
�>���G �A�/�, �i�2�H�@�y�j�y�N�9�j�d�j

�?�i�i�T�b�,�f�f�i�?�2�b�2�b�X�?���H�X�b�+�B�2�M�+�2�f�i�2�H�@�y�j�y�N�9�j�d�j�p�R

�a�m�#�K�B�i�i�2�/ �Q�M �9 �C���M �k�y�k�R

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�G�Q�;�B�[�m�2�b �/�2 �b�û�T���`���i�B�Q�M �, �+�Q�K�T�H�2�t�B�i�û�- �2�t�T�`�2�b�b�B�p�B�i�û�- �+���H�+�m�H�b
���H�2�b�b�B�Q �J���M�b�m�i�i�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���H�2�b�b�B�Q �J���M�b�m�i�i�B�X �G�Q�;�B�[�m�2�b �/�2 �b�û�T���`���i�B�Q�M �, �+�Q�K�T�H�2�t�B�i�û�- �2�t�T�`�2�b�b�B�p�B�i�û�- �+���H�+�m�H�b�X �G�Q�;�B�[�m�2 �2�M �B�M�7�Q�`�K���i�B�[�m�2
�(�+�b�X�G�P�)�X �l�M�B�p�2�`�b�B�i�û �S���`�B�b�@�a���+�H���v�- �k�y�k�y�X �6�`���M�Ï���B�b�X ���L�L�h �, �k�y�k�y�l�S���a�:�y�8�y���X ���i�2�H�@�y�j�y�N�9�j�d�j��

N
N

T:
20

20
U

P
A

S
G

05
0

Reasoning with Separation Logics
Complexity, Expressive Power, Proof Systems

Thèse de doctorat de l'Université Paris-Saclay

École doctorale n � 580, Sciences et technologies de l'information
et de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay

Référent: ENS Paris-Saclay

Thèse présentée et soutenue en visioconférence totale,
le 10 Décembre 2020, par

Alessio MANSUTTI

Composition du jury:

Erich Grädel Président
Professor, RWTH Aachen, Germany
Radu Iosif Rapporteur
Chargé de recherche CNRS, Université Grenoble Alpes, France
David Pym Rapporteur
Professor, University College London, UK
Leonid Libkin Examinateur
Professor, École Normale Supérieure, France
Mihaela Sighireanu Examinatrice
Professor, ENS Paris-Saclay, France

Stéphane Demri Directeur
Directeur de recherche CNRS, ENS Paris-Saclay, France
Étienne Lozes Codirecteur
Professor, Université Côte d'Azur

Abstract

This thesis proposes an in-depth study of classical decision problems, such as satis�ability and
validity, for separation logics: well-known assertion languages developed to verify sequential
and concurrent programs with dynamic memory allocation. The main features of separation
logics are given by two binary connectives: the separating conjunction� and the separating
implication �� . These two connectives use second-order features in order to express spatial
properties, and allow the veri�er to modularly analyse the memory.

The �rst part of the thesis focuses on the notion of reachability predicates in separation
logics. A location `1 (a.k.a. a memory address) is said to be reachable from a second location`2

whenever subsequent dereferentiations of̀2 yield `1. Together with �rst-order quanti�cation,
reachability predicates allow to check for severalrobustness propertiesof the memory, such as
acyclicity (i.e. the absence of cycles) and garbage freedom (i.e. the absence of dangling pointers).
Our goal is to devise a separation logic featuring these types of predicates, while keeping the
complexity of its satis�ability problem in check. This is easier said than done, as we show
that several separation logics are largely intractable (undecidable or non-elementary decidable).
Nonetheless, by studying the sources of intractability we are able to design aPSpace fragment
of �rst-order separation logic that is able to express the desired robustness properties. The
PSpace membership is shown through thecore formulae technique, a model theoretic approach
that is reminiscent of Gaifman's locality theorem for �rst-order logic.

The second part of the thesis tackles the open problem of designing Hilbert-style axiomatisa-
tions for separation logics. An axiomatisation is said to be Hilbert-style (or internal) whenever
its axioms and inference rules are built solely from formulae of the logic, without any external
machinery such as labels or nominals. In particular, we introduce the �rst sound and complete
internal proof system for the quanti�er-free fragment of separation logic. The completeness of
the system is shown by taking advantage of the core formulae technique introduced in the �rst
part of the thesis. In order to show that this technique can be reused on other logics, we design
an axiomatisation for a modal logic enriched with the composition operator from ambient logic
(a logic to verify distributed systems). The two proof systems reveal interesting connections
between separation logics and ambient logics.

Motivated by the similarities in their proof systems, in the third part of the thesis we dig deep
in the connections between separation logic and ambient logic. To carry out our comparison, we
devise a suitable framework based on modal logic. This framework gives us the common ground
needed in order to study the two logics from the point of view of their spatial connectives: the
separating conjunction � for separation logic and the parallel composition for ambient logic.
Surprising similarities and di�erences are discovered, both in terms of expressive power and
computational complexity.

i

Contents

Contents iii

1 Introduction 1
1.1 Scalable Reasoning about Programs . 3
1.2 Pointer Program Veri�cation and Separation Logic 5
1.3 Between Theory and Practice . 7
1.4 Our Work . 8
1.5 Prerequisites and Basic Notations . 12

2 Separation Logic 15
2.1 A Logic for Shared Mutable Data Structures . 17
2.2 Fragments ofSL(9; � ; ��) and Second-Order Logic 28
2.3 Other Separation Logics and Bunched Logics 33

I Reachability Queries in Separation Logic 41

Introduction: Robustness Properties of Logical Assertions 43

3 Extensionality and Reachability Leads to Non-enumerability 47
3.1 Encoding Assignments as Memory Cells . 51
3.2 Simulating the First-order Quanti�cation . 55
3.3 Reachability Predicates can Quantify . 65

4 Intensionality and Reachability Leads to Non-elementary Logics 73
4.1 The Hardness of Reachability and Submodel Reasoning 77
4.2 On the Expressive Power ofALT . 81
4.3 The Complexity of ALT . 97
4.4 Revisiting Tower -hard Logics with ALT . 103

5 Deciding Robustness Properties in PSpace 115
5.1 Taming the Robustness Properties . 119
5.2 Towards Small Models: The Core Formulae Technique 122
5.3 A Family of Core Formulae Capturing the Fragment W 127
5.4 Recap: How to Apply the Core Formulae Technique 144
5.5 A Family of Core Formulae Capturing the Fragment S 146
5.6 Connecting the Two Families of Core Formulae 221

iii

iv Contents

Conclusion 269

II Internal Calculi for Spatial Logics 273

Introduction: Internal Proof Systems via Core Formulae 275

6 A Complete Axiomatisation for Quanti�er-free Separation Logic 279
6.1 Axiomatising SL(� ; ��), Internally . 283
6.2 An Hilbert-style proof system for SL(� ; ��) . 285
6.3 Main ingredients of the method . 290
6.4 A Simple Calculus for the Core Formulae . 291
6.5 Syntactical elimination of the Separating Conjunction 295
6.6 Syntactical elimination of the Separating Implication 316

7 Axiomatising a Modal Logic Featuring Ambient-like Composition 337
7.1 A Taste of Ambient Logic . 341
7.2 The Modal Logic ML() . 342
7.3 Towards an Hilbert-style proof system forML() 346
7.4 Graded Modalities as Core Formulae . 348
7.5 Syntactical Elimination of the Composition Operator 352

Conclusion 367

III Mixing Multiplicative Connectives and Modalities 369

Introduction: Two Ways to Chop a Tree 371

8 The Complexity of the Modal Logic ML() 373
8.1 ML() and GML as fragments of second-orderML 377
8.2 Checking satis�ability for ML(), in AExp Pol 380
8.3 ML() is AExp Pol -complete . 390
8.4 An AExp Pol -complete Static Ambient Logic 397

9 The Complexity and Expressive Power of the Modal Logic ML(�) 403
9.1 ML(�): when � replaces . 407
9.2 ML(�) is Strictly Less Expressive than ML() 411
9.3 The complexity of ML(�) . 432
9.4 Revisiting Tower -hard Logics with ML(�) . 459

Conclusion 465

References 469

A Appendix of Chapter 3 481

B Appendix of Chapter 4 491

C Appendix of Chapter 5 511

Contents v

D Appendix of Chapter 6 551

E Appendix of Chapter 7 559

F Appendix of Chapter 8 567

G Appendix of Chapter 9 575

List of Notations and Symbols 585

List of De�nitions 589

List of Figures 591

Index 595

1

Introduction

Contents
1.1 Scalable Reasoning about Programs . 3

1.2 Pointer Program Veri�cation and Separation Logic 5

1.3 Between Theory and Practice . 7

1.4 Our Work . 8

1.4.1 Part I : Reachability queries in separation logic. 9

1.4.2 Part II : Internal calculi for spatial logics. 10

1.4.3 Part III : Mixing multiplicative connectives and modalities. 11

1.5 Prerequisites and Basic Notations . 12

1

1.1. Scalable Reasoning about Programs 3

1.1 Scalable Reasoning about Programs

In the craft of programming, resource management plays a central role. The �niteness of re-
sources such as time and space led computer scientists to an ever going quest for faster and
more e�cient algorithms that eventually evolved to what is now known as Complexity Theory.
In fact, as noticed by M. Y. Vardi in the May 2020 Communications of the ACM [140]:

\generations of computer scientists [were taught] that analysis of algorithm only means
analyzing their computational e�ciency. As Wikipedia states: \In computer science,
the analysis of algorithms is the process of �nding the computational complexity of
algorithms|the amount of time, storage, or other resources needed to execute them."
In other words, e�ciency is the sole concern in the design of algorithms."

E�ciency is however only one facet of software and, due to the ubiquitousness of technology
in our society, the craft of programming is naturally evolving to consider other qualities of
programs, such as security and resilience. Broadly speaking, both security and resilience evaluate
the robustness of systems against disruptive changes in the environment. Both these qualities are
more abstract than e�ciency. The latter is evaluated quantitatively: time-wise, we are interested
in the numbers of operations needed in order to perform an algorithm, whereas space-wise we are
interested in numbers of memory cells that are simultaneously being used. Not only e�ciency
is relatively simple to assess, it is also compositional: if on an input of sizen two programs
f and g respectively require n and m operations, then running g and f sequentially on the
same input requires n + m operations. On the other hand, there is no \magic number" to
evaluate the security or resilience of software. These are not absolute properties of all software,
and they heavily depend on the environment and its interactions with the computer program.
The problem of formalising these properties is thus far from trivial, and becomes even harder
if we want the speci�cations to be easily composed as it is done in the case of running time.
Summarising the central message of [140], the trade-o� between e�ciency and security/resilience
has now become a central problem in computer science.

The formal speci�cation and analysis of qualitative properties of software (correctness, re-
silience, security etc.) is known as Program Veri�cation. Even though the �rst attempts of
verifying routines trace back to A. Turing and J. von Neumann (see e.g. [134]), the math-
ematical foundation of this �eld were set at the end of the sixties by C. A. R. Hoare and
R. W. Floyd [87, 71]. In their works, the central idea is to formalise the properties of a system
by means of logical assertions, and track their evolution as the instructions of the program �re.
This idea is formalised with a proof system known as Hoare logic, were judgements are given by
Hoare triples of the form f ' g P f g , which should be read as:

\Every model that satis�es the assertion ' will, after being modi�ed by the program P,
satisfy the assertion (if P terminates)."

Here, ' and are called the precondition and postcondition of the Hoare triple, respectively,
and a model is a mathematical structure that abstract the resources that the program uses. The
semantics above follows the notion ofpartial correctness, which in contrast with total correctness
does not requireP to terminate: if P does not terminate, then the postcondition is assumed to be
satis�ed. As an example, a possible model could be the domain of functions going from program
variables to real numbers, and a program could be as simple as an assignment instruction of the
form x expr, which assigns to the variablex the result of an arithmetic expressionexpr. A
possible assertion language could be given by a logic featuring the classical Boolean connectives

4 Chapter 1. Introduction

(conjunction ^ , disjunction _ and negation :) together with atomic propositions of the form
expr1 = expr2 stating that the result of two arithmetical expressions expr1 and expr2 coincide.
With respect to these objects, the following Hoare triple is valid:

f x = 1 ^ y = 1g x x � y f x = 0 ^ y = 1g.

Indeed, the precondition x = 1 ^ y = 1 restricts the set of possible models to the class of
functions f such that f(x) = 1 and f(y) = 1. The instruction x x � y modi�es f(x) so that
it is equivalent to the value of f(x) � f(y) (before the update, i.e. 0). The resulting function
satis�es the postcondition x = 0 ^ y = 1. To formally prove the validity of Hoare triples without
semantical arguments (as we just did), Hoare logic provides a set of axioms and inference rules
to syntactically manipulate and derive new Hoare triples. For instance, with respect to the
assignment x expr, Hoare logic features the axiom schema

(assign) f ' [x expr]g x expr f ' g,

where' [x expr] is the assertion obtained from' by syntactically replacing all occurrences ofx
with expr (without evaluating expr). By instantiating the axiom (assign) so that ' corresponds
to the assertion x = 0 ^ y = 1, we deduce that f x � y = 0 ^ y = 1g x x � y f x = 0 ^ y = 1g
is a valid Hoare triple. Notice that this triple is equivalent to the previous one we proved
semantically, even though its precondition is syntactically di�erent. To solve this discrepancy,
we can rely on the(left) weakening rule

(weak)
' j= ' 0 f ' 0g P f g

f ' g P f g
.

Here, the entailment ' j= ' 0 between logical assertions' and ' 0 states that every model satis-
fying ' also satis�es ' 0. Given a valid triple f ' 0g P f g and a precondition ' that is stronger
than ' 0, i.e. ' j= ' 0, the rule (weak) allows us to deduce the validity of the triple f ' g P f g .
Since the entailmentx = 1 ^ y = 1 j= x � y = 0 ^ y = 1 holds, by instantiating (weak) as follows

x = 1 ^ y = 1 j= x � y = 0 ^ y = 1 f x � y = 0 ^ y = 1g x x � y f x = 0 ^ y = 1g

f x = 1 ^ y = 1g x x � y f x = 0 ^ y = 1g

we derive the triple f x = 1 ^ y = 1g x x � y f x = 0 ^ y = 1g purely syntactically.
Hoare logic works very well when used to verify programs manipulating primitive data types

such as numeric domains, but struggles when dealing with more structured data and, in par-
ticular, when dealing with programs that manipulates pointers [115]. There are several reasons
for this, but the crucial one has to do with the modularity of the proof system. As previously
mentioned, the e�ciency of an algorithm can be studied in terms of its components, which
allows us to scale the computational analysis to large programs. When it comes to Hoare logic,
this type of modularity is deeply tangled with the concept of independence between variables.
For instance, let us take the two-instructions program x x � y; z x . The e�ects of the
�rst instruction does not depend on the value assigned to the variablez, whereas the second
instruction is independent from y. To achieve modularity, we would like to reason separately
on these instructions, and only consider pre- and post-conditions containing variables that are
meaningful for the evaluation of the instruction under analysis. Intuitively, this property would
allow us to scale the veri�cation to larger programs, as atomic instructions only consider a tiny
subsets of all variables and data structures used by the program. More formally, modularity can
be achieved in Hoare logic as soon as we add the followingrule of constancy:

1.2. Pointer Program Veri�cation and Separation Logic 5

(const)
f ' g P f g all variables in � are not modi�ed by P

f ' ^ � g P f ^ � g
.

Fundamentally, this rule allows us to drop from the precondition all superuous information
(represented by the assertion�) about variables that are not considered by P, carry out the
proof of f ' g P f g that features the simpler assertion ' and , and then push back the
superuous information directly in the postcondition. Intuitively, we expect this very natural
inference rule to hold: if P does not modify the variables occurring in � , then this assertion
should still be satis�ed after the execution of P. Unfortunately, (const) fails when considering
programs manipulating pointers (or more generally having instructions with side e�ects).

The main problem is due to pointer aliasing. Borrowing the syntax of the C programming
language, let us write � x for the result of dereferencing the pointer variable x, so that the
instruction � x � y change the value stored in the address referenced byx to the value stored
in the address referenced byy. Intuitively, the Hoare triple f � x = 1g � x 0 f � x = 0g is valid.
Since the variabley does not occur in the instruction � x 0, we can apply the rule (const)
instantiated so that � corresponds to the formula� y = 0, and derive the triple

f � x = 0 ^ � y = 0g � x 1 f � x = 1 ^ � y = 0g.

However, this triple is not semantically valid, as the pointer variables x and y could reference
the same address, i.e. they could be in aliasing, which implies that the instruction� x 1 has
the side e�ect of setting � y to 1, invalidating the assertion � y = 0 in the postcondition.

1.2 Pointer Program Verification and Separation Logic

Because of the inconsistency between (const) and pointer aliasing, Hoare logic does not scale
well when dealing with the veri�cation of pointer programs. As most software use pointers on
a regular basis, up to the 2000s this prevented the use of Hoare logic to check industrial level
code. As pointed out by P. W. O'Hearn, J. C. Reynolds and H. Yang in [114, 115], the main
problem is

\[that] there is a mismatch between simple intuitions about the way that pointer oper-
ations work and the complexity of their axiomatic treatments [in Hoare logic]".

Indeed, the atomic instructions manipulating pointers modify the memory only locally, leaving
most of it una�ected. As remarked for the rule (const), this feature shapes our intuition,
which tells us that most of the properties expressed in a precondition should still be true after
an atomic instruction is executed. The struggles in using Hoare logic for pointer programs lie
in counter-intuitive fact that, again quoting [114],

\an alteration of a [single memory] cell may a�ect the values of many syntactically
unrelated expressions".

From the seventies until the end of the nineties, several works tried to partially solve this problem.
First attempts were focused on describing the memory directly in the assertion language [96,
106, 14]. What was clear at the time was that the assertion language should be able to describe
the notion of spatiality of the memory, where two pointer variables that are not in aliasing
correspond, spatially, to syntactically distinct objects in the assertions. In this sense, the �rst
notable result was put forward by R. M. Burstall in [31]. In his Distinct Non-Repeating List
system (DNRL), Burstall introduced assertions that implicitly represent the notion of non-

6 Chapter 1. Introduction

' � ,

'

Figure 1.1: The separating conjunction� .

aliasing in a compact way. For instance, the assertion language of DNRL features tuples of the
form � (x ,! y; y ,! z; v ,! z) that are semantically equivalent to the assertion

� x = y ^ � y = z ^ � v = z ^ x 6= y ^ x 6= v ^ y 6= v.

Essentially, not only the DNRL tuple expresses properties such as \x points to y", which means
that the value stored by the addresses referenced byx is the address referenced byy (i.e. � x = y),
it also represents the notion of non-aliasing: ifx ,! y and v ,! z belong to a DNRL tuple (in
distinct positions), then x and v refer to di�erent addresses. Then, a DNRL n-tuple divides the
memory in n spaces by implicitly encodingO(n2) inequalities between pointer variables.

Based on the ideas of Burstall, in the early 2000s P. W. O'Hearn and J. C. Reynolds,
together with C. Calcagno, D. Distefano, D. Pym, H. Yang and the contribution of several
other researchers, developedseparation logic [124]: an extension of Hoare logic that permits
scalable reasoning of pointer programs. This extension a�ects both the assertion language used
for pre/postconditions and the set of Hoare-style axioms and inference rules.

Separation logic generalises the notion of spatiality given by DNRL tuples to a solid mathe-
matical theory where the memory is seen as a resource that can be partitioned. To achieve this,
the logic applies in a fundamental way the developments on resource reasoning given by the logic
of Bunched Implication (BI) introduced by Pym and O'Hearn [113]. The essential feature ofBI
and of the assertion language of separation logic(which, despite de ambiguity, we refer to sim-
ply as separation logic) is given by a binary connective� , called separating conjunction, which
roughly stands for \and, separately". A formula ' � of BI is satis�ed by a resourcer (in the case
of separation logic, the memory) if r can be partitioned into two pieces, one satisfying' and the
other satisfying . Figure 1.1 intuitively depicts the spatial partitioning performed by the sep-
arating conjunction. Intuitively, one can then encode the DNRL tuple � (x ,! y; y ,! z; v ,! z)
in separation logic1, with a simple change of notation:

x ,! y � y ,! z � v ,! z.

Indeed, thanks to the separating conjunction� , which partitions the memory in distinct pieces,
the three variables x, y and v are implicitly assumed to refer to three distinct addresses.

Most importantly, the connective � solves the mismatch between the local e�ect of atomic
instructions on the memory and their global e�ect on the pre- and post-conditions, as it allows
us to elegantly rephrase the rule (const) as follows:

(frame)
f ' g P f g all variables in � are not modi�ed by P

f ' � � g P f � � g
.

1 In this thesis, we use the term separation logic for both the Hoare proof system and its assertion language.

1.3. Between Theory and Practice 7

This rule, known as the frame rule, recovers the modularity of the rule of constancy lost when
dealing with pointer programs, and paves the way for analysing large programs. It reects
our intuition that if P does not modify the variables in� , then the satisfaction of � should not
change after executingP. In the context of industrial applications, one cannot stress enough the
bene�ts on scalability given by (frame). Not only this rule allows us to verify large programs
in the �rst place, it also enables a quick analysis of successive updates to an already veri�ed
software, by only considering the portion of the code that has e�ectively changed. Last but not
least, the frame rule allows us to split the proof in numerous independent subproofs, which can
be checked in parallel.

1.3 Between Theory and Practice

The scalable reasoning enabled by separation logic had a vast impact in the full spectrum of
program veri�cation, from academic and theoretical research to industrial applications. After
20 years from its �rst theoretical developments, separation logic is now deployed in numerous
industrial tools of program analysis. A vast literature as been written on the subject, and we
invite the reader to look at the insightful paper \Why separation logic works", by D. Pym,
J. M. Spring and P. W. O'Hearn [116], as well as the article by O'Hearn in the February 2019
Communications of the ACM [115], to better understand the e�ects that separation logic had
on the �eld. It is worth noting that scalable reasoning is only one of the reasons why separation
logic is successful. Below, we summarise two other qualities of this logic.

Catastrophic errors. Despite doable in theory, the industrial tools using separation logic
o�ers limited assistance when it comes to verify the correctness of the results given by an
algorithm. However, these tools shine in the analysis of exhaustible resources, such as memory.
They allow us to verify whether software generates memory leaks or null pointer exceptions,
and they can do so with little to no guidance provided by the programmer. As stated at the
beginning of the introduction, resource management plays a central role in computer science,
and error due to exhausting or misusing available resources are perhaps the most severe ones.
As explained in [116], \a program with a memory management error will behave erratically or
fail suddenly", which can not only lead to a fatal failure of the whole computer system, but also
results in serious security aws.

Automation and bi-abduction. Hoare logic often requires the programmer to guide the
veri�cation by annotating the code with pre- and post-conditions, in particular for loop invari-
ants. This prevents the practical use of Hoare logic on old unannotated software, and it is a
bottleneck in industrial deployment, as the programmer must provide both the implementation
and part of its veri�cation. In order to scale the veri�cation to millions of lines of code, tools
based on separation logic can be built to be completely automatic (see e.g.Infer [38]). To
reach automation, separation logic relies on an inference problem, calledbi-abduction, intro-
duced in [37] by D. Distefano, C. Calcagno, P. W. O'Hean and H. Yang. While the formal
de�nition of bi-abduction will follow in Section 2.3.1, we can informally describe solutions of
this problem as ways of \stitching" the postcondition 1 of a Hoare triple f ' 1g P1 f 1g with the
precondition ' 2 of a second Hoare triplef ' 2g P2 f 2g so that the entailment 1 j= ' 2 holds,
which allows us to then deduce the validity of f ' 1g P1; P2 f 2g by simply applying the rule of

8 Chapter 1. Introduction

sequential composition of Hoare logic. Thanks to bi-abduction, the problem of deriving suitable
pre- and post-conditions can be fully automated.

Research on separation logic essentially branches out into two directions, the one studying
and developing the Hoare-style calculus, and the one focused on its assertion language. The
major achievement of the �rst direction, which is at the intersection of programming languages,
concurrency theory and static/symbolic analysis, was perhaps showing the feasibility of modular
reasoning to the program veri�cation community. The philosophy behind separation logic was
quickly picked up by several other �elds outside of pointer programs analysis, as shown for
instance by the recent works [7, 6] on probabilistic programming languages. As a testament of
the impact that this direction had in the �eld of program analysis, the 2016 G•oedel prize was
awarded to S. Brookes and P. W. O'Hearn for their work on concurrent separation logic [24, 23],
an extension of separation logic for program veri�cation of concurrent programs with shared-
memory. The Hoare calculi based on separation logics form the foundation of several tools,
from the �rst solvers Smallfoot and SpaceInvader [13, 144] and their successorsInfer and
Slayer [38, 12], to the concurrent separation logic frameworkIris [94] and the new language-
independent frameworkGillian [126].

The research on the assertion language, which is rooted in mathematical logic, has also been
undoubtedly active and fruitful. As shown by the weakening rule (weak), Hoare logic (and
separation logic) require to solve classical decision problems, e.g. the entailment between two
assertions, in order to build the proof. The �rst iteration of separation logic [124] featured
an assertion language with undecidable satis�ability, validity and entailment problems, which of
course limited its automation. Aiming for e�ciency, J. Berdine, C. Calcagno and P. W. O'Hearn
studied a lightweight fragment of separation logic, known as the symbolic heap fragment (SH),
that can be decided inPTime [10]. The tractability of SH made it the go to assertion language
for several separation logic tools, as for instanceSmallfoot and Infer . Subsequent works
made a huge e�orts to analyse assertion languages that sits betweenSH and the �rst separation
logic from [124]. For practical purposes, several authors studied the addition toSH of (user-
de�ned) inductive predicates in order to reason on data structures such as lists or trees [44, 28,
92, 65, 93, 101]. In this direction, very recently J. Pagel, C. Matheja and F. Zuleger de�ned a
2ExpTime algorithm for the entailment problem of SH with inductive de�nitions of bounded
treewidth [118], matching the 2ExpTime -hardness by M. Echenim, R. Iosif and N. Peltier [64].
On the more theoretical side, it is known from [53] that the �rst-order separation logic restricted
to two quanti�ed variables is already undecidable, in contrast with the NExpTime -completeness
of the two-variable fragment of �rst-order logic [84]. The restriction of �rst-order separation logic
to one quanti�ed variable is however PSpace [55].

The broadness of works on this topic is also due to the fact that separation logic appears to
lie on a sweet spot between theory and practice. Besides its practical applications that led to
its industrial success, separation logic is based on the rigorous and elegant theory of the logic
of bunched implications, which attracted attention in di�erent �elds of mathematical logic such
as topology, proof theory and modal logic. On this matters, we invite the reader to look at the
PhD thesis of S. Docherty [60].

1.4 Our Work

This thesis focuses on the assertion language of separation logic. Broadly speaking, our goal is
to methodically analyse features of separation logic, primarily the separating conjunction� and

1.4. Our Work 9

the separating implication �� (i.e. the right-adjoint of �), to improve our understanding of the
logic from a computational and proof theoretical point of view. In doing so, we draw connections
between separation logic and other logics, most notably ambient logics [34] and modal logics [15].

The thesis is naturally split into three parts (not counting the technical background on sep-
aration logic given in Chapter 2), each having its own introduction and conclusion. The �rst
part consider the role of reachability predicates in separation logic, and study their computa-
tional complexity. To start, we substantially re�ne the analysis on the separating implication ��
started with [22] and [53] in order to understand the reasons behind of the high computational
status of separation logic. We show a way of handling the operator�� , together with reachability
predicates, to design an expressive separation logic whose satis�ability, validity and entailment
problems are \only" PSpace -complete. In the second part of the thesis, we apply proof tech-
niques introduced in the �rst part to tackle the open problem of designing Hilbert-style calculi for
separation logics and other spatial logics. Interestingly, this part reveals connections between
separation logic and ambient logics. In the third part ot the thesis, we propose an in-depth
analysis of these connections from the point of view of complexity and expressive power. Each
chapter should be su�ciently self-contained, with perhaps the exception of Chapters 7 and 8.

Below, we give a more detailed view on the contributions of the thesis.

1.4.1 Part I : Reachability queries in separation logic.

Reachability predicates, such as the list segment predicatels (x; y), are perhaps the most studied
types of inductive predicates in separation logic. Roughly speaking,ls (x; y) holds in a memory
that can be represented as a linear structure that starts with the address corresponding to the
variable x and ends, through dereferentiation, in the address corresponding to the variabley.
It is known that the entailment problem of the symbolic heap fragment enriched with ls (x; y)
can be solved inPTime [44]. However, when considering richer separation logics that are closed
under Boolean connectives and feature both the separating conjunction� and implication �� ,
the addition of reachability predicates has not been studied. This is quite surprising, as these
types of logics are able to express several properties of the memory that are fundamental in
program analysis, such as acyclicity and garbage freedom. In Chapters 3, 4 and 5, we undertake
a journey through these types of logics, with the aim of �nding one that is decidable inPSpace .

Here is a roadmap of Part I:

Chapter 3. We show that the quanti�er-free separation logic SL(� ; �� ; ls) featuring Boolean
connectives, both operators� and �� , and the reachability predicate ls (x; y), admits non recur-
sively enumerable satis�ability and validity problems. This result is extended to several other
separation logics, most notablySL(� ; �� ; ,! 2; ,! 3), i.e. the fragment of SL(� ; �� ; ls) only featur-
ing the bounded reachability predicatesx ,! � y, where � 2 f 2; 3g, stating that dereferencing �
times the address corresponding to the variablex yields the address corresponding toy. This
chapter covers the �rst part of the work published in:
[56] S. Demri, E. Lozes, and A. Mansutti, \The e�ects of adding reachability predicates in

propositional separation logic," in Foundations of Software Science and Computational
Structures, ser. LNCS, vol. 10803. Springer, 2018, pp. 476{493.

Chapter 4. Distressed by the results in Chapter 3, we introduce anAuxiliary Logic on Trees
(ALT), a modal logic that allows us to focus on the interactions between reachability predicates

10 Chapter 1. Introduction

and submodel reasoning, without the speci�city of separation logic. After looking at the ex-
pressive power ofALT by de�ning a suitable notion of Ehrenfeucht-Fra•�ss�e games, we show that
the satis�ability problem of ALT is Tower -complete, and thus non-elementary decidable [128].
This result extends to several logics interpreted on tree-like structures that where independently
found to be Tower -complete: quanti�ed computation tree logic, modal separation logic and
modal logic of heaps. Moreover, it shows that the separation logicSL([9]1; � ; x ,! ; ,! +) already
admits a non elementary satis�ability problem. This logic features Boolean connectives, the
separating conjunction � , one quanti�ed variable, the predicate alloc x ,! and the reachability
predicate x ,! + y. Chapter 4 covers the work published in:

[108] A. Mansutti, \An auxiliary logic on trees: on the tower-hardness of logics featuring reach-
ability and submodel reasoning," in Foundations of Software Science and Computational
Structures, ser. LNCS, vol. 12077. Springer, 2020, pp. 462{481.

Chapter 5. The negative results of Chapter 3 and Chapter 4 guide us to the de�nition of the
separation logic SL([9]1; � ; [�� ; ,! +]SW) that is able to express properties such as acyclicity and
garbage freedom, and admits aPSpace -complete satis�ability problem. To show the PSpace
upper bound of the satis�ability problem for SL([9]1; � ; [�� ; ,! +]SW), we extend the proof method
of the core formulae introduced by E. Lozes in [104]. More precisely, we show that every formula
of SL([9]1; � ; [�� ; ,! +]SW) can be translated into a Boolean combination of \core" formulae, for
which we show a polynomial small model property. Understanding this technique, which is
connected to the �rst-order locality theorem proved by H. Gaifman in [73], gives us a new line of
attack on the problem of designing Hilbert-style proof systems for separation logic. This chapter
covers the second part of the work published in:

[107] A. Mansutti, \Extending propositional separation logic for robustness properties," in Foun-
dations of Software Technology and Theoretical Computer Science. Schloss Dagstuhl{
Leibniz-Zentrum fuer Informatik, 2018, pp. 42:1{42:23.

1.4.2 Part II : Internal calculi for spatial logics.

Despite the amount of research done on the computational complexity of separation logics, we
know comparatively very little in terms of its proof systems. In the second part of the thesis,
we try to shrink this gap by considering the problem of designing sound, complete and internal
(a.k.a. Hilbert-style) proof systems for separation logics and similar logics. We recall that a
proof systems, is complete whenever it can derive every semantically valid formula, and it is
internal if its axioms and rules only use formulae of the logic, without relying on any external
(and richer) theory. Fortunately, the insights given by the core formulae technique discussed
in Chapter 5 facilitate our tasks, allowing us to design natural axiomatisations for these logics.

Here is a roadmap of Part II:

Chapter 6. We present the �rst Hilbert-style proof system for the quanti�er-free separation
logic SL(� ; ��), featuring Boolean connectives and both the separating conjunction and implica-
tion. Thanks to the core formulae technique, our axiomatisation is modular: we start from a
Boolean algebra for the core formulae, and then extend it (twice) to support the connectives�
and �� . This allows us to derive a form of constructive completeness, as advocated in [61]. This
chapter covers the �rst part of the work published in:

1.4. Our Work 11

[58] S. Demri, E. Lozes, and A. Mansutti, \Internal calculi for separation logics," in Computer
Science Logic, ser. LIPIcs, vol. 152. Schloss Dagstuhl{Leibniz-Zentrum fuer Informatik,
2020, pp. 19:1{19:18.

Chapter 7. In order to show that our methodology is reusable in practice, we apply it to
axiomatise an ambient logic calledML(). Ambient logics [39, 34] are modal logics introduced
to verify properties of distributed systems speci�ed in the calculus of Mobile Ambients [40].
Their main feature is given by the composition operator ' that, similarly to the separating
conjunction, asks to spatially split the distributed process into two pieces, one satisfying the
formula ' and the other satisfying the formula . The axiomatisation of ML() follows the same
principles as the one ofSL(� ; ��), and reveals interesting similarities between the two logics.
Moreover, it shows that ML() is as expressive as graded modal logic, a well-known extension of
modal logic K [79, 70]. The results in this chapter are not yet published.

1.4.3 Part III : Mixing multiplicative connectives and modalities.

Puzzled by the relationships between separation logics and ambient logics emerged from the
proof systems ofSL(� ; ��) and ML(), we undertake a comprehensive analysis on the di�erences,
in terms of computational complexity and expressive power, between the separating conjunc-
tion � and the composition operation . We rely on the framework of modal logic in order to
carry out the comparison, and introduce the logicML(�) which is essentially obtained fromML()
by replacing the composition operator with the separating conjunction. Despite the semanti-
cal similarities between ML(�) and ML(), we identify surprising di�erences in terms of their
expressiveness and complexity. Part III roughly covers the work published in:

[9] B. Bednarczyk, S. Demri, R. Fervari, and A. Mansutti, \Modal logics with composition on
�nite forests: Expressivity and complexity," in Logic in Computer Science. ACM, 2020,
pp. 167{180.

Here is a roadmap of Part III:

Chapter 8. We complete the analysis onML() started in Chapter 7. We show that the
satis�ability problem for ML() is AExp Pol -complete, i.e. complete for the class of decision
problems solvable by an alternating Turing machine with exponential runtime and polynomial
number of alternations. Whereas the lower bound is quite simple to establish, the upper bound
is derived from a re�ned translation to graded modal logic, using fundamental properties of the
proof system designed in Chapter 7. TheAExp Pol -completeness ofML() transfers to other
ambient logics from [34].

Chapter 9. We analyseML(�) in terms of expressive power and complexity. First of all, we
prove that ML(�) is strictly less expressive thanML(). This is shown by relying on semantical
connections between the two logics, together with an ad-hoc notion of Ehrenfeucht-Fra•�ss�e games
for ML(�). Surprisingly, even though ML(�) is less expressive thanML(), we discover that its
satis�ability problem is Tower -complete. The chapter ends by formalising the connections
betweenML(�) and separation logic, which allows us to solve some open problems in the realm
of modal separation logics.

12 Chapter 1. Introduction

1.5 Prerequisites and Basic Notations

This thesis takes for granted basic notions of \na•�ve set theory" and mathematical logic (e.g. the
Boolean algebra, standard constructions on sets and relations, �rst and second-order logics),
as well as an understanding of the main concepts of complexity theory (e.g. complexity classes,
many-one reduction, Turing reduction). Some familiarity in �nite model theory and proof theory
is also helpful, but not required. Below, we introduce the notations used throughout the thesis
for the basic concepts from set theory. Their de�nitions are given only when necessary to avoid
confusion. The complete list of symbols is given at the end of the thesis.

Sets. We use the standard notation for the algebra of sets:

� ? : empty set;

� [: union;

� \ : intersection;

� n : di�erence;

� � : Cartesian product;

� � : inclusion;

� = : equality;

� 6= : inequality;

� (: strict inclusion;

� card(�) : cardinality;

� 2(�) : powerset;

� 2 : membership.

The symbol N denotes the set of natural numbers. Giveni; j 2 N, [i; j] def= f k 2 N j i � k� j g.
We write i .� j for the subtraction on natural numbers, i.e. i .� j def= max(0 ; i � j).

Binary Relations. Aside from the operations above, for binary relations we also use:

� (�) � 1 : converse;

� � 1(�) : 1st projection;

� � 2(�) : 2nd projection;

� (�) � : � th composition;

� (�)+ : Kleene plus;

� (�) � : Kleene closure.

Let us recall the de�nition of � th composition, Kleene plus and Kleene closure of a relation.

De�nition 1.1 (� th composition). Let R � S� S be a binary relation. The 0th composition R0

is de�ned as the identity map idS on S. Given � 2 N, the (� +1)th composition is de�ned as:

R� +1 def= f (s; t) 2 S � S j there is e 2 S such that (s; e) 2 R� and (e; t) 2 Rg.

De�nition 1.2 (Kleene plus and Kleene closure). Let R � S � S be a binary relation. Its
Kleene plus isR+ def=

S
� � 1R� . Its Kleene closure (also called Kleene star) isR� def= R0 [R+ .

Notice that, if R is a functional relation, then so is R� .

Functions. We use standard notation for functions:

� S * T : partial functions from S to T,

� S ! T : functions from S to T,

� S * �n T : partial functions from S to T
de�ned on �nitely many values of S.

By seeing a partial function f : S *T as a weakly functional binary relation f � S � T, f inherits
all the operations de�ned for sets and binary relations. We writedom(f) and ran(f) for its domain
and range (or image), respectively. Their de�nitions are recalled below.

De�nition 1.3 (Domain, image of a subset, range). Let f : S * T be a partial function.

(I) dom(f) def= f s 2 S j there is t 2 T such that f(s) = tg,

(II) given S0 � S, f(S0) def= f t 2 T j there is s0 2 S0 such that f(s0) = tg,

1.5. Prerequisites and Basic Notations 13

(III) ran(f) def= f(S).

Notice that dom = � 1 and ran = � 2. Both notations are kept to make the exposition clearer.

Formulae. As usual, formulae are syntactical object from a vocabulary made of constant sym-
bols c1; c2; : : : (e.g. atomic formulae), and operators (predicate or function symbols)P1; P2; : : : ,
each with an associated arity.

We use the standard notions of positions, subformulae, and substitutions, recalled below.

De�nition 1.4 (Positions, subformulae and substitutions). Given a formula ' , the set Pos(') of
its positions is the subset ofN� inductively de�ned as follows (� stands for the empty sequence):

Pos(') def=

8
<

:
f � g if ' is a constant symbol;

f � g [f i� j i 2 [1; n]; � 2 Pos(' i)g if ' = P(' 1; : : : ; ' n); for an n-ary operator P:

The subformula of ' at position � 2 Pos('), written ' j � , is de�ned as follows

' j �
def= ';

(P(' 1; : : : ; ' n)) j i�
def= ' i j � :

Lastly, we write ' []� for the formula obtained from ' by replacing its subformula at position �
with a formula .

2

Separation Logic

Contents
2.1 A Logic for Shared Mutable Data Structures 17

2.1.1 Memory allocation and reachability predicates. 21

2.1.2 The (not so) classical decision problems. 24

2.2 Fragments ofSL(9; � ; ��) and Second-Order Logic 28

2.2.1 Fragments ofSL(9; � ; ��). 28

2.2.2 SL(9; � ; ��) as a Fragment of Second-Order Logic. 30

2.3 Other Separation Logics and Bunched Logics 33

2.3.1 Symbolic-Heaps and (bi)abduction. 33

2.3.2 Modal Separation Logics. 34

2.3.3 BooleanBI. 37

15

2.1. A Logic for Shared Mutable Data Structures 17

In this preliminary chapter

We present the �rst-order fragment of separation logic, that serves us as a way to introduce
standard notions from the separation logic literature. After familiarising with these notions, we
examine landmark results on the decidability of classical decision problems (e.g. satis�ability)
for �rst-order separation logic. The last part of the chapter is dedicated to a round-up of the
separation logic literature. First of all, we connect separation logic with weak second-order
logics, which allows us to get a better grasp on the decidability status of �rst-order separation
logic. Afterwards, we introduce well-known fragments of �rst-order separation logic, such as the
symbolic-heap fragment and modal separation logic. The chapter ends by placing separation
logic in the more general framework of the logic of bunched implications, which deepens our
understanding of the various components of the logic.

2.1 A Logic for Shared Mutable Data Structures

As one can expect, twenty years of research in separation logic led to numerous variants and
extensions of the original logic, some of which are discussed in Section 2.3. For our purposes,
a good starting point is given by the separation logicSL(9; � ; ��) de�ned in [22], which closely
follow the initial presentation given by J. Reynolds in its seminal work [124].

Syntax. We useVAR = f x; y; z; : : :g to denote the countably in�nite set of program variable
names(or variables, in short). The formulae ' of the �rst-order separation logic SL(9; � ; ��) and
its atomic formulae � are built from the grammars below (wherex, y, z 2 VAR):

� := > (true)

j emp (empty predicate)

j x = y (equality predicate)

j x ,! y (points-to predicate)

' := � (atomic formulae)

j ' ^ ' j : ' (Boolean connectives)

j ' � ' (separating conjunction)

j ' �� ' (separating implication)

j 9z ' (�rst-order quanti�cation)

The separating conjunction � and the separating implication �� are also called thestar and
the magic wand, respectively. Following the terminology of the logic of bunched implications
[113] (see Section 2.3) as well as linear logic [78], we often refer to these two operators as two
multiplicative connectives.

Given a formula ' , we write bv(') and fv(') for the sets ofbound variablesand free variables
occurring in ' , respectively. A variablex is bound(resp. free) if it occurs (resp. does not occur) in
the scope9x of a �rst-order quanti�cation. A formula is said to be closedwheneverfv(') = ? .
Unless otherwise speci�ed, thesize j' j of a formula ' is understood as its tree size, i.e. the
number of symbols needed to encode it as a tree.

Memory States. Separation logic is interpreted on memory states, which can be seen as
abstractions of the heap/RAM memory model used as a backbone for the semantics of many
programming languages (e.g.Java and C++). Addresses and data in the memory are all ab-
stracted with a countably in�nite set of locations, denoted by LOC. Furthermore, a memory
state contains information on the location assigned to each program variable, as well as depen-
dencies between locations to represent pointers and their stored addresses. Memory states are
formally de�ned as follows.

18 Chapter 2. Separation Logic

z

x y

v w

Figure 2.1: A memory state.

z

x y

v w
?

z

x y

v w

Figure 2.2: Two disjoint memory states.

De�nition 2.1 (Memory state). A memory state is a pair (s; h) where s : VAR! LOC is called
the store, and h : LOC* �n LOC is a partial function with �nite domain, called the heap.

Given a heap h, each element indom(h) is understood as amemory cell of h. Informally, we
can see the heap as a �nite functional graph, having locations as vertices. The set of locations
is however in�nite, and the store assigns some of them to program variables. As expected, two
distinct locations cannot be assigned to the same variable. Figure 2.1 shows a memory state.
Locations are denoted by small boxes (), and arrows represent the heap. Sometimes, we write
the pair of locations (`1; `2) using the notation `1 7! `2 and calling it an arrow, as it stresses that
the pair belongs to a heap. For the same reason, giveǹ1; : : : ; `n� 1 distinct locations, and a
location `n (possibly equal to one of the �rst n� 1 locations), we write f `1 7! `2 7! `3 7! : : : 7! `ng
for the heap f (`1; `2); (`2; `3); : : : ; (`n� 1; `n)g. This heap witnesses a directed path going from
the location `1 to the location `n , where cycles are permitted.

De�nition 2.2 (Path) . Given a heap h, a (�nite) path is a sequence of locations (`1; : : : ; `n)
such that h(` j) = ` j +1 holds for all j 2 [1; n � 1]. Such a pathgoes from`1 to `n .

As already discussed in Section 1.1 separation logic allows for modular analysis of memory
states by means of its two multiplicative connectives� and �� . On the model side, in order to
achieve its modularity the class of memory states is endowed with a union operator on heaps
that allows to simulate how memory states can be composed or decomposed.

De�nition 2.3 (Disjoint heaps and their union). (Disjointness) Two heaps h1 and h2 are said
to be disjoint , written h1? h2, whenever their domains are disjoint, i.e.dom(h1) \ dom(h2) = ? .
(Union) When h1? h2 holds, theheap-unionh1+ h2 of h1 and h2 is de�ned as the set unionh1[h2.
If h1? h2 does not hold, thenh1 + h2 is not de�ned.

More explicitly, given two disjoint memory states h1 and h2, for every location ` 2 LOC, we
have (h1 + h2)(`) = if ` 2 dom(h1) then h1(`) else h2(`). Two paths are said to bedisjoint
if their underlying heaps are disjoint. We lift the notion of disjoint heaps to memory states, and
say that two memory states (s; h1) and (s; h2) are disjoint wheneverh1? h2 holds. Notice that
this notion of disjointness requires the two memory states to share the same store. Figure 2.2
shows two disjoint memory states. As we can see, disjointness intuitively means that every two
arrows taken from di�erent heaps cannot share the same source. One can check that performing
the heap-union on the heaps in Figure 2.2 yields the memory state in Figure 2.1. The notion of
heap-union naturally leads to the one of subheap.

De�nition 2.4 (Subheap). The heap h0 is a subheapof the heap h wheneverh0 � h holds, i.e.
when dom(h0) � dom(h) and h0(`) = h(`) holds for every memory cell ` 2 dom(h0). Similarly,
the heap h0 is a strict subheapof h wheneverh0(h holds.

2.1. A Logic for Shared Mutable Data Structures 19

(s; h) j= > always,

(s; h) j= emp i� h = ? (i.e. the heap is empty),

(s; h) j= x = y i� s(x) = s(y),

(s; h) j= x ,! y i� h(s(x)) = s(y),

(s; h) j= ' ^ i� (s; h) j= ' and (s; h) j= ,

(s; h) j= : ' i� (s; h) 6j= ' ,

(s; h) j= ' � i� there are h1 and h2 s.t. h1 + h2 = h, (s; h1) j= ' and (s; h2) j= ,

(s; h) j= ' �� i� for every heap h0, if h0? h and (s; h0) j= ' then (s; h + h0) j= ,

(s; h) j= 9z ' i� there is ` 2 LOC such that (s[z `]; h) j= ' .

Figure 2.3: Satisfaction relation for SL(9; � ; ��), with respect to a memory state (s; h).

Alternatively, the notion of subheap can be characterised as follows:

h1 � h i� there is h2 such that h1? h2 and h1 + h2 = h.

In this characterisation, h1 is found to be a subheap ofh if another heap can be added toh1

by means of heap-union, yieldingh. From the de�nition of heap-union, it should be evident
that if such a heap exists, then it must be h n h1 (where n is the set di�erence and we seeh
and h0 as binary relations). The two heaps represented in Figure 2.2 are both subheaps of the
one represented in Figure 2.1.

We borrow the notion of (non-empty) weakly connected component of a graph, and rede�ne
it for heaps. This notion is quite useful when reasoning on the structure of a memory state.

De�nition 2.5 (Weakly connected component). A weakly connected componentof a heaph is
a non-empty subheaph1 of h such that

1. the reexive, symmetric and transitive closure of h1 forms a clique, i.e.

(h1 [h� 1
1) � = (dom(h1) [ran(h1)) � (dom(h1) [ran(h1)),

2. h1 is maximal, i.e. the property (1) does not hold for heapsh2 satisfying h1 (h2 � h.

The heap in Figure 2.1 has two weakly connected components:

and

Semantics. Let us consider a memory state (s; h). We introduce the satisfaction relation j=
for the formulae of SL(9; � ; ��), and say that (s; h) satis�es ' whenever (s; h) j= ' holds. As
usual, if (s; h) satis�es ' then (s; h) is called a model of ' . This notion is extended to sets of
formulae: (s; h) is a model for the set S whenever it is a model for every formula inS. If S
has a model, then it is said to beconsistent. The de�nition of j= is formalised in Figure 2.3.
Skipping the tautology > and the Boolean connectives, with classical semantics, a �rst interesting

20 Chapter 2. Separation Logic

ingredient of SL(9; � ; ��) is already given by the formula emp. This formula holds on (s; h)
whenever the heaph is empty, and provides a useful tool for program veri�cation. Roughly
speaking, with empwe can check for memory leaks by verifying that a functionF called on the
empty heap also returns on the empty heap. In a Floyd{Hoare proof system this corresponds
to a proof of validity for the triple f empgF f empg. The formula x = y simply states that the
same location is assigned to both the variablesx and y. The formula x ,! y goes one step
further, and states that the location assigned to the variablex points to the location assigned
to y. For instance, the memory state in Figure 2.1 satis�esx ,! z and y ,! z. Moreover, as
the two variables x and y correspond to the same location, this memory state also satis�es the
formula x = y. For the separating conjunction, (s; h) j= ' � states that it is possible to split
the heaph into two disjoint heaps h1 and h2 so that the memory state (s; h1) satis�es ' , whereas
the memory state (s; h2) satis�es . Then, we can easily see that the following relation holds:

if (s; h) j= x ,! y � z ,! v then (s; h) j= x 6= z,

where x 6= z is a shortcut for : (x = z). Indeed, suppose thath can be split into two disjoint
heapsh1 and h2 such that (s; h1) j= x ,! y and (s; h2) j= z ,! v. Then, both s(x) 2 dom(h1)
and s(y) 2 dom(h2) hold, leading to s(x) 6= s(y) by disjointness of the two heaps. This im-
plication perfectly shows one of the useful properties of separation logic: the ability to encode
inequalities in linear space. Indeed, the formulax1 ,! y1 � x2 ,! y2 � � � � � xn ,! yn implicitly states
that for every two distinct i; j 2 [1; n], xi and xj do not correspond to the same location. We
can translate this formula into one that only uses classical connectives, but unfortunately this
requires a quadratic amount of inequalities:

x1 ,! y1 ^ x2 ,! y2 ^ � � � ^ xn ,! yn ^
V

i < j 2 [1;n] xi 6= xj .

where given a setS = f e1; : : : ; eng, we write (e1) ^ � � � ^ (en) using the standard nota-
tion

V
e2 S (e). Thanks to this property of the separating conjunction, when it comes to Floyd-

Hoare proof systems, assertions written using separation logic can be manipulated in an easy
and modular way that seems out of reach for classical logics.

Let us now consider the separating implication. (s; h) j= ' �� states that whenever we
consider a heaph0 disjoint from h and ful�lling (s; h) j= ' , the heaph + h0 ful�ls (s; h+ h0) j= .
As we show in the next section and chapters, the ability to extend the current heap with
the magic wand leads to very expressive logics. We introduce another standard connective of
separation logic, calledseptraction (see e.g. [137]). It is denoted by�~ and de�ned as the right
dual of the separating implication, i.e. ' �~ def= : (' �� :). Its semantics is as follows:

(s; h) j= ' �~ i� there is a heap h0 such that h0? h, (s; h0) j= ' and (s; h + h0) j= .

Lastly, let us focus on the �rst-order quanti�cation. In the de�nition given in Figure 2.3, the
notation s[z `] stands for the store obtained froms by only changing the evaluation ofz to `.
Formally, for every x 2 VAR, s[z `](x) def= if x = z then ` else s(x). Then, (s; h) j= 9z '
whenever it is possible to assign a location toz so that the resulting memory state satis�es ' .

The contradiction, classical connectives, and the universal quanti�er are derived as usual:

2.1. A Logic for Shared Mutable Data Structures 21

? def= :> (false)

') def= : (' ^ :) (implication)

' _ def= : ') (disjunction)

8z ' def= :9 z : ' (universal quanti�er)

' , def= (')) ^ () ') (double implication)

As shown by these formulae, we adopt the standard precedence between classical connectives,
and extend it for the other operators as follows:f: ; 9g > f^ ; _ ; �g > f) ; , ; �� ; �~ g. For exam-
ple, the separating conjunction � has a higher precedence than the separating implication�� ,
and it has the same precedence as the (classical) conjunction̂. So, the formula ' � �� � should
be read as (' �) �� � .

2.1.1 Memory allocation and reachability predicates.

We now focus our attention at some well-known formulae of the separation logic literature (see
e.g. [124, 22, 56]) that are expressible inSL(9; � ; ��). Beside providing a way to become more
familiar with the various ingredients of the logic, some of these formulae are extensively used in
the following chapters of the thesis. In what follows, let (s; h) be a memory state.

Alloc. We start with the formula x ,! , generally referred to asalloc. This formula is intended
to hold when the location assigned to the variablex is a memory cell. Formally,

(s; h) j= x ,! if and only if s(x) 2 dom(h).

By relying on the �rst-order quanti�cation, x ,! can be easily de�ned as9y x ,! y, where y is
an arbitrary variable that is syntactically di�erent from x. However, we use another (common)
de�nition, which allows us to show some avour of the magic wand: x ,! def= x ,! x �� ? .

Proposition 2.6. (s; h) j= x ,! x �� ? if and only if s(x) 2 dom(h).

Proof. ()): Suppose (s; h) j= x ,! x �� ? and, ad absurdum, assume thats(x) is not a memory
cell of h. Then, the heap h0 = f (s(x); s(x))g is disjoint from h and ful�ls (s; h) j= x ,! x.
From (s; h) j= x ,! x �� ? we then reach the contradictory statement (s; h + h0) j= ? .
((): If s(x) is a memory cell ofh then every heaph0 ful�lling (s; h0) j= x ,! x cannot be disjoint
from h, leading directly to (s; h) j= x ,! x�� ? .

Size. Another formula that is often considered in the literature is the size formula size � � ,
where � 2 N. Again, let us �rst introduce its intended semantics, to then see its de�nition:

(s; h) j= size � � if and only if card(h) � � .

This formula can be de�ned as: emp� � � � � : empwhere : empappears� times, hence essentially
stating that the heap can be split into � disjoint non-empty subheaps. Formally,

size � 0 def= > , size � 1 def= : emp, for every � � 1, size � � +1 def= size � � � : emp.

The correctness of this de�nition should be transparent. We write size = � as a shortcut for the
formula size � � ^ : size � � +1, i.e. the formula satis�ed by (s; h) if and only if card(h) = � .

22 Chapter 2. Separation Logic

Alloc-back and Reach-plus. We introduce the alloc-backformula ,! x def= 9y y ,! x (wherey
is syntactically di�erent from x), which states that there is a memory cell pointing to the location
assigned tox, i.e. s(x) 2 ran(h). In view of the similarities with the formula x ,! , it is quite
normal to ask ourselves if also ,! x can be rewritten without using the the �rst-order quan-
ti�cation. Even though the answer is no (a proof of this is given in Chapter 6), we can achieve
an equivalent quanti�er-free formula by enriching SL(9; � ; ��) with the reachability predicate ,! +

(which we call reach-plus) that corresponds to the transitive closure of ,! . The semantics of
this predicate is de�ned as follows:

(s; h) j= x ,! + y if and only if (s(x); s(y)) 2 h+ ,

where we recall that the relation h+ corresponds to the transitive closure ofh, as de�ned
in Section 1.5. Informally, (`; ` 0) 2 h+ means that h witnesses a non-empty directed path going
from the location ` to the location `0. For example, by considering (s; h) as the memory state
in Figure 2.1, (s(v); s(w)) and (s(z); s(z)) are in h+ , but (s(x); s(y)) 62h+ (as the path must be
non-empty) and (s(w); s(v)) 62h+ (as there is no directed path going froms(w) to s(v)). By
using this operator, we can capture the semantics of ,! x with the formula

x ,! x _
�
> � (: x ,! ^ ((size = 1 ^ : x ,! + x) �~ x ,! + x))

�
.

Proving this equivalence, as partially done below, is a good exercise to familiarise with the
multiplicative connectives of separation logic.

Proposition 2.7. s(x) 2 ran(h) holds if and only if (s; h) satis�es the following formula

x ,! x _
�
> � (: x ,! ^ ((size = 1 ^ : x ,! + x) �~ x ,! + x))

�
.

Proof. ((): If (s; h) j= x ,! x holds then s(x) 2 ran(h) follows trivially. Hence, let us consider
the case where (s; h) j= >�

�
: x ,! ^ ((size = 1 ^: x ,! + x) �~ x ,! + x)

�
. By de�nition of the oper-

ator � , there is a subheaph1 � h such that (s; h1) j= : x ,! ^ ((size = 1 ^ : x ,! + x) �~ x ,! + x).
Then, following the de�nitions of conjunction and septraction, we obtain

(A) (s; h1) j= : x ,! , therefore s(x) 62dom(h1) holds by Proposition 2.6;

(B) (s; h2) j= size = 1 ^ : x ,! + x , therefore card(h2) = 1 and (s(x); s(x)) 62h+
2 hold;

(C) (s; h1 + h2) j= x ,! + x , therefore (s(x); s(x)) 2 (h1 + h2)+ holds.

