

)`−j
(L(Sj−1)−L(Sj))

= L(S0)

(
1 + ε

m

)`−1
− ε

m

`−1∑
j=1

L(Sj)

(
1 + ε

m

)`−j−1
−L(S`)

≥ L(S0)

(
1 + ε

m

)`−1
− ε

m

`−1∑
j=1

L(S0)

(
1 + ε

m

)`−j−1
−L(S0) = 0,

where the last inequality uses L(S0) ≥ L(S`), ∀` ≥ 1. This gives the following upper
bound on the number of iteration `:

` ≤
log
(
F (S`)
F (S0)

)
log
(
1 + ε

m

) ≤ log
(

maxA∈A F (A)
F (S0)

)
log
(
1 + ε

m

) .

Finally, the result follows remarking that time complexity per iteration is O(mn).

Greedy Algorithm

Here, we assume that A = B. This situation happens, for instance, under a non-
negativity assumption on L, i.e., if we consider non-negative outcomes Xi. We show
that the standard greedy algorithm (Algorithm 7) improves over Algorithm 6 by
exploiting this extra constraint, both in terms of the running time and the approxi-
mation factor. We state the result in Theorem 25. Notice that another advantage is
that we do not need to assume F (A) > 0 for A 6= ∅ here.

Theorem 25. Algorithm 7 outputs S ∈ B such that

L(S) + 2F (S) ≥ L(O) + F (O), ∀O ∈ B.

Its complexity is O(mn).

As we did previously, before starting the proof of Theorem 25, we state some
useful results.

Fact 6 (Brualdi’s lemma). Let A,B ∈ B. Then, there exists a bijection β : A → B
such that

∀a ∈ A, A\{a} ∪ {β(a)} ∈ B.

Furthermore, β is the identity on A∩B.

Proof. A proof is given by Brualdi (1969) and is also proved by Schrijver (2008), as
Corollary 39.12a.

Proposition 18. Let A,B ∈ B. Let F be a submodular function and β : A → B be
the mapping given in Fact 6. Let a1, . . . , ak be elements of A, and Ai = {a1, . . . , ai}.
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Then, ∑
i∈[k]

(F (Ai)− F (Ai−1 ∪ {β(ai)})) ≤ 2F (A)− F (A∪B)− F (∅).

Proof. We can split ∑i∈[k](F (Ai−1 ∪ {ai})− F (Ai−1 ∪ {β(ai)})) into two terms,

k∑
i=1

(F (Ai−1 ∪ {ai})− F (Ai−1)) +
k∑
i=1

(F (Ai−1)− F (Ai−1 ∪ {β(ai)})).

The first term is equal to F (Ak)−F (∅). Using submodularity of F , the second term
is upper bounded by

k∑
i=1

(F (Am)− F (Am ∪ {β(ai)})),

which is upper bounded by F (Ak) − F (Ak ∪ B) thanks to Proposition 16 and its
second inequality.

Proof of Theorem 25. The time complexity proof is trivial. Let Si , {s1, . . . , si} be
the set maintained in Algorithm 7 after i iterations. Instatianting Proposition 18
with Ai = Si and B = O, we have∑

i∈[k]
(F (Si)− F (Si−1 ∪ {β(si)})) ≤ 2F (S)− F (S ∪O)− F (∅). (5.7)

Furthermore, we also have, by linearity of L, and bijectivity of β,∑
i∈[k]

(L(Si)−L(Si−1 ∪ {β(si)})) =
∑
i∈[k]

(L({si})−L({β(si)}))) = L(S)−L(O).

(5.8)

Thus, we can sum up (5.7) and (5.8) to get∑
i∈[k]

((L+ F )(Si)− (L+ F )(Si−1 ∪ {β(si)}))

≤ 2F (S)− F (S ∪O)− F (∅) + L(S)−L(O)
≤ 2F (S)− F (O) + L(S)−L(O),

where the last inequality uses the fact that F is increasing and F (∅) = 0. We finish
the proof remarking that by definition of Algorithm 7,

(L+ F )(Si)− (L+ F )(Si−1 ∪ {β(si)}) ≥ 0.

t-free complexity for I-constraint using greedy The greedy algorithm can
also be used in the case that A = I. Indeed, see that greedy computes an increasing
sequence ∅ = S0 ⊂ · · · ⊂ Sm = S. Instead of outputting Sm, we can output Si that
maximizes L+ 2F . This way, we can write

L(Si) + 2F (Si) ≥ L(S|O|) + 2F (S|O|) ≥ L(O) + F (O), ∀O ∈ I.
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The second inequality is by using the property of greedy (Theorem 25) on the
independent set IO , I ∩ {A ∈ P([n]), |A| ≤ |O|}, noticing that both O and S|O|
are bases of the matroid ([n], IO). This leads to a complexity of order nm, improving
over the m2n log(mt) that we got previously.

5.4 The budgeted setting
In this section, we extend results of the two previous subsections to budgeted matroid
semi-bandits. In budgeted bandits with single resource and infinite horizon (Ding,
Qin, et al., 2013; Xia, Ding, et al., 2016), each arm is associated with both a reward
and a cost. The agent aims at maximizing the cumulative reward under a budget
constraint for the cumulative costs. Xia, Qin, et al. (2016) studied budgeted bandits
with multiple play, where an m-subset A of arms is selected at each round. An
optimal (up to a constant term) offline algorithm chooses the same action A∗ within
each round, where A∗ is the minimizer of the ratio "expected cost paid choosing A"
over "expected reward gained choosing A". In the setting of Xia, Qin, et al. (2016), the
agent observes the partial random cost and reward of each arm in A (i.e., semi-bandit
feedback), pays the sum of partial costs of A and gains the sum of partial rewards of
A. A∗ can be computed efficiently, and a Xia, Qin, et al. (2016) give an algorithm
based on cucb. It minimizes the ratio where the averages are replaced by UCBs. We
extend this setting to matroid constraints. We assume that total costs/rewards are
non-negative linear set functions of the chosen action A. The objective is to minimize
a ratio of linear set functions. As previously, two kinds of constraint can be considered
for the minimization: either A = I or A = B. Theorem 23 implies that an optimistic
estimation of this ratio is of the form L1−F1

L2+F2
, where for i ∈ {1, 2}, Fi are positive

(except for ∅), normalized, non-decreasing, submodular; and Li are non-negative
and linear. L1−F1 is a high-probability lower bound on the expected cost paid, and
L2 +F2 is a high-probability upper bound on the expected reward gained. Notice that
the numerator, L1−F1, can be negative, which can be an incitement to take arms with
a high cost/low rewards. Therefore, we consider the minimization of the surrogate
0 ∨

(
L1−F1
L2+F2

)
. Indeed, (L1 − F1)/(L2 + F2) is a high probability lower bound on the

ratio of expectation, so by monotonicity of x 7→ 0∨x on R, 0∨ (L1 − F1)/(L2 + F2) is
also a high-probability lower bound. We assume L2 is normalized, but not necessarily
L1. L1(∅) can be seen as an entry price for a round.
Remark 12. Notice, If A = I, and L1 is normalized, then there is an optimal
solution of the form {s} ∈ I (assuming ∅ is not feasible): If L1 − F1 is negative for
some S = {s} ⊂ I, then such S is a minimizer. Otherwise, by submodularity (and
thus subadditivity, since we consider normalized functions), L1 − F1 is non-negative,
and we have

L1(S)− F1(S)

L2(S) + F2(S)
≥
∑
s∈S L1({s})− F1({s})∑
s∈S L2({s}) + F2({s})

≥ min
s∈S

L1({s})− F1({s})
L2({s}) + F2({s})

.

This minimization problem is at least as difficult as previous submodular maxi-
mization problems, taking L1 = 1 and F1 = 0. In order to use our approximation
algorithms, we consider the Lagrangian function associated to the problem (see e.g.,
Fujishige, 2005),

L(λ,S) , L1(S)− F1(S)− λ(L2(S) + F2(S)),



138 Chapter 5. The Structure of Uncertainty

for λ ≥ 0 and S ⊂ [n]. For a fixed λ ≥ 0, −L(λ, ·) is a sum of a linear and a
submodular function, and both Algorithms 6 and 7 can be used. However, the first
step is to find λ sufficiently close to the optimal ratio

λ∗ = min
A∈A

(
L1(A)− F1(A)

L2(A) + F2(A)

)
∨ 0.

Remark 13. For some λ ≥ 0,

min
A∈A
L(λ,A) ≥ 0⇒ λ ≤ λ∗,

min
A∈A
L(λ,A) ≤ 0⇒


λ ≥ λ∗, or

minA∈A L1(A)− F1(A) ≤ 0,
which further gives λ∗ = 0.

From Remark 13, if it was possible to compute minA∈A L(λ,A) exactly, then a
binary search algorithm would find λ∗. This dichotomy method can be extended to
κ−approximation algorithms by defining the approximation Lagrangian as

Lκ(λ,S) , L1(S)− κF1(S)− λ(L2(S) + κF2(S)),

for λ ≥ 0 and S ⊂ [n]. The idea is to use the following approximation guarantee for
a κ−approximation algorithms outputing S (with objective function −L),

min
A∈A
Lκ(λ,A) ≤ Lκ(λ,S) ≤ min

A∈A
L(λ,A).

Thus, for a given λ, either the l.h.s is strictly negative or the r.h.s is non-negative,
depending on the sign of Lκ(λ,S). Therefore, from Remark 13, a lower bound λ1 on
λ∗, and an upper bound λ2 on minA∈A 0 ∨

(
L1(A)−κF1(A)
L2(A)+κF2(A)

)
can be computed. The

detailed method is given in Algorithm 8. Notice that it takes as input some Algoκ,
that can be either Algorithm 6 or Algorithm 7, depending on the assumption on
the constraint (either A = I or A = B). We denote the output as Algoκ(L+ F ),
for some linear set function L and some submodular set function F , for maximizing
the objective L+ F on A, so that S = Algoκ(L+ F ) satisfies L(S) + κF (S) ≥
maxA∈A L(A) + F (A), i.e., κ = 2(1 + ε) if Algoκ = Algorithm 6, A = I and κ = 2
if Algoκ = Algorithm 7, A = B. In Theorem 26, we state the result for the output
of Algorithm 8.

Theorem 26. Algorithm 8 outputs A such that

0∨
(
L1(A)− (κ+ η)F1(A)

L2(A) + κF2(A)

)
≤ λ∗,

where λ∗ is the minimum of 0 ∨
(
L1−F1
L2+F2

)
over I if Algoκ = Algorithm 6, and

over B if Algoκ = Algorithm 7. For Ct given by any policy considered before,
F (A) = maxξ∈C+t −µt−1

eT
Aξ, the complexity is of order log(mt/η) times the com-

plexity of Algoκ.

Proof. Let A be the output of Algorithm 8 and let

Lκ1,κ2(λ,S) , L1(S)− κ1F1(S)− λ(L2(S) + κ2F2(S)).
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Algorithm 8 Binary search for minimizing the ratio 0∨ (L1 − F1)/(L2 + F2).
Input: L1,L2, F1,F2, Algoκ, η > 0.
δ ← ηmin{s}∈A F1({s})

L2(B)+κ2F2(B) with B = Algoκ(L2 + κF2).
A← A0 ∈ A\{∅} arbitrary.
if Lκ(0,A) > 0 then
λ1 ← 0, λ2 ← L1(A)−F1(A)

L2(A)+F2(A)
.

while λ2 − λ1 ≥ δ do
λ← λ1+λ2

2 .
S ← Algoκ(−L(λ, ·)).
if Lκ(λ,S) ≥ 0 then
λ1 ← λ.

else
λ2 ← λ.
A← S.

end if
end while

end if
Output: A.

Recall that Lκ = Lκ,κ. Algorithm 8 satisfies either Lκ(0,A0) ≤ 0 — in which case
Theorem 26 is trivial since

0∨
(
L1(A)− (κ+ η)F1(A)

L2(A) + κF2(A)

)
= λ∗ = 0

— or Lκ(0,A0) > 0, in which case we have

0 > Lκ(λ2,A) ≥ Lκ+η,κ(λ2 − δ,A) ≥ Lκ+η,κ(λ1,A) ≥ Lκ+η,κ(λ
∗,A). (5.9)

The first inequality is comes from the update of λ2: Notice that before the while loop,
we have

λ2 =
L1(A0)− F1(A0)

L2(A0) + F2(A0)
>
L1(A0)− κF1(A0)

L2(A0) + κF2(A0)
> 0,

since F2(A0) > 0, so 0 > Lκ(λ2,A0) multiplying by L2(A0) + F2(A0) on both sides.
Notice that in particular, this inequality gives that A 6= ∅.

The second inequality follows from

δ =
ηmin{s}∈A F1({s})
L2(B) + κ2F2(B)

≤ ηF1(A)

L2(A) + κF2(A)

since A 6= ∅ and L2(B)+κ2F2(B) ≥ L2(A)+κF2(A). Thus, multiplying by L2(A)+
κF2(A) > 0, and adding L1(A)− κF1(A)− λ2(L2(A) + κF2(A)) gives

L1(A)− (κ+ η)F1(A)− (λ2 − δ)(L2(A) + κF2(A))

≤ L1(A)− κF1(A)− λ2(L2(A) + κF2(A)),

i.e., Lκ+η,κ(λ2 − δ,A) ≤ Lκ(λ2,A).
The third inequality uses λ2 − λ1 ≤ δ, and the last inequality uses λ1 ≤ λ∗.

Indeed, since Lκ(λ1,S) ≥ 0, the approximation relation given by Algoκ,

Lκ(λ1,S) ≤ L(λ1,O),
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where O is the minimizer of 0∨
(
L1−F1
L2+F2

)
(for the constraints considered by Algoκ),

gives 0 ≤ L(λ1,O). Thus,

L+(λ1,O) , 0∨ (L1(O)− F1(O))− λ1(L2(O) + F2(O)) ≥ L(λ1,O) ≥ 0.

Finally, since L2(O) + F2(O) > 0 (O 6= ∅), we have λ1 ≤ λ∗.
In (5.9), since A 6= ∅, we have L1(A)−(κ+η)F1(A)

L2(A)+κF2(A)
≤ λ∗ and therefore,

0∨
(
L1(A)− (κ+ η)F1(A)

L2(A) + κF2(A)

)
≤ λ∗.

The time complexity for the binary search is O(log(1/δ)) ≤ O(log(mt/η)) for Ct
given by any policy previously considered, and F (A) = maxξ∈C+t −µt−1

eT
Aξ.

5.5 Experiments and discussion
We provide experiments for a graphic matroid, on a five nodes complete graph, as did
Combes et al. (2015). We thus have n = 10, m = 4. We consider two experiments.
In the first one we use A = B, µ∗i = 1+ ∆I{i ≤ m}, for all i ∈ [n], and in the second,
A = I, where we set µ∗i = ∆(2I{i ≤ m− 1} − 1), ∀i ∈ [n]. We take ∆ = 0.1, with
outcomes drawn from independent unit variance Gaussian distributions. Figure 5.2
illustrates the comparison between cucb and our implementations of escb (Combes
et al., 2015) using Algorithm 7 (left) and 6 (right, with ε = 0.1), showing the behavior
of the regret vs. time horizon. We observe that although we are approximating the
confidence region within a factor at least 2 (and thus force the exploration), our effi-
cient implementation outperforms cucb. Indeed, we take advantage of the previously
inefficient algorithm (that we made efficient) to use outcome independence, which the
more conservative cucb is not able to. The latter algorithm has still a better per
round-time complexity of O(n logm) and may be more practical on larger instances.
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Figure 5.2: Cumulative regret for the minimum spanning tree setting
in up to 105 rounds, averaged over 100 independent simulations. Left:

for A = B. Right: for A = I.
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5.5.1 Discussion

We gave several approximation schemes for the confidence regions and applied them
to combinatorial semi-bandits with matroid constraints and their budgeted version.
We believe our approximation methods can be extended to approximation regret
for non-linear objective functions (e.g., for influence maximization, Wang and Chen,
2018), if the maximization algorithm keeps the same approximation factor for the
objective, either with or without the bonus.
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Chapter 6

Budgeted Online Influence
Maximization

This chapter aims to further study another well-known example of CMAB-T problem,
which is online influence maximization (OIM). It is based on our papers Perrault,
Healey, et al. (2020a) and Perrault, Healey, et al. (2020b). In particular, we will
introduce a new budgeted framework for OIM, considering the total cost of an adver-
tising campaign instead of the common cardinality constraint on a chosen influencer
set. Our approach models better the real-world setting where the cost of influencers
varies and advertizers want to find the best value for their overall social advertising
budget. We propose an algorithm assuming an independent cascade diffusion model
and edge-level semi-bandit feedback, and provide both theoretical and experimental
results. Our analysis is also valid for the cardinality-constraint setting and improves
the state of the art regret bound in this case.

6.1 Problem formulation
Viral marketing through online social networks now represents a significant part of
many digital advertising budgets. In this form of marketing, companies incentivize
chosen influencers in social networks (e.g., Facebook, Twitter, YouTube) to feature a
product in hopes that their followers will adopt the product and repost the recom-
mendation to their own network of followers. The effectiveness of the chosen set of
influencers can be measured by the expected number of users that adopt the product
due to their initial recommendation, called the spread. Influence maximization (IM,
Kempe, Kleinberg, and Tardos (2015)) is the problem of choosing the optimal set of
influencers to maximize the spread under a cardinality constraint on the chosen set.

In order to define the spread, we need to specify a diffusion process such as
independent cascade (IC) or linear threshold (LT) (Kempe, Kleinberg, and Tardos,
2015). The parameters of these models are usually unknown. Different methods
exist to estimate the parameters of the diffusion model from historical data, however
historical data is often difficult to obtain. Another possibility is to consider online
influence maximization (OIM) (Vaswani, Lakshmanan, and Mark Schmidt, 2015;
Wen, Kveton, Valko, et al., 2017) where an agent actively learns about the network by
interacting with it repeatedly, trying to find the best seed influencers. The agent thus
faces the dilemma of exploration versus exploitation, allowing us to see it as multi-
armed bandits problem (Auer, Cesa-Bianchi, and Fischer, 2002). More precisely, the
agent faces IM over T rounds. Each round, it selects m seeds (based on feedback from
prior rounds) and diffusion occurs; then it gains a reward equal to the spread and
receives some feedback on the diffusion.

IM and OIM optimize with the constraint of a fixed number of seeds. This reflects
a fixed seed cost model, for example, where influencers are incentivized by being given
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an identical free product. In reality, however, many influencers demand different levels
of compensation. Those with a high out-degree (e.g., number of followers) are usually
more expensive. Due to these cost variations, marketers usually wish to optimize their
seed sets S under a budget c(S) ≤ b rather than a cardinality constraint |S| ≤ m.
Optimizing a seed set under a budget has been studied in the offline case by Nguyen
and Zheng (2013). In the online case, Wang, Yang, et al. (2020) considered the relaxed
constraint E[c(S)] ≤ b, where the expectation is over the possible randomness of S.1
We believe however that the constraint of a fixed, equal budget c(S) ≤ b at each round
does not sufficiently model the willingness to choose a cost-efficient seed set. Indeed,
we see that the choice of b is crucial: a b too large translates into a waste of budget
(some seeds that are too expensive will be chosen) and a b too small translates into
a waste of time (a whole round is used to influence only a few users). To circumvent
this issue, instead of a budget per round, in our framework, we allow the agent to
choose seed sets of any cost at each round, under an overall budget constraint (equal
to B = bT for instance). In summary, we incorporate the OIM framework into a
budgeted bandit setting. Our setting is more flexible for the agent, and better meets
real-world needs.

6.1.1 Related work on IM

We recall that IM can be formally defined as follows. A social network is modeled as a
directed graph G = (V ,E), with nodes V representing users and edges E representing
connections. An underlying diffusion model D governs how information spreads in
G. More precisely, D is a probability distribution on subgraphs G′ of G, and given
some seed set S, the spread σ(S) is defined as the expected number of S-reachable2

nodes in G′ ∼ D. IM aims to find S that is a solution to

max
|S|=m

σ(S). (6.1)

Although IM is NP-hard under standard diffusion models — i.e., IC and LT — σ is
a monotone submodular3 function (Fujishige, 2005), and given a value oracle access
to σ, the standard greedy algorithm solves (6.1) within a 1− 1/e approximation
factor (Nemhauser, Wolsey, and Fisher, 1978). There have been multiple lines of
work for IM, including the development of heuristics, approximation algorithms, as
well as alternative diffusion models (Leskovec, Krause, et al., 2007; Goyal, Lu, and
Lakshmanan, 2011; Tang, Xiao, and Shi, 2014; Tang, Shi, and Xiao, 2015). Addi-
tionally, there are also results on learning D from data in the case it is not known
(Saito, Nakano, and Kimura, 2008; Goyal, Bonchi, and Lakshmanan, 2010; Gomez-
Rodriguez, Leskovec, and Krause, 2012; Netrapalli and Sanghavi, 2012).

6.1.2 Related work on OIM

Prior work in OIM has mainly considered either node level semi-bandit feedback
(Vaswani, Lakshmanan, and Mark Schmidt, 2015), where the agent observes all the
S-reachable nodes in G′, or edge level semi-bandit feedback (Wen, Kveton, Valko,
et al., 2017), where the agent observes the whole S-reachable subgraph (i.e., the
subgraph of G′ induced by S-reachable nodes). Other, weaker, feedback settings

1This relaxation is to avoid a computationally costly partial enumeration (Krause and Guestrin,
2005; Khuller, Moss, and Naor, 1999)

2nodes that are reachable from some node in S.
3f is submodular if f(A∪ {i})− f(A) is non-increaing with A.
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have also been studied including: pairwise influence feedback, where all nodes that
would be influenced by a seed set are observed but not the edges connecting them, i.e.,
({i}-reachable nodes)i∈S is observed (Vaswani, Kveton, et al., 2017); local feedback,
where the agent observes a set of out-neighbors of S (Carpentier and Valko, 2016)
and immediate neighbor observation where the agent only observes the out-degree of
S (Lugosi, Neu, and Olkhovskaya, 2019).

6.1.3 Our contributions

We define the budgeted OIM paradigm and propose a performance metric for an
online policy on this problem using the notion of approximation regret (Chen, Wang,
and Yuan, 2013). To the best of our knowledge, the both of contributions are new. We
then focus our study on the IC model with edge level semi-bandit feedback. We design
a cucb-style algorithm and prove logarithmic regret bounds. We also propose some
modifications of this algorithm with improving the regret rates. These gains apply
to the non-budgeted setting, giving an improvement over the state-of-the-art analysis
of the standard cucb-approach (Wang and Chen, 2017). Our proof incorporates an
approximation guarantee of greedy for ratio of submodular and modular functions,
which may also be of independent interest.

6.1.4 Problem definition

In this subsection, we formulate the problem of budgeted OIM and give a regret
definition for evaluating policies in that setting. We also justify our choice for this
notion of regret. We consider a fixed directed network G = (V ,E), known to the
agent, with V , {1, . . . , |V |}. We denote by ij ∈ E the directed edge from node i to j
in G. We assume that G doesn’t have self-loops, i.e., for all ij ∈ E, i 6= j. For a node
i ∈ V , a subset S ⊂ V , and a vector w ∈ {0, 1}E , the predicate S w

 i holds if, in the
graph defined by Gw , (V , {ij ∈ E,wij = 1}), there is a forward path from a node
in S to the node i. If it holds, we say that i is influenced by S under w. We define
pi(S; w) , I

{
S

w
 i

}
and the spread as σ(S; w) ,

∣∣∣{i ∈ V , S w
 i

}∣∣∣. Our diffusion
process is defined by the random vector W ∈ {0, 1}E , and our cost is defined by the
random4 vector C ∈ [0, 1]V ∪{0} where the added component C0 represents any fixed
costs5. Notice, random costs are neither assumed to be mutually independent nor
independent from W. We will see that components of W might however be mutually
independent (e.g., for the IC model).

Budgeted online influence maximization

The agent interacts with the diffusion process across several rounds, using a learning
policy. At each round t ≥ 1, the agent first selects a seed set St ⊂ V , based on its
past observations. Then, the random vectors for both the diffusion process Wt ∼ PW
and the costs Ct ∼ PC are sampled independently from previous rounds. Then, the
agent observes some feedback from both the diffusion process and the costs.

We provide in (6.2) the expected cumulative rewards FB defined for some total
budget B > 0. The goal for the agent is to follow a learning policy π maximizing FB.
In (6.2), recall that St is the seed set selected by π at round t.

4Although costs are usually deterministic, we assume randomness for more generality (influencer
campaigns may have uncertain surcharges for example).

5We provide a toy example where C0 models a concrete quantity: Assume you want to fill your
restaurant. You may pay some seeds and ask them to advertise/influence people. C0 represents the
cost of the food, the staff, the rent, the taxes, ...
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FB(π) , E

[
τB−1∑
t=1

σ(St; Wt)

]
. (6.2)

τB is the random round at which the remaining budget becomes negative: if Bt ,
B −

∑
t′≤t

(
eT
St′

Ct′ +C0,t′
)
, then BτB−1 ≥ 0 and BτB < 0. Notice, quantities Bt and

τB are usual in budgeted multi-armed bandits (Xia, Qin, et al., 2016; Ding, Qiny,
et al., 2013).

Performance metric

We restrict ourselves to efficient policies, i.e., we consider a complexity constraint
on the policy the agent can follow: For a round t, the space and time complexity
for computing St has to be polynomial in |V |, and polylogarithmic in t. To evaluate
the performance of a learning policy π, we use the notion of approximation regret
(Kakade, Kalai, and Ligett, 2009; Streeter and Golovin, 2009; Chen, Wang, and
Yuan, 2016). The agent wants to follow a learning policy π which minimizes

RB,ε(π) , (1− 1/e− ε)F ∗B − FB(π),

where F ∗B is the best possible value of FB over all policies (thus leveraging on the
knowledge of PW and PC), and where ε > 0 is some parameter the agent can control
to determine the tradeoff between computation and accuracy.

Remark 14. This OIM with a total budget B is different from OIM in previous
work, such as Wang and Chen (2017), even when we set all costs to be equal. In our
setting, there is only one total budget for all rounds, and the policy is free to choose
seed sets of different cost in each round, whereas in the previous work, each round had
a fixed budget for the number/cost of seeds selected. Our setting thus avoid the use of
a budget per round, which is in practice more difficult to establish than a global budget
B. Nevertheless, as we will see in subsection 6.3.2, both types of constraints (global
and per round) can be considered simultaneously when the true costs are known.

Justification for the approximation regret

In the non-budgeted OIM problem with a cardinality constraint given by m ∈ [|V |],
let us recall that the approximation regret

RT ,ε(π) ,
∑
t≤T

max
S⊂V ,
|S|=m

E[(1− 1/e− ε)σ(S; W)− σ(St; W)]

is standard (Wen, Kveton, Valko, et al., 2017; Wang and Chen, 2017). In this
notion of regret, the factor (1− 1/e− ε) (Feige, 1998; Chen, Wang, and Wang, 2010)
reflects the difficulty of approximating the following NP-Hard (Kempe, Kleinberg,
and Tardos, 2015) problem in the case the distribution PW is described by IC or LT,
and is known to the agent:

max
S⊂V , |S|=m

E[σ(S; W)]. (6.3)

For our budgeted setting, at first sight, it is not straightforward to know which ap-
proximation factor to choose. Indeed, since the random horizon may be different in
FB(π) and in F ∗B, the expected regret RB,ε(π) is not expressed as the expectation of
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a sum of approximation gaps, so we can’t directly reduce the regret level approxima-
bility to the gap level approximability. We thus consider a quantity provably close to
RB,ε(π) and easier to handle.

Proposition 19. Define

λ∗ , max
S⊂V

E[σ(S; W)]

E
[
eT
S∪{0}C

] .

For all S ⊂ V , define the gap corresponding to S as

∆(S) , (1− 1/e− ε)λ∗E
[
eT
S∪{0}C

]
−E[σ(S; W)].

Then, for any policy π selecting St at round t,∣∣∣∣∣RB,ε(π)−E

[
τB−1∑
t=1

∆(St)

]∣∣∣∣∣ ≤ 2|V |+ 2λ∗(1 + |V |).

From Proposition 19 (which is proven in subsection 6.5.1), RB,ε(π) and E
[∑τB−1

t=1 ∆(St)
]

are equivalent in term of regret upper bound rate. Therefore, the factor (1− 1/e− ε)
should reflect the approximability of

max
S⊂V

E[σ(S; W)]/E
[
eT
S∪{0}C

]
= max

S⊂V
f(S)/c(S). (6.4)

Considering the specific problem where the cost function is of the form c(S) = c1|S|+
c0, for some (c0, c1) ∈ [0, 1]2, we can reduce6 the approximability of (6.4) to the
approximability of the following problem considered in Wang, Yang, et al. (2020):

max
S⊂V

E[f(S)] s.t. E[|S|] = m, (6.5)

for some given integer m, where the expectations are with respect to a randomization
in the approximation algorithm. Wang, Yang, et al. (2020) proved that this problem is
NP-hard by reducing to the set cover problem. We show here that an approximation
ratio α better that 1−1/e yields a high probability approximation for set cover within
(1− δ) log(|V |), δ > 0, which is impossible unless NP ⊂ BPTIME

(
nO(log log(|V |))

)
(Feige, 1998). Consider the graph where the collection of closed out-neighborhoods
is exactly the collection of sets in the set cover instance. First, trying out all pos-
sible values of m, we concentrate on the case in which the optimal m for set cover
is tried out. As in Feige (1998), for k ∈ N∗, we repeatedly apply the algorithm
that α-approximate (6.5). It outputs a set Sk (that can be associated with a set of
neighborhoods) and after each application the nodes already covered by previous ap-
plications are removed from the graph, giving a sequence of objective functions (fk)
with f1 = f . We thus obtain

E[fk(Sk)|S1, . . . ,Sk−1 ] ≥ α
(
|V | −

k−1∑
k′=1

fk′(Sk′)

)
.

6We can first easily reduce to one variable, denoted c. The corresponding ratio is denoted rc(S)
and its approximate maximizer is denoted Sc. For a fixed c, with a linear search, we can consider
the algorithm outputting S̃c = arg maxSc′

rc(Sc′ ). Then, c 7→
∣∣∣S̃c∣∣∣ is monotone, so for a given m, we

can find c s.t. either
∣∣∣S̃c∣∣∣ = m or

∣∣∣S̃c−∣∣∣ < m <

∣∣∣S̃c+ ∣∣∣. In this last case, we can build a randomized
set of expected cardinality m.
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Noticing that E[f(S1 ∪ · · · ∪ Sk)] =
∑k
k′=1 E[fk′(Sk′)], we get

E[f(S1 ∪ · · · ∪ Sk)] ≥
(
1− (1− α)k

)
|V |.

