
HAL Id: tel-03094373
https://theses.hal.science/tel-03094373v1

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logiques de séparation : complexité, expressivité, calculs
Alessio Mansutti

To cite this version:
Alessio Mansutti. Logiques de séparation : complexité, expressivité, calculs. Logique en informatique
[cs.LO]. Université Paris-Saclay, 2020. Français. �NNT : 2020UPASG050�. �tel-03094373�

https://theses.hal.science/tel-03094373v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
G
0
5
0

Reasoning with Separation Logics
Complexity, Expressive Power, Proof Systems

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, Sciences et technologies de l’information
et de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay

Référent: ENS Paris-Saclay

Thèse présentée et soutenue en visioconférence totale,
le 10 Décembre 2020, par

Alessio MANSUTTI

Composition du jury:

Erich Grädel Président
Professor, RWTH Aachen, Germany
Radu Iosif Rapporteur
Chargé de recherche CNRS, Université Grenoble Alpes, France
David Pym Rapporteur
Professor, University College London, UK
Leonid Libkin Examinateur
Professor, École Normale Supérieure, France
Mihaela Sighireanu Examinatrice
Professor, ENS Paris-Saclay, France

Stéphane Demri Directeur
Directeur de recherche CNRS, ENS Paris-Saclay, France
Étienne Lozes Codirecteur
Professor, Université Côte d’Azur

Abstract

This thesis proposes an in-depth study of classical decision problems, such as satisfiability and
validity, for separation logics: well-known assertion languages developed to verify sequential
and concurrent programs with dynamic memory allocation. The main features of separation
logics are given by two binary connectives: the separating conjunction ∗ and the separating
implication −∗. These two connectives use second-order features in order to express spatial
properties, and allow the verifier to modularly analyse the memory.

The first part of the thesis focuses on the notion of reachability predicates in separation
logics. A location `1 (a.k.a. a memory address) is said to be reachable from a second location `2
whenever subsequent dereferentiations of `2 yield `1. Together with first-order quantification,
reachability predicates allow to check for several robustness properties of the memory, such as
acyclicity (i.e. the absence of cycles) and garbage freedom (i.e. the absence of dangling pointers).
Our goal is to devise a separation logic featuring these types of predicates, while keeping the
complexity of its satisfiability problem in check. This is easier said than done, as we show
that several separation logics are largely intractable (undecidable or non-elementary decidable).
Nonetheless, by studying the sources of intractability we are able to design a PSpace fragment
of first-order separation logic that is able to express the desired robustness properties. The
PSpace membership is shown through the core formulae technique, a model theoretic approach
that is reminiscent of Gaifman’s locality theorem for first-order logic.

The second part of the thesis tackles the open problem of designing Hilbert-style axiomatisa-
tions for separation logics. An axiomatisation is said to be Hilbert-style (or internal) whenever
its axioms and inference rules are built solely from formulae of the logic, without any external
machinery such as labels or nominals. In particular, we introduce the first sound and complete
internal proof system for the quantifier-free fragment of separation logic. The completeness of
the system is shown by taking advantage of the core formulae technique introduced in the first
part of the thesis. In order to show that this technique can be reused on other logics, we design
an axiomatisation for a modal logic enriched with the composition operator from ambient logic
(a logic to verify distributed systems). The two proof systems reveal interesting connections
between separation logics and ambient logics.

Motivated by the similarities in their proof systems, in the third part of the thesis we dig deep
in the connections between separation logic and ambient logic. To carry out our comparison, we
devise a suitable framework based on modal logic. This framework gives us the common ground
needed in order to study the two logics from the point of view of their spatial connectives: the
separating conjunction ∗ for separation logic and the parallel composition for ambient logic.
Surprising similarities and differences are discovered, both in terms of expressive power and
computational complexity.

i

Contents

Contents iii

1 Introduction 1
1.1 Scalable Reasoning about Programs . 3
1.2 Pointer Program Verification and Separation Logic 5
1.3 Between Theory and Practice . 7
1.4 Our Work . 8
1.5 Prerequisites and Basic Notations . 12

2 Separation Logic 15
2.1 A Logic for Shared Mutable Data Structures . 17
2.2 Fragments of SL(∃, ∗,−∗) and Second-Order Logic 28
2.3 Other Separation Logics and Bunched Logics 33

I Reachability Queries in Separation Logic 41

Introduction: Robustness Properties of Logical Assertions 43

3 Extensionality and Reachability Leads to Non-enumerability 47
3.1 Encoding Assignments as Memory Cells . 51
3.2 Simulating the First-order Quantification . 55
3.3 Reachability Predicates can Quantify . 65

4 Intensionality and Reachability Leads to Non-elementary Logics 73
4.1 The Hardness of Reachability and Submodel Reasoning 77
4.2 On the Expressive Power of ALT . 81
4.3 The Complexity of ALT . 97
4.4 Revisiting Tower-hard Logics with ALT . 103

5 Deciding Robustness Properties in PSpace 115
5.1 Taming the Robustness Properties . 119
5.2 Towards Small Models: The Core Formulae Technique 122
5.3 A Family of Core Formulae Capturing the Fragment W 127
5.4 Recap: How to Apply the Core Formulae Technique 144
5.5 A Family of Core Formulae Capturing the Fragment S 146
5.6 Connecting the Two Families of Core Formulae 221

iii

iv Contents

Conclusion 269

II Internal Calculi for Spatial Logics 273

Introduction: Internal Proof Systems via Core Formulae 275

6 A Complete Axiomatisation for Quantifier-free Separation Logic 279
6.1 Axiomatising SL(∗,−∗), Internally . 283
6.2 An Hilbert-style proof system for SL(∗,−∗) . 285
6.3 Main ingredients of the method . 290
6.4 A Simple Calculus for the Core Formulae . 291
6.5 Syntactical elimination of the Separating Conjunction 295
6.6 Syntactical elimination of the Separating Implication 316

7 Axiomatising a Modal Logic Featuring Ambient-like Composition 337
7.1 A Taste of Ambient Logic . 341
7.2 The Modal Logic ML() . 342
7.3 Towards an Hilbert-style proof system for ML() 346
7.4 Graded Modalities as Core Formulae . 348
7.5 Syntactical Elimination of the Composition Operator 352

Conclusion 367

III Mixing Multiplicative Connectives and Modalities 369

Introduction: Two Ways to Chop a Tree 371

8 The Complexity of the Modal Logic ML() 373
8.1 ML() and GML as fragments of second-order ML 377
8.2 Checking satisfiability for ML(), in AExpPol 380
8.3 ML() is AExpPol-complete . 390
8.4 An AExpPol-complete Static Ambient Logic 397

9 The Complexity and Expressive Power of the Modal Logic ML(∗) 403
9.1 ML(∗): when ∗ replaces . 407
9.2 ML(∗) is Strictly Less Expressive than ML() 411
9.3 The complexity of ML(∗) . 432
9.4 Revisiting Tower-hard Logics with ML(∗) . 459

Conclusion 465

References 469

A Appendix of Chapter 3 481

B Appendix of Chapter 4 491

C Appendix of Chapter 5 511

Contents v

D Appendix of Chapter 6 551

E Appendix of Chapter 7 559

F Appendix of Chapter 8 567

G Appendix of Chapter 9 575

List of Notations and Symbols 585

List of Definitions 589

List of Figures 591

Index 595

1

Introduction

Contents
1.1 Scalable Reasoning about Programs . 3
1.2 Pointer Program Verification and Separation Logic 5
1.3 Between Theory and Practice . 7
1.4 Our Work . 8

1.4.1 Part I : Reachability queries in separation logic. 9
1.4.2 Part II : Internal calculi for spatial logics. 10
1.4.3 Part III : Mixing multiplicative connectives and modalities. 11

1.5 Prerequisites and Basic Notations . 12

1

1.1. Scalable Reasoning about Programs 3

1.1 Scalable Reasoning about Programs

In the craft of programming, resource management plays a central role. The finiteness of re-
sources such as time and space led computer scientists to an ever going quest for faster and
more efficient algorithms that eventually evolved to what is now known as Complexity Theory.
In fact, as noticed by M. Y. Vardi in the May 2020 Communications of the ACM [140]:

“generations of computer scientists [were taught] that analysis of algorithm only means
analyzing their computational efficiency. As Wikipedia states: “In computer science,
the analysis of algorithms is the process of finding the computational complexity of
algorithms—the amount of time, storage, or other resources needed to execute them.”
In other words, efficiency is the sole concern in the design of algorithms.”

Efficiency is however only one facet of software and, due to the ubiquitousness of technology
in our society, the craft of programming is naturally evolving to consider other qualities of
programs, such as security and resilience. Broadly speaking, both security and resilience evaluate
the robustness of systems against disruptive changes in the environment. Both these qualities are
more abstract than efficiency. The latter is evaluated quantitatively: time-wise, we are interested
in the numbers of operations needed in order to perform an algorithm, whereas space-wise we are
interested in numbers of memory cells that are simultaneously being used. Not only efficiency
is relatively simple to assess, it is also compositional: if on an input of size n two programs
f and g respectively require n and m operations, then running g and f sequentially on the
same input requires n + m operations. On the other hand, there is no “magic number” to
evaluate the security or resilience of software. These are not absolute properties of all software,
and they heavily depend on the environment and its interactions with the computer program.
The problem of formalising these properties is thus far from trivial, and becomes even harder
if we want the specifications to be easily composed as it is done in the case of running time.
Summarising the central message of [140], the trade-off between efficiency and security/resilience
has now become a central problem in computer science.

The formal specification and analysis of qualitative properties of software (correctness, re-
silience, security etc.) is known as Program Verification. Even though the first attempts of
verifying routines trace back to A. Turing and J. von Neumann (see e.g. [134]), the math-
ematical foundation of this field were set at the end of the sixties by C. A. R. Hoare and
R. W. Floyd [87, 71]. In their works, the central idea is to formalise the properties of a system
by means of logical assertions, and track their evolution as the instructions of the program fire.
This idea is formalised with a proof system known as Hoare logic, were judgements are given by
Hoare triples of the form {ϕ} P {ψ} , which should be read as:

“Every model that satisfies the assertion ϕ will, after being modified by the program P ,
satisfy the assertion ψ (if P terminates).”

Here, ϕ and ψ are called the precondition and postcondition of the Hoare triple, respectively,
and a model is a mathematical structure that abstract the resources that the program uses. The
semantics above follows the notion of partial correctness, which in contrast with total correctness
does not require P to terminate: if P does not terminate, then the postcondition is assumed to be
satisfied. As an example, a possible model could be the domain of functions going from program
variables to real numbers, and a program could be as simple as an assignment instruction of the
form x← expr , which assigns to the variable x the result of an arithmetic expression expr. A
possible assertion language could be given by a logic featuring the classical Boolean connectives

4 Chapter 1. Introduction

(conjunction ∧, disjunction ∨ and negation ¬) together with atomic propositions of the form
expr1 = expr2 stating that the result of two arithmetical expressions expr1 and expr2 coincide.
With respect to these objects, the following Hoare triple is valid:

{x = 1 ∧ y = 1} x← x− y {x = 0 ∧ y = 1}.

Indeed, the precondition x = 1 ∧ y = 1 restricts the set of possible models to the class of
functions f such that f(x) = 1 and f(y) = 1. The instruction x ← x − y modifies f(x) so that
it is equivalent to the value of f(x) − f(y) (before the update, i.e. 0). The resulting function
satisfies the postcondition x = 0∧y = 1. To formally prove the validity of Hoare triples without
semantical arguments (as we just did), Hoare logic provides a set of axioms and inference rules
to syntactically manipulate and derive new Hoare triples. For instance, with respect to the
assignment x← expr , Hoare logic features the axiom schema

(assign) {ϕ[x← expr]} x← expr {ϕ},

where ϕ[x← expr] is the assertion obtained from ϕ by syntactically replacing all occurrences of x
with expr (without evaluating expr). By instantiating the axiom (assign) so that ϕ corresponds
to the assertion x = 0 ∧ y = 1, we deduce that {x− y = 0 ∧ y = 1} x ← x− y {x = 0 ∧ y = 1}
is a valid Hoare triple. Notice that this triple is equivalent to the previous one we proved
semantically, even though its precondition is syntactically different. To solve this discrepancy,
we can rely on the (left) weakening rule

(weak)
ϕ |= ϕ′ {ϕ′} P {ψ}

{ϕ} P {ψ}
.

Here, the entailment ϕ |= ϕ′ between logical assertions ϕ and ϕ′ states that every model satis-
fying ϕ also satisfies ϕ′. Given a valid triple {ϕ′} P {ψ} and a precondition ϕ that is stronger
than ϕ′, i.e. ϕ |= ϕ′, the rule (weak) allows us to deduce the validity of the triple {ϕ} P {ψ} .
Since the entailment x = 1∧y = 1 |= x−y = 0∧y = 1 holds, by instantiating (weak) as follows

x = 1 ∧ y = 1 |= x− y = 0 ∧ y = 1 {x− y = 0 ∧ y = 1} x← x− y {x = 0 ∧ y = 1}
{x = 1 ∧ y = 1} x← x− y {x = 0 ∧ y = 1}

we derive the triple {x = 1 ∧ y = 1} x← x− y {x = 0 ∧ y = 1} purely syntactically.
Hoare logic works very well when used to verify programs manipulating primitive data types

such as numeric domains, but struggles when dealing with more structured data and, in par-
ticular, when dealing with programs that manipulates pointers [115]. There are several reasons
for this, but the crucial one has to do with the modularity of the proof system. As previously
mentioned, the efficiency of an algorithm can be studied in terms of its components, which
allows us to scale the computational analysis to large programs. When it comes to Hoare logic,
this type of modularity is deeply tangled with the concept of independence between variables.
For instance, let us take the two-instructions program x ← x − y; z ← x . The effects of the
first instruction does not depend on the value assigned to the variable z, whereas the second
instruction is independent from y. To achieve modularity, we would like to reason separately
on these instructions, and only consider pre- and post-conditions containing variables that are
meaningful for the evaluation of the instruction under analysis. Intuitively, this property would
allow us to scale the verification to larger programs, as atomic instructions only consider a tiny
subsets of all variables and data structures used by the program. More formally, modularity can
be achieved in Hoare logic as soon as we add the following rule of constancy:

1.2. Pointer Program Verification and Separation Logic 5

(const)
{ϕ} P {ψ} all variables in χ are not modified by P

{ϕ ∧ χ} P {ψ ∧ χ}
.

Fundamentally, this rule allows us to drop from the precondition all superfluous information
(represented by the assertion χ) about variables that are not considered by P , carry out the
proof of {ϕ} P {ψ} that features the simpler assertion ϕ and ψ, and then push back the
superfluous information directly in the postcondition. Intuitively, we expect this very natural
inference rule to hold: if P does not modify the variables occurring in χ, then this assertion
should still be satisfied after the execution of P . Unfortunately, (const) fails when considering
programs manipulating pointers (or more generally having instructions with side effects).

The main problem is due to pointer aliasing. Borrowing the syntax of the C programming
language, let us write ∗x for the result of dereferencing the pointer variable x, so that the
instruction ∗x ← ∗y change the value stored in the address referenced by x to the value stored
in the address referenced by y. Intuitively, the Hoare triple {∗x = 1} ∗x ← 0 {∗x = 0} is valid.
Since the variable y does not occur in the instruction ∗x ← 0, we can apply the rule (const)
instantiated so that χ corresponds to the formula ∗y = 0, and derive the triple

{∗x = 0 ∧ ∗y = 0} ∗x← 1 {∗x = 1 ∧ ∗y = 0}.

However, this triple is not semantically valid, as the pointer variables x and y could reference
the same address, i.e. they could be in aliasing, which implies that the instruction ∗x ← 1 has
the side effect of setting ∗y to 1, invalidating the assertion ∗y = 0 in the postcondition.

1.2 Pointer Program Verification and Separation Logic

Because of the inconsistency between (const) and pointer aliasing, Hoare logic does not scale
well when dealing with the verification of pointer programs. As most software use pointers on
a regular basis, up to the 2000s this prevented the use of Hoare logic to check industrial level
code. As pointed out by P. W. O’Hearn, J. C. Reynolds and H. Yang in [114, 115], the main
problem is

“[that] there is a mismatch between simple intuitions about the way that pointer oper-
ations work and the complexity of their axiomatic treatments [in Hoare logic]”.

Indeed, the atomic instructions manipulating pointers modify the memory only locally, leaving
most of it unaffected. As remarked for the rule (const), this feature shapes our intuition,
which tells us that most of the properties expressed in a precondition should still be true after
an atomic instruction is executed. The struggles in using Hoare logic for pointer programs lie
in counter-intuitive fact that, again quoting [114],

“an alteration of a [single memory] cell may affect the values of many syntactically
unrelated expressions”.

From the seventies until the end of the nineties, several works tried to partially solve this problem.
First attempts were focused on describing the memory directly in the assertion language [96,
106, 14]. What was clear at the time was that the assertion language should be able to describe
the notion of spatiality of the memory, where two pointer variables that are not in aliasing
correspond, spatially, to syntactically distinct objects in the assertions. In this sense, the first
notable result was put forward by R. M. Burstall in [31]. In his Distinct Non-Repeating List
system (DNRL), Burstall introduced assertions that implicitly represent the notion of non-

6 Chapter 1. Introduction

ϕ ∗ ψ ⇔

ϕ

ψ

Figure 1.1: The separating conjunction ∗.

aliasing in a compact way. For instance, the assertion language of DNRL features tuples of the
form ∗(x ↪→ y, y ↪→ z, v ↪→ z) that are semantically equivalent to the assertion

∗x = y ∧ ∗y = z ∧ ∗v = z ∧ x 6= y ∧ x 6= v ∧ y 6= v.

Essentially, not only the DNRL tuple expresses properties such as “x points to y”, which means
that the value stored by the addresses referenced by x is the address referenced by y (i.e. ∗x = y),
it also represents the notion of non-aliasing: if x ↪→ y and v ↪→ z belong to a DNRL tuple (in
distinct positions), then x and v refer to different addresses. Then, a DNRL n-tuple divides the
memory in n spaces by implicitly encoding O(n2) inequalities between pointer variables.

Based on the ideas of Burstall, in the early 2000s P. W. O’Hearn and J. C. Reynolds,
together with C. Calcagno, D. Distefano, D. Pym, H. Yang and the contribution of several
other researchers, developed separation logic [124]: an extension of Hoare logic that permits
scalable reasoning of pointer programs. This extension affects both the assertion language used
for pre/postconditions and the set of Hoare-style axioms and inference rules.

Separation logic generalises the notion of spatiality given by DNRL tuples to a solid mathe-
matical theory where the memory is seen as a resource that can be partitioned. To achieve this,
the logic applies in a fundamental way the developments on resource reasoning given by the logic
of Bunched Implication (BI) introduced by Pym and O’Hearn [113]. The essential feature of BI
and of the assertion language of separation logic (which, despite de ambiguity, we refer to sim-
ply as separation logic) is given by a binary connective ∗, called separating conjunction, which
roughly stands for “and, separately”. A formula ϕ∗ψ of BI is satisfied by a resource r (in the case
of separation logic, the memory) if r can be partitioned into two pieces, one satisfying ϕ and the
other satisfying ψ. Figure 1.1 intuitively depicts the spatial partitioning performed by the sep-
arating conjunction. Intuitively, one can then encode the DNRL tuple ∗(x ↪→ y, y ↪→ z, v ↪→ z)
in separation logic1, with a simple change of notation:

x ↪→ y ∗ y ↪→ z ∗ v ↪→ z.

Indeed, thanks to the separating conjunction ∗, which partitions the memory in distinct pieces,
the three variables x, y and v are implicitly assumed to refer to three distinct addresses.

Most importantly, the connective ∗ solves the mismatch between the local effect of atomic
instructions on the memory and their global effect on the pre- and post-conditions, as it allows
us to elegantly rephrase the rule (const) as follows:

(frame)
{ϕ} P {ψ} all variables in χ are not modified by P

{ϕ ∗ χ} P {ψ ∗ χ}
.

1In this thesis, we use the term separation logic for both the Hoare proof system and its assertion language.

1.3. Between Theory and Practice 7

This rule, known as the frame rule, recovers the modularity of the rule of constancy lost when
dealing with pointer programs, and paves the way for analysing large programs. It reflects
our intuition that if P does not modify the variables in χ, then the satisfaction of χ should not
change after executing P . In the context of industrial applications, one cannot stress enough the
benefits on scalability given by (frame). Not only this rule allows us to verify large programs
in the first place, it also enables a quick analysis of successive updates to an already verified
software, by only considering the portion of the code that has effectively changed. Last but not
least, the frame rule allows us to split the proof in numerous independent subproofs, which can
be checked in parallel.

1.3 Between Theory and Practice

The scalable reasoning enabled by separation logic had a vast impact in the full spectrum of
program verification, from academic and theoretical research to industrial applications. After
20 years from its first theoretical developments, separation logic is now deployed in numerous
industrial tools of program analysis. A vast literature as been written on the subject, and we
invite the reader to look at the insightful paper “Why separation logic works”, by D. Pym,
J. M. Spring and P. W. O’Hearn [116], as well as the article by O’Hearn in the February 2019
Communications of the ACM [115], to better understand the effects that separation logic had
on the field. It is worth noting that scalable reasoning is only one of the reasons why separation
logic is successful. Below, we summarise two other qualities of this logic.

Catastrophic errors. Despite doable in theory, the industrial tools using separation logic
offers limited assistance when it comes to verify the correctness of the results given by an
algorithm. However, these tools shine in the analysis of exhaustible resources, such as memory.
They allow us to verify whether software generates memory leaks or null pointer exceptions,
and they can do so with little to no guidance provided by the programmer. As stated at the
beginning of the introduction, resource management plays a central role in computer science,
and error due to exhausting or misusing available resources are perhaps the most severe ones.
As explained in [116], “a program with a memory management error will behave erratically or
fail suddenly”, which can not only lead to a fatal failure of the whole computer system, but also
results in serious security flaws.

Automation and bi-abduction. Hoare logic often requires the programmer to guide the
verification by annotating the code with pre- and post-conditions, in particular for loop invari-
ants. This prevents the practical use of Hoare logic on old unannotated software, and it is a
bottleneck in industrial deployment, as the programmer must provide both the implementation
and part of its verification. In order to scale the verification to millions of lines of code, tools
based on separation logic can be built to be completely automatic (see e.g. Infer [38]). To
reach automation, separation logic relies on an inference problem, called bi-abduction, intro-
duced in [37] by D. Distefano, C. Calcagno, P. W. O’Hean and H. Yang. While the formal
definition of bi-abduction will follow in Section 2.3.1, we can informally describe solutions of
this problem as ways of “stitching” the postcondition ψ1 of a Hoare triple {ϕ1} P1 {ψ1} with the
precondition ϕ2 of a second Hoare triple {ϕ2} P2 {ψ2} so that the entailment ψ1 |= ϕ2 holds,
which allows us to then deduce the validity of {ϕ1} P1;P2 {ψ2} by simply applying the rule of

8 Chapter 1. Introduction

sequential composition of Hoare logic. Thanks to bi-abduction, the problem of deriving suitable
pre- and post-conditions can be fully automated.

Research on separation logic essentially branches out into two directions, the one studying
and developing the Hoare-style calculus, and the one focused on its assertion language. The
major achievement of the first direction, which is at the intersection of programming languages,
concurrency theory and static/symbolic analysis, was perhaps showing the feasibility of modular
reasoning to the program verification community. The philosophy behind separation logic was
quickly picked up by several other fields outside of pointer programs analysis, as shown for
instance by the recent works [7, 6] on probabilistic programming languages. As a testament of
the impact that this direction had in the field of program analysis, the 2016 Göedel prize was
awarded to S. Brookes and P. W. O’Hearn for their work on concurrent separation logic [24, 23],
an extension of separation logic for program verification of concurrent programs with shared-
memory. The Hoare calculi based on separation logics form the foundation of several tools,
from the first solvers Smallfoot and SpaceInvader [13, 144] and their successors Infer and
Slayer [38, 12], to the concurrent separation logic framework Iris [94] and the new language-
independent framework Gillian [126].

The research on the assertion language, which is rooted in mathematical logic, has also been
undoubtedly active and fruitful. As shown by the weakening rule (weak), Hoare logic (and
separation logic) require to solve classical decision problems, e.g. the entailment between two
assertions, in order to build the proof. The first iteration of separation logic [124] featured
an assertion language with undecidable satisfiability, validity and entailment problems, which of
course limited its automation. Aiming for efficiency, J. Berdine, C. Calcagno and P. W. O’Hearn
studied a lightweight fragment of separation logic, known as the symbolic heap fragment (SH),
that can be decided in PTime [10]. The tractability of SH made it the go to assertion language
for several separation logic tools, as for instance Smallfoot and Infer. Subsequent works
made a huge efforts to analyse assertion languages that sits between SH and the first separation
logic from [124]. For practical purposes, several authors studied the addition to SH of (user-
defined) inductive predicates in order to reason on data structures such as lists or trees [44, 28,
92, 65, 93, 101]. In this direction, very recently J. Pagel, C. Matheja and F. Zuleger defined a
2ExpTime algorithm for the entailment problem of SH with inductive definitions of bounded
treewidth [118], matching the 2ExpTime-hardness by M. Echenim, R. Iosif and N. Peltier [64].
On the more theoretical side, it is known from [53] that the first-order separation logic restricted
to two quantified variables is already undecidable, in contrast with the NExpTime-completeness
of the two-variable fragment of first-order logic [84]. The restriction of first-order separation logic
to one quantified variable is however PSpace [55].

The broadness of works on this topic is also due to the fact that separation logic appears to
lie on a sweet spot between theory and practice. Besides its practical applications that led to
its industrial success, separation logic is based on the rigorous and elegant theory of the logic
of bunched implications, which attracted attention in different fields of mathematical logic such
as topology, proof theory and modal logic. On this matters, we invite the reader to look at the
PhD thesis of S. Docherty [60].

1.4 Our Work

This thesis focuses on the assertion language of separation logic. Broadly speaking, our goal is
to methodically analyse features of separation logic, primarily the separating conjunction ∗ and

1.4. Our Work 9

the separating implication −∗ (i.e. the right-adjoint of ∗), to improve our understanding of the
logic from a computational and proof theoretical point of view. In doing so, we draw connections
between separation logic and other logics, most notably ambient logics [34] and modal logics [15].

The thesis is naturally split into three parts (not counting the technical background on sep-
aration logic given in Chapter 2), each having its own introduction and conclusion. The first
part consider the role of reachability predicates in separation logic, and study their computa-
tional complexity. To start, we substantially refine the analysis on the separating implication −∗
started with [22] and [53] in order to understand the reasons behind of the high computational
status of separation logic. We show a way of handling the operator −∗, together with reachability
predicates, to design an expressive separation logic whose satisfiability, validity and entailment
problems are “only” PSpace-complete. In the second part of the thesis, we apply proof tech-
niques introduced in the first part to tackle the open problem of designing Hilbert-style calculi for
separation logics and other spatial logics. Interestingly, this part reveals connections between
separation logic and ambient logics. In the third part ot the thesis, we propose an in-depth
analysis of these connections from the point of view of complexity and expressive power. Each
chapter should be sufficiently self-contained, with perhaps the exception of Chapters 7 and 8.

Below, we give a more detailed view on the contributions of the thesis.

1.4.1 Part I : Reachability queries in separation logic.

Reachability predicates, such as the list segment predicate ls(x, y), are perhaps the most studied
types of inductive predicates in separation logic. Roughly speaking, ls(x, y) holds in a memory
that can be represented as a linear structure that starts with the address corresponding to the
variable x and ends, through dereferentiation, in the address corresponding to the variable y.
It is known that the entailment problem of the symbolic heap fragment enriched with ls(x, y)
can be solved in PTime [44]. However, when considering richer separation logics that are closed
under Boolean connectives and feature both the separating conjunction ∗ and implication −∗,
the addition of reachability predicates has not been studied. This is quite surprising, as these
types of logics are able to express several properties of the memory that are fundamental in
program analysis, such as acyclicity and garbage freedom. In Chapters 3, 4 and 5, we undertake
a journey through these types of logics, with the aim of finding one that is decidable in PSpace.

Here is a roadmap of Part I:

Chapter 3. We show that the quantifier-free separation logic SL(∗,−∗, ls) featuring Boolean
connectives, both operators ∗ and −∗, and the reachability predicate ls(x, y), admits non recur-
sively enumerable satisfiability and validity problems. This result is extended to several other
separation logics, most notably SL(∗,−∗, ↪→2, ↪→3), i.e. the fragment of SL(∗,−∗, ls) only featur-
ing the bounded reachability predicates x ↪→δ y, where δ ∈ {2, 3}, stating that dereferencing δ
times the address corresponding to the variable x yields the address corresponding to y. This
chapter covers the first part of the work published in:
[56] S. Demri, E. Lozes, and A. Mansutti, “The effects of adding reachability predicates in

propositional separation logic,” in Foundations of Software Science and Computational
Structures, ser. LNCS, vol. 10803. Springer, 2018, pp. 476–493.

Chapter 4. Distressed by the results in Chapter 3, we introduce an Auxiliary Logic on Trees
(ALT), a modal logic that allows us to focus on the interactions between reachability predicates

10 Chapter 1. Introduction

and submodel reasoning, without the specificity of separation logic. After looking at the ex-
pressive power of ALT by defining a suitable notion of Ehrenfeucht-Fräıssé games, we show that
the satisfiability problem of ALT is Tower-complete, and thus non-elementary decidable [128].
This result extends to several logics interpreted on tree-like structures that where independently
found to be Tower-complete: quantified computation tree logic, modal separation logic and
modal logic of heaps. Moreover, it shows that the separation logic SL([∃]1, ∗, x ↪→ , ↪→+) already
admits a non elementary satisfiability problem. This logic features Boolean connectives, the
separating conjunction ∗, one quantified variable, the predicate alloc x ↪→ and the reachability
predicate x ↪→+y. Chapter 4 covers the work published in:
[108] A. Mansutti, “An auxiliary logic on trees: on the tower-hardness of logics featuring reach-

ability and submodel reasoning,” in Foundations of Software Science and Computational
Structures, ser. LNCS, vol. 12077. Springer, 2020, pp. 462–481.

Chapter 5. The negative results of Chapter 3 and Chapter 4 guide us to the definition of the
separation logic SL([∃]1, ∗, [−∗, ↪→+]SW) that is able to express properties such as acyclicity and
garbage freedom, and admits a PSpace-complete satisfiability problem. To show the PSpace
upper bound of the satisfiability problem for SL([∃]1, ∗, [−∗, ↪→+]SW), we extend the proof method
of the core formulae introduced by E. Lozes in [104]. More precisely, we show that every formula
of SL([∃]1, ∗, [−∗, ↪→+]SW) can be translated into a Boolean combination of “core” formulae, for
which we show a polynomial small model property. Understanding this technique, which is
connected to the first-order locality theorem proved by H. Gaifman in [73], gives us a new line of
attack on the problem of designing Hilbert-style proof systems for separation logic. This chapter
covers the second part of the work published in:
[107] A. Mansutti, “Extending propositional separation logic for robustness properties,” in Foun-

dations of Software Technology and Theoretical Computer Science. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018, pp. 42:1–42:23.

1.4.2 Part II : Internal calculi for spatial logics.

Despite the amount of research done on the computational complexity of separation logics, we
know comparatively very little in terms of its proof systems. In the second part of the thesis,
we try to shrink this gap by considering the problem of designing sound, complete and internal
(a.k.a. Hilbert-style) proof systems for separation logics and similar logics. We recall that a
proof systems, is complete whenever it can derive every semantically valid formula, and it is
internal if its axioms and rules only use formulae of the logic, without relying on any external
(and richer) theory. Fortunately, the insights given by the core formulae technique discussed
in Chapter 5 facilitate our tasks, allowing us to design natural axiomatisations for these logics.

Here is a roadmap of Part II:

Chapter 6. We present the first Hilbert-style proof system for the quantifier-free separation
logic SL(∗,−∗), featuring Boolean connectives and both the separating conjunction and implica-
tion. Thanks to the core formulae technique, our axiomatisation is modular: we start from a
Boolean algebra for the core formulae, and then extend it (twice) to support the connectives ∗
and −∗. This allows us to derive a form of constructive completeness, as advocated in [61]. This
chapter covers the first part of the work published in:

1.4. Our Work 11

[58] S. Demri, E. Lozes, and A. Mansutti, “Internal calculi for separation logics,” in Computer
Science Logic, ser. LIPIcs, vol. 152. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020, pp. 19:1–19:18.

Chapter 7. In order to show that our methodology is reusable in practice, we apply it to
axiomatise an ambient logic called ML(). Ambient logics [39, 34] are modal logics introduced
to verify properties of distributed systems specified in the calculus of Mobile Ambients [40].
Their main feature is given by the composition operator ϕ ψ that, similarly to the separating
conjunction, asks to spatially split the distributed process into two pieces, one satisfying the
formula ϕ and the other satisfying the formula ψ. The axiomatisation of ML() follows the same
principles as the one of SL(∗,−∗), and reveals interesting similarities between the two logics.
Moreover, it shows that ML() is as expressive as graded modal logic, a well-known extension of
modal logic K [79, 70]. The results in this chapter are not yet published.

1.4.3 Part III : Mixing multiplicative connectives and modalities.

Puzzled by the relationships between separation logics and ambient logics emerged from the
proof systems of SL(∗,−∗) and ML(), we undertake a comprehensive analysis on the differences,
in terms of computational complexity and expressive power, between the separating conjunc-
tion ∗ and the composition operation . We rely on the framework of modal logic in order to
carry out the comparison, and introduce the logic ML(∗) which is essentially obtained from ML()
by replacing the composition operator with the separating conjunction. Despite the semanti-
cal similarities between ML(∗) and ML(), we identify surprising differences in terms of their
expressiveness and complexity. Part III roughly covers the work published in:

[9] B. Bednarczyk, S. Demri, R. Fervari, and A. Mansutti, “Modal logics with composition on
finite forests: Expressivity and complexity,” in Logic in Computer Science. ACM, 2020,
pp. 167–180.

Here is a roadmap of Part III:

Chapter 8. We complete the analysis on ML() started in Chapter 7. We show that the
satisfiability problem for ML() is AExpPol-complete, i.e. complete for the class of decision
problems solvable by an alternating Turing machine with exponential runtime and polynomial
number of alternations. Whereas the lower bound is quite simple to establish, the upper bound
is derived from a refined translation to graded modal logic, using fundamental properties of the
proof system designed in Chapter 7. The AExpPol-completeness of ML() transfers to other
ambient logics from [34].

Chapter 9. We analyse ML(∗) in terms of expressive power and complexity. First of all, we
prove that ML(∗) is strictly less expressive than ML(). This is shown by relying on semantical
connections between the two logics, together with an ad-hoc notion of Ehrenfeucht-Fräıssé games
for ML(∗). Surprisingly, even though ML(∗) is less expressive than ML(), we discover that its
satisfiability problem is Tower-complete. The chapter ends by formalising the connections
between ML(∗) and separation logic, which allows us to solve some open problems in the realm
of modal separation logics.

12 Chapter 1. Introduction

1.5 Prerequisites and Basic Notations

This thesis takes for granted basic notions of “näıve set theory” and mathematical logic (e.g. the
Boolean algebra, standard constructions on sets and relations, first and second-order logics),
as well as an understanding of the main concepts of complexity theory (e.g. complexity classes,
many-one reduction, Turing reduction). Some familiarity in finite model theory and proof theory
is also helpful, but not required. Below, we introduce the notations used throughout the thesis
for the basic concepts from set theory. Their definitions are given only when necessary to avoid
confusion. The complete list of symbols is given at the end of the thesis.

Sets. We use the standard notation for the algebra of sets:

• ∅ : empty set;
• ∪ : union;
• ∩ : intersection;
• \ : difference;

• × : Cartesian product;
• ⊆ : inclusion;
• = : equality;
• 6= : inequality;

• (: strict inclusion;
• card(·) : cardinality;
• 2(·) : powerset;
• ∈ : membership.

The symbol N denotes the set of natural numbers. Given i, j ∈ N, [i, j] def= {k ∈ N | i ≤ k≤j}.
We write i .− j for the subtraction on natural numbers, i.e. i .− j def= max(0, i− j).

Binary Relations. Aside from the operations above, for binary relations we also use:

• (·)−1 : converse;
• π1(·) : 1st projection;

• π2(·) : 2nd projection;
• (·)δ : δth composition;

• (·)+ : Kleene plus;
• (·)∗ : Kleene closure.

Let us recall the definition of δth composition, Kleene plus and Kleene closure of a relation.

Definition 1.1 (δth composition). Let R ⊆ S×S be a binary relation. The 0th composition R0

is defined as the identity map idS on S. Given δ ∈ N, the (δ+1)th composition is defined as:

Rδ+1 def= {(s, t) ∈ S × S | there is e ∈ S such that (s, e) ∈ Rδ and (e, t) ∈ R}.

Definition 1.2 (Kleene plus and Kleene closure). Let R ⊆ S × S be a binary relation. Its
Kleene plus is R+ def=

⋃
δ≥1R

δ. Its Kleene closure (also called Kleene star) is R∗ def= R0 ∪R+.

Notice that, if R is a functional relation, then so is Rδ.

Functions. We use standard notation for functions:

• S ⇀ T : partial functions from S to T ,
• S → T : functions from S to T ,

• S ⇀fin T : partial functions from S to T
defined on finitely many values of S.

By seeing a partial function f : S⇀T as a weakly functional binary relation f ⊆ S×T , f inherits
all the operations defined for sets and binary relations. We write dom(f) and ran(f) for its domain
and range (or image), respectively. Their definitions are recalled below.

Definition 1.3 (Domain, image of a subset, range). Let f : S ⇀ T be a partial function.
(I) dom(f) def= {s ∈ S | there is t ∈ T such that f(s) = t},

(II) given S′ ⊆ S, f(S′) def= {t ∈ T | there is s′ ∈ S′ such that f(s′) = t},

1.5. Prerequisites and Basic Notations 13

(III) ran(f) def= f(S).

Notice that dom = π1 and ran = π2. Both notations are kept to make the exposition clearer.

Formulae. As usual, formulae are syntactical object from a vocabulary made of constant sym-
bols c1, c2, . . . (e.g. atomic formulae), and operators (predicate or function symbols) P1, P2, . . . ,
each with an associated arity.

We use the standard notions of positions, subformulae, and substitutions, recalled below.

Definition 1.4 (Positions, subformulae and substitutions). Given a formula ϕ, the set Pos(ϕ) of
its positions is the subset of N∗ inductively defined as follows (ε stands for the empty sequence):

Pos(ϕ) def=

{ε} if ϕ is a constant symbol,
{ε} ∪ {iρ | i ∈ [1, n], ρ ∈ Pos(ϕi)} if ϕ=P (ϕ1, . . . , ϕn), for an n-ary operator P.

The subformula of ϕ at position ρ ∈ Pos(ϕ), written ϕ|ρ, is defined as follows

ϕ|ε def= ϕ,

(P (ϕ1, . . . , ϕn))|iρ def= ϕi|ρ.

Lastly, we write ϕ[ψ]ρ for the formula obtained from ϕ by replacing its subformula at position ρ
with a formula ψ.

2

Separation Logic

Contents
2.1 A Logic for Shared Mutable Data Structures 17

2.1.1 Memory allocation and reachability predicates. 21
2.1.2 The (not so) classical decision problems. 24

2.2 Fragments of SL(∃, ∗,−∗) and Second-Order Logic 28
2.2.1 Fragments of SL(∃, ∗,−∗). 28
2.2.2 SL(∃, ∗,−∗) as a Fragment of Second-Order Logic. 30

2.3 Other Separation Logics and Bunched Logics 33
2.3.1 Symbolic-Heaps and (bi)abduction. 33
2.3.2 Modal Separation Logics. 34
2.3.3 Boolean BI. 37

15

2.1. A Logic for Shared Mutable Data Structures 17

In this preliminary chapter
We present the first-order fragment of separation logic, that serves us as a way to introduce
standard notions from the separation logic literature. After familiarising with these notions, we
examine landmark results on the decidability of classical decision problems (e.g. satisfiability)
for first-order separation logic. The last part of the chapter is dedicated to a round-up of the
separation logic literature. First of all, we connect separation logic with weak second-order
logics, which allows us to get a better grasp on the decidability status of first-order separation
logic. Afterwards, we introduce well-known fragments of first-order separation logic, such as the
symbolic-heap fragment and modal separation logic. The chapter ends by placing separation
logic in the more general framework of the logic of bunched implications, which deepens our
understanding of the various components of the logic.

2.1 A Logic for Shared Mutable Data Structures

As one can expect, twenty years of research in separation logic led to numerous variants and
extensions of the original logic, some of which are discussed in Section 2.3. For our purposes,
a good starting point is given by the separation logic SL(∃, ∗,−∗) defined in [22], which closely
follow the initial presentation given by J. Reynolds in its seminal work [124].

Syntax. We use VAR = {x, y, z, . . .} to denote the countably infinite set of program variable
names (or variables, in short). The formulae ϕ of the first-order separation logic SL(∃, ∗,−∗) and
its atomic formulae π are built from the grammars below (where x, y, z ∈ VAR):

π := > (true)
| emp (empty predicate)
| x = y (equality predicate)
| x ↪→ y (points-to predicate)

ϕ := π (atomic formulae)
| ϕ∧ϕ | ¬ϕ (Boolean connectives)
| ϕ ∗ϕ (separating conjunction)
| ϕ−∗ϕ (separating implication)
| ∃zϕ (first-order quantification)

The separating conjunction ∗ and the separating implication −∗ are also called the star and
the magic wand, respectively. Following the terminology of the logic of bunched implications
[113] (see Section 2.3) as well as linear logic [78], we often refer to these two operators as two
multiplicative connectives.

Given a formula ϕ, we write bv(ϕ) and fv(ϕ) for the sets of bound variables and free variables
occurring in ϕ, respectively. A variable x is bound (resp. free) if it occurs (resp. does not occur) in
the scope ∃x of a first-order quantification. A formula is said to be closed whenever fv(ϕ) = ∅.
Unless otherwise specified, the size |ϕ| of a formula ϕ is understood as its tree size, i.e. the
number of symbols needed to encode it as a tree.

Memory States. Separation logic is interpreted on memory states, which can be seen as
abstractions of the heap/RAM memory model used as a backbone for the semantics of many
programming languages (e.g. Java and C++). Addresses and data in the memory are all ab-
stracted with a countably infinite set of locations, denoted by LOC. Furthermore, a memory
state contains information on the location assigned to each program variable, as well as depen-
dencies between locations to represent pointers and their stored addresses. Memory states are
formally defined as follows.

18 Chapter 2. Separation Logic

z

x y

v w

Figure 2.1: A memory state.

z

x y

v w
⊥

z

x y

v w

Figure 2.2: Two disjoint memory states.

Definition 2.1 (Memory state). A memory state is a pair (s, h) where s : VAR→LOC is called
the store, and h : LOC⇀finLOC is a partial function with finite domain, called the heap.

Given a heap h, each element in dom(h) is understood as a memory cell of h. Informally, we
can see the heap as a finite functional graph, having locations as vertices. The set of locations
is however infinite, and the store assigns some of them to program variables. As expected, two
distinct locations cannot be assigned to the same variable. Figure 2.1 shows a memory state.
Locations are denoted by small boxes (), and arrows represent the heap. Sometimes, we write
the pair of locations (`1, `2) using the notation `1 7→ `2 and calling it an arrow, as it stresses that
the pair belongs to a heap. For the same reason, given `1, . . . , `n−1 distinct locations, and a
location `n (possibly equal to one of the first n−1 locations), we write {`1 7→ `2 7→ `3 7→ . . . 7→ `n}
for the heap {(`1, `2), (`2, `3), . . . , (`n−1, `n)}. This heap witnesses a directed path going from
the location `1 to the location `n, where cycles are permitted.

Definition 2.2 (Path). Given a heap h, a (finite) path is a sequence of locations (`1, . . . , `n)
such that h(`j) = `j+1 holds for all j ∈ [1, n− 1]. Such a path goes from `1 to `n.

As already discussed in Section 1.1 separation logic allows for modular analysis of memory
states by means of its two multiplicative connectives ∗ and −∗. On the model side, in order to
achieve its modularity the class of memory states is endowed with a union operator on heaps
that allows to simulate how memory states can be composed or decomposed.

Definition 2.3 (Disjoint heaps and their union). (Disjointness) Two heaps h1 and h2 are said
to be disjoint, written h1⊥h2, whenever their domains are disjoint, i.e. dom(h1)∩ dom(h2) = ∅.
(Union) When h1⊥h2 holds, the heap-union h1+h2 of h1 and h2 is defined as the set union h1∪h2.
If h1⊥h2 does not hold, then h1 + h2 is not defined.

More explicitly, given two disjoint memory states h1 and h2, for every location ` ∈ LOC, we
have (h1 + h2)(`) = if ` ∈ dom(h1) then h1(`) else h2(`). Two paths are said to be disjoint
if their underlying heaps are disjoint. We lift the notion of disjoint heaps to memory states, and
say that two memory states (s, h1) and (s, h2) are disjoint whenever h1⊥h2 holds. Notice that
this notion of disjointness requires the two memory states to share the same store. Figure 2.2
shows two disjoint memory states. As we can see, disjointness intuitively means that every two
arrows taken from different heaps cannot share the same source. One can check that performing
the heap-union on the heaps in Figure 2.2 yields the memory state in Figure 2.1. The notion of
heap-union naturally leads to the one of subheap.

Definition 2.4 (Subheap). The heap h′ is a subheap of the heap h whenever h′ ⊆ h holds, i.e.
when dom(h′) ⊆ dom(h) and h′(`) = h(`) holds for every memory cell ` ∈ dom(h′). Similarly,
the heap h′ is a strict subheap of h whenever h′(h holds.

2.1. A Logic for Shared Mutable Data Structures 19

(s, h) |= > always,

(s, h) |= emp iff h = ∅ (i.e. the heap is empty),

(s, h) |= x = y iff s(x) = s(y),

(s, h) |= x ↪→ y iff h(s(x)) = s(y),

(s, h) |= ϕ ∧ ψ iff (s, h) |= ϕ and (s, h) |= ψ,

(s, h) |= ¬ϕ iff (s, h) 6|= ϕ,

(s, h) |= ϕ ∗ ψ iff there are h1 and h2 s.t. h1 + h2 = h, (s, h1) |= ϕ and (s, h2) |= ψ,

(s, h) |= ϕ−∗ ψ iff for every heap h′, if h′⊥h and (s, h′) |= ϕ then (s, h+ h′) |= ψ,

(s, h) |= ∃zϕ iff there is ` ∈ LOC such that (s[z← `], h) |= ϕ.

Figure 2.3: Satisfaction relation for SL(∃, ∗,−∗), with respect to a memory state (s, h).

Alternatively, the notion of subheap can be characterised as follows:

h1 ⊆ h iff there is h2 such that h1⊥h2 and h1 + h2 = h.

In this characterisation, h1 is found to be a subheap of h if another heap can be added to h1
by means of heap-union, yielding h. From the definition of heap-union, it should be evident
that if such a heap exists, then it must be h \ h1 (where \ is the set difference and we see h
and h′ as binary relations). The two heaps represented in Figure 2.2 are both subheaps of the
one represented in Figure 2.1.

We borrow the notion of (non-empty) weakly connected component of a graph, and redefine
it for heaps. This notion is quite useful when reasoning on the structure of a memory state.

Definition 2.5 (Weakly connected component). A weakly connected component of a heap h is
a non-empty subheap h1 of h such that

1. the reflexive, symmetric and transitive closure of h1 forms a clique, i.e.
(h1 ∪ h−1

1)∗ = (dom(h1) ∪ ran(h1))× (dom(h1) ∪ ran(h1)),

2. h1 is maximal, i.e. the property (1) does not hold for heaps h2 satisfying h1 (h2 ⊆ h.

The heap in Figure 2.1 has two weakly connected components:

and

Semantics. Let us consider a memory state (s, h). We introduce the satisfaction relation |=
for the formulae of SL(∃, ∗,−∗), and say that (s, h) satisfies ϕ whenever (s, h) |= ϕ holds. As
usual, if (s, h) satisfies ϕ then (s, h) is called a model of ϕ. This notion is extended to sets of
formulae: (s, h) is a model for the set S whenever it is a model for every formula in S. If S
has a model, then it is said to be consistent. The definition of |= is formalised in Figure 2.3.
Skipping the tautology> and the Boolean connectives, with classical semantics, a first interesting

20 Chapter 2. Separation Logic

ingredient of SL(∃, ∗,−∗) is already given by the formula emp. This formula holds on (s, h)
whenever the heap h is empty, and provides a useful tool for program verification. Roughly
speaking, with emp we can check for memory leaks by verifying that a function F called on the
empty heap also returns on the empty heap. In a Floyd–Hoare proof system this corresponds
to a proof of validity for the triple {emp}F {emp}. The formula x = y simply states that the
same location is assigned to both the variables x and y. The formula x ↪→ y goes one step
further, and states that the location assigned to the variable x points to the location assigned
to y. For instance, the memory state in Figure 2.1 satisfies x ↪→ z and y ↪→ z. Moreover, as
the two variables x and y correspond to the same location, this memory state also satisfies the
formula x = y. For the separating conjunction, (s, h) |= ϕ ∗ ψ states that it is possible to split
the heap h into two disjoint heaps h1 and h2 so that the memory state (s, h1) satisfies ϕ, whereas
the memory state (s, h2) satisfies ψ. Then, we can easily see that the following relation holds:

if (s, h) |= x ↪→ y ∗ z ↪→ v then (s, h) |= x 6= z,

where x 6= z is a shortcut for ¬(x = z). Indeed, suppose that h can be split into two disjoint
heaps h1 and h2 such that (s, h1) |= x ↪→ y and (s, h2) |= z ↪→ v. Then, both s(x) ∈ dom(h1)
and s(y) ∈ dom(h2) hold, leading to s(x) 6= s(y) by disjointness of the two heaps. This im-
plication perfectly shows one of the useful properties of separation logic: the ability to encode
inequalities in linear space. Indeed, the formula x1 ↪→ y1∗x2 ↪→ y2∗· · ·∗xn ↪→ yn implicitly states
that for every two distinct i, j ∈ [1, n], xi and xj do not correspond to the same location. We
can translate this formula into one that only uses classical connectives, but unfortunately this
requires a quadratic amount of inequalities:

x1 ↪→ y1 ∧ x2 ↪→ y2 ∧ · · · ∧ xn ↪→ yn ∧
∧
i< j∈[1,n] xi 6= xj .

where given a set S = {e1, . . . , en}, we write ψ(e1) ∧ · · · ∧ ψ(en) using the standard nota-
tion

∧
e∈S ψ(e). Thanks to this property of the separating conjunction, when it comes to Floyd-

Hoare proof systems, assertions written using separation logic can be manipulated in an easy
and modular way that seems out of reach for classical logics.

Let us now consider the separating implication. (s, h) |= ϕ −∗ ψ states that whenever we
consider a heap h′ disjoint from h and fulfilling (s, h) |= ϕ, the heap h+h′ fulfils (s, h+h′) |= ψ.
As we show in the next section and chapters, the ability to extend the current heap with
the magic wand leads to very expressive logics. We introduce another standard connective of
separation logic, called septraction (see e.g. [137]). It is denoted by −~ and defined as the right
dual of the separating implication, i.e. ϕ−~ ψ def= ¬(ϕ−∗ ¬ψ). Its semantics is as follows:

(s, h) |= ϕ−~ ψ iff there is a heap h′ such that h′⊥h, (s, h′) |= ϕ and (s, h+ h′) |= ψ.

Lastly, let us focus on the first-order quantification. In the definition given in Figure 2.3, the
notation s[z← `] stands for the store obtained from s by only changing the evaluation of z to `.
Formally, for every x ∈ VAR, s[z ← `](x) def= if x = z then ` else s(x). Then, (s, h) |= ∃zϕ
whenever it is possible to assign a location to z so that the resulting memory state satisfies ϕ.

The contradiction, classical connectives, and the universal quantifier are derived as usual:

2.1. A Logic for Shared Mutable Data Structures 21

⊥ def= ¬> (false)
ϕ⇒ψ def= ¬(ϕ ∧ ¬ψ) (implication)
ϕ∨ψ def= ¬ϕ⇒ ψ (disjunction)
∀zϕ def= ¬∃z¬ϕ (universal quantifier)

ϕ⇔ψ def= (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ) (double implication)

As shown by these formulae, we adopt the standard precedence between classical connectives,
and extend it for the other operators as follows: {¬,∃} > {∧,∨, ∗} > {⇒,⇔,−∗,−~}. For exam-
ple, the separating conjunction ∗ has a higher precedence than the separating implication −∗,
and it has the same precedence as the (classical) conjunction ∧. So, the formula ϕ∗ψ−∗χ should
be read as (ϕ ∗ ψ)−∗ χ.

2.1.1 Memory allocation and reachability predicates.

We now focus our attention at some well-known formulae of the separation logic literature (see
e.g. [124, 22, 56]) that are expressible in SL(∃, ∗,−∗). Beside providing a way to become more
familiar with the various ingredients of the logic, some of these formulae are extensively used in
the following chapters of the thesis. In what follows, let (s, h) be a memory state.

Alloc. We start with the formula x ↪→ , generally referred to as alloc. This formula is intended
to hold when the location assigned to the variable x is a memory cell. Formally,

(s, h) |= x ↪→ if and only if s(x) ∈ dom(h).

By relying on the first-order quantification, x ↪→ can be easily defined as ∃y x ↪→ y, where y is
an arbitrary variable that is syntactically different from x. However, we use another (common)
definition, which allows us to show some flavour of the magic wand: x ↪→ def= x ↪→ x−∗ ⊥.

Proposition 2.6. (s, h) |= x ↪→ x−∗ ⊥ if and only if s(x) ∈ dom(h).

Proof. (⇒): Suppose (s, h) |= x ↪→ x−∗ ⊥ and, ad absurdum, assume that s(x) is not a memory
cell of h. Then, the heap h′ = {(s(x), s(x))} is disjoint from h and fulfils (s, h) |= x ↪→ x.
From (s, h) |= x ↪→ x−∗ ⊥ we then reach the contradictory statement (s, h+ h′) |=⊥.
(⇐): If s(x) is a memory cell of h then every heap h′ fulfilling (s, h′) |= x ↪→ x cannot be disjoint
from h, leading directly to (s, h) |= x ↪→ x−∗ ⊥.

Size. Another formula that is often considered in the literature is the size formula size≥β,
where β ∈ N. Again, let us first introduce its intended semantics, to then see its definition:

(s, h) |= size≥β if and only if card(h) ≥ β.

This formula can be defined as ¬emp ∗ · · · ∗ ¬emp where ¬emp appears β times, hence essentially
stating that the heap can be split into β disjoint non-empty subheaps. Formally,

size≥ 0 def= >, size≥ 1 def= ¬emp, for every β ≥ 1, size≥β+1 def= size≥β ∗ ¬emp.

The correctness of this definition should be transparent. We write size =β as a shortcut for the
formula size≥β ∧ ¬size≥β+1, i.e. the formula satisfied by (s, h) if and only if card(h) = β.

22 Chapter 2. Separation Logic

Alloc-back and Reach-plus. We introduce the alloc-back formula ↪→ x def= ∃y y ↪→ x (where y
is syntactically different from x), which states that there is a memory cell pointing to the location
assigned to x, i.e. s(x) ∈ ran(h). In view of the similarities with the formula x ↪→ , it is quite
normal to ask ourselves if also ↪→ x can be rewritten without using the the first-order quan-
tification. Even though the answer is no (a proof of this is given in Chapter 6), we can achieve
an equivalent quantifier-free formula by enriching SL(∃, ∗,−∗) with the reachability predicate ↪→+

(which we call reach-plus) that corresponds to the transitive closure of ↪→. The semantics of
this predicate is defined as follows:

(s, h) |= x ↪→+y if and only if (s(x), s(y)) ∈ h+,

where we recall that the relation h+ corresponds to the transitive closure of h, as defined
in Section 1.5. Informally, (`, `′) ∈ h+ means that h witnesses a non-empty directed path going
from the location ` to the location `′. For example, by considering (s, h) as the memory state
in Figure 2.1, (s(v), s(w)) and (s(z), s(z)) are in h+, but (s(x), s(y)) 6∈ h+ (as the path must be
non-empty) and (s(w), s(v)) 6∈ h+ (as there is no directed path going from s(w) to s(v)). By
using this operator, we can capture the semantics of ↪→ x with the formula

x ↪→ x ∨
(
> ∗ (¬ x ↪→ ∧ ((size = 1 ∧ ¬ x ↪→+x)−~ x ↪→+x))

)
.

Proving this equivalence, as partially done below, is a good exercise to familiarise with the
multiplicative connectives of separation logic.

Proposition 2.7. s(x) ∈ ran(h) holds if and only if (s, h) satisfies the following formula

x ↪→ x ∨
(
> ∗ (¬ x ↪→ ∧ ((size = 1 ∧ ¬ x ↪→+x)−~ x ↪→+x))

)
.

Proof. (⇐): If (s, h) |= x ↪→ x holds then s(x) ∈ ran(h) follows trivially. Hence, let us consider
the case where (s, h) |= >∗

(
¬ x ↪→ ∧((size = 1∧¬ x ↪→+x)−~x ↪→+x)

)
. By definition of the oper-

ator ∗, there is a subheap h1 ⊆ h such that (s, h1) |= ¬ x ↪→ ∧ ((size = 1 ∧ ¬ x ↪→+x)−~ x ↪→+x).
Then, following the definitions of conjunction and septraction, we obtain

(A) (s, h1) |= ¬x ↪→ , therefore s(x) 6∈ dom(h1) holds by Proposition 2.6;

(B) (s, h2) |= size = 1 ∧ ¬ x ↪→+x , therefore card(h2) = 1 and (s(x), s(x)) 6∈ h+
2 hold;

(C) (s, h1 + h2) |= x ↪→+x , therefore (s(x), s(x)) ∈ (h1 + h2)+ holds.

From (C), there is δ ≥ 1 such that (s(x), s(x)) ∈ (h1 +h2)δ. However, δ must be greater than 1,
as otherwise either h1(s(x)) = s(x) or h2(s(x)) = s(x) hold, in contradiction with (A) and (B),
respectively. Thus, h1 + h2 witnesses a path of length δ ≥ 2 going from s(x) to s(x). Let us
picture this path as follows:

{s(x) 7→ `1 7→ `2 7→ . . . 7→ `δ−2 7→ `δ−1 7→ s(x)}, where `δ−1 6= s(x) (since δ ≥ 2).

From (A), it cannot be that the first arrow of the path, i.e. s(x) 7→ `1 in the representation
above, is an element of h1. Hence, it must be an element of h2. More precisely, it must be
the only element of h2 (directly by (B)). Therefore, the last arrow of the path, i.e. `δ−1 7→ s(x)
in the representation above, can only be an element of h1. We conclude that s(x) ∈ ran(h1)
holds, which yields s(x) ∈ ran(h) by h1 ⊆ h. We leave the proof of the other direction to the
reader.

2.1. A Logic for Shared Mutable Data Structures 23

y

x

Figure 2.4: A memory state satisfying
∀x (x 6= y ∧ ↪→ x⇒ x ↪→).

y

x

Figure 2.5: A memory state satisfying
∀x¬(↪→ x ∗ ↪→ x).

Reachability predicates. Interestingly enough, the reachability predicate x ↪→+y introduced
for alloc-back can be defined in SL(∃, ∗,−∗). More precisely, this predicate can be defined in the
two-variable fragment the logic, i.e. the fragment where VAR is restricted to only two variable
names (in our case, case x and y). In order to stay in this fragment, in the definition of x ↪→+y
provided below the formulae ↪→ x and ↪→ y stand for ∃y y ↪→ x and ∃x x ↪→ y, respectively.

x ↪→+y def= > ∗
(
x ↪→ ∧ (↪→ x⇒ x = y) ∧ ∀x¬(↪→ x ∗ ↪→ x) ∧ ∀x(x 6= y ∧ ↪→ x⇒ x ↪→)

)
.

Since equivalent formulae are already defined in [22, 52, 53], instead of formally proving the
correctness of x ↪→+y, let us try to understand the intention behind its definition. Let (s, h′) be
a memory state satisfying x ↪→+y. With its prefix “>∗”, the formula x ↪→+y imposes the existence
of a subheap h ⊆ h′ such that the memory state (s, h) satisfies the following three formulae

1. x ↪→ ∧ (↪→ x⇒ x = y), 2. ∀x¬(↪→ x ∗ ↪→ x), 3. ∀x (x 6= y ∧ ↪→ x⇒ x ↪→).

Let us first consider the formula (3). Essentially, this formula states that for every location
` ∈ dom(h), either h(`) = s(y) or h(`) ∈ dom(h). Since the heap is finite, this property means
that if h witnesses a non-empty directed path ending on a location ` 6∈ dom(h), then ` must
be assigned to y. In other words, ran(h) \ dom(h) ⊆ {s(y)}. Figure 2.4 shows a memory state
satisfying (3). Notice that every weakly connected component in this memory state has a cycle,
with the exception of the one involving the location s(y). On the other hand, the memory state
in Figure 2.5, say (s1, h1), does not satisfy this property, as there are two locations (highlighted
with a black box) that are different from s1(y) but belong to ran(h1) \ dom(h1). Let us
move to the formula (2), which states that no location can be pointed by two distinct memory
cells, i.e. for every `, `′ ∈ dom(h), if h(`) = h(`′) then ` = `′. Figure 2.5 shows a memory
state satisfying (2). Notice how every weakly connected component is either a linear structure
or a cycle. This property is not satisfied by the memory state in Figure 2.4, as there are
locations (again, highlighted with black boxes) pointed by multiple memory cells. Now, since
(s, h) satisfies (1), we have s(x) ∈ dom(h). As this memory state also satisfies (2), s(x) either
belongs to a cycle or to a linear structure. Since (s, h) satisfies (3), if s(x) belongs to a linear
structure, then the linear structure ends in s(y) (which is then not in dom(h)) and therefore
(s(x), s(y)) ∈ h+. If instead s(x) belongs to a cycle (i.e. (s(x), s(x)) ∈ h+) then by definition s(x)
is pointed by a memory cell in dom(h). Thus, from the right conjunct ↪→ x ⇒ x = y of the
formula (1) we derive that s(x) = s(y), which allows us to conclude again that (s(x), s(y)) ∈ h+.

We write x ↪→∗ y for the formula x = y ∨ x ↪→+y (called reach-star). As the notation might
suggest, the semantics of x ↪→∗y can be given in terms of the Kleene closure of h, as shown below:

(s, h) |= x ↪→∗ y if and only if (s(x), s(y)) ∈ h∗.

Informally, (s, h) |= x ↪→∗ y if h witnesses a (possibly empty) path going from s(x) to s(y).

24 Chapter 2. Separation Logic

Strict variants of points-to and reachability. Very often (see e.g. [124, 44, 93]), separation
logic is defined by considering the so-called strict predicates x 7→ y and ls(x, y) (where ls stands
for list-segment). Given a memory state (s, h), these two predicates are defined as

(s, h) |= x 7→ y iff {s(x)} = dom(h) and h(s(x)) = s(y).
(s, h) |= ls(x, y) iff for every δ∈N, hδ(s(x)) = s(y) if and only if δ = card(h).

Roughly speaking, these formulae are analogous of x ↪→ y and x ↪→∗ y but their satisfaction also
requires that the formula cannot hold in any strict subheap. For instance, ls(x, y) is satisfied
whenever h describes a list (hence the name list-segment): a directed linear structure starting
from s(x) and ending with s(y). In particular, if s(x) = s(y) then the heap must be empty.
For fragments of separation logic featuring emp, the separating conjunction and the classical
negation, taking ↪→ and ↪→∗ instead of 7→ and ls is just a matter of taste. Indeed, the two suites
of operators are interdefinable. To show this, given a formula ϕ, we write strict(ϕ) for the
formula ϕ ∧ ¬(¬emp ∗ ϕ), that has the following semantics:

(s, h) |= strict(ϕ) if and only if (s, h) |= ϕ and for every h′ (h, (s, h′) 6|= ϕ.

Then, 7→ and ↪→, as well as ls and ↪→∗, are related following the four identities below:

(s, h) |= x ↪→ y iff (s, h) |= x 7→ y ∗ >, (s, h) |= x 7→ y iff (s, h) |= strict(x ↪→ y),
(s, h) |= x ↪→∗y iff (s, h) |= ls(x, y) ∗ >, (s, h) |= ls(x, y) iff (s, h) |= strict(x ↪→∗y).

2.1.2 The (not so) classical decision problems.

We conclude this introductory section on separation logic by displaying some features that
make SL(∃, ∗,−∗) theoretically interesting. First, let us recall the concepts of validity and entail-
ment. For simplicity, we define them for (separation) logics interpreted on memory states, and
refer the reader to [17] for their general definition. We write |= ϕ to state that a formula ϕ is
valid (alternatively, ϕ is a tautology), i.e. ϕ is satisfied by every memory state. Instead, ϕ is said
to entail the formula ψ, written ϕ |= ψ, whenever every memory state satisfying ϕ also satis-
fies ψ. We write ϕ ≡ ψ when the two formulae ϕ and ψ are equivalent, that is when both ϕ |= ψ

and ψ |= ϕ hold. Together with the model-checking problem and the satisfiability problem, de-
ciding (semi-)algorithmically whether validity and entailment hold are among the most classical
decision problems in logic. The description of these four problems is given in Figure 2.6.

For logics that are able to express the classical implication, as for instance SL(∃, ∗,−∗), it is
well-known that validity and entailment are equireducible under many-one reductions. Indeed,
to check whether |= ϕ holds we can alternatively ask whether the entailment > |= ϕ is true.
Similarly, the entailment ϕ |= ψ can be verified by checking for the truth of |= ϕ ⇒ ψ. No
further many-one reductions can be established between these four decision problems without
requiring additional hypothesis on their complexity/decidability or on the expressive power of
the logic. For instance, the following relation holds between validity and satisfiability:

ϕ is not valid if and only if ¬ϕ is satisfiable.

Therefore, we can check for the validity of ϕ by simply querying a procedure for satisfiability on
input ¬ϕ. If the procedure replies “yes” then ϕ is not valid. If the procedure replies “no” then
the formula is valid. However, this is not a many-one reduction (it is actually an instance of
a Turing reduction), as we are negating the answer obtained from the satisfiability procedure.

2.1. A Logic for Shared Mutable Data Structures 25

model-checking: Input: A formula ϕ and a memory state (s, h).
Question: Does (s, h) satisfy ϕ? (i.e. is (s, h) |= ϕ true?)

satisfiability: Input: A formula ϕ.
Question: Is there a memory state (s, h) satisfying ϕ?

validity: Input: A formula ϕ.
Question: Does |= ϕ hold?

entailment: Input: A pair of formulae (ϕ,ψ).
Question: Does ϕ |= ψ hold?

Figure 2.6: The decision problems of model-checking, satisfiability, validity and entailment.

In fact, the above double implication leads to a many-one reduction from unvalidity (i.e. the
complement of validity) to satisfiability.

Surprisingly, for SL(∃, ∗,−∗) (as well as in many other separation logics) the landscape is
quite different: the four decision problems in Figure 2.6 are all many-one equireducible.

Theorem 2.8. The problems of model-checking, satisfiability, validity and entailment for the
logic SL(∃, ∗,−∗) are all many-one equireducible (under log-space reductions).

We already saw that entailment reduces to validity (and vice versa). To prove this result it
is then sufficient to show that the model-checking problem reduces to the entailment problem,
that the validity problem reduces to the satisfiability problem, and that the satisfiability problem
reduces to model-checking. To perform these reductions we first need to introduce the notions
of X-heap-isomorphic memory states [56].

Definition 2.9 (X-heap-isomorphism). Let X ⊆ VAR. Two memory states (s1, h1) and (s2, h2)
are X-heap-isomorphic, written (s1, h1) 'X (s2, h2), if there is a function f : LOC→ LOC s.t.

1. f is a bijection, 2. h2 = {(f(`1), f(`2)) | (`1, `2) ∈ h1}, 3. for every x ∈ X, f(s1(x)) = s2(x).

A function f satisfying these conditions is called a X-heap-isomorphism from (s1, h1) to (s2, h2).

In this definition, the conditions (1) and (2) essentially state that f is a graph isomorphism
between h1 and h2, while the condition (3) extends this isomorphism to the variables in X. It
is easy to check that 'X is an equivalence relation. A folklore result states that no formula
of SL(∃, ∗,−∗) written with free-variables in X can distinguish between two X-heap-isomorphic
memory states. The precise statement is given below.

Proposition 2.10. Let X⊆VAR and let (s1, h1), (s2, h2) be memory states s.t. (s1, h1)'X(s2, h2).
Given ϕ in SL(∃, ∗,−∗) whose free variables are among X, (s1, h1) |= ϕ if and only if (s2, h2) |= ϕ.

Since a slight generalisation of this result is proven in Section 3.1 (see Lemma 3.3), we omit the
proof of this proposition (which carries out by structural induction on the formula). Given a
formula ϕ, notice that this result shows us how to define a finite representation of a memory
state (s, h) satisfying ϕ: it is sufficient to restrict s to the variables occurring in ϕ (thus including
the quantified variables, in order to preserve the semantics of the first-order quantification), and

26 Chapter 2. Separation Logic

then encode the memory state as a pair of finite binary relations. This is important for the
model-checking problem, where the memory state is part of the input. The size of this finite
representation of (s, h) is defined naturally by considering a reasonably succinct encoding of
the binary relations s (restricted as discussed above) and h. We are now ready to reduce the
model-checking problem to the entailment problem.

Lemma 2.11. Model-checking for SL(∃, ∗,−∗) is log-space reducible to its entailment problem.

Proof. In short, the reduction is achieved by internalising a memory state as a formula of
SL(∃, ∗,−∗) and relying on Proposition 2.10. Let (s, h) and ϕ be a memory state and a formula
of SL(∃, ∗,−∗), respectively. We start by constructing a polynomial-size formula describing (s, h).
Let X = fv(ϕ) and let L be the finite set of locations in dom(h) ∪ ran(h) ∪ {s(x) | x ∈ X}. For
every location ` ∈ L, we introduce a distinct variable name x` that does not appear in ϕ. We
write Γ〈s, h〉 for the following formula in SL(∃, ∗,−∗):

Γ〈s, h〉 def=
(∗

(`1,`2)∈h
x`1 7→ x`2

)
∧
(∧

x∈X
x = xs(x)

)
∧
(∧
`1,`2∈L
`1 6=`2

x`1 6= x`2
)

where given a set S = {e1, . . . , en}, we write ∗e∈S ψ(e) for the formula ψ(e1) ∗ · · · ∗ ψ(en)
(similarly to the definition of

∧
e∈S ψ(e)). Informally, Γ〈s, h〉 describes the memory state (s, h)

by internalising every (`1, `2) ∈ h with the strict points-to predicate x`1 7→ x`2 , and requiring that
x`1 6= x`2 holds for every two distinct locations `1, `2 ∈ L. Moreover, since the strict points-to
predicates are separated with the operator ∗, every heap of a memory state satisfying Γ〈s, h〉
must be graph-isomorphic to h. Lastly, the store is internalised by means of the conjunctions∧

x∈X x = xs(x). The formula Γ〈s, h〉 enjoys the two following properties:

A. Γ〈s, h〉 is satisfiable, B. for every (s′, h′), if (s′, h′) |= Γ〈s, h〉 then (s′, h′) 'X (s, h).

The proofs of (A) and (B) are quite straightforward. For (A), from the definition of Γ〈s, h〉
it is quite clear that this formula is satisfied by the memory state (s[x` ← ` | ` ∈ L], h),
where s[x` ← ` | ` ∈ L] is the store obtained from s by assigning each location ` ∈ L to x`. For
(B), given a memory state (s′, h′) satisfying Γ〈s, h〉, we can obtain a X-heap-isomorphism from
(s′, h′) to (s, h) by simply constructing a bijection f such that f(s(x`)) = ` holds for every ` ∈ L.
Details are omitted for the sake of brevity.

We can now derive the central property of Γ〈s, h〉:

(s, h) |= ϕ if and only if the entailment Γ〈s, h〉 |= ϕ holds.

(⇒): Taking the contrapositive, suppose that Γ〈s, h〉 |= ϕ does not hold, and therefore that there
is a memory state (s′, h′) such that (s′, h′) |= Γ〈s, h〉 but (s′, h′) 6|= ϕ. From (B), (s′, h′) 'X (s, h)
and directly from Proposition 2.10, we conclude that (s, h) |= ϕ does not hold.
(⇐): Suppose that Γ〈s, h〉 |= ϕ holds. Let us consider a memory state (s′, h′) satisfying Γ〈s, h〉
(its existence is guaranteed by (A)). From Γ〈s, h〉 |= ϕ we derive (s′, h′) |= ϕ. Moreover, from
(s′, h′) |= Γ〈s, h〉 we have (s′, h′) 'X (s, h) by (B). Then, since X = fv(ϕ), by Proposition 2.10 we
derive (s, h) |= ϕ.

The above equivalence leads to a many-one reduction: to check whether (s, h) |= ϕ holds we
can check for the entailment Γ〈s, h〉 |= ϕ, where Γ〈s, h〉 is a log-space computable polynomial-size
(w.r.t. card(fv(ϕ)) and card(h)) encoding of (s, h) into a formula of SL(∃, ∗,−∗).

In order to achieve the two other reductions (from validity to satisfiability and from sat-
isfiability to model-checking), we internalise the quantification on memory states required by
validity and satisfiability by using the first-order quantification and the separating implication.

2.1. A Logic for Shared Mutable Data Structures 27

Lemma 2.12. (I) Validity for SL(∃, ∗,−∗) is log-space reducible to its satisfiability problem.
(II) Satisfiability for SL(∃, ∗,−∗) is log-space reducible to its model-checking problem.

Proof of (I). Let ϕ be a formula of SL(∃, ∗,−∗) such that {x1, . . . , xn} = fv(ϕ). In order to
prove (I) it is sufficient to show the following equivalence:

ϕ is valid if and only if the formula emp ∧ ∀x1 . . . ∀xn (>−∗ ϕ) is satisfiable.

(⇒): Suppose ϕ to be valid. Hence, for all n locations `1, . . . , `n ∈ LOC, every store s and every
heap h, we have (s[xi ← `i | i ∈ [1, n]], h) |= ϕ. Thanks to the semantics of the operator −∗,
we can internalise the universally quantified heap h and derive that for every store s and all n
locations `1, . . . , `n ∈ LOC, (s[xi ← `i | i ∈ [1, n]],∅) |= >−∗ϕ holds. Directly from the definition
of the first-order quantification we derive that (s,∅) |= ∀x1 . . . ∀xn (>−∗ ϕ) holds for every store
s. Moreover, (s,∅) |= emp so that the formula emp ∧ ∀x1 . . . ∀xn (>−∗ ϕ) is satisfiable.
(⇐): Suppose that emp ∧ ∀x1 . . . ∀xn (> −∗ ϕ) is satisfied by a memory state (s, h). Since we
have (s, h) |= emp, the heap h must be empty. Thus, from the semantics of ∀x1 . . . ∀xn (>−∗ ϕ)
we conclude that

A. for all n locations `1, . . . , `n ∈ LOC and every heap h′, (s[xi ← `i | i ∈ [1, n]], h′) |= ϕ.

Let us now consider a memory state (s1, h1), and show that (s1, h1) |= ϕ (leading to ϕ being
valid). From (A), the memory state (s[xi ← s1(xi) | i ∈ [1, n]], h1) satisfies ϕ. It is quite clear
that (s1, h1) and (s[xi ← s1(xi) | i ∈ [1, n]], h1) are {x1, . . . , xn}-heap isomorphic. Then, since
{x1, . . . , xn} = fv(ϕ), by Proposition 2.10 we conclude that (s1, h1) |= ϕ.

Proof of (II). Let ϕ be a formula of SL(∃, ∗,−∗) such that {x1, . . . , xn} = fv(ϕ). Similarly to (I),
in order to prove (II) it is sufficient to show the following equivalence:

ϕ is satisfiable if and only if (s,∅) |= ∃x1 . . . ∃xn (ϕ−~>) holds.

where s is an arbitrary (fixed) store.
(⇒): Suppose that ϕ is satisfied by a memory state (s1, h1). First, we update the store s

into s[xi ← s1(xi) | i ∈ [1, n]], so that the memory state (s[xi ← s1(xi) | i ∈ [1, n]], h1) is
{x1, . . . , xn}-heap isomorphic with (s1, h1). By Proposition 2.10, we then conclude that the
memory state (s[xi ← s1(xi) | i ∈ [1, n]], h1) satisfies ϕ. Weakening this last statement, we have
that there are n locations `1, . . . , `n and a heap h1 such that (s[xi ← `i | i ∈ [1, n]], h1) |= ϕ.
Thanks to the semantics of the septraction −~, we can internalise the existentially quantified heap
h1 and derive that there are n locations `1, . . . , `n such that (s[xi ← `i | i ∈ [1, n]],∅) |= ϕ−~>.
From the definition of first-order quantifier we conclude that (s,∅) |= ∃x1 . . . ∃xn (ϕ−~>) holds.
(⇐): Suppose that (s,∅) |= ∃x1 . . . ∃xn (ϕ−~>) holds. Then, directly from the semantics of first-
order quantification and septraction, we conclude that there are n locations `1, . . . , `n ∈ LOC
and a heap h such that (s[xi ← `i | i ∈ [1, n]], h) |= ϕ. Thus, ϕ is satisfiable.

The two Lemmata 2.11 and 2.12 directly prove Theorem 2.8. It should be noted that
similar results can be achieved for many variants of separation logics. For instance, an analo-
gous theorem can already be shown for the quantifier-free fragment of SL(∃, ∗,−∗) (as discussed
in Chapter 6). The fact that, in separation logic, the four classical decision problems are all
many-one equireducible has a profound impact on the results and techniques used in this the-
sis. For example, a standard way to provide an algorithm for the satisfiability problem consists
into showing a upper bound on the smallest model that must satisfy a formula ϕ, and then
check for (s, h) |= ϕ on every memory state (s, h) below that bound. However, this requires

28 Chapter 2. Separation Logic

an algorithm for the model-checking problem, which by Theorem 2.8 is equivalent to satisfia-
bility. Moreover, Theorem 2.8 implies that it is not possible to provide sound and complete
axiom system of undecidable separation logics. Recall that an axiomatisable logic must have a
recursively enumerable (RE) validity problem. Suppose the validity problem of SL(∃, ∗,−∗) to be
undecidable but recursively enumerable. Then, by Theorem 2.8 its satisfiability problem is RE,
which implies that unvalidity is RE. However, as both validity and its complement are found to
be RE, we conclude that validity is recursive, hence decidable, a contradiction. The satisfiabiilty
problem of SL(∃, ∗,−∗) has been proven undecidable in [22], which leads to the following result.

Theorem 2.13. Model-checking, satisfiability, validity and entailment of SL(∃, ∗,−∗) are not RE.

2.2 Fragments of SL(∃, ∗,−∗) and Second-Order Logic

Now that we are quite familiar with SL(∃, ∗,−∗), we look at various known complexity results
concerning its fragments. For the moment, we only consider fragments that are closed under
Boolean connectives. Some of these results can be motivated by looking at the translation
of SL(∃, ∗,−∗) into second-order logic. We take this opportunity to introduce weak (monadic)
second-order logic and recall some landmark results on its decidability status.

2.2.1 Fragments of SL(∃, ∗,−∗).

Since a good chunk of this thesis deals with the computational complexity of various separa-
tion logics, we need to be rather systematic with the notation in order not to get lost in the
various fragments, extensions and variants we consider. Unless otherwise specified, we propose
to write SL for a logic interpreted on memory states and featuring >, the three predicates emp,
x = y and x ↪→ y, and Boolean connectives. Additional elements are added in brackets following
the lexeme SL. We already used this notation for the first-order separation logic SL(∃, ∗,−∗),
which is indeed obtained from the logic SL by adding both multiplicative connectives and the
first-order quantifier. Given n ≥ 1, we write [∃]n for the restriction of the first-order quantifier to
n distinct program variable names. For instance, SL([∃]2, ∗,−∗) is the restriction of SL(∃, ∗,−∗)
to only two quantified variable names. This restriction is purely syntactical: given a formula ϕ
in SL(∃, ∗,−∗), it is in SL([∃]2, ∗,−∗) if and only if card(bv(ϕ)) ≤ 2. Given a logic L featuring
first-order quantification, we write pnf-L for the subset of its formulae in prenex normal form,
i.e. formulae where the quantification appears as a prefix of an otherwise quantifier-free formula.
For instance, pnf-SL(∃, ∗,−∗) is the set of formulae in SL(∃, ∗,−∗) that are in prenex normal form.
If a specific quantifier alternation is considered, we write its characteristic language instead of
the prefix pnf-. For example, ∃∗∀∗SL(∃, ∗,−∗) is the set of prenex formulae of SL(∃, ∗,−∗) with
quantifier prefix from the language ∃∗∀∗. As in classical first-order logic, we call the class of for-
mulae with this prefix the Bernays-Schönfinkel-Ramsey (BSR) fragment of SL(∃, ∗,−∗). Lastly,
following [104], we categorise separation logics depending on the presence of the separating im-
plication −∗. Separation logics featuring this connective are said to be extensional, and otherwise
they are said to be intensional.

Figure 2.7 recalls known complexity results for fragments of first-order separation logic inter-
preted on memory states (s, h) as in Definition 2.1, where s : VAR→ LOC and h : LOC⇀fin LOC.
The results in the figure refer for the three decision problems of satisfiability, validity and entail-
ment, and every problem is complete for the complexity class the respective logic is placed in.
An arrow going from a logic L1 to a logic L2 means that L1 is a syntactical fragment of L2.

2.2. Fragments of SL(∃, ∗,−∗) and Second-Order Logic 29

SL(∗) [33]

SL(∗,−∗) [33, 104]

SL([∃]1, ∗,−∗) [55]

SL([∃]1, ∗) [55]

∃∗∀∗SL(∃, ∗,−∗) [62]

SL([∃]2, ∗) [53]

pnf-SL(∃, ∗,−∗) [62]SL(∃, ∗) [22]

SL([∃]2, ∗,−∗) [53]

SL([∃]2,−∗) [53]

SL(∃, ∗,−∗) [22]

SL(∗, ↪→+) [56]

PSpace

Elementary

Tower

Recursive

RE

non RE ↑

Figure 2.7: The complexity of Separation Logics.

This is by no means a complete list, but it will definitely help to place our work in the right
context.

As we can see, the satisfiability problem of the known fragments of SL(∃, ∗,−∗) tends to
belong to three classes: the class of PSpace-complete problems, the one of Tower-complete
problems and the class of non recursively enumerable problems. We recall that PSpace is
the complexity class of all the decision problems that can be solved by a deterministic Turing
machine using a polynomial amount of space, with respect to the size of the input. Instead,
the Tower complexity class is way up in the complexity hierarchy. It stands for the class of all
decision problems that can be solved by a deterministic Turing machine in time bounded by a
tower of exponentials of height depending elementarily on the size of the input. It is equivalent
to the computational class F3 of the hierarchy of non-elementary complexity classes introduced
by S. Schmitz in [128]. Interestingly, adding small features to a separation logic can cause
quite a jump in terms of its complexity. For instance, the logic SL([∃]1, ∗,−∗), i.e. SL(∃, ∗,−∗)
restricted to just one quantified variable, admits a PSpace-complete satisfiability problem [55],
which jumps to non RE when a second quantified variable is allowed [53]. More precisely, non
recursive enumerability already holds for the set of closed formulae of SL([∃]2,−∗) [53].

30 Chapter 2. Separation Logic

(D, r) |= S(x1, . . . , xn) iff (r(x1), . . . , r(xn)) ∈ r(S),

(D, r) |= ∃zϕ iff there is d ∈ D such that (D, r[z← d]) |= ϕ,

(D, r) |= ∃S ϕ iff there is R ⊆fin Dar(S) such that (D, r[S ← R]) |= ϕ.

Figure 2.8: Satisfaction relation for WSO, with respect to a structure (D, r).

2.2.2 SL(∃, ∗,−∗) as a Fragment of Second-Order Logic.

In order to understand the non-elementary complexity results of Figure 2.7 it is helpful to
look at the translation of SL(∃, ∗,−∗) into weak second-order logic. Indeed, as we now show,
both multiplicative connectives are second-order in nature, with only ∗ being expressible in
monadic second-order logic. In what follows, we briefly recall notions of weak second-order
logic, and refer the reader to [17] for a complete investigation of this topic. The formulae of
weak second-order logic are built using two kinds of variables: individual (or first-order) variables
and relation (or second-order) variables. The first set of variable is denoted by x, y, z . . . (as
done for separation logic), whereas for the relation variables we use S,H, Every second-order
variable S is endowed with its arity ar(S), which is a positive natural number. The formulae ϕ
of the weak second-order logic WSO are defined from the following grammar:

π := > (true)
| x = y (equality predicate)
| S(x1, . . . , xar(S)) (relational predicate)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ¬ϕ (Boolean connectives)
| ∃zϕ (first-order quantifier)
| ∃S ϕ (second-order quantifier)

A classical interpretation for the formulae of WSO is given by a relational structure over a
non-empty domain D, as we formally define below.

Definition 2.14 (WSO structure). A WSO structure is a pair (D, r) where D is a non-empty set
called domain and r is an assignment function that maps every first-order variable x to an element
r(x) ∈ D, and every second-order variable S to a finite ar(S)-ary relation r(S) ⊆fin Dar(S).

The satisfaction relation |= for the formulae of WSO is formalised in Figure 2.8, omitting
the standard clauses for > and Boolean connectives. In particular, notice that the semantics of
∃S ϕ updates the assignment function r so that S is mapped to a new finite ar(S)-ary relation R.
As usual, the first and second-order universal quantifications ∀zϕ and ∀S ϕ are defined as the
dual of the existential quantifiers, i.e. ¬∃z¬ϕ and ¬∃S ¬ϕ, respectively.

As shown in [22], weak second-order logic can internalise the semantics of SL(∃, ∗,−∗) by
using relation variables to simulate the heap and second-order quantification to simulate the
multiplicative connectives. Without loss of generality, we assume VAR to be the set of first-order
variables of WSO. We use second order variables H,H1, H2, . . . of arity 2 in order to represent
heaps. To correctly characterise a heap, H must be a weakly functional binary relation, which
can be enforced thanks to the following formula:

fun(H) def= ∀x∀y∀z (H(x, y) ∧H(x, z)⇒ y = z).

The correctness of this formula is quite easy to grasp, especially if we think in terms of SL(∃, ∗,−∗),
where it corresponds to the tautology ∀x∀y∀z (x ↪→ y ∧ x ↪→ z ⇒ y = z). To internalise the

2.2. Fragments of SL(∃, ∗,−∗) and Second-Order Logic 31

τH(emp) def= H⊥H, τH(¬ψ) def= ¬τH(ψ),

τH(x = y) def= x = y, τH(ψ1 ∧ ψ2) def= τH(ψ1) ∧ τH(ψ2),

τH(x ↪→ y) def= H(x, y), τH(∃zψ) def= ∃z τH(ψ),

τH(ψ1 ∗ ψ2) def= ∃H1 ∃H2 (+[H : H1, H2] ∧ τH1(ψ1) ∧ τH2(ψ2)),

τH(ψ1 −∗ ψ2) def= ∀H1 ∀H2 (fun(H1) ∧+[H2 : H,H1] ∧ τH1(ψ1)⇒ τH2(ψ2)).

Figure 2.9: Translating SL(∃, ∗,−∗) to WSO. H, H1 and H2 are syntactically different.

multiplicative connectives we need to express the notion of union of two heaps. Given second-
order variabels H, H1 and H2 corresponding to three weakly functional binary relations, We
first define a formula H1⊥H2 that captures the notion of disjointness of two heaps, and that is
then used to define the formula +[H : H1, H2] stating that H is the union of H1 and H2:

H1⊥H2
def= ∀x∀y∀z (¬H1(x, y) ∨ ¬H2(x, z)),

+[H : H1, H2] def= H1⊥H2 ∧ ∀x∀y (H1(x, y) ∨H2(x, y)⇔ H(x, y)).

Both formulae closely follow the set-theoretical notions of disjointness and union of heaps. Notice
that the formula H⊥H is satisfiable only in models where H corresponds to the empty relation,
and can be used to characterise the predicate emp. Thanks to these formulae we can translate a
formula ϕ in SL(∃, ∗,−∗) into an equivalent formula τH(ϕ) in WSO, where H is a second-order
variable that represents the heap. The translation is given in Figure 2.9, and one can check that
it simply rewrites the semantics of the various ingredients of SL(∃, ∗,−∗) directly in WSO. A last
ingredient is needed: the domain D of a WSO structure must be infinite, so that it is isomorphic
to LOC. This can be done with the formula Dom[ω] def= ∀S ∃x¬S(x) stating that no finite set can
contain all the elements of D (here, S and x are arbitrary variables). The following proposition,
whose proof can be found in [22], shows the correctness of this translation.

Proposition 2.15 (From [22]). Let ϕ be a formula of SL(∃, ∗,−∗).
I. Let (s, h) be a memory state. Let (LOC, r) be a WSO structure such that r(H) = h and

for every x ∈ VAR r(x) = s(x). We have, (s, h) |= ϕ if and only if (LOC, r) |= τH(ϕ).

II. ϕ and Dom[ω] ∧ fun(H) ∧ τH(ϕ) are equisatisfiable.

III. ϕ and Dom[ω] ∧ fun(H)⇒ τH(ϕ) are equivalid.

It is well-known that the satisfiability and validity problems of WSO are not recursively
enumerable (here, Theorem 2.13 reproves this result). Now, we can ask ourselves under which
conditions the translation can be revisited so that it stays in a decidable fragment of WSO.
Between the two multiplicative connectives, we notice that the magic wand seems to be the
more delicate one. Given a structure (D, r), the translation of τH(ψ1 ∗ ψ2) ask to find a parti-
tion {R1, R2} of r(H) so that τH1(ψ1) and τH2(ψ2) are satisfied by (D, r[H1 ← R1, H2 ← R2]).
Therefore, when the interpretation for H is fixed, there are only a finite number of such parti-
tions. Unfortunately, this fundamental property does not hold for the operator −∗: even when
the interpretation of H is fixed, the set of interpretations of H1 and H2 is a priori infinite.
Fundamentally, it is thanks to this property that we reduced the satisfiability of SL(∃, ∗,−∗) to
its model-checking problem (Lemma 2.12(II)). Indeed, starting from H interpreted as the empty

32 Chapter 2. Separation Logic

(D, r, ḟ) |= S(x1) iff r(x1) ∈ r(S),

(D, r, ḟ) |= f(x, y) iff ḟ(r(x)) = r(y),

(D, r, ḟ) |= ∃zϕ iff there is d ∈ D such that (D, r[z← d], ḟ) |= ϕ,

(D, r, ḟ) |= ∃S ϕ iff there is R ⊆fin D such that (D, r[S ← R], ḟ) |= ϕ.

Figure 2.10: Satisfaction relation for WMSOf, with respect to a structure (D, r).

relation, τH(ϕ −~ >) asks if it is possible to find, among the infinite interpretations of H1, one
that is weakly functional and makes τH1(ϕ) true. As extensively studied in [22], one needs in
fact WSO in order to express the separating implication of SL(∃, ∗,−∗), and this operator to-
gether with first-order quantification is enough to express every property of WSO. This property
essentially leads to all the complexity results in the “non RE” area of Figure 2.7.

What happens if we forbid the separating implication? If we consider the logic SL(∃, ∗),
we can exploit the fact that τH(ψ1 ∗ ψ2) only considers partitions of the interpretation of H in
order to push the translation τH(ϕ) into the monadic fragment of WSO with an additional unary
function symbol (WMSOf). Monadic WSO (WMSO) is the fragment of WSO where every relation
variable S has arity ar(S) = 1. WMSOf extends the vocabulary of WMSO by adding a symbol f
of arity 2 and endowing a structure (D, r) with an interpretation ḟ : D → D for f. Formulae
of WMSOf do not quantify over f, as shown by the satisfaction relation defined in Figure 2.10.
One can show that WMSOf is still a fragment of WSO, as f can be substituted with a relation
variable F of arity 2 satisfying the axioms of functions:
• ∀x∃yF (x, y), i.e. F is interperted by a binary relation R such that π1(R) = D,

• fun(F), i.e. F is interpreted by a weakly functional relation.
The satisfiability and validity problems of WMSOf are Tower-complete. The upper bound

was famously shown by M. O. Rabin in [122], whereas the non-elementary lower-bound can be
traced back to the seminal works of A. R. Meyer and L. J. Stockmeyer [110, 111]. See [128] for
the Tower-characterisation of these problems.

Let ϕ be a formula of SL(∃, ∗). The main idea that allows us to modify the translation
in Figure 2.9 so that τH(ϕ) is in WMSOf is to notice that the notion of disjointness of two heaps
only depends on their domain. Instead of characterising heaps entirely, we now use the unary
relation variables H, H1 and H2 to only describe their domains. We rely on the symbol f in
order to encode the heap. The formulae H1⊥H2 and [H : H1 +H2] are updated as follows:

H1⊥H2
def= ∀x¬(H1(x) ∧H2(x)), [H : H1 +H2] def= H1⊥H2 ∧ ∀x (H1(x) ∨H2(x)⇔ H(x)).

With these new definitions, the translation τH(ϕ) is defined as in Figure 2.9, the only two
differences being that there is no case for the operator −∗ and that τH(x ↪→ y) is now defined
as H(x) ∧ f(x, y). Proposition 2.15 is updated accordingly, again as shown in [22].

Proposition 2.16 (From [22]). Let ϕ be a formula of SL(∃, ∗).
I. Let (s, h) be a memory state. Let (LOC, r, ḟ) be a WMSOf structure s.t. r(H) = dom(h)

and for every x ∈ VAR r(x) = s(x). We have, (s, h) |= ϕ if and only if (LOC, r, ḟ) |= τH(ϕ).

II. ϕ and Dom[ω] ∧ τH(ϕ) are equisatisfiable.

2.3. Other Separation Logics and Bunched Logics 33

III. ϕ and Dom[ω]⇒ τH(ϕ) are equivalid.

This result has been used for all the upper bounds of the problems in the “Tower area”
of Figure 2.7. Notice that this area contains the prenex separation logic pnf-SL(∃, ∗,−∗), which
features the magic wand. For this logic, some work is needed in order to rely on Proposition 2.16.
Essentially, in [62] it is shown that the quantifier-free part of a prenex formula of SL(∃, ∗,−∗) can
be replaced with a formula of SL([∃]2, ∗), so that the whole formula is translated into SL(∃, ∗).
Most importantly, this result shows that the complexity of SL(∃, ∗,−∗) really depends on the
alternation between the first-order quantification and the separating implication.

2.3 Other Separation Logics and Bunched Logics

Various lines of research led to the definition of multiple separation logics, to the point that
“separation logic” is more of an umbrella term to capture a family of logics that use multiplicative
connectives in order to verify properties of a memory model. In this section, we briefly recall
some of these logics, to then place them in the framework of the logic of bunched implications.

2.3.1 Symbolic-Heaps and (bi)abduction.

As depicted in the previous sections, the prohibiting complexity of SL(∃, ∗,−∗) does not make it
suitable for automated deduction. A more scalable solution that is well-suited for program veri-
fication is given by the frameworks of symbolic-heap separation logics [11]. An example of these
logics is given by the following syntactical fragment of SL(∃, ∗,−∗), denoted here with SH(ls)
and studied in [44]:

ϕ := Π ∧ Σ
Π := > | x = y | x 6= y | Π ∧Π (pure formulae)
Σ := > | emp | x 7→ y | ls(x, y) | Σ ∗ Σ (spatial assertions)

Notice that the formulae of SH(ls) are conjunctions of one pure formula, i.e. a conjunc-
tion of (dis)equalities, and one spatial assertion, i.e. a set of empty, points-to and list-segment
predicates connected via the separating conjunction. In particular, the fragment is not closed
under negation and does not feature the separating implication. All these restrictions come
with a major computational benefit: the model checking, satisfiability, validity and entailment
problems of SH(ls) can be solved in PTime [44].

The literature regarding symbolic-heaps is particularly vast, ranging from the gentle addition
of array predicates and pointer arithmetic [26, 29], to the more expressive extensions with user-
defined inductive predicates [28, 92, 65, 93] and Presburger constraints [101]. At their core,
all these variants are existential in nature: the negation is only allowed in order to express
disequalities between variables, and the separating implication is not considered. This leads to
a family of logics that are very well suited for compositional shape analysis, i.e. reason on the
shapes of data structures in the heap encountered during the execution of a program, and allows
to perform compositional reasoning via (bi)abduction.

Abduction and biabduction are forms of logical inference closely related to entailment. The
abduction problem is formalised as follows:

abduction: Input: A pair of formulae (ϕ,ψ).
Question: Is there a formula χA such that ϕ ∗ χA |= ψ holds?

34 Chapter 2. Separation Logic

Notice that this question has a spatial connotation: its solution χA, called antiframe, describes
a portion of the heap that is missing in order to make the entailment between ϕ and ψ true.
Symbolic-heap separation logics are very relevant for these types of questions, as their formulae
closely describe the structure of the heap. Among the possible solutions χA of the abduction
problem, we generally look at one satisfying the following three properties:

(compatible) ϕ ∗ χA is satisfiable,
(weakest) for every antiframe χ′ if χA |= χ′ then χA ≡ χ′,
(minimal) it does not exist an antiframe χ′ such that χA |= χ′ ∗ ¬emp.

The separating implication allows us to compute the weakest antiframe very easily: χA = ϕ−∗ψ.
This result follows directly from the identity of separation logic shown below:

ϕ ∗ χ |= ψ if and only if χ |= ϕ−∗ ψ.

In other words, the operator −∗ is the right-adjoint of ∗, in the same way that ⇒ is the right-
adjoint of ∧. We will meet this identity numerous times during the thesis (see e.g. Section 2.3.3).

The biabduction problem extends the abduction problem so that also a frame χF is required:

biabduction: Input: A pair of formulae (ϕ,ψ).
Question: Are there two formulae χA, χF such that ϕ ∗ χA |= ψ ∗ χF holds?

Similarly to abduction, among the possible solutions χA and χF of a biabduction problem, we
generally look at one satisfying the following properties:

(optimal antiframe) the antiframe χA is compatible, weakest and minimal for the
abduction problem (ϕ,ψ ∗ >),

(strongest frame) for every χ′, if ϕ ∗ χA |= ψ ∗ χ′ and χ′ |= χF then χF ≡ χ′.

The biabduction problem was introduced in [37]. It allows to automatically infer precondi-
tions, so that the proof of a Hoare triple can be further automated. We refer to [115] and [116]
for a discussion on the benefits of biabduction in program verification. On this topic, the readers
can find there more answers than this thesis could ever provide.

From a technical point of view, symbolic-heaps are quite far from the logic considered in this
thesis. In particular, we will mostly deal with separation logics that are closed under Boolean
connectives (hence, with negation) and that feature the separating implication. Nevertheless,
some of the results presented in this text can be transferred to the symbolic-heap fragment.

2.3.2 Modal Separation Logics.

Continuing with our round-up of the separation logic literature, another interesting line of
research (from a theoretical point of view) is given by the framework of modal separation logics
introduced by S. Demri and M. Deters in [52]. The original motivation for this work is to
emphasise the similarities between various separation logics, modal logics and temporal logics,
with a focus on proof techniques that could lead to transfer results between these three areas.
Similar directions are followed by J. Courtault, D. Galmiche, and D. Pym in [46] and [45].
Both Chapter 4 and Part III of this thesis fall in this research agenda.

To connect separation logic with modal and temporal logics, a first idea in [52] is to generalise
the notion of memory state so that it falls into the realm of Kripke structures used by the latter
formalisms. More precisely, the Modal Separation Logic MSL is interpreted on Kripke-style finite
functions [52, 54]. Let AP = {p, q, . . . } be a countably infinite set of propositional symbols.

2.3. Other Separation Logics and Bunched Logics 35

Definition 2.17 (Kripke-style finite function). A (Kripke-style) finite function (W, R,V) is a
triple where W is a countably infinite set of worlds, R ⊆ W ×W is a finite weakly functional1
accessibility relation, and V : AP → 2W is a labelling function assigning to every propositional
symbol p the set of worlds satisfying it.

Given a binary relation R ⊆ W ×W, we write R(w) def= {w′ ∈ W | (w,w′) ∈ R} for the set
of successors of w. Similarly, R−1(w) is the set of its predecessors. If R is weakly functional,
then card(R(w)) ≤ 1. Since W and LOC are isomorphic and the accessibility relation R is
equivalent to a heap, a Kripke-style finite function can be essentially seen as a memory state
where the structure of the store is relaxed so that each variable (a propositional symbol in MSL)
corresponds to multiple locations. This analogy with memory states lead to a natural definition
of disjointness and union of Kripke-style finite functions.

Definition 2.18 (Disjoint finite functions and their union). Two Kripke-style finite functions
K1 = (W, R1,V) and K2 = (W, R2,V) are disjoint if R1∩R2 = ∅. When this holds, their union
K1 +K2 is the Kripke-style finite function (W, R1 ∪R2,V). We write K1 ⊆ K2 if R1 ⊆ R2.

Notice that in the definition of disjointness and union the two finite functions K1 and K2 share
the same set of worlds W and labelling function V. The formulae ϕ of MSL belongs to the
following grammar (where p ∈ AP):

π := > (true)
| p (propositional symbol)
| emp (empty predicate)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ¬ϕ (Boolean connectives)
| ϕ ∗ ϕ (separating conjunction)
| ϕ−∗ ϕ (separating implication)
| ♦ϕ (modality of possibility)
| ♦−1 ϕ (converse modality of possibility)
| 〈6=〉ϕ (elsewhere modality)

As we can see, with respect to the grammar of SL(∃, ∗,−∗), the logic MSL drops the points-to
and the equality predicates between program variables, and replaces them with three well-
known modalities from modal logic. MSL is interpreted on pointed finite function (K,w) where
K = (W, R,V) is a Kripke-style finite function and w ∈ W is one of its worlds, called the
current world. With respect to such a model, the satisfaction relation |= for formulae of MSL is
given in Figure 2.11 (omitting standard cases for > and Boolean connectives). The semantics
of the formula p simply checks whether the propositional symbol p is satisfied in the current
world w. The formula emp and the two multiplicative connectives ∗ and −∗ are defined as in
separation logic. The operator ♦ is the standard alethic modality of possibility of modal logic,
stating that ϕ holds in one successor of w, i.e. a world w′ such that (w,w′) ∈ R. Conversely,
the modality ♦−1 asks whether ϕ holds in one predecessor of w. Lastly, the elsewhere modality
〈6=〉 asks whether ϕ holds in a world different from w. Given a formula ϕ, we write 〈U〉ϕ
for the formula ϕ ∨ 〈6=〉ϕ stating that ϕ is satisfied by an arbitrary world. The lexeme 〈U〉
is often called somewhere modality, and was introduced by V. Goranko and S. Passy in [80].
As introduced in [52], we call Modal Logic of Heaps (MLH) the logic obtained from MSL by
removing the propositional symbols from the grammar above.

1R is finite and for every w,w′,w′′ ∈ W, if (w,w′) ∈ R and (w,w′′) ∈ R then w′ = w′′.

36 Chapter 2. Separation Logic

(K,w) |= p iff w ∈ V(p),

(K,w) |= emp iff R = ∅,

(K,w) |= ϕ ∗ ψ iff there are K1 and K2 s.t. K1 +K2 = K, (K1,w) |= ϕ and (K2,w) |= ψ,

(K,w) |= ϕ−∗ ψ iff for all K′ = (W, R′,V), if K′⊥K and (K′,w) |= ϕ then (K +K′,w) |= ψ,

(K,w) |= ♦ϕ iff there is w′ ∈ W such that w′ ∈ R(w) and (K,w′) |= ϕ,

(K,w) |= ♦−1ϕ iff there is w′ ∈ W such that w′ ∈ R−1(w) and (K,w′) |= ϕ,

(K,w) |= 〈6=〉ϕ iff there is w′ ∈ W such that w′ 6= w and (K,w′) |= ϕ.

Figure 2.11: Satisfaction relation for MSL, with respect to (K,w) where K = (W, R,V).

Quite a few separation logics can be shown to be fragments of MSL. The reason for this is that
the logic is expressive enough to capture the concept of program variables, hence overcoming
the differences between labelling functions and stores. To do so, MSL borrows the concept
of nominals from hybrid logics, a family of logics that add further expressive power to modal
logic [2]. Essentially, a nominal is a propositional symbol that is true exactly in one world (like a
program variable). Given a propositional symbol p, we can check whether it encodes a nominal
with the formula nom(p) def= 〈U〉(p ∧ ¬ 〈6=〉 p). Its formal semantics is recalled below.

Proposition 2.19. Let (K,w) be a pointed finite function where K = (W, R,V). We have,
(K,w) |= nom(p) if and only if there is exactly one world w′ ∈ W such that (K,w′) |= p.

Using the syntax of hybrid logics, we write @p ϕ for the formula 〈U〉(p∧ϕ). Under the hypothesis
that p is a nominal, @p ϕ is satisfied whenever the world corresponding to p satisfies ϕ.

Nominals allow us to capture the predicates x = y and x ↪→ y of separation logic with the
formulae @x y and @x ♦y, respectively, where x and y are seen as nominals. Similarly, we can
define all the formulae of SL(∃, ∗,−∗) introduced in Section 2.1.1. The alloc predicate x ↪→ and
the alloc-back predicate ↪→ x correspond to the formulae @x ♦> and @x ♦−1>, respectively.
The reach-plus predicate x ↪→+y is instead captured with the formula below:

> ∗
(
x ↪→ ∧ (↪→ x⇒ x = y) ∧ 〈U〉 ¬(♦−1> ∗ ♦−1>) ∧ 〈U〉((¬y ∧ ♦−1>)⇒ ♦>)

)
,

where the alloc, alloc-back and equality predicates can be seen now as shortcuts in MSL. One
can clearly see the correspondence between this formula and the definition of x ↪→+y given
in Section 2.1.1: the subformula 〈U〉 ¬(♦−1>∗♦−1>) corresponds to ∀x¬(↪→ x∗ ↪→ x), whereas
the subformula 〈U〉((¬y∧♦−1>)⇒ ♦>) corresponds to ∀x(x 6= y∧ ↪→ x⇒ x ↪→). Thus, MSL
is an extension of the quantifier-free separation logic SL(∗,−∗, ↪→+).

Proposition 2.20 (From [54]). SL(∗,−∗, ↪→+) is a fragment of MSL.

The connections between MSL and separation logic are exploited in [52] to transfer com-
plexity results from MSL (more specifically, MLH) to SL(∃, ∗,−∗). In particular, the authors
notice how the fragment of MLH without separating implication admits a Tower-complete
satisfiability problem. Subsequently, it is sufficient to rely on the standard translation of modal-
ities into two-variable logics [15] to conclude that the satisfiability problem of the separation
logic SL([∃]2, ∗) is Tower-complete already on closed formulae. Figure 2.12 summarises the

2.3. Other Separation Logics and Bunched Logics 37

Grammar: Satisfiability:

ϕ := > | emp | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | ♦ϕ | ♦−1ϕ | 〈6=〉ϕ Tower-complete [52]

ϕ := > | p | emp | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | ♦ϕ | 〈6=〉ϕ Tower-complete [54]

ϕ := > | p | emp | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | ♦ϕ NP-complete [54]

ϕ := > | p | emp | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | 〈6=〉ϕ NP-complete [54]

Figure 2.12: The complexity of MSL.

known complexities on the satisfiability problem of fragments of MSL, excluding those that are
proven using results that are presented in this thesis.

2.3.3 Boolean BI.

Even though the development of separation logic has been pragmatic in nature, the reader should
be confident that the logic is rooted in the solid mathematical theory of Bunched logics [113].
More precisely, separation logic instantiates the framework of Bunched Implications under the
classical interpretation of Boolean connectives, also known as Boolean Bunched Implications
(BBI). In this short section, we recall the syntax, semantics and axiomatisation of BBI, as well
as connecting this formalism to separation logic. We follow the presentation in [75], and refer
the reader to S. Docherty PhD thesis for a complete description of Bunched Logics [60].

The formulae of BBI belongs to the following grammar, where p is a propositional symbol
taken from a countably infinite set AP (as in MSL):

π := > (true)
| p (propositional symbol)
| emp (empty predicate)

ϕ := π (atomic formulae)
| ϕ⇒ ϕ | ¬ϕ (Boolean connectives)
| ϕ ∗ ϕ (separating conjunction)
| ϕ−∗ ϕ (separating implication)

The purpose of BBI is to provide a framework to reason on resource composition. To achieve
this objective elegantly, resources are abstracted with a monoidal algebraic structure, which
leads to a natural notion of composition via the binary operation of the monoid. Let M be a
set and ◦ :M×M→ 2M be a binary operation. Given two subsets S and T ofM we extend ◦
and write S ◦T for {a ◦ b | a ∈ X, b ∈ Y }. Given m ∈M, we write m ◦T and S ◦m for {m} ◦T
and S ◦ {m}, respectively. We introduce the notion of non-deterministic monoid.

Definition 2.21 (Non-deterministic monoid, [75]). A non-deterministic monoid is a triple
(M, ◦, ε) where ε ∈M, ◦ :M×M→ 2M and

(identity) ε ◦m = {m}, for every m ∈M,
(associativity) a ◦ (b ◦ c) = (a ◦ b) ◦ c, for every a, b, c ∈M,

(commutativity) a ◦ b = b ◦ a, for every a, b ∈M.

The formulae of BBI are interpreted over the elements of a non-deterministic monoid (M, ◦, ε),
together with an evaluation [[.]] : AP → 2M for propositional symbols. The satisfaction rela-
tion |=, implicitly parametrised on (M, ◦, ε) and [[.]], is given in Figure 2.13. We stress that the

38 Chapter 2. Separation Logic

m |= > always,

m |= p iff m ∈ [[p]],

m |= emp iff m = ε,

m |= ¬ϕ iff m 6|= ϕ,

m |= ϕ⇒ ψ iff (if m |= ϕ then m |= ψ),

m |= ϕ ∗ ψ iff there are a, b ∈M such that m ∈ (a ◦ b), a |= ϕ and b |= ψ,

m |= ϕ−∗ ψ iff for every a, b ∈M, if b ∈ (a ◦m) and a |= ϕ then b |= ψ.

Figure 2.13: Satisfaction relation for BBI.

implication ϕ⇒ ψ of BBI has the standard semantics from classical logic, and thus should not be
confused with the intuitionistic implication of the (original) logic of Bunched Implications [113].
Moreover, we notice that the conjunction ϕ∧ ψ (which is a primitive connective in SL(∃, ∗,−∗))
is defined in BBI as ϕ ∧ ψ def= ¬(ϕ⇒ ¬ψ).

Several logics introduced in recent years can be seen as an instantiation of BBI, as for instance
ambient logics [103, 32], team logics [135, 136] and, of course, separation logics. We will meet
again both ambient logics and team logics in Chapters 7 and 8 of the thesis. For separation
logics, it is quite easy to see that the SL(∗,−∗), i.e. the quantifier-free fragment of SL(∃, ∗,−∗),
instantiate BBI for a specific monoid and evaluation of propositional symbols. As a monoid, we
consider the set of all heaps [LOC⇀fin LOC], and we let ε be the empty heap and ◦ be the binary
operation

h1 ◦ h2 =

{h1 + h2} if dom(h1) ∩ dom(h2) = ∅,
∅ otherwise.

Proposition 2.22. ([LOC⇀fin LOC], ◦, ε) is a non-deterministic monoid.

For the evaluation of propositional symbols, we first consider a bijection f from atomic formulae
of the form x = y and x ↪→ y (x, y ∈ VAR) to the set of propositional symbols AP. Since both
VAR and AP are countably infinite, f exists. Then, given a store s, we define the evaluation [[.]]s:

[[p]]s =

[LOC⇀fin LOC] if there are x, y ∈ VAR s.t. f−1(p) = x = y and s(x) = s(y),
∅ if there are x, y ∈ VAR s.t. f−1(p) = x = y and s(x) 6= s(y),
{h | h(`) = `′} if there are x, y ∈ VAR s.t. f−1(p) = x ↪→ y, s(x) = ` and s(y) = `′.

Lastly, given a quantifier-free formula ϕ of SL(∃, ∗,−∗), we write ϕf for the formula in BBI
obtained from ϕ by replacing every atomic formula π of the form x = y of x ↪→ y by f(π). The
following proposition, whose proof (by structural induction on ϕ) is left to the reader, connects
the semantics of SL(∃, ∗,−∗) with the one of BBI.

Proposition 2.23. Let ϕ be in SL(∗,−∗) and (s, h) be a memory state. (s, h) |= ϕ in SL(∗,−∗) iff
h |= ϕf in BBI, w.r.t. the non-deterministic monoid ([LOC⇀fin LOC], ◦, ε) and the evaluation [[.]]s.

The correspondence between separation logic and BBI depicted in Proposition 2.23 allows us
to grasp some of the properties of separation logic directly by looking at BBI. In our case, we are

2.3. Other Separation Logics and Bunched Logics 39

Propositional Calculus:

(L1) (¬ϕ⇒ ϕ)⇒ ϕ

(MP)
ϕ ϕ⇒ ψ

ψ
(L2) ϕ⇒ (¬ϕ⇒ ψ)

(L3) (ϕ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (ϕ⇒ χ))

Axioms of the non-deterministic monoid:

(idL) ϕ⇒ emp ∗ ϕ (assoc) ϕ ∗ (ψ ∗ χ)⇔ (ϕ ∗ ψ) ∗ χ

(idR) emp ∗ ϕ⇒ ϕ (com) ϕ ∗ ψ ⇒ ψ ∗ ϕ

Rules of inference for the multiplicative connectives:

(∗)
ϕ⇒ χ

ϕ ∗ ψ ⇒ χ ∗ ψ
(−∗1)

ϕ⇒ (ψ −∗ χ)
ϕ ∗ ψ ⇒ χ

(−∗2)
ϕ ∗ ψ ⇒ χ

ϕ⇒ (ψ −∗ χ)

Figure 2.14: Hilbert-style axiomatisation of BBI [75].

particularly interesting in Hilbert-style proof systems for BBI, which, following Proposition 2.23,
only contains axioms and rules that are also admissible in separation logic. We have yet to define
what is an Hilbert-style proof system (this is done formally in Section 6.1). However, for the
time being we invite the reader to think about it as a set of valid formulae (of BBI), together
with rules of the form

ϕ1, . . . , ϕn

ψ

which should be read as “if the formulae ϕ1, . . . , ϕn are all valid, then so is ψ”. Let us look at
the Hilbert-style proof system of BBI provided in [75] and recalled in Figure 2.14. The proof
system includes an axiomatisation of classical propositional logic, due to J. Lukasiewicz [18] and
made of three axioms (L1)–(L3) together with the rule of Modus ponens (MP). More interesting,
the second part of the proof system in Figure 2.14 axiomatises the notion of non-deterministic
monoids given in Definition 2.21. The first two axioms (idL) and (idR) state that, in BBI,
emp behaves as the identity element of the operator ∗, which in turn is an associative and
commutative binary connective (axioms (assoc) and (com)). Thanks to the correspondence
between BBI and separation logic, these four axioms are also valid in separation logic, and
capture in a neat syntactical way the essence of Proposition 2.22. The last part of Figure 2.14
is made of three rules of inference. The first one, denoted by (∗), is sometimes called “frame
rule” by analogy with the rule of the same name in program logic. Essentially, it entails that
logical equivalence is a congruence for ∗. The second and third rules state that the separating
implication is the right-adjoint of the ∗, exactly as we found out in Section 2.3.1.

The axiomatisation of BBI given in Figure 2.14 provides the foundation to derive Hilbert-
style proof systems for the quantifier-free fragment of SL(∃, ∗,−∗) and similar logics, as we will
see in Chapters 6 and 7 of the thesis.

Part I

Reachability Queries in
Separation Logic

41

Robustness Properties of
Logical Assertions

In Chapters 3, 4 and 5, we propose an in-depth study of separation logics featuring reachability
predicates such as ls(x, y) and x ↪→+y (see Section 2.1.1). In program analysis, these predicates
provide the foundation for verifying programs manipulating lists, but in the context of separation
logic their use is often limited to the symbolic-heap fragment (Section 2.3.1). This restriction,
while being beneficial on a computational level, severely limits the range of properties we are
able to check. We pay particular attention to two properties that are not expressible in the
symbolic heap fragment: the acyclicity property and the garbage freedom property. As done
in [93], we refer to these two properties as the robustness properties of memory states. We
say that a memory state (s, h) is acyclic whenever no location can reach itself by traversing the
heap a positive amount of times. As explained in [76], being able to check whether the acyclicity
property holds is useful in analysing the termination of a program. Indeed, starting from an
acyclic memory state, any loop that traverses the heap is bound to terminate. Given a finite set
X ⊆fin VAR of program variables, we say that (s, h) is X-garbage free whenever, all memory cells
of dom(h) are reached by a location corresponding to a variable in X. In programming languages
that do not feature garbage collection (e.g. C), this property can be used to prove that the
program does not leak memory by generating unreachable portions of the heap. As described
in [93], both acyclicity and garbage freedom come with homonymous decision problems that,
given a formula ϕ, ask whether all memory states satisfying ϕ are acyclic and fv(ϕ)-garbage
free, respectively. The formal definition of these problems is given in Figure 2.15.

Motivations.

At their core, both robustness properties rely on reachability predicates. Indeed, in SL(∃, ∗,−∗),
the class of acyclic memory states is characterised by the formula ∀x¬(x ↪→+x) whereas the set
of X-garbage free memory states is characterised by the formula ∀x (x ↪→ ⇒

∨
y∈X y ↪→∗ x). Un-

fortunately, the undecidability result given by Theorem 2.13 prevents us from using SL(∃, ∗,−∗)
for automatic program analysis. This leads us to journey through various fragments of this logic,
with the goal of designing a separation logic that is expressive enough to capture the notions of
acyclicity and garbage freedom, while still being decidable. More precisely, we aim for a logic
that extends SL(∗,−∗), i.e. the quantifier-free fragment of SL(∃, ∗,−∗), and admits a satisfiability
problem that can be solved in PSpace, exactly as SL(∗,−∗). This goal, which we eventually
reach in Chapter 5, reveals to be quite ambitious, as in both Chapters 3 and 4 we show how
very small extensions of SL(∗,−∗) lead to negative results in terms of computational complexity.

43

44 Chapter 2. Separation Logic

acyclicity: Input: A formula ϕ.
Question: Is every memory state (s, h) satisfying ϕ acyclic

(i.e. for every ` ∈ LOC and δ ≥ 1, hδ(`) 6= `)?

garbage freedom: Input: A formula ϕ.
Question: Is every memory state (s, h) satisfying ϕ fv(ϕ)-garbage free

(i.e. for every ` ∈ dom(h) there is δ ∈ N and x ∈ fv(ϕ)
such that hδ(s(x)) = `)?

Figure 2.15: The decision problems for the properties of acyclicity and garbage freedom.

Contribution of Chapter 3.

Our journey starts by simply adding reachability predicates to SL(∗,−∗). We consider the stan-
dard reachability predicates ls, ↪→+ and ↪→∗ already introduced in Section 2.1.1, as well as the
bounded reachability predicates x ↪→δ y, where δ ≥ 1, that are satisfied by a memory state
(s, x) whenever the minimal path in h going from s(x) to s(y) has length δ. Very surprisingly,
we show that as soon as both bounded reachability predicates x ↪→2 y and x ↪→3 y are added
to SL(∗,−∗), the satisfiability problem jumps from PSpace to non RE. This result extends to
several separation logics featuring reachability predicates, among which:
• SL([∃]2, ∗,−∗), i.e. the two quantified variable restriction of SL(∃, ∗,−∗),

• SL(∗,−∗) augmented with one predicate among ls, ↪→+or ↪→∗,

• SL(∗,−∗, ↪→2, ↪→3) and all the logics above, restricted to 4 program variables.
The main cause of the computational blow-up is traced back to the interactions between the
reachability predicates and the separating implication −∗, which allows us to encode first-order
quantifications by means of heap updates.

Contribution of Chapter 4.

In view of the results in Chapter 3, we remove for the time being the separating implication
and focus on the separation logic SL([∃]1, ∗, x ↪→ , ↪→+) featuring one quantified variable name,
the separating conjunction ∗, the predicate alloc x ↪→ and the reachability predicate x ↪→+y.
This logic is a fragment of SL(∃, ∗), which admits a Tower-complete satisfiability problem [22].
Unfortunately, we show that SL([∃]1, ∗, x ↪→ , ↪→+) is already Tower-hard. Actually, this result
is proved in a more general settings, as we show a set of features centred around reachability
and submodel reasoning which causes logics interpreted on trees to be Tower-hard. These
features are formally described through a new modal logic which we call ALT (short for Auxiliary
Logic on Trees). Apart from SL([∃]1, ∗, x ↪→ , ↪→+), ALT is captured by several logics that were
independently found to be Tower-hard, as quantified computation tree logic [99] interpreted
on trees (QCTLt), modal separation logics [54] and modal logic of heaps [52]. New fragments of
these logics are discovered to be Tower-complete:
• SL(∗,−∗, ls) where −∗ only occurs in the from size = 1−∗ ϕ,

• QCTLt(EU0), i.e. the fragment of QCTLt only featuring the exists-until temporal operator,
which cannot be nested,

2.3. Other Separation Logics and Bunched Logics 45

• QCTLt(EF1), i.e. the fragment of QCTLt only featuring the exists-finally temporal operator,
which can be nested only once,

• the common fragment of modal separation logic and modal logic of heaps, featuring the
separating conjunction and the modalities ♦ and 〈U〉.

Contribution of Chapter 5.

At last, the negative results of Chapter 3 and Chapter 4 guide us to the definition of a separation
logic that satisfies all the conditions we have imposed: (I) it extends SL(∗,−∗) with reachability
predicates, (II) it can express both robustness properties, and (III) its satisfiability problem is
PSpace-complete, exactly as for SL(∗,−∗). This logic, which is denoted by SL([∃]1, ∗, [−∗, ↪→+]SW),
is a syntactical fragment of SL(∃, ∗,−∗) specifically crafted to avoid the interactions between
reachability and the spatial connectives ∗ and −∗ that, during Chapter 3 and Chapter 4, were
discovered causing computational blow ups. To show the PSpace upper bound of the satisfiabil-
ity problem for SL([∃]1, ∗, [−∗, ↪→+]SW), we extend the core formulae technique, a proof method that
is often used in separation logic in order to obtain complexity results (see e.g. [104, 55, 56, 62]).

3

Extensionality and Reachability Leads
to Non-enumerability

Contents
3.1 Encoding Assignments as Memory Cells . 51

3.1.1 Generalised memory states. 52
3.1.2 The encoded-by relation BX

Y. 54
3.2 Simulating the First-order Quantification . 55

3.2.1 Translating SL(∃,−∗) into SL(n(x), ∗,−∗). 56
3.2.2 SL(n(x), ∗,−∗) is not recursively enumerable. 64

3.3 Reachability Predicates can Quantify . 65
3.3.1 Bounded reachability. 65
3.3.2 Using SL(n(x), ∗,−∗) to prove that SL(∗,−∗, ↪→2, ↪→3) is not RE. 68
3.3.3 Other separation logics with non RE decision problems. 70
3.3.4 Modal separation logic is non RE. 71

47

49

In this chapter
We look at the complexity of satisfiability and validity problems for extensions of the quantifier-
free separation logic SL(∗,−∗) featuring reachability predicates. We show the non-recursive
enumerability of the satisfiability problem for SL(∗,−∗) enriched with the bounded reachability
predicates x ↪→2 y and x ↪→3 y, where the predicate x ↪→δ y is satisfied by a memory state (s, h)
whenever the minimal path in h going from s(x) to s(y) has length δ. As bounded reachability
predicates are expressible as soon as one predicate among ls, ↪→+or ↪→∗ are added to SL(∗,−∗),
several other separation logics are found to be non-recursively enumerable.
In order to show these results, our investigation starts by noticing that, in a memory state (s, h),
the role of the store s can be internalised in a heap, essentially leading to a (generalised) heap
of the form s+ h : (VAR + LOC)→ LOC. The multiplicative connectives ∗ and −∗ of separation
logic can be used to update the region of s+ h encoding the store s in a way that simulates the
variable assignments done by the first-order quantification. This detour naturally leads us to
a quantifier-free separation logic, denoted by SL(n(x), ∗,−∗), where these heap updates can be
effectively checked and where the first-order quantification can be broadly simulated.
We show that the satisfiability and validity problems for SL(n(x), ∗,−∗) are non-recursively enu-
merable. Thanks to the simulation of first-order quantification via heap updates, this result can
be shown by reduction from the satisfiability and validity problems of the first-order separation
logic SL(∃,−∗) shown non-recursively enumerable in [22]. Afterwards, we return to our original
goal and design a semantically faithful translation from SL(n(x), ∗,−∗) to SL(∗,−∗) enriched with
the bounded reachability predicates x ↪→2 y and x ↪→3 y.

Here is a roadmap of the chapter.

Section 3.1. We formalise the idea of encoding the store as part of the heap, and to simulate
first-order quantification as heap updates. This is done by introducing the notion of generalised
memory state (Definition 3.1) and encoding between generalised memory states (Definition 3.4).

Section 3.2. We introduce the separation logic SL(n(x), ∗,−∗) which is interpreted on gener-
alised memory states. Afterwards, we move to the main technical contribution of the chapter,
and design a reduction from the satisfiability (resp. validity) problem for SL(∃,−∗) to the satis-
fiability (resp. validity) problem for SL(n(x), ∗,−∗). The following result is derived.

Theorem 3.5. The satisfiability and validity problems of SL(n(x), ∗,−∗) are not RE.

Section 3.3 We show that SL(n(x), ∗,−∗) can be translated into SL(∗,−∗) enriched with x ↪→2 y
and x ↪→3 y and, as a by-product, to several other separation logics, such as SL(∗,−∗) augmented
with either ls, ↪→+or ↪→∗. We conclude that the satisfiability problem of all these logics is non
RE (Corollary 3.19). Lastly, we transfer these results to the realm of modal separation logics,
and show the following theorem by translation from SL(∗,−∗) enriched with x ↪→2 y and x ↪→3 y.

Theorem 3.20. MSL without ♦−1, 〈6=〉 and emp has non RE satisfiability and validity problems.

3.1. Encoding Assignments as Memory Cells 51

3.1 Encoding Assignments as Memory Cells

In Section 2.1.1, we saw how the first-order quantification of SL(∃, ∗,−∗) can be used in order to
express the standard reach-plus predicate ↪→+. We also noticed that there are instances where
the opposite direction also holds: the first-order quantification can be avoided by using this
reachability predicate together with the multiplicative connectives ∗ and −∗. In particular, we
showed that this is the case for the formula ↪→ x, analysed in Proposition 2.7. We ask ourselves
if this can be done systematically. That is, we want to study whether first-order quantification
can be broadly simulated by reachability predicates and multiplicative connectives. As this
chapter answers this question positively, we conclude that enriching the quantifier-free separation
logic SL(∗,−∗) with ↪→+, makes the associated satisfiability and validity problems jump from
PSpace-complete to non RE (by Theorem 2.13).

In what follows, we give a rough explanation of the idea behind this result. For the moment
we do not formally fix the main separation logics considered in the chapter, but simply think in
terms of SL(∃, ∗,−∗). Recall that in this logic, a first-order existentially quantified formula ∃zϕ
essentially (re)assign a location to z, and then proceed with the evaluation of ϕ:

(s, h) |= ∃zϕ iff there is ` ∈ LOC such that (s[z← `], h) |= ϕ.

Regardless of what we can express with the ↪→+ predicate, if we want to mimic ∃zϕ in a
systematic way we need to find a way to simulate the effects that the first-order quantification has
on the store by means of updates done to the heap (hence, using the multiplicative connectives).
Let (s, h) be a memory state and let ϕ be in SL(∃, ∗,−∗). As depicted by Proposition 2.10, in
order to decide whether (s, h) |= ϕ holds it is sufficient to consider the part of the store that
corresponds to the variables occurring in ϕ, say X. Let s|X be the domain-restriction of the store
to the variables in X, i.e. s|X def= {(x, `) ∈ s | x ∈ X}. Roughly speaking, a simple but effective idea
to simulate the role of the store s in the satisfaction of ϕ is to view s|X as a heap. This means
seeing the variables in X as locations, and consider the memory state-like structure (idX, s|X +h),
where idX is the identity map on X. By doing this, and assuming z ∈ X, we can interpret the
first-order quantified formula ∃zϕ not as a reassignment done on the store, but as a local update
of the “memory cell” z, done on the heap. Approximately, its semantics could look as follows:

(idX, s|X + h) |= ∃zϕ iff there is ` ∈ LOC such that (idX, (s|X + h)[z← `]) |= ϕ,

where (s|X + h)[z ← `] stands for ((s|X + h) \ {(z, s(z))}) + {(z, `)}, which can be seen as the
heap obtained by first removing the memory cell (z, s(z)) and then adding (z, `). Using the
formulae z ↪→ and size = 1 introduced in Section 2.1.1, this interpretation of ∃zϕ can be
characteried with the formula (z ↪→ ∧size = 1) ∗ (z ↪→ ∧size = 1−~ϕ). Indeed, suppose that
(idX, s|X + h) satisfies this formula. The left conjunct z ↪→ ∧ size = 1 separates (z, s(z)) from
the rest of the heap, say h′ = (s|X+h)\{(z, s(z))}. Then, the right conjunct z ↪→ ∧size = 1−~ϕ
realises the semantics given above by stating that there is a heap {(z, `)}, for some ` ∈ LOC,
such that (idX, h

′ + {(z, `)}) |= ϕ.
However, this formula and the semantics we introduced are not entirely correct. Indeed, the

septraction z ↪→ ∧ size = 1−~ ϕ can add the arrow (z, z) to the heap, leading to a structure
(s|X + h)[z← z] that cannot be obtained by any well-formed (classical) memory state. In order
to correct this, the subheap s|X that is reserved to simulate the store must remain unreachable
from the rest of the heap h. This can be done by forcing the alloc-back predicate ↪→ z to
not hold after an update (the details are given in Section 3.2). Figures 3.1 to 3.3 sketch this

52 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

z

y

x

Figure 3.1: A memory state.
lo

ca
tio

ns
re

se
rv

ed
to

sim
ul

at
e

th
e

st
or

e

z

y

x

Figure 3.2: Injecting a store.

lo
ca

tio
ns

re
se

rv
ed

to
sim

ul
at

e
th

e
st

or
e

z

y

x

Figure 3.3: Reassignment.

idea. Given the memory state presented in Figure 3.1, we extend the heap with the portion
of the store we are interested in (i.e. s|X in the previous description), leading to the structure
in Figure 3.2. The store of this new structure is a simple identity map. Then, a quantification
on z is achieved by modifying the location pointed by z, as shown in Figure 3.3.

Quite a few technicalities are omitted in this otherwise simple idea. First, because of this
model transformation both the predicates x = y and x ↪→ y must be revised accordingly. For
example, z ↪→ y must be updated from “the location assigned to z points to the location assigned
to y” to the rather cumbersome “z points to a location that points to the location that is pointed
by y” (a pattern that holds in Figure 3.3). In the next section, this property is formally captured
by the next-points-to predicate n(z) ↪→ n(y). Similarly, the next-equality predicate n(x) = n(y)
capture the notion of “x and y points to the same location”, which is a natural update to the
formula x = y stating that “the same location is assigned to both x and y”. In Section 3.3, we
show that both n(x) = n(y) and n(x) ↪→ n(y) can be expressed in terms of reachability predicates.
Another problem arises when dealing with the multiplicative connectives. For example, (s, h) |=
ϕ −∗ ψ is evaluated by considering heaps h′ that are disjoint from h and fulfill (s, h′) |= ϕ. As
in our encoding the store is a part of the heap h, for the moment it is not clear how we can
simultaneously encode it inside h′ and keep the two heaps disjoint. The solution we consider
relies on introducing one variable x for each variable x appearing in ϕ. The store encoded in h′
considers these new variables, so that h⊥h′ still holds. All these technical developments are
given in Section 3.2.

3.1.1 Generalised memory states.

Let (s, h) be a memory state and let X be a finite set of variables. Albeit simple, the idea of
seeing s|X as a heap must be fully formalised. For instance, the structure s|X∪h is not technically
speaking a heap, but a function in [(VAR∪LOC)⇀fin LOC]. To solve this issue, in this chapter we
consider a slight alternative semantics for SL(∃, ∗,−∗) and its fragments, which does not modify
the notion of satisfiability/validity and such that the set of formulae and the definition of the
satisfaction relation |= given in Section 2.1 remain unchanged.

Definition 3.1 (Generalised memory state). A generalised memory state is a triple (G, s, h)
where G is a countably infinite set, s : VAR→ G and h : G⇀fin G.

So far, memory states are pairs of the form (s, h) with s : VAR→ LOC and h : LOC⇀fin LOC for a
fixed countably infinite set of locations LOC. A generalised memory state is instead parametric

3.1. Encoding Assignments as Memory Cells 53

on the set of locations. One can see this variation as simply a way of exhibiting the set of
locations directly as an element of the memory state. Indeed, a (standard) memory state (s, h)
is equivalent to the generalised memory state (LOC, s, h). Given a bijection f : G1 → G2 and a
heap h1 : G1 ⇀fin G1, we write f(h1) for the heap h2 : G2 ⇀fin G2 defined as h2

def= {f(`1) 7→ f(`2) |
h1(`1) = `2}. The satisfaction relation |= of Figure 2.3 can be updated to generalised memory
states in a natural way. As one can expect, considering generalised memory states instead of
standard ones does not change the notion of satisfiability and validity, as we show next. First,
let us revisit the notion of X-isomorphic memory states (Definition 2.9).

Definition 3.2 (g-X-heap-isomorphism). Two generalised memory states (G1, s1, h1), (G2, s2, h2)
are said to be g-X-heap-isomorphic (X ⊆ VAR), written (G1, s1, h1)'gX (G2, s2, h2), if there is a
bijection f : G1 → G2 such that (1) f(h1) = h2 and (2) for every x ∈ X, f(s1(x)) = s2(x).

As in the case of X-heap-isomorphism, 'gX is an equivalence relation. In particular, note that if
f is a g-X-heap-isomorphism from (G1, s1, h1) to (G2, s2, h2) (i.e. a bijection as in Definition 3.2),
then f−1 is a g-X-heap-isomorphism from (G2, s2, h2) to (G1, s1, h1). We now extend Proposi-
tion 2.10 to generalised memory states, thus proving that no formula of SL(∃, ∗,−∗) written with
free-variables in X can distinguish between g-X-heap-isomorphic memory states.

Lemma 3.3. Let X ⊆ VAR. Consider two generalised memory states (G1, s1, h1) 'gX (G2, s2, h2).
For every ϕ in SL(∃, ∗,−∗) with fv(ϕ) ⊆ X, (G1, s1, h1) |= ϕ iff (G2, s2, h2) |= ϕ.

Proof. The proof is by induction on the tree structure of ϕ (with the natural induction hypoth-
esis stating that the property holds for strict subformulae of ϕ). Let X be a set of variables that
includes the free variables from ϕ. Let f : G1 → G2 be a g-X-heap-isomorphism from (G1, s1, h1)
to (G2, s2, h2), as defined in Definition 3.2. Since 'gX is a symmetric relation (as it is an equiv-
alence relation), it is sufficient to prove one direction of the lemma (the other direction holds
by considering f−1 instead of f). Recall that f−1 is a g-X-heap-isomorphism from (G2, s2, h2)
to (G1, s1, h1). The base cases for emp, x = y and x ↪→ y pose no difficulty. Thus, we only show
the case for x ↪→ y, and omit the other two.
base case: x ↪→ y. Suppose (G1, s1, h1) |= x ↪→ y, and therefore h1(s1(x)) = s1(y). Thanks to

the properties g-X-heap-isomorphism, the following sequence of equalities is satisfied:

f−1(h2(s2(x))) = h1(f−1(s2(x))) = h1(s1(x)) = s1(y) = f−1(s2(y)).

As f is a bijection, we derive h2(s2(x)) = s2(y) and thus (G2, s2, h2) |= x ↪→ y holds.
Concerning the inductive cases, we omit the obvious cases when the outermost connective is a
Boolean connective, leaving us with formulae of the form ψ ∗ χ, ψ −∗ χ and ∃zψ.
induction step: case with ∗. Suppose (G1, s1, h1) |= ψ ∗ χ. Then, there are two heaps h′1

and h′′1 such that h1 = h′1 +h′′1, (G1, s1, h
′
1) |= ψ and (G1, s1, h

′′
1) |= χ. Consider h′2 = f(h′1)

and h′′2 = f(h′′1) to be the images of h′1 and h′′1 via f. As f is an g-X-heap-isomorphism
between h1 and h2, we have:

h2 = f(h1) = f(h′1 + h′′1) = f(h′1) + f(h′′1) = h′2 + h′′2

and moreover h′2⊥h′′2. Lastly, both (G1, s1, h
′
1)'gX (G2, s2, h

′
2) and (G1, s1, h

′′
1) 'gX (G2, s2, h

′′
2)

hold, as one can check that f is an g-X-heap-isomorphism also for these structures. By the
induction hypothesis, (G2, s2, h

′
2) |= ψ and (G2, s2, h

′′
2) |= χ. Thus, (G2, s2, h2) |= ψ ∗ χ.

54 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

induction step: case with −∗. Suppose that (G1, s1, h1) |= ψ −∗ χ hold. Then, for every
heap h′1, if h′1⊥h1 and (G1, s1, h

′
1) |= ψ then (G1, s1, h1 + h′1) |= χ. In order to show

that (G2, s2, h2) |= ψ −∗ χ holds, let us consider a heap h′2 s.t. h′2⊥h2 and (G2, s2, h
′
2) |= ψ

hold. We show that then (G2, s2, h2 + h′2) |= χ holds. First, by recalling that f−1 is a
bijection from G2 to G1, we construct the heap h′1 = f−1(h′2). By definition of h′1, the two
following properties are satisfied:

1. f is an g-X-heap-isomorphism (from (G1, s1, h
′
1) to (G2, s2, h

′
2)),

2. h′1⊥h1 holds (from (1), (G1, s1, h
′
1) 'gX (G2, s2, h

′
2), h′2⊥h2 and f−1(h′2) = h′1).

By the induction hypothesis, (1) allows us to derive that (G1, s1, h
′
1) |= ψ. Then, from (2)

together with the initial hypothesis (G1, s1, h1) |= ψ −∗ χ, we obtain that (G1, s1, h1 + h′1)
satisfies χ. By definition f(h1 + h′1) = f(h1) + f(f−1(h′2)) = h2 + h′2 and therefore by
induction hypothesis we get (G2, s2, h2 + h′2) |= χ. Thus, (G2, s2, h2) |= ψ −∗ χ.

induction step: case with ∃. Suppose (G1, s1, h1) |= ∃z ψ. Then, there is a location ` ∈ G1
such that (G1, s1[z ← `], h1) |= ψ. We need to prove that (G2, s2, h2) |= ∃z ψ, which
is true whenever there is a location `′ ∈ G2 such that (G2, s2[z ← `′], h2) |= ψ. Let us
consider the location `′ = f(`) in G2. By definition of g-(X ∪ {z})-heap-isomorphism it
holds that (G1, s1[z ← `], h1) 'gX∪{z} (G2, s2[z ← `′], h2). Moreover, from fv(∃zψ) ⊆ X
we derive fv(ψ) ⊆ X ∪ {z}. This allows us to apply the induction hypothesis, leading
to (G2, s2[x← `′], h2) |= ψ. Consequently, (G2, s2, h2) |= ∃x ψ.

As a direct consequence of this lemma, satisfiability in SL(∃, ∗,−∗) defined in Section 2.1
is equivalent to satisfiability with generalised memory states. Indeed, if ϕ is satisfied by the
memory state (s, h), then it is satisfied by the generalised memory state (LOC, s, h). Similarly,
suppose that ϕ is satisfiable in the generalised memory state (G, s, h). As G is countably infinite,
there is a bijection f : G→ LOC. Consider the memory state (s′, h′) defined as follows:

• for every x ∈ VAR, s′(x) def= f(s(x)), • the heap h′ is defined as f(h).

From the definition of (s′, h′), we have (G, s, h) 'gfv(ϕ) (LOC, s′, h′). By Lemma 3.3, we conclude
(LOC, s′, h′) |= ϕ, which is equivalent to (s′, h′) |= ϕ.

3.1.2 The encoded-by relation BX
Y.

We now formalise the idea discussed at the beginning of this section on how to encode the
store as a part of the heap. We do this by defining a relation BX

Y between generalised memory
states and say that (G1, s1, h1) is encoded by (G2, s2, h2) with respect to two sets of variables
X ⊆ Y, whenever (G1, s1, h1) BX

Y (G2, s2, h2) holds. For instance, we will see that the memory
state in Figure 3.1 is encoded by the one in Figure 3.2. As previously stated, when considering
the satisfaction of a formula ϕ with respect of the encoding (G2, s2, h2), we rely on additional
variables not appearing in ϕ in order to deal with the separating implication. Informally, X keeps
track of the free variables in ϕ, whereas the auxiliary set Y represent all the variables needed to
perform the encoding (thus X ⊆ Y). Let us define the encoded-by relation BX

Y.

Definition 3.4 (Encoded-by relation). Let X ⊆ Y⊆finVAR be a finite set of variables. Let
(G1, s1, h1) and (G2, s2, h2) be generalised memory states. (G1, s1, h1) is encoded-by (G2, s2, h2)
with respect to X and Y, written (G1, s1, h1)BX

Y (G2, s2, h2), if the following conditions hold:

3.2. Simulating the First-order Quantification 55

• G1 = G2 \ {s2(x) | x ∈ Y},
• for x, y ∈ Y, if x 6= y then s2(x) 6= s2(y),

• h2 = h1 + {s2(x) 7→ s1(x) | x ∈ X}.

Notice that G2 is obtained from G1 by adding the locations in {s2(x) | x ∈ Y}. Locations in the
latter set are reserved to simulate the store. Moreover, h2 is equal to the heap h1 augmented
with the heap {s2(x) 7→ s1(x) | x ∈ X}, which encodes the store s1 restricted to the domain X. In
particular, notice that this heap is a subset of {s2(x) | x ∈ X}×G1, which means that all its arrows
have sources in the region reserved to simulate the store, and targets in the set of locations G1.
Figure 3.2 represents quite clearly an encoding of the memory state in Figure 3.1, in the case
where X = {x, y, z}. The set Y made of locations reserved to simulate the store is highlighted. In
the figure, it includes the three locations that are assigned to x, y and z, plus three unlabelled
locations which represent elements in Y \ X. Furthermore, the heap {s2(x) 7→ s1(x) | x ∈ X} is
represented by the three arrows leaving the highlighted region.

The encoded-by relation formally describes the memory states we had in mind when consid-
ering the problem of simulating first-order quantification by means of heap manipulations. In
the following section, we formalise this manipluation inside a fragment of SL(∗,−∗, ↪→+).

3.2 Simulating the First-order Quantification

As informally described in the previous section, encoding a store as a part of the heap has some
impact on the satisfaction of x ↪→ y and x = y. Indeed, given a generalised memory state (G, s, h),
these two properties should be now checked with respect to the locations that are pointed by
s(x) and s(y). For instance, instead of checking whether h(s(x)) = s(y) as required by x ↪→ y,
we must now check for h2(s(x)) = h(s(y)). Besides, in well-formed encodings the locations that
are reserved to encode the store are not pointed by any location, i.e. they do not satisfy the
alloc-back predicate ↪→ (·). All these adaptations naturally lead us to consider a separation
logic, denoted by SL(n(x), ∗,−∗), whose formulae are from the following grammar:

π := > | emp | x = y

| n(x) = n(y) (next-equality)
| n(x) ↪→ n(y) (next-points-to)
| ↪→ x (alloc-back)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ¬ϕ
| ϕ ∗ ϕ
| ϕ−∗ ϕ

Given a generalised memory state (G, s, h), the satisfaction relation |= for the formulae
of SL(n(x), ∗,−∗) is defined as in Figure 2.3 for the syntactical elements that the logic has in
common with SL(∃, ∗,−∗), whereas it is given in Figure 3.4 for the other predicates. For instance,
the memory state in Figure 3.5 satisfies n(x) = n(y), n(z) ↪→ n(y) and n(x) ↪→ n(z), but it does
not satisfy ↪→ v, for any v ∈ {x, y, z}. A small remark: the equivalence relation = used to
define the semantics of n(x) = n(y), and n(x) ↪→ n(y) is a binary relation on the set of locations.
In particular, given two locations `, `′ 6∈ dom(h), h(`) = h(`′) does not hold. This means that
the formula n(x) = n(x) is equivalent to the alloc predicate x ↪→ introduced in Section 2.1.1.

The logic SL(n(x), ∗,−∗) is a quantifier-free syntactical fragment of SL(∃, ∗,−∗). We already
saw how to express alloc-back predicate in Section 2.1.1. Concerning the predicates n(x) = n(y)
and x ↪→ y, we have the two following equivalences:

n(x) = n(y) ≡ ∃z (x ↪→ z ∧ y ↪→ z), n(x) ↪→ n(y) ≡ ∃z∃v (x ↪→ z ∧ z ↪→ v ∧ y ↪→ v).

Despite being quantifier-free, we prove the following result.

56 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

(G, s, h) |= n(x) = n(y) iff h(s(x)) = h(s(y)),

(G, s, h) |= n(x) ↪→ n(y) iff h(h(s(x))) = h(s(y)),

(G, s, h) |= ↪→ x iff s(x) ∈ ran(h).

Figure 3.4: The semantics of SL(n(x), ∗,−∗) predicates.

lo
ca

tio
ns

re
se

rv
ed

to
sim

ul
at

e
th

e
st

or
e

z

y

x

Figure 3.5: An encoding.

Theorem 3.5. The satisfiability and validity problems of SL(n(x), ∗,−∗) are not RE.

This theorem is quite interesting when compared to other well-known complexity results. For
instance, recall that SL([∃]1, ∗,−∗), i.e. the one quantified variable fragment of SL(∃, ∗,−∗), is
proven to admit a PSpace-complete satisfiability problem [55]. This logic can express the pred-
icates ↪→ x and n(x) = n(y) by directly using the definition we gave for SL(∃, ∗,−∗). Theorem 3.5
shows that enriching SL([∃]1, ∗,−∗) with the predicate n(x) ↪→ n(y) makes the satisfiability prob-
lem does a remarkable jump: from PSpace to non RE. Moreover, in Section 3.3 we show that the
three predicates n(x) = n(y), n(x) ↪→ n(y) and ↪→ x can be expressed using a bounded variant
of the list-segment predicate ls, leading to various extensions of the quantifier-free separation
logic SL(∗,−∗) to admit non RE satisfiability and validity problems.

The proof of Theorem 3.5 achieved by showing that SL(n(x), ∗,−∗) can simulate the first-order
quantification of SL(∃,−∗), i.e. the fragment of SL(∃, ∗,−∗) without the separating conjunction.
The satisfiability problem of this logic is proven undecidable in [22], and one can check that
this implies that both satisfiability and validity are not RE by replaying the arguments used
for SL(∃, ∗,−∗) in Section 2.1.2. The formulae ϕ for the separation logic SL(∃,−∗) considered
in [22] are built from the following grammar (where x, y, z ∈ VAR):

ϕ := x = y | x ↪→ y | ϕ ∧ ϕ | ¬ϕ | ϕ−∗ ϕ | ∃zϕ.

In this presentation of SL(∃,−∗), notice that the logic does not directly feature the atomic
formulae > and emp of SL(∃, ∗,−∗), which can be defined as x = x and ¬∃x ∃y x ↪→ y, respectively.
We recall the satisfaction relation |= for the formulae of SL(∃,−∗) in Figure 3.6, adapting it
to generalised memory states. As SL(∃,−∗) is a fragment of first-order separation logic, by
Lemma 3.3 we know that this adaptation does not change the notion of satisfiability.

3.2.1 Translating SL(∃,−∗) into SL(n(x), ∗,−∗).

We define a translation of a formula of SL(∃,−∗) into a quantifier-free formula of SL(n(x), ∗,−∗).
For simplicity, we assume every formula ϕ in SL(∃,−∗) to be well-quantified, meaning that every
two distinct quantifiers appearing in ϕ involve distinct variables. This assumption, often called
Barendregt’s convention, can be done without loss of generality. Indeed, every subformula ∃zψ
of ϕ can be replaced with the equivalent formula ∃vψ[z← v], where v is a variable not appearing
in ψ and ψ[z← v] is the formula obtained from ψ by replacing every occurrence of z with v.

Assumption 3.6. The formulae in SL(∃,−∗) are well-quantified.

3.2. Simulating the First-order Quantification 57

(G, s, h) |= x = y iff s(x) = s(y),

(G, s, h) |= x ↪→ y iff h(s(x)) = s(y),

(G, s, h) |= ϕ ∧ ψ iff (G, s, h) |= ϕ and (G, s, h) |= ψ,

(G, s, h) |= ¬ϕ iff (G, s, h) 6|= ϕ,

(G, s, h) |= ϕ−∗ ψ iff for every heap h′ : G⇀fin G, if h′⊥h and (G, s, h′) |= ϕ

then (G, s, h+ h′) |= ψ,

(G, s, h) |= ∃zϕ iff there is ` ∈ G such that (G, s[z← `], h) |= ϕ.

Figure 3.6: Satisfaction relation for SL(∃,−∗), for a generalised memory state.

Let X ⊆ Y ⊆fin VAR. Below, let us fix a (well-quantified) formula ϕ of SL(∃,−∗) with free
variables from X and bound variables from Y \ X. To correctly setup a framework that can deal
with the separating implication, every variable x ∈ Y is paired with a distinct copy x. Formally,
we pick a set Y ⊆fin VAR such that Y∩Y = ∅ and card(Y) = card(Y). We write Y def= Y ∪ Y to
denote the union of these two sets. Next, we build a correspondence between variables and their
copies by defining an involution (·) : Y→ Y associating every x ∈ Y with its copy x ∈ Y. Recall
that (·) being an involution means that it is a bijection such that x = x.

The translation of ϕ into a formula τX,Y(ϕ) of SL(n(x), ∗,−∗) is divided into two cases: a
base case for atomic formulae and “inductive” case for non-atomic ones. This division is quite
natural, since we aim at proving the following correctness lemma by structural induction on ϕ.

Lemma 3.7. Let (G1, s1, h1)BX
Y (G2, s2, h2). (G1, s1, h1) |= ϕ iff (G2, s2, h2) |= τX,Y(ϕ).

Base cases. The definition of τX,Y(ϕ) is straightforward when ϕ is a formula of the form x = y
or x ↪→ y: we simply need to rely on the properties of the encoding given in the previous section.

τX,Y(x = y) def= n(x) = n(y), τX,Y(x ↪→ y) def= n(x) ↪→ n(y).

The correctness of these two cases of the translation follows from the lemma below. Besides, this
lemma corresponds to the base case of the proof by induction we employ to show Lemma 3.7.

Lemma 3.8. Let X ⊆ Y. Let ϕ be an atomic formula of the form x = y or x ↪→ y, where x, y ∈ X.
Given (G1, s1, h1)BX

Y (G2, s2, h2), (G1, s1, h1) |= ϕ iff (G2, s2, h2) |= τX,Y(ϕ).

Proof. Let us consider two generalised memory states (G1, s1, h1) and (G2, s2, h2) such that
(G1, s1, h1)BX

Y (G2, s2, h2). We split the proof into two cases, following whether ϕ is an equality
predicate or a points-to predicate.
case: ϕ = x = y. The following equivalences hold:

(G1, s1, h1) |= x = y iff s1(x) = s1(y) (by def. of |=)
iff h2(s2(x)) = s1(x) = s1(y) = h2(s2(y)) (by def. of BX

Y)
iff (G2, s2, h2) |= n(x) = n(y). (by def. of |=)

case: ϕ = x ↪→ y. The following equivalences hold:

58 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

(G1, s1, h1) |= x ↪→ y iff h1(s1(x)) = s1(y) (by def. of |=)
iff h2(s2(x)) = s1(x), h2(s2(y)) = s1(y)

and h2(s1(x)) = s1(y) (by def. of BX
Y)

iff (G2, s2, h2) |= n(x) ↪→ n(y). (by def. of |=)

Well-formed encodings. Before moving to the inductive cases, let us consider a gener-
alised memory state (G1, s1, h1) and one of its encodings (G2, s2, h2) with respect to X ⊆ Y,
i.e. (G1, s1, h1)BX

Y (G2, s2, h2). We recall that the definition of the encoded-by relation realises
our intuitive idea of isolating a finite amount of locations in order to mimic the store s1 by using
the heap h2. This is done by enforcing the following three properties:

1. G1 = G2 \ {s2(x) | x ∈ Y},
2. given x, y∈Y, if x 6= y then s2(x) 6= s2(y),

3. h2 = h1 + {s2(x) 7→ s1(x) | x ∈ X}.

These properties must be checked during the translation, so that the first-order quantification
and the separating implication only consider generalised memory states that are well-formed
with respect to the encoded-by relation (that is, they encode some memory state). For this
reason, given a set X ⊆ Y, we introduce the formula StoreY(X) defined as follows

StoreY(X) def= (
∧

x,y∈Y
x6=y

x 6= y) ∧ (
∧

x∈Y
¬ ↪→ x) ∧ (

∧
x∈X

x ↪→) ∧ (
∧

x∈Y\X
¬ x ↪→).

where x ↪→ def= n(x) = n(x) in SL(n(x), ∗,−∗). We can see that this formula captures some essen-
tial trait of the properties above: its first conjunct is equivalent to the second property, whereas
the other three conjuncts essentially verify the first and third properties. The relationship
between StoreY(X) and the encoded-by relation is formalised in the next lemma.

Lemma 3.9. Let (G2, s2, h2) be a generalised memory state. There is a generalised memory
state (G1, s1, h1) such that (G1, s1, h1)BX

Y (G2, s2, h2) if and only if (G2, s2, h2) |= StoreY(X).

Proof. For both directions we use the properties (1), (2) and (3) of the relation BX
Y above.

(⇒): Suppose (G1, s1, h1)BX
Y (G2, s2, h2). (G2, s2, h2) satisfies the four conjuncts of StoreY(X):

(first conjunct) Directly from property (2).
(second conjunct) Let us consider a variable x ∈ Y. From property (1) we derive s2(x) 6∈ G1,
which means that s2(x) 6∈ ran(h1) (indeed, h1 is in [G1 ⇀fin G1]). Similarly, since for every
y ∈ Y it holds that s1(y) ∈ G1, we conclude that s2(x) 6∈ ran({s2(x) 7→ s1(x) | x ∈ X}).
Thus, from property (3) we have s2(x) 6∈ ran(h2), which implies (G2, s2, h2) |= ¬ ↪→ x.

(third conjunct) Directly from property (3).
(fourth conjunct) Let x ∈ Y\X. By property (1), s2(x) 6∈ G1 and therefore s2(x) 6∈ dom(h1).
Besides, by definition s2(x) 6∈ dom({s2(x) 7→ s1(x) | x ∈ X}). From the property (3), it holds
that s2(x) 6∈ dom(h2), or equivalently (G2, s2, h2) |= ¬x ↪→ .

(⇐): Suppose (G2, s2, h2) |= StoreY(X). Let us define the set G1
def= G2 \ {s2(x) | x ∈ Y},

the heap h1
def= {(`, `′) ∈ h2 | `, `′ ∈ G1} and a store s1 such that s1(x) def= h2(s2(x)) for

every x ∈ X. From the third conjunct of StoreY(X), s1 is well-defined. Moreover, G1 is countably
infinite and therefore the structure (G1, s1, h1) is a generalised memory state. We show that
(G1, s1, h1)BX

Y (G2, s2, h2). The property (1) holds by definition, whereas the property (2) follows
directly from the first conjunct of StoreY(X). To prove the property (3), we consider the

3.2. Simulating the First-order Quantification 59

τX,Y(¬ψ) def= ¬τX,Y(ψ),

τX,Y(ψ1 ∧ ψ2) def= τX,Y(ψ1) ∧ τX,Y(ψ2),

τX,Y(∃z ψ) def= (z ↪→ ∧ size = 1)−~
(
StoreY(X ∪ {z}) ∧ τX∪{z},Y(ψ)

)
,

τX,Y(ψ1 −∗ ψ2) def=
(
StoreY(V) ∧ τV,Y(ψ1[x← x | x ∈ Y])

)
−∗(

(
∧

x∈ V n(x) = n(x))⇒ (size = card(V) ∧
∧

x∈ V x ↪→) ∗ τX,Y(ψ2)
)
,

where V def= {x | x ∈ fv(ψ1)}.

Figure 3.7: Inductive cases of the translation to SL(n(x), ∗,−∗).

structure h′ def= {s2(x) 7→ s1(x) | x ∈ X} and prove that it is a heap such that h2 = h1 + h′. From
the definition of s1(x), we have h′ = {s2(x) 7→h2(s2(x)) | x ∈ X}, which implies that h′ ⊆ h2.
Thus, h′ is a heap. To prove that h2 = h1 +h′ holds, it is sufficient to show that h1 = h2\h′. The
left-to-right inclusion h1 ⊆ h2\h′ holds as by definition h1 = h2∩(G1×G1) and dom(h′)∩G1 = ∅.
For the right-to-left inclusion, we prove that (h2\h′) ⊆ G1×G1. Let (`, `′) ∈ h2\h′. Ad absurdum,
suppose (`, `′) 6∈ G1 × G1. By definition of G1, ` ∈ {s2(x) | x ∈ Y} or `′ ∈ {s2(x) | x ∈ Y}. The
latter case is contradictory as it implies s2(x) ∈ ran(h2) for some x ∈ Y, which is inconsistent
with the second conjunct of StoreY(X). The case ` ∈ {s2(x) | x ∈ Y} is also contradictory.
Indeed, (`, `′) ∈ h2 \ h′ implies ` ∈ dom(h2) and, by definition of h′, ` ∈ Y \ X. However, from
the fourth conjunct of StoreY(X), every location in Y \ X is not in the domain of h2.

Inductive cases. We are now ready to analyse the inductive cases of the translation. Their
definition is given in Figure 3.7. As it is often the case with semantical preserving translations,
τX,Y(ϕ) is homomorphic for the Boolean connectives, which fits nicely in the proof by struc-
tural induction of Lemma 3.7. The definition of τX,Y(∃zψ) captures quite closely our initial
idea of seeing the first-order quantification as an update of the heap. More precisely, given
a generalised memory state (G2, s2, h2) satisfying τX,Y(∃zψ), it is possible to find a location `

such that (G2, s2, h2 + {s2(z) 7→ `}) |= StoreY(X ∪ {z}). When considering a generalised mem-
ory state (G1, s1, h1) such that (G1, s1, h1) BX

Y (G2, s2, h2), this means that ` is in G1, so that
(G1, s1[z ← `], h2) BX∪{z}

Y (G2, s2, h2 + {s2(z) 7→ `}). In a nutshell, adding the heap {s2(z) 7→ `}
to h2 corresponds to the case where, after an existential quantification, ` is assigned to z.

For the formula ψ1 −∗ ψ2, we cannot follow a similar idea and simply translate it to the
formula τX,Y(ψ1) −∗ (StoreY(X) ⇒ τX,Y(ψ2)). Indeed, the evaluation of τX,Y(ψ1) in a disjoint
heap may need the values of free variables occurring in ψ1, but our encoding of the variable
valuations via the heap does not allow to preserve these values through disjoint heaps. Here
is where the set Y of copies of the variables comes into play. Consider a generalised memory
state (G, s, h) satisfying StoreY(X) and fv(ψ1 −∗ ψ2) ⊆ X. In particular, for every x ∈ fv(ψ1)
the location s(x) is a memory cell of h. To check whether (G, s, h) satisfies τX,Y(ψ1 −∗ ψ2), the
left side of the magic wand considers heaps h′ encoding a store with respect to the copies of
the variables in fv(ψ1), i.e. such that (G, s, h′) satisfies StoreY(V) were V def= {x | x ∈ fv(ψ1)}
(as in the translation). On this heap, instead of asking whether τX,Y(ψ1) holds, we can check
for the satisfaction of τX,Y(ψ1[x ← x | x ∈ Y]), where ψ1[x ← x | x ∈ Y] denotes the formula
obtained from ψ1 by replacing every variable x ∈ X with its copy, and vice versa (recall that (·)
is an involution). We need however to be careful and only consider h′ if the store it encodes is

60 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

compatible with the one encoded by h: for every x ∈ V, h′(s2(x)) must be the same location as
h(s2(x)). We check this property directly on the heap h+ h′ by using the formula n(x) = n(x).
When this property holds, we can employ the separating conjunction to remove the store encoded
by h′ from h+h′, and ask for the satisfaction of τX,Y(ψ2) on the resulting memory state. Notice
that, by removing the store encoded by h′, we can reuse x to deal with the occurrences of the
magic wand inside ψ2. Similarly, the occurrences of the magic wand inside ψ1[x ← x | x ∈ Y]
are dealt with by using the copies of the variables appearing in this formula (recall that (·) is
an involution), which does not correspond to memory cells in h′.

Example 3.10. Let us consider the formula ϕ def= (x ↪→ y −∗ x ↪→ z) −∗ y = z and show its
translation. Let X = {x, y, z} and Y = {x, y, z, x, y, z}. The translation leads to the following
equivalences:

τX,Y(ϕ) =
(
StoreY(X) ∧ τX,Y(x ↪→ y−∗ x ↪→ z)

)
−∗(

(
∧

v∈X n(v) = n(v))⇒ (size = 3 ∧
∧

v∈X v ↪→) ∗ τX,Y(y = z)
)
,

τX,Y(x ↪→ y−∗ x ↪→ z) =
(
StoreY({x, y}) ∧ τ{x,y},Y(x ↪→ y)) −∗(
(
∧

v∈{x,y} n(v) = n(v))⇒ (size = 2 ∧
∧

v∈{x,y} v ↪→) ∗ τX,Y(x ↪→ z)
)
,

τX,Y(x ↪→ y) = n(x) ↪→ n(y),

τX,Y(x ↪→ z) = n(x) ↪→ n(z),

τX,Y(y = z) = n(y) = n(z).

Notice how the translation alternates between the variables in X and their copies when imbri-
cating the separating implication on its left side (as it is the case for the formula ϕ).

The following lemma subsumes Lemma 3.7 and thus proves the correctness of our translation.
The statement is given with respect to the disjoint finite sets of variables Y and Y, as well as
the set Y endowed with the involution (·), as defined in this section. We recall that for the
formula ϕ, we assume that distinct quantifications involve distinct variables.

Lemma 3.11. Let Z be either Y or Y and let X ⊆ Z. Let ϕ be a formula in SL(∃,−∗) s.t. fv(ϕ) ⊆ X
and bv(ϕ) ⊆ Z \ X. Given (G1, s1, h1)BX

Y (G2, s2, h2), (G1, s1, h1) |= ϕ iff (G2, s2, h2) |= τX,Y(ϕ).

Proof. The proof goes by structural induction on ϕ (with the natural induction hypothesis stat-
ing that the property holds for strict subformulae of ϕ). The base cases for ϕ of the form x = y
and x ↪→ y, where x, y ∈ X, hold from Lemma 3.8. We omit the obvious cases for the Boolean
connectives, which leaves us with the two cases for ϕ = ∃zψ and ϕ = ψ1 −∗ ψ2. Let us consider
two memory states (G1, s1, h1) and (G2, s2, h2) such that (G1, s1, h1)BX

Y (G2, s2, h2).
case: ϕ = ∃zψ. By definition of ϕ, the variable z is in Z \ X, which implies s2(z) 6∈ dom(h2) by

definition of BX
Y. We refer to Figure 3.7 for the definition of τX,Y(∃zψ).

(⇒): Suppose (G1, s1, h1) |= ∃zψ, which implies that there is a location ` ∈ G1 such
that (G1, s1[z ← `], h1) |= ψ holds. Let us consider the structure h′ def= {s2(z) 7→ `}.
The location ` is from G1 whereas, from the definition of BX

Y, s2(z) is a variable in
G2 \ G1. This makes h′ a heap in [G2 ⇀fin G2]. Moreover, as s2(z) 6∈ dom(h2), h′ is
disjoint from h2. Clearly, (G2, s2, h

′) |= z ↪→ ∧ size = 1 holds, which means that to con-
clude this direction of the proof is sufficient to show that (G2, s2, h2 + h′) satisfies the
formula StoreY(X ∪ {z}) ∧ τX∪{z},Y(ψ). For this, the essential step is to establish that

3.2. Simulating the First-order Quantification 61

(G1, s1[z← `], h1)BX∪{z}
Y (G2, s2, h2 + h′),

which amounts to prove that
1. G1 = G2 \ {s2(x) | x ∈ Y},
2. given x, y∈Y, if x 6= y then s2(x) 6= s2(y),
3. h2 + h′ = h1 + {s2(x) 7→ s1[z← `](x) | x ∈ X ∪ {z}}.

The properties (1) and (2) follow directly from the hypothesis that (G1, s1, h1)BX
Y(G2, s2, h2).

Moreover, this hypothesis implies h2 = h1 + {s2(x) 7→ s1(x) | x ∈ X}. By simply adding h′
to both sides of this equation we obtain

h2 + h′ = h1 + {s2(x) 7→ s1(x) | x ∈ X}+ {s2(z) 7→ `}.
By definition of s1[z ← `], the heap {s2(x) 7→ s1(x) | x ∈ X} + {s2(z) 7→ `} is equiva-
lent to {s2(x) 7→ s1[z← `](x) | x ∈ X ∪ {z}}, which concludes the proof of the property (3).
This concludes the proof of (G1, s1[z ← `], h1) BX∪{z}

Y (G2, s2, h2 + h′), which in turn al-
lows us to conclude (G2, s2, h2 + h′) |= StoreY(X ∪ {z}) directly by Lemma 3.9, as well
as (G2, s2, h2 + h′) |= τX∪{z},Y(ψ), by induction hypothesis.
(⇐): Suppose (G2, s2, h2) |= τX,Y(∃zψ). By definition of τX,Y(∃zψ), there is h′ : G2 ⇀fin G2
disjoint from h2 and such that
A. (G2, s2, h

′) |= z ↪→ ∧ size = 1,
B. (G2, s2, h2 + h′) |= StoreY(X ∪ {z}) ∧ τX∪{z},Y(ψ).

From (A), h′ = {s2(z) 7→ `} for some ` ∈ G2. More precisely, from the satisfaction
of StoreY(X ∪ {z}) in (B), ` is not assigned to any of the variables in Y and therefore,
by (G1, s1, h1)BX

Y (G2, s2, h2), ` can only be a location in G1. As done for the left-to-right
direction, this allows us to prove that (G1, s1[z ← `], h1) BX∪{z}

Y (G2, s2, h2 + h′), which
in turn implies (G1, s1[z ← `], h1) |= ψ by induction hypothesis (using (B)). Lastly, by
definition of ∃zψ we conclude: (G1, s1, h1) |= ∃zψ.

The proof of the case for ϕ = ψ1 −∗ ψ2 requires the following substitution lemma, which holds
for every formula in either SL(n(x), ∗,−∗) or SL(∃,−∗):

(Sub) Let χ be a formula with variables in Z, where Z = Y or Z = Y. Let (G, s, h) be a
generalised memory state. (G, s, h) |= χ iff (G, s[x← s(x) | x ∈ Z], h) |= χ[x← x | x ∈ Z].

This result essentially states that renaming all the variables in a formula with its copies and
updating the store s adequately, i.e. s(x) = s(x) for every x in the formula, does not change
the notion of satisfiability. A quick way to prove (Sub) is noticing that the two memory states
(G, s, h) and (G, s[x ← s(x) | x ∈ Z], h) are g-Z-isomorphic, and therefore they equisatisfy χ

by Lemma 3.3. Moreover, (G, s[x← s(x) | x ∈ Z], h) |= x = x for every x ∈ Z, which allows us to
conclude (Sub) by relying on the following well-known tautology of separation logic:

|= x = x ∧χ ⇒ χ[x← x].

Details are omitted to let us focus on the case of ϕ = ψ1 −∗ ψ2, which we now develop.
case: ϕ = ψ1 −∗ ψ2. We refer to Figure 3.7 for the definition of τX,Y(y1−∗ y2). As in this figure,

we use V to denote {x | x ∈ fv(ψ1)}. Moreover, Z stands for the set {x | x ∈ Z} (recall that
by hypothesis Z is Y or Y), so that V ⊆ Z. As extensively used for both directions of the
proof, we recall that the hypothesis (G1, s1, h1)BX

Y (G2, s2, h2) implies that
B1. G1 = G2 \ {s2(x) | x ∈ Y},
B2. given x, y∈Y, if x 6= y then s2(x) 6= s2(y),

62 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

B3. h2 = h1 + {s2(x) 7→ s1(x) | x ∈ X}.

Below, the indices (B1), (B2) and (B3) refer to these three properties.
(⇒): Suppose (G1, s1, h1) |= ψ1−∗ψ2. By definition, for every heap h′ : G1 ⇀fin G1, if h′⊥h1
and (G1, s1, h

′) |= ψ1 then (G1, s1, h1 +h′) |= ψ2. Let us prove (G2, s2, h2) |= τX,Y(ϕ1−∗ϕ2).
By definition of τX,Y(ϕ1 −∗ ϕ2), this holds whenever for all heaps h′2 : G2 ⇀fin G2 satisfying
the following properties

H1. h′2⊥h2,
H2. (G2, s2, h

′
2) |= StoreY(V),

H3. (G2, s2, h
′
2) |= τV,Y(ψ1[x← x | x ∈ Y]),

H4. (G2, s2, h2 + h′2) |=
∧

x∈ V n(x) = n(x),

it holds that

T. (G2, s2, h2 + h′2) |= (size = card(V) ∧
∧

x∈ V x ↪→) ∗ τX,Y(ψ2).

Therefore, let h′2 be some heap that satisfies the premises of the implication, i.e. (H1)–(H4).
We show that (T) holds. By (H2), for every variable x ∈ Y, s2(x) 6∈ ran(h′2) and more-
over s2(x) ∈ dom(h′2) if and only if x ∈ V. This implies that there is a heap h′1 such that
h′2 = h′1 + {s2(x) 7→h′2(s2(x)) | x ∈ V} and for every (`, `′) ∈ h′1, both ` and `′ are not
assigned to variables in Y. Moreover, from (B1) we have G2 = G1 ∪ {s2(x) | x ∈ Y},
which in turn implies that the locations ` and `′ above are in G1. Thus, h′1 is a heap in
[G1 ⇀fin G1]. This allows us to derive that

(G1, s1[x← h′2(s2(x)) | x ∈ V], h′1)BV
Y (G2, s2, h

′
2).

We can then apply the induction hypothesis and, form (H3), conclude that

(G1, s1[x← h′2(s2(x)) | x ∈ V], h′1) |= ψ1[x← x | x ∈ Y]. (a)

From (H4) and by definition of h′2, we have h′2(s2(x)) = h2(s2(x)) for every x ∈ V. This
means that (a) can be rewritten as (G1, s1[x← h2(s2(x)) | x ∈ V], h′1) |= ψ1[x← x | x ∈ Y].
As ψ1 is written with variables from Z, we can apply (Sub) to swap every x ∈ Z with x ∈ Z,
and derive that

(G1, (s1[x← h2(s2(x)) | x ∈ V])[x← s1(x) | x ∈ Z], h′1) |= ψ1. (b)

The store (s1[x ← h2(s2(x)) | x ∈ V])[x ← s1(x) | x ∈ Z] considered in (b) is such that for
every x ∈ V, h2(s2(x)) is assigned to x. From (B3), the same holds for s1. Here, recall in
particular that V is the set of copies of the variables in fv(ψ1) ⊆ X. We derive that the
following g-fv(ψ1)-isomorphism holds:

(G1, (s1[x← h2(s2(x)) | x ∈ V])[x← s1(x) | x ∈ Z], h′1) 'gfv(ψ1) (G1, s1, h
′
1)

which allows us to conclude (G1, s1, h
′
1) |= ψ1 directly by Lemma 3.3. Moreover, the

following inclusions allow us to conclude that h′1⊥h1:

h′1 ⊆ h′2, (by def. of h′1)
h1 ⊆ h2, (by (G1, s1, h1)BX

Y (G2, s2, h2))
h2 ∩ h′2 = ∅. (by (H1))

Thus, by (G1, s1, h1) |= ψ1−∗ψ2, (G1, s1, h1+h′1) |= ψ2 holds. By (B3) and h′1 ∈ [G1 ⇀fin G1],
we have h′1⊥h2 which, by (B1) and (B2), implies that (G1, s1, h1 + h′1)BX

Y (G2, s2, h2 + h′1).

3.2. Simulating the First-order Quantification 63

By induction hypothesis, (G2, s2, h2 +h′1) |= τX,Y(ψ2). Let us now consider the generalised
memory state (G2, s2, h2 + h′2), for which we need to prove (T). By definition of h′2,

h2 + h′2 = h+ h′1 + {s2(x) 7→h′2(s2(x)) | x ∈ V}. (c)

As (B2) implies that for every two distinct variables x, y ∈ V, s2(x) 6= s2(y), and moreover
by (H2) for every variable x ∈ V, the location s2(x) is in dom(h′2), we have

(G2, s2, {s2(x) 7→h′2(s2(x)) | x ∈ V}) |= size = card(V) ∧
∧

x∈ V x ↪→ .
Together with (G2, s2, h2 + h′1) |= τX,Y(ψ2) and (c), this implies (T).
(⇐): Suppose (G2, s2, h2) |= τX,Y(ϕ1−∗ϕ2). This means that for every heap h′2 : G2 ⇀fin G2,
if the following properties are satisfied

A1. h′2⊥h2,
A2. (G2, s2, h

′
2) |= StoreY(V),

A3. (G2, s2, h
′
2) |= τV,Y(ψ1[x← x | x ∈ Y]),

A4. (G2, s2, h2 + h′2) |=
∧

x∈ V n(x) = n(x),

then so is
C. (G2, s2, h2 + h′2) |= (size = card(V) ∧

∧
x∈ V x ↪→) ∗ τX,Y(ψ2).

Let us prove that (G1, s1, h1) |= ψ1 −∗ ψ2, which by definition means that for every
heap h′1 : G1 ⇀fin G1, if h′1⊥h1 and (G1, s1, h

′
1) |= ψ1, then (G1, s1, h1 +h′1) |= ψ2. To prove

it, let us consider a heap h′1 : G1 ⇀fin G1 disjoint from h1 and such that (G1, s1, h
′
1) |= ψ1.

We show that (G1, s1, h1 + h′1) |= ψ2. Since ψ1 is written with variables from Z (as it is
a subformula of ϕ), we can apply (Sub) and consider (G1, s1[x ← s1(x) | x ∈ Z], h′1) |=
ψ1[x← x | x ∈ Z] instead of (G1, s1, h

′
1) |= ψ1. Notice that, again due to the fact that ψ1 is

written with variables from Z, the formula ψ1[x← x | x ∈ Z] is syntactically equivalent to
ψ1[x← x | x ∈ Y]. Let us consider the heap h′2 = h′1 + {s2(x) 7→ s1(x) | x ∈ V}. As V ⊆ Z,
we can show the following relation:

(G1, s1[x← s1(x) | x ∈ Z], h′1)BV
Y (G2, s2, h

′
2). (a)

In particular, recall that this means that:
• G1 = G2 \ {s2(x) | x ∈ Y},
• given x, y∈Y, if x 6= y then s2(x) 6= s2(y),
• h2 = h1 + {s2(x) 7→ s1[x← s1(x) | x ∈ Z](x) | x ∈ V}.

The first two properties are direct from (B1) and (B2). For the third property, we notice
that for every x ∈ V, s1[x← s1(x) | x ∈ Z](x) = s1(x), which implies that

{s2(x) 7→ s1[x← s1(x) | x ∈ Z](x) | x ∈ V} = {s2(x) 7→ s1(x) | x ∈ V}.
Then, the property follows directly by definition of h′2. From (a), we deduce that (A3)
holds by induction hypothesis, whereas (A2) is satisfied by Lemma 3.9. Moreover, (A1)
follows directly from the inclusions below:

dom(h2) = dom(h1) ∪ dom({s2(x) 7→ s1(x) | x ∈ X}), (by (B3))
dom(h′2) = dom(h′1) ∪ dom({s2(x) 7→ s1(x) | x ∈ V}), (by def. of h′2)
dom(h1) ∩ dom(h′1) = ∅, (by def. of h′1)
dom(h1) ∪ dom(h′1) ⊆ G1, (by def. of h1, h′1)
dom({s2(x) 7→ s1(x) | x ∈ X})∩ dom({s2(x) 7→ s1(x) | x ∈ V}) = ∅, (by (B2))
dom({s2(x) 7→ s1(x) | x ∈ X})∪ dom({s2(x) 7→ s1(x) | x ∈ V})⊆G2\G1. (by (B1))

64 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

Therefore, h2 + h′2 is defined. The definition of h2 and h′2 implies the following inclusion

{s2(x) 7→ s1(x) | x ∈ V}+ {s2(x) 7→ s1(x) | x ∈ X} ⊆ h2 + h′2.

Then, for every x ∈ V, (h2 + h′2)(s(x)) = (h2 + h′2)(s(x)), which in turn implies (A4).
(A1)–(A4) imply (C), and therefore there are two disjoint heaps hL and hR such that

1. hL + hR = h2 + h′2
by def= h1 + h′1 + {s2(x) 7→ s1(x) | x ∈ X}+ {s2(x) 7→ s1(x) | x ∈ V},

2. (G2, s2, hL) |= size = card(V) ∧
∧

x∈ V x ↪→ ,

3. (G2, s2, hR) |= τX,Y(ψ2).

Since, by (B2), card({s2(x) 7→ s1(x) | x ∈ V}) = card(V), in order to satisfy (2), hL must be
{s2(x) 7→ s1(x) | x ∈ V}. By (1), this means that hR = h1 + h′1 + {s2(x) 7→ s1(x) | x ∈ X}.
One can check that, by definition of BX

Y, (G1, s1, h1 +h′1)BX
Y (G2, s2, hR), which allows us to

derive (G1, s1, h1 + h′1) |= ψ2 by induction hypothesis from (3), concluding the proof.

3.2.2 SL(n(x), ∗,−∗) is not recursively enumerable.

Now that we established Lemma 3.11, showing that the satisfiability and validity problem for
SL(n(x), ∗,−∗) are not RE comes almost effortlessly. Let us still consider the sets of program
variables Y and Y defined earlier. Given a formula ϕ in SL(∃,−∗), written with variables from Y,
we write TSAT(ϕ) and TVAL(ϕ) for the two following formulae in SL(n(x), ∗,−∗):

TSAT(ϕ) def= StoreY(fv(ϕ)) ∧ τfv(ϕ),Y(ϕ), TVAL(ϕ) def= StoreY(fv(ϕ))⇒ τfv(ϕ),Y(ϕ).

As a consequence of Lemmata 3.9 and 3.11, ϕ and TSAT(ϕ) are shown equisatisfiable, whereas ϕ
and TVAL(ϕ) are shown equivalid.

Corollary 3.12. (I) ϕ and TSAT(ϕ) are equisatisfiable. (II) ϕ and TVAL(ϕ) are equivalid.

The proofs of (I) and (II) are very similar. Below, we just show the proof of (I).

Proof of (I). First, suppose that ϕ is satisfiable, and let (G1, s1, h1) be a generalised memory
state satisfying ϕ. Let us define a set of locations G2 = G1 ∪ {`x | x ∈ Y}, where {`x | x ∈ Y} is
a set of card(Y) locations not in G1. Let us also consider a store s2 : VAR → G2 such that, for
every x ∈ Y, s2(x) = `x, and let h2 : G2 → G2 be the heap h2

def= h1 +{s2(x) 7→ s1(x) | x ∈ fv(ϕ)}.
A quick check to the conditions required by the encoded-by relation reveals that

(G1, s1, h1)Bfv(ϕ)
Y (G2, s2, h2).

By Lemmata 3.9 and 3.11 we conclude that (G2, s2, h2) |= TSAT(ϕ).
Conversely, suppose that there is a generalised memory state (G2, s2, h2) |= TSAT(ϕ). As

(G2, s2, h2) satisfies StoreY(fv(ϕ)), by Lemma 3.9 we derive that (G1, s1, h1) Bfv(ϕ)
Y (G2, s2, h2)

holds for some generalised memory state (G1, s1, h1). From Lemma 3.11, (G1, s1, h1) |= ϕ.

As stated at the beginning of the section, the satisfiability and validity problems for SL(∃,−∗)
are both non RE. Corollary 3.12 shows that this result carries over to SL(n(x), ∗,−∗), thus
proving Theorem 3.5. In the next section we show how to translate SL(n(x), ∗,−∗) into separation
logics with classical reachability predicates, transferring this result even further.

3.3. Reachability Predicates can Quantify 65

3.3 Reachability Predicates can Quantify

We come back to our original goal of simulating the first-order quantification by using reach-
ability predicates. During Section 2.1.1 we defined three standard reachability predicates: the
reach-plus predicate ↪→+, the reach-star predicate ↪→∗ and the list-segment predicate ls. We
showed that, as soon as we consider a separation logic featuring Boolean connectives, emp and
the separating conjunction, ↪→+can be used to define the other two interdefinable predicates ↪→∗
and ls. This means that the logic SL(∗,−∗, ↪→+) obtained from the quantifier-free separation
logic SL(∗,−∗) by adding the reach-plus predicate captures SL(∗,−∗, ↪→∗), which in turn is equiv-
alent to SL(∗,−∗, ls). Thanks to SL(n(x), ∗,−∗), we are now able to show that a non-trivial
restriction of SL(∗,−∗, ls) already admits non RE satisfiability and validity problems. In this
section we use the standard memory states of separation logic, knowing that (s, h) corresponds
to the generalised memory state (LOC, s, h), and that by Lemma 3.3, the distinction between
generalised and standard memory states does not change the notion of satisfiability and validity.

3.3.1 Bounded reachability.

Given a memory state (s, h) and δ ∈ N, we introduce the bounded reachability predicate x ↪→δy,
with the following intended semantics:

(s, h) |= x ↪→δ y if and only if hδ(s(x)) = s(y) and for every δ′ ∈ [0, δ − 1], hδ′(s(x)) 6= s(y).

To define this formula, we first introduce the auxiliary formula [ϕ]β defined as (size =β ∧ ϕ) ∗ >.
Clearly, (s, h) |= [ϕ]β holds whenever there is a heap h′ ⊆ h such that card(h′) =β and (s, h′) |= ϕ.
Then, the predicate x ↪→δ y can be simply defined as [ls(x, y)]δ. We leave the proof of correct-
ness of this definition to the reader. Since ↪→δ is defined in terms of ls, it can be defined in the
three separation logics SL(∗,−∗, ↪→+), SL(∗,−∗, ↪→∗) and SL(∗,−∗, ls).

We prove that the restriction of SL(∗,−∗, ls) to the two predicates ↪→2 and ↪→3, i.e. bounded
reachability of depth two and three, already admits non RE satisfiability and validity problems.
Precisely, we look at the logic SL(∗,−∗, ↪→2, ↪→3) whose formulae ϕ are from the grammar:

ϕ := > | emp | x = y | x ↪→ y | x ↪→2 y | x ↪→3 y | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | ϕ−∗ ϕ.

Modulo some technical details, the result is shown by simulating the predicates ↪→ x, n(x) = n(y)
and n(x) ↪→ n(y) in SL(∗,−∗, ↪→2, ↪→3), and relying on Corollary 3.12. This means that the proof
mainly consists in defining these predicates in SL(∗,−∗, ↪→2, ↪→3) and then simply check for the
correctness of the definitions. In order to avoid a repetitive list of definitions and proofs, in this
section we simply introduce the formulae and informally explain the idea behind their definition.
Their correctness is formally proven in Appendix A.

Alloc-back. In Section 2.1.1 we showed how to use the reachability predicate x ↪→+x in order
to express the predicate ↪→ x (see Proposition 2.7). We would like to change this definition so
that it uses x ↪→δ x, with δ ∈ {2, 3}, instead of x ↪→+x. This is unfortunately not possible, as by
definition x ↪→δ x is equivalent to ⊥ for every δ ≥ 1. To get around this problem, we need to
take advantage of an auxiliary variable y whose location is different from the one assigned to x.
We introduce the formula alloc−1

y (x), defined as follows

alloc−1
y (x) def= x ↪→ x ∨ y ↪→ x ∨

(
> ∗ (y ↪→ ∧ size = 1 −~ y ↪→2 x)

)
.

66 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

where we notice that y ↪→ def= y ↪→ y−∗⊥ is in SL(∗,−∗, ↪→2, ↪→3). The formula alloc−1
y (x) is

equivalent to ↪→ x under the hypothesis that x and y correspond to different locations. The
idea behind its definition is quite simple. The first two disjuncts of the formula take care of
the cases where the location that points to s(x) is either s(x) itself or s(y). Every other case
is taken care of by the third disjunct, which states that it is possible to find a subheap h′ ⊆ h

and a location ` such that h′ + {s(y) 7→ `} witness a path of length two going from s(y) to s(x).
Clearly, this means that {` 7→ s(x)} ⊆ h′, leading to the correctness of the formula.

Lemma 3.13. Let (s, h) be a memory state such that s(x) 6= s(y). We have,

(s, h) |= alloc−1
y (x) if and only if s(x)∈ ran(h).

The additional hypothesis s(x) 6= s(y) does not influence our results, as the formulae TSAT(ϕ)
and TVAL(ϕ) used in Corollary 3.12 keep their satisfiability and validity status when ↪→ x is
replaced with alloc−1

x (x). In particular, one can notice that the alloc-back predicate appears
in these two formulae only inside a subformula StoreY(X), which forces x and x to correspond
to different locations. We explicit this property by defining the formula of SL(∗,−∗, ↪→2, ↪→3):

Store?Y(X) def= StoreY(X)[↪→ x ← alloc−1
x (x) | x ∈ Y],

Lemma 3.14. (s, h) |= StoreY(X) if and only if (s, h) |= Store?Y(X).

Proof. Directly from Lemma 3.13 and the fact that both StoreY(X) and Store?Y(X) are conjunc-
tive formulae witnessing one conjunct x 6= x for every x ∈ Y.

Next-equality. Let us now move to the predicate n(x) = n(y), which we recall being satisfied
by a memory state (s, h) whenever h(s(x)) = h(s(y)) holds. As done for the predicate ↪→ x, we
define a formula that respects this semantics only under additional hypothesis. In particular,
we assume s(x) and s(y) to be locations that do not belong to ran(h). This formula is denoted
by next(x = y) and it is defined as:

next(x = y) def= x ↪→ ∧
(
x 6= y⇒

[
x ↪→ ∧ y ↪→ ∧¬(>−~ x ↪→2 y ∧ y ↪→2 x)

]
2

)
.

Let (s, h) be a memory state. The first conjunct of next(x = y) handles the case where s(x) = s(y),
as n(x) = n(y) then becomes equivalent to x ↪→ (or analogously, y ↪→). The second conjunct
considers the case s(x) 6= s(y). It states that it is possible to find a subheap h′ ⊆ h of cardinality
exactly two and where both s(x) and s(y) are memory cells. Under the hypothesis that s(x)
and s(y) are not in ran(h), this means that h′ witness one of the two following shapes:

x y

`1 `2

x y

`

The subformula ¬(> −~ x ↪→2 y ∧ y ↪→2 x) of next(x = y) excludes the leftmost memory state
while allowing the rightmost one, i.e. the one satisfying n(x) = n(y). Indeed, this formula states
that it is not possible to find a heap h′′ such that the union h′+h′′ witnesses two paths of exactly
length two, one going from s(x) to s(y) and one going from s(y) to s(x). By considering the

3.3. Reachability Predicates can Quantify 67

heap h′′ = {`1 7→ s(y), `2 7→ s(x)} we see that this property does not hold for the leftmost memory
state. For the rightmost memory state, in order to create a path of length two from s(x) to s(y)
we are obliged to consider a heap h′′ such that {` 7→ s(y)} ⊆ h′′. Therefore, it is impossible to
create a path of length 2 going from s(y) to s(x), as h′+h′′ contains the cycle {s(y) 7→ ` 7→ s(y)}.
We conclude that the rightmost memory state satisfies ¬(> −~ x ↪→2 y ∧ y ↪→2 x). This leads to
the following correctness result.

Lemma 3.15. Let (s, h) be a memory state such that {s(x), s(y)} ∩ ran(h) = ∅.

(s, h) |= next(x = y) if and only if h(s(x)) = h(s(y)).

As it holds for the formula alloc−1
y (x), the additional hypothesis {s(x), s(y)} ∩ ran(h) = ∅

of Lemma 3.15 does not influence our result, and n(x)=n(y) can be safely replaced by next(x = y)
in both the formulae TSAT(ϕ) and TVAL(ϕ). Again, this replacement does not change the
satisfiability and validity of these formulae, since Store?Y(X) implies that all variables in Y do
not belong to the range of the heap. We formalise this result in Section 3.3.2

Next-points-to. Lastly, we consider the predicate n(x) ↪→ n(y), which we recall being satisfied
by a memory state (s, h) whenever h(h(s(x))) = h(s(y)) holds. Again, we define this predicate
in SL(∗,−∗, ↪→2, ↪→3) modulo some additional hypothesis. As in the case of alloc−1

y (x), we rely
on an auxiliary variable z whose assigned location is assumed to be different from s(x) and s(y).
Similarly to next(x = y), we also require s(x), s(y) and s(z) not to belong to the range of h.
Under these conditions, the equivalent formula nextz(x ↪→ y) is defined as follows:

nextz(x ↪→ y) def=
(
next(x = y) ∧

[
x ↪→ ∧¬(>−~ x ↪→3 z)

]
2

)
∨
[
size = 1−~ x ↪→3 z ∧ y ↪→2 z

]
3
.

This formula is somewhat more involved than alloc−1
y (x) and next(x = y). Its definition is

split into two disjuncts: the left one capturing the cases where n(x) = n(y) holds, and the right
one capturing the cases where n(x) = n(y) does not hold. Let us consider a memory state (s, h).
Under the condition that (s, h) |= n(x) = n(y), we notice that h(h(s(x))) = h(s(y)) holds if and
only if there is a location ` such that {s(x) 7→ `, ` 7→ `} ⊆ h. In particular, the location h(s(x))
points to itself. The subformula

[
x ↪→ ∧¬(>−~ x ↪→3 z)

]
2 exactly checks for this pattern. It

states that it is possible to find a subheap h′ ⊆ h made of two memory cells, one of which is s(x),
that cannot be extended so that it contains a path of length exactly three, that goes from s(x)
to s(z). One can check this extension cannot be performed only in the case where the heap h′

has a cycle that can be reached from s(x). As however s(x) 6∈ ran(h), the only possibility left is
that h′(s(x)) points to itself. This leads to h′ = {s(x) 7→ `, ` 7→ `}.

The second disjunct of nextz(x ↪→ y) states that there is a subheap h1 ⊆ h of exactly three
memory cells that can be extended with a heap h2 such that card(h2) = 1 and h1 + h2 witnesses
the following two paths:

{s(x) 7→ `x1 7→ `x2 7→ s(z)}, {s(y) 7→ `
y
1 7→ s(z)}.

As s(z) 6∈ ran(h) and h1 ⊆ h2, it can only be the case that h2 = {`y1 7→ s(z)} and `x2 = `
y
1, which

leads to h(h(s(x))) = h(s(y)). The formula nextz(x ↪→ y) is then found to be correct.

Lemma 3.16. Let (s, h) be such that s(x) 6= s(z) 6= s(y) and {s(x), s(y), s(z)} ∩ ran(h) = ∅.

(s, h) |= nextz(x ↪→ y) if and only if h(h(s(x))) = h(s(y)).

68 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

Again, the additional hypothesis needed for the correctness of the formula nextz(x ↪→ y) does
not influence our result, as we now show.

3.3.2 Using SL(n(x), ∗,−∗) to prove that SL(∗,−∗, ↪→2, ↪→3) is not RE.

We now show that SL(∗,−∗, ↪→2, ↪→3) is not RE by relying on the translation from SL(∃,−∗)
to SL(n(x), ∗,−∗) carried out in Section 3.2.1. As defined in that section, given a finite set of
variables Y ⊆fin VAR, we consider a copy x for every variable x ∈ Y. We denote with Y ⊆fin VAR
the set of these copies, so that card(Y) = card(Y) and Y∩Y = ∅. Then, we denote by Y the
set Y ∪ Y, and consider an involution (·) : Y → Y associating every x ∈ Y with its copy x ∈ Y.
In Section 3.2.1, we have shown that we can translate a given formula ϕ in SL(∃,−∗), written
with variables in Y, into an equisatisfiable formula TSAT(ϕ) and an equivalid formula TVAL(ϕ),
both in SL(n(x), ∗,−∗). The main ingredient of these formulae is given by the translation τX,Y(ϕ),
which uses the multiplicative connectives of SL(n(x), ∗,−∗) in order to simulate the first-order
quantification of SL(∃,−∗). We now modify this translation in order to produce an equivalent
formula in SL(∗,−∗, ↪→2, ↪→3). In particular, it is sufficient to replace every occurrence of the
predicates ↪→ x, n(x) = n(y) and n(x) ↪→ n(y) in SL(n(x), ∗,−∗) with the formulae alloc−1

x (x),
next(x = y) and nextx(x ↪→ y), respectively, obtaining the following formula:

τ?X,Y(ϕ) def= τX,Y(ϕ)[↪→ x← alloc−1
x (x) | x ∈ Y]

[n(x) = n(y)← next(x = y) | x, y ∈ Y]
[n(x) ↪→ n(y)← nextx(x ↪→ y) | x, y ∈ Y].

One can check that τ?X,Y(ϕ) is indeed a formula of SL(∗,−∗, ↪→2, ↪→3). Thanks to the lemmata
shown in the previous section (from Lemma 3.13 to Lemma 3.16), we can prove that τ?X,Y(ϕ) is
equivalent to τX,Y(ϕ). We recall that Store?Y(X) = StoreY(X)[↪→ x ← alloc−1

x (x) | x ∈ Y].

Lemma 3.17. Let Z be either Y or Y and let X ⊆ Z. Let ϕ be a formula in SL(∃,−∗) s.t. fv(ϕ) ⊆ X
and bv(ϕ) ⊆ Z \ X. Given (s, h) satisfying StoreY(X), (s, h) |= τX,Y(ϕ) iff (s, h) |= τ?X,Y(ϕ).

Proof. From (s, h) |= StoreY(X), the memory state (s, h) satisfies the following properties:

1. for all distinct x, y ∈ Y, s(x) 6= s(y),
2. for every x ∈ Y, s(x) 6∈ ran(h),

3. for every x ∈ X, s(x) ∈ dom(h),
4. for every x ∈ Y \ X, s(x) 6∈ dom(h).

Below, the indices (1), (2), (3), (4) refer to these four properties.
As done for Lemma 3.11, the proof is by structural induction on ϕ. The base cases for

ϕ = x = y and ϕ = x ↪→ y holds directly from Lemmata 3.15 and 3.16, respectively, which can
be applied thanks to (1) and (2). We omit the obvious cases for the Boolean connectives, and
focus on the cases where ϕ = ∃z ψ or ϕ = ψ1 −∗ ψ2.
case: ϕ = ∃zψ. Let us make explicit the definitions of τX,Y(ϕ) and τ?X,Y(ϕ):

τX,Y(∃z ψ) = (z ↪→ ∧ size = 1)−~
(
StoreY(X ∪ {z}) ∧ τX∪{z},Y(ψ)

)
,

τ?X,Y(∃z ψ) = (next(z = z) ∧ size = 1)−~
(
Store?Y(X ∪ {z}) ∧ τ?X∪{z},Y(ψ)

)
.

where we recall that z ↪→ is defined as n(z) = n(z) in SL(n(x), ∗,−∗).
(⇒): Suppose (s, h) |= τX,Y(∃z ψ). By definition of the septraction operator −~, there is a
location ` and a heap h′ = {s(z) 7→ `} such that (s, h+ h′) satisfies both StoreY(X ∪ {z})
and τX∪{z},Y(ψ). Thanks to (s, h+ h′) |= StoreY(X ∪ {z}) we have:

3.3. Reachability Predicates can Quantify 69

• s(z) 6∈ ran(h + h′), which implies s(z) 6∈ ran(h′). Directly from Lemma 3.15 and the
definition of h′ we conclude that (s, h′) |= next(z = z) ∧ size = 1 holds.
• By Lemma 3.14, (s, h+{s(z) 7→ `}) |= Store?Y(X∪{z}). Then, by induction hypothesis

we derive (s, h+ {s(z) 7→ `}) |= τ?X∪{z},Y(ψ).

Again by definition of the septraction operator, we conclude: (s, h) |= τ?X,Y(∃z ψ).
(⇐): Analogous to the other direction.

case: ϕ = ψ1 −∗ ψ2. Let V def= {x | x ∈ fv(ψ1)}. We recall the definitions of τX,Y(ϕ) and τ?X,Y(ϕ):

τX,Y(ψ1 −∗ ψ2) def=
(
StoreY(V) ∧ τV,Y(ψ1[x← x | x ∈ Y])

)
−∗(

(
∧

x∈ V n(x) = n(x))⇒ (size = card(V) ∧
∧

x∈ V x ↪→) ∗ τX,Y(ψ2)
)
,

τ?X,Y(ψ1 −∗ ψ2) def=
(
Store?Y(V) ∧ τ?V,Y(ψ1[x← x | x ∈ Y])

)
−∗(

(
∧

x∈ V next(x = x))⇒ (size = card(V) ∧
∧

x∈ V x ↪→) ∗ τ?X,Y(ψ2)
)
.

(⇒): Suppose (s, h) |= τX,Y(ψ1 −∗ψ2). In order to show that (s, h) |= τ?X,Y(ψ1 −∗ψ2), let us
consider a heap h′ disjoint from h and such that

H1. (s, h′) |= Store?Y(V),
H2. (s, h′) |= τ?V,Y(ψ1[x← x | x ∈ Y]),

H3. (s, h+ h′) |=
∧

x∈ V next(x = x),

and prove that then it follows that

T. (s, h+ h′) |= (size = card(V) ∧
∧

x∈ V x ↪→) ∗ τ?X,Y(ψ2).

From (H1) and by Lemma 3.14, (s, h′) satisfies StoreY(V). Thanks to Section 3.3.2, we can
then apply the induction hypothesis and conclude that (s, h′) |= τV,Y(ψ1[x← x | x ∈ Y]).
Let us now consider x ∈ Y. By (H1) we know that s(x) 6∈ ran(h′). Moreover, s(x) 6∈ ran(h)
also holds (by (2)), and therefore s(x) 6∈ ran(h + h′). Thus, by (H3) and Lemma 3.15,
(s, h+ h′) |=

∧
x∈ V n(x) = n(y). This allows us to derive, by (s, h) |= τX,Y(ψ1 −∗ ψ2), that

(s, h+ h′) |= (size = card(V) ∧
∧

x∈ V x ↪→) ∗ τX,Y(ψ2),

which means that there are two disjoint heaps h1 and h2 such that h + h′ = h1 + h2,
(s, h1) |= size = card(V)∧

∧
x∈ V x ↪→ and (s, h2) |= τX,Y(ψ2). To conclude the proof, it is

sufficient to show that (s, h2) |= StoreY(X), so that we can apply the induction hypothesis
to conclude (s, h2) |= τ?X,Y(ψ2), which in turn shows (T). So, we show the four properties:

S1. for all distinct x, y ∈ Y, s(x) 6= s(y),
S2. for every x ∈ Y, s(x) 6∈ ran(h2),

S3. for every x ∈ X, s(x) ∈ dom(h2),
S4. for every x ∈ Y \ X, s(x) 6∈ dom(h2).

The property (S1) holds directly from (1). For (S2) it is sufficient to recall that for every
x ∈ Y, s(x) 6∈ ran(h+h′), and h2 ⊆ h+h′. In order to prove (S3) and (S4), we equivalently
show that for every x ∈ Y, s(x) ∈ dom(h2) if and only if x ∈ X. From the properties (3)
and (4) of StoreY(X), we derive that for every x ∈ Y, s(x) ∈ dom(h) if and only if
x ∈ X. Similarly, from (s, h′) |= StoreY(V), given a variable x ∈ Y, s(x) ∈ dom(h′) if
and only if x ∈ V. At the same time, from (1), card({s(x) | x ∈ V}) = card(V). Together
with (s, h1) |= size = card(V) ∧

∧
x∈ V x ↪→ , this implies that given a variable x ∈ Y,

s(x) ∈ dom(h1) if and only if x ∈ V, exactly as in the case of h′. Since h + h′ = h1 + h2,
we conclude: for every x ∈ Y, s(x) ∈ dom(h2) if and only if x ∈ X.
(⇐): Analogous to the other direction.

70 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

Let us now consider the formulae TSAT(ϕ) and TVAL(ϕ) of SL(n(x), ∗,−∗) defined in sec-
tion Section 3.2.2. We define analogous formulae in SL(∗,−∗, ↪→2, ↪→3):

T ?SAT(ϕ) def= Store?Y(fv(ϕ)) ∧ τ?fv(ϕ),Y(ϕ), T ?VAL(ϕ) def= Store?Y(fv(ϕ))⇒ τ?fv(ϕ),Y(ϕ).

Directly from Lemmata 3.14 and 3.17, TSAT(ϕ) is equivalent to T ?SAT(ϕ), whereas TVAL(ϕ) is
equivalent to T ?VAL(ϕ). We can therefore lift Theorem 3.5 to SL(∗,−∗, ↪→2, ↪→3).

Theorem 3.18. The satisfiability and validity problems of SL(∗,−∗, ↪→2, ↪→3) are not RE.

3.3.3 Other separation logics with non RE decision problems.

Let us analyse Theorem 3.5 and Theorem 3.18 further. As already stated, it is known that
the restriction of SL(∃, ∗,−∗) to one quantified variable, i.e. SL([∃]1, ∗,−∗), admits PSpace-
complete satisfiability and validity problems [55], whereas the logic with just two quantified
variables, i.e. SL([∃]2, ∗,−∗), is already non recursively enumerable on closed formulae [53]. As
we already discussed when we introduced Theorem 3.5, SL([∃]1, ∗,−∗) can easily express both
the predicates n(x) = n(y) and ↪→ x. The distance between the decidability for SL([∃]1, ∗,−∗)
and the undecidability for SL([∃]2, ∗,−∗) (not restricted to closed formulae) is best witnessed by
Corollary 3.19(I) below, which solves an open problem [55, Section 6]. Moreover, Theorem 3.18
implies that adding ls to the quantifier-free separation logic SL(∗,−∗) also leads to non RE
satisfiability and validity problems. All these undecidability results are stated below for the
record, without claiming that all these variants happen to be interesting in practice.

Corollary 3.19. The satisfiability and validity problems of the following logics are non RE:
(I) SL([∃]1, ∗,−∗) augmented with n(x) ↪→ n(y),

(II) SL([∃]2, ∗,−∗),

(III) SL(∗,−∗) augmented with either ls, ↪→+or ↪→∗,

(IV) SL(n(x), ∗,−∗), SL(∗,−∗, ↪→2, ↪→3) and all the logics above, restricted to 4 variables.

Proof of (I). As already stated, this is a consequence of Theorem 3.5 by observing that the
predicate n(x) = n(y) is equivalent to ∃z (x ↪→ z ∧ y ↪→ z), whereas ↪→ x is ∃z z ↪→ x.

Proof of (II). Consequence of (I), as n(x) ↪→ n(y) can be expressed with two quantified variables
with the formula ∃z ∃v (x ↪→ z ∧ z ↪→ v ∧ y ↪→ v).

Proof of (III). For SL(∗,−∗, ls), it is a consequence of Theorem 3.18, as ↪→δ is definable as
soon as a separation logic features Boolean connectives, emp, separating conjunction and ls.
In Section 2.1.1 we have shown how ls can be expressed with either ↪→+or ↪→∗.

Proof of (IV). It is shown in [53] that SL(∃,−∗) restricted to two quantified variables is un-
decidable already on closed formulae. The translation provided in Section 3.2.1 assumes that
distinct quantifications involve distinct variables. In order to translate SL(∃,−∗) restricted to
two quantified variables, it is necessary to give up that assumption and to update the definition
of τX,Y(ϕ). Actually, only the clause for formulae of the form ∀z ψ requires a change (where now
z belongs to a set Y of two variables). Here is the new value for τX,Y(∀z ψ) (that updates the
definition given in Figure 3.7):(

(z ↪→ ∧ size = 1) ∨ emp) ∗ (¬z ↪→ ∧ (z ↪→ ∧ size = 1)−∗ (StoreY(X)⇒ τX,Y(ψ))).

3.3. Reachability Predicates can Quantify 71

In particular, this formula uses the operator ∗ in order to remove the current assignment of z
(if it exists), and then apply the same translation given in Figure 3.7. The proof of Lemma 3.11
and Lemma 3.17 can be updated accordingly. As card(Y) = 2, the formula τX,Y(ϕ) witnesses at
most four variables (i.e. the cardinality of Y = Y ∪ Y).

3.3.4 Modal separation logic is non RE.

Corollary 3.19(III) proves that MSL (Section 2.3.2) admits non RE satisfiability and validity
problems by Proposition 2.20. However, Theorem 3.18 allows us to refine this result and show
that it holds even when emp and both the modalities ♦−1 and 〈6=〉 are dropped from the logic.

Theorem 3.20. MSL without ♦−1, 〈6=〉 and emp has non RE satisfiability and validity problems.

We refer the reader to Section 2.3.2 for the definition of the modal separation logic MSL, the
definition of Kripke-style finite function and the definition of nominals. The specific fragment
that we prove non RE is given by the grammar below:

ϕ := > | p | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | ϕ−∗ ψ | ♦ϕ.

First of all, notice that we can retrieve the formula emp, and define it as follows:

emp def= ¬♦> ∧
(
(♦¬♦>)−∗ ¬♦♦>

)
.

The correctness of this and every other formula introduced in this section is shown in Ap-
pendix A. By relying on emp, the logic can express the septraction operator −~ and the size
formulae size≥β and size =β (all defined as in Section 2.1.1).

Let ϕ be a formula in SL(∗,−∗, ↪→2, ↪→3), written with variables from X. Without loss of
generality we assume AP = VAR and W = LOC. We define a translation τX(ϕ) in the above
fragment of MSL, that can be shown correct for the class of pointed finite functions encoding
memory states, in the following sense.

Definition 3.21 (MSL - Memory state encoding.). A pointed finite function (K,w), where K =
(LOC, R,V), is a X-encoding of a memory state (s, h) whenever R = h and moreover

1. every x ∈ X is a nominal that corresponds to s(x), i.e. V(x) = {s(x)},
2. the current world w is a spy, i.e. it is a nominal for a fixed propositional symbol spy 6∈ X,

it does not satisfy any propositional symbol in X, and it does not belong to a pair in R.

Before defining the translation, let us derive formulae that capture the two properties (1) and (2)
of Definition 3.21. Let (K,w) be a pointed finite function, where K = (W, R,V). First of all, we
define the formula uniq(p), stating that the current world w is the only one satisfying p ∈ AP:

uniq(p) def= > ∗
(
p ∧ emp ∧

(
(size = 1 ∧ ♦p)−∗ ♦♦>

))
.

This formula asks to consider the empty Kripke-style finite function K′ = (W,∅,V) ⊆ K. On
this structure, it states that w ∈ V(p) holds true (thus, it also holds for K), and that whenever
we add a Kripke-style finite function K′′ = (W, {(w,w′)},V), if w′ ∈ V(p) then K′+K′′ witnesses
a path of length two going from w to a world w′′. As the accessibility relation of K′ + K′′ only
has one arrow going from w to w′, this is only possible if w′ = w. Therefore, w is the only world
satisfying p. By relying on uniq(p), we define the formula nom(p) stating that p is a nominal:

nom(p) def= > ∗
(
emp ∧

(
(♦uniq(p))−~>

))
.

72 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

τX(>) def= >, τX(ϕ ∧ ψ) def= τX(ϕ) ∧ τX(ψ),

τX(emp) def= emp, τX(¬ϕ) def= ¬τX(ϕ),

τX(x = y) def= size = 1−~ ♦(x ∧ y), τX(ϕ ∗ ψ) def= τX(ϕ) ∗ τX(ψ),

τX(x ↪→ y) def= size = 1−~ ♦(x ∧ ♦y), τX(ϕ−∗ ψ) def= (is a spyX ∧ τX(ϕ))−∗ τX(ψ),

τX(x ↪→2 y) def= ¬τX(x = y) ∧ ¬τX(x ↪→ y) ∧ (size = 1−~ ♦(x ∧ ♦♦y)),

τX(x ↪→3 y) def= ¬τX(x = y) ∧ ¬τX(x ↪→ y) ∧ ¬τX(x ↪→2 y) ∧ (size = 1−~ ♦(x ∧ ♦♦♦y)).

Figure 3.8: Translation from SL(∗,−∗, ↪→2, ↪→3) to a fragment of MSL.

Again, this formula asks to consider the empty function K′ = (W,∅,V) ⊆ K. On this structure,
it states that it is possible to add a Kripke-style finite function K′′ = (W, {(w,w′)},V) such that
(K′′,w′) |= uniq(p). This construction can be satisfied if and only if p is a nominal.

Let us now characterise the fact that w is a spy. The following formula does the job:

is a spyX
def= uniq(spy) ∧

(∧
x∈X ¬x

)
∧ ¬♦> ∧ ¬

(
(size = 1 ∧ ♦¬spy)−~ ♦♦spy

)
.

The first two conjuncts of is a spyX capture the fact that w must be a nominal for spy and
that it does not satisfy any symbol from X. Instead, the last two conjuncts state that R(w) = ∅
and R−1(w) = ∅, as required by property (2). The first equality is directly captured by the
subformula ¬♦>, whereas the subformula ¬((size = 1∧♦¬spy)−~♦♦spy) captures R−1(w) = ∅
under the hypothesis that both uniq(spy) and ¬♦> hold.

Being able to express nominals and spies allows us to define the translation τX(ϕ) as shown
in Figure 3.8. We highlight two points of this translation. First, the formula τX(ϕ−∗ ψ) con-
straints the magic wand to only consider relations satisfying is a spyX, so that τX(ϕ) and τX(ψ)
are evaluated on pointed finite functions that satisfy the conditions in Definition 3.21. Second,
since is a spyX insures that the current world does not belong to a pair in R, we can combine
the modality ♦ and the septraction −~ in order to simulate the 〈6=〉 modality. This “trick” is
used to translate all the atomic predicate between program variables. For instance, let us con-
sider τX(x ↪→ y). This formula states that adding (w,wx), where w is the current world and wx

corresponds to the nominal x, to the accessibility relation R leads to a path of length two going
from w to the world wy corresponding to the nominal y. This is only possible if (wx,wy) belongs
to R, as required by the predicate x ↪→ y. The translation is shown to be correct below.

Lemma 3.22. Let (s, h) be a memory state and let ϕ be a formula in SL(∗,−∗, ↪→2, ↪→3), with
variables from X ⊆fin VAR \ {spy}. Let (K,w) be a pointed finite function that is an X-encoding
of (s, h). We have, (s, h) |= ϕ if and only if (K,w) |= τX(ϕ).

This lemma states that the translation is correct and, similarly to Lemma 3.11, its proof is by
structural induction on ϕ (see Appendix A). Afterwards, to prove Theorem 3.20 we simply use
nom(p) and is a spy to characterise the set of pointed finite functions considered in Lemma 3.22.
This is formalised in the lemma below, while its proof is given in Appendix A.

Lemma 3.23. Let ϕ be a formula in SL(∗,−∗, ↪→2, ↪→3), with variables from X ⊆fin VAR\{spy}.
(I) ϕ and is a spyX ∧

∧
x∈X nom(x) ∧ τX(ϕ) are equisatisfiable.

(II) ϕ and is a spyX ∧
∧

x∈X nom(x)⇒ τX(ϕ) are equivalid.

4

Intensionality and Reachability Leads to
Non-elementary Logics

Contents
4.1 The Hardness of Reachability and Submodel Reasoning 77

4.1.1 ALT: An Auxiliary Logic on Trees. 77
4.1.2 Relating ALT and the separation logic SL([∃]1, ∗, x ↪→ , ↪→+). 80

4.2 On the Expressive Power of ALT . 81
4.2.1 Towards Tower-hardness: how to encode finite words in ALT. 82
4.2.2 Intermezzo: inexpressibility results via Ehrenfeucht-Fräıssé games. . . 88

4.3 The Complexity of ALT . 97
4.3.1 Propositional Interval Temporal Logic. 97
4.3.2 PITL on marked words. 98
4.3.3 Reducing PITL to ALT. 101

4.4 Revisiting Tower-hard Logics with ALT . 103
4.4.1 From ALT to SL(∗,−∗, ls) with bounded magic wand. 104
4.4.2 From ALT to Quantified Computation Tree Logic. 105
4.4.3 From ALT to Modal Separation Logic. 112

73

75

In this chapter
The proof that the logic SL(∗,−∗, ↪→∗) has a non RE satisfiability problem (Chapter 3) raises new
questions on the complexity of other fragments of SL(∃, ∗,−∗) featuring reachability predicates.
The aim of this chapter is to study the logic SL([∃]1, ∗, x ↪→ , ↪→+), which sits between the
PSpace-complete SL([∃]1, ∗, x ↪→) and the Tower-complete SL([∃]2, ∗). This logic features
one quantified variable name, the separating conjunction ∗, the predicate alloc x ↪→ and the
reachability predicate x ↪→+y.
As done in Chapter 3, instead of studying directly this logic we take a detour and only consider
its significant features: its ability to reason on submodels, and the way it can express reachability
conditions. We introduce the auxiliary logic ALT which corresponds to the minimal fragment
of SL([∃]1, ∗, x ↪→ , ↪→+) having these features. After studying its expressive power, we show that
ALT admits a Tower-complete satisfiability problem. Despite showing that the satisfiability
for SL([∃]1, ∗, x ↪→ , ↪→+) is non-elementary, our efforts are rewarded as ALT reveals to be an
interesting theoretical instrument to prove Tower-hardness of logics interpreted on trees. We
prove that ALT is captured by non-trivial fragments of four logics that were independently
found to be Tower-hard: first-order separation logic with bounded separating implication [22],
quantified computation tree logic (QCTL) [99], modal logic of heaps (MLH) [52] and modal
separation logic (MSL) [54].

Here is a roadmap of the chapter.

Section 4.1. We introduce the Auxiliary Logic on Trees (ALT), a modal logic interpreted on
finite forests that features reachability predicates together with the universal modality 〈U〉 [80],
the sabotage modality � from sabotage modal logic [4] and its Kleene closure �*. We show that
ALT is a fragment of SL([∃]1, ∗, x ↪→ , ↪→+), and thus decidable in Tower.

Section 4.2. We analyse the expressive power of ALT. First of all, we introduce an encoding
of finite words into finite forests (Definition 4.4), and show that the set of forests encoding finite
words is characterisable in ALT (Lemma 4.10). This result provides a first step in the proof of
Tower-hardness of ALT. Second, we explore inexpressibility results for ALT by adapting the
notion of Ehrenfeucht-Fräıssé games for first-order logic.

Section 4.3. We prove the main result of the chapter.

Theorem 4.28. The satisfiability problem of ALT is Tower-complete.

The Tower-hardness is by reduction from Propositional Interval Temporal Logic (PITL) under
locality principle, known to be Tower-complete [112, 128]. This logic is interpreted on finite
words, and features a composition operator that splits the word into a prefix and a suffix
overlapping in exactly one position. In view of the inexpressibility results obtained in Section 4.2,
this operation cannot be directly simulated in ALT. To circumvent this problem, we introduce
and alternative and computationally equivalent semantics for PITL, where the operator marks a
position in the word, instead of splitting it into two subwords. The satisfiability problem of PITL
under this new semantics is reduced to the satisfiability problem of ALT, leading to Theorem 4.28.

Section 4.4. We rely on the Tower-hardness of ALT to refine the analysis on the com-
putational complexity of separation logic, QCTL, MSL and MLH. We start with the first-order

76 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

separation logic SL(∃, ∗,−[n]) featuring the suite of bounded separating implications −[n] (n ∈ N).
Roughly speaking, −[n] restricts the standard separating implication −∗ so that only heaps with
at most n memory cells can be added to the current one. SL(∃, ∗,−[n]) is shown to be Tower-
complete in [22]. We show that Tower-hardness already holds for its quantifier-free frag-
ment SL(∗,−[1], ls), where we notice that the connectives −[n] are restricted to n = 1.

Theorem 4.29. Satisfiability of the two-variable fragment of SL(∗,−[1], ls) is Tower-c.

Afterwards, we move to Quantified Computation Tree Logic (QCTL), an extension of Computa-
tion Tree Logic featuring second-order propositional quantification. When interpreted on (either
finite or infinite) trees, QCTL is known to be Tower-complete [99]. ALT allows us to sharpen the
Tower-hardness analysis and show two fragments of QCTL that are already non-elementary.

Theorem 4.41. The satisfiability problems of QCTLt(EU0) and QCTLt(EF1) are Tower-c.

Here, QCTLt(EU0) stands for the fragment of QCTL restricted to the temporal modality exists-
until, which cannot be nested. Instead, QCTLt(EF1) is the fragment of QCTL restricted to the
temporal modality exists-finally, which can be nested at most once.
Lastly, we consider the modal separation logics MSL and MLH introduced in Section 2.3.2.
Thanks to ALT, we are able to find a common syntactical fragment of these two logics that is
already Tower-hard (in the following theorem �ML and �*ML stand for the operators � and �*
of ALT, internalised in MSL and MLH by relying on the separating conjunction).

Theorem 4.45. The fragment of MLH and MSL with the ∗ (alternatively, �ML and �*ML), >,
Boolean connectives, ♦ and 〈U〉 modalities, and has a Tower-complete satisfiability problem.

As a general remark, all the reductions from the satisfiability problem of ALT to the satisfiability
problem of the logics considered in this section are achieved via semantically faithful translations.
Not only these reductions are quite straightforward, as the burden of proving Tower-hardness
is left to Theorem 4.28, but they show that all these logics are non-elementary as they reason
on reachability and submodels in the same way.

4.1. The Hardness of Reachability and Submodel Reasoning 77

4.1 The Hardness of Reachability and Submodel Reasoning

In the previous chapter, we saw how adding reachability predicates to SL(∗,−∗) leads to logics
with non RE satisfiability problems. Due to this unsatisfactory result, in this chapter we inves-
tigate further the effects of adding these predicates to other fragments of first-order separation
logic. In Chapter 3 we identified how the separating implication can be used to update the mem-
ory state in a way that simulates the first-order quantification. However, if we restrict the use
of the separating implication so that it can be used only to define the alloc predicate (·) ↪→ , we
know that the fragment of first-order logic featuring one quantified variable, i.e. SL([∃]1, ∗, x ↪→),
admits a PSpace-complete satisfiability (and validity) problem [55]. In contrast, considering
two quantified variables, i.e. the logic SL([∃]2, ∗), makes the problem already non-elementary
decidable [53]. As we know that SL([∃]2, ∗) can express reachability predicates (Section 2.1.1),
our hope is to show that enriching SL([∃]1, ∗, x ↪→) with the reachability predicate ↪→+ leads to
a logic that is computationally less demanding than SL([∃]2, ∗). As we have done in the previous
chapter, to study the problem we take a detour and only consider the significant features of this
logic: its ability to reason on submodels, and the way it can express reachability conditions. We
also drop the memory states and consider the more classical frameworks of trees and forests.
This makes our research agenda shifts a bit, so that the main question becomes

“Can logics featuring submodel reasoning and reachability predicates admit elementary
satisfiability problems when interpreted on trees?”

To formalise and tackle this question, we take these features and formally exhibit them through
an Auxiliary Logic on Trees (ALT). This logic, essentially deals with reachability of a fixed
(target) node inside a forest, from a current node that can be updated with the somewhere
modality 〈U〉. Moreover, the logic features two modalities that are subsumed by the separating
conjunction in order to reason on submodels. Unfortunately, we show that this very restricted
fragment of SL([∃]2, ∗,−∗) already admits a Tower-complete satisfiability problem, answer-
ing negatively to our question. The proof is by reduction from the satisfiability problem of
Propositional Interval Temporal Logic (PITL) under locality principle [112], for which we define
an equivalent semantics that better suits the expressive power of ALT. Despite this negative
result, ALT allows us to study other logics interpreted on trees and (re)prove their Tower-
hardness. Indeed, in the last part of this chapter we show that ALT is captured by four logics
that were independently found to be Tower-hard: the first-order separation logic with bounded
separating implication from [22], quantified computation tree logic (QCTL) [99], modal logic of
heaps (MLH) [52] and modal separation logic (MSL) [54]. In this context, beside exposing that
all these logics admit Tower-hard satisfiability problem because of the way they reason about
reachability and submodels, we discover interesting sublogics that are still Tower-complete:
• SL(∗,−[1], ls), where ϕ −[1] ψ is the syntactical restriction to the separating implication

corresponding to the formula (ϕ ∧ ¬size≥ 2)−∗ ψ (Theorem 4.29),
• QCTLt restricted to E(ϕUψ) modalities, where ϕ,ψ are Boolean combinations of atomic

propositions, or to the EF modality, which can be nested at most once (Theorem 4.41),
• the common fragment of MLH and MSL having Boolean connectives and the modalities ♦,
〈U〉 and ∗ (Theorem 4.45). Notice that this logic does not have propositional symbols.

4.1.1 ALT: An Auxiliary Logic on Trees.

We introduce an Auxiliary Logic on Trees (ALT). Its formulae ϕ are from the grammar:

78 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

π := > (true)
| Hit (hit predicate)
| Miss (miss predicate)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ¬ϕ (Boolean connectives)
| �ϕ (sabotage modality)
| �*ϕ (repeated sabotage modality)
| 〈U〉 ϕ (somewhere modality)

The symbol 〈U〉, already introduced in Section 2.3.2, is borrowed from V. Goranko and
S. Passy paper on modal logic with universal modality [80]. Readers who are familiar with
sabotage modal logics will recognise in � the sabotage modality [4], and in �* its Kleene closure
(i.e. the operator � applied an arbitrary number of times). Similarly to the separating conjunc-
tion of separation logic, these two operators modify the model during the evaluation of a formula,
making ALT a relation-changing modal logic (following the terminology used in [3]). However,
contrary to most modal logics, ALT does not feature classical propositional symbols. Instead,
this logic only features two interpreted atomic propositions Hit and Miss. Roughly speak-
ing, Hit stands for “the target node is reachable” whereas Miss stands for “the target node is
not reachable”. The formal definitions will be given soon in order to clarify these two sentences.

Let N be a countably infinite set of nodes. We consider the class of models of finite forests.

Definition 4.1 (Forest). A (finite) forest F : N ⇀fin N is a partial function that has finite
domain and is acyclic, i.e. Fδ(n) 6= n for all n ∈ dom(F) and δ ≥ 1. Pairs in F are called edges.

Albeit non-standard, our definition of finite forests over an infinite set of nodes simplifies the
forthcoming definitions and makes the connections with separation logic more direct, as forests
can be seen as acyclic heaps. Besides, in Section 4.3 we show how restricting N to a finite set
does not change the expressive power nor the complexity of ALT. We recall the standard notions
of ancestors and parent of a node.

Definition 4.2 (Ancestors and Parents). Let n, n′ be two nodes, and let F be a forest. n′ is a
F-ancestor of n if there is a path in the forest going from n to n′, i.e. Fδ(n) = n′ for some δ ≥ 1.
If δ = 1 then n′ is the F-parent of n.

Notice that, with this classification, F encodes the parent relation. We drop the prefix F- from
F-ancestor and F-parent when the forest is clear from the context. As usual, if n′ is an ancestor
of n, then we can alternatively say that n is a descendant of n′. Similarly, n is a child of n′
whenever n′ is the parent of n. Given two forests F ,F ′, we say that F ′ is a subforest of F
whenever F ′ ⊆ F holds (as usual, we see functions as binary relations). Figure 4.1 intuitively
represents two forests, the one on the left being a subforest of the one on the right. As done for
heaps, nodes are denoted by small boxes (), and arrows represent the forest.

Semantics. ALT is interpreted on pointed forests (F , t, n), where F is a forest and t, n ∈ N are
two nodes. The node t is called the target node. The node n is the current (evaluation) node.
The satisfaction relation |= for the formulae of ALT is given in Figure 4.2, omitting the standard
clauses for > and Boolean connectives. The semantics of Hit and Miss is pretty straightforward.
Hit holds if there is a path in the forest going from the current node to the target node.
Instead, Miss holds if the current node is in the domain of the forest, but such a path does
not exist. Given a pointed forest (F , t, n), n is called a hit node whenever (F , t, n) |= Hit.
Instead, if (F , t, n) |= Miss then n is a miss node. As a visual aid, the hit nodes of the forest in

4.1. The Hardness of Reachability and Submodel Reasoning 79

t

⊆

t

Figure 4.1: Subforest relation.

(F , t, n) |= Hit iff n is a F-descendant of t,

(F , t, n) |= Miss iff n ∈ dom(F) and n is not a F-descendant of t,

(F , t, n) |= �ϕ iff there is F ′ such that F ′ ⊆ F , card(F ′)+1 = card(F) and (F ′, t, n) |= ϕ,

(F , t, n) |= �* ϕ iff there is F ′ such that F ′ ⊆ F and (F ′, t, n) |= ϕ,

(F , t, n) |= 〈U〉ϕ iff there is n′ ∈ N such that (F , t, n′) |= ϕ.

Figure 4.2: Satisfaction relation for ALT, with respect to a pointed forest state (F , t, n).

Figure 4.1 are the ones in the darker area, whereas the ones in the lighter (not white) area are
miss nodes. It is worth noting that Miss is not exactly the negation of Hit, as it requires the
current evaluation node to be in the domain of the forest. On the other hand, let us define the
formula inDom def= Hit ∨ Miss, which is satisfied by (F , t, n) if and only if n ∈ dom(F). Any two
of the three formulae Hit, Miss and inDom suffice in order to define the third one. In particular:

Hit ≡ inDom ∧ ¬Miss, Miss ≡ inDom ∧ ¬Hit.

This tells us that, in order to relate separation logic with ALT, we can consider a logic featuring
reachability predicates (to capture Hit) and the alloc predicate (to capture inDom).

Let us continue the analysis on the features of ALT. As stated before, the semantics given
to 〈U〉ϕ is the one of the existential modality somewhere [80], stating that there is a way to
change the current evaluation node so that ϕ becomes true. As such, this operator can be
seen as a restricted form of first-order quantification, where the reassignment only occurs on the
current evaluation node. Its dual operator [U]ϕ def= ¬ 〈U〉 ¬ϕ is the universal modality everywhere,
stating that ϕ holds on every node in N . The semantics given to �ϕ is the one of the sabotage
modality from [4], which requires to find one edge of the forest that, when removed, makes
the model satisfy ϕ. Its dual operator �ϕ def= ¬�¬ϕ states that ϕ holds on every subforest
obtained from the current forest by removing just one edge. Lastly, the modality �*, here called
repeated sabotage, can be seen as the operator obtained by applying � an arbitrary number of
times. Indeed, by inductively defining �kϕ (k ∈ N) as the formula ϕ for k = 0 and otherwise
(k ≥ 1) as ��k−1 ϕ, it is easy to see that

(F , t, n) |= �* ϕ if and only if (F , t, n) |= �k ϕ for some k ∈ N.

Given a pointed forest (F , t, n), we write F [Miss]t to denote the set of its miss nodes,
i.e. F [Miss]t

def= {n′ ∈ N | (F , t, n′) |= Miss}. We omit the subscript t from F [Miss]t when it
is clear from the context. We augment the standard precedence rules of propositional logic so

80 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

that the modalities 〈U〉, � and �* have the same precedence as the negation ¬. For instance,
the formula 〈U〉 Hit ∧ Miss should be read as (〈U〉 Hit) ∧ Miss.

4.1.2 Relating ALT and the separation logic SL([∃]1, ∗, x ↪→ , ↪→+).

We start analysing ALT by showing its connections with separation logic. In particular, we
consider the separation logic SL([∃]1, ∗, x ↪→ , ↪→+), with formulae ϕ from the following grammar:

π := > (true)
| emp (empty predicate)
| x = y (equality predicate)
| x ↪→ y (points-to predicate)
| x ↪→ (alloc predicate)
| x ↪→+y (reach-plus predicate)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ¬ϕ (Boolean connectives)
| ϕ ∗ ϕ (separating conjunction)
| ∃uϕ (first-order quantification on u)

where x, y, u ∈ VAR. Additionally, every formula ϕ of this logic can only quantify over the
variable name u, i.e. bv(ϕ) ⊆ {u}. The semantics of every element of SL([∃]1, ∗, x ↪→ , ↪→∗) is
standard, as defined in Chapter 2. Let us recall the definition of the alloc predicate x ↪→ and
the reach-plus predicate x ↪→+y, for a given memory state (s, h):

(s, h) |= x ↪→ iff s(x) ∈ dom(h), (x corresponds to a memory cell of h)
(s, h) |= x ↪→+y iff (s(x), s(y)) ∈ h+. (there is a non-empty path going from s(x) to s(y))

We know that SL([∃]1, ∗, x ↪→ , ↪→+) is a fragment of SL([∃]2, ∗), as in Section 2.1.1 we have
shown that both the alloc predicate and the reach-plus predicate can be expressed using only
two quantified variables. Moreover, in that section we introduced the formula size = 1 stating
that the heap has cardinality exactly one. It is defined as ¬emp∧¬(¬emp ∗¬emp). This formula
allows us to capture the sabotage operator � of ALT.

We show that ALT is a fragment of SL([∃]1, ∗, x ↪→ , ↪→+). First, we notice that both sabotage
and repeated sabotage operators can be expressed in separation logic. The sabotage operator
can be defined as �SLϕ

def= (size = 1) ∗ ϕ, whereas the repeated sabotage operator can be defined
as �*SL ϕ

def= > ∗ ϕ. A quick semantical check shows that both formulae capture the analogous
operators of ALT as follows:

(s, h) |= �SLϕ iff there is a heap h1 s.t. h1 ⊆ h, card(h1) + 1 = card(h) and (s, h1) |= ϕ.

(s, h) |= �*SL ϕ iff there is a heap h1 s.t. h1 ⊆ h and (s, h1) |= ϕ.

In order to translate a formula of ALT into a formula of SL([∃]1, ∗, x ↪→ , ↪→+), we fix a vari-
able x ∈ VAR that is syntactically different from the quantified variable u and that plays the
role of the target node. Then, the translation τx(ϕ) of a formula ϕ in ALT is straightforward:

τx(Hit) def= u ↪→+x, τx(�ϕ) def= �SLτx(ϕ), τx(>) def= >,

τx(Miss) def= u ↪→ ∧¬τx(Hit), τx(�* ϕ) def= �*SL τx(ϕ), τx(¬ϕ) def= ¬τx(ϕ).

τx(〈U〉ϕ) def= ∃u τx(ϕ), τx(ϕ ∧ ψ) def= τx(ϕ) ∧ τx(ψ),

The translation of Hit and Miss is as expected: τx(Hit) states that there is a non-empty path
from s(u) to s(x). This corresponds to the case where the current evaluation node is a hit node,
i.e. a descendant of the target node. τx(Hit) states that s(u) is in the domain of the heap, which

4.2. On the Expressive Power of ALT 81

does not withness a non-empty path going from s(u) to s(x). This corresponds to the case where
the current evaluation node is a miss node. In every other case, the translation from ALT to
separation logic is homomorphic, and interestingly enough the variable equality and the points-
to predicate of SL([∃]1, ∗, x ↪→ , ↪→+) are not needed for the translation. Assuming (without loss
of generality) that N = LOC, we can show that for a given pointed forest (F , t, n) and a store s
such that s(x) = t and s(u) = n, we have

(F , t, n) |= ϕ if and only if (s,F) |= τx(ϕ).

This statement can be proved with an easy structural induction on ϕ, which is left to the reader.
Furthermore, in order to conclude that ALT is a fragment of SL([∃]1, ∗, x ↪→ , ↪→+) it is sufficient
to show that this separation logic can characterise the class of models of ALT. As finite forests
are isomorphic to the class of acyclic heaps, this can be done with the formula ∀u¬(u ↪→+u).

Proposition 4.3. ALT is a fragment of SL([∃]1, ∗, x ↪→ , ↪→+) restricted to two variable names.

Notice that the translation uses only two variables: the free variable x and the (possibly
bound) variable u. This makes ALT a fragment of SL([∃]2, ∗) on closed formulae, which is known
to admit a Tower-complete satisfiability problem [53]. Thus, the lemma above shows that the
satisfiability problem of ALT is in Tower. Moreover, from what we have seen in Section 2.2,
we conclude that ALT is a fragment of WMSOf.

Of course, all these connections with other logics raise the question on whether ALT is needed
in order to present the results of the next sections. As we will see, ALT comes with the benefit
that various connections with other logics, as for example quantified computation tree logic, can
be drawn very easily. Partially, this is due to the fact we consider forests instead of heaps, and
that ALT does not feature predicates that are equivalent to x ↪→ y or x = y. From the point of
expressiveness, from [1] we know that SL([∃]2, ∗), and therefore ALT, is stricly less expressive
than WMSOf. This also helps when reducing ALT to other logics.

4.2 On the Expressive Power of ALT

It is certainly true that the two atomic propositions Hit and Miss make rather obscure what
properties can be expressed in ALT. In order to become more familiar with the features of this
logic, in this section we start playing with it. As we will soon find out, the ability to reason
about submodels given by the combination of the two operators � and �* greatly increases
the expressive power of ALT. In particular, we show that ALT is able to characterise finite
words. Encoding finite words in ALT is also the first step we need to show that this logic
admits a Tower-complete satisfiability problem. The proof of Tower-hardness, addressed in
Section 4.3, is by reduction from the satisfiability problem of Moszkowski’s propositional interval
temporal logic under locality condition (defined in Section 4.3.1). As we will see, this reduction
is somewhat non-intuitive and can perhaps appear needlessly complicated. The reason for this
is that we need to get around the fact that, given a pointed forest (F , t, n), ALT cannot deduce
any property of the portion of the model corresponding to the set F [Miss], other than bounds
on the size of this set and whether n belongs to it or not. This is shown formally at the end of
this section, after providing a notion of Ehrenfeucht-Fras̈sé games based on the works in [36, 48].

82 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

4.2.1 Towards Tower-hardness: how to encode finite words in ALT.

As a first step, we define a correspondence between finite words and specific pointed forests. As
usual, the set of finite words on a finite alphabet Σ is defined as the closure of Σ under Kleene
star, i.e. Σ∗. To ease our modelling, we suppose Σ def= [1, n] to be the alphabet of natural numbers
between 1 and n. Let w = a1 . . . ak be a k-symbols word in Σ∗. Let us explain how to encode w

as a finite forest. Every symbol aj (j ∈ [1, k]), is encoded using a node nj and aj + 1 additional
nodes that are children of nj . So, for example the symbol 3 is represented by a node having four
children. All the nodes in {nj | j ∈ [1, k]} are then connected in a path going from n1 to the
target node t, so that for every j ∈ [1, k − 1] nj is a child of nj+1, and nk is a child of t. Notice
that, with the exception of n1, for every j ∈ [2, k] this increases the number of children of nj by
one. Let us now formalise this encoding.

Definition 4.4 (Word encoding). Let w = a1 . . . ak be in Σ∗, where Σ = [1, n] for some n ≥ 1.
We say that a pointed forest (F , t, n) encodes w if and only if there is a tuple M= (n1, . . . , nk)
of k nodes and tuple C= (N1, . . . ,Nk) of k sets of nodes such that

1. {n1, . . . , nk},N1, . . . ,Nk,F [Miss]t are pairwise disjoint sets, i.e. they do not share any node,

2. M and C are all the descendants of t, i.e. (F−1)+(t) = {n1, . . . , nk} ∪
⋃
j∈[1,k] Nj ,

3. nk is the only child of t and for every j ∈ [1, k − 1] F(nj) = nj+1,

4. for every j ∈ [1, k], card(Nj) = aj + 1 and for every n′ ∈ Nj , F(n′) = nj .

Notice that given a pointed forest (F , t, n) encoding w the tuples M and C are uniquely defined.
With respect to the elements in Definition 4.4, the k nodes in M are called main nodes, whereas
the nodes in Nj (j ∈ [1, k]) are called character nodes. Main nodes and character nodes partition
the set of F-descendants of t. Thanks to the condition (3), main nodes form a path in the
forest F , going from n1 to nk. We call this path the main path of F (notice that we do not
include the target node t). The following proposition stresses four important properties of our
encoding that follow directly from its definition.

Proposition 4.5. Let (F , t, n) be an encoding of w= a1 . . . ak, with main nodes M= (n1, . . . , nk).
(I) n′ ∈ N is a main node if and only if it is a descendant of t and has at least one child.

(II) n1 is the only main node having the same number of descendants and children.

(III) Given j ∈ [2, k], nj has exactly one child that is a main node.

(IV) Given j ∈ [1, k], nj has exactly aj + 1 children that are character nodes.

We say that a node n ∈ dom(F) encodes the symbol a ∈ Σ if it has exactly a + 1 children
that are not in M. Then, main nodes are the only ones encoding symbols, where nj encodes aj
for every j ∈ [1, k] (by property (IV)).

Example 4.6. Figure 4.3 shows a pointed forest encoding the word 1121. The main nodes
of the encoding are M = (n1, n2, n3, n4), and its main path is given {(n1, n2), (n2, n3), (n3, n4)}.
Supposing that the tuple of character nodes is C = (N1,N2,N3,N4), the set Nj (j ∈ [1, 4])
contains the children of nj that are not in M, so that card(N1) = card(N2) = card(N4) = 2,
whereas card(N3) = 3. Albeit the forest depicted here does not have miss nodes, in general
encodings of words can have an arbitrary number of them.

4.2. On the Expressive Power of ALT 83

n1 n2 n3 n4 t

1 1 2 1

Figure 4.3: A forest encoding the word 1121.

Descendants and Children. We are now interested in characterising the class of pointed
forests encoding finite words. In order to do so, we start by defining some easy formulae, which
also serves as a way of familiarising with the logic. Looking at the properties in Proposition 4.5,
we notice that they mainly rely on counting the number of descendants and children of a given
node. Therefore, for now we focus on defining two formulae, #desc≥β and #child≥β, that
given a pointed forest (F , t, n) bound from below the number of descendants and children of the
current evaluation node n, provided that n is a descendant of the target node t.

Let (F , t, n) be a pointed forest. Given β ∈N, we start by defining the formula size(Miss)≥β
stating that F contains at least β miss nodes, that is:

(F , t, n) |= size(Miss)≥β if and only if card(F [Miss]) ≥ β.

This formula is inductively defined below:

size(Miss)≥ 0 def= >,
size(Miss)≥β+1 def= 〈U〉

(
Miss ∧ �(¬inDom ∧ size(Miss) ≥ β)︸ ︷︷ ︸

by excluding a miss node, at least other β miss nodes can be found

)
.

Let us consider for a moment the definition of size(Miss) ≥ β+1. Informally, this formula is
satisfied if it is possible to find a node in F [Miss] (as expressed by the “〈U〉(Miss ∧ . . .” part of the
formula), removing it from the model (as done by the “�(¬inDom . . .” part), and then find other β
elements of F [Miss]. This formula essentially works because the set of miss nodes monotonically
decreases when considering subforests, i.e. given F ′ ⊆ F we have F ′[Miss] ⊆ F [Miss]. Hence,
finding a miss node in the subforest F ′ implies finding a miss node in the original forest F . This
idea is generalisable to similar monotonous properties. Let us extend our notation and, given a
formula ϕ of ALT and a pointed forest (F , t, n), write F [ϕ]t for the set {n′ ∈ N | (F , t, n′) |= ϕ}.
Moreover, given β ∈ N we inductively define the formula size(ϕ)≥β that bounds from below the
amount of nodes satisfying ϕ, provided that ϕ satisfies some monotonic property formally defined
below in Lemma 4.7. size(ϕ)≥β is defined by simply replacing Miss by ϕ in size(Miss)≥β:

size(ϕ)≥ 0 def= >,
size(ϕ)≥β+1 def= 〈U〉

(
ϕ ∧ �(¬inDom ∧ size(ϕ)≥β)︸ ︷︷ ︸

by excluding a node in F [ϕ], at least other β such nodes can be found

)
.

The formal semantics of size(ϕ)≥β is provided in the lemma below.

Lemma 4.7. Let (F , t, n) be a pointed forest. Let ϕ be a formula with the following properties:
1. F [ϕ]t ⊆ dom(F), i.e. the set of nodes satisfying ϕ is a subset of the domain of the forest,

2. for every F ′ ⊆ F , if dom(F) \ dom(F ′) ⊆ F [ϕ]t then F [ϕ]t ∩ dom(F ′) = F ′[ϕ]t.
Given β ∈ N, we have (F , t, n) |= size(ϕ)≥β if and only if card(F [ϕ]t) ≥ β.

84 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

Before proving this lemma, let us look at the property (2) of ϕ. Consider a partition {S, T} of the
nodes in F [ϕ]t, and the subforest F ′ ⊆ F such that dom(F ′) = dom(F) \ S. Property (2) states
that then F ′[ϕ]t = T . Informally, this means that removing nodes in F [ϕ]t does not change the
set of nodes in the domain of the forest that still satisfy ϕ. This property, as well as property (1),
holds for the case of ϕ = Miss, so that Lemma 4.7 implies the correctness of size(Miss)≥β.

Proof. The proof is by induction on β, over the domain of natural numbers. The base case
where β = 0 is direct, so let us consider the inductive case for β = β′ + 1 where β′ ∈ N.
(⇒): Suppose (F , t, n) |= size(ϕ)≥β′+1, and therefore there is a node n′ ∈ N such that

A. (F , t, n′) |= ϕ, B. (F , t, n′) |= �(¬inDom ∧ size(ϕ)≥β′).

From (B), there is a forest F ′ ⊆ F such that

C. card(F ′) = card(F)− 1, D. (F ′, t, n′) |= ¬inDom, E. (F ′, t, n′) |= size(ϕ)≥β′.

First, let us prove that F [ϕ]t = F ′[ϕ]t ∪{n′} and n′ 6∈ F ′[ϕ]t. From (A) and the property (1) on
ϕ, we have n′ ∈ dom(F). From (C) and (D), this means that dom(F) \ dom(F ′) = {n′}, which
allows us to conclude that F [ϕ]t ∩ dom(F ′) = F ′[ϕ]t, directly from the property (2) of ϕ. This
implies that F [ϕ]t = F ′[ϕ]t ∪ {n′} and n′ 6∈ F ′[ϕ]t. We now use this fact to show that the
properties (1) and (2) of ϕ hold with respect to the forest F ′, so that we can then apply the
induction hypothesis directly by (E). The property (1), i.e. F ′[ϕ]t ⊆ dom(F ′), follows directly
from F [ϕ]t ∩ dom(F ′) = F ′[ϕ]t. For the property (2), let F ′′ be a forest such that F ′′ ⊆ F ′ and
dom(F ′) \ dom(F ′′) ⊆ F ′[ϕ]t. Let us prove that F ′[ϕ]t ∩ dom(F ′′) = F ′′[ϕ]t. From F ′ ⊆ F it
holds that F ′′ ⊆ F . Moreover,

dom(F) \ dom(F ′′) = (dom(F ′) ∪ {n′}) \ dom(F ′′) (by dom(F) = dom(F ′) ∪ {n′})
= (dom(F ′) \ dom(F ′′)) ∪ {n′} (by n′ 6∈ dom(F ′) and F ′′ ⊆ F ′)
⊆ F ′[ϕ]t ∪ {n′} (by dom(F ′) \ dom(F ′′) ⊆ F ′[ϕ]t)
= F [ϕ]t (by F [ϕ]t = F ′[ϕ]t ∪ {n′})

Therefore, by property (2) (w.r.t. F), F [ϕ]t ∩ dom(F ′′) = F ′′[ϕ]t holds, which is equivalent
to (F ′[ϕ]t ∪ {n′}) ∩ dom(F ′′) = F ′′[ϕ]t. Lastly, from n′ 6∈ dom(F ′) and F ′′ ⊆ F ′, we conclude
that F ′[ϕ]t ∩ dom(F ′′) = F ′′[ϕ]t, completing the proof of property (2) w.r.t. F ′. This allows us
to use the induction hypothesis and conclude from (E) that card(F ′[ϕ]t) ≥ β′. This is sufficient
to also conclude that card(F [ϕ]t) ≥ β′+1, as we have already shown that F [ϕ]t = F ′[ϕ]t ∪ {n′}
and n′ 6∈ F ′[ϕ]t. We leave the proof of the other direction to the reader.

The formula size(ϕ)≥β is not only useful as it can be quickly instantiated to define various
interesting formulae in ALT, but also because it shows a suitable way of reasoning in ALT.
Roughly speaking, we often use the somewhere modality 〈U〉 to find a node in the domain of the
forest that satisfies a certain property. Afterwards, we remove it with the sabotage operator �,
in order to check if the resulting subforest satisfies a second property.

We can already make use of the formula size(ϕ)≥β in order to define a formula that checks
whether the number of children of the target node is at least β. It is sufficient to notice that such
a child can be characterised with the formula tchild def= Hit ∧ ¬� Miss, and that this formula
satisfies both the properties (1) and (2) of Lemma 4.7. This leads to the following result.

Lemma 4.8. (F , t, n) |= size(tchild)≥β if and only if t has at least β children.

Proof. In order to prove this result it is sufficient to show that (F , t, n) |= tchild holds if and
only if n is a child of t, and that tchild satisfies the properties (1) and (2) of Lemma 4.7. For

4.2. On the Expressive Power of ALT 85

the correctness of tchild, simply notice that if the current evaluation node n is a child of the
target node t, then the same holds in every subforest F ′ ⊆ F such that n ∈ dom(F ′). Thus,
(F ′, t, n) cannot satisfy Miss. Otherwise, if n is a descendant of t but not one of its children,
removing (F(n),F(F(n))) from the forest makes n a miss node, hence tchild is not satisfied.

The property (1), i.e. F [tchild]t ⊆ dom(F), holds from the tautology |= Hit⇒ inDom. To
prove the property (2), it is sufficient to see that the following (stronger) statement holds:

for every F ′ ⊆ F , F [tchild]t ∩ dom(F ′) = F ′[tchild]t.

Showing this statement is straightforward, as a F-child of t that is in the domain of F ′ is by
definition a F ′-child of t, and vice versa.

Let us now move to the definition of #desc≥β, the formula stating that the current evalu-
ation node is a hit node with has at least β descendants. It is defined as follows:

#desc≥β def= �*
(

[U]¬Miss︸ ︷︷ ︸
F [Miss] is empty

∧ Hit ∧ �(¬inDom ∧ size(Miss)≥β︸ ︷︷ ︸
removing n lead to at least β miss nodes

)
.

The proof of correctness of this formula is given in Lemma 4.9. Intuitively, given a pointed
forest (F , t, n) where n is a descendant of t, this formula uses the fact that removing (n,F(n))
from the forest F makes all its descendant miss nodes. The repeated sabotage �* is used to
remove the miss nodes before removing (n,F(n)), so that then the formula size(Miss)≥β can
be used to correctly count the descendants of n in F .

Thanks to the formula #desc≥β we are able to define the formula #child≥β that checks
the number of children of the current evaluation node n (assuming that n is a hit node):

#child≥ 0 def= Hit,
#child ≥ β+1 def= #desc ≥ β+1 ∧�β(Hit⇒ #desc ≥ 1)︸ ︷︷ ︸

whenever β nodes of dom(F) are removed, if n still reaches t then it has at least one descendant

.

Informally, for a pointed forest (F , t, n), this formula express that n has β≥ 1 children by stating
that the removal of β−1 edges from F cannot lead to a subforest where n has no descendants.
The following lemma evaluates the correctness of #desc≥β and #child≥β. Its proof can be
found in Appendix B.

Lemma 4.9. Let (F , t, n) be a pointed forest. Then,
(I) (F , t, n) |= #desc ≥ β iff n has at least β descendants and it is a descendant of t.

(II) (F , t, n) |= #child ≥ β iff n has at least β children and it is a descendant of t.

Given a syntactical element S ∈ {size(ϕ), #desc, #child}, we write S = β for the
formula S ≥ β ∧ ¬S ≥ β+1. For instance, #child = β is the formula that states whether n has
exactly β children and it is a descendant of t. We can now conclude the encoding of finite words.

Characterising words in ALT. We now move to the definition of the formula wordΣ that
characterises the class of forests encoding words in Σ∗. Recall that we assume Σ to be the
alphabet of natural numbers in [1, n], for some n ≥ 1. Let (F , t, n) be a pointed forest encoding
the word w = a1 . . . ak, and let M = (n1, . . . , nk) be the set of its main nodes. Let us recall two
of the properties of our encoding, expressed in Proposition 4.5, and introduce suitable formulae
to express these properties. First, a node n encodes a symbol of w (i.e. it is a main node) if it is
a hit node with at least one child (Property (I)). To better reflect this property, we write symb

86 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

for the formula #child≥ 1, so that n encodes a symbol of w if and only if (F , t, n) |= symb.
Among the main nodes, n1 is the only one having the same number of descendants and children
(Property (II)). For this property, given S ⊆ Σ, we introduce the formula 1stS that checks if
the current evaluation node n corresponds to n1 and encodes a symbol in S:

1stS
def=
∨
β∈S(#desc = β + 1 ∧#child = β + 1).

We are finally ready to define the formula wordΣ that characterise the class of forests that
encode words in Σ∗, for Σ = [1, n]. It is defined as follows, and it is proved correct in Lemma 4.10,

wordΣ
def= ¬size(tchild) ≥ 2 ∧

The target node has no descendants, or has a descendant that encodes a symbol.︷ ︸︸ ︷
(〈U〉 Hit⇒ 〈U〉 symb)

∧ [U](symb⇒ 1stΣ ∨ (¬1st{n+1} ∧ � 1stΣ)︸ ︷︷ ︸
the current node encodes a symbol in [1, n] and exactly one of its children encodes a symbol.

).

The first two conjuncts of the formula wordΣ are quite self-explanatory. First, the target node t
has at most one child. Second, if w is the empty word then the forest does not contain hit nodes
(alternatively, t does not have children), and otherwise there is a hit node encoding a symbol.
The last conjunct is more complex, and subsumes the four properties in Proposition 4.5. Let n′
be a node such that (F , t, n′) |= symb. From the property (I) this means that n′ is a main node.
If it is the first node in the main path, then from the property (II) it must have the same number
of descendants and children, and it must have a + 1 children for some a ∈ Σ (Property (IV)).
Basically, n′ must satisfy 1stΣ. Otherwise, suppose that n′ encodes a node in the main path
that is different from the first one. From the property (III), exactly one of its children, say n′′,
must encode a symbol, whereas the other children are a + 1 character nodes, for some a ∈ Σ
(again, from the property (IV)). This means that removing (n′′, n′) from F makes the node n′ be
the first node in the main path, according to property (II). So, n′ satisfies ¬1st{n+1} ∧ � 1stΣ.
We prove that wordΣ characterise the class of forests encoding words in Σ∗.

Lemma 4.10. A pointed forest (F , t, n) is an encoding of a word in Σ∗ iff (F , t, n) |= wordΣ.

Proof. (⇒): Suppose (F , t, n) be a pointed forest encoding the word w = a1 . . . ak ∈ [1, n]∗,
where n ≥ 1. Let M = (n1, . . . , nk) and C = (N1, . . . ,Nk) be the main nodes and character
nodes of (F , t, n), respectively. Recapitulating Definition 4.4:

1. {n1, . . . , nk},N1, . . . ,Nk,F [Miss]t are pairwise disjoint sets, i.e. they do not share any node,
2. M and C are all the descendants of t, i.e. (F−1)+(t) = {n1, . . . , nk} ∪

⋃
j∈[1,k] Nj ,

3. nk is the only child of t and for every j ∈ [1, k − 1] F(nj) = nj+1,
4. for every j ∈ [1, k], card(Nj) = aj + 1 and for every n′ ∈ Nj , F(n′) = nj .

Notice that (2) implies that if w is the empty word, then F does not have hit nodes. If this is the
case, then (F , t, n) |= [U]¬Hit, which implies that (F , t, n) |= 〈U〉 Hit ⇒ 〈U〉 symb. Otherwise,
the set of main nodes is non-empty, and by (3) and (4) we conclude that each main node is a
descendant of t and has at least one child (as stated in Proposition 4.5). Again, this implies the
satisfaction of (F , t, n) |= 〈U〉 Hit⇒ 〈U〉 symb. From (3) we have (F , t, n) |= ¬size(tchild) ≥ 2,
leaving us with only the last conjunct of wordΣ being open. Let us consider a node n′ such that
(F , t, n′) |= symb. In particular, this implies that a main node exists and so w is not empty.
By (3) and (4), n′ is a main node and so there is j ∈ [1, k] such that n′ = nj . If j = 1, we
prove that (F , t, n′) |= 1stΣ. In this case, every child of n′ is a character node from N1 (and vice
versa), which in turn does not have any children, so that n′ has the same number of descendants

4.2. On the Expressive Power of ALT 87

and children (as stated in Proposition 4.5). Moreover, (4) implies that card(N1) = a1 + 1. Thus,
(F , t, n′) |= #desc = a1 + 1 ∧ #child = a1 + 1, i.e one of the disjuncts of 1stΣ. Otherwise,
consider the case where j 6= 1. Let us prove that (F , t, n′) |= ¬1st{n+1} ∧ � 1stΣ. Exactly one
child of n′ is a main node (i.e. nj−1), whereas all other children are character nodes. As nj−1 is
a main node, it has at least one child. So, (F , t, n′) |= ¬1st{n+1}. Let F ′ ⊆ F be the subforest
such that F ′ = F \ {(nj−1, n′)}. On this subforest, all the F ′-children of n′ are character nodes,
more specifically (4) states that these children are the aj + 1 nodes from Nj . As in the case of
j = 1, this implies that (F ′, t, n′) |= #desc = aj + 1 ∧#child = aj + 1, i.e a disjunct of 1stΣ.
Thus, (F , t, n′) |= � 1stΣ.
(⇐): Conversely, suppose (F , t, n) |= wordΣ. From the first two conjuncts of wordΣ we have:

B. t has at most one child (from ¬size(tchild) ≥ 2),
C. If F has a hit node, one descendant of t has a child (from 〈U〉 Hit⇒ 〈U〉 symb).

Notice that if F does not have descendants then it trivially encodes the empty word. So, let us
assume that F 6= ∅. From (B), t has exactly one child, say n. Together with (C), this means
that (F , t, n) must have a child (every other descendant of t is a descendant of n). We define
the following subsets of the descendants of t:
• M def= {n′ ∈ (F−1)+(t) | F(n′′) = n′ for some n′′ ∈ N}, i.e. the non-leaf descendants of t,
• for n′ ∈M, Nn′

def= {n′′ 6∈M | F(n′′) = n′}, i.e. the leafs descendants of t that are children of n′.
Notice that n belongs to M. Besides, the nodes in M are the only ones that satisfy symb (as they
have a child and are descendants of t). To prove that F encodes a word in [1, n]+ we show:

I. for each node n′ ∈ M there is at most one node n′′ ∈ M such that F(n′′) = n′. This shows
the existence of a main path in the tree, made by the elements in M;

II. for every n′ ∈M, card(Nn′)∈ [2, n+1]. This shows that nodes of M encode symbols in [1, n].
To prove (I) and (II), we use the fact that (F , t, n) satisfies the last conjunct of wordΣ, i.e.

[U](symb⇒ 1stΣ ∨ (¬1st{n+1} ∧ � 1stΣ)).

Let us consider n′ ∈ M. As it satisfies symb, we have (F , t, n′) |= 1stΣ ∨ (¬1st{n+1} ∧ � 1stΣ).
If (F , t, n′) |= 1stΣ, as Σ = [1, n] we conclude that the number of children and descendants of n
are equal, and take a value in [2, n + 1]. This implies that is no n′′ ∈ M such that F(n′′) = n′
and card(Nn) ∈ [2, n+ 1]. In this case, both (I) and (II) are verified. Otherwise, let us suppose
that (F , t, n′) |= ¬1st{n+1} ∧ � 1stΣ. In order to show that both (I) and (II) hold (concluding
the proof), we reason by contradiction. First, suppose ad absurdum that (I) does not hold and
so there are two distinct nodes n′′, n′′′ ∈ M s.t. F(n′′) = n′ = F(n′′′). As n′′ and n′′′ are both
in M, they both have at least one child. However, this implies that (F , t, n′) 6|= � 1stΣ, leading
to a contradiction. Indeed, � 1stΣ is satisfied if it is possible to remove a single edge from the
forest F , leading to a finite forest F ′, so that n′ is a F ′-descendant of t and the number of its
children coincide with the number of its descendants. So, (I) holds. Lastly, suppose ad absurdum
that (II) does not hold, and so card(Nn′) 6∈ [2, n+ 1]. It is helpful to realise that the formula

� 1stΣ ⇒ (#child ≥ 2 ∧#child ≤ n+ 2),

is valid (recall that Σ = [1, n]). Indeed, consider a model (F?, t?, n?) that satisfies � 1stΣ. By
definition, there is a edge e ∈ F? such that F ′?

def= F? \ {e} enjoys (F ′?, t?, n?) |= 1stΣ. This
implies (F ′?, t?, n?) |= #child = β for some β ∈ [2, n + 1], which in turn means that in F?, n?
can only have between 2 and n+ 2 F?-children.
From this tautology we conclude that n′ has between 2 and n + 2 F-children. If one of these
children belongs to M, then of course card(Nn′) ∈ [2, n+ 1], proving (II). If instead every child of

88 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

n′ belongs to Nn′ , then n′ has the same number of descendants and children. Moreover, from the
assumption card(Nn′) 6∈ [2, n + 1], we derive card(Nn′) = n + 2. However, this is contradictory
with the fact that (F , t, n′) |= ¬1st{n+1}. Thus, (II) holds.

4.2.2 Intermezzo: inexpressibility results via Ehrenfeucht-Fräıssé games.

Now that we are more familiar with the logic, before moving to the Tower-hardness proof of
the satisfiability problem for ALT, it is helpful to see some of the properties that ALT cannot
express. Notably, these properties give us some insight on what we should do (or rather, what
we should not do) in order to build very expressive queries in ALT in a concise way, as we
definitely need in order to reach Tower-hardness. In particular, we show that the expressive
power of ALT is very weak when it comes to expressing properties of miss nodes. On these
nodes, ALT can essentially only state the properties captured by Boolean combinations of the
formulae Miss and size(Miss)≥β. Therefore, the expressive power of ALT is almost entirely
concerned with hit nodes. On the other hand, inexpressibility results effectively reduce the set of
forests that must be considered in order to solve the satisfiability problem. This in turn makes
reductions from this problem to the satisfiability of other logics more immediate, as we show
throughout Section 4.4. Readers that are eager to see the Tower-hardness of the satisfiability
problem for ALT can jump to Section 4.3 (page 97).

Various mathematical tools from model theory are suited to prove inexpressibility results, as
for example compactness theorems, Löwenheim-Skolem theorem and Ehrenfeucht-Fräıssé games.
However, when dealing with logics interpreted on finite structures, Ehrenfeucht-Fräıssé games
are the only major tool available. This is the case for ALT. Without extensively discussing the
other tools and why they fail on finite structures (a clear presentation is given in [102]), let us
briefly recall the compactness theorem for a logic L interpreted on the class of structures M.

Theorem 4.11 (Compactness). Let S be a set of formulae in L. S has a model fromM (i.e. S is
consistent w.r.t. M) if and only if every finite subset of S has a model from M.

In the case that this theorem holds for ALT, it can be used to prove that a certain subclass C
of pointed forests is not definable in the logic as follows. We first assume that C is characterised
by a formula ϕC . We construct an infinite set of formulae S such that every finite subset
of S∪{ϕC} is consistent, whereas the full set S∪{ϕC} is inconsistent. However, this contradicts
the compactness theorem, and therefore C cannot be characterised in ALT.

Unfortunately, we cannot rely on this technique, as Theorem 4.11 does not hold for ALT. In-
deed, consider the infinite set of formulae S def= {�k> | k ∈ N}. It is clear that every finite subset
T ⊆fin S is satisfied by every pointed forest (F , t, n) such that card(F) ≥ max{k | �k> ∈ T}.
However, S can only be satisfied by an infinite forest, and is therefore inconsistent with respect
to the class of pointed forests. This invalidates Theorem 4.11.

EF-games. As compactness fails, to prove inexpressibility results for ALT we adapt the notion
of Ehrenfeucht-Fräıssé games (EF-games, in short) of first-order logic [102]. This has already be
done for other relation-changing logics such as context logic for trees [36] and ambient logic [48].
EF-games are two players games. One player is called the spoiler and the other is called the
duplicator. In the case of ALT, a game is played on a state that is represented by a triple
((F1, t1, n1), (F2, t2, n2), rk) made of two pointed forests (F1, t1, n1) and (F2, t2, n2), and a rank
rk. The rank, to be formally defined below, roughly represents the numbers of turns in the

4.2. On the Expressive Power of ALT 89

EF-Game played on the state ((F1, t1, n1), (F2, t2, n2), (m, s, k))

if there is π ∈ {Miss, Hit} such that ((F1, t1, n1) |= π iff (F2, t2, n2) |= π) does not hold
then the spoiler wins,
else the spoiler chooses i∈{1, 2} and plays on (Fi, ti, ni).

The duplicator replies on (Fj , tj , nj) where j ∈ {1, 2}\{i}.
The spoiler must choose one of the following moves (otherwise the duplicator wins).
〈U〉 move: if m ≥ 1 then the spoiler can choose to play a 〈U〉 move. If he does so,

1. The spoiler selects a node n′i ∈ N .
2. The duplicator must select a node n′j ∈ N (otherwise the spoiler wins).
3. The game continues on ((F1, t1, n′1), (F2, t2, n′2), (m−1, s, k)).
� move: if s ≥ 1 and dom(Fi) 6= ∅ then the spoiler can choose to play a � move.

1. The spoiler selects a finite forest F ′i ⊆ Fi such that card(F ′i) = card(Fi)− 1.
2. The duplicator must reply with a forest F ′j ⊆Fj such that card(F ′j) = card(Fj)−1.
3. The game continues on ((F ′1, t1, n1), (F ′2, t2, n2), (m, s−1, k)).
�* move: if k ≥ 1 then the spoiler can choose to play a �* move.

1. The spoiler selects a finite forest F ′i ⊆ Fi.
2. The duplicator must reply with a finite forest F ′j ⊆ Fj .
3. The game continues on ((F ′1, t1, n1), (F ′2, t2, n2), (m, s, k−1)).

Figure 4.4: Ehrenfeucht-Fräıssé games for ALT.

game. At each turn, the spoiler performs a move in one of the two pointed forests, which
must be countered by the duplicator with a move on the other pointed forest. These moves
are related to ALT, as they capture the semantics of the three modalities 〈U〉, � and �*. The
goal of the spoiler is to show that the two structures are different. The goal of the duplicator
is to show that the two structures are similar. The notion of being different also traces back
to the semantics of ALT: two pointed forests are different if and only if there is a formula
of ALT that it is satisfied by only one of the two. The exact correspondence between the
games and ALT is formalised with an adequacy result (Theorem 4.15, below). A player has
a winning strategy if it can play in a way that guarantees it the victory, regardless what the
other player does. We write (F1, t1, n1)∼rk(F2, t2, n2) whenever the duplicator has a winning
strategy for the game ((F1, t1, n1), (F2, t2, n2), rk). As we will see, our games are determined: if
the duplicator does not have a winning strategy then spoiler has one, and vice versa. Hence,
we write (F1, t1, n1) 6∼rk (F2, t2, n2) to state that the spoiler has a winning strategy. Albeit
determinacy holds directly from Zermelo’s Theorem [145] (or Martin’s Theorem [109]), for the
simple games of ALT we prefer to derive it as a self-contained result (Lemma 4.14).

In order to introduce the games, we need to define the rank of a formula ϕ in ALT.

Definition 4.12 (Rank). The rank of ϕ a triple (m, s, k) ∈ N3 where the modal rank m
is the greatest nesting depth of the modal operator 〈U〉 in ϕ, whereas the sabotage rank s
(resp. repeated sabotage rank k) is the greatest nesting depth of the operator � (resp. �*) in ϕ.

We write ALTrk for the set of formulae with rank rk ∈ N3. We define the rank order <rk on N3.

Definition 4.13 (Rank order). The rank order <rk⊆ N3 × N3 is the relation defined as

90 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

(m, s, k) <rk (m′, s′, k′) iff m ≤ m′, s ≤ s′, k ≤ k′ and (m < m′ or s < s′ or k < k′).

Notice that <rk is a well-founded strict order.
The EF-games for ALT are played with respect to a rank rk ∈ N3, and they are formally

defined in Figure 4.4. As we can see, at the beginning of the turn, we check whether the two
atomic formulae Hit and Miss are satisfied by only one of the two pointed forests (F1, t1, n1) and
(F2, t2, n2). If this is the case, the spoiler wins. Otherwise, it must chose one move, among three
possibilities which essentially capture the semantics of the modalities of ALT. The determinacy
of the EF-games can be easily proven by induction on the rank of the game.