From (C), there is � � 1 such that (s(x); s(x)) 2 (h1 + h2) � . However, � must be greater than 1,
as otherwise eitherh1(s(x)) = s(x) or h2(s(x)) = s(x) hold, in contradiction with (A) and (B),
respectively. Thus, h1 + h2 witnesses a path of length� � 2 going from s(x) to s(x). Let us
picture this path as follows:

f s(x) 7! `1 7! `2 7! : : : 7! ` � � 2 7! ` � � 1 7! s(x)g, where ` � � 1 6= s(x) (since � � 2).

From (A), it cannot be that the �rst arrow of the path, i.e. s(x) 7! `1 in the representation
above, is an element ofh1. Hence, it must be an element ofh2. More precisely, it must be
the only element of h2 (directly by (B)). Therefore, the last arrow of the path, i.e. ` � � 1 7! s(x)
in the representation above, can only be an element ofh1. We conclude that s(x) 2 ran(h1)
holds, which yields s(x) 2 ran(h) by h1 � h. We leave the proof of the other direction to the
reader.

2.1. A Logic for Shared Mutable Data Structures 23

y

x

Figure 2.4: A memory state satisfying
8x (x 6= y ^ ,! x) x ,!).

y

x

Figure 2.5: A memory state satisfying
8x: (,! x � ,! x).

Reachability predicates. Interestingly enough, the reachability predicate x ,! + y introduced
for alloc-back can be de�ned inSL(9; � ; ��). More precisely, this predicate can be de�ned in the
two-variable fragment the logic, i.e. the fragment whereVAR is restricted to only two variable
names (in our case, casex and y). In order to stay in this fragment, in the de�nition of x ,! + y
provided below the formulae ,! x and ,! y stand for 9y y ,! x and 9x x ,! y, respectively.

x ,! + y def= > �
�
x ,! ^ (,! x) x = y) ^ 8 x: (,! x � ,! x) ^ 8 x(x 6= y ^ ,! x) x ,!)

�
:

Since equivalent formulae are already de�ned in [22, 52, 53], instead of formally proving the
correctness ofx ,! + y, let us try to understand the intention behind its de�nition. Let (s; h0) be
a memory state satisfyingx ,! + y. With its pre�x \ >� ", the formula x ,! + y imposes the existence
of a subheaph � h0 such that the memory state (s; h) satis�es the following three formulae

1. x ,! ^ (,! x) x = y), 2. 8x : (,! x � ,! x), 3. 8x (x 6= y ^ ,! x) x ,!).

Let us �rst consider the formula (3). Essentially, this formula states that for every location
` 2 dom(h), either h(`) = s(y) or h(`) 2 dom(h). Since the heap is �nite, this property means
that if h witnesses a non-empty directed path ending on a locatioǹ 62dom(h), then ` must
be assigned toy. In other words, ran(h) n dom(h) � f s(y)g. Figure 2.4 shows a memory state
satisfying (3). Notice that every weakly connected component in this memory state has a cycle,
with the exception of the one involving the location s(y). On the other hand, the memory state
in Figure 2.5, say (s1; h1), does not satisfy this property, as there are two locations (highlighted
with a black box) that are di�erent from s1(y) but belong to ran(h1) n dom(h1). Let us
move to the formula (2), which states that no location can be pointed by two distinct memory
cells, i.e. for every `; ` 0 2 dom(h), if h(`) = h(`0) then ` = `0. Figure 2.5 shows a memory
state satisfying (2). Notice how every weakly connected component is either a linear structure
or a cycle. This property is not satis�ed by the memory state in Figure 2.4, as there are
locations (again, highlighted with black boxes) pointed by multiple memory cells. Now, since
(s; h) satis�es (1), we have s(x) 2 dom(h). As this memory state also satis�es (2), s(x) either
belongs to a cycle or to a linear structure. Since (s; h) satis�es (3), if s(x) belongs to a linear
structure, then the linear structure ends in s(y) (which is then not in dom(h)) and therefore
(s(x); s(y)) 2 h+ . If instead s(x) belongs to a cycle (i.e. (s(x); s(x)) 2 h+) then by de�nition s(x)
is pointed by a memory cell in dom(h). Thus, from the right conjunct ,! x) x = y of the
formula (1) we derive that s(x) = s(y), which allows us to conclude again that (s(x); s(y)) 2 h+ .

We write x ,! � y for the formula x = y _ x ,! + y (called reach-star). As the notation might
suggest, the semantics ofx ,! � y can be given in terms of the Kleene closure ofh, as shown below:

(s; h) j= x ,! � y if and only if (s(x); s(y)) 2 h� .

Informally, (s; h) j= x ,! � y if h witnesses a (possibly empty) path going froms(x) to s(y).

24 Chapter 2. Separation Logic

Strict variants of points-to and reachability. Very often (see e.g. [124, 44, 93]), separation
logic is de�ned by considering the so-calledstrict predicates x 7! y and ls (x; y) (where ls stands
for list-segment). Given a memory state (s; h), these two predicates are de�ned as

(s; h) j= x 7! y i� f s(x)g = dom(h) and h(s(x)) = s(y).

(s; h) j= ls (x; y) i� for every � 2N, h� (s(x)) = s(y) if and only if � = card(h).

Roughly speaking, these formulae are analogous ofx ,! y and x ,! � y but their satisfaction also
requires that the formula cannot hold in any strict subheap. For instance, ls (x; y) is satis�ed
wheneverh describes a list (hence the name list-segment): a directed linear structure starting
from s(x) and ending with s(y). In particular, if s(x) = s(y) then the heap must be empty.
For fragments of separation logic featuringemp, the separating conjunction and the classical
negation, taking ,! and ,! � instead of 7! and ls is just a matter of taste. Indeed, the two suites
of operators are interde�nable. To show this, given a formula ' , we write strict (') for the
formula ' ^ : (: emp� '), that has the following semantics:

(s; h) j= strict (') if and only if (s; h) j= ' and for every h0 (h, (s; h0) 6j= ' .

Then, 7! and ,! , as well asls and ,! � , are related following the four identities below:

(s; h) j= x ,! y i� (s; h) j= x 7! y � > , (s; h) j= x 7! y i� (s; h) j= strict (x ,! y),

(s; h) j= x ,! � y i� (s; h) j= ls (x; y) � > , (s; h) j= ls (x; y) i� (s; h) j= strict (x ,! � y).

2.1.2 The (not so) classical decision problems.

We conclude this introductory section on separation logic by displaying some features that
make SL(9; � ; ��) theoretically interesting. First, let us recall the concepts of validity and entail-
ment. For simplicity, we de�ne them for (separation) logics interpreted on memory states, and
refer the reader to [17] for their general de�nition. We write j= ' to state that a formula ' is
valid (alternatively, ' is a tautology), i.e. ' is satis�ed by every memory state. Instead,' is said
to entail the formula , written ' j= , whenever every memory state satisfying' also satis-
�es . We write ' � when the two formulae ' and are equivalent, that is when both ' j=
and j= ' hold. Together with the model-checkingproblem and the satis�ability problem, de-
ciding (semi-)algorithmically whether validity and entailment hold are among the most classical
decision problems in logic. The description of these four problems is given in Figure 2.6.

For logics that are able to express the classical implication, as for instanceSL(9; � ; ��), it is
well-known that validity and entailment are equireducible under many-one reductions. Indeed,
to check whether j= ' holds we can alternatively ask whether the entailment> j= ' is true.
Similarly, the entailment ' j= can be veri�ed by checking for the truth of j= ') . No
further many-one reductions can be established between these four decision problems without
requiring additional hypothesis on their complexity/decidability or on the expressive power of
the logic. For instance, the following relation holds between validity and satis�ability:

' is not valid if and only if : ' is satis�able.

Therefore, we can check for the validity of' by simply querying a procedure for satis�ability on
input : ' . If the procedure replies \yes" then ' is not valid. If the procedure replies \no" then
the formula is valid. However, this is not a many-one reduction (it is actually an instance of
a Turing reduction), as we are negating the answer obtained from the satis�ability procedure.

2.1. A Logic for Shared Mutable Data Structures 25

model-checking: Input: A formula ' and a memory state (s; h).

Question: Does (s; h) satisfy ' ? (i.e. is (s; h) j= ' true?)

satis�ability: Input: A formula ' .

Question: Is there a memory state (s; h) satisfying ' ?

validity: Input: A formula ' .

Question: Doesj= ' hold?

entailment: Input: A pair of formulae (';).

Question: Does' j= hold?

Figure 2.6: The decision problems of model-checking, satis�ability, validity and entailment.

In fact, the above double implication leads to a many-one reduction from unvalidity (i.e. the
complement of validity) to satis�ability.

Surprisingly, for SL(9; � ; ��) (as well as in many other separation logics) the landscape is
quite di�erent: the four decision problems in Figure 2.6 are all many-one equireducible.

Theorem 2.8. The problems of model-checking, satis�ability, validity and entailment for the
logic SL(9; � ; ��) are all many-one equireducible (under log-space reductions).

We already saw that entailment reduces to validity (and vice versa). To prove this result it
is then su�cient to show that the model-checking problem reduces to the entailment problem,
that the validity problem reduces to the satis�ability problem, and that the satis�ability problem
reduces to model-checking. To perform these reductions we �rst need to introduce the notions
of X-heap-isomorphicmemory states [56].

De�nition 2.9 (X-heap-isomorphism). Let X � VAR. Two memory states (s1; h1) and (s2; h2)
are X-heap-isomorphic, written (s1; h1) ' X (s2; h2), if there is a function f : LOC! LOC s.t.

1. f is a bijection, 2. h2 = f (f(`1); f(`2)) j (`1; `2) 2 h1g, 3. for every x 2 X, f(s1(x)) = s2(x).

A function f satisfying these conditions is called aX-heap-isomorphismfrom (s1; h1) to (s2; h2).

In this de�nition, the conditions (1) and (2) essentially state that f is a graph isomorphism
between h1 and h2, while the condition (3) extends this isomorphism to the variables in X. It
is easy to check that ' X is an equivalence relation. A folklore result states that no formula
of SL(9; � ; ��) written with free-variables in X can distinguish between twoX-heap-isomorphic
memory states. The precise statement is given below.

Proposition 2.10. Let X� VAR and let (s1; h1), (s2; h2) be memory states s.t. (s1; h1)' X(s2; h2).
Given ' in SL(9; � ; ��) whose free variables are amongX, (s1; h1) j= ' if and only if (s2; h2) j= ' .

Since a slight generalisation of this result is proven in Section 3.1 (see Lemma 3.3), we omit the
proof of this proposition (which carries out by structural induction on the formula). Given a
formula ' , notice that this result shows us how to de�ne a �nite representation of a memory
state (s; h) satisfying ' : it is su�cient to restrict s to the variables occurring in ' (thus including
the quanti�ed variables, in order to preserve the semantics of the �rst-order quanti�cation), and

26 Chapter 2. Separation Logic

then encode the memory state as a pair of �nite binary relations. This is important for the
model-checking problem, where the memory state is part of the input. Thesize of this �nite
representation of (s; h) is de�ned naturally by considering a reasonably succinct encoding of
the binary relations s (restricted as discussed above) andh. We are now ready to reduce the
model-checking problem to the entailment problem.

Lemma 2.11. Model-checking forSL(9; � ; ��) is log-space reducible to its entailment problem.

Proof. In short, the reduction is achieved by internalising a memory state as a formula of
SL(9; � ; ��) and relying on Proposition 2.10. Let (s; h) and ' be a memory state and a formula
of SL(9; � ; ��), respectively. We start by constructing a polynomial-size formula describing (s; h).
Let X = fv(') and let L be the �nite set of locations in dom(h) [ran(h) [f s(x) j x 2 Xg. For
every location ` 2 L, we introduce a distinct variable name x` that does not appear in ' . We
write � hs; hi for the following formula in SL(9; � ; ��):

� hs; hi def=
� �

(`1 ;`2)2 h

x`1 7! x`2

�
^

� ^

x2 X

x = xs(x)
�

^
� ^

`1 ;`22 L
`16= `2

x`1 6= x`2

�

where given a setS = f e1; : : : ; eng, we write � e2 S (e) for the formula (e1) � � � � � (en)
(similarly to the de�nition of

V
e2 S (e)). Informally, � hs; hi describes the memory state (s; h)

by internalising every (`1; `2) 2 h with the strict points-to predicate x`1 7! x`2 , and requiring that
x`1 6= x`2 holds for every two distinct locations `1; `2 2 L. Moreover, since the strict points-to
predicates are separated with the operator� , every heap of a memory state satisfying �hs; hi
must be graph-isomorphic to h. Lastly, the store is internalised by means of the conjunctions
V

x2 Xx = xs(x) . The formula � hs; hi enjoys the two following properties:

A. � hs; hi is satis�able, B. for every (s0; h0), if (s0; h0) j= � hs; hi then (s0; h0) ' X (s; h).

The proofs of (A) and (B) are quite straightforward. For (A), from the de�nition of � hs; hi
it is quite clear that this formula is satis�ed by the memory state (s[x` ` j ` 2 L]; h),
where s[x` ` j ` 2 L] is the store obtained from s by assigning each locatioǹ 2 L to x` . For
(B), given a memory state (s0; h0) satisfying � hs; hi , we can obtain aX-heap-isomorphism from
(s0; h0) to (s; h) by simply constructing a bijection f such that f(s(x`)) = ` holds for every ` 2 L.
Details are omitted for the sake of brevity.

We can now derive the central property of � hs; hi :

(s; h) j= ' if and only if the entailment � hs; hi j= ' holds.

()): Taking the contrapositive, suppose that � hs; hi j= ' does not hold, and therefore that there
is a memory state (s0; h0) such that (s0; h0) j= � hs; hi but (s0; h0) 6j= ' . From (B), (s0; h0) ' X (s; h)
and directly from Proposition 2.10, we conclude that (s; h) j= ' does not hold.
((): Suppose that � hs; hi j= ' holds. Let us consider a memory state (s0; h0) satisfying � hs; hi
(its existence is guaranteed by (A)). From � hs; hi j= ' we derive (s0; h0) j= ' . Moreover, from
(s0; h0) j= � hs; hi we have (s0; h0) ' X (s; h) by (B). Then, since X= fv('), by Proposition 2.10 we
derive (s; h) j= ' .

The above equivalence leads to a many-one reduction: to check whether (s; h) j= ' holds we
can check for the entailment � hs; hi j= ' , where � hs; hi is a log-space computable polynomial-size
(w.r.t. card(fv(')) and card(h)) encoding of (s; h) into a formula of SL(9; � ; ��).

In order to achieve the two other reductions (from validity to satis�ability and from sat-
is�ability to model-checking), we internalise the quanti�cation on memory states required by
validity and satis�ability by using the �rst-order quanti�cation and the separating implication.

2.1. A Logic for Shared Mutable Data Structures 27

Lemma 2.12. (I) Validity for SL(9; � ; ��) is log-space reducible to its satis�ability problem.
(II) Satis�ability for SL(9; � ; ��) is log-space reducible to its model-checking problem.

Proof of (I) . Let ' be a formula of SL(9; � ; ��) such that f x1; : : : ; xng = fv('). In order to
prove (I) it is su�cient to show the following equivalence:

' is valid if and only if the formula emp̂ 8 x1 : : : 8xn (> �� ') is satis�able.

()): Suppose' to be valid. Hence, for all n locations `1; : : : ; `n 2 LOC, every stores and every
heap h, we have (s[xi ` i j i 2 [1; n]]; h) j= ' . Thanks to the semantics of the operator�� ,
we can internalise the universally quanti�ed heap h and derive that for every store s and all n
locations `1; : : : ; `n 2 LOC, (s[xi ` i j i 2 [1; n]]; ?) j= >�� ' holds. Directly from the de�nition
of the �rst-order quanti�cation we derive that (s;?) j= 8x1 : : : 8xn (> �� ') holds for every store
s. Moreover, (s;?) j= empso that the formula emp̂ 8 x1 : : : 8xn (> �� ') is satis�able.
((): Suppose that emp̂ 8 x1 : : : 8xn (> �� ') is satis�ed by a memory state (s; h). Since we
have (s; h) j= emp, the heap h must be empty. Thus, from the semantics of8x1 : : : 8xn (> �� ')
we conclude that

A. for all n locations `1; : : : ; `n 2 LOC and every heaph0, (s[xi ` i j i 2 [1; n]]; h0) j= ' .

Let us now consider a memory state (s1; h1), and show that (s1; h1) j= ' (leading to ' being
valid). From (A), the memory state (s[xi s1(xi) j i 2 [1; n]]; h1) satis�es ' . It is quite clear
that (s1; h1) and (s[xi s1(xi) j i 2 [1; n]]; h1) are f x1; : : : ; xng-heap isomorphic. Then, since
f x1; : : : ; xng = fv('), by Proposition 2.10 we conclude that (s1; h1) j= ' .

Proof of (II) . Let ' be a formula ofSL(9; � ; ��) such that f x1; : : : ; xng = fv('). Similarly to (I),
in order to prove (II) it is su�cient to show the following equivalence:

' is satis�able if and only if (s; ?) j= 9x1 : : : 9xn (' �~ >) holds.

where s is an arbitrary (�xed) store.
()): Suppose that ' is satis�ed by a memory state (s1; h1). First, we update the store s
into s[xi s1(xi) j i 2 [1; n]], so that the memory state (s[xi s1(xi) j i 2 [1; n]]; h1) is
f x1; : : : ; xng-heap isomorphic with (s1; h1). By Proposition 2.10, we then conclude that the
memory state (s[xi s1(xi) j i 2 [1; n]]; h1) satis�es ' . Weakening this last statement, we have
that there are n locations `1; : : : ; `n and a heaph1 such that (s[xi ` i j i 2 [1; n]]; h1) j= ' .
Thanks to the semantics of the septraction�~ , we can internalise the existentially quanti�ed heap
h1 and derive that there are n locations `1; : : : ; `n such that (s[xi ` i j i 2 [1; n]]; ?) j= ' �~ > .
From the de�nition of �rst-order quanti�er we conclude that (s;?) j= 9x1 : : : 9xn (' �~ >) holds.
((): Suppose that (s;?) j= 9x1 : : : 9xn (' �~ >) holds. Then, directly from the semantics of �rst-
order quanti�cation and septraction, we conclude that there are n locations `1; : : : ; `n 2 LOC
and a heaph such that (s[xi ` i j i 2 [1; n]]; h) j= ' . Thus, ' is satis�able.

The two Lemmata 2.11 and 2.12 directly prove Theorem 2.8. It should be noted that
similar results can be achieved for many variants of separation logics. For instance, an analo-
gous theorem can already be shown for the quanti�er-free fragment ofSL(9; � ; ��) (as discussed
in Chapter 6). The fact that, in separation logic, the four classical decision problems are all
many-one equireducible has a profound impact on the results and techniques used in this the-
sis. For example, a standard way to provide an algorithm for the satis�ability problem consists
into showing a upper bound on the smallest model that must satisfy a formula' , and then
check for (s; h) j= ' on every memory state (s; h) below that bound. However, this requires

28 Chapter 2. Separation Logic

an algorithm for the model-checking problem, which by Theorem 2.8 is equivalent to satis�a-
bility. Moreover, Theorem 2.8 implies that it is not possible to provide sound and complete
axiom system of undecidable separation logics. Recall that an axiomatisable logic must have a
recursively enumerable(RE) validity problem. Suppose the validity problem of SL(9; � ; ��) to be
undecidable but recursively enumerable. Then, by Theorem 2.8 its satis�ability problem isRE ,
which implies that unvalidity is RE . However, as both validity and its complement are found to
be RE , we conclude that validity is recursive, hence decidable, a contradiction. The satis�abiilty
problem of SL(9; � ; ��) has been proven undecidable in [22], which leads to the following result.

Theorem 2.13. Model-checking, satis�ability, validity and entailment of SL(9; � ; ��) are not RE .

2.2 Fragments of SL(9; � ; ��) and Second-Order Logic

Now that we are quite familiar with SL(9; � ; ��), we look at various known complexity results
concerning its fragments. For the moment, we only consider fragments that are closed under
Boolean connectives. Some of these results can be motivated by looking at the translation
of SL(9; � ; ��) into second-order logic. We take this opportunity to introduce weak (monadic)
second-order logic and recall some landmark results on its decidability status.

2.2.1 Fragments of SL(9; � ; ��).

Since a good chunk of this thesis deals with the computational complexity of various separa-
tion logics, we need to be rather systematic with the notation in order not to get lost in the
various fragments, extensions and variants we consider. Unless otherwise speci�ed, we propose
to write SL for a logic interpreted on memory states and featuring> , the three predicatesemp,
x = y and x ,! y, and Boolean connectives. Additional elements are added in brackets following
the lexeme SL. We already used this notation for the �rst-order separation logic SL(9; � ; ��),
which is indeed obtained from the logicSL by adding both multiplicative connectives and the
�rst-order quanti�er. Given n � 1, we write [9]n for the restriction of the �rst-order quanti�er to
n distinct program variable names. For instance,SL([9]2; � ; ��) is the restriction of SL(9; � ; ��)
to only two quanti�ed variable names. This restriction is purely syntactical: given a formula '
in SL(9; � ; ��), it is in SL([9]2; � ; ��) if and only if card(bv(')) � 2. Given a logic L featuring
�rst-order quanti�cation, we write pnf-L for the subset of its formulae in prenex normal form,
i.e. formulae where the quanti�cation appears as a pre�x of an otherwise quanti�er-free formula.
For instance, pnf-SL(9; � ; ��) is the set of formulae inSL(9; � ; ��) that are in prenex normal form.
If a speci�c quanti�er alternation is considered, we write its characteristic language instead of
the pre�x pnf-. For example, 9� 8� SL(9; � ; ��) is the set of prenex formulae ofSL(9; � ; ��) with
quanti�er pre�x from the language 9� 8� . As in classical �rst-order logic, we call the class of for-
mulae with this pre�x the Bernays-Sch•on�nkel-Ramsey (BSR) fragment of SL(9; � ; ��). Lastly,
following [104], we categorise separation logics depending on the presence of the separating im-
plication �� . Separation logics featuring this connective are said to beextensional, and otherwise
they are said to beintensional.

Figure 2.7 recalls known complexity results for fragments of �rst-order separation logic inter-
preted on memory states (s; h) as in De�nition 2.1, where s : VAR ! LOC and h : LOC* �n LOC.
The results in the �gure refer for the three decision problems of satis�ability, validity and entail-
ment, and every problem is complete for the complexity class the respective logic is placed in.
An arrow going from a logic L 1 to a logic L 2 means that L 1 is a syntactical fragment of L 2.

2.2. Fragments ofSL(9; � ; ��) and Second-Order Logic 29

SL(�) [33]

SL(� ; ��) [33, 104]

SL([9]1; � ; ��) [55]

SL([9]1; �) [55]

9� 8� SL(9; � ; ��) [62]

SL([9]2; �) [53]

pnf-SL(9; � ; ��) [62]SL(9; �) [22]

SL([9]2; � ; ��) [53]

SL([9]2; ��) [53]

SL(9; � ; ��) [22]

SL(� ; ,! +) [56]

PSpace

Elementary

Tower

Recursive

RE

non RE "

Figure 2.7: The complexity of Separation Logics.

This is by no means a complete list, but it will de�nitely help to place our work in the right
context.

As we can see, the satis�ability problem of the known fragments ofSL(9; � ; ��) tends to
belong to three classes: the class ofPSpace -complete problems, the one ofTower -complete
problems and the class of non recursively enumerable problems. We recall thatPSpace is
the complexity class of all the decision problems that can be solved by a deterministic Turing
machine using a polynomial amount of space, with respect to the size of the input. Instead,
the Tower complexity class is way up in the complexity hierarchy. It stands for the class of all
decision problems that can be solved by a deterministic Turing machine in time bounded by a
tower of exponentials of height depending elementarily on the size of the input. It is equivalent
to the computational class F3 of the hierarchy of non-elementary complexity classes introduced
by S. Schmitz in [128]. Interestingly, adding small features to a separation logic can cause
quite a jump in terms of its complexity. For instance, the logic SL([9]1; � ; ��), i.e. SL(9; � ; ��)
restricted to just one quanti�ed variable, admits a PSpace -complete satis�ability problem [55],
which jumps to non RE when a second quanti�ed variable is allowed [53]. More precisely, non
recursive enumerability already holds for the set of closed formulae ofSL([9]2; ��) [53].

30 Chapter 2. Separation Logic

(D; r) j= S(x1; : : : ; xn) i� (r (x1); : : : ; r (xn)) 2 r (S),

(D; r) j= 9z ' i� there is d 2 D such that (D; r [z d]) j= ' ,

(D; r) j= 9S ' i� there is R � �n Dar(S) such that (D; r [S R]) j= ' .

Figure 2.8: Satisfaction relation for WSO, with respect to a structure (D; r).

2.2.2 SL(9; � ; ��) as a Fragment of Second-Order Logic.

In order to understand the non-elementary complexity results of Figure 2.7 it is helpful to
look at the translation of SL(9; � ; ��) into weak second-order logic. Indeed, as we now show,
both multiplicative connectives are second-order in nature, with only � being expressible in
monadic second-order logic. In what follows, we briey recall notions of weak second-order
logic, and refer the reader to [17] for a complete investigation of this topic. The formulae of
weak second-order logic are built using two kinds of variables:individual (or �rst-order) variables
and relation (or second-order) variables. The �rst set of variable is denoted byx; y; z : : : (as
done for separation logic), whereas for the relation variables we useS; H; : : : . Every second-order
variable S is endowed with its arity ar(S), which is a positive natural number. The formulae '
of the weak second-order logicWSO are de�ned from the following grammar:

� := > (true)

j x = y (equality predicate)

j S(x1; : : : ; xar(S)) (relational predicate)

' := � (atomic formulae)

j ' ^ ' j : ' (Boolean connectives)

j 9z ' (�rst-order quanti�er)

j 9S ' (second-order quanti�er)

A classical interpretation for the formulae of WSO is given by a relational structure over a
non-empty domain D, as we formally de�ne below.

De�nition 2.14 (WSOstructure) . A WSO structure is a pair (D; r) where D is a non-empty set
calleddomain and r is anassignmentfunction that maps every �rst-order variable x to an element
r (x) 2 D , and every second-order variableS to a �nite ar(S)-ary relation r (S) � �n Dar(S) .

The satisfaction relation j= for the formulae of WSO is formalised in Figure 2.8, omitting
the standard clauses for> and Boolean connectives. In particular, notice that the semantics of
9S ' updates the assignment functionr so that S is mapped to a new �nite ar(S)-ary relation R.
As usual, the �rst and second-order universal quanti�cations 8z ' and 8S ' are de�ned as the
dual of the existential quanti�ers, i.e. :9 z : ' and :9 S : ' , respectively.

As shown in [22], weak second-order logic can internalise the semantics ofSL(9; � ; ��) by
using relation variables to simulate the heap and second-order quanti�cation to simulate the
multiplicative connectives. Without loss of generality, we assumeVAR to be the set of �rst-order
variables of WSO. We use second order variablesH; H 1; H2; : : : of arity 2 in order to represent
heaps. To correctly characterise a heap,H must be a weakly functional binary relation, which
can be enforced thanks to the following formula:

fun(H) def= 8x 8y 8z (H (x; y) ^ H (x; z)) y = z).

The correctness of this formula is quite easy to grasp, especially if we think in terms ofSL(9; � ; ��),
where it corresponds to the tautology 8x 8y 8z (x ,! y ^ x ,! z) y = z). To internalise the

2.2. Fragments ofSL(9; � ; ��) and Second-Order Logic 31

� H (emp) def= H ? H; � H (:) def= : � H ();

� H (x = y) def= x = y; � H (1 ^ 2) def= � H (1) ^ � H (2);

� H (x ,! y) def= H (x; y); � H (9z) def= 9z � H ();

� H (1 � 2) def= 9H1 9H2 (+[H : H1; H2] ^ � H 1 (1) ^ � H 2 (2)) ;

� H (1 �� 2) def= 8H1 8H2 (fun(H1) ^ +[H2 : H; H 1] ^ � H 1 (1)) � H 2 (2)) :

Figure 2.9: Translating SL(9; � ; ��) to WSO. H , H1 and H2 are syntactically di�erent.

multiplicative connectives we need to express the notion of union of two heaps. Given second-
order variabels H , H1 and H2 corresponding to three weakly functional binary relations, We
�rst de�ne a formula H1? H2 that captures the notion of disjointness of two heaps, and that is
then used to de�ne the formula +[H : H1; H2] stating that H is the union of H1 and H2:

H1? H2
def= 8x 8y 8z (: H1(x; y) _ : H2(x; z)) ;

+[H : H1; H2] def= H1? H2 ^ 8 x 8y (H1(x; y) _ H2(x; y) , H (x; y)) :

Both formulae closely follow the set-theoretical notions of disjointness and union of heaps. Notice
that the formula H ? H is satis�able only in models whereH corresponds to the empty relation,
and can be used to characterise the predicateemp. Thanks to these formulae we can translate a
formula ' in SL(9; � ; ��) into an equivalent formula � H (') in WSO, where H is a second-order
variable that represents the heap. The translation is given in Figure 2.9, and one can check that
it simply rewrites the semantics of the various ingredients ofSL(9; � ; ��) directly in WSO. A last
ingredient is needed: the domainD of a WSOstructure must be in�nite, so that it is isomorphic
to LOC. This can be done with the formula Dom[!] def= 8S 9x : S(x) stating that no �nite set can
contain all the elements ofD (here, S and x are arbitrary variables). The following proposition,
whose proof can be found in [22], shows the correctness of this translation.

Proposition 2.15 (From [22]). Let ' be a formula of SL(9; � ; ��).

I. Let (s; h) be a memory state. Let (LOC; r) be a WSO structure such that r (H) = h and
for every x 2 VAR r (x) = s(x). We have, (s; h) j= ' if and only if (LOC; r) j= � H (').

II. ' and Dom[!] ^ fun(H) ^ � H (') are equisatis�able.

III. ' and Dom[!] ^ fun(H)) � H (') are equivalid.

It is well-known that the satis�ability and validity problems of WSO are not recursively
enumerable (here, Theorem 2.13 reproves this result). Now, we can ask ourselves under which
conditions the translation can be revisited so that it stays in a decidable fragment ofWSO.
Between the two multiplicative connectives, we notice that the magic wand seems to be the
more delicate one. Given a structure (D; r), the translation of � H (1 � 2) ask to �nd a parti-
tion f R1; R2g of r (H) so that � H 1 (1) and � H 2 (2) are satis�ed by (D; r [H1 R1; H2 R2]).
Therefore, when the interpretation for H is �xed, there are only a �nite number of such parti-
tions. Unfortunately, this fundamental property does not hold for the operator �� : even when
the interpretation of H is �xed, the set of interpretations of H1 and H2 is a priori in�nite.
Fundamentally, it is thanks to this property that we reduced the satis�ability of SL(9; � ; ��) to
its model-checking problem (Lemma 2.12(II)). Indeed, starting fromH interpreted as the empty

32 Chapter 2. Separation Logic

(D; r; _f) j= S(x1) i� r (x1) 2 r (S),

(D; r; _f) j= f(x; y) i� _f(r (x)) = r (y),

(D; r; _f) j= 9z ' i� there is d 2 D such that (D; r [z d]; _f) j= ' ,

(D; r; _f) j= 9S ' i� there is R � �n D such that (D; r [S R]; _f) j= ' .

Figure 2.10: Satisfaction relation for WMSOf, with respect to a structure (D; r).

relation, � H (' �~ >) asks if it is possible to �nd, among the in�nite interpretations of H1, one
that is weakly functional and makes � H 1 (') true. As extensively studied in [22], one needs in
fact WSO in order to express the separating implication ofSL(9; � ; ��), and this operator to-
gether with �rst-order quanti�cation is enough to express every property of WSO. This property
essentially leads to all the complexity results in the \non RE " area of Figure 2.7.

What happens if we forbid the separating implication? If we consider the logicSL(9; �),
we can exploit the fact that � H (1 � 2) only considers partitions of the interpretation of H in
order to push the translation � H (') into the monadic fragment of WSOwith an additional unary
function symbol (WMSOf). Monadic WSO(WMSO) is the fragment of WSOwhere every relation
variable S has arity ar(S) = 1. WMSOf extends the vocabulary ofWMSO by adding a symbol f
of arity 2 and endowing a structure (D; r) with an interpretation _f : D ! D for f. Formulae
of WMSOf do not quantify over f, as shown by the satisfaction relation de�ned in Figure 2.10.
One can show thatWMSOf is still a fragment of WSO, as f can be substituted with a relation
variable F of arity 2 satisfying the axioms of functions:

� 8 x 9y F (x; y), i.e. F is interperted by a binary relation R such that � 1(R) = D,

� fun(F), i.e. F is interpreted by a weakly functional relation.

The satis�ability and validity problems of WMSOf are Tower -complete. The upper bound
was famously shown by M. O. Rabin in [122], whereas the non-elementary lower-bound can be
traced back to the seminal works of A. R. Meyer and L. J. Stockmeyer [110, 111]. See [128] for
the Tower -characterisation of these problems.

Let ' be a formula of SL(9; �). The main idea that allows us to modify the translation
in Figure 2.9 so that � H (') is in WMSOf is to notice that the notion of disjointness of two heaps
only depends on their domain. Instead of characterising heaps entirely, we now use the unary
relation variables H , H1 and H2 to only describe their domains. We rely on the symbolf in
order to encode the heap. The formulaeH1? H2 and [H : H1 + H2] are updated as follows:

H1? H2
def= 8x : (H1(x) ^ H2(x)), [H : H1 + H2] def= H1? H2 ^ 8 x (H1(x) _ H2(x) , H (x)).

With these new de�nitions, the translation � H (') is de�ned as in Figure 2.9, the only two
di�erences being that there is no case for the operator�� and that � H (x ,! y) is now de�ned
as H (x) ^ f(x; y). Proposition 2.15 is updated accordingly, again as shown in [22].

Proposition 2.16 (From [22]). Let ' be a formula of SL(9; �).

I. Let (s; h) be a memory state. Let (LOC; r; _f) be a WMSOf structure s.t. r (H) = dom(h)
and for every x 2 VAR r (x) = s(x). We have, (s; h) j= ' if and only if (LOC; r; _f) j= � H (').

II. ' and Dom[!] ^ � H (') are equisatis�able.

2.3. Other Separation Logics and Bunched Logics 33

III. ' and Dom[!]) � H (') are equivalid.

This result has been used for all the upper bounds of the problems in the \Tower area"
of Figure 2.7. Notice that this area contains the prenex separation logicpnf-SL(9; � ; ��), which
features the magic wand. For this logic, some work is needed in order to rely on Proposition 2.16.
Essentially, in [62] it is shown that the quanti�er-free part of a prenex formula of SL(9; � ; ��) can
be replaced with a formula ofSL([9]2; �), so that the whole formula is translated into SL(9; �).
Most importantly, this result shows that the complexity of SL(9; � ; ��) really depends on the
alternation between the �rst-order quanti�cation and the separating implication.

2.3 Other Separation Logics and Bunched Logics

Various lines of research led to the de�nition of multiple separation logics, to the point that
\separation logic" is more of an umbrella term to capture a family of logics that use multiplicative
connectives in order to verify properties of a memory model. In this section, we briey recall
some of these logics, to then place them in the framework of the logic of bunched implications.

2.3.1 Symbolic-Heaps and (bi)abduction.

As depicted in the previous sections, the prohibiting complexity ofSL(9; � ; ��) does not make it
suitable for automated deduction. A more scalable solution that is well-suited for program veri-
�cation is given by the frameworks of symbolic-heap separation logics[11]. An example of these
logics is given by the following syntactical fragment ofSL(9; � ; ��), denoted here with SH(ls)
and studied in [44]:

' := � ^ �

� := > j x = y j x 6= y j � ^ � (pure formulae)

� := > j emp j x 7! y j ls (x; y) j � � � (spatial assertions)

Notice that the formulae of SH(ls) are conjunctions of one pure formula, i.e. a conjunc-
tion of (dis)equalities, and one spatial assertion, i.e. a set of empty, points-to and list-segment
predicates connected via the separating conjunction. In particular, the fragment is not closed
under negation and does not feature the separating implication. All these restrictions come
with a major computational bene�t: the model checking, satis�ability, validity and entailment
problems of SH(ls) can be solved inPTime [44].

The literature regarding symbolic-heaps is particularly vast, ranging from the gentle addition
of array predicates and pointer arithmetic [26, 29], to the more expressive extensions with user-
de�ned inductive predicates [28, 92, 65, 93] and Presburger constraints [101]. At their core,
all these variants are existential in nature: the negation is only allowed in order to express
disequalities between variables, and the separating implication is not considered. This leads to
a family of logics that are very well suited for compositional shape analysis, i.e. reason on the
shapes of data structures in the heap encountered during the execution of a program, and allows
to perform compositional reasoning via (bi)abduction.

Abduction and biabduction are forms of logical inference closely related to entailment. The
abduction problemis formalised as follows:

abduction: Input: A pair of formulae (';).
Question: Is there a formula � A such that ' � � A j= holds?

34 Chapter 2. Separation Logic

Notice that this question has a spatial connotation: its solution � A , called antiframe, describes
a portion of the heap that is missing in order to make the entailment between' and true.
Symbolic-heap separation logics are very relevant for these types of questions, as their formulae
closely describe the structure of the heap. Among the possible solutions� A of the abduction
problem, we generally look at one satisfying the following three properties:

(compatible) ' � � A is satis�able,

(weakest) for every antiframe � 0 if � A j= � 0 then � A � � 0,

(minimal) it does not exist an antiframe � 0 such that � A j= � 0� : emp.

The separating implication allows us to compute the weakest antiframe very easily:� A = ' �� .
This result follows directly from the identity of separation logic shown below:

' � � j= if and only if � j= ' �� .

In other words, the operator �� is the right-adjoint of � , in the same way that) is the right-
adjoint of ^ . We will meet this identity numerous times during the thesis (see e.g. Section 2.3.3).

The biabduction problemextends the abduction problem so that also aframe � F is required:

biabduction: Input: A pair of formulae (';).
Question: Are there two formulae � A , � F such that ' � � A j= � � F holds?

Similarly to abduction, among the possible solutions� A and � F of a biabduction problem, we
generally look at one satisfying the following properties:

(optimal antiframe) the antiframe � A is compatible, weakest and minimal for the
abduction problem ('; � >),

(strongest frame) for every � 0, if ' � � A j= � � 0 and � 0 j= � F then � F � � 0.

The biabduction problem was introduced in [37]. It allows to automatically infer precondi-
tions, so that the proof of a Hoare triple can be further automated. We refer to [115] and [116]
for a discussion on the bene�ts of biabduction in program veri�cation. On this topic, the readers
can �nd there more answers than this thesis could ever provide.

From a technical point of view, symbolic-heaps are quite far from the logic considered in this
thesis. In particular, we will mostly deal with separation logics that are closed under Boolean
connectives (hence, with negation) and that feature the separating implication. Nevertheless,
some of the results presented in this text can be transferred to the symbolic-heap fragment.

2.3.2 Modal Separation Logics.

Continuing with our round-up of the separation logic literature, another interesting line of
research (from a theoretical point of view) is given by the framework of modal separation logics
introduced by S. Demri and M. Deters in [52]. The original motivation for this work is to
emphasise the similarities between various separation logics, modal logics and temporal logics,
with a focus on proof techniques that could lead to transfer results between these three areas.
Similar directions are followed by J. Courtault, D. Galmiche, and D. Pym in [46] and [45].
Both Chapter 4 and Part III of this thesis fall in this research agenda.

To connect separation logic with modal and temporal logics, a �rst idea in [52] is to generalise
the notion of memory state so that it falls into the realm of Kripke structures used by the latter
formalisms. More precisely, theModal Separation LogicMSL is interpreted on Kripke-style �nite
functions [52, 54]. Let AP = f p; q; : : :g be a countably in�nite set of propositional symbols.

2.3. Other Separation Logics and Bunched Logics 35

De�nition 2.17 (Kripke-style �nite function) . A (Kripke-style) �nite function (W; R; V) is a
triple where W is a countably in�nite set of worlds, R � W � W is a �nite weakly functional 1

accessibility relation, and V : AP ! 2W is a labelling function assigning to every propositional
symbol p the set of worlds satisfying it.

Given a binary relation R � W � W , we write R(w) def= f w0 2 W j (w; w0) 2 Rg for the set
of successorsof w. Similarly, R� 1(w) is the set of its predecessors. If R is weakly functional,
then card(R(w)) � 1. Since W and LOC are isomorphic and the accessibility relation R is
equivalent to a heap, a Kripke-style �nite function can be essentially seen as a memory state
where the structure of the store is relaxed so that each variable (a propositional symbol inMSL)
corresponds to multiple locations. This analogy with memory states lead to a natural de�nition
of disjointness and union of Kripke-style �nite functions.

De�nition 2.18 (Disjoint �nite functions and their union) . Two Kripke-style �nite functions
K1 = (W; R1; V) and K2 = (W; R2; V) are disjoint if R1 \ R2 = ? . When this holds, their union
K1 + K2 is the Kripke-style �nite function (W; R1 [R2; V). We write K1 � K 2 if R1 � R2.

Notice that in the de�nition of disjointness and union the two �nite functions K1 and K2 share
the same set of worldsW and labelling function V. The formulae ' of MSL belongs to the
following grammar (where p 2 AP):

� := > (true)

j p (propositional symbol)

j emp (empty predicate)

' := � (atomic formulae)

j ' ^ ' j : ' (Boolean connectives)

j ' � ' (separating conjunction)

j ' �� ' (separating implication)

j � ' (modality of possibility)

j � � 1 ' (converse modality of possibility)

j h6= i ' (elsewhere modality)

As we can see, with respect to the grammar ofSL(9; � ; ��), the logic MSL drops the points-to
and the equality predicates between program variables, and replaces them with three well-
known modalities from modal logic. MSL is interpreted on pointed �nite function (K; w) where
K = (W; R; V) is a Kripke-style �nite function and w 2 W is one of its worlds, called the
current world. With respect to such a model, the satisfaction relationj= for formulae of MSL is
given in Figure 2.11 (omitting standard cases for> and Boolean connectives). The semantics
of the formula p simply checks whether the propositional symbolp is satis�ed in the current
world w. The formula empand the two multiplicative connectives � and �� are de�ned as in
separation logic. The operator� is the standard alethic modality of possibility of modal logic,
stating that ' holds in one successorof w, i.e. a world w0 such that (w; w0) 2 R. Conversely,
the modality � � 1 asks whether' holds in onepredecessorof w. Lastly, the elsewhere modality
h6= i asks whether ' holds in a world di�erent from w. Given a formula ' , we write hUi '
for the formula ' _ h6= i ' stating that ' is satis�ed by an arbitrary world. The lexeme hUi
is often called somewheremodality, and was introduced by V. Goranko and S. Passy in [80].
As introduced in [52], we call Modal Logic of Heaps(MLH) the logic obtained from MSL by
removing the propositional symbols from the grammar above.

1R is �nite and for every w; w0; w002 W , if (w; w0) 2 R and (w; w00) 2 R then w0 = w00.

36 Chapter 2. Separation Logic

(K; w) j= p i� w 2 V(p),

(K; w) j= emp i� R = ? ,

(K; w) j= ' � i� there are K1 and K2 s.t. K1 + K2 = K, (K1; w) j= ' and (K2; w) j= ,

(K; w) j= ' �� i� for all K0 = (W; R0; V), if K0?K and (K0; w) j= ' then (K + K0; w) j= ,

(K; w) j= � ' i� there is w0 2 W such that w0 2 R(w) and (K; w0) j= ' ,

(K; w) j= � � 1' i� there is w0 2 W such that w0 2 R� 1(w) and (K; w0) j= ' ,

(K; w) j= h6= i ' i� there is w0 2 W such that w0 6= w and (K; w0) j= ' .

Figure 2.11: Satisfaction relation for MSL, with respect to (K; w) where K = (W; R; V).

Quite a few separation logics can be shown to be fragments ofMSL. The reason for this is that
the logic is expressive enough to capture the concept of program variables, hence overcoming
the di�erences between labelling functions and stores. To do so,MSL borrows the concept
of nominals from hybrid logics, a family of logics that add further expressive power to modal
logic [2]. Essentially, a nominal is a propositional symbol that is true exactly in one world (like a
program variable). Given a propositional symbol p, we can check whether it encodes a nominal
with the formula nom(p) def= hUi (p ^ : h6= i p). Its formal semantics is recalled below.

Proposition 2.19. Let (K; w) be a pointed �nite function where K = (W; R; V). We have,
(K; w) j= nom(p) if and only if there is exactly one world w0 2 W such that (K; w0) j= p.

Using the syntax of hybrid logics, we write @p ' for the formula hUi (p^ '). Under the hypothesis
that p is a nominal, @p ' is satis�ed whenever the world corresponding top satis�es ' .

Nominals allow us to capture the predicatesx = y and x ,! y of separation logic with the
formulae @x y and @x � y, respectively, wherex and y are seen as nominals. Similarly, we can
de�ne all the formulae of SL(9; � ; ��) introduced in Section 2.1.1. The alloc predicatex ,! and
the alloc-back predicate ,! x correspond to the formulae @x � > and @x � � 1> , respectively.
The reach-plus predicatex ,! + y is instead captured with the formula below:

> �
�
x ,! ^ (,! x) x = y) ^ hUi : (� � 1> � � � 1>) ^ hUi ((: y ^ � � 1>)) � >)

�
;

where the alloc, alloc-back and equality predicates can be seen now as shortcuts inMSL. One
can clearly see the correspondence between this formula and the de�nition ofx ,! + y given
in Section 2.1.1: the subformulahUi : (� � 1>� � � 1>) corresponds to8x: (,! x� ,! x), whereas
the subformula hUi ((: y ^ � � 1>)) � >) corresponds to8x(x 6= y ^ ,! x) x ,!). Thus, MSL
is an extension of the quanti�er-free separation logicSL(� ; �� ; ,! +).

Proposition 2.20 (From [54]). SL(� ; �� ; ,! +) is a fragment of MSL.

The connections betweenMSL and separation logic are exploited in [52] to transfer com-
plexity results from MSL (more speci�cally, MLH) to SL(9; � ; ��). In particular, the authors
notice how the fragment of MLH without separating implication admits a Tower -complete
satis�ability problem. Subsequently, it is su�cient to rely on the standard translation of modal-
ities into two-variable logics [15] to conclude that the satis�ability problem of the separation
logic SL([9]2; �) is Tower -complete already on closed formulae. Figure 2.12 summarises the

2.3. Other Separation Logics and Bunched Logics 37

Grammar: Satis�ability:

' := > j empj ' ^ ' j : ' j ' � ' j � ' j � � 1' j h6= i ' Tower -complete [52]

' := > j p j empj ' ^ ' j : ' j ' � ' j � ' j h6= i ' Tower -complete [54]

' := > j p j empj ' ^ ' j : ' j ' � ' j � ' NP -complete [54]

' := > j p j empj ' ^ ' j : ' j ' � ' j h6= i ' NP -complete [54]

Figure 2.12: The complexity of MSL.

known complexities on the satis�ability problem of fragments of MSL, excluding those that are
proven using results that are presented in this thesis.

2.3.3 Boolean BI.

Even though the development of separation logic has been pragmatic in nature, the reader should
be con�dent that the logic is rooted in the solid mathematical theory of Bunched logics[113].
More precisely, separation logic instantiates the framework of Bunched Implications under the
classical interpretation of Boolean connectives, also known as Boolean Bunched Implications
(BBI). In this short section, we recall the syntax, semantics and axiomatisation ofBBI, as well
as connecting this formalism to separation logic. We follow the presentation in [75], and refer
the reader to S. Docherty PhD thesis for a complete description of Bunched Logics [60].

The formulae of BBI belongs to the following grammar, wherep is a propositional symbol
taken from a countably in�nite set AP (as in MSL):

� := > (true)

j p (propositional symbol)

j emp (empty predicate)

' := � (atomic formulae)

j ') ' j : ' (Boolean connectives)

j ' � ' (separating conjunction)

j ' �� ' (separating implication)

The purpose ofBBI is to provide a framework to reason on resource composition. To achieve
this objective elegantly, resources are abstracted with a monoidal algebraic structure, which
leads to a natural notion of composition via the binary operation of the monoid. Let M be a
set and � : M � M ! 2M be a binary operation. Given two subsetsS and T of M we extend�
and write S � T for f a � b j a 2 X; b 2 Yg. Given m 2 M , we write m � T and S � m for f mg � T
and S � f mg, respectively. We introduce the notion of non-deterministic monoid.

De�nition 2.21 (Non-deterministic monoid, [75]). A non-deterministic monoid is a triple
(M ; � ; �) where � 2 M , � : M � M ! 2M and

(identity) � � m = f mg, for every m 2 M ,

(associativity) a � (b� c) = (a � b) � c, for every a; b; c2 M ,

(commutativity) a � b = b� a, for every a; b2 M .

The formulae of BBI are interpreted over the elements of a non-deterministic monoid (M ; � ; �),
together with an evaluation [[:]] : AP ! 2M for propositional symbols. The satisfaction rela-
tion j=, implicitly parametrised on (M ; � ; �) and [[:]], is given in Figure 2.13. We stress that the

38 Chapter 2. Separation Logic

m j= > always,

m j= p i� m 2 [[p]],

m j= emp i� m = � ,

m j= : ' i� m 6j= ' ,

m j= ') i� (if m j= ' then m j=),

m j= ' � i� there are a; b2 M such that m 2 (a � b), a j= ' and b j= ,

m j= ' �� i� for every a; b2 M , if b 2 (a � m) and a j= ' then b j= .

Figure 2.13: Satisfaction relation for BBI.

implication ') of BBI has the standard semantics from classical logic, and thus should not be
confused with the intuitionistic implication of the (original) logic of Bunched Implications [113].
Moreover, we notice that the conjunction ' ^ (which is a primitive connective in SL(9; � ; ��))
is de�ned in BBI as ' ^ def= : (') :).

Several logics introduced in recent years can be seen as an instantiation ofBBI, as for instance
ambient logics [103, 32], team logics [135, 136] and, of course, separation logics. We will meet
again both ambient logics and team logics in Chapters 7 and 8 of the thesis. For separation
logics, it is quite easy to see that theSL(� ; ��), i.e. the quanti�er-free fragment of SL(9; � ; ��),
instantiate BBI for a speci�c monoid and evaluation of propositional symbols. As a monoid, we
consider the set of all heaps [LOC* �n LOC], and we let � be the empty heap and� be the binary
operation

h1 � h2 =

8
<

:
f h1 + h2g if dom(h1) \ dom(h2) = ? ;

? otherwise.

Proposition 2.22. ([LOC* �n LOC]; � ; �) is a non-deterministic monoid.

For the evaluation of propositional symbols, we �rst consider a bijection f from atomic formulae
of the form x = y and x ,! y (x; y 2 VAR) to the set of propositional symbols AP. Since both
VAR and AP are countably in�nite, f exists. Then, given a stores, we de�ne the evaluation [[:]]s:

[[p]]s =

8
>><

>>:

[LOC* �n LOC] if there are x; y 2 VAR s.t. f� 1(p) = x = y and s(x) = s(y);

? if there are x; y 2 VAR s.t. f� 1(p) = x = y and s(x) 6= s(y);

f h j h(`) = `0g if there are x; y 2 VAR s.t. f� 1(p) = x ,! y; s(x) = ` and s(y) = `0:

Lastly, given a quanti�er-free formula ' of SL(9; � ; ��), we write ' f for the formula in BBI
obtained from ' by replacing every atomic formula � of the form x = y of x ,! y by f(�). The
following proposition, whose proof (by structural induction on ') is left to the reader, connects
the semantics ofSL(9; � ; ��) with the one of BBI.

Proposition 2.23. Let ' be in SL(� ; ��) and (s; h) be a memory state. (s; h) j= ' in SL(� ; ��) i�
h j= ' f in BBI, w.r.t. the non-deterministic monoid ([LOC* �n LOC]; � ; �) and the evaluation [[:]]s.

The correspondence between separation logic andBBI depicted in Proposition 2.23 allows us
to grasp some of the properties of separation logic directly by looking atBBI. In our case, we are

2.3. Other Separation Logics and Bunched Logics 39

Propositional Calculus:

(L 1) (: ') ')) '

(MP)
' ')

(L 2) ') (: '))

(L 3) ('))) (() �)) (') �))

Axioms of the non-deterministic monoid:

(id L) ') emp� ' (assoc) ' � (� �) , (' �) � �

(id R) emp� ') ' (com) ' �) � '

Rules of inference for the multiplicative connectives:

(�)
') �

' �) � �
(�� 1)

') (�� �)

' �) �
(�� 2)

' �) �

') (�� �)

Figure 2.14: Hilbert-style axiomatisation of BBI [75].

particularly interesting in Hilbert-style proof systems for BBI, which, following Proposition 2.23,
only contains axioms and rules that are also admissible in separation logic. We have yet to de�ne
what is an Hilbert-style proof system (this is done formally in Section 6.1). However, for the
time being we invite the reader to think about it as a set of valid formulae (of BBI), together
with rules of the form

' 1; : : : ; ' n

which should be read as \if the formulae' 1; : : : ; ' n are all valid, then so is ". Let us look at
the Hilbert-style proof system of BBI provided in [75] and recalled in Figure 2.14. The proof
system includes an axiomatisation of classical propositional logic, due to J. Lukasiewicz [18] and
made of three axioms (L1){(L 3) together with the rule of Modus ponens (MP). More interesting,
the second part of the proof system in Figure 2.14 axiomatises the notion of non-deterministic
monoids given in De�nition 2.21. The �rst two axioms (id L) and (id R) state that, in BBI,
empbehaves as the identity element of the operator� , which in turn is an associative and
commutative binary connective (axioms (assoc) and (com)). Thanks to the correspondence
between BBI and separation logic, these four axioms are also valid in separation logic, and
capture in a neat syntactical way the essence of Proposition 2.22. The last part of Figure 2.14
is made of three rules of inference. The �rst one, denoted by (�), is sometimes called \frame
rule" by analogy with the rule of the same name in program logic. Essentially, it entails that
logical equivalence is a congruence for� . The second and third rules state that the separating
implication is the right-adjoint of the � , exactly as we found out in Section 2.3.1.

The axiomatisation of BBI given in Figure 2.14 provides the foundation to derive Hilbert-
style proof systems for the quanti�er-free fragment of SL(9; � ; ��) and similar logics, as we will
see in Chapters 6 and 7 of the thesis.

Part I

Reachability Queries in
Separation Logic

41

Robustness Properties of
Logical Assertions

In Chapters 3, 4 and 5, we propose an in-depth study of separation logics featuring reachability
predicates such asls (x; y) and x ,! + y (see Section 2.1.1). In program analysis, these predicates
provide the foundation for verifying programs manipulating lists, but in the context of separation
logic their use is often limited to the symbolic-heap fragment (Section 2.3.1). This restriction,
while being bene�cial on a computational level, severely limits the range of properties we are
able to check. We pay particular attention to two properties that are not expressible in the
symbolic heap fragment: the acyclicity property and the garbage freedom property. As done
in [93], we refer to these two properties as therobustness propertiesof memory states. We
say that a memory state (s; h) is acyclic whenever no location canreach itself by traversing the
heap a positive amount of times. As explained in [76], being able to check whether the acyclicity
property holds is useful in analysing the termination of a program. Indeed, starting from an
acyclic memory state, any loop that traverses the heap is bound to terminate. Given a �nite set
X � �n VAR of program variables, we say that (s; h) is X-garbage freewhenever, all memory cells
of dom(h) are reached by a location corresponding to a variable inX. In programming languages
that do not feature garbage collection (e.g. C), this property can be used to prove that the
program does not leak memory by generating unreachable portions of the heap. As described
in [93], both acyclicity and garbage freedom come with homonymous decision problems that,
given a formula ' , ask whether all memory states satisfying' are acyclic and fv(')-garbage
free, respectively. The formal de�nition of these problems is given in Figure 2.15.

Motivations.

At their core, both robustness properties rely on reachability predicates. Indeed, inSL(9; � ; ��),
the class of acyclic memory states is characterised by the formula8x : (x ,! + x) whereas the set
of X-garbage free memory states is characterised by the formula8x (x ,!)

W
y2 Xy ,! � x). Un-

fortunately, the undecidability result given by Theorem 2.13 prevents us from usingSL(9; � ; ��)
for automatic program analysis. This leads us to journey through various fragments of this logic,
with the goal of designing a separation logic that is expressive enough to capture the notions of
acyclicity and garbage freedom, while still being decidable. More precisely, we aim for a logic
that extends SL(� ; ��), i.e. the quanti�er-free fragment of SL(9; � ; ��), and admits a satis�ability
problem that can be solved in PSpace , exactly as SL(� ; ��). This goal, which we eventually
reach in Chapter 5, reveals to be quite ambitious, as in both Chapters 3 and 4 we show how
very small extensions ofSL(� ; ��) lead to negative results in terms of computational complexity.

43

44 Chapter 2. Separation Logic

acyclicity: Input: A formula ' .

Question: Is every memory state (s; h) satisfying ' acyclic

(i.e. for every ` 2 LOC and � � 1, h� (`) 6= `)?

garbage freedom: Input: A formula ' .

Question: Is every memory state (s; h) satisfying ' fv(')-garbage free

(i.e. for every ` 2 dom(h) there is � 2 N and x 2 fv(')

such that h� (s(x)) = `)?

Figure 2.15: The decision problems for the properties of acyclicity and garbage freedom.

Contribution of Chapter 3.

Our journey starts by simply adding reachability predicates to SL(� ; ��). We consider the stan-
dard reachability predicates ls , ,! + and ,! � already introduced in Section 2.1.1, as well as the
bounded reachability predicates x ,! � y, where � � 1, that are satis�ed by a memory state
(s; x) whenever the minimal path in h going from s(x) to s(y) has length � . Very surprisingly,
we show that as soon as both bounded reachability predicatesx ,! 2 y and x ,! 3 y are added
to SL(� ; ��), the satis�ability problem jumps from PSpace to non RE . This result extends to
several separation logics featuring reachability predicates, among which:

� SL([9]2; � ; ��), i.e. the two quanti�ed variable restriction of SL(9; � ; ��),

� SL(� ; ��) augmented with one predicate amongls , ,! + or ,! � ,

� SL(� ; �� ; ,! 2; ,! 3) and all the logics above, restricted to 4 program variables.