After ` = blog(1/|V |)/ log(1− α)c < (1− δ) log(|V |) iterations, we obtain that S =
S1∪ · · ·∪S` is a cover, i.e., f(S) = |V |. The result follows noticing that in expectation
(and so with probability at least 1/(`m)), we have |S| ≤ `m.

6.2 `1-based approach
We are now considering algorithms for IC with edge level semi-bandit feedback.

6.2.1 Setting

For w ∈ [0, 1]V , we recall that we can define an IC model by taking

PW = ⊗ij∈EBernoulli(wij).

We can extend the two previous functions pi and σ to w taking values in [0, 1]V as
follows: Let W ∼ ⊗ij∈EBernoulli(wij). We define the probability that i is influ-
enced by S under W as pi(S; w) , P

[
S

W
 i

]
, and we let the spread be σ(S; w) ,

E
[∣∣∣{i ∈ V , S W

 i
}∣∣∣]. Another expression for the spread is σ(S; w) =

∑
i∈V pi(S; w).

We fix a weight vector on E, w∗ ,
(
w∗ij

)
ij∈E

∈ [0, 1]E , a cost vector on V ∪ {0},

c∗ , (c∗i )i∈V ∪{0} ∈ [0, 1]V ∪{0}, with c∗0 > 0. These quantities are initially unknown to
the agent. We assume from now that

PW , ⊗ij∈EBernoulli
(
w∗ij

)
,

and that
E[C] = c∗.

We also define S∗ ∈ arg maxS⊂V σ(S; w∗)/eT
S∪{0}c

∗. We assume that the feedback
received by the agent at round t is{

Wij,t, ij ∈ E, St
Wt i

}
.

The agent also receives semi-bandit feedback from the costs, i.e.,

{Ci,t, i ∈ V , i ∈ St ∪ {0}}

is observed.

6.2.2 Algorithm design

In this subsection, we present boim-cucb, cucb for Budgeted OIM problem as Al-
gorithm 9. As we saw in Proposition 19, the policy that, at each round, (1− 1/e−
ε)−approximately maximize

S 7→ σ(S; w∗)
eT
Sc∗ + c∗0

(6.6)
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Algorithm 9 boim-cucb
Input: ε > 0, B0 = B > 0.
for each round t ≥ 1 do
If true costs are known, then ct ← c∗.
Compute St given by Algorithm 10 with input S 7→ σ(S; wt), ct.
Select seed set St, and pay eT

St∪{0}Ct (i.e., remove this cost from Bt−1 to get the
new budget Bt).
if Bt ≥ 0, then
Get the reward σ(St; Wt), get the feedback, and update corresponding quan-
tities accordingly.

else
The budget is exhausted: leave the for loop.

end if
end for

has a bounded regret. Thus, boim-cucb shall be based on this objective. Not only
there are some estimation concerns due to the unknown parameters w∗, c∗, but in
addition to that, we also need to evaluate/optimize our estimates of (6.6).

We begin by introducing some notations. We define the empirical means for t ≥ 1
as: For all i ∈ V ∪ {0},

ci,t−1 ,

∑
t′∈[t−1] I{i ∈ St′ ∪ {0}}Ci,t′

N	i,t−1
,

and for all ij ∈ E,

wij,t−1 ,

∑
t′∈[t−1] I

{
St′

Wt′ i

}
Wij,t′

N⊕i,t−1
,

where N	i,t−1 ,
∑t−1
t′=1 I{i ∈ St′}, N⊕i,t−1 ,

∑t−1
t′=1 I

{
St′

Wt′ i

}
. Using concentra-

tion inequalities, we get confidence intervals for the above estimates. We are then
able to use an upper-confidence-bound (UCB) strategy (Auer, Cesa-Bianchi, and Fis-
cher, 2002). More precisely, in the case costs are unknown, we first build the lower
confidence bound (LCB) on c∗i as follows

ci,t , 0∨
(
ci,t−1 −

√
1.5 log(t)
N	i,t−1

)
.

We can also define UCBs for w∗ij :

wij,t , 1∧
(
wij,t−1 +

√
1.5 log(t)
N⊕i,t−1

)
.

We use wij,t = 1 (and ci,t = 0) when the corresponding counter is equal to 0. Our
boim-cucb approach chooses at each round t the seed set St given by Algorithm 10
which, as we shall see, approximately maximize S 7→ σ(S; wt)/

(
eT
S∪{0}ct

)
. Indeed,

with high probability, this set function is an upper bound on the true ratio (6.6)
(using that σ is non decreasing w.r.t. w). Notice that this approach is followed by
Wang and Chen (2017) for the non budgeted setting, i.e., they choose St, |St| ≤ m
that approximately maximize S 7→ σ(S; wt). To complete the description of our
algorithm, we need to describe Algorithm 10. This is the purpose of the following.
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6.2.3 Greedy for ratio maximization

In boim-cucb, one has to approximately maximize the ratio S 7→ σ(S; wt)/eT
S∪{0}ct,

that is a ratio of submodular over modular function. A greedy technique can be
used (see Algorithm 10). Indeed, instead of maximizing the marginal contribution at
each time step, as the standard greedy algorithm do, the approach is to maximize
the so called bang-per-buck, i.e., the marginal contribution divided by the marginal
cost. This builds a sequence of increasing subsets, and the final output is the one that
maximizes the ratio. The following Proposition 20 gives an approximation factor of
1− 1/e for Algorithm 10.

Proposition 20. Algorithm 10 with input σ, c is guaranteed to obtain a solution S
such that: (

1− e−1
) σ(S∗)

eT
S∗∪{0}c

≤ σ(S)

eT
S∪{0}c

.

Proof. In the proof, we use the notation σ(i|S) , σ({i} ∪ S)− σ(S). For any k ∈
[|V |],

σ(S∗)− σ(Sk−1) ≤
∑

i∈S∗\Sk−1

σ(i|Sk−1) Submodularity, monotonicity of σ

≤ σ(ik|Sk−1)

cik

∑
i∈S∗\Sk−1

ci Algorithm 10

≤ σ(ik|Sk−1)

cik

∑
i∈S∗

ci.

i.e., for all k ∈ [|V |] such that σ(S∗)− σ(Sk−1) ≥ 0,

cik
eT
S∗c
≤ σ(ik|Sk−1)

σ(S∗)− σ(Sk−1)
. (6.7)

There must be an index ` ∈ {0, 1, . . . , |V | − 1} such that eT
S`

c ≤ eT
S∗c ≤ eT

S`+1
c.

Let β ∈ [0, 1] be such that

eT
S∗c = (1− β)eT

S`
c + βeT

S`+1c. (6.8)

If σ(S∗)− (1− β)σ(S`)− βσ(S`+1) ≤ 0, then we have

(
1− e−1

)σ(S∗)
eT
S∗c

≤ σ(S∗)

eT
S∗c

≤ (1− β)σ(S`) + βσ(S`+1)

(1− β)eT
S`

c + βeT
S`+1

c .

Else,

σ(S∗)− (1− β)σ(S`)− βσ(S`+1) > 0 and σ(S∗)− σ(Sk) > 0 for all k ∈ [`],
(6.9)

so we can write the following,

σ(S∗)− (1− β)σ(S`)− βσ(S`+1)

σ(S∗)

≤ σ(S∗)− (1− β)σ(S`)− βσ(S`+1)

σ(S∗|∅)
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=
σ(S∗)− σ(S`)− βσ(i`+1|S`)

σ(S∗)− σ(S`)
∏
k∈[`]

σ(S∗)− σ(Sk)
σ(S∗)− σ(Sk−1)

=

(
1− βσ(i`+1|S`)

σ(S∗)− σ(S`)

) ∏
k∈[`]

(
1− σ(ik|Sk−1)

σ(S∗)− σ(Sk−1)

)

≤
(

1− βci`+1

eT
S∗c

) ∏
k∈[`]

(
1− cik

eT
S∗c

)
(6.7) and (6.9)

≤ exp
(
−
βci`+1 +

∑
k∈[`] c(ik)

eT
S∗c

)
1− x ≤ e−x

= exp
(
−
(1− β)eT

S`
c + βeT

S`+1
c

eT
S∗c

)
= e−1. (6.8)

Rearranging the inequality, we obtain
(
1− e−1)σ(S∗) ≤ (1− β)σ(S`) + βσ(S`+1),

i.e., (
1− e−1

) σ(S∗)

eT
S∗∪{0}c

≤ (1− β)σ(S`) + βσ(S`+1)

(1− β)eT
S`∪{0}c + βeT

S`+1∪{0}c
.

The output S of Algorithm 10 maximizes the ratio of σ(Sk)/eT
Sk∪{0}c over k. Thus,

max
k≤`+1

σ(Sk)

eT
Sk∪{0}c

≤ σ(S)

eT
S∪{0}c

.

We end the proof remarking that

max
k∈{`,`+1}

σ(Sk)

eT
Sk∪{0}c

≥ (1− β)σ(S`) + βσ(S`+1)

(1− β)eT
S`∪{0}c + βeT

S`+1∪{0}c
.

Notice, a similar result as Proposition 20 is stated in Theorem 3.2 of Bai et al.
(2016). However, their proof doesn’t hold in our case, since their inequality (16)
would be true only for a normalized cost (i.e. c0 = 0). Actually, c0 = 0 implies that
S∗ is a singleton, from subadditivity of σ.

For more efficiency, we use a greedy algorithm with lazy evaluations (Minoux,
1978; Leskovec, Krause, et al., 2007), leveraging on the submodularity of σ. More
precisely, in Algorithm 10, instead of taking the arg max in the step

Sk ← Sk−1 ∪
{

arg max
i∈V \Sk−1

σ({i} ∪ Sk−1)− σ(Sk−1)

ci

}
,

we maintain an upper bound ρ (initially∞) on hhe marginal gain, sorted in decreasing
order. In each iteration k, we evaluates the element on top of the list, say i, and
updates its upper bound with the marginal gain at Sk−1. If after the update the upper
bound is greater than the others, submodularity guarantees that i is the element with
the largest marginal gain.

Algorithm 10 (and the approximation factor) can’t be used directly in the OIM
context, since computing the exact spread σ is #P hard (Chen, Wang, and Wang,
2010). However, with Monte Carlo (MC) simulations, it can efficiently reach an
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Algorithm 10 greedy for ratio, Lazy implementation
Input: σ that is an increasing submodular function,

c ∈ [0, 1]V ∪{0}.
S0 ← ∅.
ρ← [(∞, i)]i∈V .
for k ∈ [|V |] do

checked← Sk−1.
(∗) Remove the first element ρ[0] = (∼, i) from ρ.
if i /∈ checked then
Insert ((σ({i} ∪ Sk−1)− σ(Sk−1))/ci, i) in ρ, such that ρ[:][0] is sorted in de-
creasing order.
Add i to checked and go back to (∗).

else
Sk ← Sk−1 ∪ {i}.

end if
end for
k′ ← arg maxk∈{0,...,|V |} σ(Sk)/eT

Sk∪{0}c.
Output: Sk′ .

arbitrarily close ratio of α = 1− 1/e− ε, with a high probability 1− 1/
(
t log2(t)

)
(Kempe, Kleinberg, and Tardos, 2015).

6.2.4 Regret bound for Algorithm 9

We provide a gap dependent upper bound on the regret of boim-cucb in Theorem 27.
For this, we define, for i ∈ V , the gap

∆i,min , min
S⊂V , pi(S;w∗)>0, ∆(S)>0

∆(S).

We also define, with dk being the out-degree of node k,

pi,max , max
S⊂V , pi(S;w∗)>0

∑
k∈V

dkpk(S; w∗).

We also state the following smoothness property of the spread.

Fact 7 (Smoothness property of the spread). for all S ⊂ V , and all w, w′ ∈ [0, 1]E,

∀k ∈ V ,
∣∣pk(S; w)− pk(S; w′)

∣∣ ≤ ∑
ij∈E

pi(S; w)
∣∣∣wij −w′ij∣∣∣.

In particular, ∣∣σ(S; w)− σ(S; w′)
∣∣ ≤ |V |∑

ij∈E
pi(S; w)

∣∣∣wij −w′ij∣∣∣.
We refer the reader to Proposition 22 for a proof of the above fact, where we

provide a more general statement.

Theorem 27. If π is the policy described in Algorithm 9, then

RB,ε(π) = O
(

logB
(∑
i∈V
|V |λ

∗ + dipi,max|V |
∆i,min

))
.
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In addition, if true costs are known, then

RB,ε(π) = O
(

logB
(∑
i∈V

dipi,max|V |2

∆i,min

))
.

Proof. Let α = 1− 1/e− ε, and t ≥ 1. From Proposition 19, we have to upper bound

E

[
τB−1∑
t=1

∆(St)

]
.

Fix t ≥ 1. We consider the following events:

Wt ,

{
∀ij ∈ E, 0 ≤ w∗ij −wij,t ≤ 2

√
1.5 log(t)
N⊕ij,t−1

}
,

Ct ,

{
∀i ∈ V ∪ {0}, 0 ≤ c∗i − ci,t ≤ 2

√
1.5 log(t)
N	i,t−1

}
.

We also consider the event At under which the α−approximation in Algorithm 9
holds. We already saw that

P[¬At] ≤
1

t log2(t)
.

From Hoeffding’s inequality, Ct holds with probability 1 − 2(|V |+ 1)/t2, and Wt

holds with probability 1− 2|E|/t2. Thus, under the event that either Ct, Wt or At
doesn’t hold, then the regret is bounded by a constant (since we have a convergent
series).

We thus now assume that Ct, Wt and At hold. In particular, using Ct and Wt,
we can write

λ∗ =
σ(S∗; w∗)
eT
S∗∪{0}c∗

≤ σ(S∗; wt)

eT
S∗∪{0}ct

.

We can use this relation to write

∆(St) = λ∗α
(
eT
Stc
∗ + c∗0

)
− σ(St; w∗)

= λ∗α

((
eT
Stc
∗ + c∗0

)
− σ(St; wt)

αλ∗

)
+ (σ(St; wt)− σ(St; w∗))

≤ λ∗α
((

eT
Stc
∗ + c∗0

)
− σ(St; wt)

ασ(S∗; wt)
(eT
S∗ct + c0,t)

)
+ (σ(St; wt)− σ(St; w∗))

≤ λ∗α
((

eT
Stc
∗ + c∗0

)
−
(
eT
Stct + c0,t

))
+ (σ(St; wt)− σ(St; w∗)),

where the last inequality is from At. Notice here that in the case the costs are known,
the first term in this bound disappears, and we can then safely take λ∗ =0, explaining
why in the final bound the term in front of λ∗ disappears. We now use Fact 7, and
then Ct, Wt to further get the bound

∆(St) ≤ λ∗α
∑
i∈St

(
1∧ 2

√
1.5 log(t)
N	i,t−1

)
︸ ︷︷ ︸

(6.10)

+ |V |
∑
ij∈E

pi(St; w∗)
(

1∧ 2
√

1.5 log(t)
N⊕ij,t−1

)
︸ ︷︷ ︸

(6.11)

.

Then, necessarily either ∆(St) ≤ 2 · (6.10) or ∆(St) ≤ 2 · (6.11) is true. The
first event can be handle with Theorem 12 (with no probabilistically triggered arms),
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using the upper bound on the expectation of the random horizon given in the proof
of Theorem 19. This allows us to get a term of order

λ∗ log(B/c∗0)
∑
i∈V

|V |
∆i,min

,

in the regret upper bound.
Theorem 12 with probabilistically triggered arms takes care of the second event

to get a bound of order

log(B/c∗0)
∑
i∈V

di
|V |2 maxS⊂V , pi(S;w∗)>0

∑
k∈V dkpk(S; w∗)

∆i,min
.

Problem-independent bound The problem-independent bound of

O

|V |√B logB
∑
i∈V

dipi,max


is an immediate consequence of our problem-dependent bound, decomposing, clas-
sically, the regret in two terms by filtering by whether or not ∆(St) ≤ δ, and then
taking the worst regime for δ.

Notice that the analysis can be easily used for the non budgeted setting. In this
case, it reduces to the state-of-the-art analysis of Wang and Chen (2017), except that
we slightly simplify and improve the analysis to replace the factor

max
S⊂V

∑
k∈V

dkI{pk(S; w∗) > 0}

by a potentially much lower quantity pi,max. In the case this last quantity is still
large, we can further improve it by considering slight modifications to the original
Algorithm 9. This is the purpose of the next section.

6.3 `2-based approach
We observe that the factor pi,max in Theorem 27 can be as large as |E| in the worst
case. In other word, if ∆ = mini ∆i,min, the rate can be as large as

O
(

logB
(
λ∗|V |2 + |E|2|V |2

∆

))
.

We argue here that we can replace |E|2|V |2 by |E||V |3 log2(|V |)). Indeed, leveraging
on the mutual independence of random variables Wij , we can hope to get a tighter
confidence region for w∗, and thus a provably tighter regret upper bound (Magureanu,
Combes, and Proutiere, 2014; Combes et al., 2015; Degenne and Perchet, 2016b). We
consider the following `2 confidence region:

Fact 8 (Confidence ellipsoid for weights, Degenne and Perchet (2016b)). For all
t ≥ 2, with probability at least 1− 1/

(
t log2(t)

)
,

∑
ij∈E

N⊕ i,t−1
(
w∗ij −wij,t−1

)2
≤ δ(t),
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where δ(t) , 2 log(t) + 2(|E|+ 2) log log(t) + 1.

For OIM (both budgeted and non budgeted), there is a large potential gain in
the analysis using the confidence region given by Fact 8 compared to simply using an
Hoeffding based one, like in boim-cucb. More precisely, for classical combinatorial
semi bandits, Degenne and Perchet (2016b) reduced the gap dependent regret upper
bound by a factor `/ log2 (`), where in our case ` can be as large as |E|. However,
there is also a drawback in practice with such confidence region: computing the
optimistic spread might be inefficient, even if an oracle for evaluating the spread is
available. Indeed, for a fixed S ⊂ V , the problem of maximizing w 7→ σ(S; w) over
w belonging to some ellipsoid might be hard, since the objective is not necessarily
concave. We can overcome this issue using the Fact 7. For S ⊂ V and w ∈ RE , we
define the confidence “bonus" as follows:

bonus(S; w) , |V |

√√√√δ(t) ∑
i∈V ,N⊕ i,t−1>0

di
pi(S; w)2

N⊕i,t−1
.

Notice, we don’t sum on vertices with a zero counter. We compensate this by using
the convention wij,t−1 = 1 whenN⊕i,t−1 = 0. We can successively use Fact 7, Cauchy-
Schwartz inequality, and Fact 8 to get, with probability at least 1− 1/

(
t log2(t)

)
,

σ(S; w∗) ≤ σ(S; wt−1) + bonus(S; wt−1). (6.12)

In the same way, with probability at least 1− 1/
(
t log2(t)

)
, we also have (6.13).

σ(S; w∗) ≤ σ(S; wt−1) + bonus(S; w∗). (6.13)

Contrary to (6.12), this “optimistic spread" can’t be used directly by the agent since
w∗ is not known.

Although the optimistic spread defined in (6.12) is now much easier to compute,
there is still a major drawback that remains: As a function of S ⊂ V , bonus(S; wt−1)
is not necessarily submodular, so the optimistic spread is itself no longer submod-
ular. This is an issue because submodularity is a crucial property for reaching the
approximation ratio 1− 1/e− ε. We propose here several submodular upper bound
to bonus, defined for S ⊂ V and w ∈ RE :

• bonus1 is actually modular, and simply uses the subadditivity (w.r.t. S) of
bonus:

bonus1(S; w) , |V |
∑
j∈S

√√√√δ(t) ∑
i,N⊕ i,t−1>0

di
pi({j}; w)2

N⊕i,t−1
.

• bonus2 uses the subadditivity of the square root:

bonus2(S; w) , |V |
∑

i,N⊕ i,t−1>0
pi(S; w)

√
δ(t)di
N⊕i,t−1

.

• bonus3 uses pi(S; w)2 ≤ pi(S; w), and is submodular as the composition be-
tween a non decreasing concave function (the square root) and a monotone
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submodular function:

bonus3(S; w) , |V |
√√√√δ(t) ∑

i,N⊕ i,t−1>0
di
pi(S; w)

N⊕i,t−1
.

• bonus4 uses Jensen’s inequality, and is submodular as the expectation of the
square root of a submodular function.

bonus4(S; w) , E

|V |
√√√√√ ∑
i∈V ,N⊕ i,t−1>0,SW

 i

δ(t)di
N⊕i,t−1

,

where W ∼ ⊗ij∈EBernoulli(wij).

We can write the following approximation guarantees for the two first bonus:

bonus(S; w) ≤ bonus1(S; w) ≤ |S|bonus(S; w), (6.14)

bonus(S; w) ≤ bonus2(S; w) ≤
√
|V |bonus(S; w).

Notice, another approach to get a submodular bonus is to approximate pi(S; wt−1)
by the square root of a modular function (Goemans et al., 2009). However, not only
this bonus would be much more computationally costly to build than ours, but also,
we would get only a

√
|V | log|V | approximation factor, which is worst than the one

with our bonus2. Since increasing the bonus by a factor α ≥ 1 increases the gap
dependent regret upper bound by a factor α2, we only loose a factor |V | for bonus2,
compared to the use of bonus, which is still better than the cucb approach. bonus1
can also be interesting to use when we have some upper bound guarantee on the
cardinality of seed sets used. An approximation factor for bonus3 or bonus4 doesn’t
seem interesting, because it would involve the inverse of triggering probabilities. We
can, however, further upper bound bonus3(S; w∗) as follows:

bonus3(S; w∗) = |V |
√√√√δ(t) ∑

i,N⊕ i,t−1>0
di
pi(S; w∗)
N⊕i,t−1

≤ |V |
√√√√√∑
j∈S

∑
i∈V ,

N⊕ i,t−1>0

di
δ(t)pi({j}; w∗)

N⊕i,t−1

≤ |V |

√√√√δ(t)∑
j∈S
|E|
(

8
N	j,t−1

∧ 1
)

,

where the last inequality only holds under some high probability event, given by the
following Proposition 21 (which is proven in subsection 6.5.2), involving counters on
the costs and counters on the weights.

Proposition 21. Consider the event defined by Pt , {∀i ∈ V ,N⊕ i,t−1 ≥ δ(t)}. Then,
for all i, j ∈ V ,

P

[
Pt and

δ(t)pi({j}; w∗)
N⊕ i,t−1

>
8δ(t)
N	 j,t−1

]
≤ 1/t2.
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We thus define for S ⊂ V ,

bonus5(S) , |V |

√√√√δ(t)∑
j∈S
|E|
(

8
N	j,t−1

∧ 1
)

.

This bonus is much more convenient since it does not depend anymore on w∗, and
can thus be computed by the agent. Indeed, although the first four bonuses are likely
to be tighter than this last submodular bonus5, their dependence in w forces us to
use them for w = wt−1. Even if this doesn’t pose any problem in practice, this
is more difficult to handle in theory since it would involve optimistic estimates on
pi( · ; wt−1) itself (see the next section for further details). Actually, we will see that
the analysis with bonus5 is slightly better than the one we would get with bonus2,
since we loose a factor |V | log2(|V |)/ log2(|E|) compared to the use of bonus. In
addition, it allows a much more interesting constant term in the regret upper bound
thanks to the suppression of the dependence in w∗.

Although we can improve the analysis based on Fact 8 and 7, the inequality in
this last fact may be be less rough in practice (we confirm this in section 6.4). In
that case, we suffer from this roughness, since we actually use Fact 7 to design our
bonus. In contrast, boim-cucb only uses it in the analysis, and can therefore adapt
to a better smoothness inequality. Thus, we consider boim-cucb5, where we first
compute St using the boim-cucb approach, and accept it only if

σ(St; wt) ≤ σ(St; wt−1) + bonus5(St), (6.15)

otherwise, we chose St maximizing σ(S; wt−1) + bonus5(S). For technical reason
(due to Proposition 21), we replace St by St ∪ {j} if it exists a j ∈ V , such that

N⊕j,t−1 < δ(t). (6.16)

We thus both enjoy the theoretical advantages of bonus5 and the practical advantages
of boim-cucb. We give the following regret bounds for this approach.

Theorem 28. If π is the policy following boim-cucb5, then

RB,ε(π) = O
(

logB
(∑
i∈V
|V |λ

∗ + |V ||E| log2 |V |
∆i,min

+ λ∗|V |2
))

.

Proof. Let α = 1− 1/e− ε, and t ≥ 1. From Proposition 19, we have to upper bound

E

[
τB−1∑
t=1

∆(St)

]
.

In the proof, in addition to Pt , {∀i ∈ V ,N⊕i,t−1 ≥ δ(t)}, we consider the following
events:

Wt ,

∑
ij∈E

N⊕i,t−1
(
w∗ij −wij,t−1

)2
≤ 2δ(t)

,

Ct ,

{
∀i ∈ V ∪ {0}, 0 ≤ c∗i − ci,t ≤ 1∧ 2

√
1.5 log(t)
N	i,t−1

}
.

Bt ,

{
∀i, j ∈ V , δ(t)pi({j}; w∗)

N⊕i,t−1
≤ 8δ(t)
N	j,t−1

}
.
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For each node i ∈ V , if N⊕i,t−1 ≥ δ(τB − 1), then i will not be intentionally added
to the seed set in boim-cucb5. Then, each node is intentionally added for at most
δ(τB − 1) + 1 times. Thus, we can write

E

[
τB−1∑
t=1

∆(St)I{¬Pt}
]
≤ E[(δ(τB − 1) + 1)|V |λ∗(|V |+ 1)]

≤
(
δ
(
(2B/c∗0 + 1)2

)
+ 1

)
|V |λ∗(|V |+ 1).

We can therefore assume that Pt holds. In this case, we have by Proposition 21
that Bt doesn’t hold with probability bounded by |V |2/t2. On the other hand,
from Fact 8, Wt doesn’t hold with probability bounded by 1/

(
t log2(t)

)
, and from

Hoeffding inequality, Ct doesn’t hold with probability bounded by 2(|V |+ 1)/t2. We
can consider the event At under which the α−approximation in boim-cucb5 holds.
We already saw that

P[¬At] ≤
1

t log2(t)
.

The regret in the case one of the events ¬At,¬Bt,¬Wt,¬Ct holds is thus bounded
by a constant depending on |V | and λ∗. It thus remains to upper bound

E

[
τB−1∑
t=1

∆(St)I{At,Bt,Wt,Ct}
]
.

For this, notice that from At, St which is the seed set chosen by our policy at round
t, is an α-approximate maximizer of A 7→ f(A)/(eT

Act + c0,t), where f is one of the
optimistic spreads considered in boim-cucb5. We thus have

f(St)

eT
St

ct + c0,t
≥ α f(S∗)

eT
S∗ct + c0,t

,

where S∗ ∈ arg maxS⊂V
σ(S;w∗)
eT
Sc∗+c∗0

. Since under Wt, f(S∗) ≥ σ(S∗; w∗), we can derive
the following upper bound on the gap:

∆(St) = λ∗α
(
eT
Stc
∗ + c∗0

)
− σ(St; w∗)

= λ∗α

((
eT
Stc
∗ + c∗0

)
− f(St)

αλ∗

)
+ (f(St)− σ(St; w∗))

≤ λ∗α
((

eT
Stc
∗ + c∗0

)
− f(St)

αf(S∗)
(eT
S∗ct + c0,t)

)
+ (f(St)− σ(St; w∗)) Wt,Ct

≤ λ∗α
((

eT
Stc
∗ + c∗0

)
−
(
eT
Stct + c0,t

))
+ (f(St)− σ(St; w∗)). At

From this point, we can use the condition satisfied by f in boim-cucb5:

f(St) ≤ σ(St; wt−1) + bonus5(St).

Using Fact 7 with Fact 8, we can further have with Cauchy-Schwartz inequality

σ(St; wt−1)− σ(St; w∗) ≤ bonus5(St).
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This allows us to get, using Ct,

∆(St) ≤ λ∗α
∑

i∈St∪{0}
1∧ 2

√
1.5 log(t)
N	i,t−1

+ 2bonus5(St). (6.17)

The first part in (6.17) can be handle using Theorem 12 to get a term of order

λ∗ log(B/c∗0)
∑
i∈V

|V |
∆i,min

,

in the regret upper bound. We can use Theorem 13 to deal with the second part, to
get a term of order

δ(B/c∗0)|V |
2|E|

∑
i∈V

log2(|V |)
∆i,min

,

in the regret upper bound. We thus get the desired result.

Such analysis also holds in the non-budgeted setting, and maximizing the spread
only instead of the ratio, we can build a policy π satisfying the following (with the
standard definition of the non-budgeted gaps):

RT ,ε(π) = O
(

log T
∑
i∈V

|V |2|E| log2 |V |
∆i,min

)
.

The regret rate is thus better than the one from Wang and Chen (2017), gaining a
factor |E|/

(
|V | log2(|V |)

)
.

6.3.1 Improvements using bonus1 and bonus4

In this subsection, we show that the use of bonus1 and bonus4 leads to a better
regret leading term, at the cost of a large second order term. In the following, we
propose boim-cucb1 (resp. boim-cucb4), that are the same approach as boim-
cucb5 with bonus1( · ; wt−1) (resp. bonus4( · ; wt−1)) instead of bonus5, and where
condition (6.16) is replaced by

∃j ∈ V ,N⊕j,t−1 ≤ |E|δ(t).

bonus1 for low cardinality seed sets

In many real world scenarios, maximal cardinality of seed set is small compared to |V |.
Indeed, in the non-budgeted setting, it is limited by m, and it is usually assumed that
m is much smaller than |V |. In the budgeted setting, we will see in subsection 6.3.2
how to limit the cost of the chosen seeds, and this is likely to also induce a limit on the
cardinality of seeds. Using bonus1 is more appropriate in this situation, according
to the approximation factor (6.14). We state in Theorem 29 the regret bound for
boim-cucb1.