Lemma 4.14. For every state of the game, one of the two players has a winning strategy.

Proof. The proof is by induction on the rank rk of the game, with respect to the order <rk.
base case: rk = (0, 0, 0). Let us consider a games state ((F1, t1, n1), (F2, t2, n2), rk). If there is

π ∈ {Miss, Hit} such that ((F1, t1, n1) |= π iff (F2, t2, n2) |= π) does not hold, then the
spoiler wins (1st and 2nd line of Figure 4.4). Otherwise, since rk = (0, 0, 0) the spoiler
cannot perform any move and the duplicator wins (5th line in Figure 4.4).

induction step: rk 6= (0, 0, 0). Let us consider a state ((F1, t1, n1), (F2, t2, n2), rk). Again, if
there is π ∈ {Miss, Hit} such that ((F1, t1, n1) |= π iff (F2, t2, n2) |= π) does not hold, then
the spoiler wins (1st and 2nd line of Figure 4.4). Otherwise, the spoiler can perform a
move according to Figure 4.4, to which a move for the duplicator follows. Given a move of
the spoiler, let S be the set of games states that can be reached following a possible answer
from the duplicator. Each of these states has rank rk′ <rk rk. By induction hypothesis,
either the spoiler or the duplicator has a winning strategy for each state in S. If the
duplicator has a winning strategy for one of the states in S, then it can answer the move
done by the spoiler so that the game continue on that state, ensuring a victory. Otherwise,
no matter what is the answer of the duplicator, the spoiler has a winning strategy after
selecting that particular move. This means that, for every move of the spoiler, the game
proceeds in a state for which one of the two players has a winning strategy. If for every
move of the spoiler the game proceeds in a state for which the duplicator has a winnning
strategy, then the duplicator has a winning strategy for ((F1, t1, n1), (F2, t2, n2), rk). If
instead there is a move of the spoiler that makes the game proceeds in a state for which
the spoiler has a winning strategy, then it is sufficient for the spoiler to perform that move
in order to produce a winning strategy for ((F1, t1, n1), (F2, t2, n2), rk).

We now aim at connecting the EF-games with ALT by proving that they are adequate with
respect to the satisfaction relation |= of ALT. In particular, we want to show the following result.

Theorem 4.15. Let (F1, t1, n1) and (F2, t2, n2) be two pointed forests. Let rk ∈ N3.
(I) If (F1, t1, n1) |= ϕ and (F2, t2, n2) 6|= ϕ for some ϕ in ALTrk, then (F1, t1, n1) 6∼rk(F2, t2, n2).

(II) If for every ϕ in ALTrk ((F1, t1, n1) |= ϕ iff (F2, t2, n2) |= ϕ), then (F1, t1, n1) ∼rk (F2, t2, n2).

In order to show this theorem, which as we will see allows us to prove inexpressibility results
for ALT, we need to state some of the properties of ranks. The first property is that ALTrk is a
finite set of formulae, up to logical equivalence.

Lemma 4.16. For each rank rk ∈ N3, ALTrk is finite up to logical equivalence.

4.2. On the Expressive Power of ALT 91

This result is rather standard, and similar ones can be found in [102, 36, 48]. Its proof (by
induction on the rank rk) is left in Appendix B. Lemma 4.16 implies that given a rank rk,
every pointed forest (F , t, n) has a (finite) characteristic formula Γrk(F , t, n) ∈ ALTrk that is
logically equivalent to the infinite conjunction

∧
{ϕ ∈ ALTrk | (F , t, n) |= ϕ}. Moreover, the

formula Γrk(F , t, n) enjoys the following properties.

Lemma 4.17. Let (F , t, n) be a pointed forest and let rk ∈ N3. (I) (F , t, n) |= Γrk(F , t, n), and
(II) given a second pointed forest (F ′, t′, n′), (F , t, n) |= Γrk(F ′, t′, n′) iff (F ′, t′, n′) |= Γrk(F , t, n).

Proof. The statement (I) follows directly by the definition of characteristic formula. For the
statement (II), by symmetry we just need to show one direction. Assume (F , t, n) |= Γrk(F ′, t′, n′).
Let ψ ∈ ALTrk and suppose (F , t, n) |= ψ. To prove the result it is sufficient to show that
(F ′, t′, n′) |= ψ. Ad absurdum, suppose that (F ′, t′, n′) 6|= ψ. Then by definition (F ′, t′, n′) |= ¬ψ,
and by definition of rank, we have that ¬ψ ∈ ALTrk. Therefore, from the equivalence

Γ(m,s,k)(F ′, t′, n′)
by def
≡

∧
{ϕ ∈ ALTm,s,k | (F ′, t′, n′) |= ϕ},

we conclude that |= Γ(m,s,k)(F ′, t′, n′) ⇒ ¬ψ. As (F , t, n) |= Γ(m,s,k)(F ′, t′, n′), this implies
(F , t, n) |= ¬ψ, in contradiction with the hypothesis (F , t, n) |= ψ. Hence, (F ′, t′, n′) |= ψ.

Lemmata 4.16 and 4.17 allow us to prove Theorem 4.15 in a neat way. The statement (I)
of Theorem 4.15, also called the soundness of the games, is proved by structural induction on ϕ.
The completeness of the games, i.e. the statement (II) of Theorem 4.15, is proven by showing the
contrapositive by induction on the rank and by cases on the first move that the spoiler makes
in his winning strategy, which exists by determinacy (Lemma 4.14).

Proof of Theorem 4.15(I). The proof by structural induction on ϕ is similar to the one in [36].
base case: ϕ ∈ {Hit, Miss}. From the hypothesis (F1, t1, n1) |= ϕ and (F2, t2, n2) 6|= ϕ we

conclude that spoiler wins the game (from the 1st and 2nd line of Figure 4.4).
For the induction steps, we omit the straigthforward cases of Boolean connectives, and focus on
the three cases ϕ = 〈U〉ψ, ϕ = �ψ and ϕ = �* ψ.
induction step: ϕ = 〈U〉ψ. By hypothesis (F1, t1, n1) |= 〈U〉ψ and (F2, t2, n2) 6|= 〈U〉ψ. Then

there is n′1 ∈ N such that (F1, t1, n′1) |= ψ. Moreover, by definition the modal rank of 〈U〉ψ
is at least 1 and therefore the spoiler can play a 〈U〉 move. Suppose that the spoiler selects
the structure (F1, t1, n1) and choses exactly n′1. According to the game, the duplicator must
choose a n′2 ∈ N . Since (F2, t2, n2) 6|= 〈U〉ψ it holds that (F2, t2, n′2) 6|= ψ. By induction hy-
pothesis, the spoiler has a winning strategy for ((F1, t1, n′1), (F2, t2, n′2), (m−1, s, k)). Hence,
by chosing n′1 the spoiler built a winning strategy for ((F1, t1, n1), (F2, t2, n2), (m, s, k)).

induction step: ϕ = �ψ. By hypothesis (F1, t1, n1) |= �ψ and (F2, t2, n2) 6|= �ψ. There is
a finite forest F ′1 ⊆ F1 such that card(F ′1) = card(F1) − 1 and (F ′1, t1, n1) |= ψ. Hence,
dom(F1) 6= ∅ and moreover by definition the sabotage rank of �ψ is at least 1. Therefore,
the spoiler can play a � move. Suppose that the spoiler selects the structure (F1, t1, n1)
and choses exactly F ′1. According to the game, the duplicator must choose a finite forest
F ′2 ⊆ F2 such that card(F ′2) = card(F2) − 1. Since (F2, t2, n2) 6|= �ψ, it holds that
(F ′2, t2, n2) 6|= ψ. By induction hypothesis, the spoiler has a winning strategy for the
game ((F1, t1, n′1), (F2, t2, n′2), (m, s−1, k)). Hence, by chosing F ′1 the spoiler built a winning
strategy for ((F1, t1, n1), (F2, t2, n2), (m, s, k)).

92 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

induction step: ϕ = �* ψ. By hypothesis (F1, t1, n1) |= �* ψ and (F2, t2, n2) 6|= �* ψ. There
is a finite forest F ′1 ⊆ F1 such that (F ′1, t1, n1) |= ψ. Moreover, by definition the repeated
sabotage rank of �* ψ is at least 1. Therefore, the spoiler can play a �* move. Suppose
that the spoiler then select the structure (F1, t1, n1) and choses exactly F ′1. According to
the game, the duplicator must choose a finite forest F ′2 ⊆ F2. Since (F2, t2, n2) 6|= �* ψ, it
holds that (F ′2, t2, n2) 6|= ψ. By induction hypothesis, the spoiler has a winning strategy
for the game ((F1, t1, n′1), (F2, t2, n′2), (m, s, k− 1)). Hence, by chosing F ′1 the spoiler built
a winning strategy for ((F1, t1, n1), (F2, t2, n2), (m, s, k)).

Proof of Theorem 4.15(II). We follow again the schema of the proof in [36]. We consider the
contrapositive statement and thus prove that if (F1, t1, n1) ∼rk (F2, t2, n2) does not hold, then
there is ϕ in ALTrk s.t. ((F1, t1, n1) |= ϕ iff (F2, t2, n2) |= ϕ) does not hold. Since the games are
determined (Lemma 4.14) and ALT is closed under negation, we can alternatively show that

If (F1, t1, n1) 6∼rk (F2, t2, n2) then there is ϕ in ALTrk s.t. (F1, t1, n1) |= ϕ and (F2, t2, n2) 6|= ϕ.

As already stated, the result is shown by induction on the rank rk, with respect to the order
<rk, and by cases on the first move that the spoiler makes in his winning strategy for the game
((F1, t1, n1), (F2, t2, n2), rk). Below, we reserve the symbol ϕ for the formula that distinguishes
the two models, as in the statement above (i.e. (F1, t1, n1) |= ϕ and (F2, t2, n2) 6|= ϕ).
base case: rk = (0, 0, 0). Since spoiler has a winning strategy, in particular it wins the game

of rank (0, 0, 0). By definition of the game, spoiler does not play any move, and from the
1st and 2nd line of Figure 4.4 one of the following must hold:

• (F1, t1, n1) |= Hit and (F2, t2, n2) 6|= Hit. Hence, ϕ = Hit.
• (F1, t1, n1) 6|= Hit and (F2, t2, n2) |= Hit. Hence, ϕ = ¬Hit.
• (F1, t1, n1) |= Miss and (F2, t2, n2) 6|= Miss. Hence, ϕ = Miss.
• (F1, t1, n1) 6|= Miss and (F2, t2, n2) |= Miss. Hence, ϕ = ¬Miss.

This case also holds for games on arbitrary rank (m, s, k) where the spoiler wins simply
from the conditions of the game that are imposed at the beginning of each round (1st and
2nd line of Figure 4.4), before playing any move.

In the induction steps, let us assume rk = (m, s, k).
induction step: the spoiler plays a 〈U〉 move. Suppose that, by following its strategy, the

spoiler choses (F1, t1, n1) and plays a 〈U〉move. Notice that this implies m ≥ 1. Let n′1 ∈ N
be the node selected by the spoiler. By Lemma 4.17(I), (F1, t1, n′1) |= Γ(m−1,s,k)(F1, t1, n′1).
Let ϕ be defined as the formula 〈U〉 Γ(m−1,s,k)(F1, t1, n′1). By definition, ϕ ∈ ALTrk and
this formula is satisfied by (F1, t1, n1). Ad absurdum, suppose that (F2, t2, n2) |= ϕ.
Thus, there is n′2 such that (F2, t2, n′2) |= Γ(m−1,s,k)(F1, t1, n′1). By Lemma 4.17(II) to-
gether with the definition of characteristic formula, there is no formula in ALT(m−1,s,k)
that can discriminate between (F1, t1, n′1) and (F2, t2, n′2). As our games are determined
(Lemma 4.14), by induction hypothesis the duplicator has a winning strategy for the
game ((F1, t1, n′1), (F2, t2, n′2), (m − 1, s, k)). However, this is contradictory as by hypoth-
esis the spoiler has a winning strategy and the move it played is part of this strategy.
Therefore, (F1, t1, n1) |= ϕ and (F2, t2, n2) 6|= ϕ.
The proof is analogous for the case where the spoiler choses (F2, t2, n2) and a n′2 ∈ N . In
this case we obtain (F1, t1, n1) 6|= ψ and (F2, t2, n2) |= ψ where ψ = 〈U〉 Γ(m−1,s,k)(F2, t2, n′2).
Thus, defining the formula ϕ as ¬ψ proves the result.

4.2. On the Expressive Power of ALT 93

induction step: the spoiler plays a � move. This case is similar to the previous one. Sup-
pose that, by following its strategy, the spoiler choses (F1, t1, n1) and plays a � move.
Notice that this implies s ≥ 1 and dom(F1) 6= ∅. Let F ′1 be the finite forest chosen by the
spoiler. We have F ′1 ⊆ F1 and card(F ′1) = card(F1)− 1. By Lemma 4.17(I), (F ′1, t1, n1) |=
Γ(m,s−1,k)(F ′1, t1, n1). Let ϕ be defined as the formula � Γ(m,s−1,k)(F ′1, t1, n1). By defini-
tion, ϕ ∈ ALTrk and this formula is satisfied by (F1, t1, n1). Ad absurdum, suppose that
(F2, t2, n2) |= ϕ. There is F ′2 such that F ′2 ⊆ F2, card(F ′2) = dom(F2)−1 and (F ′2, t2, n2) |=
Γ(m,s−1,k)(F ′1, t1, n1). By Lemma 4.17(II) together with the definition of characteristic for-
mula, there is no formula in ALT(m,s−1,k) that can discriminate between (F ′1, t1, n1) and
(F ′2, t2, n2). As our games are determined, by induction hypothesis this implies that the
duplicator has a winning strategy for the game ((F ′1, t1, n1), (F ′2, t2, n2), (m, s−1, k)). How-
ever, this is contradictory as by hypothesis the spoiler has a winning strategy and the move
it played is part of this strategy. Therefore, (F1, t1, n1) |= ϕ and (F2, t2, n2) 6|= ϕ.
Again, the proof is analogous for the case where the spoiler choses (F2, t2, n2) and a finite
tree F ′2 ⊆ F2 such that card(F ′2) = card(F2) − 1. In this case we obtain (F1, t1, n1) 6|= ψ

and (F2, t2, n2) |= ψ where ψ = � Γ(m,s−1,k)(F ′2, t2, n2). Hence, ϕ def= ¬ψ proves the result.
induction step: the spoiler plays a �* move. This case is similar to the last two cases.

Suppose that, by following its strategy, the spoiler choses (F1, t1, n1) and plays a �* move.
This implies k ≥ 1. Let F ′1 be the finite forest chosen by the spoiler. Thus, F ′1 ⊆ F1.
By Lemma 4.17(I), we have that (F ′1, t1, n1) |= Γ(m,s,k−1)(F ′1, t1, n1). Let ϕ be the for-
mula defined as �*Γ(m,s,k−1)(F ′1, t1, n1). By definition, ϕ ∈ ALTrk and this formula is
satisfied by (F1, t1, n1). Ad absurdum, suppose that (F2, t2, n2) |= ϕ. Then there is F ′2
such that F ′2 ⊆ F2 and (F ′2, t2, n2) |= Γ(m,s,k−1)(F ′1, t1, n1). By Lemma 4.17(II) together
with the definition of characteristic formula, there is no formula in ALT(m,s,k−1) that
can discriminate between (F ′1, t1, n1) and (F ′2, t2, n2). As our games are determined,
by induction hypothesis this implies that the duplicator has a winning strategy for the
game ((F ′1, t1, n1), (F ′2, t2, n2), (m, s, k − 1)). However, this is contradictory as we assumed
that the spoiler has a winning strategy and the move it played is part of this strategy.
Therefore, (F1, t1, n1) |= ϕ and (F2, t2, n2) 6|= ϕ.
The proof is analogous for the case where the spoiler choses (F2, t2, n2) and a forest F ′2⊆F2.
In this case we have (F1, t1, n1) 6|= ψ and (F2, t2, n2) |= ψ, where ψ = �*Γ(m,s,k−1)(F ′2, t2, n2).
Hence, ϕ def= ¬ψ proves the result.

Using the EF-games for ALT. We start using the EF-games for ALT to derive three easy
inexpressibility results. Notably, these results are later helpful as they reduce the set of pointed
forests needed in order to conclude that a formula ϕ of ALT is satisfiable.

Lemma 4.18. Let ϕ be a formula.
(I) ϕ is satisfiable iff it is satisfiable by a pointed forest (F , t, n) where t 6∈ dom(F).

(II) Given a forest F and nodes t ∈ N and n, n′ 6∈ dom(F), (F , t, n) |= ϕ iff (F , t, n′) |= ϕ.
(III) If (F1, t1, n1) ∼rk (F2, t2, n2) then the duplicator has a winning strategy where it always

replies to 〈U〉 moves by selecting nodes in dom(Fi) ∪ ran(Fi), for some i ∈ {1, 2}.

As these results are quite straightforward, we just sketch their proof so that we can focus on
how the EF-games are used without getting lost in technical details. We will see a full proof
that uses the games later, with Lemma 4.19.

94 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

Proof (sketch). Consider the left-to-right direction of (I) (the other direction is obvious), and so
let (F , t, n) be a pointed forest such that (F , t, n) |= ϕ. We modify (F , t, n) so that the target
node is not in the domain of the forest. In particular, we consider a node t′ 6∈ dom(F) ∪ ran(F)
and define the forest F ′(n′) def= if F(n′) = t then t′ else F(n′). Notice that t′ 6∈ dom(F ′). We
show that for every rk ∈ N3, (F , t, n) ∼rk (F ′, t′, n) with an easy induction on rk, leading to (I)
directly by Theorem 4.15. The proof of (II) is even simpler, as we just need to prove that for all
rk ∈ N3, (F , t, n) ∼rk (F , t, n′), again by induction on the rank. (III) is a consequence of (II).

Interestingly enough, Lemma 4.18(III) fundamentally implies that changing the definition
of the set of nodes N to be finite, instead of infinite as we do throughout this work, does not
change the expressive power nor the complexity of ALT.

The proof of Lemma 4.18(I) shows us how the games can be used in order to conclude
an inexpressibility result. In general, we consider a property that we want to show to be not
expressible in the logic, as for example the fact that the target node is in the domain of the
forest (as in Lemma 4.18(I)). Then, for every rank rk ∈ N3, we construct two pointed forests
(F1, t1, n1) and (F2, t2, n2) such that only one of the two has the wanted property. We show that
(F1, t1, n1) ∼rk (F2, t2, n2), which allows us to conclude that the property cannot be expressed,
by Theorem 4.15. When this property is very simple, as it is the case for Lemma 4.18(I),
it is possible to construct a single pair of finite forests (F1, t1, n1) and (F2, t2, n2) so that for
every rk ∈ N3 we can prove (F1, t1, n1) ∼rk (F2, t2, n2).

Let (F , t, n) be a pointed forest. We now show that ALT has a very limited expressive power
with respect to the miss nodes. In particular, it can only check whether the current evaluation
node n is a member of F [Miss] (with the formula Miss), and for the size of F [Miss] (with the
formula size(Miss)≥β). We formalise this inexpressibility result with the following lemma.

Lemma 4.19. Let rk = (m, s, k). Let F1,F2 be two forests, and n1, n2, t∈N . Suppose that
1. (F1, t, n1) and (F2, t, n2) agree on the set of descendants of t, i.e. for every F1-descendant

or F2-descendant n of t, F1(n) = F2(n), and if n1 or n2 are descendants of t, then n1 = n2,

2. n1 ∈ F1[Miss]t if and only if n2 ∈ F2[Miss]t,

3. min(card(F1[Miss]t),m + s + k) = min(card(F2[Miss]t),m + s + k).
Then (F1, t, n1) ∼rk (F2, t, n2).

Before proving this result, let us informally explain how it shows that ALT can only express
the two aforementioned properties of F [Miss]. For example, let us suppose (ad absurdum) that
there is a formula ϕ that characterises the set of pointed forests having a miss node with at least
two children. Let us consider a rank rk = (m, s, k) and a pointed forest (F1, t, n) that satisfies
the formula ϕ. We consider the subforest F ⊆ F1 whose domain corresponds to the set of F1-
descendants of t. We extend F to a forest F2 by (re)defining it on the nodes in F1[Miss]t so that
F2[Miss]t = F1[Miss]t and none of these nodes has more than one F2-child (this construction
can always be done). Notice that F2 is defined in a way that (F1, t, n) and (F2, t, n) satisfy
the three properties (1), (2) and (3). We apply Lemma 4.19 to conclude (F1, t, n) ∼rk (F2, t, n),
which in turn shows that (F2, t, n) |= ϕ by Theorem 4.15. However, (F2, t, n) is defined so that
every node in F2[Miss]t has at most one child. Thus, ϕ cannot characterise the set of models
having a miss node with at least two children.

As we discuss in the next section, the inexpressibility result shown in Lemma 4.19 plays
a central role in the development of the reduction that leads to the Tower-hardness of the
satisfiability problem for ALT. In particular, most of the difficulties of this reduction stem from

4.2. On the Expressive Power of ALT 95

the fact that we need to get around the limited expressiveness that ALT has with respect to miss
nodes. We conclude this section on the expressive power of ALT with the proof of Lemma 4.19.
Readers that are eager to see the Tower-hardness of this logic can skip to page 97.

Proof of Lemma 4.19. The proof is by induction on the rank rk, with respect to the strict order
<rk and by cases on the move made by the spoiler in the game. As the statement is symmetrical
with respect to the two pointed forests (F1, t, n1) and (F2, t, n2), we assume w.l.o.g. that the
spoiler chooses and plays on the structure (F1, t, n1) and hence define below the strategy of
duplicator on (F2, t, n2). The strategy of the duplicator for the cases where it must reply on
(F1, t, n1) can be described from the one below by simply swapping the two structures. Below,
the indices (1), (2) and (3) refer to the homonymous properties in the statement of the lemma.
We refer to them as hypothesis whenever we consider (F1, t, n1) and (F2, t, n2). Instead, we call
them properties when we are proving them for subforests of (F1, t, n1) and (F2, t, n2).
base case: rk = (0, 0, 0). The hypothesis (1) and (2) imply that for every π ∈ {Miss, Hit}, the

double implication ((F1, t, n1) |= π iff (F2, t, n2) |= π) holds. Since the spoiler cannot play
any move, the duplicator wins the game.

For the induction step, we assume rk = (m, s, k) 6= (0, 0, 0) and that the lemma holds for
every rk′ <rk rk. We divide the proof following the move of the spoiler.
induction step: the spoiler plays a 〈U〉 move. This implies m ≥ 1. Let n′1 ∈ N be the

node choosen by the spoiler. Let us consider the following procedure for the duplicator:
if n′1 is a hit node of (F1, t, n1) then the duplicator selects n′1
else if n′1 ∈ F1[Miss]t then the duplicator selects a node n′2 ∈ F2[Miss]t
else the duplicator selects a node n′2 6∈ dom(F2).

Notice the this procedure is well-defined. In particular, if n′1 ∈ F1[Miss]t then from m ≥ 1
and the hypothesis (3), we conclude that card(F2[Miss]t) ≥ 1, so that the the duplicator
can effectively select a node n′2 ∈ F2[Miss]t. Moreover, the hypothesis (1) insures that if
n′1 is a hit node of (F1, t, n1) then it is also a hit node of (F2, t, n2). Lastly, if the duplicator
select a node n′2 6∈ dom(F2), it means that n′1 is not a hit or miss node, hence n′1 6∈ dom(F1).
The EF-game continues on the state ((F1, t, n′1), (F2, t, n′2), (m−1, s, k)). By definition of n′2,
we can check that (F1, t, n′1) and (F2, t, n′2) satisfy the three properties (1), (2) and (3),
w.r.t. the rank (m − 1, s, k). By induction hypothesis, we conclude (F1, t, n′1) ∼(m−1,s,k)
(F2, t, n′2). This implies that, by relying on the procedure above, the duplicator can build
a winning strategy for the game ((F1, t, n1), (F2, t, n2), rk).

induction step: the spoiler plays a � move. This implies s ≥ 1. let F ′1 ⊆ F1 be the sub-
forest chosen by the spoiler. We have card(F ′1) = card(F1) − 1. Let n be the only node
in dom(F1) \ dom(F ′1). Let us consider the following procedure for the duplicator:

if n is a hit node of (F1, t, n1) then the duplicator selects the forest F2 \ {(n,F2(n))}
else the duplicator selects a forest F2 \ {(n′,F2(n′))}

where n′ ∈ F2[Miss]t , and n′ = n1 ⇔ n = n2.

Notice that this procedure is well-defined. In particular, if n is a hit node of (F1, t, n1), from
the hypothesis (1) n is a hit node of (F2, t, n2), and so (n,F2(n)) is defined. Moreover, if n
is not a hit node, then from n ∈ dom(F1) we conclude that it is a miss node. By s ≥ 1 and
thanks to the hypothesis (3), card(F2[Miss]t)≥ 1. With the hypothesis (2), this implies
that the duplicator can effectively select the forest in the else branch of the procedure.
Let F ′2 be the forest selected by the duplicator, using the procedure above. We show that

96 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

(F ′1, t, n1) and (F ′2, t, n2) satisfy the properties (1), (2) and (3) w.r.t. the rank (m, s− 1, k).
We divide the proof into two cases, depending on whether or not n ∈ F1[Miss]t.
case: n ∈ F1[Miss]t. Let n′ be some node such that {n′} = dom(F2) \ dom(F ′2). From

the definition of the procedure above, n′ ∈ F2[Miss]t, and n′ = n1 if and only if
n = n2. This implies the satisfaction of the property (2). Moreover, the property (1)
is also satisfied. Indeed, since n is a miss node, every F ′1-descendant of t is also a F1-
descendant of t, and vice versa. Similarly, as n′ is a miss node, every F ′2-descendant
of t is also a F2-descendant of t, and vice versa. Thus, the property (1) is implied
by the hypothesis (1). In order to conclude this case, we prove the satisfaction of
property (3). First, since n is a miss node, F ′1[Miss]t ∪ {n} = F1[Miss]t. Similarly,
F ′2[Miss]t ∪ {n′} = F2[Miss]t. As n 6∈ dom(F ′1) and n′ 6∈ dom(F ′2), we conclude that

card(F ′1[Miss]t) + 1 = card(F1[Miss]t) and card(F ′2[Miss]t) + 1 = card(F2[Miss]t).
Thanks to the hypothesis (3), i.e.

min(card(F1[Miss]t),m + s + k) = min(card(F2[Miss]t),m + s + k),
we show property (3) with the following equivalences:

min(card(F ′1[Miss]t),m + (s− 1) + k) = min(card(F ′1[Miss]t) + 1,m + s + k)− 1
= min(card(F1[Miss]t),m + s + k)− 1
= min(card(F2[Miss]t),m + s + k)− 1
= min(card(F ′2[Miss]t) + 1,m + s + k)− 1
= min(card(F ′2[Miss]t),m + (s− 1) + k).

Here, we use the equivalence min(x+1, y+1) = min(x, y)+1 (x, y arbitrary numbers).
case: n 6∈ F1[Miss]t. This implies that n is a hit node of (F1, t, n1), and from the procedure

followed by the duplicator, F ′2 = F2 \ {(n,F2(n))}. First of, since n is a hit node and
dom(F1) \ dom(F ′1) = {n}, we can show that

F ′1[Miss]t = F1[Miss]t ∪ {n′ ∈ N | n′ is a F1-descendant of n}.
Indeed, when (n,F(n)) is removed from F1, all its descendants become miss nodes,
whereas every other hit node of F1 (n excluded) is still a hit node of F ′1. The same
holds true for F2, so that the following equality holds:

F ′2[Miss]t = F2[Miss]t ∪ {n′ ∈ N | n′ is a F2-descendant of n}.
By hypothesis (1), removing (n,F2(n)) from both F1 and F2 leads to two pointed
forests that agree on the set of descendants of t. Thus, property (1) is satisfied.
Moreover, again from the hypothesis (1), the set of F1-descendants of n is also the
set of F2-descendants of n, i.e.
{n′ ∈ N | n′ is a F1-descendant of n} = {n′ ∈ N | n′ is a F2-descendant of n}.

This implies two things. First, from the characterisation of F ′1[Miss]t and F ′2[Miss]t
(above), together with the hypothesis (2), (F ′1, t, n1) and (F ′2, t, n2) satisfy prop-
erty (2). Second, thanks to the hypothesis (3), i.e.

min(card(F1[Miss]t),m + s + k) = min(card(F2[Miss]t),m + s + k),
we show property (3) with the following equivalences, where β = m + (s− 1) + k:

min(card(F ′1[Miss]t), β) = min(card(F1[Miss]t) + card((F−1
1)+(n)), β)

= min(card(F2[Miss]t) + card((F−1
2)+(n)), β)

= min(card(F ′2[Miss]t), β)

4.3. The Complexity of ALT 97

where, given j ∈ {1, 2}, (F−1
j)+(n) is the set of Fj-descendants of n.

In both cases, since we have shown that (F ′1, t, n1) and (F ′2, t, n2) satisfy the proper-
ties (1), (2) and (3) w.r.t. the rank (m, s− 1, k), we can apply the induction hypothesis and
conclude that (F ′1, t, n1) ∼(m,s−1,k) (F ′2, t, n2). This implies that, by relying on the procedure
above, the duplicator can build a winning strategy for the game ((F1, t, n1), (F2, t, n2), rk).

induction case: the spoiler plays a �* move. This implies k ≥ 1. Let F ′1 ⊆ F1 be the
forest choosen by the spoiler. Let us partition F ′1 into the two subforests H and M1 s.t.

H def= {(n,F1(n)) ∈ F ′1 | n is a F1-descendant of t},

M1
def= {(n,F1(n)) ∈ F ′1 | n ∈ F1[Miss]t}.

By hypothesis (1), H is a subforest of F2. Let us consider a subforest M2 of F2 such that
A. M2 contains only miss nodes of F2, i.e. dom(M2) ⊆ F2[Miss]t,
B. n2 ∈M2 if and only if n1 ∈M1,
C. card(M2) = min(M1,m + s + (k− 1)).

From the hypothesis (2) and (3), the subforest M2 can always be defined. Moreover, M2 is
disjoint from H. Let us show that the duplicator has a winning strategy in which it replies
to F ′1 with the subforest F ′2

def= H∪M2 of F2. We show that (F ′1, t, n1) and (F ′2, t, n2) satisfy
the properties (1), (2) and (3) w.r.t. the rank (m, s, k− 1). Property (1) holds directly from
the definition of H together with hypothesis (1). For the properties (2) and (3), we first
notice that F ′1[Miss]t = H[Miss]t ∪ dom(M2) and that F ′1[Miss]t = H[Miss]t ∪ dom(M1).
Then, property (2) stems from (B), whereas property (3) stems from (C). This allows us to
apply the induction hypothesis to conclude that (F ′1, t, n1) ∼(m,s,k−1) (F ′2, t, n2). Therefore,
the duplicator can build a winning strategy for the game ((F1, t, n1), (F2, t, n2), rk).

4.3 The Complexity of ALT

We are now ready to show that the satisfiability problem for ALT is Tower-complete. The hard-
ness proof is by reduction from the satisfiability problem of Propositional interval temporal logic
under locality principle [112, 82], whereas the upper bound holds directly from Proposition 4.3.

4.3.1 Propositional Interval Temporal Logic.

Propositional Interval Temporal Logic (PITL) is a logic that was introduced by B. Moszkowski
in [112] for the verification of hardware components. It is interpreted on non-empty finite words
over a finite alphabet of unary symbols Σ. Its formulae ϕ are from the grammar below (a ∈ Σ):

π := > (true)
| 1 (single predicate)
| a (head predicate)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ¬ϕ (Boolean connectives)
| ϕ ϕ (composition operator)

The satisfaction relation |= for the formulae of PITL is defined in Figure 4.5, with respect to
a non-empty word a1 . . . ak ∈ Σ+. Standard cases for > and Boolean connectives are omitted.
The interpretation considered here is often called the locality principle interpretation of PITL.
This name highlights the fact that the satisfaction of the predicate a only depends on the first
symbol (i.e. the head) of the word. The main feature of this logic is its composition operator .
Intuitively, ϕ ψ is satisfied by words that can be “chopped” into a prefix and a suffix, so that

98 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

a1 . . . ak |= 1 iff k = 1 (i.e. the word a1 . . . ak is a symbol of Σ),

a1 . . . ak |= a iff a1 = a (i.e the word is headed by the symbol a),

a1 . . . ak |= ϕ ψ iff there is j ∈ [1, k] such that a1 . . . aj |= ϕ and aj . . . ak |= ψ.

Figure 4.5: Satisfaction relation for PITL, under locality principle.

the prefix satisfies ϕ and the suffix satisfies ψ. It is important to notice that these prefix and
suffix overlap: the last symbol of the prefix is the first symbol of the suffix.

The satisfiability problem of PITL under locality principle is Tower-complete. The fact
that it is non-elementary decidable was proven by B. Moszkowski [112], by reduction from the
non-emptiness problem of star-free regular languages previously studied by A. R. Meyer and
L. J. Stockmeyer [111]. Tower-completeness is then established from [128].

Proposition 4.20 (From [112, 128]). The satisfiabiilty problem of PITL is Tower-complete.

As we have already shown that finite words can be encoded in ALT (Section 4.2), a promising
route to prove that the satisfiability problem of ALT is Tower-hard is by reduction from the
satisfiability problem of PITL. However, because of the limited expressive power that ALT has
on miss nodes (see Lemma 4.19) we already know that the composition operator cannot be
easily translated. Let us consider a pointed forest (F , n, t) encoding a non-empty word w =
a1 . . . ak. Moreover, let us assume that the set of main nodes of this encoding is M = (n1, . . . , nk).
Chopping w into two pieces means splitting in some way the main path n1, . . . , nk of (F , t, n) to
then check that the word encoded by n1, . . . , ni satisfies a certain formula ϕ, whereas the one
encoded by ni, . . . , nk satisfies a formula ψ. Neglecting the fact that the two structures share
the node ni, the main problem in doing this is that after the split the nodes n1, . . . , ni stop
being descendants of the target node, and so they become miss nodes. As a consequence of
Lemma 4.19, we know that ALT cannot check in any way what is the word encoded by these
nodes. Trivial translations from PITL to ALT seem therefore impossible.

4.3.2 PITL on marked words.

To solve the issue of capturing the composition operator of PITL in ALT, we consider an al-
ternative interpretation of PITL where, instead of chopping a word, the operator marks the
symbol where the cut should have taken place. As we will see, the alternative interpretation
is equivalent to the one under locality principle given above, so that the Tower-completeness
result of Proposition 4.20 still hold. We start by introducing the notions of marking of a symbol,
an alphabet and a word, as well as a notion of decomposition for marked words. For simplicity,
throughout the section we fix a (non-empty) finite alphabet Σ.

Definition 4.21 (Markings). Let Σ be an alphabet disjoint from Σ, such that card(Σ) = card(Σ).
A marking for Σ is a bijection (.) : Σ→ Σ, relating a symbol a ∈ Σ to its marked variant a ∈ Σ.

We fix Σ• to be the alphabet Σ ∪ Σ. A word of Σ• is marked if it has some symbol from Σ.

Definition 4.22 (Marked word decomposition). Given a marked word w ∈ Σ+
• , we write ∆(w)

for the decomposition (w′, a,w′′) where w′ ∈ Σ∗ is not marked, a ∈ Σ is marked, and w = w′ aw′′.

4.3. The Complexity of ALT 99

w |= 1 iff ∆(w) = (w′, a,w′′) and w′ = ε (i.e. w is headed by a marked symbol),

w |= a iff w is headed by the symbol a or the symbol a,

w |= ϕ ψ iff ∆(w) = (w′, a,w′′) and there is a symbol b ∈ Σ such that
(a) w′ = ε, b = a and aw′′ |=• ϕ ∧ ψ

or (b) w′ = bw2 and bw2 aw′′ |=• ϕ and bw2 aw′′ |=• ψ, for some w2 ∈ Σ∗

or (c) w′ 6= ε and b = a and w′ aw′′ |=• ϕ and aw′′ |=• ψ
or (d) w′ = w1bw2 and w1 bw2 aw′′ |=• ϕ and bw2 aw′′ |=• ψ,

for some w1 ∈ Σ+ and w2 ∈ Σ∗.

Figure 4.6: Satisfaction relation for PITL on marked words.

aab a b |=•
(
> (b 1)

)
(b >)

aa b a b |=• > (b 1) b a b |=• b >

aa b a b |=• > b a b |=• b 1 b a b |=• b b a b |=• >

b ab |=• b ∧ 1

case (a)

case (d)

case (c) case (b)

Figure 4.7: Example of the satisfaction of a formula on marked words.

Notice that the decomposition ∆(w) = (w′, a,w′′) of a marked world w is uniquely defined, as
the word w′ a is the (only) prefix of w ending with its first marked symbol. As we will see, the
notion of satisfiability we are about to define only depends on these prefixes.

We interpret PITL on marked words. Given a marked word w ∈ Σ+
• , the new satisfaction

relation |=• for the formulae of PITL is given in Figure 4.6, again omitting standard cases for >
and Boolean connectives. The semantics of the predicates 1 and a is quite simple, and reflects the
fact that the satisfaction of a formula depends on the only prefix of a marked word w that ends
with its first marked symbol. For the predicate 1 to be satisfied, the word w must begin with
a marked symbol, so in the decomposition ∆(w) = (w′, a,w′′) the word w′ is the empty word ε.
For the predicate a, we simply check if w is headed by the symbol a or its marked variant a.
The definition of ϕ ψ is more involved. Let us consider the prefix a1 . . . ak−1 ak of w that ends
with the first marked symbol. In order for w |=• ϕ ψ to hold, we must find a position j ∈ [1, k]
inside this prefix so that ϕ is satisfied by the word obtained from w by marking the j-th symbol
(if it is not already marked), whereas ψ is satisfied by the suffix of w starting in j. In the
formal definition given in Figure 4.6, this idea is split into four cases cases (a)–(d), depending
on truthiness of j = 1 and j = k. For example, (a) correspond to the case where j = k = 1.
This split is done as it better reflects the encoding of PITL in ALT.

Example 4.23. Consider the alphabets Σ = {a, b} and Σ = {a, b}. The schema in Figure 4.7
certifies that the marked word aab a b satisfies the formula

(
> (b 1)

)
(b >). At each step we

100 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

highlight which of the four cases in the definition of ϕ ψ is used. For instance, let us pick
the first step of the schema above, in which the case (d) in the definition of ϕ ψ is used.
According to this case aab a b |=•

(
> (b 1)

)
(b >) holds as the word obtained by marking

the third symbol, i.e. aa b a b, satisfies > (b 1), whereas the suffix of the word starting on
this symbol, i.e. b a b, satisfies b >. As we will show in a moment, marking symbols and
considering suffixes of words are operations that can be simulated in ALT. Let us consider
the decomposition ∆(aab a b) = (aab, a, b). One can check that the word aaba, obtained by
concatenating the prefix aab of the decomposition with the non-marked symbol that corresponds
to a in the decomposition, satisfies the formula

(
> (b 1)

)
(b >) in the standard semantics

of PITL. Lemma 4.24 (below) shows that this is always the case.

The semantics on marked words is related to the standard semantics of PITL as follows.

Lemma 4.24. Let w′ ∈ Σ∗, a ∈ Σ and w′′ ∈ Σ∗•. Let ϕ be a formula in PITL. We have,

w′a |= ϕ if and only if w′ aw′′ |=• ϕ.

Proof. The proof is by structural induction on ϕ (with the natural induction hypothesis stating
that the lemma holds for strict subformulae of ϕ). Let us write w for w′a, and w for the marked
word w′ aw′′. The base case with the atomic formulæ 1 and b ∈ Σ is by easy verification.
base case: ϕ = 1. The following equivalences show the result:

w |= 1 if and only if w′ = ε (by definition of |= and w = w′a)
if and only if w = aw′′ (from w = w′ aw′′)
if and only if w |=• 1. (by definition of |=•)

base case: ϕ = b, where b ∈ Σ. The following double implication shows the result:

w |= b if and only if w′a is headed by b (by definition of |= and w = w′a)
if and only if w is headed by b or b (from w = w′ aw′′)
if and only if w |=• b. (by definition of |=•)

The cases for Boolean connectives are obvious. We prove the result for the composition operator.
induction step: ϕ = ϕ1 ϕ2. Again, the result holds following a series of double implications:

w |= ϕ1 ϕ2

⇔ there are b ∈ Σ and w1,w2 ∈ Σ∗ s.t. w = w1bw2, w1b |= ϕ1 and bw2 |= ϕ2

(by definition of |=)
⇔ there are b ∈ Σ and w1,w2 ∈ Σ∗ s.t. w = w1bw2 and

(a) w1 = ε, w2 = ε, b |= ϕ1 and b |= ϕ2, (in this case, b = a)
or (b) w1 = ε, w2 6= ε, b |= ϕ1 and bw2 |= ϕ2, (in this case, ∃w′2 w2 = w′2a)
or (c) w1 6= ε, w2 = ε, w1b |= ϕ1 and b |= ϕ2, (in this case, b = a, w1 = w′)
or (d) w1 6= ε, w2 6= ε, w1b |= ϕ1 and bw2 |= ϕ2. (in this case, ∃w′2 w2 = w′2a)

(by case distinction, on the truthiness of w1 = ε and w2 = ε)
⇔ there are b ∈ Σ and w1,w2 ∈ Σ∗ s.t. w = w1bw2 and

4.3. The Complexity of ALT 101

(a) w1 = ε, w2 = ε, b = a, bw′′ |=• ϕ1 and bw′′ |=• ϕ2,
or (b) w1 = ε, ∃w′2 ∈ Σ∗ s.t. w2 = w′2a, bw2 aw′′ |=• ϕ1 and bw2 aw′′ |=• ϕ2,
or (c) w1 6= ε, w2 = ε, b = a, w′ bw′′ |=• ϕ1 and bw′′ |=• ϕ2,
or (d) w1 6= ε, ∃w′2 ∈ Σ∗ s.t.w2 = w′2a, w1 bw′2 aw′′ |=• ϕ1 and bw′2 aw′′ |=• ϕ2.

(by induction hypothesis, on all four cases)
⇔ there is a symbol b ∈ Σ such that

(a) w′ = ε, b = a and aw′′ |=• ϕ ∧ ψ
or (b) w′ = bw2 and bw2 aw′′ |=• ϕ and bw2 aw′′ |=• ψ, for some w2 ∈ Σ∗

or (c) w′ 6= ε and b = a and w′ aw′′ |=• ϕ and aw′′ |=• ψ
or (d) w′ = w1bw2 and w1 bw2 aw′′ |=• ϕ and bw2 aw′′ |=• ψ,

for some w1 ∈ Σ+ and w2 ∈ Σ∗,
(by easy manipulation of the formula)

⇔ ϕ |=• ϕ1 ϕ2. (by definition of |=•)

4.3.3 Reducing PITL to ALT.

The alternative interpretation of PITL allows us to reduce the satisfiability problem of PITL
to the satisfiability problem of ALT in a rather neat way. Once again, let us consider the
alphabets Σ,Σ and Σ• = Σ ∪ Σ of the previous section, and let us assume Σ = [1, n] for some
natural number n ≥ 1. We consider the bijection f : Σ• → [1, 2n] defined as f(a) def= 2a for every
symbol a ∈ Σ, and defined as f(a) def= 2a−1 for every marked symbol a ∈ Σ. We write f(a1 . . . ak)
to denote the word f(a1) . . . f(ak). Based on these definitions, f maps Σ• into the alphabet [1, 2n],
whose words can be encoded into trees (as in Section 4.2.1). In these trees, each symbol a ∈ Σ
corresponds to a main node having 2a + 1 children that are character nodes (recall that we
use a + 1 children to encode the symbol a). Similarly, each marked symbol a ∈ Σ corresponds
to a main node having 2a children that are character nodes. Let us consider a node n encoding
a symbol in Σ. Because of the above distribution of non-marked and marked symbols, removing
exactly one child of n that is a character node is equivalent to marking the symbol that n encodes.
Let us now see how to capture this encoding in ALT.

Let us fix a pointed forest (F , t, n), which we suppose encodes a marked word w ∈ Σ•. We
can check if the current node n encodes a marked symbol from Σ with the following formula:

markΣ
def=
∨

a∈Σ
(
(#child = 2a ∧ 1st[1,2n]) ∨ (#child = 2a + 1 ∧ ¬1st[1,2n])

)
As already said, marked symbols correspond to nodes with 2a children that are character nodes,
for some a ∈ Σ. In order to capture this notion, the formula Σ distinguishes the case where the
current node n is the first node in the main path (whose only children are character nodes) from
the case where n is not the first node in the main path (hence, it has one child in the main path).

As already stated, w |=• ϕ examines the prefix of w that ends with the first marked symbol.
To correctly reduce PITL to ALT we need to be able to find the part of (F , t, n) that corresponds
to this prefix. We can do so by noticing that this part is the only subtree whose root encodes a
marked symbol and it is a F-descendant of t as well as of every other node encoding marked sym-
bols. This characterisation requires us to track the number of nodes encoding marked symbols
in (F , t, n). To do so, first define a formula marksΣ ≥ β stating that the forest has at least β ∈ N
nodes encoding marked symbols. Luckily, we can rely on the formula size(ϕ)≥β defined in Sec-
tion 4.2.1, and define marksΣ ≥ β simply as size(markΣ)≥β. Unfortunately, we cannot rely

102 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

τβ(>) def= >,

τβ(1) def= 〈U〉(1st[1,2n]∧markΣ),

τβ(a) def= 〈U〉 1st[2a−1,2a],

τβ(¬ψ) def= ¬τβ(ψ),

τβ(ψ1 ∧ ψ2) def= τβ(ψ1) ∧ τβ(ψ2),

τβ(ψ1 ψ2) def= 〈U〉
(
symb ∧

(
(1st[1,2n] ∧ markΣ ∧ τβ(ψ1) ∧ τβ(ψ2))

∨ (1st[1,2n] ∧ ¬markΣ ∧ �(markΣ ∧ τβ+1(ψ1)) ∧ τβ(ψ2))
∨ (¬1st[1,2n] ∧ markΣ ∧#markAncΣ ≥ β − 1 ∧ τβ(ψ1) ∧ �(1st[1,2n] ∧ τβ(ψ2)))
∨ (¬1st[1,2n] ∧ ¬markΣ ∧#markAncΣ ≥ β ∧ �(markΣ∧τβ+1(ψ1))

∧ �(1st[1,2n]∧τβ(ψ2)))
))
.

Figure 4.8: Translation from PITL to ALT.

exactly on Lemma 4.7 to prove that this formula is correct, as the formula markΣ does not enjoy
the property (2) required by this lemma. Similarly, we introduce the formula #markAncΣ ≥ β
which states that the current evaluation node encodes a symbol and has at least β ancestors
that encode marked symbols. It is defined as follows:

#markAncΣ ≥ β
def= symb ∧ �(¬inDom ∧ marksΣ ≥ β).

The following lemma assures that the three formulae markΣ, marksΣ≥β and #markAncΣ≥β
are correct, and highlights their semantics. The proof is given in Appendix B.

Lemma 4.25. Let w ∈ Σ+
• and let (F , t, n) be a pointed forest encoding the word f(w) ∈ [1, 2n]+.

(I) (F , t, n) |= markΣ iff n encodes a marked symbol of Σ•.

(II) (F , t, n) |= marksΣ ≥ β iff F contains at least β nodes encoding marked symbols of Σ•.

(III) (F , t, n) |= #markAncΣ ≥ β iff n has at least β ancestors encoding marked symbols of Σ•.

At last, we are ready to translate formulae of PITL into formulae of ALT. Given a formula
ϕ in PITL having symbols from Σ = [1, n], we introduce its translation τβ(ϕ) in ALT, where
the index β is a positive natural number that we use to track the number of nodes encoding
marked symbols. The translation is defined in Figure 4.8. It is homomorphic for > and Boolean
connectives. For the two predicates 1 and a, the translation faithfully represents the relation |=•
. In the case of 1, it requires the first node in the main path to correspond to a marked node.
Instead, for the predicate a, it checks whether this node encodes the symbols 2a−1 or 2a which,
by definition of f, correspond to a ∈ Σ and a ∈ Σ, respectively. Lastly, the formula τβ(ϕ ψ)
follows very closely the definition of the relation |=•: after the prefix “〈U〉(symb ∧ . . . ”, the
formula split into four disjuncts, one for each of the cases in the definition of ϕ ψ. For instance,
let us consider a word w such that ∆(w) = (w′, a,w′′). The second disjunct of τβ(ϕ ψ) encodes
the case (b) in the definition of w |=• ϕ ψ, as schematised below:

PITL there is b∈Σ... ∃w2 ∈Σ∗ s.t. w′ = bw2 and bw2 aw′′ |= ϕ and bw2 aw′′|=ψ
ALT 〈U〉(symb... 1st[1,2n] ∧ ¬markΣ ∧ �(markΣ ∧ τβ+1(ϕ)) ∧ τβ(ψ)

4.4. Revisiting Tower-hard Logics with ALT 103

The lemma below ensures that the translation matches the semantics of the formula in PITL
under the interpretation on marked words. Its proof, by structural induction on the formula ϕ
of PITL, is quite long and thus given in Appendix B.

Lemma 4.26. Let w ∈ Σ+
• with a marked word with β ≥ 1 marked symbols. Let (F , t, n) be

an encoding of f(w). For every ϕ in PITL, w |=• ϕ if and only if (F , t, n) |= τβ(ϕ).

The reduction from the satisfiability problem of PITL on standard semantics follows as we
are able to characterise the set of pointed forests encoding words in Σ∗Σ (first three conjuncts in
the formula in the lemma below). To conclude, we simply apply Lemma 4.24 and Lemma 4.26.

Lemma 4.27. Every ϕ in PITL written with symbols from Σ = [1, n] is satisfiable under the
standard interpretation of PITL if and only if the following formula in ALT is satisfiable

word[1,2n] ∧ 〈U〉Hit ∧ [U](markΣ ⇔ Hit ∧ ¬�(Miss))︸ ︷︷ ︸
The forest encodes a non-empty word. The only child of the target node is the only node encoding a marked symbol.

∧τ1(ϕ).

Proof. (⇒): Suppose that ϕ is satisfiable, and let w = a1 . . . ak ∈ Σ+ be a word satisfying it.
By Lemma 4.24, the marked word w = a1 . . . ak ∈ Σ∗Σ satisfies ϕ with respect to the satisfaction
relation |=•. Notice that w contains only one marked symbol. Let (F , t, n) be a pointed forest
encoding f(w). By Lemma 4.26, (F , t, n) |= τ1(ϕ). Moreover, as w is not empty we derive that
(F , t, n) satisfies 〈U〉 Hit, and by Lemma 4.10 it satisfies word[1,2n]. As shown in Lemma 4.8, the
formula Hit∧¬�(Miss) is only satisfied when the current evaluation node corresponds to a child
of t. Instead, the formula markΣ is only satisfied if the current node encodes a marked symbol
(Lemma 4.25(I)). We then conclude that (F , t, n) also satisfies [U](markΣ ⇔ (Hit∧¬�(Miss))).
Indeed, ak is the only marked symbol of w and, by definition of encoding (Definition 4.4), it is
encoded by the only F-child of t.
(⇐): Suppose word[1,2n] ∧ 〈U〉 Hit ∧ [U]

(
markΣ ⇔ (Hit ∧ ¬�(Miss))

)
∧ τ1(ϕ) satisfiable, and

let (F , t, n) be a pointed forest satisfying it. From the satisfaction of word[1,2n] and 〈U〉 Hit,
by Lemma 4.10, (F , t, n) is an encoding of a non-empty word in [1, 2n]+. Let b1 . . . bk be
this word and let nk be the node corresponding to bk. By definition of encoding, nk is the only
child of t. Thus, from (F , t, n) |= [U]

(
markΣ ⇔ (Hit∧¬�(Miss))

)
, together with Lemma 4.25(I)

and Lemma 4.8, we conclude that nk is the only node of dom(F) encoding a marked symbol. This
means that b1 . . . bk is of the form a1 . . . ak ∈ Σ∗Σ. From (F , t, n) |= τ1(ϕ) and by Lemma 4.26
a1 . . . ak |=• ϕ. Lastly, a1 . . . ak |= ϕ by Lemma 4.24.

Because of the four disjuncts appearing in the formula τβ(ϕ ψ), the translation is exponential
in the number of symbols used to write the PITL formula. Since the satisfiability problem of
PITL is Tower-hard (Proposition 4.20), an elementary translation is all we need in order to
conclude that the satisfiability problem of ALT is also Tower-hard, directly by Lemma 4.27.
Decidability in Tower stems from Proposition 4.3.

Theorem 4.28. The satisfiability problem of ALT is Tower-complete.

4.4 Revisiting Tower-hard Logics with ALT

Strong of Theorem 4.28, we now display the usefulness of ALT as a tool for proving the Tower-
hardness of logics interpreted on tree-like structures. We start by revisiting the connections

104 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

between ALT and separation logic, and show that even when the separating implication is
heavily restricted, the logic SL(∗,−∗, ls) studied in Chapter 3 still admits a non-elementary
satisfiability problem. Afterwards, we provide semantically faithful reductions from ALT to three
logics whose satisfiability problems were independently found to be Tower-complete: quantified
computation tree logic on trees [99], modal logic of heaps [52] and modal separation logic [54].
Thanks to the simplicity of ALT, our reductions only use strict fragments of these formalisms,
allowing us to refine their non-elementary boundaries. In order to keep the presentation light, the
proofs (all quite simple) of the results of this section are almost exclusively given in Appendix B.

4.4.1 From ALT to SL(∗,−∗, ls) with bounded magic wand.

In [22] the authors show that SL(∃, ∗,−∗) becomes Tower-complete when the separating impli-
cation is restricted so that the formula on the left side only admits small-models. In particular,
given n ∈ N, they introduce the bounded magic wand ϕ−[n]ψ defined as (ϕ ∧ ¬size≥n+1)−∗ ψ,
and show that SL(∃, ∗,−[n]) admits a Tower-complete satisfiability problem. Since we have
shown that ALT is a fragment of the separation logic SL([∃]1, ∗, x ↪→ , ↪→+), and from Chap-
ter 3 we know that the separating implication can be used to mimic first-order quantifications,
it is quite natural to ask ourselves whether ALT can be used to refine the Tower-hardness
of SL(∃, ∗,−[n]). In this section we answer this question by showing the following result.

Theorem 4.29. Satisfiability of the two-variable fragment of SL(∗,−[1], ls) is Tower-c.

The grammar of the formulae ϕ in SL(∗,−[1], ls) is given below:

ϕ := > | emp | x = y | x ↪→ y | ls(x, y) | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | ϕ−[1] ϕ.

Notice that the operator ϕ−[n] ψ is restricted to n = 1, which leads to the following semantics:

(s, h) |= ϕ−[1] ψ iff for every heap h′, if h′⊥h, card(h′) ≤ 1 and (s, h) |= ϕ, then (s, h+ h′) |= ψ.

Besides, the logic can express x ↪→∗ y and size =β as defined in Section 2.1.1. The alloc formula
x ↪→ is equivalent to x ↪→ x−[1] ⊥. We define the bounded septraction −〈1〉 as the right dual of
the bounded magic wand, i.e. ϕ−〈1〉 ψ def= ¬(ϕ−[1] ¬ψ).

Let us discuss how to encode a pointed forest (F , t, n) as a memory state (s, h). Without loss
of generality, we assume N = LOC. As we have done in Chapter 3, we use the location assigned
to a fixed variable x in order to mimic the first-order quantification of 〈U〉ϕ. So, in the encoding,
the location h(s(x)) corresponds to the current node n and, in order to mimic the quantification
correctly, it must be different from s(x). In order to encode the target node we rely on the
location assigned to a second program variable y, and require that both s(y) = t 6= s(x) and
s(y) 6∈ dom(h) hold. Notice that this last condition is without loss of generality, as we can
assume that t 6∈ dom(F) by Lemma 4.18(I). The encoding is formalised as follows.

Definition 4.30 (Forests as heaps). (s, h) is an (x, y)-encoding of (F , t, n), where x, y ∈ VAR, iff

1. h = F + {s(x) 7→ n} (seeing F as a heap), 2. n 6= s(x), 3. s(y) = t 6∈ dom(h).

With respect to memory states that are (x, y)-encodings of some pointed forest, given a
formula ϕ in ALT we translate it into a formula τx,y(ϕ) in SL(∗,−[1], ls) following the definition
in Figure 4.9. The figure omits the cases for > and Boolean connectives, which are defined
homomorphically (e.g. τx,y(¬ϕ) def= ¬τx,y(ϕ), as in the translation τβ from PITL to ALT). The

4.4. Revisiting Tower-hard Logics with ALT 105

τx,y(Hit) def= x ↪→∗ y ∧ ¬x ↪→ y,

τx,y(Miss) def= ¬τx,y(Hit) ∧ ¬x ↪→ y ∧
(
size = 1−[1] ¬(> ∗ (ls(x, y) ∧ size = 2))

)
,

τx,y(�ϕ) def= �SL(x ↪→ ∧ τx,y(ϕ)),

τx,y(�* ϕ) def= �*SL(x ↪→ ∧ τx,y(ϕ)),

τx,y(〈U〉ϕ) def= (size = 1 ∧ x ↪→) ∗
(
size = 1−〈1〉 (x ↪→ ∧¬x ↪→ x ∧ τx,y(ϕ))

)
.

Figure 4.9: Translation from ALT to SL(∗,−∗, ls) with bounded magic wand.

translation of � and �* uses the analogous formulae �SLϕ
def= size = 1 ∗ ϕ and �*SL ϕ

def= > ∗ ϕ,
already introduced in Section 4.4.1, while taking care that the location assigned to x is not
discharged from the domain of the heap. The translation of 〈U〉ϕ is very close to the translation
of the first-order quantification performed in Chapter 3: the pair s(x) 7→h(s(x)) in the heap h

is replaced with some s(x) 7→ `′, leading to the satisfaction of τx,y(ϕ). While the translation
of Hit is also quite straightforward, the translation of Miss requires some work. In particular,
as in Chapter 3, this predicate must be checked on h(s(x)) and should hold only if this location
is in the domain of the heap but does not reach s(y) in at least one step. The formula τx,y(Miss)
achieves this by stating that it is not possible to add one arrow to the heap in order to construct
a path of length two going from s(x) to s(y). Indeed, under the hypothesis that h(s(x)) is not in
the domain of the heap, such a path can always be constructed by adding {h(s(x)) 7→ s(y)} to
the heap. So, h(s(x)) must be in dom(h) which, together with ¬τx,y(Hit), effectively captures
the semantics of Miss. The correctness of the translation is formalised below.

Lemma 4.31. Let (s, h) be an (x, y)-encoding of a pointed forest (F , t, n). Let ϕ be a formula
in ALT. We have, (F , t, n) |= ϕ if and only if (s, h) |= τx,y(ϕ).

The proof is by structural induction on ϕ. The formula x ↪→ ∧¬x ↪→ x∧¬y ↪→ characterises
the set of memory states encoding pointed forests, which allows us to show the lemma below,
concluding the reduction. For the proof of this last lemma we also rely on Lemma 4.18(I) in order
to only consider pointed forests that admit an encoding. Lemma 4.32 implies Theorem 4.29.

Lemma 4.32. ϕ in ALT is satisfiable iff so is x ↪→ ∧¬x ↪→ x∧¬y ↪→ ∧τx,y(ϕ) in SL(∗,−[1], ls).

Interestingly, Theorem 4.29 already holds when the bounded magic wand is limited to for-
mulae of the form size = 1−[1] ϕ. Indeed, the alloc formula x ↪→ can be substituted with the
equivalent formula x ↪→ x ∨ (size = 1−[1] ¬x ↪→ x), so that the translation only uses the bounded
magic wand in this way. This result has a role in the developments of Chapter 5.

Corollary 4.33. SL(∗,−[1], ls) where −[1] is restricted to size = 1−[1] ϕ is Tower-complete.

4.4.2 From ALT to Quantified Computation Tree Logic.

We now consider Computation Tree Logic (CTL), a well-known logic for branching time model
checking [43, 42]. Among its extensions, in [99] the addition of propositional quantifiers is con-
sidered. The resulting logic, called Quantified Computation Tree Logic (QCTL) is undecidable
on Kripke structures, and Tower-complete on trees (QCTLt). This non-elementary boundary
has been recently refined in [8]: even when considering just one operator among exists-next EX

106 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

or exists-finally EF (the definitions are below), QCTLt still admits a Tower-complete satisfia-
bility problem. Here, we reprove the result for EF by first tackling the Tower-hardness of the
logic with the exists-until E(ϕUψ), to then show that this operator can be defined using EF .
Differently from [8] and thanks to the properties of ALT, our reduction does not imbricate un-
til operators, showing that this extension of CTL remains Tower-hard even when E(ϕUψ) is
restricted so that ϕ and ψ are Boolean combinations of propositional symbols.

Let us start by recalling the syntax of QCTL, as defined in [99]. We use AP to denote the
countable set of propositional symbols {p, q, . . . }. The formulae ϕ of QCTL are built from the
following grammar (where p ∈ AP):

π := > (true)
| p (propositional symbol)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ¬ϕ (Boolean connectives)
| EXϕ (exists-next modality)
| E(ϕUϕ) (exists-until modality)
| A(ϕUϕ) (all-until modality)
| ∃pϕ (propositional quantification)

QCTL is interpreted on standard Kripke structures [98].

Definition 4.34 (Kripke structure). A Kripke structure is a triple (W, R,V) where W is a
countable set of worlds, R ⊆ W ×W is a left-total1 accessibility relation and V : AP→ 2W is a
labelling function which, given a propositional symbol p, returns the set of worlds satisfying p.

The satisfaction of the exists-until and all-until modalities depends on the paths in the structure.

Definition 4.35 (Path). Let R ⊆ W ×W be a binary relation on worlds (possibly left-total).
A path ρ starting in w is a (possibly finite) sequence of worlds (w0,w1, . . .) such that w0 = w
and (wi,wi+1) ∈ R for every two successive elements wi,wi+1 of the sequence.
(Maximal Path) The path ρ is said to be maximal whenever it is not a strict prefix of any other
path. We denote with ΠR(w) the set of maximal paths starting in w.

Notice that if R is left-total then ΠR(w) is the set of all infinite paths starting in w. Given a
world w ∈ W, we write R(w) for the set {w′ ∈ W | (w,w′) ∈ R}, i.e. the set of worlds that are
accessible from w. Therefore R∗(w) (where R∗ is the Kleene closure of R) denotes the set of
worlds reachable from w, i.e. the worlds belonging to a path in ΠR(w).

Let K = (W, R,V) be a Kripke structure and consider w ∈ W. The pair (K,w) denotes a
pointed Kripke structure, where the world w is the current world. Given (K,w), The satisfaction
relation |= for formulae in QCTL is defined in Figure 4.10 (as usual, omitting standard cases
for > and Boolean connectives). The atomic formula p simply asks whether the propositional
symbol p is satisfied by w. Using the exists-next modality EXϕ, we can check whether ϕ holds in
a world that is accessible from w. The two temporal modalities are more sophisticated. The for-
mula E(ϕUψ) checks whether there is a maximal path (w0,w1, . . .) starting in w for which there
is a finite prefix (w0, . . . ,wj−1) of worlds satisfying ϕ, followed by the world wj ∈ R(wj−1) that
satisfies ψ. This path can be schematised as follows (arrows represent R, every “ ” is a world).

w
ϕ ϕ ϕ ϕ ϕ ψ

1left-total means that for each world w ∈ W there is w′ ∈ W such that (w,w′) ∈ R.

4.4. Revisiting Tower-hard Logics with ALT 107

(K,w) |= p iff w ∈ V(p),

(K,w) |= EXϕ iff ∃w′ ∈ R(w) such that (K,w′) |= ϕ,

(K,w) |= E(ϕUψ) iff there are (w0,w1, . . .) ∈ ΠR(w) and j ∈ N such that
(K,wj) |= ψ and for every i < j, (K,wi) |= ϕ,

(K,w) |= A(ϕUψ) iff for all (w0,w1, . . .) ∈ ΠR(w), there is j ∈ N such that
(K,wj) |= ψ and for every i < j, (K,wi) |= ϕ,

(K,w) |= ∃p ϕ iff there is W ′ ⊆ W such that (W, R,V[p←W ′]) |= ϕ.

Figure 4.10: Satisfaction relation for QCTL.

The formula A(ϕUψ) asks the above property to hold for every maximal path, instead of at least
one: given a maximal path (w0,w1, . . .), there must be a finite prefix (w0, . . . ,wj−1) of worlds
satisfying ϕ, followed by the world wj ∈ R(wj−1) that satisfies ψ. Lastly, the propositional
existential quantification ∃pϕ is quite similar to the second-order quantification of second-order
logic. Essentially, this formula is satisfied if it is possible to update the satisfaction of the
propositional symbol p to a new subset W ′ of w, so that then ϕ holds. In the formal definition
given in Figure 4.10, this update is written as V[p←W ′]. Similarly to the store update s[u←`′]
of the existential quantification of SL(∃, ∗,−∗), this notation stands for the function obtained
from V by changing the evaluation of p from V(p) to W ′.

The universal quantification ∀p and the Boolean connectives ⇒ and ∨ are defined as usual.
So are the classical temporal operators of CTL, from [43]:

EF ϕ def= E(>Uϕ) (exists-finally)
AG ϕ def= ¬EF¬ϕ (all-generally)
AF ϕ def= A(>Uϕ) (all-finally)
EG ϕ def= ¬AF¬ϕ (exists-generally)

E(ϕMψ) def= E(ϕUϕ ∧ ψ) (exists-strong-release)

From [99], the satisfiability problem of QCTL is known to be undecidable on arbitrary Kripke
structures, whereas it becomes Tower-complete when the interpretation is restricted to the class
of Kripke trees. We denote this restriction with QCTLt.

Definition 4.36 (Kripke tree). A Kripke structure (W,R,V) is a (finitely-branching) Kripke tree if
1. R−1 is functional and acyclic,
2. for every world w ∈ W, R(w) is finite,
3. it has a root, i.e. R∗(r) =W for some r ∈ W.

Given w ∈ W, the worlds in R∗(w)\{w} are said to be descendants of w. As Kripke structures are
left-total, Kripke trees can be seen as finitely-branching infinite trees. This correspondence leads
to the satisfiability problem of QCTL being in Tower by reduction to monadic second-order
logic on trees [99].

From ALT to QCTLt. In the following, we only consider Kripke trees instead of arbitrary
Kripke structures (and write pointed Kripke tree instead of pointed Kripke structure), and we

108 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

aim at reducing the satisfiability problem of ALT to the satisfiability problem of QCTLt. The
semantics of the formula ∃p ϕ should already give a good clue on how to perform such a reduction.
Informally speaking, we can represent the nodes of a finite forest as the set of worlds satisfying
a propositional symbol D . Then, for instance, the modality �* can be encoded by using an
existential ∃E that changes the evaluation of a propositional symbol E so that it only holds on
a subset of the worlds satisfying D (as in the semantics of the repeated sabotage modality). If
we are able to check whether only one world satisfies D but not E , we can then also capture the
semantics of the sabotage modality �. Similarly, the propositional quantification can be used
to encode the universal modality 〈U〉, whereas for the reachability predicates Hit and Miss we
can rely on the exists-until modality.

Let us discuss this encoding a little bit further. Let (F , t, n) be a pointed forest that we want
to encode as a pointed Kripke structure (K,w), where K = (W, R,V) is a Kripke tree. We use
w to play the role of the target node t. To encode the forest F and the current evaluation node
n we use the worlds appearing in R∗(w) and three propositional symbols: D , end and n . The
intended use of D is to state which elements of R∗(w) encode nodes in dom(F). We need to be
careful here, as R∗(w) is an infinite set whereas dom(F) is finite. We use the propositional symbol
end to solve this inconsistency: we constraint K to satisfy the formula AF (end) stating that
every maximal path (w0,w1, . . .) ∈ ΠR(w) has a finite prefix (w0, . . . ,wj−1) (j ∈ N) of worlds
not satisfying end , whereas wj ∈ V(end). Then, a world in W encodes an element in dom(F)
whenever it satisfies D and it belongs to one of these prefixes. We use the propositional symbol n
to encode the current evaluation node. During the translation, we require n to be satisfied by
exactly one descendant of w, so that the modality 〈U〉 roughly becomes a quantification over n .
For technical reasons, we treat in a similar way the world w, which encodes the target node, and
require it to be the only world (among the ones in R∗(w)) satisfying the auxiliary propositional
symbol t . Lastly, we use an additional propositional symbol E in order to encode subforests
and deal with the encoding of � and �* (as already stated above). Notice that we can use the
following formula from [99] to check if a formula ϕ holds in exactly one descendant of w:

uniq(ϕ) def= EF (ϕ) ∧ ∀p (EF (ϕ ∧ p)⇒ AG (ϕ⇒ p)),

where p ∈ AP is a propositional symbol that does not appear in ϕ.

Proposition 4.37 (From [99]). Let (K,w) be a pointed Kripke structure, where K = (W, R,V)
is a Kripke tree. (K,w) |= uniq(ϕ) iff there is exactly one w′ ∈ R∗(w) such that (K,w′) |= ϕ.

For the rest of the section, we fix a tuple S def= (end , n , t) of three different propositional
symbols, and two (distinct) additional symbols D and E not in S. We also restrict ourselves to
pointed forests (F , t, n) such that t 6∈ dom(F). From Lemma 4.18(I), this restriction is without
loss of generality. We formally define the encoding of pointed forests into pointed Kripke trees.

Definition 4.38 (QCTLt - Pointed forests encoding). A pointed Kripke tree (K = (W, R,V),w)
is an (S, D)-encoding of (F , t, n) if there is an injection f : N → R∗(w) such that

1. f(t) def= w is the only world in ran(f) ∩ V(t), and f(n) is the only world in ran(f) ∩ V(n),

2. for every n′ ∈ dom(F), it holds that (f(F(n′)), f(n′)) ∈ R,

3. for every infinite path (w0,w1 . . .) ∈ ΠR(w) there is i ∈ N such that

a. wi ∈ V(end) and for every j ∈ [0, i− 1] we have wj 6∈ V(end),
b. for every j ∈ N, (wj ∈ V(D) and j < i) if and only if there is n′ ∈ dom(F) f(n′) = wj .

4.4. Revisiting Tower-hard Logics with ALT 109

t

n

w

n

t

end

f

Figure 4.11: A pointed forest (left) and one of its encoding as a Kripke tree (right).

τu(Hit) def= E(((u ∨ t) ∧ ¬end) M (u ∧ n)),

τu(Miss) def= E(¬end M (u ∧ n)) ∧ ¬τu(Hit),

τu(〈U〉ϕ) def= ∃n (uniq(n) ∧ τu(ϕ)),

τu(�* ϕ) def= ∃ u (AG (u⇒ u) ∧ τu(ϕ)),

τu(�ϕ) def= ∃ u
(
AG (u⇒ u) ∧ uniq(u ∧ ¬ u) ∧ E(¬end M (u ∧ ¬ u)) ∧ τu(ϕ)

)
.

Figure 4.12: Translation from ALT to QCTL.

We simply write encoding when (S, D) is clear from the context.

For instance, Figure 4.11 shows a possible encoding of a pointed forest into a pointed
Kripke tree. Informally, the property (1) states that w encodes t and is the only world in R∗(w)
satisfying t . Similarly, the world f(n) encoding n is the only world in R∗(w) that satisfies n .
The property (2) states that the forest must be correctly encoded in the Kripke structure. In
particular, notice that the parent relation of the finite forest is inverted so that it becomes the
child relation in the Kripke structure (as shown in Figure 4.11). As f is an injection, the en-
coding does not merge together subforests that are disconnected in F . Lastly, the property (3)
of f states that the elements in dom(F) must be encoded by nodes in R∗(w) that precede every
world satisfying end . Moreover, among all the descendants of w preceding end , the worlds
encoding dom(F) are the only ones satisfying D . As t 6∈ dom(F), t does not satisfy D . It is quite
easy to see that every pointed forest (F , t, n) such that t 6∈ dom(F) admits an encoding.

We now formalise the translation of a formula in ALT into a formula in QCTL. During the
translation, we alternate between D and E in order to keep track of the domain of the forest,
following a � or �* operator. To facilitate this alternation, we define D def= E and E def= D . The
translation τu(ϕ) in QCTL of a formula ϕ in ALT is parametrised by u ∈ {D , E } and, implicitly, by
S. It is homomorphic for > and Boolean connectives, and otherwise it is defined in Figure 4.12.
Let (F , t, n) be a pointed forest such that t 6∈ dom(F) and let ((W, R,V),w) be one of its (S, u)-
encodings. Let f be the injection certifying that the encoding hold (as in Definition 4.38). For
instance, τu(Hit) requires that there is a path (w,w1, . . . ,wj) starting in f(t) = w and whose
worlds do not satisfy end and must satisfy u or t . Moreover, the last world wj must satisfy u
and n . From the property (1) of the definition of f, the only world satisfying t is w, which does
not satisfy u. Moreover, n is only satisfied by f(n). Lastly, from the property (3) of f, worlds
satisfying u and preceding the ones that satisfy end must encode nodes in the domain of the

110 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

forest F . Therefore, the path (w,w1, . . . ,wj) corresponds to a path in the pointed forest, going
from the current evaluation node n (which is encoded by the only world satisfying n) to the
target node t. The correctness of the translation follows from the lemma below.

Lemma 4.39. Let (F , t, n) be a pointed forest such that t 6∈ dom(F), and let (K,w) be
a (S,u)-encoding of (F , t, n). Given a formula ϕ in ALT, (F , t, n) |= ϕ if and only if (K,w) |= τu(ϕ).

In order to conclude the reduction we just need to characterise the set of pointed Kripke trees
encoding pointed forests. This can be done with enc def= ¬D ∧ t ∧ uniq(t)∧ uniq(n)∧AF(end).

Lemma 4.40. A formula ϕ in ALT is satisfiable iff so is enc∧τD (ϕ) in QCTLt.

Notice that for the left-to-right direction we need to rely on Lemma 4.18(I) in order to
produce a pointed forest (F , t, n) satisfying ϕ and such that t 6∈ dom(F). Only afterwards we
can define an encoding in terms of pointed Kripke trees.

Tower-hard fragments of QCTLt. We now take a closer look to the translation. Given a
temporal modality T (e.g. EF) and k ∈ N ∪ {ω}, we write QCTLt(T k) to denote the fragment
of QCTLt restricted to formulae where the only temporal modality allowed is T , which can
be nested at most k times (ω stands for an arbitrary number of imbrications). For instance,
QCTLt(EF k) denotes the set of formulae restricted to the operator EF , which can be nested at
most k times. This logic is shown to be k-NExpTime-hard in [8], which directly leads to the
Tower-hardness of QCTLt(EF ω) and QCTLt(EUω). By analysing our translation it is easy to
show that QCTLt(EU0), i.e. QCTL restricted to the only modality E(ϕUψ) where ϕ and ψ are
Boolean combination of propositional symbols, and QCTLt(EF1) are already Tower-hard.

Theorem 4.41. The satisfiability problems of QCTLt(EU0) and QCTLt(EF1) are Tower-c.

Let us first informally discuss this result. Let us fix a pointed Kripke tree ((W, R,V),w).
First of all, an exists-until modality E(ϕUψ) in QCTLt(EU0) can be shown equivalent to the
formula χEU(ϕ,ψ), in QCTLt(EF1), defined below:

χEU(ϕ,ψ) def= ∃p
(
AG (¬ϕ ∧ ¬ψ ⇒ p) ∧ AG (p⇒ AG p) ∧ EF (ψ ∧ ¬p)

)
,

where p is a propositional symbol that does not appear in ϕ or ψ. The idea behind this formula
is quite simple. The formula χEU(ϕ,ψ) states that it is possible to change the evaluation of the
symbol p so that, for every path starting from the current world w, p holds whenever ¬ϕ ∧ ¬ψ
holds (first conjunct of the formula), and if p holds in a world, then it holds on every world
reachable from it (second conjunct of the formula). Lastly, the third conjunct states that it is
possible to find a world w′ ∈ R∗(w) satisfying ψ ∧ ¬p. This means that the path going from w
to w′ cannot witness worlds satisfying ¬ϕ∧¬ψ, which in turn implies that E(ϕUψ) is satisfied.
Thanks to χEU(ϕ,ψ), we just need to prove Theorem 4.41 for QCTLt(EU0).

Clearly, the translation τu is defined so that the resulting formula is already in QCTLt(EU0).
However, we need to deal with the occurrence of AF (end) used inside the formula enc. Let us
first consider the formula AG (ϕ ⇒ AGψ) which is satisfied by models where once ϕ is found
to hold in a certain world w, then ψ is satisfied in every world of R∗(w). Despite not being in
QCTLt(EU0), the formula AG (ϕ⇒ AGψ) is equivalent to the formula χAG AG (ϕ,ψ) below:

χAG AG (ϕ,ψ) def= ∀p∀q
(
uniq(p) ∧ uniq(q) ∧ EF (p ∧ ϕ) ∧ EF (q ∧ ¬ψ)⇒ E(¬pM q)

)
,

4.4. Revisiting Tower-hard Logics with ALT 111

where p and q do not appear in ϕ or ψ. This formula characterises AG (ϕ ⇒ AGψ) by stating
that whenever we pick two worlds w1,w2 ∈ R∗(w), if w1 satisfies ϕ and w2 does not satisfy ψ,
then it is possible to find a path going from the current world w to w2 that does not include w1.

Lastly, we define a formula χEG (ϕ) that only uses EF modalities and is equivalent to EGϕ,
so that then ¬χEG (¬ϕ) is equivalent to AFϕ:

χEG (ϕ) def= ∃p
(
¬p ∧ AG (¬ϕ⇒ p) ∧ AG (p⇒ AG p)∧
∀q
(
uniq(q) ∧ EF (q ∧ ¬p)⇒ EF (q ∧ EF (¬q ∧ ¬p))

)
,

where p does not appear in ϕ. This formula is expressible in QCTLt(EU0), as every subfor-
mula that is not in this fragment is an instance of AG (ϕ ⇒ AGψ). From the correctness of
this formula, proved below, we conclude that AF (end) is expressible in QCTLt(EU0), leading
to Theorem 4.41. Differently from the formulae χEU(ϕ,ψ) and χAG AG (ϕ,ψ) (proved correct
in Appendix B), understanding why χEG (ϕ) captures EGϕ is not immediate. Instead of giving
just an informal explanation, we directly show the formal proof.

Proof of EGϕ ≡ χEG (ϕ). Below, we consider a pointed Kripke tree (K,w) where K = (W, R,V).
(⇒): Suppose (K,w) |= EGϕ, and therefore that there is an infinite path ρ ∈ ΠR(w) where for
every i ≥ 0 the i-th world wi of the path ρ is such that (K,wi) |= ϕ. We write Ŵ for the set
of worlds in ρ. Let us consider the model K′ = (W, R,V[p ← W \ Ŵ) obtained from K by
changing the evaluation of p to the set of worlds that are not in Ŵ. Since w belong to ρ, we
have (K′,w) |= ¬p. Moreover, as every world in Ŵ satisfies ϕ whereas every world in W \ Ŵ
satisfies p, we conclude that (K′,w) |= AG (¬ϕ ⇒ p). Similarly, (K′,w) satisfies AG (p ⇒
AG p). Indeed, let us consider a world w′ ∈ R∗(w) such that w′ ∈ V(p), and show that for
every w′′ ∈ R∗(w′), w′′ ∈ V(p) (as required by this formula). By definition, w′ 6∈ Ŵ. As K′ is a
Kripke tree (in particular, it is an acyclic structure), every world w′′ reachable from w′ does not
belong to ρ. So, by definition of K′, w′′ ∈ V(p). Lastly, let us focus on the subformula

∀q
(
nom(q) ∧ EF (q ∧ ¬p)⇒ EF (q ∧ EF (¬q ∧ ¬p))

)
.

We consider a Kripke tree K′′ = (W, R,V[p←W \Ŵ][q ←W ′′]) obtained from K′ by updating
the evaluation of q, and such that (K′′,w) |= nom(q)∧EF (q∧¬p). By definition of nom(p), there
is a world ŵ such that W ′′ = {ŵ}. Together with EF (q ∧¬p), this implies that ŵ belongs to the
path ρ. Let us say that ŵ = wi, i.e. ŵ is the i-th world in ρ. Let us consider its successor wi+1
in the path. Clearly, (K′′,wi+1) |= ¬q ∧ ¬p and thus (K′′,wi) |= EF (¬q ∧ ¬p), which in turn
leads to (K′′,w) |= EF (q∧EF (¬q∧¬p)). From the semantics of the propositional quantification,
(K′,w) |= ∀q

(
nom(q) ∧ EF (q ∧ ¬p)⇒ EF (q ∧ EF (¬q ∧ ¬p))

)
and (K,w) |= χEG (ϕ).

(⇐): We take the contrapositive and show that if (K,w) 6|= EGϕ then (K,w) |= ¬χEG (ϕ). Notice
that ¬χEG (ϕ) can be rewritten as

∀p
(
¬p ∧ AG (¬ϕ⇒ p) ∧ AG (p⇒ AG p)⇒ ∃q

(
nom(q) ∧ EF (q ∧ ¬p) ∧ AG (q ⇒ AG (q ∨ p))

))
Suppose that (K,w) 6|= EGϕ, and thus every path (w0,w1, . . .) ∈ ΠR(w) must contain a

world wi (i ≥ 0) s.t. (K,wi) |= ¬ϕ. Equivalently, one of the following holds:
A. (K,w) |= ¬ϕ, or

B. for every path (w0,w1, . . .) ∈ ΠR(w) there is j ≥ 0 such that for every i ≤ j (K,wi) |= ϕ

whereas every w′ ∈ R(wj) is such that (K,w′) |= ¬ϕ.
Let us now consider a Kripke tree K′ = (W, R,V[p←W ′]) obtained from K by updating the eval-
uation of p with respect to a setW ′ such that (K′,w) satisfies ¬p ∧ AG (¬ϕ⇒ p) ∧ AG (p⇒ AG p).

112 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

From the first two conjuncts we conclude that (A) does not hold, and so (K,w) |= ϕ and (B) hold.
As Kripke trees are left-total, ΠR(w) 6= ∅ and so (B) and AG (¬ϕ⇒ p) ∧ AG (p⇒ AG p) imply

C. there is a path (w0,w1, . . .) ∈ ΠR(w) and a j ≥ 0 such that (K,wj) |= ϕ∧¬p and for every
w′ ∈ R∗(wj) \ {wj} it holds that (K,w′) |= p.

Let us consider the world wj in (C) and define K′′ = (W, R,V[p ← W ′][q ← {wj}]) to be the
Kripke tree obtained by updating K′ so that q evaluates to {wj}. By definition of K′′ and (C),
(K′′,w) |= nom(q) ∧ EF (q ∧ ¬p) ∧ AG (q ⇒ AG (q ∨ p)). By semantics of ∃p we have

(K′,w) |= ¬p ∧ AG (¬ϕ⇒ p) ∧ monotone(p)⇒ ∃q
(
nom(q) ∧ EF (q ∧ ¬p) ∧ AG (q ⇒ AG (q ∨ p))

)
Again from the semantics of ∃p, together with the definition of K′, we get (K,w) |= ¬χEG (ϕ).

4.4.3 From ALT to Modal Separation Logic.

In Section 2.3.2 we introduced the modal separation logics MSL and MLH. At their core, both
logics can be seen as modal logics extended with separating connectives, hence mixing separation
logic with temporal aspects as in quantified CTL. As we already showed how ALT is captured
by these two latter logics, it is natural to ask ourselves if the same holds for MLH and MSL.
In this section, we show that this is indeed the case and, as for the previous two sections, ALT
allows us to refine the analysis on these logics. We refer the reader to Section 2.3.2 for the
definitions of these logics, and consider here their fragments without the separating implication.
Recall that MLH is a variant of MSL that does not feature propositional symbols, and both
logics are interpreted on Kripke-style finite functions: a class of Kripke structures where the
accessibility relation, instead of being left-total, is finite and weakly functional. The following
diagram introduces a language (where p ∈ AP) having the operators from MSL and MLH, and
summarise known and new results on the satisfiability problem of these logics:

ϕ := p | 〈6=〉ϕ | > | ϕ ∧ ϕ | ¬ϕ | ♦ϕ | ϕ ∗ ψ | 〈U〉ϕ | ♦−1ϕ

MSL: Tower-complete from [54]. MLH: Tower-complete from [52].

MSL/MLH: Tower-hard by reduction from the satisfiability problem of ALT, proved here.

As defined in Section 2.3.2, ♦ is the standard alethic modality from modal logic, ♦−1 is
its converse, and 〈6=〉 is the elsewhere modality that generalises the somewhere modality 〈U〉
as 〈U〉ϕ = ϕ ∨ 〈6=〉ϕ. Given a pointed finite function (K,w), where K = (W, R,V) is a Kripke-
style finite function and w ∈ W, we recall the satisfaction relation |= for the fragment MSL/MLH
of MSL and MLH we show to be Tower-complete (omitting > and Boolean connectives):

(K,w) |= ♦ϕ by def⇔ there is w′ ∈ R(w) such that (K,w) |= ϕ,
(K,w) |= 〈U〉ϕ by def⇔ there is w′ ∈ W such that (K,w′) |= ϕ,
(K,w) |= ϕ ∗ ψ by def⇔ (K1,w) |= ϕ and (K2,w) |= ψ for some K1, K2 s.t. K1 +K2 = K.

By looking at the diagram above, compared to the work in [54], ALT allows us to show that
propositional symbols and the elsewhere modality can be removed from MSL without changing
the complexity status of its satisfiability problem (notice that this logic features the somewhere
modality). Similarly, ALT allows us to refine the analysis on the complexity of MLH done in [52]
by showing that the ♦−1 modality is not needed in order to achieve non-elementary complexities.

4.4. Revisiting Tower-hard Logics with ALT 113

τ(Hit) def= �*ML

(
♦> ∧ [U](♦> ⇒ ♦♦>)

)
, τ(�ϕ) def= �ML(τ(ϕ) ∧ 〈U〉 selfloop),

τ(Miss) def= ♦> ∧ ¬τ(Hit), τ(�* ϕ) def= �*ML(τ(ϕ) ∧ 〈U〉 selfloop).
τ(〈U〉ϕ) def= 〈U〉(¬selfloop ∧ τ(ϕ)),

Figure 4.13: Translation from ALT to MSL/MLH.

From ALT to MSL/MLH. As W and N are both countably infinite sets, without loss of gen-
erality we assume W = N . Let (F , t, n) be a pointed forest and let (K,w) be a pointed finite
function where K = (N , R,V). As done in Section 4.1.2 in order to relate ALT to SL([∃]2, ∗), we
start by introducing the sabotage and repeated sabotage modalities in MSL/MLH. We define the
formula size = 1 def= 〈U〉♦>∧ ¬(〈U〉♦> ∗ 〈U〉♦>), that is satisfied whenever card(R)=1. Then,
the modalities � and �* are defined in MSL/MLH as �MLϕ

def= (size = 1) ∗ ϕ and �*ML ϕ
def= > ∗ ϕ.

For the reduction, we use w to encode the current node n. Encoding t is not so immediate, as
MSL/MLH does not have propositional symbols. A possible solution is to encode it as a self-loop,
so that the formula Hit is translated to a query stating that w reaches the self-loop. So, we
introduce the formula selfloop that is satisfied by (K,w′) if (w′,w′) ∈ R:

selfloop def= �*ML(♦♦> ∧ ¬�ML�ML>).

Informally, this formula characterises a self-loop by stating that it is possible to find a struc-
ture K′ ⊆ K that has an accessibility relation of cardinality one and satisfies ♦♦>. Suppose for a
moment that we are able to use this formula to characterise the class of every Kripke-style finite
function having exactly one cycle, and where this cycle is a self-loop, say on a world wt. On
these finite functions, we use wt to encode the target node t of a finite forest (F , t, n) while being
careful that the � and �* operators of ALT are translated in such a way that the self-loop on wt
is preserved. Because of the specific treatment of wt, it is convenient to assume that the current
evaluation node n is encoded by a world different from wt, which reflects on the translation of
〈U〉. As it was the case for the translation to QCTLt, the admissibility of this assumption follows
by Lemma 4.18. We formalise the encoding of a pointed forest as a pointed finite function.

Definition 4.42 (MSL/MLH - Pointed forest encoding). Let (F , t, n) be a pointed forest such
that t 6∈ dom(F) and n 6= t. The pointed finite function ((N , R,V), n) is an encoding of (F , t, n)
if and only if for every n′, n′′ ∈ N we have (n′, n′′) ∈ R ⇔ (F(n′) = n′′ or n′ = n′′ = t).

Notice how R is essentially defined from F by adding the self-loop (t, t). The translation τ(ϕ)
in MLH of a formula ϕ in ALT is homomorphic for > and Boolean connectives, and otherwise it
is defined as in Figure 4.13. We highlight two points of this translation. First, τ(Hit) essentially
asks to find a submodel where every path reaches the self-loop and the current evaluation node
is in one of these paths. Second, notice how the translation of � and �* checks that the model
is updated so that the self-loop is not lost, as required by our encoding. The following lemma
(proved in Appendix B by structural induction on ϕ) shows the correctness of our translation.

Lemma 4.43. Let (F , t, n) be a pointed model s.t. n 6= t and t 6∈ dom(F). Let (K, n) be an
encoding of (F , t, n). Given a formula ϕ in ALT, (F , t, n) |= ϕ iff (K, n) |= τ(ϕ).

To conclude the reduction we show that we can characterise the class of models encoding
pointed forests, i.e. the pointed finite functions with exactly one cycle, which is a self-loop that

114 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

does not involve the current evaluation node. We first define a formula that checks whether a
Kripke-style finite function has at least one cycle:

hascycles def= �*ML

(
〈U〉♦> ∧ [U](♦> ⇒ ♦♦>)

)
.

Informally, this formula characterises the presence of a cycle by stating that there is a structure
(W, R′,V) ⊆ K such thatR′ is not empty and every world w′ that has a successor, i.e.R′(w′) 6= ∅,
also reaches a world in two steps R′2(w) 6= ∅. The cyclicity of K then follows from the fact that
the accessibility relation is finite. Afterwards, the desired property of having exactly one cycle
that is a self-loop can be defined by stating that there is a self-loop which, whenever removed,
leads to an acyclic Kripke-style finite function. The following formula does the job:

∃1selfloop def= 〈U〉
(
selfloop ∧ ¬�ML(�⊥ ∧ hascycles)

)
.

Lemma 4.44. Every formula ϕ in ALT is equisatisfiable with τ(ϕ)∧∃1selfloop∧¬selfloop.

In the proof of Lemma 4.44, both (I) and (II) of Lemma 4.18 are used in order to restrict ourselves
to pointed forest (F , t, n) s.t. n 6= t and t 6∈ dom(F). Afterwards, we apply Lemma 4.43.

Theorem 4.45. The fragment of MLH and MSL with the ∗ (alternatively, �ML and �*ML), >,
Boolean connectives, ♦ and 〈U〉 modalities, and has a Tower-complete satisfiability problem.

5

Deciding Robustness Properties
in PSpace

Contents
5.1 Taming the Robustness Properties . 119

5.1.1 The separation logic SL([∃]1, ∗, [−∗, ↪→+]SW). 119
5.1.2 Reasoning in SL([∃]1, ∗, [−∗, ↪→+]SW). 120

5.2 Towards Small Models: The Core Formulae Technique 122
5.2.1 The Core Formulae Technique. 122
5.2.2 Game Hopping. 124

5.3 A Family of Core Formulae Capturing the Fragment W 127
5.3.1 Step I: partitioning the heap. 127
5.3.2 Step II: the core formulae for W. 129
5.3.3 Step III: indistinguishability relation, hops and ∗-simulation. 131
5.3.4 Step IV: ∃-simulation. 141

5.4 Recap: How to Apply the Core Formulae Technique 144
5.5 A Family of Core Formulae Capturing the Fragment S 146

5.5.1 Step I: partitioning the heap. 146
5.5.2 Step II: the core formulae for S. 152
5.5.3 Step III: ∗-simulation. 170
5.5.4 Step IV: ∃-simulation. 216

5.6 Connecting the Two Families of Core Formulae 221
5.6.1 Small-heap property and PSpace-completeness. 224
5.6.2 One last step: the −∗-simulation property. 230

115

117

In this chapter
Thanks to the knowledge gathered in Chapters 3 and 4, in this chapter we devise a separation
logic, denoted by SL([∃]1, ∗, [−∗, ↪→+]SW), that can specify whether a formula is robust for the
properties of acyclicity and garbage-freedom, while admitting a PSpace-complete satisfiability
(and entailment/validity) problem. This result is quite interesting, as the logic is a non-trivial
syntactical extension of SL([∃]1, ∗,−∗) and SL(∗, ↪→+), which are both PSpace-complete [55, 56].
To establish the PSpace upper bound, we rely on the core formulae technique already used to
prove the decidability of SL(∗, ↪→+) [56]. Due to the expressive power of our logic, applying this
technique by adapting the presentation in [56] would lead to a monolithic proof of hard to check
technical steps. We partially ease this issue by revisiting the core formulae technique, in order
to improve its modularity. Despite our efforts, the proof still reveals to be technically involved.

Here is a roadmap of the chapter.

Section 5.1. We introduce the separation logic SL([∃]1, ∗, [−∗, ↪→+]SW). This logic features both
the separating conjunction and implication, the reachability predicate ↪→+and a single quantified
variable name u. To prevent the logic from being Tower-hard following the results in Chapters 3
and 4, two syntactical conditions are imposed on the reachability predicates ↪→+:
• x ↪→+y does not appear on the right side of the first −∗ ancestor,
• if the variable x appearing in x ↪→+y is syntactically equal to u, then so is y.

The first condition splits the grammar of the logic into two fragments shown below:

W := > | emp | t = t′ | t ↪→ t′ | W ∧W | ¬W | W ∗W | S −∗W | ∃uW
S := W | x ↪→+t | u ↪→+u | S ∧ S | ¬S | S ∗ S | ∃u S

We call weak the fragment of the logic generated from the non-terminal symbol W and strong the
fragment generated from S. Roughly speaking, the strong fragment extends the weak fragment
with reachability predicates. Besides, notice that the magic wand is restricted to the form S−∗W.
The section ends by showing that the robustness properties of acyclicity and garbage freedom
can be characterised as entailment queries of SL([∃]1, ∗, [−∗, ↪→+]SW).

Section 5.2. We discuss the core formulae technique used in order to prove that the satisfi-
ability problem of SL([∃]1, ∗, [−∗, ↪→+]SW) is decidable in PSpace. The goal is to prove that the
logic enjoys a polynomial small-heap property, defined as follows.

Definition 5.3 (Small-heap property). A separation logic L is said to have the polynomial
small-heap property if there is a polynomial Q : N→ N such that, for every formula ϕ in L,

ϕ is satisfiable if and only if ϕ is satisfied by a memory state (s, h) where card(h) ≤ Q(|ϕ|).

In order to show this result, the core formulae technique requires the definition of a set of
formulae (called core formulae) interpreted on memory states and capturing the expressive
power of SL([∃]1, ∗, [−∗, ↪→+]SW). In particular, every formula of SL([∃]1, ∗, [−∗, ↪→+]SW) shall be
equivalent to a Boolean combination of core formulae. The polynomial small-heap property is
then easily derived in terms of such Boolean combinations.
The proof that each formula of SL([∃]1, ∗, [−∗, ↪→+]SW) can be translated into a Boolean combi-
nation of core formulae is technical. To partially ease this issue, we profit from connections

118 Chapter 5. Deciding Robustness Properties in PSpace

between the core formulae technique and the notion of Ehrenfeucht-Fräıssé games for separation
logic. We introduce the notion of game hopping, which helps with the modularity of the proof.

Section 5.3. We apply the core formulae technique to the fragment W of SL([∃]1, ∗, [−∗, ↪→+]SW),
excluding for the moment the magic wand S −∗ W. We introduce a suitable set of core for-
mulae, and prove that their Boolean combinations capture the atomic formulae of W. After-
wards, we show two fundamental properties of the core formulae: the ∗-simulation property and
∃-simulation property. These two properties are key to show that each weak formula is equiv-
alent to a Boolean combination of core formulae. Roughly speaking, the ∗-simulation property
(resp. ∃-simulation property) implies that formulae of the form ϕ∗ψ (resp. ∃xϕ), where ϕ and ψ
are Boolean combinations of core formulae, are themselves equivalent to Boolean combinations
of core formulae. Together with the fact that every atomic formula of the weak fragment is equiv-
alent to a Boolean combination of core formulae, these properties allow to perform a bottom-up
translation of all −∗-free formulae of W into equivalent Boolean combinations of core formulae.

Section 5.4. In this short section, we recapitulate the content of Section 5.2 and Section 5.3,
highlighting the steps needed in order to apply the core formulae technique to the weak fragment.
This section should be seen as a guide to Section 5.5, where the exact same steps are applied in
order to study the core formulae for the strong fragment.

Section 5.5. We introduce the core formulae for S, show that they capture every atomic
formula of SL([∃]1, ∗, [−∗, ↪→+]SW), and prove that they satisfy the ∗-simulation and ∃-simulation
properties. Despite the long and technical arguments we need in order to prove the two sim-
ulation properties, the structure of their proof follows exactly the one employed for the weak
fragment, analysed in Section 5.4.

Section 5.6. In order to translate every formula of SL([∃]1, ∗, [−∗, ↪→+]SW) into a Boolean com-
bination of core formulae, we miss a −∗-simulation property that allows us to translate a for-
mula ϕ−∗ψ, where ϕ (resp. ψ) is a Boolean combination of core formulae of the strong (resp. W)
fragment, into an equivalent Boolean combination of core formulae. Under the assumption that
the −∗-simulation property holds, the section starts by showing the following result.

Theorem 5.46. Every formula ϕ in SL([∃]1, ∗, [−∗, ↪→+]SW) is logically equivalent to a Boolean
combination of core formulae from Core[S](fv(ϕ) \ {u}, |ϕ|m).

Here, |ϕ|m is roughly the size of ϕ, and Core[S](X, α) is the set of core formulae for the fragment S,
which is indexed by a set of variables X and an integer threshold α ≥ 1. From their definition,
it is easy to see that the core formulae enjoy a polynomial small-heap property, which carries
out to SL([∃]1, ∗, [−∗, ↪→+]SW) directly from Theorem 5.46 (see Corollary 5.48). This allows us to
design an algorithm for the satisfiability problem of SL([∃]1, ∗, [−∗, ↪→+]SW) that runs in PSpace.
As PSpace-hardness is inherited from SL(∗,−∗), we prove the main result of the chapter.

Theorem 5.50. The satisfiability problem of SL([∃]1, ∗, [−∗, ↪→+]SW) is PSpace-complete.

Of course, this result holds under the assumption that the core formulae enjoy the −∗-simulation
property, which we show at the end of the section. As in the case of the other simulation
properties, the proof reveals to be technically involved.

5.1. Taming the Robustness Properties 119

5.1 Taming the Robustness Properties

We return to our original research agenda of finding a separation logic that can express whether
a formula is robust for the properties of acyclicity and garbage-freedom (see the introduction
of Part I). More precisely, we aim at defining a separation logic whose satisfiability, validity
and entailment problems can be solved in PSpace, and where the decision problems related to
acyclicity and garbage-freedom can be expressed as queries of the entailment problem.

First of all, let us recall the definitions of acyclic and garbage-free memory state.

Definition 5.1 (Acyclicity and garbage-freedom). Let (s, h) be a memory state. Let X ⊆fin VAR.

(acyclicity) (s, h) is acyclic if for every ` ∈ LOC and for every δ ≥ 1, hδ(`) 6= `,
(X-garbage-freedom) (s, h) is X-garbage-free whenever for every ` ∈ dom(h) there is δ ∈ N

and x ∈ X such that hδ(s(x)) = `.

The definition of the decision problems related to these two properties is given in Figure 5.1,
with respect to a formula ϕ written in an arbitrary (separation) logic L interpreted on memory
states. Both these decision problems are oriented towards program verification. The acyclicity
property reveals to be quite useful to guarantee that a loop traversing any region of the memory
by dereferentiation is bound to terminate [76], whereas garbage-freedom can be helpful to prove
that a program does not leak memory. In this chapter, we analyse the decidability of these
problems in a fragment of SL(∃, ∗,−∗).

5.1.1 The separation logic SL([∃]1, ∗, [−∗, ↪→+]SW).

In order to tame the decision problems for acyclicity and garbage-freedom into queries of en-
tailment, we consider separation logics featuring reachability predicates, separating implication
and one quantified variable. The results in Chapters 3 and 4 heavily limit the set of possible
separation logics that enjoy these three features and admit an elementary satisfiability problem.
In this chapter, we consider the fragment of SL(∃, ∗,−∗), denoted by SL([∃]1, ∗, [−∗, ↪→+]SW), hav-
ing just one quantified variable name u ∈ VAR (“u” stands for unique) and with formulae from
the non-terminal S of the following grammar, where t, t′ ∈ VAR and x ∈ VAR \ {u},

W := > (true)
| emp (empty)
| t = t′ (equality)
| t ↪→ t′ (points-to)
| W ∧W (weak conjunction)
| ¬W (weak negation)
| W ∗W (weak star)
| S −∗W (strong-to-weak magic wand)
| ∃uW (weak existential)

S := W (weak fragment)
| x ↪→+t (reach-plus)
| u ↪→+u (unique reach-plus)
| S ∧ S (strong conjunction)
| ¬S (strong negation)
| S ∗ S (strong star)
| ∃u S (strong existential)

As done in the grammar, we generally write x, y, z, . . . for variables that are syntactically
different from u. Instead, we use t, t′, . . . for arbitrary variables in VAR. Analogously, we
write X, Y, . . . for (usually finite) sets of variables that do not contain u, and T, T′, . . . for arbi-
trary sets of variables. The grammar of the logic is divided into two fragments, called weak and

120 Chapter 5. Deciding Robustness Properties in PSpace

acyclicity: Input: A formula ϕ in L.
Question: Is every memory state satisfying ϕ acyclic?

garbage-freedom: Input: A formula ϕ in L.
Question: Is every memory state satisfying ϕ fv(ϕ)-garbage-free?

Figure 5.1: The decision problems for the properties of acyclicity and garbage freedom.

strong, which roughly regulate whether the separating implication and the reachability predi-
cates can be used. The weak fragment, whose formulae are generated from the non-terminal
W, does not directly features reachability predicates, but contains the separating implication
S−∗W, where S belongs to the strong fragment. The strong fragment, whose formulae are gener-
ated from the non-terminal S, extends the weak fragment with the reach-plus predicate defined
in Section 2.1.1, but still, it can only use the separating implication S −∗W, so that the right-
hand side of the formula belongs to the weak fragment. Informally, a formula of the separation
logic SL([∃]1, ∗,−∗, ↪→+), featuring one quantified variable and unconstrained reach-plus predi-
cates and magic wand, is in SL([∃]1, ∗, [−∗, ↪→+]SW) if every occurrence of the reach-plus t ↪→+t′ is
constrained so that it satisfies the following two conditions:

1. it is not on the right side of its first −∗ ancestor (seeing the formula as a tree),

2. if t is syntactically equal to u, then so is t′.
For instance, given a formula ϕ generated from S and a formula ψ generated from W, the
formula u ↪→+x ∗ (ϕ−∗ ψ) only satisfies the first condition, the formula ϕ−∗ (x ↪→+u−∗ψ) satisfies
both conditions, whereas the formula ϕ −∗ (ψ ∗ u ↪→+u) only satisfies the second condition.
Thanks to these two conditions, the computational complexity of SL([∃]1, ∗, [−∗, ↪→+]SW) cannot
be traced back to the results in Chapters 3 and 4. More precisely, by disallowing the reach-
plus predicate on positions corresponding to the right-hand side of a separating implication, the
condition (1) forbid the definition of the bounded reachability predicate ↪→3 in these positions.
This breaks the undecidability result given in Chapter 3 for SL(∗,−∗, ↪→2, ↪→3), which requires
the bounded reachability predicates x ↪→2 y and x ↪→3 y to appear in both sides of the magic
wand. The predicate x ↪→2 y can be still defined with the formula ∃u (x ↪→ u ∧ u ↪→ y), which
belongs to the weak fragment. One can ask why the restriction should be done on the right-side
of the separating implication instead of the left-side. Unfortunately, taking W −∗ S over S −∗ W
leads to Tower-hardness directly from Section 4.4.1. Indeed, Corollary 4.33 shows us that
taking size = 1−∗ S is already enough to capture ALT. Similarly, the condition (2) prevents us
from using the reachability query u ↪→+x, which would again lead to the internalisation of ALT,
as shown in Section 4.1.2. Notably, SL([∃]1, ∗, [−∗, ↪→+]SW) still allows us to write x ↪→+u, which
is essential in order to express the property of garbage-freedom.

5.1.2 Reasoning in SL([∃]1, ∗, [−∗, ↪→+]SW).

Despite its restrictions, SL([∃]1, ∗, [−∗, ↪→+]SW) is still a very expressive fragment of SL(∃, ∗,−∗).
Its syntax extends the one-variable fragment SL([∃]1, ∗,−∗) from [55] and the logic SL(∗, ↪→+)
from [56], both admitting a PSpace-complete satisfiability problem. Moreover, our logic can
express all the auxiliary formulae introduced in Section 2.1.1, which we recall in Figure 5.2.

5.1. Taming the Robustness Properties 121

Formula: Semantics w.r.t. (s, h) Definition: W/S:

t ↪→ s(t) ∈ dom(h) t ↪→ t−∗ ϕ W

↪→ x s(x) ∈ ran(h) ∃u u ↪→ x W

size≥ 0 card(h) ≥ 0 > W

size≥ 1 card(h) ≥ 1 ¬emp W

size≥β+1 card(h) ≥ β+1 ¬emp ∗ size≥β W

x ↪→∗ t (s(x), s(t)) ∈ h∗ x = t ∨ x ↪→+t S

strict(ϕ) (s, h) |= ϕ and ∀h′ (h, (s, h′) 6|= ϕ ϕ ∧ ¬(¬emp ∗ ϕ) W

t 7→ t′ h = {s(t) 7→ s(t′)} strict(t ↪→ t′) W

ls(x, t) hδ(s(x)) = s(t) iff δ = card(h) strict(x ↪→∗ t) S

Figure 5.2: Formulae from Section 2.1.1, in SL([∃]1, ∗, [−∗, ↪→+]SW).

Example 5.2. The combination of one quantifier variable and reachability predicates, although
not as powerful as in ALT, can express interesting shapes of a memory state (s, h). For instance,
we can state that s(x) does not belong to a cycle but reaches a location that belongs to one. This
pattern can be described with the intuitive formula ∃u(x ↪→+u ∗ u ↪→+u). The unique quantified
variable is also helpful to state whether paths starting from two locations corresponding to
program variables meet. For instance, consider ∃u

(
(x ↪→+u ∗ y ↪→+u) ∧ ¬u ↪→

)
. The memory

state (s, h) satisfies this formula if it witnesses two distinct paths, one going from s(x) to ` and
one going from s(y) to `, where ` is a location not in dom(h). Roughly speaking, we can even
combine the two formulae just introduced in order to state that both s(x) and s(y) reach two
locations ` and `′ belonging to the same cycle, but ` 6= `′. The following formula does the job:

∃u
((

x ↪→+u ∗ (y ↪→+u ∧ u ↪→+u ∧ ¬y ↪→+y)
)
∧ ¬

(
x ↪→+u ∗ y ↪→+u ∗ u ↪→+u

))
.

From the expressivity results in [55] and [56], we know that the three formulae considered in
this example cannot be expressed in neither SL([∃]1, ∗,−∗) nor SL(∗, ↪→+) (or any separation logic
with a PSpace-complete satisfiability problem that we know of).

Acyclicity and garbage-freedom, revised. Fundamentally, the decision problems for the
properties of acyclicity and garbage-freedom can be expressed very easily in SL([∃]1, ∗, [−∗, ↪→+]SW).
Indeed, the set of acyclic memory states can be characterised with the formula ∀u ¬u ↪→+u.
Given a set of variables X ⊆fin VAR, a memory state is X-garbage-free whenever it satisfies the
formula ∀u (u ↪→ ⇒

∨
x∈X x ↪→∗ u). Both these formulae of SL([∃]1, ∗, [−∗, ↪→+]SW) are a natural

translation of the two properties expressed in Definition 5.1. This allows us to rephrase the
decision problems in Figure 5.1 using two queries of entailment, as shown below:

acyclicity: Input: A formula ϕ in SL([∃]1, ∗, [−∗, ↪→+]SW).
Question: Does ϕ |= ∀u ¬u ↪→+u hold?

garbage-freedom: Input: A formula ϕ in SL([∃]1, ∗, [−∗, ↪→+]SW) such that u 6∈ fv(ϕ).
Question: Does ϕ |= ∀u (u ↪→ ⇒

∨
x∈fv(ϕ) x ↪→∗ u) hold?

122 Chapter 5. Deciding Robustness Properties in PSpace

Notice that the auxiliary condition “u 6∈ fv(ϕ)” in the decision problem for garbage-freedom can
be enforced without loss of generality, as we can always rename the the free occurrences of u
in ϕ with a different variable name.

The rest of the chapter is devoted to the satisfiability problem of SL([∃]1, ∗, [−∗, ↪→+]SW), which
we show to be PSpace-complete. This implies that the entailment and validity problem of this
logic are also PSpace-complete, and that the decision problems related to acyclicity and garbage-
freedom can be decided in PSpace. Notably, SL([∃]1, ∗, [−∗, ↪→+]SW) extends various separation
logics, some of which are applied to program verification. Besides SL([∃]1, ∗,−∗) and SL(∗, ↪→+),
the logic extends the symbolic-heap fragment SH(ls) (Section 2.3.1), and the logic obtained by
closing SH(ls) under Boolean connectives. The decidability of acyclicity and garbage-freedom
provided for SL([∃]1, ∗, [−∗, ↪→+]SW) can be transferred to all these logics.

5.2 Towards Small Models: The Core Formulae Technique

In this section we discuss the technique used to prove that SL([∃]1, ∗, [−∗, ↪→+]SW) admit a sat-
isfiability problem that can be solved in PSpace. The general idea is to show a bound on
the size of the smallest memory state that satisfies a formula in SL([∃]1, ∗, [−∗, ↪→+]SW). From
the notion of X-heap isomorphism, we know that the store does not pose a particular chal-
lenge (see Proposition 2.10), so we primarily aim at showing that the logic enjoys a polynomial
small-heap property.

Definition 5.3 (Small-heap property). A separation logic L is said to have the polynomial
small-heap property if there is a polynomial Q : N→ N such that, for every formula ϕ in L,

ϕ is satisfiable if and only if ϕ is satisfied by a memory state (s, h) where card(h) ≤ Q(|ϕ|).

We recall that |ϕ| is the size of ϕ, i.e. the number of symbols needed to encode it (as a tree).
One peculiarity of SL([∃]1, ∗, [−∗, ↪→+]SW) is that the small-heap property must also take into

account all the heaps that must be considered for the satisfaction of the separating implication.
This problem, that is common to all the separation logics featuring the magic wand, was firstly
solved by C. Calcagno, H. Yang and P. W. O’Hearn [33], and successively by E. Lozes [104],
for the quantifier-free separation logic SL(∗,−∗). Both papers essentially rely on suitable model
abstractions in order to polynomially bound the size of the heaps that must be considered when
dealing with the magic wand. The bound is then extended to arbitrary formulae, leading to
a polynomial small-heap property for SL(∗,−∗). The main difference between [33] and [104] is
that the abstraction given by E. Lozes is defined entirely from formulae of the logic, allowing to
characterise the expressiveness of SL(∗,−∗) has a by-product.

After [104], the idea of relying on the logic itself to describe a model abstraction led to a
quite successful methodology, which we call here the core formulae technique. This technique
has been used to show the decidability of several separation logics, including:

SL([∃]1, ∗,−∗) [55], SL(∗, ↪→+) [56], ∃∗∀∗SL(∃, ∗,−∗) [62], and pnf-SL(∃, ∗,−∗) [62].

5.2.1 The Core Formulae Technique.

Let us introduce the core formula technique with a running example. To keep things as simple
as possible, we consider the separation logic SL(∗), having formulae from the grammar:

5.2. Towards Small Models: The Core Formulae Technique 123

ϕ := > | emp | x = y | x ↪→ y | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ.

Our aim is twofold. On one side, we want to appreciate the key components of the core formulae
technique, in order to later apply it to SL([∃]1, ∗, [−∗, ↪→+]SW). On the other side, we want to
understand and address some of the limitations of this methodology.

A finite set of formulae to capture the logic. The crucial point of the technique is to
define a set of core formulae. For instance, in the case of SL(∗), this set, denoted by Core(X, α),
is indexed by a finite set of variables X ⊆fin VAR and natural number α≥ 1 , and it is defined as:

Core(X, α) def= { x = y, x ↪→ y, remX ≥ β | x, y ∈ X, β ∈ [0, α]}.

Here, remX ≥ β is a formula that is satisfied by a memory state (s, h) whenever the heap
h \ {s(x) 7→ s(y) | x, y ∈ X}, i.e. the heap obtained from h by discharging the memory cells that
witness the satisfaction of the points-to predicates, contains at least β memory cells. It should
be noted that remX ≥ β can be defined in SL(∗). Nonetheless, definability of the core formulae
in the logic under analysis is not needed in order to study its computational complexity.

In general, we want the set of core formulae to satisfy three properties. First of all, the set
of core formulae must be finite, as it is the case for the set Core(X, α). A second property is
that the logic obtained by closing the core formulae under Boolean connectives should enjoy a
small-heap property. One can show that this is the case for Core(X, α), and that each satisfiable
Boolean combination of formulae from Core(X, α) can be satisfied by a memory state (s, h) such
that card(h) ≤ card(X) + α. A third property is that Boolean combinations of core formulae
exhaust the expressivity of the separation logic under analysis. With respect to SL(∗), this
property can be formalised with the following proposition.

Proposition 5.4. For every formula ϕ in SL(∗) written with variables from X there is a Boolean
combination ψ of formulae in Core(X, |ϕ|) such that ϕ ≡ ψ.

By relying on the small-heap property of Core(X, α), this proposition leads to a small-heap
property for SL(∗). When considering more complex logics, finding the right set of core formulae
that satisfy Proposition 5.4 is quite challenging. To partially solve this issue, [104] shows a way
of checking if this proposition holds by relying on a simulation argument, which helps us to
systematically examine the core formulae we conjecture to be correct.

Indistinguishability relation and its simulation. As a preliminary result, [104] requires
that Boolean combinations of core formulae capture every atomic formula of the logic. With
respect to our example concerning SL(∗), the precise statement is given below.

Lemma 5.5. Let X ⊆fin VAR. Every formula among {>, emp, x = y, x ↪→ y | x, y ∈ X} in SL(∗)
is equivalent to a Boolean combination of formulae from Core(X, 1).

Proving this lemma is quite straightforward: both the atomic formulae x = y and x ↪→ y are
already in Core(X, 1), whereas > ≡ remX ≥ 0 and emp ≡ ¬(remX ≥ 1 ∨

∨
x,y∈X x ↪→ y).

Once the “base case” of Lemma 5.5 is proved, [104] considers an indistinguishability relation,
here denoted by ≈X,α, that relates memory states satisfying the same core formulae. Formally,

(s, h)≈X,α (s′, h′) if and only if for every ϕ ∈ Core(X, α), (s, h) |= ϕ iff (s′, h′) |= ϕ.

124 Chapter 5. Deciding Robustness Properties in PSpace

A first property of this indistinguishability relation is that it is an equivalence relation with
finite-index, i.e. ≈X,α has finitely many equivalence classes. This stems directly from the fact
that Core(X, α) is finite. Its second key property is that ≈X,α is a simulation with respect to
the semantics of the separating conjunction. We call this the ∗-simulation property of the core
formulae. Its technical statement is formalised below.

Lemma 5.6 (∗-simulation). Let X ⊆fin VAR and α ≥ 1. Consider (s, h) ≈X,α (s′, h′). For every
two heaps h1 and h2 and every α1 ≥ 1 and α2 ≥ 1, if h = h1 + h2 and α = α1 + α2 then there
are two heaps h′1 and h′2 such that h′ = h′1 + h′2, (s, h1) ≈X,α1 (s′, h′1) and (s, h2) ≈X,α2 (s′, h′2).

Consider two Boolean combinations ϕ, ψ of core formulae in Core(X, α1) and Core(X, α2),
respectively. Fundamentally, this lemma states that whether two memory states (s, h) and (s′, h′)
satisfy the same formulae in Core(X, α1 + α2), then (s, h) |= ϕ ∗ψ if and only if (s′, h′) |= ϕ ∗ ψ.
Thanks to this lemma, we can show that the formula ϕ ∗ ψ must be equivalent to a finite
Boolean combination of core formulae from Core(X, α1 + α2). The rough idea is that every
equivalence class of ≈X,α1+α2 can be characterised with a conjunction of literals built from
formulae in Core(X, α1 + α2). As ≈X,α1+α2 has finitely many equivalence classes, this implies
that ϕ ∗ ψ is equivalent to the (finite) disjunction of every conjunction corresponding to an
equivalence class of a memory state satisfying ϕ ∗ ψ. With a bottom-up argument and starting
from the atomic formulae, Lemma 5.5 and Lemma 5.6 show that every formula is equivalent to
a Boolean combination of core formulae, thus proving Proposition 5.4.

This approach has a drawback. Albeit giving us a good way of checking whether the core
formulae capture the whole logic, the proof of Lemma 5.6 becomes quite technical and mono-
lithic when considering complex logics. For instance, the proof of the ∗-simulation property
for SL(∗, ↪→+) spawn a dozen pages of hard-to-check technical steps [56]. It is not reasonable to
do the same for SL([∃]1, ∗, [−∗, ↪→+]SW): we need a way to make the proof more modular.

5.2.2 Game Hopping.

In order to provide a modular proof of the ∗-simulation property, it is helpful to frame it
within the standard tools of finite-model theory for first-order logic. In particular, the core
formulae have a strong connections with the Gaifman’s locality Theorem ([102], Theorem 4.22).
Informally, this theorem proven by H. Gaifman in [73] states that every first-order formula is
equivalent to a Boolean combination of local formulae. Skipping the technical definition of local
formulae, we notice how Proposition 5.4 can be seen as an adaptation of Gaifman’s locality
Theorem to separation logic, where the core formulae enjoy the same property of the local
formulae of first-order logic. This connection is quite revealing, the local formulae are connected
to the notion of winning strategy for the duplicator on the Ehrenfeucht-Fräıssé games for first-
order logic [102]. We already introduced the Ehrenfeucht-Fräıssé games in Section 4.2.2 in
order to study the expressive power for ALT. We refer the reader to that section (or even better,
to [102]), for an introduction on these types of games. When it comes to SL(∗), the EF-games can
be defined on game states consisting of two memory states (s, h) and (s′, h′) and a rank (X, α),
where X ⊆fin VAR and α ≥ 1. As usual, the game is played by two players: the spoiler, who
wants to prove that the two memory states can be told apart by a formula of the logic, and the
duplicator, who instead wants to prove that they are indistinguishable. The EF-games for SL(∗)
are defined in Figure 5.3. Let us write (s, h) ∼X,α (s′, h′) whenever the duplicator has a winning
strategy for the game ((s, h), (s′, h′), (X, α)). We define the rank of a formula ϕ in SL(∗) as (X, α),

5.2. Towards Small Models: The Core Formulae Technique 125

EF-Game played on the state ((s, h), (s′, h′), (X, α)).

if there is π ∈ {>, emp, x = y, x ↪→ y | x, y ∈ X} s.t. ((s, h) |= π iff (s′, h′) |= π) does not hold
then the spoiler wins,
else if α = 1 then the duplicator wins,
else (α ≥ 2) the spoiler chooses (sS , hS) ∈ {(s, h), (s′, h′)}.

The duplicator replies on the other memory state, say (sD, hD). Afterwards,
1. The spoiler selects α1 ≥ 1 and α2 ≥ 1 such that α = α1 + α2.
2. The spoiler selects two heaps hS1 and hS2 such that hS = hS1 + hS2 .
3. The duplicator selects two heaps hD1 and hD2 such that hD = hD1 + hD2 .
4. The spoiler selects j ∈ {1, 2}.
5. The game continues on ((sS , hSj), (sD, hDj), (X, αj)).

Figure 5.3: Ehrenfeucht-Fräıssé games for SL(∗).

where X is the set of variables appearing in ϕ whereas α is one plus the number of separating
conjunctions in ϕ. The EF-games are sound and complete for SL(∗), as formalised below.

Proposition 5.7. Let (s, h) and (s′, h′) be two pointed forests. Let (X, α) be a rank.

(s, h) ∼X,α (s′, h′) iff for each formula ϕ in SL(∗) of rank (X, α), ((s, h) |= ϕ iff (s′, h′) |= ϕ).

Instead of proving this proposition (which can be shown as we did for ALT, see Theorem 4.15),
we are here interested in the connections between the EF-games and the core formulae. In par-
ticular, we show that the inclusion ≈X,α ⊆ ∼X,α holds, i.e. if two memory states (s, h) and (s′, h′)
satisfy the same core formulae from Core(X, α), then the duplicator has a winning strategy for
the game state ((s, h), (s′, h′), (X, α)).

Lemma 5.8. ≈X,α ⊆ ∼X,α.

Proof. Suppose (s, h) ≈X,α (s′, h′). The proof is by induction on α.
base case: α = 1. By Lemma 5.5, the two memory states satisfy the same atomic formulae.

With respect to the description of the games given in Figure 5.3, duplicator wins (line 3).

inductive step: α ≥ 2. Again, two memory states satisfy the same atomic formulae. So, with
respect to the description of the games given in Figure 5.3, the spoiler must select α1 ≥ 1
and α2 ≥ 1 such that α = α1 + α2, as well as a memory state (sS , hS) ∈ {(s, h), (s′, h′)}
and two heaps hS1 and hS2 such that hS = hS1 +hS2 . Duplicator replies in the other memory
state, say (sD, hD). From the ∗-simulation lemma (Lemma 5.6), there are two heaps hD1
and hD2 such that hD = hD1 + hD2 , (sS , hS1) ≈X,α1 (sD, hD1) and (sS , hS2) ≈X,α2 (sD, hD2). By
induction hypothesis (sS , hS1) ∼X,α1 (sD, hD1) and (sS , hS2) ∼X,α2 (sD, hD2). Thus, selecting
hD1 and hD2 leads to a winning strategy for the duplicator in the original game.

Relating the core formulae technique with Ehrenfeucht-Fräıssé games allows us to transfer
more easily tools from various games on indistinguishability relations to the context of separation
logic, which in turn helps us finding a more modular proof of Lemma 5.6 (and similar simulation
properties). First of all, let us revisit the statement of Lemma 5.6. We introduce a binary
relation ↔X,α, called hop relation, that stresses the property underlying the ∗-simulation:

126 Chapter 5. Deciding Robustness Properties in PSpace

(s, h)↔X,α (s′, h′) iff for every two heaps h1 and h2 and every α1 ≥ 1 and α2 ≥ 1,
if h = h1 + h2 and α = α1 + α2 then there are two heaps h′1 and h′2
such that h′ = h′1 + h′2, (s, h1) ≈X,α1 (s′, h′1) and (s, h2) ≈X,α2 (s′, h′2).

The hop relation allows us to succinctly rephrase Lemma 5.6 as the inclusion ≈X,α ⊆ ↔X,α. In
order to prove this inclusion in a modular way, given two memory states (s, h) ≈X,α (s′, h′), we
build a chain of hops as the one schematised below:

(s, h) = (s1, h1)↔X,α (s2, h2)↔X,α . . .↔X,α (sk−1, hk−1)↔X,α (sk, hk) = (s′, h′).

At each hop (sj , hj)↔X,α (sj+1, hj+1), where j ∈ [1, k − 1], the memory state (sj+1, hj+1) is
constructed by updating (sj , hj). The idea is that this update should be quite small and localised,
so that it is easy to check that the two memory states are in the hop relation, or analogously
that the duplicator wins the underlying EF-game on ((sj , hj), (sj+1, hj+1), (X, α)). Each hop
can be treated separately from the others, making the whole proof modular. Thanks to the
chain of hops, we are able to conclude that (s, h) ↔X,α (s′, h′) holds (thus, providing a proof
of Lemma 5.6) from the transitivity of the hop relation, which we now show.

Lemma 5.9. ↔X,α is reflexive and transitive.

Proof. Reflexivity is obvious. For transitivity, consider three memory states (s, h), (s′, h′)
and (s′′, h′′). Suppose (s, h) ↔X,α (s′, h′) and (s′, h′) ↔X,α (s′′, h′′), and consider two heaps h1
and h2 and two natural numbers α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and α = α1 + α2.
From (s, h)↔X,α (s′, h′) there are two heaps h′1 and h′2 such that h′= h′1+h′2, (s, h1) ≈X,α1 (s′, h′1)
and (s, h2) ≈X,α2 (s′, h′2). From (s′, h′)↔X,α (s′′, h′′) there are h′′1 and h′′2 such that h′′= h′′1 + h′′2,
(s′, h′1) ≈X,α1 (s′′, h′′1) and (s′, h′2) ≈X,α2 (s′′, h′′2). As ≈X,α is an equivalence relation, we conclude
that (s, h1) ≈X,α1 (s′′, h′′1) and (s, h2) ≈X,α2 (s′′, h′′2). Thus, (s, h)↔X,α (s′′, h′′).

Due to the lack of a better terminology, we call the process of building a chain of hops
game hopping. This term, as well as the general idea presented here, is borrowed from the
homonymous technique in computational security [16]. In this framework, an attacker has an
unknown probability of success against an environment. In order to compute this probability,
a game hopping proof slowly changes the environment with a chain of updates that are shown
admissible thanks to some underlying invariant. The process continues until we reach an envi-
ronment where the probability of success can be easily computed. As an analogy, in our case
the environments are given by the memory states and the attacker is the spoiler, which we want
to prove having zero probability of winning the underlying EF-game. Our invariants are given
by the equisatisfaction of the core formulae at each step of the chain of hops.

In our setting, a last question about game hopping is how to identify the updates we want
to carry out in the chain. What we found to work well in practice is to define the core formulae
starting from a partition on the heap, so that the satisfaction of each core formula is governed by
exactly one part of the partition. We already applied this idea to the core formulae Core(X, α)
of SL(∗): given a memory state (s, h), every (`, `′) ∈ h is involved in the satisfaction of either
the core formula x ↪→ y, for some x, y ∈ X, or the core formula remX ≥ β, but not both. Then, at
each hop we only modify locations belonging to one element of the partition, leaving the other
ones untouched. The benefits of this approach can be better appreciated in the next section,
where we deal with the core formulae for the weak fragment of SL([∃]1, ∗, [−∗, ↪→+]SW).

5.3. A Family of Core Formulae Capturing the Fragment W 127

5.3 A Family of Core Formulae Capturing the Fragment W

We start adapting the core formulae technique to the weak fragment of SL([∃]1, ∗, [−∗, ↪→+]SW).
Let us recall the grammar of this sublogic:

W := > | emp | t = t′ | t ↪→ t′ | W ∧W | ¬W | W ∗W | S −∗W | ∃uW

For the time being, we disregard the separating implication S −∗W, as it requires some analysis
on the strong fragment, which will be carried out throughout Section 5.5 and Section 5.6. When
the magic wand is dropped from the logic, W becomes a fragment of SL([∃]1, ∗,−∗), whose satis-
fiability problem has been proven PSpace-complete using the core formulae technique in [55].
The family of core formulae we consider in this section can be shown to be equiexpressive to the
ones in [55], while being better suited for game hopping.

We stress once more the goal of this section. Following Section 5.2, we want to define a set of
core formulae whose Boolean combinations capture the expressive power of the weak fragment
(excluding the operator S −∗ W). As shown in [104], in order to show that the core formulae
we define enjoy this property it is sufficient to prove that they capture the atomic formulae of
the weak fragment and that they satisfy the ∗-simulation property (see e.g. Lemma 5.6) and an
analogous ∃-simulation property. Broadly speaking, these two properties imply that formulae of
the form ϕ∗ψ or ∃xϕ, where ϕ and ψ are Boolean combinations of core formulae, are themselves
equivalent to Boolean combinations of core formulae. With a bottom-up argument starting from
the base case of atomic formulae, this implies that every −∗-free formula of the weak fragment can
be translated into a Boolean combination of core formulae. To prove the ∗-simulation property,
we rely on the game hopping strategy sketched in Section 5.2.2. Our proof technique naturally
divides the section in four steps. First (step I), we introduce a family of disjoint sets that induce
a partition of the domain of the heap. These sets are used (step II) to define the core formulae,
which are shown to capture the atomic formulae of the weak fragment. Afterwards, we prove
(step III) that the core formulae satisfy the ∗-simulation property and (step IV) the ∃-simulation
property. This division serves as a roadmap for the much more involved Section 5.5, in which
we introduce the core formulae for the strong fragment.

5.3.1 Step I: partitioning the heap.

We define the core formulae starting from a partition of the heap, which is in turn defined from a
set of syntactical terms that correspond to specific locations of the heap. For the whole section,
we fix X ⊆fin VAR\{u} to be a finite set of program variables not including the unique quantified
variable name u, which we treat separately.

Definition 5.10 (Next-point variables and terms). We write NV[W]X for the set of next-point
variables {n(x) | x∈ X}, n(x) being a syntactical object. T[W]X stands for set of terms X ∪ NV[W]X.
Given a memory state (s, h), the evaluation [[.]]Xs,h of a term is defined as [[x]]Xs,h

def= s(x) for x ∈ X.
If s(x) ∈ dom(h) then [[n(x)]]Xs,h

def= h(s(x)), otherwise [[n(x)]]Xs,h is not defined.

Intuitively, the next-point variable n(x) corresponds to the location pointed by s(x), if any. We
already saw a similar concept in Section 3.2. The evaluation [[.]]Xs,h leads to labelled locations.

Definition 5.11 (Labelled locations). Given a memory state (s, h), we write Lab[W]Xs,h for the
set of locations {[[t]]Xs,h | t∈ T[W]X}. The locations in Lab[W]Xs,h are said to be labelled.

128 Chapter 5. Deciding Robustness Properties in PSpace

z

y n(y)

x n(x)

: Pred[W]Xs,h(y)

: Self[W]Xs,h
: Rem[W]Xs,h

Figure 5.4: A memory state. The partition of the heap is highlighted.

Locations that are not in Lab[W]Xs,h are said to be unlabelled. Intuitively, the weak fragment can
express different properties about labelled locations. For instance, we can check if two next-point
variables n(x) and n(y) correspond to the same location with the formula ∃u (x ↪→ u ∧ y ↪→ u).
As such, every subheap {` 7→ `′} ⊆ h, where ` is a labelled location, correspond to one part of
the partition of h we are about to define. As h is functional, this partition can be equivalently
described in terms of dom(h). Excluding labelled locations, its parts are defined below.

Definition 5.12 (Predecessors, self-loops and the remainder). Let (s, h) be a memory state.
We define the following subsets of dom(h):
Predecessors. Pred[W]Xs,h(x) def= {`′ ∈ dom(h) | h(`′) = s(x) and `′ 6∈ Lab[W]Xs,h}, where x ∈ X.

Informally, Pred[W]Xs,h(x) is the set of all unlabelled predecessors of s(x).

Self-loops. Self[W]Xs,h
def= {` ∈ dom(h) | h(`) = ` and ` 6∈ Lab[W]Xs,h}.

Informally, Self[W]Xs,h contains the set of unlabelled self-loops.

Remainder. Rem[W]Xs,h
def= dom(h) \

(
Lab[W]Xs,h ∪ Self[W]Xs,h ∪

⋃
x∈X Pred[W]Xs,h(x)

)
.

Informally, Rem[W]Xs,h is the set of unlabelled locations that are neither self-loop nor
predecessors of variables in X.

Figure 5.4 highlights these sets on a memory state (s, h). As we can see, all the locations in
the domain of the heap are either labelled locations, or they belong to one of these sets. Indeed,
directly from Definition 5.12, it is quite clear that these three types of sets, together with the
memory cells of h that are labelled locations, uniquely define a partition of dom(h) (and of h).
This property is formalised in the following proposition, whose proof is left to the reader.

Proposition 5.13. Let (s, h) be a memory state. The set of all the non-empty sets among
dom(h)∩Lab[W]Xs,h, Self[W]Xs,h, Rem[W]Xs,h and all Pred[W]Xs,h(x) (x ∈ X), is a partition of dom(h).

Due to the ∗-simulation property we aim to establish, it is quite important to under-
stand how this partition evolves when considering subheaps. For instance, given a location
` ∈ Pred[W]Xs,h(x), it is quite easy to see that in every subheap h′ ⊆ h where ` ∈ dom(h′), we find
that ` belongs to Pred[W]Xs,h′(x). Similar properties can be stated for Self[W]Xs,h and Rem[W]Xs,h.
In general, the converse does not hold: given a location ` ∈ Pred[W]Xs,h′(x), it can be that
` 6∈ Pred[W]Xs,h(x). This is typically the case when ` corresponds to a next-point variable with
respect to (s, h), but it becomes an unlabelled location when considering (s, h′). The following
technical lemma shows all these relationships between partitions.

Lemma 5.14. Let (s, h) be a memory state. Consider a subheap h′ ⊆ h and ` ∈ LOC.

5.3. A Family of Core Formulae Capturing the Fragment W 129

(I) for every term t ∈ T[W]X, if [[t]]Xs,h′ is defined then [[t]]Xs,h = [[t]]Xs,h′ .
(II) Pred[W]Xs,h′(x) =

(
Pred[W]Xs,h(x) ∩ dom(h′)

)
∪ {` ∈ Lab[W]Xs,h \ Lab[W]Xs,h′ | h′(`) = s(x)}.

(III) Self[W]Xs,h′ =
(
Self[W]Xs,h ∩ dom(h′)

)
∪ {` ∈ Lab[W]Xs,h \ Lab[W]Xs,h′ | h′(`) = `}.

(IV) Rem[W]Xs,h′ =
(
Rem[W]Xs,h ∩ dom(h′)

)
∪

{` ∈ Lab[W]Xs,h \ Lab[W]Xs,h′ | ` ∈ dom(h′), h′(`) 6= ` and ∀x ∈ X, h′(`) 6= s(x)}.

The proofs of these four statements are all quite simple and follow from Definition 5.12.
Below, we show the proof of the first two statements, leaving the other two to the reader.

Proof of (I). The proof is obvious when t is a variable in X. So, let us assume t = n(x) ∈ NV[W]X.
If [[n(x)]]Xs,h′ is defined, then [[n(x)]]Xs,h′

by def= h′(s(x)). From h′ ⊆ h we have h(s(x)) = h′(s(x)).
Therefore, by [[n(x)]]Xs,h

by def= h(s(x)) we derive [[t]]Xs,h′ = [[t]]Xs,h.

Proof of (II). (⇒): Let us consider a location ` ∈ Pred[W]Xs,h′(x), and thus ` 6∈ Lab[W]Xs,h′
and h′(`) = s(x). From h′⊆ h we derive that h(`) = s(x). In the case that ` 6∈ Lab[W]Xs,h, then
we derive ` ∈ Pred[W]Xs,h(x) ∩ dom(h′). Otherwise, ` ∈ Lab[W]Xs,h \ Lab[W]Xs,h′ and h′(`) = s(x).
(⇐): Clearly, if ` ∈ Lab[W]Xs,h \ Lab[W]Xs,h′ and h′(`) = s(x) then ` 6∈ Lab[W]Xs,h′ , and so we
derive ` ∈ Pred[W]Xs,h′(x). Otherwise, let us consider the case were ` ∈ Self[W]Xs,h ∩ dom(h′).
We have ` 6∈ Lab[W]Xs,h, h(`) = s(x) and ` ∈ dom(h′). From h′ ⊆ h we derive h′(`) = s(x).
From Lemma 5.14(I) we derive ` 6∈ Lab[W]Xs,h′ . Thus, ` ∈ Pred[W]Xs,h′(x).

5.3.2 Step II: the core formulae for W.

We use the partition as a base to define the core formulae. Each of these formulae describes a
feature of one of the sets in the partition, and its satisfaction does not depend on the properties of
the other sets. For instance, let us consider a predicate selfWX ≥ 3 stating that a memory state
(s, h) contains at least 3 unlabelled self-loops. Clearly, selfWX ≥ 3 depends on the cardinality
of Self[W]Xs,h, but it is completely independent from the locations in other sets of the partition.
As done for the core formulae of SL(∗), given as an example during Section 5.2.1, the core
formulae Core[W](X, α) for the weak fragment are parametric on X and a natural number α ≥ 1.
Here, α is a quantity that roughly expresses upper bounds on the capabilities of a formula ϕ to
check the sizes of the sets of the partition. As we will see in Section 5.6, this bound is connected
with the number of separating conjunctions in ϕ, and ultimately to its size. Core[W](X, α) is
divided into two sets, a skeleton set Sk[W](X, α) expressing structural properties that do not
depend on the assignment of u, and an observed set Obs[W](X) of relationships between the
memory state and the location currently assigned to u. The skeleton set is defined below, and
the semantics of its formulae is given in Figure 5.5. We recall that X does not contain u.

Sk[W](X, α) def=
{

t1 = t2, t1 ↪→ , t1 ↪→ x, t1 ↪→ t1,

predWX (x) ≥ β, selfWX ≥ β, remWX ≥ β

∣∣∣∣∣ x ∈ X, β ∈ [1, α],
t1, t2 ∈ T[W]X

}
.

As we can see, the skeleton set contains equality and points-to relation between terms, and formu-
lae that state lower-bounds on the cardinality of the sets Pred[W]Xs,h(x), Self[W]Xs,h and Rem[W]Xs,h.
In particular, it should be noted that (s, h) |= t = t if and only if [[t]]Xs,h is defined. Notice that
these formulae are syntactically defined so that n(x) ↪→ n(y) is not a core formula. In partic-
ular, the only points-to relation between next-point variables is n(x) ↪→ n(x). The reason for
this syntactical restriction is quite simple: n(x) ↪→ n(x) is definable in the weak fragment as
∃u (x ↪→ u ∧ u ↪→ u), whereas n(x) ↪→ n(y) requires two quantified variables to be defined. With

130 Chapter 5. Deciding Robustness Properties in PSpace

(s, h) |= t1 = t2 iff [[t1]]Xs,h and [[t2]]Xs,h are defined and [[t1]]Xs,h = [[t2]]Xs,h,

(s, h) |= t1 ↪→ iff [[t1]]Xs,h is defined and [[t1]]Xs,h ∈ dom(h),

(s, h) |= t1 ↪→ x iff [[t1]]Xs,h is defined and h([[t1]]Xs,h) = s(x),

(s, h) |= t1 ↪→ t1 iff [[t1]]Xs,h is defined and h([[t1]]Xs,h) = [[t1]]Xs,h,

(s, h) |= predWX (x) ≥ β iff card(Pred[W]Xs,h(x)) ≥ β,

(s, h) |= selfWX ≥ β iff card(Self[W]Xs,h) ≥ β,

(s, h) |= remWX ≥ β iff card(Rem[W]Xs,h) ≥ β.

Figure 5.5: Semantics of the formulae in Sk[W](X, α), with respect to a memory state (s, h).

(s, h) |= u = t iff [[t]]Xs,h is defined and s(u) = [[t]]Xs,h,

(s, h) |= u ∈ predWX (x) iff s(u) ∈ Pred[W]Xs,h(x),

(s, h) |= u ∈ selfWX iff s(u) ∈ Self[W]Xs,h,

(s, h) |= u ∈ remWX iff s(u) ∈ Rem[W]Xs,h.

Figure 5.6: Semantics of the formulae in Obs[W](X), with respect to a memory state (s, h).

respect to the three core formulae predWX (x) ≥ β, selfWX ≥ β and remWX ≥ β, it is important to
notice that β is bounded by α. Because of this, the core formulae cannot distinguish two mem-
ory states exceeding α locations in the three sets corresponding to these core formulae. As we
will see in Section 5.6, this property is essential in order to conclude that SL([∃]1, ∗, [−∗, ↪→+]SW)
enjoys a polynomial small-heap property. Let us now move to the observed set:

Obs[W](X) def=
{

u = t, u ∈ predWX (x), u ∈ selfWX , u ∈ remWX
∣∣∣ x ∈ X and t ∈ T[W]X

}
.

The semantics of these formulae is given in Figure 5.6, and it is quite self-explanatory. The
formula u = t checks whether s(u) is a labelled location. The formulae u ∈ predWX (x), u ∈ selfWX
and u ∈ remWX check whether the location currently assigned to u is in the set Pred[W]Xs,h(x), in
the set Self[W]Xs,h or in the set Rem[W]Xs,h, respectively.

As described in the previous section (Lemma 5.5), a first key property the core formulae
must satisfy is that their Boolean combinations must be able to express the atomic formulae of
separation logic. For the weak fragment, this can be formalised as follows.

Lemma 5.15. Every atomic formula of the weak fragment written with variables from X∪ {u}
is equivalent to a Boolean combination of formulae from Core[W](X, 1).

Proof (sketch). The proof is straightforward. Here, we simply give the definition of the atomic
formulae in term of Boolean combinations of core formulae from Core[W](X, 1), leaving the proof
of their correctness to the reader. The atomic formulae x = y, u = x and x ↪→ y, where x, y ∈ X,
are already core formulae. Otherwise,

x = u ≡ u = x, x ↪→ u ≡ u = n(x), > ≡ remWX ≥ 1 ∨ ¬remWX ≥ 1,

u ↪→ x ≡ u ∈ predWX (x) ∨
∨

t∈T[W]X(u = t ∧ t ↪→ x),

5.3. A Family of Core Formulae Capturing the Fragment W 131

u ↪→ u ≡ u ∈ selfWX ∨
∨

t∈T[W]X(u = t ∧ t ↪→ t),

emp ≡ ¬(predWX (x) ≥ 1 ∨ selfWX ≥ 1 ∨ remWX ≥ 1 ∨
∨

t∈T[W]X t ↪→).

5.3.3 Step III: indistinguishability relation, hops and ∗-simulation.

After showing that the core formulae capture the atomic formulae of the logic, we show that
they satisfy the ∗-simulation property. As we saw in the previous section, this property is stated
using an indistinguishability relation on memory state that is governed by the satisfaction of
the core formulae. For the weak fragment, this relation is defined as follows.

Definition 5.16 (W-indistinguishable memory states). We write ≈WX,α for the equivalence rela-
tion on memory states characterised as:

(s, h) ≈WX,α (s′, h′) if and only if for every ϕ ∈ Core[W](X, α), (s, h) |= ϕ iff (s′, h′) |= ϕ.

The ∗-simulation property corresponds to showing the inclusion ≈WX,α ⊆ ↔WX,α, where↔WX,α is the
following hop relation.

Definition 5.17 (W-hop relation). We write ↔WX,α for the relation on memory states such that

(s, h)↔WX,α (s′, h′) iff for every two heaps h1 and h2 and every α1 ≥ 1 and α2 ≥ 1,
if h = h1 + h2 and α = α1 + α2 then there are two heaps h′1 and h′2
such that h′ = h′1 + h′2, (s, h1) ≈WX,α1 (s′, h′1) and (s, h2) ≈WX,α2 (s′, h′2).

The hop relation ↔WX,α is both reflexive and transitive (see Lemma 5.9).
As described in the previous section, in order to prove the inclusion ≈WX,α ⊆ ↔WX,α, given two

memory states (s, h) and (s′, h′) such that (s, h) ≈WX,α (s′, h′), we aim at building a chain of hops

(s, h) = (s1, h1)↔WX,α (s2, h2)↔WX,α . . .↔WX,α (sk−1, hk−1)↔WX,α (sk, hk) = (s′, h′).

Each hop (sj , hj)↔WX,α (sj+1, hj+1) in this chain corresponds to one of four intermediate results,
which we divide into two lemmata (Lemmata 5.18 and 5.19, below). The hops are then put
together in the proof of the ∗-simulation property formalised in Lemma 5.20. The first lemma
involves the “base case” of memory states that are in the indistinguishability relation ≈WX,α for
every α ≥ 1. Notably, these memory states agree on the cardinality of their predecessor sets,
self-loop set and remainder set.

Lemma 5.18. For every α ≥ 1,
(⋂

α′≥1 ≈WX,α′
)
⊆ ↔WX,α.

Proof. Let (s, h) and (s′, h′) be two memory states such that ((s, h), (s′, h′)) ∈
(⋂

α′≥1 ≈WX,α′
)
.

Let us consider a bijection f : LOC→ LOC such that

1f. f(s(u)) = s′(u) and for every t ∈ T[W]X, if [[t]]Xs,h is defined then f([[t]]Xs,h) = [[t]]Xs′,h′ ,
2f. for every x ∈ X, Pred[W]Xs′,h′(x) = f(Pred[W]Xs,h(x)),
3f. Self[W]Xs′,h′ = f(Self[W]Xs,h),
4f. Rem[W]Xs′,h′ = f(Rem[W]Xs,h),

where we recall that given a set of locations L, f(L) by def= {f(`) | ` ∈ L}.

132 Chapter 5. Deciding Robustness Properties in PSpace

The existence of the bijection f stems directly from ((s, h), (s′, h′)) ∈
(⋂

α′≥1 ≈WX,α′
)

together
with Proposition 5.13. Indeed, the constraint (1f) holds as the two memory states satisfy the
same core formulae from

{t1 = t2, t1 ↪→ , t1 ↪→ x, t1 ↪→ t1 | t1, t2 ∈ T[W]X} ∪ Obs[W](X).

Instead, the other three constraints follow as the membership in
(⋂

α′≥1 ≈WX,α′
)

implies that
for all x ∈ X card(Pred[W]Xs,h(x)) = card(Pred[W]Xs′,h′(x)) card(Self[W]Xs,h) = card(Self[W]Xs′,h′)
and card(Rem[W]Xs,h) = card(Rem[W]Xs′,h′). Let us show that (s, h)↔WX,α (s′, h′).

Consider two heaps h1 and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and α = α1 + α2.
Notice that this requires α to be at least two, otherwise the lemma trivially holds. Consider the
heaps h′1 and h′2 defined as follows:

h′1 = {(`, `′) ∈ h′ | f−1(`) ∈ dom(h1)}, h′2 = {(`, `′) ∈ h′ | f−1(`) ∈ dom(h2)}.

Notice that, since f is a bijection and h1 and h2 are disjoint, we have h′ = h′1 + h′2. Let us
discuss the following properties (A)–(D) of h′j (where j ∈ {1, 2}):

A. (a) for every t ∈ T[W]X, [[t]]Xs,hj is defined iff so is [[t]]Xs′,h′j . If defined, f([[t]]Xs,hj) = [[t]]Xs′,h′j .
(b) [[t]]Xs,hj ∈ dom(hj) if and only if [[t]]Xs′,h′j ∈ dom(h′j).
(c) Given t′ ∈ X ∪ {t}, we have hj([[t]]Xs,hj) = [[t′]]Xs,hj if and only if h′j([[t]]Xs′,h′j) = [[t′]]Xs′,h′j .
(d) ` ∈ Lab[W]Xs′,h′ \ Lab[W]Xs′,h′j if and only if f−1(`) ∈ Lab[W]Xs,h \ Lab[W]Xs,hj .

These four statements follow primarily from Lemma 5.14(I) and (s, h) ≈WX,1 (s′, h′).
In the following, we show the left-to-right direction of each of these statements. The
right-to-left direction follows analogously, by relying on the fact that f is bijective.

Proof of (a). Obvious for t ∈ X, so suppose t = n(x) ∈ NV[W]X.
(⇒): Suppose [[n(x)]]Xs,hj to be defined, i.e. [[n(x)]]Xs,hj

by def= hj(s(x)). From hj ⊆ h

and Lemma 5.14(I), [[n(x)]]Xs,h = [[n(x)]]Xs,hj. Since (s, h) and (s′, h′) equisatisfy the
formula x ↪→ , we conclude that [[n(x)]]Xs′,h′ is also defined. From the property (1f) of f,
f(s(x)) = s′(x). So, (s(x), h′(s′(x))) ∈ dom(h′j) by definition of h′j . By Lemma 5.14(I),
[[n(x)]]Xs′,h′ = [[n(x)]]Xs′,h′j . From the property (1f) of f, f([[n(x)]]Xs,hj) = [[n(x)]]Xs′,h′j .

Proof of (b). (⇒): Suppose [[t]]Xs,hj ∈ dom(hj). From (a), [[t]]Xs′,h′j = f([[t]]Xs,hj). Therefore,
by definition of h′j , it is sufficient to show that [[t]]Xs′,h′j ∈ dom(h′). By hj ⊆ h

and Lemma 5.14(I) we derive that [[t]]Xs,hj = [[t]]Xs,h ∈ dom(h). Since (s, h) and (s′, h′)
equisatisfy the core formula t ↪→ , we have [[t]]Xs′,h′ ∈ dom(h′). By Lemma 5.14(I),
[[t]]Xs′,h′j = [[t]]Xs′,h′ and so [[t]]Xs′,h′j ∈ dom(h′j).

Proof of (c). (⇒): hj([[t]]Xs,hj) = [[t′]]Xs,hj and so by (a) we have f([[t]]Xs,hj) = [[t]]Xs′,h′j and
f([[t′]]Xs,hj) = [[t′]]Xs′,h′j . By definition of h′j , showing h′([[t]]Xs′,h′j) = [[t′]]Xs′,h′j is sufficient.
By hj ⊆ h we derive h([[t]]Xs,hj) = [[t′]]Xs,hj , whereas by Lemma 5.14(I), [[t]]Xs,hj = [[t]]Xs,h
and [[t′]]Xs,hj = [[t′]]Xs,h. Since (s, h) and (s′, h′) equisatisfy the core formula t ↪→ t′,
where t′ ∈ X ∪ {t}, we conclude that h′([[t]]Xs′,h′) = [[t′]]Xs′,h′ . By Lemma 5.14(I),
[[t]]Xs′,h′j = [[t]]Xs′,h′ and [[t′]]Xs′,h′j = [[t′]]Xs′,h′ . Thus, h′([[t]]Xs′,h′j) = [[t′]]Xs′,h′j .

Proof of (d). (⇒): Assume ` ∈ Lab[W]Xs′,h′ \ Lab[W]Xs′,h′j . As ` ∈ Lab[W]Xs′,h′ there is a
term t ∈ T[W]X such that [[t]]Xs′,h′ = `. Since (s, h) and (s′, h′) equisatisfy the core
formula t = t, [[t]]Xs,h is defined, and thus f([[t]]Xs,h) = ` holds from the property (1f) of f.
So, f−1(`) ∈ Lab[W]Xs,h. Ad absurdum, suppose f−1(`) ∈ Lab[W]Xs,hj . From (a) we have

5.3. A Family of Core Formulae Capturing the Fragment W 133

` ∈ Lab[W]Xs′,h′j , contradicting ` ∈ Lab[W]Xs′,h′\ Lab[W]Xs′,h′j . Thus, f−1(`) 6∈ Lab[W]Xs,hj
and therefore f−1(`) ∈ Lab[W]Xs,h \ Lab[W]Xs,hj .

B. For every x ∈ X, Pred[W]Xs′,h′j (x) = f(Pred[W]Xs,hj (x)).

Given a location ` ∈ LOC, we prove the following two equivalences:
d. ` ∈ Pred[W]Xs′,h′(x) ∩ dom(h′j) if and only if f−1(`) ∈ Pred[W]Xs,h(x) ∩ dom(hj),
e. ` ∈ Lab[W]Xs′,h′ \ Lab[W]Xs′,h′j and h′j(`) = s′(x) if and only if

f−1(`) ∈ Lab[W]Xs,h \ Lab[W]Xs,hj and hj(f−1(`)) = s(x).
So that (B) follows directly from Lemma 5.14(II) and the fact that f is bijective.

Proof of (d). Both direction hold directly by definition of h′j and from the property (2f) of f.
Proof of (e). (⇒): Assume ` ∈ Lab[W]Xs′,h′ \ Lab[W]Xs′,h′j and h′j(`) = s′(x). From (A)(d),

f−1(`) ∈ Lab[W]Xs,h \ Lab[W]Xs,hj . From h′j(`) = s′(x) and by definition of h′j , we
have h′(`) = s′(x) and f−1(`) ∈ dom(hj). As (s, h) and (s′, h′) equisatisfy the core for-
mula t ↪→ x, we have that h(f−1(`)) = s(x). By f−1(`) ∈ dom(hj), hj(f−1(`)) = s(x).
(⇐): Analogous to the other direction, by relying on the bijectivity of f.

C. Self[W]Xs′,h′j = f(Self[W]Xs,hj).

Given a location ` ∈ LOC, we prove the following two equivalences:
f. ` ∈ Self[W]Xs′,h′ ∩ dom(h′j) if and only if f−1(`) ∈ Self[W]Xs,h) ∩ dom(hj),
g. ` ∈ Lab[W]Xs′,h′ \ Lab[W]Xs′,h′j and h′j(`) = ` if and only if

f−1(`) ∈ Lab[W]Xs,h \ Lab[W]Xs,hj and hj(f−1(`)) = f−1(`).
So that (C) follows directly from Lemma 5.14(III) and the fact that f is bijective.

Proof of (f). Both directions hold directly by definition of h′j and from the property (3f) of f.
Proof of (g). (⇒): Assume ` ∈ Lab[W]Xs′,h′ \ Lab[W]Xs′,h′j and h′j(`) = `. From (A)(d),

f−1(`) ∈ Lab[W]Xs,h\Lab[W]Xs,hj . From h′j(`) = ` and by definition of h′j we have h′(`) = `

and f−1(`) ∈ dom(hj). Since (s, h) and (s′, h′) equisatisfy the core formula t ↪→ t, we
conclude that h(f−1(`)) = f−1(`). By f−1(`) ∈ dom(hj), hj(f−1(`)) = f−1(`).
(⇐): Analogous to the other direction, by relying on the bijectivity of f.

D. Rem[W]Xs′,h′j = f(Rem[W]Xs,hj).

Given a location ` ∈ LOC and `′ = f−1(`), we prove the following two equivalences:
h. ` ∈ Rem[W]Xs′,h′ ∩ dom(h′j) if and only if `′ ∈ Rem[W]Xs,h ∩ dom(hj),
i. ` ∈ Lab[W]Xs′,h′ \ Lab[W]Xs′,h′j , ` ∈ dom(h′j), h′j(`) 6= ` and ∀x ∈ X h′j(`) 6= s′(x) iff
`′ ∈ Lab[W]Xs,h \ Lab[W]Xs,hj , `

′ ∈ dom(hj), hj(`′) 6= `′ and ∀x ∈ X hj(`′) 6= s(x).
So that (D) follows directly from Lemma 5.14(IV) and the fact that f is bijective.

Proof of (h). Both directions hold directly from the definition of h′j and the property (4f).
Proof of (i). (⇒): Assume ` ∈ Lab[W]Xs′,h′ \ Lab[W]Xs′,h′j , ` ∈ dom(h′j), h′j(`) 6= ` and for

every x ∈ X, h′j(`) 6= s′(x). From (A)(d), f−1(`) = `′ ∈ Lab[W]Xs,h\Lab[W]Xs,hj . From the
definition of h′j we have f−1(`) ∈ dom(hj). Ad absurdum, suppose hj(`′) = `′. Then,
by (C)(g) we derive h′j(`) = `, in contradiction with the hypothesis. Thus, hj(`′) 6= `′.
Similarly, ad absurdum suppose that there is x ∈ X such that hj(`′) = s(x). Then,
by (B)(g) we derive h′j(`) = s′(x), in contradiction with the hypothesis. Thus, for
every x ∈ X, hj(`′) 6= s(x).
(⇐): Analogous to the other direction, by relying on the bijectivity of f.

134 Chapter 5. Deciding Robustness Properties in PSpace

Thanks to the properties (A)–(D), proving (s, hj) ≈WX,αj (s′, h′j), for j ∈ {1, 2}, is straightforward.
Consider a core formula ϕ in Core[W](X, αj). Then, (s, hj) |= ϕ iff (s′, h′j) |= ϕ, as shown below:
case: ϕ = t1 = t2. Follows directly from (A)(a) and the fact that f is a bijection.
case: ϕ = t ↪→ . Follows directly from (A)(b).
case: ϕ = t ↪→ x or ϕ = t ↪→ t. Follows directly from (A)(c).

case: ϕ = predWX (x) ≥ β. Follows from (B) and the bijectivity of f, which imply that
Pred[W]Xs,hj (x) and Pred[W]Xs′,h′j (x) have the same cardinality.

case: ϕ = selfWX ≥ β. Follows directly from (C) and the bijectivity of f.
case: ϕ = remWX ≥ β. Follows directly from (D) and the bijectivity of f.
case: ϕ = u = t. Follows directly from (A)(a) and since f(s(u)) = s′(u) (property (1f) of f).
case: ϕ = u ∈ predWX (x). Follows directly from (B) and f(s(u)) = s′(u).
case: ϕ = u ∈ selfWX . Follows directly from (C) and f(s(u)) = s′(u).
case: ϕ = u ∈ remWX . Follows directly from (D) and f(s(u)) = s′(u).
Therefore, (s, h)↔WX,α (s′, h′).

In the game hopping proof of the ∗-simulation property, the lemma we just proved is used
as a base case to treat the last hop of the chain of hops, i.e. (sk−1, hk−1)↔WX,α (sk, hk) = (s′, h′)
in the example above. Referring to this example, all the other hops connecting (s, h) to
(sk−1, hk−1) are taken care of by three intermediate results, one for each type of sets be-
tween predecessor sets, self-loop sets, or remainder sets. The idea is that in every interme-
diate hop (sj , hj)↔WX,α (sj+1, hj+1), the memory state (sj+1, hj+1) is obtained from (sj , hj) by
slightly updating one of these sets. For instance, we could decide to modify the locations in
the set Rem[W]Xsj ,hj , while being careful that the resulting memory state satisfies the same core
formulae of (sj , hj). This idea is formalised in the following lemma.

Lemma 5.19. (s, h)↔WX,α (s, h′) holds if (s, h) ≈WX,α (s, h′) and one of the following holds:
(I) h \ {(`, `′) ∈ h | ` ∈ Rem[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[W]Xs,h′},

(II) h \ {(`, `′) ∈ h | ` ∈ Self[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Self[W]Xs,h′},
(III) h \ {(`, `′) ∈ h | ` ∈ Pred[W]Xs,h(x)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[W]Xs,h′(x)}, for some x ∈ X.

Informally, in Lemma 5.19 the heap h′ is obtained by h by modifying the memory cells
corresponding to the sets (I) Rem[W]Xs,h, (II) Self[W]Xs,h, or (III) Pred[W]Xs,h(x) (for some x ∈ X).
We ask this modification to be invariant with respect to the satisfaction of the core formulae,
i.e. (s, h) ≈WX,α (s, h′). The proofs of the three statements of Lemma 5.19 are all very similar,
and they follow quite closely the proof of Lemma 5.18. In the following, we present the proof
of Lemma 5.19(I). The proofs of the other two statements are given in Appendix C.

Proof of (I). Consider two heaps h1 and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and
α = α1 +α2. Notice that this requires α to be at least two, otherwise the lemma trivially holds.
We partition the set Rem[W]Xs,h′ into two sets S1 and S2, using the following case analysis:

if card(Rem[W]Xs,h ∩ dom(h1)) < α1 then

let S1 be a set of card(Rem[W]Xs,h ∩ dom(h1)) locations in Rem[W]Xs,h′
such that s(u) ∈ S1 if and only if s(u) ∈ Rem[W]Xs,h ∩ dom(h1).

5.3. A Family of Core Formulae Capturing the Fragment W 135

S2 ← Rem[W]Xs,h′ \ S1.

else if card(Rem[W]Xs,h ∩ dom(h2)) < α2 then

let S2 be a set of card(Rem[W]Xs,h ∩ dom(h2)) locations in Rem[W]Xs,h′
such that s(u) ∈ S2 if and only if s(u) ∈ Rem[W]Xs,h ∩ dom(h2).

S1 ← Rem[W]Xs,h′ \ S2.

else (i.e. card(Rem[W]Xs,h ∩ dom(h1)) ≥ α1 and card(Rem[W]Xs,h ∩ dom(h2)) ≥ α2)

let S1 be a set of α1 locations in Rem[W]Xs,h′
such that s(u) ∈ S1 if and only if s(u) ∈ Rem[W]Xs,h ∩ dom(h1).

S2 ← Rem[W]Xs,h′ \ S1.

Notice that S1 and S2 are always well-defined, since both (s, h) and (s, h′) satisfy the same
formulae among u ∈ remWX and remWX ≥ β, for every β ∈ [1, α]. Indeed, thanks to the for-
mula u ∈ remWX , if s(u) ∈ Rem[W]Xs,h ∩ dom(hj) (where j ∈ {1, 2}) then s(u) ∈ Rem[W]Xs,h′
and so s(u) can be selected when building Sj . From the formulae of the form remWX ≥ β, if
card(Rem[W]Xs,h ∩ dom(hj)) < αj then, as αj < α we conclude that Rem[W]Xs,h′ contains at least
card(Rem[W]Xs,h ∩ dom(hj)) locations, allowing us to correctly define Sj in the first two cases
above. If instead card(Rem[W]Xs,h ∩ dom(h1)) ≥ α1 and card(Rem[W]Xs,h ∩ dom(h2)) ≥ α2, then
we conclude that both Rem[W]Xs,h and Rem[W]Xs,h′ contain at least α > α1 locations. Again, this
allows us to correctly define S1 in the last of the cases above. S1 and S2 enjoy the following
properties, given with respect to j ∈ {1, 2}.

1. s(u) ∈ Sj if and only if s(u) ∈ Rem[W]Xs,h ∩ dom(hj),
2. min(αj , card(Sj)) = min(αj , card(Rem[W]Xs,h ∩ dom(hj))).

Proof of (1). From the equisatisfaction of u ∈ remWX , s(u) ∈ Rem[W]Xs,h iff s(u) ∈ Rem[W]Xs,h′ .
Then, the property follows from the definition of S1 and S2.

Proof of (2). From the equisatisfaction of remWX ≥ β, for every β ∈ [1, α], it holds that
min(α, card(Rem[W]Xs,h)) = min(α, card(Rem[W]Xs,h′)).

First, suppose card(Rem[W]Xs,h) = card(Rem[W]Xs,h′) < α. From α1 + α2 = α, the third
case in the definition of S1 and S2 cannot hold. The other two cases lead to card(Sj) =
card(Rem[W]Xs,hj), for both j ∈ {1, 2}. Instead, suppose that both Rem[W]Xs,h and Rem[W]Xs,h′
have at least α elements. We distinguish three cases:

– Suppose card(Rem[W]Xs,h∩dom(h1))<α1. As card(Rem[W]Xs,h)≥α and α = α1 +α2, we
conclude that card(Rem[W]Xs,h ∩ dom(h2)) ≥ α2. The first case in the definition of S1
and S2 applies, so that card(S1) = card(Rem[W]Xs,h ∩ dom(h1)). Thus, card(S1) < α1.
From card(Rem[W]Xs,h′) ≥ α and α = α1 + α2, card(S2) ≥ α2.

– Suppose card(Rem[W]Xs,h∩dom(h2))<α2. As card(Rem[W]Xs,h)≥α and α = α1 +α2, we
conclude that card(Rem[W]Xs,h∩dom(h1)) ≥ α1. The second case in the definition of S1
and S2 applies, so that card(S2) = card(Rem[W]Xs,h ∩ dom(h2)). Thus, card(S2) < α2.
From card(Rem[W]Xs,h′) ≥ α and α = α1 + α2, card(S1) ≥ α1.

– Suppose card(Rem[W]Xs,h ∩ dom(h1))≥α1 and card(Rem[W]Xs,h ∩ dom(h2))≥α2. Then,
the third case in the definition of S1 and S2 applies, so that card(S1) = α1. Lastly,
from card(Rem[W]Xs,h′) ≥ α and α = α1 + α2, card(S2) ≥ α2.

136 Chapter 5. Deciding Robustness Properties in PSpace

We rely on S1 and S2 in order to define the heaps h′1 and h′2 such that (s, h1) ≈WX,α1 (s, h′1)
and (s, h2) ≈WX,α2 (s, h′2) (as required by the hop relation↔WX,α). First, let us define the two heaps
ĥ1

def= h1 \{(`, `′) ∈ h1 | ` ∈ Rem[W]Xs,h} and ĥ2
def= h2 \{(`, `′) ∈ h2 | ` ∈ Rem[W]Xs,h}, obtained from

h1 and h2 by removing the locations in Rem[W]Xs,h from their domain. Therefore, from h = h1+h2
we conclude that:

h = ĥ1 + ĥ2 + {(`, `′) ∈ h | ` ∈ Rem[W]Xs,h}.

Thus, from the hypothesis h \ {(`, `′) ∈ h | ` ∈ Rem[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[W]Xs,h′} we
derive ĥ1 + ĥ2 = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[W]Xs,h′}. We define the heaps h′1 and h′2 as:

h′1
def= ĥ1 + {(`, `′) ∈ h′ | ` ∈ S1}, h′2

def= ĥ2 + {(`, `′) ∈ h′ | ` ∈ S2}.

As {(`, `′) ∈ h′ | ` ∈ S1} + {(`, `′) ∈ h′ | ` ∈ S2} = {(`, `′) ∈ h′ | ` ∈ Rem[W]Xs,h′} by definition
of S1 and S2, the two heaps h′1 and h′2 are well-defined, they are disjoint, and h′ = h′1 + h′2.
Moreover, S1 = Rem[W]Xs,h′ ∩ dom(h′1) and S2 = Rem[W]Xs,h′ ∩ dom(h′2).

We now prove four properties of h′1 and h′2 that are analogous to the properties (A)–(D) in
the proof of Lemma 5.18. Let j ∈ {1, 2}.

A. (a) for every t ∈ T[W]X, [[t]]Xs,hj is defined iff so is [[t]]Xs,h′j . If defined, [[t]]Xs,hj = [[t]]Xs,h′j .
(b) [[t]]Xs,hj ∈ dom(hj) if and only if [[t]]Xs,h′j ∈ dom(h′j).
(c) Given t′ ∈ X ∪ {t}, we have hj([[t]]Xs,hj) = [[t′]]Xs,hj if and only if h′j([[t]]Xs,h′j) = [[t′]]Xs,h′j .
(d) ` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj if and only if ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j .

These four statements follow primarily from the fact that ĥj is a subheap of both
hj and h′j . In the following we show the left-to-right direction for each of these
statements. The right-to-left direction follows analogously.

Proof of (a). Obvious for t ∈ X, so suppose t = n(x) ∈ NV[W]X.
(⇒): Suppose [[n(x)]]Xs,hj to be defined, so [[n(x)]]Xs,hj

by def= hj(s(x)). As s(x) ∈ Lab[W]Xs,h,
s(x) 6∈ Rem[W]Xs,h, and therefore s(x) ∈ dom(ĥj) and ĥj(s(x)) = hj(s(x)). By definition
of h′j , ĥj(s(x)) = h′j(s(x)). Thus, [[n(x)]]Xs,hj = [[n(x)]]Xs,h′j .

Proof of (b). (⇒): Suppose [[t]]Xs,hj ∈ dom(hj). By Lemma 5.14(I), [[t]]Xs,hj = [[t]]Xs,h and
thus [[t]]Xs,hj 6∈ Rem[W]Xs,h. Therefore, [[t]]Xs,hj ∈ dom(ĥj). From (a), [[t]]Xs,h′j = [[t]]Xs,hj ,

which in turn implies [[t]]Xs,h′j ∈ dom(ĥj) ⊆ dom(h′j).

Proof of (c). (⇒): hj([[t]]Xs,hj) = [[t′]]Xs,hj and therefore by (a) we have [[t]]Xs,hj = [[t]]Xs,h′j
and [[t′]]Xs,hj = [[t′]]Xs,h′j . As done in the proof of (b), we conclude that [[t]]Xs,hj ∈ dom(ĥj).

By ĥj ⊆ hj , ĥj([[t]]Xs,hj) = [[t′]]Xs,hj . By ĥj ⊆ h′j , h′j([[t]]Xs,h′j) = [[t′]]Xs,h′j .

Proof of (d). (⇒): Assume ` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj . By definition, it cannot be that `
is assigned to a program variable in X, as otherwise ` ∈ Lab[W]Xs,hj . So, there is a
next-point variable n(x) such that [[n(x)]]Xs,h = `. From s(x) ∈ Lab[W]Xs,h, we derive
that s(x) 6∈ Rem[W]Xs,h and therefore s(x) ∈ dom(h \ {(`, `′) ∈ h | ` ∈ Rem[W]Xs,h}).
From h \ {(`, `′) ∈ h | ` ∈ Rem[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[W]Xs,h′}, we conclude
that h′(s(x)) = ` and so ` ∈ Lab[W]Xs,h′ . Ad absurdum, suppose ` ∈ Lab[W]Xs,h′j .
From (a) we have ` ∈ Lab[W]Xs,hj , contradicting ` ∈ Lab[W]Xs,h\ Lab[W]Xs,hj . Thus,
` 6∈ Lab[W]Xs,h′j and therefore ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j .

5.3. A Family of Core Formulae Capturing the Fragment W 137

B. For every x ∈ X, Pred[W]Xs,h′j (x) = Pred[W]Xs,hj (x).

We show left-to-right direction. Thanks to ĥj , the right-to-left direction is analogous.
Proof of (B). (⇒): Suppose ` ∈ Pred[W]Xs,h′j (x). By definition, ` 6∈ Lab[W]Xs,h′j and h′j(`) =

s(x). From (a), ` 6∈ Lab[W]Xs,hj . From h′j ⊆ h′, h′(`) = s(x) and therefore it cannot
be that ` belongs to Rem[W]Xs,h′ . By definition of h′j , ` ∈ dom(ĥj). From ĥj ⊆ h′j ,
ĥj(`) = s(x). From ĥj ⊆ hj , hj(`) = s(x). Together with ` 6∈ Lab[W]Xs,hj , this
implies ` ∈ Pred[W]Xs,hj (x),

C. Self[W]Xs,h′j = Self[W]Xs,hj .

We show left-to-right direction. Thanks to ĥj , the right-to-left direction is analogous.
Proof of (C). (⇒): Suppose ` ∈ Self[W]Xs,h′j . By definition, ` 6∈ Lab[W]Xs,h′j and h′j(`) = `.

From (a), ` 6∈ Lab[W]Xs,hj . From h′j ⊆ h′, h′(`) = ` and therefore it cannot be that `
belongs to Rem[W]Xs,h′ . By definition of h′j , ` ∈ dom(ĥj). From ĥj ⊆ h′j , ĥj(`) = `.
From ĥj ⊆ hj , hj(`) = `. Together with ` 6∈ Lab[W]Xs,hj , this implies ` ∈ Self[W]Xs,hj ,

D. min(αj , card(Rem[W]Xs,h′j)) = min(αj , card(Rem[W]Xs,hj)).

Proof of (D). From Lemma 5.14(IV) we have:
Rem[W]Xs,h′j =

(
Rem[W]Xs,h′ ∩ dom(h′j)

)
∪

{` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j | ` ∈ dom(h′j), h′j(`) 6= ` and ∀x ∈ X, h′j(`) 6= s(x)},

Rem[W]Xs,hj =
(
Rem[W]Xs,h ∩ dom(hj)

)
∪

{` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj | ` ∈ dom(hj), hj(`) 6= ` and ∀x ∈ X, hj(`) 6= s(x)}.
By definition of h′j , Rem[W]Xs,h′ ∩ dom(h′j) = Sj . By (2),

min(αj , card(Rem[W]Xs,h′ ∩ dom(h′j))) = min(αj , card(Rem[W]Xs,h ∩ dom(hj))).
Thus, in order to prove (D) we only need to show that the two sets

{` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j | ` ∈ dom(h′j), h′j(`) 6= ` and ∀x ∈ X, h′j(`) 6= s(x)}

and {` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj | ` ∈ dom(hj), hj(`) 6= ` and ∀x ∈ X, hj(`) 6= s(x)}
are equivalent. This amounts to showing that, given a location ` ∈ LOC,

e. ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j , ` ∈ dom(h′j), h′j(`) 6= ` and ∀x ∈ X h′j(`) 6= s(x) iff ` ∈
Lab[W]Xs,h \ Lab[W]Xs,hj , ` ∈ dom(hj), hj(`) 6= ` and ∀x ∈ X hj(`) 6= s(x).

Proof of (e). (⇒): Suppose ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j such that ` ∈ dom(h′j), h′j(`) 6= `

and for every x ∈ X, h′j(`) 6= s(x). From (A)(d), we derive ` ∈ Lab[W]Xs,h\ Lab[W]Xs,hj .
From ` ∈ Lab[W]Xs,h′ , we derive ` 6∈ Rem[W]Xs,h′ . So, by ` ∈ dom(h′j) and definition of h′j ,
we conclude that ` ∈ dom(ĥj). Moreover, ĥj(`) 6= ` and for every x ∈ X, ĥj(`) 6= s(x).
By ĥj ⊆ hj , we derive that ` ∈ dom(hj), hj(`) 6= ` and for every x ∈ X, hj(`) 6= s(x).
(⇐): Analogous to the other direction, again using (A)(d) and the definition of ĥj .

Thanks to the properties (A)–(D), proving (s, hj) ≈WX,αj (s′, h′j), for j ∈ {1, 2}, is straightforward.
Consider a core formula ϕ in Core[W](X, αj). Then, (s, hj) |= ϕ iff (s, h′j) |= ϕ, as shown below:
case: ϕ = t1 = t2. Follows directly from (A)(a).

case: ϕ = t ↪→ . Follows directly from (A)(b).

138 Chapter 5. Deciding Robustness Properties in PSpace

case: ϕ = t ↪→ x or ϕ = t ↪→ t. Follows directly from (A)(c).
case: ϕ = predWX (x) ≥ β. Follows directly from (B).
case: ϕ = selfWX ≥ β. Follows directly from (C).
case: ϕ = remWX ≥ β. Follows directly from (D).
case: ϕ = u = t. Follows directly from (A)(a), since (s, hj) and (s, hj) share the same store.
case: ϕ = u ∈ predWX (x). Follows directly from (B).
case: ϕ = u ∈ selfWX . Follows directly from (C).
case: ϕ = u ∈ remWX . Since Sj = Rem[W]Xs,h′ ∩ dom(h′j), it follows from (1) and (D)(e).
Therefore, (s, h)↔WX,α (s, h′).

Strong of Lemma 5.19, we are ready to prove the ∗-simulation property for the weak fragment.

Lemma 5.20 (W : ∗-simulation). ≈WX,α ⊆ ↔WX,α.

Proof. Let us consider (s, h) and (s′, h′) such that (s, h) ≈WX,α (s′, h′). We build a chain of hops
as the one below, leading to the result by transitivity of ↔WX,α and Lemma 5.18,

(s, h) = (s1, h1)↔WX,α (s2, h2)↔WX,α . . .↔WX,α (sk−1, hk−1)↔WX,α (sk, hk) = (s′, h′).

The proof is by induction on the cardinality of the set [(s, h)#X(s′, h′)] defined as follows:{
(S, T) ∈

{
(Rem[W]Xs,h, Rem[W]Xs′,h′), (Self[W]Xs,h, Self[W]Xs′,h′)
(Pred[W]Xs,h(x), Pred[W]Xs′,h′(x))

∣∣∣∣∣ x ∈ X

} ∣∣∣∣∣ card(S) 6= card(T)
}

Intuitively, this set contains pairs of predecessors sets, self-loops sets, or remainder sets that
have different cardinalities in the two memory states. We build the chain of hops so that for
every intermediate memory state in the chain is obtained from the previous one by modifying
the heap in a way that strictly reduces the number of these pairs, always with respect to the
last memory state of the chain, i.e. (s′, h′).
base case: [(s, h)#X(s′, h′)] = 0. Follows by Lemma 5.18, as ((s, h), (s′, h′)) ∈

(⋂
α′≥1 ≈WX,α′

)
.

induction step: [(s, h)#X(s′, h′)] > 0. Let (S, T) ∈ [(s, h)#X(s′, h′)]. We split the proof in
three cases, all of them quite similar, dealing with the different types of sets S and T .
case (S, T) = (Rem[W]Xs,h, Rem[W]Xs′,h′). Let us assume that card(S) > card(T). Notice that

this assumption is without loss of generality: in the case where card(S) < card(T),
it is sufficient to swap (s, h) and (s′, h′) in the proof, and apply the construction we
now show to produce a chain of hops going from (s′, h′) to (s, h), i.e.

(s′, h′) = (s1, h1)↔WX,α (s2, h2)↔WX,α . . .↔WX,α (sk−1, hk−1)↔WX,α (sk, hk) = (s, h).
So, assuming card(S) > card(T), consider the heap h′′ obtained from h by removing
from its domain card(S)− card(T) locations in Rem[W]Xs,h and different from s(u). For-
mally, h′′ ⊆ h and there is a set Q ⊆ Rem[W]Xs,h such that card(Q) = card(S)− card(T),
dom(h′′) = dom(h) \ Q and s(u) 6∈ Q. Notice that a heap h′′ satisfying these condi-
tions exists. In particular, as card(S) 6= card(T) and (s, h) ≈WX,α (s′, h′), both memory
states must satisfy remWX ≥ α, where α is assumed strictly positive. So, both S and T
have at least α ≥ 1 elements, which allows us to keep s(u) in the domain of h′′, in
the case it belongs to dom(h). We derive four properties of (s, h) and (s, h′′):
1. for every t ∈ T[W]X, [[t]]Xs,h is defined iff so is [[t]]Xs,h′′ . When defined, [[t]]Xs,h = [[t]]Xs,h′′ ,

and if [[t]]Xs,h ∈ dom(h), then h′′([[t]]Xs,h′′) = h([[t]]Xs,h).

5.3. A Family of Core Formulae Capturing the Fragment W 139

Proof. Let us first show that for every t ∈ T[W]X, [[t]]Xs,h is defined iff so is [[t]]Xs,h′′ .
This statement is obvious for t ∈ X, so suppose t = n(x) ∈ NV[W]X. The
right-to-left direction follows directly from Lemma 5.14(I). For the left-to-
right direction, suppose [[n(x)]]Xs,h to be defined, i.e. [[n(x)]]Xs,h

by def= h(s(x)).
Since s(x) ∈ Lab[W]Xs,h, it cannot be that s(x) ∈ Rem[W]Xs,h, which allows
us to conclude that h(s(x)) = h′′(s(x)). From [[n(x)]]Xs,h′′

by def= h′′(s(x)) we
derive [[n(x)]]Xs,h′′ = [[n(x)]]Xs,h. Notice that this proves the second statement,
i.e. [[t]]Xs,h = [[t]]Xs,h′′ , for the case of next-point variables (the case of program
variables being obvious). Let us now show that if [[t]]Xs,h ∈ dom(h), then
h′′([[t]]Xs,h′′) = h([[t]]Xs,h). Suppose [[t]]Xs,h ∈ dom(h). Since [[t]]Xs,h ∈ Lab[W]Xs,h,
we conclude that [[t]]Xs,h 6∈ Rem[W]Xs,h. By definition of h′′, [[t]]Xs,h ∈ dom(h′′).
From [[t]]Xs,h = [[t]]Xs,h′′ and h′′ ⊆ h we conclude: h′′([[t]]Xs,h′′) = h([[t]]Xs,h).

2. for every x ∈ X, Pred[W]Xs,h′′(x) = Pred[W]Xs,h(x).
Proof. Directly from the property (1) above and Lemma 5.14(II). Indeed, (1)

implies Lab[W]Xs,h = Lab[W]Xs,h′′ , so that the equivalence in Lemma 5.14(II)
becomes Pred[W]Xs,h′′(x) = Pred[W]Xs,h(x) ∩ dom(h′′). Lastly, by definition
of h′′, Pred[W]Xs,h(x) ∩ dom(h′′) = Pred[W]Xs,h(x).

3. Self[W]Xs,h′′ = Self[W]Xs,h.
Proof. Directly from the property (1) and Lemma 5.14(III).

4. Rem[W]Xs,h′′ ⊆ Rem[W]Xs,h.
Proof. Directly from the property (1) and Lemma 5.14(IV).

Thanks to these four properties, we conclude that Q∪Rem[W]Xs,h′′ = Rem[W]Xs,h, and so
from card(Q) = card(S) − card(T) we conclude that card(Rem[W]Xs,h′′) = card(T). We
now show that (s, h) ≈WX,α (s, h′′), (s, h)↔WX,α (s, h′′), and (s, h′′)↔WX,α (s′, h′).

Proof of (s, h) ≈WX,α (s, h′′). Thanks to the property (1), (s, h) and (s, h′′) satisfy the
same core formulae of the form t1 = t2, t1 ↪→ , t1 ↪→ x, t1 ↪→ t1 and u = t1.
Thanks to the property (2), given x ∈ X, (s, h) and (s, h′′) satisfy the same core
formulae of the form predWX (x) ≥ β, for every β ∈ [1, α], and they equisatisfy the
core formula u ∈ predWX (x). Thanks to the property (3), (s, h) and (s, h′′) satisfy
the same core formulae of the form selfWX ≥ β, for every β ∈ [1, α], and they
equisatisfy the core formula u ∈ selfWX . From card(Rem[W]Xs,h′′) = card(T) ≥ α
and card(S) ≥ α, we conclude that (s, h) and (s, h′′) satisfy the same core formu-
lae of the form remWX ≥ β, for every β ∈ [1, α]. Since h′′ is constructed so that
s(u) is kept in dom(h′′) if it belongs to Rem[W]Xs,h, we also conclude that the two
memory states (s, h) and (s, h′′) equisatisfy the formula u ∈ remWX .

Proof of (s, h)↔WX,α (s, h′′). Directly from the properties (1)–(4), we conclude that
h \ {(`, `′) ∈ h | ` ∈ Rem[W]Xs,h} = h′′ \ {(`, `′) ∈ h′′ | ` ∈ Rem[W]Xs,h′′}. Thanks
to (s, h) ≈WX,α (s, h′′), we apply Lemma 5.19(I) and derive that (s, h)↔WX,α (s, h′′).

Proof of (s, h′′)↔WX,α (s′, h′). As ≈WX,α is an equivalence relation, (s, h) ≈WX,α (s, h′′) al-
lows us to derive that (s, h′′) ≈WX,α (s′, h′). From the properties (1)–(4), together
with card(Rem[W]Xs,h′′) = card(T), we derive [(s, h′′)#X(s′, h′)] < [(s, h)#X(s′, h′)].
By induction hypothesis, (s, h′′)↔WX,α (s′, h′).

From (s, h) ↔WX,α (s, h′′), (s, h′′) ↔WX,α (s′, h′) and by transitivity of the hop rela-
tion ↔WX,α we conclude: (s, h)↔WX,α (s′, h′).

140 Chapter 5. Deciding Robustness Properties in PSpace

case (S, T) = (Self[W]Xs,h, Self[W]Xs′,h′). As in the previous case, without loss of generality
we can assume card(S) > card(T). We consider the heap h′′ obtained from h by remov-
ing from its domain card(S)− card(T) locations in Self[W]Xs,h, all different from s(u).
Formally, h′′ ⊆ h and there is a set Q ⊆ Self[W]Xs,h s.t. card(Q) = card(S)− card(T),
dom(h′′) = dom(h) \ Q and s(u) 6∈ Q. Notice that a heap h′′ satisfying these condi-
tions exists. In particular, as card(S) 6= card(T) and (s, h) ≈WX,α (s′, h′), both memory
states must satisfy selfWX ≥ α, where α is assumed strictly positive. So, both S

and T have at least α ≥ 1 elements, which allows us to keep s(u) in the domain of h′′,
in the case it belongs to dom(h). (s, h) and (s, h′′) enjoy the following four properties:
1. for every t ∈ T[W]X, [[t]]Xs,h is defined iff so is [[t]]Xs,h′′ . When defined, [[t]]Xs,h = [[t]]Xs,h′′ ,

and if [[t]]Xs,h ∈ dom(h), then h′′([[t]]Xs,h′′) = h([[t]]Xs,h),
2. for every x ∈ X, Pred[W]Xs,h′′(x) = Pred[W]Xs,h(x),
3. Rem[W]Xs,h′′ = Rem[W]Xs,h,
4. Self[W]Xs,h′′ ⊆ Self[W]Xs,h.

The first property is proven as the analogous property in the previous case of the
proof, whereas the other three properties follow by Lemma 5.14. Thanks to (1)–(4),
we derive that Q∪Self[W]Xs,h′′ = Self[W]Xs,h, and so, by card(Q) = card(S)− card(T),
we conclude that card(Self[W]Xs,h′′) = card(T). As done in the previous step, we show
that (s, h) ≈WX,α (s, h′′), (s, h)↔WX,α (s, h′′), and (s, h′′)↔WX,α (s′, h′). By transitivity of
the hop relation ↔WX,α, the last two relationships imply (s, h)↔WX,α (s′, h′).
Proof of (s, h) ≈WX,α (s, h′′). From (1), (s, h) and (s, h′′) satisfy the same core formu-

lae of the form t1 = t2, t1 ↪→ , t1 ↪→ x, t1 ↪→ t1 and u = t1. From (2), given
x ∈ X and β ∈ [1, α], (s, h) and (s, h′′) equisatisfy the core formula predWX (x) ≥ β
and they equisatisfy the core formula u ∈ predWX (x). From (3), (s, h) and (s, h′′)
satisfy the same core formulae of the form remWX ≥ β, for all β ∈ [1, α], and
they equisatisfy the core formula u ∈ remWX . By card(Self[W]Xs,h′′) = card(T) ≥ α
and card(S) ≥ α, we conclude that (s, h) and (s, h′′) satisfy the same core formu-
lae of the form selfWX ≥ β, for every β ∈ [1, α]. Since h′′ is constructed so that
s(u) is kept in dom(h′′) if it belongs to Self[W]Xs,h, we also conclude that the two
memory states (s, h) and (s, h′′) equisatisfy the formula u ∈ selfWX .

Proof of (s, h)↔WX,α (s, h′′). Directly from the properties (1)–(4), we conclude that
h \ {(`, `′) ∈ h | ` ∈ Self[W]Xs,h} = h′′ \ {(`, `′) ∈ h′′ | ` ∈ Self[W]Xs,h′′}. Thanks
to (s, h) ≈WX,α (s, h′′), we apply Lemma 5.19(II) and derive that (s, h)↔WX,α (s, h′′).

Proof of (s, h′′)↔WX,α (s′, h′). As ≈WX,α is an equivalence relation, (s, h) ≈WX,α (s, h′′) al-
lows us to derive that (s, h′′) ≈WX,α (s′, h′). From the equivalences (1)–(4), and
card(Self[W]Xs,h′′) = card(T), we derive [(s, h′′)#X(s′, h′)] < [(s, h)#X(s′, h′)]. By
induction hypothesis, (s, h′′)↔WX,α (s′, h′).

case (S, T) = (Pred[W]Xs,h(x), Pred[W]Xs′,h′(x)), for some x ∈ X. As previously done, with-
out loss of generality we assume card(S) > card(T). Consider the heap h′′ obtained
from h by removing from its domain card(S)− card(T) locations in Pred[W]Xs,h(x)
and different from s(u). Formally, h′′ ⊆ h and there is a set Q ⊆ Pred[W]Xs,h(x)
such that card(Q) = card(S)− card(T), dom(h′′) = dom(h) \Q and s(u) 6∈ Q. Notice
that a heap h′′ satisfying these conditions exists. In particular, as card(S) 6= card(T)
and (s, h) ≈WX,α (s′, h′), both memory states must satisfy predWX (x) ≥ α, where α is
assumed strictly positive. So, both S and T have at least α ≥ 1 elements, which

5.3. A Family of Core Formulae Capturing the Fragment W 141

allows us to keep s(u) in the domain of h′′, in the case it belongs to dom(h). (s, h)
and (s, h′′) enjoy the following five properties:
1. for every t ∈ T[W]X, [[t]]Xs,h is defined iff so is [[t]]Xs,h′′ . When defined, [[t]]Xs,h = [[t]]Xs,h′′ ,

and if [[t]]Xs,h ∈ dom(h), then h′′([[t]]Xs,h′′) = h([[t]]Xs,h),
2. for every y ∈ X, if s(x) 6= s(y) then Pred[W]Xs,h′′(y) = Pred[W]Xs,h(y),
3. Self[W]Xs,h′′ = Self[W]Xs,h,
4. Rem[W]Xs,h′′ = Rem[W]Xs,h,
5. Pred[W]Xs,h′′(x) ⊆ Pred[W]Xs,h(x).

Again, we omit the proofs of these properties, which are analogous to the properties
in the previous two cases of the proof. Thanks to these properties, we conclude
that Q ∪ Pred[W]Xs,h′′(x) = Pred[W]Xs,h(x), and so from card(Q) = card(S) − card(T)
we conclude that card(Pred[W]Xs,h′′(x)) = card(T). We show that (s, h) ≈WX,α (s, h′′),
(s, h)↔WX,α (s, h′′), and (s, h′′)↔WX,α (s′, h′). By transitivity of the hop relation ↔WX,α,
the last two relationships imply (s, h)↔WX,α (s′, h′), concluding the proof.
Proof of (s, h) ≈WX,α (s, h′′). Thanks to the property (1), (s, h) and (s, h′′) satisfy the

same core formulae of the form t1 = t2, t1 ↪→ , t1 ↪→ x, t1 ↪→ t1 and u = t1.
Thanks to the property (3), (s, h) and (s, h′′) satisfy the same core formulae of
the form selfWX ≥ β, for every β ∈ [1, α], and they equisatisfy the core formula
u ∈ selfWX . Thanks to the property (4), (s, h) and (s, h′′) satisfy the same
core formulae of the form remWX ≥ β, for every β ∈ [1, α], and they equisatisfy
the core formula u ∈ remWX . Given a variable y ∈ X such that s(y) 6= s(x),
the property (2) insures that (s, h) and (s, h′′) satisfy the same core formulae
of the form predWX (y) ≥ β, for every β ∈ [1, α], and they equisatisfy the for-
mula u ∈ selfWX (y). Consider a variable y ∈ X such that s(y) = s(x). By
definition, Pred[W]Xs,h′′(y) = Pred[W]Xs,h′′(x) and Pred[W]Xs,h(y) = Pred[W]Xs,h(x).
So, from card(Pred[W]Xs,h′′) = card(T) ≥ α and card(S) ≥ α, we conclude that
both card(Pred[W]Xs,h′′(y)) ≥ α and card(Pred[W]Xs,h(y)) ≥ α holds. So, (s, h) and
(s, h′′) satisfy the same core formulae of the form predWX (y) ≥ β, for all β ∈ [1, α].
Lastly, as h′′ is constructed so that s(u) is kept in dom(h′′) if it belongs to
Pred[W]Xs,h(x), we conclude that the two memory states (s, h) and (s, h′′) equi-
satisfy the formula u ∈ predWX (y).

Proof of (s, h)↔WX,α (s, h′′). Directly from the properties (1)–(4), we conclude that
h \ {(`, `′) ∈ h | ` ∈ Pred[W]Xs,h(x)} = h′′\ {(`, `′) ∈ h′′ | ` ∈ Pred[W]Xs,h′′(x)} holds.
As (s, h) ≈WX,α (s, h′′), we apply Lemma 5.19(III) to derive (s, h)↔WX,α (s, h′′).

Proof of (s, h′′)↔WX,α (s′, h′). As ≈WX,α is an equivalence relation, (s, h) ≈WX,α (s, h′′) al-
lows us to derive (s, h′′) ≈WX,α (s′, h′). From the properties (1)–(5), together with
card(Pred[W]Xs,h′′(x)) = card(T), we derive [(s, h′′)#X(s′, h′)] < [(s, h)#X(s′, h′)].
By induction hypothesis, (s, h′′)↔WX,α (s′, h′).

5.3.4 Step IV: ∃-simulation.

As the weak fragment involves first-order quantification, in order for the core formulae to char-
acterise the expressive power of the logic they need to enjoy a ∃-simulation property. Similarly
to the ∗-simulation stated in Lemma 5.6, this property can be formalised by looking at the
semantics of the existential quantification over the unique variable name u. Recall that, in a

142 Chapter 5. Deciding Robustness Properties in PSpace

formula of the form ∃uϕ, the existential quantification essentially requires to update the loca-
tion assigned to u so that the formula ϕ is satisfied. The ∃-simulation property states that,
given (s, h) ≈WX,α (s′, h′), whenever we assign a location `1 to u through s, it is possible to find a
location `2 such that (s[u← `1], h) ≈WX,α (s′[u← `2], h′). Albeit this is enough to conclude that
the core formulae effectively capture the expressiveness of the first-order quantification, in order
to show that SL([∃]1, ∗, [−∗, ↪→+]SW) enjoys a polynomial small-heap property we want to restrict
the space of locations that must be considered when selecting the location `2. In order to do so,
in the following and for the rest of the chapter we assume LOC to be the set of natural numbers.

Assumption 5.21. LOC = N.

As the two sets are isomorphic this assumption is without loss of generality, and allows us to use
arithmetic constraints directly on locations. We define the maximum value of a memory state.

Definition 5.22 (Maximum value). Consider a memory state (s, h), and let Y ⊆ VAR. We
write maxvalY(s, h) for the location max(dom(h)∪ ran(h)∪s(Y)), i.e. the maximum value among
the locations assigned to a variable in Y or appearing in either the domain or range of the heap h.

The notion of maximum value allows us to restrict the possible choices for the location `2 in
the ∃-simulation property to a location that is at most maxvalX(s′, h′) + 1. Taking into account
this additional constraint, the ∃-simulation property is formalised as follows.

Lemma 5.23 (W :∃-simulation). Suppose (s, h) ≈WX,α (s′, h′). For every location `1 ∈ LOC there
is a location `2 ≤ maxvalX(s′, h′) + 1 such that (s[u← `1], h) ≈WX,α (s′[u← `2], h′).

Proof. First of, we notice that the definition of predecessors sets, self-loops sets and remainder
sets does not depend on the location assigned to the variable u 6∈ X. More precisely, for every
memory state (ŝ, ĥ) and location ̂̀ the following equivalences hold (where x ∈ X):

Lab[W]X
ŝ,̂h

= Lab[W]X
ŝ[u←̂̀],̂h , Pred[W]X

ŝ,̂h
(x) = Pred[W]X

ŝ[u←̂̀],̂h(x) ,

Self[W]X
ŝ,̂h

= Self[W]X
ŝ[u←̂̀],̂h , Rem[W]X

ŝ,̂h
= Rem[W]X

ŝ[u←̂̀],̂h .

We denote these equivalences by (Inv-u). Directly from them, we notice that for every core
formula ϕ in Sk[W](X, α) and `1, `2 ∈ LOC, we have

(s[u← `1], h) |= ϕ, iff (s, h) |= ϕ, (by (Inv-u))
iff (s′, h′) |= ϕ, (by (s, h) ≈WX,α (s′, h′))
iff (s′[u← `2], h′) |= ϕ. (by (Inv-u))

Therefore, in order to prove the result it is sufficient to show that for every `1 ∈ LOC there
is `2 ≤ maxvalX(s′, h′) + 1 such that the memory states (s[u← `1], h) and (s′[u← `2], h′) agree
on the satisfaction of every core formula in Obs[W](X). The choice for `2 depends on whether `1
belongs to the set of labelled locations, a predecessor set, the self-loop set, the remainder set,
or it does not belong to any of these sets:
case: `1 ∈ Lab[W]Xs,h. Let t ∈ T[W]X be such that [[t]]Xs,h = `1. By (s, h) ≈WX,α (s′, h′), [[t]]Xs′,h′

is defined. Consider `2 = [[t]]Xs′,h′ . Notice that if t = x (syntactically) holds for some
x ∈ X, then `2 ∈ s(X). Otherwise, t = n(x) (for x ∈ X) and so `2 ∈ ran(h). Therefore, by
definition of maximum value, `2 ≤ maxvalX(s′, h′)+1. We show that the two memory states
(s[u ← `1], h) and (s′[u ← `2], h′) satisfy the same core formulae from Obs[W](X). Given
a core formula ϕ in {u ∈ predWX (x), u ∈ selfWX , u ∈ remWX | x ∈ X}, we conclude that

5.3. A Family of Core Formulae Capturing the Fragment W 143

(s[u← `1], h) 6|= ϕ and (s′[u← `2], h′) 6|= ϕ. Indeed, ϕ can be satisfied only if the location
assigned to u is unlabelled. This is not the case here, as `1 ∈ Lab[W]Xs,h = Lab[W]Xs[u←`1],h
and `2 ∈ Lab[W]Xs′,h′ = Lab[W]Xs′[u←`2],h′ by (Inv-u). Now, let us consider a core formula of
the form u = t′, where t′ ∈ T[W]X. We have

(s[u← `1], h) |= u = t′,
⇔ `1 = [[t′]]Xs[u←`1],h, (by definition of |=)

⇔ `1 = [[t′]]Xs,h = [[t]]Xs,h, (by hypothesis `1 = [[t]]Xs,h and [[t′]]Xs[u←`1],h = [[t′]]Xs,h)

⇔ `2 = [[t′]]Xs′,h′ = [[t]]Xs′,h′ , (from `2 = [[t]]Xs′,h′ and (s, h) ≈WX,α (s′, h′))
⇔ `2 = [[t′]]Xs′[u←`2],h′ ,

(from [[t′]]Xs′[u←`1],h′ = [[t′]]Xs′,h′. The right-to-left direction also uses `2 = [[t′]]Xs′,h′)
⇔ (s′[u← `2], h′) |= u = t′. (by definition of |=)

case: `1 ∈ Rem[W]Xs,h. In this case, card(Rem[W]Xs,h) ≥ 1 and so (s, h) |= remWX ≥ 1. From the
hypothesis (s, h) ≈WX,α (s′, h′), this implies card(Rem[W]Xs′,h′) ≥ 1. Consider `2 ∈ Rem[W]Xs′,h′ .
As `2 ∈ dom(h), we have `2 ≤ maxvalX(s′, h′) + 1. From (Inv-u) (fourth equivalence),
both the memory states (s[u ← `1], h) and (s′[u ← `2], h′) satisfy the formula u ∈ remWX .
Moreover, (s[u← `1], h) 6|= ϕ and (s′[u← `2], h′) 6|= ϕ hold for every core formula ϕ in the
set {u = t, u ∈ predWX (x), u ∈ selfWX | x ∈ X and t ∈ T[W]X}.

case: `1 ∈ Self[W]Xs,h. In this case, card(Self[W]Xs,h) ≥ 1 and so (s, h) |= selfWX ≥ 1. From the
hypothesis (s, h) ≈WX,α (s′, h′), this means card(Self[W]Xs′,h′) ≥ 1. Consider `2 ∈ Self[W]Xs′,h′ .
As `2 ∈ dom(h), we have `2 ≤ maxvalX(s′, h′) + 1. Similarly to the previous cases, we can
show that the two memory states (s[u ← `1], h) and (s′[u ← `2], h′) satisfy the same
core formulae from Obs[W](X). More precisely, the two memory states (s[u ← `1], h)
and (s′[u← `2], h′) only satisfy the core formula u ∈ selfWX .

case: `1 ∈ Pred[W]Xs,h(x), for some x ∈ X. In this case, card(Pred[W]Xs,h(x)) ≥ 1 and so (s, h)
satisfies predWX (x) ≥ 1. From (s, h) ≈WX,α (s′, h′), this implies card(Pred[W]Xs′,h′(x)) ≥ 1.
Consider `2 ∈ Pred[W]Xs′,h′(x). As `2 ∈ dom(h), it holds that `2 ≤ maxvalX(s′, h′) + 1.
Both (s[u← `1], h) 6|= ϕ and (s′[u← `2], h′) 6|= ϕ hold for every formula ϕ in the set

{u = t, u ∈ selfWX , u ∈ remWX | x ∈ X and t ∈ T[W]X}.

Let us consider the a core formula u ∈ predWX (y), for y ∈ X. We have,

(s[u← `1], h) |= u ∈ predWX (y),
⇔ `1 ∈ Pred[W]Xs[u←`1],h(y), (by definition of |=)

⇔ `1 ∈ Pred[W]Xs,h(x) and s(x) = s(y),
(by hypothesis `1 ∈ Pred[W]Xs,h(x) and Pred[W]Xs,h(y) = Pred[W]Xs[u←`1],h(y), as u 6∈ X)

⇔ `2 ∈ Pred[W]Xs′,h′(x) and s′(x) = s′(y),
(from `2 ∈ Pred[W]Xs′,h′(x) and (s, h) ≈WX,α (s′, h′))

⇔ `2 ∈ Pred[W]Xs′[u←`2],h′(y),

(from Pred[W]Xs′,h′(y) = Pred[W]Xs′[u←`1],h′(y), as u 6∈ X.

The right-to-left direction also uses `2 ∈ Pred[W]Xs′,h′(x))
⇔ (s′[u← `2], h′) |= u ∈ predWX (y). (by definition of |=)

144 Chapter 5. Deciding Robustness Properties in PSpace

case: `1 6∈ dom(h) ∪ Lab[W]Xs,h. In this case, `1 is an unlabelled location that does not belong to
Rem[W]Xs,h, Self[W]Xs,h nor Pred[W]Xs,h(x) (for any x ∈ X). Let `2 = maxvalX(s′, h′)+1. By
definition of maxvalX(s′, h′), we have `2 6∈ dom(h′) and `2 6∈ Lab[W]Xs′,h′ ⊆ ran(h′) ∪ s′(X).
Thus, `2 is an unlabelled location that does not belong to neither Rem[W]Xs′,h′ , Self[W]Xs′,h′
nor Pred[W]Xs′,h′(x) (for any x ∈ X). By (Inv-u) and from the definition of the core formulae,
for every ϕ in Obs[W](X) we have (s[u← `1], h) 6|= ϕ and (s′[u← `2], h′) 6|= ϕ.

5.4 Recap: How to Apply the Core Formulae Technique

The proof of the ∃-simulation property ends the analysis of the weak fragment (with the ex-
ception of the magic wand W −∗ S, which is studied in Section 5.6). In the next section, we
reformulate this analysis in the context of the strong fragment. While the key steps are exactly
the same, the definition of the core formulae and the proofs needed in order to establish the
∗-simulation property reveal to be much more challenging. Thus, before moving to the strong
fragment, we recapitulate the key component of the analysis performed on the weak fragment.

Recall that the goal of Section 5.3 is to define a set of core formulae whose Boolean combina-
tions capture the expressive power of the weak fragment (excluding the separating implication).
From [104], the core formulae should capture the atomic formulae of the weak fragment, and
satisfy the ∗-simulation and ∃-simulation properties. With this in mind, we proceed as follows.

Step I and II. First of all, we focus on the definition of core formulae. We start (step I)
by considering a family of disjoint sets of locations that partition the domain on the heap. In
the case of the weak fragment, given a memory state (s, h), this family is made of the set of
labelled locations Lab[W]Xs,h, the predecessor sets Pred[W]Xs,h(x), the self-loops set Self[W]Xs,h and
the remainder set Rem[W]Xs,h. The following result is established.

Proposition 5.13. Let (s, h) be a memory state. The set of all the non-empty sets among
dom(h)∩Lab[W]Xs,h, Self[W]Xs,h, Rem[W]Xs,h and all Pred[W]Xs,h(x) (x ∈ X), is a partition of dom(h).

The core formulae are defined (step II) following this family of sets, so that the satisfiability of
each core formula only depends on the locations in a single set. For instance, the core formula
selfWX ≥ β only depends on the cardinality of the set Self[W]Xs,h. This is done to simplify the
game hopping strategy used in order to prove the ∗-simulation property.

We show that Boolean combinations of core formulae capture the atomic formulae of the
logic. In the context of the weak fragment, this is established in Lemma 5.15, recalled below.

Lemma 5.15. Every atomic formula of the weak fragment written with variables from X∪ {u}
is equivalent to a Boolean combination of formulae from Core[W](X, 1).

Step III. The definition of core formulae naturally leads to an indistinguishability relation on
memory states, where two memory states are in the relation if and only if they satisfy the same
core formulae, up to certain thresholds. For the weak fragment, this relation is denoted by ≈WX,α,
where the threshold α ≥ 1 is an upper bound on the natural number β appearing in the core
formulae selfWX ≥ β, predWX (x) ≥ β and remWX ≥ β.

We show that the core formulae enjoy the ∗-simulation property. Given (s, h) ≈WX,α (s′, h′),
this property states that for every way of partitioning h into two heaps h1 and h2, and dividing
α into α1 ≥ 1 and α2 ≥ 1 (so, h = h1 +h2 and α = α1 +α2), there is a way of partitioning h′ into

5.4. Recap: How to Apply the Core Formulae Technique 145

h′1 and h′2 such that (s, h1) ≈WX,α1 (s′, h′2) and (s, h2) ≈WX,α2 (s′, h′2). To prove the ∗-simulation
property, we rely on game hopping. We introduce the W-hop relation, recalled below, which
allows us to rephrase the ∗-simulation property as the inclusion ≈WX,α⊆↔WX,α.

Definition 5.17 (W-hop relation). We write ↔WX,α for the relation on memory states such that

(s, h)↔WX,α (s′, h′) iff for every two heaps h1 and h2 and every α1 ≥ 1 and α2 ≥ 1,
if h = h1 + h2 and α = α1 + α2 then there are two heaps h′1 and h′2
such that h′ = h′1 + h′2, (s, h1) ≈WX,α1 (s′, h′1) and (s, h2) ≈WX,α2 (s′, h′2).

With the aim of building a chain of hops as explained in Section 5.2, we start by proving that
the inclusion ≈WX,α⊆↔WX,α holds for specific memory states (s, h) and (s′, h′) that are very similar.
First of all, we restrict ourselves to memory states that are in the relation ≈WX,α′ for every α′ ≥ 1.
This is done in Lemma 5.18, recalled below.

Lemma 5.18. For every α ≥ 1,
(⋂

α′≥1 ≈WX,α′
)
⊆ ↔WX,α.

Notice that ((s, h), (s′, h′)) ∈
⋂
α′≥1 ≈WX,α′ implies that the two memory states (s, h) and (s′, h′)

agree on the set of labelled locations, as well as on the cardinality of all sets defined in Step I. This
facilitates the proof of (s, h) ↔WX,α (s′, h′), as the two memory states are essentially equivalent
when it comes to the ∗-simulation property.

After the “base case” handled by Lemma 5.18, we consider memory states (s, h) ≈WX,α (s′, h′)
where s′ = s and h′ is obtained from h by modifying the locations of exactly one of the sets
introduced in step I. Thanks to the disjointness of these sets, this local update simplifies the
proof of (s, h)↔WX,α (s′, h′), discussed in Lemma 5.19.

Lemma 5.19. (s, h)↔WX,α (s, h′) holds if (s, h) ≈WX,α (s, h′) and one of the following holds:
(I) h \ {(`, `′) ∈ h | ` ∈ Rem[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[W]Xs,h′},

(II) h \ {(`, `′) ∈ h | ` ∈ Self[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Self[W]Xs,h′},

(III) h \ {(`, `′) ∈ h | ` ∈ Pred[W]Xs,h(x)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[W]Xs,h′(x)}, for some x ∈ X.

After Lemma 5.19 is established, we are ready to prove the ∗-simulation property ≈WX,α⊆↔WX,α
by building a chain of hops as the one schematised below:

(s, h) = (s1, h1)↔WX,α (s2, h2)↔WX,α . . .↔WX,α (sk−1, hk−1)↔WX,α (sk, hk) = (s′, h′).

This is done inductively in Lemma 5.20. At each hop j ∈ [1, k−2], the memory state (sj+1, hj+1)
is constructed by locally updating (sj , hj) so that we rely on Lemma 5.19 to conclude that
(sj , hj) ↔WX,α (sj+1, hj+1). At each hop we make (sj , hj) closer and closer to (s′, h′), until
we reach a memory state (sk−1, hk−1) for which we can derive (sk−1, hk−1) ↔X,α (s′, h′) di-
rectly by Lemma 5.18. Then, (s, h) ↔WX,α (s′, h′) follows by transitivity of the hop relation
(see Lemma 5.9), concluding the proof of the ∗-simulation property.

In the next section, most of our efforts are spent deriving a ∗-simulation property for the
core formulae of the strong fragment. Even though the complexity of these formulae severely
complicates the technical steps required to show this result, the proof strategy we use is exactly
the one described here.

146 Chapter 5. Deciding Robustness Properties in PSpace

Step IV. Lastly, we show that the core formulae enjoy the following ∃-simulation property.

Lemma 5.23 (W :∃-simulation). Suppose (s, h) ≈WX,α (s′, h′). For every location `1 ∈ LOC there
is a location `2 ≤ maxvalX(s′, h′) + 1 such that (s[u← `1], h) ≈WX,α (s′[u← `2], h′).

This property essentially states that every new assignment u ← `1 performed on (s, h) can be
simulated in (s′, h′), with respect to the indistinguishability relation ≈WX,α. The proof is by cases
on the membership of `1 to the sets defined in step I. To facilitate this case analysis, the core
formulae introduced in step II are divided in two sets Sk[W](X, α) and Obs[W](X). The satisfaction
of formulae in Sk[W](X, α) does not depend on the location assigned to u, so that only the core
formulae in Obs[W](X) need to be considered.

5.5 A Family of Core Formulae Capturing the Fragment S

In this section, we extend the analysis carried out in Section 5.3 and summarised in Section 5.4
to the context of the fragment S. Our goal is to define a set of core formulae whose Boolean
combinations capture the expressive power of strong fragment, whose syntax is recalled below:

S := W | x ↪→+t | u ↪→+u | S ∧ S | ¬ϕ | S ∗ S | ∃u S.

The strong fragment can be seen as an extension of the weak fragment featuring the reachability
predicates x ↪→+t and u ↪→+u. This addition complicates the definition of the core formulae,
which reflects on the analysis needed to prove the ∗-simulation and ∃-simulation properties.

5.5.1 Step I: partitioning the heap.

As done in Section 5.3, we first aim at defining a partition of the heap, which depends on
syntactical terms that correspond to specific locations of a memory state. These terms are more
advanced than the next-point variables introduced for the weak fragment, and they deserve a
more gentle introduction. For the whole section, we let X ⊆fin VAR\{u} be a finite set of program
variables not including the unique quantified variable name u.

End-point variables. Consider a memory state (s, h). As analysed during Example 5.2, the
strong formula ∃u (x ↪→+u ∗ u ↪→+u), states that s(x) does not belong to a cycle but reaches one
(for instance, see Figure 5.7). More precisely, in the formula this is accomplished by stating
that it is possible to assign to u the first location reachable from s(x) that belongs to a cycle.
Formally, a location ` belongs to a cycle in h whenever there is δ ≥ 1 such that hδ(`) = `.
Similarly, we can force u to correspond to a location that is not in the domain of the heap and
it is reached by s(x) in at least one step. This corresponds to the formula ∃u (x ↪→+u∧¬u ↪→).
These two examples lead to the introduction of end-point variables: syntactical objects of the
form e(x) whose set is defined as EV[S]X def= {e(x) | x ∈ X}. An end-point variable e(x) is intended
to correspond exactly to a location among the ones we just described. More precisely,

1. if s(x) does not belong to a cycle but reaches one, then e(x) corresponds to the first location
reachable from s(x) that belongs to that cycle,

2. otherwise, if s(x) ∈ dom(h) does not reach a cycle, then e(x) corresponds to the only
location reachable from s(x) that does not belong to the domain of h.

5.5. A Family of Core Formulae Capturing the Fragment S 147

Formally, the semantics of e(x) is given by extending the evaluation [[.]]Xs,h as follows:

[[e(x)]]Xs,h = ` def⇔ there is δ ≥ 1 s.t. hδ(s(x)) = ` and if ` ∈ dom(h) then ` belongs to a cycle.
Moreover, hδ−1(s(x)) does not belong to a cycle.

We highlight that [[e(x)]]Xs,h is not defined if s(x) 6∈ dom(h), nor if s(x) belongs to a cycle.
Otherwise, [[e(x)]]Xs,h is uniquely defined.

Meet-point variables. In Example 5.2, we have seen that ∃u ((x ↪→+u ∗ y ↪→+u) ∧ ¬u ↪→)
is satisfied whenever a memory state (s, h) witnesses two disjoint non-empty paths, one going
from s(x) to ` and one going from s(y) to `, where ` is a location not in the domain of h. Here,
notice that the disjointness of the two paths refers to the arrows in the heap. This pattern
contributes to the definition of the meet-point variables MV[S]X def= {m(x, y) | x, y ∈ X}. A meet-
point variable m(x, y) ∈ MV[S]X is evaluated through [[.]]Xs,h as follows:

[[m(x, y)]]Xs,h = ` def⇔ there are δ1, δ2 ≥ 1 such that hδ1(s(x)) = hδ2(s(y)) = ` and
for all δ′1 ∈ [0, δ1], δ′2 ∈ [0, δ2], if δ′1 + δ′2 < δ1 + δ2 then hδ

′
1(s(x)) 6= hδ

′
2(s(y)).

Moreover, ` does not belong to a cycle of h.

Informally, when [[m(x, y)]]Xs,h is defined, it is the only location ` for which there are two disjoint
non-empty paths, one going from s(x) to ` and one going from s(y) to `. In order for [[m(x, y)]]Xs,h
to be uniquely defined, we require that it does not correspond to a location belonging to a cycle,
as formalised in the last statement of its characterisation. Indeed, in the following memory state
there are two ways to construct disjoint paths going from s(x) and s(y) to a common location `,
one where ` = `1 and the other where ` = `2.

x
`1 `2

y

In this case, [[m(x, y)]]Xs,h is not defined. However, we notice that the locations `1 and `2 are still
interesting, as they correspond to the end-point variables e(x) and e(y), respectively. Moreover,
if {`1 7→ `2} is removed from the heap then `1 becomes the location corresponding to m(x, y).
Symmetrically, removing {`2 7→ `1} leads to m(x, y) being evaluated as `2. One can notice that
there is only one case where m(x, y) and e(x) evaluate to the same location. That is, when (s, h)
satisfies the formula ∃u ((x ↪→+u ∗ y ↪→+u) ∧ ¬u ↪→) discussed above.

Labelled locations. We extend the notion of terms introduced in the previous section to the
elements belonging to the set T[S]X def= X∪ EV[S]X ∪ MV[S]X. Similarly, we call labelled the locations
corresponding to terms of T[S]X, and write Lab[S]Xs,h for their set.

Example 5.24. Figure 5.7 highlights the labelled locations of a memory state, say (s, h), with
their respective terms. Notice that no location corresponds to the term m(v, w), since there is a
path going from s(w) to s(v). Similarly, [[m(x, z)]]Xs,h and [[m(y, z)]]Xs,h are not defined, as the two
disjoint paths starting from s(x) (or s(y)) and s(z) meet at a location that belongs to a cycle,
i.e. the location corresponding to the end-point variables e(x), e(y) and e(z).

Interestingly enough, despite the fact that MV[S]X contains card(X)2 meet-point variables, we
show that Lab[S]Xs,h contains at most card(X) distinct locations that correspond to meet-point or

148 Chapter 5. Deciding Robustness Properties in PSpace

y

m(x, y)
m(y, x) e(x)

e(y)
e(z)

e(v)
e(w)

v

x z w

Figure 5.7: A memory state. Labelled locations are highlighted.

end-point variables. That is, card(Lab[S]Xs,h\s(X)) ≤ card(X). Together with s(X) ⊆ Lab[S]Xs,h, this
implies that card(Lab[S]Xs,h) ≤ 2× card(X). Below, we prove this result, which helps us familiarise
with the concepts of meet-point and end-point variables.

Lemma 5.25. card(Lab[S]Xs,h \ s(X)) ≤ card(X).

The proof of this lemma revisits standard arguments relating the number of internal nodes
appearing in a forest with the number of its leafs. Roughly speaking, the reachability relation
between locations corresponding to program variables and meet-points variables can be repre-
sented as a forest where every location corresponding to a meet-point variable has at least 2
children. In each tree of the forest, if n locations correspond to meet-point variables then there
are at least n + 1 leaves, all of them corresponding to program variables in Y ⊆ X. Lastly, the
root of each tree reaches exactly one location that corresponds to an end-point variable written
using variables from Y. This leads to Lemma 5.25. The formal proof is given below.

Proof. Suppose ` = [[m(x, y)]]Xs,h and `′ = [[e(x)]]Xs,h. We recall that, from the semantics of meet-
point variables, ` = [[m(x, y)]]Xs,h implies that there are two disjoint non-empty paths, one going
from s(x) to ` and one going from s(y) to `. Moreover, ` does not belong to a cycle of h. Instead,
from the semantics of end-point variables, `′ = [[e(x)]]Xs,h implies that s(x) does not belong to a
cycle and there is a non-empty path going from s(x) to `′. Moreover, either `′ does not belong
to dom(h) or it is the first location reachable from s(x) that belongs to a cycle in h. Obviously,
this means that there cannot be a non-empty path in h going from `′ to `, as it would entail
that ` belongs to a cycle. On the contrary, h witnesses a (possibly empty) path going from ` to
`′. Moreover, `′ = [[e(y)]]Xs,h. Indeed, h witnesses a non-empty path going from s(y) to `, and
a path from ` to `′. If `′ does not belong to dom(h), then clearly `′ = [[e(y)]]Xs,h. Otherwise,
as `′ = [[e(x)]]Xs,h, we conclude that `′ is the first location reachable from s(x) that belongs to a
cycle. Since ` = [[m(x, y)]]Xs,h does not belong to a cycle, we conclude that the path in h going
from ` to `′ is non-empty, which implies that `′ is also the first location reachable from s(y) that
belongs to a cycle. Recapitulating,

A. if [[m(x, y)]]Xs,h is defined, then [[e(x)]]Xs,h = [[e(y)]]Xs,h.
As every location corresponding to a meet-point variable necessarily reaches a location corre-
sponding to an end-point variable, the lemma trivially holds if no end-point variable is defined.
Otherwise, let us consider the set S = {`1, . . . , `k} of all locations corresponding to at least
one end-point variable, where k ≥ 1. Furthermore, given i ∈ [1, k], we write E(`j) for the
set of variables in X that are used to write the end-point variable corresponding to `j , that

5.5. A Family of Core Formulae Capturing the Fragment S 149

is E(`j) def= {x ∈ X | [[e(x)]]Xs,h = `j}. For every distinct i, j ∈ [1, k], E(`i) and E(`j) are disjoint.
Moreover,

⋃
j∈[1,k] E(`j) ⊆ X, which implies

B. k ≤
∑

1∈[1,k] card(E(`j)) ≤ card(X).
We write M(`j) for the set {` ∈ LOC | there are x, y ∈ E(`j), [[m(x, y)]]Xs,h = `}. Given i, j ∈ [1, k],
x ∈ E(`i) and y ∈ E(`j), if [[m(x, y)]]Xs,h is defined then, by (A), `i = [[e(x)]]Xs,h = [[e(y)]]Xs,h = `j , and
thus i = j. This allows us to manipulate Lab[S]Xs,h \ s(x) as follows:

Lab[S]Xs,h \ s(x) = {`1, . . . , `k} ∪ {` ∈ Lab[S]Xs,h | there are x, y ∈ X, [[m(x, y)]]Xs,h = `}
= {`1, . . . , `k} ∪

⋃
j∈[1,k] M(`j).

Therefore, card(Lab[S]Xs,h \ s(x)) ≤ k +
∑
j∈[1,k] card(M(`j)). In order to conclude the proof it is

sufficient to show that for every j ∈ [1, k], card(M(`j)) < card(E(`j)). Indeed, by (B), this implies

card(Lab[S]Xs,h \ s(x)) ≤ k +
∑
j∈[1,k](card(E(`j))− 1) ≤

∑
j∈[1,k] card(E(`j)) ≤ s(X).

Let j ∈ [1, k]. As E(`j) 6= ∅, if M(`j) = ∅ then obviously card(M(`j)) < card(E(`j)). Therefore,
let us assume M(`j) 6= ∅. We extend the definition of E(.) and M(.) to locations in M(`j). Given
` ∈ M(`j), we write E(.) for the set of locations x ∈ E(`j) such that h witnesses a non-empty path
going from s(x) to `. We write M(`) for the set of locations `′ ∈ M(`j) such that h witnesses a
(possibly empty) path going from `′ to `. Notice that M(`) ⊆ M(`j) and E(`) ⊆ E(`j). Since `
corresponds to a meet-point variable, the following properties are satisfied:

C. For every `′ ∈ M(`), if `′ 6= ` then ` 6∈ M(`′).
D. For every `′ ∈ M(`), M(`′) ⊆ M(`).
E. `′, `′′ ∈ M(`), if `′ 6∈ M(`′′) and `′′ 6∈ M(`′), then M(`′) ∩ M(`′′) = ∅ and E(`′) ∩ E(`′′) = ∅.
F. For every `′ ∈ M(`), if `′ 6= ` then E(`′) ⊂ E(`).

The properties (C)–(E) hold directly from the fact that ` does not belong to a cycle. In partic-
ular, (C) states that if h witnesses a non-empty path going from `′ ∈ M(`) to `, then h does not
witness a path going from ` to `′. (D) states that if a location corresponding to a meet-point vari-
able reaches `′ ∈ M(`), then it also reaches also `. (E) states that, given two locations `′, `′′ ∈ M(`)
that do not reach each other, for every location `′′′ that corresponds to either a variable or a
meet-point variable, if `′′′ reaches `′ then `′′′ does not reach `′′, and vice versa. The property (F)
is slightly different, and holds directly from the fact that, for all ` ∈ M(`′), h witnesses disjoint
non-empty paths going from (at least) two locations assigned to program variable to `. There-
fore, given `′ ∈ M(`) \ {`}, the locations in s(X) that reach ` are more than the locations in s(X)
that reach `′. This implies (F). Given ` ∈ M(`j) ∪ {`j}, we prove that card(M(`j)) < card(E(`j))
by induction on M(`) \ {`}, and with induction hypothesis:

for every `′ ∈ M(`) \ {`}, card(M(`′)) < card(E(`′)).

Notice that, from (C) and (D), for every `′ ∈ M(`), if `′ 6= ` then M(`′) ⊂ M(`′). The induction is
well-founded, with base case M(`) \ {`} = ∅.
base case: M(`) \ {`} = ∅. As we assumed M(`j) 6= ∅, ` is a meet-point variable (and it can

be that ` = `j). Let x, y ∈ VAR such that [[m(x, y)]]Xs,h = `. By definition, h witnesses
two disjoint non-empty paths, one going from s(x) to `, and one going from s(y) to `. By
definition of E(.), {x, y} ⊆ E(`). Thus, card(M(`)) ≤ 1 < 2 ≤ card(E(`)).

induction step: M(`) \ {`} = {`′1, . . . , `′n}. By (E), together with the fact that for all i ∈ [1, n],
`′i ∈ M(`′i), there is a non-empty subset {`′′1, . . . , `′′m} ⊆ {`′1, . . . , `′n} such that
G. for every i, i′ ∈ [1,m], M(`′′i) ∩ M(`′′i′) = ∅ and E(`′′i) ∩ E(`′′i′) = ∅,

150 Chapter 5. Deciding Robustness Properties in PSpace

H. {`′1, . . . , `′n} =
⋃
i∈[1,m] M(`′′i).

By induction hypothesis, for every i ∈ [1,m], card(M(`′′i)) < card(E(`′′i)). Therefore,
n =

∑
i∈[1,m] card(M(`′′i)) ≤ (

∑
i∈[1,m] card(E(`′′i)))−m, (I)

where the first equivalence holds by (H). The proof splits in the following three cases:

case: ` does not correspond to a meet-point. In this case, ` = `j and `j 6∈ M(`j).
Therefore, we conclude that M(`j) = {`′1, . . . , `′n} and

⋃
i∈[1,m] E(`′′i) ⊆ E(`j). From (G)

and (I), card(M(`j)) = n < (
∑
i∈[1,m] card(E(`′′i))) < card(E(`j)).

case: ` corresponds to a meet-point variable, and m− 1. In this case, we have that
M(`)={`′, . . . , `′n, `} and thus card(M(`)) = n + 1. Since m = 1, by (I), we have
card(M(`)) ≤ card(E(`′′1)). By (F), card(E(`′′1))< card(E(`)). So, card(M(`))< card(E(`)).

case: ` corresponds to a meet-point variable, and m ≥ 2. As in the previous case,
we have M(`) = {`′1, . . . , `′n, `} and thus card(M(`)) = n + 1. Since m ≥ 2, by (I),
card(M(`)) <

∑
i∈[1,m] card(E(`′′i)). By (G) and (F),

∑
i∈[1,m] card(E(`′′i)) ≤ card(E(`)).

Thus, card(M(`)) < card(E(`)).

Further properties of labelled locations are required in order to introduce the partition of
the heap. First of all, we notice that every labelled location that belongs to the domain of the
heap reaches, in at least one step, a labelled location.

Lemma 5.26. Let (s, h) be a memory state and consider a labelled location ` ∈ Lab[S]Xs,h such
that ` ∈ dom(h). h witnesses a non-empty path going from ` to a labelled location.

Proof. If ` belongs to a cycle, then the lemma is trivially satisfied. So, let us assume that `
does not belong to a cycle. As ` ∈ dom(h), it cannot be that ` corresponds to an end-point
variable, and therefore it corresponds to either a variable or a meet-point variable. Let us
analyse the first case by supposing that there is x ∈ X such that s(x) = `. As ` does not
belong to a cycle and it is in the domain of the heap, [[e(x)]]Xs,h is defined. From its definition,
[[e(x)]]Xs,h is reached by ` in at least one step. Now, let us suppose that there are x, y ∈ X such
that [[m(x, y)]]Xs,h = `. By definition, there is a non-empty path from s(x) to `, which implies that
s(x) ∈ dom(h). Again, s(x) cannot belong to a cycle, and therefore [[e(x)]]Xs,h is defined. From
the functionality of h, we know that there must be either a path from [[e(x)]]Xs,h to ` or vice versa.
However, [[e(x)]]Xs,h either belongs to a cycle or does not belong to dom(h). Since ` is in dom(h)
and does not belong to a cycle, there is a non-empty path from ` to [[e(x)]]Xs,h.

Following up on Lemma 5.26, among the labelled locations that are reachable, in at least one
step, from the labelled location ` ∈ dom(h), we are particularly interested in the one that is
closest to `. We call this the location seen by `. Its formal definition is given below.

Definition 5.27 (Seen by). Let (s, h) be a memory state and let ` ∈ Lab[S]Xs,h ∩ dom(h).
A labelled location `′ is seen by ` if there is δ ≥ 1 such that (1) hδ(`) = `′ and (2) for every
δ′ ∈ [1, δ − 1], hδ′(`) is not a labelled location. We write sbyX

s,h(`) to denote `′.

Given t ∈ T[S]X such that [[t]]Xs,h is defined and in the domain of h, we often write sbyX
s,h(t) as a

shortcut for sbyX
s,h([[t]]Xs,h). The existence of a seen by location stems from Lemma 5.26, whereas

its uniqueness follows directly from the property (2) of its definition.

Proposition 5.28. Let (s, h) be a memory state and let ` ∈ Lab[S]Xs,h ∩ dom(h). There is a
unique location `′ such that sbyX

s,h(`) = `′.

5.5. A Family of Core Formulae Capturing the Fragment S 151

The partition. We introduce the partition of the heap. In order to simplify the presentation,
for the whole chapter, given an arbitrary set S we write [S][for the set of all the locations
needed in order to construct S. For instance, [S][=

⋃
L∈S L if S is a set of sets of locations, and

[S][=
⋃

(L1,L2)∈S(L1 ∪ L2) if S is a set of pairs of sets of locations, i.e. a subset of 2LOC×LOC.

Definition 5.29 (Predecessors, paths, cycles and the remainder). Let (s, h) be a memory state
and consider a natural number α ≥ 1. We define the following subsets of dom(h):
Predecessors. Given ` ∈ s(X), Pred[S]Xs,h(`) is the set of predecessors of ` that are not reached

by any location corresponding to program variables. Formally,
Pred[S]Xs,h(`) def=

{
`′ ∈ dom(h) | h(`′) = ` and for all y ∈ X and δ ≥ 0, hδ(s(y)) 6= `′

}
.

We notice that ` is assigned to a program variable. Given x ∈ X, we often write Pred[S]Xs,h(x)
as a shortcut for Pred[S]Xs,h(s(x)).

Paths. Given a labelled location ` ∈ Lab[S]Xs,h, Path[S]Xs,h(`) is the set of memory cells that are
reachable from ` without passing through the location seen by `. Formally,
Path[S]Xs,h(`) def=

{
`′ ∈ dom(h) | ∃δ ≥ 0 hδ(`) = `′ and for all δ′ ∈ [1, δ], hδ′(`) 6= sbyX

s,h(`)
}
.

Given t ∈ T[S]X, we often write Path[S]Xs,h(t) as a shortcut for Path[S]Xs,h([[t]]Xs,h).
Bounded cycles. Given β ∈ [1, α], Cycl[S]Xs,h(β) is the set of unlabelled cycles of length β. A

cycle is said to be unlabelled if it does not involve labelled locations. Formally,
Cycl[S]Xs,h(β) def=

{
{`0, . . . , `β−1} ⊆ dom(h) | ∀j ∈ [0, β−1], h(`j) = `(j+1 modβ) 6∈ Lab[S]Xs,h

}
.

Unbounded cycles. ⇑Cycl[S]X,αs,h is the set of unbounded and unlabelled cycles, i.e. unlabelled cy-
cles of length strictly greater than α. Formally,

⇑Cycl[S]X,αs,h
def=
{
{`0, . . . , `γ} ⊆ dom(h)

∣∣∣∣∣ γ > α and for every j ∈ [0, γ − 1],
h(`i) = `(i+1 mod γ) 6∈ Lab[S]Xs,h

}
.

Remainder. Rem[S]X,αs,h is the set of memory cells that do not belong to any of the sets above, i.e.

dom(h) \
(
[⇑Cycl[S]X,αs,h][∪

⋃
x∈X

Pred[S]Xs,h(x) ∪
⋃

`∈Lab[S]Xs,h

Path[S]Xs,h(`) ∪
⋃

β∈[1,α]
[Cycl[S]Xs,h(β)][

)
.

Very often in the proofs of this section, we reason on subsets of the domain of a heap h

instead of looking directly at h. In particular, we often rely on sets in order to describe paths in
the heap. To be completely formal, we define what we mean by describing a path using a set.

Definition 5.30 (Sets describing paths.). A set of locations L describes a path in a heap h,
going from a location `1 to a location `2, if the heap h′ def= {(`, `′) ∈ h | ` ∈ L} witnesses a path
from `1 to `2. L is minimal if every strict subset of L does not describe a path from `1 to `2.
Alike, L describes a cycle if h′ is cyclic. It is minimal if its strict subsets do not describe a cycle.

Using this terminology, every set in Cycl[S]Xs,h(β) and ⇑Cycl[S]X,αs,h describes a cycle and it is mini-
mal. Whenever non-empty, Path[S]Xs,h(`) is a minimal set describing a non-empty path in h, going
from ` to sbyX

s,h(`). This means that Path[S]Xs,h(`) is empty whenever ` 6∈ dom(h). Otherwise,
Path[S]Xs,h(`) must contain `. Moreover, this set contains sbyX

s,h(`) if and only if sbyX
s,h(`) = `.

In this case, Path[S]Xs,h(`) is a minimal set describing a cycle. Moreover, in accordance with
the definition of sbyX

s,h(`), no location other than ` belongs to both Path[S]Xs,h(`) and Lab[S]Xs,h,
i.e. whenever non-empty, the only labelled location in Path[S]Xs,h(`) is `.

Figure 5.8 shows a memory state and highlights the sets in Definition 5.29. It is easy to see
that these sets define a partition of dom(h) (equivalently, of h). The proof is left to the reader.

152 Chapter 5. Deciding Robustness Properties in PSpace

x

y

m(x, y) z e(x)
e(y) e(z)

: ⇑Cycl[S]X,3s,h
: Rem[S]X,3s,h
: Path[S]Xs,h(x)

: Pred[S]Xs,h(z)

: Cycl[S]Xs,h(2)

: Path[S]Xs,h(y)

: Path[S]Xs,h(m(x, y))

: Path[S]Xs,h(z)

Figure 5.8: A memory state (s, h). The partition of the heap is highlighted (α = 3).

(s, h) |= t1 = t2 iff [[t1]]Xs,h and [[t2]]Xs,h are defined and [[t1]]Xs,h = [[t2]]Xs,h,

(s, h) |= seesX(t1, t2) ≥ β iff card(Path[S]Xs,h(t1)) ≥ β and [[t2]]Xs,h = sbyX
s,h(t1),

(s, h) |= loopSX (β1) ≥ β2 iff card(Cycl[S]Xs,h(β1)) ≥ β2,

(s, h) |= ⇑loopSX,α ≥ β iff card(⇑Cycl[S]X,αs,h) ≥ β,

(s, h) |= predSX (x) ≥ β iff card(Pred[S]Xs,h(x)) ≥ β,

(s, h) |= remSX,α ≥ β iff card(Rem[S]X,αs,h) ≥ β.

Figure 5.9: Semantics of the formulae in Sk[S](X, α), with respect to a memory state (s, h).

Proposition 5.31. Let α≥ 1. Given (s, h), let S be the set of all non-empty sets in{
Pred[S]Xs,h(x), Path[S]Xs,h(`), [Cycl[S]Xs,h(β)][, [⇑Cycl[S]X,αs,h][, Rem[S]X,αs,h

∣∣∣ x∈ X, `∈ Lab[S]Xs,h, β ∈ [1, α]
}

.

S forms a partition of dom(h).

5.5.2 Step II: the core formulae for S.

Following the steps conducted for the weak fragment, the set of core formulae Core[S](X, α) is
parametric on X and a natural number α ≥ 1, and it is split into a skeleton set Sk[S](X, α) and
an observed set Obs[S](X, α). The syntax of the formulae in the skeleton set is defined below,
whereas their semantics is given in Figure 5.9.

Sk[S](X, α) def=

t1 = t2, seesX(t1, t2) ≥ β

,

loopSX (β) ≥ β	, ⇑loopSX,α ≥ β	,
predSX (x) ≥ β, remSX,α ≥ β

∣∣∣∣∣∣∣∣∣
β

∈
[
1, 1

6(α+ 1)(α+ 2)(α+ 3)
]

β	∈
[
1, 1

2α(α+ 3)− 1
]
, β ∈ [1, α]

x ∈ X, t1, t2 ∈ T[S]X

 .
The core formulae of the skeleton set follow closely the partition of the heap. For instance, the
formula seesX(t1, t2) ≥ β states that [[t2]]Xs,h is seen by [[t1]]Xs,h, and that Path[S]Xs,h(t1) describes
a path in h of length at least β, going from [[t1]]Xs,h to [[t2]]Xs,h.

An interesting aspect of these core formulae lies in the upper bounds given to β, β

, and β	.
When we look at the core formulae of the weak fragment, the natural number β appearing in
all the core formulae predWX (x) ≥ β, selfWX ≥ β and remWX ≥ β belongs to the interval [1, α].
For the strong fragment, this simplicity is lost as soon as we want to satisfy the ∗-simulation

5.5. A Family of Core Formulae Capturing the Fragment S 153

h1:

h2:

h:

h′:

h′1: ?

h′2: ?

Figure 5.10: The two heaps h and h′ described in Example 5.32.

property. The following two examples explain why this is the case. In the first example, we show
that the ∗-simulation property fails with trivial upper bounds. The second example explains
how the upper bound 1

2α(α+ 3)−1 given to β	, for the core formula ⇑loopSX,α ≥ β	, is derived.

Example 5.32. Let us restrict Sk[S](X, α) so that, in the formulae of the form loopSX (β) ≥ β	,
⇑loopSX,α ≥ β	 and remSX,α ≥ β, the natural numbers β	 and β range in [1, α] (similarly to
what it is done for the weak fragment). Consider two memory states (s, h) and (s′, h′) whose
heaps are depicted in Figure 5.10. In particular, h is made of exactly four unlabelled cycles that
belong to Cycl[S]Xs,h(2), whereas h′ contains three such cycles. Let us assume that α = 3, so
that the two memory states satisfy the same core formulae in Sk[S](X, α) (with respect to the
restricted upper bounds). Following the notion of ∗-simulation (see Lemma 5.6), we partition
h into the two heaps h1 and h2 represented in the figure, and consider the two positive natural
numbers α1 = 2 and α2 = 1, so that α = α1 + α2. Notice that h1 contains two of the four
unbounded cycles of h, whereas every other unbounded cycles is split so that one of its locations
belongs to dom(h1), and the other belongs to dom(h2). In particular, following Definition 5.29,
this means that card(Cycl[S]Xs,h1

(2)) = 2 and card(Rem[S]X,α1
s,h1

) = 2, whereas card(⇑Cycl[S]X,α2
s,h2

) = 0
and card(Rem[S]X,α2

s,h2
) = 2. Here, notice that α2 = 1 and so the cycles in h2 of length 2 belongs

to ⇑Cycl[S]X,α2
s,h2

. Among the (restricted) formulae in Sk[S](X, α1), the memory state (s, h1) sat-
isfies the two core formulae loopSX (2)≥ 2 and remSX,α1 ≥ 2. Among the formulae in Sk[S](X, α2),
the memory state (s, h2) satisfies remSX,α2 ≥ 1, and it does not satisfy ⇑loopSX,α2 ≥ 1. Now, the
∗-simulation property requires us to partition h′ into two subheaps h′1 and h′2 such that, for every
j ∈ {1, 2}, (s, hj) and (s′, h′j) satisfy the same core formulae from Core[S](X, αj). Unfortunately,
it is quite easy to see that this cannot be done. Indeed, since the memory state (s′, h′1) must
satisfy loopSX (2) ≥ 2, two of the three unbounded cycles in h should belong to h′1. This leaves
us with one unbounded cycle of two locations, which must be split between the two heaps h′1
and h′2 in order for (s′, h′2) to satisfy remSX,α2 ≥ 1. However, this implies card(Rem[S]X,α1

s′,h′1
) = 1

and so, differently from (s, h1), (s′, h′1) 6|= remSX,α1 ≥ 2.

Example 5.33. The previous example shows how simple upper bounds do not work for the
core formulae in Sk[S](X, α). Intuitively, the reason for this is that locations belonging to a
set of the partition can move to a different type of set when considering subheaps. For in-

154 Chapter 5. Deciding Robustness Properties in PSpace

stance, Example 5.32 shows that given h1 ⊆ h, locations in Cycl[S]Xs,h(2) can be found in the
sets Cycl[S]Xs,h1

(2) and Rem[S]X,α1
s,h1

. In order to correctly define a family of core formulae that en-
joys the ∗-simulation property we need to take care of these dependencies between types of sets.
This leads to the non-trivial upper bounds used in the definition of Sk[S](X, α). As an example,
let us informally describe how to derive the upper bound 1

2α(α+ 3)− 1 given to β	, for the core
formula ⇑loopSX,α ≥ β	. As required in the ∗-simulation property, we consider a memory state
(s, h), two heaps h1 and h2 such that h = h1 + h2 and two natural numbers α1, α2 ≥ 1 such
that α = α1 + α2. We study how the satisfaction of the core formulae changes when the heap h is
split into h1 and h2 by looking at the possible partitions of these two subheaps. When consider-
ing the set ⇑Cycl[S]X,αs,h , for each set L ∈ ⇑Cycl[S]X,αs,h we either have L ⊆ dom(hj), with j ∈ {1, 2},
or we have that L is divided into two non-empty sets L1 ⊆ dom(h1) and L2 ⊆ dom(h2). In the
first case, L corresponds to an unbounded and unlabelled cycle inside hi, and so by definition L
belongs to ⇑Cycl[S]X,αis,hi

. In the second case, the cycle is split between h1 and h2, causing L1 to
be a subset of Rem[S]X,α1

s,h1
and L2 to be a subset of Rem[S]X,α2

s,h2
. Every cycle in ⇑Cycl[S]X,αs,h witnesses

one among these two cases. Because of the semantics of the core formulae, this means that the
locations in L affect either the satisfaction of the core formulae of the form ⇑loopSX,αj ≥ βj ,
for exactly one j ∈ {1, 2} (first case), or the satisfaction of the core formulae remSX,α1 ≥ β1
and remSX,α2 ≥ β2 (second case). Let us write L(α) for the upper bound on β for the core
formulae of the form ⇑loopSX,α ≥ β. Similarly, we write R(α) for the upper bound on β for the
core formulae of the form remSX,α ≥ β. We assume that R(α) = α (this equality can be shown
analysing remSX,α ≥ β with similar arguments to the ones herein described for ⇑loopSX,α ≥ β). To
simulate the separating conjunct, L(α) must be at least the sum of the upper bounds L(α1) and
L(α2) (as required by the first case above), plus the upper bound R(max(α1, α2)) (as required
by the second case). Therefore, we expect the following inequality to hold, for all α ≥ 1:

L(α) ≥ max
α1,α2≥1
α=α1+α2

(L(α1) + L(α2) +R(max(α1, α2))) + 1.

Here, the last addend 1 is introduced to handle the quantified variable u, which could belong
to one of the unlabelled cycles. In particular, the inequality entails that L(α) must be at least
L(α− 1) +L(1) +R(α− 1) + 1, which corresponds to the case where α1 = α− 1 and α2 = 1 (or
vice versa). Afterwards, by assuming L(1) ≥ 1, we can solve the recurrence system

{L(1) = 1, L(α+ 1) = L(α) + L(1) +R(α) + 1, R(α) = α} ,

in order to conclude that L(α) must be at least 1
2α(α+ 3)− 1, i.e. the upper bound given to β	

in the core formulae of the form ⇑loopSX,α ≥ β	. Fundamentally, even though the recurrence
system is obtained by considering the case where α1 = α − 1 and α2 = 1, one can show that
if L(α) = 1

2α(α+ 3)− 1 then the expression L(α1)+L(α2)+R(max(α1, α2)) is indeed maximal
for these two values of α1 and α2, so that also the original inequality on L(α) is satisfied. Clearly,
our analysis is incomplete: we now suspect that L(α) must be at least 1

2α(α + 3) − 1 in order
for the ∗-simulation property to hold, but we still do not know whether L(α) = 1

2α(α + 3) − 1
is sufficient. This will be answered in due time, when proving the ∗-simulation property. All
the upper bounds in Sk[S](X, α) are derived in a similar way: by studying how the locations in
a set of the partition impact the satisfaction of the core formulae, once a heap is split into two
subheaps. Further details about these upper bounds are given in Appendix C.

Let us now move to the core formulae in the observed set Obs[S](X, α), defined below. Their

5.5. A Family of Core Formulae Capturing the Fragment S 155

(s, h) |= u = t iff s(u) = [[t]]Xs,h,

(s, h) |= u ∈ loopSX (β) iff there is a set L ∈ Cycl[S]Xs,h(β) such that s(u) ∈ L,

(s, h) |= u ∈ ⇑loopSX,α iff there is a set L ∈ ⇑Cycl[S]X,αs,h such that s(u) ∈ L,

(s, h) |= u ∈ seesX(t1, t2) ≥ (
←−
β ,
−→
β) iff there are δ1 ≥

←−
β and δ2 ≥

−→
β such that

δ1 + δ2 = card(Path[S]Xs,h(t1)),
hδ1([[t1]]Xs,h) = s(u) and hδ2(s(u)) = [[t2]]Xs,h,

(s, h) |= u ∈ predSX (x) iff s(u) ∈ Pred[S]Xs,h(x),

(s, h) |= u ∈ remSX,α iff s(u) ∈ Rem[S]X,αs,h .

Figure 5.11: Semantics of the formulae in Obs[S](X, α), with respect to a memory state (s, h).

semantics is given in Figure 5.11, with respect to a memory state (s, h).

Obs[S](X, α) def=

u = t1, u ∈ loopSX (β), u ∈ ⇑loopSX,α,

u ∈ seesX(t1, t2) ≥ (
←−
β ,
−→
β),

u ∈ predSX (x), u ∈ remSX,α

∣∣∣∣∣∣∣∣∣
←−
β ∈

[
1, 1

6α(α+ 1)(α+ 2) + 1
]

−→
β ∈

[
1, 1

2α(α+ 3)
]
, β ∈ [1, α]

x ∈ X, t1, t2 ∈ T[S]X

 .
Intuitively, the core formulae in the observed set deals with the membership of s(u) to the sets
of the partition. Particularly interesting is the formula u ∈ seesX(t1, t2) ≥ (

←−
β ,
−→
β) which not

only states that s(u) belongs to Path[S]Xs,h(t1), but also that the path described by this set goes
from [[t1]]Xs,h to [[t2]]Xs,h and can be split into two paths, one of length at least

←−
β and going from

[[t1]]Xs,h to s(u), and one of length at least
−→
β and going from s(u) to [[t2]]Xs,h. Fundamentally,

the upper bounds 1
6α(α+ 1)(α+ 2) + 1 and 1

2α(α+ 3) given to
←−
β and

−→
β , respectively, sum to

1
6(α+ 1)(α+ 2)(α+ 3), which is the upper bound given to β

in the core formulae of the form
seesX(t1, t2) ≥ β

. As we will see, this property is essential in order to prove that the core
formulae Core[S](X, α) enjoy the ∃-simulation property.

Following the outline of the weak fragment, we use the core formulae Core[S](X, α) in order
to define an indistinguishability relation on memory states that is governed by their satisfaction.

Definition 5.34 (S-indistinguishable memory states). We write≈SX,α for the equivalence relation
on memory states characterised as:

(s, h) ≈SX,α (s′, h′) if and only if for every ϕ ∈ Core[S](X, α), (s, h) |= ϕ iff (s′, h′) |= ϕ.

As the strong fragment is a syntactical extension of the weak fragment, we expect the
indistinguishability relation ≈SX,α to be a refinement of ≈WX,α. This is indeed the case, as in
the next lemma we show that every core formula in Core[W](X, α) corresponds to a Boolean
combination of core formulae from Core[S](X, α). The proof of this result is quite long but
nonetheless interesting, as it forces us to express the sets of the partition introduced for the
weak fragment in terms of the ones introduced for the strong fragment. Readers that are eager
to see the proof of the ∗-simulation property for Core[S](X, α) can skip to page 170.

156 Chapter 5. Deciding Robustness Properties in PSpace

Lemma 5.35. Let α ≥ 1. Every core formula in Core[W](X, α) is equivalent to a Boolean
combination of formulae in Core[S](X, α).

Proof. First, let us introduce some useful shortcuts using core formulae in Core[S](X, α):

Formula: Definition:

seesX(t, t′) = β seesX(t, t′) ≥ β ∧ ¬seesX(t, t′) ≥ β + 1

t =S n(x) seesX(x, t) = 1

t ↪→S x seesX(t, x) = 1

seeslenX(t) ≥ β
∨

t′∈T[S]X seesX(t, t′) ≥ β

allocS(t) seeslenX(t) ≥ 1

where t, t′ ∈ T[S]X and β ∈ [1, 1
6(α + 1)(α + 2)(α + 3) − 1]. Notice that all these formu-

lae are Boolean combinations of core formulae from Core[S](X, α). In particular, the for-
mula seesX(t, t′) = 1 requires the core formulae seesX(t, t′) ≥ 1 and seesX(t, t′) ≥ 2 in
order to be defined. As the upper bound given to β in the formulae of the form seesX(t, t′) ≥ β
is at least 4 (it is 4 when α = 1), these formulae belong to Core[S](X, α), for all α ≥ 1. Let (s, h)
be a memory state. One can check that the formulae above have the following semantics:

(s, h) |= seesX(t, t′) = β iff sbyX
s,h(t) = [[t′]]Xs,h and card(Path[S]Xs,h(t)) = β,

(s, h) |= t =S n(x) iff h(s(x)) = [[t]]Xs,h,
(s, h) |= t ↪→S x iff h([[t]]Xs,h) = s(x),
(s, h) |= seeslenX(t) ≥ β iff card(Path[S]Xs,h(t)) ≥ β,
(s, h) |= allocS(t) iff [[t]]Xs,h ∈ dom(h).

Given a formula ϕ in Core[W](X, α), we write τ(ϕ) for its equivalent Boolean combination of
core formulae from Core[S](X, α) (to be defined below). Let us start the proof by characterising
every formula ϕ in Core[W](X, α) that is an alloc, points-to or equality between terms.
case: ϕ = x ↪→ . As x ∈ T[S]X, τ(x ↪→) = allocS(x).

case: ϕ = n(x) ↪→ . ϕ is equivalent to seeslenX(x) ≥ 2 ∨
∨

t∈T[S]X
(
t =S n(x) ∧ allocS(t)

)
.

(⇒): Suppose (s, h) |= ϕ, and so h(s(x)) ∈ dom(h). We divide the proof in two cases,
depending on whether or not Path[S]Xs,h(x) contains at least two locations. If this is
the case, then (s, h) |= τ(ϕ) holds directly from (s, h) |= seeslenX(x) ≥ 2. Otherwise,
from s(x) ∈ dom(h) we conclude that card(Path[S]Xs,h(x)) = 1, which in turn implies
that h(s(x)) = sbyX

s,h(x). Hence, there is a term t ∈ T[S]X such that [[t]]Xs,h = h(s(x)).
From h(s(x)) ∈ dom(h), we have (s, h) |= t =S n(x) ∧ allocS(t), and so (s, h) |= τ(ϕ).
(⇐): The proof of this direction is straightforward.

case: ϕ = x = y. In this case, ϕ belongs to Sk[S](X, α). So, τ(ϕ) = ϕ.

case: ϕ = x = n(y) or ϕ = n(y) = x or ϕ = y ↪→ x. ϕ is equivalent to x =S n(y).

case: ϕ = n(x) = n(y). ϕ is equivalent to the formula
(x = y ∧ allocS(x)) ∨

∨
t∈T[S]X(t =S n(x) ∧ t =S n(y)).

(⇒): Suppose (s, h) |= n(x) = n(y) and so h(s(x)) = h(s(y)). If s(x) = s(y), then
we have (s, h) |= τ(ϕ) directly from x = y ∧ allocS(x). Otherwise, let us assume

5.5. A Family of Core Formulae Capturing the Fragment S 157

that s(x) 6= s(y). We argue that ` = h(s(x)) is a labelled location. Ad absurdum, sup-
pose that ` is not a labelled location. We then conclude that ` ∈ dom(h), as otherwise we
have [[e(x)]]Xs,h = `. Because of this, we must have ` ∈ Path[S]Xs,h(x), and with symmetri-
cal arguments we derive ` ∈ Path[S]Xs,h(x). However, this is contradictory as s(x) 6= s(y)
implies Path[S]Xs,h(x) ∩ Path[S]Xs,h(x) = ∅ by Proposition 5.31. Therefore ` is a labelled
location, and therefore there is a term t ∈ T[S]X such that [[t]]Xs,h = `. We conclude
that (s, h) |= t =S n(x) ∧ t =S n(y), and so (s, h) |= τ(ϕ).
(⇐): The proof of this direction is straightforward.

case: ϕ = n(x) ↪→ y. ϕ is equivalent to seesX(x, y) = 2 ∨
∨

t∈T[S]X(t =S n(x) ∧ t ↪→S y).
We omit the proof of ϕ ≡ τ(ϕ), which is quite similar to the one given for ϕ = n(x) ↪→ .

case: ϕ = n(x) ↪→ n(x). ϕ is equivalent to x =S n(x) ∨ (e(x) =S n(x) ∧ seesX(e(x), e(x)) = 1).
(⇒): Suppose (s, h) |= ϕ, and so h(s(x)) = h2(s(x)). If s(x) = h(s(x)) then (s, h) satisfies
x =S n(x) and so (s, h) |= τ(ϕ). Otherwise, let us assume that s(x) 6= h(s(x)). In this
case, given ` = h(s(x)) we have {s(x) 7→ `, ` 7→ `} ⊆ h. From the semantics of end-point
variables, we conclude that ` = [[e(x)]]Xs,h. So, (s, h) |= e(x) =S n(x)∧seesX(e(x), e(x)) = 1,
which implies (s, h) |= τ(ϕ).
(⇐): The proof of this direction is straightforward.

case: ϕ = u = x. As x ∈ T[S]X, ϕ belongs to Core[S](X, α) (for every α ≥ 1). Thus, τ(ϕ) = ϕ.
case: ϕ = u = n(x). ϕ is equivalent to the formula∨

t∈T[S]X
((u = t ∧ t =S n(x)) ∨ (u ∈ seesX(x, t) ≥ (1, 1) ∧ ¬ u ∈ seesX(x, t) ≥ (2, 1))) .

Essentially, τ(u = n(x)) is split depending on whether s(u) is a labelled location with respect
to the terms in T[S]X. One can check that this formula is a Boolean combination of core
formulae that belong to Core[S](X, α), for every α ≥ 1. In particular, this holds true
for the subformula u ∈ seesX(x, t) ≥ (2, 1), as the upper bounds given to β1 and β2 in
the formulae of the form u ∈ seesX(t, t′) ≥ (β1, β2) are always at least 2. We sketch the
left-to-right direction of this equivalence, and leave the right-to-left direction to the reader.
(⇒): Suppose (s, h) |= ϕ, and so h(s(x)) = s(u). If there is a term t ∈ T[S]X such that
[[t]]Xs,u = s(x), then (s, h) |= u = t ∧ t =S n(x). Otherwise, as s(x) ∈ dom(h), we have
s(u) ∈ Path[S]Xs,h(x). Let t ∈ T[S]X such that [[t]]Xs,h = sbyX

s,h(x). From h(s(x)) = s(u), we
have (s, h) |= u ∈ seesX(x, t) ≥ (1, 1) ∧ ¬ u ∈ seesX(x, t) ≥ (2, 1).

We introduce a second set of shortcuts:

Formula: Definition:

varX(t)
∨

x∈X t = x

nextX(t) ¬varX(t) ∧
∨

x∈X t =S n(x)

unlab(t) t = t ∧ ¬(varX(t) ∨ nextX(t))

unlab(u)
∧

x∈X(u 6= x ∧ ¬τ(u = n(x)))

var.sby(t)
∨

x∈X seesX(t, x) ≥ 1

alldiff(T)
∧

t,t′∈T
t6=t′

(t = t ∧ t 6= t′)

where t ∈ T[S]X and T ⊆ T[S]X. The semantics of these formulae is given below:

158 Chapter 5. Deciding Robustness Properties in PSpace

(s, h) |= varX(t) iff [[t]]Xs,h is defined and belongs to s(X),
(s, h) |= nextX(t) iff [[t]]Xs,h is defined and belongs to Lab[W]Xs,h \ s(X),
(s, h) |= unlab(t) iff [[t]]Xs,h is defined and does not belong to Lab[W]Xs,h,
(s, h) |= unlab(u) iff s(u) 6∈ Lab[W]Xs,h,
(s, h) |= var.sby(t) iff sbyX

s,h(t) is defined and belongs to s(X),
(s, h) |= alldiff(T) iff card([[T]]Xs,h) = card(T).

Notice that the formulae varX(t), nextX(t) and unlab(t) relate terms of the strong fragment
with labelled locations of the weak fragment. In particular, given a memory state (s, h), these
three formulae ask [[t]]Xs,h to be defined, and moreover
• varX(t) requires that [[t]]Xs,h corresponds to a program variable,
• nextX(t) requires that [[t]]Xs,h corresponds to a next-point variable, but not to a variable,
• unlab(t) requires that [[t]]Xs,h is not a labelled location of Lab[W]Xs,h.

When [[t]]Xs,h is defined, (s, h) always satisfies exactly one among varX(t), nextX(t) and unlab(t).
Before continuing the characterisation of the core formulae in Core[W](X, α), we prove an inter-
mediate result that, as we will later see, shows which locations in Path[S]Xs,h(`) (` ∈ Lab[S]Xs,h)
can ever belong to Lab[W]Xs,h.
(Lab S/W) Let (s, h) be a memory state and ` ∈ Lab[S]Xs,h. Suppose that there is x ∈ X such that

[[n(x)]]Xs,h ∈ Path[S]Xs,h(`) and s(x) 6∈ Path[S]Xs,h(`). Then, [[n(x)]]Xs,h = `.
Proof of (Lab S/W). Ad absurdum, suppose [[n(x)]]Xs,h 6= `. Below, we show that, together

with [[n(x)]]Xs,h ∈ Path[S]Xs,h(`) and s(x) 6∈ Path[S]Xs,h(`), this implies that [[n(x)]]Xs,h is
in Lab[S]Xs,h. However, this is contradictory, as we know that ` is the only lo-
cation in Path[S]Xs,h(`) that belongs to Lab[S]Xs,h (see Definition 5.29), and there-
fore [[n(x)]]Xs,h = ` must hold. For the proof that [[n(x)]]Xs,h ∈ Lab[S]Xs,h, we start
by noticing that [[n(x)]]Xs,h ∈ Path[S]Xs,h(`), and [[n(x)]]Xs,h 6= ` imply not only that
` ∈ dom(h), but also that [[n(x)]]Xs,h is not the first location of the path described
by Path[S]Xs,h(`). So, let `′ be the location in Path[S]Xs,h(`) such that h(`′) = [[n(x)]]Xs,h.
As s(x) 6∈ Path[S]Xs,h(`), s(x) is different form `′. Moreover, h(s(x)) = [[n(x)]]Xs,h by def-
inition of next-point variable. Recapitulating: {s(x) 7→ [[n(x)]]Xs,h, `′ 7→ [[n(x)]]Xs,h} ⊆ h.
The proof of [[n(x)]]Xs,h ∈ Lab[S]Xs,h is divided in the following cases:
[[n(x)]]Xs,h belongs to a cycle. As h is functional, in this case either s(x) or `′ does

not belong to a cycle. If s(x) does not belong to a cycle, then [[n(x)]]Xs,h is the first
location reachable from s(x) that belongs to one and, by definition of end-point
variable, [[n(x)]]Xs,h = [[e(x)]]Xs,h. Instead, if `′ does not belong to a cycle, then the
same holds for ` and, since ` ∈ dom(h), we conclude that ` does not correspond
to an end-point variable. Thus, there are y, z ∈ X such that either [[y]]Xs,h = `

or [[m(y, z)]]Xs,h = `. In both cases, we conclude that [[n(x)]]Xs,h is the first location
reachable from s(y) that belongs to a cycle. Thus, by definition of end-point
variable, [[n(x)]]Xs,h = [[e(y)]]Xs,h.

[[n(x)]]Xs,h does not belong to a cycle. In this case, neither s(x) nor ` belong to a
cycle. As ` ∈ dom(h), we conclude that ` does not correspond to an end-point
variable, and thus there are y, z ∈ X such that either s(y) = ` or [[m(y, z)]]Xs,h = `.
In both cases, h witnesses two disjoint non-empty paths, one going from s(x) to
[[n(x)]]Xs,h, and one going from s(y) to [[n(x)]]Xs,h. As [[n(x)]]Xs,h does not belong to a
cycle, by the definition of meet-point variables we derive [[n(x)]]Xs,h = [[m(y, x)]]Xs,h.

5.5. A Family of Core Formulae Capturing the Fragment S 159

From (Lab S/W) we derive the three following results:
(I) If (s, h) |= unlab(t) then Path[S]Xs,h(t) does not contain locations in Lab[W]Xs,h.

Proof of (I). Let ` = [[t]]Xs,h. From (s, h) |= unlab(t), ` is not assigned to a program
variable in X. We know that ` is the only location in Path[S]Xs,h(`) that belongs to
Lab[S]Xs,h. Therefore, no location in Path[S]Xs,h(`) can be assigned to a program vari-
able in X. Ad absurdum, suppose that there is x ∈ X such that [[n(x)]]Xs,h ∈ Path[S]Xs,h(`).
By (Lab S/W) we conclude that [[n(x)]]Xs,h = `. However, this implies (s, h) 6|= unlab(t),
a contradiction. Thus, no location in Path[S]Xs,h(`) corresponds to a next-point vari-
able in NV[W]X. So, Path[S]Xs,h([[t]]Xs,h) does not contain locations in Lab[W]Xs,h.

(II) If (s, h) |= nextX(t) then Path[S]Xs,h(t) \ {[[t]]Xs,h} does not contain locations in Lab[W]Xs,h.
Proof of (II). Let ` = [[t]]Xs,h. From (s, h) |= nextX(t), ` is not assigned to a program

variable in X. As shown in the proof of (I) above, this implies that no location in
Path[S]Xs,h(`) can be assigned to a program variable in X. Suppose that there is x ∈ X
such that [[n(x)]]Xs,h ∈ Path[S]Xs,h(`). By (Lab S/W) we conclude that [[n(x)]]Xs,h = `.
Thus, Path[S]Xs,h(t) \ {[[t]]Xs,h} does not contain locations in Lab[W]Xs,h.

(III) Suppose (s, h) |= varX(t). Let S = if [[t]]Xs,h ∈ dom(h) then {[[t]]Xs,h, h([[t]]Xs,h)} else {[[t]]Xs,h}.
Then, Path[S]Xs,h(t) \ S does not contain locations in Lab[W]Xs,h.
Proof of (III). Ad absurdum, suppose that there is a location ` that belongs to both

Path[S]Xs,h(t) \ S and Lab[W]Xs,h. In particular, this means that Path[S]Xs,h(t) contains
at least 3 distinct locations: [[t]]Xs,h, h([[t]]Xs,h) and `. We know that [[t]]Xs,h is the only
location in Path[S]Xs,h(t) that belongs to a program variable in X ⊆ T[S]X. This fact
has two consequences. First, the location ` does not correspond to a program vari-
able, which in turn implies ` = [[n(x)]]Xs,h for some x ∈ X. Second, as h([[t]]Xs,h) 6= `, this
means that s(x) 6∈ Path[S]Xs,h(t). However, by (Lab S/W), this allows us to derive that
` = [[t]]Xs,h, a contradiction. Thus, no location in Lab[W]Xs,h belongs to Path[S]Xs,h(t)\S.

Let us now resume the proof of Lemma 5.35. It remains to show the characterisation of the
formulae predWX (x) ≥ β, selfWX ≥ β and remWX ≥ β, as well as the formulae u ∈ predWX (x),
u ∈ selfWX and u ∈ remWX . These core formulae need a careful analysis, since they have a
different semantics with respect to their counterpart in Core[S](X, α). Indeed, for example the
core formula predWX (x) ≥ β only counts the number of predecessors of the location corresponding
to x that are not labelled locations, whereas the formula predSX (x) ≥ β is more precise and
only count those predecessors that are not reached by a program variable (or, equivalently,
are not reached by a labelled location). Therefore, predSX (x) ≥ β implies predWX (x) ≥ β, or
analogously Pred[S]Xs,h(x) ⊆ Pred[W]Xs,h(x). The inclusion in the other direction does not hold.
So, before looking directly at the core formulae, we consider a memory state (s, h), and define
the sets Pred[W]Xs,h(x), Self[W]Xs,h and Rem[W]Xs,h in terms of the labelled locations and sets
introduced for the strong fragment.

For Pred[W]Xs,h(x), we have the following equivalence:

Pred[W]Xs,h(x) = Pred[S]Xs,h(x) ∪
{
` ∈ dom(h) \ Lab[W]Xs,h

∣∣∣∣∣ h(`) = s(x), ` ∈ Path[S]Xs,h(`′)
for some `′ ∈ Lab[S]Xs,h

}
(†)

Indeed, every predecessor ` of s(x) is either in Pred[S]Xs,h(x) or in Path[S]Xs,h(`′), for some
`′ ∈ Lab[S]Xs,h. In this latter case, ` belongs to Pred[W]Xs,h(x) only if it is not a labelled location
in Lab[W]Xs,h, which leads to the equivalence (†). To characterise the formulae predWX (x) ≥ β
and u ∈ predWX (x) we follow this equivalence rather closely.

160 Chapter 5. Deciding Robustness Properties in PSpace

case: ϕ = predWX (x) ≥ β. ϕ is equivalent to the formula∨
T⊆T[S]X
β′∈[0,α]

β′+card(T)≥β

 predSX (x) ≥ β′ ∧ alldiff(T) ∧
∧
t∈T

(unlab(t)⇒ seesX(t, x) ≥ 1)

∧ (nextX(t)⇒ seesX(t, x) ≥ 2)
∧ (varX(t) ⇒ seesX(t, x) ≥ 3)

,

where we define predSX (x) ≥ 0 as the tautology predSX (x) ≥ 1 ∨ ¬predSX (x) ≥ 1.
Essentially, this formula relies on the fact that Pred[W]Xs,h(x) contains at least β locations
if and only if there are two integers β′, β′′ ≥ 0 such that β′ + β′′ ≥ β and

a. Pred[S]Xs,h(x) contains at least β′ locations,

b.
{
` ∈ dom(h) \ Lab[W]Xs,h

∣∣∣∣∣ h(`) = s(x), ` ∈ Path[S]Xs,h(`′)
for some `′ ∈ Lab[S]Xs,h

}
has at least β′′ locations.

This double implication holds directly from the equivalence (†). Let us show that ϕ ≡ τ(ϕ).
(⇒): Suppose (s, h) |= ϕ. Following (†), there are β′, β′′ ≥ 0 such that (a) and (b) hold.
Moreover, as β ∈ [1, α], we can assume β′ ≤ α. From (a), (s, h) |= predSX (x) ≥ β′. Given
a term t ∈ T[S]X such that sbyX

s,h(t) = s(x), we write `t for the location in Path[S]Xs,h(t)
such that h(`t) = s(x). Informally, `t is the predecessor of s(x) in the non-empty path
going from [[t]]Xs,h to s(x). Let T be a minimal subset of T[S]X where, for every location
` belonging to the set described in (b), there is a term t ∈ X such that ` = `t. Thus,
given t ∈ T, `t is not a labelled location of Lab[W]Xs,h. Moreover, since T is minimal, no
two terms in it correspond to the same location, and from (b) we conclude that card(T) =
card([[T]]Xs,h) ≥ β′′. This allows us to conclude that (s, h) |= alldiff(T). Let us look more
in depth at [[t]]Xs,h:

1. by definition of T, we know that sbyX
s,h(t) = s(x), and so (s, h) |= seesX(t, x) ≥ 1.

