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le département iCub à l’Istituto Italiano di Tecnologia (IIT), d’avoir pris
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de conférences aux Arts et Métiers de Lille, qui s’est fortement impliqué,
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ents, Valérie et Philippe Guérin, ainsi que l’ensemble des membres de

ma famille qui m’ont toujours soutenu et encouragé à suivre le chemin qui
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Abstract

Thanks to their flexible mechanical design, modern industrial robots can be pro-

grammed for different tasks without physical modification. In addition, they are

highly instrumented and should be able to be responsive to their environment. How-

ever, the use of robots in industry is still restricted to repeatable tasks with low level

of adaptability. In an industrial context, it is essential to program robots that can

autonomously adapt to different applications and are robust to changes in working

conditions. The machine learning framework for robot programming is well suited to

design such kinds of adaptive and robust applications. Hence, in this thesis, several

machine learning contributions are presented, aiming at designing smarter robotic ap-

plications, with a broader operational range. The methods developed are centered on

autonomous sorting, but may be useful to address problems in many other subfields

of robotics. Throughout this thesis, we propose new approaches to image clustering,

optimal view selection, trajectory learning and stereo localization, with the objective

of designing more universal robotic sorting applications.

Keywords: Robotic sorting, Image clustering, Transfer learning, Optimal view -
selection, Trajectory learning, Autonomous dataset generation.
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Concaténer et partitionner (Fr.)

CNN

Convolutional Neural Network (En.)
Réseau neuronal convolutif (Fr.)

CP

Clustering Problem (En.)
Problème de partitionnement (Fr.)

CVKM

Coefficient of Variation weighted K-Means (En.)
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Réseau neuronal (Fr.)

OC

Optical Center (En.)
Centre optique (Fr.)

PUR

Clustering Purity (En.)
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RGB

Red-Green-Blue color code (En.)
Encodage couleur rouge-vert-bleu (Fr.)

RGBD

Red-Green-Blue-Distance (En.)
Rouge-vert-bleu-distance (Fr.)

RL

Reinforcement Learning (En.)
Apprentissage par renforcement (Fr.)

SVS

Semantic View Selection (En.)
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Chapter 1

Towards more generic robotic
applications

Abstract

This chapter introduces the context and organization of the thesis. Over the

past two decades, robotics research has undergone important changes driven by new

industrial perspectives. The objectives are now to provide robots with skills that work

in a variety of situations and are robust to environment changes. Machine Learning

is a particularly well adapted framework for such kind of applications. In this thesis,

we propose to rethink the standard robotic sorting application within this context.

Usually, to decide where to sort objects, a robotic sorting system needs to solve either

an instance retrieval (known object) or a supervised classification (predefined set of

classes) problem. In this chapter, we introduce a new decision making module, where

the robotic system chooses how to sort the objects in an unsupervised way. This

approach generalizes common robotic sorting to any new set of previously unseen

objects. This application is called Unsupervised Robotic Sorting (URS) and entails

most of our contributions. Furthermore, other robotic skills for autonomous trajectory

learning and 3D stereo localization are developed with similar motivations.
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1.1 Machine learning for adaptive robotic skills

1.1.1 History of industrial robotics

In 1962, General Motors installed serial robots to carry out spot welding and die-

castings extraction in their New Jersey’s plant. These machines, developed by Un-

imation, were the first robots to successfully perform industrial tasks and mark the

beginning of a new era in industrial production. Industrial robots are multifunctional

machines which can be programmed to carry out different tasks. They differ from

more standard specialized machines in that they can be reprogrammed for a new

task without physical modification, and indeed, during three decades, many Unima-

tion robots were sold worldwide to execute a variety of tasks. This reprogrammability

presents the huge advantage of reducing the costs and times of mechanical design for

new industrial applications, which rapidly lead to the emergence of many new robot

manufacturer. The main tasks robots were dealing with in the end of the 20th century

were assembly (([Chen and Burdick, 1995]), ([Grunes et al., 1995]), ([Bonert et al.,

2000])), welding (([Sicard and Levine, 1988]), ([Kim et al., 1998])) and sorting (see

Section 1.2.1.1). A more complete study about the history of industrial robotics can

be found in both ([Westerlund, 2000]) and ([Wallén, 2008]).

This important development of robotics in industrial factories has brought many

new interesting problems to the research community (([Sciavicco and Siciliano, 2000]),

([Groover et al., 1986]), ([Nof, 1999]), ([Mair, 1988])). During 40 years, research in

robotics was mostly driven by two problems of utmost importance for industry:

• How to define an optimal trajectory to accomplish a given task? (mechanics)

• How to ensure that the given trajectories are correctly followed? (control)

All these years of research in automation lead to impressive production plants where

robots perform complex tasks at high velocity and with high precision (Figure 1.1).