Theorem 29. If π is the policy boim-cucb1, and if all seeds selected have a cardi-
nality bounded by m, then we have

RB,ε(π) = O
(

logB
(∑
i∈V

m
λ∗ +m|V |2di log2(|E|)

∆i,min
+ λ∗|V |2|E|

))
.
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Proof. Let α = 1− 1/e− ε, and t ≥ 1. The beginning of the proof is the same as
in Theorem 28, except we no longer consider the event Bt, and we consider a new
event:

Rt , {∀i ∈ V ,N⊕i,t−1 ≥ |E|δ(t)}.

As for Theorem 28:

• The regret in the case Rt doesn’t hold can be bounded by a term of order

λ∗|V |2|E| log(B).

• When all the events hold, the same analysis gives

∆(St) ≤ 2λ∗α
∑
i∈St

1∧ 2
√

1.5 log(t)
N	i,t−1

+ 4bonus1(St; wt−1),

and the first term can be handled in the same way.

The second term can be analyzed in the following way: After bounding it by

4mbonus(St; wt−1),

see that using Fact 7 on the quantity pi(S; wt−1) present in this bonus, we get

pi(St; wt−1) ≤ pi(St; w∗) +
1
|V |

bonus(St; w∗).

By subadditivity, and from Rt, we have

4mbonus(St; wt−1) ≤ 4mbonus(St; w∗) + 4m|V |

√√√√δ(t)∑
i∈V

di
bonus(St; w∗)2

|V |2N⊕i,t−1

≤ 4mbonus(St; w∗) + 4m|V |

√√√√∑
i∈V

di
bonus(St; w∗)2

|V |2|E|

= 8mbonus(St; w∗).

We can now use Theorem 13 to get a bound of order

δ(B/c∗0)m
2|V |2

∑
i∈V

di
log2(|E|)

∆i,min
.

As previously, we can state the following non-budgeted version, with seed set
cardinality constrained by m:

RT ,ε(π) = O
(

log T
(∑
i∈V

m2|V |2di log2(|E|)
∆i,min

+ |E||V |2
))

.

Notice, for both settings, there is an improvement in the main term (the gap depen-
dent one), in the case m ≤

√
|V |. However, there is also a higher gap independent

term that appears.
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bonus4: the same performance as bonus?

We show here that the regret with bonus4 is of the same order as what we would
have had with bonus (which is not submodular). However, bonus4 does not have
the calculation guarantees of the other bonuses. We state in Theorem 30 the regret
bound for the policy boim-cucb4. Notice that we obtain a bound whose leading term
improves by a factor |E|/ log2|E| that of boim-cucb.

Theorem 30. If π is the policy boim-cucb4, then we have

RB,ε(π) = O
(

logB
(∑
i∈V

|V |λ∗ + |V |2di log2(|E|)
∆i,min

+ λ∗|V |2|E|
))

.

Before proving this result, we provide some preliminaries. If we let pS S′(w) ,

P
[{
i ∈ V , S W

 i
}
= S′

]
, then another expression is

bonus4(S; w) =
∑
S′⊃S

pS S′(w) |V |

√√√√δ(t)∑
i∈S′

di
N⊕i,t−1︸ ︷︷ ︸

g(S′)

=
∑
k≥0

(g(S′k+1)− g(S′k))
∑

S′/∈{S′0,...,S′
k}
pS S′(w).

where g(S) = g(S′1) ≤ g(S′2) ≤ . . . and S′0 = ∅.
Since this bonus shall be used with wt−1, we need a smoothness inequality to link

pS S′(wt−1) to pS S′(w∗). We prove here the following such inequality.

Proposition 22. For all S ⊂ V , all w, w′ ∈ [0, 1]E and all collection of subsets of
vertices S, we have∣∣∣∣∣∣

∑
S′∈S

(pS S′(w)− pS S′(w′))

∣∣∣∣∣∣ ≤
∑
ij∈E

pi(S; w)
∣∣∣w′ij −wij∣∣∣.

Proof. We assume w.l.o.g. that w′ ≥ w. We consider the random graph GW =
(V , {ij ∈ E,Wij = 1}), where W ∼ ⊗ij∈EBernoulli(wij). We build GW′ from GW

by adding edges ij independently with probability w′ij−wij
1−wij for each ij that is not an

edge in GW. Now, see that∑
S′∈S

pS S′(w) = P
[
S

W
 S′

]
−
∑
S′/∈S

pS S′(w),

where S W
 S′ means S W

 i for all i ∈ S′. Thus,

0 ≤ pS S′(w′)− pS S′(w) = P

[
S

W′
 S′

]
−P

[
S

W
 S′

]
−

∑
S′/∈S

pS S′(w′)−
∑
S′/∈S

pS S′(w)


≤ P

[
S

W′
 S′

]
−P

[
S

W
 S′

]
= P

[
S

W′
 S′ but not S W

 S′
]
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≤ P
[
∃ij ∈ E s.t. S W

 i, Wij = 0, and W ′ij = 1
]
.

The last inequality is by noticing that if S W′
 S′ but not S W

 S′, then there must
be a edge ij accessible from S in GW′ such that Wij = 0 and W ′ij = 1. Taking the
first such edge ij (watching the contagion spread from S step by step), we see that ij
must be accessible from S in GW as well (since otherwise there’s a previous accessible
edge k` that verifies Wk` = 0 and W ′k` = 1).

We have that S W
 i is independent from Wij ,W ′ij . Since

P
[
Wij = 0, and W ′ij = 1

]
= (1−wij)

w′ij −wij
1−wij

= w′ij −wij ,

we have

P
[
∃ij ∈ E s.t. S W

 i, Wij = 0, and W ′ij = 1
]
≤
∑
ij∈E

pi(S; w)
(
w′ij −wij

)
.

Proof of Theorem 30. We apply a similar analysis as above. When all the events
hold, the same analysis gives

∆(St) ≤ 2λ∗α
∑
i∈St

1∧ 2
√

1.5 log(t)
N	i,t−1

+ 4bonus4(St; wt−1),

and the first term can be handled in the same way. The second term can be analyzed
in the following way: Using Proposition 22 with S = {S′ ⊂ V , S′ /∈ {S′0, . . . ,S′k}},
we get

4bonus4(St; wt−1) ≤ 4bonus4(St; w∗) +
∑
k≥0

(g(S′k+1)− g(S′k))
1
|V |

bonus4(St; w∗)

=

4 +
√√√√δ(t)∑

i∈V

di
N⊕i,t−1

bonus4(St; w∗)

≤ 5bonus4(St; w∗),

where the last inequality uses the event

Rt , {∀i ∈ V ,N⊕i,t−1 ≥ |E|δ(t)}.

Relying on Theorem 14, we can deal with this last term and obtain a term of
order

δB/c∗0
∑
i∈V

|V |2di log2(|E|)
∆i,min

.

As previously, we can state the following non-budgeted version. Notice that the
cardinality constraint does not appear in the bound.

RT ,ε(π) = O
(

log T
(∑
i∈V

|V |2di log2(|E|)
∆i,min

+ |E||V |2
))

.
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In spite of the superiority in terms of regret of the use of bonus4, we must point out
that, in the worst case, the calculation of this bonus may require a number of sample
(and thus a time complexity) polynomial in t, which does not meet the criterion of
efficiency that we set ourselves at the beginning of the chapter.

6.3.2 Knapsack constraint for known costs

In their setting, Wang, Yang, et al. (2020) considered the relaxed constraint

E
[
eS∪{0}c∗

]
≤ b, (6.18)

instead of ratio maximization, where the expectation is over the possible random-
ness of S. When true costs are known to the agent, we can actually combine the
two settings: a seed set S can be chosen only if it satisfies (6.18). In this section,
we describe modifications this new setting implies. First of all, the regret definition
is impacted, and F ∗B is now maximal for policies respecting the constraint (6.18)
within each round. Naturally, the definitions of λ∗ and S∗ are also modified accord-
ingly. Otherwise, apart from Algorithm 10, there is conceptually no change in the
approaches that have been described in this paper. We now described the modifica-
tion needed to make Algorithm 10 works in this setting. The same sequence of set
Sk is considered, but instead of choosing the set that maximizes the ratio over all
k ∈ {0, . . . , |V |}, we restrict the maximization to k ∈ {0, . . . , j}, where j is the first
index such that eT

Sj∪{0}c
∗ > b. If this maximizer is not Sj , then it satisfies the con-

straint and is output. Else, we output Sj with probability (b− eT
Sj−1∪{0}c

∗)/c∗j and
Sj−1 with probability 1− (b− eT

Sj−1∪{0}c
∗)/c∗j . This way, the expected cost of the

output is b. The following Proposition 23 gives an approximation factor of 1− 1/e
for the above modification of Algorithm 10.

Proposition 23. The solution S obtained by the modified Algorithm 10 is such that:(
1− e−1

) E[σ(S∗)]

E
[
eT
S∗∪{0}c∗

] ≤ E[σ(S)]

E
[
eT
S∪{0}c∗

] ,

where the expectation is over the possible randomness of S,S∗.

Proof. There are two possibilities for S∗: either E
[
eT
S∗∪{0}c

∗
]
< b, or E

[
eT
S∗∪{0}c

∗
]
=

b. In the first case, we know that S∗ is not random. Indeed, if it is not the case,
then E[σ(S∗)]

E

[
eT
S∗∪{0}c

∗
] is a convex combination of some σ(S)

eT
S∪{0}c

∗ for S in the support

of the distribution of S∗. Necessarily, the maximizer (over S in the support) of
the ratio is such that eT

S∪{0}c
∗ > b, since otherwise this maximizer contradicts the

definition of S∗. Therefore, increasing the coefficient of this maximizer in the convex
combination increases E

[
eT
S∗∪{0}c

∗
]
, which can thus be set to b. Since this also

increases E[σ(S∗)]

E

[
eT
S∗∪{0}c

∗
] , we get a contradiction since we improved the solution S∗ while

still satisfying the constraint.

• Consider the first case. We have as for the proof of Proposition 20, that(
1− e−1

) σ(S∗)

eT
S∗∪{0}c∗

≤ (1− β)σ(S`) + βσ(S`+1)

(1− β)eT
S`∪{0}c

∗ + βeT
S`+1∪{0}c

∗ ,
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where ` ∈ {0, 1, . . . , |V | − 1} is such that eT
S`

c ≤ eT
S∗c ≤ eT

S`+1
c, and eT

S∗∪{0}c
∗ =

(1− β)eT
S`∪{0}c

∗+ βeT
S`+1∪{0}c

∗. In the case S` has a greater ratio than S`+1, it
is chosen by our algorithm and has the desired approximation. In the case S`+1
has the better ratio, it is chosen if its cost is lower than b. If its cost is greater
than b, then `+ 1 = j and the algorithm chooses S` with some probability 1−β′
and S`+1 with probability β′. The goal is to show that the coefficient β′ we use
for S`+1 is greater than β. This must be the case since (1− β′)eT

S`∪{0}c
∗ +

β′eT
S`+1∪{0}c

∗ = b > eT
S∗∪{0}c

∗ = (1− β)eT
S`∪{0}c

∗ + βeT
S`+1∪{0}c

∗.

• For the second case, we let S be the output of the Algorithm 1 considered by
Wang, Yang, et al. (2020). We thus have from their Theorem 1 that(

1− e−1
)

E[σ(S∗)] ≤ E[σ(S)].

Since E
[
eT
S∪{0}c

∗
]
= E

[
eT
S∗∪{0}c

∗
]
= b, we have

(
1− e−1

) E[σ(S∗)]

E
[
eT
S∗∪{0}c∗

] ≤ E[σ(S)]

E
[
eT
S∪{0}c∗

] ·
If the expected cost of the output S′ of our algorithm is b, then both algorithms
coincides and we have the desired result. Else, we have that S′ maximizes the
ratio over {S0, . . . ,Sj}, which contains the support of S (that is {Sj−1,Sj}), so
the ratio evaluated at S′ is greater than E[σ(S)]

E

[
eT
S∪{0}c

∗
] , giving again the desired

result.

6.4 Experiments and discussion
In this section, we present an experiment for Budgeted OIM. In Figure 6.1, we plot
E
[∑τB−1

t=1 ∆(St)
]
with respect to the budget B used, running over up to T = 10000

rounds. This quantity is a good approximations to the true regret according to
Proposition 19. Plotting the true regret would require to compute F ∗B, which is NP-
Hard to do. We consider a subgraph of Facebook network (Leskovec and Krevl, 2014),
with |V | = 333 and |E| = 5038, as in Wen, Kveton, Valko, et al. (2017). We take w∗ ∼
U(0, 0.1)⊗E and take deterministic, known costs with c∗0 = 1, and c∗i = di/ maxj∈V dj .
boim-cucb+ is the same approach as boim-cucb5 with bonus( · ; wt−1) instead of
bonus5, ignoring that bonus( · ; wt−1) is not submodular (it is only sub-additive).

We observed that in boim-cucb1, boim-cucb4, boim-cucb5, Condition 6.15
(with the correct bonus instead of bonus5) always holds, meaning that those algo-
rithms coincide with boim-cucb in practice, and that the gain only appears through
the analysis. We thus plot a single curve for these 4 algorithms in Figure 6.1. On the
other hand, we observe only a slight gain of boim-cucb+ compared to boim-cucb.

Our experiments confirm that Fact 7 is less rough in practice, as we already
anticipated. Indeed, our submodular bonuses are not tight enough to compete with
boim-cucb, although we gain in the analysis. The slight gain that we have for
boim-cucb+ suggests that the issue is not only about the tightness of a submodular
upper bound, but rather about the tightness of Fact 7. This is supported by the
following observation we made: for the Facebook subnetwork, for 1000 random draws
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Figure 6.1: Regret curves with respect to the budget B (expectation
computed by averaging over 10 independent simulations).

of a seed set and vector pairs in [0, 0.1]E , the ratio of the RHS and the LHS in Fact 7
is each time greater than 0.4|V |.

In the following, we conducted further experiments on a synthetic graph compar-
ing boim-cucb to boim-cucb-regularized, which greedily maximizes the regular-
ized spread S 7→ σ(S; wt)−λeSct, where λ is a parameter to set. We observed that for
an appropriate choice of λ, a performance similar to boim-cucb can be obtained. The
experiments were conducted on a complete 10 nodes graph, with known costs c∗0 = 1,
and for all i ∈ V , c∗i ∼ U(0, 1). We also chose w∗ ∼ U(0, 0.1)⊗E , as previously. We
compare the boim-cucb algorithm to boim-cucb-regularized, another algorithm
that might challenge boim-cucb in our setting. boim-cucb-regularized is exactly
as boim-cucb except that the objective that is optimized is S 7→ σ(S; wt)− λeSct,
for λ being an input parameter to the algorithm. We can see that as for boim-cucb,
this algorithm have the willingness to maximize the function σ while minimizing
the cost function. The fundamental difference is on the importance given to one
or the other function, controlled by λ. We use a greedy maximization in boim-
cucb-regularized. A greedy optimization of the objective S 7→ σ(S; wt)− λeSct
is a heuristic which, although not supported in theory, performs well in practice.
We run experiments over up to T = 10000 rounds, on five different draws for w∗
and c∗, and 3 different values λ = 2, 3, 4. Results are shown in Figure 6.2. We
observe that boim-cucb is in general better than boim-cucb-regularized. If
the variable λ is properly chosen, performances similar to boim-cucb can be ob-
tained. This is not surprising since boim-cucb aims (but only approximately) to
select S∗t ∈ arg maxS⊂V σ(S; wt)/eS∪{0}. If λ = σ(S∗t ; wt)/eS∗t ∪{0}ct, then we also
have that boim-cucb-regularized aims at choosing S∗t , since one can notice that
S∗t ∈ arg maxS⊂V σ(S; wt)− λeSct.
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Figure 6.2: Regret curves on five different problem instances, with
respect to the budget B (expectation computed by averaging over 10

independent simulations).

6.4.1 Discussion and Future work

We introduced a new Budgeted OIM problem, taking both the costs of influencers
and fixed costs into account in the seed selection, instead of the usual cardinality
constraint. This better represents the current challenges in viral marketing, since top
influencers tend to be more and more costly. Our fixed cost can also be seen as the
time that a round takes: A null fixed cost would mean that reloading the network
to get a new independent instance is free and instantaneous.7 Obviously, this is not
realistic. We also provided an algorithm for Budgeted OIM under the IC model and
the edge level semi-bandit feedback setting.

Interesting future directions of research would be to explore other kinds of feed-
back or diffusion models for Budgeted OIM. For practical scalability, it would also be
good to investigate the incorporation of the linear generalization framework (Wen,
Kveton, Valko, et al., 2017) into Budgeted OIM. Notice, this extension is not straight-
forward if we want to keep our tighter confidence region. More precisely, we believe
that a linear semi-bandit approach that is aware of independence between edge ob-
servations should be developed (the linear generalization approach of Wen, Kveton,
Valko, et al. (2017) treats each edge observation as arbitrary correlated).

In addition to this, exploring how the use of Fact 7 in the Algorithm might be
avoided while still using confidence region given by Fact 8 would surely improve the
algorithms. One possible way would be to use a Thompson Sampling (TS) approach
(Wang and Chen, 2018; Perrault, Boursier, et al., 2020), where the prior takes into
account the mutual independence of weights. However, Wang and Chen (2018) proved

7In this case, using |S| rounds choosing each time a single different influencer i ∈ S is better than
choosing the whole S in a single round.
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in their Theorem 2 that TS gives linear approximation regret for some special ap-
proximation algorithms. Thus, we would have to use some specific property of the
greedy approximation algorithm we use.

6.5 Missing proofs

6.5.1 Proof of Proposition 19

Proof of Proposition 19. Let α = 1− 1/e− ε. In the proof, we shall consider several
policies π one after the other. In each case, we will denote by St the seed selected by
π at round t, and τB the random round where π has exhausted its budget.

Consider first the policy π that selects

St = S∗ ∈ arg max
S⊂V

E[σ(S; W)]E
[
eT
S∪{0}C

]−1

at each round t ≥ 1. We can write

F ∗B + |V | ≥ F ∗B + E[σ(S∗; W)]

≥ FB(π) + E[σ(S∗; W)] definition of F ∗B
=
∑
t≥1

E[σ(S∗; Wt)I{Bt−1 ≥ 0}]

=
∑
t≥1

E[E[σ(S∗; W)]I{Bt−1 ≥ 0}] conditioning on Ht

= λ∗
∑
t≥1

E
[
E
[
eT
S∗∪{0}C

]
I{Bt−1 ≥ 0}

]
= λ∗

∑
t≥1

E[(C0,t + eT
S∗Ct)I{Bt−1 ≥ 0}] conditioning on Ht

≥ λ∗B definition of τB.

We can use the inequality

F ∗B + |V | ≥ λ∗B (6.19)

with any policy π in the following ways:

• First, we can bound the cost part in the cumulative gap:

αλ∗E

[
τB−1∑
t=1

E
[
eT
St∪{0}C

]]
≤ αλ∗

∑
t≥1

E
[
E
[
eT
St∪{0}C

]
I{Bt−1 ≥ 0}

]
Bt ≥ 0⇒ Bt−1 ≥ 0

= αλ∗
∑
t≥1

E
[(

eT
StCt +C0,t

)
I{Bt−1 ≥ 0}

]
conditioning on Ht

≤ αλ∗B + αλ∗(1 + |V |) definition of τB,
≤ αF ∗B + α|V |+ αλ∗(1 + |V |) inequality (6.19).

• Next, we can bound the reward part:

E

[
τB−1∑
t=1

E[σ(St; W)]

]
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≥ E

[
τB∑
t=1

E[σ(St; W)]

]
− |V |

=
∑
t≥1

E[E[σ(St; W)]I{Bt−1 ≥ 0}]− |V |

=
∑
t≥1

E[σ(St; Wt)I{Bt−1 ≥ 0}]− |V | conditioning on Ht

≥
∑
t≥1

E[σ(St; Wt)I{Bt ≥ 0}]− |V | Bt ≥ 0⇒ Bt−1 ≥ 0

= FB(π)− |V |.

Adding these two inequalities, we get the following upper bound on the cumulative
gap:

E

[
τB−1∑
t=1

∆(St)

]
= αλ∗E

[
τB−1∑
t=1

E
[
eT
St∪{0}C

]]
−E

[
τB−1∑
t=1

E[σ(St; W)]

]
≤ RB,ε(π) + (α+ 1)|V |+ αλ∗(1 + |V |).

In the same way, we can derive a lower bound on E
[∑τB−1

t=1 ∆(St)
]
, considering first

the policy π such that FB(π) = F ∗B:

F ∗B =
∑
t≥1

E[σ(St; Wt)I{Bt ≥ 0}]

≤
∑
t≥1

E[σ(St; Wt)I{Bt−1 ≥ 0}] Bt ≥ 0⇒ Bt−1 ≥ 0

=
∑
t≥1

E[E[σ(St; W)]I{Bt−1 ≥ 0}] conditioning on Ht

≤
∑
t≥1

E
[
λ∗E

[
eT
St∪{0}C

]
I{Bt−1 ≥ 0}

]
definition of λ∗

= λ∗E

[
τB∑
t=1

(
C0,t + eT

StCt
)]

conditioning on Ht

≤ λ∗(B + 1 + |V |) definition of τB.

i.e.,

F ∗B − λ∗(1 + |V |) ≤ λ∗B. (6.20)

Considering any policy π:

αλ∗E

[
τB−1∑
t=1

E
[
eT
St∪{0}C

]]
≥ αλ∗

∑
t≥1

E
[
E
[
eT
St∪{0}C

]
I{Bt−1 ≥ 1 + |V |}

]
Bt−1 ≥ 1 + |V | ⇒ Bt ≥ 0

= αλ∗
∑
t≥1

E
[(

eT
StCt +C0,t

)
I{Bt−1 ≥ 1 + |V |}

]
conditioning on Ht

≥ αλ∗B − αλ∗(1 + |V |) definition of τB.
≥ αF ∗B − 2αλ∗(1 + |V |) inequality (6.20),
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and

E

[
τB−1∑
t=1

E[σ(St; W)]

]
≤ E

[
τB∑
t=1

E[σ(St; W)]

]
=
∑
t≥1

E[E[σ(St; W)]I{Bt−1 ≥ 0}]

=
∑
t≥1

E[σ(St; Wt)I{Bt−1 ≥ 0}] conditioning on Ht

≤
∑
t≥1

E[σ(St; Wt)I{Bt ≥ 0}] + |V |

= FB(π) + |V |.

Again adding these two inequalities, we get the desired lower bound:

E

[
τB−1∑
t=1

∆(St)

]
= αλ∗E

[
τB−1∑
t=1

E
[
eT
St∪{0}C

]]
−E

[
τB−1∑
t=1

E[σ(St; W)]

]
≥ RB,ε(π)− 2αλ∗(1 + |V |)− |V |.

6.5.2 Proof of Proposition 21

Proof of Proposition 21. First, notice that we trivially have

P

[
Pt and pi({j}; w∗) ≤

8δ(t)
N	j,t−1

and δ(t)pi({j}; w∗)
N⊕i,t−1

>
8δ(t)
N	j,t−1

]
= 0.

Thus, let’s prove that

P

[
Pt and pi({j}; w∗) >

8δ(t)
N	j,t−1

and δ(t)pi({j}; w∗)
N⊕i,t−1

>
8δ(t)
N	j,t−1

]
≤ 1/t2.

We define another counter for (i, j) ∈ V 2 as follows:

Ni,j,t−1 ,
t−1∑
t′=1

I

{
j ∈ St′ , {j}

Wt′ i

}
.

Note that we have Ni,j,t−1 ≤ (N⊕i,t−1 ∧N	j,t−1). We can thus remove Pt and replace
N⊕i,t−1 by Ni,j,t−1, since this can only increases the probability. By an union bound
we have,

P

[
pi({j}; w∗) >

8δ(t)
N	j,t−1

and pi({j}; w∗)
Ni,j,t−1

>
8

N	j,t−1

]

≤
∑

t′>
8δ(t)

pi({j};w∗)

P

[
N	j,t−1 = t′, t′pi({j}; w∗)

8 > Ni,j,t−1

]
.
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Since the random variables I

{
{j}

Wt′′ i

}
are bernouillies of mean pi({j}; w∗), we can

apply the Fact 9 to get

P

[
N	j,t−1 = t′, t′pi({j}; w∗)

8 > Ni,j,t−1

]
≤ exp

(
−(7/8)28δ(t)/2

)
< 1/t3.

By taking t′ over {0, . . . , t− 1}, the proposition holds.

Fact 9 (Multiplicative Chernoff Bound Mitzenmacher and Upfal (2017)). Consider
X1, . . . ,Xt be Bernoulli random variables, of parameter µ, then for Y = X1 + · · ·+
Xt, we have with δ ∈ (0, 1),

P[Y ≤ (1− δ)tµ] ≤ e−δ2tµ/2.



171

Chapter 7

Covariance-Adapting Policy

This chapter is based on our paper Perrault, Perchet, and Valko (2020). Its aim is to
offer a more practical, and more accurate solution for building elliptical confidence
region. Indeed, the ones we have seen so far are either based on the mutual indepen-
dence of outcomes, or due to the unrealistic knowledge of a sub-Gaussianity matrix Γ.
We alleviate this issue by instead considering a new general family of sub-exponential
distributions, which contains bounded and Gaussian ones. We prove a new lower
bound on the regret on this family, that is parameterized by the unknown covariance
matrix, a tighter quantity than the sub-Gaussianity matrix. We then construct an
algorithm that uses covariance estimates, and provide a tight asymptotic analysis of
the regret. Finally, we apply and extend our results to the family of sparse outcomes,
which has applications in many recommender systems.

7.1 An alternative to sub-Gaussian outcomes
Complete automatic adaptation of algorithms to the processed data, as opposed to
the requirement of prior knowledge on underlying structure or to some manual tuning
of parameters, is one of the fundamental challenges in machine learning. We address
this challenge for stochastic (combinatorial) semi-bandits, and provide an algorithm
adaptive to the correlation structure of the data, leading to provably faster learning
in a sequential setting with limited feedback.

In MAB, there exist sophisticated learners adaptive to the environment, in the
sense that their performance guarantees improve (or stated otherwise, their regret
upper bounds decrease) when the problem instance is "simpler" for some appropriate
notions of complexity. For instance, Audibert, Munos, and Szepesvári (2009b) and
Mukherjee et al. (2017) proposed to estimate the variance of each arm to construct
adaptive confidence intervals for each mean µ∗i , based on Bernstein’s inequality. This
leads to an algorithm having variance-dependent regret bounds. Garivier and Cappé
(2011) went beyond variance estimation and proposed a Kullback–Leibler divergence
based confidence region, and provided a tighter regret upper bound. Thompson
sampling can also offer such adaptive regret upper bounds (Kaufmann, Korda, and
Munos, 2012). Our objective is to attain such adaptivity, but for the challenging
semi-bandits setting.

In all this chapter, we consider a linear reward function. To recall, at each round
t, the agent chooses some action At ∈ A, receives the total reward associated to
the selected actions At, assumed to be ∑i∈At Xi,t, and observes the outcome of each
base arm of At, i.e., the vector (Xi,tI{i ∈ At})i∈[n]. The action space A depends
on the combinatorial problem at hand. For example, actions in A could be a path
from an origin to a destination in a network (György et al., 2007; Talebi, Zou, et
al., 2013) or a subset of items to recommend to a customer (Wang, Ouyang, et al.,
1997). Many other examples and applications are given by Cesa-Bianchi and Lugosi
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(2012). As we already mentioned, in this setting, the whole joint distribution of
the vector of outcomes is relevant, contrary to standard bandit problems where only
the n marginals are sufficient to characterize the difficulty of the instance. If we
define X , (X1, . . . ,Xn), the objective is to design a learning algorithm adaptive
to the distribution PX. This is more challenging than in standard bandits, where
adaptivity is only with respect to ⊗i∈[n]PXi .

In a first approach, Degenne and Perchet (2016b) considered the general family
of C-sub-Gaussian probability distributions, with C � 0 (i.e., C is positive semi-
definite). Formally, those distributions PX of mean µ∗ satisfy

∀λ ∈ Rn, E
[
eλ

T(X−µ∗)
]
≤ eλ

TCλ/2. (7.1)

Degenne and Perchet (2016b) devised an algorithm with a regret bound depending on
the components of another matrix Γ � 0, satisfying Γ �+ C (i.e., λT(Γ−C)λ ≥ 0
for all λ ∈ Rn

+) and Γij ≥ 0 for all i, j. The major downside is that this algorithm
requires the knowledge of Γ. Their upper bound is of order

log T
∆

∑
i∈[n]

Γii
(
(1− γ) log2(m) + γm

)
, (7.2)

where γ , max
A∈A

max
(i,j)∈A2,i 6=j

Γij/
√

ΓiiΓjj is the the maximal off-diagonal correlation

coefficient, ∆ is the minimal positive gap between expected total reward of two actions,
andm , max{|A|, A ∈ A}. Interestingly, their regret upper bound highlights regimes
interpolating between worst case correlation between outcomes (corresponding to
γ = 1) and mutually independent outcomes (where γ = 0). In particular, the learning
rate is much faster in the latter case. The main drawback however, is that their
approach is not adaptive since the correlation structure of the arms needs to be given
to the agent (through the matrix Γ).

Our main objective is to alleviate this issue, and to strive to obtain fast rates for
combinatorial semi-bandits, as Degenne and Perchet (2016b) in the case where there
is a favorable covariance structure, but without knowing it beforehand. Therefore,
algorithms should be able to capture the covariance structure given by Γ from the
data processed and adapt to it. We actually go further by asking whether the matrix
Γ is the relevant parameter to characterize the difficulty of a problem. We argue that
the covariance matrix Σ∗ , E

[
(X−µ∗)(X−µ∗)T

]
is more pertinent, as it allows to

better differentiate complex problems from the easy ones. One can indeed already
argue in favor of a Σ∗ dependence rather than a Γ one, based on the relation Σ∗ �+ Γ.
Indeed, this results from the fact that Σ∗ � C, which can be proved as follows: Fix
x ∈ Rn. For any λ ∈ R, E

[
eλxT(X−µ∗)

]
≤ eλ

2xTCx/2. The second order Taylor
expansion in λ gives

λ2

2 E
[
(xT(X−µ∗))2

]
+ o

(
λ2
)
≤ λ2

2 xTCx + o
(
λ2
)
.

Dividing the inequality by λ2, and letting λ → 0 yields E
[
(xT(X−µ∗))2

]
≤ xTCx,

i.e., Σ∗ � C.