This implies that (s, h) |= unlab(t)⇒ seesX(t, x) ≥ 1,
2. if [[t]]Xs,h corresponds to a program variable, then h([[t]]Xs,h) corresponds to a next-point

variable. Since `t is not a labelled location, we conclude that Path[S]Xs,h(t) contains
at least 3 locations. Thus, (s, h) |= varX(t)⇒ seesX(t, x) ≥ 3,

3. if [[t]]Xs,h corresponds to a next-point variable, then it must be different from `t, which
is an unlabelled location, and therefore Path[S]Xs,h(t) contains at least 2 locations.
Thus, (s, h) |= nextX(t)⇒ seesX(t, x) ≥ 2.

Therefore, (s, h) |= τ(ϕ).
(⇐): Suppose (s, h) |= τ(ϕ), and thus (s, h) satisfies one disjunct of τ(ϕ). Let T ⊆ T[S]X
and β′ ∈ [0, α], where β′+card(T) ≥ β, be the set of terms and integer that correspond to a
satisfied disjunct. Since (s, h) |= predSX (x) ≥ β′, (a) holds. To conclude the proof, we show
that (b) also holds, where β′′ = card(T). By (s, h) |= alldiff(T) we have β′′ = card([[T]]Xs,h),
and therefore in order to show (b) it is sufficient, given a term t ∈ T, to show that there
is a location `t ∈ Path[S]Xs,h(t) that belongs to the set described in (b). Equivalently, we
must show that h(`t) = s(x) and that `t 6∈ Lab[W]Xs,h. First of all, from the satisfaction of

(unlab(t)⇒ seesX(t, x) ≥ 1) ∧ (nextX(t)⇒ seesX(t, x) ≥ 2)
∧ (varX(t)⇒ seesX(t, x) ≥ 3)

we realise that (s, h) |= seesX(t, x) ≥ 1. Indeed, [[t]]Xs,h is defined thanks to the satisfaction
of alldiff(T), and therefore (s, h) satisfies exactly one formula among unlab(t), nextX(t)
and varX(t). We conclude that sbyX

s,h(t) = s(x), and so there is `t ∈ Path[S]Xs,h(t)

5.5. A Family of Core Formulae Capturing the Fragment S 161

such that h(`t) = s(x). To conclude, let us show that the location `t does not belong
to Lab[W]Xs,h. The proof is divided in three cases, following the satisfaction of the formu-
lae unlab(t), nextX(t) and varX(t):

1. Suppose (s, h) |= unlab(t). Then `t 6∈ Lab[W]Xs,h holds directly from (I).
2. Suppose (s, h) |= n(t). From (s, h) |= nextX(t) ⇒ seesX(t, x) ≥ 2 we conclude

that Path[S]Xs,h(t) describes a minimal non-empty path of length at least 2, going
from [[t]]Xs,h to s(x). By (II), all locations but [[t]]Xs,h do not belong to Lab[W]Xs,h. As
h(`t) = s(x) and the path has length at least 2, `t 6= [[t]]Xs,h. Thus, `t 6∈ Lab[W]Xs,h.

3. Suppose (s, h) |= varX(t). From (s, h) |= varX(t) ⇒ seesX(t, x) ≥ 3 we conclude
that Path[S]Xs,h(t) describes a minimal non-empty path of length at least 3, going
from [[t]]Xs,h to s(x). By (III), all locations except [[t]]Xs,h and h([[t]]Xs,h) do not belong to
Lab[W]Xs,h. As h(`t) = s(x) and the path has length at least 3, [[t]]Xs,h 6= `t 6= h([[t]]Xs,h).
Thus, `t 6∈ Lab[W]Xs,h.

case: ϕ = u ∈ predWX (x). ϕ is equivalent to the formula

u ∈ predSX (x) ∨
(

unlab(u) ∧
∨

t∈T[S]X

((
u = t ∧ t ↪→S x

)
∨(

u ∈ seesX(t, x) ≥ (1, 1) ∧ ¬ u ∈ seesX(t, x) ≥ (1, 2)
))).

(⇒): Suppose (s, h) |= u ∈ predWX (x), and thus, from (†), either (1) s(u) ∈ Pred[S]Xs,h(x) or
(2) s(u) ∈ dom(h) \ Lab[W]Xs,h, h(s(u)) = s(x), s(u) ∈ Path[S]Xs,h(`′) for some `′ ∈ Lab[S]Xs,h.
If (1) holds then (s, h) |= u ∈ predSX (x), i.e. the left disjunct of τ(ϕ). For the case (2), we
show that (s, h) satisfies the right disjunct of τ(ϕ). As s(u) 6∈ Lab[W]Xs,h, (s, h) |= unlab(u).
Besides, consider a term t ∈ T[S]X such that s(u) ∈ Path[S]Xs,h(t). If s(u) = [[t]]Xs,h, then
(s, h) |= u = t ∧ t ↪→S x. Else, hδ([[t]]Xs,h) = s(u) for some δ ∈ [1, card(Path[S]Xs,h(t))− 1].
By h(s(u)) = s(x), we derive (s, h) |= u ∈ seesX(t, x) ≥ (1, 1) ∧ ¬u ∈ seesX(t, x) ≥ (1, 2).
This concludes the proof.
(⇐): Suppose (s, h) |= τ(ϕ). If (s, h) satisfies the left disjunct of τ(ϕ), we conclude
that s(u) ∈ Pred[S]Xs,h(x) ⊆ Pred[W]Xs,h(x) (inclusion from (†)), and (s, h) |= u ∈ predWX (x).
Otherwise, let us consider the case where (s, h) satisfies the right disjunct of τ(ϕ). We
show that s(u) belongs to the set

L =
{
` ∈ dom(h) \ Lab[W]Xs,h | h(`) = s(x), ` ∈ Path[S]Xs,h(`′) for some `′ ∈ Lab[S]Xs,h

}
.

By looking at the right disjunct, we have s(u) 6∈ Lab[W]Xs,h. Besides, there is a term t ∈ T[S]X
such that either u = t ∧ t ↪→S x or u ∈ seesX(t, x) ≥ (1, 1) ∧¬ u ∈ seesX(t, x) ≥ (1, 2) are
satisfied by (s, h). If (s, h) |= u = t∧ t ↪→S x then [[t]]Xs,h = s(u) and h([[t]]Xs,h) = s(x). This
implies s(u) ∈ Path[S]Xs,h(t) and h(s(u)) = s(x), which in turn shows that s(u) ∈ L. Other-
wise, suppose that (s, h) |= u ∈ seesX(t, x) ≥ (1, 1) ∧ ¬ u ∈ seesX(t, x) ≥ (1, 2). From the
left conjunct, there are δ1, δ2 ≥ 1 such that δ1 +δ2 = card(Path[S]Xs,h(t)), hδ1([[t]]Xs,h) = s(u)
and hδ2(s(u)) = s(x). Form the right conjunct, δ2 = 1. Again, we derive that s(u) ∈ L.
By (†), we conclude: (s, h) |= u ∈ predWX .

Let us now move to the set Self[W]Xs,h, for which we have the following equivalence:

Self[W]Xs,h = [Cycl[S]Xs,h(1)][∪ {` ∈ Lab[S]Xs,h \ Lab[W]Xs,h | h(`) = `} (‡)

Indeed, every self-loop is either in Cycl[S]Xs,h(1) or it corresponds to a location ` ∈ Lab[S]Xs,h for
which h(`) = `. In this latter case, ` belongs to Self[W]Xs,h if and only if it is not a labelled
location of Lab[W]Xs,h, which leads to the equivalence (‡).

162 Chapter 5. Deciding Robustness Properties in PSpace

case: ϕ = selfWX ≥ β. ϕ is equivalent to the formula∨
T⊆T[S]X
β′∈[0,α]

β′+card(T)≥β

(
loopSX (1) ≥ β′ ∧ alldiff(T) ∧

∧
t∈T

(
unlab(t) ∧ seesX(t, t) = 1

))
,

where we define loopSX (1) ≥ 0 as the tautology loopSX (1) ≥ 1 ∨ ¬loopSX (1) ≥ 1.
Essentially, this formula relies on the fact that Self[W]Xs,h contains at least β locations if
and only if there are two integers β′, β′′ ≥ 0 such that β1 + β2 ≥ β and

c. [Cycl[S]Xs,h(1)][contains at least β′ locations,
d. {` ∈ Lab[S]Xs,h \ Lab[W]Xs,h | h(`) = `} contains at least β′′ locations.

This double implication holds directly from (‡). Let us show that ϕ ≡ τ(ϕ).
(⇒): Suppose (s, h) |= ϕ. Following (‡), there are β′, β′′ ≥ 0 such that (c) and (d) hold.
Moreover, as β ∈ [1, α], we can assume β′ ≤ α. From (c), (s, h) |= loopSX (1) ≥ β′. Let T a
minimal subset of T[S]X where, for every location ` belonging to the set described in (d),
there is a term t ∈ T such that [[t]]Xs,h = `. As every location in (d) belongs to Lab[S]Xs,h,
the set T can be defined. From (c), card([[t]]Xs,h) ≥ β′′ and from the minimality of X we
conclude that card(X) = card([[t]]Xs,h). This implies that (s, h) |= alldiff(X). Lastly, let us
show that (s, h) |=

∧
t∈T

(
unlab(t) ∧ seesX(t, t) = 1

)
. By definition, every term t ∈ X is

such that [[t]]Xs,h 6∈ Lab[W]Xs,h and h([[t]]Xs,h) = [[t]]Xs,h. As the latter implies sbyX
s,h(t) = [[t]]Xs,h

and card(Path[S]Xs,h(t)) = 1, we conclude: (s, h) |= unlab(t) ∧ seesX(t, t) = 1.
(⇐): Suppose (s, h) |= τ(ϕ), and thus (s, h) satisfies one disjunct of τ(ϕ). Let T ⊆ T[S]X
and β′ ∈ [0, α], where β′+card(T) ≥ β, be the set of terms and the integer that correspond
to a satisfied disjunct. (c) holds from (s, h) |= selfWX ≥ β′, and to conclude the proof we
must simply show that (d) also holds, where β′′ = card(T). By (s, h) |= alldiff(T) we
have β′′ = card([[T]]Xs,h), and therefore to show (d) it is sufficient, given t ∈ T, to show that
[[t]]Xs,h 6∈ Lab[W]Xs,h and h([[t]]Xs,h) = [[t]]Xs,h. The former holds as (s, h) |= unlab(t), whereas
the latter holds from (s, h) |= seesX(t, t) = 1. Indeed, h([[t]]Xs,h) = [[t]]Xs,h is equivalent to
sbyX

s,h(t) = [[t]]Xs,h and card(Path[S]Xs,h(t)) = 1.

case: ϕ = u ∈ selfWX . ϕ is equivalent to the formula

u ∈ loopSX (1) ∨
(
unlab(u) ∧

∨
t∈T[S]X

(
u = t ∧ seesX(t, t) = 1

))
.

(⇒): Suppose (s, h) |= ϕ, and thus, from (‡), we have either (1) s(u) ∈ [Cycl[S]Xs,h(1)][,
or (2) s(u) ∈ Lab[S]Xs,h \ Lab[S]Xs,hX and h(s(u)) = s(u). If (1) then (s, h) |= u ∈ loopSX (1).
For the case (2), we show that (s, h) satisfies the right disjunct of τ(ϕ). As s(u) 6∈ Lab[W]Xs,h,
(s, h) |= unlab(u). As s(u) ∈ Lab[S]Xs,h, there is a term t ∈ T[S]X such that s(u) = [[t]]Xs,h.
Thus, h([[t]]Xs,h) = [[t]]Xs,h, which allows us to conclude that (s, h) |= u = t∧seesX(t, t) = 1.
(⇐): Suppose (s, h) |= τ(ϕ). If (s, h) satisfies the left disjunct of τ(ϕ), we conclude
that s(u) ∈ [Cycl[S]Xs,h(1)][⊆ Self[W]Xs,h (inclusion from (‡)), and (s, h) |= u ∈ selfWX .
Otherwise, let us consider the case where (s, h) satisfies the right disjunct of τ(ϕ), and so
there is a term t ∈ T[S]X such that (s, h) |= unlab(u)∧u = t∧seesX(t, t) = 1. Clearly, s(u)
belongs to the set {` ∈ Lab[S]Xs,h\Lab[W]Xs,h | h(`) = `}. Indeed, the satisfaction of unlab(u)
implies s(u) 6∈ Lab[W]Xs,h, whereas (s, h) |= u = t means that s(u) = [[t]]Xs,h ∈ Lab[S]Xs,h.
Moreover, from the satisfaction of seesX(t, t) = 1 we conclude that h(s(u)) = s(u). Lastly,
by (‡), s(u) ∈ Self[W]Xs,h, and therefore (s, h) |= u ∈ selfWX .

5.5. A Family of Core Formulae Capturing the Fragment S 163

The characterisation of the two last formulae, i.e. remWX ≥ β and u ∈ remWX , is quite different.
Let us first discuss the case of u ∈ remWX . First, we define a Boolean combination of core formulae
in Core[S](X, α) that is semantically equivalent to u ↪→ . Similarly to allocS(t) defined at the
beginning of the proof, we write allocS(u) for this formula, which is defined as

u ∈ remSX,α ∨ u ∈ ⇑loopSX,α ∨
∨
β∈[1,α] u ∈ loopSX (β)

∨
∨

t,t′∈T[S]X
(
(u = t ∧ allocS(t)) ∨ u ∈ seesX(t, t′) ≥ (1, 1)

)
The correctness of allocS(u) stems directly from the fact that the sets in Definition 5.29 form
a partition of the domain of the heap, according to Proposition 5.31.
case: ϕ = u ∈ remWX . Thanks to the formula allocS(u), we can define τ(ϕ) as the formula

allocS(u) ∧
∧

x∈X ¬τ(u ∈ predWX (x)) ∧ ¬τ(u ∈ selfWX) ∧
∧

t∈T[W]X ¬τ(u = t).
Essentially, this formula follows the definition of Rem[W]Xs,h given in Definition 5.12:

Rem[W]Xs,h
by def= dom(h) \

(
Lab[W]Xs,h ∪ Self[W]Xs,h ∪

⋃
x∈X Pred[W]Xs,h(x)

)
.

Indeed, ϕ ≡ τ(ϕ) follows directly from the double implications below:

s(u) ∈ dom(h) iff (s, h) |= allocS(u),
s(u) 6∈ Lab[W]Xs,h iff (s, h) |=

∧
t∈T[W]X ¬τ(u = t),

s(u) 6∈
⋃

x∈X Pred[W]Xs,h(x) iff (s, h) |=
∧

x∈X ¬τ(u ∈ predWX),
s(u) 6∈ Self[W]Xs,h iff (s, h) |= ¬τ(u ∈ selfWX).

Lastly, we characterise the formula remWX ≥ β. To do so, we first study how the set Rem[W]Xs,h
is described in terms of sets of the partition of the strong fragment. We have:

Rem[W]Xs,h = Rem[S]X,αs,h ∪
⋃

β∈[2,α]
[Cycl[S]Xs,h(β)][∪ [⇑Cycl[S]X,αs,h][∪

⋃
`∈Lab[S]Xs,h

(
Path[S]Xs,h(`) ∩ Rem[W]Xs,h

)
(?)

Notice that the sets in the right-hand side of this equivalence are all two by two disjoint
(by Proposition 5.31). It is quite easy to see that if a location ` belongs to either Rem[S]X,αs,h
or to an unlabelled cycle of length greater than two, then ` ∈ Rem[W]Xs,h So, the correctness
of (?) is based on the fact that [Cycl[S]Xs,h(1)][∩ Rem[W]Xs,h = ∅ and that, together with paths
sets of the form Path[S]Xs,h(`), these sets cover dom(h). In the equivalence (?), the subsets
of the form Path[S]Xs,h(`) ∩ Rem[W]Xs,h are quite unsatisfactory, as they do not tell us which
locations of Path[S]Xs,h(`) are in Rem[W]Xs,h. We study these locations. We recall that, when
non-empty, Path[S]Xs,h(`) describes a path going from ` to the location sbyX

s,h(`) ∈ Lab[S]Xs,h.
Moreover, ` is the only location in Path[S]Xs,h(`) that belongs to Lab[S]Xs,h. If h(`) = `, then
Path[S]Xs,h(`) = {`} and, as ` points to itself, we have Path[S]Xs,h(`) ∩ Rem[W]Xs,h = ∅. Otherwise,
suppose h(`) 6= `. From the three intermediate result (I), (II) and (III), we know that the only
two locations of Path[S]Xs,h(`) that can possibly belong to Lab[W]Xs,h are ` and h(`). As self-
loops are excluded, from Proposition 5.13 we conclude that every other location of Path[S]Xs,h(`)
belongs to either Rem[W]Xs,h or Pred[W]xs,h(x), for some x ∈ X. Moreover, as s(x) is a labelled loca-
tion, the only location that can ever belong to Pred[W]xs,h(x) is the one that precedes sbyX

s,h(`).
Formally, let lpre be the only location in Path[S]Xs,h(`) such that h(`′) = sbyX

s,h(`). We have,
lpre ∈ Pred[W]xs,h(x) if and only if s(x) = sbyX

s,h(`). If sbyX
s,h(`) does not correspond to a pro-

gram variable, then lpre ∈ Rem[W]Xs,h. Recapitulating, every location in Path[S]Xs,h(`) that is not
`, h(`) and lpre necessarily belongs to Rem[W]Xs,h. Instead, the membership of `, h(`) and lpre to
Rem[W]ys,h depend on (I), (II) (III) and on whether or not sbyX

s,h(`) corresponds to a program
variable. This leads to six different cases, depicted in Figure 5.12 (where, for simplicity, we

164 Chapter 5. Deciding Robustness Properties in PSpace

Pattern described by Path[S]Xs,h(`): card(Path[S]Xs,h(`) \ Rem[W]Xs,h):

x n(x) y
3

n(x)
s(X) 63

y
2

x n(x)
6∈ s(X)) 2

n(x)
s(X) 63 6∈ s(X) 1

Lab[S]Xs,h 63
y

1

Lab[S]Xs,h 63 6∈ s(X) 0

: Rem[W]Xs,h : Pred[W]Xs,h(y)

Figure 5.12: Case analysis for the formula τ(remWX ≥ β), assuming Path[S]Xs,h(`)∩Rem[W]Xs,h 6= ∅.

assume Path[S]Xs,h(`) ∩ Rem[W]Xs,h 6= ∅). Below, suppose that Path[S]Xs,h(`) 6= ∅, and that lpre
is the only location Path[S]Xs,h(`) such that h(`′) = sbyX

s,h(`). Given a term t ∈ T[S]X these six
cases are formalised below, where R is short for Path[S]Xs,h(t) ∩ Rem[W]Xs,h.

A. If (s, h) |= varX(t) ∧ var.sby(t) then R = Path[S]Xs,h(t) \ {[[t]]Xs,h, h([[t]]Xs,h), lpre},

B. if (s, h) |= nextX(t) ∧ var.sby(t) then R = Path[S]Xs,h(t) \ {[[t]]Xs,h, lpre},

C. if (s, h) |= varX(t) ∧ ¬var.sby(t) then R = Path[S]Xs,h(t) \ {[[t]]Xs,h, h([[t]]Xs,h)},

D. if (s, h) |= nextX(t) ∧ ¬var.sby(t) then R = Path[S]Xs,h(t) \ {[[t]]Xs,h},

E. if (s, h) |= unlab(t) ∧ var.sby(t) then R = Path[S]Xs,h(t) \ {lpre},

F. if (s, h) |= unlab(t) ∧ ¬var.sby(t) then R = Path[S]Xs,h(t).
The proofs of (A)–(F) are all very similar. We detail the one for the case (A) and leave the
others to the reader.

Proof of (A). Suppose (s, h) |= varX(t) ∧ var.sby(t). If Path[S]Xs,h(t) = ∅, then (A) and
Path[S]Xs,h(t) 6= ∅. So, [[t]]Xs,h ∈ dom(h) and Path[S]Xs,h(t) is a minimal set describing a
non-empty path, going from [[t]]Xs,h to sbyX

s,h(t). From (s, h) |= varX(t) and by (III), we
derive that [[t]]Xs,h and h([[t]]Xs,h) are in Lab[W]Xs,h. Then, by Proposition 5.13, both [[t]]Xs,h
and h([[t]]Xs,h) do not belong to Rem[W]Xs,h. If h([[t]]Xs,h) = sbyX

s,h(t), then we conclude
that Path[S]Xs,h(t) = {[[t]]Xs,h}. We conclude that (A) holds, as

Path[S]Xs,h(t) ∩ Rem[W]Xs,h = ∅ = Path[S]Xs,h(t) \ {[[t]]Xs,h, lpre}.
Otherwise, let us assume that h([[t]]Xs,h) 6= sbyX

s,h(t), and therefore [[t]]Xs,h and h([[t]]Xs,h) are
two disjoint locations in Path[S]Xs,h(t) \ Rem[W]Xs,h. Let us consider the set

L1
def= Path[S]Xs,h(t) \ {[[t]]Xs,h, h([[t]]Xs,h)}.

Notice that L1 ∩ Rem[W]Xs,h = Path[S]Xs,h(t) ∩ Rem[W]Xs,h. If L1 = ∅, then Path[S]Xs,h(t) =
{[[t]]Xs,h, h([[t]]Xs,h)} and Path[S]Xs,h(t)∩Rem[W]Xs,h = ∅, which verifies (A). Otherwise, suppose
L1 6= ∅. This implies that Path[S]Xs,h(t) contains at least three locations, and therefore it

5.5. A Family of Core Formulae Capturing the Fragment S 165

∨
T⊆ T[S]X

(βt ∈ [1,α])t∈T
(βj ∈ [0,α])j ∈ [1,α]}
β⇑, βR ∈ [0,α]
β≤
∑

i∈ T∪[1,α]∪{⇑,R} βi

remSX,α ≥ βR ∧
∧

j∈[1,α]
loopSX (j) ≥ βj ∧ ⇑loopSX,α ≥ β⇑ ∧ alldiff(T)

∧
∧
t∈T

¬seesX(t, t) = 1

∧ (varX(t) ∧ var.sby(t) ⇒ seeslenX(t) ≥ βt + 3)

∧ (nextX(t) ∧ var.sby(t) ⇒ seeslenX(t) ≥ βt + 2)

∧ (varX(t) ∧ ¬var.sby(t) ⇒ seeslenX(t) ≥ βt + 2)

∧ (nextX(t) ∧ ¬var.sby(t)⇒ seeslenX(t) ≥ βt + 1)

∧ (unlab(t) ∧ var.sby(t) ⇒ seeslenX(t) ≥ βt + 1)

∧ (unlab(t) ∧ ¬var.sby(t)⇒ seeslenX(t) ≥ βt)

Note: The formulae remSX,α ≥ 0, loopSX (j) ≥ 0 (where j ∈ [1, α]) and ⇑loopSX,α ≥ 0 stand for the
tautology remSX,α ≥ 1 ∨ ¬remSX,α ≥ 1.

Figure 5.13: The formula τ(remWX ≥ β).

describes a path ρ = (`0, . . . , `p) going from [[t]]Xs,h to sbyX
s,h(t), of length p ≥ 3. Therefore,

`p−1 = lpre is distinct from `0 = [[t]]Xs,h and `1 = h([[t]]Xs,h), which implies lpre ∈ L1. To
conclude the proof, it is sufficient to show that lpre is the only location of L1 that does
not belong to Rem[W]Xs,h. By (s, h) |= var.sby(t), we know that the location sbyX

s,h(t)
corresponds to a program variable, say x. Hence, lpre ∈ Pred[W]Xs,h. We consider the
set L2

def= L1 \ {`}, and show that it only contains locations in Rem[W]Xs,h. By (III), L2 does
not contain labelled locations. Moreover, since lpre 6∈ L2, this set does not contain pre-
decessors of locations assigned to program variables. Lastly, since Path[S]Xs,h(t) describes
the path ρ, which has length at least three, it cannot be that there is a location `′ ∈ L2
such that h(`′) = `′. By Proposition 5.13, L2 ⊆ Rem[W]Xs,h. This concludes the proof. Inter-
estingly enough, under the hypothesis that Path[S]Xs,h(`) ∩ Rem[W]Xs,h 6= ∅, we found that
Path[S]Xs,h(t) \ Rem[W]Xs,h is made of the three distinct locations [[t]]Xs,h, h([[t]]Xs,h) and `, as
intuitively depicted in the first memory state of in Figure 5.12.

Let us now characterise remWX ≥ β as a Boolean combination of core formulae in Core[S](s, h),
concluding the proof.

case: ϕ = remWX ≥ β. ϕ is equivalent to the formula given in Figure 5.13. Notice that this
formula is a Boolean combination of formulae in Core[S](X, α), as required by the lemma.
Indeed, all its subformulae are made of formulae in Core[S](X, α), with the only non-trivial
case being the subformulae of the form seeslenX(t) ≥ βt + k (where βt ∈ [1, α] and
k ∈ [0, 3]). These subformulae are Boolean combinations of formulae in Core[S](X, α), as
the bound 1

6(α + 1)(α + 2)(α + 3) given to β in formulae of the form seesX(t, t′) ≥ β is
always at least α+ 3 (recall that α ≥ 1). We show that ϕ ≡ τ(ϕ).

(⇒): Suppose (s, h) |= ϕ, and so card(Rem[W]Xs,h) ≥ β. We define the integers βR, β⇑ and βj
(where j ∈ [2, α]) as follows:

166 Chapter 5. Deciding Robustness Properties in PSpace

βR
def= min(α, card(Rem[S]X,αs,h)),

β⇑
def= min(α, card(⇑Cycl[S]X,αs,h)),

βj
def= min(α, card(Cycl[S]Xs,h(j))).

Similarly, given a term t ∈ T[S]X such that [[t]]Xs,h is defined, we define βt as follows:

βt
def= min(α, card(Rem[W]Xs,h ∩ Path[S]Xs,h(t))).

Among the terms in T[S]X, let us consider a maximal subset T of them such that for every
two distinct t, t′ ∈ T, we have βt ≥ 1 and [[t]]Xs,h 6= [[t′]]Xs,h. Equivalently, T is a minimal
set of terms that corresponds to all the locations ` such that Rem[W]Xs,h ∩ Path[S]Xs,h(`) is
non-empty. From (?), we conclude that

βR + β⇑ +
∑
j∈[2,α] βj +

∑
t∈T βt ≥ β.

Let us now show that (s, h) |= τ(ϕ) by showing that (s, h) satisfies the disjunct correspond-
ing to the quantities we just defined. Directly from their definition, we conclude that (s, h)
satisfies remSX,α ≥ βR, ⇑loopSX,α ≥ β⇑ and loopSX (j) ≥ βj , for every j ∈ [2, α]. Moreover, by
definition of T we derive that (s, h) |= alldiff(T). Similarly, as for every t ∈ T we have
that Rem[W]Xs,h ∩ Path[S]Xs,h(t) is non-empty, it must be that h([[t]]Xs,h) 6= [[t]]Xs,h. Indeed,
ad absurdum, suppose that h([[t]]Xs,h) = [[t]]Xs,h. Then, Path[S]Xs,h(t) = {[[t]]Xs,h}, which im-
plies that [[t]]Xs,h ∈ Rem[W]Xs,h. However, this is contradictory, as no location in Rem[W]Xs,h,
can form a self-loop. Thus, h([[t]]Xs,h) 6= [[t]]Xs,h, which in turn allows us to conclude that
(s, h) |= ¬seesX(t, t) = 1. In order to conclude the proof it is sufficient to show that, for
every t ∈ T, (s, h) satisfies the following six conjuncts of τ(ϕ):

a. varX(t) ∧ var.sby(t)⇒ seeslenX(t) ≥ βt + 3,
b. nextX(t) ∧ var.sby(t)⇒ seeslenX(t) ≥ βt + 2,
c. varX(t) ∧ ¬var.sby(t)⇒ seeslenX(t) ≥ βt + 2,
d. nextX(t) ∧ ¬var.sby(t)⇒ seeslenX(t) ≥ βt + 1,
e. unlab(t) ∧ var.sby(t)⇒ seeslenX(t) ≥ βt + 1,
f. unlab(t) ∧ ¬var.sby(t)⇒ seeslenX(t) ≥ βt.

Notice that, for each term in T, exactly one of the antecedents of these six implications is
satisfied. Clearly, the split into the subformulae (a)–(f) follow the cases (A)–(F) discussed
above. Below, we write lpre for the the location in Path[S]Xs,h(t) 6= ∅ such that h(lpre) =
sbyX

s,h(t). We split the proof depending on these cases.

case: (s, h) |= varX(t) ∧ var.sby(t). From (A),
Path[S]Xs,h(t) ∩ Rem[W]Xs,h = Path[S]Xs,h(t) \ {[[t]]Xs,h, h([[t]]Xs,h), lpre}.

Since Path[S]Xs,h(t) ∩ Rem[W]Xs,h 6= ∅, there is ` ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h, h([[t]]Xs,h), lpre}.
Let ρ = (`0, . . . , `p) be the path described by Path[S]Xs,h(t), going from `0 = [[t]]Xs,h to
`p = sbyX

s,h(t). In this path, lpre = `p−1. Since ` 6∈ {[[t]]Xs,h, h([[t]]Xs,h), lpre}, ` = `i for
some i ∈ [2, p− 2]. This implies that [[t]]Xs,h, h([[t]]Xs,h) and lpre are all distinct. We have:

card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) = card(Path[S]Xs,h(t))− 3.
Therefore, card(Path[S]Xs,h(t)) ≥ βt + 3, which implies (s, h) |= seeslenX(t) ≥ βt+3.

case: (s, h) |= nextX(t) ∧ var.sby(t). From (B),
Path[S]Xs,h(t) ∩ Rem[W]Xs,h = Path[S]Xs,h(t) \ {[[t]]Xs,h, lpre}.

5.5. A Family of Core Formulae Capturing the Fragment S 167

Similarly to the previous case, from Path[S]Xs,h(t)∩Rem[W]Xs,h 6= ∅, we conclude that [[t]]Xs,h
and lpre are distinct, and so card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) = card(Path[S]Xs,h(t)) − 2.
Therefore, card(Path[S]Xs,h(t)) ≥ βt + 2, which implies (s, h) |= seeslenX(t) ≥ βt+2.

case: (s, h) |= varX(t) ∧ ¬var.sby(t). From (C),
Path[S]Xs,h(t) ∩ Rem[W]Xs,h = Path[S]Xs,h(t) \ {[[t]]Xs,h, h([[t]]Xs,h)}.

Similarly to the previous cases, by Path[S]Xs,h(t)∩Rem[W]Xs,h 6= ∅, we conclude that [[t]]Xs,h
and h([[t]]Xs,h) are distinct, and so card(Path[S]Xs,h(t)∩Rem[W]Xs,h) = card(Path[S]Xs,h(t))−2.
Therefore, card(Path[S]Xs,h(t)) ≥ βt + 2, which implies (s, h) |= seeslenX(t) ≥ βt+2.

case: (s, h) |= nextX(t) ∧ ¬var.sby(t). From (D),
Path[S]Xs,h(t) ∩ Rem[W]Xs,h = Path[S]Xs,h(t) \ {[[t]]Xs,h}.

Since [[t]]Xs,h ∈ Path[S]Xs,h(t), card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) = card(Path[S]Xs,h(t)) − 1.
Therefore, card(Path[S]Xs,h(t)) ≥ βt + 1, which implies (s, h) |= seeslenX(t) ≥ βt+1.

case: (s, h) |= unlab(t) ∧ var.sby(t). From (E),
Path[S]Xs,h(t) ∩ Rem[W]Xs,h = Path[S]Xs,h(t) \ {lpre}.

Since lpre ∈ Path[S]Xs,h(t), card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) = card(Path[S]Xs,h(t)) − 1.
Therefore, card(Path[S]Xs,h(t)) ≥ βt + 1, which implies (s, h) |= seeslenX(t) ≥ βt+1.

case: (s, h) |= unlab(t)∧¬var.sby(t). By (F), Path[S]Xs,h(t) ∩ Rem[W]Xs,h = Path[S]Xs,h(t).
Therefore, card(Path[S]Xs,h(t)) ≥ βt, which implies (s, h) |= seeslenX(t) ≥ βt.

(⇐): Suppose (s, h) |= τ(ϕ), and therefore one disjunct ψ of τ(ϕ) is satisfied. Let T ⊆ T[S]X,
βt ∈ [1, α] (where t ∈ T), and βR, β⇑, βj ∈ [0, α] (where j ∈ [1, α]) be the set of terms and
integers that correspond to the disjunct ψ. This also means that

βR + β⇑ +
∑
j∈[2,α] βj +

∑
t∈T βt ≥ β.

We show that

a. card(Rem[S]X,αs,h) ≥ βR, card(⇑Cycl[S]X,αs,h) ≥ β⇑, and card(Cycl[S]Xs,h(j)) ≥ βj (j ∈ [1, α]),
b. for all t ∈ T, card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) ≥ βt.

From (s, h) |= alldiff(t) we have card(T) = card([[T]]Xs,h), and so these two statements
imply (s, h) |= ϕ directly from (?). (a) holds from the fact that (s, h) satisfies remSX,α ≥ βR,
⇑loopSX,α ≥ β⇑ and, for every j ∈ [1, α], loopSX (j) ≥ βj . In order to prove (b), let us
consider t ∈ T. From (s, h) 6|= seesX(t, t) = 1 we conclude that Path[S]Xs,h(t) cannot
describe a self-loop, and so for every location ` in this set we have h(`) 6= `. The proof
is now divided into six cases, depending on which formula among varX(t), nextX(t) and
unlab(t) is satisfied, and on whether var.sby(t) holds. Below, whenever Path[S]Xs,h(t) is
non-empty, we write lpre for the location in Path[S]Xs,h(t) such that h(lpre) = sbyX

s,h(t).

case: (s, h) |= varX(t) ∧ var.sby(t). From (s, h) |= ψ, we conclude that (s, h) satisfies
seeslenX(t) ≥ βt+3, and thus card(Path[S]Xs,h(t)) ≥ βt+3 ≥ 4. This implies that [[t]]Xs,h,
h([[t]]Xs,h) and lpre are three distinct locations. From (A),

Path[S]Xs,h(t) ∩ Rem[W]Xs,h = Path[S]Xs,h(t) \ {[[t]]Xs,h, h([[t]]Xs,h), lpre}.
As {[[t]]Xs,h, h([[t]]Xs,h), lpre} ⊆ Path[S]Xs,h(t), we derive card(Path[S]Xs,h(t)∩Rem[W]Xs,h) ≥ βt.

case: (s, h) |= nextX(t)∧var.sby(t). By (s, h) |= ψ, we have card(Path[S]Xs,h(t)) ≥ βt+2.
This implies that [[t]]Xs,h and lpre are two distinct locations, and therefore, from (B), we
derive that card(Path[S]Xs,h(t) \ Rem[W]Xs,h) = 2. So, card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) ≥ βt.

168 Chapter 5. Deciding Robustness Properties in PSpace

case: (s, h) |= varX(t)∧¬var.sby(t). By (s, h) |= ψ, we have card(Path[S]Xs,h(t)) ≥ βt+2.
This implies that [[t]]Xs,h and h([[t]]Xs,h) are two distinct locations, and thus, from (C), we
derive that card(Path[S]Xs,h(t) \ Rem[W]Xs,h) = 2. So, card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) ≥ βt.

case: (s, h) |= nextX(t)∧¬var.sby(t). By (s, h) |= ψ, we have card(Path[S]Xs,h(t)) ≥ βt+1.
By (D), card(Path[S]Xs,h(t) \ Rem[W]Xs,h) = 1. So, card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) ≥ βt.

case: (s, h) |= unlab(t)∧var.sby(t). By (s, h) |= ψ, we have card(Path[S]Xs,h(t)) ≥ βt+1.
By (E), card(Path[S]Xs,h(t) \ Rem[W]Xs,h) = 1. So, card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) ≥ βt.

case: (s, h) |= unlab(t) ∧ ¬var.sby(t). By (s, h) |= ψ, we have card(Path[S]Xs,h(t)) ≥ βt.
By (F), card(Path[S]Xs,h(t) \ Rem[W]Xs,h) = 0. So, card(Path[S]Xs,h(t) ∩ Rem[W]Xs,h) ≥ βt.

Since (s, h) satisfies one of the six cases above (for every t ∈ T), (b) is satisfied.

Corollary 5.36. ≈SX,α ⊆ ≈WX,α.

Proof. Directly from Lemma 5.35.

Apart from Corollary 5.36, Lemma 5.35 has a second consequence: thanks to Lemma 5.15,
it shows that every atomic formula of the weak fragment is equivalent to a Boolean combination
of formulae in Core[S](X, 1). We show that this is also the case for the atomic formulae x ↪→+t
and u ↪→+u, resulting in a proof that Boolean combinations of the core formulae defined in this
section capture the atomic formulae of the strong fragment.

Lemma 5.37. Every atomic formula of the strong fragment written with variables from X∪{u}
is equivalent to a Boolean combination of formulae from Core[S](X, 1).

Proof. For the atomic formulae of W, i.e. >, emp, t = t′ and t ↪→ t′ (where t, t′ ∈ X ∪ {u}), the
result holds directly from Lemmata 5.15 and 5.35. It remains to prove that Boolean combinations
of Core[S](X, 1) capture the formulae x ↪→+y, x ↪→+u and u ↪→+u, where x, y ∈ X. Let us first define
a Boolean combination of core formulae in Core[S](X, 1) stating that there is a non-empty path
going from the location corresponding to a term t to the location corresponding to a term t′,
where t, t′ ∈ T[S]X. We write t ↪→+

S t′ to denote this formula, which is defined as∨
n∈[1,card(T[S]X)]

(t0,t1,...,tn)∈(T[S]X)n+1

t0=t, tn=t′

(∧
j∈[0,n−1] seesX(tj , tj+1) ≥ 1

)
.

Let us show that (s, h) |= t ↪→+
S t′ if and only if there is δ ≥ 1 such that hδ([[t]]Xs,h) = [[t′]]Xs,h.

(⇒): Suppose (s, h) |= t ↪→+
S t′. By definition, there is a sequence of terms t0, . . . , tn

(where n ∈ [1, card(T[S]X)]) such that t0 = t, tn = t′ and (s, h) |= seesX(tj , tj+1) ≥ 1
holds for all j ∈ [0, n−1]. So, given j ∈ [0, n−1], there is δj ≥ 1 s.t. hδj ([[tj]]Xs,h) = [[tj+1]]Xs,h.
Let δ =

∑
j∈[0,n−1] δj . We have hδ([[t]]Xs,h) = [[t′]]Xs,h.

(⇐): Suppose that there is δ ≥ 1 such that hδ([[t]]Xs,h) = [[t′]]Xs,h, which means that h wit-
nesses a non-empty path ρ of length δ, going from [[t]]Xs,h to [[t′]]Xs,h. W.l.o.g. we can assume
the path ρ to be minimal, i.e. hδ′([[t]]Xs,h) 6= [[t′]]Xs,h for all δ′ ∈ [1, δ− 1]. With this assump-
tion, if [[t]]Xs,h 6= [[t′]]Xs,h then no location can appear twice in ρ. Otherwise, if [[t]]Xs,h = [[t′]]Xs,h
then [[t]]Xs,h is the only location that appears twice in ρ (in this case, ρ describes a cy-
cle). Let L be the set of labelled locations belonging to the path ρ, excluding [[t]]Xs,h
and [[t′]]Xs,h. Formally, L = {` ∈ Lab[S]Xs,h | there is δ′ ∈ [1, δ − 1] s.t. hδ′([[t]]Xs,h) = `}. Each
location in L appears only once in ρ, and thus we can order them uniquely, following

5.5. A Family of Core Formulae Capturing the Fragment S 169

their distance from [[t]]Xs,h. Given `1, `2 ∈ L, we write `1 <ρ `2 whenever δ1 < δ2 holds
for the only two lengths δ1, δ2 ∈ [1, δ − 1] such that hδ1([[t]]Xs,h) = `1 and hδ2([[t]]Xs,h) = `2.
Informally, `1 <ρ `2 holds whenever `1 precedes `2 in ρ. Let (`1, . . . , `k) be the sorted
tuple of the elements of L, i.e. the tuple satisfying the conditions {`1, . . . , `k} = L and
for every i, j ∈ [1, k], if i < j then `1 <ρ `2. Since every location in L is labelled, this
tuple corresponds to a tuple of k distinct terms (t1, . . . , tk) such that [[tj]]Xs,h = `j for
all j ∈ [1, k]. Let us consider the tuple (t0, t1, . . . , tk, tk+1), where t0 = t and tk+1 =
t′. By definition of L, given j ∈ [0, k], Path[S]Xs,h(tj) 6= ∅ and sbyX

s,h(tj) = [[tj+1]]Xs,h.
Thus, (s, h) |= seesX(tj , tj+1) ≥ 1. To conclude, we show that (t0, t1, . . . , tk, tk+1) is
in (T[S]X)n+1 for some n ∈ [1, card(T[S]X) + 1]. This is quite easy to see: by definition of L,
the terms t and t′ cannot appear in the tuple (t1, . . . , tk). As these two terms can be
syntactically equal, this means that k ≤ card(T[S]X)− 1, which in turn bound the length
of (t0, t1, . . . , tk, tk+1) to be at most card(T[S]X) + 1.

We write t ↪→∗S t′ for the formula t = t′ ∨ t ↪→+
S t′, which is satisfied whenever a memory state

(s, h) witnesses a (possibly empty) path going from [[t]]Xs,h to [[t′]]Xs,h. We use this formula to
extend the definition of t ↪→+

S t′ for the case where t′ = u. The formula t ↪→+
S u is defined as∨

t1,t2∈T[S]X

(
t ↪→∗S t1 ∧

((
u = t2 ∧ seesX(t1, t2) ≥ 1

)
∨ u ∈ seesX(t1, t2) ≥ (1, 1)

))
Let us show that (s, h) |= t ↪→+

S u if and only if there is δ ≥ 1 such that hδ([[t]]Xs,h) = s(u).
(⇒): Suppose (s, h) |= t ↪→+

S u. By definition there are two terms t1, t2 ∈ T[S]X such that
(s, h) satisfies t ↪→∗ t1 and either u = t2 ∧ seesX(t1, t2) ≥ 1 or u ∈ seesX(t1, t2) ≥ (1, 1).
First, let us assume that (s, h) |= t ↪→∗ t1∧u = t2∧seesX(t1)t2 ≥ 1. There are δ ≥ 0 and
δ′ ≥ 1 such that hδ([[t]]Xs,h) = [[t1]]Xs,h and hδ

′([[t1]]Xs,h) = [[t2]]Xs,h. Moreover, [[t2]]Xs,h = s(u),
and therefore hδ+δ′([[t]]Xs,h) = s(u), as required by the right-hand side of the equivalence.
Similarly, in the case where (s, h) |= t ↪→∗ t1 ∧ u ∈ seesX(t1, t2) ≥ (1, 1), there are δ ≥ 0
and δ′ ≥ 1 s.t. hδ([[t]]Xs,h) = [[t1]]Xs,h and hδ

′([[t]]Xs,h) = s(u). Again, hδ+δ′([[t]]Xs,h) = s(u).

(⇐): Suppose that there is δ ≥ 1 such that hδ([[t]]Xs,h) = s(u), which means that h witnesses
a non-empty path ρ of length δ, going from [[t]]Xs,h to s(u). Let ` be the labelled location
in this path that is closest to s(u), excluding s(u) itself. Formally, ` ∈ Lab[S]Xs,h and there
is δ1 ∈ [0, δ − 1] such that hδ1([[t]]Xs,h) = ` and for every δ2 ∈ [1, δ−1−δ1], hδ2(`) 6∈ Lab[S]Xs,h.
Note that ` could be [[t]]Xs,h. Let t1 ∈ T[S]X such that [[t1]]Xs,h = `. We have (s, h) |= t ↪→∗S t1.
By definition, ` ∈ dom(h). As ` is a labelled location, this means that Path[S]Xs,h(`) is not
empty, and therefore there is a term t2 ∈ T[S]X such that [[t]]Xs,h = sbyX

s,h(`). Again by
definition of ` = [[t1]]Xs,h, one of the following must hold:

1. [[t2]]Xs,h = s(u),
2. [[t2]]Xs,h 6= s(u) and s(u) ∈ Path[S]Xs,h(`).

Indeed, ` is the labelled location in ρ that is closest to s(u), s(u) excluded, and so sbyX
s,h(`)

is either s(u) or reaches s(u). If (1) holds, then (s, h) |= u = t2 ∧ seesX(t1, t2) ≥ 1. If (2)
holds, then (s, h) |= u ∈ seesX(t1, t2) ≥ (1, 1). Either way, (s, h) |= t ↪→+

S u.
Thanks to the formula t ↪→+

S t′, the characterisation of the atomic formulae x ↪→+y, x ↪→+u
and u ↪→+u in terms of Boolean combination of formulae in Core[S](X, 1) is now straightforward:
case: ϕ = x ↪→+y. ϕ is equivalent to x ↪→+

S y.

case: ϕ = x ↪→+u. ϕ is equivalent to x ↪→+
S u.

170 Chapter 5. Deciding Robustness Properties in PSpace

case: ϕ = u ↪→+u. ϕ is equivalent to
ψ def=

∨
β∈[1,α]

u ∈ loopSX (β) ∨ u ∈ ⇑loopSX,α ∨
∨

t∈T[S]X

(
t ↪→+

S t ∧ t ↪→+
S u
)

Let us prove that ϕ ≡ ψ.
(⇒): (s, h) |= u ↪→+u, and thus there is δ ≥ 1 such that hδ(s(u)) = s(u). Informally, s(u)
belongs to a cycle. Let L be the finite set of locations reachable from s(x) in at least one
step, i.e. L = {hδ(s(x)) | δ ≥ 1}. As s(u) belongs to a cycle, s(u) ∈ L. We distinguish the
following three cases:

1. L does not contain any labelled location of Lab[S]Xs,h and card(L) = β ∈ [1, α]. As L
describes a cycle of unlabelled locations and s(u) ∈ L, we have (s, h) |= u ∈ loopSX (β).

2. L ∩ Lab[S]Xs,h = ∅ and card(L) > α. Similarly to the case (1), (s, h) |= u ∈ ⇑loopSX,α.
3. L contains a labelled location ` ∈ Lab[S]Xs,h. Let t ∈ T[S]X such that [[t]]Xs,h = `. Again

recalling that L describes a cycle and s(u) ∈ L, we derive (s, h) |= t ↪→+
S t ∧ t ↪→+

S u.
In all three cases, (s, h) |= ψ.
(⇐): The proof of this direction is straightforward.

5.5.3 Step III: ∗-simulation.

We adapt the arguments used in Section 5.3.3 for the weak fragment in order to establish that the
family of core formulae Core[S](X, α) enjoy the ∗-simulation property. Due to the complexity of
the core formulae of the strong fragment, the technical steps required to prove this result reveal
to be more involved and, despite the modularity of the game hopping argument, lead to proofs
spawning several pages. To lighten the presentation, we show only the more interesting and
challenging “hops”, leaving the others in Appendix C.

We start by defining the hop relation of the strong fragment, denoted by ↔SX,α.

Definition 5.38 (S-hop relation). We write ↔SX,α for the relation on memory states such that

(s, h)↔SX,α (s′, h′) iff for every two heaps h1 and h2 and every α1 ≥ 1 and α2 ≥ 1,
if h = h1 + h2 and α = α1 + α2 then there are two heaps h′1 and h′2
such that h′ = h′1 + h′2, (s, h1) ≈SX,α1 (s′, h′1) and (s, h2) ≈SX,α2 (s′, h′2).

The S-hop relation ↔SX,α is both reflexive and transitive (see Lemma 5.9). We remind the
reader that the ∗-simulation property corresponds to the inclusion ≈SX,α ⊆ ↔SX,α which, given
two memory states (s, h) ≈SX,α (s′, h′), we prove by building a chain of hops

(s, h) = (s1, h1)↔SX,α (s2, h2)↔SX,α . . .↔SX,α (sk−1, hk−1)↔SX,α (sk, hk) = (s′, h′).

Each hop of the chain corresponds to one of several intermediate results, the first of which
involves the case of memory states that are in the indistinguishability relation ≈SX,α for every
α ≥ 1. For two memory states to satisfy this property, they must agree on the cardinality of
every set of the partition defined in Section 5.5.1.

Lemma 5.39. For every α ≥ 1,
(⋂

α′≥1 ≈SX,α′
)
⊆ ↔SX,α.

Proof. Let (s, h) and (s′, h′) be two memory states such that ((s, h), (s′, h′)) ∈
(⋂

α′≥1 ≈SX,α′
)
.

This property of the two memory states allows us to construct a bijection f : LOC→ LOC s.t.

5.5. A Family of Core Formulae Capturing the Fragment S 171

1f. f(s(u)) = s′(u) and for every t ∈ T[S]X, if [[t]]Xs,h is defined then f([[t]]Xs,h) = [[t]]Xs′,h′ ,

2f. for every t ∈ T[S]X and δ ∈ [1, card(Path[S]Xs,h(t))], f(hδ([[t]]Xs,h)) = h′δ([[t]]Xs′,h′),

3f. for every x ∈ X, Pred[S]Xs′,h′(x) = f(Pred[S]Xs,h(x)),

4f. given β ∈ [1, α], f induces a bijection from Cycl[S]Xs,h(β) to Cycl[S]Xs′,h′(β). Formally, for
every L ∈ Cycl[S]Xs,h(β) there is L′ ∈ Cycl[S]Xs′,h′(β) such that f(L) = L′, and for for every
L′ ∈ Cycl[S]Xs′,h′(β) there is L ∈ Cycl[S]Xs,h(β) such that f−1(L′) = L. Similarly, f induces a
bijection from ⇑Cycl[S]X,αs,h to ⇑Cycl[S]X,αs′,h′ ,

5f. Rem[S]X,αs′,h′ = f(Rem[S]X,αs,h).
The existence f directly stems from ((s, h), (s′, h′)) ∈

(⋂
α′≥1 ≈SX,α′

)
and Proposition 5.31. The

constraint (1f) can be satisfied as the two memory states satisfy the same core formulae of the
form t1 = t2 and u = t. The second constraint can be enforced thanks to the equisatisfaction
of the formulae of the form seesX(t1, t2) ≥ β (for every t1, t2 ∈ T[S]X and β ≥ 1). Together
with the first constraint, notice that the second constraint essentially states that the δ-th a
location reachable from [[t]]Xs,h should be mapped through f with the δ-th location reachable
from [[t]]Xs′,h′ (formally shown below, see (B)). Moreover, from the equisatisfaction of the formulae
u ∈ seesX(t1, t2) ≥ (β1, β2) (for every t1, t2 ∈ T[S]X and β1, β2 ≥ 1), we conclude that if s(u)
is the δ-th location reachable from [[t]]Xs,h, then s′(u) is the δ-th location reachable from [[t]]Xs′,h′ ,
and vice versa. Thus, the constraints (1f) and (2f) are simultaneously satisfiable. Similarly, the
constraint (3f) can be satisfied thanks to the equisatisfaction of the core formulae predSX (x) ≥ β
and u ∈ predSX (x) (for every x ∈ X and β ≥ 1). The constraint (4f) relies on the equisatisfaction
of the core formulae loopSX (β1) ≥ β2, and u ∈ loopSX (β1) (for every β1, β2 ≥ 1). Notice that,
thanks to the hypothesis ((s, h), (s′, h′)) ∈

(⋂
α′≥1 ≈SX,α′

)
, the equisatisfaction of these core

formulae entails the equisatisfaction of the formulae ⇑loopSX,α ≥ β1 and u ∈ ⇑loopSX,α (for
every α, β1 ≥ 1). Lastly, the constraint (5f) relies on the equisatisfaction of the core formulae
remSX,α ≥ β and u ∈ remSX,α (for every α, β ≥ 1). From Proposition 5.31, the sets in Definition 5.29
form a partition, and therefore all these constraints can be simultaneously satisfied.

In order to show that (s, h)↔SX,α (s′, h′) holds, let us consider two disjoint heaps h1 and h2,
α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and α = α1 + α2. Notice that this requires α to be at
least two (otherwise the lemma trivially holds). Let us define the heaps h′1 and h′2 required by
the relation ↔SX,α as follows:

h′1 = {(`, `′) ∈ h′ | f−1(`) ∈ dom(h1)}, h′2 = {(`, `′) ∈ h′ | f−1(`) ∈ dom(h2)}.

Since f is a bijection and h1⊥h2, we have h′ = h′1 +h′2. Let us discuss the following properties
(A)–(F) of h′j (where j ∈ {1, 2}), which leads to (s, hj) ≈SX,hj (s′, h′j), as we later show.

A. For every t ∈ T[S]X, [[t]]Xs,hj is defined iff so is [[t]]Xs′,h′j . If defined, f([[t]]Xs,hj) = [[t]]Xs′,h′j .

Proof of (A). We show that if [[t]]Xs,hj is defined then f([[t]]Xs,hj) = [[t]]Xs′,h′j . By symmetry,
the same holds when [[t]]Xs,h′j is defined. The statement is trivial when t is a program
variable. For the case of end-point variables, let us assume that there is x ∈ X such
that t = e(x), and that [[e(x)]]Xs,hj is defined and equal to `. By definition of [[.]]Xs,hj ,
there is δ ≥ 1 such that hδj(s(x)) = `, and if ` ∈ dom(h) then ` belongs to a cycle in hj
whereas hδ−1

j (s(x)) does not. We divide the proof depending on whether ` ∈ dom(hj).
case: ` 6∈ dom(hj). hj witnesses a path going from s(x) to `, and ` is the only location

reachable from s(x) that does not belong to dom(h). Let L1 be the set of locations

172 Chapter 5. Deciding Robustness Properties in PSpace

that describe this path (` excluded). So, L1 ⊆ dom(hj). As hj ⊆ h, L1 describes a
path of h going from s(x) to `. From the properties (1f) and (2f), f(L1) describes
a path of h′ going from s′(x) to f(`). By definition of h′j , f(L1) ⊆ dom(h′j)
and therefore f(L1) describes a path of h′j going from s′(x) to f(`). Moreover,
f(`) 6∈ dom(h′j). So, by definition of end-point variables, f(`) = [[e(x)]]Xs′,h′j .

case: ` ∈ dom(hj). hj witnesses two disjoint non-empty paths, one going from s(x)
to ` and one going from ` to itself. Let L1 be the minimal set of locations that
describe the first path (` is excluded), and L2 be the minimal set of locations that
describe the second one. Notice that L1 ∪ L2 ⊆ dom(hj) and L1 ∩ L2 = ∅. Since
hj ⊆ h, L1 describes a path in h going from s(x) to `, and L2 describes a path in
h going from ` to itself. From the properties (1f) and (2f), f(L1) describes a path
in h′ going from s′(x) to f(`), and f(L2) describes a path going from f(`) to f(`).
Moreover, f(L1) ∩ f(L2) = ∅. By definition of h′j , f(L1) ∪ f(L2) ⊆ dom(h′j). So, h′j
witnesses two disjoint non-empty paths, one going from s(x) to ` and one going
from ` to itself. By definition of end-point variables, f(`) = [[e(x)]]Xs′,h′j .

Let us now consider the case of meet-point variables. Suppose there are x, y ∈ X
such that t = m(x, y) and [[m(x, y)]]Xs,hj = `. By definition, there are δ1, δ2 ≥ 1 such
that hδ1j (s(x)) = hδ2j (s(y)) = ` and for all δ′1 ∈ [0, δ1], δ′2 ∈ [0, δ2], if δ′1 + δ′2 < δ1 + δ2

then h
δ′1
j (s(x)) 6= h

δ′2
j (s(y)). Moreover, for every δ′ ≥ 1, it holds that hδ′(`) 6= `.

Informally, this means that hj witnesses two non-empty disjoint paths, one going
from s(x) to ` and one going from s(y) to `, where ` is a location that does not
belong to a cycle. Let L1 (resp. L2) be the minimal set of locations that describe
the path in hj going from s(x) (resp. s(y)) to `. Notice that L1 ∪ L2 ⊆ dom(hj)
and L1 ∩ L2 ⊆ ∅. As hj ⊆ h, L1 (resp. L2) describes a path in h going from s(x)
(resp. s(y)) to `. From the properties (1f) and (2f), f(L1) (resp. f(L2)) describes
a path in h′ going from s′(x) (resp. s′(y)) to f(`). Moreover, f(L1) ∩ f(L2) = ∅
and, by definition of h′j , f(L1) ∪ f(L2) ⊆ dom(h′j). Thus, h′j witnesses two disjoint
non-empty paths, one going from s′(x) to f(`) and one going from s′(y) to f(`). In
order to conclude that [[m(x, y)]]Xs′ = f(`) it is sufficient to show that h′j does not
witness a cycle involving f(`). Ad absurdum, suppose there is δ′ ≥ 1 such that
h′j
δ′(f(`)) = f(`). Let L′ be the minimal set of locations that describes this cycle

of h′j , i.e. L′ def= {`′ | there is δ′ ≥ 1, h′j
δ′(f(`)) = `′}. In particular, f(`) ∈ L′ and

L′ ⊆ dom(h′j). As h′j ⊆ h′, L′ describes a cycle in h′. From the properties (1f)
and (2f), f−1(L′) describes a cycle in h. By definition of h′j , f−1(L′) ⊆ dom(hj). This
means that f−1(L′) describes a cycle in hj . However, from f(`) ∈ L′, we conclude that
` ∈ f(L′) (f is a bijection). This is contradictory, as ` does not belong to a cycle of hj .
Therefore, f(`) does not belong to a cycle of h′j . We conclude: f(`) = [[m(x, y)]]Xs′,h′j .

B. For every t ∈ T[S]X,
(a) when defined, sbyX

s′,h′j
(t) = f(sbyX

s,hj
(t)),

(b) Path[S]Xs′,h′j (t) = f(Path[S]Xs,hj (t)),

(c) let δ ∈ [1, card(Path[S]Xs,hj (t))]. hδj([[t]]Xs,hj) = s(u) iff h′j
δ([[t]]Xs′,h′j) = s′(u).

First, let us show the following result:
for every x ∈ X and δ ≥ 0, hδ(s(x)) = ` iff h′δ(s′(x)) = f(`). (†)

5.5. A Family of Core Formulae Capturing the Fragment S 173

We discuss the left-to-right direction. The other direction is symmetrical. The proof is by
induction on δ.

base case: δ = 0. Directly from (1f).
induction step: δ ≥ 1. Let ` = hδ(s(x)) and consider the greatest δ′ ∈ [0, δ−1] such that

hδ
′(s(x)) ∈ Lab[S]Xs,h. Since s(x) ∈ Lab[S]Xs,h, δ′ is well-defined. Let t ∈ T[S]X such that

[[t]]Xs,h = hδ
′(s(x)). By induction hypothesis and (1f), h′δ

′
(s′(x)) = f([[t]]Xs,h) = [[t]]Xs′,h′ .

We divide the proof depending on whether ` = sbyX
s,h(t).

case: ` 6= sbyX
s,h(t). From the definition of t, we have that ` ∈ Path[S]Xs,h(t). From

the property (2f), f(hδ−δ
′([[t]]Xs,h)) = h′δ−δ

′
([[t]]Xs′,h′). This implies that f(hδ(s(x))) =

h′δ(s′(x)), and so h′δ(s′(x)) = f(`).
case: ` = sbyX

s,h(t). We notice that, for all δ′′ ∈ [β′ + 1, β′], hδ′′(s(x)) 6= sbyX
s,h(t).

Indeed, otherwise we would reach a contradiction with the fact that δ′ is the great-
est integer in [0, β − 1] such that hδ′(s(x)) ∈ Lab[S]Xs,h. This implies that the loca-
tion `′ = hδ−1(s(x)) belongs to Path[S]Xs,h(t). So, δ = card(Path[S]Xs,h(t)). By induc-
tion hypothesis, we have h′δ−1(s′(x)) = f(`′). By ((s, h), (s′, h′)) ∈

(⋂
α′≥1 ≈SX,α′

)
,

card(Path[S]Xs,h(t)) = card(Path[S]Xs′,h′(t)), which implies that h′(f(`)) = sbyX
s′,h′(t).

From (1f), f(sbyX
s,h(t)) = sbyX

s′,h′(t). Therefore, h′δ(s′(x)) = f(`).

Thanks to (†), from the definition of h′j we conclude that for every x ∈ X and δ ≥ 0,
hδj(s(x)) = `, if and only if h′j

δ(s′(x)) = f(`). Directly from (A), this double implication
can be extended to arbitrary terms:

for every t ∈ T[S]X and δ ≥ 0, hδj([[t]]Xs,hj) = ` iff h′j
δ([[t]]Xs′,h′j) = f(`). (‡)

Let us now prove the statements (a)–(c).

Proof of (a). By definition, sbyX
s′,h′j

(t) belongs to Lab[S]Xs′,h′j and there is δ ≥ 1 such that

h′j
δ([[t]]Xs′,h′j) = sbyX

s′,h′j
(t) and for every δ′ ∈ [1, δ − 1], h′j

δ′([[t]]Xs′,h′j) 6∈ Lab[S]Xs′,h′j . In-
formally, sbyX

s′,h′j
(t) is the first labelled location reachable in h′j starting from [[t]]Xs′,h′j .

From (‡), hδj([[t]]Xs,hj) = f−1(sbyX
s′,h′j

(t)). By (A), this implies hδj([[t]]Xs,hj) ∈ Lab[S]Xs,hj .
Ad absurdum, suppose that hδj([[t]]Xs,hj) is not the first labelled location reachable in
hj starting from [[t]]Xs,hj . So, hjδ

′([[t]]Xs,hj) ∈ Lab[S]Xs,hj for some δ′ ∈ [1, δ−1] . By (A),
h′j
δ′([[t]]Xs′,h′j) ∈ Lab[S]Xs′,h′j . However, as δ′ ∈ [1, δ − 1], this contradicts the state-

ment h′j
δ([[t]]Xs′,h′j) = sbyX

s′,h′j
(t). Therefore, hδj([[t]]Xs,hj) is the first labelled location

reachable in hj starting from [[t]]Xs,hj . We conclude that sbyX
s′,h′j

(t) = f(sbyX
s,hj

(t)).

Proof of (b). (⊆): Suppose `′ ∈ Path[S]Xs′,h′j (t). By definition, `′ ∈ dom(h′j) and there is

δ ≥ 0 such that h′j
δ([[t]]Xs′,h′j) = `′ and for every δ′ ∈ [1, δ], h′j

δ′([[t]]Xs′,h′j) 6= sbyX
s′,h′j

(t).
By (‡), hδj([[t]]Xs,hj) = f−1(`′), and to prove that f−1(`′) ∈ Path[S]Xs,hj (t), it is suf-
ficient to show that for all δ′ ∈ [1, δ], hjδ

′([[t]]Xs,hj) 6= sbyX
s,hj

(t). Ad absurdum, let
us assume that there is δ′ ∈ [1, δ] such that hjδ

′([[t]]Xs,hj) = sbyX
s,hj

([[t]]Xs,hj). By (‡),
h′j
δ′([[t]]Xs′,h′j) = f(sbyX

s,hj
(t)). However, by (a), this implies h′j

δ′([[t]]Xs′,h′j) = sbyX
s′,h′j

(t),
a contradiction. Thus, f−1(`′) ∈ Path[S]Xs,hj (t).
(⊇): Symmetrical to the other direction.

174 Chapter 5. Deciding Robustness Properties in PSpace

Proof of (c). Directly from (‡) and f(s(u)) = s′(u) (property (1f)).

C. For every x ∈ X, Pred[S]Xs′,h′j (x) = f(Pred[S]Xs,hj (x)),

Proof of (C). (⊆): Consider `′ ∈ Pred[S]Xs′,h′j (x). By definition, h′j(`′) = s′(x) and for

every y ∈ X and δ ≥ 0, we have h′j
δ(s′(y)) 6= `′. We divide the proof in two cases,

depending on whether `′ is reached, in h′, by a location corresponding to a program
variable. Let ` = f−1(`′).
case: h′δ(s′(y)) = `′ for some y ∈ X and δ ≥ 0. We have h′δ+1(s′(y)) = s′(x). By

(†), we derive hδ(s(y)) = ` and hδ+1(s(y)) = f−1(s′(x)). With the property (1f),
this implies that h(`) = s(x). Since `′ ∈ dom(h′j), by definition of h′j we conclude
that ` ∈ dom(hj) and so hj(`) = s(x). To conclude that ` ∈ Pred[S]Xs,hj (x), we
show that for all y ∈ X and δ′ ≥ 0, hjδ

′(s(y)) 6= `. Ad absurdum, suppose there are
x ∈ X and δ′ ≥ 0 such that hδ′j (s(y)) = `. By (‡), h′j

δ′(s′(y)) = f(`) = `′. However,
this contradicts the fact that `′ ∈ Pred[S]Xs′,h′j (x). Thus, ` ∈ Pred[S]Xs,hj (x).

case: for all y ∈ X and δ ≥ 0, h′δ(s′(y)) 6= `′. Since h′j ⊆ h′, we have h′(`′) = s′(x).
So, `′ ∈ Pred[S]Xs′,h′(x). By (3f), ` ∈ Pred[S]Xs,h(x). By definition of h′j , `∈ dom(hj)
and thus hj(`) = s(x). From ` ∈ Pred[S]Xs,h(x), no program variable y ∈ X is such
that hjδ

′(s(y)) = `, for any δ′ ≥ 0. By definition, ` ∈ Pred[S]Xs,hj (x).
(⊇): Symmetrical to the other direction.

D. For every β ∈ [1, αj], f induces a bijection from Cycl[S]Xs,hj(β) to Cycl[S]Xs′,h′j(β),

Proof of (D). (⇒): Consider a set L ∈ Cycl[S]Xs,hj(β). We prove that f(L) ∈ Cycl[S]Xs′,h′j(β).
By definition L ∩ Lab[S]Xs,hj = ∅ and L describes a cycle in hj of length β. Let
`0, . . . , `β−1 be the β locations in L, so that for all k ∈ [0, β−1], h(`k) = `(k+1 mod β).
We divide the proof depending on whether L contains a location in Lab[S]Xs,h.
case: L ∩ Lab[S]Xs,h 6= ∅. Let k ∈ [0, β − 1] be an index such that `k ∈ Lab[S]Xs,h.

From (1f), f(`k) ∈ Lab[S]Xs,h. As `k corresponds to a term, we know that h wit-
nesses a (possibly empty) path going from a location corresponding to a program
variable to `k. By (†), for every δ ≥ 0, hδ(`k) = h′δ(f(`k)). As hj ⊆ h, this
implies that for every i ∈ [0, β − 1], h′(f(`i)) = f(`(i+1 mod β)). Since f is a bijec-
tion, f(L) describes a cycle of length β in h′. By definition of h′j , f(L) ∈ dom(h′j)
and therefore f(L) describes a cycle of length β in h′j . Since L ∩ Lab[S]Xs,hj = ∅,
from (A) we conclude that f(L) ∩ Lab[S]Xs′,h′j = ∅. Thus, f(L) ∈ Cycl[S]Xs′,h′j(β).

case: L ∩ Lab[S]Xs,h = ∅. From hj ⊆ h, we conclude that L describes a cycle of
lengthβ in h. Since the locations in L do not belong to Lab[S]Xs,h, L is in
Cycl[S]Xs,h(β). By (4f), f(L) ∈ Cycl[S]Xs′,h′(β). By definition of h′j , f(L) ⊆ dom(h′j).
So, f(L) describes a cycle of length β in h′j . Since L ∩ Lab[S]Xs,hj = ∅, from (A)
we conclude that f(L) ∩ Lab[S]Xs′,h′j = ∅. Thus, f(L) ∈ Cycl[S]Xs′,h′j(β).

(⇐): Symmetrical to the other direction.

E. f induces a bijection from ⇑Cycl[S]X,αs,hj to ⇑Cycl[S]X,αs′,h′j ,

The proof of this statement is analogous to the one for the case (D).

F. Rem[S]X,αs′,h′j = f(Rem[S]X,αs,hj).

5.5. A Family of Core Formulae Capturing the Fragment S 175

Proof of (F). (⊆): Let `′ ∈ Rem[S]X,αs′,h′j . Thus, `′ ∈ dom(h′j), and moreover:

∗ for every x ∈ X, `′ 6∈ Pred[S]Xs′,h′j (x). Therefore, f−1(`′) 6∈ Pred[S]Xs,hj (x) by (C),

∗ for every `1 ∈ Lab[S]Xs′,h′j , `
′ 6∈ Path[S]Xs′,h′j (`1). Therefore, from (B)(b) and (A),

for every `2 ∈ Lab[S]Xs,hj , f
−1(`′) 6∈ Path[S]Xs,hj (`2),

∗ for every β ∈ [1, α], `′ 6∈ Cycl[S]Xs′,h′j(β). Thus, f−1(`′) 6∈ Cycl[S]Xs,hj(β) by (D),

∗ `′ 6∈ ⇑Cycl[S]X,αs′,h′j . Therefore, f−1(`′) 6∈ ⇑Cycl[S]X,αs,hj by (E).

By definition of h′j , f−1(`′) ∈ dom(hj). We conclude that f−1(`′) ∈ Rem[S]X,αs,hj .
(⊇): Symmetrical to the other direction.

The properties (A)–(F) lead directly to (s, hj) ≈SX,αj (s′, h′j). Indeed, let us consider a core
formula ϕ in Core[S](X, αj). We have (s, hj) |= ϕ iff (s′, h′j) |= ϕ, as discussed below:
case: ϕ = t1 = t2. Follows directly from (A).

case: ϕ = seesX(t1, t2) ≥ β. Follows from (A), (B)((a) and (b)), and the bijectivity of f.

case: ϕ = predSX (x) ≥ β. Follows directly from (C) and the bijectivity of f.

case: ϕ = loopSX (β1) ≥ β2. Follows directly from (D) and the bijectivity of f.

case: ϕ = ⇑loopSX,α ≥ β. Follows directly from (E) and the bijectivity of f.

case: ϕ = remSX,α ≥ β. Follows directly from (F) and the bijectivity of f.

case: ϕ = u = t. Follows directly from (A) and since f(s(u)) = s′(u) (property (1f) of f).

case: ϕ = u ∈ seesX(t1, t2) ≥ (β1, β2,). Follows directly from (B).

case: ϕ = u ∈ predSX (x). Follows directly from (C) and f(s(u)) = s′(u).

case: ϕ = u ∈ loopSX (β). Follows directly from (D) and f(s(u)) = s′(u).

case: ϕ = u ∈ ⇑loopSX,α. Follows directly from (E) and f(s(u)) = s′(u).

case: ϕ = u ∈ remSX,α. Follows directly from (F) and f(s(u)) = s′(u).
Therefore, (s, h)↔SX,α (s′, h′).

Alongside Lemma 5.39, we show five intermediate results, one for each type of sets in
the partition defined in Section 5.5.1, which allows us to build the chain of hops. Similarly
to Lemma 5.19, in each of these results we consider two memory states (s, h) and (s, h′) where
the latter memory state is obtained from the former by slightly updating one set of the partition.

Lemma 5.40. Let (s, h) and (s, h′) be two memory states such that (s, h) ≈SX,α (s, h′) and for
every t ∈ T[S]X, [[t]]Xs,h = [[t]]Xs,h′ . We have (s, h)↔SX,α (s, h′) whenever one of the following holds:

(I) h \ {(`, `′) ∈ h | ` ∈ Pred[S]Xs,h(x)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[S]Xs,h′(x)}, for some x ∈ X,

(II) h \ {(`, `′) ∈ h | ` ∈ Path[S]Xs,h(˜̀)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Path[S]Xs,h′(˜̀)}, for ˜̀∈ Lab[S]Xs,h,

(III) h \ {(`, `′)∈h | ` ∈ [Cycl[S]Xs,h(β)][} = h′ \ {(`, `′)∈h′ | ` ∈ [Cycl[S]Xs,h′(β)][}, for β ∈ [1, α],

(IV) h \ {(`, `′) ∈ h | ` ∈ [⇑Cycl[S]X,αs,h][} = h′ \ {(`, `′) ∈ h′ | ` ∈ [⇑Cycl[S]X,αs,h′][},

(V) h \ {(`, `′) ∈ h | ` ∈ Rem[S]X,αs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[S]X,αs,h′}.

176 Chapter 5. Deciding Robustness Properties in PSpace

The proofs of the statements (I)–(V) are, in their essence, all very similar. However, they
heavily depend on the upper bounds given to the formulae in Core[S](X, α) and discussed in Sec-
tion 5.5.2. Because of these upper bounds, the statements (II), (III) and (IV) are definitely the
ones that require a more sophisticated analysis. The proofs of (III) and (IV) are quite close,
in view of the similarities between Cycl[S]Xs,h(β) and ⇑Cycl[S]X,αs,h . In what follows, we show the
proofs for the statements (II) and (III), and refer the reader to Appendix C for the proofs of the
statements (I), (IV) and (V). Despite the modularity introduced via game hopping, the proofs
of (II) and (III) spawn several pages, and show that the technical constructions needed to prove
the ∗-simulation are hardly avoidable. Let us start with the easier proof, i.e. Lemma 5.40(III).

Proof of (III). Consider two heaps h1 and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and
α = α1 + α2. Notice that this requires α to be at least two, otherwise the statement trivially
holds. We write L(α) and R(α) for the upper bounds given to β′ in formulae of the form
loopSX (β) ≥ β′ and remSX,α ≥ β′, respectively. That is, L(α) = 1

2α(α+ 3)− 1 and R(α) = α. As
discussed during Example 5.33, we have:

L(α) ≥ L(α1) + L(α2) +R(max(α1, α2)) + 1. (?)

Besides, if card(Cycl[S]Xs,h(β)) < L(α) then the lemma holds directly from Lemma 5.39. Indeed,
in this case, from the equisatisfaction of the core formulae of the form loopSX (β) ≥ β′ we
conclude that card(Cycl[S]Xs,h(β)) = card(Cycl[S]Xs,h′(β)). By definition of h and h′ we conclude
that ((s, h), (s, h′)) ∈

(⋂
α′≥1 ≈SX,α′

)
, which allows us to apply Lemma 5.39. Therefore, in the

following we assume card(Cycl[S]Xs,h(β)) ≥ L(α), which implies card(Cycl[S]Xs,h′(β)) ≥ L(α) again
from the equisatisfaction of the core formulae loopSX (β) ≥ β′.

Assumption. Both Cycl[S]Xs,h(β) and Cycl[S]Xs,h′(β) have at least L(α) elements.

We define the following three sets T1, T2 and S:
• T1 = {L ∈ Cycl[S]Xs,h(β) | L ⊆ dom(h1)},

• T2 = {L ∈ Cycl[S]Xs,h(β) | L ⊆ dom(h2)},

• S = {(L1, L2) | L1 ∪ L2 ∈ Cycl[S]Xs,h(β) , ∅ 6= L1 ⊆ dom(h1), ∅ 6= L2 ⊆ dom(h2)}.
Given j ∈ [1, 2], Tj contains every set of Cycl[S]Xs,h(β) whose locations are memory cells of
hj . This means that the sets in T1 and T2 describe loops of length β in h1 and h2, respec-
tively. Instead, S contains pairs (L1, L2) of non-empty sets of locations that partition a set
of Cycl[S]Xs,h(β) and are such that L1 contains memory cells of h1 whereas L2 contains memory
cells of h2. Informally, S represent the loops in Cycl[S]Xs,h(β) that are split between h1 and h2.
In particular, S is empty when β = 1, i.e. if we are dealing with self-loops. Notice that T1, T2
and {L1∪L2 | (L1, L2) ∈ S} are mutually disjoint sets, and that their union is Cycl[S]Xs,h(β). The
first crucial step in the proof is to define three similar sets T ′1, T ′2 and S′, with respect to the
set Cycl[S]Xs,h′(β). These sets should also satisfy cardinality constraints depending on L(αj) and
R(αj) (where j ∈ {1, 2}), as well as constraints involving the location s(u). More precisely, the
following six properties shall be satisfied:

1. S′ ⊆ {(L′1, L′2) | L′1 and L′2 are non-empty and disjoint, and L′1 ∪ L′2 ∈ Cycl[S]Xs,h′(β)},

2. T ′1, T ′2 and {L′1 ∪ L′2 | (L′1, L′2) ∈ S′} are mutually disjoint. Their union is Cycl[S]Xs,h′(β),

3. for all j ∈ {1, 2}, min(card(Tj), L(αj)) = min(card(T ′j), L(αj)),

4. for all j ∈ {1, 2}, min(card([πj(S)][), R(αj)) = min(card([πj(S′)][), R(αj)),

5. for all j ∈ {1, 2}, s(u) ∈ [Tj][if and only if s(u) ∈ [T ′j][,

5.5. A Family of Core Formulae Capturing the Fragment S 177

1: if card(S) ≥ max(α1, α2) then
2: let T ′1 ⊆ Cycl[S]Xs,h′(β) such that • card(T ′1) = min(card(T1), L(α1)),

• s(u) ∈ [T ′1][iff s(u) ∈ [T1][.
3: let T ′2 ⊆ Cycl[S]Xs,h′(β) \ T ′1 such that • card(T ′2) = min(card(T2), L(α2)),

• s(u) ∈ [T ′2][iff s(u) ∈ [T2][.
4: if s(u) ∈ [π1(S)][then
5: S′ ←

{
(L′ \ {`′}, {`′}) | L′ ∈ Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2) and `′ = min(L′ \ {s(u)})

}
.

6: else S′ ←
{

({`′}, L′ \ {`′}) | L′ ∈ Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2) and `′ = min(L′ \ {s(u)})
}

.

7: else
8: let i ∈ {1, 2} such that card(Ti) ≥ L(αi).
9: let T ′3−i ⊆ Cycl[S]Xs,h′(β) such that • card(T ′3−i) = min(card(T3−i), L(α3−i)),

• s(u) ∈ [T ′3−i][iff s(u) ∈ [T3−i][.
10: let Q be a set of card(S) sets in Cycl[S]Xs,h′(β) \T ′3−i such that s(u)∈[Q][iff s(u)∈[S][.
11: let f : [Q][→ [S][be a bijection s.t. • for all L′ ∈ Q there is (L1, L2) ∈ S, f(L′) = L1 ∪ L2,

• if s(u) ∈ [Q][then f(s(u)) = s(u).
12: S′ ←

{
(L′1, L′2) | L′1 ∪ L′2 ∈ Q, (f(L′1), f(L′2)) ∈ S

}
.

13: T ′i ← Cycl[S]Xs,h′(β) \ (T ′3−i ∪Q).

Figure 5.14: Strategy used to define T ′1, T ′2 and S′.

6. for all j ∈ {1, 2}, s(u) ∈ [πj(S)][if and only if s(u) ∈ [πj(S)][.
The definition of T ′1, T ′2 and S′ follows the strategy described in Figure 5.14. We remind the
reader that both the sets Cycl[S]Xs,h(β) and Cycl[S]Xs,h′(β) contain at least L(α) elements. We show
that, following this strategy, T ′1, T ′2 and S′ are well-defined and satisfy the properties (1)–(6).
The proof is divided in two cases, depending on whether card(S) ≥ max(α1, α2).
case: card(S) ≥ max(α1, α2). We consider the lines 2–6 of the strategy. First (line 2), T ′1 is

defined as a subset of min(card(T1),L(α1)) elements of Cycl[S]Xs,h′(β), such that s(u) ∈ [T ′1][

if and only if s(u) ∈ [T1][. T ′1 is well-defined:
• From card(Cycl[S]Xs,h′(β)) ≥ L(α) and (?), the set Cycl[S]Xs,h′(β) contains more than

min(card(T1),L(α1)) elements.
• As (s, h) and (s, h′) equisatisfy the formula u ∈ loopSX (β), s(u) ∈ [Cycl[S]Xs,h′(β)][

holds if and only if s(u) ∈ [Cycl[S]Xs,h(β)][. If [T1][contains s(u), then by definition of
T1 so does [Cycl[S]Xs,h′(β)][. Thus, we are able to construct T ′1 so that it contains the
set L′ ∈ Cycl[S]Xs,h′(β) such that s(u) ∈ L′. Otherwise (s(u) 6∈ [T1][), as Cycl[S]Xs,h′(β)
contains more than L(α1) elements, we can construct T ′1 without using sets that
contain s(u) (if any). Also, notice that in both cases we have

s(u) ∈ Cycl[S]Xs,h(β) \ T1 if and only if s(u) ∈ Cycl[S]Xs,h′(β) \ T ′1. (‡1)

The definition of T ′1 implies that both the properties (3) and (5) are satisfied for j = 1.
Now, let us look at T ′2, which is defined (line 3) as a subset of min(card(T2),L(α2)) sets in
Cycl[S]Xs,h′(β)\T ′1 such that s(u) ∈ [T ′2][if and only if s(u) ∈ [T2][. Again, T ′2 is well-defined:
• From the definition of T ′1, Cycl[S]Xs,h′(β) \T ′1 contains at least L(α)−L(α1) elements,

where L(α)− L(α1) > L(α2) ≥ min(card(T2),L(α2)) by (?).
• By definition of T2, if s(u) ∈ [T2][then s(u) ∈ [Cycl[S]Xs,h(β) \ T1][. In this case,

from (‡1), we can construct T ′2 so that it contains the set L′ ∈ Cycl[S]Xs,h′(β) \ T ′1

178 Chapter 5. Deciding Robustness Properties in PSpace

such that s(u) ∈ L′. Otherwise (s(u) 6∈ [T2][), as Cycl[S]Xs,h′(β) \ T ′1 contains more
than min(card(T2),L(α2)) elements, we can construct T ′2 without using sets that
contain s(u). In both cases we conclude that
s(u) ∈ Cycl[S]Xs,h(β) \ (T1 ∪ T2) if and only if s(u) ∈ Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2). (‡2)

Following the definitions of T ′1 and T ′2, we conclude that both the properties (3) and (5)
are satisfied. Lastly, let us look at the definition of S′1, which is split into two cases (line 5
and 6, respectively). In both cases, for each L′ ∈ Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2), S′1 contains
exactly one pair (L′1, L′2) of non-empty disjoint sets L′1 and L′2 such that L′1 ∪ L′2 = L′ (this
holds thanks to the min function used in the definition of S′). Therefore, the property (1)
is satisfied. Moreover, as {L′1 ∪ L′2 | (L′1, L′2) ∈ T ′1} = Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2), where T ′1
and T ′2 are disjoint subsets of Cycl[S]Xs,h′(β), we conclude that the property (2) is satisfied.
Let us now show that the same holds true for the properties (4) and (6).

• First of all, the hypothesis card(S) ≥ max(α1, α2) implies that S contains at least
max(α1, α2) pairs of non-empty sets of locations. This implies that card([π1(S)][) ≥ α1
and card([π2(S)][) ≥ α2. Similarly, S′ contains card(Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2)) pairs
of non-empty sets of locations. By definition of T ′1 and T ′2, together with (?):

card(Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2)) ≥ L(α)− L(α1)− L(α2) ≥ max(α1, α2).

Hence, card([π1(S′)][) ≥ α1 and card([π2(S′)][) ≥ α2. The property (4) is satisfied.
• In order to prove the property (6), we first notice that, by definition of T1, T2 and S

(s(u) ∈ [π1(S)][or s(u) ∈ [π2(S)][) iff s(u) ∈ [Cycl[S]Xs,h(β) \ (T1 ∪ T2)][. (‡3)

Now, let us now analyse the definition of S′. If s(u) ∈ [π1(S)][, we follow the definition
in line 5 and conclude that every element (L′1, L′2) ∈ S′ is such that L′2 = {`′}, for
some location `′ 6= s(u). From (‡2) and (‡3), s(u) ∈ [Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2)][and
therefore s(u) belongs to a set in π1(S′), as required by the property (6). Otherwise
(s(u) 6∈ [π1(S)][), following the definition in line 6, every element (L′1, L′2) ∈ S′ is such
that L′2 = {`′}, for some `′ 6= s(u). So, s(u) 6∈ [π1(S′)][. If s(u) ∈ [π2(S)][then, again
by (‡2) and (‡3), s(u) ∈ [Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2)][, and therefore s(u) ∈ [π2(S′)][.
If s(u) 6∈ [π2(S)][then, together with s(u) 6∈ [π1(S)][, (‡2) and (‡3), we conclude that
s(u) 6∈ [Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2)][. So s(u) 6∈ [π2(S′)][. The property (6) holds.

case: card(S) < max(α1, α2). We consider the lines 8–13 of the strategy. First of all, since
card(T1) + card(T2) + card(S) = card(Cycl[S]Xs,h(β)) ≥ L(α) and card(S) < max(α1, α2),
from (?) we conclude that either card(T1) ≥ L(α1) or card(T2) ≥ L(α2). Therefore, the let
instruction at line 8 correctly defines i ∈ {1, 2} such that card(Ti) ≥ L(αi). The strategy
starts (line 9) by defining T ′3−i (where 3−i is the index in {1, 2} different form i) as a
subset of min(card(T3−i),L(α3−i)) elements in Cycl[S]Xs,h′(β), such that s(u) ∈ [T ′3−i][if
and only if s(u) ∈ [T3−i][. Following the same reasoning provided for T1 in the previous
case of the proof, we conclude that T ′3−i is well-defined and the properties (3) and (5) are
satisfied for j = 3− i. Moreover, similarly to (‡1), we have

s(u) ∈ Cycl[S]Xs,h′(β) \ T ′3−i iff s(u) ∈ Cycl[S]Xs,h(β) \ T3−i. (‡4)

In line 10, we consider a set Q of card(S) sets in Cycl[S]Xs,h′(β) \ T ′3−i such that s(u) ∈ [Q][

if and only if s(u) ∈ [S][. Following the same reasoning provided for T2 in the previous
case of the proof, this step is well-defined. In particular, for this we rely on the fact
that card(S) < max(α1, α2) whereas Cycl[S]Xs,h′(β)\T ′3−i ≥ L(α)−L(α3−i) ≥ max(α1, α2).

5.5. A Family of Core Formulae Capturing the Fragment S 179

Moreover, (‡4) allows us to satisfy the constraint s(u) ∈ [Q][if and only if s(u) ∈ [S][.
Similarly to (‡2), we have

s(u) ∈ Cycl[S]Xs,h′(β) \ (T ′3−i ∪Q) iff s(u) ∈ Cycl[S]Xs,h(β) \ (T3−i ∪ Ŝ), (‡5)

where Ŝ = {L1∪L2 | (L1, L2) ∈ S}. Before analysing the definition of S′ (lines 11 and 12), we
consider the definition of T ′i . We have T ′i = Cycl[S]Xs,h′(β)\(T ′3−i∪Q) (line 13). By definition
of T1, T2 and S, Ti = Cycl[S]Xs,h(β) \ (T3−i ∪ Ŝ). Therefore, directly from (‡5), we conclude
that the property (5) is satisfied. Now, recall that card(Q) = card(S) < max(α1, α2),
card(T ′3−i) ≤ L(α3−i) and Q ∩ T ′3−i = ∅. From (?) and card(Cycl[S]Xs,h′(β)) ≥ L(α),

card(Cycl[S]Xs,h′(β) \ (T ′3−i ∪Q) ≥ L(α)− L(α3−i)−max(α1, α2) ≥ L(αi).
Thus, both card(Ti) and card(T ′i) have at least L(αi) elements, which allows us to conclude
that (3) is satisfied. In order to conclude the proof, we need to analyse the definition of S′
and show that the properties (1), (2), (4) and (6) are satisfied. Following line 11, the
strategy considers a bijection from [Q][to [S][satisfying the two following conditions:
• for all L′ ∈ Q, f(L′) = L1 ∪ L2, where (L1, L2) is a pair in S. Notice that f induces a

bijection from Q to S, mapping sets of locations to pair of sets of locations.
• if s(u) ∈ [Q][then f(s(u)) = s(u). Notice that this constraint can always be satisfied,

as Q is defined so that s(u) ∈ [Q][holds if and only if s(u) ∈ [S][. Together with the
first condition, this means that the set of locations L′ ∈ Q such that s(u) ∈ L′, if it
exists, it is mapped to a pair (L1, L2) ∈ S such that s(u) ∈ L1 ∪ L2.

S′ is defined as {(L′1, L′2) | L′1 ∪ L′2 ∈ Q, (f(L′1), f(L′2) ∈ S) (line 12). First of all, this means
that [S′][= [Q][, and therefore by definition of Q, T ′3−i and T ′i we conclude that the prop-
erty (2) holds. Let us show that also (1) is satisfied. Given a pair (L′1, L′2) ∈ S′, by definition
L′1 ∪ L′2 ∈ Q and so L1 ∪ L2 ∈ Cycl[S]Xs,h′(β). Moreover, we have (f(L′1), f(L′2)) ∈ S, which
implies that f(L′1) and f(L′2) are disjoint and non-empty, directly by definition of S. As f is a
bijection, the same holds for the two sets L′1 and L′2. Thus, (1) is satisfied. Lastly, the prop-
erties (4) and (6) hold. Indeed, from the definition of S′ we deduce that f(π1(S′)) = π1(S)
and f(π2(S′)) = π2(S). Property (6) follows from f(s(u)) = s(u). Property (4) holds as f

is a bijection, and so card([πj(S′)][) = card([πj(S)][), for all j ∈ {1, 2}.
After showing that T ′1, T ′2 and S′ satisfy (1)–(6), we rely on these sets in order to define the
heaps h′1 and h′2 such that (s, h1) ≈SX,α1 (s, h′1) and (s, h2) ≈SX,α2 (s, h′2) (as required by the hop
relation ↔SX,α). First, let us define the two heaps ĥ1

def= h1 \ {(`, `′) ∈ h1 | ` ∈ [T1 ∪ π1(S)][} and
ĥ2

def= h2 \ {(`, `′) ∈ h2 | ` ∈ [T2∪π2(S)][}. By definition of T1, T2 and S, dom(ĥ1)∩Cycl[S]Xs,h(β)
and dom(ĥ1) ∩ Cycl[S]Xs,h(β) are both empty. Moreover, by h = h1 + h2, we have that

h = ĥ1 + ĥ2 + {(`, `′) ∈ h | ` ∈ [Cycl[S]Xs,h(β)][}.

From the hypothesis h\{(`, `′) ∈ h | ` ∈ [Cycl[S]Xs,h(β)][} = h′\{(`, `′) ∈ h′ | ` ∈ [Cycl[S]Xs,h′(β)][}
we derive ĥ1 + ĥ2 = h′ \ {(`, `′) ∈ h′ | ` ∈ [Cycl[S]Xs,h′(β)][}. We define the heaps h′1 and h′2 as:

h′1
def= ĥ1 + {(`, `′) ∈ h′ | ` ∈ [T ′1 ∪ π1(S′)][}, h′2

def= ĥ2 + {(`, `′) ∈ h′ | ` ∈ [T ′2 ∪ π2(S′)][}.

From (2), the heaps {(`, `′) ∈ h′ | ` ∈ [T ′1 ∪ π1(S′)][} and {(`, `′) ∈ h′ | ` ∈ [T ′2 ∪ π2(S′)][} are
disjoint, and their union is {(`, `′) ∈ h′ | ` ∈ [Cycl[S]Xs,h′(β)][}. Thus, h′1 and h′2 are well-defined,
they are disjoint, and h′ = h′1 + h′2. We now prove seven properties of h′1 and h′2. Except for
the the first one, i.e. (O), these properties are analogous to the properties (A)–(F) in the proof
of Lemma 5.39, and so they lead to (s, h)↔SX,α (s, h′) rather straightforwardly. Let j ∈ {1, 2}.

180 Chapter 5. Deciding Robustness Properties in PSpace

O. Let x ∈ X and δ ≥ 0. hδj(s(x)) and h′j
δ(s(x)) are equidefined. When defined, they are equal.

This statement is not very surprising. Intuitively, ĥj is obtained from both hj and h′j
by removing memory cells that correspond to unlabelled cycles of (s, h) and (s, h′), re-
spectively. However, these memory cells cannot be reached by locations corresponding to
program variables, as otherwise the cycle is not unlabelled (as shown in the formal proof
below). Besides, we highlight the fact that this statement is also found in the proof of the
cases (I), (IV) and (V) of Lemma 5.40. Similarly to the case under analysis, these cases
treat memory cells that are not reached by locations corresponding to program variables.

Proof of (O). The proof is by induction on δ.
base case: δ = 0. Straightforward.
induction step: δ ≥ 1. Suppose hδj(s(x)) = `. Let `′ = hδ−1

j (s(x)). So, hj(`′) = `.
Ad absurdum, let us suppose that there is L ∈ Cycl[S]Xs,h(β) such that `′ ∈ L.
Since from hj ⊆ h we conclude that hδ(s(x)) = `′, which in turn implies that
s(x) reaches the cycle described by L. So, there is a location `′′ ∈ L that is the
first location reachable from s(x) that belongs to the cycle described by L. From
the semantics of end-point variables, [[t]]Xs,h = `′′. However, this is contradictory,
as L does not contain labelled locations. Thus, `′ 6∈ [Cycl[S]Xs,h(β)][. By definition
of ĥj , `′ ∈ dom(hj) and ĥj(`′) = `. Since ĥj ⊆ h′j , we conclude that h′j(`′) = `.
By `′ = hδ−1

j (s(x)) and the induction hypothesis, `′ = h′j
δ−1(s(x)). Therefore,

h′j
δ(s(x)) = `. This concludes the proof for the case where hδj(s(x)) is defined.

The other case, i.e. when h′j
δ(s(x)) is defined, is symmetrical.

A. For all t ∈ T[S]X, [[t]]Xs,hj and [[t]]Xs,h′j are equidefined. When defined, they are equal.

Proof of (A). Follows directly from (O) and the definition of [[.]]X. . We show the case for
end-point variables and leave the case of meet-point variables to the reader. Sup-
pose [[e(x)]]Xs,hj = `. By definition of end-point variable, there is δ ≥ 1 such that
hδj(s(x)) = ` and, if ` ∈ dom(hj) then ` belongs to a cycle in hj whereas hδ−1

j (s(x))
does not. From (O), h′j

δ(s(x)) = `, h′j
δ−1(s(x)) = hj

δ−1(s(x)), and ` ∈ dom(hj) if and
only if ` ∈ dom(h′j). Again by (O), if ` (resp. hδ−1

j (s(x))) belongs to a cycle in hj then
it belongs to a cycle in h′j , and vice versa. We conclude that [[e(x)]]Xs,hj = [[e(x)]]Xs,h′j .
The proof that if [[e(x)]]Xs,h′j is defined, then [[e(x)]]Xs,hj = [[e(x)]]Xs,h′j is symmetrical.

B. For every t ∈ T[S]X,

(a) sbyX
s,hj

(t) and sbyX
s,h′j

(t) are equidefined. When defined, they are equal,

(b) Path[S]Xs,hj (t) = Path[S]Xs,h′j (t),

(c) let δ ∈ [1, card(Path[S]Xs,hj (t))]. hδj([[t]]Xs,hj) = s(u) iff h′j
δ([[t]]Xs,h′j) = s(u).

Proof of (B). As in the case of (A), the statements (a)–(c) follow directly from (O) and
the definition of [[.]]X. . In particular, given t ∈ T[S]X and δ ≥ 0, by (O), we conclude
that, when defined, hδj([[t]]Xs,hj) = h′j

δ([[t]]Xs,h′j). This implies (c). Moreover, by (A),
Lab[S]Xs,hj = Lab[S]Xs,h′j , which allows us to conclude that (a) and (b) hold.

C. For every x ∈ X, Pred[S]Xs,hj (x) = Pred[S]Xs,h′j (x).

5.5. A Family of Core Formulae Capturing the Fragment S 181

Proof of (C). (⊆): Let ` ∈ Pred[S]Xs,hj (x), and so hj(`) = s(x) and, in hj , ` is not reached by
any location corresponding to program variables in X. As hj ⊆ h we have h(`) = s(x).
Ad absurdum, suppose there is L ∈ Cycl[S]Xs,h(β) such that ` ∈ L. As L describes a
cycle, we have s(x) = h(`) ∈ L. However, this is contradictory, as L does not contain
labelled locations. Thus, ` 6∈ [Cycl[S]Xs,h(β)][. By definition of ĥj together with the
fact that ` ∈ dom(hj), we conclude that ` ∈ dom(ĥj) and ĥj(`) = s(x). Since ĥj ⊆ h′j ,
h′j(`) = s(x). In order to conclude that ` ∈ Pred[S]Xs,h′j (x), it is sufficient to show that,
in h′j , ` is not reached by any location corresponding to program variables in X. Ad
absurdum, suppose there is y ∈ X and δ ≥ 0 such that h′j

δ(s(y)) = `. Since ` ∈
dom(h′j), there must be a term t ∈ T[S]X such that ` ∈ Path[S]Xs,h′j (t). However,
by (b) this implies that ` ∈ Path[S]Xs,hj (t). By Proposition 5.31, this contradicts the
fact that ` ∈ Pred[S]Xs,hj (x). Thus, ` is not reached by any location corresponding to
program variables in X, which allows us to conclude that ` ∈ Pred[S]Xs,h′j (x).
(⊇): Symmetrical to the other direction.

D. For every β′ ∈ [1, αj],
(d) min(card(Cycl[S]Xs,hj(β

′)),L(αj)) = min(card(Cycl[S]Xs,h′j(β
′)),L(αj)),

(e) s(u) ∈ [Cycl[S]Xs,hj(β
′)][if and only if s(u) ∈ [Cycl[S]Xs,h′j(β

′)][.

We start by showing the following equivalence and inclusions:
(f) Cycl[S]Xs,hj(β

′) \ Tj = Cycl[S]Xs,h′j(β
′) \ T ′j ,

(g) if β′ = β then Tj ⊆ Cycl[S]Xs,hj(β
′) and T ′j ⊆ Cycl[S]Xs,h′j(β

′).

Proof of (f). (⊆): Suppose L ∈ Cycl[S]Xs,hj(β
′) \ Tj . By definition of Cycl[S]Xs,hj(β

′):
h. L does not contain locations from Lab[S]Xs,hj ,
i. L describes a cycle in hj .

From (i), it cannot be that L ∈ πj(S). Ad absurdum, suppose L ∈ πj(S). This means
that there is a non-empty L′ such that L ∪ L′ ∈ Cycl[S]Xs,h(β) and L ∩ L′ = ∅. By
definition, L ∪ L′ is a set of β locations describing a cycle (of length β) in h. From
L′ 6= ∅, we conclude that L cannot describe a cycle in h. However, directly from
hj ⊆ h, this implies that it cannot describe a cycle in hj , in contradiction with (h).
Thus, L 6∈ πj(S). By definition of ĥj , we conclude that L ⊆ dom(ĥj). By ĥj ⊆ hj , L
describes a cycle in ĥj . By ĥj ⊆ h′j , L describes a cycle in h′j . Moreover, by definition
of ĥj , L 6∈ T ′j . Lastly, from (A) and (h), L does not contain locations from Lab[S]Xs,h′j .
So, L ∈ Cycl[S]Xs,h′j(β

′) \ T ′j .
(⊇): Symmetrical to the other direction.

Proof of (g). We prove the inclusion Tj ⊆ Cycl[S]Xs,hj(β). Suppose L ∈ Tj . By definition
of Tj , L ∈ Cycl[S]Xs,h(β), which means that:
∗ L describes a cycle in T ,
∗ L does not contain locations from Lab[S]Xs,h. Equivalently, for every ` ∈ L, x ∈ X

and δ ≥ 0, hδ(s(x)) 6= `.
As hj ⊆ h and L ∈ dom(hj), these two properties carry over to hj (they are
monotonous under subheaps). By definition, L ∈ Cycl[S]Xs,hj(β).
The proof of the inclusion T ′j ⊆ Cycl[S]Xs,h′j(β) is analogous.

182 Chapter 5. Deciding Robustness Properties in PSpace

Proof of (D). First, if β′ 6= β then both Tj ∩ Cycl[S]Xs,hj(β
′) and T ′j ∩ Cycl[S]Xs,hj(β

′) are
empty. Indeed, Tj and T ′j contain sets of cardinality β, whereas Cycl[S]Xs,hj(β

′) and
Cycl[S]Xs,hj(β

′) contain sets of cardinality β′. Thus, both (d) and (e) hold by (f).
Let us assume β′ = β. We start by proving that (d) holds. The property (3)
of the construction states that min(card(Tj), L(αj)) = min(card(T ′j), L(αj)). Since
for all a, b, c, d ∈ N, min(a, d) = min(b, d) implies min(a+ c, d) = min(b+ c, d),

min(card(Tj) + card(Cycl[S]Xs,hj(β) \ Tj), L(αj))

= min(card(T ′j) + card(Cycl[S]Xs,hj(β) \ Tj), L(αj)).
From (f), card(Cycl[S]Xs,hj(β) \ Tj) = card(Cycl[S]Xs,h′j(β) \ T ′j), and so

min(card(Tj) + card(Cycl[S]Xs,hj(β) \ Tj), L(αj))

= min(card(T ′j) + card(Cycl[S]Xs,h′j(β) \ T ′j), L(αj)).
(†)

By (g), we have Cycl[S]Xs,hj(β) = (Cycl[S]Xs,hj(β) \ Tj) ∪ Tj and so
card(Cycl[S]Xs,hj(β)) = card(Cycl[S]Xs,hj(β) \ Tj) + card(Tj).

Similarly (again from (g)),
card(Cycl[S]Xs,h′j(β)) = card(Cycl[S]Xs,h′j(β) \ T ′j) + card(T ′j).

Therefore, from (†), we conclude that (d) holds.
Let us prove (e). For the left-to-right direction, suppose s(u) ∈ [Cycl[S]Xs,hj(β)][.
By (g), we have either s(u) ∈ [Cycl[S]Xs,hj(β) \ Tj][or s(u) ∈ [Tj][. In the former case,
directly from (f), we conclude that s(u) ∈ [Cycl[S]Xs,h′j(β)][. In the latter case, from the
property (5) of the construction, we have s(u) ∈ [T ′j][. By (g), s(u) ∈ [Cycl[S]Xs,h′j(β)][.
The right-to-left direction is proved symmetrically.

E. (j) min(card(⇑Cycl[S]X,αjs,hj
),L(αj)) = min(card(⇑Cycl[S]X,αjs,h′j

),L(αj)),

(k) s(u) ∈ [⇑Cycl[S]X,αjs,hj
][if and only if s(u) ∈ [⇑Cycl[S]X,αjs,h′j

][.
The proofs of these two statements rely on the following equality and inclusions:

(l) ⇑Cycl[S]X,αjs,hj
\ Tj = ⇑Cycl[S]X,αjs,h′j

\ T ′j ,

(m) if β > αj then Tj ⊆ ⇑Cycl[S]X,αjs,hj
and T ′j ⊆ ⇑Cycl[S]X,αjs,h′j

.

The statement (l) is proved similarly to (f), whereas the statement (m) is proved analo-
gously to (g). Then, the proof of (E) follows similarly to (D).

F. (n) min(card(Rem[S]X,αjs,hj
),R(αj)) = min(card(Rem[S]X,αjs,h′j

),R(αj)),

(o) s(u) ∈ Rem[S]X,αjs,hj
if and only if s(u) ∈ Rem[S]X,αjs,h′j

.
We start by showing the following equality and inclusions:
(p) Rem[S]X,αjs,hj

\ [πj(S)][= Rem[S]X,αjs,h′j
\ [πj(S′)][,

(q) [πj(S)][⊆ Rem[S]X,αjs,hj
and [πj(S′)][⊆ Rem[S]X,αjs,h′j

.

Proof of (p). (⊆): Let ` ∈ Rem[S]X,αjs,hj
\ [πj(S)][. As ` ∈ Rem[S]X,αjs,hj

, we have
r. ` ∈ dom(hj)
s. ` does not belong to Lab[S]Xs,hj , Pred[S]Xs,hj (x), Path[S]Xs,hj (`), Cycl[S]Xs,hj(β

′) and
⇑Cycl[S]X,αjs,hj

, for every x ∈ X, ` ∈ Lab[S]Xs,hj and β′ ∈ [1, αj].

5.5. A Family of Core Formulae Capturing the Fragment S 183

Ad absurdum, suppose ` ∈ [Tj][. Then, there is L ∈ Tj such that ` ∈ L. By definition
of Tj , L describes a cycle in h. By definition of hj , we have L ⊆ dom(hj), which in
turn implies that L describes a cycle in h. However, this implies that there is δ ≥ 0
such that hj(`) = `, in contradiction with ` ∈ Rem[S]X,αjs,hj

. Hence, ` 6∈ [Tj][. Together
with ` 6∈ [πj(S)][and (r), this means that ` ∈ dom(ĥj). By definition of h′j , we
conclude that ` ∈ dom(h′j), ` 6∈ [πj(S′)][and ` 6∈ [T ′j][. From (s), this implies that `
does not belong to Lab[S]Xs,h′j (by (A)), Pred[S]Xs,h′j (x) (by (C)), Path[S]Xs,h′j (`) (by (A)

and (b)), Cycl[S]Xs,h′j(β
′) (by (f)) and ⇑Cycl[S]X,αjs,h′j

(by (l)), for all x ∈ X, ` ∈ Lab[S]Xs,h′j
and β′ ∈ [1, αj]. Therefore, ` ∈ Rem[S]X,αjs,h′j

\ [πj(S′)][.
(⊇): Symmetrical to the other direction.

Proof of (q). We prove the inclusion [πj(S)][⊆ Rem[S]X,αjs,hj
. Let ` ∈ [πj(S)][, and so ` ∈

dom(hj). Consider the set of locations L1 ∈ πj(S) such that ` ∈ L. By definition of
S, ` belongs to a set L ∈ Cycl[S]Xs,h(β) such that
t. L contains β locations and describes a cycle in h (of length β),
u. L does not contain locations in Lab[S]Xs,h. Equivalently, for every `′ ∈ L, x ∈ X

and δ ≥ 0, hδ(s(x)) 6= `′.
v. there is a non-empty set of locations L2 ∈ π3−j(S) such that L1 ∪ L2 = L.

By (t), (v) and hj ⊆ h we conclude that L1 does not describe a cycle in hj . Thus,
` 6∈ Cycl[S]Xs,hj(β

′) (for every β′ ∈ [1, αj]) and ` 6∈ ⇑Cycl[S]X,β
′

s,hj
. From (u) and hj ⊆ h,

for every ` ∈ L, x ∈ X and δ ≥ 0, hδj(s(x)) 6= `. This implies that ` 6∈ Lab[S]Xs,hj and
` 6∈ Path[S]Xs,hj (`

′), for every `′ ∈ Lab[S]Xs,hj). Lastly, as L describes a cycle and ` ∈ L,
we derive hj(`) ∈ L, which in turn implies that hj(`) does not correspond to a variable.
So, ` 6∈ Pred[S]Xs,hj (x), for all x ∈ X. By definition of Rem[S]X,αjs,hj

, ` ∈ Rem[S]X,αjs,hj
.

The proof of the inclusion [πj(S′)][⊆ Rem[S]X,αjs,h′j
is analogous.

Proof of (F). We start by proving (n). The property (4) of the construction states that
min(card([πj(S)][), R(αj)) = min(card([πj(S′)][), R(αj)). Since for all a, b, c, d ∈ N,
min(a, d) = min(b, d) implies min(a+ c, d) = min(b+ c, d),

min(card([πj(S)][) + card(Rem[S]X,αjs,hj
\ [πj(S)][), R(αj))

= min(card([πj(S′)][) + card(Rem[S]X,αjs,hj
\ [πj(S)][), R(αj)).

From (p), card(Rem[S]X,αjs,hj
\ Tj) = card(Rem[S]X,αjs,h′j

\ T ′j), and so

min(card([πj(S)][) + card(Rem[S]X,αjs,hj
\ [πj(S)][), R(αj))

= min(card([πj(S′)][) + card(Rem[S]X,αjs,h′j
\ [πj(S′)][), R(αj)).

(†)

By (q), we have Rem[S]X,αjs,hj
= (Rem[S]X,αjs,hj

\ [πj(S)][) ∪ [πj(S)][and so

card(Rem[S]X,αjs,hj
) = card(Rem[S]X,αjs,hj

\ [πj(S)][) + card([πj(S)][).
Similarly (again from (q)),

card(Rem[S]X,αjs,h′j
) = card(Rem[S]X,αjs,h′j

\ [πj(S′)][) + card([πj(S′)][).

Therefore, from (†), we conclude that (n) holds.
Let us prove (o). For the left-to-right direction, suppose s(u) ∈ Rem[S]X,αjs,hj

. By (q),
we have either s(u) ∈ Rem[S]X,αjs,hj

\ [πj(S)][or s(u) ∈ [πj(S)][. In the former case,

184 Chapter 5. Deciding Robustness Properties in PSpace

directly from (p), we conclude that s(u) ∈ Rem[S]X,αjs,h′j
. In the latter case, from the

property (6) of the construction, we have s(u) ∈ [πj(S′)][. By (q), s(u) ∈ Rem[S]X,αjs,h′j
.

The right-to-left direction is proved symmetrically.
The properties (A)–(F) lead directly to (s, hj) ≈SX,αj (s′, h′j), with the same case analysis provided
at the end of the proof of Lemma 5.39. Therefore, (s, h)↔SX,α (s, h′).

We now move to the proof of Lemma 5.40(II), which deals with the ∗-simulation in case of
two memory states (s, h) and (s, h′) whose differences are localised to the sets Path[S]Xs,h(t)
and Path[S]Xs,h′(t). The proof follows the same steps of Lemma 5.40(III). First, we parti-
tion Path[S]Xs,h(t) in multiple sets, following the definition of h1 and h2. We identify anal-
ogous sets that partition Path[S]Xs,h′(t), which are then used to define h′1 and h′2. Lastly,
discuss several properties of these two heaps, which allows us to establish (s, h1) ≈SX,α1 (s, h′1)
and (s, h2) ≈SX,α2 (s, h′2). Despite the simple steps, the technical developments needed to cor-
rectly show this result are quite involved.

Proof of (II). We assume α to be at least two, otherwise the lemma trivially holds. Consider
two heaps h1 and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and α = α1 + α2. Moreover, let
t ∈ T[S]X be a term such that [[t]]Xs,h = [[t]]Xs,h′ = ˜̀. The first equality holds from the hypothesis,

for every t ∈ T[S]X, [[t]]Xs,h = [[t]]Xs,h′ , (=t)

which will be used throughout the proof. In what follows, we write S(α) and R(α) for the upper
bounds given to β in core formulae of the form seesX(t, t′) ≥ β and remSX,α ≥ β, respectively.
Similarly, we write Sleft(α) (resp. Sright(α)) for the upper bound given to

←−
β (resp.

−→
β) in formulae

of the form u ∈ seesX(t1, t2) ≥ (
←−
β ,
−→
β). More precisely, we have:

S(α) = 1
6(α+ 1)(α+ 2)(α+ 3), R(α) = α,

Sleft(α) = 1
6α(α+ 1)(α+ 2) + 1, Sright(α) = 1

2α(α+ 3).

One can show that the following (in)equalities hold:
(?1) S(α) = Sleft(α) + Sright(α),
(?2) Sleft(α) ≥ S(max(α1, α2)) + 1,
(?3) Sright(α) ≥ Sright(max(α1, α2)) +R(α1) +R(α2) + 1.

Similarly to Lemma 5.40(III), if card(Path[S]Xs,h(t))<S(α) then the lemma holds by Lemma 5.39.
Indeed, in this case, the equisatisfaction of the formulae of the form seesX(t, t′) ≥ β, to-
gether with the hypothesis that for every term t ∈ T[S]X, [[t]]Xs,h = [[t]]Xs,h′ , allows us to conclude
that card(Path[S]Xs,h(t)) = card(Path[S]Xs,h′(t)). By definition of h and h′ we conclude that
((s, h), (s, h′)) ∈

(⋂
α′≥1 ≈SX,α′

)
, which allows us to apply Lemma 5.39. Therefore, in the follow-

ing we assume card(Path[S]Xs,h(t)) ≥ S(α), which implies card(Path[S]Xs,h′(t)) ≥ S(α) again from
the equisatisfaction of the core formulae seesX(t, t′) ≥ β.

Assumption. Both Path[S]Xs,h(t) and Path[S]Xs,h′(t) have at least S(α) elements.

We remind the reader that whenever Path[S]Xs,h(t) is non-empty, it describes a path in h, going
from [[t]]Xs,h to sbyX

s,h(t). We define the following subsets and locations of Path[S]Xs,h(t):
• lpre is the only location in Path[S]Xs,h(t) such that h(lpre) = sbyX

s,h(t),

• given j ∈ {1, 2}, Pj def= {` ∈ Path[S]Xs,h(t)∩dom(hj) | lpre 6= ` = hδj([[t]]Xs,h), for some δ ≥ 0},

• given j ∈ {1, 2}, Rj def=
(
sbyX

s,h(t) ∩ dom(hj)
)
\
(
Pj ∪ {lpre}

)
.

5.5. A Family of Core Formulae Capturing the Fragment S 185

We notice that lpre is the predecessor of sbyX
s,h(t) in the path described by Path[S]Xs,h(t). Since

the definition of the relation↔SX,α is symmetrical with respect to the subheaps h1 and h2, without
loss of generality we assume lpre ∈ dom(h1).

Assumption. lpre ∈ dom(h1).

The crux of the proof is dealing with how this path is split between the heaps h1 and h2, while
understanding what properties the locations in Path[S]Xs,h(t) have on these subheaps. The two
sets P1 and P2 are introduced with this in mind. In particular, Pj contains all the locations
in Path[S]Xs,h(t) ∩ dom(hj) that, in hj , are reachable from [[t]]Xs,h, with the exception of lpre.
Given j ∈ {1, 2}, this means that [[t]]Xs,h ∈ Pj if and only if [[t]]Xs,h ∈ dom(hj), and thus exactly
one set among P1 and P2 is empty. Whenever non-empty, Pj is a minimal set describing a path
in both h and hj , going from [[t]]Xs,h to a location that is not in Pj . We write ePj to denote this
location. It could be that ePj = lpre. In this case, following the assumption lpre ∈ dom(h1), if
j = 1 then Path[S]Xs,h(t) ⊆ dom(h1), and therefore Path[S]Xs,h(t) describes a path in h1, going
from [[t]]Xs,h to sbyX

s,h(t). Otherwise, if ePj 6= lpre, then ePj ∈ dom(h3−j) and, from the definition
of the sets above, we conclude that ePj ∈ R3−j . Together, the two sets R1 and R2 contain all the
locations of Path[S]Xs,h(t) that are not lpre nor they belong to P1 or P2. Among these locations,
R1 contains the ones in dom(h1), whereas R2 contains the ones in dom(h2). Fundamentally, the
sets P1, P2, R1, R2 and {lpre} are mutually disjoint, with their union being Path[S]Xs,h(t).

Now, we aim at defining similar sets P ′1, P ′2, R′1 and R′2, with respect to Path[S]Xs,h′(t). First
of all, we let l′pre be the only location in Path[S]Xs,h′(t) such that h′(l′pre) = sbyX

s,h′(t). These sets
shall satisfy the following eight constraints:

1. P ′1, P ′2, R′1, R′2 and {l′pre} are mutually disjoint. Their union is Path[S]Xs,h′(t),

2. P ′1 = ∅ if and only if P ′2 6= ∅,
Moreover, for every j ∈ {1, 2},

3. if non-empty, P ′j is a minimal set describing a path in h′, going from [[t]]Xs,h to a location
in R′3−j ∪ {l′pre}, which is denoted by eP ′j .

4. min(card(Pj), S(αj)) = min(card(P ′j), S(αj)),

5. min(card(Rj), R(αj)) = min(card(R′j), R(αj)),

6. s(u) ∈ Rj if and only if s(u) ∈ Rj ,

7. if there is δ1∈ [0, card(Pj)] such that hδ1([[t]]Xs,h)=s(u), then there is δ2∈ [0, card(P ′j)] such
that h′δ2([[t]]Xs,h′)=s(u), min(card(Pj)− δ1,Sright(αj)) = min(card(P ′j)− δ2,Sright(αj)) and
min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)).

8. if there is δ2∈ [0, card(P ′j)] such that h′δ2([[t]]Xs,h′)=s(u), then there is δ1∈ [0, card(Pj)] such
that hδ1([[t]]Xs,h)=s(u), min(card(Pj) − δ1,Sright(αj)) = min(card(P ′j) − δ2,Sright(αj)) and
min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)).

The definition of P ′1, P ′2, R′1 and R′2 follows the strategy in Figure 5.15. We remind the reader
that both the sets Path[S]Xs,h(t) and Path[S]Xs,h′(t) contain at least S(α) elements. The right
hand side of Figure 5.15 schematically highlights the sets that are defined in the corresponding
lines of the strategy. We now analyse the strategy, and prove that it leads to sets that satisfy
the properties (1)–(8). For simplicity, let us assume that Path[S]Xs,h(t) and Path[S]Xs,h′(t) are the
minimal sets that describe the paths ρ = (`0, . . . , `n) and ρ′ = (`′0, . . . , `′m), respectively. Follow-
ing the terminology introduced in Definition 5.30, this means that Path[S]Xs,h(t) = {`0, . . . , `n−1}

186 Chapter 5. Deciding Robustness Properties in PSpace

1: Path′ ← Path[S]Xs,h′(t).
2: let j ∈ {1, 2} s.t. Pj 6= ∅.
3: P ′3−j ← ∅.
4: δj ← min(card(Rj),R(αj)).
5: δ3−j ← min(card(R3−j),R(α3−j)).
6: if card(Pj) < S(αj) then
7: P ′j ←

{
h′δ([[t]]Xs,h) | δ ∈ [0, card(Pj)− 1]

}
.

8: if card(Rj) < R(αj) then
9: let R′j ⊆ Path′ \

(
P ′j ∪ {l′pre}

)
such that

• card(R′j) = card(Rj),

• h′card(Pj)([[t]]Xs,h′) 6∈ R′j ,
• s(u) ∈ R′j iff s(u) ∈ Rj .

10: R′3−j ← Path′ \
(
Pj ∪R′j ∪ {l′pre}

)
.

11: else
12: let R′3−j ⊆ Path′ \

(
P ′j ∪ {l′pre}

)
such that

• card(R′3−j) = δ3−j ,

• h′card(Pj)([[t]]Xs,h′) ∈ R′3−j ,
• s(u) ∈ R′3−j iff s(u) ∈ R3−j .

13: R′j ← Path′ \
(
Pj ∪R′3−j ∪ {l′pre}

)
.

14: else if s(u) ∈ Pj or s(u) = ePj then
15: let δrgt ∈ [0, card(Pj)] s.t. h(card(Pj)−δrgt)([[t]]Xs,h) = s(u).
16: let δ′lft ∈ [0, card(Path′)] s.t. h′δ

′
lft([[t]]Xs,h′) = s(u).

17: if δrgt < Sright(αj) then
18: δ ← δ′lft + δrgt.
19: P ′j ←

{
h′δ([[t]]Xs,h) | δ ∈ [0, δ−1]

}
.

20: if card(Rj) < R(αj) then
21: R′j ←

{
` ∈ Path′ | ∃δ ∈ [1, card(Rj)], h′δ(`) = l′pre

}
.

22: R′3−j ← Path′ \
(
Pj ∪R′j ∪ {l′pre}

)
.

23: else
24: R′3−j ←

{
h′(δ+δ)([[t]]Xs,h) | δ ∈ [0, δ3−j − 1]

}
.

25: R′j ← Path′ \
(
Pj ∪R′3−j ∪ {l′pre}

)
.

26: else
27: R′j ←

{
` ∈ Path′ | ∃δ ∈ [1, δj] s.t. h′δ(`) = l′pre

}
.

28: R′3−j ←

` ∈ Path′

∣∣∣∣∣∣h
′(δj+δ)(`) = l′pre,

for some δ ∈ [1, δ3−j]

.

29: P ′j ← Path′ \
(
R′j ∪R′3−j ∪ {l′pre}

)
.

30: else
31: if card(R1) < R(α1) and card(R2) < R(α2) then

32: Rem′ ←
{
` ∈ Path′

∣∣∣∣∣h
′δ(`) = l′pre, for some
δ ∈ [1, card(R1) + card(R2)]

}
.

33: P ′j ← Path′ \
(
Rem′ ∪ {l′pre}).

34: let k ∈ {1, 2}.
35: else
36: P ′j ←

{
h′δ([[t]]Xs,h′) | δ ∈ [0,S(αj)− 1]

}
.

37: Rem′ ← Path′ \
(
P ′j ∪ {l′pre}

)
.

38: let k ∈ {1, 2} such that card(Rk) ≥ R(αk).
39: let eP ′j ∈ Rem′ be such that there is ` ∈ P ′j , h′(`) = eP ′j .
40: let R′3−k ⊆ Rem′ s.t. • card(R′3−k) = δ3−k,

• eP ′j ∈ R3−k iff k 6= j,

• s(u) ∈ R′3−k iff s(u) ∈ R3−k.
41: R′k ← Rem′ \R′3−k.

7 :
t l′pre

card(Pj)

9
10 :

t l′pre

card(Pj) (card(R′j) = card(Rj))

12
13 :

t l′pre

card(Pj) (card(R′3−j) = δ3−j)

19 :
t u l′pre

δrgt

21 :
t u l′pre

δrgt card(Rj)

22 :
t u l′pre

δrgt card(Rj)

24 :
t u l′pre

δrgt δ3−j

25 :
t u l′pre

δrgt δ3−j

27 :
t u l′pre

δj

28 :
t u l′pre

δjδ3−j

29 :
t u l′pre

δjδ3−j

32 :
t l′pre

card(R1) + card(R2)

33 :
t l′pre

card(R1) + card(R2)

36 :
t l′pre

S(αj)

37 :
t l′pre

S(αj)

40
41 :

t l′pre

(card(R′3−j) = δ3−j)

: P ′j : R′3−j : R′j : Rem′

Figure 5.15: Strategy to define P ′1, P ′2, R′1 and R′2.

5.5. A Family of Core Formulae Capturing the Fragment S 187

and Path[S]Xs,h′(t) = {`′0, . . . , `′m−1}, where the locations `0, . . . , `n−1 (resp. `′0, . . . , `′m−1) are all
distinct, and by definition of these two sets we have

`0 = [[t]]Xs,h, `n−1 = lpre, `n = sbyX
s,h(t), n = card(Path[S]Xs,h(t)),

`′0 = [[t]]Xs,h′ , `′m−1 = l′pre, `′m = sbyX
s,h′(t), m = card(Path[S]Xs,h′(t)).

Let j ∈ {1, 2} such that Pj 6= ∅ (see line 2 of the strategy). Notice that this implies P3−j = ∅
and, as in line 3, P ′3−j

def= ∅, as required by the property (4). Pj is a minimal set describing a non-
empty path in h, going from [[t]]Xs,h to ePj . Let k = card(Pj). We have Pj = {`0, . . . , `k−1} and
`k = ePj . Since Pj , Rj , R3−j and {lpre} are mutually disjoint sets whose union is Path[S]Xs,h(t),
we conclude that Rj ∪R3−j is the set Rem def= {`k, . . . , `n−2}. This set can be empty, which leads
to ePj = `k = `n−1 = lpre. Otherwise, by definition of Pj , `k ∈ R3−j . Below, we divide the
analysis in the three following cases:
• card(Pj) < S(αj) (lines 7–13 of the strategy),

• card(Pj) ≥ S(αj), and s(u) ∈ Pj or s(u) = ePj (lines 15–29),

• s(u) 6∈ Pj , s(u) 6= ePj and card(Pj) ≥ S(αj) (lines 31–41).
case: card(Pj) < S(αj) (lines 7–13). In line 7, we define P ′j as the set of locations that are

reachable from [[t]]Xs,h′ in at most card(Pj) − 1 steps. So, P ′j = (`′0, . . . , `′card(Pj)−1), and
eP ′j = `′card(Pj). Since card(Pj) < S(αj) < S(α) ≤ card(Path[S]Xs,h′(t)), we conclude that
P ′j ⊆ Path[S]Xs,h′(t). We prove the properties (2), (4), (7) and (8).

Proof of (4). Trivially, card(Pj) = card(P ′j).
Proof of (2). We have P ′3−j = ∅ (line 3) and, from (4) together with Pj 6= ∅, we conclude

that P ′j 6= ∅.
Proof of (7) and (8). The memory states (s, h) and (s, h′,) satisfy the same formulae of the

form u ∈ seesX(t, t′) ≥ (β, 1) and u = t, where β ∈ [1,Sleft(α)]. From the semantics
of these formulae, we conclude that for every i ∈ [0,Sleft(α) − 1], s(u) = `i if and
only if s(u) = `′i. From (?2), we have Sleft(α) − 1 ≥ S(αj) > card(Pj) = card(P ′j).
We conclude that, for every i ∈ [0, card(Pj)], s(u) = `i if and only if s(u) = `′i. This
generalises both (7) and (8). In particular, notice that this implies that ePj = s(u) if
and only if eP ′j = s(u).

In what follows, let Rem′ = Path[S]Xs,h′(t) \ (P ′j ∪ {l′pre}). So, Rem′ = {`′card(Pj), . . . , `
′
m−2}.

As we aim at satisfying the property (1), clearly the strategy should define the disjoint
sets R′j and R′3−j so that R′j ∪ R′3−j = Rem′. For the moment, we prove the following
statements about Rem and Rem′:

(ρ1) card(Rem) ≥ R(α) and card(Rem′) ≥ R(α).
(ρ2) s(u) ∈ Rem if and only if s(u) ∈ Rem′.

Proof of (ρ1) Since card(Pj) = card(P ′j) and card(Path[S]Xs,h(t)) ≥ S(α), we have

card(R) = card(Path[S]Xs,h(t))− card(Pj)− 1 ≥ S(α)− card(Pj)− 1,
card(R′) = card(Path[S]Xs,h′(t))− card(P ′j)− 1 ≥ S(α)− card(Pj)− 1.

Then, card(Pj) < S(αj) together with (?1)–(?3) we conclude
S(α)− card(Pj)− 1 =Sleft(α) + Sright(α)− card(Pj)− 1

≥Sright(α) ≥ R(α1) +R(α2) ≥ R(α).

188 Chapter 5. Deciding Robustness Properties in PSpace

Proof of (ρ2) Consider a term t′ ∈ T[S]X such that [[t′]]Xs,h = sbyX
s,h(t). The memory states

(s, h) and (s, h′) satisfy the same formulae of the form u ∈ seesX(t, t′) ≥ (1, β) and
u = t, where β ∈ [1,Sright(α)]. From the semantics of these formulae, we have

s(u) ∈ Path[S]Xs,h(t) if and only if s(u) ∈ Path[S]Xs,h′(t).
Moreover, we notice that the formula

u ∈ seesX(t, t′) ≥ (1, 1) ∧ ¬u ∈ seesX(t, t′) ≥ (1, 2)
is satisfied by (s, h) (resp. (s, h′)) if and only if s(u) = lpre (resp. s(u) = l′pre). Lastly,
from the properties (7) and (8), we know that s(u) ∈ Pj if and only if s(u) ∈ P ′j .
(⇒): Suppose s(u) ∈ Rem. By definition of Rem, we have s(u) ∈ Path[S]Xs,h(t),
s(u) 6∈ Pj and s(u) 6= lpre. Thus, s(u) ∈ Path[S]Xs,h′(t), s(u) 6∈ P ′j and s(u) 6= l′pre.
By definition of Rem′, s(u) ∈ Rem′.
(⇐): Symmetrical to the other direction.

We now proceed with the definition of R′1 and R′2, which is split depending on whether
card(Rj) < R(αj), as shown in line 8.
case: card(Rj) < R(αj) (lines 9 and 10). In line 9, we define R′j to be such that

R′j ⊆ Rem′, card(R′j) = card(Rj), s(u) ∈ R′j iff s(u) ∈ Rj , eP ′j 6∈ R
′
j .

As Rj ⊆ Rem, from (ρ1) and (ρ2) all these constraints can be clearly satisfied. More-
over, from (ρ1) and by card(Rj) < R(αj) = R(α)−R(α3−j) we also conclude that

card(Rem)− card(Rj) ≥ R(α3−j), card(Rem′)− card(R′j) ≥ R(α3−j).
Instead, from (ρ2) we have

s(u) ∈ (Rem \Rj) if and only if s(u) ∈ (Rem′ \R′j).
In line 10, we define R′3−j to be the set of every location in Path[S]Xs,h′(t) that is not
in P ′j or R′j , nor it is equal to l′pre. By definition of Rem′, R′3−j = Rem′ \R′j . We know
that R3−j = Rem \Rj . So, R′3−j and R3−j contain at least R(α3−j) locations, one of
which is eP ′j (resp. ePj). Moreover, s(u) ∈ R3−j if and only if s(u) ∈ R′3−j . We prove
the properties (1), (3), (5) and (6).
Proof of (1). Directly from the definition of these sets.
Proof of (5). card(Rj) = card(R′j), card(R3−j)≥R(α3−j) and card(R′3−j)≥R(α3−j).
Proof of (3). P ′j describes (`′0 = [[t]]Xs,h′ , . . . , `′card(Pj)), where `′card(Pj) = eP ′j ∈ R3−j .
Proof of (6). Already derived above.
So, in this branch of the strategy, all the properties (1)–(8) are satisfied.

case: card(Rj) ≥ R(αj) (lines 12 and 13). In line 12, we define R′3−j to be such that

R′3−j ⊆ Rem′, card(R′3−j) = min(card(R3−j),R(α3−j)),
s(u) ∈ R′3−j iff s(u) ∈ R3−j , eP ′j ∈ R

′
3−j .

As R3−j ⊆ Rem, from (ρ1) and (ρ2), the first three constraints can be trivially satisfied.
The last one, i.e. eP ′j ∈ R′3−j , requires some analysis, as it can only be satisfied if
card(R′3−j) ≥ 1 and thus (from the second constraint) when card(R3−j) ≥ 1. We
can easily see that this is the case, i.e. R3−j is non-empty. Ad absurdum, suppose
R3−j = ∅. From the definition of Pj , we conclude that ePj = lpre. Therefore, Pj
and {lpre} partition Path[S]Xs,h(t). However, this implies Rj = ∅, in contradiction
with card(Rj) ≥ S(αj). Thus, R3−j 6= ∅, and so R′3−j is well-defined. From (ρ1)
and R(α) = R(αj) +R(α3−j), we have card(Rem′)− card(R′3−j) ≥ R(αj). From (ρ2),

5.5. A Family of Core Formulae Capturing the Fragment S 189

t

`0

u

`δlft

ePj

`k

lpre

`n−1

sbyX
s,h(t)

`n
ρ = ρPath[S]X

s,h
(t)
ρPj

ρLft

ρRgt

ρRem

ρRR

Figure 5.16: Second case of the construction; paths of h.

s(u) ∈ (Rem \R3−j) if and only if s(u) ∈ (Rem′ \R′3−j).
In line 13, we define R′j to be the set of every location in Path[S]Xs,h′(t) that is not
in P ′j or R′3−j , nor it is equal to l′pre. By definition of Rem′, R′j = Rem′ \ R′3−j . We
know that Rj = Rem \ R3−j . So, both R′j and Rj contain at least R(αj) locations,
none of which is eP ′j (resp. ePj). Moreover, s(u) ∈ Rj if and only if s(u) ∈ R′j . We
prove the properties (1), (3), (5) and (6).
Proof of (1). Directly from the definition of these sets.
Proof of (5). We have card(R′3−j) = min(card(R3−j),R(α3−j)), whereas both Rj and

R′j have at least R(αj) locations.
Proof of (3). P ′j describes (`′0 = [[t]]Xs,h′ , . . . , `′card(Pj)), where `′card(Pj) = eP ′j ∈ R3−j .
Proof of (6). Already derived above.
So, in this branch of the strategy, all the properties (1)–(8) are satisfied.

case: card(Pj) ≥ S(αj), and s(u)∈Pj or s(u) = ePj (lines 15–29). By definition of Pj , there
is δlft ∈ [0, k] such that `δlft = s(u). Equivalently, hδlft([[t]]Xs,h) = s(u). The set Lft def=
{`0, . . . , `δlft−1} is the minimal set describing the path in h going from [[t]]Xs,h to s(u).
Following the strategy (line 15), we consider δrgt ∈ [0, k] such that h(k−δrgt)([[t]]Xs,h) = s(u).
So, δrgt = k − δlft. Informally, δrgt corresponds to the length of the minimal path ρrgt

in h, going from s(u) to ePj . The set Rgt def= {`δlft , . . . , `δlft+δrgt−1} is disjoint from Lft and
Lft∪Rgt = Pj . Notice that, if s(u) = ePj , then Rgt is empty and δrgt = 0 (and vice versa).
Lastly, we define RR def= Rgt ∪ Rem = {`δlft , . . . , `n−2}. Figure 5.16 should help the reader
navigate between the various subsets of Path[S]Xs,h(t) introduced at this stage. Therein, for
a set S among the ones we defined, ρS stands for the path described by it. We now define
similar sets for (s, h′). Following line 16, we let δ′lft be the length of the minimal path in h′

going from [[t]]Xs,h′ to s(u). This path is described by the set Lft′ def= {`′0, . . . , `′δ′lft−1}, where
`′0 = [[t]]Xs,h′ and `′δ′lft = s(u). We recall that the memory states (s, h) and (s, h′) satisfy the
same core formulae of the form u ∈ seesX(t, t′) ≥ (β, 1) and u = t, where β ∈ [1,Sleft(α)].
From the semantics of these formulae, Lft′ ⊆ Path[S]Xs,h′(t) is well-defined (see the proof
of (ς1), below). We can relate the cardinalities

card(Lft) = δlft, card(Lft′) = δ′lft,
as follows:

190 Chapter 5. Deciding Robustness Properties in PSpace

min(card(Lft), Sleft(α)) = min(card(Lft′), Sleft(α)). (ς1)

Proof of (ς1). If (s, h) satisfies u = t, then so does (s, h′) and δlft = δ′lft = 0. In this case,
Lft = Lft′ = ∅. Otherwise, as s(u) ∈ Pj ∪ {ePj}, we deduce that (s, h) satisfies the
formulae u ∈ seesX(t, t′) ≥ (β, 1), for every β ∈ [1,min(δlft′ ,Sleft(α))]. Then (s, h′)
satisfies the same formulae, and so there is δ ∈ [1, card(Path[S]Xs,h′(t))− 1] such that
hδ([[t]]Xs,h′) = s(u) and min(δ,Sleft(α)) = min(δlft,Sleft(α)). In this case, δ′lft = δ.

We define RR′ = {`′δ′lft , . . . , `
′
m−2}. Notice that RR′ is a subset of Path[S]Xs,h′(t) and it is a

minimal set describing a path in h′ going from s(u) to l′pre. We can relate the cardinalities
card(RR) = n− 1− δlft, card(RR′) = m− 1− δ′lft,

as follows:
min(card(RR), Sright(α)− 1) = min(card(RR′), Sright(α)− 1). (ς2)

Proof of (ς2). The memory states (s, h) and (s, h′) satisfy the same core formulae of
the form u ∈ seesX(t, t′) ≥ (1, β), where β ∈ [1,Sright(α)]. From the semantics
of these core formulae, if (s, h) |= u ∈ seesX(t, t′) ≥ (1,Sright(α)), then the path
(`δlft , . . . , `n−2, `n−1, `n) has length at least Sright(α). Recall that `0, . . . , `n−1 are all
distinct. So, card({`δlft , . . . , `n−2, `n−1}) ≥ Sright(α), and thus card(RR) ≥ Sright(α)−1.
Alike, (s, h′) satisfies u ∈ seesX(t, t′) ≥ (1,Sright(α)), and card(RR′) ≥ Sright(α) − 1.
Else, suppose there is β ∈ [1,Sright(α)−1] such that (s, h) |= u ∈ seesX(t, t′) ≥ (1, β)
but (s, h) 6|= u ∈ seesX(t, t′) ≥ (1, β + 1). In this case, RR contains exactly β − 1
locations and, as (s, h′) satisfies the same core formulae, so does RR′.

Following the strategy (line 17), we split the proof depending on whether δrgt < Sright(αj).

case: δrgt < Sright(αj) (lines 18–25). Let Rgt′ def= {`′δ′lft , . . . , `
′
δ′lft+δrgt−1}. We have

card(Rgt′) = card(Rgt) = δrgt.
We show that

min(card(RR)− δrgt,R(α)) = min(card(RR′)− δrgt,R(α)). (ς3)
Notice that, sinceR(α) ≥ 1 and card(RR)−card(Rgt) ≥ 0, this implies that card(RR′)−
δrgt ≥ 0 and so, by definition of Rgt′ and RR′, we conclude Rgt′ ⊆ RR′.
Proof of (ς3). Directly from (ς2) we can subtract δrgt on both sides to conclude that

min(card(RR)− δrgt,Sright(α)− 1− δrgt)
= min(card(RR′)− δrgt,Sright(α)− 1− δrgt).

To conclude the proof it is sufficient to show that Sright(α) − 1 − δrgt ≥ R(α).
From (?3), we have

Sright(α)− 1− δrgt ≥ Sright(αj) +R(α1) +R(α2)− δrgt.
From R(α1) +R(α2) = R(α) and δrgt < Sright(αj), The right-hand side of this
inequality is at least R(α).

We define Rem′ def= RR′ \ Rgt′ = {`δ′lft+δrgt , . . . , `m−2}. Since Rgt′ ⊆ RR′, we have
card(Rem′) = card(RR′)− card(Rgt′), and (ς3) can be restated as

min(card(Rem),R(α)) = min(card(Rem′),R(α)).
Let δ = δ′lft + δrgt (as in line 18). As formalised in line 19, we define P ′j to be the
set of locations reachable from [[t]]Xs,h′ in at most δ−1 steps. So, P ′j = {`0, . . . , `δ−1},
which is the union of the disjoint sets Lft′ and Rgt′. Here, eP ′j

def= h′δ([[t]]Xs,hj) = `′
δ
,

5.5. A Family of Core Formulae Capturing the Fragment S 191

and P ′j ⊆ Path[S]Xs,h′(t) is a minimal set describing the non-empty path in h′ going
from [[t]]Xs,h′ to the location eP ′j . We prove the properties (2), (4), (7) and (8).
Proof of (4). We have,

card(Pj) = card(Lft) + card(Rgt), card(P ′j) = card(Lft′) + card(Rgt).
Therefore, directly from (ς1)

min(card(Pj),Sleft(α)) = min(card(P ′j),Sleft(α)).
By (?2), Sleft(α) ≥ S(αj), and by hypothesis card(Pj) ≥ S(αj). From the equiv-
alence above, we conclude that card(P ′j) ≥ S(αj).

Proof of (2). As Pj 6= ∅ is non-empty, by (4), so is P ′j . P ′3−j = ∅ (line 3) proves (2).
Proof of (7) and (8). With respect to the statements (7) and (8), we have δ1 = δlft

and δ2 = δrgt. Since card(Pj) − δ1 = δrgt = card(P ′j) − δ2 the first equivalence in
both (7) and (8) is satisfied, i.e.

min(card(Pj)− δ1,Sright(αj)) = min(card(P ′j)− δ2,Sright(αj))
From (ς1), so is the second equivalence.

We now proceed with the definition of R′1 and R′2, which is split depending on whether
card(Rj) < R(αj), as shown in line 20.
case: card(Rj) < R(αj) (lines 21 and 22). As formalised in line 21, we define R′j

to be the set of locations in Path[S]Xs,h′(t) that reach l′pre in at most card(Rj)
steps, l′pre excluded. See the corresponding drawing in the right-hand side of Fig-
ure 5.15 for a representation of this set. So, R′j = {`′m−1−card(Rj), . . . , `m−2}
and card(R′j) = card(Rj). From Rj ⊆ Rem, we have card(Rem) − card(Rj) ≥ 0.
Together with card(Rj) < R(αj) and by (ς3), this implies m − 1 − card(R′j) =
card(Rem′) − card(R′j) ≥ δ′lft + δrgt and so R′j ⊆ Rem′. Then, R′3−j is defined
(line 22) as the locations in Path[S]Xs,h′(t) that are not in P ′j or in R′j , nor they
are equal to l′pre. Precisely, we have R′3−j = {`′

δ
, . . . , `′m−1−card(Rj)−1)}. Notice

that R′j ∪R3−j = Rem′. We prove the properties (1), (3), (5) and (6).
Proof of (1). Recall that Path[S]Xs,h′(t) = {`′0, . . . , `′m−1}, where `′0, . . . , `′m−1 are

all distinct. Explicitly, we defined:
P ′j = {`′0, . . . , `′δ−1}, R′3−j = {`′

δ
, . . . , `′m−1−card(Rj)−1},

R′j = {`′m−1−card(Rj), . . . , `
′
m−2}, l′pre = `′m−1.

Proof of (5). We have card(Rj) = card(Rj). Let us show that
min(card(R3−j), R(α3−j)) = min(card(R′3−j), R(α3−j)).

Since Rj ∪R3−j = Rem and R′j ∪R′3−j = Rem′, where Rj and R3−j (resp. R′j
and R′3−j) are disjoint, by (ς3) we derive

min(card(Rj) + card(R3−j),R(α)) = min(card(R′j) + card(R′3−j),R(α)).
Then, the desired equivalence holds from the fact thatR(α) = R(α1)+R(α2)
and card(Rj) < R(αj).

Proof of (3). We know that P ′j describes a path in h′, starting from [[t]]Xs,h′ . We
must check that eP ′j ∈ R′3−j ∪ {l′pre}. If R′3−j 6= ∅, then eP ′j = `′

δ
∈ R3−j .

Otherwise, by (5), R3−j is also empty, and so ePj = lpre. By definition,
means that Pj and {lpre} partition Path[S]Xs,h(t), and Rj = ∅. Again by (5),
R′j = ∅ and thus eP ′j = `′

δ
= `m−1 = l′pre.

Proof of (6). s(u) belongs to both Pj and P ′j . By (1) and since Pj is disjoint from
R1 and R2, we conclude that for every i ∈ {1, 2} s(u) 6∈ Ri and s(u) 6∈ R′i.

192 Chapter 5. Deciding Robustness Properties in PSpace

Therefore, in this branch of the strategy, all the properties (1)–(8) are satisfied.
case: card(Rj) ≥ R(αj) (lines 24 and 25). Following the strategy, in line 24 we let

R′3−j be the set of locations that are reached from eP ′j = hδ([[t]]Xs,h′) in at most
δ3−j = min(card(R3−j),R(α3−j))−1 steps. Explicitly, R′3−j = {δδ, . . . , δ

′
δ+δ3−j−1}.

As R(α3−j) < R(α), by (ς3) we conclude that R′3−j ⊆ Rem′. Then (line 25), Rj
is defined as the locations in Path[S]Xs,h′(t) that are not in P ′j , nor in R′3−j ,
and they are different from l′pre. In particular, Rj = {`δ+δ3−j , . . . , `

′
m−2} and

Rj = Rem \R3−j . We prove the properties (1), (3), (5) and (6).
Proof of (1). Explicitly, we defined:

P ′j = {`′0, . . . , `′δ−1}, R′3−j = {`′
δ
, . . . , `′

δ+δ3−j−1},

R′j = {`′
δ+δ3−j

, . . . , `′m−2}, l′pre = `′m−1.
Proof of (5). By definition, card(R′3−j) = min(card(R3−j),R(α3−j)), which shows

the statement for the index 3 − j. Thanks to this equivalence, from (ς3) we
conclude that

min(card(Rem)− card(R′3−j), R(α)− card(R′3−j))
= min(card(Rem′)− card(R′3−j), R(α)− card(R′3−j)).

Recall that card(Rj) ≥ R(αj), Rj ∪R3−j = Rem and R′j ∪R′3−j = Rem′, where
Rj and R3−j (resp. R′j and R′3−j) are disjoint. Then, the equivalence above
leads to card(R′j) ≥ R(αj) directly from

R(α)− card(R′3−j) ≥ R(α)−R(α3−j) = R(αj)
card(Rem)− card(R′3−j) ≥ card(Rem)− card(R3−j) = card(Rj) ≥ R(αj)

card(R′j) = card(Rem′)− card(R′3−j)
Proof of (3). Proved from (5), as shown in the previous case of the proof.
Proof of (6). As in the previous case, for all i ∈ {1, 2} s(u) 6∈ Ri and s(u) 6∈ R′i.
So, in this branch of the strategy, all the properties (1)–(8) are satisfied.

case: δrgt ≥ Sright(αj) (lines 27–29). In line 27, we define R′j to be the set of locations in
Path[S]Xs,h′(t) that reach l′pre in at most δj = min(card(Rj),R(αj)) steps, l′pre excluded.
Afterwards (line 28), R′3−j is defined as the set of locations in Path[S]Xs,h′(t) that reach
`′m−1−δj in at most δ3−j = min(card(R3−j),R(α3−j)) steps, `m−1−δj excluded. See
the corresponding drawings in the right-hand side of Figure 5.15 for a representation
of these two sets. So, card(R′j) = δj and card(R′3−j) = δ3−j . Explicitly,

R′j = {`′m−1−δj , . . . , `
′
m−2}, R′3−j = {`′m−1−(δj+δ3−j) . . . , `

′
m−2−δj}.

Clearly, R′j ∩ R′3−j = ∅. Let Rem′ def= R′j ∪ R′3−j . From Rem = Rj ∪ R3−j , together
with the definition of δj and δ3−j , as well as R(αj) +R(α3−j) = R(α), we derive

card(Rem′) = min(card(Rem),R(α)). (ς4)
By relying on (ς2) we show that

card(RR′)− card(Rem′) ≥ Sright(αj). (ς5)
Notice that, since Sright(αj) ≥ 1 and card(RR) − card(Rem) = card(Rgt) ≥ 0, this
implies that card(RR′)−card(Rem′) ≥ 0 and so, directly from the definitions of RR′ and
Rem′, we conclude that Rem′ ⊆ RR′. This also shows that R′j and R′3−j are well-defined.
Proof of (ς5). From (ς2) we have

min(card(RR)− card(Rem′), Sright(α)− 1− card(Rem′))
= min(card(RR′)− card(Rem′), Sright(α)− 1− card(Rem′)).

5.5. A Family of Core Formulae Capturing the Fragment S 193

By (?3) together with (ς4), Sright(α) − 1 − card(Rem′) ≥ Sright(αj). Then, (ς5)
follows directly from:
min(card(RR)−card(Rem′) ≥ card(RR)−card(Rem) = card(Rgt) = δrgt ≥ Sright(αj).

We let Rgt′ = RR′ \ Rem′ = {`′δlft
, . . . , `′m−2−(δj+δ3−j)}. As Rem′ ⊆ RR′, from (ς5) we

have card(Rgt′) ≥ Sright(αj). In line 29, we define P ′j to be the set of locations of
Path[S]Xs,h′(t) that are not in R′j or in R′3−j , nor they are equal to l′pre. Explicitly,
P ′j = {`′0, . . . , `′m−2−(δj+δ3−j)}. So, by definition, P ′j = Lft′ ∪ Rgt′. We prove that the
properties (1)–(8) are satisfied.
Proof of (1). Explicitly, we defined:

P ′j = {`′0, . . . , `′m−2−(δj+δ3−j)}, R′3−j = {`′m−1−(δj+δ3−j), . . . , `
′
m−2−δj},

Rj = {`′m−1−δj , . . . , `
′
m−2}, l′pre = `′m−1.

Proof of (4). Recall that card(Pj) ≥ S(αj). By (1), together with card(Rem′) ≤ R(α),
and card(Path[S]Xs,h′(t)) ≥ S(α), we have

card(P ′j) = card(Path[S]Xs,h′(t))− (card(Rem′) + 1)
≥ card(Path[S]Xs,h′(t))− (R(α) + 1) ≥ S(α)− (R(α) + 1).

From (?1) and (?3), we conclude that card(P ′j) ≥ S(αj), since
S(α)− (R(α) + 1) ≥ Sleft(α) + Sright(αj) ≥ S(αj).

Proof of (2). We have card(P ′j) ≥ S(αj) and P3−j = ∅ (line 3).
Proof of (7) and (8). With respect to the statements (7) and (8), we have δ1 = δlft

and δ2 = δrgt. By card(Rgt) = δrgt ≥ Sright(αj) and card(Rgt′) ≥ Sright(αj),
the first equivalence in both (7) and (8) is satisfied. By (ς1), so is the second
equivalence.

Proof of (5). Directly from card(R′i) = min(card(Ri),R(αi)), for all i ∈ {1, 2}.
Proof of (3). Proved from (5), as shown in the previous two cases of the proof.
Proof of (6). As in the previous case, for all i ∈ {1, 2} s(u) 6∈ Ri and s(u) 6∈ R′i.

case: s(u) 6∈ Pj, s(u) 6= ePj and card(Pj) ≥ S(αj) (lines 31–41). Following the strategy, we
divide the proof depending on whether card(R1) < R(α1) and card(R2) < R(α2) hold.
case: card(R1) < R(α1) and card(R2) < R(α2) (lines 32–34). In line 32, we define Rem′

to be the set of locations in Path[S]Xs,h′(t) that reach l′pre in at most card(Rem) =
card(R1) + card(R2) steps, l′pre excluded. So, Rem′ = {`′m−1−card(Rem), . . . , `

′
m−2} and

card(Rem′) = card(R1) + card(R2). (τ1)
Clearly, as Path[S]Xs,h′(t) contains at least S(α) > R(α) locations, Rem′ is well-defined.
Afterwards (line 33), we define P ′j as the set of locations in Path[S]Xs,h′(t) that are
not in Rem′ nor they are equal to l′pre. Explicitly, P ′j = {`′0, . . . , `′m−2−card(Rem)} and
eP ′j = `′m−1−card(Rem). We prove the three following statements:
(τ2) card(P ′j) ≥ S(αj), (τ3) s(u) 6∈ P ′j ∪ {eP ′j}, (τ4) s(u) ∈ Rem iff s(u) ∈ Rem′.

Proof of (τ2). As card(Path[S]Xs,h′(t)) ≥ S(α) and card(Rem′) < R(α), by (?1)–(?3),
card(P ′j) = card(Path[S]Xs,h′(t))− card(Rem′)− 1 ≥ S(α)−R(α)− 1 ≥ S(αj).

Proof of (τ3). We recall that Pj is a minimal set describing a non-empty path start-
ing at [[t]]Xs,h. In particular, at the beginning of the proof, we assumed Pj =
{`0, . . . , `k−1}, where k = card(Pj), and R1 ∪ R2 = Rem = {`k, . . . , `n−2}. Re-
call moreover that `n−1 = lpre. So, the locations in Path[S]Xs,h(t) that belong to

194 Chapter 5. Deciding Robustness Properties in PSpace

Pj precede the ones in R1 or R2. Since we are assuming s(u) 6∈ Pj ∪ {lpre},
we conclude that if s(u) ∈ Path[S]Xs,h(t), then s(u) ∈ {`k+1, . . . , `n−1}. In
terms of core formulae, this means that among the core formulae of the form
u ∈ seesX(t, t′) ≥ (1, β), where β ∈ [1,Sright(α)], (s, h) can only satisfy the ones
where β ≤ card(Rem). As (s, h) ≈SX,α (s, h′,), the same holds for (s, h′). Thus, if
s(u) ∈ Path[S]Xs,h′(t), s(u) ∈ {`′m−card(Rem), . . . , `m−1}. Lastly, by definition of P ′j
and eP ′j = `m−1−card(Rem), we conclude that s(u) 6∈ P ′j ∪ {eP ′j}.

Proof of (τ4). As previously noticed, the formula
u ∈ seesX(t, t′) ≥ (1, 1) ∧ ¬u ∈ seesX(t, t′) ≥ (1, 2)

is satisfied by (s, h) (resp. (s, h′)) if and only if s(u) = lpre (resp. s(u) = l′pre). So,
from (s, h) ≈SX,α (s, h′), we know that s(u) = lpre iff s(u) = l′pre.
(⇒): Suppose s(u) ∈ Rem. As lpre 6∈ Rem, we have s(u) 6= lpre, which in turn
implies s(u) 6= l′pre from the double implication above. Moreover, (s, h) satisfies
u ∈ seesX(t, t′) ≥ (1, 1), for some t′ ∈ T[S]X, and thus, by (s, h) ≈SX,α (s, h′),
so does (s, h′). This implies that s(u) ∈ Path[S]Xs,h′(t). We know that s(u) 6∈
P ′j ∪ {e′}. Therefore, s(u) must be in {`′m−card(Rem), . . . , `

′
m−2} ⊆ Rem′.

Directly from (τ1) we conclude that the properties (4) and (2) are satisfied (recall
that P3−j = ∅, see line 3). Similarly, from (τ2), we conclude that the proper-
ties (7) and (8) are satisfied. Following the strategy, we now move to the case where
card(R1) ≥ R(α1) or card(R2) ≥ R(α2). We leave open the definition of R1 and R2,
which is carried out below, for both the cases (as in lines 39–41).

case: card(R1) ≥ R(α1) or card(R2) ≥ R(α2) (lines 36–38). In line 36, we define P ′j as
the set of locations reachable from [[t]]Xs,h′ in at most S(αj)− 1 steps. So, card(Pj) =
S(αj). As card(Path[S]Xs,h′(t)) ≥ S(α) > S(αj) − 1, P ′j is well-defined and a subset
of Path[S]Xs,h′(t). Explicitly, P ′j = {`′0, . . . , `′S(αj)−1} and eP ′j = `′S(αj). Afterwards
(line 37) we define Rem′ as the set of locations in Path[S]Xs,h′(t) that are not in P ′j nor
they are equal to l′pre. Explicitly, Rem′ = {`′S(αj), . . . , `

′
m−2}. We prove that:

(τ5) card(Rem′) ≥ R(α), (τ6) s(u) 6∈ P ′j ∪ {eP ′j}, (τ7) s(u) ∈ Rem iff s(u) ∈ Rem′.

Proof of (τ5). As card(Path[S]Xs,h′(t)) ≥ S(α) and card(P ′j) = S(αj), by (?1)–(?3),
card(Rem′) = card(Path[S]Xs,h′(t))− card(P ′j)− 1 ≥ S(α)− S(αj)− 1 ≥ R(α).

Proof of (τ6). Ad absurdum, suppose s(u) ∈ P ′j ∪ {eP ′j}. Since card(P ′j) = S(αj), this
implies that there is δ ∈ [0,S(αj)] such that h′δ([[t]]Xs,h′) = s(u). We divide the
proof depending on whether β = 0.
case: β = 0. If β = 0 then [[t]]Xs,h′ = s(u) and, from the equisatisfaction of the

formula u = t we conclude that [[t]]Xs,h = s(u). However, by definition of Pj ,
this implies s(u) ∈ Pj : a contradiction.

case: β ≥ 1. Let t′ ∈ T[S]X such that [[t′]]Xs,h′ = sbyX
s,h′(t). Notice that Sleft(α) ≥

S(max(α1, α2)) + 1 (i.e. (?2)), and so the formulae u ∈ seesX(t, t′) ≥ (β, 1)
and u ∈ seesX(t, t′) ≥ (β + 1, 1) belongs to Core[S](X, α). We have,
(s, h′) |= u ∈ seesX(t, t′) ≥ (β, 1), (s, h′) 6|= u ∈ seesX(t, t′) ≥ (β + 1, 1).
From (s, h) ≈SX,α (s, h′), we have (s, h) |= u ∈ seesX(t, t′) ≥ (β, 1) and
(s, h) 6|= u ∈ seesX(t, t′) ≥ (β + 1, 1). Therefore, `β = s(u). However, this
location belongs to Pj , again in contradiction with s(u) 6∈ Pj .

In both cases, we derive s(u) 6∈ P ′j ∪ {eP ′j}.

5.5. A Family of Core Formulae Capturing the Fragment S 195

Proof of (τ7). Analogous to the proof of (τ4).
Directly from card(P ′j) = S(αj) we conclude that the properties (4) and (2) are
satisfied. Similarly, from (τ6), we conclude that the properties (7) and (8) are satisfied.
We now move to the definition of R′1 and R′2.

Below, we let k ∈ {1, 2} be an index such that card(Rk) ≥ R(αk), if any. Otherwise, let
k take an arbitrary value in {1, 2}. This step corresponds to the lines 34 and 38 of the
strategy. In line 40, we define R′3−k to be a subset of Rem′ such that

• card(R′3−k) = min(card(R3−k),R(α3−k)),
• eP ′j ∈ R

′
3−k if and only if k 6= j,

• s(u) ∈ R′3−k if and only if s(u) ∈ R3−k.

From (τ1)/(τ5) and (τ4)/(τ7) (depending on which of the two cases above holds), these
three conditions can always be satisfied. Following line 41 in the strategy, we define
R′k = Rem′ \R′3−k. We prove that the properties (1), (3) (5) and (6).

Proof of (1). Directly from the definition of P ′j , R′j and R′3−j .
Proof of (5). The property holds by definition for the set R′3−k. We show that

min(Rk,R(αk)) = min(R′k,R(αk)).
we divide the proof depending on whether Rk < R(αk).
case: Rk < R(αk). From the definition of k, we derive that card(R3−k) < R(α3−k).

So, the strategy follows the case corresponding to the lines 32–34. From (τ1),
card(R′) = card(Rk) + card(R3−k). By definition of R′3−k, card(R3−k) = card(R′3−k).
By definition of R′k, we derive card(R′k) = card(R′)− card(R′3−k) = card(Rk).

case: Rk ≥ R(αk). The strategy follows the case corresponding to the lines 36–38.
Form (τ5), card(Rem′) ≥ R(α). By definition of R′3−k, card(R3−k) ≤ R(α3−k).
We have card(Rk) = card(Rem′)− card(R3−k) ≥ R(α)−R(α3−k) ≥ R(αk).

Proof of (3). Proved from (5), as done in previous cases of the proof.
Proof of (6). The property holds by definition for the set R′3−k. For R′k:

(⇒): Suppose s(u) ∈ Rk. By definition, s(u) ∈ Rem and s(u) 6∈ R3−k. By definition
of R′3−k, s(u) 6∈ R′3−k. From (τ4)/(τ7), s(u) ∈ Rem′. As R′k = Rem′ \R′3−k, s(u) ∈ R′k.
(⇐): Symmetrical to the other direction.

All the properties (1)–(8) are satisfied. This concludes the analysis of the strategy in Fig-
ure 5.15, which is found to correctly define the sets we need in order to prove the lemma.

After showing that P ′1, P ′2, R′1 and R′2 satisfy (1)–(8), we rely these sets in order to define
the heaps h′1 and h′2 such that (s, h1) ≈SX,α1 (s, h′1) and (s, h2) ≈SX,α2 (s, h′2). First, we define the
heaps ĥ1

def= h1 \{(`, `′) ∈ h1 | ` ∈ P1∪R1∪{lpre}} and ĥ2
def= h2 \ {(`, `′) ∈ h2 | ` ∈ P2 ∪R2}. By

definition of P1, P2, R1 and R2, and the assumption lpre ∈ dom(h1), both dom(ĥ1) ∩ Path[S]Xs,h(t)
and dom(ĥ2) ∩ Path[S]Xs,h(t) are empty. Moreover, from h = h1 + h2, we have that

h = ĥ1 + ĥ2 + {(`, `′) ∈ h | ` ∈ Path[S]Xs,h(t)}.

From the hypothesis h\{(`, `′) ∈ h | ` ∈ Path[S]Xs,h(t)} = h′ \{(`, `′) ∈ h′ | ` ∈ Path[S]Xs,h′(t)} we
derive ĥ1 + ĥ2 = h′ \ {(`, `′) ∈ h′ | ` ∈ Path[S]Xs,h′(t)}. We define the heaps h′1 and h′2 as follows:

h′1
def= ĥ1 + {(`, `′) ∈ h′ | ` ∈ P1 ∪R1 ∪ {l′pre}}, h′2

def= ĥ2 + {(`, `′) ∈ h′ | ` ∈ P2 ∪R2}.

196 Chapter 5. Deciding Robustness Properties in PSpace

From (1), the heaps {(`, `′) ∈ h′ | ` ∈ P1 ∪ R1 ∪ {l′pre}} and {(`, `′) ∈ h′ | ` ∈ P2 ∪ R2}
are disjoint, and their union is {(`, `′) ∈ h′ | ` ∈ Path[S]Xs,h′(t)}. Thus, h′1 and h′2 are well-
defined, they are disjoint, and h′ = h′1 + h′2. We prove the properties (A)–(F) (introduced
below), which are analogous to the homonymous properties in Lemma 5.40(III), and thus lead
to (s, h) ↔SX,α (s, h′). Let j ∈ {1, 2}. As done in Lemma 5.40(III), before showing (A)–(F) we
introduce a set of auxiliary properties, grouped under the name (O).

O. (a) ePj = lpre if and only if eP ′j = l′pre,
(b) Path[S]Xs,h(t) ⊆ dom(hj) if and only if Path[S]Xs,h′(t) ⊆ dom(h′j),
(c) Let ` and `′ be two locations such that

∗ hj witnesses a (possibly empty) path going from s(x) to `, for some x ∈ X,
∗ `, `′ 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h},
∗ hj witnesses a non-empty path going from ` to `′.

Then, `, `′ 6∈ Path[S]Xs,h′(t)\{[[t]]Xs,h′}, and h′j witnesses a non-empty path, from ` to `′.
(d) Let ` and `′ be two locations such that

∗ h′j witnesses a (possibly empty) path going from s(x) to `, for some x ∈ X,
∗ `, `′ 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′},
∗ h′j witnesses a non-empty path going from ` to `′.

Then, `, `′ 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}, and hj witnesses a non-empty path, from ` to `′.
Proof of (a). Directly from from (4) and (5) we derive the following double implication:

Pj 6= ∅ and R3−j = ∅ if and only if P ′j 6= ∅ and R′3−j = ∅.
Thus, in order to show (a), we prove that

eP ′j = l′pre if and only if P ′j 6= ∅ and R′3−j = ∅,
and, similarly, that ePj = lpre ∈ dom(hj) holds if and only if so do Pj 6= ∅ and
R3−j = ∅. The proof of the latter double implication is analogous to the former one,
and it is left to the reader.
(⇒): Suppose eP ′j = l′pre. By definition, eP ′j is only defined if P ′j is non-empty. In this
case, by (3), P ′j describes a path going from [[t]]Xs,h′ to l′pre. As h(l′pre) = sbyX

s,h′(t), this
implies that P ′j and {l′pre} partition Path[S]Xs,h′(t), which in turn means that R′j = ∅.
(⇐): Directly from (3).

Proof of (b). Since we are assuming lpre ∈ dom(h1) and by definition l′pre ∈ dom(h′1), (b)
trivially holds for j = 2 (both sides of the double implication are false). Let us
assume j = 1 and, for the left-to-right direction, that Path[S]Xs,h(t) ⊆ dom(h1).
Since h1⊥h2, Path[S]Xs,h(t) ∩ dom(h2) = ∅ and therefore R2 = ∅ and P2 = ∅. As
Path[S]Xs,h(t) is non-empty, the latter equality implies P1 6= ∅, which allows us to
conclude eP1 = lpre as discussed in the proof of (a). Thus, eP ′1 = l′pre. By (3), P ′1
describes a path in h′1, going from [[t]]Xs,h′ to l′pre. As moreover l′pre ∈ dom(h′1) and
h′1(l′pre) = sbyX

s,h′(t), we conclude that Path[S]Xs,h′(t) ⊆ dom(h′1). The right-to-left
direction follows analogously.

Before proving (c), we show a fundamental property of locations in Path[S]Xs,h(t).

(κ) Consider a location `1 ∈ Path[S]X
ŝ,̂h

(t)\{[[t]]X
ŝ,̂h
}, for some memory state (ŝ, ĥ). Let `2

be a location such that ĥ(`2) = `1 and ĥ witnesses a path going from s(x) to `2, for
some x ∈ X. Then, `2 ∈ Path[S]X

ŝ,̂h
(t).

5.5. A Family of Core Formulae Capturing the Fragment S 197

Proof of (κ). Since Path[S]X
ŝ,̂h

(t) describes a path in ĥ, going from [[t]]X
ŝ,̂h

to sbyX
ŝ,̂h

(t), the
location `1 ∈ Path[S]X

ŝ,̂h
(t) \ {[[t]]X

ŝ,̂h
} is not the first location of this path, i.e. there is

` ∈ Path[S]X
ŝ,̂h

(t) such that ĥ(`) = `1. Ad absurdum, suppose ` 6= `2. We show that
this implies that `1 ∈ Lab[S]X

ŝ,̂h
. As [[t]]X

ŝ,̂h
is the only labelled location in Path[S]X

ŝ,̂h
(t),

this contradicts the fact that `1 ∈ Path[S]X
ŝ,̂h

(t) \ {[[t]]X
ŝ,̂h
}. We consider two (possibly

syntactically equal) program variables x, y ∈ X such that t is written using x, and ĥ

witnesses a path going from s(y) to `2 (which exists by hypothesis). Regardless of
whether t is a variable, end-point variable or meet-point variable, ĥ witnesses a path
going from s(x) to [[t]]X

ŝ,̂h
, and thus from s(x) to `. Now, if `1 does not belong to

a cycle we conclude that it is the first location reachable from both s(x) and s(y),
which in turn implies `1 = [[m(x, y)]]X

ŝ,̂h
. Instead, if `1 does belong to a cycle, we divide

the proof depending on whether ` belongs to a cycle.
case: ` belongs to a cycle. As ĥ(`) = `1, both ` and `1 belongs to the same cycle.

Since we are assuming ` 6= `2, we conclude that `2 does not belong to a cycle.
Hence, as ĥ(`2) = `1, in ĥ, `1 is the first location reachable from s(y) that belongs
to a cycle. By definition of end-point variables, [[e(y)]]X

ŝ,̂h
= `1.

case: ` does not belong to a cycle. Similarly to the previous case, as `1 belongs
to a cycle and h1(`) = `1, we conclude that, in ĥ, `1 is the first location reachable
from s(x) that belongs to a cycle. Therefore, [[e(x)]]X

ŝ,̂h
= `1.

Since `1 cannot be a labelled location, we conclude that `2 = ` ∈ Path[S]X
ŝ,̂h

(t).
Proof of (c). Let ` and `′ be two locations such that

∗ hj witnesses a (possibly empty) path going from s(x) to `, for some x ∈ X,
∗ `, `′ 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h},
∗ hj witnesses a non-empty path going from ` to `′.

Note that if a heap witnesses a non-empty path going from a location `1 to a loca-
tion `2, then it witnesses a minimal (i.e. the shortest) non-empty path going from `1
to `2. Formally, a non-empty path (`′0, . . . , `′n) is minimal if for every i ∈ [1, n − 1],
`′i 6= `′n. So, let δ be the length of the minimal non-empty path in hj , going from `

to `′. We show that `, `′ 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}, and h′j witnesses a non-empty
path, going from ` to `′. The proof is by induction on the length δ, with the natural
induction hypothesis stating that the property holds for paths of length less than δ.
base case: δ = 1. So, hj(`) = `′. Since `′ does not belong to Path[S]Xs,h(t) \ {[[t]]Xs,h},

and Path[S]Xs,h(t) describes a minimal path of length at least S(α) ≥ 2, going
from [[t]]Xs,h to sbyX

s,h(t), we have ` 6= [[t]]Xs,h. By ` 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}, this
implies ` 6∈ Path[S]Xs,h(t). From ` ∈ dom(hj) and by definition of ĥj , we conclude
that ` ∈ dom(ĥj) and ĥj(`) = `′. By ĥj ⊆ h′j , h′j(`) = `′. In order to conclude
the proof of the base case, it is sufficient to show that the locations ` and `′

do not belong to Path[S]Xs,h′(t) \ {[[t]]Xs,h′}. The proof is the same for both lo-
cations. In what follows, we write ` for either ` or `′. Ad absurdum, suppose
` ∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}, and so ` ∈ Path[S]Xs,h′(t) and ` 6= [[t]]Xs,h′ = [[t]]Xs,h,
where the last equivalence holds by (=t). Thus,

` 6∈ dom(h′ \ {(`1, `2) ∈ h′ | `1 ∈ Path[S]Xs,h′(t)}).
From the hypothesis

198 Chapter 5. Deciding Robustness Properties in PSpace

h \ {(`1, `2) ∈ h | `1 ∈ Path[S]Xs,h(t)} = h′ \ {(`1, `2) ∈ h′ | `1 ∈ Path[S]Xs,h′(t)}
we conclude that ` 6∈ dom(h \ {(`1, `2) ∈ h | `1 ∈ Path[S]Xs,h(t)}). We divide
the proof depending on whether or not ` ∈ dom(h). In both cases we reach a
contradiction, allowing us to conclude the proof of the base case.
case: ` ∈ dom(h). From ` 6∈ dom(h \ {(`1, `2) ∈ h | `1 ∈ Path[S]Xs,h(t)}) we
conclude ` ∈ Path[S]Xs,h(t). However, by ` 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}, this implies
that ` must be [[t]]Xs,h, a contradiction.

case: ` 6∈ dom(h). We recall that hj witnesses a path going from s(x) to `,
for some x ∈ X. As hj(`) = `′, hj witnesses a path going from s(x) to `′.
By hj ⊆ h, we conclude that h witnesses a path going from s(x) to `. We
derive a contradiction with ` ∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}. If s(x) = `, then by
definition ` 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}. Indeed, [[t]]Xs,h′ is the only labelled lo-
cation in Path[S]Xs,h′(t). Instead, if s(x) 6= `, then there is δ′′ ≥ 1 such that
hδ
′′(s(x)) = `. As ` 6∈ dom(h), by definition of end-point variables, we derive

[[e(x)]]Xs,h = `. By (=t), ` = [[e(x)]]Xs,h′ . Again, ` 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}.
induction step: δ ≥ 2. Let (`0 = `, . . . , `δ = `′) be the minimal non-empty path

going from ` to `′, in hj . We divide the proof depending on whether `0 = [[t]]Xs,h.
case: `0 = [[t]]Xs,h. Since `δ 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}, we conclude that the path
described by Path[S]Xs,h(t) must be a prefix of the path (`0, . . . , `δ). In par-
ticular, given i = card(Path[S]Xs,h(t)) ≤ δ, we have `i = sbyX

s,h(t). Moreover,
Path[S]Xs,h(t) ⊆ dom(hj), which in turn implies Path[S]Xs,h′(t) ⊆ dom(h′j), by (b).
Thanks to (=t), the set Path[S]Xs,h′(t) describes a minimal non-empty path ρ

in h′j , going from [[t]]Xs,h′ = [[t]]Xs,h = `0 to sbyX
s,h′(t) = sbyX

s,h(t) = `i. The loca-
tion `i is labelled and so it cannot belong to Path[S]Xs,h(t) \ {[[t]]Xs,h}. If i = δ, the
proof is complete. Otherwise, as hj witnesses a path going from s(x) to `0 = `,
for some x ∈ X, it also witnesses a path going from s(x) to `i. From i < δ,
(`i, . . . , `δ) is non-empty, which allows us to apply the induction hypothesis,
and conclude that h′j witnesses a non-empty path going from `i to `δ, and that
moreover `δ 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}. Together with the path ρ, we conclude
that h′j witnesses a non-empty path going from ` = `0 to `′ = `δ. Lastly,
by (=t), ` = [[t]]Xs,h = [[t]]Xs,h′ and so ` 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}.

case: `0 6= [[t]]Xs,h. In this case, `0 6∈ Path[S]Xs,h(t). Let us consider the second
location in the path (`0, . . . , `δ) of hj , i.e. `1 = hj(`0). As we are assuming δ≥ 2
and this path to be minimal, `1 6= `0 and path (`1, . . . , `δ) is the minimal non-
empty path in hj , of length δ−1 and going from `1 to `n. From `0 6∈ Path[S]Xs,h(t)
and by definition of ĥj , `0 ∈ dom(ĥj) and ĥj(`0) = `1. By definition of h′j ,
h′j(`0) = `1 and `0 6∈ Path[S]Xs,h′(t). So, h′j witnesses a non-empty path, from `0
to `1. As `0 6∈ Path[S]Xs,h(t), by (κ), either `1 6∈ Path[S]Xs,h(t) or `1 = [[t]]Xs,h,
which allows us to conclude that `1 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. Moreover, as hj
witnesses a path going from s(x) to `0 = `, for some x ∈ X, it also witnesses
a path going from s(x) to `1. Relying on the path (`1, . . . , `δ), we apply the
induction hypothesis, and conclude that h′j witnesses minimal non-empty path
(`′1, . . . , `′m), where `′1 = `1 and `′m = `δ. Moreover, `δ 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}.
Together with h′j(`0) = `1, we conclude that (`0, `′1, . . . , `′m) is a non-empty path
in h′j , going from `0 = ` to `δ = `′.

5.5. A Family of Core Formulae Capturing the Fragment S 199

Proof of (d). This proof carries out as the one for the property (c). Everything is sym-
metric. The base case of the induction relies on the equivalences in (=t) and

h \ {(`, `′) ∈ h | ` ∈ Path[S]Xs,h(t)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Path[S]Xs,h′(t)}.
For the induction step, we rely on the symmetrical property (b) (used in the first
case of the induction step), and on the fact that ĥj is a subheap of both hj and h′j
(used in the second case of the induction step).

We now move to the properties (A)–(F), whose proofs heavily rely on (O).
A. For every t′ ∈ T[S]X, [[t′]]Xs,hj and [[t′]]Xs,h′j are equidefined. When they are defined, either

– [[t′]]Xs,hj = [[t′]]Xs,h′j 6∈
(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}, or

– [[t′]]Xs,hj = ePj 6∈ dom(hj) and [[t′]]Xs,h′j = eP ′j 6∈ dom(h′j).

Proof of (A). The property trivially holds when t′ is a program variable. Below, we split
the proof depending on whether t′ = m(x, y) or t′ = e(x), for some x, y ∈ X.
case: t′ = m(x, y). We show that [[m(x, y)]]Xs,hj is defined if and only if so is [[m(x, y)]]Xs,h′j .

Moreover, we show that, whenever defined,
[[m(x, y)]]Xs,hj = [[m(x, y)]]Xs,h′j 6∈

(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}.

(⇒): Let us assume [[m(x, y)]]Xs,hj = `m, and show that `m = [[m(x, y)]]Xs,h′j and
`m 6∈

(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}. By definition, there are δ1, δ2 ≥ 1

such that hδ1j (s(x)) = hδ2j (s(y)) = `m and for all δ′1 ∈ [0, δ1], δ′2 ∈ [0, δ2], if δ′1+δ′2 <
δ1 + δ2 then h

δ′1
j (s(x)) 6= h

δ′2
j (s(y)). Moreover, for every δ′ ≥ 1, it holds that

hδ
′(`) 6= `m. Informally, this means that hj witnesses two non-empty disjoint

paths, one going from s(x) to `m and one going from s(y) to `m, where `m is a
location that does not belong to a cycle. Specifically, there must be two lo-
cations `x and `y such that `x 6= `y, hj(`x) = hj(`y) = `m, and hj witnesses
two (possibly empty) disjoint paths, one going from s(x) to `x and one going
from s(y) to `y. First of all, we show that `m 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. Ad
absurdum, suppose `m ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. We can apply (κ) and con-
clude that both `x and `y belong to Path[S]Xs,h(t). However, as Path[S]Xs,h(t)
describes a path in h and h(`x) = h(`y) = `m (by hj ⊆ h), this implies `x = `y:
a contradiction. Thus, `m 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. By definition, both s(x)
and s(y) do not belong to Path[S]Xs,h(t) \ {[[t]]Xs,h}, which allows us to apply (c)
(twice) and conclude that h′j witnesses two non-empty paths ρx and ρy, one
going from s(x) to `m and the other going from s(y) to `m, respectively. More-
over, `m 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}. As [[t]]Xs,h = [[t]]Xs,h′ (by (=t)), this allows us to
conclude that `m 6∈

(
Path[S]Xs,h(t)∪Path[S]Xs,h′(t)

)
\{[[t]]Xs,h}. Afterwards, the fact

that `m = [[m(x, y)]]Xs,h′j follows directly from the definition of meet-point variables
together with the following two statements:
∗ `m does not belong to a cycle in h′j .

Ad absurdum, suppose h′j witnesses a non-empty path going from `m to
itself. Recall that `m does not belong to Path[S]Xs,h′(t) \ {[[t]]Xs,h′} and it is
reached, in h′j , by s(x). We apply (d) and conclude that hj witnesses a
non-empty path going from `m to itself. This contradicts `m = [[m(x, y)]]Xs,hj .

∗ the paths ρx and ρy are disjoint.

200 Chapter 5. Deciding Robustness Properties in PSpace

Ad absurdum, suppose that, in h′j , the two paths ρx and ρy are not dis-
joint. Since we just showed that `m does not belong to a cycle, we know that
[[m(x, y)]]Xs,h′j is defined. Notice that this also means that ρx (resp. ρy) is the
only path in h′j , going from s(x) (resp. s(y)) to `m. So, h′j witnesses three
disjoint non-empty paths: one from s(x) to [[m(x, y)]]Xs,h′j , one from s(y) to
[[m(x, y)]]Xs,h′j , and one from [[m(x, y)]]Xs,h′j to `m. Exactly as done for `m, we rely
on (κ) to derive that [[m(x, y)]]Xs,h′j 6∈ Path[S]Xs,h′(t)\{[[t]]Xs,h′}. By (d), this al-
lows us to conclude that hj witnesses three non-empty paths, one from s(x)
to [[m(x, y)]]Xs,h′j , one from s(y) to [[m(x, y)]]Xs,h′j , and one from [[m(x, y)]]Xs,h′j
to `m. However, this contradicts `m = [[m(x, y)]]Xs,hj .

(⇐): Symmetrical to the other direction.
Before considering the case of t′ = e(x), we discuss a property of end-point variables.
(λ) Let (ŝ, ĥ) be a memory state and let x ∈ X. Consider a subheap h̃ ⊆ ĥ. If

[[e(x)]]X
ŝ,̃h

is defined and belongs to dom(h̃), then [[e(x)]]X
ŝ,̂h

= [[e(x)]]X
ŝ,̃h

.

Proof of (λ). Suppose [[e(x)]]X
ŝ,̃h

defined and equal to ` ∈ dom(h̃). By definition of

end-point variables, there is δ ≥ 1 such that h̃δ(ŝ(x)) = ` and ` belongs to a
cycle in h̃ whereas h̃δ−1(ŝ(x)) does not belong to a cycle. Let L be a minimal set
of locations describing the cycle in h̃ involving `. In particular, ` ∈ L whereas
h̃δ−1(ŝ(x)) 6∈ L. As h̃ ⊆ ĥ, ĥδ(ŝ(x)) = `, and ` ∈ L, where L is again a minimal
set of locations describing a cycle in ĥ. Clearly, h̃δ−1(ŝ(x)) cannot belong to
a cycle in ĥ, since otherwise it would belong to the same cycle of ` and we
would conclude that h̃δ−1(ŝ(x)) ∈ L, a contradiction. By definition of end-point
variables, ` = [[e(x)]]X

ŝ,̂h
.

We are now ready to complete the proof of (A).
case: t′ = e(x). We show that [[e(x)]]Xs,hj is defined if and only if so is [[e(x)]]Xs,h′j . If

defined, either [[e(x)]]Xs,hj = [[e(x)]]Xs,h′j 6∈
(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}

or ([[e(x)]]Xs,hj = ePj 6∈ dom(hj) and [[e(x)]]Xs,h′j = eP ′j 6∈ dom(h′j)).
(⇒): Suppose [[e(x)]]Xs,hj = `e. We divide the proof in two cases, depending on
whether or not `e = ePj .
case: `e = ePj . Following its definition, Pj 6= ∅ and it describes a path in hj
going from [[t]]Xs,h to `e ∈ R3−j∪{lpre}. In particular, this means that [[t]]Xs,h ∈ Pj
and thus [[t]]Xs,h 6= `e (recall that Pj , R3−j and {lpre} are mutually disjoint).
This allows us to conclude that `e 6∈ dom(hj). Indeed, suppose ad absurdum
that `e ∈ dom(hj). By (λ), we conclude that `e = [[e(x)]]Xs,h. However, this
implies that `e ∈ Lab[S]Xs,h, in contradiction with [[t]]Xs,h 6= `e. Indeed, we recall
that [[t]]Xs,h is the only labelled location of Path[S]Xs,h(t). Thus, `e 6∈ dom(hj).
As `e corresponds to the end-point variable e(x), there is δ ≥ 1 such that
hδj(s(x)) = `e. Then, hj witnesses a (possibly empty) path ρ going from s(x)
to [[t]]Xs,h. Indeed, the opposite leads to a contradiction, as it implies that there
is a location `′ reached by s(x) such that hj(`′) = `e and `′ 6∈ Path[S]Xs,h(t),
which is impossible by (κ). Afterwards, the fact that [[e(x)]]Xs,h′j = eP ′j follows
directly from the definition of end-point variables together with the following
three statements:

5.5. A Family of Core Formulae Capturing the Fragment S 201

∗ h′j witnesses a path going from s(x) to [[t]]Xs,h′ .
If s(x) = [[t]]Xs,h then by (=t) s(x) = [[t]]Xs,h′ and the result trivially holds.
Otherwise, the path ρ in hj is non-empty, and since both s(x) and [[t]]Xs,h do
not belong to Path[S]Xs,h(t) \ [[t]]Xs,h, the result holds directly from (c).

∗ h′j witnesses a path going from [[t]]Xs,h′ to eP ′j .
Directly from the properties (4) and (3) of the construction, as Pj 6= ∅.

∗ eP ′j 6∈ dom(h′j).
We know that ePj ∈ R3−j ∪ {lpre} and ePj 6∈ dom(hj). We remind the
reader that we are assuming lpre ∈ dom(h1) and so, if ePj = lpre, then j = 2.
Moreover, by definition of h′1, l′pre ∈ dom(h′1). Ad absurdum, suppose eP ′j ∈
dom(h′j). From the property (3) of the construction, eP ′j ∈ R3−j ∪ {l′pre}.
Since the locations in R3−j belongs to dom(h3−j), we conclude that eP ′j =
l′pre. However, as l′pre ∈ dom(h′j), this implies j = 1. This is contradictory,
as eP ′j = l′pre implies, by (a), ePj = lpre and so j = 2. Thus, eP ′j 6∈ dom(h′j).

case: `e 6= ePj . As `e corresponds to the end-point variable e(x), there is δ ≥ 1
such that hδj(s(x)) = `e, and if `e ∈ dom(hj) then `e belongs to a cycle in hj

whereas hδ−1
j (s(x)) does not. First, we show that `e 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.

Ad absurdum, suppose `e ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. In particular, this means
that `e 6∈ Lab[S]Xs,h. If `e ∈ dom(hj) then contradiction is direct: by (λ) we
have `e = [[e(x)]]Xs,h ∈ Lab[S]Xs,h. Otherwise, suppose `e 6∈ dom(hj). As al-
ready noticed in the previous case of the proof, the fact that hδj(s(x)) = `e
and `e ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h} hold imply, by (κ), that hj witnesses a path ρ

going from s(x) to [[t]]Xs,h. Since `e 6∈ dom(hj), we conclude that hj witnesses
a path going from [[t]]Xs,h to `e. However, this implies `e = ePj , by definition
of Pj . Thus, `e 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. Since s(x) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h},
we apply (c) and conclude that h′j witnesses a non-empty path ρ going from
s(x) to `e, and `e 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}. As [[t]]Xs,h = [[t]]Xs,h′ (by (=t)), this
allows us to conclude that `e 6∈

(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}. In

order to show that `e = [[e(x)]]Xs,h′j , we divide the proof depending on whether
or not `e ∈ dom(hj).
case: `e ∈ dom(hj). From (λ), we have `e = [[e(x)]]Xs,hj = [[e(x)]]Xs,h. By (=t),

[[e(x)]]Xs,h = [[e(x)]]Xs,h′ , and to conclude the proof it is sufficient to show that
[[e(x)]]Xs,h′ = [[e(x)]]Xs,h′j . By definition of end-point variable, hj witnesses a non-
empty path going from `e to itself. By (c), h′j witnesses a non-empty path
going from `e to itself. Together with the path ρ, this implies that [[e(x)]]Xs,h′j
is defined and in dom(h′j). By (λ), [[e(x)]]Xs,h′ = [[e(x)]]Xs,h′j .

case: `e 6∈ dom(hj). First, suppose `e = [[t]]Xs,h. As `e 6∈ dom(hj), this implies
Pj = ∅. From the property (4) of the construction, P ′j = ∅, which im-
plies [[t]]Xs,h′ 6∈ dom(h′j). By (=t), [[t]]Xs,h′ = `e, which implies `e = [[e(x)]]Xs,h′j ,
thanks to the path ρ. Lastly, suppose `e 6= [[t]]Xs,h, and so `e 6∈ Path[S]Xs,h(t).
Ad absurdum, suppose `e ∈ dom(h′j). From `e 6∈ dom(hj) and ĥj ⊆ hj we
conclude `e 6∈ dom(ĥj). By definition of h′j , we derive `e ∈ Path[S]Xs,h′(t).
However, as `e 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′}, this implies `e = [[t]]Xs,h′ . This

202 Chapter 5. Deciding Robustness Properties in PSpace

is contradictory, as it allows us to derive `e = [[t]]Xs,h, by (=t). Therefore,
`e 6∈ dom(h′j). Thanks to the path ρ, this implies `e = [[e(x)]]Xs,h′j .

(⇐): Symmetrical to the other direction.
B. For every t′ ∈ T[S]X,

(e) for every t′′ ∈ T[S]X, [[t′′]]Xs,hj = sbyX
s,hj

(t′) iff [[t′′]]Xs,h′j = sbyX
s,h′j

(t′),

(f) min(card(Path[S]Xs,hj (t
′)),S(αj)) = min(card(Path[S]Xs,hj (t

′)),S(αj)),

(g) If hδ1j ([[t′]]Xs,hj) = s(u) for some δ1 ∈ [0, card(Path[S]Xs,hj (t
′))], then h′j

δ2([[t′]]Xs,h′j) = s(u)
for some δ2 ∈ [0, card(Path[S]Xs,h′j (t

′))] s.t. min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)) and
min(card(Path[S]Xs,hj (t

′))− δ1,Sright(αj)) = min(card(Path[S]Xs,h′j (t
′))− δ2,Sright(αj)).

(h) If h′j
δ2([[t′]]Xs,h′j) = s(u) for some δ2 ∈ [0, card(Path[S]Xs,h′j (t

′))], then hδ1j ([[t′]]Xs,hj) = s(u)
for some δ1 ∈ [0, card(Path[S]Xs,hj (t

′))] s.t. min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)) and
min(card(Path[S]Xs,hj (t

′))− δ1,Sright(αj)) = min(card(Path[S]Xs,h′j (t
′))− δ2,Sright(αj)).

Before tackling the proofs of (e)–(h), let us discuss an easy intermediate result.
(i) [[t′]]Xs,hj ∈ dom(hj) if and only if [[t′]]Xs,h′j ∈ dom(h′j).

Proof of (i). (⇒): We divide the proof depending on whether [[t′]]Xs,hj = [[t]]Xs,h holds.
case: [[t′]]Xs,hj = [[t]]Xs,h. Since [[t′]]Xs,hj ∈ dom(hj), we have Pj 6= ∅. From the prop-

erties (4) and (3) of the construction, P ′j 6= ∅ and [[t]]Xs,h′ ∈ dom(h′j). By (=t),
[[t]]Xs,h′ = [[t]]Xs,h = [[t′]]Xs,hj . By (A), [[t′]]Xs,hj = [[t′]]Xs,h′j . So, [[t′]]Xs,h′j ∈ dom(h′j).

case: [[t′]]Xs,hj 6= [[t]]Xs,h. As [[t′]]Xs,hj ∈ dom(hj), By (A), [[t′]]Xs,h′j = [[t′]]Xs,hj and more-
over [[t′]]Xs,hj 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. Thus, [[t′]]Xs,hj 6∈ Path[S]Xs,h(t). By defini-
tion of ĥj , [[t′]]Xs,hj ∈ ĥj . As ĥj ⊆ h′j , [[t′]]Xs,h′j = [[t′]]Xs,hj ∈ ĥ

′
j .

(⇐): Symmetrical to the other direction.
Thanks to the various intermediate results we established up to this point, the state-
ments (e)–(h) can be proved in unison, with the construction we describe below. Addi-
tionally, this construction allows us to show the following statements, which are helpful in
later stages of the proof (see (F)):

(j) Rj ∩ Path[S]Xs,hj (t
′) = ∅ and R′j ∩ Path[S]Xs,h′j (t

′) = ∅.

(k) lpre ∈ Path[S]Xs,hj (t
′) if and only if l′pre ∈ Path[S]Xs,h′j (t

′).

(l) Pj ∩ Path[S]Xs,hj (t
′) is either ∅ or Pj . Similarly, P ′j ∩ Path[S]Xs,h′j (t

′) is either ∅ or P ′j .
Lastly, Pj ⊆ Path[S]Xs,hj (t

′) if and only if P ′j ⊆ Path[S]Xs,h′j (t
′).

In order to show (e)–(h) and (j)–(l), we divide the proof depending on whether or not
[[t′]]Xs,hj ∈ dom(hj) (and so [[t′]]Xs,h′j ∈ dom(h′j), thanks to (i)) hold.

case: [[t′]]Xs,hj 6∈ dom(hj). Notice that, in this case, Path[S]Xs,hj (t
′) = Path[S]Xs,h′j (t

′) = ∅.
In this case, the proof is straightforward. Both sbyX

s,hj
(t′) and sbyX

s,h′j
(t′) are not

defined, and so (e) trivially holds. The statements (f) and (j)–(l) follow directly
from Path[S]Xs,hj (t

′) = Path[S]Xs,h′j (t
′) = ∅. The statements (g) and (h) collapse to

[[t′]]Xs,hj = s(u) if and only if [[t′]]Xs,h′j = s(u).

5.5. A Family of Core Formulae Capturing the Fragment S 203

If [[t′]]Xs,hj 6= ePj , this double implication holds directly from (A). Otherwise, [[t′]]Xs,hj =
ePj implies, [[t′]]Xs,h′j = eP ′j , by (A). The left-to-right direction of the double implication
holds by (7), whereas the right-to-left direction holds by (8).

case: [[t′]]Xs,hj ∈ dom(hj). In this case, both Path[S]Xs,hj (t
′) and Path[S]Xs,h′j (t

′) are non-
empty, and thus they describe two non-empty paths, say ρ = (`0, . . . , `n) in hj
and ρ′ = (`′0, . . . , `′m) in h′j , respectively. Here, n = card(Path[S]Xs,hj (t

′)) whereas
m = card(Path[S]Xs,h′j (t

′)). These two paths are such that

`0 = [[t′]]Xs,hj , `n = sbyX
s,hj

(t′), `′0 = [[t′]]Xs,h′j , `′m = sbyX
s,h′j

(t′).

Moreover, ρ is the minimal non-empty path in hj , going from `0 to `n, whereas ρ′
is the minimal non-empty path in h′j , going from `′0 to `′m. As [[t′]]Xs,hj ∈ dom(hj),
from (A), `0 = [[t′]]Xs,hj = [[t′]]Xs,h′j = `′0 6∈

(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}.

In order to prove (e)–(h), the idea is to first notice that there is a maximal prefix of
the path ρ, say ρ′′ = (`0, . . . , `k) (for some k ∈ [0, n]), such that for every i ∈ [0, k],
`i = `′i and, if i < k, then `i ∈ dom(ĥj). Informally, ρ′′ is the maximal prefix of both ρ
and ρ′ that does not involve elements in Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t), except maybe
for `k. One possibility is for ρ′′ to be exactly ρ and ρ′. Otherwise, ρ′′ is a strict prefix
of the two paths. Then, `k = [[t]]Xs,h, and ρ and ρ′ can diverge on the locations `k+1
and `′k+1, which belong to Path[S]Xs,h(t) and Path[S]Xs,h′(t), respectively. This case
leads to the following two possibilities:

– `n = ePj and `′m = eP ′j , or
– `k1 = sbyX

s,h(t) and `′k2
= sbyX

s,h′(t), where k1 ∈ [k + 1, n,] and k2 ∈ [k + 1,m,].
In this case, the suffix (`k1 , . . . , `n) of ρ equals the suffix (`′k2

, . . . , `′m) of ρ′.
The three possibilities we just described are depicted in Figure 5.17. As we will see,
once this analysis is properly formalised, the statements (e)–(h) follow rather easily,
by relying on the properties of the construction (in particular, (4), (7) and (8)). We
start the analysis on ρ and ρ′ by proving a statement that helps us characterise ρ′′.
(ξ) Let k ∈ [0, n]. If for every i < k we have `i 6= [[t]]Xs,h, then `k = `′k and `k does

not belong to
(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}.

The proof is by induction on k.
base case: k = 0. we already showed that

`0 = `′0 6∈
(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}.

induction step: k ≥ 1. Together with `k−1 6= [[t]]Xs,h, by induction hypoth-
esis, `k−1 = `′k−1 and `k−1 6∈ Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t). By definition
of ĥj , we conclude ĥj(`k−1) = `k. From ĥj ⊆ h′j , h′j(`k−1) = `k. By the
definition of ρ′, this implies `k = `′k. Let us show that `k does not belong
to
(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}. Ad absurdum, suppose that

either `k ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h} or `k ∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′} hold
(recall that [[t]]Xs,h = [[t]]Xs,h′ , by (=t)). Consider a program variable x ∈ X
used to write the term t′. By definition, hj (resp. h′j) witnesses a path
going from s(x) to `k−1 = `′k−1. Since hj(`k−1) = `k and h′j(`k−1) = `k,
we can apply (κ). However, this is contradictory, as it allows us to de-
rive `k−1 ∈ Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t). Therefore, `k does not belong to(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}.

204 Chapter 5. Deciding Robustness Properties in PSpace

Pattern: Condition:

ρ :
`0 `n

= =

`′0

ρ′ :
`′m

= For every k ∈ [0, n− 1], `k 6= [[t]]Xs,h

ρ :
`0 `k `n

= =

`′0

ρ′ :
`′k `′m

=
There is k ∈ [0, n − 1] such that `k = [[t]]Xs,h.
Moreover, `n = ePj and `′m = eP ′j .

ρ :
`0 `k `k1 `n

= = = =

`′0

ρ′ :
`′k `′k2

`′m

= =
There is k ∈ [0, n − 1] such that `k = [[t]]Xs,h.
Moreover, `k1 = sbyX

s,h(t) and `′k2
= sbyX

s,h′(t).

: Path[S]Xs,h(t) : Path[S]Xs,h′(t)

Figure 5.17: Possible relations between ρ and ρ′.

Let us continue the analysis of ρ and ρ′. Following Figure 5.17, we divide the proof
depending on whether there is k ∈ [0, n− 1] such that `k = [[t]]Xs,h.
case: `k 6= [[t]]Xs,h, for every k ∈ [0, n− 1]. This case corresponds to the first pat-
tern in Figure 5.17. Recall that [[t]]Xs,h = [[t]]Xs,h′ , by (=t). Thanks to (ξ), we have

for all k in [0, n− 1], `′k = `k 6∈ Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t).
By definition of ρ and ρ′, this implies that both the sets Path[S]Xs,hj (t

′) ∩ Path[S]Xs,h(t)
and Path[S]Xs,h′j (t

′) ∩ Path[S]Xs,h′(t) are empty. (ξ) also implies

`n = `′n 6∈
(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\{[[t]]Xs,h}.

Thus, ρ = ρ′.
Proof of (e). Since `n = `′n 6∈

(
Path[S]Xs,h(t) ∪ Path[S]Xs,h′(t)

)
\ {[[t]]Xs,h}, we conclude

that `n 6= ePj and `′n 6= eP ′j . Then, (e) follows from (A).
Proof of (f). By ρ = ρ′, card(Path[S]Xs,hj (t

′)) = card(Path[S]Xs,h′j (t
′)).

Proof of (g) and (h). Again by ρ = ρ′, for every i ∈ [0, n] (where n = m), `i =
s(u) if and only if `′i = s(u). So, if s(u) belongs to either Path[S]Xs,hj (t

′) or
Path[S]Xs,h′j (t

′), then it appears in the same position of the two paths ρ and ρ′

described by these sets. This property generalises (g) and (h).
Proof of (j)–(l). All three statements follow from Path[S]Xs,hj (t

′)∩Path[S]Xs,h(t) = ∅
and Path[S]Xs,h′j (t

′) ∩ Path[S]Xs,h′(t) = ∅.

case: `k = [[t]]Xs,h, for some k ∈ [0, n− 1]. We notice that, as ρ is a minimal path
going from `0 to `n, it cannot be that there is i ∈ [0, n − 1] such that i 6= k and
`i = [[t]]Xs,h, i.e. k is the only position in [0, n− 1] such that `k = [[t]]Xs,h. We write ρ′′

5.5. A Family of Core Formulae Capturing the Fragment S 205

for the path (`0, . . . , `k). For every i ∈ [0, k−1], we have that `i 6= [[t]]Xs,h. By (ξ), this
implies that for every u ∈ [0, k], `u = `′u. Equivalently, ρ′′ = (`′0, . . . , `′k). Moreover,
by (=t), `′k = [[t]]Xs,h′ , whereas, for all i ∈ [0, k− 1], `′i 6∈ Path[S]Xs,h(t)∪ Path[S]Xs,h′(t)
(with (ξ)). Notice that this means that ρ′′ is described by the set {`0, . . . , `k−1} =
{`′0, . . . , `′k−1}, which does not contain elements in Path[S]Xs,h(t)∪Path[S]Xs,h′(t). We
divide the proof in two cases, depending on whether `n = ePj .
case: `n = ePj . In this case, ρ can be split into two paths: its prefix ρ′′ that goes
from `0 to `k = [[t]]Xs,h, and the path described by Pj , that goes from `k to ePj . In
particular, n = k + card(Pj). This pattern is depicted in the second case of Fig-
ure 5.17. Furthermore, we notice that, by (A), ePj 6∈ dom(hj). Since ePj ∈ dom(h),
this implies that ePj ∈ dom(h3−j). We show that `m = eP ′j . Ad absurdum, sup-
pose `m 6= eP ′j . Since `m = sbyX

s,h′j
(t′) ∈ Lab[S]Xs,h′j , from (A) we conclude that

`m 6∈ Path[S]Xs,h′(t) \ {[[t]]Xs,h′} (recall that [[t]]Xs,h = [[t]]Xs,h′ , by (=t)). Since we
are assuming `k = [[t]]Xs,h, for some k ∈ [0, n − 1], this implies that the path de-
scribed by Path[S]Xs,h′(t) must be included in ρ′, i.e. m ≥ card(Path[S]Xs,h′(t)) + k.
So Path[S]Xs,h′(t) ⊆ dom(h′j). However, this implies Path[S]Xs,h(t) ⊆ dom(hj) di-
rectly by (b), in contradiction with ePj ∈ dom(h3−j). Therefore, `m = eP ′j . Follow-
ing the property (3) of the construction, ρ′ can be split into two paths: its prefix ρ′′
that goes from `0 to `k = [[t]]Xs,h′ , and the path described by P ′j , that goes from `k
to eP ′j . In particular m = k + card(P ′j).
Proof of (e). Follows by (A), as sbyX

s,hj
(t′) = `n = ePj and sbyX

s,h′j
(t′) = `m = eP ′j .

Below, we recall that n = card(Path[S]Xs,hj (t
′)) and m = card(Path[S]Xs,h′j (t

′)).
Proof of (f). From n = k + card(Pj) and m = k + card(P ′j) we have,

card(Path[S]Xs,hj (t
′)) = k + card(Pj), card(Path[S]Xs,h′j (t

′)) = k + card(P ′j).
From (4), min(card(Pj),S(αj)) = min(card(P ′j),S(αj)), which implies (f).

Proof of (g). Suppose there is δ1 ∈ [0, n] such that hδ1j ([[t]]Xs,hj) = s(u). We split
the proof depending on whether δ1 ≤ k.
case: δ1 ≤ k. In this case, n− δ1 = (k − δ1) + card(Pj). s(u) appears in ρ′′ and
so h′j

δ1([[t]]Xs,h′j) = s(u). We have m− δ1 = (k − δ1) + card(P ′j). From (4),
min(card(Pj), S(αj)) = min(card(P ′j), S(αj)),

which allows us to deduce min(n− δ1, S(αj)) = min(m− δ1, S(αj)). From (?1),
min(n− δ1, Sright(αj)) = min(m− δ1, Sright(αj)).

By defining δ2 = δ1, the statement (g) is verified.
case: δ1 ≥ k. In this case, s(u) belongs to Pj ∪{ePj}. There is δ′1 ∈ [0, card(Pj)]
such that δ1 = k + δ′1. As hj ⊆ h, from the property (7) of the construction,
there is δ′2 ∈ [0, card(P ′j)] such that hδ′2([[t]]Xs,h′) = s(u) and

min(δ′1,Sleft(αj)) = min(δ′2,Sleft(αj)),
min(card(Pj)− δ′1, Sright(αj)) = min(card(P ′j)− δ′2, Sright(αj)).

As P ′j ⊆ dom(h′j), we conclude that h′j
δ′2([[t]]Xs,h′) = s(u). Let δ2 = k + δ′2.

From `k = [[t]]Xs,h′ , we derive h′j
δ2([[t′]]Xs,h′j) = s(u). By m = k + card(P ′j), we have

δ2 ∈ [0,m]. To conclude the proof, we must prove that
min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)),
min(n− δ1, Sright(αj)) = min(m− δ2, Sright(αj)).

206 Chapter 5. Deciding Robustness Properties in PSpace

Since δ1 = k + δ′1 and δ2 = k + δ′2, the first equivalence holds thanks to
min(δ′1,Sleft(αj)) = min(δ′2,Sleft(αj)). As n = k+card(Pj) and m = k+card(P ′j),
we have n− δ1 = card(Pj)− δ′1, m− δ2 = card(P ′j)− δ′2. Then, the second equiv-
alence holds from min(card(Pj)− δ′1, Sright(αj)) = min(card(P ′j)− δ′2, Sright(αj)).

Proof of (h). Symmetrical to the proof of (g). We rely on (8) instead of (7).
Proof of (j)–(l). Among the locations in Path[S]Xs,h(t), the set Path[S]Xs,hj (t

′) only
contains the ones in Pj . Thus,
Pj ⊆ Path[S]Xs,hj (t

′), Rj ∩ Path[S]Xs,hj (t
′) = ∅, lpre 6∈ Path[S]Xs,hj (t

′).
Similarly, among the locations in Path[S]Xs,h′(t), the set Path[S]Xs,h′j (t

′) only con-
tains the ones in P ′j . Thus,
P ′j ⊆ Path[S]Xs,h′j (t

′), R′j ∩ Path[S]Xs,h′j (t
′) = ∅, l′pre 6∈ Path[S]Xs,h′j (t

′).
Therefore, the statements (j)–(l) are verified.

In order to conclude the proof of (B), we treat the case where `n 6= ePj .
case: `n 6= ePj . Since `m = sbyX

s,h′j
(t′) ∈ Lab[S]Xs,h′j , From (A), we derive that

`n 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. As we are assuming `k = [[t]]Xs,h, where k ∈ [0, n− 1],
this implies that the path described by Path[S]Xs,h(t) must be included in ρ, i.e.
n ≥ card(Path[S]Xs,h(t)) + k. In particular, k1 = k + card(Path[S]Xs,h′(t)) is such that
`k1 = sbyX

s,h(t), and the path ρ can be split into the three paths below:
– its prefix ρ′′ that goes from `0 to `k = [[t]]Xs,h,
– the path described by Path[S]Xs,h(t), that goes from [[t]]Xs,h to `k1 = sbyX

s,h(t),
– the suffix ρ̂ def= (`k1 , . . . , `n).
As ρ is a minimal path in hj , going from `0 to `n, these three paths are mu-
tually disjoint, and n = k + card(Path[S]Xs,h(t)) + (n − k1). This pattern is de-
picted in the third case of Figure 5.17. We show that ρ′ can be decomposed in
a similar way. From (b), we derive Path[S]Xs,h′(t) ⊆ dom(h′j). This means that
eP ′j ∈ dom(h′j), and thus, by (A), the labelled location `m is not eP ′j nor it be-
longs to Path[S]Xs,h′(t) \ {[[t]]Xs,h′}. Therefore, from `′k = [[t]]Xs,h′ , the path described
by Path[S]Xs,h′(t) is included in ρ′, i.e. m ≥ card(Path[S]Xs,h′(t)) + k. Consider
k2 = k + card(Path[S]Xs,h′(t)). We have `′k2

= sbyX
s,h′(t), and ρ′ can be split into

the three paths below:
– its prefix ρ′′ that goes from `′0 to `′k = [[t]]Xs,h′ ,
– the path described by Path[S]Xs,h′(t), that goes from [[t]]Xs,h′ to `′k2

= sbyX
s,h(t),

– the suffix ρ̂′ = (`′k2
, . . . , `′m).

Since ρ′ is a minimal path in h′j , going from `′0 to `′m, these three paths are mutually
disjoint, and m = k+card(Path[S]Xs,h′(t))+(m−k2). The following three statements
show that ρ̂ = ρ̂′.
– `k1 = sbyX

s,h(t) = sbyX
s,h′(t) = `′k2

.
This holds directly from (=t) together with the fact that (s, h) and (s, h′)
satisfy the same core formulae of the form seesX(t, t′′) ≥ 1,

– {`k1 , . . . , `n−1} ⊆ dom(ĥj), and {`′k2
, . . . , `′m−1} ⊆ dom(ĥj).

For the first inclusion, we recall that ρ is a minimal path from `0 and `n. Since
Path[S]Xs,h(t) = {`k, . . . , `k1−1}, for every location ` ∈ {`k−1, . . . , `n−1} we have
` 6∈ Path[S]Xs,h(t). As ` ∈ dom(hj), we derive ` ∈ dom(ĥj), by definition of ĥj .
The second inclusion is proven analogously.

5.5. A Family of Core Formulae Capturing the Fragment S 207

– ρ̂ and ρ̂′ have the same length, i.e. n− k1 = m− k2.
Together, the previous two statements show that `k1+i = `′k2+i holds for every
i ∈ [0,min(n− k1,m− k2)]. Ad absurdum, suppose that n− k1 6= m− k2. In
this case, ρ̂ and ρ̂′ have different lengths. Let us assume n−k1 < m−k2. The
case where n− k1 > m− k2 is analogous. The location `n is different from `′m
and appears in both ρ̂′ and in ρ′. From `n 6= ePj and by (A), we conclude that
`n ∈ Lab[S]Xs,h′j . However, this implies that the path

(`′0, . . . , `′k2
= `k1 , . . . , `

′
k2+min(n−k1,m−k2) = `n)

obtained from ρ′ by removing the locations after `n is a path in h′j , going
from [[t′]]Xs,h′j to a labelled location. This is contradictory, as ρ is the minimal
path in h′j going from [[t′]]Xs,h′j to sbyX

s,h′j
(t′). According to Definition 5.27,

with the exception of [[t′]]Xs,h′j and sbyX
s,h′j

(t′), no other location in ρ belongs
to Lab[S]Xs,h′j . Thus, n− k1 = m− k2.

Thanks to ρ̂ = ρ̂′, we can now show (e)–(h), ending the proof of (B).
Proof of (e). Holds directly from (A), as we show that `n = `′m. If ρ̂ is not an empty

path, this holds by ρ̂ = ρ̂′. Else, `n = `k1 = sbyX
s,h(t) = sbyX

s,h′(t) = `′k2
= `′m.

Below, we recall that n = card(Path[S]Xs,hj (t
′)) and m = card(Path[S]Xs,h′j (t

′)).
Proof of (f). The following inequalities imply (f):

card(Path[S]Xs,hj (t
′)) ≥ card(Path[S]Xs,h(t)) ≥ S(α)

card(Path[S]Xs,h′j (t
′)) ≥ card(Path[S]Xs,h′(t)) ≥ S(α).

Proof of (g). Suppose there is δ1 ∈ [0, n] such that hδ1j = s(u). We split the proof
depending on whether δ1 < k, δ1 > k1 or δ1 ∈ [k, k1].
case: δ1 < k. s(u) appears in ρ′′ and so h′j

δ1([[t]]Xs,h′j) = s(u). We have,

n− δ1 ≥ card(Path[S]Xs,h(t)) ≥ S(α),
m− δ1 ≥ card(Path[S]Xs,h′(t)) ≥ S(α).

By (?1), defining δ2 = δ1 verifies the statement (g).
case: δ1 > k1. s(u) appears in ρ̂. In particular, hδ1−k1

j (`k1) = s(u). Following the
statement (g), let δ2

def= k2 + (δ1 − k1). By (`k1 , . . . , `n) = ρ̂ = ρ̂′ = (`′k2
, . . . , `′m),

we derive h′j
δ2−k2(`m) = s(u) and δ2 ∈ [0,m]. Therefore, hjδ2([[t′]]Xs,h′j) = s(u)

follows by definition of ρ̂′. We have,
δ1 ≥ k1 ≥ card(Path[S]Xs,h(t)) ≥ S(α),
δ2 ≥ k2 ≥ card(Path[S]Xs,h′(t)) ≥ S(α).

By (?1), this implies min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)). Lastly, we have
m− δ2 = m− (k2 + δ1 − k1) = n− δ1,

where the last equality holds by m− k2 = n− k1. Thus, (g) is satisfied.
case: δ1 ∈ [k, k1]. Let δ′1 = δ1− k. From `k = [[t]]Xs,h, we have hδ

′
1
j ([[t]]Xs,h) = s(u).

Moreover, since k1 = k+card(Path[S]Xs,h(t)), we have δ′1 ∈ [0, card(Path[S]Xs,h(t))].
From hj ⊆ h, hδ′1([[t]]Xs,h) = s(u). We remind the reader that (s, h) and (s, h′)
satisfy the same core formulae of the form u = t, as well as the core for-
mulae of the form u ∈ seesX(t, t′′) ≥ (β1, β2), where β1 ∈ [1,Sleft(α)] and
β2 ∈ [1,Sright(α)]. From the semantics of these formulae, we conclude that there
is δ′2 ∈ [0, Path[S]Xs,h′(t)] such that

208 Chapter 5. Deciding Robustness Properties in PSpace

∗ h′δ
′
2([[t]]Xs,h′) = s(u),

∗ min(δ′1,Sleft(α)) = min(δ′2,Sleft(α)),
∗ min(card(Path[S]Xs,h(t))− δ′1,Sright(α)) = min(card(Path[S]Xs,h′(t))− δ′2,Sright(α)).
Since Path[S]Xs,h′(t) ⊆ dom(h′j), we conclude that h′j

δ′2([[t]]Xs,h′) = s(u). Let
us define δ2

def= k + δ′2. As `k = [[t]]Xs,h′ , by definition of ρ′ we conclude that
h′j
δ2([[t′]]Xs,h′j) = s(u). Since δ1 = k + δ′1 and Sleft(αj) ≤ Sleft(α), the equivalence

min(δ′1,Sleft(α)) = min(δ′2,Sleft(α)) implies min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)).
From k1 = k + card(Path[S]Xs,h(t)) and δ′1 = δ1 − k we derive

n− δ1 = (n− k1) + (card(Path[S]Xs,h(t))− δ′1).
From k2 = k + card(Path[S]Xs,h′(t)), δ′2 = δ2 − k and n− k1 = m− k2, we have

m− δ2 = (n− k1) + (card(Path[S]Xs,h′(t))− δ′2).
By min(card(Path[S]Xs,h(t))− δ′1,Sright(α)) = min(card(Path[S]Xs,h′(t))− δ′2,Sright(α))
and (?1), this allows us to derive that

min(n− δ1,Sright(αj)) = min(m− δ2,Sright(αj)),
which concludes the proof of (g).

Proof of (h). Symmetrical to the proof of (g).
Proof of (j)–(l). Since Path[S]Xs,h(t) ⊆ dom(hj) and Path[S]Xs,h′(t) ⊆ dom(hj), we

conclude that R3−j = ∅ and R′3−j = ∅. By definition of Pj (resp. (3)), we
have ePj = lpre (resp. eP ′j = l′pre), and thus Pj and {lpre} (resp. P ′j and {l′pre})
partition Path[S]Xs,h(t) (resp. Path[S]Xs,h′(t)). Therefore, Rj = ∅ and R′j = ∅.
From Path[S]Xs,h(t) ⊆ Path[S]Xs,hj (t

′) and Path[S]Xs,h′j (t
′) we conclude that

Rj ⊆ Path[S]Xs,hj (t
′) = ∅ Pj ⊆ Path[S]Xs,hj (t

′), lpre ∈ Path[S]Xs,hj (t
′),

R′j ⊆ Path[S]Xs,h′j (t
′) = ∅ P ′j ⊆ Path[S]Xs,h′j (t

′), l′pre ∈ Path[S]Xs,h′j (t
′).

Therefore, the statements (j)–(l) are verified.

C. For every x ∈ X,

(m) card(Pred[S]Xs,hj (x)) = card(Pred[S]Xs,h′j (x)),

(n) s(u) ∈ Pred[S]Xs,hj (x) if and only if s(u) ∈ Pred[S]Xs,h′j (x).

First, we prove two intermediate results.

(o) Pred[S]Xs,hj (x) \ {lpre} = Pred[S]Xs,h′j (x) \ {l′pre},

(p) lpre ∈ Pred[S]Xs,hj (x) if and only if l′pre ∈ Pred[S]Xs,h′j (x).

Proof of (o). (⊆): Consider a location ` ∈ Pred[S]Xs,hj (x)\{lpre}. By definition, hj(`) = s(x)
and hj does not witness a path going from s(y) to `, for any y ∈ X. In particular,
this implies that ` is not assigned to a program variable. Moreover, from ` 6= lpre, we
conclude that ` does not belong to the set Path[S]Xs,h(t). Indeed, from its definition,
lpre is the only location of this set that can point to a program variable. By definition
of ĥj , we conclude that ` ∈ ĥj and ĥj(`) = s(x). Thus, by definition of h′j , both
h′j(`) = s(x) and ` 6∈ Path[S]Xs,h′(t) hold. In order to conclude that ` ∈ Pred[S]Xs,h′j (x),
it is sufficient to show that h′j does not witness a path going from s(y) to `, for any
y ∈ X. Ad absurdum, suppose that h′j witnesses such a path. As we know that ` is
not assigned to a program variable, this path must be non-empty. We apply (d) and

5.5. A Family of Core Formulae Capturing the Fragment S 209

conclude that hj witnesses a path going from s(y) to `: a contradiction. Therefore,
` ∈ Pred[S]Xs,h′j (x). Lastly, again from ` 6∈ Path[S]Xs,h′(t), we have ` 6= l′pre.
(⊇): Symmetrical to the other direction.

Proof of (p). (⇒): Suppose lpre ∈ Pred[S]Xs,hj (x). So, hj(lpre) = s(x) and hj does not
witness a path going from s(y) to lpre, for any y ∈ X. lpre 6∈ Lab[S]Xs,hj . Notice that
then, from the assumption lpre ∈ dom(h1), we have j = 1. Moreover, by definition
of lpre, sbyX

s,h(t) = s(x). As (s, h) and (s, h′) satisfy the same formulae of the form
t = t′, by (=t), sbyX

s,h′(t) = s(x). By definition of l′pre, h′(l′pre) = s(x), which in
turn implies h′1(l′pre) = s(x) by definition of h′1. In order to conclude that l′pre ∈
Pred[S]Xs,h′j (x), we show that h′j does not witness a path going from s(y) to l′pre, for
any y ∈ X. Ad absurdum, suppose that such a path exists. In this case, we conclude
that Path[S]Xs,h′(t) ⊆ dom(h′j) and that h′j witnesses a path going from s(y) to [[t]]Xs,h′ .
From (b), Path[S]Xs,h(t) ⊆ dom(hj) and so hj witnesses a path going from [[t]]Xs,h to lpre.
Clearly, if s(y) = [[t]]Xs,h, we derive a contradiction. Otherwise, s(y) 6= [[t]]Xs,h = [[t]]Xs,h′
implies that the path in h′j going from s(y) to [[t]]Xs,h′ is non-empty. By (d) we
conclude that hj witnesses a path going from s(y) to [[t]]Xs,h. However, this implies
that hj witnesses a path going from s(y) to lpre: a contradiction. We conclude that h′j
does not witness a path going from s(y) to l′pre. Thus, l′pre ∈ Pred[S]Xs,h′j (x).
(⇐): Symmetrical to the other direction.

Proof of (m). Directly from (o) and (p).
Proof of (n). (⇒): Suppose s(u) ∈ Pred[S]Xs,hj (x). If s(u) 6= lpre then the result holds

directly by (o). Otherwise, suppose s(u) = lpre. Thus, lpre ∈ Pred[S]Xs,hj (x) which im-
plies l′pre ∈ Pred[S]Xs,h′j (x), by (p). To conclude the proof, we show that l′pre = s(u). By
definition of lpre, the memory state (s, h) satisfies the formula u ∈ seesX(t, x) ≥ (1, 1)
whereas it does not satisfy the formula u ∈ seesX(t, x) ≥ (1, 2). We notice that both
core formulae belong to Core[S](X, α′), for every α′ ≥ 1. From (s, h) ≈S X, α(s, h′),
(s, h′) |= u ∈ seesX(t, x) ≥ (1, 1) and (s, h′) 6|= u ∈ seesX(t, x) ≥ (1, 2). Thus,
sbyX

s,h′(t) = s(x) and there is ` ∈ Path[S]Xs,h′(t) such that ` = s(u) and h(`) = s(x).
By definition, ` = l′pre, and therefore l′pre = s(u).
(⇐): Symmetrical to the other direction.

D. For every β ∈ [1, αj], Cycl[S]Xs,hj(β) = Cycl[S]Xs,h′j(β)
We prove an intermediate result which helps us showing both (D) and (E) (below).
(µ) Let (ŝ, ĥ) be a memory state s.t. Path[S]X

ŝ,̂h
(t) 6= ∅. Let L be a minimal set of

locations describing a cycle in ĥ. If Path[S]X
ŝ,̂h

(t) ∩ L 6= ∅ then Path[S]X
ŝ,̂h

(t) ⊆ L.

Proof of (µ). Let ` be the first location that, in ĥ, is reachable from [[t]]X
ŝ,̂h

and belongs
to both Path[S]X

ŝ,̂h
(t) and L. Since L is a minimal set of locations describing a cycle,

` ∈ L implies that every location reachable from ` belongs to L. So, (µ) holds as soon
as we show that ` = [[t]]X

ŝ,̂h
. By definition of [[.]]X

ŝ,̂h
, [[t]]X

ŝ,̂h
is reached by a location

corresponding to a program variable x ∈ X. By definition of `, we conclude that `
is the first location reachable from s(x) that belongs to a cycle. By definition of
end-point variables, ` = [[e(x)]]X

ŝ,̂h
, and thus ` is a labelled location. By definition

of Path[S]X
ŝ,̂h

(t), we know that [[t]]X
ŝ,̂h

is the only labelled locations belonging to this
set. Thus, ` = [[t]]X

ŝ,̂h
.

210 Chapter 5. Deciding Robustness Properties in PSpace

Proof of (D). (⊆): Consider L ∈ Cycl[S]Xs,hj(β). So,
h. L describes a cycle of size β in hj ,
i. every ` ∈ L does not belong to Lab[S]Xs,hj .

From (h) and hj ⊆ h, L describes a cycle of size β in h. Clearly, Path[S]Xs,h(t) cannot
be a subset of L as we have

card(Path[S]Xs,h(t)) ≥ S(α) > β = card(L).
By (µ), we conclude that Path[S]Xs,h(t)∩L = ∅, which in turn implies that L describes
a cycle of size β in ĥj , directly from the definition of hj . From ĥj ⊆ h′j , L describes a
cycle of size β in ĥj . Clearly, l′pre 6∈ L, as otherwise, again by (µ), we would be able to
conclude that Path[S]Xs,h′(t) ⊆ L, in contradiction with the cardinalities of these two
sets. Therefore, from (i) and (A), we conclude that L∩ Lab[S]Xs,h′j = ∅. By definition,
L ∈ Cycl[S]Xs,h′j(β).
(⊇): Symmetrical to the other direction.

E. (q) card(⇑Cycl[S]X,αjs,hj
) = card(⇑Cycl[S]X,αjs,h′j

),

(r) s(u) ∈ [⇑Cycl[S]X,αjs,hj
][if and only if s(u) ∈ [⇑Cycl[S]X,αjs,h′j

][.
First, we prove two intermediate results.
(s) {L ∈ ⇑Cycl[S]X,αjs,hj

| L ∩ Path[S]Xs,h(t) = ∅} = {L′ ∈ ⇑Cycl[S]X,αjs,h′j
| L′ ∩ Path[S]Xs,h′(t) = ∅},

(t) Path[S]Xs,h(t) ⊆ [⇑Cycl[S]X,αjs,hj
][if and only if Path[S]Xs,h′(t) ⊆ [⇑Cycl[S]X,αjs,h′j

][.

Proof of (s). (⊆): Consider L ∈ ⇑Cycl[S]X,αjs,hj
such that L∩Path[S]Xs,h(t) = ∅. By definition,

L describes a cycle in hj , of size greater than αj . Moreover, every location in L
does not belong to Lab[S]Xs,hj . As done in the proof of (D), L ∩ Path[S]Xs,h(t) = ∅
implies that L describes a cycle of size greater than αj , in ĥj . From ĥj ⊆ h′j , L
describes a cycle of size greater than αj , in h′j . Moreover, l′pre 6∈ L, as otherwise,
by (µ), Path[S]Xs,h′(t) ⊆ L, in contradiction with L ∩ Path[S]Xs,h(t) = ∅ (both L and
Path[S]Xs,h(t) are non-empty). Thus, from (A) and L ∩ Lab[S]Xs,hj = ∅, we conclude
that L ∩ Lab[S]Xs,h′j = ∅. By definition, L ∈ ⇑Cycl[S]X,αjs,h′j

.
(⊇): Symmetrical to the other direction.

Proof of (t). (⇒): Suppose Path[S]Xs,h(t) ⊆ [⇑Cycl[S]X,αjs,hj
][and thus let us consider a

set L ∈ ⇑Cycl[S]X,αjs,hj
such that Path[S]Xs,h(t) ∩ L 6= ∅. As hj ⊆ h, L describes a

cycle in both hj and h. By (µ) we conclude that Path[S]Xs,h(t) ⊆ L. As L ⊆ dom(hj),
by (b) we have Path[S]Xs,h′(t) ⊆ dom(h′j) (and j = 1). To conclude the proof, we show(

L \ Path[S]Xs,h(t)
)
∪ Path[S]Xs,h′(t) ∈ ⇑Cycl[S]X,αjs,h′j

. (§1)

First of all, since Path[S]Xs,h(t) ⊆ L ⊆ dom(hj) and hj ⊆ h, we conclude that
Path[S]Xs,h(t) describes a path in hj , going from [[t]]Xs,h to sbyX

s,h(t), and moreover
this path belongs to a cycle of length greater than αj , which in turn is described by
the set L. We notice that we can have L = Path[S]Xs,h(t). We distinguish two cases,
based on the truth of this equality.
case: L = Path[S]Xs,h(t). In this case, L \ Path[S]Xs,h(t) = ∅ and thus, in order to

prove (§1), we show Path[S]Xs,h′(t) ∈ ⇑Cycl[S]X,αjs,h′j
. The set Path[S]Xs,h(t) describes

a cycle in both h and hj , so [[t]]Xs,h = sbyX
s,h(t). As (s, h) and (s, h′) satisfy

5.5. A Family of Core Formulae Capturing the Fragment S 211

the same formulae of the form t = t′ and seesX(t, t′) ≥ 1, we conclude that
[[t]]Xs,h′ = sbyX

s,h′(t). Since Path[S]Xs,h′(t) ⊆ dom(h′j) and h′j ⊆ h′, this implies that
Path[S]Xs,h′(t) describes a cycle in h′j . Let us show that this cycle is unlabelled.
In h (resp. h′), the only labelled location of Path[S]Xs,h(t) (resp. Path[S]Xs,h′(t))
is the one that corresponds to t. Since Path[S]Xs,h(t) = L ∈ ⇑Cycl[S]X,αjs,hj

, by
definition of ⇑Cycl[S]X,αjs,hj

we conclude that [[t]]Xs,h does not belong to Lab[S]Xs,hj .
By (A), [[t]]Xs,h′ does not belong to Lab[S]Xs,h′j . So, Path[S]Xs,h′(t) ∈ ⇑Cycl[S]X,αjs,h′j

.

case: L 6= Path[S]Xs,h(t). In this case, L \ Path[S]Xs,h(t) is a minimal set describing
a path, in both h and hj , going from sbyX

s,h(t) to [[t]]Xs,h. By definition of ĥj ,
L \ Path[S]Xs,h(t) is a minimal set describing a path in ĥj , going from sbyX

s,h(t)
to [[t]]Xs,h. By ĥj ⊆ h′j , the same holds for h′j , going from sbyX

s,h(t) to [[t]]Xs,h.
As (s, h) and (s, h′) satisfy the same formulae of the form t = t′, by (=t),
sbyX

s,h(t) = sbyX
s,h′(t) and [[t]]Xs,h = [[t]]Xs,h′ . From Path[S]Xs,h′(t) ⊆ dom(h′j),

Path[S]Xs,h′(t) is the minimal set that describes the path in h′j going from [[t]]Xs,h′
to sbyX

s,h′(t). From L \ Path[S]Xs,h(t) ⊆ dom(ĥj), the sets L \ Path[S]Xs,h(t) and
Path[S]Xs,h′(t) are disjoint, and thus

(
L \ Path[S]Xs,h(t)

)
∪ Path[S]Xs,h′(t) describes

a cycle in h′j . Moreover, it is the minimal set that describes that cycle. Since
the set Path[S]Xs,h′(t) contains at least S(α) locations, th length of the cycle is
greater than αj . Similarly to the previous case of the proof, by (A), the cycle is
unlabelled. Thus, (§1) holds.

(⇐): Symmetrical to the other direction. In particular, if Path[S]Xs,h′(t)∩L 6= ∅ holds
for some L ∈ ⇑Cycl[S]X,αjs,h′j

, one can show that(
L \ Path[S]Xs,h′(t)

)
∪ Path[S]Xs,h(t) ∈ ⇑Cycl[S]X,αjs,hj

. (§2)

Proof of (q). Thanks to (s), in order to prove (q) it is sufficient to show that the cardinal-
ities of the two following sets coincide:
{L ∈ ⇑Cycl[S]X,αs,hj | L∩Path[S]Xs,h(t) 6= ∅}, {L ∈ ⇑Cycl[S]X,αs,h′j | L∩Path[S]Xs,h′(t) 6= ∅}.

In fact, we notice that, whenever non-empty, these two sets can only contain one el-
ement. Indeed, if we consider a set L ∈ ⇑Cycl[S]X,αs,hj such that L ∩ Path[S]Xs,h(t) 6= ∅,
we know that it describes a cycle in h. Therefore, by (µ), Path[S]Xs,h(t) ⊆ L and so
the cardinality of {L ∈ ⇑Cycl[S]X,αs,hj | L ∩ Path[S]Xs,h(t) 6= ∅} is one (recall that
the sets in ⇑Cycl[S]X,αs,hj are mutually disjoint). A similar analysis can be done
for {L ∈ ⇑Cycl[S]X,αs,h′j | L ∩ Path[S]Xs,h′(t) 6= ∅}. By (t), L ∩ Path[S]Xs,h(t) 6= ∅, for

some L∈⇑Cycl[S]X,αs,hj , if and only if there is L∈⇑Cycl[S]X,αs,h′j s.t. L ∩ Path[S]Xs,h′(t) 6= ∅.
We conclude that the cardinalities of the two sets under analysis coincide.

Proof of (r). (⇒): Suppose that there is L ∈ ⇑Cycl[S]X,ts,hj such that s(u) ∈ L. First of all,
if s(u) ∈ Path[S]Xs,h(t), then (r) follows from (t). Otherwise, s(u) ∈ L \ Path[S]Xs,h(t).
If Path[S]Xs,h(t)∩L = ∅, then (r) follows directly from (s). Else, Path[S]Xs,h(t) ∩ L 6= ∅
allows us to apply the construction in the proof of (t) in order to conclude that (§1)
holds. As s(u) ∈ L \ Path[S]Xs,h(t), this implies (r).
(⇐): Symmetrical to the other direction.

F. (u) min(card(Rem[S]X,αjs,hj
),R(αj)) = min(card(Rem[S]X,αjs,h′j

),R(αj)),

212 Chapter 5. Deciding Robustness Properties in PSpace

(v) s(u) ∈ Rem[S]X,αjs,hj
if and only if s(u) ∈ Rem[S]X,αjs,h′j

.

First, we prove four intermediate results.

(w) Rem[S]X,αjs,hj
\
(
Rj ∪ Pj ∪ {lpre}

)
= Rem[S]X,αjs,h′j

\
(
R′j ∪ P ′j ∪ {l′pre}

)
(x) Rj ⊆ Rem[S]X,αjs,hj

and R′j ⊆ Rem[S]X,αjs,h′j
.

(y) lpre ∈ Rem[S]X,αjs,hj
if and only if l′pre ∈ Rem[S]X,αjs,h′j

.

(z) Pj ∩ Rem[S]X,αjs,hj
is either ∅ or Pj . Similarly, P ′j ∩ Rem[S]X,αjs,h′j

is either ∅ or P ′j . Lastly,

Pj ⊆ Rem[S]X,αjs,hj
if and only if P ′j ⊆ Rem[S]X,αjs,h′j

.

Proof of (w). (⊆): Consider ` ∈ Rem[S]X,αjs,hj
\
(
Rj ∪Pj ∪ {lpre}

)
. By definition of Rem[S]X,αjs,hj

,
` ∈ dom(hj) and ` does not belong to any of the sets

Path[S]Xs,hj (t
′), Pred[S]Xs,hj (x), [Cycl[S]Xs,hj(β)][, [⇑Cycl[S]X,αjs,hj

][,

where t′ ∈ T[S]X and x ∈ X, β ∈ [1, αj]. Moreover, ` 6∈ R3−j and ` 6∈ P3−j , as R3−j
and P3−j contain locations in dom(h3−j). Directly from the definition of these sets,
together with ` 6∈ Rj ∪ Pj ∪ {lpre}, this allows us to conclude that ` 6∈ Path[S]Xs,h(t).
By definition of ĥj , we derive ` ∈ dom(ĥj). By definition of h′j , we conclude that ` ∈
dom(h′j) and ` 6∈ Path[S]Xs,h′(t). In order to show that ` ∈ Rem[S]X,αjs,h′j

, thus concluding
the proof, we prove that ` does not belong to any of the sets

Path[S]Xs,h′j (t
′), Pred[S]Xs,h′j (x), [Cycl[S]Xs,h′j(β)][, [⇑Cycl[S]X,αjs,h′j

][,

where t′ ∈ T[S]X and x ∈ X, β ∈ [1, αj].
∗ For every t′ ∈ T[S]X, ` 6∈ Path[S]Xs,h′j (t

′).

Ad absurdum, suppose ` ∈ Path[S]Xs,h′j (t
′). Since ` ∈ dom(hj), by (A) we

conclude that ` 6= [[t′]]Xs,h′j . Therefore, h′j witnesses a non-empty path going
from [[t′]]Xs,h′j , and moreover ` 6∈ Lab[S]Xs,h′j . Consider a variable x ∈ X that is
used to write the term t′. From the definition of [[.]]Xs,h′j , h

′
j witnesses a (pos-

sibly empty) path going from s(x) to [[t′]]Xs,h′j . We deduce that h′j witnesses a
non-empty path going from s(x) to `. However, by (d), this implies that hj
witnesses a non-empty path going from s(x) to `. As ` ∈ dom(hj), this im-
plies that there is t′′ ∈ T[S]X such that ` ∈ Path[S]Xs,hj (t

′′): a contradiction.
Thus, ` 6∈ Path[S]Xs,h′j (t

′).

∗ For every x ∈ X, ` 6∈ Pred[S]Xs,h(x).
Directly from (o) and as ` 6= l′pre ∈ Path[S]Xs,h′j (t).

∗ For every β ∈ [1, αj], ` 6∈ [Cycl[S]Xs,h′j(β)][.
Directly from (D).

∗ ` 6∈ [⇑Cycl[S]X,αjs,h′j
][.

Ad absurdum, suppose there is L ∈ ⇑Cycl[S]X,αjs,h′j
such that ` ∈ L. We show that

this is contradictory, as it implies ` ∈ [⇑Cycl[S]X,αjs,hj
][. If L ∩ Path[S]Xs,h′(t′) is

empty, then this holds directly from (s). Otherwise, by (§2) we have(
L \ Path[S]Xs,h′(t)

)
∪ Path[S]Xs,h(t) ∈ ⇑Cycl[S]X,αjs,hj

,

5.5. A Family of Core Formulae Capturing the Fragment S 213

which allows us again to derive ` ∈ [⇑Cycl[S]X,αjs,hj
][, as ` 6∈ Path[S]Xs,h′(t).

Therefore, ` 6∈ L.
(⊇): Symmetrical to the other direction.

Proof of (x). We show the inclusion Rj ⊆ Rem[S]X,αjs,hj
. The inclusion R′j ⊆ Rem[S]X,αjs,h′j

is
proved analogously. Consider ` ∈ Rj . By definition, ` ∈ dom(hj). Moreover,
∗ for every x ∈ X, ` 6∈ Pred[S]Xs,hj (x).

Ad absurdum, assume the contrary. There is x ∈ X such that hj(`) = s(x).
Since s(x) is a labelled location and ` ∈ Path[S]Xs,h(t), we conclude that
s(x) = sbyX

s,h(t). However, this implies ` = lpre directly from the definition
of lpre. This is contradictory, as Rj and {lpre} are disjoint. Thus, for every
x ∈ X, ` 6∈ Pred[S]Xs,hj (x).

∗ For every t′ ∈ T[S]X, ` 6∈ Path[S]Xs,hj (t).
Directly from (j).

∗ ` does not belong neither to [Cycl[S]Xs,hj(β)][(β ∈ [1, αj]) nor to [⇑Cycl[S]X,αjs,hj
][.

More generally, we show that ` does not belong to a cycle. Ad absurdum,
suppose L to be a minimal set of locations describing a cycle in hj , such that
` ∈ L. As it is minimal and it describes a cycle L ⊆ dom(hj). From hj ⊆ h,
we conclude that L is a minimal set of locations describing a cycle in h.
From ` ∈ L ∩ Path[S]Xs,h(t) and by (µ), we have Path[S]Xs,h(t) ⊆ L. There-
fore, Path[S]Xs,h(t) ⊆ dom(hj). This means that R3−j = ∅. By definition
ePj ∈ R3−j ∪ lpre, and therefore ePj = lpre. However, by definition of Pj and
lpre, this implies that Pj and {lpre} partition Path[S]Xs,h(t), and so Rj = ∅: a
contradiction. Therefore, ` does not belong to a cycle.

By definition of Rem[S]X,αjs,hj
, we conclude that ` ∈ Rem[S]X,αjs,hj

.

Proof of (y). (⇒): Suppose lpre ∈ Rem[S]X,αjs,hj
. Since we are assuming lpre ∈ dom(h1), j = 1.

By definition of h′1, l′pre ∈ dom(h′1). As in the previous two proofs, in order to show
that ` ∈ Rem[S]X,αjs,h′j

we prove that l′pre does not belong to any of the sets:

Path[S]Xs,h′j (t
′), Pred[S]Xs,h′j (x), [Cycl[S]Xs,h′j(β)][, [⇑Cycl[S]X,αjs,h′j

][.

All the proofs essentially use the fact that lpre ∈ Rem[S]X,αjs,hj
, which implies that lpre

does not belong to the sets:
Path[S]Xs,hj (t

′), Pred[S]Xs,hj (x), [Cycl[S]Xs,hj(β)][, [⇑Cycl[S]X,αjs,hj
][.

In particular,
∗ From (k), for every t ∈ T[S]X, l′pre 6∈ Path[S]Xs,h′j (t

′).

∗ From (p), for every x ∈ X, l′pre 6∈ Pred[S]Xs,h′j (x).

∗ From (D), for every β ∈ [1, αj], l′pre 6∈ [Cycl[S]Xs,h′j(β)][.

∗ Ad absurdum, suppose there is a set L ∈ ⇑Cycl[S]X,αjs,h′j
such that l′pre ∈ L. From

L ∩ Path[S]Xs,h′(t) 6=∅ and (§2),
(
L \ Path[S]Xs,h′(t)

)
∪ Path[S]Xs,h(t) ∈ ⇑Cycl[S]X,αjs,hj

.
However, this implies lpre ∈ [⇑Cycl[S]X,αjs,hj

][, a contradiction. So, ` 6∈ [⇑Cycl[S]X,αjs,h′j
][.

(⇐): Symmetrical to the other direction.

214 Chapter 5. Deciding Robustness Properties in PSpace

Proof of (z). We start by showing that Pj ∩ Rem[S]X,αjs,hj
is either ∅ or Pj . The proof that

(P ′j ∩ Rem[S]X,αjs,h′j
is either ∅ or P ′j) is analogous. In particular, we show that if there

is ` ∈ Pj ∩ Rem[S]X,αjs,hj
then Pj ⊆ Rem[S]X,αjs,hj

. So, let us assume ` ∈ Pj ∩ Rem[S]X,αjs,hj
and

consider `′ ∈ Pj . By definition of Pj , `′ ∈ dom(hj). Afterwards, `′ ∈ Rem[S]X,αjs,hj
holds

directly from the three statements below:
∗ for every t′ ∈ T[S]X, `′ 6∈ Path[S]Xs,hj (t

′)
Ad absurdum, suppose `′ ∈ Path[S]Xs,hj (t

′), for some t′ ∈ T[S]X. Since `′ ∈ Pj
and by (l), we conclude that Pj ⊆ Path[S]Xs,hj (t

′). However, this implies
` ∈ Path[S]Xs,hj (t

′), in contradiction with ` ∈ Rem[S]X,αjs,hj
.

∗ for every x ∈ X, `′ 6∈ Pred[S]Xs,hj (x).
Ad absurdum, suppose `′ ∈ Pred[S]Xs,hj (x), for some x ∈ X. By hj ⊆ h,
h(`′) = s(x). Since `′ ∈ Path[S]Xs,h(t), by definition of lpre, we conclude that
`′ = lpre. However, this is contradictory, as `′ ∈ Pj but Pj and {lpre} are
disjoint. Therefore, for every x ∈ X, `′ 6∈ Pred[S]Xs,hj (x).

∗ `′ does not belong neither to [Cycl[S]Xs,hj(β)][(β ∈ [1, αj]) nor to [⇑Cycl[S]X,αjs,hj
][.

More generally, we show that `′ does not belong to an unlabelled cycle. Ad
absurdum, suppose L to be a minimal set of locations describing a cycle in
hj , such that `′ ∈ L and L does not contain labelled locations in Lab[S]Xs,hj .
Since hj ⊆ h, this implies that L is a minimal set of locations describing a cycle
in h. From `′ ∈ Path[S]Xs,h(t) and by (µ), we conclude that Path[S]Xs,h(t) ⊆ L.
So, ` ∈ L. However, since L is a minimal set describing an unlabelled cycle
in hj , we conclude that ` belongs to either [Cycl[S]Xs,hj(β)][, for some β ∈ [1, β],
or ` ∈ [⇑Cycl[S]X,αjs,hj

][. As this contradicts the fact that ` ∈ Rem[S]X,αjs,hj
, we

conclude that `′ does not belong to an unlabelled cycle.
Let us now discuss the double implication

Pj ⊆ Rem[S]X,αjs,hj
if and only if P ′j ⊆ Rem[S]X,αjs,h′j

.

We show the left-to-right direction. The right-to-left direction follows symmetrically.
(⇒): Suppose Pj ⊆ Rem[S]X,αjs,hj

. Let us consider `′ ∈ P ′j . This means that P ′j 6= ∅ and
so, by (4), Pj 6= ∅. Thus, let us also consider a location ` ∈ Pj which, by hypothesis,
belongs to Rem[S]X,αjs,hj

. Directly from `′ ∈ P ′j , `′ ∈ dom(hj). Afterwards, `′ ∈ Rem[S]
X,α′j
s,h′j

holds directly from the three statements below, concluding the proof:
∗ for every t′ ∈ T[S]X, `′ 6∈ Path[S]Xs,h′j (t

′).

Ad absurdum, suppose `′ ∈ Path[S]Xs,h′j (t
′), for some t′ ∈ T[S]X. As `′ ∈ P ′j

and by (l), we conclude that P ′j ⊆ Path[S]Xs,h′j (t
′) and Pj ⊆ Path[S]Xs,hj (t

′).

However, this implies ` ∈ Path[S]Xs,hj (t
′), in contradiction with ` ∈ Rem[S]X,αjs,hj

.
Thus, for every t′ ∈ T[S]X, `′ 6∈ Path[S]Xs,h′j (t

′).

∗ for every x ∈ X, `′ 6∈ Pred[S]Xs,h′j (x).
We already proved an analogous statement above (w.r.t. (s, h′j)). Briefly, it
cannot be that `′ ∈ Pred[S]Xs,h′j (x), for some x ∈ X, as otherwise we would be
able to derive `′ = l′pre, in contradiction with `′ ∈ P ′j .

5.5. A Family of Core Formulae Capturing the Fragment S 215

∗ `′ does not belong to neither [Cycl[S]Xs,h′j(β)][(β ∈ [1, αj]) nor to [⇑Cycl[S]X,αjs,h′j
][.

More generally, we show that `′ does not belong to an unlabelled cycle. Ad
absurdum, suppose ` to be a minimal set of locations describing a cycle in h′j ,
such that `′ ∈ L and L does not contain labelled locations in Lab[S]Xs,h′j .
Since h′j ⊆ h′, this implies that L is a minimal set of locations describing a
cycle in h′. From `′ ∈ Path[S]Xs,h′(t) and by (µ), we derive Path[S]Xs,h′(t) ⊆ L.
Now, it cannot be that L belongs to Cycl[S]Xs,h′j(β), for some β ∈ [1, αj], as it
would imply card(Path[S]Xs,h′(t)) ≤ β, in contradiction with the assumption

card(Path[S]Xs,h′(t)) ≥ S(αj) > αj .
Therefore, L ∈ ⇑Cycl[S]X,αjs,h′j

. From Path[S]Xs,h′(t) ⊆ [⇑Cycl[S]X,αjs,h′j
][and by (t),

we conclude that Path[S]Xs,h(t) ⊆ [⇑Cycl[S]X,αjs,hj
][. However, this allows us to

derive ` ∈ [⇑Cycl[S]X,αjs,hj
][, in contradiction with ` ∈ Rem[S]X,αjs,hj

. Thus, `′ does
not belong to an unlabelled cycle.

At last, we are ready to show (F), essentially concluding the proof.

Proof of (u). By definition of the sets P1, P2, R1, R2 and {lpre}, together with the as-
sumption lpre ∈ dom(h1), we have:
Path[S]Xs,h(t) ∩ dom(h1) = P1 ∪R1 ∪ {lpre}, Path[S]Xs,h(t) ∩ dom(h2) = P2 ∪R2.
Similarly, by definition of h′1 and h′2,
Path[S]Xs,h′(t) ∩ dom(h′1) = P ′1 ∪R′1 ∪ {l′pre}, Path[S]Xs,h′(t) ∩ dom(h′2) = P ′2 ∪R′2.
Let j ∈ {1, 2}. If j = 1, let Tj and T ′j be {lpre} and {l′pre}, Else, let Tj = T ′j = ∅. We
recall that Rem[S]X,αjs,hj

⊆ dom(hj) and Rem[S]X,αjs,h′j
⊆ dom(h′j), which allows us to obtain

the following equalities:
Rem[S]X,αjs,hj

=
(
Rem[S]X,αjs,hj

\ Path[S]Xs,h(t)
)
∪
(
Path[S]Xs,h(t) ∩ Rem[S]X,αjs,hj

)
=
(
Rem[S]X,αjs,hj

\ (Pj ∪Rj ∪ Tj)
)
∪
(
(Pj ∪Rj ∪ Tj) ∩ Rem[S]X,αjs,hj

)
,

Rem[S]X,αjs,h′j
=
(
Rem[S]X,αjs,h′j

\ Path[S]Xs,h′(t)
)
∪
(
Path[S]Xs,h′(t) ∩ Rem[S]X,αjs,h′j

)
=
(
Rem[S]X,αjs,h′j

\ (P ′j ∪R′j ∪ T ′j)
)
∪
(
(P ′j ∪R′j ∪ T ′j) ∩ Rem[S]X,αjs,h′j

)
.

Above, all unions are between disjoint sets. Let us use the following abbreviations:
m = card(Rem[S]X,αjs,hj

\ (Pj ∪Rj ∪ Tj)), p = card(Pj ∩ Rem[S]X,αjs,hj
),

r = card(Rj ∩ Rem[S]X,αjs,hj
), t = card(Tj ∩ Rem[S]X,αjs,hj

),

m′ = card(Rem[S]X,αjs,h′j
\ (P ′j ∪R′j ∪ T ′j)), p′ = card(P ′j ∩ Rem[S]X,αjs,h′j

),

r′ = card(R′j ∩ Rem[S]X,αjs,h′j
), t′ = card(T ′j ∩ Rem[S]X,αjs,h′j

).

From the previous equalities above, we derive
card(Rem[S]X,αjs,hj

) = m+ p+ r + t, card(Rem[S]X,αjs,h′j
) = m′ + p′ + r′ + t′.

Afterwards, min(card(Rem[S]X,αjs,hj
),R(αj)) = min(card(Rem[S]X,αjs,h′j

),R(αj)) follows from
the four statements below:
∗ m = m′.

Directly from (w).
∗ min(p,R(αj)) = min(p′,R(αj)),

216 Chapter 5. Deciding Robustness Properties in PSpace

From (z) and the property (4), as S(αj) ≥ R(αj) (see (?1) and (?2)).
∗ min(r,R(αj)) = min(r′,R(αj)).

From (x) and the property (5).
∗ t = t′.

Directly from (y).
Proof of (v). We consider the two equalities derived in the proof of (u):

Rem[S]X,αjs,hj
=
(
Rem[S]X,αjs,hj

\ (Pj ∪Rj ∪ Tj)
)
∪
(
(Pj ∪Rj ∪ Tj) ∩ Rem[S]X,αjs,hj

)
,

Rem[S]X,αjs,h′j
=
(
Rem[S]X,αjs,h′j

\ (P ′j ∪R′j ∪ T ′j)
)
∪
(
(P ′j ∪R′j ∪ T ′j) ∩ Rem[S]X,αjs,h′j

)
.

where, if j = 1, then Tj and T ′j are {lpre} and {l′pre}. Otherwise, Tj = T ′j = ∅.
(⇒): Suppose s(u) ∈ Rem[S]X,αjs,hj

. Following the equalities above, we divide the proof
in four cases:
case: s(u) ∈ Rem[S]X,αjs,hj

\ (Pj ∪Rj ∪ Tj). By (w), s(u) ∈ Rem[S]X,αjs,h′j
\ (P ′j ∪R′j ∪ T ′j .

case: s(u) ∈ Pj ∩ Rem[S]X,αjs,hj
. From (z), Pj ⊆ Rem[S]X,αjs,hj

and P ′j ⊆ Rem[S]X,αjs,h′j
. From

the property (7), s(u) belongs to P ′j , and thus it belongs to Rem[S]X,αjs,h′j
.

case: s(u) ∈ Rj. From (x), R′j ⊆ Rem[S]X,αjs,h′j
. From the property (6) of the construc-

tion, s(u) belongs to R′j , and thus it belongs to Rem[S]X,αjs,h′j
.

case: s(u) ∈ Tj. By definition of Tj , s(u) = lpre. Ad absurdum, assume s(u) 6= l′pre.
By definition of lpre and l′pre, we conclude that there is t′ ∈ T[S]X such that
∗ (s, h) |= u ∈ seesX(t, t′) ≥ (1, 1) and (s, h) 6|= u ∈ seesX(t, t′) ≥ (1, 2),
∗ If (s, h′) |= u ∈ seesX(t, t′) ≥ (1, 1) then (s, h′) |= u ∈ seesX(t, t′) ≥ (1, 2).

This contradicts (s, h) ≈SX,α (s, h′). Thus, s(u) = l′pre. By (y), s(u) ∈ Rem[S]X,αjs,h′j
.

We conclude that s(u) ∈ Rem[S]X,αjs,h′j
.

(⇐): Symmetrical to the other direction. The second case relies on (8) instead of (7).

The properties (A)–(F) lead directly to (s, hj) ≈SX,αj (s′, h′j) with the same case analysis
provided at the end of the proof of Lemma 5.39. Therefore, (s, h)↔SX,α (s, h′).

Once Lemma 5.40 is established, we conclude that the core formulae Core[S](X, α) enjoy
the ∗-simulation property. As in the case of the ∗-simulation property of the weak fragment
(Lemma 5.20), this is done by considering two memory states (s, h) ≈SX,α (s′, h) and build a chain
of hops going from (s, h) to (s′, h′). This chain of hops is built by carrying out an induction on
the number of sets in the partition having different cardinalities with respect to the two memory
states. Each hop corresponds to one of the cases in Lemma 5.40 or Lemma 5.39.

Lemma 5.41 (S : ∗-simulation). ≈SX,α ⊆ ↔SX,α.

With no surprises, the proof follows closely the one of Lemma 5.20. It is given in Appendix C.

5.5.4 Step IV: ∃-simulation.

We show that the core formulae Core[S](X, α) enjoys the ∃-simulation property. As done for
Lemma 5.23, this result is proved by checking how the satisfaction of formulae in Obs[S](X, α)
changes as the quantified variable u is reassigned.

5.5. A Family of Core Formulae Capturing the Fragment S 217

Lemma 5.42 (S : ∃-simulation). Suppose (s, h) ≈SX,α (s′, h′). For every location `1 ∈ LOC there
is a location `2 ≤ maxvalX(s′, h′) + 1 such that (s[u← `1], h) ≈SX,α (s′[u← `2], h′).

Proof. As it was the case for the weak fragment, we notice that the sets in Definition 5.29
(i.e. predecessors sets, paths sets, etc.) do not depend on the location assigned to the vari-
able name u 6∈ X. More precisely, for every memory state (ŝ, ĥ) and location ̂̀ the following
equivalences hold (where x ∈ X, ` ∈ Lab[S]X

ŝ,̂h
and β ∈ [1, α]):

Lab[S]X
ŝ,̂h

= Lab[S]X
ŝ[u←̂̀],̂h , Pred[S]X

ŝ,̂h
(x) = Pred[S]X

ŝ[u←̂̀],̂h(x) ,

Path[S]X
ŝ,̂h

(`) = Path[S]X
ŝ[u←̂̀],̂h(`) , Cycl[S]X

ŝ,̂h
(β) = Cycl[S]X

ŝ[u←̂̀],̂h(β) ,

⇑Cycl[S]X,α
ŝ,̂h

= ⇑Cycl[S]X,α
ŝ[u←̂̀],̂h , Rem[S]X,α

ŝ,̂h
= Rem[S]X,α

ŝ[u←̂̀],̂h .

We denote these equivalences by (Inv-u). Directly from them, we notice that for every core
formula ϕ in Sk[S](X, α) and `1, `2 ∈ LOC, we have

(s[u← `1], h) |= ϕ, iff (s, h) |= ϕ, (by (Inv-u))
iff (s′, h′) |= ϕ, (by (s, h) ≈SX,α (s′, h′))
iff (s′[u← `2], h′) |= ϕ. (by (Inv-u))

Therefore, in order to prove the result it is sufficient to show that for every `1 ∈ LOC there
is `2 ≤ maxvalX(s′, h′) + 1 such that the memory states (s[u← `1], h) and (s′[u← `2], h′) agree
on the satisfaction of every core formula in Obs[S](X, α). The choice for `2 depends on whether
`1 is a labelled location and on whether it belongs to one of the sets in Definition 5.29:
case: `1 ∈ Lab[S]Xs,h. Let t ∈ T[S]X be such that [[t]]Xs,h = `1. By (s, h) ≈SX,α (s′, h′), [[t]]Xs′,h′ is

defined. Consider `2 = [[t]]Xs′,h′ . If t is syntactically equal to some x ∈ X, then `2 ∈ s′(X).
If instead t is syntactically equal to m(x, y) or e(x) (for some x, y ∈ X), then `2 ∈ ran(h′).
Therefore, `2 ≤ maxvalX(s′, h′) + 1. We show that the two memory states (s[u ← `1], h)
and (s′[u← `2], h′) satisfy the same core formulae in Obs[S](X, α). Given a formula ϕ in

u ∈ loopSX (β), u ∈ ⇑loopSX,α,

u ∈ seesX(t1, t2) ≥ (
←−
β ,
−→
β),

u ∈ predSX (x), u ∈ remSX,α

∣∣∣∣∣∣∣∣∣
←−
β ∈

[
1, 1

6α(α+ 1)(α+ 2) + 1
]

−→
β ∈

[
1, 1

2α(α+ 3)
]
, β ∈ [1, α]

x ∈ X, t1, t2 ∈ T[S]X

,

by (Inv-u) we conclude that (s[u ← `1], h) 6|= ϕ and (s′[u ← `2], h′) 6|= ϕ. Indeed, all
the formulae in this set require that u corresponds to an unlabelled location. Now, let us
consider a core formula of the form u = t′, where t′ ∈ T[W]X. We have

(s[u← `1], h) |= u = t′,
⇔ `1 = [[t′]]Xs[u←`1],h, (by definition of |=)
⇔ `1 = [[t′]]Xs,h = [[t]]Xs,h, (by hypothesis `1 = [[t]]Xs,h and [[t′]]Xs[u←`1],h = [[t′]]Xs,h)
⇔ `2 = [[t′]]Xs′,h′ = [[t]]Xs′,h′ , (from `2 = [[t]]Xs′,h′ and (s, h) ≈SX,α (s′, h′))
⇔ `2 = [[t′]]Xs′[u←`2],h′ ,

(from [[t′]]Xs′[u←`1],h′ = [[t′]]Xs′,h′. The right-to-left direction also uses `2 = [[t′]]Xs′,h′)
⇔ (s′[u← `2], h′) |= u = t′. (by definition of |=)

case: `1 6∈ Lab[S]Xs,h and there is t ∈ T[S]X s.t. `1 ∈ Path[S]Xs,h(t). In this case `1 belongs to
the minimal path in h going from [[t]]Xs,h to sbyX

s,h(t), and it is different to both these two la-
belled locations. Roughly speaking, in this case we mainly focus on defining the location `2

218 Chapter 5. Deciding Robustness Properties in PSpace

so that it belongs to Path[S]Xs′,h′(t) and it is such that the memory states (s[u ← `1], h)
and (s′[u← `2], h′) satisfy the same core formulae of the form u ∈ seesX(t1, t2) ≥ (β1, β2),
where β1 ∈ [1, 1

6α(α+1)(α+2)+1] and β2 ∈ [1, 1
2α(α+3)]. We write Sleft(α) and Sright(α)

for 1
6α(α+ 1)(α+ 2) + 1 and 1

2α(α+ 3), respectively, i.e. the two upper bounds for β1 and
β2. Following the semantics of the core formulae of the form u ∈ seesX(t1, t2) ≥ (β1, β2),
we consider the lengths δleft and δright such that

δleft + δright = card(Path[S]Xs,h(t)), hδleft([[t]]Xs,h) = `1, hδright(`1) = sbyX
s,h(t).

Informally, δleft corresponds to the length of the path inside h going from [[t]]Xs,h to `1,
whereas δright corresponds to the length of the path inside h going from `1 to sbyX

s,h(t).
As `1 is an unlabelled location, δleft and δright are at least 1. We define the location `2
following the procedure below:

if δleft < Sleft(α) then
`2 ← h′δleft([[t]]Xs′,h′),

else if δright < Sright(α) then
let `2 be the location in Path[S]Xs′,h′(t) such that h′δright(`2) = sbyX

s′,h′(t),

else (i.e. δleft ≥ Sleft(α) and δright ≥ Sright(α))
`2 ← h′Sleft(α)([[t]]Xs′,h′).

We now show that this procedure correctly defines `2 as a location in Path[S]Xs′,h′(t),
which directly implies `2 ≤ maxvalX(s′, h′) + 1 by definition of maximum value. From
(s, h) ≈SX,α (s′, h′) it holds that (s, h) and (s′, h′) satisfy the same core formulae of the form
seesX(t1, t2) ≥ β, where t1, t2 ∈ T[S]X and β ∈ [1, 1

6(α+ 1)(α+ 2)(α+ 3)]. Thus,

min(Path[S]Xs,h(t), 1
6(α+ 1)(α+ 2)(α+ 3))

= min(Path[S]Xs′,h′(t), 1
6(α+ 1)(α+ 2)(α+ 3))

(†)

As one can show that 1
6(α+ 1)(α+ 2)(α+ 3) = Sleft(α) + Sright(α), if δleft < Sleft(α) holds

(first case of the procedure), then Path[S]Xs,h(t) contains more than δleft locations. From (†)
we conclude that Path[S]Xs′,h′(t) describes a path in h′ going from [[t]]Xs′,h′ to sbyX

s′,h′(t) and
of length greater than δleft. Thus, `2 is well-defined and it belongs to Path[S]Xs′,h′(t). Simi-
larly, if the second case of the procedure is applied, then the path in h′ going from [[t]]Xs′,h′ to
sbyX

s′,h′(t) more than δright locations, which again means that `2 belongs to Path[S]Xs′,h′(t).
Lastly, in the third case of the procedure, δleft ≥ Sleft(α) implies that Path[S]Xs′,h′(t) has
more than Sleft(α) locations. Again, `2 ∈ Path[S]Xs′,h′(t). Let us refine the analysis on the
location `2. We consider the two lengths δ′left and δ′right such that

δ′left + δ′right = card(Path[S]Xs′,h′(t)),

hδ
′
left([[t]]Xs′,h′) = `2, hδ

′
right(`2) = sbyX

s′,h′(t).

As `2 belongs to Path[S]Xs,h(t), these two lengths exist and are uniquely defined. By (†),

min(δleft + δright, Sleft(α) + Sright(α)) = min(δ′left + δ′right, Sleft(α) + Sright(α)). (‡)

We show that

I. min(δleft,Sleft(α)) = min(δ′left,Sleft(α)),
II. min(δright,Sright(α)) = min(δ′right,Sright(α)).

The proof is divided in three cases, following the procedure used to define `2.

5.5. A Family of Core Formulae Capturing the Fragment S 219

case: δleft < Sleft(α). We follow the first case of the procedure, and conclude that δ′left =
δleft holds. Thus, (I) trivially holds, whereas (II) is proved from (‡). Indeed, by
subtracting δleft on both side of the equation in (‡), and relying on the fact the sum
distributes over the min function, from δ′left = δleft we conclude that

min(δright,Sleft(α)− δleft + Sright(α)) = min(δ′right,Sleft(α)− δleft + Sright(α)).
As Sleft(α)−δleft > 0, this implies (II) directly from the fact that for every a, b, c, d ≥ 0,

min(a, b+ c) = min(d, b+ c) ⇒ min(a, c) = min(d, c).

case: δleft ≥ Sleft(α) and δright < Sright(α). We follow the second case of the procedure,
and conclude that δ′right = δright holds. Therefore, (II) trivially holds, whereas (I) is
proved from (‡) (the proof is analogous to the one described in the previous case in
order to prove (II)).

case: δleft ≥ Sleft(α) and δright ≥ Sright(α). We follow the third case of the procedure,
and conclude that δ′right = Sleft(α) holds. Thus, (I) trivially holds. From (‡), we
conclude that δ′left + δ′right ≥ Sleft(α) + Sright(α). From δ′right = Sleft(α) we conclude
that δ′right ≥ Sright(α), which proves (II).

Now, let us show that (s[u← `1], h) and (s′[u← `2], h′) satisfy the same core formulae of
Obs[S](X, α). Notice that we have `1 ∈ Path[S]Xs,h(t) and `2 ∈ Path[S]Xs′,h′(t). Moreover,
`1 6∈ Lab[S]Xs,h and `2 6∈ Lab[S]Xs′,h′ . This latter statement holds directly from the defini-
tion of Path[S]Xs′,h′(t) together with the fact that δleft, δright ≥ 1, which in turn implies
δ′left, δ

′
right ≥ 1, by (I) and (II). Because of this, it is quite easy to see that both memory

states do not satisfy any of the core formulae in{
u = t1, u ∈ loopSX (β), u ∈ ⇑loopSX,α,

u ∈ predSX (x), u ∈ remSX,α

∣∣∣∣∣ β ∈ [1, α], x ∈ X

}
.

leaving the satisfiability of the core formulae of the form u ∈ seesX(t1, t2) ≥ (β1, β2) to be
checked. Let ϕ be the core formula u ∈ seesX(t1, t2) ≥ (β1, β2), where β1 ∈ [1,Sleft(α)]
and β2 ∈ [1,Sright(α)]. We prove that

(s[u← `1], h) |= ϕ if and only if (s′[u← `2], h′) |= ϕ.

(⇒): By definition, there are δ1 ≥ β1 and δ2 ≥ β2 such that

δ1 + δ2 = card(Path[S]Xs,h(t1)), hδ1([[t1]]Xs,h) = `1, hδ2(`1) = [[t2]]Xs,h.

Therefore, δleft = δ1 and δleft = δ2. Moreover, [[t1]]Xs,h = [[t]]Xs,h and [[t2]]Xs,h = sbyX
s,h(t).

From the equisatisfaction of the core formulae of the form t′ = t′′, we conclude that
[[t1]]Xs′,h′ = [[t]]Xs′,h′ and [[t2]]Xs′,h′ = sbyX

s′,h′(t). Thus, δ′left and δ′right are such that

δ′left + δ′right = card(Path[S]Xs′,h′(t1)), hδ
′
left([[t1]]Xs′,h′) = `2, hδ

′
right(`2) = [[t2]]Xs′,h′ .

From the semantics of ϕ, in order to conclude that (s′[u← `2], h′) |= ϕ holds it is sufficient
to show that δ′left ≥ β1 and δ′right ≥ β2. As β1 ≤ Sleft(α), the inequality δ′left ≥ β1 holds
directly from δ1 ≥ β1 and (I). As β1 ≤ Sright(α), the inequality δ′right ≥ β2 holds directly
from δ2 ≥ β2 and (II).
(⇐): Symmetrical to the other direction, thanks to (I) and (II).

case: there is x ∈ X such that `1 ∈ Pred[S]Xs,h(x). From the equisatisfaction of the formulae
in Sk[S](X, α), the set Pred[S]Xs′,h′(x) is not empty. Consider `2 to be a location in this set.
Hence `2 ∈ dom(h′), which implies that `2 ≤ maxvalX(s′, h′) + 1. Given a formula ϕ in

220 Chapter 5. Deciding Robustness Properties in PSpace

u = t1, u ∈ loopSX (β), u ∈ ⇑loopSX,α,

u ∈ seesX(t1, t2) ≥ (
←−
β ,
−→
β),

u ∈ remSX,α

∣∣∣∣∣∣∣∣∣
←−
β ∈

[
1, 1

6α(α+ 1)(α+ 2) + 1
]

−→
β ∈

[
1, 1

2α(α+ 3)
]
, β ∈ [1, α]

t1, t2 ∈ T[S]X

 .
it is quite easy to see that (s[u ← `1], h) 6|= ϕ and (s′[u ← `2], h′) 6|= ϕ. Indeed, all the
formulae in this set require `1 (resp. `2) to not belong to Pred[S]Xs,h(x) (resp. Pred[S]Xs′,h′(x)).
Let us now consider a variable y ∈ X. We show that

(s[u← `1], h) |= u ∈ predSX (y) if and only if (s′[u← `2], h′) |= u ∈ predSX (y).