However, this way of approaching robotics also has its limits as the robots can only

perform highly repeatable tasks. In addition, such high velocity and non-adaptive

applications constrain the robots to be isolated in secured environments, preventing

interaction with humans. Hence, implementing a new application requires to phys-

ically build the robotic cell as well as programming the robot, which is a complex

task requiring highly qualified engineers. These limitations mitigate the advantage of

industrial robots over special machines since a huge amount of work is still required

for a new implementation, thus limiting the use of robots to tasks dealing with large

production volumes in order to be profitable.
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Figure 1.1: Robotic assembly cell in a Volkswagen plant in Slovakia.

1.1.2 A new robotics context

In the past 20 years, robotics research has undergone important transformations

driven by an increasing industrial demand for more flexible robots. Indeed, in order

to diminish drudgery of work while improving precision, and to some extent increasing

productivity, the diversity of tasks involving robots in industry has increased signific-

antly. Some examples of these new tasks include bin picking and sorting (([Liu et al.,

2012]), ([Lukka et al., 2014])), visual inspection and metrology (([de Sousa et al.,

2017]), ([Jayaweera and Webb, 2010])), machining (([Olabi et al., 2010]), ([Chen and

Dong, 2013])), kitting (([Balakirsky et al., 2013]), ([Banerjee et al., 2015])), etc.

Together with the number of different tasks, the flexibility required within the

context of each task has also increased. The growing demand for mass customization

([Zawadzki and Żywicki, 2016]) together with the apparition of new industries in the

robotics market (aerospace, energy, etc.) has lead to a new industrial context called

Industry 4.0 ([Bahrin et al., 2016]) or smart factory ([Lucke et al., 2008]). This new

context is defined by, among other things, smaller production volumes and higher

responsiveness of the production plants. To illustrate the need for more adaptive

robotics applications within this context, we can consider the simple example of

a screwing operation. On the one hand, in a large automotive robotics assembly

line, a robot needs to drive a given number of screws that are always at the same

location, and repeat this operation an important number of times. This operation is

programmed by finding an optimal trajectory and a control strategy to follow such

trajectory. In some sense, implementing such a robotic screwing operation does not

really differ from implementing a welding or painting operation. On the other hand,
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we can consider the context of satellites production in the aerospace industry, which

also requires many screwing operations but are only produced in “batches” of one.

The task thus becomes “screw what you encounter on the structure”, which is much

more challenging as cinematic alone is not sufficient and needs to be coupled with

sharp perception skills. This thesis is part of the Colrobot european project1, which

also illustrates well the new context of industrial robotics.

1.1.3 Machine learning and robotics

Because of these new expectations, instead of directly dealing with applications, cur-

rent research focuses on providing robots with diverse skills, which can be combined to

achieve various goals. To be functional, such skills must either be robust to a variety

of conditions, such as different poses of manipulated objects and different environ-

ments, or be easy to reconfigure by unqualified operators. Learning methods2 are well

suited to develop such robotic bricks and are being widely adopted in recent research.

Some examples of robust robotic skills which were successfully learned are scene un-

derstanding ([Shi et al., 2016]), grasping (([Bohg et al., 2014]), ([Lenz et al., 2015])),

object recognition ([Eitel et al., 2015a]), motion planning ([Dong et al., 2016]), local-

ization and mapping ([Kim and Eustice, 2015]), trajectory generation ([Levine et al.,

2015b]), etc. To obtain the desired robust behaviors, a robot must be highly equipped

with sophisticated sensors. Processing such complex information and link it to robot

movements is a difficult task that in many cases can only be solved with learning

methods. In the meantime, the machine learning framework is also well adapted to

design applications that are easily reconfigurable by unqualified human workers, as

suggested by the path followed by the field of human-robot collaboration (([Tsarouchi

et al., 2017]), ([Munzer et al., 2017])).

This thesis fits within this adaptable and customizable robotics context. The

different contributions that are presented in this manuscript aim at:

• providing the community with new algorithmic tools and datasets to develop

such kind of robust robotics skills,

• demonstrating feasibility of the proposed approaches on real robotic systems.

The main focus of this work, which constitutes most of this thesis, is on the develop-

ment of object understanding and sorting applications that are context independent

1https://www.youtube.com/watch?v=8zpYzVEw-Io
2A beginner’s introduction to what is machine learning can be found in Appendix A.
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and robust. These topics are studied within the context of Unsupervised Robotic

Sorting, which is introduced in the next section. Along the same line, we also pro-

pose a more generic method for trajectory learning, which is easier to set up by non

experts and to embed into more complex learning frameworks. Our last contribution

consists in defining a methodology for autonomous dataset construction for object

stereo localization. These contributions as well as the thesis organization are better

detailed in Section 1.3 and more specific bibliographical elements are discussed in

each chapter.

1.2 Unsupervised Robotic Sorting

In this section, we propose a broader introduction of the unsupervised robotic sorting

application, which motivates many of the contributions of this thesis.

1.2.1 Context

1.2.1.1 Autonomous sorting

The problem of automatic sorting has a long history in industry, with the first toma-

toes sorting system dating back to the 70’s ([Husome et al., 1978]). Since then, it has

received a lot of attention, with important focus on combining computer vision and

robotic manipulators to solve the pick-and-place task ([Mouli and Raju, 2013]).