The main cause of the computational blow-up is traced back to the interactions between the
reachability predicates and the separating implication �� , which allows us to encode �rst-order
quanti�cations by means of heap updates.

Contribution of Chapter 4.

In view of the results in Chapter 3, we remove for the time being the separating implication
and focus on the separation logicSL([9]1; � ; x ,! ; ,! +) featuring one quanti�ed variable name,
the separating conjunction � , the predicate alloc x ,! and the reachability predicate x ,! + y.
This logic is a fragment ofSL(9; �), which admits a Tower -complete satis�ability problem [22].
Unfortunately, we show that SL([9]1; � ; x ,! ; ,! +) is already Tower -hard. Actually, this result
is proved in a more general settings, as we show a set of features centred around reachability
and submodel reasoning which causes logics interpreted on trees to beTower -hard. These
features are formally described through a new modal logic which we callALT (short for Auxiliary
Logic on Trees). Apart from SL([9]1; � ; x ,! ; ,! +), ALT is captured by several logics that were
independently found to be Tower -hard, as quanti�ed computation tree logic [99] interpreted
on trees (QCTLt), modal separation logics [54] and modal logic of heaps [52]. New fragments of
these logics are discovered to beTower -complete:

� SL(� ; �� ; ls) where �� only occurs in the from size = 1 �� ' ,

� QCTLt (EU0), i.e. the fragment of QCTLt only featuring the exists-until temporal operator,
which cannot be nested,

2.3. Other Separation Logics and Bunched Logics 45

� QCTLt (EF1), i.e. the fragment of QCTLt only featuring the exists-�nally temporal operator,
which can be nested only once,

� the common fragment of modal separation logic and modal logic of heaps, featuring the
separating conjunction and the modalities� and hUi .

Contribution of Chapter 5.

At last, the negative results of Chapter 3 and Chapter 4 guide us to the de�nition of a separation
logic that satis�es all the conditions we have imposed: (I) it extendsSL(� ; ��) with reachability
predicates, (II) it can express both robustness properties, and (III) its satis�ability problem is
PSpace -complete, exactly as forSL(� ; ��). This logic, which is denoted bySL([9]1; � ; [�� ; ,! +]SW),
is a syntactical fragment of SL(9; � ; ��) speci�cally crafted to avoid the interactions between
reachability and the spatial connectives� and �� that, during Chapter 3 and Chapter 4, were
discovered causing computational blow ups. To show thePSpace upper bound of the satis�abil-
ity problem for SL([9]1; � ; [�� ; ,! +]SW), we extend thecore formulae technique, a proof method that
is often used in separation logic in order to obtain complexity results (see e.g. [104, 55, 56, 62]).

3

Extensionality and Reachability Leads
to Non-enumerability

Contents
3.1 Encoding Assignments as Memory Cells . 51

3.1.1 Generalised memory states. 52

3.1.2 The encoded-by relationBX
Y. 54

3.2 Simulating the First-order Quanti�cation . 55

3.2.1 Translating SL(9; ��) into SL(n(x); � ; ��). 56

3.2.2 SL(n(x); � ; ��) is not recursively enumerable. 64

3.3 Reachability Predicates can Quantify . 65

3.3.1 Bounded reachability. 65

3.3.2 UsingSL(n(x); � ; ��) to prove that SL(� ; �� ; ,! 2; ,! 3) is not RE 68

3.3.3 Other separation logics with nonRE decision problems. 70

3.3.4 Modal separation logic is nonRE . 71

47

49

In this chapter

We look at the complexity of satis�ability and validity problems for extensions of the quanti�er-
free separation logicSL(� ; ��) featuring reachability predicates. We show the non-recursive
enumerability of the satis�ability problem for SL(� ; ��) enriched with the bounded reachability
predicatesx ,! 2 y and x ,! 3 y, where the predicatex ,! � y is satis�ed by a memory state (s; h)
whenever the minimal path in h going from s(x) to s(y) has length � . As bounded reachability
predicates are expressible as soon as one predicate amongls , ,! + or ,! � are added toSL(� ; ��),
several other separation logics are found to be non-recursively enumerable.
In order to show these results, our investigation starts by noticing that, in a memory state (s; h),
the role of the store s can be internalised in a heap, essentially leading to a (generalised) heap
of the form s + h : (VAR+ LOC) ! LOC. The multiplicative connectives � and �� of separation
logic can be used to update the region ofs + h encoding the stores in a way that simulates the
variable assignments done by the �rst-order quanti�cation. This detour naturally leads us to
a quanti�er-free separation logic, denoted by SL(n(x); � ; ��), where these heap updates can be
e�ectively checked and where the �rst-order quanti�cation can be broadly simulated.
We show that the satis�ability and validity problems for SL(n(x); � ; ��) are non-recursively enu-
merable. Thanks to the simulation of �rst-order quanti�cation via heap updates, this result can
be shown by reduction from the satis�ability and validity problems of the �rst-order separation
logic SL(9; ��) shown non-recursively enumerable in [22]. Afterwards, we return to our original
goal and design a semantically faithful translation fromSL(n(x); � ; ��) to SL(� ; ��) enriched with
the bounded reachability predicatesx ,! 2 y and x ,! 3 y.

Here is a roadmap of the chapter.

Section 3.1. We formalise the idea of encoding the store as part of the heap, and to simulate
�rst-order quanti�cation as heap updates. This is done by introducing the notion of generalised
memory state (De�nition 3.1) and encoding between generalised memory states (De�nition 3.4).

Section 3.2. We introduce the separation logicSL(n(x); � ; ��) which is interpreted on gener-
alised memory states. Afterwards, we move to the main technical contribution of the chapter,
and design a reduction from the satis�ability (resp. validity) problem for SL(9; ��) to the satis-
�ability (resp. validity) problem for SL(n(x); � ; ��). The following result is derived.

Theorem 3.5. The satis�ability and validity problems of SL(n(x); � ; ��) are not RE .

Section 3.3 We show that SL(n(x); � ; ��) can be translated into SL(� ; ��) enriched with x ,! 2 y
and x ,! 3 y and, as a by-product, to several other separation logics, such asSL(� ; ��) augmented
with either ls , ,! + or ,! � . We conclude that the satis�ability problem of all these logics is non
RE (Corollary 3.19). Lastly, we transfer these results to the realm of modal separation logics,
and show the following theorem by translation from SL(� ; ��) enriched with x ,! 2 y and x ,! 3 y.

Theorem 3.20. MSL without � � 1, h6= i and emphas nonRE satis�ability and validity problems.

3.1. Encoding Assignments as Memory Cells 51

3.1 Encoding Assignments as Memory Cells

In Section 2.1.1, we saw how the �rst-order quanti�cation of SL(9; � ; ��) can be used in order to
express the standard reach-plus predicate,! +. We also noticed that there are instances where
the opposite direction also holds: the �rst-order quanti�cation can be avoided by using this
reachability predicate together with the multiplicative connectives � and �� . In particular, we
showed that this is the case for the formula ,! x, analysed in Proposition 2.7. We ask ourselves
if this can be done systematically. That is, we want to study whether �rst-order quanti�cation
can be broadly simulated by reachability predicates and multiplicative connectives. As this
chapter answers this question positively, we conclude that enriching the quanti�er-free separation
logic SL(� ; ��) with ,! +, makes the associated satis�ability and validity problems jump from
PSpace -complete to non RE (by Theorem 2.13).

In what follows, we give a rough explanation of the idea behind this result. For the moment
we do not formally �x the main separation logics considered in the chapter, but simply think in
terms of SL(9; � ; ��). Recall that in this logic, a �rst-order existentially quanti�ed formula 9z '
essentially (re)assign a location toz, and then proceed with the evaluation of ' :

(s; h) j= 9z ' i� there is ` 2 LOC such that (s[z `]; h) j= ' .

Regardless of what we can express with the,! + predicate, if we want to mimic 9z ' in a
systematic way we need to �nd a way to simulate the e�ects that the �rst-order quanti�cation has
on the store by means of updates done to the heap (hence, using the multiplicative connectives).
Let (s; h) be a memory state and let ' be in SL(9; � ; ��). As depicted by Proposition 2.10, in
order to decide whether (s; h) j= ' holds it is su�cient to consider the part of the store that
corresponds to the variables occurring in' , say X. Let sjX be the domain-restriction of the store
to the variables in X, i.e. sjX

def= f (x; `) 2 s j x 2 Xg. Roughly speaking, a simple but e�ective idea
to simulate the role of the store s in the satisfaction of ' is to view sjX as a heap. This means
seeing the variables inX as locations, and consider the memory state-like structure (idX; sjX+ h),
where idX is the identity map on X. By doing this, and assumingz 2 X, we can interpret the
�rst-order quanti�ed formula 9z ' not as a reassignment done on the store, but as a local update
of the \memory cell" z, done on the heap. Approximately, its semantics could look as follows:

(idX; sjX + h) j= 9z ' i� there is ` 2 LOC such that (idX; (sjX + h)[z `]) j= ' ,

where (sjX + h)[z `] stands for ((sjX + h) n f (z; s(z))g) + f (z; `)g, which can be seen as the
heap obtained by �rst removing the memory cell (z; s(z)) and then adding (z; `). Using the
formulae z ,! and size = 1 introduced in Section 2.1.1, this interpretation of 9z ' can be
characteried with the formula (z ,! ^ size = 1) � (z ,! ^ size = 1 �~ '). Indeed, suppose that
(idX; sjX + h) satis�es this formula. The left conjunct z ,! ^ size = 1 separates (z; s(z)) from
the rest of the heap, sayh0 = (sjX+ h)nf (z; s(z))g. Then, the right conjunct z ,! ^ size = 1 �~ '
realises the semantics given above by stating that there is a heapf (z; `)g, for some ` 2 LOC,
such that (idX; h0+ f (z; `)g) j= ' .

However, this formula and the semantics we introduced are not entirely correct. Indeed, the
septraction z ,! ^ size = 1 �~ ' can add the arrow (z; z) to the heap, leading to a structure
(sjX + h)[z z] that cannot be obtained by any well-formed (classical) memory state. In order
to correct this, the subheapsjX that is reserved to simulate the store must remain unreachable
from the rest of the heap h. This can be done by forcing the alloc-back predicate ,! z to
not hold after an update (the details are given in Section 3.2). Figures 3.1 to 3.3 sketch this

52 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

z

y

x

Figure 3.1: A memory state.

lo
ca

tio
ns

re
se

rv
ed

to
si

m
ul

at
e

th
e

st
or

e

z

y

x

Figure 3.2: Injecting a store.

lo
ca

tio
ns

re
se

rv
ed

to
si

m
ul

at
e

th
e

st
or

e

z

y

x

Figure 3.3: Reassignment.

idea. Given the memory state presented in Figure 3.1, we extend the heap with the portion
of the store we are interested in (i.e.sjX in the previous description), leading to the structure
in Figure 3.2. The store of this new structure is a simple identity map. Then, a quanti�cation
on z is achieved by modifying the location pointed byz, as shown in Figure 3.3.

Quite a few technicalities are omitted in this otherwise simple idea. First, because of this
model transformation both the predicates x = y and x ,! y must be revised accordingly. For
example,z ,! y must be updated from \the location assigned toz points to the location assigned
to y" to the rather cumbersome \z points to a location that points to the location that is pointed
by y" (a pattern that holds in Figure 3.3). In the next section, this property is formally captured
by the next-points-to predicate n(z) ,! n(y). Similarly, the next-equality predicate n(x) = n(y)
capture the notion of \ x and y points to the same location", which is a natural update to the
formula x = y stating that \the same location is assigned to both x and y". In Section 3.3, we
show that both n(x) = n(y) and n(x) ,! n(y) can be expressed in terms of reachability predicates.
Another problem arises when dealing with the multiplicative connectives. For example, (s; h) j=
' �� is evaluated by considering heapsh0 that are disjoint from h and ful�ll (s; h0) j= ' . As
in our encoding the store is a part of the heaph, for the moment it is not clear how we can
simultaneously encode it insideh0 and keep the two heaps disjoint. The solution we consider
relies on introducing one variablex for each variablex appearing in ' . The store encoded inh0

considers these new variables, so thath? h0 still holds. All these technical developments are
given in Section 3.2.

3.1.1 Generalised memory states.

Let (s; h) be a memory state and let X be a �nite set of variables. Albeit simple, the idea of
seeingsjX as a heap must be fully formalised. For instance, the structuresjX[h is not technically
speaking a heap, but a function in [(VAR[LOC) * �n LOC]. To solve this issue, in this chapter we
consider a slight alternative semantics forSL(9; � ; ��) and its fragments, which does not modify
the notion of satis�ability/validity and such that the set of formulae and the de�nition of the
satisfaction relation j= given in Section 2.1 remain unchanged.

De�nition 3.1 (Generalised memory state). A generalised memory stateis a triple (G; s; h)
where G is a countably in�nite set, s : VAR ! G and h : G* �n G.

So far, memory states are pairs of the form (s; h) with s : VAR ! LOCand h : LOC* �n LOCfor a
�xed countably in�nite set of locations LOC. A generalised memory state is instead parametric

3.1. Encoding Assignments as Memory Cells 53

on the set of locations. One can see this variation as simply a way of exhibiting the set of
locations directly as an element of the memory state. Indeed, a (standard) memory state (s; h)
is equivalent to the generalised memory state (LOC; s; h). Given a bijection f : G1 ! G2 and a
heap h1 : G1 * �n G1, we write f(h1) for the heap h2 : G2 * �n G2 de�ned as h2

def= f f(`1) 7! f(`2) j
h1(`1) = `2g. The satisfaction relation j= of Figure 2.3 can be updated to generalised memory
states in a natural way. As one can expect, considering generalised memory states instead of
standard ones does not change the notion of satis�ability and validity, as we show next. First,
let us revisit the notion of X-isomorphic memory states (De�nition 2.9).

De�nition 3.2 (g-X-heap-isomorphism). Two generalised memory states (G1; s1; h1), (G2; s2; h2)
are said to beg-X-heap-isomorphic (X � VAR), written (G1; s1; h1) ' g

X (G2; s2; h2), if there is a
bijection f : G1 ! G2 such that (1) f(h1) = h2 and (2) for every x 2 X, f(s1(x)) = s2(x).

As in the case ofX-heap-isomorphism,' g
X is an equivalence relation. In particular, note that if

f is a g-X-heap-isomorphism from (G1; s1; h1) to (G2; s2; h2) (i.e. a bijection as in De�nition 3.2),
then f� 1 is a g-X-heap-isomorphism from (G2; s2; h2) to (G1; s1; h1). We now extend Proposi-
tion 2.10 to generalised memory states, thus proving that no formula ofSL(9; � ; ��) written with
free-variables inX can distinguish between g-X-heap-isomorphic memory states.

Lemma 3.3. Let X � VAR. Consider two generalised memory states (G1; s1; h1) ' g
X (G2; s2; h2).

For every ' in SL(9; � ; ��) with fv(') � X, (G1; s1; h1) j= ' i� (G2; s2; h2) j= ' .

Proof. The proof is by induction on the tree structure of ' (with the natural induction hypoth-
esis stating that the property holds for strict subformulae of '). Let X be a set of variables that
includes the free variables from' . Let f : G1 ! G2 be a g-X-heap-isomorphism from (G1; s1; h1)
to (G2; s2; h2), as de�ned in De�nition 3.2. Since ' g

X is a symmetric relation (as it is an equiv-
alence relation), it is su�cient to prove one direction of the lemma (the other direction holds
by considering f� 1 instead of f). Recall that f� 1 is a g-X-heap-isomorphism from (G2; s2; h2)
to (G1; s1; h1). The base cases foremp, x = y and x ,! y pose no di�culty. Thus, we only show
the case forx ,! y, and omit the other two.

base case: x ,! y. Suppose (G1; s1; h1) j= x ,! y, and therefore h1(s1(x)) = s1(y). Thanks to
the properties g-X-heap-isomorphism, the following sequence of equalities is satis�ed:

f� 1(h2(s2(x))) = h1(f� 1(s2(x))) = h1(s1(x)) = s1(y) = f� 1(s2(y)) :

As f is a bijection, we deriveh2(s2(x)) = s2(y) and thus (G2; s2; h2) j= x ,! y holds.

Concerning the inductive cases, we omit the obvious cases when the outermost connective is a
Boolean connective, leaving us with formulae of the form � � , �� � and 9z .

induction step: case with � . Suppose (G1; s1; h1) j= � � . Then, there are two heapsh0
1

and h00
1 such that h1 = h0

1 + h00
1, (G1; s1; h0

1) j= and (G1; s1; h00
1) j= � . Considerh0

2 = f(h0
1)

and h00
2 = f(h00

1) to be the images ofh0
1 and h00

1 via f. As f is an g-X-heap-isomorphism
betweenh1 and h2, we have:

h2 = f(h1) = f(h0
1 + h00

1) = f(h0
1) + f(h00

1) = h0
2 + h00

2

and moreoverh0
2? h00

2. Lastly, both (G1; s1; h0
1) ' g

X (G2; s2; h0
2) and (G1; s1; h00

1) ' g
X (G2; s2; h00

2)
hold, as one can check thatf is an g-X-heap-isomorphism also for these structures. By the
induction hypothesis, (G2; s2; h0

2) j= and (G2; s2; h00
2) j= � . Thus, (G2; s2; h2) j= � � .

54 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

induction step: case with �� . Suppose that (G1; s1; h1) j= �� � hold. Then, for every
heap h0

1, if h0
1? h1 and (G1; s1; h0

1) j= then (G1; s1; h1 + h0
1) j= � . In order to show

that (G2; s2; h2) j= �� � holds, let us consider a heaph0
2 s.t. h0

2? h2 and (G2; s2; h0
2) j=

hold. We show that then (G2; s2; h2 + h0
2) j= � holds. First, by recalling that f� 1 is a

bijection from G2 to G1, we construct the heaph0
1 = f� 1(h0

2). By de�nition of h0
1, the two

following properties are satis�ed:

1. f is an g-X-heap-isomorphism (from (G1; s1; h0
1) to (G2; s2; h0

2)),

2. h0
1? h1 holds (from (1), (G1; s1; h0

1) ' g
X (G2; s2; h0

2), h0
2? h2 and f� 1(h0

2) = h0
1).

By the induction hypothesis, (1) allows us to derive that (G1; s1; h0
1) j= . Then, from (2)

together with the initial hypothesis (G1; s1; h1) j= �� � , we obtain that (G1; s1; h1 + h0
1)

satis�es � . By de�nition f(h1 + h0
1) = f(h1) + f(f� 1(h0

2)) = h2 + h0
2 and therefore by

induction hypothesis we get (G2; s2; h2 + h0
2) j= � . Thus, (G2; s2; h2) j= �� � .

induction step: case with 9. Suppose (G1; s1; h1) j= 9z . Then, there is a location ` 2 G1

such that (G1; s1[z `]; h1) j= . We need to prove that (G2; s2; h2) j= 9z , which
is true whenever there is a location`0 2 G2 such that (G2; s2[z `0]; h2) j= . Let us
consider the location `0 = f(`) in G2. By de�nition of g-(X [f zg)-heap-isomorphism it
holds that (G1; s1[z `]; h1) ' g

X[f zg (G2; s2[z `0]; h2). Moreover, from fv(9z) � X
we derive fv() � X[f zg. This allows us to apply the induction hypothesis, leading
to (G2; s2[x `0]; h2) j= . Consequently, (G2; s2; h2) j= 9x .

As a direct consequence of this lemma, satis�ability in SL(9; � ; ��) de�ned in Section 2.1
is equivalent to satis�ability with generalised memory states. Indeed, if ' is satis�ed by the
memory state (s; h), then it is satis�ed by the generalised memory state (LOC; s; h). Similarly,
suppose that' is satis�able in the generalised memory state (G; s; h). As G is countably in�nite,
there is a bijection f : G ! LOC. Consider the memory state (s0; h0) de�ned as follows:

� for every x 2 VAR, s0(x) def= f(s(x)), � the heap h0 is de�ned as f(h).

From the de�nition of (s0; h0), we have (G; s; h) ' g
fv(') (LOC; s0; h0). By Lemma 3.3, we conclude

(LOC; s0; h0) j= ' , which is equivalent to (s0; h0) j= ' .

3.1.2 The encoded-by relation BX
Y.

We now formalise the idea discussed at the beginning of this section on how to encode the
store as a part of the heap. We do this by de�ning a relation BX

Y between generalised memory
states and say that (G1; s1; h1) is encoded by (G2; s2; h2) with respect to two sets of variables
X � Y, whenever (G1; s1; h1) BX

Y (G2; s2; h2) holds. For instance, we will see that the memory
state in Figure 3.1 is encoded by the one in Figure 3.2. As previously stated, when considering
the satisfaction of a formula ' with respect of the encoding (G2; s2; h2), we rely on additional
variables not appearing in' in order to deal with the separating implication. Informally, Xkeeps
track of the free variables in ' , whereas the auxiliary setY represent all the variables needed to
perform the encoding (thus X � Y). Let us de�ne the encoded-by relation BX

Y.

De�nition 3.4 (Encoded-by relation). Let X � Y� �n VAR be a �nite set of variables. Let
(G1; s1; h1) and (G2; s2; h2) be generalised memory states. (G1; s1; h1) is encoded-by(G2; s2; h2)
with respect to X and Y, written (G1; s1; h1) BX

Y (G2; s2; h2), if the following conditions hold:

3.2. Simulating the First-order Quanti�cation 55

� G1 = G2 n f s2(x) j x 2 Yg,

� for x; y 2 Y, if x 6= y then s2(x) 6= s2(y),

� h2 = h1 + f s2(x) 7! s1(x) j x 2 Xg.

Notice that G2 is obtained from G1 by adding the locations in f s2(x) j x 2 Yg. Locations in the
latter set are reserved to simulate the store. Moreover,h2 is equal to the heaph1 augmented
with the heap f s2(x) 7! s1(x) j x 2 Xg, which encodes the stores1 restricted to the domain X. In
particular, notice that this heap is a subset off s2(x) j x 2 Xg� G1, which means that all its arrows
have sources in the region reserved to simulate the store, and targets in the set of locationsG1.
Figure 3.2 represents quite clearly an encoding of the memory state in Figure 3.1, in the case
whereX= f x; y; zg. The set Y made of locations reserved to simulate the store is highlighted. In
the �gure, it includes the three locations that are assigned tox, y and z, plus three unlabelled
locations which represent elements inYn X. Furthermore, the heap f s2(x) 7! s1(x) j x 2 Xg is
represented by the three arrows leaving the highlighted region.

The encoded-by relation formally describes the memory states we had in mind when consid-
ering the problem of simulating �rst-order quanti�cation by means of heap manipulations. In
the following section, we formalise this manipluation inside a fragment ofSL(� ; �� ; ,! +).

3.2 Simulating the First-order Quantification

As informally described in the previous section, encoding a store as a part of the heap has some
impact on the satisfaction ofx ,! y and x = y. Indeed, given a generalised memory state (G; s; h),
these two properties should be now checked with respect to the locations that are pointed by
s(x) and s(y). For instance, instead of checking whetherh(s(x)) = s(y) as required by x ,! y,
we must now check forh2(s(x)) = h(s(y)). Besides, in well-formed encodings the locations that
are reserved to encode the store are not pointed by any location, i.e. they do not satisfy the
alloc-back predicate ,! (�). All these adaptations naturally lead us to consider a separation
logic, denoted bySL(n(x); � ; ��), whose formulae are from the following grammar:

� := > j emp j x = y

j n(x) = n(y) (next-equality)

j n(x) ,! n(y) (next-points-to)

j ,! x (alloc-back)

' := � (atomic formulae)

j ' ^ ' j : '

j ' � '

j ' �� '

Given a generalised memory state (G; s; h), the satisfaction relation j= for the formulae
of SL(n(x); � ; ��) is de�ned as in Figure 2.3 for the syntactical elements that the logic has in
common with SL(9; � ; ��), whereas it is given in Figure 3.4 for the other predicates. For instance,
the memory state in Figure 3.5 satis�es n(x) = n(y), n(z) ,! n(y) and n(x) ,! n(z), but it does
not satisfy ,! v, for any v 2 f x; y; zg. A small remark: the equivalence relation = used to
de�ne the semantics ofn(x) = n(y), and n(x) ,! n(y) is a binary relation on the set of locations.
In particular, given two locations `; ` 0 62dom(h), h(`) = h(`0) does not hold. This means that
the formula n(x) = n(x) is equivalent to the alloc predicate x ,! introduced in Section 2.1.1.

The logic SL(n(x); � ; ��) is a quanti�er-free syntactical fragment of SL(9; � ; ��). We already
saw how to express alloc-back predicate in Section 2.1.1. Concerning the predicatesn(x) = n(y)
and x ,! y, we have the two following equivalences:

n(x) = n(y) � 9 z (x ,! z ^ y ,! z), n(x) ,! n(y) � 9 z 9v (x ,! z ^ z ,! v ^ y ,! v).

Despite being quanti�er-free, we prove the following result.

56 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

(G; s; h) j= n(x) = n(y) i� h(s(x)) = h(s(y)),

(G; s; h) j= n(x) ,! n(y) i� h(h(s(x))) = h(s(y)),

(G; s; h) j= ,! x i� s(x) 2 ran(h).

Figure 3.4: The semantics ofSL(n(x); � ; ��) predicates.

lo
ca

tio
ns

re
se

rv
ed

to
si

m
ul

at
e

th
e

st
or

e

z

y

x

Figure 3.5: An encoding.

Theorem 3.5. The satis�ability and validity problems of SL(n(x); � ; ��) are not RE .

This theorem is quite interesting when compared to other well-known complexity results. For
instance, recall that SL([9]1; � ; ��), i.e. the one quanti�ed variable fragment of SL(9; � ; ��), is
proven to admit a PSpace -complete satis�ability problem [55]. This logic can express the pred-
icates ,! x and n(x) = n(y) by directly using the de�nition we gave for SL(9; � ; ��). Theorem 3.5
shows that enriching SL([9]1; � ; ��) with the predicate n(x) ,! n(y) makes the satis�ability prob-
lem does a remarkable jump: fromPSpace to non RE . Moreover, in Section 3.3 we show that the
three predicatesn(x) = n(y), n(x) ,! n(y) and ,! x can be expressed using a bounded variant
of the list-segment predicatels , leading to various extensions of the quanti�er-free separation
logic SL(� ; ��) to admit non RE satis�ability and validity problems.

The proof of Theorem 3.5 achieved by showing thatSL(n(x); � ; ��) can simulate the �rst-order
quanti�cation of SL(9; ��), i.e. the fragment of SL(9; � ; ��) without the separating conjunction.
The satis�ability problem of this logic is proven undecidable in [22], and one can check that
this implies that both satis�ability and validity are not RE by replaying the arguments used
for SL(9; � ; ��) in Section 2.1.2. The formulae' for the separation logic SL(9; ��) considered
in [22] are built from the following grammar (where x; y; z 2 VAR):

' := x = y j x ,! y j ' ^ ' j : ' j ' �� ' j 9z ' .

In this presentation of SL(9; ��), notice that the logic does not directly feature the atomic
formulae > and empof SL(9; � ; ��), which can be de�ned asx = x and :9 x 9y x ,! y, respectively.
We recall the satisfaction relation j= for the formulae of SL(9; ��) in Figure 3.6, adapting it
to generalised memory states. AsSL(9; ��) is a fragment of �rst-order separation logic, by
Lemma 3.3 we know that this adaptation does not change the notion of satis�ability.

3.2.1 Translating SL(9; ��) into SL(n(x); � ; ��).

We de�ne a translation of a formula of SL(9; ��) into a quanti�er-free formula of SL(n(x); � ; ��).
For simplicity, we assume every formula' in SL(9; ��) to be well-quanti�ed, meaning that every
two distinct quanti�ers appearing in ' involve distinct variables. This assumption, often called
Barendregt's convention, can be done without loss of generality. Indeed, every subformula9z
of ' can be replaced with the equivalent formula9v [z v], wherev is a variable not appearing
in and [z v] is the formula obtained from by replacing every occurrence ofz with v.

Assumption 3.6. The formulae in SL(9; ��) are well-quanti�ed.

3.2. Simulating the First-order Quanti�cation 57

(G; s; h) j= x = y i� s(x) = s(y),

(G; s; h) j= x ,! y i� h(s(x)) = s(y),

(G; s; h) j= ' ^ i� (G; s; h) j= ' and (G; s; h) j= ,

(G; s; h) j= : ' i� (G; s; h) 6j= ' ,

(G; s; h) j= ' �� i� for every heap h0 : G* �n G, if h0? h and (G; s; h0) j= '

then (G; s; h + h0) j= ,

(G; s; h) j= 9z ' i� there is ` 2 G such that (G; s[z `]; h) j= ' .

Figure 3.6: Satisfaction relation for SL(9; ��), for a generalised memory state.

Let X � Y � �n VAR. Below, let us �x a (well-quanti�ed) formula ' of SL(9; ��) with free
variables from X and bound variables fromYn X. To correctly setup a framework that can deal
with the separating implication, every variable x 2 Y is paired with a distinct copy x. Formally,
we pick a set Y � �n VAR such that Y\ Y = ? and card(Y) = card(Y). We write Y def= Y[Y to
denote the union of these two sets. Next, we build a correspondence between variables and their
copies by de�ning an involution (�) : Y ! Y associating everyx 2 Y with its copy x 2 Y. Recall
that (�) being an involution means that it is a bijection such that x = x.

The translation of ' into a formula � X;Y(') of SL(n(x); � ; ��) is divided into two cases: a
base case for atomic formulae and \inductive" case for non-atomic ones. This division is quite
natural, since we aim at proving the following correctness lemma by structural induction on' .

Lemma 3.7. Let (G1; s1; h1) BX
Y (G2; s2; h2). (G1; s1; h1) j= ' i� (G2; s2; h2) j= � X;Y(').

Base cases. The de�nition of � X;Y(') is straightforward when ' is a formula of the form x = y
or x ,! y: we simply need to rely on the properties of the encoding given in the previous section.

� X;Y(x = y) def= n(x) = n(y), � X;Y(x ,! y) def= n(x) ,! n(y).

The correctness of these two cases of the translation follows from the lemma below. Besides, this
lemma corresponds to the base case of the proof by induction we employ to show Lemma 3.7.

Lemma 3.8. Let X � Y. Let ' be an atomic formula of the formx = y or x ,! y, wherex; y 2 X.
Given (G1; s1; h1) BX

Y (G2; s2; h2), (G1; s1; h1) j= ' i� (G2; s2; h2) j= � X;Y(').

Proof. Let us consider two generalised memory states (G1; s1; h1) and (G2; s2; h2) such that
(G1; s1; h1) BX

Y (G2; s2; h2). We split the proof into two cases, following whether ' is an equality
predicate or a points-to predicate.

case: ' = x = y. The following equivalences hold:

(G1; s1; h1) j= x = y i� s1(x) = s1(y) (by def. of j=)

i� h2(s2(x)) = s1(x) = s1(y) = h2(s2(y)) (by def. of BX
Y)

i� (G2; s2; h2) j= n(x) = n(y). (by def. of j=)

case: ' = x ,! y. The following equivalences hold:

58 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

(G1; s1; h1) j= x ,! y i� h1(s1(x)) = s1(y) (by def. of j=)

i� h2(s2(x)) = s1(x); h2(s2(y)) = s1(y)

and h2(s1(x)) = s1(y) (by def. of BX
Y)

i� (G2; s2; h2) j= n(x) ,! n(y). (by def. of j=)

Well-formed encodings. Before moving to the inductive cases, let us consider a gener-
alised memory state (G1; s1; h1) and one of its encodings (G2; s2; h2) with respect to X � Y,
i.e. (G1; s1; h1) BX

Y (G2; s2; h2). We recall that the de�nition of the encoded-by relation realises
our intuitive idea of isolating a �nite amount of locations in order to mimic the store s1 by using
the heap h2. This is done by enforcing the following three properties:

1. G1 = G2 n f s2(x) j x 2 Yg,

2. given x; y 2 Y, if x 6= y then s2(x) 6= s2(y),

3. h2 = h1 + f s2(x) 7! s1(x) j x 2 Xg.

These properties must be checked during the translation, so that the �rst-order quanti�cation
and the separating implication only consider generalised memory states that arewell-formed
with respect to the encoded-by relation (that is, they encode some memory state). For this
reason, given a setX � Y, we introduce the formula Store Y(X) de�ned as follows

Store Y(X) def= (
^

x;y2 Y
x6= y

x 6= y) ^ (
^

x2 Y

: ,! x) ^ (
^

x2 X

x ,!) ^ (
^

x2 YnX

: x ,!):

wherex ,! def= n(x) = n(x) in SL(n(x); � ; ��). We can see that this formula captures some essen-
tial trait of the properties above: its �rst conjunct is equivalent to the second property, whereas
the other three conjuncts essentially verify the �rst and third properties. The relationship
betweenStore Y(X) and the encoded-by relation is formalised in the next lemma.

Lemma 3.9. Let (G2; s2; h2) be a generalised memory state. There is a generalised memory
state (G1; s1; h1) such that (G1; s1; h1) BX

Y (G2; s2; h2) if and only if (G2; s2; h2) j= Store Y(X).

Proof. For both directions we use the properties (1), (2) and (3) of the relationBX
Y above.

()): Suppose (G1; s1; h1) BX
Y (G2; s2; h2). (G2; s2; h2) satis�es the four conjuncts of Store Y(X):

(�rst conjunct) Directly from property (2).

(second conjunct) Let us consider a variablex 2 Y. From property (1) we derive s2(x) 62G1,
which means that s2(x) 62ran(h1) (indeed, h1 is in [G1 * �n G1]). Similarly, since for every
y 2 Y it holds that s1(y) 2 G1, we conclude that s2(x) 62ran(f s2(x) 7! s1(x) j x 2 Xg).
Thus, from property (3) we have s2(x) 62ran(h2), which implies (G2; s2; h2) j= : ,! x.

(third conjunct) Directly from property (3).

(fourth conjunct) Let x 2 Y nX. By property (1), s2(x) 62G1 and therefores2(x) 62dom(h1).
Besides, by de�nition s2(x) 62dom(f s2(x) 7! s1(x) j x 2 Xg). From the property (3), it holds
that s2(x) 62dom(h2), or equivalently (G2; s2; h2) j= : x ,! .

((): Suppose (G2; s2; h2) j= Store Y(X). Let us de�ne the set G1
def= G2 n f s2(x) j x 2 Yg,

the heap h1
def= f (`; ` 0) 2 h2 j `; ` 0 2 G1g and a store s1 such that s1(x) def= h2(s2(x)) for

every x 2 X. From the third conjunct of Store Y(X), s1 is well-de�ned. Moreover, G1 is countably
in�nite and therefore the structure (G1; s1; h1) is a generalised memory state. We show that
(G1; s1; h1) BX

Y (G2; s2; h2). The property (1) holds by de�nition, whereas the property (2) follows
directly from the �rst conjunct of Store Y(X). To prove the property (3), we consider the

3.2. Simulating the First-order Quanti�cation 59

� X;Y(:) def= : � X;Y();

� X;Y(1 ^ 2) def= � X;Y(1) ^ � X;Y(2);

� X;Y(9z) def= (z ,! ^ size = 1) �~
�
Store Y(X[f zg) ^ � X[f zg;Y()

�
;

� X;Y(1 �� 2) def=
�
Store Y(V) ^ � V;Y(1[x x j x 2 Y])

�
��

�
(

V
x 2 V n(x) = n(x))) (size = card(V) ^

V
x 2 V x ,!) � � X;Y(2)

�
;

where V def= f x j x 2 fv(1)g:

Figure 3.7: Inductive cases of the translation toSL(n(x); � ; ��).

structure h0 def= f s2(x) 7! s1(x) j x 2 Xg and prove that it is a heap such that h2 = h1 + h0. From
the de�nition of s1(x), we have h0 = f s2(x) 7! h2(s2(x)) j x 2 Xg, which implies that h0 � h2.
Thus, h0 is a heap. To prove thath2 = h1+ h0holds, it is su�cient to show that h1 = h2nh0. The
left-to-right inclusion h1 � h2nh0holds as by de�nition h1 = h2\ (G1 � G1) and dom(h0) \ G1 = ? .
For the right-to-left inclusion, we prove that (h2nh0) � G1� G1. Let (`; ` 0) 2 h2nh0. Ad absurdum,
suppose (̀; ` 0) 62G1 � G1. By de�nition of G1, ` 2 f s2(x) j x 2 Yg or `0 2 f s2(x) j x 2 Yg. The
latter case is contradictory as it implies s2(x) 2 ran(h2) for some x 2 Y, which is inconsistent
with the second conjunct of Store Y(X). The case ` 2 f s2(x) j x 2 Yg is also contradictory.
Indeed, (̀ ; ` 0) 2 h2 n h0 implies ` 2 dom(h2) and, by de�nition of h0, ` 2 Y n X. However, from
the fourth conjunct of Store Y(X), every location in Y n X is not in the domain of h2.

Inductive cases. We are now ready to analyse the inductive cases of the translation. Their
de�nition is given in Figure 3.7. As it is often the case with semantical preserving translations,
� X;Y(') is homomorphic for the Boolean connectives, which �ts nicely in the proof by struc-
tural induction of Lemma 3.7. The de�nition of � X;Y(9z) captures quite closely our initial
idea of seeing the �rst-order quanti�cation as an update of the heap. More precisely, given
a generalised memory state (G2; s2; h2) satisfying � X;Y(9z), it is possible to �nd a location `
such that (G2; s2; h2 + f s2(z) 7! `g) j= Store Y(X[f zg). When considering a generalised mem-
ory state (G1; s1; h1) such that (G1; s1; h1) BX

Y (G2; s2; h2), this means that ` is in G1, so that

(G1; s1[z `]; h2) BX[f zg
Y (G2; s2; h2 + f s2(z) 7! `g). In a nutshell, adding the heap f s2(z) 7! `g

to h2 corresponds to the case where, after an existential quanti�cation,̀ is assigned toz.
For the formula 1 �� 2, we cannot follow a similar idea and simply translate it to the

formula � X;Y(1) �� (Store Y(X)) � X;Y(2)). Indeed, the evaluation of � X;Y(1) in a disjoint
heap may need the values of free variables occurring in 1, but our encoding of the variable
valuations via the heap does not allow to preserve these values through disjoint heaps. Here
is where the setY of copies of the variables comes into play. Consider a generalised memory
state (G; s; h) satisfying Store Y(X) and fv(1 �� 2) � X. In particular, for every x 2 fv(1)
the location s(x) is a memory cell of h. To check whether (G; s; h) satis�es � X;Y(1 �� 2), the
left side of the magic wand considers heapsh0 encoding a store with respect to the copies of
the variables in fv(1), i.e. such that (G; s; h0) satis�es Store Y(V) were V def= f x j x 2 fv(1)g
(as in the translation). On this heap, instead of asking whether� X;Y(1) holds, we can check
for the satisfaction of � X;Y(1[x x j x 2 Y]), where 1[x x j x 2 Y] denotes the formula
obtained from 1 by replacing every variablex 2 X with its copy, and vice versa (recall that (�)
is an involution). We need however to be careful and only considerh0 if the store it encodes is

60 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

compatible with the one encoded byh: for every x 2 V, h0(s2(x)) must be the same location as
h(s2(x)). We check this property directly on the heap h + h0 by using the formula n(x) = n(x).
When this property holds, we can employ the separating conjunction to remove the store encoded
by h0 from h + h0, and ask for the satisfaction of� X;Y(2) on the resulting memory state. Notice
that, by removing the store encoded byh0, we can reusex to deal with the occurrences of the
magic wand inside 2. Similarly, the occurrences of the magic wand inside 1[x x j x 2 Y]
are dealt with by using the copies of the variables appearing in this formula (recall that(�) is
an involution), which does not correspond to memory cells inh0.

Example 3.10. Let us consider the formula ' def= (x ,! y �� x ,! z) �� y = z and show its
translation. Let X = f x; y; zg and Y = f x; y; z; x; y; zg. The translation leads to the following
equivalences:

� X;Y(') =
�
Store Y(X) ^ � X;Y(x ,! y �� x ,! z)

�
��

�
(
V

v2 Xn(v) = n(v))) (size = 3 ^
V

v2 Xv ,!) � � X;Y(y = z)
�
;

� X;Y(x ,! y �� x ,! z) =
�
Store Y(f x; yg) ^ � f x;yg;Y(x ,! y)) ��

�
(
V

v2f x;yg n(v) = n(v))) (size = 2 ^
V

v2f x;yg v ,!) � � X;Y(x ,! z)
�
;

� X;Y(x ,! y) = n(x) ,! n(y);

� X;Y(x ,! z) = n(x) ,! n(z);

� X;Y(y = z) = n(y) = n(z):

Notice how the translation alternates between the variables inX and their copies when imbri-
cating the separating implication on its left side (as it is the case for the formula').

The following lemma subsumes Lemma 3.7 and thus proves the correctness of our translation.
The statement is given with respect to the disjoint �nite sets of variables Y and Y, as well as
the set Y endowed with the involution (�), as de�ned in this section. We recall that for the
formula ' , we assume that distinct quanti�cations involve distinct variables.

Lemma 3.11. Let Z be either Yor Yand let X � Z. Let ' be a formula in SL(9; ��) s.t. fv(') � X
and bv(') � Zn X. Given (G1; s1; h1) BX

Y (G2; s2; h2), (G1; s1; h1) j= ' i� (G2; s2; h2) j= � X;Y(').

Proof. The proof goes by structural induction on ' (with the natural induction hypothesis stat-
ing that the property holds for strict subformulae of '). The base cases for' of the form x = y
and x ,! y, where x; y 2 X, hold from Lemma 3.8. We omit the obvious cases for the Boolean
connectives, which leaves us with the two cases for' = 9z and ' = 1 �� 2. Let us consider
two memory states (G1; s1; h1) and (G2; s2; h2) such that (G1; s1; h1) BX

Y (G2; s2; h2).

case: ' = 9z . By de�nition of ' , the variable z is in ZnX, which implies s2(z) 62dom(h2) by
de�nition of BX

Y . We refer to Figure 3.7 for the de�nition of � X;Y(9z).

()): Suppose (G1; s1; h1) j= 9z , which implies that there is a location ` 2 G1 such
that (G1; s1[z `]; h1) j= holds. Let us consider the structure h0 def= f s2(z) 7! `g.
The location ` is from G1 whereas, from the de�nition of BX

Y , s2(z) is a variable in
G2 n G1. This makes h0 a heap in [G2 * �n G2]. Moreover, as s2(z) 62dom(h2), h0 is
disjoint from h2. Clearly, (G2; s2; h0) j= z ,! ^ size = 1 holds, which means that to con-
clude this direction of the proof is su�cient to show that (G2; s2; h2 + h0) satis�es the
formula Store Y(X[f zg) ^ � X[f zg;Y(). For this, the essential step is to establish that

3.2. Simulating the First-order Quanti�cation 61

(G1; s1[z `]; h1) BX[f zg
Y (G2; s2; h2 + h0),

which amounts to prove that

1. G1 = G2 n f s2(x) j x 2 Yg,

2. given x; y 2 Y, if x 6= y then s2(x) 6= s2(y),

3. h2 + h0 = h1 + f s2(x) 7! s1[z `](x) j x 2 X[f zgg.

The properties (1) and (2) follow directly from the hypothesis that (G1; s1; h1)BX
Y(G2; s2; h2).

Moreover, this hypothesis impliesh2 = h1 + f s2(x) 7! s1(x) j x 2 Xg. By simply adding h0

to both sides of this equation we obtain

h2 + h0 = h1 + f s2(x) 7! s1(x) j x 2 Xg + f s2(z) 7! `g.

By de�nition of s1[z `], the heap f s2(x) 7! s1(x) j x 2 Xg + f s2(z) 7! `g is equiva-
lent to f s2(x) 7! s1[z `](x) j x 2 X[f zgg, which concludes the proof of the property (3).
This concludes the proof of (G1; s1[z `]; h1) BX[f zg

Y (G2; s2; h2 + h0), which in turn al-
lows us to conclude (G2; s2; h2 + h0) j= Store Y(X [f zg) directly by Lemma 3.9, as well
as (G2; s2; h2 + h0) j= � X[f zg;Y(), by induction hypothesis.

((): Suppose (G2; s2; h2) j= � X;Y(9z). By de�nition of � X;Y(9z), there is h0 : G2 * �n G2

disjoint from h2 and such that

A. (G2; s2; h0) j= z ,! ^ size = 1,

B. (G2; s2; h2 + h0) j= Store Y(X[f zg) ^ � X[f zg;Y().

From (A), h0 = f s2(z) 7! `g for some ` 2 G2. More precisely, from the satisfaction
of Store Y(X [f zg) in (B), ` is not assigned to any of the variables inY and therefore,
by (G1; s1; h1) BX

Y (G2; s2; h2), ` can only be a location inG1. As done for the left-to-right

direction, this allows us to prove that (G1; s1[z `]; h1) BX[f zg
Y (G2; s2; h2 + h0), which

in turn implies (G1; s1[z `]; h1) j= by induction hypothesis (using (B)). Lastly, by
de�nition of 9z we conclude: (G1; s1; h1) j= 9z .

The proof of the case for' = 1 �� 2 requires the following substitution lemma, which holds
for every formula in either SL(n(x); � ; ��) or SL(9; ��):

(Sub) Let � be a formula with variables in Z, where Z = Y or Z = Y. Let (G; s; h) be a
generalised memory state. (G; s; h) j= � i� (G; s[x s(x) j x 2 Z]; h) j= � [x x j x 2 Z].

This result essentially states that renaming all the variables in a formula with its copies and
updating the store s adequately, i.e. s(x) = s(x) for every x in the formula, does not change
the notion of satis�ability. A quick way to prove (Sub) is noticing that the two memory states
(G; s; h) and (G; s[x s(x) j x 2 Z]; h) are g-Z-isomorphic, and therefore they equisatisfy�
by Lemma 3.3. Moreover, (G; s[x s(x) j x 2 Z]; h) j= x = x for every x 2 Z, which allows us to
conclude (Sub) by relying on the following well-known tautology of separation logic:

j= x = x ^ �) � [x x].

Details are omitted to let us focus on the case of' = 1 �� 2, which we now develop.

case: ' = 1 �� 2. We refer to Figure 3.7 for the de�nition of � X;Y(y1 �� y2). As in this �gure,
we useV to denote f x j x 2 fv(1)g. Moreover, Z stands for the setf x j x 2 Zg (recall that
by hypothesis Z is Y or Y), so that V � Z. As extensively used for both directions of the
proof, we recall that the hypothesis (G1; s1; h1) BX

Y (G2; s2; h2) implies that

B1. G1 = G2 n f s2(x) j x 2 Yg,

B2. given x; y 2 Y, if x 6= y then s2(x) 6= s2(y),

62 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

B3. h2 = h1 + f s2(x) 7! s1(x) j x 2 Xg.

Below, the indices (B1), (B2) and (B3) refer to these three properties.

()): Suppose (G1; s1; h1) j= 1 �� 2. By de�nition, for every heap h0 : G1 * �n G1, if h0? h1

and (G1; s1; h0) j= 1 then (G1; s1; h1 + h0) j= 2. Let us prove (G2; s2; h2) j= � X;Y(' 1 �� ' 2).
By de�nition of � X;Y(' 1 �� ' 2), this holds whenever for all heapsh0

2 : G2 * �n G2 satisfying
the following properties

H1. h0
2? h2,

H2. (G2; s2; h0
2) j= Store Y(V),

H3. (G2; s2; h0
2) j= � V;Y(1[x x j x 2 Y]),

H4. (G2; s2; h2 + h0
2) j=

V
x 2 V n(x) = n(x),

it holds that

T. (G2; s2; h2 + h0
2) j= (size = card(V) ^

V
x 2 V x ,!) � � X;Y(2).

Therefore, let h0
2 be some heap that satis�es the premises of the implication, i.e. (H1){(H4).

We show that (T) holds. By (H2), for every variable x 2 Y, s2(x) 62ran(h0
2) and more-

over s2(x) 2 dom(h0
2) if and only if x 2 V. This implies that there is a heap h0

1 such that
h0

2 = h0
1 + f s2(x) 7! h0

2(s2(x)) j x 2 Vg and for every (̀ ; ` 0) 2 h0
1, both ` and `0 are not

assigned to variables inY. Moreover, from (B1) we have G2 = G1 [f s2(x) j x 2 Yg,
which in turn implies that the locations ` and `0 above are inG1. Thus, h0

1 is a heap in
[G1 * �n G1]. This allows us to derive that

(G1; s1[x h0
2(s2(x)) j x 2 V]; h0

1) BV
Y (G2; s2; h0

2):

We can then apply the induction hypothesis and, form (H3), conclude that

(G1; s1[x h0
2(s2(x)) j x 2 V]; h0

1) j= 1[x x j x 2 Y]: (a)

From (H4) and by de�nition of h0
2, we haveh0

2(s2(x)) = h2(s2(x)) for every x 2 V. This
means that (a) can be rewritten as (G1; s1[x h2(s2(x)) j x 2 V]; h0

1) j= 1[x x j x 2 Y].
As 1 is written with variables from Z, we can apply (Sub) to swap everyx 2 Z with x 2 Z,
and derive that

(G1; (s1[x h2(s2(x)) j x 2 V])[x s1(x) j x 2 Z]; h0
1) j= 1: (b)

The store (s1[x h2(s2(x)) j x 2 V])[x s1(x) j x 2 Z] considered in (b) is such that for
every x 2 V, h2(s2(x)) is assigned tox. From (B3), the same holds fors1. Here, recall in
particular that V is the set of copies of the variables infv(1) � X. We derive that the
following g-fv(1)-isomorphism holds:

(G1; (s1[x h2(s2(x)) j x 2 V])[x s1(x) j x 2 Z]; h0
1) ' g

fv(1) (G1; s1; h0
1)

which allows us to conclude (G1; s1; h0
1) j= 1 directly by Lemma 3.3. Moreover, the

following inclusions allow us to conclude thath0
1? h1:

h0
1 � h0

2, (by def. of h0
1)

h1 � h2, (by (G1; s1; h1) BX
Y (G2; s2; h2))

h2 \ h0
2 = ? . (by (H1))

Thus, by (G1; s1; h1) j= 1�� 2, (G1; s1; h1+ h0
1) j= 2 holds. By (B3) and h0

1 2 [G1 * �n G1],
we haveh0

1? h2 which, by (B1) and (B2), implies that (G1; s1; h1 + h0
1) BX

Y (G2; s2; h2 + h0
1).

3.2. Simulating the First-order Quanti�cation 63

By induction hypothesis, (G2; s2; h2 + h0
1) j= � X;Y(2). Let us now consider the generalised

memory state (G2; s2; h2 + h0
2), for which we need to prove (T). By de�nition of h0

2,

h2 + h0
2 = h + h0

1 + f s2(x) 7! h0
2(s2(x)) j x 2 Vg: (c)

As (B2) implies that for every two distinct variables x; y 2 V, s2(x) 6= s2(y), and moreover
by (H2) for every variable x 2 V, the location s2(x) is in dom(h0

2), we have

(G2; s2; f s2(x) 7! h0
2(s2(x)) j x 2 Vg) j= size = card(V) ^

V
x 2 V x ,! .

Together with (G2; s2; h2 + h0
1) j= � X;Y(2) and (c), this implies (T).

((): Suppose (G2; s2; h2) j= � X;Y(' 1 �� ' 2). This means that for every heaph0
2 : G2 * �n G2,

if the following properties are satis�ed

A1. h0
2? h2,

A2. (G2; s2; h0
2) j= Store Y(V),

A3. (G2; s2; h0
2) j= � V;Y(1[x x j x 2 Y]),

A4. (G2; s2; h2 + h0
2) j=

V
x 2 V n(x) = n(x),

then so is

C. (G2; s2; h2 + h0
2) j= (size = card(V) ^

V
x 2 V x ,!) � � X;Y(2).

Let us prove that (G1; s1; h1) j= 1 �� 2, which by de�nition means that for every
heaph0

1 : G1 * �n G1, if h0
1? h1 and (G1; s1; h0

1) j= 1, then (G1; s1; h1 + h0
1) j= 2. To prove

it, let us consider a heaph0
1 : G1 * �n G1 disjoint from h1 and such that (G1; s1; h0

1) j= 1.
We show that (G1; s1; h1 + h0

1) j= 2. Since 1 is written with variables from Z (as it is
a subformula of '), we can apply (Sub) and consider (G1; s1[x s1(x) j x 2 Z]; h0

1) j=
 1[x x j x 2 Z] instead of (G1; s1; h0

1) j= 1. Notice that, again due to the fact that 1 is
written with variables from Z, the formula 1[x x j x 2 Z] is syntactically equivalent to
 1[x x j x 2 Y]. Let us consider the heaph0

2 = h0
1 + f s2(x) 7! s1(x) j x 2 Vg. As V � Z,

we can show the following relation:

(G1; s1[x s1(x) j x 2 Z]; h0
1) BV

Y (G2; s2; h0
2): (a)

In particular, recall that this means that:

� G1 = G2 n f s2(x) j x 2 Yg,

� given x; y 2 Y, if x 6= y then s2(x) 6= s2(y),

� h2 = h1 + f s2(x) 7! s1[x s1(x) j x 2 Z](x) j x 2 Vg.

The �rst two properties are direct from (B1) and (B2). For the third property, we notice
that for every x 2 V, s1[x s1(x) j x 2 Z](x) = s1(x), which implies that

f s2(x) 7! s1[x s1(x) j x 2 Z](x) j x 2 Vg = f s2(x) 7! s1(x) j x 2 Vg.

Then, the property follows directly by de�nition of h0
2. From (a), we deduce that (A3)

holds by induction hypothesis, whereas (A2) is satis�ed by Lemma 3.9. Moreover, (A1)
follows directly from the inclusions below:

dom(h2) = dom(h1) [dom(f s2(x) 7! s1(x) j x 2 Xg), (by (B3))

dom(h0
2) = dom(h0

1) [dom(f s2(x) 7! s1(x) j x 2 Vg), (by def. of h0
2)

dom(h1) \ dom(h0
1) = ? , (by def. of h0

1)

dom(h1) [dom(h0
1) � G1, (by def. of h1, h0

1)

dom(f s2(x) 7! s1(x) j x 2 Xg) \ dom(f s2(x) 7! s1(x) j x 2 Vg) = ? , (by (B2))

dom(f s2(x) 7! s1(x) j x 2 Xg) [dom(f s2(x) 7! s1(x) j x 2 Vg) � G2nG1. (by (B1))

64 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

Therefore, h2 + h0
2 is de�ned. The de�nition of h2 and h0

2 implies the following inclusion

f s2(x) 7! s1(x) j x 2 Vg + f s2(x) 7! s1(x) j x 2 Xg � h2 + h0
2.

Then, for every x 2 V, (h2 + h0
2)(s(x)) = (h2 + h0

2)(s(x)), which in turn implies (A4).
(A1){(A4) imply (C), and therefore there are two disjoint heaps hL and hR such that

1. hL + hR = h2 + h0
2

by def
= h1 + h0

1 + f s2(x) 7! s1(x) j x 2 Xg + f s2(x) 7! s1(x) j x 2 Vg,

2. (G2; s2; hL) j= size = card(V) ^
V

x 2 V x ,! ,

3. (G2; s2; hR) j= � X;Y(2).

Since, by (B2), card(f s2(x) 7! s1(x) j x 2 Vg) = card(V), in order to satisfy (2), hL must be
f s2(x) 7! s1(x) j x 2 Vg. By (1), this means that hR = h1 + h0

1 + f s2(x) 7! s1(x) j x 2 Xg.
One can check that, by de�nition of BX

Y , (G1; s1; h1 + h0
1) BX

Y (G2; s2; hR), which allows us to
derive (G1; s1; h1 + h0

1) j= 2 by induction hypothesis from (3), concluding the proof.

3.2.2 SL(n(x); � ; ��) is not recursively enumerable.

Now that we established Lemma 3.11, showing that the satis�ability and validity problem for
SL(n(x); � ; ��) are not RE comes almost e�ortlessly. Let us still consider the sets of program
variables Y and Y de�ned earlier. Given a formula ' in SL(9; ��), written with variables from Y,
we write TSAT (') and TVAL (') for the two following formulae in SL(n(x); � ; ��):

TSAT (') def= Store Y(fv(')) ^ � fv(');Y('); TVAL (') def= Store Y(fv('))) � fv(');Y('):

As a consequence of Lemmata 3.9 and 3.11,' and TSAT (') are shown equisatis�able, whereas'
and TVAL (') are shown equivalid.

Corollary 3.12. (I) ' and TSAT (') are equisatis�able. (II) ' and TVAL (') are equivalid.

The proofs of (I) and (II) are very similar. Below, we just show the proof of (I).

Proof of (I) . First, suppose that ' is satis�able, and let (G1; s1; h1) be a generalised memory
state satisfying ' . Let us de�ne a set of locationsG2 = G1 [f `x j x 2 Yg, where f `x j x 2 Yg is
a set of card(Y) locations not in G1. Let us also consider a stores2 : VAR ! G2 such that, for
every x 2 Y, s2(x) = `x, and let h2 : G2 ! G2 be the heaph2

def= h1 + f s2(x) 7! s1(x) j x 2 fv(')g.
A quick check to the conditions required by the encoded-by relation reveals that

(G1; s1; h1) B fv(')
Y (G2; s2; h2).

By Lemmata 3.9 and 3.11 we conclude that (G2; s2; h2) j= TSAT (').
Conversely, suppose that there is a generalised memory state (G2; s2; h2) j= TSAT ('). As

(G2; s2; h2) satis�es Store Y(fv(')), by Lemma 3.9 we derive that (G1; s1; h1) B fv(')
Y (G2; s2; h2)

holds for some generalised memory state (G1; s1; h1). From Lemma 3.11, (G1; s1; h1) j= ' .