(s[u← `1], h) |= u ∈ predSX (y),
⇔ `1 ∈ Pred[S]Xs,h(y), (by definition of |=)
⇔ `1 ∈ Pred[S]Xs,h(x) and [[x]]Xs,h = [[y]]Xs,h,

(from `1 ∈ Pred[S]Xs,h(x) and the definition of Pred[S]Xs,h(x))
⇔ `2 ∈ Pred[S]Xs′,h′(x) and [[x]]Xs′,h′ = [[y]]Xs′,h′ ,

(by def. of `2 and as (s[u← `1], h) and (s′[u← `2], h′) equisatisfy the formula x = y)
⇔ `2 ∈ Pred[S]Xs′,h′(y), (by definition of Pred[S]Xs′,h′(y))
⇔ (s′[u← `2], h′) |= u ∈ predSX (y). (by definition of |=)

case: there is β ∈ [1, α] and L ∈ Cycl[S]Xs,h(β) such that `1 ∈ L. From the equisatisfaction of
the formulae in Sk[S](X, α), the set Cycl[S]Xs′,h′(β) is not empty. Consider `2 to be a location
in a set of Cycl[S]Xs′,h′(β). Hence `2 ∈ dom(h′), which implies that `2 ≤ maxvalX(s′, h′) + 1.
Given a formula ϕ in

u = t1, u ∈ loopSX (β′), u ∈ ⇑loopSX,α,

u ∈ seesX(t1, t2) ≥ (
←−
β ,
−→
β),

u ∈ predSX (x), u ∈ remSX,α

∣∣∣∣∣∣∣∣∣
←−
β ∈

[
1, 1

6α(α+ 1)(α+ 2) + 1
]

−→
β ∈

[
1, 1

2α(α+ 3)
]
, β′ ∈ [1, α] \ {β}

x ∈ X, t1, t2 ∈ T[S]X

 .
it is quite easy to see that (s[u ← `1], h) 6|= ϕ and (s′[u ← `2], h′) 6|= ϕ. The set above
contains every core formula from Obs[S](X, α), with the exception of u ∈ loopSX (β), which
is satisfied by both (s[u← `1], h) and (s′[u← `2], h′) directly by definition of `1 and `2.

case: there is a set L ∈ ⇑Cycl[S]X,αs,h such that `1 ∈ L. From the equisatisfaction of the for-
mulae in Sk[S](X, α), the set ⇑Cycl[S]X,αs′,h′s is not empty. Consider `2 to be a location in a
set of ⇑Cycl[S]X,αs′,h′ . Hence `2 ∈ dom(h′), which implies that `2 ≤ maxvalX(s′, h′) + 1. The
proof continues as in the previous case. Among the formulae in Obs[S](X, α), the memory
states (s[u← `1], h) and (s′[u← `2], h′) satisfy only the formula u ∈ ⇑loopSX,α.

case: `1 ∈ Rem[S]X,αs,h . From the equisatisfaction of the formulae in Sk[S](X, α), the set Rem[S]X,αs′,h′
is not empty. Consider `2 to be a location in this set. Hence `2 ∈ dom(h′), which implies
that `2 ≤ maxvalX(s′, h′) + 1. The proof continues as in the previous two cases. Among
the formulae in Obs[S](X, α), the memory states (s[u ← `1], h) and (s′[u ← `2], h′) satisfy
only the formula u ∈ remSX,α.

case: `1 6∈ dom(h) ∪ Lab[S]Xs,h. Let `2 = maxvalX(s′, h′) + 1. By definition of maxvalX(s′, h′),
we have `2 6∈ dom(h′) and `2 6∈ Lab[S]Xs′,h′ ⊆ ran(h′) ∪ s′(X). Thus, `2 is an unlabelled
location that does not belong to any of the sets in Definition 5.29. By (Inv-u) and from
the definition of the core formulae, for every ϕ in Obs[S](X, α) we have (s[u← `1], h) 6|= ϕ

and (s′[u← `2], h′) 6|= ϕ.

5.6. Connecting the Two Families of Core Formulae 221

5.6 Connecting the Two Families of Core Formulae

In the previous two sections, we introduced the core formulae Core[W](X, α) and Core[S](X, α)
for the weak and strong fragments of SL([∃]1, ∗, [−∗, ↪→+]SW), respectively. We have shown that
both families of core formulae enjoy the ∗-simulation (Lemmata 5.20 and 5.41) and ∃-simulation
properties (Lemmata 5.23 and 5.42). Moreover, we have proved (Lemmata 5.15 and 5.37)
that every atomic formula of the weak fragment (resp. strong fragment) can be expressed as
a Boolean combinations of formulae from Core[W](X, 1) (resp. Core[S](X, 1)). Lastly, we have
shown that the indistinguishability relation ≈SX,α, defined from Core[S](X, α), is a refinement
of the indistinguishability relation ≈WX,α, defined from Core[W](X, α) (Corollary 5.36). Thanks
to these results, in this section we finally show that SL([∃]1, ∗, [−∗, ↪→+]SW) enjoy a polynomial
small-heap property. Again, we assume X ⊆fin VAR \ {u}.

In order to obtain the small-heap property, the key step that we are missing consists in
showing that the two families of core formulae effectively mimic the magic wand operator S −∗W.
As done for the operators ∗ and ∃, we call this property −∗-simulation. Its statement is derived
directly from the semantics of the separating implication S −∗ W: given two memory states
(s, h) ≈WX,α+card(X) (s′, h′) the −∗-simulation asks that for every heap h1 disjoint form h there
is a heap h′1 disjoint from h′ such that (s, h1) ≈SX,α (s′, h′1) and (s, h + h1) ≈WX,α (s′, h′ + h′1).
Notice that the memory states (s, h1) and (s′, h′1) must be indistinguishable with respect to the
relation ≈SX,α introduced for the strong fragment, which simulates the left-hand side of S −∗ W.
Similarly, in order to simulate the right-hand side of S −∗W, the memory states (s, h+ h1) and
(s′, h′ + h′1) must be indistinguishable with respect to the relation ≈WX,α.

As we argued when considering the ∃-simulation property (Section 5.3.4), the −∗-simulation
we have just described must be strengthen in order to obtain a polynomial small-heap property.
Any polynomial function will do the job and, in our case, we show that the maximum value of
the memory state (s′, h′1) can be bounded by P(card(X), α), where P(x, a) = (x + 1)(a + 3)4.
With this constraint taken into account, the −∗-simulation property is formalised as follows.

Lemma 5.43 (−∗-simulation). Suppose (s, h) ≈WX,α+card(X) (s′, h′). For every heap h1 disjoint
from h there is a heap h′1 disjoint from h′ such that

(I) (s, h1) ≈SX,α (s′, h′1) and (s, h+ h1) ≈WX,α (s′, h′ + h′1),

(II) maxvalX∪{u}(s′, h′1) ≤ maxvalX∪{u}(s′, h′) + P(card(X), α).

The proof of this result, which is quite long and thus presented at the end of the section, is
achieved by defining a “small” heap h′1 so that the condition (II) is guaranteed by construction.
In doing so, we need to carefully handle the labelled locations so that (I) holds. For instance,
let us suppose the heaps h, h′ and h1 of Lemma 5.43 to be the ones represented in Figure 5.18.
In particular, h1 witnesses a path from s(x) to the location corresponding to the term t, and in
this path the location h1(s(x)) corresponds to the term n(y) with respect to the memory state
(s, h). So, (s, h + h1) |= n(x) = n(y). We construct the heap h′1 so that it witnesses a path
from s′(x) to a location corresponding to the term t, and moreover it is such that h′1(s′(x))
is the location [[n(y)]]Xs,h′ . The length of this path can be bounded following the upper bound
1
6(α + 1)(α + 2)(α + 3) given to β in the core formulae of the form seesX(t1, t2) ≥ β, leading
to the satisfaction of the second point of Lemma 5.43. The hypothesis (s, h) ≈WX,α+card(X) (s′, h′)
guarantees that the construction can always be done correctly.

Once Lemma 5.43 is established, we can finally relate the equisatisfaction of a formula ϕ

from SL([∃]1, ∗, [−∗, ↪→+]SW) to the indistinguishability relations. Essentially, we show that ϕ is

222 Chapter 5. Deciding Robustness Properties in PSpace

y

[[n(y)]]Xs,h
· · ·

[[t]]Xs,h1

//

x

≈SX,α

≈WX,α

y

[[n(y)]]X
s′,h′ [[t]]X

s′,h′1

x

(bounded)

: h : h1 : h′ : h′1

Figure 5.18: Construction for the −∗-simulation. The heap h′1 is an answer for h1.

equisatisfied by every two memory states satisfying the same core formulae from Core[S](X, α),
where the set X contains the program variables appearing in ϕ (excluding u) and the positive
integer α is at least the memory size of ϕ, defined below.

Definition 5.44 (Memory size). The memory size of a formula ϕ in SL([∃]1, ∗, [−∗, ↪→+]SW),
denoted by |ϕ|m, is inductively defined as follows:

|π|m def= 1, where π is an atomic formula, |∃uϕ|m def= |ϕ|m,
|ϕ1 ∧ ϕ2|m def= max(|ϕ1|m, |ϕ2|m), |¬ϕ|m def= |ϕ|m,
|ϕ1 −∗ ϕ2|m def= card(fv(ϕ1 −∗ ϕ2) \ {u}) + max(|ϕ1|m, |ϕ2|m), |ϕ1 ∗ ϕ2|m def= |ϕ1|m + |ϕ2|m.

Notice that the memory size of a formula is always polynomial in the (tree) size of the formula
and the number of its variables. In particular, one can show that |ϕ|m ≤ |ϕ|2.

Lemma 5.45. Let ϕ be a formula in SL([∃]1, ∗, [−∗, ↪→+]SW) s.t. fv(ϕ) \ {u} ⊆ X and |ϕ|m ≤ α.
Given two memory states (s, h) and (s′, h′), if one of the following holds

(I) (s, h) ≈SX,α (s′, h′), or (II) (s, h) ≈WX,α (s′, h′) and ϕ is a formula from the weak fragment,

then (s, h) |= ϕ if and only if (s′, h′) |= ϕ.

Proof. Since ≈SX,α⊆≈WX,α (Corollary 5.36), if ϕ is a formula of the weak fragment then the
hypothesis (I) implies the hypothesis (II). Thus, we rely on (II) when ϕ is from the weak
fragment, and use (I) only otherwise. The proof is by structural induction on ϕ (with the
natural induction hypothesis stating that the property holds for strict subformulae).
base case: ϕ is >, t1 = t2, t1 ↪→ t2 or emp (where t1, t2 ∈ X ∪ {u}). In this case, ϕ is a for-

mula of the weak fragment, and the result follows directly from Lemma 5.15.

base case: ϕ = t1 ↪→+t2 (where t1, t2 ∈ X ∪ {u}). We remind the reader that, since ϕ is a
formula in SL([∃]1, ∗, [−∗, ↪→+]SW), if t1 = u then t2 = u. In this case, ϕ is a formula of the
strong fragment. The result follows directly from Lemma 5.37.

We omit the trivial cases for ϕ = ¬ψ and ϕ = ψ1 ∧ ψ2. In the induction steps for ϕ = ψ1 ∗ ψ2,
ϕ = ∃uψ and ϕ = ψ1−∗ψ2, it is sufficient to show one direction of the double implication, since
both ≈WX,α and ≈SX,α are symmetric relations.
induction step: ϕ = ψ1 ∗ ψ2. We divide the proof depending on whether ϕ is in W.

5.6. Connecting the Two Families of Core Formulae 223

case: ϕ is in the weak fragment. We have (s, h) ≈WX,α (s′, h′) and (s, h) |= ψ1 ∗ ψ2.
There are two disjoint heaps h1 and h2 such that h = h1 + h2, (s, h1) |= ψ1
and (s, h2) |= ψ2. As α ≥ |ψ1 ∗ ψ2|m = |ψ1|m + |ψ2|m, there are α1, α2 ≥ 1 such
that α = α1 + α2, α1 ≥ |ψ1|m and α2 ≥ |ψ2|m. By Lemma 5.20 there are disjoint
heaps h′1 and h′2 such that h′ = h′1 +h′2, (s, h1) ≈WX,α1 (s′, h′1) and (s, h2) ≈WX,α2 (s′, h′2).
As ϕ is in the weak fragment, the same holds for both ψ1 and ψ2. Therefore, we
can apply the induction hypothesis with (II), and conclude that (s′, h′1) |= ψ1 and
(s′, h′2) |= ψ2. Thus, (s′, h′) |= ψ1 ∗ ψ2.

case: ϕ is not in the weak fragment. We have (s, h) ≈SX,α (s′, h′) and (s, h) |= ψ1 ∗ ψ2.
There are two disjoint heaps h1 and h2 such that h = h1 + h2, (s, h1) |= ψ1
and (s, h2) |= ψ2. As α ≥ |ψ1 ∗ ψ2|m = |ψ1|m + |ψ2|m, there are α1, α2 ≥ 1 such that
α = α1 + α2, α1 ≥ |ψ1|m and α2 ≥ |ψ2|m. By Lemma 5.41 there are disjoint heaps
h′1 and h′2 such that h′ = h′1 + h′2, (s, h1) ≈SX,α1 (s′, h′1) and (s, h2) ≈SX,α2 (s′, h′2). By
induction hypothesis with (I), (s′, h′1) |= ψ1 and (s′, h′2) |= ψ2. Thus, (s′, h′) |= ψ1∗ψ2.

induction step: ϕ = ∃uψ. We divide the proof depending on whether ϕ is in W.

case: ϕ is in the weak fragment. We have (s, h) ≈WX,α (s′, h′) and (s, h) |= ∃uψ. There
is a location `1 such that (s[u ← `1], h) |= ψ. By Lemma 5.23, there is a location `2
such that (s[u← `1], h) ≈WX,α (s′[u← `2], h′). Notice that |ψ|m = |ϕ|m ≤ α. Moreover,
as ϕ is a formula in the weak fragment, the same holds for ψ. Hence, we can apply the
induction hypothesis with (II), and obtain (s′[u← `2], h′) |= ψ. Thus, (s′, h′) |= ∃uψ.

case: ϕ is not in the weak fragment. We have (s, h) ≈SX,α (s′, h′) and (s, h) |= ∃uψ.
There is a location `1 such that (s[u ← `1], h) |= ψ. By Lemma 5.42, there is a
location `2 such that (s[u ← `1], h) ≈SX,α (s′[u ← `2], h′). As |ψ|m = |ϕ|m ≤ α, by
induction hypothesis with (I), (s′[u← `2], h′) |= ψ. Thus, (s′, h′) |= ∃uψ.

induction step: ϕ = ψ1 −∗ ψ2. We remind the reader that ψ1 is from the strong fragment
(which includes the weak fragment), whereas ψ2 is from the weak fragment. As ψ1 −∗ ψ2
is from the weak fragment, it is sufficient to prove the result under the hypothesis (II).
So, suppose (s, h) ≈WX,α (s′, h′) and (s, h) |= ψ1 −∗ ψ2. Let us define Y def= fv(ψ1 −∗ ψ2) \ {u}
and α′ def= max(|ψ1|m, |ψ2|m). By definition of memory size, card(Y) + α′ = |ψ1 −∗ ψ2|m ≤ α.
Notice that for every α1 ≤ α2, Core[W](X, α1) ⊆ Core[W](X, α2), which in turn means that
≈WX,α2 ⊆≈

W
X,α1 . Thus, (s, h) ≈WX,card(Y)+α′ (s

′, h′) holds. Let us prove that (s′, h′) |= ψ1 −∗ ψ2.
Following the definition of ψ1 −∗ ψ2, we consider a heap h′1 disjoint from h′ and such
that (s′, h′1) |= ψ1. We prove that (s′, h′ + h′1) |= ψ2. By Lemma 5.43, there is a heap h1
disjoint from h and such that (s, h1) ≈SX,α′ (s′, h′1) and (s, h+ h1) ≈WX,α′ (s′, h′ + h′1). Since
|ψ1|m ≤ α′ and (s′, h′1) |= ψ1, by induction hypothesis we obtain (s, h1) |= ψ1. Therefore,
by (s, h) |= ψ1 −∗ ψ2 it holds that (s, h + h1) |= ψ2. Since |ψ2|m ≤ α′, again by induction
hypothesis we obtain (s′, h′ + h′1) |= ψ2, concluding the proof.

Lemma 5.45 implies that the logic obtained by closing the core formulae of the strong fragment
under Boolean connectives capture the expressive power of SL([∃]1, ∗, [−∗, ↪→+]SW).

Theorem 5.46. Every formula ϕ in SL([∃]1, ∗, [−∗, ↪→+]SW) is logically equivalent to a Boolean
combination of core formulae from Core[S](fv(ϕ) \ {u}, |ϕ|m).

Proof. Following Lemma 5.45, the proof is quite standard. For a memory state (s, h), X ⊆fin VAR
and α ≥ 1, we write LITX,α(s, h) to denote the following set of literals:

224 Chapter 5. Deciding Robustness Properties in PSpace

LITX,α(s, h) def= {ψ ∈ Core[S](X, α) | (s, h) |= ψ} ∪ {¬ψ | (s, h) 6|= ψ and ψ ∈ Core[S](X, α)}

Informally LITX,α(s, h) contains the literals obtained from core formulae in Core[S](X, α), that
are satisfied by (s, h). Notice that card(Core[S](X, α)) = card(LITX,α(s, h)), as every core formula
in Core[S](X, α) appears (possibly negated) in LITX,α(s, h). Therefore, LITX,α(s, h) is finite. When
considering the formula

∧
ψ∈LITX,α(s,h) ψ, by definition of ≈SX,α we have the following equivalence:

(s′, h′) |=
∧
ψ∈LITX,α(s,h) ψ if and only if (s, h) ≈SX,α (s′, h′).

Consider now the formula ϕ in the statement of the lemma. Let X def= fv(ϕ) \ {u} and α def= |ϕ|m.
The infinite expression ψinf

def=
∨

(s,h)|=ϕ

(∧
ψ∈LITX,α(s,h) ψ

)
is equivalent to a (finite) Boolean

combination ψfin of formulae from Core[S](X, α). Indeed, since LITX,α(s, h) is finite, there are
only finitely many conjunctions of the form

∧
ψ∈LITX,α(s,h) ψ, which implies that ψinf is equivalent

to a finite disjunction of conjunctions of core formulae literals. In order to conclude the proof,
we show that ϕ is logically equivalent to ψinf. Suppose that (s, h) |= ϕ. Obviously, we have
(s, h) |=

∧
ψ∈LITX,α(s,h) ψ and therefore (s, h) |= ψinf. Conversely, suppose that (s, h) |= ψinf. This

means that there is a memory state (s′, h′) such that (s′, h′) |= ϕ and (s, h) |=
∧
ψ∈LITX,α(s′,h′) ψ.

Since (s, h) ≈SX,α (s′, h′) and (s′, h′) |= ϕ, by Lemma 5.45 we conclude that (s, h) |= ϕ.

5.6.1 Small-heap property and PSpace-completeness.

Following Theorem 5.46, we establish that SL([∃]1, ∗, [−∗, ↪→+]SW) enjoy the polynomial small-heap
property and provide a PSpace algorithm for its satisfiability problem. In order to show the
small-heap property, we first prove that it holds for Boolean combinations of core formulae and
then transfer this result to SL([∃]1, ∗, [−∗, ↪→+]SW), thanks to Theorem 5.46.

Lemma 5.47. Every satisfiable Boolean combination of formulae from Core[S](X, α) is satisfied
by a memory state (s, h) such that card(h) is bounded by a polynomial in O(card(X)α4).

To prove this lemma we rely on Lemma 5.43. A stand-alone proof that uses directly the defi-
nitions of the core formulae is also possible, and leads to a better asymptotical bound on the
cardinality of the heap. As we are only interested in finding a polynomial bound for card(h), we
prefer the less technically involved proof presented here.

Proof. Suppose ϕ to be a satisfiable Boolean combination of formulae from Core[S](X, α), and
let (s, h) be a memory state such that (s, h) |= ϕ. We can assume every variable in X∪{u} to be
mapped to a location that is at most card(X∪ {u}), i.e. maxvalX∪{u}(s,∅) ≤ card(X ∪ {u}). This
property is without loss of generality, as locations can be reordered to satisfy it. Let us consider
the memory state (s,∅). As ≈WX,α+card(X) is reflexive, (s,∅) ≈WX,α+card(X) (s,∅). By Lemma 5.43
there is a heap h′ such that

1. (s, h) ≈SX,α (s, h′), 2. maxvalX∪{u}(s, h′) ≤ maxvalX∪{u}(s,∅) + P(card(X), α).

From (1), (s, h) and (s, h′) satisfy the same formulae in Core[S](X, α). Thus, (s, h′) |= ϕ. From (2)
and maxvalX∪{u}(s,∅) ≤ card(X ∪ {u}), card(h′) is bounded in O(card(X)α4).

Corollary 5.48 (Small-heap property). Every satisfiable ϕ in SL([∃]1, ∗, [−∗, ↪→+]SW) is satisfied
by a memory state (s, h) s.t. card(h) ≤ Q(|ϕ|), where Q : N→ N is a polynomial of degree 9.

Proof. Directly from Theorem 5.46 and Lemma 5.47, if ϕ is satisfiable then it is satisfied by a
memory state (s, h) such that card(h) is bounded by a polynomial in O(card(fv(ϕ) \ {u})|ϕ|4m).
As |ϕ|m ≤ |ϕ|2 and card(fv(ϕ) \ {u}) ≤ |ϕ|, this polynomial is in O(|ϕ|9).

5.6. Connecting the Two Families of Core Formulae 225

We are now ready to define an algorithm for the satisfiability problem of SL([∃]1, ∗, [−∗, ↪→+]SW)
that runs in NPSpace (i.e. non-deterministic PSpace). By Savitch Theorem, this shows the
existence of a deterministic algorithm running in PSpace [127]. Given a formula ϕ, the pseudo-
code of the non-deterministic algorithm sat(ϕ) is described in Figure 5.19. To correctly analyse
the algorithm, we recall the semantics of the classical non-deterministic instructions used therein:
• choose x satisfying P (x) : the program (non-deterministically) branches on every value

for x enjoying the predicate P (x). If at least one of the branch terminates with the
instruction succeed, then this instruction is semantically equivalent to succeed. If all
the branches terminate, and they do so with the instruction fail, then this instruction is
semantically equivalent to fail.
• succeed : the program terminates successfully.
• fail : the program terminates unsuccessfully.

Informally, in the algorithm is quite standard: it guesses a memory state (s, h) and checks if
it satisfies ϕ by calling the model-checking algorithm mc(s, h, ϕ). Fundamentally, the memory
state (s, h) can be effectively represented in polynomial space. According to Corollary 5.48, the
maximum value of (s, h) is bounded by the polynomial Q and the cardinality of fv(ϕ) ∪ {u}
(line 3), which bound the locations in the heap and in the store, respectively. Indeed, from the
notion of X-heap isomorphism memory states and Proposition 2.10 we know that the domain
of the store can be restricted to fv(ϕ) ∪ {u}, leading to a finite representation of the store as
a structure of size linear in |ϕ|. Because of this, in order to prove that sat(.) is a decision
procedure for satisfiability that runs in NPSpace it is sufficient to show that mc(.) is a model-
checking procedure also running in NPSpace. Essentially, mc(s, h, ϕ) checks whether (s, h) |= ϕ

holds with a linear-depth recursive algorithm that internalises the semantics of ϕ (see e.g. [33]).
The various simulation properties of the core formulae ensure that only a polynomial amount
of locations ever needs to be considered during execution, leading to NPSpace.

Lemma 5.49. Let (s, h) be a memory state and let ϕ be a formula in SL([∃]1, ∗, [−∗, ↪→+]SW).
(I) mc(s, h, ϕ) always terminates with either succeed or fail, and runs in space

O
(

maxvalfv(ϕ)∪{u}(s, h) + |ϕ|P
(
card(fv(ϕ) \ {u}), |ϕ|m

))
,

(II) mc(s, h, ϕ) = succeed if and only if (s, h) |= ϕ.

Both (I) and (II) follow by structural induction on ϕ. The key ingredients that allow us to
show (I) are given by the space constraints given during the formalisation of the ∃-simulation
and −∗-simulation properties, together with the linear recursion depth, in the size of ϕ, of the
algorithm. In the proof below we refer to the line numbers of Figure 5.19.

Proof of (I). We remind the reader that we assume LOC = N (Assumption 5.21). We analyse
the space complexity of the algorithm mc(.) in terms of number of locations needed in order to
represent the memory states taken into account throughout its execution. As the algorithm only
allocates (in memory) these locations, polynomially bound their number entails that the algo-
rithm runs in NPSpace. We write SPACE [mc(s, h, ϕ)] for the maximal location considered by
the algorithm when executing mc(s, h, ϕ). With this in mind, the proof by structural induction
on ϕ uses the following induction hypothesis:

for every (s, h) and ϕ, mc(s, h, ϕ) terminates with succeed or fail,
and SPACE [mc(s, h, ϕ)] ≤ maxvalfv(ϕ)∪{u}(s, h) + |ϕ|P

(
card(fv(ϕ) \ {u}), |ϕ|m

)
.

Assuming a reasonably succinct encoding of memory states, this induction hypothesis entails (I).

226 Chapter 5. Deciding Robustness Properties in PSpace

1: sat(ϕ):
2: Y← fv(ϕ) ∪ {u}
3: choose (s, h) satisfying maxvalY(s, h) ≤ 2Q(|ϕ|) + card(Y) . Corollary 5.48
4: mc(s, h, ϕ)

5: mc(s, h, ϕ):
6: switch ϕ do
7: • case π (atomic formula) :
8: atomic mc(s, h, π)
9: • case ¬ψ :

10: if mc(s, h, ψ) = succeed then fail else succeed
11: • case ψ1 ∧ ψ2 :
12: if mc(s, h, ψ1) = succeed and mc(s, h, ψ2) = succeed then succeed else fail
13: • case ψ1 ∗ ψ2 :
14: choose (h1, h2) satisfying h1⊥h2 and h1 + h2 = h
15: if mc(s, h1, ψ1) = succeed and mc(s, h2, ψ2) = succeed then succeed else fail
16: • case ∃uψ :
17: choose ` satisfying `′ ≤ maxvalfv(ϕ)(s, h) + 1 . Lemmata 5.23 and 5.42
18: mc(s[u← `], h, ψ)
19: • case ψ1 −~ ψ2 :
20: choose h′ satisfying h′⊥h and . Lemma 5.43
21: maxvalfv(ϕ)∪{u}(s, h′) ≤ maxvalfv(ϕ)∪{u}(s, h) + P(card(fv(ϕ) \ {u}), |ϕ|m)
22: if mc(s, h′, ψ1) = succeed and mc(s, h+h′, ψ2) = succeed then succeed else fail

23: atomic mc(s, h, π) . runs in PTime
24: switch π do
25: • case > :
26: succeed
27: • case emp :
28: if h = ∅ then succeed else fail
29: • case t1 = t2 :
30: if s(t1) = s(t2) then succeed else fail
31: • case t1 ↪→ t2 :
32: if (s(t1), s(t2)) ∈ h then succeed else fail
33: • case t1 ↪→+t2 :
34: `← s(x)
35: for δ ← 0, δ ≤ card(h), δ++ do
36: if ` 6∈ dom(h) then fail
37: `← h(`)
38: if ` = s(t2) then succeed
39: end for
40: fail

checks whether there is δ ≥ 1
such that hδ(s(t1)) = s(t2).

Figure 5.19: A NPSpace algorithm for the satisfiability problem of SL([∃]1, ∗, [−∗, ↪→+]SW).

5.6. Connecting the Two Families of Core Formulae 227

base case: ϕ atomic formula. In this case, mc(s, h, ϕ) calls the procedure atomic mc(s, h, ϕ)
(line 8). This procedure runs in PTime, terminates with either succeed or fail, and allo-
cates a constant amount of memory. In particular, both the cases in lines 30 and 32 simply
access the store and the heap with respect to two variables t1 and t2 in fv(ϕ) ∪ {u}. So,
the algorithm lookup locations that are less or equal than maxvalfv(ϕ)∪{u}(s, h). Similarly,
in lines 34–40 the algorithm considers a location ` and an integer δ. Both these data are
at most maxvalfv(ϕ)∪{u}(s, h). Thus, SPACE [mc(s, h, ϕ)] ≤ maxvalfv(ϕ)∪{u}(s, h).

We omit the trivial cases for ϕ = ¬ψ and ϕ = ψ1 ∧ ψ2.
induction step: ϕ = ψ1 ∗ ψ2. Let us pick two heaps h1 and h2 such that h = h1 + h2, as

done by the choose instruction in line 14. Given j ∈ {1, 2}, by induction hypothe-
sis mc(s, hj , ψj) terminates with either succeed or fail, and SPACE [mc(s, hj , ψj)] is at
most maxvalfv(ψj)∪{u}(s, hj) + |ψj |P

(
card(fv(ψj) \ {u}), |ψj |m

)
. From line 15, we conclude

that mc(s, h, ϕ) also terminates with succeed of fail. Since h1 ⊆ h and h2 ⊆ h, the
locations considered by the algorithm in this case (lines 14 and 15) follow the equivalence

SPACE [mc(s, h, ϕ)] = max(SPACE [mc(s, h1, ψ1)] , SPACE [mc(s, h2, ψ2)]),
which entails SPACE [mc(s, h, ϕ)] ≤ maxvalfv(ϕ)∪{u}(s, h) + |ϕ|P

(
card(fv(ϕ) \ {u}), |ϕ|m

)
.

Indeed, this latter inequality is satisfied as soon as we show that
maxvalfv(ψj)∪{u}(s, hj), ≤ maxvalfv(ϕ)∪{u}(s, h),

|ψj |P
(
card(fv(ψj) \ {u}), |ψj |m

)
≤ |ϕ|P

(
card(fv(ϕ) \ {u}), |ϕ|m

)
.

The first inequality holds as we recall that hj ⊆ h and fv(ψj) ⊆ fv(ϕ). Moreover, |ψj | ≤ |ϕ|,
|ψj |m ≤ |ϕ|m, and P is monotonically increasing, which verifies the second inequality.

induction step: ϕ = ∃uψ. Let us pick a location ` ≤ maxvalfv(ϕ)(s, h) + 1, as done by the
choose instruction in line 17. By induction hypothesis, mc(s[u← `], h, ψ) terminates with
either succeed or fail, and SPACE [mc(s[u← `], h, ψ)] ≤ maxvalfv(ψ)∪{u}(s[u← `], h) +
|ψ|P

(
card(fv(ψ) \ {u}), |ψ|m

)
. From line 18, we conclude that mc(s, h, ϕ) also terminates

with either succeed or fail. The locations considered by the algorithm in this case
(lines 17 and 18) follow the equivalence

SPACE [mc(s, h, ϕ)] = max(`, SPACE [mc(s[u← `], h, ψ)]).
From the upper bound on ` and fv(ψ) \ {u} ⊆ fv(ϕ), we have:

maxvalfv(ψ)∪{u}(s[u← `], h) = max(`, maxvalfv(ψ)\{u}(s, h))
≤ maxvalfv(ϕ)(s, h) + 1
≤ maxvalfv(ϕ)∪{u}(s, h) + 1

So, SPACE [mc(s, h, ϕ)] ≤ maxvalfv(ϕ)∪{u}(s, h)+1+|ψ|P
(
card(fv(ψ)\{u}), |ψ|m

)
. Moreover,

as |ϕ| = |ψ|+ 1, fv(ψ) \ {u} = fv(ϕ) \ {u}, |ϕ|m = |ψ|m and P is a monotonically increasing
strictly positive function, 1 + |ψ|P

(
card(fv(ψ) \ {u}), |ψ|m

)
≤ |ϕ|P

(
card(fv(ϕ) \ {u}), |ϕ|m

)
.

Therefore, SPACE [mc(s, h, ϕ)] ≤ maxvalfv(ϕ)∪{u}(s, h) + |ϕ|P
(
card(fv(ϕ) \ {u}), |ϕ|m

)
.

induction step: ϕ = ψ1 −~ ψ2. As done by the choose instruction in lines 20–21, Let us pick a
heap h′ disjoint from h and such that

maxvalfv(ϕ)(s, h′) ≤ maxvalfv(ϕ)∪{u}(s, h) + P(card(fv(ϕ) \ {u}), |ϕ|m).
By induction hypothesis, both mc(s, h′, ψ1) and mc(s, h + h′, ψ2) terminate with either
succeed or fail. Moreover,

1. SPACE [mc(s, h′, ψ1)] ≤ maxvalfv(ψ1)∪{u}(s, h′) + |ψ1|P
(
card(fv(ψ1) \ {u}), |ψ1|m

)
,

228 Chapter 5. Deciding Robustness Properties in PSpace

2. SPACE [mc(s, h+h′, ψ2)] ≤ maxvalfv(ψ2)∪{u}(s, h+h′)+ |ψ2|P
(
card(fv(ψ2)\{u}), |ψ2|m

)
.

From line 22, mc(s, h, ϕ) terminates with succeed or fail. The locations considered by
the algorithm in this case (lines 20–22) follow the equivalence

SPACE [mc(s, h, ϕ)] = max(maxvalfv(ϕ)(s, h′), SPACE [mc(s, h′, ψ1)] , SPACE [mc(s, h+ h′, ψ2)]).
Following the definition of h′, the first argument of the max function above is at most
maxvalfv(ϕ)∪{u}(s, h) + P(card(fv(ϕ) \ {u}), |ϕ|m). Thus, in order to conclude the proof it
is sufficient to show that the right-hand side of the inequalities in (1) and (2) is at most
maxvalfv(ϕ)∪{u}(s, h)+ |ϕ|P

(
card(fv(ϕ)\{u}), |ϕ|m

)
. For the right-hand side of (1) we have:

maxvalfv(ψ1)∪{u}(s, h′) + |ψ1|P
(
card(fv(ψ1) \ {u}), |ψ1|m

)
≤ maxvalfv(ϕ)∪{u}(s, h) + P(card(fv(ϕ) \ {u}), |ϕ|m)︸ ︷︷ ︸

by definition of h′

+|ψ1|P
(
card(fv(ψ1) \ {u}), |ψ1|m

)
≤ maxvalfv(ϕ)∪{u}(s, h) + P(card(fv(ϕ) \ {u}), |ϕ|m) + |ψ1|P

(
card(fv(ϕ) \ {u}), |ϕ|m

)︸ ︷︷ ︸
by |ψ1|m ≤ |ϕ|m, fv(ψ1) ⊆ fv(ϕ) and P monotonically increasing

≤ maxvalfv(ϕ)∪{u}(s, h) + |ϕ|P
(
card(fv(ϕ) \ {u}), |ϕ|m

)︸ ︷︷ ︸
as |ψ1|+ 1 ≤ |ϕ|

Instead, for the right-hand side of (2) we have:

maxvalfv(ψ2)∪{u}(s, h+h′) + |ψ2|P
(
card(fv(ψ2) \ {u}), |ψ2|m

)
≤ max

(
maxvalfv(ψ2)∪{u}(s, h), maxvalfv(ψ2)∪{u}(s, h′)

)︸ ︷︷ ︸
as maxvalY(s, h+ h′) = max(maxvalY(s, h), maxvalY(s, h′))

+|ψ2|P
(
card(fv(ψ2) \ {u}), |ψ2|m

)
≤ maxvalfv(ϕ)∪{u}(s, h) + P(card(fv(ϕ) \ {u}), |ϕ|m)︸ ︷︷ ︸

by definition of h′

+|ψ2|P
(
card(fv(ψ2) \ {u}), |ψ2|m

)
≤ maxvalfv(ϕ)∪{u}(s, h) + P(card(fv(ϕ) \ {u}), |ϕ|m) + |ψ2|P

(
card(fv(ϕ) \ {u}), |ϕ|m

)︸ ︷︷ ︸
by |ψ2|m ≤ |ϕ|m, fv(ψ2) ⊆ fv(ϕ) and P monotonically increasing

≤ maxvalfv(ϕ)∪{u}(s, h) + |ϕ|P
(
card(fv(ϕ) \ {u}), |ϕ|m

)︸ ︷︷ ︸
as |ψ2|+ 1 ≤ |ϕ|

Proof of (II). By induction on ϕ (with the natural induction hypothesis stating that the property
holds for strict subformulae). The base case for atomic formulae is direct from their semantics.
We also omit the trivial cases for ϕ = ¬ψ and ϕ = ψ1 ∧ ψ2.
induction step: ϕ = ψ1 ∗ ψ2. (⇒): Suppose (s, h) |= ψ1 ∗ψ2. There are two disjoint heaps h1

and h2 such that h = h1 + h2, (s, h1) |= ψ1 and (s, h2) |= ψ2. By induction hypothesis,
mc(s, h1, ψ1) = succeed and mc(s, h2, ψ2) = succeed. The pair of heaps (h1, h2) is among
the ones considered by the choose instruction in line 14. Therefore, from the if-then-else
of line 15, mc(s, h, ψ1 ∗ ψ2) = succeed.
(⇐): Suppose mc(s, h, ψ1 ∗ ψ2) = succeed. From lines 14–15, this means that there
is a pair of heaps (h1, h2) such that h1⊥h2, h1 + h2 = h, mc(s, h1, ψ1) = succeed
and mc(s, h2, ψ2) = succeed. By induction hypothesis, (s, h1) |= ψ1 and (s, h2) |= ψ2.
Thus, (s, h) |= ψ1 ∗ ψ2.

induction step: ϕ = ∃uψ. (⇒): Suppose (s, h) |= ∃uψ, and so there is a location `1 such that
(s[u← `1], h) |= ψ. Let us suppose that ϕ is a formula of the weak fragment. Let α def= |ϕ|m
and X def= fv(ϕ) (note: u 6∈ fv(ϕ)). Since ≈WX,α is reflexive, we have (s, h) ≈WX,α (s, h).
By Lemma 5.23 there is `2 ≤ maxvalX(s, h) + 1 such that (s[u← `1], h) ≈WX,α (s[u← `2], h).

5.6. Connecting the Two Families of Core Formulae 229

By Lemma 5.45(II), (s[u ← `2], h) |= ψ, and therefore mc(s[u ← `2], h, ψ) = succeed by
induction hypothesis. The location `2 is among the ones considered by the choose instruc-
tion in line 17. Thus, from line 18, mc(s, h,∃uψ) = succeed. The proof is analogous in
the case that ϕ is not a formula of the weak fragment. It is sufficient to consider ≈SX,α
instead of ≈WX,α, and rely on Lemma 5.42 and Lemma 5.45(I) instead of Lemma 5.23
and Lemma 5.45(II), respectively.
(⇐): Suppose mc(s, h,∃uψ) = succeed. From lines 17 and 18, this means that there is a
location ` ≤ maxvalfv(ϕ)(s, h) + 1 such that mc(s[u ← `], h, ψ) = succeed. By induction
hypothesis, (s[u← `], h) |= ψ. Thus, (s, h) |= ∃uψ.

induction step: ϕ = ψ1 −~ ψ2. (⇒): Suppose (s, h) |= ψ1 −~ ψ2, and so there is a heap h1
disjoint form h and such that (s, h1) |= ψ1 and (s, h+h1) |= ψ2. Notice that ϕ is a formula of
the weak fragment. Let X def= fv(ϕ)\{u} and α def= |ϕ|m. We have (s, h) ≈WX,α+card(X) (s, h) by
reflexivity of ≈WX,α+card(X). By Lemma 5.43, there is a heap h′1 disjoint from h and such that
(s, h1) ≈SX,α (s, h′1), (s, h+h1) ≈WX,α (s, h+h′1), and maxvalX∪{u}(s, h′1) ≤ maxvalX∪{u}(s, h)+
P(card(X), α). By Lemma 5.45(I) (s, h′1) |= ψ1, and by Lemma 5.45(II), (s, h+ h′1) |= ψ2.
By induction hypothesis, mc(s, h′1, ψ1) = succeed and mc(s, h+ h′1, ψ2) = succeed. The
heap h′1 is among the ones considered by the choose instruction in lines 20 and 21. Thus,
from line 22, mc(s, h, ψ1 −~ ψ2) = succeed.
(⇐): Suppose mc(s, h, ψ1 −~ ψ2) = succeed. From lines 20–22, there is a heap h′ disjoint
from h and s.t. maxvalfv(ϕ)∪{u}(s, h′) ≤ maxvalfv(ϕ)∪{u}(s, h) + P(card(fv(ϕ) \ {u}), |ϕ|m),
mc(s, h′, ψ1) = succeed and mc(s, h + h′, ψ2) = succeed. By induction hypothesis,
(s, h′) |= ψ1 and (s, h+ h′) |= ψ2. Thus, (s, h) |= ψ1 −~ ψ2.

Lemma 5.49 allows us to prove the main result of the chapter.

Theorem 5.50. The satisfiability problem of SL([∃]1, ∗, [−∗, ↪→+]SW) is PSpace-complete.

Proof. The PSpace-hardness is inherited from SL(∗,−∗) [44]. We show that sat(ϕ) runs
in NPSpace and it is a decision procedure for satisfiability, leading to the result by Savitch Theo-
rem [127]. From line 3, the algorithm guesses a memory state (s, h) such that maxvalfv(ϕ)∪{u}(s, h)
is at most 2Q(|ϕ|) + card(fv(ϕ) ∪ {u}), where Q is a polynomial in O(|ϕ|9). Afterwards, the
algorithm calls mc(s, h, ϕ) (line 4). By Lemma 5.49(I), this procedure runs in space

O (Q(|ϕ|) + card(fv(ϕ) ∪ {u}) + |ϕ|P(card(fv(ϕ) \ {u}), |ϕ|m)).

where P is a polynomial in O(card(fv(ϕ)\{u})|ϕ|4m). As |ϕ|m ≤ |ϕ|2 and card(fv(ϕ)∪{u}) ≤ |ϕ|,
we conclude that sat(ϕ) runs in space O(|ϕ|10). We now show that

ϕ is satisfiable if and only if sat(ϕ) = succeed.

(⇐): Suppose sat(ϕ) = succeed. Form the lines 3 and 4 there is a heap (s, h) such that
mc(s, h, ϕ) = succeed. By Lemma 5.49(II), (s, h) |= ϕ and therefore ϕ is satisfiable.
(⇒): Suppose ϕ satisfiable. By Corollary 5.48, it is satisfied by a memory state (s, h) such
that card(h) ≤ Q(|ϕ|). Thus, dom(h) ∪ ran(h) contains at most 2Q(|ϕ|) locations. Regard-
ing the store, s(fv(ϕ) ∪ {u}) \ (dom(h) ∪ ran(h)) contains at most card(fv(ϕ) ∪ {u}) locations.
Therefore, (s, h) is (fv(ϕ) ∪ {u})-heap-isomorphic to a memory state (s′, h′) whose maximum
value maxvalfv(ϕ)∪{u}(s′, h′) is at most 2Q(|ϕ|) + card(fv(ϕ)∪ {u}). The memory state (s′, h′) is
among the ones considered by the choice instruction in line 3. By Proposition 2.10, (s′, h′) |= ϕ.
By Lemma 5.49(II), mc(s′, h′, ϕ) = succeed. Therefore, sat(ϕ) = succeed.

230 Chapter 5. Deciding Robustness Properties in PSpace

Corollary 5.51. The decision problems for the properties of acyclicity and garbage freedom of
formulae in SL([∃]1, ∗, [−∗, ↪→+]SW) can be decided in PSpace.

Proof. By Theorem 5.50 and classical arguments, the validity and the entailment problems
of SL([∃]1, ∗, [−∗, ↪→+]SW) can be solved in PSpace (we recall that the entailment ϕ |= ψ holds if
and only if ϕ ∧ ¬ψ is unsatisfiable). Since the decision problems for the properties of acyclicity
and garbage freedom can be expressed as entailment queries (Section 5.1.2), we conclude.

5.6.2 One last step: the −∗-simulation property.

In the last section, we derived a polynomial small-heap property for SL([∃]1, ∗, [−∗, ↪→+]SW), under
the assumption that Lemma 5.43 holds. The last task of the chapter is to show that this is indeed
the case. Let us recall the statement of this lemma.

Lemma 5.43 (−∗-simulation). Suppose (s, h) ≈WX,α+card(X) (s′, h′). For every heap h1 disjoint
from h there is a heap h′1 disjoint from h′ such that

(I) (s, h1) ≈SX,α (s′, h′1) and (s, h+ h1) ≈WX,α (s′, h′ + h′1),
(II) maxvalX∪{u}(s′, h′1) ≤ maxvalX∪{u}(s′, h′) + P(card(X), α).

Despite being easier than the ∗-simulation property, the construction we develop in order to
show the −∗-simulation property is still quite technical. One of the difficulties in building h′1 is
to analyse which locations are labelled, with respect to the set Lab[S]Xs′,h′1 . In order to simplify
this task, we show an easy criterion to check whether a location is not labelled.

Lemma 5.52. Let (s, h) be a memory state and let ` ∈ Lab[S]Xs,h be a labelled location that is
not assigned to a program variable in X. If ` ∈ dom(h), then there are two distinct locations `1
and `2 such that h(`1) = h(`2) = `.

Proof. The proof is straightforward when ` corresponds to a meet-point variable, say m(x, y).
Indeed, [[m(x, y)]]Xs,h = ` implies that h witnesses two disjoint non-empty path, one going from
s(x) to ` and one going from s(y) to `. The fact that the two paths are disjoint and non-empty
ends the proof. Otherwise, suppose that ` corresponds to an end-point variable, say e(x). As
` ∈ dom(h), [[e(x)]]Xs,h = ` implies that there is δ ≥ 1 such that hδ(s(x)) = `, and ` belongs to a
cycle whereas hδ−1(s(x)) does not. As ` belongs to a cycle, there is a location `′ 6= hδ−1(s(x))
in this cycle, for which h(`′) = `.

Thanks to Lemma 5.52, we can carefully construct the heap h′1 required by Lemma 5.43 so that
locations in dom(h′1) that we do not want to be labelled all have at most one predecessor. For
instance, if we want h′1 to witness an unlabelled cycle of length 2, we construct h′1 so that there
are distinct locations `1 and `2 that do not correspond to program variable in X, and
• {`1, `2} is a minimal set describing a cycle in h′1,
• no location `′ other than `1 and `2 is such that h(`′) = `1 or h(`′) = `2.

By Lemma 5.52, we conclude `1 and `2 do not belong to Lab[S]Xs′,h′1 , and thus {`1, `2} describes
an unlabelled cycle. At last, let us prove Lemma 5.43 .

Proof of Lemma 5.43. As done in the statement of the lemma, we consider two memory states
(s, h) and (s′, h′) such that (s, h) ≈WX,α+card(X) (s′, h′), and let h1 be a heap disjoint from h. We
want to define h′1 so that the cardinality constraint imposed by (II) is satisfied by construction.
Afterwards, the main technical developments involve showing that h′1 satisfies (I), i.e.

5.6. Connecting the Two Families of Core Formulae 231

(s, h1) ≈SX,α (s′, h′1), (s, h+ h1) ≈WX,α (s′, h′ + h′1).

As a first step, we want to specify a set of locations that, with respect to the heap h′1 we
later construct, should correspond to labelled locations in Lab[S]Xs′,h′1 . We need to be careful,
as some of them could already belong to Lab[W]Xs′h′ . Moreover, as we want (s, h1) and (s′, h′1)
(resp. (s, h + h1) and (s′, h′ + h′1)) to satisfy the same core formulae of the form t = t′, these
locations should be related to the locations in Lab[S]Xs,h1

. For this reason, we define an injection

f : Lab[W]Xs,h ∪ Lab[S]Xs,h1
→ LOC,

that shall satisfy the following properties:
0f. if s(u) ∈ Lab[W]Xs,h ∪ Lab[S]Xs,h1

, then f(s(u)) = s′(u). Otherwise, s′(u) 6∈ ran(f).
1f. for every t ∈ T[W]X, if [[t]]Xs,h is defined then f([[t]]Xs,h) = [[t]]Xs′,h′ .

Moreover, for every ` ∈ Lab[S]Xs,h1
\ Lab[W]Xs,h,

2f. if ` ∈ Pred[W]Xs,h(x) for some x ∈ X, then f(`) ∈ Pred[W]Xs′,h′(x),
3f. if ` ∈ Self[W]Xs,h, then f(`) ∈ Self[W]Xs′,h′ ,
4f. if ` ∈ Rem[W]Xs,h then f(`) ∈ Rem[W]Xs′,h′ ,
5f. otherwise, if ` 6= s(u) then f(`) > maxvalX∪{u}(s′, h′).

We notice that this properties exhaust every possible location in Lab[S]Xs,h1
∪ Lab[W]Xs,h. The

case where s(u) is a labelled location is considered separately, in (0f). Otherwise, the locations
in Lab[W]Xs,h are dealt with in (1f), whereas (2f)–(5f) characterise f for the remaining labelled
locations. Below, we show the existence of f, and track our progress with respect to (II), by
bounding the number of locations in ran(f) that exceed maxvalX∪{u}(s′, h′).
A. An injection f : Lab[W]Xs,h ∪ Lab[S]Xs,h1

→ LOC satisfying (0f)–(5f) exists,
B. card({` | f(`) > maxvalX∪{u}(s′, h′)}) ≤ card(X).

Proof of (A). Fundamentally, the existence of f follows from (s, h) ≈WX,α+card(X) (s′, h′), where
we highlight the parameter α + card(X). Thanks to the formulae u = t and t1 = t2 of
Core[W](X, α+ card(X)), there is an injection f satisfying both (0f) and (1f). Now, for
the remaining constraints (2f)–(5f), we notice that ` does not belong to Lab[W]Xs,h, and
therefore these constraints are independent from (1f). In order to show that we can build
an injection satisfying not only (0f) and (1f) but also (2f)–(5f), it is sufficient to check that

1. s(u) ∈ Pred[W]Xs,h(x) if and only if s′(u) ∈ Pred[W]Xs′,h′(x),
2. min(card(Pred[W]Xs,h(x)), card(Lab[S]Xs,h1 \ Lab[W]Xs,h))

= min(card(Pred[W]Xs′,h′(x)), card(Lab[S]Xs,h1 \ Lab[W]Xs,h)),
3. s(u) ∈ Self[W]Xs,h if and only if s′(u) ∈ Self[W]Xs′,h′ ,
4. min(card(Self[W]Xs,h), card(Lab[S]Xs,h1 \ Lab[W]Xs,h))

= min(card(Self[W]Xs′,h′), card(Lab[S]Xs,h1 \ Lab[W]Xs,h)),
5. s(u) ∈ Rem[W]Xs,h if and only if s′(u) ∈ Rem[W]Xs′,h′ ,
6. min(card(Rem[W]Xs,h), card(Lab[S]Xs,h1 \ Lab[W]Xs,h))

= min(card(Rem[W]Xs′,h′), card(Lab[S]Xs,h1 \ Lab[W]Xs,h)).
Indeed, (1), (3) and (5) are required in order to satisfy (0f), whereas (2), (4) and (6)
allows us to build an injection. Thanks to the formulae u ∈ predWX (x), u ∈ selfWX (x)
and u ∈ remWX , from (s, h) ≈WX,α+card(X) (s′, h′), we conclude that (1), (3) and (5) hold.
For the three remaining properties, we have (Lab[S]Xs,h1

\ Lab[W]Xs,h) ⊆ (Lab[S]Xs,h1
\ s(X))

232 Chapter 5. Deciding Robustness Properties in PSpace

and therefore, by Lemma 5.25, card(Lab[S]Xs,h1
\ Lab[W]Xs,h) ≤ card(X). This allow us to

derive (2), (4) and (6). Indeed, thanks to the core formulae predWX (x) ≥ β, selfWX ≥ β

and remWX ≥ β, where β ∈ [1, α+ card(X)], from (s, h) ≈WX,α+card(X) (s′, h′) we have.

– min(card(Pred[W]Xs,h(x)), α+ card(X)) = min(card(Pred[W]Xs′,h′(x)), α+ card(X)),
– min(card(Self[W]Xs,h), α+ card(X)) = min(card(Self[W]Xs′,h′), α+ card(X)),
– min(card(Rem[W]Xs,h), α+ card(X)) = min(card(Rem[W]Xs′,h′), α+ card(X)).

Proof of (B). Following the characterisation of f, f(`) > maxvalX∪{u}(s′, h′) holds only in
the case (5f). Thus, ` ∈ (Lab[S]Xs,h1

\Lab[W]Xs,h) ⊆ (Lab[S]Xs,h1
\s(X)). By Lemma 5.25, these

locations are at most card(X).
In view of (B), we can safely assume that the locations in {` | f(`) > maxvalX∪{u}(s′, h′)} belongs
to the interval [maxvalX∪{u}(s′, h′), maxvalX∪{u}(s′, h′) + card(X)]. That is,

6f. max(ran(f)) ≤ maxvalX∪{u}(s, h) + card(X).
Similarly to the ∗-simulation property, we now consider specific subsets of dom(h1) and aim at
defining similar sets of locations, that are later used to construct h′1. We define,
• for all ` ∈ s(X), P`

def= Pred[S]Xs,h1
(`) \ dom(f),

• for all ` ∈ Lab[S]Xs,h1
, S`

def= Path[S]Xs,h1
(`) \ dom(f),

• for all β ∈ [1, α], Cβ
def= {L ∈ Cycl[S]Xs,h1

(β) | L ∩ dom(f) = ∅},

• for all β ∈ [1, α], Cβ
def= {L ∈ Cycl[S]Xs,h1

(β) | L ∩ dom(f) 6= ∅},

• U def= {L ∈ ⇑Cycl[S]X,αs,h1
| L ∩ dom(f) = ∅},

• U def= {L ∈ ⇑Cycl[S]X,αs,h1
| L ∩ dom(f) 6= ∅},

• R def= Rem[S]X,αs,h1
\ dom(f).

From Proposition 5.31, we conclude that these sets are mutually disjoint and, together with
dom(f), their union includes dom(h1). For simplicity, below we assume s(X) = {`X1, . . . , `Xn}
and Lab[S]Xs,h1

= {`L1, . . . , `Lm}. We aim at defining the sets P ′
f(`X1), . . . , P

′
f(`Xn), S

′
f(`L1), . . . , S

′
f(`Lm),

C ′1, . . . , C
′
α, C ′1, . . . , C

′
α, U ′, U ′ and R′. In short, we call these sets the prime sets. Intuitively, the

prime sets should mimic the “non-prime” sets defined above. For instance, once the definition
of h′1 is complete, we expect P ′f(`X) to satisfy the equality P ′f(`X) = Pred[S]Xs′,h′1(f(`X)) \ ran(f).
Moreover, the cardinality of each prime set should be bounded and, together with ran(f), they
should cover dom(h′1), allowing us to prove (II). We write P(α), S(α), L(α) and R(α) for the
upper bounds of the various core formulae in Sk[S](X, α). That is,

P(α) = α, S(α) = 1
6(α+ 1)(α+ 2)(α+ 3), L(α) = 1

2α(α+ 3)− 1, R(α) = α.

The properties (1)–(8) that characterise the prime sets are given in Figure 5.20. There, we
recall that given a set T of sets of locations, we write [T][for

⋃
L∈T L. Below, we show that these

sets are well-defined, despite the number of required properties. We also derive a bound on the
overall number of locations needed to define all the prime sets.
C. A family of sets satisfying (1)–(8) exists. They are disjoint from h′.
D. The following equalities are satisfied:

5.6. Connecting the Two Families of Core Formulae 233

1. The prime sets are mutually disjoint,
2. for every ` ∈ s(X), P ′f(`) is a set of locations such that

(p1) card(P ′f(`)) = min(card(P`),P(α)),
(p2) s(u) ∈ P` if and only if s′(u) ∈ P ′f(`),
(p3) for every `′ ∈ P ′f(`) \ {s

′(u)}, `′ > maxvalX∪{u}(s′, h′) + card(X).

3. for every ` ∈ Lab[S]Xs,h1
, S′f(`) is a set of locations such that

(s1) card(S′f(`)) = min(card(S`),S(α)),
(s2) s(u) ∈ S` if and only if s′(u) ∈ S′f(`),
(s3) for every `′ ∈ S′f(`) \ {s

′(u)}, `′ > maxvalX∪{u}(s′, h′) + card(X).

4. for every β ∈ [1, α], C ′β is a set of sets of locations, such that
(c1) card(C ′β) = min(card(Cβ),L(α)),
(c2) s(u) ∈ [Cβ][if and only if s′(u) ∈ [C ′β][,
(c3) every set L ∈ C ′β has cardinality β,
(c4) for every ` ∈ [C ′β][\ {s′(u)}, ` > maxvalX∪{u}(s′, h′) + card(X),

5. for every β ∈ [1, α], C ′β is a set of sets of locations such that

(c5) there is a bijection gβ : Cβ → C
′
β,

(c6) s(u) ∈ [Cβ][if and only if s′(u) ∈ [C ′β][,
(c7) for every ` ∈ dom(f) and L ∈ Cβ, ` ∈ L if and only if f(`) ∈ gβ(L),
(c8) every set L ∈ C ′β, has cardinality β,
(c9) for every ` ∈ [C ′β][\ (ran(f) ∪ {s′(u)}), ` > maxvalX∪{u}(s′, h′) + card(X).

6. U ′ is a set of sets of locations, such that
(u1) card(U ′) = min(card(U),L(α)),
(u2) s(u) ∈ [U][if and only if s′(u) ∈ [U ′][,
(u3) for every ` ∈ [U ′][\ {s′(u)}, ` > maxvalX∪{u}(s′, h′) + card(X),
(u4) every set L ∈ U ′ has cardinality α+ 1.

7. U
′ is a set of sets of locations such that

(u5) there is a bijection g⇑ : U → U
′,

(u6) s(u) ∈ [U][if and only if s′(u) ∈ [U ′][,
(u7) for every ` ∈ dom(f) and L ∈ U , ` ∈ L if and only if f(`) ∈ g⇑(L),
(u8) for every L ∈ U , card(g⇑(L) \ ran(f)) = α+ 1,
(u9) for every ` ∈ [U ′][\ (ran(f) ∪ {s′(u)}), ` > maxvalX∪{u}(s′, h′) + card(X).

8. R′ is a set of locations such that
(r1) card(R′) = min(card(R),R(α)),
(r2) s(u) ∈ R if and only if s′(u) ∈ R′,
(r3) for every ` ∈ R′ \ {s′(u)}, ` > maxvalX∪{u}(s′, h′) + card(X).

Figure 5.20: Properties of the prime sets.

234 Chapter 5. Deciding Robustness Properties in PSpace

– for all ` ∈ s(X), P ′f(`) ∩ ran(f) = ∅,
– for all ` ∈ Lab[S]Xs,h1

, S′f(`)∩ran(f) = ∅,
– for all β ∈ [1, α], C ′β ∩ ran(f) = ∅,

– U ′ ∩ ran(f) = ∅,
– R′ ∩ ran(f) = ∅.

E. Excluding ran(f), less than (card(X) + 1)((α+ 3)4 − 1) locations appear in prime sets.
Proof of (C). First of all, we notice that, with the exception of s′(u) and locations in ran(f),
every location appearing in a prime set must be greater than maxvalX∪{u}(s′, h′) + card(X)
(see (p3), (s3), (c4), (c9), (u3), (u9) and (r3)) By definition of maximum value and by (6f),
these locations do not belong to dom(h′), nor to {s′(u)}∪ ran(f). Moreover, since there are
infinitely many locations greater than maxvalX∪{u}(s′, h′) + card(X), we can easily assume
that they do not appear in two different prime sets. Therefore, to prove (1) and show that
the prime sets are disjoint from dom(h′), it is sufficient to show that:

γ1. Every location ` ∈ {s′(u)} ∪ ran(f) appears in at most one prime set. If ` appears in
a prime set, then ` 6∈ dom(h′).

In order to show this result, we look at the “non-prime” sets P`X1 , . . . , P`Xn , S`L1 , . . . , S`Lm ,
C1, . . . , Cα, C1, . . . , Cα, U , U and R, which we know to be mutually disjoint. Therefore,

γ2. Every location in {s(u)} ∪ dom(f) appears in at most one “non-prime” set.

Moreover, as they are constructed from locations in dom(h1), we conclude that no location
in these sets belongs to dom(h). This allows us to conclude that

γ3. if s(u) belongs to a “non-prime” set, then s(u) 6∈ dom(h′).
Suppose that s(u) belongs to a “non-prime” set. Ad absurdum, assume that
s′(u) ∈ dom(h′). We consider the Boolean combination of core formulae from
Core[W](X, 1) below:∨

t∈T[W]X(u = t ∧ t ↪→) ∨
∨

x∈X u ∈ predWX (x) ∨ u ∈ selfWX ∨ u ∈ remWX .
It is rather easy to see that this formula is satisfied by a memory state (s′′, h′′) if
and only if s′′(u) ∈ dom(h′′). Thanks to this formula, by (s, h) ≈WX,α+card(X) (s′, h′)
and s′(u) ∈ dom(h′), we conclude that s(u) ∈ dom(h). However, this contradicts
the fact that s(u) belongs to a “non-prime” set.

γ4. if ` ∈ dom(f) belongs to a “non-prime” set, then f(`) 6∈ dom(h′).
Suppose that ` ∈ dom(f) belongs to a “non-prime” set. Ad absurdum, assume
that f(`) ∈ dom(h′). From the definition of f, ` cannot correspond to the case (5f),
and thus it corresponds to one among (1f)–(4f). If it corresponds to (1f), then
there is a term t ∈ T[W]X such that [[t]]Xs,h = ` and f(`) = [[t]]Xs′,h′ . Thanks to the
formula t ↪→ , by (s, h) ≈WX,α+card(X) (s′, h′) and f(`) ∈ dom(h′), we conclude that
` ∈ dom(h), Similarly, if ` corresponds to a case among (2f)–(4f), then ` ∈ dom(h).
In both cases, ` ∈ dom(h) contradicts the fact that ` is in a “non-prime” set.

The properties (γ2), (γ3) and (γ4) allow not only to show (γ1), but also to prove that
the prime sets are well-defined. Indeed, with the constraints (p2), (s2), (c2), (c6), (u2),
(u6), and (r2), we ask s′(u) to belong to a prime set Q′ if and only if s(u) belongs to
the corresponding “non-prime” set Q. From (γ3), we conclude that if s′(u) appears
in a prime set, then s(u) 6∈ dom(h′). From (γ2), only one “non-prime” set can contain
s(u) and therefore at most one prime set contains s′(u). So, (γ1) holds for ` = s′(u).
Notice that this implies all the constraints required in (2), (3), (4), (6), and (8)
can be satisfied. Indeed, apart from s′(u), all the prime sets corresponding to these

5.6. Connecting the Two Families of Core Formulae 235

constraints must only contain locations greater than maxvalX∪{u}(s′, h′) + card(X),
which we already treated at the beginning of the proof. Let us consider a location
` ∈ ran(f) in a prime set. From the properties required by prime sets, ` belongs can
only belong to [C ′β][for some β ∈ [1, α], or to [U ′][, as shown in (c7) and (u7). These
constraints imply that f−1(`) belongs to the corresponding “non-prime” set among
[C1][, . . . , [C1][, [U ′][. From (γ2) we conclude that ` can only appear in at most one
prime set. From (γ4), ` 6∈ dom(h′). Therefore, we conclude that (γ1) is satisfied.
Moreover, (5) and (7) also hold. Indeed, with the exception of s′(u) ∪ ran(f), the
prime sets [C1][, . . . , [C1][, [U ′][corresponding to these constraints must only contain
locations greater than maxvalX∪{u}(s′, h′) + card(X), which we already treated at the
beginning of the proof.

Proof of (D). The proof of all these statements are very similar. In the following, we show
that S′f(`) ∩ ran(f) = ∅, where ` ∈ Lab[S]Xs,h1

. Let `′ ∈ S′f(`). From (s3), either `′ = s′(u) or
`′ > maxvalX∪{u}(s′, h′) + card(X). In the latter case, by (6f), we conclude that `′ 6∈ ran(f).
In the former case, if `′ = s′(u) then, by (s2), s(u) ∈ S`. By definition of S`, s(u) 6∈ dom(f).
From (0f), we conclude that `′ = s′(u) 6∈ ran(f).

Proof of (E). By (p1), card([{P ′f(`) | ` ∈ s(X)}][) ≤ card(X)×P(α). By (s1) and Lemma 5.25,
card([{S′f(`) | ` ∈ Lab[S]Xs,h1

}][) ≤ card(Lab[S]Xs,h1
) × S(α) ≤ 2 × card(X) × S(α). By (c1)

and (c3), card([{C ′β | β ∈ [1, α]}][) ≤ L(α)
∑
β∈[1,α] β = L(α)(1

2α(α + 1)). Similarly,
from (u1) and (c4), card([U ′][) = L(α)(α + 1). From (r1), card(R′) ≤ R(α). Lastly,
we look at the sets C

′
1, . . . , Cα, U

′. They all contain sets of locations where at least
one location is in ran(f). This means that card(U ′ ∪

⋃
β∈[1,α]C

′
β) ≤ card(ran(f)). As f is

injective, card(ran(f)) = card(dom(f)) = card(Lab[S]Xs,h1
∪ Lab[W]Xs,h). A part from s(X),

which is included in both Lab[S]Xs,h1
and Lab[W]Xs,h, Lab[W]Xs,h contains the locations that,

in (s, h), correspond to next-point variables. By Lemma 5.25, card(Lab[S]Xs,h1
∪Lab[W]Xs,h) ≤

3× card(X). By (u8) and (c8), every set in C ′1, . . . , Cα, U
′ contains at most α+ 1 locations

that are not in ran(f). We conclude that
card([U ′ ∪

⋃
β∈[1,α]C

′
β][) ≤ card(ran(f)) + (α+ 1)card(ran(f)) ≤ 3× card(X)(α+ 2).

All considering, we conclude that the locations appearing in all prime sets are at most
card(X)

(
P(α) + 2S(α) + 3(α+ 2)

)
+ 1

2 × L(α)(α+ 1)(α+ 2) +R(α).
With a simple numerical analysis, one can show that (card(X) + 1)((α+ 3)4− 1) is strictly
above of the last expression, for every α ≥ 1 and card(X) ≥ 0.

From (E) and (6f), we can safely assume that the locations occurring in prime sets are (strictly)
bounded by the location maxvalX∪{u}(s′, h′) + (card(X) + 1)(α+ 3)4. That is,

(?) The maximal location in a prime set is less than maxvalX∪{u}(s′, h′)+(card(X)+1)(α+3)4.

The heap h′1. We move to the definition of h′1. Fundamentally, we define this heap so that
every location in its domain is either in ran(f) or in a prime set. Similarly, every location
in ran(h′1) shall be either in ran(f) or in a prime set, with the exception of a single location
`r. Thanks to (?), we let `r be the location maxvalX∪{u}(s′, h′) + (card(X) + 1)(α + 3)4. The
definition of h′1 is achieved by first defining several subheaps, which are described in Figure 5.21.
The definitions of the heaps, as well as their properties, are all quite straightforward, the only
exception being the heap sf(`), where ` ∈ Lab[S]Xs,h1

. Let us show that this heap is well-defined.
(s9) A heap sf(`) satisfying (s4)–(s8) exists. Moreover, Path[S]Xs,h1

(`) = ∅ iff sf(`) = ∅.

236 Chapter 5. Deciding Robustness Properties in PSpace

predecessor heaps. Given ` ∈ s(X), we consider the heap pf(`) defined as

pf(`)
def= {`′ 7→ f(`) | `′ ∈ P ′f(`) or `′ ∈ ran(f) and f−1(`′) ∈ Pred[S]Xs,h1

(`)}.
By definition, we have
(p4) dom(pf(`)) = P ′f(`) ∪ {`

′ ∈ ran(f) | f−1(`′) ∈ Pred[S]Xs,h1
(`)},

(p5) if pf(`) 6= ∅, then ran(pf(`)) = {f(`)}.

bounded cycle heaps. Let β ∈ [1, α]. Given L ∈ C ′β ∪C
′
β, let `0 < · · · < `β−1 be the locations in

L. By (c3) and (c8), card(L) = β. We define the heap hL = {`j 7→ `j+1 mod β | i ∈ [0, β − 1]}.
Afterwards, we consider the heap cβ defined as

cβ = hL1 + . . .+ hLk ,

where {L1, . . . , Lk} = C ′β ∪ C
′
β. By definition, we have

(c10) Every L ∈ C ′β ∪ C
′
β describes a cycle in cβ, of length β,

(c11) dom(cβ) = [C ′β ∪ C
′
β][,

(c12) ran(cβ) = [C ′β ∪ C
′
β][. More precisely, for every L ∈ C ′β ∪ C

′
β cβ(L) = L.

unbounded cycle heap. Given L ∈ U ′∪U ′, let `0 < · · · < `card(L)−1 be the locations in L. By (u4)
and (u8), card(L) ≥ α+1. We define the heap hL = {`j 7→ `j+1 mod card(L) | i ∈ [0, card(L)−1]}.
Afterwards, we consider the heap u defined as

u = hL1 + . . .+ hLk ,

where {L1, . . . , Lk} = U ′ ∪ U ′. By definition, we have
(u10) Every L ∈ U ′ ∪ U ′ is a minimal set describing a cycle in u, of length at least α+ 1,
(u11) dom(u) = [U ′ ∪ U ′][,
(u12) ran(u) = [U ′ ∪ U ′][. More precisely, for every L ∈ U ′ ∪ U ′ u(L) = L.

remainder heap. We consider the heap r defined as:
r def= {`′ 7→ `r | `′ ∈ R′ or `′ ∈ ran(f) and f−1(`′) ∈ Rem[S]X,αs,h1

}.
By definition, we have
(r4) dom(r) = R′ ∪ {`′ ∈ ran(f) | f−1(`′) ∈ Rem[S]X,αs,h1

},
(r5) if r 6= ∅, then ran(r) = {`r}.

path heaps. Consider ` ∈ Lab[S]Xs,h1
. We consider a heap sf(`) characterised by (s4)–(s8) below:

(s4) dom(sf(`)) = S′f(`) ∪ {`
′ ∈ ran(f) | f−1(`′) ∈ Path[S]Xs,h1

(`)}.

If dom(sf(`)) 6= ∅, then
(s5) dom(sf(`)) is a minimal set describing a path (`0, `1, . . . , `card(sf(`))−1, `card(sf(`))) in sf(`),

where `0 = f(`) and `card(sf(`)) = f(sbyX
s,h1

(`)),
(s6) if h1(`) ∈ dom(f), then `1 = f(h1(`)). Otherwise, `1 ∈ S′f(`),
(s7) Let `′ be the only location in Path[S]Xs,h1

(`) such that h1(`′) = sbyX
s,h1

(`). If `′ ∈ dom(f)
then `card(sf(`))−1 = f(`′). Otherwise, `card(sf(`))−1 ∈ S′f(`),

(s8) if hδ11 (`) = s(u) for some δ1 ∈ [0, card(Path[S]Xs,h1
(`))], then there is δ2 ∈ [0, card(sf(`))] s.t.

sδ2f(`)(f(`)) = s′(u), min(δ1,Sleft(α)) = min(δ2,Sleft(α)),
min(card(Path[S]Xs,h1

(`))− δ1,Sright(α)) = min(card(sf(`))− δ2,Sright(α)),
where Sleft(α) = 1

6(α+ 1)(α+ 2) + 1 and Sright(α) = 1
2α(α+ 3).

Figure 5.21: Subheaps of h′1.

5.6. Connecting the Two Families of Core Formulae 237

Proof of (s9). If Path[S]Xs,h1
(`) = ∅, then dom(f) ∩ Path[S]Xs,h1

(`) = ∅ and, by definition
of S`, we have S` = ∅. From (s1) and (s4), we derive dom(sf(`)) = ∅. Since (s5)–(s8) are
only applied whenever dom(sf(`)) 6= ∅, we conclude that (s9) is satisfied.
Below, we assume that Path[S]Xs,h1

(`) is non-empty, and thus it is a minimal set describing
a path in ρ = (`0, . . . , `k), from `0 = ` to `k = sbyX

s,h1
(`). Thus, k = card(Path[S]Xs,h1

(`)).
By definition of S`,

Path[S]Xs,h1
(`) = S` ∪ (Path[S]Xs,h1

(`) ∩ dom(f)),
where the union on the right hand side of this equivalence is between disjoint sets. We
aim at building the heap sf(`) that satisfies (s4)–(s8). As required by (s4), the domain
of this heap should be exactly the union of the two disjoint (by (D)) sets S′f(`) and Q def=
{`′ ∈ ran(f) | f−1(`′) ∈ Path[S]Xs,h1

(`)}. As required by (s5), we want dom(sf(`)) to describe
a path going from f(`) to f(sbyX

s,h1
(`)). Notice that, as Path[S]Xs,h1

(`) is non-empty, ` ∈
Path[S]Xs,h(`), and therefore f(`) ∈ Q.
We define sf(`) by first defining three disjoint heaps hpre, hct and hsfx. Informally, with
respect to the path ρ′ described by S′f(`), we expect hpre to describe a prefix of ρ′, hsfx to
describe a suffix of ρ′, and lastly hct to describe the remaining (central) part of ρ′. We
start by defining hpre using the strategy below:

if `1 ∈ dom(f) then
hpre ← {f(`) 7→ f(`1)},

else if `1 = s(u) then
hpre ← {f(`) 7→ s′(u)}

else
let `′ be a location in S′f(`) such that `′ 6= s′(u),
hpre ← {f(`) 7→ `′}.

Thanks to (0f), (s1) and (s2), the heap hpre is well-defined. Let `′ be the only location in
ran(hpre). Directly from the definition of hpre, the following three properties are satisfied:

pre1. dom(hpre) = {f(`)}, ran(hpre) = {`′},
pre2. `1 ∈ dom(f) if and only if `′ ∈ ran(f). If `1 ∈ dom(f) then `′ = f(`1).
pre3. `1 ∈ S` if and only if `′ ∈ S′f(`),
pre4. `1 = s(u) if and only if `′ = s′(u).

The proof splits depending on whether k = 1, k = 2 or k > 2.

case: k = 1. We have ρ = (`0, `1), where `0 = ` and `1 = sbyX
s,h1

(`). So, Path[S]Xs,h1
(t) =

{`} ⊆ dom(f), and thus S` = ∅. By (s1), Sf(`) = ∅ and, by definition, Q = {f(`)}.
We define sf(`) as hpre. As `1 = sbyX

s,h(`) ∈ ran(f), by (pre1) and (pre2), we have
sf(`) = {f(`) 7→ f(sbyX

s,h1
(t))}. Thus, dom(sf(`)) = {f(`)} = Q ∪ S′f(`). We conclude

that (s4)–(s7) are trivially satisfied, whereas (s8) holds directly from (0f).
case: k = 2. We have ρ = (`0, `1, `2). So, Path[S]Xs,h1

(`) = {`, `1}, where `0 = ` ∈ dom(f),
` 6= `1, and `1 can be either in dom(f) or in S`. By (pre2) this means that `′ 6= f(`0)
and, together with (pre3), we derive {f(`), `′} = Sf(`) ∪Q. By (pre1), `′ 6∈ dom(hpre).
Lastly, notice that `2 = sbyX

s,h1
(`), and thus from `1 6= `2 (ρ is a minimal non-empty

path) and by (pre2), `′ 6= f(sbyX
s,h1

(`)). We define sf(`) as hpre + {`′ 7→ f(sbyX
s,h1

(`))}.
So, dom(sf(`)) = Sf(`) ∪Q is a minimal set describing the path (f(`), `′, f(sbyX

s,h1
(`))).

238 Chapter 5. Deciding Robustness Properties in PSpace

We conclude that (s4) and (s5) are satisfied. Moreover, (s6) and (s7) holds directly
from (pre2) and (pre3). Lastly, (s7) holds from (pre4) and (0f).

case: k > 2. In this case, `0, `k−1 and `1 are all different. Since `0 = ` ∈ dom(f),
from (pre2), we conclude that f(`) 6= `′ and, by (pre1), `′ 6∈ dom(hpre). We define hsfx
following the strategy below:

if `k−1 ∈ dom(f) then
hsfx ← {f(`k−1) 7→ f(sbyX

s,h1
(`))},

else if `k−1 = s(u) then
hsfx ← {s′(u) 7→ f(sbyX

s,h1
(`))}

else
let `′′ be a location in S′f(`) such that `′′ 6= s′(u) and `′′ 6= `′,
hsfx ← {`′′ 7→ f(sbyX

s,h(`))}.

Notice that if the locations `1, `k−1 and s(u) are all distinct and they all belong to
S`, then, by (s1), card(Sf(`)) ≥ 3. Because of this, the location `′′ selected in the last
branch of the strategy above is well-defined. Together with (0f) and (s2), this leads
to hsfx being well-defined. Let `′′ be the only location in dom(hsfx). The following
four properties are satisfied:
sfx1. dom(hsfx) = {`′′} and ran(hsfx) = {f(sbyX

s,h1
(`))},

sfx2. `k−1 ∈ dom(f) if and only if `′′ ∈ ran(f). If `k−1 ∈ dom(f) then `′′ = f(`k−1),
sfx3. `k−1 ∈ S` if and only if `′′ ∈ S′f(`),
sfx4. `k−1 = s(u) if and only if `′′ = s′(u).
Since `k−1 is different from `0 ∈ dom(f), by (sfx2) we conclude that f(`) 6= `′′ and
therefore hpre⊥hsfx. Similarly, since `k−1 is different from `k = sbyX

s,h1
(`) ∈ dom(f),

`′′ 6= f(sbyX
s,h1

(`)). Lastly, as `1 6= `k−1, we have `′ 6= `′′. Indeed, if either `1 or `k−1
belongs to dom(f), then `′ 6= `′′ holds from (pre2) and (sfx2). Otherwise, `′ 6= `′′ holds
directly as the last branch of the strategy used to define hsfx expressively asks for `′′
to be different from `′. All considering, we conclude that dom(hpre) and dom(hsfx)
describe two distinct paths ρL = (f(`), `′) and ρR = (`′′, f(sbyX

s,h1
(`))), respectively,

where the only two locations that can be equal are f(`) and f(sbyX
s,h1

(`)).
In order to define sf(`), we want to build a heap hct such that
ct1. dom(hct) = (S′f(`) ∪Q) \ {f(`), `′′},
ct2. dom(hct) is a minimal set describing a path ρC going from `′ to `′′.
ct3. if hδ11 (`) = s(u) for some δ1 ∈ [2, k − 2], then there is δ2 ∈ [1, card(hct)− 1] s.t.

hδ2ct (`′) = s′(u), min(δ1,Sleft(α)) = min(δ2 + 1,Sleft(α)),
min(k − δ1,Sright(α)) = min(card(S′f(`) ∪Q)− (δ2 + 1),Sright(α)).

With these properties, the heap sf(`) = hpre + hct + hsfx is defined and satisfies (s4)–
(s8). Indeed, from (ct1) together with dom(hL) ∪ dom(hsfx) = {f(`), `′′} ⊆ S′f(`) ∪ Q,
we derive (s4). Moreover, by (ct2) together with the definition of ρL and ρC , we
derive (s5). The property (s6) is taken care of by (pre2), whereas (s7) follows
from (sfx2). Lastly, (s8) follows from (0f), which takes care of the cases where
`= s(u) or sbyX

s,h1
(`) = s(u), from (pre4) and (sfx4), which deals with the cases where

`1 = s(u) or `k−1 = s(u), and from (ct3), which deals with occurrences of s(u) among
{`2, . . . , `k−2}. To conclude the proof, we show the existence of hct.

5.6. Connecting the Two Families of Core Formulae 239

Since f is an injection, we know that card(Path[S]Xs,h1
(`)∩dom(f)) = card(Q). From (s1),

this allows us to deduce that
min(k,S(α)) = min(card(S′f(`) ∪Q),S(α)). (‡1)

where we recall that k = card(Path[S]Xs,h1
(`)) = card(S` ∪ Path[S]Xs,h1

(`) ∩ dom(f)).
Moreover, from (0f), (s2), (pre4) and (sfx4),

s(u) ∈ Path[S]Xs,h1
(`) \ {`0, `1, `k−1} iff s′(u) ∈ (S′f(`) ∪Q) \ {f(`), `′, `′′} (‡2)

Let `′1, . . . , `′j be distinct locations such that {`′1, . . . , `′j} = (S′f(`)∪Q)\{f(`), `′, `′′, s′(u)}.
Notice that, if s(u) ∈ (S′f(`) ∪ Q) \ {f(`), `′, `′′}, then j = card(S′f(`) ∪ Q) − 4. Let us
write `′0 for `′ and `′j+1 for `′′. We define hct following the strategy below:

1: if s(u) 6∈ Path[S]Xs,h1
(`) \ {`0, `1, `k−1} then

2: hct ← {`′ 7→ `′1 7→ . . . 7→ `′j 7→ `′′},
3: else
4: let δ ∈ [2, k − 2,] such that `δ = s(u).
5: if δ < Sleft(α) then
6: hct ← {`′ = `′0 7→ . . . 7→ `′δ−2 7→ s′(u) 7→ `′δ−1 7→ . . . 7→ `′j+1 = `′′}.
7: else if k − δ < Sright(α) then
8: hct ← {`′ = `′0 7→ . . . 7→ `j−(k−δ−2) 7→ s′(u) 7→ `′j−(k−δ−3) 7→ . . . 7→ `′j+1 = `′′}.

9: else
10: hct ← {`′ = `′0 7→ . . . 7→ `′Sleft(α)−2 7→ s′(u) 7→ `′Sleft(α)−1 7→ . . . 7→ `′j+1 = `′′}.

To show that hct satisfies (ct1)–(ct3), we reason by cases, according to the strategy.
case: s(u) 6∈ Path[S]Xs,h1

(`) \ {`0, `1, `k−1} (line 2). From (‡2), s′(u) 6∈ (S′f(`) ∪ Q) \
{f(`), `′, `′′}. The heap hct is defined so that dom(hct) = {`′, `′1, . . . , `′j}. The prop-
erty (ct3) is trivially satisfied, and by definition of `′1, . . . , `′j , we derive (ct1). Lastly,
one can notice that dom(hct) describes the path ρC = (`′, `′1, . . . , `′j , `′′). Since all
the locations `′, `′1, . . . , `′j , `′′ are distinct, dom(hct) is a minimal set describing this
path. Thus, (ct2) is satisfied.

case: there is δ ∈ [2, k−2] such that s(u) = `δ and δ < Sleft(α) (line 6). By (‡2),
s′(u) belongs to (S′f(`) ∪Q) \ {f(`), `′, `′′}. So, j = card(S′f(`) ∪Q)− 4. We recall that
k = card(Path[S]Xs,h1

(`)). First of all, notice that hct is defined so that dom(hct)
describes the path ρC = (`′0, . . . , `′δ−2, s

′(u), `′δ−1, . . . , `
′
j+1). We need to check that

hct is well-defined, that is `′δ−2 should belong to {`′0, . . . , `′j}. Since δ ∈ [2, k − 2],
we know that δ − 2 ≥ 0, and thus we just need to check that j − (δ − 2) ≥ 0. Ad
absurdum, suppose j − (δ − 2) < 0. So, card(S′f(`) ∪Q)− 2− δ < 0 and we have:

card(S′f(`) ∪Q) < 2 + δ < 2 + Sleft(α) ≤ S(α),
where the last inequality holds as S(α) = Sleft(α) + Sright(α) and Sright(α) ≥ 2, for
every α ≥ 1. From (‡1) we conclude that k = card(S′f(`) ∪Q). However, this implies
k− 2− δ < 0, which contradicts δ ∈ [2, k− 2]. We conclude that `′δ−2 ∈ {`′0, . . . , `′j},
and so hct is well-defined. Fundamentally, from its definition, hδ−1

ct (`′) = s′(u). As
in the previous case, (ct1) and (ct2) are obviously satisfied. Let us look at (ct3).
Let δ1

def= δ and δ2
def= δ − 1. By definition of hct, hδ2ct (`′) = s′(u). Since δ2 + 1 = δ1,

we conclude that min(δ1,Sleft(α)) = min(δ2 + 1,Sleft(α)) is satisfied. From (‡1) we
conclude that

min(k − δ1,S(α)− δ) = min(card(S′f(`) ∪Q)− (δ2 + 1),S(α)− δ).

240 Chapter 5. Deciding Robustness Properties in PSpace

Since S(α)− δ = Sleft(α) + Sright(α)− δ ≥ Sright(α), this equivalence implies (ct3).
case: there is δ ∈ [2, k − 2] such that s(u) = `δ and k − δ < Sright(α) (line 8).
By (‡2), s′(u) belongs to (S′f(`) ∪ Q) \ {f(`), `′, `′′}. So, j = card(S′f(`) ∪ Q) − 4. We
notice that hct is defined so that dom(hct) describes the path

ρC = (`′0, . . . , `′j−(k−δ−2), s
′(u), `′j−(k−δ−3), . . . , `

′
j+1).

We need to check that hct is well-defined, that is `′j−(k−δ−2) should belong to
{`′0, . . . , `′j}. Since δ ∈ [2, k− 2], we know that j − (k− δ− 2) ≤ j, and thus we just
need to check that j − (k − δ − 2) ≥ 0. Ad absurdum, suppose j − (k − δ − 2) < 0.
So, card(S′f(`) ∪Q)− 2− (k − δ) < 0 and we have:

card(S′f(`) ∪Q) < 2 + (k − δ) < 2 + Sright(α) ≤ S(α),
where the last inequality holds as S(α) = Sleft(α) + Sright(α) and Sleft(α) ≥ 2,
for every α ≥ 1. From (‡1) we conclude that k = card(S′f(`) ∪ Q). However, this
implies k < 2 + (k − δ) and so δ < 2, which contradicts δ ∈ [2, k − 2]. We conclude
that `′j−(k−δ−2) ∈ {`

′
0, . . . , `

′
j}, and so hct is well-defined. Fundamentally, from its

definition, h(j−(k−δ−3))
ct (`′) = s′(u). As in the previous case, (ct1) and (ct2) are

obviously satisfied. Let us look at (ct3). Let δ1
def= δ and δ2

def= j − (k − δ − 3). By
definition of hct, hδ2ct (`′) = s′(u). Since card(S′f(`) ∪Q) = j + 4, we have:

card(S′f(`) ∪Q)− (δ2 + 1) = j + 4− (j − (k − δ − 3) + 1) = k − δ = k − δ1,

which implies that the last equivalence required by (ct3) holds. By (‡1) we have
min(k − (k − δ),S(α)− (k − δ)) = min(j + 4− (k − δ),S(α)− (k − δ)).

This implies that the second equivalence in (ct3) holds, since k − (k − δ) = δ1,
j+4−(k−δ) = δ2 +1 and S(α)−(k−δ) ≥ S(α)−Sright(α) = Sleft(α). We conclude
that (ct3) is satisfied.

case: there is δ ∈ [2, k − 2] such that s(u) = `δ, δ ≥ Sleft(α) and k−δ ≥ Sright(α)
(line 10). From (‡2), s′(u) ∈ (S′f(`) ∪Q) \ {f(`), `′, `′′}. Notice that hct si defined so
that dom(hct) describes the path ρC = (`′0, . . . , `′Sleft(α)−2, s

′(u), `′Sleft(α)−1, . . . , `
′
j+1).

Exactly as in the first case (corresponding to the line 2 of the strategy), one can show
that `′Sleft(α)−2 belongs to {`′0, . . . , `′j}, and that therefore hct is well-defined. As in the
previous cases, (ct1) and (ct2) are obviously satisfied. Let us look at (ct3). Let δ1

def= δ

and δ2
def= Sleft(α) − 1. By definition of hct, hδ2ct (`′) = s′(u). Since δ1 ≥ Sleft(α) and

δ2+1 = Sleft(α), we conclude that min(δ1,Sleft(α)) = min(δ2+1,Sleft(α)) is satisfied.
From δ ≥ Sleft(α) and k−δ ≥ Sright(α) we derive that k ≥ Sleft(α)+Sright(α) ≥ S(α).
From (‡1) we conclude that card(S′f(`) ∪ Q) ≥ S(α) and thus, by definition of δ2,
card(S′f(`) ∪ Q) − (δ2 + 1) ≥ Sright(α). As both card(S′f(`) ∪ Q) − (δ2 + 1) and k − δ
are at least Sright(α), (ct3) holds.

We conclude that hct exists, which in turn implies that sf(`) = hpre + hct + hsfx is
well-defined, and satisfies (s4)–(s8).

We are finally ready to define h′1. Recall that s(X) = {`X1, . . . , `Xn} and Lab[S]Xs,h1
= {`L1, . . . , `Lm}.

Checking that the heaps pf(`X1), . . . , pf(`Xn),c1, . . . , cα,u,r, sf(`L1), . . . , sf(`Lm) are disjoint is straight-
forward, and follows directly by (1), Proposition 5.31 and the fact that f is an injection. We
define h′1 as the union:

h′1 = pf(`X1) + . . .+ pf(`Xn) + c1 + . . .+ cα + u + r + sf(`L1) + . . .+ sf(`Lm).

A quick check on the various heaps defined above leads to the following three properties:
(ρ1) dom(h′1) is the union of all prime sets, together with a subset of ran(f).

5.6. Connecting the Two Families of Core Formulae 241

(ρ2) ran(h′1) is included in the union of all prime sets, plus ran(f) and {`r}.
(ρ3) Let ĥ be the heap among pf(`X1), . . . , pf(`Xn),c1, . . . , cα,u and r. Let ` ∈ dom(ĥ). If there is

a location `′ such that h′1(`′) = `, then `′ ∈ dom(ĥ).
Proof of (ρ1). Directly from (p4), (c11), (u11), (r4) and (s4).
Proof of (ρ2) Directly from (p5), (c12), (u12), (r5) and (s5).
Proof of (ρ3). Again from (p5), (c12), (u12), (r5) and (s5), together with the injectivity of f
and the fact that the sets in Definition 5.29 are mutually disjoint.

We prove that h′ is disjoint from h′1, and that satisfies both (I) and (II). Let us first show
that (II) holds and that h′⊥h′1.

Proof of (II). Directly from (ρ1) and (ρ2), together with (?), (6f), and the definition of `r.
Proof that h′⊥h′1. From (ρ1) and (C), it is sufficient to show that dom(h′1)∩ran(f) is disjoint
from dom(h′). Consider ` ∈ dom(h′1) ∩ ran(f). We show ` 6∈ dom(h′). We divide the proof
depending on the heaps introduced to define h′1.
case: ` ∈ dom(pf(`′)), for some `′ ∈ s(X). From (p4), f−1(`) ∈ Pred[S]Xs,h1

(`′). This im-
plies that f−1(`) ∈ dom(h1) and f−1(`) 6∈ Lab[S]Xs,h1

. Notice that this means that
f−1(`) is not assigned to a program variable in X. By definition of f, f−1(`) belongs to
Lab[W]Xs,h, and it corresponds to a next-point variable. Let x ∈ X such that [[n(x)]]Xs,h =
f−1(`). By (1f), ` = [[n(x)]]Xs′,h′ . Since h is disjoint from h1, f−1(`) 6∈ dom(h), which
in turn implies that (s, h) 6|= n(x) ↪→ . From (s, h) ≈WX,α+card(X) (s′, h′), we conclude
that (s′, h′) 6|= n(x) ↪→ , and therefore ` 6∈ dom(h′).

case: ` ∈ dom(cβ), for some β ∈ [1, α]. Since ` ∈ ran(f), ` ∈ [C ′β][. From (c5) and (c7),
f−1(`) ∈ [Cβ][. By definition of Cβ, this means that ` ∈ [Cycl[S]Xs,h1

(β)][. We conclude
that f−1(`) ∈ dom(h1) and f−1(`) 6∈ Lab[S]Xs,h1

. As in the previous case, this implies
that ` does not belong to dom(h′).

case: ` ∈ dom(r) or ` ∈ dom(u). Both cases are similar to the previous two cases.
case: ` ∈ dom(sf(`′)), for some `′ ∈ Lab[S]Xs,h1

. By (s4), f−1(`) ∈ Path[S]Xs,h1
(`′). Thus,

f−1(`) ∈ dom(h1), and therefore f−1(`) 6∈ dom(h). If f−1(`) ∈ Lab[W]Xs,h, we conclude
` 6∈ dom(h′) as in the first case of the proof. Otherwise, suppose f−1(`) 6∈ Lab[W]Xs,h,
and so by definition of f, f−1(`) ∈ Lab[S]Xs,h1

\ Lab[W]Xs,h. Since f−1(`) 6∈ dom(h),
f−1(`) does not satisfy the premises of (2f)–(4f), and thus by (5f) we conclude that
` > maxvalX∪{u}(s′, h′). By definition of maximum value, ` 6∈ dom(h′).

To prove (I) we essentially rely on the set of properties used throughout the proofs of the two
∗-simulation properties (see e.g. Lemmata 5.18 and 5.39).

Towards (s, h1) ≈SX,α (s′, h′1). We show that (s, h1) ≈SX,α (s′, h′1) by relying on the proper-
ties (SO)–(SF) below. The first set of properties, grouped under the label (SO), are auxiliary
properties that shed some light on the labelled locations in Lab[S]Xs′,h′1 .

SO. (b) Let ĥ be a heap among c1, . . . , cα,u,r. For every ` ∈ dom(ĥ) ∪ ran(ĥ) and x ∈ X,
the heap h′1 does not witness a (possibly empty) path going from s′(x) to `.

(c) Let `′ ∈ s(X). For every ` ∈ dom(pf(`′)) and x ∈ X, the heap h′1 does not witness a
(possibly empty) path going from s′(x) to `.

(d) Let `′ ∈ Lab[S]Xs,h1
. For every ` ∈ dom(sf(`′)) \ {f(`′)}, ` 6∈ Lab[S]Xs′,h′1 .

(e) If ` ∈ Lab[S]Xs′,h′1 , then ` ∈ f(Lab[S]Xs,h1
).

242 Chapter 5. Deciding Robustness Properties in PSpace

Proof of (b). We divide the proof depending on ĥ.
case: ĥ = cβ, for some β ∈ [1, α]. Consider ` ∈ dom(cβ)∪ ran(cβ). By (c10)–(c12),

` belongs to a set of locations L ∈ C ′β ∪ C
′
β. L describes a cycle in h′1, which

implies that ` ∈ dom(cβ). By (ρ3), we know that if there is `′ ∈ dom(h′1) such
that h′1(`′) = `, then `′ ∈ dom(cβ). Therefore, to conclude the proof it is sufficient
to show that no location in L corresponds to a program variable in X. Let `′ ∈ L.
We divide the proof depending on whether L ∈ C ′β or L ∈ C ′β.
case: L ∈ C ′β. By (c4), we have either `′ = s(u) or `′ > maxvalX∪{u}(s′, h′). In
the latter case, `′ 6∈ s′(X) holds directly from the definition of maximum value.
In the former case, by (s2) we conclude that s(u) ∈ [Cβ][, and so, by definition
of Cβ, s(u) 6∈ dom(f). By (0f), `′ = s′(u) 6∈ ran(f). Since, by (1f), we have
s′(X) ⊆ ran(f), we derive `′ 6∈ s′(X).

case: L ∈ C ′β. By (u9), either `′ ∈ ran(f) ∪ {s(u)} or `′ > maxvalX∪{u}(s′, h′).
The latter case leads to `′ 6∈ s′(X), as in the previous case of the proof. In the
former case, if `′ ∈ ran(f) then, by (c7), f−1(`′) ∈ [Cβ][. By definition, Cβ ⊆
Cycl[S]Xs,h1

(β), which in turn implies that f−1(`′) belongs to an unlabelled cycle
described by an element in Cycl[S]Xs,h1

(β). Therefore, f−1(`′) 6∈ s(X). By (1f), we
derive `′ 6∈ s′(X). Lastly, suppose `′ = s(u) 6∈ ran(f). Trivially, `′ 6∈ ran(f) implies
`′ 6∈ s′(X), again by (1f).

case: ĥ = u. Analogous to the previous case of the proof. We rely on the proper-
ties (u10)–(u12) of u, as well as the properties of U ′ and U

′, in (6) and (7).
case: ĥ = r. Consider ` ∈ dom(r) ∪ ran(r). We divide the proof depending on

whether ` ∈ dom(r) or ` ∈ ran(r).
case: ` ∈ dom(r). By (ρ3), we know that if there is `′ ∈ dom(h′1) such that
h′1(`′) = `, then `′ ∈ dom(r). Therefore, to conclude that h′1 does not witness a
path going from a location in s′(X) to `, it is sufficient to show that dom(r) ∩
s′(X) = ∅. Without loss of generality, we simply show that ` 6∈ s′(X). By (r4),
either ` ∈ R′, or ` ∈ ran(f) and f−1(`) ∈ Rem[S]X,αs,h1

. First, suppose that ` ∈
ran(f) and f−1(`) ∈ Rem[S]X,αs,h1

. From the definition of Rem[S]X,αs,h1
, f−1(`) 6∈ s(X).

From (1f), ` 6∈ s′(X). Otherwise, let us suppose that ` ∈ R′. By (r3), either
` = s(u) or ` > maxvalX∪{u}(s′, h′). In the latter case, by definition of maximum
value, ` 6∈ s′(X). In the former case, from (r2) we derive s(u) ∈ R By definition
of R, s(u) 6∈ dom(f). By (0f), ` = s′(u) 6∈ ran(f). by (1f), ` 6∈ s′(X).

case: ` ∈ ran(r). By (r5), ` = `r = maxvalX∪{u}(s′, h′) + (card(X) + 1)(α + 3)4,
by (?) and (6f), we know that `r does not belong to a prime set, nor to
ran(f). Therefore, by (p5), (c12), (u12), (p4), and (s5), we conclude that for
all `′ ∈ dom(h′1), if h′1(`′) = `r then `′ ∈ dom(r). In the previous case of the
proof, we have shown that h′1 does not witness any path going from a location
in s′(X) to a location in dom(r). From `r 6∈ ran(f), by (1f) we conclude that
`r 6∈ s(X). We conclude that ` is not reached by a location in s′(X).

Proof of (c). Since ` ∈ dom(pf(`′)), by (ρ3), we know that if there is `′′ ∈ dom(h′1) such that
h′1(`′′) = `, then `′′ ∈ dom(pf(`′)). So, to conclude that h′1 does not witness a path
going from a location in s′(X) to `, it is sufficient to prove that dom(pf(`′))∩s′(X) = ∅.
The proof of this statement carries out analogously to the proof of (b), in the case
where ĥ = r and ` ∈ dom(r).

5.6. Connecting the Two Families of Core Formulae 243

Proof of (d). Let ` ∈ dom(sf(`′)) \ {f(`′)}. Similarly to (ρ3), we can show that if there is
`′′ ∈ dom(h′1) such that h′1(`′′) = `, then `′′ ∈ dom(sf(`′)). Indeed, by (s4), ` belongs
to either S′f(`′) or to {`′′ ∈ ran(f) | f−1(`′′) ∈ Path[S]Xs,h1

(`′)}. We conclude that:

∗ ` 6∈ ran(s
f(˜̀)), for all ˜̀∈ Lab[S]Xs,h1

\ {`′}.
By (s4) and (s5), ran(s

f(˜̀)) is equivalent to(
(S′

f(˜̀) ∪ {`′ ∈ ran(f) | f−1(`′) ∈ Path[S]Xs,h1
(˜̀)}) \ {f(˜̀)) ∪ {f(sbyX

s,h1
(˜̀))}.

Clearly, ` cannot belong to the set on the left hand side of the union above.
This follows directly from ˜̀ 6= `′, which implies that S′

f(˜̀) ∩ S′f(`′) = ∅ and

Path[S]Xs,h1
(˜̀) ∩ Path[S]Xs,h1

(`′) = ∅. Ad absurdum, suppose ` = f(sbyX
s,h1

(˜̀)).
By (D), ` 6∈ S′f(`′) and so sbyX

s,h1
(˜̀) ∈ Path[S]Xs,h1

(`′). As sbyX
s,h1

(˜̀) ∈ Lab[S]Xs,h1
,

we derive sbyX
s,h1

(˜̀) = `′. Indeed, we recall that `′ is the only labelled location
in Path[S]Xs,h1

(`′). However, this contradicts ` 6= f(`′).
∗ ` 6∈ ran(p

f(˜̀)), for all ˜̀∈ s(X).

By (p5), ran(p
f(˜̀)) = {f(˜̀)}. Ad absurdum, suppose ` = f(˜̀). By (D), ` 6∈ S′f(`′)

and so ˜̀∈ Path[S]Xs,h1
(`′). As ˜̀∈ s(X) ⊆ Lab[S]Xs,h1

, we derive ˜̀= `′. However,
this contradicts ` 6= f(`′).

∗ ` 6∈ ran(cβ), for all β ∈ [1, α].
Follows by ` ∈ dom(sf(`′)) and sf(`′)⊥cβ, as ran(cβ) = dom(cβ) ((c11) and (c12)).

∗ ` 6∈ ran(u).
Similar to the previous case, as ran(cβ) = dom(cβ), by (u11) and (u12).

∗ ` 6∈ ran(r).
By (r5), ran(r) = {`r}. By definition of `r, it does not belong to a prime set,
nor to ran(f). Thus, `r 6= `.

From this case analysis and the definition of h′1, every location `′′ such that h′1(`′′) = `

must belong to ran(sf(`′)). From (s5), we conclude that there is at most one location
`′′ ∈ ran(sf(`′)) such that h′1(`′′) = `. We apply Lemma 5.52, deriving ` 6∈ Lab[S]Xs′,h′1 .

Proof of (e). Suppose ` ∈ Lab[S]Xs′,h′1 . If ` = s′(x), for some x ∈ X, then, from X ⊆ T[W]L

and (1f), we derive ` ∈ ran(f) and f−1(s(x)). As X ⊆ T[S]X, we conclude ` ∈ Lab[S]Xs,h1
.

Otherwise, let us suppose that ` is not assigned to a program variable, and corresponds
instead to either a meet-point variable or an end-point variable. In both cases, by
definition of [[.]]Xs′,h′1 , we conclude that h′1 witnesses a non-empty path going from s′(x)
to `, for some ` ∈ X. In particular, this implies that ` ∈ ran(h′1). By (b), ` 6∈ ran(ĥ),
where ĥ is any heap among

pf(`X1), . . . , pf(`Xn),c1, . . . , cα,u,r.
Since ` is not assigned to a program variable, by (p5), for all `′ ∈ s(X), ` 6∈ ran(pf(`′)).
Therefore, by definition of h′1, there is `′ ∈ Lab[S]Xs,h′1 such that ` ∈ ran(sf(`′)). Now,
if ` ∈ dom(sf(`′)), then, by (d), we conclude that ` = f(`′), concluding the proof.
Otherwise, ` ∈ ran(sf(`′)) \ dom(sf(`′)) and, directly from (s5), we conclude that ` =
f(sbyX

s,h1
(`′)). As sbyX

s,h1
(`′) ∈ Lab[S]Xs,h1

, again, we conclude that ` ∈ f(Lab[S]Xs,h1
).

SA. For all t ∈ T[S]X, [[t]]Xs,h1
and [[t]]Xs′,h′1 are equidefined. If defined, f([[t]]Xs,h1

) = [[t]]Xs′,h′1 .

Before proving (SA), we show the two intermediate results below.

244 Chapter 5. Deciding Robustness Properties in PSpace

ρ :
` = `xj0 `1 `j1 `j1+1 `jp−1 `(jp−1+1) `jp = `′

. . .

: Path[S]Xs,h1
(`j0), : Path[S]Xs,h1

(`j1), : Path[S]Xs,h1
(`j(p−1)).

Figure 5.22: Splitting ρ depending on its labelled locations.

(f) Let `, `′ ∈ Lab[S]Xs,h1
be such that h1 witnesses a minimal non-empty path ρ =

(`0, . . . , `k) going from ` to `′. Let j0 < · · · < jp be the indices in [0, k] such that
{`j0 , . . . , `jp−1} = {`0, . . . , `k}∩Lab[S]Xs,h1

. Then, dom(sf(`j0)+. . .+sf(`jp)) is a minimal
set describing a non-empty path in h′1 going from f(`) to f(`′).

(g) Let `, `′ ∈ f(Lab[S]Xs,h1
) such that h′1 witnesses a non-empty path ρ = (`0, . . . , `k)

going from ` to `′. Let j0 < · · · < jp be the indices in [0, k] such that {`j0 , . . . , `jp} =
{`0, . . . , `k}∩f(Lab[S]Xs,h1

). Then,
⋃
i∈[0,p−1] Path[S]Xs,h1

(`ji) is a minimal set describing
a non-empty path in h1 going from f−1(`) to f−1(`′).

Proof of (f). We remind the reader that as ρ = (`0, . . . , `k) is minimal and non-empty,
the locations `1, . . . , `k−1 are distinct, and they are different from `k. Since ` and `′

belong to Lab[S]Xs,h1
, we have `j0 = ` and `jp = `′. Moreover, for every i ∈ [0, k − 1],

`i ∈ dom(h1). Let i ∈ [0, p − 1]. Following the definition of `j0 , . . . , `jp , we conclude
that, for every i′ ∈ [ji + 1, ji+1 − 1], we have `i′ 6∈ Lab[S]Xs,h1

. According to Defi-
nition 5.27, sbyX

s,h1
(`ji) = `ji+1 and, according to Definition 5.29, Path[S]Xs,h1

(`ji) =
{`ji , `ji+1, . . . , `ji+1−1}. Notice that this implies that

⋃
i∈[0,p−1] Path[S]Xs,h1

(`ji) is a
minimal set describing the path ρ, as roughly displayed in Figure 5.22. Now, since
`ji ∈ dom(h1), from (s5) and sf(ji) ⊆ h′1, we derive that dom(sf(ji)) is a minimal set
describing a path in h′1 going from f(`ji) to f(`ji+1). We recall that f is injective and
so for all distinct i, i′ ∈ [0, p − 1], `ji 6= `ji′ , which in turn implies that sf(ji)⊥sf(ji′).
Moreover, as ρ is minimal, for every i ∈ [1, p − 1], `ji 6= `jp−1 = `′. As ` = `j0 , we
conclude that dom(sf(`j0) + . . .+ sf(`jp)) is a minimal set describing a non-empty path
in h′1 going from f(`) to f(`′).

Proof of (g). Analogous to the proof of (f). Briefly, since ρ = (`0, . . . , `k) is a non-empty
path in h′1, for every i ∈ [0, k − 1] we have `i ∈ dom(h′1). We analyse the labelled
locations `j0 , . . . , `jp−1 , where `j0 = `. Let i ∈ [0, p − 1]. As `ji ∈ f(Lab[S]Xs,h1

) and
`ji ∈ dom(h′1), the heap s`ji is non-empty. Following the definition of `j0 , . . . , `jp , we
conclude that, for every i′ ∈ [ji + 1, ji+1 − 1], we have `i′ 6∈ f(Lab[S]Xs,h1

). From (s5),
this allows us to conclude that, dom(s`ji) describes a path from `ji to `ji+1 =
f(sbyX

s,h1
(f−1(`ji))). As done in (f), by minimality of ρ and injectivity of f, this allows

us to conclude that
⋃
i∈[0,p−1] Path[S]Xs,h1

(`ji) is a minimal set describing a non-empty
path in h1, going from f−1(`) to f−1(`′).

Proof of (SA). If t is a program variable, then the statement follows directly from (1f).
Below, we divide the proof depending on whether t is a meet-point variable or an
end-point variable.

case: t = m(x, y), for some x, y ∈ X. (⇒): Suppose [[m(x, y)]]Xs,h1
= `. We prove

f(`) = [[m(x, y)]]Xs′,h′1 By definition of meet-point variables, h1 witnesses two non-
empty disjoint paths ρ and ρ′, where ρ goes from s(x) to `, whereas ρ′ goes from

5.6. Connecting the Two Families of Core Formulae 245

s(y) to `. Moreover, ` does not belong to a cycle. By (f), we conclude that h′1
witnesses two non-empty paths, one going from f(s(x)) = s′(x) to f(`), and one
going from f(s(y)) = s′(y) to f(`). Moreover, as ρ and ρ′ are disjoint, so are
these two paths of h′1. To conclude that f(`) = [[m(x, y)]]Xs′,h′1 it is sufficient to
show that h′1 does not witness a cycle that involves f(`). Ad absurdum, suppose
that h′1 witnesses a non-empty path going from f(`) to f(`). We apply (g) and
conclude that h1 witnesses a non-empty path going from ` to `. However, this
contradicts [[m(x, y)]]Xs,h1

= `. Thus, h′1 does not witness a cycle that involves f(`).
So, f(`) = [[m(x, y)]]Xs′,h′1 .
(⇐): Suppose [[m(x, y)]]Xs′,h′1 = `. We prove that f−1(`) = [[m(x, y)]]Xs,h1

. Thanks
to (e), ` ∈ f(Lab[S]Xs,h1

). This allows us to prove the result analogously to the left-
to-right direction. Indeed, by definition of meet-point variables, h′1 witnesses two
non-empty disjoint paths ρ and ρ′, where ρ goes from s′(x) to ` whereas ρ′ goes
from s′(y) to `. Moreover, ` does not belong to a cycle. By (1f), f−1(s′(x)) = s(x)
and f−1(s′(y)) = s(y). This implies s(x), s(y) ∈ f(Lab[S]Xs,h1

), which allows us to
apply (g). We conclude that h1 witnesses two paths, one going from s(x) to
f−1(`) and one going from s(y) to f−1(`). As ρ and ρ′ are disjoint, so are these
two paths of h1. To conclude that f−1(`) = [[m(x, y)]]Xs,h1

, it is sufficient to show
that f−1(`) does not belong to a cycle of h1. As f−1(`) ∈ Lab[S]Xs,h1

, this is done
symmetrically to the other direction. Ad absurdum, suppose that h1 witnesses
a non-empty path going from f−1(`) to itself. By (f), h′1 witnesses a non-empty
path going from ` to itself. However, this contradicts [[m(x, y)]]Xs′,h′1 = `. We
conclude that f−1(`) = [[m(x, y)]]Xs,h1

.
case: t = e(x), for some x ∈ X. (⇒): Suppose [[e(x)]]Xs,h1

= `. We show that
` = [[e(x)]]Xs′,h′1 . By definition of end-point variable, h1 witnesses a non-empty path
ρ going from s(x) to `. Moreover, if ` ∈ dom(h1), then h1 witnesses a non-empty
path ρ′ that is disjoint from ρ and goes from ` to `. By (f), h′1 witnesses a non-
empty path ρ′′ going from f(s(x)) = s′(x) to f(`). To conclude that ` = [[e(x)]]Xs′,h′1 ,
we show that if f(`) ∈ dom(h′1), then h′1 witnesses a non-empty path going from
f(`) to f(`), that is disjoint from ρ′′. Suppose that f(`) ∈ dom(h′1). By definition
of sf(`), Path[S]Xs,h1

(`) 6= ∅ and ` ∈ dom(h1). By semantics of end-point variables,
this implies that ρ′, as defined above, is a path in h1. Again by (f), we conclude
that h′1 witnesses a non-empty path going from f(`) to f(`). As ρ and ρ′ are
disjoint, this path is disjoint from ρ′′, concluding the proof.
(⇐): Suppose [[e(x)]]Xs′,h′1 = `. Thanks to (e), ` ∈ f(Lab[S]Xs,h1

). This allows us to
show that f−1(`) = [[e(x)]]Xs,h1

analogously to the left-to-right direction, by relying
on (f) and (g).

SB. For every t ∈ T[S]X,

(h) sbyX
s,h1

(t) and sbyX
s′,h′1

(t) are equidefined. When defined, f(sbyX
s,h1

(t)) = sbyX
s′,h′1

(t).

(i) min(card(Path[S]Xs,h1
(t)),S(α)) = min(card(Path[S]Xs′,h′1(t)),S(α)).

(j) If hδ11 ([[t]]Xs,h1
) = s(u) for some δ1 ∈ [0, card(Path[S]Xs,h1

(t))], then h′1
δ2([[t]]Xs′,h′1) = s′(u)

for some δ2 ∈ [0, card(Path[S]Xs′,h′1(t))] s.t. min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)) and
min(card(Path[S]Xs,h1

(t))− δ1,Sright(αj)) = min(card(Path[S]Xs′,h′1(t))− δ2,Sright(αj)).

246 Chapter 5. Deciding Robustness Properties in PSpace

(k) If h′1
δ2([[t]]Xs′,h′1) = s′(u) for some δ2 ∈ [0, card(Path[S]Xs′,h′1(t))], then hδ1j ([[t]]Xs,h1

) = s(u)
for some δ1 ∈ [0, card(Path[S]Xs,h1

(t))] s.t. min(δ1,Sleft(αj)) = min(δ2,Sleft(αj)) and
min(card(Path[S]Xs,h1

(t))− δ1,Sright(αj)) = min(card(Path[S]Xs′,h′1(t))− δ2,Sright(αj)).

These four statements essentially rely on the intermediate result below:

(l) If [[t]]Xs,h1
is defined, then dom(sf([[t]]X

s,h1
)) = Path[S]Xs′,h′1([[t]]Xs′,h′1).

Proof of (l). By (SA), f([[t]]Xs,h1
) = [[t]]Xs′,h′1 . If [[t]]Xs,h1

6∈ dom(h1) then Path[S]Xs,h1
(t) = ∅,

which implies dom(sf([[t]]X
s,h1

)) = ∅, by (s9). This implies [[t]]Xs′,h′1 6∈ dom(h′1) and so
Path[S]Xs′,h′1([[t]]Xs′,h′1) = ∅. Otherwise ([[t]]Xs,h1

∈ dom(h1)), from (s5), dom(sf([[t]]X
s,h1

))
is a minimal set describing a non-empty path ρ = (`0, . . . , `n), in both sf([[t]]X

s,h1
)

and h′1, from [[t]]Xs′,h′1 to f(sbyX
s,h1

(t)). Notice that dom(sf([[t]]X
s,h1

)) = {`0, . . . , `n−1}.
Again by (SA), f(sbyX

s,h1
(t)) ∈ Lab[S]Xs′,h′1 . From (d), the locations `1, . . . , `n−1 are

not in Lab[S]Xs′,h′1 . This means that `n = f(sbyX
s,h1

(t)) is the first labelled location
reached, in h′1, from [[t]]Xs′,h′1 . According to Definition 5.27, `n = sbyX

s′,h′1
(t). According

to Definition 5.29, Path[S]Xs′,h′1(t) = {`0, . . . , `n−1} = dom(sf([[t]]X
s,h1

)).

Proof of (h). (⇒): If sbyX
s,h1

(t) is defined, then so is [[t]]Xs,h1
, and Path[S]Xs,h1

(t) 6= ∅.
By (l), dom(sf([[t]]X

s,h1
)) = Path[S]Xs′,h′1([[t]]Xs′,h′1). From Path[S]Xs,h1

(t) 6= ∅ and (s9),
we conclude that dom(sf([[t]]X

s,h1
)) 6= ∅ and thus, by (s5), it is a minimal set describing

a path in h′1, going from f([[t]]Xs′,h′1) = [[t]]Xs′,h′1 (by (SA)) to f(sbyX
s,h1

(t)). By definition,
Path[S]Xs′,h′1([[t]]Xs′,h′1) is a minimal set describing a non-empty path going from [[t]]Xs′,h′1
to sbyX

s′,h′1
(t). The two paths coincide. So, f(sbyX

s,h1
(t)) = sbyX

s′,h′1
(t).

(⇐): If sbyX
s′,h′1

(t) is defined, then so is [[t]]Xs′,h′1 , and [[t]]Xs′,h′1 ∈ dom(h′1). By (SA), so
is f−1([[t]]Xs,h′1) = [[t]]Xs,h1

. By (l), dom(sf([[t]]X
s,h1

)) = Path[S]Xs′,h′1([[t]]Xs′,h′1). From [[t]]Xs′,h′1 ∈
dom(h′1), we conclude that dom(sf([[t]]X

s,h1
)) is non-empty. Afterwards, the proof that

f(sbyX
s,h1

(t)) = sbyX
s′,h′1

(t) carries out as in the left-to-right direction.

Proof of (i). As f is injective, the sets Path[S]Xs,h1
(t) ∩ dom(f) and {` ∈ ran(f) | f−1(`) ∈

Path[S]Xs,h1
(t)} have the same cardinality. Together with (s1), this implies that

min(card(S[[t]]X
s,h1

) + card(Path[S]Xs,h1(t) ∩ dom(f)),S(α))

= min(card(S′f([[t]]X
s,h1

)) + card({` ∈ ran(f) | f−1(`) ∈ Path[S]Xs,h1(t)}),S(α)).

On the left hand side of this equivalence, card(S[[t]]X
s,h1

)+card(Path[S]Xs,h1
(t) ∩ dom(f)))

is equivalent to card(Path[S]Xs,h1
(t)). Indeed, from the definition of S[[t]]X

s,h1
, the set

Path[S]Xs,h1
(t) is the union of the two disjoint sets S[[t]]X

s,h1
and Path[S]Xs,h1

(t)∩dom(f).
On the right hand side, directly from (s4) and (D), we have

card(sf([[t]]X
s,h1

)) = card(S′
f([[t]]X

s,h1
)) + card({` ∈ ran(f) | f−1(`) ∈ Path[S]Xs,h1

(t)})).

From (SA), f([[t]]Xs,h1
) = [[t]]Xs′,h′1 . Afterwards, by (l), we conclude:

min(card(Path[S]Xs,h1
(t)),S(α)) = min(card(Path[S]Xs′,h′1(t)),S(α)).

Proof of (j). As [[t]]Xs,h1
is defined, by (l), dom(sf([[t]]X

s,h1
)) = Path[S]Xs′,h′1(t). Then, the result

holds directly from (s8).

5.6. Connecting the Two Families of Core Formulae 247

Proof of (k). First of all, if s′(u) = [[t]]Xs′,h′1 or s′(u) = sbyX
s′,h′1

(t), then by (SA) and (0f), we
conclude that s(u) = [[t]]Xs,h1

or s(u) = sbyX
s,h1

(t), respectively, which ends the proof.
Otherwise, suppose there is δ2 ∈ [1, card(Path[S]Xs′,h′1(t))−1] such that h′1

δ2([[t]]Xs′,h′1) =
s′(u). Since Path[S]Xs′,h′1(t) is a minimal set describing the path in h′1, going from
[[t]]Xs′,h′1 to sbyX

s′,h′1
(t), δ2 is unique. Therefore, in order to conclude the proof, it is suffi-

cient to show that s(u) ∈ Path[S]Xs,h1
(`), and apply (j). From (l), (s4) and (s5), we con-

clude that either s′(u) ∈ S′
f([[t]]X

s,h1
) or s′(u) ∈ {`′ ∈ ran(f) | f−1(`′) ∈ Path[S]Xs,h1

(t)}.
In the former case, by (s2) s(u) ∈ S[[t]]X

s,h1
⊆ Path[S]Xs,h1

(t). Similarly, in the latter
case, (0f) allows us to conclude that s(u) ∈ Path[S]Xs,h1

(t).

SC . For every x ∈ X,

(m) min(card(Pred[S]Xs,h1
(x)),P(α)) = min(card(Pred[S]Xs′,h′1(x)),P(α)),

(n) s(u) ∈ Pred[S]Xs,h1
(x) if and only if s′(u) ∈ Pred[S]Xs′,h′1(x).

Essentially, both statements rely on the following result:

(o) dom(pf(s(x))) = Pred[S]Xs′,h′1(x).

Proof of (o). From (1f), f(s(x)) = s′(x).
(⊆): Let ` ∈ dom(pf(s(x))). By (p5), we have h′1(`) = s′(x). Thanks to (c), this implies
` ∈ Pred[S]Xs′,h′1(x), directly by definition of Pred[S]Xs′,h′1(x).
(⊇): Suppose ` ∈ Pred[S]Xs′,h′1(x). Thus, h′1(`) = s′(x). This implies ` ∈ dom(h′1).
We prove that ` ∈ dom(pf(s(x))) by showing that ` cannot belong to the domain
of the other heaps used to define h′1. By Proposition 5.31, ` 6∈ Path[S]Xs′,h′1(f(`)),
for any ` ∈ Lab[S]Xs,h1

. From (l), ` does not belong to dom(sf(`L1) + . . . + sf(`Lm)).
Since h′1(`) ∈ s′(X), by (b), ` 6∈ dom(c1 + . . . + cα + u + r). By definition of h′1, we
conclude that there is `′ ∈ s(X) such that ` ∈ dom(pf(`′)). Since f(s(x)) = s′(x) and
h′1(`) = s′(x), by definition of P ′f(s(x)), we derive `′ = s(x). So, ` ∈ dom(pf(s(x))).

Proof of (m). As f is injective, we have
card(Pred[S]Xs,h1

(x) ∩ dom(f)) = card({`′ ∈ ran(f) | f−1(`′) ∈ Pred[S]Xs,h1
(x)}).

By(p1), min(card(Ps(x)),P(α)) = min(card(P ′f(s(x))),P(α)). This implies that

min(card(Ps(x)) + card(Pred[S]Xs,h1(x) ∩ dom(f)),P(α))
= min(card(P ′f(s(x))) + card({`′ ∈ ran(f) | f−1(`′) ∈ Pred[S]Xs,h1(x)}),P(α)).

On the left hand side of this equality, card(Ps(x)) + card(Pred[S]Xs,h1
(x) ∩ dom(f)) is

equivalent to card(Pred[S]Xs,h1
(x)). Indeed, by definition of Ps(x), the set Pred[S]Xs,h1

(x)
is the union of the two disjoint sets Ps(x) and Pred[S]Xs,h1

(x) ∩ dom(f). On the right
hand side, directly from (p4) and (D), we have

card(pf(s(x))) = card(P ′f(s(x))) + card({`′ ∈ ran(f) | f−1(`′) ∈ Pred[S]Xs,h1
(x)}).

From (o), we conclude:
min(card(Pred[S]Xs,h1

(x)),P(α)) = min(card(Pred[S]Xs′,h′1(x)),P(α)).

Proof of (n). As discussed during the proof of (m),
Pred[S]Xs,h1(x) = Ps(x) ∪ Pred[S]Xs,h1(x) ∩ dom(f),
Pred[S]Xs′,h′1(x) = P ′f(s(x)) ∪ {`

′ ∈ ran(f) | f−1(`′) ∈ Pred[S]Xs,h1(x)}.

248 Chapter 5. Deciding Robustness Properties in PSpace

(⇒): Suppose s(u) ∈ Pred[S]Xs,h1
(x). By (p2), if s(u) ∈ Ps(x), then s′(u) ∈ P ′f(s(x)).

From (0f), if s(u) ∈ Pred[S]Xs,h1
(x) ∩ dom(f) then we derive s′(u) ∈ {`′ ∈ ran(f) |

f−1(`′) ∈ Pred[S]Xs,h1
(x)}. In both cases, we conclude that s′(u) ∈ Pred[S]Xs′,h′1(x).

(⇐): Symmetrical to the other direction.

SD. For every β ∈ [1, α],

(p) min(card(Cycl[S]Xs,h1
(β)),L(α)) = min(card(Cycl[S]Xs′,h′1(β)),L(α)),

(q) s(u) ∈ [Cycl[S]Xs,h1
(β)][if and only if s′(u) ∈ [Cycl[S]Xs′,h′1(β)][.

Both statements rely on the following result

(r) C ′β ∪ C
′
β = Cycl[S]Xs′,h′1(β).

Proof of (r). (⊆): Let L ∈ Cβ∪C
′
β. By definition card(L) = β. By (c10), L describes a cycle

in cβ, of length β. By cβ ⊆ h′1, L describes a cycle in h′1. As L ⊆ dom(cβ), by (b)
we conclude that L does not contain labelled locations in Lab[S]Xs′,h′1 . Indeed, from
the semantics of [[.]]Xs′,h′1 , labelled locations are either assigned to program variables
or reached by one. We conclude that L ∈ Cycl[S]Xs′,h′1(β).
(⊇): Suppose L ∈ Cycl[S]Xs′,h′1(β). So, L is a set of cardinality β that describes a cycle
in h′1, of length β. Moreover, L ∩ Lab[S]Xs′,h′1 = ∅. We show that L ⊆ dom(cβ), thus
concluding the proof by (c11) and definition of cβ. Let ĥ be a heap among

c1, . . . , cβ−1, cβ+1, . . . , cα, u.
By definition, ĥ only contains cycles, but they are of lengths different from β. There-
fore, L∩dom(ĥ) = ∅. Since L ∈ Cycl[S]Xs′,h′1(β), For all x ∈ X, L ∩ Pred[S]Xs′,h′1(x) = ∅,
which in turn implies L∩ dom(ps′(x)) = ∅, directly by (o). Similarly, by (l), for every
` ∈ Lab[S]Xs,h1

, L ∩ dom(sf(`)) = ∅. Lastly, L ∩ dom(r) = ∅, as ran(r) ⊆ {`r} and
`r 6∈ dom(h′1), by (r5) and (ρ1). We have shown L ∩ dom(ĥ) = ∅, for all ĥ among

c1, . . . , cβ−1, cβ+1, . . . , cα, u, r, sf(`L1), . . . , sf(`Lm).
By definition of h′1, we conclude that L ⊆ dom(cβ).

Proof of (p). From (c5), card(Cβ) = card(C ′β). Together with (c1), we conclude

min(card(Cβ) + card(Cβ),L(α)) = min(card(C ′β) + card(C ′β),L(α)).
On the left hand side of this equality, by definition of Cβ and Cβ, we derive card(Cycl[S]Xs,h1

(β)) =
card(Cβ) + card(Cβ). Similarly, on the right hand side, by (r) and the fact that C ′β
and C

′
β are disjoint, card(Cycl[S]Xs′,h′1(β)) = card(C ′β) + card(C ′β). This allows us to

conclude the proof.
Proof of (q). By definition of Cβ and Cβ, Cycl[S]Xs,h1

(β) = Cβ∪Cβ. Then, the result holds
directly from (r), together with (c2) and (c6).

SE . (s) min(card(⇑Cycl[S]X,αs,h1
),L(α)) = min(card(⇑Cycl[S]X,αs′,h′1),L(α)),

(t) s(u) ∈ [⇑Cycl[S]X,αs,h1
][if and only if s′(u) ∈ [⇑Cycl[S]X,αs′,h′1][.

Both statements rely on the following result

(u) U ′ ∪ U ′ = ⇑Cycl[S]X,αs′,h′1 .

Proof of (s)–(u). Analogous to (p)–(r).

SF . (v) min(card(Rem[S]X,αs,h1
),R(α)) = min(card(Rem[S]X,αs′,h′1),R(α)),

5.6. Connecting the Two Families of Core Formulae 249

(w) s(u) ∈ Rem[S]X,αs,h1
if and only if s′(u) ∈ Rem[S]X,αs′,h′1 .

Both statements rely on the following result
(x) dom(r) = Rem[S]X,αs′,h′1 .

Proof of (x). (⊆): Let ` ∈ dom(r). Given `′ ∈ Lab[S]Xs′,h′1 , by (l), ` 6∈ Path[S]Xs′,h′1(`′).
Given x ∈ X, from (o), ` 6∈ Pred[S]Xs′,h′1(`′). Given β ∈ [1, α], by (r) and (c11),
` 6∈ Cycl[S]Xs′,h′1(β). Lastly, (u) and (u11) imply ` 6∈ ⇑Cycl[S]X,αs′,h′1 . As ` ∈ dom(r) ⊆
dom(h′1), by definition of Rem[S]X,αs′,h′1 , we conclude that ` ∈ Rem[S]X,αs′,h′1 .
(⊇): Symmetrical to the other direction.

Proof of (v). As f is injective, we have
card(Rem[S]X,αs,h1

∩ dom(f)) = card({`′ ∈ ran(f) | f−1(`′) ∈ Rem[S]X,αs,h1
}).

By(r1), min(card(R),R(α)) = min(card(R′),R(α)). This implies that
min(card(R) + card(Rem[S]X,αs,h1

∩ dom(f)),R(α))

= min(card(R′) + card({`′ ∈ ran(f) | f−1(`′) ∈ Rem[S]X,αs,h1
}),R(α)).

On the left hand side of this equivalence, card(R) + card(Rem[S]X,αs,h1
∩dom(f)) is equiv-

alent to card(Rem[S]X,αs,h1
), directly by definition of R. On the right hand side, directly

from (r4) and (D), card(r) = card(R′) + card({`′ ∈ ran(f) | f−1(`′) ∈ Rem[S]X,αs,h1
}).

From (x), we conclude:
min(card(Rem[S]X,αs,h1

),R(α)) = min(card(Rem[S]X,αs′,h′1),R(α)).
Proof of (w). As discussed during the proof of (v),

Rem[S]X,αs,h1
= R ∪ Rem[S]X,αs,h1

∩ dom(f),

Rem[S]X,αs′,h′1 = R′ ∪ {`′ ∈ ran(f) | f−1(`′) ∈ Rem[S]X,αs,h1
}.

(⇒): Suppose s(u) ∈ Rem[S]X,αs,h1
. By (r2), if s(u) ∈ R, then s′(u) ∈ R′. By (0f), if

s(u) ∈ Rem[S]X,xs,h1
∩ dom(f) then s′(u) ∈ {`′ ∈ ran(f) | f−1(`′) ∈ Rem[S]X,αs,h1

}. In both
cases, we conclude that s′(u) ∈ Rem[S]X,αs′,h′1 .
(⇐): Symmetrical to the other direction.

Proof of (s, h1) ≈SX,α (s′, h′1). Let us consider a core formula ϕ in Core[S](X, αj). We have
(s, hj) |= ϕ iff (s′, h′j) |= ϕ, as discussed below:
case: ϕ = t1 = t2. Follows directly from (SA).
case: ϕ = seesX(t1, t2) ≥ β. Follows from (SA), (SB)((h) and (i)).
case: ϕ = predSX (x) ≥ β. Follows directly from (m).
case: ϕ = loopSX (β1) ≥ β2. Follows directly from (p).
case: ϕ = ⇑loopSX,α ≥ β. Follows directly from (s).
case: ϕ = remSX,α ≥ β. Follows directly from (v).
case: ϕ = u = t. Follows directly from (SA) and (0f).
case: ϕ = u ∈ seesX(t1, t2) ≥ (β1, β2,). Follows directly from (j) and (k).
case: ϕ = u ∈ predSX (x). Follows directly from (n).
case: ϕ = u ∈ loopSX (β). Follows directly from (q).
case: ϕ = u ∈ ⇑loopSX,α. Follows directly from (t).
case: ϕ = u ∈ remSX,α. Follows directly from (w).
Therefore, (s, h1) ≈SX,α (s′, h′1).

We remind the reader that, by Corollary 5.36, (s, h1) ≈SX,α (s′, h′1) implies (s, h1) ≈WX,α (s′, h′1).

250 Chapter 5. Deciding Robustness Properties in PSpace

Towards (s, h+h1) ≈WX,α (s′, h′+h′1). Below, we write ~h as a shortcut for h+h1. Similarly, ~h′

is short for h′+h′1. Let x ∈ X. As a first step towards (s,~h) ≈WX,α (s′,~h′), we want to understand
the relationships between [[n(x)]]X

s,~h
, and [[n(x)]]X

s′,~h′
. We recall that [[n(x)]]Xs,h is defined if and only

if s(x) ∈ dom(h). Whenever it is defined, [[n(x)]]Xs,h = h(s(x)). Therefore,
• from ~h = h+ h1, [[n(x)]]X

s,~h
is defined if and only if so is one among [[n(x)]]Xs,h or [[n(x)]]Xs,h1

,

• from h⊥h1, [[n(x)]]Xs,h and [[n(x)]]Xs,h1
cannot be both defined.

We relate [[n(x)]]X
s,~h

and [[n(x)]]X
s′,~h′

following the analysis below:
case: [[n(x)]]Xs,h is defined. By [[n(x)]]Xs,h ∈ Lab[W]Xs,h and (1f), we derive f([[n(x)]]Xs,h) = [[n(x)]]Xs′,h′ .

Directly from Lemma 5.14(I), [[n(x)]]Xs,h = [[n(x)]]X
s,~h

and [[n(x)]]Xs′,h′ = [[n(x)]]X
s′,~h′

. Therefore:

(π1) If [[n(x)]]Xs,h (equivalently, [[n(x)]]Xs′,h′) is defined, then f([[n(x)]]X
s,~h

) = [[n(x)]]X
s′,~h′

.

case: [[n(x)]]Xs,h1
is defined. Since s(x) ∈ dom(h1), in this case we have Path[S]Xs,h1

(x) 6= ∅. We
split the analysis in the following three cases:
case: card(Path[S]Xs,h1

(x)) = 1. From (i), the assumption card(Path[S]Xs,h1
(x)) = 1 is equiv-

alent to card(Path[S]Xs′,h′1(x)) = 1. By definition of Path[S]Xs,h(x) and Path[S]Xs′,h′1(x), we
have h1(s(x))= [[n(x)]]Xs,h1

= sbyX
s,h1

(x) and h′1(s′(x))= [[n(x)]]Xs′,h′1 = sbyX
s′,h′1

(x). From (h),
f(sbyX

s,h1
(x)) = sbyX

s′,h′1
(x). Thanks to Lemma 5.14(I), we obtain:

(π2) If card(Path[S]Xs,h1
(x)) = 1 (or card(Path[S]Xs′,h′1(x)) = 1), then f([[n(x)]]X

s,~h
) = [[n(x)]]X

s′,~h′
.

case: card(Path[S]Xs,h1
(x))≥ 2 and [[n(y)]]Xs,h = [[n(x)]]Xs,h1

, for some y∈ X. In this case, we
apply (π1) in order to conclude that f([[n(x)]]Xs,h1

) = [[n(y)]]Xs′,h′ . Thanks to the prop-
erty (s6), we derive [[n(x)]]Xs′h′1 = [[n(y)]]Xs′,h′ . Notice that, by (i) and (s6), the assumption

card(Path[S]Xs,h1
(x))≥ 2 and there is y ∈ X such that [[n(y)]]Xs,h = [[n(x)]]Xs,h1

,
is equivalent to

card(Path[S]Xs′,h′1(x))≥ 2 and there is y ∈ X such that [[n(y)]]Xs′,h′ = [[n(x)]]Xs′,h′1 .
From f([[n(x)]]Xs,h1

) = [[n(y)]]Xs′,h′ and by Lemma 5.14(I),
(π3) If card(Path[S]Xs,h1

(x)) ≥ 2 and there is y ∈ X such that [[n(y)]]Xs,h = [[n(x)]]Xs,h1
(equiv. card(Path[S]Xs′,h′1(x))≥ 2 and there is y ∈ X such that [[n(y)]]Xs′,h′ = [[n(x)]]Xs′,h′1),
then f([[n(x)]]X

s,~h
) = [[n(x)]]X

s′,~h′
.

case: card(Path[S]Xs,h1
(x)) ≥ 2 and for all y ∈ X, [[n(y)]]Xs,h 6= [[n(x)]]Xs,h1

. Similarly to the
previous case, by (i) and (s6), this assumption is equivalent to

card(Path[S]Xs′,h′1(x))≥ 2 and for every y ∈ X, [[n(y)]]Xs′,h′ 6= [[n(x)]]Xs′,h′1 .
Differently from the other cases, we cannot rely on f. Indeed, by card(Path[S]Xs,h1

(x))≥ 2 we
derive [[n(x)]]Xs,h1

∈ Path[S]Xs,h1
(x)\{s(x)}. Since s(x) is the only location in Path[S]Xs,h1

(x)
that belongs to Lab[S]Xs,h1

, this implies [[n(x)]]Xs,h1
6∈ Lab[S]Xs,h1

. Since for every y ∈ X,
[[n(y)]]Xs,h 6= [[n(x)]]Xs,h1

, we conclude that [[n(x)]]Xs,h1
6∈ Lab[W]Xs,h (recall that locations as-

signed to program variables belong to both Lab[S]Xs,h1
and Lab[W]Xs,h). By definition of f,

[[n(x)]]Xs,h1
6∈ dom(f). This implies that [[n(x)]]Xs,h1

∈ Ss(x) and, by (s6), [[n(x)]]Xs′,h′1 ∈ S
′
s′(x).

By Lemma 5.14(I),
(π4) Whenever card(Path[S]Xs,h1

(x)) ≥ 2 and [[n(y)]]Xs,h 6= [[n(x)]]Xs,h1
holds for every y ∈ X,

(equivalently, card(Path[S]Xs′,h′1(x))≥ 2 and for every y ∈ X, [[n(y)]]Xs′,h′ 6= [[n(x)]]Xs′,h′1),
then [[n(x)]]X

s,~h
∈Ss(x) and [[n(x)]]X

s′,~h′
∈ S′s′(x).

5.6. Connecting the Two Families of Core Formulae 251

Let x, y ∈ X, β ∈ [1, α] and t ∈ T[S]X.
(σ1) [[n(x)]]X

s,~h
∈ Pred[W]Xs,h(y) if and only if [[n(x)]]X

s′,~h′
∈ Pred[W]Xs′,h′(y),

(σ2) [[n(x)]]X
s,~h
∈ Pred[S]Xs,h1

(y) if and only if [[n(x)]]Xs′,h′ ∈ Pred[S]X
s′,~h′

(y),

(σ3) [[n(x)]]X
s,~h
∈ Self[W]Xs,h if and only if [[n(x)]]X

s′,~h′
∈ Self[W]Xs′,h′ ,

(σ4) [[n(x)]]X
s,~h
∈ [Cycl[S]Xs,h1

(β)][if and only if [[n(x)]]X
s′,~h′
∈ [Cycl[S]Xs′,h′1(β)][,

(σ5) [[n(x)]]X
s,~h
∈ [⇑Cycl[S]X,αs,h1

][if and only if [[n(x)]]X
s′,~h′
∈ [⇑Cycl[S]X,αs′,h′1][,

(σ6) [[n(x)]]X
s,~h
∈ Rem[W]Xs,h if and only if [[n(x)]]X

s′,~h′
∈ Rem[W]Xs′,h′ ,

(σ7) [[n(x)]]X
s,~h
∈ Rem[S]X,αs,h1

if and only if [[n(x)]]X
s′,~h′
∈ Rem[S]X,αs′,h′1 ,

Suppose that Path[S]Xs,h1
(t) describes the path ρ = (`0, . . . , `p) in h1, from [[t]]Xs,h1

to sbyX
s,h1

(t).
Suppose that Path[S]Xs′,h′1(t) describes the path ρ′ = (`′0, . . . , `′q) in h′1, from [[t]]Xs′,h′1 to sbyX

s′,h′1
(t).

We have:
(σ8) [[n(x)]]X

s,~h
∈ Path[S]Xs,h1

(t) if and only if [[n(x)]]X
s′,~h′
∈ Path[S]Xs′,h′1(t)

(σ9) Let i ∈ {0, 1}. [[n(x)]]X
s,~h

= `i if and only if [[n(x)]]X
s′,~h′

= `′i,

(σ10) [[n(x)]]X
s,~h

= `p−1 if and only if [[n(x)]]X
s′,~h′

= `′q−1,

Figure 5.23: Connecting next-point variables.

case: [[n(x)]]Xs,h and [[n(x)]]Xs,h1
are not defined. In this case, [[n(x)]]X

s,~h
is not defined. From

(s, h) ≈WX,α+card(X) (s′, h′) and (s, h1) ≈WX,α (s′, h′1), we have:
• (s, h) |= n(x) = n(x) if and only if (s′, h′) |= n(x) = n(x).
• (s, h1) |= n(x) = n(x) if and only if (s′, h′1) |= n(x) = n(x).

From the semantics of n(x) = n(x), [[n(x)]]Xs′,h′ and [[n(x)]]Xs′,h′1 are not defined. Thus,
[[n(x)]]X

s′,~h′
is not defined. Symmetrically, if [[n(x)]]X

s′,~h′
is not defined then so is [[n(x)]]X

s,~h
.

(π5) [[n(x)]]X
s,~h

is defined if and only if [[n(x)]]X
s′,~h′

is defined.

The analysis above is exhaustive: whenever [[n(x)]]X
s,~h

is defined (equivalently, [[n(x)]]X
s′,~h′

is
defined, by (π5)), then the premises of exactly one statement among (π1)–(π4) are verified. We
can summarise (π1)–(π5) as follows:
(π6) Whenever [[n(x)]]X

s,~h
or [[n(x)]]X

s′,~h′
are defined, we have either f([[n(x)]]X

s,~h
) = [[n(x)]]X

s′,~h′
or

[[n(x)]]X
s,~h
∈ Ss(x) and [[n(x)]]X

s′,~h′
∈ S′s′(x).

All these properties are essential and, together with the definitions of the heaps given in Fig-
ure 5.21, (π1)–(π5), allow us to derive the properties (σ1)–(σ10) described in Figure 5.23. Let us
discuss the validity of (σ1)–(σ10). The proofs of (σ1), (σ3) (σ6) are very similar, and so are the
proofs of (σ2), (σ4), (σ5) and (σ7). Below, we show the proofs of (σ1), (σ4) and (σ8)–(σ10).

Proof of (σ1). (⇒): Suppose [[n(x)]]X
s,~h
∈ Pred[W]Xs,h(y). Since Ss(x) ⊆ dom(h1) and h⊥h1,

Ss(x) ∩ Pred[W]Xs,h(y) = ∅. From (π6) we conclude that f([[n(x)]]X
s,~h

) = [[n(x)]]X
s′,~h′

. By (2f),
[[n(x)]]X

s′,~h′
∈ Pred[W]Xs′,h′(y).

(⇐): Symmetrical to the other direction.

252 Chapter 5. Deciding Robustness Properties in PSpace

Proof of (σ4) (⇒): Suppose [[n(x)]]X
s,~h
∈ Cycl[S]Xs,h1

(β). Since Ss(x) ⊆ Path[S]Xs,h1
(x), from

Proposition 5.31, Cycl[S]Xs,h1
(β)∩Ss(x) = ∅. From (π6) we derive f([[n(x)]]X

s,~h
) = [[n(x)]]X

s′,~h′
.

By definition of Cβ and Cβ, since Cycl[S]Xs,h1
(β) = Cβ ∪ Cβ, we conclude that [[n(x)]]X

s,~h
∈

Cβ. Since [[n(x)]]X
s,~h
∈ dom(f), from (c7), [[n(x)]]X

s,~h
= f([[n(x)]]X

s,~h
∈ [C ′β][. From (c11) and (r),

[[n(x)]]X
s′,~h′
∈ Cycl[S]Xs′,h′1(β).

(⇐): Symmetrical to the other direction.

Proof of (σ8)–(σ10). The statements (σ8)–(σ10) trivially hold if Path[S]Xs,h1
(t) = ∅, which

implies Path[S]Xs′,h′1(t) = ∅ by (i). Below, we assume Path[S]Xs,h1
(t) and Path[S]Xs′,h′1(t)

non-empty. Let ρ = (`0, . . . , `p) be the path in h1, described by Path[S]Xs,h1
(t), going

from [[t]]Xs,h1
to sbyX

s,h1
(t). Similarly, let ρ′ = (`′0, . . . , `′q) be the path in h′1, described

by Path[S]Xs′,h′1(t), going from [[t]]Xs′,h′1 to sbyX
s′,h′1

(t).
(⇒): The left-to-right directions of all the statements (σ8)–(σ10) assume [[n(x)]]X

s,~h
∈

Path[S]Xs,h1
(t). We divide the proof depending on whether [[n(x)]]X

s,~h
∈ dom(f).

case: [[n(x)]]X
s,~h
∈ dom(f). In this case, [[n(x)]]X

s,~h
6∈ Ss(x) and so, by (π6), f([[n(x)]]X

s,~h
) =

[[n(x)]]X
s′,~h′

. From (l) and (s5), [[n(x)]]X
s′,~h′
∈ Path[S]Xs′,h1

(t), which proves (σ8).
Now, if [[n(x)]]X

s,~h
= [[t]]Xs,h1

= `0 then, from (SA), [[n(x)]]X
s′,~h′

= [[t]]Xs′,h′1 = `′0. Similarly,
if [[n(x)]]X

s,~h
= h1([[t]]Xs,h1

) = `1 then [[n(x)]]X
s′,~h′

= h′1([[t]]Xs′,h′1) = `′1, by (s6). Moreover,
if [[n(x)]]X

s,~h
= `p−1 then, by (s7), [[n(x)]]X

s′,~h′
= `′q−1. Thus, (σ9) and (σ10) hold.

case: [[n(x)]]X
s,~h
6∈ dom(f). By (π6), [[n(x)]]X

s,~h
∈ Ss(x) and [[n(x)]]X

s′,~h′
∈ S′s(x). Since it

holds that [[n(x)]]X
s,~h
∈ Path[S]Xs,h1

(t), we have [[t]]Xs,h1
= s(x) and so, by (SA), and

[[t]]Xs′,h′1 = s′(x). Notice that this means that Path[S]Xs,h1
(t) = Path[S]Xs,h1

(x) and
Path[S]Xs′,h′1(t) = Path[S]Xs′,h′1(x), which implies s(x) ∈ dom(h1) and s′(x) ∈ dom(h′1).
By (l) and (s4), [[n(x)]]X

s′,~h′
∈ Path[S]Xs′,h′1(t), which proves (σ8).

Now, since [[t]]Xs,h1
∈ dom(f) and [[t]]Xs′,h′1 ∈ ran(f), obviously [[n(x)]]X

s,~h
6= [[t]]Xs,h1

= `0

and [[n(x)]]X
s′,~h′
6= [[t]]Xs′,h′1 = `′0. By [[t]]Xs,h1

= s(x) ∈ dom(h1) and [[t]]Xs′,h′1 = s′(x) ∈
dom(h′1), we derive `1 = h1([[t]]Xs,h1

) = [[n(x)]]X
s,~h

and `′1 = h′1([[t]]Xs′,h′1) = [[n(x)]]X
s′,~h′

.
Therefore, (σ9) holds. To show (σ10), let us assume that [[n(x)]]X

s,~h
= `p−1. By defini-

tion of `p−1, we conclude that ρ = (`0, `1, `2) and therefore Path[S]Xs,h1
(t) = {`0, `1}.

Since we already showed that `0 6= `1, we conclude that card(Path[S]Xs,h1
(t)) = 2.

By (i), card(Path[S]Xs′,h′1(t)) = 2, and thus ρ′ = (`′0, `′1, `′2). So, `′q−1 = `′1 = [[n(x)]]X
s′,~h′

.

(⇐): Symmetrical to the other direction.
We show that (s,~h) ≈WX,α (s′,~h′) by relying on the properties (WA)–(WD) below.
WA. Let t ∈ T[W]X.

(a’) [[t]]X
s,~h

and [[t]]X
s′,~h′

are equidefined,

(b’) given t′ ∈ T[W]X, [[t]]X
s,~h

= [[t′]]X
s,~h

iff [[t]]X
s′,~h′

= [[t′]]X
s′,~h′

,

(c’) [[t]]X
s,~h
∈ dom(~h) if and only if [[t]]X

s′,~h′
∈ dom(~h′),

(d’) given t′ ∈ X ∪ {t}, we have ~h([[t]]X
s,~h

) = [[t′]]X
s,~h

if and only if ~h′([[t]]X
s′,~h′

) = [[t′]]X
s′,~h′

,

(e’) s(u) = [[t]]X
s,~h

if and only if s′(u) = [[t]]X
s′,~h′

.

5.6. Connecting the Two Families of Core Formulae 253

Proof of (a’). Trivial if t is a program variable. Follows from (π5) for next-point variables.
Proof of (b’). If t and t′ are program variables, (b’) follows from (s, h) ≈WX,α+card(X) (s′, h′).

Indeed, (s, h) and (s′, h′) equisatisfy the core formula t = t′, which means that
s(t) = s(t′) if and only if s′(t) = s′(t′). Below, we prove (b’) in the case where
at least one among t and t′ is a next-point variable. Without loss of generality,
we assume t to be a next-point variable n(x), where x ∈ X, and divide the proof
depending on whether t′ is a program variable.

case: t′ = y, for some y ∈ X. (⇒): Suppose [[n(x)]]X
s,~h

= s(y), i.e. ~h(s(x)) = s(y).
Since ~h = h + h1, either h(s(x)) = s(y) or h1(s(x)) = s(y) holds, which in turn
implies that (s, h) |= x ↪→ y or (s, h1) |= x ↪→ y. By (s, h) ≈WX,α+card(X) (s′, h′) and
(s, h1) ≈WX,α (s′, h′1), we conclude that either (s′, h′) |= x ↪→ y or (s′, h′1) |= x ↪→ y.
From the semantics x ↪→ y and by ~h′ = h′ + h′1, we derive [[n(x)]]X

s′,~h′
= s′(y).

(⇐): Symmetrical to the other direction.
case: t′ = n(y), for some y ∈ X. (⇒): Suppose [[n(x)]]X

s,~h
= [[n(y)]]X

s,~h
, and there-

fore ~h(s(x)) = ~h(s(y)). We divide the proof in the following two cases:
case: {s(x), s(y)} ⊆ dom(h) or {s(x), s(y)} ⊆ dom(h1). Let us consider the case
where {s(x), s(y)} ⊆ dom(h1). The case where {s(x), s(y)} ⊆ dom(h) is anal-
ogous. Since h1 ⊆ ~h, we conclude that h1(s(x)) = h1(s(y)). Thanks to the
core formula n(x) = n(y), by (s, h1) ≈WX,α (s′, h′1), we have h′1(s′(x)) = h′1(s′(y)).
From h′1 ⊆ ~h′, ~h′(s′(x)) = ~h′(s′(y)).

case: s(x)∈ dom(h) and s(y)∈ dom(h1), or s(y)∈ dom(h) and s(x)∈ dom(h1).
We consider the case where s(x)∈ dom(h) and s(y)∈ dom(h1). The other case
is analogous. From s(x) ∈ dom(h), we conclude that [[n(x)]]Xs,h is defined, and
so by (π1), f([[n(x)]]X

s,~h
) = [[n(x)]]X

s′,~h′
. As s(y)∈ dom(h1), Path[S]Xs,h1

(y) 6= ∅. If
card(Path[S]Xs′,h′1(x)) = 1, then, by (π2), we conclude that f([[n(y)]]X

s,~h
) = [[n(y)]]X

s′,~h′
.

By [[n(x)]]X
s,~h

= [[n(y)]]X
s,~h

, we derive [[n(x)]]X
s′,~h′

= [[n(y)]]X
s′,~h′

. Otherwise, from
Lemma 5.14(I), [[n(y)]]Xs,h1

= [[n(x)]]X
s,~h

= [[n(y)]]X
s,~h

= [[n(x)]]Xs,h ∈ Lab[W]Xs,h.
Together with card(Path[S]Xs′,h′1(x))≥ 2, this allows us to apply (π3), and con-
clude that f([[n(y)]]X

s,~h
) = [[n(y)]]X

s′,~h′
. Again from [[n(x)]]X

s,~h
= [[n(y)]]X

s,~h
, we de-

rive [[n(x)]]X
s′,~h′

= [[n(y)]]X
s′,~h′

.
(⇐): Symmetrical to the other direction

Proof of (c’) and (d’). If t = x for some x ∈ X, then both statements follow from (b’).
Indeed, for (c’), we have the following chain of equivalences:
s(x) ∈ dom(~h) iff [[n(x)]]X

s,~h
= [[n(x)]]X

s,~h
iff [[n(x)]]X

s′,~h′
= [[n(x)]]X

s′,~h′
iff s′(x) ∈ dom(~h′),

where the first and last double implications hold by definition of [[.]]X. , whereas the
central one is from (b’). Concerning (d’), in this case t′ is a program variable, say y.
Then, again from the definition of [[.]]X. and (b’),

~h(s(x)) = s(y) iff [[n(x)]]X
s,~h

= [[y]]X
s,~h

iff [[n(x)]]X
s′,~h′

= [[y]]X
s′,~h′

iff ~h′(s′(x)) = s′(y).

Below, we assume t = n(x), for some x ∈ X. So, t′ is either a program variable in X
or n(x). We prove (c’) and (d’) together.
(⇒): Suppose [[n(x)]]X

s,~h
∈ dom(~h). dividing the proof in the following three cases:

254 Chapter 5. Deciding Robustness Properties in PSpace

case: {s(x), [[n(x)]]X
s,~h
} ⊆ dom(h) or {s(x), [[n(x)]]X

s,~h
} ⊆ dom(h1). Let us consider the

case where {s(x), [[n(x)]]X
s,~h
} ⊆ dom(h1). The other case is analogous. Since

s(x) ∈ dom(h1), by Lemma 5.14(I), we have [[n(x)]]X
s,~h

= [[n(x)]]Xs,h1
. Thanks to the

core formula n(x) ↪→ , by (s, h1) ≈WX,α (s′, h′1), we derive [[n(x)]]Xs′,h′1∈ dom(s′, h′1).
By Lemma 5.14(I) and h′1 ⊆ ~h′, we derive [[n(x)]]X

s′,~h′
∈ dom(s′,~h′), as required

by (c’). In order to prove (d’), let us assume that ~h([[n(x)]]X
s,~h

) = [[t′]]X
s,~h

. From
{s(x), [[n(x)]]X

s,~h
} ⊆ dom(h1) together with t′ ∈ X ∪ {n(x)} we conclude that

h1([[n(x)]]Xs,h1
) = [[t′]]Xs,h1

. Thanks to the core formulae n(x) ↪→ x and n(x) ↪→ n(x),
by (s, h1) ≈WX,α (s′, h′1), we derive h′1([[n(x)]]Xs′,h′1) = [[t′]]Xs′,h′1 . By Lemma 5.14(I)
and h′1 ⊆ ~h′, we conclude that ~h′([[n(x)]]X

s′,~h′
) = [[t′]]X

s′,~h′
, as required by (d’).

case: s(x) ∈ dom(h1) and [[n(x)]]X
s,~h
∈ dom(h). In this case, by Lemma 5.14(I), we

have h1(s(x)) = [[n(x)]]X
s,~h
6∈ dom(h1). Therefore card(Path[S]Xs,h1

(x)) = 1 and
thus, by (π2), f([[n(x)]]X

s,~h
) = [[n(x)]]X

s′,~h′
. We divide the proof in the cases below:

case: there is t′′ ∈ T[W]X such that [[n(x)]]X
s,~h

= [[t′′]]Xs,h. From Lemma 5.14(I),
[[t′′]]X

s,~h
. If t′′ is a program variable, we can apply (c’) and (d’) (we dealt with

program variables at the beginning of the proof), to conclude that:
i. [[t′′]]X

s,~h
∈ dom(~h) if and only if [[t′′]]X

s′,~h′
∈ dom(~h′),

ii. given t′ ∈ X ∪ {t′′}, ~h([[t′′]]X
s,~h

) = [[t′]]X
s,~h

iff ~h′([[t′′]]X
s′,~h′

) = [[t′]]X
s′,~h′

.
These two statements hold even when t′′ = n(y), for some y ∈ X. Indeed,
in this case, by Lemma 5.14(I), [[n(y)]]Xs,h = [[n(y)]]X

s,~h
which, together with

[[n(y)]]Xs,h = [[n(x)]]X
s,~h
∈ dom(h), allows us to conclude that {s(y), [[n(y)]]X

s,~h
} ⊆

dom(h). We can then rely on the previous case of the proof, which leads to (i)
and (ii). From f([[n(x)]]X

s,~h
) = [[n(x)]]X

s′,~h′
and [[n(x)]]X

s,~h
= [[t′′]]Xs,h, by (1f) we

conclude that [[n(x)]]X
s′,~h′

= [[t′′]]Xs′,h′ = [[t′′]]X
s′,~h′

, where the last equivalence holds
by Lemma 5.14(I). Thus, (c’) and (d’) hold directly from (i) and (ii).

case: [[n(x)]]X
s,~h
∈ Pred[W]Xs,h(y), for some y ∈ X. From (σ1), we conclude that

[[n(x)]]X
s′,~h′
∈ Pred[W]Xs′,h′(y). This implies both (c’) and (d’). Indeed, (c’) holds

directly from the fact that Pred[W]Xs′,h′(x) ⊆ dom(h′) ⊆ dom(~h′). For (d’), we
recall that [[n(x)]]X

s,~h
∈ Pred[W]Xs,h(y) implies h([[n(x)]]X

s,~h
) = s(y). We consider

a term t′ ∈ X ∪ {n(x)} such that ~h([[n(x)]]X
s,~h

) = [[t′]]X
s,~h

. So, [[t′]]X
s,~h

= s(y).
It cannot be that t′ = n(x): this would imply [[n(x)]]X

s,~h
= s(y), and thus

s(y) ∈ Pred[W]Xs,h(y), which is contradictory, by definition of Pred[W]Xs,h(y).
Therefore, we have t′ = z, for some z ∈ X. From (s, h) ≈WX,α (s′, h′), we con-
clude s′(z) = s′(y) and so Pred[W]Xs′,h′(z) = Pred[W]Xs′,h′(y). Then, by definition,
~h′([[n(x)]]X

s′,~h′
) = s′(z).

case: [[n(x)]]X
s,~h
∈ Self[W]Xs,h. From (σ3), we have [[n(x)]]X

s′,~h′
∈ Self[W]Xs′,h′ . Sim-

ilarly to the previous case, this implies both (c’) and (d’). In particular, to
prove (d’), directly from the semantics of Self[W]Xs,h and Self[W]Xs′,h′ , one shows
that both ~h([[n(x)]]X

s,~h
) = [[n(x)]]X

s,~h
and ~h′([[n(x)]]X

s′,~h′
) = [[n(x)]]X

s′,~h′
hold, whereas,

for every y ∈ X, ~h([[n(x)]]X
s,~h

) 6= s(y) and ~h′([[n(x)]]X
s′,~h′

) 6= s′(y).

5.6. Connecting the Two Families of Core Formulae 255

case: [[n(x)]]X
s,~h
∈ Rem[W]Xs,h. From (σ6), [[n(x)]]X

s′,~h′
∈ Rem[W]Xs′,h′ . Similarly to the

previous cases, this implies both (c’) and (d’). In particular, to prove (d’),
directly from the semantics of Rem[W]Xs,h and Rem[W]Xs′,h′ , one shows that for
every t′ ∈ X ∪ {n(x)}, ~h([[n(x)]]X

s,~h
) 6= [[t′]]X

s,~h
and ~h′([[n(x)]]X

s′,~h′
) 6= [[t′]]X

s′,~h′
.

Thanks to Proposition 5.13, we know that four cases above exhaust every possi-
bility for [[n(x)]]X

s,~h
∈ dom(h), which allows us to conclude that (c’) and (d’) are

always verified (in this case of the proof).
case: s(x) ∈ dom(h) and [[n(x)]]X

s,~h
∈ dom(h1). Since s(x) ∈ dom(h), [[n(x)]]Xs,h is de-

fined and so, by (π1), f([[n(x)]]X
s,~h

) = [[n(x)]]X
s′,~h′

. As [[n(x)]]X
s,~h
∈ dom(h1), we divide

the proof following the partition of Proposition 5.31.
case: [[n(x)]]X

s,~h
∈ Pred[S]Xs,h1

(y), for some y ∈ Y . From (σ2), we conclude that
[[n(x)]]X

s′,~h′
∈ Pred[S]Xs′,h′1(y). Similarly to the case above, involving the sets

Pred[W]Xs,h(y) and Pred[W]Xs′,h′(y), this implies both (c’) and (d’). In particular,
to prove (d’), directly from the semantics of Pred[S]Xs,h1

(y) and Pred[S]Xs′,h′1(y),
together with (s, h) ≈WX,α (s′, h′), one show that for every z ∈ X,
~h([[n(x)]]X

s,~h
) = s(z) iff s(z) = s(y) iff s′(z) = s′(y) iff ~h′([[n(x)]]X

s′,~h′
) = s′(z).

Moreover, ~h([[n(x)]]X
s,~h

) 6= [[n(x)]]X
s,~h

and ~h′([[n(x)]]X
s′,~h′

) 6= [[n(x)]]X
s′,~h′

.

case: [[n(x)]]X
s,~h
∈ [Cycl[S]Xs,h1

(1)][. By (σ4), we have [[n(x)]]X
s′,~h′
∈ [Cycl[S]Xs′,h′1(1)][.

Similarly to the case above, involving the sets Self[W]Xs,h and Self[W]Xs′,h′ , this
implies both (c’) and (d’). In particular, for (d’), directly from the semantics of
Cycl[S]Xs,h(1) and Cycl[S]Xs′,h′(1) we conclude that both ~h([[n(x)]]X

s,~h
) = [[n(x)]]X

s,~h

and ~h′([[n(x)]]X
s′,~h′

) = [[n(x)]]X
s′,~h′

hold, whereas, for all y ∈ X, ~h([[n(x)]]X
s,~h

) 6= s(y)
and ~h′([[n(x)]]X

s′,~h′
) 6= s′(y).

case: [[n(x)]]X
s,~h
∈ [Cycl[S]Xs,h1

(β)][, for some β ∈ [2, α]. Thanks to (σ4), we have
[[n(x)]]X

s′,~h′
∈ [Cycl[S]Xs′,h′1(β)][. This implies both (c’) and (d’). In particular,

we recall that sets in Cycl[S]Xs,h1
(β) and Cycl[S]Xs′,h′1(β) describe unlabelled cy-

cles of length β ≥ 2. So, for every t′ ∈ X ∪ {n(x)}, ~h([[n(x)]]X
s,~h

) 6= [[t′]]X
s,~h

and ~h′([[n(x)]]X
s′,~h′

) 6= [[t′]]X
s′,~h′

, which proves (d’).

case: [[n(x)]]X
s,~h
∈ [⇑Cycl[S]X,αs,h1

][. Analogous to the previous case. From (σ5) we
have [[n(x)]]X

s′,~h′
∈ [⇑Cycl[S]X,αs′,h′1][. This implies (c’) and (d’). For (d’), we have

that for all t′ ∈ X ∪ {n(x)}, ~h([[n(x)]]X
s,~h

) 6= [[t′]]X
s,~h

and ~h′([[n(x)]]X
s′,~h′

) 6= [[t′]]X
s′,~h′

.

case: [[n(x)]]X
s,~h
∈ Rem[S]X,αs,h1

. Analogous to the previous case. Thanks to (σ7), we
have [[n(x)]]X

s′,~h′
∈ Rem[S]X,αs′,h′1 . This implies both (c’) and (d’). For (d’), we find

that for every t′ ∈ X∪{n(x)}, ~h([[n(x)]]X
s,~h

) 6= [[t′]]X
s,~h

and ~h′([[n(x)]]X
s′,~h′

) 6= [[t′]]X
s′,~h′

.
case: [[n(x)]]X

s,~h
∈ Path[S]Xs,h1

(t′′), where t′′ ∈ T[S]X. Let ρ = (`0, . . . , `p) be the
path in h1 described by Path[S]Xs,h1

(t′′). So, `0 = [[t′′]]Xs,h1
and `p = sbyX

s,h1
(t′′).

There is j ∈ [0, p−1] such that [[n(x)]]X
s,~h

= `j . By (SB), Path[S]Xs′,h′1(t′′) 6= ∅ and
sbyX

s′,h′1
(t′′) = f(sbyX

s,h1
(t′′)). Let ρ′ = (`′0, . . . , `′q) be the path in h′1 described

by Path[S]Xs′,h′1(t′′), where `′0 = [[t′′]]Xs′,h′1 and `q = sbyX
s′,h′1

(t′′). From (σ8), there

256 Chapter 5. Deciding Robustness Properties in PSpace

is k ∈ [0, q − 1] such that [[n(x)]]X
s′,~h′

= `′k. This implies (c’), since we have
[[n(x)]]X

s′,~h′
∈ Path[S]Xs′,h′1(t′′) ⊆ dom(h′1) ⊆ dom(~h′). In order to show (d’), we

divide the proof depending on whether j = p− 1.
case: j = p− 1. From (σ10), k = q − 1. Suppose that there is t′ ∈ X ∪ {n(x)}
such that ~h([[n(x)]]X

s,~h
) = [[t′]]X

s,~h
.

∗ Suppose t′ = z, for some z ∈ X. Then, sbyX
s,h1

(t′′) = `p = s(z). From (SB)
and (1f), sbyX

s′,h′1
(t′′) = `′q = s′(z). Therefore, ~h′([[n(x)]]X

s′,~h′
) = s′(z).

∗ Suppose t′ = n(x). Then, [[n(x)]]X
s,~h

= sbyX
s,h1

(t′′). Since sbyX
s,h1

(t′′) is
a labelled location in Lab[S]Xs,h1

, and [[n(x)]]X
s,~h
∈ Path[S]Xs,h1

(t′′), we de-
rive that [[n(x)]]X

s,~h
= [[t′′]]Xs,h1

= sbyX
s,h1

(t′′), and card(Path[S]Xs,h1
(t′′)) = 1.

By (SB), we have that [[t′′]]Xs′,h′1 = sbyX
s′,h′1

(t′′) and card(Path[S]Xs′,h′1(t′′)) = 1.
From [[n(x)]]X

s′,~h′
∈ Path[S]Xs′,h′1(t′′), this implies h′1([[n(x)]]X

s′,~h′
) = [[n(x)]]X

s′,~h′
.

From h′1 ⊆ ~h′, we derive ~h′([[n(x)]]X
s′,~h′

) = [[n(x)]]X
s′,~h′

.

case: j 6= p− 1. From (σ10), k 6= q − 1. In this case, ~h([[n(x)]]X
s,~h

) = `j+1

and ~h′([[n(x)]]X
s′,~h′

) = `′k+1. Since ρ is a minimal path going from [[t′′]]Xs,h1

to sbyX
s,h1

(t′′), we have `j 6= `j+1 and `j+1 6∈ s(X). Similarly, by definition
of ρ′, `k 6= `k+1 and `k+1 6= s′(X). We derive that for all t′ ∈ X ∪ {n(x)},
~h([[n(x)]]X

s,~h
) 6= [[t′]]X

s,~h
and ~h′([[n(x)]]X

s′,~h′
) 6= [[t′]]X

s′,~h′
. So, (d’) is satisfied.

(⇐): Symmetrically, one can show the right-to-left directions of (c’) and (d’). In-
deed, despite its length, the proof of the left-to-right direction only uses symmetrical
arguments, and relies on the symmetrical properties (σ1)–(σ10) and (SB).

Proof of (e’). If t is a program variable, then (e’) follows from (s, h) ≈WX,α+card(X) (s′, h′),
(more precisely, from the equisatisfaction of the core formulae u = x, where x ∈ X).
Below, we assume t to be the next-point variable n(x), where x ∈ X.
(⇒): Suppose s(u) = [[n(x)]]X

s,~h
. From (π6), we have either f([[n(x)]]X

s,~h
) = [[n(x)]]X

s′,~h′
,

or [[n(x)]]X
s,~h
∈ Ss(x) and [[n(x)]]X

s′,~h′
∈ S′s′(x). In the former case, by (v), we derive

s′(u) = [[n(x)]]X
s′,~h′

. In the latter case, by definition of Ss(x), [[n(x)]]X
s,~h
∈ Path[S]Xs,h1

(x),
and so h1(s(x)) = [[n(x)]]X

s,~h
. Similarly, by (l), h′1(s(x)) = [[n(x)]]X

s′,~h′
. From (j)

and s(u) = [[n(x)]]X
s,~h

, we conclude that s′(u) = [[n(x)]]X
s′,~h′

.
(⇐): Symmetrical to the other direction, by relying on (k) instead of (j).

WB. For every x ∈ X,

(f’) min(card(Pred[W]X
s,~h

(x)), α) = min(card(Pred[W]X
s′,~h′

(x)), α),

(g’) s(u) ∈ Pred[W]X
s,~h

(x) if and only if s′(u) ∈ Pred[W]X
s′,~h′

(x).

Before proving (f’) and (g’), let us analyse the set Pred[W]X
s,~h

(x). From Lemma 5.14(II),

Pred[W]Xs,h(x) =
(
Pred[W]X

s,~h
(x) ∩ dom(h)

)
∪ {` ∈ Lab[W]X

s,~h
\ Lab[W]Xs,h | h(`) = s(x)}.

Since the set Pred[W]X
s,~h

(x) does not contain locations in Lab[W]X
s,~h

, the union on the right
hand side of the equality above is between disjoint sets. We derive:

Pred[W]X
s,~h

(x) ∩ dom(h) = Pred[W]Xs,h(x) \ {` ∈ Lab[W]X
s,~h
\ Lab[W]Xs,h | h(`) = s(x)}.

5.6. Connecting the Two Families of Core Formulae 257

In this equivalence, the constraint h(`) = s(x) appearing in the rightmost set is super-
fluous, as Pred[W]Xs,h(x) only contains elements satisfying h(`) = s(x). Moreover, every
location ` ∈ Lab[W]X

s,~h
\ Lab[W]Xs,h is not assigned to a program variable, as it would other-

wise belong to Lab[W]Xs,h. Thus, there is y ∈ X such that [[n(y)]]X
s,~h

= `. We have:

(µ1) Pred[W]X
s,~h

(x) ∩ dom(h) = Pred[W]Xs,h(x) \ {[[n(y)]]X
s,~h
| y ∈ X}.

We notice that {[[n(y)]]X
s,~h
| y ∈ X} is a slight abuse of notations, as [[n(y)]]X

s,~h
could be

undefined. Here, we use it as a shortcut for {` ∈ LOC | there is y ∈ X, ` = [[n(y)]]X
s,~h
}.

With a similar analysis, we conclude that:

(µ2) Pred[W]X
s,~h

(x) ∩ dom(h1) = Pred[W]Xs,h1
(x) \ {[[n(y)]]X

s,~h
| y ∈ X},

(µ3) Pred[W]X
s′,~h′

(x) ∩ dom(h′) = Pred[W]Xs′,h′(x) \ {[[n(y)]]X
s′,~h′
| y ∈ X},

(µ4) Pred[W]X
s′,~h′

(x) ∩ dom(h′1) = Pred[W]Xs′,h′1(x) \ {[[n(y)]]X
s′,~h′
| y ∈ X}.

Moreover, from ~h = h+ h1 and ~h′ = h′ + h′1,

(µ5) Pred[W]X
s,~h

(x) =
(
Pred[W]X

s,~h
(x) ∩ dom(h)

)
∪
(
Pred[W]X

s,~h
(x) ∩ dom(h1)

)
,

(µ6) Pred[W]X
s′,~h′

(x) =
(
Pred[W]X

s′,~h′
(x) ∩ dom(h′)

)
∪
(
Pred[W]X

s′, ~h′
(x) ∩ dom(h′1)

)
.

Clearly, the union on the right hand side of these two equalities is between disjoint sets.
In order to prove (f’) and (g’), we need to represent Pred[W]Xs,h1

(x) and Pred[W]Xs′,h′1(x)
using sets of the strong fragment, as indeed up to now we only analysed (s, h1) and (s′, h′1)
using these sets. Fortunately, from the proof of Lemma 5.35 (see (†)) we know that

Pred[W]Xs,h1
(x) = Pred[S]Xs,h1

(x)∪
{
` ∈ dom(h1) \ Lab[W]Xs,h1

∣∣∣∣∣h1(`) = s(x), ` ∈ Path[S]Xs,h1(`′)
for some `′ ∈ Lab[S]Xs,h1

}
.

Since Path[S]Xs,h1
(`′) ∩ Pred[S]Xs,h1

(x) = ∅, the two sets on the right hand side of this
equality are disjoint. Following (µ2), we are interested in the set{

` ∈ dom(h1) \ Lab[W]Xs,h1

∣∣∣∣∣ h1(`) = s(x), ` ∈ Path[S]Xs,h1(`′)
for some `′ ∈ Lab[S]Xs,h1

}
\ {[[n(y)]]X

s,~h
| y ∈ X}.

From Lemma 5.14(I), s(X) ⊆ Lab[W]Xs,h1
⊆ {[[n(y)]]X

s,~h
| y ∈ X} ∪ s(X) = Lab[W]X

s,~h
. Thus,

the set above is equivalent to

L1
def=
{
` ∈ dom(h1)

∣∣∣∣∣ h1(`) = s(x), ` ∈ Path[S]Xs,h1(`′)
for some `′ ∈ Lab[S]Xs,h1

}
\ Lab[W]X

s,~h
.

We conclude that:
Pred[W]X

s,~h
(x)

=
(
Pred[W]X

s,~h
(x) ∩ dom(h)

)
∪
(
Pred[W]X

s,~h
(x) ∩ dom(h1)

)
(by (µ5))

=
(
Pred[W]Xs,h(x) \ {[[n(y)]]X

s,~h
| y ∈ X}

)
∪
(
Pred[W]Xs,h1

(x) \ {[[n(y)]]X
s,~h
| y ∈ X}

)
(by (µ1) and (µ2))

=
(
Pred[W]Xs,h(x) \ {[[n(y)]]X

s,~h
| y ∈ X}

)
∪
(
Pred[S]Xs,h1

(x) \ {[[n(y)]]X
s,~h
| y ∈ X}

)
∪ L1

(manipulation from (†))
Note that the three sets in the last expression are mutually disjoint. We write (µ7) to
denote this last equality. With a similar analysis, from (µ6), (µ3), (µ4) and (†), the
following equality (denoted by (µ8)) holds:
Pred[W]X

s′,~h′
(x) =

(
Pred[W]Xs′,h′(x)\{[[n(y)]]X

s′,~h′
| y ∈ X}

)
∪
(
Pred[S]Xs′,h′1(x)\{[[n(y)]]X

s′,~h′
| y ∈ X}

)
∪ L′1,

258 Chapter 5. Deciding Robustness Properties in PSpace

where the three sets in the right hand side of the expression are mutually disjoint, and

L′1
def=

` ∈ dom(h′1)

∣∣∣∣∣∣
h′1(`) = s′(x), ` ∈ Path[S]Xs′,h′1(`′)

for some `′ ∈ Lab[S]Xs′,h′1

 \ Lab[W]X
s′,~h′

.

We are now ready to prove (f’) and (g’).

Proof of (f’). We show the following three results:
f1. min(Pred[W]Xs,h(x)\{[[n(y)]]X

s,~h
| y ∈ X}, α) = min(Pred[W]Xs′,h′(x)\{[[n(y)]]X

s,~h
| y ∈ X}, α),

f2. min(Pred[S]Xs,h1
(x)\{[[n(y)]]X

s,~h
| y ∈ X}, α) = min(Pred[S]Xs′,h′1(x)\{[[n(y)]]X

s,~h
| y ∈ X}, α),

f3. card(L1) = card(L′1).
Afterwards, (f’) holds directly from (µ7) and (µ8).
Proof of (f1). By (b’), we have card({[[n(y)]]X

s,~h
| y ∈ X}) = card({[[n(y)]]X

s′,~h′
| y ∈ X}).

Moreover, these two sets have at most card(X) locations. By (σ1), for every y ∈ X,
[[n(y)]]X

s,~h
∈ Pred[W]Xs,h(x) if and only if [[n(y)]]X

s′,~h′
∈ Pred[W]Xs′,h′(x). So,

k def= card(Pred[W]Xs,h(x) ∩ {[[n(y)]]X
s,~h
| y ∈ X})

= card(Pred[W]Xs′,h′(x) ∩ {[[n(y)]]X
s′,~h′
| y ∈ X}).

Now, from (s, h) ≈WX,α+card(X) (s′, h′), the memory states (s, h) and (s′, h′) satisfy
the same formulae of the form predWX (x) ≥ β, where β ∈ [1, α+ card(X)]. From the
semantics of these formulae, we conclude that
min(card(Pred[W]Xs,h(x)), α+ card(X)) = min(card(Pred[W]Xs′,h′(x)), α+ card(X)). (µ9)

By definition, card(Pred[W]Xs,h(x)) = card(Pred[W]Xs,h(x) \ {[[n(y)]]X
s′,~h′
| y ∈ X}) + k

and card(Pred[W]Xs′,h′(x)) = card(Pred[W]Xs′,h′(x)\{[[n(y)]]X
s′,~h′
| y ∈ X})+k. By (µ9),

min(card(Pred[W]Xs,h(x) \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α+ card(X)− k)

= min(card(Pred[W]Xs′,h′(x) \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α+ card(X)− k).

Since k ≤ card(X), this entails (f1).
Proof of (f2). As in (f1), card({[[n(y)]]X

s,~h
| y ∈ X}) = card({[[n(y)]]X

s′,~h′
| y ∈ X}).

From (σ2) we conclude that
k def= card(Pred[S]Xs,h1

(x) ∩ {[[n(y)]]X
s,~h
| y ∈ X}) = card(Pred[S]Xs′,h′1(x) ∩ {[[n(y)]]X

s′,~h′
| y ∈ X}).

We recall that, by definition of Ps(x), by (o) and (p4),
Pred[S]Xs,h1(x) = Ps(x) ∪ (Pred[S]Xs,h1(x) ∩ dom(f)),
Pred[S]Xs′,h′1(x) = P ′s′(x) ∪ {` ∈ ran(f) | f−1(`) ∈ Pred[S]Xs,h1(x)}.

Since f is an injection Pred[S]Xs,h1
(x)∩dom(f) and {`∈ ran(f) | f−1(`) ∈ Pred[S]Xs,h1

(x)}
have the same cardinality, say n. Moreover, since Ps(x) is disjoint from Ss(y) and
P ′s′(x) is disjoint from S′s′(y), for all y ∈ X, by (π6) we conclude that

Pred[S]Xs,h1(x) ∩ {[[n(y)]]X
s,~h
| y ∈ X} ⊆ Pred[S]Xs,h1(x) ∩ dom(f),

Pred[S]Xs′,h′1(x) ∩ {[[n(y)]]X
s′,~h′
| y ∈ X} ⊆ {` ∈ ran(f) | f−1(`) ∈ Pred[S]Xs,h1(x)}.

Therefore,
card(Pred[S]Xs,h1(x) \ {[[n(y)]]X

s,~h
| y ∈ X}) = card(Ps(x)) + n− k,

card(Pred[S]Xs′,h′1(x) \ {[[n(y)]]X
s′,~h′
| y ∈ X}) = card(P ′s′(x)) + n− k.

Since n− k ≥ 0 and, by (p1), min(card(Ps(x)), α) = min(card(P ′s′(x)), α), these two
equalities imply (f2).

5.6. Connecting the Two Families of Core Formulae 259

Proof of (f3). We define the two following sets:
Q def= {`′ ∈ Lab[S]Xs,h1 | there is ` ∈ Path[S]Xs,h1(`′) such that ` ∈ L1},

Q′ def= {`′ ∈ Lab[S]Xs′,h′1 | there is ` ∈ Path[S]Xs′,h′1(`′) such that ` ∈ L′1}.
We show that card(L1) = card(Q). Let us assume that Lab[S]Xs,h1

= {`L1, . . . , `Lm}. By
definition of L1, and since Path[S]Xs′,h′1(`L1), . . . , Path[S]Xs′,h′1(`Lm) are disjoint, every
location ` ∈ L1 belongs to exactly one of these sets. The converse also holds,
that is, for every `′ ∈ Q there is exactly one location ` ∈ Path[S]Xs,h1

(t) such that
` ∈ L1. Ad absurdum, suppose that there are two locations `1, `2 ∈ Path[S]Xs′,h′1(`′),
where `′ ∈ Lab[S]Xs,h1

, such that `1, `2 ∈ L1. By definition of L1, this implies
h1(`1) = s(x) and h1(`2) = s(x). However, as Path[S]Xs′,h′1(`′) describes a path
in h1, this implies `1 = `2, a contradiction. We conclude that card(L1) = card(Q).
Analogously, one shows that card(L′1) = card(Q′). Since f is an injection, in order
to show (f3), it is sufficient to show that f(Q) = Q′.
(⊆): Let ` ∈ Q. This implies that Path[S]Xs,h1

(`) 6= ∅. From (SA), there is t ∈
T[S]X such that [[t]]Xs,h1

= ` and f(`) = [[t]]Xs′,h′1 . From (i), Path[S]Xs′,h′1(f(`)) 6= ∅.
Consider ρ = (`0, . . . , `p) to be the path in h1 described by Path[S]Xs,h1

(`), going
from ` to sbyX

s,h1
(`). Similarly let ρ′ = (`′0, . . . , `′q) be the path in h′1 described by

Path[S]Xs′,h′1(f(`)), going from f(`) to sbyX
s′,h′1

(f(`)). From ` ∈ Q, we conclude that
`p−1 6∈ Lab[W]X

s,~h
and sbyX

s,h1
(`) = s(x). Thanks to the core formula seesX(t, x) ≥ 1,

by (s, h1) ≈SX,α (s′, h′1), we have sbyX
s,h1

(f(`)) = s′(x). In order to conclude that
f(`) ∈ Q′, it is sufficient to show that `′q−1 6∈ Lab[W]X

s′,~h′
. Since `p−1 6∈ Lab[W]X

s,~h
,

directly from (σ10) we conclude that `′q−1 does not correspond to a next-point
variable. So, let us consider the case of program variables. Ad absurdum, suppose
`′q−1 = s(y), for some y ∈ X. Since `′q−1 ∈ Path[S]Xs′,h′1(f(`)), we conclude that
s′(y) = `′q−1 = f(`) (as usual, f(`) is the only location in both Lab[S]Xs,h1

and
Path[S]Xs′,h′1(f(`))). By (SA), ` = s(y). Moreover, card(Path[S]Xs′,h′1(f(`))) = 1 and
so, by (i), card(Path[S]Xs,h1

(`)) = 1. Thus, `p−1 = ` = s(y). However, `p−1 = s(y)
contradicts `p−1 6∈ Lab[W]X

s,~h
. Therefore, `′q−1 is not assigned to a program variable.

We conclude that `′q−1 6∈ Lab[W]X
s′,~h′

, and so f(`) ∈ Q′.
(⊇): Symmetrical to the other direction.

Proof of (g’). (⇒): Suppose s(u) ∈ Pred[W]X
s,~h

(x). As showed in the second to last line
of (µ7), we have s(u) 6∈ {[[n(y)]]X

s,~h
| y ∈ X} and moreover either s(u) ∈ Pred[W]Xs,h(x)

or s(u) ∈ Pred[W]Xs,h1
(x) holds. By (e’), s′(u) 6∈ {[[n(y)]]X

s′,~h′
| y ∈ X}. Thanks to the

formula u ∈ predWX (x), from (s, h) ≈WX,α+card(X) (s′, h′) and (s, h1) ≈WX,α (s′, h′1), either
s′(u) ∈ Pred[W]Xs′,h′(x) or s′(u) ∈ Pred[W]Xs′,h′1(x) hold. So, s′(u) ∈ Pred[W]X

s′,~h′
(x).

(⇐): Symmetrical to the other direction.
WC . (h’) min(card(Self[W]X

s,~h
), α) = min(card(Self[W]X

s′,~h′
), α),

(i’) s(u) ∈ Self[W]X
s,~h

if and only if s′(u) ∈ Self[W]X
s′,~h′

.
Before proving (h’) and (i’), let us analyse the set Self[W]X

s,~h
. From Lemma 5.14(III),

Self[W]Xs,h =
(
Self[W]X

s,~h
∩ dom(h)

)
∪ {` ∈ Lab[W]X

s,~h
\ Lab[W]Xs,h | h(`) = `}.

The union on the right hand side of the equality above is between disjoint sets, which
allows us to derive:

260 Chapter 5. Deciding Robustness Properties in PSpace

Self[W]X
s,~h
∩ dom(h) = Self[W]Xs,h \ {` ∈ Lab[W]X

s,~h
\ Lab[W]Xs,h | h(`) = `}.

In this equality, the constraint h(`) = ` appearing in the rightmost set is superfluous, as
Self[W]Xs,h only contains elements satisfying h(`) = `. As every ` ∈ Lab[W]X

s,~h
\ Lab[W]Xs,h

is not assigned to a program variable, there is y ∈ X such that [[n(y)]]X
s,~h

= `. We have:

(ν1) Self[W]X
s,~h
∩ dom(h) = Self[W]Xs,h \ {[[n(y)]]X

s,~h
| y ∈ X}.

With a similar analysis, we conclude that

(ν2) Self[W]X
s,~h
∩ dom(h1) = Self[W]Xs,h1

\ {[[n(y)]]X
s,~h
| y ∈ X},

(ν3) Self[W]X
s′,~h′
∩ dom(h′) = Self[W]Xs′,h′ \ {[[n(y)]]X

s′,~h′
| y ∈ X},

(ν4) Self[W]X
s′,~h′
∩ dom(h′1) = Self[W]Xs′,h′1 \ {[[n(y)]]X

s′,~h′
| y ∈ X}.

Moreover, from ~h = h+ h1 and ~h′ = h′ + h′1,

(ν5) Self[W]X
s,~h

=
(
Self[W]X

s,~h
∩ dom(h)

)
∪
(
Self[W]X

s,~h
∩ dom(h1)

)
,

(ν6) Self[W]X
s′,~h′

=
(
Self[W]X

s′,~h′
∩ dom(h′)

)
∪
(
Self[W]X

s′, ~h′
∩ dom(h′1)

)
.

Similarly to the analysis done in order to prove (WB), we need to represent Self[W]Xs,h1
and

Self[W]Xs′,h′1 using sets of the strong fragment. Fortunately, from the proof of Lemma 5.35
(see (‡)), we know that

Self[W]Xs,h1
= [Cycl[S]Xs,h1

(1)][∪ {` ∈ Lab[S]Xs,h1
\ Lab[W]Xs,h1

| h1(`) = `}.

Since [Cycl[S]Xs,h1
(1)][∩ Lab[S]Xs,h1

= ∅, the two sets on the right hand side of this equality
are disjoint. Following (ν2), we are interested in the set

{` ∈ Lab[S]Xs,h1
\ Lab[W]Xs,h1

| h1(`) = `} \ {[[n(y)]]X
s,~h
| y ∈ X}.

From Lemma 5.14(I), s(X) ⊆ Lab[W]Xs,h1
⊆ {[[n(y)]]X

s,~h
| y ∈ X} ∪ s(X) = Lab[W]X

s,~h
. Thus,

the set above is equivalent to
L1

def= {` ∈ Lab[S]Xs,h1
| h1(`) = `} \ Lab[W]X

s,~h
.

We conclude that:
Self[W]X

s,~h

=
(
Self[W]X

s,~h
∩ dom(h)

)
∪
(
Self[W]X

s,~h
∩ dom(h1)

)
(by (ν5))

=
(
Self[W]Xs,h \ {[[n(y)]]X

s,~h
| y ∈ X}

)
∪
(
Self[W]Xs,h1

\ {[[n(y)]]X
s,~h
| y ∈ X}

)
(by (µ1) and (ν2))

=
(
Self[W]Xs,h \ {[[n(y)]]X

s,~h
| y ∈ X}

)
∪
(
[Cycl[S]Xs,h1

(1)][\ {[[n(y)]]X
s,~h
| y ∈ X}

)
∪ L1

(manipulation from (‡))
Note that the three sets in the last expression are mutually disjoint. We write (ν7) to
denote this last equality. With a similar analysis, from (ν6), (ν3), (ν4) and (‡), the following
equality (denoted by (ν8)) holds:
Self[W]X

s′,~h′
=
(
Self[W]Xs′,h′\{[[n(y)]]X

s′,~h′
| y ∈ X}

)
∪
(
[Cycl[S]Xs′,h′1(1)][\{[[n(y)]]X

s′,~h′
| y ∈ X}

)
∪ L′1,

where the three sets in the right hand side of the expression are mutually disjoint, and
L′1

def= {` ∈ Lab[S]Xs′,h′1 | h
′
1(`) = `} \ Lab[W]X

s′,~h′
.

We are now ready to prove (h’) and (i’).

Proof of (h’). We show the following three results:

5.6. Connecting the Two Families of Core Formulae 261

h1. min(card(Self[W]Xs,h\{[[n(y)]]X
s,~h
| y ∈ X}), α)

= min(card(Self[W]Xs′,h′\{[[n(y)]]X
s′,~h′
| y ∈ X}), α),

h2. min(card([Cycl[S]Xs,h1(1)][\{[[n(y)]]X
s,~h
| y ∈ X}), α)

= min(card([Cycl[S]Xs′,h′1(1)][\{[[n(y)]]X
s′,~h′
| y ∈ X}), α),

h3. card(L1) = card(L′1).
Afterwards, (h’) follows directly from (ν7) and (ν8).
The proofs of (h1) and (h2) follow very closely the proofs of (f1) and (f2) shown in
the previous step of the proof.

Proof of (h1). By (b’), we have card({[[n(y)]]X
s,~h
| y ∈ X}) = card({[[n(y)]]X

s′,~h′
| y ∈ X}).

Moreover, these two sets have at most card(X) locations. By (σ3), for every y ∈ X,
[[n(y)]]X

s,~h
∈ Self[W]Xs,h if and only if [[n(y)]]X

s′,~h′
∈ Self[W]Xs′,h′ . So,

k def= card(Self[W]Xs,h ∩ {[[n(y)]]X
s,~h
| y ∈ X})

= card(Self[W]Xs′,h′ ∩ {[[n(y)]]X
s′,~h′
| y ∈ X}).

Now, from (s, h) ≈WX,α+card(X) (s′, h′), the memory states (s, h) and (s′, h′) satisfy
the same formulae of the form selfWX ≥ β, where β ∈ [1, α + card(X)]. From the
semantics of these formulae, we conclude that
min(card(Self[W]Xs,h), α+ card(X)) = min(card(Self[W]Xs′,h′), α+ card(X)). (ν9)

By definition, card(Self[W]Xs,h) = card(Self[W]Xs,h \ {[[n(y)]]X
s′,~h′
| y ∈ X}) + k. Simi-

larly, card(Self[W]Xs′,h′) = card(Self[W]Xs′,h′ \ {[[n(y)]]X
s′,~h′
| y ∈ X}) + k. By (ν9),

min(card(Self[W]Xs,h \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α+ card(X)− k)

= min(card(Self[W]Xs′,h′ \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α+ card(X)− k).

Since k ≤ card(X), this entails (h1).
Proof of (h2). As in (f1), card({[[n(y)]]X

s,~h
| y ∈ X}) = card({[[n(y)]]X

s′,~h′
| y ∈ X}).

From (σ3), we conclude that
k def= card([Cycl[S]Xs,h1(1)][∩ {[[n(y)]]X

s,~h
| y ∈ X})

= card([Cycl[S]Xs′,h′1(1)][∩ {[[n(y)]]X
s′,~h′
| y ∈ X}).

We recall that, by definition of C1 and C1, by (r) and (c11),
[Cycl[S]Xs,h1(1)][= [C1 ∪ C1][= [C1][∪ [C1][,

[Cycl[S]Xs′,h′1(1)][= [C ′1 ∪ C
′
1][= [C ′1][∪ [C ′1][.

We recall that every set in Cycl[S]Xs,h1
(1) or Cycl[S]Xs′,h′1(1) is made of a single loca-

tion. From (c5) and (c7), this means that [C1][and [C ′1][have the same cardinality,
say n. Similarly, from (c1),

min([C1][,L(α)) = min([C ′1][,L(α)), (ν10)
where we recall that L(α) ≥ α. Moreover, for all y ∈ X, C1 and C1 are disjoint from
Ss(y), and C ′1 and C ′1 are disjoint from S′s′(y). By (π6), together with the definition
of C1 and from (D), we conclude that

[Cycl[S]Xs,h1(1)][∩ {[[n(y)]]X
s,~h
| y ∈ X} ⊆ [C1][,

[Cycl[S]Xs′,h′1(1)][∩ {[[n(y)]]X
s′,~h′
| y ∈ X} ⊆ [C ′1][.

Therefore,

262 Chapter 5. Deciding Robustness Properties in PSpace

card([Cycl[S]Xs,h1(1)][\ {[[n(y)]]X
s,~h
| y ∈ X}) = card(C1) + n− k,

card([Cycl[S]Xs′,h′1(x)][\ {[[n(y)]]X
s′,~h′
| y ∈ X}) = card(C ′1) + n− k.

Since n− k ≥ 0, from (ν10) we derive (h2).
Proof of (h3). By definition of L1, we have L1 ⊆ dom(f). Since f is an injection, we

show (h3) by proving that f(L1) = L′1.
(⊆): Suppose ` ∈ L1. By definition, we have ` 6∈ Lab[W]X

s,~h
, ` ∈ Lab[S]Xs,h1

and
h1(`) = `. The latter two properties imply that card(Path[S]Xs,h1

(`)) = 1 and
sbyX

s,h1
(`) = `. From (SA) and (SB), we conclude that card(Path[S]Xs′,h′1(f(`))) = 1

and sbyX
s′,h′1

(f(`)) = f(`). So, h1(f(`)) = f(`) and, to conclude that f(`) ∈ L′1, it is
sufficient to show that f(`) 6∈ Lab[W]X

s′,~h′
. Ad absurdum, suppose f(`) ∈ Lab[W]X

s′,~h′
.

If ` is assigned to a program variable then, by (1f), we conclude that ` is as-
signed to a program variable, which contradicts ` 6∈ Lab[W]X

s,~h
. Otherwise, suppose

` = [[n(x)]]X
s′,~h′

, for some x ∈ X. Since f(`) ∈ ran(f), by (D) we conclude that
f(`) 6∈ Ss′(x). However, by (π6), this implies ` = [[n(x)]]X

s,~h
, again in contradiction

with ` 6∈ Lab[W]X
s,~h

. Therefore, f(`) 6∈ Lab[W]X
s′,~h′

. We conclude that f(`) ∈ L′1.
(⊇): Symmetrical to the other direction.

Proof of (i’). (⇒): Suppose s(u) ∈ Self[W]X
s,~h

. As showed in the second to last line of (ν7),
s(u) 6∈ {[[n(y)]]X

s,~h
| y ∈ X} and we have either s(u) ∈ Self[W]Xs,h or s(u) ∈ Self[W]Xs,h1

.
By (e’), s′(u) 6∈ {[[n(y)]]X

s′,~h′
| y ∈ X}. Thanks to the core formula u ∈ selfWX ,

from (s, h) ≈WX,α+card(X) (s′, h′) and (s, h1) ≈WX,α (s′, h′1), either s′(u) ∈ Self[W]Xs′,h′ or
s′(u) ∈ Self[W]Xs′,h′1 hold. So, s′(u) ∈ Self[W]X

s′,~h′
.

(⇐): Symmetrical to the other direction.

WD. (j’) min(card(Rem[W]X
s,~h

), α) = min(card(Rem[W]X
s′,~h′

), α),

(k’) s(u) ∈ Rem[W]X
s,~h

if and only if s′(u) ∈ Rem[W]X
s′,~h′

.

Before proving (j’) and (k’), we analyse the set Rem[W]X
s,~h

. From Lemma 5.14(IV),

Rem[W]Xs,h =
(
Rem[W]X

s,~h
∩ dom(h)

)
∪
{
` ∈ Lab[W]X

s,~h
\ Lab[W]Xs,h

∣∣∣∣∣ ` ∈ dom(h), h′(`) 6= `

and ∀x ∈ X, h(`) 6= s(x)

}
.

Since the set Rem[W]X
s,~h

does not contain locations in Lab[W]X
s,~h

, the union on the right hand
side of the equality above is between disjoint sets. We derive:

Rem[W]X
s,~h
∩ dom(h) = Rem[W]Xs,h \

{
` ∈ Lab[W]X

s,~h
\ Lab[W]Xs,h

∣∣∣∣∣ ` ∈ dom(h), h′(`) 6= `

and ∀x ∈ X, h(`) 6= s(x)

}
.

In this equality, the constraint “` ∈ dom(h), h′(`) 6= ` and ∀x ∈ X, h(`) 6= s(x)” appear-
ing in the rightmost set is superfluous, as Rem[W]Xs,h only contains elements satisfying it.
Moreover, every location ` ∈ Lab[W]X

s,~h
\ Lab[W]Xs,h is not assigned to a program variable,

as it would otherwise belong to Lab[W]Xs,h. Thus, there is y ∈ X such that [[n(y)]]X
s,~h

= `.
We have:

Rem[W]X
s,~h
∩ dom(h) = Rem[W]Xs,h \ {[[n(y)]]X

s,~h
| y ∈ X}.

With a similar analysis, we conclude that

Rem[W]X
s,~h
∩ dom(h1) = Rem[W]Xs,h1

\ {[[n(y)]]X
s,~h
| y ∈ X},

5.6. Connecting the Two Families of Core Formulae 263

Rem[W]X
s′,~h′
∩ dom(h′) = Rem[W]Xs′,h′ \ {[[n(y)]]X

s′,~h′
| y ∈ X},

Rem[W]X
s′,~h′
∩ dom(h′1) = Rem[W]Xs′,h′1 \ {[[n(y)]]X

s′,~h′
| y ∈ X}.

Moreover, from ~h = h+ h1 and ~h′ = h′ + h′1,

(ξ1) Rem[W]X
s,~h

(x) =
(
Rem[W]X

s,~h
∩ dom(h)

)
∪
(
Rem[W]X

s,~h
∩ dom(h1)

)
=
(
Rem[W]Xs,h \ {[[n(y)]]X

s,~h
| y ∈ X}

)
∪
(
Rem[W]Xs,h1 \ {[[n(y)]]X

s,~h
| y ∈ X}

)
,

(ξ2) Rem[W]X
s′,~h′

(x) =
(
Rem[W]X

s′,~h′
∩ dom(h′)

)
∪
(
Rem[W]X

s′,~h′
∩ dom(h′1)

)
=
(
Rem[W]Xs′,h′ \ {[[n(y)]]X

s′,~h′
| y ∈ X}

)
∪
(
Rem[W]Xs′,h′1 \ {[[n(y)]]X

s′,~h′
| y ∈ X}

)
.

As in (WB) and (WC), we would like to represent Rem[W]Xs,h1
and Rem[W]Xs′,h′1 in terms of

sets of the strong fragment. Following the equation (?) in the proof of Lemma 5.35, we
know that
Rem[W]Xs,h1

= Rem[S]X,αs,h1
∪
⋃

β∈[2,α]
[Cycl[S]Xs,h1

(β)][∪ [⇑Cycl[S]X,αs,h1
][∪

⋃
`∈Lab[S]Xs,h1

(
Path[S]Xs,h1

(`) ∩ Rem[W]Xs,h1

)
.

We write (ξ3) to denote this equivalence. Unfortunately, (ξ3) is not as useful as the
equivalences used during (WB) and (WC), as Rem[W]Xs,h1

still appears in the right hand
side. However, again in Lemma 5.35, we solved this issue by considering the following
Boolean combinations of core formulae in Core[S](X, 1):

varX(t) =
∨

x∈X t = x, unlab(t) = t = t ∧ ¬(varX(t) ∨ nextX(t)),
nextX(t) = ¬varX(t) ∧

∨
x∈X t =S n(x), var.sby(t) =

∨
x∈X seesX(t, x) ≥ 1,

where t ∈ T[S]X and T ⊆ T[S]X. The semantics of these formulae is recalled below, with
respect to the memory state (s, h1):

(s, h1) |= varX(t) iff [[t]]Xs,h1
is defined and belongs to s(X),

(s, h1) |= nextX(t) iff [[t]]Xs,h1
is defined and belongs to Lab[W]Xs,h1

\ s(X),
(s, h1) |= unlab(t) iff [[t]]Xs,h1

is defined and does not belong to Lab[W]Xs,h1
,

(s, h1) |= var.sby(t) iff sbyX
s,h1

(t) is defined and belongs to s(X).

Below, under the hypothesis that Path[S]Xs,h1
(`) 6= ∅, we write lpre for the only location

Path[S]Xs,h1
(`) such that h1(`′) = sbyX

s,h1
(`). From these formulae, in Lemma 5.35 we

realised (page 164) that if Path[S]Xs,h1
(t) 6= ∅ then the following six statements hold,

where R is short for Path[S]Xs,h1
(t) ∩ Rem[W]Xs,h1

.

I. if (s, h1) |= varX(t) ∧ var.sby(t) then R = Path[S]Xs,h1
(t) \ {[[t]]Xs,h1

, h1([[t]]Xs,h1
), lpre},

II. if (s, h1) |= nextX(t) ∧ var.sby(t) then R = Path[S]Xs,h1
(t) \ {[[t]]Xs,h1

, lpre},
III. if (s, h1) |= varX(t) ∧ ¬var.sby(t) then R = Path[S]Xs,h1

(t) \ {[[t]]Xs,h1
, h1([[t]]Xs,h1

)},
IV. if (s, h1) |= nextX(t) ∧ ¬var.sby(t) then R = Path[S]Xs,h1

(t) \ {[[t]]Xs,h1
},

V. if (s, h1) |= unlab(t) ∧ var.sby(t) then R = Path[S]Xs,h1
(t) \ {lpre},

VI. if (s, h1) |= unlab(t) ∧ ¬var.sby(t) then R = Path[S]Xs,h1
(t).

Fundamentally, since the formulae varX(t), nextX(t), unlab(t) and var.sby(t) are Boolean
combinations of formulae from Core[S](X, 1), by (s, h1) ≈SX,α (s′, h′1), we conclude that
(s, h1) and (s′, h′1) satisfy the same premises of the implications in (I)–(VI). We use this
in order to show (j’) and (k’).

Proof of (j’). We aim at showing that

264 Chapter 5. Deciding Robustness Properties in PSpace

j1. min(card(Rem[W]Xs,h \ {[[n(y)]]X
s,~h
| y ∈ X}), α)

= min(card(Rem[W]Xs′,h′ \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α),

j2. min(card(Rem[W]Xs,h1 \ {[[n(y)]]X
s,~h
| y ∈ X}), α)

= min(card(Rem[W]Xs′,h′1 \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α).

By (ξ1) and (ξ2), together with h⊥h1 and h′⊥h′1, these two statements imply (j’). The
statement (j1) is proved similarly to (f1) and (h1), and essentially follows from (σ6)
together with (s, h) ≈WX,α+card(X) (s′, h′). We leave its proof to the reader, and focus
instead on (j2). Following (ξ3) we know that

Rem[W]Xs,h1 = Rem[S]X,αs,h1
∪
⋃

β∈[2,α]
[Cycl[S]Xs,h1(β)][∪ [⇑Cycl[S]X,αs,h1

][∪
⋃

`∈Lab[S]Xs,h1

R`,

Rem[W]Xs′,h′1 = Rem[S]X,αs′,h′1 ∪
⋃

β∈[2,α]
[Cycl[S]Xs′,h′1(β)][∪ [⇑Cycl[S]X,αs′,h′1][∪

⋃
`∈Lab[S]X

s′,h′1

R′`,
(ξ4)

where R` = Path[S]Xs,h1
(`)∩ Rem[W]Xs,h1

and R′` = Path[S]Xs′,h′1(`)∩ Rem[W]Xs′,h′1 . Notice
that the unions in the right hand side of these equations are all between disjoint sets.
Therefore, in order to show (j2) it is sufficient to show that
j3. min(card(Rem[S]X,αs,h1

\ {[[n(y)]]X
s,~h
| y ∈ X}), α)

= min(card(Rem[S]X,αs′,h′1 \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α),

j4. for every β ∈ [2, α],
min(card([Cycl[S]Xs,h1(β)][\ {[[n(y)]]X

s,~h
| y ∈ X}), α)

= min(card([Cycl[S]Xs′,h′1(β)][\ {[[n(y)]]X
s′,~h′
| y ∈ X}), α),

j5. min(card([⇑Cycl[S]X,αs,h1
][\ {[[n(y)]]X

s,~h
| y ∈ X}), α)

= min(card([⇑Cycl[S]X,αs′,h′1][\ {[[n(y)]]X
s′,~h′
| y ∈ X}), α),

j6. for every ` ∈ Lab[S]Xs,h1
,

min(card(R` \ {[[n(y)]]X
s,~h
| y ∈ X}), α)

= min(card(R′f(`) \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α).

In (j6), we recall that, by (SA), f(Lab[S]Xs,h1
) = Lab[S]Xs′,h′1 , which allows us to conclude

that, by (ξ4), (j3)–(j6) imply (j2). The proofs of (j4) and (j5) are very similar. Below,
we show the proofs of (j3), (j4) and (most interestingly) (j6).
Proof of (j3). By (b’), we have card({[[n(y)]]X

s,~h
| y ∈ X}) = card({[[n(y)]]X

s′,~h′
| y ∈ X}).

From (σ7), we conclude that
k def= card(Rem[S]X,αs,h1

∩ {[[n(y)]]X
s,~h
| y ∈ X})

= card(Rem[S]X,αs′,h′1 ∩ {[[n(y)]]X
s′,~h′
| y ∈ X}).

We recall that, by definition of R, by (x) and (r4),
Rem[S]X,αs,h1

= R ∪ (Rem[S]X,`s,h1
∩ dom(f)),

Rem[S]X,αs′,h′1 = R′ ∪ {` ∈ ran(f) | f−1(`) ∈ Rem[S]X,αs,h1
},

Since f is an injection Rem[S]X,αs,h1
∩ dom(f) and {`∈ ran(f) | f−1(`) ∈ Rem[S]X,αs,h1

} have
the same cardinality, say n. Moreover, since R is disjoint from Ss(y) and R′ is
disjoint from S′s′(y), for every y ∈ X, by (π6) we conclude that

5.6. Connecting the Two Families of Core Formulae 265

Rem[S]X,αs,h1
∩ {[[n(y)]]X

s,~h
| y ∈ X} ⊆ Rem[S]X,αs,h1

∩ dom(f),

Rem[S]X,αs′,h′1 ∩ {[[n(y)]]X
s′,~h′
| y ∈ X} ⊆ {` ∈ ran(f) | f−1(`) ∈ Rem[S]X,αs,h1

}.
Therefore,

card(Rem[S]X,αs,h1
\ {[[n(y)]]X

s,~h
| y ∈ X}) = card(R) + n− k,

card(Rem[S]X,αs′,h′1 \ {[[n(y)]]X
s′,~h′
| y ∈ X}) = card(R′) + n− k.

Since n− k ≥ 0 and, by (r1), min(card(R), α) = min(card(R′), α), these two equal-
ities imply (j3).

Proof of (j4). By (b’), we have card({[[n(y)]]X
s,~h
| y ∈ X}) = card({[[n(y)]]X

s′,~h′
| y ∈ X}).

From (σ3), we conclude that
k def= card([Cycl[S]Xs,h1(β)][∩ {[[n(y)]]X

s,~h
| y ∈ X})

= card([Cycl[S]Xs′,h′1(β)][∩ {[[n(y)]]X
s′,~h′
| y ∈ X}).

We recall that, by definition of Cβ and Cβ, by (r) and (c11),
[Cycl[S]Xs,h1(β)][= [Cβ ∪ Cβ][= [Cβ][∪ [Cβ][,

[Cycl[S]Xs′,h′1(β)][= [C ′β ∪ C
′
β][= [C ′β][∪ [C ′β][.

We recall that every set in Cycl[S]Xs,h1
(β) or Cycl[S]Xs′,h′1(β) contains exactly β lo-

cations. From (c5), (c7) and (c8), [Cβ][(resp. [C ′β][) can be split into two disjoint
sets Q and Q (resp. Q′ and Q

′) such that
m def= card(Q) = card(Q′), Q ⊆ dom(f), Q ∩ dom(f) = ∅,
n def= card(Q) = card(Q′), Q

′ ⊆ ran(f), Q′ ∩ ran(f) = ∅.
Moreover, from (c1), and (c3),

min([Cβ][, β × L(α)) = min([C ′β][, β × L(α)), (ξ5)
where we recall that L(α) ≥ α. Moreover, for all y ∈ X, Cβ and Cβ are disjoint
from Ss(y), and C ′β and C

′
β are disjoint from S′s′(y). By (π6), together with the

definitions of Cβ, Q and Q′, and from (D), we conclude that
[Cycl[S]Xs,h1(β)][∩ {[[n(y)]]X

s,~h
| y ∈ X} ⊆ Q,

[Cycl[S]Xs′,h′1(β)][∩ {[[n(y)]]X
s′,~h′
| y ∈ X} ⊆ Q

′
.

Therefore,
card([Cycl[S]Xs,h1(β)][\ {[[n(y)]]X

s,~h
| y ∈ X}) = card(Cβ) +m+ n− k,

card([Cycl[S]Xs′,h′1(x)][\ {[[n(y)]]X
s′,~h′
| y ∈ X}) = card(P ′s′(x)) +m+ n− k.

Since n− k ≥ 0, from (ξ5) we derive (j4).

Proof of (j6). Let ` ∈ Lab[S]Xs,h1
. Consider a term t ∈ T[S]X such that [[t]]Xs,h1

= `.
By (SA), f(`) = [[t]]Xs′,h′1 . If Path[S]Xs,h1

(t) = ∅ then, by (i), Path[S]Xs′(h′1) =
∅ and thus (j6) trivially holds. Below, let us assume that Path[S]Xs,h1

(t) and
Path[S]Xs′,h′1(t) are non-empty. Let ρ = (`0, . . . , `p) be the path described by
Path[S]Xs,h1

(t), going from `0 = [[t]]Xs,h1
to `p = sbyX

s,h(t). Similarly, let ρ′ =
(`′0, . . . , `′q) be the path described by Path[S]Xs′,h′1(t), going from `′0 = [[t]]Xs′,h′1 to
`′q = sbyX

s′,h′1
(t). We write lpre and l′pre for the locations `p−1 and `′q−1, respectively.

Thus, lpre ∈ Path[S]Xs,h1
(t) and h1(lpre) = sbyX

s,h1
(t), whereas l′pre ∈ Path[S]Xs′,h′1(t)

and h′1(lpre) = sbyX
s′,h′1

(t). By (s, h1) ≈SX,α (s′, h′1), (s, h1) and (s′, h′1) equisatisfy
the formulae varX(t), nextX(t), unlab(t) and var.sby(t). Therefore, (s, h1) and

266 Chapter 5. Deciding Robustness Properties in PSpace

(s′, h′1) satisfy the same premises of the statements (I)–(VI), which allows us to
conclude that R` and R′f(`) can be expressed as

R` = Path[S]Xs,h1
(t) \ L, R′f(`) = Path[S]Xs′,h′1(t) \ L′.

where L and L′ are defined following the table below:
LI. if (s, h1) |= varX(t) ∧ var.sby(t) then

L def= {[[t]]Xs,h1
, h1([[t]]Xs,h1

), lpre}, L′ def= {[[t]]Xs′,h′1 , h
′
1([[t]]Xs′,h′1), l′pre}.

LII. if (s, h1) |= nextX(t) ∧ var.sby(t) then
L def= {[[t]]Xs,h1

, lpre} L′ def= {[[t]]Xs′,h′1 , l
′
pre},

LIII. if (s, h1) |= varX(t) ∧ ¬var.sby(t) then
L def= {[[t]]Xs,h1

, h1([[t]]Xs,h1
)} L′ def= {[[t]]Xs′,h′1 , h

′
1([[t]]Xs′,h′1)},

LIV. if (s, h1) |= nextX(t) ∧ ¬var.sby(t) then
L def= {[[t]]Xs,h1

}, L′ def= {[[t]]Xs′,h′1},

LV. if (s, h1) |= unlab(t) ∧ var.sby(t) then
L def= {lpre}, L′ def= {l′pre},

LVI. if (s, h1) |= unlab(t) ∧ ¬var.sby(t) then
L def= ∅ L′ def= ∅.

Therefore, (j6) requires us to prove that
min(card((Path[S]Xs,h1(t) \ L) \ {[[n(y)]]X

s,~h
| y ∈ X}), α)

= min(card((Path[S]Xs′,h′1(t) \ L′) \ {[[n(y)]]X
s′,~h′
| y ∈ X}), α).

For simplicity, we use the following shortcuts:
P = Path[S]Xs,h1

(t) ∩ dom(f), N = {[[n(y)]]X
s,~h
| y ∈ X},

P ′ = {`′ ∈ ran(f) | f−1 ∈ Path[S]Xs,h1
(t)}, N ′ = {[[n(y)]]X

s′,~h′
| y ∈ X}.

From (l), (s4) and by definition of S`, we have:
Path[S]Xs,h1

(t) = S` ∪ P, Path[S]Xs′,h′1(t) = S′f(`) ∪ P
′,

where the union on the right hand side of these two equalities is between disjoint
sets. Since f is injective, card(P) = card(P ′). To prove (j6), we show that:

(j7) min(card((S` \ L) \ N), α) = min(card((S′f(`) \ L′) \ N ′), α),
(j8) card((P \ L) \ N) = card((P ′ \ L′) \ N ′).

Proof of (j7). We have:
x1. By definition of S` and (D), S` ∩ dom(f) = ∅ and S′f(`) ∩ ran(f) = ∅,
x2. By (x1), [[t]]Xs,h1

6∈ S` and [[t′]]Xs′,h′1 6∈ S
′
`,

x3. From (s6), h1([[t]]Xs,h1
) ∈ S` if and only if h′1([[t]]Xs′,h′1) ∈ S′f(`),

x4. From (s7), lpre ∈ S` if and only if l′pre ∈ S′f(`),
x5. By (s1), min(card(S`),S(α)) = min(card(S′f(`)),S(α)).
We notice that, for every α ≥ 1, S(α) ≥ α + 3. We divide the proof into the
following two cases.
case: there is x ∈ X such that s(x) = [[t]]Xs,h1

. We notice that, in this case, (s, h)
satisfies varX(t) and so either (LI) or (LIII) applies, which allows us to con-
clude that {[[t]]Xs,h1

, h1([[t]]Xs,h1
)} ⊆ L and {[[t]]Xs′,h′1 , h

′
1([[t]]Xs′,h′1)} ⊆ L′. Therefore, if

card(Path[S]Xs,h1
(t)) ≤ 2, and so S` ⊆ Path[S]Xs,h1

(t) ⊆ {[[t]]Xs,h1
, h1([[t]]Xs,h1

)}, we
have card((S`\L)\N) = card((S′`\L′)\N ′) = 0 (which implies (j7)). Indeed, by (i),

5.6. Connecting the Two Families of Core Formulae 267

we derive card(Path[S]Xs′,h′1(t)) ≤ 2, and so S′f(`) ⊆ {[[t]]Xs′,h′1 , h1([[t]]Xs′,h′1)}. Other-
wise, let us assume card(Path[S]Xs,h1

(t)) > 2. By (i), card(Path[S]Xs′,h′1(t)) > 2.
From (π6), we know that for all y ∈ X, if [[n(y)]]Xs,h1

(or [[n(y)]]Xs′,h′1) is defined, then
either f([[n(y)]]Xs,h1

) = [[n(y)]]Xs′,h′1 , or [[n(y)]]X
s,~h
∈ Ss(y) and [[n(y)]]X

s′,~h′
∈ S′s′(y). This

implies that [[n(x)]]X
s,~h

could belong to Ss(x) = S` but, on the other hand, for every
y ∈ X, if [[n(y)]]X

s,~h
6= [[n(x)]]X

s,~h
then it cannot be that [[n(y)]]X

s,~h
∈ Ss(x) = S`. Sim-

ilarly, [[n(x)]]X
s′,~h′

could belong to S′s′(x) = S′f(`) but, on the other hand, for every
y ∈ X, if [[n(y)]]X

s′,~h′
6= [[n(x)]]X

s′,~h′
then it cannot be that [[n(y)]]X

s′,~h′
∈ S′s′(x) = S′f(`).

Since h1([[t]]Xs,h1
) = [[n(x)]]X

s,~h
and h′1([[t]]Xs′,h′1) = [[n(x)]]X

s′,~h′
, this allows us to con-

clude that P ∩N ⊆ L and P ′ ∩N ′ ⊆ L′, which in turn implies
card((S` \ L) \ N) = card(S` \ L), card((S′f(`) \ L′) \ N ′) = card(S′f(`) \ L′). (ξ6)

From card(Path[S]Xs,h1
(t)) > 2 (resp. card(Path[S]Xs′,h′1(t)) > 2), we have that

[[t]]Xs,h1
, h1([[t]]Xs,h1

) and lpre (resp. [[t]]Xs′,h′1 , h′1([[t]]Xs′,h′1) and l′pre) are distinct lo-
cations. From (x2)–(x4), this allows us to conclude that L and L′, we derive
k def= card(S` ∩ L) = card(Sf(`) ∩ L′) ≤ 3. From (x5) we know that

min(card(S`), α+ 3) = min(card(Sf(`)), α+ 3).
Subtracting k in both sides, together with the fact that k ≤ 3, leads to

min(card(S`)− k, α) = min(card(S′f(`))− k, α).
Then, from card(S` \L) = card(S`)−k and card(S′f(`) \L′) = card(S′f(`))−k, by (ξ6)
we conclude that (j7) holds.

case: for all x ∈ X, s(x) 6= [[t]]Xs,h1
. In this case, (s, h) 6|= varX(x) and therefore,

According to the cases (LI)–(LVI), L ⊆ {[[t]]Xs,h1
, lpre} and L′ ⊆ {[[t]]Xs′,h′1 , l

′
pre}.

From (π6), we know that for all y ∈ X, if [[n(y)]]Xs,h1
(or [[n(y)]]Xs′,h′1) is defined, then

either f([[n(y)]]Xs,h1
) = [[n(y)]]Xs′,h′1 , or [[n(y)]]X

s,~h
∈ Ss(y) and [[n(y)]]X

s′,~h′
∈ S′s′(y). Since

for every x ∈ X we have s(x) 6= [[t]]Xs,h1
, we derive that, for all x ∈ X, S` 6= Ss(x).

Similarly, by (SA), for every x ∈ X we have s′(x) 6= [[t]]Xs′,h′1 , and thus for all x ∈ X,
S′f(`) 6= S′s′(x). We deduce that S` ∩N = ∅ and S′f(`) ∩N

′ = ∅. As in the previous
case, we derive

card((S` \ L) \ N) = card(S` \ L), card((S′f(`) \ L′) \ N ′) = card(S′f(`) \ L′). (ξ7)
By (i) we have that card(Path[S]Xs,h1

(t)) = 1 if and only if card(Path[S]Xs′,h′1(t)) = 1.
Equivalently, [[t]]Xs,h1

= lpre if and only if [[t]]Xs′,h′1 = l′pre. From (x2)–(x4), this allows
us to conclude that L and L′, we derive k def= card(S` ∩ L) = card(Sf(`) ∩ L′) ≤ 2. As
in the previous case of the proof, together with (x5), this implies that

min(card(S`)− k, α) = min(card(S′f(`))− k, α).
Then, from card(S` \L) = card(S`)−k and card(S′f(`) \L′) = card(S′f(`))−k, by (ξ7)
we conclude that (j7) holds.

Proof of (j8). We have:
· f([[t]]Xs,h1

) = [[t]]Xs′,h′1 .
· From (s6), h1([[t]]Xs,h1

) ∈ dom(f) if and only if h′1([[t]]Xs′,h′1) ∈ ran(f). Moreover, if
h1([[t]]Xs,h1

) ∈ dom(f), then f(h1([[t]]Xs,h1
)) = h′1([[t]]Xs′,h′1).

· From (s7), lpre ∈ dom(f) if and only if l′pre ∈ ran(f). Moreover, if lpre ∈ dom(f),
then f(lpre) = l′pre.

268 Chapter 5. Deciding Robustness Properties in PSpace

· By definition, [[t]]Xs,h1
, lpre ∈ Path[S]Xs,h1

(t), and [[t]]Xs′,h′1 , l
′
pre ∈ Path[S]Xs′,h′1(t).

· From (i), h1([[t]]Xs,h1
) ∈ Path[S]Xs,h1

(t) if and only if h1([[t]]Xs′,h′1) ∈ Path[S]Xs′,h′1(t).
From these five statements, by definition of L ad L′, we derive f(L ∩ P) = L′ ∩ P ′.
Since, by definition, for every y ∈ X, P is disjoint from Ss(y) and P ′ is disjoint
from S′s′(y), from (π6) and (σ8) we have f(P ∩ N) = P ′ ∩ N ′. Together with
f(L ∩ P) = L′ ∩ P ′, this allows us to derive

f(P ∩ (L ∪N)) = P ′ ∩ (L′ ∪N).
Since f is injective, this implies card(P∩(L∪N)) = card(P ′∩(L′∪N ′)). Afterwards,
since card(P) = card(P ′), (j8) follows:

card((P \ L) \ N) = card(P)− card(P ∩ (L ∪N))
= card(P ′)− card(P ′ ∩ (L′ ∪N ′)) = card((P ′ \ L′) \ N ′).

This concludes the proof of (j’).
Proof of (k’). (⇒): Suppose s(u) ∈ Rem[W]X

s,~h
. From (ξ1), s(u) 6∈ {[[n(y)]]X

s,~h
| y ∈ X} and we

have either s(u) ∈ Rem[W]Xs,h or s(u) ∈ Rem[W]Xs,h1
. By (e’), s′(u) 6∈ {[[n(y)]]X

s′,~h′
| y ∈ X}.

Thanks to the formula u ∈ remWX , by (s, h) ≈WX,α+card(X) (s′, h′) and (s, h1) ≈WX,α (s′, h′1),
either s′(u) ∈ Rem[W]Xs′,h′ or s′(u) ∈ Rem[W]Xs′,h′1 holds. By (ξ2), s′(u) ∈ Rem[W]X

s′,~h′
.

(⇐): Symmetrical to the other direction.
Proof of (s,~h) ≈WX,α (s′,~h′). Thanks to the properties (WA)–(WD), we are now ready to prove
that (s,~h) ≈WX,αj (s′,~h′). Consider a core formula ϕ in Core[W](X, α). Then, (s,~h) |= ϕ iff
(s,~h′) |= ϕ, as shown below:
case: ϕ = t1 = t2. Follows directly from (WA)(b’).
case: ϕ = t ↪→ . Follows directly from (WA)(c’).
case: ϕ = t ↪→ x or ϕ = t ↪→ t. Follows directly from (WA)(d’).
case: ϕ = predWX (x) ≥ β. Follows directly from (WB)(f’).
case: ϕ = selfWX ≥ β. Follows directly from (WC)(h’).
case: ϕ = remWX ≥ β. Follows directly from (WD)(j’).
case: ϕ = u = t. Follows directly from (WA)(e’).
case: ϕ = u ∈ predWX (x). Follows directly from (WB)(g’).
case: ϕ = u ∈ selfWX . Follows directly from (WC)(i’).
case: ϕ = u ∈ remWX . Follows directly from (WD)(k’).

Conclusion

In Chapters 3, 4 and 5, we studied the computational complexity of separation logics featuring
reachability predicates. Our main motivation was to design a separation logic that can express
robustness properties of memory states, such as acyclicity and garbage freedom, while having a
relatively low complexity.

In Chapter 3 we learned that the simple addition of reachability predicates in quantifier-
free separation logic SL(∗,−∗) makes the satisfiability problem of SL(∗,−∗) jump from PSpace
to non RE. Surprisingly, this result already holds when SL(∗,−∗) is enriched with the bounded
reachability predicates x ↪→2 y and x ↪→3 y, stating that the location corresponding to the variable
y is reachable from the one corresponding to the variable x in exactly 2 and 3 steps, respectively.

In Chapter 4 we discovered interactions between reachability and submodel reasoning that
lead to Tower-hard logics. Our studies were carried out through the logic ALT, which we
showed to be easily captured by several other logics that where already proved Tower-hard,
as for instance modal separation logic and quantified computation tree logic.

After the negative results of Chapters 3 and 4, in Chapter 5 we were finally able to reach
our goal: we introduced the logic SL([∃]1, ∗, [−∗, ↪→+]SW), for which we proved a PSpace upper
bound of its satisfiability problem. This logic extends several well-known separation logics, such
as the PSpace-complete SL([∃]1, ∗,−∗) and SL(∗, ls). Crucially, the robustness properties lying
outside the expressive power of many fragments of separation logic can be directly expressed in
SL([∃]1, ∗, [−∗, ↪→+]SW) as entailment queries, and checked in PSpace.

Figure 5.24 summarises the results obtained in Chapters 3, 4 and 5.

Taming reachability predicates.

The logic SL([∃]1, ∗, [−∗, ↪→+]SW) was defined thanks to syntactical restrictions that let us avoid the
sources of high complexity identified during Chapters 3 and 4. In particular, Chapter 3 shows the
difficulties of dealing with separation logics featuring both reachability predicates and the sepa-
rating implication −∗, whereas Chapter 4 shows the intractability of the separating conjunction
together with reachability predicates and one quantified variable name. In SL([∃]1, ∗, [−∗, ↪→+]SW),
the results of Chapter 3 translate into a constraint on the reachability predicates occurring under
the scope of a −∗, and the results of Chapter 4 translate into a constraint on the occurrences
of the quantified variable name inside reachability predicates. Of course, when dealing with
reachability predicates, other directions are possible. To this end, in [58], co-authored with
S. Demri and E. Lozes, we introduce a guarded form of quantification that allows us to solve
the issues in Chapter 4 and, for −∗-free separation logics, lead to a PSpace-complete satisfia-
bility problem. Very recently, J. Pagel and F. Zuleger tackled the issues raised in Chapter 3 by
modifying the notion of union of heaps, which leads to a new semantics for the connectives ∗
and −∗ [117]. Exactly as in the case of [58], under this new semantics the satisfiability problem

269

270 Chapter 5. Deciding Robustness Properties in PSpace

of SL(∗,−∗, ls) is shown to be PSpace-complete, instead of non RE. Despite being unable to
express the robustness properties (unlike SL([∃]1, ∗, [−∗, ↪→+]SW)), both the logics in [58] and [117]
give new and interesting perspectives which could in the future improve the decision procedures
of separation logics featuring reachability predicates.

An auxiliary logic on trees.

Despite not having practical application, the logic ALT introduced in Chapter 4 is theoretically
interesting, as it happens to be easily captured by various non-elementary logics: first-order
separation logic, quantified CTL, modal logic of heaps and modal separation logic. Through
ALT, we were not only able to connect these logics, but also to refine their analysis and find
strict fragments that are still Tower-hard. Most importantly, with ALT we hope to have shown
a set of simple and concrete properties, centered around reachability and submodel reasoning,
that when put together lead to logics having a non-elementary satisfiability problem.

This work leaves a few questions open. First, the fragments of ALT where � or �* are removed
from the logic have not being studied yet. The logic without �* is of particular interests, as it
has strong connections with the sabotage logics from [4].

Second, the analysis done on first-order separation logic and on modal logic of heaps reveals
that the complexity of these logics does not change when the ∗ operator and the emp predicate
are replaced with the less general operators � and �* (see e.g. Theorem 4.45). We find this
point interesting, as from an overview of the literature, it seems that this result also holds
for the separation logics considered in [22, 52, 55, 103, 107]. Moreover, for the logics whose
expressiveness is known, i.e. the ones in [55, 103], it seems that also the expressive power
remains unchanged. However, we struggle to see how to express the ∗ operator with � and �*
in an uniform way.

Lastly, Chapter 4 illustrates the potential of ALT as a tool for proving the Tower-hardness
of logics interpreted on tree-like structures. As the operators of our logic are simple, we hope
ALT to be useful in order to study other logics with unknown complexities.

The core formulae technique.

In order to show the PSpace upper bound of the satisfiability problem for SL([∃]1, ∗, [−∗, ↪→+]SW),
we relied on the core formulae technique introduced by E. Lozes in [104], which we extended
to better suits our needs. Ultimately, the technique still suffers some drawbacks: it heavily
relies on the ad-hoc definitions of core formulae and, despite the addition of game hops to
make the proofs modular, the simulation arguments are lengthy and technical. Nonetheless,
this technique is quite general and, as we will see in the following part of the thesis, well-suited
to tackle problems that are outside the realm of computational complexity.

5.6. Connecting the Two Families of Core Formulae 271

SL(∗) [33]

SL(∗,−∗) [33, 104]

SL([∃]1, ∗,−∗) [55]

SL([∃]1, ∗) [55]SL(∗, ↪→+) [56]

SL([∃]1, ∗, [−∗, ↪→+]SW)
[Th. 5.50]

ALT
[Th. 4.28]

SL([∃]2, ∗) [53]QCTLt(EF1)
[Th. 4.41]

QCTLt(EU0)
[Th. 4.41]

QCTLt [99]

SL(∗,−[1], ls)
[Corr. 4.33]

MSL/MLH
[Th. 4.45]

SL(∃, ∗) [22]

SL(∗,−∗, ↪→2, ↪→3)
[Th. 3.18]

SL(∗,−∗, ls)
[Corr. 3.19]

MSL(∗,−∗,♦)
[Th. 3.20]

SL([∃]2,−∗) [53]

SL([∃]2, ∗,−∗) [53]

SL(∃, ∗,−∗) [22]

PSpace

Elementary

Tower

Recursive

RE

non RE ↑

: reduction (satisfiability problem), , : syntactical fragment.

Figure 5.24: Recap: The complexity of Separation Logics.

Part II

Internal Calculi for
Spatial Logics

273

Internal Proof Systems
via Core Formulae

In Chapters 6 and 7, we look at the problem of designing internal calculi for separation logics and
other spatial logics. The fact that the calculus is internal (or Hilbert-style) for a logic L simply
means that the axioms and inference rules involve schemas instantiated by formulae in L (no use
of nominals, labels or other syntactic objects that are not L formulae).1 Designing an internal
calculus for your favourite logic is usually quite challenging. This does not lead necessarily to
optimal decision procedures, but the completeness proof usually provides essential insights to
better understand the logic at hand. That is why many logics related to program verification
have been axiomatised, often requiring non-trivial completeness proofs. By way of example,
there are internal calculi for the linear-time µ-calculus [95, 61], the modal µ-calculus [141] or
for the alternating-time temporal logic ATL [81], the full computation tree logic CTL∗ [125], for
probabilistic extensions of µ-calculus [100] or for a coalgebraic generalisation [129].

Internal calculi for separation logics.

Concerning separation logics, the literature on proof systems is quite vast, but almost completely
limited to the abstract level of BBI. An Hilbert-style axiomatisation of BBI has been introduced
in [75] (see Section 2.3.3). More recently, HyBBI [27], a hybrid version of Boolean BI has been
introduced in order to axiomatise various classes of abstract separation logics; HyBBI naturally
considers classes of abstract models (typically preordered partial monoids) but it does not fit
exactly the heaplet semantics of separation logics. Furthermore, the addition of nominals (in
the sense of hybrid modal logics, see e.g. [2]) extends substantially the object language.

In [91], labelled sequent calculi are designed for several abstract separation logics by con-
sidering different sets of properties. The sequents contain labelled formulae (a formula prefixed
by a label to be interpreted as an abstract heap) as well as relational atoms to express rela-
tionships between abstract heaps. Though the framework in [91] is modular and very general
to handle abstract separation logics, it is not tailored to separation logics with concrete seman-
tics, see [91, Section 7]. In contrast, the paper [90] deals with first-order separation logic with
concrete semantics and presents a sound labelled sequent calculus for it. Of course, the calculus
cannot be complete (as the logic is not RE, see Theorem 2.13) but more importantly in the
context of Chapter 6, completeness is not established for the quantifier-free fragment. In [90],
the sequents contain labelled formulae and relational atoms, similarly to [91]. Hence, this does

1We aim at defining internal calculi according to the terminology from the Workshop on External and Internal
Calculi for Non-Classical Logics, FLOC’18, Oxford, http://weic2018.loria.fr.

275

http://weic2018.loria.fr

276 Chapter 5. Deciding Robustness Properties in PSpace

not meet our requirements to have a pure axiomatisation in which only logical formulae from
quantifier-free separation logic are allowed.

Modularity of the approaches from [25, 27, 91] is further developed in the recent work [59, 60]
by proposing a framework for labelled tableaux systems parametrised by the choice of separation
theories (in the very sense of [27]). It is remarkable that the developments in [59, 60] are very
general as it can handle separation theories that can be expressed in the rich class of so-called
coherent first-order formulae, a subset of first-order formulae with a special syntactic form. The
first-order axioms are directly translated into inference rules. The calculi use labelled formulae
(every formula is decorated by a sign and by a label) as well as constraints enforcing properties
between worlds/resources. Unlike [74], the reasoning about labels is not outsourced but handled
directly by the calculus. Similarly to the works [74, 27, 91], the labelled tableaux systems handle
syntactic objects referring to semantical concepts related to the abstract separation logics that
go beyond the only presence of formulae. In a way, modularity of the approach prevents from
having an internal calculus.

Motivations.

Since the birth of separation logics, there has been a lot of interest in the study of decidability
and computational complexity issues, see e.g. [33, 22, 19, 44, 55, 26] as well as the first part
of the thesis, and comparatively less attention to the design of proof systems, and even less
with the puristic approach that consists in discarding any external feature such as nominals
or labels in the calculi. The well-known advantages of such an approach include an exhaustive
understanding of the expressive power of the logic and discarding the use of any external artifact
referring to semantical objects.

In this part of the thesis, we advocate a puristic approach and aim at designing a Hilbert-
style proof systems for separation logics and more generally other instantiations of BBI, while
remaining within the very logical language. Consequently, we only focus on axiomatising sepa-
ration logics, and we have no claim for practical applications in the field of program verification
with separation logics. Aiming at internal calculi is a non-trivial task as the general frameworks
for abstract separation logics make use of labels, see e.g. [59, 91]. We cannot rely on label-free
calculi for BBI, see e.g. [121, 75], as separation logics are instantiation of BBI interpreted on
memory states and therefore require calculi that cannot abstract as much as it is the case for
BBI. Finally, there are many translations from separation logics into logics or theories, see
e.g. [35, 120, 22, 123]. However, completeness cannot in general be inherited by sublogics as
the proof system should only use the sublogic and therefore the axiomatisation of sublogics may
lead to different methods.

Contribution of Chapter 6.

We present the first Hilbert-style proof system for the quantifier-free separation logic SL(∗,−∗),
that uses axiom schemas and rules involving only formulae of this logic. Fundamentally, in order
to design the proof system we rely on the core formulae technique introduced in Chapter 5. This
leads to a modular axiomatisation, starting with a complete axiomatisation of a Boolean algebra
of core formulae, and incrementally adding support for the multiplicative connectives: the sep-
arating conjunction and the separating implication. More precisely, given the axiomatisation of
arbitrary Boolean combinations of core formulae, we add axioms and rules that allow to syntac-
tically transform every formula of SL(∗,−∗) into such Boolean combinations. Schematically, for

5.6. Connecting the Two Families of Core Formulae 277

a valid formula ϕ of SL(∗,−∗), the proof system is able to derive whether ` ϕ holds by showing
` ϕ′ and ` ϕ′ ⇔ ϕ, where ϕ′ is a Boolean combination of core formulae. Our methodology leads
to a calculus that is divided in three parts: (1) the axiomatisation of Boolean combinations
of core formulae, (2) axioms and inference rules to simulate a bottom-up elimination of the
separating conjunction, and (3) axioms and inference rules to simulate a bottom-up elimination
of the magic wand. A nice property of this methodology is that only the completeness of the
axiomatisation of Boolean combinations of core formulae has to be proven by semantical means.
The bottom-up elimination of ∗ and −∗ is showed completely syntactically, which leads to a less
error-prone proof of completeness of the full calculus. Such an approach that consists in first
axiomatising a syntactic fragment of the whole logic (in our case, the core formulae), is best
described in [61] (see also [141, 138, 143, 105]).

Contribution of Chapter 7.

The approach introduced in Chapter 6 can be followed for other separation logics, as we did in
the paper [58], co-authored with S. Demri and E. Lozes, and in [57], co-authored with S. Demri
and R. Fervari. To broaden our perspectives, in Chapter 7 we propose to look at ambient logics,
which are instantiations of BBI tailored to reason on distributed systems, and design an Hilbert-
style calculus for an ambient-like modal logic. Once again, in order to design the calculus we
heavily rely on the core formulae technique. Besides showing another example of very natural
Hilbert-style proof system designed with the help of core formulae, Chapter 7 shows interesting
connections between separation logics and ambient logics, which we study in depth during the
last part of the thesis.

6

A Complete Axiomatisation for
Quantifier-free Separation Logic

Contents
6.1 Axiomatising SL(∗,−∗), Internally . 283

6.1.1 The core formulae of SL(∗,−∗). 284
6.1.2 Hilbert-style proof systems. 285

6.2 An Hilbert-style proof system for SL(∗,−∗) 285
6.3 Main ingredients of the method . 290
6.4 A Simple Calculus for the Core Formulae . 291
6.5 Syntactical elimination of the Separating Conjunction 295
6.6 Syntactical elimination of the Separating Implication 316

279

281

In this chapter

We present the first axiomatisation of the quantifier-free separation logic SL(∗,−∗). The ax-
iomatisation is internal (a.k.a. Hilbert-style), meaning that every axiom and rule of the calculus
involves only formulae from SL(∗,−∗). The proof system extends the axiomatisation of BBI (Sec-
tion 2.3.3) with axioms that take in account the concrete semantics of separation logic, based
on memory states.
In order to design the proof system and prove its adequacy, we rely on the core formulae technique
introduced in Chapter 5. This leads to a modular calculus for SL(∗,−∗), that is split in three
subsystems, respectively dealing with: (1) the axiomatisation of Boolean combinations of core
formulae, (2) the axiomatisation of the separating conjunction ∗ and (3) the axiomatisation of
the separating implication −∗.

Here is a roadmap of the chapter.

Section 6.1. We introduce the core formulae for SL(∗,−∗) and standard notions for Hilbert-
style (a.k.a. internal) proof systems. The set of core formulae for SL(∗,−∗), firstly studied in [104],
is built from the following abbreviations already introduced in Chapter 2:

x = y, x ↪→ y, x ↪→ , size≥β,

where x, y ∈ VAR and β ∈ N. As required in Chapter 5, Boolean combinations of core formulae
capture the expressiveness of SL(∗,−∗). The opposite also holds: each core formula belongs
to SL(∗,−∗). This latter property is fundamental in the context of internal proof systems, as all
axioms and rules should only consider formulae of the logic.

Section 6.2. We introduce the proof systemHC(∗,−∗) that shall be proven adequate (i.e. sound
and complete) for SL(∗,−∗). As already stated, the system is divided into three parts, dealing
with Boolean combinations of core formulae, the separating conjunction ∗ and the separating
implication −∗, respectively. After familiarising with the axioms and rules by carrying out simple
proofs in HC(∗,−∗), we show that the proof system is sound.

Section 6.3. In this short section, we analyse the method used in order to prove completeness
of the system. Following the split of HC(∗,−∗) into three subsystems, the completeness argument
follows as we show that:

1. the subsystem dealing with the axiomatisation of the core formulae, denoted by HC, is a
complete proof system for Boolean combinations of core formulae,

2. the subsystem HC(∗), obtained from HC by adding axioms and rules to deal with the
separating conjunction ∗, allows to translate into a Boolean combination of core formulae
every formula of the form ϕ∗ψ, where ϕ and ψ are Boolean combinations of core formulae,

3. the proof system HC(∗,−∗), obtained from HC(∗) by adding axioms and rules to deal with
the operator −∗, allows to translate into a Boolean combination of core formulae every
formula of the form ϕ−∗ ψ, where ϕ and ψ are Boolean combinations of core formulae.

Section 6.4. We consider the system HC, which extends the axiomatisation of propositional
calculus due to Lukasiewicz [18] with axioms dealing with the memory model of SL(∗,−∗), e.g.

282 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

x ↪→ ∧ y ↪→ ∧ x 6= y⇒ size≥ 2.

We prove that HC is complete with respect to Boolean combination of core formulae. The proof
essentially boils down to a countermodel construction: given a conjunction ϕ of possibly negated
core formulae (i.e. core formulae literals), if ϕ⇒⊥ it is not derivable in HC, then we construct
a memory state satisfying ϕ.

Section 6.5. We move to the system HC(∗), and show that it is complete for SL(∗, x ↪→),
i.e. the separation logic obtained from SL(∗,−∗) by replacing −∗ with formulae of the form x ↪→ .
The main technical contribution of the section is given by the lemma below.

Lemma 6.14. Let X ⊆fin VAR and α ≥ card(X). Let ϕ and ψ in CoreTypes(X, α). If both ϕ and
ψ are satisfiable, then `HC(∗) ϕ ∗ ψ ⇔ 〈∗〉(ϕ,ψ).

Here, CoreTypes(X, α) is a set of conjunction core formulae literals such that every Boolean
combination of core formulae is equivalent to a disjunction of formulae from this set. Be-
sides, 〈∗〉(ϕ,ψ) is a particular conjunction of core formulae literals, defined in terms of ϕ and
ψ. Once Lemma 6.14 is established, it is quite easy to extend it to arbitrary Boolean combina-
tions of core formulae: for every two Boolean combinations of core formulae ϕ and ψ there is a
Boolean combination of core formulae χ such that ϕ ∗ ψ ⇔ χ is derivable in HC(∗). Then, the
completeness of HC(∗) with respect to the separation logic SL(∗, x ↪→) follows directly from
the completeness of HC for Boolean combinations of core formulae.

Section 6.6. We consider HC(∗,−∗) and show the following lemma.

Lemma 6.18 (−∗-simulation). Let X ⊆fin VAR and α ≥ card(X). Let ϕ and ψ in CoreTypes(X, α).
There is a conjunction χ ∈ Conj(Core(X, α)) such that `HC(∗,−∗) (ϕ−~ ψ)⇔ χ.

This result, which analogously to Lemma 6.14 is shown syntactically inside HC(∗,−∗), allows us
to conclude that HC(∗,−∗) is complete for SL(∗,−∗). Together with its soundness, we conclude.

Theorem 6.22. HC(∗,−∗) is an adequate proof system for SL(∗,−∗).

6.1. Axiomatising SL(∗,−∗), Internally 283

6.1 Axiomatising SL(∗,−∗), Internally

Given a separation logic L featuring both the multiplicative connectives ∗ and −∗, in Chapter 5
we introduced the concept of core formulae for L. Fundamentally, the core formulae are a set
of formulae that satisfy the following three properties:1

1. atomic formulae of L can be characterised as Boolean combinations of core formulae,

2. given two Boolean combinations of core formulae ϕ and ψ, there is a Boolean combination
of core formulae χ such that χ ≡ ϕ ∗ ψ,

3. given two Boolean combinations of core formulae ϕ and ψ, there is a Boolean combination
of core formulae χ such that χ ≡ ϕ−∗ ψ.

In order to show these three properties, the arguments used throughout Chapter 5 are completely
semantical. In this chapter, we tackle the open problem of defining Hilbert-style proof systems
(the formal definition of these types of systems is recalled below) for the quantifier-free separation
logic SL(∗,−∗), by looking at the following question:

“Can the properties of core formulae be proven syntactically,
by only relying on derivations inside SL(∗,−∗) itself?”

To answer this question, we first design a Hilbert-style proof system that is sound and complete
with respect to Boolean combinations of core formulae. Afterwards, we enrich this system in
order to mimic the simulation properties (2) and (3) above.

Let us start by recalling the grammar of SL(∗,−∗) (as usual, x, y ∈ VAR):

π := > (true)
| emp (empty predicate)
| x = y (equality predicate)
| x ↪→ y (points-to predicate)

ϕ := π (atomic formulae)
| ϕ ⇒ ϕ | ¬ϕ (Boolean connectives)
| ϕ ∗ ϕ (separating conjunction)
| ϕ−∗ ϕ (separating implication)

Notice that in this chapter, differently from the previous ones, we take the classical implication⇒
as a primitive Boolean connective, and drop the conjunction ∧. This is done solely because it
allows us to define the proof system of SL(∗,−∗) by extending the axiomatisation of BBI given
in Section 2.3.3, which relies on the suite of Boolean connectives {¬,⇒}. In practice, this
change does not have any impact on the result, as we recall that both the suites of connectives
{¬,⇒} and {¬,∧} are functionally complete: ϕ ⇒ ψ is expressible with {¬,∧} as ¬(ϕ ∧ ¬ψ),
whereas the formula ϕ ∧ ψ is expressible with {¬,⇒} as ¬(ϕ ⇒ ¬ψ). Moreover, compared
to {¬,∧} the suite {¬,⇒} allows for more elegant axiomatisations of classical propositional
calculus. As done in Section 2.3.3, in this section we pick the axiomatisation of propositional
calculus due to J. Lukasiewicz [18]. Thus, in this chapter, the formulae ϕ ∧ ψ and ϕ ∨ ψ
should be seen as abbreviations for ¬(ϕ ⇒ ¬ψ) and ¬ϕ ⇒ ψ, respectively. Similarly, ⊥ and
ϕ ⇔ ψ stand for ¬> and (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ), respectively, whereas the septraction ϕ−~ ψ is a
shorthand for ¬(ϕ−∗¬ψ). We also remind the reader that, throughout the thesis, we follow the
precedence {¬} > {∧,∨, ∗} > {⇒,⇔,−∗,−~} for the various connectives (which, in this chapter,
saves a lot of parentheses).

1In this chapter, we are not particularly concerned by the finiteness of the set of core formulae, thus we remove
this constraint from the set of essential properties.

284 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

Formula: Definition: Semantics w.r.t. (s, h)

x ↪→ x ↪→ x−∗ ϕ s(x) ∈ dom(h)

size≥ 0 > card(h) ≥ 0

size≥ 1 ¬emp card(h) ≥ 1

size≥β+1 ¬emp ∗ size≥β card(h) ≥ β+1

Figure 6.1: Auxiliary formulae of SL(∗,−∗). Note: x ∈ VAR and β ∈ N.

6.1.1 The core formulae of SL(∗,−∗).

In Figure 6.1 we recall some of the auxiliary formulae introduced in Section 2.1.1 for SL(∃, ∗,−∗),
and that are still expressible in SL(∗,−∗). All these formulae play an important role in the design
of the proof system. Indeed, it is well-known [104] that a suitable set of core formulae for SL(∗,−∗)
is given by the formulae of the form

x = y, x ↪→ y, x ↪→ , size≥β,

where x, y ∈ VAR and β ∈ N. Notably, every core formula is a formula of SL(∗,−∗). This simple
but crucial insight allows us to freely use the core formulae to help us defining the proof system
for SL(∗,−∗), without the risk of going outside the original language.

Definition 6.1 (Core formulae of SL(∗,−∗)). Given X ⊆fin VAR and α ∈ N, we write Core(X, α)
to denote the following set of core formulae:{

x = y, x ↪→ , x ↪→ y, size≥β | x, y ∈ X, β ∈ [0, α]
}
.

We write Bool(Core(X, α)) for the set of Boolean combinations of formulae from Core(X, α).
Similarly, Conj(Core(X, α)) stands for the set of conjunctions of literals built upon Core(X, α).
Here, a literal is understood as a core formula or its negation. Let ϕ = L1 ∧ · · · ∧ Ln be a
conjunction of literals L1, . . . , Ln. We write LIT(ϕ) to denote {L1, . . . , Ln}. In forthcoming
developments, we are interested in the maximum β (if any) of formulae of the form size≥β
occurring positively in a conjunction of literals, if any. For this reason, we write maxsize(ϕ) for
max({β ∈ N | size≥β ∈ LIT(ϕ)} ∪ {0}). For instance, given ϕ = x ↪→ ∧ size≥ 2 ∧ ¬size≥ 4,
we have LIT(ϕ) = {x ↪→ , size≥ 2,¬size≥ 4}, and maxsize(ϕ) = 2. Given two conjunctions of
literals ϕ ∈ Conj(Core(X, α1)) and ψ ∈ Conj(Core(X, α2)), ψ ⊆LIT ϕ stands for LIT(ψ) ⊆ LIT(ϕ).
We introduce a few more shortcuts and we write
• χ ⊆LIT {ϕ | ψ} for “χ ⊆LIT ϕ or χ ⊆LIT ψ”,

• {ϕ | ψ} ⊆LIT χ for “ϕ ⊆LIT χ or ψ ⊆LIT χ”,

• χ ⊆LIT {ϕ ; ψ} for “χ ⊆LIT ϕ and χ ⊆LIT ψ”.
Finally, given a finite set of formulae Γ = {ϕ1, . . . , ϕn}, we write

∧
Γ for ϕ1∧· · ·∧ϕn. Similarly,

∗Γ stands for ϕ1 ∗ · · · ∗ ϕn. Notice that, since the separating conjunction ∗ is associative
and commutative (as depicted for instance by the axiom system of BBI, see Section 2.3.3), the
semantics of ∗Γ is uniquely defined, regardless of the choice of ordering for ϕ1, . . . , ϕn.

6.2. An Hilbert-style proof system for SL(∗,−∗) 285

6.1.2 Hilbert-style proof systems.

A Hilbert-style proof system H is defined as a set of tuples ((Φ1, . . . ,Φn),Ψ) with n ≥ 0,
where Φ1, . . . ,Φn,Ψ are formula schemata (also known as axiom schemata). When n ≥ 1,
((Φ1, . . . ,Φn),Ψ) is called an inference rule, otherwise it is an axiom. As usual, formula schemata
generalise the notion of formulae by allowing metavariables for formulae (typically ϕ,ψ, χ), for
program variables (typically x, y, z) or for any type of syntactic objects in formulae, depend-
ing on the context. The set of formulae derivable from H is the least set S such that for all
((Φ1, . . . ,Φn),Ψ) ∈ H and for all substitutions σ, if Φ1σ, . . . ,Φnσ ∈ S then Ψσ ∈ S. Infor-
mally, a substitution σ is simply an assignment from metavariables to syntactical objects, that
is formulae, program variables etc.

We write `H ϕ whenever ϕ is derivable from H. A proof system H is sound if all derivable
formulae are valid. H is complete if all valid formulae are derivable. We say that H is adequate
whenever it is both sound and complete. Lastly, H is strongly complete whenever for all sets of
formulae Γ and formulae ϕ, we have Γ |= ϕ (semantical entailment) if and only if `H∪Γ ϕ.

Interestingly enough, there is no strongly complete proof system for SL(∗,−∗), as strong
completeness implies compactness (see Theorem 4.11) and separation logic is not compact. We
already discussed this result in the context of ALT (Section 4.2.2). Briefly, the formulae in the
set S = {size≥β | β ∈ N} cannot be satisfied by a memory state, as heaps have finite domains.
However, all finite subsets of S are satisfiable.

Even for the weaker notion of completeness, we remind the reader that it is only possible
to provide an adequate axiom system for a logic L if the validity problem of L is recursively
enumerable. Therefore, it is not possible to axiomatise any of the separation logics in Chapter 3
(e.g. SL(∗,−∗, ls)), as well as the first-order separation logic SL(∃, ∗,−∗) (Theorem 2.13).

6.2 An Hilbert-style proof system for SL(∗,−∗)

In Figure 6.2, we present the proof system HC(∗,−∗) that shall be shown to be sound and
complete for quantifier-free separation logic SL(∗,−∗). In the axiom (=

sub), ϕ[y←x] stands for the
formula obtained from ϕ by replacing with the variable x every occurrence of y. In the three
axioms (∗mono), (−∗∞) and (−∗alloc), the notation ϕ J[B] refers to the axiom schema ϕ assuming that
the Boolean condition B holds. We highlight the fact that, in these three axioms, B is a simple
syntactical condition. Lastly, we remind the reader that i .− j def= max(0, i− j) (see (∗¬size)).
HC(∗,−∗) contains all the axioms from BBI presented in Section 2.3.3, with the only (stylisti-

cal) difference being that the two axioms (idL) and (idR) of BBI are grouped in the axioms (∗id)
of HC(∗,−∗). In designing the system, we tried to define axioms that are as simple as possible,
which helps highlighting the most fundamental properties of SL(∗,−∗). Since the core formulae
in HC(∗,−∗) are mere abbreviations of SL(∗,−∗) formulae, all the axioms in Figure 6.2 belong
to the original language of SL(∗,−∗), making HC(∗,−∗) an Hilbert-style proof system. In order
to show completeness of HC(∗,−∗), we first establish completeness for subsystems of HC(∗,−∗),
with respect to syntactical fragments of SL(∗,−∗). In particular, we consider:

1. HC: an adequate proof system for the propositional logic of core formulae (see Section 6.4),

2. HC(∗): an extension ofHC that is adequate for the logic SL(∗, x ↪→), i.e. the logic obtained
from SL(∗,−∗) by removing −∗ at the price of adding the formula alloc x ↪→ (Section 6.5).

3. The full HC(∗,−∗), which can be seen as an extension of HC(∗) that allows to reason about
the separating implication (Section 6.6).

286 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

Propositional Calculus:

(L1) (¬ϕ⇒ ϕ)⇒ ϕ

(MP)
ϕ ϕ⇒ ψ

ψ
(L2) ϕ⇒ (¬ϕ⇒ ψ)

(L3) (ϕ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (ϕ⇒ χ))

Axioms of the core formulae:

(=id) x = x (↪→weak) x ↪→ y⇒ x ↪→

(=
sub) ϕ ∧ x = y⇒ ϕ[y←x] (↪→func) x ↪→ y ∧ x ↪→ z⇒ y = z

(alloc
size) x ↪→ ∧ y ↪→ ∧ x 6= y⇒ size≥ 2

Axioms of the separating conjunction:

(∗id) ϕ⇔ ϕ ∗ emp (∗mono) e ∗ > ⇒ e J[e ∈ {¬emp, x = y, x 6= y, x ↪→ y}]

(∗assoc) (ϕ ∗ ψ) ∗ χ⇔ ϕ ∗ (ψ ∗ χ) (∗
¬alloc) ¬x ↪→ ∗ ¬x ↪→ ⇒ ¬x ↪→

(∗com) ϕ ∗ ψ ⇒ ψ ∗ ϕ (∗¬pto) (x ↪→ ∧¬x ↪→ y) ∗ > ⇒ ¬x ↪→ y

(∗alias) (x ↪→ ∗ x ↪→)⇔ ⊥ (∗¬size) ¬size≥β1 ∗ ¬size≥β2 ⇒ ¬size≥β1+β2
.−1

(∗ 1
atom) ¬emp⇒ size = 1 ∗ > (∗ 2

atom) x ↪→ ⇒ (x ↪→ ∧ size = 1) ∗ >

Axioms of the separating implication:

(−∗∞) (size = 1 ∧
∧

x∈X ¬x ↪→)−~> J[X ⊆fin VAR]

(−∗7→) ¬x ↪→ ⇒ ((x ↪→ y ∧ size = 1)−~>)

(−∗alloc) ¬x ↪→ ⇒ ((x ↪→ ∧ size = 1 ∧
∧

y∈X ¬x ↪→ y)−~>) J[X ⊆fin VAR]

Rules of inference for the multiplicative connectives:

(∗)
ϕ⇒ χ

ϕ ∗ ψ ⇒ χ ∗ ψ
(−∗1)

ϕ⇒ (ψ −∗ χ)
ϕ ∗ ψ ⇒ χ

(−∗2)
ϕ ∗ ψ ⇒ χ

ϕ⇒ (ψ −∗ χ)

Figure 6.2: The Hilbert-style proof system HC(∗,−∗).

For the completeness of HC and HC(∗), we need to consider intermediate axioms that reveal
to be derivable in the full proof system HC(∗,−∗), and thus are omitted in Figure 6.2. By
convention, these intermediate axioms are denoted with names of the form I?

i .
Notice how the three systems HC, HC(∗), and HC(∗,−∗) roughly correspond to the three

properties of core formulae discussed at the beginning of the chapter. In this regard, the main
“task” of HC(∗) is to produce a bottom-up elimination of the separating conjunction ∗, at the
price of introducing Boolean combinations of core formulae, which can be proved valid thanks

6.2. An Hilbert-style proof system for SL(∗,−∗) 287

1 emp⇒ ¬size≥ 1 (¬¬I) and def. of size≥ 1

2 x ↪→ ∧ size = 1⇒ ¬size≥ 2 (∧EL)

3 emp ∗ (x ↪→ ∧ size = 1)⇒ ¬size≥ 1 ∗ ¬size≥ 2 (∗ILR), 1, 2

4 ¬size≥ 1 ∗ ¬size≥ 2⇒ ¬size≥ 2 (∗¬size)

5 emp ∗ (x ↪→ ∧ size = 1)⇒ ¬size≥ 2 (⇒Tr), 3, 4

6 emp⇒
(
x ↪→ ∧ size = 1−∗ ¬size≥ 2

)
(−∗2), 5

Figure 6.3: A proof of emp⇒
(
(x ↪→ ∧ size = 1)−∗ ¬size≥ 2

)
.

to HC. Similarly, the axioms and rules added to HC(∗) to define HC(∗,−∗) are dedicated to
perform a bottom-up elimination of the separating implication. A merit of this methodology
is that only the completeness of the calculus HC is proved using the standard countermodel
method. The additional steps required to prove the completeness of HC(∗) and HC(∗,−∗) are
(almost) completely syntactical. For instance, to show the completeness of HC(∗), we consider
arbitrary Boolean combinations of core formulae ϕ and ψ, and exhibiting a Boolean combination
of core formulae χ such that ϕ ∗ψ ⇔ χ is valid. We show that this validity can be syntactically
proved within HC(∗), and then rely on the fact that HC is complete for Boolean combination of
core formulae to deduce that HC(∗) is complete for SL(∗, x ↪→).

Along the chapter, we shall have the opportunity to explain the intuition between the axioms
and rules. As we can see, the proof system is essentially divided in five parts. The first one
corresponds to the standard axiomatisation of propositional calculus due to J. Lukasiewicz, and
already introduced for BBI in Section 2.3.3. The second part is made of the five axioms (=id)–
(↪→func) that deal with the core formulae, and whose semantics should be quite immediate to
grasp. The third part features the axioms (∗id), (∗assoc) and (∗com) that capture the notion of non-
deterministic monoid of BBI, together with the axioms (∗alias)–(∗ 2

atom) that characterise how the
separating conjunction behaves with respect to the core formulae. The fourth part features the
axioms (−∗∞), (−∗7→), and (−∗alloc) dedicated to the interaction between the separating implication
and core formulae. They are expressed with the help of the septraction operator −~ to ease
the understanding. For instance, the axiom (−∗∞) states that it is always possible to add a one-
memory-cell heap h′ to some heap h while none of the variables from a finite set X is allocated in
h′. This natural property in our framework would not hold in general if LOC was not an infinite
set. Obviously, the septraction −~ is also understood as an abbreviation. Lastly, the rules of
inference (∗), (−∗1) and (−∗2) borrowed from BBI conclude the proof system.

Example 6.2. To get familiar with the axioms and the rules of HC(∗,−∗), in Figure 6.3, we
present a proof of emp⇒

(
x ↪→ ∧size = 1−∗¬size≥ 2

)
. In the proof, a line “j | χ A, i1, . . . , ik”

states that χ is a theorem denoted by the index j and derivable by the axiom or the rule A. If A is
a rule, the indices i1, . . . , ik < j denote the theorems used as premises in order to derive χ. When
a formula is obtained as a propositional tautology or by pure propositional reasoning from other
formulae, we may simply write “PC” (short for Propositional Calculus). Similarly, we provide
any useful piece of information justifying the derivation, such as “Ind. hypothesis”, “See . . . ” or
“Previously derived”. In the example, we use the rule (−∗2), which together with the rule (−∗1)
states that the connectives ∗ and −∗ are adjoint operators, as well as the axiom (∗¬size), stating

288 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

that card(h) ≤ β1+β2 holds whenever a heap h can be split into two subheaps of cardinalities
less than β1+1 and β2+1, respectively. We also use the following theorems and rules:

(∧EL) ψ ∧ ϕ⇒ ϕ (¬¬I) ϕ⇒ ¬¬ϕ (⇒Tr)
ϕ⇒ χ χ⇒ ψ

ϕ⇒ ψ
(∗ILR)

ϕ⇒ ϕ′ ψ ⇒ ψ′

ϕ ∗ ψ ⇒ ϕ′ ∗ ψ′

The first two theorems and the first rule are derivable by pure propositional reasoning. By way
of example, we show that the inference rule (∗ILR) is admissible.

1 ϕ⇒ ϕ′ Hypothesis

2 ψ ⇒ ψ′ Hypothesis

3 ϕ ∗ ψ ⇒ ϕ′ ∗ ψ (∗), 1

4 ψ ∗ ϕ′ ⇒ ψ′ ∗ ϕ′ (∗), 2

5 ϕ′ ∗ ψ ⇒ ψ ∗ ϕ′ (∗com)

6 ψ′ ∗ ϕ′ ⇒ ϕ′ ∗ ψ′ (∗com)

7 ϕ ∗ ψ ⇒ ψ ∗ ϕ′ (⇒Tr), 3, 5

8 ϕ ∗ ψ ⇒ ϕ′ ∗ ψ′ (⇒Tr) twice, 7, 4, 6

Remark 6.3. An alternative proof of theorem 5 in Figure 6.3 consists in applying (⇒Tr) to
theorem 2 and emp ∗

(
x ↪→ ∧ size = 1

)
⇒ x ↪→ ∧ size = 1, which holds by (∗id) and (∗com).

Example 6.4. In Figure 6.4, we develop the proof of emp⇒ (x ↪→ ∧ size = 1−∗ size = 1) as
a more complete example. We use the following theorems and rules:

(−∗∧DL) (ϕ−∗ ψ) ∧ (ϕ−∗ χ)⇒ (ϕ−∗ ψ ∧ χ) (∧>IL) ϕ⇒ >∧ ϕ (∧IL)
ϕ⇒ χ

ϕ ∧ ψ ⇒ χ ∧ ψ

The axiom (∧>IL) and the rule (∧IL) are derivable by propositional reasoning. We show the
admissibility of the axiom (−∗∧DL).

1 ϕ−~ (¬ψ ∨ ¬χ)⇒ (ϕ−~ ¬ψ) ∨ (ϕ−~ ¬χ) (I−∗6.19.7), Lemma 6.19

2 ¬ϕ−∗ ¬(¬ψ ∨ ¬χ)⇒ ¬(ϕ−∗ ¬¬ψ) ∨ ¬(ϕ−∗ ¬¬χ) Def. −~, 1

3 ¬(ϕ−∗ ψ ∧ χ)⇒ ¬(ϕ−∗ ψ) ∨ ¬(ϕ−∗ χ) Replacement of equivalents, 2

4 (ϕ−∗ ψ) ∧ (ϕ−∗ χ)⇒ (ϕ−∗ ψ ∧ χ) PC, 3

As a sanity check, we show that the proof system HC(∗,−∗) is sound with respect to SL(∗,−∗).
The proof does not pose any specific difficulty (as usual with most soundness proofs) but this is
the opportunity for the reader to further familiarise with the axioms and rules from HC(∗,−∗).

Lemma 6.5. HC(∗,−∗) is sound.

Proof. We omit the proof of validity of the axioms of propositional calculus, as well as the
admissibility of the rule of modus ponens (MP). Similarly, the validity of the axioms (∗com), (∗assoc)
and (∗id) and the admissibility of the three rules (∗), (−∗1) and (−∗2) are inherited from BBI
(see [75]). The validity of the axioms (=id), (=

sub), (↪→weak), (↪→func) and (alloc
size) is straightforward.

Validity of the axiom (∗alias).
Let us show that (x ↪→ ∗x ↪→) is not satisfiable. Ad absurdum, suppose there is a memory
state (s, h) such that (s, h) |= (x ↪→ ∗ x ↪→). By definition of |=, there are h1, h2 such
that h1⊥h2, (h1 + h2) = h, (s, h1) |= x ↪→ and (s, h2) |= x ↪→ . Thus, s(x) ∈ dom(h1)
and s(x) ∈ dom(h2), which leads to a contradiction with h1⊥h2.

6.2. An Hilbert-style proof system for SL(∗,−∗) 289

1 > ∗ (x ↪→ ∧ size = 1)⇒ (x ↪→ ∧ size = 1) ∗ > (∗com)

2 x ↪→ ∧ size = 1⇒ size≥ 1 (∧EL)

3 x ↪→ ∧ size = 1 ∗ > ⇒ size≥ 1 ∗ > (∗), 2

4 size≥ 1 ∗ > ⇒ size≥ 1 (∗mono) (size≥ 1 def= ¬emp)

5 > ∗ (x ↪→ ∧ size = 1)⇒ size≥ 1 (⇒Tr) twice, 1, 3, 4

6 > ⇒ (x ↪→ ∧ size = 1−∗ size≥ 1) (−∗2), 5

7 emp⇒ (x ↪→ ∧ size = 1−∗ ¬size≥ 2) See Example 6.2

8 (x ↪→ ∧ size = 1−∗ ¬size≥ 2)⇒ >∧ (x ↪→ ∧ size = 1−∗ ¬size≥ 2) (∧>IL)

9 > ∧ (x ↪→ ∧ size = 1−∗ ¬size≥ 2)⇒(
(x ↪→ ∧ size = 1−∗ size≥ 1) ∧ (x ↪→ ∧ size = 1−∗ ¬size≥ 2)

)
(∧IL), 6

10
(
(x ↪→ ∧ size = 1−∗ size≥ 1) ∧ (x ↪→ ∧ size = 1−∗ ¬size≥ 2)

)
⇒

(x ↪→ ∧ size = 1−∗ size = 1) (−∗∧DL) + Def. size

11 (x ↪→ ∧ size = 1−∗ ¬size≥ 2)⇒ (x ↪→ ∧ size = 1−∗ size = 1) (⇒Tr) twice, 8, 9, 10

12 emp⇒ (x ↪→ ∧ size = 1−∗ size = 1) (⇒Tr), 7, 11

(recall that size =β is a shortcut for size≥β ∧ ¬size≥β+1)

Figure 6.4: A proof of emp⇒ (x ↪→ ∧ size = 1−∗ size = 1).

Validity of the axiom (∗mono).
The proof of the validity of every instantiation of (∗mono) is similar (and quite easy), there-
fore we show just the case with x ↪→ y ∗ > ⇒ x ↪→ y. Suppose (s, h) |= x ↪→ y ∗ >. Then,
there is a subheap h1 ⊆ h such that (s, h1) |= x ↪→ y. Hence, h1(s(x)) = s(y). As h1 ⊆ h,
we obtain h(s(x)) = s(y), which by definition implies (s, h) |= x ↪→ y.

Validity of the axiom (∗
¬alloc).

Suppose (s, h) |= ¬x ↪→ ∗ ¬x ↪→ . Then, there are two disjoint heaps h1, h2 such that
h = h1 + h2, (s, h1) |= ¬x ↪→ and (s, h2) |= ¬x ↪→ . Then s(x) 6∈ dom(h1) and s(x) 6∈
dom(h2). Since h = h1 + h2, dom(h) = dom(h1) ∪ dom(h2) and therefore s(x) 6∈ dom(h).
We conclude that (s, h) |= ¬x ↪→ .

Validity of the axiom (∗¬pto).
Suppose (s, h) |= (x ↪→ ∧ ¬x ↪→ y) ∗ >. Then there is a subheap h1 ⊆ h such that
(s, h1) |= x ↪→ ∧ ¬x ↪→ y. Hence, s(x) ∈ dom(h1) and h1(s(x)) 6= s(y). As h1 ⊆ h, we
obtain s(x) ∈ dom(h) and h(s(x)) 6= s(y) which by definition implies (s, h) |= ¬x ↪→ y.

Validity of the axiom (∗ 2
atom).

Suppose (s, h) |= x ↪→ . Then s(x) ∈ dom(h). Let h1
def= {s(x) 7→ h(s(x))}. Trivially,

h1 ⊆ h and (s, h1) |= x ↪→ ∧ size = 1. We define h2 as the unique heap such that
h2 + h1 = h. Trivially, (s, h2) |= >. Hence, (s, h) |= (x ↪→ ∧ size = 1) ∗ >.

The proof for the validity of the axiom (∗ 1
atom) is similar, and therefore omitted herein.