Although it was among the first robotics tasks, designing a pick-and-place applic-

ation is challenging and requires solving multiple subtasks. If the objects to be sorted

are cluttered, the system first needs to segment the scene and identify the different

objects ([Ecins et al., 2016]). Then, the system must use various sensors, such as 2D

or 3D cameras, color sensors or bar code readers, to gather data about the different

objects. These data are used to find a grasping strategy for the object ([Bohg et al.,

2014]) and to decide how to classify it. Naturally, all along this process, smart motion

planning and control is also required ([Siciliano and Khatib, 2016]).

Although every bricks of the pick-and-place pipeline are interesting and challen-

ging problems, this thesis focuses more on the decision making subproblem, i.e. how

to decide where to place an object after grasping it? Other skills that can also be

useful for robotic sorting are studied in the final part of the manuscript.
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1.2.1.2 Decision making in autonomous sorting

Previous implementations of autonomous sorting dealt with objects which are either

known or belong to some predefined classes. In machine learning terminology, one

could say that the robot intelligence usually resides in solving either an instance

retrieval or a supervised classification problem. Different approaches in solving such

decision-making problems differ in the kind of sensing devices used, as well as the

algorithmic choices.

Instance retrieval Several implementations have considered the problem of recog-

nizing each object as a member of a known database, and sorting it according to an

associated predefined rule. In ([Giannoccaro et al., 2013]), RFID markers are used

to recognize and sort objects. An implementation of a surgical tools sorting applic-

ation using barcode reading and template matching to find and sort objects from a

cluttered scene is proposed in ([Tan et al., 2015]). Finally, in the application presen-

ted in ([Dragusu et al., 2012]), real-world objects (usb, glue-stick, etc.) are sorted

with a serial manipulator using template matching.

Supervised classification Many robotics supervised classification applications sort

objects based on simple rules such as thresholding, applied to simple features. For

example, (([Szabo and Lie, 2012]), ([Shum et al., 2016]) and ([Nkomo and Collier,

2012])) all use color features extracted from either images or color sensors, ([Pereira

et al., 2014]) extend these approaches by adding shape features. In ([Gupta and

Sukhatme, 2012]), robot manipulation is used to unclutter Duplo bricks, which are

then sorted according to their length and color. In ([Singh et al., 2016]), a classical

computer vision framework is implemented to carry out faulty parts removal. A ro-

botic system able to recycle construction wastes using features provided by metal

detectors and sensors sensitive to visual wavelengths is presented in ([Lukka et al.,

2014]). Recent papers have started to use Convolutional Neural Networks (CNN) to

carry out supervised classification in robotic sorting. The authors of ([Eitel et al.,

2015b]) have used a CNN on RGBD images to find the class of an object and sort

it. In ([Zhihong et al., 2017]), a fast R-CNN proposal network is combined with a

pretrained VGG16 CNN architecture to jointly localize and sort objects with a robot

manipulator.
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Unsupervised

Robot Sorting

(a) Tools in a work station

Unsupervised

Robot Sorting

(b) Lego bricks of different colors and shapes

Figure 1.2: Two different instances of the unsupervised robotic sorting problem.

1.2.2 Problem definition

Chapters 2 to 6 of this manuscript are about a new kind of pick-and-place application,

consisting in sorting unknown objects, which do not belong to any predefined class.

Given a set of previously unseen objects, the robotic system needs to sort them such

that objects stored together are similar to each other and different from other objects.

Such problem definition is the definition of a clustering problem (see Chapter 2 for

more details) in which the outputs consist in physically sorted objects, hence, we call

this problem Unsupervised Robotic Sorting (URS).

The above statement of the URS problem neither defines the notion of similar-

ity nor the number of groups to be made. Different definitions of these concepts

defines different instances of the URS problem. This thesis mainly addresses the

URS problem in which the number of groups is imposed by the number of storage

spaces available and the notion of similarity is defined by “how a human would solve

the problem”. Figure 1.2 shows the inputs and associated expected outputs for two

practical examples of URS. It is important to note that the notion of reproducing

human decision is highly subjective as the optimal classification can vary between

individuals. More specifically, in this thesis we aim at reproducing the decision which

would be mostly adopted by a group of human experts at the classification task at

hand. For example, specialist doctors for unsupervised classification of medical im-

ages, qualified workers for industrial classification tasks, etc. In practice, we validate
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our algorithms by trying to reproduce the classifications of several standard super-

vised datasets without using the labels. These datasets are created by human experts

and can thus be used as proxies for the expert populations described above. More

details on the validation methods can be found in the relevant chapters.

1.3 Contribution and thesis organization

The rest of this thesis is organized as follows. Chapters 2 to 6 deal with the URS

problem introduced previously. Chapter 2 complements the introduction of URS by

proposing a first implementation. This unsupervised sorting application is based on

color and shape features and leads to the development of a new K-means clustering

algorithm to handle such kind of data when they are noisy. The contributions of

Chapter 2 were published as a conference paper at CCSEIT 2017 ([Guérin et al.,

2017]).

