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Abstract

Because the irradiation damage is a major challenge of nuclear materials, it is of
upmost importance to accurately calculate it with reliable uncertainty estimates. The
main objective of this thesis is to develop and improve the methodologies for computing
the neutron irradiation-induced displacement damages as well as their uncertainties.
After a brief review on nuclear reaction models and primary radiation damage models,
we propose a complete methodology for calculating damage cross sections from
different nuclear reactions and the subsequent calculation of Displacement per Atom
(DPA) rates.

The recoil energies from neutron-induced reactions are summarized with an
estimation of the relativistic effect and the target thermal vibration. Particularly, a new
method for computing the recoil energy from charged particle emission reactions is
proposed by considering both the quantum tunneling and the Coulomb barrier. Some
methods are developed to improve and verify numerical calculations. Damage cross
section calculations from neutron radiative capture reaction and N-body reactions are
also thoroughly analyzed and discussed. In addition to the neutron irradiation-induced
displacement damage, the electron, positron, photon-induced DPA cross sections, as
well as the beta decay and Fission Products (FPs)-induced damage are also investigated.
Orders of magnitude of their relative contributions are given.

For the neutron irradiation-induced DPA rate calculation, attention should be paid
when using infinite dilution cross sections. E.g., in the ASTRID inner core, the self-
shielding correction on ECCO 33-group damage cross sections leads to a 10% reduction
of DPA rate, whereas the multigroup correction is still not automatically treated for DPA
rate calculation in neutronic codes nor for computing Primary Knock-on Atom (PKA)
spectrum. Based on the presently proposed method for computing the FPs-induced DPA
by atomistic simulations, the peak value of the FPs-induced DPA rate can be 4 to 5
times larger than the neutron-induced one in the cladding of the ASTRID inner core,
even though the penetration of FPs in the Fe-14Cr cladding is less than 10 um.
Therefore, the question of whether the FPs-induced damage should be considered for
determining fuel assembly lifetime in fast reactors needs to be discussed.

In the reactor vessel of a simplified pressurized water reactor, the covariance
matrices of 23U prompt fission neutron spectrum from ENDF/B-VII.1 and JENDL-4.0
respectively lead to 11% and 7% relative uncertainty of DPA rate. Neglecting the
correlations of the neutron flux and PKA spectrum results in an underestimation by a
factor of 21. The total uncertainties of damage energy rate are respectively 12% and
9%, whereas an underestimation by a factor of 3 is found if the correlations of damage

cross section and neutron flux are not considered.

Keywords: DPA, Cross section, Uncertainty propagation
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Maitrise des biais et incertitudes des sections efficaces
et de la modd@isation de la cin@natique associées aux
réctions nucl&ires conduisant aux dommages dans

les maté&iaux sous irradiation

Resumé

Etant donné que les dommages causés par l'irradiation constituent un défi majeur
pour les maté&iaux nucléaires, il est néessaire de calculer précisément ces dommages
conjointement avec I’estimation de ses incertitudes. L'objectif principal de cette thése
est de développer et d'améliorer les méthodologies pour calculer les dommages induits
par l'irradiation neutronique ainsi que de proposer une méthodologie pour I’estimation
de l'incertitude. Aprés une bréve revue des modeles de réactions nucléaires et des
modeles de dommages d’irradiation primaires, on propose des méthodes complétes
pour calculer la section efficace des dommages a partir de différentes réactions
nucléaires pour calculer du taux de Déplacement par Atome (DPA).

Une interpolation améliorée est proposée pour produire la valeur de créte de la
distribution d'énergie-angulaire a partir de données tabulées. Les énergies de recul des
réactions induites par les neutrons sont résumées avec une estimation de l'effet
relativiste et de la vibration thermique de la cible. En particulier, une nouvelle méthode
de calcul de I'énergie de recul des réactions d'émission de particules chargées est
proposée en considérant I’effet tunnel et 1a barriere Coulombienne. Certaines méthodes
sont développées pour améliorer et vérifier les calculs numériques. Les calculs de la
section de dommage provenant de la réaction de la capture et des réactions d’émission
de N-corps sont également analysés et discutés en profondeur. En plus des dommages
induits par l'irradiation neutronique, les sections DPA induites par les électrons, les
positons et les photons et les dommages induits par la désintégration béta sont
¢galement étudiées.

Pour le calcul du taux de DPA induit par l'irradiation neutronique, il convient de
faire attention lors de l'utilisation de sections adilution infinie. Par exemple, dans le
cceur interne d’ASTRID, la correction d'autoprotection sur la section DPA de ECCO
33-groupe conduit a une réduction de 10% du taux de DPA, tandis que cette correction
multi-groupe n'est pas toujours automatiquement traitée pour le calcul de DPA dans les
codes neutroniques ni pour le calcul du spectre Primary Knock-on Atom (PKA). En
plus des dommages par les neutrons, une méthode générale est proposée pour calculer
les dommages de déplacement induits par les Produits de Fission (PFs) avec des

iv



simulations de collisions atomistiques. Elle montre que la valeur de créte du taux de
DPA induit par les PFs peut étre 4 a 5 fois supérieure a celle induite par les neutrons
dans la gaine du cceur interne d’ASTRID, méme si la pénétration des PFs dans la gaine
Fe-14Cr est inférieure a 10 um. Par conséquent, la question si les dommages induits
par les PFs doivent étre pris en compte pour déterminer la durée de vie des assemblages
combustibles dans les réacteurs rapides doit étre discutée.

Dans la cuve d'un réacteur a eau pressurisée, les matrices de covariance du spectre
de neutrons prompts de fission de ***U venant de ENDF/B-VII.1 et JENDL-4.0
conduisent respectivement a une incertitude de 11% et 7% du taux de DPA. Négliger
les corrélations du flux de neutrons et du spectre PKA entraine une large sous-
estimation d’un facteur de 21. Les incertitudes totales du taux de dommages sont
respectivement de 12% et 9%, tandis que les nulles valeurs des corrélations de la section
efficace de dommage et du flux de neutron conduisent a une réduction de 1'incertitude

par un facteur de 3.

Mots-clés : DPA, Section efficace, Propagation des incertitudes
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1 Introduction

1.1 Nuclear power

Because it is reliable, stable, and environmentally sustainable, nuclear power is one
of the most important forms of decarbonized energy for reducing CO, emissions. Figure
1-1 shows the percentages of different sources of world electricity production in 2017
(25, 721 TWh) [1]. Currently, nuclear power accounts for approximately 10% of the
total world electricity production. Figure 1-2 presents the percentages of different forms
of primary energy supply by fuel in 2017 (162,483 TWh) [2]. Nuclear power consists
of about 5% of the total primary energy supply. Nuclear energy is thus one of the most
important energy resources for reducing global pollution and global warming without

restraining the industrial development.
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Figure 1-1. Sources of world electricity production in 2017 [1].
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Figure 1-2. Total primary energy supply by fuel in 2017 [2].



Nuclear power is a good choice for the moment. However, current nuclear energy
is not so economically competitive owing to the huge cost of building a nuclear power
plant. One of the main reasons of the expensive building cost is due to the construction
of extensive safety systems other than the three safety barriers (i.e. the fuel cladding,
the envelope of the primary system (i.e. Reactor Pressure Vessel (RPV) and primary
tubes), and the primary concrete containment). Since the strict requirements of safety
systems are necessary for nuclear power plants, one strategy to improve the economic
competitiveness of nuclear power is to produce more energy as possible for each reactor,
such as the prolongation of the operating lifetime of nuclear reactors and the extension
of fuel cycle length (thus reduction of the total time for refueling).

For current Gen II and Gen III commercial Light Water Reactors (LWRs), the
recent development of Accident Tolerant Fuel (ATF) after the 2011 Fukushima Daiichi
nuclear accident provides opportunities to improve the economic competition. For
example, the use of high uranium density fuel can prolong the fuel cycle length [3—-8].
The enhanced fuel cladding materials [5, 9-15] improve the mechanical strength of fuel
rod, this may also allow prolonging the fuel cycle length with respect to the materials
challenge. In addition, owing to their larger thermal neutron absorption cross sections
than that of the current zircaloy [16], the enhanced ATF claddings may also reduce the
neutron irradiation damage of RPV, so that the operating lifetime of LWRs could be
prolonged (needs quantitative analyses).

For Gen IV Sodium-cooled Fast neutron Reactors (SFRs), the irradiation damage
of the reactor vessel is not so important because the neutron irradiation of the vessel is
much reduced by the shielding of fertile layer, reflector, and a large volume of sodium
(and in-vessel neutron shielding in ASTRID [17]) between the inner core and the vessel.
However, the lifetime of a fuel assembly (or the cycle length) mainly depends on the
total irradiation damage of the fuel cladding. The critical measurement of irradiation
damage of the cladding is the accumulated number of Displacement per Atom (DPA)
[18, 19], which is a conventional quantity for quantifying the primary radiation damage
[20]. The advanced Oxide Dispersion Strengthened (ODS) alloys [21] allow a long fuel
lifetime for SFRs.

1.2 Irradiation damage of materials

The irradiation damage is one of the most important challenges for both LWRs and
Fast neutron Reactors (FRs). The designed operating lifetime of an LWR and its
possible prolongation is mainly based on the irradiation damage of the RPV. The
neutron irradiation damage of cladding is also the main characteristic to determine the
lifetime of the fuel assembly in SFRs. Here, we briefly explain why the irradiation
damage is important for nuclear materials and the objectives of this thesis.
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Figure 1-3 shows the typical stress-strain curves for the Solution Annealed (SA)
304L alloy irradiated in OSIRIS experimental reactor (CEA/Saclay) [22]. The chemical
composition of the SA 304L steel is given in Table 1-1 [22]. It shows that the neutron
irradiation damage obviously changes the characteristics of materials. In addition to the
change of the stress-strain curve (including the yield stress and the rupture point) shown
in Figure 1-3, radiation damage also leads to the swelling and hardening of materials
[23]. A qualitative description of the irradiation dose-dependence of the swelling,
hardening, and resistivity is illustrated in Figure 1-4 [23]. Due to the change of
properties for irradiated materials, it is of great importance to accurately quantify the
irradiation damage of materials for ensuring the operation and satisfying the safety
criteria of nuclear reactors.
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Figure 1-3. Stress-strain curves at 330 °C for the SA 304L alloy after different neutron
irradiation doses (in DPA) (taken from Ref. [22, 24]).

Table 1-1. Chemical composition of the SA 304L alloy [22].
Element C S P Si Mn  Ni Cr Cu Co N
wt%  0.022 0.007 0.032 036 1.79 9.86 18.16 0.25 0.064 0.061

Current experimental investigations on the irradiation effect of materials are mostly
based on the ion or electron irradiation experiments. Because neutron and charged
particles have different features, the emulation of neutron irradiation damage with
charged particle-induced damage needs to be studied. DPA is a common quantity that
intends to unify the irradiation damage induced by different particles, including neutron,
light or heavy ions, electron, and photon.
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Figure 1-4. Qualitative plot of the dependence of swelling, resistivity, and hardening on

irradiation damage (taken from Ref. [23]).

Nevertheless, even though the DPA is conventionally used to quantify the
irradiation damage, the methods for calculating the number of DPA varies in different
studies, or in a systematic study with different irradiation sources, such as proton and
neutron shown in Ref. [25]. Consequently, a more detailed and rigor standard should
be proposed to calculate the number of DPA from different irradiation sources,
especially for polyatomic materials. A simple proposal is given in Section 4.7.

Nowadays, the so-called DPA can refer to the number of survived Frenkel pairs per
atom, the total number of atomic displacements (excluding replacements) per atom, and
the equivalent fast neutron dose (neutron energy > 0.1,> 0.5, or > 1 MeV depending on
different researches). The second one is currently the standard for industrial
applications and nuclear regulation. The first one is somewhat more realistic because it
exactly counts the final point defects in irradiated materials. The last one is much further
from the concept of DPA but it is still widely used. The main reason is that the current
experimental measurement of neutron irradiation damage in reactors is only the
measurement of neutron fluence (time-accumulated neutron flux) above a threshold
energy (depending on dosimeter), e.g. 0.5 MeV or 1 MeV.

Because of the aforementioned problems for calculating the DPA, detailed methods
are required for more accurate calculation of DPA. On the other hand, as previously
explained that safety is one of the most important characteristics for nuclear reactor.
Figure 1-5 illustrates the example of different margins for nuclear fuel. Similarly, an
unique value of DPA without uncertainty is not enough for design, operation, and
nuclear regulation. Therefore, in addition to the calculation of DPA, the present work
also includes the uncertainty estimates of DPA by propagating the uncertainties of

different domains, including nuclear data, DPA models, and neutronic calculations.



Failure Limit (if measurable)

EEEEEEEEEEEENN I.I!lIIIIIII.

Safety margin (controlled

Safety Limit (Acceptance criterion) l by Regulators)
I 1 Design margin
[ (controlled by Fuel
Design Limit (Criterion) I { Vendors or designers)

[ 3

Licensing margin

v (available to licensees)

Uncertainties on A
codes

Provisions for fuel

and core design Analysis “margin

(including
conservatisms and
uncertainties)

Provisions for
Operational accidental transients |}

lelt EEEE N — EEEEEN
Provision for *

operation and
unexpected events Operational “margin
Uncertainty on for flexibility and
Operating operating point - reliability
point A 4

T
Figure 1-5. Schematic of safety margins (taken from Ref. [26]).

1.3 Objectives of this thesis

This thesis focuses on the proposition and investigation of methodologies for
accurate calculation of DPA and the corresponding uncertainty for irradiated materials.
The objectives include revisiting the models and methods for computing DPA from
nuclear reactions. Then, the improvement of models and computation methodologies is
proposed and studied. Our studies cover neutron-induced recoil energy, the subsequent
damage cross section, damage rate calculation, and uncertainty quantification of DPA
rate. In addition to neutron irradiation, other irradiation sources, such as electron,
positron, photon, beta decay, and fission products for fuel cladding, are also considered.
We intend to provide a complete schema and state potential problems for DPA
calculation.

Some numerical results shown in this thesis are only examples of applications for
specific cases, these results are not necessarily general for all cases. However, the
methodologies presented in this thesis are applicable for any specific study. Using the

same methodologies, one could obtain similar conclusions for most cases.



1.4 Overview of this thesis

The main structure of this thesis is ordered from micro to macro: Section 2 Nuclear
reaction models and nuclear data (nuclear level), Section 3 Primary radiation damage
models (atomic level), Section 4 Calculation of damage cross sections (from nuclear
level to atomic level), Section 5 Calculation of DPA rates (applicable quantity for
industrial needs), Section 6 Methods for uncertainty propagation (uncertainty
estimates), Section 7 Uncertainty assessment of damage rate in a PWR vessel (a
simplified example for industrial application), and Conclusions and prospects.

I would like to indicate that Sections 2, 3, and 6 are mainly the reviews of the
current methods with some examples calculated in the present work for helping the
understanding. The new contributions to the methodologies presented in these sections
are: Section 2.5.2 on the interpolation of energy-angular distributions given in an
Evaluated Nuclear Data File (ENDF), Section 3.6 describing a simple function for
calculating the athermal recombination-corrected DPA, and Section 3.7.2 proposing the
concept of residual energy transfer for analytically calculating the number of atomic
displacements within binary collision approximation.

Section 4 presents the methodologies for computing the irradiation damage cross
section for different reaction types. The methods (except basic knowledge such as two-
body kinematics and the method already proposed in Ref. [27]) are originally proposed
and/or verified in the present work. Works summarized in Section 5 are the originally
proposed in this Ph.D thesis, certainly excluding some commonly known methods, such
as the calculation of reaction rate. Section 7 shows the examples for uncertainty
estimates in the RPV of a simplified Pressurized Water Reactor (PWR) mock-up using
the methods presented in the above sections. Section 8 includes the main conclusion of
this Ph.D thesis and the potential prospects for completing this work.

Owing to the numerous theories and definitions presented in this thesis, some
symbols are redefined in different sections, especially in Sections 2 and 3. It is also
possible that some quantities are expressed by different symbols according to different
conventions in different disciplines. For readers, we keep in mind different theories
(and the reasonings in several cases if necessary) and do not memorize the significance

of each symbol.



2 Nuclear reaction models and nuclear data

Because most of the atomic displacements in nuclear reactors are initialized by
nuclear reactions, this section briefly summarizes the nuclear reaction models used to
compute damage cross sections. Figure 2-1 illustrates the total cross section of *°Fe in
JEFF-3.1.1 [28]. In the Resolved Resonance Region (RRR), the theoretical model is the
R-matrix theory, which is presented in Section 2.1. In the high-energy region, owing to
the lack of experimental resolution of resonance and the contribution of direct and/or
pre-equilibrium reactions, the R-matrix is no longer pertinent. This region is called the
continuum region, where the optical model for total cross section, potential elastic
scattering cross section (c.f. Section 2.2) and the statistical model for nuclear reactions

cross sections (c.f. Section 2.3) are applicable.
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Figure 2-1. Total cross section of *°Fe (JEFF-3.1.1).

In addition to nuclear cross sections, angular distribution and energy-angular
distribution are necessary for computing radiation damage. Section 2.4 briefly shows
the theory for calculating angular distribution. The calculation and conventional form
of energy-angular distribution are presented in Section 2.5. Because of numerous
parameters and symbols in nuclear models, some symbols may be redefined in some
subsections. The redefinition of such symbols and their physical significance does not

change the understanding of nuclear models in the corresponding subsections.

2.1 R-matrix theory

In the compound nucleus model (the time scale of compound nucleus reactions is
of the order of 10718 s - 10715 ), the cross section from entrance channel ¢ to exit

channel ¢’ with total angular momentum J is given by [29, 30]:



- 2
0. (E) = %gcleZLWC(Sm’ - Ucc’l 6]]’ (2-1)

where a represents the two particles making up the channel (¢ = (a,l,s,])), k, =

2mM?
(m+M)2

K, /h where K, is the momentum (K2 = E) in the Center-of-Mass (CM) system,

wc is the Coulomb phase shift (zero for non-Coulomb channels), g. is the statistical

spin factor:

o 2)+1 i
9ec = (2i+1)(21+1) (2-2)
where i and / are the spins of the incident particle and the target, respectively. U is the

scattering matrix, which can be expressed by:
Ueer = QW Qpr (2-3)

where Q. = e!(Wc=%¢) with ¢, being the potential scattering phase shift deduced from

the Schrodinger equation. # is a matrix which can be calculated by:

W = PY2(1 — RL)™*(1 — RL")P~1/? (2-4)
where 1 represents the identity matrix and

L=(S—-B)+iP (2-5)
where P and S are respectively the penetration factor and the shift factor deduced from
the Schrodinger equation, B is the wave function boundary condition at the channel
limit (i.e. channel radius) a.. The elements of R-matrix are expressed as [29]:
YacY !

Ree'(B) = = = (2-6)
where A labels the discrete compound nucleus states, Ej is the energy eigenvalue of
state A, ¥, is the “reduced width amplitude” for state 4 and channel ¢ calculated by the
width I, and the penetration factor P,:

e = ZPCYAZC (2-7)

Because the elements of the R-matrix describe the “internal” interaction in a
nucleus, it is difficult (impossible for the time-being) to determine the elements Rc.-.
Therefore, some simplified calculable R-matrix models are developed for the
evaluation process. In current nuclear data libraries, the single-level/multilevel Breit-
Wigner formula [31] and the Reich-Moore model [32] are widely used. It is noted that
the inelastic scattering channels are not included in the current Reich-Moore format in
ENDF. The calculation of inelastic scattering in the resonance region requires additional
parameters stored in the recently proposed R-matrix Limited (RML) format. The
resonance parameters are given in file 2 (conventionally called MF2) in ENDF-6 format.

In order to simply show the relationship between the cross section and resonance

8



parameters, Figure 2-2 illustrates the example of neutron elastic scattering cross section
of *Fe around 46 keV with perturbed parameters with the CONRAD code [33]. The
parameters from JEFF-3.1.1 are given in Table 2-1 [28]. The eigenvalue E, determines
the energy peak of the resonance. The widths I, and I3, implicitly influence both the

width and the peak value of the resonance.

Table 2-1. Resonance parameters of n+>°Fe of the resonance centered at 46.0535 keV in
JEFF-3.1.1 [28].

Parameter Model E, (keV) [, (meV) [, (meV) J*
Value Reich-Moore  46.0535 265.125 5140 3/2”
140 I
— Reference ]
1201 |-— E,x1.002 o N
Lo- T x5 "'_ i .
- 100 - FTX 10 ! |l _
N
E I ', 1
; 80 | | -
2 | i
I
7 60 i
<] F I i
S 40 .
L P
20 = - ,r= \'\ —
) I_ i - L | 1 1 | 1 1 1 1 | 1 -_-—.. - _I _l \_-:
4%,95 46,00 46,05 46,10 46,15

Neutron energy (keV)

Figure 2-2. Neutron elastic scattering cross section of °Fe with perturbed parameters
(calculated by CONRAD) [34].

2.2 Optical model

The R-matrix theory is the phenomenological model in the RRR and Unresolved
Resonance Region (URR) when averaging over multiple compound states, but it is not
applicable in the continuum region due to the lack of experimental resolution of
resonance and because reactions are direct or pre-equilibrium. In the high-energy region,
the Optical Model (OM) is usually used to calculate the total and shape elastic scattering
cross sections. In the OM, one solves the Schrodinger equation by giving a potential,
of which a usually used form is [35]:

U(r,E)y = -V, E)—iW,(r,E)—iWs(r,E) +

WVso(r, E) + iWso (r, E)]L- 0 + Ve (r) (2-8)



where E is the energy of the incident particle, 7 is the distance between the incident
particle and the target nucleus. The subscript V, S, SO, and C respectively represent the
Volume, Surface, Spin-Orbit, and Coulomb terms. V; and W; are the real and imaginary
components of the potential for the term i = V, S, S0, C. l and o are the orbital angular
momentum vector and Pauli matrices vector, respectively.

In general, the position-dependence and the energy-dependence are separated into

two individual functions:

Xi(r,E) = X;(E)fi(7) (2-9)
where X =V, Wandi =1V,S,S0, X; is the position-independent potential. The most
widely used position-dependent functions are f,(r) = f(r,Ry,ay) if i =V and
fir) =g, R;,q;) if i =5,50 where f is a Woods-Saxon form [36] and g is
proportional to the differential of f:

1
1+exp [(r—R;)/ai]

f(rrRiiai) = (2'10)

d
9, Ry, a;) = —4a; —f(r,R;, a;) (2-11)

Morillon and Romain proposed a potential based on the Dispersive Optical Model
(DOM) for neutrons with incident energies from 1 keV to 200 MeV as [37]:

U E) = [Vy(E) + W, (B)f(r, R, a) + [Vs(E) + iWs(E)lg(r, R, @)
2
+[Vso (B) + iWso ()5 (=) g(r.R, @)l

mgyc

(2-12)

In the DOM, the causality (a scattered wave cannot be emitted before the arrival of the
incident wave) implies that the real part and imaginary part are connected by a
dispersion term [38]:

+ 00 W(E

AV(E) = g [ ;_) dE’ (2-13)

—o0 FI-
where P is the Cauchy principal value of the integral.

In the Morillon-Romain potential, the shape functions f and g are the same for
different interactions, whereas different parameters are used for different parts in
general OM potentials such as Koning-Delaroche [35]. Morillon and Romain obtained

the systematics for the radius R and the diffuseness a for most spherical nuclei as [37]:
R = (1.295 — 2.7 x 107*4)A'/3 (fm) (2-14)
a=0.566+5 x 107943 (fm) (2-15)
where A4 is the mass number of the nucleus. It is noted that the best-fitted radius R is
different from the systematics for light nuclei, such as R = 1.268A4/3 fm for >°Fe [37].

Compared with the Koning-Delaroche OM Potential [35] (OMP), that of Morillon-

Romain has less geometrical parameters and a better description of cross sections.
10



However, the angular distribution of elastic scattering calculated with the DOM agrees
generally less with the experimental data than that of Koning-Delaroche, including for
¢Fe [37].

For a deformed nucleus, the prior value for the radius R in the Woods-Saxon form

is given by [39]:
R = (1.295 — 2.7 x 107 *A)AY3[1 + B,Y50(Q) + B4Yao (V)] (fm)  (2-16)

where [, and f, are quadrupole and hexadecapole deformation parameters,
respectively. Y,,(Q) and Y,o(L1) are the corresponding spherical harmonics as a
function of the body-fixed system Q. In principle, if it is necessary, one can consider
Ye0(Q), Yg0(£2), etc. and the corresponding deformation parameters.

All optimized prior parameters in the OMPs can be found in the Reference Input
Parameter Library (RIPL) [40]. With a given OMP, ECIS [41] performs the optical
calculations by solving the Schrodinger equation and the subsequent calculations using
the wave functions. ECIS calculations provide cross sections and angular distributions
for the shape elastic scattering (i.e. direct reaction) that is directly used in damage cross
section calculations. Moreover, the optical calculation gives the neutron transmission

coefficients that are mandatory for calculating other partial reactions.
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Figure 2-3. Total cross section of **Fe from ECIS calculation with optimized parameters [42].

Figure 2-3 shows the example of the total cross section on *Fe from ECIS
calculation with optimized parameters in comparison with experimental data from
EXFOR [43]. The OM calculations with optimized parameters are validated against
experimental data in the high-energy region, where the cross section varies smoothly
with neutron energy. However, the fluctuations below 5 MeV cannot be calculated with

the OM. Moreover, it is hard to produce such fluctuations with the R-matrix formalism
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because the forms generally do not correspond to resonances or interferences. The
extension of the resonance parameters up to 2 MeV for *°Fe is ongoing in our laboratory
[44, 45], whereas the R-matrix is only limited below 850 keV in the current JEFF
evaluations. Nevertheless, the model defects for predicting the fluctuation of cross
section above the limit of R-matrix but below the OM region should be further
investigated in future.

2.3 Statistical model

For the calculation of nuclear reactions cross sections, the Statistical Model (SM)
is widely used. In the SM, the neutron cross sections are given by the Hauser-Feshbach
formula [46]:

~ TcT 1
=mAig, —=

g ..
cc C CZiTi

ch' (2'17)

where T; represents the average transmission coefficient of the reaction channel i, and
Ao = A;/2m is the reduced De Broglie wavelength of the incident particle. We. is the
width fluctuation correction factor between the entrance channel ¢ and the exit channel
¢’ (see also Refs. [47—49] for more details). Numerical comparisons between different
approaches of W,.' can be found in Ref. [49].

In the Hauser-Feshbach formula, the neutron transmission coefficient 7, is
calculated by using the OM in ECIS [41]. The transmission coefficients for other
channels can be directly calculated by TALY'S with a specific model. For example, the
gamma-ray transmission coefficient 7, for multipolarity ¢ of type X (where X=M or £

represent the magnetic or electric transition) can be calculated by:

Txe = 21fxo(E, )EX* (2-18)
where E,, denotes the y energy and f, is the energy-dependent y ray strength function,
which is given by Kopecky and Uhl [50].

The generalized Lorentzian form is proposed for E1:

E,TEg1(Ey) 0.7Tg14m2T2
' (B2-E2.) BT, (5)) Efs

fe1 (Ey) = Kg 0g1lE1 (2-19)

The Giant Dipole Resonance (GDR) shape given by Brink and Axel [51, 52] is
suggested for M1 and E2 radiation transition [50]:

2
fee(Ey) = Kyp—2tipxe (2-20)

£ 2
(E}—E%p) +EyT%e

The common coefficient in the above two forms of fy, is:

1

Kyp= ——
Xt (2¢+1)m2h2c2

(2-21)
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The energy-dependent damping width [z, (Ey) and the nuclear “temperature” 7 are
given by:

= EZ+4m2T?
— Y
Tr1 (By) = Tpn =7 —

_ |En=Sn—A-E, i
r= N aGo (2-23)

where S, is the neutron separation energy, E, is the incident neutron energy, A is the

(2-22)

pairing energy, and a is the level density parameter at S,.

The normalized gamma-ray transmission coefficient is given by:

2nrl
T, =~
Do

(2-24)

The Gilbert-Cameron formula [53] is widely used for computing the s-wave neutron
average level spacing Do and other levels. In the Gilbert-Cameron formula, the Constant
Temperature Model (CTM) is used to describe the cumulated excited level below S, (Z,

N+1):

_ E-E,
N(E) = exp (52) (2-25)
Hence, the excited level density can be obtained as:
dN(E) 1 E-E
p(E) = 2 = Texp () (2-26)

At high energy, the Fermi gas model [54] is used to describe the level density.

For statistical model calculations in the continuum region, the TALY'S code [55] is
widely used and was coupled into CONRAD [33]. It is notable that the OM code ECIS
was also included in TALYS, so that both the OM calculations and the SM calculations
can be performed with TALYS.

For calculating damage cross sections, since TALY'S calculates the spectra of recoil
nuclei from two-body kinematics, CONRAD provides the option for the damage
calculation directly using the spectra computed by TALY'S [34]. This option can reduce
the computation time for total or partially total damage cross sections but is only
available in the fast energy region for compound reactions. For scattering reaction, we
combine the damage cross section computed with the recoil spectrum of TALYS and
that computed with kinematics and angular distribution of the shape elastic scattering
from ECIS calculation. However, it should be noted that the azimuthal angle and
relativistic kinematics are not yet considered for computing recoil spectra in TALY'S
[55]. More details on the damage cross section calculation are with CONRAD are
published in Refs. [34, 56].

Figure 2-4 shows the elastic and inelastic neutron scattering cross sections on *°Fe

from TALYS calculation with optimized parameters in comparison with experimental
13



data from EXFOR [43]. Elastic scattering includes the shape elastic scattering
determined by OM calculations from ECIS and the nuclear reaction-induced elastic
scattering from TALYS calculations. Both elastic scattering and inelastic scattering
reactions use the incident neutron transmission coefficient 7, from OM calculations.
Similar to the OM, the SM with optimized parameters corresponds well with
experimental data in the high-energy region but it cannot describe the fluctuations
below 5 MeV.
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Figure 2-4. Elastic (upper) and inelastic (lower) neutron scattering cross sections of Fe from
TALYS calculation with optimized parameters [42].

2.4 Blatt-Biedenharn formula and angular distribution

The above three subsections describe models for calculating the angle-integrated
14



nuclear cross section, this subsection briefly presents the Blatt-Biedenharn formula [57]
on the angular distribution. According to Blatt and Biedenharn, the angular distribution

can be expressed as:

do s
cc

= 225, B (EYPL(W) (2-27)

where P is the Legendre polynomial of degree L and u is the cosine of neutron

scattering angle in the CM system.

2.4.1 Elastic scattering of a spinless particle
For a spinless particle far from the scattering source, the angular distribution is
simply calculated by:

do_CC’ j—

dQcy

£ (0)]? (2-28)

where f;, () is the angle-dependent factor. Blatt and Biedenharn showed that:

fw(0) = iVITA B2/ L+ 1)(1 — e2121) ¥, 4 (6) (2-29)
where ¢, is the phase-shift of /-wave and Y; ((6) is the normalized spherical harmonics.
Using the equality:

Ifw(@1? = £ (6)£5(6) (2-30)
where the symbol * represents the conjugate, the Legendre coefficient B; is obtained as:
B, = Z?ioZ%'J;Lu_u(Zl + 1)(21" + 1) (II'00|1l'LO)?sing;sing;rcos (¢, — @;r)
(2-31)
where (I1'00|ll'LO) is the Clebsch-Gordan coefficient calculated by [58, 59]:

rooji’'Lo) = UL QL+ DA+ =L +1=U)L+U-D/A+U +L+ 1) X
DY/ A+ L) -—n) ") (L =1U"+n)!(L-1+n)]
(2-32)
The summation parameter # is constrained to ensure the number in each factorial to be
positive.
In the case where L = 0, the only possible value of I’ is " = . The corresponding

Clebsch-Gordan coefficient is:

(lloojllo0) =1/ (21 + 1) (2-33)
The Legendre coefficient becomes:
By = Y2021 + 1)sin?g;, (2-34)

Because a phase shift between the incident wave and the outgoing wave calculated

from the Schrodinger equation depends on the incident energy, the Legendre
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coefficients are energy-dependent, i.e.,
B,(E) = X2 Stk (2L + D21 + 1) (10'00|11'L0)?sing, (E)singy (E)cos (9,(E) — @y (E))
(2-35)

For simplifying the notations, the variable E is not specifically noted in the section of
the angular distribution.

2.4.2 General two-body reaction
Let ¢ = (a,5) where a and s denote the incident channel index and channel spin in
this subsection. The exit channel is similarly denoted by ¢’ = (a’s’). We define a
function :]'[(L, a,s, lll]l' lz,]z, a,, S,, l:,lP lé) as:
H = Z(1J115)5, sL)Z(13115],,s'L) X R[A(L, as » a's")* A2, as — a's")](2-36)
where ‘R represents the real part and A is defined as:
A(x,as > a's') = 8,480, 1. — Uy (asly > a's'ly) (2-37)

where U is the scattering matrix. The Z function in H (L, a, s, 11, J1, 15, ]2, &', s', 13, 15) is
defined by:

Z( )5, sL) = it J2L + DL + D), + D(2), + 1) (2-38)
X W (lJ112]5, sL)(141,00]1, 1, L0)

where W (l,J,1,],,sL) is [60]:
W (L1ly)2, sL) = A(lyJ1 1), sLYw (4], 13)2, SL) (2-39)
where

(_1)n+ll+]1+lz+]2 (n+1)|

L) =
w(liila)2, SL) Ln [(n—ll—]1—S)!(n—lz—fz—S)!(n—l1—lz—L)!(Tl—h—]z—L)! (2-40)

1
al+]1+Q+Jz—nﬂ(h+12+s+L—nﬂ(Q+Jl+s+L—nﬂ]
and

AClJ1l3)5,sL) = Y (U1 )18)Y (U2 28)Y (L1 [ L)Y (1), L) (2-41)
with the definition of:

Y(abc) _ \/(a+b—c)!(b+c—a)!(c+a—b)! (2_42)

(a+b+c+1)!