As stated at the beginning of the section, the satis�ability and validity problems for SL(9; ��)
are both non RE . Corollary 3.12 shows that this result carries over to SL(n(x); � ; ��), thus
proving Theorem 3.5. In the next section we show how to translateSL(n(x); � ; ��) into separation
logics with classical reachability predicates, transferring this result even further.

3.3. Reachability Predicates can Quantify 65

3.3 Reachability Predicates can Quantify

We come back to our original goal of simulating the �rst-order quanti�cation by using reach-
ability predicates. During Section 2.1.1 we de�ned three standard reachability predicates: the
reach-plus predicate,! +, the reach-star predicate ,! � and the list-segment predicatels . We
showed that, as soon as we consider a separation logic featuring Boolean connectives,empand
the separating conjunction, ,! + can be used to de�ne the other two interde�nable predicates,! �

and ls . This means that the logic SL(� ; �� ; ,! +) obtained from the quanti�er-free separation
logic SL(� ; ��) by adding the reach-plus predicate capturesSL(� ; �� ; ,! �), which in turn is equiv-
alent to SL(� ; �� ; ls). Thanks to SL(n(x); � ; ��), we are now able to show that a non-trivial
restriction of SL(� ; �� ; ls) already admits non RE satis�ability and validity problems. In this
section we use the standard memory states of separation logic, knowing that (s; h) corresponds
to the generalised memory state (LOC; s; h), and that by Lemma 3.3, the distinction between
generalised and standard memory states does not change the notion of satis�ability and validity.

3.3.1 Bounded reachability.

Given a memory state (s; h) and � 2 N, we introduce the bounded reachability predicatex ,! � y,
with the following intended semantics:

(s; h) j= x ,! � y if and only if h� (s(x)) = s(y) and for every � 0 2 [0; � � 1], h� 0
(s(x)) 6= s(y).

To de�ne this formula, we �rst introduce the auxiliary formula [']� de�ned as (size = � ^ ') � > .
Clearly, (s; h) j= [']� holds whenever there is a heaph0 � h such that card(h0) = � and (s; h0) j= ' .
Then, the predicate x ,! � y can be simply de�ned as [ls (x; y)] � . We leave the proof of correct-
ness of this de�nition to the reader. Since,! � is de�ned in terms of ls , it can be de�ned in the
three separation logicsSL(� ; �� ; ,! +), SL(� ; �� ; ,! �) and SL(� ; �� ; ls).

We prove that the restriction of SL(� ; �� ; ls) to the two predicates ,! 2 and ,! 3, i.e. bounded
reachability of depth two and three, already admits non RE satis�ability and validity problems.
Precisely, we look at the logicSL(� ; �� ; ,! 2; ,! 3) whose formulae' are from the grammar:

' := > j emp j x = y j x ,! y j x ,! 2 y j x ,! 3 y j ' ^ ' j : ' j ' � ' j ' �� ':

Modulo some technical details, the result is shown by simulating the predicates ,! x, n(x) = n(y)
and n(x) ,! n(y) in SL(� ; �� ; ,! 2; ,! 3), and relying on Corollary 3.12. This means that the proof
mainly consists in de�ning these predicates inSL(� ; �� ; ,! 2; ,! 3) and then simply check for the
correctness of the de�nitions. In order to avoid a repetitive list of de�nitions and proofs, in this
section we simply introduce the formulae and informally explain the idea behind their de�nition.
Their correctness is formally proven in Appendix A.

Alloc-back. In Section 2.1.1 we showed how to use the reachability predicatex ,! + x in order
to express the predicate ,! x (see Proposition 2.7). We would like to change this de�nition so
that it uses x ,! � x, with � 2 f 2; 3g, instead of x ,! + x. This is unfortunately not possible, as by
de�nition x ,! � x is equivalent to ? for every � � 1. To get around this problem, we need to
take advantage of an auxiliary variable y whose location is di�erent from the one assigned tox.
We introduce the formula alloc � 1

y (x), de�ned as follows

alloc � 1
y (x) def= x ,! x _ y ,! x _

�
> � (y ,! ^ size = 1 �~ y ,! 2 x)

�
:

66 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

where we notice that y ,! def= y ,! y �� ? is in SL(� ; �� ; ,! 2; ,! 3). The formula alloc � 1
y (x) is

equivalent to ,! x under the hypothesis that x and y correspond to di�erent locations. The
idea behind its de�nition is quite simple. The �rst two disjuncts of the formula take care of
the cases where the location that points tos(x) is either s(x) itself or s(y). Every other case
is taken care of by the third disjunct, which states that it is possible to �nd a subheap h0 � h
and a location ` such that h0+ f s(y) 7! `g witness a path of length two going froms(y) to s(x).
Clearly, this means that f ` 7! s(x)g � h0, leading to the correctness of the formula.

Lemma 3.13. Let (s; h) be a memory state such thats(x) 6= s(y). We have,

(s; h) j= alloc � 1
y (x) if and only if s(x) 2 ran(h).

The additional hypothesis s(x) 6= s(y) does not inuence our results, as the formulaeTSAT (')
and TVAL (') used in Corollary 3.12 keep their satis�ability and validity status when ,! x is
replaced with alloc � 1

x (x). In particular, one can notice that the alloc-back predicate appears
in these two formulae only inside a subformulaStore Y(X), which forces x and x to correspond
to di�erent locations. We explicit this property by de�ning the formula of SL(� ; �� ; ,! 2; ,! 3):

Store ?
Y(X) def= Store Y(X)[,! x alloc � 1

x (x) j x 2 Y],

Lemma 3.14. (s; h) j= Store Y(X) if and only if (s; h) j= Store ?
Y(X).

Proof. Directly from Lemma 3.13 and the fact that both Store Y(X) and Store ?
Y(X) are conjunc-

tive formulae witnessing one conjunctx 6= x for every x 2 Y.

Next-equality. Let us now move to the predicaten(x) = n(y), which we recall being satis�ed
by a memory state (s; h) wheneverh(s(x)) = h(s(y)) holds. As done for the predicate ,! x, we
de�ne a formula that respects this semantics only under additional hypothesis. In particular,
we assumes(x) and s(y) to be locations that do not belong to ran(h). This formula is denoted
by next (x = y) and it is de�ned as:

next (x = y) def= x ,! ^
�
x 6= y)

h
x ,! ^ y ,! ^ : (> � ~ x ,! 2 y ^ y ,! 2 x)

i

2

�
:

Let (s; h) be a memory state. The �rst conjunct of next (x = y) handles the case wheres(x) = s(y),
as n(x) = n(y) then becomes equivalent tox ,! (or analogously, y ,!). The second conjunct
considers the cases(x) 6= s(y). It states that it is possible to �nd a subheap h0 � h of cardinality
exactly two and where both s(x) and s(y) are memory cells. Under the hypothesis thats(x)
and s(y) are not in ran(h), this means that h0 witness one of the two following shapes:

x y

`1 `2

x y

`

The subformula : (> � ~ x ,! 2 y ^ y ,! 2 x) of next (x = y) excludes the leftmost memory state
while allowing the rightmost one, i.e. the one satisfyingn(x) = n(y). Indeed, this formula states
that it is not possible to �nd a heap h00such that the union h0+ h00witnesses two paths of exactly
length two, one going from s(x) to s(y) and one going from s(y) to s(x). By considering the

3.3. Reachability Predicates can Quantify 67

heaph00= f `1 7! s(y); `2 7! s(x)g we see that this property does not hold for the leftmost memory
state. For the rightmost memory state, in order to create a path of length two from s(x) to s(y)
we are obliged to consider a heaph00such that f ` 7! s(y)g � h00. Therefore, it is impossible to
create a path of length 2 going froms(y) to s(x), as h0+ h00contains the cyclef s(y) 7! ` 7! s(y)g.
We conclude that the rightmost memory state satis�es : (> � ~ x ,! 2 y ^ y ,! 2 x). This leads to
the following correctness result.

Lemma 3.15. Let (s; h) be a memory state such thatf s(x); s(y)g \ ran(h) = ? .

(s; h) j= next (x = y) if and only if h(s(x)) = h(s(y)).

As it holds for the formula alloc � 1
y (x), the additional hypothesis f s(x); s(y)g \ ran(h) = ?

of Lemma 3.15 does not inuence our result, andn(x)= n(y) can be safely replaced bynext (x = y)
in both the formulae TSAT (') and TVAL ('). Again, this replacement does not change the
satis�ability and validity of these formulae, since Store ?

Y(X) implies that all variables in Y do
not belong to the range of the heap. We formalise this result in Section 3.3.2

Next-points-to. Lastly, we consider the predicaten(x) ,! n(y), which we recall being satis�ed
by a memory state (s; h) whenever h(h(s(x))) = h(s(y)) holds. Again, we de�ne this predicate
in SL(� ; �� ; ,! 2; ,! 3) modulo some additional hypothesis. As in the case ofalloc � 1

y (x), we rely
on an auxiliary variable z whose assigned location is assumed to be di�erent froms(x) and s(y).
Similarly to next (x = y), we also requires(x), s(y) and s(z) not to belong to the range of h.
Under these conditions, the equivalent formulanext z(x ,! y) is de�ned as follows:

next z(x ,! y) def=
�
next (x = y) ^

h
x ,! ^ : (> � ~ x ,! 3 z)

i

2

�
_

h
size = 1 �~ x ,! 3 z ^ y ,! 2 z

i

3
:

This formula is somewhat more involved than alloc � 1
y (x) and next (x = y). Its de�nition is

split into two disjuncts: the left one capturing the cases wheren(x) = n(y) holds, and the right
one capturing the cases wheren(x) = n(y) does not hold. Let us consider a memory state (s; h).
Under the condition that (s; h) j= n(x) = n(y), we notice that h(h(s(x))) = h(s(y)) holds if and
only if there is a location ` such that f s(x) 7! `; ` 7! `g � h. In particular, the location h(s(x))
points to itself. The subformula

�
x ,! ^ : (> � ~ x ,! 3 z)

�
2 exactly checks for this pattern. It

states that it is possible to �nd a subheap h0 � h made of two memory cells, one of which iss(x),
that cannot be extended so that it contains a path of length exactly three, that goes froms(x)
to s(z). One can check this extension cannot be performed only in the case where the heaph0

has a cycle that can be reached froms(x). As however s(x) 62ran(h), the only possibility left is
that h0(s(x)) points to itself. This leads to h0 = f s(x) 7! `; ` 7! `g.

The second disjunct ofnext z(x ,! y) states that there is a subheaph1 � h of exactly three
memory cells that can be extended with a heaph2 such that card(h2) = 1 and h1 + h2 witnesses
the following two paths:

f s(x) 7! `x
1 7! `x

2 7! s(z)g, f s(y) 7! `y
1 7! s(z)g.

As s(z) 62ran(h) and h1 � h2, it can only be the case thath2 = f `y
1 7! s(z)g and `x

2 = `y
1, which

leads to h(h(s(x))) = h(s(y)). The formula next z(x ,! y) is then found to be correct.

Lemma 3.16. Let (s; h) be such that s(x) 6= s(z) 6= s(y) and f s(x); s(y); s(z)g \ ran(h) = ? .

(s; h) j= next z(x ,! y) if and only if h(h(s(x))) = h(s(y)).

68 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

Again, the additional hypothesis needed for the correctness of the formulanext z(x ,! y) does
not inuence our result, as we now show.

3.3.2 Using SL(n(x); � ; ��) to prove that SL(� ; �� ; ,! 2; ,! 3) is not RE.

We now show that SL(� ; �� ; ,! 2; ,! 3) is not RE by relying on the translation from SL(9; ��)
to SL(n(x); � ; ��) carried out in Section 3.2.1. As de�ned in that section, given a �nite set of
variables Y � �n VAR, we consider a copyx for every variable x 2 Y. We denote with Y � �n VAR
the set of these copies, so thatcard(Y) = card(Y) and Y\ Y = ? . Then, we denote by Y the
set Y[Y, and consider an involution (�) : Y ! Y associating everyx 2 Y with its copy x 2 Y.
In Section 3.2.1, we have shown that we can translate a given formula' in SL(9; ��), written
with variables in Y, into an equisatis�able formula TSAT (') and an equivalid formula TVAL ('),
both in SL(n(x); � ; ��). The main ingredient of these formulae is given by the translation� X;Y('),
which uses the multiplicative connectives ofSL(n(x); � ; ��) in order to simulate the �rst-order
quanti�cation of SL(9; ��). We now modify this translation in order to produce an equivalent
formula in SL(� ; �� ; ,! 2; ,! 3). In particular, it is su�cient to replace every occurrence of the
predicates ,! x, n(x) = n(y) and n(x) ,! n(y) in SL(n(x); � ; ��) with the formulae alloc � 1

x (x),
next (x = y) and next x(x ,! y), respectively, obtaining the following formula:

� ?
X;Y(') def= � X;Y(')[,! x alloc � 1

x (x) j x 2 Y]

[n(x) = n(y) next (x = y) j x; y 2 Y]

[n(x) ,! n(y) next x(x ,! y) j x; y 2 Y]:

One can check that � ?
X;Y(') is indeed a formula of SL(� ; �� ; ,! 2; ,! 3). Thanks to the lemmata

shown in the previous section (from Lemma 3.13 to Lemma 3.16), we can prove that� ?
X;Y(') is

equivalent to � X;Y('). We recall that Store ?
Y(X) = Store Y(X)[,! x alloc � 1

x (x) j x 2 Y].

Lemma 3.17. Let Z be either Yor Yand let X � Z. Let ' be a formula in SL(9; ��) s.t. fv(') � X
and bv(') � Zn X. Given (s; h) satisfying Store Y(X), (s; h) j= � X;Y(') i� (s; h) j= � ?

X;Y(').

Proof. From (s; h) j= Store Y(X), the memory state (s; h) satis�es the following properties:

1. for all distinct x; y 2 Y, s(x) 6= s(y),

2. for every x 2 Y, s(x) 62ran(h),

3. for every x 2 X, s(x) 2 dom(h),

4. for every x 2 Y n X, s(x) 62dom(h).

Below, the indices (1), (2), (3), (4) refer to these four properties.
As done for Lemma 3.11, the proof is by structural induction on ' . The base cases for

' = x = y and ' = x ,! y holds directly from Lemmata 3.15 and 3.16, respectively, which can
be applied thanks to (1) and (2). We omit the obvious cases for the Boolean connectives, and
focus on the cases where' = 9z or ' = 1 �� 2.

case: ' = 9z . Let us make explicit the de�nitions of � X;Y(') and � ?
X;Y('):

� X;Y(9z) = (z ,! ^ size = 1) �~
�
Store Y(X[f zg) ^ � X[f zg;Y()

�
;

� ?
X;Y(9z) = (next (z = z) ^ size = 1) �~

�
Store ?

Y(X[f zg) ^ � ?
X[f zg;Y()

�
:

where we recall that z ,! is de�ned as n(z) = n(z) in SL(n(x); � ; ��).

()): Suppose (s; h) j= � X;Y(9z). By de�nition of the septraction operator �~ , there is a
location ` and a heaph0 = f s(z) 7! `g such that (s; h + h0) satis�es both Store Y(X[f zg)
and � X[f zg;Y(). Thanks to (s; h + h0) j= Store Y(X[f zg) we have:

3.3. Reachability Predicates can Quantify 69

� s(z) 62ran(h + h0), which implies s(z) 62ran(h0). Directly from Lemma 3.15 and the
de�nition of h0 we conclude that (s; h0) j= next (z = z) ^ size = 1 holds.

� By Lemma 3.14, (s; h+ f s(z) 7! `g) j= Store ?
Y(X[f zg). Then, by induction hypothesis

we derive (s; h + f s(z) 7! `g) j= � ?
X[f zg;Y().

Again by de�nition of the septraction operator, we conclude: (s; h) j= � ?
X;Y(9z).

((): Analogous to the other direction.

case: ' = 1 �� 2. Let V def= f x j x 2 fv(1)g. We recall the de�nitions of � X;Y(') and � ?
X;Y('):

� X;Y(1 �� 2) def=
�
Store Y(V) ^ � V;Y(1[x x j x 2 Y])

�
��

�
(
V

x 2 Vn(x) = n(x))) (size = card(V) ^
V

x 2 Vx ,!) � � X;Y(2)
�
;

� ?
X;Y(1 �� 2) def=

�
Store ?

Y(V) ^ � ?
V;Y(1[x x j x 2 Y])

�
��

�
(
V

x 2 Vnext (x = x))) (size = card(V) ^
V

x 2 Vx ,!) � � ?
X;Y(2)

�
:

()): Suppose (s; h) j= � X;Y(1 �� 2). In order to show that (s; h) j= � ?
X;Y(1 �� 2), let us

consider a heaph0 disjoint from h and such that

H1. (s; h0) j= Store ?
Y(V),

H2. (s; h0) j= � ?
V;Y(1[x x j x 2 Y]),

H3. (s; h + h0) j=
V

x 2 V next (x = x),

and prove that then it follows that

T. (s; h + h0) j= (size = card(V) ^
V

x 2 V x ,!) � � ?
X;Y(2).

From (H1) and by Lemma 3.14, (s; h0) satis�es Store Y(V). Thanks to Section 3.3.2, we can
then apply the induction hypothesis and conclude that (s; h0) j= � V;Y(1[x x j x 2 Y]).
Let us now considerx 2 Y. By (H1) we know that s(x) 62ran(h0). Moreover, s(x) 62ran(h)
also holds (by (2)), and therefore s(x) 62ran(h + h0). Thus, by (H3) and Lemma 3.15,
(s; h + h0) j=

V
x 2 Vn(x) = n(y). This allows us to derive, by (s; h) j= � X;Y(1 �� 2), that

(s; h + h0) j= (size = card(V) ^
V

x 2 Vx ,!) � � X;Y(2),

which means that there are two disjoint heapsh1 and h2 such that h + h0 = h1 + h2,
(s; h1) j= size = card(V) ^

V
x 2 Vx ,! and (s; h2) j= � X;Y(2). To conclude the proof, it is

su�cient to show that (s; h2) j= Store Y(X), so that we can apply the induction hypothesis
to conclude (s; h2) j= � ?

X;Y(2), which in turn shows (T). So, we show the four properties:

S1. for all distinct x; y 2 Y, s(x) 6= s(y),

S2. for everyx 2 Y, s(x) 62ran(h2),

S3. for everyx 2 X, s(x) 2 dom(h2),

S4. for everyx 2 Y n X, s(x) 62dom(h2).

The property (S1) holds directly from (1). For (S2) it is su�cient to recall that for every
x 2 Y, s(x) 62ran(h+ h0), and h2 � h+ h0. In order to prove (S3) and (S4), we equivalently
show that for every x 2 Y, s(x) 2 dom(h2) if and only if x 2 X. From the properties (3)
and (4) of Store Y(X), we derive that for every x 2 Y, s(x) 2 dom(h) if and only if
x 2 X. Similarly, from (s; h0) j= Store Y(V), given a variable x 2 Y, s(x) 2 dom(h0) if
and only if x 2 V. At the same time, from (1), card(f s(x) j x 2 Vg) = card(V). Together
with (s; h1) j= size = card(V) ^

V
x 2 Vx ,! , this implies that given a variable x 2 Y,

s(x) 2 dom(h1) if and only if x 2 V, exactly as in the case ofh0. Sinceh + h0 = h1 + h2,
we conclude: for everyx 2 Y, s(x) 2 dom(h2) if and only if x 2 X.

((): Analogous to the other direction.

70 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

Let us now consider the formulaeTSAT (') and TVAL (') of SL(n(x); � ; ��) de�ned in sec-
tion Section 3.2.2. We de�ne analogous formulae inSL(� ; �� ; ,! 2; ,! 3):

T ?
SAT (') def= Store ?

Y(fv(')) ^ � ?
fv(');Y('); T ?

VAL (') def= Store ?
Y(fv('))) � ?

fv(');Y('):

Directly from Lemmata 3.14 and 3.17, TSAT (') is equivalent to T ?
SAT ('), whereasTVAL (') is

equivalent to T ?
VAL ('). We can therefore lift Theorem 3.5 to SL(� ; �� ; ,! 2; ,! 3).

Theorem 3.18. The satis�ability and validity problems of SL(� ; �� ; ,! 2; ,! 3) are not RE .

3.3.3 Other separation logics with non RE decision problems.

Let us analyse Theorem 3.5 and Theorem 3.18 further. As already stated, it is known that
the restriction of SL(9; � ; ��) to one quanti�ed variable, i.e. SL([9]1; � ; ��), admits PSpace -
complete satis�ability and validity problems [55], whereas the logic with just two quanti�ed
variables, i.e. SL([9]2; � ; ��), is already non recursively enumerable on closed formulae [53]. As
we already discussed when we introduced Theorem 3.5,SL([9]1; � ; ��) can easily express both
the predicates n(x) = n(y) and ,! x. The distance between the decidability for SL([9]1; � ; ��)
and the undecidability for SL([9]2; � ; ��) (not restricted to closed formulae) is best witnessed by
Corollary 3.19(I) below, which solves an open problem [55, Section 6]. Moreover, Theorem 3.18
implies that adding ls to the quanti�er-free separation logic SL(� ; ��) also leads to nonRE
satis�ability and validity problems. All these undecidability results are stated below for the
record, without claiming that all these variants happen to be interesting in practice.

Corollary 3.19. The satis�ability and validity problems of the following logics are non RE :

(I) SL([9]1; � ; ��) augmented with n(x) ,! n(y),

(II) SL([9]2; � ; ��),

(III) SL(� ; ��) augmented with either ls , ,! + or ,! � ,

(IV) SL(n(x); � ; ��), SL(� ; �� ; ,! 2; ,! 3) and all the logics above, restricted to 4 variables.

Proof of (I) . As already stated, this is a consequence of Theorem 3.5 by observing that the
predicate n(x) = n(y) is equivalent to 9z (x ,! z ^ y ,! z), whereas ,! x is 9z z ,! x.

Proof of (II) . Consequence of (I), asn(x) ,! n(y) can be expressed with two quanti�ed variables
with the formula 9z 9v (x ,! z ^ z ,! v ^ y ,! v).

Proof of (III) . For SL(� ; �� ; ls), it is a consequence of Theorem 3.18, as,! � is de�nable as
soon as a separation logic features Boolean connectives,emp, separating conjunction and ls .
In Section 2.1.1 we have shown howls can be expressed with either,! + or ,! � .

Proof of (IV) . It is shown in [53] that SL(9; ��) restricted to two quanti�ed variables is un-
decidable already on closed formulae. The translation provided in Section 3.2.1 assumes that
distinct quanti�cations involve distinct variables. In order to translate SL(9; ��) restricted to
two quanti�ed variables, it is necessary to give up that assumption and to update the de�nition
of � X;Y('). Actually, only the clause for formulae of the form 8z requires a change (where now
z belongs to a setY of two variables). Here is the new value for� X;Y(8z) (that updates the
de�nition given in Figure 3.7):

�
(z ,! ^ size = 1) _ emp) � (: z ,! ^ (z ,! ^ size = 1) �� (Store Y(X)) � X;Y())) :

3.3. Reachability Predicates can Quantify 71

In particular, this formula uses the operator � in order to remove the current assignment ofz
(if it exists), and then apply the same translation given in Figure 3.7. The proof of Lemma 3.11
and Lemma 3.17 can be updated accordingly. Ascard(Y) = 2, the formula � X;Y(') witnesses at
most four variables (i.e. the cardinality of Y = Y[Y).

3.3.4 Modal separation logic is non RE.

Corollary 3.19(III) proves that MSL (Section 2.3.2) admits non RE satis�ability and validity
problems by Proposition 2.20. However, Theorem 3.18 allows us to re�ne this result and show
that it holds even when empand both the modalities � � 1 and h6= i are dropped from the logic.

Theorem 3.20. MSL without � � 1, h6= i and emphas nonRE satis�ability and validity problems.

We refer the reader to Section 2.3.2 for the de�nition of the modal separation logicMSL, the
de�nition of Kripke-style �nite function and the de�nition of nominals. The speci�c fragment
that we prove non RE is given by the grammar below:

' := > j p j ' ^ ' j : ' j ' � ' j ' �� j � ' .

First of all, notice that we can retrieve the formula emp, and de�ne it as follows:

empdef= : � > ^
�
(� : � >) �� : �� >

�
.

The correctness of this and every other formula introduced in this section is shown in Ap-
pendix A. By relying on emp, the logic can express the septraction operator�~ and the size
formulae size � � and size = � (all de�ned as in Section 2.1.1).

Let ' be a formula in SL(� ; �� ; ,! 2; ,! 3), written with variables from X. Without loss of
generality we assumeAP = VAR and W = LOC. We de�ne a translation � X(') in the above
fragment of MSL, that can be shown correct for the class of pointed �nite functions encoding
memory states, in the following sense.

De�nition 3.21 (MSL - Memory state encoding.). A pointed �nite function (K; w), where K =
(LOC; R; V), is a X-encodingof a memory state (s; h) whenever R = h and moreover

1. every x 2 X is a nominal that corresponds to s(x), i.e. V(x) = f s(x)g,

2. the current world w is a spy, i.e. it is a nominal for a �xed propositional symbol spy 62X,
it does not satisfy any propositional symbol in X, and it does not belong to a pair in R.

Before de�ning the translation, let us derive formulae that capture the two properties (1) and (2)
of De�nition 3.21. Let (K; w) be a pointed �nite function, where K = (W; R; V). First of all, we
de�ne the formula uniq (p), stating that the current world w is the only one satisfyingp 2 AP:

uniq (p) def= > �
�
p ^ emp̂

�
(size = 1 ^ � p) �� �� >

� �
:

This formula asks to consider the empty Kripke-style �nite function K0 = (W; ? ; V) � K . On
this structure, it states that w 2 V(p) holds true (thus, it also holds for K), and that whenever
we add a Kripke-style �nite function K00= (W; f (w; w0)g; V), if w0 2 V(p) then K0+ K00witnesses
a path of length two going from w to a world w00. As the accessibility relation of K0+ K00only
has one arrow going fromw to w0, this is only possible if w0 = w. Therefore, w is the only world
satisfying p. By relying on uniq (p), we de�ne the formula nom(p) stating that p is a nominal:

nom(p) def= > �
�
emp̂

�
(� uniq (p)) �~ >

� �
.

72 Chapter 3. Extensionality and Reachability Leads to Non-enumerability

� X(>) def= > , � X(' ^) def= � X(') ^ � X(),

� X(emp) def= emp, � X(: ') def= : � X('),

� X(x = y) def= size = 1 �~ � (x ^ y), � X(' �) def= � X(') � � X(),

� X(x ,! y) def= size = 1 �~ � (x ^ � y), � X(' ��) def= (is a spyX ^ � X(')) �� � X(),

� X(x ,! 2 y) def= : � X(x = y) ^ : � X(x ,! y) ^ (size = 1 �~ � (x ^ �� y)),

� X(x ,! 3 y) def= : � X(x = y) ^ : � X(x ,! y) ^ : � X(x ,! 2 y) ^ (size = 1 �~ � (x ^ ��� y)).

Figure 3.8: Translation from SL(� ; �� ; ,! 2; ,! 3) to a fragment of MSL.

Again, this formula asks to consider the empty functionK0 = (W; ? ; V) � K . On this structure,
it states that it is possible to add a Kripke-style �nite function K00= (W; f (w; w0)g; V) such that
(K00; w0) j= uniq (p). This construction can be satis�ed if and only if p is a nominal.

Let us now characterise the fact that w is a spy. The following formula does the job:

is a spyX
def= uniq (spy) ^

� V
x2 X : x

�
^ : � > ^ :

�
(size = 1 ^ � : spy) �~ �� spy

�
.

The �rst two conjuncts of is a spyX capture the fact that w must be a nominal for spy and
that it does not satisfy any symbol from X. Instead, the last two conjuncts state that R(w) = ?
and R� 1(w) = ? , as required by property (2). The �rst equality is directly captured by the
subformula : � > , whereas the subformula: ((size = 1 ^ � : spy) �~ �� spy) captures R� 1(w) = ?
under the hypothesis that both uniq (spy) and : � > hold.

Being able to express nominals and spies allows us to de�ne the translation� X(') as shown
in Figure 3.8. We highlight two points of this translation. First, the formula � X(' ��) con-
straints the magic wand to only consider relations satisfyingis a spyX, so that � X(') and � X()
are evaluated on pointed �nite functions that satisfy the conditions in De�nition 3.21. Second,
since is a spyX insures that the current world does not belong to a pair in R, we can combine
the modality � and the septraction �~ in order to simulate the h6= i modality. This \trick" is
used to translate all the atomic predicate between program variables. For instance, let us con-
sider � X(x ,! y). This formula states that adding (w; wx), where w is the current world and wx

corresponds to the nominalx, to the accessibility relation R leads to a path of length two going
from w to the world wy corresponding to the nominaly. This is only possible if (wx; wy) belongs
to R, as required by the predicatex ,! y. The translation is shown to be correct below.

Lemma 3.22. Let (s; h) be a memory state and let ' be a formula in SL(� ; �� ; ,! 2; ,! 3), with
variables from X� �n VARn f spyg. Let (K; w) be a pointed �nite function that is an X-encoding
of (s; h). We have, (s; h) j= ' if and only if (K; w) j= � X(').

This lemma states that the translation is correct and, similarly to Lemma 3.11, its proof is by
structural induction on ' (see Appendix A). Afterwards, to prove Theorem 3.20 we simply use
nom(p) and is a spy to characterise the set of pointed �nite functions considered in Lemma 3.22.
This is formalised in the lemma below, while its proof is given in Appendix A.

Lemma 3.23. Let ' be a formula in SL(� ; �� ; ,! 2; ,! 3), with variables from X� �n VARnf spyg.

(I) ' and is a spyX ^
V

x2 Xnom(x) ^ � X(') are equisatis�able.

(II) ' and is a spyX ^
V

x2 Xnom(x)) � X(') are equivalid.

4

Intensionality and Reachability Leads to
Non-elementary Logics

Contents
4.1 The Hardness of Reachability and Submodel Reasoning77

4.1.1 ALT: An Auxiliary Logic on Trees. 77

4.1.2 Relating ALT and the separation logicSL([9]1; � ; x ,! ; ,! +). 80

4.2 On the Expressive Power ofALT . 81

4.2.1 TowardsTower -hardness: how to encode �nite words inALT. 82

4.2.2 Intermezzo: inexpressibility results via Ehrenfeucht-Fra•�ss�e games. . . 88

4.3 The Complexity of ALT . 97

4.3.1 Propositional Interval Temporal Logic. 97

4.3.2 PITL on marked words. 98

4.3.3 ReducingPITL to ALT. 101

4.4 Revisiting Tower -hard Logics with ALT . 103

4.4.1 From ALT to SL(� ; �� ; ls) with bounded magic wand. 104

4.4.2 From ALT to Quanti�ed Computation Tree Logic. 105

4.4.3 From ALT to Modal Separation Logic. 112

73

75

In this chapter

The proof that the logic SL(� ; �� ; ,! �) has a nonRE satis�ability problem (Chapter 3) raises new
questions on the complexity of other fragments ofSL(9; � ; ��) featuring reachability predicates.
The aim of this chapter is to study the logic SL([9]1; � ; x ,! ; ,! +), which sits between the
PSpace -complete SL([9]1; � ; x ,!) and the Tower -complete SL([9]2; �). This logic features
one quanti�ed variable name, the separating conjunction � , the predicate alloc x ,! and the
reachability predicate x ,! + y.
As done in Chapter 3, instead of studying directly this logic we take a detour and only consider
its signi�cant features: its ability to reason on submodels, and the way it can express reachability
conditions. We introduce the auxiliary logic ALT which corresponds to the minimal fragment
of SL([9]1; � ; x ,! ; ,! +) having these features. After studying its expressive power, we show that
ALT admits a Tower -complete satis�ability problem. Despite showing that the satis�ability
for SL([9]1; � ; x ,! ; ,! +) is non-elementary, our e�orts are rewarded asALT reveals to be an
interesting theoretical instrument to prove Tower -hardness of logics interpreted on trees. We
prove that ALT is captured by non-trivial fragments of four logics that were independently
found to be Tower -hard: �rst-order separation logic with bounded separating implication [22],
quanti�ed computation tree logic (QCTL) [99], modal logic of heaps (MLH) [52] and modal
separation logic (MSL) [54].

Here is a roadmap of the chapter.

Section 4.1. We introduce the Auxiliary Logic on Trees (ALT), a modal logic interpreted on
�nite forests that features reachability predicates together with the universal modality hUi [80],
the sabotage modality � from sabotage modal logic [4] and its Kleene closure� * . We show that
ALT is a fragment of SL([9]1; � ; x ,! ; ,! +), and thus decidable in Tower .

Section 4.2. We analyse the expressive power ofALT. First of all, we introduce an encoding
of �nite words into �nite forests (De�nition 4.4), and show that the set of forests encoding �nite
words is characterisable inALT (Lemma 4.10). This result provides a �rst step in the proof of
Tower -hardness ofALT. Second, we explore inexpressibility results forALT by adapting the
notion of Ehrenfeucht-Fra•�ss�e games for �rst-order logic.

Section 4.3. We prove the main result of the chapter.

Theorem 4.28. The satis�ability problem of ALT is Tower -complete.

The Tower -hardness is by reduction from Propositional Interval Temporal Logic (PITL) under
locality principle, known to be Tower -complete [112, 128]. This logic is interpreted on �nite
words, and features a composition operator that splits the word into a pre�x and a su�x
overlapping in exactly one position. In view of the inexpressibility results obtained in Section 4.2,
this operation cannot be directly simulated in ALT. To circumvent this problem, we introduce
and alternative and computationally equivalent semantics forPITL, where the operator marks a
position in the word, instead of splitting it into two subwords. The satis�ability problem of PITL
under this new semantics is reduced to the satis�ability problem ofALT, leading to Theorem 4.28.

Section 4.4. We rely on the Tower -hardness of ALT to re�ne the analysis on the com-
putational complexity of separation logic, QCTL, MSL and MLH. We start with the �rst-order

76 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

separation logicSL(9; � ; � [n]) featuring the suite of bounded separating implications� [n] (n 2 N).
Roughly speaking,� [n] restricts the standard separating implication �� so that only heaps with
at most n memory cells can be added to the current one.SL(9; � ; � [n]) is shown to beTower -
complete in [22]. We show that Tower -hardness already holds for its quanti�er-free frag-
ment SL(� ; � [1]; ls), where we notice that the connectives� [n] are restricted to n = 1.

Theorem 4.29. Satis�ability of the two-variable fragment of SL(� ; � [1]; ls) is Tower -c.

Afterwards, we move to Quanti�ed Computation Tree Logic (QCTL), an extension of Computa-
tion Tree Logic featuring second-order propositional quanti�cation. When interpreted on (either
�nite or in�nite) trees, QCTL is known to beTower -complete [99].ALT allows us to sharpen the
Tower -hardness analysis and show two fragments ofQCTL that are already non-elementary.

Theorem 4.41. The satis�ability problems of QCTLt (EU0) and QCTLt (EF1) are Tower -c.

Here, QCTLt (EU0) stands for the fragment of QCTL restricted to the temporal modality exists-
until, which cannot be nested. Instead,QCTLt (EF1) is the fragment of QCTL restricted to the
temporal modality exists-�nally, which can be nested at most once.
Lastly, we consider the modal separation logicsMSL and MLH introduced in Section 2.3.2.
Thanks to ALT, we are able to �nd a common syntactical fragment of these two logics that is
already Tower -hard (in the following theorem � MLand � *ML stand for the operators � and � *
of ALT, internalised in MSL and MLH by relying on the separating conjunction).

Theorem 4.45. The fragment of MLH and MSL with the � (alternatively, � MLand � *ML), > ,
Boolean connectives,� and hUi modalities, and has aTower -complete satis�ability problem.

As a general remark, all the reductions from the satis�ability problem of ALT to the satis�ability
problem of the logics considered in this section are achieved via semantically faithful translations.
Not only these reductions are quite straightforward, as the burden of provingTower -hardness
is left to Theorem 4.28, but they show that all these logics are non-elementary as they reason
on reachability and submodels in the same way.

4.1. The Hardness of Reachability and Submodel Reasoning 77

4.1 The Hardness of Reachability and Submodel Reasoning

In the previous chapter, we saw how adding reachability predicates toSL(� ; ��) leads to logics
with non RE satis�ability problems. Due to this unsatisfactory result, in this chapter we inves-
tigate further the e�ects of adding these predicates to other fragments of �rst-order separation
logic. In Chapter 3 we identi�ed how the separating implication can be used to update the mem-
ory state in a way that simulates the �rst-order quanti�cation. However, if we restrict the use
of the separating implication so that it can be used only to de�ne the alloc predicate (�) ,! , we
know that the fragment of �rst-order logic featuring one quanti�ed variable, i.e. SL([9]1; � ; x ,!),
admits a PSpace -complete satis�ability (and validity) problem [55]. In contrast, considering
two quanti�ed variables, i.e. the logic SL([9]2; �), makes the problem already non-elementary
decidable [53]. As we know thatSL([9]2; �) can express reachability predicates (Section 2.1.1),
our hope is to show that enrichingSL([9]1; � ; x ,!) with the reachability predicate ,! + leads to
a logic that is computationally less demanding thanSL([9]2; �). As we have done in the previous
chapter, to study the problem we take a detour and only consider the signi�cant features of this
logic: its ability to reason on submodels, and the way it can express reachability conditions. We
also drop the memory states and consider the more classical frameworks of trees and forests.
This makes our research agenda shifts a bit, so that the main question becomes

\Can logics featuring submodel reasoning and reachability predicates admit elementary
satis�ability problems when interpreted on trees?"

To formalise and tackle this question, we take these features and formally exhibit them through
an Auxiliary Logic on Trees (ALT). This logic, essentially deals with reachability of a �xed
(target) node inside a forest, from a current node that can be updated with the somewhere
modality hUi . Moreover, the logic features two modalities that are subsumed by the separating
conjunction in order to reason on submodels. Unfortunately, we show that this very restricted
fragment of SL([9]2; � ; ��) already admits a Tower -complete satis�ability problem, answer-
ing negatively to our question. The proof is by reduction from the satis�ability problem of
Propositional Interval Temporal Logic (PITL) under locality principle [112], for which we de�ne
an equivalent semantics that better suits the expressive power ofALT. Despite this negative
result, ALT allows us to study other logics interpreted on trees and (re)prove theirTower -
hardness. Indeed, in the last part of this chapter we show thatALT is captured by four logics
that were independently found to beTower -hard: the �rst-order separation logic with bounded
separating implication from [22], quanti�ed computation tree logic (QCTL) [99], modal logic of
heaps (MLH) [52] and modal separation logic (MSL) [54]. In this context, beside exposing that
all these logics admitTower -hard satis�ability problem because of the way they reason about
reachability and submodels, we discover interesting sublogics that are stillTower -complete:

� SL(� ; � [1]; ls), where ' � [1] is the syntactical restriction to the separating implication
corresponding to the formula (' ^ : size � 2) �� (Theorem 4.29),

� QCTLt restricted to E(' U) modalities, where '; are Boolean combinations of atomic
propositions, or to the EF modality, which can be nested at most once (Theorem 4.41),

� the common fragment ofMLH and MSL having Boolean connectives and the modalities� ,
hUi and � (Theorem 4.45). Notice that this logic does not have propositional symbols.

4.1.1 ALT: An Auxiliary Logic on Trees.

We introduce an Auxiliary Logic on Trees (ALT). Its formulae ' are from the grammar:

78 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

� := > (true)

j Hit (hit predicate)

j Miss (miss predicate)

' := � (atomic formulae)

j ' ^ ' j : ' (Boolean connectives)

j � ' (sabotage modality)

j � * ' (repeated sabotage modality)

j hUi ' (somewhere modality)

The symbol hUi , already introduced in Section 2.3.2, is borrowed from V. Goranko and
S. Passy paper on modal logic with universal modality [80]. Readers who are familiar with
sabotage modal logics will recognise in� the sabotage modality [4], and in� * its Kleene closure
(i.e. the operator � applied an arbitrary number of times). Similarly to the separating conjunc-
tion of separation logic, these two operators modify the model during the evaluation of a formula,
making ALT a relation-changing modal logic (following the terminology used in [3]). However,
contrary to most modal logics, ALT does not feature classical propositional symbols. Instead,
this logic only features two interpreted atomic propositions Hit and Miss. Roughly speak-
ing, Hit stands for \the target node is reachable" whereasMiss stands for \the target node is
not reachable". The formal de�nitions will be given soon in order to clarify these two sentences.

Let N be a countably in�nite set of nodes. We consider the class of models of �nite forests.

De�nition 4.1 (Forest). A (�nite) forest F : N * �n N is a partial function that has �nite
domain and is acyclic, i.e.F � (n) 6= n for all n 2 dom(F) and � � 1. Pairs in F are callededges.

Albeit non-standard, our de�nition of �nite forests over an in�nite set of nodes simpli�es the
forthcoming de�nitions and makes the connections with separation logic more direct, as forests
can be seen as acyclic heaps. Besides, in Section 4.3 we show how restrictingN to a �nite set
does not change the expressive power nor the complexity ofALT. We recall the standard notions
of ancestors and parent of a node.

De�nition 4.2 (Ancestors and Parents). Let n; n0 be two nodes, and letF be a forest. n0 is a
F-ancestor of n if there is a path in the forest going from n to n0, i.e. F � (n) = n0 for some� � 1.
If � = 1 then n0 is the F-parent of n.

Notice that, with this classi�cation, F encodes the parent relation. We drop the pre�x F- from
F -ancestor andF -parent when the forest is clear from the context. As usual, ifn0 is an ancestor
of n, then we can alternatively say that n is a descendantof n0. Similarly, n is a child of n0

whenever n0 is the parent of n. Given two forests F ; F 0, we say that F 0 is a subforest of F
wheneverF 0 � F holds (as usual, we see functions as binary relations). Figure 4.1 intuitively
represents two forests, the one on the left being a subforest of the one on the right. As done for
heaps, nodes are denoted by small boxes (), and arrows represent the forest.

Semantics. ALT is interpreted on pointed forests(F ; t; n), where F is a forest andt; n 2 N are
two nodes. The nodet is called the target node. The node n is the current (evaluation) node.
The satisfaction relation j= for the formulae of ALT is given in Figure 4.2, omitting the standard
clauses for> and Boolean connectives. The semantics ofHit and Miss is pretty straightforward.
Hit holds if there is a path in the forest going from the current node to the target node.
Instead, Miss holds if the current node is in the domain of the forest, but such a path does
not exist. Given a pointed forest (F ; t; n), n is called a hit node whenever (F ; t; n) j= Hit .
Instead, if (F ; t; n) j= Miss then n is a miss node. As a visual aid, the hit nodes of the forest in

4.1. The Hardness of Reachability and Submodel Reasoning 79

t

�

t

Figure 4.1: Subforest relation.

(F ; t; n) j= Hit i� n is a F -descendant oft,

(F ; t; n) j= Miss i� n 2 dom(F) and n is not a F -descendant oft,

(F ; t; n) j= � ' i� there is F 0 such that F 0 � F , card(F 0)+1 = card(F) and (F 0; t; n) j= ' ,

(F ; t; n) j= � * ' i� there is F 0 such that F 0 � F and (F 0; t; n) j= ' ,

(F ; t; n) j= hUi ' i� there is n0 2 N such that (F ; t; n0) j= ' .

Figure 4.2: Satisfaction relation for ALT, with respect to a pointed forest state (F ; t; n).

Figure 4.1 are the ones in the darker area, whereas the ones in the lighter (not white) area are
miss nodes. It is worth noting that Miss is not exactly the negation of Hit , as it requires the
current evaluation node to be in the domain of the forest. On the other hand, let us de�ne the
formula inDomdef= Hit _ Miss, which is satis�ed by (F ; t; n) if and only if n 2 dom(F). Any two
of the three formulaeHit , Miss and inDomsu�ce in order to de�ne the third one. In particular:

Hit � inDom^ : Miss, Miss � inDom^ : Hit .

This tells us that, in order to relate separation logic with ALT, we can consider a logic featuring
reachability predicates (to capture Hit) and the alloc predicate (to capture inDom).

Let us continue the analysis on the features ofALT. As stated before, the semantics given
to hUi ' is the one of the existential modality somewhere[80], stating that there is a way to
change the current evaluation node so that' becomes true. As such, this operator can be
seen as a restricted form of �rst-order quanti�cation, where the reassignment only occurs on the
current evaluation node. Its dual operator [U]' def= : h Ui : ' is the universal modality everywhere,
stating that ' holds on every node inN . The semantics given to� ' is the one of thesabotage
modality from [4], which requires to �nd one edge of the forest that, when removed, makes
the model satisfy ' . Its dual operator � ' def= : � : ' states that ' holds on every subforest
obtained from the current forest by removing just one edge. Lastly, the modality� * , here called
repeated sabotage, can be seen as the operator obtained by applying� an arbitrary number of
times. Indeed, by inductively de�ning � k ' (k 2 N) as the formula ' for k = 0 and otherwise
(k � 1) as � � k� 1 ' , it is easy to see that

(F ; t; n) j= � * ' if and only if (F ; t; n) j= � k ' for somek 2 N.

Given a pointed forest (F ; t; n), we write F [Miss]t to denote the set of its miss nodes,
i.e. F [Miss]t

def= f n0 2 N j (F ; t; n0) j= Missg. We omit the subscript t from F [Miss]t when it
is clear from the context. We augment the standard precedence rules of propositional logic so

80 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

that the modalities hUi , � and � * have the same precedence as the negation: . For instance,
the formula hUi Hit ^ Miss should be read as (hUi Hit) ^ Miss.

4.1.2 Relating ALT and the separation logic SL([9]1; � ; x ,! ; ,! +).

We start analysing ALT by showing its connections with separation logic. In particular, we
consider the separation logicSL([9]1; � ; x ,! ; ,! +), with formulae ' from the following grammar:

� := > (true)

j emp (empty predicate)

j x = y (equality predicate)

j x ,! y (points-to predicate)

j x ,! (alloc predicate)

j x ,! + y (reach-plus predicate)

' := � (atomic formulae)

j ' ^ ' j : ' (Boolean connectives)

j ' � ' (separating conjunction)

j 9u ' (�rst-order quanti�cation on u)

where x; y; u 2 VAR. Additionally, every formula ' of this logic can only quantify over the
variable name u, i.e. bv(') � f ug. The semantics of every element ofSL([9]1; � ; x ,! ; ,! �) is
standard, as de�ned in Chapter 2. Let us recall the de�nition of the alloc predicate x ,! and
the reach-plus predicatex ,! + y, for a given memory state (s; h):

(s; h) j= x ,! i� s(x) 2 dom(h), (x corresponds to a memory cell ofh)

(s; h) j= x ,! + y i� (s(x); s(y)) 2 h+ . (there is a non-empty path going froms(x) to s(y))

We know that SL([9]1; � ; x ,! ; ,! +) is a fragment of SL([9]2; �), as in Section 2.1.1 we have
shown that both the alloc predicate and the reach-plus predicate can be expressed using only
two quanti�ed variables. Moreover, in that section we introduced the formula size = 1 stating
that the heap has cardinality exactly one. It is de�ned as : emp̂ : (: emp� : emp). This formula
allows us to capture the sabotage operator� of ALT.

We show that ALT is a fragment ofSL([9]1; � ; x ,! ; ,! +). First, we notice that both sabotage
and repeated sabotage operators can be expressed in separation logic. The sabotage operator
can be de�ned as� SL'

def= (size = 1) � ' , whereas the repeated sabotage operator can be de�ned
as � *SL ' def= > � ' . A quick semantical check shows that both formulae capture the analogous
operators of ALT as follows:

(s; h) j= � SL' i� there is a heap h1 s.t. h1 � h, card(h1) + 1 = card(h) and (s; h1) j= ' .

(s; h) j= � *SL ' i� there is a heap h1 s.t. h1 � h and (s; h1) j= ' .

In order to translate a formula of ALT into a formula of SL([9]1; � ; x ,! ; ,! +), we �x a vari-
able x 2 VAR that is syntactically di�erent from the quanti�ed variable u and that plays the
role of the target node. Then, the translation � x(') of a formula ' in ALT is straightforward:

� x(Hit) def= u ,! + x, � x(� ') def= � SL� x('), � x(>) def= > ,

� x(Miss) def= u ,! ^: � x(Hit), � x(� * ') def= � *SL � x('), � x(: ') def= : � x(').

� x(hUi ') def= 9u � x('), � x(' ^) def= � x(') ^ � x(),

The translation of Hit and Miss is as expected:� x(Hit) states that there is a non-empty path
from s(u) to s(x). This corresponds to the case where the current evaluation node is a hit node,
i.e. a descendant of the target node.� x(Hit) states that s(u) is in the domain of the heap, which

4.2. On the Expressive Power ofALT 81

does not withness a non-empty path going froms(u) to s(x). This corresponds to the case where
the current evaluation node is a miss node. In every other case, the translation fromALT to
separation logic is homomorphic, and interestingly enough the variable equality and the points-
to predicate of SL([9]1; � ; x ,! ; ,! +) are not needed for the translation. Assuming (without loss
of generality) that N = LOC, we can show that for a given pointed forest (F ; t; n) and a store s
such that s(x) = t and s(u) = n, we have

(F ; t; n) j= ' if and only if (s;F) j= � x(').

This statement can be proved with an easy structural induction on' , which is left to the reader.
Furthermore, in order to conclude that ALT is a fragment ofSL([9]1; � ; x ,! ; ,! +) it is su�cient
to show that this separation logic can characterise the class of models ofALT. As �nite forests
are isomorphic to the class of acyclic heaps, this can be done with the formula8u : (u ,! + u).

Proposition 4.3. ALT is a fragment of SL([9]1; � ; x ,! ; ,! +) restricted to two variable names.

Notice that the translation uses only two variables: the free variable x and the (possibly
bound) variable u. This makesALT a fragment of SL([9]2; �) on closed formulae, which is known
to admit a Tower -complete satis�ability problem [53]. Thus, the lemma above shows that the
satis�ability problem of ALT is in Tower . Moreover, from what we have seen in Section 2.2,
we conclude that ALT is a fragment of WMSOf.

Of course, all these connections with other logics raise the question on whetherALT is needed
in order to present the results of the next sections. As we will see,ALT comes with the bene�t
that various connections with other logics, as for example quanti�ed computation tree logic, can
be drawn very easily. Partially, this is due to the fact we consider forests instead of heaps, and
that ALT does not feature predicates that are equivalent tox ,! y or x = y. From the point of
expressiveness, from [1] we know thatSL([9]2; �), and therefore ALT, is stricly less expressive
than WMSOf. This also helps when reducingALT to other logics.

4.2 On the Expressive Power of ALT

It is certainly true that the two atomic propositions Hit and Miss make rather obscure what
properties can be expressed inALT. In order to become more familiar with the features of this
logic, in this section we start playing with it. As we will soon �nd out, the ability to reason
about submodels given by the combination of the two operators� and � * greatly increases
the expressive power ofALT. In particular, we show that ALT is able to characterise �nite
words. Encoding �nite words in ALT is also the �rst step we need to show that this logic
admits a Tower -complete satis�ability problem. The proof of Tower -hardness, addressed in
Section 4.3, is by reduction from the satis�ability problem of Moszkowski's propositional interval
temporal logic under locality condition (de�ned in Section 4.3.1). As we will see, this reduction
is somewhat non-intuitive and can perhaps appear needlessly complicated. The reason for this
is that we need to get around the fact that, given a pointed forest (F ; t; n), ALT cannot deduce
any property of the portion of the model corresponding to the setF [Miss], other than bounds
on the size of this set and whethern belongs to it or not. This is shown formally at the end of
this section, after providing a notion of Ehrenfeucht-Fra•ss�e games based on the works in [36, 48].

82 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

4.2.1 Towards Tower-hardness: how to encode �nite words in ALT.

As a �rst step, we de�ne a correspondence between �nite words and speci�c pointed forests. As
usual, the set of �nite words on a �nite alphabet � is de�ned as the closure of� under Kleene
star, i.e. � � . To ease our modelling, we suppose� def= [1 ; n] to be the alphabet of natural numbers
between 1 andn. Let w = a1 : : : ak be ak-symbols word in � � . Let us explain how to encodew
as a �nite forest. Every symbolaj (j 2 [1; k]), is encoded using a nodenj and aj + 1 additional
nodes that are children ofnj . So, for example the symbol 3 is represented by a node having four
children. All the nodes in f nj j j 2 [1; k]g are then connected in a path going fromn1 to the
target node t, so that for every j 2 [1; k � 1] nj is a child of nj +1 , and nk is a child of t. Notice
that, with the exception of n1, for every j 2 [2; k] this increases the number of children ofnj by
one. Let us now formalise this encoding.

De�nition 4.4 (Word encoding). Let w = a1 : : : ak be in � � , where � = [1 ; n] for somen � 1.
We say that a pointed forest (F ; t; n) encodesw if and only if there is a tuple M = (n1; : : : ; nk)
of k nodes and tupleC = (N1; : : : ; Nk) of k sets of nodes such that

1. f n1; : : : ; nkg; N1; : : : ; Nk ; F [Miss]t are pairwise disjoint sets, i.e. they do not share any node,

2. M and C are all the descendants oft, i.e. (F � 1)+ (t) = f n1; : : : ; nkg [
S

j 2 [1;k] Nj ,

3. nk is the only child of t and for every j 2 [1; k � 1] F (nj) = nj +1 ,

4. for every j 2 [1; k], card(Nj) = aj + 1 and for every n0 2 Nj , F (n0) = nj .

Notice that given a pointed forest (F ; t; n) encodingw the tuples M and C are uniquely de�ned.
With respect to the elements in De�nition 4.4, the k nodes inM are calledmain nodes, whereas
the nodes inNj (j 2 [1; k]) are calledcharacter nodes. Main nodes and character nodes partition
the set of F -descendants oft. Thanks to the condition (3), main nodes form a path in the
forest F , going from n1 to nk . We call this path the main path of F (notice that we do not
include the target node t). The following proposition stresses four important properties of our
encoding that follow directly from its de�nition.

Proposition 4.5. Let (F ; t; n) be an encoding ofw = a1 : : : ak , with main nodesM = (n1; : : : ; nk).

(I) n0 2 N is a main node if and only if it is a descendant oft and has at least one child.

(II) n1 is the only main node having the same number of descendants and children.

(III) Given j 2 [2; k], nj has exactly one child that is a main node.

(IV) Given j 2 [1; k], nj has exactly aj + 1 children that are character nodes.

We say that a node n 2 dom(F) encodesthe symbol a 2 � if it has exactly a + 1 children
that are not in M. Then, main nodes are the only ones encoding symbols, wherenj encodesaj

for every j 2 [1; k] (by property (IV)).

Example 4.6. Figure 4.3 shows a pointed forest encoding the word 1121. The main nodes
of the encoding areM = (n1; n2; n3; n4), and its main path is given f (n1; n2); (n2; n3); (n3; n4)g.
Supposing that the tuple of character nodes isC = (N1; N2; N3; N4), the set Nj (j 2 [1; 4])
contains the children of nj that are not in M, so that card(N1) = card(N2) = card(N4) = 2,
whereascard(N3) = 3. Albeit the forest depicted here does not have miss nodes, in general
encodings of words can have an arbitrary number of them.

4.2. On the Expressive Power ofALT 83

n1 n2 n3 n4 t

1 1 2 1

Figure 4.3: A forest encoding the word 1121.

Descendants and Children. We are now interested in characterising the class of pointed
forests encoding �nite words. In order to do so, we start by de�ning some easy formulae, which
also serves as a way of familiarising with the logic. Looking at the properties in Proposition 4.5,
we notice that they mainly rely on counting the number of descendants and children of a given
node. Therefore, for now we focus on de�ning two formulae, #desc � � and # child � � , that
given a pointed forest (F ; t; n) bound from below the number of descendants and children of the
current evaluation node n, provided that n is a descendant of the target nodet.

Let (F ; t; n) be a pointed forest. Given� 2 N, we start by de�ning the formula size (Miss) � �
stating that F contains at least � miss nodes, that is:

(F ; t; n) j= size (Miss) � � if and only if card(F [Miss]) � � .

This formula is inductively de�ned below:

size (Miss) � 0 def= > ,

size (Miss) � � +1 def= hUi
�
Miss ^ � (: inDom^ size (Miss) � �)

| {z }
by excluding a miss node, at least other � miss nodes can be found

�
:

Let us consider for a moment the de�nition of size (Miss) � � +1. Informally, this formula is
satis�ed if it is possible to �nd a node in F [Miss] (as expressed by the \hUi (Miss ^ : : :" part of the
formula), removing it from the model (as done by the \� (: inDom: : :" part), and then �nd other �
elements ofF [Miss]. This formula essentially works because the set of miss nodes monotonically
decreases when considering subforests, i.e. givenF 0 � F we haveF 0[Miss] � F [Miss]. Hence,
�nding a miss node in the subforestF 0 implies �nding a miss node in the original forest F . This
idea is generalisable to similar monotonous properties. Let us extend our notation and, given a
formula ' of ALT and a pointed forest (F ; t; n), write F [']t for the set f n0 2 N j (F ; t; n0) j= ' g.
Moreover, given� 2 N we inductively de�ne the formula size (') � � that bounds from below the
amount of nodes satisfying' , provided that ' satis�es some monotonic property formally de�ned
below in Lemma 4.7. size (') � � is de�ned by simply replacing Miss by ' in size (Miss) � � :

size (') � 0 def= > ,

size (') � � +1 def= hUi
�
' ^ � (: inDom^ size (') � �)

| {z }
by excluding a node in F ['], at least other � such nodes can be found

�
:

The formal semantics ofsize (') � � is provided in the lemma below.

Lemma 4.7. Let (F ; t; n) be a pointed forest. Let ' be a formula with the following properties:

1. F [']t � dom(F), i.e. the set of nodes satisfying' is a subset of the domain of the forest,

2. for every F 0 � F , if dom(F) n dom(F 0) � F [']t then F [']t \ dom(F 0) = F 0[']t .

Given � 2 N, we have (F ; t; n) j= size (') � � if and only if card(F [']t) � � .