In Part II of this thesis, we propose to study the problem of Image Clustering (IC),

which is a required skill to implement URS with a higher level of abstraction. Hence,

Chapter 3 proposes a benchmark study on solving IC by transferring knowledge from

deep Convolutional Neural Networks (CNN) pretrained on large and versatile data-

sets. Then, Chapter 4 builds on the results from Chapter 3 to propose an ensemble

clustering approach to leverage information from several such CNNs. This is shown

to improve state-of-the-art results at image clustering. The studies in Chapters 3

and 4 were published in the proceedings of two conferences, respectively AIFU 2018

([Guérin et al., 2018c]) and BMVC 2018 ([Guérin and Boots, 2018]).

After studying image clustering on standard datasets, we propose to study prac-

tical URS implementations in Part III. In Chapter 5, we introduce a first implement-

ation and evaluate its robustness to various external factors. This study suggests that

the results are highly dependant on the point of view under which the objects are

observed, which motivates the development of an optimal view selection method in

Chapter 6. This contribution consists in creating a large multi-view dataset and use

to train a neural network to choose optimal camera poses. This approach is shown to

work better than fixed camera poses. The physical implementation of URS proposed

in Chapter 5 has been published in the International Journal of Artificial Intelligence

and Applications ([Guérin et al., 2018d]), and the developments on optimal view se-

lection from Chapter 6 can be found in the proceedings of IROS 2018 ([Guérin et al.,

2018a]).
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The contributions about object understanding proposed in Part II and III are

important skill for many autonomous robotic tasks. However, many other abilities

are required to reach full autonomy, as discussed in Section 1.2.1.1 in the context

of URS. Hence, in Part IV, we propose to explore two of such skills. On the one

hand, Chapter 7 presents an adaptation of a popular trajectory learning method. By

learning a quadratic model of the cost function instead of computing it analytically,

this method is made independent of both the system’s model and the cost function’s

definition, thus making the system easier to program in more situations. This contri-

bution resulted in the publication of two conference papers: ([Guérin et al., 2017]) and

([Guérin et al., 2016]), which were presented respectively at ACD 2016 and IECON

2016. On the other hand, Chapter 8 proposes a methodology to autonomously build

datasets for 3D stereo localization using a robot manipulator. One such dataset

is built as a proof of concept and made publicly available. A short paper on this

thematic can be found in the proceedings of IECON 2018 ([Guérin et al., 2018b]).

Finally, Part V proposes a summary of our contributions and draws perspectives

for future work. All the different research items introduced in this thesis share the

same objective of developing industrial robotic application with a broader validity

range. We believe that it can potentially lead to easier and more accessible robot

programming, and by extension help the democratization of robotics.
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Chapter 2

First example of URS: clustering
from color and shape features - the
Gap-Ratio K-means algorithm

Abstract

The most standard robotics sorting setting consists in using color and shape fea-

tures to carry out supervised classification. To illustrate the Unsupervised Robotics

Sorting (URS) problem, we propose to extend this use case to the unsupervised set-

ting. This application presents various challenges: 1. Color and shape features are, in

general, of a different order of magnitude. 2. In robotics sorting, data are measured

from real world objects in shop floor conditions (i.e., uncontrolled lighting), which

involves a large spread in the data (i.e., noisy data). 3. Data dimensions are on dif-

ferent levels of measurements: RGB color features are interval type variables while

length features are ratio type variables. To overcome these difficulties, a new weighted

K-means algorithm, called Gap Ratio K-means, is introduced. It consists in defining

weights which capture information about the relative differences between consecutive

data points for each feature dimension. Gap Ratio K-means is evaluated on a real

world example consisting in physically clustering Lego bricks of different colors and

shapes. It is compared with two other variants of K-means and demonstrates more

robust clustering results.
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2.1 Problem description and challenges

As mentioned in the previous chapter, the standard approach to robot sorting con-

sists in solving an instance retrieval or supervised classification problem on objects

characterized by color and shape features. In this chapter, we propose to adapt such

kind of sorting application to the unsupervised case (Figure 2.1).

Figure 2.1: KUKA LBR iiwa sorting objects from color and shape features using
the Gap-Ratio K-means algorithm.

Video at : https://www.youtube.com/watch?v=korkcYs1EHM

Unsupervised sorting of real world objects represented by color and shape features

presents various challenges: Firstly, in the general case, length and color features are

of a different order of magnitude, which implies the need for data normalization.

Secondly, because such application is meant for ordinary environments, the cluster-

ing algorithm needs to be robust to unmastered light conditions, which is synonymous

with widely spread datasets. For such noisy data, the loss of information involved by

normalization can impact negatively the clustering results. A way to solve this issue

is to use weighted K-means algorithms to re-inject the information in the normalized

data. Finally, the features chosen are on different levels of measurement ([Stevens,

1946]): RGB-color features are interval variables whereas lengths are on a ratio scale.