Results and limitations of the results of Degenne and Perchet (2016b)
Below, we list the main limitations of the approach of Degenne and Perchet (2016b):
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(i) The matrix Γ needs to be known. This requires specific knowledge about the
outcome structure, which is often not precise, as it is usually only known that
outcomes are bounded, or at most that there exists some constant κ such that
κ2 ≥ Cii for all i ∈ [n]. The latter is equivalent1 to Γij = κ2 for all i, j ∈ [n]
and corresponds to the worst case correlation between outcomes (γ = 1) in the
regret bound (5.4).

(ii) The value γ can be 1, even when outcomes are only weakly correlated: For
instance, if n is even, Γ can be a block-diagonal matrix with n/2 blocks of size
2× 2 containing only ones. This scenario can actually occur in many examples;
we provide two types below:

• Arms are nodes on a given graph, with some small communities on which
outcome tends to be constant (Cesa-Bianchi, Gentile, and Zappella, 2013;
Valko et al., 2014; Gentile, Li, and Zappella, 2014; Valko, 2016).

• Arms are market-basket-like items, with some highly correlated pairs of
items (e.g., people buying from category “books" tend to also buy from
category “CDs", Zhang and Feigenbaum, 2006; He, Xu, and Deng, 2006).

(iii) The value Γii can be high, even for low-variance outcomes, while intuitively,
low variance outcomes should be easy to work with. For example, if X is a
binary 1-sparse random variable — as in some recommender systems, where a
single item is desired by the user — then Xi ∼ Bernoulli(µ∗i ) with

∑n
i=1 µ

∗
i = 1,

and Γii ≥ Cii ≥ (µ∗i − 1/2)/(log(µ∗i )− log(1− µ∗i )) (and this is tight, see, e.g.,
Buldygin and Moskvichova, 2013). For µ∗i of order 1/n, Γii is thus at least of
order 1/(2 logn) for n large, whereas V(Xi) is of order 1/n.

To sum up the arguments above, we claim that (1) knowing a good upper bound
on the sub-Gaussianity matrix C �+ Γ is not realistic and (2) even this upper bound
is not a good proxy for the complexity of the instance at hand.

Contributions We address the three aforementioned criticisms (i), (ii), and (iii).
As a consequence, we do not assume that a good upper bound Γ on the sub-Gaussianity
matrix C is known, but only that the agent knows that each marginal PXi is κ2-sub-
Gaussian. We compensate this relaxation by restricting the distribution family con-
sidered through a sub-exponential-type assumption involving the covariance matrix
Σ∗. We argue that this restriction is mild and satisfied by many outcome distribu-
tions, including bounded and Gaussian.

We characterize the difficulty of the problem with Σ∗; specifically, we provide a
new lower bound, with a dependence on Σ∗, more precise than Degenne and Perchet
(2016b). We also design a new algorithm with matching asymptotic regret upper
bound, improving over the state-of-the-art results. One of the key techniques is to
build an online adapted estimation of the matrix Σ∗.

Our main contribution is in the analysis of this approach, that is not based on the
usual Laplace’s method, which works in the sub-Gaussian framework, but does not
handle well our sub-exponential-type assumption. Thus, our analysis is rather based
on a covering-argument (Magureanu, Combes, and Proutiere, 2014). An important
part of our proof is based on the transformation of the axis-unaligned ellipsoidal
confidence region associated to a given action A ∈ A into an axis-aligned region,

1Indeed, C �+ Γ ⇒ Cii ≤ κ2 for all i ∈ [n] ⇒ Cij ≤
√
CiiCjj ≤ κ2 for all i, j ∈ [n] ⇒∑

i,j Cij |λi||λi| ≤ κ
2(∑

i|λi|
)2 for all λ ∈ Rn ⇒ C �+ Γ.
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using the following relation
(

Σ∗ij
)
ij∈A

�+ diag
(∑

j∈A 0∨ Σ∗ij
)
i∈A

. This allows us
to conduct the same type of proof than for the independent outcome case (where
confidence regions are always axis-aligned), but with a Bernstein-type analysis.2

We also consider an application of our approach to the family of sparse bounded
outcomes: we provide a lower bound on the regret, with an algorithm having a
matching asymptotic regret upper bound.

Prior work on stochastic semi-bandits We review algorithms for stochastic
semi-bandits, coming with the analysis that depends on the family of probability
distributions to which PX belongs. To begin, Kveton, Wen, Ashkan, and Szepesvari
(2015b) and Chen, Wang, and Yuan (2016) studied the general family of distributions
having sub-Gaussian or bounded marginals. Their algorithms are not adaptive to PX
and regret bounds depend on parameters characterizing the family, that need to be
known (such as the sub-Gaussian constant or a bound on ‖X‖∞). On the other hand,
many algorithms are only adaptive to marginals of PX, either with variance estimates
(Perrault, Perchet, and Valko, 2019b; Merlis and Mannor, 2019), or using Kullback–
Leibler divergence. These approaches are agnostic to possible correlation between
marginals since the confidence region used in their algorithm are always a Cartesian
product of confidence intervals (so they are always n-dimensional hypercubes). As a
consequence, this translates into guarantees w.r.t. the worst-case correlations quan-
tity possible. Notice that these algorithms are actually almost direct applications of
corresponding classical multi-arm bandits algorithms to the semi-bandit setting. In
particular, confidence regions considered are the same in both settings.

Another line of works restricts the probability distributions family of PX, so that
the dependence existing between arms is controlled. This conveniently induce better
confidence regions valid for distributions in the family, and leads to the development of
algorithms based on these regions, having sharper regret upper bounds. For instance,
Combes et al. (2015) assumed that PX = ⊗i∈[n]PXi . Confidence regions resemble
to axis-align ellipsoid in this specific case. They designed UCB (resp. Thompson
sampling) based algorithms, leveraging on such tighter ellipsoidal confidence region.
The key difference between the above case is that this time, marginals do characterize
the problem, by assumption on the probability distributions family.

Remark that Degenne and Perchet (2016b) provided a regret bound which adapts
to the probability distribution family at hand through the matrix Γ, although their
algorithm is not fully adaptive. The confidence region used by their algorithm is
also ellipsoidal, and depends on the matrix Γ. This matrix gives the control on the
correlations between arms. The confidence ellipsoid is not axis aligned unless Γ is
diagonal. To the best of our knowledge, their work is the main competitor in terms
of regret bound.

Sparse bandits Independently to combinatorial bandits, there exists a different
setting actually dealing with correlated outcomes in online learning known as sparse
bandits (Kwon, Perchet, and Vernade, 2017; Kwon and Perchet, 2015; Bubeck, Cohen,
and Li, 2017; Abbasi-Yadkori, Pal, and Szepesvari, 2012; Carpentier and Munos, 2012;
Gerchinovitz, 2013). The overall idea is to introduce by now a standard sparsity
assumption (some parameter vector has only s out of its n components that are
non zero) into sequential decision making. As usual, the objective is to replace the

2Remark that contrary to previous work on variance based confidence region, our method can’t
be easily generalized to Kullback–Leibler divergence based confidence region, since this would require
control on higher moments of X.
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linear/polynomial dependence in the dimension n by a linear/polynomial dependence
in s. Quite interestingly, the sparsity assumption has been studied in two different
directions. The fist one assumes that the vector µ∗ is s-sparse, typically in (linear)
stochastic bandits (Kwon, Perchet, and Vernade, 2017; Abbasi-Yadkori, Pal, and
Szepesvari, 2012; Carpentier and Munos, 2012; Gerchinovitz, 2013). The second one
assumes that the realized vector Xt is s-sparse, usually in adversarial bandits (Kwon
and Perchet, 2015; Bubeck, Cohen, and Li, 2017).

Sparsity in realized outcomes naturally induces negative correlation; this is not
necessarily true for sparsity in expectation. More generally both concepts are com-
plementary, since µ∗ can be sparse with non-sparse realization (for instance, if all
Xi are i.i.d., equal to ±1 with probability 1/2) and reciprocally (if X is a canonical
unit vector at random, then its expectation has full support). Surprisingly, the sparse
outcomes setting has not been investigated in stochastic bandits, even if it lies at the
junction of several notions of correlations between outcomes.

7.1.1 A multivariate sub-exponential distribution

Let us recall that the goal for the agent is to minimize the regret, that is defined as
follows, with A∗ ∈ arg maxA∈A eT

Aµ
∗,

∀T ≥ 1, RT , E

[
T∑
t=1

(eA∗ − eAt)
TXt

]
.

For any action A ∈ A, we define its gap as the difference ∆(A) , (eA∗ − eA)Tµ∗. We
then rewrite the regret as RT = E

[∑T
t=1 ∆(At)

]
. We start by stating the assumptions

satisfied by PX.

Assumption 2 (κ2-sub-Gaussian marginals). There is a constant κ > 0 (known to
the agent) such that ∀i ∈ [n], ∀λ ∈ R, E

[
eλ(Xi−µ

∗
i )
]
≤ eκ2λ2/2.

Assumption 2 is not difficult to satisfy, and does not require any precision on
the correlations between outcomes. In particular, Assumption 2 includes Gaussian
outcomes (with variance lower than κ2) and bounded outcomes (with ‖X‖∞ ≤ κ).
We also assume that X satisfies the following.

Assumption 3 (‖·‖1-sub-exponential distribution). ∀λ ∈ Rn such that ‖λ‖1 ≤
1/(2κ), we have E

[
eλ

T(X−µ∗)
]
≤ eλ

TΣ∗λ, where Σ∗ , E
[
(X−µ∗)(X−µ∗)T

]
is the

covariance matrix of X.

Importantly, the agent does not know the covariance matrix Σ∗. Remark that
Assumption 3 trivially holds for X ∼ N (µ∗, Σ∗), where ∀λ ∈ Rn, E

[
eλ

T(X−µ∗)
]
=

eλ
TΣ∗λ/2. The following proposition states that it also holds for bounded outcomes.

Proposition 24. If ‖X‖∞ ≤ κ, then both Assumption 2 and 3 hold.

Proof. Assumption 2 is a direct consequence of Hoeffding’s Lemma. For Assump-
tion 3, we have ‖X−µ∗‖∞ ≤ 2κ. For ‖λ‖1 ≤ 1/(2κ), we have:

log E
[
eλ

T(X−µ∗)
]

= log

1 +
∑
k≥2

E

[
(λT(X−µ∗))k

k!

]
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≤
∑
k≥2

E

[
(λT(X−µ∗))k

k!

]
log(x) ≤ x− 1 ∀x > 0,

=
∑
k≥2

E

[
(λT(X−µ∗))k−2(λT(X−µ∗))2

k!

]

≤
∑
k≥2

E

[
(‖λ‖1‖X−µ∗‖∞)

k−2(λT(X−µ∗))2

k!

]

≤
∑
k≥2

E
[
(λT(X−µ∗))2

]
k!

= (e− 2)λTΣ∗λ ≤ λTΣ∗λ.

Notice, up to a re-normalization of the regret, we assume w.l.o.g. that κ = 1.

7.2 Covariance-dependent regret (lower) bound

7.2.1 Lower bound

We start by proving in Theorem 31 a new gap-dependent lower bound on RT , valid
for any covariance matrix Σ∗ � 0, for some PX satisfying Assumptions 2 and 3,
some action space A, and for any consistent algorithm (Lai and Robbins, 1985), for
which the regret on any problem verifies RT = o(T a) as T →∞, for all a > 0. This
lower bound demonstrates the link between Σ∗ and the difficulty of the problem. It
also indicates, in anticipation, that we have to examine a subclass of action sets to
hope to improve the upper bound we will provide in Theorem 32.

Theorem 31. For any n,m ∈ N∗ such that n/m ≥ 2 is an integer, any n × n
matrix Σ∗ � 0, any ∆ > 0, and any consistent policy, there exists an instance with
n arms — characterized by some action space A, with m = max{|A|, A ∈ A}, some
outcome distribution PX satisfying Assumptions 2 and 3 with all gaps equal to ∆ and
covariance matrix Σ∗ — on which the regret satisfies

lim inf
T→∞

∆
log(T )RT ≥ 2

∑
i∈[n], i/∈A∗

max
A∈A, i∈A

∑
j∈A

Σ∗ij .

The proof considers A containing n/m disjoint actions A1, . . . ,An/m composed
of m arms, with Ak = {(k− 1)m+ 1, . . . , km}, and X ∼ N (−∆/m(I{i /∈ A1})i, Σ∗).
The idea is to make a reduction to some standard bandit problems with n/m arms,
and to compute the number of rounds t needed to distinguish between Ak and A1.
Roughly speaking, t is at least equal to the inverse of the KL between outcome
distributions of Ak and its centered version, and in the case of Gaussian distributions,
we get t ≥ 2V(

∑
i∈Ak Xi)/∆2 = 2eT

Ak
Σ∗eAk/∆2. It is not surprising that the variance

appears, since this can be seen as a measure of the uncertainty we have in our samples:
The higher the variance, the harder the estimation, and therefore the higher the
round t must be. Notice that Theorem 31 is a refinement of Theorem 1 from Degenne
and Perchet (2016b), in which they consider the same action space A but a specific
choice for the matrix Σ∗: it is a block-diagonal matrix with n/m blocks, where each
block (corresponding to an action A) is equal to σ2((1− γ)diag(eA) + γeAeT

A), i.e.,
they take the worst case correlation under the controls given by σ2 and γ, and knowing
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that the problem given by A is agnostic to the correlations between the arms of two
different blocks.

Proof of Theorem 31. ConsiderA containing n/m disjoint actionsA1, . . . ,An/m com-
posed of m arms, with Ak = {(k− 1)m+ 1, . . . , km}, and

X ∼ N (−∆/m(I{i /∈ A1})i, Σ∗).

This problem reduces to a standard bandit problem with n/m arms. We use a result
from Burnetas and Katehakis (1996), a generalization of Lai and Robbins (1985),
that states that

lim inf
T→∞

RT
log(T ) ≥

n/m∑
k=2

∆

infY , E[Y ]=0 KL
(

P∑
i∈Ak

Xi
‖PY

) .

As we can write

inf
Y , E[Y ]=0

KL
(

P∑
i∈Ak

Xi
‖PY

)
≤ KL

(
N
(
−∆, eT

Ak
Σ∗eAk

)
‖N

(
0, eT

Ak
Σ∗eAk

))
=

∆2/2
eT
Ak

Σ∗eAk
,

it holds that

lim inf
T→∞

RT
log(T ) ≥ 2

n/m∑
k=2

eT
Ak

Σ∗eAk
∆

= 2
∑

i∈[n], i/∈A1

max
A∈A, i∈A

∑
j∈A

Σ∗ij
∆

,

where we used the fact that {A ∈ A, i ∈ A} is a singleton.

In the next subsection, we describe our algorithm escb-c (Algorithm 11) and
provide an upper bound on its regret in Theorem 32, where the expression

max
A∈A,i∈A

∑
j∈A

0∨ Σ∗ij

appears. Notice that this is very close to the expression given in Theorem 31. In fact,
both expressions coincide when Σ∗ has only non-negative entries.

7.2.2 Main algorithm and the guarantees

In this section, we present an algorithm for the setting introduced in Section 4.1.1.
The method is stated as Algorithm 11. To find the action with the highest mean,
the agent estimates the mean µ∗i of every arm i with their corresponding empir-
ical averages defined as µi,t−1 ,

∑
u∈[t−1]

I{i∈Au}Xi,u
Ni,t−1

, for t ≥ 1, where Ni,t−1 ,∑
u∈[t−1] I{i ∈ Au} is the number of time arm i have been drawn for the first t−

1 rounds. As mentioned above, the agent also estimates the covariance Σ∗ij =
E[XiXj ] − µ∗iµ∗j of each pair (i, j) ∈ [n]2. This will be done with the following
estimate

Σij,t−1 ,
∑

u∈[t−1]

I{i, j ∈ Au}
(
Xi,u − µi,t−1

)(
Xj,u − µj,t−1

)
Nij,t−1
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=
∑

u∈[t−1]

I{i, j ∈ Au}
(
Xi,uXj,u − µi,t−1Xj,u − µj,t−1Xi,u

)
Nij,t−1

+ µi,t−1µj,t−1,

where Nij,t−1 ,
∑
u∈[t−1] I{i, j ∈ Au} is the number of times where arm i and j have

been drawn together for the first t− 1 rounds. Notice that in order to efficiently
update Σij,t−1, in addition to µi,t−1 and µi,t−1, we only have to maintain the three
quantities,

∑
u∈[t−1]

I{i, j ∈ Au}Xi,uXj,u
Nij,t−1

,
∑

u∈[t−1]

I{i, j ∈ Au}Xi,u
Nij,t−1

, and
∑

u∈[t−1]

I{i, j ∈ Au}Xj,u
Nij,t−1

.

Using concentration inequalities, we get confidence intervals for the above estimates.
We are then able to use an upper-confidence-bound strategy (Auer, Cesa-Bianchi,
and Fischer, 2002). More precisely, we first build the upper confidence bound on Σ∗ij
using the fact that Xi ·Xj is a sub-exponential random variable, since both Xi and Xj

are sub-Gaussian by virtue of Assumption 7.1. The result is stated in the following
proposition.

Proposition 25. With probability 1− 10t−2, we have∣∣∣Σ∗ij − Σij,t−1
∣∣∣

≤ gij(t) , 16
(

3 log(t)
Nij,t−1

∨
√

3 log(t)
Nij,t−1

)
+

√
48 log2(t)

Nij,t−1Ni,t−1
+

√
36 log2(t)

Nij,t−1Nj,t−1
.

In particular, defining the upper confidence bound Σij,t , Σij,t−1 + gij(t), it holds that
0 ≤ Σij,t − Σ∗ij ≤ 2gij(t) with probability 1− 10t−2.

Proof. We define Σ̃ij,t−1 ,
∑
u∈[t−1]

I{i,j∈Au}(Xi,u−µ∗i )(Xj,u−µ∗j )
Nij,t−1

and for k ∈ {i, j},
µ̃k,t−1 , 1

Nij,t−1

∑
u∈[t−1] I{i, j ∈ Au}Xk,u. Notice that the following relation holds

Σij,t−1 = Σ̃ij,t−1 +
(
µ∗i − µi,t−1

)(
µ̃j,t−1 − µj,t−1

)
+
(
µ∗j − µj,t−1

)
(µ̃i,t−1 − µ∗i ).

We now state Lemma 10 giving sub-exponential parameters for a product of sub-
Gaussian random variables. A proof comes from Honorio and Jaakkola (2014).

Lemma 10. If Y ,Z are 1-sub-Gaussian random variables, then ∀|λ| ≤ 1/8,

E
[
eλ(Y Z−E[Y Z])

]
≤ e64λ2 .

We apply Lemma 10 with a Chernoff argument and an union bound (to avoid the
randomness of counters) in order to get the following Bernstein inequality

P

[∣∣∣Σ∗ij − Σ̃ij,t−1
∣∣∣ ≥ 16

(
3 log(t)
Nij,t−1

∨
√

3 log(t)
Nij,t−1

)]
≤ 2t−2.
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In the same way, Hoeffding’s inequality gives directly that with probability 1− 8t−2,
we have simultaneously 

∣∣∣µ∗i − µi,t−1

∣∣∣ ≤
√

6 log(t)
Ni,t−1∣∣∣µ̃j,t−1 − µj,t−1

∣∣∣ ≤ √ 8 log(t)
Nij,t−1∣∣∣µ∗j − µj,t−1

∣∣∣ ≤
√

6 log(t)
Nj,t−1

|µ̃i,t−1 − µ∗i | ≤
√

6 log(t)
Nij,t−1

,

which is enough to conclude the proof. Notice that for the second inequality above,
we take the union bound for two counters. When they are not random,

Nij,t−1
(
µ̃j,t−1 − µj,t−1

)
,

that is equal to

∑
u∈[t−1]

I{i, j ∈ Au}Xj,u

(
1− Nij,t−1

Nj,t−1

)
−

∑
u∈[t−1]

I{j ∈ Au, i /∈ Au}Xj,u
Nij,t−1
Nj,t−1

,

is a sum of Nj,t−1 independent random variables, Nij,t−1 of which are
(
1− Nij,t−1

Nj,t−1

)2
-

sub-Gaussian and the remaining ones are N2
ij,t−1
N2
j,t−1

-sub-Gaussian. Therefore, this ran-

dom variable is Nij,t−1
(
1− Nij,t−1

Nj,t−1

)
-sub-Gaussian, and in particular Nij,t−1 -sub-

Gaussian.

To build estimates well concentrated around µ∗, we will use the matrix Σt defined
above to design the following high probability confidence region for all A ∈ A

Ct(A) , µt−1+

{
ξ ∈ Rn,

∑
i∈A

Ni,t−1ξ
2
i

|A||ξi|+
∑
j∈A 0∨ Σij,t

≤ 8(log t+ log log t) + 4em
}

.

(7.3)

The intuition behind this confidence region is similar to the one for empirical Bernstein
confidence intervals, but the term∑

j∈A 0∨Σij,t in the denominator replaces the usual
empirical variance. To compare our confidence region with the one of Degenne and
Perchet, 2016b, notice first that their algorithm uses the matrix Γ to build a confidence
ellipsoid. They provide an analysis for this confidence ellipsoid using the Laplace’s
method and the matrix relation C �+ Γ. In contrast, our confidence region is based
on the covariance matrix Σ∗. Our analysis is also different, as we use a covering-
argument analysis. This is because the covariance estimation and Assumption 3 are
both hard to handle with Laplace’s method, that is more appropriate for sub-Gaussian
random variables. Indeed, all calculations can be explicit and it is easy to construct a
conjugate prior. This is not the case for sub-exponential random variables. Covering
arguments are much more easier to use together with a diagonal matrix, so axis-
aligned confidence region are desirable. We use an axis-realignment technique based
on the matrix relation

(
Σ∗ij
)
ij∈A

�+ diag
(∑

j∈A 0∨ Σ∗ij
)
i∈A

. The upside is to avoid
dealing with off-diagonal terms by transforming them into diagonal ones. From all
these previous observations, we can say that the confidence ellipsoid of Degenne and
Perchet, 2016b is tighter as it does not require any axis realignment; however, not
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Algorithm 11 escb-c (Efficient Sampling for Combinatorial Bandits with Covari-
ance estimate)
Initialization:
Play A1 = [n], or at least a sequence A1,A2, . . . , (no more than n(n− 1)/2) such
that for any i, j ∈ [n], one of these At’s contains {i, j}. We thus have Nij,t−1 ≥ 1
for all i, j ∈ [n].
For all subsequent rounds t:
Solve the following bilinear program to get At, with Ct(A) defined by (7.3), and
play At,

(At,µt) ∈ arg max
A∈A, µ∈Ct(A)

eT
Aµ.

only the matrix Γ is generally looser than Σ∗ but also axis realignment does not alter
the analysis, so that our new approach outperforms theirs in terms of asymptotic
regret upper bound.

As common in bandits, the major challenge in the analysis is to prove that with
high probability, µ∗ ∈ Ct(A) for any action A ∈ A. The covering argument together
with the conversion from an axis-unaligned confidence region into an axis-aligned
confidence region allows us to achieve this result (see Lemma 12). Therefore, an
optimistic estimate µt of the true mean µ∗ can be found using an upper-confidence-
bound approach: if At,µt are defined as in Algorithm 11, then, since µ∗ ∈ Ct(A∗),
we have

eT
Atµt ≥ eT

A∗µ
∗.

The regret bound for escb-c is stated in Theorem 32, and proven in subsection 7.5.2.

Theorem 32. Assume that the outcome distribution PX satisfies Assumptions 7.1
and 3, and define ∆ , minA∈A, ∆(A)>0 ∆(A), ∆max , maxA∈A, ∆(A)>0 ∆(A). If ∆ is
small enough, i.e., there exists a universal constant c such that

∆ ∨
(

∆+∆ log
(

∆max
∆

))3/2
≤ c

(
log(m+ 1)∑i∈[n] maxA∈A,i∈A

∑
j∈A 0∨ Σ∗ij

n2

)3/2

,

then the regret of Algorithm 11 is upper bounded as

lim sup
T→∞

∆
log T RT ≤ c

′ log2(m+ 1)
∑
i∈[n]

max
A∈A,i∈A

∑
j∈A

0∨ Σ∗ij ,

where c′ is a universal constant.

Notice that the bound in Theorem 32 is tight, up to a poly-logarithmic factor inm,
with respect to the lower bound in Theorem 31, in the case where Σ∗ has non-negative
entries. Moreover, we focus on the asymptotic behavior of the regret (w.r.t. T ) when ∆
is small, i.e., when the problem becomes very difficult. While the quantity c log2(m+
1)∑i∈[n] maxA∈A,i∈A

∑
j∈A 0∨ Σ∗ij log(T )/∆ presented in Theorem 32 highlights the

main dependence on both ∆ and T , we prove a more precise non-asymptotic upper
bound in (7.12), which holds for all ∆ > 0. Indeed, as for ucb-v, the errors from
estimating Σ∗ generate an extra term in the upper bound. However, since these errors
are multiplied with estimation errors on the means, their impact is of second order.
In particular, for ∆ small enough, this extra term becomes negligible compared to
the main term. Therefore, the term from covariance estimation errors is not present
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in Theorem 32, but appears when ∆ is far from 0. Finally, remark that when the
covariance Σ∗ is known, then one can consider the confidence region where Σij,t is
replaced by Σ∗ij . This avoids covariance estimation errors, and gives the upper bound

of Theorem 32 when ∆+∆ log(∆max/∆) is smaller than
∑
i∈[n]

max
A∈A,i∈A

∑
j∈A

0∨
Σ∗ij
n ·m

.

Remark 15. Considering the intersection of the region from Algorithm 11 with the
one of cucb-v, we can replace log2(m+ 1)∑j∈A 0∨ Σ∗ij by

(mΣ∗ii) ∧

log2(m+ 1)
∑
j∈A

0∨ Σ∗ij


in Theorem 32.

7.3 Sparse outcomes
In this section, we shall consider an additional structural assumption on the vector
X, namely that it is s-sparse in the sense that

‖X‖0 ≤ s,

i.e., the number of nonzero components of X is smaller than s, where s is a fixed
known parameter.3 Importantly, the set of components which are nonzero is not fixed
nor known, and may change over time. It should be noted, however, that there is a
significant difference between the stochastic and the adversarial cases: In the later,
the set of components which are nonzero change arbitrarily over time, whereas in the
former, this set is sampled i.i.d. Notice, this sparse stochastic setting is different than
the usual stochastic sparse bandit, where µ∗ is assumed to be sparse; see e.g., Kwon,
Perchet, and Vernade (2017) for the classical MAB setting, and Abbasi-Yadkori,
Pal, and Szepesvari (2012) and Carpentier and Munos (2012) for the linear bandit
setting. For simplicity, we further assume that ‖X‖∞ ≤ 1. As we already saw in
Proposition 24, this implies Assumption 2 and 3. The difficulty of this setting is that
both the approach of Degenne and Perchet (2016b) and standard methods such as
cucb-v would not reach the lower bound for the regime s ≤ m, as we will see. The
reason is that a correlation exists between the components, because of sparsity, and
must be taken into account.

Why sparsity in semi-bandits? Sparsity is nowadays a very standard assumption
in learning theory (that potentially does not need any further motivations). There are
many examples of online learning scenarios naturally involving some sparse structure.
For instance, in the celebrated click-through-rate optimization, it is safe to assume
that users would only click on a few of the different ads that can be displayed (those
that can catch their eyes for any reason, say). Similarly, in recommender systems, it
is safe to assume that a user will browse/buy items from a specific category and not
the other (for instance, a segment of the population in e-shops only buy bottles of
wines and others only video-games or clothes).

Other examples involve settings where outcomes are usually zero except on very
rare occasions: In the online routing, the packets are sent in a network and are
lost if a server of that network has a failure. Because of failsafe procedures, failures

3For example, the Dirichlet-multinomial distribution with s trials is s-sparse.
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are desynchronized and typically only one (or at most a few) of them can happen
simultaneously. In all of these examples, the decision maker has some combinatorial
problem to solve: select an admissible path, select a diverse bundle of object/ads to
display, etc., and only a few of the base items will generate non-zero outcome.

7.3.1 Lower bound

To start our study of sparse outcomes, we state a new lower bound in Theorem 33,
that is valid for the setting described above. This lower bound is built on the same
ideas as Theorem 31, with a notable variation: when reducing to an MAB problem,
we do not obtain the necessary conditions for the application of Lai and Robbins
(1985), because of the linear dependence between the µ∗i ’s. Thus, we use instead the
the lower bound from Graves and Lai (1997). More precisely, we consider the same
action space A, and incorporate the sparsity assumption as an extra constraint for
defining a worst case distribution.

Theorem 33. For any n,m, s ∈ N∗ such that n/m, n/s, 1 ∨ (s/m) are integers,
n/m,n/s ≥ 2, any ∆ ∈ (0, ms

2(n−m) ] and any consistent policy, there is a problem with
n arms — characterized by some action space A with m = max{|A|, A ∈ A} and
some vector of outcomes X with all gaps equal to ∆ satisfying ‖X‖∞ ≤ 1, ‖X‖0 ≤ s
— on which the regret satisfies

lim inf
T→∞

∆
log(T )RT ≥

s(s∧m)(1− 2m/n)
4 .

To give an idea of the proof, contrary to Theorem 31, we have more freedom in
the covariance, and X can be chosen to maximize V(

∑
i∈AXi) for each action A,

up to the constraints ‖X‖∞ ≤ 1, ‖X‖0 = s. The maximal value of ∑i∈AXi is thus
(s∧m). Now consider for simplicity the softer constraint E‖X‖0 = s. If X is chosen
so that ∑i∈AXi/(s∧m) is Bernoulli of parameter p, then the optimal p is equal to
(s ∨m)/n. The variance is about p(s ∧m)2 = ms(s ∧m)/n. Multiplying this by
n/m (the number of actions) and dividing by the gap ∆ gives the order of the lower
bound.

Proof of Theorem 33. ConsiderA containing n/m disjoint actionsA1, . . . ,An/m com-
posed of m arms. X is constructed as follows: (1∨ s/m) different actions are ran-
domly chosen among A, with equal probability, except the one for action A1, that
have an offset of δ. From

(1∨ s/m) = E

[∑
A∈A

I{A is chosen}
]

= (n/m− 1)(P[A1 is chosen]− δ) + P[A1 is chosen],

we have P[A1 is chosen] = (1∨ s/m)m/n + δ(1−m/n). We pose Xi = 1 for i
spanning the (s ∧m) first arm of each chosen action (the other components are set
to 0). Remark that X is s−sparse with this construction.