84 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

Before proving this lemma, let us look at the property (2) of ' . Consider a partition f S; Tg of the
nodes inF [']t , and the subforestF 0 � F such that dom(F 0) = dom(F) n S. Property (2) states
that then F 0[']t = T. Informally, this means that removing nodes in F [']t does not change the
set of nodes in the domain of the forest that still satisfy' . This property, as well as property (1),
holds for the case of' = Miss, so that Lemma 4.7 implies the correctness ofsize (Miss) � � .

Proof. The proof is by induction on � , over the domain of natural numbers. The base case
where � = 0 is direct, so let us consider the inductive case for� = � 0+ 1 where � 0 2 N.
()): Suppose (F ; t; n) j= size (') � � 0+1, and therefore there is a noden0 2 N such that

A. (F ; t; n0) j= ' , B. (F ; t; n0) j= � (: inDom^ size (') � � 0).

From (B), there is a forest F 0 � F such that

C. card(F 0) = card(F) � 1, D. (F 0; t; n0) j= : inDom, E. (F 0; t; n0) j= size (') � � 0.

First, let us prove that F [']t = F 0[']t [f n0g and n0 62 F0[']t . From (A) and the property (1) on
' , we haven0 2 dom(F). From (C) and (D), this means that dom(F) n dom(F 0) = f n0g, which
allows us to conclude thatF [']t \ dom(F 0) = F 0[']t , directly from the property (2) of ' . This
implies that F [']t = F 0[']t [f n0g and n0 62 F0[']t . We now use this fact to show that the
properties (1) and (2) of ' hold with respect to the forest F 0, so that we can then apply the
induction hypothesis directly by (E). The property (1), i.e. F 0[']t � dom(F 0), follows directly
from F [']t \ dom(F 0) = F 0[']t . For the property (2), let F 00be a forest such thatF 00� F 0 and
dom(F 0) n dom(F 00) � F 0[']t . Let us prove that F 0[']t \ dom(F 00) = F 00[']t . From F 0 � F it
holds that F 00� F . Moreover,

dom(F) n dom(F 00) = (dom(F 0) [f n0g) n dom(F 00) (by dom(F) = dom(F 0) [f n0g)

= (dom(F 0) n dom(F 00)) [f n0g (by n0 62dom(F 0) and F 00� F 0)

� F 0[']t [f n0g (by dom(F 0) n dom(F 00) � F 0[']t)

= F [']t (by F [']t = F 0[']t [f n0g)

Therefore, by property (2) (w.r.t. F), F [']t \ dom(F 00) = F 00[']t holds, which is equivalent
to (F 0[']t [f n0g) \ dom(F 00) = F 00[']t . Lastly, from n0 62dom(F 0) and F 00� F 0, we conclude
that F 0[']t \ dom(F 00) = F 00[']t , completing the proof of property (2) w.r.t. F 0. This allows us
to use the induction hypothesis and conclude from (E) thatcard(F 0[']t) � � 0. This is su�cient
to also conclude that card(F [']t) � � 0+1, as we have already shown thatF [']t = F 0[']t [f n0g
and n0 62 F0[']t . We leave the proof of the other direction to the reader.

The formula size (') � � is not only useful as it can be quickly instantiated to de�ne various
interesting formulae in ALT, but also because it shows a suitable way of reasoning inALT.
Roughly speaking, we often use the somewhere modalityhUi to �nd a node in the domain of the
forest that satis�es a certain property. Afterwards, we remove it with the sabotage operator � ,
in order to check if the resulting subforest satis�es a second property.

We can already make use of the formulasize (') � � in order to de�ne a formula that checks
whether the number of children of the target node is at least� . It is su�cient to notice that such
a child can be characterised with the formulatchild def= Hit ^ : � Miss, and that this formula
satis�es both the properties (1) and (2) of Lemma 4.7. This leads to the following result.

Lemma 4.8. (F ; t; n) j= size (tchild) � � if and only if t has at least � children.

Proof. In order to prove this result it is su�cient to show that (F ; t; n) j= tchild holds if and
only if n is a child of t, and that tchild satis�es the properties (1) and (2) of Lemma 4.7. For

4.2. On the Expressive Power ofALT 85

the correctness oftchild , simply notice that if the current evaluation node n is a child of the
target node t, then the same holds in every subforestF 0 � F such that n 2 dom(F 0). Thus,
(F 0; t; n) cannot satisfy Miss. Otherwise, if n is a descendant oft but not one of its children,
removing (F (n); F (F (n))) from the forest makes n a miss node, hencetchild is not satis�ed.

The property (1), i.e. F [tchild]t � dom(F), holds from the tautology j= Hit) inDom. To
prove the property (2), it is su�cient to see that the following (stronger) statement holds:

for every F 0 � F , F [tchild]t \ dom(F 0) = F 0[tchild]t .

Showing this statement is straightforward, as aF -child of t that is in the domain of F 0 is by
de�nition a F 0-child of t, and vice versa.

Let us now move to the de�nition of # desc � � , the formula stating that the current evalu-
ation node is a hit node with has at least� descendants. It is de�ned as follows:

desc � � def= � *
�

[U] : Miss
| {z }

F [Miss] is empty

^ Hit ^ � (: inDom^ size (Miss) � �
| {z }

removing n lead to at least � miss nodes

�
.

The proof of correctness of this formula is given in Lemma 4.9. Intuitively, given a pointed
forest (F ; t; n) where n is a descendant oft, this formula uses the fact that removing (n; F (n))
from the forest F makes all its descendant miss nodes. The repeated sabotage� * is used to
remove the miss nodes before removing (n; F (n)), so that then the formula size (Miss) � � can
be used to correctly count the descendants ofn in F .

Thanks to the formula # desc � � we are able to de�ne the formula #child � � that checks
the number of children of the current evaluation noden (assuming that n is a hit node):

child � 0 def= Hit ,

child � � +1 def= # desc � � +1 ^ � � (Hit) # desc � 1)
| {z }

whenever � nodes of dom(F) are removed, if n still reaches t then it has at least one descendant

:

Informally, for a pointed forest (F ; t; n), this formula express that n has� � 1 children by stating
that the removal of � � 1 edges fromF cannot lead to a subforest wheren has no descendants.
The following lemma evaluates the correctness of #desc � � and # child � � . Its proof can be
found in Appendix B.

Lemma 4.9. Let (F ; t; n) be a pointed forest. Then,

(I) (F ; t; n) j= # desc � � i� n has at least � descendants and it is a descendant oft.

(II) (F ; t; n) j= # child � � i� n has at least � children and it is a descendant oft.

Given a syntactical element S 2 f size ('); # desc; # child g, we write S = � for the
formula S � � ^ : S � � +1. For instance, # child = � is the formula that states whether n has
exactly � children and it is a descendant oft. We can now conclude the encoding of �nite words.

Characterising words in ALT. We now move to the de�nition of the formula word� that
characterises the class of forests encoding words in� � . Recall that we assume� to be the
alphabet of natural numbers in [1; n], for somen � 1. Let (F ; t; n) be a pointed forest encoding
the word w = a1 : : : ak , and let M = (n1; : : : ; nk) be the set of its main nodes. Let us recall two
of the properties of our encoding, expressed in Proposition 4.5, and introduce suitable formulae
to express these properties. First, a noden encodes a symbol ofw (i.e. it is a main node) if it is
a hit node with at least one child (Property (I)). To better reect this property, we write symb

86 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

for the formula # child � 1, so that n encodes a symbol ofw if and only if (F ; t; n) j= symb.
Among the main nodes,n1 is the only one having the same number of descendants and children
(Property (II)). For this property, given S � � , we introduce the formula 1st S that checks if
the current evaluation node n corresponds ton1 and encodes a symbol inS:

1st S
def=

W
� 2 S(# desc = � + 1 ^ # child = � + 1).

We are �nally ready to de�ne the formula word� that characterise the class of forests that
encode words in� � , for � = [1 ; n]. It is de�ned as follows, and it is proved correct in Lemma 4.10,

word�
def= : size (tchild) � 2 ^

The target node has no descendants, or has a descendant that encodes a symbol.
z }| {
(hUi Hit) h Ui symb)

^ [U](symb) 1st � _ (: 1st f n+1 g ^ � 1st �)
| {z }

the current node encodes a symbol in [1 ; n] and exactly one of its children encodes a symbol.

):

The �rst two conjuncts of the formula word� are quite self-explanatory. First, the target node t
has at most one child. Second, ifw is the empty word then the forest does not contain hit nodes
(alternatively, t does not have children), and otherwise there is a hit node encoding a symbol.
The last conjunct is more complex, and subsumes the four properties in Proposition 4.5. Letn0

be a node such that (F ; t; n0) j= symb. From the property (I) this means that n0 is a main node.
If it is the �rst node in the main path, then from the property (II) it must have the same number
of descendants and children, and it must havea + 1 children for some a 2 � (Property (IV)).
Basically, n0 must satisfy 1st � . Otherwise, suppose thatn0 encodes a node in the main path
that is di�erent from the �rst one. From the property (III), exactly one of its children, say n00,
must encode a symbol, whereas the other children area + 1 character nodes, for somea 2 �
(again, from the property (IV)). This means that removing (n00; n0) from F makes the noden0 be
the �rst node in the main path, according to property (II). So, n0 satis�es : 1st f n+1 g ^ � 1st � .
We prove that word� characterise the class of forests encoding words in� � .

Lemma 4.10. A pointed forest (F ; t; n) is an encoding of a word in� � i� (F ; t; n) j= word� .

Proof. ()): Suppose (F ; t; n) be a pointed forest encoding the wordw = a1 : : : ak 2 [1; n]� ,
where n � 1. Let M = (n1; : : : ; nk) and C = (N1; : : : ; Nk) be the main nodes and character
nodes of (F ; t; n), respectively. Recapitulating De�nition 4.4:

1. f n1; : : : ; nkg; N1; : : : ; Nk ; F [Miss]t are pairwise disjoint sets, i.e. they do not share any node,

2. M and C are all the descendants oft, i.e. (F � 1)+ (t) = f n1; : : : ; nkg [
S

j 2 [1;k] Nj ,

3. nk is the only child of t and for every j 2 [1; k � 1] F (nj) = nj +1 ,

4. for every j 2 [1; k], card(Nj) = aj + 1 and for every n0 2 Nj , F (n0) = nj .

Notice that (2) implies that if w is the empty word, then F does not have hit nodes. If this is the
case, then (F ; t; n) j= [U] : Hit , which implies that (F ; t; n) j= hUi Hit) h Ui symb. Otherwise,
the set of main nodes is non-empty, and by (3) and (4) we conclude that each main node is a
descendant oft and has at least one child (as stated in Proposition 4.5). Again, this implies the
satisfaction of (F ; t; n) j= hUi Hit) h Ui symb. From (3) we have (F ; t; n) j= : size (tchild) � 2,
leaving us with only the last conjunct of word� being open. Let us consider a noden0 such that
(F ; t; n0) j= symb. In particular, this implies that a main node exists and so w is not empty.
By (3) and (4), n0 is a main node and so there isj 2 [1; k] such that n0 = nj . If j = 1, we
prove that (F ; t; n0) j= 1st � . In this case, every child ofn0 is a character node fromN1 (and vice
versa), which in turn does not have any children, so thatn0 has the same number of descendants

4.2. On the Expressive Power ofALT 87

and children (as stated in Proposition 4.5). Moreover, (4) implies that card(N1) = a1 + 1. Thus,
(F ; t; n0) j= # desc = a1 + 1 ^ # child = a1 + 1, i.e one of the disjuncts of 1st � . Otherwise,
consider the case wherej 6= 1. Let us prove that (F ; t; n0) j= : 1st f n+1 g ^ � 1st � . Exactly one
child of n0 is a main node (i.e.nj � 1), whereas all other children are character nodes. Asnj � 1 is
a main node, it has at least one child. So, (F ; t; n0) j= : 1st f n+1 g. Let F 0 � F be the subforest
such that F 0 = F n f (nj � 1; n0)g. On this subforest, all the F 0-children of n0 are character nodes,
more speci�cally (4) states that these children are theaj + 1 nodes from Nj . As in the case of
j = 1, this implies that (F 0; t; n0) j= # desc = aj + 1 ^ # child = aj + 1, i.e a disjunct of 1st � .
Thus, (F ; t; n0) j= � 1st � .
((): Conversely, suppose (F ; t; n) j= word� . From the �rst two conjuncts of word� we have:

B. t has at most one child (from : size (tchild) � 2),

C. If F has a hit node, one descendant oft has a child (from hUi Hit) h Ui symb).
Notice that if F does not have descendants then it trivially encodes the empty word. So, let us
assume that F 6= ? . From (B), t has exactly one child, sayn. Together with (C), this means
that (F ; t; n) must have a child (every other descendant oft is a descendant ofn). We de�ne
the following subsets of the descendants oft:

� M def= f n0 2 (F � 1)+ (t) j F (n00) = n0 for somen002 N g , i.e. the non-leaf descendants oft,

� for n02 M, Nn0
def= f n0062M j F (n00) = n0g, i.e. the leafsdescendants oft that are children of n0.

Notice that n belongs toM. Besides, the nodes inM are the only ones that satisfysymb(as they
have a child and are descendants oft). To prove that F encodes a word in [1; n]+ we show:

I. for each noden0 2 M there is at most one noden002 M such that F (n00) = n0. This shows
the existence of a main path in the tree, made by the elements inM;

II. for every n02 M, card(Nn0) 2 [2; n+1]. This shows that nodes ofM encode symbols in [1; n].
To prove (I) and (II), we use the fact that (F ; t; n) satis�es the last conjunct of word� , i.e.

[U](symb) 1st � _ (: 1st f n+1 g ^ � 1st �)).

Let us considern0 2 M. As it satis�es symb, we have (F ; t; n0) j= 1st � _ (: 1st f n+1 g ^ � 1st �).
If (F ; t; n0) j= 1st � , as � = [1 ; n] we conclude that the number of children and descendants ofn
are equal, and take a value in [2; n + 1]. This implies that is no n002 M such that F (n00) = n0

and card(Nn) 2 [2; n + 1]. In this case, both (I) and (II) are veri�ed. Otherwise, let us suppose
that (F ; t; n0) j= : 1st f n+1 g ^ � 1st � . In order to show that both (I) and (II) hold (concluding
the proof), we reason by contradiction. First, supposead absurdumthat (I) does not hold and
so there are two distinct nodesn00; n0002 M s.t. F (n00) = n0 = F (n000). As n00and n000are both
in M, they both have at least one child. However, this implies that (F ; t; n0) 6j= � 1st � , leading
to a contradiction. Indeed, � 1st � is satis�ed if it is possible to remove a single edge from the
forest F , leading to a �nite forest F 0, so that n0 is a F 0-descendant oft and the number of its
children coincide with the number of its descendants. So, (I) holds. Lastly, supposead absurdum
that (II) does not hold, and so card(Nn0) 62[2; n + 1]. It is helpful to realise that the formula

� 1st �) (# child � 2 ^ # child � n + 2),

is valid (recall that � = [1 ; n]). Indeed, consider a model (F?; t?; n?) that satis�es � 1st � . By
de�nition, there is a edge e 2 F ? such that F 0

?
def= F? n f eg enjoys (F 0

?; t?; n?) j= 1st � . This
implies (F 0

?; t?; n?) j= # child = � for some� 2 [2; n + 1], which in turn means that in F?, n?

can only have between 2 andn + 2 F?-children.
From this tautology we conclude that n0 has between 2 andn + 2 F -children. If one of these
children belongs toM, then of coursecard(Nn0) 2 [2; n + 1], proving (II). If instead every child of

88 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

n0 belongs toNn0, then n0 has the same number of descendants and children. Moreover, from the
assumption card(Nn0) 62[2; n + 1], we derive card(Nn0) = n + 2. However, this is contradictory
with the fact that (F ; t; n0) j= : 1st f n+1 g. Thus, (II) holds.

4.2.2 Intermezzo: inexpressibility results via Ehrenfeucht-Fra•�ss�e games.

Now that we are more familiar with the logic, before moving to the Tower -hardness proof of
the satis�ability problem for ALT, it is helpful to see some of the properties thatALT cannot
express. Notably, these properties give us some insight on what we should do (or rather, what
we should not do) in order to build very expressive queries inALT in a concise way, as we
de�nitely need in order to reach Tower -hardness. In particular, we show that the expressive
power of ALT is very weak when it comes to expressing properties of miss nodes. On these
nodes,ALT can essentially only state the properties captured by Boolean combinations of the
formulae Miss and size (Miss) � � . Therefore, the expressive power ofALT is almost entirely
concerned with hit nodes. On the other hand, inexpressibility results e�ectively reduce the set of
forests that must be considered in order to solve the satis�ability problem. This in turn makes
reductions from this problem to the satis�ability of other logics more immediate, as we show
throughout Section 4.4. Readers that are eager to see theTower -hardness of the satis�ability
problem for ALT can jump to Section 4.3 (page 97).

Various mathematical tools from model theory are suited to prove inexpressibility results, as
for example compactness theorems, L•owenheim-Skolem theorem and Ehrenfeucht-Fra•�ss�e games.
However, when dealing with logics interpreted on �nite structures, Ehrenfeucht-Fra•�ss�e games
are the only major tool available. This is the case forALT. Without extensively discussing the
other tools and why they fail on �nite structures (a clear presentation is given in [102]), let us
briey recall the compactnesstheorem for a logic L interpreted on the class of structuresM .

Theorem 4.11 (Compactness). Let S be a set of formulae inL . S has a model fromM (i.e. S is
consistent w.r.t. M) if and only if every �nite subset of S has a model fromM .

In the case that this theorem holds forALT, it can be used to prove that a certain subclassC
of pointed forests is not de�nable in the logic as follows. We �rst assume thatC is characterised
by a formula ' C . We construct an in�nite set of formulae S such that every �nite subset
of S[f ' C g is consistent, whereas the full setS[f ' C g is inconsistent. However, this contradicts
the compactness theorem, and thereforeC cannot be characterised inALT.

Unfortunately, we cannot rely on this technique, as Theorem 4.11 does not hold forALT. In-
deed, consider the in�nite set of formulaeS def= f � k > j k 2 Ng. It is clear that every �nite subset
T � �n S is satis�ed by every pointed forest (F ; t; n) such that card(F) � maxf k j � k > 2 Tg.
However, S can only be satis�ed by an in�nite forest, and is therefore inconsistent with respect
to the class of pointed forests. This invalidates Theorem 4.11.

EF-games. As compactness fails, to prove inexpressibility results forALT we adapt the notion
of Ehrenfeucht-Fra•�ss�e games(EF-games, in short) of �rst-order logic [102]. This has already be
done for other relation-changing logics such as context logic for trees [36] and ambient logic [48].
EF-games are two players games. One player is called thespoiler and the other is called the
duplicator. In the case of ALT, a game is played on astate that is represented by a triple
((F1; t1; n1); (F2; t2; n2); rk) made of two pointed forests (F1; t1; n1) and (F2; t2; n2), and a rank
rk. The rank, to be formally de�ned below, roughly represents the numbers of turns in the

4.2. On the Expressive Power ofALT 89

EF-Game played on the state ((F1; t1; n1); (F2; t2; n2); (m; s; k))

if there is � 2 f Miss; Hit g such that ((F1; t1; n1) j= � i� (F2; t2; n2) j= �) does not hold
then the spoiler wins,
else the spoiler choosesi 2 f 1; 2g and plays on (F i ; t i ; ni).

The duplicator replies on (F j ; t j ; nj) where j 2 f 1; 2gnf ig.
The spoiler must choose one of the following moves (otherwise the duplicator wins).

hUi move : if m � 1 then the spoiler can choose to play ahUi move. If he does so,

1. The spoiler selects a noden0
i 2 N .

2. The duplicator must select a noden0
j 2 N (otherwise the spoiler wins).

3. The game continues on ((F1; t1; n0
1); (F2; t2; n0

2); (m� 1; s; k)).

� move : if s � 1 and dom(F i) 6= ? then the spoiler can choose to play a� move.

1. The spoiler selects a �nite forestF 0
i � F i such that card(F 0

i) = card(F i) � 1.
2. The duplicator must reply with a forest F 0

j � F j such that card(F 0
j) = card(F j)� 1.

3. The game continues on ((F 0
1; t1; n1); (F 0

2; t2; n2); (m; s� 1; k)).

� * move : if k � 1 then the spoiler can choose to play a� * move.

1. The spoiler selects a �nite forestF 0
i � F i .

2. The duplicator must reply with a �nite forest F 0
j � F j .

3. The game continues on ((F 0
1; t1; n1); (F 0

2; t2; n2); (m; s; k� 1)).

Figure 4.4: Ehrenfeucht-Fra•�ss�e games forALT.

game. At each turn, the spoiler performs amove in one of the two pointed forests, which
must be countered by the duplicator with a move on the other pointed forest. These moves
are related to ALT, as they capture the semantics of the three modalitieshUi , � and � * . The
goal of the spoiler is to show that the two structures are di�erent. The goal of the duplicator
is to show that the two structures are similar. The notion of being di�erent also traces back
to the semantics of ALT: two pointed forests are di�erent if and only if there is a formula
of ALT that it is satis�ed by only one of the two. The exact correspondence between the
games andALT is formalised with an adequacy result (Theorem 4.15, below). A player has
a winning strategy if it can play in a way that guarantees it the victory, regardless what the
other player does. We write (F1; t1; n1) � rk(F2; t2; n2) whenever the duplicator has a winning
strategy for the game ((F1; t1; n1); (F2; t2; n2); rk). As we will see, our games are determined: if
the duplicator does not have a winning strategy then spoiler has one, and vice versa. Hence,
we write (F1; t1; n1) 6�rk (F2; t2; n2) to state that the spoiler has a winning strategy. Albeit
determinacy holds directly from Zermelo's Theorem [145] (or Martin's Theorem [109]), for the
simple games ofALT we prefer to derive it as a self-contained result (Lemma 4.14).

In order to introduce the games, we need to de�ne the rank of a formula' in ALT.

De�nition 4.12 (Rank). The rank of ' a triple (m; s; k) 2 N3 where the modal rank m
is the greatest nesting depth of the modal operatorhUi in ' , whereas the sabotage ranks
(resp. repeated sabotage rankk) is the greatest nesting depth of the operator� (resp. � *) in ' .

We write ALTrk for the set of formulae with rank rk 2 N3. We de�ne the rank order < rk on N3.

De�nition 4.13 (Rank order). The rank order < rk � N3 � N3 is the relation de�ned as

90 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

(m; s; k) < rk (m0; s0; k0) i� m � m0, s � s0, k � k0 and (m < m0 or s < s0 or k < k0).

Notice that < rk is a well-founded strict order.
The EF-games for ALT are played with respect to a rank rk 2 N3, and they are formally

de�ned in Figure 4.4. As we can see, at the beginning of the turn, we check whether the two
atomic formulae Hit and Miss are satis�ed by only one of the two pointed forests (F1; t1; n1) and
(F2; t2; n2). If this is the case, the spoiler wins. Otherwise, it must chose one move, among three
possibilities which essentially capture the semantics of the modalities ofALT. The determinacy
of the EF-games can be easily proven by induction on the rank of the game.

Lemma 4.14. For every state of the game, one of the two players has a winning strategy.

Proof. The proof is by induction on the rank rk of the game, with respect to the order< rk .

base case: rk = (0 ; 0; 0). Let us consider a games state ((F1; t1; n1); (F2; t2; n2); rk). If there is
� 2 f Miss; Hit g such that ((F1; t1; n1) j= � i� (F2; t2; n2) j= �) does not hold, then the
spoiler wins (1st and 2nd line of Figure 4.4). Otherwise, sincerk = (0 ; 0; 0) the spoiler
cannot perform any move and the duplicator wins (5th line in Figure 4.4).

induction step: rk 6= (0 ; 0; 0). Let us consider a state ((F1; t1; n1); (F2; t2; n2); rk). Again, if
there is � 2 f Miss; Hit g such that ((F1; t1; n1) j= � i� (F2; t2; n2) j= �) does not hold, then
the spoiler wins (1st and 2nd line of Figure 4.4). Otherwise, the spoiler can perform a
move according to Figure 4.4, to which a move for the duplicator follows. Given a move of
the spoiler, let S be the set of games states that can be reached following a possible answer
from the duplicator. Each of these states has rankrk0 < rk rk. By induction hypothesis,
either the spoiler or the duplicator has a winning strategy for each state inS. If the
duplicator has a winning strategy for one of the states inS, then it can answer the move
done by the spoiler so that the game continue on that state, ensuring a victory. Otherwise,
no matter what is the answer of the duplicator, the spoiler has a winning strategy after
selecting that particular move. This means that, for every move of the spoiler, the game
proceeds in a state for which one of the two players has a winning strategy. If for every
move of the spoiler the game proceeds in a state for which the duplicator has a winnning
strategy, then the duplicator has a winning strategy for ((F1; t1; n1); (F2; t2; n2); rk). If
instead there is a move of the spoiler that makes the game proceeds in a state for which
the spoiler has a winning strategy, then it is su�cient for the spoiler to perform that move
in order to produce a winning strategy for ((F1; t1; n1); (F2; t2; n2); rk).

We now aim at connecting the EF-games withALT by proving that they are adequate with
respect to the satisfaction relationj= of ALT. In particular, we want to show the following result.

Theorem 4.15. Let (F1; t1; n1) and (F2; t2; n2) be two pointed forests. Let rk 2 N3.

(I) If (F1; t1; n1) j= ' and (F2; t2; n2) 6j= ' for some' in ALTrk , then (F1; t1; n1) 6�rk(F2; t2; n2).

(II) If for every ' in ALTrk ((F1; t1; n1) j= ' i� (F2; t2; n2) j= '), then (F1; t1; n1) � rk (F2; t2; n2).

In order to show this theorem, which as we will see allows us to prove inexpressibility results
for ALT, we need to state some of the properties of ranks. The �rst property is thatALTrk is a
�nite set of formulae, up to logical equivalence.

Lemma 4.16. For each rank rk 2 N3, ALTrk is �nite up to logical equivalence.

4.2. On the Expressive Power ofALT 91

This result is rather standard, and similar ones can be found in [102, 36, 48]. Its proof (by
induction on the rank rk) is left in Appendix B. Lemma 4.16 implies that given a rank rk,
every pointed forest (F ; t; n) has a (�nite) characteristic formula � rk(F ; t; n) 2 ALTrk that is
logically equivalent to the in�nite conjunction

V
f ' 2 ALTrk j (F ; t; n) j= ' g. Moreover, the

formula � rk(F ; t; n) enjoys the following properties.

Lemma 4.17. Let (F ; t; n) be a pointed forest and let rk 2 N3. (I) (F ; t; n) j= � rk(F ; t; n), and
(II) given a second pointed forest (F 0; t0; n0), (F ; t; n) j= � rk(F 0; t0; n0) i� (F 0; t0; n0) j= � rk(F ; t; n).

Proof. The statement (I) follows directly by the de�nition of characteristic formula. For the
statement (II), by symmetry we just need to show one direction. Assume (F ; t; n) j= � rk(F 0; t0; n0).
Let 2 ALTrk and suppose (F ; t; n) j= . To prove the result it is su�cient to show that
(F 0; t0; n0) j= . Ad absurdum, suppose that (F 0; t0; n0) 6j= . Then by de�nition (F 0; t0; n0) j= : ,
and by de�nition of rank, we have that : 2 ALTrk . Therefore, from the equivalence

� (m;s;k) (F 0; t0; n0)
by def
�

V
f ' 2 ALTm;s;k j (F 0; t0; n0) j= ' g,

we conclude that j= � (m;s;k) (F 0; t0; n0)) : . As (F ; t; n) j= � (m;s;k) (F 0; t0; n0), this implies
(F ; t; n) j= : , in contradiction with the hypothesis (F ; t; n) j= . Hence, (F 0; t0; n0) j= .

Lemmata 4.16 and 4.17 allow us to prove Theorem 4.15 in a neat way. The statement (I)
of Theorem 4.15, also called thesoundnessof the games, is proved by structural induction on' .
The completenessof the games, i.e. the statement (II) of Theorem 4.15, is proven by showing the
contrapositive by induction on the rank and by cases on the �rst move that the spoiler makes
in his winning strategy, which exists by determinacy (Lemma 4.14).

Proof of Theorem 4.15(I) . The proof by structural induction on ' is similar to the one in [36].

base case: ' 2 f Hit ; Missg. From the hypothesis (F1; t1; n1) j= ' and (F2; t2; n2) 6j= ' we
conclude that spoiler wins the game (from the 1st and 2nd line of Figure 4.4).

For the induction steps, we omit the straigthforward cases of Boolean connectives, and focus on
the three cases' = hUi , ' = � and ' = � * .

induction step: ' = hUi . By hypothesis (F1; t1; n1) j= hUi and (F2; t2; n2) 6j= hUi . Then
there is n0

1 2 N such that (F1; t1; n0
1) j= . Moreover, by de�nition the modal rank of hUi

is at least 1 and therefore the spoiler can play ahUi move. Suppose that the spoiler selects
the structure (F1; t1; n1) and choses exactlyn0

1. According to the game, the duplicator must
choose an0

2 2 N . Since (F2; t2; n2) 6j= hUi it holds that (F2; t2; n0
2) 6j= . By induction hy-

pothesis, the spoiler has a winning strategy for ((F1; t1; n0
1); (F2; t2; n0

2); (m� 1; s; k)). Hence,
by chosing n0

1 the spoiler built a winning strategy for ((F1; t1; n1); (F2; t2; n2); (m; s; k)).

induction step: ' = � . By hypothesis (F1; t1; n1) j= � and (F2; t2; n2) 6j= � . There is
a �nite forest F 0

1 � F 1 such that card(F 0
1) = card(F1) � 1 and (F 0

1; t1; n1) j= . Hence,
dom(F1) 6= ? and moreover by de�nition the sabotage rank of� is at least 1. Therefore,
the spoiler can play a � move. Suppose that the spoiler selects the structure (F1; t1; n1)
and choses exactlyF 0

1. According to the game, the duplicator must choose a �nite forest
F 0

2 � F 2 such that card(F 0
2) = card(F2) � 1. Since (F2; t2; n2) 6j= � , it holds that

(F 0
2; t2; n2) 6j= . By induction hypothesis, the spoiler has a winning strategy for the

game ((F1; t1; n0
1); (F2; t2; n0

2); (m; s� 1; k)). Hence, by chosingF 0
1 the spoiler built a winning

strategy for ((F1; t1; n1); (F2; t2; n2); (m; s; k)).

92 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

induction step: ' = � * . By hypothesis (F1; t1; n1) j= � * and (F2; t2; n2) 6j= � * . There
is a �nite forest F 0

1 � F 1 such that (F 0
1; t1; n1) j= . Moreover, by de�nition the repeated

sabotage rank of� * is at least 1. Therefore, the spoiler can play a� * move. Suppose
that the spoiler then select the structure (F1; t1; n1) and choses exactlyF 0

1. According to
the game, the duplicator must choose a �nite forestF 0

2 � F 2. Since (F2; t2; n2) 6j= � * , it
holds that (F 0

2; t2; n2) 6j= . By induction hypothesis, the spoiler has a winning strategy
for the game ((F1; t1; n0

1); (F2; t2; n0
2); (m; s; k � 1)). Hence, by chosingF 0

1 the spoiler built
a winning strategy for ((F1; t1; n1); (F2; t2; n2); (m; s; k)).

Proof of Theorem 4.15(II) . We follow again the schema of the proof in [36]. We consider the
contrapositive statement and thus prove that if (F1; t1; n1) � rk (F2; t2; n2) does not hold, then
there is ' in ALTrk s.t. ((F1; t1; n1) j= ' i� (F2; t2; n2) j= ') does not hold. Since the games are
determined (Lemma 4.14) andALT is closed under negation, we can alternatively show that

If (F1; t1; n1) 6�rk (F2; t2; n2) then there is ' in ALTrk s.t. (F1; t1; n1) j= ' and (F2; t2; n2) 6j= ' .

As already stated, the result is shown by induction on the rank rk, with respect to the order
< rk , and by cases on the �rst move that the spoiler makes in his winning strategy for the game
((F1; t1; n1); (F2; t2; n2); rk). Below, we reserve the symbol' for the formula that distinguishes
the two models, as in the statement above (i.e. (F1; t1; n1) j= ' and (F2; t2; n2) 6j= ').

base case: rk = (0 ; 0; 0). Since spoiler has a winning strategy, in particular it wins the game
of rank (0; 0; 0). By de�nition of the game, spoiler does not play any move, and from the
1st and 2nd line of Figure 4.4 one of the following must hold:

� (F1; t1; n1) j= Hit and (F2; t2; n2) 6j= Hit . Hence,' = Hit .

� (F1; t1; n1) 6j= Hit and (F2; t2; n2) j= Hit . Hence,' = : Hit .

� (F1; t1; n1) j= Miss and (F2; t2; n2) 6j= Miss. Hence,' = Miss.

� (F1; t1; n1) 6j= Miss and (F2; t2; n2) j= Miss. Hence,' = : Miss.

This case also holds for games on arbitrary rank (m; s; k) where the spoiler wins simply
from the conditions of the game that are imposed at the beginning of each round (1st and
2nd line of Figure 4.4), before playing any move.

In the induction steps, let us assumerk = (m; s; k).

induction step: the spoiler plays a hUi move. Suppose that, by following its strategy, the
spoiler choses (F1; t1; n1) and plays ahUi move. Notice that this implies m � 1. Let n0

1 2 N
be the node selected by the spoiler. By Lemma 4.17(I), (F1; t1; n0

1) j= � (m� 1;s;k) (F1; t1; n0
1).

Let ' be de�ned as the formula hUi � (m� 1;s;k) (F1; t1; n0
1). By de�nition, ' 2 ALTrk and

this formula is satis�ed by (F1; t1; n1). Ad absurdum, suppose that (F2; t2; n2) j= ' .
Thus, there is n0

2 such that (F2; t2; n0
2) j= � (m� 1;s;k) (F1; t1; n0

1). By Lemma 4.17(II) to-
gether with the de�nition of characteristic formula, there is no formula in ALT(m� 1;s;k)

that can discriminate between (F1; t1; n0
1) and (F2; t2; n0

2). As our games are determined
(Lemma 4.14), by induction hypothesis the duplicator has a winning strategy for the
game ((F1; t1; n0

1); (F2; t2; n0
2); (m � 1; s; k)). However, this is contradictory as by hypoth-

esis the spoiler has a winning strategy and the move it played is part of this strategy.
Therefore, (F1; t1; n1) j= ' and (F2; t2; n2) 6j= ' .

The proof is analogous for the case where the spoiler choses (F2; t2; n2) and a n0
2 2 N . In

this case we obtain (F1; t1; n1) 6j= and (F2; t2; n2) j= where = hUi � (m� 1;s;k) (F2; t2; n0
2).

Thus, de�ning the formula ' as : proves the result.

4.2. On the Expressive Power ofALT 93

induction step: the spoiler plays a � move. This case is similar to the previous one. Sup-
pose that, by following its strategy, the spoiler choses (F1; t1; n1) and plays a � move.
Notice that this implies s � 1 and dom(F1) 6= ? . Let F 0

1 be the �nite forest chosen by the
spoiler. We haveF 0

1 � F 1 and card(F 0
1) = card(F1) � 1. By Lemma 4.17(I), (F 0

1; t1; n1) j=
� (m;s� 1;k) (F 0

1; t1; n1). Let ' be de�ned as the formula � � (m;s� 1;k) (F 0
1; t1; n1). By de�ni-

tion, ' 2 ALTrk and this formula is satis�ed by (F1; t1; n1). Ad absurdum, suppose that
(F2; t2; n2) j= ' . There is F 0

2 such that F 0
2 � F 2, card(F 0

2) = dom(F2) � 1 and (F 0
2; t2; n2) j=

� (m;s� 1;k) (F 0
1; t1; n1). By Lemma 4.17(II) together with the de�nition of characteristic for-

mula, there is no formula in ALT(m;s� 1;k) that can discriminate between (F 0
1; t1; n1) and

(F 0
2; t2; n2). As our games are determined, by induction hypothesis this implies that the

duplicator has a winning strategy for the game ((F 0
1; t1; n1); (F 0

2; t2; n2); (m; s� 1; k)). How-
ever, this is contradictory as by hypothesis the spoiler has a winning strategy and the move
it played is part of this strategy. Therefore, (F1; t1; n1) j= ' and (F2; t2; n2) 6j= ' .

Again, the proof is analogous for the case where the spoiler choses (F2; t2; n2) and a �nite
tree F 0

2 � F 2 such that card(F 0
2) = card(F2) � 1. In this case we obtain (F1; t1; n1) 6j=

and (F2; t2; n2) j= where = � � (m;s� 1;k) (F 0
2; t2; n2). Hence, ' def= : proves the result.

induction step: the spoiler plays a � * move. This case is similar to the last two cases.
Suppose that, by following its strategy, the spoiler choses (F1; t1; n1) and plays a � * move.
This implies k � 1. Let F 0

1 be the �nite forest chosen by the spoiler. Thus, F 0
1 � F 1.

By Lemma 4.17(I), we have that (F 0
1; t1; n1) j= � (m;s;k� 1)(F 0

1; t1; n1). Let ' be the for-
mula de�ned as � * � (m;s;k� 1)(F 0

1; t1; n1). By de�nition, ' 2 ALTrk and this formula is
satis�ed by (F1; t1; n1). Ad absurdum, suppose that (F2; t2; n2) j= ' . Then there is F 0

2
such that F 0

2 � F 2 and (F 0
2; t2; n2) j= � (m;s;k� 1)(F 0

1; t1; n1). By Lemma 4.17(II) together
with the de�nition of characteristic formula, there is no formula in ALT(m;s;k� 1) that
can discriminate between (F 0

1; t1; n1) and (F 0
2; t2; n2). As our games are determined,

by induction hypothesis this implies that the duplicator has a winning strategy for the
game ((F 0

1; t1; n1); (F 0
2; t2; n2); (m; s; k � 1)). However, this is contradictory as we assumed

that the spoiler has a winning strategy and the move it played is part of this strategy.
Therefore, (F1; t1; n1) j= ' and (F2; t2; n2) 6j= ' .

The proof is analogous for the case where the spoiler choses (F2; t2; n2) and a forestF 0
2 � F 2.

In this case we have (F1; t1; n1) 6j= and (F2; t2; n2) j= , where = � * � (m;s;k� 1)(F 0
2; t2; n2).

Hence,' def= : proves the result.

Using the EF-games for ALT. We start using the EF-games forALT to derive three easy
inexpressibility results. Notably, these results are later helpful as they reduce the set of pointed
forests needed in order to conclude that a formula' of ALT is satis�able.

Lemma 4.18. Let ' be a formula.

(I) ' is satis�able i� it is satis�able by a pointed forest (F ; t; n) where t 62dom(F).

(II) Given a forest F and nodest 2 N and n; n0 62dom(F), (F ; t; n) j= ' i� (F ; t; n0) j= ' .

(III) If (F1; t1; n1) � rk (F2; t2; n2) then the duplicator has a winning strategy where it always
replies to hUi moves by selecting nodes indom(F i) [ran(F i), for some i 2 f 1; 2g.

As these results are quite straightforward, we just sketch their proof so that we can focus on
how the EF-games are used without getting lost in technical details. We will see a full proof
that uses the games later, with Lemma 4.19.

94 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

Proof (sketch). Consider the left-to-right direction of (I) (the other direction is obvious), and so
let (F ; t; n) be a pointed forest such that (F ; t; n) j= ' . We modify (F ; t; n) so that the target
node is not in the domain of the forest. In particular, we consider a nodet0 62dom(F) [ran(F)
and de�ne the forest F 0(n0) def= if F (n0) = t then t0 else F (n0). Notice that t0 62dom(F 0). We
show that for every rk 2 N3, (F ; t; n) � rk (F 0; t0; n) with an easy induction on rk, leading to (I)
directly by Theorem 4.15. The proof of (II) is even simpler, as we just need to prove that for all
rk 2 N3, (F ; t; n) � rk (F ; t; n0), again by induction on the rank. (III) is a consequence of (II).

Interestingly enough, Lemma 4.18(III) fundamentally implies that changing the de�nition
of the set of nodesN to be �nite, instead of in�nite as we do throughout this work, does not
change the expressive power nor the complexity ofALT.

The proof of Lemma 4.18(I) shows us how the games can be used in order to conclude
an inexpressibility result. In general, we consider a property that we want to show to be not
expressible in the logic, as for example the fact that the target node is in the domain of the
forest (as in Lemma 4.18(I)). Then, for every rank rk 2 N3, we construct two pointed forests
(F1; t1; n1) and (F2; t2; n2) such that only one of the two has the wanted property. We show that
(F1; t1; n1) � rk (F2; t2; n2), which allows us to conclude that the property cannot be expressed,
by Theorem 4.15. When this property is very simple, as it is the case for Lemma 4.18(I),
it is possible to construct a single pair of �nite forests (F1; t1; n1) and (F2; t2; n2) so that for
every rk 2 N3 we can prove (F1; t1; n1) � rk (F2; t2; n2).

Let (F ; t; n) be a pointed forest. We now show thatALT has a very limited expressive power
with respect to the miss nodes. In particular, it can only check whether the current evaluation
node n is a member ofF [Miss] (with the formula Miss), and for the size ofF [Miss] (with the
formula size (Miss)� �). We formalise this inexpressibility result with the following lemma.

Lemma 4.19. Let rk = (m; s; k). Let F1; F2 be two forests, andn1; n2; t 2 N . Suppose that

1. (F1; t; n1) and (F2; t; n2) agree on the set of descendants oft, i.e. for every F1-descendant
or F2-descendantn of t, F1(n) = F2(n), and if n1 or n2 are descendants oft, then n1 = n2,

2. n1 2 F 1[Miss]t if and only if n2 2 F 2[Miss]t ,

3. min(card(F1[Miss]t); m + s+ k) = min(card(F2[Miss]t); m + s+ k).

Then (F1; t; n1) � rk (F2; t; n2).

Before proving this result, let us informally explain how it shows that ALT can only express
the two aforementioned properties ofF [Miss]. For example, let us suppose (ad absurdum) that
there is a formula ' that characterises the set of pointed forests having a miss node with at least
two children. Let us consider a rank rk = (m; s; k) and a pointed forest (F1; t; n) that satis�es
the formula ' . We consider the subforestF � F 1 whose domain corresponds to the set ofF1-
descendants oft. We extend F to a forest F2 by (re)de�ning it on the nodes in F1[Miss]t so that
F2[Miss]t = F1[Miss]t and none of these nodes has more than oneF2-child (this construction
can always be done). Notice thatF2 is de�ned in a way that (F1; t; n) and (F2; t; n) satisfy
the three properties (1), (2) and (3). We apply Lemma 4.19 to conclude (F1; t; n) � rk (F2; t; n),
which in turn shows that (F2; t; n) j= ' by Theorem 4.15. However, (F2; t; n) is de�ned so that
every node in F2[Miss]t has at most one child. Thus, ' cannot characterise the set of models
having a miss node with at least two children.

As we discuss in the next section, the inexpressibility result shown in Lemma 4.19 plays
a central role in the development of the reduction that leads to the Tower -hardness of the
satis�ability problem for ALT. In particular, most of the di�culties of this reduction stem from

4.2. On the Expressive Power ofALT 95

the fact that we need to get around the limited expressiveness thatALT has with respect to miss
nodes. We conclude this section on the expressive power ofALT with the proof of Lemma 4.19.
Readers that are eager to see theTower -hardness of this logic can skip to page 97.

Proof of Lemma 4.19. The proof is by induction on the rank rk, with respect to the strict order
< rk and by cases on the move made by the spoiler in the game. As the statement is symmetrical
with respect to the two pointed forests (F1; t; n1) and (F2; t; n2), we assume w.l.o.g. that the
spoiler chooses and plays on the structure (F1; t; n1) and hence de�ne below the strategy of
duplicator on (F2; t; n2). The strategy of the duplicator for the cases where it must reply on
(F1; t; n1) can be described from the one below by simply swapping the two structures. Below,
the indices (1), (2) and (3) refer to the homonymous properties in the statement of the lemma.
We refer to them ashypothesiswhenever we consider (F1; t; n1) and (F2; t; n2). Instead, we call
them properties when we are proving them for subforests of (F1; t; n1) and (F2; t; n2).

base case: rk = (0 ; 0; 0). The hypothesis (1) and (2) imply that for every � 2 f Miss; Hit g, the
double implication ((F1; t; n1) j= � i� (F2; t; n2) j= �) holds. Since the spoiler cannot play
any move, the duplicator wins the game.

For the induction step, we assumerk = (m; s; k) 6= (0 ; 0; 0) and that the lemma holds for
every rk0 < rk rk. We divide the proof following the move of the spoiler.

induction step: the spoiler plays a hUi move. This implies m � 1. Let n0
1 2 N be the

node choosen by the spoiler. Let us consider the following procedure for the duplicator:

if n0
1 is a hit node of (F1; t; n1) then the duplicator selectsn0

1

else if n0
1 2 F 1[Miss]t then the duplicator selects a noden0

2 2 F 2[Miss]t
else the duplicator selects a noden0

2 62dom(F2):

Notice the this procedure is well-de�ned. In particular, if n0
1 2 F 1[Miss]t then from m � 1

and the hypothesis (3), we conclude thatcard(F2[Miss]t) � 1, so that the the duplicator
can e�ectively select a noden0

2 2 F 2[Miss]t . Moreover, the hypothesis (1) insures that if
n0

1 is a hit node of (F1; t; n1) then it is also a hit node of (F2; t; n2). Lastly, if the duplicator
select a noden0

2 62dom(F2), it means that n0
1 is not a hit or miss node, hencen0

1 62dom(F1).
The EF-game continues on the state ((F1; t; n0

1); (F2; t; n0
2); (m� 1; s; k)). By de�nition of n0

2,
we can check that (F1; t; n0

1) and (F2; t; n0
2) satisfy the three properties (1), (2) and (3),

w.r.t. the rank (m � 1; s; k). By induction hypothesis, we conclude (F1; t; n0
1) � (m� 1;s;k)

(F2; t; n0
2). This implies that, by relying on the procedure above, the duplicator can build

a winning strategy for the game ((F1; t; n1); (F2; t; n2); rk).

induction step: the spoiler plays a � move. This implies s � 1. let F 0
1 � F 1 be the sub-

forest chosen by the spoiler. We havecard(F 0
1) = card(F1) � 1. Let n be the only node

in dom(F1) n dom(F 0
1). Let us consider the following procedure for the duplicator:

if n is a hit node of (F1; t; n1) then the duplicator selects the forestF2 n f (n; F2(n))g

else the duplicator selects a forestF2 n f (n0; F2(n0))g

where n0 2 F 2[Miss]t ; and n0 = n1 , n = n2:

Notice that this procedure is well-de�ned. In particular, if n is a hit node of (F1; t; n1), from
the hypothesis (1) n is a hit node of (F2; t; n2), and so (n; F2(n)) is de�ned. Moreover, if n
is not a hit node, then from n 2 dom(F1) we conclude that it is a miss node. Bys � 1 and
thanks to the hypothesis (3), card(F2[Miss]t) � 1. With the hypothesis (2), this implies
that the duplicator can e�ectively select the forest in the else branch of the procedure.
Let F 0

2 be the forest selected by the duplicator, using the procedure above. We show that

96 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

(F 0
1; t; n1) and (F 0

2; t; n2) satisfy the properties (1), (2) and (3) w.r.t. the rank (m; s � 1; k).
We divide the proof into two cases, depending on whether or notn 2 F 1[Miss]t .

case: n 2 F 1[Miss]t . Let n0 be some node such thatf n0g = dom(F2) n dom(F 0
2). From

the de�nition of the procedure above, n0 2 F 2[Miss]t , and n0 = n1 if and only if
n = n2. This implies the satisfaction of the property (2). Moreover, the property (1)
is also satis�ed. Indeed, sincen is a miss node, everyF 0

1-descendant oft is also aF1-
descendant oft, and vice versa. Similarly, asn0 is a miss node, everyF 0

2-descendant
of t is also aF2-descendant oft, and vice versa. Thus, the property (1) is implied
by the hypothesis (1). In order to conclude this case, we prove the satisfaction of
property (3). First, since n is a miss node,F 0

1[Miss]t [f ng = F1[Miss]t . Similarly,
F 0

2[Miss]t [f n0g = F2[Miss]t . As n 62dom(F 0
1) and n0 62dom(F 0

2), we conclude that

card(F 0
1[Miss]t) + 1 = card(F1[Miss]t) and card(F 0

2[Miss]t) + 1 = card(F2[Miss]t).

Thanks to the hypothesis (3), i.e.

min(card(F1[Miss]t); m + s+ k) = min(card(F2[Miss]t); m + s+ k),

we show property (3) with the following equivalences:

min(card(F 0
1[Miss]t); m + (s � 1) + k) = min(card(F 0

1[Miss]t) + 1 ; m + s+ k) � 1

= min(card(F1[Miss]t); m + s+ k) � 1

= min(card(F2[Miss]t); m + s+ k) � 1

= min(card(F 0
2[Miss]t) + 1 ; m + s+ k) � 1

= min(card(F 0
2[Miss]t); m + (s � 1) + k):

Here, we use the equivalence min(x+1 ; y+1) = min(x; y)+1 (x; y arbitrary numbers).

case: n 62 F1[Miss]t . This implies that n is a hit node of (F1; t; n1), and from the procedure
followed by the duplicator, F 0

2 = F2 n f (n; F2(n))g. First of, since n is a hit node and
dom(F1) n dom(F 0

1) = f ng, we can show that

F 0
1[Miss]t = F1[Miss]t [f n0 2 N j n0 is a F1-descendant of ng.

Indeed, when (n; F (n)) is removed from F1, all its descendants become miss nodes,
whereas every other hit node ofF1 (n excluded) is still a hit node of F 0

1. The same
holds true for F2, so that the following equality holds:

F 0
2[Miss]t = F2[Miss]t [f n0 2 N j n0 is a F2-descendant of ng.

By hypothesis (1), removing (n; F2(n)) from both F1 and F2 leads to two pointed
forests that agree on the set of descendants oft. Thus, property (1) is satis�ed.
Moreover, again from the hypothesis (1), the set ofF1-descendants ofn is also the
set of F2-descendants ofn, i.e.

f n0 2 N j n0 is a F1-descendant of ng = f n0 2 N j n0 is a F2-descendant of ng.

This implies two things. First, from the characterisation of F 0
1[Miss]t and F 0

2[Miss]t
(above), together with the hypothesis (2), (F 0

1; t; n1) and (F 0
2; t; n2) satisfy prop-

erty (2). Second, thanks to the hypothesis (3), i.e.

min(card(F1[Miss]t); m + s+ k) = min(card(F2[Miss]t); m + s+ k),

we show property (3) with the following equivalences, where� = m + (s� 1) + k:

min(card(F 0
1[Miss]t); �) = min(card(F1[Miss]t) + card((F � 1

1)+ (n)) ; �)

= min(card(F2[Miss]t) + card((F � 1
2)+ (n)) ; �)

= min(card(F 0
2[Miss]t); �)

4.3. The Complexity of ALT 97

where, givenj 2 f 1; 2g, (F � 1
j)+ (n) is the set of F j -descendants ofn.

In both cases, since we have shown that (F 0
1; t; n1) and (F 0

2; t; n2) satisfy the proper-
ties (1), (2) and (3) w.r.t. the rank (m; s � 1; k), we can apply the induction hypothesis and
conclude that (F 0

1; t; n1) � (m;s� 1;k) (F 0
2; t; n2). This implies that, by relying on the procedure

above, the duplicator can build a winning strategy for the game ((F1; t; n1); (F2; t; n2); rk).

induction case: the spoiler plays a � * move. This implies k � 1. Let F 0
1 � F 1 be the

forest choosen by the spoiler. Let us partitionF 0
1 into the two subforests H and M 1 s.t.

H def= f (n; F1(n)) 2 F 0
1 j n is a F1-descendant oftg;

M 1
def= f (n; F1(n)) 2 F 0

1 j n 2 F 1[Miss]t g:

By hypothesis (1), H is a subforest ofF2. Let us consider a subforestM 2 of F2 such that

A. M 2 contains only miss nodes ofF2, i.e. dom(M 2) � F 2[Miss]t ,

B. n2 2 M 2 if and only if n1 2 M 1,

C. card(M 2) = min(M 1; m + s+ (k � 1)).

From the hypothesis (2) and (3), the subforestM 2 can always be de�ned. Moreover,M 2 is
disjoint from H . Let us show that the duplicator has a winning strategy in which it replies
to F 0

1 with the subforest F 0
2

def= H [M 2 of F2. We show that (F 0
1; t; n1) and (F 0

2; t; n2) satisfy
the properties (1), (2) and (3) w.r.t. the rank (m; s; k � 1). Property (1) holds directly from
the de�nition of H together with hypothesis (1). For the properties (2) and (3), we �rst
notice that F 0

1[Miss]t = H [Miss]t [dom(M 2) and that F 0
1[Miss]t = H [Miss]t [dom(M 1).

Then, property (2) stems from (B), whereas property (3) stems from (C). This allows us to
apply the induction hypothesis to conclude that (F 0

1; t; n1) � (m;s;k� 1) (F 0
2; t; n2). Therefore,

the duplicator can build a winning strategy for the game ((F1; t; n1); (F2; t; n2); rk).

4.3 The Complexity of ALT

We are now ready to show that the satis�ability problem for ALT is Tower -complete. The hard-
ness proof is by reduction from the satis�ability problem of Propositional interval temporal logic
under locality principle [112, 82], whereas the upper bound holds directly from Proposition 4.3.

4.3.1 Propositional Interval Temporal Logic.

Propositional Interval Temporal Logic (PITL) is a logic that was introduced by B. Moszkowski
in [112] for the veri�cation of hardware components. It is interpreted on non-empty �nite words
over a �nite alphabet of unary symbols � . Its formulae ' are from the grammar below (a 2 �):

� := > (true)

j 1 (single predicate)

j a (head predicate)

' := � (atomic formulae)

j ' ^ ' j : ' (Boolean connectives)

j ' ' (composition operator)

The satisfaction relation j= for the formulae of PITL is de�ned in Figure 4.5, with respect to
a non-empty word a1 : : : ak 2 � + . Standard cases for> and Boolean connectives are omitted.
The interpretation considered here is often called thelocality principle interpretation of PITL.
This name highlights the fact that the satisfaction of the predicate a only depends on the �rst
symbol (i.e. the head) of the word. The main feature of this logic is itscomposition operator .
Intuitively, ' is satis�ed by words that can be \chopped" into a pre�x and a su�x, so that

98 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

a1 : : : ak j= 1 i� k = 1 (i.e. the word a1 : : : ak is a symbol of �),

a1 : : : ak j= a i� a1 = a (i.e the word is headed by the symbola),

a1 : : : ak j= ' i� there is j 2 [1; k] such that a1 : : : aj j= ' and aj : : : ak j= .

Figure 4.5: Satisfaction relation for PITL, under locality principle.

the pre�x satis�es ' and the su�x satis�es . It is important to notice that these pre�x and
su�x overlap: the last symbol of the pre�x is the �rst symbol of the su�x.

The satis�ability problem of PITL under locality principle is Tower -complete. The fact
that it is non-elementary decidable was proven by B. Moszkowski [112], by reduction from the
non-emptiness problem of star-free regular languages previously studied by A. R. Meyer and
L. J. Stockmeyer [111].Tower -completeness is then established from [128].

Proposition 4.20 (From [112, 128]). The satis�abiilty problem of PITL is Tower -complete.

As we have already shown that �nite words can be encoded inALT (Section 4.2), a promising
route to prove that the satis�ability problem of ALT is Tower -hard is by reduction from the
satis�ability problem of PITL. However, because of the limited expressive power thatALT has
on miss nodes (see Lemma 4.19) we already know that the composition operatorcannot be
easily translated. Let us consider a pointed forest (F ; n; t) encoding a non-empty word w =
a1 : : : ak . Moreover, let us assume that the set of main nodes of this encoding isM = (n1; : : : ; nk).
Chopping w into two pieces means splitting in some way the main pathn1; : : : ; nk of (F ; t; n) to
then check that the word encoded byn1; : : : ; ni satis�es a certain formula ' , whereas the one
encoded byni ; : : : ; nk satis�es a formula . Neglecting the fact that the two structures share
the node ni , the main problem in doing this is that after the split the nodes n1; : : : ; ni stop
being descendants of the target node, and so they become miss nodes. As a consequence of
Lemma 4.19, we know that ALT cannot check in any way what is the word encoded by these
nodes. Trivial translations from PITL to ALT seem therefore impossible.

4.3.2 PITL on marked words.

To solve the issue of capturing the composition operator ofPITL in ALT, we consider an al-
ternative interpretation of PITL where, instead of chopping a word, the operator marks the
symbol where the cut should have taken place. As we will see, the alternative interpretation
is equivalent to the one under locality principle given above, so that theTower -completeness
result of Proposition 4.20 still hold. We start by introducing the notions of marking of a symbol,
an alphabet and a word, as well as a notion of decomposition for marked words. For simplicity,
throughout the section we �x a (non-empty) �nite alphabet � .

De�nition 4.21 (Markings) . Let � be an alphabet disjoint from � , such that card(�) = card(�).
A marking for � is a bijection (:) : � ! � , relating a symbol a 2 � to its marked variant a 2 � .

We �x � � to be the alphabet � [� . A word of � � is marked if it has some symbol from� .

De�nition 4.22 (Marked word decomposition). Given a marked word w 2 � +
� , we write �(w)

for the decomposition(w0; a; w00) wherew0 2 � � is not marked, a 2 � is marked, andw = w0aw00.