Statistics using ratios or means (e.g., Coefficient of Variation (CV)) cannot be used

on interval type data. Hence, all the weighted K-means algorithms using this kind of

statistics cannot be used for the proposed problem. These three specificities of the

clustering problem motivate the development of a new weighted K-means algorithm.

This clustering method, called Gap-Ration K-means (GRKM), is the main contribu-

tion of this chapter.
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2.2 Preliminaries

2.2.1 Clustering

The sorting problem described above is a clustering problem (([Theodoridis and

Koutroumbas, 2006b]), ([Duda et al., 2001])), also called unsupervised classification.

Given an unlabelled dataset, the goal of clustering is to define groups (called clusters)

among the entities. Elements in one cluster should be as similar as possible to each

other and as different as possible to other clusters’ members. In this chapter, only

clustering with predefined number of classes (imposed by the number of bins in which

objects can be stored) is studied. There are many possible definitions of similarity

between data points. The choice of such definition, together with the choice of the

metric to optimize, defines a clustering algorithms. The two surveys ([Xu and Wun-

sch, 2005]) and ([Berkhin, 2006]), give two slightly different taxonomies of the various

clustering algorithms.

For robotics sorting applications, the number of objects to cluster might be small

(≈ 10), which makes some deep clustering ([Aljalbout et al., 2018]) and density based

([Ester et al., 1996]) methods irrelevant. After trying several clustering algorithms

on simulated color and shape datasets using scikit-learn ([Pedregosa et al., 2011]),

K-means ([Theodoridis and Koutroumbas, 2006c]), a partitioning method, appeared

efficient for our problem. Therefore, among all clustering methods, this chapter fo-

cuses on K-means.

2.2.2 K-means

2.2.2.1 Notations

Throughout this chapter, the following notations are used. Letter i represents index-

ing on data objects whereas letter j designates the features. Thus, X = {x1, ..., xM}
represents the dataset to cluster, composed of M data points. Each data point is

represented by N features and xij stands for the jth component of the feature vector

of object xi ∈ RN . Likewise, the use of letter k represents the different clusters and

C = {C1, ..., Ck, ..., CK} is a set of K clusters. Each cluster Ck, is represented by a

cluster center, or centroid, denoted ck, which is simply a point in the feature space.

We also introduce d, the function used to measure dissimilarity between a data object

and a centroid. For K-means, such dissimilarity is quantified with Euclidean distance

d(xi, ck) =

√√√√ N∑
j=1

(xij − ckj)2. (2.1)
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2.2.2.2 Derivation

Given a set of cluster centers c = {c1, ..., ck, ..., cK}, cluster membership is defined by

xi ∈ Cl ⇐⇒ d(xi, cl) ≤ d(xi, ck), for all k ∈ {1, ..., K}. (2.2)

The goal of K-means is to find the set of cluster centers c∗ which minimizes the sum

of dissimilarities between each data object and its closest cluster center. Introducing

the binary variable aik, which is 1 if xi belongs to Ck and 0 else, and the membership

matrix A = (aik)i∈{1, ... M}
k∈{1, ... K}

. K-means can be written as an optimization problem:

Minimize
A, c

M∑
i=1

K∑
k=1

aik × d(xi, ck),

subject to
K∑
k=1

aik = 1, for all i ∈ {1, ...,M},

aik ∈ {0, 1}, for all i, k.

(2.3)

In practice, (2.3) is optimized by solving iteratively two subproblems, one where

the set c is fixed and one where A is fixed. The most widely used algorithm to im-

plement K-means clustering is the Lloyd’s algorithm ([Lloyd, 1982]). It is based on

the method of Alternating Optimization ([Bezdek and Hathaway, 2002]), also used

in the Expectation-Maximization algorithm ([Dempster et al., 1977]). The Expecta-

tion step (E-step) consists in associating each data point to it’s closest cluster center

following (2.2), i.e. computing A. The Maximization step (M-step) consists in com-

puting the centroids minimizing the total dissimilarity within clusters, i.e., computing

c. When the L2 norm is used for dissimilarity, which is the case for K-means, it can

be shown that the M-step optimization is equivalent to computing the cluster mean

([Theodoridis and Koutroumbas, 2006c]).

2.2.2.3 Data normalization

In most cases, running K-means on raw data does not work well. This is particu-

larly true when data dimensions are of a different order of magnitude: features with

largest scales are given more importance during dissimilarity calculation and cluster-

ing results are biased (Figure 2.2). The kind of features studied in this chapter are

impacted by this problem, colors are expressed in RGB (between 0 and 255) while

lengths depend on the size of the object and the unit chosen to express it. For objects

sorted with a standard manipulator, lengths usually measure a few centimeters.
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Figure 2.2: Comparison of K-means with and without normalization on a two
dimensional made up dataset with dimensions of a different order of magnitude.

To deal with this issue, a common practice is to normalize the data before running

the clustering algorithm:

∀i, ∀j, xij ←
xij − µj
σj

, (2.4)

where µj and σj represent respectively the empirical mean and standard deviation

over {xij, for all i ∈ {1, ...,M}}.