Using the notation of H' (L, a, s, 14, ]1, 15, ]2, @', s, 13, 15), the Legendre coefficient

for a general two-body reaction is calculated by [57]:
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(_1)5’—5 {12;0_0 Z]‘I‘S Z]‘I‘s' ’ }[(L, as, l,], l,], a',S', l,, ll) + % X

l=|j-s| £U'=|]-s'|
(o] ]1+S ]1+S ]2+S ]2+S’ o1 /
Z]1=0 le=|]1 s| ll_Ul s | I:ZJZ ]1+1 le |]2_S|Zl£=|]2—5’|}[(l“ a, s; ll;]l; lz;_]z;a ;S ) ll; lz)
J1ts Ji+s' _
+Zl;=ll+1zl’1=|] —s’'| }[(L' a,s, 11']1112']2 _jlra,'slr lirllz)

I L H WS bl = b = a1, 1))
(2-43)
2.4.3 Conventions of angular distribution
Since Blatt-Biedenharn formula shows that the angle-differential cross section is a
combination of Legendre polynomials, the conventional differential cross section is

expressed by:

= =YL AL ()P, () (2-44)
where the Legendre coefficient is:
A, = 2B, (2-45)
This convention is used in CONRAD.

For two-body reactions, because the angular distribution on the azimuthal direction
is always isotropic, the differential on the solid angle is simplified into dQ) = 2mdy.

Therefore, one can define the normalized angular distribution f as:

f=— (2-46)

adu

f1s also the probability density function in [-1, 1], i.e

S f wEYdu =1 (2-47)
The definition of f'and Eq. (2-44) imply that:
fuE) = X1 [2mAL(E) /o (E)] PL(1) (2-48)

On the other hand, Legendre polynomial satisfies:

L Py Py (wydp = 28,1 /(2L + 1) (2-49)

where the Dirac function &, is:

(1 L'=L
SLL, - {O Ll i L (2-50)

If one defines the Legendre coefficient a; as the projection of fon P;:

a,(E) = [1, f(w, E)P, (W)dp (2-51)
The energy angular distribution becomes:
fE) = % =" ay (B)P () (2-52)
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Legendre coefficient (barn)

where

4TAL

ar = L+

(2-53)

This convention is used in ENDF format. The angular distribution is given in file 4
(conventionally called MF4) in ENDF.

Blatt-Biedenharn formula allows us to physically compute angular distributions.
Figure 2-5 shows the examples of Legendre coefficients for neutron elastic scattering
cross section of *°Fe using the resonance parameters from JEFF-3.1.1. Nevertheless, it
is not easy to determine the parameters in phenomenological nuclear reaction models
satisfying all types of nuclear data, e.g., cross section, angular distribution, reaction Q-
value, photon emission, etc. In most current evaluations, the resonance parameters are
only optimized for cross sections. Because the angular distribution is very sensitive to
the spin and parity, optimized parameters for cross section cannot necessarily be
suitable for angular distributions. For the examples shown in Figure 2-5, resonances,
interferences, and smooth variation of the absolute Legendre coefficients are found in
Blatt-Biedenharn calculations using JEFF-3.1.1 resonance parameters, whereas the
corresponding absolute Legendre coefficients A; o< oa;, for L € {1,2,3,4} deduced
from JEFF-3.1.1 MF4 present only resonances as the cross section because the
normalized Legendre coefficients a; given in JEFF-3.1.1 MF4 are smooth (e.g.
interpolation on two neighbor points of 46.309 keV and 52.475 keV).
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Figure 2-5. Legendre coefficients for neutron elastic scattering cross section of **Fe using
resonance parameters from JEFF-3.1.1 and the zoom close to the resonance at 52.1397 keV
(calculated by CONRAD).

In practice, angular distributions (especially for these in the RRR) are often
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mathematical fittings based on experimental data rather than the calculations using
Blatt-Biedenharn formula. The evaluators fit experimental data using a combination of
Legendre polynomials, or directly tabulate the angular distribution on a specific grid of
incident energy and emission angle (or its cosine). Therefore, cross sections and angular
distributions are usually not correlated and physically incoherent in most of current
ENDFs.

Recently, a set of resonance parameters well describing both cross sections and
angular distributions was evaluated for '°0 [61]. This evaluation of n+'®O shows the
possibility to evaluate physically coherent nuclear data with current phenomenological
models (at least in the RRR).

2.5 Energy-angular distribution

For reactions of which the reaction Q-value is undetermined due to unresolved
excitation levels, the distributions on secondary energy are also required. The energy-
angular distribution is given in MF6 in ENDF format. Theoretically, the double-

differential cross section can be calculated by:

do
dQde’

=YL A; (E,ENPL(W) (2-54)
where £’ is the secondary energy and

0AL

AL(EE) =2

(E,E") (2-55)

The normalized energy-angular distribution within the ENDF format is:

fEE") = %122 ay (B, E")PL () (2-56)

Similar to angular distribution, the energy-angular distribution in ENDF is given
by tabulated values of a; (E, E") or directly tabulated values of f (u, E, E") on a specific
grid in file 6 (called MF6).

2.5.1 Kalbach-Mann systematics
In addition to the combination of Legendre polynomials and tabulated values,

Kalbach proposed an improved systematics for describing energy-angular distributions
[62]:

f(WEE') _ a(EE)
ao(E,E'")  2sinh(a(EE"))

[cosh(a(E, E")u) + fusp (E, E")sinh(a(E, E")u)] (2-57)

where fysp is the fraction of multistep direct process (to be determined and tabulated
along with ao in ENDF), a(E, E") can be directly given by the evaluator or should be

calculated with:

a(E,E') = C1 X, + C,X3 + Com'MX3 (2-58)
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where the values of C1, (2, and C3 are given in Table 2-2 and

{Xl = min{(e + Sp), E1} X (" + S5,) /(e + Sp)

X3 = min{(e + Sp), Es} x (&' +53)/(e +5p) (2-59)

where S;, and S}, are respectively the separation energies of the incident and emitted

particles, E£1 and E3 are given in Table 2-2, and

(2-60)

m/+M’
where m, M, m’, and M’ are respectively masses of incident, target, emitted, and residual
particles with the unit of neutron mass.

Even if this systematics was proposed by Kalbach, it is conventionally called as
the Kalbach-Mann systematics because the first version of this form was proposed by
Kalbach and Mann [63]. The energy-angular distribution within the Kalbach-Mann
systematics is tabulated values of fysp(E,E") (and a(E, E") in some evaluations) on a
specific grid of (E, E") in ENDF MF6.

Table 2-2. Parameters in the Kalbach-Mann systematics [62].

Parameter C1 C Cs E1 Es
Unit MeV1 MeV-3 MeV4 MeV MeV
Value 0.04 1.8E-6 6.7E-7 130 41

2.5.2 Interpolation of energy-angular distribution [64]

Because both secondary energy and emission angle are considered as variables in
energy-angular distribution, the comparison between theoretical calculations and
experimental measurements is more direct than cross section (excluding total cross
section) and angular distribution. However, owing to the existence of two degrees of
freedom for each incident energy, numerous validations against experimental data
should be performed. In practice, one can only validate the double-differential cross
sections with a limited number of experimental data. As a result, the accuracy of
complete MF6 data depends on the sensitivities to model parameters.

Figure 2-6 shows the angle-integrated energy distributions, i.e. f_ll f(u,E,E") dpu,
of continuum neutron inelastic scattering on *’Fe in JEFF-3.1.1 [28] and ENDF/B-
VIIL.O [65]. The most obvious difference is the threshold of reaction channel, the
continuum inelastic scattering (i.e. MT91) opens at Ex: = 4.618 MeV and Ew: = 2.376
MeV in JEFF-3.1.1 and ENDF/B-VIIL.O, respectively. Since the threshold energies
where the cross sections are higher than 1 mbarn is 4.623 MeV and 4.803 MeV for

JEFF-3.1.1 and ENDF/B-VIIL.0, respectively, the difference of Ewm: between the two
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libraries is not so important for subsequent calculations.

JEFF-3.1.1 Fe56
MT91 MF6

ENDF/B-VIILO0 Fe56
MT91 MF6

Figure 2-6. Angle-integrated energy distributions of continuum neutron inelastic scattering on
Fe in JEFF-3.1.1 (left, En: = 4.618 MeV) and ENDF/B-VIILO (right, Eq = 2.376 MeV).

Probability density (/MeV)

Figure 2-7. Scheme of the interpolation of energy-angular distributions. Red lines represent

the data given in ENDF, the green points are interpolated data.

As shown in Figure 2-6, the energy-angular distribution is given in a specific grid

on incident energy. Interpolation is thus required to determine the energy-angular

distribution at each energy, as the example shown in Figure 2-7 with green points. The

most common method for interpolating energy-angular distributions is the Unit-Base

21




Probability density (MeV ')

Interpolation (UBI) [66, 67]. For linear-linear UBI, knowing the energy distribution at
two incident energies E,o and E, 1, the probability for incident energy of E and
secondary energy E’ is given by [66, 67]:

N _ _ P(EE)
P(E;E ) - Er,nax‘q_EI,nin'q (2'61)
where
_ E—Enyp )
N En,l_En,O (2 62)
Er,nax/min,q = (1 - q)EIInax/min,O + qEr,nax/min,l (2'63)
B — " Fming_ 2-64
" Emaxq~Eming (2-64)
B(EE) = (1 - q)P(Eno E') + qP(En 1, EY) (2-65)
ﬁ(En,O/lrET) = (ErInaX,O/l - Er,nin,O/l)P(En,O/l'FT(ErInaX,O/l - Er,nin,O/l) + Er’nin,O/l)
(2-66)

where P(En,0/1'E7(Eﬁlax,o/1 - Er,nin,o/l) + Er,nin,o/l) is given in ENDF. Figure 2-8
shows the energy distribution for incident energies between 19 MeV and 20 MeV for
continuum inelastic scattering of *°Fe. The right figure is plotted with the normalized
secondary energy E’ and the corresponding probability density ﬁ(E , E7) for a more

Intuitive view.
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Secondary energy (MeV) Normalized secondary energy

Figure 2-8. UBI of angle-integrated energy distributions of incident energy between 19 and 20
MeV neutron continuum inelastic scattering with **Fe. The right figure uses the normalized

secondary energy to intuitively show the peak values.

As shown in Figure 2-8, the UBI cannot give reasonable peak value of the energy

22

1.0



distribution between two given points. To obtain more physically realistic energy-
angular distributions from interpolation, the present work proposes a Peak value-based
UBI (PUBI) for interpolating the energy distributions. In the PUBI, we divide the
secondary energies into two intervals according to the peak values. Then the UBI is
used to each interval. Assuming the probability density has an unique global maximum,
Enon represents the secondary energy corresponding to the maximum probability
density of energy distribution:

P(Eno/1, Emoy1) = max{P(Eno/1 Eo/1)} (2-67)
0/1

We suppose that the maximum probability for incident energy E is determined by:

Em,q/(Er’nax,q - Er,nin,q) = (1 - Q)Em,o/(Er,nax,O - Erlnin,O) + qu,l/(Er’nax,l - Er,nin,l)

(2-68)
Let denote:
E' Er’ninq E <E
~ Emg—E! = Tmq
F = ";‘f Em”"q (2-69)
~Emq '
Er’nax,q_Em,q B> Em,q
The energy distribution is expressed by:
AED B < By
P(E,E") = I;f (E‘g"q (2-70)
————— E'>Epn,
Emax,q—Em,q ’
where
ﬁI/II(Ef E) =(1- Q)Po,l/ll(En,O:E) + qﬁ1,1/11(En,1:E) (2-71)
where

{ﬁo/l,I(En,O/ll E) = (Emo/1 = Emino/1)P(Eno/1 E(Emo/1 = Eminos1) + Eminoy1)
Pos111(Enos1 E) = (Emaxo/1 = Emo/1)P(Enos1s E(Emaxo/1 = Emoy1) + Emoy1)
(2-72)
The results corresponding to Figure 2-8 but with the PUBI method are shown in
Figure 2-9. The peak values and the corresponding secondary energies are monotonic
for the data obtained by the PUBI method. Figure 2-9 shows physically reasonable

energy distributions for incident energies between the two given neighbor energies.
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Figure 2-9. Same results as Figure 2-8 but with the PUBI method.
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3 Primary radiation damage models

This section briefly presents the theory and main common models for calculating
primary radiation damage. Section 3.1 presents the threshold energy for atomic
displacement. Sections 3.2 - 3.5 shortly describe the current analytical or semi-
empirical models for computing the number of atomic vacancies from a given Primary
Knock-on Atom (PKA) energy. Section 3.6 is a simple correction proposed in the
context of this Ph.D work by analyzing experimental data. Section 3.7 is a short
introduction of advanced modeling methods to compute the irradiation-induced
primary damage. This subsection also includes the discussion on the “full cascade
simulation” and “quick calculation” options in the widely used code SRIM. At the end
of this section, I list the experimental methods for measuring the number of atomic

vacancies after irradiation.

3.1 Threshold atomic displacement energy

The Threshold Displacement Energy (TDE) defines the minimum recoil energy to
create stable defects. Due to the anisotropic structure of crystalline materials, the TDE
is direction-dependent in crystalline structures. Figure 3-1 shows the example of
direction-independence of TDE for iron [68]. Because of limited experimental
measurements, the TDEs are mainly determined by Molecular Dynamics (MD)

simulations for the time-being.

(A®) ABiaua juawade|dsip pjoysalyL

100 410 210 430 110

Figure 3-1. Direction-dependent threshold displacement energy for bece iron [68]. The data are
projected in the triangle of which the vertices are (1,0,0), (1,1,0), and (1,1,1).

Because of the direction-dependence of TDE, the probability of stable atomic
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displacement P, increases from 0 to 1 with the kinetic energy of the knock-on atom
increasing from 0 to the maximum TDE. Figure 3-2 shows the example of the average
number of atomic displacements with respect to PKA energy in Cu from experimental
measurements [69]. No atom is displaced if the PKA energy is below the minimum TDE.
From the minimum TDE to the maximum TDE, because the increase in PKA energy

leads to possible displacements in more directions, P; increases with PKA energy.

1.0 -
0.8
T 0.6-
N
=5
0.4

0.2

0.0-8 . r ,
0 20 40 60 80
RECOIL ENERGY (eV)

Figure 3-2. Experimental data of the average number of displacements with respect to PKA

energy in Cu [69].

In industry, most structural materials are polycrystalline (i.e. arbitrary
combinations of crystallites). Moreover, in nuclear reactors, the incident direction of
the energetic particle is almost isotropic in the scale of atomic displacement. It is thus
possible to use the average TDE, simply noted by E,; hereinafter. The direction-
averaged TDE is calculated by:

1 p2 .
Eq=—J; " " E4(8, ) sinfdode (3-1)

where 6 is the colatitude and ¢ is the longitude. For iron, the average MD results using
10 potentials show E; = 40 eV [70].
For simplification, it is conventionally assumed that P, is described by a step

function of the average TDE, as the dashed curve shown in Figure 3-3:

0, E<E
P ={7 53y (3-2)

This simplification is widely used in different analytical formulae for computing the

number of atomic displacements.
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0 » T

0

Figure 3-3. Probability of stable atomic displacement versus recoil energy [23]. The dashed

curve represents the step function approximation.

In this manuscript, the mentioned TDE or E,; refers to the average TDE hereinafter
if no additional precision. The corresponding displacement probability is the step

function given by Eq. (3-2) and shown in Figure 3-3.

3.2 Kinchin-Pease formula

Let note v(E) the number of displaced atoms induced by an energetic atom with
kinetic energy of E. Figure 3-4 illustrates the two-body atomic collision between the
PKA and an atom in the lattice. The number of atomic vacancies induced by the two
free atoms after a collision is v(E —T) + v(T — E;). Because the final number of

stable atomic displacements is not changed by such a collision, one has:

v(E) = v(E = T) + v(T — E,) (3-3)

Primary Knock- Atom in O

on Atom (PKA) lattice / E-T
O O Slowed
down PKA

E
Knocked-on
atom O T- Ed

Figure 3-4. Schematic of two-body atomic collision between PKA and an atom in lattice.

To develop a simple formula for computing the number of atomic displacements
induced by a PKA with kinetic energy E, Kinchin and Pease assumed that [71]:

(i) All collisions are two-body elastic atomic collisions between atoms;

(if) Atoms are hard spheres;

(iii) The materials are amorphic;
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(iv) The probability of stable atomic displacement P, is Eq. (3-2);

(V) Energy lost to the lattice is negligible, i.e. T — E; = T,

(vi) If the PKA energy is larger than its ionization energy E;, PKA losses kinetic
energy without inducing atomic displacements until PKA energy reduces to E.

Assumptions (i) and (ii) imply that the energy-differential collision is:

a0 g 1y = o) _

where o(E) is the total atomic collision cross section. This differential cross section
can be easily obtained using the probability density of the impact parameter (c.f.
Appendix A1). On the other hand, assumption (v) leads Eq. (3-3) to:

v(E) =v(E—-T) + v(T) (3-5)
Because the material is amorphic, i.e. assumption (iii), for E < E;, one has:
v(E) == [ [v(E = T) + v(T)]dT (3-6)
On the other hand,
[ v(E —=T)dT = [ v(T)dT (3-7)
Therefore, the equation governing v(E) becomes:
v(E) == [y v(T)dT (3-8)

If E < E,4, assumption (iv) implies v(E) = 0. If E; < E < 2E4, the PKA induces
at least 1 displacement, itself or a replacement of another atom. The kinetic energy of
the displaced atom E — E; < E4, it cannot lead to a second displacement. Therefore,
v(E) = 1for E; < E < 2E,4. Using the two boundary conditions for E < 2E, one can

find the solution of the integral equation:
v(E) = ;—E 2E, <E<E, (3-9)
d
Assumption (vi) is equivalent to:

v(E) = v(E)),E > E, (3-10)

Accordingly, the mathematical expression of the Kinchin-Pease (KP) formula is [71]:

O, 0< EPKA < Ed
1, Ey < Epga < 2E,
Vgp(Epka) = EZPEI;A, 2E; < Epga < Ej (3-11)
E
ﬁ: E; < Epga
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3.3 Lindhard’s theory of damage energy

Kinchin-Pease model assumes that all atomic collisions are all elastic collisions.
Taking the inelastic collision effect into account, Lindhard et al. developed integral
equations to compute the so-called damage energy [72], noted by E, hereinafter.
Damage energy is the effective energy lost to atomic motion, the difference between
kinetic energy and damage energy is the energy lost to electronic excitation and
ionization. In a monatomic material having a same type of PKA (i.e. same atomic
number and mass), the damage energy is computed by the integrodifferential equation
[72]:

ke B/ (e) = [§ o f(t2) [Ba (e - 8) - B0 + E. ()] 312)

where € = Epg4/EL, t = 2T /T,, with T the transferred energy, T,,, = E if the incident

and target atoms are the same (i.e. same mass and same charge), and

_ kce 2/3 1/2
b= 0.88653a0 ZRZ(Zg"” + Z1%) " (Ag + A)/A [eV] (3-13)
. 1/2 Z2/3Z1/2(A +4)3/2
kL = (1153 :;nl—) Z/R; 3;1 iy (3_14)
NS (z3P4ze3) Ay ars

where Zand 4 (Zg = Z — z and Agp = A + 1 — a,, respectively) are the atomic number
and the atomic mass number for lattice atom (PKA, respectively). The corresponding
physical constants are given in Table 3-1. k,&'/? is the electronic stopping power. The

scattering function f (tl/ 2) is from the universal Thomas-Fermi differential cross

. ~ -1/2 .
section wa? ;Tt/zf(tl/z), where a = (912/128)/3q, (Z;/3 +Z72/3) and a is the
Bohr radius.
Table 3-1. Physical constants [73].
kCe m, 1/2
Symbol ke e a, m, my WSISCIO (11.53 m—N>
N Coulomb Elementary Bohr Mass of Mass of Coefficient Coefficient in
ame
constant charge radius  electron  nucleon inE; k;
Unit N m2C C pm MeV/c? MeV/c? - -
Value 8.988 x 10° 1.602 x 1071° 5292 0.5110 9315 30.734 0.07953

Based on the numerical solution of integral equations by using the universal
Thomas-Fermi interaction potential [74—76], Lindhard et al. found that the damage
energy E, (&) is nearly inversely proportional to k; at high energy. On the other hand,

at low energy, due to negligible loss to electrons, E, (¢) = €. By consequence, they gave
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a partition function of the shape as [72]:

1

P(g) - 1+k;g(e)

(3-15)

By interpreting Lindhard’s numerical results of the partition function [72], Robinson

presented the numerical approximation by an analytical expression for the function
g [77]:
g(&) = 3.4008£/6 + 0.40244&3/* + ¢ (3-16)

The damage energy E,(Epxa) = Epga X P(Epga/E;) can be thus analytically
calculated for each PKA energy. It is noteworthy that the damage energy calculated
with the assumption (E) in Ref. [72] is several percent too high, this is consistent with
the results calculated by Coulter [78].

Lindhard’s equation is deduced in the regions I (where the nuclear stopping is
dominating and relatively little energy goes into electronic motion) & II (where the
nuclear stopping falls off, while the electronic stopping goes on increasing as E'?), i.e.
v < vy = vyZ%/3 [72]. The last condition conducts that Epg s < 24.94Z*/3 keV or € <
286A/Z. So, the upper bound of the validity domain is € = 572 (Epg4 = 23.5 MeV)
for !Siand € = 617 (Epg, = 107 MeV) for *°Fe. The calculation for £ > 1000 is thus
unphysical.

We remark that the upper bound of the validity domain of PKA energy increases

with atomic mass number 4 and the maximum energy of PKA given by neutron elastic
44

scattering (which 1s Ty = a+1)?

E,) decreases with 4. Under the approximation of

neutron elastic scattering, the upper bound of incident neutron energy in the Lindhard’s

numerical results is:
E, < 6.225Z*3(A + 1)? keV (3-17)

The upper limit of neutron energy is thus 1.6 GeV for *Fe. However, for 'Li, this limit
is 1.3 MeV, which is included in the neutron spectrum for both fission and fusion

reactors.

3.4 Norgett-Robinson-Torrens formula

Since the damage energy is the effective kinetic energy lost to atomic motion, the
PKA kinetic energy in the Kinchin-Pease formula should be replaced by the damage
energy for computing the number of atomic displacements. Based on the more than 40-
years Binary Collision Approximation (BCA) simulations of ion collisions in solids
[79], Norgett, Robinson, and Torrens proposed a new formula (conventionally called as
NRT, or modified Kinchin-Please) in 1975 [80] using Lindhard’s damage energy [72,
77]:
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(0, O<Ea<Ed

2Eq
vnrr(Eq) = L Ea<Ea<Ty (3-18)
088, 26 _pp
2E4 0.8

where the constant 0.8 is the correction of the hard-sphere collision cross section
obtained by BCA simulation (the original approximate value of the correction is 0.86)
[79].

NRT-DPA formula is considered as the current international standard for
quantifying the irradiation damage [20]. It is again noted that Lindhard’s damage energy
and the subsequent NRT formula is valid only for Epgxs < 24.9AZ%/3 keV. Most
numerical results shown in this thesis are based on NRT formula if no special instruction

is given.

3.4.1 A modification of NRT

On the other hand, according to the definition of the average threshold
displacement energy, at least an atom is displaced if Epgy4 > E4. One can understand
that the inelastic collision-induced energy loss of a displaced PKA does not change the
number of total atomic displacements for E; < Epgy < 2E,; because the excess or
remaining energy (i.e. the kinetic energy after the displacement of PKA) Epgs — Ej is

not sufficient to induce a second displacement. This definition implies a modified NRT
(mNRT) formula [81]:

O, 0< EPKA < Ed
1, (Eg<Epr))& (E <@)
Umnrr (Eq) = ' d =~ “PKA a8 (3-19)
085, 24 _ p
2Eq4 0.8

This mNRT is almost the same as the standard NRT formula for neutron-induced
damage. However, the mNRT may lead to a larger number of vacancies for damage
induced by light particles, such as electron and photon (examples shown in Sections 4.5
and 4.6), because the contribution of (E; < Epga)&(E,(Epka) < E4) is not negligible.

3.5 Athermal Recombination-Corrected formula

Even if NRT-DPA formula is used as the standard, the overestimation of DPA by
the NRT model is found in 1977 with the electrical resistance measurements of the
irradiated thin-fold specimens of copper and silver [82]. One of the issues in the NRT
model is that the in-cascade recombination of displaced atoms is neglected. Taking this
effect into account, the Athermal Recombination-Corrected DPA (ARC-DPA) formula
is proposed by Nordlund et al. [83-85].

The relative damage efficiency ¢ is defined as the ratio of the “true” number of
Frenkel Pairs (FP) to the number of FP calculated with the NRT formula. Its expression
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is based on the fact that the number of FP Ngp tends to a’E, when E, tends to infinity
and Ngp tends to ¢'E, (k =~ 0.8) (where a’ and ¢’ are constants) at low energy but
higher than the threshold energy [83, 84]. Therefore, the following simple function is
proposed:

Nep = a'E,°* + ¢'E, (3-20)
Accordingly, the efficiency becomes:

a’Eab+1+c’Ea _

=aEL +¢ (3-21)

_ Nrp _
$arc(E) = Nnrr 08E./2Eq

By continuity of DPA, one imposes an additional condition é (2E;/0.8) = 1 that leads

to:

Eq barc
$arc(Eq) = (1 — cppe) X [0-8E + Carc (3-22)
The coefficients bypc and cygc are fitted through the results of MD simulations or
possible experimental data for each material. Within this adjustment, the effective and

empiric ARC-DPA formula is given by:

0, 0<E, <E,
2Eq4
Varc(Eq) = L Eq <Eo <7y (3-23)
0.8E, 2E
2Ey $arc(Eq), T: <E,

Konobeyev and coworkers have calculated and suggested the threshold energy, the
coefficients byge and c4gc in ARC-DPA for elements from Li to U [86]. The data are
used to implement the ARC-DPA into NJOY [87] from Be to U [88]. The corresponding
results are delivered for the JEFF-3.3 nuclear data library [89]. In the work of
Konobeyev, the threshold energies seem to be accurate, but the deviations of the
coefficient cype (Which is defined as cupc = Eq/Egesr, Where Egery is the effective
threshold energy that is defined by Nyrr = Nrp at the end of cascade [90]) to those from
the MD simulations are observed (e.g., Cu, W, Pt shown in Table 3-2). Another
conclusion of Konobeyev’s work is that the coefficient b,p- has a weak influence on

the efficiency calculation.

Table 3-2. c4rc from Konobeyev’s systematics and MD simulations [86].

Element Fe Ni Cu Pd Ag w Pt Au

MD 0.286 0.227 0.118 0.152 0.257 0.119 0.112 0.130
Konobeyev 0.31#).09 0.2340.08 0.30#0.09 0.3240.09 0.31#0.17 0.60#0.17 0.3640.10 0.4340.12

One of the drawbacks of fitting MD results using the ARC-DPA formula is that the
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fitted parameters are strongly dependent on E;, which is actually not well determined.
For example, for the same MD results, (i.e. the total number of atomic displacements
are given) if one changes E; by E; = xE; (x # 1), the corresponding efficiency
function is &3pc(E,) = xé4pc(E,) for having the same number of displacements.

Therefore, the corresponding coefficients obey:

b

(1 = cire) x [0.8 2 ]b;”“

* Eg ARC
oxEq + Cppc = X [(1 — Cqre) X [O'SE + CARC](3-24)

for any damage E, > E;. This condition is equivalent to:

b:mc = barc
(1—circ)x~bare = x(1— cape) (3-25)
CaRC = XCaARC

There are three independent constraints for determining two variables bz and cygc-
Consequently, {1rc(Ey) = x&4rc (E,) is mathematically impossible! Therefore, if the
value of E; is changed, one has to refit the coefficients in ARC-DPA model rather than
a direct deduction from the previous fitting based on another E;. Moreover, the refitted

efficiency &)z (E,) must have a different shape from the original one & 4z¢(E,).

3.6 A simple proposition [91]

Owing to the utilization of MD simulations, the ARC-DPA can generally much
better describe DPA than the NRT formula. One of the drawbacks of the ARC model is
that MD simulation results are required for each isotope. Therefore, we propose a
simple efficiency function without introducing parameters excluded in the NRT-DPA
metric or requiring MD simulations.

Here, we simply recall the reasoning of Robinson and Torrens on the calculation of
the number of point defects [79]. The annihilation equation of point defects is [79]:

== —kn? (3-26)
where n represents the concentration of point defects of either kind. By integrating, the

solution of Eq. (3-26) can be calculated:

_ 7o -
n(t) = 1+kngt (3-27)
where ng = n(t = 0). Therefore,
n(t) _ 1
o T Trkmot (3-28)

Inspiring from the equation of annihilation, Robinson and Torrens proposed that

Nep — 2 (3-29)

NNRT 1+aNnRgT
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where a i1s a fitted coefficient (equivalent to Az in the annihilation equation). The

average energy dissipated to each displaced atom is thus [79]:

o _ 2844 o, (3-30)

Ngp 0.8

The efficiency function based on the NRT formula is defined as:

§(E,) = —E2 = PP (3-31)

Nngrr(Eq)  0.8Eq/2Eg

Therefore, one obtains:

2E4/0.8
2Eq/0.8+aE,

£(Ey) = (3-32)

The above efficiency function tends to 0 by increasing the damage energy. However,
the defect production is almost a linear function of the damage energy after the
formation of displacement sub-cascade at high energy collisions [92-94]. The
efficiency should thus be a constant after the subthreshold energy, which defines the
threshold of sub-cascade formation. Both MD simulations and experimental data show
the asymptotic value of the efficiency is about 0.3 for most isotopes. Consequently, the

asymptotic value of the efficiency (f) should be taken into account:

2E4/0.8

$cp(Ea) = 2E4/0.8+BEq

+p (3-33)

where f = Z/(1.54) is an additive parameter that accounts for the asymptotic value of
§(EL). B < Z/A because a stronger Coulomb force or a lighter mass leads to a longer
path that induces “more” sub-cascades. The advantage of this improved efficiency
function is that we correlate the atomic displacement efficiency with the atomic number
and the atomic mass of the irradiated material without requiring fitting parameters as
needed in the ARC-DPA model. In addition, the same f is used for the coefficient in
the denominator of the first term to simplify the expression. This improved correction
is referred to Chen-Bernard (CB) in this subsection.

The ratios of ARC and CB to the NRT metric for the Fe, Ni, and Cu are shown in
Figure 3-5. Fe and Ni are the two most important elements in the RPV for radiation
damage investigations. All the three elements are of importance in fusion reactors. The
values of bypc and ¢4z in ARC-DPA formula and the threshold energy Eq for these
elements are compiled by Nordlund [85] and listed in Table 3-3. The original results of
MD simulations can be found in Ref. [95] and Ref. [96] for Fe and Ni, respectively.
The experimental data are extracted from the report of the Nuclear Energy Agency
(NEA) [84], which accounts for the experimental measurements of Jung [97]. The DPA
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is proportional to the Resistivity of Frenkel pairs per unit concentration (RF) (c.f. Eq. 1
in Ref. [82]). The experimental uncertainties are deduced from the RF values compiled
in Tables 5 and 16 in Ref. [97]. It can be found that the CB corresponds well with the
experimental data. The discrepancies between the CB model and the experimental
values are even less than the ARC-DPA model for Fe, Ni, and Cu.
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Figure 3-5. Ratios of experimental data, ARC-DPA, and CB-DPA to the NRT formula for Fe,
Ni, and Cu versus damage energy E,. The experimental data extracted from NEA report [84].
The experimental uncertainties are deduced from Tables 5 and 16 in Ref. [97] through the

Resistivity of Frenkel pairs per unit concentration. The dashed pink lines indicate E.~2F,/0.8.

Averback deduced experimental DPA numbers of copper and silver according to

the measurement of electrical resistivity [82]. The data of Averback are given as a

function of DPA-averaged PKA energy (i.e. the weighting function for computing the
average PKA energy is the number of DPA), which is larger than the average PKA
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energy. However, these data can reveal the asymptotic values of displacement efficiency.
The total uncertainty of Averback’s DPA comes from the uncertainties of the thickness
of samples (5% for samples number 2 & 3 and 10% for other ones) and the correction
to convert measured thin film resistivities (10%). The ratios of ARC and CB to the NRT
metric for the Cu and Ag are shown in Figure 3-6 with Averback’s experimental data.
The ratios of experimental data to NRT value for Cu are corrected because Averback
adopted Lucasson’s threshold energy of 29 eV [98]. The ARC-DPA parameters of Ag
are listed in the last row in Table 3-3 [86].

Table 3-3. Parameters for DPA calculation.

Material

Eq(eV) barc CaARc
Fe [85] 40 -0.568 0.286
Ni [85] 39 -1.01 0.23
Cu [85] 33 -0.68 0.16
Ag [86] 39 -1.06 0.257
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Figure 3-6. Ratios of Averback’s experimental data [82], ARC-DPA, and CB-DPA to NRT for
Cu and Ag versus damage energy computed with the DPA-weighted average PKA energy. The

uncertainties are from the uncertainties of sample thickness and electronic resistivity.

Figure 3-5 shows that the CB formula corresponds well to experimental data for
Fe, Ni, and Cu. Results in Figure 3-6 show the good agreement of the asymptotic value
of the CB-DPA for Ag. The asymptotic value of Averback’s experimental measurement
is higher than both ARC-DPA and CB-DPA, while the asymptotic experimental data
shown in Figure 3-5 are between ARC-DPA and CB-DPA. Comparing with the NRT
metric, no additional parameter is used in the CB formula. The simpler form of the CB
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than that of the ARC directly results in fewer calculations for the propagation of
uncertainties from nuclear parameters to DPA rates. In addition, MD simulations are
required for each isotope to fit the parameters bygc and cygc in the ARC-DPA metric.
Konobeyev and coworkers have tried to find a systematics to determine the parameter
Carc iIn ARC-DPA, but the discrepancies between the systematics and the molecular

dynamics simulations are evident [86].

3.7 BCA and MD simulations

The aforementioned formulae for calculating the number of atomic displacements
are based on various assumptions and/or empirical observations. Moreover, the lattice
binding energy is often neglected in such analytical formulae. The crystalline structure
is considered only in the determination of the angle-averaged TDE. Even in the modern
ARC-DPA model, it is impossible to fit all MD results as the examples shown in Figure
3-7. Accurate calculations by following all knocked-on atoms are thus required for

computing the “exact” number of atomic displacements.
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Figure 3-7. Ratios MD simulations-based number of atomic displacements to the NRT
formula for Au, W, and Pt along with the corresponding ARC-DPA fittings [99].