This problem reduces to a standard bandit problem with n/m Bernoulli arms.
However, we have an additional piece of information, namely that the sum of the
means is s. Thus, we can’t apply the lower bound from Lai and Robbins (1985), since
the distribution family has not a product form (changing the mean of one arm, we
have to make sure that the sum of the means doesn’t change, so we have to change
at least another mean). Instead, we use the lower bound result from Graves and Lai
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(1997) (Theorem 2), where we can increase the mean of one arm i while decreasing
the mean of the others. Scaling the regret by (s∧m)−1, we want to upper bound

KL
(

P 1
(s∧m)

∑
i∈Ak

Xi
‖P 1

(s∧m)

∑
i∈A1

Xi

)
= kl

((
m

n
∨ s
n

)
− δm

n
,
(
m

n
∨ s
n

)
+ δ

(
1− m

n

))
,

which corresponds to an arm i that becomes a best arm for the new distribution. We
also want to upper bound

kl
((

m

n
∨ s
n

)
− δm

n
− δ

n
m − 2,

(
m

n
∨ s
n

)
− δm

n

)
,

which corresponds to the decrease of the mean of each sub-optimal arm k different
from i (so that the sum of the mean remain constant). We are going to use the
inequality kl(x, y) ≤ (x−y)2

y(1−y) for all x, y ∈ (0, 1). Since ms
2(n−m) ≥ ∆ = (s ∧m)δ, we

have δmn ≤ δ(1−
m
n ) ≤

(
m
n ∨

s
n

)
/2 ≤ 1/4, and thus((

m

n
∨ s
n

)
− δm

n

)(
1−

(
m

n
∨ s
n

)
+ δ

m

n

)
≥
(
m

n
∨ s
n

)
/4,

((
m

n
∨ s
n

)
+ δ

(
1− m

n

))(
1−

(
m

n
∨ s
n

)
− δ

(
1− m

n

))
≥
(
m

n
∨ s
n

)
/4.

Thus, we get the upper bounds

kl
((

m

n
∨ s
n

)
− δm

n
,
(
m

n
∨ s
n

)
+ δ

(
1− m

n

))
≤ 4δ2(

m
n ∨

s
n

) (7.4)

kl
((

m

n
∨ s
n

)
− δm

n
− δ

n
m − 2,

(
m

n
∨ s
n

)
− δm

n

)
≤ 4δ2(

n
m − 2

)2(m
n ∨

s
n

) . (7.5)

From Graves and Lai (1997), we have the lower bound

lim inf
T→∞

RT
log(T ) ≥ (s∧m) inf

c

n/m∑
k=2

δck,

where the above infimum is over all c2, . . . , cn/m in R+ such that for all i ∈ {2, . . . ,n/m},

cikl
((
m

n
∨ s
n

)
−δm

n
,
(
m

n
∨ s
n

)
+δ

(
1−m

n

))

+
n/m∑

k=2,k 6=i
ckkl

((
m

n
∨ s
n

)
−δm

n
− δ

n
m−2,

(
m

n
∨ s
n

)
−δm

n

)
≥ 1.

Using the bounds (7.4) and (7.5), we can relax the above constraint as

∀i ∈ {2, . . . ,n/m}, ci
4δ2(

m
n ∨

s
n

) + n/m∑
k=2,k 6=i

ck
4δ2(

n
m − 2

)2(m
n ∨

s
n

) ≥ 1.
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By symmetry of the constraint with respect to ci, and by linearity of the objective,
there is a maximizer c that satisfies c1 = · · · = cn/m = c, with

4cδ2
(

1(
m
n ∨

s
n

) + 1(
n
m − 2

)(
m
n ∨

s
n

)) = 1.

Thus, since ∆ = (s∧m)δ, we get

lim inf
T→∞

RT
log(T ) ≥

s(s∧m)(1− 2m/n)
4∆

.

Notice that we recover the full information case (with a lower bound that equals 0)
when n/m = 2, as expected.

7.3.2 Our approach for sparse semi-bandits

In this subsection, we adapt our techniques to the sparse semi-bandit setting. Since
‖X‖∞ ≤ 1, the `0-inequality ‖X‖0 ≤ s immediately implies the `1-inequality ‖X‖1 ≤
s. As we will actually only use sparsity through the latter inequality, we can relax our
assumption on the model into ‖X‖1 ≤ s, for more generality. Let ν∗i , E[|Xi|], and

νi,t−1 the corresponding empirical average estimate: νi,t−1 ,
∑

u∈[t−1] I{i∈Au}|Xi,u|
Nit−1 .

Our approach is based on replacing ∑j∈A 0 ∨ Σ∗ij by ν∗i (s ∧m) (see Lemma 11).
Using this, it is possible to estimate ν∗i instead of each Σ∗ij .

Lemma 11.
∑
j∈A 0∨ Σ∗ij ≤ 2ν∗i (s∧m).

Proof. We use the fact that ∑j∈A|Xj | ≤ (s∧m). This gives∑
j∈A

0∨ Σ∗ij =
∑
j∈A

0∨E
[
XiXj − µ∗iµ∗j

]
≤
∑
j∈A

(
E[|XiXj |] +

∣∣∣µ∗iµ∗j ∣∣∣)

= E

|Xi|
∑
j∈A
|Xj |

+ |µ∗i |∑
j∈A

∣∣∣µ∗j ∣∣∣
≤ 2E[|Xi|](s∧m).

We can therefore use the same algorithm (Algorithm 11), but with a confidence
region Ct independent of A, since summing over A or [n] on the main sum doesn’t
change the algorithm and the second sum ∑

j∈A 0∨ Σij,t is replaced by an estimates
of the upper bound given in Lemma 11.

Ct , µt−1+

ξ ∈ Rn,
∑
i∈[n]

Nit− 1ξ2
i

m|ξi|+2(s∧m)νi,t
≤ 8(log(t)+log(log(t)))+4em

, (7.6)

where the upper bound estimate νi,t , νi,t−1+
√

1.5 log(t)
Nit−1 of ν∗i is a simple conse-

quence of Heoffding’s inequality, using that |Xi,u| is 1/4-sub-Gaussian. Our algorithm
is stated in Algorithm 12. As a byproduct of Theorem 32, we provide an upper bound
for the regret in the sparse semi-bandit setting in Corollary 3 (see (7.7), for a more



7.3. Sparse outcomes 185

Algorithm 12 escb-c modified for the case of ‖·‖1-constrained outcomes
Initialization:
Play A1 = [n], or at least a sequence A1,A2, . . . , (no more than n) such that all
arm have been sampled once. We thus have Nit− 1 ≥ 1 for every arm i ∈ [n].
For all subsequent rounds t:
Solve the following bilinear program to get At, with Ct define by (7.6), and play
At.

(At,µt) ∈ arg max
A∈A, µ∈Ct

eT
Aµ.

precise bound). Again, notice we are reaching the lower bound of Theorem 33, using
the relation ∑i ν

∗
i = E‖X‖1 ≤ s.

Corollary 3. Assume that the outcome distribution PX satisfies ‖X‖∞ ≤ 1 and
‖X‖1 ≤ s, and that

(∆(s∧m))2/3 ∨ (m∆ +m∆ log(∆max/∆)) ≤ c log(m+ 1)
∑
i∈[n]

ν∗i (s∧m)

n
,

for some universal constant c. Then the regret of Algorithm 12 is upper bounded
as

lim sup
T→∞

∆
log(T )RT ≤ c

′ log2(m+ 1)
∑
i∈[n]

ν∗i (s∧m) ≤ c′ log2(m+ 1)(s∧m)s,

where c′ is a universal constant.

The corollary is obtained in the same way as Theorem 32. We can underline the
difference that we don’t have to construct n2 covariance estimates, but only n (only
the ν∗i ’s). In particular, as these estimates uses 1/4-sub-Gaussian variables, we don’t
use the sub-exponential concentration of Lemma 10, which removes one term from
the previous result. The obtained bound is

RT ≤ ∆max

(
n+

8nm2

∆2 + c

)
+ c′ log(m+ 1)δ(T )

 log(m+ 1)
∑
i∈[n]

ν∗i (s∧m)

∆i,min

+
∑
i∈[n]

m

(
1 + log

(
∆i,max
∆i,min

))

+
∑
i∈[n]

(s∧m)2/3

∆1/3
i,min

, (7.7)

where c and c′ are two constants. Notice that to make the first term dominates the
others, we must have

n(s∧m)2/3/∆1/3 ∨ (nm(1 + log(∆max/∆))) ≤ c log(m+ 1)
∑
i∈[n]

ν∗i (s∧m)

∆
,

for some constant c, which gives our condition in Corollary 3.
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Remark 16. It should be noticed that semi-bandits algorithms as cucb-v or cucb-
kl (that are variant of the classical cucb (Kveton, Wen, Ashkan, and Szepesvari,
2015b), where the confidence region is a Cartesian product of confidence intervals,
with Bernstein and kl-base confidence intervals respectively) also reach the lower bound
of Theorem 33 for the regime s ≥ m, since V(Xi) ≤ 2ν∗i (thanks to Lemma 11).
However, in the regime where s ≤ m, these algorithms are not able to reach it, while
escb-c is. In the following, we describe the two algorithms cucb-v and cucb-kl,
and comment further on the tightness difference between confidence regions.

7.3.3 Confidence regions comparison

We give here the two algorithms cucb-v and cucb-kl, which, as we have seen, also
matches the lower bound given to the Theorem 33, in the specific regime where s ≥ m.
Both the two algorithms rely on the same optimization At = arg maxA∈A eT

Aµt, where
the vector µt is defined for cucb-v as

∀i ∈ [n], µi,t , 1∧

µi,t−1 +

√√√√2ζσ2
i,t−1 log(t)
Ni,t−1

+
3ζ log(t)
Ni,t−1

,

where

σ2
i,t−1 ,

∑
t′∈[t−1] I{i = it′}

(
Xi,t′ − µi,t−1

)2

Ni,t−1
,

and for cucb-kl as ∀i ∈ [n],µi,t is the unique solution x to

Ni,t−1kl
(
µi,t−1,x

)
= ζ log(t) such that x ∈ [µi,t−1, 1].

We take ζ = 1.2 (although all ζ > 1 are valid). The algorithms above can also
be seen as a bilinear maximization where µt is maximized over a confidence region
that is a Cartesian product one 1-demendional confidence intervals. We illustrate in
Figure 7.1 the difference between the confidence region considered in escb-c (when
the correlation is low) and cucb-kl. The red points represent µt for each region. It
can be seen that the Cartesian product confidence region greatly overestimates the
risk in directions that are not close to the axes, giving rise to over-exploration. It
is important to note however that this price to pay can be interesting in practice,
because the corresponding algorithms are then very efficient (LP over A, supposed
possible4). As we noted in Remark 15, considering the intersection between the two
confidence regions gives rise to an even tighter region, and therefore a better regret
bound.

4Otherwise an approximation regret would be a more appropriate performance measure to con-
sider.
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Figure 7.2: Left: Correlation matrix of the dataset, right: Cumu-
lative regret, averaged over 36 independent simulations
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Figure 7.1: Confidence regions built by escb-c (the pseudo-ellipse),
and cucb-kl (the rectangle), for ‖·‖1 constrained outcomes. Notice
that cucb-kl has slightly better confidence intervals along the axis,

but that escb-c is better in the direction e{1,2}.

7.4 Experiments and discussion
We consider the following dynamic assortment problem. An agent has n products to
sale, with fixed known prices. At each round, a customer arrives, with some unknown
random valuation vector over products. Then, the agent offers any subset of products,
by paying a fixed known cost for each offered product (e.g. transportation and display
cost), and the customer buys an offered product if and only if its valuation is greater
than its price. The agent is interested in maximizing the total profit (revenue minus
cost) from sales over T rounds. We use the n = 120 products from the Kaggle (2013)
dataset containing 7500 grocery store transactions. At each round, valuations are
determined by sampling a random transaction from this dataset. The choice of such
data is motivated by correlations that exist between arms, as illustrated in Figure 7.2
– left, representing the correlation matrix. We ran 36 independent simulations with
T = 104, and with a common product price and cost respectively equal to 1.5 and
0.1. We compared cucb-v and cucb-kl with the Lovász extension implementation
of escb-c (see subsection 7.5.1) and results are plotted in log-scale (Figure 7.2 –
right); error bars represent the sample standard deviation over simulations. There is
less volatility in the regret of cucb-v and cucb-kl; this is due to the fact that their
confidence regions overestimate the risk, and the "bad" event where the regret deviates
is almost negligible. Nevertheless, we clearly observe that escb-c outperforms the
two other approaches in terms of the average regret. Finally, let us point out that
we did not empirically compare to the ols-ucb algorithm of Degenne and Perchet
(2016b) since it is inefficient to implement (the combinatorial problem to be solved
within each round is NP-Hard in general (Atamtürk and Gómez, 2017). We noticed
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that for the choice of sub-Gaussianity matrix where all the correlation coefficients
equals 1, ols-ucb (if it could be implemented) would return a solution very close to
cucb-v.

7.4.1 Discussion

We improved the analysis of combinatorial semi-bandits in multiple ways. First,
we brought new perspectives by considering a fairly large family of sub-exponential
probability distributions, that crucially do not depend on parameters difficult to
obtain in real situations. We have built an algorithm for this family, based on the
estimation of the covariance matrix. We have therefore already significantly improved
existing approaches by adapting not only to the variance of the arms, but also to the
correlation between them. A tight analysis of our proposed method gives a new state-
of-the-art upper bound on the regret. Our new bound is also more intuitive, and is
more relevant to reflect the complexity of the instance at hand (through correlations
between arms). Finally, we applied our approach to a setting not yet studied before,
that assumes sparsity of the outcome vector. We gave a lower bound, as well as a
matching algorithm that leverages the sparsity assumption.

7.5 Appendix

7.5.1 Implementation using the Lovász extension

We now discuss the computational efficiency of our approaches. First, Algorithm 11
(and both those of Combes et al. (2015) and Degenne and Perchet (2016b)) is not
efficient for arbitrary combinatorial space A. However, the evaluation of F : A 7→
maxµ∈Ct(A) eT

Aµ, can be done efficiently as it is an LP over a convex set. In practice,
when A allows it, greedy5 (Nemhauser, Wolsey, and Fisher, 1978) can be used to
maximize F . In general, it is unknown if this alters the regret rate. On the one
hand, it does not when A is given by a matroid, and Ct is as in Algorithm 12. This
is because F is submodular and the following approximation guaranty holds for the
output At of greedy (see Chapter 5): 2

(
F (At)− eT

At
µt−1

)
+ eT

At
µt−1 ≥ F (A∗),

where the l.h.s. is simply F where Ct is scaled by a factor 2 from its center µt−1. On
the other hand, when Ct(A) is as in Algorithm 11, a concave extension of A 7→ F (A)
can be considered, and can thus be maximized efficiently. Notice, when considering
the intersection of the two confidence regions as in Remark 15, this implementation is
still tractable since the minimum of two concave functions is still concave. Since the
obtained solution might not be fractional, we use a randomized rounding to obtain a
feasible set At ∈ A = {0, 1}n. We provide in the following further details and prove
that this method scales the regret by a factor 1 + log

(
m log(T )

∆2

)
, an acceptable price

for efficiency.
From the step 1 of the proof of Theorem 32, we have that

eT
Atµt ≤ eT

Atµt−1 + 2

√√√√δ(t) ∑
i∈At

∑
j∈At 0∨ Σij,t
Nit− 1 + 4mδ(T )

√√√√∑
i∈At

1
N2
i,t−1

.

5Starting from A = ∅, we sequentially add (when possible) the best possible i to the current A if
F (A∪ {i}) > F (A).
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Since the final bound of Theorem 32 relies on the above upper bound, in Algorithm 11,
instead of maximizing A 7→ maxµ∈Ct(A) eT

Aµ, we can maximize

A 7→ eT
Aµt−1 + 2

√√√√δ(t)∑
i∈A

∑
j∈A 0∨ Σij,t
Nit− 1 + 4mδ(T )

√√√√∑
i∈A

1
N2
i,t−1
·

Our goal here is to provide a continuous extension of the above set function that is
concave on [0, 1]n, and thus efficient to maximize. The linear term trivially extends
to the linear function x 7→ xTµt−1. The last two term can be extended relying on
the Lovász extension (Lovász, 1983). We recall that the Lovász extension of a set
function f is defined as fL(x) , E[f({i ∈ [n], xi ≥ U})], where the expectation is
over U ∼ U [0, 1]. The Lovász extension is concave if and only if f is a supermodular
function (Lovász, 1983), i.e.,

f(A) + f(B) ≤ f(A∪B) + f(A∩B) ∀A,B ⊂ [n].

It is easy to check that a function G : A 7→
∑
i∈A

∑
j∈A aij is supermodular for aij ≥ 0,

so its Lovász extension is concave. Composing by the square root, we thus have a
concave extension of the second and last term.

After the maximization of the extension, a continuous maximizer xt is returned,
and the agent plays At = {i ∈ [n], xi,t ≥ U} where U ∼ U [0, 1]. Let σt be a per-
mutation such that xσt(1),t ≥ . . . ,≥ xσt(n),t. Then, the set Sj = {σt(1), . . . ,σt(j)} is
chosen with probability pj,t = xσt(j) − xσt(j+1) (with the convention xσt(n+1) = 0).
The continuous extension evaluated at xt is of the form∑

j

pj,teT
Sjµt−1 +

√∑
j

pj,tG1(Sj) +
√∑

j

pj,tG2(Sj),

where G1 and G2 are the supermodular functions corresponding to the second and last
term respectively. Then, using an `2 upper bound on Gi, i ∈ {1, 2} the probabilities pj
can be aggregated to build triggering probabilities. Since the triggering probabilities
are inside the square root in the above bonus, we can apply Theorem 16. This gives
a regret bound with an extra factor of 1 + log

(
m log(T )

∆2

)
. Notice, an application of

Theorem 15 is also possible, but the extra factor would depend on p and would be
difficult to bound.

Remark 17. We addressed the efficiency by using randomization. Notice, this ran-
domization is an example of "undergone randomization", since the selected action S
is actually x, that well describe the distribution used to generate the played set of
arms. Saying it differently, notice that the initial setting was into the CMAB frame-
work, whereas we used triggering probabilities to solve it. The fact that randomization
has been transformed into triggering probabilities illustrates that the action of interest
is not the random set played but the vector x which is the result of the continuous
optimization of the objective considered above.

In Chapter 8, we will see an example where the opposite happens: the randomiza-
tion is controlled by the agent. More precisely, this policy will be based on Thompson
sampling, which is an example where the chosen action is the one of interest, because
it is the solution of a maximization problem where the parameters are random.



190 Chapter 7. Covariance-Adapting Policy

7.5.2 Proof of Theorem 32

Proof of Theorem 32. Let t ≥ 1, and δ(t) , 2(log(t) + log(log(t))) + em. Through
initialization, we can assume Nij,t−1 ≥ 1 for all i, j ∈ [n] (as this only adds n(n−
1)∆max/2 to the regret bound). We will decompose contributions to regret by con-
sidering the following events:

Ct ,
{
µ∗ ∨µt−1 ∈ Ct(A∗)

}
,

Dt ,
{
eT
At(µt−1 −µ∗) ≤ ∆(At)/2

}
,

St ,
{
∀i, j ∈ [n], 0 ≤ Σij,t − Σ∗ij ≤ 2gij(t)

}
.

We also define

g̃ij(t) , 16

3 log(t)
N2
ij,t−1

∨

√√√√3 log(t)
N3
ij,t−1

+

√√√√48 log2(t)

N4
ij,t−1

+

√√√√36 log2(t)

N4
ij,t−1

,

∀i ∈ [n], ∆i,min , min
A∈A, i∈A, ∆(A)>0

∆(A),

∆i,max , max
A∈A, i∈A, ∆(A)>0

∆(A),

and
∀i, j ∈ [n], ∆ij,min , min

A∈A, i,j∈A, ∆(A)>0
∆(A),

∆ij,max , max
A∈A, i,j∈A, ∆(A)>0

∆(A).

Step 1: If Ct,Dt and St hold We have

∆(At) = (eA∗ − eAt)
Tµ∗

≤ eT
A∗µ

∗ ∨µt−1 − eT
Atµt + eT

At(µt −µ
∗)

≤ eT
At(µt −µ

∗) Ct

≤ ∆(At)/2 + eT
At(µt −µt−1) Dt

i.e., using Cauchy-Schwarz and µt ∈ Ct(At),

∆(At) ≤ 2eT
At(µt −µt−1)

≤ 2

√√√√√∑
i∈At

4
(∑

j∈At 0∨ Σij,t +m
(
µi,t − µi,t−1

))
δ(t)

Ni,t−1

≤ 4

√√√√√δ(t) ∑
i∈At

∑j∈At 0∨ Σij,t
Ni,t−1

+
m
(
µi,t − µi,t−1

)
minj∈At Nj,t−1

.

Solving the corresponding quadratic inequation in the variable x = eT
At(µt −µt−1),

we get

∆(At) ≤ 2eT
At(µt −µt−1)

≤ 4

√√√√ δ(t)2m2

mini∈At N2
i,t−1

+
∑
i∈At

δ(t)
∑
j∈At 0∨ Σij,t
Ni,t−1

+
mδ(t)

minj∈At Nj,t−1
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≤ 4

√√√√δ(t) ∑
i∈At

∑
j∈At 0∨ Σij,t
Ni,t−1

+
8mδ(t)

minj∈At Nj,t−1

≤ 4

√√√√√δ(t) ∑
i∈At

∑
j∈At 0∨

(
Σ∗ij + 2gij(t)

)
Ni,t−1

+
8mδ(t)

minj∈At Nj,t−1
St

≤ 4

√√√√δ(t) ∑
i∈At

∑
j∈At 0∨ Σ∗ij
Ni,t−1

+ 4

√√√√δ(t) ∑
i∈At

∑
j∈At 2gij(t)
Ni,t−1

+
8mδ(t)

minj∈At Nj,t−1

≤ 4

√√√√δ(T ) ∑
i∈At

maxA∈A,i∈A
∑
j∈A 0∨ Σ∗ij

Ni,t−1︸ ︷︷ ︸
(7.8)

+ 4
√
δ(T )

∑
i,j∈At

g̃ij(T )

︸ ︷︷ ︸
(7.9)

+
8mδ(T )

minj∈At Nj,t−1︸ ︷︷ ︸
(7.10)

.

Where the last inequality uses that Ni,t−1 ∧Nj,t−1 ≥ Nij,t−1∀i, j ∈ [n]. From this
point, we treat each term separately, using the relation

I{∆(At) ≤ (7.8)+ (7.9)+ (7.10)}
≤ I{∆(At)/3 ≤ (7.8)}+ I{∆(At)/3 ≤ (7.9)}+ I{∆(At)/3 ≤ (7.10)}.

We apply Theorem 13, that is helpful to bound the regret on each of this 3 events.
Indeed, for the first term, applying it with βi,T = 122δ(T )maxA∈A,i∈A

∑
j∈A 0 ∨ Σ∗ij

and αi = 1/2 gives the bound

T∑
t=1

I{∆(At)/3 ≤ (7.8)}∆(At) ≤ 4608 log2
2(4
√
m)

∑
i∈[n]

δ(T )maxA∈A,i∈A
∑
j∈A 0∨ Σ∗ij

∆i,min
.

The second term can be itself decomposed into two terms, bounding the max by the
sum and using log(T ) ≤ δ(T ).

(7.9) ≤ 4δ(T )
√ ∑
i,j∈At

(
54 +

√
48
)
N−2
ij,t−1 + 4δ(T )0.75

√
16
√

3
∑
i,j∈At

N−1.5
ij,t−1.

Thus, again, it is sufficient to treat each term separately. We also apply Theorem 13,
but with [n]2 as the set of arms, and with A2

t as the set of played arms, taking
respectively αi = 1,βi,T = 24

√
54 +

√
48δ(T ) and αi = 0.75,βi,T = 192 · 62/3δ(T )

for each term. This gives

T∑
t=1

I{∆(At)/3 ≤ (7.9)}∆(At) ≤ 1152
√

6 log2(4m)
∑
i,j∈[n]

δ(T )

(
1 + log

(
∆ij,max
∆ij,min

))

+ 12288 · 62/3
(
41/3 − 1

)−1
log2(4m)

∑
i,j∈[n]

δ(T )∆−1/3
ij,min.
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The last term can be analyzed in the same way by first upper bounding it as

(7.10) ≤ 8mδ(T )
√√√√∑
i∈At

1
N2
i,t−1

.

Then, taking αi = 1,βi,T = 24mδ(T ) in Theorem 13 gives

T∑
t=1

I{∆(At)/3 ≤ (7.10)}∆(At) ≤ 1152 log2(4
√
m)

∑
i∈[n]

mδ(T )

(
1 + log

(
∆i,max
∆i,min

))
.

This concludes step 1; notice that all subsequent steps will aim to bound the regret
by a term independent of T , over a certain event. Thus, we can see that the bounds
above are the actual contributions to the rate of the regret. To show Theorem 32, we
must therefore choose the regime for ∆ ≤ ∆i,min so that the first term prevails over
the others. In other words, we want to have

n2
(

∆−1/3 ∨ (1 + log(∆max/∆))
)
≤ c log(m+ 1)

∑
i∈[n]

maxA∈A,i∈A
∑
j∈A 0∨ Σ∗ij

∆
,

where c is a constant. This gives exactly our condition in Theorem 32.

Step 2: If St,¬Ct hold Let σ2
i ,

∑
j∈A∗ 0∨ Σ∗ij for all arms i ∈ [n]. We fixe some

δ ≥ e ·m, and define the following events:

At ,


∑
i∈A∗

I
{
µ∗i ≥ µi,t−1

}
Ni,t−1

(
µ∗i − µi,t−1

)2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) ≥ δ


∀d ∈ (N∗)A
∗
, Bd,t ,

⋂
i∈A∗

{(
δ

δ− 1

)di−1
≤ Ni,t−1 <

(
δ

δ− 1

)di}
.

Notice that St,¬Ct implies At for δ = δ(t). Since each number of pulls Ni,t−1 for
i ∈ A∗ is bounded by t, the number of possible d ∈ (N∗)A

∗
such that P[Bd,t] > 0 is

bounded by (log(t)/ log(δ/(δ− 1)))m. Thanks to the following Lemma 12, and an
union bound on those possible d ∈ (N∗)A

∗
, we get

P[At] ≤ em+1
(

(δ− 1) log(t)
m log(δ/(δ− 1))

)m
e−δ,

so the regret under this event is bounded by a universal constant, since the upper
bound above is the term of a convergent series for δ = δ(t). Indeed, it rewrites as

t−2em+1−em

2− log−1(t)

m︸ ︷︷ ︸
≤2/m

+ 2log(log(t))
log(t) + e log−1(t)︸ ︷︷ ︸

≤2ee/2−1


m

,
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that is bounded by

t−2e ·
(
e1−e · 2ee/2−1

)m
︸ ︷︷ ︸

≤1

(
e1−e/2

m
+ 1

)m
︸ ︷︷ ︸

≤ee1−e/2

.

Lemma 12 (Covering-argument). Let d ∈ (N∗)A
∗
. Then,

P[At ∩Bd,t] ≤
(
(δ− 1)e
m

)m
e1−δ.

Proof. We rely on a covering argument. The idea is to get rid of randomness by
replacing the empirical mean µi,t−1 by some non-random value xi. Let ζ ∈ RA∗

+ .
For i ∈ A∗, we define xi(N) for N ∈ R+ as the unique solution x ∈ (−∞,µ∗i ] of the

equation N (µ∗i−x)
2

4(σ2
i+|A∗|(µ∗i−x))

= ζi. Notice that for all i ∈ A∗, xi is non-decreasing since

x 7→ (µ∗i−x)
2

4(σ2
i+|A∗|(µ∗i−x))

is decreasing on (−∞,µ∗i ]. The event

⋂
i∈A∗

Ni,t−1

(
0∨

(
µ∗i − µi,t−1

))2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) > ζi


implies ⋂

i∈A∗

{
µi,t−1 ≤ xi(Ni,t−1)

}
.

Under the event Bd,t, this implies

⋂
i∈A∗

{
µi,t−1 ≤ xi

(
δ

δ− 1

)di}
. (7.11)

With εi , µ∗i − xi
(

δ
δ−1

)di and λi , εi
2(σ2

i+|A∗|εi)
, i ∈ A∗, this further implies:

(
δ

δ− 1

)−1 ∑
i∈A∗

ζi

=
∑
i∈A∗

(
δ

δ− 1

)di−1 ε2i
4(σ2

i + |A∗|εi)
xi(e

di) > −∞,

≤
∑
i∈A∗

Ni,t−1
ε2i

4(σ2
i + |A∗|εi)

Bd,t

=
∑
i∈A∗

Ni,t−1
ε2i

2(σ2
i + |A∗|εi)

−
∑
i∈A∗

Ni,t−1
ε2i

4(σ2
i + |A∗|εi)

≤
∑
i∈A∗

Ni,t−1
ε2i

2(σ2
i + |A∗|εi)

−
∑
i∈A∗

Ni,t−1σ
2
i

ε2
i

4(σ2
i + |A∗|εi)

2
σ2
i

σ2
i + |A∗|εi

≤ 1,

=
∑
i∈A∗

Ni,t−1λiεi −
∑
i∈A∗

Ni,t−1σ
2
i λ

2
i

≤
∑
i∈A∗

Ni,t−1λi
(
µ∗i − µi,t−1

)
−
∑
i∈A∗

Ni,t−1σ
2
i λ

2
i using (7.11),
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and this last quantity is equal to∑
u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− (λ� eAu∩A∗)
TD(λ� eAu∩A∗)

)
,

where D is the diagonal matrix with Dii = σ2
i for all i ∈ [n]. For all u ∈ [t− 1], since

λ ≥ 0, we can write the following axis-realignment inequality

(λ� eAu∩A∗)
T
Σ∗(λ� eAu∩A∗) =

∑
i∈Au∩A∗

∑
j∈Au∩A∗

Σ∗ijλiλj

≤
∑

i∈Au∩A∗

∑
j∈Au∩A∗

0∨ Σ∗ij
2

(
λ2
i + λ2

j

)

=
∑

i∈Au∩A∗

 ∑
j∈Au∩A∗

0∨ Σ∗ij

λ2
i

≤ (λ� eAu∩A∗)
TD(λ� eAu∩A∗).