2.2.3 Weighted K-means

As explained above, data normalization is often necessary to obtain satisfactory clus-

tering results. However, reducing each feature distribution to a Gaussian of variance

1 can involve a loss of valuable information for clustering. This is particularly true for

data with a large spread as the span of each dimension is lost during normalization.

For example, Figure 2.3 shows an dataset where three groups are to be found along

the same axis. We can see that, by normalizing the data, the important information

is lost and K-means fails. Hence, for the color and shape clustering problem, simple

normalization cannot be satisfying and other methods need to be employed.

Weighted K-means ([Chen et al., 2009]) is based on the idea that information

about the data can be captured before normalization and reinjected in the normalized

dataset. In this way, the most relevant features for clustering can be enlarged and

the others curtailed. More precisely, in a weighted K-means algorithm, weights are

attributed to each feature, giving them different importance. Let us call wj the weight
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Figure 2.3: Comparison of normalization + K-means against CV K-means on a
two dimensional made up dataset where several separations occur along the same

axis.

associated with the jth feature. Then, the norm used in the E-step of weighted K-

means is

d(xi, ck) =

√√√√ N∑
j=1

wj(xij − ckj)2. (2.5)

The distinction between different versions of weighted K-means algorithms lies in the

choice of the weights.

A particular example of weighted K-means algorithm is weighted K-means based

on coefficient of variation (CV K-means) ([Ren and Fan, 2011]). It relies on the idea

that the variance of a feature is an good indicator of its importance for clustering.

Hence, the CV weights are derived based on coefficient of variation, also called relative

standard deviation:

wj =
cvj

N∑
j′=1

cvj′

, where cvj =
σj
µj
. (2.6)

In the example of Figure 2.3, CV weighted K-means enables to overcome the problem

involved by data normalization.
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2.2.4 Exponentiated weighted K-means

In this chapter, we also propose an extension of weighted K-means that consists in

raising the weights to the power of an integer p in the norm formula:

d(xi, ck) =

√√√√ N∑
j=1

wpj (xij − ckj)2. (2.7)

By doing so, we emphasize even more the importance of features with large

weights, which makes sense if the information captured by the weights is relevant.

In practice, as the weights are between 0 and 1, p should not be too large to avoid

considering only one feature. In the rest of this chapter, CVp denotes exponentiated

CV K-means with exponent p. The influence of p in the clustering results is studied

in Section 2.4.3.

2.2.5 Levels of measurements

Using CV weights to solve the unsupervised robotics sorting problem using color and

length features cannot be robust. The reason for this statement lies in the concept of

levels of measurement ([Stevens, 1946]). More specifically, it comes from the difference

between ratio scale and interval scale.

A quantity measured on a ratio scale is one for which ratios are meaningful. For

instance, lengths are measured on a ratio scale and one can assert that ”10 cm is twice

as large as 5 cm”. A ratio scale possesses a unique and non-arbitrary zero value, and

if a quantity gets further from this zero, the absolute precision to measure it decreases

and thus the variance increases proportionally. Hence, coefficient of variation makes

sense on a ratio scale.

On the other hand, interval scale is a measurement scale where all possible values

are spread between two defined points, for instance the freezing and boiling point for

temperatures in Celsius. From a precision perspective, measurement errors are not

larger for high values than for low ones. On an interval scale, it is not relevant to

use coefficient of variation because when the mean decreases, the variance does not

change accordingly. Therefore, at equal variance, features closer to zero have higher

coefficients of variation, which biases the clustering process. RGB color features,

which are spread between 0 and 255, are interval variables. Hence, CV weights are

not relevant for the problem studied in this chapter, which motivates the development

of a new weighted K-means algorithm in the next section.
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2.3 Gap Ratio K-means

For interval-type variables, ratios are not meaningful and one cannot use moments

about the origin (e.g., the mean) as its choice is arbitrary. Hence CV weights are

not appropriate for interval variables. However, ratios of differences are meaningful

and standardized moments can be defined. Thus, we propose an approach that only

considers relative values between the data points. Such choice leads to the definition

of weights that are relevant for interval type data.

2.3.1 The Gap Ratio K-means algorithm

When doing clustering, we want to distinguish if different feature values between

two objects come from noise or from the fact that objects are of different nature.

This observation is the main motivation behind the development of Gap Ratio K-

means (GR K-means). If we consider that the distribution of a certain feature differs

between classes, this feature’s values should be more different between objects of

different classes than between objects within a class. The goal of GR weights is to

capture such information about the features.

To formulate the concept of Gap Ratio mathematically, the different values xij for

each feature are first sorted according to the jth component. For every j, we define

the permutation σj such that

∀i, i′ ∈ {1, ...,M}, xσj(i),j ≤ xσj(i′),j ⇔ σj(i) ≤ σj(i
′). (2.8)

Then, we define the ith gap of the jth feature by:

gij = xσj(i+1),j − xσj(i),j. (2.9)

If there are M data objects, there are M − 1 gaps for each feature.