3.7.1 Brief introduction of BCA and MD simulations

BCA simulation follows each two-body collision to estimate the number of
displaced atoms [79]. The two widely used BCA codes are SRIM [100] and
MARLOWE [79]. The former performs Monte Carlo simulations for amorphous
materials, while the latter considers the crystalline structure. MARLOWE is more
complex but SRIM is easier to use thanks to its graphical user interface. Another

shortcoming of SRIM is its very time-consuming Monte Carlo simulations. A SRIM-
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like open-source code Iradina [101], which is about two orders of magnitude faster than
SRIM [102], was recently developed.

While BCA considers only two-body collisions, MD treats collective interatomic
interactions. MD simulation is thus more complex and more realistic than BCA.
Because MD simulates together all considered atoms, it permits not only to calculate
the number of atomic displacements but also the time evolution of vacancy, interstitial,
size of cascade clustering, etc.

Since MD simulates many-body interactions, it is much more time-consuming than
BCA. The heavy computation burden is an important issue that limits the application
of MD for high energy particles. Figure 3-8 shows the time evolution of point defects
obtained by MD simulations [103]. Higher PKA energy implies larger displacement
cascade and longer time to form stable point defects. To overcome this shortcoming of
heavy computation burden, the Cell Molecular Dynamics for Cascades (CMDC) [104]
code has been developed to accelerate the MD simulations by treating only the “active
box” rather than the whole domain of the simulation. Ortiz proposed another solution
that the MD is used at low energy while the BCA is used at high energy [105].
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Figure 3-8. Evolution of the number of Frenkel pairs formed during displacement cascades

using MD simulations [103].

BCA and MD are more realistic than the semi-empirical analytical formulae for
computing the number of atomic displacements. However, BCA and MD results depend
on the chosen semi-empirical interatomic potential (in BCA, stopping power is more
referred). As a consequence, BCA and MD calculations rest also as references before

their validation against experimental data.
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3.7.2 Recent discussion on SRIM-like BCA codes [106]

As mentioned in Section 3.7.1, SRIM is widely used to determine the number of
atomic displacements. However, different options in SRIM give inconsistent values of
the number of atomic vacancies [107, 108]. Stoller et al. recommended the use of Quick
Calculation (QC) option (i.e. using Lindhard’s damage energy for PKA distribution
obtained by BCA-based Monte Carlo simulations [109]) with the proposed methods to
obtain the results comparable with the standard NRT formula [107]. Recently,
Crocombette and Van Wambeke [102] and Weber and Zhang [109] recommended to
use Full Cascade (FC) simulations in SRIM-like codes because of its physical
significance.

To explain the discrepancy between QC (or comparable results with NRT-DPA)
and FC in SRIM-like BCA codes, we revisit the reasoning of KP model [106]. The
following of this subsection is a brief summary of our published paper in Results in
Physics [106]. Firstly, it is noteworthy that the number of vacancies in lattice induced

by an incident ion is different to that induced by a PKA. Because we distinguish the

atomic displacement induced by ion and PKA only in this subsection, the notations
v(E) for ion-induced number of vacancies and 7(E) for PKA-induced one used in Ref.
[106] are kept in this subsection. Moreover, for PKA energy that E > E,;, V(E) = v(E)
[106], it is thus not necessary to distinguish v(E) and v(E) at high energy.
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Figure 3-9. Difference between the ion-induced and PKA-induced number of atomic
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displacements. (a) Schematic of the displacement of a PKA with energy E. Once this PKA is
displaced by consuming Ey energy, it is a free ion with (£ - Eg) kinetic energy. (b) Number of

atomic displacements induced by an incident ion and a PKA at energy from £y up to 2E,.

As illustrated in Figure 3-9(a), the difference between v(E) and ¥(E) is that the
former does not count the incident ion as a vacancy, while the latter includes the

knocked-on PKA as one vacancy. The number of atomic displacements induced by an
39



incident ion and a PKA shown Figure 3-9(b) are quite different in [E,, 2E;]. For high
energy PKA, as the schematic illustrated in Figure 3-9(a), the number of displacements
induced by a PKA with energy E (i.e. v(E)) is approximately equal to the sum of 1
displacement for itself and the number of displacements induced by the displaced free
ion with (E — E,;) kinetic energy, (i.e. v(E — E,;)):
V(E)=v(E —Eyz)+1 (3-34)
For the elastic collision of two identical atoms as shown in Figure 3-10, the number

of vacancies induced by the two free atoms after such collision is v(E —T) +

v(T — Ey). Since the knocked-on atom is accounted as one displacement, one has:
v(E)=v(E-T)+v(T—E;) +1 (3-35)

Supposing the atoms as hard spheres, the differential collision cross section is (c.f.
Appendix Al):

o(E,T) =1/E, VT € |[0,E] (3-36)
Therefore, the integral equation governing v(E) is simplified to:
v(E) = %foE[v(E —T)+v(T — E))T + 1 (3-37)
An evident mathematical solution of Eq. (3-37) is:

v(E) = E/E, (3-38)

Atom in O

Incident ion M/E-T
Q O Slowed
down ion

E
Knocked-on
atom O T- Ed

Figure 3-10. Schematic of energy transfer via elastic atomic collision.

Eq. (3-38) is an exact mathematical solution of Eq. (3-37). The physical issue of
Eq. (3-38) is that v(T — E;) < Owhen T < E; and v(T —E;) > 0 when E; < T <
2E;, whereas T < E; is physically impossible and the definition of E; implies

v(T —E;) =0forT — E; < E;. However, Eq. (3-38) satisfies fOZEd v(T — Eg)dT =
0, which implies fOE v(T — Ez)dT = fzb;_d v(T — E;)dT for E > 2E,;. Consequently,
forion energy E > 2E;, Eq. (3-38) still satisfies Eq. (3-37) with the physical constraint
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v(T) = 0 for T < E; using the approach of the first term in Eq. (3-37): fOEv(E -

T)dT ~ [° "®v(E — T)dT. An intuitive understanding of Eq. (3-38) is that each

0
atomic displacement consumes E; kinetic energy. Therefore, the total energy lost to the
lattice by atomic displacements is v(E)E,.

In fact, as explained by Kinchin and Pease [71], if there is only one kinematic atom
and its kinetic energy is below E; (above E; but below 2E; resp.), it can displace only
0 (1 resp.) atom in lattice. However, as shown in Figure 3-11, atoms in displacement
cascades having kinetic energy below E; or 2E; can transfer energy with other
kinematic atoms during the displacement cascade, so that more atomic displacements
are formed than the Kinchin-Pease displacements. For example, F; = 0.8E; and E, =
0.5E, can induce an atom with a maximum energy of 1.3E; that is possible for a
kinematic atom to displace 1 atom (shown in Figure 3-11(a)) and is more than enough
to induce 1 displacement for an atom in lattice (shown in Figure 3-11(b)), while atomic
displacement is not possible for this case according to Kinchin-Pease. This kind of

energy transfer is noted by residual energy transfer hereinafter.
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Figure 3-11. Schematic of the maximum residual energy transfers from an atom in lattice to a

kinematic atom (upper) and from a kinematic atom to an atom in lattice (lower).

Nevertheless, it is impossible that all available energies are used in atomic

displacements. In fact, if the below E; residual energy of an atom cannot be transferred
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to other kinematic atoms, or this residual atom cannot receive enough energy from other
atoms, this part of residual energy would be lost. Therefore, an efficiency of available
energy (denoted by k,, referred to the efficiency of residual energy transfer hereinafter)
is introduced. The definition of k, implies that one effective atomic displacement
consumes E; /k, available energy. By taking the electronic effects and correction on
atomic collision into account, the corrected number of vacancies is:

v(E) = kE,(E)/E4, forE,(E) > Ey (3-39)
where E, (E) is the damage energy [72], k = kqkp where kg (= 0.8 in NRT formula) is
the correction on atomic collision.

The energy dependence of k,, is qualitatively illustrated in Figure 3-12. The main

properties are:

- Kk, increases with ion energy. Higher ion energy leads to more atoms with
damage energy around E; after several atomic collisions. The probability of
residual energy transfer (as the example shown in Figure 3-11) is thus higher.

- kqu(2E;) < 0.5. Anincident ion with kinetic energy E = 2E is able to displace
one atom. However, it cannot displace two atoms (possible but the probability
is quasi-null). For the hard-sphere elastic scattering of identical atoms, Figure
3-9(b) shows k,(2E;) = 0.35.

- Kgq 1s quasi-constant for E > E;. Except for the residual energy transfer that
enhances the atomic displacement, there is also available energy (> E,) transfer
but without inducing displacement. At high energy, there should be an
equilibrium between the two energy transfers.

Since Ref. [79] shows that kg is almost energy-independent, k increases with the

incident ion energy and becomes quasi-constant above a threshold.

\Ka

Incident energy

Figure 3-12. Qualitative description of energy dependence of x,.

According to Eq. (3-39), the ratio of atomic displacements to the current

international standard metric NRT is:

v/ﬁNRT = 25K (3'4‘0)
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It is emphasized that k is energy-dependent. If one assumes x = 0.8, which is used in
the NRT formula to correct atomic collision, Eq. (3-39) doubles the number of atomic
displacements computed by the NRT model. Taking the athermal recombination effect
into account, the corresponding correction function (also called as the efficiency) of Eq.
(3-39) can be directly determined by:

§ = Sarc/2.5K (3-41)
where & 45 1s the efficiency of the recently ARC-DPA formula that is based on the NRT
model [84, 85]. Nevertheless, it should be noted that k or mainly k, is energy-
dependent.

Since QC is deduced by following the trajectory of ion while the FC follows all
collided atoms, the damage energies calculated with these two options are not strictly
the same. Assuming the damage energy computed in the QC is the same as that

simulated with FC (although they are a little different), the ratio of FC (approximately
Eq. (3-39)) to QC is:

FC/QC = v/Dygr = 2.5k (3-42)

Therefore, FC/QC = 2.5 if k = 1. Using k = ky = 0.86 which is in fact the value of
kg from BCA [79], one has (FC/QC), = 2.15. The values of FC/QC for all cases

shown in Ref. [106] are included in [0.9, 1.2]x (FC/QC),.

3.8 Measurements of number of atomic displacements

Because no model is perfect, experimental measurements are fundamental to
accurately quantify the number of atomic vacancies in irradiated materials. In order to
avoid the influence of thermal recombination, experiments for measuring the number
of atomic displacements should be performed in cryogenic temperature (< 10 K). Three
methods can be used to count the number of point defects in irradiated materials,
including direct counting using Transmission Electron Microscopy (TEM) [110],
Positron Annihilation Spectroscopy (PAS) [111], and Change of Electronic Resistivity
(CER) [82].

PAS can be used for measuring the number of vacancies because atomic vacancies
in lattice lead to low electron density [112]. If point defects are presented, positrons will
reside in vacancies so that they annihilate less rapidly than the annihilation in the bulk
of the material.

CER is a common method to quantify the number of Frenkel pairs in metals. For a

specific metal, the number of Frenkel pairs is deduced by:

Nep = Ap/prp (3-43)

where Ap is the CER and pgp is the resistivity per Frenkel pair. The values of pgp with
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uncertainties and possible ranges are summarized in Table 3-4. The number of atomic
vacancies can be thus directly calculated by the difference of CER before and after
irradiation. The uncertainty of pgp is directly propagated to the measured number of
atomic vacancies. For iron, ppp results in 20% uncertainty of experimental data via the

CER measures.

Table 3-4. Resistivity per Frenkel pair (in p2m) for monatomic materials [90, 97].

, Jung Unc.  Broeders Unc.
Element  Min Max Max2?
[97] [97] [90] [90]

Al 1.32 4.3 6.8 4 3.7

Ni 3.2 7.1 11.2 7.1 0.8 7.1 0.8
Cu 1.15 3 2.5 0.3 2.2 0.5
Pd 9 10.5 9 1 9 1
Ag 1.4 2.1 2.5 2.1 2.1 0.4
Ir° 6.7 0.5 6.7 0.5
Pt 6 9.5 9.5 0.5 9.5 0.5
Au 0.89 3.2 5.1 2.5 2.6

Pb 1 20 - -

Th 15 19 - 19

\Y 6 40 22 7 21

Cr 37 40 - 37 2
Fe 12.5 30 30 5 24.6

Nb 14 16 16 14 3
Mo 4.5 15 15 4 13.4

Ta 16 17 16 3 16.5 3
W 7.5 28 27 6 27
Mg 0.8 9 21.5 9 9

Sc - 50

Ti 18 42 - 24.9

Co 14 35 16 5 15.5 5
Zn 4.2 20 15 5 17.9

Y 50 - 50 20
Zr 35 40 35 8 37.5 8
Cd 5 10 19 - 14.5 8
Pr - 135 5
Nd - 135 5
Eu 100 - -

Gd - 160 30

44



Tb
Dy
Ho
Er
Tm
Yb
Lu
Re
Ga
U
In
BSn
Sm
Bi

75
20

1.1

7500

145

4.2

155
145
145
180
140
75
145
20
54
22
2.6
1.13
140

30
30
30
35
30
25
30

0.5

0.2
30

® Maximum value adopted by Jung or Broeders or by the systematics given in Ref. [90].

® Uncertainty estimated by author from Ref. [90].

¢ Elements in red are those with only one available value.
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4 Calculation of damage cross sections
Both DPA formulae and BCA and MD simulations use PKA energy as a major

parameter. In applications, the given quantities from particle transport calculations are
the spectra of incident energetic particles, such as neutron spectra in nuclear reactors,
rather than PKA spectra. For a given neutron spectrum, the corresponding PKA
spectrum can be calculated by the standard code SPECTER [113] and two recently
developed codes DART [114] and SPECTRA-PKA [115]. The typical method of
primary DPA calculation applied in nuclear reactors is the generation of Damage Cross
Sections (DXS) through the nuclear data processing code NJOY [87]. The DPA rates
can be calculated with the DPA cross sections and the spectra of incident particles
computed by particle transport codes. This section presents the methods for calculating

damage cross sections.

4.1 Thermal vibration of the target atom [116]

4.1.1 Two-body elastic collision kinematics

The recoil energy of PKA is fundamental for DPA calculations. Figure 4-1 shows
the scheme of the collision in the Laboratory (Lab) frame. The incident and emitted
kinetic energies are referred to £ and E’, respectively. Er stands for the recoil energy of
the target nucleus. m and v (m’ and v’) are respectively the mass and velocity of the
incident (outgoing) particle. M and M’ denote the mass of target and residual nuclei,
respectively. The kinetic energy of the target is set to 1.5k7, which is the average kinetic
energy for particles with temperature 7. k = 8.617 X 107> eV/K is the Boltzmann
constant. 8 denotes the angle of the target due to thermal vibration. The angle between
the velocity of CM and the incident direction is denoted by ¢. The emission angle is
referred to a. The emission angle in the CM frame is noted as «.

The conservation of energy conducts to:

E+15kT =E'"+Ezx +Q (4-1)
where Q is the reaction energy. The conservation of momentum before and after
collision shows:

mv + Mvy cos @ = m'v' cosa + M'vg cos B (4-2)
Mvy sin@ = m'v' sina + M'vg sin B (4-3)
At low incident energies, the emission angle in the CM frame, i.e. ., is supposed
to be isotropic. At high energies, the angular distribution can be found in ENDF, which

often gives the distribution of a.. The angular distribution of @ can be determined by

that of a. and ¢ because a = a. + ¢. The conservation of momentum before collision
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leads to:

mv + Mvycos8 = (m + M)vey cos @ (4-4)
Mvrsind = (m + M)vey sing (4-5)

@ satisfies thus:
tan ¢ = Mvr sin @ (4-6)

mv+Mvr cos 6

Due to the symmetry, one can further suppose that 8 € [0, ]. Consequently, for mv >
Mvr,i.e. mE > 1.5MkT,

Mvr sin 6 )
mv+MvT cos 6

@ =tan! ( (4-7)

The corresponding recoil energy Ex(E, T, a., 6) can be thus determined as a function
of (E,T,a,,9).

After Collision

m’, E v’

Before Collision

Figure 4-1. Schematic of the collision in the Lab frame.

The recoil energy depends on the angle of the thermal vibration 6. However, it is
not so important to study the dependence of recoil energy on 6 because the latter has to
be random. The random value of 8 leads to the isotropic angular distribution. Therefore,
the recoil energy averaged over 6 is investigated. The isotropic angular distribution of

6 conducts to:
Ex(E,T,ac) = [ Er(E,T,a,,0)d(cos6) (4-8)

where Ex(E, T, a., 6) is determined by the aforementioned kinematics.
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4.1.2 Numerical results

Figure 4-2 shows the average recoil energy calculated with Eq. (4-8) of *’Fe for
100 eV, 500 eV, 1 keV, and 5 keV energy neutron elastic scattering with different
temperatures as a function of a.. The influence of temperature is more important at
lower incident energy. However, due to the threshold energy of atomic displacement,
the temperature effect on recoil energy has no influence on DPA computation when the

recoil energy is lower than E; or 2.5E; (2E;/0.8), which is equal to 40 eV or 100 eV
for iron [20, 70].
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Figure 4-2. Average PKA energy of *°Fe for 100 eV, 500 eV, 1 keV, and 5 keV incident

neutrons with different target temperatures.

For neutron elastic scattering shown in Figure 4-2, different temperatures of *°Fe
have the same DPA number (0 DPA) for incident energy lower than 500 eV. For 1 keV
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neutron, the maximum recoil energy is higher than E; but lower than 2.5E ;. Therefore,
the DPA number does not change with the temperature. For high incident neutron that
the recoil energy of *°Fe can be higher than 2.5E,;. However, the temperature effect on
recoil energy is negligible because of the quite small contribution of the kinetic energy
of target (1.5kT = 0.2 eV when T = 1500 K) before the collision, as shown in Figure
4-2(d). The average recoil energies with different incident energies and different
temperatures are given in Table 4-1. Both Figure 4-2 and Table 4-1 show that the
consideration of the thermal vibration of the target has a negligible influence on DPA
computations. As a consequence, the DPA cross sections computed by NJOY without
considering the thermal vibration of the target can be directly used.

Table 4-1. Average recoil energy (in eV) of **Fe for 100 eV, 500 eV, 1 keV, 5 keV, and 10 keV
incident neutron elastic scattering with different temperatures.

E 100 eV 500 eV 1 keV 5 keV 10 keV
10K 3.52 17.61 35.22 176.09 352.11
293 K 3.56 17.65 35.25 176.12 352.15
1500 K 3.71 17.80 35.41 176.25 352.37

4.2 Relativistic effect on the calculation of recoil energy [117]

4.2.1 Relativistic kinematics

Figure 4-3 illustrates the schematic of a general two-body collision kinematics in
the laboratory frame. The kinetic energies of the incident and the emission particles are
respectively denoted by £ and E°. The corresponding momenta are denoted by p and p’.
Due to the negligible influence of the thermal vibration of the target particle [116], the
kinetic energy of the target is supposed to be 0. The recoil energy and momentum of
the residual particle are denoted by Er and pr, respectively. m, M, m’, and M represent
the rest masses of the incident, target, emission, and residual particles in the ground
state, respectively. The emission angle and the recoil angle are respectively denoted by
@ and a.

The special relativity can be used in a laboratory framework that is approximatively
an inertial reference. For the system illustrated in Figure 4-3, the conservation of

momentum shows:
p'singp = pgsina (4-9)
p =p'cose + pgrcosa (4-10)
Eliminating @ and denoting u = cos ¢, one obtains:

pi = p® —2pp'u+p' (4-11)
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Figure 4-3. Schematic of the collision in a laboratory framework.

On the other hand, the relationship between relativistic momentum and energy

shows:
p%c? + m?c* = (E + mc?)? (4-12)
p'?c? + m'?c* = (E' + m'c?)? (4-13)
pac? + M'%c* = (Eg + M'c?)? (4-14)

For the sake of convenience, the rest energy is simply noted by the corresponding rest
mass in the following equations. Replacing momenta by kinetic energies, the

conservation of momentum before and after the reaction leads to:

Er(Er +2M') = E(E 4+ 2m) + E'(E' + 2m') — 2,/EE'(E + 2m)(E' + 2m/)u
(4-15)
Because both the recoil energy and the right-hand side of Eq. (4-15) are always positive,
the physical solution of Eq. (4-15) is:

Ep = JM’Z +E(E 4 2m) + E'(E' + 2m") — 2JEE'(E + 2m)(E' + 2m")u — M’
(4-16)

The first order approximation is:

1
2M’

Ep = [E(E +2m) + E'(E' + 2m") — 2{/EE'(E + 2m)(E + Zm’)u] (4-17)

This approximation is valid for Er << M'c? ~ A GeV where Ap is the mass number
of the recoil particle. For incident energy that E/m <« 1, one can further obtain the

recoil energy within classic mechanical assumption as:
Egc = = [mE +m'E' — 2¥mm'EE u] (4-18)

According to Egs. (4-17) and (4-18), it is noticeable that for a specific reaction type

and a given (E’, u), the recoil energy is inversely proportional to the mass of the residual
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nucleus. Therefore, the 2-D plots of recoil energies for the *°Fe target are general for all
the nuclei by a factor of the ratio of residual masses. Moreover, the ratio of relativistic
recoil energy to the classic mechanical one E/ER . depends only on reaction type. In
other words, for a specific reaction type, the 2-D plots of Er/Ep, . are exactly the same
for all nuclei.

Due to the conservation of energy, the allowed range of the secondary energy E’ in
Egs. (4-17) and (4-18) is determined by the energy loss and the recoil energy (Er and
ER o). In the present work, the maximum secondary energies are taken from JEFF-3.1.1
[28] for 20 MeV incident neutron-induced continuum reactions. For 200 MeV neutron-
induced reactions, roughly assuming that the recoil energy is proportional to the
incident energy (which is the case for classical elastic scattering), the reasonable

maximum secondary energy becomes:
Ernax(200 MeV) = E — 10(20 — Ej,0,(20 MeV) — Q) — Q; (4-19)

where Q; (in MeV) is the threshold energy of the continuum reaction.
For a discrete reaction having a determined excitation energy -Q (by convention,
Q' represents the increase in kinetic energy of the system due to the excitation of the

nucleus), the conservation of energy before and after the reaction implies:
E'=E+Q—Eg (4-20)

where

Q=Q" +[m+M—-(m'+M)] (4-21)
An equation governing ER can be determined by inserting Eq. (4-20) into Eq. (4-17).
Due to the square root term in Eq. (4-17), one puts the square root term in one side and
then takes the square to eliminate the square root for solving E. Because the equation
involving ER 1s a quartic equation, numerical methods are more feasible for a
determined reaction Q-value.

For a specific O-value at given incident energy, the relationship between Ep and E’
given in Eq. (4-20) does not depend on reaction type nor on masses of particles. On the
other hand, Eq. (4-17) points out that E, strongly depends on the residual mass.
Therefore, the recoil energy calculated by combining Eqgs. (4-17) and (4-20) with a
selected O-value and a selected target nucleus is not as general as the 2-D plots of
Er(E', u), which are representative of the corresponding reaction types by a factor of
the ratio of residual masses (except that the maximum secondary energy depends on

nucleus).

4.2.2 Numerical results
In this section, the numerical results are shown only for neutron-induced nuclear

reactions. Nevertheless, due to the quasi-identical masses of proton and neutron, the
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results on the recoil energy are almost the same for proton-induced reactions. For the
same reason, the results for the (n,n”) reactions are quite similar to those of the (n,p)
reaction.

Figure 4-4 and Figure 4-5 respectively show the recoil energy within special
relativity (in MeV) versus E' and u for 20 MeV and 200 MeV neutron-induced proton
production reaction (n,p) and « production reaction (n,a). Figure 4-6 illustrates the
same results for 200 MeV « induced (a,n) reaction of *Fe. We remark again that these
2-D plots of the recoil energy are general for the corresponding reaction types by a

factor of the ratio of residual masses (except that the maximum secondary energy

depends on nucleus).
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Figure 4-4. Recoil energy within special relativity (left, in MeV) for 20 MeV neutron-induced
proton emission reaction (a) and a emission reaction (b) of *Fe and the ratio of relativistic to

classic mechanical results for all nuclei (right).
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Figure 4-5. Recoil energy within special relativity (left, in MeV) for a 200 MeV neutron-

induced proton emission reaction (a), and a emission reaction (b) of **Fe and the ratio of

relativistic to classic mechanical results for all nuclei (right).

As shown in Figure 4-4 and Figure 4-5, the global maximum (minimum resp.)
recoil energies are always at u = —1 (4 = 1 resp.) because Eq. (4-17) points out the
decrease of Eg with u. For u = —1, Ey increases with E’, so that the global maxima are
at E' = E;,4,. In fact, according to Eq. (4-17), Ey increases with E’ when u < 0. For a
given u > 0, Ey is not a monotone function of E’. An example of a 200 MeV neutron-
induced (n,«) reaction with ¢ = 1 is shown in Figure 4-7.

The corresponding ratios of recoil energies with relativistic calculations to the
classic mechanical ones Eg/Epg . are illustrated in the corresponding right figures of

Figure 4-4, Figure 4-5, and Figure 4-6. Since Eg/Ey, . is neither independent on target
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depends on nucleus). For the (n,n”) and (n,p) reactions, the relativistic corrections on
recoil energy are always positive, while both positive and negative relativistic
corrections are possible for (n,a) and (a,n) reactions. The maximum and minimum

ratios for the (n,a) reaction are respectively infinite and null.
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Figure 4-6. Recoil energy within special relativity (left, in MeV) and 200 MeV a-induced

5Fe (a,n) reaction the ratio of relativistic to classic mechanical results for all nuclei (right).
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As a matter of fact, as the example shown in Figure 4-7, the recoil energy at u = 1
is null at E'=mE/m' for classic mechanical collision and at E' =
VE(E 4+ 2m) + m'2 —m’ (larger than mE/m’ because E(E + 2m) + m'? = (mE/

m' +m")?+ [1 — (m/m')?]E? and m' >m ) for relativistic collision. Different

secondary energies at which the recoil energies are null lead to the values of infinity
(i.e. Eg = 0) and zero (i.e. Ex = 0) for the relativistic to classic mechanical ratio. For
reactions such as (n,n”), (n,p), and (a,n), because m' < m and E' < E, the recoil energy
cannot be null, such extreme values of infinity and zero are not possible. More precisely,
when E' < m'E /m or u < 0, the relativistic correction is always positive.

For incident neutron energy below 20 MeV, the relativistic treatment has less than
3% correction on recoil energy. However, the relativistic effect should be taken into
account for high incident energy, whereas it is rarely considered for computing damage
cross section (including the widely used code NJOY). Taking the examples of 200 MeV
incident neutron, the relativistic recoil energies can be more than 30% higher than the
classic mechanical ones. Moreover, large relativistic corrections on recoil energy lead
to the broadening of PKA spectra. Table 4-2 gives the ranges of PKA energies for 20
MeV and 200 MeV neutron-induced (n,n’), (n,p), and (n,a) reactions of *°Fe. The
maximum recoil energy is about 10 keV and 1500 keV higher by considering the
relativistic effect for 20 MeV and 200 MeV incident neutron, respectively. Such a
considerable increase in maximum PKA energy implies that the range of energies for
MD or BCA simulations should be extended when the relativistic effect is taken into

account in PKA energy calculations.

Table 4-2. Recoil energy ranges of 20 MeV and 200 MeV incident neutron with *°Fe target

within classic mechanical (Er.) and relativistic (£r) assumptions.

E (MeV) Reaction . Ere (keV) . Er (keV)

Min Max Min Max

(n,n”) 6.9 1250 7.1 1262

20 (n,p) 2.2 1332 2.3 1345
(n,@) 0.0 2955 0.0 2970

(n,n’) 0.6 14245 0.8 15743

200 (n,p) 0.4 14275 0.5 15780
(n,@) 0.0 33544 0.0 35318

Because the minimum PKA energies are much smaller than the maximum ones, the
ranges of PKA spectra are approximatively equal to the corresponding maximum recoil
energies. In addition, Eqgs. (4-17) and (4-18) point out that £z and Er. are inversely
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proportional to the residual mass. Consequently, for a specific reaction type at a given
incident energy, the broadening of the ranges of PKA spectra due to the relativistic
effect is almost inversely proportional to the PKA mass.

For a determined reaction Q-value, the recoil energy has only one degree of
freedom on . Nevertheless, as previously mentioned, the equation governing Ej is a
quartic equation. The numerical method is more feasible for calculating recoil energy.
Figure 4-8 shows the relationship between En and E' according to both the
conservation of momentum (i.e. Eq. (4-17)) and the conservation of energy (i.e. Eq.
(4-20)) for the ground state (Q = —2.91 MeV), the fifth excitation state (Q = —3.25
MeV), and the thirteenth (and the last in the JEFF-3.1.1 nuclear data library [28], Q =
—3.75 MeV) excitation state of neutron-induced proton production reactions on *°Fe.
Because the recoil energy obeys both Eq. (4-17) and Eq. (4-20), the recoil energy for a
given u and a given Q is found at the intersection of the two corresponding curves in

Figure 4-8.
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Figure 4-8. Recoil energy within special relativity versus secondary energy obtained with Eq.
(4-17) (u = —1,0,1) and Eq. (4-20) (blue lines) for 20 MeV neutron (n,p;) reactions of *Fe.

The numerical results for the relativistic recoil energies of (n,po), (n,ps), and (n,p13)
reactions versus u and the corresponding relativistic corrections are plotted in Figure
4-9 for 20 MeV and 200 MeV incident neutrons. The same results for (n,a) and (n, a4¢)
reactions (ground state @ = 0.326 MeV and the last excitation level in JEFF-3.1.1 with
Q = —2.13 MeV) are also shown in Figure 4-9. Because the recoil energies of discrete

reactions are special cases included in the general case Ex(u, E'), the relativistic
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Figure 4-9. Recoil energy versus u for relativistic kinematics and the corresponding

relativistic corrections for 20 MeV and 200 MeV neutron-induced discrete p and o emissions
of *°Fe.

4.2.3 Summary of relativistic corrections

The relativistic correction is almost 1% (10% resp.) for 20 MeV (200 MeV resp.)

neutron-induced (n,n’) and (n,p) reactions, while that of (n,a) reactions is from -0.6%

to 0.5% (from -6% to 5% resp.). It has been observed that for a specific discrete reaction

type, the relativistic correction is not sensitive to the excitation energy. In fact, at low

incident energy, the relativistic correction is quite small. At high incident energy where

the relativistic correction is significant, compared with the total energy, the O-value is

negligible. Again, we notice that the relativistic corrections for discrete reactions

depend on target nuclei, while the 2-D plots are representative of the corresponding



reaction types by a factor of the ratio of residual masses (except that the maximum

secondary energy depends on nucleus).

Table 4-3. Maximum ratio of relativistic quantities to the classical ones.
E (MeV) Reaction Recoil energy ~ Damage energy® NRT-DPA®

(n,n) 1.028 1.027 1.027
(n,p) 1.029 1.028 1.028
20 MeV
(n.@) % = %
(at,n)* 1.005 1.002 1.002
(n,n’) 1.325 1314 1314
(n,p) 1.314 1.301 1.301
200 MeV
(n.a) = S %
(a,n)* 1.053 1.006 1.006

® Emax = E is used to compute the maximum and minimum difference of DPA

® For >®Fe target

To globally evaluate the relativistic effect on atomic displacement, Table 4-3
summarizes the maximum ratios of relativistic quantities to the classic mechanical ones
for recoil energy, damage energy, and the NRT metric-based DPA number. It is
noticeable that the ratios of NRT-DPA given in Table 4-3 are exactly the same as the
ratios based on ARC-DPA because the high PKA energies lead to the constant efficiency
Earc = Carc- As explained in Section 4.2.2, the infinity for recoil energy and the
corresponding damage energy of the (n,a) reaction is due to the null classic mechanical
recoil energy. As for DPA, if there is one point at which the classic mechanical damage
energy is below the threshold energy while the relativistic one is above, the ratio is
infinite.

For incident neutron energy lower than 20 MeV, the relativistic corrections are
within 3%. Except for the small region in which the relativistic effect is obviously more
important than other regions (e.g. Figure 4-4), the relativistic corrections are about 1%
in the damage calculation for the (n,n’) and (n,p) reactions. For 200 MeV neutron, the
maximum corrections are more than 30% (and about 10% on average). For elastic
scattering, one can use a +0.05%FE/MeV correction on the PKA energy from classical
kinematics [118]. Consequently, the computation of PKA spectra and damage cross
sections for neutron or proton energy up to 200 MeV (and higher for spallation neutron
sources) should be based on the relativistic kinematics. For the time-being, such
relativistic effects are not yet considered in NJOY (or a recently developed code
NECP-Atlas [119]) for computing damage cross section.

For a given incident energy, the relativistic effect is less important for incident
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particles with higher masses. As summarized in Table 4-3, the maximum relativistic
correction of 200 MeV a-induced neutron emission reaction is only 5% on PKA energy
and lower on damage energy. For neutron in fission (~ 2 MeV) and fusion (~ 14 MeV)
reactors, the classic mechanical kinematics should be a good approximation for
computing PKA energy from nuclear reactions.

4.3 Calculation of recoil energy in different frames

Detailed derivations of two-body reaction inducing recoil energy in the Lab and
the CM frame are presented in our published paper NIMB456(2019)120 [64]. Here the
main equations concerning the calculation of recoil energy as a function of emission
angle (and the secondary energy for continuum reaction in both Lab and CM frame) are
summarized. As shown in Section 4.2, the relativistic effect is within 1% for neutron
energy below 20 MeV, which is the case for both fission and fusion reactors. The classic
mechanical kinematics is assumed in this section. In the case of high neutron energy, it

suffices to replace the recoil energy by the relativistic one.