290 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

Validity of the axiom (∗¬size).
Let β1, β2 ≥ 0. Suppose (s, h) |= ¬size≥β1 ∗ ¬size≥β2. Since ¬size≥ 0 is not satis-
fiable, this implies that necessarily β1, β2 ≥ 1. Hence, the axiom (∗¬size) is trivially valid
when β1 = 0 or β2 = 0. In the sequel, β1, β2 ≥ 1. Then, there are two disjoint heaps h1, h2
such that h1 + h2 = h, (s, h1) |= ¬size≥β1 and (s, h2) |= ¬size≥β2. By definition of
size, card(h1) ≤ β1 − 1 and card(h2) ≤ β2 − 1. Since dom(h) = dom(h1) ∪ dom(h2), we
obtain card(h) ≤ β1 + β2 − 2, which implies (s, h) |= ¬size≥β1 + β2

.− 1.
Validity of the axiom (−∗∞).

Let X ⊆fin VAR and (s, h) be a memory state. Let h1 be a heap of size one such that
h1(`) = ` for some ` 6∈ dom(h) ∪ s(X). We write s(X) to denote the set {s(x) | x ∈ X}.
Trivially (s, h1) |= size = 1 ∧

∧
x∈X ¬x ↪→ . Moreover h1 ⊥ h holds, hence h1 + h2 is

defined and (s, h+ h1) |= >. Then, (s, h) |= (size = 1 ∧
∧

x∈X ¬x ↪→)−~>.
Validity of the axiom (−∗7→).

Suppose (s, h) |= ¬x ↪→ . Let h1 be the heap of size one such that h1(s(x)) = s(y).
Trivially, (s, h1) |= x ↪→ y ∧ size = 1. Moreover, as s(x) 6∈ dom(h), h1 ⊥ h holds, hence
h1 + h is defined and (s, h+ h1) |= >. Then, (s, h) |= (x ↪→ y ∧ size = 1)−~>.

Validity of the axiom (−∗alloc).
Let X ⊆fin VAR and suppose (s, h) |= ¬x ↪→ . Let h1 be the heap of size one such that
h1(s(x)) = ` where ` 6∈ s(X). Trivially, (s, h1) |= x ↪→ ∧size = 1∧

∧
y∈X ¬x ↪→ y. Moreover,

as s(x) 6∈ dom(h), h1 ⊥ h holds, hence h + h1 is defined and (s, h + h1) |= >. Then,
(s, h) |= (x ↪→ ∧ size = 1 ∧

∧
y∈X ¬x ↪→ y)−~>.

6.3 Main ingredients of the method

Before showing completeness of HC(∗,−∗), let us recall the key ingredients of the method we
follow, not only to provide a vade mecum for axiomatising other separation logics, but also to
identify the essential features and where variations are still possible. The Hilbert-style axioma-
tisation of SL(∗,−∗) shall culminate with Theorem 6.22 that states the adequateness of the proof
system HC(∗,−∗).

In order to axiomatise SL(∗,−∗) internally, as already emphasised several times, the core
formulae play an essential role. The main properties of these formulae is that their Boolean
combinations capture the full logic SL(∗,−∗) [103] and (in order to have a Hilbert-style axioma-
tisation) all the core formulae can be expressed in SL(∗,−∗). Generally speaking, our axiom
system naturally leads to a form of constructive completeness, as advocated in [61, 105]: the
axiomatisation provides proof-theoretical means to transform any formula into an equivalent
Boolean combination of core formulae, and it contains also a part dedicated to the derivation of
valid Boolean combinations of core formulae (understood as a syntactical fragment of SL(∗,−∗)).
What is specific to each logic is the design of the set of core formulae and in the case of SL(∗,−∗),
this was already known since [103].

Derivations in the proof system HC(∗,−∗) shall simulate the bottom-up elimination of sep-
arating connectives (see forthcoming Lemmata 6.15 and 6.18) when the arguments are two
Boolean combinations of core formulae. This bottom-up elimination corresponds to a syntac-
tical proof of the ∗-simulation and −∗-simulation properties described throughout Chapter 5.
To achieve this, HC(∗,−∗) contains axiom schemas that perform such an elimination in multiple
“small-step” derivations, e.g. by deriving a single x ↪→ y predicate from the formula x ↪→ y∗> (see

6.4. A Simple Calculus for the Core Formulae 291

Propositional Calculus:

(L1) (¬ϕ⇒ ϕ)⇒ ϕ

(MP)
ϕ ϕ⇒ ψ

ψ
(L2) ϕ⇒ (¬ϕ⇒ ψ)

(L3) (ϕ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (ϕ⇒ χ))

Axioms of the core formulae:

(=id) x = x (↪→weak) x ↪→ y⇒ x ↪→

(=
sub) ϕ ∧ x = y⇒ ϕ[y←x] (↪→func) x ↪→ y ∧ x ↪→ z⇒ y = z

(alloc
size) x ↪→ ∧ y ↪→ ∧ x 6= y⇒ size≥ 2

Intermediate axioms:

(IC
1) size≥β + 1⇒ size≥β

(IC
2)

∧
x∈X(x ↪→ ∧

∧
y∈X\{x} x 6= y)⇒ size≥ card(X) J[X ⊆fin VAR]

Figure 6.5: Proof system HC for Boolean conbinations of core formulae.

the axiom (∗mono), in the case where e = x ↪→ y). Alternatively, it would have been possible to
include “big-step” axiom schemas that, given two Boolean combinations of core formulae, derive
the equivalent formula in one single derivation step (see e.g. [63]). To show the completeness of
HC(∗,−∗) we still derive these big-step formulae as theorems of the proof system, as we will see
in Lemma 6.14 and Lemma 6.18. The main difference between small-step and big-step axioms
is that the former provide a simpler understanding of the key properties of the logic.

6.4 A Simple Calculus for the Core Formulae

To axiomatise SL(∗,−∗), we start by introducing the proof system HC dedicated to Boolean
combinations of core formulae, defined in Figure 6.5. It contains all the axioms and the rule of
modus ponens from propositional calculus, together with the axioms of the core formulae (=id)–
(↪→func) that belongs to HC(∗,−∗). Lastly, it features two intermediate axioms (IC

1) and (IC
2)

which, as explained before, are needed to establish results about the axiomatisation of Boolean
combinations of core formulae, but become derivable as soon as the multiplicative connectives
are considered (and thus do not belong to HC(∗,−∗)).

Let us look at the axioms of HC more closely. The axiom schema (=
sub) states that whenever

x = y holds, then y can be replaced by x in an arbitrary formula ϕ. In its essence, this axiom,
together with (=id), states that the equality between location forms an equivalence relation.
Indeed, the formula y = z ∧ x = y ⇒ x = z expressing that the equality between locations is a
transitive relation corresponds to the instance of (=

sub) where ϕ = y = z, whereas its symmetry
(i.e. x = y⇒ y = x) is derived as follows:

292 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

1 ¬y = x ∧ x = y⇒ ¬x = x (=
sub), where ϕ = ¬y = x

2 ¬y = x ∧ x = y⇒ x = x PC, (=id)

3 ¬y = x ∧ x = y⇒⊥ PC, 1, 2

4 x = y⇒ y = x PC, 3

Let (s, h) be a memory state. The axiom (=
sub) subsumes several other easy properties

of memory states. For instance, when instantiated with ϕ = x ↪→ y, it leads to the formula
x ↪→ y ∧ x = y ⇒ x ↪→ x stating that if h(s(x)) = s(y) and s(x) = s(y) hold, then clearly the
location s(x) points to itself. The axiom (↪→weak) states that h(s(x)) = s(y) implies s(x) ∈ dom(h),
whereas the axiom (↪→func) characterises the fact that h is a (partial) function. The axiom (alloc

size)
states that if s(x) 6= s(y) and {s(x), s(y)} ⊆ dom(h), then card(h) ≥ 2. Notably, this axiom is
captured by the intermediate axiom (IC

2), which extends it arbitrary (finite) sets of variables.
Formally, (IC

2) states that given a finite set X = {x1, . . . , xn} of program variables, if for every
distinct i, j ∈ [1, n], s(xi) 6= s(xj) and s(X) ⊆ dom(h), then card(h) ≥ n. Lastly, the axiom (IC

1)
states that if dom(h) contains at least β + 1 locations, then it has at least β locations.

Clearly, the two intermediate axiom schemata (IC
1) and (IC

2) are valid, which leads to the
soundness of HC directly from Lemma 6.5.

Lemma 6.6. HC is sound.

In order to establish its completeness with respect to Boolean combinations of core formulae,
we first show thatHC is complete for a subclass of Boolean combinations of core formulae, namely
for core types (defined below). Subsequently, we show that every formula in Bool(Core(X, α)) is
provably equivalent to a disjunction of core types (Lemma 6.10).

Definition 6.7 (Core types of SL(∗,−∗)). Let X⊆finVAR and consider a natural number α ≥ 1.
We write CoreTypes(X, α) to denote the following set of core types:{

ϕ ∈ Conj(Core(X, α)) | for all ψ ∈ Core(X, α), {ψ | ¬ψ} ⊆LIT ϕ, and (ψ ∧ ¬ψ) 6⊆LIT ϕ
}
.

Essentially, every core type ϕ ∈ CoreTypes(X, α) is a conjunction from Conj(Core(X, α))
such that for every core formula ψ ∈ Core(X, α), exactly one literal among ψ and ¬ψ belongs to
ϕ. The following refutational result shows that HC is (sound and) complete for core types.

Lemma 6.8. Let ϕ ∈ CoreTypes(X, α) with α ≥ card(X). We have ¬ϕ is valid iff `HC ¬ϕ.

Notably, among the proofs of completeness of HC, HC(∗) and HC(∗,−∗), the proof of this lemma
is the only one that heavily relies on semantical means. All the other proofs of this chapter
(soundness results excluded) are almost exclusively syntactical.

Proof. The right-to-left direction follows from the soundness of HC (Lemma 6.6), so we focus
on the left-to-right direction. By contrapositive, let ϕ ∈ CoreTypes(X, α), with α ≥ card(X) be
such that 6`HC ϕ⇒ ⊥. We prove prove that ϕ is satisfiable (and thus ¬ϕ is not valid). During
the proof, we write “By (statement1) it holds that (statement2)�” as a shortcut for

“if (statement2) does not hold then `HC ϕ⇒ ⊥ by (statement1), a contradiction”.

For example, “By axiom (=id) it holds that for every x ∈ X, x = x ⊆LIT ϕ�” is a shortcut
for “if (for every x ∈ X, x = x ⊆LIT ϕ) does not hold then `HC ϕ ⇒ ⊥ by (axiom (=id)), a con-
tradiction”. To be completely precise, we should often write in (statement1) that propositional

6.4. A Simple Calculus for the Core Formulae 293

reasoning is required (as in the example above). However, we decide to omit the use of proposi-
tional calculus whenever it is clearly used in a trivial way. In this way, we hope to improve the
readability of the proof, which is mainly composed of a series of results shown by contradiction.

Let us start by considering the binary relation ≈⊆ X× X defined as follows:

≈ def= {(x, y) | x = y ⊆LIT ϕ}.

Since ϕ is a core type, for every (x, y) ∈ X2, if (x, y) 6∈ ≈ then (¬x = y) ⊆LIT ϕ. Previously
(page 291), we have shown that thanks to (=id) and (=

sub), the two following formulae (schemata,
to be more precise) are derivable in HC:

(symmetry) x = y⇒ y = x,
(transitivity) y = z ∧ x = y⇒ x = z.

Therefore,
By axioms (=id) and (=

sub) it holds that ≈ is an equivalence relation�
Below, we write [x] to denote the equivalence class of x with respect to ≈. Let us now consider
the binary relation f ⊆ (X/ ≈)× (X/ ≈) (where X/ ≈ is the quotient set of X by ≈) below:

f def= {([x], [y]) | x ↪→ y ⊆LIT ϕ}

By instantiating (=
sub) with ϕ = y ↪→ z and ϕ = z ↪→ y, we obtain respectively:

(eq-cell-left) y ↪→ z ∧ x = y⇒ x ↪→ z,
(eq-cell-right) z ↪→ y ∧ x = y⇒ z ↪→ x.

Therefore, by recalling that HC features the axiom x ↪→ y ∧ x ↪→ z⇒ y = z (i.e. (↪→func)),
By axioms (↪→func) and (=

sub) it holds that f is a partial map from X/ ≈ to X/ ≈�
We now consider the sets A def= {[x] | x ↪→ ⊆LIT ϕ}.

By axiom (↪→weak) and def. of f it holds that dom(f) ⊆ A�
By axiom (IC

2) and def. of A it holds that `HC ϕ⇒ size≥ card(A)�
By `HC ϕ⇒ size≥ card(A) and α ≥ card(X) it holds that size≥ card(A) ⊆LIT ϕ�

Let n = maxsize(ϕ). We recall that, by definition of maxsize(ϕ), n is the greatest β ∈ N such
that size≥β occurs positively in ϕ. As size≥ card(A) ⊆LIT ϕ, we have n ≥ card(A).

From ≈, f, A and n, we now define a memory state (s, h), and show that (s, h) |= ϕ. We fix
an enumeration for the equivalence classes in X/ ≈, i.e. a bijection g : (X/ ≈)→ [1, card(X/ ≈)].
We introduce card(X/ ≈) + (n− card(A)) + 1 distinct locations denoted as follows:

`1,. . . ,`card(X/≈), `′1,. . . ,`′n−card(A), ̂̀.
Let s be a store such that, for every x ∈ X, s(x) def= `g([x]). Since ≈ is an equivalence relation,

we conclude that s is well-defined, i.e. s : VAR→ LOC. Let h be the heap defined as follows:

h(`) def=

`g(f(C)) if there is C ∈ A s.t. ` = `g(C) and C ∈ dom(f)̂̀ if there is C ∈ A s.t. ` = `g(C) and C 6∈ dom(f)̂̀ if there is i ∈ [1, n− card(A)] s.t. ` = `′i

undefined otherwise

Since f is a partial map from X/ ≈ to X/ ≈, h is well-defined, i.e. h : LOC⇀fin LOC. Notice that,
by definition, card(h) = card(A) + (n − card(A)) = n. We show that the memory state (s, h)
satisfies ϕ. Let L be a literal in LIT(ϕ), we prove that (s, h) |= L by cases on the shape of L.

294 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

case: L = x = y. By definition of ≈, x ≈ y. By definition of s, s(x) = s(y). So, (s, h) |= x = y.
case: L = ¬(x = y). Ad absurdum, suppose s(x) = s(y). By definition of s, this implies that

[x] = [y] and thus x ≈ y. By definition of ≈, we conclude that x = y ⊆LIT ϕ. However,
this allows us to derive that x = y ∧ ¬x = y ⊆LIT ϕ, in contradiction with the fact that ϕ
is a core type. Therefore, s(x) 6= s(y). We conclude that (s, h) |= ¬(x = y).

case: L = x ↪→ y. By definition of f, f([x]) = [y]. By definition of h, h(`g([x])) = `g([y]). By
definition of s, s(x) = `g([x]) and s(y) = `g([y]). Thus, (s, h) |= x ↪→ y.

case: L = ¬(x ↪→ y). Ad absurdum, suppose h(s(x)) = s(y). By definition of s, s(x) = `g([x])
and s(y) = `g([y]). Since `g([y]) 6= ̂̀, by definition of h we conclude that f([x]) = [y]. By
definition of f, there are z, v ∈ X such that [x] = [z], [y] = [v] and z ↪→ v ⊆LIT ϕ. By
definition of ≈, which we have shown to be an equivalence relation, x = z ∧ y = v ⊆LIT ϕ.
From the theorems (eq-cell-left) and (eq-cell-right) (under suitable substitutions for the
metavariables x, y and z of these two theorems), we conclude that `HC ϕ ⇒ x ↪→ y. As
ϕ is a core type, this implies that x ↪→ y ⊆LIT ϕ. However, this allows us to derive that
x ↪→ y ∧ ¬x ↪→ y ⊆LIT ϕ, in contradiction with the fact that ϕ is a core type. Therefore,
h(s(x)) 6= s(y). We conclude that (s, h) |= ¬(x ↪→ y).

case: L = x ↪→ . By definition of A, [x] ∈ A. By definition of h, `g([x]) ∈ dom(h). By definition
of s, s(x) = `g([x]). Thus, (s, h) |= x ↪→ .

case: L = ¬(x ↪→). Ad absurdum, suppose s(x) ∈ dom(h). By definition of s, s(x) = `g([x]).
Since, for every i ∈ [1, n − card(A)], `g([x]) 6= `′i, by definition of h we conclude that
`g([x]) ∈ A. By definition of A, there is y ∈ X such that [x] = [y] and y ↪→ ⊆LIT ϕ. By
definition of ≈, which we have shown to be an equivalence relation, x = y ⊆LIT ϕ. By
instantiating (=

sub) with ϕ = y ↪→ we conclude that the formula below is valid:
(eq-alloc) y ↪→ ∧ x = y⇒ x ↪→ .

Thus, `HC ϕ⇒ x ↪→ . As ϕ is a core type, this implies that x ↪→ ⊆LIT ϕ. However, this
allows us to derive that x ↪→ ∧¬x ↪→ ⊆LIT ϕ, in contradiction with the fact that ϕ is a
core type. Therefore, s(x) 6∈ dom(h). We conclude that (s, h) |= ¬(x ↪→).

case: L = size≥β. By definition of maxsize(ϕ), β ≤ maxsize(ϕ) = n. Since card(h) = n, we
have card(h) ≥ β. We conclude that (s, h) |= size≥β.

cae: L = ¬(size≥β). First of all, let us show the following result:
(†) for every β1, β2 ∈ N such that β1 ≤ β2, if size≥β2 ⊆LIT ϕ then size≥β1 ⊆LIT ϕ.

The proof is by induction on the difference β2 − β1.
base case: β2 − β1 = 0. Straightforward.
induction case: β2 − β1 ≥ 1. By size≥β2 ⊆LIT ϕ and (IC

1), `HC ϕ ⇒ size≥β2 − 1.
As ϕ is a core type, this implies that size≥β2 − 1 ⊆LIT ϕ. As (β2−1)−β1 < β2−β1,
by induction hypothesis size≥β1 ⊆LIT ϕ.

Now, ad absurdum, suppose β ≤ n. As n = maxsize(ϕ), size≥n ⊆LIT ϕ. From (†),
size≥β ⊆LIT ϕ. However, this allows us to derive that size≥β ∧ ¬size≥β ⊆LIT ϕ, in
contradiction with the fact that ϕ is a core type. Therefore, β > n. By definition of h,
card(h) = n. We conclude that (s, h) |= ¬(size≥β).

By classical reasoning, one can show that every ϕ ∈ Bool(Core(X, α)) is provably equivalent
to a disjunction of core types. Together with Lemma 6.8, this implies that HC is adequate with
respect to the propositional logic of core formulae.

6.5. Syntactical elimination of the Separating Conjunction 295

Theorem 6.9 (Adequacy). A Boolean combination of core formulae ϕ is valid iff `HC ϕ.

In order to prove Theorem 6.9, let us first establish the following simple lemma.

Lemma 6.10. Let ϕ ∈ Bool(Core(X, α)). There is a disjunction ψ = ψ1 ∨ . . . ∨ ψn such that
`HC ϕ⇔ ψ and for every i ∈ [1, n], ψi ∈ CoreTypes(X,max(card(X), α)).

Proof. Let ψ1∨ . . .∨ψn be a formula in disjunctive normal form logically equivalent to ϕ. Since
HC extends an adequate system for propositional calculus, `HC ϕ⇔ ψ1 ∨ . . .∨ψn. To conclude
the proof, given i ∈ [1, n], we show that `HC ψi ⇔ ψ′i where ψ′i is a disjunction of core types from
CoreTypes(X,max(card(X), α)). The proof is by induction on the number k of core formulae χ
in Core(X,max(card(X, α))) such that neither χ nor ¬χ belongs to LIT(ψi).
base case: k = 0. In this case, if ψi ∈ CoreTypes(X,max(card(X), α)) then we conclude. Else,

since every core formula of Core(X,max(card(X, α))) belongs to LIT(ψi), we deduce that
LIT(ψi) contains a core formula and its negation. Thus, ψi is unsatisfiable. Let ψ′i be a
core type in CoreTypes(X,max(card(X), α)) such that ¬size≥ 0 belongs to LIT(ψ′i). ψ′i is
clearly unsatisfiable. By propositional reasoning, `HC ψi ⇔ ψ′i.

induction step: k ≥ 1. Let χ ∈ Core(X,max(card(X), α)) be a core formula that does not
occur neither positively nor negatively in ψi. By propositional reasoning, we deduce that
`HC ψi ⇔ (ψi ∧ χ) ∨ (ψi ∧ ¬χ). By induction hypothesis, there are two disjunctions ψ′i
and ψ′′i of core types form CoreTypes(X,max(card(X), α)) such that `HC ψi ∧ χ⇔ ψ′i and
`HC ψi ∧ ¬χ⇔ ψ′′i . By propositional reasoning, `HC ψi ⇔ ψ′i ∨ ψ′′i .

Proof of Theorem 6.9. Let ϕ be a Boolean combination of core formulae in CoreTypes(X, α).
(⇐): Directly from Lemma 6.6.
(⇒): Let us assume that ϕ is valid, and let us prove that `HC ϕ. By Lemma 6.10, there
is a disjunction ψ = ϕ1 ∨ . . . ∨ ϕn of core types in CoreTypes(X,max(card(X), α)) such that
`HC (¬ϕ) ⇔ ψ. As ϕ is valid, the formulae ¬ϕ, ψ and all the ψi’s are unsatisfiable. Directly
from Lemma 6.8, `HC ϕi ⇒ ⊥, for all i. By propositional reasoning, `HC ϕ.

6.5 Syntactical elimination of the Separating Conjunction

We define an Hilbert-style axiomatisation for SL(∗, x ↪→), the logic obtained from SL(∗,−∗) by
replacing the separating implication with formulae of the form x ↪→ . Fundamentally, within
SL(∗, x ↪→), the core formula size≥β can be encoded in the logic, according to its definition
given in Figure 6.1. The proof system for SL(∗, x ↪→), denoted byHC(∗), is defined in Figure 6.6.
As we can see, HC(∗) is obtained by enriching HC with the axioms of Figure 6.2 that handle
the separating conjunction, together with the inference rule (∗). Moreover, it features three
intermediate axioms, (I∗3), (I∗4) and (I∗5).

Let us look further at the axioms in Figure 6.6. As already stated when introducingHC(∗,−∗),
the axioms (∗id)–(∗assoc) deal with the properties of non-deterministic monoid introduced for BBI
in Section 2.3.3. The rule (∗), again from BBI, entails that logical equivalence is a congruence
for ∗. The axiom (∗alias) states that it is not possible to split a single memory cell corresponding
to the variable x between disjoint subheaps. In its essence, the axiom (∗ 1

atom) states that each
memory cell of a heap can be separated from the others. The axiom (∗ 2

atom) is similar in nature,
but specific to memory cells corresponding to program variables. The axiom (∗mono) deals with
monotonic properties that, whenever true in a subheap, are also verified in the original heap.

296 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

Axioms and the rule of modus ponens from HC (Figure 6.5).

Axioms of the separating conjunction:

(∗id) ϕ⇔ ϕ ∗ emp (∗mono) e ∗ > ⇒ e J[e ∈ {¬emp, x = y, x 6= y, x ↪→ y}]

(∗assoc) (ϕ ∗ ψ) ∗ χ⇔ ϕ ∗ (ψ ∗ χ) (∗
¬alloc) ¬x ↪→ ∗ ¬x ↪→ ⇒ ¬x ↪→

(∗com) ϕ ∗ ψ ⇒ ψ ∗ ϕ (∗¬size) ¬size≥β1 ∗ ¬size≥β2 ⇒ ¬size≥β1+β2
.−1

(∗alias) (x ↪→ ∗ x ↪→)⇔ ⊥ (∗¬pto) (x ↪→ ∧¬x ↪→ y) ∗ > ⇒ ¬x ↪→ y

(∗ 1
atom) ¬emp⇒ size = 1 ∗ > (∗ 2

atom) x ↪→ ⇒ (x ↪→ ∧ size = 1) ∗ >

Rule of inference for the separating conjunction:

(∗)
ϕ⇒ χ

ϕ ∗ ψ ⇒ χ ∗ ψ

Intermediate axioms:

(I∗3) (ϕ ∨ ψ) ∗ χ⇒ (ϕ ∗ χ) ∨ (ψ ∗ χ) (I∗4) (⊥ ∗ ϕ)⇔ ⊥ (I∗5) x ↪→ ∗> ⇒ x ↪→

Figure 6.6: The Hilbert-style proof system HC(∗).

For instance, the instantiation of (∗mono) with e = x ↪→ y states that if h′(s(x)) = s(y) holds for a
memory state (s, h′), and h′ ⊆ h, then h(s(x)) = s(y). Notice that the intermediate axiom (I∗5)
is similar to (∗mono), and treats the monotonicity of x ↪→ . The axiom (∗

¬alloc) characterises
the fact that whenever two disjoint heaps are composed, if the location corresponding to x was
not allocated in neither of the two heaps, then it is not allocated in the resulting heap. The
axiom (∗¬size) is quite similar, but deals with the cardinality of the two heaps. Essentially, it states
that whenever we compose two disjoint heaps having sizes less than β1 and β2, respectively,
the resulting heap has less than β1 + β2

.− 1 memory cells. The axiom (∗¬pto) states that,
given a memory state (s, h) and a heap h′ ⊆ h, if s(x) ∈ dom(h′) but h′(s(x)) 6= s(y), then
h(s(x)) 6= s(y). Lastly, the two intermediate axioms (I∗3) and (I∗4) are quite immediate. The
axiom (I∗4) states that ⊥ is an annihilator for ∗ (exactly as for the classical conjunction ∧). The
axiom (I∗3) states that ∗ distributes over disjunctions. Notice that the right-to-left direction
of (I∗3), i.e. (ϕ ∗ χ) ∨ (ψ ∗ χ)⇒ (ϕ ∨ ψ) ∗ χ, is a theorem of HC(∗). Indeed,

1 ϕ⇒ ϕ ∨ ψ PC

2 ψ ⇒ ϕ ∨ ψ PC

3 ϕ ∗ χ⇒ (ϕ ∨ ψ) ∗ χ (∗), 1

4 ψ ∗ χ⇒ (ϕ ∨ ψ) ∗ χ (∗), 2

5 (ϕ ∗ χ) ∨ (ψ ∗ χ)⇒ (ϕ ∨ ψ) ∗ χ PC, 3, 4

Lemma 6.11. HC(∗) is sound.

Proof. The validity of all the axioms and the admissibility of all the rules has already been

6.5. Syntactical elimination of the Separating Conjunction 297

established in Lemma 6.5, with the exception of the three intermediate axioms. The axioms (I∗3)
and (I∗4) are valid formulae in BBI (see [75, Section 2]), and thus are also valid in separation logic,
following the correspondence given by Proposition 2.23. The soundness of (I∗5) is straightforward.
Indeed, suppose (s, h) |= x ↪→ ∗>. So, there is h′ ⊆ h such that (s, h′) |= x ↪→ . By definition
of x ↪→ , s(x) ∈ dom(h′). By h′ ⊆ h, s(x) ∈ dom(h). We conclude that (s, h) |= x ↪→ .

HC(∗) is designed with the idea of being as simple as possible. On one side, this helps
understanding the key ingredients of SL(∗, x ↪→). On the other side, this makes the proof of
completeness of HC(∗) more challenging. To work towards this proof while familiarising with
the new axioms, we first show a set of intermediate theorems.

Lemma 6.12. The following formuale are theorem of HC(∗):

(I∗6.12.1) x ∼ y ∧ (ϕ ∗ ψ)⇒ (ϕ ∧ x ∼ y) ∗ ψ J[∼∈ {=, 6=}]
(I∗6.12.2) x = y ∧ ((ϕ ∧ x ↪→) ∗ ψ)⇒ (ϕ ∧ y ↪→) ∗ ψ
(I∗6.12.3) (ϕ ∧ x ↪→) ∗ ψ ⇒ ϕ ∗ (ψ ∧ ¬x ↪→)
(I∗6.12.4) ¬x ↪→ ∧ (ϕ ∗ ψ)⇒ (ϕ ∧ ¬x ↪→) ∗ ψ
(I∗6.12.5) x ↪→ ∧ (ϕ ∗ (¬x ↪→ ∧ ψ))⇒ (ϕ ∧ x ↪→) ∗ (¬x ↪→ ∧ ψ)
(I∗6.12.6) x ↪→ y ∧ ((ϕ ∧ x ↪→) ∗ ψ)⇒ (ϕ ∧ x ↪→ y) ∗ ψ
(I∗6.12.7) ¬x ↪→ y ∧ (ϕ ∗ ψ)⇒ (ϕ ∧ ¬x ↪→ y) ∗ ψ.

To lighten the chapter from the burden of several syntactical proofs, below we present the
proofs of the theorems (I∗6.12.1), (I∗6.12.3) and (I∗6.12.5), leaving the other proofs in Appendix D.

Proof of (I∗6.12.1).

1 ϕ⇒ (ϕ ∧ x ∼ y) ∨ (ϕ ∧¬x ∼ y) PC

2 ϕ ∗ ψ ⇒ ((ϕ ∧ x ∼ y) ∨ (ϕ ∧ ¬x ∼ y)) ∗ ψ (∗), 1

3
(
(ϕ ∧ x ∼ y)∨(ϕ ∧ ¬x ∼ y)

)
∗ ψ ⇒

(
(ϕ ∧ x ∼ y) ∗ ψ

)
∨
(
(ϕ ∧ ¬x ∼ y) ∗ ψ

)
(I∗3)

4 ϕ ∧ ¬x ∼ y⇒ ¬x ∼ y PC

5 ψ ⇒ > PC

6 (ϕ ∧ ¬x ∼ y) ∗ ψ ⇒ (¬x ∼ y) ∗ > (∗ILR), 4, 5

7 (¬x ∼ y) ∗ > ⇒ ¬x ∼ y (∗mono)

8 (ϕ ∧ ¬x ∼ y) ∗ ψ ⇒ ¬x ∼ y (⇒Tr), 6, 7

9
(
(ϕ ∧ x ∼ y) ∗ ψ

)
∨
(
(ϕ ∧ ¬x ∼ y) ∗ ψ

)
⇒
(
(ϕ ∧ x ∼ y) ∗ ψ

)
∨ ¬x ∼ y 8, PC

10 ϕ ∗ ψ ⇒
(
(ϕ ∧ x ∼ y

)
∗ ψ) ∨ ¬x ∼ y (⇒Tr), 2, 3, 9

11 x ∼ y ∧ (ϕ ∗ ψ)⇒ (ϕ ∧ x ∼ y) ∗ ψ 10, PC

Proof of (I∗6.12.3).

1 ψ ⇒ (ψ ∧ x ↪→) ∨ (ψ ∧¬x ↪→) PC

2 (ϕ ∧ x ↪→) ∗ ψ ⇒

298 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

(ϕ ∧ x ↪→) ∗
(
(ψ ∧ x ↪→) ∨ (ψ ∧¬x ↪→)

)
(∗com), (∗), 1

3 (ϕ ∧ x ↪→) ∗
(
(ψ ∧ x ↪→) ∨ (ψ ∧¬x ↪→)

)
⇒(

(ϕ ∧ x ↪→) ∗ (ψ ∧ x ↪→)
)
∨
(
(ϕ ∧ x ↪→) ∗ (ψ ∧¬x ↪→)

)
(∗com), (I∗3), 2

4 χ ∧ x ↪→ ⇒ x ↪→ (χ ∈ {ϕ,ψ}), PC

5 (ϕ ∧ x ↪→) ∗ (ψ ∧ x ↪→)⇒ x ↪→ ∗ x ↪→ (∗ILR), 4

6 x ↪→ ∗ x ↪→ ⇒⊥ (∗alias)

7 (ϕ ∧ x ↪→) ∗ (ψ ∧ x ↪→)⇒⊥ (⇒Tr), 5, 6

8 (ϕ ∧ x ↪→) ∗ ψ ⇒ ⊥ ∨
(
(ϕ ∧ x ↪→) ∗ (ψ ∧ ¬x ↪→)

)
PC, 2, 3, 7

9 (ϕ ∧ x ↪→) ∗ ψ ⇒ (ϕ ∧ x ↪→) ∗ (ψ ∧ ¬x ↪→) PC, 8

10 ϕ ∧ x ↪→ ⇒ ϕ PC

11 (ϕ ∧ x ↪→) ∗ (ψ ∧ ¬x ↪→)⇒ ϕ ∗ (ψ ∧¬x ↪→) (∗), 10

12 (ϕ ∧ x ↪→) ∗ ψ ⇒ ϕ ∗ (ψ ∧ ¬x ↪→) (⇒Tr), 9, 11

Proof of (I∗6.12.5).

1 ϕ⇒ (ϕ ∧ x ↪→) ∨ (ϕ ∧¬x ↪→) PC

2 ϕ ∗ (¬x ↪→ ∧ ψ)⇒
(
(ϕ∧x ↪→) ∗ (ψ∧¬x ↪→)

)
∨
(
(ϕ∧¬x ↪→) ∗ (ψ∧¬x ↪→)

)
(∗), 1, (I∗3)

3 χ ∧¬x ↪→ ⇒ ¬x ↪→ (χ ∈ {ϕ,ψ}), PC

4 (ϕ ∧¬x ↪→) ∗ (ψ ∧¬x ↪→)⇒ ¬x ↪→ ∗ ¬x ↪→ PC, (∗ILR), 3

5 ¬x ↪→ ∗ ¬x ↪→ ⇒ ¬x ↪→ (∗
¬alloc)

6 ϕ ∗ (¬x ↪→ ∧ ψ)⇒
(
(ϕ ∧ x ↪→) ∗ (ψ ∧ ¬x ↪→)

)
∨ ¬x ↪→ PC, 2, 4, 5

7 x ↪→ ∧
(
ϕ ∗ (¬x ↪→ ∧ ψ)

)
⇒ (ϕ ∧ x ↪→) ∗ (ψ ∧ ¬x ↪→) PC, 6

Below, we show that in HC(∗) the axioms (IC
1) and (IC

2) of HC are superfluous and can be
removed. Because of this, both (IC

1) and (IC
2) do not appear in the (final) proof system HC(∗,−∗)

given in Figure 6.2.

Lemma 6.13. The axioms (IC
1) and (IC

2) are derivable in HC(∗).

Proof of (IC
1). The proof is by induction on β.

base case: β = 0. The instance of the axiom (IC
1) with β = 0 amounts to derive the formula

size≥ 1⇒ size≥ 0. By definition, size≥ 0 = >, and therefore by propositional reason-
ing, `HC(∗) size≥ 1⇒ size≥ 0.

induction step: β > 0. By induction hypothesis, assume `HC(∗) size≥β ⇒ size≥β − 1.
The formula size≥β + 1⇒ size≥β is derived as follows:

1 size≥β ⇒ size≥β − 1 Induction hypothesis

2 (size≥β) ∗ ¬emp⇒ (size≥β − 1) ∗ ¬emp (∗), 1

6.5. Syntactical elimination of the Separating Conjunction 299

3 size≥β + 1⇒ size≥β 2, def. of size

Before proving (IC
2), we derive the following intermediate theorem.

(I−∗6.13.1)
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒ (∗x∈X(x ↪→ ∧ size = 1)) ∗ > J[X ⊆fin VAR]

Proof of (I−∗6.13.1). The proof is by induction on the size of X. We distinguish two base cases, one
for card(X) = 0 and one for card(X) = 1.
base case: card(X) = 0. In this case, (I−∗6.13.1) is > ⇒ > ∗ >.

1 emp⇒ > PC

2 > ⇒ > ∗ emp (∗id)

3 > ∗ emp⇒ emp ∗ > (∗com)

4 emp ∗ > ⇒ > ∗ > (∗), 1

5 > ⇒ > ∗ > (⇒Tr), 2, 3, 4

base case: card(X) = 1. In this case, (I−∗6.13.1) is exactly (∗ 2
atom).

induction step: card(X) ≥ 2. Let z ∈ X. By induction hypothesis,
`HC(∗)

∧
v∈X\{z}(x ↪→ ∧

∧
w∈X\{v,z} v 6= w)⇒ (∗v∈X\{z}(v ↪→ ∧ size = 1)) ∗ >.

We write χ for the premise
∧

v∈X\{z}(x ↪→ ∧
∧

w∈X\{v,z} v 6= w) above. Below, we aim at
proving that

`HC(∗)
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒ (z ↪→ ∧ size = 1) ∗ χ.
In this way, the provability of (I−∗6.13.1) follows directly by induction hypothesis together
with (∗com) and (∗). We have,

1
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒ (z ↪→ ∧ size = 1) ∗ > (∗ 2
atom) and PC

2 > ⇒ χ ∨ ¬χ PC

3 (z ↪→ ∧ size = 1) ∗ > ⇒ (z ↪→ ∧ size = 1) ∗ (χ ∨ ¬χ) (∗), (∗com), 2

4 (z ↪→ ∧ size = 1) ∗ (χ ∨¬χ)⇒(
(z ↪→ ∧ size = 1) ∗ χ

)
∨
(
(z ↪→ ∧ size = 1) ∗ ¬χ

)
(∗com) and (I∗3)

5
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒(
(z ↪→ ∧ size = 1) ∗ χ

)
∨
(
(z ↪→ ∧ size = 1) ∗ ¬χ

)
(⇒Tr) 1, 3, 4

By propositional reasoning, ¬χ is equivalent to
∨

v∈X\{z}(¬x ↪→ ∨
∨

w∈X\{v,z} v = w). Due
to the complexity of this formula, we proceed now rather informally, but our arguments
entail the existence of a proper derivation. We aim at showing that

`HC(∗)
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y) ∧ ((z ↪→ ∧ size = 1) ∗ ¬χ)⇒⊥ . (†)
By propositional calculus and (I∗3), we can distribute conjunctions and separating con-
junctions over disjunctions. We derive:

300 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

`HC(∗)
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y) ∧ ((z ↪→ ∧ size = 1) ∗ ¬χ)⇒ γ′ ∨ γ′′,
where γ′ and γ′′ are defined, respectively, as

γ′ def=
∨

v∈X\{z}

(∧
x∈X(x ↪→ ∧

∧
y∈X\{x} x 6= y)∧ ((z ↪→ ∧ size = 1) ∗ ¬v ↪→)

)
,

γ′′ def=
∨

v∈X\{z}
w∈X\{z,v}

(∧
x∈X(x ↪→ ∧

∧
y∈X\{x} x 6= y) ∧ ((z ↪→ ∧ size = 1) ∗ v = w)

)
.

In order to deduce (†) it is sufficient to prove, in HC(∗), that every disjunct of γ′ and γ′′

implies ⊥. Clearly, if γ′ and γ′′ do not have any disjunct, i.e. when X \ {z} is empty, then
the formula is propositionally equivalent to ⊥, which allows us to conclude (†). Otherwise,
let us consider each disjunct in γ′ and γ′′ (separately), and prove their inconsistency.
case: γ′. Let v ∈ X \ {z}. We show the inconsistency of

γ def=
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)∧ ((z ↪→ ∧ size = 1) ∗ ¬v ↪→).

6
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒ v ↪→ ∧ v 6= z PC

7 γ ⇒ v ↪→ ∧ v 6= z ∧
(
(z ↪→ ∧ size = 1) ∗ ¬v ↪→

)
PC

8 v ↪→ ∧
(
(z ↪→ ∧ size = 1) ∗ ¬v ↪→

)
⇒

((z ↪→ ∧ size = 1 ∧ v ↪→) ∗ ¬v ↪→) (I∗6.12.5)

9 v 6= z ∧
(
(z ↪→ ∧ size = 1 ∧ v ↪→) ∗ ¬v ↪→

)
⇒

((z ↪→ ∧ size = 1 ∧ v ↪→ ∧ v 6= z) ∗ ¬v ↪→) (I∗6.12.1)

10 z ↪→ ∧ v ↪→ ∧ v 6= z⇒ size≥ 2 (alloc
size)

11 size = 1⇒ ¬size≥ 2 PC

12 z ↪→ ∧ size = 1 ∧ v ↪→ ∧ v 6= z⇒⊥ (⇒Tr), PC, 10, 11

13 γ ⇒ (z ↪→ ∧ size = 1 ∧ v ↪→ ∧ v 6= z) ∗ ¬v ↪→ PC, 7, 8, 9

14 (z ↪→ ∧ size = 1 ∧ v ↪→ ∧ v 6= z) ∗ ¬v ↪→ ⇒ ⊥∗¬v ↪→ (∗), 12

15 ⊥ ∗¬v ↪→ ⇒⊥ (I∗4), 14

16 γ ⇒⊥ PC, 13, 15

Since γ is an arbitrary disjunct appearing in γ′, we conclude that `HC(∗) γ
′ ⇒⊥.

case: γ′′. Let v ∈ X \ {z} and w ∈ X \ {z, w}. Notice that if v or w do not exist, then γ′′ is
defined as ⊥ and so the proof is complete. Otherwise, we show the inconsistency of

γ̂ def=
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y) ∧ ((z ↪→ ∧ size = 1) ∗ v = w).

17
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒ v 6= w PC

18 z ↪→ ∧ size = 1⇒ > PC

19 (z ↪→ ∧ size = 1) ∗ v = w⇒ v = w ∗ > (∗), 18, (∗com)

20 v = w ∗ > ⇒ v = w (∗mono)

21 ((z ↪→ ∧ size = 1) ∗ v = w)⇒ v = w (⇒Tr), 19, 20

23 γ̂ ⇒⊥ PC, 17, 22

6.5. Syntactical elimination of the Separating Conjunction 301

∧{
x ∼ y ⊆LIT {ϕ | ψ}

∣∣∼∈ {=, 6=}} ∧∧ {x ↪→ ⊆LIT {ϕ | ψ}}

∧
∧
{¬x ↪→ ⊆LIT {ϕ ; ψ}} ∧

∧{
¬x ↪→ y

∣∣ x ↪→ ∧¬x ↪→ y ⊆LIT {ϕ | ψ}
}

∧
∧{

x 6= x
∣∣ x ↪→ ⊆LIT {ϕ ; ψ}

} ∧
∧{

size≥β1+β2

∣∣∣∣ size≥β1 ⊆LIT ϕ
size≥β2 ⊆LIT ψ

}
∧
∧
{x ↪→ y ⊆LIT {ϕ | ψ}} ∧

∧{
¬size≥β1+β2

.−1
∣∣∣∣¬size≥β1 ⊆LIT ϕ
¬size≥β2 ⊆LIT ψ

}
Figure 6.7: The formula 〈∗〉(ϕ,ψ).

Since γ̂ is an arbitrary disjunct appearing in γ′′, we conclude that `HC(∗) γ
′′ ⇒⊥.

From `HC(∗) γ
′ ⇒⊥ and `HC(∗) γ

′′ ⇒⊥ we conclude that (†) holds. From the theorem 5
derived in this proof, this allows us to conclude that

`HC(∗)
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒ (z ↪→ ∧ size = 1) ∗ χ.

Let us move to the derivation of (IC
2).

Proof of (IC
2). Let X ⊆fin VAR. If X = ∅, the instance of the axiom (IC

2) becomes > ⇒ size≥ 0,
that is > ⇒ >, by definition of size≥ 0. Below, assume X 6= ∅ and fix z ∈ X.

1
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒ (∗x∈X(x ↪→ ∧ size = 1)) ∗ > (I−∗6.13.1)

2 x ↪→ ∧ size = 1⇒ size≥ 1 PC, def. of size = 1

3 (∗x∈X(x ↪→ ∧ size = 1)) ∗ > ⇒ (∗x∈X size≥ 1) ∗ >. multiple applications of
(∗), 2, (∗com) and (⇒Tr)

4 (∗x∈X size≥ 1) ∗ > ⇒ (size≥ 1 ∗ >) ∗ (∗x∈X\{z} size≥ 1) (∗com), (∗assoc), def. of z

5 size≥ 1 ∗ > ⇒ size≥ 1 (∗mono), def. of size≥ 1

6 (size≥ 1 ∗ >) ∗ (∗x∈X\{z} size≥ 1)⇒ (∗x∈X size≥ 1) (∗)

7 (∗x∈X size≥ 1)⇒ size≥ card(X) (∗assoc), def. of size≥ card(X)

8
∧

x∈X(x ↪→ ∧
∧

y∈X\{x} x 6= y)⇒ size≥ card(X) (⇒Tr), 1, 3, 4, 6, 7

From now on, we understand HC(∗) as the proof system obtained from HC by adding all
schemata from Figure 6.6 while removing (IC

1) and (IC
2). We show that HC(∗) enjoys the ∗-

simulation property when the argument formulae are core types. That is, given two satisfiable
core types ϕ and ψ, in CoreTypes(X, α), we show that the formula ϕ ∗ ψ is provably equivalent
to the formula 〈∗〉(ϕ,ψ) belonging to Conj(Core(X, 2α)), and defined in Figure 6.7.

Lemma 6.14. Let X ⊆fin VAR and α ≥ card(X). Let ϕ and ψ in CoreTypes(X, α). If both ϕ and
ψ are satisfiable, then `HC(∗) ϕ ∗ ψ ⇔ 〈∗〉(ϕ,ψ).

The equivalence ϕ ∗ ψ ⇔ 〈∗〉(ϕ,ψ) is reminiscent to the one in [63, Lemma 3] that is proved
semantically. In a way, because HC(∗) will reveal to be complete, the restriction of the proof of
[63, Lemma 3] to SL(∗, x ↪→) can be replayed completely syntactically within HC(∗).

302 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

Proof. First of all, let us briefly explain what is the rationale for having literals of the form x 6= x
in the definition of 〈∗〉(ϕ,ψ). Recall that x ↪→ ⊆LIT {ϕ ; ψ} is a shortcut to state that x ↪→
occurs in the core type ϕ and x ↪→ also occurs in the core type ψ. Since (x ↪→ ∧ϕ′)∗(x ↪→ ∧ψ′)
is unsatisfiable (see e.g. (∗alias)), x ↪→ ⊆LIT {ϕ ;ψ} entails that 〈∗〉(ϕ,ψ) should be unsatisfiable.
That is why, if x ↪→ ⊆LIT {ϕ ; ψ}, then x 6= x is part of 〈∗〉(ϕ,ψ).
(⇒): Let us show that `HC(∗) ϕ ∗ ψ ⇒ 〈∗〉(ϕ,ψ). We establish that `HC(∗) ϕ ∗ ψ ⇒ L holds for
every literal L of 〈∗〉(ϕ,ψ). We reason by a case analysis on L ⊆LIT 〈∗〉(ϕ,ψ).
case: L is an (in)equality or L = x ↪→ y. For all the equalities and inequalities in ϕ or ψ,

as well as all the literals of the form x ↪→ y, `HC(∗) ϕ ∗ψ ⇒ L follow from the rule (∗) and
the axiom (∗mono). Let us provide below the proper derivation when L is a literal in ϕ that
is an equality, an inequality or of the form x ↪→ y.

1 ϕ⇒ L PC

2 ψ ⇒ > PC

3 ϕ ∗ ψ ⇒ L ∗ > (∗ILR), 1, 2

4 L ∗ > ⇒ L (∗mono)

5 ϕ ∗ ψ ⇒ L (⇒Tr), 3, 4

Assume there is a literal x 6= x that occurs in 〈∗〉(ϕ,ψ). As both ϕ and ψ are satisfiable,
and thanks to (=id), this is necessarily due to x ↪→ occurring both in ϕ and ψ.

1 ϕ⇒ x ↪→ PC

2 ψ ⇒ x ↪→ PC

3 ϕ ∗ ψ ⇒ x ↪→ ∗ x ↪→ (∗ILR), 1, 2

4 x ↪→ ∗ x ↪→ ⇒⊥ (∗alias)

5 ⊥⇒ x 6= x PC

6 ϕ ∗ ψ ⇒ x 6= x (⇒Tr), 4, 5

case: L = x ↪→ . Follows from (I∗5) and (∗).
case: L = ¬x ↪→ . Follows from (∗

¬alloc) and (∗).
case: L = ¬x ↪→ y. Let ¬x ↪→ y be a literal occurring in 〈∗〉(ϕ,ψ). So, x ↪→ ∧¬x ↪→ y occurs

in ϕ or ψ, say in ϕ (the other case is equivalent, due to (∗com)).

1 ϕ⇒ x ↪→ ∧¬x ↪→ y PC

2 ψ ⇒ > PC

3 ϕ ∗ ψ ⇒ (x ↪→ ∧¬x ↪→ y) ∗ > (∗ILR), 1, 2

4 (x ↪→ ∧¬x ↪→ y) ∗ > ⇒ ¬x ↪→ y (∗¬pto)

5 ϕ ∗ ψ ⇒ ¬x ↪→ y (⇒Tr), 3, 4

case: L = size ≥ β1 + β2, where size ≥ β1 ⊆LIT ϕ and size ≥ β2 ⊆LIT ψ.

1 ϕ⇒ size ≥ β1 PC

2 ψ ⇒ size ≥ β2 PC

3 ϕ ∗ ψ ⇒ size ≥ β1 ∗ size ≥ β2 (∗ILR), 1, 2

4 ϕ ∗ ψ ⇒ size ≥ (β1 + β2) Def. size

6.5. Syntactical elimination of the Separating Conjunction 303

Notice that, as ϕ and ψ are satisfiable core types, size ≥ 0 appears positively in both
these formulae, and thus appears in 〈∗〉(ϕ,ψ).

case: L = ¬size ≥ β1 + β2
.− 1, where ¬size ≥ β1 ⊆LIT ϕ and ¬size ≥ β2 ⊆LIT ψ.

1 ϕ⇒ ¬size ≥ β1 PC

2 ψ ⇒ ¬size ≥ β2 PC

3 ϕ ∗ ψ ⇒ ¬size ≥ β1 ∗ ¬size ≥ β2 (∗ILR), 1, 2

4 ¬size ≥ β1 ∗ ¬size ≥ β2 ⇒ ¬size ≥ β1 + β2
.− 1 (∗¬size)

5 ϕ ∗ ψ ⇒ ¬size ≥ β1 + β2
.− 1 (⇒Tr), 3, 4

(⇐): Let us show that `HC(∗) 〈∗〉(ϕ,ψ)⇒ ϕ∗ψ. If 〈∗〉(ϕ,ψ) is unsatisfiable, then by completeness
of HC (Theorem 6.9), `HC 〈∗〉(ϕ,ψ)⇒⊥, and thus `HC 〈∗〉(ϕ,ψ)⇒ ϕ ∗ψ. Since HC(∗) includes
HC, we conclude that `HC(∗) 〈∗〉(ϕ,ψ) ⇒ ϕ ∗ ψ. Otherwise, below, we assume 〈∗〉(ϕ,ψ) to be
satisfiable. In particular, this implies that no literals of the form x 6= x or ¬size ≥ 0 appear
in 〈∗〉(ϕ,ψ). Moreover, by definition of 〈∗〉(ϕ,ψ), this implies that ϕ, ψ and 〈∗〉(ϕ,ψ) agree on
the satisfaction of the core formulae x = y, i.e. ϕ, ψ and 〈∗〉(ϕ,ψ) contain exactly the same
(in)equalities. Since ϕ is satisfiable, these equalities define an equivalence relation. Let x1, . . . xn
be a maximal enumeration of representatives of the equivalence classes (one per equivalence
class) such that xi ↪→ occurs in 〈∗〉(ϕ,ψ). As it is maximal, for every x ↪→ ⊆LIT 〈∗〉(ϕ,ψ)
there is i ∈ [1, n] such that xi is syntactically equal to x. Consequently, from the definition of
〈∗〉(ϕ,ψ), if x ↪→ occurs in ϕ or in ψ, then there is some xi such that x = xi occurs in ϕ (and
therefore also in ψ and in 〈∗〉(ϕ,ψ)). Let us define the formula ALLOC below:

ALLOC def=
(
x1 ↪→ ∧ size = 1

)
∗ · · · ∗

(
xn ↪→ ∧ size = 1

)
.

We have,

1 〈∗〉(ϕ,ψ)⇒
∧
i∈[1,n](xi ↪→ ∧

∧
j∈[1,n]\{i} xi 6= xj) PC, def. of x1, . . . , xn

2
∧
i∈[1,n](xi ↪→ ∧

∧
j∈[1,n]\{i} xi 6= xj)⇒ ALLOC ∗ > (I−∗6.13.1)

3 〈∗〉(ϕ,ψ)⇒ ALLOC ∗ > (⇒Tr), 1, 2

Moreover, we show that `HC(∗) ALLOC ⇒ size ≥ n and `HC(∗) ALLOC⇒ ¬size ≥ n+1 (theo-
rems 4 and 7 below), and so `HC(∗) ALLOC⇒ size = n.

1 χ ∧ size = 1⇒ size ≥ 1 PC, def. of size = 1

2 χ ∧ size = 1⇒ ¬size ≥ 2 PC, def. of size = 1

3 ALLOC⇒∗i∈[1,n] size ≥ 1 multiple applications of
(∗), 1, (∗com) and (⇒Tr)

4 ALLOC⇒ size ≥ n 3, def. of size ≥ n

5 ALLOC⇒∗i∈[1,n] ¬size ≥ 2 multiple applications of
(∗), 2, (∗com) and (⇒Tr)

6 ∗i∈[1,n] ¬size ≥ 2⇒ ¬size ≥ n+ 1 n applications of (∗¬size) and (∗)

304 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

7 ALLOC⇒ ¬size ≥ n+ 1 (⇒Tr), 5, 6

8 ALLOC⇒ size = n PC, 4, 7, def. of size = n

After deriving `HC(∗) 〈∗〉(ϕ,ψ)⇒ ALLOC∗> and `HC(∗) ALLOC⇒ size = n, the proof is divided
in three steps: (1) we isolate the allocated cells and the garbage, (2) we distribute the x ↪→
and size≥β literals according to the goal ϕ ∗ ψ and (3) we add the missing literals.

Step 1, isolating allocated cells and garbage. Since 〈∗〉(ϕ,ψ) is a conjunction of literals
built from core formulae, we can rely on maxsize(〈∗〉(ϕ,ψ)), i.e. the maximum β among the
formulae size ≥ β appearing positively in 〈∗〉(ϕ,ψ). First, we show some important properties
of 〈∗〉(ϕ,ψ), related to maxsize(〈∗〉(ϕ,ψ)).

A. maxsize(〈∗〉(ϕ,ψ)) = maxsize(ϕ) + maxsize(ψ),
B. If there is β ∈ N such that ¬size ≥ β ⊆LIT 〈∗〉(ϕ,ψ), then

¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ, ¬size ≥ maxsize(ψ) + 1 ⊆LIT ψ.
C. If there is β ∈ N such that ¬size ≥ β ⊆LIT 〈∗〉(ϕ,ψ), then

¬size ≥ maxsize(〈∗〉(ϕ,ψ)) + 1 ⊆LIT 〈∗〉(ϕ,ψ).
Proof of (A). By definition of maxsize(.), we know that size ≥ maxsize(ϕ) ⊆LIT ϕ and
size ≥ maxsize(ψ) ⊆LIT ψ. B definition of 〈∗〉(ϕ,ψ), this allows us to conclude that
size ≥ maxsize(ϕ)+maxsize(ψ) ⊆LIT 〈∗〉(ϕ,ψ). Ad absurdum, suppose that maxsize(ϕ)+
maxsize(ψ) 6= maxsize(〈∗〉(ϕ,ψ)) and thus, by definition of maxsize(.), there is β >

maxsize(ϕ) + maxsize(ψ) such that size ≥ β ⊆LIT 〈∗〉(ϕ,ψ). By definition of 〈∗〉(ϕ,ψ),
we conclude that there are β1 and β2 such that β1 + β2 = β, size ≥ β1 ⊆LIT ϕ and
size ≥ β2 ⊆LIT ψ. As β1 + β2 > maxsize(ϕ) + maxsize(ψ), either β1 > maxsize(ϕ) or
β2 > maxsize(ψ). Let us assume β1 > maxsize(ϕ) (the other case is analogous). We have
size ≥ β1 ⊆LIT ϕ. However, this is contradictory, since by definition of maxsize(.) for all
β′ > maxsize(ϕ), size ≥ β′ 6⊆LIT ϕ. Thus, maxsize(ϕ)+maxsize(ψ) = maxsize(〈∗〉(ϕ,ψ)).

Proof of (B). Let β ∈ N such that ¬size ≥ β ⊆LIT 〈∗〉(ϕ,ψ). By definition of 〈∗〉(ϕ,ψ),
this implies that there are β1, β2 ∈ [0, α] such that β = β1 +β2

.−1, ¬size ≥ β1 ⊆LIT ϕ and
¬size ≥ β2 ⊆LIT ψ. Since ϕ and ψ are satisfiable, by definition of maxsize(.), we derive
that β1 > maxsize(ϕ) and β2 > maxsize(ψ). This implies that the core formula size ≥
maxsize(ϕ) + 1 belongs to Core(X, α) and, analogously, that the core formula size ≥
maxsize(ψ) + 1 belongs to Core(X, α). Since ϕ is in CoreTypes(X, α), this implies that
size ≥ maxsize(ϕ) + 1 is an atomic formula appearing in ϕ. By definition of maxsize(ϕ),
the formula cannot appear positively, i.e. ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ. Analogously,
ψ is in CoreTypes(X, α), which leads to ¬size ≥ maxsize(ψ) + 1 ⊆LIT ψ.

Proof of (C). Directly from (A) and (B). Indeed, by definition of 〈∗〉(ϕ,ψ), we know that for
every ¬size ≥ β ⊆LIT ϕ and every ¬size ≥ β′ ⊆LIT ψ, ¬size ≥ β+β′ .− 1 ⊆LIT 〈∗〉(ϕ,ψ).

Now, let us consider βg = maxsize(〈∗〉(ϕ,ψ)) .− n. We define the formula GARB below:

GARB def=

size = βg if ¬size ≥ β ⊆LIT 〈∗〉(ϕ,ψ), for some β
size ≥ βg otherwise,

where we recall that size = βg stands for size ≥ βg ∧ ¬(size ≥ βg + 1). Notice that GARB
is a conjunction of literals where at least one size ≥ β occurs positively (i.e. size ≥ 0). The

6.5. Syntactical elimination of the Separating Conjunction 305

objective of this step of the proof is to show that `HC(∗) 〈∗〉(ϕ,ψ) ⇒ ALLOC ∗ GARB. First, we
focus on the positive part of GARB, and prove `HC(∗) 〈∗〉(ϕ,ψ)⇒ ALLOC ∗ size ≥ βg. If βg = 0
then size ≥ βg = > and we have already shown `HC(∗) 〈∗〉(ϕ,ψ) ⇒ ALLOC ∗ >. So, let us
assume that βg > 1. Notice that maxsize(〈∗〉(ϕ,ψ)) .− n = maxsize(〈∗〉(ϕ,ψ))− n. We have

1 > ⇒ size ≥ βg ∨ ¬size ≥ βg PC

2 ALLOC ∗ > ⇒ ALLOC ∗ (size ≥ βg ∨ ¬size ≥ βg) (∗), (∗com), 1

3 ALLOC ∗ (size ≥ βg ∨ ¬size ≥ βg)⇒

(ALLOC ∗ size ≥ βg) ∨ (ALLOC ∗ ¬size ≥ βg) (I∗3), (∗com)

4 ALLOC⇒ ¬size ≥ n+ 1 Previously derived

5 ALLOC ∗ ¬size ≥ βg ⇒ ¬size ≥ n+ 1 ∗ ¬size ≥ βg (∗), 4

6 (¬size ≥ n+ 1) ∗ ¬size ≥ βg ⇒ ¬size ≥ maxsize(〈∗〉(ϕ,ψ)) (∗¬size), def. of βg

7 ALLOC ∗ > ⇒ (ALLOC ∗ size ≥ βg) ∨ ¬size ≥ maxsize(〈∗〉(ϕ,ψ)) PC, 2, 3, 5, 6

8 〈∗〉(ϕ,ψ)⇒ size ≥ maxsize(〈∗〉(ϕ,ψ)) PC, def. of maxsize(.)

9 〈∗〉(ϕ,ψ)⇒ ALLOC ∗ > Previously derived

10 〈∗〉(ϕ,ψ)⇒ (ALLOC ∗ size ≥ βg) ∨ ¬size ≥ maxsize(〈∗〉(ϕ,ψ)) (⇒Tr), 7, 9

11 〈∗〉(ϕ,ψ)⇒ ALLOC ∗ size ≥ βg PC, 8, 10

If for every β, ¬size ≥ β 6⊆LIT 〈∗〉(ϕ,ψ), then by definition of GARB we conclude that

`HC(∗) 〈∗〉(ϕ,ψ)⇒ ALLOC ∗ GARB.

Otherwise, suppose that there is β such that ¬size ≥ β ⊆LIT 〈∗〉(ϕ,ψ). So, GARB is defined
as size ≥ βg ∧ ¬(size ≥ βg + 1). By (C), ¬size ≥ maxsize(〈∗〉(ϕ,ψ)) + 1 ⊆LIT 〈∗〉(ϕ,ψ). By
propositional reasoning,

`HC(∗) 〈∗〉(ϕ,ψ)⇒ ¬size ≥ maxsize(〈∗〉(ϕ,ψ)) + 1.

Then, 〈∗〉(ϕ,ψ)⇒ ALLOC ∗ GARB is derived as follows:

1 size ≥ βg ⇒ (size ≥ βg ∧ size ≥ βg + 1) ∨ size = βg PC, def. of size = βg

2 ALLOC ∗ size ≥ βg ⇒

ALLOC∗
(
(size ≥ βg ∧ size ≥ βg+1) ∨ size = βg

)
(∗), (∗com), 1

3 ALLOC∗
(
(size ≥ βg ∧ size ≥ βg+1) ∨ size = βg

)
⇒(

ALLOC ∗ (size ≥ βg ∧ size ≥ βg+1)
)
∨
(
ALLOC ∗ size = βg

)
(I∗3), (∗com)

4 size ≥ βg ∧ size ≥ βg + 1⇒ size ≥ βg + 1 PC

5 ALLOC⇒ size ≥ n Previously derived

6 ALLOC ∗ (size ≥ βg ∧ size ≥ βg+1)⇒ size ≥ n ∗ size ≥ βg + 1 (∗ILR), 4, 5

7 size ≥ n ∗ size ≥ βg + 1⇒ size ≥ maxsize(〈∗〉(ϕ,ψ))+1 (∗assoc), def. of size ≥ β

8 ALLOC ∗ size ≥ βg ⇒

306 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

size ≥ maxsize(〈∗〉(ϕ,ψ))+1 ∨
(
ALLOC ∗ size = βg

)
PC, 2, 3, 6, 7

9 〈∗〉(ϕ,ψ)⇒ ALLOC ∗ size ≥ βg Previously derived

10 〈∗〉(ϕ,ψ)⇒ size ≥ maxsize(〈∗〉(ϕ,ψ))+1 ∨
(
ALLOC ∗ size = βg

)
(⇒Tr), 8, 9

11 〈∗〉(ϕ,ψ)⇒ ¬size ≥ maxsize(〈∗〉(ϕ,ψ))+1 PC, see above

12 〈∗〉(ϕ,ψ)⇒
(
ALLOC ∗ size = βg︸ ︷︷ ︸

GARB

)
PC, 10, 11

Step 2, distributing alloc and size literals. In this step, we aim at showing that

`HC(∗) ALLOC ∗ GARB⇒ ϕ(1) ∗ ψ(1)

where ϕ(1) and ψ(1) are two formulae defined as follows:

ϕ(1) def=

size = maxsize(ϕ) ∧
∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]} if maxsize(ϕ) < α

size ≥ maxsize(ϕ) ∧
∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]} otherwise

ψ(1) def=

size = maxsize(ψ) ∧
∧
{xi ↪→ ⊆LIT ψ | i ∈ [1, n]} if maxsize(ψ) < α

size ≥ maxsize(ψ) ∧
∧
{xi ↪→ ⊆LIT ψ | i ∈ [1, n]} otherwise

Before tackling this derivation, a few more steps are required. First of all, notice that, if
there is a formula x ↪→ occurring both in ϕ and ψ, then, by definition of 〈∗〉(ϕ,ψ), x 6= x occurs
in 〈∗〉(ϕ,ψ). This contradicts fact that 〈∗〉(ϕ,ψ) is satisfiable. Therefore, we derive that the set
of variables x1, . . . , xn can be split into two disjoint subsets, the one “allocated” in ϕ, and the
others in ψ. Let nϕ (resp. nψ) denote the number of equivalence classes of variables allocated
in ϕ (resp. ψ). Clearly, n = nϕ + nψ. Moreover, since ϕ and ψ are satisfiable core types in
CoreTypes(X, α), where α ≥ card(X), we must have nϕ ≤ maxsize(ϕ) and nψ ≤ maxsize(ψ) (see
axiom (IC

2)). By (A), we conclude that n ≤ maxsize(〈∗〉(ϕ,ψ)). We define the formulae:

ALLOC(ϕ) def= ∗{xi ↪→ ∧ size = 1 | xi ↪→ ⊆LIT ϕ, i ∈ [1, n]}

GARB(ϕ) def=

size = maxsize(ϕ)− nϕ if maxsize(ϕ)<α

size ≥ maxsize(ϕ)− nϕ otherwise

Notice that, since maxsize(ϕ) ≥ nϕ, the formula GARB(ϕ) is well-defined. The formu-
lae ALLOC(ψ) and GARB(ψ) are defined accordingly. Obviously, ALLOC is equal to ALLOC(ϕ) ∗
ALLOC(ψ) modulo associativity and commutativity for the separating conjunction ∗. Hence, by
taking advantage of the axioms (∗com) and (∗assoc), we have

`HC(∗) ALLOC⇔ ALLOC(ϕ) ∗ ALLOC(ψ).

Let us now look at GARB(ϕ) and GARB(ψ). We aim at deriving

`HC(∗) GARB⇒ GARB(ϕ) ∗ GARB(ψ).

Since, ϕ is a core type, we know that if maxsize(ϕ) < α then, by definition of maxsize(ϕ),
¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ. A similar analysis can be done for ψ, which leads to the two
following equivalences, by definition of GARB(ϕ) and GARB(ψ):
• ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ if and only if GARB(ϕ) = (size = maxsize(ϕ)−nϕ),

• ¬size ≥ maxsize(ψ) + 1 ⊆LIT ψ if and only if GARB(ψ) = (size = maxsize(ψ)−nψ).

6.5. Syntactical elimination of the Separating Conjunction 307

By definition of GARB, (B) and (C), we know that GARB = (size = maxsize(〈∗〉(ϕ,ψ)) .− n)
holds if and only if ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ and ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ψ. From
n ≤ maxsize(〈∗〉(ϕ,ψ)) and by relying on the previous two equivalences, this allows us to
conclude that:

D. GARB(ϕ) = (size = maxsize(ϕ)−nϕ) and GARB(ψ) = (size = maxsize(ψ)−nψ) if and
only if GARB = (size = maxsize(〈∗〉(ϕ,ψ))− n).

To show `HC(∗) GARB ⇒ (GARB(ϕ) ∗ GARB(ψ)), we split the proof depending on whether
GARB(ϕ) = (size = maxsize(ϕ)−nϕ) and GARB(ψ) = (size = maxsize(ψ)−nψ) hold.
case: GARB(ϕ) 6= (size = maxsize(ϕ)−nϕ) and GARB(ψ) 6= (size = maxsize(ψ)−nψ).

We have GARB(ϕ) = (size≥maxsize(ϕ)−nϕ) and GARB(ψ) = (size≥maxsize(ψ)−nψ).
By definition of GARB and (D), GARB = (size ≥ maxsize(〈∗〉(ϕ,ψ)) − n). By n =
nϕ + nψ and (A), maxsize(〈∗〉(ϕ,ψ)) − n = (maxsize(ϕ)−nϕ) + (maxsize(ψ)−nψ). By
definition of the core formula size ≥ β, GARB is already equivalent to GARB(ϕ)∗GARB(ψ),
modulo associativity and commutativity for the separating conjunction ∗. Hence, by taking
advantage of the axioms (∗com) and (∗assoc), we have `HC(∗) GARB⇒ GARB(ϕ) ∗ GARB(ψ).

case: GARB(ϕ) = (size = maxsize(ϕ)−nϕ) and GARB(ψ) 6= (size = maxsize(ψ)−nψ).
We have GARB(ψ) = (size≥maxsize(ψ)−nψ) and, by definition of GARB and (D), together
with n = nϕ + nψ and (A), GARB = (size ≥ (maxsize(ϕ)−nϕ) + (maxsize(ψ)−nψ)). In
this case, GARB ⇒ GARB(ϕ) ∗ GARB(ψ) is an instantiation of the following valid formula
with β1 = maxsize(ϕ)−nϕ and β2 = maxsize(ψ)− nψ:

size ≥ β1 + β2 ⇒ size = β1 ∗ size ≥ β2.

The derivability of this formula in HC(∗) is proven by induction on β1. The derivation for
the base case β1 = 0 is:

1 size ≥ β2 ⇒ emp ∗ size ≥ β2 (∗id)

2 emp⇒ size ≥ 0 ∧ ¬size ≥ 1 PC, def. of size ≥ 1

3 emp ∗ size ≥ β2 ⇒ size = 0 ∗ size ≥ β2 (∗), 2, def. of size = 0

4 size ≥ β2 ⇒ size = 0 ∗ size ≥ β2 (⇒Tr), 1, 3

For the induction step, let us suppose the formula to be derivable for a certain β1, and let
us prove that it is also derivable for β1 + 1.

1 size ≥ β1 + 1 + β2 ⇒ size ≥ 1 ∗ size ≥ β1 + β2 def. of size ≥ β, (∗com), (∗assoc)

2 size ≥ 1⇒ size = 1 ∗ > (∗ 1
atom), def. of size ≥ 1

3 size ≥ 1 ∗ size ≥ β1 + β2 ⇒

(size = 1 ∗ >) ∗ size ≥ β1 + β2 (∗), 2

4 (size = 1 ∗ >) ∗ size ≥ β1 + β2 ⇒

size = 1 ∗ size ≥ β1 + β2 PC, (∗com), (∗assoc), (∗mono)

5 size ≥ β1 + β2 ⇒ size = β1 ∗ size ≥ β2 Induction Hypothesis

6 size = 1 ∗ size ≥ β1 + β2 ⇒

308 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

(size = 1 ∗ size = β1) ∗ size ≥ β2 (∗com), (∗), (∗assoc)

7 size = β̃ ⇒ size ≥ β̃ PC, def. of size = β̃

8 size = β̃ ⇒ ¬size ≥ β̃ + 1 PC, def. of size = β̃

9 size = 1 ∗ size = β1 ⇒ size ≥ 1 ∗ size ≥ β1 (∗ILR), 7

10 size = 1 ∗ size = β1 ⇒ ¬size ≥ 2 ∗ ¬size ≥ β1 + 1 (∗ILR), 8

11 size ≥ 1 ∗ size ≥ β1 ⇒ size ≥ β1 + 1 def. of size ≥ β, (∗com), (∗assoc)

12 ¬size ≥ 2 ∗ ¬size ≥ β1 + 1⇒ ¬size ≥ β1 + 2 (∗¬size)

13 size = 1 ∗ size = β1 ⇒ size = β1 + 1 PC, 9–12, def. of size = β1

14 (size = 1 ∗ size = β1) ∗ size ≥ β2 ⇒

size = β1 + 1 ∗ size ≥ β2 (∗), 13

15 size ≥ β1 + 1 + β2 ⇒ size = β1 + 1 ∗ size ≥ β2 (⇒Tr), 1, 3, 4, 6, 14

case: GARB(ϕ) 6= (size = maxsize(ϕ)−nϕ) and GARB(ψ) = (size = maxsize(ψ)−nψ).
Analogous to the previous case. We have GARB(ϕ) = (size≥maxsize(ϕ)−nϕ) and GARB =
(size ≥ (maxsize(ϕ)−nϕ) + (maxsize(ψ)−nψ)). We instantiate the theorem

size ≥ β1 + β2 ⇒ size = β1 ∗ size ≥ β2,

shown derivable in the previous case of the proof, with β1 = maxsize(ψ)−nψ and β2 =
maxsize(ϕ)−nϕ. This corresponds to GARB⇒ GARB(ψ)∗GARB(ϕ). Then, by commutativ-
ity of the separating conjunction (axiom (∗com)) and propositional reasoning, we conclude
that `HC(∗) GARB⇒ GARB(ϕ) ∗ GARB(ψ).

case: GARB(ϕ) = (size = maxsize(ϕ)−nϕ) and GARB(ψ) = (size = maxsize(ψ)−nψ).
By (D), n = nϕ+nψ and (A), GARB = (size = (maxsize(ϕ)−nϕ)+(maxsize(ψ)−nψ)). In
this case, GARB ⇒ GARB(ϕ) ∗ GARB(ψ) is an instantiation of the following valid formula,
with β1 = maxsize(ϕ)−nϕ and β2 = maxsize(ψ)− nψ:

size = β1 + β2 ⇒ size = β1 ∗ size = β2.

Here is the derivation of this formula:

1 size = β1 + β2 ⇒ size ≥ β1 + β2 PC, def. of size = β

2 size ≥ β1 + β2 ⇒ size = β1 ∗ size ≥ β2 Previously derived

3 size ≥ β2 ⇒ (size ≥ β2 ∧ size ≥ β2 + 1) ∨ size = β2 PC, def. of size = β2

4 size = β1 ∗ size ≥ β2 ⇒

size = β1 ∗
(
(size ≥ β2 ∧ size ≥ β2 + 1) ∨ size = β2

)
(∗com), (∗), 3

5 size = β1 ∗
(
(size ≥ β2 ∧ size ≥ β2 + 1) ∨ size = β2

)
⇒

(size =β1 ∗ (size≥β2 ∧ size≥β2 + 1)) ∨ (size =, β1 ∗ size =β2) (∗com), (I∗3)

6 size ≥ β̃ ∧ χ⇒ size ≥ β̃ PC

7 size = β1 ∗ (size ≥ β2 ∧ size ≥ β2 + 1)⇒

size ≥ β1 ∗ size ≥ β2 + 1 PC, (∗ILR), 6

6.5. Syntactical elimination of the Separating Conjunction 309

8 size ≥ β1 ∗ size ≥ β2 + 1⇒ size ≥ β1 + β2 + 1 (∗com), (∗assoc)

9 size = β1 ∗ (size ≥ β2 ∧ size ≥ β2 + 1)⇒ size ≥ β1 + β2 + 1 (⇒Tr), 7, 8

10 size = β1 ∗
(
(size ≥ β2 ∧ size ≥ β2 + 1) ∨ size = β2

)
⇒

size ≥ β1 + β2 + 1 ∨ (size = β1 ∗ size = β2) PC, 5, 9

11 size = β1 + β2 ⇒ size ≥ β1 + β2 + 1 ∨ (size = β1 ∗ size = β2) (⇒Tr), 1, 2, 4, 10

12 size = β1 + β2 ⇒ ¬size ≥ β1 + β2 + 1 PC, def. of size = β

13 size = β1 + β2 ⇒ size = β1 ∗ size = β2 PC, 11, 12

Thanks to the case analysis above, we conclude that `HC(∗) GARB⇒ GARB(ϕ)∗GARB(ψ). Thus,
`HC(∗) ALLOC ∗ GARB⇒ (ALLOC(ϕ) ∗ GARB(ϕ)) ∗ (ALLOC(ψ) ∗ GARB(ψ)). Indeed,

1 ALLOC⇒ ALLOC(ϕ) ∗ ALLOC(ψ) Previously derived

2 GARB⇒ GARB(ϕ) ∗ GARB(ψ) Previously derived

3 ALLOC ∗ GARB⇒ (ALLOC(ϕ) ∗ ALLOC(ψ)) ∗ (GARB(ϕ) ∗ GARB(ψ)) (∗ILR), 1, 2

4 (ALLOC(ϕ) ∗ ALLOC(ψ)) ∗ (GARB(ϕ) ∗ GARB(ψ))⇒

(ALLOC(ϕ) ∗ GARB(ϕ)) ∗ (ALLOC(ψ) ∗ GARB(ψ)) (∗com), (∗assoc)

5 ALLOC ∗ GARB⇒ (ALLOC(ϕ) ∗ GARB(ϕ)) ∗ (ALLOC(ψ) ∗ GARB(ψ)) (⇒Tr), 3, 4

To conclude this step of the proof, it is sufficient to show `HC(∗) ALLOC(ϕ) ∗ GARB(ϕ)⇒ ϕ(1)

and `HC(∗) ALLOC(ψ) ∗ GARB(ψ)⇒ ψ(1). Indeed, by relying on the rule (∗ILR), we then obtain
`HC(∗) ALLOC ∗ GARB ⇒ ϕ(1) ∗ ψ(1). Below, we show `HC(∗) ALLOC(ϕ) ∗ GARB(ϕ) ⇒ ϕ(1). The
developments of `HC(∗) ALLOC(ψ) ∗ GARB(ψ)⇒ ψ(1) are analogous. We recall that the formula
ALLOC(ϕ) is defined as

ALLOC(ϕ) = ∗{xi ↪→ ∧ size = 1 | xi ↪→ ⊆LIT ϕ}.

First of all, let us show that `HC(∗) ALLOC(ϕ)∗> ⇒
∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]}. The proof

is divided in three cases:
case: {xi ↪→ ∧ size = 1 | xi ↪→ ⊆LIT ϕ} = ∅. In this case, the formula we want to derive

syntactically equal to is > ∗ > ⇒ >, which is derivable by propositional reasoning.
case: card({xi ↪→ ∧ size = 1 | xi ↪→ ⊆LIT ϕ}) = 1. In this case, the formula we want to de-

rive is syntactically equal to (x ↪→ ∧ size = 1) ∗> ⇒ x ↪→ . Therefore, it is derivable in
HC(∗) by (I∗5) and (∗).

case: card({xi ↪→ ∧ size = 1 | xi ↪→ ⊆LIT ϕ})≥2. In the derivation below, ALLOC(ϕ)−i stands
for∗{xj ↪→ ∧size = 1 | j ∈ [1, n]\{i}, xj ↪→ ⊆LIT ϕ}. Roughly speaking, ALLOC(ϕ)−i is
obtained from ALLOC(ϕ) by removing the subformula xi ↪→ ∧size = 1. Since card({xi ↪→ ∧
size = 1 | xi ↪→ ⊆LIT ϕ})≥2, the formula ALLOC(ϕ)−i is different from >. We have,

1 ALLOC(ϕ) ∗> ⇒ (xi ↪→ ∧ size = 1) ∗ (ALLOC(ϕ)−i ∗>) (∗com), (∗assoc), def. of ALLOC(ϕ)
where xi ↪→ ⊆LIT ϕ and i ∈ [1, n]

2 ALLOC(ϕ)−i ∗ > ⇒ > PC

310 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

3 xi ↪→ ∧ size = 1⇒ xi ↪→ PC

4 (xi ↪→ ∧ size = 1) ∗ (ALLOC(ϕ)−i ∗ >)⇒

xi ↪→ ∗> (∗ILR), 2, 3

5 xi ↪→ ∗> ⇒ xi ↪→ (I∗5)

6 ALLOC(ϕ) ∗ > ⇒ xi ↪→ (⇒Tr), 1, 4, 5

7 ALLOC(ϕ) ∗ > ⇒
∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]} PC, repeating 6

for all i ∈ [1, n] s.t. xi ↪→ ⊆LIT ϕ

So, we have `HC(∗) ALLOC(ϕ) ∗ > ⇒
∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]}.

Recall that card({i ∈ [1, n] | xi ↪→ ⊆LIT ϕ}) = nϕ. At the beginning of the proof, we have shown
a derivation of `HC(∗) ALLOC ⇒ size = n, where ALLOC is defined as ∗{xi ↪→ ∧ size = 1 |
i ∈ [1, n]}. Replacing ALLOC by ALLOC(ϕ) and n by nϕ in the derivation of ALLOC⇒ size = n

leads to a derivation in HC(∗) of ALLOC(ϕ)⇒ size = nϕ.
To show `HC(∗) ALLOC(ϕ) ∗ GARB(ϕ)⇒ ϕ(1), we split the proof in two cases:

case: maxsize(ϕ) = α. By definition of ϕ(1) and GARB(ϕ), we have:
• ϕ(1) = size ≥ maxsize(ϕ) ∧

∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]},

• GARB(ϕ) = size ≥ maxsize(ϕ)− nϕ,
Then,

1 ALLOC(ϕ) ∗ > ⇒
∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]} Previously derived

2 GARB(ϕ)⇒ > PC

3 ALLOC(ϕ) ∗ GARB(ϕ)⇒ ALLOC(ϕ) ∗ > (∗), (∗com), 2

4 ALLOC(ϕ) ∗ GARB(ϕ)⇒
∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]} (⇒Tr), 1, 3

5 ALLOC(ϕ)⇒ size = nϕ See above

6 size = nϕ ⇒ size ≥ nϕ PC, def. of size = nϕ

7 ALLOC(ϕ)⇒ size ≥ nϕ

8 GARB(ϕ)⇒ size ≥ maxsize(ϕ)− nϕ PC, def. of GARB(ϕ)

9 ALLOC(ϕ)∗GARB(ϕ)⇒

size ≥ nϕ ∗ size ≥ maxsize(ϕ)−nϕ (∗ILR), 7, 8

10 size ≥ nϕ ∗ size ≥ maxsize(ϕ)− nϕ ⇒

size ≥ maxsize(ϕ) (∗assoc), (∗com), def. of size ≥ β

11 ALLOC(ϕ) ∗ GARB(ϕ)⇒ size ≥ maxsize(ϕ) (⇒Tr), 9, 10

12 ALLOC(ϕ) ∗ GARB(ϕ)⇒ ϕ(1) PC, 4, 11, def. of ϕ(1)

case: maxsize(ϕ) 6= α. In this case, maxsize(ϕ) < α and so we have:
• ϕ(1) = size = maxsize(ϕ) ∧

∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]},

• GARB(ϕ) = size = maxsize(ϕ)− nϕ,

6.5. Syntactical elimination of the Separating Conjunction 311

We can rely on the previous case of the proof in order to show that
`HC(∗) ALLOC(ϕ) ∗ GARB(ϕ)⇒ size ≥ maxsize(ϕ) ∧

∧
{xi ↪→ ⊆LIT ϕ | i ∈ [1, n]}.

By propositional reasoning, we can derive `HC(∗) ALLOC(ϕ) ∗ GARB(ϕ) ⇒ ϕ(1) as soon as
we show that `HC(∗) ALLOC(ϕ) ∗ GARB(ϕ)⇒ ¬size ≥ maxsize(ϕ) + 1, as we do now:

1 ALLOC(ϕ)⇒ size = nϕ Already discussed above

2 size = nϕ ⇒ ¬size ≥ nϕ + 1 PC, def. of size = nϕ

3 ALLOC(ϕ)⇒ ¬size = nϕ + 1 PC, (⇒Tr), 1, 2

4 GARBϕ⇒ ¬size ≥ maxsize(ϕ)− nϕ + 1 PC, def. of size = β

5 ALLOC(ϕ) ∗ GARB(ϕ)⇒

¬size ≥ nϕ + 1 ∗ ¬size ≥ maxsize(ϕ)− nϕ + 1 (∗ILR), 3, 4

6 ¬size ≥ nϕ + 1 ∗ ¬size ≥ maxsize(ϕ)− nϕ + 1⇒

¬size ≥ maxsize(ϕ) + 1 (∗¬size)

7 ALLOC(ϕ) ∗ GARB(ϕ)⇒ ¬size ≥ maxsize(ϕ) + 1 (⇒Tr), 5, 6

This concludes the proof of `HC(∗) ALLOC(ϕ) ∗ GARB(ϕ) ⇒ ϕ(1). As already stated, one can
analogously show that `HC(∗) ALLOC(ψ) ∗ GARB(ψ) ⇒ ψ(1). Afterwards, by (∗ILR) and from
`HC(∗) ALLOC ∗ GARB⇒ (ALLOC(ϕ) ∗ GARB(ϕ)) ∗ (ALLOC(ψ) ∗ GARB(ψ)), we conclude that

`HC(∗) ALLOC ∗ GARB⇒ ϕ(1) ∗ ψ(1).

Step 3, add the missing literals. From the first and second step of the proof, and by
propositional reasoning, `HC(∗) 〈∗〉(ϕ,ψ) ⇒ ϕ(1) ∗ ψ(1). We now rely on 〈∗〉(ϕ,ψ) to add to
ϕ(1) and ψ(1) missing literals from ϕ and ψ, respectively. We add the literals progressively,
building a sequence of formulae ϕ(1)∗ ψ(1), ϕ(2)∗ ψ(2), . . . , ϕ(k)∗ ψ(k), where for all i ∈ [1, k],
ϕ(i) and ψ(i) are conjunctions of core formulae such that `HC(∗) 〈∗〉(ϕ,ψ) ⇒ ϕ(i) ∗ ψ(i), and
for all j ∈ [1, i], ϕ(j) ⊆LIT ϕ(i) and ψ(j) ⊆LIT ψ(i). Fundamentally, we obtain ϕ = ϕ(k) and
ψ = ψ(k) (modulo associativity and commutativity of the classical conjunction), which allows
us to derive `HC(∗) 〈∗〉(ϕ,ψ) ⇒ ϕ ∗ ψ, ending the proof. Below, we focus on the formula ϕ(i)

and ϕ. Since 〈∗〉(ϕ,ψ) is equal to 〈∗〉(ψ,ϕ) (by definition) and the separating conjunction is
commutative (axiom (∗com)), a similar analysis can be done for ψ(i) and ψ. Thus, we assume
that `HC(∗) 〈∗〉(ϕ,ψ) ⇒ ϕ(i) ∗ ψ(i) holds, where in particular ϕ(1) ⊆LIT ϕ(i) and ψ(1) ⊆LIT ψ(i),
and that there is a literal L ⊆LIT ϕ that does not appear in ϕ(i). By relying on the theorems in
Lemma 6.12, we show that `HC(∗) 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ L) ∗ ψ(i) by a case analysis on L.
case: L = x ∼ y, where ∼∈ {=, 6=}. By definition of 〈∗〉(ϕ,ψ), x ∼ y ⊆LIT 〈∗〉(ϕ,ψ).

1 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

2 〈∗〉(ϕ,ψ)⇒ x ∼ y PC, def. of 〈∗〉(ϕ,ψ), see above

3 〈∗〉(ϕ,ψ)⇒ x ∼ y ∧ (ϕ(i) ∗ ψ(i)) PC, 1, 2

4 x ∼ y ∧ (ϕ(i) ∗ ψ(i))⇒ (ϕ(i) ∧ x ∼ y) ∗ ψ(i) (I∗6.12.1)

5 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ x ∼ y) ∗ ψ(i) (⇒Tr), 3, 4

312 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

case: L = x ↪→ . Since x ↪→ ⊆LIT ϕ, by definition, x ↪→ ⊆LIT 〈∗〉(ϕ,ψ). By definition of
x1, . . . , xn, there is j ∈ [1, n] such that xj = x ⊆LIT 〈∗〉(ϕ,ψ). Since ϕ is a core type,
xj ↪→ ⊆LIT ϕ. By definition of ϕ(1), xj ↪→ ⊆LIT ϕ(1). From ϕ(1) ⊆LIT ϕ(i), we have
xj ↪→ ⊆LIT ϕ

(i). Then,

1 ϕ(i) ⇒ ϕ(i) ∧ xj ↪→ PC, see above

2 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

3 ϕ(i) ∗ ψ(i) ⇒ (ϕ(i) ∧ xj ↪→) ∗ ψ(i) (∗), 1

4 〈∗〉(ϕ,ψ)⇒ xj = x PC, see above

5 〈∗〉(ϕ,ψ)⇒ xj = x ∧ ((ϕ(i) ∧ xj ↪→) ∗ ψ(i)) PC, 2, 3, 4

6 xj = x ∧
(
(ϕ(i) ∧ xj ↪→) ∗ ψ(i))⇒ (ϕ(i) ∧ x ↪→) ∗ ψ(i) (I∗6.12.2)

7 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ x ↪→) ∗ ψ(i) (⇒Tr), 5, 6

Without loss of generality, thanks to the derivation above dealing with x ↪→ literals, we assume
that for all x ↪→ ⊆LIT ϕ and all y ↪→ ⊆LIT ψ, we have x ↪→ ⊆LIT ϕ

(i) and y ↪→ ⊆LIT ψ
(i).

case: L = ¬x ↪→ . We distinguish two main subcases.
• First, assume ¬x ↪→ ⊆LIT ψ. By definition of 〈∗〉(ϕ,ψ), ¬x ↪→ ⊆LIT 〈∗〉(ϕ,ψ).

1 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

2 〈∗〉(ϕ,ψ)⇒ ¬x ↪→ PC, def. of 〈∗〉(ϕ,ψ), see above

3 〈∗〉(ϕ,ψ)⇒ ¬x ↪→ ∧ (ϕ(i) ∗ ψ(i)) PC, 1, 2

4 ¬x ↪→ ∧ (ϕ(i) ∗ ψ(i))⇒ (ϕ(i) ∧ ¬x ↪→) ∗ ψ(i) (I∗6.12.4)

5 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ ¬x ↪→) ∗ ψ(i) (⇒Tr), 3, 4

• Otherwise, x ↪→ ⊆LIT ψ. By assumption, x ↪→ ⊆LIT ψ
(i).

1 ψ(i) ⇒ ψ(i) ∧ x ↪→ PC, see above

2 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

3 ϕ(i) ∗ ψ(i) ⇒ (ψ(i) ∧ x ↪→) ∗ ϕ(i) (∗com), (∗), 1

4 (ψ(i) ∧ x ↪→) ∗ ϕ(i) ⇒ ψ(i) ∗ (ϕ(i) ∧ ¬x ↪→) (I∗6.12.3)

5 ψ(i) ∗ (ϕ(i) ∧ ¬x ↪→)⇒ (ϕ(i) ∧ ¬x ↪→) ∗ ψ(i) (∗com)

6 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ ¬x ↪→) ∗ ψ(i) (⇒Tr), 2, 3, 4, 5

case: L = x ↪→ y. Similar to the case L = x ↪→ . Since ϕ is a satisfiable core type, we
have x ↪→ ⊆LIT ϕ (see axiom (↪→weak)). By assumption, x ↪→ ⊆LIT ϕ(i). By definition
of 〈∗〉(ϕ,ψ), we have x ↪→ y ⊆LIT 〈∗〉(ϕ,ψ).

1 ϕ(i) ⇒ ϕ(i) ∧ x ↪→ PC, see above

6.5. Syntactical elimination of the Separating Conjunction 313

2 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

3 〈∗〉(ϕ,ψ)⇒ x ↪→ y PC, see above

4 ϕ(i) ∗ ψ(i) ⇒ (ϕ(i) ∧ x ↪→) ∗ ψ(i) (∗), 1

5 〈∗〉(ϕ,ψ)⇒ x ↪→ y ∧
(
(ϕ(i) ∧ x ↪→) ∗ ψ(i)) PC, 3, 4

6 x ↪→ y ∧
(
(ϕ(i) ∧ x ↪→) ∗ ψ(i))⇒ (ϕ(i) ∧ x ↪→ y) ∗ ψ(i) (I∗6.12.6)

7 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ x ↪→ y) ∗ ψ(i) (∗), 5, 6

Without loss of generality, thanks to the previous cases dealing with ¬x ↪→ literals, from now
on we assume that for every ¬x ↪→ ⊆LIT ϕ and every ¬y ↪→ ⊆LIT ψ, we have ¬x ↪→ ⊆LIT ϕ

(i)

and ¬y ↪→ ⊆LIT ψ
(i).

case: L = ¬x ↪→ y. We distinguish two main subcases
• First, suppose x ↪→ ⊆LIT ϕ. In this case, by definition of 〈∗〉(ϕ,ψ), we have
¬x ↪→ y ⊆LIT 〈∗〉(ϕ,ψ). Therefore,

1 〈∗〉(ϕ,ψ)⇒ ¬x ↪→ y PC, see above

2 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

3 〈∗〉(ϕ,ψ)⇒ ¬x ↪→ y ∧ (ϕ(i) ∗ ψ(i)) PC, 1, 2

4 ¬x ↪→ y ∧ (ϕ(i) ∗ ψ(i))⇒ (ϕ(i) ∧ ¬x ↪→ y) ∗ ψ(i) (I∗6.12.7)

• Otherwise, we have ¬x ↪→ ⊆LIT ϕ. By assumption, ¬x ↪→ ⊆LIT ϕ
(i), and thus

1 ϕ(i) ⇒ ¬x ↪→ PC, see above

2 ¬x ↪→ ⇒ ¬x ↪→ y (↪→
weak), PC

3 ϕ(i) ⇒ ¬x ↪→ y (⇒Tr), 1, 2

4 ϕ(i) ⇒ ϕ(i) ∧ ¬x ↪→ y PC, 3

5 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

6 ϕ(i) ∗ ψ(i) ⇒ (ϕ(i) ∧ ¬x ↪→ y) ∗ ψ(i) (∗), 4

7 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ ¬x ↪→ y) ∗ ψ(i) (⇒Tr), 5, 6

case: L = size ≥ β. By definition of maxsize(.), we have β ≤ maxsize(ϕ). By definition of ϕ(1),
size ≥ maxsize(ϕ) ⊆LIT ϕ

(1). From ϕ(1) ⊆LIT ϕ
(i), we get size ≥ maxsize(ϕ) ⊆LIT ϕ

(i).

1 ϕ(i) ⇒ size ≥ maxsize(ϕ) PC, see above

2 size ≥ maxsize(ϕ)⇒ size ≥ β repeated (IC
1), PC, as β ≤ maxsize(ϕ)

3 ϕ(i) ⇒ ϕ(i) ∧ size ≥ β PC, 1, 2

4 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

5 ϕ(i) ∗ ψ(i) ⇒ (ϕ(i) ∧ size ≥ β) ∗ ψ(i) (∗), 3

314 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

6 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ size ≥ β) ∗ ψ(i) (⇒Tr), 4, 5

case: L = ¬size ≥ β. In this case, maxsize(ϕ) < α. Since ϕ is a satisfiable core type, we have
β > maxsize(ϕ). Moreover, by definition of ϕ(1), ¬size ≥ maxsize(ϕ)+1 ⊆LIT ϕ

(1). From
ϕ(1) ⊆LIT ϕ

(i), we have ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ
(i).

1 ϕ(i) ⇒ ¬size ≥ maxsize(ϕ)+1 PC, see above

2 ¬size ≥ maxsize(ϕ)+1⇒ ¬size ≥ β repeated (IC
1), PC, as β > maxsize(ϕ)

by PC, the contrapositive of (IC
1) is derivable

3 ϕ(i) ⇒ ϕ(i) ∧ ¬size ≥ β PC, 1, 2

4 〈∗〉(ϕ,ψ)⇒ ϕ(i) ∗ ψ(i) Hypothesis

5 ϕ(i) ∗ ψ(i) ⇒ (ϕ(i) ∧ ¬size ≥ β) ∗ ψ(i) (∗), 3

6 〈∗〉(ϕ,ψ)⇒ (ϕ(i) ∧ ¬size ≥ β) ∗ ψ(i) (⇒Tr), 4, 5

Corollary 6.15 (∗-simulation). Let X ⊆fin VAR and α ≥ card(X). Let ϕ,ψ ∈ CoreTypes(X, α).
There is χ in Conj(Core(X, 2α)) such that `HC(∗) ϕ ∗ ψ ⇔ χ.

Proof. If both ϕ and ψ are satisfiable, the results holds directly by Lemma 6.14, as 〈∗〉(ϕ,ψ)
is in Conj(Core(X, 2α)). Otherwise, let us treat the case where one of the two formulas is
unsatisfiable. For instance, assume that ϕ is unsatisfiable. Then `HC ϕ ⇒ ⊥ by completeness
of HC (Lemma 6.8) and, ad HC(∗) includes HC, `HC(∗) ϕ ⇒ ⊥. By the rule (∗) and by the
axiom (I∗4), we get `HC(∗) ϕ ∗ψ ⇒ ⊥. Thus χ can take the value ¬(x = x). The case where ψ is
not satisfiable is analogous, thanks to (∗com).

By the distributivity axiom (I∗3), Corollary 6.15 is extended from core types to arbitrary
Boolean combinations of core formulae. HC(∗) is therefore complete for SL(∗, x ↪→). In order
to derive a valid formula ϕ ∈ SL(∗, x ↪→), we repeatedly apply the ∗-simulation in a bottom-up
fashion, starting from the leaves of ϕ (which are Boolean combinations of core formulae) and
obtaining a Boolean combination of core formulae ψ that is equivalent to ϕ. Then, we rely on
the completeness of HC (Theorem 6.9) to prove that ψ is derivable.

Theorem 6.16. HC(∗) is an adequate proof system for SL(∗, x ↪→).

In order to prove Theorem 6.16, we first show that the substitution of equivalent formulae
in holds true. Formally, we show that the following rule is admissible in HC(∗):

(S∗)
ψ ⇔ χ

ϕ[ψ]ρ ⇔ ϕ[χ]ρ

where ϕ, ψ, χ are in SL(∗, x ↪→), and ϕ[ψ]ρ refers to the formula ϕ in which the subformula at
the occurrence ρ is replaced by ψ (see Definition 1.4).

Proof of (S∗). The admissibility of (S∗) is shown with a standard structural induction on ϕ.
base case: ϕ atomic formula. In this case, the only position ρ of ϕ is ε (see Definition 1.4),

and thus ϕ[ψ]ρ = ψ and ϕ[χ]ρ = χ. From `HC(∗) ψ ⇔ χ, we derive `HC(∗) ϕ[ψ]ρ ⇔ ϕ[χ]ρ.

6.5. Syntactical elimination of the Separating Conjunction 315

induction step: ϕ = ¬ϕ′. If ρ = ε, then the result follows as in the base case. Otherwise,
ρ = 1ρ′, for some position ρ′ of ϕ′. By induction hypothesis, `HC(∗) ϕ

′[ψ]ρ′ ⇔ ϕ′[χ]ρ′ . By
propositional calculus, the following rule is admissible in HC(∗):

ψ ⇔ χ

¬ψ ⇔ ¬χ
So, `HC(∗) ¬(ϕ′[ψ]ρ′)⇔ ¬(ϕ′[χ]ρ′). By definition, ϕ[ψ]ρ = ¬(ϕ′[ψ]ρ′) and ϕ[χ]ρ = ¬(ϕ′[χ]ρ′).

induction step: ϕ = ϕ′ ⇒ ψ′′. Analogous to the previous case, by relying on the two following
rules, that are admissible in HC(∗) directly from the presence of axioms and modus ponens
of propositional calculus:

ψ ⇔ χ

(ψ ⇒ ϕ)⇔ (χ⇒ ϕ)
ψ ⇔ χ

(ϕ⇒ ψ)⇔ (ϕ⇒ χ)

induction step: ϕ = ϕ′ ∗ ϕ′′. Again, if ρ = ε, then the result follows as in the base case.
Otherwise, either ρ = 1ρ′ or ρ = 2ρ′′, for some positions ρ′ and ρ′′ of ϕ′ and ϕ′′, respectively.
Below, we consider the case where ρ = 1ρ′. The other case is analogous, by considering
ϕ′′ instead of ϕ′, and relying on the commutativity of ∗ (axiom (∗com)). By induction
hypothesis, `HC(∗) ϕ

′[ψ]ρ′ ⇔ ϕ′[χ]ρ′ . Directly from the presence of the rule (∗) in HC(∗),
the following rule is admissible:

ψ ⇔ χ

ψ ∗ ϕ⇔ χ ∗ ϕ
Therefore, `HC(∗) (ϕ′[ψ]ρ′) ∗ ϕ′′ ⇔ (ϕ′[χ]ρ′) ∗ ϕ′′. By definition, ϕ[ψ]ρ = (ϕ′[ψ]ρ′) ∗ ϕ′′ and
ϕ[χ]ρ = (ϕ′[χ]ρ′) ∗ ϕ′′, concluding the proof.

Proof of Theorem 6.16. The soundness of HC(∗) has been established in Lemma 6.11. As far as
the completeness proof is concerned, we need to show that for every formula ϕ in SL(∗, x ↪→),
there is a Boolean combination of core formulae ψ such that `HC(∗) ϕ ⇔ ψ. This is enough to
conclude the proof. Indeed, when ϕ is valid for SL(∗, x ↪→), by soundness of HC(∗), we obtain
that ψ is valid too. Since ψ is a Boolean combination of core formulae and HC(∗) includes
HC, by Theorem 6.9 we derive `HC(∗) ψ. Together with `HC(∗) ϕ ⇔ ψ and by propositional
reasoning, this implies `HC(∗) ϕ.

To show that every formula ϕ has a provably equivalent Boolean combination of core for-
mulae, we heavily rely on Corollary 6.15. The proof is by simple structural induction on the
number of occurrences of the separating conjunction in ϕ that are not involved in the definition
of some core formula of the form size≥β.
base case: ϕ without occurrences of ∗ (excluding those in size≥β formulae). In this

case, the formula ϕ is a Boolean combination of core formulae plus the atomic formula
emp (recall, that > is the core formula size≥ 0). By propositional reasoning `HC(∗) emp⇔
¬¬emp, where ¬¬emp is syntactically equivalent to ¬size≥ 1, by definition of size≥ 1.
Therefore, by relying on (S∗), all subformulae emp can be replaced with ¬size≥ 1, leading
to a Boolean combination of core formulae ψ such that `HC(∗) ϕ⇔ ψ.

induction step: ϕ with n ≥ 1 occurrences of ∗ (excluding size≥β formulae). Below,
we let X be the set of variables appearing in ϕ. Let ϕ1 ∗ ϕ2 be a subformula of ϕ, say
at position ρ, such that ϕ1 in Bool(Core(X1, α1)) and ϕ2 in Bool(Core(X2, α2)). Let
α = max(α1, α2). As X1 and X2 are subsets of X, by definition, ϕ1 and ϕ2 belong to
Bool(Core(X, α)). By Lemma 6.10 and since HC(∗) includes HC, there are two formulae of

316 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

Axioms and rules from HC(∗) (Figure 6.6).

Axioms of the separating implication:

(−∗∞) (size = 1 ∧
∧

x∈X ¬x ↪→)−~> J[X ⊆fin VAR]

(−∗7→) ¬x ↪→ ⇒ ((x ↪→ y ∧ size = 1)−~>)

(−∗alloc) ¬x ↪→ ⇒ ((x ↪→ ∧ size = 1 ∧
∧

y∈X ¬x ↪→ y)−~>) J[X ⊆fin VAR]

Rules of inference for the separating implication:

(−∗1)
ϕ⇒ (ψ −∗ χ)
ϕ ∗ ψ ⇒ χ

(−∗2)
ϕ ∗ ψ ⇒ χ

ϕ⇒ (ψ −∗ χ)

Figure 6.8: The Hilbert-style proof system HC(∗,−∗) (again).

the form ϕ1
1∨· · ·∨ϕ

n1
1 and ϕ1

2∨· · ·∨ϕ
n2
2 such that `HC(∗) ϕi ⇔ ϕ1

i ∨· · ·∨ϕ
ni
i for i ∈ {1, 2}

and moreover, all the ϕji ’s are core types in CoreTypes(X,max(card(X), α)). By (S∗),
`HC(∗) ϕ1 ∗ ϕ2 ⇔

(
ϕ1

1 ∨ · · · ∨ ϕ
n1
1
)
∗
(
ϕ1

2 ∨ · · · ∨ ϕ
n2
2
)
.

Again by propositional reasoning, together with the axiom (I∗3) for distributivity and the
theorem (ϕ ∗ χ) ∨ (ψ ∗ χ)⇒ (ϕ ∨ ψ) ∗ χ derived in page 296, we have

`HC(∗) ϕ1 ∗ ϕ2 ⇔
∨
j1∈[1,n1],j2∈[1,n2] ϕ

j1
1 ∗ ϕ

j2
2 .

For all j1 ∈ [1, n1] and j2 ∈ [1, n2], by Corollary 6.15, we derive that there is a formula ψj1,j2
in Conj(Core(X, 2 max(card(X), α))) such that `HC(∗) ϕ

j1
1 ∗ ϕ

j2
2 ⇔ ψj1,j2 . By propositional

reasoning, we conclude that `HC(∗) ϕ1∗ϕ2 ⇔
∨
j1∈[1,n1],j2∈[1,n2] ψ

j1,j2 . Consequently (thanks
to the rule (S∗)), we obtain

`HC(∗) ϕ⇔ ϕ[
∨
j1∈[1,n1],j2∈[1,n2] ψ

j1,j2]ρ.
The right-hand side formula of the double implication above has n− 1 occurrences of the
separating conjunction that are not involved in the definition of some core formula of the
form size≥β. The induction hypothesis applies, allowing us to derive that there is a
Boolean combination of core formulae ψ such that `HC(∗) ϕ[

∨
j1∈[1,n1],j2∈[1,n2] ψ

j1,j2]ρ ⇔ ψ,
which leads to `HC(∗) ϕ⇔ ψ, by propositional reasoning.

6.6 Syntactical elimination of the Separating Implication

In order to obtain the final proof system HC(∗,−∗), we add the axioms and rules from Figure 6.8
to the proof system HC(∗). These new axioms and rules are dedicated to the separating impli-
cation. The axioms (−∗∞)–(−∗alloc) involve the septraction −~, and express that it is always possible
to extend a given heap with an extra memory cell, and that the address and the content of this
cell can be fixed arbitrarily (provided it is not already allocated). The adjunction rules (−∗2)
and (−∗1) are from BBI (Section 2.3.3). One can observe that, in HC(∗,−∗), the axioms (I∗3), (I∗4)
and (I∗5) of HC(∗) are derivable.

6.6. Syntactical elimination of the Separating Implication 317

Lemma 6.17. The axioms (I∗3), (I∗4) and (I∗5) are derivable in HC(∗,−∗).

Proof of (I∗3).

1 (ϕ ∗ χ)⇒ (ϕ ∗ χ) ∨ (ψ ∗ χ) PC

2 (ψ ∗ χ)⇒ (ϕ ∗ χ) ∨ (ψ ∗ χ) PC

3 ϕ⇒
(
χ−∗ (ϕ ∗ χ) ∨ (ψ ∗ χ)

)
(−∗2), 1

4 ψ ⇒
(
χ−∗ (ϕ ∗ χ) ∨ (ψ ∗ χ)

)
(−∗2), 2

5 ϕ ∨ ψ ⇒
(
χ−∗ (ϕ ∗ χ) ∨ (ψ ∗ χ)

)
PC, 3, 4

6 (ϕ ∨ ψ) ∗ χ⇒ (ϕ ∗ χ) ∨ (ψ ∗ χ) (−∗1), 5

Proof of (I∗4). The axiom (I∗4) is provable by (−∗2). Indeed, proving (⊥ ∗ϕ) ⇒⊥ reduces to
proving ⊥⇒ (ϕ−∗ ⊥). The latter is a tautology by propositional reasoning.

Proof of (I∗5).

1 ⊥ ∗> ⇒⊥ (I∗4)

2 (x ↪→ x−∗ ⊥)⇒ (x ↪→ x−∗ ⊥) PC

3 (x ↪→ x−∗ ⊥) ∗ x ↪→ x⇒⊥ (−∗1), 2

4 x ↪→ x ∗ (x ↪→ x−∗ ⊥)⇒ (x ↪→ x−∗ ⊥) ∗ x ↪→ x (∗com)

5 x ↪→ x ∗ (x ↪→ x−∗ ⊥)⇒⊥ (⇒Tr), 4, 3

6
(
x ↪→ x ∗ (x ↪→ x−∗ ⊥)

)
∗ > ⇒⊥ ∗> (∗), 5

7
(
(x ↪→ x−∗ ⊥) ∗ >

)
∗ (x ↪→ x)⇒

(
x ↪→ x ∗ (x ↪→ x−∗ ⊥)

)
∗ > (∗com), (∗assoc)

8
(
(x ↪→ x−∗ ⊥) ∗ >

)
∗ (x ↪→ x)⇒⊥ (⇒Tr), 7, 6, 1

9 (x ↪→ x−∗ ⊥) ∗ > ⇒ (x ↪→ x−∗ ⊥) (−∗2), 8

10 x ↪→ ∗> ⇒ x ↪→ Def. x ↪→ , 9

Lemma 6.17 allows us to remove the axioms (I∗3), (I∗4) and (I∗5) from the HC(∗,−∗), obtain-
ing the proof system as defined at the beginning of the chapter (Figure 6.2). Fundamentally,
HC(∗,−∗) enjoys the −∗-simulation property, as formalised in the following lemma. Actually, we
state the property with the help of the septraction −~, as we find the related statements and
developments more intuitive. Recall that ϕ−~ ψ def= ¬(ϕ−∗ ¬ψ).

Lemma 6.18 (−∗-simulation). Let X ⊆fin VAR and α ≥ card(X). Let ϕ and ψ in CoreTypes(X, α).
There is a conjunction χ ∈ Conj(Core(X, α)) such that `HC(∗,−∗) (ϕ−~ ψ)⇔ χ.

In the proof of Lemma 6.18, the formula χ is explicitly constructed from ϕ and ψ, following a
pattern analogous to the construction of 〈∗〉(. , .) in Figure 6.7. The derivation of the equivalence
(ϕ −~ ψ) ⇔ χ is shown as follows. First, the formulae χ ∗ ϕ ⇒ ψ and ¬χ ∗ ϕ ⇒ ¬ψ are shown
valid (by using semantical means). As HC(∗) is complete for SL(∗, x ↪→), it is a subsystem
of HC(∗,−∗), and the formulae ϕ, ψ and χ are Boolean combinations of core formulae, we get
`HC(∗,−∗) χ∗ϕ⇒ ψ and `HC(∗,−∗) ¬χ∗ϕ⇒ ¬ψ. The latter theorem leads to `HC(∗,−∗) (ϕ−~ψ)⇒ χ

by using the definition of −~ and the rule (−∗2). In order to show that `HC(∗,−∗) χ ⇒ (ϕ −~ ψ)
holds, we take advantage of the admissibility of the theorem (I−∗6.19.9) (see Lemma 6.19) for

318 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

which an instance is (ϕ −~ >) ∧ (ϕ −∗ ψ) ⇒ (ϕ −~ (> ∧ ψ)). From `HC(∗,−∗) χ ∗ ϕ ⇒ ψ and
by (−∗2) we have `HC(∗,−∗) χ⇒ (ϕ−∗ ψ). Therefore, the main technical development lies in the
proof of `HC(∗,−∗) χ ⇒ (ϕ −~ >), which allows us to take advantage of (I−∗6.19.9), and leads to
`HC(∗,−∗) χ⇒ (ϕ−~ ψ) by propositional reasoning.

In order to formalise the proof of Lemma 6.18 sketched above, we start by establishing several
admissible axioms and rules (Lemma 6.19). Afterwards, we define the formula χ and show the
validity of χ ∗ ϕ ⇒ ψ and ¬χ ∗ ϕ ⇒ ¬ψ (Lemma 6.20). Then, come the final bits of the proof
of Lemma 6.18.

Lemma 6.19. The following axioms and rules are admissible in HC(∗,−∗):
(I−∗6.19.1) (⊥−~ ϕ)⇒ ⊥
(I−∗6.19.2) (ϕ−~⊥)⇒ ⊥
(I−∗6.19.3) ϕ ∗ (ϕ−∗ ψ)⇒ ψ

(I−∗6.19.4)
ϕ⇒ ψ

(ϕ−~ χ)⇒ (ψ −~ χ)

(I−∗6.19.5)
ϕ⇒ ψ

(χ−~ ϕ)⇒ (χ−~ ψ)

(I−∗6.19.6) (ϕ ∨ ψ)−~ χ ⇔ (ϕ−~ χ) ∨ (ψ −~ χ)

(I−∗6.19.7) χ−~ (ϕ ∨ ψ) ⇔ (χ−~ ϕ) ∨ (χ−~ ψ)

(I−∗6.19.8) ϕ−~ (ψ −~ χ) ⇔ (ϕ ∗ ψ)−~ χ

(I−∗6.19.9) (ϕ−~ ψ) ∧ (ϕ−∗ χ) ⇒
(
ϕ−~ ψ ∧ χ

)
(I−∗6.19.10) x ∼ y ∧ (ϕ−~ ψ)⇒(

ϕ ∧ x ∼ y−~ ψ
)
J[∼∈ {=, 6=}] .

With the exception of the theorem (I−∗6.19.10), all the theorems in Lemma 6.19 are from BBI.
Below, we show the proofs of (I−∗6.19.3), (I−∗6.19.4), (I−∗6.19.6) and (I−∗6.19.10). The proof of the other
theorems is left in Appendix D.

Proof of (I−∗6.19.3).

1 (ϕ−∗ ψ)⇒ (ϕ−∗ ψ) PC

2 (ϕ−∗ ψ) ∗ ϕ⇒ ψ (−∗1), 1

3 ϕ ∗ (ϕ−∗ ψ)⇒ (ϕ−∗ ψ) ∗ ϕ (∗com)

4 ϕ ∗ (ϕ−∗ ψ)⇒ ψ (⇒Tr), 3, 2

Proof of (I−∗6.19.4).

1 ϕ⇒ ψ Hypothesis

2 ψ ∗ (ψ −∗ ¬χ)⇒ ¬χ (I−∗6.19.3)

3 (ψ −∗ ¬χ) ∗ ϕ⇒ ϕ ∗ (ψ −∗ ¬χ) (∗com)

4 ϕ ∗ (ψ −∗ ¬χ)⇒ ψ ∗ (ψ −∗ ¬χ) (∗), 1

5 ϕ ∗ (ψ −∗ ¬χ)⇒ ¬χ (⇒Tr), 2, 4

6 (ψ −∗ ¬χ) ∗ ϕ⇒ ¬χ (⇒Tr), 3, 5

7 (ψ −∗ ¬χ)⇒ (ϕ−∗ ¬χ) (−∗2), 6

8 ¬(ϕ−∗ ¬χ)⇒ ¬(ψ −∗ ¬χ) PC, 7

9 (ϕ−~ χ)⇒ (ψ −~ χ) Def. −~, 8

6.6. Syntactical elimination of the Separating Implication 319

Proof of (I−∗6.19.6). We derive each implication separately.

1 (ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)⇒ (ψ −∗ ¬χ) PC

2 ψ ∗
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
⇒ ψ ∗ (ψ −∗ ¬χ) (∗ILR), 1

3 (ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)⇒ (ϕ−∗ ¬χ) PC

4 ϕ ∗
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
⇒ ϕ ∗ (ϕ−∗ ¬χ) (∗ILR), 3

5 ϕ ∗ (ϕ−∗ ¬χ)⇒ ¬χ (I−∗6.19.3)

6 ψ ∗ (ψ −∗ ¬χ)⇒ ¬χ (I−∗6.19.3)

7 ψ ∗
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
⇒ ¬χ (⇒Tr), 2, 6

8 ϕ ∗
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
⇒ ¬χ (⇒Tr), 4, 5

9 (ϕ ∨ ψ) ∗
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
⇒

ϕ ∗
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
∨ ψ ∗

(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
(I∗3)

10 (ϕ ∨ ψ) ∗
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
⇒ ¬χ PC, 7, 8, 9

11
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
∗ (ϕ ∨ ψ)⇒ (ϕ ∨ ψ) ∗

(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
(∗com)

12
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
∗ (ϕ ∨ ψ)⇒ ¬χ (⇒Tr), 12, 10

13
(
(ϕ−∗ ¬χ) ∧ (ψ −∗ ¬χ)

)
⇒
(
(ϕ ∨ ψ)−∗ ¬χ

)
(−∗2), 12

14 ¬(ϕ ∨ ψ −∗ ¬χ)⇒ ¬(ϕ−∗ ¬χ) ∨ ¬(ψ −∗ ¬χ) PC, 13

15
(
(ϕ ∨ ψ)−~ χ

)
⇒ (ϕ−~ χ) ∨ (ψ −~ χ) Def. −~, 14

The derivation of the other implication can be found below.

1 ϕ⇒ ϕ ∨ ψ PC

2 ψ ⇒ ϕ ∨ ψ PC

3 (ϕ−~ χ)⇒ (ϕ ∨ ψ −~ χ) (I−∗6.19.4), 1

4 (ψ −~ χ)⇒ (ϕ ∨ ψ −~ χ) (I−∗6.19.4), 2

5
(
(ψ −~ χ) ∨ (ϕ−~ χ)

)
⇒ (ϕ ∨ ψ −~ χ) PC, 3, 4

Proof of (I−∗6.19.10). Let ∼∈ {=, 6=}.

1 ϕ⇒ (ϕ ∧ x ∼ y) ∨ (ϕ ∧ ¬x ∼ y) PC

2 (ϕ−~>)⇒
(
(ϕ ∧ x ∼ y) ∨ (ϕ ∧ ¬x ∼ y)

)
−~> (I−∗6.19.4), 1

3 (ϕ−~>)⇒
(
(ϕ ∧ x ∼ y)−~>

)
∨
(
(ϕ ∧ ¬x ∼ y)−~>

)
(I−∗6.19.6), (⇒Tr), 2

4 x ∼ y ∗ ¬x ∼ y⇒ x ∼ y (∗mono), (∗ILR)

5 ¬x ∼ y ∗ x ∼ y⇒ ¬x ∼ y (∗mono), (∗ILR)

6 x ∼ y ∗ ¬x ∼ y⇒ x ∼ y ∧ ¬x ∼ y (∗com), (⇒Tr), PC, 4, 5

320 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

∧{
x ∼ y ⊆LIT {ϕ | ψ}

∣∣∼∈ {=, 6=}} ∧
∧{

x ↪→
∣∣∣∣¬x ↪→ ⊆LIT ϕ

x ↪→ ⊆LIT ψ

}
∧

∧
{¬x ↪→ ⊆LIT ψ} ∧

∧{
¬x ↪→

∣∣ x ↪→ ⊆LIT ϕ
}

∧
∧
{¬x↪→y ⊆LIT ψ} ∧

∧{
x ↪→ y

∣∣∣∣¬x ↪→ ⊆LIT ϕ
x ↪→ y ⊆LIT ψ

}
∧

∧{
x 6= x

∣∣∣∣ x ↪→ ∧¬x ↪→ y ⊆LIT ϕ
x ↪→ y ⊆LIT ψ

}
∧
∧{

size ≥ β2+1 .−β1

∣∣∣∣¬size ≥ β1 ⊆LIT ϕ
size ≥ β2 ⊆LIT ψ

}
∧

∧{
x 6= x

∣∣∣∣ x ↪→ y ⊆LIT ϕ
¬x ↪→ y ⊆LIT ψ

}
∧
∧{
¬size ≥ β2

.−β1

∣∣∣∣ size ≥ β1 ⊆LIT ϕ
¬size ≥ β2 ⊆LIT ψ

}
∧

∧{
x 6= x

∣∣∣∣ x ↪→ ⊆LIT ϕ
¬x ↪→ ⊆LIT ψ

}
Figure 6.9: The formula 〈−~〉(ϕ,ψ).

7 x ∼ y ∗ ¬x ∼ y⇒ ¬> PC, 6

8 x ∼ y⇒ (¬x ∼ y−∗ ¬>) (−∗2), 7

9 ¬(¬x ∼ y−∗ ¬>)⇒ ¬x ∼ y PC, 8

10 (¬x ∼ y−~>)⇒ ¬x ∼ y Def. −~, 9

11 ϕ ∧ ¬x ∼ y⇒ ¬x ∼ y PC

12
(
(ϕ ∧ ¬x ∼ y)−~>

)
⇒ (¬x ∼ y−~>) (I−∗6.19.6), 11

13
(
(ϕ ∧ ¬x ∼ y)−~>

)
⇒ ¬x ∼ y (⇒Tr), 10, 12

14 (ϕ−~>)⇒ ((ϕ ∧ x ∼ y)−~>) ∨ ¬x ∼ y PC, 3, 13

15 x ∼ y ∧ (ϕ−~>)⇒ (ϕ ∧ x ∼ y)−~> PC, 14

Let ϕ and ψ be two satisfiable core types in Conj(Core(X, α)). Following the developments
of Section 6.5, we define a formula 〈−~〉(ϕ,ψ) in Conj(Core(X, α)), for which we show that
(ϕ−~ ψ)⇔ 〈−~〉(ϕ,ψ) is provable in HC(∗,−∗). The formula 〈−~〉(ϕ,ψ) is defined in Figure 6.9.

Lemma 6.20. Let X ⊆fin VAR, α ≥ card(X) and ϕ, ψ be satisfiable core types in CoreTypes(X, α).
The formulae 〈−~〉(ϕ,ψ) ∗ ϕ⇒ ψ and (¬〈−~〉(ϕ,ψ)) ∗ ϕ⇒ ¬ψ are valid.

Since we aim at proving the derivability of (ϕ−~ψ)⇔ 〈−~〉(ϕ,ψ) in HC(∗,−∗), the validity of the
formula (¬〈−~〉(ϕ,ψ)) ∗ ϕ⇒ ¬ψ should not surprise the reader. Indeed, by replacing 〈−~〉(ϕ,ψ)
with ϕ−~ ψ we obtain (¬(ϕ−~ ψ)) ∗ ϕ⇒ ¬ψ which, unfolding the definition of −~, is equivalent
to the valid formula (ϕ −∗ ¬ψ) ∗ ϕ ⇒ ¬ψ (see (I−∗6.19.3)). On the other hand, the fact that
〈−~〉(ϕ,ψ) ∗ ϕ⇒ ψ is valid can be puzzling at first, as the formula (ϕ−~ ψ) ∗ ϕ⇒ ψ is not valid
(in general). In its essence, Lemma 6.20 shows that (ϕ−~ψ) ∗ϕ⇒ ψ is valid whenever ϕ and ψ
are restricted to core types.

Proof. Notice that the proof of lemma only requires semantical arguments. Since ϕ, ψ and
〈−~〉(ϕ,ψ) are conjunctions of literals built from core formulae, derivability of these two tautolo-
gies in HC(∗,−∗) follows from the completeness of HC(∗) (Theorem 6.16).

6.6. Syntactical elimination of the Separating Implication 321

Validity of 〈−~〉(ϕ,ψ) ∗ ϕ ⇒ ψ. If 〈−~〉(ϕ,ψ) ∗ ϕ is inconsistent, then 〈−~〉(ϕ,ψ) ∗ ϕ ⇒ ψ is
straightforwardly valid. Below, we assume that 〈−~〉(ϕ,ψ)∗ϕ is satisfiable. In particular, none of
the conditions depicted in Figure 6.9 that result in 〈−~〉(ϕ,ψ) having a literal x 6= x applies. Let
(s, h) |= 〈−~〉(ϕ,ψ) ∗ϕ. Therefore, there are two disjoint heaps h1 and h2 such that h = h1 +h2,
(s, h1) |= 〈−~〉(ϕ,ψ) and (s, h2) |= ϕ. We show that (s, h) satisfies each literal L in ψ. We
perform a simple case analysis on the shape of L. Notice that, below, we have x, y ∈ X and
β2 ∈ [0, α], as ψ is a core type in CoreTypes(X, α).
case: L = x ∼ y, where ∼∈ {=, 6=}. By definition of 〈−~〉(ϕ,ψ), x ∼ y ⊆LIT 〈−~〉(ϕ,ψ) and

so (s, h1) |= x ∼ y. We conclude that s(x) ∼ s(y), and thus (s, h) |= x ∼ y.

case: L = x ↪→ . If x ↪→ ⊆LIT ϕ, then (s, h2) |= x ↪→ , which implies s(x) ∈ dom(h) directly
from h2 ⊆ h. Thus, (s, h) |= x ↪→ . Otherwise, if x ↪→ 6⊆LIT ϕ then, since ϕ is a core
type in CoreTypes(X, α), we have ¬x ↪→ ⊆LIT ϕ. By definition of 〈−~〉(ϕ,ψ), we derive
that x ↪→ ⊆LIT 〈−~〉(ϕ,ψ). So, (s, h2) |= x ↪→ and thus, by h2 ⊆ h, s(x) ∈ dom(h). We
conclude that (s, h) |= x ↪→ .

case: L = ¬x ↪→ . In this case, by definition of 〈−~〉(ϕ,ψ), we have ¬x ↪→ ⊆LIT 〈−~〉(ϕ,ψ),
which implies (s, h1) |= ¬x ↪→ . Ad absurdum, suppose (s, h2) |= x ↪→ . Since ϕ is a
core type in CoreTypes(X, α), we conclude that x ↪→ ⊆LIT ϕ. However, by definition of
〈−~〉(ϕ,ψ), this implies x 6= x ⊆LIT 〈−~〉(ϕ,ψ), which contradicts the fact that 〈−~〉(ϕ,ψ) is
satisfiable. Thus, (s, h2) |= ¬x ↪→ , which implies s(x) 6∈ dom(h2). From h = h1 + h2 and
s(x) 6∈ dom(h1) we conclude that s(x) 6∈ dom(h). So, (s, h) |= ¬x ↪→ .

case: L = x ↪→ y. If ¬x ↪→ ⊆LIT ϕ, then x ↪→ y ⊆LIT〈−~〉(ϕ,ψ), by definition of 〈−~〉(ϕ,ψ).
So, h1(s(x)) = s(y) and, from h1 ⊆ h we conclude that (s, h) |= x ↪→ y. Otherwise, let us
assume that x ↪→ ⊆LIT ϕ. Ad absurdum, suppose ¬x ↪→ y ⊆LIT ϕ. Then, by definition of
〈−~〉(ϕ,ψ), we derive x 6= x ⊆LIT 〈−~〉(ϕ,ψ). However, this contradicts the satisfiability of
〈−~〉(ϕ,ψ). Therefore, ¬x ↪→ y 6⊆LIT ϕ. Since ϕ is a core type, this implies x ↪→ y ⊆LIT ϕ,
and therefore h2(s(x)) = s(y). From h2 ⊆ h we conclude that (s, h) |= x ↪→ y.

case: L = ¬x ↪→ y. By definition of 〈−~〉(x, y), we have ¬x ↪→ y ⊆LIT 〈−~〉(x, y), which implies
that if s(x) ∈ dom(h1) then h1(s(x)) 6= s(y). Ad absurdum, suppose x ↪→ y ⊆LIT ϕ. Then,
by definition of 〈−~〉(ϕ,ψ), we derive x 6= x ⊆LIT 〈−~〉(ϕ,ψ). However, this contradicts
the satisfiability of 〈−~〉(ϕ,ψ). Therefore x ↪→ y 6⊆LIT ϕ and, since ϕ is a core type,
¬x ↪→ y ⊆LIT ϕ. So, if s(x) ∈ dom(h2) then h2(s(x)) 6= s(y). By h = h1 + h2 and the fact
that h1(s(x)) 6= s(y), we conclude that (s, h) |= x ↪→ y.

case: L = size ≥ β2. If size ≥ α ⊆LIT ϕ, then card(h) ≥ card(h2) ≥ α, by h2 ⊆ h. As
β2 ∈ [0, α], this implies (s, h) |= size ≥ β2. Else, assume size ≥ α 6⊆LIT ϕ. In particular,
since ϕ is in CoreTypes(X, α), this implies that maxsize(ϕ) < α and

size ≥ maxsize(ϕ) ∧ ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ.

We have card(h2) = maxsize(ϕ). If maxsize(ϕ) ≥ β2, then from h2 ⊆ h we conclude that
(s, h) |= size ≥ β2. Otherwise, let us assume β2 > maxsize(ϕ). By definition of 〈−~〉(ϕ,ψ),
we conclude that size ≥ β2 + 1 .− (maxsize(ϕ) + 1) ⊆LIT 〈−~〉(ϕ,ψ). Together with
β2 > maxsize(ϕ), this implies card(h1) ≥ β2 −maxsize(ϕ). With card(h2) = maxsize(ϕ)
and h = h1 + h2, this implies (s, h) |= size ≥ β2.

case: L = ¬size ≥ β2. Ad absurdum, suppose that size ≥ α ⊆LIT ϕ. Then, by definition
of 〈−~〉(ϕ,ψ) we have ¬size ≥ β2

.− α ⊆LIT 〈−~〉(ϕ,ψ). However, since β2 ∈ [0, α], this

322 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

means that ¬size ≥ 0 ⊆LIT 〈−~〉(ϕ,ψ), which contradicts the satisfiability of 〈−~〉(ϕ,ψ).
Therefore, size ≥ α 6⊆LIT ϕ. As ϕ is in CoreTypes(X, α), we derive maxsize(ϕ) < α and

size ≥ maxsize(ϕ) ∧ ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ.

We conclude that card(h2) ≤ maxsize(ϕ). From size ≥ maxsize(ϕ) ⊆LIT ϕ and by
definition of 〈−~〉(ϕ,ψ), we conclude that

¬size ≥ β2
.−maxsize(ϕ) ⊆LIT 〈−~〉(ϕ,ψ).

If β2 ≤ maxsize(ϕ), then ¬size ≥ 0 ⊆LIT 〈−~〉(ϕ,ψ), which contradicts the satisfiability
of 〈−~〉(ϕ,ψ). Therefore, β2 > maxsize(ϕ). So, card(h1) < β2 − maxsize(ϕ). Together
with card(h2) ≤ maxsize(ϕ) and h = h1 + h, we conclude that card(h) < β2, and thus
(s, h) |= ¬size ≥ β2.

Validity of (¬〈−~〉(ϕ,ψ)) ∗ ϕ⇒ ¬ψ. Let us assume (s, h) |= (¬〈−~〉(ϕ,ψ)) ∗ ϕ. Consequently,
there is a literal L of 〈−~〉(ϕ,ψ) such that (s, h) |= (¬L) ∗ ϕ holds. We show that (s, h) |= ¬ψ.
Let h1 and h2 be two disjoint heaps such that h = h1 + h2, (s, h1) |= ¬L and (s, h2) |= ϕ. We
perform a case analysis on the shape of L. As in the previous part of the proof, recall that
x, y ∈ X and β1, β2 ∈ [0, α].
case: L = x 6= x. As ϕ and ψ are satisfiable, by definition of 〈−~〉(ϕ,ψ), the fact that x 6= x ⊆LIT

〈−~〉(ϕ,ψ) implies that one of the following three cases holds:

1. x ↪→ ∧¬x ↪→ y ⊆LIT ϕ and x ↪→ y ⊆LIT ψ.
From x ↪→ ∧¬x ↪→ y ⊆LIT ϕ and h2 ⊆ h, we have s(x) ∈ dom(h) and h(s(x)) 6= s(y).
Thus (s, h) 6|= x ↪→ y, and so, by x ↪→ y ⊆LIT ψ, (s, h) |= ¬ψ.

2. x ↪→ y ⊆LIT ϕ and ¬x ↪→ y ⊆LIT ψ.
From x ↪→ y ⊆LIT ϕ and h2 ⊆ h, h(s(x)) = s(y). Thus (s, h) |= x ↪→ y and so, by
¬x ↪→ y ⊆LIT ψ, (s, h) |= ¬ψ.

3. x ↪→ ⊆LIT ϕ and ¬x ↪→ ⊆LIT ψ.
From x ↪→ ⊆LIT ϕ and h2 ⊆ h, s(x) ∈ dom(h). Thus (s, h) |= x ↪→ and so, by
¬x ↪→ ⊆LIT ψ, (s, h) |= ¬ψ.

case: L = x ∼ y, where ∼∈ {=, 6=}. In this case, since (s, h1) |= ¬L, we have (s, h) |= ¬L.
Now, it cannot be that L ⊆LIT ϕ, as it would imply (s, h) |= L, which is contradictory.
Therefore, by definition of 〈−~〉(ϕ,ψ), we must have L ⊆LIT ψ. This implies (s, h) |= ¬ψ.

case: L = x ↪→ . By definition of 〈−~〉(ϕ,ψ), both ¬x ↪→ ⊆LIT ϕ and x ↪→ ⊆LIT ψ hold.
From (s, h1) |= ¬x ↪→ , we derive s(x) 6∈ dom(h1). By ¬x ↪→ ⊆LIT ϕ, s(x) 6∈ dom(h2).
By h = h1 + h2, s(x) 6∈ dom(h). As x ↪→ ⊆LIT ψ, (s, h) |= ¬ψ.

case: L = ¬x ↪→ . As (s, h) |= ¬L, we have s(x) ∈ dom(h1). According to the definition of
〈−~〉(ϕ,ψ), either x ↪→ ⊆LIT ϕ or ¬x ↪→ ⊆LIT ψ. The first case cannot hold, as it implies
s(x) ∈ dom(h2) which contradicts the fact that h1 and h2 are disjoint. In the second case,
from s(x) ∈ dom(h1) and h1 ⊆ h, we have (s, h) |= x ↪→ . So, (s, h) |= ¬ψ.

case: L = x ↪→ y. Then by definition of 〈−~〉(ϕ,ψ), ¬x ↪→ ⊆LIT ϕ and x ↪→ y ⊆LIT ψ. From
(s, h1) |= ¬L, if s(x) ∈ dom(h1) then h1(s(x)) 6= s(y). As ¬x ↪→ ⊆LIT ϕ, s(x) 6∈ dom(h2)
and therefore, by h = h1 + h2, h(s(x)) 6= s(y). By x ↪→ y ⊆LIT ψ, we derive (s, h) |= ¬ψ.

6.6. Syntactical elimination of the Separating Implication 323

case: L = ¬x ↪→ y. Then, by definition of 〈−~〉(ϕ,ψ), ¬x ↪→ y ⊆LIT ψ. From (s, h1) |= ¬L
and h1 ⊆ h, we derive h(s(x)) = s(y). From ¬x ↪→ y ⊆LIT ψ, we derive (s, h) |= ¬ψ.

case: L = size ≥ β2 + 1 .− β1, where size ≥ β2 ⊆LIT ψ and ¬size ≥ β1 ⊆LIT ϕ. Since we
have (s, h1) |= ¬L and (s, h2) |= ϕ, we derive (respectively) card(h1) ≤ β2

.− β1 and
card(h2) < β1. From h = h1 +h2, we conclude that card(h) < β2. From size ≥ β2 ⊆LIT ψ,
we derive (s, h) |= ¬ψ.

case: L = ¬size ≥ β2
.− β1, where ¬size ≥ β2 ⊆LIT ψ and size ≥ β1 ⊆LIT ϕ. From the

fact that (s, h1) |= ¬L and (s, h2) |= ϕ, we derive card(h1) ≥ β2
.− β1 and card(h2) ≥ β1.

So, h = h1 + h2 implies card(h) ≥ β2. By ¬size ≥ β2 ⊆LIT ψ, we derive (s, h) |= ¬ψ.

Before providing the proof for Lemma 6.18, we establish the existence of further derivations.

Lemma 6.21. Let X ⊆fin VAR and let ϕsize be a satisfiable conjunction of literals of the form
size ≥ β1 or ¬size ≥ β2. The following axiom schema is admissible in HC(∗,−∗):

(I−∗6.21.1) (ϕsize ∧
∧

x∈X ¬x ↪→)−~>.

Proof. Notice that, since ϕsize is satisfiable, for all β1, β2 ∈ N such that size ≥ β1 ∧ ¬size ≥ β2
⊆LIT ϕ, we must have β1 < β2. Moreover, thanks to (IC

1) and (I−∗6.19.4), without loss of generality,
we can restrict ourselves to ϕsize of the form:

(1) ϕsize = size ≥ β for some β ≥ 0,
(2) ϕsize = ¬(size ≥ β) for some β > 0,
(3) ϕsize = size ≥ β1 ∧ ¬(size ≥ β2) for some β2 > β1.

Indeed, given an arbitrary ϕsize, every positive literal size ≥ β such that β < maxsize(ϕsize)
can be derived starting from size ≥ maxsize(ϕsize), by repeated applications of (IC

1). Similarly,
let β be the smallest natural number such that ¬size ≥ β ⊆LIT ϕ, if any. Every literal
¬size ≥ β′ ⊆LIT ϕ with β′ ≥ β can be derived from ¬size ≥ β, by repeated applications of the
axiom (IC

1) (taken in contrapositive form i.e. ¬size ≥ β ⇒ ¬size ≥ β + 1, which is derivable
in HC by propositional reasoning).

We write U(X) to denote the conjunction
∧

x∈X ¬x ↪→ . Below, given β ∈ N, we aim at
deriving the formula (size = β ∧ U(X))−~>. Notice that this implies that (I−∗6.21.1) is derivable
in its instances (1)–(3):
case (1). Let ϕsize = size ≥ β.

1 size = β ∧ U(X)−~> Hypothesis

2 size = β ∧ U(X)⇒ size ≥ β ∧ U(X) PC, def. of size = β

3 (size = β ∧ U(X)−~>)⇒ (size ≥ β ∧ U(X)−~>) (I−∗6.19.4), 2

4 size ≥ β ∧ U(X)−~> Modus Ponens, 1, 3

case (2). Let ϕsize = ¬size ≥ β. Since ϕsize is satisfiable, we have β ≥ 1.

1 size = β−1 ∧ U(X)−~> Hypothesis

2 size = β−1 ∧ U(X)⇒ ¬size ≥ β ∧ U(X) PC, def. of size = β−1

3 (size = β−1 ∧ U(X)−~>)⇒ (¬size ≥ β ∧ U(X)−~>) (I−∗6.19.4), 2

324 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

4 (¬size ≥ β ∧ U(X))−~> Modus Ponens, 1, 3

case (3). Let ϕsize = size ≥ β1 ∧ ¬size ≥ β2. Since ϕsize is satisfiable, β2 > β1.

1 size = β2−1 ∧ U(X)−~> Hypothesis

2 size = β2−1⇒ size ≥ β1 repeated (IC
1), as β2 > β1

3 size = β2−1⇒ ¬size ≥ β2 PC, def. of size = β−1

4 size = β2−1 ∧ U(X)⇒ size ≥ β1 ∧ ¬size ≥ β2 ∧ U(X) PC, 2, 3

5 (size = β2−1 ∧ U(X)−~>)⇒

(size ≥ β1 ∧ ¬size ≥ β2 ∧ U(X)−~>) (I−∗6.19.4), 4

6 size ≥ β1 ∧ ¬size ≥ β2 ∧ U(X)−~> Modus Ponens, 1, 5

To conclude the proof, let us show that size = β ∧ U(X) −~ > is derivable in HC(∗,−∗). The
proof is by induction on β, with two base cases, for β = 0 and β = 1.
base case: β = 0. In this case, size = 0 = size ≥ 0 ∧ ¬size ≥ 1. We have,

1 (emp−∗ ⊥)⇒ emp ∗ (emp−∗ ⊥) (∗id)

2 emp ∗ (emp−∗ ⊥)⇒⊥ (I−∗6.19.3)

3 (emp−∗ ⊥)⇒⊥ (⇒Tr), 1, 2

4 emp−~> PC, 3, def. of −~

5 x ↪→ ⇒ size ≥ 1 (IC
2)

6 emp⇒ ¬x ↪→ PC, 5, as size ≥ 1 = ¬emp

7 emp⇒ U(X) PC, 6 used for all x ∈ X

8 emp⇒ size ≥ 0 ∧ ¬(size ≥ 1) PC, def. of size ≥ β

9 emp⇒ size ≥ 0 ∧ ¬(size ≥ 1) ∧ U(X) PC, 7, 8

10 (emp−~>)⇒ (size ≥ 0 ∧ ¬(size ≥ 1) ∧ U(X)−~>) (I−∗6.19.4), 9

11 size ≥ 0 ∧ ¬size ≥ 1 ∧ U(X)−~> Modus Ponens, 4, 10

base case: β = 1 This case corresponds exactly to the axiom (−∗∞).
induction step: β ≥ 2 First of all, we notice that the following formula is valid:

(size = 1 ∧ U(X)) ∗ (size = β−1 ∧ U(X))⇒ size = β ∧ U(X). (†)
Indeed, let (s, h) be a memory state satisfying the antecedent of the implication above. So,
there are disjoint heaps h1 and h2 such that h = h1+h2, card(h1) = 1, card(h2) = β−1, and
for every x ∈ X, s(x) 6∈ dom(h1) and s(x) 6∈ dom(h2). By h = h1 +h2, card(h) = card(h1) +
card(h2) = β, and for every x ∈ X, s(x) 6∈ dom(h). Thus, (s, h) |= size = β ∧ U(X).
As (†) can be seen as a formula in SL(∗, x ↪→), by Theorem 6.16 it is derivable in HC(∗)
and thus in HC(∗,−∗). Let us derive (size = β ∧ U(X))−~>. Let us consider as induction

6.6. Syntactical elimination of the Separating Implication 325

hypothesis the derivability of (size = β−1 ∧ U(X))−~>. Therefore,

1 size = β−1 ∧ U(X)−~> Induction Hypothesis

2 (size = 1 ∧ U(X)) ∗ (size = β−1 ∧ U(X))⇒ size = β ∧ U(X) (†)s, see above

3 size = 1 ∧ U(X)−~> (−∗∞)

4 > ⇒ (size = β−1 ∧ U(X)−~>
)

PC, 1

5 (size = 1 ∧ U(X)−~>)⇒(
size = 1 ∧ U(X)−~ (size = β−1 ∧ U(X)−~>)

)
(I−∗6.19.5), 4

6
(
size = 1 ∧ U(X)−~ (size = β−1 ∧ U(X)−~>)

)
⇒(

(size = 1 ∧ U(X)) ∗ (size = β−1 ∧ U(X))−~>
)

(I−∗6.19.8)

7
(
(size = 1 ∧ U(X)) ∗ (size = β−1 ∧ U(X))−~>

)
⇒

(size = β ∧ U(X)−~>) (I−∗6.19.4), 2

8 (size = 1 ∧ U(X)−~>)⇒ (size = β ∧ U(X)−~>) (⇒Tr), 5, 6, 7

9 size = β ∧ U(X)−~> Modus Ponens, 3, 8

Proof of Lemma 6.18. As in the statement of the lemma, let us consider X ⊆fin VAR and α ≥
card(X), and two core types ϕ and ψ in CoreTypes(X, α). We want to show that there is a
conjunction χ ∈ Conj(Core(X, α)) such that `HC(∗,−∗) (ϕ−~ ψ)⇔ χ.

First of all, if ϕ or ψ is unsatisfiable, then `HC(∗,−∗) (ϕ−~ψ)⇒ ⊥ by using Lemma 6.8 and the
admissible axioms (I−∗6.19.4) and (I−∗6.19.5) from Lemma 6.19. Therefore, in this case, it is enough to
take χ equal to x 6= x to complete the proof. Otherwise, let us assume that ϕ and ψ are satisfiable.
We consider χ def= 〈−~〉(ϕ,ψ) (see Figure 6.9), and show that `HC(∗,−∗) (ϕ−~ ψ)⇔ 〈−~〉(ϕ,ψ). We
derive each implication separately.
(⇒): Given Lemma 6.20, the proof of `HC(∗,−∗) ϕ−~ ψ ⇒ 〈−~〉(ϕ,ψ) is straightforward:

1 ¬〈−~〉(ϕ,ψ) ∗ ϕ⇒ ¬ψ Lemma 6.20, Theorem 6.16

2 ¬〈−~〉(ϕ,ψ)⇒ (ϕ−∗ ¬ψ) (−∗2), 1

3 ¬(ϕ−∗ ¬ψ)⇒ 〈−~〉(ϕ,ψ) PC, 2

4 (ϕ−~ ψ)⇒ 〈−~〉(ϕ,ψ) Def. of −~, 3

(⇐): We show that `HC(∗,−∗) 〈−~〉(ϕ,ψ) ⇒ (ϕ−~ ψ). First, notice that since 〈−~〉(ϕ,ψ) ∗ ϕ ⇒ ψ

is valid (Lemma 6.20), it is derivable in HC(∗) (Theorem 6.16), and therefore, by the rule (−∗2),
`HC(∗,−∗) 〈−~〉(ϕ,ψ) ⇒ (ϕ−∗ ψ). It follows that it is enough to show that 〈−~〉(ϕ,ψ) ⇒ (ϕ−~>)
is derivable in HC(∗,−∗). Indeed, from 〈−~〉(ϕ,ψ)⇒ (ϕ−~>) and 〈−~〉(ϕ,ψ)⇒ (ϕ−∗ ψ), we get,
by (I−∗6.19.9), that 〈−~〉(ϕ,ψ)⇒ (ϕ−~ ψ) is derivable too.

Thus, let us prove that 〈−~〉(ϕ,ψ) ⇒ (ϕ −~ >) is derivable. If 〈−~〉(ϕ,ψ) is unsatisfiable,
then from the completeness of HC with respect to Boolean combinations of core formulae
(Theorem 6.9), we conclude that `HC 〈−~〉(ϕ,ψ) ⇒⊥. Since HC(∗,−∗) extends HC, we have
`HC(∗,−∗) 〈−~〉(ϕ,ψ) ⇒⊥. By propositional reasoning, `HC(∗,−∗) 〈−~〉(ϕ,ψ) ⇒ (ϕ −~ >). Other-

326 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

wise, let us assume that 〈−~〉(ϕ,ψ) is satisfiable. Directly from the definition of 〈−~〉(ϕ,ψ), the
following simple facts hold.

1. ϕ, ψ and 〈−~〉(ϕ,ψ) have exactly the same equalities and inequalities.
2. ¬size ≥ 0 is not part of 〈−~〉(ϕ,ψ), and therefore, following the definition of 〈−~〉(ϕ,ψ),
there are no size ≥ β1 ⊆LIT ϕ and ¬size ≥ β2 ⊆LIT ψ with β1 ≥ β2.

3. x 6= x does not belong to 〈−~〉(ϕ,ψ). In particular, by definition of 〈−~〉(ϕ,ψ), none of
the following conditions apply:
– there is x ∈ X such that x ↪→ ⊆LIT ϕ and ¬x ↪→ ⊆LIT ψ,
– there are x, y ∈ X such that x ↪→ y ⊆LIT ϕ and ¬x ↪→ y ⊆LIT ψ,
– there are x, y ∈ X such that x ↪→ ∧¬x ↪→ y ⊆LIT ϕ and x ↪→ y ⊆LIT ψ.

From (1), we know that 〈−~〉(ϕ,ψ) and ϕ satisfy the same (in)equalities. Similarly to the proof
of Lemma 6.14, let x1, . . . xn be a maximal enumeration of representatives of the equivalence
classes (one per equivalence class) such that xi ↪→ occurs in ϕ. As it is maximal, for every x ↪→
in LIT(ϕ) there is i ∈ [1, n] such that xi is syntactically equal to x. Moreover, by definition of
〈−~〉(ϕ,ψ), for every i ∈ [1, n], ¬xi ↪→ ⊆LIT 〈−~〉(ϕ,ψ). We show `HC(∗,−∗) 〈−~〉(ϕ,ψ)⇒ (ϕ−~>)
by induction on the number j of variables x ∈ X for which x ↪→ ⊆LIT ϕ holds.
base case: j = 0. In the base case, no formula x ↪→ occurs positively in ϕ. Since ϕ is a core

type, this implies that for every x ∈ X, ¬x ↪→ ⊆LIT ϕ. Moreover, since ϕ is satisfiable,
for every x, y ∈ X, ¬x ↪→ y ⊆LIT ϕ (see (↪→weak)). Therefore, the core type ϕ is syntactically
equivalent (up to associativity and commutativity of conjunction) to the formula

ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ(in)eq,

where
• ϕsize

def=
∧(
{size ≥ β ⊆LIT ϕ} ∪ {¬size ≥ β ⊆LIT ϕ}

)
,

• ϕ¬alloc
def=
∧

x∈X ¬x ↪→ ,
• ϕ6↪→ def=

∧
x,y∈X ¬x ↪→ y,

• ϕ(in)eq
def=
∧
{x ∼ y ⊆LIT ϕ | ∼∈ {=, 6=}}.

Since ϕ is satisfiable, so is ϕsize. We show that `HC(∗,−∗) ϕsize ∧ ϕ¬alloc ∧ ϕ 6↪→ −~>:

1 ϕsize ∧ ϕ¬alloc −~> (I−∗6.21.1)

2 ¬x ↪→ ⇒ ¬x ↪→ y (↪→
weak), PC

3 ϕ¬alloc ⇒ ϕ6↪→ PC, repeated 2

4 ϕsize ∧ ϕ¬alloc ⇒ ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ PC, 3

5 (ϕsize ∧ ϕ¬alloc −~>)⇒ (ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ −~>) (I−∗6.19.4), 4

6 ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ −~> Modus Ponens, 1, 5

Now, let us treat the formula ϕ(in)eq. From the definition of 〈−~〉(ϕ,ψ), we have ϕ(in)eq ⊆LIT
〈−~〉(ϕ,ψ), and so by propositional reasoning, `HC(∗,−∗) 〈−~〉(ϕ,ψ) ⇒ ϕ(in)eq. This allows
us to conclude that

`HC(∗,−∗) 〈−~〉(ϕ,ψ)⇒
(
ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ(in)eq −~>

)
, (†)

6.6. Syntactical elimination of the Separating Implication 327

by induction on the number of literals x ∼ y appearing in ϕ(in)eq, and by relying on the
two theorem (I−∗6.19.10). In the base case, ϕ(in)eq = >, and so

7 ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ⇒ ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ(in)eq PC

8 (ϕsize ∧ ϕ¬alloc ∧ ϕ 6↪→ −~>)⇒ (ϕsize ∧ ϕ¬alloc ∧ ϕ 6↪→ ∧ ϕ(in)eq −~>) (I−∗6.19.4), 7

9 ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ(in)eq −~> Modus Ponens, 6, 8

10 〈−~〉(ϕ,ψ)⇒ (ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ(in)eq −~>) PC, 9

In the induction step, let ϕ(in)eq = ϕ′(in)eq ∧ x ∼ y, where x ∼ y 6⊆LIT ϕ
′
(in)eq. We have,

1 〈−~〉(ϕ,ψ)⇒
(
ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ′(in)eq −~>

)
Induction Hypothesis

2 〈−~〉(ϕ,ψ)⇒ x ∼ y PC, as ϕ(in)eq ⊆LIT 〈−~〉(ϕ,ψ)

3 x ∼ y ∧ (ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ′(in)eq −~>)⇒

(ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ′(in)eq ∧ x ∼ y−~>) (I−∗6.19.10)

4 〈−~〉(ϕ,ψ)⇒ (ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ′(in)eq ∧ x ∼ y−~>) PC, 1, 2, 3

5 〈−~〉(ϕ,ψ)⇒ (ϕsize ∧ ϕ¬alloc ∧ ϕ6↪→ ∧ ϕ(in)eq −~>) Def. of ϕ′(in)eq, 4

Since ϕsize∧ϕ¬alloc∧ϕ6↪→∧ϕ(in)eq is equivalent to ϕ, from (†) and by (I−∗6.19.4), we conclude
that `HC(∗,−∗) 〈−~〉(ϕ,ψ)⇒ (ϕ−~>).

induction step: j ≥ 1. In this case, let i ∈ [1, n] such that xi ↪→ ⊆LIT ϕ and thus, by defini-
tion of 〈−~〉(ϕ,ψ), ¬xi ↪→ ⊆LIT 〈−~〉(ϕ,ψ). We define the formula:

ATOM(xi) def=

xi ↪→ y ∧ size = 1 if xi ↪→ y ⊆LIT ϕ, for some y ∈ X

xi ↪→ ∧ size = 1 ∧
∧

y∈X ¬xi ↪→ y otherwise

Notice that, if there is y ∈ X such that xi ↪→ y ⊆LIT ϕ, then the axiom schema (−∗7→) can
be instantiated to ¬xi ↪→ ⇒ (ATOM(xi) −~ >). Otherwise (for all y ∈ X, xi ↪→ y 6⊆LIT ϕ)
this formula is an instantiation of the axiom schema (−∗alloc). This allows us to show the
following theorem:

〈−~〉(ϕ,ψ)⇒ (ATOM(xi)−~ 〈−~〉(ϕ,ψ) ∗ ATOM(xi)) (‡)

1 ¬xi ↪→ ⇒ (ATOM(xi)−~>) (−∗7→)/(−∗alloc)

2 〈−~〉(ϕ,ψ)⇒ ¬xi ↪→ Def. of 〈−~〉(ϕ,ψ), PC

3 〈−~〉(ϕ,ψ)⇒ (ATOM(xi)−~>) (⇒Tr), 1, 2

4 〈−~〉(ϕ,ψ) ∗ ATOM(xi)⇒ 〈−~〉(ϕ,ψ) ∗ ATOM(xi) PC

5 〈−~〉(ϕ,ψ)⇒ (ATOM(xi)−∗ 〈−~〉(ϕ,ψ) ∗ ATOM(xi)) (−∗2), 4

6 〈−~〉(ϕ,ψ)⇒ (ATOM(xi)−~ 〈−~〉(ϕ,ψ) ∗ ATOM(xi)) (I−∗6.19.9), 3, 5, PC

From the hypothesis card(X) ≤ α, together with xi ↪→ ⊆LIT ϕ and the fact that ϕ is

328 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

satisfiable, we have maxsize(ϕ) ≥ 1 (see (IC
2), instantiated with X = {xi}). In order

to show that `HC∗,−∗ 〈−~〉(ϕ,ψ) ⇒ (ϕ −~ >), we split the proof depending on whether
maxsize(ϕ) < α holds.
case: maxsize(ϕ) < α. Since ϕ is a satisfiable core type in CoreTypes(X, α), by definition
of maxsize(.), we have size ≥ maxsize(ϕ) ∧ ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ. Below, we
consider the formula ϕ′ obtained from ϕ by:
• replacing size ≥ maxsize(ϕ) ⊆LIT ϕ with ¬size ≥ maxsize(ϕ),
• for every x ∈ X such that x = xi ⊆LIT ϕ, replacing every literal x ↪→ ⊆LIT ϕ with
¬x ↪→ , and every literal x ↪→ y ⊆LIT ϕ with ¬x ↪→ y, where y ∈ X.

Explicitly,

ϕ′ def=
∧
{x ∼ y ⊆LIT ϕ |∼∈ {=, 6=}} ∧

∧
{x ↪→ ⊆LIT ϕ | x 6= xi ⊆LIT ϕ}∧∧

{¬x ↪→ ⊆LIT ϕ} ∧
∧
{¬x ↪→ | x = xi ⊆LIT ϕ} ∧

∧
{x ↪→ y ⊆LIT ϕ | x 6= xi ⊆LIT ϕ}∧∧

{¬x ↪→ y ⊆LIT ϕ} ∧
∧
{¬x ↪→ y | x = xi ∧ x ↪→ y ⊆LIT ϕ} ∧ ¬size ≥ maxsize(ϕ)∧∧

{size ≥ β ⊆LIT ϕ | β < maxsize(ϕ)} ∧
∧
{¬size ≥ β ⊆LIT ϕ}.

The formula ϕ′ enjoys the two following properties:
A. ϕ′ is a satisfiable core type in CoreTypes(X, α).
B. ATOM(xi) ∗ ϕ′ ⇒ ϕ is valid.

Proof of (A). Since ϕ′ is obtained from ϕ simply by changing the polarity of some of the
literals in LIT(ϕ), clearly ϕ′ is in CoreTypes(X, α). To show that ϕ′ is satisfiable, we
rely on the fact that ϕ is satisfiable. Let (s, h) be a memory state satisfying ϕ. Since
xi ↪→ ⊆LIT ϕ, we conclude that s(xi) ∈ dom(h). Let us consider the disjoint heaps
h1 and h2 such that h = h1 + h2 and dom(h1) = {s(xi)}. We show that (s, h2) |= ϕ′

by considering every L ∈ LIT(ϕ′) and showing that (s, h2) |= L.
case: L = x ∼ y, where ∼∈ {=, 6=}. By definition of ϕ′, (s, h) |= L and therefore
s(x) ∼ s(y). Thus, (s, h2) |= L.

case: L = ¬x ↪→ . If x = xi ⊆LIT ϕ then s(x) ∈ dom(h1), and therefore, by h1⊥h2,
s(x) 6∈ dom(h2). So, (s, h2) |= ¬x ↪→ . Otherwise (x 6= xi ⊆LIT ϕ), by definition of
ϕ′, we have ¬x ↪→ ⊆LIT ϕ. So s(x) 6∈ dom(h) and, from h2 ⊆ h, we conclude that
(s, h2) |= ¬x ↪→ .

case: L = ¬x ↪→ y. Similar to the previous case. Briefly, if x = xi ⊆LIT ϕ then, by
definition of ATOM(xi), (s, h2) 6|= x ↪→ , which implies (s, h2) |= ¬x ↪→ y. Other-
wise, by definition of ϕ′, ¬x ↪→ y ⊆LIT ϕ and thus (s, h) |= ¬x ↪→ y. From h2 ⊆ h,
we conclude that (s, h2) |= ¬x ↪→ y.

case: L = x ↪→ . By definition of ϕ′, x ↪→ ∧ x 6= xi ⊆LIT ϕ. Therefore s(x) ∈
dom(h) and, by definition of ATOM(xi), s(x) 6∈ dom(h1). Since h = h1 + h2, we
conclude that (s, h2) |= x ↪→ .

case: L = x ↪→ y. Similar to the previous case. By definition of ϕ′, we have x ↪→ y∧
x 6= xi ⊆LIT ϕ. Thus, h(s(x)) = s(y). By definition of ATOM(xi), s(x) ∈ dom(h2)
and thus h2(s(x)) = s(y). So, (s, h2) |= x ↪→ y.

case: L = size ≥ β. By definition of ϕ′, β < maxsize(ϕ). Since (s, h) |= ϕ, we have
card(h) ≥ maxsize(ϕ). By definition of ATOM(xi) and from h = h1 + h2, card(h2) =
card(h)−1 ≥ maxsize(ϕ)−1 ≥ β. So, (s, h2) |= size ≥ β.

6.6. Syntactical elimination of the Separating Implication 329

case: L = ¬size ≥ β. By definition of ϕ′, ¬size ≥ β ⊆LIT ϕ or β = maxsize(ϕ).
In the former case, since ϕ is satisfiable, we know that β > maxsize(ϕ). In both
cases, β ≥ maxsize(ϕ). Moreover, as (s, h) |= ϕ and ¬size ≥ maxsize(ϕ)+1 ⊆LIT ϕ,
we have card(h) ≤ maxsize(ϕ). Since card(h1) = 1, by h = h1 +h2 we conclude that
card(h2) < maxsize(ϕ) ≤ β. Therefore, (s, h2) |= ¬size ≥ β.

Proof of (B). Let (s, h) |= ATOM(xi) ∗ ϕ′. There are h1 and h2 such that h = h1 + h2,
(s, h1) |= ATOM(xi) and (s, h2) |= ϕ′. By definition of ATOM(xi), dom(h1) = {s(xi)}.
To prove (B), we show that (s, h) |= L, for every literal L ∈ LIT(ϕ).
case: L = x ∼ y, where ∼∈ {=, 6=}. By definition of ϕ′, (s, h2) |= L and therefore
s(x) ∼ s(y). Thus, (s, h) |= L.

case: L = ¬x ↪→ . By definition of ATOM(xi), xi ↪→ ⊆LIT ϕ and therefore s(x) 6∈
dom(h1). By definition of ϕ′, for every y ∈ X, y ↪→ ⊆LIT ϕ′ implies y ↪→ ⊆LIT ϕ.
Therefore, s(x) 6∈ dom(h2). We have s(x) 6∈ dom(h), and so (s, h) |= ¬x ↪→ .

case: L = ¬x ↪→ y. Similar to the previous case. Briefly, by definition of ATOM(xi),
(s, h1) |= ¬x ↪→ y. By definition of ϕ′, (s, h2) |= ¬x ↪→ y. So, (s, h) |= ¬x ↪→ y.

case: L = x ↪→ . If x = xi ⊆LIT ϕ, then s(x) = s(xi) (first case of the proof),
and by definition of ATOM(xi), s(x) ∈ dom(h1). As h1 ⊆ h, we conclude that
(s, h) |= x ↪→ . Otherwise, if x 6= xi ⊆LIT ϕ, then by definition of ϕ′ we have
x ↪→ ⊆LIT ϕ

′. This implies s(x) ∈ dom(h2). As h2 ⊆ h, we derive (s, h) |= x ↪→ .
case: L = x ↪→ y. Similar to the previous case. Briefly, if x = xi ⊆LIT ϕ then,
by definition of ATOM(xi), (s, h1) |= x ↪→ y and so (s, h) |= x ↪→ y. Otherwise
(x 6= xi ⊆LIT ϕ), x ↪→ y ⊆LIT ϕ

′ and therefore (s, h2) |= x ↪→ y. So, (s, h) |= x ↪→ y.
case: L = size ≥ β. If β < maxsize(ϕ), then directly by definition of ϕ′, we have
(s, h2) |= size ≥ β. From h2 ⊆ h, we conclude that (s, h) |= size ≥ β. Oth-
erwise, β = maxsize(ϕ). Recall that maxsize(ϕ) ≥ 1 and so, by definition of ϕ′,
size ≥ maxsize(ϕ)− 1 ⊆LIT ϕ′. Thus, card(h1) ≥ maxsize(ϕ) − 1. By defini-
tion of ATOM(xi) we have card(h1) = 1. As h = h1 + h2, we conclude that
(s, h) |= size ≥ maxsize(ϕ).

case: L = ¬size ≥ β. As ϕ is satisfiable, β > maxsize(ϕ). By definition of ϕ′,
¬size ≥ maxsize(ϕ) ⊆LIT ϕ′, and so card(h2) < maxsize(ϕ). Since we have
card(h1) = 1, card(h) ≤ maxsize(ϕ) < β. So, (s, h) |= ¬size ≥ β.

The property (A) allows us to consider the formula 〈−~〉(ϕ′, ψ), and show that

C. 〈−~〉(ϕ,ψ) ∗ ATOM(xi)⇒ 〈−~〉(ϕ′, ψ) is valid.
Proof of (C). Figure 6.10 recalls the definition of 〈−~〉(ϕ′, ψ). First of all, notice that

it cannot be that there is x ∈ X such that x 6= x ⊆LIT 〈−~〉(ϕ′, ψ). Indeed, ad
absurdum, suppose the opposite. By definition of 〈−~〉(ϕ′, ψ), this implies that (1)
x ↪→ ∧ ¬x ↪→ y ⊆LIT ϕ′ and x ↪→ y ⊆LIT ψ, (2) x ↪→ y ⊆LIT ϕ′ and ¬x ↪→ y ⊆LIT ψ,
or (3) x ↪→ ⊆LIT ϕ′ and ¬x ↪→ ⊆LIT ψ. By definition of ϕ′, this implies that
(1) x ↪→ ∧ ¬x ↪→ y ⊆LIT ϕ, (2) x ↪→ y ⊆LIT ϕ or (3) x ↪→ ⊆LIT ϕ. However,
by definition of 〈−~〉(ϕ,ψ), this implies that x 6= x ⊆LIT 〈−~〉(ϕ,ψ), in contradiction
with the satisfiability of 〈−~〉(ϕ,ψ). Therefore, below we assume that for all x ∈ X,
x 6= x 6⊆LIT 〈−~〉(ϕ′, ψ).
Let (s, h) |= 〈−~〉(ϕ,ψ)∗ATOM(xi). Thus, (s, h1) |= 〈−~〉(ϕ,ψ) and (s, h2) |= ATOM(xi)
for some h1 and h2 such that h = h1 + h2. By definition of ATOM(xi), dom(h2) =
{s(xi)}. To prove (C), we show that (s, h) |= L, for every literal L ∈ LIT(〈−~〉(ϕ′, ψ)).

330 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

∧{
x ∼ y ⊆LIT {ϕ′ | ψ}

∣∣∼∈ {=, 6=}} ∧
∧{

x ↪→
∣∣∣∣¬x ↪→ ⊆LIT ϕ

′

x ↪→ ⊆LIT ψ

}
∧

∧
{¬x ↪→ ⊆LIT ψ} ∧

∧{
¬x ↪→

∣∣ x ↪→ ⊆LIT ϕ
′}

∧
∧
{¬x↪→y ⊆LIT ψ} ∧

∧{
x ↪→ y

∣∣∣∣¬x ↪→ ⊆LIT ϕ
′

x ↪→ y ⊆LIT ψ

}
∧

∧{
x 6= x

∣∣∣∣ x ↪→ ∧¬x ↪→ y ⊆LIT ϕ
′

x ↪→ y ⊆LIT ψ

}
∧
∧{

size ≥ β2+1 .−β1

∣∣∣∣¬size ≥ β1 ⊆LIT ϕ
′

size ≥ β2 ⊆LIT ψ

}
∧

∧{
x 6= x

∣∣∣∣ x ↪→ y ⊆LIT ϕ
′

¬x ↪→ y ⊆LIT ψ

}
∧
∧{
¬size ≥ β2

.−β1

∣∣∣∣ size ≥ β1 ⊆LIT ϕ
′

¬size ≥ β2 ⊆LIT ψ

}
∧

∧{
x 6= x

∣∣∣∣ x ↪→ ⊆LIT ϕ
′

¬x ↪→ ⊆LIT ψ

}
Figure 6.10: The formula 〈−~〉(ϕ′, ψ).

case: L = x ∼ y, where ∼∈ {=, 6=}. By definition of 〈−~〉(ϕ′, ψ), L ⊆LIT {ϕ′ | ψ}
and so, by definition of ϕ′, L ⊆LIT {ϕ | ψ}. By definition of 〈−~〉(ϕ,ψ), L ⊆LIT
〈−~〉(ϕ,ψ). From (s, h1) |= 〈−~〉(ϕ,ψ) we derive s(x) ∼ s(y). So, (s, h) |= L.

case: L = ¬x ↪→ . By definition of 〈−~〉(ϕ′, ψ), either ¬x ↪→ ⊆LIT ψ or x ↪→ ⊆LIT
ϕ′. In the first case, by definition of 〈−~〉(ϕ,ψ), ¬x ↪→ ⊆LIT 〈−~〉(ϕ,ψ), and there-
fore s(x) 6∈ dom(h1). Moreover, since 〈−~〉(ϕ,ψ) is satisfiable, x ↪→ 6⊆LIT ϕ (other-
wise we would have x 6= x ⊆LIT 〈−~〉(ϕ,ψ)). Therefore, by definition of ATOM(xi),
we conclude that s(x) 6∈ dom(h2). From h = h1 + h2, we derive s(x) 6∈ dom(h), and
thus (s, h) |= ¬x ↪→ .
In the second case, (x ↪→ ⊆LIT ϕ′), by definition of ϕ′ we have x ↪→ ⊆LIT ϕ

and x 6= xi ⊆LIT ϕ. By definition of ATOM(xi), s(x) 6∈ dom(h2). By definition
of 〈−~〉(ϕ,ψ), ¬x ↪→ ⊆LIT 〈−~〉(ϕ,ψ), and therefore s(x) 6∈ dom(h1). Again, by
h = h1 + h2, we have (s, h) |= ¬x ↪→ .

case: L = ¬x ↪→ y. Following the definition of 〈−~〉(ϕ′, ψ), ¬x ↪→ y ⊆LIT ψ and
therefore ¬x ↪→ y ⊆LIT 〈−~〉(ϕ,ψ). Therefore, (s, h1) |= ¬x ↪→ y. Since 〈−~〉(ϕ,ψ) is
satisfiable, ¬x ↪→ y ⊆LIT ϕ. By definition of ATOM(xi), we derive (s, h2) |= ¬x ↪→ y.
From h = h1 + h2, (s, h) |= ¬x ↪→ y.

case: L = x ↪→ . By definition of 〈−~〉(ϕ′, ψ), ¬x ↪→ ⊆LIT ϕ′ and x ↪→ ⊆LIT ψ.
First, let us suppose x ↪→ ⊆LIT ϕ. By definition of ϕ′, x = xi ⊆LIT ϕ and so, by
definition of ATOM(xi), s(x) ∈ dom(h2). From h2 ⊆ h, (s, h) |= x ↪→ . Otherwise
(¬x ↪→ ⊆LIT ϕ), by definition of 〈−~〉(ϕ,ψ), x ↪→ ⊆LIT 〈−~〉(ϕ,ψ). So, s(x) ∈
dom(h1), and by h1 ⊆ h, (s, h) |= x ↪→ .

case: L = x ↪→ y. Similar to the previous case. By definition of 〈−~〉(ϕ′, ψ), we
have ¬x ↪→ ⊆LIT ϕ′ and x ↪→ y ⊆LIT ψ. First, let us assume x ↪→ ⊆LIT ϕ.
By definition of ϕ′, x = xi ⊆LIT ϕ. By definition of ATOM(xi), s(x) ∈ dom(h2).
Ad absurdum, suppose h(s(x)) 6= s(y). By definition of ATOM(xi), we have that
x ↪→ ∧¬x ↪→ y ⊆LIT ϕ. However, from x ↪→ y ⊆LIT ψ, this implies x 6= x ⊆LIT
〈−~〉(ϕ,ψ), which contradicts the satisfiability of 〈−~〉(ϕ,ψ). Thus, h(s(x)) = s(y)
and, from h2 ⊆ h, we conclude that (s, h) |= x ↪→ y. Otherwise (¬x ↪→ ⊆LIT ϕ), by
definition of 〈−~〉(ϕ,ψ), x ↪→ y ⊆LIT 〈−~〉(ϕ,ψ). So, h1(s(x)) = s(y), and by h1 ⊆ h,
we derive (s, h) |= x ↪→ y.

6.6. Syntactical elimination of the Separating Implication 331

case: L = size ≥ β2+1 .− β1, where ¬size ≥ β1 ⊆LIT ϕ
′ and size ≥ β2 ⊆LIT ψ.

By definition of ϕ′, ¬size ≥ β1 ⊆LIT ϕ, and so β1 > maxsize(ϕ), since ϕ is satisfi-
able. By definition of 〈−~〉(ϕ,ψ) and as ¬size ≥ maxsize(ϕ) + 1 ⊆LIT ϕ,

size ≥ β2 + 1 .− (maxsize(ϕ) + 1) ⊆LIT 〈−~〉(ϕ,ψ),
which in turn implies card(h1) ≥ β2

.− maxsize(ϕ). By definition of ATOM(xi),
card(h2) ≥ 1. By h = h1 + h2, card(h) ≥ (β2

.− maxsize(ϕ)) + 1 ≥ (β2 + 1) .−
maxsize(ϕ). As β1 > maxsize(ϕ), (s, h) |= size ≥ β2+1 .− β1.

case: L = ¬size ≥ β2
.− β1, where size ≥ β1 ⊆LIT ϕ

′ and ¬size ≥ β2 ⊆LIT ψ.
By definition of ϕ′, β1 < maxsize(ϕ). By definition of 〈−~〉(ϕ,ψ),

¬size ≥ β2
.−maxsize(ϕ) ⊆LIT 〈−~〉(ϕ,ψ).

As 〈−~〉(ϕ,ψ) is satisfiable, β2 > maxsize(ϕ). So, card(h1) < β2 −maxsize(ϕ). By
definition of ATOM(xi), card(h2) ≤ 1. From h = h1 +h2, we conclude that card(h) <
(β2−maxsize(ϕ))+1. As β1 < maxsize(ϕ), we have β2 −maxsize(ϕ) + 1 ≤ β2

.−β1.
Thus, (s, h) |= ¬size ≥ β2

.− β1.
We are now ready to prove that 〈−~〉(ϕ,ψ) ⇒ (ϕ −~ >). Notice that, by completeness of
HC(∗) (Theorem 6.16), we conclude that the tautologies in (B) and (C) are derivable in
HC(∗,−∗). Moreover, notice that ¬xi ↪→ ⊆LIT ϕ′ and, for every y ∈ X, ¬y ↪→ ⊆LIT ϕ

implies ¬y ↪→ ⊆LIT ϕ′. This allows us to rely on the induction hypothesis, and derive
`HC(∗,−∗) 〈−~〉(ϕ′, ψ)⇒ (ϕ′ −~>). The derivation of 〈−~〉(ϕ,ψ)⇒ (ϕ−~>) is given below:

1 〈−~〉(ϕ′, ψ)⇒ (ϕ′ −~>) Induction hypothesis

2 (ATOM(xi) ∗ ϕ′)⇒ ϕ (B), Theorem 6.16

3 (〈−~〉(ϕ,ψ) ∗ ATOM(xi))⇒ 〈−~〉(ϕ′, ψ) (C), Theorem 6.16

4 (〈−~〉(ϕ,ψ) ∗ ATOM(xi))⇒ (ϕ′ −~>) (⇒Tr), 1, 3

5 〈−~〉(ϕ,ψ)⇒
(
ATOM(xi)−~ (〈−~〉(ϕ,ψ) ∗ ATOM(xi))

)
(‡)

6
(
ATOM(xi)−~ (〈−~〉(ϕ,ψ) ∗ ATOM(xi))

)
⇒
(
ATOM(xi)−~ (ϕ′ −~>)

)
(I−∗6.19.5), 4

7
(
ATOM(xi)−~ (ϕ′ −~>)

)
⇒
(
(ATOM(xi) ∗ ϕ′)−~>

)
(I−∗6.19.8)

8
(
(ATOM(xi) ∗ ϕ′)−~>

)
⇒ (ϕ−~>) (I−∗6.19.4), 2

9 〈−~〉(ϕ,ψ)⇒ (ϕ−~>) (⇒Tr), 5, 6, 7, 8

case: maxsize(ϕ) = α. In this case, we have size ≥ α ⊆LIT ϕ, where we recall that
α = maxsize(ϕ) ≥ 1. Following the developments of the previous case, we would like to
define a formula ϕ′ for which the formula ϕ′ ∗ ATOM(xi) ⇔ ϕ is valid. However, since
ϕ is in CoreTypes(X, α), we cannot hope for ϕ′ to be a core type in CoreTypes(X, α).
Indeed, because of size ≥ α ⊆LIT ϕ, in order to achieve the valid formula above we
must differentiate between the case where ϕ is satisfied by a memory state (s, h) such
that card(h) > α, to the case where card(h) = α. Therefore, below we introduce two
core types ϕ′α and ϕ′α−1, and define ϕ′ as ϕ′α ∨ ϕ′α−1. Since the separating conjunction
distributes over disjunctions, after defining these two core types, we can easily adapt the
arguments of the previous case to prove that 〈−~〉(ϕ,ψ)⇒ (ϕ−~>).
The formula ϕ′α is obtained from ϕ by replacing, for every x ∈ X such that x = xi ⊆LIT ϕ,
every literal x ↪→ ⊆LIT ϕ with ¬x ↪→ , and every x ↪→ y ⊆LIT ϕ with ¬x ↪→ y, where

332 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

y ∈ X. Notice that ϕ′α is defined similarly to ϕ′ (in the previous case of the proof), with
the exception that we do not modify the polarity of size literals. Explicitly, ϕ′α is defined
as follows.

ϕ′α
def=
∧
{x ∼ y ⊆LIT ϕ |∼∈ {=, 6=}} ∧

∧
{x ↪→ ⊆LIT ϕ | x 6= xi ⊆LIT ϕ} ∧

∧
{¬x ↪→ ⊆LIT ϕ}∧∧

{¬x ↪→ | x = xi ⊆LIT ϕ} ∧
∧
{x ↪→ y ⊆LIT ϕ | x 6= xi ⊆LIT ϕ} ∧

∧
{¬x ↪→ y ⊆LIT ϕ}∧∧

{¬x ↪→ y | x = xi ∧ x ↪→ y ⊆LIT ϕ} ∧
∧
{size ≥ β | β ∈ [0, α− 1]} ∧ size ≥ α.

The formula ϕ′α−1 is obtained from ϕ′α by replacing size ≥ α (highlighted in the defini-
tion of ϕ′α above), by ¬size ≥ α. The two following properties are satisfied:

D. ϕ′α and ϕ′α−1 are satisfiable core types in CoreTypes(X, α),
E. (ATOM(xi) ∗ (ϕ′α ∨ ϕ′α−1))⇒ ϕ is valid.
Proof of (D). The proof is very similar to the one of the property (A). Here, we pin-

point the main differences. First of all, since both ϕ′α and ϕ′α−1 are obtained
from ϕ by changing the polarity of some of the literals in LIT(ϕ), they are both in
CoreTypes(X, α). To show that ϕ′α and ϕ′α−1 are satisfiable, we rely on the fact that
ϕ is satisfiable. Let (s, h) be a memory state satisfying ϕ. Since size ≥ α ⊆LIT ϕ,
card(h) ≥ α. Without loss of generality, we can assume card(h) > α. Indeed,
if card(h) = α it is sufficient to add a memory cell (`, `) to h, such that ` does
not correspond to a program variable x ∈ X. It is straightforward to check that
the resulting memory state still satisfies ϕ. We introduce a second heap h′. Let
L = dom(h) ∩ {s(x) | x ∈ X} be the set of locations in dom(h) that corresponds to
variables in X. Since card(X) ≤ α, card(L) ≤ α. Let h′ ⊆ h such that L ⊆ dom(h′) and
card(h′) = α. Again, it is straightforward to see that (s, h′) satisfies ϕ. Intuitively,
we rely on (s, h) to show that ϕ′α is satisfiable, and on (s, h′) to show that ϕ′α−1
is satisfiable. As xi ↪→ ⊆LIT ϕ, we have s(x) ∈ dom(h) and s(x) ∈ dom(h′). We
consider heaps h1 and h2 such that h = h1 + h2 and dom(h1) = {s(xi)}. Similarly,
we consider heaps h′1 and h′2 such that h′ = h′1 + h′2 and dom(h′1) = {s(xi)}. We
show that (s, h2) |= ϕ′α and (s, h′2) |= ϕ′α−1. Let us first discuss the former result.
Let L ∈ LIT(ϕ′α). If L is not of the form size ≥ β or ¬size ≥ β, then (s, h2) |= L

follows exactly as in the proof of (A). Otherwise,
case: L = size ≥ β. By definition of h2, card(h2) = card(h)− 1 ≥ α. Since β ≤ α

(as ϕ′α is in CoreTypes(X, α)), we conclude that (s, h2) |= size ≥ β.
case: L = ¬size ≥ β. By definition of ϕ′α, no literal of the form ¬size ≥ β belongs

to LIT(ϕ′α). Therefore, this case does not occur.
This concludes the proof of (s, h2) |= ϕ′α. For the proof of (s, h′2) |= ϕ′α−1, let us
consider L ∈ LIT(ϕ′α−1). Again, L is not of the form size ≥ β or ¬size ≥ α, then
(s, h′2) |= L follows exactly as in the proof of (A) (replacing h by h′ and h2 by h′2).
Otherwise,
case: L = size ≥ β. By definition of ϕ′α−1, we have β < α. By definition of h′2,

card(h′2) = card(h′)− 1 = α− 1. Therefore, (s, h′2) |= size ≥ β.
case: L = ¬size ≥ β. By definition of ϕ′α−1, β = α. Since card(h′2) = α − 1, we

conclude that (s, h′2) |= ¬size ≥ β.
Proof of (E). The proof is very similar to the one of the property (B). We show that

(ATOM(xi) ∗ϕ′α)⇒ ϕ and (ATOM(xi) ∗ϕ′α)⇒ ϕ. Then, (E) follows as the separating

6.6. Syntactical elimination of the Separating Implication 333

conjunction distributes over disjunction. First, let us consider (ATOM(xi) ∗ϕ′α)⇒ ϕ,
and a memory state (s, h) satisfying ATOM(xi) ∗ ϕ′α. There are h1 and h2 such that
h = h1 + h2, (s, h1) |= ATOM(xi) and (s, h2) |= ϕ′α. Let L ∈ LIT(ϕ). Notice that ϕ
does not contain negated size ≥ β literals. If L is not size ≥ β, for some β ∈ [0, α],
then (s, h) |= L follows exactly as it is shown in the proof of (B). Otherwise, suppose
L = size ≥ β, where β ∈ [0, α]. By definition of ϕ′α, size ≥ α ⊆LIT ϕ′α. Therefore,
card(h2) ≥ α and, from h2 ⊆ h, we conclude that (s, h) |= size ≥ β. So, (s, h) |= ϕ.
Let us now consider (ATOM(xi) ∗ ϕ′α−1) ⇒ ϕ and a memory state (s, h) satisfying
ATOM(xi) ∗ ϕ′α−1. There are h1 and h2 such that h = h1 + h2, (s, h1) |= ATOM(xi)
and (s, h2) |= ϕ′α−1. Let L ∈ LIT(ϕ). Again, ϕ does not contain negated size ≥ β

literals, and if L is not size ≥ β, for some β ∈ [0, α], then (s, h) |= L follows exactly
as is shown in the proof of (B). Otherwise, suppose L = size ≥ β, where β ∈ [0, α].
By definition of ϕ′α−1, size ≥ α .− 1 ⊆LIT ϕ′α−1. Therefore, card(h2) ≥ α − 1. By
definition of ATOM(xi), card(h1) = 1. From h = h1+h2, we conclude that card(h) ≥ α
and thus (s, h) |= size ≥ β. Therefore, (s, h) |= ϕ.

As in the previous case of the proof, (D) allows us to consider the formulae 〈−~〉(ϕ′α, ψ)
and 〈−~〉(ϕ′α−1, ψ) and show that
F. (〈−~〉(ϕ,ψ) ∗ ATOM(xi))⇒ 〈−~〉(ϕ′α, ψ) ∨ 〈−~〉(ϕ′α−1, ψ) is valid.
Proof of (F). We recall that 〈−~〉(ϕ,ψ) is satisfiable. In particular, from its definition

together with size ≥ α ⊆LIT ϕ, this implies that size ≥ α ⊆LIT ψ, as otherwise
we would have ¬size ≥ 0 ⊆LIT 〈−~〉(ϕ,ψ). So, as ψ is a satisfiable core type in
CoreTypes(X, α), for all β ∈ [0, α], size ≥ β ⊆LIT ψ. Alternatively, ψ does not con-
tain ¬size ≥ β literals. We look at the definitions of 〈−~〉(ϕ′α, ψ) and 〈−~〉(ϕ′α−1, ψ).
a. Since for all β ∈ [0, α], size ≥ β ⊆LIT ϕ′α and size ≥ β ⊆LIT ψ, we derive that
〈−~〉(ϕ′α, ψ) does not contain size ≥ β nor ¬size ≥ β literals (for all β ∈ [0, α]).
This holds directly by definition of 〈−~〉(ϕ′α, ψ), which can be retrieved by sub-
stituting ϕ′ by ϕ′α in Figure 6.10.

b. Analogously, we know that ¬size ≥ α ⊆LIT ϕ
′
α−1 whereas for every β ∈ [0, α−1],

size ≥ β ⊆LIT ϕ
′
α−1, and therefore among all the literals size ≥ β or ¬size ≥ β

(β ∈ [0, α]), 〈−~〉(ϕ′α−1, ψ) only contains size ≥ 1 (occurring positively).
By definition and with the sole exception of the polarity of the formula size ≥ α

(occurring positively in ϕ′α and negatively in ϕ′α−1), the two core types ϕ′α−1 and ϕ′α
are equal. Directly by definition of 〈−~〉(ϕ′α, ψ) and 〈−~〉(ϕ′α−1, ψ), together with (a)
and (b), this implies that 〈−~〉(ϕ′α−1, ψ) is syntactically equal to 〈−~〉(ϕ′α, ψ) ∧ size ≥ 1
(up to commutativity and associativity of conjunction). This means that the formula
〈−~〉(ϕ′α−1, ψ) ⇒ 〈−~〉(ϕ′α, ψ) is valid, and suggests us that, in order to show (F), we
can simply establish that (〈−~〉(ϕ,ψ) ∗ ATOM(xi)) ⇒ 〈−~〉(ϕ′α, ψ) is valid. As we
already stated, ϕ′α is defined as ϕ′ (in the previous step of the proof), with the ex-
ception that we do not modify the polarity of size ≥ β literals. Because of this,
we can rely on the proof of (C). Briefly, we consider a memory state (s, h) satisfying
〈−~〉(ϕ,ψ)∗ATOM(xi). There are h1 and h2 such that h = h1+h2, (s, h1) |= 〈−~〉(ϕ,ψ)
and (s, h2) |= ATOM(xi). Let L ∈ LIT(〈−~〉(ϕ′α−1, ψ)). By (a), L is neither of the form
size ≥ β nor of the form ¬size ≥ β. Therefore, (s, h) |= L follows exactly as shown
in the proof of (C).

We are now ready to prove that 〈−~〉(ϕ,ψ)⇒ (ϕ−~>). By Theorem 6.16, the tautologies
in (D) and (F) are derivable in HC(∗,−∗). Moreover, since ¬xi ↪→ ⊆LIT {ϕ′α ;ϕ′α−1} and,

334 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

for every y ∈ X, ¬y ↪→ ⊆LIT ϕ implies ¬y ↪→ ⊆LIT {ϕ′α ;ϕ′α−1}, we rely on the induction
hypothesis to derive

`HC(∗,−∗) 〈−~〉(ϕ′α, ψ)⇒ (ϕ′α −~>), `HC(∗,−∗) 〈−~〉(ϕ′α−1, ψ)⇒ (ϕ′α−1 −~>).

We are ready to derive 〈−~〉(ϕ,ψ)⇒ (ϕ−~>), concluding the proof:

1 〈−~〉(ϕ′α, ψ)⇒ (ϕ′α −~>) Induction hypothesis

2 〈−~〉(ϕ′α−1, ψ)⇒ (ϕ′α−1 −~>) Induction hypothesis

3 (ATOM(xi) ∗ (ϕ′α ∨ ϕ′α−1))⇒ ϕ (E), Theorem 6.16

4 (〈−~〉(ϕ,ψ) ∗ ATOM(xi))⇒ 〈−~〉(ϕ′α, ψ) ∨ 〈−~〉(ϕ′α−1, ψ) (F), Theorem 6.16

5 〈−~〉(ϕ′α, ψ) ∨ 〈−~〉(ϕ′α−1, ψ)⇒ (ϕ′α −~>) ∨ (ϕ′α−1 −~>) PC, 1, 2

6 (ϕ′α −~>) ∨ (ϕ′α−1 −~>)⇒ ((ϕ′α ∨ ϕ′α−1)−~>) (I−∗6.19.6)

7 (〈−~〉(ϕ,ψ) ∗ ATOM(xi))⇒ ((ϕ′α ∨ ϕ′α−1)−~>) (⇒Tr), 4, 5, 6

8 〈−~〉(ϕ,ψ)⇒
(
ATOM(xi)−~ (〈−~〉(ϕ,ψ) ∗ ATOM(xi))

)
(‡)

9
(
ATOM(xi)−~ (〈−~〉(ϕ,ψ) ∗ ATOM(xi))

)
⇒(

ATOM(xi)−~ ((ϕ′α ∨ ϕ′α−1)−~>)
)

(I−∗6.19.5), 4

10
(
ATOM(xi)−~ ((ϕ′α ∨ ϕ′α−1)−~>)

)
⇒(

(ATOM(xi) ∗ (ϕ′α ∨ ϕ′α−1))−~>
)

(I−∗6.19.8)

11
(
(ATOM(xi) ∗ (ϕ′α ∨ ϕ′α−1))−~>

)
⇒ (ϕ−~>) (I−∗6.19.4), 3

12 〈−~〉(ϕ,ψ)⇒ (ϕ−~>) (⇒Tr), 8, 9, 10, 11

Lemma 6.18 for core types can be extended to arbitrary Boolean combinations of core for-
mulae, as we show that the distributivity of −~ over disjunctions is provable in HC(∗,−∗). As a
consequence of this development, we achieve the main result of the chapter.

Theorem 6.22. HC(∗,−∗) is an adequate proof system for SL(∗,−∗).

Soundness of the proof system HC(∗,−∗) has been already in Lemma 6.5. The structure of the
completeness proof is very similar to the proof of Theorem 6.16 except that we have to be able
to handle the separating implication. In order to be self-contained, we reproduce some of the
arguments in Theorem 6.16, albeit adapted to HC(∗,−∗).

First of all, we show that the substitution of equivalent formulae in holds true in HC(∗,−∗),
that is the following rule is admissible:

(S−∗)
ψ ⇔ χ

ϕ[ψ]ρ ⇔ ϕ[χ]ρ

where ϕ, ψ, χ are in SL(∗,−∗), and ϕ[ψ]ρ refers to the formula ϕ in which the subformula at the
occurrence ρ is replaced by ψ (see Definition 1.4).

Proof of (S−∗). The admissibility of (S−∗) is proved as for the admissibility of (S∗), i.e. with a
standard structural induction on ϕ. The cases where ϕ is either an atomic formula or a formula

6.6. Syntactical elimination of the Separating Implication 335

of the form ¬ψ′, ϕ′ ⇒ ϕ′′ or ϕ′ ∗ ϕ′′ are exactly as in the proof of (S∗). For the only remaining
case, where ϕ = ϕ′ −∗ ϕ′′, the proof carries out as shown below. Let ϕ, ψ and χ being three
formulae in SL(∗,−∗) and let ρ be a position in ϕ. Suppose `HC(∗,−∗) ψ ⇔ χ.
induction step: ϕ = ϕ′ −∗ ϕ′′. If ρ = ε, then the result follows as in the base case where ϕ is

an atomic formula (see proof of (S∗), page 314). Otherwise, either ρ = 1ρ′ or ρ = 2ρ′′,
for some positions ρ′ and ρ′′ of ϕ′ and ϕ′′, respectively. We split the proof depending on
whether ρ = 1ρ′ or ρ = 2ρ′′.
case: ρ = 1ρ′. By induction hypothesis, `HC(∗) ϕ

′[ψ]ρ′ ⇔ ϕ′[χ]ρ′ . As a direct consequence
of the admissibility of the rule (I−∗6.19.4) from Lemma 6.19, together with propositional
reasoning, the following rule is admissible:

ϕ1 ⇔ ϕ2

(ϕ1 −∗ ψ3)⇔ (ϕ2 −∗ ψ3)
Therefore, `HC(∗)

(
(ϕ′[ψ]ρ′)−∗ϕ′′

)
⇔
(
(ϕ′[χ]ρ′)−∗ϕ′′

)
. By definition, ϕ[ψ]ρ = (ϕ′[ψ]ρ′)∗ϕ′′

and ϕ[χ]ρ = (ϕ′[χ]ρ′) ∗ ϕ′′, concluding the proof.
case: ρ = 2ρ′′. Similarly to the other case, `HC(∗) ϕ

′′[ψ]ρ′′ ⇔ ϕ′′[χ]ρ′′ , by induction hy-
pothesis. Thanks to the rule (I−∗6.19.5) from Lemma 6.19, the following rule is admissible:

ϕ3 ⇔ ϕ2

(ϕ1 −∗ ϕ3)⇔ (ϕ1 −∗ ϕ2)
Thus, `HC(∗)

(
ϕ′ −∗ (ϕ′′[ψ]ρ′′)

)
⇔
(
ϕ′ −∗ (ϕ′′[χ]ρ′′)

)
. By definition, ϕ[ψ]ρ = ϕ′ −∗ (ϕ′′[ψ]ρ′′)

and ϕ[χ]ρ = ϕ′ −∗ (ϕ′′[χ]ρ′′), concluding the proof.

Proof of Theorem 6.22 (completeness). We need to show that for every formula ϕ in SL(∗,−∗),
there is a Boolean combination of core formulae ψ such that `HC(∗,−∗) ϕ⇔ ψ. This is enough to
conclude the proof. Indeed, when ϕ is valid for SL(∗,−∗), by soundness of HC(∗,−∗), we obtain
that ψ is valid too. Therefore, `HC(∗,−∗) ψ as HC is a subsystem of HC(∗,−∗) and it is complete
for Boolean combinations of core formulae (Theorem 6.9). By propositional reasoning, we get
that `HC(∗,−∗) ϕ.

In order to show that every formula ϕ has a provably equivalent Boolean combination of
core formulae, we heavily rely on the ∗- and −∗-simulation properties given by Corollary 6.15
and Lemma 6.18. For convenience, we consider ϕ such that every −∗ is either used inside
the definition of a core formula of the form x ↪→ or it is involved in the definition of the
septraction −~. This can be done without loss of generality. Indeed, it is easy to show that
(ϕ−∗ ψ)⇔ ¬(ϕ−~ ¬ψ) is derivable in HC(∗,−∗).

1 ψ ⇔ ¬¬ψ PC

2 (ϕ−∗ ψ)⇔ (ϕ−∗ ¬¬ψ) (S−∗), 1

3 (ϕ−∗ ¬¬ψ)⇔ ¬¬(ϕ−∗ ¬¬ψ) PC

4 (ϕ−∗ ψ)⇔ ¬(ϕ−~ ¬ψ) (⇒Tr), 2, 3, def. of −~

Therefore, thanks to (S−∗), we can replace all occurrences of ϕ′−∗ϕ′′ in ϕ, that are not involved
in the definition of a core formula of the form x ↪→ , by ¬(ϕ′ −~ ¬ϕ′′), leading to a formula of
the wanted shape.

Now, similarly to Theorem 6.16, the proof is by simple induction on the number of occur-

336 Chapter 6. A Complete Axiomatisation for Quantifier-free Separation Logic

rences of ∗ or −~ in ϕ that are not involved in the definition of some core formula of the form
size≥β or x ↪→ .
base case: ϕ without occurrences of ∗ or −~ (excluding those appearing in core for-
mulae). This case is exactly as in Theorem 6.16. The formula ϕ is a Boolean combination of
core formulae plus the atomic formula emp. Since `HC(∗,−∗) emp ⇔ ¬size≥ 1 holds by propo-
sitional reasoning and definition of size≥ 1, by (S−∗) we can replace every subformula emp by
¬size≥ 1, leading to a Boolean combination of core formulae ψ such that `HC(∗,−∗) ϕ⇔ ψ.

induction step: ϕ with n ≥ 1 occurrences of ∗ or −~ (excluding those appearing in
core formulae). Below, we let X be the set of variables appearing in ϕ. Let ϕ1 ⊗ ϕ2 be a
subformula of ϕ, say at position ρ, such that ⊗ ∈ {∗,−~}, ϕ1 in Bool(Core(X1, α1)) and ϕ2 in
Bool(Core(X2, α2)). Let α = max(α1, α2). As X1 and X2 are subsets of X, by definition, ϕ1 and
ϕ2 belong to Bool(Core(X, α)). By Lemma 6.10 and since HC(∗) includes HC, there are two
formulae of the form ϕ1

1 ∨ · · · ∨ ϕ
n1
1 and ϕ1

2 ∨ · · · ∨ ϕ
n2
2 such that `HC(∗) ϕi ⇔ ϕ1

i ∨ · · · ∨ ϕ
ni
i for

i ∈ {1, 2} and moreover, all the ϕji ’s are core types in CoreTypes(X,max(card(X), α)). By (S∗),
`HC(∗) ϕ1 ∗ ϕ2 ⇔

(
ϕ1

1 ∨ · · · ∨ ϕ
n1
1
)
⊗
(
ϕ1

2 ∨ · · · ∨ ϕ
n2
2
)
.

We now derive the following double implication, by cases on ⊗:
`HC(∗) ϕ1 ⊗ ϕ2 ⇔

∨
j1∈[1,n1],j2∈[1,n2] ϕ

j1
1 ⊗ ϕ

j2
2 . (†)

case: ⊗ = ∗. As in Theorem 6.16, (†) follows by propositional reasoning, together with the
axiom (I∗3) for distributivity and the theorem (ϕ∗χ)∨(ψ∗χ)⇒ (ϕ∨ψ)∗χ derived in page 296.

case: ⊗ = −~. In this case, (†) follows directly from (I−∗6.19.6) and (I−∗6.19.7) (which tell us that
the septraction −~ distributes over ∨), and propositional reasoning.

We now rely on Corollary 6.15 and Lemma 6.18 (depending on whether ⊗ is ∗ or −~). We
conclude that for all j1 ∈ [1, n1] and j2 ∈ [1, n2], there is a conjunction of core formulae
ψj1,j2 such that `HC(∗) ϕj11 ⊗ ϕj22 ⇔ ψj1,j2 . By propositional reasoning, we conclude that
`HC(∗) ϕ1 ⊗ ϕ2 ⇔

∨
j1∈[1,n1],j2∈[1,n2] ψ

j1,j2 . Consequently (thanks to the rule (S−∗)), we obtain
`HC(∗) ϕ⇔ ϕ[

∨
j1∈[1,n1],j2∈[1,n2] ψ

j1,j2]ρ.
The right-hand side formula of the double implication above has n − 1 occurrences of ∗ or −~
that are not involved in the definition of core formulae. The induction hypothesis applies: there
is a Boolean combination of core formulae ψ such that `HC(∗) ϕ[

∨
j1∈[1,n1],j2∈[1,n2] ψ

j1,j2]ρ ⇔ ψ.
By propositional reasoning, `HC(∗) ϕ⇔ ψ.

7

Axiomatising a Modal Logic Featuring
Ambient-like Composition

Contents
7.1 A Taste of Ambient Logic . 341
7.2 The Modal Logic ML() . 342

7.2.1 Kripke-style finite forests. 342
7.2.2 ML(): Syntax and Semantics. 344
7.2.3 ML() as a Graded Modal Logic. 344

7.3 Towards an Hilbert-style proof system for ML() 346
7.4 Graded Modalities as Core Formulae . 348
7.5 Syntactical Elimination of the Composition Operator 352

337

339

In this chapter
We move away from separation logic and introduce another instantiation of BBI, called ML(),
which extends the standard modal logic ML with the composition operator from ambient logic,
a logic introduced by L. Cardelli and A. D. Gordon to verify properties of distributed systems.
After introducing ambient logic and ML(), we design an Hilbert-style proof system for ML(),
again by relying on the core formulae technique used for the axiomatisation of SL(∗,−∗). In the
case of ML(), the core formulae are given by graded modal logic, a well-known extension of ML.
The aim of the chapter is twofold. On one side, we want to show another example of very
natural Hilbert-style proof system designed with the help of core formulae. On the other side,
the Hilbert-style proof system for ML() reveals interesting connections between separation logic
and ambient logic, which we later analyse in the last part of the thesis (Chapters 8 and 9).

Here is a roadmap of the chapter, which follows quite closely Chapter 6.

Section 7.1. To better contextualise the chapter, we start with a short introduction on the
calculus of Mobile Ambients [40] and ambient logic. Broadly speaking, ambient logic is inter-
preted on a class of syntactical trees called information trees, and its composition operator ϕ ψ

splits the tree into two components, similarly to the operator ∗ from separation logic.

Section 7.2. We introduce ML(). This modal logic is interpreted on a class of Kripke struc-
tures whose underlying accessibility relation is a finite forest. As already stated, ML() extends
the language of the standard modal logic ML with the composition from ambient logic, oppor-
tunely redefined on Kripke-style finite forests. For instance, the ML() formula ♦ϕ ♦ϕ states
that the current world has at least two children satisfying the formula ϕ. We notice that ♦ϕ ♦ϕ
corresponds to the formula ♦≥2ϕ from graded modal logic (GML), paving a way of axiomatising
ML() by relying on GML as a family of core formulae.

Section 7.3. We define the proof system HGML() that shall be proven adequate for ML().
This proof system extends the axiomatisation of GML introduced in [49] with axioms and rules
that are able to transform every formula of ML() into an equivalent formula from GML. Since
the graded modalities ♦≥kϕ can be seen as abbreviations of formulae from ML(), the proof
system HGML() is internal.

Section 7.4. We introduce technical notions needed to use GML as a family of core formulae.

Section 7.5. We show that HGML() is sound and complete for ML(). As usual, soundness
is proved with a simple semantical analysis on the axioms and rules of the proof system. To
establish the completeness of HGML(), we rely on the following result.

Lemma 7.14. Let Φ be a set of disjoint formulae in GML, k1, k2 ∈ N, and P1, P2 ⊆fin AP. For
every two satisfiable formulae ϕ in Conj(Core(Φ, k1, P1)) and ψ in Conj(Core(Φ, k2, P2)). Then,

`HGML() ϕ ψ ⇔ 〈 〉(ϕ,ψ).

Here, ϕ, ψ and 〈 〉(ϕ,ψ) are formulae from GML. This lemma implies that, in HGML(), every
formula of ML() can be shown equivalent to a formula of GML. Thus, completeness of HGML()
stems directly from the fact that the proof system extends a complete axiomatisation for GML.

7.1. A Taste of Ambient Logic 341

7.1 A Taste of Ambient Logic

In 1998, L. Cardelli and A. D. Gordon introduced the calculus of Mobile Ambients (MA) [40],
a.k.a. ambient calculus: a process calculus focused on spatial configurations of distributed agents,
where computations carry out by means of spatial reconfigurations. The fundamental entity of
MA is the ambient, which can be informally described as a local object in which computation
might occur. For instance, the term of MA

m[0] n[in(m).0]

features two ambients m[0] and n[in(m).0], which belongs to the same space. The notion of
space is defined through the parallel composition P Q which essentially operates as a union on
multisets (elements of the sets being ambients in the spaces P and Q), together with the empty
space 0. So, the ambient m[0] stands for an ambient named m that does not contain anything.
Instead, the ambient n[in(m).0] contains an action in(m).0 which allows n to enter in the space
of the ambient m. Formally, this interaction is achieved via the following rewriting rule:

m[P] n[in(m).Q R] → m[n[Q R] P],

where P , Q and R are metavariables. Notice that the term P 0 describes a space obtained by
composing the space P with the empty space. Because of this, P 0 is equivalent to P (written
P 0 ≡ P), which implies that the ambient n[in(m).0] is equivalent to n[in(m).0 0]. This
allows us to apply the rule above on m[0] n[in(m).0], deducing m[n[0 0] 0]. Again from the
equivalence P 0 ≡ P , the latter term is equivalent to m[n[0]]. Fundamentally, the interaction
between ambients changes the shape of the space: in our example, from two ambients m and n

belonging to the same space, we have obtained an ambient m that contains the ambient n.
To verify the complex interactions between ambients, in [39] L. Cardelli and A. D. Gordon in-

troduce a modal logic that combines spatial and temporal operators, called Ambient Logic (AL).
While the temporal operators of AL reason on the sequence of terms obtained via rewriting rules,
the spatial operators analyse the structure of the ambients. Interestingly, even though indepen-
dently formalised, the fragment of AL without temporal operators, a.k.a. Static Ambient Logic
(SAL) [103], is an instantiation of BBI (Section 2.3.3). In particular, AL and SAL feature a
composition operator ϕ ψ which, with respect to the terms of MA, corresponds to the parallel
composition P Q between spaces P and Q. As required by the notion of non-deterministic
monoid of BBI, the parallel composition is associative and commutative, with 0 being its iden-
tity element. This makes the models of SAL, called information trees, finite unordered trees
with labelled nodes that represent the names of the ambients. Instead of giving the formal
definition of information trees, let us look at the ones depicted in Figure 7.1. In the tree on the
left (i.e. T3), the root consists of a space made of three ambients, which are depicted as children
of the root. In this representation, the parallel composition T1 T2 of the two information trees
T1 and T2 on the right merge the spaces represented by the roots of T1 and T2, leading to T3.

The connections between ambient logic and BBI make SAL and separation logic quite close.
To the best of our knowledge, the first work that analyses together these two logics is [104]: the
paper that led to the development of the core formulae technique for separation logic (see Chap-
ter 5). In particular, in [104], E. Lozes uses simulation arguments that are similar to the
∗-simulation property of separation logic (Lemma 5.6) in order to show that several operators
of SAL can be removed from the logic without modifying its expressive power. Following [104]
and in view of the Hilbert-style proof system for SL(∗,−∗) defined in Chapter 6, it is natural to

342 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

n[]

n[0] m[]

p[0]

m[]

p[0]

m[0]
≡

n[]

n[0] m[]

p[0]

m[0] m[]

p[0]

Figure 7.1: Three information trees T3,T1,T2 (from left to right), such that T3 ≡ T1 T2.

ask ourselves if we can derive axiomatisations of SAL and similar ambient logics. At the same
time, we would like to find a common ground between ambient logic and separation logic, as it
could allow us to deepen our understanding on the connections between these two formalisms.

To keep things simple, in this chapter we introduce the modal logic ML() that extends
standard modal logic ML (a.k.a. K) [15] with the composition operator from SAL. Instead of
information trees, we interpret ML() on a class of Kripke structures that represent finite forests.
On one hand, these Kripke-style finite forests do not diverge too much from information trees,
allowing us to transfer results from ML() to SAL, as we will see in Chapter 8. On the other hand,
relying on the standard framework of modal logic allows us to draw new connections between
ambient logics and (modal) separation logics, as we show in Chapter 9. Thus, the main purpose
of this chapter is to begin the study on ML(), which progresses throughout the remaining part
of the thesis. We present an Hilbert-style proof system of ML(), which is designed thanks to
the core formulae technique. The axioms of the system already reveal interesting connections
between ML() and SL(∗,−∗), which motivates us to pursue the comparison between separation
logic and ambient logic carried out in Chapters 8 and 9.

7.2 The Modal Logic ML()

In this section, we introduce the modal logic ML() that extends the standard modal logic ML
with the composition operator from ambient logic. The main contribution of this chapter is the
design of an Hilbert-style proof system for ML(). We refer the reader to Section 6.1.2 for a
quick introduction on Hilbert-style proof systems.

7.2.1 Kripke-style finite forests.

As already stated, in order to keep ML() close to ambient logics while taking advantage of the
framework of modal logics, we consider the class of Kripke-like finite forests defined below. As
done in previous chapters, we write AP for a countably infinite set of atomic propositions.

Definition 7.1 (Kripke-style finite forest). A (Kripke-style) finite forest K = (W, R,V) is a
triple where W is a non-empty finite set of worlds (i.e. a universe), V : AP→ 2W is a valuation
and R ⊆ W ×W is a finite binary relation whose inverse R−1 is functional and acyclic.

7.2. The Modal Logic ML() 343

w

=

w

+w

w

Figure 7.2: Three finite forests K3,K1,K2 (from left to right), such that K3 = K1 +w K2.

We define R(w) def= {w′ ∈ W | (w,w′) ∈ R}. Worlds in R(w) are understood as children of w.
As usual, we write Rδ for the δth composition of R, R+ for its transitive closure (a.k.a. Kleene
plus) and R∗ for its reflexive and transitive closure (a.k.a. Kleene star).

To mimic the composition from ambient logic, we introduce a suitable union of finite forests.

Definition 7.2 (+w : the Ambient-like union). Let w be a world from a finite set W. We
introduce the ternary relation +w on Kripke-style finite forests, that given Ki = (Wi, Ri,Vi)
(i ∈ {1, 2, 3}) is characterised as follows:

(K1,K2,K3) ∈ +w iff W1 =W2 =W3 =W, V1 = V2 = V3, R1 ∩R2 = ∅, R1 ∪R2 = R3,

and for all i ∈ {1, 2} and w′ ∈ Ri(w), R+
i (w′) = R+

3 (w′).

Thanks to the constraints R1 ∩ R2 = ∅ and R1 ∪ R2 = R3, the relation +w is a partial
function on its third component; that is, given K1 and K2, there is at most one K3 such that
(K1,K2,K3) ∈ +w. Because of this, we often see +w as a binary partial function, and write
K1 +w K2 to denote the only Kripke-style finite forest K3 such that (K1,K2,K3) ∈ +w, if any.
In this way, the expression K3 = K1 +w K2 is equivalent to (K1,K2,K3) ∈ +w. We say that K1
a w-subforest (or more simply, a subforest) of K3, written K1 ⊆w K3, whenever there is a finite
forest K2 such that K3 = K1 +wK2. Figure 7.2 shows possible instances for K1, K2 and K3 such
that K3 = K1 +w K2. Notice the similarities with the information trees of Figure 7.1. Indeed,
exactly as in the case of the parallel composition of MA, the union +w preserves the subtrees
rooted at a child of w, which must occur in either K1 or K2. Intuitively, this means that every
possible split of the subtree rooted at w is completely determined by how the children of w are
partitioned in the two structures K1 and K2.

The modal logic ML() we are about to define instantiate the framework of BBI introduced
in Section 2.3.3. In particular, when fixing the universe and valuation, the class of Kripke-style
finite forests forms a non-deterministic monoid with the union +w (seen as a partial function).

Proposition 7.3. Let K(W,V) be the class of Kripke-style finite forests with universe W and
valuation V. Let w ∈ W and let ε = (W,∅,V). (K(W,V),+w, ε) is a non-deterministic monoid.

We recall that Proposition 7.3 above (whose proof is straightforward) states that, whenever
defined, +w is an associative and commutative operator, with ε being its identity element.

344 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

(K,w) |= p iff w ∈ V(p),

(K,w) |= ♦ϕ iff there is w′ ∈ W such that w′ ∈ R(w) and (K,w′) |= ϕ,

(K,w) |= ϕ ψ iff there are K1 and K2 s.t. K1 +w K2 = K, (K1,w) |= ϕ and (K2,w) |= ψ.

Figure 7.3: Satisfaction relation for ML(), with respect to (K,w) where K = (W, R,V).

7.2.2 ML(): Syntax and Semantics.

The logic ML() enriches the standard modal logic ML with the composition operator that
allows for submodel reasoning via the union +w. The formulae of ML() are built from the
grammar below (where p ∈ AP):

π := > (true)
| p (propositional symbol)

ϕ := π (atomic formulae)
| ϕ⇒ ϕ | ¬ϕ (Boolean connectives)
| ♦ϕ (modality of possibility)
| ϕ ϕ (composition)

Given a pointed forest (K,w), that is a Kripke-style finite forest K = (W, R,V) together with a
world w ∈ W, the satisfaction relation |= for formulae in ML() is given in Figure 7.3, omitting
the standard clauses for > and the Boolean connectives ⇒ and ¬.

As in the previous chapter, the formulae ϕ ∧ ψ and ϕ ∨ ψ are syntactical abbreviations
for ¬(ϕ ⇒ ¬ψ) and ¬ϕ ⇒ ψ, respectively. Similarly, ⊥ and ϕ ⇔ ψ stand for ¬> and
(ϕ⇒ ψ) ∧ (ψ ⇒ ϕ), respectively. The modality of necessity �ϕ is defined as ¬♦¬ϕ. It is the
dual of the modality of possibility ♦, and its semantics is as follows:

(K,w) |= �ϕ if and only if for every w′ ∈ R(w), (K,w) |= ϕ.

We follow the precedence {¬,♦,�} > {∧,∨, } > {⇒,⇔} for the various connectives of ML().
As we will see throughout the chapter, despite the addition of the composition operator ,

the ability to reason within ML() comes quite naturally. Arguably, this is mainly due to the
following monotonicity property induced by the union +w:

Lemma 7.4. Let w ∈ W. Let K = (W, R,V) and K′ = (W, R′,V) be two Kripke-style finite
forests such that K′ ⊆w K. For every w′ ∈ R′(w) and every formula ϕ in ML() we have

(K,w′) |= ϕ if and only if (K′,w′) |= ϕ.

Intuitively, this property state that every property of a child of w sill holds when splitting the
finite forest with the union +w. Inside ML(), this translates to the valid formula ♦ϕ⇔ ♦ϕ >.
Lemma 7.4 follows directly from the fact that the union +w guarantees the subtree rooted at w′
to be the same in both K and K′. Its proof can be found in Appendix E.

7.2.3 ML() as a Graded Modal Logic.

Reasoning in ML() is quite intuitive, but it is far from being as immediate as for ML. Indeed,
in addition to be able to express typical sentences of ML, such as the formula �ϕ ∧ ♦ψ stating
all children satisfy ϕ and at least one satisfies ψ, the addition of the composition operator leads

7.2. The Modal Logic ML() 345

to interesting interactions with the ♦. For instance, let us consider the formula (�ϕ ∧ ♦ψ) >
obtained by placing �ϕ∧♦ψ under the context >. Instead of stating that all children satisfy
ϕ and at least one satisfies ψ, this formula simply states that there is a child satisfying both ϕ

and ψ, i.e. ♦(ϕ ∧ ψ). Indeed, �ϕ ∧ ♦ψ entails the existence of a child satisfying both ϕ and ψ,
whereas the context > allows us to forget the properties satisfied by other children. Because of
the interplays between the operators ♦ and , deriving an Hilbert-style axiomatisation of ML()
becomes certainly an interesting task. This is heightened by the fact that the composition
operator captures a very natural form of counting that has largely being studied by the modal
logic community. Consider the formula ♦≥kϕ defined below, where k ≥ 1 is a natural number:

♦≥kϕ
def= ♦ϕ ♦ϕ · · · ♦ϕ︸ ︷︷ ︸

k−1 occurrences of

Given a finite forest (K,w) where K = (W, R,V), this formula states that it is possible to split K
into k distinct subforests, in all of which the world w has a child satisfying ϕ. Thanks to the
monotonicity property given by Lemma 7.4, this leads to the following semantics:

(K,w) |= ♦≥kϕ if and only if card({w′ ∈ R(w) | (K,w) |= ϕ}) ≥ k,

stating that, in K, at least k distinct children of w verify ϕ. Now, by enriching the standard
modal logic ML with the suites of modalities ♦≥kϕ (k ∈ N\{0}), where ♦ϕ becomes a shortcut for
♦≥1ϕ, we obtain the well-known graded modal logic (GML) that was initially introduced during
the seventies [79, 70], extensively studied in the eighties [66], with important contributions in
the nineties [51]. The syntax of GML is recalled below:

ϕ := > | p | ϕ⇒ ϕ | ¬ϕ | ♦≥kϕ, where k ∈ N \ {0} and p ∈ AP.

From the definition of the graded modality ♦≥kϕ given above, GML can be seen as a syntactical
fragment of ML(). To be completely precise, we should clarify that GML is usually interpreted on
arbitrary Kripke structures (see Section 4.4.2), and not just Kripke-style finite forests. However,
it is well-known that GML admits a finite tree model properties [51], i.e. all its satisfiable formulae
are satisfied by a finite tree-like Kripke structure. This implies that GML cannot distinguish
between arbitrary Kripke structures and Kripke-style finite forests, which allows us to reason
about this logic with respect to the latter class of models, while taking advantage of all the
known results for Kripke structures.

Interestingly, one can show several instances of formulae in GML that can be characterised
in ML() in a more natural way. For instance, let us look at the formula ♦ϕ ♦ψ of ML().
Informally, given a pointed finite forest (K,w), this formula states that the world w has two
distinct children, one satisfying ϕ and the other satisfying ψ. This property can be captured in
GML, but enforcing the two children to be distinct results in a clumsy formula:

♦≥1ϕ ∧ ♦≥1ψ ∧ (♦≥1(ϕ ∧ ψ)⇒ ♦≥2ϕ ∨ ♦≥2ψ).

Indeed, the formula ♦≥1ϕ ∧ ♦≥1ψ is not enough to characterise ♦ϕ ♦ψ, as it is satisfied by a
pointed forest where w has one child satisfying both ϕ and ψ. To avoid this case, we take the
conjunction of the formula ♦≥1ϕ∧♦≥1ψ with the formula ♦≥1(ϕ∧ψ)⇒ ♦≥2ϕ∨♦≥2ψ, as done
above. The latter formula states that w has a child satisfying both ϕ and ψ, there must be a
second child satisfying either ϕ or ψ, as required by ♦ϕ ♦ψ.

The example we just discussed highlights quite well the conciseness of ML() with respect of
GML. This conciseness comes with a computational price (as we will see in Chapter 8, where

346 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

we analyse the complexity of ML()). Indeed, ML() is exponentially more succinct than GML,
even on very natural queries. For instance, let us consider a finite set of atomic propositions
P ⊆fin AP. We aim at defining equivalent formulae in GML and ML(), that are satisfied by
a pointed forest (K,w) whenever w does not witness two children satisfying exactly the same
atomic propositions from P . In GML, the only way of expressing this property is to essentially
quantify over every possible truth assignment for atomic propositions, as done in the formula:

alldiffGML(P) def=
∧

f:P→{>,⊥} ¬♦≥2
(∧

p∈P f(p)=> p ∧
∧
p∈P f(p)=⊥ ¬p

)
.

Informally, this formula states that for every possible truth assignment f for the atomic propo-
sitions in P , it cannot be that there are two children of w agreeing with f. The formula
alldiffGML(P) express the right property, but its size is exponential in card(P). The same
property can be expressed in ML() with a formula that is only linear in the size of P . First,
we introduce a formula alleq(P) stating that all the children of w agree on the truth of
the atomic propositions in P . This formula is already definable in ML, and corresponds to
alleq(P) def=

∧
p∈P (♦p ⇒ �p). To achieve the right property, we can now exploit the composi-

tionally of ML() given by the operator , and state that whenever two children of w are singled
out, they do not satisfy the same atomic propositions. The following formula, of size linear
in card(P), does the job:

alldiff(P) def= ¬
(
> (♦=2> ∧ alleq(P))

)
.

Here, given k ∈ N, we write ♦=kϕ as a shortcut for ♦≥kϕ ∧ ¬♦≥k+1ϕ, where ♦≥0ϕ
def= >.

7.3 Towards an Hilbert-style proof system for ML()
With the previous examples, we hope to have given some flavour of the differences between
ML() and graded modal logic. As a corollary of the Hilbert-style axiomatisation of ML()
defined in this chapter, we show that these differences do not translate to a greater expressive
power for ML(): every formula of ML() is equivalent to a formula in GML, and vice versa.

Claim 7.5. ML() is as expressive as GML.

Knowing this result beforehand (e.g. through semantical meanings) is incredibly helpful, as it
suggest us to design the Hilbert-style proof system by relying on the core formula technique used
in Chapter 6 in order to axiomatise the separation logic SL(∗,−∗) (see Section 6.3 for a summary
of the technique). Graded modal logic provides the core formulae, leaving us with the task of
designing the axioms for the composition operator. In particular, we rely on an adequate proof
system for GML defined in [49] and denoted by HGML (Section 7.4), and we introduce HGML():
an extension of HGML that is adequate for the logic ML() (Section 7.5).

The final proof system HGML() is given in Figure 7.4. Even though it is quite early to
appreciate completely its axioms and rules, we can already spot some interesting analogies be-
tween HGML() and the Hilbert-style proof system HC(∗) introduced in Chapter 6 to axiomatise
the separation logic SL(∗, x ↪→) (Figure 6.6). Unsurprisingly, HGML() features the axioms of
non-deterministic monoid (C

id), (C
assoc) and (C

com) from BBI, and the inference rule (C) for the com-
position operator. Perhaps more interesting is the treatment of the graded modalities appearing
inside the . In particular, the axiom (C

split) states that children satisfying a formula ϕ can always
be separated from the ones not satisfying ϕ. Interestingly, the axioms (C

¬grad) and (C
atom) are

analogous to the axioms (∗¬size) and (∗ 1
atom) of HC(∗), recalled below:

7.3. Towards an Hilbert-style proof system for ML() 347

Propositional Calculus:

(L1) (¬ϕ⇒ ϕ)⇒ ϕ

(MP)
ϕ ϕ⇒ ψ

ψ
(L2) ϕ⇒ (¬ϕ⇒ ψ)

(L3) (ϕ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (ϕ⇒ χ))

Axioms and rules of the graded modalities:

(�inf) �(ϕ⇒ ψ)⇒ (♦≥kϕ⇒ ♦≥kψ)
(N)

ϕ

�ϕ(♦join) ♦=0(ϕ ∧ ψ)⇒ (♦=k1ϕ ∧ ♦=k2ψ ⇒ ♦=k1+k2(ϕ ∨ ψ))

Axioms of the composition operator:

(C
id) ϕ⇔ ϕ � ⊥ (C

mono) e > ⇒ e J[e ∈ {p,¬p,♦ϕ} | p ∈ AP, ϕ in GML]

(C
assoc) (ϕ ψ) χ⇔ ϕ (ψ χ) (C

¬grad) ¬♦≥β1ϕ ¬♦≥β2ϕ⇒ ¬♦≥β1+β2
.−1ϕ

(C
com) ϕ ψ ⇒ ψ ϕ (C

atom) ♦ϕ⇒ ♦=1ϕ >

(C
zero) (⊥ ϕ)⇔ ⊥ (C

split) �ϕ �¬ϕ

(C
dist) (ϕ ∨ ψ) χ⇒ (ϕ χ) ∨ (ψ χ)

Rules of inference for the composition operator:

(C)
ϕ⇒ χ

ϕ ψ ⇒ χ ψ

Figure 7.4: The Hilbert-style proof system HGML().

(∗¬size) ¬size≥β1 ∗ ¬size≥β2 ⇒ ¬size≥β1 + β2
.− 1 (∗ 1

atom) ¬emp⇒ size = 1 ∗ >,

where we remind the reader that i .− j = max(0, i − j) and that ¬emp is size≥ 1. These
correspondences between axioms of the two proof systems are quite revealing, and essentially
summarise how we think of graded modalities throughout the chapter. Very roughly, we see two
distinct formulae ♦≥kϕ and ♦≥jψ as size predicates that are checked with respect to disjoint
heaps, say hϕ and hψ. So, ♦≥kϕ could in a sense be seen as a query stating that the heap hϕ
satisfies size≥ k. With this in mind, many of the syntactical proof we did in Chapter 6 transfer
to HGML() with a simple change of notation (e.g. size≥β becomes ♦≥βϕ) and axioms (e.g. we
use (C

¬grad) instead of (∗¬size)). The disjointness of hϕ and hψ translates back to ♦≥kϕ and ♦≥jψ
as we ask ϕ∧ψ to be unsatisfiable. As we later formally discuss (see Lemma 7.11), every formula
in GML can be manipulated to obtain an equivalent formula satisfying this auxiliary constraint.
To give some flavour on how this is achieved within the proof system HGML(), let us consider
the formula ♦≥kϕ ¬♦≥jψ, where we assume ϕ and ψ to be non-equivalent (otherwise we can
simply substitute ψ by ϕ). By relying on the two following theorems of propositional calculus

348 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

ϕ⇔ (ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ), ψ ⇔ (ϕ ∧ ψ) ∨ (¬ϕ ∧ ψ),

together with the fact that the replacement of equivalent formulae is admissible in HGML() (see
the rule (S) in the proof of Theorem 7.16), one can show within HGML() that ♦kϕ ¬♦jψ is
equivalent to

♦≥k
(
(ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)

)
¬♦≥j

(
(ϕ ∧ ψ) ∨ (¬ϕ ∧ ψ)

)
. (†)

Now, when looking at the left conjunct ♦≥k
(
(ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)

)
, we notice that the disjuncts

ϕ∧ψ and ϕ∧¬ψ cannot be simultaneously satisfied, which implies that ♦=0((ϕ∧ψ)∧ (ϕ∧¬ψ))
is valid. By relying on the axiom (♦join), one can prove the following theorem of GML

♦=0(ϕ1 ∧ ϕ2)⇒
(
♦≥k(ϕ1 ∨ ϕ2)⇔

∨
k1,k2∈N
k=k1+k2

(
♦≥k1ϕ1 ∧ ♦≥k2ϕ2

))
,

which shows that ♦≥k
(
(ϕ∧ψ)∨(ϕ∧¬ψ)

)
, is equivalent to

∨
k=k1+k2

(
♦≥k1(ϕ∧ψ)∧♦≥k2(ϕ∧¬ψ)

)
.

Similarly, ♦≥j
(
(ϕ∧ψ)∨(¬ϕ∧ψ)

)
is equivalent to

∨
j=j1+j2

(
♦≥j1(ϕ∧ψ)∧♦≥j2(¬ϕ∧ψ)

)
. From (†),

we conclude that ♦≥kϕ ¬♦≥jψ is equivalent to(∨
k=k1+k2

(
♦≥k1(ϕ ∧ ψ) ∧ ♦≥k2(ϕ ∧ ¬ψ)

))
¬
(∨

j=j1+j2
(
♦≥j1(ϕ ∧ ψ) ∧ ♦≥j2(¬ϕ ∧ ψ)

))
In this formula, the subformulae ♦≥k1(ϕ∧ψ), ♦≥k2(ϕ∧¬ψ), ♦≥j1(ϕ∧ψ) and ♦≥j2(¬ϕ∧ψ) satisfy
the required “disjointness” property: all conjunctions of distinct formulae appearing inside the
graded modality (i.e. conjunctions of ϕ ∧ ψ, ϕ ∧ ¬ψ and ¬ϕ ∧ ψ), are unsatisfiable.

In the next section, we recall and briefly analyse the axiom system of GML, from [49].
Afterwards, we establish the role of GML as a set of core formulae of ML(), as well as formalising
the idea of disjoint formulae introduced above (Definition 7.9).

7.4 Graded Modalities as Core Formulae

In Figure 7.5, we recall the Hilbert-style proof system HGML introduced in [49], where it is
proved to be sound and complete for graded modal logic.

Theorem 7.6 (Adequacy, [49]). A formula ϕ in GML is valid if and only if `HGML ϕ.

Let us look more closely at HGML. As we can see, the proof system extends propositional
calculus with three more axioms and one rule. Let (K,w) be a pointed forest, and let us write
Sϕ for the set of children of w satisfying a formula ϕ. Both the axioms (�inf) and (♦join) are quite
natural. The axiom (�inf) essentially state that if the set Sϕ is a subset of Sψ (i.e. �(ϕ ⇒ ψ)),
then card(Sϕ) ≤ card(Sψ). This axiom pairs well with the necessitation rule (N) from ML, as it
allows us to derive the following inference rule for graded modalities:

(G)
ϕ⇒ ψ

♦≥kϕ⇒ ♦≥kψ

Proof of (G).

1 ϕ⇒ ψ Hypothesis

2 �(ϕ⇒ ψ) (N), 1

3 �(ϕ⇒ ψ)⇒ (♦≥kϕ⇒ ♦≥kψ) (�inf)

4 ♦≥kϕ⇒ ♦≥kψ (MP), 2, 3

7.4. Graded Modalities as Core Formulae 349

Propositional Calculus:

(L1) (¬ϕ⇒ ϕ)⇒ ϕ

(MP)
ϕ ϕ⇒ ψ

ψ
(L2) ϕ⇒ (¬ϕ⇒ ψ)

(L3) (ϕ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (ϕ⇒ χ))

Axioms and rules of the graded modalities:

(�inf) �(ϕ⇒ ψ)⇒ (♦≥kϕ⇒ ♦≥kψ)
(N)

ϕ

�ϕ(♦join) ♦=0(ϕ ∧ ψ)⇒ (♦=k1ϕ ∧ ♦=k2ψ ⇒ ♦=k1+k2(ϕ ∨ ψ))

Intermediate axiom:

(IGML
1) ♦≥k+1ϕ⇒ ♦≥kϕ

Figure 7.5: The Hilbert-style proof system HGML.

If (�inf) talks about inclusion between sets of children of w, the axiom (♦join) talks about empty
intersections. In particular, it states that if Sϕ ∩ Sψ = ∅ (i.e. ♦=0(ϕ ∧ ψ)), card(Sϕ) = k1 and
card(Sψ) = k2, then card(Sϕ ∪ Sψ) = k1 + k2. Lastly, HGML features the axiom (IGML

1) which
essentially states that if card(Sϕ) ≥ k + 1 then card(Sϕ) ≥ k. This axiom is reminiscent of the
axiom (IC

1) introduced to axiomatise the core formulae of SL(∗, x ↪→), and recalled below:

size≥β + 1⇒ size≥β.

The similarity does not end there, as both (IC
1) and (IGML

1) are derivable in the proof systems
HC(∗) and HGML(), respectively. Following the terminology and notation I?

i introduced in the
previous chapter, this makes (IGML

1) an intermediate axiom: an axiom that must be considered
in order for HGML to be complete, but is superfluous when HGML is extended in order to capture
the composition operator.

Using GML as core formulae. When using GML as core formulae of ML(), we want to re-
strict ourselves to formulae of a particular shape that facilitate reasoning about the composition
operator. As already formalised with Lemma 7.4, the fundamental property of ML() is that,
given a pointed forest (K,w), the operator does not modify the subtrees rooted at the children
of w, which therefore keep satisfying the same formulae. This monotonicity property allows us
to be often unconcerned by the shape of the formulae appearing inside a (graded) modality,
and to treat them almost as atomic propositions. This leads to the following definition of core
formulae, that is parametric on a (fixed) set Φ of GML formulae.

Definition 7.7 (Core formulae). Let Φ be a finite set of formulae in GML. Consider a natural
number k ∈ N and let P be a finite set of atomic propositions. We denote with Core(Φ, k, P)
the following set of formulae in GML:

350 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

Core(Φ, k, P) def= {♦≥j ϕ, p, > | j ∈ [1, k], ϕ ∈ Φ, p ∈ P}.

Essentially, given a pointed forest (K,w), the formulae in Core(Φ, k, P) express which atomic
propositions among P are verified in w, as well as how many children of w satisfy each formula
in Φ, up to the bound k.

Similarly to Chapter 6, given a set of core formulae Γ, we write Conj(Γ) for the set of
(finite) conjunctions of literals built upon Γ, where a literal is understood as a formula of Γ
or its negation. Given a conjunction ϕ = L1 ∧ · · · ∧ Ln of literals L1, . . . , Ln, we write LIT(ϕ)
to denote {L1, . . . , Ln}. Given two conjunctions of formulae ϕ and ψ, ψ ⊆LIT ϕ stands for
LIT(ψ) ⊆ LIT(ϕ). We also use the following shortcuts from Chapter 6:
• χ ⊆LIT {ϕ | ψ} for “χ ⊆LIT ϕ or χ ⊆LIT ψ”,

• {ϕ | ψ} ⊆LIT χ for “ϕ ⊆LIT χ or ψ ⊆LIT χ”,

• χ ⊆LIT {ϕ ; ψ} for “χ ⊆LIT ϕ and χ ⊆LIT ψ”.
Given a set of formulae Γ = {ϕ1, . . . , ϕn}, we write

∧
Γ for ϕ1 ∧ · · · ∧ ϕn.

We introduce further new notions of GML. Given a formula ϕ in GML, we write topgm(ϕ)
for the set of subformulae ψ of ϕ such that ψ is of the form ♦≥jχ and one of its occurrences in
ϕ is not in the scope of the graded modalities ♦≥k. Formally, topgm(ϕ) is inductively defined as:

topgm(>) def= topgm(p) def= ∅,
topgm(♦≥kϕ) def= {♦≥kϕ},

topgm(¬ϕ) def= topgm(ϕ),
topgm(ϕ⇒ ψ) def= topgm(ϕ) ∪ topgm(ψ).

Similarly, we write topAP(ϕ) for the set of atomic propositions of ϕ that appear outside graded
modalities. Its formal definition is analogous to the one of topgm(ϕ), the only difference being
that topAP(p) = {p} and topAP(♦≥kϕ) = ∅. For instance, given the formula ϕ defined as
(p ⇒ ♦≥kq) ∧ ¬(q ∨ ♦≥k♦≥2r), we have topgm(ϕ) = {♦≥kq,♦≥k♦≥2r} and topAP(ϕ) = {p, q}.
Notice that all the formulae in topgm(ϕ) and topAP(ϕ) are core formulae.

Proposition 7.8. Every formula ϕ in GML is equivalent to a disjunction of formulae belonging
to Conj(topgm(ϕ) ∪ topAP(ϕ)).

Assuming topgm(ϕ) = {♦≥k1ψ1, . . . ,♦≥knψn}, the proposition above implies that ϕ is equivalent
to a disjunction of formulae belonging to Conj(Core({ψ1, . . . , ψn},max(k1, . . . , kn), topAP(ϕ))).
Its proof, left to the reader, carries out by simply putting ϕ in disjunctive normal form while
seeing the formulae in topgm(ϕ) as atomic propositions. As HGML is complete for GML, the
equivalence of Proposition 7.8 is provable within HGML.

As stressed at the end of the previous section, we often ask the formulae Φ that are involved
in the definition of Core(Φ, k, P) to satisfy the following disjointness property.

Definition 7.9 (Disjointness). Let Φ = {ϕ1, . . . , ϕn} be a finite set of formulae in GML. We say
that the formulae in Φ are disjoint whenever for every distinct i, j ∈ [1, n], ϕi∧ϕj is unsatisfiable.

The idea behind this notion is that, given two disjoint formulae ϕ and ψ, the satisfaction of
a formula of the form ♦≥kϕ is completely independent from the truth of formulae of the form
♦≥jψ. Provided that we can always restrict ourselves to disjoint formulae (as we show below),

7.4. Graded Modalities as Core Formulae 351

this implies that we can design the Hilbert-style axiom system for ML() by looking at the
interaction of with formulae of the form ♦≥kϕ for a fixed metavariable ϕ.

When Φ = {ϕ1, . . . , ϕn} is not a set of disjoint formulae, we can easily refine it so that it
becomes one. To do so, we introduce the set 2Φ defined below:

2Φ def=

∧

i∈[1,n]
f(i)=>

ϕi ∧
∧

i∈[1,n]
f(i)=⊥

¬ϕi
∣∣∣∣∣∣ f : [1, n]→ {>,⊥},
f(i) = > for some i ∈ [1, n]

.

Informally, 2Φ contains conjunctions of every formula in Φ, possibly negated, where at least one
formula of Φ occurs positively. It is easy to see that the formulae in 2Φ are disjoint (Lemma 7.10),
and that disjunctions of formulae in Core(2Φ, k, P) capture Core(Φ, k, P) (Lemma 7.11).

Lemma 7.10. Let Φ be a finite set of formulae in GML. 2Φ is a set of disjoint formulae.

Proof. Directly from the definition of 2Φ. Indeed, consider distinct formulae ϕ and ψ in 2Φ. By
definition of 2Φ, both formulae are conjunctions of all the formulae in Φ (appearing positively
or negatively). Since ϕ and ψ are distinct, there is a formula χ in Φ that appears positively in ϕ
and negatively in ψ, or vice versa. Thus, ϕ ∧ ψ is unsatisfiable, as it entails χ ∧ ¬χ.

Lemma 7.11. Let Φ be a finite set of GML formulae, k ∈ N and P ⊆fin AP. Every formula in
Core(Φ, k, P) is equivalent to a disjunction of formulae in Conj(Core(2Φ, k, P)).

Proof. Let Φ = {ψ1, . . . , ψn} and consider a formula ϕ in Core(Φ, k, P). Trivially, if ϕ is an
atomic proposition in P , then it belongs to Core(2Φ, k, P). Otherwise, ϕ = ♦≥kψi, for some
i ∈ [1, n]. By propositional reasoning, ψi is equivalent to the formula

ψi ∧
∧
j∈[1,n](ψj ∨ ¬ψj),

where we essentially applied the tertium non datur principle χ ∨ ¬χ to every formula among
ψ1, . . . , ψn. As conjunction distributes over disjunction and is associative, commutative and
idempotent (i.e. χ ≡ χ ∧ χ), this formula is equivalent to∨

f:[1,n]→{>,⊥}
f(i)=>

(∧
i∈[1,n]
f(i)=>

ψi ∧
∧

i∈[1,n]
f(i)=⊥

¬ψi
)
. (†)

where the external disjunction quantifies over all possible evaluations for ψ1, . . . , ψn having ψi
verified. Every disjunct of this formula of the form

∧
i∈[1,n] f(i)=>ψi ∧

∧
i∈[1,n] f(i)=⊥¬ψi belongs

to 2Φ. Let {χ1, . . . , χl} ⊆ 2Φ be the set of (distinct) disjuncts appearing in (†), so that ψi ≡
χ1 ∨ · · · ∨ χl. By Lemma 7.10, {χ1, . . . , χl} is a set of disjoint formulae. In order to conclude
the proof, it is sufficient to show that ♦≥kψi ≡ γ where

γ def=
∨

k1,...,kl∈N
k=k1+···+kl

(♦≥k1χ1 ∧ · · · ∧ ♦≥klχl) .

Indeed, by definition of γ, every formula of the form ♦≥jχ appearing in topgm(γ) is such that
j ≤ k and χ ∈ 2Φ, which entails that topgm(γ) ⊆ Core(2Φ, k, P). In the definition of γ, recall
that a formula ♦≥0ϕ̃ stands for >. Below, let (K,w) be a pointed forest, where K = (W, R,V).
(⇒): Suppose (K,w) |= ♦≥kψi, and thus there are at least k distinct worlds w1, . . . ,wk in R(w)
such that (K,wj) |= ψi, for every j ∈ [1, k]. Since ψi ≡ χ1 ∨ · · · ∨ χl and {χ1, . . . , χl} is a set of
disjoint formulae, each world in {w1, . . . ,wk} satisfies exactly one formula in {χ1, . . . , χl}. Given

352 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

Axioms and rules from HGML (Figure 7.5), excluding (IGML
1).

Axioms of the composition operator:

(C
id) ϕ⇔ ϕ � ⊥ (C

mono) e > ⇒ e J[e ∈ {p,¬p,♦ϕ} | p ∈ AP, ϕ in GML]

(C
assoc) (ϕ ψ) χ⇔ ϕ (ψ χ) (C

¬grad) ¬♦≥β1ϕ ¬♦≥β2ϕ⇒ ¬♦≥β1+β2
.−1ϕ

(C
com) ϕ ψ ⇒ ψ ϕ (C

atom) ♦ϕ⇒ ♦=1ϕ >

(C
zero) (⊥ ϕ)⇔ ⊥ (C

split) �ϕ �¬ϕ

(C
dist) (ϕ ∨ ψ) χ⇒ (ϕ χ) ∨ (ψ χ)

Rules of inference for the composition operator:

(C)
ϕ⇒ χ

ϕ ψ ⇒ χ ψ

Figure 7.6: The Hilbert-style proof system HGML() (again).

j ∈ [1, l], let kj be the number of worlds in {w1, . . . ,wk} satisfying the formula χj . We have
(K,w) |= ♦≥k1χ1 ∧ · · · ∧ ♦≥klχl, and thus γ is satisfied.
(⇐): Suppose (K,w) |= γ, and thus there are k1, . . . , kl ∈ N such that k = k1 + · · · + kl and
(K,w) |= ♦≥k1χ1 ∧ · · · ∧ ♦≥klχl. So, there are l subsets S1, . . . , Sl of R(w) such that for every
j ∈ [1, l] and w′ ∈ Sj , (K,w′) |= χj . Moreover, card(Sj) ≥ kj . Since {χ1, . . . , χl} is a set of
disjoint formulae, the sets S1, . . . , Sl are mutually disjoint, and thus their union T contains at
least k worlds. From ψi ≡ χ1 ∨ · · · ∨ χl, every world w′ in T is such that (K,w′) |= ψi. We
conclude that (K,w) |= ♦≥kψi.

7.5 Syntactical Elimination of the Composition Operator

In Figure 7.6, we recall the Hilbert-style proof system HGML() that we show to be adequate for
the modal logic ML(). As we can see, HGML() is obtained by enriching HGML with axioms and
rules that handle the composition operator , and that were briefly discussed during Section 7.3.
The axiom (IGML

1) is removed from the system, as it is now derivable.

Lemma 7.12. The axiom (IGML
1) of HGML is derivable in HGML().

Proof. The proof, by induction on k, follows exactly the proof of the intermediate axiom (IC
1)

with respect to the proof system HC(∗), given in Lemma 6.13.
base case: k = 0. The instance of the axiom (IGML

1) with β = 0 amounts to derive the formula
♦≥1ϕ⇒ ♦≥0ϕ. As ♦≥0ϕ = >, by propositional reasoning, `HGML() ♦≥1ϕ⇒ ♦≥0ϕ.

induction step: k > 0. By induction hypothesis, assume `HGML() ♦≥kϕ ⇒ ♦≥k−1ϕ. The
formula ♦≥k+1ϕ⇒ ♦≥kϕ is derived as follows:

7.5. Syntactical Elimination of the Composition Operator 353

1 ♦≥kϕ⇒ ♦≥k−1ϕ Induction Hypothesis

2 (♦≥kϕ) ♦ϕ⇒ (♦≥k−1ϕ) ♦ϕ (C), 1

3 ♦≥k+1ϕ⇒ ♦≥kϕ 2, def. of ♦≥jϕ

A quick analysis on the axioms and rules establishes the soundness of HGML().

Lemma 7.13. HGML() is sound.

Proof. The soundness of all the axioms from HGML follows from Theorem 7.6. The validity
of the axioms (C

com), (C
assoc), (C

dist) and (C
zero), as well as the admissibility of the rule (C) are

inherited from BBI (see [75]). Below, let (K,w) be a pointed forest, where K = (W, R,V).
Validity of the axiom (C

id).
(⇒): Suppose (K,w) |= ϕ. Let K′ = (W,∅,V). Clearly, K = K +w K′ and (K,w) |= � ⊥.
Therefore, (K,w) |= ϕ � ⊥.
(⇐): Suppose (K,w) |= ϕ � ⊥. Thus, there are K1 = (w, R1,V) and K2 such that
K = K1 +w K2, (K1,w) |= ϕ and (K2,w) |= � ⊥. From the semantics of � ⊥, we conclude
that R(w) = R1(w). By definition of +w, R+(w) = R+

1 (w) and R1 ⊆ R. This means that
the subtree rooted at w in K is the same as the one in K1, which implies that (K1,w) and
(K,w) satisfy the same formulae of ML(). Thus, (K,w) |= ϕ. For a formal proof that
(K1,w) and (K,w) satisfy the same formulae, see Lemma E.2 in Appendix E.

Validity of the axiom (C
split).

Consider two Kripke-style finite forests K1 = (W, R1,V) and K2 = (W, R2,V) such that
K = K1 +w K2 and for every w′ ∈ R(w), w′ ∈ R1(w) if and only if (K,w′) |= ϕ.
By Lemma 7.4, for every w′ ∈ R1(w), (K1,w′) |= ϕ, whereas for every w′′ ∈ R2(w),
(K2,w′′) 6|= ϕ. So, (K1,w) |= �ϕ and (K2,w) |= �¬ϕ, which entails (K,w) |= �ϕ �¬ϕ.

Validity of the axiom (C
mono).

The case where e = ♦ϕ follows directly from Lemma 7.4. Suppose (K,w) |= e >, where e
is either p or ¬p, for some p ∈ AP. There is K1 ⊆w K such that (K1,w) |= e. By definition,
if e = p then w ∈ V(p), otherwise (e = ¬p) w 6∈ V(p). We conclude that (K,w) |= e.

Validity of the axiom (C
¬grad).

Let k1, k2 ≥ 0. Suppose (s, h) |= ¬♦≥k1ϕ ¬♦≥k2ϕ. Then, there are two finite forests K1
and K2 such that K = K1 + K2, (K1,w) |= ¬♦≥k1ϕ and (K2,w) |= ¬♦≥k2ϕ. From the
semantics of the graded modality,
card({w′ ∈ R1(w) | (K1,w′) |= ϕ}) < k1, card({w′ ∈ R2(w) | (K2,w′) |= ϕ}) < k2.

By definition of +w, R1(w) ∩R2(w) = ∅ and R(w) = R1(w) ∪R2(w). By Lemma 7.4,
{w′ ∈ R1(w) | (K1,w′) |= ϕ} ∪ {w′ ∈ R2(w) | (K2,w′) |= ϕ} = {w′ ∈ R(w) | (K,w′) |= ϕ}.

We have card({w′ ∈ R(w) | (K,w′) |= ϕ}) < k1 + k2
.− 1, and thus (K,w) |= ¬♦≥k1+k2

.−1ϕ.

Validity of the axiom (C
atom).

Suppose (K,w) |= ♦≥1ϕ. Then, there is w′ ∈ R(w) such that (K,w′) |= ϕ. Let K′ be the
finite forest obtained from K by removing all elements of R that do not involve worlds
in R∗(w′). Formally, K′ = (W, R′,V) where R′ = {(w1,w2) ∈ R | w2 ∈ R∗(w)}. Clearly,
K′ ⊆w K and R′(w) = {w′}. By Lemma 7.4, (K′,w′) |= ϕ. From R′(w) = {w′}, we
conclude that (K′,w) |= ♦=1ϕ. From K′ ⊆w K, (K,w) |= ♦=1ϕ >.

354 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

∧
{♦≥j χ | χ ∈ Φ, ♦≥jχ ⊆LIT {ϕ | ψ}}

∧
∧
{♦≥j1+j2χ | χ ∈ Φ, ♦≥j1χ ⊆LIT ϕ, ♦≥j2χ ⊆LIT ψ}

∧
∧
{¬♦≥j1+j2 .−1χ | χ ∈ Φ, ¬♦≥j1χ ⊆LIT ϕ, ¬♦≥j2χ ⊆LIT ψ}

∧
∧
{p ∈ AP | p ⊆LIT {ϕ | ψ}} ∧

∧
{¬p | p ∈ AP, ¬p ⊆LIT {ϕ | ψ}}

Figure 7.7: the GML formula 〈 〉(ϕ,ψ), where ϕ in Core(Φ, k1, P1) and ψ in Core(Φ, k2, P2).

In order to show the completeness of HGML(), we prove that the proof system enjoys the
-simulation property. That is, given two formulae ϕ and ψ in GML, there is a formula χ in
GML such that `HGML() ϕ ψ ⇔ χ. This property is first shown for the case where ϕ and ψ

are satisfiable conjunctions of core formulae, and then extended to arbitrary formulae of GML,
thanks to Proposition 7.8.

Lemma 7.14. Let Φ be a set of disjoint formulae in GML, k1, k2 ∈ N, and P1, P2 ⊆fin AP. For
every two satisfiable formulae ϕ in Conj(Core(Φ, k1, P1)) and ψ in Conj(Core(Φ, k2, P2)). Then,

`HGML() ϕ ψ ⇔ 〈 〉(ϕ,ψ).

The GML formula 〈 〉(ϕ,ψ) of Lemma 7.14 is defined in Figure 7.7. From its definition, it is easy
to see that 〈 〉(ϕ,ψ) belongs to Conj(Core(Φ, k1 + k2, P1 ∪ P2)). In order to prove Lemma 7.14
we rely on the following theorems and admissible rules of HGML().

Lemma 7.15. The following axioms and rules are admissible in HGML():

(⇒Tr)
ϕ⇒ χ χ⇒ ψ

ϕ⇒ ψ

(ILR)
ϕ⇒ ϕ′ ψ ⇒ ψ′

ϕ ψ ⇒ ϕ′ ψ′

(I−∗7.15.1) ♦≥k1ϕ ♦≥k2ϕ⇒ ♦≥k1+k2ϕ

(I−∗7.15.2) ♦≥kϕ⇒ ♦=kϕ >

(I−∗7.15.3) �ϕ ∧ (ψ χ)⇒ (ψ ∧�ϕ) (χ ∧�ϕ)

(I−∗7.15.4) �ϕ1 · · · �ϕn (�¬ϕ1 ∧ · · · ∧�¬ϕn)

The proof of Lemma 7.15 can be found in Appendix E.

Proof of Lemma 7.14. (⇒): In order to prove that `HGML() ϕ ψ ⇒ 〈 〉(ϕ,ψ), we establish that
`HGML() ϕ ψ ⇒ L holds for every literal L of 〈 〉(ϕ,ψ), by case analysis on L.
case: L is either p or ¬p. By definition of 〈 〉(ϕ,ψ), either L ⊆LIT ϕ or L ⊆LIT ψ. Let us

assume that L ⊆LIT ϕ. Then,

1 ϕ⇒ L PC

2 ψ ⇒ > PC

3 ϕ ψ ⇒ L > (ILR), 1, 2

4 L > ⇒ L (C
mono)

5 ϕ ψ ⇒ L (⇒Tr), 3, 4

In the case where L ⊆LIT ψ, we first use the commutativity of (axiom (C
com)) to derive

`HGML() ϕ ψ ⇒ ψ ϕ. We then rely on the derivation above, swapping ϕ and ψ, to conclude
that `HGML() ψ ϕ⇒ L. Lastly, by (⇒Tr), we get `HGML() ϕ ψ ⇒ L.

case: L = ♦≥jχ, where ♦≥jχ ⊆LIT {ϕ | ψ}. The proof is divided in three cases, depending on
whether j = 0, j = 1 or j ≥ 2.

7.5. Syntactical Elimination of the Composition Operator 355

case: j = 0. Since ♦≥0χ = >, `HGML() ϕ ψ ⇒ L follows by propositional reasoning.
case: j = 1. In this case we have ♦≥jχ = ♦χ. If ♦χ ⊆LIT ϕ, then the proof of ϕ ψ ⇒ L

is exactly as the one shown above for the case where L is an atomic proposition or its
negation. The other case (♦χ ⊆LIT ψ) is analogous, thanks to the axiom (C

com).
case: j ≥ 2. By definition of ♦≥jχ and from the associativity and commutativity of
(axioms (C

assoc) and (C
com)), `HGML() ♦≥jχ⇒ (♦≥j−1χ) ♦χ. If ♦≥jχ ⊆LIT ϕ, then

1 ♦≥jχ⇒ (♦≥j−1χ) ♦χ See above

2 ϕ⇒ ♦≥jχ PC

3 ψ ⇒ > PC

4 ϕ ψ ⇒
(
(♦≥j−1χ) ♦χ

)
> (⇒Tr), (ILR), 1, 2, 3

5
(
(♦≥j−1χ) ♦χ

)
> ⇒ (♦χ >) (♦≥j−1χ) (C

assoc), (C
com)

6 ♦χ > ⇒ ♦χ (C
mono)

7 (♦χ >) (♦≥j−1χ)⇒ ♦χ (♦≥j−1χ) (C), 6

8 ♦χ (♦≥j−1χ)⇒ ♦≥jχ (C
assoc), (C

com), def. of. ♦≥jχ

9 ϕ ψ ⇒ ♦≥jχ (⇒Tr), 4, 5, 7, 8

Again, if instead ♦≥jχ ⊆LIT ψ, we simply rely on the commutativity of and then carry
out the proof as for the case where ♦≥jχ ⊆LIT ϕ.

case: L = ♦≥j1+j2χ, where ♦≥j1χ ⊆LIT ϕ and ♦≥j2χ ⊆LIT ψ. We divide the proof in two cases,
depending on whether j1, j2 ≥ 1 holds.
case: j1 = 0 or j2 = 0. In this case, either ♦≥j1+j2χ ⊆LIT ϕ or ♦≥j1+j2χ ⊆LIT ψ, and thus
we derive `HGML() ϕ χ⇒ L by relying on the previous case of the proof.

case: j1 ≥ 1 and j2 ≥ 1. The proof of this case is straightforward:

1 ϕ⇒ ♦≥j1χ PC

2 ϕ⇒ ♦≥j2χ PC

3 ϕ ψ ⇒ ♦≥j1χ ♦≥j2χ (ILR), 1, 2

4 ♦≥j1χ ♦≥j2χ⇒ ♦≥j1+j2χ (C
assoc), (C

com), def. of. ♦≥j1+j2χ

5 ϕ ψ ⇒ ♦≥j1+j2χ (⇒Tr), 3, 4

case: L = ¬♦≥j1+j2 .−1, where ¬♦≥j1 ⊆LIT ϕ and ¬♦≥j2 ⊆LIT ψ. Directly from (C
¬grad):

1 ϕ⇒ ¬♦≥j1χ PC

2 ϕ⇒ ¬♦≥j2χ PC

3 ϕ ψ ⇒ ¬♦≥j1χ ¬♦≥j2χ (ILR), 1, 2

4 ¬♦≥j1χ ¬♦≥j2χ⇒ ¬♦≥j1+j2
.−1χ (C

¬grad)

5 ϕ ψ ⇒ ¬♦≥j1+j2
.−1χ (⇒Tr), 3, 4

(⇐): Let us show that `HGML() 〈 〉(ϕ,ψ)⇒ ϕ ψ. This direction is quite similar to the right-to-
left direction of Lemma 6.14, where we showed that HC(∗) (i.e. the proof system of SL(∗, x ↪→))
enjoy the ∗-simulation property. The central property that allows us to carry out the proof is
the one of disjoint formulae. To depict the usefulness of this property, let us pick two disjoint
formulae χ1 and χ2, and let us suppose that ϕ = ♦=1χ1 ∧ ♦≥2χ2 whereas ψ = ♦=2χ1. So,
by definition, 〈 〉(ϕ,ψ) is equivalent to the formula ♦=3χ1 ∧ ♦≥2χ2. As a first step, we rely

356 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

on (I−∗7.15.4) to derive �χ1 �χ2 (�¬χ1 ∧ �¬χ2), which in a sense allows us to separate worlds
satisfying χ1 from the ones satisfying χ2. Since χ1 and χ2 are disjoint formulae, �χ2 ⇒ �¬χ1
is valid, which allows us to show that `HGML() �χ2 (�¬χ1 ∧ �¬χ2) ⇒ �¬χ1. This allows us
enrich the left hand side of �χ1 �χ2 (�¬χ1 ∧ �¬χ2) with all the literals of 〈 〉(ϕ,ψ) of the
form ♦≥kχ1 or ¬♦≥kχ1. We can do the same with χ2, and obtain a derivation in HGML() of

〈 〉(ϕ,ψ)⇒ (�χ1 ∧ ♦=3χ1) (�χ2 ∧ ♦≥2χ2) (�¬χ1 ∧�¬χ2).

We can now apply the axiom (I−∗7.15.2) locally, on the subformulae�χ1∧♦=3χ1 and�χ2∧♦≥2χ2, in
order to derive formulae that follow the definitions of ϕ and ψ. More precisely, from �χ1∧♦=3χ1
we derive the formula (�χ1 ∧ ♦=1χ1) (�χ1 ∧ ♦=2χ1), where we notice that the left hand side
contains ♦=1χ1 from ϕ, whereas the right hand side contains ♦=2χ1 from ψ. By relying on the
commutativity and associativity of , this allows us to derive:

`HGML() 〈 〉(ϕ,ψ)⇒
(
(�χ1 ∧ ♦=1χ1) (�χ2 ∧ ♦≥2χ2)

) (
(�χ1 ∧ ♦=2χ1) (�¬χ1 ∧�¬χ2)

)
Again thanks to the disjointness of χ1 and χ2, we show that the (�χ1 ∧♦=1χ1) (�χ2 ∧♦≥2χ2)
entails ϕ, whereas (�χ1∧♦=2χ1) (�¬χ1∧�¬χ2) entails ψ, allowing us to derive 〈 〉(ϕ,ψ)⇒ ϕ ψ.

Below, we generalise these manipulations for arbitrary formulae ϕ and ψ. We assume
〈 〉(ϕ,ψ) to be satisfiable, as otherwise form the completeness of HGML with respect to GML we
are able to derive `HGML() 〈 〉(ϕ,ψ)⇒⊥, which then allows us to show `HGML() 〈 〉(ϕ,ψ)⇒ ϕ ψ

by pure propositional reasoning. We also remind the reader that ϕ and ψ are assumed satisfiable.

Step 1, partitioning the formula. Given χ in Φ, we write ATOM(χ) for the formula:

ATOM(χ) def= �χ ∧
∧
{♦≥jχ | ♦≥jχ ⊆LIT 〈 〉(ϕ,ψ)} ∧

∧
{¬♦≥jχ | ¬♦≥jχ ⊆LIT 〈 〉(ϕ,ψ)}.

Roughly speaking, ATOM(χ) contains all the literals of 〈 〉(ϕ,ψ) featuring the formula χ, together
with the formula �χ. Notice that ATOM(χ) can be equal to �χ, for instance in the case where
χ does not appear in ϕ or ψ, and thus neither in 〈 〉(ϕ,ψ). Let Φ = {χ1, . . . , χn}. In this step
of the proof, we aim at showing that the following formula is derivable in HGML():

〈 〉(ϕ,ψ)⇒ ATOM(χ1) · · · ATOM(χn) (�¬χ1 ∧ · · · ∧�¬χn). (†)

Given i ∈ [1, n], we write γ(1)
i for �χi. By (I−∗7.15.4), `HGML() γ

(1)
1 · · · γ(1)

n (�¬χ1 ∧ · · · ∧�¬χn),
and thus by propositional reasoning we have

`HGML() 〈 〉(ϕ,ψ)⇒ γ
(1)
1 · · · γ(1)

n (�¬χ1 ∧ · · · ∧�¬χn).

We now rely on 〈 〉(ϕ,ψ) to add to every γ
(1)
i all the missing literals appearing in ATOM(χi).

We add the literals progressively, building a sequence of formulae

γ
(1)
1 · · · γ(1)

n (�¬χ1 ∧ · · · ∧�¬χn),
γ

(2)
1 · · · γ(2)

n (�¬χ1 ∧ · · · ∧�¬χn),
. . .
γ

(k)
1 · · · γ(k)

n (�¬χ1 ∧ · · · ∧�¬χn),

where for all j ∈ [1, k] we have `HGML() 〈 〉(ϕ,ψ)⇒ γ
(j)
1 · · · γ(j)

n (�¬χ1 ∧ · · · ∧�¬χn), and for
all i ∈ [1, n] and j′ ∈ [1, j], γ(j′)

i ⊆LIT γ
(j)
i . As we obtain γki = ATOM(χi) (up to associativity

and commutativity of ∧), this allows us to prove (†) within HGML(). Below, we assume that

`HGML() 〈 〉(ϕ,ψ)⇒ γ
(j)
1 · · · γ(j)

n (�¬χ1 ∧ · · · ∧�¬χn)

7.5. Syntactical Elimination of the Composition Operator 357

holds, and consider i ∈ [1, n] such that γ(j)
i is missing a literal L of ATOM(χi). We show that

`HGML() 〈 〉(ϕ,ψ)⇒ γ
(j)
1 · · · (γ(j)

i ∧ L) · · · γ(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

by case analysis on L, concluding the proof of (†).
case: L = ¬♦≥kχi. By definiton of ATOM(χi), L ⊆LIT 〈 〉(ϕ,ψ). So,

1 〈 〉(ϕ,ψ)⇒ γ
(j)
1 · · · γ(j)

n (�¬χ1 ∧ · · · ∧�¬χn) Hypothesis

2 〈 〉(ϕ,ψ)⇒ ¬♦≥kχi PC

3 γ
(j)
i ⇒ (γ(j)

i ∧ ♦≥kχi) ∨ (γ(j)
i ∧ ¬♦≥kχi) PC

4 γ
(j)
1 · · · γ(j)

n (�¬χ1 ∧ · · · ∧�¬χn)⇒

γ
(j)
i γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn) (C

assoc), (C
com)

5 γ
(j)
i γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒(

(γ(j)
i ∧ ♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

)
∨
(
(γ(j)
i ∧ ¬♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

)
(C), 3, (C

dist)

6 γ
(j)
i ∧ ♦≥kχi ⇒ ♦≥kχi PC

7 γ
(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒ > PC

8 (γ(j)
i ∧♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧. . .∧�¬χn)⇒ ♦≥kχi >(ILR), 6, 7

9 ♦≥kχi > ⇒ ♦≥kχi (I−∗7.15.1), ♦≥0χi =>

10 (γ(j)
i ∧♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧. . .∧�¬χn)⇒ ♦≥kχi (⇒Tr), 8, 9

11 γ
(j)
i γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒

♦≥kχi

∨
(
(γ(j)
i ∧ ¬♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

)
PC, 5, 10

12 〈 〉(ϕ,ψ)⇒(
(γ(j)
i ∧ ¬♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

)
PC, 1, 2, 4, 11

13 〈 〉(ϕ,ψ)⇒ γ
(j)
1 · · · (γ(j)

i ∧ L) · · · γ(j)
n (�¬χ1 ∧ · · · ∧�¬χn) PC, (C

assoc), (C
com), 12

case: L = ♦≥kχi. In this case, ♦≥kχi ⊆LIT 〈 〉(ϕ,ψ). We rely on the disjointness of the formulae
in Φ. Recall that for every l ∈ [1, n] different from i, χi ∧ χl is unsatisfiable, which entails the
validity of the formula �χl ⇒ �¬χi in GML. As χi and χl are formulae in GML, and �χl =
γ

(1)
l ⊆LIT γ

(j)
l , this allows us to derive `HGML() γ

(j)
l ⇒ �¬χi directly from the completeness

of HGML (Theorem 7.6). Moreover, by definition of � and axiom (C
¬grad), `HGML() �¬χi

�¬χi ⇒ �¬χi. This allows us to conclude that
`HGML() γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒ �¬χi.

The proof proceeds as follows:

1 〈 〉(ϕ,ψ)⇒ γ
(j)
1 · · · γ(j)

n (�¬χ1 ∧ · · · ∧�¬χn) Hypothesis

2 〈 〉(ϕ,ψ)⇒ ♦≥kχi PC

358 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

3 γ
(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒ �¬χi See above

4 γ
(j)
i ⇒ (γ(j)

i ∧ ♦≥kχi) ∨ (γ(j)
i ∧ ¬♦≥kχi) PC

5 γ
(j)
1 · · · γ(j)

n (�¬χ1 ∧ · · · ∧�¬χn)⇒

γ
(j)
i γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn) (C

assoc), (C
com)

6 γ
(j)
i γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒(

(γ(j)
i ∧ ♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

)
∨
(
(γ(j)
i ∧ ¬♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

)
(C), 4, (C

dist)

7 γ
(j)
i ∧ ¬♦≥kχi ⇒ ¬♦≥kχi PC

8 (γ(j)
i ∧ ♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒

¬♦≥kχi �¬χi (ILR), 3, 7

9 ¬♦≥kχi �¬χi ⇒ ¬♦≥kχi (C
¬grad), def. of �

10 (γ(j)
i ∧ ¬♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒

¬♦≥kχi (⇒Tr), 8, 9

11 γ
(j)
i γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)⇒(

(γ(j)
i ∧ ♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

)
∨¬♦≥kχi PC, 6, 10

12 〈 〉(ϕ,ψ)⇒(
(γ(j)
i ∧ ♦≥kχi) γ

(j)
1 · · · γ(j)

i−1 γ
(j)
j+1 · · · γ

(j)
n (�¬χ1 ∧ · · · ∧�¬χn)

)
PC, 1, 2, 5, 11

13 〈 〉(ϕ,ψ)⇒ γ
(j)
1 · · · (γ(j)

i ∧ L) · · · γ(j)
n (�¬χ1 ∧ · · · ∧�¬χn) PC, (C

assoc), (C
com), 12

Step 2, splitting the atoms. In the previous step, we have shown that

`HGML() 〈 〉(ϕ,ψ)⇒ ATOM(χ1) · · · ATOM(χn) (�¬χ1 ∧ · · · ∧�¬χn).

In this step, we focus on a single formula ATOM(χi) (i ∈ [1, n]), and show that the following
formula is derivable in HGML():

ATOM(χi)⇒ Aϕ(χi) Aψ(χi), (‡)

where, given γ among ϕ and ψ, Aγ(χi) is defined as the formula

Aγ(χi) def= �χi ∧
∧
{♦≥jχi | ♦≥jχi ⊆LIT γ} ∧

∧
{¬♦≥jχi | ¬♦≥jχi ⊆LIT γ}.

Essentially, Aγ(χi) contains all the literals of LIT(γ) featuring the formula ♦≥jχi, together with
the formula �χi. In order to show (‡), we first establish an easier entailment. Let us introduce
the values kϕ and kϕ defined as follows:

kϕ = max({k | ♦≥kχi ⊆LIT ϕ} ∪ {0}), kϕ = min({k | ♦≥kχi ⊆LIT ϕ} ∪ {k1 + 1}).

Informally, the value kϕ represent the greatest coefficient for graded modalities such that ♦≥kϕχi
occurs positively in ϕ. If no such coefficient exists, kϕ = 0. Similarly, kϕ is the smallest coefficient
for a graded modality such that ¬♦≥kϕχi ⊆LIT ϕ. If ϕ does not have any subformula of the form
¬♦≥kχi, then kϕ = k1 + 1, which is an upper bound to all the coefficients of graded modalities

7.5. Syntactical Elimination of the Composition Operator 359

appearing at the top level of ϕ, since ϕ is a conjunction of core formulae from Core(Φ, k1, P).
We do the same for the formula ψ, and introduce:

kψ = max({k | ♦≥kχi ⊆LIT ψ} ∪ {0}), kψ = min({k | ♦≥kχi ⊆LIT ψ} ∪ {k2 + 1}).

It is quite easy to see that

`HGML() ATOM(χi)⇒ ♦≥kϕ+kψχi. (η)

Indeed, if kϕ = 0 and kψ = 0, then the proof follows by propositional reasoning, as ♦≥kϕ+kψχi is
defined as >. Otherwise, suppose kϕ + kψ ≥ 1. In this case, we have ♦≥kϕ+kψχi ⊆LIT 〈 〉(ϕ,ψ)
(see first two lines of the definition of 〈 〉(ϕ,ψ), Figure 7.7). By definition of ATOM(χi), we derive
♦≥kϕ+kψχi ⊆LIT ATOM(χi). By propositional reasoning, `HGML() ATOM(χi)⇒ ♦≥kϕ+kψχi.