Thus, we have(
δ

δ− 1

)−1 ∑
i∈A∗

ζi ≤
∑

u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− (λ� eAu∩A∗)
T
Σ∗(λ� eAu∩A∗)

)
≤

∑
u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− log E

[
e(λ�eAu∩A∗)

T
(X−µ∗)

])
,

where the last inequality uses Assumption 3 and ‖λ� eAu∩A∗‖1 ≤ 1/2. Now, notice
that

E

exp

 ∑
u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− log E

[
e(λ�eAu∩A∗)

T
(X−µ∗)

])
equals

E

 ∏
u∈[t−1]

e(λ�eAu∩A∗)
T
(µ∗−Xu)

E

[
e(λ�eAu∩A∗)

T
(X−µ∗)

]
 =

∏
u∈[t−1]

E

 e(λ�eAu∩A∗)
T
(µ∗−Xu)

E

[
e(λ�eAu∩A∗)

T
(X−µ∗)

]


= 1,

so from Markov inequality, we get the following bound:

P

 ∑
u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− log E

[
e(λ�eAu∩A∗)

T
(X−µ∗)

])
≥ e−1 ∑

i∈A∗
ζi


≤ e−

∑
i∈A∗ ζi(

δ
δ−1 )

−1

,

thus, we showed that

P

Bd,t ∩
⋂
i∈A∗

Ni,t−1

(
0∨

(
µ∗i − µi,t−1

))2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) > ζi


 ≤ e−∑i∈A∗ ζi(

δ
δ−1 )

−1

,



7.5. Appendix 195

i.e.

P

 ⋂
i∈A∗

I
{
Bd,t

}
Ni,t−1

(
0∨

(
µ∗i − µi,t−1

))2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) > ζi


 ≤ e−∑i∈A∗ ζie

−1
,

By Lemma 8 of Magureanu, Combes, and Proutiere (2014), since δ ≥ em, we have

P[Bd,t ∩At] = P

Bd,t ∩


∑
i∈A∗

Ni,t−1

(
0∨

(
µ∗i − µi,t−1

))2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) ≥ δ



= P

∑
i∈A∗

I
{
Bd,t

}
Ni,t−1

(
0∨

(
µ∗i − µi,t−1

))2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) ≥ δ


≤
(
(δ− 1)e
m

)m
e1−δ.

Step 3: If ¬Dt hold The regret under this event can be bounded by 8nm2∆max/∆2

using Proposition 14.

Step 4: If ¬St hold From Proposition 25, the regret under this event is bounded
by a universal constant.

Putting it all together Finally, we have shown that there exists two universal
constant c, c′ satisfying the following (we display the scaled back (by κ) version of the
regret bound to get the dependence into κ)

RT ≤ ∆max

(
n(n− 1)

2 +
8nm2

∆2 + c

)

+ c′ log(m+ 1)δ(T )

 log(m+ 1)
∑
i∈[n]

maxA∈A,i∈A
∑
j∈A 0∨ Σ∗ij

∆i,min

+
∑
i,j∈[n]

κ

(
1 + log

(
∆ij,max
∆ij,min

))

+
∑
i∈[n]

mκ

(
1 + log

(
∆i,max
∆i,min

))

+
∑
i,j∈[n]

κ4/3

∆1/3
ij,min

. (7.12)
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Chapter 8

Statistical and Computational
Efficiency of Thompson
Sampling

In this chapter, which is based on our article Perrault, Boursier, et al. (2020), we
study an interesting alternative to the optimistic methods considered so far, namely
Thompson sampling (TS). Apart from its empirical superiority (Chapelle and Li,
2011), TS is interesting in the context of CMAB because the played action is easy
to compute: there isn’t an additive bonus to the main objective, contrary to the `2-
based approaches. TS could thus answer the question of the existence of an efficient
policy with an optimal asymptotic regret (up to a factor poly-logarithmic with the
action size), which is still open for many families of distributions, including mutually
independent outcomes, and more generally the multivariate sub-Gaussian family. We
propose to answer the above question for these two families by analyzing variants
of the Combinatorial Thompson Sampling policy (cts). For mutually independent
outcomes in [0, 1], we propose a tight analysis of cts using Beta priors. We then
look at the more general setting of multivariate sub-Gaussian outcomes and propose
a tight analysis of cts using Gaussian priors. This last result gives us an alternative
to the Efficient Sampling for Combinatorial Bandit policy (escb), which, although
optimal, is not computationally efficient.

8.1 A trade-off between optimality and computational
efficiency?

In this chapter, we assume that the reward, given the choice of At, is a function
of µ∗ � eAt . As we already saw, the following two extreme problem instances are
distinct within the CMAB framework:

(i) Each PXi is sub-Gaussian and the arm distributions are mutually independent,
i.e., PX = ⊗i∈[n]PXi .

(ii) Each PXi is sub-Gaussian but the stochastic dependencies between the arm
distributions are "worst case": the performance metric is the supremum of the
regret over all possible dependencies between the marginals.

Those two settings are indeed different as two different lower bounds on the asymp-
totic1 (in T ) regret can be derived. In particular, the regret scales as Ω(n log(T )/∆)
for the setting (i), and as Ω(mn log(T )/∆) for (ii), where ∆ is the minimum gap in

1We recall here the fact that in MAB, whether the horizon T is known or not is not really relevant
as algorithms can be easily adapted Degenne and Perchet, 2016a.
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(i) (ii) (iii)

cucb m m m
escb∗ log2(m) m log2(m)

cts-beta log2(m) - -
cts-gaussian log2(m) mlog2(m) log2(m)

clip cts-gaussian log2(m) m log2(m)
Lower bound Ω(1) Ω(m) Ω(1)

Table 8.1: Factor in front of n log(T )/∆ in the regret bound (O(·)
for upper bounds), computationally inefficient policies are printed with
a subscript ∗, setting (iii) is for C diagonal, clip cts-gaussian is for
linear reward functions, and with only λ ∈ Rn

+ in (iii). Our results
are printed in bold, see Theorem 34, Theorem 35, Theorem 36 related

to cts-beta, cts-gaussian, clip cts-gaussian respectively.

the expected reward between an optimal super arm and any non-optimal super arm,
and where m , maxA∈A|A|.

Many CMAB policies are based on the Upper Confidence Bound (UCB) approach,
extending the classical ucb policy (Auer, Cesa-Bianchi, and Fischer, 2002) from MAB
to CMAB. This type of approach uses an optimistic estimate µt of µ∗ (i.e., for which
the reward function is overestimated), lying in a well-chosen confidence region. For
setting (ii), there exist UCB-style policies that match the lower bound mentioned
above. An example of such policy is Combinatorial Upper Confidence Bound (cucb)
(Chen, Wang, and Yuan, 2013; Kveton, Wen, Ashkan, and Szepesvari, 2015b), that
uses a Cartesian product of the individual confidence intervals of each arm as a con-
fidence region. For setting (i), Combes et al. (2015) provided the UCB-style policy
Efficient Sampling for Combinatorial Bandit (escb), that uses the assumption of mu-
tual independence between arm distributions in order to build a tighter ellipsoidal
confidence region around the empirical mean, which helps to better restrict the ex-
ploration. Degenne and Perchet (2016b) gave the following generalization of setting
(i):

(iii) The joint probability PX is C-sub-Gaussian, for a positive semi-definite matrix
C � 0, i.e., E

[
eλ

T(X−µ∗)
]
≤ eλTCλ/2, for all λ ∈ Rn.

In this case, they provided the policy ols-ucb, leveraging this additional assumption
and such that it essentially reduces to escb in the specific case of diagonal matrix
C with a regret bound of O

(
log2(m)n log(T )/∆

)
) (so it matches the above lower

bound up to a polylogarithmic factor in m). We refer the reader to Table 8.1 for an
overview of the above regret (lower) bounds.

In some CMAB problems, the action space A and the reward function are simple
enough for the existence of an exact oracle that takes as input a vector µ ∈ Rn and
outputs the solution of the combinatorial problem (associated to the mean vector µ),
with a polynomial time complexity O(poly(n)). Under this assumption (referred to
as Assumption 4), cucb, that plays the action At = Oracle(µt) at round t, is efficient
to implement, and has a O(poly(n)) time complexity per round. In that case, the
setting (ii) is therefore essentially solved. On the other hand, this is not true for the
settings (i) and (iii), as escb needs to solve a difficult combinatorial problem in each
round (NP-Hard in general (Atamtürk and Gómez, 2017)).

The inefficiency of escb triggered some attempts to implement an efficient version:
Perrault, Perchet, and Valko (2019a) proposed an efficient approximation method for
implementing escb in the case the action space has a matroid structure: they prove
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a time complexity of O(poly(n)) while keeping the same regret rate. However, this
improvement is mitigated by the fact that cucb reaches the optimal regret rate
O(n log(T )/∆) for the special case of matroid semi-bandits (Anantharam, Varaiya,
andWalrand, 1987; Kveton, Wen, Ashkan, Eydgahi, et al., 2014; Talebi and Proutiere,
2016). Recently, Cuvelier, Combes, and Gourdin (2020) provided another approach
for approximating escb for a wide variety of action spaces, including the matching
bandit setting (Gai, Krishnamachari, and Jain, 2010) and the online shortest path
problem (Liu and Zhao, 2012), where cucb is not known to be better than escb.
However, their policies are still computationally expensive when T is large, since the
time complexity at round t is of order O(t · poly(n)).

Another line of research is to find an efficient alternative to escb. One of the most
promising candidate is Thompson Sampling (ts). Although introduced much earlier
by Thompson (1933), the theoretical analysis of ts for frequentist MAB is quite re-
cent: Kaufmann, Korda, and Munos (2012) and Agrawal and Goyal (2012b) gave
a regret bound matching the ucb policy theoretically. Moreover, ts often performs
better than ucb in practice, making ts an attractive policy for further investiga-
tions. For CMAB, ts extends to Combinatorial Thompson Sampling (cts). In cts,
the unknown mean µ∗ is associated with a belief (a prior distribution) updated to a
posterior with the Bayes’rule, each time a feedback is received. In order to choose
an action at round t, cts draws a sample θt from the current belief, and plays the
action given by Oracle(θt). cts is an attractive policy because its time complexity
is O(poly(n)) under Assumption 4. Recently, for the setting (i) with bounded out-
comes, Wang and Chen (2018) proposed an analysis of cts-beta, which is cts where
the prior distribution is chosen to be a product of n Beta distributions. They proved
two regret upper bounds depending on the class of reward functions:

O
(
n
√
m log(T )

∆

)
in the linear case and O

(
nm log(T )

∆

)
in the general case.

(8.1)

Although the aforementioned upper bound in the linear reward case outperforms the
one of cucb, it doesn’t match the one of escb. To summarize, and despite many
efforts, the existence of a policy that is both optimal (up to a polylogarithmic factor
in m) and efficient in the setting (i) or (iii) is still an open problem, which we tackle
here.

Further related work We refer the reader to Wang and Chen (2018) for further
related work on ts for combinatorial bandits, and particularly for Gopalan, Mannor,
and Mansour (2014), that provided a frequentist high-probability regret bounds for
ts with a general action space and a general feedback model — Komiyama, Honda,
and Nakagawa (2015), that investigated ts for the m-sets action space — Wen, Kve-
ton, and Ashkan (2015), that studied ts for contextual CMAB problems, using the
Bayesian regret metric (see also Russo and Van Roy (2016)).

8.1.1 Contributions
We first improve the result of Wang and Chen (2018) by providing the regret up-
per bound O

(
log2(m)n log(T )/∆

)
for cts-beta in the setting (i) with bounded

outcomes. This bound is valid even for non linear reward functions. Our main con-
tribution is a regret bound for the setting (iii). We propose an efficient policy called
cts-gaussian, that is cts where the prior distribution is chosen to be a multivariate
Gaussian. An analysis of cts-gaussian allows us to obtain a regret bound reducing
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to O
(
log2(m)n log(T )/∆

)
for a diagonal sub-Gaussianity matrix. When the reward

function is linear, we generalize the setting (iii) assuming only λ ∈ Rn
+. This allows

us to get rid of negative correlations between the outcomes, and focus on positive
correlations. We propose in this setting the policy clip cts-gaussian, where the
score is truncated from below with the empirical mean, and from above with the
UCB. Truncations from above are not necessary, but can limit optimism, especially
when positive correlations are significant. We obtain an improved regret bound for
clip cts-gaussian, where negative correlations no longer appear in the regret bound
and where, in setting (ii), the extra log2(m) factor present in the regret bound of
cts-gaussian disappears. All these results are summarized and compared to other
state-of-the-art policies in Table 8.1.

8.1.2 Model

The CMAB problem we consider is formally introduced as follows. At each round
t ∈ [T ], the agent chooses a super arm (or action) At ∈ A ⊂ P([n]) based on
the history of observations Ht , σ

(
X1 � eA1 , . . . , Xt−1 � eAt−1

)
and a possible extra

source of randomness (as usual, we denote by Ft the filtration containing Ht and the
extra randomness of round t— in particular, At ∈ Ft). The feedback received is then
Xt � eAt and the associated expected reward of the agent at that stage is r(At;µ∗),
for some known function r. The objective of the agent is to minimize the regret,
defined for a policy π as

∀T ≥ 1, RT (π) , E

[
T∑
t=1

∆t

]
,

where ∆t , ∆(At) , r(A∗;µ∗) − r(At;µ∗) with A∗ ∈ arg maxA′∈A r(A′;µ∗). As
stated in the introduction, we will assume the following:

Assumption 4. The agent has access to an oracle with a time complexity O(poly(n))
such that for any mean vector µ, Oracle(µ) ∈ arg maxA∈A r(A;µ).

As in Chen, Wang, and Yuan (2016), we assume that the function r satisfies the
following smoothness property.

Assumption 5. There exists a constant B, such that for every super arm A ∈ A
and every pair of mean vectors µ and µ′, |r(A;µ)− r(A;µ′)| ≤ B‖eA � (µ−µ′)‖1.

For an arm i ∈ [n], we define the number of time i has been chosen at the beginning
of round t as Ni,t−1 ,

∑
t′∈[t−1] I{i ∈ At′}. We also define the minimum size of an

optimal action m∗ , minA∈arg maxA′∈A eT
A′µ
∗ |A|.

8.2 The independent case: Thompson sampling with beta
prior

In this section, we consider the following assumption on top of the CMAB setting
from section 8.1.2.

Assumption 6. The outcomes Xi are bounded (in [0, 1], w.l.o.g.), and are mutually
independent (we are thus in a special case of (i)).
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Algorithm 13 cts-beta
Initialization: For each arm i, let ai = bi = 1.
For all t ≥ 1:
Draw θt ∼ ⊗i∈[n]Beta(ai, bi), and play At = Oracle(θt).
Get the observation Xt � eAt , and draw Yt ∼ ⊗i∈AtBernoulli(Xi,t).
For all i ∈ At update ai ← ai + Yi,t and bi ← bi + 1− Yi,t.

For this problem, we consider cts-beta in Algorithm 13, which is described
as follows. The prior is set to be a product of n beta distributions (being thus
uniform over [0, 1] initially). Notice, this prior is conjugate to a product of Bernoulli
distributions. After the agent get an observation Xi,t, it first binarizes it by sampling
Yi,t ∼ Bernoulli(Xi,t) (the regret of the problem defined by the observations Yi,t is
the same because E[Yi,t] = µ∗i ). Then the prior is updated using Bayes’ rule with
each sample Yi,t. When choosing a super arm at round t, the agent draws θt from
the beta belief, and then plugged it into the oracle, which outputs the super arm At
to play.

The main result of this section is Theorem 34, that improves the regret bound of
Wang and Chen (2018) for cts-beta.

Theorem 34. The policy π described in Algorithm 13 has regret RT (π) of order

O

∑
i∈[n]

B2 log2(m) log(T )
∆i,min

.

The proof of Theorem 34, as well as the complete non-asymptotic upper-bound is
postponed to subsection 8.5.1. Our analysis incorporates two novelties that we detail
in the two following paragraphs.

An improved leading term (cf. Step 3 of the proof of Theorem 34 in subsec-
tion 8.5.1) We define the empirical average of each arm i ∈ [n] at the beginning of
round t as µi,t−1 ,

∑
t′∈[t−1]

I{i∈At′}Yi,t′
Ni,t−1

. Notice that this empirical average definition
differs from the one that is classically used in CMAB, since samples Yi,t′ are used
rather than Xi,t′ . The improved dependence in m in the leading term of Theorem 34
(compared to Equation 8.1) is a consequence of two ingredients. The first is the fol-
lowing concentration inequality (see Lemma 14), which improves that of Wang and
Chen (2018) by extending it to the case of non-linear reward. Indeed, we rather
control the `1 norm in this case, instead of the `∞-norm, which leads to a tighter
bound.

P

∥∥eAt � (θt −µt−1)
∥∥

1 ≥
√√√√1

2log(|A|2mT )
∑
i∈At

1
Ni,t−1

∣∣∣∣∣∣Ht
 ≤ 1/T . (8.2)

The second ingredient is a more careful handling of the square-root term in the above
probability, based on a method similar to the one in Degenne and Perchet (2016b).

T -independent term (cf. Step 4 of the proof of Theorem 34 in subsection 8.5.1)
Similarly to Wang and Chen (2018), our regret bound also contains an exponential
term that is constant in T . Note, however that the term of Wang and Chen (2018)
is of order O(ε−2m∗−2), whereas ours is of order O

(
ε−4m∗−2

)
, where ε ∈ (0, 1) is of

order ∆min/(m∗)2. This discrepancy is due to the correction of a minor negligence
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inaccuracy in their Lemma 7, where they assume, at the end of the proof, that one
could decorrelate the counters from the outcomes received. We manage to circumvent
this issue by doing a careful union bound over the counters. It is this union bound
that brings a larger dependence in this constant term.

8.3 The general case: Thompson sampling with Gaus-
sian prior

Algorithm 14 cts-gaussian
Input: The vector D, and a parameter β > 1.
Initialization: Play each arm once (if the agent knows that µ∗ ∈ [a, b]n, this
might be skipped)
For every subsequent round t:
Draw θt ∼ ⊗i∈[n]N

(
µi,t−1,N−1

i,t−1βDi

)
(θi,t ∼ U [a, b] if Ni,t−1 = 0).

Play At = Oracle(θt).
Get the observation Xt � eAt , and update µt−1 and counters accordingly.

In this section, we consider the setting from section 8.1.2, with a more general
sub-Gaussian family for X ∈ Rn. More precisely, we make the following similar
assumption as in Degenne and Perchet (2016b). Proposition 26 gives two examples
included in this assumption.

Assumption 7. There exists a vector D , (D1, . . . ,Dn) ∈ Rn
+ known to the agent

such that

∀A ∈ A, ∀λ ∈ Rn s.t. λ = λ� eA, E
[
eλ

T(X−µ∗)
]
≤ eλ

TD�λ/2.

Proposition 26. Assumption 7 encompasses the κ2
i -sub Gaussian outcomes with

worst case dependencies between the arm distributions, taking Di = κ2
im. It also

captures C-sub-Gaussian outcomes with a known sub-Gaussianity matrix C (setting
(iii)), taking Di = maxA∈A, i∈A

∑
j∈A|Cij |.

Proof. Assumption 7 encompasses κ2
i -sub Gaussian outcomes with Di = κ2

im for all
i ∈ [n]. Indeed, let λ = λ� eA for some action A and observe that E

[
eλ

T(X−µ∗)
]
is

bounded by

E

[∑
i

|κiλi|
‖κ�λ‖1

e
‖κ�λ‖1sign(λi)

Xi−µ
∗
i

κi

]
≤ e‖κ�λ‖

2
1/2 ≤ e‖κ�λ‖

2
2|A|/2 ≤ e‖κ�λ‖

2
2m/2.

The case of C-sub-Gaussian outcomes with a known sub-Gaussianity matrix C (i.e.,
E
[
eλ

T(X−µ∗)
]
≤ eλTCλ/2 for all λ ∈ Rn) is also captured, taking2

Di = max
A∈A, i∈A

∑
j∈A
|Cij |.

2This Di can be computed whenever linear maximization on A is efficient: for x high enough, we
have maxA∈A, i∈A

∑
j∈A

∣∣Cij∣∣ = Cii − x+ maxA∈A
∑
j∈A
(∣∣Cij∣∣I{j 6= i}+ xI{j = i}

)
.
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Indeed, for an action A,

∑
i,j∈A

λiλjCij ≤
∑
i,j∈A

λ2
i + λ2

j

2 |Cij | =
∑
i∈A

λ2
i

∑
j∈A
|Cij | ≤

∑
i∈n

λ2
i max
A∈A, i∈A

∑
j∈A
|Cij |.

For the above setting, we provide cts-gaussian in Algorithm 14, where we define
the empirical mean of arm i at round t ≥ 1 as µi,t−1 ,

∑
t′∈[t−1]

I{i∈At′}Xi,t′
Ni,t−1

. This
algorithm is comparable to Algorithm 13 but considers a Gaussian prior for each arm.
Notice, the Gaussian family is self-conjugate, so except in the Gaussian-outcomes
case, we do not rely on exact conjugated prior here. Although this is not surprising
— since it is known that ts can work without exact conjugate prior with respect to
the outcomes — obtaining an upper bound on the regret of the policy cts-gaussian
is non-trivial and constitutes our main contribution. We state our main result in
Theorem 35.

Theorem 35. The policy π described in Algorithm 14 has regret RT (π) of order

O

∑
i∈[n]

B2Di log2(m) log(T )
∆i,min

·
The proof of Theorem 35, as well as the complete non-asymptotic upper-bound is

postponed to subsection 8.5.4. Nonetheless, in the following paragraphs, we provide
some insights and highlight the novelty of our analysis. Notice, β > 1 is an artefact of
the analysis and can in practice be taken equal to 1 (as we will do in our experiments).

Main proof challenges In the setting of the previous section, the outcomes are
independent in [0, 1] and an important step in Algorithm 13 was to transform the
outcomes into binary variables in order to be consistent with the posterior. Here,
outcomes are no longer independent. In addition to that, we cannot transform the
outcomes into Gaussian variables in the same way as in Algorithm 13. These two
points are the main technical challenges to address in our analysis.

Stochastic dominance Before providing details on how we deal with the above
challenges, first recall that the standard analysis (in the case of a factorized prior,
that we have here3) consists in bounding the expected number of rounds needed for
the sample θt to be close to the true mean µ∗ on a certain set Z ⊂ A∗, i.e., for the
event

{
‖(µ∗ − θt)� eZ‖∞ > ε

}
to happens. We let Tt(Z) denote the complementary

event. As for the proof of Theorem 34, we can condition on the history to rewrite
this expected number of rounds and then upper bound it as

E

∑
t≥1

(t− 1)P[¬Tt(Z)|Ht]
t−1∏
j=1

P[Tj(Z)|Hj ]


≤ E

[
sup
t≥1

1
P[¬Tt(Z)|Ht]

]
− 1 ≤

∑
Z′⊂Z, Z′ 6=∅

E

sup
t≥1

∏
i∈Z′

(
1

P[ |θi,t − µ∗i | ≤ ε|Ht]
− 1

).

3In practice, for C-sub Gaussian outcomes, the choice N
(
µt−1,

(
CijNij,t−1N

−1
i,t−1N

−1
j,t−1

)
ij

)
for the prior where Nij,t−1 ,

∑
t′∈[t−1] I{i ∈ At′}I{j ∈ At′} may be preferred.
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Now, using the fact that the conditional distribution of θi,t− µi,t−1 is symmetric and
depends only on the counterNi,t−1, we obtain that the probability P[ |θi,t − µ∗i | ≤ ε|Ht]
is a monotonic function of the deviation

∣∣∣µi,t−1 − µ∗i
∣∣∣. Let us emphasize that this

property of the Gaussian prior used is crucial and that it is not obvious to transfer
the same technique to a beta prior. To sum up, we have to control a term of the
form E

[
supt≥1

∏
i∈Z′ gi

(∣∣∣µi,t−1 − µ∗i
∣∣∣)], where gi are non-negative increasing func-

tions. Our approach is to prove that
(∣∣∣µi,t−1 − µ∗i

∣∣∣)
i
is weakly stochastically domi-

nated by
(√

βDi
Ni,t−1

|ηi|
)
i
, where η ∼ ⊗iN (0, 1), which is the same vector but where

the empirical mean is built with independent Gaussian outcomes instead. Notice,
independence is crucial to be able to factorize the expectation E[

∏
i∈Z′ gi], in the

same way as in the proof of Theorem 34. We recall two equivalent definitions of U
is weakly stochastically dominated by V, see Shaked and Shanthikumar (2007) for
more details and properties of dominances,

• For all non-negative, non-increasing functions fi, E[
∏
i fi(Ui)] ≤ E[

∏
i fi(Vi)].

• For any vector x, it holds P[U ≥ x] ≤ P[V ≥ x].

The first point applied to gi’s (and up to the supremum over t) is a simple way to ob-
tain the aforementioned wanted control. Thus, it’s enough to prove the second point,
which is a consequence of the sub-Gaussianity of outcomes given by Assumption 7
and some concentration inequality. Finally, we circumvent the supremum over t ≥ 1
issue thanks to Doob’s optional sampling theorem for non-negative super-martingales
(see Durrett (2019), Theorem 5.7.6).

Importance of using a factorized prior in our analysis Note that in Algo-
rithm 14, the samples θi,t are independent, while the outcomes are not necessarily
independent. This independence is in fact crucial in order to be able to start the
analysis in the same way as in the proof of Theorem 34 (recall that Algorithm 13
also uses a factorized prior). More precisely, a factorized prior allows us to link the
filtered regret against the event St(Z) ∧ Tt(Z) to the expected number of rounds
needed for ¬Tt(Z) to occur (see (8.3) in Step 4 of the proof of Theorem 34 in sub-
section 8.5.1 for a definition of St(Z)). Indeed, without the factorized prior, the two
events St(Z),Tt(Z) would no longer be independent conditionally to the history, and
the term 1/P[¬Tt(Z)|Ht] obtained in the previous paragraph would then be replaced
by 1/P[¬Tt(Z)|St(Z),Ht], which is much more difficult to deal with. To the best of
our knowledge, it is unknown how to get the desired bound when St(Z) and Tt(Z)
are not independent conditionally to the history.

8.3.1 clip cts-gaussian for the linear reward case

In this subsection, we make the following assumptions on top of section 8.1.2.

Assumption 8. The reward function is linear, defined as r(A,µ) , eT
Aµ.

Assumption 9. The agent knows a matrix Γ � 0 s.t. ∀λ ∈ Rn
+, E

[
eλ(X−µ

∗)
]
≤

eλ
TΓλ/2.

Notice that Assumption 9 slightly generalises the setting from Degenne and Perchet
(2016b). Requiring λ ∈ Rn

+ allows us to take Di = maxA∈A, i∈A
∑
j∈A(0∨ Γij), so

that negative correlations are no longer harmful. Di can still be too large (and thus
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θt might be over-sampled), so we cap θt with the score µt used by cucb. The re-
sulting policy is clip cts-gaussian, where the score θt is replaced by µt−1 ∨ θt ∧µt
before we plug it into Oracle, where µi,t = µi,t−1 +

√
Γii

2(log(t)+4 log log(t))
Ni,t−1

. clip cts-
gaussian enjoys the following regret bound.

Theorem 36. The policy clip cts-gaussian has regret of order

O

∑
i∈[n]

(
Di log2(m) ∧mΓii

)
log(T )

∆i,min

.

Not onlyDi is improved through the above relaxation, but also, the leading term is
never worst than the one of cucb. The proof and the complete non-asymptotic upper-
bound is delayed to subsection 36. We note that we rely heavily on reward linearity
to analyse this clip version, not only using monotony to restrict the controls to the
Rn

+ directions (and thus to cap from bellow the sample by the empirical mean), but
also using the oracle’s invariance property Oracle(µ) = Oracle

(
µ+ δ� eOracle(µ)

)
,

with δ ≥ 0, to cap the sample from above by the UCB.

Comparison with the ols-ucb analysis of Degenne and Perchet (2016b)
The leading term in the regret bound given from Theorem 36 is comparable to the
one for ols-ucb from Degenne and Perchet (2016b). Indeed, we recall that they
obtained a factor of order Γii

(
(1− γ) log2(m) + γm

)
, with γ as defined in the in-

troduction of the thesis (i.e., γ = maxA∈Amax(i,j)∈A2,i 6=j(0∨ Γij)/
√

ΓiiΓjj), where
we have

(
Di log2(m) ∧mΓii

)
. When γ ∈ {0, 1} (this is the case when we are in the

settings (i) and (ii) respectively), these two terms coincide. When γ ∈ (0, 1), they
are incomparable in general. We can still see that our variance term Di is always
lower than their Γii((1− γ) + γm), i.e., that our bound rate is lower than log2(m)
times theirs.

8.4 Experiments and discussion
Before describing the experiments carried out, notice that in the cts-gaussian poli-
cies, β > 1 is an artefact of the analysis and can in practice be taken equal to 1. This
is what we did in our experiments.

The shortest path problem We compare our cts policies to cucb and cucb-kl,
for the shortest path problem on the road chesapeake network (Rossi and Ahmed,
2015). This network contains 39 nodes and n = 170 edges. A is the set of paths
from an origin to a destination in the network. We choose a linear reward, so that an
efficient Oracle exists for this problem. We choose µ∗ uniformly in [−1, 0]n and then
normalize its sum so that ∑i µ

∗
i = −s, where s is unknown to the agent. The param-

eter s stands for the global network traffic (e.g., the total number of vehicles in the
network). We run two experiments, one with −X ∼ ⊗iBernoulli(−µ∗i ) and another
with −X ∼ ⊗iBernoulli(−µ∗i ) conditionally on ∑iXi = −s. They are presented in
Figure 8.1. Since the outcomes are not mutually independent in this last experiment,
we use (clip) cts-gaussian rather than cts-beta, where we take Di = 1/4, using
that for any λ ∈ Rn

+, E
[
eλ

TX
]
≤
∏
i∈[n] E

[
eλiXi

]
(see e.g., Borcea, Brändén, and

Liggett (2009), corollary 4.18). It is clear from the experiments that cts policies
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Figure 8.1: Cumulative regret (averaged over 50 simulations) for the
shortest path problem. Top: with mutually independent outcomes,
taking the opposite sum of means being s = 70, 90, 110, 130 respec-
tively. Bottom: with correlated outcomes, taking the opposite sum

of outcomes being s = 70, 90, 110, 130 respectively.
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Figure 8.2: Cumulative regret (averaged over 50 simulations)
for the matching problem with Gaussian outcomes, taking c =

−1/n, 0.2, 0.5, 1 respectively.

outperform both cucb and cucb-kl. In the second experiment, we see that clip
cts-gaussian and cts-gaussian are very similar — which is not surprising because
Di is not large here (unlike in the next experiment) — and that for a small s, cucb-
kl becomes competitive, since the kl is much larger than the quadratic divergence in
that case.