4.3.1 Discrete reactions [64]

Figure 4-10 shows the schematics of the collision in the Lab and CM frames. The
incident and emitted kinetic energies are referred to £ and E’ in the Lab frame,
respectively. Er stands for the recoil energy of the PKA in the Lab frame. m and v; (m’
and u;) are the mass and velocity of the incident (outgoing) particle in the CM frame,
respectively. M and v, (M’ and u;) are the mass and velocity of recoil particle before

(after) the collision in the CM frame, respectively.

m, v,

O M’, E_'-, u,

Figure 4-10. Schematics of the collision in the Lab (upper) and the CM (lower) frames.
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In nuclear reactions, (m' + M) = (m + M) is not necessarily correct because of
the energy and mass transfer. Nevertheless, (m' + M')/(m + M) = 1 is numerically
valid even though a quite small percentage of the mass is reduced during the nuclear

reactions. One can define the “effective mass” R(E) as:

(m+M)Q

R(E)= [14+———— v (4-22)
where Q is the total energy change during the collision:
Q=Q —[(m'+M") — (m+ M)]c? (4-23)

where Q’ is the reaction energy. For elastic scattering, R(E) = 1. One can obtain the
recoil energy according to the conservation of momentum and energy after and before
reaction as:

m'ME
(m+M)2

ER(E,‘LI) =

l— — 2R(E) "t + R(E) l (4-24)

where 4 = cos6.

4.3.2 Continuum reactions [64]

In the continuum reactions, because the reaction energy cannot be specifically
determined, the conservation of energy cannot be used to reduce one degree of freedom
of unknowns. In most of the current ENDFs, the double-differential cross sections are
energy-angular distributions of the emitted particle. Therefore, we should calculate the
recoil energy as a function of emission angle and secondary energy. The double-
differential cross sections are recommended to be given in the Lab frame (because of
the appearance of secondary energy). However, many double-differential data are still
in the CM frame. It is always possible to change the data in the CM frame into the Lab
frame or directly use the change of variables during the calculation of damage cross
sections, but the best method as explained in Ref. [64] is the direct calculation using
double-differential data in the CM frame. This subsection briefly presents the explicit
equation of recoil energy versus emission angle and secondary in both the Lab frame
and the CM frame.

4.3.2.1 Recoil energy vs emission angle and secondary energy in the Lab frame
For the schematic shown in Figure 4-3, the recoil energy as a function of emission
angle and secondary energy in the Lab frame can be calculated by:

Ep(E,E', i) = —[mE — 2Vmm'EE'fi + m'E] (4-25)

where fi = cos@ with ¢ the emission angle in the Lab frame.
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4.3.2.2 Recoil energy vs emission angle and secondary energy in the CM frame
For the schematic shown in Figure 4-3, the recoil energy as a function of emission

angle and secondary energy in the CM frame can be calculated by:

MI 'EE. !
Er(E, B ) = Groe E— 25 i+ i B (4-26)

where 4 = cosf and E; is the secondary energy in the CM frame.

4.3.3 Charged particle emission reactions [73]

For neutral particle emission, the recoil energy of PKA can be formed as:

1 . ”
Er(E) = — (B - 2/aE*Egu + aE;) (4-27)
where
x _ A+l-a )
E* = e E (4-28)
A
Es = Ea = Q + A_-I—lE (4-29)

It is noticeable that Ej is the total kinetic energy of the system in the CM frame after
the collision.

Figure 4-11 points out the rest energy of the system at different status. For two-
body charged particle emission nuclear reactions, the system after the collision has the

minimum energy that is equal to the Coulomb barrier energy:

z(Z-z) e 2

VC = kC (4“30)

0
where z (Z, respectively) is the atomic number of the emitted (target, respectively)

nucleus, and the minimum distance among two particles after the collision is
Ry=rpa? +r,(1+A4—a)'/3 (4-31)

where 1y 1s about 1.2 to 1.4 fm. From the point of view of the classic mechanism, if the

incident neutron has not enough energy to overcome the Coulomb barrier, i.e. Q +

ﬁE < V¢, the reaction cannot happen. However, due to the quantum tunneling, the

collision is possible even though Q + ﬁE < V.. The probability of quantum
tunneling is included in the corresponding nuclear reaction cross section. Once the
reaction happens, the system has at least the energy of Vc. Therefore, at the end of the
acceleration of emission particle due to the Coulomb force, the recoil energy of PKA

can be calculated using Eq. (4-27) with

E; = max(Q + = E, V,) (4-32)
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For conservative consideration, 7, = 1.2 fm is used to compute the Coulomb barrier.

The Coulomb barrier energy is thus calculated by:

_ 1.198z(Z-z)
C ™ al3+(1+4-a)1/3

MeV (4-33)

AE/(A+])

m(n) + m(2X)

Entrance A
channel v
S, | — & ¢
m(A“X) ____________________ A, N N I
AT *
Compound S
nucleus Y
M(AX,) + MY R

AX, +aY

Exit channel

Figure 4-11. Rest energy of the system: before reaction, in compound nucleus form, and after
the collision. Sx (in green) illustrates the separation energies of particle x, Q is the sum of S,

V¢ is the Coulomb barrier energy.

It is noticeable that the widely used nuclear data processing code NJOY takes the
minimum of Q + ﬁE and V¢ [27]. In the case of Q + ﬁE > Ve, NJOY may

consider the energy loss via deexcitation of the compound nucleus. Nevetheless, the
formula proposed in the present work can directly imply the formula for neutron
scattering [27, 64] using z = 0. The Coulomb barrier energy used in NJOY is [27]:

1.029zZ
VC,N]OY = —a1/3+A1/3 MeV (4'34)

The constant 1.029 is the result of using ry = 1.4 fm.

Figure 4-12 shows the maximum PKA energies for *°Fe, **Ni, and **Ni. 1 MeV is
chosen because the conventional measurements of DPA are actually the measurements
of neutron fluence above 1 MeV. 14.1 MeV is the energy of D+T fusion produced
neutron [120]. 20 MeV is the upper limit of fission reactors. The maximum PKA
energies of neutron elastic scatterings are shown in green lines for comparison. The 0
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maximum PKA energy of 1 MeV neutron (n,p)-NJOY for *°Fe is due to the negative
value of Q + A%E . For these three isotopes widely used in steel (*’Ni is the product of

neutron capture reaction of **Ni), the increase in PKA energies also leads to the

extension of energy range for simulations.

0.9988
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1 - (n,p)-This work
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Figure 4-12. Maximum PKA energies for 1 MeV (a), 14.1 MeV (b), and 20 MeV (c) neutron-

induced reactions for °Fe, *Ni, and *Ni. The green lines are maximum PKA energies of

*Fe

neutron elastic scattering.

4.3.4 Radiative capture reaction [34]
This section details the calculation of recoil energy from (z,y;) reaction. The
velocity of the CM is determined by the total momentum before the reaction, i.e.:
(m+ M)vey = V2mE (4-35)
where E is the incident energy of the z particle. On the other hand, since the total

momentum in the CM frame is null, one has:
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Pr,cm = Py,icm (4-36)

where the subscript R and y represents the residual particle and emitted photon,

respectively. The relationship between relativistic momentum and energy shows:
2 — 2
Pyicmc’ = Ey; (4-37)

where c is the light speed. Since the velocity of recoil particle vy (or vg cp) of (z,y:)

reaction is negligible when compared with light speed, one has the simple relationship:

Prcey = (M + M)vg oy (4-38)

Consequently,
(m+ M)vgey = Eyi/c (4-39)
Using the geometrical relationship (c.f. Figure 4-10 with the notation vg ¢y = uy) [34]:
Vi = Véy — 2VeyVr ey €OS 6 + VE oy (4-40)

One can obtain the recoil energy as:

Epya(E) = 25— [ |_Eii_ooiq 4 i 441
Ryt T M+m M+m 2(M+m)CZCOS 2(M+m)c? ( )

4.4 Neutron-induced damage cross sections

Section 3 presents several formulae for calculating the number of atomic
displacements using the threshold displacement energy and damage energy as two
major parameters. If one defines a generalized damage energy as:

0, 0<E,<E,

E,(E) ={ 2E;/0.8, E4<E,<2E;/08 (4-42)
E,(E)é(E,),  2E4/08<E,

Different formulae can be expressed by an unique formula:
v = 0.8E,(E)/2E, (4-43)

Therefore, this generalized damage energy is used to compute damage cross section

so that the damage rate Rp can be calculated by:
0.8
RD =—< O-D,¢ > (4'44)
2Eg

where o and ¢ respectively represent the damage cross section and the incident flux,
E; is the average threshold displacement energy. Ej; is not included in the damage cross
section because oy, is not sensitive to E; (c.f. Ref. [121]). This definition of g, permits
to approximately calculate primary damage rate using any value of E; (because Ej is
not so well-known for the time-being and some researchers do not pay attention to the
value of E; used in the calculation of damage cross section).
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In order to simplify the notations, the generalized damage energy Ej is simply
referred to damage energy and noted by E, in this section. Since the NRT formula is
still the current international standard, the generalized damage energy is almost

identical to the Lindhard damage energy in most cases.

4.4.1 Two-body reactions [64]
For discrete reactions, the damage energy is a function of incident energy E and the

cosine of emission angle u:
E,(wE) (4-45)

The emission angular-integrated damage cross section is obtained by:

op(E) = 0(E) [, f (. E) Eq(u, E)du (4-46)

where o(E) is the corresponding nuclear cross section. f(u, E) is the probability
density of angular distribution for the incident energy E versus the cosine of the
emission angle u in the CM frame (c.f. Section 2.4).

For continuum reactions, an additional degree of freedom on secondary energy is
required: Ex(E,E', i) or Ex(E,Ey, ). Since both Ex(E,E', i) and ER(E,E;, u) are
explicit functions of secondary energy and the cosine of emission angle, we do not
specify the notation double-differential data in the Lab frame and the CM frame
anymore in this paper (certainly, it should be specified in calculations). Let simply
denote (E', i) for secondary energy and the cosine of emission angle for continuum
reactions. The corresponding Lindhard damage energy can be thus simply noted by
E,(E,E',u).

The energy-angle-integrated damage cross section related to a given continuum

reaction is calculated by:

0p(E) = 0(E) J, [, f(E, E', 1) E(E, E', ) dudE’ (4-47)

where f(E,E', u) is the probability density of energy-angular distribution in the Lab
frame or the CM frame for the incident energy E versus the secondary energy E’ and
the cosine of the emission angle p. The corresponding recoil energy is given in Section
4.3.2.1 and Section 4.3.2.2 if f(E, E', i) is given in the Lab frame and in the CM frame,
respectively. Details of f(u, E, E") are given in Section 2.5.

Numerical methods used to calculate integrals are Gauss-Legendre Quadrature
(GLQ) over the cosine of emission angle and trapezoidal integration over the secondary
energy. Because the generalized damage energy is not a continuous function versus
PKA energy (c.f. Eq. (4-42)), it is not a continuous function of u (and E’ in principle).
Therefore, numerical convergence is difficult to ensure if the GLQ is used to compute
integration from -1 to 1. Figure 4-13 indicates the neutron elastic DPA cross sections of
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%Fe computed with different numbers of points in the GLQ. The damage cross section
does not converge for the 150-point GLQ at neutron energy below 10 keV because of
the large contribution of damage energy in the [0, 2E;/0.8] range. The integral

converges at high incident energy because the damage energy lower than 2E,; /0.8 is

less important.
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Figure 4-13. Neutron elastic scattering DPA cross sections of *Fe performed with different
points Gauss-Legendre quadrature (upper) and the corresponding ratios to the 200-point

Gauss-Legendre quadrature calculation (lower).
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Because the issue of numerical convergence is a result of the discontinuity of the
generalized damage cross section, a GLQ-based Piecewise Integration (GLQPI) over u
from -1 to 1 is proposed to ensure the numerical convergence of integration [64]. As
the example shown in Figure 4-14, the two critical points to connect the three intervals
are obtained with:

{ Ea(.ule) = Ed (4"4‘8)

Eq(uy, E) = 2E4/0.8
where E, represent Lindhard damage energy. With the notations of y; and u,, E, >
2E;/0.8 for u in the interval [-1, u,]; p in [y, 14] is equivalent to damage energy in
[E4, 2E;/0.8], so the damage energy is 2E,;/0.8; for u > u,, the damage energy is zero.

Hence, the damage cross section is computed by:

0p(E) = 0(E) [ F(u, E) Ea o EYepr + 222 [ f(u EY dpr| - (4-49)

Figure 4-15 illustrates the damage cross sections with 20 points and 200 points
GLQPI and the corresponding ratio. The excellent agreement between the DPA cross
sections calculated with 20-point GLQPI and 200-point GLQPI points out the
convergence of the integral. It is noticeable that the maximum order can be up to 64 in
ENDF-6 [66], that signifies more than 33 points are required. For the purpose of
verification, more than 33 points should be used as a reference to verify the convergence
of numerical integration. However, due to the negligible contribution of high-order
Legendre polynomials on damage cross sections (c.f. Ref. [64]), fewer points are in

general required for efficient integration.
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Figure 4-15. Neutron elastic scattering DPA cross sections of *Fe performed with 20 and 200
points Gauss-Legendre Quadrature based Piecewise Integration (GLQPI).
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For continuum reactions, the additional integration over secondary energy is
required for damage cross sections. Because the integrand of the integration over the
secondary energy is not a linear function, the method of computations with additional
points excluded in ENDF is proposed to verify the convergence of integration [64]. We
also proposed an improved method to interpolate double-differential cross sections
between two neighbor incident energies for performing more accurate calculation and

verification of damage cross section [64].

4.4.2 Radiative capture reactions

For radiative capture reactions, because of the gamma cascade of deexcitation,
photons are successively emitted. This successive emission of photon complicates the
calculation of radiation damage: secondary photons are emitted before, during, or after
the atomic displacement cascade?

For the first case, i.e. all photons are emitted before the atomic displacement
cascade, one should calculate the recoil energy after successive emissions of photon.
Since there are several deexcitation schemes for a nucleus with excitation energy higher
than the first excited level, various combinations of deexcitation down to the ground
state should be considered. In addition, because the angular distributions of successive
gamma emissions are independent, one should treat a series of successive kinematics
to compute the expectation of recoil energy. Therefore, in this case, Monte Carlo
sampling is recommended for calculating the recoil energy or the damage energy.

In the case where successive photon emission happens during the atomic
displacement cascade, one has to couple the deexcitation of the compound nucleus and
the atomic displacement simulation. On one hand, the deexcitation half-life depends on
the nucleus and its excitation energy. On the other hand, atomic displacement cascade
depends on the energy of recoil nucleus. Therefore, I think that no method excluding
Monte Carlo simulation can predict the radiation damage in this case.

Assuming that each photon is emitted after the equilibrium of displacement cascade,

i.e. the last case, the corresponding damage cross section is calculated via:

0p(E) = 0(B) 2 (B [, £, B) B (Eryi (. E) ) du (4-50)

where [;(E) is the intensity (or probability) of emitting photon with E,, ;, f; (u, E) is the
corresponding angular distribution, and the recoil energy Eg,;(u, E) is given in

Section 4.3.4. It is noteworthy that Eq. (4-50) can include continuum (z,y) reaction-
induced damage cross section if one defines:

WCED I, fik B) B (Bryi G B)) it = S2° 17, . B, By) Eo (ny Gt D) dadEy
(4-51)
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where f,, (,u, EE ) is the angular distribution for incident energy E and emitted gamma

energy of E,; E,; and E;;

energies in the considered range [E, ;, ;’ ;]. If a fine energy structure of photon energy

are respectively the minimum and maximum gamma

that the first-order approximation E), = E,,; can be used for E}, in [E, ;, E +l] Eq. (4-50)

directly includes both discrete and continuum gamma emissions with the definition of:

+.
I,(E) = ij_y: . f,(w E, E,) dudE, (4-52)

for continuum reactions.
Since the compound nucleus reaction leads to isotropic angular distribution and it
is predominant in capture reactions, one may use the approximation of isotropic angular

distribution for (z,y) reactions. Therefore, the calculation can be simplified as:

0p(E) = 0(E) 3 1i(E) [, Eq (Ery (i, E) ) dp (4-53)

Because the Lindhard damage energy is a concave function (i.e. second-order
derivation is negative) versus PKA energy and recoil energy is a linear function of u
for (z,y) reactions, assuming isotropic angular distribution, one can use a conservative
estimate of damage cross section of (z,y;) reaction by maximizing the integrand of Eq.
(4-50):

f_llfi(ﬂ’ E)E, (ER,y,i(,u: E)) du < f_llfi(y, E)E, (ER_y,i(u =0, E)) du

Eo () +E <_ E ) (4-54)
A\M+m a\2(M+m)c?

In fact, for any generalized damage energy, physical analysis implies that the number

IA

of atomic displacements increases with PKA energy but the increment decreases with
PKA energy. Accordingly, a specific generalized damage (not limited to the Lindhard
damage energy) should also behave as a concave shape. Consequently, one has the

following inequality for each damage energy:

o) * ZiliFa (Z(Mi—m)c)] (4-55)

In fact, since the maximum recoil energy from elastic scattering is:

6, (E) < o(E) [E

4mE
M+m

ER,max(E) = (4-56)

E,(mE/(M +m)) =0 for energy lower than the cut-off energy, E., where the
contribution of elastic scattering begins, i.e. 4mE./(M + m) = E. In this region (or
extended up to 4E.), the radiative capture reaction-induced damage comes only from
photon kick.

NJOY divides the above maximization into two parts according to different nuclear
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data: the neutron data section and photon data section as [27]:

mE ()’
Ea (M+m) T Ea (2(1;;1:-1m)02 T

neutron

(o)
vt ) _ Am+M T/
[ZiIiEa (2(M+m)cz> Ea (2(M+m)c2

photon

op(E) < o(E)

(4-57)

In the case where no data is available for photons production, the use of neutron data
can give a reasonable conservative estimate of damage cross section.

It should be noted, whether photon data are available or not, NJOY conservatively
calculates the radiative capture reaction-induced damage cross section. In other words,
the radiative capture reaction-induced damage cross section is always overestimated by
NJOY calculation. However, it is noticeable that radiative capture reaction-induced

DPA rate is negligible when compared with the total DPA rate.

4.4.3 N-body reactions

This subsection discusses the reactions with various emitted particles, such as (n,np)
reaction. This kind of reaction is simply referred to N-body reactions hereinafter.
Because N (> 2) particles appear after such nuclear reactions, the conservation of
momenta leads to 1 vector equation and thus 3 algebraic equations for 3D momenta
projections. If the reaction (-value is determined, one has an additional equation
governing the conservation of energy. The total unknown numbers are 3N: N norms
and 2N angles of momenta. The degree of freedom is thus 3N - 4. For two-body
reactions, because the two particles after the reaction and the incident particle are
always in the same plan, the projections of momenta in the perpendicular direction are
null. This condition implies two equations concerning the projections of momenta in
one direction: projections of momenta in the perpendicular direction are null for both
particles. Therefore, for two-body reactions, there is only 1 degree of freedom for a
determined Q-value and 2 degrees of freedom for continuum reactions.

Similar to the radiative capture reactions discussed in Section 4.4.2, N-body
reaction-induced number of DPA depends on the order of successive particle emissions
and Atomic Displacement Cascade (ADC). Taking *°Fe(n,np)*>Mn as an example, one
should identify the order of reactions among: **Fe(n,n)**Fe — *Fe(,p)>*Mn — ADC,
Fe(n,n)’*Fe — ADC — %Fe(,p)°°Mn, **Fe(n,p)**Mn — *Mn(,n)>’Mn — ADC, or
%Fe(n,p)’*Mn — ADC — >*Mn(,n)>*Mn. Furthermore, there are some possible cases
where the second light particle is emitted during the ADC. The order of nuclear

reactions should mainly depend on the separation energy of the emitted particle. The
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order of successive nuclear reactions and ADC depends on the kinetic energy of PKA
and the half-lives of the residual nuclei. No information is given on the order of N-body
nuclear reactions in the current ENDFs, we suppose that all particles are simultaneously
emitted before the ADC for the moment.

In an ENDF, 3N -4 (or 3N - 3 if the reaction O-value is undetermined) independent
energy or angular distributions should be provided for accurate calculation of damage
cross section for a N-body reaction, except that the recoil energy distribution is already
given. However, because current ENDFs are mainly provided for particle transport
calculations, almost only energy and/or angular distribution of the light particle
identical to the incident particle is given. In this case, it is impossible to perform
accurate calculations of damage cross sections. To obtain an estimate of damage cross
section for a N-body reaction, MacFarlane proposed a two-body reaction

(13

approximation as: “... The same procedure is used for (n,2n), (n,na), etc., with no

account being taken of any extra charged particles emitted” [27] and “... for reactions

like (n,n’p) or (n,n’a) ... HEATR treats these reactions in the same way as (n.,p) or (n,a)”
[122].
In order to clarify the methods used in the NJOY for computing the damage cross

sections for N-body reactions, I do the test and verification of *°Fe (n,2n), (n,na), and
(n,np) reactions with TENDL-2017 [123], which includes the recoil energy
distributions in MF6. For (n,2n), (n,na), and (n,np) reactions of >°Fe, the angular
distributions of the residual nuclei in TENDL-2017 are isotropic in the Lab frame.
However, in the compound nucleus theory, the angular distribution of the residual
nucleus is isotropic in the CM frame, thus anisotropic in the Lab frame. It should be
noted that the azimuthal angle is not considered for computing recoil spectra in TALYS
[55]. This approximation is not realistic for reactions with more than two ejectiles.
Furthermore, relativistic kinematics is not considered in TALYS, whereas as the
relativistic effect is not negligible for high incident neutron energies. E.g., 20 MeV and
200 MeV neutron-induced (n,n’) (or (n,p)) reactions respectively leads to around +1%
and +10% corrections on recoil energy [117]. Nevertheless, TENDL is the only library
that includes the differential cross sections of residual nuclei.

Figure 4-16 illustrates damage cross sections of “°Fe (n,2n), (n,na), and (n,np)
reactions calculated by NJOY-2016 with double-differential cross sections of different
particles from TENDL-2017 and the ratios to the calculations based on complete
double-differential cross sections. From Figure 4-16, one can find that if the recoil
energy distribution is available, NJOY directly takes the recoil energy distribution for
computing damage cross section. If there are only data for the emitted neutron or
charged particle, NJOY uses these data by assuming two-body kinematics. In the case
where both neutron and charged particle data are given, NJOY prefers differential cross
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Figure 4-16. Damage cross sections of °Fe (n,2n), (n,na), and (n,np) reactions calculated by
NJOY-2016 with double-differential cross sections of different particles from TENDL-2017

and the ratios to the calculations based on complete double-differential cross sections.

In addition to NJOY calculation, we calculate the damage cross sections of the

aforementioned three reactions using recoil energy distributions in TENDL-2017 by:

op(E) = a(E) [;*™ f(E, Eg) Eq(Er)Er (4-58)

where f(E, Eg) is the energy-distribution of recoil energy Ex given in TENDL-2017.
Since the double-differential cross sections are tabulated, one should interpolate the

data between two neighbor tabulated points. The original interpolation mode proposed
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in TENDL-2017 is histogram interpolation for these reactions.

Figure 4-17. Product of damage energy and recoil energy distribution (i.e. f{E,Er)E.(Er)) of
20 MeV (left) and 30 MeV (right) incident neutron *°Fe (n,np) reactions with linear-linear and
histogram interpolations of energy distribution. Original interpolation mode in TENDL-2017
is histogram. The damage cross section is the integration of the curves from O to the
maximum recoil energy. The damage cross section is the integration of the curves from 0 to

the maximum recoil energy.

Figure 4-17 compares the product of damage energy and recoil energy distribution
of *Fe (n,np) reactions with linear-linear and histogram interpolations of energy
distribution at 20 MeV and 30 MeV incident energies. Because the damage energy is
an increasing function of PKA energy, histogram recoil energy distribution leads to an
increasing production of damage energy and energy distribution in each interval.
Therefore, the damage cross sections calculated using linear-linear and histogram
interpolations are different.

Figure 4-18 illustrates the damage cross sections calculated by NJOY and those
calculated in the present work with linear-linear and histogram interpolations of recoil
energy distribution. In general, linear-linear interpolation leads to about 5% reduction
of damage cross section when compared with histogram interpolation. NJOY
calculations and the damage calculated in the present work are globally in good
agreement. For (n,na) reaction, the agreement with NJOY is better if it is treated as a
(n,a) reaction (i.e. PKA is *Cr rather than *>Cr). The quite small deviations between
NJOY and the present calculations should be mainly from numerical issues. From the
above comparisons, one can conclude that the methods used in NJOY for computing
N-body reactions-induced damage cross sections are quite reliable.
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Figure 4-18. Comparison of damage cross sections of °Fe (n,2n), (n,na), and (n,np) reactions
calculated by NJOY-2016 and the present work with different double-differential cross
sections from TENDL-2017.

4.5 Photon-induced damage cross sections [124]

This subsection presents the photon-induced DPA cross sections published in Ref.

[124]. The main photon-matter interactions for photon energy below several tens MeV
are: Photoelectric Effect (PE), Compton Scattering (CS), and Pair Production (PP).

These reactions have a common emitted particle, electron. In PP, a positron is also

produced. Therefore, for computing the photon-induced damage cross sections, one

should firstly calculate the electron and positron-induced ones.

4.5.1 Electron and positron-induced damage cross section

The total DPA cross section by an incident electron or positron of energy E is
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calculated by:

o8pa(E) = [ v(T) 2 dT (4-59)
where da /dT is the differential scattering cross section, Ty, 4, 1S the maximum energy
that can be transferred to atom, v(T) is the number of atomic displacements induced by
an atom with energy 7. Oen computed tabulated values of electronic do/dT for various
elements with Mott differential scattering cross section [125]. McKinley and Feshbach
[126] deduced an approximation with a simpler expression for the differential scattering

cross section:

nZ?e*(1-B*)Tmax

do _ gl oA |(IY T
dT (E,T) = (mc2)2p4T2 {1 B Tm + 137ﬁZ [(Tm) Tm]} (4-60)

where B2 = E(E + 2mc?)/(E + mc?)? with mc? is the rest energy of electron or
positron, Z is the atomic number, the term involving 3Z /137 is positive for electron
and negative for positron. Accordingly, the differential scattering cross section of

electron is larger than that of positron. The maximum transferred energy is:
Tax(E) = —= (E + 2mc?) (4-61)

where Mc? is the rest mass energy of the atom. The threshold energy of electrons or

positrons for displacing atoms is thus:

TyP = \/(mc?)2 + Mc2E;/2 — mc? (4-62)

Using the typical value of 40 eV for E; of iron [70], one can obtain T; P =0.63 MeV.

It is noteworthy that the McKinley-Feshbach (MF) analytical formula is a first-
order approximation of Mott cross section and is valid for Z/137 <0.2,1.e. Z<27[126].
Therefore, iron is almost the heaviest atom, for which MF approach can be used. For
atoms with atomic number above 27, Mott cross section should be used for computing

electron and positron-induced damage cross sections.

4.5.2 From electron and positron to photon-induced damage cross sections
Total photon-induced DPA cross section is the sum of three partial damage cross

sections:

Ot (Ey) = O_gIS;A (Ey) + O_EEA (Ey) + O-EIF;A (Ey) (4-63)

4.5.2.1 Compton Scattering
The DPA cross section for CS is given by [127]:

Emax 405 (Ey E
0§34(E,) = [imer 27 ErB) (g (4-64)
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where do®® (Ey,E) /dE is the CS cross section for producing an electron of energy E.
The Klein-Nishina formula [128] shows:

do®S(Ey.E) _ m(9x103e)’z (mCZE)Z Iy (Ey—E>2 4 EE
dE me2(E,—E)” |\ EZ Ey Ey

[(E —mc?)? — (mcz)z]}
(4-65)
where e is the charge of electron, all energies are in MeV and do“(E,,E)/dE is in

m?/MeV = 10?8 barn/MeV. The upper limit of integration represents the maximum

kinetic energy of electrons induced by a gamma ray of energy E), and is given by:

2E,

Emax (EV) = m (4-66)
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Figure 4-19. Total displaced atoms per incident electron or positron. The lower figure shows

the ratio of atomic displacement number induced by positron to that induced by electron.

n(E) in Eq. (4-64) represents the average number of displaced atoms induced by

an electron with kinetic energy E. It is computed with:

E app4(T)
n(E) = Ny [, %dT (4-67)

where Ny, is the atomic density of the material, S is the electronic stopping power [129],
and ofp, refers to the electron-induced DPA cross section studied in Section 4.5.1.

n(E) is shown in Figure 4-19 with the red solid line.

4.5.2.2 Photoelectric Effect
The kinetic energy of electrons produced by PE is:

E=E,—B, (4-68)
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where B, is the binding energy of electrons. B, is generally of the order of magnitude
of several hundred eV, which is very small compared with E,. B, = 7.11 keV for K-
shell electrons of iron [130], while most studies neglect the electronic binding energy.
Due to the determined energy of electrons for a given energy photon, the damage cross

section for PE is:
ohta(Ey) = oa"E(E)n(E) (4-69)

In the energy region of damage calculation, the cross section for PE is given by
Hall’s formula [131]:

PE 5 41'L'Z(9><103e)2a4 2 (y+1)3/2
o (E) = s———5—exp[-ma+2a°(1-Ina)] X ——70
4 (mc?) y-1) (4_70)
4 ye-2[, 1 yH/r?-1 28
<G+ - ()| x 102 bam

where the factor 5/4 accounts the PE for electrons of K-shell and other shells (1/4 of K-
shell), « = Z /137, y is the Lorentzian factor:

_ E+mc?

(4-71)

mc?

4.5.2.3 Pair Production

For the PP, because both electrons and positrons are produced for a photon with
energy higher than 2mc? = 1.022 MeV, one should treat both electron-induced and
positron-induced displacement damage. Alexander doubled the electron-induced
damage for the PP [132]. Kwon and Motta neglected the positron-induced DPA because
the positron annihilates by combining with an electron [133]. Fukuya and Kimura used
the most reasonable method that computing the positron-induced damage with the same
method applied in the calculation of electron-induced DPA by using the corresponding
stopping power for positrons [134]. This work recommends the utilization of the
method proposed by Fukuya and Kimura.

Similar to the computation of DPA cross sections for CS given in Eq. (4-64), the

PP damage cross section is calculated by:

ny—chz daPP(E,,

oBEA(E) = ! &8 [n(E, - 2me? — E) + RE)|AE  (4-72)

where n(E) represents the average number of displaced atoms induced by a positron
with kinetic energy E. n(E) is illustrated in Figure 4-19 with the blue dotted line. The
ratio n(E) /n(E) shown Figure 4-19 points out that n(E) is 68%-80% of n(E). The
differential cross section for the PP do*?P (Ey, E)/dE has been determined by Bethe [135,
136] and different models were summarized by Davisson and Evans [131]. Evans

calculated the integration over the whole energy domain [137]. Due to the complexity
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of differential cross section for PP, Kwon and Motta used Evans’ integrated data by
assuming the equiprobable energy distribution. Fukuya and Kimura used a numeric
approach as:

doPP(E,E)

L = 00, Z2F (5)/(Ey — 2mc?) (4-73)

where 0., = 5.8 X 10™* barn and for iron,
n m
F(s) =g {h@) [1-2" (s =3) |+ 1 —r@w][1 -2 (s = 2) |} (478
where s = E/(Ey —2mc?),u = ln(Ey/mcz), m=2,n=8,and

g(u) = —0.1835u3 + 1.653u? — 2.1543u + 0.7614
h(w) = 0.2193u + 0.1825

(4-75)

(4-76)
If only the electrons are considered, the damage cross sections for PP computed

with Evans’ integrated formula and Fukuya-Kimura approximation have a few percent

difference. The numerical results shown in Section 4.5.2.4 are based on the Fukuya-

Kimura approximation for the energy distribution of electrons and positrons.

4.5.2.4 Monte Carlo simulations

The approximate analytic expressions of gamma-matter interaction cross sections
are proposed to compute the gamma-induced DPA cross sections. To verify the above-
mentioned gamma-matter interaction cross sections, the present work compares the
analytic expression with Monte Carlo simulated data. The simulations of photon
transport are performed with Tripoli-4.10® [138] using the Evaluated Photon Data
Library (EPDL)-97 [139].
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Figure 4-20. Electron production of 15 MeV incident gamma in *Fe
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Figure 4-20 illustrates the example of electrons production in *’Fe for incident
gamma energies of 15 MeV. The statistical uncertainties of Monte Carlo simulations
are plotted in grey (not evident due to the small uncertainties), while the simulated data
are illustrated by the red lines. The small peak near to the incident energy is the electron
production for PE. Good agreement between the analytic expression and Monte Carlo

simulations is found through the production of electrons.
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Figure 4-21. Positron production of 15 MeV incident gamma in *Fe.
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Figure 4-22. Photon-induced DPA cross sections for iron based on McKinley-Feshbach

analytical approximation (blue, noted as Ana) and Tripoli-4 simulations (green, noted as T4).

Figure 4-21 shows the production of positrons for 15 MeV incident gamma in *°Fe.

Due to the small number of positrons produced by gamma-ray, the statistical
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uncertainties are larger than those of electron production. The analytic expression has
a similar form as the Monte Carlo simulated results. Around 14% difference is observed
at the peak of positron production for 3 MeV gamma [124], whereas the dispersion of
simulated data is also about 3%. The tendency shows that the energy distribution of
positrons computed with EPDL-97 through Monte Carlo simulations is sharper than
that of Fukuya-Kimura. The analytic formula has a globally good agreement with
Monte Carlo simulated result for 15 MeV gamma. EPDL-97 has little flatter energy
distribution of positrons for gamma-ray with high incident energy. The DPA cross
sections computed with the two methods are illustrated in Figure 4-22. Excellent
agreement is found between analytic results and Monte Carlo simulation-based

calculations.

4.5.3 Electron, positron, and photon-induced DPA cross sections for iron

Figure 4-22 shows the total electron, positron, and photon-induced DPA cross
section for iron based on the Mott scattering cross sections for electron and positron.
The exact Bethe formula [135, 136] is used for calculating differential reaction cross
section of PP. Because the photon-induced DPA cross section is much smaller than the

other ones, it is multiplied by a factor of 5 for illustrating its variation along with photon

energy.
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Figure 4-23. Electron, positron, and photon-induced NRT-DPA cross sections for iron based
on the Mott cross sections.