After computing all the gaps for feature j, we define Ij, the index corresponding

to the biggest gap:

Ij = argmax
i∈{1,...,M−1}

gij. (2.10)

Then, the biggest gap Gj and the mean gap ḡj are defined as follows:

Gj = gIj ,j, (2.11)

ḡj =
1

M − 2

M−1∑
i=1
i 6=Ij

gij. (2.12)
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Finally, we define the Gap Ratio for the jth feature by:

grj =
Gj

ḡj
. (2.13)

In other words, for a given feature, the Gap Ratio is the ratio between the highest

gap and the mean of all other gaps. Then the GRs are used to compute scaled weights:

wj =
grj

N∑
j′=1

grj′

. (2.14)

The dissimilarity measure for GR K-means is obtained by using weights (2.14) in

(2.5). Likewise, we call exponentiated GR K-means the algorithm using dissimilarity

measure (2.7) with weights (2.14). Exponentiated GR K-means with exponent p is

denoted GRp K-means.

2.3.2 Intuition behind GR K-means

For datasets that are noisy in dimensions that are not important, CV K-means fails

because it focuses on these dimensions with high variance. This problem is illustrated

on Figure 2.4a, which shows a 2-dimensional toy example where the variance is high in

a dimension which is not important. On the other hand, weights and groups obtained

with GR K-means indicate that the right information is stored in GR weights for such

problem. The biggest gap along the y-axis is much bigger than average gaps whereas

these two quantities are similar along the x-axis. In this case, using GR weights is

more appropriate than CV weights.

CV weights also fail for interval variables with means close to zero. Indeed, because

the variance does not decrease for low values on an interval scale, the coefficient of

variation for these dimensions goes to very high values. This problem is illustrated

in Figure 2.4b, where we can see that CV K-means completely fails while GR K-

means is not affected and still succeeds to cluster the data correctly. This example

is particularly relevant for the clustering case studied in this chapter. Indeed, RGB

features are on an interval scale and data are noisy, which can lead to such kind of

misclassifications.

2.4 Experimental validation

2.4.1 Experiment description

In this section, we validate the intuitive reasoning about GR K-means. To do so,

we compare the different weighted K-means algorithms (including regular K-means,
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(a) Noisy data on a dimension that is not important.
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Figure 2.4: Made up two dimensional toy examples demonstrating the intuition
behind GR K-means.

with weights wj = 1, for all j, and exponentiated weights) on a first implementation

of unsupervised robotic sorting. This implementation consists in sorting a set of

Lego bricks of different sizes and colors using a Kuka LBR iiwa collaborative robot

equipped with a camera. The application is illustrated in Figure 2.1, which gives a

link to a demonstration video.

The dataset used to compare different algorithms is one composed of nine Lego

bricks of different sizes and colors, as shown in Figure 2.5. Each Lego brick is repres-

ented by its length and width (in cm), as well as its three RGB components (between

20



Figure 2.5: Example real-world URS dataset under different light conditions.

0 and 255). The natural classes in this dataset are straightforward to define, the

clustering algorithm needs to place the big green, small green and small red bricks in

different bins. Hence, the desired number of classes is set to three.

Furthermore, on Figure 2.5, we can see that among the four pictures, lighting

varies significantly and that data are very noisy. Color features observed are really

different between two runs of the application. The algorithm needs to be robust to

poor lighting conditions and to be able to distinguish between red and green even

when colors tend to be saturated (see bottom right image). Feature extraction is

implemented with open CV ([Itseez, 2015]), using background segmentation to obtain

the contours of each object and pixels averaging for color features.

2.4.2 Weighted K-means implementation

To implement both GR K-means and CV K-means, we use the K-means implement-

ation of the open-source library scikit-learn ([Pedregosa et al., 2011]). This way, our

results can be checked and further improvements can be tested easily. To implement

weighted K-means algorithms, we also use scikit-learn implementation but on a modi-

fied dataset. After normalization, the initial data are transformed using the following

feature map:

Φ : xij →
√
ωjxij. (2.15)
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As the dissimilarity computation appears only in the E-step, the dataset modifications

are equivalent to changing the norm. Indeed, Equation (2.5) is equivalent to

d(xi, ck) =

√√√√ N∑
j=1

(
√
wjxij −

√
wjckj)2. (2.16)

By doing this, results obtained can be compared more reliably. Differences in the

results are less likely to come from poor implementation as the K-means implement-

ation is always the same. Following these steps, implementation is straightforward.

2.4.3 Results

For our experimental comparison of the different algorithms, the experiment is re-

peated 98 times with different arrangements of the Lego bricks presented on Fig-

ure 2.5, and with different lighting conditions. For each trial, if the algorithm mis-

classifies one or more bricks, it is counted as a failure, else, it is a success. Figure 2.6

presents results obtained on the 98 trials for different weighted K-means algorithms.