4.3. The Complexity of ALT 99

w j= 1 i� �(w) = (w0; a; w00) and w0 = � (i.e. w is headed by a marked symbol),

w j= a i� w is headed by the symbola or the symbol a,

w j= ' i� �(w) = (w0; a; w00) and there is a symbolb 2 � such that

(a) w0 = � , b = a and aw00j= � ' ^

or (b) w0 = bw2 and bw2 aw00j= � ' and bw2 aw00j= � , for somew2 2 � �

or (c) w0 6= � and b = a and w0aw00j= � ' and aw00j= �

or (d) w0 = w1bw2 and w1 bw2 aw00j= � ' and bw2 aw00j= � ,

for somew1 2 � + and w2 2 � � .

Figure 4.6: Satisfaction relation for PITL on marked words.

aaba b j= �
�
> (b 1)

�
(b >)

aaba b j= � > (b 1) ba b j= � b >

aaba b j= � > ba b j= � b 1 ba b j= � b ba b j= � >

bab j= � b ^ 1

case (a)

case (d)

case (c) case (b)

Figure 4.7: Example of the satisfaction of a formula on marked words.

Notice that the decomposition �(w) = (w0; a; w00) of a marked world w is uniquely de�ned, as
the word w0a is the (only) pre�x of w ending with its �rst marked symbol. As we will see, the
notion of satis�ability we are about to de�ne only depends on these pre�xes.

We interpret PITL on marked words. Given a marked wordw 2 � +
� , the new satisfaction

relation j= � for the formulae of PITL is given in Figure 4.6, again omitting standard cases for>
and Boolean connectives. The semantics of the predicates1 and a is quite simple, and reects the
fact that the satisfaction of a formula depends on the only pre�x of a marked wordw that ends
with its �rst marked symbol. For the predicate 1 to be satis�ed, the word w must begin with
a marked symbol, so in the decomposition �(w) = (w0; a; w00) the word w0 is the empty word � .
For the predicate a, we simply check if w is headed by the symbola or its marked variant a.
The de�nition of ' is more involved. Let us consider the pre�x a1 : : : ak� 1 ak of w that ends
with the �rst marked symbol. In order for w j= � ' to hold, we must �nd a position j 2 [1; k]
inside this pre�x so that ' is satis�ed by the word obtained from w by marking the j -th symbol
(if it is not already marked), whereas is satis�ed by the su�x of w starting in j . In the
formal de�nition given in Figure 4.6, this idea is split into four cases cases (a){(d), depending
on truthiness of j = 1 and j = k. For example, (a) correspond to the case wherej = k = 1.
This split is done as it better reects the encoding of PITL in ALT.

Example 4.23. Consider the alphabets� = f a; bg and � = f a; bg. The schema in Figure 4.7
certi�es that the marked word aaba b satis�es the formula

�
> (b 1)

�
(b >). At each step we

100 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

highlight which of the four cases in the de�nition of ' is used. For instance, let us pick
the �rst step of the schema above, in which the case (d) in the de�nition of ' is used.
According to this case aaba b j= �

�
> (b 1)

�
(b >) holds as the word obtained by marking

the third symbol, i.e. aaba b, satis�es > (b 1), whereas the su�x of the word starting on
this symbol, i.e. ba b, satis�es b > . As we will show in a moment, marking symbols and
considering su�xes of words are operations that can be simulated inALT. Let us consider
the decomposition �(aaba b) = (aab; a; b). One can check that the word aaba, obtained by
concatenating the pre�x aab of the decomposition with the non-marked symbol that corresponds
to a in the decomposition, satis�es the formula

�
> (b 1)

�
(b >) in the standard semantics

of PITL. Lemma 4.24 (below) shows that this is always the case.

The semantics on marked words is related to the standard semantics ofPITL as follows.

Lemma 4.24. Let w0 2 � � , a 2 � and w002 � �
� . Let ' be a formula in PITL. We have,

w0a j= ' if and only if w0aw00j= � ' .

Proof. The proof is by structural induction on ' (with the natural induction hypothesis stating
that the lemma holds for strict subformulae of '). Let us write w for w0a, and w for the marked
word w0aw00. The base case with the atomic formul� 1 and b 2 � is by easy veri�cation.

base case: ' = 1. The following equivalences show the result:

w j= 1 if and only if w0 = � (by de�nition of j= and w = w0a)

if and only if w = aw00 (from w = w0aw00)

if and only if w j= � 1. (by de�nition of j= �)

base case: ' = b, where b 2 � . The following double implication shows the result:

w j= b if and only if w0a is headed byb (by de�nition of j= and w = w0a)

if and only if w is headed byb or b (from w = w0aw00)

if and only if w j= � b. (by de�nition of j= �)

The cases for Boolean connectives are obvious. We prove the result for the composition operator.

induction step: ' = ' 1 ' 2. Again, the result holds following a series of double implications:

w j= ' 1 ' 2

, there are b 2 � and w1; w2 2 � � s.t. w = w1bw2, w1b j= ' 1 and bw2 j= ' 2

(by de�nition of j=)

, there are b 2 � and w1; w2 2 � � s.t. w = w1bw2 and

(a) w1 = � , w2 = � , b j= ' 1 and b j= ' 2, (in this case, b = a)

or (b) w1 = � , w2 6= � , b j= ' 1 and bw2 j= ' 2, (in this case, 9w0
2 w2 = w0

2a)

or (c) w1 6= � , w2 = � , w1b j= ' 1 and b j= ' 2, (in this case, b = a, w1 = w0)

or (d) w1 6= � , w2 6= � , w1b j= ' 1 and bw2 j= ' 2. (in this case, 9w0
2 w2 = w0

2a)

(by case distinction, on the truthiness ofw1 = � and w2 = �)

, there are b 2 � and w1; w2 2 � � s.t. w = w1bw2 and

4.3. The Complexity of ALT 101

(a) w1 = � , w2 = � , b = a, bw00j= � ' 1 and bw00j= � ' 2,

or (b) w1 = � , 9w0
2 2 � � s.t. w2 = w0

2a, bw2 aw00j= � ' 1 and bw2 aw00j= � ' 2,

or (c) w1 6= � , w2 = � , b = a, w0bw00j= � ' 1 and bw00j= � ' 2,

or (d) w1 6= � , 9w0
2 2 � � s.t. w2 = w0

2a, w1 bw0
2 aw00j= � ' 1 and bw0

2 aw00j= � ' 2.

(by induction hypothesis, on all four cases)

, there is a symbolb 2 � such that

(a) w0 = � , b = a and aw00j= � ' ^
or (b) w0 = bw2 and bw2 aw00j= � ' and bw2 aw00j= � , for somew2 2 � �

or (c) w0 6= � and b = a and w0aw00j= � ' and aw00j= �
or (d) w0 = w1bw2 and w1 bw2 aw00j= � ' and bw2 aw00j= � ,

for somew1 2 � + and w2 2 � � ,

(by easy manipulation of the formula)

, ' j= � ' 1 ' 2. (by de�nition of j= �)

4.3.3 Reducing PITL to ALT.

The alternative interpretation of PITL allows us to reduce the satis�ability problem of PITL
to the satis�ability problem of ALT in a rather neat way. Once again, let us consider the
alphabets � ; � and � � = � [� of the previous section, and let us assume� = [1 ; n] for some
natural number n � 1. We consider the bijection f : � � ! [1; 2n] de�ned as f(a) def= 2a for every
symbol a 2 � , and de�ned as f(a) def= 2a� 1 for every marked symbola 2 � . We write f(a1 : : : ak)
to denote the word f(a1) : : : f(ak). Based on these de�nitions,f maps� � into the alphabet [1; 2n],
whose words can be encoded into trees (as in Section 4.2.1). In these trees, each symbola 2 �
corresponds to a main node having 2a + 1 children that are character nodes (recall that we
use a + 1 children to encode the symbol a). Similarly, each marked symbol a 2 � corresponds
to a main node having 2a children that are character nodes. Let us consider a noden encoding
a symbol in � . Because of the above distribution of non-marked and marked symbols, removing
exactly one child ofn that is a character node is equivalent to marking the symbol thatn encodes.
Let us now see how to capture this encoding inALT.

Let us �x a pointed forest (F ; t; n), which we suppose encodes a marked wordw 2 � � . We
can check if the current noden encodes a marked symbol from� with the following formula:

mark�
def=

W
a2 �

�
(# child = 2a ^ 1st [1;2n]) _ (# child = 2a + 1 ^ : 1st [1;2n])

�

As already said, marked symbols correspond to nodes with 2a children that are character nodes,
for somea 2 � . In order to capture this notion, the formula � distinguishes the case where the
current node n is the �rst node in the main path (whose only children are character nodes) from
the case wheren is not the �rst node in the main path (hence, it has one child in the main path).

As already stated, w j= � ' examines the pre�x of w that ends with the �rst marked symbol.
To correctly reduce PITL to ALT we need to be able to �nd the part of (F ; t; n) that corresponds
to this pre�x. We can do so by noticing that this part is the only subtree whose root encodes a
marked symbol and it is aF -descendant oft as well as of every other node encoding marked sym-
bols. This characterisation requires us to track the number of nodes encoding marked symbols
in (F ; t; n). To do so, �rst de�ne a formula marks� � � stating that the forest has at least � 2 N
nodes encoding marked symbols. Luckily, we can rely on the formulasize (') � � de�ned in Sec-
tion 4.2.1, and de�ne marks� � � simply as size (mark�) � � . Unfortunately, we cannot rely

102 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

� � (>) def= > ;

� � (1) def= hUi (1st [1;2n]^ mark�);

� � (a) def= hUi 1st [2a� 1;2a];

� � (:) def= : � � ();

� � (1 ^ 2) def= � � (1) ^ � � (2);

� � (1 2) def= hUi
�
symb^

�
(1st [1;2n] ^ mark� ^ � � (1) ^ � � (2))

_ (1st [1;2n] ^ : mark� ^ � (mark� ^ � � +1 (1)) ^ � � (2))

_ (: 1st [1;2n] ^ mark� ^ # markAnc� � � � 1 ^ � � (1) ^ � (1st [1;2n] ^ � � (2)))

_ (: 1st [1;2n] ^ : mark� ^ # markAnc� � � ^ � (mark� ^ � � +1 (1))

^ � (1st [1;2n]^ � � (2)))
��

:

Figure 4.8: Translation from PITL to ALT.

exactly on Lemma 4.7 to prove that this formula is correct, as the formulamark� does not enjoy
the property (2) required by this lemma. Similarly, we introduce the formula # markAnc� � �
which states that the current evaluation node encodes a symbol and has at least� ancestors
that encode marked symbols. It is de�ned as follows:

markAnc� � � def= symb^ � (: inDom^ marks� � �).

The following lemma assures that the three formulaemark� , marks� � � and # markAnc� � �
are correct, and highlights their semantics. The proof is given in Appendix B.

Lemma 4.25. Let w 2 � +
� and let (F ; t; n) be a pointed forest encoding the wordf(w) 2 [1; 2n]+ .

(I) (F ; t; n) j= mark� i� n encodes a marked symbol of� � .

(II) (F ; t; n) j= marks� � � i� F contains at least � nodes encoding marked symbols of� � .

(III) (F ; t; n) j= # markAnc� � � i� n has at least � ancestors encoding marked symbols of� � .

At last, we are ready to translate formulae of PITL into formulae of ALT. Given a formula
' in PITL having symbols from � = [1 ; n], we introduce its translation � � (') in ALT, where
the index � is a positive natural number that we use to track the number of nodes encoding
marked symbols. The translation is de�ned in Figure 4.8. It is homomorphic for > and Boolean
connectives. For the two predicates1 and a, the translation faithfully represents the relation j= �

. In the case of1, it requires the �rst node in the main path to correspond to a marked node.
Instead, for the predicatea, it checks whether this node encodes the symbols 2a� 1 or 2a which,
by de�nition of f, correspond to a 2 � and a 2 � , respectively. Lastly, the formula � � (')
follows very closely the de�nition of the relation j= � : after the pre�x \ hUi (symb^ : : : ", the
formula split into four disjuncts, one for each of the cases in the de�nition of ' . For instance,
let us consider a wordw such that �(w) = (w0; a; w00). The second disjunct of � � (') encodes
the case (b) in the de�nition of w j= � ' , as schematised below:

PITL there is b2 � ... 9w2 2 � � s.t. w0 = bw2 and bw2 aw00j= ' and bw2 aw00j=

ALT hUi (symb... 1st [1;2n] ^ : mark� ^ � (mark� ^ � � +1 (')) ^ � � ()

4.4. Revisiting Tower -hard Logics with ALT 103

The lemma below ensures that the translation matches the semantics of the formula inPITL
under the interpretation on marked words. Its proof, by structural induction on the formula '
of PITL, is quite long and thus given in Appendix B.

Lemma 4.26. Let w 2 � +
� with a marked word with � � 1 marked symbols. Let (F ; t; n) be

an encoding off(w). For every ' in PITL, w j= � ' if and only if (F ; t; n) j= � � (').

The reduction from the satis�ability problem of PITL on standard semantics follows as we
are able to characterise the set of pointed forests encoding words in� � � (�rst three conjuncts in
the formula in the lemma below). To conclude, we simply apply Lemma 4.24 and Lemma 4.26.

Lemma 4.27. Every ' in PITL written with symbols from � = [1 ; n] is satis�able under the
standard interpretation of PITL if and only if the following formula in ALT is satis�able

word[1;2n] ^ hUi Hit ^ [U](mark� , Hit ^ : � (Miss))
| {z }

The forest encodes a non-empty word. The only child of the target node is the only node encoding a marked symbol.

^ � 1('):

Proof. ()): Suppose that ' is satis�able, and let w = a1 : : : ak 2 � + be a word satisfying it.
By Lemma 4.24, the marked wordw = a1 : : : ak 2 � � � satis�es ' with respect to the satisfaction
relation j= � . Notice that w contains only one marked symbol. Let (F ; t; n) be a pointed forest
encoding f(w). By Lemma 4.26, (F ; t; n) j= � 1('). Moreover, asw is not empty we derive that
(F ; t; n) satis�es hUi Hit , and by Lemma 4.10 it satis�es word[1;2n]. As shown in Lemma 4.8, the
formula Hit ^: � (Miss) is only satis�ed when the current evaluation node corresponds to a child
of t. Instead, the formula mark� is only satis�ed if the current node encodes a marked symbol
(Lemma 4.25(I)). We then conclude that (F ; t; n) also satis�es [U](mark� , (Hit ^ : � (Miss))).
Indeed, ak is the only marked symbol ofw and, by de�nition of encoding (De�nition 4.4), it is
encoded by the onlyF -child of t.
((): Supposeword[1;2n] ^ hUi Hit ^ [U]

�
mark� , (Hit ^ : � (Miss))

�
^ � 1(') satis�able, and

let (F ; t; n) be a pointed forest satisfying it. From the satisfaction of word[1;2n] and hUi Hit ,
by Lemma 4.10, (F ; t; n) is an encoding of a non-empty word in [1; 2n]+ . Let b1 : : : bk be
this word and let nk be the node corresponding tobk . By de�nition of encoding, nk is the only
child of t. Thus, from (F ; t; n) j= [U]

�
mark� , (Hit ^: � (Miss))

�
, together with Lemma 4.25(I)

and Lemma 4.8, we conclude thatnk is the only node ofdom(F) encoding a marked symbol. This
means that b1 : : : bk is of the form a1 : : : ak 2 � � � . From (F ; t; n) j= � 1(') and by Lemma 4.26
a1 : : : ak j= � ' . Lastly, a1 : : : ak j= ' by Lemma 4.24.

Because of the four disjuncts appearing in the formula� � ('), the translation is exponential
in the number of symbols used to write thePITL formula. Since the satis�ability problem of
PITL is Tower -hard (Proposition 4.20), an elementary translation is all we need in order to
conclude that the satis�ability problem of ALT is also Tower -hard, directly by Lemma 4.27.
Decidability in Tower stems from Proposition 4.3.

Theorem 4.28. The satis�ability problem of ALT is Tower -complete.

4.4 Revisiting Tower-hard Logics with ALT

Strong of Theorem 4.28, we now display the usefulness ofALT as a tool for proving the Tower -
hardness of logics interpreted on tree-like structures. We start by revisiting the connections

104 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

between ALT and separation logic, and show that even when the separating implication is
heavily restricted, the logic SL(� ; �� ; ls) studied in Chapter 3 still admits a non-elementary
satis�ability problem. Afterwards, we provide semantically faithful reductions from ALT to three
logics whose satis�ability problems were independently found to beTower -complete: quanti�ed
computation tree logic on trees [99], modal logic of heaps [52] and modal separation logic [54].
Thanks to the simplicity of ALT, our reductions only use strict fragments of these formalisms,
allowing us to re�ne their non-elementary boundaries. In order to keep the presentation light, the
proofs (all quite simple) of the results of this section are almost exclusively given in Appendix B.

4.4.1 From ALT to SL(� ; �� ; ls) with bounded magic wand.

In [22] the authors show that SL(9; � ; ��) becomesTower -complete when the separating impli-
cation is restricted so that the formula on the left side only admits small-models. In particular,
given n 2 N, they introduce the bounded magic wand' � [n] de�ned as (' ^ : size � n+1) �� ,
and show that SL(9; � ; � [n]) admits a Tower -complete satis�ability problem. Since we have
shown that ALT is a fragment of the separation logicSL([9]1; � ; x ,! ; ,! +), and from Chap-
ter 3 we know that the separating implication can be used to mimic �rst-order quanti�cations,
it is quite natural to ask ourselves whether ALT can be used to re�ne the Tower -hardness
of SL(9; � ; � [n]). In this section we answer this question by showing the following result.

Theorem 4.29. Satis�ability of the two-variable fragment of SL(� ; � [1]; ls) is Tower -c.

The grammar of the formulae ' in SL(� ; � [1]; ls) is given below:

' := > j empj x = y j x ,! y j ls (x; y) j ' ^ ' j : ' j ' � ' j ' � [1] ' .

Notice that the operator ' � [n] is restricted to n = 1, which leads to the following semantics:

(s; h) j= ' � [1] i� for every heap h0, if h0? h, card(h0) � 1 and (s; h) j= ' , then (s; h + h0) j= .

Besides, the logic can expressx ,! � y and size = � as de�ned in Section 2.1.1. The alloc formula
x ,! is equivalent to x ,! x � [1] ? . We de�ne the bounded septraction� h1i as the right dual of
the bounded magic wand, i.e.' � h1i def= : (' � [1] :).

Let us discuss how to encode a pointed forest (F ; t; n) as a memory state (s; h). Without loss
of generality, we assumeN = LOC. As we have done in Chapter 3, we use the location assigned
to a �xed variable x in order to mimic the �rst-order quanti�cation of hUi ' . So, in the encoding,
the location h(s(x)) corresponds to the current noden and, in order to mimic the quanti�cation
correctly, it must be di�erent from s(x). In order to encode the target node we rely on the
location assigned to a second program variabley, and require that both s(y) = t 6= s(x) and
s(y) 62dom(h) hold. Notice that this last condition is without loss of generality, as we can
assume that t 62dom(F) by Lemma 4.18(I). The encoding is formalised as follows.

De�nition 4.30 (Forests as heaps). (s; h) is an (x; y)-encodingof (F ; t; n), where x; y 2 VAR, i�

1. h = F + f s(x) 7! ng (seeingF as a heap), 2. n 6= s(x), 3. s(y) = t 62dom(h).

With respect to memory states that are (x; y)-encodings of some pointed forest, given a
formula ' in ALT we translate it into a formula � x;y(') in SL(� ; � [1]; ls) following the de�nition
in Figure 4.9. The �gure omits the cases for > and Boolean connectives, which are de�ned
homomorphically (e.g. � x;y(: ') def= : � x;y('), as in the translation � � from PITL to ALT). The

4.4. Revisiting Tower -hard Logics with ALT 105

� x;y(Hit) def= x ,! � y ^ : x ,! y,

� x;y(Miss) def= : � x;y(Hit) ^ : x ,! y ^
�
size = 1 � [1] : (> � (ls (x; y) ^ size = 2))

�
,

� x;y(� ') def= � SL(x ,! ^ � x;y(')),

� x;y(� * ') def= � *SL(x ,! ^ � x;y(')),

� x;y(hUi ') def= (size = 1 ^ x ,!) �
�
size = 1 � h1i (x ,! ^ : x ,! x ^ � x;y('))

�
.

Figure 4.9: Translation from ALT to SL(� ; �� ; ls) with bounded magic wand.

translation of � and � * uses the analogous formulae� SL'
def= size = 1 � ' and � *SL ' def= > � ' ,

already introduced in Section 4.4.1, while taking care that the location assigned tox is not
discharged from the domain of the heap. The translation ofhUi ' is very close to the translation
of the �rst-order quanti�cation performed in Chapter 3: the pair s(x) 7! h(s(x)) in the heap h
is replaced with somes(x) 7! `0, leading to the satisfaction of � x;y('). While the translation
of Hit is also quite straightforward, the translation of Miss requires some work. In particular,
as in Chapter 3, this predicate must be checked onh(s(x)) and should hold only if this location
is in the domain of the heap but does not reachs(y) in at least one step. The formula � x;y(Miss)
achieves this by stating that it is not possible to add one arrow to the heap in order to construct
a path of length two going from s(x) to s(y). Indeed, under the hypothesis thath(s(x)) is not in
the domain of the heap, such a path can always be constructed by addingf h(s(x)) 7! s(y)g to
the heap. So,h(s(x)) must be in dom(h) which, together with : � x;y(Hit), e�ectively captures
the semantics ofMiss. The correctness of the translation is formalised below.

Lemma 4.31. Let (s; h) be an (x; y)-encoding of a pointed forest (F ; t; n). Let ' be a formula
in ALT. We have, (F ; t; n) j= ' if and only if (s; h) j= � x;y(').

The proof is by structural induction on ' . The formula x ,! ^: x ,! x^: y ,! characterises
the set of memory states encoding pointed forests, which allows us to show the lemma below,
concluding the reduction. For the proof of this last lemma we also rely on Lemma 4.18(I) in order
to only consider pointed forests that admit an encoding. Lemma 4.32 implies Theorem 4.29.

Lemma 4.32. ' in ALT is satis�able i� so is x ,! ^ : x ,! x ^ : y ,! ^ � x;y(') in SL(� ; � [1]; ls).

Interestingly, Theorem 4.29 already holds when the bounded magic wand is limited to for-
mulae of the form size = 1 � [1] ' . Indeed, the alloc formula x ,! can be substituted with the
equivalent formula x ,! x _ (size = 1 � [1] : x ,! x), so that the translation only uses the bounded
magic wand in this way. This result has a role in the developments of Chapter 5.

Corollary 4.33. SL(� ; � [1]; ls) where � [1] is restricted to size = 1 � [1] ' is Tower -complete.

4.4.2 From ALT to Quanti�ed Computation Tree Logic.

We now considerComputation Tree Logic (CTL), a well-known logic for branching time model
checking [43, 42]. Among its extensions, in [99] the addition of propositional quanti�ers is con-
sidered. The resulting logic, calledQuanti�ed Computation Tree Logic (QCTL) is undecidable
on Kripke structures, and Tower -complete on trees (QCTLt). This non-elementary boundary
has been recently re�ned in [8]: even when considering just one operator amongexists-next EX

106 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

or exists-�nally EF (the de�nitions are below), QCTLt still admits a Tower -complete satis�a-
bility problem. Here, we reprove the result for EF by �rst tackling the Tower -hardness of the
logic with the exists-until E(' U), to then show that this operator can be de�ned using EF.
Di�erently from [8] and thanks to the properties of ALT, our reduction does not imbricate un-
til operators, showing that this extension of CTL remains Tower -hard even whenE(' U) is
restricted so that ' and are Boolean combinations of propositional symbols.

Let us start by recalling the syntax of QCTL, as de�ned in [99]. We useAP to denote the
countable set ofpropositional symbolsf p; q; : : :g. The formulae ' of QCTL are built from the
following grammar (where p 2 AP):

� := > (true)

j p (propositional symbol)

' := � (atomic formulae)

j ' ^ ' j : ' (Boolean connectives)

j EX' (exists-next modality)

j E(' U ') (exists-until modality)

j A(' U ') (all-until modality)

j 9p ' (propositional quanti�cation)

QCTL is interpreted on standard Kripke structures [98].

De�nition 4.34 (Kripke structure) . A Kripke structure is a triple (W; R; V) where W is a
countable set ofworlds, R � W � W is a left-total 1 accessibility relation and V : AP ! 2W is a
labelling function which, given a propositional symbolp, returns the set of worlds satisfyingp.

The satisfaction of the exists-until and all-until modalities depends on the paths in the structure.

De�nition 4.35 (Path) . Let R � W � W be a binary relation on worlds (possibly left-total).
A path � starting in w is a (possibly �nite) sequence of worlds (w0; w1; : : :) such that w0 = w
and (wi ; wi +1) 2 R for every two successive elementswi ; wi +1 of the sequence.
(Maximal Path) The path � is said to bemaximal whenever it is not a strict pre�x of any other
path. We denote with � R (w) the set of maximal paths starting in w.

Notice that if R is left-total then � R (w) is the set of all in�nite paths starting in w. Given a
world w 2 W , we write R(w) for the set f w0 2 W j (w; w0) 2 Rg, i.e. the set of worlds that are
accessiblefrom w. Therefore R� (w) (where R� is the Kleene closure ofR) denotes the set of
worlds reachable fromw, i.e. the worlds belonging to a path in � R (w).

Let K = (W; R; V) be a Kripke structure and consider w 2 W . The pair (K; w) denotes a
pointed Kripke structure, where the world w is the current world. Given (K; w), The satisfaction
relation j= for formulae in QCTL is de�ned in Figure 4.10 (as usual, omitting standard cases
for > and Boolean connectives). The atomic formulap simply asks whether the propositional
symbol p is satis�ed by w. Using the exists-next modality EX' , we can check whether' holds in
a world that is accessible fromw. The two temporal modalities are more sophisticated. The for-
mula E(' U) checks whether there is a maximal path (w0; w1; : : :) starting in w for which there
is a �nite pre�x (w0; : : : ; wj � 1) of worlds satisfying ' , followed by the world wj 2 R(wj � 1) that
satis�es . This path can be schematised as follows (arrows representR, every \ " is a world).

w

' ' ' ' '

1 left-total means that for each world w 2 W there is w0 2 W such that (w; w0) 2 R.

4.4. Revisiting Tower -hard Logics with ALT 107

(K; w) j= p i� w 2 V(p),

(K; w) j= EX' i� 9w0 2 R(w) such that (K; w0) j= ' ,

(K; w) j= E(' U) i� there are (w0; w1; : : :) 2 � R (w) and j 2 N such that

(K; wj) j= and for every i < j , (K; wi) j= ' ,

(K; w) j= A(' U) i� for all (w0; w1; : : :) 2 � R (w), there is j 2 N such that

(K; wj) j= and for every i < j , (K; wi) j= ' ,

(K; w) j= 9p ' i� there is W 0 � W such that (W; R; V[p W 0]) j= ' .

Figure 4.10: Satisfaction relation for QCTL.

The formula A(' U) asks the above property to hold for every maximal path, instead of at least
one: given a maximal path (w0; w1; : : :), there must be a �nite pre�x (w0; : : : ; wj � 1) of worlds
satisfying ' , followed by the world wj 2 R(wj � 1) that satis�es . Lastly, the propositional
existential quanti�cation 9p ' is quite similar to the second-order quanti�cation of second-order
logic. Essentially, this formula is satis�ed if it is possible to update the satisfaction of the
propositional symbol p to a new subsetW 0 of w, so that then ' holds. In the formal de�nition
given in Figure 4.10, this update is written as V[p W 0]. Similarly to the store update s[u `0]
of the existential quanti�cation of SL(9; � ; ��), this notation stands for the function obtained
from V by changing the evaluation ofp from V(p) to W 0.

The universal quanti�cation 8p and the Boolean connectives) and _ are de�ned as usual.
So are the classical temporal operators ofCTL, from [43]:

EF ' def= E(> U ') (exists-�nally)

AG ' def= : EF: ' (all-generally)

AF ' def= A(> U ') (all-�nally)

EG ' def= : AF: ' (exists-generally)

E(' M) def= E(' U ' ^) (exists-strong-release)

From [99], the satis�ability problem of QCTL is known to be undecidable on arbitrary Kripke
structures, whereas it becomesTower -complete when the interpretation is restricted to the class
of Kripke trees. We denote this restriction with QCTLt .

De�nition 4.36 (Kripke tree) . A Kripke structure (W;R;V) is a (�nitely-branching) Kripke tree if

1. R� 1 is functional and acyclic,

2. for every world w 2 W , R(w) is �nite,

3. it has a root, i.e. R� (r) = W for somer 2 W .

Given w 2 W , the worlds in R� (w)nf wg are said to bedescendantsof w. As Kripke structures are
left-total, Kripke trees can be seen as �nitely-branching in�nite trees. This correspondence leads
to the satis�ability problem of QCTL being in Tower by reduction to monadic second-order
logic on trees [99].

From ALT to QCTLt . In the following, we only consider Kripke trees instead of arbitrary
Kripke structures (and write pointed Kripke tree instead of pointed Kripke structure), and we

108 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

aim at reducing the satis�ability problem of ALT to the satis�ability problem of QCTLt . The
semantics of the formula9p ' should already give a good clue on how to perform such a reduction.
Informally speaking, we can represent the nodes of a �nite forest as the set of worlds satisfying
a propositional symbol D. Then, for instance, the modality � * can be encoded by using an
existential 9E that changes the evaluation of a propositional symbolE so that it only holds on
a subset of the worlds satisfyingD (as in the semantics of the repeated sabotage modality). If
we are able to check whether only one world satis�esD but not E, we can then also capture the
semantics of the sabotage modality� . Similarly, the propositional quanti�cation can be used
to encode the universal modalityhUi , whereas for the reachability predicatesHit and Miss we
can rely on the exists-until modality.

Let us discuss this encoding a little bit further. Let (F ; t; n) be a pointed forest that we want
to encode as a pointed Kripke structure (K; w), where K = (W; R; V) is a Kripke tree. We use
w to play the role of the target node t. To encode the forestF and the current evaluation node
n we use the worlds appearing inR� (w) and three propositional symbols: D, end and n . The
intended use ofD is to state which elements ofR� (w) encode nodes indom(F). We need to be
careful here, asR� (w) is an in�nite set whereas dom(F) is �nite. We use the propositional symbol
end to solve this inconsistency: we constraintK to satisfy the formula AF(end) stating that
every maximal path (w0; w1; : : :) 2 � R (w) has a �nite pre�x (w0; : : : ; wj � 1) (j 2 N) of worlds
not satisfying end, whereaswj 2 V(end). Then, a world in W encodes an element indom(F)
whenever it satis�es D and it belongs to one of these pre�xes. We use the propositional symboln
to encode the current evaluation node. During the translation, we requiren to be satis�ed by
exactly one descendant ofw, so that the modality hUi roughly becomes a quanti�cation over n .
For technical reasons, we treat in a similar way the worldw, which encodes the target node, and
require it to be the only world (among the ones inR� (w)) satisfying the auxiliary propositional
symbol t . Lastly, we use an additional propositional symbol E in order to encode subforests
and deal with the encoding of� and � * (as already stated above). Notice that we can use the
following formula from [99] to check if a formula ' holds in exactly one descendant ofw:

uniq (') def= EF(') ^ 8 p (EF(' ^ p)) AG(') p)),

where p 2 AP is a propositional symbol that does not appear in' .

Proposition 4.37 (From [99]). Let (K; w) be a pointed Kripke structure, where K = (W; R; V)
is a Kripke tree. (K; w) j= uniq (') i� there is exactly one w0 2 R� (w) such that (K; w0) j= ' .

For the rest of the section, we �x a tuple S def= (end; n ; t) of three di�erent propositional
symbols, and two (distinct) additional symbols D and E not in S. We also restrict ourselves to
pointed forests (F ; t; n) such that t 62dom(F). From Lemma 4.18(I), this restriction is without
loss of generality. We formally de�ne the encoding of pointed forests into pointed Kripke trees.

De�nition 4.38 (QCTLt - Pointed forests encoding). A pointed Kripke tree (K = (W; R; V); w)
is an (S;D)-encodingof (F ; t; n) if there is an injection f : N ! R� (w) such that

1. f(t) def= w is the only world in ran(f) \ V (t), and f(n) is the only world in ran(f) \ V (n),

2. for every n0 2 dom(F), it holds that (f(F (n0)) ; f(n0)) 2 R,

3. for every in�nite path (w0; w1 : : :) 2 � R (w) there is i 2 N such that

a. wi 2 V(end) and for every j 2 [0; i � 1] we havewj 62 V(end),

b. for every j 2 N, (wj 2 V(D) and j < i) if and only if there is n0 2 dom(F) f(n0) = wj .

4.4. Revisiting Tower -hard Logics with ALT 109

t

n

w

n

t

end

f

Figure 4.11: A pointed forest (left) and one of its encoding as a Kripke tree (right).

� u(Hit) def= E(((u _ t) ^ : end) M (u ^ n)),

� u(Miss) def= E(: end M (u ^ n)) ^ : � u(Hit),

� u(hUi ') def= 9n (uniq (n) ^ � u(')),

� u(� * ') def= 9 u (AG(u) u) ^ � u(')),

� u(� ') def= 9 u
�
AG(u) u) ^ uniq (u ^ : u) ^ E(: end M (u ^ : u)) ^ � u(')

�
.

Figure 4.12: Translation from ALT to QCTL.

We simply write encoding when (S;D) is clear from the context.

For instance, Figure 4.11 shows a possible encoding of a pointed forest into a pointed
Kripke tree. Informally, the property (1) states that w encodest and is the only world in R� (w)
satisfying t . Similarly, the world f(n) encoding n is the only world in R� (w) that satis�es n .
The property (2) states that the forest must be correctly encoded in the Kripke structure. In
particular, notice that the parent relation of the �nite forest is inverted so that it becomes the
child relation in the Kripke structure (as shown in Figure 4.11). As f is an injection, the en-
coding does not merge together subforests that are disconnected inF . Lastly, the property (3)
of f states that the elements indom(F) must be encoded by nodes inR� (w) that precede every
world satisfying end. Moreover, among all the descendants ofw preceding end, the worlds
encodingdom(F) are the only ones satisfyingD. As t 62dom(F), t does not satisfyD. It is quite
easy to see that every pointed forest (F ; t; n) such that t 62dom(F) admits an encoding.

We now formalise the translation of a formula in ALT into a formula in QCTL. During the
translation, we alternate between D and E in order to keep track of the domain of the forest,
following a � or � * operator. To facilitate this alternation, we de�ne D def= E and E def= D. The
translation � u(') in QCTL of a formula ' in ALT is parametrised byu 2 f D; Eg and, implicitly, by
S. It is homomorphic for > and Boolean connectives, and otherwise it is de�ned in Figure 4.12.
Let (F ; t; n) be a pointed forest such that t 62dom(F) and let ((W; R; V); w) be one of its (S;u)-
encodings. Letf be the injection certifying that the encoding hold (as in De�nition 4.38). For
instance, � u(Hit) requires that there is a path (w; w1; : : : ; wj) starting in f(t) = w and whose
worlds do not satisfy end and must satisfy u or t . Moreover, the last world wj must satisfy u
and n . From the property (1) of the de�nition of f, the only world satisfying t is w, which does
not satisfy u. Moreover, n is only satis�ed by f(n). Lastly, from the property (3) of f, worlds
satisfying u and preceding the ones that satisfyend must encode nodes in the domain of the

110 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

forest F . Therefore, the path (w; w1; : : : ; wj) corresponds to a path in the pointed forest, going
from the current evaluation node n (which is encoded by the only world satisfying n) to the
target node t. The correctness of the translation follows from the lemma below.

Lemma 4.39. Let (F ; t; n) be a pointed forest such that t 62dom(F), and let (K; w) be
a (S;u)-encoding of (F ; t; n). Given a formula ' in ALT, (F ; t; n) j= ' if and only if (K; w) j= � u(').

In order to conclude the reduction we just need to characterise the set of pointed Kripke trees
encoding pointed forests. This can be done withenc def= : D ^ t ^ uniq (t) ^ uniq (n) ^ AF(end).

Lemma 4.40. A formula ' in ALT is satis�able i� so is enc^ � D(') in QCTLt .

Notice that for the left-to-right direction we need to rely on Lemma 4.18(I) in order to
produce a pointed forest (F ; t; n) satisfying ' and such that t 62dom(F). Only afterwards we
can de�ne an encoding in terms of pointed Kripke trees.

Tower-hard fragments of QCTLt . We now take a closer look to the translation. Given a
temporal modality T (e.g. EF) and k 2 N [f ! g, we write QCTLt (T k) to denote the fragment
of QCTLt restricted to formulae where the only temporal modality allowed is T , which can
be nested at mostk times (! stands for an arbitrary number of imbrications). For instance,
QCTLt (EFk) denotes the set of formulae restricted to the operatorEF, which can be nested at
most k times. This logic is shown to bek-NExpTime -hard in [8], which directly leads to the
Tower -hardness ofQCTLt (EF!) and QCTLt (EU!). By analysing our translation it is easy to
show that QCTLt (EU0), i.e. QCTL restricted to the only modality E(' U) where ' and are
Boolean combination of propositional symbols, andQCTLt (EF1) are already Tower -hard.

Theorem 4.41. The satis�ability problems of QCTLt (EU0) and QCTLt (EF1) are Tower -c.

Let us �rst informally discuss this result. Let us �x a pointed Kripke tree ((W; R; V); w).
First of all, an exists-until modality E(' U) in QCTLt (EU0) can be shown equivalent to the
formula � EU(';), in QCTLt (EF1), de�ned below:

� EU(';) def= 9p
�
AG(: ' ^ :) p) ^ AG(p) AGp) ^ EF(^ : p)

�
,

wherep is a propositional symbol that does not appear in' or . The idea behind this formula
is quite simple. The formula � EU(';) states that it is possible to change the evaluation of the
symbol p so that, for every path starting from the current world w, p holds whenever: ' ^ :
holds (�rst conjunct of the formula), and if p holds in a world, then it holds on every world
reachable from it (second conjunct of the formula). Lastly, the third conjunct states that it is
possible to �nd a world w0 2 R� (w) satisfying ^ : p. This means that the path going from w
to w0 cannot witness worlds satisfying: ' ^ : , which in turn implies that E(' U) is satis�ed.
Thanks to � EU(';), we just need to prove Theorem 4.41 forQCTLt (EU0).

Clearly, the translation � u is de�ned so that the resulting formula is already in QCTLt (EU0).
However, we need to deal with the occurrence ofAF(end) used inside the formulaenc. Let us
�rst consider the formula AG(') AG) which is satis�ed by models where once' is found
to hold in a certain world w, then is satis�ed in every world of R� (w). Despite not being in
QCTLt (EU0), the formula AG(') AG) is equivalent to the formula � AG AG (';) below:

� AG AG (';) def= 8p8q
�
uniq (p) ^ uniq (q) ^ EF(p ^ ') ^ EF(q ^ :)) E(: pM q)

�
,

4.4. Revisiting Tower -hard Logics with ALT 111

where p and q do not appear in ' or . This formula characterisesAG(') AG) by stating
that whenever we pick two worlds w1; w2 2 R� (w), if w1 satis�es ' and w2 does not satisfy ,
then it is possible to �nd a path going from the current world w to w2 that does not include w1.

Lastly, we de�ne a formula � EG (') that only uses EF modalities and is equivalent to EG' ,
so that then : � EG (: ') is equivalent to AF ' :

� EG (') def= 9p
�
: p ^ AG(: ') p) ^ AG(p) AGp) ^
8q

�
uniq (q) ^ EF(q ^ : p)) EF(q ^ EF(: q ^ : p))

�
;

where p does not appear in ' . This formula is expressible in QCTLt (EU0), as every subfor-
mula that is not in this fragment is an instance of AG(') AG). From the correctness of
this formula, proved below, we conclude thatAF(end) is expressible inQCTLt (EU0), leading
to Theorem 4.41. Di�erently from the formulae � EU(';) and � AG AG (';) (proved correct
in Appendix B), understanding why � EG (') captures EG' is not immediate. Instead of giving
just an informal explanation, we directly show the formal proof.

Proof of EG' � � EG ('). Below, we consider a pointed Kripke tree (K; w) where K = (W; R; V).
()): Suppose (K; w) j= EG' , and therefore that there is an in�nite path � 2 � R (w) where for
every i � 0 the i -th world wi of the path � is such that (K; wi) j= ' . We write cW for the set
of worlds in � . Let us consider the modelK0 = (W; R; V[p W n cW) obtained from K by
changing the evaluation of p to the set of worlds that are not in cW. Since w belong to � , we
have (K0; w) j= : p. Moreover, as every world in cW satis�es ' whereas every world inW n cW
satis�es p, we conclude that (K0; w) j= AG(: ') p). Similarly, (K0; w) satis�es AG(p)
AGp). Indeed, let us consider a worldw0 2 R� (w) such that w0 2 V(p), and show that for
every w002 R� (w0), w002 V(p) (as required by this formula). By de�nition, w0 62cW. As K0 is a
Kripke tree (in particular, it is an acyclic structure), every world w00reachable fromw0 does not
belong to � . So, by de�nition of K0, w002 V(p). Lastly, let us focus on the subformula

8q
�
nom(q) ^ EF(q ^ : p)) EF(q ^ EF(: q ^ : p))

�
.

We consider a Kripke treeK00= (W; R; V[p W n cW][q W 00]) obtained from K0 by updating
the evaluation of q, and such that (K00; w) j= nom(q) ^ EF(q^ : p). By de�nition of nom(p), there
is a world bw such that W 00= f bwg. Together with EF(q^ : p), this implies that bw belongs to the
path � . Let us say that bw = wi , i.e. bw is the i -th world in � . Let us consider its successorwi +1

in the path. Clearly, (K00; wi +1) j= : q ^ : p and thus (K00; wi) j= EF(: q ^ : p), which in turn
leads to (K00; w) j= EF(q^ EF(: q^ : p)). From the semantics of the propositional quanti�cation,
(K0; w) j= 8q

�
nom(q) ^ EF(q ^ : p)) EF(q ^ EF(: q ^ : p))

�
and (K; w) j= � EG (').

((): We take the contrapositive and show that if (K; w) 6j= EG' then (K; w) j= : � EG ('). Notice
that : � EG (') can be rewritten as

8p
�
: p ^ AG(: ') p) ^ AG(p) AGp)) 9 q

�
nom(q) ^ EF(q ^ : p) ^ AG(q) AG(q _ p))

��

Suppose that (K; w) 6j= EG' , and thus every path (w0; w1; : : :) 2 � R (w) must contain a
world wi (i � 0) s.t. (K; wi) j= : ' . Equivalently, one of the following holds:

A. (K; w) j= : ' , or

B. for every path (w0; w1; : : :) 2 � R (w) there is j � 0 such that for every i � j (K; wi) j= '
whereas everyw0 2 R(wj) is such that (K; w0) j= : ' .

Let us now consider a Kripke treeK0 = (W; R; V[p W 0]) obtained from K by updating the eval-
uation of p with respect to a setW 0such that (K0; w) satis�es : p ^ AG(: ') p) ^ AG(p) AGp).

112 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

From the �rst two conjuncts we conclude that (A) does not hold, and so (K; w) j= ' and (B) hold.
As Kripke trees are left-total, � R (w) 6= ? and so (B) and AG(: ') p) ^ AG(p) AGp) imply

C. there is a path (w0; w1; : : :) 2 � R (w) and a j � 0 such that (K; wj) j= ' ^ : p and for every
w0 2 R� (wj) n f wj g it holds that (K; w0) j= p.

Let us consider the world wj in (C) and de�ne K00= (W; R; V[p W 0][q f wj g]) to be the
Kripke tree obtained by updating K0 so that q evaluates to f wj g. By de�nition of K00and (C),
(K00; w) j= nom(q) ^ EF(q ^ : p) ^ AG(q) AG(q _ p)). By semantics of 9p we have

(K0; w) j= : p ^ AG(: ') p) ^ monotone(p)) 9 q
�
nom(q) ^ EF(q ^ : p) ^ AG(q) AG(q _ p))

�

Again from the semantics of9p, together with the de�nition of K0, we get (K; w) j= : � EG (').

4.4.3 From ALT to Modal Separation Logic.

In Section 2.3.2 we introduced the modal separation logicsMSL and MLH. At their core, both
logics can be seen as modal logics extended with separating connectives, hence mixing separation
logic with temporal aspects as in quanti�ed CTL. As we already showed howALT is captured
by these two latter logics, it is natural to ask ourselves if the same holds forMLH and MSL.
In this section, we show that this is indeed the case and, as for the previous two sections,ALT
allows us to re�ne the analysis on these logics. We refer the reader to Section 2.3.2 for the
de�nitions of these logics, and consider here their fragments without the separating implication.
Recall that MLH is a variant of MSL that does not feature propositional symbols, and both
logics are interpreted on Kripke-style �nite functions: a class of Kripke structures where the
accessibility relation, instead of being left-total, is �nite and weakly functional. The following
diagram introduces a language (wherep 2 AP) having the operators from MSL and MLH, and
summarise known and new results on the satis�ability problem of these logics:

' := p j h6= i ' j > j ' ^ ' j : ' j � ' j ' � j hUi ' j � � 1'

MSL: Tower -complete from [54]. MLH: Tower -complete from [52].

MSL=MLH : Tower -hard by reduction from the satis�ability problem of ALT, proved here.

As de�ned in Section 2.3.2, � is the standard alethic modality from modal logic, � � 1 is
its converse, andh6= i is the elsewhere modality that generalises the somewhere modalityhUi
as hUi ' = ' _ h6= i ' . Given a pointed �nite function (K; w), where K = (W; R; V) is a Kripke-
style �nite function and w 2 W , we recall the satisfaction relation j= for the fragment MSL=MLH

of MSL and MLH we show to beTower -complete (omitting > and Boolean connectives):

(K; w) j= � '
by def
, there is w0 2 R(w) such that (K; w) j= ' ,

(K; w) j= hUi '
by def
, there is w0 2 W such that (K; w0) j= ' ,

(K; w) j= ' �
by def
, (K1; w) j= ' and (K2; w) j= for someK1, K2 s.t. K1 + K2 = K.

By looking at the diagram above, compared to the work in [54],ALT allows us to show that
propositional symbols and the elsewhere modality can be removed fromMSL without changing
the complexity status of its satis�ability problem (notice that this logic features the somewhere
modality). Similarly, ALT allows us to re�ne the analysis on the complexity ofMLH done in [52]
by showing that the � � 1 modality is not needed in order to achieve non-elementary complexities.

4.4. Revisiting Tower -hard Logics with ALT 113

� (Hit) def= � *ML

�
� > ^ [U](� >) �� >)

�
, � (� ') def= � ML(� (') ^ hUi selfloop),

� (Miss) def= � > ^ : � (Hit), � (� * ') def= � *ML(� (') ^ hUi selfloop).
� (hUi ') def= hUi (: selfloop ^ � (')),

Figure 4.13: Translation from ALT to MSL=MLH .

From ALT to MSL=MLH . As W and N are both countably in�nite sets, without loss of gen-
erality we assumeW = N . Let (F ; t; n) be a pointed forest and let (K; w) be a pointed �nite
function where K = (N ; R; V). As done in Section 4.1.2 in order to relateALT to SL([9]2; �), we
start by introducing the sabotage and repeated sabotage modalities inMSL=MLH . We de�ne the
formula size = 1 def= hUi � > ^ : (hUi � > � h Ui � >), that is satis�ed whenever card(R)=1. Then,
the modalities � and � * are de�ned in MSL=MLH as � ML'

def= (size = 1) � ' and � *ML'
def= > � ' .

For the reduction, we usew to encode the current noden. Encoding t is not so immediate, as
MSL=MLH does not have propositional symbols. A possible solution is to encode it as a self-loop,
so that the formula Hit is translated to a query stating that w reaches the self-loop. So, we
introduce the formula selfloop that is satis�ed by (K; w0) if (w0; w0) 2 R:

selfloop def= � *ML(�� > ^ : � ML� ML>).

Informally, this formula characterises a self-loop by stating that it is possible to �nd a struc-
ture K0 � K that has an accessibility relation of cardinality one and satis�es�� > . Suppose for a
moment that we are able to use this formula to characterise the class of every Kripke-style �nite
function having exactly one cycle, and where this cycle is a self-loop, say on a worldwt . On
these �nite functions, we usewt to encode the target nodet of a �nite forest (F ; t; n) while being
careful that the � and � * operators of ALT are translated in such a way that the self-loop onwt

is preserved. Because of the speci�c treatment ofwt , it is convenient to assume that the current
evaluation node n is encoded by a world di�erent from wt , which reects on the translation of
hUi . As it was the case for the translation toQCTLt , the admissibility of this assumption follows
by Lemma 4.18. We formalise the encoding of a pointed forest as a pointed �nite function.

De�nition 4.42 (MSL=MLH - Pointed forest encoding). Let (F ; t; n) be a pointed forest such
that t 62dom(F) and n 6= t. The pointed �nite function ((N ; R; V); n) is an encodingof (F ; t; n)
if and only if for every n0; n002 N we have (n0; n00) 2 R , (F (n0) = n00or n0 = n00= t).

Notice how R is essentially de�ned fromF by adding the self-loop (t; t). The translation � (')
in MLH of a formula ' in ALT is homomorphic for > and Boolean connectives, and otherwise it
is de�ned as in Figure 4.13. We highlight two points of this translation. First, � (Hit) essentially
asks to �nd a submodel where every path reaches the self-loop and the current evaluation node
is in one of these paths. Second, notice how the translation of� and � * checks that the model
is updated so that the self-loop is not lost, as required by our encoding. The following lemma
(proved in Appendix B by structural induction on ') shows the correctness of our translation.

Lemma 4.43. Let (F ; t; n) be a pointed model s.t. n 6= t and t 62dom(F). Let (K; n) be an
encoding of (F ; t; n). Given a formula ' in ALT, (F ; t; n) j= ' i� (K; n) j= � (').

To conclude the reduction we show that we can characterise the class of models encoding
pointed forests, i.e. the pointed �nite functions with exactly one cycle, which is a self-loop that

114 Chapter 4. Intensionality and Reachability Leads to Non-elementary Logics

does not involve the current evaluation node. We �rst de�ne a formula that checks whether a
Kripke-style �nite function has at least one cycle:

hascycles def= � *ML

�
hUi � > ^ [U](� >) �� >)

�
.

Informally, this formula characterises the presence of a cycle by stating that there is a structure
(W; R0; V) � K such that R0 is not empty and every world w0that has a successor, i.e.R0(w0) 6= ? ,
also reaches a world in two stepsR02(w) 6= ? . The cyclicity of K then follows from the fact that
the accessibility relation is �nite. Afterwards, the desired property of having exactly one cycle
that is a self-loop can be de�ned by stating that there is a self-loop which, whenever removed,
leads to an acyclic Kripke-style �nite function. The following formula does the job:

91selfloop def= hUi
�
selfloop ^ : � ML(� ? ^ hascycles)

�
.

Lemma 4.44. Every formula ' in ALT is equisatis�able with � (') ^ 9 1selfloop ^ : selfloop .

In the proof of Lemma 4.44, both (I) and (II) of Lemma 4.18 are used in order to restrict ourselves
to pointed forest (F ; t; n) s.t. n 6= t and t 62dom(F). Afterwards, we apply Lemma 4.43.

Theorem 4.45. The fragment of MLH and MSL with the � (alternatively, � MLand � *ML), > ,
Boolean connectives,� and hUi modalities, and has aTower -complete satis�ability problem.

5

Deciding Robustness Properties
in PSpace

Contents
5.1 Taming the Robustness Properties .119

5.1.1 The separation logicSL([9]1; � ; [�� ; ,! +]SW). 119

5.1.2 Reasoning inSL([9]1; � ; [�� ; ,! +]SW). 120

5.2 Towards Small Models: The Core Formulae Technique122

5.2.1 The Core Formulae Technique. 122

5.2.2 Game Hopping. 124

5.3 A Family of Core Formulae Capturing the Fragment W 127

5.3.1 Step I: partitioning the heap. 127

5.3.2 Step II: the core formulae forW . 129

5.3.3 Step III: indistinguishability relation, hops and � -simulation. 131

5.3.4 Step IV: 9-simulation. 141

5.4 Recap: How to Apply the Core Formulae Technique144

5.5 A Family of Core Formulae Capturing the Fragment S 146

5.5.1 Step I: partitioning the heap. 146

5.5.2 Step II: the core formulae forS. 152

5.5.3 Step III: � -simulation. 170

5.5.4 Step IV: 9-simulation. 216

5.6 Connecting the Two Families of Core Formulae221

5.6.1 Small-heap property andPSpace -completeness. 224

5.6.2 One last step: the�� -simulation property. 230

115

117

In this chapter

Thanks to the knowledge gathered in Chapters 3 and 4, in this chapter we devise a separation
logic, denoted by SL([9]1; � ; [�� ; ,! +]SW), that can specify whether a formula is robust for the
properties of acyclicity and garbage-freedom, while admitting aPSpace -complete satis�ability
(and entailment/validity) problem. This result is quite interesting, as the logic is a non-trivial
syntactical extension ofSL([9]1; � ; ��) and SL(� ; ,! +), which are both PSpace -complete [55, 56].
To establish the PSpace upper bound, we rely on thecore formulae technique already used to
prove the decidability of SL(� ; ,! +) [56]. Due to the expressive power of our logic, applying this
technique by adapting the presentation in [56] would lead to a monolithic proof of hard to check
technical steps. We partially ease this issue by revisiting the core formulae technique, in order
to improve its modularity. Despite our e�orts, the proof still reveals to be technically involved.

Here is a roadmap of the chapter.

Section 5.1. We introduce the separation logicSL([9]1; � ; [�� ; ,! +]SW). This logic features both
the separating conjunction and implication, the reachability predicate ,! + and a single quanti�ed
variable nameu. To prevent the logic from beingTower -hard following the results in Chapters 3
and 4, two syntactical conditions are imposed on the reachability predicates,! + :

� x ,! + y does not appear on the right side of the �rst �� ancestor,

� if the variable x appearing in x ,! + y is syntactically equal to u, then so isy.

The �rst condition splits the grammar of the logic into two fragments shown below:

W := > j empj t = t 0 j t ,! t 0 j W ^ W j : W j W � W j S �� W j 9u W

S := W j x ,! + t j u ,! + u j S ^ S j : S j S � S j 9u S

We call weakthe fragment of the logic generated from the non-terminal symbolW and strong the
fragment generated fromS. Roughly speaking, the strong fragment extends the weak fragment
with reachability predicates. Besides, notice that the magic wand is restricted to the formS �� W .
The section ends by showing that the robustness properties of acyclicity and garbage freedom
can be characterised as entailment queries ofSL([9]1; � ; [�� ; ,! +]SW).

Section 5.2. We discuss the core formulae technique used in order to prove that the satis�-
ability problem of SL([9]1; � ; [�� ; ,! +]SW) is decidable in PSpace . The goal is to prove that the
logic enjoys a polynomial small-heap property, de�ned as follows.

De�nition 5.3 (Small-heap property). A separation logic L is said to have the polynomial
small-heap propertyif there is a polynomial Q : N ! N such that, for every formula ' in L ,

' is satis�able if and only if ' is satis�ed by a memory state (s; h) where card(h) � Q (j' j).

In order to show this result, the core formulae technique requires the de�nition of a set of
formulae (called core formulae) interpreted on memory states and capturing the expressive
power of SL([9]1; � ; [�� ; ,! +]SW). In particular, every formula of SL([9]1; � ; [�� ; ,! +]SW) shall be
equivalent to a Boolean combination of core formulae. The polynomial small-heap property is
then easily derived in terms of such Boolean combinations.
The proof that each formula of SL([9]1; � ; [�� ; ,! +]SW) can be translated into a Boolean combi-
nation of core formulae is technical. To partially ease this issue, we pro�t from connections

118 Chapter 5. Deciding Robustness Properties inPSpace

between the core formulae technique and the notion of Ehrenfeucht-Fra•�ss�e games for separation
logic. We introduce the notion of game hopping, which helps with the modularity of the proof.

Section 5.3. We apply the core formulae technique to the fragmentW of SL([9]1; � ; [�� ; ,! +]SW),
excluding for the moment the magic wand S �� W . We introduce a suitable set of core for-
mulae, and prove that their Boolean combinations capture the atomic formulae ofW . After-
wards, we show two fundamental properties of the core formulae: the� -simulation property and
9-simulation property. These two properties are key to show that each weak formula is equiv-
alent to a Boolean combination of core formulae. Roughly speaking, the� -simulation property
(resp. 9-simulation property) implies that formulae of the form ' � (resp. 9x '), where ' and
are Boolean combinations of core formulae, are themselves equivalent to Boolean combinations
of core formulae. Together with the fact that every atomic formula of the weak fragment is equiv-
alent to a Boolean combination of core formulae, these properties allow to perform a bottom-up
translation of all �� -free formulae ofW into equivalent Boolean combinations of core formulae.

Section 5.4. In this short section, we recapitulate the content of Section 5.2 and Section 5.3,
highlighting the steps needed in order to apply the core formulae technique to the weak fragment.
This section should be seen as a guide to Section 5.5, where the exact same steps are applied in
order to study the core formulae for the strong fragment.

Section 5.5. We introduce the core formulae for S, show that they capture every atomic
formula of SL([9]1; � ; [�� ; ,! +]SW), and prove that they satisfy the � -simulation and 9-simulation
properties. Despite the long and technical arguments we need in order to prove the two sim-
ulation properties, the structure of their proof follows exactly the one employed for the weak
fragment, analysed in Section 5.4.

Section 5.6. In order to translate every formula of SL([9]1; � ; [�� ; ,! +]SW) into a Boolean com-
bination of core formulae, we miss a�� -simulation property that allows us to translate a for-
mula ' �� , where ' (resp.) is a Boolean combination of core formulae of the strong (resp.W)
fragment, into an equivalent Boolean combination of core formulae. Under the assumption that
the �� -simulation property holds, the section starts by showing the following result.

Theorem 5.46. Every formula ' in SL([9]1; � ; [�� ; ,! +]SW) is logically equivalent to a Boolean
combination of core formulae fromCore[S](fv(') n f ug; j' jm).