For particle energy below 10 MeV, which is the case for most fission reactors,
photon-induced DPA cross section is more than 10 times smaller than the electron and
positron-induced one. However, it is notable that the smaller DPA cross section does

not imply less DPA induced by photon than electron or positron in a specific case
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because the DPA rate is the product of DPA cross section and the corresponding flux.
Here, a photon induces atomic displacements only through its subsequent products
electron and/or positron. For photon energy larger than around 10 MeV, photon is able
to displace atoms via photo-nuclear reaction. However, the photo-nuclear reaction-
induced DPA cross section is negligible when compared with that induced by photon-

matter reactions [140].

4.6 Beta decay-induced damage cross sections [81]

Nuclear disintegrations, which are normally slower than atomic displacement
cascade (~ 10 ps [99]), are rarely individually studied for atomic displacement
calculation. The three nuclear transitions are alpha decay, beta decay (B~ and B*/¢),
and gamma transition. The gamma transition is found in all nuclear reactions other than
elastic scattering due to the deexcitation of recoil nuclei. The emitted gamma is
considered in the gamma spectrum and its contribution can be thus included in gamma-
induced DPA [124]. The recoil of residual nucleus during the gamma emission is
calculated by the same reasoning given in Section 4.4.2 (but this part is still not
considered in all current studies). Alpha decay is a two-body reaction and is
conservatively considered in Ref. [141]. For most neutron-induced reactions other than
(n,2n), nuclei generally loose more protons than neutrons, such as (n,p), (n,d), (n,°He),
(n,a), and (n,np). Therefore, the unstable recoil nuclei are mostly in the “south-east” of
the line of stability on the N-Z plot. The most possible nuclear transition is the beta
decay which emits an electron. Moreover, due to the emission of (anti)neutrino, the beta
decay is a three-body reaction, which complicates the calculation of irradiation damage
from kinematics. This section presents the atomic displacement induced by beta decay.
All results were published in Ref. [81].

4.6.1 Beta decay
The beta decay of a nucleus 4X can be expressed by:

X- 4X+e +uv (4-77)
where v represents antineutrino. The electronic antineutrino is conventionally denoted
by U,. For the sake of convenience, the present work uses the simple notation v. Figure
4-24 illustrates the corresponding schema of the beta decay for the nucleus 4X. After
the beta decay, the excited nucleus will deexcite via a cascade of gamma emissions

except for pure beta isotopes. The probability of different branch of beta decay can be
determined by Fermi’s Golden Rule [142]:

P =2 () +79)

where p(Ef) is the density of final state, Hs; is the Hamiltonian describing the
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interaction between the initial state and the final state. Figure 4-25 shows (in red) the
intensity (or relative probability) of beta decay of **Mn with data from the latest
Evaluated Nuclear Structure Data File (ENSDF) evaluation [143].
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Figure 4-24. General energy level schema of a beta decay.
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Figure 4-25. Intensity of **Mn beta emission (from ENSDF [143]) and the corresponding
energy distribution of the emitted electrons.

Since the beta decay is always accompanied by an antineutrino, the kinetic energy
of the emitted electron is not the total energy release of the beta decay. For each level i
beta decay, the electron spectrum can be approximately calculated by [142]:

x:() < p2(Q; — E)*F(Z + 1,p)|Msi| S, @) (4-79)

where p and q respectively represent the momenta of the electron and the antineutrino,

Q; is the Q-value of transition i, E, is the kinetic energy of the electron, F(Z + 1,p) is

. . . 2, .
Fermi’s function accounting the Coulomb field, |Mfl-| is the nuclear matrix element
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[144], and S(p, q) is an additional electron and antineutrino momentum dependence.

Taking all transition channels into account, the electron spectrum of a beta decay
is:

x®@) =X Pxi(p) (4-80)

where P; is the intensity (or relative probability) of the i-level beta decay. Figure 4-25
illustrates (in blue) the energy distribution of the emitted electron from the beta decay
of **Mn [143]. The form of the electron spectrum shown in Figure 4-25 is in good
agreement with those produced by JANIS [145]. The electron spectrum can be used to

determine the number of DPA using the corresponding electron-induced DPA cross

section.

4.6.2 Electron-induced displacement damage

The calculation of electron-induced DPA cross section is given in Section 4.5.1. As
indicated in Section 3.4, for the study of electron-induced damage, the use of NRT or
mNRT leads to large differences. Figure 4-26 shows the electron-induced DPA cross
sections of iron for NRT and mNRT formulae using the MF approach and Mott series.
Figure 4-27 illustrates the examples of n(E) (i.e. average number of atomic
displacements induced by a kinematic electron) calculated with the DPA cross sections
shown in Figure 4-26. Using the spectrum of the electron and n(E), the number of DPA

can be determined by:
DPA = [ " n(E)¢$(E)dE (4-81)

where ¢ refers to the electron spectrum (such as the blue curve shown in Figure 4-25).
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Figure 4-26. Electron-induced DPA cross sections for iron.
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Table 4-4 summarizes the number of displaced atoms, i.e. Nrp, induced by an
electron from *°Mn beta decay in pure *°Fe. Taking the widely used MF approach of
electron scattering cross section as the reference, the use of Mott’s series leads to
additional 8% DPA. This value is in good agreement with the data shown in Ref. [124].
Compared with the standard NRT formula, the mNRT-based DPA shows an increase of
36%. It is observed that the mNRT and Mott’s series can yield 47% more DPA than the
standard NRT and the widely used MF approach for *Mn beta decay electron-induced
atomic displacement in pure *°Fe. Therefore, the use of Mott’s series and the mNRT is
of importance for computing the atomic displacement induced by beta decay electrons.

1.2

1.0+

o
=]

o
=
T

Number of displaced atoms
o
(2]

NRT-MF
— NRT-Mott
— mMNRT-MF
— MNRT-Mott

0.2+

0.0
0

Electron energy (MeV)

Figure 4-27. Total number of displaced atoms per incident electron.

Table 4-4. Nrp of *°Fe induced by an electron from *Mn beta decay.

NRT MF NRT Mott  mNRT MF  mNRT Mott
Nep X 1073 27.97 30.39 38.03 4121
Ratio to NRT_MF 1.000 1.086 1.359 1.472

4.6.3 Atomic displacement induced by residual atom

For general studies of beta decay, the recoil kinetic energy of the residual nucleus
is negligible in comparison with the energies of electrons and antineutrinos [146].
However, since the threshold energy of atomic displacement is generally below 100 eV,
the residual nucleus of a beta decay is also able to induce atomic displacement.

Figure 4-28 illustrates the kinematics of the three particles after a beta decay. The

conservation of momenta implies:
ﬁR + ﬁe + ﬁv =0 (4-82)
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where the subscripts R, e, and v represent the residual atom, emitted electron, and the

antineutrino, respectively. The norm of the momentum of the residual nucleus is thus:

18-l = 115 + Boll (4-83)
For the sake of convenience, one denotes the norm of a vector by the same notation

without an arrow. Accordingly,

PE = pé + s + 2P " By (4-84)
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Figure 4-28. Schematic of kinematics of a beta decay. R, e, and v represent the residual atom,

the emitted electron, and the antineutrino, respectively.

Supposing isotropic distribution of the angle between the directions of electron

emission and antineutrino emission, one has:
fﬁe PpdQ =10 (4-85)
where (1 is the solid angle. Therefore, averaging over the angular distribution, one has:
Pk =pi + s (4-86)
According to the relationship between momentum and energy, the kinetic energy of
the residual nucleus is:
Eg = /pic% + M%c* — Mc? (4-87)
where c is the speed of light and M is the rest mass of the residual nucleus:
M = M, + E*/c? (4-88)

where M, is the mass in the ground state, E* is the excitation energy. In general, the
excitation energy is negligible in comparison with the rest mass. The approximation
M = M, can be thus used in most cases, including the beta decay. It is noteworthy that
nonrelativistic treatment can be directly used for the residual nucleus because Ep <
Mc? [117]. On the other hand, Eq. (4-86) shows that pg > p,. Consequently,

Er = Ex = \E.(E, + 2mc?) + M2c* — Mc? (4-89)

where E, represents the kinetic energy of the emitted electron. This lower boundary is
emphasized because the spectrum of Ex can be directly determined using the spectrum
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of E, as the example shown in Figure 4-25.
Since the kinetic energy of the residual nucleus is generally much smaller than

those of emitted electron and antineutrino, the energy of antineutrino is approximately:
E,=Q—E. (4-90)

where Q is the total energy release in the beta decay. On the other hand, due to the

negligible mass of antineutrino, one has directly:

Py = Ey/c (4-91)

Therefore, for each level of the beta decay, the recoil energy of the residual nucleus is:

Er = VE.(E, + 2mc?) + (Q — E,)% + M2c* — Mc? (4-92)

The spectrum of Ej is calculated during the calculation of the one of E,.

Similar to Ex, one can have an upper limit of recoil energy:

Eg

IA

Eg = \/Ee(Ee +2mc?) + (Qmax — Ee)? + M2c* — Mc?

(4-93)
< ERP = E.(E, +2mc?) + Q&g + M2c* — Mc?

where Q4 is the maximum energy release (e.g. 2.85 MeV for the beta decay of >**Mn).
E} (or EF?) can also be directly determined via the spectrum of E,. Using E; and E,
one can obtain the range of DPA numbers induced by the residual nucleus without
calculating the spectrum of E. It is noteworthy that Er < EZ? shows that the two-body
treatment in Ref. [141] can give a conservative value for the residual nucleus-induced
DPA of a beta decay.
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Figure 4-29. Recoil energy spectrum from **Mn beta decay.

Table 4-5 gives the Nrp induced by the kinetic energy of the residual nucleus from
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5Mn beta decay in pure “°Fe. The data in Table 4-5 are calculated by the lower boundary
Eg, two upper boundaries Ef and EZ?, and the spectrum of recoil energy illustrated in
Figure 4-29. As expected, using E; and Ef (or Ef?) and the emitted electron spectrum
can give the range of correct DPA. Therefore, in the case where the beta decay-induced
DPA is not so important, one can directly use E7 to obtain a conservative value. On the
other hand, one can take the average of two values calculated with E and Ej for a
reasonably approximative value. In the case of *Mn beta decay, the average DPA
calculated based on E; and E7 is 0.5798, which is quite close to the exact calculation
0.5665.

Table 4-5. Ngp of **Fe induced by the residual nucleus from **Mn beta decay.
Ex ER ExP Average  Eg spectrum  Ref. [141]
0.1596 1.0000 1.0251 0.5798 0.5665 1.4313

Using the method in Ref. [141], the residual nucleus-induced DPA in **Mn beta
decay is 1.43. Therefore, compared with the methods proposed in the present work, Ref.
[141] overestimates the residual kinetic energy-induced atomic displacement by a
factor of 2.5 in **Mn beta decay. It is noteworthy that Ref. [141] proposes the use of the
mass difference, which is 3695.64 keV for *Mn beta decay. However, Qpmax =
2848.86 keV because the £~ emission of *Mn leads to *°Fe at excited level with
excitation energy higher than 846.776 keV [143]. If we replace the mass difference by
Qmax» the recoil energy proposed by Ref. [141] becomes 83.8 eV, which implies 1 DPA
if the NRT or the mNRT formula is applied.

Comparing data from Table 4-4 and Table 4-5, the number of DPA induced by the
recoil energy of the residual nucleus is larger than that induced by the emitted electron
by a factor of 13.5 (20 if the standard NRT formula and the MF approach are used).
Consequently, for the calculation of beta decay-induced atomic displacement, the
kinetic energy of the residual nucleus has to be taken into account. In other words, the
consideration of electron-induced DPA only is not sufficient to compute the beta decay-

induced atomic displacements.

4.7 Discussion on damage cross sections of polyatomic materials

For a specific PKA energy, the number of DPA can be determined with the methods
presented in Section 3. Assuming an explicit relationship between PKA energy and the
number of atomic displacements, one can determine the DPA cross section for a given

nuclear reaction i of the target j through:
1 ..
Oppaj(E) = 0y ;(E) [, fi;(, E) v(Eg j(, E), i, j )du (4-94)
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where V(ER,i, i E), i, j) denotes the number of atomic displacements for a PKA
energy of Eg; (1, E), f; j(u, E) is the angular distribution in the CM frame, and o; ; (E)
1s the nuclear cross section. V(ER,L j (u, E), i, j) can be determined with the methods

presented in Section 3 (e.g., MD and BCA) or by solving Lindhard equation [72] (e.g.,
Refs. [78, 114]).

As explained in Section 3, the TDE of atomic displacement is direction-dependent.
Due to the use of average TDE in explicit DPA formulae, additional uncertainty of Ey
(E4 for the target j) is introduced in DPA calculations. In order to decrease the influence

of E,4 j in DPA cross sections calculations, one defines the damage energy cross sections

by:

0p,i;(E) = 0, ;(E) f_llfi,j(ll, E)[2.5E4jv(Eg;j(w E),i,j)]du (4-95)

The total damage cross section of atom j is computed by summing all possible reaction

channels i:

op,;(E) = X;0;(E) f_ll fij(w E) [2.5Eq4 ;v(ER (W E), i, j)]du (4-96)

The DPA cross sections can be directly deduced by:

UDPA,j(E) = UD,j(E)/(z-SEd,j) (4-97)

For convenience, let J denote polyatomic materials. The damage energy for the
polyatomic material J is computed by:

1 ..
oppaj(E) = Xjes ¢ 2ioi;(E) [, fi,j (W E) [v(Eg:;(wE),i,j,])]du  (4-98)
where ¢; represents the fraction of atom ; in the compound material J,

V(ER'L i E), L, ]) refers to the number of atomic displacements in J by the PKA
produced from the reaction i on the target j. Because the NRT-DPA formula or other
formulae is valid only for monatomic materials, one should calculate displacements in
polyatomic materials using MD simulations or BCA calculations. The equation

concerning damage cross section can be rewritten as:

0ppas(B) = Bjes ¢ Ti 011 (E) [, fij (s B [v(En G, BD, )N (o oy )] de
(4-99)
where n(Eg,i,j,]) represents the ratio of displacement number in J to that in
monatomic j for the reaction 7 of atom j produced PKA. The PKA kinetic energy Ex
depends on u. In the case where n(Eg, i, j, /) does not depend on ER nor reaction i, with
the notation n(j, J) = n(Eg, i, J,]), the DPA cross section in compound materials can be

expressed by the DPA cross sections in monatomic materials:
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oppay(E) = Zje]cjn(ir])z:io-i,j(E)f_llfi,j(.u'E)V(ER,i,j(.urE)ri'j)dﬂ
Zje] Cjn(ir])aDPA,j (E)

Therefore, for n(Eg,i,j,J) independent on Ep nor i, the DPA cross sections of

(4-100)

polyatomic materials can be directly deduced from the damage energy calculated by
NJOY with:

oppay(E) = Xjeycn(Nop ;(E)/(2.5E, ;) (4-101)

For compound materials, one may use an equivalent TDE defined as [147]:

-1
Egeq = (Zj¢i/Ea;) (4-102)
where ¢; and E; j are respectively the concentration and threshold energy of atom j.
This equation is validated by MgA 1,04 via binary collision Monte Carlo simulations

[147]. Using the equivalent TDE, the DPA cross section of the compound material J is
further simplified as:

0.8 .
UDPAJ(E) = ije]CjU(]'])UD,j(E) (4-103)

An important remark is that owing to the different numbers of displacement in j
and J, the computation of total DPA cross section of compound materials with those of

elementary atoms is different from the computation for nuclear cross sections, which is:

0(E) = %je; ¢ (E) (4-104)
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5 Calculation of DPA rates

5.1 DPA rate calculation using damage cross sections

Here, the notations defined in Section 4.7 are used. For a specific incident particle,
the total DPA rate induced by this particle in material J is computed by:

Tppa,j] = fooo UDPA,](E)¢(E)dE (5-1)

where ¢ (E) represents the spectrum of the incident particle. In practice, the spectra are
always given in specific energy grids rather than continuous functions versus energy,
two methods are proposed to compute the integral.

In order to directly use the multigroup spectra without introducing additional
uncertainties from pointwise interpolation, one can compute the multigroup DPA cross
sections. Therefore, the DPA rate is given by:

Tppa,j = Xk UDPA,],kQ»"k (5-2)

where the index £ stands for the group number, the multigroup DPA cross sections are:

Oorati = Jgo " oppa (E)p(EAE / [ p(E)dE (5-3)
where the weighting function ¢ (E) should be equal to the real continuous spectrum
¢ (E) in principle. However, because the real continuous spectrum is unknown, some
general functions are proposed. Therefore, additional bias is introduced by multigroup
DPA cross sections. An example of reducing this kind of additional uncertainties is
shown in our previous work [116].

To avoid the additional bias from multigroup DPA cross sections (especially for
highly fluctuating reactions cross sections such as the neutron-induced ones), one can
use continuous DPA cross sections. However, in this case, the interpolation of incident
spectra is required. The advantage of this method is to avoid the calculation of
multigroup cross sections.

In monatomic materials, the calculation of DPA rate can be simplified to:
0.8 (oo
Tppa = Efo op(E)P(E)dE (5-4)

where op is the damage cross section discussed in Section 4. In multigroup

approximation, the DPA rate is calculated by:

Topa = 55 SOk (5-5)

where the index k stands for the group number, the multigroup damage cross sections

being given by the expression:
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ok = [y " o (E)p(E)AE / [ " p(E)dE (5-6)

Einfk

where @ (E) is a weighting function identical to the one used in Eq. (5-3).

5.2 Self-shielding correction on DPA rate calculation [116]

From the calculations shown in Section 4.4, the damage cross section can be

separated into two terms:

ap(E) = a(E)E,(E) (5-7)
where E, ;(E) is the averaged damage energy. The DPA rate induced by a particle other

than atoms in a material can be thus reformulated as:

tora = [y Sigp: X [Eai(E)ai(E)] $(EYAE (5-8)

where the index i reveals the reaction types, such as elastic scattering and inelastic
scatterings. 0; (E) is the cross section of the reaction i at energy E, ¢ (E) refers to the

flux of the incident particle, and E ; (E) is the corresponding averaged damage energy.
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Figure 5-1. Total, elastic, inelastic, disappearance, and other n+"Fe reaction-induced damage

cross sections at room temperature.

In a reactor core, the upper limit of the integral in Eq. (5-8) is 20 MeV for neutrons.
opi(E) = E,;(E)o;(E) is the damage cross section (in barn.eV) induced by the
reaction type i at incident energy £ as shown in Figure 5-1, which illustrates the total,
elastic scattering, total inelastic scattering, disappearance, and other neutron reactions-
induced damage cross sections (MT444, MT445, MT446, MT447, and MT448
respectively) for natural Fe at room temperature. The disappearance damage cross
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section is the sum of damages caused by reactions without neutron emission, i.e.
reactions from MT102 to MT120. For *Fe in JEFF-3.1.1, only the cross sections from
MT102 to MT107 are evaluated. The disappearance signifies no neutron emission after
the reaction, such as (n,y), (n,p), and (n,a) reactions. It is noticeable that the DPA rates
induced by reactions excluded in MT445-MT447, e.g. (n,2n) and (n,np), are quite

negligible in fission reactors.
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using multi-group cross sections and flux computed with transport code with finer energy
structure (ECCO 1968-group in our studies).

Figure 5-2 illustrates the different routines of DPA calculations. Eq. (5-8) is the
method of DPA calculation without considering the self-shielding correction (green
scheme in Figure 5-2). However, both cross sections and neutron flux are modified in
deterministic codes due to the self-shielding treatment. The DPA rate after the

correction of self-shielding should be calculated by:
20MeV = ~ -
Tppa = f ‘ ZI.ZE [ a,i(E)Ui(E)] $(E)dE (5-9)

where & and ¢ represent cross sections and neutron flux with the self-shielding
correction. The neutron flux mentioned in the following description is the self-shielded

neutron flux, ¢ will be thus used rather than ¢ to simplify the notation. Hence, the DPA
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rate can be calculated by:

20MeV 5i(E)

Tppa = 2 % fo Yi0ppai(E) —=¢(E)E (5-10)

2E4 oi(E)

Discretizing the integral to the sum of multi-group structure:

0.8 G i j
Tppa = 26, X Zj:l i OppAi,j ﬁd’j (5-11)

where G is the number of groups, &; ; denotes the self-shielded multi-group reaction
cross section. This method corresponds to the red routine illustrated in Figure 5-2.
In order to evaluate the accuracy of self-shielding corrections based on 33-group

structure, an additional scheme shown in Figure 5-2 by blue dashed symbols is used in
the present work. Using the multi-group neutron flux ¢; and self-shielding corrected
cross sections 4; ; calculated by transport code in a finer structure (ECCO 1968-group
in our studies), we compute 33-group neutron flux by summing neutron flux of which
the group j in the finer structure is included in group J of 33-group. The deduced 33-
group cross sections are obtained by conserving the same reaction rates.

In the following studies, the infinite dilution multigroup cross sections g; ; and
Oppa,,;j are computed by the GROUPR module in NJOY2016.20 with the weighting
function iwt8 (i.e. thermal -- 1/E -- fast reactor -- fission & fusion) shown in Figure 5-3.
The self-shielding corrected multi-group cross sections g; ; are calculated by ECCO, of

which the methods of self-shielding calculations are presented in Ref. [148].
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Figure 5-3. Normalized neutron spectra for NJOY-iwt8, 1968-group lattice calculation (blue)
and 33-group full core calculation (red) flux in ASTRID inner core, and the relative elastic

scattering cross section of *°Fe.
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Figure 5-5. Correction coefficients of different (n+°°Fe) cross sections for ECCO 33-group

full core calculations.

The present work aims to compute the DPA rates for the fuel cladding of the
ASTRID inner core, which corresponds to the yellow pointed out in Figure 5-4. The

corresponding neutron spectrum from ERANOS-2.3 calculation is shown in Figure 5-3
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by the red multigroup structure. The full ASTRID core calculation is performed to
compute the ECCO 33-group neutron spectrum and the self-shielding corrected cross
sections. Figure 5-5 illustrates the 33-group correction coefficients for the total, elastic
scattering, total inelastic scattering, and disappearance cross sections. Detailed
explanations are given in our published article [116].

The DPA rate and self-shielded DPA rate at each energy group and their difference
(and ratio) are shown in Figure 5-6 for the aforementioned four reactions. Figure 5-6
shows that the self-shielding between 25 keV and 6 MeV is most important in DPA
calculations. Out of this band, the self-shielding corrections of cross sections and DPA
calculations are weak due to few resonances and low neutron flux (which leads to a

very small contribution to total DPA, as shown in Figure 5-6(a)), respectively.
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Figure 5-6. Self-shielding effects with 33-group energy structure. DPA stands for the relative
DPA rate without self-shielding treatment of cross sections. DPA refers to the self-shielding
corrected DPA rate. DPA — DPA represents the reduction of DPA due to self-shielding,

normalized by its integration over the whole energy range.

Figure 5-7 illustrates the DPA rates in the fuel cladding in the ASTRID inner core
without and with the self-shielding corrections of multigroup DPA cross sections (In
fact, the self-shielding correction presented here is the total correction of both the self-
shielding correction and the correction owing to the use of a general weighting function
for computing infinite dilution cross section, more details are given in Ref. [116]). The
yellow bars point out the negative corrections on DPA calculations taking the

corrections of cross sections into account. It is shown that the DPA computed with total
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cross sections is less than the sum of three partial values after the self-shielding
correction because of the different self-shielding corrections on different cross sections.
11% relative elastic scattering induced DPA rate is reduced by taking the self-shielding
into account. Because inelastic scattering channels are closed below the minimum
threshold energy of 862 keV, the self-shielding corrections in the resonance region
below 862 keV have no influence on DPA induced by inelastic scatterings. Therefore,
the relative reduction of inelastic scattering is less important than the one of elastic
scattering. The self-shielding effect on the disappearance reactions induced DPA is
important, but its contribution to total DPA is negligible. 10% total DPA is reduced due
to the self-shielding treatment in ECCO 33-group full core calculations. The self-
shielding corrected DPA rate is 25 DPA/year, of which 81.9%, 18.0%, and 0.1% are
induced by elastic scattering, inelastic scatterings, and disappearance reactions,
respectively. It represents a 10.4% reduction vs unshielded calculation. Therefore,

improper shielding calculations tend to overestimate DPA rates in the core structural

materials.
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Figure 5-7. DPA rates (in DPA/year) in the fuel cladding in ASTRID inner core computed
with ECCO 33-group full core calculations. DPA rate induced by reactions other than MT448
is 0.0098 DPA/year.

5.3 DPA rate calculation by generating PKA spectra

The above two subsections show the methods for calculating DPA rates by folding
damage cross sections and neutron flux spectrum. This method is widely used in nuclear
engineering because the DPA rate can be directly calculated once the neutron transport
calculations are performed. It can be implemented in neutron transport codes so that the

DPA rates can be calculated as usual nuclear reaction rates. One shortcoming of this
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method is that the damage cross sections are always based on a specific DPA model,
whereas no model can perfectly describe the DPA as a function of PKA energy for the
time-being [99].

In order to perform accurate DPA rate calculations with advanced models or
simulation results, the generation of PKA spectra for a given neutron flux spectrum is
preferred. Once the PKA spectra are calculated, the DPA rates can be deduced using
any DPA models, in which DPA is an explicit function of PKA energy. Some codes have
been developed for this objective, such as SPECTER (ANL, US) [113], DART (CEA,
France) [114], and SPECTRA-PKA (UKAEA, UK) [115]. These codes convert neutron
spectra into PKA spectra using the neutron-induced ENDF [66] and/or multi-group
nuclear data calculated by NJOY [87].

Section 4.3 summarizes the formulae for calculating the PKA energy as a function
of different variables for various nuclear reactions. The generation of PKA spectrum y

for a specific neutron spectrum ¢(E) can be performed by:

X([Epkai Epkairi]) = 2 f; [y g (EDf(E, X)¢(E)6[EPKA,i»EPKA,i+1](ER (E,X))dXdE
(5-12)
where j represents reaction type, E is the incident energy, X contains all other variables

(e.g., X = u for discrete reactions and X = (E,u) for continuum reactions), the

variables £ and X in the integrals are restricted by the Delta function
S(epkasEpkarss] (Er(E, X)), which is defined by:

1, Epes; < Ex(E,X) < Epgn i
6[EPKA,irEPKA,i+1] (ER (E, X)) = {O PrAL R PRAI+1 (5-13)

, otherwise

In most codes, multigroup cross sections rather than pointwise cross sections are

used for computing PKA spectra. Therefore, the integration over E becomes a

J
i,ir

summation on energy groups. SPECTRA-PKA directly uses the recoil matrix m
calculated from a modified-GROUPR module of NJOY, where j represents the reaction
type and ii and ir respectively refer to the group numbers of the incident energy and the
recoil energy [115].

For the neutron flux spectrum at the inner surface of RPV in a French 900 MWe
PWR shown in Figure 5-8, the most important recoil spectra based on **Fe are shown
in Figure 5-9 (calculated by SPECTRA-PKA calculations based on TENDL-2015
nuclear data library [123]). It is shown again that neutron scattering reactions are the
major reactions inducing primary radiation damage in a PWR RPV. The 0.55 keV
minimum °’Fe recoil energy is equal to the photon kick (because the minimum neutron

kick is smaller than 0.5 meV for a thermal neutron).
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Figure 5-9. PKA spectra of 100% *°Fe material using neutron flux shown in Figure 5-8.
SPECTRA-PKA calculations based on TENDL-2015.

It should be noted that the use of NRT or ARC formula for computing damage cross

section from nuclear data and for calculating DPA rates using PKA spectra are all

approximate calculations. The current NRT formula is based on Lindhard’s numerical

results from monatomic materials. For a more rigorous calculation, one should solve

Lindhard’s integral equations. This method is employed in DART [114] (beware,
though: DPA calculated by DART is from Lindhard’s equations rather than the NRT
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formula).

Current codes for calculating PKA spectra from a neutron spectrum are all based
on a specific ENDF library and/or a deduced Pointwise ENDF (PENDF) database.
However, the self-shielding effect is not taken into account, whereas the self-shielding
correction is not negligible for computing total DPA rates (c.f. Section 5.2 [116]). Since
the self-shielding correction varies from one reaction to another, it is impossible to
simply correct the neutron flux spectrum to perform PKA spectra calculations by
considering the self-shielding effect. Thereby, utilization of self-shielding corrected
multigroup cross sections (c.f. Section 5.2: correction owing to the weighting function
and self-shielding correction) rather than infinite dilution multigroup cross sections
calculated with a general weighting function is more physical and should be preferred

for considering the self-shielding correction on PKA spectra calculations.

5.4 Fission products-induced DPA in fuel cladding [149]

Since the fuel cladding can be directly irradiated by Fission Products (FPs), the
FPs-induced DPA should be important for determining the operating lifetime of fuel
assembly in SFRs. Because heavy ions generally have small ranges in materials, FPs-
induced damage should be found only near the inner surface of the cladding, where fuel
pellets and cladding are in contact and Fuel-Cladding Chemical Interaction (FCCI) [150]
may occur. In this region, the irradiation damage may be not as important as the FCCI.
However, it is still of interest to investigate the FPs-induced irradiation damage in the
fuel cladding because the DPA in the fuel cladding of SFRs is an important quantity
“beyond” the concept of atomic displacements. At least, it is important to quantitatively
compare the current “DPA level” used in SFRs and the “real” number of DPA. This
subsection studies the FPs-induced damage in the fuel cladding of FRs. The
investigated material is Fe-14Cr Oxide Dispersion-Strengthened (ODS) alloy, which is
developed by CEA [21]

5.4.1 Methodology

This subsection presents the methods and the hypotheses for computing the number
of atomic displacements in the fuel cladding induced by the irradiation of FPs. The
methods proposed in this subsection and the corresponding numerical results given in
Sections 5.4.2.1 and 5.4.2.2 are general for any type of nuclear reactor with UO> fuel
and Fe-14Cr cladding. The numerical results shown in Section 5.4.2.3 are mainly for

the ASTRID inner core but the proposed methods are not restricted for FR applications.
5.4.1.1 Description of the model

Figure 5-10 shows the cross-section view of a fuel rod. The dotted curve in the fuel
pellet illustrates the outermost position where FPs can reach the cladding inner surface,

whereas the dotted curve in the fuel cladding points out the deepest position where FPs
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can propagate. The right figure in Figure 5-10 is the zoom of the region where the FPs
have contributions to atomic displacements. FPs produced within the dotted curve-
enclosed region in the fuel have no contribution to the atomic displacements for the
cladding. The boundary of this region depends on FPs and is determined by SRIM-2013
using 30 000 ions QC. The QC option is chosen because it is much faster than the FC

simulation and we focus mainly on the spatial migration range of ions.

. ——— Cladding

Figure 5-10. Schematic of FPs transport near the periphery of the fuel pellet. The dotted curve
in the fuel pellet illustrates the outermost position where FPs can reach the inner surface of
cladding, whereas the dotted curve in the fuel cladding points out the deepest position where

FPs can propagate.

Since the gap is filled with gas, it is treated as void in the present work. Therefore,
for ion transport simulations, it is equivalent to the case that the fuel pellet is directly
enclosed by the fuel cladding. Because FPs have limited depth of penetration in the fuel
cladding (illustrated by the dotted curve in Figure 5-10), the FPs-induced atomic
displacements are only limited in the accessible region. Since both the range of ions
and the number of atomic displacements should be determined, the present work uses
3000 ions full cascade simulations to determine the distribution of atomic
displacements in the cladding.

In general, a nuclear fission reaction produces two FPs and v (~ 2.4 for 2¥U)
neutrons. The fission reaction of a heavy nucleus X, e.g., 2*U and 2*Pu, can be

expressed by:
n+ X - FP, + FP, +vn (5-14)

where the subscript / and / respectively represent the heavy and the light FPs. Different
to most neutron-induced reactions, there are hundreds of FPs rather than a few
determined products of other reactions. Therefore, the FPs-induced damage rate should

be calculated by:
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Veotar = i Vi J. [, fEk,i Vep, (Exir Q,7) dEy ;dQdr (5-15)

where Ei;, (0, r, and Y; respectively represent the kinetic energy, emitted angle, emitted
position, and fission yield of each specific FP FP;.

Mor——— =— Average kinetic energy 8
1 —s— Fission yield I .
1001 "'\"3‘.,- _
g ‘ - \'."F\ b \-..-\ -6
~ 901 \ " o~
5 / 1% \ 5 R
g ] . I o
S 80- / Tom ™. 40
g | ] —ﬂﬂi % \ I c
2 / . I ) 39
< 704 i \ = | " 3
g) J n [] EHEK _2IL
g 60 J \ 1]
2 / . w L
1 ; ! J " |
50— S 1o

T T U 1 T T T T y
70 80 90 100 110 120 130 140 150 160
Mass number

PRl lsobaric yields
) A=139
I A A=05 + 4’ iy

—F—
—B—
I

gs = 4
I ot i '
T ot .
=
=
s = 4
. :
o — -
L
| rqu T "9 "y i
L & J
) +—=omoono Tnﬂm Ahm ¢+A O emd Yo D? nnnnnnnnnn
20 30 40 50 60 70

Charge of product

Figure 5-11. JEFF-3.3 fission yields on atomic mass and the FIFRELIN average kinematic
energy of FPs (upper) and the JEFF-3.3 charge yields (lower). The red squares, blue triangles,
and green circles in the lower figure represent the total charge yields, the charge yields for A =

95 and 139, respectively.

The main fissionable nuclei in thermal reactors and FRs are **°U and 2*’Pu,
respectively. Because the relative fission yields (on atomic mass, charge, and energy)
of 23U and #*°Pu are not so different and the present work provides an approximate
estimate of FPs-induced damage in the cladding, all fission reactions are approximately

treated as the fission of *°U here. In addition, the nuclear fuel is assumed to be a pure
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UO> when simulating the penetration and slowing down of FPs in the fuel for
calculating the FPs-induced DPA rates in the fuel cladding. The simulation results are
thus useful for both FRs and thermal reactors with Fe-14Cr cladding.