Now, let us define the formula U(ϕ) which is defined as follows:

U(ϕ) def=

♦≥kϕχi if there is no k ∈ N such that¬♦≥kχi ⊆LIT ϕ

♦≥kϕχi ∧ ¬♦≥kϕχi otherwise

The formula U(ψ) is defined in a similar way. Before tackling the derivation of (‡), we show that
`HGML() ATOM(χi)⇒ U(ϕ) U(ψ). The proof is by cases on the shape of U(ϕ) and U(ψ).
case: U(ϕ) = ♦≥kϕχi and U(ψ) = ♦≥kψχi. We have,

1 ATOM(χi)⇒ ♦≥kϕ+kψχi (η)

2 ♦≥kϕ+kψχi ⇒ ♦≥kϕχi PC, repeated (IGML
1)

3 ♦≥kϕχi ⇒ ♦=kϕχi > (I−∗7.15.2)

4 > ⇒ ♦≥kψχi ∨ ¬♦≥kψχi PC

5 ♦=kϕχi > ⇒ (♦≥kψχi ∨ ¬♦≥kψχi) ♦=kϕχi (C
com), (C), 4

6 (♦≥kψχi ∨ ¬♦≥kψχi) ♦=kϕχi ⇒ (♦≥kψχi ♦=kϕχi) ∨ (¬♦≥kψχi ♦=kϕχi) (C
dist)

7 ♦=kϕχi ⇒ ¬♦kϕ+1χi PC, def. of ♦=kϕχi

8 ¬♦≥kψχi ♦=kϕχi ⇒ ¬♦≥kϕ+1χi ¬♦≥kψχi (C
com), (C), 7

9 ¬♦≥kϕ+1χi ¬♦≥kψχi ⇒ ¬♦≥kϕ+kψχi (C
¬grad)

10 ¬♦≥kψχi ♦=kϕχi ⇒ ¬♦≥kϕ+kψχi (⇒Tr), 8, 9

11 (♦≥kψχi ∨ ¬♦≥kψχi) ♦=kϕχi ⇒ (♦≥kψχi ♦=kϕχi) ∨ ¬♦≥kϕ+kψχi PC, 6, 10

12 ♦≥kϕχi ⇒ (♦≥kψχi ♦=kϕχi) ∨ ¬♦≥kϕ+kψχi (⇒Tr), 3, 5, 11

13 ♦≥kϕ+kψχi ⇒ ♦≥kψχi ♦=kϕχi PC, 2, 12

14 ♦=kϕχi ⇒ ♦kϕχi PC, def. of ♦=kϕχi

15 ♦≥kψχi ♦=kϕχi ⇒ ♦≥kϕχi ♦≥kψχi (C
com), (C), 14

16 ATOM(χi)⇒ ♦≥kϕχi ♦≥kψχi︸ ︷︷ ︸
U(ϕ) U(ψ)

(⇒Tr), 1, 13, 15

case: U(ϕ) = ♦≥kϕχi ∧ ¬♦≥kϕχi and U(ψ) = ♦≥kψχi. In the previous case of the proof, we
have shown that ♦≥kϕ+kψχi ⇒ ♦≥kψχi ♦=kϕχi is a theorem of HGML() (line 13). Since ϕ
is satisfiable, we have kϕ < kϕ. By repeated applications of (IGML

1) and propositional reason-

360 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

ing, this allows us conclude that `HGML() ♦=kϕχi ⇒ ♦≥kϕχi∧¬♦≥kϕχi. The proof then carries
out as follows:

1 ATOM(χi)⇒ ♦≥kϕ+kψχi (η)

2 ♦≥kϕ+kψχi ⇒ ♦≥kψχi ♦=kϕχi See above

3 ♦=kϕχi ⇒ ♦≥kϕχi ∧ ¬♦≥kϕχi See above

4 ♦≥kψχi ♦=kϕχi ⇒ (♦≥kϕχi ∧ ¬♦≥kϕχi) ♦≥kψχi (C
com), (C), 3

5 ATOM(χi)⇒ (♦≥kϕχi ∧ ¬♦≥kϕχi) ♦≥kψχi︸ ︷︷ ︸
U(ϕ) U(ψ)

(⇒Tr), 1, 2, 4

case: U(ψ) = ♦≥kψχi ∧ ¬♦≥kψχi and U(ϕ) = ♦≥kϕχi. Symmetrical to the previous case. We
rely on the commutativity of the composition operator (axiom (C

com)).
case: U(ϕ) = ♦≥kϕχi ∧ ¬♦≥kϕχi and U(ψ) = ♦≥kψχi ∧ ¬♦≥kψχi. In this case, by definition of
〈 〉(ϕ,ψ), we have ¬♦≥kϕ+kψ .−1χi ⊆LIT 〈 〉(ϕ,ψ). Thus, by definition of ATOM(χ1), we derive
¬♦≥kϕ+kψ .−1χi ⊆LIT ATOM(χi). Together with (η), this allows us to conclude that

`HGML() ATOM(χi)⇒ ♦≥kϕ+kψχi ∧ ¬♦≥kϕ+kψ .−1χi.
Since ϕ and ψ are satisfiable, necessarily kϕ < kϕ and kψ < kψ. Therefore, kϕ+kψ < kϕ+kψ .−1.
Let us consider a pointed forest (K,w), where K = (W, R,V). We have,
(K,w) |= ♦≥kϕ+kψχi ∧ ¬♦≥kϕ+kψ .−1χi iff card({w′ ∈ R(w) | (K,w′) |= χi}) ∈ [kϕ + kψ, kϕ + kψ

.− 2].

This implies that ♦≥kϕ+kψχi ∧ ¬♦≥kϕ+kψ .−1χi is equivalent to
∨
j∈[kϕ+kψ ,kϕ+kψ .−2] ♦=jχi. By

completeness of HGML with respect to GML, we conclude that
`HGML() (♦≥kϕ+kψχi ∧ ¬♦≥kϕ+kψ .−1χi)⇔

∨
j∈[kϕ+kψ ,kϕ+kψ .−2] ♦=jχi.

Therefore, in order to conclude that ATOM(χi) ⇒ U(ϕ) U(ψ), it is sufficient to show that for
every j ∈ [kϕ + kψ, kϕ + kψ

.− 2], `HGML() ♦=jχi ⇒ U(ϕ) U(ψ). Let j ∈ [kϕ + kψ, kϕ + kψ
.− 2].

As kϕ < kϕ and kψ < kψ, there are j1 ∈ [kϕ, kϕ− 1] and j2 ∈ [kψ, kψ − 1] such that j1 + j2 = j.
Let us show that `HGML() ♦=j1+j2χi ⇒ ♦=j1χ1 ♦=j2χ. To do so, we rely on the theorem
♦≥j1+j2χi ⇒ ♦≥j1χi ♦=j2χi of HGML(), showed in the first case of the proof (where it was
derived for j1 = kψ and j2 = kϕ, but its derivation is analogous for all natural numbers).

1 ♦=j1+j2χi ⇒ ♦≥j1+j2χi PC, def. of ♦=j1+j2χ

2 ♦≥j1+j2χi ⇒ ♦≥j1χi ♦=j2χi See above

3 ♦=j1+j2χi ⇒ ♦≥j1χi ♦=j2χi (⇒Tr), 1, 2

4 ♦≥j1χi ⇒ (♦≥j1χi ∧ ¬♦≥j1+1χi) ∨ (♦≥j1χi ∧ ♦≥j1+1χi) PC

5 ♦≥j1χi ∧ ♦≥j1+1χi ⇒ ♦≥j1+1χi PC

6 ♦≥j1χi ⇒ (♦≥j1χi ∧ ¬♦≥j1+1χi) ∨ ♦≥j1+1χi PC, 5

7 ♦≥j1χi ♦=j2χi ⇒
(
(♦≥j1χi ∧ ¬♦≥j1+1χi) ∨ ♦≥j1+1χi

)
♦=j2χi (C), 6

8
(
(♦≥j1χi ∧ ¬♦≥j1+1χi) ∨ ♦≥j1+1χi

)
♦=j2χi ⇒(

(♦≥j1χi ∧ ¬♦≥j1+1χi) ♦=j2χi
)
∨
(
♦≥j1+1χi ♦=j2χi

)
(C
dist)

7.5. Syntactical Elimination of the Composition Operator 361

9 ♦=j2χi ⇒ ♦≥j2χi PC, def. of ♦=j2χ

10 ♦≥j1+1χi ♦=j2χi ⇒ ♦≥j2χi ♦≥j1+1χi (C
com), (⇒Tr), 9

11 ♦≥j2χi ♦≥j1+1χi ⇒ ♦≥j1+j2+1χi (I−∗7.15.1)

12 ♦≥j1+1χi ♦=j2χi ⇒ ♦≥j1+j2+1χi (⇒Tr), 10, 11

13
(
(♦≥j1χi ∧ ¬♦≥j1+1χi) ∨ ♦≥j1+1χi

)
♦=j2χi ⇒(

(♦≥j1χi ∧ ¬♦≥j1+1χi) ♦=j2χi
)
∨ ♦≥j1+j2+1χi PC, 12

14 ♦=j1+j2χi ⇒
(
(♦≥j1χi ∧ ¬♦≥j1+1χi) ♦=j2χi

)
∨ ♦≥j1+j2+1χi (⇒Tr), 3, 7, 13

15 ♦=j1+j2χi ⇒ ¬♦≥j1+j2+1χi PC, def. of ♦=j1+j2χ

16 ♦=j1+j2χi ⇒ (♦≥j1χi ∧ ¬♦≥j1+1χi︸ ︷︷ ︸
♦=j1χi

) ♦=j2χi PC, 14, 15

Since j1 ∈ [kϕ, kϕ − 1], by propositional reasoning and repeated use of (C
¬grad) we derive

`HGML() ♦=j1χi ⇒ ♦≥kϕχi ∧ ¬♦≥kϕχi︸ ︷︷ ︸
U(ϕ)

.

Similarly, from j2 ∈ [kψ, kψ − 1], we have `HGML() ♦=j2χi ⇒ U(ψ). By (ILR), we conclude
that ♦=j1χi ♦=j2χi ⇒ U(ϕ) U(ψ), which together with `HGML() ♦=jχi ⇒ χi ♦=j2χi allows us
to derive `HGML() ♦=jχi ⇒ U(ϕ) U(ψ), by (⇒Tr).

This conclude the proof that `HGML() ATOM(χi) ⇒ U(ϕ) U(ψ). Since �χi ⊆LIT ATOM(χi),
by propositional reasoning together with the axiom (I−∗7.15.3) we have,

`HGML() ATOM(χi)⇒ (�χi ∧ U(ϕ)) (�χi ∧ U(ψ)). (χ)

To conclude the proof of (‡), it is now sufficient to show `HGML() �χi ∧ U(ϕ) ⇒ Aϕ(χi) and
`HGML() �χi ∧ U(ψ) ⇒ Aψ(χi). Indeed, (‡) then follows by (ILR) and (⇒Tr), from (χ). We
show that `HGML() �χi∧U(ϕ)⇒ Aϕ(χi) by proving `HGML() �χi∧U(ϕ)⇒ L for every literal L
in LIT(Aϕ(χi)). We reason by cases on L.
case: L = �χi. Straightforward.

case: L = ♦≥kχi. By definition of U(ϕ), we have ♦≥kϕχi ⊆LIT U(ϕ), where kϕ ≥ k. Then,
`HGML() �χi∧U(ϕ)⇒ L follows by propositional reasoning together with repeated application
of the axiom (IGML

1).

case: L = ¬♦≥kχi. In this case, by definition of U(ϕ), ¬♦≥kϕχi ⊆LIT U(ϕ), where k ≥ kϕ.
Again, `HGML() �χi ∧ U(ϕ) ⇒ L follows by propositional reasoning together with repeated
applications of the axiom (IGML

1) (more precisely its contrapositive, i.e. ¬♦≥kϕ⇒ ¬♦≥k+1ϕ).
The proof of `HGML() �χi ∧ U(ψ)⇒ Aψ(χi) is analogous.

Step 3, building ϕ and ψ. Recapitulating the previous two steps, we first showed that
`HGML() 〈 〉(ϕ,ψ) ⇒ ATOM(χ1) · · · ATOM(χn) (�¬χ1 ∧ · · · ∧ �¬χn) (i.e. (†)) and later dis-
cussed how, for all i ∈ [1, n], `HGML() ATOM(χi) ⇒ Aϕ(χi) Aψ(χi) (i.e. (‡)) Together with the
commutativity and associativity of the composition operator (axioms (C

assoc) and (C
com)), and the

inference rule (C), this allows us to conclude that

`HGML() 〈 〉(ϕ,ψ)⇒
(

Aϕ(χ1) · · · Aϕ(χn)
) (

Aψ(χ1) · · · Aψ(χn)
)

(�¬χ1 ∧ · · · ∧�¬χn). (δ)

362 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

We now complete the derivation of `HGML() 〈 〉(ϕ,ψ)⇒ ϕ ψ. First, let us define the formula

ALMOST(ϕ) =
∧
{♦≥kχ | ♦≥kχ ⊆LIT ϕ} ∧

∧
{¬♦≥kχ | ¬♦≥kχ ⊆LIT ϕ}.

Essentially, ALMOST(ϕ) is the formula obtained from ϕ by removing every occurrence of atomic
propositions non appearing inside a graded modality. We also define ALMOST(ψ), in a similar
way. We show that

`HGML() Aϕ(χ1) · · · Aϕ(χn)⇒ ALMOST(ϕ).

As usual, we prove this result by showing that `HGML() Aϕ(χ1) · · · Aϕ(χn)⇒ L holds for every
literal L ⊆LIT ALMOST(ϕ), by cases on L. Yet again, the notion of disjoint formulae is essential.
case: L = ♦≥kχ. By definition of ALMOST(ϕ) and ϕ, there is i ∈ [1, n] such that χ = χi.

Moreover, by definition of Aϕ(χi), we have ♦≥kχi ⊆LIT Aϕ(χi). Then,

1 Aϕ(χi)⇒ ♦≥kχi PC, see above

2 Aϕ(χ1) · · · Aϕ(χn)⇒

Aϕ(χi)
(
Aϕ(χ1) · · · Aϕ(χi−1) Aϕ(χi+1) · · · Aϕ(χn)

)
(C
assoc), (C

com)

3 Aϕ(χ1) · · · Aϕ(χi−1) Aϕ(χi+1) · · · Aϕ(χn)⇒ > PC

4 Aϕ(χi)
(
Aϕ(χ1) · · · Aϕ(χi−1) Aϕ(χi+1) · · · Aϕ(χn)

)
⇒ ♦≥kχi > (ILR)

5 ♦≥kχi > ⇒ ♦≥kχi (I−∗7.15.1), as ♦≥0χi is >

6 Aϕ(χ1) · · · Aϕ(χn)⇒ ♦≥kχi (⇒Tr), 2, 4, 5

case: L = ¬♦≥kχ. Again, by definition of ALMOST(ϕ) and ϕ, there is i ∈ [1, n] such that
χ = χi. Moreover, by definition of Aϕ(χi), we have ¬♦≥kχi ⊆LIT Aϕ(χi). In this case,
we rely on the disjointness of the formulae in Φ. Recall that for every l ∈ [1, n] different
from i, χi ∧ χl is unsatisfiable, and moreover �χl ⊆LIT Aϕ(χl). As χi and χl are formulae
in GML, this allows us to derive `HGML() Aϕ(χl) ⇒ �¬χi directly from the completeness
of HGML (Theorem 7.6). Moreover, by definition of � together with the axiom (C

¬grad),
`HGML() �¬χi �¬χi ⇒ �¬χi. This allows us to conclude that

`HGML() Aϕ(χ1) · · · Aϕ(χi−1) Aϕ(χi+1) · · · Aϕ(χn)⇒ �¬χi.
The proof proceeds as follows:

1 Aϕ(χ1) · · · Aϕ(χi−1) Aϕ(χi+1) · · · Aϕ(χn)⇒ �¬χi See above

2 Aϕ(χi)⇒ ¬♦≥kχi PC, see above

3 Aϕ(χ1) · · · Aϕ(χn)⇒

Aϕ(χi)
(
Aϕ(χ1) · · · Aϕ(χi−1) Aϕ(χi+1) · · · Aϕ(χn)

)
(C
assoc), (C

com)

4 Aϕ(χi)
(
Aϕ(χ1) · · · Aϕ(χi−1) Aϕ(χi+1) · · · Aϕ(χn)

)
⇒

¬♦≥kχi �¬χi (ILR), 1, 2

5 ¬♦≥kχi �¬χi ⇒ ¬♦≥kχi (C
¬grad) PC, def. of �¬χi

6 Aϕ(χ1) · · · Aϕ(χn)⇒ ¬♦≥kχi (⇒Tr), 3, 4, 5

7.5. Syntactical Elimination of the Composition Operator 363

This concludes the proof of `HGML() Aϕ(χ1) · · · Aϕ(χn) ⇒ ALMOST(ϕ). In a similar way one
can show that `HGML() Aψ(χ1) · · · Aψ(χn)⇒ ALMOST(ψ). Thanks to (ILR), we conclude that
the following formula is derivable within HGML():(

Aϕ(χ1) · · · Aϕ(χn)
) (

Aψ(χ1) · · · Aψ(χn)
)

(�¬χ1 ∧ · · · ∧�¬χn)⇒
ALMOST(ϕ) (ALMOST(ψ) (�¬χ1 ∧ · · · ∧�¬χn))

We show that `HGML() ALMOST(ψ) (�¬χ1 ∧ · · · ∧ �¬χn) ⇒ ALMOST(ψ) which, directly from
the formula above and (δ), allows us to conclude (by propositional reasoning and (ILR)) that

`HGML() 〈 〉(ϕ,ψ)⇒ ALMOST(ϕ) ALMOST(ψ).

The proof of `HGML() ALMOST(ψ) (�¬χ1 ∧ · · · ∧ �¬χn) ⇒ ALMOST(ψ) is quite similar to
the proof of `HGML() Aϕ(χ1) · · · Aϕ(χn) ⇒ ALMOST(ϕ). Given L ⊆LIT ALMOST(ψ), we show
that `HGML() ALMOST(ψ) (�¬χ1 ∧ · · · ∧�¬χn)⇒ L, by cases on L.
case: L = ♦≥kχ. We have,

1 ALMOST(ψ)⇒ ♦≥kχ PC

2 �¬χ1 ∧ · · · ∧�¬χn ⇒ > PC

3 ALMOST(ψ) (�¬χ1 ∧ · · · ∧�¬χn)⇒ ♦≥kχ > (⇒Tr), 1, 2

4 ♦≥kχ > ⇒ ♦≥kχ (I−∗7.15.1), as ♦≥0χ is >

5 ALMOST(ψ) (�¬χ1 ∧ · · · ∧�¬χn)⇒ ♦≥kχ (⇒Tr), 3, 4

case: L = ¬♦≥kχ. By definition of ALMOST(ψ) and ψ, there is i ∈ [1, n] such that χ = χi.
Thus, the proof follows thanks to (C

¬grad), as shown below:

1 ALMOST(ψ)⇒ ¬♦≥kχi PC

2 �¬χ1 ∧ · · · ∧�¬χn ⇒ �¬χi PC

3 ALMOST(ψ) (�¬χ1 ∧ · · · ∧�¬χn)⇒ ¬♦≥kχi �¬χi (⇒Tr), 1, 2

4 ¬♦≥kχi �¬χi ⇒ ¬♦≥kχi (C
¬grad) PC, def. of �¬χi

5 ALMOST(ψ) (�¬χ1 ∧ · · · ∧�¬χn)⇒ ¬♦≥kχi (⇒Tr), 3, 4

We conclude that the formula 〈 〉(ϕ,ψ)⇒ ALMOST(ϕ) ALMOST(ψ) is derivable in HGML().
In view of the definitions of ALMOST(ϕ) and ALMOST(ψ), the formulae ϕ and ψ are respec-

tively equal (up to commutativity and associativity of ∧) to two formulae ALMOST(ϕ) ∧ ϕAP
and ALMOST(ψ) ∧ ψAP, where the formulae ϕAP and ψAP are conjunctions of possibly negated
atomic propositions. More precisely,

ϕAP
def=
∧
{p | p ⊆LIT ϕ} ∧

∧
{¬p | ¬p ⊆LIT ϕ},

with ψAP being similarly defined. By definition of 〈 〉(ϕ,ψ) we have ϕAP ∧ ψAP ⊆LIT 〈 〉(ϕ,ψ).
Below, let ϕ(1) = ALMOST(ϕ) and ψ(1) = ALMOST(ψ). So, `HGML() 〈 〉(ϕ,ψ) ⇒ ϕ(1) ψ(1).
Below, we add to ϕ(1) and ψ(1) every literal from ϕAP and ψAP, respectively. We add the literal
progressively, building a sequence of formulae ϕ(1) ψ(1), . . . , ϕ(k) ψ(k), where for all j ∈ [1, k] we
have `HGML() 〈 〉(ϕ,ψ) ⇒ ϕ(j) ψ(j) and for all i ∈ [1, j], ϕ(i) ⊆LIT ϕ(j) and ψ(i) ⊆LIT ψ(j). As

364 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

we obtain ϕ(k) = ALMOST(ϕ) ∧ ϕAP and ψ(k) = ALMOST(ψ) ∧ ψAP, from the associativity and
commutativity of ∧, we derive that

`HGML() 〈 〉(ϕ,ψ)⇒ ϕ ψ

concluding the proof. Thus, let us assume that `HGML() 〈 〉(ϕ,ψ) ⇒ ϕ(j) ψ(j) and consider a
literal L ⊆LIT ϕAP that does not appear in ϕ(j). We show `HGML() 〈 〉(ϕ,ψ)⇒ (ϕ(j) ∧ L) ψ(j),
by case analysis on L.
case: L = p. We have p ⊆LIT 〈 〉(ϕ,ψ). So,

1 〈 〉(ϕ,ψ)⇒ ϕ(j) ψ(j) Hypothesis

2 〈 〉(ϕ,ψ)⇒ p PC, see above

3 ϕ(j) ⇒ (ϕ(j) ∧ p) ∨ (ϕ(j) ∧ ¬p) PC

4 ϕ(j) ψ(j) ⇒
(
(ϕ(j) ∧ p) ∨ (ϕ(j) ∧ ¬p)

)
ψ(j) (C), 3

5
(
(ϕ(j) ∧ p) ∨ (ϕ(j) ∧ ¬p)

)
ψ(j) ⇒

(
(ϕ(j) ∧ p) ψ(j)) ∨ ((ϕ(j) ∧ ¬p) ψ(j)) (C

dist)

6 ϕ(j) ψ(j) ⇒
(
(ϕ(j) ∧ p) ψ(j)) ∨ ((ϕ(j) ∧ ¬p) ψ(j)) (⇒Tr), 4, 5

7 ϕ(j) ∧ ¬p⇒ ¬p PC

8 ψ(j) ⇒ > PC

9 (ϕ(j) ∧ ¬p) ψ(j) ⇒ ¬p > (ILR), 7, 8

10 ¬p > ⇒ ¬p (C
mono)

11 (ϕ(j) ∧ ¬p) ψ(j) ⇒ ¬p (⇒Tr), 9, 10

12 ϕ(j) ψ(j) ⇒
(
(ϕ(j) ∧ p) ψ(j)) ∨ ¬p PC, 6, 11

13 〈 〉(ϕ,ψ)⇒ (ϕ(j) ψ(j)) ∧ p PC, 1, 2

14 〈 〉(ϕ,ψ)⇒ (ϕ(j) ∧ p) ψ(j) PC, 12, 13

case: L = ¬p. We have ¬p ⊆LIT 〈 〉(ϕ,ψ). This case is analogous to the previous one, by
swapping p and ¬p.

1 〈 〉(ϕ,ψ)⇒ ϕ(j) ψ(j) Hypothesis

2 〈 〉(ϕ,ψ)⇒ ¬p PC, see above

3 ϕ(j) ψ(j) ⇒
(
(ϕ(j) ∧ p) ψ(j)) ∨ ((ϕ(j) ∧ ¬p) ψ(j)) Previous case of the proof, line 6

4 ϕ(j) ∧ p⇒ p PC

5 ψ(j) ⇒ > PC

6 (ϕ(j) ∧ p) ψ(j) ⇒ p > (ILR), 4, 5

7 p > ⇒ p (C
mono)

8 (ϕ(j) ∧ p) ψ(j) ⇒ p (⇒Tr), 6, 7

9 ϕ(j) ψ(j) ⇒ p ∨
(
(ϕ(j) ∧ ¬p) ψ(j)) PC, 3, 8

10 〈 〉(ϕ,ψ)⇒ (ϕ(j) ψ(j)) ∧ ¬p PC, 1, 2

7.5. Syntactical Elimination of the Composition Operator 365

11 〈 〉(ϕ,ψ)⇒ (ϕ(j) ∧ ¬p) ψ(j) PC, 9, 10

Thanks to the commutativity of the composition operator, with analogous derivations one can
show that for every L ⊆LIT ψAP not appearing in ψ(j), `HGML() 〈 〉(ϕ,ψ)⇒ ϕ(j) (ψ(j) ∧ L).

We are now ready to state the adequateness of HGML().

Theorem 7.16 (Adequacy). A formula ϕ in ML() is valid if and only if `HGML() ϕ.

To prove this theorem, we first extend Lemma 7.14 to Boolean combinations of core formulae.

Lemma 7.17. Let ϕ and ψ be two GML formulae with topgm(ϕ) = {♦≥j1ϕ1, . . . ,♦≥jnϕn},
topgm(ψ) = {♦≥k1ψ1, . . . ,♦≥kmϕm} and where Φ = {ϕ1, . . . , ϕn}∪ {ψ1, . . . , ψn} is a set of dis-
joint formulae. We have `HGML() ϕ ψ ⇔ χ, where χ is either ⊥ or a disjunction of formulae
from Conj(Core(Φ,max(j1, . . . , jn) + max(k1, . . . , kn), topAP(ϕ) ∪ topAP(ψ))).

Proof. If either ϕ or ψ are unsatisfiable, then `HC ϕ ψ ⇔⊥. Indeed, suppose ϕ unsatisfiable
(the case where ψ is unsatisfiable is analogous). From the completeness of HGML, we have
`HGML() ϕ ⇒⊥. We show that `HC ϕ ψ ⇒⊥ (the right to left direction is straightforward, by
propositional reasoning).

1 ϕ⇒⊥ See above

2 ψ ψ ⇒ ⊥ ψ (C), 1

3 ⊥ ψ ⇒⊥ (C
zero)

4 ϕ ψ ⇒⊥ (⇒Tr), 2, 3

Otherwise, let us assume ϕ and ψ satisfiable. By proposition 7.8, ϕ is equivalent to a formula∨
i∈I1 ϕ

(i) where all ϕ(i) belong to Conj(Core({ϕ1, . . . , ϕn},max(j1, . . . , jn), topAP(ϕ))). Simi-
larly, ψ ≡

∨
i∈I2 ψ

(i) where all ψ(i) are in Conj(Core({ψ1, . . . , ψm},max(k1, . . . , km), topAP(ψ))).
By completeness of HGML, `HGML() ϕ⇔

∨
i∈I1 ϕ

(i) and `HGML() ψ ⇔
∨
i∈I2 ψ

(i). Thanks to the
axioms (C

dist) and (C
com), we can distribute over disjunctions, leading to

`HGML() ϕ ψ ⇔
∨
i1∈I1,i2∈I2(ϕ(i1) ψ(i2)).

As Φ is a set of disjoint formulae that includes ϕ1, . . . , ϕn and ψ1, . . . , ψm, given i1 ∈ I1 and
i2 ∈ I2, we can apply Lemma 7.14 to conclude that `HGML() ϕ

(i1) ψ(i2) ⇔ 〈 〉(ϕ(i1), ψ(i2)). By
propositional reasoning, we conclude: `HGML() ϕ ψ ⇔

∨
i1∈I1,i2∈I2 〈 〉(ϕ

(i1), ψ(i2)).

Proof of Theorem 7.16. The soundness of HGML() as already been established in Lemma 7.13.
As far as the completeness proof is concerned, we need to show that for every formula ϕ in ML()
there is a formula ψ in GML such that `HGML() ϕ⇔ ψ. This is enough to conclude the proof: if
ϕ is valid then from the soundness of HGML() we obtain that ψ is valid. Since HGML() extends
HGML, which is complete for GML, we have `HGML() ψ. By propositional reasoning, `HGML() ϕ.

To show that every formula ϕ has a provably equivalent formula in GML, we first notice that
the substitution of equivalent formulae holds true in HGML(), i.e. the rule below is admissible:

(S)
ψ ⇔ χ

ϕ[ψ]ρ ⇔ ϕ[χ]ρ
We already saw how to derive similar rules during Chapter 6 (e.g. at the end of both Sections 6.5
and 6.6). Briefly, the proof of admissibility carries out with a simple structural induction on ϕ,
relying on the following rules:

366 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

ϕ⇔ ψ

¬ϕ⇔ ¬ψ
ϕ⇔ ψ

(ϕ⇒ χ)⇔ (ψ ⇒ χ)
ϕ⇔ ψ

(χ⇒ ϕ)⇔ (χ⇒ ψ)
ϕ⇔ ψ

♦≥kϕ⇔ ♦≥kψ
ϕ⇔ ψ

ϕ χ⇔ ψ χ
.

The first three rules are from propositional reasoning, whereas the third one is from graded
modal logic (see rule (G), page 348). The last rule is admissible in HGML() thanks to (C). The
details of the proof of (S) are left to the reader (hint: see the proof of (S∗), Theorem 6.16).

Exactly as done in the proof of Theorem 6.16, the rule (S) allows us to prove that ϕ is
equivalent to a formula in GML by induction on the number of occurrences of the separating
conjunction is ϕ that are not involved in the definition of a graded modality ♦≥k (we recall that
♦≥kψ is a shortcut for ♦ψ · · · ♦ψ, where repeats k − 1 times).
base case: ϕ without occurrences of (excluding those used to define ♦≥k).
In this case, ϕ is already in GML.

induction step: ϕ with a > 1 occurrences of (excluding those used for ♦≥k).
Let ϕ1 ϕ2 be a subformula of ϕ, say at position ρ, such that ϕ1 and ϕ2 are formulae in
GML. Let topgm(ϕ1) = {♦≥j1χ1, . . . ,♦≥jnχn} and topgm(ϕ2) = {♦≥k1χ

′
1, . . . ,♦≥kmχ

′
m}. Let

Φ = {χ1, . . . , χn} ∪ {χ′1, . . . , χ′m}. All the formulae in topgm(ϕ1) ∪ topgm(ϕ2) belong to the
set Core(Φ,max(j1, . . . , jn, k1, . . . , km),∅), and thus by Lemma 7.11 they are equivalent to a
disjunction of formulae in Conj(Core(2Φ,max(j1, . . . , jn, k1, . . . , km),∅)). Thanks to (S), we
can derive `HGML() ϕ1 ⇔ ϕ′1 where ϕ′1 is the formula obtained from ϕ1 by substituting every
occurrence of formulae in topgm(ϕ1) not appearing under the scope of a graded modality with
the equivalent disjunction of formulae form Conj(Core(2Φ,max(j1, . . . , jn, k1, . . . , km),∅)). In
particular, topgm(ϕ′1) is a subset of Core(2Φ,max(j1, . . . , jn, k1, . . . , km),∅). Similarly, we de-
rive `HGML() ϕ2 ⇔ ϕ′2 where ϕ′2 is a formula in GML such that topgm(ϕ′2) is a subset of
Core(2Φ,max(j1, . . . , jn, k1, . . . , km),∅). By (S), we have `HGML() ϕ1 ϕ2 ⇔ ϕ′1 ϕ′2. Funda-
mentally, since 2Φ is a set of disjoint formulae (Lemma 7.10) and topgm(ϕ′1) ∪ topgm(ϕ′2) ⊆
Core(2Φ,max(j1, . . . , jn, k1, . . . , km),∅), we can apply Lemma 7.17. We conclude that `HGML()
ϕ′1 ϕ′2 ⇔ χ for some formula χ in GML. By propositional reasoning, `HGML() ϕ1 ϕ2 ⇔ χ.
Recall that ϕ1 ϕ2 is the subformula of ϕ occurring at position ρ. Thanks to the substitution
rule (S), we derive:

`HGML() ϕ⇔ ϕ[χ]ρ.
The right-hand side of the double implication above has a− 1 occurrences of the composition
operator that are not involved in the definition of graded modalities. The induction hypothesis
applies, allowing us to derive `HGML() ϕ[χ]ρ ⇔ γ, where γ is a GML formula. By propositional
reasoning, `HGML() ϕ⇔ γ.

As a by-product of the transformation into GML formulae we have just carried out, we
conclude that ML() and GML have the same expressive power, as already stated in Claim 7.5.

Corollary 7.18. ML() is as expressive as GML.

Conclusion

In Chapters 6 and 7, we presented a method to axiomatise internally spatial logics, and applied
this method to derive Hilbert-style proof systems for SL(∗,−∗) and ML(). The central object
that allows us to show the completeness of our proof system is given by the notion of core
formulae, introduced in Chapter 5. Obviously, the internal proof systems presented here are
of theoretical interest, at least to grasp what are the essential features of SL(∗,−∗) and ML().
Hilbert-style proof systems are known to offering very little guidance on which axiom to choose
and which substitution to apply during the proof-search process, making them hard to automate.
However, our hope with the proof system of SL(∗,−∗) is to give new insights on the logic, that
could in the future be applied to proof calculi that are more geared for automation.

To provide further evidence that our method based on core formulae is robust, it is desirable
to apply it to axiomatise other spatial logics, for instance by considering separation logics featur-
ing the list segment predicate ls or first-order quantification. A key step in our approach is first
to show that the logic admits a characterisation in terms of core formulae and such formulae need
to be designed adequately. Of course, it is required that the set of valid formulae is recursively
enumerable, which discards any attempt with SL(∗,−∗, ls) or SL(∃, ∗,−∗) (see Theorem 2.13
and Corollary 3.19). To this end, the second part of the paper [58], co-authored with S. Demri
and E. Lozes, introduces an extension of SL(∗, ↪→+) featuring a guarded form of quantification,
and axiomatise it by relying on the core formulae technique. The paper [57], co-authored with
S. Demri and R. Fervari, applies the method to axiomatise modal separation logics.

More separation logics could be axiomatised by relying on the core formulae approach,
other good candidates being the one-quantified variable extension of SL(∗,−∗) [55] and the
Bernays-Schönfinkel-Ramsey class of separation logic [63]. On the ambient logic side, it is known
from [104] that the guarantee operator B, i.e. the right-adjoint of the composition operator ,
does not increase the expressive power of the logic. We conjecture the same to be true for
ML(,B), i.e. ML() enriched with B, which should easily lead to a proof system for ML(,B),
again using graded modal logic as a family of core formulae.

Other proof systems for SL(∗,−∗) and ambient logic.

Surprisingly, as far as we know, sound and complete proof systems for SL(∗,−∗) are very rare and
the only system we are aware of is a tableaux-based calculus from [74] with labelled formulae
(each formula is enriched with a label to be interpreted by some heap) and with resource graphs
to encode symbolically constraints between heap expressions (i.e. labels). Of course, translations
from separation logics into logics or theories have been designed, see e.g. [35, 123], but the finding
of proof systems for SL(∗,−∗) with all Boolean connectives and the separating connectives ∗ and
−∗ has been quite challenging. Unlike [74], our proof system uses only SL(∗,−∗) formulae and

367

368 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

therefore can be viewed as a quite orthodox Hilbert-style calculus with no extra syntactic ob-
jects. In particular, HC(∗,−∗) has no syntactic machinery to refer to heaps or to other semantical
objects related to SL(∗,−∗). In [74], the resource graphs attached to the tableaux are designed
to reason about heap constraints, and to provide control for designing strategies that lead to
termination. Interestingly, the calculus in [74] is intended to be helpful to synthesize counter-
models (which is a standard feature for labelled deduction systems [72]) or to be extended to
the first-order case, which is partly done in [74] but we know that completeness is theoretically
impossible. Besides, a sound labelled sequent calculus for the first-order extension of SL(∗,−∗)
is presented in [90] but completeness for the sublogic SL(∗,−∗) is not established. The calculus
in [90] has also labels, which differs from our puristic approach. A complete sequent-style calcu-
lus for the symbolic heap fragment has been designed quite early in [10] but does not deal with
full SL(∗,−∗) (in particular it is not closed under Boolean connectives and does not contain the
separating implication). A complexity-wise optimal decision procedure for the symbolic heap
fragment is designed in [44] based on a characterisation in terms of homomorphisms.

Compared to separation logic, ambient logics received less attention when it comes to proof
systems, as numerous of its interesting components, from ambient names restrictions to temporal
operators, make the logic non-recursively enumerable. When these components are removed from
the logic, the only proof system we know of is the sequent calculus from [34]. However, in view
of the differences between the logic in [34] and ML(), it is not possible to carry out a proper
comparison between this system and the axiomatisation defined in Chapter 7.

Axiomatising knowledge logics with reduction axioms.

Let us recall that the proof systems of SL(∗,−∗) and ML() essentially simulate a bottom-up
elimination of the multiplicative connectives (∗ and −∗ for SL(∗,−∗), for ML()), leading to
Boolean combinations of core formulae for which the proof systems are also complete. As the
core formulae are (simple) formulae in SL(∗,−∗)/ML(), the axiomatisations use only formulae of
the respective logic. As a by-product of the completeness proofs, we get expressive completeness
of the two logics with respect to the corresponding Boolean combinations of core formulae. In
particular, we obtain that ML() is as expressive as graded modal logic (Corollary 7.18).

This general principle described above is similar to the one used for axiomatising dynamic
epistemic logics, in which dynamic connectives might be eliminated with the help of so-called
reduction axioms, see e.g. standard examples in [139, 138, 143, 68]. In a nutshell, every formula
containing a dynamic operator is provably reduced to a formula without such an operator.
Completeness is then established thanks to the completeness of the underlying ‘basic’ language,
A similar approach for the linear µ-calculus is recently presented in [61] for which a form of
constructive completeness is advocated, see also [105].

Part III

Mixing Multiplicative Connectives
and Modalities

369

Two Ways to Chop a Tree

During the second part of the thesis (Chapters 6 and 7), we observed interesting connections
between separation logics and ambient logics, which we made explicit through the Hilbert-style
proof systems of SL(∗,−∗) and ML(). Despite the novelty of the two proof systems, connections
between separation logics and ambient logics were already established in the early 2000s, when
the two logics were firstly introduced. For instance, the decidability of the static ambient
logic SAL considered in [34] is based on the proof technique firstly used by C. Calcagno, H. Yang
and P. W. O’Hearn in order to show the decidability of SL(∗,−∗) [33]. Similarly, in [104] E. Lozes
relies on the core formulae technique in order to study the expressiveness and minimality of both
separation logics and ambient logics.

Even though the aforementioned works rely on the same proof techniques to tackle problems
for both separation logics and ambient logics, a direct comparison between these logics is missing
or limited to a superficial analysis on the different classes of models and spatial connectives. In
this regard, we recall that the composition operator in ambient logics decomposes a tree into
two disjoint pieces such that once a node has been assigned to one submodel, all its descendants
belong to the same submodel. Instead, the separating conjunction ∗ from separation logics
simply decomposes the structures into two disjoint pieces, with no additional constraints.

Concerning their computational complexity, these types of logics can often be encoded in
monadic second-order logic MSO interpreted on tree-like structures (see Section 2.2), leading
to decidability by Rabin’s theorem [122]. However, most likely, this does not produce the best
decision procedures when it comes to solving simple reasoning tasks (recall that the satisfiability
problem of MSO interpreted on trees is Tower-complete [128]). Thus, relying on MSO as a
common umbrella to capture and understand the differences between those logical formalisms
is often not satisfactory. Of course, we should also not forget that these logics instantiate the
framework of BBI (Section 2.3.3), but following this direction will most likely lead to a limited
comparison, bounded to the abstract level of BBI. All things considered, no uniform framework
investigates exhaustively the relationships between ambient logics and separation logics.

Motivations.

In Chapters 8 and 9, we aim for an in-depth comparison between the composition operator
from static ambient logic and the separating conjunction ∗ from separation logics by identifying
a common ground in terms of logical languages and models. As a consequence, we are able to
study the effects of having these operators as far as expressivity and complexity are concerned.
To carry out our comparison, we consider ML() as an ambient logic and introduce the modal
logic ML(∗) which is obtained from ML() by replacing the composition operator with the sepa-
rating conjunction. This framework is sufficiently fundamental to give us the possibility to take

371

372 Chapter 7. Axiomatising a Modal Logic Featuring Ambient-like Composition

advantage of model theoretical tools from modal logics [51, 15, 66], and sets a common ground
for comparison that may lead to further connections with other logics.

Contribution of Chapter 8.

We continue the analysis of ML() started in Chapter 7, by looking at the computational com-
plexity of its satisfiability problem. We show that this problem is AExpPol-complete, where
AExpPol is the class of decision problems solvable by an alternating Turing machine with expo-
nential runtime and polynomial number of alternations between existential and universal states.
The AExpPol-hardness is shown by reduction from the satisfiability problem of propositional
team logic [85], another logic instantiating the framework of BBI. To solve the satisfiability prob-
lem of ML() in AExpPol, the essential step is to show that ML() enjoys an exponential-size
small model property. This is done thanks to a refined translation from ML() to graded modal
logic (GML), which we remind the reader being as expressive as ML() (Chapter 7). Afterwards,
the AExpPol-hardness follows as we show that the semantics of ML() can be internalised in the
second-order modal logic QK. Lastly, we are able to relate ML() to the intensional fragment
of static ambient logic SAL() from [34] by providing polynomial-time reductions between their
satisfiability problems. Consequently, we establish AExpPol-completeness of SAL() and the
AExpPol-hardness of SAL, refuting hints from [34, Section 6].

Contribution of Chapter 9.

We introduce ML(∗), the logic obtained from ML() by replacing the composition operator
by the separating conjunction ∗. As done for ML(), we interpret ML(∗) on Kripke-style finite
forests, which allows us to compare the two logics in terms of expressive power and complexity,
obtaining surprising results.

We show that ML(∗) is strictly less expressive than ML() and GML. Interestingly, this
development partially reuses the result for ML(), hence showing that our framework allows
us to transpose results between the two logics. To show that GML is strictly more expressive
than ML(∗), we define an ad-hoc notion of Ehrenfeucht-Fräıssé games for the logic. Very sur-
prisingly, although ML(∗) is strictly less expressive than ML(), its complexity is much higher
(not even elementary). More precisely, we show that the satisfiability problem for ML(∗) is
Tower-complete. The Tower upper bound is a consequence of Rabin’s theorem [122], whereas
hardness is shown by reduction from a Tower-complete tiling problem, adapting substantially
the Tower-hardness proof from [8] for the second-order modal logic on finite trees QKt. Lastly,
we relate ML(∗) with the modal separation logic MSL(∗,♦−1) from [54], and conclude that the
satisfiability problem of the latter logic is Tower-complete (the previous best lower bound was
PSpace, from [54]).

8

The Complexity of
the Modal Logic ML()

Contents
8.1 ML() and GML as fragments of second-order ML 377

8.1.1 Second-order modal logic. 377
8.1.2 On alternating time. 379

8.2 Checking satisfiability for ML(), in AExpPol 380
8.2.1 GML formulae in good shape. 381
8.2.2 The exponential-size small model property of ML(). 383

8.3 ML() is AExpPol-complete . 390
8.3.1 Propositional logic in team semantics. 390
8.3.2 From Propositional Team Logic to ML(). 391

8.4 An AExpPol-complete Static Ambient Logic 397
8.4.1 From SAL() to ML(). 399
8.4.2 From ML() to SAL(). 400

373

375

In this chapter
We conclude the study of ML() started in Chapter 7 and show that its satisfiability problem
is complete for AExpPol, an alternating complexity class that sits between NExpTime and
ExpSpace. The upper bound is based on an exponential-size small model property, whereas
the AExpPol-hardness follows by reduction from the satisfiability problem of propositional logic
in team semantics: another logic instantiating the framework of BBI.
The chapter ends with a brief section that formalises the connections between ML() and ambient
logic, transferring complexity results to the latter logic.

Here is a roadmap of the chapter.

Section 8.1. Roughly speaking, the algorithm that checks for the satisfiability of a formula ϕ
in ML() works by guessing a pointed forest (K,w) of size bounded by B(|ϕ|) for some function
B, and applying a model-checking procedure on inputs (K,w) and ϕ. With this in mind, the
chapter starts by looking at the model checking problem for ML(). We show that ML() is
a fragment of the second-order modal logic QK, which in turn is known to be a fragment of
monadic second-order logic (MSO). We recall the complexity of the model checking problem
for MSO with respect to ATime(f(n), g(m)), i.e. the class of languages accepted by an alternating
Turing machine with at most g(m) alternations and runtime at most f(n).

Proposition 8.4 (From [132]). There are polynomials f and g such that the model checking
problem of MSO (alternatively, QK or ML()) is in ATime(f(n), g(m)), where n is the input size
and m is the formula size.

The complexity class AExpPol is defined as the union of all ATime(f(n), g(n)) (where n is the
size of the input), over all exponential functions f and polynomial functions g. Following Propo-
sition 8.4, to prove that the satisfiability problem of ML() is decidable in AExpPol it is sufficient
to show that the function B is at most exponential in |ϕ|.

Section 8.2. We show that ML() has the aforementioned exponential-size small model prop-
erty. The proof relies on the definition of a normal form for GML formulae (Definition 8.5).
Fundamentally, the size of the smallest model satisfying a formula ϕ in normal form is bounded
by the branching degree of ϕ (Definition 8.6), which depends on the coefficients k appearing
in the graded modalities ♦≥k. We rely on properties of the axiom system HGML() introduced
in Chapter 7 to show that every formula ϕ of ML() can be translated into a GML formula ψ in
normal form. The branching degree of ψ is exponential in the size of ϕ, allowing us to conclude.

Lemma 8.10. There is a polynomial Q such that every satisfiable ϕ in ML() is satisfied by a
pointed forest of size bounded by 2Q(|ϕ|).

Section 8.3. We show that the satisfiability problem of ML() is AExpPol-hard, by reduction
from the satisfiability problem of propositional logic interpreted in team semantics [85] (PL(∼)).
A team is a set of Boolean valuations v : P → {>,⊥}, where P ⊆fin AP. Under team semantics,
propositional formulae are interpreted on a team T, and T |= ϕ ∨ ψ is satisfied whenever T can
be partitioned into two disjoint sets respectively satisfying ϕ and ψ. As such, PL(∼) can be
seen as an instantiation of BBI. The reduction from PL(∼) to ML() shows that the former logic
corresponds to the restriction of ML() to formulae of modal depth 1.

376 Chapter 8. The Complexity of the Modal Logic ML()

Theorem 8.17. The satisfiability problem for ML() is AExpPol-complete. It is already
AExpPol-hard for the fragment of ML() formulae with modal depth at most 1.

Section 8.4. Section 8.3 concludes the study of ML(). We end the chapter by going back
to ambient logic, and design semantically faithful reductions (in both directions) between the
satisfiability problem for ML() and the one for SAL(), i.e. the intensional fragment of static
ambient logic. This implies the AExpPol-completeness of the satisfiability problem for SAL(),
instead of the conjectured PSpace-completeness [34].

8.1. ML() and GML as fragments of second-order ML 377

8.1 ML() and GML as fragments of second-order ML

Chapter 7 introduces the modal logic ML(), that extends the modal logic ML with the com-
position operator from ambient logic. The logic is interpreted on Kripke-style finite forests
(Definition 7.1) and it is as expressive as graded modal logic (GML, see Corollary 7.18).

The objective of this chapter is quite simple: we continue the study of ML(), as well as its
comparison with GML, by looking at the computational complexity of its satisfiability problem.
While we refer the reader to Chapter 7 for the proper definitions of ML() and GML, we recall
below the grammar of the two logics.

ML():

ϕ := > | p | ϕ⇒ ϕ | ¬ϕ | ♦ϕ | ϕ ϕ,

GML:

ϕ := > | p | ϕ⇒ ϕ | ¬ϕ | ♦≥kϕ,

where k ∈ N \ {0} and p is an atomic proposition taken from a countably infinite set AP.
On standard Kripke structures (Definition 4.34), it is well known from [133] that the satisfia-

bility problem of GML is PSpace-complete. Since GML admits a finite tree model properties [51],
this complexity result transfers to the class of Kripke-style finite forests. Moreover, the PSpace-
completeness of GML holds regardless of whether the coefficients k of graded modalities ♦≥k are
encoded in unary or binary. For simplicity, during the chapter we assume the former encoding.

The main result of the chapter is given by an exponential-size small model property for ML(),
i.e. every satisfiable formula ϕ is satisfied by a pointed forest of size exponential in the size of ϕ.
Thanks to this result, we show that the satisfiability problem of ML() belongs to the complex-
ity class AExpPol, which is the class of decision problems solvable by an alternating Turing
machine running in exponential time and alternating between existential and universal states
a polynomial amount of times, with respect to the size of the input. In terms of complex-
ity classes for (non)deterministic machines, AExpPol includes NExpTime, and it is included
in ExpSpace. AExpPol captures the precise complexity of several natural decision problems,
such as the satisfiability problems of the first-order theory of real addition with order [67], of
one-agent refinement modal logic [20], of quantified computation tree logic interpreted on trees
with fixed branching degree [8], of propositional logic in team semantics [85]. In our case, we
are particularly interested in the latter result, as it will give us a direct way of proving that the
satisfiability problem of ML() is in fact complete for AExpPol (Section 8.3).

8.1.1 Second-order modal logic.

In order to analyse the complexity of ML(), it is first helpful to frame the logic in terms of
second-order theories. Both ML() and GML can be seen as syntactical fragments of second-
order modal logic QK, which is the extension of the standard modal logic ML with second-order
propositional quantification. The syntax of the formulae in QK is as follows:

π := > (true)
| p (propositional symbol)

ϕ := π (atomic formulae)
| ϕ⇒ ϕ | ¬ϕ (Boolean connectives)
| ♦ϕ (modality of possibility)
| ∃pϕ (propositional quantification)

We have already introduced propositional quantifiers in Section 4.4.2, where we studied the
relationship between ALT and quantified computation tree logic (QCTL). In fact, QK can be seen

378 Chapter 8. The Complexity of the Modal Logic ML()

(K,w) |= p iff w ∈ V(p),

(K,w) |= ♦ϕ iff there is w′ ∈ R(w) such that (K,w′) |= ϕ,

(K,w) |= ∃p ϕ iff there is W ′ ⊆ W such that (W, R,V[p←W ′]) |= ϕ.

Figure 8.1: Satisfaction relation for QK.

as the fragment of QCTL restricted to the temporal modality EXϕ, which corresponds to ♦ϕ. By
Rabin’s theorem [122] this means that, while the satisfiability problem of QK is undecidable when
interpreted on Kripke structures [69], it becomes decidable on functional structures such as the
class of Kripke-style finite forests [122]. Given a Kripke-style finite forest (K,w) (alternatively,
a Kripke structure), the satisfaction relation |= for formulae in QK is defined in Figure 8.1
(omitting standard cases for > and Boolean connectives). Exactly as in QCTL, we recall that
in the semantics of the propositional quantification ∃pϕ, V[p ← W ′] stands for the valuation
obtained from V by updating the set of worlds satisfying p, from V(p) to W ′.

To characterise ML() as a fragment of QK, we rely on the second-order quantification ∃p
in order to simulate the composition operator. We recall that, given a pointed tree (K,w), the
formula ϕ ψ essentially asks to partition the children of w into two sets S1 and S2, so that ϕ
is evaluated on the structure obtained from (K,w) by removing the children of w that belongs
to S2, as well as their descendants, whereas ψ is evaluated on a model where the children in
S1 are lost instead. Let us show how to encode these types of operations in QK. Assume we
want to check whether a pointed forest (K,w) satisfies a formula ϕ in ML(), built over the set
of atomic propositions P = {p1, . . . , pn} ⊆ AP. In order to represent the submodels obtained
from K through the operator +w, we consider the satisfaction of three atomic propositions
Q = {q1, q2, q3} that do not belong to P . These atomic propositions are used to represent subsets
of children w that must be considered when evaluating a formula of ML(). In particular, we
use the satisfaction of one of these symbols to represent the current subset of children of w,
also called active children, whereas the other two auxiliary atomic propositions of Q are used to
capture the semantics of . The three symbols are reused when considering multiple applications
of the operator , since at any time only one symbol encodes the set of active children of w. To
formalise this idea, given {qi, qj , qk} = Q we define the formula:

[qi = qj qk] def= �
(
(qi ⇔ qj ∨ qk) ∧ ¬(qj ∧ qk)

)
.

Informally, this formula requires that, among the children of the current world w, the ones
satisfying qi are the disjoint union of the ones satisfying qj and qk. Given an index i ∈ [1, 3]
denoting which of the symbols in Q is currently used to represent the active children of the
current world, the translation τi(ϕ) in QK is defined as shown in Figure 8.2. The translation is
straightforward for atomic formulae and Boolean connectives. In the translation of ϕ1 ϕ2, we
rely on the propositional quantification in order to partition the set of active children, i.e. the
ones satisfying qi, into two subsets, depending on the satisfaction of qj and qk. We then evaluate
ϕ1 with respect to the children satisfying qj and ϕ2 with respect to the children satisfying
qk. Lastly, for the translation of ♦ψ, we essentially relativise the modality of possibility to
only consider active children, as done by the ♦(qi ∧ . . .) part of the formula, and rely on the
propositional quantification in order to “activate” all the children of the new world. In ML(),
this corresponds to the fact that subforests obtained through the operator +w preserves the trees

8.1. ML() and GML as fragments of second-order ML 379

τi(>) def= >,

τi(p) def= p,

τi(ϕ1 ⇒ ϕ2) def= τi(ϕ1)⇒ τi(ϕ2),

τi(¬ϕ) def= ¬τi(ϕ),

τi(♦ψ) def= ♦
(
qi ∧ ∃q1 (�q1 ∧ τ1(ψ))

)
,

τi(ϕ1 ϕ2) def= ∃qj ∃qk
(
[qi = qj qk] ∧ τj(ϕ1) ∧ τk(ϕ2)

)
,

where j, k ∈ [1, 3], j < k and j 6= i 6= k.

Figure 8.2: Translation from ML() to QK.

rooted at children of w (see Section 7.2.2). The translation τi allows us to reduce the model
checking problem of ML() to the one of QK as follows.

Lemma 8.1. Let (K,w) be a pointed forest, where K = (W, R,V), and let ϕ be a formula in
ML(), written with atomic propositions from P . Let K′ = (W, R,V[q1 ← R(w)]). (K,w) |= ϕ

in ML() if and only if (K′,w) |= τ1(ϕ) in QK.

To keep the presentation light, we leave the proof of Lemma 8.1 (which carries out by structural
induction on ϕ) in Appendix F. Passing through the model checking problem of QK in order to
solve the satisfiability problem of ML() is quite promising, as the former problem can be solved
in PSpace [8] by seeing QK as a fragment of MSO [132].

Proposition 8.2 (From [132]). The model checking problem of MSO (alternatively, QK or
ML()) can be decided in PSpace.

In order to rely on the model checking algorithm to define a procedure for satisfiability, we
must bound the size of the smallest model satisfying a formula in ML(). This is where the
exponential-size small model property we show in Section 8.2 kicks in.

8.1.2 On alternating time.

Before moving to the exponential-size small model property of ML(), let us recall some land-
mark results on deterministic and alternating space/time complexities, which will help us better
understand the complexity class AExpPol. The concept of alternating space/time complexity
classes was set forth by A. K. Chandra, D. Kozen and L. J. Stockmeyer [41] in order to generalise
the existential computations required by non-deterministic languages (e.g. problems in NP) to-
gether with the universal computations required by their complement (e.g. problems in coNP).
The computational device introduced in [41] to achieve this generalisation is the alternating
Turing machine (ATM), which extends a non-deterministic Turing machine by dividing the set
of states into existential and universal ones. During the computation, existential states behave
as states of a non-deterministic machine, and ask for at least one of the successors of the current
state to reach an accepting state. Universal states instead ask for every successor to reach an
accepting state. An alternation occurs whenever the control switches from an existential state
to a universal one, or vice versa.

380 Chapter 8. The Complexity of the Modal Logic ML()

Given n,m ∈ N and functions f and g, we write ATime(f(n), g(m)) for the class of lan-
guages accepted by an ATM with at most g(m) alternations and runtime at most f(n). With
this notation, AExpPol is defined as the union of all ATime(f(n), g(n)) (n size of the input),
where f is an exponential function and g is a polynomial. We write ATime(f(n)) as a short-
cut for ATime(f(n), f(n)). Similarly, DSpace(f(n)) (resp. NSpace(f(n))) stands for the class
of languages accepted by a deterministic (resp. non-deterministic) Turing machine running in
space f(n). One of the many fundamental results in [41] is a complete characterisation of
(non)deterministic space complexity classes in terms of alternating time complexity classes.

Theorem 8.3 (From [41]). Let f(n) ≥ n.

NSpace(f(n)) ⊆
⋃
c>0

ATime(c× f(n)2),

ATime(f(n)) ⊆ DSpace(f(n)).

In particular, since DSpace(f(n)) ⊆ NSpace(f(n)) (by definition), Theorem 8.3 implies that
PSpace, i.e. the union of all DSpace(f(n)) where f is a polynomial, is equivalent to alternating
polynomial time, i.e. the union of all ATime(f(n)) where f is a polynomial. This equivalence
allows us to cast the PSpace algorithm for the model checking of MSO [132] in terms of ATime.

Proposition 8.4 (From [132]). There are polynomials f and g such that the model checking
problem of MSO (alternatively, QK or ML()) is in ATime(f(n), g(m)), where n is the input size
and m is the formula size.

Fundamentally, the number of alternations required in the model checking algorithm for MSO
only depends on the alternation between existential quantification (or disjunctions) and univer-
sal quantifications (or conjunctions), and it is thus bounded by the size of the formula, and
independent from the size of the structure. This is why the exponential small-model property
for ML() leads to AExpPol: once established, given an input formula ϕ, the small-model prop-
erty allows us to guess a pointed forest and has size exponential in |ϕ|. Guessing the pointed
forest can be done in NExpTime ⊆ AExpPol. Afterwards, we run the model-checking algo-
rithm of ML(), which takes as input the exponential-size pointed forest and the formula ϕ,
and runs in ATime(f(|ϕ|), g(|ϕ|)), for a fixed exponential function f and polynomial g, follow-
ing Proposition 8.4. The whole algorithm runs in AExpPol.

8.2 Checking satisfiability for ML(), in AExpPol

In order to show that ML() has an exponential-size small model property, we rely on the
connections between GML and ML() already established in Chapter 7. In particular, we revise
the proof of Theorem 7.16, where every formula ϕ of ML() is showed to be equivalent to a
formula ψ of GML, and show that whenever ψ (and thus ϕ) is satisfiable, it is satisfied by a
pointed forest having a number of worlds that is exponential in |ϕ|. Unfortunately, as it is the
proof of Theorem 7.16 does not lead to an exponential bound, and needs to be refined to improve
the way ψ is computed. This requires a new strategy for the application of Lemma 7.17.

Let us start by recalling some of the definitions introduced in Chapter 7, as well as introducing
further auxiliary notions. Given a formula ϕ in GML, topgm(ϕ) stands for the set of subformulae
of ϕ of the form ♦≥kψ occurring outside the scope of graded modalities. Formally,

8.2. Checking satisfiability for ML(), in AExpPol 381

topgm(>) def= topgm(p) def= ∅,
topgm(♦≥kϕ) def= {♦≥kϕ},

topgm(¬ϕ) def= topgm(ϕ),
topgm(ϕ⇒ ψ) def= topgm(ϕ) ∪ topgm(ψ).

Similarly, we recall that topAP(ϕ) stands for the set of atomic propositions of ϕ that appear
outside graded modalities. We write md(ϕ) for the modal depth of ϕ, that is the maximal
number of nested modalities occurring in ϕ. We extend the notion of topgm(ϕ) and, given a
natural number d ∈ N, we write gm(d, ϕ) to denote the set of subformulae of ϕ of the form ♦≥kψ
occurring under the scope of exactly d nested graded modalities. Formally, we have

gm(0, ϕ) def= topgm(ϕ) gm(d+ 1, ϕ) def=
⋃
♦≥kψ ∈ topgm(ϕ) gm(d, ψ).

Notice that if d ≥ md(ϕ), then gm(d, ϕ) = ∅.

8.2.1 GML formulae in good shape.

Exactly as in Chapter 7, the technical developments required to show that the satisfiability
problem of ML() can be solved in AExpPol heavily relies on the concept of disjoint formulae.
We remind the reader that a set Φ = {ψ1, . . . , ψn} is said to contain disjoint GML formulae
whenever for every distinct i, j ∈ [1, n], ψi ∧ ψj is unsatisfiable (Definition 7.9). From the
disjointness property, we introduce the following notion of formulae in good shape.

Definition 8.5 (Good shape). A GML formula ϕ in good shape if for every d ∈ [0,md(ϕ)−1],
given gm(d, ϕ) = {♦≥k1ψ1, . . . ,♦≥knψn}, the set {ψ1, . . . , ψn} is of disjoint formulae.

Roughly speaking, a formula ϕ is in good shape if for every two distinct formulae of the form
♦≥jψ and ♦≥kχ occurring under the same number of nested graded modalities, the formula
ψ ∧ χ is unsatisfiable. For instance, the formula ϕ = ♦♦p ∧ ♦¬♦p is in good shape. Indeed,
gm(1, ϕ) corresponds to the singleton set {♦p}, which (as all singleton sets) is a set of disjoint
formulae. The same holds true for gm(0, ϕ) = {♦♦p,♦¬♦p}, since ♦p ∧ ¬♦p is unsatisfiable.

The set of GML formulae that are in good shape is instrumental to show the aforementioned
exponential-size small model property of ML(), as the size of their minimal model (if any)
can be bounded using the notion of branching degree introduced below (Definition 8.6). The
fundamental feature of the branching degree is that it does not change when putting a formula
in disjoint normal form (seeing formulae in topgm(ϕ) as atomic). Thanks to this property we are
able to define a translation from ML() to GML that produces a formula with relatively small
branching degree, despite its size being non-elementary.

Definition 8.6. Let ϕ be a GML formula with topgm(ϕ) = {♦≥k1ψ1, . . . ,♦≥knψn}. Given d ∈ N,
the branching degree at depth d of ϕ is recursively defined as follows:

bd(0, ϕ) def= k1 + · · ·+ kn bd(d+ 1, ϕ) def= max({bd(d, ψ) | ♦≥kψ ∈ topgm(ϕ)}).

The maximal branching degree of ϕ is maxbd(ϕ) = max {bd(d, ϕ) | d ∈ [0,md(ϕ)]}.

Notice that bd(d, ϕ) can be understood as the maximal bd(0, ψ) for some subformula ψ

occurring at the modal depth d within ϕ. When ϕ is a satisfiable formula in good shape, we
are able to rely on maxbd(ϕ) to obtain a bound on the smallest model satisfying it, as stated
in Lemma 8.7 below.

382 Chapter 8. The Complexity of the Modal Logic ML()

Lemma 8.7. Every satisfiable GML formula ϕ in good shape is satisfied by a pointed forest
with at most (maxbd(ϕ) + 1)md(ϕ) worlds.

Proof. The proof is by induction on the modal degree of ϕ.
base case: md(ϕ) = 0. In this case, ϕ is a Boolean combination of atomic propositions, and

thus the satisfaction of ϕ can be witnessed on a pointed forest with one single world (i.e. the
satisfaction of ϕ only depends on the atomic propositions satisfied by the current world).

induction step: md(ϕ) = d+ 1. Let topgm(ϕ) and topAP(ϕ) be the sets {♦≥k1ψ1, . . . ,♦≥knψn}
and {p1, . . . , pm}, respectively. We rely on Proposition 7.8 (Chapter 7), whose statement
is recalled below.[Proposition 7.8. Every formula ϕ in GML is equivalent to a disjunction of formulae

belonging to Conj(topgm(ϕ) ∪ topAP(ϕ)).

]
We derive that there is ϕ′ in GML such that ϕ ≡ ϕ′ and ϕ′ is a disjunction of conjunctions of
possibly negated formulae from topgm(ϕ)∪ topAP(ϕ). Since ϕ is satisfiable and ϕ ≡ ϕ′, one
of the disjuncts of ϕ′ must be satisfiable. Let χ be such a disjunct, which is a conjunction
of the form (modulo associativity and commutativity of ∧):

χ = ♦≥ki1ψi1 ∧ . . . ∧ ♦≥kipψip ∧ ¬♦≥kj1ψj1 ∧ . . . ∧ ¬♦≥kjqψkjq ∧ L1 ∧ · · · ∧ Lr,
where L1, . . . , Lr are literals built upon topAP(ϕ). By definition topgm(χ) ⊆ topgm(ϕ),
which allows us to conclude that bd(0, χ) satisfies the following (in)equalities:

ki1 + · · ·+ kip + kj1 + · · ·+ kjq ≤ bd(0, χ) ≤ bd(0, ϕ) ≤ maxbd(ϕ).
Moreover, topgm(χ) ⊆ topgm(ϕ) allows us to conclude that χ is in good shape, directly
from the fact that ϕ is in good shape.
As χ is satisfiable, let us consider a finite forest (K,w), where K = (W, R,V), such that
(K,w) |= ϕ. By definition of |=, for each i ∈ {i1, . . . , ip} there is a set Si = {wi,1, . . . ,wi,ki}
of ki children of w such that each child in Si satisfies ϕi. Let us consider the Kripke-style
finite forest K′ = (W ′, R′,V ′) such that

• W ′ def= {w} ∪ {w′ | w′ ∈ R∗(w′′), w′′ ∈ S1 ∪ · · · ∪ Sm},
• R′ = R ∩ (W ′ ×W ′),
• V ′ is the restriction of V to W ′.

Informally, (K′,w) is obtained from (K,w) by removing the children (and their subtrees)
of w that do not belong to S1 ∪ · · · ∪ Sm. It is easy to verify that (K′,w) |= χ. Moreover,
card(R′(w)) = ki1 + · · · + kip ≤ maxbd(ϕ). Let us now consider a world wi,j ∈ Si, where
i ∈ {i1, . . . , ip} and j ∈ [1, ki]. By definition, (K′,wi,j) |= ψi, where md(ψi) < md(ϕ). We
apply the induction hypothesis, and conclude that there is a pointed forest (Ki,j ,w′i,j), with
Ki,j = (Wi,j , Ri,j ,Vi,j), such that card(Wi,j) ≤ (maxbd(ψi) + 1)md(ψi) and (Ki,j ,w′i,j) |= ψi.
Without loss of generality, let us assume that w′i,j = wi,j and that wi,j is the only world
appearing in both Wi,j and W ′. We construct similar pointed forests (Ki,j ,wi,j) for every
world in R(w) = S1 ∪ · · · ∪ Sm. Again without loss of generality, we can assume that
these pointed forests feature distinct sets of worlds. Now, since χ is in good shape and
(Ki,j ,w′i,j) |= ψi, for every ♦≥jγ ∈ topgm(χ) such that γ is not syntactically equal to ψi,
we have (Ki,j ,w′i,j) 6|= γ. This implies that replacing the subtree in K′ rooted at a world
wi,j ∈ Si, where i ∈ {i1, . . . , ip} and j ∈ [1, k1], with the tree described by Ki,j does not
change the satisfaction of χ. Formally, the Kripke-style finite forest K′′ = (W ′′, R′′,V ′′)
obtained from these replacements is defined as follows

8.2. Checking satisfiability for ML(), in AExpPol 383

• W ′′ def= {w} ∪
⋃
i∈{i1,...,ip}, j∈[1,ki]Wi,j ,

• R′′ = ({w} ×R′(w)) ∪
⋃
i∈{i1,...,ip}, j∈[1,ki]Ri,j ,

• for every p ∈ AP,

V ′′(p) =
{

w̃
∣∣∣∣∣ w̃ = w and w ∈ V ′(p), or
there are i ∈ {i1, . . . , ip}, j ∈ [1, ki] s.t. w̃ ∈ Wi,j and w̃ ∈ Vi,j(p)

}
.

We have,
card(W ′′) = 1 +

∑
i∈{i1,...,ip},j∈[1,ki] card(Wi,j) by definition

≤ 1 +
∑
i∈{i1,...,ip} ki(maxbd(ψi) + 1)md(ψi) by def. of Wi,j

≤ 1 + (k1 + · · ·+ kp)(maxbd(ϕ) + 1)md(ϕ)−1 by maxbd(ψi) ≤ maxbd(ϕ)
and md(ψi) < md(ϕ)

≤ 1 + maxbd(ϕ)(maxbd(ϕ) + 1)md(ϕ)−1 as k1 + · · ·+ kp ≤ maxbd(ϕ)
≤ (maxbd(ϕ) + 1)(maxbd(ϕ) + 1)md(ϕ)−1 as (maxbd(ϕ) + 1)md(ϕ)−1 ≥ 1
= (maxbd(ϕ) + 1)md(ϕ) by definition.

Notice that R′′(w) = R′(w). As (K′,w) |= χ, in order to conclude that (K′′,w) |= χ, it is
sufficient to show that:

for every w′ ∈ R′(w) and all i ∈ {i1, . . . , ip, j1, . . . , jq}, (K′,w′) |= ψi iff (K′′,w′) |= ψi.
This holds from the definition of K′′, together with the fact that the formula ϕ is in good
shape.
(⇒): Suppose (K′,w′) |= ψi. By definition of K′, there is i′ ∈ {i1, . . . , ip} and j ∈ [1, ki′]
such that w′ = wi′,j ∈ Si′ . By definition of Si′ , (K′,w′) |= ψi′ . Therefore, (K′,w′) |= ψi∧ψi′ .
Since ϕ is in good shape and topgm(ϕ) = {♦≥k1ψ1, . . . ,♦≥knψn}, for every two distinct
formulae γ and γ′ in {ψ1, . . . , ψn} we have that γ ∧ γ′ is unsatisfiable. Since ψi and ψi′

belong to {ψ1, . . . , ψn}, this implies that i = i′. Therefore, w′ = wi,j ∈ Si. By definition
of Ki,j , (Ki,j ,w′) |= ψi. By definition of K′′, the tree rooted at w′ in Ki,j is the tree rooted
at w′ in K′′. This implies that (K′′,w′) |= ψi (see Lemma E.2 in Appendix E for a formal
proof of this last step).
(⇐): Suppose (K′′,w′) |= ψi. As w′ ∈ R′′(w) = R′(w), there is i′ ∈ {i1, . . . , ip} and
j ∈ [1, ki′] such that w′ = wi′,j ∈ Si′ . By definition of Ki′,j , (Ki′,j ,w′) |= ψi′ . By definition
of K′′, the tree rooted at w′ in Ki′,j is the tree rooted at w′ in K′′. This implies that
(K′′,w′) |= ψi′ . As in the proof of the left to right direction, since ϕ is in good shape we
conclude that i = i′ and therefore w′ ∈ Si. By definition of Si, (K′,w′) |= ψi.

8.2.2 The exponential-size small model property of ML().

Thanks to Lemma 8.7, to show that ML() has the exponential-size small model property it is
sufficient to establish that given ϕ in ML(), there is a logically equivalent GML formula ψ in
good shape such that ψ ≡ ϕ, md(ψ) ≤ md(ϕ) and maxbd(ψ) is exponential in |ϕ|. To highlight
the essential step required in order to prove this result, we first consider the fragment F of ML()
whose formulae are from the grammar below:

ϕ := ♦≥kψ | p | ϕ ϕ | ϕ ∧ ϕ | ¬ϕ,

where p ∈ AP and ♦≥kψ is a formula in GML (abusively assumed in ML() but we know that
GML can be seen as a fragment of ML(), see Corollary 7.18). Given ϕ in ML(), we write

384 Chapter 8. The Complexity of the Modal Logic ML()

cd(ϕ) to denote its composition degree, that is the maximal number of imbrications of in ϕ, not
occurring under the scope of a graded modality. Formally,

cd(>) def= cd(p) def= cd(♦≥kϕ) def= 0,
cd(¬ϕ) def= cd(ϕ),

cd(ϕ⇒ ψ) def= max(cd(ϕ), cd(ψ)),
cd(ϕ ψ) def= 1 + max(cd(ϕ), cd(ψ)).

Notice that for formulae of the fragment F , the composition degree corresponds to the maximal
number of imbrication of . We extend the notion of topgm(ϕ) to ϕ in ML() or in F , so that
topgm(ϕ) = topgm(ϕ[← ∧]), where ϕ[← ∧] is the formula obtained from ϕ by replacing every
occurrence of the operator by ∧. Similarly, we write bd(m,ϕ) for bd(m,ϕ[← ∧]).

Let ϕ be in F such that topgm(ϕ) ⊆ {♦≥k1χ1, . . . ,♦≥knχn}. The key step to show the
exponential-size model property consists in manipulating the formulae in topgm(ϕ) to produce
a formula in good shape that witnesses an exponential blow-up on bd(0, ϕ), whereas, for every
m > 1, bd(m,ϕ) remains polynomially bounded. The exact bounds obtained from this manipu-
lation are given in the following lemma, whose proof heavily relies on Lemma 7.17 (Chapter 7).

Lemma 8.8. Let ϕ be a formula of the fragment F such that topgm(ϕ) ⊆ {♦≥k1χ1, . . . ,♦≥knχn},
k̂ = max {k1, . . . ,kn}, and χ1 ∧ · · · ∧ χn is in good shape. There is a GML formula ψ in good
shape and such that ϕ ≡ ψ, topgm(ψ) ⊆ {♦≥jχ | j ∈ [1, (cd(ϕ) + 1)× k̂], χ ∈ 2{χ1,...,χn}} and,

1. md(ψ) ≤ 1 + max({md(χi) | i ∈ [1, n]}),
2. bd(0, ψ) ≤ (1 + (cd(ϕ) + 1)× k̂)2 × 2n−1,
3. for every m ≥ 1, bd(m,ψ) ≤ bd(m−1, χ1 ∧ · · · ∧ χn).

We remind the reader that the set 2{χ1,...,χn} is defined as:

2{χ1,...,χn} =

∧

i∈[1,n]
f(i)=>

χi ∧
∧

i∈[1,n]
f(i)=⊥

¬χi
∣∣∣∣∣∣ f : [1, n]→ {>,⊥},
f(i) = > for some i ∈ [1, n]

.

Let us also recall the definition of core formulae given during Chapter 7, as it will be instrumental
during the proof of Lemma 8.8.

Definition 7.7 (Core formulae). Let Φ be a finite set of formulae in GML. Consider a natural
number k ∈ N and let P be a finite set of atomic propositions. We denote with Core(Φ, k, P)
the following set of formulae in GML:

Core(Φ, k, P) def= {♦≥j ϕ, p, > | j ∈ [1, k], ϕ ∈ Φ, p ∈ P}.

As already stated, Lemma 8.8 is proved by manipulating the formula ϕ to obtain the formula
ψ satisfying the constraints (1)–(3). Notice that whereas the constraints (1) and (3) state the
modal depth and branching degree at depth m ≥ 1 of ψ are polynomially bounded by the ones
of χ1, . . . , χn, the constraint (2) shows an exponential blow-up on bd(0, ψ). The fact that the
branching degree of ψ witnesses an exponential blow-up only in the case of depth 0 is crucial to
obtain the exponential-size small model property of ML().

Proof of Lemma 8.8. Below, let us write Φ for the set of GML formulae {χ1, . . . , χn}. First of
all, we rely on Lemma 7.11, proved in Chapter 7 and whose statement is given below.[Lemma 7.11. Let Φ be a finite set of GML formulae, k ∈ N and P ⊆fin AP. Every formula in

Core(Φ, k, P) is equivalent to a disjunction of formulae in Conj(Core(2Φ, k, P)).

]

8.2. Checking satisfiability for ML(), in AExpPol 385

Recall that, for a finite set of formulae S, Conj(S) is the set of conjunctions built upon pos-
sibly negated formulae in S. Thanks to Lemma 7.11, every formula in topgm(ϕ) is equiva-
lent to a disjunction of formulae in Conj(Core(2Φ, k̂, topAP(ϕ))). Thus, let us consider the
formula ϕ′ obtained from ϕ by replacing every occurrence of formulae in topgm(ϕ) not occur-
ring under the scope of a graded modality with the equivalent disjunction of formulae from
Conj(Core(2Φ, k̂, topAP(ϕ))). The formula ϕ′ belongs to the fragment F and it is such that
cd(ϕ) = cd(ϕ′) and topgm(ϕ′) ⊆ Core(2Φ, k̂, topAP(ϕ)). We show that ϕ′ is equivalent to a
Boolean combination ψ of formulae belonging to the set Core(2Φ, (cd(ϕ) + 1) × k̂, topAP(ϕ)).
For this result, we prove that every formula ψ′, in the fragment F and such that topgm(ψ′) ⊆
Core(2Φ, k̂, topAP(ϕ)) and cd(ψ′) = n, is equivalent to a Boolean combination of formulae in
Core(2Φ, (n+ 1)× k̂, topAP(ϕ)). The proof is by induction on n.
base case: n = 0. In this case, ψ′ is already the required Boolean combination.
induction step: n ≥ 1. In this case, it is sufficient to show that every subformula ϕ1 ϕ2 of

ψ′ not occurring under the scope of a composition operator is equivalent to a Boolean
combination of formulae in Core(2Φ, (n+ 1)× k̂, topAP(ϕ)). By definition, cd(ϕ1) < n and
cd(ϕ2) < n. Thus, by induction hypothesis there are two formulae ϕ′1 and ϕ′2 such that
• ϕ′1 ≡ ϕ1 and ϕ′1 is in Bool(Core(2Φ, (cd(ϕ1) + 1)× k̂, topAP(ϕ))),
• ϕ′2 ≡ ϕ2 and ϕ′2 is in Bool(Core(2Φ, (cd(ϕ2) + 1)× k̂, topAP(ϕ))).

We now rely on Lemma 7.17, proven in Chapter 7 and whose statement is recalled below.
Lemma 7.17. Let ϕ and ψ be two GML formulae with topgm(ϕ) = {♦≥j1ϕ1, . . . ,♦≥jnϕn},
topgm(ψ) = {♦≥k1ψ1, . . . ,♦≥kmϕm} and where Φ = {ϕ1, . . . , ϕn}∪ {ψ1, . . . , ψn} is a set of
disjoint formulae. We have `HGML() ϕ ψ ⇔ χ, where χ is either ⊥ or a disjunction of
formulae from Conj(Core(Φ,max(j1, . . . , jn) + max(k1, . . . , kn), topAP(ϕ) ∪ topAP(ψ))).

Since the proof system HGML() defined in Chapter 7 is sound with respect to ML(), by
applying this lemma we conclude that ϕ1 ϕ2 is equivalent to a Boolean combination of
formulae from Core(2Φ, (cd(ϕ1)+1)× k̂+(cd(ϕ2)+1)× k̂, topAP(ϕ)). From cd(ϕ1) < n and
cd(ϕ2) < n we conclude that (cd(ϕ1)+1)× k̂+(cd(ϕ2)+1)× k̂ ≤ (n+1)× k̂. By definition
of core formulae, this implies that Core(2Φ, (cd(ϕ1)+1)× k̂+(cd(ϕ2)+1)× k̂, topAP(ϕ)) ⊆
Core(2Φ, (n+ 1)× k̂, topAP(ϕ)), concluding the induction step.

Below, let ψ be the Boolean combination of formulae from Core(2Φ, (cd(ϕ) + 1)× k̂, topAP(ϕ))
that is equivalent to ϕ′. Therefore, ψ is a formula in GML such that ψ ≡ ϕ and topgm(ψ) ⊆
{♦≥jχ | j ∈ [1, (cd(ϕ) + 1)× k̂], χ ∈ 2Φ}. In order to conclude the proof, it is sufficient to show
that ψ is in good shape and that its bd satisfies the required constraints.

The proof that ψ is in good shape is quite straightforward. Since ψ is a Boolean combi-
nation of formulae from Core(2Φ, (cd(ϕ) + 1) × k̂, topAP(ϕ)), where Φ = {χ1, . . . , χn}, we have
gm(1, ψ) ⊆

⋃
χ∈2Φ gm(0, χ) = gm(0, χ1 ∧ · · · ∧χn). Since by hypothesis χ1 ∧ · · · ∧χn is a formula

in good shape, this allows us to conclude that for every d ∈ [1,md(ψ) − 1], given gm(d, ψ) =
{♦≥j1ψ1, . . . ,♦≥jmψm}, the set {ψ1, . . . , ψm} is of disjoint formulae. In order to conclude that
ψ is in good shape, we just need to check that given gm(0, ψ) = {♦≥j′1ψ

′
1, . . . ,♦≥j′mψ

′
m}, the

set {ψ′1, . . . , ψ′m} is of disjoint formulae. By definition, gm(0, ψ) = topgm(ψ) ⊆ {♦≥jχ | j ∈
[1, (cd(ϕ) + 1) × k̂], χ ∈ 2Φ}. Therefore, {ψ′1, . . . , ψ′m} ⊆ 2Φ. This implies that {ψ′1, . . . , ψ′m} is
a set of disjoint formulae directly from Lemma 7.10, whose statement is recalled below.

[Lemma 7.10. Let Φ be a finite set of formulae in GML. 2Φ is a set of disjoint formulae.]

Let us now check that the constraints on the bd of ψ are satisfied.

386 Chapter 8. The Complexity of the Modal Logic ML()

1. md(ψ) ≤ max({md(χi) | i ∈ [1, n]}) + 1 follows directly from the fact that ψ is a Boolean
combination of formulae from Core(2Φ, (cd(ϕ)+1)× k̂, topAP(ϕ)), where Φ = {ψ1, . . . , ψn}.

2. We show that bd(0, ψ) ≤ (1 + (cd(ϕ) + 1) × k̂)2 × 2n−1. From topgm(ψ) ⊆ {♦≥jχ | j ∈
[1, (cd(ϕ)+1)×k̂], χ ∈ 2Φ} we conclude that bd(0, ψ) is at most the sum of every coefficient
j of all the formulae ♦≥jχ where j ∈ [1, (cd(ϕ) + 1)× k̂] and χ ∈ 2Φ. Thus,

bd(0, ψ) ≤
∑
χ∈2Φ

∑
j∈[1,(cd(ϕ)+1)×k̂] j

=
∑
χ∈2Φ

(cd(ϕ) + 1)× k̂ × ((cd(ϕ) + 1)× k̂ + 1)
2

= (cd(ϕ) + 1)× k̂ × ((cd(ϕ) + 1)× k̂ + 1)
2 × card(2Φ)

≤ (cd(ϕ) + 1)× k̂ × ((cd(ϕ) + 1)× k̂ + 1)
2 × 2card(Φ)

= (cd(ϕ) + 1)× k̂ × ((cd(ϕ) + 1)× k̂ + 1)× 2n−1

≤ (1 + (cd(ϕ) + 1)× k̂)2 × 2n−1

3. Let m ≥ 1. We show that bd(m,ψ) ≤ bd(m−1, χ1 ∧ · · · ∧ χn). Recall that, by definition,
bd(m,ψ) = max({bd(m− 1, χ) | ♦≥kχ ∈ topgm(ψ)}).

As ψ is a Boolean combination of core formulae from Core(2Φ, (cd(ϕ) + 1)× k̂, topAP(ϕ)),
this means that bd(m,ψ) ≤ max({bd(m− 1, χ) | χ ∈ 2Φ}). By definition, every formula χ
in 2Φ is a conjunction of possibly negated formulae in Φ, where every formula of Φ occurs
exactly once. As Φ = {χ1, . . . , χn}, this implies that topgm(χ) = topgm(χ1 ∧ · · · ∧ χn).
Directly from the definition of bd, this implies that bd(m−1, χ) = bd(m−1, χ1∧· · ·∧χn).
Thus, max({bd(m− 1, χ) | χ ∈ 2Φ}) = bd(m−1, χ1∧· · ·∧χn), which allows us to conclude
that bd(m,ψ) ≤ bd(m−1, χ1 ∧ · · · ∧ χn).

Applying adequately the transformation from Lemma 8.8 to a formula in ML(), i.e. by
considering maximal subformulae of the fragment F , allows us to get a logically equivalent GML
formula having small models. In order to simplify the exposition of the forthcoming proof of
exponential size small model property, we introduce the notion of subformulae at level d ∈ N.
Closely related to the set gm(d, ϕ), the set of subformulae of ϕ at level d, written lvl(d, ϕ), is
defined as follows:

lvl(0, ϕ) def= {ϕ} lvl(d+ 1, ϕ) def=
⋃
♦≥kψ ∈ topgm(ϕ) lvl(d, ψ).

Notice that for all d ∈ N, if gm(d, ϕ) = {♦≥k1ψ1, . . . ,♦≥knψn} then lvl(d+ 1, ϕ) = {ψ1, . . . , ψn}.

Lemma 8.9. For every formula ϕ in ML() there is an equivalent GML formula ψ in good shape
and such that md(ψ) ≤ md(ϕ) and maxbd(ψ) ≤ (|ϕ|+ 1)5 × 2|ϕ|.

Proof. During the proof, we assume that every subformula ψ of ϕ without occurrences of the
graded modalities (where we see ♦χ as a shortcut for ♦≥1χ) is a Boolean combination of atomic
propositions. This assumption is without loss of generality. Indeed, a formula ψ of ML() without
graded modalities is a formula built upon Boolean connectives, the composition operator and
atomic propositions. However, as ψ lacks graded modalities, its satisfaction with respect to a
pointed forest (K,w) only depends on the current world w (and on the valuation function of
the Kripke-style finite forest K). This implies that the formula ψ[← ∧], obtained from ψ by

8.2. Checking satisfiability for ML(), in AExpPol 387

replacing every occurrence of the operator by ∧, is equivalent to ψ. Notice that this assumption
implies that the formulae in lvl(md(ϕ), ϕ) are Boolean combinations of atomic propositions,
which means that they belong to GML and that their conjunction is in good shape.

To prove the result, we build a sequence of formulae γ0, γ1, . . . , γmd(ϕ), where γ0 = ϕ and for
every i ∈ [0,md(ϕ)] the following properties are satisfied:

1. γi ≡ ϕ,

2. given lvl(md(ϕ)− i, γi) = {χ1, . . . , χn}, χ1 ∧ · · · ∧ χn is a GML formula in good shape,

3. md(γi) ≤ md(ϕ),

4. for every j ∈ [0,md(ϕ) − (i + 1)] there are k1, . . . , kn ∈ N and formulae χ1, . . . , χn and
χ′1, . . . , χ

′
n such that gm(j, ϕ) = {♦k1χ1, . . . ,♦knχn}, gm(j, γi) = {♦k1χ

′
1, . . . ,♦knχ

′
n} and

for all k ∈ [1, n], cd(χ′k) ≤ cd(χk). Moreover, cd(γi) ≤ cd(ϕ),

5. for every χ ∈ lvl(md(ϕ)− i, γi), bd(0, χ) ≤ (|ϕ|+ 1)4 × 2|ϕ|,

6. for every d > md(ϕ)− i and every χ ∈ lvl(d, γi), bd(0, χ) ≤ (|ϕ|+ 1)5 × 2|ϕ|.
Each formula γi (i ≥ 1) is built from γi−1 by relying on Lemma 8.8 in order to translate every
subformula occurring under the scope of i nested modalities into an equivalent formula in GML.
Notice that, thanks to the properties (1)–(6), the formula γmd(ϕ) is a GML formula in good
shape and such that ϕ ≡ γmd(ϕ), md(γmd(ϕ)) ≤ md(ϕ) and maxbd(γmd(ϕ)) ≤ (|ϕ| + 1)5 × 2|ϕ|,
which allows us to conclude the proof. In particular, ϕ ≡ γmd(ϕ) and md(γmd(ϕ)) ≤ md(ϕ) holds
directly by (1) and (3), respectively. Since lvl(md(ϕ)−md(ϕ), γmd(ϕ)) = lvl(0, γmd(ϕ)) = {γmd(ϕ)},
from (2) we conclude that γmd(ϕ) is a GML formula in good shape. Lastly, from (5) and (6) we
conclude that every subformula ψ of γmd(ϕ) is such that bd(0, ψ) ≤ (|ϕ|+1)5×2|ϕ| which, directly
by definition of maxbd(γmd(ϕ)), implies that maxbd(γmd(ϕ)) ≤ (|ϕ|+ 1)5 × 2|ϕ|.

In order to build the sequence γ0, γ1, . . . , γmd(ϕ), let us first check that the base case of
γ0 = ϕ satisfies all the properties (1)–(6). The properties (1), (3) and (4) are straightforward.
The property (2) is satisfied thanks to the assumption described at the beginning of the proof.
The properties (5) and (6) are satisfied as, by definition of bd, for every subformula ψ of ϕ,
bd(0, ψ) ≤ |ϕ|. Here, recall that the coefficients k appearing in graded modalities ♦≥k are
encoded in unary. We conclude that γ0 = ϕ satisfies (1)–(6). Let us now assume that, given
i ∈ [0,md(ϕ) − 1], there is a formula γi satisfying (1)–(6). We show how to manipulate γi in
order to produce the next formula of the sequence, i.e. γi+1.

Let gm(md(ϕ) − (i+ 1), γi) = {♦≥k1χ1, . . . ,♦≥knχn}. By definition of lvl together with the
property (2), we have lvl(md(ϕ) − i, γi) = {χ1, . . . , χn} and χ1 ∧ · · · ∧ χn is a GML formula
in good shape. Let us consider the set of formulae lvl(md(ϕ) − (i+ 1), γi) = {ψ1, . . . , ψm}.
By definition of lvl, the formulae ψ1, . . . , ψm are subformulae of γi occurring under the scope
of md(ϕ) − (i+ 1) nested graded modalities. By definition of gm, this implies that for all
j ∈ [1,m], topgm(ψj) ⊆ gm(md(ϕ) − (i+ 1), γi) = {♦≥k1χ1, . . . ,♦≥knχn}. Since χ1, . . . , χn are
GML formulae, every ψj is a formula of the fragment F , which allows us to apply Lemma 8.8.

Let k̂ = max(k1, . . . , kn) and Φ = {χ1, . . . , χn}. For j ∈ [1,m], by Lemma 8.8, there is ψ̃j in
GML and in good shape s.t. ψj ≡ ψ̃j , topgm(ψ̃j) ⊆ {♦≥jχ | j ∈ [1, (cd(ϕ) + 1)× k̂], χ ∈ 2Φ} and,

a. md(ψ̃j) ≤ 1 + max({md(χk) | k ∈ [1, n]}),

b. bd(0, ψ̃j) ≤ (1 + (cd(ψj) + 1)× k̂)2 × 2n−1,

c. for every d ≥ 1, bd(d, ψ̃j) ≤ bd(m−1, χ1 ∧ · · · ∧ χn).

388 Chapter 8. The Complexity of the Modal Logic ML()

Let γi+1 be the formula obtained from γi by replacing the occurrences of ψ1, . . . , ψm occurring
under the scope of md(ϕ)−(i+1) nested graded modalities with the formulae ψ̃1, . . . , ψ̃m, respec-
tively (for all j ∈ [1,m], ψj is replaced with ψ̃j), so that lvl(md(ϕ)− (i+1), γi+1) = {ψ̃1, . . . , ψ̃m}.
We show that γi+1 satisfies the properties (1)–(6).
γi+1 satisfies (1). Directly from the definition of γi+1 together with the fact that γi ≡ ϕ and,

for every j ∈ [1,m], ψj ≡ ψ̃j .
γi+1 satisfies (2). Consider lvl(md(ϕ)− (i+1), γi+1) = {ψ̃1, . . . , ψ̃m}. We show that the for-

mula ψ̂ def= ψ̃1 ∧. . .∧ ψ̃m is in GML in good shape. Clearly, since every ψ̃j (j ∈ [1,m]) is
in GML, so is ψ̂. In order to prove that ψ̂ is in good shape, we must check that for all
d ∈ [0,md(ψ̂)−1], lvl(d+1, ψ̂) is a set of disjoint formulae. By definition, for all j ∈ [1,m],
topgm(ψ̃j) ⊆ {♦≥jχ | j ∈ [1, (cd(ϕ) + 1)× k̂], χ ∈ 2Φ}. Therefore,

topgm(ψ̂) ⊆ {♦≥jχ | j ∈ [1, (cd(ϕ) + 1)× k̂], χ ∈ 2Φ},

which implies that lvl(1, ψ̂) ⊆ 2Φ. Directly from Lemma 7.10, this means that lvl(1, ψ̂) is a
set of disjoint formulae. Now, recall that Φ = {χ1, . . . , χn}, and thus every formula in 2Φ is
a conjunction of possibly negated formulae from Φ, where each formula among χ1, . . . , χn
occurs exactly once. This implies that, for all χ ∈ 2Φ, topgm(χ) = topgm(χ1 ∧ · · · ∧ χn).
Together with the fact that χ1∧· · ·∧χn is in good shape (since γi satisfies the property (2)),
this implies that every formula in 2Φ is in good shape. This allows us to conclude that for
every d ∈ [1,md(ψ̂)− 1], lvl(d+ 1, ψ̂) is a set of disjoint formulae. Together with the fact
that lvl(1, ψ̂) is a set of disjoint formulae, this concludes the proof of the property (2).

γi+1 satisfies (3). Let j ∈ [1,m] such that md(ψj) = max({md(ψi) | i ∈ [1,m]}). We show
that for every k ∈ [1,m], md(ψ̃k) ≤ md(ψj). Since γi+1 is obtained from γi by substituting
every ψ1, . . . , ψm occurring under the scope of md(ϕ) − (i+1) nested graded modalities
with the formulae ψ̃1, . . . , ψ̃m, this implies that

md(γi+1) =md(ϕ)− (i+1) + max({md(ψ̃i) | i ∈ [1,m]})
≤md(ϕ)− (i+1) + md(ψj) = md(γi),

which ends the proof directly from md(γi) ≤ md(ϕ) (recall that γi satisfies (3)).
To show that for every k ∈ [1,m] md(ψ̃k) ≤ md(ψj), it is sufficient to notice that, by def-
inition,

⋃
ψ∈lvl(md(ϕ)−(i+1),γi) topgm(ψ) = gm(md(ϕ)− (i+ 1), γi) = {♦≥k1χ1, . . . ,♦≥knχn}.

As lvl(md(ϕ)− (i+ 1), γi) = {ψ1, . . . , ψm}, this means that topgm(ψj) contains the formula
among ♦≥k1χ1, . . . ,♦≥knχn, with maximal md, which in turn implies that md(ψj) is at
least 1 + max({md(χi) | i ∈ [1, n]}). Directly from (a), this allows us to conclude that for
every k ∈ [1,m], md(ψ̃k) ≤ md(ψj).

γi+1 satisfies (4). Given j ∈ [0,md(ϕ) − (i + 2)], we show that cd(γi+1) ≤ cd(γi) and there
are k1, . . . , kp ∈ N, χ′1, . . . , χ′p and χ′′1, . . . , χ

′′
p such that gm(j, γi) = {♦k1χ

′
1, . . . ,♦kpχ

′
p},

gm(j, γi+1) = {♦k1χ
′′
1, . . . ,♦kpχ

′′
p} and for all k ∈ [1, p], cd(χ′′k) ≤ cd(χ′k). This allows

us to conclude that γi+1 satisfies the property (4) directly from the fact that γi satisfies
the property (4). Let gm(j, γi) = {♦k1χ

′
1, . . . ,♦kpχ

′
p}. Since γi+1 is obtained from γi by

substituting every ψ1, . . . , ψm occurring under the scope of md(ϕ) − (i+1) nested graded
modalities with the formulae ψ̃1, . . . , ψ̃m, and j < md(ϕ)− (i+1). We conclude that there
are formulae χ′′1, . . . , χ′′p such that gm(j, γi+1) = {♦k1χ

′′
1, . . . ,♦kpχ

′′
p}. As ψ̃1, . . . , ψ̃m are

formulae of graded modal logic and thus have composition degree 0, cd(γi+1) ≤ cd(γi) and
for all k ∈ [1, p], cd(χ′′1) ≤ cd(χ′1), ending the proof of the property (4). In particular,
given k ∈ [1, p], χ′′k is obtained from χ′k by substituting every ψi (i ∈ [1,m]) occurring

8.2. Checking satisfiability for ML(), in AExpPol 389

under the scope of md(ϕ)− (i+1)− (j + 1) nested graded modalities with the formula ψ̃i.
As expected, this means that gm(md(ϕ)− (i+ 2), γi+1) = {♦k1ψ̃1, . . . ,♦knψ̃n}.

γi+1 satisfies (5). We show that for all χ ∈ lvl(md(ϕ)−(i+1), γi+1), bd(0, χ) ≤ (|ϕ|+1)4×2|ϕ|.
By definition of γi+1, lvl(md(ϕ)− (i+ 1), γi+1) = {ψ̃1, . . . , ψ̃m}. So, let j ∈ [1,m]. Directly
from section 8.2.2, bd(0, ψ̃j) ≤ (1 + (cd(ψj) + 1) × k̂)2 × 2n−1. In order to conclude the
proof of (5), it is sufficient to show that cd(ψj) ≤ |ϕ|, k̂ ≤ |ϕ| and n ≤ |ϕ|.
Let us start with cd(ψj) ≤ |ϕ|. By definition, ψj belongs to lvl(md(ϕ) − (i + 1), γi,) and
therefore there is a coefficient k such that ♦≥kψj belongs to gm(md(ϕ)−(i+2), γi). Thanks
to the fact that γi satisfies the property (4), we conclude that there is a subformula ψ of
ϕ such that ♦≥kψ belongs to gm(md(ϕ) − (i + 2), ϕ) and cd(ψj) ≤ cd(ψ). Since the size
of a formula is always at least its composition degree, we conclude that cd(ψ) ≤ |ψ| ≤ |ϕ|,
which allows us to conclude that cd(ψj) ≤ |ϕ|.
Now, let us show that k̂ ≤ |ϕ| and n ≤ |ϕ|. We recall that gm(md(ϕ) − (i+ 1), γi) =
{♦≥k1χ1, . . . ,♦≥knχn}, and that k̂ is the maximum coefficient among k1, . . . , kn. Again
from the fact that γi satisfies the property (4), there are formulae χ′1, . . . , χ′n such that
gm(md(ϕ) − (i+ 1), ϕ) = {♦≥k1χ

′
1, . . . ,♦≥knχ

′
n} and, for all k ∈ [1, n], cd(χk) ≤ cd(χ′k).

As the coefficient of graded modalities are encoded in unary, this implies that k̂ ≤ |ϕ|.
Lastly, since gm(md(ϕ) − (i+ 1), ϕ) contains subformulae of ϕ, we derive that |ϕ| is at
least card(gm(md(ϕ)− (i+ 1), ϕ)) = n, concluding the proof of the property (5).

γi+1 satisfies (6). We show that bd(0, χ) ≤ (|ϕ| + 1)5 × 2|ϕ| holds for all d > md(ϕ) − (i + 1)
and χ ∈ lvl(d, γi+1). Let d > md(ϕ) − (i + 1) and χ ∈ lvl(d, γi+1). By definition, χ
is a subformula of γi+1 occurring under the scope of d nested graded modalities. Since
d > md(ϕ) − (i + 1) and lvl(md(ϕ) − (i + 1), γi+1) = {ψ̂1, . . . , ψ̂m}, we conclude that χ
occurs as a subformula of ψ̂j , for some j ∈ [1,m], under the scope of d− (md(ϕ)− (i+ 1))
nested graded modalities. More precisely, χ ∈ lvl(d−(md(ϕ)−(i+1)), ψ̃j). We recall that,
by definition of bd, for every d′ ≥ 1, bd(d′, ϕ̃j) = max({bd(0, χ̃) | χ̃ ∈ lvl(d′, ϕ̃j)}). Thus,
bd(0, χ) ≤ bd(d − (md(ϕ) − (i + 1)), ϕ̃j). Since d − (md(ϕ) − (i + 1)) ≥ 1 and from (c),
we derive bd(0, χ) ≤ bd(d− (md(ϕ)− i), χ1 ∧ · · · ∧χn). We divide the proof depending on
whether d− (md(ϕ)− i) = 0.

case: d− (md(ϕ)− i) = 0. By definition of bd,
bd(0, χ1 ∧ · · · ∧ χn) ≤ bd(0, χ1) + · · ·+ bd(0, χn).

From lvl(md(ϕ) − i, γi) = {χ1, . . . , χn} together with the fact that γi satisfies the prop-
erty (5), we have bd(0, χj) ≤ (|ϕ| + 1)4 × 2|ϕ|, for every j ∈ [1, n]. Since n ≤ |ϕ| (as we
showed during the proof of property (5)), we derive

bd(0, χ1 ∧ · · · ∧ χn) ≤ |ϕ| × (|ϕ|+ 1)4 × 2|ϕ|.
From bd(0, χ) ≤ bd(d− (md(ϕ)− i), χ1 ∧ · · · ∧ χn), we have bd(0, χ) ≤ (|ϕ|+ 1)5 × 2|ϕ|.

case: d− (md(ϕ)− i) ≥ 1. By definition of bd,
bd(d− (md(ϕ)− i), χ1 ∧ · · · ∧ χn) ≤ max({bd(d− (md(ϕ)− i), χj) | j ∈ [1, n]}

≤ max({maxbd(χj) | j ∈ [1, n]}).
Since lvl(md(ϕ)− i, γi) = {χ1, . . . , χn} and d > (md(ϕ)− i), from the fact that γi satisfies
the property (6) we conclude that maxbd(χj) ≤ (|ϕ|+ 1)5 × 2|ϕ|, for all j ∈ [1, n]. Thus,
bd(0, χ) ≤ bd(d− (md(ϕ)− i), χ1 ∧ · · · ∧ χn) ≤ (|ϕ|+ 1)5 × 2|ϕ|.

Lemmata 8.7 and 8.9 directly entail that ML() has an exponential-size small model property.

390 Chapter 8. The Complexity of the Modal Logic ML()

Lemma 8.10. There is a polynomial Q such that every satisfiable ϕ in ML() is satisfied by a
pointed forest of size bounded by 2Q(|ϕ|).

Fundamentally, from this lemma we conclude that the satisfiability problem of ML() can be
solved in alternating exponential time, using only polynomially many alternations.

Theorem 8.11. The satisfiability problem of ML() is in AExpPol.

Proof (sketch). We already described the algorithm in Section 8.1.2. Briefly, consider a for-
mula ϕ be in ML(). The (standard) algorithm is divided in two steps.

1. Guess a pointed forest (K,w) of size exponential in |ϕ|. Thanks to Lemma 8.10, whenever
ϕ is satisfiable, in this step we can guess a model satisfying it. Since the model has expo-
nential size, it can be guessed in NExpTime. By definition, NExpTime ⊆ AExpPol [41].

2. Call the model checking algorithm for ML() on input (K,w) and ϕ. By Proposition 8.4,
the model checking algorithm has runtime (alternating) exponential in |ϕ| (because of the
size of (K,w)), and uses an amount of alternations that is polynomial in |ϕ|.

8.3 ML() is AExpPol-complete

Following Theorem 8.11, in order to show that the satisfiability problem of ML() is complete for
AExpPol, it suffices to establish its AExpPol-hardness. In this section, we provide this result
thanks to a logspace reduction from the satisfiability problem for propositional logic interpreted
on team semantics, shown AExpPol-complete in [85, Theorem 4.9]. Despite being quite straight-
forward, this reduction allows us to draw a direct connection between ML() and propositional
logic in team semantics, two logics which can otherwise be understood as instantiations of BBI.

8.3.1 Propositional logic in team semantics.

Propositional logic in team semantics (PL(∼), a.k.a. propositional team logic) is a compositional
semantics for propositional logic introduced by H. Hodges [88, 89], and extensively studied
in recent years due to its application to database theory [135, 85, 136, 83]. We follow the
presentation in [85] and refer the reader to [136] for a complete description of propositional
team logics. The formulae of PL(∼) are defined from the grammar below (where p ∈ AP),

π := > (true)
| p (universaly true symbol)
| ¬̇p (universally false symbol)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ∼ϕ (Boolean connectives)
| ϕ ∨̇ϕ (team disjunction)

As we will see in a moment, whereas ∧ and ∼ behave respectively as classical conjunction and
classical negation, the atomic formula ¬̇p has a negation flavour without being equivalent to ∼p,
and ∨̇ is a spatial connective whose semantics follows. The small dot at the top of ¬̇ and ∨̇ is
not present in [85]: it is added herein to avoid any confusion with the connectives in ML().

On team semantics, the truth of a propositional formula is evaluated with respect to a set of
valuations, called teams. Let P ⊆fin AP be a finite set of atomic propositions. A team (over P)
is a set of Boolean valuations v : P → {>,⊥}. Notice that, since P is finite, every team is finite.
We write T,T1, . . . to denote teams. A formula ϕ of PL(∼) is interpreted on a team T over a set
of atomic propositions that includes those occurring in ϕ. The satisfaction relation |=, is given
in Figure 8.3. As we can see, the atomic formula p is interpreted so that every valuation in the

8.3. ML() is AExpPol-complete 391

T |= > always,

T |= p iff for every valuation v ∈ T, v(p) = >,

T |= ¬̇p iff for every valuation v ∈ T, v(p) =⊥,

T |= ∼ϕ iff T 6|= ϕ,

T |= ϕ ∧ ψ iff T |= ϕ and T |= ψ,

T |= ϕ∨̇ψ iff there are teams T1,T2 such that T = T1 ∪ T2, T1 |= ϕ and T2 |= ψ.

Figure 8.3: Satisfaction relation for PL(∼).

team must satisfy p. Similarly, ¬̇p states that every valuation in the team does not satisfy p.
Lastly, the team disjunction ϕ∨̇ψ is satisfied by the team T whenever it is possible to find two
teams T1 and T2, the first satisfying ϕ and the second satisfying ψ, whose union is T. Clearly,
the team disjunction is similar to the operators ∗ and from separation logics and ambient logics.
In fact, despite being independently developed, one can easily see that PL(∼) instantiate the
framework of BBI (Section 2.3.3). Let us be a bit more precise. We write T for the set of all
teams, and given two teams T1 and T2, over the same set of atomic propositions, let T1 ◦T2 be
defined as {T1∪T2} whenever T1 and T2 are defined over the same set of atomic propositions, and
otherwise T1 ◦T2

def= ∅. The triple (T, ◦,∅) forms a non-deterministic monoid (Definition 2.21).
Moreover, if we internalise the semantics of the atomic formulae p and ¬̇p with the following
evaluation [[.]],

[[p]] = {T team | for every v ∈ T, v(p) = >}, [[¬̇p]] = {T team | for every v ∈ T, v(p) =⊥},

we can easily connect the semantics of PL(∼) with the one of BBI. This is formalised with
the following proposition (whose proof is left to the reader), in which ϕ[∨̇ ← ∗] stands for the
BBI formula obtained from the PL(∼) formula ϕ by substituting every occurrence of the team
disjunction ∨̇ with the separating conjunction ∗ from BBI.

Proposition 8.12. Let ϕ in PL(∼) and T be a team. T |= ϕ in PL(∼) if and only if T |= ϕ[∨̇ ← ∗]
in BBI interpreted on the non-deterministic monoid (T, ◦,∅) and the evaluation [[.]].

8.3.2 From Propositional Team Logic to ML().

Let us now discuss the reduction from the satisfiability problem of PL(∼) to the satisfiability
problem of ML(). A direct encoding of a team T into a pointed forest (K,w) consists in having a
correspondence between the Boolean valuations in T and the Boolean valuations of the children
of w. In this case, the formula p can be translated to �p, whereas the formula ¬̇p corresponds
to �¬p. This encoding would work fine if there were no mismatch between the semantics for ,
which requires to partition the children of w in two disjoint sets, and the one for ∨̇, where
disjointness is not required. To handle this mismatch, when checking the satisfaction of ϕ in
PL(∼) with n occurrences of ∨̇, we impose that if a Boolean valuation occurs among the children
of w, then it occurs in least n+ 1 children. This property must be maintained after applying ∨̇
several times, always with respect to the number of occurrences of ∨̇ in the subformula of ϕ that
is evaluated. Non-disjointness of the teams is encoded by carefully separating the children of w
having identical valuations.

392 Chapter 8. The Complexity of the Modal Logic ML()

We now formalise the reduction. Given an PL(∼) formula ϕ, we write w∨̇(ϕ) for its ∨̇-weight,
that is the number of occurrences of the team disjunction ∨̇ in ϕ. Assume that we wish to
translate ϕ, and that the formula is written with atomic propositions in P = {p1, . . . , pm}. Given
n = w∨̇(ϕ), we introduce a set Q = {q1, . . . , qn+1} of auxiliary propositions disjoint from P . The
elements of Q are used to distinguish different copies of the same Boolean valuation of a team.
Given P and Q, which we fix throughout the section, we introduce the encoding of a team T with
valuations v : P → {>,⊥}, in a pointed forest (K,w), where K = (W, R,V). Given a valuation
v : P → {>,⊥}, we write (K,w) |= v whenever for every p ∈ P , (K,w) |= p iff v(p) = >.

Definition 8.13 (Team encoding). Let S be a non-empty subset of [1, n + 1]. We say that
(K,w) encodes T with respect to S, written T .S (K,w), whenever

1. every world in R(w) satisfies exactly one atomic proposition among q1, . . . , qn+1,

2. for every Boolean valuation v : P → {>,⊥}, if there is w′ ∈ R(w) such that (K,w′) |= v,
then for every k ∈ S there is w′′ ∈ R(w) such that (K,w′′) |= v and (K,w′′) |= qk.

3. for each valuation v : P → {>,⊥}, v ∈ T iff there is w′ ∈ R(w) such that (K,w′) |= v.

When T.S (K,w), the set of indices S represent a subset of Q, so that every valuation in T is
witnessed by at least card(S) children of w. Let us now devise formulae in ML() that correspond
to the first two properties highlighted in Definition 8.13. According to the first property, we
require each child of w to satisfy exactly one element of Q. This can be easily done with the ML
formula below, whose size is quadratic in n:

unique(Q) def= �
∨
k∈[1,n+1]

(
qk ∧

∧
j∈[1,n+1]\{k} ¬qj

)
.

For the property (2) of the encoding, we design a formula that is satisfied if and only if, for
every child of w satisfying a Boolean valuation v over (elements in) P , there are at least card(S)
children satisfying v, each of them satisfying a distinct symbol qk, where k ∈ S. The formula
copies(S) below does the job:

copies(S) def=
∧
j∈[1,n+1], k∈S ¬

(
�qj

(
♦=1qj ∧ ¬(> (♦=1qj ∧ ♦=1qk ∧

∧
i∈[1,m](♦pi ⇒ �pi)))

))
,

where we recall that ♦=1ϕ stands for ♦ϕ∧¬(♦ϕ ♦ϕ). Let us check the correctness of copies(S).

Lemma 8.14. Let ∅ 6= S ⊆ [1, n+ 1] and (K,w) be a pointed forest satisfying unique(Q). We
have (K,w) |= copies(S) if and only if for every valuation v : P → {>,⊥}, if there is w′ ∈ R(w)
such that (K,w′) |= v, then for every k ∈ S there is w′′ ∈ R(w) ∩ V(qk) such that (K,w′′) |= v.

Proof. Below, we assume (K,w) |= unique(Q), and thus that every world in R(w) satisfies
exactly one atomic proposition in Q = {q1, . . . , qk}.
(⇒): Suppose (K,w) |= copies(S). Let v : P → {>,⊥}, w′ ∈ R(w) such that (K,w′) |= v,
and k ∈ S. We show that there is w′′ ∈ R(w) such that (K,w′′) |= qk and (K,w′′) |= v. From
(K,w) |= unique(Q), there is j ∈ [1, n + 1] such that (K,w′) |= qj . From (K,w) |= copies(S),
we have

(K,w) 6|= �qj (♦=1qj ∧ ¬(> ♦=1qj ∧ ♦=1qk ∧
∧
i∈[1,m](♦pi ⇒ �qi))). (†)

Consider the two Kripke-style finite forests K1 = (W, R1,V) and K2 = (W, R2,V) such that
K1 +w K2 = K and R1(w) = {w̃ ∈ R(w) | w̃ 6= w′ and (K,w′) |= qj}. By definition, R1(w)
contains all the worlds in R(w) that satisfy qj , with the exception of w′, which is therefore the
only world satisfying qj in R2(w). We have (K1,w) |= �qj and (K2,w) |= ♦=1qj . From (†),

8.3. ML() is AExpPol-complete 393

we conclude that (K2,w) |= > ♦=1qj ∧ ♦=1qk ∧
∧
i∈[1,m](♦pi ⇒ �qi)). By definition, this

implies that there is a Kripke-style finite forest K′2 = (W, R′2,V) such that R′2(w) ⊆ R(w) and
(K′2,w) |= ♦=1qj ∧ ♦=1qk ∧

∧
i∈[1,m](♦pi ⇒ �qi). From the satisfaction of ♦=1qj and ♦=1qk we

conclude that R′2(w) contains two worlds w1 and w2 such that (K′2,w1) |= qj and (K′2,w2) |= qk.
Since w′ is the only world in R2(w) satisfying qj , and R′2(w) ⊆ R2(w), we have w1 = w′. From
the satisfaction of the formula

∧
i∈[1,m](♦pi ⇒ �qi), this allows us to derive (K′2,w2) |= v.

Since K and K′2 share the same valuation V and R′2(w) ⊆ R2(w) ⊆ R(w), we conclude that
w2 ∈ R(w) ∩ V(qk) and (K,w2) |= v.
(⇐): Suppose that for every valuation v : P → {>,⊥}, if there is w′ ∈ R(w) such that
(K,w′) |= v, then for every k ∈ S there is w′′ ∈ R(w) ∩ V(qk) such that (K,w′′) |= v. Ad
absurdum, assume (K,w) 6|= copies(S), and thus there are j ∈ [1, n+ 1], k ∈ S and Kripke-style
forest K1 = (W, R1,V) and K2 = (W, R2,V) such that (K1,w) |= �pj and

1. (K2,w) |= ♦=1qj ,

2. (K2,w) |= ¬(> ♦=1qj ∧ ♦=1qk ∧
∧
i∈[1,m](♦pi ⇒ �qi)).

From (1), there is w′ ∈ R2(w) such that (K2,w′) |= qj . Notice that it must hold that j 6= k.
Indeed, ad absurdum, suppose j = k and consider the two Kripke-style finite forests K′1 and
K′2 = (W, R′2,V) such that K2 = K′1 +w K′2 and R′2(w) = {w′}. We have (K′1,w) |= > and
(K′2,w) |= ♦=1qj ∧ ♦=1qk ∧

∧
i∈[1,m](♦pi ⇒ �qi), which contradicts (2). Now, let us consider the

Boolean valuation v : P → {>,⊥} such that (K2,w′) |= v. From R2(w) ⊆ R(w) and the fact that
K2 and K share the same valuation V, we conclude that w′ ∈ R(w). From the hypotheses, this
implies that there is a world w′′ ∈ R(w) such that (K,w′′) |= qk and (K,w′′) |= v. Since j 6= k and
(K1,w) |= �qj , we conclude that w′′ 6∈ R1(w) and therefore w′′ ∈ R2(w). We consider the Kripke-
style finite forests K′1 and K′2 = (W, R′2,V) such that K2 = K′1+wK′2 and R′2(w) = {w′,w′′}. Since
j 6= k and (K,w) |= unique(Q), we have (K′2,w) |= ♦=1qj (as w′ ∈ V(qj)) and (K′2,w) |= ♦=1qk
(as w′′ ∈ V(qk)). Since K and K′2 share the same valuation V, for every w̃ ∈ R′2(w) = {w′,w′′} we
have (K′2, w̃) |= v. Thus, (K′2,w) |=

∧
i∈[1,m](♦pi ⇒ �qi). However, together with (K′1,w) |= >,

this allows us to deduce that (K2,w) |= > ♦=1qj ∧♦=1qk ∧
∧
i∈[1,m](♦pi ⇒ �qi), in contradiction

with (2). We conclude that (K,w) |= copies(S).

Before defining the translation map τ from PL(∼) to ML(), we need to describe how worlds
encoding the same Boolean valuation are split when dealing with the operator ∨̇. Roughly
speaking, given a formula ϕ∨̇ψ, we want to partition the set of indices S ⊆ [1, n + 1] into two
sets S1 and S2 whose cardinalities imply the existence of enough copies of a Boolean valuation
required to successfully evaluate ϕ and ψ. To do so, we introduce an auxiliary choice function g

that takes as arguments S and n1, n2 ∈ N, with card(S) ≥ n1 + n2, and returns a pair of
sets (S1, S2) such that S1 and S2 partition S, card(S1) ≥ n1 and card(S2) ≥ n2. The map g

is instrumental to decide how to split S into two disjoint subsets respecting basic cardinality
constraints. We are now ready to introduce the translation map τ from PL(∼) to ML(), which
is defined in Figure 8.4. The translation is straightforward, and whenever card(S) ≤ |ϕ|, τ(ϕ, S)
has size quadratic in |ϕ|. For instance, whereas T |= p requires every valuation in T to satisfy
p, (K,w) |= τ(p, S) requires p to be satisfied by all the children of w that satisfy a propositional
symbol corresponding to an index of S. To translate the team disjunction ϕ∨̇ψ, we simply rely
on the choice function g in order to split S into suitable sets of indices S1 and S2 that allows to
correctly evaluate the translations of ϕ and ψ, depending on the number of team disjunctions
they contain. We show that if T .S (K,w), then T |= ϕ and (K,w) |= τ(ϕ, S) agree.

394 Chapter 8. The Complexity of the Modal Logic ML()

τ(p, S) def= �((
∨
j∈S qj)⇒ p),

τ(¬̇p, S) def= �((
∨
j∈S qj)⇒ ¬p),

τ(ϕ1 ∧ ϕ2, S) def= τ(ϕ1, S) ∧ τ(ϕ2, S),

τ(∼ϕ, S) def= ¬τ(ϕ, S),

τ(ϕ1∨̇ϕ2, S) def=
(
τ(ϕ1, S1) ∧ copies(S1)

) (
τ(ϕ2, S2) ∧ copies(S2)

)
,

where (S1, S2) = g(S, w∨̇(ϕ1) + 1, w∨̇(ϕ2) + 1).

Figure 8.4: Translation from PL(∼) to ML().

Lemma 8.15. Let ∅ 6= S ⊆ [1, n + 1] and T .S (K,w). For every PL(∼) formula ψ built over
P and such that w∨̇(ψ) ≤ card(S)− 1, we have T |= ψ iff (K,w) |= τ(ψ, S).

Proof. The proof is by structural induction on ψ.

base case: ψ = pi, where i ∈ [1,m]. (⇒): Suppose T |= pi. So, for every v ∈ T, v(pi) = >.
Ad absurdum, suppose that (K,w) 6|= τ(pi, S), and so there is k ∈ S and w′ ∈ R(w)∩V(qk)
such that (K,w′) 6|= pi. Let v′ be the valuation over P satisfied by w′. In particular, we
have v′(pi) =⊥. From the property (3) of the encoding (Definition 8.13), v′ ∈ T. However,
from T |= pi, this implies v(pi) = >: a contradiction. Thus, (K,w) |= τ(pi, S).
(⇐): Similar to the other direction. Suppose (K,w) |= τ(pi, S), and so for all w′ ∈ R(w),
if there is j ∈ S such that (K,w′) |= qj then (K,w′) |= pi. Ad absurdum, suppose that
T 6|= pi, and therefore there is v ∈ T such that v(pi) =⊥. From the property (3) of the
encoding, there is w′1 ∈ R(w) such that (K,w′1) |= v. In particular, (K,w′1) 6|= pi. From the
property (2) of the encoding, for every j ∈ S, there is w′2 ∈ R(w) such that (K,w′2) |= v

and (K,w′2) |= qj . However, as S 6= ∅, we derive that such a world w′2 exists, and moreover
(K,w′2) 6|= pi. This contradicts the fact that (K,w) |= τ(pi, S). Therefore, T |= pi.

base case: ψ = ¬̇pi, where i ∈ [1,m]. Similar to the case ψ = pi.

The cases in the induction step for which the outermost connective of ψ is a Boolean connective
are by an easy verification, and thus omitted.
induction step: ψ = ψ1∨̇ψ2. Observe that w∨̇(ψ) = w∨̇(ψ1) + w∨̇(ψ2) + 1 and recall that

w∨̇(ψ) ≤ card(S) − 1. Consequently, w∨̇(ψ1) + w∨̇(ψ2) + 2 ≤ card(S), which implies that
g(S,w∨̇(ψ1) + 1,w∨̇(ψ2) + 1) is defined. Let (S1, S2) = g(S,w∨̇(ψ1) + 1,w∨̇(ψ2) + 1). From
the definition of the choice function g, the sets S1 and S2 partition S, card(S1) ≥ w∨̇(ψ1)+1
and card(S2) ≥ w∨̇(ψ2) + 1.
(⇒): Suppose T |= ψ1∨̇ψ2. By definition, there are two teams T1 and T2 such that
T = T1 ∪ T2, T1 |= ϕ1 and T2 |= ϕ2. Let us define K1 = (W, R1,V) and K2 = (W, R2,V)
so that the set R(w) is divided in R1(w) and R2(w) as follows:

R1(w) def=
{

w′ ∈ R(w)
∣∣∣∣∣ there is v ∈ T1 such that (K,w′) |= v and
(v 6∈ T2 or there is j ∈ S1 s.t. (K,w′) |= qj)

}
,

R2(w) def= R(w) \R1(w).
By definition of +w, we have K = K1+wK2. We show that T1.S1 (K1,w) and T2.S2 (K2,w).
We consider the three properties of Definition 8.13 separately.

8.3. ML() is AExpPol-complete 395

property (1). From T.S (K,w), every world in R(w) satisfies exactly one atomic proposi-
tion among q1, . . . , qn+1. Since R1(w) ∪R2(w) = R(w) and the Kripke-style finite forests
K, K1 and K2 share the same valuation V, the same holds for every world in R1(w) and
R2(w). Thus, (1) is satisfied.

property (3). We show that for all i ∈ {1, 2} and valuation v : P → {>,⊥}, v ∈ Ti iff
there is w′ ∈ Ri(w) s.t. (Ki,w′) |= v. The proof is divided depending on the value of i.
case: i = 1. (⇒): Suppose v ∈ T1. From T1 ⊆ T, v ∈ T. From T.S (K,w) (property (3)),
there is w′ ∈ R(w) such that (K,w′) |= v. From T .S (K,w) (property (2)), together
with S1 ⊆ S, for every j ∈ S1 there is w′ ∈ R(w) such that (K,w′) |= v and (K,w′) |= qj .
Since S1 6= ∅, there are w′ ∈ R(w) and j ∈ S1 such that (K,w′) |= v and (K,w′) |= qj ,
which implies w′ ∈ R1(w) directly by definition of R1(w). Since K and K1 share the
same valuation V, we conclude that (K1,w′) |= V.
(⇐): Direct from the definition of R1(w).

case: i = 2. (⇒): Suppose v ∈ T2. From T2 ⊆ T, v ∈ T. Similarly to the previous case,
from T .S (K,w) (properties (3) and (2)), together with S2 ⊆ S, this implies that for
every j ∈ S1 there is w′ ∈ R(w) such that (K,w′) |= v and (K,w′) |= qj . Since S2 6= ∅,
this means that there are w′ ∈ R(w) and j ∈ S2 such that (K,w′) |= v and (K,w′) |= qj .
Since S1 is disjoint from S2, together with the property (1) showed above, we conclude
that for every k ∈ S1, (K,w′) 6|= qk. Together with v ∈ T2 and by definition of R1(w), this
implies w′ 6∈ R1(w). From w′ ∈ R(w) and by definition of R2(w), we have w′ ∈ R2(w).
Since K and K2 share the same valuation V, we conclude that (K2,w′) |= v.
(⇐): Suppose that there is w′ ∈ R2(w) such that (K2,w′) |= v. From R2(w) ⊆ R(w) we
conclude w′ ∈ R(w) and, since K and K2 share the same valuation V, (K,w′) |= v. From
T.S (K,w) (property (3)), v ∈ T. Ad absurdum, suppose v 6∈ T2. From T1∪T2 = T, this
implies v ∈ T1. However, by definition of R1(w), this allows us to derive w′ ∈ R1(w), in
contradiction with the disjointness of R1(w) and R2(w). Thus, v ∈ T2.

property (2). Given i ∈ {1, 2}, we show that for all Boolean valuations v : P → {>,⊥},
if there is w′ ∈ Ri(w) such that (Ki,w′) |= v, then for all k ∈ Si there is w′′ ∈ Ri(w) such
that (Ki,w′′) |= v and (Ki,w′′) |= qk. The proof is divided depending on the value of i.
case: i = 1. Let w′ ∈ R1(w) such that (K1,w′) |= v and let k ∈ S1. By definition of
R1(w), v ∈ T1. From R1(w) ⊆ R(w), w′ ∈ R(w) and, since K and K1 share the same
valuation V, (K,w′) |= v. From S1 ⊆ S together with T.S (K,w) (property (2)), there is
w′′ ∈ R(w) such that (K,w′′) |= v and (K,w′′) |= qk. Together with v ∈ T1, by definition
of R1(w), we conclude that w′′ ∈ R1(w) and, since K and K1 share the same valuation V,
(K1,w′′) |= v and (K1,w′′) |= qk.

case: i = 2. Let w′ ∈ R2(w) such that (K2,w′) |= v and let k ∈ S2. From the satisfaction
of the property (3) shown above, we conclude that v ∈ T2. From R2(w) ⊆ R(w),
w′ ∈ R(w) and, since K and K1 share the same valuation V, (K,w′) |= v. From S2 ⊆ S

together with T .S (K,w) (property (2)), there is w′′ ∈ R(w) such that (K,w′′) |= v

and (K,w′′) |= qk. Since S1 is disjoint from S2, together with the property (1) showed
above, we conclude that for every j ∈ S1, (K,w′′) 6|= qj . Together with v ∈ T2 and
by definition of R1(w), this implies w′′ 6∈ R1(w). From w′′ ∈ R(w) and by definition of
R2(w), we have w′′ ∈ R2(w). Since K and K2 share the same valuation V, we conclude
that (K2,w′′) |= v and (K2,w′′) |= qk.

We conclude that T1 .S1 (K1,w) and T2 .S2 (K2,w). Moreover, by definition of S1 and S2,
w∨̇(ψ1) ≤ card(S1)−1 and w∨̇(ψ2) ≤ card(S2)−1. We apply the induction hypothesis, and

396 Chapter 8. The Complexity of the Modal Logic ML()

derive that (K1,w) |= τ(ψ1, S1) and (K2,w) |= τ(ψ2, S2). Moreover, from T1.S1 (K1,w) and
T2 .S2 (K2,w), by Lemma 8.14, (K1,w) |= copies(S1) and (K2,w) |= copies(S2). Indeed,
notice that the property (1) of the encoding implies (Ki,w) |= unique(Q) (i ∈ {1, 2}).
From K = K1 +w K2, we conclude:

(K,w) |=
(
τ(ψ1, S1) ∧ copies(S1)

) (
τ(ψ2, S2) ∧ copies(S2)

)
.

(⇐): Suppose (K,w) |=
(
τ(ψ1, S1)∧ copies(S1)

) (
τ(ψ2, S2)∧ copies(S2)

)
. By definition,

there are two Kripke-style finite forests K1 = (W, R1,V) and K2 = (W, R2,V) such that
K = K1 +w K2, (K1,w) |= τ(ψ1, S1) ∧ copies(S1) and (K2,w) |= τ(ψ2, S2) ∧ copies(S2).
Let us define two teams T1 and T2 as follows:

T1
def= {v ∈ T | (K1,w′) |= v, for some w′ ∈ R1(w)},

T2
def= {v ∈ T | (K2,w′) |= v, for some w′ ∈ R2(w)}.

First of all, let us show that T1∪T2 = T. By definition, T1∪T2 ⊆ T, and thus we only need
to show the other inclusion. Let v ∈ T. From T.S (K,w) (property (3)), there is w′ ∈ R(w)
such that (K,w) |= v. From K = K1 +wK2, there is i ∈ {1, 2} such that w′ ∈ Ri(w). Since
K and Ki share the same valuation V, we have (Ki,w′) |= v. By definition of Ti, w′ ∈ Ti.
So, T1 ∪ T2 = T.
In order to conclude the proof, we show that for every i ∈ {1, 2}, Ti .Si (Ki,w). Indeed,
from w∨̇(ψ1) ≤ card(S1)−1 and w∨̇(ψ2) ≤ card(S2)−1, this allows us to apply the induction
hypothesis, deriving T1 |= ψ1 and T2 |= ψ2, which in turn implies T |= ψ1∨̇ψ2. To show
that Ti .Si (Ki,w), we consider the three properties of Definition 8.13 separately.

property (1). As in the left to right direction of the proof, this follows directly from
T .S (K,w), together with the fact that K = K1 +w K2.

property (2). Thanks to the property (1), we have (Ki,w) |= unique(Q). Thus, prop-
erty (2) follows directly from (Ki,w) |= copies(Si), as we apply Lemma 8.14.

property (3). Directly from the definition of Ti.

Lemma 8.15 allows us to complete the reduction from the satisfiability problem of PL(∼) to
the satisfiability problem of ML(), as formalised in the lemma below.

Lemma 8.16. Let ϕ be in PL(∼) with n occurrences of ∨̇ and built upon p1, . . . , pm. We have,
ϕ is satisfiable iff so is unique({q1, . . . , qn+1}) ∧ copies([1, n+ 1]) ∧ τ(ϕ, [1, n+ 1]).

Proof. The proof is by easy verification, while relying on Lemma 8.15.
(⇒): Suppose that ϕ is satisfiable, and let T = {v1, . . . , vL} be a team satisfying it. We consider
the Kripke-style finite forest K = (W, R,V) such that

W def= {0} ∪ ([1, L]× [1, n+ 1]),

R def= {(0, (i, j)) | (i, j) ∈ [1, L]× [1, n+ 1]},
and V is a valuation such that,
• for all j ∈ [1, n+ 1], V(qj) def= [1, L]× {j},

• for all s ∈ [1,m], V(ps) def= {(i, j) ∈ [1, L]× [1, n+ 1] | vi(ps) = >}.
Let w = 0. We show that T.[1,n+1] (K,w), which entails (K,w) |= unique(Q)∧copies([1, n+1])
directly from the first and second properties of the encoding (Definition 8.13), and (K,w) |=
τ(ϕ, [1, n + 1]) by Lemma 8.15. To show T .[1,n+1] (K,w) we consider the three properties of
Definition 8.13 separately.

8.4. An AExpPol-complete Static Ambient Logic 397

property (1). Let w′ ∈ R(w). By definition of K, there is (i, j) ∈ [1, L] × [1, n + 1] such that
w′ = (i, j). By definition of V, w′ ∈ V(qj) and for every k ∈ [1, n+ 1] \ {j}, w′ 6∈ V(qk).

property (2). Let v : P → {>,⊥} and w′ ∈ R(w) such that (K,w′) |= v. Let k ∈ [1, n + 1].
We show that there is w′′ ∈ R(w) such that (K,w′′) |= v and (K,w′′) |= qk. By definition
of K, there is (i, j) ∈ [1, L]× [1, n+ 1] such that w′ = (i, j). Given s ∈ [1,m], by definition
of V(ps) we have (i, j) ∈ V(ps) if and only if (i, k) ∈ V(ps). Let w′′ = (i, k). We have
(K,w′′) |= v and, by definition of V, w′′ ∈ V(qk).

property (3). Directly from the definition of V, given w′ = (i, j) ∈ [1, L] × [1, n + 1], we have
(K,w′) |= vi. By definition of R, w′ ∈ R(w), concluding the proof.

(⇐): Suppose that unique(Q) ∧ copies([1, n+ 1]) ∧ τ(ϕ, [1, n+ 1]) is satisfiable, and let (K,w)
be a pointed forest satisfying it, where K = (W, R,V). We define the team T below:

T def= {v : P → {>,⊥} | there are w′ ∈ R(w) and k ∈ [1, n+ 1] s.t. (K,w′) |= v and (K,w′) |= qk}.

It is easy to check that T .[1,n+1] (K,w). The property (1) of Definition 8.13 follows directly
from (K,w) |= unique(Q), whereas the property (2) follows from (K,w) |= copies([1, n + 1]),
by Lemma 8.14. Lastly, the property (3) holds directly from the definition of T. Thanks to
T.[1,n+1] (K,w), from (K,w) |= τ(ϕ, [1, n+1]) and by Lemma 8.15, we conclude that T |= ϕ.

Quite interestingly, the formulae in ML() involved in Lemma 8.16 have modal depth at most
one, which allows us to conclude that ML() is AExpPol-hard already for formulae where the
modalities ♦ are not imbricated. Together with the AExpPol upper bound obtained in Theo-
rem 8.11, we conclude that the satisfiability problem of ML() is AExpPol-complete.

Theorem 8.17. The satisfiability problem for ML() is AExpPol-complete. It is already
AExpPol-hard for the fragment of ML() formulae with modal depth at most 1.

Theorem 8.17 concludes our study of ML(): compared to graded modal logic, we now know
that ML() has the same expressive power (Chapter 7), whereas the complexity of its satisfiability
problem is higher: it is AExpPol-complete, instead of PSpace-complete.

8.4 An AExpPol-complete Static Ambient Logic

Throughout Chapters 7 and 8, we studied ML() as a way of analysing the composition opera-
tor of ambient logic [39], without directly dealing with the calculus of Mobile Ambients [40].
To complete the picture, in this section we place ML() in the context of a standard ambient
logics. In particular, we consider a very expressive fragment of Static Ambient Logic (SAL) [103]
whose satisfiability problem has been shown decidable and conjectured to be in PSpace (see [34,
Section 6]), and invalidate this conjecture by showing that it is in fact AExpPol-hard. More
precisely, we show the AExpPol-completeness of the satisfiability problem for the intentional
fragment of SAL [103], here denoted SAL(), by designing semantically faithful reductions be-
tween the satisfiability problem for ML() and the one of SAL(), in both directions.

Let us start by introducing the syntax and semantics of the static ambient logic from [34].
As already stated in Chapter 7, the fundamental entity of ambient logic is the ambient. Each
ambient has a name, taken from a countably infinite set of names. Without loss of generality,
we assume that ambients are named after atomic propositions from AP. The formulae ϕ of the
logic are defined from the grammar below (where n ∈ AP is an ambient name):

398 Chapter 8. The Complexity of the Modal Logic ML()

Information Trees

T := 0 | n[T] | T T

Semantics

T |= 0 iff T ≡ 0,

T |= n[ϕ] iff ∃T ′ s.t. T ≡ n[T ′] and T ′ |= ϕ,

T |= ϕ ψ iff T ≡ T1 T2, T1 |= ϕ and T2 |= ψ
for some information trees T1 and T2.

Structural equivalence

– T 0 ≡ T
– T1 ≡ T2 ⇒ T2 ≡ T1

– T1 ≡ T2, T2 ≡ T3 ⇒ T1 ≡ T3

– T1 T2 ≡ T2 T1

– (T1 T2) T3 ≡ T1 (T2 T3)
– T1 ≡ T2 ⇒ T1 T ≡ T2 T

– T1 ≡ T2 ⇒ n[T1] ≡ n[T2]

Figure 8.5: Interpretation and semantics of SAL().

π := > (true)
| 0 (empty tree)

ϕ := π (atomic formulae)
| ϕ ∧ ϕ | ¬ϕ (Boolean connectives)
| n[ϕ] (location modality)
| ϕ ϕ (composition operator)
| ϕ B ϕ (guarantee operator)

As we will see in a moment, the semantics of 0 is essentially the one of � ⊥ in ML(), whereas
n[ϕ] corresponds to the formula ♦=1> ∧ ♦(n ∧ ϕ) stating that the current world w of a pointed
forest (K,w) has exactly one child w′, whose ambient name is n, and (K,w′) |= ϕ. The guarantee
operator B is the right-adjoint of the composition operator , and thus satisfies the two following
rules from BBI:

B1
ϕ⇒ (ψ B χ)
ϕ ψ ⇒ χ

B2
ϕ ψ ⇒ χ

ϕ⇒ (ψ B χ)

In order to connect SAL with ML(), we restrict ourselves to the fragment of SAL obtained
by removing the guarantee operator. We write SAL() to denote this fragment. Historically,
the semantics of SAL is interpreted on information trees: syntactical objects equipped with a
structural equivalence relation ≡, which forms a congruence with respect to . The grammar used
to construct these structures, their structural equivalence as well as the satisfaction predicate
|= for SAL() are provided in Figure 8.5 (the standard cases for > and Boolean connectives are
omitted). Notice how the semantics of the formulae 0 and ϕ ψ simply follows the constructors of
the grammar for the information trees. The formula 0 asks the tree T to be congruent (w.r.t. the
relation ≡) to 0, whereas ϕ ψ asks the tree T to be congruent to T1 T2, for some T1 and T2
satisfying ϕ and ψ, respectively. Lastly, the formula n[ϕ] asks the tree T to be congruent to
n[T ′], for some information tree T ′ satisfying ϕ. Here, notice that n[ϕ] requires the root of the
tree T to have exactly one child named n. As an example, the information tree n[0] m[n[0]] is
congruent to 0 (n[0] n[m[0]]), and satisfies both the formulae 0 ¬0 and n[>] ¬0, but does not
satisfy the formula n[>].

Clearly, the logics SAL() and ML() are strongly related, and in what follows we show that
the satisfiability problem of these two logics are interreducible. Since both reductions are simple,
we leave their formal proofs in Appendix F.

8.4. An AExpPol-complete Static Ambient Logic 399

n[]

n[0] m[]

p[0]

m[]

p[0]

p[0]
encoded by

w

n m p

n m

p

p

Figure 8.6: An information tree (on the left), and one of its possible encodings as a pointed
forest (K,w) (on the right), with n ≥ 2.

8.4.1 From SAL() to ML().

The reduction from the satisfiability problem of SAL() to the satisfiability problem of ML() is
straightforward, as SAL() is essentially interpreted on pointed forests where each world satisfies
a single propositional variable (its ambient name). Suppose we want to translate a formula ϕ
in SAL() into an equisatisfiable formula in ML(). We can encode an information tree T as a
pointed forest (K,w) by requiring the set of worlds reachable from w in at most |ϕ| steps to
form a tree that is isomorphic to T and preserves the ambient names. Formally, this encoding
is defined as follows.

Definition 8.18 (Information Trees encoding). Let n ∈ N and let P ⊆fin AP. Let T be
an information tree having ambient names from P , and let (K,w) be a pointed forest, where
K = (W, R,V). We say that (K,w) is a (n, P)-encoding of T whenever

1. if n = 0, then T ≡ 0 if and only if R(w) = ∅,
2. if n ≥ 1 and T ≡ n1[T1] . . . nk[Tk], then there are w1, . . . ,wk such that {w1, . . . ,wk} =

R(w) and for every i ∈ [1, k], (K,wi) is a (n− 1, P)-encoding of Ti and, among the atomic
propositions in P , wi only satisfies ni.

It is easy to verify that every information tree written with ambient names from P admits a
(n, P)-encoding, for every n ∈ N. Figure 8.6 depicts an information tree and one of its possible
encodings as a pointed forest. Given a formula ϕ of SAL(), we introduce its translation τ(ϕ) in
ML(). τ is inductively defined as follows:

τ(>) def= >,

τ(0) def= � ⊥,

τ(ϕ ∧ ψ) def= τ(ϕ) ∧ τ(ψ),

τ(ϕ ψ) def= τ(ϕ) τ(ψ),

τ(¬ϕ) def= ¬τ(ϕ),

τ(n[ϕ]) def= ♦=1> ∧ ♦(n ∧ ϕ).

The following lemma, whose proof follows via an easy structural induction on ϕ (see Ap-
pendix F), shows the correctness of this translation.

Lemma 8.19. Let n ∈ N, P ⊆fin AP. Let T be an information tree having ambient names from
P and let (K,w) be a pointed forest such that (K,w) (n, P)-encodes T . For every formula ϕ in
SAL() such that |ϕ| ≤ n we have, T |= ϕ if and only if (K,w) |= τ(ϕ).

Thanks to Lemma 8.19, we are able to complete the reduction.

400 Chapter 8. The Complexity of the Modal Logic ML()

Lemma 8.20. Let ϕ be in SAL() built over P ⊆fin AP and p 6∈ P . ϕ is satisfiable if and only
if τ(ϕ) ∧

∧
i∈[1,|ϕ|]�

i∨
n∈P∪{p}

(
n ∧

∧
m∈(P∪{p})\{n} ¬m

)
is satisfiable.

Notice that, in Lemma 8.20, we make use of an auxiliary ambient name p that does not appear
in the formula ϕ. This is needed as there are formulae of SAL() that are satisfied only by
models having names not appearing in them, as for instance the formula ¬0. However from [34,
Lemma 8] we know that considering a single fresh name suffices. The subformula∧

i∈[1,|ϕ|]�
i∨

n∈P∪{p}
(
n ∧

∧
m∈(P∪{p})\{n} ¬m

)
characterises the classes of pointed forests (K,w) that are (|ϕ|, P ∪{p})-encodings of some infor-
mation tree, by stating that all worlds reachable from w in at most |ϕ| steps (w excluded) satisfy
exactly one atomic proposition from P ∪{p}, as required by the property (2) of Definition 8.18.

From the AExpPol-completeness of the satisfiability problem of ML(), Lemma 8.20 allows
us to conclude that the satisfiability problem of SAL() is decidable in AExpPol.

8.4.2 From ML() to SAL().

To perform the reduction from the satisfiability problem of ML() to the satisfiability problem of
SAL(), the main difficulty is dealing with the fact that worlds in a Kripke-style finite forest can
satisfy multiple atomic propositions, whereas each ambient of an information tree only satisfies
exactly one atomic proposition: its ambient name. A simple yet effective solution to this problem
relies on representing the atomic propositions satisfied by a world as ambients. For instance,
a world w with no children and satisfying the atomic propositions p and q could be simply
represented with the information tree p[0] q[0]. In order to represent the accessibility relation of
the Kripke-style finite forest, we can reserve an ambient name rel, so that ambient sharing this
name can be distinguished from the ones encoding atomic propositions. For instance, in this
encoding, we can represent the fact that w is a child of a world satisfying p by encapsulating
the information tree p[0] q[0] of w under the context rel[] p[0], obtaining the information
tree rel[p[0] q[0]] p[0].

One last obstacle for the reduction is how to deal with the composition operator of ML().
Indeed, we would like to simply rely on the composition operator of SAL(), but this could a
priori separate worlds encoding atomic propositions. For instance, again considering the world
w satisfying p and q, (K,w) |= p p holds, whereas p[0] q[0] |= p[0] p[0] does not. The solution is
very simple: exactly as done when reducing the satisfiability problem of the propositional logic
in team semantics PL(∼) to the satisfiability problem of ML(), we rely on enough copies of the
worlds encoding a propositional symbol, so that we can correctly encode their valuation even
after using the composition operator.

Let us start formalising the encoding described above. Let P ⊆fin AP be a finite set of atomic
propositions, and let rel and ap be two ambient names not in P . The ambient name rel encodes
the accessibility relation of a Kripke-style finite forest, whereas ambients with name ap can be
seen as containers for atomic propositions holding in a world. Given a subset Q = {p1, . . . , pk}
of P , we write ap[Q] for the information tree ap[p1[0] · · · pk[0]]. Given an information tree T
and m ∈ N, we write [T]m for the information tree obtained by composing (in parallel) m copies
of T , i.e. [T]0 def= 0 and [T]m+1 def= T [T]m. We define the encoding of a pointed forest as follows.

Definition 8.21 (Pointed forests as information trees). Let (K,w) be a pointed forest, where
K = (W, R,V), and let Q be the set of atomic propositions in P that are satisfied by w, and let

8.4. An AExpPol-complete Static Ambient Logic 401

w
q

p r

p, r

encoded by
rel[] rel[] ap[] ap[] ap[]

q[0] q[0] q[0]ap[]

r[0]

rel[] ap[] ap[]

p[0] p[0]ap[]

p[0] r[0]

Figure 8.7: A pointed forest (K,w) (on the left), and one of its possible encodings as an in-
formation tree (on the right), for n ≤ 3. The portion of the information tree encoding atomic
propositions is highlighted.

R(w) = {w1, . . . ,wk}. Given a natural number n ≥ 1, we say that an information tree T is a
(n, P)-encoding of (K,w) whenever there are m ≥ n and information trees T1, . . . , Tk such that

1. T ≡ [ap[Q]]m rel[T1] · · · rel[Tk],

2. if n > 1, then for every i ∈ [1, k], Ti is a (n− 1, P)-encoding of (K,wi).

Figure 8.7 shows a pointed forest and one of its possible encodings as an information tree.
Below, given an ambient name n, we write 〈n〉ϕ for the SAL() formula n[ϕ] >. Notice that

the formula 〈n〉ϕ, whose syntax is borrowed from Hennessy-Milner logic [86], is essentially a
relativised version of the modality of possibility ♦ϕ, and states that the root of an information
tree has a child named n satisfying ϕ. The dual [n]ϕ of 〈n〉ϕ is defined as expected: [n]ϕ def=
¬〈n〉¬ϕ. Moreover, we define the graded extensions of these modalities, and write 〈n〉≥kϕ
(where k ∈ N) for the formula inductively defined as

〈n〉≥0
def= >, 〈n〉≥k+1

def= (〈n〉ϕ) 〈n〉≥kϕ.

Given i ∈ N, we write 〈n〉i for i imbrications of 〈n〉, that is:

〈n〉0ϕ def= ϕ, 〈n〉i+1ϕ def= 〈n〉i〈n〉ϕ.

Lastly, [n]iϕ stands for ¬〈n〉i¬ϕ.
We introduce the translation τ(ϕ) in SAL() of a formula ϕ in ML(). Exactly as in the

translation from SAL() to ML(), the translation τ is homomorphic for Boolean connectives
and >. For the atomic proposition, the modality ♦ and the operator it is instead defined as:

τ(p) def= 〈ap〉〈p〉>, τ(♦ϕ) def= 〈rel〉τ(ϕ), τ(ϕ ψ) def=
(
τ(ϕ) ∧ 〈ap〉≥|ϕ|>

) (
τ(ψ) ∧ 〈ap〉≥|ψ|>

)
.

Notice that, in the translation of , the model of SAL() has to be split in such a way that
both subtrees contain enough ap ambients to correctly answer to the formula 〈ap〉〈p〉>. Because
of this, one can easily show that the size of τ(ϕ) is quadratic in |ϕ|. The translation is shown
correct in the lemma below, whose proof is given in Appendix F.

402 Chapter 8. The Complexity of the Modal Logic ML()

Lemma 8.22. Let P ⊆fin AP and n ≥ 1. Let T be a (n, P)-encoding of a pointed forest (K,w).
For every formula ϕ in ML(), built over P and with |ϕ| ≤ n, we have (K,w) |= ϕ iff T |= τ(ϕ).

Thanks to Lemma 8.22, we establish the AExpPol-hardness of SAL(). To do so, one last
step is to characterise the class of information trees that are encoding of one or more pointed
forests. Below, given an ambient name n and an information tree T congruent to n[T ′] T ′′, we
say that T ′ is a n-child of T . Given i ∈ N, we say that T ′ is a (i, n)-descendant of T whether there
is a sequence of information trees T0, . . . , Ti such that T0 ≡ T , Ti ≡ T ′, and for every j ∈ [0, i−1],
Tj+1 is a n-child. Let T be an information tree, n ≥ 1 and P = {p1, . . . , pk} ⊆fin AP. Let T ′ be a
(i, rel)-descendant of T , where i ∈ [0, n− 1]. Following Definition 8.21, in order to characterise
the fact that T is a (n, P)-encoding of a pointed forest, we require T ′ to satisfy the formulae:

Formula Informal explanation

αi,n
def= 〈ap〉≥(n−i) T ′ is congruent to ap[T1] · · · ap[Tm] Tm+1,

for some m ≥ n− i and trees T1, . . . , Tm+1,

β def= ¬
(
> (¬0 ∧ ¬〈rel〉> ∧ ¬〈ap〉>)

)
every child of T ′ is either a rel-child or a ap-child,

γP
def=
∧
p∈P

(
〈ap〉〈p〉> ⇒ [ap]〈p〉>

)
rel-children of T ′ agree on the types of p-children
they have, where p ∈ P ,

δP
def= [ap]

(
(p1[0] ∨ 0) · · · (pk[0] ∨ 0)

)
there is {pi1 , . . . , pil} ⊆ P such that every
rel-child of T ′ is congruent to pi1 [0] · · · pil [0].

We leave to the reader to check that T satisfies
∧
i∈[0,n−1][rel]i

(
αi,n ∧ β ∧ γP ∧ δP

)
if and only

if it is a (n, P)-encoding of some pointed forests (alternatively, see the proof of Lemma 8.23,
which is given in Appendix F).

Lemma 8.23. Let ϕ be a formula in ML() built over P = {p1, . . . , pk} ⊆fin AP. ϕ is satisfiable
if and only if the formula τ(ϕ) ∧

∧
i∈[0,|ϕ|−1][rel]i

(
αi,|ϕ| ∧ β ∧ γP ∧ δP

)
is satisfiable in SAL().

From Theorem 8.17, Lemmata 8.20 and 8.23 show that the satisfiability problem of SAL()
is complete for AExpPol. This implies that the static ambient logic SAL (i.e. the extension of
SAL() with the guarantee operator B) is AExpPol-hard, refuting hints from [34, Section 6].

Theorem 8.24. The satisfiability problem for SAL() is AExpPol-complete. The satisfiability
problem for SAL is AExpPol-hard.

9

The Complexity and Expressive Power
of the Modal Logic ML(∗)

Contents
9.1 ML(∗): when ∗ replaces . 407

9.1.1 ML(∗): Syntax and Semantics. 407
9.2 ML(∗) is Strictly Less Expressive than ML() 411

9.2.1 ML(∗) is not more expressive than GML. 411
9.2.2 Showing ML(∗) ≺ GML via EF games for ML(∗) 421

9.3 The complexity of ML(∗) . 432
9.3.1 The problem of tiling a (huge) grid. 432
9.3.2 Enforcing t(j, n) children. 433
9.3.3 Nominals, forks and number comparisons. 437
9.3.4 Construction of type(j): formulae for the base cases i = j or j = 1. . . 439
9.3.5 Construction of type(j): formulae for the inductive step 1 ≤ i < j. . . 443
9.3.6 Tiling a grid [0, t(k, n)− 1]× [0, t(k, n)− 1]. 452

9.4 Revisiting Tower-hard Logics with ML(∗) 459
9.4.1 From ML(∗) to the second-order modal logic QKt. 459
9.4.2 From ML(∗) to modal separation logic with converse. 461

403

405

In this chapter
We are interested in the following question:

How do the operators (from ambient logic) and ∗ (from separation logic)
compare in terms of expressivity and complexity?

To answer this question, we propose to look at ML(∗): the logic obtained from ML() by replacing
the composition operator with the separating conjunction ∗.
Very surprisingly, whereas we find ML(∗) to be strictly less expressive than ML(), we show that
replacing with ∗ makes the satisfiability problem jump from AExpPol to Tower. From the
Tower-completeness of ML(∗) we are able to solve open problems on modal separation logics,
as well as reproving the Tower-hardness of the second-order modal logic QK on trees.

Here is a roadmap of the chapter.

Section 9.1. We introduce the logic ML(∗). Differently from the operator , the separating
conjunction allows to arbitrarily split the accessibility relation of a Kripke-style finite forest. We
introduce the abbreviation �ϕ def= � ⊥ ∗ ϕ, and show that the formula ϕ ∗ ψ is equivalent to
�(ϕ ψ). This equivalence plays a fundamental role in bounding the expressiveness of ML(∗).

Section 9.2. We show that ML(∗) is strictly less expressive than the graded modal logic GML.
First, we prove that ML(∗) is at most as expressive as GML. From Chapter 7, we know that
GML and ML() have the same expressive power. In virtue of the equivalence ϕ ∗ ψ ≡ �(ϕ ψ),
this implies that it is sufficient to show that, for every formula χ in GML, the formula �χ can
be expressed in GML. We prove this result with a model theoretical argument that relies on
the notion of g-bisimulation [51], i.e. a refinement of the classical back-and-forth conditions of a
bisimulation (see e.g. [15]), tailored towards capturing graded modalities.
Afterwards, we show that the simple GML formula ϕ = ♦=2♦=1>, stating that the current world
has exactly two children with exactly one child, cannot be expressed in ML(∗). As already done
in previous chapters of the thesis, this is proven by introducing a notion of Ehrenfeucht-Fräıssé
games for ML(∗). After showing that our games are sound and complete for ML(∗), we show
the inexpressibility of ϕ by defining two pointed forests, one that satisfies ϕ and one that does
not satisfy it, for which the duplicator has a winning strategy.
The following theorem summarises the expressivity results on ML(∗), ML(), GML and the
standard modal logic ML. L1 ≺ L2 means that the logic L1 is less expressive than the logic L2,
and L1 ≈ L2 means that the two logics have the same expressive power,

Theorem 9.13. ML ≺ ML(∗) ≺ GML ≈ ML().

Section 9.3. We move to the complexity of ML(∗) and show that its satisfiability prob-
lem is Tower-hard. This result is shown with a uniform reduction, for all k > 1, from the
k-NExpTime-complete problem of tiling the grid [0, t(k, n)− 1]× [0, t(k, n)− 1], where t is the
(non-elementary) tetration function defined as t(0, n) = n and t(k + 1, n) = 2t(k,n). In order
to achieve the reduction, the main technical development consists in defining a formula, of size
exponential in k > 1 and polynomial in n ≥ 1, that is satisfied only by pointed forests (K,w)
where the current world w has exactly t(k, n) children. This formula, denoted by type(k), is
defined inductively on k. Roughly speaking, we assume each child w′ of w to satisfy type(k−1),

406 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

and use the t(k − 1, n) children of w′ to represent, in binary, a number n(w′) ∈ [0, t(k, n) − 1].
Then, type(k) requires w to be such that {n(w′) | w′ is a child of w} = [0, t(k, n)− 1].

Section 9.4. We rely on the Tower-hardness of the satisfiability problem for ML(∗) to
(re)prove the Tower-hardness of two logics interpreted on tree-like structures.
First, we translate ML(∗) into the second-order modal logic QK. When interpreted on trees
(QKt), this logic is known to be Tower-complete [8], which allows us to derive an upper bound
on the satisfiability problem for ML(∗).

Theorem 9.43. The satisfiability problem of QKt and ML(∗) are Tower-complete.

Lastly, we consider the logic MSL(∗,♦−1), that is the fragment of modal separation logic (Sec-
tion 2.3.2) featuring Boolean connectives, atomic propositions, the separating conjunction ∗ and
the converse modality of possibility ♦−1. From [54], the satisfiability problem of this logic is
known to be PSpace-hard and decidable in Tower. Thanks to ML(∗), we close this gap.

Theorem 9.46. The satisfiability problem of MSL(∗,♦−1) is Tower-complete.

9.1. ML(∗): when ∗ replaces 407

9.1 ML(∗): when ∗ replaces

The main focus of Chapters 7 and 8 was the study of the modal logic ML(), which we found
to be as expressive as the graded modal logic GML, and admitting a satisfiability problem that
is elementary decidable, more precisely AExpPol-complete. The introduction of ML() was
motivated by similarities between the composition operator of ambient logic and the separating
conjunction ∗ of separation logic, which emerge by looking at the two proof systems for ML()
and SL(∗,−∗) that have been designed in Chapter 7 and Chapter 6.

In this chapter, we undertake a thorough analysis of the differences between the separating
conjunction and the composition operator in the framework of modal logic. We do so by replac-
ing the composition operator of ML() by the separating conjunction of separation logic, and
studying the expressive power and complexity of the resulting logic, denoted by ML(∗). Despite
the two logics being quite close, to the point that we are able to use results from ML() in order
to pursue the analysis of ML(∗), we show that ML(∗) is profoundly different from ML(). First of,
while every formula of ML(∗) is expressible in ML(), we show that the converse does not hold:
ML(∗) is strictly less expressive than ML() (Section 9.2). However, in terms of computational
complexity, the satisfiability problem for ML(∗) is by far harder than the one for ML(): instead
of being AExpPol-complete (thus, solvable in ExpSpace), the satisfiability problem of ML(∗) is
Tower-complete (Section 9.3). Our choice of framing the separating conjunction in the context
of modal logic has further benefits, as we are able to close open problems in the realm of modal
separation logics (Section 2.3.2) and reprove the Tower-completeness of second-order modal
logic (QK, see Section 8.1.1) interpreted on tree-like structures (Section 9.4).

9.1.1 ML(∗): Syntax and Semantics.

Below, we define the modal logic ML(∗), while we refer the reader to Chapter 7 for the definition
of the logics ML() and GML, which are both fundamental in the context of this chapter. As
usual, we write AP for a countably infinite set of atomic propositions. The logic ML(∗) enriches
modal logic ML with the separating conjunction of ∗. Its formulae are built from the grammar
below (where p ∈ AP):

π := > (true)
| p (propositional symbol)

ϕ := π (atomic formulae)
| ϕ⇒ ϕ | ¬ϕ (Boolean connectives)
| ♦ϕ (modality of possibility)
| ϕ ∗ ϕ (separating conjunction)

Syntax-wise, ML(∗) is a fragment of MSL (see Section 2.3.2). However, we should here
avoid to confuse the two logics, as the standard semantics of MSL is given in terms of Kripke-
style finite functions (Definition 2.17), whereas in this chapter we interpret ML(∗) on Kripke-
style finite forests, exactly as ML(). The fundamental difference between the two classes of
structures is that the accessibility relation of a Kripke-style finite function is, as the word
suggest, functional, leading to the validity of the formula ♦ϕ ⇒ �ϕ. This is clearly not true
for ML(∗). This difference has staggering effects in terms of computational complexity: the
satisfiability problem ML(∗) interpreted on Kripke-style finite function is known to be decidable
in NP [54] (see also Figure 2.12) whereas we show that it is non-elementary on finite forests.
Let us recall the definition of Kripke-style finite forest.

408 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

(K,w) |= p iff w ∈ V(p),

(K,w) |= ♦ϕ iff there is w′ ∈ W such that w′ ∈ R(w) and (K,w′) |= ϕ,

(K,w) |= ϕ ∗ ψ iff there are K1 and K2 s.t. K1 +K2 = K, (K1,w) |= ϕ and (K2,w) |= ψ.

Figure 9.1: Satisfaction relation for ML(∗), with respect to (K,w) where K = (W, R,V).

Definition 7.1 (Kripke-style finite forest). A (Kripke-style) finite forest K = (W, R,V) is a
triple where W is a non-empty finite set of worlds (i.e. a universe), V : AP→ 2W is a valuation
and R ⊆ W ×W is a finite binary relation whose inverse R−1 is functional and acyclic.

As usual, we write R(w) = {w′ ∈ W | (w,w′) ∈ R} to denote the set of children of w. We
introduce the notation R|≤nw which denotes the minimal subset of R encoding exactly the subtree
rooted at w of height at most n. Formally,

R|≤nw
def= {(w′,w′′) ∈ R | w′ ∈ Ri(w) for some i ∈ [0, n− 1]}.

Similarly, R|w stands for the set {(w′,w′′) ∈ R | w′ ⊆ R∗(w)}, i.e. the maximal subset of R
encoding exactly the subtree rooted at w. Alternatively, R|w =

⋃
n∈NR|≤nw .

The only difference between ML() and ML(∗) rests on the semantics of their spatial connec-
tives. Instead of relying on the composition +w, ML(∗) uses the following notion of union.

Definition 9.1 (+ : the Separation-like union). Two Kripke-style finite forests K1 = (W, R1,V)
and K2 = (W, R2,V) are disjoint if R1 ∩ R2 = ∅. When this holds, their union K1 + K2 is the
Kripke-style finite function (W, R1 ∪R2,V). We write K1 ⊆ K2 if R1 ⊆ R2.

The notions of disjointness, union and subforest ⊆ are the ones of MSL (Definition 2.18), the
only difference being the class of Kripke structures considered. The union + is coarser than the
union +w, as shown by the equality below (where Ki = (W, Ri,V), for i ∈ [1, 3]):

K1 +w K2 = K3 iff K1 +K2 = K3 and for all i ∈ {1, 2} and w′ ∈ Ri(w), R+
i (w′) = R+

3 (w′).

In fact, whereas the union +w always preserves the trees rooted in children of w, like the
composition from ambient logic, the union + arbitrarily splits R, exactly as the union of heaps
in separation logic.

Given a pointed forest (K,w), where K = (W, R,V) is a Kripke-style finite forest and w ∈ W
the satisfaction relation |= for formulae in ML(∗) is defined in Figure 9.1, omitting the standard
clauses for > and the Boolean connectives ⇒ and ¬. As we can see, the semantics for the
separating conjunction ∗ is the usual one of BBI, instantiated with respect to the monoidal
operation +. This means that, in a lingua featuring both and ∗, the relationship between +w
and + provided above entails the validity of the formula ϕ ψ ⇒ ϕ ∗ ψ. The converse is not
true. For instance, the formula ��⊥ ��⊥ is not equivalent to ��⊥∗��⊥. To see why, let us
consider the pointed forest (K,w) depicted in Figure 9.2. (K,w) clearly satisfies ��⊥ ∗ ��⊥:
it is sufficient to split K into two finite forests K1 and K2, the first containing the arrow (w,w1)
and the other containing the arrow (w1,w2), as showed on the right side of Figure 9.2. In
both finite forests, no world is accessible from w in two steps, leading to (K1,w) |= ��⊥ and
(K2,w) |= ��⊥. Since K = K1 +K2, we conclude that (K,w) |= ��⊥∗��⊥. However, (K,w)
does not satisfy ��⊥ ��⊥. Indeed, in any split of K carried out with the operator +w, both

9.1. ML(∗): when ∗ replaces 409

w

w1

w2

K

=

w

w1

w2

K1

+

w

w1

w2

K2

Figure 9.2: A pointed forest (K,w) (on the left), and a possible decomposition via the union +.

the arrows (w,w1) and (w1,w2) must belong to one of the two subforests, which cannot therefore
satisfy the formula ��⊥.

The above example shows that, in general, ϕ ∗ ψ 6|= ϕ ψ. However, interesting equivalences
between formulae of ML(∗) and ML() can be easily established. Given formulae ϕ and ψ, let
us write ϕ ≡ ψ to denote that ϕ and ψ are logically equivalent, i.e. for every pointed forest
(K,w), (K,w) |= ϕ if and only if (K,w) |= ψ. For instance, we just showed that (��⊥ ��⊥) 6≡
(��⊥ ∗��⊥), and one can show that ♦p ♦q ≡ ♦p ∗♦q. These two (non)equivalences already
shed some light on ML() and ML(∗): the two logics are similar when it comes to their formulae
of modal degree one. As usual, the modal degree of ϕ, denoted by md(ϕ), is the maximal number
of nested modalities ♦ (or ♦≥k, in the case of GML) in ϕ.

Lemma 9.2. Let ϕ be a formula in ML() with md(ϕ) ≤ 1. Then, ϕ ≡ ϕ[← ∗] where ϕ[← ∗]
is the formula in ML(∗) obtained from ϕ by replacing every occurrence of by ∗.

Notice that this lemma already implies that the satisfiability problem for ML(∗) is AExpPol-
hard, directly from Theorem 8.17. To facilitate the proof of Lemma 9.2, as well as subsequent
lemmata, we rely on the following well-known result from ML, which can be easily reproved
for ML(∗) and ML() (by structural induction on ϕ).

Proposition 9.3. Let ϕ in ML (alternatively, GML, ML() or ML(∗)) and n ≥ md(ϕ). Let
(K,w) be a finite forest, where K = (W, R,V). (K,w) |= ϕ iff ((W, R|≤nw ,V),w) |= ϕ.

Essentially, Proposition 9.3 states that restricting the accessibility relation R of pointed forest to
those worlds that are reachable from w in at most n ≥ md(ϕ) steps do not change the satisfaction
of ϕ. Then, in the proof of Proposition 9.3 we essentially restrict the accessibility relation to
R|≤1

w and notice that, on this particular case, the definition of + and +w coincide.

Proof of Lemma 9.2. As md(ϕ) ≤ 1, by Proposition 9.3,

(K,w) |= ϕ iff ((W, R|≤1
w ,V),w) |= ϕ, (K,w) |= ϕ[← ∗] iff ((W, R|≤1

w ,V),w) |= ϕ[← ∗].

Thus, without loss of generality, let us assume that R = R|≤1
w , and thus that every child of w

does not have any children. To show tht (K,w) |= ϕ iff (K,w) |= ϕ[← ∗] the proof boils down
to the proof of the equivalence

for every Kripke-style finite forest K1 and K2, K = K1 +K2 if and only if K = K1 +w K2.

410 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

Given K1 = (W, R1,V) and K1 = (W, R2,V), this follows directly from the characterisation
of +w in term of + previously discussed, i.e.

K1 +w K2 = K iff K1 +K2 = K and for all i ∈ {1, 2} and w′ ∈ Ri(w), R+
i (w′) = R+(w′).

Indeed, as R = R|≤1
w , for all i ∈ {1, 2} and w′ ∈ Ri(w), R+

i (w′) and R+(w′) are both empty,

Although the equivalence of Lemma 9.2 ceases to work for formulae of modal depth more
than one, we can still somewhat rephrase the operator ∗ in terms of , albeit with some external
help. Let us introduce the auxiliary operator � defined as �ϕ def= ϕ ∗� ⊥. Formally,

(W, R,V),w |= �ϕ iff there is R′ ⊆ R s.t. R′(w) = R(w) and (W, R′,V),w |= ϕ.

Despite being similar, the operator � should not be confused with the sabotage modality [4]
we introduced in Chapter 4 in order to define ALT, which is only removing one arrow from the
accessibility relation. In this sense, the operator � is closer to the operator �* of ALT, as it
allows us to remove multiple arrows at once. However, whereas �* removes arrows arbitrarily, �
always preserves the children of w. For instance, with respect to the Kripke-style finite forests
in Figure 9.2, K1 is a structure that should be considered when evaluating �ϕ on (K,w), whereas
K2 is not, as the set of children of w is different between K2 and K. We show that the operators �
and are sufficient to capture the separating conjunction.

Lemma 9.4. Let ϕ and ψ be in either ML(), GML or ML(∗). We have ϕ ∗ ψ ≡ �(ϕ ψ).

A way to understand this equivalence is to notice that, unlike , when ∗ splits a finite forest K
into K1 and K2, it may disconnect in both submodels worlds that in K are otherwise reachable
from the current world. Applying � before allows us to imitate this behaviour. Indeed, even
though preserves reachability in either K1 or K2, � deletes part of K, making some world
inaccessible. The equivalence ϕ ∗ ψ ≡ �(ϕ ψ), proved below, provides us with a useful insight
which (in the next section) helps us analysing the expressive power of ML(∗).

Proof. Below, let (K,w) be a pointed forest, where K = (W, R,V).
(⇒): Suppose (K,w) |= ϕ ∗ ψ. There are K1 = (W, R1,V) and K2 = (W, R2,V) such that
K1 + K2 = K, (K1,w) |= ϕ and (K2,w) |= ψ. By Lemma 9.3 together with the fact that
R|w = R|≤card(R)+md(ϕ)

w , we have ((W, R1|w,V),w) |= ϕ and ((W, R2|w,V),w) |= ψ. Now, let
us consider the model K̂ = (W, R1|w ∪ R2|w,V). Fundamentally, for both i ∈ {1, 2} and every
(w1,w2) ∈ Ri|w, we have w1 ∈ (Ri|w) ∗ (w), directly from the definition of Ri|w. Thus, by
definition of +w, it is easy to see that (W, R1|w,V) +w (W, R2|w,V) = K̂. Hence K̂,w |= ϕ ψ.
Moreover, R1|w ∪ R2|w ⊆ R and (R1|w ∪ R2|w)(w) = R(w), which allows us to conclude that
K,w |= �(ϕ ψ) directly from the semantics of �.
(⇐): Suppose K,w |= �(ϕ ψ). There is K̂ = (W, R̂,V) such that R̂ ⊆ R and R̂(w) = R(w),
and there are K1 = (W, R1,V) and K2 = (W, R2,V) such that K1 +w K2 = K̂, (K1,w) |= ϕ and
(K2,w) |= ψ. Consider now the set R = R \ R̂. We define:

R′1
def= R1 ∪ {(w′,w′′) ∈ R | w′ 6∈ R∗1(w)}, R′2

def= R2 ∪ (R \R′1).

By definition, R′1|w = R1|w and R′2|w = R2|w. Moreover, R′1 ∩ R′2 = ∅ and R′1 ∪ R′2 = R, and
so (W, R′1,V) + (W, R′2,V) = K. By Lemma 9.3, (W, R′1,V),w |= ϕ and (W, R′2,V),w |= ψ. We
conclude that K,w |= ϕ ∗ ψ.

9.2. ML(∗) is Strictly Less Expressive than ML() 411

9.2 ML(∗) is Strictly Less Expressive than ML()
In this section, we focus on the expressivity of ML(∗). For simplicity, given two logics L1 and L2
interpreted on the same class of structures, we write L1 � L2 whenever the logic L1 is at most
as expressive as L2, i.e. every formula in L1 can be characterised in L2. Moreover, we write
L1 ≈ L2 whenever the two logics have the same expressive power, i.e. L1 � L2 and L2 � L1,
and L1 ≺ L2 whenever L2 is strictly more expressive than L1, i.e. L1 � L2 and L1 6≈ L2.

It is known that the standard modal logic ML is strictly less expressive than the graded
modal logic GML [15, 51]. Together with the results in Chapter 7 (Corollary 7.18), this implies
that ML ≺ GML ≈ ML(). We show that ML(∗) sits strictly between ML and GML, and it is
therefore less expressive than ML(). To establish that ML(∗) ≺ GML, we first show ML(∗) �
GML and then we prove the strictness of the inclusion. The former result takes advantage of
the notion of g-bisimulation, i.e. the underlying structural indistinguishability relation of GML,
studied in [51]. For the latter result, we design an ad hoc notion of Ehrenfeucht-Fräıssé games
for ML(∗), and define a simple formula in GML that cannot be expressed in ML(∗).

9.2.1 ML(∗) is not more expressive than GML.

To establish that ML(∗) � GML, let us first use the equivalence ϕ ∗ ψ ≡ �(ϕ ψ) proved
in Lemma 9.4, together with the fact that, by Corollary 7.18, given ϕ and ψ in GML, there
is a formula χ in GML such that ϕ ψ ≡ χ. These two properties allows us to translate every
formula of ML(∗) into an equivalent formula where the separating conjunction is only used in
order to define the operator �. In order to prove that ML(∗) � GML, it is thus sufficient to show
that GML is closed under the operator �, i.e. for every formula ϕ in GML there is a formula ψ
in GML such that ψ ≡ �ϕ. To do so, we rely on the indistinguishability relation of GML, called
g-bisimulation [51].

A g-bisimulation is a refinement of the classical back-and-forth conditions of a bisimulation
(see e.g. [15]), tailored towards capturing graded modalities. It relates models with similar
structural properties, but up to parameters m, k ∈ N and P ⊆fin AP, responsible for the modal
degree, the graded rank and the set of atomic propositions used, respectively. Given a formula
ϕ in GML, its graded rank gr(ϕ) is the maximal coefficient k appearing in a subformula ♦≥kψ
of ϕ. The following invariance result holds: g-bisimilar models (up to m, k and P) are modally
equivalent in GML, i.e. no formula of GML with modal degree and graded rank bounded by m
and k respectively, and written with symbols from P , can be satisfied by exactly one of the two
models. Let us formalise the notion of g-bisimulation.

Definition 9.5 (g-bisimulation, [51]). Let K = (W, R,V) and K′ = (W ′, R′,V ′) be two finite
forests. Let m, k ∈ N and P ⊆fin AP. A g-bisimulation up to (m, k, P) between K and K′ is a
sequence of m+ 1 k-uple Z0 = (Z0

1 ,Z0
2 , . . . ,Z0

k), . . . , Zm = (Zm1 ,Zm2 , . . . ,Zmk) satisfying:

(init) Z0
1 is not empty and for every i ∈ [1, k] and j ∈ [0,m], Zji ⊆ 2W × 2W ′ ,

(refine) for every i ∈ [1, k] and j ∈ [1,m], Zji ⊆ Z
j−1
i ,

(size) if (X,Y) ∈ Zji then card(X) = card(Y) = i,
(atoms) if ({w}, {w′}) ∈ Z0

1 then for every p ∈ P , w ∈ V(p) if and only if w′ ∈ V ′(p),
(m-forth) if ({w}, {w′}) ∈ Zj+1

1 then for every X ⊆ R(w) with card(X) ∈ [1, k], there
is Y ⊆ R′(w′) such that (X,Y) ∈ Zjcard(X),

412 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

(m-back) if ({w}, {w′}) ∈ Zj+1
1 then for every Y ⊆ R′(w′) with card(Y) ∈ [1, k], there

is X ⊆ R(w) such that (X,Y) ∈ Zjcard(Y),
(g-forth) if (X,Y) ∈ Zji then for all w ∈ X there is w′ ∈ Y such that ({w}, {w′}) ∈ Zj1 ,
(g-back) if (X,Y) ∈ Zji then for all w′ ∈ Y there is w ∈ X such that ({w}, {w′}) ∈ Zj1 .

We write (K,w)�P
m,k (K′,w′) (and say that the two models are g-bisimilar) if and only if there is

a g-bisimulation up to (m, k, P) between K and K′, say Z0, . . . ,Zm, such that ({w}, {w′}) ∈ Zm1 .

To grasp the intuition behind g-bisimulation, let us look at the two conditions (m-forth)
and (g-forth). In the standard bisimulation for ML, given two bisimilar structures (K,w) and
(K′,w′), for every child w1 of w there is a child w′1 of w′ such that (K,w′1) and (K′,w′2) are also
bisimilar. Together with the other direction of the bisimulation, swapping (K,w) and (K′,w′),
this condition essentially characterises the modality ♦. The g-bisimulation is defined on the
same principle, with the intent of characterising the graded modality ♦≥iϕ. Together, (m-forth)
and (g-forth) state that if (K,w) and (K′,w′) are g-bisimilar, then given children w1, . . . ,wi
of w, with i ∈ [1, k], there are children w′1, . . . ,w′i of w′ such that, for every l ∈ [1, i], (K,w′l)
and (K′,w′l) are also g-bisimilar. As we can see, for i = 1 we obtain exactly the definition of
bisimulation, and indeed ♦≥1ϕ is equivalent to ♦ϕ.

Given m, k ∈ N and P ⊆fin AP, we write GML[m, k, P] to denote the set of GML formulae ψ
having md(ψ) ≤ m, gr(ψ) ≤ k and propositional variables from P . GML[m, k, P] is finite up to
logical equivalence [51] (see Lemma 4.16 and its proof in Appendix B for a similar result).

Definition 9.6 (Indistinguishable forests). Given two pointed forests (K,w) and (K′,w′), we
write (K,w) ≡Pm,k (K′,w′) whenever (K,w) and (K′,w′) are GML[m, k, P]-indistinguishable,
i.e. for every ψ in GML[m, k, P], (K,w) |= ψ if and only if (K′,w′) |= ψ.

We write T P (m, k) to denote the quotient set induced by the equivalence relation ≡Pm,k. Let
m ≤ m′, k ≤ k′ and P ⊆ P ′. Since GML[m, k, P] ⊆ GML[m′, k′, P ′], we have ≡P ′m′,k′ ⊆≡Pm,k.
Moreover, as GML[m, k, P] is finite up to logical equivalence, the set T P (m, k) is finite, as stated
in the proposition below, which summarises results in [51].

Proposition 9.7 ([51]). Let (K,w) and (K′,w′) be two pointed forests.
1. (K,w)�P

m,k (K′,w′) if and only if (K,w) ≡Pm,k (K′,w′).

2. �P
m,k is a finite index equivalence relation. T P (m, k) is finite.

3. (K,w)�P
m,k ((W, R|w,V),w), where K = (W, R,V).

Whereas (1) is proved by induction on m, (2) holds from (1) and the finiteness of GML[m, k, P]
(up to logical equivalence). (3) holds from (2) together with Proposition 9.3, as R|w = R|≤card(R)

w .
To establish that GML is closed under �, we show that there is a function f : N2 → N such

that for all m, k ∈ N and P ⊆fin AP, if two pointed forests are in the same equivalence class of
≡Pm,f(m,k), then they satisfy the same formulae of the form �ϕ, where ϕ is in GML[m, k, P]. By
standard arguments (see e.g. Theorem 5.46) and from the fact that GML[m, f(m, k), P] is finite up
to logical equivalence, we then conclude that �ϕ is equivalent to a formula in GML[m, f(m, k), P].
As we are not interested in the size of the equivalent formula, we can simply use the cardinality
of the finite set T P (m, k) in order to inductively define a suitable function:

f(0, k) def= k, f(m+ 1, k) def= k × (card(T P (m, f(m, k))) + 1).

9.2. ML(∗) is Strictly Less Expressive than ML() 413

Essentially, the definition of f(m+ 1, k) gives a bound to ♦≥i modalities that is more than k
times the number of equivalence classes in T P (m, f(k,m)). As GML[m, k, P] ⊆ GML[m′, k′, P ′]
holds for all m ≤ m′, k ≤ k′ and P ⊆ P ′, we conclude that the map f is monotonic in both
components. In fact, one can show that it is a tetration function. To prove that f satisfies the
required properties, we show a technical �-simulation lemma that is similar to the simulation
lemmata used in Chapter 5 to characterise a separation logic in terms of core formulae.

Lemma 9.8. Let (K,w)≡Pm,f(m,k) (K′,w′) where m, k ∈ N, P ⊆fin AP, K = (W, R,V) and
K′ = (W ′, R′,V ′). For every R1 ⊆ R there is R′1 ⊆ R′ such that

1. ((W, R1,V),w) ≡Pm,k ((W ′, R′1,V ′),w′),

2. if R1(w) = R(w), then R′1(w′) = R′(w′).

The proof of Lemma 9.8 is by induction on m. The condition (2) serves in the proof of Lemma 9.9
(below), as it allows us to capture the semantics of �, by preserving the children of the world w′.
In the proof, we rely on the properties of g-bisimulations [51] to define a binary relation ↔
between worlds of R(w) and R′(w′). Every w1 ↔ w′1 is such that (K,w1)≡Pm−1,f(m−1,k) (K′,w′1).
The operator � does not necessarily preserve the children of w1 and w′1, so that the induction
hypothesis, naturally defined from the statement of Lemma 9.8, is applied on models where
the premise of the condition (2) may not hold. We show that for all R1 ⊆ R, it is possible to
construct R′1 ⊆ R′ such that, for all w1 ↔ w′1, ((W, R1,V),w1) ≡Pm−1,k ((W ′, R′1,V ′),w′1). The
result is then lifted to ((W, R1,V),w) ≡Pm,k ((W ′, R′1,V ′),w′), again thanks to the properties of
the g-bisimulation.

For simplicity, let us write T P (m, k) for the set T P (m, f(m, k)). Then, T P (0, k) = T P (0, k),
and for every m ≥ 1, T P (m, k) = T P (m, k × (card(T P (m− 1, k)) + 1)). In the context
of Lemma 9.8, which we now prove, we also notice that, by hypothesis, the pointed forests
(K,w) and (K′,w′) belong to the same equivalence class in T P (m, k), whereas the pointed
forests in the condition (1) are “only” in the same equivalence class of T P (m, k).

Proof. In the case k = 0, the lemma is trivially satisfied, as every formula in GML[m, 0, P] is
equivalent to a formula in the propositional calculus built over propositional variables in P .
Indeed, the only graded modality appearing in formulae of GML[m, 0, P] is ♦≥0, and ♦≥0ψ is
logically equivalent to >.

Let us assume k ≥ 1. We prove the result by induction on the modal depth m. In this proof,
we switch quite freely between ≡Pm,k and �P

m,k, which by Proposition 9.7 are the same relation,
depending on what properties of pointed forests we want to focus on. The induction step is
articulated in three main steps:

(I) definition and proof of various properties of the two models (K,w) and (K′,w′),

(II) definition of a strategy to define R′1 from R′, that closely follows the relationship between
R and R1 with respect to the children of w,

(III) the proof that ((W, R1,V),w) and ((W ′, R′1,V ′),w′) satisfy the conditions (1) and (2)
required by Lemma 9.8.

Let us begin with the base case.
base case: m = 0. In this case, let us work with ≡Pm,k. As m = 0, we have that (K,w) and

(K′,w′) satisfy the same set of formulae of GML[0, f(0, k), P]. By definition, all these
formulae have modal depth 0, and thus are Boolean combinations of atomic propositions.
So, in general, for every j ∈ N, two pointed forests are in the relation ≡P0,j if and only

414 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

if their current worlds satisfy the same atomic propositions from P . It is then sufficient
to define R′1 as R in order to conclude that ((W, R1,V),w) ≡P0,k ((W ′, R′1,V ′),w′), and if
R1(w) = R(w) then R′1(w′) = R′(w′).

Induction step: m ≥ 1. By definition of f(m, k) and Proposition 9.7, we have
(K,w)�P

m,k×(card(T P (m−1,k))+1) (K′,w′).
Let us explain the main idea of the proof. Let us pick a child w1 of w in K. Obviously,
the pointed forest (K,w1) belongs to a specific equivalence class T ∈ T P (m− 1, k). The
effect of reducing R to R1 is that w1, together with the updated model, “jumps” to an
equivalence class T1 ∈ T P (m− 1, k), meaning that ((W, R1,V),w1) can a priori satisfy
different formulae than (K,w1), despite having the same current world. To prove the
result, we need to show that there is a child w′1 ∈ R′(w′) such that (K′,w′1) is in the same
equivalence class of (K,w1), i.e. T, and that it is possible to modify R′ into R′1 in order to
make w′1 (and the updated model) “jump” to the equivalence class T1. The main difficulty
is that we need to do this for all the children of w and w′, respecting the constraints of the
g-bisimulation. The key step is to show that the graded rank k× (card(T P (m− 1, k))+1)
is all we need in order to carry on the construction of R′1 so that the resulting models are g-
bisimilar up to (m, k, P). Let us now formalise the proof, which requires some intermediate
steps that are below highlighted .
We start by considering a single equivalence class T ∈ T P (m− 1, k) (in fact, our proof is
done modularly on these classes). We introduce the sets R(w)|T and R′(w′)|T, defined as

R(w)|T def= {w1 ∈ R(w) | (K,w1) ∈ T}, R′(w′)|T def= {w′1 ∈ R′(w′) | (K′,w′1) ∈ T}.
That is, R(w)|T contains the children w1 of w such that (K,w1) belongs to T, and R′(w′)|T
is analogous but with respect to (K′,w′).
It is fairly simple to see that the following property holds:

(A) min(card(R(w)|T), k × (card(T P (m− 1, k)) + 1))
= min(card(R′(w′)|T), k × (card(T P (m− 1, k)) + 1))

Indeed, ad absurdum suppose that (A) does not hold, and thus R(w)|T and card(R′(w′)|T)
have different cardinalities, where at least one of them has cardinality less than the
bound on the graded rank k × (card(T P (m− 1, k)) + 1. Let us assume card(R(w)|T) <
card(R′(w′)|T) (the other case is symmetrical) and so

card(R(w)|T) < min(card(R′(w′)|T), k × (card(T P (m− 1, k)) + 1).
From K,w �P

m,k×(card(T P (m−1,k))+1) K
′,w′, there is a g-bisimulation between K and K′,

say Z0, . . . ,Zj = (Zj1 , . . . ,Z
j
k×(card(T P (m−1,k))+1)), . . . ,Z

m, such that ({w}, {w′}) ∈ Zm1 .
Let Y be a subset of R′(w′)|T of cardinality

card(Y) = min(card(R′(w′)|T), k × (card(T P (m− 1, k)) + 1)).
By (m-back), there isX ⊆ R(w) such that (X,Y) ∈ Zm−1

card(Y). By (size), card(X) = card(Y),
which implies that there is a world w2 ∈ X such that (K,w2) 6∈ T. From (g-forth), there
is w′2 ∈ Y such that ({w2}, {w′2}) ∈ Zm−1

1 . So, by definition of g-bisimulation,
(K,w2)�P

m−1,k×(card(T P (m−1,k))+1) (K′,w′2).

As we know, for all j < j′ we have ≡Pm−1,j′ ⊆≡Pm−1,j . Since, by Proposition 9.7, ≡Pm,k
equals to �P

m,k, the same property holds true for �P
m,k. Moreover,

9.2. ML(∗) is Strictly Less Expressive than ML() 415

f(m− 1, k) ≤ k × (card(T P (m− 2, k)) + 1) ≤ k × (card(T P (m− 1, k)) + 1),

which allows us to derive (K,w2)�P
m−1,f(m−1,k) (K′,w′2). Notice that the set of equivalence

classes induced by�P
m−1,f(m−1,k) is T P (m− 1, k). However, this implies that (K,w2) and

(K′,w′2) belong to the same class of T P (m− 1, k), which is contradictory, as we have
(K,w2) 6∈ T and (K′,w′2) ∈ T (where T ∈ T P (m− 1, k)). Therefore, (A) holds.

Given an equivalence class T′ ∈ T P (m− 1, k), we define the set below

R1(w)|TIT′
def= R(w)|T ∩R1(w)|T′ .

Following the proof idea presented above, a world w1 ∈ R1(w)|TIT′ is a child of w such
that (K,w1) is in the class T and “jumps” to the class T′ when updating the accessibility
relation from R to R1. We are interested in the following key property:

(B) For every w1 ∈ R1(w)|TIT′ and w′1 ∈ R′(w′)|T there is R′1,w′1 ⊆ R
′|w′1

such that ((W, R1|w1 ,V),w1)�P
m−1,k ((W ′, R′1,w′1 ,V

′),w′1)

Let us prove (B). By definition, we have w1 ∈ R(w)|T and w′1 ∈ R′(w′)|T, and thus
(K,w1)�P

m−1,f(m−1,k) (K′,w′1). From the equivalence of �P
m−1,f(m−1,k) and ≡Pm−1,f(m−1,k),

together with Proposition 9.3, we conclude that ((W, R|w1 ,V),w1) and ((W ′, R′|w′1 ,V
′),w′1)

belong to T. Moreover, from R1 ⊆ R we conclude that R1|w1 ⊆ R|w1 . This allows us to
apply the induction hypothesis (notice that the modal degree is now m − 1), and con-
clude that there is R′1,w′1 ⊆ R′|w′1 such that (W, R1|w1 ,V),w1 �P

m−1,k (W ′, R′1,w′1 ,V
′),w′1,

concluding the proof of (B).

This intermediate result gives us an important information: every single “jump” (as infor-
mally expressed above) done while updating the accessibility relation of K can be mimicked
by updating K′. An important missing piece is proving that all jumps can be simultane-
ously mimicked. To prove this, we start by considering the following partition of R(w)|T:

R(w)T
IR1

def= {R1(w)|TIT′ | T′ ∈ T P (m− 1, k)} ∪ {R(w)|T \R1(w)}.

Informally, R(w)T
IR1

partitions the children of w in R(w)|T in different sets depending on
what is the set T′ ∈ T P (m− 1, k) they “jump” to. One additional set, i.e. R(w)|T \R1(w),
contains all the children of w in R(w)|T that are lost when updating R to R1. To be
completely formal, let us first prove that R(w)T

IR1
is a partition of R(w)|T. Indeed,

R(w)|T can be written as (R(w)|T ∩ R1(w)) ∪ (R(w)|T \ R1(w)). Moreover, by definition
of T P (m− 1, k) as the quotient set of �P

m−1,k, we have R1(w) =
⋃

T′∈T P (m−1,k)R1(w)|T′ .
Lastly, R(w)|T∩

⋃
T′∈T P (m−1,k)R1(w)|T′ is equivalent to

⋃
T′∈T P (m−1,k)(R(w)|T∩R1(w)|T′),

which leads to the definition of the partition R(w)T
IR1

from the definition of R1(w)|TIT′

together with the remaining component R(w)|T \R1(w). Figure 9.3 presents schematically
the results we have shown so far, only considering the children of w in R(w)|T (on the left)
and the children of w′ in R′(w′)|T (on the right).

To work towards the definition of R′1 (as required by the statement of the lemma), we
now deal with the children in R′(w′)|T and find suitable subsets of R′1 in order to define a
partition of R′(w′)|T that is similar to R(w)T

IR1
, where by “similar” we mean that we will

be able to construct a g-bisimulation using this partition. More precisely, we show that:

416 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

w

TIT1 TIT2 . . . TIT
k̂

{R1(w)|TIT′ | T′ ∈ T P (m− 1, k)}

R(w)|T \R1(w)

w′

(A): card(R(w)|T) = k × (card(T P (m− 1, k)) + 1) then
there are card(R(w)|T) children, otherwise there

are at least k × (card(T P (m− 1, k)) + 1) children.

∗ k̂ = card(T P (m− 1, k))

Figure 9.3: R(w)|T (on the left), and R′(w′)|T (on the right).

(C) It is possible to construct a family of sets
R′(w′)|T T′ (for every T′ ∈ T P (m− 1, k)), GT,

satisfying the following properties:
1. For all T′ ∈ T P (m− 1, k), R′(w′)|T T′ is a set of pairs (R′1,w′1 ,w

′
1) s.t.

w′1 ∈ R′(w′)|T, R′1,w′1
⊆ R′|w′1 and ((W ′, R′1,w′1 ,V

′),w′1) ∈ T′,

2. each world of R′(w′)|T appears in exactly on set among R′(w′)|T T′

(T′ ∈ T P (m− 1, k)) and GT,
3. min(card(R1(w)|TIT′), k) = min(card(R′(w′)|T T′), k),

(T′ ∈ T P (m− 1, k)),
4. min(card(R(w)|T \R1(w)), k) = min(card(GT), k).

The first property of (C) basically requires us to modify R′ so that the children of R′(w′)|T
“jumps” to specific sets in T P (m− 1, k), in line with the developments that lead to the
proof of (B). The set GT is dedicated to children of w′ worlds that should be made in-
accessible from w′, in the final relation R′1. The updates to R′ cannot be arbitrary, and
this is where the third and fourth properties come into play. These properties impose
cardinality constraints on the sets we construct, in line with the graded rank k that is
used in the equivalence relation �P

m,k. For example, suppose that for a given set T′ we
have card(R1(w)|TIT′) < k. Then, we need to select exactly card(R1(w)|TIT′) children
in R′(w′)|T and modify R′ so that all of them can be used to define the set R′(w′)|T T′ .
If instead card(R1(w)|TIT′) ≥ k, it is possible to select an arbitrary amount of children
from R′(w′)|T, as long as they are at least k. Again, after selecting these children we
need to modify R′ so that they define the set R′(w′)|T T′ . To comply with these two last
properties we rely on (A).
The proof of (C) distinguishes two cases (which are very similar in substance):
case: card(R(w)|T) < k × (card(T P (m− 1, k)) + 1). By (A), R′(w′)|T and R(w)|T have

the same cardinality. Consider a bijection g : R(w)|T → R′(w′)|T. Then define GT
as the set {g(w1) | w1 ∈ R(w)|T \ R1(w)}, so that the fourth property in (C) is
trivially satisfied. In order to define the sets of the form R′(w′)|T T′ , we start by an

9.2. ML(∗) is Strictly Less Expressive than ML() 417

initialisation to the empty set ∅ and then we populate them. Iteratively, for every
T′ ∈ T P (m− 1, k) and every w1 ∈ R1(w)|TIT′ , consider g(w1). By (B), there is
R′1,g(w1) ⊆ R′|g(w1) such that ((W, R1|w1 ,V),w1) �P

m−1,k ((W ′, R′1,g(w1),V
′), g(w1)).

By Proposition 9.3, it follows that ((W, R1,V),w1)�P
m−1,k ((W ′, R′1,g(w1),V

′), g(w1))
and therefore ((W ′, R′1,g(w1),V

′), g(w1)) ∈ T′. Then, add to R′(w′)|T T′ the pair
(R′1,g(w1), g(w1)). Notice that this pair satisfies the constraints required in the first
property of (C). After the iterations over all T′ ∈ T P (m− 1, k) and w1 ∈ R1(w)|TIT′ ,
the construction is completed. As we are guided by the bijection g, the second
property of (C) is satisfied.

case: card(R(w)|T) ≥ k × (card(T P (m− 1, k)) + 1). By (A), it follows that R′(w′)|T has
at least k× (card(T P (m− 1, k)) + 1) elements. For this case, it is easy to show that
there is a set in the partition R(w)T

IR1
of R(w)|T that has cardinality at least k.

Indeed, ad absurdum, suppose all the sets in R(w)T
IR1

are of cardinality less than k.
As R(w)T

IR1
partitions R(w)|T and it contains card(T P (m− 1, k))+1 sets (where the

+1 refers to the set R(w)|T \R1(w))m this would imply that
card(R(w)|T) ≤ (k − 1)× (card(T P (m− 1, k)) + 1).

However, this leads to a contradiction, as card(T P (m− 1, k)) ≤ card(T P (m− 1, k))
and card(R(w)|T) ≥ k × (card(T P (m− 1, k)) + 1).
Hence, let Ω be a set in R(w)T

IR1
that has at least k elements. For the construction,

we initialise all the sets R′(w′)|T T′ and GT to the empty set ∅ and we show how to
populate them. Moreover, we introduce an auxiliary set ∆ which is initially equal to
R′(w′)|T and keeps track of which elements of this latter set have not been already
used in the construction (and are hence available). Iteratively,

1. consider T′ ∈ T P (m− 1, k) s.t. R1(w)|TIT′ 6= Ω and that was not already treated,
2. select β = min(card(R1(w)|TIT′), k) worlds, say w′1, . . . ,w′β, from the set ∆.
3. Let w1 ∈ R1(w)|TIT′ . By (B) we have that for each i ∈ [1, β] there is R′1,w′i ⊆ R

′|w′i
such that

((W, R1|w1 ,V),w1)�P
m−1,k ((W ′, R′1,w′i ,V

′),w′i).
By Proposition 9.3, we have ((W, R1,V),w1) �P

m−1,k ((W ′, R′1,w′i ,V
′),w′i) and

therefore ((W ′, R′1,w′i ,V
′),w′i) ∈ T′. Define the set R′(w′)|T T′ as

{(R′1,w′i ,w
′
i) | i ∈ [1, β]}.

Notice that by construction this set satisfies the first and third properties of (C).
4. Remove w′1, . . . ,w′β from ∆ (they will not be used in the successive iterations).

After this iterative construction, only two sets need to be handled: R(w)|T \R1(w)
and Ω. The proof split in two cases, depending on whether R(w)|T \R1(w) = Ω.
case: R(w)|T \R1(w) = Ω. We simply add to GT every worlds in ∆. Notice that, in

this case, the previous iteration removed (in total) at most k×card(T P (m− 1, k))
locations from ∆. As ∆ was initialized to be R′(w′)|T, which has cardinality at
least k× (card(T P (m− 1, k)) + 1), we conclude that GT has at least k elements,
and thus satisfies the fourth property of (C).

case: R(w)|T \R1(w) 6= Ω. First, we treat R(w)|T \R1(w) with the same four-point
strategy used for the other sets: we select β = min(card(R(w)|T \ R1(w)), k)
worlds, say w′1, . . . ,w′β, from the pool of available worlds ∆; we define GT as
{w′1, . . . ,w′β} and we remove these worlds from ∆. By construction, GT satisfies

418 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

the fourth property of (C). Notice that, after this step, ∆ still contains at least k
worlds, exactly as in the previous case of the proof (before dealing with Ω). As
R(w)|T \R1(w) 6= Ω, there is T′ ∈ T P (m− 1, k) s.t. R1(w)|TIT′ = Ω. We select
all the worlds still in ∆, say w′1, . . . ,w′α. Let w1 ∈ R1(w)|TIT′ . We apply (B) to
derive R′1,w′i ⊆ R

′|w′i (i ∈ [1, α]) such that
((W, R1|w1 ,V),w1)�P

m−1,k ((W ′, R′1,w′i ,V
′),w′i).

By Proposition 9.3, we have ((W, R1,V),w1) �P
m−1,k ((W ′, R′1,w′i ,V

′),w′i) and
therefore ((W ′, R′1,w′i ,V

′),w′i) ∈ T′. Define the set R′(w′)|T T′ as
{(R′1,w′i ,w

′
i) | i ∈ [1, β]}.

Notice that by construction this set satisfies the first and third properties of (C).
This ends the construction of the sets R′(w′)|T T′ (T′ ∈ T P (m− 1, k)) and GT.
No element in R′(w′)|T is considered twice during the definition of R′(w′)|T T′ and
GT, which allows us to conclude that the second property is satisfied, and therefore
that (C) holds.

A last note about (C): given two pairs (R1,w′1 ,w
′
1) and (R1,w′2 ,w

′
2) defined in (C), if w′1 6= w′2

then R1,w′1 and R1,w′2 are disjoint. This holds directly from the second property, together
with the fact that R′1,w′1 ⊆ R′|w′1 and R′1,w′2

⊆ R′|w′2 . Keeping this in mind, we are now
ready to construct R′1.
We consider every T ∈ T P (m− 1, k) and apply (C) to construct the sets R′(w′)|T T′

(T′ ∈ T P (m− 1, k)) and GT. Afterwards, the relation R′1 is defined as follows:
R′1

def=
⋃

T∈T P (m−1,k)
T′∈T P (m−1,k)

(R′
1,w′1

,w′1)∈R′(w′)|T T′

{(w′,w′1)} ∪R′1,w′1 .

Clearly. we have that R′1 ⊆ R1. Moreover, from the properties of (C), it holds that for every
w′1 ∈ R′1(w), R′1|w′1 = R′1,w′1

. In order to conclude the proof, we need to show that

(1) ((W, R1,V),w)�P
m,k ((W ′, R′1,V ′),w′) (recall that �P

m,k is equal to ≡Pm,k),
(2) if R1(w) = R(w) then R′1(w′) = R′(w′).

Let us first prove (2) by using the fourth property of (C). Suppose R1(w) = R(w) and hence
R(w) \R1(w) = ∅. The set R(w) \R1(w) can be written as

⋃
T∈T P (m−1,k)(R(w)|T \R1(w)). We

conclude that card(R(w)|T \R1(w)) = 0 for every T ∈ T P (m− 1, k). Similarly, R′(w′) \R′1(w′)
equals

⋃
T∈T P (m−1,k)(R′(w′)|T \ R′1(w′)). Notice that for every T ∈ T P (m− 1, k), a world

w′1 ∈ R′(w′)|T \ R′1(w′) cannot be inside a pair of R′(w′)|T T′ (for any T′ ∈ T P (m− 1, k)).
Indeed, if this was the case, then (w′,w′1) ∈ R′1 (see definition of R′1) in contradiction with
w′1 ∈ R′(w′)|T\R′1(w′). Then w′1 ∈ GT and we derive R′(w′)|T\R′1(w′) = GT and R′(w′)\R′1(w′) =⋃

T∈T P (m−1,k) GT. By construction, every world w′1 ∈ R′(w) can appear in at most one set in
{GT | T′ ∈ T P (m− 1, k)} and hence card(R′(w′) \ R′1(w′)) =

∑
T∈T P (m−1,k) card(GT). We can

now apply the fourth property of (C) which, together with k ≥ 1 (assumed at the beginning of
the proof) and card(R(w)|T \ R1(w)) = 0 leads to card(R′(w′) \ R′1(w′)) = 0. As by definition
R′1(w′) ⊆ R′(w′), this ends the proof of (2).

Lastly, let us prove (1). This is done by constructing a g-bisimulation Z0, . . . ,Zm up to
(m, k, P) between (W, R1,V) and (W ′, R′1,V ′) such that ({w}, {w′}) ∈ Zm1 . Here, we iteratively
construct the g-bisimulation starting from the sets Zj1 = {({w}, {w′})} (for all j ∈ [0,m]).
During the construction we make sure to always preserve the satisfaction of the conditions

9.2. ML(∗) is Strictly Less Expressive than ML() 419

(init), (refine), (size) and (atoms). Notice that these conditions hold for our initial sequence of
relations. In particular, (atoms) holds directly from (K,w) ≡Pm,f(m,k) (K,w′). The construction
can be split into four steps:
(m-forth-step) Let X ⊆ R1(w) be a set such that card(X) ∈ [1, k]. As required by the condi-

tion (m-forth), we want to pair this set with a suitable subset Y ⊆ R′1(w) of cardinality
card(X) so that it is possible to then satisfy the conditions (g-forth) and (g-back). Let us
consider the partition of X defined as {XTIT′ | T ∈ T P (m− 1, k) and T′ ∈ T P (m− 1, k)}
where XTIT′ = X ∩ R1(w)|TIT′ . We consider the set R′(w′)|T T′ and select card(XTIT′)
worlds appearing in one of its pairs (which are of the form (R′1,w′1 ,w

′
1)). Let YT T′ be the

set of these selected worlds. By (C) this set is guaranteed to exist and is such that every
world w′1 in it is also in R′1(w′). Let Y =

⋃
T∈T P (m−1,k),T′∈T P (m−1,k) YT T′ . It is easy to

see that card(X) = card(Y). For every j ∈ [0,m− 1] we add (X,Y) to Zjcard(X).

(m-back-step) Let Y ⊆ R′1(w) be a set such that card(Y) ∈ [1, k]. We focus on the con-
dition (m-back), and work similarly to the previous step. Consider the partition of Y
defined as {YT T′ | T ∈ T P (m− 1, k) and T′ ∈ T P (m− 1, k)} where YT T′ is defined
as Y ∩ {w′1 | (R′1,w′1 ,w

′
1) ∈ R′(w′)|T T′ for some R′1,w′1}. We select a subset XTIT′ of

R1(w)|TIT′ with cardinality card(YT T′), whose existence is guaranteed by (C). Let X =⋃
T∈T P (m−1,k),T′∈T P (m−1,k)XTIT′ . We have card(Y) = card(X). For every j ∈ [0,m − 1],

we add (X,Y) to Zjcard(Y).

(g-forth-step) From the first two steps of the construction, the set Zji was updated with
new pairs (X,Y) where every element in X is from R1(w) and every element of Y is
from R′1(w). Consider then one of these pairs (X,Y) and a world w1 ∈ X. Let T ∈
T P (m− 1, k) and T′ ∈ T P (m− 1, k) be such that w1 ∈ R1(w)|TIT′ . By construction
(first and second steps above), there is w′1 ∈ Y such that for some R′1,w′1 ⊆ R

′
1 it holds that

(R′1,w′1 ,w
′
1) ∈ R′(w′)|T T′ . Again from (C), ((W, R1,V),w1) �P

m−1,k ((W ′, R1,w′1 ,V
′),w′1).

Since by definition R′1,w′1
= R′1|w′1 , from Proposition 9.3 we obtain

((W, R1,V),w1)�P
m−1,k ((W ′, R′1,V ′),w′1).

Let Y0, . . . ,Ym−1 be the g-bisimulation up to (m− 1, k, P) of (W, R1,V) and (W ′, R′1,V ′)
such that ({w1}, {w′1}) ∈ Ym−1

1 . For all i ∈ [1, k] and all j ∈ [0,m− 1], add Yji to Zji .

(g-back-step) Symmetrically to the previous point of the construction, let us consider again
a pair (X,Y) introduced by one of the two steps (m-forth-step) and (m-back-step). Let
w′1 ∈ Y . Then there is T ∈ T P (m− 1, k) and T′ ∈ T P (m− 1, k) and R′1,w′1

⊆ R′1 such
that (R′1,w′1 ,w

′
1) ∈ R′(w′)|T T′ . By construction (steps (m-forth-step) and (m-back-step)),

there is w1 ∈ X ∩R′(w)|TIT′ . As before, by (C) followed by Proposition 9.3, one can show
that (W, R1,V),w1 �P

m−1,k (W ′, R′1,V ′),w′1. Then, let Y0, . . . ,Ym−1 be the g-bisimulation
up to (m − 1, k, P) between (W, R1,V) and (W ′, R′1,V ′) such that {w1}Ym−1

1 {w′1}. For
every i ∈ [1, k] and every j ∈ [0,m− 1], update Zji to Zji ∪ Y

j
i .

It is simple to see that this construction leads to a sequence of relations Z0, . . . ,Zm that is a
g-bisimulation up to (m, k, P) between (W, R1,V) and (W ′, R′1,V ′) such that {w}Zm1 {w′}. The
conditions (init), (refine), (size) and (atoms) hold at any point during the construction. For
the other conditions, let (X,Y) be a pair in some Zji . If it was not introduced by the first two
steps of the construction, then (X,Y) is a member of some set Yji ⊆ Z

j
i that is used in a g-

bisimulation whose elements are all used to construct Z0, . . . ,Zm (third and fourth point of the

420 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

proof). Hence, w.r.t. (X,Y) no condition can be violated. If instead (X,Y) is added to the g-
bisimulation during the first and second point of the construction, then by construction it is easy
to check that it satisfies all the conditions. Therefore ((W, R1,V),w) �P

m,k ((W ′, R′1,V ′),w′),
which ends the proof of the whole lemma.

Intuitively, Lemma 9.8 states that given two models satisfying the same formulae up to the
parameters m and f(m, k), we can extract submodels satisfying the same formulae up to m and
k (reduced graded rank). This allows us to conclude that if ϕ is in GML, there is some GML
formula equivalent to �ϕ (Lemma 9.9). In other words, the operator � can be eliminated to
obtain a GML formula. This, together with Lemma 9.4 and Corollary 7.18 entail ML(∗) � GML.

Lemma 9.9. For all ϕ in GML[m, k, P] there is ψ in GML[m, f(m, k), P] such that �ϕ ≡ ψ.

Proof. If k = 0, then the proof is by an easy verification as the formula ϕ from the statement
is logically equivalent to a formula from the propositional calculus (each subformula ♦≥0ψ is
logically equivalent to>). Otherwise (k ≥ 1), let k+ = k×(card(T P (m− 1, k))+1). Since≡Pm,k+

is finite index, there is a finite set {χ1, . . . , χq} ⊆ GML[m, k+, P] such that
• χ1 ∨ · · · ∨ χq is valid, for every i ∈ [1, q], χi is satisfiable,

• for all i 6= j ∈ [1, Q], χi ∧ χj is unsatisfiable,

• For all (K,w) and (K′,w′), (K,w) ≡Pm,k+ (K′,w′) iff there is i ∈ [1, q] such that (K,w) |= χi
and (K′,w′) |= χi.

Let ψ be the formula
∨
{χi | there is (K,w) s.t. (K,w) |= χi ∧ �ϕ}. We show that ψ is logically

equivalent to �ϕ.
First, let us suppose that K,w |= �ϕ. As χ1 ∨ · · · ∨ χq is valid, there is i ∈ [1, q] such that

(K,w) |= χi. Therefore χi occurs in ψ and consequently, (K,w) |= ψ.
Conversely, suppose that (K,w) |= ψ with K = (W, R,V). So, there is χi occurring

in ψ such that (K,w) |= χi and there exist a model K′ = (W ′, R′,V ′) and w′ ∈ W ′ such
that (K′,w′) |= χi ∧ �ϕ. From the equisatisfaction of χi, we have (K,w) ≡Pm,k+ (K′,w′).
From (K′,w′) |= �ϕ, there is R′1 ⊆ R′ such that R′1(w′) = R′(w′) and ((W ′, R′1,V ′),w′) |= ϕ.
All the assumptions of Lemma 9.8 apply, and therefore there is R1 ⊆ R such that R1(w) =
R(w) and ((W, R1,V),w) ≡Pm,k ((W ′, R′1,V ′),w′). As ϕ belongs to GML[m, k, P], we derive
((W, R1,V),w) |= ϕ. From the semantics of �, we conclude that (K,w) |= �ϕ.

Lemma 9.10. ML(∗) � GML.

Proof (sketch). We already saw similar proofs (see e.g. Theorem 6.22 and Theorem 7.16). Let
ϕ be a formula in ML(∗). As ♦ψ ≡ ♦≥1ψ, we can replace every occurrence of the modality
♦ appearing in ϕ with the modality ♦≥1. Moreover, by Lemma 9.4, we can replace every
subformula of the form ψ ∗ χ with the formula �(ψ χ). In this way, we obtain a formula ϕ′

that is equivalent to ϕ and where all the modalities are of the form ♦≥1, and �. If ϕ′ has no
occurrence of or �, we are done. Otherwise, let ψ be a subformula of ϕ′ of the form �(ϕ1 ϕ2)
where ϕ1 and ϕ2 are in GML.
• Since ML() ≈ GML (Corollary 7.18), there is a formula ψ′ in GML such that ψ′ ≡ ϕ1 ϕ2.

• By Lemma 9.9 there is a formula ψ′′ in GML such that ψ′′ ≡ �ψ′.
One can show that ϕ′ ≡ ϕ′[ψ ← ψ′′], where ϕ′[ψ ← ψ′′] is obtained from ϕ′ by replacing every
occurrence of ψ by ψ′′. Note that the number of occurrences of � and in ϕ′[ψ ← ψ′′] is strictly
less than the number of occurrences of � and in ϕ′. By repeating such a type of replacement,

9.2. ML(∗) is Strictly Less Expressive than ML() 421

EF-Game played on the state ((K1=(W1, R1,V1),w1), (K2=(W2, R2,V2),w2), (m, s, P))

if there is p ∈ P such that ((K1,w1) |= p iff (K2,w2) |= p) does not hold
then the spoiler wins,
else the spoiler chooses i∈{1, 2} and plays on (Ki,wi).

The duplicator replies on (Kj ,wj) where j ∈ {1, 2}\{i}.
The spoiler must choose one of the following moves (otherwise the duplicator wins).
♦ move: if m ≥ 1 and Ri(wi) 6= ∅, the spoiler can choose to play a ♦ move. If so,

1. The spoiler selects a world w′1 ∈ Ri(wi).
2. The duplicator must select a node w′j ∈ Rj(wj) (otherwise the spoiler wins).
3. The game continues on (((W1, R1,V1),w′1), ((W2, R2,V2),w′2), (m− 1, s, P)).
∗ move: if s ≥ 1, then the spoiler can choose to play a ∗ move.

1. The spoiler selects two Kripke-style finite forests K1
i and K2

i such that Ki = K1
i +K2

i ,
2. The duplicator must reply with two finite forests K1

j and K2
j such that Kj = K1

j+K2
j ,

3. The spoiler choses k ∈ [1, 2],
4. The game continues on ((Kk1 ,w1), (Kk2 ,w2), (m, s− 1, P)).

Figure 9.4: Ehrenfeucht-Fräıssé games for ML(∗)

eventually we obtain a formula ϕ′′ in GML such that ϕ′ ≡ ϕ′′. Indeed, all the occurrences of �
and only appear as instances of the pattern �(ψ χ). Hence, we get a formula in GML logically
equivalent to ϕ.

9.2.2 Showing ML(∗) ≺ GML via EF games for ML(∗)

We now tackle the problem of showing that ML(∗) is strictly less expressive than GML, we rely
on a notion of Ehrenfeucht-Fräıssé games (EF games, in short) [102] for ML(∗), exactly as we did
in Chapter 4 in order to study the expressive power of ALT. We refer the reader to Section 4.2.2
for an introduction on these types of games. We write ML(∗)[m, s, P] for the set of formulae ϕ of
ML(∗) having md(ϕ) ≤ m, at most s nested ∗, and atomic propositions from P ⊆fin AP. Exactly
as GML[m, k, P], it is easy to see that ML(∗)[m, s, P] is finite up to logical equivalence.

As usual, the EF games for ML(∗) are played between the spoiler and the duplicator. A
game state is a triple made of two pointed forests (K,w) and (K′,w′) and a rank (m, s, P),
where m, s ∈ N and P ⊆fin AP. The goal of the spoiler is to show that the two models are
different. The goal of the duplicator is to counter the spoiler and to show that the two models
are similar. Two models are different whenever there is ϕ ∈ ML(∗)[m, s, P] that is satisfied by
only one of the two models. The EF games for ML(∗) are formally defined in Figure 9.4.

Using the standard definitions [102], the duplicator has a winning strategy for the game
((K,w), (K′,w′), (m, s, P)) if she can play in a way that guarantees her to win regardless how
the spoiler plays. When this is the case, we write (K,w)≈Pm,s (K′,w′). Similarly, the spoiler has a
winning strategy, written (K,w) 6≈Pm,s(K′,w′), if he can play in a way that guarantees him to win,
regardless how the duplicator plays. Lemma 9.11 guarantees that the games are well-defined.

Lemma 9.11. (K,w) 6≈Pm,s(K′,w′) iff there is ϕ in ML(∗)[m, s, P] s.t. (K,w) |= ϕ and (K′,w′) 6|= ϕ.

Lemma 9.11 is proven similarly to Theorem 4.15 (i.e. the analogous result for the EF-games of
ALT). For instance the left-to-right direction, i.e. the completeness of the game, is by induction

422 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

w

.

≥ 2s + 1 ≥ 2s−1(s+ 1)(s+ 2) + 1

≈Pm,s

w′

.

≥ 2s + 1 ≥ 2s−1(s+ 1)(s+ 2) + 1

Figure 9.5: Pointed forests used to prove Lemma 9.12. Only the leftmost one satisfies ♦=2♦=1>.

on the rank (m, s, P). The proof of Lemma 9.11 is given in Appendix G. Thanks to the EF
games, we are able to find a GML formula ϕ that is not expressible in ML(∗). As we know, ML(∗)
and ML() have the same expressive power when it comes to formulae of modal depth at most one
(Lemma 9.2). Since ML() ≈ GML (Corollary 7.18), this implies that any formula discriminating
the two logics must have modal degree at least 2. Happily, the formula ϕ = ♦=2♦=1> does the
job and cannot be expressed in ML(∗). For the proof, we show that for every rank (m, s, P),
there are two structures (K,w) and (K′,w′) such that (K,w) ≈Pm,s (K′,w′), (K,w) |= ϕ and
(K′,w′) 6|= ϕ. The inexpressibility of ϕ then stems from Lemma 9.11. The two structures are
represented in Figure 9.5 ((K,w) on the left).

In the following, we say that a world has type i if it has i children. As one can see in Figure 9.5,
children of the current worlds w and w′ are of three types: 0, 1 or 2. When the spoiler performs
a spatial move in the game, a world of type i can take, in the submodels, a type between 0
and i. That is, the number of children of a world weakly monotonically decreases when taking
submodels. This monotonicity, together with the finiteness of the game, lead to bounds on the
number of children of each type, over which the duplicator is guaranteed to win. For instance,
the bound for worlds of type 2 is given by the value 2s(s+ 1)(s+ 2), where s is the number of
spatial moves in the game. In the two presented pointed forests, one child of type 0 and one
of type 2 are added with respect to these bounds, so that the duplicator can make up for the
different numbers of children of type 1.

Lemma 9.12. ML(∗) cannot characterise the class of models satisfying ♦=2♦=1> (in GML).

Proof. As already said, the non-expressivity of ♦=2♦=1> is shown by proving that for every
rank (m, s, P) there are two structures (K,w) and (K′,w′) such that

1. (K,w) ≈Pm,s (K′,w′), 2. (K,w) |= ♦=2♦=1> whereas (K′,w′) 6|= ♦=2♦=1>.

We divide the proof into two parts, named below (A) and (B). We start with some preliminary
definitions. Let K = (W, R,V) be a Kripke-style finite forest and w ∈ W. We denote with
R(w)=n the set of worlds in R(w) having exactly n children, i.e. {w1 ∈ R(w) | card(R(w1)) = n}.
During the proof, we only use pointed forests (K,w) satisfying the following properties:

(I) V(p) = ∅ for every p ∈ AP;

(II) R(w)=0, R(w)=1 and R(w)=2 form a partition of R(w);

(III) R2(w) = ∅, i.e. the set of worlds reachable from w in at least two steps is empty.
Figure 9.6 schematically represents the type of models satisfying the properties (I), (II) and (III)
(notice that worlds do not satisfy atomic propositions). Let us consider two Kripke-style finite

9.2. ML(∗) is Strictly Less Expressive than ML() 423

w

.

R(w)=0 R(w)=1 R(w)=2

Figure 9.6: Schema of a pointed forest satisfying (I)–(III).

forests K1 = (W, R1,V) and K2 = (W, R2,V2) such that K1 + K2 = K. We pinpoint three
important properties of the models we are considering.

S1: Every world in R(w)=0 is either in R1(w)=0 or R2(w)=0,

S2: Every world w1 ∈ R(w)=1 is in R1(w)=0, R2(w)=0, R1(w)=1 or in R2(w)=1. Indeed,
suppose (w,w1) ∈ Ri (for some i ∈ {1, 2}). If w1 is in the domain of the same relation Ri
then w1 ∈ Ri(w)=1. Otherwise (w1 is in the domain of R3−i) then w1 ∈ Ri(w)=0,

S3: Every world in R(w)=2 is in R1(w)=0, R2(w)=0, R1(w)=1, R2(w)=1, R1(w)=2 or R2(w)=2.
The justification is similar to the one given above for R(w)=1.

We first prove the following property:

R1(w)|TIT′
def= R(w)|T ∩R1(w)|T′ .

Following the proof idea presented above, a world w1 ∈ R1(w)|TIT′ is a child of w such that
(K,w1) is in the class T and “jumps” to the class T′ when updating the accessibility relation
from R to R1. We are interested in the following key property:

(A) Given a rank (m, s, P) and two pointed forests (K = (W, R,V),w) and
(K′ = (W ′, R′,V ′),w′) satisfying (I), (II), (III) and
• min(card(R(w)=0), 2s) = min(card(R′(w′)=0), 2s),
• min(card(R(w)=1), 2s(s+ 1)) = min(card(R′(w′)=1), 2s(s+ 1)),
• min(card(R(w)=2), 2s−1(s+ 1)(s+ 2)) = min(card(R′(w′)=2), 2s−1(s+ 1)(s+ 2)).

Then, (K,w) ≈Pm,s (K′,w′).

First, as worlds in our models do not satisfy any propositional symbol, the spoiler cannot win
because of distinct propositional valuations. The proof is by cases on m and on the moves done
by the spoiler, and by induction on s. First, suppose m = 0. Then it is easy to see that the
duplicator has a winning strategy. Indeed, as m = 0, the spoiler cannot play the modal move
and therefore cannot change the current worlds w and w′. Then, after s spatial moves the game
will be in the state (K1,w) and (K′1,w′) w.r.t. the rank (0, 0, P). By (I), the duplicator wins.

Suppose now m ≥ 1 and the spoiler decides to perform a modal move. Notice that, in
particular, this case also takes care of the case where s = 0 and the spoiler is forced to play a
modal move. Moreover, suppose that the spoiler chooses (K,w) (the case where it picks (K′,w′)
is handled similarly by the duplicator). We have to distinguish the following situations.

• Suppose that the spoiler chooses a world w1 ∈ R(w)=0. Then card(R(w)=0) ≥ 1 and
from min(card(R(w)=0), 2s) = min(card(R′(w′)=0), 2s), it follows that card(R′(w′)=0) ≥ 1.

424 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

It is then sufficient for the duplicator to choose w1 ∈ R′(w′)=0 to guarantee him a victory,
as the subtrees rooted in w1 and w′1 are isomorphic (by (I) and (III)).
• Suppose that the spoiler chooses a world w1 ∈ R(w)=1. Then card(R(w)=1) ≥ 1 and from

min(card(R(w)=1), 2s(s+1)) = min(card(R′(w′)=1), 2s(s+1)), we have card(R′(w′)=1) ≥ 1.
Then again, it is sufficient for the duplicator to choose w1 ∈ R′(w′)=1 to guarantee him a
victory, as the subtrees rooted in w1 and w′1 are isomorphic.
• Suppose that the spoiler chooses a world w1 ∈ R(w)=2. Then card(R(w)=2) ≥ 1 and

from min(card(R(w)=2), 2s−1(s + 1)(s + 2)) = min(card(R′(w′)=2), 2s−1(s + 1)(s + 2)), it
follows that card(R′(w′)=2) ≥ 1 (notice here that 2s−1(s+ 1)(s+ 2) = 1 for s = 0). Then
again, it is sufficient for the duplicator to choose w1 ∈ R′(w′)=2 to guarantee him a victory,
as the subtrees rooted in w1 and w′1 are isomorphic.

As stated before, the case where the spoiler decides to perform a modal move also captures the
base case of the induction on s. Then, it remains to show the case where s ≥ 1 and the spoiler
decides to do a spatial move. Again suppose that the spoiler chooses (K,w) (the case where it
picks (K′,w′) is analogous). It then picks two structures K1 = (W, R1,V) and K2 = (W, R2,V)
such that K1 +K2 = K. Notice that these two structures are such what both (K1,w) and (K2,w)
satisfy (I), (II) and (III), as these three properties are all preserved when considering subforests.
The duplicator has now to pick two structures K′1 = (W ′, R′1,V ′) and K′2 = (W ′, R′2,V ′) such
that K′1 +K′2 = K′ and that guarantees him a victory. It does so by constructing R′1 and R′2 as
follows (from the empty set):
split of R′(w)=0. We introduce the sets

R1(w)|0I0
def= R1(w)=0 ∩R(w)=0

R2(w)|0I0
def= R2(w)=0 ∩R(w)=0.

It is easy to see that these sets are pairwise disjoint. From (S1) it follows that
R(w)=0 = (R1(w)=0 ∩R(w)=0) ∪ (R2(w)=0 ∩R(w)=0).

The duplicator starts by partitioning R′(w)=0 into two sets Z1 and Z2 (“Z” is short for
“zero”) according to the cardinalities of the two components of R(w)=0 highlighted above,
namely the two sets R1(w)=0 ∩R(w)=0 and R2(w)=0 ∩R(w)=0.
case: card(R1(w)|0I0) < 2s−1 and card(R2(w)|0I0) < 2s−1. We have card(R(w)=0) < 2s

and, by hypothesis, card(R′(w′)=0) = card(R(w)=0). Then the split of R′(w)=0 into Z1
and Z2 is made so that card(Z1) = card(R1(w)|0I0) and card(Z2) = card(R2(w)|0I0).

case: there is i ∈ {1, 2} s.t. card(Ri(w)|0I0) < 2s−1 and card(R3−i(w)|0I0) ≥ 2s−1.
Note that j = 3 − i is the index different from i. The split of R′(w)=0 into Zi
and Zj is made so that card(Zi) = card(Ri(w)|0I0). By hypothesis on the cardi-
nality of R′(w)=0, we have card(Zj) ≥ 2s−1 (as otherwise min(card(R(w)=0), 2s) 6=
min(card(R′(w′)=0), 2s), a contradiction).

case: card(R1(w)|0I0) ≥ 2s−1 and card(R2(w)|0I0) ≥ 2s−1. Then the split ofR′(w)=0 into
Z1 and Z2 is made so that card(Z1) = 2s−1. By hypothesis on the cardinality of
R′(w)=0 it holds that card(Zj) ≥ 2s−1.

For each w′1 ∈ Z1, the duplicator adds (w′,w′1) to R′1. For each w′2 ∈ Z2, it adds (w′,w′2)
to R′2. Notice that by construction the two sets introduced are always such that

Z1: min(card(R1(w)|0I0), 2s−1) = min(card(Z1), 2s−1),
Z2: min(card(R2(w)|0I0), 2s−1) = min(card(Z2), 2s−1).

9.2. ML(∗) is Strictly Less Expressive than ML() 425

split of R′(w)=1. We introduce the following sets:
R1(w)|1I0

def= R1(w)=0 ∩R(w)=1, R2(w)|1I0
def= R2(w)=0 ∩R(w)=1,

R1(w)|1I1
def= R1(w)=1 ∩R(w)=1, R2(w)|1I1

def= R2(w)=1 ∩R(w)=1.

It is easy to see that these sets are pairwise disjoint. From (S2) it follows that
R(w)=1 = R1(w)|1I0 ∪R2(w)|1I0 ∪R1(w)|1I1 ∪R2(w)|1I1.

The duplicator starts by partitioning R′(w)=1 into four sets Z ′1, Z ′2, O1 and O2 ac-
cording to the cardinalities of the four sets above (“Z” for “zero”, “O” for “one”). In
order to shorten the presentation, instead of concretely make explicit all the cases as
we did in the previous point of the construction, we treat them “schematically”. Let
S = {R1(w)|1I0, R2(w)|1I0, R1(w)|1I1, R2(w)|1I1} and let f be the bijection
f(R1(w)|1I0) def= Z ′1, f(R2(w)|1I0) def= Z ′2, f(R1(w)|1I1) def= O1, f(R2(w)|1I1) def= O2.

Moreover, we define (B stands for “bound”)
B(R1(w)|1I0) def= B(R2(w)|1I0) def= 2s−1,

B(R1(w)|1I1) def= B(R2(w)|1I1) def= 2s−1s.

So, these definitions (actually notations) are helpful at the metalevel. Besides, notice that,
from s ≥ 1, it holds that 2s−1 and 2s−1s are both at least 1.

case: card(S) < B(S), for every set S ∈ S. Then, since it holds that
card(R(w)=1) = card(R1(w)|1I0) + card(R2(w)|1I0) + card(R1(w)|1I1) + card(R2(w)|1I1)

we have card(R(w)=1) < 2s−1 + 2s−1 + 2s−1s + 2s−1s = 2s(s + 1) and therefore
by hypothesis we conclude that card(R(w)=1) = card(R′(w′)=1). Then, the split of
R′(w′)=1 into Z ′1, Z ′2, O1 and O2 is made so that for every S ∈ S, card(f(S)) = card(S).

case: there is Ŝ ∈ S such that card(Ŝ) ≥ B(Ŝ). Then, the split of R′(w′)=1 into Z ′1,
Z ′2, O1 and O2 is made so that for every S ∈ S\{Ŝ}, card(f(S)) = min(card(S),B(S)).
From the hypothesis

min(card(R(w)=1), 2s(s+ 1)) = min(card(R′(w′)=1), 2s(s+ 1)),
we conclude that this construction can be effectively made, and card(f(Ŝ)) ≥ B(Ŝ).

For each w′1 ∈ Z ′1, the duplicator adds (w′,w′1) to R′1 and the only element of R′|w′1 to R′2.
For each w′2 ∈ Z ′2, it adds (w′,w′2) to R′2 and the only element of R′|w′2 to R′1. For each
w′1 ∈ O1, it adds (w′,w′1) and the only element of R′|w′1 to R′1. Lastly, for each w′2 ∈ O2,
it adds (w′,w′2) and the only element of R′|w′2 to R′2. Notice that by construction the four
sets introduced are always such that

Z11: min(card(R1(w)|1I0), 2s−1) = min(card(Z ′1), 2s−1),
Z21: min(card(R2(w)|1I0), 2s−1) = min(card(Z ′2), 2s−1),
O1: min(card(R1(w)|1I1), 2s−1s) = min(card(O1), 2s−1s),
O2: min(card(R2(w)|1I1), 2s−1s) = min(card(O2), 2s−1s),

or, more schematically, for every S ∈ S, min(card(S),B(S)) = min(card(f(S)),B(S)).

split of R′(w)=2. Similarly to the previous steps, we introduce the following sets:
R1(w)|2I0

def= R1(w)=0 ∩R(w)=2, R2(w)|2I0
def= R2(w)=0 ∩R(w)=2,

R1(w)|2I1
def= R1(w)=1 ∩R(w)=2, R2(w)|2I1

def= R2(w)=1 ∩R(w)=2,

R1(w)|2I2
def= R1(w)=2 ∩R(w)=2, R2(w)|2I2

def= R2(w)=2 ∩R(w)=2.

426 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

It is easy to see that these sets are pairwise disjoint. From (S3) it follows that
R(w)=2 = R1(w)|2I0 ∪R2(w)|2I0 ∪R1(w)|2I1 ∪R2(w)|2I1 ∪R1(w)|2I2 ∪R2(w)|2I2.

The duplicator starts by partitioning R′(w)=2 into six sets Z ′′1 , Z ′′2 , O′1, O′2, T1 and T2
according to the cardinalities of the six sets above (“T” for “two”). Again, to shorten the
presentation we introduce the set

S = {R1(w)|2I0, R2(w)|2I0, R1(w)|2I1, R2(w)|2I1, R1(w)|2I2, R2(w)|2I2},
and the bijection f such that

f(R1(w)|2I0) def= Z ′′1 , f(R2(w)|2I0) def= Z ′′2 , f(R1(w)|2I1) def= O′1,
f(R2(w)|2I1) def= O′2, f(R1(w)|2I2) def= T1, f(R2(w)|2I2) def= T2.

Moreover, we define
B(R1(w)|2I0) def= B(R2(w)|2I0) def= 2s−1,

B(R1(w)|2I1) def= B(R2(w)|2I1) def= 2s−1s,

B(R1(w)|2I2) def= B(R2(w)|2I2) def= 2s−2s(s+ 1).
Notice that, from s ≥ 1, it holds that 2s−1, 2s−1s and 2s−2s(s+ 1) are both at least 1.
case: for every S ∈ S, card(S) < B(S). Then, since card(R(w)=2) is

card(R1(w)|2I0) + card(R2(w)|2I0) + card(R1(w)|2I1)
+ card(R2(w)|2I1) + card(R1(w)|2I2) + card(R2(w)|2I2)

it holds that
card(R(w)=2) < 2× 2s−1 + 2× 2s−1s+ 2× 2s−2s(s+ 1) = 2s−1(s+ 1)(s+ 2),

and therefore by hypothesis we conclude that card(R(w)=2) = card(R′(w′)=2). Then,
the split of R′(w′)=2 into Z ′′1 , Z ′′2 , O′1, O′2, T1 and T2 is made so that for all S ∈ S,
card(f(S)) = card(S).

case: there is Ŝ ∈ S such that card(Ŝ) ≥ B(Ŝ). The split of R′(w′)=2 into Z ′′1 , Z ′′2 , O′1,
O′2, T1 and T2 is made so that for all S ∈ S \ Ŝ, card(f(S)) = min(card(S),B(S)).
From the hypothesis

min(card(R(w)=2), 2s−1(s+ 1)(s+ 2)) = min(card(R′(w′)=2), 2s−1(s+ 1)(s+ 2)),
we conclude that this construction can be effectively made, and card(f(Ŝ)) ≥ B(Ŝ).

Then, the duplicator updates R′1 and R′2 as follows:
• For each w′1 ∈ Z ′′1 , the duplicator adds (w′,w′1) to R′1 and the elements of R′|w′1 to R′2.
• For each w′2 ∈ Z ′′2 , it adds (w′,w′2) to R′2 and the elements of R′|w′2 to R′1.
• For each w′1 ∈ O′1, it adds (w′,w′1) and one of the two elements of R′|w′1 to R′1. The

other element of R′|w′1 is assigned to R′2.
• For each w′2 ∈ O′2, it adds (w′,w′2) and one of the two elements of R′|w′2 to R′2. The

other element of R′|w′2 is assigned to R′1.
• For each w′2 ∈ T1, it adds (w′,w′2) to R′1 and the two elements of R′|w′2 to R′1.
• For each w′2 ∈ T2, it adds (w′,w′2) to R′2 and the two elements of R′|w′2 to R′2.
Notice that by construction the six sets introduced are always such that

Z12: min(card(R1(w)|2I0), 2s−1) = min(card(Z ′′1), 2s−1),
Z22: min(card(R2(w)|2I0), 2s−1) = min(card(Z ′′2), 2s−1),
O11: min(card(R1(w)|2I1), 2s−1s) = min(card(O′1), 2s−1s),

9.2. ML(∗) is Strictly Less Expressive than ML() 427

O21: min(card(R2(w)|2I1), 2s−1s) = min(card(O′2), 2s−1s),
T1: min(card(R1(w)|2I2), 2s−2s(s+ 1)) = min(card(T1), 2s−2s(s+ 1)),
T2: min(card(R2(w)|2I2), 2s−2s(s+ 1)) = min(card(T2), 2s−2s(s+ 1)),

or, more schematically, for every S ∈ S, min(card(S),B(S)) = min(card(f(S)),B(S)).
After these steps, since (K′,w′) satisfies (II) and (III), every element (w′1,w′2) ∈ R′ such that
w′1 ∈ R′

∗(w) has been assigned to either R′1 or R′2. Duplicator then concludes the construction
of K′1 and K′2 by assigning the remaining elements of R′ (i.e. the pairs (w′1,w′2) ∈ R′ such that
w′1 6∈ R′

∗(w)) to either R′1 or R′2 (for example, it can put all these elements in R′1). The two
models K′1 and K′2 are now defined and they trivially satisfy (I), (II) and (III) (as they are
submodels of K′). Moreover, by construction it is easy to verify that:

• R′1(w′)=0 = Z1 ∪ Z ′1 ∪ Z ′′1 ,
• R′1(w′)=1 = O1 ∪O′1,
• R′1(w′)=2 = T1,
• for every n > 2, R′1(w′)=n = ∅,

• R′2(w′)=0 = Z2 ∪ Z ′2 ∪ Z ′′2 ,
• R′2(w′)=1 = O2 ∪O′2,
• R′2(w′)=2 = T2,
• for every n > 2, R′2(w′)=n = ∅.

Indeed, we specifically built R′1 and R′2 so that these properties, which we later refer to with
(†), hold. Now, we end the proof of (A) by showing that for all i ∈ {1, 2},
(zero) min(card(Ri(w)=0), 2s−1) = min(card(R′i(w′)=0), 2s−1),

(one) min(card(Ri(w)=1), 2s−1s) = min(card(R′i(w′)=1), 2s−1s),

(two) min(card(Ri(w)=2), 2s−2s(s+ 1)) = min(card(R′i(w′)=2), 2s−2s(s+ 1)).
Indeed, once these three properties are shown we can apply the induction hypothesis to con-
clude that (K1,w) ≈Pm,s−1 (K′1,w′) and (K2,w) ≈Pm,s−1 (K′2,w′) and therefore, the play de-
scribed with the construction above leads to a winning strategy for the duplicator on the game
((K,w), (K′,w′), (m, s, P)), i.e. (K,w) ≈Pm,s (K′,w′). The proof of these three properties is quite
easy (each case is similar to the others). Let i ∈ {1, 2}. By using the definitions given during
the construction of R′1 and R′2 it holds that
• Ri(w)=0 = Ri(w)|0I0 ∪ Ri(w)|1I0 ∪ Ri(w)|2I0, and by definition for all j, k ∈ [0, 2] such

that j 6= k it holds that Ri(w)|jI0 ∩Ri(w)|kI0 = ∅,

• Ri(w)=1 = Ri(w)|1I1 ∪Ri(w)|2I1, and by definition Ri(w)|1I1 ∩Ri(w)|2I1 = ∅,

• Ri(w)|=2 = Ri(w)|2I2.
In what follows, we refer to the three properties above by (‡).
proof of (zero). By (‡), card(Ri(w)=0) = card(Ri(w)|0I0) + card(Ri(w)|1I0) + card(Ri(w)|2I0).

We divide the proof into two cases. For the first case, suppose card(Ri(w)|0I0) < 2s−1,
card(Ri(w)|1I0) < 2s−1 and card(Ri(w)|2I0) < 2s−1. Then,

1. card(Zi) = card(Ri(w)|0I0) (by (Z1) or (Z2), depending on whether i = 1 or i = 2)
2. card(Z ′i) = card(Ri(w)|1I0) (by (Z11)/(Z21))
3. card(Z ′′i) = card(Ri(w)|1I0) (by (Z12)/(Z22))
4. card(R′i(w′)=0) = card(Ri(w)|0I0) + card(Ri(w)|1I0) + card(Ri(w)|1I0)

(from (1), (2) and (3), by (†))
5. card(R′i(w′)=0) = card(Ri(w)=0) (from 4, by (‡)).

428 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

Otherwise, suppose that there is a set among Ri(w)|0I0, Ri(w)|1I0 and Ri(w)|2I0 whose
cardinality is at least 2s−1. Then from (Z1)/(Z2), (Z11)/(Z21) or (Z12)/(Z22) (depending
on whether i = 1 or i = 2 and on which set has at least 2s−1 elements) there is a set among
Zi, Z ′i and Z ′′i that has cardinality 2s−1. Then, by (†) and (‡) we have that Ri(w)=0 and
R′i(w′)=0 have both more than 2s−1 elements.

proof of (one). By (‡), card(Ri(w)=1) = card(Ri(w)|1I1) + card(Ri(w)|2I1). We divide the
proof into two cases. First, suppose card(Ri(w)|1I1) < 2s−1s and card(Ri(w)|2I1) < 2s−1s.
Then,
1. card(Oi) = card(Ri(w)|1I1) (by (O1) or (O2), depending on whether i = 1 or i = 2)
2. card(O′i) = card(Ri(w)|2I1) (by (O11)/(O21))
3. card(R′i(w′)=1) = card(Ri(w)|1I1) + card(Ri(w)|2I1) (from (1) and (2), by (†))
4. card(R′i(w′)=1) = card(Ri(w)=1) (from 3, by (‡)).
Otherwise, suppose that there is a set among Ri(w)|1I1 and Ri(w)|2I1 whose cardinality
is at least 2s−1s. Then from (O1)/(O2) or (O11)/(O21) (depending on whether i = 1 or
i = 2 and on which set has at least 2s−1s elements) there is a set among Oi, O′i that has
cardinality 2s−1s. Then, by (†) and (‡) we have that Ri(w)=1 and R′i(w′)=1 have both
more than 2s−1s elements.

proof of (two). By (‡), it holds that card(Ri(w)=2) = card(Ri(w)|2I2). Again we divide the
proof into two cases. First, suppose card(Ri(w)|2I2) < 2s−2s(s+ 1). Then,
1. card(Ti) = card(Ri(w)|2I2) (by (T1) or (T2), depending on whether i = 1 or i = 2)
2. card(R′i(w′)=2) = card(Ri(w)|2I2) (from (1), by (†))
3. card(R′i(w′)=2) = card(Ri(w)=2) (from 2, by (‡)).
Otherwise, suppose that card(Ri(w)|2I2), and hence card(Ri(w)=2), is at least 2s−2s(s+1).
Then,

1. card(Ti) ≥ 2s−2s(s+ 1) (by (T1)/(T2))
2. card(R′i(w′)=2) ≥ 2s−2s(s+ 1) (from (1), by (†)).

This ends the proof of (A), in which we rely on to show the following crucial property.

(B) Given a rank (m, s, P) and two structures (K = (W, R,V),w) and
(K′ = (W ′, R′,V ′),w′) satisfying (I), (II), (III) and
• card(R(w)=0) ≥ 2s + 1 and card(R′(w′)=0) ≥ 2s + 1,
• card(R(w)=1) = 2 and card(R′(w′)=1) = 1,
• card(R(w)=2) ≥ 2s−1(s+ 1)(s+ 2) + 1 and card(R′(w′)=2) ≥ 2s−1(s+ 1)(s+ 2) + 1.

Then, (K,w) ≈Pm,s (K′,w′).

Note that showing (B) concludes the proof, as (K,w) |= ♦=2♦=1> and (K′,w′) 6|= ♦=2♦=1>.
Indeed, ad absurdum suppose that there is a formula ϕ in ML(∗) such that ϕ ≡ ♦=2♦=1>.
Let m be its modal degree, s be its maximal number of imbricated ∗ and P be the set of
propositional variables occurring in ϕ. Let us consider two pointed forests (K1,w1) and (K2,w2)
satisfying the conditions in (B) (with respect to the values of m, s and P of ϕ). From these
conditions, (K1,w1) |= ♦=2♦=1> and (K2,w2) 6|= ♦=2♦=1>. However, from (K,w) ≈Pm,s (K′,w′)
and by Lemma 9.11, we conclude that (K1,w1) and (K2,w2) agree on the satisfaction of ϕ:
a contradiction.

9.2. ML(∗) is Strictly Less Expressive than ML() 429

w

.

≥ 2s + 1 ≥ 2s−1(s+ 1)(s+ 2) + 1

≈Pm,s

w′

.

≥ 2s + 1 ≥ 2s−1(s+ 1)(s+ 2) + 1

Figure 9.7: The pointed forests described in (B).

The two finite forests of (B) are schematically represented in Figure 9.7 (and previously
in Figure 9.5), with (K,w) on the left and (K′,w′) on the right. The proof of (B) is shown by
cases on m, s and on the moves done by the spoiler. As in the proof of (A), if m = 0 then
the duplicator has a winning strategy as after s spatial moves the game will be in the state
(K1,w) and (K′1,w′) (notice that w and w′ do not change, since m = 0) w.r.t. the rank (0, 0, P).
From (I), we conclude that the duplicator wins.

Now, suppose m ≥ 1 and the spoiler decides to perform a modal move. Notice that, in
particular, this case also takes care of the case s = 0, where the spoiler is forced to play a modal
move. Moreover, suppose that the spoiler chooses (K,w) (the case where it picks (K′,w′) is
analogous). Then, suppose that the spoiler chooses a world w1 ∈ R(w)=n for some n ∈ {0, 1, 2}.
It is then sufficient for the duplicator to choose w ∈ R′(w′)=n (which is a non-empty set by
hypothesis) to guarantee him a victory, as the subtrees rooted in w1 and w′1 are isomorphic.

It remains to show the strategy for the duplicator when the spoiler decides to perform a
spatial move (and therefore s ≥ 1). The proof distinguishes several cases depending on the
structure choosen by the spoiler.
case: the spoiler picks (K,w). In this case, the spoiler chooses the pointed forest in which

card(R(w)=1) = 2, and the duplicator has to reply on the pointed forest (K′,w′), in which
card(R′(w′)=1) = 1. The idea is to make up for this discrepancy by using an element of
R′(w′)=2. Let us see how.
For a moment, consider the model obtained from K′ by removing from R′ exactly one
pair (w′1,w′2) where w′1 is a world of R′(w′)=2. Formally, we are interested in a model
K̂′ = (W ′, R̂′,V ′) such that R̂′ = R′ \ {(w′1,w′2)} where (w′1,w′2) ∈ R′ and w′1 ∈ R′(w′)=2.
If the game was played on (K,w) and (K̂′,w′) w.r.t. (m, s, P) then it is clear than the
duplicator would have a winning strategy. Indeed, both (K,w) and (K̂′,w′) satisfy (I), (II)
and (III). Moreover,

• card(R(w)=0) and card(R̂′(w′)=0) are both at least 2s. Indeed, R̂′(w′)=0 = R′(w′)=0,
• card(R(w)=1) = 2 and card(R̂′(w′)=1) = 2. Indeed, R̂′(w′)=1 = R′(w′)=1 ∪ {w′1},
• card(R(w)=2) and card(R̂′(w′)=2) are both at least 2s−1(s + 1)(s + 2). Indeed, by

definition, R̂′(w′)=2 = R′(w′)=2 \ {w′1}.

These properties allow us to apply (A) and conclude that (K,w) ≈Pm,s (K̂′,w′). In
particular, in this game, if the spoiler picks (K,w) and chooses K1 = (W, R1,V) and
K2 = (W, R2,V) such that K1 + K2 = K, then the duplicator can apply the strategy de-
scribed in (A) in order to construct two structures K̂′1 = (W ′, R̂′1,V ′) and K̂′2 = (W ′, R̂′2,V ′)
such that K̂′1 + K̂′2 = K̂′ and for every i ∈ {1, 2}:

430 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

• min(card(Ri(w)=0), 2s−1) = min(card(R̂′i(w′)=0), 2s−1),
• min(card(Ri(w)=1), 2s−1s) = min(card(R̂′i(w′)=1), 2s−1s),
• min(card(Ri(w)=2), 2s−2s(s+ 1)) = min(card(R̂′i(w′)=2), 2s−2s(s+ 1)).

Notice that the three properties above, which we later refer to by (††) are exactly (zero),
(one) and (two) in the proof of (A).
Let us see how to use these pieces of information to derive a strategy for the duplicator
in the original game ((K,w), (K′,w′), (m, s, P)). As the spoiler chooses (K,w), it selects
K1 and K2 such that K1 + K2 = K. Consider the two structures K̂′1 = (W ′, R̂′1,V ′) and
K̂′2 = (W ′, R̂′2,V ′) choosen by the duplicator following the strategy, discussed above, for
the game ((K,w), (K̂′,w′), (m, s, P)) in the case when the spoiler chooses (K,w) and again
selects K1 and K2. In particular these structures satisfy (††). Moreover, the two forests
K̂′1 and K̂′2 are such that K̂′1 + K̂′2 = K̂ and therefore R̂′1∪ R̂′2 = R̂′ = R′ \ {(w′1,w′2)} where
(w′1,w′2) ∈ R′ and w′1 ∈ R′(w′)=2. We distinguish two cases.
• If w′1 ∈ R̂′1(w′) then in the original game ((K,w), (K′,w′), (m, s, P)), the duplicator

replies to K1 and K2 with the two forests K′1 = (W ′, R′1,V ′) and K′2 = (W ′, R′2,V ′)
such that R′1 = R̂′1 and R′2 = R̂′2 ∪ {(w′1,w′2)}.
• Otherwise w′1 ∈ R̂′2(w′) and in the game ((K,w), (K′,w′), (m, s, P)) the duplicator

replies to K1 and K2 with the two forests K′1 = (W ′, R′1,V ′) and K′2 = (W ′, R′2,V ′)
such that R′1 = R̂′1 ∪ {(w′1,w′2)} and R′2 = R̂′2.

In both cases, as the pair (w′,w′1) is in one relation between R′1 and R′2 whereas (w′1,w′2)
is in the other relation, the world w′1 effectively behaves like if it was a member of the set
R′(w′)=1 instead of R′(w′)=2, exactly as in the case of R̂′. In particular, it is easy to see
that for i ∈ {1, 2} and j ∈ [0, 3], card(R′i(w′)=j) = card(R̂′i(w′)=j). Hence, by (††),
• min(card(Ri(w)=0), 2s−1) = min(card(R′i(w′)=0), 2s−1),
• min(card(Ri(w)=1), 2s−1s) = min(card(R′i(w′)=1), 2s−1s),
• min(card(Ri(w)=2), 2s−2s(s+ 1)) = min(card(R′i(w′)=2), 2s−2s(s+ 1)).

Moreover, K1, K2, K′1 and K′2 all satisfy (I), (II) and (III) (as they are submodels of K
or K′), we can apply (A) and derive (K1,w) ≈Pm,s−1 (K′1,w′) and (K2,w) ≈Pm,s−1 (K′2,w′).
Therefore, the play we just described leads to a winning strategy for the duplicator on the
game ((K,w), (K′,w′), (m, s, P)), under the hypothesis that the spoiler chooses (K,w).

case: the spoiler picks (K′,w′). In this case, the spoiler chooses the pointed forest in which
card(R′(w′)=1) = 1, and the duplicator has to reply on the pointed forest (K,w) in which
card(R(w)=1) = 2. The proof is very similar to the previous case, but instead of choos-
ing an element of R′(w′)=2 to make up for the discrepancy between card(R(w)=1) and
card(R′(w′)=1), the duplicator manipulates the additional element in R(w)=1 so that it
becomes a member of R1(w)=0 or R2(w)=0. Let us formalise this strategy.
For a moment, consider the model obtained from K by removing from R exactly one
pair (w1,w2) where w1 is a world of R(w)=1. Formally, we are interested in a model
K̂ = (W, R̂,V) such that R̂ = R \ {(w1,w2)} where (w1,w2) ∈ R and w1 ∈ R(w)=1. If the
game was played on (K̂,w) and (K′,w′) w.r.t. (m, s, P) then it is clear than the duplicator
would have a winning strategy. Indeed, both (K̂,w) and (K′,w′) satisfy (I), (II) and (III).
Moreover,
• card(R̂(w)=0) and card(R′(w′)=0) are at least 2s. Indeed, R̂(w)=0 = R(w)=0 ∪ {w1},

9.2. ML(∗) is Strictly Less Expressive than ML() 431

• card(R̂(w)=1) = 1 and card(R′(w′)=1) = 1. Indeed, R̂(w)=1 = R(w)=1 \ {w1},
• card(R̂(w)=2) and card(R′(w′)=2) are both at least 2s−1(s + 1)(s + 2). Indeed, by

definition, R̂(w)=2 = R(w)=2.
These properties allow us to apply (A) and conclude that (K̂,w) ≈Pm,s (K′,w′). In par-
ticular, in this game, if the spoiler picks (K′,w′) and chooses K′1 = (W ′, R′1,V ′) and
K′2 = (W ′, R′2,V ′) such that K′1 + K′2 = K′, then the duplicator can apply the strategy
described in (A). Two structures K̂1 = (W, R̂1,V) and K̂2 = (W, R̂2,V) are constructed
such that K̂1 + K̂2 = K̂ and for every i ∈ {1, 2}:
• min(card(R̂i(w)=0), 2s−1) = min(card(R′i(w′)=0), 2s−1),
• min(card(R̂i(w)=1), 2s−1s) = min(card(R′i(w′)=1), 2s−1s),
• min(card(R̂i(w)=2), 2s−2s(s+ 1)) = min(card(R′i(w′)=2), 2s−2s(s+ 1)).

Again, notice that these three properties, which we later refer to with (‡‡), are ex-
actly (zero), (one) and (two) in the proof of (A). Let us see how to use these pieces of
information to derive a strategy for the duplicator for the game ((K,w), (K′,w′), (m, s, P)).
As the spoiler chooses (K′,w′), it selects K′1 and K′2 such that K′1 +K′2 = K′. Consider the
two structures K̂1 = (W, R̂1,V) and K̂2 = (W, R̂2,V) choosen by the duplicator following
the strategy, discussed above, for the game ((K̂,w), (K′,w′), (m, s, P)) in the case when
the spoiler chooses (K′,w′) and again select K′1 and K′2. In particular these structures
satisfy (‡‡). Moreover, the two forests K̂1 and K̂2 are such that K̂1 + K̂2 = K̂ and therefore
R̂1 ∪ R̂2 = R̂ = R \ {(w1,w2)} where (w1,w2) ∈ R and w1 ∈ R(w)=1. We have two cases.
• If w1 ∈ R̂1(w) then in the original game ((K,w), (K′,w′), (m, s, P)), the duplicator

replies to K′1 and K′2 with the two structures K1 = (W, R1,V) and K2 = (W, R2,V)
such that R1 = R̂1 and R2 = R̂2 ∪ {(w1,w2)}.
• Otherwise w1 ∈ R̂2(w) and in the game ((K,w), (K′,w′), (m, s, P)) the duplicator

replies to K′1 and K′2 with the two structures K1 = (W, R1,V) and K2 = (W, R2,V)
such that R1 = R̂1 ∪ {(w1,w2)} and R2 = R̂2.

In both cases, as the pair (w,w1) is in one relation between R1 and R2 whereas (w1,w2)
is in the other relation, the world w1 effectively behaves as if it was a member of the set
R(w)=0 instead of R(w)=1, exactly as in the case of R̂′. In particular, it is easy to see that
for all i ∈ {1, 2} and j ∈ [1, 3], card(Ri(w)=j) = card(R̂i(w)=j). Hence, by (‡‡) we have
• min(card(Ri(w)=0), 2s−1) = min(card(R′i(w′)=0), 2s−1),
• min(card(Ri(w)=1), 2s−1s) = min(card(R′i(w′)=1), 2s−1s),
• min(card(Ri(w)=2), 2s−2s(s+ 1)) = min(card(R′i(w′)=2), 2s−2s(s+ 1)).

Moreover, K1, K2, K′1 and K′2 all satisfy (I), (II) and (III) (as they are submodels of K
or K′), we can apply (A) and derive (K1,w) ≈Pm,s−1 (K′1,w′) and (K2,w) ≈Pm,s−1 (K′2,w′).
Therefore, the play we just described leads to a winning strategy for the duplicator on the
game ((K,w), (K′,w′), (m, s, P)), under the hypothesis that the spoiler chooses (K′,w′).

As we constructed a strategy for the duplicator in both cases where the spoiler picks (K,w) and
(K′,w′), we have that (K,w) ≈Pm,s (K′,w′) and therefore (B) holds. This implies that the class
of models satisfying ♦=2♦=1> cannot be characterised by a formula in ML(∗).

Lemma 9.12 shows that GML is more expressive than ML(∗). This places the expressive
power of ML(∗) strictly in between ML and GML. Indeed, it is quite easy to see that ML(∗)
is more expressive than ML. Consider the formula ♦> ∗ ♦>. By Lemma 9.2, this formula is

432 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

equivalent to ♦> ♦>, which in turn is equivalent to ♦≥2>. However, this latter formula of GML
is known to be not expressible in ML [15]. Formally, this can be proved by considering the two
pointed forests below, which are bisimilar and hence indistinguishable in ML. However, only the
pointed forest on the left satisfies ♦≥2>.

w

6≈

w′

The following theorem summarises Corollary 7.18, Lemma 9.10, and Lemma 9.12.

Theorem 9.13. ML ≺ ML(∗) ≺ GML ≈ ML().

9.3 The complexity of ML(∗)

In this section, we show the surprising fact that, despite ML(∗) being less expressive than ML(),
the satisfiability problem for the former logic is by far higher than the one for the latter. In
particular, we show that the satisfiability problem of ML(∗) is Tower-complete. We recall that
Tower is the non-elementary class of all problems of time complexity bounded by a tower
of exponentials whose height is an elementary function [128]. We already encountered several
Tower-complete logics in Chapter 4, where we analysed the interactions between reachabil-
ity and submodel reasoning by introducing the logic ALT. Interestingly enough, the Tower-
hardness of the satisfiability problem of ALT was achieved, thanks to reachability and submodel
reasoning, by encoding non-elementary long finite words as paths inside forests. The Tower-
hardness of ML(∗) is different in nature: from Proposition 9.3, we know that the length of paths
required to satisfy a formula ϕ is bounded by the modal depth md(ϕ), making impossible to
describe paths of non-elementary lengths. This leaves only one dimension free from elementary
bounds: the branching factor (i.e. the number of children) of the worlds in the pointed forest.
This makes the complexities of ALT and ML(∗) in some sense orthogonal, as ALT cannot express
huge branching factors. As we will see, bringing to fruition the idea of having a non-elementary
number of children reveals to be technically challenging.

9.3.1 The problem of tiling a (huge) grid.

Given k, n ≥ 0, we define the tetration function t as t(0, n) def= n and t(k + 1, n) def= 2t(k,n).
Intuitively, t(k, n) defines a tower of exponentials of height k. We recall that k-NExpTime
stands for the class of all problems decidable with a non-deterministic Turing machine having
runtime in O(t(k, p(n))), for some polynomial p(.), on each input of length n. To show Tower-
hardness, we design a uniform elementary reduction allowing us to get k-NExpTime-hardness
for all k greater than a certain (fixed) integer. In our case, we achieve an exponential-space
reduction from the k-NExpTime variant of the (standard) tiling problem, for all k ≥ 2 [119].

We introduce the problem of tiling a grid of size t(k, n)2, and refer the reader to [119] for
an introduction to tiling (a.k.a. domino) problems. The tiling problem Tilek takes as input a
triple T = (T,H,V) where T is a finite set of tile types, H ⊆ T × T represents an horizontal
matching relation, and V ⊆ T × T represents a vertical matching relation, together with an
initial tile type c ∈ T. Informally, Tilek asks to tile a square grid [0, t(k, n)− 1]× [0, t(k, n)− 1]
by assigning a tile type to each position (i, j) of the grid, while respecting the horizontal and

9.3. The complexity of ML(∗) 433

Tile types Matching relation A solution

A

AB

AC

A AB7

AC AB3

A AC AB

AC AB A

AB A AC

Figure 9.8: An instance of (Wang) tiling problem, and a possible solution for a 3× 3 grid.

vertical matching relations and assigning c to the position (0, 0) of the grid. So, formally, a
solution for the instance (T , c) is a mapping τ : [0, t(k, n)− 1]× [0, t(k, n)− 1]→ T such that

(first) τ(0, 0) = c,

(hori) for every i ∈ [0, t(k, n)− 2] and j ∈ [0, t(k, n)− 1], (τ(i, j), τ(i+ 1, j)) ∈ H,

(vert) for all i ∈ [0, t(k, n)− 1] and j ∈ [0, t(k, n)− 2], (τ(i, j), τ(i, j + 1)) ∈ V.
The problem of checking whether an instance of Tilek admits a solution is known to be
k-NExpTime-complete (see [119]). Figure 9.8 shows an example of tiling problem due to
H. Wang, where both horizontal and vertical matching relations can be represented by colours
on the edges of tile types [142], as intuitively shown in the central diagram.

Our reduction from Tilek to the satisfiability problem of ML(∗) recycles quite heavily ideas
from [8] to reduce Tilek to the satisfiability problem of second-order modal logic QK (see Sec-
tion 8.1.1) interpreted on finite trees, here denoted by QKt. However, to provide the adequate
adaptation for ML(∗), we need to solve two major issues. First, QKt admits second-order quantifi-
cation, whereas in ML(∗), the second-order features are limited to the separating conjunction ∗.
Second, the second-order quantification of QKt essentially colours the nodes in Kripke-style
structures without changing the frame (W, R). By contrast, the operator ∗ modifies the accessi-
bility relation, possibly making worlds that were reachable from the current world, unreachable
in submodels. The Tower-hardness proof for the satisfiability problem of ML(∗) becomes then
much more challenging: we would like to characterise the position on the grid encoded by a
world w by exploiting properties of its descendants (as done for QKt), but at the same time, we
need to be careful and only consider submodels where w keeps encoding the same position. In
a sense, our encoding is robust: when the operator ∗ is used to reason on submodels, we can
enforce that no world changes the position of the grid that it encodes.

9.3.2 Enforcing t(j, n) children.

Let K = (W, R,V) be a finite forest. We consider two disjoint sets of atomic propositions
P = {p1, . . . , pn, val} and Aux = {x, y, l, s, r} (whose respective role is later defined). Elements
from Aux are understood as auxiliary propositions. We call ax-node a world satisfying the
proposition ax ∈ Aux, whereas an Aux-node world is a world satisfying some proposition in Aux.
We call t-node a world that satisfies the formula t def=

∧
ax∈Aux ¬ax. Notice that every world of K

434 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

is either a t-node or an Aux-node. We say that w′ is a t-child of w∈W if w′ ∈R(w) and w′ is a
t-node. We define the concepts of Aux-child and ax-child similarly.

The key development of our reduction is given by the definition of a formula, of exponential
size in j ≥ 1 and polynomial size in n ≥ 1, that when satisfied by (K,w) forces every t-node in
Ri(w), where 0 ≤ i < j, to have exactly t(j − i, n) t-children, each of them encoding a different
number in [0, t(j − i, n) − 1]. As we impose that w is a t-node, it must have t(j, n) t-children.
We assume n to be fixed throughout the section and denote this formula by type(j). From
the property we just described, (K,w) |= type(j) implies that for every i ∈ [1, j−1] and every
t-nodes w′ ∈ Ri(w), K,w′ |= type(j−i).

First, let us informally describe how numbers are encoded in the model (K,w) satisfying
type(j). Let i ∈ [1, j]. Given a t-node w′ ∈ Ri(w), nj−i(w′) denotes the number encoded by w′.
We omit the subscript i when it is clear from the context. When i = j, we represent n0(w′) in
binary, by using the truth values of the atomic propositions p1, . . . , pn. The proposition pb is
responsible for the b-th bit of the number, with the least significant bit being encoded by p1,
and the most significant one being encoded by pn. Formally, given m ∈ [0, 2n−1] and its binary
representation bn . . . b1 ∈ {0, 1}n,

n0(w′) = m if and only if for all l ∈ [1, n], bl = 1 iff w′ ∈ V(pl).

For example, for n = 3, we have (K,w′) |= p3 ∧ p2 ∧ ¬p1 whenever n(w′) = 6. The formula
type(1) forces the parent w′′ of w′ (i.e. a t-node in Rj−1(w)) to have exactly 2n t-children, each
representing a distinct number in [0, 2n−1], via the valuation of p1, . . . , pn. In general, for i < j

(and thus j ≥ 2), the number nj−i(w′) is represented by the binary encoding of the truth values
of val on the t-children of w′ which, since (K,w′) |= type(j− i), are t(j− i, n) children implicitly
ordered by the number they, in turn, encode. In the case of w′′ for instance, the number n1(w′′)
is encoded by relying the valuation of the atomic proposition val on its 2n children, where its
t-child w′ such that n0(w′) = 6 is responsible for the 6th least significant bit of n1(w′′). If w′
satisfies val, then this bit is set to 1, otherwise it is set to 0. Therefore, the essential property of
type(j) is the following: the numbers encoded by the t-children of a t-node w′′ ∈ Ri(w), where
i < j, represent positions in the binary representation of the number nj−i(w′′). Formally, given
m ∈ [0, t(j − i+ 1, n)− 1] and its binary representation bt(j−i,n)−1 . . . b0,

nj−i(w′) = m if and only if for all l ∈ [0, t(j − i, n)− 1], bl = 1 iff wl ∈ V(val),
where wl is the only t-child of w′ such that nj−i−1(wl) = l.

Thanks to this encoding, type(j) then forces w to have exactly t(j, n) children, all encoding
different numbers in [0, t(j, n) − 1]. This is roughly depicted in Figure 9.9, where “1” and “0”
stands for val being true and false, respectively.

In order to characterise these types of structures in ML(∗), we essentially simulate the second-
order quantification of QK by using the Aux-nodes. Informally, we require a pointed forest (K,w)
satisfying type(j) to be such that

(i) every t-node w′ ∈ R(w) has exactly one x-child, and one (different) y-child. These nodes
do not satisfy any other auxiliary proposition;

(ii) for every i ∈ [2, j], every t-node w′ ∈ Ri(w) has exactly five Aux-children, each satisfying
a distinct auxiliary proposition from Aux.

We can simulate the second-order quantification on t-nodes with respect to the symbol ax ∈ Aux
by using the operator ∗ in order to remove edges leading to ax-nodes. Roughly speaking, this

9.3. The complexity of ML(∗) 435

w

. . .

. . .
<<

. . .
<<

. . .
<<

1 1 1 0 0 1 0 0 0

type(j), has t(j, n) children

type(j−1)

type(j−2)

Figure 9.9: Schema of a pointed forest (K,w) satisfying type(j), for j ≥ 3.

operation corresponds to ∃axϕ. Then, we evaluate whether ϕ holds on the resulting pointed
forest, where the satisfaction of ax is interpreted on t-nodes, so that one of these nodes “satisfies”
ax if it has a child satisfying ax. In a sense, Aux-nodes are mere atomic propositions “attached”
to t-nodes, ready to be removed in order to encode the second-order quantification. With this
in mind, the modality ♦ is almost exclusively used to navigate through t-nodes. To better show
the complementary roles that t-nodes and Aux-nodes have in the reduction, we relativise the
modality ♦ and, given a formula ϕ, we write 〈t〉ϕ for the formula ♦(t ∧ϕ). Dually, we define [t]
as def= �(t ⇒ ϕ). 〈t〉i and [t]i are also defined, as expected.

Let us start to formalise this encoding. Let j ≥ 1. First, we restrict ourselves to models
where every t-node reachable in at most j steps does not have two Aux-children satisfying the
same proposition. Moreover, these Aux-nodes have no children and only satisfy exactly one
ax ∈ Aux. We express this condition with the formula init(j) below:

�j
∧

ax∈Aux

((
t ⇒ ¬(♦ax ∗ ♦ax)

)
∧�

(
ax⇒ � ⊥ ∧

∧
bx∈Aux\{ax}

¬bx
))
,

where �0ϕ def= ϕ and �m+1ϕ def= ϕ ∧ � �m (ϕ). Essentially, �jϕ is satisfied by a pointed forest
(K,w) whenever every world reachable from w in at most j steps satisfies ϕ. From this, one can
easily show that if (K,w) |= init(j) and K′ ⊆ K, then (K′,w) |= init(j). The formal semantics
of init(j) is given in the following lemma.

Lemma 9.14. Let (K,w) be a pointed forest, whereK = (W, R,V), and j ≥ 1. (K,w) |= init(j)
if and only if for every 0 ≤ i ≤ j, every w′ ∈ Ri(w) and every ax ∈ Aux,

1. if (K,w′) |= t then for all w′1,w′2 ∈ R(w′), if (K,w′1) |= ax and (K,w′2) |= ax then w′1 = w′2
(i.e. at most one child of w′ satisfies ax);

2. for every w′′ ∈ R(w′), if (K,w′′) |= ax, then R(w′′) = ∅ (i.e. w′′ does not have children)
and it cannot be that (K,w′′) |= bx for some bx ∈ Aux syntactically different from ax (i.e.
among the propositions in Aux, w′′ only satisfies ax).

Proof (sketch). The proof is straightforward. The phrase “for every 0 ≤ i ≤ j, every w′ ∈ Ri(w)
and every ax ∈ Aux” is encoded by the prefix �j

∧
ax∈Aux of init(j). Then, (1) corresponds to

the conjunct t ⇒ ¬(♦ax∗♦ax) whereas (2) corresponds to �
(
ax⇒ � ⊥ ∧

∧
bx∈Aux\{ax}¬bx

)
.

Let us define type(0) def= >. Among the pointed forests ((W, R,V),w) satisfying init(j)
(j ≥ 1), the ones satisfying type(j) are described by the following properties:
(subj) every t-node in R(w) satisfies type(j − 1),
(zeroj) there is a t-node w̃ ∈ R(w) such that nj−1(w̃) = 0,

436 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

(uniqj) distinct t-nodes in R(w) encode different numbers (w.r.t. nj−1(.)),

(complj) for every t-node w1 ∈ R(w) where nj−1(w1) < t(j, n)−1, there is a t-node w2 ∈ R(w)
such that nj−1(w2) = nj−1(w1) + 1,

(aux) w is a t-node, every t-node in R(w) has one x-child and one y-child, and every t-node in
R2(w) has three children satisfying l, r and s, respectively.

As already explained, in a pointed forest (K,w) satisfying type(j), every t-node in Ri(w), where
0 ≤ i < j, has exactly t(j − i, n) t-children, each of them encoding a different number in
[0, t(j − i, n)− 1]. In particular, (subj) inductively assures that this is true for the descendants
of w, whereas the properties (zeroj), (uniqj) and (complj) uses the fact that (subj) holds in
order to force the correct number of children of w. In order to reflect the five properties above,
let us define type(j), where j ≥ 1, as the following conjunction,

type(j) def= sub(j) ∧ zero(j) ∧ uniq(j) ∧ compl(j) ∧ aux,

where each conjunct expresses its homonymous property. The formulae for sub(j), aux and
zero(j) can be defined very easily:

sub(j) def= [t]type(j − 1),

aux def= t ∧ [t](♦x ∗ ♦y) ∧ [t]2(♦l ∗ ♦s ∗ ♦r),
zero(1) def= 〈t〉

∧
b∈[1,n] ¬pb,

zero(j+ 1) def= 〈t〉[t]¬val.

The challenge is therefore how to express uniq(j) and compl(j), the two conditions that, together
with zero(j), guarantee that the numbers of children of w span all over [0, t(j, n) − 1]. Notice
that type(j) is defined recursively on j, as highlighted by the definition of sub(j). As we will
see, the same holds true for the formulae uniq(j) and compl(j), which forces us to divide the
construction of uniq(j) and compl(j) into a base case, in which we are able to define type(1)
(Section 9.3.4), and an inductive case in which we define type(j) for every j > 1 (Section 9.3.5).