Comparison to escb for the matching problem We consider here a compari-
son between (clip) cts-gaussian, cucb and escb (we refer the reader to Wang and
Chen (2018) for a comparison between cts-beta and escb). Since escb is compu-
tationally intractable, we limit ourselves to a toy matching problem on the complete
bipartite graphs K4,4, with X ∼ N (µ∗, (cI{i 6= j}+ I{i = j})ij), where this covari-
ance is known to the agent. Our results are shown in Figure 8.2, where we observe
that clip cts-gaussian (resp. escb) is slightly better for c small (resp. large), thus
reaching the best of both worlds. This is because a large c forces clip cts-gaussian
to oversample (as evidenced by cts-gaussian whose performance is even worse than
cucb for c = 1). We also recorded the computation time for larger instances (see
Table 8.2), and observe the efficiency of cucb and clip cts-gaussian compared to
escb.
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K3,3 K4,4 K5,5 K6,6 K7,7 K8,8

cucb 0.39 0.64 1.23 1.65 2.45 3.88
clip cts-gaussian 0.50 0.80 1.75 1.79 3.30 5.42

escb 0.45 1.93 10.3 75.6 541 4694

Table 8.2: Computation time per round (ms), with c = 0.3, T = 100,
averaged over 5 simulations.

Correlated vs independent prior in practice We briefly discussed the use of
a correlated prior in footnote 3, with covariance

(
CijNij,t−1N

−1
i,t−1N

−1
j,t−1

)
ij
, mention-

ing that the policy would perform better than using an independent prior. We ran
additional empirical comparisons to assess this, plotting the results in Figure 8.3
where we also compared with a common prior policy approach (Agrawal, Avadhan-
ula, et al., 2017), i.e., with covariance

(
N−1/2
i,t−1 N

−1/2
j,t−1

)
ij
.4 As expected, the corre-

lated prior policy is better than the independent one (when outcomes are corre-
lated). This motivates the theoretical study of such policy for future work. The
common prior approach is comparable to the correlated prior one on the match-
ing problem, but it is outperformed in the worst-case scenario of a separate ac-
tion spaceA =

{
{km+ 1, . . . , (k+ 1)m} | k ∈

{
0, . . . , nm − 1

}}
with independent out-

comes. This is because such problem reduces to a classical MAB problem with a co-
variance scaled up by a factor m, whereas the common prior approach has a variance
scaled up by a factor m2.

8.4.1 Conclusion and future work

In this work, we have provided the first efficient policies having an optimal regret
bound for a wide spectrum of problems instances for CMAB with semi-bandit feed-
back. Our approach also answers the question of finding an analysis for cts under
correlated arm distributions. There are several possible extensions that could be con-
sidered as future work. For example, it would be interesting to have an analysis of
cts with a correlated (Gaussian) prior. Indeed, apart from the empirical gain, this
would open up the possibility of estimating the covariance matrix for use in the prior
distribution, as we did in the previous chapter. Further relevant results would be an
analysis of cts-beta without the mutual independence of outcomes, or also an im-
proved concentration bound for a sum of independent betas, relying on the kl rather
than using the sub-Gaussianity. This latter result would thus show that cts-beta
dominates cucb-kl, which is empirically observed.

8.5 Missing proofs

8.5.1 Proof of Theorem 34

Proof of Theorem 34. We first restate the complete non-asymptotic upper-bound as
follows.

4We also tried the policy (without displaying the results, for the sake of clarity) with covariance(
CijN

−1/2
i,t−1N

−1/2
j,t−1

)
ij
, and observed about the same performance as the correlated prior approach.
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Figure 8.3: Comparison with correlated prior sampling and
common prior sampling (averaged over 50 simulations). The
first 4: for the K4,4 matching problem, with Gaussian out-
comes, taking c = 0, 0.2, 0.5, 1. The last: for A ={

{km+ 1, . . . , (k+ 1)m} | k ∈
{

0, . . . , nm − 1
}}

, c = 0.

Theorem. The policy π described in Algorithm 13 has regret RT (π) bounded by

16 log2
2(16m)

∑
i∈[n]

B2log(2m|A|T )
∆i,min

+∆max(1 + n)+
nm2∆max(

∆min
2B − (m∗2 + 1)ε

)2 +∆max
C

ε2

(
C ′

ε4

)m∗
,

where C,C ′ are two universal constants, and ε ∈ (0, 1) is such that ∆min/(2B) −
(m∗2 + 1)ε > 0.

8.5.2 Preliminary lemmas

In order to prove Theorem 34, we modify two lemmas from Wang and Chen, 2018:
first, in their Lemma 3, we replace ε by ∆min/(2B)− (m∗2 + 1)ε > 0, which gives
the following Lemma 13 (that is proved in the same way as Proposition 14).

Lemma 13. In Algorithm 13, for any arm i, we have

E

[∣∣∣∣t ∈ [T ], i ∈ At, |At| ·
∣∣∣µi,t−1 − µ∗i

∣∣∣ > ∆min
2B − (m∗2 + 1)ε

∣∣∣∣]

≤ 1 +
(

∆min
2mB −

(m∗2 + 1)ε
m

)−2

.

Then, we modify Lemma 4 from Wang and Chen, 2018 as follows, leveraging on
the mutual independence of θ1,t, . . . , θn,t to get a tighter confidence region for the
sample θt.

Lemma 14. In Algorithm 13, for all round t, we have

P

∥∥eAt � (θt −µt−1)
∥∥

1 ≥
√√√√1

2log(|A|2mT )
∑
i∈At

1
Ni,t−1

∣∣∣∣∣∣Ht
 ≤ 1/T .

Proof. From (Marchal, Arbel, et al., 2017), the Beta random variable from θi,t is
sub-Gaussian with variance 1/(4Ni,t−1). Thus, defining the functions

αt(A) ,

√√√√1
2log(|A|2mT )

∑
i∈A

1
Ni,t−1

, and λt(A) ,
4αt(A)∑

i∈A 1/Ni,t−1
,
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we have

P
[∥∥eAt � (θt −µt−1)

∥∥
1 ≥ αt(At)

∣∣∣Ht]
≤
∑
A∈A

P
[∥∥eA � (θt −µt−1)

∥∥
1 ≥ αt(A)

∣∣∣Ht]
≤
∑
A∈A

e−λt(A)αt(A)E

[
eλt(A)‖eA�(θt−µt−1)‖1

∣∣∣∣Ht]
≤
∑
A∈A

e−λt(A)αt(A)
∏
i∈A

E
[
eλt(A)|θi,t−µi,t−1|

∣∣∣Ht]
≤
∑
A∈A

e−λt(A)αt(A)
∏
i∈A

E
[
eλt(A)(θi,t−µi,t−1) + eλt(A)(µi,t−1−θi,t)

∣∣∣Ht]
≤
∑
A∈A

2|A|e−λt(A)αt(A)eλt(A)
2
∑

i∈A 1/(8Ni,t−1) ≤ 1/T .

8.5.3 Main proof

With the two lemmas from the previous subsection, we are ready to demonstrate
Theorem 34. We consider the following events.

• Zt , {∆t > 0}

• Bt ,
{
∃i ∈ At, |At| ·

∣∣∣µi,t−1 − µ∗i
∣∣∣ > ∆min/(2B)− (m∗2 + 1)ε

}
• Ct ,

{
‖eAt � (θt −µ∗)‖1 > ∆t/B −

(
m∗2 + 1

)
ε
}

• Dt ,
{∥∥eAt � (θt −µt−1)

∥∥
1 ≥

√
0.5 · log(|A|2mT )

∑
i∈At 1/Ni,t−1

}
.

We break down our analysis into 4 steps. The main novelties are in the last two
steps: Step 3 gives us the tighter dependence in m, and Step 4, that contains the
main difficulties, gives the new exponential constant term.

Step 1: bound under Zt ∧Bt By Lemma 13,∑
t∈[T ]

E[∆tI{Zt ∧Bt}]

≤ ∆max
∑
i∈[n]

E
[∣∣∣t ∈ [T ], i ∈ At, |At| ·

∣∣∣µi,t−1 − µ∗i
∣∣∣ > ∆min/(2B)− (m∗2 + 1)ε

∣∣∣]

≤ n∆max

1 +
(

∆min
2mB −

(m∗2 + 1)ε
m

)−2
.

Step 2: bound under Zt ∧¬Bt ∧ Ct ∧Dt By Lemma 14,∑
t∈[T ]

E[∆(At)I{Zt ∧¬Bt ∧ Ct ∧Dt}] ≤ ∆max
∑
t∈[T ]

E[P[Dt|Ht]] ≤ ∆max
∑
t∈[T ]

1/T

= ∆max.
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Step 3: bound under Zt ∧¬Bt ∧ Ct ∧¬Dt

∆t/B ≤ ‖eAt � (θt −µ∗)‖1 +
(
m∗2 + 1

)
ε Ct

≤
∥∥eAt � (θt −µt−1)

∥∥
1 +

∥∥eAt � (µt−1 −µ∗)
∥∥

1 +
(
m∗2 + 1

)
ε

≤
∥∥eAt � (θt −µt−1)

∥∥
1 + ∆min/(2B)−

(
m∗2 + 1

)
ε+

(
m∗2 + 1

)
ε ¬Bt

≤
∥∥eAt � (θt −µt−1)

∥∥
1 + ∆t/(2B) Zt

≤
√√√√1

2log(|A|2mT )
∑
i∈At

1
Ni,t−1

+ ∆t/(2B). ¬Dt

So we have that the following event holds

At ,

∆t ≤ B
√√√√2log(|A|2mT )

∑
i∈At

1
Ni,t−1

.

We can thus apply Theorem 13 to get the bound∑
t∈[T ]

E[∆tI{Zt,¬Bt,Ct,¬Dt}] ≤
∑
t∈[T ]

E[∆tI{At}]

≤ 32B2 log2
2(4
√
m)

∑
i∈[n]

∆−1
i,min2log(|A|2mT ).

Step 4: bound under Zt ∧ ¬Ct We consider the following events for a subset
Z ⊂ [n]

R(θ′,Z),
{
Z ⊂ Oracle(θ′),

∥∥∥eOracle(θ′) � (θ′ −µ∗)
∥∥∥

1
>∆(Oracle(θ′))− (k∗2+1)ε

}

St(Z) ,
{
∀θ′ s.t.

∥∥(µ∗ − θ′)� eZ
∥∥
∞ ≤ ε, R(θ′ � eZ + θt � eZc ,Z) holds

}
(8.3)

Tt(Z) ,
{
‖(µ∗ − θt)� eZ‖∞ > ε

}
.

We can state the three following lemmas. Note that Lemma 15 is exactly the Lemma 1
from Wang and Chen (2018). The other two replace their Lemma 7.

Lemma 15. In Algorithm 13, for all round t, we have

Zt,¬Ct ⇒ ∃Z ⊂ A∗, Z 6= ∅ s.t. the event St(Z) ∧Tt(Z) holds.

Lemma 16. Given Z ⊂ A∗, Z 6= ∅, let τq be the round at which St(Z) ∧ ¬Tt(Z)
occurs for the q-th time, and let τ0 = 0. Then, in Algorithm 13, we have

E

 τq+1∑
t=τq+1

I{St(Z),Tt(Z)}

 ≤ E

[
sup

τ≥τq+1

∏
i∈Z

1
P[ |θi,τ − µ∗i | ≤ ε|Hτ ]

]
− 1.
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Lemma 17. In Algorithm 13, we have

E

[
sup

τ≥τq+1

∏
i∈Z

1
P[ |θi,τ − µ∗i | ≤ ε|Hτ ]

]
− 1 ≤

{ (
cε−4)|Z| for every q ≥ 0
e−ε

2q/8(c′ε−4)|Z| if q > 8/ε2,

where c and c′ are two universal constants.

These lemmas allow us to get a constant regret under the event Zt ∧¬Ct. Indeed,
we have from Lemma 15 that

∑
t∈[T ]

E[∆tI{Zt ∧¬Ct}] ≤ ∆max
∑

Z⊂A∗, Z 6=∅
E

∑
t∈[T ]

I{St(Z) ∧Tt(Z)}


= ∆max

∑
Z⊂A∗, Z 6=∅

∑
q≥0

E

 τq+1∑
t=τq+1

I{St(Z),Tt(Z)}

.

Lemma 16 and 17 gives that the above is further upper bounded by

∆max
∑

Z⊂A∗, Z 6=∅

d8/ε2e−1∑
q=0

(
cε−4

)|Z|
+

∑
q≥d8/ε2e

e−ε
2q/8

(
c′ε−4

)|Z|
which is bounded by

∆max
C

ε2

(
C ′

ε4

)m∗
,

where C and C ′ are two universal constants. This concludes the proof of the theorem.

Proof of Lemma 16. Since St(Z),Tt(Z) are independent conditioned on the history
Ht, the LHS is

E

∑
k≥1

(k− 1)P
[
¬Ttk,q (Z)

∣∣∣Htk,q

] k−1∏
j=1

P
[
Ttj,q (Z)

∣∣∣Htj,q

],

where tk,q is the round t where St(Z) holds for the k-th time since the beginning
of the round τq + 1. Within the expectation, one can recognize the expectation of a
time-varying geometric distribution, where the success probability of the k-th trial is
P
[
¬Ttk,q (Z)

∣∣∣Htk,q

]
. We can upper bound this inner expectation by the expectation

of a geometric distribution whose success probability

inf
τ≥τq+1

P[¬Tτ (Z)|Hτ ] = inf
τ≥τq+1

∏
i∈Z

P[ |θi,τ − µ∗i | ≤ ε|Hτ ]

is lower than all the success probabilities of the time-varying geometric distribution.
This gives the result by monotonicity of the expectation, and rewriting the expecta-
tion of the geometric distribution.

Proof of Lemma 17. For any arm i ∈ [n], ki ∈ N, we define pi,ki as the probability
of
∣∣∣θ̃i,ki − µ∗i ∣∣∣ ≤ ε, where θ̃i,ki is a sample from the posterior of arm i when there are

ki observations of arm i (i.e., pi,ki is a random variable measurable with respect to
those ki independent draws of arm i). From Lemma 5,6 in Wang and Chen (2018),
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we know that

E

[
1
pi,ki

]
≤
{

4/ε2 for every ki ≥ 0
1 + 6c′′ · e−ε2ki/2ε−2 + 2

eε
2ki/8−2

if ki > 8/ε2,

for some universal constant c′′. Since St(Z)∧¬Tt(Z) implies that Z ⊂ At, we know
that for τ ≥ τq + 1, Ni,τ−1 ≥ q for all i ∈ Z. Using the mutual independence of
outcomes, and the fact that the distribution of θi,τ depends only on the history of
arm i, we have

E

[
sup

τ≥τq+1

∏
i∈Z

1
P[ |θi,τ − µ∗i | ≤ ε|Hτ ]

]
− 1

= E

 sup
τ≥τq+1

∑
Z′⊂Z, Z′ 6=∅

∏
i∈Z′

(
1

P[ |θi,τ − µ∗i | ≤ ε|Hτ ]
− 1

)
≤

∑
Z′⊂Z, Z′ 6=∅

E

∏
i∈Z′

sup
τ≥τq+1

(
1

P[ |θi,τ − µ∗i | ≤ ε|Hτ ]
− 1

)
≤

∑
Z′⊂Z, Z′ 6=∅

E

∏
i∈Z′

∑
ki≥q

(
1
pi,ki

− 1
),

=
∑

Z′⊂Z, Z′ 6=∅

∏
i∈Z′

E

∑
ki≥q

(
1
pi,ki

− 1
).

From this point, there are two cases: If q > 8/ε2,

≤
∑

Z′⊂Z, Z′ 6=∅

∏
i∈Z′

∑
ki≥q

(
6c′′ · e−ε2k/2ε−2 + 2e−ε2k/8

(
1− 2e−ε2k/8

)−1
)

≤ e−ε2q/8
(
c′ε−4

)|Z|
,

and if q ≤ 8/ε2,

≤
∑

Z′⊂Z, Z′ 6=∅

∏
i∈Z′

b8/ε2c∑
k=q

(
4/ε2 − 1

)
+

∞∑
k≥b8/ε2c+1

(
6c · e−ε2k/2ε−2 +

2e−ε2k/8

1− 2e−ε2k/8

)
≤
(
cε−4

)|Z|
,

where c, c′ are two universal constant.

8.5.4 Proof of Theorem 35

Proof of Theorem 35. We beginning by stating the complete version of Theorem 35.

Theorem. The policy π described in Algorithm 14 has regret RT (π) bounded by

256 log2
2(4
√
m)

∑
i∈[n]

B2βDi log(2m|A|T )
∆i,min

+ ∆max(1 + 2n)
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+
nm2∆max(

∆min
2B − (m∗2 + 1)ε

)2 + ∆max

(
Cε−2βmax

i
Di

)(
C ′√
β − 1

ε−4β3 max
i
D2
i

)m∗
,

where C,C ′ are two universal constants, and ε ∈ (0, 1) is such that ∆min/(2B) −
(m∗2 + 1)ε > 0.

For the proof of Theorem 35, we consider the same events as in the proof of
Theorem 34, except for the event Dt, that becomes

Dt ,

∥∥eAt � (θt −µt−1)
∥∥

1 ≥
√

2log(|A|2mT )
∑
i∈At

βDi/Ni,t−1

.

Step 1 is unchanged. Step 2 and Step 3 are modified only through the event Dt, using
the following modification of Lemma 14.

Lemma 18. In Algorithm 14, for all round t, we have that P[Dt|Ht] ≤ 1/T .

Proof. We rely on the fact that conditionally on the history, the sample θt is Gaussian
of mean µt−1 and of diagonal covariance given by βDiN

−1
i,t−1. We thus define the

functions

αt(A) ,

√√√√2log(|A|2mT )
∑
i∈A

βDi

Ni,t−1
, and λt(A) ,

αt(A)∑
i∈A βDi/Ni,t−1

,

we have

P
[∥∥eAt � (θt −µt−1)

∥∥
1 ≥ αt(At)

∣∣∣Ht]
≤
∑
A∈A

P
[∥∥eA � (θt −µt−1)

∥∥
1 ≥ αt(A)

∣∣∣Ht]
≤
∑
A∈A

e−λt(A)αt(A)E

[
eλt(A)‖eA�(θt−µt−1)‖1

∣∣∣∣Ht]
≤
∑
A∈A

e−λt(A)αt(A)
∏
i∈A

E
[
eλt(A)|θi,t−µi,t−1|

∣∣∣Ht]
≤
∑
A∈A

e−λt(A)αt(A)
∏
i∈A

E
[
eλt(A)(θi,t−µi,t−1) + eλt(A)(µi,t−1−θi,t)

∣∣∣Ht]
≤
∑
A∈A

2|A|e−λt(A)αt(A)eλt(A)
2
∑

i∈A βDi/(2Ni,t−1) ≤ 1/T .

The final bound on the regret in Step 3 is obtained using the same derivation as
in Theorem 34, which gives the following leading term:

256 log2
2(4
√
m)

∑
i∈[n]

B2βDi log(2m|A|T )
∆i,min

.

In the following, we consider the last step, consisting in bounding the regret under
the event Zt and ¬Ct. From the initialization phase, we also assume that the event

Mt , {∀i ∈ [n], Ni,t−1 ≥ 1}
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holds (the regret under the complementary event is clearly bounded by n∆max). If
there is no initialization, we can have q = 0 in the following, noticing that when θi,t
is uniform on [a, b], then the probability P[ |θi,t − µ∗i | ≤ ε|Ht] is equal to 2ε/(b− a).

Step 4: bound under Mt ∧Zt ∧¬Ct We use the independence of the prior, as for
Theorem 34, to obtain the following upper bound, using Mt to be able to start from
q = 1. ∑

t∈[T ]
E[∆(At)I{Mt ∧ Zt ∧¬Ct}]

≤
∑

Z⊂A∗, Z 6=∅

∑
q≥1

E

 sup
τ≥τq+1

∑
Z′⊂Z, Z′ 6=∅

∏
i∈Z′

(
1

P[ |θi,τ − µ∗i | ≤ ε|Hτ ]
− 1

)
≤

∑
Z⊂A∗, Z 6=∅

∑
q≥1

∑
Z′⊂Z, Z′ 6=∅

E

 sup
τ≥τq+1

∏
i∈Z′

(
1

P[ |θi,τ − µ∗i | ≤ ε|Hτ ]
− 1

)
︸ ︷︷ ︸

(8.4)

.

However, the expectation can’t be put inside the product since outcomes are not
mutually independent. We can still take a union bound on counters:

(8.4) ≤
∑

Z′⊂Z, Z′ 6=∅

∑
k∈[q..∞)Z′

(8.5),

where

(8.5) , E

 sup
τ≥τq+1

I
{
∀i ∈ Z ′, Ni,τ−1 = ki

}∏
i∈Z′

(
1

P[ |θi,τ − µ∗i | ≤ ε|Hτ ]
− 1

).

One can notice that for all i ∈ Z ′, all ki ≥ q, I{Ni,τ−1 = ki}
(

1
P[ |θi,τ−µ∗i |≤ε|Hτ ]

− 1
)

is of the form I{Ni,τ−1 = ki}gi
(∣∣∣µi,τ−1 − µ∗i

∣∣∣), with gi being an increasing func-
tion on R+. Indeed, we see that the conditional distribution of θi,τ − µi,τ−1 is
N
(
0,βDiN

−1
i,τ−1

)
, which is symmetric, so we have

P[ |θi,τ − µ∗i | ≤ ε|Hτ ] = P
[∣∣∣θi,τ − µi,τ−1 +

∣∣∣µi,τ−1 − µ∗i
∣∣∣∣∣∣ ≤ ε∣∣∣Hτ ].

In addition, under I{Ni,τ−1 = ki}, the conditional distribution of θi,τ − µi,τ−1 does
not depend on the history, but only on ki. Therefore, the above probability is a
function of

∣∣∣µi,τ−1 − µ∗i
∣∣∣ and so the function gi exists. It is increasing on R+ because

for any fixed σ > 0,

∂

∂x

∫ x+ε

x−ε

1√
2πσ2

e−
u2

2σ2 du =
1√

2πσ2

(
e−

(x+ε)2

2σ2 − e−
(x−ε)2

2σ2

)
< 0 for x > 0.

In particular, we can consider the inverse function g−1
i . We now want to use a stochas-

tic dominance argument in order to treat the outcomes as if they were Gaussian: we
have for any k ∈ [q..∞)Z

′ ,

E

 sup
τ≥τq+1

∏
i∈Z′

(
I{Ni,τ−1 = ki}gi

(∣∣∣µi,τ−1 − µ∗i
∣∣∣))
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= E

 sup
τ≥τq+1

∏
i∈Z′

(
I{Ni,τ−1 = ki}

∫ ∞
0

I
{
gi
(∣∣∣µi,τ−1 − µ∗i

∣∣∣) ≥ ui}dui
)

≤
∫

u∈RZ
′

+

E

 sup
τ≥τq+1

∏
i∈Z′

I{Ni,τ−1 = ki}I
{
gi
(∣∣∣µi,τ−1 − µ∗i

∣∣∣) ≥ ui}
du

=
∫

u∈RZ
′

+

E

∏
i∈Z′

I{Ni,τ∗−1 = ki}I
{
gi
(∣∣∣µi,τ∗−1 − µ∗i

∣∣∣) ≥ ui}
du, (8.6)

where τ∗ is the first time τ such that the event

I
{
∀i ∈ Z ′, Ni,τ−1 = ki and gi

(∣∣∣µi,τ−1 − µ∗i
∣∣∣) ≥ ui}

holds, and is ∞ if it never holds.

(8.6) =
∫

u∈RZ
′

+

E

∏
i∈Z′

I{Ni,τ∗−1 = ki}I
{
gi
(∣∣∣µi,τ∗−1 − µ∗i

∣∣∣) ≥ ui ∨ gi(0)}
du

=
∫

u∈RZ
′

+

E

∏
i∈Z′

I{Ni,τ∗−1 = ki}I
{∣∣∣µi,τ∗−1 − µ∗i

∣∣∣ ≥ g−1
i (ui ∨ gi(0))

}du

=
∫

u∈RZ
′

+

∑
s∈{−1,1}Z′

(8.7)du,

where (8.7) , E
[∏

i∈Z′ I{Ni,τ∗−1 = ki}I
{
si
(
µi,τ∗−1 − µ∗i

)
≥ g−1

i (ui ∨ gi(0))
}]

. If we
define

(8.8) ,
exp

(∑
i∈Z′Ni,τ∗−1

(
sig
−1
i (ui∨gi(0))

Di

(
µi,τ∗−1−µ∗i

)
− (g−1

i (ui∨gi(0)))
2

2Di

))

exp
(∑

i∈Z′
(g−1
i (ui∨gi(0)))

2
ki

2Di

) ,

then (8.7) is bounded by

P
[
(8.8) ≥ 1, (Ni,τ∗−1)i∈Z′=k

]

≤ P


exp

(∑
i∈Z′ Ni,τ∗−1

(
sig
−1
i (ui∨gi(0))

Di

(
µi,τ∗−1 − µ∗i

)
− (g−1

i (ui∨gi(0)))
2

2Di

))

exp
(∑

i∈Z′
(g−1
i (ui∨gi(0)))

2
ki

2Di

) ≥ 1



≤
E

[
exp

(∑
i∈Z′ Ni,τ∗−1

(
sig
−1
i (ui∨gi(0))

Di

(
µi,τ∗−1 − µ∗i

)
− (g−1

i (ui∨gi(0)))
2

2Di

))]

exp
(∑

i∈Z′
(g−1
i (ui∨gi(0)))

2
ki

2Di

)

=

E

[
exp

(∑τ∗−1
t=1

∑
i∈Z′∩At

(
sig
−1
i (ui∨gi(0))

Di
(Xi,t − µ∗i )−

(g−1
i (ui∨gi(0)))

2

2Di

))]

exp
(∑

i∈Z′
(g−1
i (ui∨gi(0)))

2
ki

2Di

) .
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From Assumption 7, we have that

Mτ = exp

τ−1∑
t=1

∑
i∈Z′∩At

sig−1
i (ui ∨ gi(0))

Di
(Xi,t − µ∗i )−

(
g−1
i (ui ∨ gi(0))

)2

2Di




is a supermartingale, because E[Mτ |Fτ−1]/Mτ−1 is equal to

E

exp

 ∑
i∈Z′∩Aτ−1

sig−1
i (ui ∨ gi(0))

Di
(Xi,τ−1 − µ∗i )−

(
g−1
i (ui ∨ gi(0))

)2

2Di



∣∣∣∣∣∣∣Fτ−1


≤ 1.

Since τ∗ is a stopping time with respect to Fτ , we have from Doob’s optional sampling
theorem for non-negative supermartingales5 that E[Mτ∗ ] ≤ 1. Therefore,

(8.7) ≤ exp

−∑
i∈Z′

(
g−1
i (ui ∨ gi(0))

)2
ki

2Di

.

Now, we want to use the following fact (see Chang, Cosman, and Milstein (2011)): if
η ∼ N (0, 1), then with β > 1,√

2e
π

√
β − 1
β

e−βx
2/2 ≤ P[|η| ≥ x].

Indeed, this gives

√
2e
π

√
β − 1
β

exp

−
(
g−1
i (ui ∨ gi(0))

)2
ki

2Di

 ≤ P

[
|ηi| ≥ g−1

i (ui ∨ gi(0))
√

ki
βDi

]
,

where η ∼ N (0, 1)⊗Z′ . Thus,

(8.6) ≤
(√

π

2e
2β√
β − 1

)|Z′| ∫
u∈RZ

′
+

∏
i∈Z′

P

[√
βDi

ki
|ηi| ≥ g−1

i (ui ∨ gi(0))
]
du

=

(√
π

2e
2β√
β − 1

)|Z′| ∫
u∈RZ

′
+

∏
i∈Z′

P

[
gi

(√
βDi

ki
|ηi|
)
≥ ui ∨ gi(0)

]
du

=

(√
π

2e
2β√
β − 1

)|Z′| ∫
u∈RZ

′
+

∏
i∈Z′

P

[
gi

(√
βDi

ki
|ηi|
)
≥ ui

]
du

=

(√
π

2e
2β√
β − 1

)|Z′| ∏
i∈Z′

∫ ∞
0

P

[
gi

(√
βDi

ki
|ηi|
)
≥ ui

]
dui

=

(√
π

2e
2β√
β − 1

)|Z′| ∏
i∈Z′

E

[
gi

(√
βDi

ki
|ηi|
)]

.

5We use the version that relies on Fatou’s lemma (Durrett (2019), Theorem 5.7.6), so that it is
not needed to have any additional condition on the stopping time τ∗.
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We now want to bound E
[
gi
(√

βDi
ki
|ηi|
)]

. We define α = 2−
√

2, the unique solution

in (1/2, 1) of α−1/2 = (α−1)2/2. Notice that α−1/2 ≥ 1/12. Define εi , ε
√

ki
βDi

.
By definition, we have

E

[
gi

(√
βDi

ki
|ηi|
)]

=
∫ +∞

−∞

e−x
2/2∫ x+εi

x−εi e
−y2/2dy

dx− 1

= 2
∫ +∞

αεi

1∫ x+εi
x−εi e

− y
2−x2

2 dy
dx

︸ ︷︷ ︸
A1

+
∫ αεi

−αεi

e−x
2/2∫ x+εi

x−εi e
−y2/2dy

dx− 1︸ ︷︷ ︸
A2

.