Figure 5-11 shows the fission yields for 2*°U of JEFF-3.3 [89]. The average kinetic
energies of FPs computed with FIFRELIN [151] are shown together with fission mass
yields in Figure 5-11. The largest fission yields correspond to A = 95 and A = 139 for
light and heavy FPs, respectively. A = 139 is chosen for heavy FP rather than the peak
value A = 134 because the former is more representative of heavy FP (i.e. second hump
of fission yield in Figure 5-11). As shown in the lower subplot of Figure 5-11, the most
probable atomic numbers for the light and the heavy FPs are respectively Z = 38 (Sr)
and Z = 54 (Xe). For the sake of simplification, the present work supposes that the FPs
are 100% *°Sr and '*Xe, the most probable light and heavy FPs. The corresponding
mean kinetic energies are respectively 100 MeV and 70 MeV. It is noteworthy that even
if >Sr and !*Xe are beta decay unstable nuclei, the corresponding 23.9 s and 39.7 s
half-lives are relatively large when compared with atomic displacement cascade (about

several tens picoseconds [99]).

5.4.1.2 Estimate of fission products-induced atomic displacements in the cladding

Table 5-1 gives the chemical compositions of Fe-14Cr ODS alloy developed by
CEA [21]. Since the FPs-induced irradiation damage cannot be simply calculated as
neutron-induced damage, SRIM-2013 simulation is used in the present work. To
accelerate the convergence of Monte Carlo simulations, only Fe, Cr, and W in Fe-14Cr
are considered for SRIM calculations. The threshold displacement energies used in the
present work are given in Table 5-2. Because the FPs have quite limited ranges in the
fuel and cladding, their contributions to atomic displacements in the cladding depend
on their initial positions and angular distributions. As the two cases of incident **Xe
shown in Figure 5-12, different initial positions lead to different ranges and different
numbers of atomic displacements in the cladding.

Table 5-1. Chemical compositions (in wt%) of Fe-14Cr ODS alloy [21].
Cr w Mn Ni Si Ti Y203
14 1 0.3 0.15 0.3 0.3 0.3

Table 5-2. Threshold atomic displacement energy E..

Element U 0 Fe Cr w
E; (eV) 40 20 40 40 90
Ref. [94] [94] [70, 84] [84] [84, 90]
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Figure 5-12. SRIM-2013 full cascade simulation of perpendicularly injected 70 MeV '¥Xe
into 5 pm (left) and 1 pum (right) UO, and subsequent Fe-14Cr. Green, cyan, purple, blue, and

pink points respectively stand for the displaced U, O, Fe, Cr, and W atoms.

Figure 5-13 illustrates a FP produced at the depth of dgp in the fuel and emitted
with an angle 6 towards the fuel cladding. Because a SRIM-2013 full cascade
simulation with 3000 ions takes about 10 hours for 100 MeV *>Sr and 15 hours for 70
MeV ¥Xe in an i5-7200U CPU, the computation burden is too heavy to simulate both
the position-dependence and angular distributions. In order to avoid too many
simulations to estimate the role of FPs on the irradiation damage in cladding, the present
work assumes that:

(i) All light and heavy FPs are *>Sr and '*°Xe, respectively.

(ii) Kinetic energies of FPs are 100 MeV and 70 MeV for *Sr and '*Xe,
respectively.

(iif) The gap between the fuel and cladding is void.

(iv) FPs are isotropically emitted in the fuel.

(v) For FPs emitted with the angle towards the cladding 8 € [0,, 6,], where 6,
and 6, are angles simulated by SRIM, the induced atomic displacements are
supposed to be the same as 8 = 0, (or 8 = 6, for estimating the lower limit).

(vi) For atomic displacement in the cladding induced by FPs produced at depth
dgp € [dy, d,], where d; and d, are depths simulated by SRIM, we directly
take the distribution obtained at the depth d = d; (or d = d, for estimating
the lower limit).

Assumptions (1) and (i1) should be a good approximation for our studies. It is noted
that the default SRIM effective charge of ion Zes (Zesz is proportional to the ratio of
the stopping power of the ion to that of proton [152]) is used, whereas the average
charge of FP is 20+. (iii) is reasonable because of the low atomic concentration in the
gap. (iv) is true in FR core where the local neutron flux is quasi-homogeneous and
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isotropic. (v) overestimates (underestimates, resp.) the atomic displacement because
FPs emitted with angle 6 € [6;, 8,] generally induce less (more, resp.) vacancies than
that with 8 = 6, (6 = 6,, resp.). (vi) also overestimates (underestimates, resp.) the
atomic displacement because the irradiation damage reduces with the thickness of fuel
where the FPs should pass through. The histogram distribution assumption is used for
(v) and (vi) to conservatively estimate the real vacancies induced by FPs. Consequently,
the six assumptions can give a reasonable upper limit (or lower limit) for the number

of atomic displacements in the fuel cladding.

Cladding

Figure 5-13. Schematic of a FP produced in the depth of dgp in the fuel and emitted with an
angle 6 towards the fuel cladding.

The isotropic angular distribution (i.e. assumption (iv)) of produced FPs implies:
dQ =sin6 dfdyp = —2ndu (5-16)

where (1 is the solid angle, 8 is the colatitude angle, ¢ is the longitude, and ¢ = cos 8.
Consequently, the isotropic angular distribution leads to equiprobable distribution on u

from -1 to 1. Moreover, the probability density for the variable u (p(1) = p) satisfies:

1
2 pdp=2p =1 (5-17)
Therefore, the probability density for the distribution of u is p(u) = 1/2.
For a specific FP produced at depth dgp € [dj, dj+1], the angle-integrated number

of atomic vacancies is computed by:

v(dpp) = f_ll v(dpp, ) p()dp = ;f_ll v(dpp, 1) du (5-18)

Therefore, assumptions (v) and (vi) imply that the upper limit of the FPs-induced

atomic vacancies in the fuel cladding is:

_ 1 i 1
v(dpp) =3 Xis0 f:i—l duv(d;, ;) = > Ziso(Mi — wi—)v(d;, ;) (5-19)
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where (14, U, Us, ) are cosines of the simulated angles and py = y.. U, = cos 9, is
the cosine of the maximum angle that the FP can leave the fuel. As the schematic

illustrated in Figure 5-14, the maximum angle 6, is determined by:
Uc = cos O = dpp /Ry (5-20)

where Rris the maximum range of the FP in fuel.

Figure 5-14. Possible angular directions that a FP produced at a distance dgp to the surface of
the fuel pellet can leave the fuel. The sphere determines the boundary of the migration of a
FP. The plan (cylindric surface of which the radius is much large than R)) is the surface of the
fuel pellet.

On the other hand, the expectation of the vacancies (i.e. volume-averaged
vacancies) in the fuel cladding induced by a FP is calculated by:

dpp)d R
v = fv(f% = 77;_1122 0 U(dFP)ZT[(R - dFP)ddFP (5-21)

where R is the radius of the fuel pellet. Supposing the ranges of FPs are largely smaller
than the radius of fuel pellet (i.e. Ry < R), one can deduce that:

v = %fORf v(de)dde (5‘22)

Consequently, assumption (vi) implies that the vacancies in the fuel cladding are
overestimated by:

_ 2 _
where djmqx = Ry. Inserting Eq. (5-19) into Eq. (5-23), one can deduce that the upper

limit of the vacancies in the fuel cladding induced by a specific FP is calculated by:

V= %Zj(dj+1 —d;) Yiso(y — pi-)v(d, ;) (5-24)
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Using the same reasoning, the lower limit of the vacancies produced by FPs can be
determined by:

L= %Zi(d}ﬂ o dj) im0t — nul'—l)v(dj+1,,ui_1) (5-25)

Since the FPs-induced damage in the cladding for 8 = 6, is quasi-null, it is
neglected in the present work to reduce the cases of simulations. Moreover, this
additional assumption leads to a smaller value of the lower limit v. The number of
atomic displacements induced by FPs is thus included in [v, 7]. For simplification, the
quantities associated with the calculations of ¥ (v resp.) are called maximum
(minimum resp.) estimate and noted by the same symbol ¥ (v resp.).

It is noteworthy that the inner radius of the cladding R;. is a little larger than the
fuel diameter R. On the other hand, Ry < R and R, < R;. for FPs (can be verified in
Section 5.4.2.1). Therefore, if one uses the simulation that the fuel is directly enclosed

by the cladding, the atomic displacement should be corrected by:

v(dj 1) = 7 Vsima(dg, 1) (5-26)

One has a numerical approach R;./R = 1.03 deduced from various SFRs. This
correction is used in the present work.

In the present work, the SRIM-2013 full cascade simulations are performed every
1 um for the depth dgp from 0 to dj;q5—1. Each 1/6 of u from 1 to p, are simulated for
the angular distributions. One can do simulations in finer meshes so that the computed
lower and upper limits are closer to the real value. It is always the choice between
accuracy and computation burden. The proposed criterion is whether the difference

between v and v is smaller than the acceptable accuracy.

5.4.2 Numerical results

5.4.2.1 Ranges of fission products in fuel and cladding

In order to intuitively show the ion distributions in materials, Figure 5-15 illustrates
the 3D ion distribution of 100 MeV **Sr into UO,. Again, we remark that the effective
charge in SRIM is used, whereas the average charge of FPs is 20+. The averaged
migration range is 8.43 um and the maximum depth (i.e. Ry) is 9.90 um. Consequently,
light FP produced in UO; fuel deeper than 9.90 um does not influence the damage
calculation of the fuel cladding. The ranges and maximum depths of 100 MeV **Sr and
70 MeV '*Xe in both fuel and cladding are summarized in Table 5-3. For the sake of
comparison and verification, Table 5-3 also gives the data obtained with 50 000 ions
full cascade simulations with Iradina code [101]. One can find that SRIM-2013 and
Iradina give similar data on the ranges and the maximum depths of penetration (R and
R.).
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According to the values of Rysummarized in Table 5-3, the initial positions for the
simulations of 100 MeV **Sr and 70 MeV '*Xe are restrained in the regions of which
the distances to the surface of fuel are smaller than 9.9 um and 7.8 pm, respectively. In

addition, these data verify the assumptions that Ry < R and R, < R;. given in Section
5.4.1.

Table 5-3. SRIM-2013 simulation of **Sr and '**Xe maximum depths into UO; fuel and Fe-
14Cr cladding.
Fuel (QC) Cladding (FC)
Range (um) Ry (um) Range (um) Rc (pm)
Sr 100 MeV  8.43(8.31)*  9.90 (9.96) 7.17 (7.06) 7.95 (7.85)
39%e 70 MeV 6.07 (5.78) 7.74 (7.76) 5.30 (5.26) 6.35 (6.25)

2 Values in parenthesis are from Iradina 50 000 ions full cascade simulations
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Figure 5-15. 3D ion distribution of 100 MeV *Sr into UO, (SRIM-2013 QC).

5.4.2.2 Atomic displacements induced by fission products

Figure 5-16 shows the distributions of vacancies in Fe-14Cr with SRIM-2013 full
cascade simulations for 70 MeV '*°Xe (upper) and 100 MeV *Sr (lower) from different
depths in UO> fuel with emitted angle & = 0. It is observed that the peak values of the
atomic displacements are not so sensitive to the initial position of FPs for dgp smaller
than the range. In the case where dgp is larger than the range, the peak value quickly

decreases with the depth in the fuel due to the decrease in the total number of ions that
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can reach the cladding. Consequently, the consideration of FPs only with dgp smaller

than the range could also be a good approximation.
4
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Figure 5-16. Distribution of vacancies in Fe-14Cr with SRIM full cascade simulations for 70
MeV *Xe (upper) and 100 MeV *Sr (lower) from different deep UO, fuel with 6 = 0.

Figure 5-17 illustrates an example of the angular dependence of the atomic
displacements in the cladding induced by FPs. Figure 5-17 shows also the averages for
the upper limit ¥ and lower limit v, noted by Max. and Min., respectively, for dgp = 0
and dgp = 3 pm. From Figure 5-17, one can find the 1/6 division of u can give a
reasonable angle-averaged value. The only problem shown Figure 5-17(a) is that the
atomic displacements at depth smaller than the position of the peak for u© = 1/6 (which

is about 1 um) are unrealistically small when compared with data at depth > 1 pm.
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Figure 5-17. Distribution of vacancies in Fe-14Cr induced by 100 MeV *>Sr from the surface
of Fe-14Cr (upper) and 3 pm deep UO, (lower) with different incident angles and

corresponding maximum and minimum averages.

For the upper limit, because the results for 4 = 1/6 are used for u < 1/6, the
expectation of atomic displacements is smaller than the real case at depth smaller than
the peak-position of 4 = 1/6. For the lower limit, because the atomic displacements
are supposed to be null for u < 1/6, the same problem is also found as the upper limit.
However, this unrealistically small estimate is much less important for dgp > 0 than
for dgp = 0 (shown in Figure 5-17(a)) because

(i) ks/6—p.= kEN,(Iglel,Eluc)>0(k/6 — U.) < 1/6, which implies the probability
that the cosine of emission angle included in [y, ks/6] (i.e. ks/6 — u.) is

109



smaller than 1/6 for dgp > 0;

(if) for a larger emission angle 8, the larger mean free path of ion in the fuel leads
to fewer atomic displacements in the cladding.

For the second reason, one can imagine that if u is very close to u., even though

the atomic displacements are quite important near the surface of cladding, its
contribution to the expectation or angle-average is quite negligible. It is more obvious
if FPs are produced at a deeper position. This reasoning can be verified by Figure
5-17(b), which illustrates the results for 100 MeV ?°Sr from 3 um deep UOx.
Consequently, the approximations using 1/6 division of u can give a reasonable
estimate of FPs-induced atomic displacements in the sense of vacancy attenuation in
the cladding.

Since the results shown in Sections 5.4.2.1 and 5.4.2.2 are for FPs emitted from
UO: into Fe-14Cr cladding without adding any constraint on neutron flux spectrum, it
is noteworthy that the corresponding conclusions are the same for Fe-14Cr cladding

used in other reactor types.

5.4.2.3 Comparison with neutron-induced damage in cladding

The operating lifetime of fuel assembly in SFRs is mainly determined by the DPA
level (~ 200 DPA [18] based on the NRT formula [80]). The current status for
determining the lifetime is based on the neutron-induced DPA. On the other hand, the
present studies show that the FPs can induce irradiation damage in the cladding from
the inner surface up to the first microns. Therefore, it is of interest to compare the
neutron-induced DPA rate and the FPs-induced one. In a nuclear reactor, the FPs-
induced damage rate per unit of depth Rp in the cladding is computed by:

RD — VruelRy fission dv _ nRzRV,fiSSion @_ RRy fission R_av (5_27)

Ny cladding Vecladding  2TRicNv cladding 0%  2RicNy cladding 0%

where v is the angle-integrated number of atomic displacements obtained by
simulations, Ry fission = Licfuet Of,iP Ny ; is the volumetric fission reaction rate, and
Ny ciaadging 18 the atomic concentration of the cladding. dv/dx is the so-called
vacancies per ion per unit of depth that can be directly deduced with SRIM calculations.
In the present work, v =7 and v = v for maximum and minimum estimates,
respectively. For SFRs, we remark again that R;./R = 1.03. Figure 5-18 shows the
quantity R07/dx for 70 MeV '*°Xe and 100 MeV *>Sr. Moreover, Figure 5-18 points
out both the maximum estimate ROV /dx (noted by Max.) and minimum estimate
ROv/dx (noted by Min.) for the total FPs-induced damage.

In order to quantitatively compare the neutron-induced DPA rate with FPs-induced
damage rate, the present work takes the example of the ASTRID reactor. Using the total
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fission rate Ry fission Of the ASTRID inner core from ERANOS [153, 154] calculation
(with self-shielding correction), one obtains RRy fission/2RicNy cladaing = 6-40 X
10711571 =2.02 x 1073 year1.

1219 / . Xe139

1, N ——Sr95
10-/ \ ", = = = Max.
. \ = - - Min.

Vacancies per unit of depth * R (10%)

Depth of penetration (um)

Figure 5-18. Integrated vacancies R0T/dx in Fe-14Cr induced by 70 MeV *Xe and 100

MeV %3Sr and the corresponding maximum and minimum estimates.

Since the number of vacancies from SRIM full cascade simulations is almost two
times that of the NRT formula [106-108], one uses R, = Rp/2 to compare with the
NRT-based neutron-induced damage rate. The peaks of Max and Min shown in Figure
5-18 lead to R, = 128 DPA/year and R, = 109 DPA/year, respectively. These values
are much larger than the neutron-induced one, which is about 25 DPA/year [116]. It is
observed that R}, is larger than the neutron-induced damage rate when the depth is
smaller than 5.0 pm (3.2 um, resp.) according to the maximum estimate ¥ (minimum
estimate v resp.). The depths corresponding to 1/10 of the neutron-induced damage rate
are 7.4 um and 5.4 pm, respectively.

Table 5-4 shows the average damage rate from the inner surface to different depths
of penetration in Fe-14Cr cladding. The average FPs-induced damage rates in the whole
irradiated region, i.e. 0 - 7.9 um, are about 54 and 30 NRT-DPA/year with the maximum
and minimum estimates, respectively. The corresponding averaged value in the first 10
um are respectively 43 and 23 NRT-DPA/year. One may use the mean value v =
(g + 17) /2 to roughly determine the average FPs-induced damage rate. Consequently,
the averaged FPs-induced damage in the first 10 pm (= 33 NRT-DPA/year) is slightly
larger than the neutron-induced one. The ratio of FPs-induced damage to the neutron-

induced one in the whole region or investigated region of Fe-14Cr cladding is
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approximately equal to 13.4 um/t., where t. > 7.9 um is the thickness of cladding or
the investigated region starting from the inner surface. However, it is noteworthy that
only the peak values or the average values shown in Table 5-4 are significant for

studying the FPs-induced irradiation damage in the cladding.

Table 5-4. Average FPs-induced damage rates (DPA/year)” in different intervals.

Interval®  Peak [0,53] [0,7.1] [0,63] [0,7.9] [0, 10]

Max. 128 77.6 60.4 67.4 54.5 43.0
Min. 109 44.0 33.0 37.1 29.6 234

2 SRIM full cascade simulations-based data divided by 2 for roughly converting to NRT-DPA
® Unit is in um; 5.3, 7.1, 6.3, and 7.9 um are respectively the ranges of '*Xe, *Sr and the
maximum penetrations of **Xe, **Sr in Fe-14Cr.

Because the FPs-induced damage is much more important than the neutron-
induced damage in the first few microns cladding facing the fuel pellet, subsequent
questions should be discussed. (i) Should we pay more attention to the FPs-induced
radiation damage in the innermost few microns of the fuel cladding? (ii) The FPs-
induced damage should be taken into account for the determination of the operating
lifetime of fuel assemblies in SFRs? The second one could be important for SFRs. At
least, it gives a quantitative comparison between the current “DPA level” used in SFRs
and the “real” number of DPA.

5.4.3 Summary of fission product-induced radiation damage

This section investigates the FPs-induced atomic displacements in the Fe-14Cr fuel
cladding. Four basic assumptions are proposed to simplify the simulations. Except for
the treatment of the fuel-cladding gap, three degrees of freedom are reduced using the
corresponding assumptions, including the yields of FPs, energy distribution and angular
distribution of each FP. In addition to the four basic assumptions, two approximations
are proposed to obtain the upper and lower limits of atomic displacements in the
cladding so that the cases of simulations can be largely reduced.

SRIM-2013 quick calculations (full cascade simulations, resp.) show that the
maximum penetrations of 100 MeV *°Sr (i.e. light FP) and 70 MeV '*¥Xe (i.e. heavy
FP) in UO: fuel (Fe-14Cr cladding, resp.) are respectively 9.9 pum and 7.7 pm (7.9 pm
and 6.3 um, resp.). These data are verified with Iradina full cascade simulations.
Consequently, the efficient fuel region where FPs can displace atoms in the cladding
and the irradiated cladding region by FPs are quite small. Simulations restrained in the
efficient regions using 1 pm division of depth in the fuel and 1/6 division of the cosine
of emission angle gives reasonable upper and lower limits of the number of FPs-induced
atomic displacements in the cladding.
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Compared with 25 NRT-DPA/year neutron-induced irradiation damage in the
cladding of ASTRID inner core, the FPs-induced maximum damage rate is about 5
times larger. Along with the depth in the cladding, the FPs-induced damage rate is larger
than the neutron-induced one at depth smaller than 5.0 um (3.2 pm, resp.) using the
maximum estimate (minimum estimate, resp.) and lower than 1/10 of the neutron-
induced DPA deeper than 7.4 pm (5.4 um, resp.). Therefore, the question of whether
the FPs-induced damage should be taken into account in the cladding of SFRs needs to

be discussed.
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6 Methods for uncertainty propagation

Owing to limited experimental data, theoretical calculation based on several
optimized models is the main method to predict the characteristics of a physical quantity.
Since no model is perfect, the uncertainty of model calculations should be estimated for
determining the confidence interval of theoretical prediction. This kind of uncertainty
can be from model defects and poor model parameters.

We showed the model defects of the optical model for calculating the total cross
section of *°Fe below 6 MeV: the optical model cannot produce the fluctuations of
experimental data (c.f. Figure 2-3 and Refs. [34, 42, 44, 45, 155]). For DPA models,
even with the MD-based ARC-DPA model, it cannot predict the performance of several
monatomic materials at high PKA energies (e.g., MD data for Au and Pt [99], and W
[99, 156]; BCA data for Fe [157]). The model defects show that some improved models
should be developed to perform more accurate calculations. The development of new
models is a long-term work and is not included in the framework of this Ph.D project.

Assuming the availability of a theoretical model, one can adjust parameters in
phenomenological models to get calculated results as close as possible to experimental
measurements. At the same time, biases are usually observed between parameters-based
calculations and experimental data. These biases are from: discrepancy and dispersion
among experimental data, locally optimized model parameters, and model defects. In
practice, model defects are not considered if the theoretical calculations and
experimental data are globally in good agreement within several ¢ uncertainties. Then,
after the selection of reliable experimental data, one can determine the optimized
parameters and the corresponding covariance matrix using measured data (i.e. physical
constraints). The covariance matrix is essential to propagate uncertainties of model
parameters to subsequent quantities.

This section briefly presents the methods for uncertainty propagation from model
parameters. Section 6.1 shows the determination of covariance matrix among model
parameters using physical constraints. Section 6.2 summarizes the methods for
uncertainty propagation, including the sensitivity-based analytical calculation and the

Total Monte Carlo (TMC) sampling technique.

6.1 Covariance between model parameters

The Bayes’ theorem implicates that the posterior probability density is proportional
to the product of prior probability density and the likelihood:

s12 ) _ _ PERUpEY) i
p(Z[E,U) = [P(EZ0)pGEU)dz (6-1)

where vector X represents the parameters in physical models, E denotes the
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experimental data, and U refers to the prior information. Under the hypothesis of

Gaussian distribution for the probability density of X and E, one obtains:
p(J_C), U) = e—%(f—fo)TMil(f—fo) (6-2)
2 T 1,2 o
p(E|%,U) = ¢ 268 MEH(EE) (6-3)

where X, represents the vector containing prior values, C and E denote the calculated

and experimental data, respectively. M, (Mg resp.) stands for the covariance matrix of

X (E resp.). Using the above Gaussian distribution-based probability densities, one has:
p(3|E,U) o3| G2 M (E=%0)+(C-E) M5 (C-E)] (6-4)
The maximization of the posterior probability density is thus equivalent to the

minimization of the Generalized Least Square (GLS) cost function y2;:

Kous = (= 30) Mg (& — o) + (C = E) Mz'(C - E) (6-5)
The Gauss-Newton scheme (known as Newton method for one-dimension solution) is
used to find the minimum of the GLS cost function by iteration in CONRAD [158, 159].
The criterion of the convergence judgment is the relative variation of y2, s . Posterior X
and M,, are determined in the fitting procedure by iteration.

All physical parameters and the covariances between different parameters are
determined to mimic experimental data of nuclear cross sections and other measured
data. The parameters are mainly divided into two sets in CONRAD, physics parameters
and nuisance parameters [160]. The formers are directly involved to optimize calculated
results, while the latters are not directly used but fundamental for assessing reliable
physical models. For example, the nuisance parameters contain systematical
uncertainties that avoid unrealistically small uncertainties by fitting parameters
according to measured data (these uncertainties are propagated to final uncertainty,
called as marginalization [161]). The complete covariance matrix used to propagate
uncertainties is thus [160]:

Y Y
s — ( 11 12) 6-6
S21 Ty (6-6)

where

Lip= M+ (G;Gx)_lG;GBMBGng(G;Gx)_l

L1z = _(G;Gx)_lG;GBMB (6-7)
2y = ZIZ
Loy = Mgy

where M, and My are respectively covariance matrices of physics parameters X =
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(x1,%3,++,%x,)T and nuisance parameters 6 = (04,0,,+,0,,)T , G, and G, are

differential operators. For a quantity ¢ = (cq, ¢y, *+, ¢cx)T, the differential operators are

computed by:

661 661
0x4 0xn

Ge=1{ i ~ i
\8ck aCk
0x1 0xn
Bcl aCl
064 00,

Gg = : ) :
aCk aCk
904 00,

(6-8)

(6-9)

Table 6-1 gives the optimized parameters and the corresponding covariance matrix

of n+>%Fe reaction OMP from CONRAD optimization and marginalization against

experimental data of cross sections from EXFOR. Some nuclear cross sections and

uncertainties calculated with data given in Table 6-1 are shown in Figure 2-3 and Figure

2-4 in comparison with experimental data.

Table 6-1. OMP parameters and the corresponding uncertainty (1¢) and correlation matrix for

n+>Fe reaction [42]".

Parameter  Agy (MeV)  Vue (MeV) a, (fm) r(fm)  T(*°Fe) (MeV)

Value 15.126 92.627 0.6032 1.224 1.352
Uncertainty 1.966 9.554 0.0551 0.019 0.118
1.000 -0.486 -0.851 0.325 0.487
_ 1.000 0.312 -0.808 0.104

Correlation
. 1.000 -0.307 -0.575

matrix

1.000 -0.414
1.000

" Details of the OMP parameters:

-Ag = Agy — 1.8 X 10724 (MeV) is the depth of the surface imaginary potential;

- Vur is the constant in Hartree-Fock potential, see Eq. (7) in Ref. [37];

-a=ay+5x 107943 (fm) is the diffusiveness in Woods-Saxon form;

- R = rA/3 is the radius in Woods-Saxon form;

- T(*°Fe) is the “temperature” of *°Fe in the constant temperature model of level density.

6.2 Uncertainty propagation

6.2.1 Analytical method

Using the covariance matrix £, one can propagate uncertainties by analytical
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calculation using the so-called sandwich formula:

Cov = SxST
where S is the matrix containing sensitivities:
aCl/Cl aCl/Cl 6C1/Cl
/axl/xl 0xn/xn 001/64
S = : : :
\ack/ck .. Ock/ck  dck/ck
0x1/x41 0xn/xn 0601/64

6C1/61

00 /0m

OCi/cy,
00m/Om

(6-10)

(6-11)

In the case where no nuisance parameter is considered, the covariance matrix is directly
obtained by the well-known formula SM,.ST. It should be noted that if the covariance

matrix X contains the absolute values of covariances, elements in S matrix are partial

derivations, the obtained covariance matrix Cov is absolute; if £ contains the relative

values of covariances, elements in S are sensitivities, the corresponding covariance Cov

is also a relative matrix. Figure 6-1 shows an example of correlation matrices among

absolute Legendre coefficients for **Fe neutron elastic scattering with parameters and

covariance matrix given in Table 6-1. More results and discussion on the correlations

between differential and angle-integrated cross sections can be found in our previous

work [155].
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Figure 6-1. Correlation between different orders of Legendre polynomials coefficients for *°Fe
neutron elastic scattering (calculated by CONRAD) [34].

6.2.1.1 Remark on sensitivities to DPA model parameters

For an implicit relation between quantity and parameters, one should calculate the

sensitivities by the direct perturbation. For explicit DPA models, analytical expressions
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are recommended for accurate calculation and reducing computation time. For PKA

energy or damage energy above 2.5E; (i.e. 2E;/0.8 in the typical expression), one has:

vyrr = Epka/[1 + k,(Ae/® + Be3/* + Ce)]/2.5E, (6-12)

It is noted that the “parameters” 4, B, and C in NRT model are not exactly physical
parameters. The partial derivations of vygr to model parameters are analytically

determined as:

O0vngrr/0A —2.5E4k,, (EPKA/EL)1/6VI%IRT/EPKA
dvyrr/0B —2.5E3k; (Epka/EL)¥ *Virr/Epka

= 6-13

Ovygr/9C —2.5E k;virr/EL ( )

0vnrr/0Eq \ —Unrr/Eq

Similarly, above 2.5E;, the ARC-DPA can be formed by:
Varc = VngrT X $4RC (6-14)
where
b

$arc = (1 = care) X Vyge~ + Carc (6-15)

The partial derivations are thus:

b
_Z-SEdkLgl/svl%lRT/EPKA X [s;ARc +(1- CARc)bARcVN}%I;C]

OVapc/0A v
0Vagc/0B ~2.5Eqk; &3/ *Vigr /Epga X [Earc + (1 = Carc)barcVyay
b
00are/9C | _ ~2.5Eqk,Vivrr/EL X [fARC + (1 = carc)barcVnrr
- b

aaVARC)/aabEd _UNRT/Ed X [EARC + (1 — CARC)bARCVNg?‘C

VARrc ARC barc+1

1-c¢ In(v v

0Varc/0Carc ( arc) IM(VNRT) VN RT

UNRT X (1 - VII\J]?;;C
(6-16)

where € = Epg,/E} is defined in Lindhard’s damage energy (c.f. Section 3.3). The
sensitivities for the CB-DPA are:

_2-5EdkL(EPKA/EL)1/6VI%/RT/EPKA X [ECB - M]

0vcp/0A (1+BvnrT)?
cB B
0vcp/0B ~2.5Eqk; (Epka/EL)* *Vigrr/Epka X [ECB - m;;i)z]
0vcg/0C = , [ P ] NRT (6-17)
cB —2.5E,k; V2pr/EL X |Ecp — ——NRT _
0vcp/0E, ﬁv(;:vaRT)z
—Vngrr/Eq X [fCB - m]

This kind of analytical partial derivations can be determined for any implicit DPA
model, such as Sigmund’s formula [162] and our recent phenomenological proposition
[106]. These analytical expressions are implemented in CONRAD for simplifying
calculations (direct perturbation calculation of sensitivities to DPA models is also

118



Sensitivity (%/%)

DPAXS (10° barn.eV)

Sensitivity (%/%)

DPAXS (107 b

—
(=]
=

=
(=
W
T

-
(=]
™

10}

available in CONRAD).
Figure 6-2 illustrates the sensitivities of damage cross section to the parameters of
the 7™ to 11" resonances (from JEFF-3.1.1) and the “DPA parameters” for n+°°Fe

elastic scattering [34]. In general, the damage cross sections are sensitive to resonance

parameters only close to resonances. For incident energy below 1 keV, the damage cross

section is quite sensitive to E; but is not sensitive to other parameters in the standard

NRT model because the damage depends only on E; for damage energy E, < 2.5E,.

The sensitivity of radiation damage cross section to 4 is almost 0.2 for neutron energy

in [5 keV, 100 keV], while the damage cross section is not sensitive to E; nor to the

other two parameters in the NRT model for incident neutron energy up to 100 keV.
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Figure 6-2. Sensitivity of (n+>°Fe) damage cross section to resonance parameters and DPA

model parameters [34].

6.2.1.2 Uncertainty propagation from nuclear model parameters to ke

Here we show two examples of uncertainty propagation from n+°°Fe nuclear

100

reaction model parameters given in Table 6-1 to the effective multiplication factor ke

in two numerical benchmarks. A thermal reactor benchmark is a homogenized PERLE
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experiment [163—165] (reactor core is homogenized). The geometry of the
homogenized PERLE benchmark is shown in Figure 6-3 along with the standard
PERLE experiment. The use of a homogenized core and a simplified heavy reflector is
to reduce the computation burden. A fast reactor benchmark is a homogenized SFR with

a SS reflector and shown in Figure 6-4.
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Figure 6-3. ¥4 view of the PERLE experiment (left) and the homogenized benchmark (right).

Figure 6-4. V4 view of the fast benchmark.

In current evaluations, cross Sections (XS) and Angular Distributions (AD) are
generally uncorrelated. However, they are correlated by nuclear models (e.g., Figure
6-1). It is thus of interest to propagate the correlation between XS and AD to the
uncertainty of such integral quantity ke, whereas the synergistic effect of XS and AD
is rarely investigated in most studies. It is notably that XS or AD is not a simple quantity
as a physical parameter, so that the correlation between AD and XS is a general
indicator to evaluate the synergy of the two quantities for k.. The physical correlations

between various AD and XS of neutron elastic scattering on >’Fe are as the examples
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shown in Figure 6-1.

The neutronic calculations of ks are performed with the LAST stochastic neutron
transport code, which is developed in our laboratory. JEFF-3.1.1 library and the AD and
XS of *Fe above 850 keV calculated with OMP parameters given in Table 6-1 are used.
The statistical uncertainties of Monte Carlo simulations are controlled by 2 pcm on ke
The direct LAST calculation shows ke = 0.955846 (+ 2 pcm). The sensitivities of kef
to parameters are calculated by perturbating +1¢ uncertainty. The sensitivities of k. to
the OMP parameters by perturbating only the AD, only the XS, and both the AD and

XS are summarized in Table 6-2. The corresponding statistical uncertainties (not given

in the table) are deduced from 2+/2 pcm uncertainty on k.

Table 6-2. Sensitivity of k.;to the OMP parameters (pcm/%) for the two benchmarks.

Benchmark Perturbation  Ag VHF ay r T(°°Fe)
AD -0.8614 4.3501 -0.2663 2.9006 -0.0047

Thermal XS -1.5245 -5.5591 5.8856 -13.5813  -0.3054
AD+XS -1.2583 -5.8025 5.8469 -15.6988  -0.1192

AD -1.3157 9.1580 0.0502 7.1720 -0.1918

Fast XS 1.3672 -8.6868 0.0042 22.9990 -11.5669

AD+XS -1.2182 2.0931 0.2433  -28.7513  -2.6096

Because the homogenized PERLE benchmark is only a specific case and is far from
critical condition, in addition to the absolute uncertainty of ke (Akes), we also calculate
the relative uncertainty of ke (Akey/kef), and the uncertainty of the reactivity (Ap). The
reactivity is defined as:

p=" (6-18)
So that the uncertainty of reactivity is deduced by:

ap =4 (6-19)

Kefs

The uncertainties concerning ks from the OMP parameters and the correlation between
AD and XS for ke calculation are given in Table 6-3. The statistical errors are obtained
by 50 000 samplings of 2+/2 pcm uncertainty for the deduced difference on ke, i.e.
dkesri = Kepr(Di + 0i) — kepr(pi — 00).