Here, j' jm is roughly the size of' , and Core[S](X; �) is the set of core formulae for the fragmentS,
which is indexed by a set of variablesX and an integer threshold � � 1. From their de�nition,
it is easy to see that the core formulae enjoy a polynomial small-heap property, which carries
out to SL([9]1; � ; [�� ; ,! +]SW) directly from Theorem 5.46 (see Corollary 5.48). This allows us to
design an algorithm for the satis�ability problem of SL([9]1; � ; [�� ; ,! +]SW) that runs in PSpace .
As PSpace -hardness is inherited fromSL(� ; ��), we prove the main result of the chapter.

Theorem 5.50. The satis�ability problem of SL([9]1; � ; [�� ; ,! +]SW) is PSpace -complete.

Of course, this result holds under the assumption that the core formulae enjoy the�� -simulation
property, which we show at the end of the section. As in the case of the other simulation
properties, the proof reveals to be technically involved.

5.1. Taming the Robustness Properties 119

5.1 Taming the Robustness Properties

We return to our original research agenda of �nding a separation logic that can express whether
a formula is robust for the properties of acyclicity and garbage-freedom (see the introduction
of Part I). More precisely, we aim at de�ning a separation logic whose satis�ability, validity
and entailment problems can be solved inPSpace , and where the decision problems related to
acyclicity and garbage-freedom can be expressed as queries of the entailment problem.

First of all, let us recall the de�nitions of acyclic and garbage-free memory state.

De�nition 5.1 (Acyclicity and garbage-freedom). Let (s; h) be a memory state. LetX � �n VAR.

(acyclicity) (s; h) is acyclic if for every ` 2 LOC and for every � � 1, h� (`) 6= `,

(X-garbage-freedom) (s; h) is X-garbage-freewhenever for every` 2 dom(h) there is � 2 N
and x 2 X such that h� (s(x)) = `.

The de�nition of the decision problems related to these two properties is given in Figure 5.1,
with respect to a formula ' written in an arbitrary (separation) logic L interpreted on memory
states. Both these decision problems are oriented towards program veri�cation. The acyclicity
property reveals to be quite useful to guarantee that a loop traversing any region of the memory
by dereferentiation is bound to terminate [76], whereas garbage-freedom can be helpful to prove
that a program does not leak memory. In this chapter, we analyse the decidability of these
problems in a fragment ofSL(9; � ; ��).

5.1.1 The separation logic SL([9]1; � ; [�� ; ,! +]SW).

In order to tame the decision problems for acyclicity and garbage-freedom into queries of en-
tailment, we consider separation logics featuring reachability predicates, separating implication
and one quanti�ed variable. The results in Chapters 3 and 4 heavily limit the set of possible
separation logics that enjoy these three features and admit an elementary satis�ability problem.
In this chapter, we consider the fragment ofSL(9; � ; ��), denoted by SL([9]1; � ; [�� ; ,! +]SW), hav-
ing just one quanti�ed variable name u 2 VAR (\ u" stands for unique) and with formulae from
the non-terminal S of the following grammar, wheret ; t 0 2 VAR and x 2 VAR n f ug,

W := > (true)

j emp (empty)

j t = t 0 (equality)

j t ,! t 0 (points-to)

j W ^ W (weak conjunction)

j : W (weak negation)

j W � W (weak star)

j S �� W (strong-to-weak magic wand)

j 9u W (weak existential)

S := W (weak fragment)

j x ,! + t (reach-plus)

j u ,! + u (unique reach-plus)

j S ^ S (strong conjunction)

j : S (strong negation)

j S � S (strong star)

j 9u S (strong existential)

As done in the grammar, we generally write x; y; z; : : : for variables that are syntactically
di�erent from u. Instead, we uset ; t 0; : : : for arbitrary variables in VAR. Analogously, we
write X; Y; : : : for (usually �nite) sets of variables that do not contain u, and T; T0; : : : for arbi-
trary sets of variables. The grammar of the logic is divided into two fragments, calledweakand

120 Chapter 5. Deciding Robustness Properties inPSpace

acyclicity: Input: A formula ' in L .

Question: Is every memory state satisfying' acyclic?

garbage-freedom: Input: A formula ' in L .

Question: Is every memory state satisfying' fv(')-garbage-free?

Figure 5.1: The decision problems for the properties of acyclicity and garbage freedom.

strong, which roughly regulate whether the separating implication and the reachability predi-
cates can be used. The weak fragment, whose formulae are generated from the non-terminal
W , does not directly features reachability predicates, but contains the separating implication
S �� W , where S belongs to the strong fragment. The strong fragment, whose formulae are gener-
ated from the non-terminal S, extends the weak fragment with the reach-plus predicate de�ned
in Section 2.1.1, but still, it can only use the separating implication S �� W , so that the right-
hand side of the formula belongs to the weak fragment. Informally, a formula of the separation
logic SL([9]1; � ; �� ; ,! +), featuring one quanti�ed variable and unconstrained reach-plus predi-
cates and magic wand, is inSL([9]1; � ; [�� ; ,! +]SW) if every occurrence of the reach-plust ,! + t 0 is
constrained so that it satis�es the following two conditions:

1. it is not on the right side of its �rst �� ancestor (seeing the formula as a tree),

2. if t is syntactically equal to u, then so is t 0.

For instance, given a formula ' generated from S and a formula generated from W , the
formula u ,! + x � (' ��) only satis�es the �rst condition, the formula ' �� (x ,! + u��) satis�es
both conditions, whereas the formula ' �� (� u ,! + u) only satis�es the second condition.
Thanks to these two conditions, the computational complexity of SL([9]1; � ; [�� ; ,! +]SW) cannot
be traced back to the results in Chapters 3 and 4. More precisely, by disallowing the reach-
plus predicate on positions corresponding to the right-hand side of a separating implication, the
condition (1) forbid the de�nition of the bounded reachability predicate ,! 3 in these positions.
This breaks the undecidability result given in Chapter 3 for SL(� ; �� ; ,! 2; ,! 3), which requires
the bounded reachability predicatesx ,! 2 y and x ,! 3 y to appear in both sides of the magic
wand. The predicate x ,! 2 y can be still de�ned with the formula 9u (x ,! u ^ u ,! y), which
belongs to the weak fragment. One can ask why the restriction should be done on the right-side
of the separating implication instead of the left-side. Unfortunately, taking W �� S over S �� W

leads to Tower -hardness directly from Section 4.4.1. Indeed, Corollary 4.33 shows us that
taking size = 1 �� S is already enough to captureALT. Similarly, the condition (2) prevents us
from using the reachability query u ,! + x, which would again lead to the internalisation of ALT,
as shown in Section 4.1.2. Notably,SL([9]1; � ; [�� ; ,! +]SW) still allows us to write x ,! + u, which
is essential in order to express the property of garbage-freedom.

5.1.2 Reasoning in SL([9]1; � ; [�� ; ,! +]SW).

Despite its restrictions, SL([9]1; � ; [�� ; ,! +]SW) is still a very expressive fragment ofSL(9; � ; ��).
Its syntax extends the one-variable fragmentSL([9]1; � ; ��) from [55] and the logic SL(� ; ,! +)
from [56], both admitting a PSpace -complete satis�ability problem. Moreover, our logic can
express all the auxiliary formulae introduced in Section 2.1.1, which we recall in Figure 5.2.

5.1. Taming the Robustness Properties 121

Formula: Semantics w.r.t. (s; h) De�nition: W / S:

t ,! s(t) 2 dom(h) t ,! t �� ' W

,! x s(x) 2 ran(h) 9u u,! x W

size � 0 card(h) � 0 > W

size � 1 card(h) � 1 : emp W

size � � +1 card(h) � � +1 : emp� size � � W

x ,! � t (s(x); s(t)) 2 h� x = t _ x ,! + t S

strict (') (s; h) j= ' and 8h0 (h, (s; h0) 6j= ' ' ^ : (: emp� ') W

t 7! t 0 h = f s(t) 7! s(t 0)g strict (t ,! t 0) W

ls (x; t) h� (s(x)) = s(t) i� � = card(h) strict (x ,! � t) S

Figure 5.2: Formulae from Section 2.1.1, inSL([9]1; � ; [�� ; ,! +]SW).

Example 5.2. The combination of one quanti�er variable and reachability predicates, although
not as powerful as inALT, can express interesting shapes of a memory state (s; h). For instance,
we can state that s(x) does not belong to a cycle but reaches a location that belongs to one. This
pattern can be described with the intuitive formula 9u(x ,! + u � u ,! + u). The unique quanti�ed
variable is also helpful to state whether paths starting from two locations corresponding to
program variables meet. For instance, consider9u

�
(x ,! + u � y ,! + u) ^ : u ,!

�
. The memory

state (s; h) satis�es this formula if it witnesses two distinct paths, one going from s(x) to ` and
one going froms(y) to `, where ` is a location not in dom(h). Roughly speaking, we can even
combine the two formulae just introduced in order to state that both s(x) and s(y) reach two
locations ` and `0 belonging to the same cycle, but̀ 6= `0. The following formula does the job:

9u
� �

x ,! + u � (y ,! + u ^ u ,! + u ^ : y ,! + y)
�

^ :
�
x ,! + u � y ,! + u � u ,! + u

� �
.

From the expressivity results in [55] and [56], we know that the three formulae considered in
this example cannot be expressed in neitherSL([9]1; � ; ��) nor SL(� ; ,! +) (or any separation logic
with a PSpace -complete satis�ability problem that we know of).

Acyclicity and garbage-freedom, revised. Fundamentally, the decision problems for the
properties of acyclicity and garbage-freedom can be expressed very easily inSL([9]1; � ; [�� ; ,! +]SW).
Indeed, the set of acyclic memory states can be characterised with the formula8u : u ,! + u.
Given a set of variablesX � �n VAR, a memory state isX-garbage-free whenever it satis�es the
formula 8u (u ,!)

W
x2 Xx ,! � u). Both these formulae of SL([9]1; � ; [�� ; ,! +]SW) are a natural

translation of the two properties expressed in De�nition 5.1. This allows us to rephrase the
decision problems in Figure 5.1 using two queries of entailment, as shown below:

acyclicity: Input: A formula ' in SL([9]1; � ; [�� ; ,! +]SW).

Question: Does' j= 8u : u ,! + u hold?

garbage-freedom: Input: A formula ' in SL([9]1; � ; [�� ; ,! +]SW) such that u 62fv(').

Question: Does' j= 8u (u ,!)
W

x2 fv(') x ,! � u) hold?

122 Chapter 5. Deciding Robustness Properties inPSpace

Notice that the auxiliary condition \ u 62fv(')" in the decision problem for garbage-freedom can
be enforced without loss of generality, as we can always rename the the free occurrences ofu
in ' with a di�erent variable name.

The rest of the chapter is devoted to the satis�ability problem of SL([9]1; � ; [�� ; ,! +]SW), which
we show to bePSpace -complete. This implies that the entailment and validity problem of this
logic are alsoPSpace -complete, and that the decision problems related to acyclicity and garbage-
freedom can be decided inPSpace . Notably, SL([9]1; � ; [�� ; ,! +]SW) extends various separation
logics, some of which are applied to program veri�cation. BesidesSL([9]1; � ; ��) and SL(� ; ,! +),
the logic extends the symbolic-heap fragmentSH(ls) (Section 2.3.1), and the logic obtained by
closing SH(ls) under Boolean connectives. The decidability of acyclicity and garbage-freedom
provided for SL([9]1; � ; [�� ; ,! +]SW) can be transferred to all these logics.

5.2 Towards Small Models: The Core Formulae Technique

In this section we discuss the technique used to prove thatSL([9]1; � ; [�� ; ,! +]SW) admit a sat-
is�ability problem that can be solved in PSpace . The general idea is to show a bound on
the size of the smallest memory state that satis�es a formula inSL([9]1; � ; [�� ; ,! +]SW). From
the notion of X-heap isomorphism, we know that the store does not pose a particular chal-
lenge (see Proposition 2.10), so we primarily aim at showing that the logic enjoys a polynomial
small-heap property.

De�nition 5.3 (Small-heap property). A separation logic L is said to have the polynomial
small-heap propertyif there is a polynomial Q : N ! N such that, for every formula ' in L ,

' is satis�able if and only if ' is satis�ed by a memory state (s; h) where card(h) � Q (j' j).

We recall that j' j is the size of' , i.e. the number of symbols needed to encode it (as a tree).
One peculiarity of SL([9]1; � ; [�� ; ,! +]SW) is that the small-heap property must also take into

account all the heaps that must be considered for the satisfaction of the separating implication.
This problem, that is common to all the separation logics featuring the magic wand, was �rstly
solved by C. Calcagno, H. Yang and P. W. O'Hearn [33], and successively by E. Lozes [104],
for the quanti�er-free separation logic SL(� ; ��). Both papers essentially rely on suitable model
abstractions in order to polynomially bound the size of the heaps that must be considered when
dealing with the magic wand. The bound is then extended to arbitrary formulae, leading to
a polynomial small-heap property for SL(� ; ��). The main di�erence between [33] and [104] is
that the abstraction given by E. Lozes is de�ned entirely from formulae of the logic, allowing to
characterise the expressiveness ofSL(� ; ��) has a by-product.

After [104], the idea of relying on the logic itself to describe a model abstraction led to a
quite successful methodology, which we call here thecore formulae technique. This technique
has been used to show the decidability of several separation logics, including:

SL([9]1; � ; ��) [55], SL(� ; ,! +) [56], 9� 8� SL(9; � ; ��) [62], and pnf-SL(9; � ; ��) [62].

5.2.1 The Core Formulae Technique.

Let us introduce the core formula technique with a running example. To keep things as simple
as possible, we consider the separation logicSL(�), having formulae from the grammar:

5.2. Towards Small Models: The Core Formulae Technique 123

' := > j empj x = y j x ,! y j ' ^ ' j : ' j ' � ' .

Our aim is twofold. On one side, we want to appreciate the key components of the core formulae
technique, in order to later apply it to SL([9]1; � ; [�� ; ,! +]SW). On the other side, we want to
understand and address some of the limitations of this methodology.

A �nite set of formulae to capture the logic. The crucial point of the technique is to
de�ne a set of core formulae. For instance, in the case ofSL(�), this set, denoted by Core(X; �),
is indexed by a �nite set of variables X � �n VAR and natural number � � 1 , and it is de�ned as:

Core(X; �) def= f x = y; x ,! y; remX � � j x; y 2 X; � 2 [0; �]g.

Here, remX � � is a formula that is satis�ed by a memory state (s; h) whenever the heap
h n f s(x) 7! s(y) j x; y 2 Xg, i.e. the heap obtained fromh by discharging the memory cells that
witness the satisfaction of the points-to predicates, contains at least� memory cells. It should
be noted that remX � � can be de�ned in SL(�). Nonetheless, de�nability of the core formulae
in the logic under analysis is not needed in order to study its computational complexity.

In general, we want the set of core formulae to satisfy three properties. First of all, the set
of core formulae must be �nite, as it is the case for the setCore(X; �). A second property is
that the logic obtained by closing the core formulae under Boolean connectives should enjoy a
small-heap property. One can show that this is the case forCore(X; �), and that each satis�able
Boolean combination of formulae fromCore(X; �) can be satis�ed by a memory state (s; h) such
that card(h) � card(X) + � . A third property is that Boolean combinations of core formulae
exhaust the expressivity of the separation logic under analysis. With respect toSL(�), this
property can be formalised with the following proposition.

Proposition 5.4. For every formula ' in SL(�) written with variables from Xthere is a Boolean
combination of formulae in Core(X; j' j) such that ' � .

By relying on the small-heap property of Core(X; �), this proposition leads to a small-heap
property for SL(�). When considering more complex logics, �nding the right set of core formulae
that satisfy Proposition 5.4 is quite challenging. To partially solve this issue, [104] shows a way
of checking if this proposition holds by relying on a simulation argument, which helps us to
systematically examine the core formulae we conjecture to be correct.

Indistinguishability relation and its simulation. As a preliminary result, [104] requires
that Boolean combinations of core formulae capture every atomic formula of the logic. With
respect to our example concerningSL(�), the precise statement is given below.

Lemma 5.5. Let X � �n VAR. Every formula among f> ; emp; x = y; x ,! y j x; y 2 Xg in SL(�)
is equivalent to a Boolean combination of formulae fromCore(X; 1).

Proving this lemma is quite straightforward: both the atomic formulae x = y and x ,! y are
already in Core(X; 1), whereas> � remX � 0 and emp� : (remX � 1 _

W
x;y2 Xx ,! y).

Once the \base case" of Lemma 5.5 is proved, [104] considers anindistinguishability relation ,
here denoted by� X;� , that relates memory states satisfying the same core formulae. Formally,

(s; h) � X;� (s0; h0) if and only if for every ' 2 Core(X; �), (s; h) j= ' i� (s0; h0) j= ' .

124 Chapter 5. Deciding Robustness Properties inPSpace

A �rst property of this indistinguishability relation is that it is an equivalence relation with
�nite-index, i.e. � X;� has �nitely many equivalence classes. This stems directly from the fact
that Core(X; �) is �nite. Its second key property is that � X;� is a simulation with respect to
the semantics of the separating conjunction. We call this the� -simulation property of the core
formulae. Its technical statement is formalised below.

Lemma 5.6 (� -simulation) . Let X � �n VAR and � � 1. Consider (s; h) � X;� (s0; h0). For every
two heapsh1 and h2 and every � 1 � 1 and � 2 � 1, if h = h1 + h2 and � = � 1 + � 2 then there
are two heapsh0

1 and h0
2 such that h0 = h0

1 + h0
2, (s; h1) � X;� 1 (s0; h0

1) and (s; h2) � X;� 2 (s0; h0
2).

Consider two Boolean combinations' , of core formulae in Core(X; � 1) and Core(X; � 2),
respectively. Fundamentally, this lemma states that whether two memory states (s; h) and (s0; h0)
satisfy the same formulae inCore(X; � 1 + � 2), then (s; h) j= ' � if and only if (s0; h0) j= ' � .
Thanks to this lemma, we can show that the formula ' � must be equivalent to a �nite
Boolean combination of core formulae fromCore(X; � 1 + � 2). The rough idea is that every
equivalence class of� X;� 1+ � 2 can be characterised with a conjunction of literals built from
formulae in Core(X; � 1 + � 2). As � X;� 1+ � 2 has �nitely many equivalence classes, this implies
that ' � is equivalent to the (�nite) disjunction of every conjunction corresponding to an
equivalence class of a memory state satisfying' � . With a bottom-up argument and starting
from the atomic formulae, Lemma 5.5 and Lemma 5.6 show that every formula is equivalent to
a Boolean combination of core formulae, thus proving Proposition 5.4.

This approach has a drawback. Albeit giving us a good way of checking whether the core
formulae capture the whole logic, the proof of Lemma 5.6 becomes quite technical and mono-
lithic when considering complex logics. For instance, the proof of the� -simulation property
for SL(� ; ,! +) spawn a dozen pages of hard-to-check technical steps [56]. It is not reasonable to
do the same forSL([9]1; � ; [�� ; ,! +]SW): we need a way to make the proof more modular.

5.2.2 Game Hopping.

In order to provide a modular proof of the � -simulation property, it is helpful to frame it
within the standard tools of �nite-model theory for �rst-order logic. In particular, the core
formulae have a strong connections with theGaifman's locality Theorem ([102], Theorem 4.22).
Informally, this theorem proven by H. Gaifman in [73] states that every �rst-order formula is
equivalent to a Boolean combination oflocal formulae. Skipping the technical de�nition of local
formulae, we notice how Proposition 5.4 can be seen as an adaptation of Gaifman's locality
Theorem to separation logic, where the core formulae enjoy the same property of the local
formulae of �rst-order logic. This connection is quite revealing, the local formulae are connected
to the notion of winning strategy for the duplicator on the Ehrenfeucht-Fra•�ss�e games for �rst-
order logic [102]. We already introduced the Ehrenfeucht-Fra•�ss�e games in Section 4.2.2 in
order to study the expressive power forALT. We refer the reader to that section (or even better,
to [102]), for an introduction on these types of games. When it comes toSL(�), the EF-games can
be de�ned on game states consisting of two memory states (s; h) and (s0; h0) and a rank (X; �),
where X � �n VAR and � � 1. As usual, the game is played by two players: the spoiler, who
wants to prove that the two memory states can be told apart by a formula of the logic, and the
duplicator, who instead wants to prove that they are indistinguishable. The EF-games forSL(�)
are de�ned in Figure 5.3. Let us write (s; h) � X;� (s0; h0) whenever the duplicator has a winning
strategy for the game ((s; h); (s0; h0); (X; �)). We de�ne the rank of a formula ' in SL(�) as (X; �),

5.2. Towards Small Models: The Core Formulae Technique 125

EF-Game played on the state ((s; h); (s0; h0); (X; �)).

if there is � 2 f> ; emp; x = y; x ,! y j x; y 2 Xg s.t. ((s; h) j= � i� (s0; h0) j= �) does not hold
then the spoiler wins,
else if � = 1 then the duplicator wins,
else (� � 2) the spoiler chooses (sS; hS) 2 f (s; h); (s0; h0)g.

The duplicator replies on the other memory state, say (sD ; hD). Afterwards,

1. The spoiler selects� 1 � 1 and � 2 � 1 such that � = � 1 + � 2.
2. The spoiler selects two heapshS

1 and hS
2 such that hS = hS

1 + hS
2 .

3. The duplicator selects two heapshD
1 and hD

2 such that hD = hD
1 + hD

2 .
4. The spoiler selectsj 2 f 1; 2g.
5. The game continues on ((sS; hS

j); (sD ; hD
j); (X; � j)).

Figure 5.3: Ehrenfeucht-Fra•�ss�e games forSL(�).

where X is the set of variables appearing in' whereas� is one plus the number of separating
conjunctions in ' . The EF-games are sound and complete forSL(�), as formalised below.

Proposition 5.7. Let (s; h) and (s0; h0) be two pointed forests. Let (X; �) be a rank.

(s; h) � X;� (s0; h0) i� for each formula ' in SL(�) of rank (X; �), ((s; h) j= ' i� (s0; h0) j= ').

Instead of proving this proposition (which can be shown as we did forALT, see Theorem 4.15),
we are here interested in the connections between the EF-games and the core formulae. In par-
ticular, we show that the inclusion � X;� � � X;� holds, i.e. if two memory states (s; h) and (s0; h0)
satisfy the same core formulae fromCore(X; �), then the duplicator has a winning strategy for
the game state ((s; h); (s0; h0); (X; �)).

Lemma 5.8. � X;� � � X;� .

Proof. Suppose (s; h) � X;� (s0; h0). The proof is by induction on � .

base case: � = 1 . By Lemma 5.5, the two memory states satisfy the same atomic formulae.
With respect to the description of the games given in Figure 5.3, duplicator wins (line 3).

inductive step: � � 2. Again, two memory states satisfy the same atomic formulae. So, with
respect to the description of the games given in Figure 5.3, the spoiler must select� 1 � 1
and � 2 � 1 such that � = � 1 + � 2, as well as a memory state (sS; hS) 2 f (s; h); (s0; h0)g
and two heapshS

1 and hS
2 such that hS = hS

1 + hS
2 . Duplicator replies in the other memory

state, say (sD ; hD). From the � -simulation lemma (Lemma 5.6), there are two heapshD
1

and hD
2 such that hD = hD

1 + hD
2 , (sS; hS

1) � X;� 1 (sD ; hD
1) and (sS; hS

2) � X;� 2 (sD ; hD
2). By

induction hypothesis (sS; hS
1) � X;� 1 (sD ; hD

1) and (sS; hS
2) � X;� 2 (sD ; hD

2). Thus, selecting
hD

1 and hD
2 leads to a winning strategy for the duplicator in the original game.

Relating the core formulae technique with Ehrenfeucht-Fra•�ss�e games allows us to transfer
more easily tools from various games on indistinguishability relations to the context of separation
logic, which in turn helps us �nding a more modular proof of Lemma 5.6 (and similar simulation
properties). First of all, let us revisit the statement of Lemma 5.6. We introduce a binary
relation $ X;� , called hop relation, that stresses the property underlying the � -simulation:

126 Chapter 5. Deciding Robustness Properties inPSpace

(s; h) $ X;� (s0; h0) i� for every two heaps h1 and h2 and every � 1 � 1 and � 2 � 1,
if h = h1 + h2 and � = � 1 + � 2 then there are two heapsh0

1 and h0
2

such that h0 = h0
1 + h0

2, (s; h1) � X;� 1 (s0; h0
1) and (s; h2) � X;� 2 (s0; h0

2).

The hop relation allows us to succinctly rephrase Lemma 5.6 as the inclusion� X;� � $ X;� . In
order to prove this inclusion in a modular way, given two memory states (s; h) � X;� (s0; h0), we
build a chain of hopsas the one schematised below:

(s; h) = (s1; h1) $ X;� (s2; h2) $ X;� : : : $ X;� (sk� 1; hk� 1) $ X;� (sk ; hk) = (s0; h0).

At each hop (sj ; hj) $ X;� (sj +1 ; hj +1), where j 2 [1; k � 1], the memory state (sj +1 ; hj +1) is
constructed by updating (sj ; hj). The idea is that this update should be quite small and localised,
so that it is easy to check that the two memory states are in the hop relation, or analogously
that the duplicator wins the underlying EF-game on ((sj ; hj); (sj +1 ; hj +1); (X; �)). Each hop
can be treated separately from the others, making the whole proof modular. Thanks to the
chain of hops, we are able to conclude that (s; h) $ X;� (s0; h0) holds (thus, providing a proof
of Lemma 5.6) from the transitivity of the hop relation, which we now show.

Lemma 5.9. $ X;� is reexive and transitive.

Proof. Reexivity is obvious. For transitivity, consider three memory states (s; h), (s0; h0)
and (s00; h00). Suppose (s; h) $ X;� (s0; h0) and (s0; h0) $ X;� (s00; h00), and consider two heapsh1

and h2 and two natural numbers � 1 � 1 and � 2 � 1 such that h = h1 + h2 and � = � 1 + � 2.
From (s; h) $ X;� (s0; h0) there are two heapsh0

1 and h0
2 such that h0= h0

1+ h0
2, (s; h1) � X;� 1 (s0; h0

1)
and (s; h2) � X;� 2 (s0; h0

2). From (s0; h0) $ X;� (s00; h00) there are h00
1 and h00

2 such that h00= h00
1 + h00

2,
(s0; h0

1) � X;� 1 (s00; h00
1) and (s0; h0

2) � X;� 2 (s00; h00
2). As � X;� is an equivalence relation, we conclude

that (s; h1) � X;� 1 (s00; h00
1) and (s; h2) � X;� 2 (s00; h00

2). Thus, (s; h) $ X;� (s00; h00).

Due to the lack of a better terminology, we call the process of building a chain of hops
game hopping. This term, as well as the general idea presented here, is borrowed from the
homonymous technique in computational security [16]. In this framework, an attacker has an
unknown probability of success against an environment. In order to compute this probability,
a game hopping proof slowly changes the environment with a chain of updates that are shown
admissible thanks to some underlying invariant. The process continues until we reach an envi-
ronment where the probability of success can be easily computed. As an analogy, in our case
the environments are given by the memory states and the attacker is the spoiler, which we want
to prove having zero probability of winning the underlying EF-game. Our invariants are given
by the equisatisfaction of the core formulae at each step of the chain of hops.

In our setting, a last question about game hopping is how to identify the updates we want
to carry out in the chain. What we found to work well in practice is to de�ne the core formulae
starting from a partition on the heap, so that the satisfaction of each core formula is governed by
exactly one part of the partition. We already applied this idea to the core formulaeCore(X; �)
of SL(�): given a memory state (s; h), every (`; ` 0) 2 h is involved in the satisfaction of either
the core formula x ,! y, for somex; y 2 X, or the core formula remX � � , but not both. Then, at
each hop we only modify locations belonging to one element of the partition, leaving the other
ones untouched. The bene�ts of this approach can be better appreciated in the next section,
where we deal with the core formulae for the weak fragment ofSL([9]1; � ; [�� ; ,! +]SW).

5.3. A Family of Core Formulae Capturing the Fragment W 127

5.3 A Family of Core Formulae Capturing the Fragment W

We start adapting the core formulae technique to the weak fragment ofSL([9]1; � ; [�� ; ,! +]SW).
Let us recall the grammar of this sublogic:

W := > j emp j t = t 0 j t ,! t 0 j W ^ W j : W j W � W j S �� W j 9u W

For the time being, we disregard the separating implicationS �� W , as it requires some analysis
on the strong fragment, which will be carried out throughout Section 5.5 and Section 5.6. When
the magic wand is dropped from the logic,W becomes a fragment ofSL([9]1; � ; ��), whose satis-
�ability problem has been proven PSpace -complete using the core formulae technique in [55].
The family of core formulae we consider in this section can be shown to be equiexpressive to the
ones in [55], while being better suited for game hopping.

We stress once more the goal of this section. Following Section 5.2, we want to de�ne a set of
core formulae whose Boolean combinations capture the expressive power of the weak fragment
(excluding the operator S �� W). As shown in [104], in order to show that the core formulae
we de�ne enjoy this property it is su�cient to prove that they capture the atomic formulae of
the weak fragment and that they satisfy the � -simulation property (see e.g. Lemma 5.6) and an
analogous9-simulation property. Broadly speaking, these two properties imply that formulae of
the form ' � or 9x ' , where' and are Boolean combinations of core formulae, are themselves
equivalent to Boolean combinations of core formulae. With a bottom-up argument starting from
the base case of atomic formulae, this implies that every�� -free formula of the weak fragment can
be translated into a Boolean combination of core formulae. To prove the� -simulation property,
we rely on the game hopping strategy sketched in Section 5.2.2. Our proof technique naturally
divides the section in four steps. First (step I), we introduce a family of disjoint sets that induce
a partition of the domain of the heap. These sets are used (step II) to de�ne the core formulae,
which are shown to capture the atomic formulae of the weak fragment. Afterwards, we prove
(step III) that the core formulae satisfy the � -simulation property and (step IV) the 9-simulation
property. This division serves as a roadmap for the much more involved Section 5.5, in which
we introduce the core formulae for the strong fragment.

5.3.1 Step I: partitioning the heap.

We de�ne the core formulae starting from a partition of the heap, which is in turn de�ned from a
set of syntactical terms that correspond to speci�c locations of the heap. For the whole section,
we �x X � �n VARnf ug to be a �nite set of program variables not including the unique quanti�ed
variable name u, which we treat separately.

De�nition 5.10 (Next-point variables and terms). We write NV[W]X for the set of next-point
variablesf n(x) j x 2 Xg, n(x) being a syntactical object. T[W]X stands for set ofterms X[NV[W]X.
Given a memory state (s; h), the evaluation [[:]]Xs;h of a term is de�ned as [[x]]Xs;h

def= s(x) for x 2 X.

If s(x) 2 dom(h) then [[n(x)]]X
s;h

def= h(s(x)), otherwise [[n(x)]]X
s;h is not de�ned.

Intuitively, the next-point variable n(x) corresponds to the location pointed bys(x), if any. We
already saw a similar concept in Section 3.2. The evaluation [[:]]Xs;h leads to labelled locations.

De�nition 5.11 (Labelled locations). Given a memory state (s; h), we write Lab[W]Xs;h for the
set of locationsf [[t]]Xs;h j t 2 T[W]Xg. The locations in Lab[W]Xs;h are said to belabelled.

128 Chapter 5. Deciding Robustness Properties inPSpace

z

y n(y)

x n(x)

: Pred[W]Xs;h(y)

: Self [W]Xs;h

: Rem[W]Xs;h

Figure 5.4: A memory state. The partition of the heap is highlighted.

Locations that are not in Lab[W]Xs;h are said to beunlabelled. Intuitively, the weak fragment can
express di�erent properties about labelled locations. For instance, we can check if two next-point
variables n(x) and n(y) correspond to the same location with the formula 9u (x ,! u ^ y ,! u).
As such, every subheapf ` 7! `0g � h, where ` is a labelled location, correspond to one part of
the partition of h we are about to de�ne. As h is functional, this partition can be equivalently
described in terms ofdom(h). Excluding labelled locations, its parts are de�ned below.

De�nition 5.12 (Predecessors, self-loops and the remainder). Let (s; h) be a memory state.
We de�ne the following subsets ofdom(h):

Predecessors.Pred[W]Xs;h(x) def= f `0 2 dom(h) j h(`0) = s(x) and `0 62Lab[W]Xs;hg, where x 2 X.

Informally, Pred[W]Xs;h(x) is the set of all unlabelled predecessorsof s(x).

Self-loops. Self [W]Xs;h
def= f ` 2 dom(h) j h(`) = ` and ` 62Lab[W]Xs;hg.

Informally, Self [W]Xs;h contains the set of unlabelledself-loops.

Remainder. Rem[W]Xs;h
def= dom(h) n

�
Lab[W]Xs;h [Self [W]Xs;h [

S
x2 XPred[W]Xs;h(x)

�
.

Informally, Rem[W]Xs;h is the set of unlabelled locations that are neither self-loop nor
predecessors of variables inX.

Figure 5.4 highlights these sets on a memory state (s; h). As we can see, all the locations in
the domain of the heap are either labelled locations, or they belong to one of these sets. Indeed,
directly from De�nition 5.12, it is quite clear that these three types of sets, together with the
memory cells ofh that are labelled locations, uniquely de�ne a partition of dom(h) (and of h).
This property is formalised in the following proposition, whose proof is left to the reader.

Proposition 5.13. Let (s; h) be a memory state. The set of all the non-empty sets among
dom(h) \ Lab[W]Xs;h ; Self [W]Xs;h ; Rem[W]Xs;h and all Pred[W]Xs;h(x) (x 2 X), is a partition of dom(h).

Due to the � -simulation property we aim to establish, it is quite important to under-
stand how this partition evolves when considering subheaps. For instance, given a location
` 2 Pred[W]Xs;h(x), it is quite easy to see that in every subheaph0 � h where` 2 dom(h0), we �nd
that ` belongs toPred[W]Xs;h0(x). Similar properties can be stated forSelf [W]Xs;h and Rem[W]Xs;h .
In general, the converse does not hold: given a locatioǹ 2 Pred[W]Xs;h0(x), it can be that
` 62Pred[W]Xs;h(x). This is typically the case when ` corresponds to a next-point variable with
respect to (s; h), but it becomes an unlabelled location when considering (s; h0). The following
technical lemma shows all these relationships between partitions.

Lemma 5.14. Let (s; h) be a memory state. Consider a subheaph0 � h and ` 2 LOC.

5.3. A Family of Core Formulae Capturing the Fragment W 129

(I) for every term t 2 T[W]X, if [[t]]Xs;h0 is de�ned then [[t]]Xs;h = [[t]]Xs;h0.

(II) Pred[W]Xs;h0(x) =
�
Pred[W]Xs;h(x) \ dom(h0)

�
[f ` 2 Lab[W]Xs;h n Lab[W]Xs;h0 j h0(`) = s(x)g.

(III) Self [W]Xs;h0 =
�
Self [W]Xs;h \ dom(h0)

�
[f ` 2 Lab[W]Xs;h n Lab[W]Xs;h0 j h0(`) = `g.

(IV) Rem[W]Xs;h0 =
�
Rem[W]Xs;h \ dom(h0)

�
[

f ` 2 Lab[W]Xs;h n Lab[W]Xs;h0 j ` 2 dom(h0); h0(`) 6= ` and 8x 2 X; h0(`) 6= s(x)g:

The proofs of these four statements are all quite simple and follow from De�nition 5.12.
Below, we show the proof of the �rst two statements, leaving the other two to the reader.

Proof of (I) . The proof is obvious whent is a variable in X. So, let us assumet = n(x) 2 NV[W]X.

If [[n(x)]]X
s;h0 is de�ned, then [[n(x)]]X

s;h0
by def
= h0(s(x)). From h0 � h we have h(s(x)) = h0(s(x)).

Therefore, by [[n(x)]]X
s;h

by def
= h(s(x)) we derive [[t]]Xs;h0 = [[t]]Xs;h .

Proof of (II) . ()): Let us consider a location ` 2 Pred[W]Xs;h0(x), and thus ` 62Lab[W]Xs;h0

and h0(`) = s(x). From h0� h we derive that h(`) = s(x). In the case that ` 62Lab[W]Xs;h , then
we derive ` 2 Pred[W]Xs;h(x) \ dom(h0). Otherwise, ` 2 Lab[W]Xs;h n Lab[W]Xs;h0 and h0(`) = s(x).
((): Clearly, if ` 2 Lab[W]Xs;h n Lab[W]Xs;h0 and h0(`) = s(x) then ` 62Lab[W]Xs;h0, and so we
derive ` 2 Pred[W]Xs;h0(x). Otherwise, let us consider the case werè 2 Self [W]Xs;h \ dom(h0).
We have ` 62Lab[W]Xs;h , h(`) = s(x) and ` 2 dom(h0). From h0 � h we derive h0(`) = s(x).
From Lemma 5.14(I) we derive` 62Lab[W]Xs;h0. Thus, ` 2 Pred[W]Xs;h0(x).

5.3.2 Step II: the core formulae for W .

We use the partition as a base to de�ne the core formulae. Each of these formulae describes a
feature of one of the sets in the partition, and its satisfaction does not depend on the properties of
the other sets. For instance, let us consider a predicateself W

X � 3 stating that a memory state
(s; h) contains at least 3 unlabelled self-loops. Clearly,self W

X � 3 depends on the cardinality
of Self [W]Xs;h , but it is completely independent from the locations in other sets of the partition.
As done for the core formulae ofSL(�), given as an example during Section 5.2.1, the core
formulae Core[W](X; �) for the weak fragment are parametric onX and a natural number � � 1.
Here, � is a quantity that roughly expresses upper bounds on the capabilities of a formula' to
check the sizes of the sets of the partition. As we will see in Section 5.6, this bound is connected
with the number of separating conjunctions in ' , and ultimately to its size. Core[W](X; �) is
divided into two sets, a skeleton setSk[W](X; �) expressing structural properties that do not
depend on the assignment ofu, and an observed setObs[W](X) of relationships between the
memory state and the location currently assigned tou. The skeleton set is de�ned below, and
the semantics of its formulae is given in Figure 5.5. We recall thatX does not containu.

Sk[W](X; �) def=

(
t 1 = t 2; t 1 ,! ; t 1 ,! x; t 1 ,! t 1;

predW
X (x) � �; self W

X � �; remW
X � �

�
�
�
�
�

x 2 X; � 2 [1; �];

t 1; t 2 2 T[W]X

)

:

As we can see, the skeleton set contains equality and points-to relation between terms, and formu-
lae that state lower-bounds on the cardinality of the setsPred[W]Xs;h(x), Self [W]Xs;h and Rem[W]Xs;h .
In particular, it should be noted that (s; h) j= t = t if and only if [[t]]Xs;h is de�ned. Notice that
these formulae are syntactically de�ned so that n(x) ,! n(y) is not a core formula. In partic-
ular, the only points-to relation between next-point variables is n(x) ,! n(x). The reason for
this syntactical restriction is quite simple: n(x) ,! n(x) is de�nable in the weak fragment as
9u (x ,! u ^ u ,! u), whereasn(x) ,! n(y) requires two quanti�ed variables to be de�ned. With

130 Chapter 5. Deciding Robustness Properties inPSpace

(s; h) j= t 1 = t 2 i� [[t 1]]Xs;h and [[t 2]]Xs;h are de�ned and [[t 1]]Xs;h = [[t 2]]Xs;h ,

(s; h) j= t 1 ,! i� [[t 1]]Xs;h is de�ned and [[t 1]]Xs;h 2 dom(h),

(s; h) j= t 1 ,! x i� [[t 1]]Xs;h is de�ned and h([[t 1]]Xs;h) = s(x),

(s; h) j= t 1 ,! t 1 i� [[t 1]]Xs;h is de�ned and h([[t 1]]Xs;h) = [[t 1]]Xs;h ,

(s; h) j= predW
X (x) � � i� card(Pred[W]Xs;h(x)) � � ,

(s; h) j= self W
X � � i� card(Self [W]Xs;h) � � ,

(s; h) j= remW
X � � i� card(Rem[W]Xs;h) � � .

Figure 5.5: Semantics of the formulae inSk[W](X; �), with respect to a memory state (s; h).

(s; h) j= u = t i� [[t]]Xs;h is de�ned and s(u) = [[t]]Xs;h ,

(s; h) j= u 2 predW
X (x) i� s(u) 2 Pred[W]Xs;h(x),

(s; h) j= u 2 self W
X i� s(u) 2 Self [W]Xs;h ,

(s; h) j= u 2 remW
X i� s(u) 2 Rem[W]Xs;h .

Figure 5.6: Semantics of the formulae inObs[W](X), with respect to a memory state (s; h).

respect to the three core formulaepredW
X (x) � � , self W

X � � and remW
X � � , it is important to

notice that � is bounded by � . Because of this, the core formulae cannot distinguish two mem-
ory states exceeding� locations in the three sets corresponding to these core formulae. As we
will see in Section 5.6, this property is essential in order to conclude thatSL([9]1; � ; [�� ; ,! +]SW)
enjoys a polynomial small-heap property. Let us now move to the observed set:

Obs[W](X) def=
n

u = t ; u 2 predW
X (x); u 2 self W

X ; u 2 remW
X

�
�
� x 2 X and t 2 T[W]X

o
:

The semantics of these formulae is given in Figure 5.6, and it is quite self-explanatory. The
formula u = t checks whethers(u) is a labelled location. The formulaeu 2 predW

X (x), u 2 self W
X

and u 2 remW
X check whether the location currently assigned tou is in the set Pred[W]Xs;h(x), in

the set Self [W]Xs;h or in the set Rem[W]Xs;h , respectively.
As described in the previous section (Lemma 5.5), a �rst key property the core formulae

must satisfy is that their Boolean combinations must be able to express the atomic formulae of
separation logic. For the weak fragment, this can be formalised as follows.

Lemma 5.15. Every atomic formula of the weak fragment written with variables from X[f ug
is equivalent to a Boolean combination of formulae fromCore[W](X; 1).

Proof (sketch). The proof is straightforward. Here, we simply give the de�nition of the atomic
formulae in term of Boolean combinations of core formulae fromCore[W](X; 1), leaving the proof
of their correctness to the reader. The atomic formulaex = y, u = x and x ,! y, where x; y 2 X,
are already core formulae. Otherwise,

x = u � u = x; x ,! u � u = n(x); > � remW
X � 1 _ : remW

X � 1;

u ,! x � u 2 predW
X (x) _

W
t 2 T[W]X(u = t ^ t ,! x);

5.3. A Family of Core Formulae Capturing the Fragment W 131

u ,! u � u 2 self W
X _

W
t 2 T[W]X(u = t ^ t ,! t);

emp � : (predW
X (x) � 1 _ self W

X � 1 _ remW
X � 1 _

W
t 2 T[W]X t ,!):

5.3.3 Step III: indistinguishability relation, hops and � -simulation.

After showing that the core formulae capture the atomic formulae of the logic, we show that
they satisfy the � -simulation property. As we saw in the previous section, this property is stated
using an indistinguishability relation on memory state that is governed by the satisfaction of
the core formulae. For the weak fragment, this relation is de�ned as follows.

De�nition 5.16 (W -indistinguishable memory states). We write � W
X;� for the equivalence rela-

tion on memory states characterised as:

(s; h) � W
X;� (s0; h0) if and only if for every ' 2 Core[W](X; �), (s; h) j= ' i� (s0; h0) j= ' .

The � -simulation property corresponds to showing the inclusion� W
X;� � $ W

X;� , where$ W
X;� is the

following hop relation.

De�nition 5.17 (W -hop relation). We write $ W
X;� for the relation on memory states such that

(s; h) $ W
X;� (s0; h0) i� for every two heaps h1 and h2 and every � 1 � 1 and � 2 � 1,

if h = h1 + h2 and � = � 1 + � 2 then there are two heapsh0
1 and h0

2

such that h0 = h0
1 + h0

2, (s; h1) � W
X;� 1

(s0; h0
1) and (s; h2) � W

X;� 2
(s0; h0

2).

The hop relation $ W
X;� is both reexive and transitive (see Lemma 5.9).

As described in the previous section, in order to prove the inclusion� W
X;� � $ W

X;� , given two
memory states (s; h) and (s0; h0) such that (s; h) � W

X;� (s0; h0), we aim at building a chain of hops

(s; h) = (s1; h1) $ W
X;� (s2; h2) $ W

X;� : : : $ W
X;� (sk� 1; hk� 1) $ W

X;� (sk ; hk) = (s0; h0).

Each hop (sj ; hj) $ W
X;� (sj +1 ; hj +1) in this chain corresponds to one of four intermediate results,

which we divide into two lemmata (Lemmata 5.18 and 5.19, below). The hops are then put
together in the proof of the � -simulation property formalised in Lemma 5.20. The �rst lemma
involves the \base case" of memory states that are in the indistinguishability relation � W

X;� for
every � � 1. Notably, these memory states agree on the cardinality of their predecessor sets,
self-loop set and remainder set.

Lemma 5.18. For every � � 1,
� T

� 0� 1 � W
X;� 0

�
� $ W

X;� .

Proof. Let (s; h) and (s0; h0) be two memory states such that ((s; h); (s0; h0)) 2
� T

� 0� 1 � W
X;� 0

�
.

Let us consider a bijectionf : LOC! LOC such that

1f. f(s(u)) = s0(u) and for every t 2 T[W]X, if [[t]]Xs;h is de�ned then f([[t]]Xs;h) = [[t]]Xs0;h0,

2f. for every x 2 X, Pred[W]Xs0;h0(x) = f(Pred[W]Xs;h(x)),

3f. Self [W]Xs0;h0 = f(Self [W]Xs;h),

4f. Rem[W]Xs0;h0 = f(Rem[W]Xs;h),

where we recall that given a set of locationsL, f(L)
by def
= f f(`) j ` 2 Lg.

132 Chapter 5. Deciding Robustness Properties inPSpace

The existence of the bijectionf stems directly from ((s; h); (s0; h0)) 2
� T

� 0� 1 � W
X;� 0

�
together

with Proposition 5.13. Indeed, the constraint (1f) holds as the two memory states satisfy the
same core formulae from

f t 1 = t 2; t 1 ,! ; t 1 ,! x; t 1 ,! t 1 j t 1; t 2 2 T[W]Xg [Obs[W](X).

Instead, the other three constraints follow as the membership in
� T

� 0� 1 � W
X;� 0

�
implies that

for all x 2 X card(Pred[W]Xs;h(x)) = card(Pred[W]Xs0;h0(x)) card(Self [W]Xs;h) = card(Self [W]Xs0;h0)
and card(Rem[W]Xs;h) = card(Rem[W]Xs0;h0). Let us show that (s; h) $ W

X;� (s0; h0).
Consider two heapsh1 and h2, � 1 � 1 and � 2 � 1 such that h = h1 + h2 and � = � 1 + � 2.

Notice that this requires � to be at least two, otherwise the lemma trivially holds. Consider the
heapsh0

1 and h0
2 de�ned as follows:

h0
1 = f (`; ` 0) 2 h0 j f� 1(`) 2 dom(h1)g; h0

2 = f (`; ` 0) 2 h0 j f� 1(`) 2 dom(h2)g:

Notice that, since f is a bijection and h1 and h2 are disjoint, we have h0 = h0
1 + h0

2. Let us
discuss the following properties (A){(D) of h0

j (where j 2 f 1; 2g):
A. (a) for every t 2 T[W]X, [[t]]Xs;h j

is de�ned i� so is [[t]]Xs0;h0
j
. If de�ned, f([[t]]Xs;h j

) = [[t]]Xs0;h0
j
.

(b) [[t]]Xs;h j
2 dom(hj) if and only if [[t]]Xs0;h0

j
2 dom(h0

j).

(c) Given t 0 2 X[f t g, we havehj ([[t]]Xs;h j
) = [[t 0]]Xs;h j

if and only if h0
j ([[t]]Xs0;h0

j
) = [[t 0]]Xs0;h0

j
.

(d) ` 2 Lab[W]Xs0;h0 n Lab[W]Xs0;h0
j

if and only if f� 1(`) 2 Lab[W]Xs;h n Lab[W]Xs;h j
.

These four statements follow primarily from Lemma 5.14(I) and (s; h) � W
X;1 (s0; h0).

In the following, we show the left-to-right direction of each of these statements. The
right-to-left direction follows analogously, by relying on the fact that f is bijective.

Proof of (a). Obvious for t 2 X, so supposet = n(x) 2 NV[W]X.

()): Suppose [[n(x)]]X
s;h j

to be de�ned, i.e. [[n(x)]]X
s;h j

by def
= hj (s(x)). From hj � h

and Lemma 5.14(I), [[n(x)]]X
s;h = [[n(x)]]X

s;h j
. Since (s; h) and (s0; h0) equisatisfy the

formula x ,! , we conclude that [[n(x)]]X
s0;h0 is also de�ned. From the property (1f) of f,

f(s(x)) = s0(x). So, (s(x); h0(s0(x))) 2 dom(h0
j) by de�nition of h0

j . By Lemma 5.14(I),
[[n(x)]]X

s0;h0 = [[n(x)]]X
s0;h0

j
. From the property (1 f) of f, f([[n(x)]]X

s;h j
) = [[n(x)]]X

s0;h0
j
.

Proof of (b). ()): Suppose [[t]]Xs;h j
2 dom(hj). From (a), [[t]]Xs0;h0

j
= f([[t]]Xs;h j

). Therefore,

by de�nition of h0
j , it is su�cient to show that [[t]]Xs0;h0

j
2 dom(h0). By hj � h

and Lemma 5.14(I) we derive that [[t]]Xs;h j
= [[t]]Xs;h 2 dom(h). Since (s; h) and (s0; h0)

equisatisfy the core formula t ,! , we have [[t]]Xs0;h0 2 dom(h0). By Lemma 5.14(I),
[[t]]Xs0;h0

j
= [[t]]Xs0;h0 and so [[t]]Xs0;h0

j
2 dom(h0

j).

Proof of (c). ()): hj ([[t]]Xs;h j
) = [[t 0]]Xs;h j

and so by (a) we havef([[t]]Xs;h j
) = [[t]]Xs0;h0

j
and

f([[t 0]]Xs;h j
) = [[t 0]]Xs0;h0

j
. By de�nition of h0

j , showing h0([[t]]Xs0;h0
j
) = [[t 0]]Xs0;h0

j
is su�cient.

By hj � h we derive h([[t]]Xs;h j
) = [[t 0]]Xs;h j

, whereas by Lemma 5.14(I), [[t]]Xs;h j
= [[t]]Xs;h

and [[t 0]]Xs;h j
= [[t 0]]Xs;h . Since (s; h) and (s0; h0) equisatisfy the core formula t ,! t 0,

where t 0 2 X [f t g, we conclude that h0([[t]]Xs0;h0) = [[t 0]]Xs0;h0. By Lemma 5.14(I),
[[t]]Xs0;h0

j
= [[t]]Xs0;h0 and [[t 0]]Xs0;h0

j
= [[t 0]]Xs0;h0. Thus, h0([[t]]Xs0;h0

j
) = [[t 0]]Xs0;h0

j
.

Proof of (d). ()): Assume ` 2 Lab[W]Xs0;h0 n Lab[W]Xs0;h0
j
. As ` 2 Lab[W]Xs0;h0 there is a

term t 2 T[W]X such that [[t]]Xs0;h0 = `. Since (s; h) and (s0; h0) equisatisfy the core
formula t = t , [[t]]Xs;h is de�ned, and thus f([[t]]Xs;h) = ` holds from the property (1f) of f.
So, f� 1(`) 2 Lab[W]Xs;h . Ad absurdum, supposef� 1(`) 2 Lab[W]Xs;h j

. From (a) we have

5.3. A Family of Core Formulae Capturing the Fragment W 133

` 2 Lab[W]Xs0;h0
j
, contradicting ` 2 Lab[W]Xs0;h0n Lab[W]Xs0;h0

j
. Thus, f� 1(`) 62Lab[W]Xs;h j

and therefore f� 1(`) 2 Lab[W]Xs;h n Lab[W]Xs;h j
.

B. For every x 2 X, Pred[W]Xs0;h0
j
(x) = f(Pred[W]Xs;h j

(x)).

Given a location ` 2 LOC, we prove the following two equivalences:
d. ` 2 Pred[W]Xs0;h0(x) \ dom(h0

j) if and only if f� 1(`) 2 Pred[W]Xs;h(x) \ dom(hj),

e. ` 2 Lab[W]Xs0;h0 n Lab[W]Xs0;h0
j

and h0
j (`) = s0(x) if and only if

f� 1(`) 2 Lab[W]Xs;h n Lab[W]Xs;h j
and hj (f� 1(`)) = s(x).

So that (B) follows directly from Lemma 5.14(II) and the fact that f is bijective.
Proof of (d) . Both direction hold directly by de�nition of h0

j and from the property (2f) of f.
Proof of (e). ()): Assume ` 2 Lab[W]Xs0;h0 n Lab[W]Xs0;h0

j
and h0

j (`) = s0(x). From (A)(d),

f� 1(`) 2 Lab[W]Xs;h n Lab[W]Xs;h j
. From h0

j (`) = s0(x) and by de�nition of h0
j , we

haveh0(`) = s0(x) and f� 1(`) 2 dom(hj). As (s; h) and (s0; h0) equisatisfy the core for-
mula t ,! x, we have that h(f� 1(`)) = s(x). By f� 1(`) 2 dom(hj), hj (f� 1(`)) = s(x).
((): Analogous to the other direction, by relying on the bijectivity of f.

C. Self [W]Xs0;h0
j

= f(Self [W]Xs;h j
).

Given a location ` 2 LOC, we prove the following two equivalences:
f. ` 2 Self [W]Xs0;h0 \ dom(h0

j) if and only if f� 1(`) 2 Self [W]Xs;h) \ dom(hj),

g. ` 2 Lab[W]Xs0;h0 n Lab[W]Xs0;h0
j

and h0
j (`) = ` if and only if

f� 1(`) 2 Lab[W]Xs;h n Lab[W]Xs;h j
and hj (f� 1(`)) = f� 1(`).

So that (C) follows directly from Lemma 5.14(III) and the fact that f is bijective.
Proof of (f) . Both directions hold directly by de�nition of h0

j and from the property (3f) of f.
Proof of (g). ()): Assume ` 2 Lab[W]Xs0;h0 n Lab[W]Xs0;h0

j
and h0

j (`) = `. From (A)(d),

f� 1(`) 2 Lab[W]Xs;hnLab[W]Xs;h j
. From h0

j (`) = ` and by de�nition of h0
j we haveh0(`) = `

and f� 1(`) 2 dom(hj). Since (s; h) and (s0; h0) equisatisfy the core formulat ,! t , we
conclude that h(f� 1(`)) = f� 1(`). By f� 1(`) 2 dom(hj), hj (f� 1(`)) = f� 1(`).
((): Analogous to the other direction, by relying on the bijectivity of f.

D. Rem[W]Xs0;h0
j

= f(Rem[W]Xs;h j
).

Given a location ` 2 LOC and `0 = f� 1(`), we prove the following two equivalences:
h. ` 2 Rem[W]Xs0;h0 \ dom(h0

j) if and only if `0 2 Rem[W]Xs;h \ dom(hj),

i. ` 2 Lab[W]Xs0;h0 n Lab[W]Xs0;h0
j
; ` 2 dom(h0

j); h0
j (`) 6= ` and 8x 2 X h0

j (`) 6= s0(x) i�

`0 2 Lab[W]Xs;h n Lab[W]Xs;h j
; `0 2 dom(hj); hj (`0) 6= `0 and 8x 2 X hj (`0) 6= s(x).

So that (D) follows directly from Lemma 5.14(IV) and the fact that f is bijective.
Proof of (h) . Both directions hold directly from the de�nition of h0

j and the property (4f).
Proof of (i) . ()): Assume ` 2 Lab[W]Xs0;h0 n Lab[W]Xs0;h0

j
; ` 2 dom(h0

j), h0
j (`) 6= ` and for

every x 2 X, h0
j (`) 6= s0(x). From (A)(d), f� 1(`) = `0 2 Lab[W]Xs;hnLab[W]Xs;h j

. From the
de�nition of h0

j we havef� 1(`) 2 dom(hj). Ad absurdum, supposehj (`0) = `0. Then,
by (C)(g) we derive h0

j (`) = `, in contradiction with the hypothesis. Thus, hj (`0) 6= `0.
Similarly, ad absurdumsuppose that there isx 2 X such that hj (`0) = s(x). Then,
by (B)(g) we derive h0

j (`) = s0(x), in contradiction with the hypothesis. Thus, for
every x 2 X, hj (`0) 6= s(x).
((): Analogous to the other direction, by relying on the bijectivity of f.

134 Chapter 5. Deciding Robustness Properties inPSpace

Thanks to the properties (A){(D), proving (s; hj) � W
X;� j

(s0; h0
j), for j 2 f 1; 2g, is straightforward.

Consider a core formula' in Core[W](X; � j). Then, (s; hj) j= ' i� (s0; h0
j) j= ' , as shown below:

case: ' = t 1 = t 2. Follows directly from (A)(a) and the fact that f is a bijection.

case: ' = t ,! . Follows directly from (A)(b).

case: ' = t ,! x or ' = t ,! t . Follows directly from (A)(c).

case: ' = predW
X (x) � � . Follows from (B) and the bijectivity of f, which imply that

Pred[W]Xs;h j
(x) and Pred[W]Xs0;h0

j
(x) have the same cardinality.

case: ' = self W
X � � . Follows directly from (C) and the bijectivity of f.

case: ' = remW
X � � . Follows directly from (D) and the bijectivity of f.

case: ' = u = t . Follows directly from (A)(a) and since f(s(u)) = s0(u) (property (1 f) of f).

case: ' = u 2 predW
X (x). Follows directly from (B) and f(s(u)) = s0(u).

case: ' = u 2 self W
X . Follows directly from (C) and f(s(u)) = s0(u).

case: ' = u 2 remW
X . Follows directly from (D) and f(s(u)) = s0(u).