The structural properties expressed by type(j) lead to strong constraints, which permits
to control the effects of the separating conjunction when subforests are constructed. This is a
key point in designing type(j) as it helps us to control which edges are lost when considering
a subforest. Indeed, suppose (K,w) |= init(j) ∧ type(j), for j ≥ 1. Consider two finite forest
models K1 and K2 such that K1 + K2 = K, K1,w |= � ⊥ and K2,w |= sub(j) ∧ aux. We can
conclude that, among the edges (w′,w′′) ∈ R appearing in the subtree of depth j rooted at w,
the structure K1 can only contain the ones such that w′ ∈ R(w) and w′′ is a {l, s, r}-node.
In particular, every t-node w̃ ∈ Ri(w) (i ∈ [0, j]) must still be reachable from w in K2, which
implies that the number n(w̃) encoded by w̃ is the same in both structures. This robustness
against the unpleasant side-effects of the operator ∗, i.e. the general inability to track which
edges are lost when considering a subforest, is fundamental in order to reduce Tilek. Let us
formalise this fundamental property of type(j), assuming that the formula is correctly defined,
following its specification.

Lemma 9.15. Let (K,w) be a pointed forest, s.t. K = (W, R,V) and (K,w) |= init(j)∧type(j).
Consider a world w′ ∈ Ri(w), where i ∈ [0, j]. Let K′ ⊆ K be such that (K′,w′) |= type(j − i).
Then, the number nj−i(w′) encoded by w′ is the same in both K and K′.

9.3. The complexity of ML(∗) 437

Proof. The proof is by induction on the difference j − i, with induction hypothesis stating that
for every k > i, world w′′ ∈ Rk(w) and K′′ ⊆ K such that (K′′,w′′) |= type(j − k), w′′ encodes
the same number with respect to both K and K′′.
base case: i = j. In this case, type(j − i) = > and nj−i(w′) only depends on the satisfaction

of the atomic propositions p1, . . . , pn, on the world w′. Since K′ and K share the same
valuation V, w′ encodes the same number with respect to both K and K′.

inductive step: i < j. Since (K′,w′) |= type(j − i), by (subj) every t-child w′′ of w′ is such
that (K′,w′′) |= type(j − (i+ 1)). By induction hypothesis, w′′ encodes the same number
with respect ot both K and K′. So, in order for w′ to encode the same number in K and K′,
we need to check that the set of t-children of w′ is the same in both K and K′. Notice that
is sufficient, as the number nj−i(w′) is encoded using the satisfaction of val in on these
children, and K and K′ share the same valuation function V. From (K,w) |= type(j),
by (subj), we know that (K,w′) |= type(j − i). From (zeroj), (uniqj) and (complj), we
conclude that, in K, the world w′ has exactly t(j − i, n) t-children, each of them encoding
a different number in [0, t(j − i, n)]. From the hypothesis (K′,w′) |= type(j − i), the same
holds true with respect to K′. As K′ ⊆ K, we conclude that the set of t-children of w′ is
the same in both K and K′.

9.3.3 Nominals, forks and number comparisons.

In order to define the formulae uniq(j) and compl(j) (completing the definition of type(j)),
we introduce auxiliary formulae, characterising classes of models that emerge naturally when
trying to capture the semantics of (uniqj) and (complj). As usual, below we consider a pointed
forest (K,w), where K = (W, R,V).

A first ingredient is given by the concept of local nominals, borrowed from [8]. We say that
ax ∈ Aux is a (local) nominal for the depth i ≥ 1 if there is exactly one t-node w′ ∈ Ri(w) having
an ax-child. In this case, w′ is said to be the world that corresponds to the local nominal ax.
The following formula states that ax is a local nominal for the depth i:

nomi(ax) def= 〈t〉i♦ax ∧
∧

k∈[0,i−1]
[t]k¬

(
〈t〉i−k♦ax ∗ 〈t〉i−k♦ax

)
.

We define the formula @i
axϕ

def= 〈t〉i(♦ax ∧ ϕ) which, under the hypothesis that ax is a local
nominal for the depth i, states that ϕ holds on the t-node that corresponds to ax. Moreover,
we define nomi(ax 6=bx) def= nomi(ax) ∧ nomi(bx) ∧ ¬@i

ax♦bx, which states that ax and bx are two
nominals for the depth i with respect to two distinct t-nodes. The following lemma formalises
the semantics of nomi(ax), @i

axϕ and nomi(ax 6=bx).

Lemma 9.16. Let ax ∈ Aux and 0 < i ≤ j ∈ N. Suppose (K,w) |= init(j).
1. (K,w) |= nomi(ax) if and only if ax is a nominal for the depth i.

2. Suppose (K,w) |= nomi(ax). (K,w) |= @i
axϕ if and only if the world (say w′) corresponding

to the nominal ax for the depth i is such that (K,w′) |= ϕ.

3. (K,w) |= nomi(ax 6=bx) iff ax and bx are nominals for the depth i, for two distinct worlds.

Below, we show the proof of Lemma 9.16(1), and refer the reader to Appendix G for the
(easy) proofs of the other two statements.

438 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

w

typelsr(j−i)

typelsr(j−i)

ax

bx

i

Figure 9.10: Schema of a pointed forest (K,w) satisfying forkij(ax, bx).

Proof of Lemma 9.16(1). Let K = (W, R,V).
(⇒): Suppose (K,w) |= nomi(ax), and so there is a path of t-worlds w0,w1, . . . ,wi, such that
w = w0, for every k ∈ [1, i] (wk−1,wk) ∈ R, and there is w′ such that (wi,w′) ∈ R and
(K,w′) |= ax. The second conjunct of nomi(ax) guarantees that there is only one such path,
leading to wi being a nominal for the depth i. Indeed, ad absurdum, assume that there is a
second world w′i ∈ Ri(w), distinct from wi, such that (K,w′i) |= ♦ax. Since (K,w) |= init(j),
w′i must be a t-node and there must be a path of t-worlds w′0,w′1, . . . ,w′i such that w = w′0 and
for every k ∈ [1, i] (w′k−1,w′k) ∈ R. As we are assuming wi 6= w′i, there must be k ∈ [0, i − 1]
such that for every j ≤ k, wj = w′j , and for every l ∈ [k + 1, i], wl 6= w′l. By considering the
pointed forest (K,wk), we can easily show that (K,wk) |= 〈t〉i−k♦ax ∗ 〈t〉i−k♦ax. This implies
that (K,w) |= 〈t〉k

(
〈t〉i−k♦ax∗〈t〉i−k♦ax

)
, in contradiction with the second conjunct of nomi(ax).

We conclude that, w′i = wi.
(⇐): This direction is straightforward. Suppose that (K,w) |= init(j) and ax is a nom-
inal for the depth i. By definition, there is a unique t-world w′ in Ri(w) having a child
satisfying ax. Since (K,w) |= init(j), the path from w to w′ must only witness t-nodes.
Hence (K,w) |= 〈t〉i♦ax. From the uniqueness of this path we conclude that the formula
(K,w) |=

∧
k∈[0,i−1][t]k¬

(
〈t〉i−k♦ax ∗ 〈t〉i−k♦ax

)
also holds. Thus, (K,w) |= nomi(ax).

As a second ingredient, we introduce the notion of fork that is a specific type of models
naturally emerging when trying to compare the numbers n(w1) and n(w2) of two worlds w1,w2 ∈
Ri(w) (e.g. when checking whether n(w1) = n(w2) or n(w2) = n(w1)+1 holds). Given j ≥ i ≥ 1
we introduce the formula forkij(ax, bx), where ax 6= bx ∈ Aux, that is satisfied by (K,w) if:
(fork1) ax and bx are nominals for the depth i,
(fork2) w has exactly two t-children, say wU and wD,
(fork3) for every k ∈ [1, i− 1], both Rk(wU) and Rk(wD) contain exactly one t-child,
(fork4) if i < j, then (K,wax) and (K,wbx) satisfy

typelsr(j − i) def= type(j − i) ∧ [t](♦l ∧ ♦s ∧ ♦r).
Notice that the properties (fork1) and (fork3) entail that wax and wbx are the only t-nodes
in Ri−1(wU) ∪ Ri−1(wD), with one belonging in Ri−1(wU) and the other being in Ri−1(wD).
Therefore, whenever (K,w) satisfies the formula forkij(ax, bx), we witness two paths of length i,
both starting at w and leading to wax and wbx, respectively. Worlds in this path may have
additional Aux-children. Figure 9.10 schematises a pointed forest satisfying forkij(ax, bx). Notice
that, if i < j, then (fork4) requires the two worlds corresponding to the nominal ax and bx
to satisfy typelsr(j − i), making the definition of forkij(ax, bx) recursive on i and j (recall

9.3. The complexity of ML(∗) 439

Hypothesis on (K,w) Formula Semantics

init(j) forkij(ax, bx) (K,w) satisfies (fork1)–(fork4)

forkij(ax, bx) ∧ init(j) [ax< bx]ij nj−i(wax) < nj−i(wbx)

fork1
j (ax, bx) ∧ init(j) [bx = ax+1]j nj−1(wax) + 1 = nj−1(wbx)

init(j) ∧ aux ∧ sub(j) uniq(j) (K,w) satisfies (uniqj)

init(j) ∧ aux ∧ sub(j) compl(j) (K,w) satisfies (complj)

init(j) type(j) (K,w) satisfies (subj)–(aux)

Figure 9.11: Summary of the formulae to be defined in the next sections.

that forkij(ax, bx) is introduced in order to define type(j)). Because of this, we postpone its
formal definition to the next two sections, where we treat the base cases for i = j and the
inductive case for j > i separately.

The last two fundamental ingredients required to define uniq(j) and compl(j) are given
by the formulae [ax< bx]ij and [bx = ax+1]j . Under the hypothesis that (K,w) satisfies
forkij(ax, bx) and init(j), the formula [ax< bx]ij is satisfied whenever the two (distinct) worlds
wax,wbx ∈ Ri(w) corresponding to the nominals ax and bx are such that nj−i(wax) < nj−i(wbx).
Similarly, under the hypothesis that (K,w) satisfies fork1

j (ax, bx), the formula [bx = ax+1]j is
satisfied whenever nj−1(wbx) = nj−1(wax) + 1 holds. Both formulae are recursively defined with
respect to i and j, with base cases for i = j and j = 1, respectively.

In the next section, we define the formulae forkjj(ax, bx) and [ax< bx]jj (for arbitrary j), as
well as [bx = ax+1]1. From these formulae, we are then able to define uniq(1) and compl(1),
which completes the characterisation of type(1) and typelsr(1). Afterwards (Section 9.3.5), we
consider the case 1 ≤ i < j and j ≥ 2, and define forkij(ax, bx), [ax< bx]ij , [bx = ax+1]j , as
well as uniq(j) and compl(j), by only relying on formulae that are already defined (by inductive
reasoning). Figure 9.11 summarises the semantics of all these formulae. In the table, the indices
i and j are such that 1 ≤ i ≤ j, whereas ax and bx are two distinct propositions from Aux.
Lastly, wax and wbx stands for worlds corresponding to nominals ax and bx, respectively.

9.3.4 Construction of type(j): formulae for the base cases i = j or j = 1.

In this section, we define the formulae forkjj(ax, bx), [ax< bx]jj and [bx = ax+1]1, in which we
rely on in order to define uniq(1) and compl(1), completing the definition of type(1). Since
we are treating the base case for i = j or j = 1, given a world w, we are only interested in its
number n0(w), which is encoded by relying on the atomic propositions p1, . . . , pn. Thus, in this
section we always write n(w) for n0(w).

By looking at the properties required by forkij(ax, bx), it is quite easy to see that the
following formula defines a fork for i = j:

forkjj(ax, bx) def= ♦=2t ∧ [t]�j−2 (t ⇒ ♦=1t) ∧ nomj(ax 6=bx),

where we extend the definition of �k so that, given k < 0, �kϕ def= >. Moreover, the formulae
♦=1t and ♦=2t stand for ♦t ∧ ¬(♦t ∗ ♦t) and ♦=1t ∗ ♦=1t, respectively. Since both formulae
have modal depth 1, from Lemma 9.2 it is easy to see that ♦=1t and ♦=2t correspond (se-

440 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

wax :

wbx :

0

1
=

Figure 9.12: n(wax) < n(wbx).

wax :

wbx :

0 11. . . 1

1 00. . . 0

=

Figure 9.13: n(wax) + 1 = n(wbx).

mantically) to the syntactically equivalent formulae of GML. A simple check assures that the
formula forkjj(ax, bx) is correctly defined.

Lemma 9.17. Let ax 6= bx ∈ Aux, j ≥ 1 and (K,w) |= init(j). (K,w) |= forkjj(ax, bx) if and
only if (K,w) satisfies (fork1)–(fork4).

Proof. As i = j, the property (fork4) is trivially satisfied in both directions of the lemma.
(⇒): Suppose (K,w) |= forkjj(ax, bx). From (K,w) |= nomj(ax 6= bx), ax and bx are two
nominals for the depth j, as required by (fork1), corresponding to two distinct worlds. Let wax

(resp. wbx) be the world that corresponds to the nominal ax (resp. bx). Moreover, let wU be the
only t-children of w such that wax ∈ Rj−1(wU), and wD be the only t-children of w such that
wbx ∈ Rj−1(wD). From (K,w) |= [t]�j−2 (t⇒♦=1t) we deduce that for every k ∈ [1, j− 1], both
Rk(wU) and Rk(wD) contain exactly one t-child, as required by (fork3). As wax ∈ Rj−1(wU),
wbx ∈ Rj−1(wD), and wax 6= wbx, this implies that wU 6= wD. From (K,w) |= ♦=2t, w has
exactly two t-children, i.e. wU and wD, as required by (fork2).
(⇐): This direction is straightforward. In short, from (fork2) we conclude that (K,w) |= ♦=2t
whereas (fork3) implies the satisfaction of [t]�j−2 (t⇒♦=1t). Lastly, from (fork1) together with
Lemma 9.16, we have (K,w) |= nomj(ax 6=bx).

Let us now move to the definition of [ax< bx]jj and [bx = ax+1]1. Given two worlds wax

and wbx corresponding to nominals ax and bx at depth j (resp. 1), we recall that [ax< bx]jj
(resp. [bx = ax+1]1) states that n(wax) < n(wbx) (resp. n(wax) + 1 = n(wbx)). In both the base
case and inductive step, in order to define these formulae we rely on standard definitions of < and
+1 for bit vectors. In particular, given two m-bits (for some m ∈ N) binary representations bax

and bbx of n(wax) and n(wbx), respectively, we consider the characterisation of n(wax) < n(wbx)
and n(wax) + 1 = n(wbx) described below:

n(wax) < n(wbx) iff bax = b · 0 · b′ and bbx = b · 1 · b′′ for some b, b′, b′′ ∈ {0, 1}∗,

n(wax)+1 = n(wbx) iff bax = b · 0 · 1k and bbx = b · 1 · 0k, for some b ∈ {0, 1}∗, k ∈ [0,m].

where b1 · b2 is the concatenation of bit vectors, b0 is the zero size bit vector and bk+1 def= b · bk.
Here, notice that we are assuming bax and bbx to be encoded so that the rightmost bit is the least
significant. The visual representation of these standard characterisations of < and +1 is given
in Figure 9.12 and Figure 9.13, respectively. Let us rephrase them in the language of ML(∗).

As previously explained, in the base case, the number n(w′) encoded by a t-node w′ ∈ Rj(w)
is represented by the truth values of the atomic propositions p1, . . . , pn, where the truth of p1
corresponds to the value of the least significant bit, and pn corresponds to the value of the most
significant one. Following the above description of n(wax) < n(wbx), we define [ax< bx]jj as:

9.3. The complexity of ML(∗) 441

[ax< bx]jj
def=
∨

u∈[1,n]

(
@j

ax¬pu ∧@j
bxpu ∧

∧
v∈[u+1,n]

(@j
axpv ⇔ @j

bxpv)
)
.

Informally, [ax< bx]jj ask for the existence of an index u ∈ [0, n] such that the u-th most
significant bit of n(wax) is 0, the u-th most significant bit of n(wbx) is 1, and n(wax) and n(wbx)
agree on the u − 1 most significant bits. [bx = ax+1]1 is defined in a similar way, again by
following the arithmetical description given above:

[bx = ax+1]1 def=
∨

u∈[1,n]

(
@1

ax(¬pu ∧
∧

v∈[1,u−1]
pv) ∧@1

bx(pu ∧
∧

v∈[1,u−1]
¬pv) ∧

∧
v∈[u+1,n]

(@1
axpv ⇔ @1

bxpv)
)
.

As we can see, [bx = ax+1]1 is essentially obtained from [ax< bx]jj by also requiring every bit
that is less significant than u to be 1 in n(wax) and 0 in n(wbx).

Lemma 9.18. Let ax 6= bx ∈ Aux and j ≥ 1. Suppose (K,w) |= init(j) ∧ forkjj(ax, bx). Let
wax (resp. wbx) be the world corresponding to the nominal ax (resp. bx) at depth j.

1. (K,w) |= [ax< bx]jj if and only if n(wax) < n(wbx),

2. Let j = 1. (K,w) |= [bx = ax+1]1 if and only if n(wax) + 1 = n(wbx).

The proof of Lemma 9.18 can be found in Appendix G.
Let us now move to the definitions of uniq(1) and compl(1). First, let us recall that a model

satisfying type(1) satisfies the formula aux and hence every t-node in R(w) has two auxiliary
children, one x-node and one y-node. In order to define uniq(1), we use these Aux-children
and rely on ∗ to state that it is not possible to find a subforest of K such that w has only two
distinct children wx and wy corresponding to the nominals x and y, respectively, and such that
n(wx) = n(wy). In a sense, the operator ∗ is here used to simulates a first-order quantification
on x and y. Let [x = y]11

def= ¬([x< y]11 ∨ [y< x]11). Here is the formula uniq(1):

uniq(1) def= ¬
(
> ∗ (fork1

1(x, y) ∧ [x = y]11)
)
.

Lemma 9.19. Suppose (K,w) |= init(1) ∧ aux. (K,w) |= uniq(1) iff (K,w) satisfies (uniq1).

Proof. Recall that (uniq1) requires all t-children of w to encode a different number in [0, 2n−1].
(⇒): Let us show the converse. Suppose there are two distinct t-nodes wx and wy encoding
the same number. We show that uniq(1) is not satisfied. Since (K,w) |= init(1) ∧ aux, every
world in R(w) has exactly one x-child and exactly one (different) y-child. Consider the subforest
K′ = (W, R′,V) of K where R′(w) = {wx,wy}, R′(wx) = {w1} and R′(wy) = {w2}, where
w1 is the only x-child of wx, and w2 is the only y-child of wy. By Lemma 9.17, (K′,w) |=
fork1

1(x, y). By Lemma 9.15, n(wx) = n(wy) holds also with respect to K′ (notice that this
corresponds to the base case, where numbers are encoded using the satisfaction of the atomic
propositions p1, . . . , pn). By Lemma 9.18(1), this implies (K′,w) |= [x = y]11. By definition,
(K,w) 6|= uniq(1).
(⇐): Again, we show the converse. Suppose (K,w) 6|= uniq(1), and thus there is a subforest
K′ = (W, R′,V) of K such that (K′,w) |= fork1

1(x, y) ∧ [x = y]11. Since the satisfaction of
init(1) is monotonic w.r.t. subforests, we have (K′,w) |= init(1). We apply Lemma 9.17
and Lemma 9.18(1) in order to conclude that there are two distinct worlds wx and wy in R′(w)
such that n(wx) = n(wy). By Lemma 9.15, wx and wy encode the same number also with respect
to the pointed forest (K,w). Thus, (K,w) does not satisfy (uniq1).

442 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

Let us now consider compl(1). As done for uniq(1), we rely on the auxiliary propositions x
and y, and use the operator ∗ in order to simulate a first-order quantification on these atomic
propositions. We state that it is not possible to find a subforest K′ = (W, R′,V) of K = (W, R,V)
such that

1. w keeps all its children, i.e. R(w) = R′(w), which in turn keep their y-children,
2. every t-children of w loses its x-child, with the exception of one world wx ∈ R(w) such

that n(wx) < 2n − 1,
3. it is not possible to find a subforest K′′ = (W, R′′,V) of K′ such that R′′(w) contains only

two t-children: wx and wy, where wy corresponds to the nominal y and n(wy) = n(wx)+1.
The definition of compl(1) is given below, highlighting which part of the formula is responsible
for the three conditions above:

compl(1) def= ¬
(
� ⊥ ∗

(
[t]♦y︸ ︷︷ ︸

(1)

∧@1
x¬11︸ ︷︷ ︸
(2)

∧¬(> ∗ (fork1
1(x, y) ∧ [y = x+1]1))︸ ︷︷ ︸

(3)

))
,

where the formula 11 is defined as
∧
i∈[1,n] pi, reflecting the encoding of 2n−1. Here, the subscript

“1” in the formula 11 refers to the fact that we are treating the base case of compl(j), with j = 1.

Lemma 9.20. Suppose (K,w) |= init(1)∧aux. (K,w) |= compl(1) iff (K,w) satisfies (compl1).

Proof. Recall that (compl1) states that for every t-node w1 ∈ R(w), if n(w1) < 2n−1 then there
is a t-node w2 ∈ R(w) such that n(w2) = n(w1) + 1.
(⇒): Suppose (K,w) |= compl(1). From the definition of compl(1), this implies that for every
subforest K′ = (W, R′,V) of K, if R′(w) = R(w) and (K′,w) |= [t]♦y ∧@1

x¬11, then

(K′,w) |= > ∗ (fork1
1(x, y) ∧ [y = x+1]1).

Let us pick a t-node wx ∈ R′(w) = R(w) such that n(wx) < 2n − 1. We show that there must
be a world wy ∈ R′(w) such that n(wy) = n(wx) + 1.

Recall that, by (K,w) |= init(1) ∧ aux, every t-child of w has exactly one x-child and one
y-child. Consider the subforest K′′ = (W, R′,V) of K such that R′(wx) contains both the x-child
and y-child of wx (w.r.t. K), and otherwise for every w ∈ R(w) distinct from wx, R′(w) = {w1},
where w1 is the y-child of w (w.r.t. K). Therefore, in K′, the world wx corresponds to the
nominal x for the depth 1, and every w′ ∈ R′(w) has a y-child. That is, (K′,w) |= [t]♦y.
Moreover, (K,w) |= @1

x¬11, directly from n(wx) < 2n − 1 and Lemma 9.15 (here, recall that
we are treating the base case, and thus the encoding of numbers uses the satisfaction of the
atomic proposition p1, . . . , pn). From (K,w) |= compl(1), we conclude that (K′,w) |= > ∗
(fork1

1(x, y) ∧ [y = x+1]1), which implies that there is a subforest K′′ = (W, R′′,V) of K′
such that (K′′,w) |= fork1

1(x, y) ∧ [y = x+1]1. By Lemma 9.17 and Lemma 9.18(2), there is
wy ∈ R′′(w) such that n(wy) = n(wx) + 1. By Lemma 9.15, n(wy) = n(wx) + 1 holds also in K.
Thus, (K,w) satisfies (compl1).
(⇐): Suppose that (K,w) satisfies (compl1). Ad absurdum assume that (K,w) 6|= compl(1).
Then, there is a subforest K′ = (W, R′,V) of K such that R′(w) = R(w) and

(K′,w) |= [t]♦y ∧@1
x¬11 ∧ ¬(> ∗ (fork1

1(x, y) ∧ [y = x+1]1)).

Notice that this formula does not enforce x to be a nominal for the depth 1. However, from
(K′,w) |= @1

x¬11, we deduce that there is at least one t-node wx such that (K′,wx) |= ♦x∧¬11.
Then, n(wx) < 2n − 1 in K′ and, by Lemma 9.15, the same holds in K. By hypothesis, there is
a t-node wy such that n(wy) = n(wx) + 1 (w.r.t. K). Let us consider now the subforest K′′ =

9.3. The complexity of ML(∗) 443

(W, R′′,V) of K′ where R′′(w) = {wx,wy}, R′′(wx) = {w1} and R′′(wy) = {w2}, where w1 (resp.
w2) is the only x-child (resp. y-child) of wx (resp. wy). The existence of w1 and w2 is guaranteed
directly from (K′,wx) |= ♦x ∧ ¬11 and (K′,w) |= [t]♦y. By Lemma 9.17, (K′′,w) |= fork1

1(x, y).
From n(wy) = n(wx) + 1 (in K and by Lemma 9.15 and Lemma 9.18(2), (K′′,w) |= [y = x+1]1.
However, this allows us to conclude that (K′,w) satisfies > ∗ (fork1

1(x, y) ∧ [y = x+1]1): a
contradiction. Thus, (K,w) |= compl(1).

As uniq(1) and compl(1) are now defined, so is type(1). Its correctness, which follows
directly from Lemma 9.19 and Lemma 9.20 together with the (straightforward) correctness
of sub(j), aux and zero(1), is stated in the next lemma.

Lemma 9.21. Let (K,w) |= init(1). (K,w) |= type(1) if and only if (K,w) satisfies (sub1),
(zero1), (uniq1), (compl1) and (aux).

We conclude the section treating the base case of the construction of type(j) by showing a
model for init(1) ∧ type(1), which will be useful when considering the tiling problem.

Lemma 9.22. init(1) ∧ type(1) is satisfiable.

Proof (sketch). Consider the pointed forest (K,w) such that K = (W, R,V) and
1. W = {w,w0,wx

0,w
y
0,w1,wx

1,w
y
1, . . . ,w2n−1,wx

2n−1,w
y
2n−1},

2. R = {(w,wi), (wx
i ,w

y
i) | i ∈ [0, 2n − 1]},

3. V(x) = {wx
0, . . . ,wx

2n−1}, V(y) = {wy
0, . . . ,w

y
2n−1} and for every i ∈ [0, 2n−1] and j ∈ [1, n],

wi ∈ V(pj) if and only if the j-th bit in the binary encoding of i is 1.
It is easy to check that (K,w) satisfies init(1) as well as (sub1), (zero1), (uniq1), (compl1) and
(aux). Thus, by Lemma 9.21, (K,w) |= init(1) ∧ type(1).

9.3.5 Construction of type(j): formulae for the inductive step 1 ≤ i < j.

We now move to the inductive definitions of forkij(ax, bx), [ax< bx]ij , [bx = ax+1]j , uniq(j),
compl(j) and type(j), where 1 ≤ i < j. So, during this section, let us fix the indices i and j such
that 1 ≤ i < j and, rely on an implicit induction hypothesis to prove that the formulae introduced
are well-defined. More precisely, given a lexeme ϕ among forkij(ax, bx) and [ax< bx]ij , we write
d(ϕ) for the pair (j, j − i) ∈ N2 (recall that i < j), whereas for ϕ among [bx = ax+1]j , uniq(j),
compl(j) and type(j), we write d(ϕ) for (j, j). We order the formulae using the well-founded
lexicographic order <lex on N2:

(j1, i1) <lex (j2, i2) whenever j1 < j2 or (j1 = j2 and i1 < i2).

Then, whenever defining one of these formulae ϕ, we assume by induction hypothesis that the
formulae ψ (among the ones above) with d(ψ) <lex d(ϕ) are correctly defined. For instance,
the formulae forki+1

j (ax, bx) and type(j − i) can be used in order to define [ax< bx]ij , and the
formula fork1

j (ax, bx) can be used in the definition of uniq(j).
As done for the base case, we start with the definition of forkij(ax, bx), which is quite simple:

forkij(ax, bx) def= forkii(ax, bx) ∧ [t]itypelsr(j − i).

Clearly, the formula is well-defined, as forkii(ax, bx) was defined during the base case, whereas
typelsr(j−i) = type(j− i)∧ [t](♦l∧♦s∧♦r) is defined by inductive hypothesis, since j− i < j.

444 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

The correctness of this formula is immediate, from its characterisation given during Section 9.3.3.
Together with Lemma 9.17, we obtain the following result.

Lemma 9.23. Let ax 6= bx ∈ Aux, 1 ≤ i ≤ j and (K,w) |= init(j). (K,w) |= forkij(ax, bx) if
and only if (K,w) satisfies (fork1)–(fork4).

Let us now consider the formula [ax< bx]ij . Assuming that (K,w) satisfies forkij(ax, bx),
we wish to express that nj−i(wax) < nj−i(wbx) holds for the two distinct worlds wax and wbx

of Ri(w) corresponding to the nominals ax and bx, respectively, for the depth i. As explained
during Section 9.3.2, since i < j, these numbers n(wax) are encoded (in binary) using the truth
value of the atomic proposition val, on the t-children of wax and wbx. To rely on the same
arithmetical properties of binary numbers used to define [ax< bx]jj (in the base case), we need
to find two triples of set of worlds Pax = (Lax, {sax}, Rax) and Pbx = (Lbx, {sbx}, Rbx) such that:

(LSR) Given b ∈ {ax, bx}, {Lb, {sb}, Rb} is a partition of the set of t-children of wb. Moreover,
nj−(i+1)(wr) < nj−(i+1)(sb) holds for every wr ∈ Rb, and nj−(i+1)(wl) > nj−(i+1)(sb) holds
for every wl ∈ Lb,

(LESS) Pax and Pbx have the arithmetical properties of <:

(S) nj−(i+1)(sax) = nj−(i+1)(sbx), (K, sax) |= ¬val and (K, sbx) |= val,
(L) (K, lax) |= val iff (K, lbx) |= val, for every lax ∈ Lax and every lbx ∈ Lbx such that

nj−(i+1)(lax) = nj−(i+1)(lbx).

It is important to notice that these conditions essentially revolve around the numbers en-
coded by t-children, which will be compared using the already defined (by inductive reason-
ing) formulae [ax< bx]i+1

j . Since the semantics of [ax< bx]ij is given under the hypothesis that
(K,w) |= forkij(ax, bx), by (fork4) we can assume that every child of wax and wbx has all the
possible Aux-children. Then, we rely on the auxiliary propositions l, s and r in order to describe
the partitions Pax and Pbx, and mimic the reasoning done in (LSR) and (LESS).

First of all, with the help of l, s and r, we define a formula lsr(k) highlighting the parti-
tions {Lb, {sb}, Rb} described in (LSR). In particular, given (K,w) where K = (W, R,V), and
k ≥ 1, lsr(k) shall be satisfied whenever:
(lsr1) (K,w) satisfies type(k),

(lsr2) All t-children of w have exactly one {l, s, r}-child. Only one, say ws, has a s-child,

(lsr3) nk−1(w′) > nk−1(ws) (resp. nk−1(w′) < nk−1(ws)), for every t-child w′ of w having
a l-child (resp. r-child).

Notice that, as lsr(k) is based on the satisfaction of type(k), it is well-defined (by inductive
reasoning) as soon as k < j. Figure 9.14 schematises a pointed forest satisfying lsr(k).
The definition of lsr(k) follows closely its specification:

lsr(k) def=
(lsr1)︷ ︸︸ ︷

type(k)∧
(lsr2)︷ ︸︸ ︷

[t]♦=1(l ∨ s ∨ r) ∧ nom1(s)
∧ ¬

(
> ∗ (fork1

k(s, l) ∧ ¬[s< l]1k)
)
∧ ¬

(
> ∗ (fork1

k(s, r) ∧ ¬[r< s]1k)
)︸ ︷︷ ︸

(lsr3)

.

Lemma 9.24. Let k < j and (K,w) |= init(k). (K,w) |= lsr(k) iff (K,w) satisfies (lsr1)–(lsr3).

9.3. The complexity of ML(∗) 445

.w

.

>>> >

lsr(k), implies type(k)

ll s r r

Figure 9.14: Shape of a pointed forest satisfying lsr(k).

Proof. The properties (lsr1) and (lsr2) are trivially characterised by the formulae type(k) and
[t]♦=1(l ∨ s ∨ r) ∧ nom1(s), respectively. In what follows, we focus on the property (lsr3).
(⇒): Suppose (K,w) |= lsr(k). From nom1(s) there is exactly one world ws ∈ R(w) having a
s-child. Ad absurdum, assume that (lsr3) is not satisfied, and thus one of the following holds:

1. there is a t-child w′ of w that has a l-child and nk−1(w′) < nk−1(ws), or
2. there is a t-child w′ of w that has a r-child and nk−1(w′) > nk−1(ws).

We consider the first case, and derive a contradiction with (K,w) 6|= >∗(fork1
k(s, l)∧¬[s< l]1k).

The second case is analogous and in contradiction with (K,w) 6|= > ∗ (fork1
k(s, r) ∧ ¬[r< s]kj).

Thus, we are able to show that (K,w) satisfies (lsr3). Let w′ be the t-child of w having a l-
child and being such that nk−1(w′) < nk−1(ws). Let us consider the Kripke-style finite forest
K′ = (W, R′,V) obtained from K′ by removing all the arrows from w to worlds different from
w′ and ws, i.e. R′ = R \ {(w,w′′) ∈ R | w′′ 6∈ {ws,w′}}. So, K′ ⊆ K. Let us show that
(K,w) |= fork1

k(s, l). In K′, the worlds ws and w′ only have one Aux-child: the one of ws

satisfies s whereas the one of w′ satisfies l. As R′(w) = {ws,w′}, this allows us to conclude that
the properties (fork1), (fork2) and (fork3) of fork1

k(s, l) are satisfied. It remains to show (fork4),
i.e. that (K′,ws) and (K′,w′) satisfy typelsr(k − 1) = type(k − 1) ∧ [t](♦l ∧ ♦s ∧ ♦r), which
holds directly from (K,w) |= type(k), thanks to the properties (subj) and (aux). Now, from
K′ ⊆ K together with (K,ws) |= type(k − 1) and (K,w′) |= type(k − 1), by Lemma 9.15 we
conclude that ws and w′ keep encoding their respective number even after K is modified in K′.
Therefore, in K′, we have nk−1(w′) < nk−1(ws). However, by relying on Lemma 9.15, this allows
us to conclude that (K′,w) |= fork1

k(s, l) ∧ ¬[s< l]1k (notice that k < j, and thus [s< l]1k is
well-defined), which contradicts (K,w) 6|= >∗ (fork1

k(s, l)∧¬[s< l]1k), as K′ ⊆ K. We conclude
that (K,w) satisfies (lsr3).
(⇐): This direction is analogous. Suppose that (K,w) satisfies (lsr1), (lsr2) and (lsr3). As (lsr1)
entails (K,w) |= type(k) and (lsr2) entails (K,w) |= [t]♦=1(l ∨ s ∨ r) ∧ nom1(s), we focus on
proving that

(K,w) |= ¬
(
> ∗ (fork1

k(s, l) ∧ ¬[s< l]1k)
)
∧ ¬

(
> ∗ (fork1

k(s, r) ∧ ¬[r< s]1k)
)
.

We show (by contradiction) that (K,w) |= ¬
(
> ∗ (fork1

k(s, l) ∧ ¬[s< l]1k)
)
. Ad absurdum,

suppose (K,w) |= > ∗ (fork1
k(s, l) ∧ ¬[s< l]1k). Thus, there is a subforest K′ ⊆ K such that

(K,w) |= fork1
k(s, l) ∧ ¬[s< l]1k. From (K′,w) |= fork1

k(s, l), in K′ there are two t-children ws

and w′ of w that correspond to the nominals (for the depth 1) s and l, respectively. Moreover,
(K′,ws) and (K′,w′) satisfy type(k − 1), and, by (K′,w) |= [s< r]1k, nk−1(w′) < nk−1(ws)
(w.r.t. K′). However, from Lemma 9.15, this implies that nk−1(w′) < nk−1(ws) holds also with
respect to K, in contradiction with (lsr3). Therefore, (K,w) |= ¬

(
> ∗ (fork1

k(s, l) ∧ ¬[s< l]1k)
)
.

446 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

Analogously, one can show that (K,w) |= ¬
(
> ∗ (fork1

k(s, r) ∧ ¬[r< s]1k)
)
, which concludes the

proof of (K,w) |= lsr(k).

Thanks to the formula lsr(k), in order to define the formula [ax< bx]ij it is now sufficient
to encode the arithmetical properties described by (LESS). In particular, below we define the
two formulae Sij(ax, bx) and Lij(ax, bx) that essentially characterise the properties (S) and (L)
of (LESS). In their definition, [ax = bx]i+1

j stands for ¬([ax< bx]i+1
j ∨ [bx< ax]i+1

j), which is
well-defined (by inductive reasoning) as j − (i+ 1) < j − i.

Sij(ax, bx) def= > ∗
(
forki+1

j (x, y) ∧@i
ax〈t〉(♦s ∧ ♦x) ∧@i

bx〈t〉(♦s ∧ ♦y)
∧ [x = y]i+1

j ∧@i+1
x ¬val ∧@i+1

y val
)
,

Lij(ax, bx) def= ¬
(
> ∗

(
forki+1

j (x, y) ∧@i
ax〈t〉(♦l ∧ ♦x) ∧@i

bx〈t〉(♦l ∧ ♦y)
∧ [x = y]i+1

j ∧ ¬(@i+1
x val⇔ @i+1

y val)
))
.

By inductive reasoning, Sij(ax, bx) and Lij(ax, bx) are well-defined. Thanks to these two formu-
lae [ax< bx]ij is simply defined as:

[ax< bx]ij
def= > ∗

(
nomi(ax 6=bx) ∧ [t]ilsr(j − i) ∧ Sij(ax, bx) ∧ Lij(ax, bx)

)
.

Informally, given a pointed forest (K,w) |= forkij(ax, bx), the formula [ax< bx]ij asks to consider
the subforest K′ ⊆ K where the worlds wax and wbx corresponding to the nominal ax and bx,
respectively, at depth i (which exist thanks to the satisfaction of forkij(ax, bx)), satisfy lsr(j−i),
and Sij(ax, bx) and Lij(ax, bx) are also satisfied. Let us briefly explain the formula Sij(ax, bx), and
how it describes the property (S) of (LESS). A similar analysis can be performed for Lij(ax, bx)
and (L). Since [t]ilsr(j− i) is satisfied, the t-children of wax and wbx are partitioned into Pax =
(Lax, {sax}, Rax) and Pbx = (Lbx, {sbx}, Rbx), respectively, following which type of {l, s, r}-child
they have. Moreover, as lsr(j − i) implies type(j − i), from (aux) all these children have one
x-child and one y-child. Then, Sij(ax, bx) requires to create a fork such that one path of length
i + 1 ends in sax, whereas the other ends in sbx, and where sax (resp. sbx) corresponds to the
nominal x (resp. y). Following the description of (S), Sij(ax, bx) states that n(sax) should be equal
to n(sbx), by relying on the formula [x = y]i+1

j , and that (K, sax) |= ¬val and (K, sbx) |= val,
by relying on the formulae @i+1

x ¬val and @i+1
y val.

Lemma 9.25. Let (K,w) be a pointed forest satisfying init(j). Let ax 6= bx ∈ Aux. Suppose
(K,w) |= forkij(ax, bx), and let wax and wbx be the worlds corresponding to the nominals ax
and bx, respectively, for the depth i. (K,w) |= [ax< bx]ij if and only if nj−i(wax) < nj−i(wbx).

In order to prove Lemma 9.25, we first establish the correctness of Sij(ax, bx) and Lij(ax, bx).
Following the definition [ax< bx]ij , we work under the assumption that (K,w) satisfies init(j),
nomi(ax 6=bx) and [t]ilsr(j−i). As already stated, this implies that there are two worlds wax and
wbx that correspond to the nominals (for the depth i) ax and bx, respectively, and that satisfy
lsr(j − i). By Lemma 9.24, this means that the t-children of wax and wbx are partitioned into
Pax = (Lax, {sax}, Rax) and Pbx = (Lbx, {sbx}, Rbx), respectively, following their only {l, s, r}-
child, so that (LSR) holds. In particular, the worlds in Lax and Lbx have an l-child, sax and sbx

have an s-child, and the worlds in Rax and Rbx have an r-child. For conciseness, in the following
lemma regarding the correctness of Sij(ax, bx) and Lij(ax, bx), we refer directly to these objects.

Lemma 9.26. Let (K,w) be a finite forest satisfying init(j) ∧ nomi(ax 6=bx) ∧ [t]ilsr(j − i).

9.3. The complexity of ML(∗) 447

1. (K,w) |= Sij(ax, bx) iff nj−(i+1)(sax) = nj−(i+1)(sbx), (K, sax) |= ¬val and (K, sbx) |= val.
2. (K,w) |= Lij(ax, bx) iff for all lax ∈ Lax and all lbx ∈ Lbx, if nj−(i+1)(lax) = nj−(i+1)(lbx),

then (K, lax) |= val iff (K, lbx) |= val.

Proof of Lemma 9.26(1). (⇒): Suppose (K,w) |= Sij(ax, bx), and therefore there is a subforest
K′ = (W, R,V) of K that satisfies

forki+1
j (x, y) ∧@i

ax〈t〉(♦s ∧ ♦x) ∧@i
bx〈t〉(♦s ∧ ♦y) ∧ [x = y]i+1

j ∧@i+1
x ¬val ∧@i+1

y val.

From (K′,w) |= @i
ax〈t〉(♦s ∧ ♦x) we conclude that there is a world w′ ∈ R′i(w) that has an

ax-child as well as a t-child that satisfies ♦s ∧ ♦x. Form (K,w) |= nomi(ax 6= bx), there is only
one world, i.e. wax, in Ri(w) that has an ax-child. By K′ ⊆ K, we conclude that w′ = wax.
From (K,w) |= [t]ilsr(j − i), the only children of wax that has an s-child is sax (as in the
statement of the lemma). Similarly, by (K′,w) |= @i

bx〈t〉(♦s ∧ ♦y), we conclude that the t-
child sbx of wbx ∈ Ri(w) belongs to R′i+1(w) and it is such that (K′, sbx) |= ♦y. Remember:
sbx is the only child of wbx that has an s-child. From (K,w) |= forki+1

j (x, y), sax and sbx are
the only t-nodes in R′i+1(w), and moreover (K′, sax) and (K′, sbx) satisfy typelsr(j − (i + 1)).
From (K′,w) |= [x = y]i+1

j (by induction hypothesis, the formula [x = y]i+1
j is well-defined), we

conclude that nj−(i+1)(sax) = nj−(i+1)(sbx) holds with respect to K′. As (K′, sax) and (K′, sbx)
satisfy typelsr(j − (i+ 1)), by Lemma 9.15, nj−(i+1)(sax) = nj−(i+1)(sbx) holds with respect to
K. Lastly, from (K′,w) |= @i+1

x ¬val ∧@i+1
y val and K′ ⊆ K, we conclude that (K, sax) |= ¬val

and (K, sbx) |= val.
(⇐): Suppose that nj−(i+1)(sax) = nj−(i+1)(sbx), (K, sax) |= ¬val and (K, sbx) |= val, where we
recall that sax is the only s-child of wax whereas sbx is the only s-child of wbx, the worlds wax and
wbx being the worlds corresponding to the nominals (for the depth i) ax and bx, respectively.
From (K,w) |= [t]ilsr(j − i), both (K,wax) and (K,wbx) satisfy type(j − i), and so by (aux)
both sax and sbx have one x-child and one y-child. Let us consider the Kripke-style finite forest
K′ = (W, R′,V) with accessibility relation R′ defined as

R \
(
{(w′,w′′) ∈ R | there is k ∈ [0, i− 1] s.t. w′ ∈ Rk(w), and {wax,wbx} ∩R∗(w′′) = ∅}
∪ {(wax,w′) ∈ R | w′ 6= sax} ∪ {(wbx,w′) ∈ R | w′ 6= sbx} ∪ {(sax,wy), (sbx,wx)}

)
.

where wy is the only y-child of sax and wx is the only x-child of sbx. Informally, K′ is obtained
by removing all the t-nodes that are reachable from w in at most i − 1 steps and that do not
reach neither wax nor wbx (first line of the definition of R′), together with all the t-children
of wax and wbx, with the exception of sax and sbx. Moreover, the only y-child of sax and
the only x-child of sbx are also removed. Let us show that (K′,w) |= forki+1

j (x, y). From
the first line of the definition of R′, R′(w) only has two t-children: one ancestor wU of wax

and one ancestor wD of wbx. So, (fork2) is satisfied. Moreover, again from the first line of
the definition, for every k ∈ [1, i − 1], both Rk(wU) and Rk(wD) contain exactly one t-child.
This is also true for k = i, as sax is the only t-node in R′(wax), and sbx is the only t-node
in R′(wbx). Therefore, (fork3) is satisfied. Notice that this implies that sax and sbx are the
only t-nodes in Ri+1(w). Therefore, as (in K′) sax has one x-child and no y-children, whereas
sbx has one y-child and no x-children, we conclude that x and y are nominals for the depth
i + 1, as required by (fork1). Lastly, in K′, the subtrees rooted in sax and sbx are obtained by
only removing {x, y}-children of these two worlds. By Lemma 9.23, to conclude that (K′,w) |=
forki+1

j (x, y) it is now sufficient to show that (fork4) holds, i.e. that both (K′, sax) and (K′, sbx)
satisfy typelsr(j − (i + 1)). Let us discuss why (K′, sax) |= typelsr(j − (i + 1)), the case
of (K′, sbx) being analogous. From (K,w) |= [t]ilsr(j − i) we have that (K,wax) |= lsr(j − i).

448 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

By definition, this implies that (K,wax) |= type(j − i), which in turn implies (by (subj)) that
(K, sax) |= type(j − (i+ 1)) and that every t-children of sax has one {l, s, r}-children for every
proposition among l, s and r (by (aux)). All these children are kept in K′, which allows us to
conclude that (K, sax) |= typelsr(j−(i+1)) holds. This ends the proof of (K′,w) |= forki+1

j (x, y).
As already stated, in K′ the world sax has one x-child and no y-children, whereas sbx has one
y-child and no x-children. We derive (K′,w) |= @i

ax〈t〉(♦s ∧ ♦x) ∧ @i
bx〈t〉(♦s ∧ ♦y). From the

hypothesis (K, sax) |= ¬val and (K, sbx) |= val, we have (K′,w) |= @i+1
x ¬val∧@i+1

y val. Lastly,
since both (K′, sax) and (K′, sbx) satisfy typelsr(j − (i+ 1)), by Lemma 9.15, we conclude that
sax and sbx encode in K′ the same numbers that they encode in K. Therefore, the hypothesis
nj−(i+1)(sax) = nj−(i+1)(sbx) lifts from K to K′, and allows us to derive (K′,w) |= [x = y]i+1

j .
From K′ ⊆ K, we derive (K,w) |= Sij(ax, bx).

Proof of Lemma 9.26(2). (⇒): Suppose (K,w) |= Lij(ax, bx), and therefore for every K′ ⊆ K, if
(K′,w) |= forki+1

j (x, y) ∧ @i
ax〈t〉(♦l ∧ ♦x) ∧ @i

bx〈t〉(♦l ∧ ♦y) ∧ [x = y]i+1
j , then (K′,w) satisfies

@i+1
x val ⇔ @i+1

y val. Let lax ∈ Lax and lbx ∈ Lbx such that nj−(i+1)(lax) = nj−(i+1)(lbx). We
recall that, according to lsr(j − i), lax is a t-child of wax that has exactly one {l, s, r}-child,
which satisfies l. Similarly, lbx is a t-child of wbx that has exactly one {l, s, r}-child, which
satisfies l. We show that (K, lax) |= val iff (K, lbx) |= val.

Essentially, we start by considering the same Kripke-style finite forest K′ used in the right
to left direction of Lemma 9.26(1), the only difference being that we focus on lax and lbx instead
of sax and sbx. In particular, from (K,w) |= [t]ilsr(j − i), both (K,wax) and (K,wbx) satisfy
type(j − i), and so by (aux) both lax and lbx have one x-child and one y-child. We define the
Kripke-style finite forest K′ = (W, R′,V) where R′ is defined as

R \
(
{(w′,w′′) ∈ R | there is k ∈ [0, i− 1] s.t. w′ ∈ Rk(w), and {wax,wbx} ∩R∗(w′′) = ∅}
∪ {(wax,w′) ∈ R | w′ 6= lax} ∪ {(wbx,w′) ∈ R | w′ 6= lbx} ∪ {(lax,wy), (lbx,wx)}

)
.

where wy is the only y-child of lax and wx is the only x-child of lbx. Notice the similarities
between (K′,w) and the homonymous pointed forest considered in the proof of the right to
left direction of Lemma 9.26(1). With no surprises, following that proof, one can show that
(K′,w) |= forki+1

j (x, y) ∧@i
ax〈t〉(♦l ∧ ♦x) ∧@i

bx〈t〉(♦l ∧ ♦y) ∧ [x = y]i+1
j , where lax corresponds

to the nominal x for the depth i + 1, whereas lbx corresponds to the nominal y for the depth
i + 1. Form (K,w) |= Lij(ax, bx), we derive that (K′,w) |= @i+1

x val ⇔ @i+1
y val, which in turn

implies (K, lax) |= val iff (K, lbx) |= val.
(⇐): Let us assume now that for all lax ∈ Lax and all lbx ∈ Lbx, if nj−(i+1)(lax) = nj−(i+1)(lbx),
then (K, lax) |= val iff (K, lbx) |= val. Ad absurdum, assume that (K,w) 6|= Lij(ax, bx), and
therefore there is a subforest K′ = (W, R′,V) of K that satisfies

forki+1
j (x, y) ∧@i

ax〈t〉(♦l ∧ ♦x) ∧@i
bx〈t〉(♦l ∧ ♦y) ∧ [x = y]i+1

j ∧ ¬(@i+1
x val⇔ @i+1

y val).

Similarly to the left to right direction of Lemma 9.26(1), from (K′,w) |= @i
ax〈t〉(♦l ∧ ♦x) we

conclude that there is a world w′ ∈ R′i(w) that has a ax-child as well as a t-child lax that
satisfies ♦l ∧ ♦x. Form (K,w) |= nomi(ax 6=bx), there is only one world, i.e. wax, in Ri(w) that
has an ax-child. By K′ ⊆ K, we conclude that w′ = wax. From (K,w) |= [t]ilsr(j− i), and since
(K, lax) |= ♦l, we conclude that lax belongs to Lax. Similarly, from (K′,w) |= @i

bx〈t〉(♦l∧♦y), we
conclude that one t-child lbx of wbx ∈ Ri(w) having one l-child belongs to R′i+1(w) and it is such
that (K′,w) |= ♦y. From (K,w) |= forki+1

j (x, y), lax and lbx are the only t-nodes in R′i+1(w),
and moreover (K′, lax) and (K′, lbx) satisfy typelsr(j − (i + 1)). From (K′,w) |= [x = y]i+1

j ,
where the formula [x = y]i+1

j is well-defined (by induction hypothesis), this allows us to conclude

9.3. The complexity of ML(∗) 449

that, in K′, nj−(i+1)(lax) = nj−(i+1)(lbx). As (K′, lax) and (K′, lbx) satisfy typelsr(j − (i + 1)),
by Lemma 9.15, nj−(i+1)(lax) = nj−(i+1)(lbx) holds also with respect to K. Therefore, by
hypothesis, we derive that (K, lax) |= val iff (K, lbx) |= val. However, as K′ ⊆ K, this implies
that (K′, lax) |= val iff (K′, lbx) |= val, which contradicts (K,w) |= ¬(@i+1

x val⇔ @i+1
y val). We

conclude that (K,w) |= Lij(ax, bx).

We are now ready to prove Lemma 9.25.

Proof of Lemma 9.25. Let (K,w) be a pointed forest satisfying init(j)∧ forkij(ax, bx), and let
wax and wbx be the worlds corresponding to the nominals ax and bx, for the depth i. The
existence of wax and wbx is guaranteed by Lemma 9.23.
(⇒): Suppose (K,w) |= [ax< bx]ij , and therefore there is a subforest K′ = (W, R′,V) of K′ that
satisfies nomi(ax 6=bx)∧ [t]ilsr(j− i)∧Sij(ax, bx)∧Lij(ax, bx). From (K′,w) |= nomi(ax 6=bx), we
derive that the worlds wax and wbx belong to Ri(w), and by (K′,w) |= [t]ilsr(j− i) we have that
(K′,wax) and (K′,wbx) satisfy lsr(j− i). By Lemma 9.24, this means that the t-children of wax

and wbx are partitioned into Pax = (Lax, {sax}, Rax) and Pbx = (Lbx, {sbx}, Rbx), respectively,
following their only {l, s, r}-child, so that (LSR) holds. In particular, the worlds in Lax and
Lbx have an l-child, sax and sbx have an s-child, and the worlds in Rax and Rbx have an r-child.
Moreover (see (lsr3)), for every lax ∈ Lax, nj−(i+1)(lax) > nj−(i+1)(sax), and similarly for every
lbx ∈ Lbx, nj−(i+1)(lbx) > nj−(i+1)(sbx).

Directly from Lemma 9.26, we conclude that the arithmetical constraint of < described in
(LESS) are satisfied by (K,w), leading to nj−i(wax) < nj−i(wbx). Indeed, (K′,w) |= Sij(ax, bx),
allows us to apply Lemma 9.26(1) and conclude that, in K′, nj−(i+1)(sax) = nj−(i+1)(sbx),
(K′, sax) |= ¬val and (K′, sbx) |= val. Similarly, from (K′,w) |= Lij(ax, bx), by Lemma 9.26(2),
we have that (in K′) for every lax ∈ Lax and lbx ∈ Lbx, if nj−(i+1)(lax) = nj−(i+1)(lbx),
then (K, lax) |= val iff (K, lbx) |= val. Now, by Lemma 9.15 and since (K′,wax) and (K′,wbx)
satisfy lsr(j − i) (and thus type(j − i), by (lsr1)), we conclude that all these worlds satisfy the
same numbers in both K′ and K. More precisely, with respect to K, we have nj−(i+1)(sax) =
nj−(i+1)(sbx), (K, sax) |= ¬val and (K, sbx) |= val, as required by (S). Moreover, for every
lax ∈ Lax and lbx ∈ Lbx, if nj−(i+1)(lax) = nj−(i+1)(lbx), then (K, lax) |= val iff (K, lbx) |= val,
as required by (L). That is, nj−i(wax) < nj−i(wbx), with respect to K.
(⇐): Suppose nj−i(wax) < nj−i(wbx). Following the encoding of numbers, this implies that the
t-children of wax and wbx can be split into Pax = (Lax, {sax}, Rax) and Pbx = (Lbx, {sbx}, Rbx),
respectively, so that the properties (LSR) and (LESS) are satisfied. Recall that, by hypothesis,
(K,w) |= forkij(ax, bx), which implies that all the t-children of wax and wbx have one {l, s, r}-
child for each proposition among l, s and r. We use Pax and Pbx to derive a subforest K′ ⊆ K
where both (K′,wax) and (K′,wbx) satisfy lsr(j− i), and then rely on Lemma 9.26 to show that
(K,w) |= [ax< bx]ij .

The definition of K′ = (W, R′,V) is quite simple: it is the Kripke-style finite forest obtained
form K by removing from R

• all (wl,w′) where wl belongs to Lax or Lbx, and w′ is a {s, r}-node,
• all (ws,w′) where ws is either sax or sbx, and w′ is a {l, r}-node,
• all (wr,w′) where wr belongs to Rax or Rbx, and w′ is a {l, s}-node.

Clearly, in K′ every world of Lax ∪ Lbx (resp. {sax, sbx}; Rax ∪ Rbx) has exactly one {l, s, r}-
child, which is in particular an l-child (resp. s-child; r-child). Thus, (K′,wax) and (K′,wbx)
satisfy (lsr2). Moreover, since only {l, s, r}-nodes in R2(wax)∪R2(wbx) are removed in order to
define R′, from the fact that (K,wax) and (K,wbx) satisfy type(j − i), we deduce that (K′,wax)

450 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

and (K′,wbx) still satisfy type(j − i), as required by (lsr1). Lastly, by definition of Pax and Pbx,
(K′,wax) and (K′,wbx) satisfy (lsr3). From Lemma 9.24, we conclude that (K′,wax) and (K′,wbx)
satisfy lsr(j − i). Again from the fact that (K,w) |= forkij(ax, bx) we know that wax and wbx

are two distinct worlds corresponding to the nominals ax and bx, respectively. By definition
of R′, the same holds true in K′, and therefore (K,w) |= nomi(ax 6= bx). Moreover, we have
(K,w) |= [t]ilsr(j − i) and, from (K,w) |= init(j) and K′ ⊆ K, we have (K′,w) |= init(j).
Therefore, (K′,w) satisfies the hypothesis needed to apply Lemma 9.26.

From the fact that Pax and Pbx satisfy (LESS), with respect to K we have:
(S) nj−(i+1)(sax) = nj−(i+1)(sbx), (K, sax) |= ¬val and (K, sbx) |= val,

(L) (K, lax) |= val iff (K, lbx) |= val, for every lax ∈ Lax and every lbx ∈ Lbx such that
nj−(i+1)(lax) = nj−(i+1)(lbx).

Since (K′, ax) and (K′, bx) satisfy type(j − i), by Lemma 9.15 we deduce that all the worlds
in (S) and (L) keep encoding the same numbers also with respect to K′. From Lemma 9.26(1)
we conclude that (K′,w) |= Sij(ax, bx), and from Lemma 9.26(2) we derive (K′,w) |= Lij(ax, bx).
We conclude: (K′,w) |= nomi(ax 6=bx)∧ [t]ilsr(j− i)∧Sij(ax, bx)∧Lij(ax, bx) and, from K′ ⊆ K,
(K,w) |= [ax< bx]ij .

Let us now move to the formula [bx = ax+1]j . Similarly to [ax< bx]ij , we defined this
formula under the hypothesis that (K,w) satisfies fork1

j (ax, bx). Therefore, w has excatly two
t-children wax and wbx, which correspond to the nominals ax and bx, respectively, for the depth 1.
Moreover, (K,wax) and (K,wbx) satisfy typelsr(j − 1). Recall that [bx = ax+1]j should hold
whenever nj−1(wbx) = nj−1(wax) + 1.

As done in the base case for the definition of [bx = ax+1]1, we take advantage of arithmetical
properties on binary numbers, and we search for two triples Pax = (Lax, Sax, Rax) and Pbx =
(Lbx, Sbx, Rbx) satisfying the condition (LSR), and
(PLUS) Pax and Pbx have the arithmetical properties of +1:

(S&L) Pax and Pbx satisfy (LESS),
(R) for every rax ∈ Rax (K, rax) |= val, and for every rbx ∈ Rbx, (K, rbx) |= ¬val.

With this characterisation in mind, the definition of [bx = ax+1]j is essentially the one of
[ax< bx]ij , with the addition of the subformula R(ax, bx) def= @1

ax[t](♦r ⇒ val) ∧ @1
bx[t](♦r ⇒

¬val) added to capture the property (R). We have:

[bx = ax+1]j def= >∗
(
nom1(ax 6=bx) ∧ [t]lsr(j − 1) ∧ S1

j (ax, bx) ∧ L1
j (ax, bx) ∧ R(ax, bx)

)
,

Lemma 9.27. Let (K,w) be a pointed forest satisfying init(j). Let ax 6= bx ∈ Aux. Suppose
(K,w) |= fork1

j (ax, bx), and let wax and wbx be the worlds corresponding to the nominals ax and
bx, respectively, for the depth 1. (K,w) |= [bx = ax+1]j if and only if nj−1(wax)+1 = nj−1(wbx).

Proof (sketch). The proof carries out very similarly to the proof of Lemma 9.25. Indeed, the
formula [bx = ax+1]j is essentially obtained from [ax< bx]1j by juxtaposing the formula R(ax, bx)
to the formulae L1

j (ax, bx) and S1
j (ax, bx).

(⇒): Suppose (K,w) |= [bx = ax+1]j , and therefore there is a subforest K′ = (W, R′,V) of K′
that satisfies nomi(ax 6= bx) ∧ [t]ilsr(j − i) ∧ Sij(ax, bx) ∧ Lij(ax, bx) ∧ R(ax, bx). From the first
four conjuncts of this formula, by applying the proof of Lemma 9.25 we conclude that there are
two partitions Pax = (Lax, Sax, Rax) and Pbx = (Lbx, Sbx, Rbx) of the t-worlds of wax and wbx,

9.3. The complexity of ML(∗) 451

respectively, that satisfy the conditions (LSR) and (LESS). In order to conclude that (PLUS) is
satisfied, it is sufficient to show that (R) holds, which follows from the satisfaction of R(ax, bx).
(⇐): Suppose nj−i(wax) + 1 = nj−i(wbx). Following the encoding of numbers, this implies that
the t-children of wax and wbx can be split into Pax = (Lax, {sax}, Rax) and Pbx = (Lbx, {sbx}, Rbx),
respectively, so that the properties (LSR) and (PLUS) are satisfied. We consider the Kripke-
style finite forest K′ ⊆ K defined in the proof of the right to left direction of Lemma 9.25, for
which we know that (K′,w) |= nomi(ax 6=bx)∧ [t]ilsr(j− i)∧Sij(ax, bx)∧Lij(ax, bx). Afterwards,
(K′,w) |= R(ax, bx) follows from the satisfaction of (R).

Finally, we rely on the formulae forkij(ax, bx), [ax< bx]ij and [bx = ax+1]j defined through-
out this section in order to define the formulae uniq(j) and compl(j). The formula uniq(j) is
a natural extension of uniq(1), where the formulae fork1

1(x, y) and [x = y]11 are simply replaced
by fork1

j (x, y) and [x = y]1j
def= ¬([ax< bx]1j ∨ [bx< ax]1j):

uniq(j) def= ¬
(
> ∗ (fork1

j (x, y) ∧ [x = y]1j)
)
.

We establish the following result, which is proved as Lemma 9.19, simply by relying on the
correctness of the formulae forkij(x, y) (Lemma 9.23) and [x = y]ij (Lemma 9.25).

Lemma 9.28. Let (K,w) be a pointed forest satisfying init(j)∧aux∧sub(j). (K,w) |= uniq(j)
if and only if (K,w) satisfies (uniqj).

The formula compl(j) is also quite similar to the formula compl(1), the main difference being
that the conjunct [t]♦y of compl(1) is replaced by [t](typelsr(j−1)∧♦y) in compl(j), as needed
to correctly evaluate fork1

j (x, y) (which replaces fork1
1(x, y)). Formally, compl(j) is defined as

¬
(
� ⊥ ∗

(
[t](typelsr(j − 1) ∧ ♦y) ∧ nom1(x) ∧@1

x¬1j ∧ ¬
(
> ∗ (fork1

j (x, y) ∧ [y = x+1]j)
)))

,

where 1j
def= [t]val reflects the encoding of the number t(j, n)− 1 for j > 1.

Lemma 9.29. Let (K,w) be a pointed forest satisfying init(j)∧aux∧sub(j). (K,w) |= compl(j)
if and only if (K,w) satisfies (complj).

The proof of Lemma 9.29, which is analogous to the one of Lemma 9.20, is given in Ap-
pendix G. The definition of compl(j) completes the definition of the formula type(j). It is quite
easy to check that the size of this formula is exponential in j > 1 and polynomial in n ≥ 1. As
its size is elementary, we can use this formula as a starting point to reduce Tilek.

Below, we state the correctness of type(j), which follows directly from Lemma 9.28 and
Lemma 9.29, together with the (straightforward) correctness of sub(j), aux and zero(j).

Lemma 9.30. Let (K,w) be a pointed forest satisfying init(j). We have (K,w) |= type(j) iff
(K,w) satisfies (subj), (zeroj), (uniqj), (complj) and (aux).

A quick check of init(j) and the conditions (subj), (zeroj), (uniqj), (complj) and (aux)
should be enough to convince the reader that they are simultaneously satisfiable, making
init(j) ∧ type(j) satisfiable by Lemma 9.30. As done in Lemma 9.22, we show below a model
satisfying init(j) ∧ type(j).

Lemma 9.31. Let j ≥ 2. init(j) ∧ type(j) is satisfiable.

452 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

Proof. By induction on j, we suppose that init(j − 1) ∧ type(j − 1) is satisfiable (we already
treated the base case for j = 1 in Lemma 9.22). So, let us consider t(j, n) distinct worlds
w0, . . . ,wt(j,n)−1 and, by induction hypothesis, construct t(j, n) Kripke-style finite forests Ki =
(Wi, Ri,Vi) (i ∈ [0, t(j, n) − 1]), so that wi ∈ Wi and (Ki,wi) |= init(j − 1) ∧ type(j − 1).
Without loss of generality, we assume that the universes of these finite forests to be mutually
disjoint, i.e. for every distinct i, j ∈ [0, t(j, n)− 1], Wi ∩Wj = ∅. From Proposition 9.3, we can
also assume that the world wi (i ∈ [0, t(j, n) − 1]) of Wi is not a children of some other world
in Ri. Lastly, we assume that every world wi has exactly one x-child and one (distinct) y-child,
and all its t-children have exactly one l-child, one s-child and one r-child (all distinct). Indeed,
the presence of these children is not imposed nor excluded by (aux).

Since (Ki,wi) |= type(j − 1), wi has t(j − 1, n) children, all encoding a distinct number in
[0, t(j−1, n)−1]. Let us modify the valuation Vi so that wi encodes the number i ∈ [0, t(j, n)−1],
which by definition can be written with t(j − 1, n) bits. Let b = bt(j−1,n)−1 . . . b0 be the binary
representation of i (where b0 is the least significant bit). We update Vi (in a minimal way) so
that every t-child w of wi belongs to V(val) if and only if the bit bnj−2(w) is 1. One can easily
check that, after this update, (Ki,wi) |= init(j − 1) ∧ type(j − 1) still holds, and moreover we
have nj−1(wi) = i.

The pointed forest (K,w), where K = (W, R,V) is defined below, can be shown to satisfy
init(j) (subj), (zeroj), (uniqj), (complj) and (aux), leading to (K,w) |= init(j) ∧ type(j)
directly from Lemma 9.30.

1. W def= {w} ∪Wi,

2. R def= {(w,w0), . . . , (w,wt(j,n)−1)} ∪
⋃
i∈[0,t(j,n)−1]Ri,

3. for every p ∈ AP, V(p) = ∪i∈[0,t(j,n)−1]Vi(p).

Essentially, to define K = (W, R,V) we merge all the Ki (i ∈ [0, t(j, n)− 1]), and add one edge
from w to each wi (which we assumed to not have a parent in Ri). As the subtree rooted in
wi is the same in both K and Ki, we conclude that for every w ∈ R(w), (K,w) satisfies both
type(j − 1) (as required by (subj)) and init(j − 1) (as required by init(j)). The properties
(zeroj), (uniqj) and (complj) are satisfied from the fact that, given i ∈ [0, t(j − n)− 1], wi is a
t-child of w and nj−1(wi) = i. Lastly, (aux) follows from the assumptions on (Ki,wi).

9.3.6 Tiling a grid [0, t(k, n)− 1]× [0, t(k, n)− 1].

Strong of our formula type(j), let us now develop a uniform reduction for Tilek, for every
k ≥ 2. Some adaptations are required in order to encode a grid, but the hardest part was the
design of type(j). Let k ≥ 2 and (T , c) be an instance of Tilek, where T = (T,H,V). In this
section we construct a formula tilingT ,c(k) such that the following lemma holds.

Lemma 9.32. (T , c) as a solution for Tilek if and only if tilingT ,c(k) is satisfiable.

Recall that a solution for (T , c) with respect to Tilek is a map τ : [0, t(k, n) − 1]2 → T
satisfying the three conditions (first), (hori) and (vert) below:

(first) τ(0, 0) = c,

(hori) for every i ∈ [0, t(k, n)− 2] and j ∈ [0, t(k, n)− 1], (τ(i, j), τ(i+ 1, j)) ∈ H,

(vert) for all i ∈ [0, t(k, n)− 1] and j ∈ [0, t(k, n)− 2], (τ(i, j), τ(i, j + 1)) ∈ V.

9.3. The complexity of ML(∗) 453

Let us first describe how to represent a grid [0, t(k, n)−1]2 in the pointed forest (K,w). We use the
same ideas needed in order to define type(j), but with some minor modifications. As previously
stated, if (K,w) |= type(k) then given a t-node w′ ∈ R(w), the number nk−1(w′) ∈ [0, t(k, n)−1]
is encoded using the t-children of w′, where the numbers encoded by these children represent
positions in the binary encoding of nk−1(w′). Instead of being a single number, a position in
the grid [0, t(k, n) − 1]2 is a pair of numbers (h, v) ∈ [0, t(k, n) − 1]2. Hence, in a model (K,w)
satisfying tilingT ,c(k) we require that w′ ∈ R(w) encodes two numbers nH(w′) and nV(w′),
and say that w′ encodes the position (h, v) if and only if nH(w′) = h and nV(w′) = v. Since both
h and v are from [0, t(k, n) − 1], the same amount of t-children as in type(k) can be used in
order to encode both nH(w′) and nV(w′). Thus, we require w′ to satisfy the formula type(k−1),
forcing it to have the correct amount of t-children and, similarly to what is done previously for
type(j) (j ≥ 2), we encode the numbers nH(w′) and nV(w′) by using the truth value, on the
t-children of w′, of two new atomic propositions valH and valV, respectively. Then, we rely on
formulae that are similar to zero(k), uniq(k) and compl(k) in order to state that w witnesses
exactly one child for each position in the grid. For example, the condition (uniqj) becomes

for all distinct t-nodes w1,w2 ∈ R(w), either nH(w1) 6= nH(w2) or nV(w1) 6= nV(w2).

Once the grid is encoded, the tiling conditions can be enforced rather easily, thanks to the kit of
formulae defined for type(j), that allows us to have access to nH(w′) and nV(w′). We see the tile
types T as a set of atomic propositions, disjoint from the set {p1, . . . , pn, val, valH, valV} ∪ Aux
used in order to define the grid, and for instance express vertical constraint (vert), with a formula
in ML(∗) stating that

for all t-nodes w1,w2 ∈ R(w), if nV(w2) = nV(w1)+1 and nH(w2) = nH(w1) then
there is (c1, c2) ∈ V such that w1 ∈ V(c1) and w2 ∈ V(c2).

The section is divided in two parts: we first show how to modify type(k) in order to encode
the grid [0, t(k, n)− 1]2, and then introduce the formulae characterising the tiling conditions.

Encoding the grid. We introduce the formula gridT (k) that characterises the set of models
encoding the [0, t(k, n) − 1]2 grid. A pointed forest (K,w), where K = (W, R,V), satisfying
gridT (k) is characterised as follows:
(init/sub/aux) (K,w) satisfies init(k), sub(k) and aux,

(zeroT ,k) there is a t-node w̃ ∈ R(w) such that nH(w̃) = 0 and nV(w̃) = 0,

(uniqT ,k) for all two distinct t-nodes w1,w2 ∈ R(w), nH(w1) 6= nH(w2) or nH(w1) 6= nH(w2),

(compl[H]T ,k) for all t-node w1 ∈ R(w), if nH(w1) < t(k, n)−1 then there is a t-node w2 ∈ R(w)
such that nH(w2) = nH(w1) + 1 and nV(w2) = nV(w1),

(compl[V]T ,k) for every t-node w1 ∈ R(w), if nV(w1) < t(k, n)− 1 there is a t-node w2 ∈ R(w)
such that nH(w2) = nH(w1) and nV(w2) = nV(w1) + 1.

It is easy to see that, with these conditions, (K,w) correctly encodes the grid [0, t(k, n) − 1]2.
Exactly as in the definition of type(j), we define gridT (k) as a conjunction of seven formulae,
following the characterisation above:

gridT (k) def= zeroT (k) ∧ uniqT (k) ∧ compl[H]T (k) ∧ compl[V]T (k) ∧ init(k) ∧ sub(k) ∧ aux.

Each conjunct of gridT (k) expresses the homonymous property. Exactly as for the formula
zero(j) of type(j), defining the formula zeroT (k) is very easy:

454 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

zeroT (k) def= 〈t〉([t](¬valH ∧ ¬valV)).

Indeed, given a world w′ ∈ R(w), nH(w′) = 0 holds whenever all its t-children falsify valH,
whereas nV(w′) = 0 holds whenever all its t-children falsify valV.

In order to define the three conjuncts uniqT (k), compl[H]T (k) and compl[V]T (k), and
thus completing the definition of gridT (k), we start by defining the formulae L[D]k(ax, bx),
S[D]k(ax, bx) and R[D](ax, bx), where D ∈ {H,V}. The semantics of these three formulae is
similar to L1

k(ax, bx), S1
k(ax, bx) and R(ax, bx), respectively, with the difference that, for a given

t-node in R2(w), we are interested in the satisfaction of valD instead of val. For instance, we
recall that the formula S1

k(ax, bx) is defined as

S1
k(ax, bx) = > ∗

(
fork2

k(x, y) ∧@1
ax〈t〉(♦s ∧ ♦x) ∧@1

bx〈t〉(♦s ∧ ♦y)
∧ [x = y]2k ∧@2

x¬val ∧@2
yval

)
.

The formula S[D]k(ax, bx) is defined simply by replacing the two occurrences of val above by
valD. Notice that other occurrences of val appearing in the definitions of the subformulae
fork2

k(x, y) and [x = y]2k are kept, as the grid is only enforced at the level of the children of w.
We obtain:

S[D]k(ax, bx) def= > ∗
(
fork2

k(x, y) ∧@1
ax〈t〉(♦s ∧ ♦x) ∧@1

bx〈t〉(♦s ∧ ♦y)
∧ [x = y]2k ∧@2

x¬valD ∧@2
yvalD

)
.

Similarly, L[D]k(ax, bx) is defined by replacing the last conjunct of L1
k(ax, bx), that is the sub-

formula ¬(@2
xval ⇔ @2

yval), by ¬(@2
xvalD ⇔ @2

yvalD). The formula R[D](ax, bx) is defined
from R(ax, bx) by replacing every occurrence of val by valD. Explicitly,

L[D]k(ax, bx) def= ¬
(
> ∗

(
forki+1

j (x, y) ∧@i
ax〈t〉(♦l ∧ ♦x) ∧@i

bx〈t〉(♦l ∧ ♦y)
∧ [x = y]i+1

j ∧¬(@i+1
x valD ⇔ @i+1

y valD)
))
,

R[D](ax, bx) def= @1
ax[t](♦r⇒ valD) ∧@1

bx[t](♦r⇒ ¬valD).

The formulae L[D]k(ax, bx), S[D]k(ax, bx) and R[D](ax, bx) allow us to rephrase [ax< bx]1k
and [bx = ax+1]k so that the numbers encoded with valD are considered instead: it is sufficient
to replace L1

k(ax, bx), S1
k(ax, bx) and R(ax, bx) by L[D]k(ax, bx), S[D]k(ax, bx) and R[D](ax, bx).

This leads to the following formulae [ax D
< bx]k and [bx D= ax+1]k:

[ax D
< bx]k def= > ∗

(
nomi(ax 6=bx) ∧ [t]lsr(k − 1) ∧ S[D]k(ax, bx) ∧ L[D]k(ax, bx)

)
,

[bx D= ax+1]k def= > ∗
(
nom1(ax 6=bx) ∧ [t]lsr(k − 1) ∧ L[D]k(ax, bx)∧ S[D]k(ax, bx)∧ R[D](ax, bx)

)
.

The following result establishes the semantics of these two formulae.

Lemma 9.33. Let ax 6= bx ∈ Aux. Suppose (K,w) |= init(k) ∧ fork1
k(ax, bx), and let wax and

wbx be the two t-children of w that correspond to the nominals ax and bx, respectively.
1. (K,w) |= [ax D

< bx]k if and only if nD(wax) < nD(wbx),

2. (K,w) |= [bx D= ax+1]k if and only if nD(wbx) = nD(wax) + 1.

The proof of (1) unfolds as the proof of Lemma 9.25, whereas the proof of (2) unfolds as the
one of Lemma 9.27. We leave the technical developments of these proofs to the reader. We write
[ax D= bx]k for ¬([ax D

< bx]k ∨ [bx D
< ax]k), the formula satisfied whenever nD(wax) = nD(wbx).

9.3. The complexity of ML(∗) 455

We are now ready to define the formulae uniqT (k), compl[H]T (k) and compl[V]T (k), achiev-
ing the conditions (uniqT ,k), (compl[H]T ,k) and (compl[V]T ,k), respectively. All these formu-
lae follow closely the definitions of uniq(k) and compl(k) introduced in the previous section,
hence we refer to these latter formulae for an informal description on how they work. Indeed,
in order to define uniqT (k) it is sufficient to replace, in uniq(k), the subformula [x = y]1k by
[x H= y]k ∧ [x V= y]k, thus obtaining the formula below:

uniqT (k) def= ¬
(
> ∗ (fork1

k(x, y) ∧ [x H= y]k ∧ [x V= y]k)
)
.

Lemma 9.34. Suppose (K,w) |= init(k)∧aux. (K,w) |= uniq(k) iff (K,w) satisfies (uniqT ,k).

Proof (sketch). This lemma is proven as Lemma 9.19 and Lemma 9.28, by relying on Lemma 9.33
in order to show that, given two distinct worlds wx and wy corresponding to nominals (for the
depth 1) x and y, respectively, [x H= y]k ∧ [x V= y]k holds if and only if nH(wx) = nH(wy) and
nV(wx) = nV(wy).

Similarly, the definitions of compl[H]T (k) and compl[V]T (k) are obtained by replacing, in
compl(k), the formula [y = x+1]j by [y H= x+1]k ∧ [x V= y]k and [x H= y]k ∧ [y V= x+1]k, respectively.
This is not surprising, as for instance the formula [y H= x+1]k ∧ [x V= y]k is satisfied whenever
nH(wx) + 1 = nH(wy) and nV(wx) = nV(wy), as required in (compl[H]T ,k). In order to define
compl[H]T (k), we also replace the formula 1k, which in type(k) reflects the encoding of the
number t(j, n) − 1, by 1H

k
def= [t]valH, which again reflects the encoding of t(j, n) − 1, but with

respect to the horizontal dimension of the grid. Likewise, to define correctly compl[V]T (k) we
replace 1k by 1V

k
def= [t]valV. We obtain the following formulae:

compl[H]T (k) def= ¬
(
� ⊥ ∗

(
[t](typelsr(k−1) ∧ ♦y) ∧ nom1(x) ∧@1

x¬1H
k

∧ ¬
(
> ∗ (fork1

k(x, y) ∧ [y H= x+1]k ∧ [x V= y]k)
)))

,

compl[V]T (k) def= ¬
(
� ⊥ ∗

(
[t](typelsr(k−1) ∧ ♦y) ∧ nom1(x) ∧@1

x¬1V
k

∧ ¬
(
> ∗ (fork1

k(x, y) ∧ [x H= y]k ∧ [y V= x+1]k)
)))

.

Lemma 9.35. Suppose (K,w) |= init(k) ∧ aux. We have,
1. (K,w) |= compl[H]T (k) if and only if (K,w) satisfies (compl[H]T ,k),
2. (K,w) |= compl[H]T (k) if and only if (K,w) satisfies (compl[V]T ,k).

Proof (sketch). Both (1) and (2) are proved as Lemma 9.20 and Lemma 9.29, with the sole
difference that we rely on Lemma 9.33 in order to show that, given two distinct worlds wx and wy

corresponding to nominals (for the depth 1) x and y, respectively, the formula [y H= x+1]k∧[x V= y]k
holds if and only if nH(wx) = nH(wy) + 1 and nV(wx) = nV(wy) (which leads to (1)), whereas
the formula [y V= x+1]k ∧ [x H= y]k holds if and only if nH(wx) = nH(wy) and nV(wx) = nV(wy) + 1
(which leads to (2)).

This concludes the definition of gridT (k). Its correctness, whose proof follows directly
from Lemmata 9.34 and 9.35, together with the straightforward correctness of zeroT (k), is
stated in the following lemma.

Lemma 9.36. (K,w) |= gridT (k) if and only if (K,w) satisfies (init/sub/aux), (zeroT ,k),
(uniqT ,k), (compl[H]T ,k) and (compl[V]T ,k).

456 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

Corollary 9.37. gridT (k) is satisfiable.

Proof (sketch). The satisfiability of gridT (k) can be established by Lemma 9.36 as (zeroT ,k),
(uniqT ,k), (compl[H]T ,k), (compl[V]T ,k) and (init/sub/aux) can be simultaneously satisfied. A
pointed forest (K,w) satisfying these constraints can be defined similarly to what is done in
Lemma 9.31 for the formula init(j)∧type(j), the main difference being that t(k, n)2 t-children
of w need to be considered, instead of t(k, n), in order to encode every pair in [0, t(k, n)−1]2.

Forcing the tiling conditions. We now encode the tiling conditions. Again, let k ≥ 2 and,
without loss of generality, suppose the tile types T of T to be a finite set of atomic propositions
from AP, disjoint from the set {p1, . . . , pn, val, valH, valV} ∪ Aux used in order to define the
formula gridT (k). Given a pointed forest (K,w) satisfying gridT (k), where K = (W, R,V),
the existence of a solution for the instance (T , c) of the tiling problem Tilek can be expressed
with the following conditions:
(oneT) every t-node in R(w) satisfies exactly one tile type T ⊆fin AP,
(firstT ,c) for w̃ ∈ R(w), if nH(w̃)=nV(w̃)=0 then w̃ ∈ V(c),
(horT) for all w1,w2 ∈ R(w), if nH(w2) = nH(w1) + 1 and nV(w2) = nV(w1) then there is

(c1, c2) ∈ H such that w1 ∈ V(c1) and w2 ∈ V(c2),
(vertT) for all w1,w2 ∈ R(w), if nV(w2) = nV(w1) + 1 and nH(w2) = nH(w1) then there is

(c1, c2) ∈ V such that w1 ∈ V(c1) and w2 ∈ V(c2).
The connection between these four conditions and a solution τ : [0, t(k, n) − 1]2 → T of Tilek
should be clear: (oneT) simply models the functionality of τ , whereas (firstT ,c), (horT) and
(vertT) correspond to the tiling conditions (first), (hori) and (vert). So, the formula tilingT ,c(k)
characterising the admissible instances of Tilek (Lemma 9.32) can be defined as follows:

tilingT ,c(k) def= gridT (k) ∧ oneT ∧ firstT ,c(k) ∧ horT (k) ∧ vertT (k),

where the last four conjuncts express the homonymous property above. Given the tool kit of for-
mulae introduced up to now, these four formulae are easy to define. For oneT and firstT ,c(k),
we simply have:

oneT
def= [t]

∨
c1∈T(c1 ∧

∧
c2∈T ¬c2),

firstT ,c(k) def= [t]
(
[t](¬valH ∧ ¬valV)⇒ c

)
.

Lemma 9.38. Suppose (K,w) |= gridT (k). We have,
1. (K,w) |= oneT if and only if (K,w) satisfies (oneT),
2. (K,w) |= firstT ,c(k) if and only if (K,w) satisfies (firstT ,c).

Proof. Both statements follow easily from the definition of the two formulae. For the formula
firstT ,c(k), we recall that (K,w) |= gridT (k) implies the existence of a t-node w0 ∈ R(w)
encoding the position (0, 0) of the grid. Among the t-children of w, w0 is the only one satisfy-
ing [t](¬valH ∧ ¬valV).

The formula horT (k) is defined by stating that there cannot be two t-nodes w1,w2 ∈ R(w)
such that w2 encodes the position (nH(w1) + 1,nV(w1)), but w1 ∈ V(c1), w2 ∈ V(c2) does not
hold for any (c1, c2) ∈ H. In the lingua of ML(∗):

horT (k) def= ¬
(
> ∗

(
fork1

k(x, y) ∧ [y H= x+1]k ∧ [x V= y]k ∧ ¬
∨

(c1,c2)∈H(@1
xc1 ∧@1

yc2)
))
.

9.3. The complexity of ML(∗) 457

Lastly, vertT (k) is defined from horT (k) by swapping H and V:

vertT (k) def= ¬
(
> ∗

(
fork1

k(x, y) ∧ [y V= x+1]k ∧ [x H= y]k ∧ ¬
∨

(c1,c2)∈V(@1
xc1 ∧@1

yc2)
))
.

Lemma 9.39. Suppose (K,w) |= gridT (k). We have,
1. (K,w) |= horT (k) if and only if (K,w) satisfies (horT),
2. (K,w) |= vertT (k) if and only if (K,w) satisfies (vertT).

Proof. We develop the proof of (1), the one for (2) being analogous. Recall that the condi-
tion (horT) states that for all w1,w2 ∈ R(w), if nH(w2) = nH(w1) + 1 and nV(w2) = nV(w1)
then there is (c1, c2) ∈ H such that w1 ∈ V(c1) and w2 ∈ V(c2). Since (K,w) |= gridT (k),
every t-child w′ of w encodes a pair of numbers (nH(w),nV(w)) ∈ [0, t(k, n) − 1]2. Moreover,
from (init/sub/aux), these children satisfy type(k−1) and have exactly one x-child and exactly
one distinct y-children.
(⇒): Suppose (K,w) |= horT (k). Then, by definition, for every subforest K′ ⊆ K, if (K′,w)
satisfies fork1

k(x, y)∧[y H= x+1]k∧[x V= y]k then (K′,w) |=
∨

(c1,c2)∈H(@1
xc1∧@1

yc2). Consider two t-
nodes wx,wy ∈ R(w) such that nH(wy) = nH(wx)+1 and nV(wy) = nV(wx). Let K′ = (W, R′,V)
be the subforest of K where R′ is defined from R by removing the following pairs of worlds:
• every (w,w′) ∈ R where w′ is different from wx and wy,
• (wx,w′′) ∈ R where w′′ is the only y-child of wx,
• (wy,w′′′) ∈ R where w′′′ is the only x-child of wy.

Since (K,wx) and (K,wy) satisfy type(k−1), and wx and wy only lost Aux-children when defining
R′ from R, it is easy to see that (K′,wx) and (K′,wy) satisfy type(k−1). Moreover, since (K,w)
satisfies aux, all the t-children of wx and wy have, in both K and K′, exactly one {l, s, r}-
child for each symbol among l, s and r. We conclude that the pointed forest (K′,w) satisfies
fork1

k(x, y). By Lemma 9.15 (which can be easily adapted in order to consider the pairs of
numbers described with valH and valV, instead of a number described with val), we conclude
that nH(wy) = nH(wx) + 1 and nV(wy) = nV(wx) holds also with respect to K′. By Lemma 9.33
we derive (K′,w) |= [y H= x+1]k ∧ [x V= y]k. From (K,w) |= horT (k), we conclude that there is
a pair (c1, c2) ∈ H such that (K′,w) |= @1

xc1 ∧ @1
yc2. Since wx (resp. wy) corresponds to the

nominal x (resp. y) for the depth 1, we have wx ∈ V(c1) and wy ∈ V(c2). This allows us to
conclude that (K,w) satisfies (horT).
(⇐): This direction is rather straightforward and, analogously to the left-to-right direction,
relies on Lemmata 9.15 and 9.33. Briefly, suppose that (K,w) satisfies (horT) and, ad absurdum,
assume that (K,w) 6|= horT (k). Therefore, there is a subforest K′ = (W, R′,V) of K such that

(K,w) |= fork1
k(x, y) ∧ [y H= x+1]k ∧ [x V= y]k ∧ ¬

∨
(c1,c2)∈H(@1

xc1 ∧@1
yc2).

From (K′,w) |= fork1
k(x, y) we conclude that there are two worlds wx and wy corresponding to

two nominals (depth 1) x and y, respectively. Moreover, by Lemma 9.15, these worlds encode the
same two numbers w.r.t. K and K′. From (K′,w) |= [y H= x+1]k∧[x V= y]k and the fact that (K,w)
satisfies (horT), together with Lemma 9.33, we conclude that there is a pair (c1, c2) ∈ H such
that wx ∈ V(c1) and wy ∈ V(c2). However, this contradicts K′,w |= ¬

∨
(c1,c2)∈H(@1

xc1 ∧@1
yc2).

Thus, K,w |= horT (k).

The formulae oneT , firstT ,c(k) horT (k), vertT (k) conclude the definition of tilingT ,c(k).
We are now ready to establish Lemma 9.32 (recalled below), which leads directly to the Tower-
hardness of the satisfiability problem of ML(∗).

458 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

Lemma 9.32. (T , c) as a solution for Tilek if and only if tilingT ,c(k) is satisfiable.

Proof. (⇒): Suppose that (T , c) has a solution τ : [0, t(k, n) − 1]2 → T. Let (K,w), where
K = (W, R,V), be a pointed forest satisfying gridT (k) (such a pointed forest exists by Corol-
lary 9.37). We slightly modify the valuation V for the propositional symbols in T, so that the
resulting pointed forest satisfies (oneT), (firstT ,c), (horT) and (vertT). Notice that this does
not break the satisfaction of gridT (k), as this formula does not contain propositional symbols
from T. Since (K,w) |= gridT (k), by Lemma 9.36 every t-node w′ ∈ R(w) encodes a pair of
numbers (nH(w′),nV(w′)) ∈ [0, t(k, n) − 1]2. Let us consider the valuation V ′ obtained from V
as follows:

1. for all p ∈ AP \ T, V ′(p) = V(p),

2. for every c ∈ T and w′ ∈ R(w), w′ ∈ V(c) if and only if τ(nH(w′),nV(w′)) = c.
Let K′ = (W, R,V ′). As already stated, from the first part of the definition of V ′ we derive
(K′,w) |= gridT (k). The second part of the definition allows us to conclude that (K′,w) sat-
isfies (oneT), (firstT ,c), (horT) and (vertT). Indeed, (oneT) holds from the functionality of
τ , (firstT ,c) holds as τ satisfies (first), and lastly (horT) and (vertT) hold as τ satisfies (hori)
and (vert). Therefore, (K′,w) |= tilingT ,c(k).
(⇐): Suppose (K,w) |= tilingT ,c(k), where K = (W, R,V). Let us consider the relation
τ ⊆ [0, t(k, n)− 1]× [0, t(k, n)− 1]× T defined as follows:

(i, j, c′) ∈ τ if and only if there is w′ ∈ R(w) s.t. nH(w′) = i, nV(w′) = j and w′ ∈ V(c′).

We have:
I. from (K,w) |= gridT (k)∧oneT and by Lemmata 9.36 and 9.38, (K,w) satisfies (uniqT ,k)

and (oneT), which implies that τ is a (possibly weakly) functional relation, in its first
two components, i.e. for every (i, j) ∈ [0, t(k, n) − 1]2 there is at most one c′ ∈ T such
that (i, j, c′) ∈ τ . Moreover, again from (K,w) |= gridT (k) and by Lemma 9.36, (K,w)
satisfies (zeroT ,k), (compl[H]T ,k) and (compl[V]T ,k). This implies that τ is total (hence
not weakly functional), i.e. for every (i, j) ∈ [0, t(k, n) − 1]2 there is c′ ∈ T such that
(i, j, c′) ∈ τ . Therefore, τ is a map, and below we write τ(i, j) for the only element in T
such that (i, j, τ(i, j)) ∈ τ .

II. From (K,w) |= firstT ,c(k) and Lemma 9.38, (K,w) satisfies (firstT ,c), which implies
τ(0, 0) = c, Therefore, τ satisfies (first).

III. From (K,w) |= horT (k)∧vertT (k) and Lemma 9.39, (K,w) satisfies (horT) and (vertT),
which implies that for all i ∈ [0, t(k, n)− 1] and j ∈ [0, t(k, n)− 2], (τ(j, i), τ(j + 1, i)) ∈ H
and (τ(i, j), τ(i, j + 1)) ∈ V. Therefore, τ satisfies (hori) and (vert).

We conclude that τ is a solution for Tilek.

Theorem 9.40. The satisfiability problem for ML(∗) is Tower-hard.

Proof. As already stated, the size of the formula type(k) is exponential in k > 1 and polynomial
in n ≥ 1, which leads to the size of tilingT ,c(k) being exponential in k and polynomial in n

and card(T). Since |tilingT ,c(k)| is exponential on the input size, whereas the tiling problem
Tilek climbs the exponential hierarchy as k gets bigger (i.e. it is k-NExpTime-complete) the
uniform reduction from Tilek to the satisfiability problem of ML(∗) provided by Lemma 9.32
entails that the latter problem is Tower-hard.

9.4. Revisiting Tower-hard Logics with ML(∗) 459

9.4 Revisiting Tower-hard Logics with ML(∗)

In this section, we make good use of Theorem 9.40 to (re)prove the Tower-hardness of two
logics interpreted on tree-like structures. In particular, we reprove that the satisfiability problem
of the second-order modal logic interpreted on trees QKt is Tower-hard, and discover that the
same holds for the the modal separation logic featuring only the converse modality ♦−1 and the
separating conjunction ∗. The first reduction, from the satisfiability problem of ML(∗) to the one
of QKt, shows that the former problem is Tower-complete. In order to keep the presentation
light, the proofs (all simple) of the results in this section are left in Appendix G.

9.4.1 From ML(∗) to the second-order modal logic QKt.

We already introduced the modal logic QK in Section 8.1.1, and showed that it captures ML().
We write QKt for the logic QK interpreted on trees, which has been proved to admit a Tower-
complete satisfiability problem in [8]. We reprove this result by simply internalising the semantics
of ML(∗) in QK, and then reduce the satisfiability problem of the former logic to the one of QKt.
Briefly, we recall that the syntax of the formulae in QK is as follows (where p ∈ AP):

ϕ := > | p | ϕ⇒ ϕ | ¬ϕ | ♦ϕ | ∃pϕ.

The logic QKt is interpreted on Kripke tree (Definition 4.36), which makes it a syntactical
fragment of the quantified computation tree logic QCTLt introduced in Section 4.4.2. This con-
nection is quite interesting, as in Section 4.4.2 we have shown instead the Tower-hardness of
QCTLt(EU0) and QCTLt(EF1), where QCTLt(EU0) stands for the fragments of QCTLt featuring
only the until modality E(ϕUψ), which cannot be imbricated, whereas QCTLt(EF1) is the frag-
ment only allowing the exists-finally modality EF , which can imbricated only once. None of these
two logics are directly related to QKt, which is instead the fragment of QCTLt only featuring the
modality EXϕ ≡ ♦ϕ. Indeed, whereas the Tower-hardness of QCTLt(EU0) and QCTLt(EF1)
holds for a fixed number of imbrications of the temporal operators, the Tower-hardness of
QKt requires an arbitrary number of imbrications, as the logic is otherwise elementary when the
modal depth of the formula is fixed a priori [99, 8].

We recall the definition of Kripke tree already introduced in Definition 4.36, followed by the
semantics of the second-order propositional quantification. The refer the reader to Section 8.1.1
for the semantics of QK.

Definition 4.36 (Kripke tree). A Kripke structure (W,R,V) is a (finitely-branching) Kripke tree if
1. R−1 is functional and acyclic,

2. for every world w ∈ W, R(w) is finite,

3. it has a root, i.e. R∗(r) =W for some r ∈ W.

Given a Kripke tree K = (W, R,V) and a world w ∈ W, the semantics of ∃pϕ is as follows:

(K,w) |= ∃p ϕ iff there is W ′ ⊆ W such that (W, R,V[p←W ′]) |= ϕ.

where V[p ← W ′] stands for the valuation obtained from V by updating the set of worlds
satisfying p, from V(p) to W ′.

As we have done in order to characterise ML() in QK (Section 8.1.1), we rely on the second
order quantification in order to simulate the separating conjunction of ML(∗), thus internalising
the logic in QK (or QKt). Assume we want to check whether a pointed forest (K,w) satisfies a

460 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

formula ϕ in ML(∗), built over the set of propositions P ⊆fin AP. Exactly as in Section 8.1.1, to
represent the submodels obtained from K through the union +, we consider the satisfaction of
three atomic propositions Q = {q1, q2, q3} that do not belong to P . These atomic propositions
are used to represent subsets ofW that must be considered when evaluating a formula of ML(∗):
one of these symbols is used to represent the current set of worlds in the tree, also called active
universe, whereas the other two auxiliary atomic propositions of Q are used to capture the
semantics of ∗. The three symbols are reused when considering multiple application of the
operator ∗, since at any time only one symbol encodes the active universe. To formalise this
idea, given {qi, qj , qk} = Q and n ∈ N, we define the formula:

[qi = qj + qk]m def= �m
(
(qi ⇔ qj ∨ qk) ∧ ¬(qj ∧ qk)

)
.

where we recall that �0ϕ = ϕ and �m+1ϕ = ϕ ∧ � �m (ϕ). Essentially, given a pointed tree
(K,w), where K = (W, R,V) is a Kripke tree, it satisfies [qi = qj + qk]m whenever the set of
worlds reachable from w in at most m steps that satisfy qi is partitioned into the set of worlds
reachable from w in at most m steps that satisfy qj and the set of those that satisfy qk. The
formula [qi = qj + qk]m operates on the worlds reachable from w in at most m steps exactly as
the separating conjunction of ML(∗). Given a formula ϕ in ML(∗) with modal depth md(ϕ) ≤ m,
we know that looking at these worlds is enough to check whether it is satisfiable. In fact, we
recall that, by Proposition 9.3, a pointed forest ((W ′, R′,V ′),w) satisfies ϕ if and only if so does
((W ′, R′|≤md(ϕ)

w ,V ′),w). Moreover, notice that ((W ′, R′|≤md(ϕ)
w ,V ′),w) is by definition a Kripke

tree, which simplify even further the connections between ML(∗) and QKt.
Before introducing the translation from ML(∗) to QKt, let us take a moment to compare

[qi = qj + qk]m with the analogous formula [qi = qj qk] used in Section 8.1.1 in order to capture
ML() in QK. The definition of this formula is recalled below:

[qi = qj qk] = �
(
(qi ⇔ qj ∨ qk) ∧ ¬(qj ∧ qk)

)
.

As we can see, the main difference between [qi = qj + qk]m and [qi = qj qk] rest on the fact
that the former formula inspects the whole structure at distance at most m from the current
worlds w, whereas the latter only looks at the children of w. Indeed, we recall that the union +w
of ML() can be uniquely defined from a partition in two sets of the children of w, whereas the
+ of ML(∗) requires to partition all the descendants of w, which is part of the reason why we
are able to carry out the Tower-hardness proof of ML(∗), while giving an ExpSpace upper
bound on the satisfiability of ML().

Given and index i ∈ [1, 3] denoting which of the symbols in Q is currently used to repre-
sent the active children of the current world, the translation τi(ϕ) in QK is defined as shown
in Figure 9.15. The translation is straightforward for atomic formulae and Boolean connec-
tives. In the translation of ϕ1 ∗ ϕ2, we rely on the propositional quantification together with
[qi = qj + qk]md(ϕ1∗ϕ2) order to partition the universe. Lastly, for the translation of ♦ψ, we
essentially relativise the modality of possibility to only consider children that belong to the ac-
tive universe. To show the correctness of the translation, we first introduce a suitable encoding
between Kripke trees which preserves the satisfaction of formulae in ML(∗) with respect to their
translation in QK.

Definition 9.41 (Trees as trees). Let K = (W, R,V) and K′ = (W ′, R′,V ′) be two Kripke trees.
Let w ∈ W, m ∈ N and i ∈ [1, 3]. We write K .w

m,i K′ whenever:
1. W is finite, W ⊆W ′ and R ⊆ R′,

9.4. Revisiting Tower-hard Logics with ML(∗) 461

τi(>) def= >,

τi(p) def= p,

τi(ϕ1 ⇒ ϕ2) def= τi(ϕ1)⇒ τi(ϕ2),

τi(¬ϕ) def= ¬τi(ϕ),

τi(♦ψ) def= ♦(qi ∧ τi(ψ)),

τi(ϕ1 ∗ ϕ2) def= ∃qj ∃qk
(
[qi = qj ∗ qk]md(ϕ1∗ϕ2) ∧ τj(ϕ1) ∧ τk(ϕ2)

)
,

where j, k ∈ [1, 3], j < k and j 6= i 6= k.

Figure 9.15: Translation from ML(∗) to QK.

2. for all p ∈ AP \ {q1, q2, q3}, the satisfaction of p is preserved, i.e. V(p) = V ′(p) ∩W,

3. the worlds reachable in at most m steps in R are, among the ones reachable in at most m
steps in R′, exactly those in V ′(qi), i.e.

⋃
j∈[1,m]R

j(w) = {w′ ∈ R′j(w)∩V ′(qi) | j ∈ [1,m]}.

Definition 9.41 formalises the fact that whereas the separating conjunction split the structure, the
second-order quantification of QK simply colours it. In particular, the condition (3) essentially
states that, when K .w

m,iK′ holds, the accessibility relation of K′ relativised to the propositional
symbol qj should correspond to the accessibility relation of K.

Lemma 9.42. Let ϕ be a formula in ML(∗) written without using atomic propositions from
{q1, q2, q3}, and let i ∈ [1, 3] and m ≥ md(ϕ). Let K and K′ be two Kripke trees and w be a
world, so that K .w

m,i K′. (K,w) |= ϕ in ML(∗) if and only if (K′,w) |= τi(ϕ) in QKt.

Notice that Lemma 9.42 (which is proved in Appendix G, by structural induction on ϕ) is given
with respect to the class of Kripke trees having a finite universe W (because of K .w

m,i K′),
which is a subclass of both Kripke-style finite forests and (general) Kripke tree. As already
stated, by Proposition 9.3, we know that considering structures form this class is enough to
check whether a formula of ML(∗) is satisfiable. This also implies that, applying Lemma 9.42, a
formula ϕ in ML(∗) is satisfiable if and only if τ1(ϕ) in QKt is satisfiable. From Theorem 9.40,
this reproves the Tower-hardness of QKt. Reciprocally, the fact that the satisfiability problem
of QKt is decidable in Tower [8] carries over to the satisfiability problem of ML(∗).

Theorem 9.43. The satisfiability problem of QKt and ML(∗) are Tower-complete.

9.4.2 From ML(∗) to modal separation logic with converse.

In this small section, we show a simple reduction from the satisfiability problem of ML(∗) to
the satisfiability problem of MSL(∗,♦−1), that is the fragment of modal separation logic (Sec-
tion 2.3.2) featuring Boolean connectives, atomic propositions, the separating conjunction ∗ and
the converse modality of possibility ♦−1. This allows us to conclude that MSL(∗,♦−1) admits a
Tower-complete satisfiability problem, closing the complexity gap from [54], where the prob-
lem is shown to be PSpace-hard and decidable in Tower. Besides, this section completes
our investigation on Tower-hard fragments of MSL started in Section 4.4.3, where we have

462 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

(K,w) |= p iff w ∈ V(p),

(K,w) |= ♦−1ϕ iff there is w′ ∈ W such that (w′,w) ∈ R and (K,w′) |= ϕ,

(K,w) |= ϕ ∗ ψ iff (K1,w) |= ϕ and (K2,w) |= ψ for some K1, K2 s.t. K1 +K2 = K.

Figure 9.16: Satisfaction relation for MSL(∗,♦−1).

shown that the modal separation logic without atomic propositions and featuring Boolean con-
nectives, the universal modality 〈U〉, the separating conjunction and the modality ♦ admits a
Tower-complete satisfiability problem.

The formulae of MSL(∗,♦−1) are defined from the grammar below (where p ∈ AP):

ϕ := > | p | ϕ ∧ ϕ | ¬ϕ | ♦−1ϕ | ϕ ∗ ϕ .

As discussed in Section 2.3.2, modal separation logic is interpreted on a class of Kripke struc-
tures that is inspired from the memory states used in separation logic, called Kripke-style finite
functions and recalled below.

Definition 2.17 (Kripke-style finite function). A (Kripke-style) finite function (W, R,V) is a
triple where W is a countably infinite set of worlds, R ⊆ W ×W is a finite weakly functional1
accessibility relation, and V : AP → 2W is a labelling function assigning to every propositional
symbol p the set of worlds satisfying it.

Essentially, in a Kripke-style finite function K = (W, R,V), R is a heap. Differently from the
accessibility relation of a Kripke-style finite forests, R is functional, and can a priori contain
cycles. The semantics of MSL(∗,♦−1) is recalled in Figure 9.16 (omitting standard cases for
> and Boolean connectives). Notice that the union + characterising the semantics of ϕ ∗ ψ
is defined exactly as in ML(∗). The connection between ML(∗) and MSL(∗,♦−1) lies on the
fact that the modality ♦−1 traverses R backwards, so that its inverse R−1 is instead considered,
which is almost as a Kripke-style finite forest, if it was not for the possibility of encounter a cycle.
However, notice that given a Kripke-style finite forest (W ′, R′,V ′), the structure (W, R−1,V ′)
is an acyclic Kripke-style finite function. Therefore, to translate a formula ϕ of ML(∗) into a
formula of MSL(∗,♦−1) we simply replace the modality ♦ with its converse ♦−1, obtaining the
formula ϕ[♦ ← ♦−1]. With a straightforward induction hypothesis (see Appendix G), one can
show that this translation is correct.

Lemma 9.44. Let (K,w) be a Kripke-style finite forest, where K = (W, R,V), and let ϕ be a
formula in ML(∗). (K,w) |= ϕ in ML(∗) iff ((W, R−1,V),w) |= ϕ[♦← ♦−1] in MSL(∗,♦−1).

In order to conclude the reduction from ML(∗) to MSL(∗,♦−1), it is now sufficient to re-
strict ourselves to a subclass of Kripke-style finite functions that is, in some sense, acyclic.
From Proposition 9.3, we know that only the set of worlds reachable from the current one in
at most md(ϕ) steps influences the satisfiability of a formula ϕ in ML(∗). Therefore, a suitable
subclass is given by those Kripke-style finite functions where the current world is not reached by
any world in more than md(ϕ) + 1 steps. In formula: �−(md(ϕ)+1) ⊥, where �−1ψ def= ¬♦−1¬ψ
and for every n ≥ 1, �−(n+1)ψ def= �−1�−nψ.

1R is finite and for every w,w′,w′′ ∈ W, if (w,w′) ∈ R and (w,w′′) ∈ R then w′ = w′′.

9.4. Revisiting Tower-hard Logics with ML(∗) 463

Lemma 9.45. ϕ in ML(∗) is satisfiable iff so is ϕ[♦← ♦−1] ∧�−(md(ϕ)+1) ⊥ in MSL(∗,♦−1).

Lemma 9.45 closes the complexity gap left open in [54].

Theorem 9.46. The satisfiability problem of MSL(∗,♦−1) is Tower-complete.

Conclusion

In Chapters 8 and 9, we relied on the two modal logics ML() and ML(∗) to carry out an in-
depth comparison between the composition operator from ambient logic and the separating
conjunction ∗ from separation logic. We have not only characterised the expressive power and
the complexity for both logics, but also identified remarkable differences and export our results
to other logics, such as static ambient logic and modal separation logics.

ML(), which was shown in Chapter 6 to be as expressive as graded modal logic, enjoys an
AExpPol-complete satisfiability problem. The AExpPol upper bound was obtained by showing
an exponential-size model property, whereas hardness was proved by reducing the satisfiability
problem for the propositional team logic PL(∼) [85] (another instantiation of BBI). Besides the
obvious similarities between ML() and ML(∗), these results are counter-intuitive: whereas the
logic ML(∗) is shown to be strictly less expressive than graded modal logic (and consequently,
than ML()), its satisfiability problem is Tower-complete. This surprising result rests on the
fact that, in Section 9.3, we are able to define a very concise formula ϕ encoding a grid whose
size grows non-elementarily with respect to the modal depth of ϕ.

Why the separating conjunction makes Modal Logics robustly hard?

Both ML() and ML(∗) are fragments of the second-order modal logic QK, whose satisfiability for
the class of Kripke trees has been recently shown Tower-hard in [8]. In Section 9.4 we reproved
this result thanks to a simple reduction from the satisfiability problem of ML(∗). The main
formula that allows us translate the formula ϕ ∗ψ into a formula of QK is [q3 = q1 + q2]md(ϕ∗ψ),
which essentially simulates the union + used by ML(∗) to reason on submodels. More precisely,
given a Kripke tree K = (W, R,V) and a (current) world w ∈ W, this formula partitions the
worlds satisfying q3, and reachable from w in at most md(ϕ ∗ ψ) steps, in two sets encoded
using the atomic propositions q1 and q2. By contrast, to reduce ML() to QK (Section 8.1.1), we
simulated the union +w, used in ML() to reason on submodel, with the formula [q3 = q1 q2],
which only partition the children of w in two sets. This intuitively means that the union +w is
completely determined by how the children of w are partitioned.

To further investigate the essence of the gap between the complexities of ML() and ML(∗),
a natural direction is to look at a hierarchy of unions +k

w, where k is a positive natural number,
which can be characterised in QK with the formula [q3 = q1 + q2]k. Notice that k is now fixed,
whereas in the case of ML(∗) it depends on the modal depth of the formula we wish to translate.
Moreover, for k = 1 we obtain exactly the formula [q3 = q1 q2]. Explicitly, the union +k

w shall
be defined on Kripke-style finite forests Ki = (Wi, Ri,Vi) (i ∈ [1, 3]) as follows:

(K1,K2,K3) ∈ +k
w iff W1 =W2 =W3 =W, V1 = V2 = V3, R1 ∩R2 = ∅, R1 ∪R2 = R3,

and for all i ∈ {1, 2} and w′ ∈ Rki (w), R+
i (w′) = R+

3 (w′).

465

466 Chapter 9. The Complexity and Expressive Power of the Modal Logic ML(∗)

Informally, whenever (K1,K2,K3) ∈ +k
w holds, every world that in either K1 or K2 is reachable

from w in k steps, must have the same subtree that it has in K3. As expected, +1
w corresponds

to the union +w of ML(). Let us write ML(∗k) for the logic obtained from ML(∗) by swapping
the union + with the union +k

w. Interestingly, in ML(∗k) we can still perform the reduction
of Tilek−2 of Section 9.3, as the formula we obtain has modal depth k. However, the translation
does not work when considering Tilej with j > k, as formulae like [ax< bx]j−1

j require to break
the subtree of worlds that are reachable from the current one in more than k steps.

In view of the complexity of ML(), we conjecture the satisfiability problem of ML(∗k) to
be k-AExpPol-complete, where k-AExpPol is the class of decision problems solvable by an
alternating Turing machine running in k-ExpTime and alternating between existential and
universal states a polynomial amount of times. This result, if proved, shows that rather than a
huge gap going from AExpPol to Tower, the logics ML() and ML(∗) belongs to a hierarchy
of modal logics characterised by their composition operator +k

w.

ML() with guarantee operator and iteration.

Even though the goal of Chapters 8 and 9 is to compare ML() and ML(∗), both logics are
certainly interesting by themselves. In Section 8.4 we have shown that ML() is essentially
equivalent (modulo technical changes in the model) to the static ambient logic SAL(). From
this, we were able to deduce that the static ambient logic SAL from [34] admits an AExpPol-hard
satisfiability problem. Up to our knowledge, the best upper bound for this logic is 2ExpTime,
which was proved in [47] by relying on interesting connections between static ambient logic and
Presburger arithmetic. Actually, the logic considered in [47] not only features the guarantee
operator B of SAL (i.e. the right adjoint of the operator), but also the Kleene closure which
corresponds to iterated applications of . This means that the logic satisfies the axioms of
commutative Kleene algebras, which (on an abstract level) are known to correspond to the space
of semi-linear sets [30] or, equivalently, the set of Presburger definable formulae [77]. These last
two results have recently gained a significant importance, as Kleene algebras and Presburger
arithmetic offer the basis of several state-of-the-art formalisms for automatic verification (see [97,
130, 131] for Kleene algebras; the existential fragment of Presburger arithmetic is implemented
in both the SMT solvers CVC4 [5] and Z3 [50]). As ambient logic is geared towards distributed
systems, the logic in [47] offers a different view on these topics, which we hope to further
investigate. To start, one can hope that the refined analysis of the composition operator given
in Section 8.2 can be extended for the logic in [47], leading to a more efficient decision procedure.

If ML(∗) can tile a huge grid, then other logics can do it too.

Our interest in ML(∗) is mainly theoretical: following the research agenda started with modal
separation logics [52], the logic emphasises similarities between separation logics and modal
logics. For instance, Section 9.2 uniquely relies on standard tools from modal logic and finite
model theory, such as g-bisimulations and Ehrenfeucht-Fräıssé games, in order to study the
expressive power of ML(∗). After taking advantage of these tools, we hope that ML(∗) will in
return shed new light on the complexity of other modal logics. In this regard, we find reduction
from the tiling problem Tilek to the satisfiability problem form ML(∗) fascinating. Not only
it reproves the Tower-hardness of QKt from [8], but also shows a set of features that leads
to non-elementary logics. The central one is probably the notion of local nominals, thanks to
which we are able to encode and compare the positions of the grid to be tiled. Other logics

9.4. Revisiting Tower-hard Logics with ML(∗) 467

can easily express the notion of local nominals, such as sabotage modal logic [4] and first-order
modal logic [21]. We believe that the proof of Tower-hardness of ML(∗) can be adapted to
show the Tower-hardness of both these logics, under their interpretation on Kripke tree. This
is not completely satisfactory, as we would like to rely directly on Tower-hardness of ML(∗),
without passing through Tilek. However, we struggle to see easy reductions between ML(∗)
and sabotage or first-order modal logic (in both directions), which leaves us with the question
of whether there is a simpler Tower-hard logic that is easily captured by all these logics.

References

[1] T. Antonopoulos and A. Dawar, “Separating graph logic from MSO,” in Foundations of
Software Science and Computational Structures, ser. LNCS, vol. 5504. Springer, 2009,
pp. 63–77.

[2] C. Areces, P. Blackburn, and M. Marx, “Hybrid logics: Characterization, interpolation
and complexity,” The Journal of Symbolic Logic, vol. 66, pp. 977–1010, 2001.

[3] G. Aucher, P. Balbiani, L. Fariñas del Cerro, and A. Herzig, “Global and local graph
modifiers,” Electronic Notes in Theoretical Computer Science, vol. 231, pp. 293–307, 2009.

[4] G. Aucher, J. van Benthem, and D. Grossi, “Sabotage modal logic: Some model and proof
theoretic aspects,” in Logic, Rationality, and Interaction, ser. LNCS, vol. 9394. Springer,
2015, pp. 1–13.

[5] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds,
and C. Tinelli, “CVC4,” in Computer-Aided Verification, ser. LNCS, vol. 6806. Springer,
2011, pp. 171–177.

[6] G. Barthe, J. Hsu, and K. Liao, “A probabilistic separation logic,” ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, vol. 4, pp. 55:1–55:30, 2020.

[7] K. Batz, B. L. Kaminski, J. Katoen, C. Matheja, and T. Noll, “Quantitative separa-
tion logic: a logic for reasoning about probabilistic pointer programs,” ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, vol. 3, pp. 34:1–34:29, 2019.

[8] B. Bednarczyk and S. Demri, “Why propositional quantification makes modal logics on
trees robustly hard?” in Logic in Computer Science. IEEE, 2019, pp. 1–13.

[9] B. Bednarczyk, S. Demri, R. Fervari, and A. Mansutti, “Modal logics with composition on
finite forests: Expressivity and complexity,” in Logic in Computer Science. ACM, 2020,
pp. 167–180.

[10] J. Berdine, C. Calcagno, and P. O’Hearn, “A decidable fragment of separation logic,” in
Foundations of Software Technology and Theoretical Computer Science, ser. LNCS, vol.
3328. Springer, 2004, pp. 97–109.

[11] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Symbolic execution with separation logic,”
in Asian Symposium on Programming Languages and Systems, ser. LNCS, vol. 3780.
Springer, 2005, pp. 52–68.

469

470 References

[12] J. Berdine, B. Cook, and S. Ishtiaq, “Slayer: Memory safety for systems-level code,” in
Computer-Aided Verification, ser. LNCS, vol. 6806. Springer, 2011, pp. 178–183.

[13] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Smallfoot: Modular automatic assertion
checking with separation logic,” in FMCO, ser. Lecture Notes in Computer Science, vol.
4111. Springer, 2005, pp. 115–137.

[14] A. Bijlsma, “Calculating with pointers,” Science of Computer Programming, vol. 12, no. 3,
pp. 191–205, 1989.

[15] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic, ser. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University, 2001.

[16] B. Blanchet and D. Pointcheval, “Automated security proofs with sequences of games,” in
International Cryptology Conference, ser. LNCS, vol. 4117. Springer, 2006, pp. 537–554.

[17] E. Börger, E. Grädel, and Y. Gurevich, The Classical Decision Problem, ser. Perspectives
in Mathematical Logic. Springer, 1997.

[18] L. Borkowski and J. S lupecki, “The logical works of j. Lukasiewicz,” Studia Logica, vol. 8,
pp. 7–56, 1958.

[19] M. Bozga, R. Iosif, and S. Perarnau, “Quantitative separation logic and programs with
lists,” Journal of Automated Reasoning, vol. 45, no. 2, pp. 131–156, 2010.

[20] L. Bozzelli, H. van Ditmarsch, and S. Pinchinat, “The complexity of one-agent refinement
modal logic,” Theoretical Computer Science, vol. 603, pp. 58–83, 2015.

[21] T. Braüner and S. Ghilardi, “First-order modal logic,” in Handbook of Modal Logic, ser.
Studies in logic and practical reasoning. North-Holland, 2007, vol. 3, pp. 549–620.

[22] R. Brochenin, S. Demri, and E. Lozes, “On the almighty wand,” Information and Com-
putation, vol. 211, pp. 106–137, 2012.

[23] S. Brookes and P. W. O’Hearn, “Concurrent separation logic,” ACM SIGLOG News, vol. 3,
no. 3, pp. 47–65, 2016.

[24] S. Brookes, “A semantics for concurrent separation logic,” Theoretical Computer Science,
vol. 375, no. 1-3, pp. 227–270, 2007.

[25] J. Brotherston, “Bunched logics displayed,” Studia Logica, vol. 100, no. 6, pp. 1223–1254,
2012.

[26] J. Brotherston and M. Kanovich, “On the complexity of pointer arithmetic in separation
logic,” in Asian Symposium on Programming Languages and Systems, ser. LNCS, vol.
11275. Springer, 2018, pp. 329–349.

[27] J. Brotherston and J. Villard, “Parametric completeness for separation theories,” in ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 2014,
pp. 453–464.

References 471

[28] J. Brotherston, C. Fuhs, J. A. N. Pérez, and N. Gorogiannis, “A decision procedure for
satisfiability in separation logic with inductive predicates,” in CSL-LICS. ACM, 2014,
pp. 25:1–25:10.

[29] J. Brotherston, N. Gorogiannis, and M. Kanovich, “Biabduction (and related problems)
in array separation logic,” in Conference on Automated Deduction, ser. LNCS, vol. 10395.
Springer, 2017, pp. 472–490.

[30] P. Brunet, “A note on commutative Kleene algebra,” CoRR, vol. abs/1910.14381, 2019.

[31] R. M. Burstall, “Some techniques for proving correctness of programs which alter datas-
tructures,” Machine Intelligence, vol. 7, pp. 23–50, 1972.

[32] L. Caires and L. Cardelli, “A spatial logic for concurrency (part I),” Information and
Computation, vol. 186, no. 2, pp. 194–235, 2003.

[33] C. Calcagno, H. Yang, and P. W. O’Hearn, “Computability and complexity results for a
spatial assertion language for data structures,” in Foundations of Software Technology and
Theoretical Computer Science, ser. LNCS, vol. 2245. Springer, 2001, pp. 108–119.

[34] C. Calcagno, L. Cardelli, and A. D. Gordon, “Deciding validity in a spatial logic for trees,”
in International Workshop on Types in Languages Design and Implementation. ACM,
2003, pp. 62–73.

[35] C. Calcagno, P. Gardner, and M. Hague, “From separation logic to first-order logic,”
in Foundations of Software Science and Computational Structures, ser. LNCS, vol. 3441.
Springer, 2005, pp. 395–409.

[36] C. Calcagno, T. Dinsdale-Young, and P. Gardner, “Adjunct elimination in context logic
for trees,” Information and Computation, vol. 208, pp. 474–499, 2010.

[37] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, “Compositional shape analysis
by means of bi-abduction,” Journal of the Association for Computing Machinery, vol. 58,
pp. 26:1–26:66, 2011.

[38] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W. O’Hearn,
I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving fast with software verifica-
tion,” in Nasa Formal Methods, ser. LNCS, vol. 9058. Springer, 2015, pp. 3–11.

[39] L. Cardelli and A. D. Gordon, “Anytime, anywhere: Modal logics for mobile ambients,”
in ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM,
2000, pp. 365–377.

[40] ——, “Mobile ambients,” in Foundations of Software Science and Computational Struc-
tures, ser. LNCS, vol. 1378. Springer, 1998, pp. 140–155.

[41] A. K. Chandra, D. Kozen, and L. J. Stockmeyer, “Alternation,” Journal of the Association
for Computing Machinery, vol. 28, no. 1, pp. 114–133, 1981.

[42] E. M. Clarke, “The birth of model checking,” in 25 Years of Model Checking: History,
Achievements, Perspectives. Springer, 2008, pp. 1–26.

472 References

[43] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons using
branching time temporal logic,” in Logics of Programs, ser. LNCS, vol. 131. Springer,
1982, pp. 52–71.

[44] B. Cook, C. Haase, J. Ouaknine, M. J. Parkinson, and J. Worrell, “Tractable reasoning in
a fragment of separation logic,” in Concurrency Theory, ser. LNCS, vol. 6901. Springer,
2011, pp. 235–249.

[45] J. Courtault and D. Galmiche, “A modal separation logic for resource dynamics,” Journal
of Logic and Computation, vol. 28, no. 4, pp. 733–778, 2018.

[46] J. Courtault, D. Galmiche, and D. J. Pym, “A logic of separating modalities,” Theoretical
Computer Science, vol. 637, pp. 30–58, 2016.

[47] S. Dal Zilio, D. Lugiez, and C. Meyssonnier, “A logic you can count on,” in ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 2004,
pp. 135–146.

[48] A. Dawar, P. Gardner, and G. Ghelli, “Adjunct elimination through games in static ambi-
ent logic,” in Foundations of Software Technology and Theoretical Computer Science, ser.
LNCS, vol. 3328. Springer, 2004, pp. 211–223.

[49] F. De Caro, “Graded modalities. II,” Studia Logica, vol. 47, pp. 1–10, 1988.

[50] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools and Algorithms
for the Construction and Analysis of Systems, ser. LNCS, vol. 4963. Springer, 2008, pp.
337–340.

[51] M. de Rijke, “A note on graded modal logic,” Studia Logica, vol. 64, no. 2, pp. 271–283,
2000.

[52] S. Demri and M. Deters, “Two-variable separation logic and its inner circle,” Transactions
on Computational Logic, vol. 16, pp. 15:1–15:36, 2015.

[53] ——, “Expressive completeness of separation logic with two variables and no separating
conjunction,” Transactions on Computational Logic, pp. 1–44, 2016.

[54] S. Demri and R. Fervari, “On the complexity of modal separation logics,” in Advances in
Modal Logic. College Publications, 2018, pp. 179–198.

[55] S. Demri, D. Galmiche, D. Larchey-Wendling, and D. Méry, “Separation logic with one
quantified variable,” Theory of Computing Systems, vol. 61, pp. 371–461, 2017.

[56] S. Demri, E. Lozes, and A. Mansutti, “The effects of adding reachability predicates in
propositional separation logic,” in Foundations of Software Science and Computational
Structures, ser. LNCS, vol. 10803. Springer, 2018, pp. 476–493.

[57] S. Demri, R. Fervari, and A. Mansutti, “Axiomatising logics with separating conjunction
and modalities,” in Logics in Artificial Intelligence, ser. LNCS, vol. 11468. Springer, 2019,
pp. 692–708.

References 473

[58] S. Demri, E. Lozes, and A. Mansutti, “Internal calculi for separation logics,” in Computer
Science Logic, ser. LIPIcs, vol. 152. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020, pp. 19:1–19:18.

[59] S. Docherty and D. Pym, “Modular tableaux calculi for separation theories,” in Founda-
tions of Software Science and Computational Structures, ser. LNCS, vol. 10803. Springer,
2018, pp. 441–458.

[60] S. Docherty, “Bunched logics: a uniform approach,” Ph.D. dissertation, University College
London, 2019.

[61] A. Doumane, “Constructive completeness for the linear-time µ-calculus,” in Logic in Com-
puter Science. IEEE, 2017, pp. 1–12.

[62] M. Echenim, R. Iosif, and N. Peltier, “Prenex separation logic with one selector field,” in
Automated Reasoning with Analytic Tableaux and Related Methods, ser. LNCS, vol. 11714.
Springer, 2019, pp. 409–427.

[63] ——, “The Bernays-Schönfinkel-Ramsey class of separation logic on arbitrary domains,”
in Foundations of Software Science and Computational Structures, ser. LNCS, vol. 11425.
Springer, 2019, pp. 242–259.

[64] ——, “Entailment checking in separation logic with inductive definitions is 2-EXPTIME
hard,” in LPAR, ser. EPiC Series in Computing, vol. 73. EasyChair, 2020, pp. 191–211.

[65] C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar, “Compositional entailment checking for
a fragment of separation logic,” Formal Methods in System Design, vol. 51, pp. 575–607,
2017.

[66] M. Fattorosi-Barnaba and F. De Caro, “Graded modalities. I,” Studia Logica, vol. 44,
no. 2, pp. 197–221, 1985.

[67] J. Ferrante and C. Rackoff, “A decision procedure for the first order theory of real addition
with order,” SIAM Journal of Computing, vol. 4, no. 1, pp. 69–76, 1975.

[68] R. Fervari and F. R. Velázquez-Quesada, “Introspection as an action in relational models,”
vol. 108, pp. 1–23, 2019.

[69] K. Fine, “Propositional quantifiers in modal logic,” Theoria, vol. 36, pp. 336–346, 1970.

[70] ——, “In so many possible worlds,” Notre Dame Journal of Formal Logic, vol. 13, no. 4,
pp. 516–520, 10 1972.

[71] R. W. Floyd, “Assigning meanings to programs,” in Proceedings of the American Mathe-
matical Society Symposia on Applied Mathematics, 1967.

[72] D. Gabbay, Labelled Deductive Systems. Oxford University, 1996.

[73] H. Gaifman, “On local and non-local properties,” Studies in Logic and the Foundations of
Mathematics, vol. 107, pp. 105–135, 1982.

[74] D. Galmiche and D. Méry, “Tableaux and resource graphs for separation logic,” Journal
of Logic and Computation, vol. 20, no. 1, pp. 189–231, 2010.

474 References

[75] D. Galmiche and D. Larchey-Wendling, “Expressivity properties of boolean BI through
relational models,” in Foundations of Software Technology and Theoretical Computer Sci-
ence, ser. LNCS, vol. 4337. Springer, 2006, pp. 357–368.

[76] S. Genaim and D. Zanardini, “Inference of field-sensitive reachability and cyclicity,” Trans-
actions on Computational Logic, vol. 15, pp. 1–41, 2014.

[77] S. Ginsburg and E. H. Spanier, “Semigroups, Presburger formulas, and languages,” Pacific
Journal of Mathematics, vol. 16, no. 2, pp. 285–296, 1966.

[78] J. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, pp. 1–102, 1987.

[79] L. F. Goble, “Grades of modality,” Logique et Analyse, vol. 13, no. 51, pp. 323–334, 1970.

[80] V. Goranko and S. Passy, “Using the universal modality: Gains and questions,” Journal
of Logic and Computation, vol. 2, pp. 5–30, 1992.

[81] V. Goranko and G. van Drimmelen, “Complete axiomatization and decidability of
alternating-time temporal logic,” Theoretical Computer Science, vol. 353, no. 1-3, pp.
93–117, 2006.

[82] V. Goranko, A. Montanari, and G. Sciavicco, “A road map of interval temporal logics and
duration calculi,” Journal of Applied Non-Classical Logics, vol. 14, pp. 9–54, 2004.

[83] E. Grädel and M. Otto, “Guarded teams: The horizontally guarded case,” in Computer
Science Logic, ser. LIPIcs, vol. 152. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020, pp. 22:1–22:17.

[84] E. Grädel, P. G. Kolaitis, and M. Y. Vardi, “On the decision problem for two-variable
first-order logic,” Bull. Symb. Log., vol. 3, no. 1, pp. 53–69, 1997.

[85] M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer, “Complexity of propositional logics
in team semantic,” Transactions on Computational Logic, vol. 19, no. 1, pp. 2:1–2:14,
2018.

[86] M. Hennessy and R. Milner, “On observing nondeterminism and concurrency,” in Au-
tomata, Languages and Programming, ser. LNCS, vol. 85. Springer, 1980, pp. 299–309.

[87] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of the
Association for Computing Machinery, vol. 12, no. 10, pp. 576–580, 1969.

[88] W. Hodges, “Compositional semantics for a language of imperfect information,” Log. J.
IGPL, vol. 5, no. 4, pp. 539–563, 1997.

[89] ——, Some strange quantifiers, ser. LNCS. Springer, 1997, pp. 51–65.

[90] Z. Hóu, R. Goré, and A. Tiu, “Automated theorem proving for assertions in separation
logic with all connectives,” in Conference on Automated Deduction, ser. LNCS, vol. 9195.
Springer, 2015, pp. 501–516.

[91] Z. Hóu, R. Clouston, R. Goré, and A. Tiu, “Modular labelled sequent calculi for abstract
separation logics,” Transactions on Computational Logic, vol. 19, no. 2, pp. 13:1–13:35,
2018.

References 475

[92] R. Iosif, A. Rogalewicz, and T. Vojnar, “Deciding entailments in inductive separation logic
with tree automata,” in Automated Technology for Verification and Analysis, ser. LNCS,
vol. 8837. Springer, 2014, pp. 201–218.

[93] C. Jansen, J. Katelaan, C. Matheja, T. Noll, and F. Zuleger, “Unified reasoning about
robustness properties of symbolic-heap separation logic,” in European Symposium on Pro-
gramming, ser. LNCS, vol. 10201. Springer, 2017, pp. 611–638.

[94] R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer, “Iris from the
ground up: A modular foundation for higher-order concurrent separation logic,” J. Funct.
Program., vol. 28, p. e20, 2018.

[95] R. Kaivola, “Axiomatising linear time mu-calculus,” in Concurrency Theory, ser. LNCS,
vol. 962. Springer, 1995, pp. 423–437.

[96] T. Kowaltowski, “Data structures and correctness of programs,” Journal of the Association
for Computing Machinery, vol. 26, no. 2, p. 283–301, 1979.

[97] D. Kozen, “On Hoare logic and Kleene algebra with tests,” Transactions on Computational
Logic, vol. 1, no. 1, pp. 60–76, 2000.

[98] S. A. Kripke, “Semantical considerations on modal logic,” Acta Philosophica Fennica,
vol. 16, pp. 83–94, 1963.

[99] F. Laroussinie and N. Markey, “Quantified CTL: expressiveness and complexity,” Logical
Methods in Computer Science, vol. 10, 2014.

[100] K. Larsen, R. Mardare, and B. Xue, “Probabilistic mu-calculus: Decidability and com-
plete axiomatization,” in Foundations of Software Technology and Theoretical Computer
Science, ser. LIPIcs, vol. 65. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
pp. 25:1–25:18.

[101] Q. L. Le, M. Tatsuta, J. Sun, and W. Chin, “A decidable fragment in separation logic
with inductive predicates and arithmetic,” in Computer-Aided Verification, ser. LNCS,
vol. 10427. Springer, 2017, pp. 495–517.

[102] L. Libkin, Elements of Finite Model Theory, ser. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

[103] E. Lozes, “Adjuncts elimination in the static ambient logic,” Electronic Notes in Theoret-
ical Computer Science, vol. 96, pp. 51–72, 2004.

[104] ——, “Elimination of spatial connectives in static spatial logics,” Theoretical Computer
Science, vol. 330, pp. 475–499, 2005.

[105] M. Lück, “Axiomatizations of team logics,” Annals of Pure and Applied Logic, vol. 169,
no. 9, pp. 928–969, 2018.

[106] D. C. Luckham and N. Suzuki, “Verification of array, record, and pointer operations in
pascal,” Transactions on Programming Languages and Systems, vol. 1, no. 2, pp. 226–244,
1979.

476 References

[107] A. Mansutti, “Extending propositional separation logic for robustness properties,” in Foun-
dations of Software Technology and Theoretical Computer Science. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018, pp. 42:1–42:23.

[108] ——, “An auxiliary logic on trees: on the TOWER-hardness of logics featuring reacha-
bility and submodel reasoning,” in Foundations of Software Science and Computational
Structures, ser. LNCS, vol. 12077. Springer, 2020, pp. 462–481.

[109] D. A. Martin, “Borel determinacy,” Annals of Mathematics, vol. 102, pp. 363–371, 1975.

[110] A. R. Meyer, “Weak monadic second order theory of succesor is not elementary-recursive,”
in Logic Colloquium, ser. Lecture Notes in Mathematics. Springer, 1975, pp. 132–154.

[111] A. R. Meyer and L. J. Stockmeyer, “Word problems requiring exponential time: Prelimi-
nary report,” in Symposium on Theory of Computing. ACM, 1973, pp. 1–9.

[112] B. C. Moszkowski, “Reasoning about digital circuits,” Ph.D. dissertation, 1983.

[113] P. W. O’Hearn and D. J. Pym, “The logic of bunched implications,” Bulletin of Symbolic
Logic, vol. 5, pp. 215–244, 1999.

[114] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local reasoning about programs that alter
data structures,” in Computer Science Logic, ser. LNCS, vol. 2142. Springer, 2001, pp.
1–19.

[115] P. W. O’Hearn, “Separation logic,” Communications of the Association for Computing
Machinery, vol. 62, pp. 86–95, 2019.

[116] P. W. O’Hearn, D. Pym, and J. M. Spring, “Why separation logic works,” Philosophy and
Technology, vol. 32, pp. 483–516, 2019.

[117] J. Pagel and F. Zuleger, “Strong-separation logic,” CoRR, vol. abs/2001.06235, 2020.

[118] J. Pagel, C. Matheja, and F. Zuleger, “Complete entailment checking for separation logic
with inductive definitions,” CoRR, vol. abs/2002.01202, 2020.

[119] C. H. Papadimitriou, Computational complexity. Addison-Wesley, 1994.

[120] R. Piskać, T. Wies, and D. Zufferey, “Automating separation logic using SMT,” in
Computer-Aided Verification, ser. LNCS, vol. 8044. Springer, 2013, pp. 773–789.

[121] D. Pym, The Semantics and Proof Theory of the Logic of Bunched Implications, ser.
Applied Logic. Springer, 2002, vol. 26.

[122] M. O. Rabin, “Decidability of second-order theories and automata on infinite trees,” Trans-
actions of the American Mathematical Society, vol. 41, pp. 1–35, 1969.

[123] A. Reynolds, R. Iosif, C. Serban, and T. King, “A decision procedure for separation logic
in SMT,” in ATVA’16, ser. LNCS, vol. 9938, 2016, pp. 244–261.

[124] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in Logic
in Computer Science. IEEE, 2002, pp. 55–74.

References 477

[125] M. Reynolds, “An axiomatization of full computation tree logic,” The Journal of Symbolic
Logic, vol. 66, no. 3, pp. 1011–1057, 2001.

[126] J. F. Santos, P. Maksimovic, S. Ayoun, and P. Gardner, “Gillian, part I: a multi-language
platform for symbolic execution,” in Programming Language Design and Implementation.
ACM, 2020, pp. 927–942.

[127] W. Savitch, “Relationships between nondeterministic and deterministic tape complexi-
ties,” Journal of Computer and System Sciences, vol. 4, no. 2, pp. 177–192, 1970.

[128] S. Schmitz, “Complexity hierarchies beyond elementary,” Transactions on Computation
Theory, vol. 8, pp. 3:1–3:36, 2016.

[129] L. Schröder and Y. Venema, “Completeness of flat coalgebraic fixpoint logics,” Transac-
tions on Computational Logic, vol. 19, no. 1, pp. 4:1–4:34, 2018.

[130] A. Silva, “Models of concurrent Kleene algebra,” in LPAR, ser. EPiC Series in Computing,
vol. 73. EasyChair, 2020, p. 516.

[131] S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, and A. Silva, “Guarded Kleene algebra
with tests: verification of uninterpreted programs in nearly linear time,” ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, vol. 4, pp. 61:1–61:28, 2020.

[132] L. Stockmeyer, “The complexity of decision problems in automata theory and logic,” Ph.D.
dissertation, Department of Electrical Engineering, MIT, 1974.

[133] S. Tobies, “PSPACE reasoning for graded modal logics,” Journal of Logic and Computa-
tion, vol. 11, no. 1, pp. 85–106, 2001.

[134] A. Turing, “Checking a large routine,” in The Early British Computer Conferences. MIT
Press, 1989, p. 70–72.

[135] J. A. Väänänen, Dependence Logic - A New Approach to Independence Friendly Logic, ser.
London Mathematical Society student texts. Cambridge University, 2007, vol. 70.

[136] J. Väänänen and F. Yang, “Propositional team logics,” Annals of Pure and Applied Logic,
vol. 168, no. 7, pp. 1406–1441, 2017.

[137] V. Vafeiadis and M. J. Parkinson, “A marriage of rely/guarantee and separation logic,” in
Concurrency Theory, ser. LNCS, vol. 4703. Springer, 2007, pp. 256–271.

[138] J. van Benthem, Logical Dynamics of Information and Interaction. Cambridge University
Press, 2011.

[139] H. van Ditmarsch, W. van der Hoek, and B. Kooi, Dynamic Epistemic Logic, ser. Synthese
Library Series. Springer, 2008, vol. 337.

[140] M. Y. Vardi, “Efficiency vs. resilience: what COVID-19 teaches computing,” vol. 63, no. 5,
p. 9, 2020.

[141] I. Walukiewicz, “Completeness of Kozen’s axiomatisation of the propositional µ-calculus,”
Information and Computation, vol. 157, no. 1–2, pp. 142–182, 2000.

478 References

[142] H. Wang, “Proving theorems by pattern recognition — II,” Bell System Technical Journal,
vol. 40, no. 1, pp. 1–41, 1961.

[143] Y. Wang and Q. Cao, “On axiomatizations of public announcement logic,” Synthese, vol.
190, no. Supplement-1, pp. 103–134, 2013.

[144] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W. O’Hearn,
“Scalable shape analysis for systems code,” in CAV, ser. Lecture Notes in Computer Sci-
ence, vol. 5123. Springer, 2008, pp. 385–398.

[145] E. Zermelo, “über eine anwendung der mengenlehre auf die theorie des schachspiels,” in
International Congress of Mathematicians, vol. 2. Cambridge University, 1913, pp. 501–
504.

Appendices

479

A

Appendix of Chapter 3

Contents
Proof of Lemma 3.13. 483
Proof of Lemma 3.15. 483
Proof of Lemma 3.16. 484
Proof of Theorem 3.20. 486

481

483

Proof of Lemma 3.13.

Let x, y ∈ VAR. We recall the definition of the formula alloc−1
y (x):

alloc−1
y (x) def= x ↪→ x ∨ y ↪→ x ∨

(
> ∗ (y ↪→ ∧ size = 1 −~ y ↪→2 x)

)
.

Lemma 3.13. Let (s, h) be a memory state such that s(x) 6= s(y). We have,

(s, h) |= alloc−1
y (x) if and only if s(x)∈ ran(h).

Proof. (⇒): Suppose that (s, h) |= alloc−1
y (x). If (s, h) satisfies either x ↪→ x or y ↪→ x, then

obviously s(x) ∈ ran(h). Otherwise, (s, h) must satisfy the third conjunct of alloc−1
y (x):

(s, h) |= > ∗ (y ↪→ ∧ size = 1−~ y ↪→2 x).

In this case, there is a heap h′ ⊆ h such that (s, h′) |= y ↪→ ∧ size = 1−~ y ↪→2 x. From the
semantics of the septraction operator, there is a heap h′′ disjoint from h′ and such that

1. s(y) ∈ dom(h′′), 2. card(h′′) = 1, 3. (s, h′ + h′′) |= y ↪→2 x.

From (1) and h′′⊥h′, we conclude that s(y) 6∈ dom(h′). Now, (3) implies that there is a location
` such that {s(y) 7→ ` 7→ s(x)} ⊆ h′ + h′′, and moreover ` must be distinct from both s(x) and
s(y) (which are also assumed to be distinct). From (1) and (2), it must be that h′′ = {s(y) 7→ `}
and therefore {` 7→ s(x)} ⊆ h′. From h′ ⊆ h we then conclude that s(x) ∈ ran(h).
(⇐): Suppose there is a location ` ∈ dom(h) such that h(`) = s(x) (i.e. s(x) ∈ ran(h)). First,
suppose that ` = s(x) or ` = s(y). In this case, we directly derive that (s, h) |= x ↪→ x ∨ y ↪→ x,
which in turn shows that (s, h) |= alloc−1

y (x). Otherwise, consider the case where ` 6= s(x)
and ` 6= s(y). Let h′ ⊆ h be the heap {` 7→ s(x)}. As ` 6= s(y), the location s(y) is not a memory
cell of h′. Let us consider the heap h′′ = {s(y) 7→ `}, so that (s, h′′) |= y ↪→ ∧ size = 1. The
heaps h′ and h′′ are disjoint, and from their definition we have h′ + h′′ = {s(y) 7→ ` 7→ s(x)}.
As s(x), ` and s(y) are all distinct locations, (s, h′ + h′′) |= y ↪→2 x holds, which in turn allows
us to conclude that (s, h′) |= y ↪→ ∧ size = 1 −~ y ↪→2 x. As h′ ⊆ h, this implies that (s, h)
satisfies >∗(y ↪→ ∧size = 1−~y ↪→2 x), which is sufficient to show that (s, h) |= alloc−1

y (x).

Proof of Lemma 3.15.

Let x, y ∈ VAR. We recall the definition of next(x = y):

next(x = y) def= x ↪→ ∧
(
x 6= y⇒

[
x ↪→ ∧ y ↪→ ∧¬(>−~ x ↪→2 y ∧ y ↪→2 x)

]
2

)
.

Lemma 3.15. Let (s, h) be a memory state such that {s(x), s(y)} ∩ ran(h) = ∅.

(s, h) |= next(x = y) if and only if h(s(x)) = h(s(y)).

Proof. (⇒): Suppose (s, h) |= next(x = y). From the left conjunct of next(x = y), we
have s(x) ∈ dom(h). If s(x) = s(y) holds, this allows us to conclude that h(s(x)) = h(s(y)).
Otherwise, suppose that s(x) 6= s(y) and therefore, by definition of next(x = y) we have:

(s, h) |=
[
x ↪→ ∧ y ↪→ ∧¬(>−~ x ↪→2 y ∧ y ↪→2 x)

]
2.

This means that there is a heap h′ such that card(h′) = 2, both s(x) and s(y) are memory cells,
and (s, h′) 6|= > −~ x ↪→2 y ∧ y ↪→2 x. In particular, there are two locations `, `′ ∈ LOC such

484 Appendix A. Appendix of Chapter 3

that h′ = {s(x) 7→ `, s(y) 7→ `′}. Ad absurdum, suppose ` 6= `′. Since {s(x), s(y)} ∩ ran(h) = ∅,
both ` and `′ can be neither s(x) nor s(y). Let us consider the heap h′′ = {`′ 7→ s(x), ` 7→ s(y)}.
This heap is disjoint form h′, and moreover h′ + h′′ = {s(x) 7→ ` 7→ s(y)}+ {s(y) 7→ `′ 7→ s(x)}.
Thus, (s, h′+ h′′) |= x ↪→2 y∧ y ↪→2 x. However, this contradicts (s, h′) 6|= > −~ x ↪→2 y ∧ y ↪→2 x.
We conclude that ` = `′, which implies h(s(x)) = h(s(y)) by h′ ⊆ h.
(⇐): Suppose that there is a location ` ∈ LOC such that h(s(x)) = ` and h(s(y)) = `. Of course
this means that the left conjunct of next(x = y), i.e. x ↪→ , is satisfied. Let us consider the
right conjunct of the formula. If s(x) = s(y), this conjunct is trivially satisfies as the antecedent
of the implication is false. Suppose then s(x) 6= s(y), and let us prove that

(s, h) |=
[
x ↪→ ∧ y ↪→ ∧¬(>−~ x ↪→2 y ∧ y ↪→2 x)

]
2.

We consider the subheap h′ ⊆ h defined as h′ def= {s(x) 7→ `, s(y) 7→ `}. Clearly, (s, h′) satisfies
both x ↪→ and y ↪→ , and from s(x) 6= s(y) we have card(h′) = 2. To conclude the proof, let
us show that (s, h′) 6|= > −~ x ↪→2 y ∧ y ↪→2 x. Ad absurdum, let us suppose there is a heap h′′

disjoint form h′ and such that (s, h′′ + h′) |= x ↪→2 y ∧ y ↪→2 x. Then, there are two locations `1
and `2 such that

{s(x) 7→ `1, `1 7→ s(y), s(y) 7→ `2, `2 7→ s(x)} ⊆ h′ + h′′,

where `1 6= s(x) and `2 6= s(y). By definition of h′ we have h′(s(x)) = ` = h′(s(y)), which implies
that `1 = `2 = `. However, this contradicts s(x) 6= s(x), as it implies its negation s(x) = s(y)
directly by {`1 7→ s(y), `2 7→ s(x)} ⊆ h′ + h′′. Thus, h′′ does not exist, which implies that (s, h′) 6|=
>−~ x ↪→2 y ∧ y ↪→2 x, concluding the proof.

Proof of Lemma 3.16.

Let x, y, z ∈ VAR. We recall the definition of nextz(x ↪→ y):

nextz(x ↪→ y) def=
(
next(x = y) ∧

[
x ↪→ ∧¬(>−~ x ↪→3 z)

]
2

)
∨
[
size = 1−~ x ↪→3 z ∧ y ↪→2 z

]
3
.

Lemma 3.16. Let (s, h) be such that s(x) 6= s(z) 6= s(y) and {s(x), s(y), s(z)} ∩ ran(h) = ∅.

(s, h) |= nextz(x ↪→ y) if and only if h(h(s(x))) = h(s(y)).

Proof. Let (s, h) be a memory state where s(x) 6= s(z) 6= s(y) and {s(x), s(y), s(z)} ∩ ran(h) = ∅.
(⇒): Suppose (s, h) |= nextz(x ↪→ y). We divide the proof into two cases, depending on whether
(s, h) satisfies the left or right disjunct.
left disjunct. Suppose (s, h) |= next(x = y) ∧

[
x ↪→ ∧¬(>−~ x ↪→3 z)

]
2, which means that

there is a location ` such that h(s(x)) = ` = h(s(y)) (by Lemma 3.15) and the is a
subheap h′ ⊆ h with the following properties:

1. card(h′) = 2, 2. s(x) ∈ dom(h′), 3. (s, h′) 6|= >−~ x ↪→3 z.
We prove that h′(`) = ` holds, which implies h(h(s(x))) = h(s(y)) from the defini-
tion of ` together with h′ ⊆ h. Ad absurdum, let us suppose the opposite, i.e. ei-
ther ` 6∈ dom(h′) or (` ∈ dom(h′) and h′(`) 6= `) holds. In the first case (` 6∈ dom(h′)),
we consider the heap h′′ = {` 7→ `′ 7→ s(z)} where `′ is a location not appearing
in dom(h′) ∪ ran(h′) ∪ {s(z)}. In particular, `′ 6= s(x) (by (2)) and h′′ is disjoint from h′.
Thus, {s(x) 7→ ` 7→ `′ 7→ s(z)} ⊆ h′ + h′′. However, as s(x) 6= s(z), this implies that
the memory state (s, h′ + h′′) satisfies x ↪→3 z, which leads to a contradiction with (3).

485

So, ` ∈ dom(h′). Now, let us suppose that h′(`) = `′′ holds for some location `′′ 6= `.
From (1), h′ = {s(x) 7→ ` 7→ `′′}. Moreover, as {s(x), s(z)} ∩ ran(h) = ∅ and h′ ⊆ h, the
locations `′ and ` are different from both s(x) and s(z). This implies that `′′ 6∈ dom(h′).
Let us consider the heap h′′′ = {`′′ 7→ s(z)}. Clearly, h′′′ is disjoint from h′, and we
have that {s(x) 7→ ` 7→ `′′ 7→ s(z)} ⊆ h′ + h′′′. Again, as s(x) 6= s(z), this implies that
the memory state (s, h′ + h′′′) satisfies x ↪→3 z, which leads to a contradiction with (3).
Thus, h′(`) = `, concluding this case of the proof.

right disjunct. Suppose that (s, h) satisfies the right disjunct of nextz(x ↪→ y), i.e.
(s, h) |=

[
size = 1−~ x ↪→3 z ∧ y ↪→2 z

]
3.

By definition, there is a subheap h′ ⊆ h satisfying the following properties:
1. card(h′) = 3, 2. (s, h′) |= size = 1−~ x ↪→3 z ∧ y ↪→2 z.

From (2), there is a heap h′′ of cardinality 1 that is disjoint from h′ and it is such
that (s, h′ + h′′) satisfies x ↪→3 z ∧ y ↪→2 z. Thus, there are locations `x1, `x2 and `

y
1 s.t.

{s(x) 7→ `x1 7→ `x2 7→ s(z)} ⊆ h′ + h′′

{s(y) 7→ `
y
1 7→ s(z)} ⊆ h′ + h′′

where s(x), `x1, `x2 and s(z) are four distinct locations, and similarly s(y), `y1 and s(z)
are also three distinct locations. As h′ and h′′ have cardinality three (by (1)) and one,
respectively, their union satisfies card(h′ + h′′) = 4. This means that the two sub-
heaps {s(x) 7→ `x1 7→ `x2 7→ s(z)} and {s(y) 7→ `

y
1 7→ s(z)} are not disjoint, which in turn

implies `x2 = `
y
1. Since s(z) 6∈ ran(h′), we conclude h′′ = {`y1 7→ s(z)}, which leaves us with

h′ = {s(x) 7→ `x1, `
x
1 7→ `

y
1, s(y) 7→ `

y
1}. Thus, by h′ ⊆ h, h(h(s(x))) = h(s(y)).

We not consider the right-to-left direction of the lemma.
(⇐): Suppose h(h(s(x))) = h(s(y)). We divide the proof into two cases, depending on whether
or not h(s(x)) = h(s(y)) holds.
case: h(s(x)) = h(s(y)). We show that (s, h) satisfies the left disjunct of nextz(x ↪→ y). Let `

be the location h(s(x)). As {s(x), s(y)}∩ ran(h) = ∅ holds by hypothesis, by Lemma 3.15
we derive that (s, h) |= next(x = y) and ` 6= s(x). The two equalities h(s(x)) = h(s(y))
and h(h(s(x))) = h(s(y)) implies that h(`) = `. In order to conclude the proof, we
show that (s, h) |=

[
x ↪→ ∧¬(>−~ x ↪→3 z)

]
2. We consider the subheap h′ ⊆ h defined

as h′ = {s(x) 7→ ` 7→ `}. Clearly, card(h′) = 2 and (s, h′) |= x ↪→ , so that we only need to
show that (s, h′) 6|= >−~ x ↪→3 z. Ad absurdum, suppose there is a heap h′′ disjoint from h′

and such that (s, h′+h′′) |= x ↪→3 z. By definition, of ↪→3, there are two distinct locations
`1 6= `2 such that {s(x) 7→ `1 7→ `2 7→ s(z)} ⊆ h′ + h′′. However, this is contradictory,
as from h′ = {s(x) 7→ ` 7→ `} we are able to conclude `1 = ` = `2. Therefore, h′′ does not
exist, which implies (s, h′) 6|= >−~ x ↪→3 z.

case: h(s(x)) 6= h(s(y)). We show that (s, h) satisfies the right disjunct of nextz(x ↪→ y). From
the hypothesis h(h(s(x))) =h(s(y)), there is a subheap h′ ⊆ h s.t. for some `, `′∈ LOC, we
have h′ = {s(x) 7→ `, ` 7→ `′, s(y) 7→ `′}. From the hypothesis {s(x), s(y), s(z)} ∩ ran(h) = ∅
we conclude that both ` and `′ are distinct from s(x), s(y) and s(z). By h(s(x)) 6= h(s(y))
and s(x) 6= s(z) 6= s(y), we then derive that s(x) s(y), s(z), ` and `′ are five distinct
locations. In particular, this means that `′ 6∈ dom(h′) and card(h′) = 3. To conclude the
proof, it is sufficient to show that (s, h′) |= size = 1 −~ x ↪→3 z ∧ y ↪→2 z. Let us consider
the heap h′′ = {`′ 7→ s(z)}. Clearly, card(h′′) = 1 (thus, (s, h′′) |= size = 1) and h′′ is
disjoint from h′. As {s(x) 7→ ` 7→ `′ 7→ s(z)} ⊆ h′+ h′′ and s(x), s(z), ` and `′ are distinct

486 Appendix A. Appendix of Chapter 3

locations, we conclude that (s, h′ + h′′) |= x ↪→3 z. Similarly, (s, h′ + h′′) |= y ↪→2 z holds
as {s(y) 7→ `′ 7→ s(z)} ⊆ h′ + h′′ and s(y), `′ and s(z) are distinct locations.

Proof of Theorem 3.20.

The theorem follows from Lemma 3.22 and Lemma 3.23, which we recall and prove in this
section. First, we establish the correctness of the formulae emp, uniq(p), nom(p) and is a spyX,
defined as follows:

emp = ¬♦> ∧
(
(♦¬♦>)−∗ ¬♦♦>

)
,

uniq(p) = > ∗
(
p ∧ emp ∧

(
(size = 1 ∧ ♦p)−∗ ♦♦>

))
,

nom(p) = > ∗
(
emp ∧

(
(♦uniq(p))−~>

))
,

is a spyX = uniq(spy) ∧
(∧

x∈X
¬x
)
∧ ¬♦> ∧ ¬

(
(size = 1 ∧ ♦¬spy)−~ ♦♦spy

)
.

Recall that we assume VAR = AP.

Lemma A.1. Let (K = (W, R,V),w) be a pointed finite function, and let X ⊆fin VAR.
(I) (K,w) |= emp if and only if R = ∅,

(II) (K,w) |= uniq(p) if and only if V(p) = {w},

(III) (K,w) |= nom(p) if and only if card(V(p)) = 1,

(IV) (K,w) |= is a spyX if and only if V(spy) = {w}, w 6∈
⋃

x∈X V(x) and w 6∈ π1(R) ∪ π2(R).

Proof of (I). (⇒): Suppose (K,w) |= emp, and so (K,w) 6|= ♦> and (K,w) |= (♦¬♦>)−∗ ¬♦♦>.
From the former statement, we conclude that R(w) = ∅. Ad absurdum, suppose R 6= ∅ and
let (w′,w′′) ∈ R. Since R(w) = ∅, w′ 6= w. We consider the Kripke-style finite function
K′ = (W, R′,V) where R′ = {(w,w′)}. Clearly, K and K′ are disjoint and, since w′ 6= w,
(K′,w) |= ♦¬♦>. From (K,w) |= (♦¬♦>) −∗ ¬♦♦> we conclude that (K + K′,w) |= ¬♦♦>.
However, this is contradictory, as {(w,w′), (w′,w′′)} ⊆ R ∪R′.
(⇐): Suppose R = ∅. Clearly, this implies R(w) = ∅ and so (K,w) |= ¬♦>. To prove that
(K,w) |= (♦¬♦>) −∗ ¬♦♦>, let K′ = (W, R′,V) be a finite function that is disjoint from K
and such that (K′,w) |= ♦¬♦>. We show that (K + K′,w) 6|= ♦♦>. Since (K′,w) |= ♦¬♦>,
we conclude that R′(w) = {w′} for some world w′, but R(w′) = ∅. In particular, this implies
(K′,w) 6|= ♦♦>. As R = ∅, K +K′ = K′. So, (K +K′,w) 6|= ♦♦>.

Proof of (II). (⇒): Suppose (K,w) |= uniq(p). There is a finite function K′ = (W, R′,V) such
that K′ ⊆ K and (K′,w) satisfies p ∧ emp ∧

(
(size = 1 ∧ ♦p) −∗ ♦♦>

)
. From the first and

second conjuncts of this formula, we conclude that w ∈ V(p) and R′ = ∅. Ad absurdum, let us
suppose that there is a world w′ distinct from w and such that w′ ∈ V(p). We consider the finite
function K′′ = (W, {(w,w′)},V). Clearly, K′′ is disjoint from K′ and (K′′,w) satisfies size = 1∧
♦p. From w 6= w′′ we conclude that (K′ + K′′,w) 6|= ♦♦>. However, this means that (K′,w) |=
(size = 1∧♦p)−~¬♦♦>, in contradiction with the satisfaction of the formula (size = 1∧♦p)−∗
♦♦>. Thus, w′ = w and so V(p) = {w}.
(⇐): Suppose V(p) = {w}. We consider the Kripke-style finite function K′ = (W,∅,V) ⊆ K.
Clearly, (K′,w) |= p ∧ emp. Let us show that (K′,w) |= (size = 1 ∧ ♦p)−∗ ♦♦>. We consider a
finite function K′′ = (W, R′′,V) disjoint from K′ and such that (K′′,w) |= size = 1∧♦p. Together
with V(p) = {w}, this implies that R′′ = {(w,w)}. Thus, R′′ witnesses a selfloop on w, which

487

entails that (K′′,w) |= ♦♦p. Lastly, K′+K′′ = K′ as K′ = (W,∅,V), and so (K′ +K′′,w) |= ♦♦p,
as required by the separating implication.

Proof of (III). (⇒): Suppose (K,w) |= nom(p). There is a finite function K′ = (W, R′,V) such
that K′ ⊆ K and (K′,w) satisfies emp∧

(
(♦uniq(p))−~>

)
. From the first conjunct of this formula,

R′ = ∅. From the second conjunct, there is a finite function K′′ = (W, R′′,V) disjoint from K′
and such that (K′′,w) |= ♦uniq(p). From Lemma A.1(II) and the semantics of the modality ♦,
there is a world w′ ∈ R′′(w) such that V(p) = {w′}. Thus, card(V(p)) = 1.
(⇐): Suppose card(V(p)) = 1 and so let us assume w′ to be the only world in V(p). Let
us consider the finite function K′ = (W,∅,V) and K′′ = (W, {(w,w′)},V). Clearly, K′′ is
disjoint from K′, (K′,w) |= emp, and (K′′,w) |= ♦uniq(p). So, (K′,w) |= emp ∧ (♦uniq(p)−~>).
Lastly, K′ ⊆ K leads to (K,w) |= nom(p).

Proof of (IV). The double implication

(K,w) |= uniq(spy) ∧
(∧

x∈X
¬x
)
∧ ¬♦> iff V(spy) = {w}, w 6∈

⋃
x∈X V(x), and w 6∈ π1(R),

is straightforward. Thus, in order to prove the result it is sufficient to assume that V(spy) = {w}
and w 6∈ π1(R) hold, and prove the following double implication:

(K,w) |= ¬
(
(size = 1 ∧ ♦¬spy)−~ ♦♦spy

)
if and only if w 6∈ π2(R).

(⇒): We show the contrapositive. Suppose w ∈ π2(R), and so there is a world w′ ∈ W such
that w ∈ R(w′). Let us consider the Kripke-style finite function K′ = (W, {(w,w′)},V). From
w 6∈ π1(R), we conclude that w 6= w′ and that K′ is disjoint from K. By V(spy) = {w} it holds
that (K′,w) |= size = 1 ∧ ♦¬spy, and moreover (K + K′,w) |= ♦♦spy. By semantics of the
septraction, (K,w) |= (size = 1 ∧ ♦¬spy)−~ ♦♦spy.
(⇐): Again, let us take the contrapositive. Suppose (K,w) |= (size = 1∧♦¬spy)−~♦♦spy, and
so there is a finite function K′ = (W, R′,V) that is disjoint form K and such that

A. (K′,w) |= size = 1 ∧ ♦¬spy, which implies that R′ = {(w,w′)} for some w′ 6= w,

B. (K +K′,w) |= ♦♦spy. So, R ∪R′ witnesses a path of length two going from w to itself.
Notice that the two statements above holds as V(spy) = {w}. As R ∪ R′ is a functional
relation, (A) and (B) imply that {(w,w′), (w′,w)} ∈ R∪R′, where w′ 6= w. From R′ = {(w,w′)},
we conclude that (w′,w) ∈ R. Thus, w ∈ π2(R).

Lemma 3.22. Let (s, h) be a memory state and let ϕ be a formula in SL(∗,−∗, ↪→2, ↪→3), with
variables from X ⊆fin VAR \ {spy}. Let (K,w) be a pointed finite function that is an X-encoding
of (s, h). We have, (s, h) |= ϕ if and only if (K,w) |= τX(ϕ).

Proof. The proof is by structural induction on ϕ. Below, we recall the properties of (K,w),
where K = (LOC, R,V), as an encoding of (s, h) whenever R = h and moreover

1. every x ∈ X is a nominal that corresponds to s(x), i.e. V(x) = {s(x)},

2. the current world w is a spy, i.e. it is a nominal for a fixed propositional symbol spy 6∈ X,
it does not satisfy any propositional symbol in X, and it does not belong to a pair in R.

Below, we call the properties (1) and (2) hypothesis whenever they refer to (K,w) and (s, h).
Instead, we call them properties where refering to their analogue on other two structures, for
which we want to prove their satisfaction. The base cases for ϕ = > and ϕ = emp are obvious.

488 Appendix A. Appendix of Chapter 3

base case: ϕ = x = y.
(s, h) |= x = y,

⇔ s(x) = s(y), (by definition of |=)
⇔ V(x) = {s(x)} = {s(y)} = V(y), (by hypothesis (1))
⇔ (w, s(x)) 6∈ R and (LOC, R ∪ {(w, s(x))},V) |= ♦(x ∧ y), (by hypothesis (2))
⇔ (K,w) |= size = 1−~ ♦(x ∧ y). (by definition of −~)

base case: ϕ = x ↪→ y.
(s, h) |= x ↪→ y,

⇔ h(s(x)) = s(y), (by definition of |=)
⇔ V(x) = {s(x)},V(y) = {s(y)}, (s(x), s(y)) ∈ R, (by R = h and hyp. (1))
⇔ (w, s(x)) 6∈ R and (LOC, R ∪ {(w, s(x))},V) |= ♦(x ∧ ♦y), (by hypothesis (2))
⇔ (K,w) |= size = 1−~ ♦(x ∧ ♦y). (by definition of −~)

The cases for x ↪→2 y and x ↪→3 y are very similar. Let us assume that ((s, h) |= x ↪→2 y iff
(K,w) |= τX(x ↪→2 y) holds, and show the case for x ↪→3 y.
base case: ϕ = x ↪→3 y.

(s, h) |= x ↪→3 y,
⇔ h3(s(x)) = s(y), and for every δ ∈ [0, 2] hδ(s(x)) 6= s(y),

(by definition of |=)
⇔ V(x) = {s(x)},V(y) = {s(y)}, (s(x), s(y)) ∈ R3, and (s(x), s(y)) 6∈ Rδ for δ ∈ [0, 2]

(by R = h and hypothesis (1))
⇔ (w, s(x)) 6∈ R, (LOC, R ∪ {(w, s(x))},V) |= ♦(x ∧ ♦♦♦y), and (K,w) does not satisfy

neither τX(x = y), τX(x ↪→ y) nor τX(x ↪→2 y),
(by hypothesis (2) and the other base cases)

⇔ (K,w) |= ¬τX(x = y) ∧ ¬τX(x ↪→ y) ∧ ¬τX(x ↪→2 y) ∧ (size = 1−~ ♦(x ∧ ♦♦♦y)).
(by semantics of −~ and ∧)

For the induction steps, the cases for Boolean connectives are obvious. The case for the sepa-
rating conjunction is also quite straightforward:
induction step: ϕ = ϕ1 ∗ ϕ2.

(s, h) |= ϕ1 ∗ ϕ2,
⇔ there are two disjoint heaps h1 and h2 s.t. h = h1 +h2, (s, h1) |= ϕ1 and (s, h2) |= ϕ2,

(by definition of |=)
⇔ there are two disjoint heaps h1 and h2 such thatK1

def= (LOC, h1,V), K2
def= (LOC, h2,V),

K = K1 +K2, (K1,w) |= τX(ϕ1) and (K2,w) |= τX(ϕ2)
(by induction hypothesis, as (Kj ,w) is a X-encoding of (s, hj), for j ∈ {1, 2})

⇔ (K,w) |= τX(ϕ1 ∗ ϕ2).
(by definition of |=)

In the double implications above, proving that (Kj ,w) is a X-encoding of (s, hj), for j ∈ {1, 2} is
quite straightforward. Indeed, the property (1) for (Kj ,w) holds directly from the hypothesis (1).
The property (2) for (Kj ,w), follows instead from the fact that the satisfaction of is a spyX
is monotone with respect to submodels, i.e. if (K,w) |= is a spyX then for every K′ ⊆ K we
have (K′,w) |= is a spyX.

We conclude the proof by considering the case for the separating implication.

489

induction step: ϕ = ϕ1 −∗ ϕ2.
(⇒): Suppose (s, h) |= ϕ1 −∗ ϕ2, and so for every h′ disjoint from h, if (s, h) |= ϕ1 then
(s, h1 + h2) |= ϕ2. We prove that (K,w) |= (is a spyX ∧ τX(ϕ1))−∗ τX(ϕ2). Equivalently,

for every Kripke-style finite function K′ = (LOC, R′,V) disjoint from K,
if (K′,w) |= is a spyX ∧ τX(ϕ1) then (K +K′,w) |= τX(ϕ2).

Let us consider the Kripke-style finite function K′ = (LOC, R′,V) disjoint from K and such
that (K′,w) |= is a spyX ∧ τX(ϕ1). Let h′ = R′. From Lemma A.1(IV), and (1), (K′,w)
is a X-encoding of (s, h′). By induction hypothesis, (s, h′) |= ϕ1. From h = R together
with the fact that K′ is disjoint from K, we conclude that h⊥h′ and thus (s, h+ h′) |= ϕ2.
Let K′′ = (LOC, R ∪R′,V), so that K′′ = K + K′. We show that (K +K′,w) |= τX(ϕ2).
First, since both (K,w) and (K′,w) satisfy is a spyX, it is quite straightforward to see
that (K +K′,w) |= is a spyX. Indeed, the first two conjuncts of is a spyX only depends
on the labelling function V, whereas from w 6∈ π1(R) ∪ π2(R) and w 6∈ π1(R′) ∪ π2(R′)
we conclude that w 6∈ π1(R ∪ R′) ∪ π2(R ∪ R′). Thus, (K + K′,w) |= is a spyX follows
from Lemma A.1(IV). We show that (K+K′,w) is a X-encoding of (s, h+h′). From h = R,
h′ = R′ and R ∩ R′ = ∅, we conclude that R ∪ R′ = h + h′. The property (1) for (K +
K′,w) holds directly from the hypothesis (1). The property (2) for (K + K′,w) follows
from (K +K′,w) |= is a spyX. Thus, by induction hypothesis, (K +K′,w) |= τX(ϕ2).
(⇐): Suppose (K,w) |= (is a spyX ∧ τX(ϕ1))−∗ τX(ϕ2), and so for every Kripke-style finite
function K′ = (LOC, R′,V) disjoint from K and such that (K′,w) |= is a spyX ∧ τX(ϕ1),
we have (K +K′,w) |= τX(ϕ2). Let us prove that (s, h) |= ϕ1 −∗ ϕ2. Let h′ be a heap
disjoint from h and such that (s, h′) |= ϕ1. Without loss of generality, we can assume
that w 6∈ dom(h′) ∪ ran(h′). Indeed, if this is not the case, it is sufficient to consider a lo-
cation w′ 6∈ dom(h+h′)∪ran(h+h′) and the heap h′1 obtained from h replacing every occur-
rence of w with w′. Since w 6∈ dom(h) ∪ ran(h), we have that w 6∈ dom(h+h′1) ∪ ran(h+h′1).
Moreover, it is quite easy to see that (s, h′) 'X (s, h′1) and (s, h+ h′) 'X (s, h+ h′1), where
'X is the X-heap-isomorphism introduced in Definition 2.9. By Proposition 2.10, (s, h′)
and (s, h′1) (resp. (s, h+h′) and (s, h+h′1)) satisfy the same formulae having variables in X.
So, assume that w 6∈ dom(h′) ∪ ran(h′). We show that (s, h + h′) |= ϕ2. Consider the
finite function K′ = (LOC, R′,V) where R′ = h. From w 6∈ dom(h′) ∪ ran(h′) and by
hypothesis (1) and (2), we conclude that (K′,w) is a X-encoding of (s, h′). Again by (2),
(K′,w) |= is a spyX and by induction hypothesis (K′,w) |= τX(ϕ1). Since h′ is disjoint
from h, we conclude that K + K′ is defined and so (K + K′,w) |= τX(ϕ2). From the
fact that (K,w) is a X-encoding of (s, h), and (K′,w) is a X-encoding of (s, h′), we show
that (K+K′,w) is a X-encoding of (s, h1 + h2). Indeed, by definition of R and R′ we have
R∪R′ = h+h′. The property (1) for (K+K′,w) holds directly from the hypothesis (1). The
property (2) for (K+K′,w) holds from hypothesis (2) together with w 6∈ π1(R′) ∪ π2(R′).
Thus, by induction hypothesis (s, h+ h′) |= ϕ2.

Lemma 3.23. Let ϕ be a formula in SL(∗,−∗, ↪→2, ↪→3), with variables from X ⊆fin VAR\{spy}.
(I) ϕ and is a spyX ∧

∧
x∈X nom(x) ∧ τX(ϕ) are equisatisfiable.

(II) ϕ and is a spyX ∧
∧

x∈X nom(x)⇒ τX(ϕ) are equivalid.

We show the proof of the statement (I). The proof of the statement (II) is analogous.

Proof of (I). (⇒): Suppose ϕ satisfiable and let (s, h) be a memory state satisfying it. Consider
a Kripke-style finite function K = (LOC, h,V) such that

490 Appendix A. Appendix of Chapter 3

• for every x ∈ X, V(x) def= {s(x)},
• V(spy) = {w} for some world w not in π1(R) ∪ π2(R) nor in

⋃
x∈X V(x).

By Definition 3.21, (K,w) is an X-encoding of (s, h). By Lemma A.1, (K,w) satisfies both the
formulae is a spyX and

∧
x∈X nom(x). By Lemma 3.22, (K,w) |= τX(ϕ).

(⇐): Suppose is a spyX ∧
∧

x∈X nom(x)∧ τX(ϕ) satisfiable and let (K,w) be a Kripke-style finite
function satisfying it, where K = (LOC, R,V). By (K,w) |= is a spyX ∧

∧
x∈X nom(x) together

with Lemma A.1, we have:
1. for every x ∈ X there is a world wx such that V(x) = {wx},
2. V(spy) = {w}, w 6∈ π1(R) ∪ π2(R), and w 6∈

⋃
x∈X V(w).

Let (s, h) be a memory state s.t. h def= R and for every x ∈ X s(x) = wx (wx is s.t. V(x) = {wx}).
By Definition 3.21, (K,w) is a X-encoding of (s, h). By Lemma 3.22, (s, h) |= ϕ.

B

Appendix of Chapter 4

Contents
Proof of Lemma 4.9. 493
Proof of Lemma 4.16. 494
Proof of Lemma 4.25. 495
Proof of Lemma 4.26. 497
Proof of Lemma 4.31. 500
Proof of Lemma 4.32. 502
Proof of Lemma 4.39. 502
Proof of Lemma 4.40. 505
Proof of Theorem 4.41. 506
Proof of Lemma 4.43. 508
Proof of Lemma 4.44. 509

491

493

Proof of Lemma 4.9.

Lemma 4.9. Let (F , t, n) be a pointed forest. Then,
(I) (F , t, n) |= #desc ≥ β iff n has at least β descendants and it is a descendant of t.

(II) (F , t, n) |= #child ≥ β iff n has at least β children and it is a descendant of t.

Proof of (I). Let us recall the definition of #desc≥β.

#desc≥β def= �*
(

[U]¬Miss︸ ︷︷ ︸
F [Miss] is empty

∧ Hit ∧ �(¬inDom ∧ size(Miss)≥β︸ ︷︷ ︸
removing n lead to at least β miss nodes

)
.

(⇒): Suppose (F , t, n) |= #desc ≥ β. From the semantics of �*, there is a forest F ′ ⊆ F s.t.
A. (F ′, t, n) |= [U]¬Miss. So, F ′[Miss]t = ∅, and every n′ ∈ dom(F ′) is an F ′-descendant of

t,

B. (F ′, t, n) |= Hit. So, n is an F ′-descendant of t (thus, n is also an F-descendant of t),

C. (F ′, t, n) |= �(¬inDom ∧ size(Miss) ≥ β).
From (C), there is a finite forest F ′′ such that F ′′ ⊆ F ′ and

D. card(dom(F ′′)) = card(dom(F ′))−1,

E. (F ′′, t, n) |= ¬inDom,

F. (F ′′, t, n) |= size(Miss) ≥ β.
By (B), we obtain that n ∈ dom(F ′), whereas (E) implies n 6∈ dom(F ′′). Therefore, by (D) it
holds that dom(F ′′) = dom(F ′) \ {n}. We now consider the set F ′′[Miss]t, which by (F) has at
least β elements. We prove that every n′ ∈ F ′′[Miss]t is an F ′-descendant of n. Ad absurdum,
suppose that there is n′ ∈ F ′′[Miss]t that is not an F ′-descendant of n. By definition of F ′′[Miss]t,

G. n′ is not an F ′′-descendant of t,

H. n′ ∈ dom(F ′′) and therefore by F ′′ ⊆ F ′ it holds that n′ ∈ dom(F ′).
From (A) and (H), n′ is an F ′-descendant of t. Thus, from (G), there must be δ ≥ 1 such
that the node F ′δ(n′) is an F ′-descendant of t, but it is not in the domain of F ′′. However,
as we already established that dom(F ′′) = dom(F ′) \ {n}, this implies that F ′δ(n′) = n and
therefore n′ is an F ′-descendant of n: a contradiction. Therefore, every element in F ′′[Miss]t
is an F ′-descendant of n. Together with (B) and F ′ ⊆ F , we conclude that n has at least β
F-descendants and it is an F-descendant of t.
(⇐): Suppose (F , t, n) to be a finite forest such that n has at least β F-descendants and it is
a F-descendant of t. We then consider the two subforests F ′′ and F ′ of F characterised as

dom(F ′′) ={n′ ∈ N | n′ is an F-descendant of n}∪
{n′ ∈ N | n′ is an F-ancestor of n and an F-descendant of t}.

F ′ =F ′′ ∪ {(n,F(n))}

Notice that n 6∈ dom(F ′′). From their characterisation, it is easy to see that
A. F ′′ ⊆ F ′ ⊆ F ,

B. {n′ ∈ N | n′ is an F-descendant of n} ⊆ F ′′[Miss]t and card(F ′′[Miss]t) ≥ β.

This property holds because n is not an F ′′-descendant of t, and all F-descendants of n are
also F ′′-descendants of n. Thus, every F-descendant of n is in F ′′[Miss]t. By hypothesis,
n has at least β descendants,

494 Appendix B. Appendix of Chapter 4

C. n ∈ dom(F ′) and F ′[Miss]t = ∅ (as n is an F ′-descendant of t).
This property holds because F ′ contains all the F-descendants of n plus a path going from
n to t, and nothing else. So, every element in dom(F ′) is a hit node for F ′.

Then, we conclude that:
D. from (B), (F ′′, t, n) |= ¬inDom ∧ size(Miss) ≥ β,
E. from (C). (F ′, t, n) |= [U]¬Miss ∧ Hit,
F. from F ′ = F ′′ ∪ {(n,F(n))} and (D), (F ′, t, n) |= �(¬inDom ∧ size(Miss) ≥ β).

Lastly, by (A), (E) and (F), (F , t, n) |= �*
(

[U]¬Miss∧Hit∧�(¬inDom∧size(Miss) ≥ β)
)
.

Proof of (II). Let us recall the definition of #child≥β.

#child≥ 0 def= Hit,
#child ≥ β+1 def= #desc ≥ β+1 ∧�β(Hit⇒ #desc ≥ 1)︸ ︷︷ ︸

whenever β nodes of dom(F) are removed, if n still reaches t then it has at least one descendant

.

The lemma is trivial for #child≥ 0, so we consider #child≥β+1 where β ∈ N.
(⇒): Suppose (F , t, n) |= #child≥β+1. From the first conjunct of #child≥β+1:

A. n has at least β+1 F-descendants;
B. n is an F-descendant of t.

Ad absurdum, suppose that n has k < β + 1 F-children {n1, . . . , nk}. Let us consider a subset S
of β descendants of n, such that {n1, . . . , nk} ⊆ S. From (A), S exists. Let F ′ be the finite
forest such that F ′ ⊆ F and dom(F ′) = dom(F) \ S. Since F ′ is constructed from F by only
removing descendants of n, and in particular removing all its children, we have:

C. By (B), (F ′, t, n) |= Hit,
D. (F ′, t, n) |= #desc = 0,
E. card(dom(F ′)) = card(dom(F))− β. Indeed, dom(F ′) = dom(F) \ S and card(S) = β.

However, from the semantics of �β and (C)–(E), (F , t, n) |= �β(Hit ∧#desc = 0), in contra-
diction with the second conjunct of #child≥β+1. Thus, n has at least β + 1 F-children and,
from (B), it is an F-descendant of t.
(⇐): Suppose (F , t, n) to be a forest such that n has at least β+1 children and it is a descendant
of t. Trivially, as every F-child is an F-descendant, we obtain (F , t, n) |= #desc ≥ β + 1. We
now show that (F , t, n) also satisfies �β(Hit⇒ #desc ≥ 1). Let F ′ ⊆ F be the forest such that

A. n is an F ′-descendant of t;
B. there is a set S ⊆ dom(F) such that card(S) = β and dom(F ′) = dom(F) \ S.

To prove that (F , t, n) |= �β(Hit⇒ #desc ≥ 1) it is sufficient to establish (F ′, t, n) |= #desc ≥ 1.
This is quite straightforward. From (A), we conclude that (F ′, t, n) |= Hit. From (B), since S has
cardinality β and n has β+1 F-children, n has at least one F ′-child (thus, an F ′-descendant).

Proof of Lemma 4.16.

Lemma 4.16. For each rank rk ∈ N3, ALTrk is finite up to logical equivalence.

Proof. The proof is standard and relies on the analogous result from propositional logic [102]:
(?) given a set of formulae S that is finite up to logical equivalence, there are only

finitely many Boolean combinations of formulae from S, up to logical equivalence.
The proof of the lemma is by induction on rk ∈ N3 with respect to the order <rk.

495

base case: rk = (0, 0, 0). Every formula of rank rk is a Boolean combination of formulae from
{Hit, Miss}. By (?) the set of formulae of rank (0, 0, 0) is finite up to logical equivalence.

For the inductive case, we partition the set of formulae of rank rk = (m, s, k) in two disjoint sets
and show that both of them is finite up to logical equivalence:
induction step: formulae dominated by 〈U〉, � or �*. We consider the set of formulae

dominated by the 〈U〉 operator, i.e. the set of every formula ϕ that is syntactically equiv-
alent to 〈U〉ψ for some ψ ∈ ALT(m−1,s,k). By induction hypothesis, there are only finitely
many such ψ up to logical equivalence. As ψ ≡ χ implies 〈U〉ψ ≡ 〈U〉χ, the set of for-
mulae dominated by 〈U〉 is finite up to logical equivalence. The same reasoning holds for
formulae dominated by � or �*.

induction step: formulae that are not dominated by 〈U〉, � or �*. We consider the set
of formulae belonging to ALTm,s,k and that are not dominated by 〈U〉, � or �* operators.
Each formula ϕ of this set is therefore a Boolean combination of formulae ϕ1, . . . , ϕn,
syntactically different form ϕ, that have rank at most (m, s, k) and that are equal to Hit
or Miss, or are dominated by 〈U〉, � or �* operators. From the previous case as well as
the base case, the set of such formulae ϕ1, . . . , ϕn is finite up to logical equivalence. Then,
by (?) we conclude that the set of formulae of ALTrk that are not dominated by 〈U〉, � or
�* operators is also finite up to logical equivalence.

Proof of Lemma 4.25.

Lemma 4.25. Let w ∈ Σ+
• and let (F , t, n) be a pointed forest encoding the word f(w) ∈ [1, 2n]+.

(I) (F , t, n) |= markΣ iff n encodes a marked symbol of Σ•.
(II) (F , t, n) |= marksΣ ≥ β iff F contains at least β nodes encoding marked symbols of Σ•.

(III) (F , t, n) |= #markAncΣ ≥ β iff n has at least β ancestors encoding marked symbols of Σ•.

We recall that a main node n′ in F encodes a marked symbol (resp. non marked symbol)
whenever it has exactly 2a (resp. 2a + 1) children that are character nodes, for some a ∈ [1, n].
The proofs of (I) and (III) are done by simply unrolling the definitions. Of these two statements,
we just show the left-to-right direction. The right-to-left direction is quite straightforward. The
proof of (II) is by induction on β.

Proof of (I). We recall the definition of markΣ:

markΣ
def=
∨

a∈Σ
(
(#child = 2a ∧ 1st[1,2n]) ∨ (#child = 2a + 1 ∧ ¬1st[1,2n])

)
.

(⇒): Suppose (F , t, n) |= markΣ, so there must be a symbol a ∈ Σ such that

(F , t, n) |= (#child = 2a ∧ 1st[1,2n]) ∨ (#child = 2a+1 ∧ ¬1st[1,2n]).

First, suppose (F , t, n) |= #child = 2a∧1st[1,2n]. From Lemma 4.9(II), n has exactly 2a children
and it is a descendant of t. Moreover, from 1st[1,2n], n is the first node in the main path of F .
Then, by definition of encoding of a word (Definition 4.4), all the children of n are character
nodes, and so n encodes a marked symbol. Otherwise, consider the case where the second
disjunct holds, i.e. (F , t, n) |= #child = 2a+1 ∧ ¬1st[1,2n]. From Lemma 4.9(II), n has exactly
2a + 1 F-children and it is a descendant of t. Again, from Definition 4.4, n is a node in the main
path of F . From ¬1st[1,2n], n cannot be the first node in the main path of F . So, one of its
children is a main node, whereas all its other children are character nodes (by Definition 4.4).
Thus, n has exactly 2a character nodes, meaning that it encodes a marked symbol.

496 Appendix B. Appendix of Chapter 4

Proof of (II). We recall the definition of marksΣ ≥ β, where β ∈ N.

marksΣ ≥ 0 def= >,
marksΣ ≥ β+1 def= 〈U〉

(
markΣ ∧ �(¬inDom ∧ marksΣ ≥ β)

)
.

It should be noted that we cannot apply Lemma 4.7 to prove this statement, as its hypoth-
esis (2) is not satisfied. The proof is by induction on β. The base case for β = 0 is trivial. Let
us look at the induction step. Assume β = k + 1 for some k ∈ N.
(⇒): Suppose (F , t, n) |= marksΣ ≥ k+1, and therefore there is a node n′ ∈ N such that

A. (F , t, n′) |= markΣ. From Lemma 4.25(I), n′ encodes a marked symbol in Σ•,
B. (F , t, n′) |= �(¬inDom ∧ marksΣ ≥ k).

From (B), there is a forest F ′ such that
C. F ′ ⊆ F and card(F ′) = card(F)− 1;
D. (F ′, t, n′) |= ¬inDom ∧ marksΣ ≥ k.

From (D):
E. by semantics of inDom, the node n′ does not belong to dom(F ′);
F. by induction hypothesis, F ′ contains at least k nodes encoding marked symbols of Σ•.

(A) implies that n′ is a F-descendant of t that is a main node. Together with (C) and (E), this
implies that dom(F ′) = dom(F) \ {n′}. Because of this (by (F)) the k nodes encoding marked
symbols w.r.t. F ′ must be elements of the main path of F that are ancestors of n′. Indeed, n′
and all its F-descendants are not F ′-descendants of t. Recall that a symbol is encoded by a
main node by using the number of its children that are character nodes, and that main nodes are
not character nodes. As dom(F ′) = dom(F) \ {n′} and n′ is a main node, every node encoding
a marked symbol in F ′ also encodes a marked symbol in F . Thus, by (F) and (A), F contains
at least k + 1 nodes encoding marked symbols in Σ•.
(⇐): Let {(n1, n2) . . . (nm−1, nm)} be the main path of F , so that, for every i ∈ [1,m], ni
correspond to the main node encoding the i-th character of f(w), where we recall that f : Σ• →
[1, 2n] is the bijection defined as f(a) def= 2a. Suppose that F contains at least k+1 nodes encoding
marked symbols of Σ•, or equivalently that there are k + 1 positions {i1, . . . , ik+1} such that,
for every j ∈ [1, k + 1], nij encodes a marked symbol. Consider ni1 , the node encoding the first
marked symbol of f(w). Furthermore, let us consider the subforest F ′ = F \ {(nij , nij+1)}. We
have:

A. as ni1 encodes a marked symbol, from Lemma 4.25(I), (F , t, ni1) |= markΣ,
B. ni1 6∈ dom(F ′). So, (F ′, ni1 , t) |= ¬inDom,
C. card(F ′) = card(F)− 1.
D. For every node n′′ of the k nodes in {ni2 , . . . , nik+1}, the number of F ′-children of n′′ that

are character nodes is the same as the number of F-children of n′′ that are character nodes.
Moreover, n′′ is a F ′-descendant of n′′. This property holds as ni1 is a descendant of every
node in {ni2 , . . . , nik+1}.

From (D), F ′ contains at least k nodes encoding marked symbols of Σ•. By induction hypothesis,
(F ′, t, ni1) |= marksΣ ≥ k. With (B) and (C), (F , t, ni1) |= �(¬inDom ∧ marksΣ ≥ k). Lastly,
by (A) and the definition of the modality 〈U〉, we conclude: (F , t, n) |= marksΣ ≥ k+1.

Proof of (III). We recall the definition of #markAncΣ ≥ β:

#markAncΣ ≥ β
def= symb ∧ �(¬inDom ∧ marksΣ ≥ β).

497

Let n1n2 . . . nm be the nodes in the main path of F , so that, for every j ∈ [1,m], nj corre-
sponds to the node encoding the j-th character of f(w).
(⇒): Suppose (F , t, n) |= #markAncΣ. From the first conjunct of #markAncΣ, n is a main node.
Equivalently, there is j ∈ [1,m] such that nj = n. From the second conjunct of #markAncΣ, we
conclude that there is a finite forest F ′ ⊆ F such that

A. dom(F ′) = dom(F) \ {n}. Indeed, n is a F-descendant of t (as it is a main node),
but (F ′, t, n) 6|= inDom implies n 6∈ dom(F ′). The equivalence then follows as the semantics
of the sabotage modality � requires card(F ′) = card(F)− 1.

B. (F ′, t, n) |= marksΣ ≥ β. Thus, by Lemma 4.25(II) F ′ contains at least β main nodes
encoding marked symbols of Σ•.

From (A), since F encodes a finite word f(w) and n is the j-th element of its main path, we
conclude that the pointed forest (F ′, t, n) encodes the suffix of the word f(w) corresponding to
the nodes nj+1 . . . nm (which characterises the main path of F ′). These nodes are all ancestors
of n and, from (B), at least β of them encode marked symbols (w.r.t. both F ′ and F , as the
former structure encodes a suffix of the word encoded by F). So, n has at least β ancestors
encoding marked symbols of Σ•.

Proof of Lemma 4.26.

Lemma 4.26. Let w ∈ Σ+
• with a marked word with β ≥ 1 marked symbols. Let (F , t, n) be

an encoding of f(w). For every ϕ in PITL, w |=• ϕ if and only if (F , t, n) |= τβ(ϕ).

Proof. By induction on the structure of ϕ, with the standard induction hypothesis stating that
the lemma holds for every strict subformula of ϕ. Let w = a1 . . . ak ∈ Σ+

• with β marked symbols.
According to Definition 4.4, let M= (n1, . . . , nk) be the tuple of main nodes of (F , t, n). The
base case for > is obvious, whereas for the two atomic formulae a and 1 is by easy verification.
base case: ϕ = a. Then,

w |=• a iff a1 = a or a1 = a, (by definition of |=•)
iff n1 encodes 2a or 2a− 1, (by definition of F and f)
iff (F , t, n1) |= 1st[2a−1,2a], (by definition of 1st[2a−1,2a])
iff (F , t, n) |= 〈U〉 1st[2a−1,2a], (by semantics of 〈U〉 and def. of n1)
iff (F , t, n) |= τβ(a). (by definition of τβ)

In the second to last step, we need to rely on the definition of encoding in order to perform
the backward direction, i.e. derive (F , t, n1) |= 1st[2a−1,2a] from (F , t, n) |= 〈U〉 1st[2a−1,2a].
Indeed, recall that the first node in the main path, i.e. n1, is the only one satisfying 1st[i,j]
(for some 1 ≤ i < j ≤ 2n). As above, we write “def. of n1” when this property is used.

base case: ϕ = 1. Then,

w |=• 1 iff a ∈ Σ such that a1 = a, (by definition of |=•)
iff n1 encodes 2a− 1 for some a ∈ Σ, (by definition of F and f)
iff (F , t, n1) |= 1st[1,2n] ∧ markΣ, (by definition of 1st[1,2n] ∧ markΣ)
iff (F , t, n) |= 〈U〉(1st[1,2n] ∧ markΣ), (by semantics of 〈U〉 and def. of n1)
iff (F , t, n) |= τβ(1). (by definition of τβ)

498 Appendix B. Appendix of Chapter 4

As in Lemma 4.24, the cases for Boolean connectives are obvious, so let us focus on ϕ = ϕ1 ϕ2.
Let w′ ∈ Σ∗, a ∈ Σ and w′′ ∈ Σ∗• be such that ∆(w) = (w′, a,w′′). As a is the leftmost marked
symbol in w, notice that w′′ contains β − 1 marked symbols.
induction step: ϕ = ϕ1 ϕ2. We recall that w |=• ϕ1 ϕ2 if and only if there is b ∈ Σ such that

(a) w′ = ε, b = a and aw′′ |=• ϕ1 ∧ ϕ2
or (b) w′ = bw2 and bw2 aw′′ |=• ϕ1 and bw2 aw′′ |=• ϕ2, for some w2 ∈ Σ∗

or (c) w′ 6= ε and b = a and w′ aw′′ |=• ϕ1 and aw′′ |=• ϕ2
or (d) w′ = w1bw2 and w1 bw2 aw′′ |=• ϕ1 and bw2 aw′′ |=• ϕ2,

for some w1 ∈ Σ+ and w2 ∈ Σ∗.
We split the proof into four double implications, making a correspondence between the
four cases (a)–(d) in the semantics of w |=• ϕ1 ϕ2. and the four disjuncts in the definition
of τβ(ϕ1 ϕ2). More precisely, we prove:

A. there is b ∈ Σ such that w′ = ε, b = a and aw′′ |=• ϕ1 ∧ ϕ2, if and only if
(F , t, n) |= 〈U〉

(
symb ∧ 1st[1,2n] ∧ markΣ ∧ τβ(ϕ1) ∧ τβ(ϕ2)

)
,

B. there are b ∈ Σ and w2 ∈ Σ∗ s.t. w′ = bw2, bw2 aw′′ |= ϕ1 and bw2 aw′′ |= ϕ2, iff
(F , t, n) |= 〈U〉

(
symb ∧ 1st[1,2n] ∧ ¬markΣ ∧ �(markΣ ∧ τβ+1(ϕ1)) ∧ τβ(ϕ2)

)
,

C. there is b ∈ Σ such that w′ 6= ε, b = a, w′ aw′′ |= ϕ1 and aw′′ |= ϕ2, if and only if
(F , t, n) |= 〈U〉

(
symb ∧ ¬1st[1,2n] ∧ markΣ ∧#markAncΣ ≥ β−1
∧ τβ(ϕ1) ∧ �(1st[1,2n] ∧ τβ(ϕ2))

)
,

D. there are b ∈ Σ, w1 ∈ Σ+ and w2 ∈ Σ∗ such that w′ = w1bw2, w1 bw2 aw′′ |= ϕ1
and bw2 aw′′ |= ϕ2, if and only if

(F , t, n) |= 〈U〉
(
symb ∧ ¬1st[1,2n] ∧ ¬markΣ ∧#markAncΣ ≥ β
∧ �(markΣ ∧ τβ+1(ϕ1)) ∧ �(1st[1,2n] ∧ τβ(ϕ2))

)
.

Proving these four correspondences suffices to prove the lemma. Indeed, the disjunction of
the four ALT formulae in these four cases is equivalent to τβ(ϕ1 ϕ2) since the somewhere
modality distributes over disjunction, i.e. 〈U〉(ϕ ∨ ψ) ⇔ 〈U〉ϕ ∨ 〈U〉ψ, and conjunction
distributes over disjunction. In the proofs below, we often use the fact that if (F , t, n)
encodes f(w), then for every node n′, (F , t, n′) encodes f(w). This follows directly form the
definition of encoding, which does not depend on the current world n.

proof of (A): Let us consider the first double implication.
there is b ∈ Σ such that w′ = ε, b = a and aw′′ |=• ϕ1 ∧ ϕ2,

⇔ w is headed by the marked symbol a and w |=• ϕ1 ∧ ϕ2,
⇔ 1. n1 encodes a marked symbols, i.e. (F , t, n1) |= symb ∧ 1st[1,2n] ∧ markΣ,

(by definition of F and Lemma 4.25. Note: n1 always satisfies symb ∧
1st[1,2n])

2. (F , t, n1) |= τβ(ϕ1) ∧ τβ(ϕ2),
(by induction hypothesis)

⇔ (F , t, n1) |= symb ∧ 1st[1,2n] ∧ markΣ ∧ τβ(ϕ1) ∧ τβ(ϕ2)
(by definition of |=)

⇔ (F , t, n) |= 〈U〉
(
symb ∧ 1st[1,2n] ∧ markΣ ∧ τβ(ϕ1) ∧ τβ(ϕ2)

)
.

(by semantics of 〈U〉 and def. of n1)

499

proof of (B): For the second double implication,
there are b ∈ Σ and w2 ∈ Σ∗ s.t. w′ = bw2, bw2 aw′′ |=• ϕ1 and bw2 aw′′ |=• ϕ2,

⇔ w is headed by a (non marked) symbol in Σ, w |=• ϕ2 and the word obtained
from w by marking the first symbol satisfies ϕ2,

⇔ 1. n1 does not encode a marked symbol, i.e. (F , t, n1) |= symb∧ 1st[1,2n]∧¬markΣ,
(by definition of F and Lemma 4.25. Note: n1 satisfies symb ∧ 1st[1,2n])

2. (F , t, n1) |= τβ(ϕ2),
(by induction hypothesis form w |= ϕ2)

3. There is F ′ ⊆ F s.t. card(F ′) = card(F)− 1, (F ′, t, n1) |= markΣ ∧ τβ+1(ϕ1).
For this step, consider the finite forest F ′ ⊆ F obtained from F by removing
one children of n1. As n1 encodes the non marked symbol b w.r.t. F , by
definition it encodes the marked symbol b w.r.t. F ′. Every other node has
the same number of F ′-children as in F . In other words, F ′ encodes the word
bw2 aw′′, with β + 1 marked symbols, obtained from w by marking the first
(non marked) symbol. By definition of F ′, (F ′, t, n1) |= markΣ. By induction
hypothesis, (F ′, t, n1) |= τβ+1(ϕ1).

⇔ (F , t, n1) |= symb ∧ 1st[1,2n] ∧ ¬markΣ ∧ �(markΣ ∧ τβ+1(ϕ1)) ∧ τβ(ϕ2),
(by definition of F ′ ⊆ F and �)

⇔ (F , t, n) |= 〈U〉
(
symb ∧ 1st[1,2n] ∧ ¬markΣ ∧ �(markΣ ∧ τβ+1(ϕ1)) ∧ τβ(ϕ2)

)
.

(by semantics of 〈U〉 and def. of n1)
proof of (C): For the third double implication,

there is b ∈ Σ such that w′ 6= ε, b = a, w′ aw′′ |= ϕ1 and aw′′ |= ϕ2,
⇔ there is an index j ∈ [2, k] (recall w = a1 . . . ak and ∆(w) = (w′, a,w′′)) s.t.

1. the main node nj encodes a marked symbol, and among the main nodes in
the set {nj+1, . . . , nk} (ancestors of nj), exactly β−1 encode marked symbols.
Equivalently, (F , t, nj) |= symb ∧ ¬1st[1,2n] ∧ markΣ ∧#markAncΣ ≥ β−1,
(by definition of F , Lemma 4.25 and as j > 1)

2. (F , t, nj) |= τβ(ϕ1),
(by induction hypothesis from w |= ϕ1)

3. There is F ′ ⊆ F s.t. card(F ′) = card(F)− 1, (F ′, t, nj) |= 1st[1,2n] ∧ τβ(ϕ2).
For this step, consider the finite forest F ′ ⊆ F obtained from F by re-
moving nj−1, i.e. the only main node such that F(nj−1) = nj (which ex-
ists as j > 1). It is quite straightforward to see that F ′ encodes the word
ajaj+1 . . . ak = aw′′. By definition, (F ′, t, nj) |= 1st[1,2n]. By induction
hypothesis, (F ′, t, nj) |= τβ(ϕ2),

⇔ there is a main node nj in the main path of F such that
(F , t, nj) |=symb ∧ ¬1st[1,2n] ∧ markΣ ∧#markAncΣ ≥ β−1

∧ τβ(ϕ1) ∧ �(1st[1,2n] ∧ τβ(ϕ2))
(by definition of F ′ ⊆ F and �)

⇔ (F , t, n) |= 〈U〉
(
symb ∧ ¬1st[1,2n] ∧ markΣ ∧#markAncΣ ≥ β − 1
∧ τβ(ϕ1) ∧ �(1st[1,2n] ∧ τβ(ϕ2))

)
.

(by semantics of 〈U〉)

500 Appendix B. Appendix of Chapter 4

proof of (D): Lastly, for the fourth double implication,
there are b ∈ Σ, w1 ∈ Σ+ and w2 ∈ Σ∗ s.t. w′ = w1bw2, w1 bw2 aw′′ |= ϕ1
and bw2 aw′′ |= ϕ2,

⇔ there is j ∈ [2, k] (recall w = a1 . . . ak and ∆(w) = (w′, a,w′′)) such that
1. the main node nj encodes a non marked symbol and has exactly β ancestors

in {nj+1, . . . , nk} that encode marked symbols (i.e. it encodes a symbol of w
that strictly precedes all the β marked symbols in w). Equivalently, (F , t, nj)
satisfies symb ∧ ¬1st[1,2n] ∧ ¬markΣ ∧#markAncΣ ≥ β,
(by definition of F , Lemma 4.25 and as j > 1)

2. There is F ′ ⊆ F s.t. card(F ′) = card(F)− 1, (F ′, t, nj) |= markΣ ∧ τβ+1(ϕ1).
For this step, consider the finite forest F ′ ⊆ F obtained from F by removing
one character node of nj . As nj encodes the non marked symbol b w.r.t. F ,
by definition it encodes the marked symbol b w.r.t. F ′. Every other node has
the same number of F ′-children as in F . In other words, F ′ encodes the word
w1 bw2 aw′′, with β + 1 marked symbols, obtained from w by marking the
j-th symbol (which belongs to w′). By definition of F ′, (F ′, t, nj) |= markΣ.
By induction hypothesis, (F ′, t, nj) |= τβ+1(ϕ1).

3. There is F ′′ ⊆ F s.t. card(F ′′) = card(F)− 1, (F ′′, t, nj) |= 1st[1,2n] ∧ τβ(ϕ2).
For this step, consider the subforest F ′′⊆F obtained from F by remov-
ing nj−1, i.e. the only main node such that F(nj−1) = nj (which exists as
j > 1). So, F ′′ encodes the word ajaj+1 . . . ak = bw2 aw′′. By definition,
(F ′′, t, nj) |= 1st[1,2n]. By induction hypothesis, (F ′′, t, nj) |= τβ(ϕ2),

⇔ there is a main node nj in the main path of F such that
(F , t, nj) |=symb ∧ ¬1st[1,2n] ∧ ¬markΣ ∧#markAncΣ ≥ β

∧ �(markΣ ∧ τβ+1(ϕ1)) ∧ �(1st[1,2n] ∧ τβ(ϕ2)).
(by definition of F ′ ⊆ F , F ′′ ⊆ F and �)

⇔ (F , t, n) |= 〈U〉
(
symb ∧ ¬1st[1,2n] ∧ ¬markΣ ∧#markAncΣ ≥ β
∧ �(markΣ ∧ τβ+1(ϕ1)) ∧ �(1st[1,2n] ∧ τβ(ϕ2))

)
.

(by semantics of 〈U〉)

Proof of Lemma 4.31.

Lemma 4.31. Let (s, h) be an (x, y)-encoding of a pointed forest (F , t, n). Let ϕ be a formula
in ALT. We have, (F , t, n) |= ϕ if and only if (s, h) |= τx,y(ϕ).

Proof. The proof is by structural induction on ϕ. The base case for ϕ = > is obvious.
base case: ϕ = Hit.

(F , t, n) |= Hit,
⇔ there is δ ≥ 1 such that Fδ(n) = t,

(by definition of |=)
⇔ there is δ ≥ 2 such that hδ(s(x)) = t = s(y) and for δ′ < δ, hδ(s(x)) 6= s(y),

(n 6= t and by definition of encoding, i.e. h(s(x)) = n, s(y) = t, s(x) 6= s(y))
⇔ there is δ ≥ 0 hδ(s(x)) = s(y) and h(s(x)) 6= s(y),

(left-to-right direction: weakening. right-to-left direction: definition of encoding)

501

⇔ (s, h) |= x ↪→∗ y ∧ ¬x ↪→ y.
(definition of |=)

Before treating the base case for ϕ = Miss, let us prove the following intermediate result:
NDom. Let (s, h) be a memory state s.t. s(x) ∈ dom(h) and for all δ ≥ 0, hδ(s(x)) 6= s(y).

h(s(x)) 6∈ dom(h) iff (s, h) |= size = 1−〈1〉 (> ∗ (ls(x, y) ∧ size = 2)).

Proof of (NDom). (⇒): Suppose h(s(x)) 6∈ dom(h). Let h′ = {(h(s(x)), s(y))}. So, h′⊥h
and (s, h′) |= size = 1. From the two hypotheses s(x) ∈ dom(h) and for all δ ≥ 0, hδ(s(x)) 6= s(y),
we conclude that there is a location ` s.t. h′′ def= {s(x) 7→ ` 7→ s(y)} ⊆ h+ h′, where s(x) 6= s(y)
and ` 6= s(y). Therefore, (s, h′′) |= ls(x, y) ∧ size = 2, which in turn implies that (s, h+h′) sat-
isfies >∗(ls(x, y)∧size = 2). By definition of h′, (s, h) |= size = 1−〈1〉(>∗(ls(x, y)∧size = 2)).
(⇐): Suppose (s, h) |= size = 1 −〈1〉 (> ∗ (ls(x, y) ∧ size = 2)), and so there is a heap h′

such that card(h′) = 1 and a heap h′′ ⊆ h + h′ such that (s, h′′) |= ls(x, y) ∧ size = 2.
So, h′′ = {s(x) 7→ ` 7→ s(y)} for some location ` 6= s(y). From the hypothesis s(x) ∈ dom(h)
and for all δ ≥ 0, hδ(s(x)) 6= s(y), we conclude that {` 7→ s(y) ⊆ h′, and thus h(s(x)) 6∈ dom(h).

(End of Proof of (NDom))

base case: ϕ = Miss. (⇒): Suppose (F , t, n) |= Miss, and so n ∈ dom(F) and n is not
a F-descendant of t. By definition of encoding, h(s(x)) = n 6= s(x) and for all δ ≥ 0, we
have hδ(s(x)) 6= s(y) = t. Therefore, (s, h) 6|= x ↪→ y and h(s(x)) ∈ dom(F). From (NDom),
this implies (s, h) 6|= size = 1 −〈1〉 (> ∗ (ls(x, y) ∧ size = 2)), whereas from the previous
base case we conclude that (s, h) 6|= τx,y(Hit).
(⇐): Suppose (s, h) |= ¬τx,y(Hit) ∧ ¬x ↪→ y ∧ (size = 1 −[1] ¬(> ∗ (ls(x, y) ∧ size = 2))).
Recalling that τx,y(Hit) = x ↪→∗ y∧¬x ↪→ y, the satisfaction of ¬τx,y(Hit)∧¬x ↪→ y implies
that for every δ ≥ 0, hδ(s(x)) = s(y). Since by definition of encoding s(x) ∈ dom(h),
by (NDom) we conclude that h(s(x)) ∈ dom(h). So, n = h(s(x)) ∈ dom(F). From the
previous base case, (F , t, n) 6|= Hit. Thus, (F , t, n) |= Miss.

The induction steps for Boolean connectives are obvious. The cases for ϕ = �ψ and ϕ = �* ψ
are very similar. So, we just explicit the case for ϕ = �ψ.
induction step: ϕ = �ψ. (⇒): Suppose (F , t, n) |= �ψ, and so there is a subforest F ′ ⊆ F

such that card(F ′) = card(F)−1 and (F ′, t, n) |= ψ. Consider the heap h′ def= F ′+ {s(x) 7→ n}.
Since n 6= s(x) and s(y) = t 6∈ dom(h) (from the fact that (s, h) is a (x, y)-encoding
of (F , t, n)), we conlude that (s, h′) is a (x, y)-encoding of (F ′, t, n). By induction hypothe-
sis (s, h) |= τx,y(ψ). By definition of h′, (s, h′) |= x ↪→ , h′ ⊆ h and card(h′) = card(h)− 1.
Thus, (s, h) |= τx,y(�ψ).
(⇐): Suppose (s, h) |= �SL(x ↪→ ∧ τx,y(ψ)), and so there is a subheap h′ ⊆ h such
that card(h′) = card(h)− 1 and (s, h′) |= x ↪→ ∧ τx,y(ψ). Thus, together with the fact that
h = F + {s(x) 7→ n}, we conclude that there is a subforest F ′ ⊆ F such that card(F ′) =
card(F) − 1 and h′ = F ′ + {s(x) 7→ n}. So, (s, h′) is a (x, y)-encoding of (F ′, t, n). By in-
duction hypothesis, (F ′, t, n) |= ψ. From the semantics of the modality �, (F , t, n) |= �ψ.

induction step: ϕ = 〈U〉ψ. (⇒): Suppose (F , t, n) |= 〈U〉ψ, and so there is n′ ∈ N such
that (F , t, n′) |= ψ. Let us consider the heap h′ def= F + {s(x) 7→ n′}. Since n 6= s(x)
and s(y) = t 6∈ dom(h) (from the fact that (s, h) is a (x, y)-encoding of (F , t, n)), we
conlude that (s, h′) is a (x, y)-encoding of (F , t, n′). Clearly, (s, h′) |= x ↪→ ∧¬x ↪→ x, and
by induction hypothesis (s, h′) |= τx,y(ψ). By definition of h′ and the semantics of −〈1〉,

502 Appendix B. Appendix of Chapter 4

(s,F) |= size = 1 −〈1〉 (x ↪→ ∧ ¬x ↪→ x ∧ τx,y(ψ)). Lastly, from h = F + {(s(x), n)}, we
conclude that (s, h) |= τx,y(ψ).
(⇐): Suppose (s, h) |= τx,y(ψ). So, there are two disjoint heaps h1 and h2 s.t. h = h1 + h2,
(s, h1) |= size = 1 ∧ x ↪→ and (s, h2) |= size = 1−[1] (x ↪→ ∧¬x ↪→ x ∧ τx,y(ψ)). By def-
inition of encoding h = F + {(s(x), n)}, which allows us to conclude that h1 = {(s(x), n)}
and h2 = F . So, there is a heap h′ disjoint form F and such that (s, h′) |= size = 1 and
(s,F+h′) |= x ↪→ ∧¬x ↪→ x∧τx,y(ψ). As (s,F+h′) |= x ↪→ ∧¬x ↪→ x and s(x) 6∈ dom(F),
there must be a node n′ 6= s(x) such that h′ = {s(x) 7→ n′}. By definition of encoding,
(s,F+h′) is an (x, y)-encoding of (F , t, n′). By induction hypothesis, (F , t, n′) |= ψ, which
implies (F , t, n) |= 〈U〉ψ by semantics of the modality 〈U〉.

Proof of Lemma 4.32.

Lemma 4.32. ϕ in ALT is satisfiable iff so is x ↪→ ∧¬x ↪→ x∧¬y ↪→ ∧τx,y(ϕ) in SL(∗,−[1], ls).

Proof. (⇒): Suppose ϕ satisfiable, and let (F , t, n) be a pointed forest satisfying it. Thanks
to Lemma 4.18(I), without loss of generality we can assume that t 6∈ dom(F). Let us consider a
memory state (s, h) such that h = F + {s(x) 7→ n}, n 6= s(x) and s(y) = t 6∈ dom(h). By Defini-
tion 4.30, this memory state is a (x, y)-encoding of (F , t, n). The three (dis)equalities characteris-
ing (s, h) directly imply that (s, h) |= x ↪→ ∧¬x ↪→ x∧¬y ↪→ . By Lemma 4.31, (s, h) |= τx,y(ϕ).
(⇐): Suppose x ↪→ ∧ ¬x ↪→ x ∧ ¬y ↪→ ∧ τx,y(ϕ) satisfiable, and let (s, h) be a memory state
satisfying it. From the satisfaction of x ↪→ x, there is a location ` such that h(s(x)) = `. We
consider the pointed forest (F , t, n) where F = h \ {s(x) 7→h(s(x))}, n = `, and t = s(y).
From (s, h) 6|= x ↪→ x we have s(x) 6= n. From (s, h) 6|= y ↪→ we have t 6∈ dom(h). Thus,
by Definition 4.30 (s, h) is a (x, y)-encoding of (F , t, n). By Lemma 4.31, (F , t, n) |= ϕ.

Proof of Lemma 4.39.

Lemma 4.39. Let (F , t, n) be a pointed forest such that t 6∈ dom(F), and let (K,w) be
a (S,u)-encoding of (F , t, n). Given a formula ϕ in ALT, (F , t, n) |= ϕ if and only if (K,w) |= τu(ϕ).

Proof. Let K = (W, R,V). Let f : N → R∗(w) be an injection witnessing that (K,w) is a (S, u)
encoding of (F , n, t) (u ∈ {t, E }). We recall that this means that:

1f. f(t) def= w is the only world in ran(f) ∩ V(t), and f(n) is the only world in ran(f) ∩ V(n),
2f. for every n′ ∈ dom(F) it holds that (f(F(n′)), f(n′)) ∈ R,
3f. for every infinite path (w0,w1 . . .) ∈ ΠR(w) there is i ∈ N such that

a. wi ∈ V(end) and for every j ∈ [0, i− 1] we have wj 6∈ V(end),
b. for every j ∈ N, (wj ∈ V(u) and j < i) if and only if there is n′ ∈ dom(F) f(n′) = wj .

Below, we call the three properties (1f)–(3f) hypotheses whenever they refer to (K,w) and (F , n, t).
Instead, we call them properties when referring to their analogue on other two structures, for
which we want to prove their satisfaction. The proof is by structural induction on ϕ.
base case: ϕ = Hit.

(F , n, t) |= Hit
⇔ there is k ≥ 1 and there are k + 1 different nodes n0, n1, . . . , nk such that n0 = n,

nk = t and for every i ∈ [0, k − 1], F(ni) = ni+1,
(by definition of |=)

503

⇔ there are k ≥ 1 and k + 1 different worlds wk = f(nk),wk−1 = f(nk−1), . . . ,w0 = f(n0)
such that

1. from hypothesis (1f), w0 = f(n), {w0} = V(n), and wk = f(t), {wk} = V(t),
2. from hypothesis (2f), for every j ∈ [0, k − 1], (wj+1,wj) ∈ R,
3. from hypothesis (3f), wk 6∈ V(u), for every j ∈ [0, k − 1], wj ∈ V(u). Moreover,

for every j ∈ [0, k], wj 6∈ V(end).
⇔ there is a path (wk,wk−1, . . . ,w0) in K such that

1. {w0} = V(n), w0 ∈ V(u),
2. w = wk 6∈ V(u),
3. j ∈ [1, k], (wj ∈ V(u) or wj ∈ V(t)) and wj 6∈ V(end),

(manipulation from last step, and the hypothesis of f)
⇔ (K,w) |= E((u ∨ t) ∧ ¬end M u ∧ n)

(by definition of |=).
base case: ϕ = Miss.

(F , n, t) |= Miss
⇔ n ∈ dom(t) and (F , n, t) 6|= Miss (by definition of |=)
⇔ there is a path (wk,wk−1, . . . ,w0) in K (by hypothesis (2f)) such that

1. from hypothesis (1f) and (3f) wk = w, w0 ∈ V(n), w0 6∈ V(end) and w0 ∈ V(u),
2. from hypothesis (3f), for every j ∈ [1, k] wj 6∈ V(end),
3. (K,w) 6|= τu(Hit), (from the previous base case)

⇔ (K,w) |= E(¬end M u ∧ n) ∧ ¬τu(Hit).
(by definition of |=)

We omit the obvious cases for > and Boolean connectives.
induction step: ϕ = 〈U〉ψ. (⇒): Suppose (F , t, n) |= 〈U〉ψ, and so there is n′ ∈ N such that

(F , t, n′) |= ψ. Let us consider the Kripke tree K′ = (W, R,V[n ← {f(n′)}]) obtained
from K by updating the evaluation of n from {f(n)} to {f(n′)} (see hypothesis (1f) for
V(n) = {f(n)}). It is easy to verify that (K′,w) is a (S, u)-encoding of (F , t, n′). Indeed, it is
quite obvious that the same injection f considered for the two structures (F , t, n) and (K,w)
satisfy the properties (1f)–(3f) also with respect to the two structures (K′,w) and (F , t, n′).
By definition of K′, clearly (K′,w) |= uniq(n). By induction hypothesis, (K′,w) |= τu(ψ).
Lastly, from the semantics of ∃n , we conclude that (K,w) |= ∃n (uniq(n) ∧ τu(ψ)).
(⇐): The other direction follows with similar arguments (backwards). Briefly, suppose
(K,w) |= ∃n (uniq(n)∧ τu(ψ)). Then there is K′ = (W, R,V[n ←W ′]), for someW ′ ⊆ W
such that (K′,w) |= uniq(n) ∧ τu(ϕ). From uniq(n) we conclude that there is a world
w′ ∈ R∗(w) such that V(n) = {w′}. Let n′ be the node such that f(n′) = w′. It is quite easy
to see that (K′,w) is an (S, u)-encoding of (F , t, n′). Again, f is a witness of this encoding.
By induction hypothesis (F , t, n′) |= ψ. Thus, (F , t, n) |= 〈U〉ψ.

induction step: ϕ = �ψ. (⇒): Suppose (F , t, n) |= �ψ, and so there is a subforest F ′ ⊆ F
such that card(F ′) = card(F) − 1 and (F ′, t, n) |= ψ. Let n̂ be the (only) node such that
dom(F) = dom(F ′)∪{n̂}. Notice that n̂ ∈ dom(F) and hence, by hypothesis (2f) and (3f):
A. f(n̂) ∈ V(u);
B. There is a path (w0, . . . ,wk) in (K,w) going from w0 = w to wk = f(n̂). Moreover, for

every j ∈ [0, k] we have wj 6∈ V(end).

504 Appendix B. Appendix of Chapter 4

Let us consider the Kripke tree K′ = (W, R,V[u ← W ′]) where W ′ def= V(u) \ {f(n̂)}.
Notice that then W ′ ⊆ V(u) and from (A) we have card(W ′) = card(V(u)) − 1. Thus,
(K′,w) |= AG (u ⇒ u) ∧ uniq(u ∧ ¬ u). Furthermore, from (B) we conclude that (K′,w)
also satisfies E(¬end M u ∧ ¬ u). It remains to show that (K′,w) |= τu(ψ), which follows
by induction hypothesis, as we show that (K′,w) is a (S, u)-encoding of (F ′, t, n) (notice
that now the encoding uses u instead of u). More precisely, it is sufficient to check that f

satisfies the properties (1f)–(3f) for the two structures (K′,w) and (F ′, t, n). We show the
three properties separately.

Proof of property (1f). We show that
• f(t) def= w is the only element in ran(f) such that w ∈ V[u←W ′](t), and
• f(n) is the only element in ran(f) such that f(n) ∈ V[u←W ′](n).

Clearly, both statements hold directly from hypothesis (1f). Indeed, V[u←W ′] only
updates the evaluation of u, so V(n) = V[u←W ′](n) and V(t) = V[u←W ′](t).

Proof of property (2f). We show that (f(F(n′)), f(n′)) ∈ R holds for every n′ ∈ dom(F).
This holds directly from F ′ ⊆ F and hypothesis (2f).

Proof of property (3f). We show that for every infinite path (w0,w1 . . .) ∈ ΠR(w) there
is i ∈ N such that
1. wi ∈ V[u←W ′](end) and for every j ∈ [0, i− 1] we have wj 6∈ V[u←W ′](end),
2. for all j ∈ N, (wj ∈ V[u←W ′](u) and j < i) iff there is n′ ∈ dom(F ′) f(n′) = wj .

The proof of (1) holds directly from hypothesis (3f)(a), as V[u←W ′](end) = V(end).
To prove (2), let (w0,w1 . . .) ∈ ΠR(w) and i ∈ N so that (1) is satisfied. Let j ∈ N.
First, consider wj ∈ V[u ← W ′](u) and j < i. As W ′ = V(u) \ {f(n̂)}, we conclude
that wj ∈ V(u) and wj 6= f(n̂). From hypothesis (3f)(b), there is n′ ∈ dom(F) such that
f(n′) = wj . As wj 6= f(n̂), n′ 6= n̂ and so n′ ∈ dom(F ′). Conversely, suppose that there
is n′ ∈ dom(F ′) such that f(n′) = wj . In particular, n′ 6= n̂. From (3f)(b), wj ∈ V(u)
and j < i. As W ′ = V(u) \ {f(n̂)}, we conclude wj ∈ W ′. So, wj ∈ V[u←W ′](u).

This concludes the proof that (K′,w) is an (S, u)-encoding of (F ′, t, n), which allows us to
conclude that (K,w) |= τu(�ψ) from the semantics of the modality �.
(⇐): For the converse direction, let us assume that

(K,w) |= ∃ u (AG (u⇒ u) ∧ uniq(u ∧ ¬ u) ∧ E(¬end M u ∧ ¬ u) ∧ τu(ψ)).

There is W ′ ⊆ W and K′ = (W, R,V[u←W ′]) such that

(K′,w) |= AG (u⇒ u) ∧ uniq(u ∧ ¬ u) ∧ E(¬end M u ∧ ¬ u) ∧ τu(ψ).

By (K′,w) |= AG (u⇒ u) ∧ uniq(u ∧ ¬ u), there is a world ŵ ∈ R∗(w) ∩ V(u) such that

(†) R∗(w) ∩W ′ = R∗(w) ∩ V[u←W ′](u) = (R∗(w) ∩ V(u)) \ {ŵ}.
Moreover, from (K′,w) |= E(¬end M u∧¬ u), we conclude that the only path (w0,w1 . . . ,wk)
going from w0 = w to wk = ŵ is such that for all i ∈ [0, k], wi 6∈ V[u←W ′](end) = V(end).
From hypothesis (3f) and ŵ ∈ V(u), we conclude that there is a node n̂ ∈ dom(F) such that
f(n̂) = ŵ. Let us then consider the finite forest F ′ ⊆ F such that dom(F ′) = dom(F)\{n̂}.
From (†) and the hypothesis (1f)–(3f) we can show that (K′,w) is an (S, u)-encoding
of (F ′, t, n). More precisely, f is a witness of the encoding between these two structures.
Details are omitted, as the proof is analogous to the left-to-right direction. By induction
hypothesis, (F ′, t, n) |= ψ. As card(F ′) = card(F)− 1 and F ′ ⊆ F , (F , t, n) |= �ψ.

505

induction step: ϕ = �* ψ. This case is very similar to the case for ϕ = �ψ.
(⇒): Suppose (F , t, n) |= �* ψ, and so there is F ′ ⊆ F such that (F ′, t, n) |= ψ. Let us
consider the set W ′ = {w′ ∈ W | there is n′ ∈ dom(F ′) s.t. f(n′) = w′}. Informally, this
is the set of worlds that corresponds to nodes in dom(F ′). Consider the Kripke tree K′ =
(W, R,V[u←W ′]). By hypothesis (3f), for every n′ ∈ dom(F) we have f(n′) ∈ V(u), which
in turn implies V[u ← W ′](u) = W ′ ⊆ V(u) = V[u ← W ′](u) (as F ′ ⊆ F). This implies
that (K′,w) satisfies AG (u ⇒ u). It remains then to show that (K′,w) |= τu(ψ), which
follows by induction hypothesis, as we show that (K′,w) is a (S, u)-encoding of (F ′, t, n).
As in the induction step dealing with the modality �, it is sufficient to check that f

satisfies properties (1f)–(3f) for the two structures (K′,w) and (F ′, t, n). The proof of the
properties (1f) and (2f) is analogous to the one given for the induction step ϕ = �ψ.
Therefore, let us focus on the proof of property (3f):

Proof of property (3f). We show that for every infinite path (w0,w1 . . .) ∈ ΠR(w) there
is i ∈ N such that
1. wi ∈ V[u←W ′](end) and for every j ∈ [0, i− 1] we have wj 6∈ V[u←W ′](end),
2. for all j ∈ N, (wj ∈ V[u←W ′](u) and j < i) iff there is n′ ∈ dom(F ′) f(n′) = wj .

The proof of (1) holds directly from hypothesis (3f)(a), as V[u←W ′](end) = V(end).
To prove (2), let (w0,w1 . . .) ∈ ΠR(w) and i ∈ N so that (1) is satisfied. Let j ∈ N.
The left-to-right direction of (2) is obvious. Indeed, given W ∈ V[u←W ′](u) =W ′,
by definition of W ′, there is a node n′ ∈ dom(F ′) such that f(n′) = wj . For the left-
to-right direction, suppose that there is a node n′ ∈ dom(F ′) such that f(n′) = wj .
Clearly, from the definition of W ′, wj ∈∈ V[u ← W ′](u) = W ′. Moreover, j < i

directly from the fact that n′ ∈ dom(F) (by F ′ ⊆ F) and from the hypothesis (3f)(b).

This concludes the proof that (K′,w) is an (S, u)-encoding of (F ′, t, n), which allows us to
conclude that (K,w) |= τu(�* ψ) from the semantics of the modality �*.
(⇐): Suppose (K,w) |= ∃ u (AG (u⇒ u)∧ τu(ψ)), and so there is a W ′ ⊆ W and a Kripke
tree K′ = (W, R,V[u ← W ′]) such that (K′,w) |= AG (u ⇒ u) ∧ τu(ψ). We define F ′ ⊆ F
such that dom(F ′) = {n ∈ dom(F) | f(n) ∈ W ′}. From (K′,w) |= AG (u ⇒ u) we derive
that W ′ = V[u ← W ′](u) ⊆ V[u ← W ′](u) = V(u). By hypothesis (1f)–(3f) we can show
that (K′,w) is a (S, u)-encoding of (F ′, t, n). Details are omitted, as the proof is analogous
to the left-to-right direction. By induction hypothesis, (F ′, t, n) |= ψ holds. From F ′ ⊆ F ,
we conclude: (F , t, n) |= �* ψ.

Proof of Lemma 4.40.

We recall that enc def= ¬t ∧ t ∧ uniq(t) ∧ uniq(n) ∧ AF (end).

Lemma 4.40. A formula ϕ in ALT is satisfiable iff so is enc∧τt(ϕ) in QCTLt.

Proof. (⇒): Let (F , t, n) be a pointed forest satisfying ϕ. From Lemma 4.18(I), we can assume
without loss of generality that t 6∈ dom(F). This auxiliary property allows us to construct
an (S, t)-encoding of (F , t, n). Let (K,w) be such an encoding. By Lemma 4.39, (K,w) |=τt(ϕ).
From the property (1) of the encoding (Definition 4.38), (K,w) |= t ∧ uniq(t) ∧ uniq(n). From
the property (3)(a) of the encoding, (K,w) |= AF (end). Lastly, property (3)(b) of the encoding,
(K,w) |= ¬t, as t is not in the domain of F .

506 Appendix B. Appendix of Chapter 4

(⇐): Let (K,w), with K = (W, R,V), be a pointed Kripke tree satisfying enc∧τt(ϕ). We show
that (K,w) is an (S, t)-encoding of some pointed forest. From (K,w) |= AF (end), in every infi-
nite path (w0,w1 . . .) ∈ ΠR(w) there is i ∈ N such that wi ∈ V(end) and for every j ∈ [0, i− 1]
we have wj 6∈ V(end). (notice that this corresponds to property (a) of the encoding). Let us con-
sider the set U def= {wk | k ∈ N, (w0,w1, . . . ,wk, . . .) ∈ ΠR(w), for every j ∈ [0, k],wj 6∈ V(end)}.
Informally, U is the set of those worlds that can be reached from w without passing through
or ending in a world satisfying end . Thanks to AF (end) and the fact that Kripke trees are
finitely-branching, U is finite. W.l.o.g. let us assume N =W (both sets are countably infinite).
Let (F , t, n) be the pointed forest characterised as follows:

A. t = w and {n} = V(n),
B. F(w) = w′ if and only if w ∈ U , (K,w) |= t and {w′} = R−1(w).

Notice that this pointed forest is well-defined and unique. Indeed, from (K,w) |= uniq(n),
card(V(n)) = 1, and since R encodes the children relation of a tree, R−1 is functional. More-
over, from (K,w) |= ¬t, we conclude that t 6∈ dom(F). In order to conclude the proof, it is
sufficient to show that (K,w) is an (S, t)-encoding of (F , t, n), as we can then derive (F , t, n) |= ϕ

by Lemma 4.39. As a witness of the encoding, let us take any injection f : N → R∗(w) such
that for every n ∈ dom(F), f(n) = n. We show the following properties:

1f. f(t) def= w is the only world in ran(f) ∩ V(t), and f(n) is the only world in ran(f) ∩ V(n),
2f. for every n′ ∈ dom(F), it holds that (f(F(n′)), f(n′)) ∈ R,
3f. for every infinite path (w0,w1 . . .) ∈ ΠR(w) there is i ∈ N such that

a. wi ∈ V(end) and for every j ∈ [0, i− 1] we have wj 6∈ V(end),
b. for every j ∈ N, (wj ∈ V(t) and j < i) if and only if there is n′ ∈ dom(F) f(n′) = wj .

The property (1f) holds directly from (A) and (K,w) |= uniq(t). The property (2f) holds directly
from (B). We have already shown property (3f)(a) when considering the formula AF (end).
Lastly, (3f)(b) is also quite direct. Let us consider some infinite path (w0,w1 . . .) ∈ ΠR(w) and
some i ∈ N such that wi ∈ V(end) and for every j ∈ [0, i − 1] we have wj 6∈ V(end). For
the left-to-right direction of (3f)(b), we consider a world wj ∈ V(t) where j < i. By definition
of U , wj ∈ U . As wj ∈ V(t), wj 6= w and so j > 1, and moreover (K,wj) |= t. By (B), we
have f(wj) = wj ∈ dom(F). Conversely, suppose that f(wj) = wj ∈ dom(F). From (B), wj ∈ U
and (K,wj) |= t, which in turn implies that wj ∈ V(u) and j < i, completing the proof.

Proof of Theorem 4.41.

Theorem 4.41. The satisfiability problems of QCTLt(EU0) and QCTLt(EF1) are Tower-c.

In order to show this result it is sufficient to prove the two equivalences E(ϕUψ) ≡ χEU(ϕ,ψ)
and AG (ϕ⇒ AGψ) ≡ χAG AG (ϕ,ψ). The theorem then follows from Lemma 4.40 together with
the equivalence EGϕ ≡ χEG (ϕ) showed at the end of Section 4.4.2.

Proof of E(ϕUψ) ≡ χEU(ϕ,ψ). We recall the definition of χEU(ϕ,ψ):

χEU(ϕ,ψ) def= ∃p
(
AG (¬ϕ ∧ ¬ψ ⇒ p) ∧ AG (p⇒ AG p) ∧ EF (ψ ∧ ¬p)

)
.

where p does not appear in ϕ or ψ.
(⇒): Suppose (K,w) |= E(ϕUψ), and so there are (w0,w1, . . .) ∈ ΠR(w) and j ∈ N such
that (K,wj) |= ψ and for all i ∈ [0, j−1], (K,wi) |= ϕ. We focus on the finite prefix (w0, . . . ,wj)
of the path above, and consider the Kripke tree K′ = (W, R,V[p←W \{w0, . . . ,wj}]) obtained

507

form K by changing the evaluation of p from V(p) to the set of every world that is not in the
finite prefix (w1, . . . ,wj). Let us show that (K′,w) satisfies the following three subformulae
of χEU(ϕ,ψ): AG (¬ϕ ∧ ¬ψ ⇒ p), AG (p ⇒ AG p), and EF (ψ ∧ ¬p). Notice that every world
in {w0, . . . ,wj−1} satisfies ϕ, wj satisfies ψ, and every other world satisfies p. This implies
that (K′,w) |= AG (¬ϕ ∧ ¬ψ ⇒ p). Moreover, given a world w′ ∈ R∗(w) that satisfies p,
it holds that {w0, . . . ,wj} ∩ R∗(w′) = ∅, which in turn means that every world in R∗(w′)
satisfies p. So, (K′,w) |= AG (p⇒ AG (p)). By definition (K′,wj) |= ψ ∧ ¬p holds, which implies
(K′,w) |= EF (ψ ∧ ¬p). By applying the definition of ∃p, we conclude: (K,w) |= χEU(ϕ,ψ).
(⇐): Suppose that (K,w) |= χEU(ϕ,ψ) and therefore there is a model (K′,W), where K′ =
(W, R,V[p←W ′]) for some W ′ ⊆ W such that:

A. (K′,w) |= AG (¬ϕ ∧ ¬ψ ⇒ p). So, every w′ ∈ R∗(w) satisfies ϕ, ψ or p,
B. (K′,w) |= AG (p⇒ AG p). So, for every w′ ∈ R∗(w) if (K′,w′) |= p then R∗(w′) ⊆ V(p),
C. (K′,w) |= EF (ψ∧¬p). So, there is a path (w0,w1, . . .) ∈ ΠR(w) such that, for some j ≥ 0,

(K′,wj) |= ψ and wj 6∈ V(p).
Let us consider the finite prefix (w0,w1, . . . ,wj) of the path in (C), so that (K′,wj) |= ψ

and wj 6∈ V(p). In order to conclude the proof, it is sufficient to show that every world in
this finite path satisfies ϕ or ψ. Ad absurdum, suppose that there is i ∈ [0, j] such that wi
does not satisfy neither ϕ nor ψ. Clearly, wj ∈ R∗(wi) and, by (A), wi ∈ V(p). However, this
is contradictory, as by (B) it implies wj ∈ V(p). So, every world in the path (w0,w1, . . . ,wj)
satisfies either ϕ or ψ. This implies that (K′,w) |= E(ϕUψ). As p does not occur in ϕ nor it
does occur in ψ, by semantics of ∃p we conclude that (K,w) |= E(ϕUψ).

Proof of AG (ϕ⇒ AGψ) ≡ χAG AG (ϕ,ψ). We recall the definition of χAG AG (ϕ,ψ):

χAG AG (ϕ,ψ) def= ∀p∀q
(
uniq(p) ∧ uniq(q) ∧ EF (p ∧ ϕ) ∧ EF (q ∧ ¬ψ)⇒ E(¬pM q)

)
,

where p and q do not appear in ϕ or ψ.
(⇒): Suppose (K,w) |= AG (ϕ ⇒ AGψ). Let K′ = (W, R,V[p←W ′][q ←W ′′]) be an arbi-
trary Kripke tree obtained from K by changing the evaluation of p and q in such a way that
(K′,w) |= uniq(p) ∧ uniq(q) ∧ EF (p ∧ ϕ) ∧ EF (q ∧ ¬ψ). In order to prove the result, we show
that (K′,w) |= E(¬pM q). By definition of uniq(.), there are two worlds w′,w′′ ∈ R∗(w) such
that W ′ ∩ R∗(w) = {w′} and W ′′ ∩ R∗(w) = {w′′}. From the satisfaction of EF (p ∧ ϕ) we
have (K′,w′) |= ϕ, whereas by EF (q ∧ ¬ψ) we get (K′,w′′) 6|= ψ. From (K′,w′) |= ϕ together
with the hypothesis (K,w) |= AG (ϕ ⇒ AGψ), and since p and q do not appear in ϕ or ψ, we
conclude that for every ŵ ∈ R∗(w′), (K′, ŵ) |= ψ holds. Thus, w′′ 6∈ R∗(w′). Let us consider
the path in R going from w to w′′, say (w0 = w, . . . ,wk = w′′). As w′ is not in this path, for
every j ∈ [0, k], wj 6∈ V[p ← W ′][q ← W ′′](p). Moreover, wk = w′′ ∈ V[p ← W ′][q ← W ′′](q).
We conclude that (K′,w) |= E(¬pM q).
(⇐): We prove the contrapositive: (K,w) 6|= AG (ϕ ⇒ AGψ) implies (K,w) 6|= χAG AG (ϕ,ψ).
Since ¬AG (ϕ ⇒ AGψ) ≡ EF (ϕ ∧ EF¬ψ), (K,w) 6|= AG (ϕ ⇒ AGψ) implies that there is a
world w′ ∈ R∗(w) such that (K,w′) |= ϕ and for some w′′ ∈ R∗(w′) it holds that (K,w′′) |= ¬ψ.
Then, let us consider the Kripke tree K′ = (W, R,V[p← {w′}][q ← {w′′}]) obtained from K by
changing the evaluation of p and q from V(p) and V(q) to {w′} and {w′′}, respectively. A simple
check reveals that (K′,w) |= uniq(p) ∧ uniq(q) ∧ EF (p ∧ ϕ) ∧ EF (q ∧ ¬ψ). Since w′ ∈ R∗(w)
and w′′ ∈ R∗(w′), there must exist a path (w0,w1, . . .) ∈ ΠR(w) such that, for some i ≥ 0
and j ≥ i, we have w′ = wi and w′′ = wi. From (K′,w) |= uniq(p) ∧ uniq(q), the prefix
(w0, . . . ,wj) is the only path starting in w that ends with a world satisfying q. We conclude
that (K′,w) 6|= E(¬pM q), and thus (K,w) 6|= χAG AG (ϕ,ψ).

508 Appendix B. Appendix of Chapter 4

Proof of Lemma 4.43.

Lemma 4.43. Let (F , t, n) be a pointed model s.t. n 6= t and t 6∈ dom(F). Let (K, n) be an
encoding of (F , t, n). Given a formula ϕ in ALT, (F , t, n) |= ϕ iff (K, n) |= τ(ϕ).

Proof. Recall that we assumeW = N , and so in what follows we write directlyN and n, n′, n′′ . . .
instead of W and w,w′,w′′ Then, as in the statement, let K = (N , R,V) be a Kripke-style
finite function so that (K, n) is the encoding of a finite forest (F , n, t) where n 6= t 6∈ dom(F). In
particular, this means that R = F ∪ {(t, t)} (see Definition 4.42).

Similarly to Lemma 4.39, the proof is by structural induction on ϕ.
base case: ϕ = Hit.

(F , t, n) |= Hit,
⇔ there is δ ≥ 1 such that Fδ(n) = t (by definition of |=),
⇔ t ∈ R+(n) (as R = F ∪ {(t, t)}),
⇔ there is a subset R1 ⊆ R such that

1. for every n′ ∈ N , if R1(n′) 6= ∅ then t ∈ R+
1 (n′),

2. R1(n) 6= ∅ and (t, t) ∈ R1,
(again from the definition of R. R1 simply removes worlds that do not reach t)

⇔ there R1 ⊆ R such that R1(n) 6= ∅ and for every n′ ∈ N , if R1(n′) 6= ∅ then there is
n′′ ∈ R1(n′) such that R1(n′′) 6= ∅,
(as R is finite and its only cycle is the self-loop on t)

⇔ there is R1 ⊆ R such that ((N , R1,V), n) |= ♦> ∧ [U](♦> ⇒ ♦♦>) (by def. of |=),
⇔ (K, n) |= �*(♦> ∧ [U](♦> ⇒ ♦♦>)) (by definition of �* and |=).

base case: ϕ = Miss.

(F , t, n) |= Miss,
⇔ n ∈ dom(F) and (F , t, n) 6|= Hit (by definition of |=),
⇔ R(n) 6= ∅ and (K, n) 6|= τ(Hit) (by def. of the encoding and the previous base case),
⇔ (K, n) |= ♦> ∧ ¬τ(Hit) (by definition of |=).

We omit the obvious cases for > and Boolean connectives.
induction step: ϕ = 〈U〉ψ. By relying on Lemma 4.18(II), t 6∈ dom(F) and R = F ∪ {(t, t)},

we have the following set of equivalences:

(F , t, n) |= 〈U〉ψ,
⇔ there is n′ ∈ N such that (F , t, n′) |= ψ (by def. of |=),
⇔ there is n′ ∈ N such that (F , t, n′) |= ψ and n′ 6= t,

(by Lemma 4.18(II) and t 6∈ dom(F))
⇔ there is n′ ∈ N such that (K, n′) |= τ(ψ) and n′ 6= t,

(by induction hypothesis, as obviously (K, n′) encodes (F , t, n′))
⇔ there is n′ ∈ N such that (K, n′) |= τ(ψ) and (n′, n′) 6∈ R,

(by R = F ∪ {(t, t)}, we have (n′, n′) ∈ R if and only if n′ = t)
⇔ there is n′ ∈ N such that (K, n′) |= ¬selfloop ∧ τ(ψ) (by def. of |=),
⇔ (K, n) |= 〈U〉(¬selfloop ∧ τ(ψ)) (from the semantics of 〈U〉).

509

induction case: ϕ = �ψ. (⇒): Suppose (F , t, n) |= �ψ, and so there is a subforest F ′ ⊆ F
such that card(F ′) = card(F) − 1 and (F ′, t, n) |= ψ. Let n′ be the node removed from
dom(F) in order to obtain F ′, i.e. dom(F ′) = dom(F)\{n′}. We consider two Kripke-style
finite functions K1 = (N , R1,V) and K2 = (N , R2,V) such that

A. R1
def= {(n′,F(n′))}, B. R2 = F ′ ∪ {(t, t)}.

From (A), we conclude that (K1, n) |= size = 1. From (B), and by definition of encoding
it holds that (K2, n) is an encoding of (F ′, t, n). As (t, t) ∈ R2, (K2, n) |= 〈U〉 selfloop.
By induction hypothesis, (K2, n) |= τ(ψ). From dom(F ′) = dom(F) \ {n′}, R1 ∩ R2 = ∅.
From R = F ∪ {(t, t)}, (A) and (B), we conclude that K1 + K2 = K. Thus, (K, n)
satisfies size = 1 ∗ (τ(ψ) ∧ 〈U〉 selfloop), i.e. τ(�ψ).
(⇐): Suppose that (K, n) |= size = 1 ∗ (τ(ψ) ∧ 〈U〉 selfloop), and so there are two fi-
nite functions K1 = (N , R1,V) and K2 = (N , R2,V) s.t. K1 +K2 = K, card(R1) = 1,
(K2, n) |= τ(ψ) and (K2, n) |= 〈U〉 selfloop. As R = F ∪ {(t, t)} and F is acyclic, we
have (t, t) ∈ R2 and R1 ⊆ F . Consider the forest F ′ def= F \R1. We have R2 = F ′ ∪ {(t, t)},
and so (K2, n) encodes (F ′, t, n). (F ′, t, n) |= ψ follows by induction hypothesis. By defini-
tion of F ′ ⊆ F we have card(F ′) = card(F)− 1, and so (F , t, n) |= �ψ.

induction case: ϕ = �* ψ. This case is very similar to the previous one, the only difference
being that F ′ is not constrained to be such that card(F ′) = card(F)− 1.
(⇒): Suppose (F , t, n) |= �* ψ, and so there is F ′ ⊆ F such that (F ′, t, n) |= ψ. Let S be
the set of nodes removed from dom(F) in order to obtain F ′, i.e. dom(F ′) = dom(F) \ S.
We consider two Kripke structures K1 = (N , R1,V) and K2 = (N , R2,V) such that

A. R1 = {(n′,F(n′)) | n′ ∈ S}, B. R2 = F ′ ∪ {(t, t)}.
Clearly, R1 ∩ R2 = ∅ and R1 ∪ R2 = R (since R = F ∪ {(t, t)}). So, K = K1 + K2.
From (t, t) ∈ R2, we have (K2, n) |= 〈U〉 selfloop. From (B) we conclude that (K2, n) is an
encoding of (F ′, t, n), and thus (K2, n) |= τ(ψ) by induction hypothesis. Therefore, (K, n)
satisfies > ∗ (τ(ψ) ∧ 〈U〉 selfloop), i.e. τ(�* ψ).
(⇐): Suppose that (K, n) |= >∗(τ(ψ)∧〈U〉 selfloop), and so there are two finite functions
K1 = (N , R1,V) and K2 = (N , R2,V) s.t. K1 + K2 = K, (K2, n) |= τ(ψ) and (K2, n) |=
〈U〉 selfloop. As R = F ∪ {(t, t)} and F is acyclic, we have (t, t) ∈ R2, which in
turn implies that R1 ⊆ F . Then, let us consider the finite forest F ′ def= F \ R2. Clearly,
R1 = F ′∪{(t, t)}, and so (K2, n) encodes (F ′, t, n). By induction hypothesis, (F ′, t, n) |= ψ

and from F ′ ⊆ F we conclude that (F , t, n) |= �ψ.

Proof of Lemma 4.44.

As a preliminary result, we show that the formula hascycles, recalled below, is correct.

hascycles def= �*ML

(
〈U〉♦> ∧ [U](♦> ⇒ ♦♦>)

)
.

Lemma B.1. Let (K,w) be a pointed finite function, where K = (W, R,V) and w ∈ W.
(K,w) |= hascycles if and only if there is a world w′ ∈ W and δ ≥ 1 such that (w′,w′) ∈ Rδ.

Proof. (⇒): Suppose (K,w) |= hascycles and therefore there is a finite function K′ ⊆ K,
where K′ = (W, R′,V), such that (K′,w) satisfies 〈U〉♦> ∧ [U](♦> ⇒ ♦♦>). Ad absurdum,
suppose that for every w′ ∈ W and δ ≥ 1, (w′,w′) 6=∈ R′δ. In other words, R′ is acyclic. From
(K′,w) |= 〈U〉♦>, R′ 6= ∅. As R′ is finite, this means that there is a world w′ that is a root

510 Appendix B. Appendix of Chapter 4

of a non-empty tree, i.e. R′(w) = ∅ and there is a world w′′ such that w′′ ∈ R(w′). When
considering (w′′,w′) ∈ R′ such that R′(w) = ∅, we find that (K′,w′′) |= ♦> ∧ ¬♦♦>. However,
this contradicts the fact that (K′,w) |= [U](♦> ⇒ ♦♦>). Thus, there is a world w′ ∈ W
and δ ≥ 1 such that (w′,w′) ∈ Rδ.
(⇐): Suppose there is a world w′ ∈ W and δ ≥ 1 such that (w′,w′) ∈ Rδ. Let us consider the
finite function K′ ⊆ K, where K′ = (W, R′,V), such that R′ def= {(w1,w2) ∈ R | w′ ∈ R∗(w2)}.
Informally, R′ contains all the pairs (w1,w2) ∈ R such that there is a path going from w2 to
w′. Since (w′,w′) ∈ Rδ and R′ ⊆ R, this implies that (w′,w′) ∈ R′δ, and so R′(w′) 6= ∅.
Thus, (K′,w) |= 〈U〉♦>. Let us show that (K′,w) |= 〈U〉(♦> ⇒ ♦♦>). Suppose w1 ∈ W such
that (K′,w1) |= ♦>. So, there is w2 such that (w1,w2) ∈ R′. If w2 6= w′, then from w′ ∈ R∗(w2)
there must be w3 such that (w2,w3) ∈ R and w′ ∈ R∗(w3). By definition of R′, (w2,w3) ∈ R′
and thus R2(w1) 6= ∅. Otherwise w2 = w′, and by R(w′) 6= ∅ we conclude again R2(w1) 6= ∅.
So, (K′,w1) |= ♦♦>. By K′ ⊆ K, we conclude: (K,w) |= �*ML

(
〈U〉♦> ∧ [U](♦> ⇒ ♦♦>)

)
.

From the correctness of hascycles it is fairly easy to see that ∃1selfloop is also correct.

∃1selfloop def= 〈U〉
(
selfloop ∧ ¬�ML(�⊥ ∧ hascycles)

)
.

Lemma B.2. Let (K,w) be a pointed finite function, where K = (W, R,V) and w ∈ W.
(K,w) |= ∃1selfloop iff there is a world w′ ∈ W s.t. (w′,w′) ∈ R and R \ {(w′,w′)} is acyclic.

Proof. (⇒): (K,w) |= ∃1selfloop, and therefore (K,w′) |= selfloop ∧ ¬�ML(�⊥ ∧ hascycles)
holds for some world w′. So, (w′,w′) ∈ R. Ad absurdum, suppose that R \ {(w′,w′)} is cyclic,
and consider the Kripke-style finite function K′ = (W, R \ {(w′,w′)},V). By Lemma B.1, we
have (K′,w′) |= � ⊥ ∧hascycles. However, as K′ ⊆ K and card(K′) = card(K)− 1, this contra-
dicts the fact that (K,w′) |= ¬�ML(�⊥ ∧ hascycles). So, R \ {(w′,w′)} is acyclic.
(⇐): This direction follows similar arguments as the left-to-right direction (backwards).

We are now ready to prove Lemma 4.44.

Lemma 4.44. Every formula ϕ in ALT is equisatisfiable with τ(ϕ)∧∃1selfloop∧¬selfloop.

Proof. (⇒): Suppose ϕ to be satisfiable, and let (F , t, n) be a pointed forest satisfying it.
By Lemma 4.18((I) and (II)), we can assume w.l.o.g. that t 6∈ dom(F) and n 6= t. Let (K, n)
being the pointed Kripke-style finite function where K = (N , R,V) and R = F + {(t, t)}.
By Definition 4.42, (K, n) is an encoding of (F , t, n). By Lemma B.2, (K, n) |= ∃1selfloop. By
n 6= t and the definition of R, (K, n) |= ¬selfloop. By Lemma 4.43, (K, n) |= τ(ϕ).
(⇐): Suppose that τ(ϕ) ∧ ∃1selfloop ∧ ¬selfloop is satisfiable, and let us consider (K, n),
where K = (N , R,V), be a pointed Kripke-style finite function satisfying it. By Lemma B.2,
there is a world t such that (t, t) ∈ R and R \ {(t, t)} is acylic (and so it is a finite forest). From
(K, n) |= ¬selfloop we have n 6= t. Consider the pointed forest (F , n, t) where F = R \ {(t, t)}.
By Definition 4.42, (K, n) is an encoding of (F , t, n). By Lemma 4.43, (F , t, n) |= ϕ.

C

Appendix of Chapter 5

Contents
Proofs of Lemma 5.19(II) and Lemma 5.19(III). 513
Vade mecum on the upper bounds for Core[S](X, α). 519
Proofs of Lemma 5.40(I), Lemma 5.40(IV) and Lemma 5.40(V). 522
Proof of Lemma 5.41. 534

511

513

Proofs of Lemma 5.19(II) and Lemma 5.19(III).

Lemma 5.19(II). Consider two memory states (s, h), (s, h′) such that (s, h) ≈WX,α (s, h′) and
h \ {(`, `′) ∈ h | ` ∈ Self[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Self[W]Xs,h′}. Then, (s, h)↔WX,α (s, h′).

Proof. The proof follows very closely the one given for Lemma 5.19(I). Consider two heaps h1
and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and α = α1 + α2. Notice that this requires
α to be at least two, otherwise the lemma trivially holds. We partition the set Self[W]Xs,h′ into
two sets S1 and S2, using the following case analysis:

if card(Self[W]Xs,h ∩ dom(h1)) < α1 then

let S1 be a set of card(Self[W]Xs,h ∩ dom(h1)) locations in Self[W]Xs,h′
such that s(u) ∈ S1 if and only if s(u) ∈ Self[W]Xs,h ∩ dom(h1).

S2 ← Self[W]Xs,h′ \ S1.

else if card(Self[W]Xs,h ∩ dom(h2)) < α2 then

let S2 be a set of card(Self[W]Xs,h ∩ dom(h2)) locations in Self[W]Xs,h′
such that s(u) ∈ S2 if and only if s(u) ∈ Self[W]Xs,h ∩ dom(h2).

S1 ← Self[W]Xs,h′ \ S2.

else (i.e. card(Self[W]Xs,h ∩ dom(h1)) ≥ α1 and card(Self[W]Xs,h ∩ dom(h2)) ≥ α2)

let S1 be a set of α1 locations in Self[W]Xs,h′
such that s(u) ∈ S1 if and only if s(u) ∈ Self[W]Xs,h ∩ dom(h1).

S2 ← Self[W]Xs,h′ \ S1.

Notice that S1 and S2 are always well-defined, since both (s, h) and (s, h′) satisfy the same
formulae among u ∈ selfWX and selfWX ≥ β, for every β ∈ [1, α]. Indeed, thanks to the
formula u ∈ selfWX , if s(u) ∈ Self[W]Xs,h ∩ dom(hj) (where j ∈ {1, 2}) then s(u) ∈ Self[W]Xs,h′
and so s(u) can be selected when building Sj . From the formulae of the form selfWX ≥ β, if
card(Self[W]Xs,h ∩ dom(hj)) < αj then, as αj < α we conclude that Self[W]Xs,h′ contains at least
card(Self[W]Xs,h ∩ dom(hj)) locations, allowing us to correctly define Sj in the first two cases
above. If instead card(Self[W]Xs,h ∩ dom(h1)) ≥ α1 and card(Self[W]Xs,h ∩ dom(h2)) ≥ α2, then
we conclude that both Self[W]Xs,h and Self[W]Xs,h′ contains at least α > α1 locations. Again, this
allows us to correctly define S1 in the last case above. S1 and S2 enjoy the following properties,
given with respect to j ∈ {1, 2}.

1. s(u) ∈ Sj if and only if s(u) ∈ Self[W]Xs,h ∩ dom(hj),

2. min(αj , card(Sj)) = min(αj , card(Self[W]Xs,h ∩ dom(hj))).
Proof of (1). From the equisatisfaction of u ∈ remWX , s(u) ∈ Self[W]Xs,h iff s(u) ∈ Self[W]Xs,h′ .
Then, the property follows from the definition of S1 and S2.

Proof of (2). Proof analogous to (2) in Lemma 5.19(I).
We rely on S1 and S2 in order to define the heaps h′1 and h′2 such that (s, h1) ≈WX,α1 (s, h′1)
and (s, h2) ≈WX,α2 (s, h′2) (as required by the hop relation ↔WX,α). As done in Lemma 5.19(I), let
us define ĥ1

def= h1 \ {(`, `′) ∈ h1 | ` ∈ Self[W]Xs,h} and ĥ2
def= h2 \ {(`, `′) ∈ h2 | ` ∈ Self[W]Xs,h},

i.e. the two heaps obtained from h1 and h2 by removing the locations in Self[W]Xs,h from their
domain. From h = h1 + h2 we conclude that:

514 Appendix C. Appendix of Chapter 5

h = ĥ1 + ĥ2 + {(`, `′) ∈ h | ` ∈ Self[W]Xs,h}.

Thus, from the hypothesis h \ {(`, `′) ∈ h | ` ∈ Self[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Self[W]Xs,h′}
we derive ĥ1 + ĥ2 = h′ \ {(`, `′) ∈ h′ | ` ∈ Self[W]Xs,h′}. We define the heaps h′1 and h′2 as:

h′1
def= ĥ1 + {(`, `′) ∈ h′ | ` ∈ S1}, h′2

def= ĥ2 + {(`, `′) ∈ h′ | ` ∈ S2}.

As {(`, `′) ∈ h′ | ` ∈ S1} + {(`, `′) ∈ h′ | ` ∈ S2} = {(`, `′) ∈ h′ | ` ∈ Self[W]Xs,h′} by definition
of S1 and S2, the two heaps h′1 and h′2 are well-defined, they are disjoint, and h′ = h′1 + h′2.
Moreover, S1 = Self[W]Xs,h′ ∩ dom(h′1) and S2 = Self[W]Xs,h′ ∩ dom(h′2). The heaps h′1 and h′2
enjoy the following four properties. Let j ∈ {1, 2}.

A. (a) for every t ∈ T[W]X, [[t]]Xs,hj is defined iff so is [[t]]Xs,h′j . If defined, [[t]]Xs,hj = [[t]]Xs,h′j .
(b) [[t]]Xs,hj ∈ dom(hj) if and only if [[t]]Xs,h′j ∈ dom(h′j).
(c) Given t′ ∈ X ∪ {t}, we have hj([[t]]Xs,hj) = [[t′]]Xs,hj if and only if h′j([[t]]Xs,h′j) = [[t′]]Xs,h′j .
(d) ` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj if and only if ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j .

These four statements are the same as the ones in (A), proof of Lemma 5.19(I). As
in that proof we have only shown the left-to-right direction, here we do the opposite
and show the right-to-left direction. Again, the left-to-right direction is analogous.

Proof of (a). Obvious for t ∈ X, so suppose t = n(x) ∈ NV[W]X.
(⇐): Suppose [[n(x)]]Xs,h′j defined, and so [[n(x)]]Xs,h′j

by def= h′j(s(x)). As s(x) ∈ Lab[W]Xs,h′ ,

s(x) 6∈ Self[W]Xs,h′ , and therefore s(x) ∈ dom(ĥj) and ĥj(s(x)) = h′j(s(x)). By defini-
tion of ĥj , ĥj(s(x)) = hj(s(x)). Thus, [[n(x)]]Xs,hj = [[n(x)]]Xs,h′j .

Proof of (b). (⇐): Suppose [[t]]Xs,h′j ∈ dom(h′j). By Lemma 5.14(I), [[t]]Xs,h′j = [[t]]Xs,h′ and

thus [[t]]Xs,h′j 6∈ Self[W]Xs,h′ . Therefore, [[t]]Xs,h′j ∈ dom(ĥj). From (a), [[t]]Xs,h′j = [[t]]Xs,hj ,

which in turn implies [[t]]Xs,hj ∈ dom(ĥj) ⊆ dom(hj).
Proof of (c). (⇐): h′j([[t]]Xs,h′j) = [[t′]]Xs,h′j and therefore by (a) we have [[t]]Xs,hj = [[t]]Xs,h′j

and [[t′]]Xs,hj = [[t′]]Xs,h′j . As done in the proof of (b), we conclude that [[t]]Xs,h′j ∈ dom(ĥj).

By ĥj ⊆ h′j , ĥj([[t]]Xs,h′j) = [[t′]]Xs,h′j . By ĥj ⊆ hj , hj([[t]]Xs,hj) = [[t′]]Xs,hj .

Proof of (d). (⇐): Assume ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j . By definition, it cannot be that `
is assigned to a program variable in X, as otherwise ` ∈ Lab[W]Xs,h′j . So, there is a
next-point variable n(x) such that [[n(x)]]Xs,h′ = `. From s(x) ∈ Lab[W]Xs,h′ , we derive
that s(x) 6∈ Self[W]Xs,h′ and therefore s(x) ∈ dom(h′ \ {(`, `′) ∈ h′ | ` ∈ Self[W]Xs,h′}).
From h \ {(`, `′) ∈ h | ` ∈ Self[W]Xs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Self[W]Xs,h′}, we derive
that h(s(x)) = ` and so ` ∈ Lab[W]Xs,h. Ad absurdum, suppose ` ∈ Lab[W]Xs,hj . From (a)
we have ` ∈ Lab[W]Xs,h′j , contradicting ` ∈ Lab[W]Xs,h′\ Lab[W]Xs,h′j . Thus, ` 6∈ Lab[W]Xs,hj
and therefore ` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj .

B. For every x ∈ X, Pred[W]Xs,h′j (x) = Pred[W]Xs,hj (x).

We show the right-to-left direction of this statement. The left-to-right direction is
analogous (see also (B) in the proof of Lemma 5.19(I)).

Proof. (⇐): Suppose ` ∈ Pred[W]Xs,hj (x). By definition, ` 6∈ Lab[W]Xs,hj and hj(`) = s(x).
From (a), ` 6∈ Lab[W]Xs,h′j . From hj ⊆ h, h(`) = s(x) and therefore it cannot be that `

515

belongs to Self[W]Xs,h. Indeed if h(`) = ` then ` = s(x) and we derive a contradiction
with ` 6∈ Lab[W]Xs,hj . By definition of ĥj , ` ∈ dom(ĥj). From ĥj ⊆ hj , ĥj(`) = s(x).
From ĥj ⊆ h′j , h′j(`) = s(x). As ` 6∈ Lab[W]Xs,h′j , this implies ` ∈ Pred[W]Xs,h′j (x),

C. Rem[W]Xs,h′j = Rem[W]Xs,hj .

We show right-to-left direction. Thanks to ĥj , the left-to-right direction is analogous.
Proof. (⇐): Suppose ` ∈ Rem[W]Xs,hj . By definition we have ` 6∈ Lab[W]Xs,hj , ` ∈ dom(hj),

` 6∈ Self[W]Xs,hj and ` 6∈ Pred[W]Xs,hj (x), for any x ∈ X. In particular, this means that
hj(`) 6= ` and for every x ∈ X, hj(`) 6= s(x). From ` 6∈ Lab[W]Xs,hj and (a), we derive
` 6∈ Lab[W]Xs,h′j . From ` ∈ dom(h′j) and ` 6∈ Self[W]Xs,h′j we derive ` ∈ dom(ĥj). From

ĥj ⊆ hj we derive ĥj(`) 6= ` and for every x ∈ X, ĥj(`) 6= s(x). By ĥj ⊆ h′j , this means
that ` ∈ dom(h′j), h′j(`) 6= ` and for every x ∈ X, h′j(`) 6= s(x). So, ` 6∈ Self[W]Xs,h′j
and ` 6∈ Pred[W]Xs,h′j (x), for any x ∈ X. As moreover ` ∈ dom(h′j) and ` 6∈ Lab[W]Xs,h′j ,
we conclude that ` ∈ Rem[W]Xs,h′j .

D. min(αj , card(Self[W]Xs,h′j)) = min(αj , card(Self[W]Xs,hj)).

Proof. From Lemma 5.14(III) we have:
Self[W]Xs,h′j =

(
Self[W]Xs,h′ ∩ dom(h′j)

)
∪ {` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j | h

′
j(`) = `},

Self[W]Xs,hj =
(
Self[W]Xs,h ∩ dom(hj)

)
∪ {` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj | hj(`) = `}.

By definition of h′j , Self[W]Xs,h′ ∩ dom(h′j) = Sj . By (2),
min(αj , card(Self[W]Xs,h′ ∩ dom(h′j))) = min(αj , card(Self[W]Xs,h ∩ dom(hj))).

Thus, in order to prove (D) we only need to show that the two sets
{` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j | h

′
j(`) = `} and {` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj | hj(`) = `}

are equal. This amounts to showing that, given a location ` ∈ LOC,
e. h′j(`) = ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j iff hj(`) = ` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj .

We show the right-to-left direction of this statement. The left-to-right direction is
analogous (see also (D)(e) in the proof of Lemma 5.19(I)).

Proof of (e). (⇐): Suppose ` ∈ Lab[W]Xs,h\Lab[W]Xs,hj such that hj(`) = `. From (A)(d), we
derive ` ∈ Lab[W]Xs,h′\Lab[W]Xs,h′j . As ` ∈ Lab[W]Xs,h, ` 6∈ Self[W]Xs,h and so ` ∈ dom(ĥj).

From ĥj ⊆ hj we derive ĥj(`) = `. From ĥj ⊆ h′j we derive h′j(`) = `.

Thanks to the properties (A)–(D), proving (s, hj) ≈WX,αj (s, h′j), for j ∈ {1, 2}, is straightforward.
Consider a core formula ϕ in Core[W](X, αj). Then, (s, hj) |= ϕ iff (s, h′j) |= ϕ, as shown below:
case: ϕ = t1 = t2. Follows directly from (A)(a).

case: ϕ = t ↪→ . Follows directly from (A)(b).

case: ϕ = t ↪→ x or ϕ = t ↪→ t. Follows directly from (A)(c).

case: ϕ = predWX (x) ≥ β. Follows directly from (B).

case: ϕ = selfWX ≥ β. Follows directly from (D).

case: ϕ = remWX ≥ β. Follows directly from (C).

case: ϕ = u = t. Follows directly from (A)(a), since (s, hj) and (s, hj) share the same store.

516 Appendix C. Appendix of Chapter 5

case: ϕ = u ∈ predWX (x). Follows directly from (B).

case: ϕ = u ∈ selfWX . Since Sj = Self[W]Xs,h′ ∩ dom(h′j), it follows from (1) and (D)(e).

case: ϕ = u ∈ remWX . Follows directly from (C).
Therefore, (s, h)↔WX,α (s, h′).

Lemma 5.19(III). Consider two memory states (s, h), (s, h′) such that (s, h) ≈WX,α (s, h′) and
h \ {(`, `′) ∈ h | ` ∈ Pred[W]Xs,h(x)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[W]Xs,h′(x)}, for some x ∈ X.
Then, (s, h)↔WX,α (s, h′).

Proof. The proof follows very closely the ones given for Lemma 5.19((I) and (II)). Consider two
heaps h1 and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and α = α1 + α2. Notice that
this requires α to be at least two, otherwise the lemma trivially holds. We partition the set
Pred[W]Xs,h′(x) into two sets S1 and S2, using the following case analysis:

if card(Pred[W]Xs,h(x) ∩ dom(h1)) < α1 then

let S1 be a set of card(Pred[W]Xs,h(x) ∩ dom(h1)) locations in Pred[W]Xs,h′(x)

such that s(u) ∈ S1 if and only if s(u) ∈ Pred[W]Xs,h(x) ∩ dom(h1).

S2 ← Pred[W]Xs,h′(x) \ S1.

else if card(Pred[W]Xs,h(x) ∩ dom(h2)) < α2 then

let S2 be a set of card(Pred[W]Xs,h(x) ∩ dom(h2)) locations in Pred[W]Xs,h′(x)

such that s(u) ∈ S2 if and only if s(u) ∈ Pred[W]Xs,h(x) ∩ dom(h2).

S1 ← Pred[W]Xs,h′(x) \ S2.

else (i.e. card(Pred[W]Xs,h(x) ∩ dom(h1)) ≥ α1 and card(Pred[W]Xs,h(x) ∩ dom(h2)) ≥ α2)

let S1 be a set of α1 locations in Pred[W]Xs,h′(x)

such that s(u) ∈ S1 if and only if s(u) ∈ Pred[W]Xs,h(x) ∩ dom(h1).

S2 ← Pred[W]Xs,h′(x) \ S1.

Notice that S1 and S2 are always well-defined, since both (s, h) and (s, h′) satisfy the same
formulae among u ∈ predWX (x) and predWX (x) ≥ β, for every β ∈ [1, α]. Indeed, thanks to
the formula u ∈ predWX (x), if s(u) ∈ Pred[W]Xs,h(x) ∩ dom(hj) (where j ∈ {1, 2}) then s(u) ∈
Pred[W]Xs,h′(x) and so s(u) can be selected when building Sj . From the formulae of the form selfWX ≥
β, if card(Pred[W]Xs,h(x)∩dom(hj)) < αj then, as αj < α we conclude that Pred[W]Xs,h′(x) contains
at least card(Pred[W]Xs,h(x)∩dom(hj)) locations, allowing us to correctly define Sj in the first two
cases. If instead card(Pred[W]Xs,h(x) ∩ dom(h1)) ≥ α1 and card(Pred[W]Xs,h(x) ∩ dom(h2)) ≥ α2,
then we conclude that both Pred[W]Xs,h(x) and Pred[W]Xs,h′(x) contains at least α > α1 locations.
Again, this allows us to correctly define S1 in the last of the cases above. S1 and S2 enjoy the
following properties, given with respect to j ∈ {1, 2}.

1. s(u) ∈ Sj if and only if s(u) ∈ Pred[W]Xs,h(x) ∩ dom(hj),

2. min(αj , card(Sj)) = min(αj , card(Pred[W]Xs,h(x) ∩ dom(hj))).
Proof of (1). From the equisatisfaction of u ∈ predWX (x), we have s(u) ∈ Pred[W]Xs,h(x) if
and only if s(u) ∈ Pred[W]Xs,h′(x). Then, the property follows by definition of S1 and S2.

Proof of (2). Proof analogous to (2) in Lemma 5.19(I).

517

We rely on S1 and S2 in order to define the heaps h′1 and h′2 such that (s, h1) ≈WX,α1 (s, h′1)
and (s, h2) ≈WX,α2 (s, h′2) (as required by the hop relation↔WX,α). As done in Lemma 5.19(I), let us
define ĥ1

def= h1 \{(`, `′) ∈ h1 | ` ∈ Pred[W]Xs,h(x)} and ĥ2
def= h2 \{(`, `′) ∈ h2 | ` ∈ Pred[W]Xs,h(x)},

i.e. the two heaps obtained from h1 and h2 by removing the locations in Pred[W]Xs,h(x) from their
domain. From h = h1 + h2 we conclude that:

h = ĥ1 + ĥ2 + {(`, `′) ∈ h | ` ∈ Pred[W]Xs,h(x)}.

From the hypothesis h \ {(`, `′) ∈ h | ` ∈ Pred[W]Xs,h(x)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[W]Xs,h′(x)}
we derive ĥ1 + ĥ2 = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[W]Xs,h′(x)}. We define the heaps h′1 and h′2 as:

h′1
def= ĥ1 + {(`, `′) ∈ h′ | ` ∈ S1}, h′2

def= ĥ2 + {(`, `′) ∈ h′ | ` ∈ S2}.