Table 6-3 shows that the uncertainty from the AD is not negligible when compared
with that from the XS. Therefore, the uncertainty of reactivity by propagating only the
uncertainties of XS is not well estimated. The correlations between AD and XS of *°Fe
for neutron energies above 850 keV are respectively -0.3924+0.0454 in the thermal
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benchmark and -1.0243+0.0165 in the fast benchmark. These values show that the
consideration of correlations between AD and XS is important for determining the total
uncertainties for neutronic calculations. Similarly, a complete correlation matrix
between AD and XS is mandatory for uncertainty propagation to DPA rate. It is the
reason why the n+°°Fe model calculation is used in the following uncertainty

propagation for DPA rate.

Table 6-3. Uncertainty (in pcm) concerning k. from the OMP parameters and the correlation
between AD and XS deduced from k..

Benchmark  Perturbation AKesf AkeilKet Ap
AD 46.842.0 49.022.1 51.242.2
XS 70.841.7 74.1+1.8 77.54.9
Thermal

AD+XS 67.941.7 71.0+.7 74.3+1.8

Correlation -0.392440.0454
AD 95.742.0 94.142.0 92.542.0
- XS 172.74.9 169.94+1.9 167.14+1.9
AD+XS 71.7482.2 70.542.2 69.342.2

Correlation -1.024340.0165 2

® The correlation is slightly smaller than -1. This may be due to the numerical calculations
and/or the change of neutron spectrum between different simulations.

6.2.2 Total Monte Carlo technique

The TMC technique is widely used to estimate propagated uncertainties via
numerous stochastic samplings on model parameters. For a variable x follows the
normal distribution N (u,02) (noted by x © N(u,02) ), the expectation of a
subsequent physical quantity f{x) (noted by E(f)) and the corresponding variance
(denoted as a(f)) are determined by:

E(f) =<2, f(x) (6-20)

1
o(f) = |Z=SILIFGe) - E(P)P? (6-21)
where (x;);=1.y are random values of N samplings from N (u, 02). By definition, the

covariance between f and another arbitrary quantity g is determined by:

Cov(f, g) = ~ 2, (f(x) — E(N))(g(x) — E(9)) (6-22)

where E (g) is the expectation of g computed with N samplings.
For a multivariable system, one can repeat the above sampling for each variable
(so-called as the one-step-at-a-time (OAT) method) if there is no correlation between
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different variables. In general, different variables are correlated. In this case, we should
calculate a lower triangular matrix L for the covariance matrix M of the parameters

using Cholesky decomposition:

M=LLT (6-23)

For a nm-variable vector X = (xq,%5,-*,x,)7 with expectation value fi =

(1, 4z, =+, )T and standard deviation ¢ = (o4, 05, *+,0,)T, it can be expressed by:

X=1Ly (6-24)
where
p t+ oty
5= Uz +:02t2 (6-25)
Un + Only

where £ = (t,t,, -, t,)7 are n independent random values from N'(0,1) (i.e., Vk €
{1;2; ;n}) tk o N(Oll))
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Figure 6-5. 2000 samples LHS of the five OMP parameters for n+>°Fe reaction given in Table
6-1: pi (i=2,3,4,5) vs. p1.

Figure 6-5 shows the Latin Hypercube Sampling [166, 167] (LHS)-based 2000
samplings of the five OMP parameters given in Table 6-1. For simplifying, the
parameters in Table 6-1 are orderly denoted by p1 to ps in this subsection. Figure 6-6
shows the Gaussian fittings of the first four sampled parameters as shown in Figure 6-5.
Table 6-4 shows the sampled parameters along with the corresponding uncertainties
and correlations. Compared with normal random sampling, the LHS improves the

quality of goodness of sampled variables. However, we remark that the LHS does not
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Probability density function

Probability density function

improve the correlation between different variables when compared with simple

random sampling.
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Figure 6-6. 2000 samples LHS of the first four correlated OMP parameters for n+Fe reaction

given in Table 6-1.

Table 6-4. 2000 samples LHS of the OMP parameters given in Table 6-1.

Parameter Ago VHE ay r T(*%Fe)
Value 15.127 92.622 0.603 1.224 1.352
Uncertainty 1.968 9.366 0.057 0.019 0.119
1.000 -0.456 -0.861 0.304 0.514
_ 1.000 0.286 -0.804 0.128

Correlation
) 1.000 -0.293 -0.581

matrix

1.000 -0.429
1.000

With N samplings of = (t;,t5, -+, )T © (W(0,1), N'(0,1), -, N(0,1))", the

expectation and the corresponding uncertainty of the quantity f are determined by:

E(f) =T, f (&)
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1 >
o(f) = [N G) - EQP (6-27)
where ¥; = L(ii + diag(oy, 05, ---,an)fi). The covariance between f and an arbitrary

quantity g is determined by:

Cov(f,9) = + T, (f () — E(N)(g() — E(9)) (6-28)

It is noted that the examples and notations shown in this subsection are all based
on the normal distribution, but the methods are general for all other distributions of
variables. In nuclear data evaluation, all variables are supposed to follow normal
distributions by default. The agreement of uncertainty propagation between the
analytical approach and the Monte Carlo method is numerically verified in most studies,
such as the resonance parameters shown in Ref. [159] and the neutronic quantities
shown in Ref. [168]. This conclusion is based on the validation of the first-order
approximation of sensitivities to model parameters in the analytical approach and the
well-reproduced correlations among parameters stochastic method (e.g., Table 6-4 vs
Table 6-1).
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7/ Uncertainty assessment of damage rate in a PWR vessel

In this section, an example of uncertainty assessment of DPA rate in the RPV of a
simplified PWR mock-up is showed and discussed. The uncertainty of calculated DPA
rate is from: nuclear data, DPA model, and neutronic simulations. All aforementioned
model defects are not detailedly treated in this section. Nowadays, modern neutronic
codes allow very accurate calculations. The small numerical bias (and the controllable
statistical uncertainty for stochastic methods) from neutronic simulations is thus not
specially investigated here.

The total uncertainty propagated from nuclear data includes the nuclear data-
induced uncertainty of the neutron flux spectrum and the uncertainty of damage cross
section (i.e. reaction rates and recoil energy distributions of the isotopes in the
considered materials). The uncertainty of neutron flux come from all types of nuclear
data for all isotopes present in the reactor. Detailed uncertainty assessment of fast
neutron flux in a PWR RPV can be found in the Ph.D thesis of Laura Clouvel
(CEA/DANS) [169]. The uncertainties of fast neutron flux in a simplified PWR vessel
from the Prompt Fission Neutron Spectra (PFNS) are quantified by Léonie Berge
(CEA/CAD) [170]. Section 7.1 estimates the uncertainty of DPA rate in a PWR RPV
propagated from the neutron flux.

In addition to the neutron flux, uncertainties of nuclear data also contribute to the
uncertainty of nuclear reaction rates (nuclear cross section times neutron flux) and the
recoil energy distributions. These uncertainties are included in the damage or DPA cross
sections. Section 7.2 briefly shows the uncertainty propagated from nuclear data,
mainly from nuclear model parameters, to DPA rate. The numerical results are based
on n+>°Fe reactions.

Section 7.3 focuses on the uncertainty estimates of DPA rate due to the DPA model.
Here, the uncertainty of DPA model is actually the uncertainties from DPA model
parameters. The relative uncertainty is supposed to be not sensitive to DPA model
defects (this assumption is somewhat validated by comparing the results based on the
NRT and ARC models). More details are given in Section 7.3. Section 7.4 shows the
total uncertainty of DPA rate based on the above partial decompositions. The biases of

DPA rate calculation introduced by model defects are briefly discussed in Section 7.5.

7.1 Uncertainty from prompt fission neutron spectrum

This section focuses on the uncertainty propagation from neutron flux to DPA rate.
235U PFNS-induced uncertainty of neutron flux in the RPV of a simplified PWR mock-
up was thoroughly studied by Berge using the importance function calculated by Green
functions via Tripoli-4® simulations [170]. Because the method for propagating
uncertainty from neutron flux to DPA rate is independent on covariance matrix of
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neutron flux, the present work directly uses the covariance matrices of neutron flux
obtained by Berge during her Ph.D studies for numerical calculations. The geometry of
the studied PWR is shown in Figure 7-1. The neutron flux obtained in Tripoli-4®
simulations is the average flux from the inner to the outer surface of the RPV in a
selected volume (vol. 13 in Figure 7-1). Assuming the exponential law for the
attenuation of neutron-induced DPA rate in the RPV, the average DPA rate is equal to
[171]:

DPA,

DPA = 20 (1 — e~t=%) (7-1)

tZDPA

where DPA, is the DPA rate at the inner surface of RPV, ¢ is the thickness of the RPV,

and XPP4 is an equivalent “macroscopic DPA cross section” [171]. In the case where

—e2PP 1, the average DPA rate is proportional to the DPA rate at the inner surface.

Figure 7-1. Y4 view of a simplified PWR model for performing neutronic calculations [170].

The red part (i.e. vols. 1-4) is the reactor core; a steel envelope (i.e. vol. 10) divides the hot

water (i.e. vols. 5-9) and cold water (i.e. vol. 11); the neutron flux in the RPV (i.e. vols. 12-
14) is based on the score in vVol. 13; the RPV is surrounded by a layer of air (i.e. vol. 15,

treated as void in stochastic simulation) and the primary concrete (i.e. vol. 16).

The neutron flux and the corresponding uncertainty propagated from 23U PFNS of
ENDF/B-VII.1 library [172] are shown in Figure 7-2 with the normalization factor of
the maximum multigroup neutron flux [170]. The relative accumulated DPA rates are
shown along with the neutron flux in Figure 7-2. It shows that almost 80% of the DPA
is induced by neutron with energies above 1 MeV. The actual percentage is smaller

because Ref. [170] considers only neutrons above 0.1 MeV. Nevertheless, this neutron
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flux implies K = DPANRT/®>0.5mev = 9.7 X 102 barn, which is close to the value of
K =~ 9.5 x 102 barn for the RPVs of several reactors shown in Ref. [173].
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Figure 7-2. Normalized neutron flux and the corresponding uncertainty (in gray) from
ENDEF/B-VII.1 calculations [170] along with the accumulated DPA rate in the RPV.
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Figure 7-3. Accumulated DPA rate at the RPV inner surface of a 900 MWe PWR. The
normalized DPA rates are computed with the JEFF-3.1.1, JEFF-3.3, and ENDF/B-VIII.0-

based damage cross sections.

The neutron flux at the RPV inner surface of a French 900 MWe PWR (c.f. Figure
5-8 and Ref. [64]) implies 65% and 4% contributions of neutrons with energies above
1 MeV and below 0.1 MeV, respectively (see Figure 7-3). The different percentages of

fast neutron-induced DPA rate between the simplified PWR and the more realistic
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Energy (MeV)

model can be due to the different considered volumes (from inner to outer surface vs at
the inner surface) and the different multigroup approximations (21-group from 0.1 to
20 MeV vs Tripoli 315-group). Therefore, the uncertainty of DPA rate calculated from
the simplified PWR shown in Figure 7-1 is not strictly equal to the one at the RPV inner
surface of an industrial PWR. Nevertheless, it provides a reasonable estimate for the
uncertainty of DPA rate calculation. Moreover, using the same methodologies presented
in this thesis, one can perform more accurate calculations for any specific reactor, not
limited to a PWR vessel.
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Figure 7-4. Relative uncertainties of neutron flux calculated with PFNS of ENDF/B-VII.1 and
JENDL-4.0 [170].
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Figure 7-5. Correlation matrices of neutron flux calculated with PFNS of ENDF/B-VII.1 (left)
and JENDL-4.0 (right) [170].

Figure 7-4 and Figure 7-5 respectively show the relative uncertainties and the
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correlation matrices of the neutron flux in the RPV calculated with the 2*>U PFNS of
ENDF/B-VIIL.1 [172] and JENDL-4.0 [174]. The PFNS of ENDF/B-VII.1 leads to
higher uncertainties of neutron flux in the RPV than that of JENDL-4.0. It is remarkable
that the correlations of neutron flux in the RPV shown in Figure 7-5 are all positive.
This is a consequence from the uncertainty propagation via importance functions:
almost only emitted neutrons with energies > 2 MeV can propagate to the RPV (see
Figure A-3) and the correlations of 2>>U PFNS are all positive (or slightly negative
between [1, 2] MeV and [8, 20] MeV for ENDF/B-VII.1) (see Figure A-2).

7.1.1 Analytical method via damage cross sections
To propagate the uncertainty of neutron flux to total DPA rate, analytical sensitivity
and the “sandwich” formula are used here. Without considering the self-shielding

correction, the total DPA rate is calculated by (c.f. Section 5.1):

0.8
Tppa = EZk Op Pk (7-2)

Consequently, the sensitivity of DPA rate to the k-th group neutron flux ¢, is:

0Tppa/dbic = 35 X O i (7-3)

where the multigroup damage cross section is calculated with NJOY HEATR module
and GROUPR module, or from CONRAD calculation. The analytical partial
derivations and the covariance matrix (combining Figure 7-4 and Figure 7-5) are used
to compute the uncertainty of DPA rate propagated from the covariance matrix neutron

flux.

Table 7-1. Relative uncertainty of total NRT-DPA rate (and ARC-DPA rate in the last row)
propagated from different covariance matrices of *U PFNS with and without considering the

correlation matrix of neutron flux (i.e. Figure 7-5)%.

PFNS ENDF/B-VII.1 JENDL-4.0
Correlation of ¢ Without Figure 7-5(a) Without Figure 7-5(b)
JENDL-4.0° 3.4% 11.1% 2.4% 7.6%
TENDL-2015 3.3% 10.7% 2.4% 7.4%
CONRAD 3.4% 10.7% 2.5% 7.4%
CONRAD-ARC 3.3% 10.8% 2.4% 7.4%

2 Correlations of PFNS are always considered. The only difference is whether the correlations
of neutron flux spectrum are considered.

® Nuclear data for computing total damage cross section of **Fe.

The relative uncertainties of DPA rates propagated from the 2>>U PFNS of the two

libraries with and without considering the correlation matrix of neutron flux shown in
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Figure 7-5 are tabulated in Table 7-1. As expected, the uncertainty of DPA rate from the
PFNS of ENDF/B-VII.1 is larger than from JENDL-4.0 library-based calculation owing
to the higher uncertainty of the neutron flux spectrum. For both libraries, the positive
correlations result in the increase in DPA uncertainties (by a factor of 3) because the
sensitivities of total DPA rate to neutron spectra (i.e. multigroup DPA cross section) are
all positive. Therefore, the correlation matrix of neutron flux from neutronic
calculations is important for estimating the uncertainty of total DPA rate. It is found that
the relative uncertainties of ARC-DPA rate are quite close to those of the NRT-DPA.

The explanations are given in Section 7.1.2.

7.1.2 Stochastic method via PKA spectrum

As explained in Section 5, for a given neutron flux, the DPA rate can be calculated
by folding the neutron flux with damage cross section or by generating PKA spectra.
PKA spectrum is an implicit function of neutron flux spectrum, uncertainty propagation
to PKA spectrum requires the numerical calculation of sensitivities or the TMC method.
Because the analytical method is already used to determine the uncertainty using
damage cross section and the stochastic method is more complicated, the TMC
technique is used in this subsection to determine the covariance matrix of PKA

spectrum. The results shown in this subsection are all based on the neutron flux from
the ENDF/B-VII.1 PFNS.
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Figure 7-6. PKA spectra of °Fe material using neutron flux shown in Figure 7-3. SPECTRA-
PKA calculations based on TENDL-2015.

Figure 7-6 shows the PKA spectra calculated with SPECTRA-PKA calculations
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using TENDL-2015 nuclear data library. As analyzed in Section 5.3, °Fe PKA is
predominant and the contribution of >*Cr PKA becomes important at high PKA energy.
The shift of the minimum *’Fe recoil energy compared with Figure 5-9 is due to the
1.77 keV minimum neutron kick by a 0.1 MeV neutron. For the sake of simplification,
this subsection focuses directly on the total PKA spectrum, i.e., the sum of all PKA
spectra excluding the light nuclei such as H and He isotopes. Figure 7-7 shows the
accumulated DPA rates (normalized by the corresponding total DPA rates) versus PKA
energy for both NRT and ARC models based on the PKA spectrum shown in Figure 7-6
( Tarc/Tnrr = 0.315). Assuming the validation of the athermal recombination
efficiency for damage energy > 75 keV proposed by Konobeyev-Fischer-Simakov
(KFS) [157], the current ARC model defect results in a -7.8% bias (i.e. Txps =

1.078T4z0)-
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Figure 7-7. Accumulated DPA rate versus PKA energy for NRT and ARC models.

Sampling a correlated multivariable requires a positive-definite covariance matrix.
Unfortunately, it is not the case for the covariance of neutron flux determined with the
ENDEF/B-VII.1 PENS. Therefore, the algorithm in Appendix A2 is used to make a non-
positive-definite covariance matrix be positive-definite. For the presently considered
neutron flux, the covariance matrix becomes positive-definite after only 1 iteration. The
maximum relative change of matrix elements is 0.009%.

Figure 7-8 illustrates the 5000 LHS TMC calculations of the PKA spectrum using
SPECTRA-PKA and TENDL-2015. The original spectrum shown in Figure 7-6, the
TMC averages and the corresponding uncertainties with and without considering the
correlation matrix of neutron flux are shown together in each plot. The agreement

between the original PKA spectrum and the two averaged spectra from TMC samplings
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-3

Probability per lethargy (PKA s 'cm

confirms the convergence of stochastic sampling of neutron flux. The relative

uncertainties are shown and compared in Figure 7-9. In Figure 7-9, the ratios between
the two considerations (0.32 below 10 keV PKA energy and larger above 100 keV PKA

energy) are globally in good agreement with the data shown in Table 7-1, which shows

the ratio of 0.31 for the uncertainties calculated without and with considering the

correlations of neutron flux.
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Figure 7-8. PKA spectra calculated with (left) and without (right) considering the correlation

matrix of neutron flux spectrum. 5000 LHS TMC calculations.
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Figure 7-9. Relative uncertainties of PKA spectra shown in Figure 7-8.

Figure 7-10 shows the correlation matrices of the PKA spectra shown in Figure 7-8

with 5000 LHS samplings. Because the correlations of multigroup neutron flux are
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always positive and the PKA spectrum increases with increasing neutron flux (i.e. more

neutrons — more PKAs), the consideration of correlation matrix of neutron flux leads

to a more correlated PKA spectrum. Because the elements of the two correlation
matrices shown in Figure 7-10 are all positive, the uncertainties of total DPA rates

calculated with PKA spectra are larger if the correlation matrices of PKA spectra are
taken into account.

N N -

N
S e S =)
w N b (=)

Energy (MeV)

i
S
S

10°°

10°®

10° 10" 10® 107 10" 10° 10 10° 10* 10 102 10" 10°
Energy (MeV) Energy (MeV)

Figure 7-10. Correlation matrices of PKA spectra calculated with (left) and without (right)

considering the correlation matrix of neutron flux spectrum. 5000 LHS TMC calculations.

Owing to the fine PKA energy structure (log(ES"?/E™) = 0.02 for each group), the
total DPA 1is calculated using the average energy for each interval of PKA energy.
Therefore, the total DPA rate is:

Tppa = Li X(Epkai)v(Epkas) (7-4)
The sensitivity of total DPA rate to PKA spectrum is thus:

aTDPA/aX(EPKA,i) = U(EPKA,L') (7-5)
The uncertainty of DPA rate can be simply deduced following the “sandwich” formula
using the covariance matrix of PKA spectrum for a specific DPA formula.

Table 7-2 summarizes the relative uncertainties of the total DPA rate (based on NRT
and ARC formulae) with and without considering the correlation matrices of neutron
flux (i.e. Figure 7-5(a)) and PKA spectrum (i.e. Figure 7-10). For comparison, the
results from the direct sum of multigroup PKA rates (equivalent to +1 correlation
everywhere) are also presented. The quasi-coincident normalized accumulation curves
in Figure 7-7 explain the similar propagated uncertainties of DPA rates from the PKA
spectrum based on the NRT and ARC models. Since the correlations of the PKA

spectrum shown in Figure 7-10(a) are close to unity, the deduced uncertainty is quite
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close to the direct sum calculation. It is noted that the results shown in Table 7-2 are
comparable with those in Table 7-1: (3.3% and 10.6%) vs (3.3% and 10.7%) relative

uncertainties of the total DPA rate with and without considering the correlations.

Table 7-2. Relative uncertainty of DPA rate from ENDF/B-VII.1 PENS calculation with and
without considering the correlation matrix of neutron flux (i.e. Figure 7-5(a)) and the

correlation matrices of PKA spectra (i.e. Figure 7-10).

Correlation of ¢ Without Figure 7-5(a)
) ) Figure i Figure
Correlation of y ~ Without [+1]*  Without [+1]
7-10(b) 7-10(a)

Uncertainty NRT  0.5% 3.3% 4.3% 1.2% 10.6% 10.7%
Uncertainty ARC  0.5% 3.3% 4.2% 1.2% 10.6% 10.6%

2 All elements in the correlation matrix are supposed to be +1. It is equivalent to directly sum
uncertainties of DPA rates in all PKA energy groups.

Because the considered neutron flux is autocorrelated at different energies (see
Figure 7-5), the correlation matrix of neutron flux is important for propagating
uncertainty to DPA rate. For the uncertainty propagated from 2**U PFNS via importance
function (i.e. Figure 7-5), neglecting the correlation matrix of neutron flux leads to an
underestimation of DPA uncertainty (by a factor of 3 for the positive correlations in the
21-group structure considered here) in the RPV. This reasoning also explains the
underestimation of the uncertainty of total DPA rate without considering the correlation
matrix of PKA spectrum (more than by a factor of 7 for the considered case), because
the total DPA rate increases with increasing PKA spectrum and neutron flux. In the
presently studied case, the uncertainty from complete consideration of correlation
matrices is 21 times larger than the calculation without considering any correlation. It
is thus of great importance to take the non-null correlations of both neutron flux and
PKA spectrum into account for estimating the uncertainty of DPA.

7.2 Uncertainty from nuclear model parameters

Assuming the availability of current nuclear reaction models, the nuclear data
required for computing the radiation damage are correlated by fundamental model
parameters. One major advantage of use such model calculation is that the large
complete correlation matrix between various quantities is included in a limit number of
model parameters [34, 155]. This subsection shows the uncertainty of DPA rate in the
RPV of a simplified PWR shown in Section 7.1 propagated from the nuclear model
parameters of n+>%Fe. The nuclear reaction models are respectively the R-matrix
formalism in the RRR and the OM and SM in the continuum region. It is noted again

that the model defect is not considered here.
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Theoretically, the data in the RRR and those in the continuum region are not
correlated because of the independent physical models in the two regions. In practice,
the two regions are numerically correlated owing to the physical constraint on the
continuity of physical quantities at the boundary. These two regions can be decorrelated
only if the continuity across the boundary is systematically ensured, which is not the
case for the current phenomenological models.

Because the evaluation of advanced resonance parameters of n+>°Fe is still on-
going in our laboratory [42, 44, 45] (hopeful to be finished soon), the resonance
parameters of JEFF-3.1.1 are used here. The corresponding uncertainties of neutron and
gamma widths are not evaluated in JEFF-3.1.1 and are set to be 3% in the present work.
Because the resonance energies below 850 keV are generally well determined, the
eigenvalues are assumed to be exact (i.e. no uncertainty). Above the upper energy limit
of the JEFF-3.1.1 RRR (i.e. 850 keV), the OM and SM calculations shown in Section
2 and Refs. [34, 42] are used. Consequently, the RRR and the continuum region are not
correlated in this thesis. The corresponding influence on DPA rate uncertainty
calculation is discussed later. The 21-group (the same energy structure as used for the
neutron flux) correlation matrix of the NRT-damage cross section is shown in Figure
7-11. The quasi-pointwise correlation matrix is illustrated in Figure A-4 in Appendix
A3. It is noted that the covariance matrices propagated from nuclear model parameters
are quasi-identical for NRT and ARC models.
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Figure 7-11. 21-group correlation matrix of n+°°Fe damage cross section in [0.1, 20] MeV

from nuclear reaction model parameters.

The relative uncertainty of n+°°Fe damage cross section in the incident energy

range of [0.1, 20] MeV from nuclear model parameters is illustrated in Figure 7-12 with
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the zoom in the range of [0.1, 0.6] MeV. The relative uncertainties at neutron energies
close to the valleys of scattering interferences are relatively large because destructive
interference is very sensitive to neutron width so is the damage cross section. However,
since the damage cross section close to the resonant energies has a predominant
contribution to multigroup data, the uncertainty of the 21-group damage cross section
in the RRR is smaller than 2%. This uncertainty should be larger if the resonance self-
shielding effect is taken into account due to the decreasing weight of resonant damage
cross section (its influence on DPA rate uncertainty is discussed later). The uncertainty
in the group [1, 2] MeV is smaller than the minimum uncertainty of the quasi-pointwise
damage cross section owing to the non-unit correlations (some are close to 0 and even

slightly negative) as shown in Figure A-4 in Appendix A3.
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Figure 7-12. Relative uncertainty of n+>°Fe damage cross section in [0.1, 20] MeV from
nuclear model parameters and DPA models parameters. The histogram plots are performed on
the 21-group structure as used for neutron flux. The uncertainties propagated from nuclear
model parameters are quasi-identical for the NRT and ARC models so that only the former is

shown. The uncertainties propagated from DPA models are used in the following section.

Similar to the sensitivity of DPA rate to the k-th group neutron flux ¢, as shown in

Section 7.1, its sensitivity to k-th group damage cross section ap j 1s:

0Tppa/00p i = % X ¢y (7-6)

Using these sensitivities, the uncertainty of DPA rate from the covariance matrix of
damage cross section can be directly deduced by the ‘“sandwich” formula. The
uncertainties of total DPA rate from nuclear model parameters with and without

considering the correlations of damage cross section are given in Table 7-3 (the results

137



based on the PFNS from ENDF/B-VII.1 and JENDL-4.0 are the same with the shown
significant digits). As previously explained, the damage cross section is uncorrelated
between the RRR and the continuum region for pure model calculations but practically
correlated due to the continuity of physical quantities at the boundary. For estimating
the influence of the correlations between the two regions on DPA rate uncertainty
calculation, the null correlations shown in Figure 7-11 are replaced by +1 and -1 for

extreme considerations.

Table 7-3. Relative uncertainty of total DPA rate from nuclear model parameters with and

without considering the correlations of damage cross section.

Figure 7-11: Figure 7-11:

Correlation of o;, Figure 7-11 b Without
0—+1 0—-1
NRT Uncertainty 4.0% 4.2% 3.7% 1.9%
From < 0.9 MeV? 0.23% - - 0.17%
ARC Uncertainty 3.9% 4.1% 3.6% 1.9%
From < 0.9 MeV 0.25% - - 0.17%

2 19% of the total DPA rate is induced by neutrons in this energy range.
® Figure 7-11: 0 — +1 (or -1) represents that the null correlations in Figure 7-11 are replaced
by +1 (or -1) for extreme considerations. The uncertainty propagated for neutron energies

below 0.9 MeV is independent of such correlation.

The uncertainties of DPA rate propagated from nuclear reaction models are very
close for NRT and ARC models because of the quasi-identical covariance matrices
propagated from nuclear reaction model parameters. The two extreme considerations
by replacing correlations between the two regions by +1 and -1 imply that the potential
deviation of the DPA rate uncertainty propagated from nuclear model parameters is
within 0.3% for the present consideration. However, totally neglecting the correlation
matrix of damage cross section reduces the uncertainty from nuclear model parameters
by a factor of 2. The 2% standard deviation computed with damage cross sections of
JEFF-3.1.1 [28], JEFF-3.3 [89], ENDF/B-VIII.0 [65], JENDL-4.0 [174], and TENDL-
2019 [123] can be roughly considered as the bias induced by nuclear reaction model
defects.

As the data given in Table 7-3, the uncertainty from the damage cross section in
the RRR (i.e. < 0.85 MeV) has a negligible contribution to the uncertainty of total DPA
rate for the presently studied case. This is a consequence of both the small contribution
to DPA rate in this region (19% of the total DPA rate, see Figure 7-4) and the relative
small uncertainty of damage cross section (see Figure 7-12). Compared with the
uncertainty propagated from the n+>Fe OM parameters, 3% or even 10% relative
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uncertainties of neutron and gamma widths do not influence the final uncertainty of
DPA rate. Even with the 5% relative uncertainty of nuclear cross section from JEFF-
3.1.1 [28, 34], the corresponding < 1% relative uncertainty induced by neutrons in the
RRR results in < 4.1% uncertainty of total DPA rate. Therefore, in the RPV of a PWR,
the uncertainty of DPA rate due to the nuclear data of n+>°Fe reactions is predominated
by the covariance matrix in the continuum region. This also verifies that the resonance

self-shielding has a limited influence on DPA rate uncertainty calculation.

7.3 Uncertainty from DPA model

If the “systematic uncertainty” of 20% [175] is assumed for different DPA models,
about 20% uncertainty of DPA rate from the uncertainty of DPA model is systematically
deduced. Because the DPA rate is almost inversely proportional to Eys the 20%
discrepancy among different calculations shown by Simakov [175] is somewhat
consistent with our assumption of the 20% uncertainty for E, (difference between 40
eV [70] and 32 eV [68]) in Ref. [34]. Such a 20% uncertainty gives a quick and simple
estimate of DPA calculations.

The present work estimates the uncertainty with more basic and rigorous methods.
The uncertainty from DPA models is only from the E; and the three “parameters 4, B,
and C” (and additional parameters bygc and cypc for ARC-DPA). Because Ey
influences the generalized damage energy, the damage energy also depends on E4. Here,
a 20% relative uncertainty for E; and 12% for 4, B, C in the NRT model® are used for
estimating the uncertainty from the NRT-DPA model.

Figure 7-13 illustrates two schemas for propagating uncertainty of DPA model
parameters uncertainty to DPA rate. For DPA model uncertainty propagation, we have
to distinguish the generalized damage energy cross section op (or simply called as
damage cross section) and the DPA cross section oppy = 0p/2.5E,; because Eyq is an
uncertainty source. In the NRT model, because the generalized damage energy (defined
in Section 4.4) is quasi-identical to Lindhard damage energy for neutron energy above
0.1 MeV, the uncertainty propagated from Ey is negligible for the damage cross section

op. Therefore, the uncertainty of DPA rate can be determined by:

Atppa = /A{op, §))? + AE? (7-7)
via the first schema shown in Figure 7-13. Section 7.3.1 shows results for the
uncertainty of damage energy rate, i.e. (op, ¢), which is not sensitive to Eq for the NRT
model. However, for the ARC model, because Ey is included in the efficiency function
(c.f. Section 3.5), (gp, ¢) depends on E,. The uncertainty of ARC-DPA rate cannot be

©Ref. [176] shows that 12% relative uncertainty of these parameters approximately corresponds with
the uncertainty from BCA calculations for iron
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directly deduced by Eq. (7-7). Consequently, Section 7.3.2 shows the results and
discussion of the DPA rate uncertainties propagated from DPA model parameters via

(appa, ¢) (i.e. the second schema shown in Figure 7-13).

............................ p, Ap p’ Ap

2 Oppy =O-D/2'5Edﬂ
2| = Aoppy
“* Tppy = Tp/2.5E,;, ATppy Tppa = {opps, P). ATppy

Figure 7-13. Schemas for propagating DPA model parameters uncertainties to DPA rate: via
damage energy cross section op (left) vs directly via DPA cross section app,4 (right). Vector p

contains all parameters including E4, Ap is the associated uncertainty vector.

7.3.1 Uncertainty of damage energy rate <sp, ¢>

Figure 7-14 shows the correlation matrix of n+>’Fe damage cross section in the
range of [0.1, 20] MeV propagated from the NRT-DPA model parameters. The
correlation matrix for the ARC model is shown in Figure A-5 in Appendix A3. The
damage cross section is strongly autocorrelated at different energies because its
sensitivity to “parameter 4” is almost energy-independent for neutron energy above 40
keV and the “parameter 4™ has a predominant contribution to the covariance of damage
cross section (e.g., sensitivities above 40 keV shown in Figure 6-2). The relative
uncertainties of damage cross section propagated from DPA model parameters are
included in Figure 7-12 for both NRT and ARC models. The larger relative uncertainty
for the ARC model is propagated from Ey (and a small contribution of byg- and c4pc)
via the efficiency function (c.f. Section 3.5), whereas the NRT damage cross section is
not sensitive to £y in the considered region (c.f. Refs. [34, 121]).

Using the same method as described in Section 7.2, the uncertainties of total
damage energy rate from DPA model parameters are summarized in Table 7-4 (the
results based on the PFNS from ENDF/B-VII.1 and JENDL-4.0 are the same with the

significant digits shown in this thesis). The relative uncertainties of damage energy rate
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are respectively 3.5% and 1.3% with and without considering the correlations damage
cross section for the NRT model. The slightly larger uncertainty of {0y, ¢) for the ARC
model is a result of the larger uncertainty of the ARC-damage cross section as shown
in Figure 7-12. However, this larger uncertainty of damage energy rate does not directly
result in a larger DPA rate uncertainty because of the non-null correlation between op

and E; for the ARC model. Details are presented in in the following section.
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Figure 7-14. 21-group correlation matrix of n+°°Fe NRT-damage cross section in [0.1, 20]

MeV from DPA model parameters.

Table 7-4. Relative uncertainty of total damage rate from DPA model parameters with and

without considering the correlations of damage cross section.