We first bound A1. With the change of variable u = y− x, we get:

A1 = 2
∫ +∞

αεi

1∫ εi
−εi e

−u2/2−uxdu
dx

≤ 2
∫ +∞

αεi

1∫ 0
−εi e

−u2/2−uxdu
dx

Note that for x ≥ αεi and u ∈ [−εi, 0], −u2/2− ux ≥ −(1− 1
2α )ux and thus:

A1 ≤ 2
∫ +∞

αεi

1∫ 0
−εi e

−(1− 1
2α )uxdu

dx

= 2
∫ +∞

αεi

(1− 1
2α )x

e(1−
1

2α )εix − 1
dx. (8.9)

We distinguish two regimes. First, if ε2
i ≥ 12, then

(8.9) ≤ 2e(α−
1
2 )ε

2
i

e(α−
1
2 )ε

2
i − 1

∫ +∞

αεi

(
1− 1

2α

)
xe−(1−

1
2α )εixdx

=
2e(α− 1

2 )ε
2
i

e(α−
1
2 )ε

2
i − 1

1
(1− 1

2α )ε
2
i

∫ +∞

(α− 1
2 )ε

2
i

xe−xdx

=
2e(α− 1

2 )ε
2
i

e(α−
1
2 )ε

2
i − 1

1
(1− 1

2α )ε
2
i

[
−(x+ 1)e−x

]∞
(α− 1

2 )ε
2
i

=
2e(α− 1

2 )ε
2
i

e(α−
1
2 )ε

2
i − 1

1
(1− 1

2α )ε
2
i

((
α− 1

2

)
ε2
i + 1

)
e−(α−

1
2 )ε

2
i

=
2

e(α−
1
2 )ε

2
i − 1

(
α+

α

(α− 1
2 )ε

2
i

)
≤ 4e−ε2

i /12.

Otherwise, we have

(8.9) =
2(1− 1

2α )

ε2
i

∫ ∞
αε2
i

u

e(1− 1
2α )u − 1

du

≤
2(1− 1

2α )

ε2
i

∫ ∞
0

u

e(1− 1
2α )u − 1

du
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=
2(1− 1

2α )

ε2
i

π2

6
(
1− 1

2α

)2

≤ 24βDi

ε2 .

We now bound A2. As x ∈ [−αεi,αεi], it comes that [−(1− α)εi, (1− α)εi] ⊂
[x− εi,x+ εi]. This implies that

A2 ≤
∫ αεi
−αεi e

−x2/2dx∫ (1−α)εi
−(1−α)εi e

−x2/2dx
− 1

=
2
∫ αεi
(1−α)εi e

−x2/2dx∫ (1−α)εi
−(1−α)εi e

−x2/2dx

≤
2
∫∞
(1−α)εi e

−x2/2dx∫ (1−α)εi
−(1−α)εi e

−x2/2dx

≤ e−(1−α)
2ε2
i /2

1− e−(1−α)2ε2
i /2 ≤

(
1 + 12

ε2
i

)
e−ε

2
i /12.

The penultimate inequality relies on
∫∞
x e−u

2/2du≤
√

π
2 e
−x2/2 (see Jacobs and Wozen-

craft (1965), eq. (2.122)). We obtain again two regimes: 2e−ε2
i /12 if ε2

i ≥ 12, and
1 + 12βDi

ε2 otherwise. To summarize, we proved that (8.6) is bounded by

(√
π

2e
2β√
β − 1

)|Z′|∏
i∈Z′

(
I

{
ε2 ki
βDi

< 12
}(

1 + 36βDi

ε2

)
+ I

{
ε2 ki
βDi

≥ 12
}

6e−ε
2 ki

12βDi

)
.

After the summation on k, on Z ′, on q, and on Z, we obtain that there exists two
constants C,C ′ such that

∑
Z⊂A∗, Z 6=∅

∑
q≥1

∑
Z′⊂Z, Z′ 6=∅

∑
k∈[q..∞)Z′

(8.6)≤
(
Cε−2βmax

i
Di

)(
C ′β√
β − 1

ε−4β2 max
i
D2
i

)m∗

so,

∑
t∈[T ]

E[∆(At)I{Mt ∧ Zt ∧¬Ct}] ≤ ∆max

(
Cε−2βmax

i
Di

)(
C ′β√
β − 1

ε−4β2 max
i
D2
i

)m∗
.

8.5.5 Proof of Theorem 36

Proof of Theorem 36. The regret bound of clip cts-gaussian is stated completely
as follows.

Theorem. The policy clip cts-gaussian has regret bounded by

∑
i∈[n]

128
(
4 log2

2(4
√
m)βDi log(2m|A|T ) ∧mΓii(log(T ) + 4 log log(T ))

)
∆i,min
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+ ∆max(1 + 5.2n) + nm2∆max(
∆min
2B − (m∗(m∗ + 1)/2 + 1)ε

)2

+ ∆max

(
Cε−2βmax

i
Di

)(
C ′√
β − 1

ε−4β3 max
i
D2
i

)m∗
,

where C,C ′ are two universal constants, and ε ∈ (0, 1) is such that ∆min/(2B) −
(m∗2 + 1)ε > 0.

More precisely, notice that the modification on the sample θt has an impact only
in two places in the analysis: in the concentration bound and in the event controlling
optimism. We detail these two points in the following.

8.5.6 Concentration bound

In this subsection, we provide the concentration bound of clip cts-gaussian. Our
strategy here is to either use the concentration from µt or from θt, depending on
which regime is the best for each arm. Thus, we define

S ,
{
i ∈ [n], Γiim(log(T ) + 4 log log(T )) ≥ 4 log2

2(4
√
m)βDi log(|A|2mT )

}
.

We have the following lemma.

Lemma 19.

P

eT
At∩S(µt−1 ∨ θt ∧µt −µt−1) ≥

√
2log(|A|2mT )

∑
i∈At∩S

βDi/Ni,t−1

∣∣∣∣∣∣Ht
 ≤ 1/T .

Proof. We define the functions

αt(A) ,

√√√√2log(|A|2mT )
∑
i∈A

βDi

Ni,t−1
, and λt(A) ,

αt(A)∑
i∈A βDi/Ni,t−1

,

we have

P
[
eT
At∩S(µt−1 ∨ θt ∧µt −µt−1) ≥ αt(At ∩ S)

∣∣Ht]
≤
∑
A∈A

P[eT
A∩S(µt−1 ∨ θt −µt−1) ≥ αt(A∩ S)

∣∣Ht]
≤
∑
A∈A

e−λt(A∩S)αt(A∩S)E

[
eλt(A∩S)‖eA∩S�(0∨(θt−µt−1))‖1

∣∣∣∣Ht]
≤
∑
A∈A

e−λt(A∩S)αt(A∩S)
∏

i∈A∩S
E
[
eλt(A∩S)(0∨(θi,t−µi,t−1))

∣∣∣Ht]
≤
∑
A∈A

e−λt(A∩S)αt(A∩S)
∏

i∈A∩S
E
[
1 + eλt(A∩S)(θi,t−µi,t−1)

∣∣∣Ht]
≤
∑
A∈A

e−λt(A∩S)αt(A∩S)
∏

i∈A∩S
E
[
2eλt(A∩S)(θi,t−µi,t−1)

∣∣∣Ht]
≤
∑
A∈A

2|A∩S|e−λt(A∩S)αt(A∩S)eλt(A∩S)
2
∑

i∈A∩S βDi/(2Ni,t−1)

≤ 1/T .
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We now use the definition of µt to have

eT
At∩Sc(µt−1 ∨ θt ∧µt −µt−1) ≤ eT

At∩Sc(µt −µt−1)

=
∑

i∈At∩Sc

√
Γii

2(log(t) + 4 log log(t))
Ni,t−1

.

To conclude, we have the following event

At,

∆t≤
√

8log(|A|2mT )
∑

i∈At∩S
βDi/Ni,t−1+

∑
i∈At∩Sc

√
Γii

8(log(t) + 4 log log(t))
Ni,t−1

.

Using Proposition 6, we have

∑
t∈[T ]

E[∆tI{At}] ≤
∑
t∈[T ]

E

∆tI

∆t ≤ 2
√

8log(|A|2mT )
∑

i∈At∩S
βDi/Ni,t−1




+
∑
t∈[T ]

E

∆tI

∆t ≤ 2
∑

i∈At∩Sc

√
Γii

8(log(t) + 4 log log(t))
Ni,t−1


.

We can thus apply Theorem 12 and Theorem 13 to get the bound

512 log2
2(4
√
m)

∑
i∈S

∆−1
i,minβDilog(|A|2mT )+128m

∑
i∈Sc

∆−1
i,minΓii(log(T ) + 4 log log(T )).

8.5.7 Optimism

In this subsection, we examine the theoretical impact of considering clip cts-gaussian
on the optimism-controlling event (event ¬Ct), in the case of linear rewards. For this
purpose, we modify the beginning of Step 4 in the analysis by considering the following
events.

• Zt , {∆t > 0}

• Ct ,
{

eT
At
θ̃t > eT

A∗µ
∗ − (m∗(m∗ + 1)/2 + 1)ε

}
• St(Z) ,

{
∀θ′ s.t. 0 ≤ (µ∗ − θ′)� eZ ≤ εeZ , R(θ′ � eZ + θ̃t � eZc ,Z) holds

}
• Tt(Z) ,

{
∃i ∈ Z, µ∗i − µ∗i ∧ θ̃i,t > ε

}
.

• Jt , {∀i ∈ [n],µ∗i ≤ µi,t},

where R(θ′,Z) is the event{
∀A ∈ arg max

A′∈A
eT
A′(θ

′) : Z ⊂ A, eT
Oracle(θ′)θ

′ > eT
A∗µ

∗ − (m∗(m∗ + 1)/2 + 1)ε
}

.

In the above events, θ̃t is µt ∧ θt ∨ µt. The last event Jt holds with probability at
least 1−n/(t log2(t)) from Hoeffding’s inequality (Hoeffding, 1963). We thus assume
that this event hods in the following, since the regret under the complementary event
is bounded by 3.2n∆max. We first state the following lemma.
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Lemma 20.

Zt,¬Ct ⇒ ∃Z ⊂ A∗, Z 6= ∅ s.t. the event St(Z) ∧Tt(Z) holds.

This allows us to consider the success probability P[¬Tt(Z)|Ht] in the analy-
sis. Notice however that Z ⊂ Oracle

((
µ∗ ∧ θ̃t

)
� eZ + θ̃t � eZc

)
, that is guaranteed

when St(Z)∧¬Tt(Z) holds, does not necessarily implies that Z ⊂ Oracle
(
θ̃t
)
. How-

ever, it turns out that the following (true) predicate

Z ⊂ A, ∀A ∈ arg max
A′∈A

eT
A′

((
µ∗ ∧ θ̃t

)
� eZ + θ̃t � eZc

)
implies

Z ⊂ A, ∀A ∈ arg max
A′∈A

eT
A′

(
θ̃t
)
.

This fact is from Lemma 21, with η =
(
µ∗ ∧ θ̃t

)
�eZ + θ̃t�eZc and δ =

(
θ̃t −µ∗ ∧ θ̃t

)
�

eZ .

Lemma 21. Let η ∈ Rn, δ ∈ Rn
+ such that for all A ∈ arg maxA′∈A eT

A′η, we have
Z ⊂ A. Then, for all A ∈ arg maxA′∈A eT

A′(η + δ� eZ), we have Z ⊂ A.

It now remains to explain how to handle the probability P[¬Tt(Z)|Ht] in the
analysis. Notice that from the high probability event Jt, it suffices to treat the case
θ̃t = θt ∨µt. We provide here the places where the analysis differs, the rest of the
proof remains unchanged.

• We use that

P[¬Tt(Z)|Ht] = P
[
∀i ∈ Z, ε∨

(
µ∗i − µi,t−1

)
− 0∨

(
θi,t − µi,t−1

)
≤ ε

∣∣∣Ht],
is a product of functions that are decreasing with respect to ε∨

(
µ∗i − µi,t−1

)
.

• We use that ε ∨
(
µ∗i − µi,t−1

)
≥ g−1

i (ui ∨ gi(ε)) is equivalent to µ∗i − µi,t−1 ≥
g−1
i (ui ∨ gi(ε)). Thus, we don’t sum on s, and can use Assumption 7 with
λ ∈ Rn

+.

Proof of Lemma 20. It is sufficient to prove that

Zt,¬Ct ⇒ ∃Z ⊂ A∗, Z 6= ∅ s.t. St(Z) holds, (8.10)

because ¬Ct and St(Z) together imply Tt(Z). Indeed, see that from ¬Tt(Z), we can
plug θ′ = µ∗ ∧ θ̃t into St(Z) to get

eT
At θ̃t = max

A∈A
eT
Aθ̃t

≥ max
A∈A

eT
A

(
θ′ � eZ + θ̃t � eZc

)
= eT

Oracle
(
θ′�eZ+θ̃t�eZc

)(θ′ � eZ + θ̃t � eZc
)

> eT
A∗µ

∗ − (m∗(m∗ + 1)/2 + 1)ε,

giving Ct. To prove (8.10), we first consider the choice Z = Z1 = A∗. Two cases can
be distinguished:
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1a) ∀θ′ s.t. 0 ≤ (µ∗ − θ′) � eA∗ ≤ εeA∗ , we have A∗ ⊂ A for any action A ∈
arg maxA′∈A eT

A′

(
θ′ � eA∗ + θ̃t � eA∗c

)
.

1b) ∃θ′ s.t. 0 ≤ (µ∗ − θ′)� eA∗ ≤ εeA∗ such that A∗ 6⊂ A for some action A ∈
arg maxA′∈A eT

A′

(
θ′ � eA∗ + θ̃t � eA∗c

)
.

1a) For the first case, consider any vector θ′ such that 0 ≤ (µ∗ − θ′)� eA∗
(8.11)
≤ εeA∗

and let A (8.12)
= Oracle

(
θ′ � eA∗ + θ̃t � eA∗c

)
. We can write

eT
A

(
θ′ � eA∗ + θ̃t � eA∗c

) (8.13)
≥ eT

A∗

(
θ′ � eA∗ + θ̃t � eA∗c

) (8.14)
≥ eT

A∗µ
∗ −m∗ε,

where (8.13) is from (8.12), and (8.14) is from (8.11). This rewrites as

eT
A

(
θ′ � eA∗ + θ̃t � eA∗c

)
≥ eT

A∗µ
∗ −m∗ε > eT

A∗µ
∗ − (m∗(m∗ + 1)/2 + 1)ε,

so Rt(θ
′� eA∗ + θ̃t� eA∗c ,A∗) holds. Therefore, we have proved that St(A∗) holds.

1b) For the second case, we have some vector θ′ such that 0
(8.15)
≤ (µ∗ − θ′)�eA∗

(8.16)
≤

εeA∗ , and some action A ∈ arg maxA′∈A eT
A′

(
θ′ � eA∗ + θ̃t � eA∗c

)
such that A∗ 6⊂ A.

We consider Z2 = A∗ ∩A. We first prove that Z2 6= ∅ by showing that if an action
S′ is such that S′ ∩A∗ (8.17)

= ∅, then A 6= S′:

eT
S′

(
θ′ � eA∗ + θ̃t � eA∗c

) (8.18)
= eT

S′ θ̃t
(8.19)
≤ eT

At θ̃t

(8.20)
≤ eT

A∗µ
∗ − (m∗(m∗ + 1)/2 + 1)ε

< eT
A∗µ

∗ −m∗ε
(8.21)
≤ eT

A∗

(
θ′ � eA∗ + θ̃t � eA∗c

)
,

where (8.18) is from (8.17), (8.19) is from the definition of At, (8.20) is from ¬Ct and
(8.21) is from (8.16). Now, we again distinguish two cases:

2a) ∀θ′′ s.t. 0 ≤ (µ∗ − θ′′) � eZ2 ≤ εeZ2 , we have Z2 ⊂ B for any action B ∈
arg maxA′∈A eT

A′

(
θ′′ � eZ2 + θ̃t � eZ2c

)
.

2b) ∃θ′′ s.t. 0 ≤ (µ∗ − θ′′)� eZ2 ≤ εeZ2 such that Z2 6⊂ B for some action B ∈
arg maxA′∈A eT

A′

(
θ′′ � eZ2 + θ̃t � eZ2c

)
.

Notice that when 0 ≤ (µ∗ − θ′′)� eZ2

(8.22)
≤ εeZ2 , then

eT
A

(
θ′′ � eZ2 + θ̃t � eZ2c

)
≥ eT

A

(
θ′ � eA∗ + θ̃t � eA∗c

)
− (m∗ − 1)ε. (8.23)

Indeed, (8.23) is a consequence of

eT
A

(
θ′′ � eZ2 + θ̃t � eZ2c − θ′ � eA∗ − θ̃t � eA∗c

)
= eT

Z2(θ
′′ − θ′)

= eT
Z2(θ

′′ −µ∗) + eT
Z2(µ

∗ − θ′)
≥ −ε(m∗ − 1) + 0,

where we used (8.22), (8.15) and that Z2 is strictly included in A∗.
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2a) For the first case, considering any vector θ′′ such that 0 ≤ (µ∗ − θ′′)� eZ2 ≤
εeZ2 , we have with B = Oracle

(
θ′′ � eZ2 + θ̃t � eZ2c

)
that

eT
B

(
θ′′ � eZ2 + θ̃t � eZ2c

)
≥ eT

A

(
θ′′ � eZ2 + θ̃t � eZ2c

)
(8.24)
≥ eT

A

(
θ′ � eA∗ + θ̃t � eA∗c

)
− (m∗ − 1)ε

≥ eT
A∗

(
θ′ � eA∗ + θ̃t � eA∗c

)
− (m∗ − 1)ε

(8.25)
≥ eT

A∗µ
∗ −m∗ε− (m∗ − 1)ε,

where (8.24) uses (8.23) and (8.25) uses (8.16). This rewrites as

eT
B

(
θ′′ � eZ2 + θ̃t � eZ2c

)
≥ eT

A∗µ
∗ − (m∗(m∗ + 1)/2 + 1)ε,

so Rt(θ
′ � eZ2 + θ̃t � eZ2c ,Z2) holds, and thus we proved that St(Z2) holds.

2b) For the second case, we have a vector θ′′ such that 0 ≤ (µ∗ − θ′′)�eZ2 ≤ εeZ2

and an action B ∈ arg maxA′∈A eT
A′

(
θ′′ � eZ2 + θ̃t � eZ2c

)
such that Z2 6⊂ B. We

consider Z3 = Z2 ∩B. Again, Z3 6= ∅ because for any S′ such that S′ ∩Z2 = ∅, we
have S′ 6= Oracle

(
θ′′ � eZ2 + θ̃t � eZ2c

)
:

eT
S′

(
θ′′ � eZ2 + θ̃t � eZ2c

)
= eT

S′ θ̃t ≤ eT
At θ̃t

≤ eT
A∗µ

∗ − (m∗(m∗ + 1)/2 + 1)ε
< eT

A∗µ
∗ − (m∗ + (m∗ − 1))ε

≤ eT
A

(
θ′′ � eZ2 + θ̃t � eZ2c

)
,

where the last inequality is obtained in the same way as in inequalities from (8.24)
to (8.25).

We could repeat the above argument and each time the size Zi is decreased by at
least 1. Thus, after at most m∗− 1 steps, since m∗+ (m∗− 1) + (m∗− 2) + · · ·+ 1 =
m∗(m∗ + 1)/2 is still less than m∗(m∗ + 1)2/2 + 1, we could reach the end and find
a Zi 6= ∅ such that St(Zi) holds.

Proof of Lemma 21. Let’s prove that arg maxA′∈A eT
A′(η + δ� eZ) ⊂ arg maxA′∈A eT

A′η.
Consider any action A ∈ arg maxA′∈A eT

A′(η + δ� eZ). If A /∈ arg maxA′∈A eT
A′η,

then there exists B ∈ arg maxA′∈A eT
A′η such that

eT
Aη < eT

Bη.

Furthermore, since Z ⊂ B and δ ≥ 0, we also have

eT
A(δ� eZ) ≤ eT

B(δ� eZ),

so we finally have
eT
A(η + δ� eZ) < eT

B(η + δ� eZ),

contradicting that A ∈ arg maxA′∈A eT
A′(η + δ� eZ).
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Chapter 9

Conclusion and Perspectives

In this chapter, we conclude the thesis. In particular, we state the answers to the
main research questions we raised, summarize the main contributions we have made
and propose some directions for future research.

9.1 Conclusion
Let’s remember that our main interest was to improve the efficiency of the policies,
both from a statistical and computational point of view. We will therefore first look
at how the thesis addressed this point.

Statistical point of view The statistical improvement of policies has been made
on several levels in the thesis, which can be summarized in the following three aspects:

• The improvement and extension of the regret analysis. This point has
been particularly addressed in Chapter 3, where we gave several results widely
usable in the CMAB-T setting in order to prove regret upper bounds. Going
further, a take-home message can be drawn from this chapter, namely that
CMAB-T problems are essentially no more difficult than CMAB ones, because
we can convert the probability pi(St) of observing the arm i into I{i ∈ At} using
conditioning in the expectation of the regret. More specifically, in this chapter,
we provided a simpler state-of-the-art `1 analysis under the `1-norm triggering
probability modulated condition. In addition, under the same condition, we also
provided several `2 analyses that are the first of this kind in CMAB-T. These
last results opened the way to the use of `2 bonuses in CMAB-T problems, such
as the OIM problem, that we considered in Chapter 6.

• The improvement of confidence regions used in optimistic methods.
Apart from the improvement due to the shift from `∞ to `2 regions, the im-
provement of confidence regions was mainly explored in Chapters 4 and 7, where
the use of auxiliary estimates helped to speed up the learning process of the
mean. More precisely, in Chapter 4 for `∞ analysis, the use of the cucb-v
method improved the regret rate by a factor n, leveraging on the 1-sparsity of
the outcomes. We extended this type of improvement in Chapter 7 for `2 analy-
sis, using the estimation of the entire covariance matrix to refine the confidence
regions. We notably proved a tight covariance-dependent regret bound for the
resulting escb-c policy, outperforming over ols-ucb. It should be noted in
passing that the assumption we considered on the outcomes are more practical
than the sub-Gaussian one. Finally, we were able to develop a tight approach
to deal with the case of s-sparse outcomes.
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• The consideration of a non-optimistic policy. We also considered random-
ized policies in Chapter 8, using a Thomspon sampling approach. We could see
in particular that the regret rate of those policies were essentially the same as
the ones for optimistic `2 policies. More precisely, we proposed cts policies in
two different settings, first with a beta prior for independent outcomes (which
was already existing), and then with a Gaussian prior for sub-Gaussian out-
comes. For the two cases, we gave a new tight regret analysis. We also noted
that the empirical performance of cts was generally superior compared to the
optimistic `1 and `2 approaches.

Computational point of view Regarding the computational efficiency of policies,
we can once again detail three aspects:

• Exploitation of the uncertainty structure. Although `2 approaches are
more powerful, they pose some computational efficiency issues when used with
optimistic policies. In Chapter 5, for CMAB with linear reward function, we
were able to develop (for matroid-based action spaces) some methods to remedy
the `2 inefficiency. More precisely, we gave several approximation algorithms
for the maximization of a set function that is a sum of a linear one and a
submodular one. This allowed us to give efficient implementations of the escb
policy with matroid constraints. We also studied the budgeted setting, and
gave an approximation scheme to adapt the above approach.

• Finding an efficient surrogate for exploration bonuses. In Chapter 6,
we circumvented the inefficiency of the `2 methods by relaxing the exploration
bonus under consideration, the goal being that the new bonus, although statisti-
cally less efficient, would be computationally efficient to use in the polities. More
precisely, in the problems we looked at in this chapter (i.e., OIM and BOIM), the
oracle (greedy) leverages the submodularity of the reward function to provide
the 1− 1/e approximation factor. We thus saved the computational efficiency
by constructing submodular surrogate bonuses, since submodularity is closed
under non-negative linear combinations.

• Computational efficiency of the cts policy. Faced with the difficulty
of making optimistic `2 policies efficient, we proposed in Chapter 8 a non-
optimistic alternative, namely cts. As we have already seen, cts obtained
essentially the same performance as the `2 methods, while being computation-
ally efficient to implement. Therefore, this approach is surely the best answer,
in this thesis, to our initial challenge about the trade-off between the two effi-
ciencies: it then seems that such a trade-off is, in fact, unnecessary. As we will
see, we think future efforts should be made to try to transfer systematically any
optimistic `2 approach to a cts approach of the same performance.

Miscellaneous results in combinatorial optimization In this thesis, we also
had the opportunity to study different combinatorial optimization problems. Indeed,
in Chapter 4, we introduced a new sequential search-and-stop problem, that falls into
the CMAB-T setting and the budgeted setting. The offline sequential problem led us
to the formulation of an interesting new combinatorial optimization problem, which
is a variant of the classical scheduling problem 1|prec|∑wjCj where the agent can,
whenever it wishes, restart its search all over again by re-shuffling the not found hid-
den object. We proposed an exact and efficient solution that makes an elegant link
to the exact solution of the original 1|prec|∑wjCj problem. The BOIM problem
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considered in Chapter 6 also led us to formulate a new combinatorial optimization
problem (in the same way, considering the budgeted version of an already known
problem). This problem is the maximization of a ratio between a sub-modular func-
tion and a modular one. We contributed by improving the analysis of the greedy
algorithm for this ratio maximization problem.

9.2 Perspectives
We have already mentioned some possible future works at the end of the corresponding
chapters. Here, we detail those which seem to us the most relevant and promising
with regard to our subject matter, i.e. those related to the cts policy.

Correlated Gaussian prior for cts In our approach, even though we have treated
the general case of correlated sub-Gaussian outcomes, the prior we used in the cts
policy is not (i.e., the components are independent Gaussian random variables). This
independence has been very useful in the analysis, and an interesting open question
is whether we can use a correlated prior. More specifically, under the sub-Gaussian
assumption, we would like to use the prior

N

µt−1,
(

Nij,t−1Γij
Ni,t−1Nj,t−1

)
ij

, (9.1)

which is tighter than the following that we used

N

µt−1, diag

 max
A′∈A, i∈A′

∑
j∈A′

Γij
Ni,t−1


i

. (9.2)

Apart from the gain in the empirical performance of the policy, there are some ad-
vantages to being able to conduct an analysis with the correlated prior (9.1). Indeed,
it then allows us to conduct the Degenne and Perchet (2016b) analysis. This is a
good point for the following reasons

• Admittedly, as we have seen, the bound obtained in the end would depend on
the factor γ and is not as explicit as the one we have obtained (which depends
on the whole covariance), but in cases close to the "arbitrarily correlated" case,
the extra log2(m) is removed (by the way, an interesting question is how to
associate both a dependence in the whole covariance and a suppression of this
log2(m) factor when we approach the "arbitrarily correlated" case).

• We can still conduct the explicit analysis from (9.1), while returning to the
Degenne and Perchet (2016b) analysis from (9.2) does not seem possible.

• This avoids having to calculate maxA′∈A, i∈A′
∑
j∈A′

Γij
Ni,t−1

, that may not be
feasible efficiently. Actually, even if this is feasible, an extension that replaces
Γ with a covariance estimation may raise some issues, as we will see in the next
paragraph.

Covariance estimation for cts Another interesting question is whether an ap-
proach similar to the one presented in Chapter 7 can be used for cts. There may be
more than one way of doing this (e.g., with a prior or with an optimistic estimator
on the covariance), but we argue here that the use of an independent prior as in
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(9.2) may raise some issues. Indeed, the errors generated by the uncertainty that we
have on the covariance estimates then concern non-observed coordinates (because of
the maximum taken on A′ ∈ A). Having a bonus depending on the counters whose
coordinates do not get feedback is redibitory for the analysis. In contrast, a prior of
the form (9.1) doesn’t have that inconvenience, and seems more promising to use for
covariance estimation.

Approximation regret for cts Another unresolved difficulty for cts is its use
for approximation regrets. Although Wang and Chen (2018) have shown that this is
generally impossible, exploiting the special design of some approximation oracles to
prove that cts works with them seems an interesting direction.
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Titre: Apprentissage Efficient dans les Problèmes de Semi-Bandits Stochastiques Com-
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Résumé: Les problèmes de semi-bandits
stochastiques combinatoires se présentent na-
turellement dans de nombreux contextes où le
dilemme exploration/exploitation se pose, tels
que l’optimisation de contenu web (recomman-
dation/publicité en ligne) ou encore les méth-
odes de routage à trajet minimal. Ce prob-
lème est formulé de la manière suivante : un
agent optimise séquentiellement une fonction
objectif inconnue et bruitée, définie sur un en-
semble puissance P([n]). Pour chaque ensem-
ble A testé, l’agent subit une perte égale à
l’écart espéré par rapport à la solution opti-
male tout en obtenant des observations lui per-
mettant de réduire son incertitude sur les co-
ordonnées de A. Notre objectif est d’étudier
l’efficience des politiques pour ce problème, en
nous intéressant notamment aux deux aspects

suivants : l’efficience statistique, où le critère
considéré est le regret subi par la politique
(la perte cumulée) qui mesure la performance
d’apprentissage ; et l’efficience computationnelle
(i.e., de calcul). Il est parfois difficile de réunir
ces deux aspects dans une seule politique. Dans
cette thèse, nous proposons différentes direc-
tions pour améliorer l’efficience statistique, tout
en essayant de maintenir l’efficience computa-
tionnelle des politiques. Nous avons notamment
amélioré les méthodes optimistes en dévelop-
pant des algorithmes d’approximation et en af-
finant les régions de confiance utilisées. Nous
avons également exploré une alternative aux
méthodes optimistes, à savoir les méthodes ran-
domisées, et avons constaté qu’elles constituent
un candidat sérieux pour pouvoir réunir les deux
types d’efficience.

Title: Efficient Learning in Stochastic Combinatorial Semi-Bandits
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Abstract: Combinatorial stochastic semi-
bandits appear naturally in many contexts
where the exploration/exploitation dilemma
arises, such as web content optimization (recom-
mendation/online advertising) or shortest path
routing methods. This problem is formulated as
follows: an agent sequentially optimizes an un-
known and noisy objective function, defined on
a power set P([n]). For each set A tried out, the
agent suffers a loss equal to the expected devi-
ation from the optimal solution while obtaining
observations to reduce its uncertainty on the co-
ordinates from A. Our objective is to study the
efficiency of policies for this problem, focusing
in particular on the following two aspects: sta-

tistical efficiency, where the criterion considered
is the regret suffered by the policy (the cumu-
lative loss) that measures learning performance;
and computational efficiency. It is sometimes
difficult to combine these two aspects in a single
policy. In this thesis, we propose different direc-
tions for improving statistical efficiency, while
trying to maintain the computational efficiency
of policies. In particular, we have improved op-
timistic methods by developing approximation
algorithms and refining the confidence regions
used. We also explored an alternative to the
optimistic methods, namely randomized meth-
ods, and found them to be a serious candidate
for combining the two types of efficiency.
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