As {(`, `′) ∈ h′ | ` ∈ S1}+ {(`, `′) ∈ h′ | ` ∈ S2} = {(`, `′) ∈ h′ | ` ∈ Pred[W]Xs,h′(x)} by definition
of S1 and S2, the two heaps h′1 and h′2 are well-defined, they are disjoint, and h′ = h′1 + h′2.
Moreover, S1 = Pred[W]Xs,h′(x) ∩ dom(h′1) and S2 = Pred[W]Xs,h′(x) ∩ dom(h′2). The heaps h′1
and h′2 enjoy the following five properties. Let j ∈ {1, 2}.

A. (a) for every t ∈ T[W]X, [[t]]Xs,hj is defined iff so is [[t]]Xs,h′j . If defined, [[t]]Xs,hj = [[t]]Xs,h′j .
(b) [[t]]Xs,hj ∈ dom(hj) if and only if [[t]]Xs,h′j ∈ dom(h′j).
(c) Given t′ ∈ X ∪ {t}, we have hj([[t]]Xs,hj) = [[t′]]Xs,hj if and only if h′j([[t]]Xs,h′j) = [[t′]]Xs,h′j .
(d) ` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj if and only if ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j .

These four statements are the same as in the proofs of Lemma 5.19(I) (step (A))
and Lemma 5.19(II) (step (A)). Thus, we refer to these two proofs for similar re-
sults, and show here only the proof of (a) (which is needed to prove the other three
statements).

Proof of (a). Obvious for t ∈ X, so suppose t = n(x) ∈ NV[W]X.
(⇒): Suppose [[n(x)]]Xs,hj defined, and so [[n(x)]]Xs,hj

by def= hj(s(x)). As s(x) ∈ Lab[W]Xs,h
we derive s(x) 6∈ Pred[W]Xs,h′(x) and thus s(x) ∈ dom(ĥj). From ĥj ⊆ hj , we con-
clude that ĥj(s(x)) = hj(s(x)). From ĥj ⊆ h′j we derive that ĥj(s(x)) = h′j(s(x)).
Therefore, [[n(x)]]Xs,hj = [[n(x)]]Xs,h′j .

(⇐): Suppose [[n(x)]]Xs,h′j defined, and so [[n(x)]]Xs,h′j
by def= h′j(s(x)). As s(x) ∈ Lab[W]Xs,h′

we derive s(x) 6∈ Pred[W]Xs,h′(x) and thus s(x) ∈ dom(ĥj). From ĥj ⊆ h′j , we con-
clude that ĥj(s(x)) = h′j(s(x)). From ĥj ⊆ hj we derive that ĥj(s(x)) = hj(s(x)).
Therefore, [[n(x)]]Xs,hj = [[n(x)]]Xs,h′j .

B. Self[W]Xs,h′j = Self[W]Xs,hj .

The proof of this statement is analogous to the proof in the step (C) of Lemma 5.19(I).
C. Rem[W]Xs,h′j = Rem[W]Xs,hj .

The proof of this statement is analogous to the proof in the step (D) of Lemma 5.19(II).
D. For every y ∈ X, if s(y) 6= s(x) then Pred[W]Xs,h′j (x) = Pred[W]Xs,hj (x).

We show the right-to-left direction of this statement. The left-to-right direction is
analogous (see also proof of Lemma 5.19(I), step (B), and Lemma 5.19(II), step (B)).

Proof of (D). (⇐): Suppose ` ∈ Pred[W]Xs,hj (y). By definition, ` 6∈ Lab[W]Xs,hj and hj(`) =
s(y). From (a), ` 6∈ Lab[W]Xs,h′j . From hj ⊆ h, h(`) = s(y) and since s(y) 6= s(x), it

518 Appendix C. Appendix of Chapter 5

cannot be that ` ∈ Pred[W]Xs,h(x). By definition of ĥj , ` ∈ dom(ĥj). From ĥj ⊆ hj ,
ĥj(`) = s(y). From ĥj ⊆ h′j , h′j(`) = s(y). As ` 6∈ Lab[W]Xs,h′j , this implies ` ∈
Pred[W]Xs,h′j (y).

E. For every y ∈ X, if s(y) = s(x) then
min(αj , card(Pred[W]Xs,h′j (y))) = min(αj , card(Pred[W]Xs,hj (y))).

Proof of (E). We show that min(αj , card(Pred[W]Xs,h′j (x))) = min(αj , card(Pred[W]Xs,hj (x))).
The proof of (E) then follows as s(y) = s(x) implies Pred[W]Xs,hj (x) = Pred[W]Xs,hj (y)
and Pred[W]Xs,h′j (x) = Pred[W]Xs,h′j (y). From Lemma 5.14(II) we have:

Pred[W]Xs,h′j (x) =
(
Pred[W]Xs,h′(x) ∩ dom(h′j)

)
∪ {` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j | h

′
j(`) = s(x)},

Pred[W]Xs,hj (x) =
(
Pred[W]Xs,h(x) ∩ dom(hj)

)
∪ {` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj | hj(`) = s(x)}.

By definition of h′j , Pred[W]Xs,h′(x) ∩ dom(h′j) = Sj . By (2),
min(αj , card(Pred[W]Xs,h′(x) ∩ dom(h′j))) = min(αj , card(Pred[W]Xs,h(x) ∩ dom(hj))).
Thus, in order to prove (E) we only need to show that the two sets

{` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j | h
′
j(`) = s(x)}

and {` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj | hj(`) = s(x)}
are equivalent. This amounts to showing that, given a location ` ∈ LOC,

e. ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,h′j and h′j(`) = s(x) if and only if
` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj and hj(`) = s(x).
We show the left-to-right direction of (e). The other direction is analogous (see also
proof of Lemma 5.19(I), step (D)(e), and proof of Lemma 5.19(II), step (D)(e)).

Proof of (e). (⇒): Suppose ` ∈ Lab[W]Xs,h′ \ Lab[W]Xs,hj s.t. h′j(`) = s(x). From (A)(d),
we have ` ∈ Lab[W]Xs,h \ Lab[W]Xs,hj . As ` ∈ Lab[W]Xs,h′ , ` 6∈ Pred[W]Xs,h′(x) and so
` ∈ dom(ĥj). By ĥj ⊆ h′j , we derive ĥj(`) = s(x). By ĥj ⊆ hj , we derive hj(`) = s(x).

Thanks to the properties (A)–(E), proving (s, hj) ≈WX,αj (s, h′j), for j ∈ {1, 2}, is straightforward.
Consider a core formula ϕ in Core[W](X, αj). Then, (s, hj) |= ϕ iff (s, h′j) |= ϕ, as shown below:
case: ϕ = t1 = t2. Follows directly from (A)(a).
case: ϕ = t ↪→ . Follows directly from (A)(b).
case: ϕ = t ↪→ y or ϕ = t ↪→ t. Follows directly from (A)(c).
case: ϕ = predWX (y) ≥ β. Follows from (D) and (E) (depending on whether s(y) = s(x) holds).
case: ϕ = selfWX ≥ β. Follows directly from (B).
case: ϕ = remWX ≥ β. Follows directly from (C).
case: ϕ = u = t. Follows directly from (A)(a), since (s, hj) and (s, hj) share the same store.
case: ϕ = u ∈ predWX (y). If s(y) = s(x), it follows from (1) (as Sj = Pred[W]Xs,h′(x) ∩ dom(h′j))

and (E)(e). Otherwise, it follows directly from (D).
case: ϕ = u ∈ selfWX . Follows directly from (B).
case: ϕ = u ∈ remWX . Follows directly from (C).
Therefore, (s, h)↔WX,α (s, h′).

519

Vade mecum on the upper bounds for Core[S](X, α).

In this section we provide the inequalities and recurrence systems that have been used to compute
the upper bounds for the core formulae Core[S](X, α) introduced in Section 5.5.2. Note that the
recurrence systems considered are generally more constrained that the inequalities that we want
to satisfy. This is not a problem, as one can check that the solutions of the recurrence system
do indeed satisfy also the original inequalities. Also, we avoid the formal proofs regarding the
correctness of these inequalities, in favor of an informal explanation. After all, the upper bounds
are shown to be sufficient for the satisfaction of the ∗-simulation property of Core[S](X, α), which
is all we need. We refer the reader to Example 5.33 for the upper bound on β	 for the core
formulae of the form loopSX (β1) ≥ β	 and ⇑loopSX,α ≥ β	. Below, let (s, h) be a memory state,
h1 + h2 = h and α, α1, α2 ≥ 1 such that α = α1 + α2 (as in Lemma 5.6).

Upper bound for β for the core formulae of the form remSX,α ≥ β.
Let us write R(α) for this upper bound, as done in Section 5.5.2.

Explanation: One can show that Rem[S]X,αs,h ⊆ Rem[S]X,α1
s,h1
∪Rem[S]X,α2

s,h2
, which leads to the inequality.

Inequality: R(α) ≥ max
α1,α2≥1
α=α1+α2

(R(α1) +R(α2)).

This inequality implies R(α) ≥ R(α− 1) +R(1), which is used in the recurrence system.

Recurrence system: {R(1) = 1, R(α+ 1) = R(α) +R(1)}.

Solution: R(α) = α.

Upper bound for β for the core formulae of the form predSX (x) ≥ β.
Let us write P(α) for this upper bound.

Explanation: One can show that, for all x ∈ X, Pred[S]Xs,h(x) ⊆ Pred[S]Xs,h1
(x) ∪ Pred[S]Xs,h2

(x).

Inequality: P(α) ≥ max
α1,α2≥1
α=α1+α2

(P(α1) + P(α2)).

This inequality implies P(α) ≥ P(α− 1) + P(1), which is used in the recurrence system.

Recurrence system: {P(1) = 1, P(α+ 1) = P(α) + P(1)}.

Solution: P(α) = α.

Upper bound for
−→
β in the core formulae of the form u ∈ seesX(t1, t2) ≥ (

←−
β ,
−→
β).

Let us write Sright(α) for this upper bound.

Explanation: (s, h) |= u ∈ seesX(t1, t2) ≥ (
←−
β ,
−→
β) implies that h is such that it witnesses a path

going from [[t1]]Xs,h to [[t2]]Xs,h. Moreover,

– every intermediate location of this path does not belong to Lab[S]Xs,h,

– the path can be split into two paths, one of length at least
←−
β and going from [[t1]]Xs,h

to s(u), and one of length at least
−→
β going from s(u) to [[t2]]Xs,h.

Let j ∈ {1, 2} be one of the indices for the subheaps h1 and h2 of h, and k ∈ {1, 2} \ {j}
be the other index. When the heap h is split into h1 and h2 it can be that:

– [[t1]]Xs,h is a labelled location of (s, hj),

520 Appendix C. Appendix of Chapter 5

– the heap hj witnesses a path going from [[t1]]Xs,h to s(u).

For simplicity, let us assume that both these properties hold. In this case, the path in h

going from [[t1]]Xs,h to [[t2]]Xs,h is essentially split as shown in the following diagram:

[[t1]]Xs,h
s(u) `

[[t2]]Xs,h
path preserved in hj path split between h1 and h2

predecessor of [[t2]]Xs,h
↓

As we can see, in this case the heap hj witnesses a path that goes from [[t1]]Xs,h to s(u) and
that can perhaps extend beyond s(u), say until a location ` (highlighted in the diagram).
It could be that ` = [[t2]]Xs,h. In this case, the path in h that goes from [[t1]]Xs,h to [[t2]]Xs,h
is entirely assigned to hj . Otherwise, ` ∈ dom(hk) and so the path in h that goes from
` to [[t2]]Xs,h is split between h1 and h2. All the locations in this path belong to either
Rem[S]X,α1

s,h1
or Rem[S]X,α2

s,h2
, with (possibly) the exception of the predecessor of [[t2]]Xs,h. Indeed,

if [[t2]]Xs,h is assigned to a variable in X, then this location belongs to either Pred[S]Xs,h1
(x)

or Pred[S]Xs,h2
(x). Therefore, we conclude that:

A. the locations in the path of hj going from s(u) to ` counts for the satisfaction of core
formulae of the form u ∈ seesX(t′, t′′) ≥ (

←−
β ,
−→
β), again with respect to

−→
β . Here, t′

is such that [[t′]]Xs,hj = [[t1]]Xs,h, whereas [[t′′]]Xs,hj = `. Indeed, since we assumed that
[[t1]]Xs,h belongs to Lab[S]Xs,hj , and ` ∈ dom(hk), it is quite easy to show that then `

correspond to a term e(x), for some x ∈ X,
B. the locations split in the path of h that goes from ` to [[t2]]Xs,h counts for the satisfaction

of the core formulae of the form remSX,α1 ≥ β1 and remSX,α2 ≥ β2, with (possibly) the
exception of the predecessor of [[t2]]Xs,h, which could instead count for the satisfaction
of the core formulae of the form predSX (x) ≥ β1, for some x ∈ X.

Therefore, Sright(α) must be at least Sright(max(α1, α2)) (from (A)) plusR(α1) +R(α2) + 1
(from (B)), where the last addend 1 is introduced to deal with the case where the predeces-
sor of [[t2]]Xs,h belongs to Pred[S]Xs,h1

(x) or Pred[S]Xs,h2
(x). AsR(α1) +R(α2) = α1 + α2 = α,

we have Sright(α) ≥ Sright(max(α1, α2)) +α+ 1. For the base case, we notice that Sright(1)
should be at least 2. Indeed, we remind the reader that every atomic formula of S must
be expressible as a Boolean combination of formulae in Core[S](X, 1). If Sright(1) < 2,
then we are not able to provide a Boolean combination of formulae in Core[S](X, 1) that
is equivalent to u ↪→ x. Otherwise, this formula can be shown equivalent to

u ∈ predSX (x) ∨
∧

t∈T[S]X
(
(u = t ∧ seesX(t, x) ≥ 1 ∧ ¬seesX(t, x) ≥ 2)
∨ (u ∈ seesX(t, x) ≥ (1, 1) ∧ ¬u ∈ seesX(t, x) ≥ (1, 2))

)
.

In order for the subformula u ∈ seesX(t, x) ≥ (1, 2) to be in Core[S](X, 1), Sright(1) must
be at least 2.

Inequalities: Sright(1) ≥ 2,
Sright(α) ≥ max

α1,α2≥1
α=α1+α2

(Sright(max(α1, α2)) + α+ 1) .

In the second inequality, Sright(max(α1, α2)) is maximal for α1 = α− 1 or α2 = α− 1.

Recurrence system: {Sright(1) = 2, Sright(α+ 1) = Sright(α) + (α+ 1) + 1}.

Solution: Sright(α) = 1
2α(α+ 3).

521

Upper bound for β in the core formulae of the form seesX(t1, t2) ≥ β and for
←−
β in

the core formulae of the form u ∈ seesX(t1, t2) ≥ (
←−
β ,
−→
β).

We write S(α) for the upper bound on β and Sleft(α) for the upper bound on
←−
β .

Explanation: First of all, we notice that the inequality S(α) ≥ Sleft(α) + Sright(α) must hold.
Indeed, if a memory state satisfies u ∈ seesX(t1, t2) ≥ (

←−
β ,
−→
β), then it also satisfies

seesX(t1, t2) ≥
←−
β +
−→
β . Therefore, in order to satisfy the ∃-simulation property, the latter

formula must belong to Core[S](X, α).
Let us look at Sleft(α). If (s, h) |= u ∈ seesX(t1, t2) ≥ (

←−
β ,
−→
β) then h witnesses a path

going from [[t1]]Xs,h to [[t2]]Xs,h such that

– every intermediate location of this path does not belong to Lab[S]Xs,h,

– the path can be split into two paths, one of length at least
←−
β and going from [[t1]]Xs,h

to s(u), and one of length at least
−→
β going from s(u) to [[t2]]Xs,h.

Let j ∈ {1, 2} be one of the indices for the subheaps h1 and h2 of h, and k ∈ {1, 2} \ {j}
be the other index. When the heap h is split into h1 and h2 it can be that:

– [[t1]]Xs,h is a labelled location of (s, hj) and is such that [[t1]]Xs,h1
∈ dom(hj),

– in hj , s(u) is no longer reachable from [[t1]]Xs,h.

When this is the case, the path in h going from [[t1]]Xs,h to [[t2]]Xs,h is essentially split as
shown in the following diagram:

[[t1]]Xs,h
` s(u)

[[t2]]Xs,h
path preserved in h1 path split between h1 and h2

predecessor of [[t2]]Xs,h
↓

As we can see, in this case the heap hj witness a path that goes from [[t1]]Xs,h to a location
` and does not feature the location s(u). Moreover, the path in h going from ` to [[t2]]Xs,h is
split between the subheaps h1 and h2. The locations in this path belong to either Rem[S]X,α1

s,h1

or Rem[S]X,α2
s,h2

, with the exception of the predecessor of [[t2]]Xs,h, which could instead belong
to Pred[S]Xs,h1

(x) or Pred[S]Xs,h2
(x). In this case,

A. the locations in the path of hj going from s(u) to ` counts for the satisfaction of
core formulae of the form seesX(t′, t′′) ≥ β. Here, t′ is such that [[t′]]Xs,hj = [[t1]]Xs,h,
whereas [[t′′]]Xs,hj = `.

B. the locations split in the path of h that goes from ` to [[t2]]Xs,h counts for the satisfaction
of the core formulae of the form remSX,α1 ≥ β1 and remSX,α2 ≥ β2, with the exception of
the predecessor of [[t2]]Xs,h, which could count instead for the satisfaction of the core
formulae of the form predSX (x) ≥ β1, for some x ∈ X. Moreover, as s(u) belongs to
this path and it is different from [[t2]]Xs,h, exactly one among (s, h1) |= u ∈ remSX,α,
(s, h2) |= u ∈ remSX,α, (s, h1) |= u ∈ predSX (x), (s, h2) |= u ∈ predSX (x) holds.

So, Sleft(α) should be at least S(max(α1, α2)) (from (A)). Moreover, Sleft(α) + Sright(α)
should be at least S(max(α1, α2)) (again from (A)) plus R(α1) +R(α2) + 2 (from (B)),
where the last addend 2 is introduced to deal with the fact that the predecessor of [[t2]]Xs,h
could belong to Pred[S]Xs,h1

(x) or Pred[S]Xs,h2
(x), and to deal with the fact that s(u) can be in

522 Appendix C. Appendix of Chapter 5

Rem[S]X,α1
s,h1

Rem[S]X,α2
s,h2

, Pred[S]Xs,h1
(x) or Pred[S]Xs,h2

(x). Since R(α1)+R(α2) = α1 +α2 = α,
the expession R(α1)+R(α2)+2 is equivalent to α+2. We have the following inequalities,

Sleft(α) ≥ S(max(α1, α2)),
Sleft(α) + Sright(α) ≥ S(max(α1, α2)) + α+ 2.

Since we already found Sright(α) = 1
2α(α+3), we know that Sright(α) ≥ α+1 and therefore

the two inequalities above are satisfied whenever Sleft(α) ≥ S(max(α1, α2)) + 1. Similarly
to Sright(1), we also require Sleft(1) ≥ 2 to hold. Indeed, if Sleft(1) < 2, then we are not
able to provide a Boolean combination of core formulae in Core[S](X, 1) that is equivalent
to x ↪→ u. Otherwise, this formula can be shown equivalent to∧

t∈T[S]X(u = t ∧ seesX(x, t) ≥ 1 ∧ ¬seesX(x, t) ≥ 2)
∨ (u ∈ seesX(x, t) ≥ (1, 1) ∧ ¬u ∈ seesX(x, t) ≥ (2, 1)).

To belong to Core[S](X, 1), the subformula u ∈ seesX(x, t) ≥ (2, 1) requires Sleft(1) ≥ 2.
Inequalities: S(α) ≥ Sleft(α) + Sright(α),

Sleft(1) ≥ 2,
Sleft(α) ≥ max

α1,α2≥1
α=α1+α2

(S(max(α1 + α2)) + 1) .

In the inequalities above, S(max(α1, α2)) is maximal for α1 = α− 1 or α2 = α− 1.
Recurrence system: {S(α) = Sleft(α) + Sright(α), Sleft(1) = 2, Sleft(α+ 1) = S(α) + 1} .
Solution: Sleft(α) = 1

6α(α+ 1)(α+ 2) + 1 and S(α) = 1
6(α+ 1)(α+ 2)(α+ 3).

Proofs of Lemma 5.40(I), Lemma 5.40(IV) and Lemma 5.40(V).

We first prove an intermediate technical result.

Lemma C.1. Let (s, h) be a memory state and consider a set of locations L ⊆ dom(h) such
that, for every t ∈ T[S]X, L ∩ Path[S]Xs,h(t) = ∅. Let ĥ = h \ {(`, `′) ∈ h | ` ∈ L}. We have:

O. Let x ∈ X and δ ≥ 0. hδ(s(x)) and ĥδ(s(x)) are equidefined. When defined, they are equal.
A. For all t ∈ T[S]X, [[t]]Xs,h and [[t]]X

s,̂h
are equidefined. When defined, they are equal.

B. For every t ∈ T[S]X,
(a) sbyX

s,h(t) and sbyX
s,̂h

(t) are equidefined. When defined, they are equal,

(b) Path[S]Xs,h(t) = Path[S]X
s,̂h

(t),

(c) let δ ∈ [1, card(Path[S]Xs,h(t))]. hδ([[t]]Xs,h) = s(u) iff ĥδ([[t]]X
s,̂h

) = s(u).

Essentially, this lemma generalises an intermediate step in the proof of Lemma 5.40(III).

Proof of Lemma C.1(O). The proof is by induction on δ.
base case: δ = 0. Straightforward.
induction step: δ ≥ 1. Suppose hδ(s(x)) = `. Let `′ = hδ−1(s(x)), and so h(`′) = `. By

induction hypothesis, `′ = ĥδ−1(s(x)). We prove that `′ ∈ dom(ĥ), which implies ĥ(`′) = `

directly from ĥ ⊆ h, concluding the proof. Let ˜̀ be the last labelled location in the
minimal path of h going from s(x) to `′. Formally, ˜̀ ∈ Lab[S]Xs,h and there is δ′ ∈ [0, δ]
such that hδ′(˜̀) = `′ and for every δ′′ ∈ [0, δ′ − 1], hδ′−1(˜̀) 6∈ Lab[S]Xs,h. Since s(x) is a
labelled location, the location ˜̀ exists. We divide the proof depending on whether ˜̀= `′.

523

case: ˜̀= `′. In this case, `′ is a labelled location and, since it belongs to dom(h), we
have `′ ∈ Path[S]Xs,h(`′). Therefore, by definition of L, `′ 6∈ L, which in turn implies
`′ ∈ dom(ĥ), by definition of ĥ.

case: ˜̀ 6= `′. By definition ˜̀ is a labelled location and belongs to dom(h). Moreover, in
the minimal path of h going from ˜̀ to `, no location except for ˜̀ belongs to Lab[S]Xs,h.
By definition of Path[S]Xs,h(`), we conclude that `′ belong to this set. This means that
`′ 6∈ L, which in turn implies `′ ∈ dom(ĥ), from ` ∈ dom(h) and by definition of ĥ.

Proof of Lemma C.1(A). Follows directly from (O). The statement is trivial when t corresponds
to a program variable. We show the cases for end-point variables and meet-point variables.
case: t = e(x). Suppose [[e(x)]]Xs,h = `. By definition of end-point variable, there is δ ≥ 1 such

that hδ(s(x)) = ` and, if ` ∈ dom(h) then ` belongs to a cycle in h whereas hδ−1
j (s(x)) does

not. From Lemma C.1(O), ĥδ(s(x)) = `, ĥδ−1(s(x)) = ĥδ−1(s(x)), and ` ∈ dom(ĥ) if and
only if ` ∈ dom(ĥ). Moreover, again by Lemma C.1(O), if ` (resp. ĥδ−1(s(x))) belongs to
a cycle in h then it belongs to a cycle in ĥ, and vice versa. So, [[e(x)]]X

s,̂h
= [[e(x)]]Xs,h. The

other direction, i.e. if [[e(x)]]X
s,̂h

is defined then [[e(x)]]Xs,h = [[e(x)]]X
s,̂h

, is symmetrical.

case: t = m(x, y). Suppose [[m(x, y)]]Xs,h = `. By definition of meet-point variable, there are
δ1, δ2 ≥ 1 such that hδ1(s(x)) = hδ2(s(y)) = ` and for all δ′1 ∈ [0, δ1] and δ′2 ∈ [0, δ2],
if δ′1 + δ′2 < δ1 + δ2 then hδ

′
1(s(x)) 6= hδ

′
2(s(y)). Moreover, ` does not belong to a cycle.

From Lemma C.1(O), ĥδ1(s(x)) = ĥδ2(s(y)) = `, and for all δ′1 ∈ [0, δ1] and δ′2 ∈ [0, δ2],
if δ′1 + δ′2 < δ1 + δ2 then ĥδ

′
1(s(x)) 6= ĥδ

′
2(s(y)). Moreover, since ` does not belong to a

cycle in h and ĥ ⊆ h, we conclude that ` does not belong to a cycle in ĥ. By definition of
meet-point variable, ` = [[m(x, y)]]X

s,̂h
.

For the other direction, suppose [[m(x, y)]]X
s,̂h

= `. By definition of meet-point variable

and the fact that ĥ ⊆ h, there are δ1, δ2 ≥ 1 such that hδ1(s(x)) = hδ2(s(y)) = ` and
for all δ′1 ∈ [0, δ1] and δ′2 ∈ [0, δ2], if δ′1 + δ′2 < δ1 + δ2 then hδ

′
1(s(x)) 6= hδ

′
2(s(y)). In

order to conclude that ` = [[m(x, y)]]Xs,h, it is sufficient to proof that ` does not belong
to a cycle in h. Ad absurdum, suppose that ` belongs to a cycle in h. Then, there is
δ′ ≥ 1 such that hδ1(s(x)) = ` = hδ1+δ′(s(x)) = `. From Lemma C.1(O), we conclude that
ĥδ1(s(x)) = ` = ĥδ1+δ′(s(x)) = `. However, this implies that ` belongs to a cycle in ĥ: a
contradiction. Thus, ` does not belong to a cycle in h, and so ` = [[m(x, y)]]Xs,h.

Proof of Lemma C.1(B). As in the case of (A), the statements (a)–(c) follow directly form (O)
and the definition of [[.]]X. . In particular, given t ∈ T[S]X and δ ≥ 0, by (O), we conclude that,
when defined, hδ([[t]]Xs,hj) = ĥδ([[t]]Xs,h′j). This implies (c). Moreover, by (A), Lab[S]Xs,h = Lab[S]X

s,̂h
,

which allows us to conclude that (a) and (b) hold.

We now conclude the proof of Lemma 5.40, by dealing with the cases (I), (IV) and (V). Notice
that in the statement of Lemma 5.40, the two memory states (s, h) and (s, h′) are supposed to
be such that for every t ∈ T[S]X, [[t]]Xs,h = [[t]]Xs,h′ . This hypothesis is not needed for the cases (I),
(IV) and (V), and thus it is dropped in their formal statements provided below.

Lemma 5.40(I). Let (s, h) and (s, h′) be two memory states such that (s, h) ≈SX,α (s, h′) and
there is x ∈ X such that {(`, `′) ∈ h | ` ∈ Pred[S]Xs,h(x)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[S]Xs,h′(x)}.
Then, (s, h)↔SX,α (s, h′).

524 Appendix C. Appendix of Chapter 5

Proof. Consider two heaps h1 and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 +h2 and α = α1 +α2.
Notice that this requires α to be at least two, otherwise the lemma trivially holds. We recall
that the integer β in formulae of Core[S](X, α) of the form predSX (x) ≥ β ranges over [1, α].
If card(Pred[S]Xs,h(x)) < α then the lemma holds directly from Lemma 5.39. Indeed, in this
case, from the equisatisfaction of the core formulae of the form predSX (x) ≥ β we conclude
that card(Pred[S]Xs,h(x)) = card(Pred[S]Xs,h′(x)). By definition of h and h′, we conclude that
((s, h), (s, h′)) ∈

(⋂
α′≥1 ≈SX,α′

)
, which allows us to apply Lemma 5.39. Therefore, in the

following we assume card(Pred[S]Xs,h(x)) ≥ α, which implies card(Pred[S]Xs,h′(x)) ≥ α again from
the equisatisfaction of the core formulae predSX (x) ≥ β.

We define the following two sets T1, T2:

T1 = {` ∈ Pred[S]Xs,h(x) | ` ∈ dom(h1)}, T2 = {` ∈ Pred[S]Xs,h(x) | ` ∈ dom(h2)}.

Given j ∈ [1, 2], Tj contains every location of Pred[S]Xs,h(x) that is a memory cell of hj .
Moreover, T1, T2 are mutually disjoint sets, and their union is Pred[S]Xs,h(x). As a first step of
the proof, we aim at defining three similar sets T ′1, T ′2 with respect to Pred[S]Xs,h′(x). These sets
should also satisfy cardinality constraints depending on αj , as well as constraints involving the
location s(u). More precisely:

1. T ′1, T ′2 are mutually disjoint. Their union is Pred[S]Xs,h′(x),

2. for all j ∈ {1, 2}, min(card(Tj), αj) = min(card(T ′j), αj),

3. for all j ∈ {1, 2}, s(u) ∈ Tj if and only if s(u) ∈ T ′j .
The definition of T ′1 and T ′2 follows the strategy below.

if card(T1) < α1 then
let T ′1 be a set of card(T1) locations in Pred[S]Xs,h′(x) such that s(u) ∈ T1 iff s(u) ∈ T ′1.
T ′2 ← Pred[S]Xs,h′(x) \ T ′1.

else if card(T2) < α2 then
let T ′2 be a set of card(T2) locations in Pred[S]Xs,h′(x) such that s(u) ∈ T2 iff s(u) ∈ T ′2.
T ′1 ← Pred[S]Xs,h′(x) \ T ′2.

else (i.e. card(T1) ≥ α1 and card(T2) ≥ α2)
let T ′1 be a set of α1 locations in Pred[S]Xs,h′(x) such that s(u) ∈ T1 iff s(u) ∈ T1.
T ′2 ← Pred[S]Xs,h′(x) \ T ′1.

Since we are assuming that both Pred[S]Xs,h(x) and Pred[S]Xs,h′(x) contain at least α elements
(where α = α1 + α2), and moreover we have s(u) ∈ Pred[S]Xs,h(x) iff s(u) ∈ Pred[S]Xs,h′(x) (from
the equisatisfaction of the core formula u ∈ predSX (x)), we conclude that the sets T ′1 and T ′2 are
well-defined. Moreover, their definition is such that T1 ∩ T2 = ∅ and T1 ∪ T2 = Pred[S]Xs,h′(x).
The property (1) is satisfied. Let us show that the same holds true for the properties (2) and (3).
The proof is divided in three cases, according to the strategy.
case: card(T1) < α1. From the first case of the strategy, we have card(T1) = card(T ′1). By defi-

nition of T1 and T2 we have card(Pred[S]Xs,h(x)) = card(T1) + card(T2). Similarly, from (1),
card(Pred[S]Xs,h′(x)) = card(T ′1) + card(T ′2). As card(Pred[S]Xs,h(x)) and card(Pred[S]Xs,h′(x)))
contain at least α locations, where α = α1 +α2 ≥ card(T1) +α2, this allows us to conclude
that T2 and T ′2 contain at least α2 locations. Thus, (2) is satisfied. Again from the defi-
nition of T ′1, we have s(u) ∈ T1 if and only if s(u) ∈ T ′1. Therefore, in order to conclude
that (3) it is sufficient to show that s(u) ∈ T2 if and only if s(u) ∈ T ′2. This is quite ob-

525

vious: for the left-to-right direction, if s(u) ∈ T2 then s(u) 6∈ T1 and s(u) ∈ Pred[S]Xs,h(x).
By definition of T ′1 we derive s(u) 6∈ T ′1, whereas form the equisatisfaction of the core for-
mula u ∈ predSX (x) we have s(u) ∈ Pred[S]Xs,h′(x). As T ′1∪T ′2 = Pred[S]Xs,h′(x), we conclude
that s(u) ∈ T ′2. The other direction is proved symmetrically.

case: card(T2) < α2. Analogous to the previous case, by swapping the indices 1 and 2 and
considering the second case of the strategy.

case: card(T1) ≥ α1 and card(T2) ≥ α2. From the third case of the strategy, card(T ′1) = α1.
Similarly to the first case, this allows us to conclude that T ′2 has at least α2 locations.
Thus, (2) is satisfied. The proof of (3) is equal to the one given in the first case.

We rely on T ′1 and T ′2 in order to define the heaps h′1 and h′2 such that (s, h1) ≈SX,α1 (s, h′1)
and (s, h2) ≈SX,α2 (s, h′2) (as required by the hop relation↔WX,α). First, let us define the two heaps
ĥ1

def= h1 \ {(`, `′) ∈ h1 | ` ∈ T1} and ĥ2
def= h2 \ {(`, `′) ∈ h2 | ` ∈ T2}. By definition of T1 and T2,

dom(ĥ1)∩ Pred[S]Xs,h(x) and dom(ĥ1)∩ Pred[S]Xs,h(x) are both empty. Moreover, by h = h1 + h2,

h = ĥ1 + ĥ2 + {(`, `′) ∈ h | ` ∈ Pred[S]Xs,h(x)}.

From the hypothesis h \ {(`, `′) ∈ h | ` ∈ Pred[S]Xs,h(x)} = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[S]Xs,h′(x)}
we derive ĥ1 + ĥ2 = h′ \ {(`, `′) ∈ h′ | ` ∈ Pred[S]Xs,h′(x)}. We define the heaps h′1 and h′2 as:

h′1
def= ĥ1 + {(`, `′) ∈ h′ | ` ∈ T ′1}, h′2

def= ĥ2 + {(`, `′) ∈ h′ | ` ∈ T ′2}.

From (1), the heaps {(`, `′) ∈ h′ | ` ∈ T ′1} and {(`, `′) ∈ h′ | ` ∈ T ′2} are disjoint, and their
union is {(`, `′) ∈ h′ | ` ∈ Pred[S]Xs,h′(x)}. Thus, h′1 and h′2 are well-defined, they are dis-
joint, and h′ = h′1 + h′2. We now discuss seven properties of h′1 and h′2 which directly lead
to (s, h1) ≈SX,α1 (s, h′1) and (s, h2) ≈SX,α2 (s, h′2), as done for Lemma 5.40(III). Let j ∈ {1, 2}.

A. For all t ∈ T[S]X, [[t]]Xs,hj and [[t]]Xs,h′j are equidefined. When defined, they are equal.

Proof of (A). We notice that the sets Pred[S]Xs,h(x) (resp. Pred[S]Xs,h′(x)) enjoy the prop-
erty of the set L of Lemma C.1, with respect to the memory states ĥj and hj
(resp. h′j). Therefore if [[t]]Xs,hj is defined, by Lemma C.1(A), [[t]]Xs,hj = [[t]]X

s,ĥj
. Again

by Lemma C.1(A), as [[t]]X
s,ĥj

is defined, [[t]]Xs,h′j = [[t]]X
s,ĥj

. Thus, [[t]]Xs,hj = [[t]]Xs,h′j . The
other direction, i.e. if [[t]]Xs,h′j is defined then [[t]]Xs,hj = [[t]]Xs,h′j , is analogous.

B. For every t ∈ T[S]X,
(a) sbyX

s,hj
(t) and sbyX

s,h′j
(t) are equidefined. When defined, they are equal,

(b) Path[S]Xs,hj (t) = Path[S]Xs,h′j (t),

(c) let δ ∈ [1, card(Path[S]Xs,hj (t))]. hδj([[t]]Xs,hj) = s(u) iff h′j
δ([[t]]Xs,h′j) = s(u).

Proof of (B). Similarly to (A), it follows directly from Lemma C.1(B).
C. For every y ∈ X,

(d) min(Pred[S]Xs,hj (y), αj) = min(Pred[S]Xs,h′j (y), αj),

(e) s(u) ∈ Pred[S]Xs,hj (y) if and only if s(u) ∈ Pred[S]Xs,h′j (y).

We start by showing the following equality and inclusions:
(f) Pred[S]Xs,hj (y) \ Tj = Pred[S]Xs,h′j (y) \ T ′j ,

(g) Tj ⊆ Pred[S]Xs,hj (x) and T ′j ⊆ Pred[S]Xs,h′j (x).

526 Appendix C. Appendix of Chapter 5

Proof of (f). (⊆): Suppose ` ∈ Pred[S]Xs,hj (y) \ Tj . By definition of Pred[S]Xs,hj (y):
h. hj(`) = s(y),
i. for every z ∈ X and every δ ≥ 0, hδj(s(z)) 6= `.

Since ` is in the domain of hj but does not belong to Tj , by definition of ĥj , we
have ` ∈ dom(ĥj). From (h) and ĥj ⊆ hj , ĥj(`) = s(y). By definition of h′j , we
conclude that h′j(`) = s(y) and ` 6∈ T ′j . From (i), (b), it cannot be that there is z ∈ X
and δ ≥ 0 such that h′j

δ(s(z)) = `. Indeed, ad absurdum, suppose there is z ≥ 0
and δ ≥ 0 such that h′j

δ(s(z)) = `. This implies that there is a term t ∈ T[S]X
such that ` ∈ Path[S]Xs,h′j (t). By (b), ` ∈ Path[S]Xs,hj (t). By definition of [[.]]Xs,hj , hj
witnesses a path going from a location assigned to a program variable in X, say v,
to [[t]]Xs,hj . However, by definition of Path[S]Xs,hj (t), this implies that hj witnesses a
path going from s(v) to `, which contradicts (i). We conclude that, ` ∈ Pred[S]Xs,h′j (y).
(⊇): Symmetrical to the other direction.

Proof of (g). We prove the inclusion Tj ⊆ Pred[S]Xs,hj (x). Suppose ` ∈ Tj . By definition,
` ∈ Pred[S]Xs,h(x), which means that h(`) = s(x) and for every z ∈ X and every δ ≥ 0,
hδ(s(z)) 6= `. By definition of hj , hj(`) = s(x). As hj ⊆ h, for every z ∈ X and
every δ ≥ 0, hδj(s(z)) 6= `. We conclude that ` ∈ Pred[S]Xs,hj (x).
The proof of the inclusion T ′j ⊆ Pred[S]Xs,h′j (x) is analogous.

Proof of (C). If s(x) 6= s(y) then both (d) and (e) hold directly from (f). Otherwise, let
us suppose that s(x) = s(y). We prove that (d) holds. The property (2) of the
constructions states that min(card(Tj), αj) = min(card(T ′j), αj). By using the fact
that for all a, b, c, d ∈ N, min(a, d) = min(b, d) implies min(a+ c, d) = min(b+ c, d),

min(card(Tj) + card(Pred[S]Xs,hj (x) \ Tj), αj)

= min(card(T ′j) + card(Pred[S]Xs,hj (x) \ Tj), αj).
From (f), card(Pred[S]Xs,hj (x) \ Tj) = card(Pred[S]Xs,h′j (x) \ T ′j), and so

min(card(Tj) + card(Pred[S]Xs,hj (x) \ Tj), αj)

= min(card(T ′j) + card(Pred[S]Xs,h′j (x) \ T ′j), αj).
(†)

By (g), we have Pred[S]Xs,hj (x) = (Pred[S]Xs,hj (x) \ Tj) ∪ Tj and so
card(Pred[S]Xs,hj (x)) = card(Pred[S]Xs,hj (x) \ Tj) + card(Tj).

Similarly (again from (g)),
card(Pred[S]Xs,h′j (x)) = card(Pred[S]Xs,h′j (x) \ T ′j) + card(T ′j).

By (†) we have (d), i.e. min(card(Pred[S]Xs,hj (x)), αj) = min(card(Pred[S]Xs,h′j (x)), αj).
Let us prove (e). For the left-to-right direction, suppose s(u) ∈ Pred[S]Xs,hj (x). By (g),
we have either s(u) ∈ Pred[S]Xs,hj (x) \ Tj or s(u) ∈ Tj . In the former case, directly
from (f), we conclude that s(u) ∈ Pred[S]Xs,h′j (x). In the latter case, from the prop-
erty (3) of the construction, we have s(u) ∈ T ′j , which implies s(u) ∈ Pred[S]Xs,h′j (x)
by (g). The right-to-left direction is proved symmetrically.

D. For every β ∈ [1, αj], Cycl[S]Xs,hj(β) = Cycl[S]Xs,h′j(β).

Proof of (D). (⊆): Consider a set L ∈ Cycl[S]Xs,hj(β). By definition, L describes an unla-
belled cycle in hj , of length β. In particular, this means that L ∩ Pred[S]Xs,h(x) = ∅,

527

as otherwise s(x) would also belong to L, in contradiction with the fact that L does
not contain labelled locations. Therefore, L ∩ Tj = ∅, which implies L ⊆ dom(ĥj) by
definition of ĥj . As ĥj ⊆ hj , we conclude that L describes a cycle in ĥj . As ĥj ⊆ h′j ,
we conclude that L describes a cycle in h′j . From (A) this cycle does not contain
labelled locations. Thus, L ∈ Cycl[S]Xs′,h′j(β).
(⊇): Symmetrical to the other direction.

E. ⇑Cycl[S]X,αjs,hj
= ⇑Cycl[S]X,αjs,h′j

.

The proof of this case in analogous to the one of (D).
F. Rem[S]X,αjs,hj

= Rem[S]X,αjs,h′j
.

Proof of (F). (⊆): Consider a location ` ∈ Rem[S]X,αjs,hj
. By definition of Rem[S]X,αjs,hj

, we
have ` ∈ dom(hj) and hj(`) 6= s(x). Therefore, ` 6∈ Tj , which implies ` ∈ dom(ĥj)
and ĥj(`) 6= s(x) by definition of ĥj . As ĥj ⊆ h′j , ` ∈ dom(h′j) and h′j(`) 6= s(x).
From (A), ` 6∈ Lab[S]Xs,h′j . From (B), for all `′ ∈ Lab[S]Xs,h′j , ` 6∈ Path[S]Xs,h′j (`

′).

From (D), for every β ∈ [1, αj], ` 6∈ Cycl[S]Xs,h′j(β). From (E), ` 6∈ ⇑Cycl[S]X,αjs,h′j
.

By definition of Rem[S]X,αjs,h′j
, we conclude that ` ∈ Rem[S]X,αjs,h′j

.
(⊇): Symmetrical to the other direction.

The properties (A)–(F) lead directly to (s, hj) ≈SX,αj (s′, h′j), with the same case analysis provided
at the end of the proof of Lemma 5.39. Therefore, (s, h)↔SX,α (s, h′).

Lemma 5.40(IV). Let (s, h) and (s, h′) be two memory states such that (s, h) ≈SX,α (s, h′). If
h\{(`, `′) ∈ h | ` ∈ [⇑Cycl[S]X,αs,h][} = h′\{(`, `′) ∈ h′ | ` ∈ [⇑Cycl[S]X,αs,h′][}, then (s, h)↔SX,α (s, h′).

Proof. The proof of this lemma largely follows the steps given for the proof of Lemma 5.40(III).
Here, we mainly expand on the points that are different from that proof. Consider two heaps h1
and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 +h2 and α = α1 +α2. This requires α to be at least
two, otherwise the lemma trivially holds. We define L(α) = 1

2α(α+3)−1 and R(α) = α, i.e. the
upper bounds given to β′ in formulae of the form loopSX (β) ≥ β′ and remSX,α ≥ β′, respectively.
As in Lemma 5.40(III), the following inequality has a fundamental role in the proof:

L(α) ≥ L(α1) + L(α2) +R(max(α1, α2)) + 1. (?)

Differently from Lemma 5.40(III), we cannot rely on Lemma 5.39 in order to deal with the
case where card(⇑Cycl[S]X,αs,h) < L(α). Indeed, even though this implies that ⇑Cycl[S]X,αs,h′ and
⇑Cycl[S]X,αs,h have the same cardinality directly from the equisatisfaction of the core formulae of
the form ⇑loopSX,α ≥ β, we cannot deduce that ((s, h), (s, h′)) ∈

(⋂
α′≥1 ≈SX,α′

)
. For instance, it

could be that ⇑Cycl[S]X,αs,h′ contains a set of cardinality α+1 whereas ⇑Cycl[S]X,αs,h does not, leading
to (s, h) 6≈SX,α+1 (s, h′). Nonetheless, as in Lemma 5.40(III), we define the three sets T1, T2 and S
as follows:
• T1 = {L ∈ ⇑Cycl[S]X,αs,h | L ⊆ dom(h1)},

• T2 = {L ∈ ⇑Cycl[S]X,αs,h | L ⊆ dom(h2)},

• S = {(L1, L2) | L1 ∪ L2 ∈ ⇑Cycl[S]X,αs,h , ∅ 6= L1 ⊆ dom(h1), ∅ 6= L2 ⊆ dom(h2)}.
Given j ∈ [1, 2], Tj contains every set of ⇑Cycl[S]X,αs,h whose locations are memory cells of hj .
The sets in T1 and T2 describe loops of length greater than α in h1 and h2, respectively. The

528 Appendix C. Appendix of Chapter 5

set S contains pairs (L1, L2) of non-empty sets of locations that partition a set of ⇑Cycl[S]X,αs,h
and are such that L1 contains memory cells of h1 whereas L2 contains memory cells of h2. S

represents the loops in ⇑Cycl[S]X,αs,h that are split between h1 and h2. The sets T1, T2 and
{L1 ∪ L2 | (L1, L2) ∈ S} are mutually disjoint sets, and their union is ⇑Cycl[S]X,αs,h . We aim at
defining three similar sets T ′1, T ′2 and S′ with respect to ⇑Cycl[S]X,αs,h′ . These sets should satisfy
the following properties:

1. S′ ⊆ {(L′1, L′2) | L′1 and L′2 are non-empty and disjoint, and L′1 ∪ L′2 ∈ ⇑Cycl[S]X,αs,h′},

2. T ′1, T ′2 and {L′1 ∪ L′2 | (L′1, L′2) ∈ S′} are mutually disjoint. Their union is ⇑Cycl[S]X,αs,h′ .
3. For all j ∈ {1, 2}, min(card(Tj), L(αj)) = min(card(T ′j), L(αj)),

4. for all j ∈ {1, 2}, min(card([πj(S)][), R(αj)) = min(card([πj(S′)][), R(αj)),
5. for all j ∈ {1, 2}, s(u) ∈ [Tj][if and only if s(u) ∈ [T ′j][,

6. for all j ∈ {1, 2}, s(u) ∈ [πj(S)][if and only if s(u) ∈ [πj(S)][.
Notice that these are exactly the properties required in Lemma 5.40(III) for the homonymous
sets. The definition of T ′1, T ′2 and S′ follows the strategy below.

1: if card(S) ≥ max(α1, α2) then
2: let T ′1 ⊆ Cycl[S]Xs,h′(β) such that • card(T ′1) = min(card(T1), L(α1)),

• s(u) ∈ [T ′1][iff s(u) ∈ [T1][.
3: let T ′2 ⊆ Cycl[S]Xs,h′(β) \ T ′1 such that • card(T ′2) = min(card(T2), L(α2)),

• s(u) ∈ [T ′2][iff s(u) ∈ [T2][.
4: if s(u) ∈ [π1(S)][then
5: S′ ←

{
(L′ \ {`′}, {`′}) | L′ ∈ Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2) and `′ = min(L′ \ {s(u)})

}
.

6: else S′ ←
{

({`′}, L′ \ {`′}) | L′ ∈ Cycl[S]Xs,h′(β) \ (T ′1 ∪ T ′2) and `′ = min(L′ \ {s(u)})
}

.

7: else
8: if card(T1) ≥ L(α1) or card(T2) ≥ L(α2) then
9: let i ∈ {1, 2} such that card(Ti) ≥ L(αi).

10: else i← 2.
11: let T ′3−i ⊆ Cycl[S]Xs,h′(β) such that • card(T ′3−i) = min(card(T3−i), L(α3−i)),

• s(u) ∈ [T ′3−i][iff s(u) ∈ [T3−i][.
12: let Q be a set of card(S) sets in Cycl[S]Xs,h′(β) \T ′3−i such that s(u)∈[Q][iff s(u)∈[S][.
13: T ′i ← Cycl[S]Xs,h′(β) \ (T ′3−i ∪Q).
14: let f : Q→ S be a bijection s.t. • for all L′ ∈ Q, if s(u) ∈ L′ then s(u) ∈ [f(L′)][,

• for all P ∈ S, if s(u) ∈ [P][then s(u) ∈ f−1(P).

15: S′ ←

(L′1, L′2)

∣∣∣∣∣∣∣∣∣∣∣

there is L′ ∈ Q such that:
• L′1 ∪ L′2 = L′ and max(L′1 \ {s(u)}) < min(L′2 \ {s(u)}),
• for all j ∈ {1, 2}, min(card(L′j), αj) = min(card(πj(f(L′))), αj),
• for all j ∈ {1, 2}, s(u) ∈ L′j iff s(u) ∈ πj(f(L′)).

.

Let us show that, following this strategy, T ′1, T ′2 and S′ are well-defined and satisfy the prop-
erties (1)–(6). The proof is divided in two cases, depending on whether card(S) ≥ max(α1, α2).
case: card(S) ≥ max(α1, α2). In this case, the strategy (lines 2–6) is the one in Lemma 5.40(III).

Therefore, the properties (1)–(6) follow as shown in Lemma 5.40(III).

529

case: card(S) < max(α1, α2). In this case, the definitions of T ′1 and T ′2, as well as the definition
of the auxiliary set Q, are quite similar to the ones given in lines 8–13 of the strategy
in Lemma 5.40(III). The only difference lies on the fact that, in Lemma 5.40(III), we
assume the sets Cycl[S]Xs,h(β) and Cycl[S]Xs,h′(β) to contain at least L(α) elements. As
this assumption is dropped in this proof, the strategy provided here starts (line 8–10) by
checking whether “card(T ′1) ≥ L(α1) or card(T2) ≥ L(α2)” holds. If this is the case, then
the definition of T ′1, T ′2 and Q is exactly as the one provided in Lemma 5.40(III), which
allows us to conclude that the properties (3) and (5) are satisfied. Moreover,
(‡1) T ′1, T ′2 and Q partition ⇑Cycl[S]X,αs,h′ ,
(‡2) card(Q) = card(S), and s(u) ∈ [Q][iff s(u) ∈ [S][.
Otherwise, since card(s) < max(α1, α2), by (?) we conclude that
card(⇑Cycl[S]X,αs,h) = card(S) + card(T1) + card(T2) < max(α1, α2) +L(α1) +L(α2) < L(α).

From the equisatisfaction of the core formulae ⇑loopSX,α ≥ β, this implies that ⇑Cycl[S]X,αs,h′
and ⇑Cycl[S]X,αs,h have the same cardinality. Then, we can again derive that (3), (5), (‡1)
and (‡2) are satisfied, using the same arguments as in Lemma 5.40(III).
The main difference between the strategy provided here and the one in Lemma 5.40(III)
is given by the definition of S′ (lines 14–15). First of all (line 14), we define a bijection f

from Q and S so that it relates the two sets, one in Q and one in S, containing s(u), if any.
Thanks to (‡2), f is well-defined. The idea behind the definition of S′ is to split every set
in L′ ∈ Q into two non-empty disjoint sets L′1 and L′2, according to the pair of sets f(L′).
In particular, we require the two following properties to hold:
(‡3) for all j ∈ {1, 2}, min(card(L′j), αj) = min(card(πj(f(L′))), αj),
(‡4) for all j ∈ {1, 2}, s(u) ∈ L′j iff s(u) ∈ πj(f(L′)).
These two constraints are satisfiable thanks to the properties of f and the fact that both L′

and [f(L′)][contain more than α locations. In particular, we follow the construction:
• if card(L1) < α1, it is sufficient to define L′1 as a set of card(L1) locations in L′, so

that s(u) is included in L′1 whenever s(u) ∈ π1(f(L′)). This constraint on s(u) can
be satisfied as, by definition of f, s(u) ∈ L′1 if and only if s(u) ∈ [f(L′)][. Thanks to
card(L′) > α = α1 +α2, this means that L′2 = L′ \L′1 contains more than α2 locations.
Similarly, from card([f(L′][) > α, card(π2(f(L′))) > α2. Therefore, the property (‡3)
is satisfied. Lastly, if s(u) ∈ π2(f(L′)), then by disjointness s(u) 6∈ π1(f(L′)) and from
the properties of f and the definition of L′1 we derive that s(u) ∈ L′2. As the converse
also holds, (‡4) is satisfied.
• if card(L2) < α2 then the construction carries out symmetrically to the previous case.
• if both card(L1) ≥ α1 and card(L2) ≥ α2, then it is sufficient to define L′1 as a set

of α1 locations in L′, so that s(u) is included in L′1 whenever s(u) ∈ π1(f(L′)). The
satisfaction of both (‡3) and (‡4) follows as in the first case.

S′ is defined as a set of pairs (L′1, L′2) constructed as above from a set L′ ∈ Q. Notably,
L′1 and L′2 must be uniquely defined, so that for every L′ ∈ Q there is exactly one pair
P ∈ S′ such that [P][= L′. For this problem, the technical solution provided in line 15
is to require max(L′1 \ {s(u)}) < min(L′2 \ {s(u)}) to hold. Informally, this means that,
apart for the location s(u) which is deterministically assigned to either L′1 or L′2, in the
construction above we define L′1 and L′2 so that every location in L′1 precedes the ones in L2.

530 Appendix C. Appendix of Chapter 5

This does not break the satisfaction of (‡3) and (‡4), and allows us to uniquely define S′.
Moreover, this also means that L′1 and L′2 are disjoint. Together with the fact that every
pair in S is made of non-empty sets, by (‡3) we conclude that (1) holds. The property (‡3)
also implies (4), since [πj(S)][=

⋃
L∈πj(S) L, [πj(S′)][=

⋃
L′∈πj(S′) L′, and every two sets

in πj(S) (resp. πj(S′)) are disjoint. Similarly, the property (‡3) implies (6). Lastly, by
definition of S′ we have {[P][| P ∈ S′} = Q. As Q, T1 and T2 partition ⇑Cycl[S]X,αs,h′ , this
implies the satisfaction of (2). We conclude that the properties (1)–(6) are satisfied.

We rely on the sets T ′1, T ′2 and S′ to define the heaps h′1 and h′2 such that (s, h1) ≈SX,α1 (s, h′1)
and (s, h2) ≈SX,α2 (s, h′2) (as required by the hop relation↔SX,α). First, let us define the two heaps
ĥ1

def= h1 \ {(`, `′) ∈ h1 | ` ∈ [T1 ∪ π1(S)][} and ĥ2
def= h2 \ {(`, `′) ∈ h2 | ` ∈ [T2 ∪ π2(S)][}. By

definition of T1, T2 and S, dom(ĥ1) ∩ ⇑Cycl[S]X,αs,h and dom(ĥ1) ∩ ⇑Cycl[S]X,αs,h are both empty.
Moreover, by h = h1 + h2, we have that

h = ĥ1 + ĥ2 + {(`, `′) ∈ h | ` ∈ [⇑Cycl[S]X,αs,h][}.

From the hypothesis h \ {(`, `′) ∈ h | ` ∈ [⇑Cycl[S]X,αs,h][} = h′ \ {(`, `′) ∈ h′ | ` ∈ [⇑Cycl[S]X,αs,h′][}
we derive ĥ1 + ĥ2 = h′ \ {(`, `′) ∈ h′ | ` ∈ [⇑Cycl[S]X,αs,h′][}. We define the heaps h′1 and h′2 as:

h′1
def= ĥ1 + {(`, `′) ∈ h′ | ` ∈ [T ′1 ∪ π1(S′)][}, h′2

def= ĥ2 + {(`, `′) ∈ h′ | ` ∈ [T ′2 ∪ π2(S′)][}.

From (2), the heaps {(`, `′) ∈ h′ | ` ∈ [T ′1 ∪ π1(S′)][} and {(`, `′) ∈ h′ | ` ∈ [T ′2 ∪ π2(S′)][} are
disjoint, and their union is {(`, `′) ∈ h′ | ` ∈ [⇑Cycl[S]X,αs,h′][}. Thus, h′1 and h′2 are well-defined,
they are disjoint, and h′ = h′1 + h′2. As in Lemma 5.40(III), we now discuss seven properties of
h′1 and h′2. Let j ∈ {1, 2}.

A. For all t ∈ T[S]X, [[t]]Xs,hj and [[t]]Xs,h′j are equidefined. When defined, they are equal.

Proof of (A). We notice that the set ⇑Cycl[S]X,αs,h (resp. ⇑Cycl[S]X,αs,h′) enjoys the property
of the set L of Lemma C.1, with respect to the memory states ĥj and hj (resp. h′j).
Thus, the result follows from Lemma C.1(A), as shown in the proof of Lemma 5.40(I).

B. For every t ∈ T[S]X,

(a) sbyX
s,hj

(t) and sbyX
s,h′j

(t) are equidefined. When defined, they are equal,

(b) Path[S]Xs,hj (t) = Path[S]Xs,h′j (t),

(c) let δ ∈ [1, card(Path[S]Xs,hj (t))]. hδj([[t]]Xs,hj) = s(u) iff h′j
δ([[t]]Xs,h′j) = s(u).

Proof of (B). Similarly to (A), it follows directly from Lemma C.1(B).

C. For every x ∈ X, Pred[S]Xs,hj (x) = Pred[S]Xs,h′j (x).

Proof of (C). The proof of this statement is as in Lemma 5.40(III)(case (C)).

D. For every β ∈ [1, αj], Cycl[S]Xs,hj(β) = Cycl[S]Xs,h′j(β)

Proof of (D). The proof of this statement is as in Lemma 5.40(III)(case (D)). In partic-
ular, notice that it corresponds to the statement (f), since both Cycl[S]Xs,hj(β) ∩ Tj
and Cycl[S]Xs,h′j(β) ∩ T ′j are empty.

E. (d) min(card(⇑Cycl[S]X,αjs,hj
),L(αj)) = min(card(⇑Cycl[S]X,αjs,h′j

),L(αj)),

(e) s(u) ∈ [⇑Cycl[S]X,αjs,hj
][if and only if s(u) ∈ [⇑Cycl[S]X,αjs,h′j

][.
The proofs of these two statements rely on the following equality and inclusions:

531

(f) ⇑Cycl[S]X,αjs,hj
\ Tj = ⇑Cycl[S]X,αjs,h′j

\ T ′j ,

(g) Tj ⊆ ⇑Cycl[S]X,αjs,hj
and T ′j ⊆ ⇑Cycl[S]X,αjs,h′j

.

The proof of (f) (resp. (g)) is analogous to the one given to the homonymous statement
of Lemma 5.40(III). Then, the proof of (E) follows analogously to Lemma 5.40(III)(case (D)).

F. (j) min(card(Rem[S]X,αjs,hj
),R(αj)) = min(card(Rem[S]X,αjs,h′j

),R(αj)),

(k) s(u) ∈ Rem[S]X,αjs,hj
if and only if s(u) ∈ Rem[S]X,αjs,h′j

.
The proofs of these two statements rely on the following equality and inclusions:

(l) Rem[S]X,αjs,hj
\ [πj(S)][= Rem[S]X,αjs,h′j

\ [πj(S′)][,

(m) [πj(S)][⊆ Rem[S]X,αjs,hj
and [πj(S′)][⊆ Rem[S]X,αjs,h′j

.

The statement (l) (resp. (m)) is proved analogously to the statement (p) (resp. (q))
of Lemma 5.40(III). Then, the proof of (F) follows similarly to Lemma 5.40(III)(case (F)).

The properties (A)–(F) lead directly to (s, hj) ≈SX,αj (s′, h′j), with the same case analysis provided
at the end of the proof of Lemma 5.39. Therefore, (s, h)↔SX,α (s, h′).

Lemma 5.40(V). Let (s, h) and (s, h′) be two memory states such that (s, h) ≈SX,α (s, h′).
and h \ {(`, `′) ∈ h | ` ∈ Rem[S]X,αs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[S]X,αs,h′}. Then, (s, h)↔SX,α (s, h′).

Proof. Consider two heaps h1 and h2, α1 ≥ 1 and α2 ≥ 1 such that h = h1 + h2 and
α = α1 + α2. Notice that this requires α to be at least two, otherwise the lemma trivially
holds. We recall that the integer β in formulae of Core[S](X, α) of the form remSX,α ≥ β ranges
over [1, α]. If card(Rem[S]X,αs,h) < α then the lemma holds directly from Lemma 5.39. Indeed,
in this case, from the equisatisfaction of the core formulae of the form remSX,α ≥ β we con-
clude that card(Rem[S]X,αs,h) = card(Rem[S]X,αs,h′). By definition of h and h′, we conclude that
((s, h), (s, h′)) ∈

(⋂
α′≥1 ≈SX,α′

)
, which allows us to apply Lemma 5.39. Therefore, in the

following we assume card(Rem[S]X,αs,h) ≥ α, which implies card(Rem[S]X,αs,h′) ≥ α again from the
equisatisfaction of the core formulae remSX,α ≥ β.

We define the following two sets T1, T2:

T1 = {` ∈ Rem[S]X,αs,h | ` ∈ dom(h1)}, T2 = {` ∈ Rem[S]X,αs,h | ` ∈ dom(h2)}.

Given j ∈ [1, 2], Tj contains every location of Rem[S]X,αs,h that is a memory cell of hj . Moreover,
T1, T2 are mutually disjoint sets, and their union is Rem[S]X,αs,h . As a first step of the proof, we
aim at defining three similar sets T ′1, T ′2 with respect to Rem[S]X,αs,h′ . These sets should also satisfy
cardinality constraints depending on αj , as well as constraints involving the location s(u). More
precisely:

1. T ′1, T ′2 are mutually disjoint. Their union is Rem[S]X,αs,h′ ,
2. for all j ∈ {1, 2}, min(card(Tj), αj) = min(card(T ′j), αj),
3. for all j ∈ {1, 2}, s(u) ∈ Tj if and only if s(u) ∈ T ′j .

The definition of T ′1 and T ′2 follows the strategy below.

if card(T1) < α1 then
let T ′1 be a set of card(T1) locations in Rem[S]X,αs,h′ such that s(u) ∈ T1 iff s(u) ∈ T1.
T ′2 ← Rem[S]X,αs,h′ \ T ′1.

532 Appendix C. Appendix of Chapter 5

else if card(T2) < α2 then
let T ′2 be a set of card(T2) locations in Rem[S]X,αs,h′ such that s(u) ∈ T2 iff s(u) ∈ T2.
T ′1 ← Rem[S]X,αs,h′ \ T ′2.

else (i.e. card(T1) ≥ α1 and card(T2) ≥ α2)
let T ′1 be a set of α1 locations in Rem[S]X,αs,h′ such that s(u) ∈ T1 iff s(u) ∈ T1.
T ′2 ← Rem[S]X,αs,h′ \ T ′1.

Since we are assuming that both Rem[S]X,αs,h and Rem[S]X,αs,h′ contain at least α = α1 + α2

elements, and we have s(u) ∈ Rem[S]X,αs,h iff s(u) ∈ Rem[S]X,αs,h′ (from the equisatisfaction of the
core formula uremSX,α), we conclude that the sets T ′1 and T ′2 are well-defined. Moreover, their
definition is such that T1∩T2 = ∅ and T1∪T2 = Rem[S]X,αs,h′ . So, the property (1) is satisfied. Let
us show that the same holds true for the properties (2) and (3). The proof is divided in three
cases, according to the strategy.
case: card(T1) < α1. From the first case of the strategy, we have card(T1) = card(T ′1). By

definition of T1 and T2 we have card(Rem[S]X,αs,h) = card(T1) + card(T2). Similarly, from (1),
card(Rem[S]X,αs,h′) = card(T ′1) + card(T ′2). Since card(Rem[S]X,αs,h) and card(Rem[S]X,αs,h′)) contain
at least α locations, where α = α1 + α2 ≥ card(T1) + α2, this allows us to conclude that
T2 and T ′2 contain at least α2 locations. Thus, (2) is satisfied. Again from the definition
of T ′1, we have s(u) ∈ T1 if and only if s(u) ∈ T ′1. Therefore, in order to conclude that (3)
it is sufficient to show that s(u) ∈ T2 if and only if s(u) ∈ T ′2. This is quite obvious: for
the left-to-right direction, if s(u) ∈ T2 then s(u) 6∈ T1 and s(u) ∈ Rem[S]X,αs,h . By definition
of T ′1 we derive s(u) 6∈ T ′1, whereas from the equisatisfaction of the core formula u ∈ remSX,α
we have s(u) ∈ Rem[S]X,αs,h′ . As T ′1 ∪ T ′2 = Rem[S]X,αs,h′ , we conclude that s(u) ∈ T ′2. The other
direction is proved symmetrically.

case: card(T2) < α2. Analogous to the previous case, by swapping the indices 1 and 2 and
considering the second case of the strategy.

case: card(T1) ≥ α1 and card(T2) ≥ α2. From the third case of the strategy, card(T ′1) = α1.
Similarly to the first case, this allows us to conclude that T ′2 has at least α2 locations.
Thus, (2) is satisfied. The proof of (3) is equal to the one given in the first case.

We rely on T ′1 and T ′2 in order to define the heaps h′1 and h′2 such that (s, h1) ≈SX,α1 (s, h′1)
and (s, h2) ≈SX,α2 (s, h′2) (as required by the hop relation↔WX,α). First, let us define the two heaps
ĥ1

def= h1 \ {(`, `′) ∈ h1 | ` ∈ T1} and ĥ2
def= h2 \ {(`, `′) ∈ h2 | ` ∈ T2}. By definition of T1 and T2,

dom(ĥ1) ∩ Rem[S]X,αs,h and dom(ĥ1) ∩ Rem[S]X,αs,h are both empty. Moreover, by h = h1 + h2,

h = ĥ1 + ĥ2 + {(`, `′) ∈ h | ` ∈ Rem[S]X,αs,h}.

From the hypothesis h \ {(`, `′) ∈ h | ` ∈ Rem[S]X,αs,h} = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[S]X,αs,h′} we derive
ĥ1 + ĥ2 = h′ \ {(`, `′) ∈ h′ | ` ∈ Rem[S]X,αs,h′}. We define the heaps h′1 and h′2 as:

h′1
def= ĥ1 + {(`, `′) ∈ h′ | ` ∈ T ′1}, h′2

def= ĥ2 + {(`, `′) ∈ h′ | ` ∈ T ′2}.

From (1), the heaps {(`, `′) ∈ h′ | ` ∈ T ′1} and {(`, `′) ∈ h′ | ` ∈ T ′2} are disjoint, and
their union is {(`, `′) ∈ h′ | ` ∈ Rem[S]X,αs,h′}. Thus, h′1 and h′2 are well-defined, they are dis-
joint, and h′ = h′1 + h′2. We now discuss seven properties of h′1 and h′2 which directly lead
to (s, h1) ≈SX,α1 (s, h′1) and (s, h2) ≈SX,α2 (s, h′2), as done for Lemma 5.40(III). Let j ∈ {1, 2}.

533

A. For all t ∈ T[S]X, [[t]]Xs,hj and [[t]]Xs,h′j are equidefined. When defined, they are equal.

Proof of (A). We notice that the set Rem[S]X,αs,h (resp. Rem[S]X,αs,h′) enjoys the property of the
set L of Lemma C.1, with respect to the memory states ĥj and hj (resp. h′j). Thus,
the result follows from Lemma C.1(A), as shown in the proof of Lemma 5.40(I).

B. For every t ∈ T[S]X,

(a) sbyX
s,hj

(t) and sbyX
s,h′j

(t) are equidefined. When defined, they are equal,

(b) Path[S]Xs,hj (t) = Path[S]Xs,h′j (t),

(c) let δ ∈ [1, card(Path[S]Xs,hj (t))]. hδj([[t]]Xs,hj) = s(u) iff h′j
δ([[t]]Xs,h′j) = s(u).

Proof of (B). Similarly to (A), it follows directly from Lemma C.1(B).

C. For every x ∈ X, Pred[S]Xs,hj (x) = Pred[S]Xs,h′j (x).

Proof of (C). (⊆): Let ` ∈ Pred[S]Xs,hj (x), and so hj(`) = s(x) and, in hj , ` is not reached
by any location corresponding to program variables in X. By Lemma C.1(O), h′j does
not witness a path going from s(y) to `, for any y ∈ X. As hj ⊆ h we have h(`) = s(x).
By definition ` 6∈ Rem[S]X,αs,h , which implies ` ∈ dom(ĥj) directly from the definition
of ĥj and the fact that ` ∈ dom(hj). By ĥj ⊆ hj , ĥj(`) = s(x). Since ĥj ⊆ h′j ,
h′j(`) = s(x). Thus, ` ∈ Pred[S]Xs,h′j (x).
(⊇): Symmetrical to the other direction.

D. For every β ∈ [1, αj], Cycl[S]Xs,hj(β) = Cycl[S]Xs,h′j(β).

Proof of (D). (⇒): Consider a set L ∈ Cycl[S]Xs,hj(β). By definition, L describes an unla-
belled cycle in hj , of length β. By definition, L∩Rem[S]X,αs,h = ∅. Therefore, L∩Tj = ∅,
which implies L ⊆ dom(ĥj) by definition of ĥj . As ĥj ⊆ hj , we conclude that L de-
scribes a cycle in ĥj . As ĥj ⊆ h′j , we conclude that L describes a cycle in h′j . From (A)
this cycle does not contain labelled locations. Thus, L ∈ Cycl[S]Xs′,h′j(β).
(⇐): Symmetrical to the other direction.

E. ⇑Cycl[S]X,αjs,hj
= ⇑Cycl[S]X,αjs,h′j

.

The proof of this case in analogous to the one of (D).

F. (d) min(Rem[S]X,αjs,hj
, αj) = min(Rem[S]X,αjs,h′j

, αj),

(e) s(u) ∈ Rem[S]X,αjs,hj
if and only if s(u) ∈ Rem[S]X,αjs,h′j

.

We start by showing the following equivalence and inclusions:

(f) Rem[S]X,αjs,hj
\ Tj = Rem[S]X,αjs,h′j

\ T ′j ,

(g) Tj ⊆ Rem[S]X,αjs,hj
and T ′j ⊆ Rem[S]X,αjs,h′j

.

Proof of (f). (⊆): Suppose ` ∈ Rem[S]X,αjs,hj
\ Tj . By definition of Rem[S]X,αjs,hj

we have
h. ` ∈ dom(hj)
i. ` does not belong to Lab[S]Xs,hj , Pred[S]Xs,hj (x), Path[S]Xs,hj (`), Cycl[S]Xs,hj(β) and
⇑Cycl[S]X,αjs,hj

, for every x ∈ X, ` ∈ Lab[S]Xs,hj and β ∈ [1, αj].

534 Appendix C. Appendix of Chapter 5

From (h) and ` 6∈ Tj , we derive ` ∈ dom(ĥj). As ĥj ⊆ h′j , ` ∈ dom(h′j). From (i), to-
gether with (A)–(E), ` does not belong to Lab[S]Xs,h′j , Pred[S]Xs,h′j (x), Path[S]Xs,h′j (`),

Cycl[S]Xs,h′j(β) and ⇑Cycl[S]X,αjs,h′j
, for every x ∈ X, ` ∈ Lab[S]Xs,hj and β ∈ [1, αj].

Hence, ` ∈ Rem[S]X,αjs,h′j
.

(⊇): Symmetrical to the other direction.
Proof of (g). We prove the inclusion Tj ⊆ Rem[S]X,αjs,hj

. Suppose ` ∈ Tj . By definition,
` ∈ Rem[S]X,αs,h , which means that:
∗ for every x ∈ X, h(`) 6= s(x),
∗ for every x ∈ X and δ ≥ 0, hδ(s(x)) 6= `,
∗ for every δ ≥ 1, hδ(`) 6= `.

As hj ⊆ h, these three properties carry over to hj (they are monotonous under sub-
heaps). Lastly, ` ∈ Tj implies ` ∈ dom(hj), which allows us to derive ` ∈ Rem[S]X,αjs,hj

.

The proof of the inclusion T ′j ⊆ Rem[S]X,αjs,h′j
is analogous.

Proof of (F). First, we prove that (d) holds. The property (2) of the constructions states
that min(card(Tj), αj) = min(card(T ′j), αj). By using the fact that for all a, b, c, d ∈ N,
min(a, d) = min(b, d) implies min(a+ c, d) = min(b+ c, d),

min(card(Tj) + card(Rem[S]X,αjs,hj
\ Tj), αj)

= min(card(T ′j) + card(Rem[S]X,αjs,hj
\ Tj), αj).

From (f), card(Rem[S]X,αjs,hj
\ Tj) = card(Rem[S]X,αjs,h′j

\ T ′j), and so

min(card(Tj) + card(Rem[S]X,αjs,hj
\ Tj), αj)

= min(card(T ′j) + card(Rem[S]X,αjs,h′j
\ T ′j), αj).

(†)

By (g), we have Rem[S]X,αjs,hj
= (Rem[S]X,αjs,hj

\ Tj) ∪ Tj and so

card(Rem[S]X,αjs,hj
) = card(Rem[S]X,αjs,hj

\ Tj) + card(Tj).
Similarly (again from (g)),

card(Rem[S]X,αjs,h′j
) = card(Rem[S]X,αjs,h′j

\ T ′j) + card(T ′j).

By (†) we have (d), i.e. min(card(Rem[S]X,αjs,hj
), αj) = min(card(Rem[S]X,αjs,h′j

), αj).

Let us prove (e). For the left-to-right direction, suppose s(u) ∈ Rem[S]X,xs,hj . By (g), we
have either s(u) ∈ Rem[S]X,αjs,hj

\ Tj or s(u) ∈ Tj . In the former case, directly from (f),
we conclude that s(u) ∈ Rem[S]X,αjs,h′j

. In the latter case, from the property (3) of the

construction, we have s(u) ∈ T ′j , which in turn implies s(u) ∈ Rem[S]X,αjs,h′j
by (g). The

right-to-left direction is proved symmetrically.

The properties (A)–(F) lead directly to (s, hj) ≈SX,αj (s′, h′j), with the same case analysis provided
at the end of the proof of Lemma 5.39. Therefore, (s, h)↔SX,α (s, h′).

Proof of Lemma 5.41.

Lemma 5.41 (S : ∗-simulation). ≈SX,α ⊆ ↔SX,α.

535

Proof. This proof follows rather closely the proof of the ∗-simulation property given for the core
formulae of the weak fragment in Lemma 5.20. Let us consider (s, h) and (s′, h′) such that
(s, h) ≈SX,α (s′, h′). We rely on Lemma 5.39 and Lemma 5.40 to build a chain of hops as the one
below, leading to the result by transitivity of ↔SX,α,

(s, h) = (s1, h1)↔SX,α (s2, h2)↔SX,α . . .↔SX,α (sk−1, hk−1)↔SX,α (sk, hk) = (s′, h′).

The proof is by induction on the cardinality of the set [(s, h)#X,α(s′, h′)] defined as follows:
(S, T) ∈

(Pred[S]Xs,h(x), Pred[S]Xs′,h′(x)),
(Path[S]Xs,h(t), Path[S]Xs′,h′(t)),
(Rem[S]X,αs,h , Rem[S]X,αs′,h′),

(Cycl[S]Xs,h(β) , Cycl[S]Xs′,h′(β))

∣∣∣∣∣∣∣∣∣∣∣
x ∈ X

t ∈ T[S]X

β ∈ [1, α]

∣∣∣∣∣∣∣∣∣∣∣
card(S) 6= card(T)

Intuitively, this set contains pairs of predecessors sets, paths sets, bounded loops or remainder
sets that have different cardinalities in the two memory states. Notice that the sets of unbounded
loops, i.e. ⇑Cycl[S]X,αs,h and ⇑Cycl[S]X,αs′,h′ , are excluded, as we treat them separately inside the
base case of the induction. We build the chain of hops so that for every intermediate memory
state in it is obtained from the previous one by modifying the heap in a way that strictly reduces
the number of these pairs, always with respect to the last memory state of the chain, i.e. (s′, h′).
base case: [(s, h)#X,α(s′, h′)] = 0. In this case, (s, h) and (s′, h′) agree on the cardinality of

every set of the partition, with (possibly) the exception of ⇑Cycl[S]X,αs,h and ⇑Cycl[S]X,αs′,h′ .
The idea is build a chain of hops featuring (s, h) and (s′, h′), such that every two memory
states in the chain differ on the sets of unlabelled and unbounded cycles, e.g. ⇑Cycl[S]X,αs,h
and ⇑Cycl[S]X,αs′,h′ . This is done by updating (s, h) and (s′, h′) in order to reach two memory
states in the relation

(⋂
α′≥1 ≈SX,α′

)
, which allows us to apply Lemma 5.39. We divide the

process of building the chain of hops in three steps.
step 1: Let us focus on (s, h). Let n = card(⇑Cycl[S]X,αs,h), and let us assume that

⇑Cycl[S]X,αs,h = {L1, . . . , Ln}. L1, . . . , Ln are mutually disjoint sets describing unla-
belled cycles of (s, h), of length at least α+ 1. Without loss of generality, we assume
that if s(u) belongs to a set in ⇑Cycl[S]X,αs,h , then this set is L1. Let m = min(n,L(α)),
where L(α) = 1

2α(α + 3) − 1 is the upper bound given to β for the core formulae
of Core[S](X, α) of the form ⇑loopSX,α ≥ β. We introduce m sets of locations L′1, . . . , L

′
m

such that
1. for all j ∈ [1,m], L′j = {`j0, . . . , `jα} ⊆ Lj . So, card(L′j) = α+ 1,
2. s(u) ∈ L′1 if and only if s(u) ∈ L1.

Informally, L′j is obtained from Lj by removing some locations in order to obtain a
set of cardinality α + 1. If the location s(u) belongs to L1, then it is kept in L′1. As
L1, . . . , Ln are mutually disjoint, so are L′1, . . . , L

′
m. Given j ∈ [1,m], we consider a

heap h̃j
def= {`ji 7→ `j(i+1) mod (α+1) | i ∈ [0, α]}. Essentially, h̃j witnesses a cycle of

length α + 1, and nothing else. That is, L′j = dom(h̃j) is a minimal set describing
this cycle. The heaps h, h̃1, . . . , h̃m are mutually disjoint. We define ĥ as the heap
h \ {(`, `′) ∈ h | ` ∈ [⇑Cycl[S]X,αs,h][}. ĥ is disjoint from every heap h̃j (j ∈ [1,m]),
which allows us to define the heap

h1 = ĥ+ h̃1 + . . .+ h̃m.
One can see h1 as a heap obtained from h by shrinking all the cycles in ⇑Cycl[S]X,αs,h
to cardinality α + 1, while keeping s(u) in one of these cycles, whenever s(u) ∈

536 Appendix C. Appendix of Chapter 5

[⇑Cycl[S]X,αs,h][. Moreover, if ⇑Cycl[S]X,αs,h contains more than L(α) cycles, then the
cycles which are in excess are removed. The following properties are trivially satisfied:
3. dom(ĥ) ⊆ dom(h1) ⊆ dom(h),
4. dom(ĥ) = dom(h) \ [⇑Cycl[S]X,αs,h][,

5. For every ` ∈ dom(ĥ), h1(`) = ĥ(`) = h1(`).
We prove that (s, h) ≈SX,α (s, h1). This is done by showing the properties (A)–(F)
already discussed in Lemma 5.39 and similar lemmata.
A. For all t ∈ T[S]X, [[t]]Xs,h and [[t]]Xs,h1

are equidefined. When defined, [[t]]Xs,h = [[t]]Xs,h1
.

Proof of (A). We notice that the set ⇑Cycl[S]X,αs,h (resp.
⋃
j∈[1,m] L′j) enjoys the

property of the set L of Lemma C.1, with respect to the memory states ĥ and
h (resp. h1). Therefore, (A) follows directly from Lemma C.1(A), as shown
in the proof of Lemma 5.40(I).

B. For every t ∈ T[S]X,
(a) sbyX

s,h(t) and sbyX
s,h1

(t) are equidefined. If defined, they are equal,
(b) Path[S]Xs,h(t) = Path[S]Xs,h1

(t),
(c) let δ ∈ [1, card(Path[S]Xs,h(t))]. hδ([[t]]Xs,h) = s(u) iff h1

δ([[t]]Xs,h1
) = s(u).

Proof of (B). Similarly to (A), it follows directly from Lemma C.1(B).
C. For every x ∈ X, Pred[S]Xs,h(x) = Pred[S]Xs,h1

(x).
Proof of (C). (⇒): Suppose ` ∈ Pred[S]Xs,h(x). By definition, h(`) = s(x) and h

does not witness a path going from s(y) to `, for any y ∈ X. By Lemma C.1(O),
h1 does not witness a path going from s(y) to `, for any y ∈ X. More-
over, ` ∈ Pred[S]Xs,h(x) means that ` 6∈ ⇑Cycl[S]X,αs,h , which in turn implies
` ∈ dom(ĥ). From (5), h1(`) = s(x). Thus, ` ∈ Pred[S]Xs,h1

(x).
(⇐): Symmetrical to the other direction.

D. For every β ∈ [1, α], Cycl[S]Xs,h(β) = Cycl[S]Xs,h1
(β).

Proof of (D). (⇒): Let L ∈ Cycl[S]Xs,h(β). So, L is a minimal set describing an
unlabelled cycle in h, of length β. Since L 6∈ ⇑Cycl[S]X,αs,h and L ⊆ dom(h),
by (4) we have L ⊆ dom(ĥ). By (5), L is a minimal set describing a cycle
in h1. From (A), L ∩ Lab[S]Xs,h1

= ∅. So L ∈ Cycl[S]Xs,h1
(β).

(⇐): Symmetrical to the other direction.
E. (d) min(card(⇑Cycl[S]X,αs,h),L(α)) = min(card(⇑Cycl[S]X,αs,h1

),L(α).
(e) s(u) ∈ [⇑Cycl[S]X,αs,h][if and only if s(u) ∈ [⇑Cycl[S]X,αs,h1

][.
(f) For every L ∈ ⇑Cycl[S]X,αs,h1

, card(L) = α+ 1.
Proof of (E). The three statements follow directly from (A) and the definition of

h̃1, . . . , h̃m. Precisely, ⇑Cycl[S]X,αs,h1
= {L′1, . . . , L′m}.

F. Rem[S]X,αs,h = Rem[S]X,αs,h1
.

Proof of (F). (⇒): Suppose ` ∈ Rem[S]X,αs,h . Thus, ` ∈ dom(h) and moreover

` 6∈ Lab[S]Xs,h, ` 6∈ Path[S]Xs,h(t), ` 6∈ Pred[S]Xs,h(x),
` 6∈ [Cycl[S]Xs,h(β)][, ` 6∈ [⇑Cycl[S]X,αs,h][,

where t ∈ T[S]X, x ∈ X and β ∈ [1, α]. From (A)–(D), we have
` 6∈ Lab[S]Xs,h1

, ` 6∈ Path[S]Xs,h1
(t), ` 6∈ Pred[S]Xs,h1

(x), ` 6∈ [Cycl[S]Xs,h1
(β)][,

537

where t ∈ T[S]X, x ∈ X and β ∈ [1, α]. Moreover, ` ∈ dom(ĥ), which in turn
implies ` ∈ dom(h1) and ` 6∈ [⇑Cycl[S]X,αs,h1

][. We conclude that ` ∈ Rem[S]X,αs,h1
.

(⇐): Symmetrical to the other direction.
We have (s, h) ≈SX,α (s, h1), (s, h)↔SX,α (s, h1) and [(s, h)#X,α(s, h1)] = ∅.
Proof of (s, h) ≈SX,α (s, h1). By (A)–(F) (see for instance the proof of Lemma 5.39).
Proof of (s, h)↔SX,α (s, h1). We have h \ [⇑Cycl[S]X,αs,h][= ĥ = h1 \ [⇑Cycl[S]X,αs,h1

][.
By (A) and (s, h) ≈SX,α (s, h1), from Lemma 5.40(V), (s, h) ↔SX,α (s, h1). We
notice that, since ≈SX,α is symmetrical, we also deduce (s, h1)↔SX,α (s, h).

Proof of [(s, h)#X,α(s, h1)] = ∅. Directly from (A)–(F).
step 2: Symmetrically, we consider memory state (s′, h′) and, with the same strategy of

the previous step, produce a heap h′1 such that
• ⇑Cycl[S]X,αs′,h′1 contains min(card(⇑Cycl[S]X,αs′,h′),L(α)) sets, all of cardinality α+ 1,

• (s′, h′1) ≈SX,α (s′, h′),
• (s′, h′1)↔SX,α (s′, h′),
• [(s′, h′)#X,α(s′, h′1)] = ∅.

step 3: From [(s, h)#X,α(s, h1)] = [(s, h)#X,α(s′, h′)] = [(s′, h′)#X,α(s′, h′1)] = ∅, we de-
duce that [(s, h1)#X,α(s, h′1)] = ∅. Since ≈SX,α is an equivalence relation, from
(s′, h′1) ≈SX,α (s′, h′) and (s, h1) ≈SX,α (s, h), we derive (s, h1) ≈SX,α (s′, h′1). Thus,
as (s, h1) and (s′, h′1) satisfy the same core formulae of the form ⇑loopSX,α ≥ β, we
conclude that

min(card(⇑Cycl[S]X,αs,h1
),L(α)) = min(card(⇑Cycl[S]X,αs′,h′1),L(α)).

More precisely, from the fact that card(⇑Cycl[S]X,αs,h1
) = min(card(⇑Cycl[S]X,αs,h),L(α))

and card(⇑Cycl[S]X,αs′,h′1) = min(card(⇑Cycl[S]X,αs′,h′),L(α)), this allows us to derive

card(⇑Cycl[S]X,αs,h1
) = card(⇑Cycl[S]X,αs′,h′1).

Together with [(s, h1)#X,α(s, h′1)] = ∅ and (s, h1) ≈SX,α (s′, h′1), this implies that
(s, h1) and (s′, h′1) are in (

⋂
α≥1 ≈SX,α). We apply Lemma 5.39: (s, h1) ↔SX,α (s′, h′1).

From (s, h) ↔SX,α (s, h1) and (s′, h′1) ↔SX,α (s′, h′), and thanks to the transitivity of
↔SX,α, we conclude: (s, h)↔SX,α (s′, h′).

induction step: [(s, h)#X,α(s′, h′)] > 0. Let (S, T) ∈ [(s, h)#X,α(s′, h′)]. We split the proof in
three cases, all of them quite similar, dealing with the different types of sets S and T .
case (S, T) = (Rem[S]X,αs,h , Rem[S]X,αs′,h′). Let us assume that card(S) > card(T). This assump-

tion is without loss of generality: in the case where card(S) < card(T), it is sufficient
to swap (s, h) and (s′, h′) in the proof, and apply the construction we now show to
produce a chain of hops going from (s′, h′) to (s, h), i.e.

(s′, h′) = (s1, h1)↔SX,α (s2, h2)↔SX,α . . .↔SX,α (sk−1, hk−1)↔SX,α (sk, hk) = (s, h).
So, assuming card(S) > card(T), consider the heap h′′ obtained from h by removing
from its domain card(S)− card(T) locations in Rem[S]X,αs,h and different from s(u). For-
mally, h′′ ⊆ h and there is a set Q ⊆ Rem[S]X,αs,h such that card(Q) = card(S)− card(T),
dom(h′′) = dom(h) \ Q and s(u) 6∈ Q. Notice that a heap h′′ satisfying these condi-
tions exists. In particular, as card(S) 6= card(T) and (s, h) ≈SX,α (s′, h′), both memory
states must satisfy remSX,α ≥ α, where α is assumed strictly positive. So, both S

and T have at least α ≥ 1 elements, which allows us to keep s(u) in the domain

538 Appendix C. Appendix of Chapter 5

of h′′, in the case it belongs to dom(h). We aim at showing that (s, h) ≈SX,α (s, h′′).
Similar to the base case concerning unbounded loops, this is done by relying on the
six properties (A)–(F) below:
A. for all t ∈ T[S]X, [[t]]Xs,h and [[t]]Xs,h′′ are equidefined. When defined, [[t]]Xs,h = [[t]]Xs,h′′ .

Proof of (A). The set Rem[S]X,αs,h (resp. Q) enjoys the property required by the set
L of Lemma C.1, with respect to the memory states ĥ and h (resp. h′′). Thus,
the result follows from Lemma C.1(A).

B. For every t ∈ T[S]X,
(a) sbyX

s,h(t) and sbyX
s,h′′(t) are equidefined. If defined, they are equal,

(b) Path[S]Xs,h(t) = Path[S]Xs,h′′(t),

(c) let δ ∈ [1, card(Path[S]Xs,h(t))]. hδ([[t]]Xs,h) = s(u) iff h′′δ([[t]]Xs,h′′) = s(u).
Proof of (B). Similarly to (A), it follows directly from Lemma C.1(B).

C. For every x ∈ X, Pred[S]Xs,h(x) = Pred[S]Xs,h′′(x).
Proof of (C). Analogous to the proof of (C) in the base case, since we can rely

on Lemma C.1(O).
D. For every β ∈ [1, α], Cycl[S]Xs,h(β) = Cycl[S]Xs,h′′(β).

Proof of (D). (⇒): Let L ∈ Cycl[S]Xs,h(β). So, L is a minimal set describing an
unlabelled cycle in h, of length β. Since L ∩ Rem[S]X,αs,h = ∅ and L ⊆ dom(h),
by definition of h′′ we have L ⊆ dom(h′′), and L is a minimal set describing a
cycle in h′′. From (A), L ∩ Lab[S]Xs,h′′ = ∅. So L ∈ Cycl[S]Xs,h′′(β).
(⇐): Symmetrical to the other direction.

E. ⇑Cycl[S]X,αs,h = ⇑Cycl[S]X,αs,h′′ .
Proof of (E). Analogous to the proof of (D).

F. (d) Rem[S]X,αs,h′′ ⊆ Rem[S]X,αs,h ,
(e) s(u) ∈ Rem[S]X,αs,h if and only if s(u) ∈ Rem[S]X,αs,h′′ .
Proof of (d). Let ` ∈ Rem[S]X,αs,h′′ . So, ` ∈ dom(h′′) and moreover

` 6∈ Lab[S]Xs,h′′ , ` 6∈ Path[S]Xs,h′′(t), ` 6∈ Pred[S]Xs,h′′(x),
` 6∈ [Cycl[S]Xs,h′′(β)][, ` 6∈ [⇑Cycl[S]X,αs,h′′][,

where t ∈ T[S]X, x ∈ X and β ∈ [1, α]. From (A)–(F) we conclude that
` 6∈ Lab[S]Xs,h, ` 6∈ Path[S]Xs,h(t), ` 6∈ Pred[S]Xs,h(x),
` 6∈ [Cycl[S]Xs,h(β)][, ` 6∈ [⇑Cycl[S]X,αs,h][,

where t ∈ T[S]X, x ∈ X, β ∈ [1, α]. By h′′ ⊆ h, ` ∈ dom(h). So, ` ∈ Rem[S]X,αs,h .
Proof of (e). From (d) we conclude that Q ∪ Rem[S]X,αs,h′′ = Rem[S]X,αs,h . Then, the

result follows from the fact that s(u) 6∈ Q (by definition).
Notice that Q∪Rem[S]X,αs,h′′ = Rem[S]X,αs,h , together with card(Q) = card(S)−card(T), im-
plies card(Rem[S]X,αs,h′′) = card(T). We show that (s, h) ≈SX,α (s, h′′), (s, h)↔SX,α (s, h′′),
and (s, h′′)↔SX,α (s′, h′).
Proof of (s, h) ≈SX,α (s, h′′). By (A)–(F) (see for instance the proof of Lemma 5.39).
Proof of (s, h)↔SX,α (s, h′′). Directly from the properties (A)–(F), we conclude that

h \ {(`, `′) ∈ h | ` ∈ Rem[S]X,αs,h} = h′′ \ {(`, `′) ∈ h′′ | ` ∈ Rem[S]X,αs,h′′}. Thus, by (A)
and (s, h) ≈SX,α (s, h′′), we apply Lemma 5.40(V) and derive (s, h)↔SX,α (s, h′′).

539

Proof of (s, h′′)↔SX,α (s′, h′). As ≈SX,α is an equivalence relation, (s, h) ≈SX,α (s, h′′) al-
lows us to derive that (s, h′′) ≈SX,α (s′, h′). The properties (A)–(F), together with
card(Rem[W]Xs,h′′) = card(T), we derive [(s, h′′)#X,α(s′, h′)] < [(s, h)#X,α(s′, h′)].
By induction hypothesis, (s, h′′)↔SX,α (s′, h′).

From (s, h) ↔SX,α (s, h′′), (s, h′′) ↔SX,α (s′, h′) and by transitivity of the hop rela-
tion ↔SX,α we conclude: (s, h)↔SX,α (s′, h′).

case (S, T) = (Cycl[S]Xs,h(β) , Cycl[S]Xs′,h′(β)), for some β ∈ [1, α]. As in the previous case,
without loss of generality we can assume card(S) > card(T). We consider the heap h′′
obtained from h by discharging the locations of card(S)−card(T) sets in Cycl[S]Xs,h(β),
non containing s(u). Formally, h′′ ⊆ h and there is a set Q ⊆ Cycl[S]Xs,h(β) such
that card(Q) = card(S)− card(T), dom(h′′) = dom(h) \ [Q][and s(u) 6∈ [Q][. Notice
that a heap h′′ satisfying these conditions exists. In particular, as card(S) 6= card(T)
and (s, h) ≈SX,α (s′, h′), both memory states must satisfy loopSX (β) ≥ α, where α is
assumed strictly positive. So, both S and T have at least α ≥ 1 elements, which
allows us to keep s(u) in the domain of h′′, in the case it belongs to dom(h). (s, h)
and (s, h′′) enjoy the following properties (A)–(F):
A. for all t ∈ T[S]X, [[t]]Xs,h and [[t]]Xs,h′′ are equidefined. When defined, [[t]]Xs,h = [[t]]Xs,h′′ .

Proof of (A). The set [Cycl[S]Xs,h(β)][(resp. [Q][) enjoys the property of the set L
of Lemma C.1, with respect to the memory states ĥ and h (resp. h′′). So, (A)
follows from Lemma C.1(A).

B. For every t ∈ T[S]X,
(a) sbyX

s,h(t) and sbyX
s,h′′(t) are equidefined. If defined, they are equal,

(b) Path[S]Xs,h(t) = Path[S]Xs,h′′(t),
(c) let δ ∈ [1, card(Path[S]Xs,h(t))]. hδ([[t]]Xs,h) = s(u) iff h′′δ([[t]]Xs,h′′) = s(u).
Proof of (B). Similarly to (A), it follows directly from Lemma C.1(B).

C. For every x ∈ X, Pred[S]Xs,h(x) = Pred[S]Xs,h′′(x).
Proof of (C). Analogous to the proof of (C) in the base case, since we can rely

on Lemma C.1(O).
D. (d) Cycl[S]Xs,h′′(β) ⊆ Cycl[S]Xs,h(β),

(e) for all β′ ∈ [1, α] \ {β}, Cycl[S]Xs,h(β′) = Cycl[S]Xs,h′′(β′).
Proof of (d). Let L ∈ Cycl[S]Xs,h′′(β). So, L is a minimal set describing an un-

labelled cycle in h′′, of length β. By h′′ ⊆ h, L describes an cycle in h, of
length β. From (A), L ∩ Lab[S]Xs,h = ∅. Thus, L ∈ Cycl[S]Xs,h(β).

Proof of (e). (⇒): Let L ∈ Cycl[S]Xs,h(β′). So, L is a minimal set describing
an unlabelled cycle in h′′, of length β′. As β 6= β′, L 6∈ Cycl[S]Xs,h(β), and
so L ⊆ dom(h′′). By h′′ ⊆ h, L describes an cycle in h, of length β′. From (A),
L ∩ Lab[S]Xs,h = ∅. Thus, L ∈ Cycl[S]Xs,h(β′).
(⇐): Symmetrical to the other direction.

E. ⇑Cycl[S]X,αs,h = ⇑Cycl[S]X,αs,h′′ .
Proof of (E). Analogous to the proof of (e).

F. Rem[S]X,αs,h = Rem[S]X,αs,h′′ .
Proof of (F). (⇒): Let ` ∈ Rem[S]X,αs,h . So, ` ∈ dom(h) and moreover

` 6∈ Lab[S]Xs,h, ` 6∈ Path[S]Xs,h(t), ` 6∈ Pred[S]Xs,h(x),
` 6∈ [Cycl[S]Xs,h(β′)][, ` 6∈ [⇑Cycl[S]X,αs,h][,

540 Appendix C. Appendix of Chapter 5

where t ∈ T[S]X, x ∈ X and β′ ∈ [1, α]. From (A)–(D) we conclude that
` 6∈ Lab[S]Xs,h, ` 6∈ Path[S]Xs,h′′(t), ` 6∈ Pred[S]Xs,h′′(x),
` 6∈ [Cycl[S]Xs,h′′(β′)][, ` 6∈ [⇑Cycl[S]X,αs,h′′][,

where t ∈ T[S]X, x ∈ X, β′ ∈ [1, α]. Moreover, ` 6∈ [Q][⊆ [Cycl[S]Xs,h(β)][and
so ` ∈ dom(h′′). So, ` ∈ Rem[S]X,αs,h′′ .
(⇐): Analogous to the other direction. Recall that ` ∈ dom(h′′) ∩Q = ∅.

Notice that (A)–(F) allow us to conclude that Q ∪ Cycl[S]Xs,h′′(β) = Cycl[S]Xs,h(β).
By card(Q) = card(S)− card(T), this implies that card(Cycl[S]Xs,h′′(β)) = card(T).
Moreover, directly from the fact that s(u) 6∈ Q,
(f) s(u) ∈ Cycl[S]Xs,h(β) if and only if s(u) ∈ Cycl[S]Xs,h′′(β).

We show (s, h) ≈SX,α (s, h′′), (s, h) ↔SX,α (s, h′′), and (s, h′′)↔SX,α (s′, h′). By transi-
tivity of the hop relation ↔SX,α, the last two memberships imply (s, h)↔SX,α (s′, h′).

Proof of (s, h) ≈SX,α (s, h′′). By (A)–(F) and (f) (e.g. see the proof of Lemma 5.39).
Proof of (s, h)↔SX,α (s, h′′). Directly from the properties (A)–(F), we conclude that

h \ {(`, `′) ∈ h | ` ∈ [Cycl[S]Xs,h(β)][} = h′′ \ {(`, `′) ∈ h′′ | ` ∈ [Cycl[S]Xs,h′′(β)][}.
Thus, by (A) and (s, h) ≈SX,α (s, h′′), we can apply Lemma 5.40(III) and derive
that (s, h)↔SX,α (s, h′′).

Proof of (s, h′′)↔SX,α (s′, h′). As ≈SX,α is an equivalence relation, (s, h) ≈SX,α (s, h′′) al-
lows us to derive that (s, h′′) ≈SX,α (s′, h′). From the properties (A)–(F), and
card(Cycl[S]Xs,h′′(β)) = card(T), we derive [(s, h′′)#X,α(s′, h′)] < [(s, h)#X,α(s′, h′)].
By induction hypothesis, (s, h′′)↔SX,α (s′, h′).

case (S, T) = (Pred[S]Xs,h(x), Pred[S]Xs′,h′(x)), for some x ∈ X. As previously done, with-
out loss of generality we assume card(S) > card(T). Consider the heap h′′ obtained
from h by removing from its domain card(S)− card(T) locations in Pred[S]Xs,h(x) and
different from s(u). Formally, h′′ ⊆ h and there is a set Q ⊆ Pred[S]Xs,h(x) such
that card(Q) = card(S)− card(T), dom(h′′) = dom(h) \ Q and s(u) 6∈ Q. Notice
that a heap h′′ satisfying these conditions exists. In particular, as card(S) 6= card(T)
and (s, h) ≈SX,α (s′, h′), both memory states must satisfy predSX (x) ≥ α, where α is
assumed strictly positive. So, both S and T have at least α ≥ 1 elements, which
allows us to keep s(u) in the domain of h′′, in the case it belongs to dom(h). (s, h)
and (s, h′′) enjoy the following properties:

A. for all t ∈ T[S]X, [[t]]Xs,h and [[t]]Xs,h′′ are equidefined. When defined, [[t]]Xs,h = [[t]]Xs,h′′ .
Proof of (A). The set Pred[S]Xs,h(x) (resp. Q) enjoys the property of the set

L of Lemma C.1, with respect to the memory states ĥ and h (resp. h′′).
Thus, (A) follows from Lemma C.1(A).

B. For every t ∈ T[S]X,
(a) sbyX

s,h(t) and sbyX
s,h′′(t) are equidefined. If defined, they are equal,

(b) Path[S]Xs,h(t) = Path[S]Xs,h′′(t),

(c) let δ ∈ [1, card(Path[S]Xs,h(t))]. hδ([[t]]Xs,h) = s(u) iff h′′δ([[t]]Xs,h′′) = s(u).
Proof of (B). Similarly to (A), it follows directly from Lemma C.1(B).

C. (d) Pred[S]Xs,h′′(x) ⊆ Pred[S]Xs,h(x),
(e) for all y ∈ X, if s(y) 6= s(x) then Pred[S]Xs,h(y) = Pred[S]Xs,h′′(y).

541

Proof of (d). Let ` ∈ Pred[S]Xs,h′′(x). h′′(`) = s(x), and h′′ does not witness
a path going from s(y) to `, for any y ∈ X. From h′′ ⊆ h, h(`) = s(x).
By Lemma C.1(O), h does not witness a path going from s(y) to `, for any
y ∈ X. Thus, ` ∈ Pred[S]Xs,h(x).

Proof of (e). Analogous to the proof of (C) in the base case, since we can rely
on Lemma C.1(O).

D. For every β ∈ [1, α], Cycl[S]Xs,h(β) = Cycl[S]Xs,h′′(β).
Proof of (D). (⇒): Let L ∈ Cycl[S]Xs,h(β). So, L is a minimal set describing an

unlabelled cycle in h, of length β. Since L 6∈ Pred[S]Xs,h(x) and L ⊆ dom(h),
by definition of h′′ we have L ⊆ dom(h′′), and L is a minimal set describing a
cycle in h′′. From (A), L ∩ Lab[S]Xs,h′′ = ∅. So L ∈ Cycl[S]Xs,h′′(β).
(⇐): Symmetrical to the other direction.

E. ⇑Cycl[S]X,αs,h = ⇑Cycl[S]X,αs,h′′ .
Proof of (E). Analogous to the proof of (D).

F. Rem[S]X,αs,h′′ = Rem[S]X,αs,h .
Proof of (F). Analogous to the proof of (F) in the previous case of the proof

(dealing with Cycl[S]Xs,h(β) instead of Pred[S]Xs,h(x)).
Thanks to (A)–(F), we conclude that Q ∪ Pred[S]Xs,h′′(x) = Pred[S]Xs,h(x), and so
by card(Q) = card(S)− card(T), we have card(Pred[S]Xs,h′′(x)) = card(T). Moreover,
directly from the fact that s(u) 6∈ Q,
(f) s(u) ∈ Pred[S]Xs,h(x) if and only if s(u) ∈ Pred[S]Xs,h′′(x).

We show (s, h) ≈SX,α (s, h′′), (s, h) ↔SX,α (s, h′′), and (s, h′′)↔SX,α (s′, h′). By transi-
tivity of the hop relation ↔SX,α, the last two memberships imply (s, h)↔SX,α (s′, h′).
Proof of (s, h) ≈SX,α (s, h′′). By (A)–(F) and (f) (e.g. see the proof of Lemma 5.39).
Proof of (s, h)↔SX,α (s, h′′). Directly from the properties (A)–(F), we conclude that

h \ {(`, `′) ∈ h | ` ∈ Pred[S]Xs,h(x)} = h′′ \ {(`, `′) ∈ h′′ | ` ∈ Pred[S]Xs,h′′(x)}.
Thus, by (A) and (s, h) ≈SX,α (s, h′′), we can apply Lemma 5.40(I) and derive
that (s, h)↔SX,α (s, h′′).

Proof of (s, h′′)↔SX,α (s′, h′). As ≈SX,α is an equivalence relation, (s, h) ≈SX,α (s, h′′) al-
lows us to derive that (s, h′′) ≈SX,α (s′, h′). From the properties (A)–(F), and
card(Pred[S]Xs,h′′(x)) = card(T), we derive [(s, h′′)#X,α(s′, h′)] < [(s, h)#X,α(s′, h′)].
By induction hypothesis, (s, h′′)↔SX,α (s′, h′).

case: (S, T) = (Path[S]Xs,h(t), Path[S]Xs′,h′(t)), for some t ∈ T[S]X. Again, without loss of
generality we assume card(S) > card(T). Compared to the previous cases, this case is
slightly more involved. In what follows, we write S(α), for the upper bound on β in the
core formulae of the form seesX(t, t′) ≥ β. Similarly, we write Sleft(α) and Sright(α)
for the upper bound on β1 and β2, respectively, on the core formulae of the form
u ∈ seesX(t, t′) ≥ (β1, β2). So, Sleft(α) = 1

6α(α+1)(α+2)+1, Sright(α) = 1
2α(α+3),

S(α) = Sleft(α) + Sright(α) = 1
6(α+ 1)(α+ 2)(α+ 3). (†)

Since card(S) > card(T) and (s, h) ≈SX,α (s′, h′), we have
card(Path[S]Xs,h(t)) = card(S) > card(T) = card(Path[S]Xs′,h′(t)) ≥ S(α).

Let t′ ∈ Lab[S]Xs,h be a term such that [[t′]]Xs,h = sbyX
s,h(t). Informally, we want to mod-

ify the path in h, going from [[t]]Xs,h to [[t′]]Xs,h so that it becomes of length card(T). The
resulting heap, say h′′, should satisfy (s, h) ≈SX,α (s, h′′). When defining h′′, we must

542 Appendix C. Appendix of Chapter 5

1: ĥ← h \ {(`, `′) ∈ h | ` ∈ Path[S]Xs,h(t)}.
2: n← card(Path[S]Xs′,h′(t)).
3: if (s, h) |= u ∈ seesX(t, t′) ≥ (1, 1) then
4: let δ ∈ [1, n− 1] such that h′δ([[t]]Xs′,h′) = s′(u).
5: let ˜̀1, . . . , ˜̀δ−1, ˜̀δ+1, . . . , ˜̀n−1 be n−2 distinct locations greater than maxvalX∪{u}(s, h).
6: h̃← {[[t]]Xs,h 7→ ˜̀1 7→ . . . 7→ ˜̀

δ−1 7→ s(u) 7→ ˜̀
δ+1 7→ . . . 7→ ˜̀

n−1 7→ [[t′]]Xs,h}.
7: else
8: let ˜̀1, . . . , ˜̀n−1 be n−1 distinct locations greater than maxvalX∪{u}(s, h).
9: h̃← {[[t]]Xs,h 7→ ˜̀1 7→ . . . 7→ ˜̀

n−1 7→ [[t′]]Xs,h}.
10: h′′ ← ĥ+ h̃.

t u t′ t t′y lines 3–6
y lines 8–9

t u t′ t t′

≤ maxvalX∪{u}(s, h)

Figure C.1: Strategy defining h′′.

deal with the possible occurrence of s(u) in Path[S]Xs,h(t), so that (s, h′′) agrees with
(s, h) on the satisfaction of the core formulae of the form u ∈ seesX(t, t′) ≥ (β1, β2).
All of this can be done rather easily, by defining h′′ following the strategy in Fig-
ure C.1. As done in the strategy (line 1), in what follows we write ĥ for the heap
h \ {(`, `′) ∈ h | ` ∈ Path[S]Xs,h(t)}. The strategy is split into two cases, depending on
whether (s, h) |= u ∈ seesX(t, t′) ≥ (1, 1). In both cases, we define (lines 6 and 9) a
heap h̃ such that

(ρ1) dom(h̃) is a minimal set describing a path (˜̀0, . . . , ˜̀n) in h̃, from [[t]]Xs,h to [[t′]]Xs,h,
(ρ2) n = card(h̃) = card(Path[S]Xs′,h′(t)),

(ρ3) for all j ∈ [1, n− 1], ˜̀j = s(u) if and only if h′δ([[t]]Xs′,h′) = s(u).
(ρ4) for all j ∈ [1, n−1], ˜̀j > maxvalX∪{u}(s, h) or ˜̀j = s(u) ∈ Path[S]Xs,h(t)\{[[t]]Xs,h}.
The proofs of (ρ1)–(ρ4) are straightforward and follow from the definition of h̃. They
are left to the reader. Notice that (ρ4) implies that h̃ and ĥ are disjoint. Indeed, by
definition of ĥ for all ` ∈ dom(ĥ) we have ` ≤ maxvalX∪{u}(s, ĥ) and ` 6∈ Path[S]Xs,h(t).
As shown in line 10, h′′ is defined as ĥ + h̃. Notice that the definitions of ĥ and h′′

lead to the equality:
h′′ \ h̃ = ĥ = h \ {(`, `′) ∈ h | ` ∈ Path[S]Xs,h(t)}.

For simplicity, below we write (˜̀0, . . . , ˜̀n) for the path of h′′ (and h̃) described
by dom(h̃). Similarly, (`P0 , . . . , `Pm) denotes the path in h described by Path[S]Xs,h(t),

543

where m = card(Path[S]Xs,h(t)). We show two essential properties of h′′:

(ρ5) Every ` ∈ dom(h̃) \ {[[t]]Xs,h} does not belong to Lab[S]Xs,h′′ .

(ρ6) Let x ∈ X and ` ∈ LOC. h′′ witnesses a path from s(x) to ` 6∈ dom(ĥ) \ {[[t]]Xs,h} if
and only if h witnesses a path from s(x) to ` 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.

Proof of (ρ5). Let ` ∈ dom(h̃) \ {[[t]]Xs,h}, that is ` = ˜̀
j for some j ∈ [1, n − 1].

According (ρ4), we either have
– ˜̀

j > maxvalX∪{u}(s, h), or
– ˜̀

j = s(u) and s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.
The first case is rather straightforward. By definition of maximum value, it
cannot be that ˜̀j ∈ ran(h) and so, by definition of ĥ, ˜̀j 6∈ ran(ĥ). Then, from (ρ1)
there is exactly one location `′ ∈ dom(h̃) such that h̃(`) = ˜̀

j . So, by definition
of h′′, `′ is the only location in dom(h′′) such that h′′(`′) = ˜̀

j . As ˜̀j ∈ dom(h̃) ⊆
dom(h′′), by Lemma 5.52 we conclude that ˜̀j 6∈ Lab[S]Xs,h′′ .
We consider the second case, i.e. ˜̀j = s(u) and s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.
Ad absurdum, suppose s(u) ∈ Lab[S]Xs,h′′ . The proof splits depending on whether
s(u) = s(x), s(u) = [[e(x)]]Xs,h′′ or s(u) = [[m(x, y)]]Xs,h′′ , for some x, y ∈ X. All cases
lead to a contradiction. So, s(u) 6∈ Lab[S]Xs,h′′ , which ends the proof.
case: s(u) = s(x). This case is obvious. s(u) = s(x) implies s(u) ∈ Lab[S]Xs,h,
which contradicts s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. Indeed, we recall that [[t]]Xs,h is
the only labelled location in Path[S]Xs,h(t).

case: s(u) = [[e(x)]]Xs,h′′. As s(u) ∈ dom(h̃), from the semantics of end-point vari-
ables, h′′ witnesses two disjoint non-empty paths ρ = (`0, . . . , `k1) and ρ′ =
(`′0, . . . , `′k2

), where ρ goes from s(x) to s(u), whereas ρ′ goes from s(u) to itself.
Notice that, by definition of h̃, this implies that h′′ witnesses a non-empty path
going from ˜̀

n = sbyX
s,h(`) to ˜̀j = s(u), i.e. there is i2 ∈ [1, k2 − 1] such that

`′i2 = sbyX
s,h(`). We divide the proof depending on whether [[t]]Xs,h appears in ρ.

case: [[t]]Xs,h belongs to ρ. This implies that there is i1 ∈ [0, k1 − 1] such that
`i1 = [[t]]Xs,h. In particular, the path ρ is of the form

(`0 = s(x), . . . , `i1 = ˜̀0 = [[t]]Xs,h, . . . , `k1 = ˜̀
j = s(u)),

where `0, . . . , `i1−1 belong to dom(ĥ). Informally, this means that ρ is made
of a (possibly empty) prefix of locations in dom(ĥ) and a non-empty suffix of
locations in dom(h̃). Similarly, the path ρ′ is of the form

(`′0 = ˜̀
j = s(u), . . . , `′i2 = ˜̀

n = sbyX
s,h(t), `′i+1, . . . , `

′
k2

= s(u))
where `′i2 , . . . , `

′
k2−1 belong to dom(ĥ). From s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h},

there is j′ ∈ [1,m− 1] such that s(u) ∈ `Pj′ . We recall that (`P0 , . . . , `Pm) is the
path described by Path[S]Xs,h(t), going from [[t]]Xs,h to sbyX

s,h(t). From ĥ ⊆ h,
we conclude that h witnesses the following two disjoint non-empty paths:

(`0 = s(x), . . . , `i1 = `P0 = [[t]]Xs,h, . . . , `Pj′ = s(u)),
(`Pj′ = s(u), . . . , `Pm = sbyX

s,h(t) = `′i2 , `
′
i+1, . . . , `

′
k2 = s(u)).

From the semantics of end-point variables this allows us to conclude that
s(u) ∈ [[e(x)]]Xs,h. Again, this contradicts s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.

case: [[t]]Xs,h does not belong to ρ. First of all, we show that the locations
`0, . . . , `k1−1 belongs to dom(ĥ). From (ρ4), every location of dom(h̃) that is not

544 Appendix C. Appendix of Chapter 5

[[t]]Xs,h nor s(u) is greater than maxvalX∪u(s, h). In particular, as `0 = s(x), this
means that `0 6∈ dom(h̃). By definition of h′′, we conclude that `0 ∈ dom(ĥ). Ad
absurdum, suppose k′ ∈ [1, k1−1] be the smallest index such that `k′ ∈ dom(h̃).
So, `k′−1 ∈ dom(ĥ). We know that `k′ 6= s(u) and `k′ 6= [[t]]Xs,h. By (ρ4),
this implies `k′ > maxvalX∪{u}(s, h). However, is contradictory, since `k′−1 ∈
dom(ĥ) and ĥ ⊆ h imply that h′′(`k′−1) = ĥ(`k′−1) ∈ ran(h). Therefore, the
locations `0, . . . , `k1−1 do not belong to dom(h̃) and, as they belong to dom(h′′),
we conclude that they belong to dom(ĥ). By definition of ĥ, we conclude that
ρ is a non-empty path in h, going from s(x) to s(u), and that all the locations
`0 = s(x), . . . , `k1−1 do not belong to Path[S]Xs,h(t). In particular, this means
that h witnesses a (possibly empty) path going from s(x) to `k1−1, where
h(`k1−1) = s(u). This is contradictory, as from s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}
it allows us to conclude that `k1−1 ∈ Path[S]Xs,h(t). For this, we simply apply
the following result, that is shown during the proof Lemma 5.40(II).

(κ) Consider a location `1 ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}, for some memory
state (s, h). Let `2 be a location such that h(`2) = `1 and h witnesses
a path going from s(x) to `2, for some x ∈ X. Then, `2 ∈ Path[S]Xs,h(t).

case: s(u) = [[m(x, y)]]Xs,h′′. By definition, this implies that h′′ witnesses two non-
empty disjoint paths ρ = (`0, . . . , `k1) and ρ′ = (`′0, . . . , `′k2

), where ρ goes from
s(x) to s(u), whereas ρ′ goes from s(y) to s(u), respectively. Moreover, s(u) does
not belong to a cycle in h′′. Without loss of generality we assume that if [[t]]Xs,h
belongs to one of the two paths, it belongs to ρ, i.e. it is in {`0, . . . , `k1}. From
the disjointness of ρ and ρ′, we conclude that for every i ∈ [0, k2−1], `′i 6= [[t]]Xs,h.
Analogously to the previous case, since `′0 = s(y) and, by (ρ4), apart from [[t]]Xs,h
and s(u), every location in dom(h̃) is greater than maxvalX∪{u}(s, h), we conclude
that for every i ∈ [0, k2−1], `′i 6∈ dom(h̃). By definition of h′′ and ĥ, this implies
that ρ describes a non-empty path in h, going from s(y) to s(u) and such that for
every i ∈ [0, k2−1], `′i 6∈ Path[S]Xs,h(t). In particular, this means that h witnesses
a (possibly empty) path, going from s(u) to `′k2−1, where h(`′k2−1) = s(u).
However, this is contradictory, as from s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h} it allows
us to conclude that `′k2−1 ∈ Path[S]Xs,h(t), by applying (κ).

Below, we recall that a non-empty path (`0, . . . , `k) is minimal in a heap h whenever h
does not witness a shorter non-empty path going from `0 to `k. Equivalently, `j 6= `k,
for all j ∈ [1, k − 1].
Proof of (ρ6). (⇒): Let x ∈ X and ` ∈ LOC. Clearly, if s(x) = ` then the statement

trivially holds from the fact that s(x) 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h} (in this case, h
witnesses an empty path from s(x) to `). Otherwise, let ρ = (`0, . . . , `k) be the
minimal non-empty path in h′′, going from `0 = s(x) to `k = ` 6∈ dom(h̃)\{[[t]]Xs,h}.
We divide the proof depending on whether `i = [[t]]Xs,h, for some i ∈ [0, k − 1].
case: `i = [[t]]Xs,h, for some i ∈ [0, k − 1]. Since `k 6∈ dom(h̃) \ {[[t]]Xs,h}, we con-

clude that the path described by dom(h̃) must be completely included in ρ.
That is, we have i + n ≤ k and for every j ∈ [0, n], `i+j = ˜̀

j . So,
`i+n = ˜̀

n = sbyX
s,h(t), and the {`i, . . . , `i+n−1} = dom(h̃). Since ρ is the

minimal non-empty path in h′′ going from s(x) to `, the locations `0, . . . , `k−1
are all distinct. This implies that for every j ∈ [0, i−1]∪ [i+n, k−1] we have

545

`j 6∈ dom(h̃). By definition of h′′ and since these locations are in dom(h′′),
we conclude that for every j ∈ [0, i − 1] ∪ [i + n, k − 1], `j ∈ dom(ĥ). By
definition of ĥ, this implies that (`0, . . . , `i) and (`i+n, . . . , `k) are two paths
in h. Together with `i = [[t]]Xs,h and `i+n = sbyX

s,h(t), this implies that h
witnesses a path going from `0 = s(x) to `k = `. Lastly, let us prove that
`k = ` 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. If k = i+ n then the result trivially follows
from ` = sbyX

s,h(t). Otherwise, i + n < k implies that [i + n, k − 1] is non-
empty and so `k−1 ∈ dom(ĥ). By definition of ĥ, this implies h(`k−1) = `

and `k−1 6∈ Path[S]Xs,h(t). By (κ), we derive that ` 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.
case: `i 6= [[t]]Xs,h, for all i ∈ [0, k − 1]. We show that for every i ∈ [0, k − 1],

`i ∈ dom(ĥ). Ad absurdum, suppose i ∈ [0, k − 1] to be the smallest index
such that `i ∈ dom(h̃) \ {[[t]]Xs,h}. According (ρ4), we either have
– `i > maxvalX∪{u}(s, h), or
– `i = s(u) and s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.
We divide the proof depending on these two cases.
case: `i > maxvalX∪{u}(s, h). In this case, it cannot be that i = 0, as `0 =
s(x) ≤ maxvalX∪{u}(s, h). Therefore, `1 ∈ dom(ĥ). As i is assumed to be
the smallest index such that `i ∈ dom(h̃) \ {[[t]]Xs,h}, this implies `i−1 ∈
dom(ĥ). However, by definition of h′′, this implies `i = h′′(`i−1) ∈ ran(h),
in contradiction with `i > maxvalX∪{u}(s, h).

case: `i = s(u) and s(u) ∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}. Again, it cannot be that
i = 0, as `0 = s(x) ∈ Lab[S]Xs,h and therefore `0 6∈ Path[S]Xs,h(t)\{[[t]]Xs,h}. As
i is assumed to be the smallest index such that `i ∈ dom(h̃) \ {[[t]]Xs,h}, this
implies that `i−1 ∈ dom(ĥ), that ĥ witnesses a path going from `0 = s(x) to
`i−1 and that ĥ(`i−1) = `i = s(x). However, by definition of ĥ, this implies
that `i−1 6∈ Path[S]Xs,h(t), that h witnesses a path going from `0 = s(x) to
`i−1 and that h(`i−1) = s(x). By (κ), this is contradictory.

In both cases we reached a contradiction, which leads us to derive that no
i ∈ [0, k − 1] can be such that `i ∈ dom(h̃) \ {[[t]]Xs,h}. Since `i 6= [[t]]Xs,h, this
implies `i 6∈ dom(h̃). Since `i ∈ dom(h′′), by definition of h′′, we derive `i ∈
dom(ĥ). Then, directly by definition of ĥ, we conclude that ρ = (`0, . . . , `k)
is a path in h, going from s(x) to `. Moreover, `k−1 6∈ Path[S]Xs,h(t). By (κ),
this implies `k = ` 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.

(⇐): Analogous to the other direction, the only difference being how we derive
that ` 6∈ dom(h̃) \ {[[t]]Xs,h}. Briefly, suppose ρ = (`0, . . . , `k) to be the minimal
non-empty path in h, going from `0 = s(x) to `k = ` 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}
(similarly to the other direction, the case for s(u) = ` is trivial). The proof splits
depending on whether `i = [[t]]Xs,h, for some i ∈ [0, k − 1].
case: `i = [[t]]Xs,h, for some i ∈ [0, k − 1]. Symmetrically to the other direction,

we are able to conclude that the paths (`0, . . . , `i) and (`i+m, . . . , `k), where
`i+m = sbyX

s,h(t) = ˜̀
n, are two paths in both ĥ and h′′. As `i = [[t]]Xs,h = ˜̀0,

by (ρ1), we derive that h′′ witnesses a non-empty path from `0 to `k. Now, the
path (`i+m, . . . , `k) is either empty, and so `k = sbyX

s,h(t), or it is non-empty,
and so `k−1 ∈ dom(ĥ) ⊆ dom(h). In both cases, `k ≤ maxvalX∪{u}(s, h).
By `k 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h} and (ρ4), we derive `k 6∈ dom(h̃) \ {[[t]]Xs,h}.

546 Appendix C. Appendix of Chapter 5

case: `i 6= [[t]]Xs,h, for all i ∈ [0, k − 1]. Symmetrically to the other direction, we
are able to show that, for every i ∈ [0, k − 1], `i ∈ dom(ĥ). This implies
that ρ is a path in h′′. From `k−1 ∈ dom(h) we have `k = h(`k−1) ≤
maxvalX∪{u}(s, h). Again, by (ρ4) we conclude that `k 6∈ dom(h̃) \ {[[t]]Xs,h}.

We strengthen (ρ6) into the two following results:
(ρ7) Let (`0, . . . , `k), where `0, `k 6∈ dom(h̃) \ {[[t]]Xs,h}, be a minimal non-empty path

in h′′. Suppose that h′′ witnesses a (possibly empty) path from s(x) to `0, for
some x ∈ X. Then, either:
– (`0, . . . , `k) is a minimal non-empty path in h. For all i∈ [0, k−1], `i 6= [[t]]Xs,h.
– There are i ∈ [0, k−1] and j ∈ [1, k] s.t. `i = [[t]]Xs,h, `j = sbyX

s,h(t). The path
(`0, . . . , `i = `P0 , `

P
2 , . . . , `

P
m−1, `

P
m = `j , . . . , `k) is minimal non-empty in h.

Moreover, `0, `k 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.
Let us consider the other direction.

(ρ8) Let (`0, . . . , `k), where `0, `k 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}, be a minimal non-empty
path in h. Suppose that h witnesses a (possibly empty) path from s(x) to `0, for
some x ∈ X. Then, either:
– (`0, . . . , `k) is a minimal non-empty path in h′′. For all i∈ [0, k−1], `i 6= [[t]]Xs,h.
– There are i ∈ [0, k−1] and j ∈ [1, k] s.t. `i = [[t]]Xs,h, `j = sbyX

s,h(t). The path
(`0, . . . , `i = ˜̀0, ˜̀2, . . . , ˜̀n−1, ˜̀n = `j , . . . , `k) is minimal non-empty in h′′.

Moreover, `0, `k 6∈ dom(h̃) \ {[[t]]Xs,h}.
The proofs of (ρ7) and (ρ8) are very similar. Below, we show the proof of (ρ7).
Proof of (ρ7). Notice that `0, `k 6∈ Path[S]Xs,h(t)\{[[t]]Xs,h}. holds directly from (ρ6), as

h′′ witnesses paths from s(x) to both `0, `k 6∈ dom(h̃) \ {[[t]]Xs,h}. As done in (ρ6),
we divide the proof depending on whether `i = [[t]]Xs,h, for some i ∈ [0, k − 1].
case: `i = [[t]]Xs,h, for some i ∈ [0, k − 1]. Since `k 6∈ dom(h̃) \ {[[t]]Xs,h}, we con-

clude that the path described by dom(h̃) must be completely included in ρ.
Exactly as in (ρ6), This allows us derive that (`0, . . . , `i) and (`i+n, . . . , `k),
where `i+n = sbyX

s,h(t), are two disjoint paths, of both ĥ and h. For every
j ∈ [0, i − 1] ∪ [i + n, k − 1], `j ∈ dom(ĥ), and therefore `j 6∈ Path[S]Xs,h(t).
Together with `i = [[t]]Xs,h and `i+n = sbyX

s,h(t), this allows us to conclude
that the following is a minimal path in h, going from `0 to `k,

(`0, . . . , `i = `P0 , `
P
2 , . . . , `

P
m−1, `

P
m = `j , . . . , `k),

where we recall that (`P0 , . . . , `Pm) is the path described by Path[S]Xs,h(t).

case: `i 6= [[t]]Xs,h, for all i ∈ [0, k − 1]. As `0 6∈ dom(h̃) \ {[[t]]Xs,h}, we conclude
that `0 ∈ dom(ĥ). Afterwards, exactly as in the proof of (ρ6), we are able to
conclude that for every i ∈ [0, k − 1], `i ∈ dom(ĥ). This implies that ρ is a
path in h, hence concluding the proof.

As done in the previous cases, we discuss the properties (A)–(F) below.
A. for all t′′ ∈ T[S]X, [[t′′]]Xs,h and [[t′′]]Xs,h′′ are equidefined. If defined, [[t]]Xs,h = [[t]]Xs,h′′ .

Proof of (A). The proof is straightforward when t′′ is a program variable. For
the cases of meet-point variables and end-point variables (below), the proof
essentially relies on (ρ7) and (ρ8).

547

case: t′′ = m(x, y). Suppose [[m(x, y)]]Xs,h = `. By definition, h witnesses two
disjoint non-empty paths ρ and ρ′, where ρ = (`0, . . . , `k1) goes from s(x)
to `, whereas ρ′ = (`′0, . . . , `′k2

) goes from s(y) to `. Moreover, ` does
not belong to a cycle of h. Without loss of generality, we assume that
if [[t]]Xs,h belongs to one of these two paths, then it belongs to ρ, i.e. it is
in {`0, . . . , `k1}. Since the two paths are disjoint, this implies that [[t]]Xs,h
does not belong to ρ′. As ` ∈ Lab[S]Xs,h, we have ` 6∈ Path[S]Xs,h(t)\{[[t]]Xs,h}.
We apply (ρ8): ρ′ is a path in h′′, and so is one path among ρ or

(`0, . . . , `i = ˜̀0, ˜̀2, . . . , ˜̀n−1, ˜̀n = `j , . . . , `k1),
say ρ′′. Moreover, ` 6∈ dom(h̃) \ {[[t]]Xs,h}. The paths ρ and ρ′′ of h′′ are
disjoint, with ρ (resp. ρ′′) going from s(x) (resp. s(y)) to `. In order to
conclude that ` = [[m(x, y)]]Xs,h′′ , it is sufficient to show that ` does not
belong to a cycle in h′′. Ad absurdum, suppose that this is not the case.
Since ` 6∈ dom(h̃)\{[[t]]Xs,h} and, in h′′, s(x) reaches `, by (ρ7) we derive that
` belongs to a cycle in h. This contradicts the fact that ` = [[m(x, y)]]Xs,h.
Therefore, ` = [[m(x, y)]]Xs,h′′ .
The proof of the other direction, i.e. if [[m(x, y)]]Xs,h′′ = ` then ` = [[m(x, y)]]Xs,h,
is symmetrical. One notice that if [[m(x, y)]]Xs,h′′ = `, then, by (ρ5), ` 6∈
dom(h̃) \ {[[t]]Xs,h}. This allows us to rely on (ρ7) and (ρ8), as done above.

case: t′′ = e(x). Suppose [[e(x)]]Xs,h = `. By definition, h witnesses a non-
empty path ρ = (`0, . . . , `k1) going from s(x) to `. Moreover, if ` ∈ dom(h),
then h witnesses a non-empty path ρ′ = (`′0, . . . , `′k2

), disjoint from ρ and
going from ` to `. As `k1 ∈ Lab[S]Xs,h, we have `k1 6∈ Path[S]Xs,h(t) \ {[[t]]Xs,h}.
We apply (ρ8), and deduce that either ρ or

(`0, . . . , `i = ˜̀0, ˜̀2, . . . , ˜̀n−1, ˜̀n = `j , . . . , `k1),
is a path in h′′. Let ρ′′ be this path. Moreover, `k1 6∈ dom(h̃) \ {[[t]]Xs,h}.
From the semantics of end-point variables, to show that `k1 = ` =[[e(x)]]Xs,h′′ ,
we must check that if `k1 ∈ dom(h′′), then there is a non-empty path in h′′,
disjoint from ρ′′ and going from `k1 to `k1 . Suppose `k1 ∈ dom(h′′). By
definition of h′′, either `k1 ∈ dom(h̃) or `k1 ∈ dom(ĥ). In the first case, we
conclude that `k1 = [[t]]Xs,h and, as Path[S]Xs,h(t) 6= ∅, `k1 ∈ dom(h). In the
second case, again, `k1 ∈ dom(h), as ĥ ⊆ h. Therefore, h witnesses the non-
empty path ρ′ = (`′0, . . . , `′k2

), disjoint from ρ and going from `k1 to itself.
Since ρ′ is disjoint from ρ, if [[t]]Xs,h belongs to ρ, i.e. [[t]]Xs,h ∈ {`0, . . . , `k1−1},
then it does not belong to ρ′. We apply (ρ8), and conclude that h′′ witnesses
a non-empty path going from `k1 to `k1 , that is disjoint from ρ′′. By
definition of end-point variables, `k1 = ` = [[e(x)]]Xs,h′′ .
As in the case of meet-point variables, the proof in the order direction is
symmetrical. Again, we notice that [[e(x)]]Xs,h′′ = ` implies ` 6∈ dom(h̃) \
{[[t]]Xs,h}, by (ρ5). This allows us to rely on (ρ7) and (ρ8) to show the result.

Fundamentally, (A) shows that [[t]]Xs,h′′ = [[t]]Xs,h and sbyX
s,h(t) ∈ Lab[S]Xs,h′′ . Since,

by (ρ5), Lab[S]Xs,h′′ ∩ (dom(h̃) \ {[[t]]Xs,h) = ∅, by (ρ1) we conclude that

Path[S]Xs,h′′(t) = dom(h̃). (ρ9)

B. For every t′′ ∈ T[S]X,
(a) sbyX

s,h(t′′) and sbyX
s,h′′(t′′) are equidefined. If defined, they are equal,

548 Appendix C. Appendix of Chapter 5

(b) If [[t′′]]Xs,h 6= [[t]]Xs,h then Path[S]Xs,h(t′′) = Path[S]Xs,h′′(t′′). Otherwise,
card(Path[S]Xs,h(t)) > card(Path[S]Xs,h′′(t)) ≥ L(α).

(c) If hδ1([[t′′]]Xs,hj) = s(u) for some δ1 ∈ [0, card(Path[S]Xs,h(t′′))], then there is
δ2 ∈ [0, card(Path[S]Xs,h′′(t′′))] such that h′′δ2([[t′′]]Xs,h′′) = s(u) and
min(δ1,Sleft(α)) = min(δ2,Sleft(α)),
min(card(Path[S]Xs,h(t′′))− δ1,Sright(α)) = min(card(Path[S]Xs,h′′(t′′))− δ2,Sright(α)).

(d) If h′′δ2([[t′′]]Xs,h′′) = s(u) for some δ2 ∈ [0, card(Path[S]Xs,h′′(t′′))], then there is
δ1 ∈ [0, card(Path[S]Xs,h(t′′))] such that hδ1([[t′′]]Xs,h) = s(u) and
min(δ1,Sleft(α)) = min(δ2,Sleft(α)),
min(card(Path[S]Xs,h(t′′))− δ1,Sright(α)) = min(card(Path[S]Xs,h′′(t′′))− δ2,Sright(α)).

We divide the proofs of (a)–(d) depending on whether [[t]]Xs,h = [[t′′]]Xs,h.
case: [[t]]Xs,h = [[t′′]]Xs,h. From (A), we deduce [[t′′]]Xs,h′′ = [[t]]Xs,h′′ , which in turn

shows that Path[S]Xs,h′′(t′′) = Path[S]Xs,h′′(t). Afterwards,
Proof of (a). Directly from (ρ1) and (ρ9).
Proof of (b). Follows by (ρ2) and (ρ9), together with the assumption

card(Path[S]Xs,h(t)) ≥ card(Path[S]Xs′,h′(t)) ≥ S(α).
Proof of (c) and (d). Follows from (ρ3). Indeed, (s, h) and (s′, h′) satisfy the

same core formulae of the form u ∈ seesX(t, t′) ≥ (β1, β2), where β1 ∈
[1,Sleft(α)] and β2 ∈ [1,Sright(α)]. From the semantics of these core formu-
lae, we deduce that (s, h) and (s′, h′) satisfy statements analogous to (c)
and (d) (where h′ replaces h′′). Then, (ρ3) allows us to show (c) and (d).

case: [[t]]Xs,h 6= [[t′′]]Xs,h. Let ρ = (`0 = [[t′′]]Xs,h, . . . , `k = sbyX
s,h(t′′)), be the min-

imal path in h that is described by Path[S]Xs,h(t′′), As [[t]]Xs,h 6= [[t′′]]Xs,h we
have Path[S]Xs,h(t) ∩ Path[S]Xs,h(t′′) = ∅, and so the locations `0, . . . , `k−1 do
not belong to Path[S]Xs,h(t). As they belong to dom(h), by definition of ĥ,
they belong to dom(ĥ). By ĥ ⊆ h′′, we conclude that ρ is a path in h′′.
From (A), [[t′′]]Xs,h′′ = [[t′′]]Xs,h = `0, for every j ∈ [0, k − 1], `j 6∈ Lab[S]Xs,h′′
and `k ∈ Lab[S]Xs,h′′ . By definition, Path[S]Xs,h′′(t′′) is a minimal set describing
the path ρ. We conclude that Path[S]Xs,h(t′′) and Path[S]Xs,h′′(t′′) describe the
same path in h and h′′, respectively. This property generalises (a)–(d).

C. For every x ∈ X, Pred[S]Xs,h(x) = Pred[S]Xs,h′′(x)
Proof of (C). (⇒): Suppose ` ∈ Pred[S]Xs,h(x). So, h(`) = s(x) and h does not

witness a path going from s(y) to `, for any y ∈ X. Since ` 6∈ Path[S]Xs,h(t),
we have ` ∈ dom(ĥ) and ĥ(`) = s(x). By ĥ ⊆ h′′, h′′(`) = s(x). From (ρ6),
h′′ does not witness a path going from s(y) to `, for any y ∈ X. There-
fore, ` ∈ Pred[S]Xs,h′′(x).
(⇐): Analogous to the other direction.

D. For every β ∈ [1, α], Cycl[S]Xs,h(β) = Cycl[S]Xs,h′′(β).
Proof of (D). (⇒): Let L ∈ Cycl[S]Xs,h(β). So, L is a minimal set describing an

unlabelled cycle in h, of length β. Since L∩Path[S]Xs,h(t) = ∅ and L ⊆ dom(h),
by definition of ĥ we have L ⊆ dom(ĥ), and L is a minimal set describing a
cycle in ĥ. By ĥ ⊆ h′′, L is a minimal set describing a cycle in h′′. From (A),
L ∩ Lab[S]Xs,h′′ = ∅. So L ∈ Cycl[S]Xs,h′′(β).

549

(⇐): Symmetrical to the other direction.
E. ⇑Cycl[S]X,αs,h = ⇑Cycl[S]X,αs,h′′ .

Proof of (E). Analogous to the proof of (D).
F. Rem[S]X,αs,h′′ = Rem[S]X,αs,h .

Proof of (F). (⇒): Let ` ∈ Rem[S]X,αs,h . So, ` ∈ dom(h) and moreover

` 6∈ Lab[S]Xs,h, ` 6∈ Path[S]Xs,h(t′′), ` 6∈ Pred[S]Xs,h(x),
` 6∈ [Cycl[S]Xs,h(β′)][, ` 6∈ [⇑Cycl[S]X,αs,h][,

where t′′ ∈ T[S]X, x ∈ X and β′ ∈ [1, α]. From (A)–(E) we conclude that
` 6∈ Lab[S]Xs,h, ` 6∈ Path[S]Xs,h′′(t′′), ` 6∈ Pred[S]Xs,h′′(x),
` 6∈ [Cycl[S]Xs,h′′(β′)][, ` 6∈ [⇑Cycl[S]X,αs,h′′][,

where x ∈ X, β′ ∈ [1, α], and t′′ ∈ T[S]X is such that [[t′′]]Xs,h′′ 6= [[t]]Xs,h.
Moreover, from ` 6∈ Path[S]Xs,h(t), we have ` ∈ dom(ĥ). Together with (ρ9),
this implies ` ∈ dom(h′′) and ` 6∈ Path[S]Xs,h′′(t). So, ` ∈ Rem[S]X,αs,h′′ .
(⇐): Analogous to the other direction.

We show (s, h) ≈SX,α (s, h′′), (s, h) ↔SX,α (s, h′′), and (s, h′′)↔SX,α (s′, h′). By transi-
tivity of the hop relation ↔SX,α, the last two memberships imply (s, h)↔SX,α (s′, h′).
Proof of (s, h) ≈SX,α (s, h′′). By (A)–(F) (see for instance the proof of Lemma 5.39).
Proof of (s, h)↔SX,α (s, h′′). Directly from the properties (A)–(F), we conclude that

h \ {(`, `′) ∈ h | ` ∈ Path[S]Xs,h(t)} = h′′ \ {(`, `′) ∈ h′′ | ` ∈ Path[S]Xs,h′′(t)}.
In particular, notice that this heaps corresponds to the heap ĥ built in the strat-
egy used to define h′′. By (A) and (s, h) ≈SX,α (s, h′′), we can apply Lemma 5.40(II)
and derive that (s, h)↔SX,α (s, h′′).

Proof of (s, h′′)↔SX,α (s′, h′). As ≈SX,α is an equivalence relation, by (s, h) ≈SX,α (s, h′′)
we conclude that (s, h′′) ≈SX,α (s′, h′). From the properties (A)–(F), we de-
rive [(s, h′′)#X,α(s′, h′)] < [(s, h)#X,α(s′, h′)]. In particular, (ρ2) and (ρ9) imply
card(Path[S]Xs,h′′(t)) = card(T). By induction hypothesis, (s, h′′)↔SX,α (s′, h′).

D

Appendix of Chapter 6

Contents
Proof of Lemma 6.12 . 553
Proof of Lemma 6.19 . 554

551

553

Proof of Lemma 6.12

Lemma 6.12. The following formuale are theorem of HC(∗):

(I∗6.12.1) x ∼ y ∧ (ϕ ∗ ψ)⇒ (ϕ ∧ x ∼ y) ∗ ψ J[∼∈ {=, 6=}]
(I∗6.12.2) x = y ∧ ((ϕ ∧ x ↪→) ∗ ψ)⇒ (ϕ ∧ y ↪→) ∗ ψ
(I∗6.12.3) (ϕ ∧ x ↪→) ∗ ψ ⇒ ϕ ∗ (ψ ∧ ¬x ↪→)
(I∗6.12.4) ¬x ↪→ ∧ (ϕ ∗ ψ)⇒ (ϕ ∧ ¬x ↪→) ∗ ψ
(I∗6.12.5) x ↪→ ∧ (ϕ ∗ (¬x ↪→ ∧ ψ))⇒ (ϕ ∧ x ↪→) ∗ (¬x ↪→ ∧ ψ)
(I∗6.12.6) x ↪→ y ∧ ((ϕ ∧ x ↪→) ∗ ψ)⇒ (ϕ ∧ x ↪→ y) ∗ ψ
(I∗6.12.7) ¬x ↪→ y ∧ (ϕ ∗ ψ)⇒ (ϕ ∧ ¬x ↪→ y) ∗ ψ.

The proofs of (I∗6.12.1), (I∗6.12.3) and (I∗6.12.5) were already established during Chapter 6.

Proof of (I∗6.12.2).

1 x ↪→ ∧ x = y⇒ y ↪→ (=
sub)

2 x = y ∧ ((ϕ ∧ x ↪→) ∗ ψ)⇒ ((ϕ ∧ x ↪→ ∧ x = y) ∗ ψ) (I∗6.12.1)

3 (ϕ ∧ x ↪→ ∧ x = y) ∗ ψ ⇒ (ϕ ∧ y ↪→) ∗ ψ PC, (∗), 1

4 x = y ∧ ((ϕ ∧ x ↪→) ∗ ψ)⇒ (ϕ ∧ y ↪→) ∗ ψ (⇒Tr), 2, 3

Proof of (I∗6.12.4).

1 ϕ⇒ (ϕ ∧ x ↪→) ∨ (ϕ ∧¬x ↪→) PC

2 ϕ ∗ ψ ⇒
(
(ϕ ∧ x ↪→) ∨ (ϕ ∧¬x ↪→)

)
∗ ψ (∗), 1

3
(
(ϕ ∧ x ↪→) ∨ (ϕ ∧¬x ↪→)

)
∗ ψ ⇒

((ϕ ∧ x ↪→) ∗ ψ) ∨ ((ϕ ∧ ¬x ↪→) ∗ ψ) (I∗3)

4 ϕ ∧ x ↪→ ⇒ x ↪→ PC

5 ψ ⇒ > PC

6 (ϕ ∧ x ↪→) ∗ ψ ⇒ (x ↪→ ∗>) (∗ILR), 4, 5

7 x ↪→ ∗> ⇒ x ↪→ (I∗5)

8 ϕ ∗ ψ ⇒ x ↪→ ∨ ((ϕ ∧ ¬x ↪→) ∗ ψ) PC, 2, 3, 6, 7

9 ¬x ↪→ ∧ (ϕ ∗ ϕ)⇒ (ϕ ∧¬x ↪→) ∗ ψ PC, 8

Proof of (I∗6.12.6).

1 ϕ ∧ x ↪→ ⇒ (ϕ ∧ x ↪→ ∧ x ↪→ y) ∨ (ϕ ∧ x ↪→ ∧¬x ↪→ y) PC

2 (ϕ ∧ x ↪→) ∗ ψ ⇒
(
(ϕ ∧ x ↪→ ∧ x ↪→ y) ∨ (ϕ ∧ x ↪→ ∧¬x ↪→ y)

)
∗ ψ (∗), 1

554 Appendix D. Appendix of Chapter 6

3 (ϕ ∧ x ↪→) ∗ ψ ⇒ ((ϕ ∧ x ↪→ ∧ x ↪→ y) ∗ ψ) ∨ ((ϕ ∧ x ↪→ ∧¬x ↪→ y) ∗ ψ) (I∗3), (⇒Tr), 2

4 ϕ ∧ x ↪→ ∧¬x ↪→ y⇒ x ↪→ ∧¬x ↪→ y PC

5 ψ ⇒ > PC

6 (ϕ ∧ x ↪→ ∧¬x ↪→ y) ∗ ψ ⇒ (x ↪→ ∧¬x ↪→ y) ∗ > (∗ILR)

7 (x ↪→ ∧¬x ↪→ y) ∗ > ⇒ ¬x ↪→ y (∗¬pto)

8 (ϕ ∧ x ↪→) ∗ ψ ⇒ ((ϕ ∧ x ↪→ ∧ x ↪→ y) ∗ ψ) ∨ ¬x ↪→ y PC, 3, 6, 7

9 x ↪→ y ∧ ((x ↪→ ∧ ϕ) ∗ ψ)⇒ (ϕ ∧ x ↪→ ∧ x ↪→ y) ∗ ψ PC, 8

10 ϕ ∧ x ↪→ ∧ x ↪→ y⇒ ϕ ∧ x ↪→ y PC

11 (ϕ ∧ x ↪→ ∧ x ↪→ y) ∗ ψ ⇒ (ϕ ∧ x ↪→ y) ∗ ψ (∗), 10

12 x ↪→ y ∧ ((x ↪→ ∧ ϕ) ∗ ψ)⇒ (ϕ ∧ x ↪→ y) ∗ ψ (⇒Tr), 9, 11

Proof of (I∗6.12.7). Similar to the proof of (I∗6.12.4), by replacing x ↪→ with x ↪→ y.

1 ϕ⇒ (ϕ ∧ x ↪→ y) ∨ (ϕ ∧ ¬x ↪→ y) PC

2 ϕ ∗ ψ ⇒ ((ϕ ∧ x ↪→ y) ∗ ψ) ∨ ((ϕ ∧ ¬x ↪→ y) ∗ ψ) (∗), 1, (I∗3)

3 ϕ ∧ x ↪→ y⇒ x ↪→ y PC

4 ψ ⇒ > PC

5 (ϕ ∧ x ↪→ y) ∗ ψ ⇒ (x ↪→ y ∗ >) (∗ILR), 3, 4

6 x ↪→ y ∗ > ⇒ x ↪→ y (∗mono)

7 ϕ ∗ ψ ⇒ x ↪→ y ∨ ((ϕ ∧ ¬x ↪→ y) ∗ ψ) PC, 2, 5, 6

8 ¬x ↪→ y ∧ (ϕ ∗ ψ)⇒ (ϕ ∧ ¬x ↪→ y) ∗ ψ PC, 7

Proof of Lemma 6.19

Lemma 6.19. The following axioms and rules are admissible in HC(∗,−∗):
(I−∗6.19.1) (⊥−~ ϕ)⇒ ⊥
(I−∗6.19.2) (ϕ−~⊥)⇒ ⊥
(I−∗6.19.3) ϕ ∗ (ϕ−∗ ψ)⇒ ψ

(I−∗6.19.4)
ϕ⇒ ψ

(ϕ−~ χ)⇒ (ψ −~ χ)

(I−∗6.19.5)
ϕ⇒ ψ

(χ−~ ϕ)⇒ (χ−~ ψ)

(I−∗6.19.6) (ϕ ∨ ψ)−~ χ ⇔ (ϕ−~ χ) ∨ (ψ −~ χ)

(I−∗6.19.7) χ−~ (ϕ ∨ ψ) ⇔ (χ−~ ϕ) ∨ (χ−~ ψ)

(I−∗6.19.8) ϕ−~ (ψ −~ χ) ⇔ (ϕ ∗ ψ)−~ χ

(I−∗6.19.9) (ϕ−~ ψ) ∧ (ϕ−∗ χ) ⇒
(
ϕ−~ ψ ∧ χ

)
(I−∗6.19.10) x ∼ y ∧ (ϕ−~ ψ)⇒(

ϕ ∧ x ∼ y−~ ψ
)
J[∼∈ {=, 6=}] .

The proofs of (I−∗6.19.3), (I−∗6.19.4), (I−∗6.19.6) and (I−∗6.19.10) were already established during Chapter 6.

Proof of (I−∗6.19.1).

555

1 ⊥ ∗> ⇒⊥ (I∗4)

2 ⊥⇒ ¬ϕ PC

3 ⊥ ∗> ⇒ ¬ϕ (⇒Tr), 1, 2

4 > ⇒ (⊥ −∗¬ϕ) (∗com), (−∗2)

5 > ⇒ ¬(⊥ −~ ϕ) Def. −~, PC

6 (⊥ −~ ϕ)⇒⊥ 5, PC

Proof of (I−∗6.19.2).

1 > ∗ ϕ⇒ > PC

2 > ⇒ (ϕ−∗ >) (−∗2)

3 ¬(ϕ−∗ >)⇒⊥ PC, 2

4 (ϕ−~ ⊥)⇒⊥ Def. −~, PC

Note that implicitly, we have assumed that we can replace ¬> by ⊥ in the scope of −~ or −∗,
which is possible as the replacement of equivalents holds in the calculus HC(∗,−∗) (see the proof
of Theorem 6.22).

Proof of (I−∗6.19.5).

1 ϕ⇒ ψ Hypothesis

2 ¬ψ ⇒ ¬ϕ PC, 1

3 χ ∗ (χ−∗ ¬ψ)⇒ ¬ψ (I−∗6.19.3)

4 χ ∗ (χ−∗ ¬ψ)⇒ ¬ϕ (⇒Tr), 3, 2

5 (χ−∗ ¬ψ) ∗ χ⇒ χ ∗ (χ−∗ ¬ψ) (∗com)

6 (χ−∗ ¬ψ) ∗ χ⇒ ¬ϕ (⇒Tr), 4, 5

7 (χ−∗ ¬ψ)⇒ (χ−∗ ¬ϕ) (−∗2), 6

8 ¬(χ−∗ ¬ϕ)⇒ ¬(χ−∗ ¬ψ) PC, 7

9 (χ−~ ϕ)⇒ (χ−~ ψ) Def. −~

Proof of (I−∗6.19.7). We handle each implication separately, and we follow a pattern similar to the
one used in the proof of (I−∗6.19.6).

1 χ ∗ (χ−∗ ¬ϕ)⇒ ¬ϕ (I−∗6.19.3)

2
(
(χ−∗ ¬ϕ) ∧ (χ−∗ ¬ψ)

)
⇒ χ−∗ ¬ϕ PC

3 χ ∗
(
(χ−∗ ¬ϕ) ∧ (χ−∗ ¬ψ)

)
⇒ χ ∗ (χ−∗ ¬ϕ) (∗ILR),2

4 χ ∗
(
(χ−∗ ¬ϕ) ∧ (χ−∗ ¬ψ)

)
⇒ ¬ϕ (⇒Tr), 3, 1

5 χ ∗ (χ−∗ ¬ψ)⇒ ¬ψ (I−∗6.19.3)

6
(
(χ−∗ ¬ϕ) ∧ (χ−∗ ¬ψ)

)
⇒ χ−∗ ¬ψ PC

7 χ ∗
(
(χ−∗ ¬ϕ) ∧ (χ−∗ ¬ψ)

)
⇒ χ ∗ (χ−∗ ¬ψ) (∗ILR),6

8 χ ∗
(
(χ−∗ ¬ϕ) ∧ (χ−∗ ¬ψ)

)
⇒ ¬ψ (⇒Tr), 7, 5

556 Appendix D. Appendix of Chapter 6

9 χ ∗
(
(χ−∗ ¬ϕ) ∧ (χ−∗ ¬ψ)

)
⇒ ¬(ϕ ∨ ψ) PC, 4, 8

10
(
(χ−∗ ¬ϕ) ∧

(
χ−∗ ¬ψ

)
) ∗ χ⇒ ¬(ϕ ∨ ψ) (∗com), (⇒Tr), 9

11
(
(χ−∗ ¬ϕ) ∧ (χ−∗ ¬ψ)

)
⇒ (χ−∗ ¬(ϕ ∨ ψ) (−∗2), 10

12 ¬(χ−∗ ¬(ϕ ∨ ψ))⇒ ¬(χ−∗ ¬ϕ) ∨ ¬(χ−∗ ¬ψ) PC, 11

13 χ−~ (ϕ ∨ ψ)⇒ (χ−~ ϕ) ∨ (χ−~ ψ) Def. −~, 12

The derivation of the other implication can be found below.

1 ϕ⇒ ϕ ∨ ψ PC

2 ψ ⇒ ϕ ∨ ψ PC

3 (χ−~ ϕ)⇒ (χ−~ ϕ ∨ ψ) (I−∗6.19.5), 1

4 (χ−~ ψ)⇒ (χ−~ ϕ ∨ ψ) (I−∗6.19.5), 2

5
(
(χ−~ ϕ) ∨ (χ−~ ψ)

)
⇒ (χ−~ ϕ ∨ ψ) PC, 3, 4

Proof of (I−∗6.19.8). By definition of the septraction operator −~, (I−∗6.19.8) is equivalent to(
ϕ−∗ (ψ −∗ ¬χ))

)
⇔

(
(ϕ ∗ ψ)−∗ ¬χ

)
.

This equivalence is provable in HC(∗,−∗), thanks to the adjunction rules.

1 (ϕ ∗ ψ) ∗ ((ϕ ∗ ψ)−∗ ¬χ)⇒ ¬χ (I−∗6.19.3)

2 ψ ∗ (ϕ ∗ ((ϕ ∗ ψ)−∗ ¬χ))⇒ ¬χ (∗com), (∗assoc), 1

3 ϕ ∗ ((ϕ ∗ ψ)−∗ ¬χ)⇒ (ψ −∗ ¬χ) (−∗2), 2

4
(
(ϕ ∗ ψ)−∗ ¬χ

)
⇒
(
ϕ−∗ (ψ −∗ ¬χ)

)
(−∗2), 3, (∗com)

5 ϕ ∗
(
ϕ−∗ (ψ −∗ ¬χ)

)
⇒ (ψ −∗ ¬χ) (I−∗6.19.3)

6 ψ ∗
(
ϕ ∗ (ϕ−∗ (ψ −∗ ¬χ))

)
⇒ ¬χ (−∗1), 5, (∗com), (∗assoc)

7 (ϕ ∗ ψ) ∗
(
ϕ−∗ (ψ −∗ ¬χ)

)
⇒ ¬χ (∗com), (∗assoc), 6

8
(
ϕ−∗ (ψ −∗ ¬χ)

)
⇒
(
(ϕ ∗ ψ)−∗ ¬χ

)
(−∗2), 7

9
(
ϕ−∗ (ψ −∗ ¬χ)

)
⇔
(
(ϕ ∗ ψ)−∗ ¬χ

)
PC, 4, 8

Proof of (I−∗6.19.9).

1 ϕ ∗ (ϕ−∗ χ)⇒ χ (I−∗6.19.3)

2 ϕ ∗ (ϕ−∗ ¬(ψ ∧ χ))⇒ ¬(ψ ∧ χ) (I−∗6.19.3)

3
(
ϕ ∗ (ϕ−∗ χ)

)
∧
(
ϕ ∗ (ϕ−∗ ¬(ψ ∧ χ))

)
⇒ ¬ψ PC, 1, 2

4 ϕ ∗
(
(ϕ−∗ χ) ∧ (ϕ−∗ ¬(ψ ∧ χ))

)
⇒
(
ϕ ∗ (ϕ−∗ χ)

)
∧
(
ϕ ∗ (ϕ−∗ ¬(ψ ∧ χ))

)
(∗ILR), PC

557

5 ϕ ∗
(
(ϕ−∗ χ) ∧ (ϕ−∗ ¬(ψ ∧ χ))

)
⇒ ¬ψ (⇒Tr), 4

6 (ϕ−∗ χ) ∧
(
ϕ−∗ ¬(ψ ∧ χ)

)
⇒ (ϕ−∗ ¬ψ) (∗com), (−∗2), 5

7 (ϕ−∗ χ) ∧ ¬(ϕ−∗ ¬ψ)⇒ ¬(ϕ−∗ ¬(ψ ∧ χ)) PC

8 (ϕ−∗ χ) ∧ (ϕ−~ ψ)⇒ (ϕ−~ (ψ ∧ χ)) Def. −~, 7

E

Appendix of Chapter 7

Contents
Proof of Lemma 7.4. 561
Proof of Lemma 7.15. 562

559

561

Proof of Lemma 7.4.

To prove Lemma 7.4, we first introduce the notion of (w1,w2)-isomorphic finite forests, and show
that isomorphic finite forests satisfy the same formulae of ML().

Definition E.1 ((w1,w2)-isomorphic forests). Let K1 = (W1, R1,V1) and K2 = (W2, R2,V2)
be two Kripke-style finite forests. Let w1 ∈ W1 and w2 ∈ W2. K1 and K2 are said to be
(w1,w2)-isomorphic whenever there is a bijection f : w1 → w2 such that

1. for every w ∈ W1 and p ∈ AP, w ∈ V1(p) if and only if f(w) ∈ V2(p).

2. f(w1) = w2,

3. for every w ∈ R∗1(w1) and w′ ∈ R1(w), f(w′) ∈ R2(f(w)).

4. for every w ∈ R∗2(w2) and w′ ∈ R2(w), f−1(w′) ∈ R1(f−1(w)).
The bijection f is said to be a (w1,w2)-isomorphism from K1 to K2.

Lemma E.2. Let (K1,w1) and (K2,w2) be two pointed forests, where K1 = (W1, R1,V1) and
K2 = (W2, R2,V2), and suppose the two Kripke-style finite forests K1 and K2 to be (w1,w2)-
isomorphic. For every formula ϕ in ML(),

(K1,w1) |= ϕ if and only if (K2,w2) |= ϕ.

Proof. We show the left to right direction of the lemma (the other direction holds by symmetry).
Let f be the (w1,w2)-isomorphism from K1 to K2. The proof carries out with a standard
structural induction on ϕ. We omit the trivial cases of > and Boolean connectives.
base case: ϕ = p for some p ∈ AP. Directly from the properties (1) and (2) of f.

induction step: ϕ = ♦ψ. Suppose (K1,w1) |= ♦ψ. Thus, there is w′1 ∈ R1(w1) such that
(K1,w′1) |= ψ. From the property (3) of f, There is w′2 ∈ R2(w2) such that f(w′1) = w′2.
Clearly, f is a (w′1,w′2)-isomorphism from K1 to K2. By induction hypothesis, (K1,w′1) |= ψ.
We conclude that (K2,w2) |= ♦ψ.

induction step: ϕ = ψ χ. Suppose (K1,w1) |= ψ χ, and thus there are two Kripke-style finite
forests K′1 = (W1, R

′
1,V1) and K′′2 = (W1, R

′′
1 ,V1) such that K1 = K′1 +w1 K′′1 , (K′1,w1) |= ψ

and (K′′1 ,w1) |= χ. We consider the two relations R′2 and R′′2 defined below

R′2 = {(w,w′) ∈ R2 | (f−1(w), f−1(w′)) ∈ R′1} R′′2 = R2
.−R′1.

Clearly, R′2 ∩ R′′2 = ∅ and R′2 ∪ R′′2 = R2. Let K′2 = (W2, R
′
2,V2) and K′′2 = (W2, R

′′
2 ,V2).

Since f is a (w1,w2)-isomorphism from K1 to K2, by definition of K′2 and K′′2 it is easy to
check that f is also a (w1,w2)-isomorphism from K′1 to K′2, as well as a (w1,w2)-isomorphism
from K′′1 to K′′2 . Together with K = K′1 +w1 K′′1 , we conclude that K2 = K′2 +w2 K′′2 . By
induction hypothesis, (K′2,w2) |= ψ and (K′′2 ,w2) |= χ. Thus, (K2,w2) |= ψ χ.

Lemma E.2 directly implies Lemma 7.4, as showed below.

Lemma 7.4. Let w ∈ W. Let K = (W, R,V) and K′ = (W, R′,V) be two Kripke-style finite
forests such that K′ ⊆w K. For every w′ ∈ R′(w) and every formula ϕ in ML() we have

(K,w′) |= ϕ if and only if (K′,w′) |= ϕ.

562 Appendix E. Appendix of Chapter 7

Proof. By definition of +w, the tree rooted at w′ in K is the one rooted at w′ in K′, i.e.

{(w1,w2) ∈ R | w1 ∈ R∗(w′)} = {(w1,w2) ∈ R′ | w1 ∈ R′∗(w′)}.

Thus, let f be a bijection from W to W such that for every w′′ ∈ R∗(w′), f(w′′) = w′′. f is a
(w′,w′)-isomorphism from K to K′. By Lemma E.2, (K,w′) |= ϕ if and only if (K′,w′) |= ϕ.

Proof of Lemma 7.15.

Lemma 7.15. The following axioms and rules are admissible in HGML():

(⇒Tr)
ϕ⇒ χ χ⇒ ψ

ϕ⇒ ψ

(ILR)
ϕ⇒ ϕ′ ψ ⇒ ψ′

ϕ ψ ⇒ ϕ′ ψ′

(I−∗7.15.1) ♦≥k1ϕ ♦≥k2ϕ⇒ ♦≥k1+k2ϕ

(I−∗7.15.2) ♦≥kϕ⇒ ♦=kϕ >

(I−∗7.15.3) �ϕ ∧ (ψ χ)⇒ (ψ ∧�ϕ) (χ ∧�ϕ)

(I−∗7.15.4) �ϕ1 · · · �ϕn (�¬ϕ1 ∧ · · · ∧�¬ϕn)

The rule (⇒Tr) is admissible by propositional reasoning.

Proof of (ILR).

1 ϕ⇒ ϕ′ Hypothesis

2 ψ ⇒ ψ′ Hypothesis

3 ϕ ψ ⇒ ϕ′ ψ (C), 1

4 ψ ϕ′ ⇒ ψ′ ϕ′ (C), 2

5 ϕ′ ψ ⇒ ψ ϕ′ (C
com)

6 ψ′ ϕ′ ⇒ ϕ′ ψ′ (C
com)

7 ϕ ψ ⇒ ψ ϕ′ (⇒Tr), 3, 5

8 ϕ ψ ⇒ ϕ′ ψ′ (⇒Tr) twice, 7, 4, 6

Proof of (I−∗7.15.1). The proof is divided in the following four cases:

• k1 + k2 = 0,
• k1 ≥ 1 and k2 ≥ 1.

• k1 ≥ 1 and k2 = 0,
• k2 ≥ 1 and k1 = 0.

case: k1 + k2 = 0. By definition, ♦≥k1+k2ϕ is >. (I−∗7.15.1) follows by propositional reasoning.
case: k1 ≥ 1 and k2 ≥ 1. In this case, ♦≥k1ϕ ♦≥k2ϕ and ♦≥k1+k2ϕ are syntactically equivalent,

up to associativity of . So, (I−∗7.15.1) is derivable by propositional reasoning and (C
assoc).

case: k1 ≥ 1 and k2 = 0. We have ♦≥k2ϕ = >. We show `HGML() ♦≥k1ϕ > ⇒ ♦≥k1ϕ by
induction on k1.
base case: k1 = 1. In this case, (I−∗7.15.1) corresponds to (C

mono), instantiated with e = ♦ϕ.
induction step: k1 ≥ 2.

1 ♦≥k1−1ϕ > ⇒ ♦≥k1−1ϕ Induction Hypothesis

2 ♦≥k1ϕ⇒ ♦ϕ ♦≥k1−1ϕ (C
assoc), def. of ♦≥k1

3 ♦≥k1ϕ > ⇒ (♦ϕ ♦≥k1−1ϕ) > (C), 2

4 (♦ϕ ♦≥k1−1ϕ) > ⇒ ♦ϕ (♦≥k1−1ϕ >) (C
assoc)

5 ♦ϕ (♦≥k1−1ϕ >)⇒ ♦ϕ ♦≥k1−1ϕ (C
com), (C), 1

6 ♦ϕ ♦≥k1−1ϕ⇒ ♦≥k1ϕ Previous case of the proof, as k1 − 1 ≥ 1

7 ♦≥k1ϕ > ⇒ ♦≥k1ϕ (⇒Tr), 3, 4, 5, 6

563

case: k2 ≥ 1 and k1 = 0. Symmetrical to the previous case, thanks to the commutativity of
the composition operator (axiom (C

com)).

Proof of (I−∗7.15.2). By induction on k, with base cases for k = 0 and k = 1.
base case: k = 0. In this case, (I−∗7.15.2) corresponds to > ⇒ (> ∧ ¬♦≥1ϕ) >. Notice that, the

formula � ⊥⇒ >∧¬♦≥1ϕ is valid in GML, and thus it is derivable in HGML() (since this
system extends HGML). We have,

1 � ⊥⇒ >∧ ¬♦≥1ϕ See above

2 ♦≥0ϕ⇒ ♦≥0ϕ � ⊥ (C
id)

3 ♦≥0ϕ � ⊥⇒ � ⊥ ♦≥0ϕ (C
com)

4 ♦≥0ϕ⇒ > PC

5 � ⊥ ♦≥0ϕ⇒ (> ∧ ¬♦≥1ϕ) > (ILR), 1, 4

6 ♦≥0ϕ⇒ (> ∧ ¬♦≥1ϕ) > (⇒Tr), 2, 3, 5

base case: k = 1. In this case, (I−∗7.15.2) is axiom (C
atom).

induction step: k ≥ 2.

1 ♦≥k−1ϕ⇒ ♦=k−1ϕ > Induction Hypothesis

2 ♦≥kϕ⇒ ♦ϕ ♦≥k−1ϕ (C
assoc), def. of ♦≥k, as k ≥ 2

3 ♦ϕ⇒ ♦=1ϕ > (C
atom)

4 ♦ϕ ♦≥k−1ϕ⇒ (♦=1ϕ >) ♦≥k−1ϕ (C), 3

5 (♦=1ϕ >) ♦≥k−1ϕ⇒ ♦=1ϕ (> ♦≥k−1ϕ) (C
assoc)

6 > ♦≥k−1ϕ⇒ ♦≥k−1ϕ (I−∗7.15.1)

7 > ♦≥k−1ϕ⇒ ♦=k−1ϕ > (⇒Tr), 1, 6

8 ♦=1ϕ (> ♦≥k−1ϕ)⇒ ♦=1ϕ (♦=k−1ϕ >) (C
com), (C), 7

9 ♦=1ϕ (♦=k−1ϕ >)⇒ (♦=1ϕ ♦=k−1ϕ) > (C
assoc)

10 ♦=1ϕ⇒ ♦≥1ϕ PC

11 ♦=k−1ϕ⇒ ♦≥k−1ϕ PC

12 ♦=1ϕ ♦=k−1ϕ⇒ ♦≥1ϕ ♦≥k−1ϕ (ILR), 10, 11

13 ♦≥1ϕ ♦≥k−1ϕ⇒ ♦≥kϕ (C
assoc), def. of ♦≥k, as k ≥ 2

14 ♦=1ϕ⇒ ¬♦≥2ϕ PC

15 ♦=k−1ϕ⇒ ¬♦≥kϕ PC

16 ♦=1ϕ ♦=k−1ϕ⇒ ¬♦≥2ϕ ¬♦≥kϕ (ILR), 14, 15

17 ¬♦≥2ϕ ¬♦≥kϕ⇒ ¬♦≥k+1 (C
¬grad)

18 ♦=1ϕ ♦=k−1ϕ⇒ ♦≥kϕ (⇒Tr), 12, 13

19 ♦=1ϕ ♦=k−1ϕ⇒ ¬♦≥k+1ϕ (⇒Tr), 16, 17

564 Appendix E. Appendix of Chapter 7

20 ♦=1ϕ ♦=k−1ϕ⇒ ♦=kϕ PC, 18, 19, def. of ♦=kϕ

21 (♦=1ϕ ♦=k−1ϕ) > ⇒ ♦=kϕ > (C), 20

22 ♦≥kϕ⇒ ♦=kϕ > (⇒Tr), 2, 4, 5, 8, 9, 21

Proof of (I−∗7.15.3). Recall that �ϕ is defined as ¬♦¬ϕ.

1 ψ ⇒ (ψ ∧ ♦¬ϕ) ∨ (ψ ∧�ϕ) PC

2 χ⇒ (χ ∧ ♦¬ϕ) ∨ (χ ∧�ϕ) PC

3 ψ χ⇒ ((ψ ∧ ♦¬ϕ) ∨ (ψ ∧�ϕ)) ((χ ∧ ♦¬ϕ) ∨ (χ ∧�ϕ)) (ILR), 1, 2

4 ((ψ ∧ ♦¬ϕ) ∨ (ψ ∧�ϕ)) ((χ ∧ ♦¬ϕ) ∨ (χ ∧�ϕ))⇒

((ψ ∧ ♦¬ϕ) (χ ∧ ♦¬ϕ)) ∨ ((ψ ∧�ϕ) (χ ∧ ♦¬ϕ))

∨ ((ψ ∧ ♦¬ϕ) (χ ∧�ϕ)) ∨ ((ψ ∧�ϕ) (χ ∧�ϕ)) (C
dist), (C

com), PC

5 ψ ∧ ♦¬ϕ⇒ ♦¬ϕ PC

6 χ ∧ ♦¬ϕ⇒ > PC

7 (ψ ∧ ♦¬ϕ) (χ ∧ ♦¬ϕ)⇒ ♦¬ϕ > (ILR), 5, 6

8 ♦¬ϕ > ⇒ ♦¬ϕ (C
mono)

9 (ψ ∧ ♦¬ϕ) (χ ∧ ♦¬ϕ)⇒ ♦¬ϕ

10 ψ ∧�ϕ⇒ > PC

11 χ ∧ ♦¬ϕ⇒ ♦¬ϕ PC

12 (ψ ∧�ϕ) (χ ∧ ♦¬ϕ)⇒ ♦¬ϕ > (ILR), 10, 11, (C
com)

13 (ψ ∧�ϕ) (χ ∧ ♦¬ϕ)⇒ ♦¬ϕ (⇒Tr), 8, 12

14 χ ∧�ϕ⇒ > PC

15 (ψ ∧ ♦¬ϕ) (χ ∧�ϕ)⇒ ♦¬ϕ > (ILR), 5, 14

16 (ψ ∧ ♦¬ϕ) (χ ∧�ϕ)⇒ ♦¬ϕ (⇒Tr), 8, 15

17 ((ψ ∧ ♦¬ϕ) ∨ (ψ ∧�ϕ)) ((χ ∧ ♦¬ϕ) ∨ (χ ∧�ϕ))⇒

♦¬ϕ ∨ ((ψ ∧�ϕ) (χ ∧�ϕ)) PC, 4, 9, 13, 16

18 ψ χ⇒ ♦¬ϕ ∨ ((ψ ∧�ϕ) (χ ∧�ϕ)) (⇒Tr), 3, 17

19 �ϕ ∧ (ψ χ)⇒ (ψ ∧�ϕ) (χ ∧�ϕ) PC, 18, def. of �ϕ

Proof of (I−∗7.15.4). The proof is by induction on n ≥ 1.
base case: n = 1. In this case, (I−∗7.15.4) corresponds to the axiom (C

split).
induction step: n ≥ 2.

1 �ϕ1 · · · �ϕn−1 (�¬ϕ1 ∧ · · · ∧�¬ϕn−1) Induction Hypothesis

565

2 �¬ϕ1 ∧ · · · ∧�¬ϕn−1 ⇒ (�¬ϕ1 ∧ · · · ∧�¬ϕn−1) ∧ (�ϕn ¬�ϕn) PC, (C
split)

3 (�¬ϕ1 ∧ · · · ∧�¬ϕn−1) ∧ (�ϕn ¬�ϕn)⇒

(�ϕn ∧ (�¬ϕ1 ∧ · · · ∧�¬ϕn−1)) (¬�ϕn ∧ (�¬ϕ1 ∧ · · · ∧�¬ϕn−1)) (I−∗7.15.3)

4 �ϕn ∧ (�¬ϕ1 ∧ · · · ∧�¬ϕn−1)⇒ �ϕn PC

5 ¬�ϕn ∧ (�¬ϕ1 ∧ · · · ∧�¬ϕn−1)⇒ �¬ϕ1 ∧ · · · ∧�¬ϕn PC

6 (�ϕn ∧ (�¬ϕ1 ∧ · · · ∧�¬ϕn−1)) (¬�ϕn ∧ (�¬ϕ1 ∧ · · · ∧�¬ϕn−1))⇒

�ϕn (�¬ϕ1 ∧ · · · ∧�¬ϕn) (ILR), 4, 5

7 �¬ϕ1 ∧ · · · ∧�¬ϕn−1 ⇒ �ϕn (�¬ϕ1 ∧ · · · ∧�¬ϕn) (⇒Tr), 2, 6

8 �ϕ1 · · · �ϕn−1 (�¬ϕ1 ∧ · · · ∧�¬ϕn−1)⇒

�ϕ1 · · · �ϕn−1 (�ϕn (�¬ϕ1 ∧ · · · ∧�¬ϕn)) (C
com), (C), 7

F

Appendix of Chapter 8

Contents
Proof of Lemma 8.1. 569
Proof of Lemma 8.19. 570
Proof of Lemma 8.20. 571
Proof of Lemma 8.22. 572
Proof of Lemma 8.23. 573

567

569

Proof of Lemma 8.1.

Lemma 8.1. Let (K,w) be a pointed forest, where K = (W, R,V), and let ϕ be a formula in
ML(), written with atomic propositions from P . Let K′ = (W, R,V[q1 ← R(w)]). (K,w) |= ϕ

in ML() if and only if (K′,w) |= τ1(ϕ) in QK.

Proof. We prove a generalisation of this lemma. Consider a formula ϕ written with atomic
proposition from P , where P is dijoint from Q = {q1, q2, q3}. Given two Kripke-style finite
forests K = (W, R,V) and K′ = (W ′, R′,V ′) and a world w ∈ W, we write K .w

i K′ whenever:
1. W ⊆W ′,

2. V ′(qi) ∩R′(w) = R(w),

3. for every w′ ∈ R(w), {(w1,w2) ∈ R | w1 ∈ R∗(w′)} = {(w1,w2) ∈ R′ | w1 ∈ R′∗(w′)},

4. for every p ∈ P and w′ ∈ W, w′ ∈ V(p) if and only if w′ ∈ V ′(p).
Essentially, K .w

i K′ holds whenever the universe of K′ extends the one of K (property (1)), and
the children of w in K are the subset of the children of w in K′ that satisfy the atomic proposition
qi (property (2)). The trees rooted in these children are the same in K and K′ (property (3)).
Lastly, the valuation functions V and V ′ agree on the satisfaction of the atomic proposition in
P , for every world in W (property (4)).

One can easily check that (W, R,V) .w
1 (W, R,V[q1 ← R(w)]). Thus, Lemma 8.1 holds as we

show that for all i ∈ {1, 2, 3}, K = (W, R,V), K′ = (W ′, R′,V ′) and w ∈ W, such that K .w
i K′:

(K,w) |= ϕ in ML() if and only if (K′,w) |= τi(ϕ).

The proof carries out by structural induction on ϕ (trivial cases for > and Boolean connectives
are omitted).
base case: ϕ = p. By definition of ϕ, p ∈ P . From the properties (1) and(4) of .w

i , we have
w ∈ V(p) if and only if w ∈ V ′(p).

induction step: ϕ = ♦ψ. (⇒): Suppose (K,w) |= ♦ψ, and thus there is w′ ∈ R(w) such
that (K,w′) |= ψ. From w′ ∈ R(w) and the property (2) of .w

i , we have w′ ∈ R′(w) and
w′ ∈ V ′(qi). Consider the Kripke-style finite forest K′′ = (W ′, R′,V ′[q1 ← R′(w′)]). We
show that K .w′

1 K′′. The satisfaction of the properties (1) and (4) follows directly from
K .w

i K′. Indeed, K′ and K′′ share the same universe, and V ′[q1 ← R′(w′)](p) = V ′(p) holds
for all p ∈ P . From the definition of V ′[q1 ← R′(w′)], the property (2) reduces to showing
that R′(w′) = R(w′), which follows directly from the fact that w′ ∈ R(w) and K .w

i K′
(property (3)). Similarly, the property (3) follows directly from the fact that K and K′
share the same accessibility relation R′, w′ ∈ R(w) and K .w

i K′ (again, property (3)). By
induction hypothesis, (K′′,w′) |= τ1(ψ). Moreover, from V ′[q1 ← R′(w′)], (K′,w′) |= �q1.
By definition of K′′ together with the semantics of the propositional quantification ∃q1, we
conclude that (K′,w′) |= ∃q1 (�q1 ∧ τ1(ψ)). Lastly, from w′ ∈ R′(w) and w′ ∈ V ′(qi), we
derive (K′,w) |= τi(♦ψ).
(⇐): Similar to the other direction. Suppose (K′,w) |= τi(♦ψ). By definition, there are
w′ ∈ R′(w) ∩ V(qi) and K′′ = (W ′, R′,V[q1 ← W1]) such that R′(w) ⊆ W1 ⊆ W ′ and
(K′′,w′) |= τ1(ψ). Exactly as in the left to right direction of the proof, one can show that
K .w′

1 K′′. By induction hypothesis, (K,w′) |= ψ. From w′ ∈ R′(w) ∩ V(qi) and K .w
i K′

(property (2)), we have w′ ∈ R(w). Thus, (K,w) |= ♦ψ.

induction step: ϕ = ϕ1 ϕ2. Let j, k ∈ [1, 3] such that j < k and j 6= i 6= k.

570 Appendix F. Appendix of Chapter 8

(⇒): Suppose (K,w) |= ϕ1 ϕ2. By definition, there are Kripke-style finite forests K1 =
(W, R1,V) and K2 = (W, R2,V) s.t. K1 +w K2 = K, (K1,w) |= ϕ1 and (K2,w) |= ϕ2. Let
K′′ = (W ′, R′,V ′′) where V ′′ def= V ′[qj ← R1(w), qk ← R2(w)]. Since K .w

i K′ (property (2)),
and the sets R1(w) and R2(w) partition R(w), we conclude that K′′ is well-defined, and that
R′(w) ∩ V ′′(qi) is partitioned in R′(w) ∩ V ′′(qj) and R′(w) ∩ V ′′(qk). Thus (K′′,w) |= [qi =
qj qk]. We prove that K1.

w
j K′′. The properties (1) and (4) are trivially satisfied (by K.w

i K′),
whereas the property (2) follows directly from the definition of V ′′. To show (3), i.e. for
every w′ ∈ R1(w), {(w1,w2) ∈ R1 | w1 ∈ R∗1(w′)} = {(w1,w2) ∈ R′ | w1 ∈ R′∗(w′)}, it is
sufficient to recall that, by definition of +w and K1 +w K2 = K, for every w ∈ R1(w), we
have {(w1,w2) ∈ R1 | w1 ∈ R∗1(w′)} = {(w1,w2) ∈ R | w1 ∈ R∗(w′)}. Then, the property
holds directly from K .w

i K′ (property (3)). Analogously, one can prove that K2 .
w
k K′′. By

induction hypothesis, (K′′,w) |= τj(ϕ1)∧τk(ϕ2). Together with (K′′,w) |= [qi = qj qk] and
by definition of V ′′, we conclude that (K′,w) |= τi(ϕ1 ϕ2).
(⇐): Suppose (K′,w) |= τi(ϕ1 ϕ2). By definition, there is K′′ = (W ′, R′,V ′′), where V ′′ def=
V ′[qj ←W1, qk ←W2] such thatW1,W2 ⊆ W ′ and (K′′,w) |= [qi = qj qk]∧τj(ϕ1)∧τk(ϕ2).
From the semantics of [qi = qj qk], W1 and W2 are disjoint, and their union contains
R(w)∩V ′(qi). From K.w

i K′ (property (2)), R(w) ⊆ W1∪W2. Therefore, let us consider two
Kripke-style finite forests K1 = (W, R1,V) and K2 = (W, R2,V) such that K1 +w K2 = K,
R1(w) = R(w) ∩ W1 and R2(w) = R(w) ∩ W2. From the disjointness of W1 and W2,
together with R(w) ⊆ W1 ∪W2, we conclude that K1 and K2 are well-defined. Exactly as
in the left to right direction of the proof, one can show that K1 .

w
j K′′ and K2 .

w
k K′′. By

induction hypothesis, (K1,w) |= ϕ1 and (K2,w) |= ϕ2. We derive (K,w) |= ϕ1 ϕ2.

Proof of Lemma 8.19.

Lemma 8.19. Let n ∈ N, P ⊆fin AP. Let T be an information tree having ambient names from
P and let (K,w) be a pointed forest such that (K,w) (n, P)-encodes T . For every formula ϕ in
SAL() such that |ϕ| ≤ n we have, T |= ϕ if and only if (K,w) |= τ(ϕ).

Proof. The proof follows from an easy structural induction on ϕ (trivial cases for > and Boolean
connectives are omitted). Let K = (W, R,V).
base case: ϕ = 0. We have,

T |= 0

⇔ T ≡ 0 (by definition of |=, in SAL()),
⇔ R(w) = ∅ (by Definition 8.18, in both cases (1) and (2)),
⇔ (K,w) |= � ⊥ (by definition of |=, in ML()).

induction step: ϕ = n[ψ]. (⇒): Suppose T |= n[ψ], and thus there is T ′ such that T ≡ n[T ′]
and T ′ |= ψ. Since |ϕ| ≥ 1, Since (K,w) is a (n, P)-encoding of T (Definition 8.18) there is
a world w′ such that R(w) = {w′} and (K,w′) is a (n−1, p)-encoding of T ′, and (K,w′) |= n.
We have |ψ| ≤ |ϕ| − 1 ≤ n − 1, and thus by induction hypothesis (K,w′) |= τ(ψ). From
w′ ∈ R(w) we conclude that (K,w) |= ♦(n ∧ ϕ). Together with card(R(w)) = 1, which
implies (K,w) |= ♦=1>, this allows us to derive that (K,w) |= τ(ϕ).
(⇐): Similar to the order direction. Suppose (K,w) |= τ(ϕ), and therefore there is a world
w′ such that {w′} = R(w) and (K,w′) |= n ∧ ψ. Since |ϕ| ≥ 1 and (K,w) is a (n, P)-
encoding of T , it must be that T ≡ n[T ′] for some information tree T ′, and that (K,w′)

571

is a (n − 1, P)-encoding of T ′. We have |ψ| ≤ |ϕ| − 1 ≤ n − 1, and thus by induction
hypothesis T ′ |= ψ. From T ≡ n[T ′], we conclude that T |= n[ψ].

induction step: ϕ = ψ χ. (⇒): Suppose T |= ϕ ψ and therefore there are information trees
T1 and T2 such that T1 T2 ≡ T , T1 |= ϕ and T2 |= ψ. Let n1, . . . , nk and T ′1, . . . , T ′k (k ∈ N)
such that T ≡ n1[T ′1] · · · nk[T ′k]. From T1 T2 ≡ T together with the properties of the
structural equivalence ≡ (see Figure 8.5), we conclude that [1, k] can be partitioned into
two sets of indices {i1, . . . , ip} and {j1, . . . , jq} such that T1 ≡ ni1 [T ′i1] · · · nip [T ′ip] and
T2 ≡ nj1 [T ′j1] · · · njq [T ′jq]. Since (K,w) is a (n, P)-encoding of T , we conclude that there
are worlds w1, . . . ,wk such that {w1, . . . ,wk} = R(w) and for every i ∈ [1, k], (K,wi) is
a (n − 1, P)-encoding of T ′i and, among the atomic propositions in P , wi only satisfies
ni. Let K1 = (W, R1,V) and K2 = (W, R2,V) be two Kripke-style finite forests such
that K = K1 +w K2, R1(w) = {wi1 , . . . ,wip} and R2(w) = {wj1 , . . . ,wjq}. Let |ϕ| = k1
and |ψ| = k2. We have n ≥ |ϕ| > k1 + k2, and so (K1,w) is a (k1, P)-encoding of T1,
whereas (K2,w) is a (k2, P)-encoding of T2. By induction hypothesis, (K1,w) |= τ(ψ) and
(K2,w) |= τ(χ). From K = K1 +w K2, (K,w) |= τ(ψ) τ(χ).
(⇐): Similar to the other direction. Suppose (K,w) |= τ(ψ χ), and thus there are Kripke-
style finite forests K1 and K2 such that K1 +wK2 = K, (K1,w) |= τ(ψ) and (K2,w) |= τ(χ).
Since |ϕ| ≥ 1 and (K,w) is a (n, P)-encoding of T , there must be n1, . . . , nk and information
trees T1, . . . , Tk (k ∈ N) such that T ≡ n1[T1] · · · nk[Tk] and there are worlds w1, . . . ,wk
such that {w1, . . . ,wk} = R(w) and for every i ∈ [1, k], (K,wi) is a (n − 1, P)-encoding
of T ′i and, among the atomic propositions in P , wi only satisfies ni. Let {i1, . . . , ip} and
{j1, . . . , jq} be a partition of the indices in [1, k] such that R1(w) = {wi1 , . . . ,wip} and
R2(w) = {wj1 , . . . ,wjq}. Consider the two information trees T ′ = ni1 [Ti1] · · · nip [Tip] and
T ′′ = nj1 [Tj1] · · · njq [Tjq]. From the properties of ≡, we have T ≡ T ′ T ′′. Let |ϕ| = k1 and
|ψ| = k2. We have n ≥ |ϕ| > k1 + k2, and so (K1,w) is a (k1, P)-encoding of T ′, whereas
(K2,w) is a (k2, P)-encoding og T ′′. By induction hypothesis, T ′ |= ψ and T ′′ |= χ, which
implies T |= ψ χ directly from T ≡ T ′ T ′′.

Proof of Lemma 8.20.

Lemma 8.20. Let ϕ be in SAL() built over P ⊆fin AP and p 6∈ P . ϕ is satisfiable if and only
if τ(ϕ) ∧

∧
i∈[1,|ϕ|]�

i∨
n∈P∪{p}

(
n ∧

∧
m∈(P∪{p})\{n} ¬m

)
is satisfiable.

Proof. (⇒): Suppose ϕ satisfiable, and let T be an information tree satisfying ϕ. In general,
it could be that T contains ambient names that do not appear in ϕ. However, without loss
of generality, we can assume that there is only one name in T that does not appear in ϕ, and
that name is p (as in the statement of this theorem). This assumption relies on the following
property of static ambient logic (see [34], Lemma 8):

Let p, q be two ambient names not appearing in ϕ. Then T |= ϕ iff T [p← q] |= ϕ, where
T [p← q] is the tree obtained from T by replacing every occurrence of p with q.

Let (K,w) be a (|ϕ|, P∪{p})-encoding of T . By Lemma 8.19, (K,w) |= τ(ϕ). From the properties
of (|ϕ|, P ∪{p})-encodings, for all i ∈ [1, |ϕ|], every world w′ ∈ Ri(w) satisfies exactly one atomic
propositions in P ∪ {p}. Therefore, (K,w) |=

∧
i∈[1,|ϕ|]�

i∨
n∈P∪{p}

(
n ∧

∧
m∈(P∪{p})\{n} ¬m

)
.

(⇐): Suppose ψ def= τ(ϕ)∧
∧
i∈[1,|ϕ|]�

i∨
n∈P∪{p}

(
n∧
∧

m∈(P∪{p})\{n} ¬m
)

satisfiable, and let (K,w),
where K = (W, R,V), be a pointed forest satisfying ψ. From the satisfaction of ψ we deduce
that, for every i ∈ [1, |ϕ|], every world w′ ∈ Ri(w) satisfies exactly one atomic propositions

572 Appendix F. Appendix of Chapter 8

in P ∪ {p}. One can easily show that then there is an information tree T written with ambient
names from P ∪ {p} such that (K,w) is a (|ϕ|, P ∪ {p})-encoding of T . From (K,w) |= τ(ϕ),
together with Lemma 8.19, we conclude that T |= ϕ.

Proof of Lemma 8.22.

Lemma 8.22. Let P ⊆fin AP and n ≥ 1. Let T be a (n, P)-encoding of a pointed forest (K,w).
For every formula ϕ in ML(), built over P and with |ϕ| ≤ n, we have (K,w) |= ϕ iff T |= τ(ϕ).

Proof. Below, let K = (W, R,V). The proof follows with a straightforward induction on ϕ

(trivial cases for > and Boolean connectives are omitted).
base case: ϕ = p. We have,

(K,w) |= p

⇔ w |= V(p) (by definition of |=, in ML()),
⇔ there are information trees T ′, T ′′ such that T ≡ ap[p[0] T ′] T ′′ (by Definition 8.21),
⇔ T |= 〈ap〉〈p〉> (by definition of |=, in SAL()).

induction step: ϕ = ♦ψ. (⇒): Suppose (K,w) |= ♦ψ, and thus there is w′ ∈ R(w) such
that (K,w′) |= ψ. Notice that |♦ψ| = |ψ|+ 1 > 1, and thus, by Definition 8.21, there are
information trees T ′, T ′′ such that T ≡ rel[T ′]T ′′, and T ′ is a (n−1, P)-encoding of (K,w′).
By induction hypothesis, T ′ |= τ(ψ). By T ≡ rel[T ′] T ′′, this implies T |= 〈rel〉τ(ψ).
(⇐): Similar to the other direction. Suppose T |= 〈rel〉τ(ψ). Thus, there are information
trees T ′, T ′′ such that T ≡ rel[T ′] T ′′. Notice that is a |♦ψ| = |ψ| + 1 > 1, and thus,
by Definition 8.21, there is w′ ∈ R(w) such that T ′ is a (n− 1, P)-encoding of (K,w′). By
induction hypothesis, (K,w′) |= ψ. From w′ ∈ R(w), (K,w) |= ♦ψ.

induction step: ϕ = ψ χ. Below, let R(w) = {w1, . . . ,wk}. By Definition 8.21, there is m ≥ n
and there are information trees T1, . . . , Tk such that T ≡ [ap[Q]]m rel[T1] · · · rel[Tk].
(⇒): Suppose (K,w) |= ψ χ, and thus there are Kripke-style finite forests K1 = (W, R1,V)
and K2 = (W, R2,V) such that K = K1 +w K2, (K1,w) |= ψ and (K2,w) |= χ. Let
{i1, . . . , ip} and {j1, . . . , jq} be a partition of [1, k] such that R1(w) = {wi1 , . . . ,wip} and
R2(w) = {wj1 , . . . ,wjq}. Let m1 and m2 be two natural numbers such that m1 +m2 = m,
m1 ≥ |ψ| and m2 ≥ |χ|. Since m ≥ n ≥ |ϕ| > |ψ| + |χ|, m1 and m2 are guaranteed to
exist. We consider the two information trees T1 = [ap[Q]]m1 rel[Ti1] · · · rel[Tip] and
T2 = [ap[Q]]m2 rel[Tj1] · · · rel[Tjq]. From the properties of ≡, we have T ≡ T1 T2.
By Definition 8.21, T1 is a (|ψ|, P)-encoding of (K1,w), whereas T2 is a (|χ|, P)-encoding
of (K2,w). By induction hypothesis, T1 |= τ(ψ) and T2 |= τ(χ). Moreover, by definition of
T1 and T2, T1 |= 〈ap〉≥|ψ|> and T2 |= 〈ap〉≥|χ|>. From T ≡ T1 T2, we derive T |= τ(ψ χ).
(⇐): Suppose T |=

(
τ(ψ) ∧ 〈ap〉≥|ψ|>

) (
τ(χ) ∧ 〈ap〉≥|χ|>

)
. There are two information

trees T1 and T2 such that T ≡ T1 T2, T1 |= τ(ψ) ∧ 〈ap〉≥|ψ|> and T2 |= τ(χ) ∧ 〈ap〉≥|χ|>.
From T ≡ [ap[Q]]m rel[T1] · · · rel[Tk], there are two sets of indices {i1, . . . , ip} and
{j1, . . . , jq} that partition [1, k], such that T1 ≡ [ap[Q]]m1 rel[Ti1] · · · rel[Tip] and
T2 ≡ [ap[Q]]m2 rel[Tj1] · · · rel[Tjq]. Let us consider the Kripke-style finite forests
K1 = (W, R1,V) and K2 = (W, R2,V) such that K = K1 +w K2, R1(w) = {wi1 , . . . ,wip}
and R2(w) = {wj1 , . . . ,wjq}. By Definition 8.21, T1 is a (|ψ|, P)-encoding of (K1,w),
whereas T2 is a (|χ|, P)-encoding of (K2,w). The induction hypothesis applies, allowing
us to derive (K1,w) |= ψ and (K2,w) |= χ. From K = K1 +w K2, (K,w) |= ψ χ.

573

Proof of Lemma 8.23.

Lemma 8.23. Let ϕ be a formula in ML() built over P = {p1, . . . , pk} ⊆fin AP. ϕ is satisfiable
if and only if the formula τ(ϕ) ∧

∧
i∈[0,|ϕ|−1][rel]i

(
αi,|ϕ| ∧ β ∧ γP ∧ δP

)
is satisfiable in SAL().

Recall that, given an ambient name n and an information tree T congruent to n[T ′] T ′′, we
say that T ′ is a n-child of T . Given i ∈ N, we say that T ′ is a (i, n)-descendant of T whether
there is a sequence of information trees T0, . . . , Ti such that T0 ≡ T , Ti ≡ T ′, and for every
j ∈ [0, i− 1], Tj+1 is a n-child. We recall the definition of αi,n, β, γP and δP .

Formula Informal explanation

αi,n
def= 〈ap〉≥(n−i) T ′ is congruent to ap[T1] · · · ap[Tm] Tm+1,

for some m ≥ n− i and trees T1, . . . , Tm+1,

β def= ¬
(
> (¬0 ∧ ¬〈rel〉> ∧ ¬〈ap〉>)

)
every child of T ′ is either a rel-child or a ap-child,

γP
def=
∧
p∈P

(
〈ap〉〈p〉> ⇒ [ap]〈p〉>

)
rel-children of T ′ agree on the types of p-children
they have, where p ∈ P ,

δP
def= [ap]

(
(p1[0] ∨ 0) · · · (pk[0] ∨ 0)

)
there is {pi1 , . . . , pil} ⊆ P such that every
rel-child of T ′ is congruent to pi1 [0] · · · pil [0].

Proof. (⇒): Suppose that ϕ is satisfiable, and consider a pointed forest (K,w) satisfying it,
where K = (W, R,V). Let T be a (|ϕ|, P)-encoding of (K,w). First, by Lemma 8.22 we know
that T |= τ(ϕ). To show that T satisfies

∧
i∈[0,|ϕ|−1][rel]i

(
αi,|ϕ| ∧ β ∧ γP ∧ δP

)
, let us consider a

(i, rel)-descendant T ′ of T , where i ∈ [0, |ϕ| − 1]. We show that

T ′ |= αi,|ϕ| ∧ β ∧ γP ∧ δP .

Since T be a (|ϕ|, P)-encoding of (K,w), by Definition 8.21, there is a world w′ ∈ Ri(w) such
that T ′ is a (|ϕ| − i, P)-encoding of (K,w). Let R(w′) = {w1, . . . ,wm}, and let Q be the set
of atomic propositions among P that are satisfied by w′. Again by Definition 8.21, there are
δ ≥ |ϕ|−i and information trees T1, . . . , Tm such that T ′ ≡ [ap[Q]]δ rel[T1] · · · rel[Tm].
T ′ satisfies αi,|ϕ|. Directly from the fact that δ ≥ |ϕ| − i and T ′ ≡ [ap[Q]]δ T ′′, for some tree

T ′′, we conclude that T ′ |= 〈ap〉≥(|ϕ|−i)>.

T ′ satisfies β. From T ′ ≡ [ap[Q]]δ rel[T1] · · · rel[Tm], every child of T ′ is either a rel-child
or a ap-child. Thus, T |= ¬

(
> (¬0 ∧ ¬〈rel〉> ∧ ¬〈ap〉>)

)
.

T ′ satisfies γP and δP . As rel and ap are distinct ambient names, given Q = {q1, . . . , qk′},
we have T ′ |= [ap](q1[0] · · · qk′ [0]). It is easy to see that this implies both

T |=
∧
p∈P

(
〈ap〉〈p〉> ⇒ [ap]〈p〉>

)
and T |= [ap]

(
(p1[0] ∨ 0) · · · (pk[0] ∨ 0)

)
.

(⇐): For the other direction, suppose T |= τ(ϕ)∧
∧
i∈[0,|ϕ|−1][rel]i

(
αi,|ϕ| ∧ β ∧ γP ∧ δP

)
. First of

all, let us show that there is a pointed forest (K,w) such that T is a (|ϕ|, P)-encoding of (K,w).
We reason inductively, by showing that for all i ∈ [0, |ϕ|−1], every (i, rel)-descendant T ′ of T is
a (|ϕ| − i, P)-encoding of some pointed forest. The induction hypothesis is that every rel-child
of T ′ is a (|ϕ| − i− 1, P)-encoding of some pointed forest.
base case: i = |ϕ| − 1. Let T ′ be a (|ϕ| − 1, rel)-descendant of T . We show that it is a (1, P)-

encoding of some pointed forest. By T |=
∧
i∈[0,|ϕ|−1][rel]i

(
αi,|ϕ| ∧ β ∧ γP ∧ δP

)
we have

T ′ |= α|ϕ|−1,|ϕ| ∧ β ∧ γP ∧ δP .

574 Appendix F. Appendix of Chapter 8

Following Definition 8.21 (point (1)), we show that T ′ ≡ [ap[Q]]m rel[T1] · · · rel[Tk],
for some m ≥ 1, trees T1, . . . , Tk and Q ⊆ P . From T ′ |= β, every child of T ′ is either a
rel-child or a ap-child. Therefore, there are trees T1, . . . , Tk and T ′1, . . . , T ′j , where j, k ∈ N,
such that T ≡ ap[T ′1] · · · ap[T ′j] rel[T1] · · · rel[Tk]. From T ′ |= α|ϕ|−1|ϕ|, T ′ has at least
one ap-child, i.e. j ≥ 1. It remains to show that T ′1 ≡ · · · ≡ T ′j . From T ′ |= δP , every T ′l
(l ∈ [1, j]) is congruent to an information tree pl1 [0] · · · plp [0], where {pl1 , . . . , plp} ⊆ P .
From T ′ |= γP , given two informations trees T ′l , T ′r (l, r ∈ [1, j]) and p ∈ P , T ′l has an
p-child if and only if so does T ′r. We derive that T ′l ≡ T ′r, which allows us to conclude that
T ′ is a (1, P)-encoding of some pointed forest.

induction step: i < |ϕ| − 1. Let T ′ be a (i, rel)-descendant of T , which we show being a
(|ϕ|− i, P)-encoding of some pointed forest. By T |=

∧
i∈[0,|ϕ|−1][rel]i

(
αi,|ϕ|∧β∧γP ∧ δP

)
,

T ′ |= αi,|ϕ| ∧ β ∧ γP ∧ δP .
Exactly as in the base case of the proof, this allows us to derive that there are m ≥ |ϕ|− i,
T1, . . . , Tk and Q ⊆ P such that T ′ ≡ [ap[Q]]m rel[T1] · · · rel[Tk]. Moreover, by induction
hypothesis, every tree Tj (j ∈ [1, k]) are (|ϕ| − i − 1, P)-encoding of a pointed forest
(Kj ,wj), where Kj = (Wj , Rj ,Vj). Without loss of generality, let us assume that these
pointed forests (K1,w1), . . . , (Kk,wk) do not share any world. We consider the pointed
forest (K′,w′), where K′ = (W ′, R′,V ′) and
• W ′ = {w′} ∪

⋃
j∈[1,k]Wj ,

• R′ = {(w′,wj) | j ∈ [1, k]} ∪
⋃
j∈[1,k]Rj ,

• for every p ∈ AP we have:
– w′ ∈ V ′(p) if and only if p ∈ Q,
– given j ∈ [1, k] and w′′ ∈ Wj , w′′ ∈ V ′(p) if and only if w′′ ∈ Vj(p).

From Definition 8.21, it is easy to see that T ′ is a (|ϕ|−i, P)-encoding of (K′,w′), concluding
the induction step.

Thus, we now know that T is a (|ϕ|, P)-encoding of some pointed forest (K,w). From T |= τ(ϕ)
together with Lemma 8.22, we conclude that (K,w) |= ϕ.

G

Appendix of Chapter 9

Contents
Proof of Lemma 9.11. 577
Proof of Lemma 9.16. 578
Proof of Lemma 9.18. 579
Proof of Lemma 9.29. 580
Proof of Lemma 9.42. 581
Proof of Theorem 9.43. 583
Proof of Lemma 9.44. 583
Proof of Lemma 9.45. 584

575

577

Proof of Lemma 9.11.

As usual (see e.g. Section 4.2.2), since ML(∗)[m, s, P] is finite up to logical equivalence, given a
pointed forest (K,w), we can define a finite characteristic formula Π(K,w)Pm,s in ML(∗)[m, s, P]
that is logically equivalent to the infinite conjunction

∧
{ϕ ∈ ML(∗)[m, s, P] | (K,w) |= ϕ}.

Notice that Π(K,w)Pm,s is in ML(∗)[m, s, P]. Moreover, the following result holds.

Lemma G.1. Let (K,w) and (K′,w′) be two pointed forests. For every rank (m, s, P), we have

(I) (K,w) |= Π(K,w)Pm,s, (II) (K,w) |= Π(K′,w′)Pm,s iff (K′,w′) |= Π(K,w)Pm,s.

The proof of this lemma carries out as the one of Lemma 4.17 (Chapter 4), and it is thus omitted.
Let us prove Lemma 9.11, whose statement is recalled below.

Lemma 9.11. (K,w) 6≈Pm,s(K′,w′) iff there is ϕ in ML(∗)[m, s, P] s.t. (K,w) |= ϕ and (K′,w′) 6|= ϕ.

Proof. The proof is similar to the one of Theorem 4.15. The right to left direction, i.e. the
soundness of the games, follows by structural induction on ϕ. The left to right direction, i.e. the
completeness of the games, is by induction on the rank of the formula.
(⇐): We first prove that the games are sound (right to left direction), by structural induction
on ϕ. The base cases for > and atomic propositions is trivial, and so are the induction steps for
Boolean connectives. Let us look at the modality ♦ and the separating conjunction.
induction step: ϕ = ♦ψ. By hypothesis, (K,w) |= ♦ψ and (K′,w′) 6|= ♦ψ. Then there is a

world w1 accessible from w and such that (K,w1) |= ψ. Moreover by definition the modal
depth of ♦ψ is at least 1 and the spoiler can play a modal move. Then, the spoiler chooses
the structure (K,w) and chooses exactly w1. The duplicator has then to reply by choosing
a world w′1 accessible from w′ (otherwise the spoiler wins and the result clearly follows).
Since (K′,w′) 6|= ♦ψ, it holds that (K′,w′1) 6|= ψ. By the induction hypothesis, it holds
that (K,w1)6≈Pm−1,s(K′,w′1). Hence, by choosing w1, the spoiler builds a winning strategy
for the game ((K,w), (K′,w′), (m, s, P)).

induction step: ϕ = ψ ∗ χ. By hypothesis, (K,w) |= ψ ∗ χ and (K′,w′) 6|= ψ ∗ χ. Then, there
are K1 and K2 such that K1 + K2 = K, (K1,w) |= ψ and (K2,w) |= χ. Moreover, by
definition, the number of nested stars in ψ ∗ χ is at least 1 and therefore the spoiler can
play a spatial move. The spoiler chooses the structure (K,w) and chooses exactly K1 and
K2. The duplicator has then to reply by choosing two structures K′1 and K′2 such that
K′1 + K′2 = K′. Since (K′,w′) 6|= ψ ∗ χ, either (K′1,w′) 6|= ψ or (K′2,w′) 6|= χ. If the former
holds, then by the induction hypothesis, (K1,w) 6≈Pm,s−1(K′1,w′). Hence, by choosing to
continue the game on ((K1,w), (K′1,w′), (m, s−1, P)) the spoiler builds a winning strategy
for the game ((K,w), (K′,w′), (m, s, P)). Symmetrically, if instead (K′2,w′) 6|= χ then by
the induction hypothesis (K2,w) 6≈Pm,s−1(K′2,w′). Hence, by choosing to continue the game
on ((K2,w), (K′2,w′), (m, s − 1, P)), the spoiler builds a winning strategy for the game
((K,w), (K′,w′), (m, s, P)). In either case, we conclude that (K,w) 6≈Pm,s(K′,w′).

(⇒): We prove that the games are complete, by induction on (m, s) and by cases on the first
move that the spoiler makes in his winning strategy for the game ((K,w), (K′,w′), (m, s, P)).
base case: m = 0 and s = 0. Since the spoiler has a winning strategy, in particular it wins

the game of rank (0, 0, P) and therefore by definition of the game it must hold that there
is a propositional symbol p ∈ P such that (K,w) |= p iff (K′,w′) 6|= p. If (K,w) |= p, then
ϕ (as in the statement) is p. Otherwise (i.e. (K′,w′) |= p) we take ϕ = ¬p.

578 Appendix G. Appendix of Chapter 9

Notice that this case also holds for games on arbitrary rank (m, s, P): the spoiler wins
simply from the conditions of the game that are imposed before each round.

Induction case: the spoiler plays a modal move. Notice that then m ≥ 1. Suppose that,
by following its strategy, the spoiler chooses (K,w) and a child w1 of w. By Lemma G.1, we
have that (K,w1) |= Π(K,w1)Pm−1,s. Let ϕ be defined as the formula ♦Π(K,w1)Pm−1,s. By
definition, (K,w) |= ϕ and ϕ ∈ ML(∗)[m, s, P]. Ad absurdum, assume (K′,w′) |= ϕ. Then
there is a world w′1 accessible from w′ such that K′,w′1 |= Π(K,w1)Pm−1,s. By Lemma G.1
there is no formula in ML(∗)[m−1, s, P] that can discriminate between (K,w1) and (K′,w′1).
As our games are determined, by the induction hypothesis this implies that the duplicator
has a winning strategy for the game ((K,w1), (K′,w′1), (m−1, s, P)). This is contradictory,
as by hypothesis the spoiler has a winning strategy and the move it played is part of this
strategy. Hence, (K,w) |= ϕ and (K′,w′) 6|= ϕ.
The proof is analogous for the case where the spoiler chooses (K′,w′) and a world w′1
accessible from w. In this case we obtain (K,w) 6|= ψ and (K′,w′) |= ψ, where ψ is defined
as ♦Π(K′,w′1)Pm−1,s. Hence, we take ϕ (as in the statement) defined as ¬ψ.

Induction case: the spoiler plays a spatial move. Notice that then s ≥ 1. Suppose that,
by following its strategy, the spoiler chooses (K,w) and two Kripke-style finite forests K1
and K2 such that K1 + K2 = K. Recall that, by Lemma G.1, K1,w |= Π(K1,w)Pm,s−1 and
K2,w |= Π(K2,w)Pm,s−1. Let ϕ be defined as Π(K1,w)Pm,s−1 ∗Π(K2,w)Pm,s−1. By definition
(K,w) |= ϕ and ϕ ∈ ML(∗)[m, s, P]. Ad absurdum, assume (K′,w′) |= ϕ. Then there are
K′1 and K′2 s.t. K′1+K′2 = K′, K′1,w′ |= Π(K1,w)Pm,s−1 and (K′2,w′) |= Π(K2,w)Pm,s−1. Then,
by Lemma G.1, there is no formula in ML(∗)[m, s − 1, P] that can discriminate between
(K1,w) and (K′1,w′), or that can discriminate between (K2,w) and (K′2,w′). As our games
are determined, by the induction hypothesis this implies that the duplicator has a winning
strategy for both ((K1,w), (K′1,w′), (m, s−1, P)) and ((K2,w), (K′2,w′), (m, s−1, P)). This
leads to a contradiction, as by hypothesis the spoiler has a winning strategy and the move
it played is part of this strategy. Hence, (K,w) |= ϕ and (K′,w′) 6|= ϕ.
The proof is analogous for the case where the spoiler chooses (K′,w′) and two finite forests
K′1 and K′2 such that K′1 + K′2 = K′. In this case we obtain (K,w) 6|= ψ and (K′,w′) |=
ψ where ψ is defined as Π(K′1,w′)Pm,s−1 ∗ Π(K′2,w′)Pm,s−1. Hence, we take ϕ (as in the
statement) defined as ¬ψ.

Proof of Lemma 9.16.

Lemma 9.16. Let ax ∈ Aux and 0 < i ≤ j ∈ N. Suppose (K,w) |= init(j).

1. (K,w) |= nomi(ax) if and only if ax is a nominal for the depth i.

2. Suppose (K,w) |= nomi(ax). (K,w) |= @i
axϕ if and only if the world (say w′) corresponding

to the nominal ax for the depth i is such that (K,w′) |= ϕ.

3. (K,w) |= nomi(ax 6=bx) iff ax and bx are nominals for the depth i, for two distinct worlds.

Lemma 9.16(1) is proved during Chapter 9. We recall that:

@i
axϕ

def= 〈t〉i(♦ax ∧ ϕ), nomi(ax 6=bx) def= nomi(ax) ∧ nomi(bx) ∧ ¬@i
ax♦bx.

In the following two proofs, let K = (W, R,V).

579

Proof of Lemma 9.16(2). Since (K,w) |= init(j)∧nomi(ax), by Lemma 9.16(1), ax is a nominal
for the depth i. In the following, let w′ be the world in Ri(w) corresponding to the nominal ax
(i.e. w′ has an ax-child).
(⇒): Suppose (K,w) |= @i

axϕ. By definition, there is w′′ ∈ Ri(w) s.t. (K,w′′) |= ♦ax ∧ ϕ. Since
ax is a nominal for the depth i, we conclude that w′ = w′′ and hence (K,w′′) |= ϕ.
(⇐): Suppose that (K,w′) |= ϕ. By definition, w′ is the world corresponding to the nominal ax
(for the depth i). Hence (K,w′) |= ♦ax. Since w′ ∈ Ri(w) by (K,w) |= init(j) we conclude that
there is a path of t-nodes from w to w′, of length i. Thus, (K,w) |= 〈t〉i(♦ax ∧ ϕ).

Proof of Lemma 9.16(3). Thanks to Lemma 9.16((1) and (2)), this proof is straightforward.
(⇒): Suppose (K,w) |= nomi(ax 6=bx). By Lemma 9.16(1) ax and bx are nominals for depth i.
Let wax (resp. wbx) be the world in Ri(w) corresponding to the nominal ax (resp. bx). Notice
that, in particular, (K,wbx) |= ♦bx. By (K,w) |= ¬@i

ax♦bx and Lemma 9.16(2), we conclude
that (K,wax) 6|= ♦bx. Thus, wax 6= wbx.
(⇐): This direction is analogous and simply relies on Lemma 9.16((1) and (2)).

Proof of Lemma 9.18.

We recall the (standard) characterisation of n(wax) < n(wbx) and n(wax)+1 = n(wbx) in terms
of the binary representation of n(wax) and n(wbx), where n(wax),n(wbx) ∈ [0, 2n − 1]. Let bax

and bbx be the n-bit representation of n(wax) and n(wbx), respectively. We have,

n(wax) < n(wbx) iff bax = b · 0 · b′ and bbx = b · 1 · b′′ for some b, b′, b′′ ∈ {0, 1}∗,

n(wax)+1 = n(wbx) iff bax = b · 0 · 1k and bbx = b · 1 · 0k, for some b ∈ {0, 1}∗, k ∈ [0, n].

where b1 · b2 is the concatenation of bit vectors, b0 is the zero size bit vector and bk+1 def= b · bk.
Recall that the rightmost bit in bax and bbx is the least significant one.

Lemma 9.18. Let ax 6= bx ∈ Aux and j ≥ 1. Suppose (K,w) |= init(j) ∧ forkjj(ax, bx). Let
wax (resp. wbx) be the world corresponding to the nominal ax (resp. bx) at depth j.

1. (K,w) |= [ax< bx]jj if and only if n(wax) < n(wbx),

2. Let j = 1. (K,w) |= [bx = ax+1]1 if and only if n(wax) + 1 = n(wbx).

Proof of Lemma 9.18(1). Let us recall the definition of [ax< bx]jj :∨
u∈[1,n]

(
@j

ax¬pu ∧@j
bx pu ∧

∧
v∈[u+1,n](@j

ax pv ⇔ @j
bx pv)

)
.

The proof uses the characterisation of <, in terms of binary representation, given above. Below,
since (K,w) |= forkjj(ax, bx), let wax (resp. wbx) be the world corresponding to the nominal ax
(resp. bx) for the depth j.
(⇒): Suppose (K,w) |= [ax< bx]jj , and so there is u ∈ [1, n] such that

(K,w) |= @j
ax¬pu ∧@j

bx pu ∧
∧
v∈[u+1,n](@j

ax pv ⇔ @j
bx pv).

Let bax be the bit vector bax,n . . . bax,1 such that, for every i ∈ [1, n], bax,i = 1 if and only if
wax ∈ V(pi). Similarly, let bbx be the bit vector bbx,n . . . bbx,1 such that, for every i ∈ [1, n],
bbx,i = 1 if and only if wbx ∈ V(pi). From Lemma 9.16 and (K,w) |= @j

ax¬pu ∧ @j
bx pu, we

conclude that bax,u = 0 and bbx,u = 1. From (K,w) |=
∧
v∈[u+1,n](@j

ax pv ⇔ @j
bx pv), we conclude

that for every v ∈ [u+ 1, n], bax,v = bbx,v. So, there are b, b′, b′′ ∈ {0, 1}∗ such that bax = b · 0 · b′
and bbx = b · 1 · b′′. We derive n(wax) < n(wbx).

580 Appendix G. Appendix of Chapter 9

(⇐): This direction follows similar arguments. Briefly, suppose n(wax) < n(wbx), and so there
are b, b′, b′′ ∈ {0, 1}∗ such that bax = b · 0 · b′ and bbx = b · 1 · b′′. Let bax,n, . . . , bax,1 ∈ {0, 1}
be such that bax = bax,n . . . bax,1, and bbx,n, . . . , bbx,1 ∈ {0, 1} be such that bbx = bbx,n . . . bbx,1.
From bax = b · 0 · b′ and bbx = b · 1 · b′′, there is u ∈ [1, n] such that bax,u = 0, bbx,u = 1 and for
all v ∈ [u + 1, n], bax,v = bbx,v. From the encoding of n(wax) and n(wbx) using p1, . . . , pn, we
derive that wax 6∈ V(pu), wbx ∈ V(pu), and for every v ∈ [u + 1, n], wax ∈ V(pv) if and only if
wbx ∈ V(pv). By definition, we conclude that (K,w) |= [ax< bx]jj .

Proof of Lemma 9.18(2). Let us recall the definition of [bx = ax+1]1:∨
u∈[1,n]

(
@1

ax(¬pu ∧
∧

v∈[1,u−1]
pv) ∧@1

bx(pu ∧
∧

v∈[1,u−1]
¬pv) ∧

∧
v∈[u+1,n]

(@1
axpv ⇔ @1

bxpv)
)
.

The proof is very similar to the one of Lemma 9.18(1), and uses the characterisation of +1
in terms of binary representation, given above. The proof uses standard properties of num-
bers encoded in binary. Below, since (K,w) |= forkjj(ax, bx), let wax (resp. wbx) be the world
corresponding to the nominal ax (resp. bx) for the depth j.
(⇒): Suppose (K,w) |= [bx = ax+1]1, and so there is u ∈ [1, n] such that

(K,w) |= @1
ax(¬pu ∧

∧
v∈[1,u−1]

pv) ∧@1
bx(pu ∧

∧
v∈[1,u−1]

¬pv) ∧
∧

v∈[u+1,n]
(@1

axpv ⇔ @1
bxpv)

Let bax be the bit vector bax,n . . . bax,1 such that, for every i ∈ [1, n], bax,i = 1 if and only if
wax ∈ V(pi). Similarly, let bbx be the bit vector bbx,n . . . bbx,1 such that, for every i ∈ [1, n],
bbx,i = 1 if and only if wbx ∈ V(pi). From Lemma 9.16 and the fact that (K,w) satisfies
@1

ax(¬pu ∧
∧
v∈[1,u−1] pv) ∧ @1

bx(pu ∧
∧
v∈[1,u−1] ¬pv), we conclude that bax,u = 0, bbx,u = 1, and

for every v ∈ [1, u− 1], bax,v = 1 and bbx,v = 0. From (K,w) |=
∧
v∈[u+1,n](@j

ax pv ⇔ @j
bx pv), we

conclude that for every v ∈ [u+ 1, n], bax,v = bbx,v. So, there are b ∈ {0, 1}∗ and k ∈ [0, n] such
that bax = b · 0 · 1k and bbx = b · 1 · 0k. We derive n(wax) < n(wbx).
(⇐): This direction follows similar arguments. Briefly, suppose n(wax) < n(wbx), and so there
are b ∈ {0, 1}∗ and k ∈ [0, n] such that bax = b·0·1k and bbx = b·1·0k. Let bax,n, . . . , bax,1 ∈ {0, 1}
be such that bax = bax,n . . . bax,1, and bbx,n, . . . , bbx,1 ∈ {0, 1} be such that bbx = bbx,n . . . bbx,1.
From bax = b · 0 · 1k and bbx = b · 1 · 0k, there is u ∈ [1, n] such that bax,u = 0, bbx,u = 1, for
every v ∈ [1, u − 1], bax,v = 1 and bbx,v = 0, and for all v ∈ [u + 1, n], bax,v = bbx,v. From the
encoding of n(wax) and n(wbx) using p1, . . . , pn, we conclude that wax 6∈ V(pu), wbx ∈ V(pu), for
every v ∈ [1, u − 1], wax ∈ V(pv) and wbx 6∈ V(pv), and for every v ∈ [u + 1, n], wax ∈ V(pv) if
and only if wbx ∈ V(pv). By definition, (K,w) |= [bx = ax+1]1.

Proof of Lemma 9.29.

We recall the definition of compl(j):

¬
(
� ⊥ ∗

(
[t](typelsr(j − 1) ∧ ♦y) ∧ nom1(x) ∧@1

x¬1j ∧ ¬
(
> ∗ (fork1

j (x, y) ∧ [y = x+1]j)
)))

.

Lemma 9.29. Let (K,w) be a pointed forest satisfying init(j)∧aux∧sub(j). (K,w) |= compl(j)
if and only if (K,w) satisfies (complj).

Proof. The proof is similar to Lemma 9.20. Recall that (complj) states that for every t-node
w1 ∈ R(w) where nj−1(w1) < t(j, n)−1, there is a t-node w2 ∈ R(w) s.t. nj−1(w2) = nj−1(w1)+1.
Notice that from (K,w) |= sub(j), every t-child w′ of w is such that (K,w′) |= type(j − 1).

581

(⇒): Suppose (K,w) |= compl(j). This implies that for every subforest K′ = (W, R′,V) of K, if
R′(w) = R(w) and (K′,w) |= [t](typelsr(j − 1) ∧ ♦y) ∧ nom1(x) ∧@1

x¬1j , then

(K′,w) |= > ∗ (fork1
j (x, y) ∧ [y = x+1]j).

Let us pick a t-node wx ∈ R′(w) = R(w) such that nj−1(wx) < t(j, n)− 1. We show that there
must be a world wy ∈ R′(w) such that nj−1(wy) = nj−1(wx) + 1.

Recall that, by (K,w) |= init(j) ∧ aux, every t-child of w has exactly one x-child and one
y-child. Consider the subforest K′′ = (W, R′,V) such that R′ is obtained from R by removing
every x-nodes in R2(w), with the exception of the only x-child of wx. Since only x-nodes of
R2(w) are lost, every t-child w′ of w is such that (K′,w′) |= type(j − 1) ∧ ♦y and all the t-
children of w′ have exactly one {l, s, r}-child for each proposition among l, s and r. Therefore,
(K′,w) |= typelsr(j − 1) ∧ ♦y. Moreover, in K′, the world wx is the only child of w with a
x-child, which implies (K′,w) |= nom1(x). From (K,w′) |= type(j − 1) and by Lemma 9.15,
we conclude that nj−1(wx) is the same number in both K and K′, and thus from nj−1(wx) <
t(j, n) − 1 we derive (K,w) |= @1

x¬1j . From (K,w) |= compl(j), we conclude that (K′,w) |=
>∗(fork1

j (x, y)∧ [y = x+1]j), which implies that there is a subforest K′′ = (W, R′′,V) of K′ such
that (K′′,w) |= fork1

j (x, y) ∧ [y = x+1]j . By Lemmata 9.23 and 9.27, there is wy ∈ R′′(w) such
that nj−1(wy) = nj−1(wx) + 1 (in K′′), and moreover (K′′,wy) and (K′′,wy) satisty type(j − 1).
By Lemma 9.15, n(wy) = n(wx) + 1 holds also in K. Thus, (K,w) satisfies (compl1).
(⇐): Suppose that (K,w) satisfies (complj). Ad absurdum assume that (K,w) 6|= compl(j).
Then, there is a submodel K′ = (W, R′,V) of K such that R′(w) = R(w) and

(K′,w) |= [t](typelsr(j − 1) ∧ ♦y) ∧ nom1(x) ∧@1
x¬1j ∧ ¬

(
> ∗ (fork1

j (x, y) ∧ [y = x+1]j)
)
.

From (K′,w) |= [t](typelsr(j− 1)∧♦y) every t-child w′ of w is such that (K,w′) |= type(j− 1),
it has a y-child, and all the t-children of w′ have exactly one {l, s, r}-child for each propo-
sition among l, s and r. From (K′,w) |= nom1(x) ∧ @1

x¬1j , there is an t-children wx of w
that corresponds to the nominal (for the depth 1) x, and moreover nj−1(wx) < t(j, n) − 1.
By Lemma 9.15, nj−1(wx) < t(j, n) − 1 also holds with respect to K, and thus from (complj)
we conclude that there is a t-node wy such that nj−1(wy) = nj−1(wx) + 1 (w.r.t. K). As
R′(w) = R(w), wy ∈ R′(w) and so (K′,wy) |= typelsr(j − 1) ∧ ♦y. This allows us to consider
the subforest K′′ = (W, R′′,V) obtained from K′ by removing all children of w, with the ex-
ception of wx and wy, and by removing the only y-child of wx. By Lemma 9.23, the resulting
pointed forest is such that (K′′,w) |= fork1

j (x, y), where wx and wy are the worlds correspond-
ing to the nominals x and y, respectively, and both (K′′,wx) and (K′′,wy) satisfy type(j − 1).
By Lemma 9.15, this implies that nj−1(wy) = nj−1(wx) + 1 holds with respect to K′′. However,
by Lemma 9.27 this implies (K′′,w) |= [y = x+1]j , which allows us to conclude that (K′,w)
satisfies > ∗ (fork1

j (x, y) ∧ [y = x+1]j): a contradiction. Thus, (K,w) |= compl(j).

Proof of Lemma 9.42.

Lemma 9.42. Let ϕ be a formula in ML(∗) written without using atomic propositions from
{q1, q2, q3}, and let i ∈ [1, 3] and m ≥ md(ϕ). Let K and K′ be two Kripke trees and w be a
world, so that K .w

m,i K′. (K,w) |= ϕ in ML(∗) if and only if (K′,w) |= τi(ϕ) in QKt.

We recall that, given two Kripke tree K = (W, R,V) and K′ = (W ′, R′,V ′), as well as a
world w ∈ W, m ∈ N and i ∈ [1, 3], we write K .w

m,i K′ whenever (Definition 9.41):
(1) W is finite, W ⊆W ′ and R ⊆ R′,

582 Appendix G. Appendix of Chapter 9

(2) for all p ∈ AP \ {q1, q2, q3}, the satisfaction of p is preserved, i.e. V(p) = V ′(p) ∩W,

(3) the worlds reachable in at most m steps in R are, among the ones reachable in at most m
steps in R′, exactly those in V ′(qi), i.e.

⋃
j∈[1,m]R

j(w) = {w′ ∈ R′j(w)∩V ′(qi) | j ∈ [1,m]}.

Proof. As usual, this result is proved by structural induction on ϕ. The base cases for > and
atomic propositions, as well as the induction steps dealing with Boolean connectives, are trivial
and thus omitted. Below, we show the induction steps for ♦ and ∗. Let K = (W, R,V), and
K′ = (W ′, R′,V ′).
inductin step: ϕ = ♦ψ. Notice that m ≥ md(ϕ) ≥ 1. Moreover, by definition of .w

m,i, it is
quite easy to see that K .w

m,i K′ implies K .w′
m−1,i K′, for every w′ ∈ R(w). We have,

(K,w) |= ♦ψ,
⇔ there is w′ ∈ R(w) such that (K,w′) |= ψ,
⇔ there is w′ ∈ R′(w) ∩ V(qi) such that (K′,w′) |= τi(ψ),

(from R ⊆ R′, the property (3) of .w
m,i with m ≥ 1, and thanks to K .w′

m−1,i K′ which
allows to apply the induction hypothesis)

⇔ (K′,w) |= ♦(qi ∧ τi(ϕ)). (by |=).

induction step: ϕ = ϕ1 ∗ ϕ2. Let j, k ∈ [1, 3], j < k and j 6= i 6= k.
(⇒): Suppose (K,w) |= ϕ1 ∗ϕ2. There are two Kripke-style finite forests K1 = (W, R1,V)
and K2 = (W, R2,V) such that K = K1 +K2, (K1,w) |= ϕ1 and (K2,w) |= ϕ2. We update
update the valuation V ′ of the Kripke tree K′, obtaining a Kripke tree K′′ = (W ′, R′,V ′′):
we update V ′(qj) to the set of worlds that satisfy qi and belong to π2(R1), i.e. the second
component of R1. Similarly, we update V ′(qk) to the set of worlds that satisfy qi and
belong to π2(R2). Formally,

V ′′ def= V ′[qj ← V ′(qi) ∩ π2(R1), qk ← V ′(qi) ∩ π2(R2)].
From R1 ∩ R2 = ∅ we conclude that V ′′(Vj) ∩ V ′′(Vk) = ∅. From (3), for every world w′
reachable from w in at most m steps, if w′ belongs to V ′′(Vj) ∩ V ′′(Vk) then it belongs to
V ′′(qi) = V ′(qi). From m ≥ md(ϕ1∗ϕ2), we conclude that (K′′,w) |= [qi = qj + qk]md(ϕ1∗ϕ2).
LetK′1 = (W, R1|≤mw ,V) andK′2 = (W, R2|≤mw ,V). By Proposition 9.3 and from (K1,w) |= ϕ1
and (K2,w) |= ϕ2, we derive (K′1,w) |= ϕ1 and (K′2,w) |= ϕ2. By definition of R1|≤mw and
R2|≤mw , the Kripke-style finite forests K′1 and K′2 are Kripke trees. Moreover, K′1 .w

m,j K′′
and K′1 .w

m,k K′′. Indeed, the properties (1) and (2) are trivially satisfied, whereas (3)
holds directly from the definition of V ′′. By induction hypothesis, we conclude that
(K′′,w) |= τj(ϕ1) ∧ τk(ϕ2). From the definition of K′′ and the semantics of the propo-
sitional quantifier ∃p, this implies (K′,w) |= τi(ϕ1 ∗ ϕ2).
(⇐): This direction is analogous to the previous one. Suppose (K′,w) |= τi(ϕ1 ∗ ϕ2), and
therefore there is a Kripke tree K′′ = (W ′, R′,V ′′), where V ′′ = V ′[qj ←W ′j , qk ←W ′k] for
some subsets W ′1 and W ′2 of w′, such that

(K′′,w) |= [qi = qj + qk]md(ϕ1∗ϕ2) ∧ τj(ϕ1) ∧ τk(ϕ2).
Let Sl, where l ∈ [1, 3], be the set of worlds satisfying ql and that are reachable from
w in at most md(ϕ1 ∗ ϕ2) steps. From (K′′,w) |= [qi = qj + qk]md(ϕ1∗ϕ2), the set Si is
partitioned into Sj and Sk. Let us consider two Kripke style finite forests K1 = (W, R1,V)
and K2 = (W, R2,V) such that K = K1 +K2 and moreover

R+
1 (w) ∩ Sk = ∅, R+

2 (w) ∩ Sj = ∅.

583

It is quite simple to see that these two Kripke forests exist. Indeed, from the property (3) of
K.w

m,iK′, every world w′ ∈ Rl(w), where l ∈ [1,m], belongs to V ′(qi). Therefore, w′ belongs
to either Sj or Sk. If it belongs to Sj ⊆ V ′′(qj), then we assign the arrow (w′′,w′) ∈ R to
R1, where w′′ is the parent of w′ in R, otherwise (w′ ∈ Sk), we assign it to R2. We consider
the two Kripke trees K′1 = (W, R1|≤md(ϕ1∗ϕ2)

w ,V) and K′2 = (W, R2|≤md(ϕ1∗ϕ2)
w ,V). We have

K′1 .w
md(ϕ1∗ϕ2),j K

′′ and K′1 .w
md(ϕ1∗ϕ2),k K

′′: the properties (1) and (2) are trivially satisfied,
whereas (3) holds from the definition of Sj and Sk. As md(ϕ1∗ϕ2) = max(md(ϕ1),md(ϕ2)),
the induction hypothesis applies, and thus we derive (K′1,w) |= ϕ1 and (K′2,w) |= ϕ2.
By Proposition 9.3, this implies (K1,w) |= ϕ1 and (K2,w) |= ϕ2. From K = K1 + K2, we
conclude: (K,w) |= ϕ1 ∗ ϕ2.

Proof of Theorem 9.43.

Theorem 9.43. The satisfiability problem of QKt and ML(∗) are Tower-complete.

In order to prove Theorem 9.43, it is sufficient to show that the translation τ1(ϕ) preserves
the (un)satisfiability of the formula ϕ, as formalised below. Recall that the translations τi
(i ∈ [1, 3]) uses three auxiliary atomic propositions {q1, q2, q3} which are assumed to be distinct
from the atomic propositions used to write ϕ.

Lemma G.2. Let ϕ be in ML(∗), written without using atomic propositional from {q1, q2, q3}.
ϕ in ML(∗) is satisfiable if and only if τ1(ϕ) in QKt is satisfiable.

Proof. (⇒): Suppose that ϕ is satisfiable and let (K,w) be a Kripke-style finite forest satisfying
it, where K = (W, R,V). By Proposition 9.3, the Kripke tree K′ = (W, R|≤md(ϕ)

w ,V) is such
that (K′,w) |= ϕ. Let us consider the Kripke tree K′′ = (W, R|≤mdϕw ,V[q1 ← W]). Trivially,
K′ .w

md(ϕ),1 K
′′. By Lemma 9.42, (K′,w) |= τ1(ϕ).

(⇐): Suppose that τ1(ϕ) is satisfiable, and let us consider a Kripke tree (K′,w) satisfying it,
where K′ = (W, R′,V). Let us consider the relation R = {(w1,w2) ∈ R′ | w2 ∈ V(q1)}, i.e. R
is obtained from R′ by removing all pairs (w1,w2) ∈ R′ such that w2 6∈ V(q1). The structure
K′′ = (W, R,V) is a Kripke-style finite forest. We define the Kripke tree K = (W, R|md(ϕ)

w ,V).
By definition of R, it is easy to see that K .w

md(ϕ),1 K
′. We apply Lemma 9.42, and derive that

(K′′,w) |= ϕ, in ML(∗). Therefore, ϕ is satisfiable.

Proof of Lemma 9.44.

Lemma 9.44. Let (K,w) be a Kripke-style finite forest, where K = (W, R,V), and let ϕ be a
formula in ML(∗). (K,w) |= ϕ in ML(∗) iff ((W, R−1,V),w) |= ϕ[♦← ♦−1] in MSL(∗,♦−1).

Proof. This result is proved with a straightforward structural induction on ϕ. The base cases
for > and atomic propositions, as well as the induction steps dealing with Boolean connectives,
are trivial and thus omitted. Below, we show the induction steps for ∗ and ♦−1.
induction step: ϕ = ϕ1 ∗ ϕ2. This case essentially relies on the fact that, given two binary

relations R1 and R2, (R1 ∪R2)−1 = R−1
1 ∪R

−1
2 . We have,

(K,w) |= ϕ1 ∗ ϕ2

⇔ there are Kripke-style finite forests K1 = (W, R1,V) and K2 = (W, R2,V) such that
K1 = K1 +K2, (K1,w) |= ϕ1 and (K2,w) |= ϕ2. Notice that R = R1 ∪R2,

584 Appendix G. Appendix of Chapter 9

⇔ there are acyclic Kripke-style finite functionsK′1 = (W, R−1
1 ,V), K′2 = (W, R−1

2 ,V) s.t.
R−1 = R−1

1 ∪R
−1
2 , R−1

1 ∩R
−1
2 = ∅, (K′1,w) |= ϕ1[♦←♦−1], (K2,w) |= ϕ2[♦←♦−1],

(by induction hypothesis and definition of R1 and R2),
⇔ ((W, R−1,V),w) |= (ϕ1 ∗ ϕ2)[♦← ♦−1].

(by |= and since (ϕ1 ∗ ϕ2)[♦← ♦−1] is equal to ϕ1[♦← ♦−1] ∗ ϕ2[♦← ♦−1]).
induction step: ϕ = ♦ψ. We have,

(K,w) |= ♦ψ,
⇔ there is w′ ∈ W such that (w,w′) ∈ R and (K,w′) |= ψ,
⇔ there is w′ ∈ W such that (w′,w) ∈ R−1 and ((W, R−1,V),w′) |= ψ[♦← ♦−1],

(by induction hypothesis)
⇔ ((W, R−1,V),w) |= (♦ψ)[♦← ♦−1].

(by |= and since (♦ψ)[♦← ♦−1] is equal to ♦−1(ψ[♦← ♦−1])).

Proof of Lemma 9.45.

Lemma 9.45. ϕ in ML(∗) is satisfiable iff so is ϕ[♦← ♦−1] ∧�−(md(ϕ)+1) ⊥ in MSL(∗,♦−1).

Proof. (⇒): Suppose ϕ satisfiable, and let (K,w), where K = (W, R,V), be a Kripke-style finite
function satisfying it. By Proposition 9.3, The pointed forest ((W, R|≤md(ϕ)

w ,V),w) satisfies ϕ.
Notice that, by definition of R|≤md(ϕ)

w , this pointed forest satisfies �md(ϕ)+1 ⊥. We consider the
acyclic Kripke-style finite function K′ = (W, (R|≤nw)−1,V). By definition of R|≤nw , it holds that
(K′,w) |= �−(md(ϕ)+1) ⊥. By Lemma 9.44, (K′,w) |= ϕ[♦← ♦−1].
(⇐): Suppose ϕ[♦ ← ♦−1] ∧ �−(md(ϕ)+1) ⊥ satisfiable, and let (K,w), where K = (W, R,V)
is a Kripke-style finite function, be one of its models. One can easily show, with a standard
structural induction, that the satisfiability of a formula in MSL(∗,♦−1) only depends on the set
of worlds reachable backward from the current world, i.e. worlds in (R−1)∗(w). Indeed, the logic
only features the operator ∗, which does not change the current world, and the modality ♦−1,
which can only ever consider elements in (R−1)∗(w). Therefore, without loss of generality, we can
assume that R is such that, for every (w1,w2) ∈ R, w2 ∈ (R−1)∗(w). As (K,w) |= �−(md(ϕ)+1) ⊥,
this assumption leads to R being acyclic, so that K′ = (W, R−1,V) is a Kripke-style finite forest.
By Lemma 9.44, (K′,w) |= ϕ.

List of Notations and Symbols

Auxiliary Logic on Trees:
(F , t, n) : pointed forest, 78
<rk : rank order, 89
� : sabotage box operator, 79
� : sabotage operator, 78
�k : k-sabotages operator, 79
�* : repeated sabotage operator, 78
C, Nj : character nodes, 82
M : main nodes, 82
F : finite forest, 78
Γrk(F , t, n) : characteristic formula, 91
n : node, 78
rk,(m, s, k) : formula rank, 89
t : target node, 78
1stS , 86
Hit : hit predicate, 78
Miss : miss predicate, 78
#child≥β, 85
#desc≥β, 85
inDom : domain membership, 79
marksΣ ≥ β, 101
markΣ, 101
size(Miss)≥β, 83
size(ϕ)≥β, 83
wordΣ, 86
∼rk : EF-games relation, 89
τβ(ϕ) : translation from PITL, 102
F [Miss]t : miss nodes, 79
#markAncΣ ≥ β, 102

Classical logic:
⇔ : double implication, 21
⇒ : implication, 21
∧ : conjunction, 17
∧e∈Sψ(e), 20
¬ : negation, 17

∨ : disjunction, 21
bv(·) : bound variables, 17
fv(·) : free variables, 17
|ϕ | : size of a formula, 17
|= : satisfaction relation, 19
|= ϕ : validity, 24
⊥ : false, 21
> : true, 17
ϕ,ψ, χ, . . . : formulae, 17
ϕ ≡ ψ : equivalence, 24
ϕ |= ψ : entailment, 24

Complexity Classes:
AExpPol: alternating exponential time

with polynomially many
alternations, 379

NPSpace: non-det. PSpace, 225
PSpace: polynomial space, 29
RE: recursively enumerable, 28
Tower, F3 : tower time/space, 29

Core Formulae:
[S][: flat set of locations, 151
|ϕ|m : memory size, 222
≈X,α : indistinguishability relation, 123
[[.]]Xs,h : terms evaluation, 127
↔X,α : hop relation, 125
P : −∗-simulation bound, 221
LITX,α(s, h) : core formulae literals, 223
Cycl[S]Xs,h(β) : bounded cycles, 151
EV[S]X : end-point variables, 146
Lab[S]Xs,h : labelled locations, 147
Lab[W]Xs,h : labelled locations, 128
MV[S]X : meet-point variables, 147
NV[W]X : next-point variables, 127
Obs[W](X) : observed set of W, 129
Path[S]Xs,h(`) : path set, 151

585

586 LIST OF NOTATIONS AND SYMBOLS

Pred[S]Xs,h(`) : predecessors set, 151
Pred[W]Xs,h(x) : set of predecessors, 128
Rem[S]X,αs,h : remainder set, 151
Rem[W]Xs,h : remainder set, 128
Self[W]Xs,h : set of self-loops, 128
Sk[W](X, α) : skeleton set of W, 129
T[S]X : terms of the S fragment, 147
T[W]X : terms of the weak fragment, 127
alldiff(T), 157
allocS(t), 156
e(x) : end-point variable, 146
loopSX (β) ≥ β, 152
m(x, y) : meet-point variable, 147
nextX(t), 157
n(x) : next-point variable, 127
predWX (x) ≥ β, 129
predSX (x) ≥ β, 152
remWX ≥ β, 129
remSX,α ≥ β, 152
sbyX

s,h(`) : seen by location, 150
seeslenX(t) ≥ β, 156
seesX(t, t′) = β, 156
seesX(t1, t2) ≥ β′, 152
selfWX ≥ β, 129
t =S n(x), 156
unlab(t), 157
u ∈ loopSX (β), 155
u ∈ predWX (x), 130
u ∈ predSX (x), 155
u ∈ remWX , 130
u ∈ remSX,α, 155
u ∈ seesX(t1, t2) ≥ (β1, β2), 155
u ∈ selfWX , 130
var.sby(t), 157
varX(t), 157
Core[W](X, α) : core formulae of W, 129
t ↪→S x, 156

Domains:
N : natural numbers, 12
N : (graph) nodes, 78
W : worlds, 106
LOC : set of locations, 17
VAR : set of variables, 17
AP : propositional symbols, 106

Logics:

PL(∼), 390
ML(∗), 407
ML(), 342
SL([∃]1, ∗, x ↪→ , ↪→+), 80
SL([∃]2, ∗,−∗), 28
SL(∃, ∗), 32
SL(∃, ∗,−∗), 17
SL(∗,−∗, ↪→2, ↪→3), 65
QCTLt, 105
WMSOf, 32
WMSO, 32
WSO, 30
S : strong fragment of

SL([∃]1, ∗, [−∗, ↪→+]SW), 119
W : weak fragment of

SL([∃]1, ∗, [−∗, ↪→+]SW), 119
SL([∃]1, ∗, [−∗, ↪→+]SW), 119
BBI, 37
ALT, 77
CTL, 105
MSL, 34
PITL, 97
QCTL, 105

Modal Logic with :
2Φ : conjunctions of formulae in Φ, 351
: composition, 344

lvl(d, ϕ) : formulae at level d, 386
Core(Φ, k, P) : core formulae, 350, 384
bd(d, ϕ) : branching degree, 381
cd(ϕ) : composition degree, 384
maxbd(ϕ) : max. branching degree, 381
topAP(ϕ) : top level atomic

propositions, 350
topgm(ϕ) : top level graded

subformulae, 350

Modal and Temporal logics:
A(ϕUϕ) : all-until, 106
E(ϕMψ) : exists-strong-release, 107
E(ϕUϕ) : exists-until, 106
� : modality of necessity, 344
[U] : everywhere modality, 79
♦ : modality of possibility, 35
♦−1 : converse of ♦, 35
♦≥k : graded modality, 345
〈6=〉 : elsewhere modality, 35
〈U〉 : somewhere modality, 78

LIST OF NOTATIONS AND SYMBOLS 587

� : bounded all-generally, 435
∃p : exist. propositional quantifier, 106
AF : all-finally, 107
AG : all-generally, 107
EF : exists-finally, 107
EG : exists-generally, 107
EX : exists-next, 106
gm(d, ϕ) : modalities at depth d, 381
w : a world, 106
nom(p), 36
uniq(ϕ), 108
�P
m,k : g-bisimulation, 412

p, q, . . . : propositional symbols, 106
gr(ϕ) : graded rank, 411
md(ϕ) : modal depth, 381

Prop. Interval Temporal Logic:
∆(w) : word decomposition, 98
Σ• : extended alphabet, 98
1 : single predicate, 97
a : head predicate, 97
Σ : marked alphabet, 98
a : marked symbol, 98

: composition operator, 97

Propositional Team Logic:
¬̇p : universally false symbol, 390
∨̇ : team disjunction, 390

Separation Logic:
(G, s, h) : generalised memory state, 52
(s, h) : memory state, 18
` : location, 18
∃S : 2nd-order existential quantifier, 30
∃z : first-order existential quantifier, 17
∀z : first-order universal quantifier, 21
−∗ : separating implication, 17
∗ : separating conjunction, 17
−[n] : bounded magic wand, 104
−~ : septraction, 20
X, Y, Z, . . . : sets of variables, 25
alloc−1

y (x), 65
emp : empty predicate, 17
ls(x, y) : list-segment predicate, 24
next(x = y), 66
nextz(x ↪→ y), 67
n(x) = n(y) : next-equality, 55
strict(ϕ), 24

x, y, z, . . . : variables, 17
x = y : equality predicate, 17
x 6= z : variables inequality, 20
(·) : involution, 57, 68
Y : set of copies of variables, 57
BX

Y : encoded-by relation, 54
'X : X-heap-isomorphic relation, 25
'gX : g-X-heap-isomorphic relation, 53
maxvalY(s, h) : maximum value, 142
h : heap, 18
h∗ : Kleene closure of a heap, 23
h+ : Kleene plus of a heap, 22
h1⊥h2 : disjoint heaps, 18
h1 + h2 : heap-union, 18
s : store, 18
∗e∈Sψ(e), 26
n(x) ↪→ n(y) : next-points-to, 55
size =β, 21
size≥β, 21
x ↪→δy : bounded reachability, 65
x ↪→∗ y : reach-star, 23
x ↪→+y : reach-plus, 22
x ↪→ : alloc predicate, 21
x ↪→ y : points-to predicate, 17
x 7→ y : strict points-to predicate, 24
↪→ x : alloc-back preciate, 22

s[z← `] : store update, 20

Sets, Relations, Functions:
(·)∗ : Kleene closure, 12
(·)+ : Kleene plus, 12
(·)δ : δth composition, 12
(·)−1 : converse operator, 12
2(·) : powerset, 12
= : equality, 12
[i, j] : natural numbers form i to j, 12
∩ : set intersection, 12
∪ : set union, 12
∈ : set membership, 12
≤ : less than or equal to, 12
⇀fin : partial map with finite domain,

18
f : map/function, 25
w : a word, 82
Σ : an alphabet, 82
card(·) : set cardinality, 12
dom : domain of a function, 12

588 LIST OF NOTATIONS AND SYMBOLS

idS : identity map on the set S, 12
ran : range of a function, 12
a, b, . . . : characters/symbols, 82
6= : inequality, 12
π1(·) : 1st projection map, 12
π2(·) : 2nd projection map, 12
\ : set difference, 12

⊆ : set inclusion, 12
⊆fin : finite subset, 54
(: set strict inclusion, 12
× : Cartesian product, 12
→ : arrow for functions, 18
∅ : empty set, 12
i−̇j : subtraction on i, j ∈ N, 12

List of Definitions

1.1 Definition (δth composition) . 12
1.2 Definition (Kleene plus and Kleene closure) . 12
1.3 Definition (Domain, image of a subset, range) . 12
1.4 Definition (Positions, subformulae and substitutions) 13

2.1 Definition (Memory state) . 18
2.2 Definition (Path) . 18
2.3 Definition (Disjoint heaps and their union) . 18
2.4 Definition (Subheap) . 18
2.5 Definition (Weakly connected component) . 19
2.9 Definition (X-heap-isomorphism) . 25
2.14 Definition (WSO structure) . 30
2.17 Definition (Kripke-style finite function) . 35
2.18 Definition (Disjoint finite functions and their union) 35
2.21 Definition (Non-deterministic monoid, [75]) . 37

3.1 Definition (Generalised memory state) . 52
3.2 Definition (g-X-heap-isomorphism) . 53
3.4 Definition (Encoded-by relation) . 54
3.21 Definition (MSL - Memory state encoding.) . 71

4.1 Definition (Forest) . 78
4.2 Definition (Ancestors and Parents) . 78
4.4 Definition (Word encoding) . 82
4.12 Definition (Rank) . 89
4.13 Definition (Rank order) . 89
4.21 Definition (Markings) . 98
4.22 Definition (Marked word decomposition) . 98
4.30 Definition (Forests as heaps) . 104
4.34 Definition (Kripke structure) . 106
4.35 Definition (Path) . 106
4.36 Definition (Kripke tree) . 107
4.38 Definition (QCTLt - Pointed forests encoding) . 108
4.42 Definition (MSL/MLH - Pointed forest encoding) 113

5.3 Definition (Small-heap property) . 117
5.1 Definition (Acyclicity and garbage-freedom) . 119

589

590 List of Definitions

5.3 Definition (Small-heap property) . 122
5.10 Definition (Next-point variables and terms) . 127
5.11 Definition (Labelled locations) . 127
5.12 Definition (Predecessors, self-loops and the remainder) 128
5.16 Definition (W-indistinguishable memory states) 131
5.17 Definition (W-hop relation) . 131
5.22 Definition (Maximum value) . 142
5.17 Definition (W-hop relation) . 145
5.27 Definition (Seen by) . 150
5.29 Definition (Predecessors, paths, cycles and the remainder) 151
5.30 Definition (Sets describing paths.) . 151
5.34 Definition (S-indistinguishable memory states) 155
5.38 Definition (S-hop relation) . 170
5.44 Definition (Memory size) . 222

6.1 Definition (Core formulae of SL(∗,−∗)) . 284
6.7 Definition (Core types of SL(∗,−∗)) . 292

7.1 Definition (Kripke-style finite forest) . 342
7.2 Definition (+w : the Ambient-like union) . 343
7.7 Definition (Core formulae) . 349
7.9 Definition (Disjointness) . 350

8.5 Definition (Good shape) . 381
8.6 Definition . 381
7.7 Definition (Core formulae) . 384
8.13 Definition (Team encoding) . 392
8.18 Definition (Information Trees encoding) . 399
8.21 Definition (Pointed forests as information trees) 400

7.1 Definition (Kripke-style finite forest) . 407
9.1 Definition (+ : the Separation-like union) . 408
9.5 Definition (g-bisimulation, [51]) . 411
9.6 Definition (Indistinguishable forests) . 412
4.36 Definition (Kripke tree) . 459
9.41 Definition (Trees as trees) . 460
2.17 Definition (Kripke-style finite function) . 462

E.1 Definition ((w1,w2)-isomorphic forests) . 561

List of Figures

1.1 The separating conjunction ∗. 6

2.1 A memory state. 18
2.2 Two disjoint memory states. 18
2.3 Satisfaction relation for SL(∃, ∗,−∗), with respect to a memory state (s, h). 19
2.6 The decision problems of model-checking, satisfiability, validity and entailment. . . . 25
2.7 The complexity of Separation Logics. 29
2.8 Satisfaction relation for WSO, with respect to a structure (D, r). 30
2.9 Translating SL(∃, ∗,−∗) to WSO. H, H1 and H2 are syntactically different. 31
2.10 Satisfaction relation for WMSOf, with respect to a structure (D, r). 32
2.11 Satisfaction relation for MSL, with respect to (K,w) where K = (W, R,V). 36
2.12 The complexity of MSL. 37
2.13 Satisfaction relation for BBI. 38
2.14 Hilbert-style axiomatisation of BBI [75]. 39
2.15 The decision problems for the properties of acyclicity and garbage freedom. 44

3.6 Satisfaction relation for SL(∃,−∗), for a generalised memory state. 57
3.7 Inductive cases of the translation to SL(n(x), ∗,−∗). 59
3.8 Translation from SL(∗,−∗, ↪→2, ↪→3) to a fragment of MSL. 72

4.1 Subforest relation. 79
4.2 Satisfaction relation for ALT, with respect to a pointed forest state (F , t, n). 79
4.3 A forest encoding the word 1121. 83
4.4 Ehrenfeucht-Fräıssé games for ALT. 89
4.5 Satisfaction relation for PITL, under locality principle. 98
4.6 Satisfaction relation for PITL on marked words. 99
4.7 Example of the satisfaction of a formula on marked words. 99
4.8 Translation from PITL to ALT. 102
4.9 Translation from ALT to SL(∗,−∗, ls) with bounded magic wand. 105
4.10 Satisfaction relation for QCTL. 107
4.11 A pointed forest (left) and one of its encoding as a Kripke tree (right). 109
4.12 Translation from ALT to QCTL. 109
4.13 Translation from ALT to MSL/MLH. 113

5.1 The decision problems for the properties of acyclicity and garbage freedom. 120
5.2 Formulae from Section 2.1.1, in SL([∃]1, ∗, [−∗, ↪→+]SW). 121
5.3 Ehrenfeucht-Fräıssé games for SL(∗). 125

591

592 List of Figures

5.4 A memory state. The partition of the heap is highlighted. 128
5.5 Semantics of the formulae in Sk[W](X, α), with respect to a memory state (s, h). . . . 130
5.6 Semantics of the formulae in Obs[W](X), with respect to a memory state (s, h). . . . 130
5.7 A memory state. Labelled locations are highlighted. 148
5.8 A memory state (s, h). The partition of the heap is highlighted (α = 3). 152
5.9 Semantics of the formulae in Sk[S](X, α), with respect to a memory state (s, h). . . . 152
5.10 The two heaps h and h′ described in Example 5.32. 153
5.11 Semantics of the formulae in Obs[S](X, α), with respect to a memory state (s, h). . . 155
5.12 Case analysis for the formula τ(remWX ≥ β), assuming Path[S]Xs,h(`) ∩ Rem[W]Xs,h 6= ∅. 164
5.13 The formula τ(remWX ≥ β). 165
5.14 Strategy used to define T ′1, T ′2 and S′. 177
5.15 Strategy to define P ′1, P ′2, R′1 and R′2. 186
5.16 Second case of the construction; paths of h. 189
5.17 Possible relations between ρ and ρ′. 204
5.18 Construction for the −∗-simulation. The heap h′1 is an answer for h1. 222
5.19 A NPSpace algorithm for the satisfiability problem of SL([∃]1, ∗, [−∗, ↪→+]SW). 226
5.20 Properties of the prime sets. 233
5.21 Subheaps of h′1. 236
5.22 Splitting ρ depending on its labelled locations. 244
5.23 Connecting next-point variables. 251
5.24 Recap: The complexity of Separation Logics. 271

6.1 Auxiliary formulae of SL(∗,−∗). Note: x ∈ VAR and β ∈ N. 284
6.2 The Hilbert-style proof system HC(∗,−∗). 286
6.3 A proof of emp⇒

(
(x ↪→ ∧ size = 1)−∗ ¬size≥ 2

)
. 287

6.4 A proof of emp⇒ (x ↪→ ∧ size = 1−∗ size = 1). 289
6.5 Proof system HC for Boolean conbinations of core formulae. 291
6.6 The Hilbert-style proof system HC(∗). 296
6.7 The formula 〈∗〉(ϕ,ψ). 301
6.8 The Hilbert-style proof system HC(∗,−∗) (again). 316
6.9 The formula 〈−~〉(ϕ,ψ). 320
6.10 The formula 〈−~〉(ϕ′, ψ). 330

7.1 Three information trees T3,T1,T2 (from left to right), such that T3 ≡ T1 T2. 342
7.2 Three finite forests K3,K1,K2 (from left to right), such that K3 = K1 +w K2. 343
7.3 Satisfaction relation for ML(), with respect to (K,w) where K = (W, R,V). 344
7.4 The Hilbert-style proof system HGML(). 347
7.5 The Hilbert-style proof system HGML. 349
7.6 The Hilbert-style proof system HGML() (again). 352
7.7 the GML formula 〈 〉(ϕ,ψ), where ϕ in Core(Φ, k1, P1) and ψ in Core(Φ, k2, P2). . . . 354

8.1 Satisfaction relation for QK. 378
8.2 Translation from ML() to QK. 379
8.3 Satisfaction relation for PL(∼). 391
8.4 Translation from PL(∼) to ML(). 394
8.5 Interpretation and semantics of SAL(). 398

List of Figures 593

8.6 An information tree (on the left), and one of its possible encodings as a pointed forest
(K,w) (on the right), with n ≥ 2. 399

8.7 A pointed forest (K,w) (on the left), and one of its possible encodings as an infor-
mation tree (on the right), for n ≤ 3. The portion of the information tree encoding
atomic propositions is highlighted. 401

9.1 Satisfaction relation for ML(∗), with respect to (K,w) where K = (W, R,V). 408
9.2 A pointed forest (K,w) (on the left), and a possible decomposition via the union +. 409
9.3 R(w)|T (on the left), and R′(w′)|T (on the right). 416
9.4 Ehrenfeucht-Fräıssé games for ML(∗) . 421
9.5 Pointed forests used to prove Lemma 9.12. Only the leftmost one satisfies ♦=2♦=1>. 422
9.6 Schema of a pointed forest satisfying (I)–(III). 423
9.7 The pointed forests described in (B). 429
9.8 An instance of (Wang) tiling problem, and a possible solution for a 3× 3 grid. . . . 433
9.9 Schema of a pointed forest (K,w) satisfying type(j), for j ≥ 3. 435
9.10 Schema of a pointed forest (K,w) satisfying forkij(ax, bx). 438
9.11 Summary of the formulae to be defined in the next sections. 439
9.12 n(wax) < n(wbx). 440
9.13 n(wax) + 1 = n(wbx). 440
9.14 Shape of a pointed forest satisfying lsr(k). 445
9.15 Translation from ML(∗) to QK. 461
9.16 Satisfaction relation for MSL(∗,♦−1). 462

C.1 Strategy defining h′′. 542

Index

abduction, 33
alphabet

finite, 82
marked, 98
symbol, 82

ambient, 341
calculus, 341

ambient logic, 341
static, 341

antiframe, 34
Auxiliary logic on trees, 77

biabduction, 34
branching degree, 381

maximal, 381
Bunched logics, 37

characteristic formula, 91
compactness, 88
Computation tree logic, 105

quantified, 105
connectives

Boolean, 17
multiplicative, 17

core formulae, 122
observed set, 129
skeleton set, 129

core types, 292
cycle, 151

self-loop, 128
unbounded, 151
unlabelled, 151

disjointness (GML), 350
disjunction, 21

Ehrenfeucht-Fräıssé games, 88

completeness, 91
duplicator, 88
game hopping, 126
move, 89
soundness, 91
spoiler, 88
state, 88
winning strategy, 89

encoding
SL(∗,−∗, ↪→2, ↪→3) to MSL, 71
ALT to MSL/MLH, 113
ALT to SL(∗,−∗, ls), 104
ALT to QCTLt, 108
symbol to ALT node, 82
word to ALT forest, 82

entailment, 24

false, 21
forest

edge, 78
finite, 78
pointed, 78

formula
atomic, 17
closed, 17
equivalent, 24
positions, 13
substitution, 13
tautology, 24
valid, 24
well-quantified, 56

frame, 34
function, 12

δth composition, 12
domain, 12
labelling, 106

595

596 INDEX

range, 12

g-bisimulation, 411
Gaifman, 124

locality Theorem, 124
generalised memory state, 52

encoded-by relation, 54
g-X-heap-isomorphism, 53
well-formed, 58

graded modal logic, 345
graded rank, 411

heap, 18
arrow, 18
disjoint, 18
union, 18

implication, 21
double, 21

involution, 57

Kleene
closure, 12
plus, 12

Kripke
w-subforest, 343
finite forest, 342, 408
finite function, 35, 462
pointed finite function, 35
pointed structure, 106
pointed tree, 107
structure, 106
tree, 107, 459

literal, 284
local nominals, 437
location, 17

labelled, 127
maximum value, 142
unlabelled, 128

magic wand, 17
bounded, 104

main path, 82
memory cell, 18
memory state, 18

X-garbage-free, 119
X-heap-isomorphism, 25

acyclic, 119
disjoint, 18

Modal logic of heaps, 35
Modal separation logic, 34
modality

all-finally, 107
all-generally, 107
all-until, 106
converse of possibility, 35
elsewhere, 35
everywhere, 79
exists-finally, 107
exists-generally, 107
exists-next, 106
exists-strong-release, 107
exists-until, 106
graded, 345
necessity, 344
possibility, 35
repeated sabotage, 78
sabotage, 78
somewhere, 78
temporal, 106

model, 19
model-checking, 24

node, 78
ancestor, 78
character, 82
child, 78
current evaluation, 78
descendant, 78
hit, 78
main, 82
miss, 78
parent, 78
target, 78

nominal, 36

operator
composition (ML()), 344
composition (PITL), 97

path, 18
disjoint, 18
maximal, 106

predecessors, 128

INDEX 597

predicate
alloc, 21
alloc-back, 22
bounded reachability, 65
empty, 17
equality, 17
head, 97
hit, 78
list-segment, 24
miss, 78
next-equality, 55
next-points-to, 55
points-to, 17
reach-plus, 22
reach-star, 23
reachability, 22
relational, 30
single, 97
size, 21
strict, 24

program variable name, 17
Propositional interval temporal logic, 97

locality principle, 97
Propositional logic in team semantics, 390
propositional symbol, 106

quantifier
existential, 17
existential second-order, 30
propositional, 106
universal, 21

rank, 89
modal, 89
repeated sabotage, 89
sabotage, 89

rank order, 89
recursively enumerable, 28
relation, 12

accessibility, 106
hop, 125

satisfaction, 19
satisfiability, 24
second-order logic

WSO structure, 30
assignment, 30

domain, 30
one unary function symbol, 32
weak, 30
weak monadic, 32

separating
conjunction, 17
implication, 17

Separation logic, 17
first-order, 17
symbolic-heap, 33

separation logic
extensional, 28
intensional, 28

septraction, 20
bounded, 104

set, 12
consistent, 19

simulation, 124
∃-simulation, 141
−∗-simulation, 221
∗-simulation, 124

size
memory, 222
of a formula, 17

small-heap property, 122
star, 17
store, 18
strict points-to, 24
subformula, 13
subheap, 18

strict, 18

team, 390
term, 127
tiling problem, 432
true, 17

universe, 342, 408

validity, 24
variable, 17

bound, 17
copy, 57
end-point, 146
free, 17
individual, 30
meet-point, 147

598 INDEX

next-point, 127
relation, 30
unique, 119

weakly connected component, 19
word

decomposition, 98
empty, 99

finite, 82
marked, 98

world, 106
accessible, 106
current, 106
predecessor, 35
spy, 71, 487
successor, 35

Titre: Logiques de Séparation: Complexité, Expressivité, Systèmes de Preuve

Mots clés: Logique de séparation, complexité, expressivité, axiomatisation

Résumé: Cette thèse propose une étude ap-
profondie de problèmes de décision classiques,
tels que la satisfaisabilité et la validité pour des
logiques de séparation, langages d’assertion bien
connus développés pour la vérification de pro-
grammes avec structures dynamiques.

La première partie de la thèse s’intéresse à
la notion d’accessibilité pour les logiques de sé-
paration. Notre motivation est double: d’une
part, il s’agit de comprendre les frontières de la
décidabilité de fragments de la logique de sépa-
ration du premier ordre; d’autre part l’intention
est de concevoir une logique de séparation aussi
expressive que possible, et dont le problème de
satisfaisabilité soit décidable avec une complex-
ité relativement modeste.

Dans la seconde partie de la thèse, nous
tirons profit des techniques développées dans la

première partie pour définir une axiomatisation
à la Hilbert de logiques de séparation et d’autres
logiques spatiales. Nous définissons le premier
calcul interne pour la logique de séparation sans
quantification. En utilisant la même approche,
nous définissons une axiomatisation pour une
logique modale enrichie d’un opérateur de com-
position issu d’une logique des ambients. Ces
systèmes de preuves mettent en lumière des re-
lations intéressantes entre les deux logiques.

Dans la troisième partie de la thèse, nous
approfondissons encore davantage les relations
entre les logiques de séparation et les logiques
des ambients. Des similarités et des différences
sont établies en termes de pouvoir d’expression
et de complexité algorithmique Afin de mener à
bien nos comparaisons, nous nous plaçons dans
une cadre uniforme issu de la logique modale.

Title: Reasoning with Separation Logics: Complexity, Expressive Power, Proof Systems

Keywords: Separation logic, computational complexity, expressive power, axiomatisation

Abstract: This thesis proposes an in-depth
study of classical decision problems, such as
satisfiability and validity, for separation logics:
well-known assertion languages developed to
verify heap-manipulating programs.

The first part of the thesis focuses on the
complexity of separation logics featurinng reach-
ability predicates. Our goal is to understand the
decidability frontier for fragments of first-order
separation logic, and devise a very expressive
separation logic whose satisfiability problem is
decidable with a relatively low complexity.

In the second part of the thesis, we use
techniques developed in the first part to design

Hilbert-style axiomatisations for separation log-
ics and other spatial logics. Two proof systems
are introduced, one for quantified-free separa-
tion logic and the other for a modal logic en-
riched with the composition operator from am-
bient logic. These proof systems reveal interest-
ing connections between the two logics.

In the third part of the thesis, we dig deep
in the connections between separation logics and
ambient logics. Surprising similarities and dif-
ferences are found, bot in terms of expressive
power and computational complexity. To carry
out our comparison, we devise a suitable frame-
work based on modal logic.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Contents
	Introduction
	Scalable Reasoning about Programs
	Pointer Program Verification and Separation Logic
	Between Theory and Practice
	Our Work
	Prerequisites and Basic Notations

	Separation Logic
	A Logic for Shared Mutable Data Structures
	Fragments of SL(,,–6mu*) and Second-Order Logic
	Other Separation Logics and Bunched Logics

	Reachability Queries in Separation Logic
	 Introduction: Robustness Properties of Logical Assertions
	Extensionality and Reachability Leads to Non-enumerability
	Encoding Assignments as Memory Cells
	Simulating the First-order Quantification
	Reachability Predicates can Quantify

	Intensionality and Reachability Leads to Non-elementary Logics
	The Hardness of Reachability and Submodel Reasoning
	On the Expressive Power of ALT
	The Complexity of ALT
	Revisiting Tower-hard Logics with ALT

	Deciding Robustness Properties in PSpace
	Taming the Robustness Properties
	Towards Small Models: The Core Formulae Technique
	A Family of Core Formulae Capturing the Fragment W
	Recap: How to Apply the Core Formulae Technique
	A Family of Core Formulae Capturing the Fragment S
	Connecting the Two Families of Core Formulae

	 Conclusion

	Internal Calculi for Spatial Logics
	 Introduction: Internal Proof Systems via Core Formulae
	A Complete Axiomatisation for Quantifier-free Separation Logic
	Axiomatising SL(,–6mu*), Internally
	An Hilbert-style proof system for SL(,–6mu*)
	Main ingredients of the method
	A Simple Calculus for the Core Formulae
	Syntactical elimination of the Separating Conjunction
	Syntactical elimination of the Separating Implication

	Axiomatising a Modal Logic Featuring Ambient-like Composition
	A Taste of Ambient Logic
	The Modal Logic ML (1.2pt2.1ex)
	Towards an Hilbert-style proof system for ML (1.2pt2.1ex)
	Graded Modalities as Core Formulae
	Syntactical Elimination of the Composition Operator

	 Conclusion

	Mixing Multiplicative Connectives and Modalities
	 Introduction: Two Ways to Chop a Tree
	The Complexity of the Modal Logic ML (1.2pt2.1ex)
	ML (1.2pt2.1ex) and GML as fragments of second-order ML
	Checking satisfiability for ML (1.2pt2.1ex), in AExpPol
	ML (1.2pt2.1ex) is AExpPol-complete
	An AExpPol-complete Static Ambient Logic

	The Complexity and Expressive Power of the Modal Logic ML ()
	ML (): when replaces 1.2pt2.1ex
	ML () is Strictly Less Expressive than ML (1.2pt2.1ex)
	The complexity of ML ()
	Revisiting Tower-hard Logics with ML ()

	 Conclusion
	References
	Appendix of chapter:undecidability
	Appendix of chapter:alt
	Appendix of chapter:fsttcs
	Appendix of chapter:axiomatisations:quantifier-free
	Appendix of chapter:axiomatising-ambient
	Appendix of chapter:ml-chop-complexity
	Appendix of chapter:ml-star-complexity
	List of Notations and Symbols
	List of Figures
	Index