Correlation of ap With (e.g., Figure 7-14) Without
NRT-DPA 3.5% 1.3%
ARC-DPA 3.9% 1.4%

As previously explained, the uncertainty of (gp, ¢) is almost independent on the
uncertainty of E; for the NRT model. It is noteworthy that even for the ARC model, the
damage energy rate uncertainty varies from 3.5% to 3.9% when the uncertainty of E;
is from 5% to 20%. Therefore, for both NRT and ARC models, the uncertainty of
(gp, @) is not so sensitive to that of E;. This is another important argument for
recommending the use of damage energy cross section op in the case where Ej; is not

so well determined.

7.3.2 Uncertainty of DPA rate <«6pp4, ¢»
Because op depends on E;, Eq. (7-7) is not mathematically rigorous for
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propagating DPA model parameters uncertainties to DPA rate. Therefore, this section
shows the uncertainties of DPA rate directly calculated via (appy4, ¢) (i.e. the second
schema shown in Figure 7-13) and compares them with the results obtained via Eq.
(7-7). Figure 7-15 shows the relative uncertainty of DPA cross section propagated from
DPA model parameters with different uncertainties of the TDE. Contrary to op, 0ppy is
very sensitive to E;. In the case of 5% uncertainty of the TDE (Es = 4142 eV for iron
[70] is used), the relative uncertainty of ARC-app, is slightly higher than that of the
NRT-0pp,4 above 4 MeV neutron energy due to the small uncertainty propagated from

bsrc and cgpc. In general, the uncertainty of ARC-DPA cross section is smaller. The
explanation is given below.
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Figure 7-15. Relative uncertainty of n+°°Fe DPA cross section in [0.1, 20] MeV propagated
from DPA models parameters with different relative uncertainties of the TDE. Solid and

dotted curves represent the ARC and NRT models, respectively.

Using the partial derivations obtained in Section 6.2.1.1, for damage energy above
2.5E,, one obtains:

aVARC/VARC :

dEy Eq __ ARC—CARC

M/M =1+ bapc % £arC (7-8)
aEd Ed

Because bype < 0 and (€4rc — Carc) > 0, one can conclude that the ARC-DPA is less
sensitive to E; than the NRT-DPA. This explains the smaller uncertainty of the ARC-
DPA than that of the NRT-DPA (except that the uncertainty propagated from b, and
Carc 1s more important than (Aygpr — Agrc) propagated from E,;). In the case where
(§arc = Carc)/Sarc < 1, ie. Vygr » [care/(1 — carc)]'/P4RC (= 5 for iron), NRT
and ARC have the same sensitivity to E;, so that their uncertainties propagated from

142



E; are equal.

Table 7-5 summarizes the uncertainty of DPA rate, i.c. (0pp4, @) = (0p, Pp)/2.5E,,
for both NRT and ARC models using 20% uncertainty of E;. For the NRT model, it is
equivalent to the calculation via Eq. (7-7). However, Eq. (7-7) is not applicable for
determining the uncertainty of ARC-DPA rate owing to the correlation between E; and
op (because E; is included in the efficiency function of the ARC model). More
precisely, because 0¢4x-/0E; > 0, corr(op, 1/E;) < 0, which results in a smaller

uncertainty than the value deduced by Eq. (7-7).

Table 7-5. Relative uncertainty of total DPA rate from DPA model parameters with and
without considering the correlations of damage or DPA cross section.

Correlation With Without
( y NRT 20.3% 7.2%
g, ,
bra ARC 19.3% 6.9%
NRT via Eq. (7-7) 20.3% 20.0%
(op, @) /2.5E, .
ARC via Eq. (7-7) 20.4% 20.0%

2 Here, the correlations are correlation matrix of app4 for the first two rows and that of o, for

the last two rows.

If the uncertainty is propagated by independent consideration of op and E,; via Eq.
(7-7), the uncertainty of E, is propagated to DPA rate as a systematic uncertainty. In
this case, because the strong correlation of DPA cross section induced by Ej is
automatically taken into account, the role of correlation due to other DPA model
parameters is weakened (see the comparison with and without correlation in the last
two rows in Table 7-5). This is also a point supporting the recommendation for using
damage cross section op. If the 20% uncertainty (or bias) of E; is combined for
evaluating the uncertainty of DPA rate, the contribution of uncertainty from damage
cross section is relatively small for both NRT and ARC models (see Figure 7-15). The
role of Ey for uncertainty estimates of DPA rate is further discussed in the following

section.

7.4 Total uncertainty of DPA rate

Because the uncertainties propagated from PFNS, nuclear model parameters of
n+>%Fe, and DPA model parameters are not correlated, the total uncertainty of DPA rate

can be simply calculated by:

Ator= v/ Dpns + Adp + Adpy (7-9)

It is noted again that the covariance matrix of neutron flux used in the present work is
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only propagated from the covariance matrix of the PFNS. Other uncertainty sources,
e.g., nuclear cross sections and angular distributions of 233U, 238U, 'H, etc., are still not
considered here. In a sodium-cooled breed-and-burn core, Ref. [177] shows that the
DPA rate uncertainty propagated from nuclear cross sections is only about 2%. It is also
is noteworthy that the nuclear data of neutron reactions with isotopes in the RPV
influence both the neutron flux and the damage cross section. Therefore, the neutron
flux and the damage cross section are correlated. The covariance matrix between them
is thus required for computing the uncertainty of DPA rate.

The total uncertainties of the NRT-DPA rate propagated from the 2*U PFNS,
nuclear model parameters of n+>°Fe, and DPA model parameters are summarized in
Table 7-6. The total uncertainties of the damage energy rate in the RPV of the
investigated PWR are respectively 12% and 9% with the covariance matrices of PFNS
from ENDF/B-VIIL.1 and JENDL-4.0, whereas an underestimation by a factor of 3 is
obtained if the correlations of neutron flux and damage cross section are not taken into

account.

Table 7-6. Relative total uncertainty of NRT-DPA rate via o, with and without considering the

correlations in the calculations.

Cov. of PFNS ENDF/B-VII.1 JENDL-4.0
Correlation Complete Null Complete Null

unc. of (ap, ¢) 12.0% 4.1% 9.1% 3.4%
Total unc.-12 23.3% 20.4% 22.0% 20.3%
Total unc.-2° 15.6% 10.8% 13.5% 10.6%
Total unc.-3° 12.9% 6.4% 10.3% 5.9%

@ Total uncertainty is the combined value of (i) the total uncertainty of (o}, ¢) and (ii) the
additional 20% uncertainty/bias from E, for computing o, « {(op, p)/E,.

® Assuming 10% relative uncertainty for E,. This value corresponds to the weighted average
Eq = 3944 eV, which is obtained from the 11 potentials calculations given in Ref. [70].

¢ Using E;= 4142 eV for iron [70].

Table 7-7 shows the same results as those given in Table 7-6 but for the ARC-DPA
rate. The uncertainties of the generalized damage energy rate (op, ¢) for the ARC-DPA
are quite close to those for the current standard NRT-DPA. This is a consequence of the
predominant contribution of uncertainty from neutron flux. Taking the ENDF/B-VII.1
PFNS case as an example, 10.7% uncertainty is propagated from the covariance matrix

of neutron flux, whereas the uncertainty propagated from nuclear reaction and DPA
models are respectively 4.0% and 3.5% (3.9% for ARC-DPA).
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Table 7-7. Relative total uncertainty of ARC-DPA rate with and without considering the

correlations during the calculations.

Cov. of PFNS ENDF/B-VII.1 JENDL-4.0
Correlation Complete Null Complete Null
unc. of (ap, ¢) 12.1% 4.1% 9.3% 3.4%

Totalunc.-1  22.5% (23.4%)° 7.9% (20.4%) 21.1% (22.0%) 7.5% (20.3%)
Totalunc.-2  15.3% (15.7%) 5.3% (10.8%) 13.2% (13.6%) 4.8% (10.6%)
Totalunc.-3  12.9% (13.1%) 4.4% (6.4%) 10.3% (10.5%)  3.8% (5.9%)

® Values in parenthesis are obtained by Eq. (7-7) via ap,.

Assuming that correlation matrices are considered in all steps of uncertainty
propagation calculations, one can found that the uncertainties of DPA rates propagated
via app,4 covariance matrix are not so different to those computed with oj, covariance
matrix and uncertainty of E; via Eq. (7-7), even for ARC-DPA rates. This is a direct
consequence that {(ap, ¢) is not much sensitive to E; (c.f. Section 7.3.1). Therefore, it
is confirmed again that the use of generalized damage energy cross section op for
propagating uncertainties to (op, ¢) is pertinent to quantify the uncertainty of DPA rate
for both NRT and ARC models. Furthermore, because the uncertainty of E,; is the
predominant source of DPA model parameters uncertainties, opp, is strongly
autocorrelated at different neutron energies (see Figure A-6 and the descriptions in
Appendix A4). This implies that using Eq. (7-7) gives DPA rate uncertainty closer to
the exact value than directly using the uncertainty of opp4 if the complete correlation
matrix of oppy propagated from DPA model is not available.

Compared with the large uncertainty of 20% for E4, the contribution of the
uncertainties from nuclear data and DPA model is less important for both NRT and ARC
models. However, if the relative uncertainty for E4 is reduced to 10%, the contribution
from other uncertainty sources is considerable. Using the value of 41+2 eV obtained in
Ref. [70], the uncertainty from Es has a negligible contribution to total uncertainty.
Therefore, the best choice or the recommendation for estimating the uncertainty of DPA
rate calculation should be the determination of the uncertainty of damage energy rate
(gp, @), then the combined total uncertainty is calculated for each reasonable
uncertainty of £y via Eq. (7-7). Certainly, regardless of the complexity and the time-
intensive calculation, the ab initio uncertainty propagation as shown in this section
gives a more accurate DPA rate uncertainty for each specific value and uncertainty of
Ea.

7.5 Discussion on additional biases induced by model defects
In addition to uncertainties propagated from different sources, the model defects
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result in calculation biases. Section 7.1 shows the DPA rate uncertainty propagated from
neutron flux (deduced from 23U PFNS). It should be noted that the bias of calculated
neutron flux, mainly due to nuclear data, leads to an additional bias of the calculated
DPA rate. Taking the fast neutron flux in the vessel model of the FLUOLE-2 experiment
[178] as an example, 1% to 3% calculation-measure biases are observed [179], even
though these discrepancies are within the calculated uncertainties.

The 2% standard deviation of DPA rate calculated with different nuclear data
libraries can be considered as an approximate bias due to evaluated nuclear reaction
data. It is noteworthy that the nuclear reaction model defects are already taken into
account in the evaluated libraries. The 2% bias is propagated from the discrepancy
among different methods for treating nuclear reaction model defects. If one directly
compares the model calculations by CONRAD and the damage cross sections
computed from evaluated libraries, a +16% bias is obtained (i.e. Tyoge] = 1.16TENDFR)
(the explanations of such bias are given in Ref. [34]). However, since most of the
current DPA rate calculations are based on an evaluated nuclear data library, a 2% bias
due to nuclear data is a reasonable approximation for DPA rate calculation of iron in a
PWR vessel.

As for the DPA model defects, a 20% bias/uncertainty of Eq4 is enough to include
the discrepancies among different MD simulations data (as shown in Figure 4 of Ref.
[175]). If we only compare DPA model calculations without considering the spread
among MD simulations, the current ARC-DPA formula results in a -8% bias when

compared with the efficiency function proposed by Konobeyev-Fischer-Simakov [157]:

$arc(Eq), E, < 75keV

_ 7-10
7.04 x 107*Ex/* — 0.0195E, "/* + 0.422, E, = 75keV (7-10)

$kFs (Ea) = {

where the unit of E, in the second row is MeV in this equation. Consequently,
compared with the calculation using an ENDF and the efficiency kg, the CONARD
pure nuclear models and the current ARC-DPA model calculation leads to a +8% bias
(i.e. Tconrap+aRc = 1.08TgNpE+kFs), Whereas an ENDF and the current ARC model
calculation results in a -8% bias (i.e. Tgnpr+arc = 0-92TENDF+KFS)-

It is noted that & 4p¢ or ks is not strictly validated against experimental data, even
though the KIT p+Fe DPA cross section (based on {xrs and the KIT p+Fe nuclear data)
are in good agreement with experimental data for proton energies from 1 keV up to 3
GeV [180]. The DPA model defect is still questionable. If one compares ARC and NRT
models, T4gc/Tnrr = 0.315 implies +68% bias induced by the NRT model. However,
it should be kept in mind that the NRT and the ARC are more like two different models
that the athermal recombination is not considered for the former. In general, more

experimental data are required for quantifying the DPA model defects, especially for
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elements of which large discrepancies are observed between different MD simulations.
Assuming that the discrepancy between &,z. and Exrg gives a reasonable estimate of
DPA model defect, the bias of DPA rate calculation is mainly from the DPA model

defect if the current evaluated nuclear data are used.
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8 Conclusions and prospects

8.1 Conclusions

The main objective of this thesis is to develop and improve the methodologies for
accurately computing the neutron irradiation-induced displacement damage and the
corresponding uncertainty. The research covers nuclear models for evaluating nuclear
reaction data, primary damage models for estimating the number of atomic
displacements from the kinetic energy of a PKA, physical and numerical theories for
calculating damage cross section using nuclear data and DPA models, methods for
computing DPA rate using neutron flux from neutron transport simulations, and
strategies for propagating uncertainties to final DPA estimate.

After a brief review on nuclear reaction models and primary radiation damage
models, we propose complete methods for calculating damage cross section from
different nuclear reactions. An improved interpolation is proposed and recommended
to correctly reproduce the peak value of energy-angular distribution from tabulated data.
The recoil energies from neutron-induced reactions are systematically summarized with
the estimation of the relativistic effect and thermal vibration of the target based on
fundamental equations. Particularly, a new method for computing the recoil energy
from charged particle emission reactions is proposed by considering the quantum
tunneling and Coulomb barrier. Improved methods are developed for ensuring
numerical integration and verifying the accuracy of numerical calculation. The
calculations of damage cross section from neutron radiative capture reaction and N-
body reactions are also thoroughly analyzed and discussed.

In addition to the neutron irradiation-induced displacement damage, the electron,
positron, and photon-induced irradiation damage can be important in certain
applications, e.g., in the RPV of a BWR. The DPA cross sections induced by these light
particles are also investigated in this thesis. Furthermore, because beta decay is a three-
body reaction, a detailed method for estimating beta decay-induced damage is proposed.
The thorough discussion on the calculation of damage cross section for polyatomic
materials is also presented. It is noteworthy that the damage cross section of a
polyatomic material cannot be simply deduced from that of each isotope as the nuclear
cross section.

For neutron irradiation-induced damage rate calculation in an irradiation
environment, two methods can be used. The first one is by folding neutron flux and
damage cross section. This method is also widely used in most of current applications
because it can be a direct response function from neutron transport simulations.
However, the self-shielding correction on multigroup damage cross section should be

considered, whereas it is not automatically treated in neutron transport codes. In the
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ASTRID inner core, the self-shielded ECCO 33-group damage cross section leads to
about 10% reduction of total DPA rate when compared with infinite dilution ECCO 33-
group damage cross section. The second method is to convert neutron flux into PKA
spectra. This method can be more easily used to combine with new DPA models.
Nevertheless, current calculations of PKA spectrum are based on infinite dilution cross
sections, so that the correction of multigroup cross section in a specific case is still not
considered.

Compared with the neutron-induced irradiation damage, less attention has been
paid to the irradiation of fuel cladding induced by FPs. Therefore, we propose a general
method for computing FPs-induced displacement damage by BCA or MD simulations.
It is shown that the maximum penetration of FPs in the Fe-14Cr ODS cladding is less
than 10 pm. However, the peak value of the FPs-induced damage rate (based on SRIM
full cascade simulations, the final rate is divided by a factor of 2 for roughly converting
to NRT-DPA) can be 4 to 5 times larger than the neutron-induced one in ASTRID inner
core cladding. Because the DPA level is a main criterion for determining the operating
lifetime of an assembly in SFRs, the question of whether the FPs-induced damage
should be taken into account in the cladding of SFRs needs to be discussed.

In order to estimate the uncertainty of calculated DPA rate, we show the results in
the RPV of a simplified PWR as an example. The covariance matrices of 2**U PFNS
from ENDF/B-VII.1 and JENDL-4.0 respectively lead to 11% and 7% relative
uncertainty of total DPA rate. If the correlations of the neutron flux are neglected, the
uncertainties are strongly underestimated to 3% and 2%, respectively. These results are
consistent between the analytical calculation (i.e. based on sensitivity) with damage
cross section and the TMC calculation via PKA spectrum by sampling neutron flux. It
is noteworthy that the uncertainty from complete consideration of correlation matrices
of neutron flux and PKA spectrum is 21 times larger than the calculation without
considering any correlation. The correlations are thus of great importance for estimating
the uncertainty of DPA rate.

The uncertainties of n+>°Fe nuclear model parameters rise to 4% uncertainty on
total DPA. It is noteworthy that the uncertainties in the RRR have a little influence on
the uncertainty of DPA rate calculation for the RPV. The uncertainty propagated from
NRT-DPA model parameters is about 3.5% (without considering the bias induced by
the TDE). The total uncertainties of damage rate are respectively 12% and 9% based on
the 2°U PFNS from ENDF/VII.1 and JENDL-4.0, whereas neglecting the correlations
of damage cross section and neutron flux implies to an underestimation by a factor of
3. This uncertainty should then be combined with the uncertainty of the TDE (can be
from 5% [70] up to 20% [34] for iron) to determine the total uncertainty of DPA rate.
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8.2 Prospects

As explained in Ref. [34], the models defect is one of the main challenges for
irradiation damage calculations. More efforts are required for improving model-based
calculations. For nuclear data, accurate and inherent coherent evaluations with
complete covariance matrices are expected. As for DPA models, more and more R&D
efforts have been carried out. However, more accurate experimental data are required
to validate theoretical models because most MD simulations are still based on semi-
empirical interatomic potentials. With improved theoretical models and model
parameters, one could calculate the damage cross section and its covariance matrix from
model parameters by step calculation in the CONRAD code [34].

The Jules Horowitz Reactor (JHR) material test reactor under construction in CEA
Cadarache will be helpful to validate the neutron irradiation DPA calculations. In order
to avoid as much as possible that atoms displaced to previously produced atomic
vacancies, the total irradiation level should be controlled by a small value of DPA. For
a particular emphasis on the neutron irradiation of the RPV, K = DPANgrT/®>05Mev =
9.5 x 102 barn is proposed as an additional criterion of neutron flux for the

experimental design [173].
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Figure 8-1. Comparison of different damage cross sections based on JEFF-3.3 n+>Fe.

For validating DPA models, as the examples shown in Figure 8-1, one may design
several samples by filtering neutrons below 2 MeV or even higher to determine the
asymptotic value of the efficiency compared with NRT for iron. However, considering
the increase in the efficiency for PKA energy above ~0.1 MeV [157], neutron flux with
energy around 2 MeV (— 0.14 MeV maximum recoil energy from neutron elastic
scattering) could be used. Different neutron flux with predominant contributions to DPA
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in the range of [2 keV, 100 keV] can validate different efficiency functions. Using the
current version of CONRAD [34], one can adjust DPA model parameters (and nuclear
model parameters if necessary) according to integral experimental data on DPA
irradiated in the JHR.

For fusion applications, because the neutrons with energies above 10 MeV are an
important source of irradiation, the PKA energies (e.g., Figure 4-12) include the
increasing region of the efficiency shown in Ref. [157], and improved DPA models
should be used. In addition, because N-body emission channels are generally open at
such energies, complete and accurate recoil data should be given, as explained in
Section 4.4.3.

In addition to the accurate calculation of DPA rate, a more accurate uncertainty
estimate is also important. Firstly, for the neutron flux, its covariance matrix should be
propagated from all uncertainty sources, such as the work of Clouvel [169]. Then the
correlation matrix between neutron flux and damage cross section is also mandatory for
a proper estimation of the uncertainties. This accurate uncertainty estimation requires a
large number of sensitivity calculations and is not performed in current applications. To

reduce the workloads, one may use a conservative upper bound as:

AtotS AFluX +A (8'1)

ODPA

Last but not least, current regulations concerning neutron irradiation damage are
based on the NRT-DPA or fast neutron fluence [181]. Because the ARC model is more
realistic than the NRT model, it should be used with accurate parameters in future
applications. As for the use of fast neutron fluence, even though neutron flux > 0.5 MeV
is shown more representative than that > 1 MeV for the attenuation of DPA in stainless
steels, it is hard to find a threshold that DPA and fast neutron flux can be explicitly
correlated [171, 173]. Therefore, the measure of neutron irradiation damage is still a
challenge for nuclear R&D.
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Appendix
A1 Differential cross section of hard-spheres elastic scattering
Figure A-1 illustrates the schematic for hard-sphere elastic scattering in the CM
frame. For incident energy of £, Eq. (4-24) shows that the recoil energy 7 is:
T =~E(1 — cost)) (A-1)

On the other hand, the symmetry in the CM frame implies 8 = 2¢, where ¢ satisfies:

cosg = — (A-2)

2R

where P is the impact parameter and R is the radius of the hard-sphere. Using the

equality cos2¢ = 2cos?¢ — 1, one obtains:

T = E(1 - cos?p) = E [1 - (%)2] (A-3)

Therefore,

dT = —— pdP (A-4)

2R?

Figure A-1. Schematic for hard-spheres elastic scattering in the CM frame.

Let denote o(E, T) the normalized differential cross section. One has:

2mPdP

T = —2mkdP
o(E, T)d 2R 2mpap

(A-5)

The negative symbol is because the 7' decreases with the increase in the impact

parameter P. Consequently, the differential cross section is:

PaP 1 (A-6)

2R2dT  E

o(E,T) =
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Energy (MeV)

A2 Complementary data for explaining the positive correlations of neutron
flux used in Section 7 [170]

Energy (MeV)
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Figure A-2. Correlation matrices of #°U PFNS from different evaluations: ENDF/B-VII.1

(left) and JENDL-4.0 (right).
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A3 Algorithm to make a covariance matrix be positive-definite

An algorithm to make a non-positive-definite covariance matrix M be positive-
definite. This algorithm was also implemented in CONRAD by Pascal Archier.

niter = 5000; //can be an any user-defined maximum value
of iteration
notPosDef = true;
factor = 2;
it = 0;
while (notPosDef && it < niter)
it = it + 1;

for i = 1l:size(M,1)
factorl = 1 + rand(l)*le-4;
M(i,1) = M(i,i)*factorl;

factor = min (factor, factorl);
end;
if min(eig(M)) > 0;
notPosDef = false;
end;
end;
M = M/factor;

A4 Complementary correlation matrices

Energy (MeV)

™ Crr

107" 10° 10"
Energy (MeV)

Figure A-4. Correlation matrix of n+>°Fe damage cross section in [0.1, 20] MeV from nuclear

reaction model parameters. The two clusters in the continuum region correspond to the two

humps of uncertainty shown in Figure 7-12.
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Figure A-5. 21-group correlation matrix of n+>*Fe damage cross section in [0.1, 20] MeV

from ARC-DPA model parameters.

Figure A-6 shows the correlation matrix of n+°°Fe DPA cross section propagated
from DPA model parameters for both the NRT and ARC models by assuming Es= 4142

eV. The correlations are closer to +1 for 10% and 20% uncertainties of E,.
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Figure A-6. 21-group correlation matrix of n+>*Fe DPA cross section in [0.1, 20] MeV
propagated from DPA model parameters by assuming £; = 4142 eV: NRT (left, min=0.940)

and ARC (right, min=0.924) models.
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Résumé étendu

Les dommages causés par l'irradiation constituent un défi majeur pour I’industrie
nucléaire. Le calcul précis des dommages dans les matériaux nucléaires induits par les
particules présentes dans le systéme (neutrons, mais également photons et particules
chargées) ainsi que la quantification précise des incertitudes associées est donc
fondamental pour a la fois accroitre la performance du parc électronucléaire actuel,
mais également sa sireté. L'objectif principal de cette thése s’inscrit dans cette
thématique de développer et d'améliorer les méthodologies utilisées pour calculer
précisément les dommages induits par l'irradiation neutronique et les incertitudes
correspondantes.

L’extension des travaux vers la nouvelle génération de réacteurs permet en outre
d’accroitre le caractére prédictif des outils. La recherche menée dans cette thése couvre
les différents modéles nucléaires nécessaires a 1’évaluation des données de réaction
nucléaire, les modéles de dommages primaires pour estimer le nombre de déplacements
atomiques a partir de I'énergie cinétique d'un Primary Knock-on Atom (PKA), les
théories physiques et les méthodes numériques associées pour calculer la section
efficace des dommages en utilisant les données nucléaires et les modeles de
Déplacement par Atome (DPA), les méthodes de calcul du taux de DPA en utilisant les
flux de neutrons et photons issus des simulations, et des stratégies de la propagation des
incertitudes jusqu'a I’incertitude finale du calcul du DPA.

Apres une breve revue des modeles de réactions nucléaires et des modeles de
dommages primaires par irradiation, nous proposons des méthodes complétes pour
calculer la section efficace des dommages a partir de différentes réactions nucléaires.
Une méthode d’interpolation améliorée, appelée « Peak value-based Unit-Base
Interpolation » (PUBI) dans la these, est proposée et recommandée pour bien reproduire
la valeur créte des distributions en énergie et en angle de diffusion a partir de données
tabulées. Au niveau de I’irradiation induite par un ion ou PKA, on refait un
raisonnement a partir de I'équation de conservation du nombre de déplacements finaux :
ce nombre ne doit pas étre changé aprés une collision atomistique. Ceci fournit une
explication physique de la différence observée d’un facteur d’environ 2 sur le nombre
de déplacements atomiques entre le « Quick Calculation (QC) » et la « Full Cascade
simulation (FC) » calculés par des codes de référence tels que SRIM. Une fonction
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simple de I’efficacité est proposée dans le cadre de la theése pour calculer le nombre de
DPA en considérant la recombinaison athermique des atomes déplacés sans ajouter de
parametres complémentaires. Cette formule de 1’efficacité de la cascade interatomique
est validée par rapport a des données expérimentales du Fe, Ni, et Cu.

Les énergies de recul des réactions induites par les neutrons sont systématiquement
estimées a partir des équations de la cinématique physique. On montre que le
mouvement thermique de la cible n’a presque pas d’impact sur le calcul du DPA, tandis
que l'effet relativiste n’est pas négligeable pour des neutrons et protons incidents de
haute énergie comme ceux qui produit dans les sources de spallation (la correction sur
I’énergie de recul pour des réactions de diffusion est approximativement égale a (£,/20)%
avec I’énergie du neutron ou proton incident £, en MeV). En particulier, une nouvelle
méthode de calcul de I'énergie de recul des réactions d'émission de particules chargées
est proposée en considérant I’effet tunnel et la barriére Coulombienne. Le DPA total
calculé par cette méthode et celui calculé avec la méthode implémentée dans NJOY
présente une légere différence pour la plupart des isotopes dont le DPA est pourtant
dominé par des réactions de diffusion, notamment pour le *°Fe et le **Ni. Cependant, la
différence peut étre importante pour les noyaux avec des voies d'émission de particules
chargées ouvertes a I'énergie thermique, comme le °Li, le '°B, et le *Ni.

On montre que la méthode numérique utilisée dans NJOY pour calculer les
intégrations sur I’angle d’émission pour la section de dommage ne peut pas garantir la
convergence en raison de la discontinuité de I’intégrant. Une méthode améliorée est
proposée pour assurer la convergence de l'intégration numérique. Des méthodes
complémentaires sont testées pour vérifier la précision des calculs numériques. Les
calculs de sections efficaces de dommage issues de la capture radiative des neutrons et
des réactions a émissions multiples sont également analysés et discutés en profondeur.
Méme si les méthodes utilisées dans NJOY pour ces réactions semblent satisfaisantes,
des calculs plus précis et plus exacts complexes et dépendent du caractére multistep des
émissions seraient nécessaires.

En plus des dommages de déplacement induits par l'irradiation des neutrons, les
dommages causés par l'irradiation induite par les électrons, les positrons, et les photons
peuvent étre importants dans certaines applications, par exemple les DPA induits par
les photons dans la cuve d'un réacteur a eau bouillante. Les sections efficaces de DPA

induites par ces particules légeres sont également étudiées dans cette theése. En
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particulier, nous nous sommes intéressés a la désintégration béta, qui est une réaction a
trois corps : une méthode détaillée pour calculer les dommages induits par la
désintégration béta dans les matériaux est proposée en utilisant les énergies d’excitation
du nucléide descendant et les intensités de désexcitation associées.

Une discussion approfondie sur le calcul de la section efficace des dommages pour
les matériaux polyatomiques est également présentée. Les analyses sont faites a partir
de la définition des sections DPA isotopiques. Il est a noter que la section de dommage
d'un matériau polyatomique ne peut pas étre simplement déduite par sommation de
chaque isotope, comme c’est le cas pour les sections efficaces partielles de réaction
nucléaire. Une approximation est proposée pour calculer la section DPA d’un matériau
polyatomique en utilisant des simulations atomistiques pour vérifier les hypothéses et
déduire certains coefficients, et les sections DPA de chaque isotope, a partir des modeles
décrits auparavant.

Pour le calcul du taux de dommages induits par l'irradiation neutronique, deux
méthodes peuvent étre utilisées. La premicre consiste a convoluer le flux neutronique a
la section efficace de dommage. Cette méthode est également largement utilisée dans
la plupart des applications actuelles car elle peut étre directement utilisée comme
fonction réponse dans les codes de transport des neutrons. Cependant, la correction
d'autoprotection sur la section de dommage multi-groupe doit étre prise en compte.
Dans le cas particulier de la gaine du cceur interne du démonstrateur technologique de
4%me génération ASTRID, on montre que 1’autoprotection de la section de dommage en
ECCO 33-groupe entraine une réduction d'environ 10% du taux de DPA par rapport a
la section efficace de dommage a dilution infinie.

La deuxieéme méthode consiste a calculer les spectres PKA. Cette méthode peut
étre plus facilement utilisée en combinaison avec les nouveaux modeles DPA.
Néanmoins, les calculs actuels du spectre PKA sont basés sur des sections efficaces
multi-group a dilution infinie et moyennées par une fonction poids générale, de sorte
que la correction de la section efficace multi-groupe avec le spectre réaliste dans un cas
spécifique n'est toujours pas considérée. Il faut garder en téte la sous-estimation si les
sections efficaces a dilution infinie sont utilisées pour calculer les taux de DPA avec
n’importe quelle méthode. La recommandation issue de nos travaux est de toujours
utiliser les sections autoprotégées.

Par rapport aux dommages causés par l'irradiation induite par les neutrons,
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l'irradiation induite par les Produits de Fission (PFs) dans la gaine du combustible a fait
I’objet de moins de travaux jusqu’a présent. Par conséquent, nous proposons une
méthode générale pour calculer les dommages de déplacement induits par les PFs avec
des simulations atomistiques (i.e. via I’approximation de la collision binaire ou des
modélisations par dynamique moléculaire). Il est démontré que la pénétration maximale
des PFs dans la gaine Fe-14Cr est inférieure a 10 um. Cependant, la valeur maximale
du taux de dommage induit par les PFs (basée sur les simulations FC dans SRIM. On
remarque que les résultats venant de SRIM Monte Carlo simulations sont divisés par
un facteur 2 pour les convertir approximativement en Norgett-Robinson-Torrens
(NRT)-DPA.) peut étre 4 a 5 fois plus grande que celle induite par les neutrons dans la
gaine du cceur interne d’ASTRID. Etant donné que le niveau de DPA est un critére
important pour déterminer la durée de vie opérationnelle d'un assemblage combustible
dans les Réacteurs a Neutrons Rapides (RNRs), la question de savoir si les dommages
induits par les PFs doivent étre pris en compte dans la gaine des RNRs doit étre discutée
pour les applications dans le futur.

Afin d'estimer l'incertitude du taux de DPA calculé, nous prenons I’exemple de
résultats obtenus pour la cuve d'un Réacteur a Eau Pressurisée (REP) simplifié. Les
matrices de covariance du spectre des neutrons prompts de fission (Prompt Fission
Neutron Spectrum, PFNS) de 1’>*°U venant de ENDF/B-VII.1 et JENDL-4.0 conduisent
respectivement a 11% et 7% d'incertitude relative sur le taux de DPA total. Si les
corrélations du flux des neutrons sont négligées, les incertitudes sont fortement sous-
estimées a 3% et 2% respectivement. Ces résultats sont cohérents avec ceux obtenus
avec le calcul analytique (i.e. basé sur la sensibilité et la matrice de covariance) avec la
section efficace de dommage et le calcul stochastique (i.e. total Monte Carlo) via le
spectre PKA en échantillonnant le flux neutronique. Il est a noter que l'incertitude li¢e
a la prise en compte compléte des matrices de corrélation du flux neutronique et du
spectre PKA est 21 fois plus importante que le calcul sans tenir compte d’aucune
corrélation pour I’exemple montré dans cette thése. Les corrélations sont donc tres
importantes pour estimer l'incertitude du taux de DPA.

Les incertitudes des paramétres du modéle nucléaire n+°°Fe entrainent une
incertitude de 4% sur le taux de DPA. On montre en outre que les incertitudes dans la
région de résonances influencent peu l'incertitude du taux de DPA calculé dans la cuve

d’un REP. L'incertitude propagée a partir des parametres du modele NRT-DPA est
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d'environ 3,5%. Basées sur les matrices de covariance du flux de neutron propagées des
matrices covariance du PFNS de 1'’>*U de ENDF/B-VII.1 et JENDL-4.0, les
incertitudes totales du taux de dommages sont respectivement de 12% et 9%, alors que
négliger les corrélations de la section efficace des dommages et du flux neutronique
implique une sous-estimation d’un facteur 3. Cette incertitude doit ensuite étre
combinée quadratiquement avec l'incertitude sur 1’énergie du seuil de déplacement
atomique (qui peut aller de 5% a 20% pour le fer) pour déterminer l'incertitude finale
du taux de DPA.

Enfin, en conclusion et perspective de cette thése, on liste quelques propositions
d’expériences dédiées pour la conception de dispositif d’irradiation de matériaux dans
le futur réaction technologique Jules Horowitz (RJH) en cours de construction sur le
site du CEA de Cadarache. Ces mesures devraient permettre de vérifier a posteriori les

modeles théoriques et asseoir les incertitudes proposées dans le travail de thése.
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