Therefore, (s; h) $ W
X;� (s0; h0).

In the game hopping proof of the� -simulation property, the lemma we just proved is used
as a base case to treat the last hop of the chain of hops, i.e. (sk� 1; hk� 1) $ W

X;� (sk ; hk) = (s0; h0)
in the example above. Referring to this example, all the other hops connecting (s; h) to
(sk� 1; hk� 1) are taken care of by three intermediate results, one for each type of sets be-
tween predecessor sets, self-loop sets, or remainder sets. The idea is that in every interme-
diate hop (sj ; hj) $ W

X;� (sj +1 ; hj +1), the memory state (sj +1 ; hj +1) is obtained from (sj ; hj) by
slightly updating one of these sets. For instance, we could decide to modify the locations in
the set Rem[W]Xsj ;h j

, while being careful that the resulting memory state satis�es the same core
formulae of (sj ; hj). This idea is formalised in the following lemma.

Lemma 5.19. (s; h) $ W
X;� (s; h0) holds if (s; h) � W

X;� (s; h0) and one of the following holds:

(I) h n f (`; ` 0) 2 h j ` 2 Rem[W]Xs;hg = h0n f (`; ` 0) 2 h0 j ` 2 Rem[W]Xs;h0g,

(II) h n f (`; ` 0) 2 h j ` 2 Self [W]Xs;hg = h0n f (`; ` 0) 2 h0 j ` 2 Self [W]Xs;h0g,

(III) h n f (`; ` 0) 2 h j ` 2 Pred[W]Xs;h(x)g = h0n f (`; ` 0) 2 h0 j ` 2 Pred[W]Xs;h0(x)g, for somex 2 X.

Informally, in Lemma 5.19 the heap h0 is obtained by h by modifying the memory cells
corresponding to the sets (I)Rem[W]Xs;h , (II) Self [W]Xs;h , or (III) Pred[W]Xs;h(x) (for some x 2 X).
We ask this modi�cation to be invariant with respect to the satisfaction of the core formulae,
i.e. (s; h) � W

X;� (s; h0). The proofs of the three statements of Lemma 5.19 are all very similar,
and they follow quite closely the proof of Lemma 5.18. In the following, we present the proof
of Lemma 5.19(I). The proofs of the other two statements are given in Appendix C.

Proof of (I) . Consider two heapsh1 and h2, � 1 � 1 and � 2 � 1 such that h = h1 + h2 and
� = � 1 + � 2. Notice that this requires � to be at least two, otherwise the lemma trivially holds.
We partition the set Rem[W]Xs;h0 into two sets S1 and S2, using the following case analysis:

if card(Rem[W]Xs;h \ dom(h1)) < � 1 then

let S1 be a set ofcard(Rem[W]Xs;h \ dom(h1)) locations in Rem[W]Xs;h0

such that s(u) 2 S1 if and only if s(u) 2 Rem[W]Xs;h \ dom(h1).

5.3. A Family of Core Formulae Capturing the Fragment W 135

S2 Rem[W]Xs;h0 n S1.

else if card(Rem[W]Xs;h \ dom(h2)) < � 2 then

let S2 be a set ofcard(Rem[W]Xs;h \ dom(h2)) locations in Rem[W]Xs;h0

such that s(u) 2 S2 if and only if s(u) 2 Rem[W]Xs;h \ dom(h2).

S1 Rem[W]Xs;h0 n S2.

else (i.e. card(Rem[W]Xs;h \ dom(h1)) � � 1 and card(Rem[W]Xs;h \ dom(h2)) � � 2)

let S1 be a set of� 1 locations in Rem[W]Xs;h0

such that s(u) 2 S1 if and only if s(u) 2 Rem[W]Xs;h \ dom(h1).

S2 Rem[W]Xs;h0 n S1.

Notice that S1 and S2 are always well-de�ned, since both (s; h) and (s; h0) satisfy the same
formulae among u 2 remW

X and remW
X � � , for every � 2 [1; �]. Indeed, thanks to the for-

mula u 2 remW
X , if s(u) 2 Rem[W]Xs;h \ dom(hj) (where j 2 f 1; 2g) then s(u) 2 Rem[W]Xs;h0

and so s(u) can be selected when buildingSj . From the formulae of the form remW
X � � , if

card(Rem[W]Xs;h \ dom(hj)) < � j then, as � j < � we conclude that Rem[W]Xs;h0 contains at least
card(Rem[W]Xs;h \ dom(hj)) locations, allowing us to correctly de�ne Sj in the �rst two cases
above. If instead card(Rem[W]Xs;h \ dom(h1)) � � 1 and card(Rem[W]Xs;h \ dom(h2)) � � 2, then
we conclude that both Rem[W]Xs;h and Rem[W]Xs;h0 contain at least � > � 1 locations. Again, this
allows us to correctly de�ne S1 in the last of the cases above.S1 and S2 enjoy the following
properties, given with respect to j 2 f 1; 2g.

1. s(u) 2 Sj if and only if s(u) 2 Rem[W]Xs;h \ dom(hj),

2. min(� j ; card(Sj)) = min(� j ; card(Rem[W]Xs;h \ dom(hj))).

Proof of (1). From the equisatisfaction of u 2 remW
X , s(u) 2 Rem[W]Xs;h i� s(u) 2 Rem[W]Xs;h0.

Then, the property follows from the de�nition of S1 and S2.

Proof of (2). From the equisatisfaction of remW
X � � , for every � 2 [1; �], it holds that

min(�; card(Rem[W]Xs;h)) = min(�; card(Rem[W]Xs;h0)).

First, suppose card(Rem[W]Xs;h) = card(Rem[W]Xs;h0) < � . From � 1 + � 2 = � , the third
case in the de�nition of S1 and S2 cannot hold. The other two cases lead tocard(Sj) =
card(Rem[W]Xs;h j

), for both j 2 f 1; 2g. Instead, suppose that bothRem[W]Xs;h and Rem[W]Xs;h0

have at least � elements. We distinguish three cases:

{ Supposecard(Rem[W]Xs;h \ dom(h1)) < � 1. As card(Rem[W]Xs;h) � � and � = � 1 + � 2, we
conclude that card(Rem[W]Xs;h \ dom(h2)) � � 2. The �rst case in the de�nition of S1

and S2 applies, so that card(S1) = card(Rem[W]Xs;h \ dom(h1)). Thus, card(S1) < � 1.
From card(Rem[W]Xs;h0) � � and � = � 1 + � 2, card(S2) � � 2.

{ Supposecard(Rem[W]Xs;h \ dom(h2)) < � 2. As card(Rem[W]Xs;h) � � and � = � 1 + � 2, we
conclude that card(Rem[W]Xs;h \ dom(h1)) � � 1. The second case in the de�nition ofS1

and S2 applies, so that card(S2) = card(Rem[W]Xs;h \ dom(h2)). Thus, card(S2) < � 2.
From card(Rem[W]Xs;h0) � � and � = � 1 + � 2, card(S1) � � 1.

{ Supposecard(Rem[W]Xs;h \ dom(h1)) � � 1 and card(Rem[W]Xs;h \ dom(h2)) � � 2. Then,
the third case in the de�nition of S1 and S2 applies, so that card(S1) = � 1. Lastly,
from card(Rem[W]Xs;h0) � � and � = � 1 + � 2, card(S2) � � 2.

136 Chapter 5. Deciding Robustness Properties inPSpace

We rely on S1 and S2 in order to de�ne the heaps h0
1 and h0

2 such that (s; h1) � W
X;� 1

(s; h0
1)

and (s; h2) � W
X;� 2

(s; h0
2) (as required by the hop relation $ W

X;�). First, let us de�ne the two heaps
ch1

def= h1 n f (`; ` 0) 2 h1 j ` 2 Rem[W]Xs;hg and ch2
def= h2 n f (`; ` 0) 2 h2 j ` 2 Rem[W]Xs;hg, obtained from

h1 and h2 by removing the locations in Rem[W]Xs;h from their domain. Therefore, from h = h1+ h2

we conclude that:

h = ch1 + ch2 + f (`; ` 0) 2 h j ` 2 Rem[W]Xs;hg.

Thus, from the hypothesis h n f (`; ` 0) 2 h j ` 2 Rem[W]Xs;hg = h0n f (`; ` 0) 2 h0 j ` 2 Rem[W]Xs;h0g we

derive ch1 + ch2 = h0n f (`; ` 0) 2 h0 j ` 2 Rem[W]Xs;h0g. We de�ne the heapsh0
1 and h0

2 as:

h0
1

def= ch1 + f (`; ` 0) 2 h0 j ` 2 S1g; h0
2

def= ch2 + f (`; ` 0) 2 h0 j ` 2 S2g:

As f (`; ` 0) 2 h0 j ` 2 S1g + f (`; ` 0) 2 h0 j ` 2 S2g = f (`; ` 0) 2 h0 j ` 2 Rem[W]Xs;h0g by de�nition
of S1 and S2, the two heaps h0

1 and h0
2 are well-de�ned, they are disjoint, and h0 = h0

1 + h0
2.

Moreover, S1 = Rem[W]Xs;h0 \ dom(h0
1) and S2 = Rem[W]Xs;h0 \ dom(h0

2).
We now prove four properties ofh0

1 and h0
2 that are analogous to the properties (A){(D) in

the proof of Lemma 5.18. Letj 2 f 1; 2g.

A. (a) for every t 2 T[W]X, [[t]]Xs;h j
is de�ned i� so is [[t]]Xs;h0

j
. If de�ned, [[t]]Xs;h j

= [[t]]Xs;h0
j
.

(b) [[t]]Xs;h j
2 dom(hj) if and only if [[t]]Xs;h0

j
2 dom(h0

j).

(c) Given t 0 2 X[f t g, we havehj ([[t]]Xs;h j
) = [[t 0]]Xs;h j

if and only if h0
j ([[t]]Xs;h0

j
) = [[t 0]]Xs;h0

j
.

(d) ` 2 Lab[W]Xs;h n Lab[W]Xs;h j
if and only if ` 2 Lab[W]Xs;h0 n Lab[W]Xs;h0

j
.

These four statements follow primarily from the fact that chj is a subheap of both
hj and h0

j . In the following we show the left-to-right direction for each of these
statements. The right-to-left direction follows analogously.

Proof of (a). Obvious for t 2 X, so supposet = n(x) 2 NV[W]X.

()): Suppose [[n(x)]]X
s;h j

to be de�ned, so [[n(x)]]X
s;h j

by def
= hj (s(x)). As s(x) 2 Lab[W]Xs;h ,

s(x) 62Rem[W]Xs;h , and therefores(x) 2 dom(chj) and chj (s(x)) = hj (s(x)). By de�nition

of h0
j , chj (s(x)) = h0

j (s(x)). Thus, [[n(x)]]X
s;h j

= [[n(x)]]X
s;h0

j
.

Proof of (b). ()): Suppose [[t]]Xs;h j
2 dom(hj). By Lemma 5.14(I), [[t]]Xs;h j

= [[t]]Xs;h and

thus [[t]]Xs;h j
62Rem[W]Xs;h . Therefore, [[t]]Xs;h j

2 dom(chj). From (a), [[t]]Xs;h0
j

= [[t]]Xs;h j
,

which in turn implies [[t]]Xs;h0
j

2 dom(chj) � dom(h0
j).

Proof of (c). ()): hj ([[t]]Xs;h j
) = [[t 0]]Xs;h j

and therefore by (a) we have [[t]]Xs;h j
= [[t]]Xs;h0

j

and [[t 0]]Xs;h j
= [[t 0]]Xs;h0

j
. As done in the proof of (b), we conclude that [[t]]Xs;h j

2 dom(chj).

By chj � hj , chj ([[t]]Xs;h j
) = [[t 0]]Xs;h j

. By chj � h0
j , h0

j ([[t]]Xs;h0
j
) = [[t 0]]Xs;h0

j
.

Proof of (d). ()): Assume ` 2 Lab[W]Xs;h n Lab[W]Xs;h j
. By de�nition, it cannot be that `

is assigned to a program variable inX, as otherwise` 2 Lab[W]Xs;h j
. So, there is a

next-point variable n(x) such that [[n(x)]]X
s;h = `. From s(x) 2 Lab[W]Xs;h , we derive

that s(x) 62Rem[W]Xs;h and therefore s(x) 2 dom(h n f (`; ` 0) 2 h j ` 2 Rem[W]Xs;hg).
From h n f (`; ` 0) 2 h j ` 2 Rem[W]Xs;hg = h0n f (`; ` 0) 2 h0 j ` 2 Rem[W]Xs;h0g, we conclude
that h0(s(x)) = ` and so ` 2 Lab[W]Xs;h0. Ad absurdum, suppose` 2 Lab[W]Xs;h0

j
.

From (a) we have ` 2 Lab[W]Xs;h j
, contradicting ` 2 Lab[W]Xs;h n Lab[W]Xs;h j

. Thus,
` 62Lab[W]Xs;h0

j
and therefore ` 2 Lab[W]Xs;h0 n Lab[W]Xs;h0

j
.

5.3. A Family of Core Formulae Capturing the Fragment W 137

B. For every x 2 X, Pred[W]Xs;h0
j
(x) = Pred[W]Xs;h j

(x).

We show left-to-right direction. Thanks to chj , the right-to-left direction is analogous.

Proof of (B) . ()): Suppose` 2 Pred[W]Xs;h0
j
(x). By de�nition, ` 62Lab[W]Xs;h0

j
and h0

j (`) =

s(x). From (a), ` 62Lab[W]Xs;h j
. From h0

j � h0, h0(`) = s(x) and therefore it cannot

be that ` belongs to Rem[W]Xs;h0. By de�nition of h0
j , ` 2 dom(chj). From chj � h0

j ,
chj (`) = s(x). From chj � hj , hj (`) = s(x). Together with ` 62Lab[W]Xs;h j

, this
implies ` 2 Pred[W]Xs;h j

(x),

C. Self [W]Xs;h0
j

= Self [W]Xs;h j
.

We show left-to-right direction. Thanks to chj , the right-to-left direction is analogous.

Proof of (C) . ()): Suppose` 2 Self [W]Xs;h0
j
. By de�nition, ` 62Lab[W]Xs;h0

j
and h0

j (`) = `.

From (a), ` 62Lab[W]Xs;h j
. From h0

j � h0, h0(`) = ` and therefore it cannot be that `

belongs to Rem[W]Xs;h0. By de�nition of h0
j , ` 2 dom(chj). From chj � h0

j , chj (`) = `.

From chj � hj , hj (`) = `. Together with ` 62Lab[W]Xs;h j
, this implies ` 2 Self [W]Xs;h j

,

D. min(� j ; card(Rem[W]Xs;h0
j
)) = min(� j ; card(Rem[W]Xs;h j

)).

Proof of (D) . From Lemma 5.14(IV) we have:

Rem[W]Xs;h0
j

=
�
Rem[W]Xs;h0 \ dom(h0

j)
�

[

f ` 2 Lab[W]Xs;h0 n Lab[W]Xs;h0
j

j ` 2 dom(h0
j); h0

j (`) 6= ` and 8x 2 X; h0
j (`) 6= s(x)g;

Rem[W]Xs;h j
=

�
Rem[W]Xs;h \ dom(hj)

�
[

f ` 2 Lab[W]Xs;h n Lab[W]Xs;h j
j ` 2 dom(hj); hj (`) 6= ` and 8x 2 X; hj (`) 6= s(x)g:

By de�nition of h0
j , Rem[W]Xs;h0 \ dom(h0

j) = Sj . By (2),

min(� j ; card(Rem[W]Xs;h0 \ dom(h0
j))) = min(� j ; card(Rem[W]Xs;h \ dom(hj))).

Thus, in order to prove (D) we only need to show that the two sets

f ` 2 Lab[W]Xs;h0 n Lab[W]Xs;h0
j

j ` 2 dom(h0
j); h0

j (`) 6= ` and 8x 2 X; h0
j (`) 6= s(x)g

and f ` 2 Lab[W]Xs;h n Lab[W]Xs;h j
j ` 2 dom(hj); hj (`) 6= ` and 8x 2 X; hj (`) 6= s(x)g

are equivalent. This amounts to showing that, given a location` 2 LOC,

e. ` 2 Lab[W]Xs;h0 n Lab[W]Xs;h0
j
; ` 2 dom(h0

j); h0
j (`) 6= ` and 8x 2 X h0

j (`) 6= s(x) i� ` 2

Lab[W]Xs;h n Lab[W]Xs;h j
; ` 2 dom(hj); hj (`) 6= ` and 8x 2 X hj (`) 6= s(x).

Proof of (e). ()): Suppose` 2 Lab[W]Xs;h0 n Lab[W]Xs;h0
j

such that ` 2 dom(h0
j), h0

j (`) 6= `

and for every x 2 X, h0
j (`) 6= s(x). From (A)(d), we derive ` 2 Lab[W]Xs;h n Lab[W]Xs;h j

.
From ` 2 Lab[W]Xs;h0, we derive` 62Rem[W]Xs;h0. So, by` 2 dom(h0

j) and de�nition of h0
j ,

we conclude that ` 2 dom(chj). Moreover, chj (`) 6= ` and for every x 2 X, chj (`) 6= s(x).
By chj � hj , we derive that ` 2 dom(hj), hj (`) 6= ` and for every x 2 X, hj (`) 6= s(x).
((): Analogous to the other direction, again using (A)(d) and the de�nition of chj .

Thanks to the properties (A){(D), proving (s; hj) � W
X;� j

(s0; h0
j), for j 2 f 1; 2g, is straightforward.

Consider a core formula' in Core[W](X; � j). Then, (s; hj) j= ' i� (s; h0
j) j= ' , as shown below:

case: ' = t 1 = t 2. Follows directly from (A)(a).

case: ' = t ,! . Follows directly from (A)(b).

138 Chapter 5. Deciding Robustness Properties inPSpace

case: ' = t ,! x or ' = t ,! t . Follows directly from (A)(c).

case: ' = predW
X (x) � � . Follows directly from (B).

case: ' = self W
X � � . Follows directly from (C).

case: ' = remW
X � � . Follows directly from (D).

case: ' = u = t . Follows directly from (A)(a), since (s; hj) and (s; hj) share the same store.

case: ' = u 2 predW
X (x). Follows directly from (B).

case: ' = u 2 self W
X . Follows directly from (C).

case: ' = u 2 remW
X . SinceSj = Rem[W]Xs;h0 \ dom(h0

j), it follows from (1) and (D)(e).

Therefore, (s; h) $ W
X;� (s; h0).

Strong of Lemma 5.19, we are ready to prove the� -simulation property for the weak fragment.

Lemma 5.20 (W : � -simulation) . � W
X;� � $ W

X;� .

Proof. Let us consider (s; h) and (s0; h0) such that (s; h) � W
X;� (s0; h0). We build a chain of hops

as the one below, leading to the result by transitivity of $ W
X;� and Lemma 5.18,

(s; h) = (s1; h1) $ W
X;� (s2; h2) $ W

X;� : : : $ W
X;� (sk� 1; hk� 1) $ W

X;� (sk ; hk) = (s0; h0).

The proof is by induction on the cardinality of the set [(s; h)# X(s0; h0)] de�ned as follows:
(

(S; T) 2

(
(Rem[W]Xs;h ; Rem[W]Xs0;h0); (Self [W]Xs;h ; Self [W]Xs0;h0)

(Pred[W]Xs;h(x); Pred[W]Xs0;h0(x))

�
�
�
�
�

x 2 X

) �
�
�
�
�

card(S) 6= card(T)

)

Intuitively, this set contains pairs of predecessors sets, self-loops sets, or remainder sets that
have di�erent cardinalities in the two memory states. We build the chain of hops so that for
every intermediate memory state in the chain is obtained from the previous one by modifying
the heap in a way that strictly reduces the number of these pairs, always with respect to the
last memory state of the chain, i.e. (s0; h0).

base case: [(s; h)# X(s0; h0)] = 0 . Follows by Lemma 5.18, as ((s; h); (s0; h0)) 2
� T

� 0� 1 � W
X;� 0

�
.

induction step: [(s; h)# X(s0; h0)] > 0. Let (S; T) 2 [(s; h)# X(s0; h0)]. We split the proof in
three cases, all of them quite similar, dealing with the di�erent types of setsS and T.

case (S; T) = (Rem[W]Xs;h ; Rem[W]Xs0;h0). Let us assume thatcard(S) > card(T). Notice that
this assumption is without loss of generality: in the case wherecard(S) < card(T),
it is su�cient to swap (s; h) and (s0; h0) in the proof, and apply the construction we
now show to produce a chain of hops going from (s0; h0) to (s; h), i.e.

(s0; h0) = (s1; h1) $ W
X;� (s2; h2) $ W

X;� : : : $ W
X;� (sk� 1; hk� 1) $ W

X;� (sk ; hk) = (s; h).

So, assumingcard(S) > card(T), consider the heaph00obtained from h by removing
from its domain card(S) � card(T) locations in Rem[W]Xs;h and di�erent from s(u). For-
mally, h00� h and there is a setQ � Rem[W]Xs;h such that card(Q) = card(S) � card(T),
dom(h00) = dom(h) n Q and s(u) 62Q. Notice that a heap h00satisfying these condi-
tions exists. In particular, as card(S) 6= card(T) and (s; h) � W

X;� (s0; h0), both memory
states must satisfyremW

X � � , where � is assumed strictly positive. So, bothS and T
have at least � � 1 elements, which allows us to keeps(u) in the domain of h00, in
the case it belongs todom(h). We derive four properties of (s; h) and (s; h00):

1. for everyt 2 T[W]X, [[t]]Xs;h is de�ned i� so is [[t]]Xs;h00. When de�ned, [[t]]Xs;h = [[t]]Xs;h00,
and if [[t]]Xs;h 2 dom(h), then h00([[t]]Xs;h00) = h([[t]]Xs;h).

5.3. A Family of Core Formulae Capturing the Fragment W 139

Proof. Let us �rst show that for every t 2 T[W]X, [[t]]Xs;h is de�ned i� so is [[t]]Xs;h00.
This statement is obvious for t 2 X, so supposet = n(x) 2 NV[W]X. The
right-to-left direction follows directly from Lemma 5.14(I). For the left-to-

right direction, suppose [[n(x)]]X
s;h to be de�ned, i.e. [[n(x)]]X

s;h
by def
= h(s(x)).

Since s(x) 2 Lab[W]Xs;h , it cannot be that s(x) 2 Rem[W]Xs;h , which allows

us to conclude that h(s(x)) = h00(s(x)). From [[n(x)]]X
s;h00

by def
= h00(s(x)) we

derive [[n(x)]]X
s;h00 = [[n(x)]]X

s;h . Notice that this proves the second statement,
i.e. [[t]]Xs;h = [[t]]Xs;h00, for the case of next-point variables (the case of program
variables being obvious). Let us now show that if [[t]]Xs;h 2 dom(h), then
h00([[t]]Xs;h00) = h([[t]]Xs;h). Suppose [[t]]Xs;h 2 dom(h). Since [[t]]Xs;h 2 Lab[W]Xs;h ,
we conclude that [[t]]Xs;h 62Rem[W]Xs;h . By de�nition of h00, [[t]]Xs;h 2 dom(h00).
From [[t]]Xs;h = [[t]]Xs;h00 and h00� h we conclude:h00([[t]]Xs;h00) = h([[t]]Xs;h).

2. for every x 2 X, Pred[W]Xs;h00(x) = Pred[W]Xs;h(x).

Proof. Directly from the property (1) above and Lemma 5.14(II). Indeed, (1)
implies Lab[W]Xs;h = Lab[W]Xs;h00, so that the equivalence in Lemma 5.14(II)
becomesPred[W]Xs;h00(x) = Pred[W]Xs;h(x) \ dom(h00). Lastly, by de�nition
of h00, Pred[W]Xs;h(x) \ dom(h00) = Pred[W]Xs;h(x).

3. Self [W]Xs;h00 = Self [W]Xs;h .

Proof. Directly from the property (1) and Lemma 5.14(III).

4. Rem[W]Xs;h00 � Rem[W]Xs;h .

Proof. Directly from the property (1) and Lemma 5.14(IV).

Thanks to these four properties, we conclude thatQ [Rem[W]Xs;h00 = Rem[W]Xs;h , and so
from card(Q) = card(S) � card(T) we conclude that card(Rem[W]Xs;h00) = card(T). We
now show that (s; h) � W

X;� (s; h00), (s; h) $ W
X;� (s; h00), and (s; h00) $ W

X;� (s0; h0).

Proof of (s; h) � W
X;� (s; h00). Thanks to the property (1), (s; h) and (s; h00) satisfy the

same core formulae of the formt 1 = t 2, t 1 ,! , t 1 ,! x, t 1 ,! t 1 and u = t 1.
Thanks to the property (2), given x 2 X, (s; h) and (s; h00) satisfy the same core
formulae of the form predW

X (x) � � , for every � 2 [1; �], and they equisatisfy the
core formula u 2 predW

X (x). Thanks to the property (3), (s; h) and (s; h00) satisfy
the same core formulae of the formself W

X � � , for every � 2 [1; �], and they
equisatisfy the core formula u 2 self W

X . From card(Rem[W]Xs;h00) = card(T) � �
and card(S) � � , we conclude that (s; h) and (s; h00) satisfy the same core formu-
lae of the form remW

X � � , for every � 2 [1; �]. Since h00is constructed so that
s(u) is kept in dom(h00) if it belongs to Rem[W]Xs;h , we also conclude that the two
memory states (s; h) and (s; h00) equisatisfy the formula u 2 remW

X .

Proof of (s; h) $ W
X;� (s; h00). Directly from the properties (1){(4), we conclude that

h n f (`; ` 0) 2 h j ` 2 Rem[W]Xs;hg = h00n f (`; ` 0) 2 h00j ` 2 Rem[W]Xs;h00g. Thanks
to (s; h) � W

X;� (s; h00), we apply Lemma 5.19(I) and derive that (s; h) $ W
X;� (s; h00).

Proof of (s; h00) $ W
X;� (s0; h0). As � W

X;� is an equivalence relation, (s; h) � W
X;� (s; h00) al-

lows us to derive that (s; h00) � W
X;� (s0; h0). From the properties (1){(4), together

with card(Rem[W]Xs;h00) = card(T), we derive [(s; h00)# X(s0; h0)] < [(s; h)# X(s0; h0)].
By induction hypothesis, (s; h00) $ W

X;� (s0; h0).

From (s; h) $ W
X;� (s; h00), (s; h00) $ W

X;� (s0; h0) and by transitivity of the hop rela-
tion $ W

X;� we conclude: (s; h) $ W
X;� (s0; h0).

140 Chapter 5. Deciding Robustness Properties inPSpace

case (S; T) = (Self [W]Xs;h ; Self [W]Xs0;h0). As in the previous case, without loss of generality
we can assumecard(S) > card(T). We consider the heaph00obtained from h by remov-
ing from its domain card(S) � card(T) locations in Self [W]Xs;h , all di�erent from s(u).
Formally, h00� h and there is a setQ � Self [W]Xs;h s.t. card(Q) = card(S) � card(T),
dom(h00) = dom(h) n Q and s(u) 62Q. Notice that a heap h00satisfying these condi-
tions exists. In particular, as card(S) 6= card(T) and (s; h) � W

X;� (s0; h0), both memory
states must satisfy self W

X � � , where � is assumed strictly positive. So, bothS
and T have at least� � 1 elements, which allows us to keeps(u) in the domain of h00,
in the case it belongs todom(h). (s; h) and (s; h00) enjoy the following four properties:

1. for everyt 2 T[W]X, [[t]]Xs;h is de�ned i� so is [[t]]Xs;h00. When de�ned, [[t]]Xs;h = [[t]]Xs;h00,
and if [[t]]Xs;h 2 dom(h), then h00([[t]]Xs;h00) = h([[t]]Xs;h),

2. for every x 2 X, Pred[W]Xs;h00(x) = Pred[W]Xs;h(x),

3. Rem[W]Xs;h00 = Rem[W]Xs;h ,

4. Self [W]Xs;h00 � Self [W]Xs;h .

The �rst property is proven as the analogous property in the previous case of the
proof, whereas the other three properties follow by Lemma 5.14. Thanks to (1){(4),
we derive that Q[Self [W]Xs;h00 = Self [W]Xs;h , and so, bycard(Q) = card(S) � card(T),
we conclude thatcard(Self [W]Xs;h00) = card(T). As done in the previous step, we show
that (s; h) � W

X;� (s; h00), (s; h) $ W
X;� (s; h00), and (s; h00) $ W

X;� (s0; h0). By transitivity of
the hop relation $ W

X;� , the last two relationships imply (s; h) $ W
X;� (s0; h0).

Proof of (s; h) � W
X;� (s; h00). From (1), (s; h) and (s; h00) satisfy the same core formu-

lae of the form t 1 = t 2, t 1 ,! , t 1 ,! x, t 1 ,! t 1 and u = t 1. From (2), given
x 2 X and � 2 [1; �], (s; h) and (s; h00) equisatisfy the core formulapredW

X (x) � �
and they equisatisfy the core formulau 2 predW

X (x). From (3), (s; h) and (s; h00)
satisfy the same core formulae of the formremW

X � � , for all � 2 [1; �], and
they equisatisfy the core formulau 2 remW

X . By card(Self [W]Xs;h00) = card(T) � �
and card(S) � � , we conclude that (s; h) and (s; h00) satisfy the same core formu-
lae of the form self W

X � � , for every � 2 [1; �]. Sinceh00is constructed so that
s(u) is kept in dom(h00) if it belongs to Self [W]Xs;h , we also conclude that the two
memory states (s; h) and (s; h00) equisatisfy the formula u 2 self W

X .

Proof of (s; h) $ W
X;� (s; h00). Directly from the properties (1){(4), we conclude that

h n f (`; ` 0) 2 h j ` 2 Self [W]Xs;hg = h00n f (`; ` 0) 2 h00j ` 2 Self [W]Xs;h00g. Thanks
to (s; h) � W

X;� (s; h00), we apply Lemma 5.19(II) and derive that (s; h) $ W
X;� (s; h00).

Proof of (s; h00) $ W
X;� (s0; h0). As � W

X;� is an equivalence relation, (s; h) � W
X;� (s; h00) al-

lows us to derive that (s; h00) � W
X;� (s0; h0). From the equivalences (1){(4), and

card(Self [W]Xs;h00) = card(T), we derive [(s; h00)# X(s0; h0)] < [(s; h)# X(s0; h0)]. By
induction hypothesis, (s; h00) $ W

X;� (s0; h0).

case (S; T) = (Pred[W]Xs;h(x); Pred[W]Xs0;h0(x)) , for some x 2 X. As previously done, with-
out loss of generality we assumecard(S) > card(T). Consider the heaph00obtained
from h by removing from its domain card(S) � card(T) locations in Pred[W]Xs;h(x)
and di�erent from s(u). Formally, h00 � h and there is a setQ � Pred[W]Xs;h(x)
such that card(Q) = card(S) � card(T), dom(h00) = dom(h) n Q and s(u) 62Q. Notice
that a heap h00satisfying these conditions exists. In particular, ascard(S) 6= card(T)
and (s; h) � W

X;� (s0; h0), both memory states must satisfy predW
X (x) � � , where � is

assumed strictly positive. So, both S and T have at least � � 1 elements, which

5.3. A Family of Core Formulae Capturing the Fragment W 141

allows us to keeps(u) in the domain of h00, in the case it belongs todom(h). (s; h)
and (s; h00) enjoy the following �ve properties:

1. for everyt 2 T[W]X, [[t]]Xs;h is de�ned i� so is [[t]]Xs;h00. When de�ned, [[t]]Xs;h = [[t]]Xs;h00,
and if [[t]]Xs;h 2 dom(h), then h00([[t]]Xs;h00) = h([[t]]Xs;h),

2. for every y 2 X, if s(x) 6= s(y) then Pred[W]Xs;h00(y) = Pred[W]Xs;h(y),

3. Self [W]Xs;h00 = Self [W]Xs;h ,

4. Rem[W]Xs;h00 = Rem[W]Xs;h ,

5. Pred[W]Xs;h00(x) � Pred[W]Xs;h(x).

Again, we omit the proofs of these properties, which are analogous to the properties
in the previous two cases of the proof. Thanks to these properties, we conclude
that Q [Pred[W]Xs;h00(x) = Pred[W]Xs;h(x), and so from card(Q) = card(S) � card(T)
we conclude that card(Pred[W]Xs;h00(x)) = card(T). We show that (s; h) � W

X;� (s; h00),
(s; h) $ W

X;� (s; h00), and (s; h00) $ W
X;� (s0; h0). By transitivity of the hop relation $ W

X;� ,
the last two relationships imply (s; h) $ W

X;� (s0; h0), concluding the proof.

Proof of (s; h) � W
X;� (s; h00). Thanks to the property (1), (s; h) and (s; h00) satisfy the

same core formulae of the formt 1 = t 2, t 1 ,! , t 1 ,! x, t 1 ,! t 1 and u = t 1.
Thanks to the property (3), (s; h) and (s; h00) satisfy the same core formulae of
the form self W

X � � , for every � 2 [1; �], and they equisatisfy the core formula
u 2 self W

X . Thanks to the property (4), (s; h) and (s; h00) satisfy the same
core formulae of the form remW

X � � , for every � 2 [1; �], and they equisatisfy
the core formula u 2 remW

X . Given a variable y 2 X such that s(y) 6= s(x),
the property (2) insures that (s; h) and (s; h00) satisfy the same core formulae
of the form predW

X (y) � � , for every � 2 [1; �], and they equisatisfy the for-
mula u 2 self W

X (y). Consider a variable y 2 X such that s(y) = s(x). By
de�nition, Pred[W]Xs;h00(y) = Pred[W]Xs;h00(x) and Pred[W]Xs;h(y) = Pred[W]Xs;h(x).
So, from card(Pred[W]Xs;h00) = card(T) � � and card(S) � � , we conclude that
both card(Pred[W]Xs;h00(y)) � � and card(Pred[W]Xs;h(y)) � � holds. So, (s; h) and
(s; h00) satisfy the same core formulae of the formpredW

X (y) � � , for all � 2 [1; �].
Lastly, as h00 is constructed so that s(u) is kept in dom(h00) if it belongs to
Pred[W]Xs;h(x), we conclude that the two memory states (s; h) and (s; h00) equi-
satisfy the formula u 2 predW

X (y).

Proof of (s; h) $ W
X;� (s; h00). Directly from the properties (1){(4), we conclude that

h n f (`; ` 0) 2 h j ` 2 Pred[W]Xs;h(x)g = h00n f (`; ` 0) 2 h00j ` 2 Pred[W]Xs;h00(x)g holds.
As (s; h) � W

X;� (s; h00), we apply Lemma 5.19(III) to derive (s; h) $ W
X;� (s; h00).

Proof of (s; h00) $ W
X;� (s0; h0). As � W

X;� is an equivalence relation, (s; h) � W
X;� (s; h00) al-

lows us to derive (s; h00) � W
X;� (s0; h0). From the properties (1){(5), together with

card(Pred[W]Xs;h00(x)) = card(T), we derive [(s; h00)# X(s0; h0)] < [(s; h)# X(s0; h0)].
By induction hypothesis, (s; h00) $ W

X;� (s0; h0).

5.3.4 Step IV: 9-simulation.

As the weak fragment involves �rst-order quanti�cation, in order for the core formulae to char-
acterise the expressive power of the logic they need to enjoy a9-simulation property. Similarly
to the � -simulation stated in Lemma 5.6, this property can be formalised by looking at the
semantics of the existential quanti�cation over the unique variable name u. Recall that, in a

142 Chapter 5. Deciding Robustness Properties inPSpace

formula of the form 9u ' , the existential quanti�cation essentially requires to update the loca-
tion assigned to u so that the formula ' is satis�ed. The 9-simulation property states that,
given (s; h) � W

X;� (s0; h0), whenever we assign a locatioǹ1 to u through s, it is possible to �nd a
location `2 such that (s[u `1]; h) � W

X;� (s0[u `2]; h0). Albeit this is enough to conclude that
the core formulae e�ectively capture the expressiveness of the �rst-order quanti�cation, in order
to show that SL([9]1; � ; [�� ; ,! +]SW) enjoys a polynomial small-heap property we want to restrict
the space of locations that must be considered when selecting the locatioǹ2. In order to do so,
in the following and for the rest of the chapter we assumeLOC to be the set of natural numbers.

Assumption 5.21. LOC= N.

As the two sets are isomorphic this assumption is without loss of generality, and allows us to use
arithmetic constraints directly on locations. We de�ne the maximum value of a memory state.

De�nition 5.22 (Maximum value) . Consider a memory state (s; h), and let Y � VAR. We
write maxvalY(s; h) for the location max(dom(h) [ran(h) [s(Y)), i.e. the maximum valueamong
the locations assigned to a variable inYor appearing in either the domain or range of the heaph.

The notion of maximum value allows us to restrict the possible choices for the locatioǹ2 in
the 9-simulation property to a location that is at most maxvalX(s0; h0) + 1. Taking into account
this additional constraint, the 9-simulation property is formalised as follows.

Lemma 5.23 (W : 9-simulation) . Suppose (s; h) � W
X;� (s0; h0). For every location `1 2 LOC there

is a location `2 � maxvalX(s0; h0) + 1 such that (s[u `1]; h) � W
X;� (s0[u `2]; h0).

Proof. First of, we notice that the de�nition of predecessors sets, self-loops sets and remainder
sets does not depend on the location assigned to the variableu 62X. More precisely, for every
memory state (bs; bh) and location b̀ the following equivalences hold (wherex 2 X):

Lab[W]X
bs;bh

= Lab[W]X
bs[u b̀];bh

, Pred[W]X
bs;bh

(x) = Pred[W]X
bs[u b̀];bh

(x) ,

Self [W]X
bs;bh

= Self [W]X
bs[u b̀];bh

, Rem[W]X
bs;bh

= Rem[W]X
bs[u b̀];bh

.

We denote these equivalences by (Inv-u). Directly from them, we notice that for every core
formula ' in Sk[W](X; �) and `1; `2 2 LOC, we have

(s[u `1]; h) j= ' , i� (s; h) j= ' , (by (Inv- u))

i� (s0; h0) j= ' , (by (s; h) � W
X;� (s0; h0))

i� (s0[u `2]; h0) j= ' . (by (Inv- u))

Therefore, in order to prove the result it is su�cient to show that for every `1 2 LOC there
is `2 � maxvalX(s0; h0) + 1 such that the memory states (s[u `1]; h) and (s0[u `2]; h0) agree
on the satisfaction of every core formula inObs[W](X). The choice for `2 depends on whether̀ 1

belongs to the set of labelled locations, a predecessor set, the self-loop set, the remainder set,
or it does not belong to any of these sets:

case: `1 2 Lab[W]Xs;h . Let t 2 T[W]X be such that [[t]]Xs;h = `1. By (s; h) � W
X;� (s0; h0), [[t]]Xs0;h0

is de�ned. Consider `2 = [[t]]Xs0;h0. Notice that if t = x (syntactically) holds for some
x 2 X, then `2 2 s(X). Otherwise, t = n(x) (for x 2 X) and so `2 2 ran(h). Therefore, by
de�nition of maximum value, `2 � maxvalX(s0; h0)+1. We show that the two memory states
(s[u `1]; h) and (s0[u `2]; h0) satisfy the same core formulae fromObs[W](X). Given
a core formula ' in f u 2 predW

X (x); u 2 self W
X ; u 2 remW

X j x 2 Xg, we conclude that

5.3. A Family of Core Formulae Capturing the Fragment W 143

(s[u `1]; h) 6j= ' and (s0[u `2]; h0) 6j= ' . Indeed, ' can be satis�ed only if the location
assigned tou is unlabelled. This is not the case here, as̀1 2 Lab[W]Xs;h = Lab[W]Xs[u `1];h

and `2 2 Lab[W]Xs0;h0 = Lab[W]Xs0[u `2];h0 by (Inv- u). Now, let us consider a core formula of
the form u = t 0, where t 0 2 T[W]X. We have

(s[u `1]; h) j= u = t 0,

, `1 = [[t 0]]Xs[u `1];h , (by de�nition of j=)

, `1 = [[t 0]]Xs;h = [[t]]Xs;h , (by hypothesis̀ 1 = [[t]]Xs;h and [[t 0]]Xs[u `1];h = [[t 0]]Xs;h)

, `2 = [[t 0]]Xs0;h0 = [[t]]Xs0;h0, (from `2 = [[t]]Xs0;h0 and (s; h) � W
X;� (s0; h0))

, `2 = [[t 0]]Xs0[u `2];h0,

(from [[t 0]]Xs0[u `1];h0 = [[t 0]]Xs0;h0. The right-to-left direction also uses `2 = [[t 0]]Xs0;h0)

, (s0[u `2]; h0) j= u = t 0. (by de�nition of j=)

case: `1 2 Rem[W]Xs;h . In this case, card(Rem[W]Xs;h) � 1 and so (s; h) j= remW
X � 1. From the

hypothesis (s; h) � W
X;� (s0; h0), this implies card(Rem[W]Xs0;h0) � 1. Consider`2 2 Rem[W]Xs0;h0.

As `2 2 dom(h), we have `2 � maxvalX(s0; h0) + 1. From (Inv- u) (fourth equivalence),
both the memory states (s[u `1]; h) and (s0[u `2]; h0) satisfy the formula u 2 remW

X .
Moreover, (s[u `1]; h) 6j= ' and (s0[u `2]; h0) 6j= ' hold for every core formula ' in the
set f u = t ; u 2 predW

X (x); u 2 self W
X j x 2 X and t 2 T[W]Xg.

case: `1 2 Self [W]Xs;h . In this case, card(Self [W]Xs;h) � 1 and so (s; h) j= self W
X � 1. From the

hypothesis (s; h) � W
X;� (s0; h0), this meanscard(Self [W]Xs0;h0) � 1. Consider`2 2 Self [W]Xs0;h0.

As `2 2 dom(h), we have `2 � maxvalX(s0; h0) + 1. Similarly to the previous cases, we can
show that the two memory states (s[u `1]; h) and (s0[u `2]; h0) satisfy the same
core formulae from Obs[W](X). More precisely, the two memory states (s[u `1]; h)
and (s0[u `2]; h0) only satisfy the core formula u 2 self W

X .

case: `1 2 Pred[W]Xs;h(x), for some x 2 X. In this case, card(Pred[W]Xs;h(x)) � 1 and so (s; h)
satis�es predW

X (x) � 1. From (s; h) � W
X;� (s0; h0), this implies card(Pred[W]Xs0;h0(x)) � 1.

Consider `2 2 Pred[W]Xs0;h0(x). As `2 2 dom(h), it holds that `2 � maxvalX(s0; h0) + 1.
Both (s[u `1]; h) 6j= ' and (s0[u `2]; h0) 6j= ' hold for every formula ' in the set

f u = t ; u 2 self W
X ; u 2 remW

X j x 2 X and t 2 T[W]Xg.

Let us consider the a core formulau 2 predW
X (y), for y 2 X. We have,

(s[u `1]; h) j= u 2 predW
X (y),

, `1 2 Pred[W]Xs[u `1];h(y), (by de�nition of j=)

, `1 2 Pred[W]Xs;h(x) and s(x) = s(y),

(by hypothesis̀ 1 2 Pred[W]Xs;h(x) and Pred[W]Xs;h(y) = Pred[W]Xs[u `1];h(y), as u 62X)

, `2 2 Pred[W]Xs0;h0(x) and s0(x) = s0(y),

(from `2 2 Pred[W]Xs0;h0(x) and (s; h) � W
X;� (s0; h0))

, `2 2 Pred[W]Xs0[u `2];h0(y),

(from Pred[W]Xs0;h0(y) = Pred[W]Xs0[u `1];h0(y), as u 62X.

The right-to-left direction also uses `2 2 Pred[W]Xs0;h0(x))

, (s0[u `2]; h0) j= u 2 predW
X (y). (by de�nition of j=)

144 Chapter 5. Deciding Robustness Properties inPSpace

case: `1 62dom(h) [Lab[W]Xs;h . In this case,`1 is an unlabelled location that does not belong to
Rem[W]Xs;h , Self [W]Xs;h nor Pred[W]Xs;h(x) (for any x 2 X). Let `2 = maxvalX(s0; h0)+1. By
de�nition of maxvalX(s0; h0), we have `2 62dom(h0) and `2 62Lab[W]Xs0;h0 � ran(h0) [s0(X).
Thus, `2 is an unlabelled location that does not belong to neitherRem[W]Xs0;h0, Self [W]Xs0;h0

nor Pred[W]Xs0;h0(x) (for any x 2 X). By (Inv- u) and from the de�nition of the core formulae,
for every ' in Obs[W](X) we have (s[u `1]; h) 6j= ' and (s0[u `2]; h0) 6j= ' .

5.4 Recap: How to Apply the Core Formulae Technique

The proof of the 9-simulation property ends the analysis of the weak fragment (with the ex-
ception of the magic wand W �� S, which is studied in Section 5.6). In the next section, we
reformulate this analysis in the context of the strong fragment. While the key steps are exactly
the same, the de�nition of the core formulae and the proofs needed in order to establish the
� -simulation property reveal to be much more challenging. Thus, before moving to the strong
fragment, we recapitulate the key component of the analysis performed on the weak fragment.

Recall that the goal of Section 5.3 is to de�ne a set of core formulae whose Boolean combina-
tions capture the expressive power of the weak fragment (excluding the separating implication).
From [104], the core formulae should capture the atomic formulae of the weak fragment, and
satisfy the � -simulation and 9-simulation properties. With this in mind, we proceed as follows.

Step I and II. First of all, we focus on the de�nition of core formulae. We start (step I)
by considering a family of disjoint sets of locations that partition the domain on the heap. In
the case of the weak fragment, given a memory state (s; h), this family is made of the set of
labelled locationsLab[W]Xs;h , the predecessor setsPred[W]Xs;h(x), the self-loops setSelf [W]Xs;h and
the remainder setRem[W]Xs;h . The following result is established.

Proposition 5.13. Let (s; h) be a memory state. The set of all the non-empty sets among
dom(h) \ Lab[W]Xs;h ; Self [W]Xs;h ; Rem[W]Xs;h and all Pred[W]Xs;h(x) (x 2 X), is a partition of dom(h).

The core formulae are de�ned (step II) following this family of sets, so that the satis�ability of
each core formula only depends on the locations in a single set. For instance, the core formula
self W

X � � only depends on the cardinality of the setSelf [W]Xs;h . This is done to simplify the
game hopping strategy used in order to prove the� -simulation property.

We show that Boolean combinations of core formulae capture the atomic formulae of the
logic. In the context of the weak fragment, this is established in Lemma 5.15, recalled below.

Lemma 5.15. Every atomic formula of the weak fragment written with variables from X[f ug
is equivalent to a Boolean combination of formulae fromCore[W](X; 1).

Step III. The de�nition of core formulae naturally leads to an indistinguishability relation on
memory states, where two memory states are in the relation if and only if they satisfy the same
core formulae, up to certain thresholds. For the weak fragment, this relation is denoted by� W

X;� ,
where the threshold � � 1 is an upper bound on the natural number� appearing in the core
formulae self W

X � � , predW
X (x) � � and remW

X � � .
We show that the core formulae enjoy the� -simulation property. Given (s; h) � W

X;� (s0; h0),
this property states that for every way of partitioning h into two heaps h1 and h2, and dividing
� into � 1 � 1 and � 2 � 1 (so,h = h1 + h2 and � = � 1 + � 2), there is a way of partitioning h0 into

5.4. Recap: How to Apply the Core Formulae Technique 145

h0
1 and h0

2 such that (s; h1) � W
X;� 1

(s0; h0
2) and (s; h2) � W

X;� 2
(s0; h0

2). To prove the � -simulation
property, we rely on game hopping. We introduce theW -hop relation, recalled below, which
allows us to rephrase the� -simulation property as the inclusion � W

X;� �$ W
X;� .

De�nition 5.17 (W -hop relation). We write $ W
X;� for the relation on memory states such that

(s; h) $ W
X;� (s0; h0) i� for every two heaps h1 and h2 and every � 1 � 1 and � 2 � 1,

if h = h1 + h2 and � = � 1 + � 2 then there are two heapsh0
1 and h0

2

such that h0 = h0
1 + h0

2, (s; h1) � W
X;� 1

(s0; h0
1) and (s; h2) � W

X;� 2
(s0; h0

2).

With the aim of building a chain of hops as explained in Section 5.2, we start by proving that
the inclusion � W

X;� �$ W
X;� holds for speci�c memory states (s; h) and (s0; h0) that are very similar.

First of all, we restrict ourselves to memory states that are in the relation � W
X;� 0 for every � 0 � 1.

This is done in Lemma 5.18, recalled below.

Lemma 5.18. For every � � 1,
� T

� 0� 1 � W
X;� 0

�
� $ W

X;� .

Notice that ((s; h); (s0; h0)) 2
T

� 0� 1 � W
X;� 0 implies that the two memory states (s; h) and (s0; h0)

agree on the set of labelled locations, as well as on the cardinality of all sets de�ned in Step I. This
facilitates the proof of (s; h) $ W

X;� (s0; h0), as the two memory states are essentially equivalent
when it comes to the� -simulation property.

After the \base case" handled by Lemma 5.18, we consider memory states (s; h) � W
X;� (s0; h0)

where s0 = s and h0 is obtained from h by modifying the locations of exactly one of the sets
introduced in step I. Thanks to the disjointness of these sets, this local update simpli�es the
proof of (s; h) $ W

X;� (s0; h0), discussed in Lemma 5.19.

Lemma 5.19. (s; h) $ W
X;� (s; h0) holds if (s; h) � W

X;� (s; h0) and one of the following holds:

(I) h n f (`; ` 0) 2 h j ` 2 Rem[W]Xs;hg = h0n f (`; ` 0) 2 h0 j ` 2 Rem[W]Xs;h0g,

(II) h n f (`; ` 0) 2 h j ` 2 Self [W]Xs;hg = h0n f (`; ` 0) 2 h0 j ` 2 Self [W]Xs;h0g,

(III) h n f (`; ` 0) 2 h j ` 2 Pred[W]Xs;h(x)g = h0n f (`; ` 0) 2 h0 j ` 2 Pred[W]Xs;h0(x)g, for somex 2 X.

After Lemma 5.19 is established, we are ready to prove the� -simulation property � W
X;� �$ W

X;�

by building a chain of hops as the one schematised below:

(s; h) = (s1; h1) $ W
X;� (s2; h2) $ W

X;� : : : $ W
X;� (sk� 1; hk� 1) $ W

X;� (sk ; hk) = (s0; h0).

This is done inductively in Lemma 5.20. At each hopj 2 [1; k � 2], the memory state (sj +1 ; hj +1)
is constructed by locally updating (sj ; hj) so that we rely on Lemma 5.19 to conclude that
(sj ; hj) $ W

X;� (sj +1 ; hj +1). At each hop we make (sj ; hj) closer and closer to (s0; h0), until
we reach a memory state (sk� 1; hk� 1) for which we can derive (sk� 1; hk� 1) $ X;� (s0; h0) di-
rectly by Lemma 5.18. Then, (s; h) $ W

X;� (s0; h0) follows by transitivity of the hop relation
(see Lemma 5.9), concluding the proof of the� -simulation property.

In the next section, most of our e�orts are spent deriving a � -simulation property for the
core formulae of the strong fragment. Even though the complexity of these formulae severely
complicates the technical steps required to show this result, the proof strategy we use is exactly
the one described here.

146 Chapter 5. Deciding Robustness Properties inPSpace

Step IV. Lastly, we show that the core formulae enjoy the following9-simulation property.

Lemma 5.23 (W : 9-simulation) . Suppose (s; h) � W
X;� (s0; h0). For every location `1 2 LOC there

is a location `2 � maxvalX(s0; h0) + 1 such that (s[u `1]; h) � W
X;� (s0[u `2]; h0).

This property essentially states that every new assignmentu `1 performed on (s; h) can be
simulated in (s0; h0), with respect to the indistinguishability relation � W

X;� . The proof is by cases
on the membership of`1 to the sets de�ned in step I. To facilitate this case analysis, the core
formulae introduced in step II are divided in two setsSk[W](X; �) and Obs[W](X). The satisfaction
of formulae in Sk[W](X; �) does not depend on the location assigned tou, so that only the core
formulae in Obs[W](X) need to be considered.

5.5 A Family of Core Formulae Capturing the Fragment S

In this section, we extend the analysis carried out in Section 5.3 and summarised in Section 5.4
to the context of the fragment S. Our goal is to de�ne a set of core formulae whose Boolean
combinations capture the expressive power of strong fragment, whose syntax is recalled below:

S := W j x ,! + t j u ,! + u j S ^ S j : ' j S � S j 9u S:

The strong fragment can be seen as an extension of the weak fragment featuring the reachability
predicates x ,! + t and u ,! + u. This addition complicates the de�nition of the core formulae,
which reects on the analysis needed to prove the� -simulation and 9-simulation properties.

5.5.1 Step I: partitioning the heap.

As done in Section 5.3, we �rst aim at de�ning a partition of the heap, which depends on
syntactical terms that correspond to speci�c locations of a memory state. These terms are more
advanced than the next-point variables introduced for the weak fragment, and they deserve a
more gentle introduction. For the whole section, we letX � �n VARnf ug be a �nite set of program
variables not including the unique quanti�ed variable name u.

End-point variables. Consider a memory state (s; h). As analysed during Example 5.2, the
strong formula 9u (x ,! + u � u ,! + u), states that s(x) does not belong to a cycle but reaches one
(for instance, see Figure 5.7). More precisely, in the formula this is accomplished by stating
that it is possible to assign to u the �rst location reachable from s(x) that belongs to a cycle.
Formally, a location ` belongs to a cyclein h whenever there is � � 1 such that h� (`) = `.
Similarly, we can forceu to correspond to a location that is not in the domain of the heap and
it is reached by s(x) in at least one step. This corresponds to the formula9u (x ,! + u ^ : u ,!).
These two examples lead to the introduction ofend-point variables: syntactical objects of the
form e(x) whose set is de�ned asEV[S]X def= f e(x) j x 2 Xg. An end-point variable e(x) is intended
to correspond exactly to a location among the ones we just described. More precisely,

1. if s(x) does not belong to a cycle but reaches one, thene(x) corresponds to the �rst location
reachable froms(x) that belongs to that cycle,

2. otherwise, if s(x) 2 dom(h) does not reach a cycle, thene(x) corresponds to the only
location reachable froms(x) that does not belong to the domain ofh.

5.5. A Family of Core Formulae Capturing the Fragment S 147

Formally, the semantics of e(x) is given by extending the evaluation [[:]]Xs;h as follows:

[[e(x)]]X
s;h = ` def, there is � � 1 s.t. h� (s(x)) = ` and if ` 2 dom(h) then ` belongs to a cycle.

Moreover, h� � 1(s(x)) does not belong to a cycle.

We highlight that [[e(x)]]X
s;h is not de�ned if s(x) 62dom(h), nor if s(x) belongs to a cycle.

Otherwise, [[e(x)]]X
s;h is uniquely de�ned.

Meet-point variables. In Example 5.2, we have seen that9u ((x ,! + u � y ,! + u) ^ : u ,!)
is satis�ed whenever a memory state (s; h) witnesses two disjoint non-empty paths, one going
from s(x) to ` and one going froms(y) to `, where ` is a location not in the domain of h. Here,
notice that the disjointness of the two paths refers to the arrows in the heap. This pattern
contributes to the de�nition of the meet-point variablesMV[S]X def= f m(x; y) j x; y 2 Xg. A meet-
point variable m(x; y) 2 MV[S]X is evaluated through [[:]]Xs;h as follows:

[[m(x; y)]]X
s;h = ` def, there are � 1; � 2 � 1 such that h� 1 (s(x)) = h� 2 (s(y)) = ` and

for all � 0
1 2 [0; � 1]; � 0

2 2 [0; � 2]; if � 0
1 + � 0

2 < � 1 + � 2 then h� 0
1 (s(x)) 6= h� 0

2 (s(y)) :
Moreover, ` does not belong to a cycle ofh:

Informally, when [[m(x; y)]]X
s;h is de�ned, it is the only location ` for which there are two disjoint

non-empty paths, one going froms(x) to ` and one going froms(y) to `. In order for [[m(x; y)]]X
s;h

to be uniquely de�ned, we require that it does not correspond to a location belonging to a cycle,
as formalised in the last statement of its characterisation. Indeed, in the following memory state
there are two ways to construct disjoint paths going froms(x) and s(y) to a common location `,
one where` = `1 and the other where` = `2.

x
`1 `2

y

In this case, [[m(x; y)]]X
s;h is not de�ned. However, we notice that the locations `1 and `2 are still

interesting, as they correspond to the end-point variablese(x) and e(y), respectively. Moreover,
if f `1 7! `2g is removed from the heap then`1 becomes the location corresponding tom(x; y).
Symmetrically, removing f `2 7! `1g leads to m(x; y) being evaluated as`2. One can notice that
there is only one case wherem(x; y) and e(x) evaluate to the same location. That is, when (s; h)
satis�es the formula 9u ((x ,! + u � y ,! + u) ^ : u ,!) discussed above.

Labelled locations. We extend the notion of terms introduced in the previous section to the
elements belonging to the setT[S]X def= X[EV[S]X [MV[S]X. Similarly, we call labelledthe locations
corresponding to terms ofT[S]X, and write Lab[S]Xs;h for their set.

Example 5.24. Figure 5.7 highlights the labelled locations of a memory state, say (s; h), with
their respective terms. Notice that no location corresponds to the termm(v; w), since there is a
path going from s(w) to s(v). Similarly, [[m(x; z)]]X

s;h and [[m(y; z)]]X
s;h are not de�ned, as the two

disjoint paths starting from s(x) (or s(y)) and s(z) meet at a location that belongs to a cycle,
i.e. the location corresponding to the end-point variablese(x), e(y) and e(z).

Interestingly enough, despite the fact that MV[S]X contains card(X)2 meet-point variables, we
show that Lab[S]Xs;h contains at most card(X) distinct locations that correspond to meet-point or

	Contents