The “Original dataset” contains the real measured data and the “Slightly modified

dataset” is the same dataset with a slight color modification. To test the robust-

ness of the algorithms, we removed 50 to the blue component of the bricks, which

corresponds to using bricks of slightly different colors. The notation p∗ represents

the optimal exponent for the weights for each algorithm (its values can be found in

Section 2.4.4). All the results presented in this section are computed on the scaled

datasets. Without scaling, success rates are very low (around 5%) because lengths

(≈ 5cm) and colors (≈ 150) are of a totally different order of magnitude.

The first observation from these results is that regular K-means always results

in very poor classification. One possible explanation for such bad behavior is the

relatively high spread in the data (due to lighting conditions), which involve high

variance in the features values and makes it difficult to differentiate between noise

and true difference of nature. For this reason, emphasizing certain features is required,

which justifies the use of weighted K-means.

Considering the weighted K-means algorithms, CV K-means performs particularly

well on the original dataset. However, after little modifications, it falls into very

bad behavior. Such issue with CV K-means comes from the fact that coefficient of

variation is not appropriate for interval scale data. In other words, CV K-means can

succeed on the original dataset only because the bricks used do not present RGB
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Figure 2.6: Percentage of experiments with zero misclassification. The experiment
was run 98 times under different lighting conditions and with different layouts of the

bricks. Error rates presented are averaged among these 98 runs.

components too close to zero. On the other hand, GR K-means performs reasonably

well (≈ 20% error rates), and is stable to dataset modifications.

Finally, looking at the optimal versions of the exponentiated weighted K-means

algorithms, we see that exponentiated GR K-means can reach perfect classification on

both datasets while CV weights cannot produce good classification on the modified

dataset. A study of the exponents is proposed in the next section.

2.4.4 Influence of the weights exponents

Another way to determine the relevance of the information stored in the weights is to

look at different values of the exponent for exponentiated weighted K-means. If the

weights computed by a given algorithm are properly balanced, then increasing their

importance by increasing p should improve the clustering result. On the other, if the

clustering results decrease when p increases, then the weights are probably not very

well balanced and too much importance is given to certain features. In this section,

different values of p are tried to evaluate the “stability” of the weights found by both

GR and CV K-means. Figure 2.7 represents the evolution of the clustering results

(averaged on the 98 runs) when the value of the weights exponent increases, for both

the original and the modified datasets.

The first thing to be noticed from these plots is that the two curves for GR weights

are superimposable. This shows that GR K-means algorithm is insensitive to average

values of the interval scaled features. As for CV K-means, it performs good under
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Figure 2.7: Exponent influence for Lego bricks clustering with exponentiated
weighted K-means algorithms.

certain conditions (Original dataset) but is not robust to decreasing the mean value

of one feature (Modified dataset).

The left plot of Figure 2.7 shows another interesting thing. For low value of p, CV

K-means performs better than GR K-means (0% error rate for p = 3). Even if the

most important thing is to have one exponent for which error is low, it is interesting

to note that high exponents generate poor clustering results with CV weights. Such

behavior shows that the weights are not so relevant because if they are given too much

importance, clustering gets worse. On the other hand, with exponentiated GR K-

means error rate tends to decrease when the exponent increases. Information carried

by GR weights is good for such clustering problem and should be given more import-

ance. Error rate falls to zero at p = 9 and remains stable to exponent increases until

relatively high values of p (> 20); the balance between important components is well

respected within the weights. For this kind of datasets, characterized by large spread,

mixed scales of measurement and relatively independent features, exponentiated GR

K-means with relatively high exponent seems to be a good clustering method.

2.4.5 Extension to other data sets

On the one hand, Gap-Ratio weighted K-means was developed with a specific problem

(URS from color and shape features) in mind. Hence, it is not surprising that it

performs good on such datasets. On the other hand, it is also interesting to test

this algorithm on other classification datasets of different nature to see how well

it generalizes. Different weighted K-means methods are compared on two famous

supervised learning datasets: the Fisher Iris dataset ([Fisher, 1936]) and the Wine

dataset, both taken from the UCI Machine Learning Repository ([Lichman, 2013]).

Table 2.1 gives some important characteristics of both datasets.
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Table 2.1: Statistics of the datasets used to validate GR K-means.

Dataset Iris Wine
Number of instances 150 178
Number of attributes 4 13

Number of classes 3 3
Is linearly separable? No Yes

Data type Real Real and Integers
Scale of measurement Ratio Ratio

Supervised dataset are chosen in order to have labels to evaluate the clustering output

with external metrics ([Pfitzner et al., 2009]). Hence clustering results are evaluated

using both cluster purity (PUR) and Normalized Mutual Information (NMI). These

two metrics produce outputs between 0 and 1, with 1 representing perfect match

between the cluster assignments and the true labels. Table 2.2 summarizes clustering

results for both datasets, using all previously described implementations of different

algorithms. For each configuration, the algorithm was run 1000 times with different

random initialization. The values reported in Table 2.2 correspond to the average

scores over the different runs.

Table 2.2: Results on other data sets. Accuracy and NMI scores averaged over
1000 runs of the algorithms from different centroid initializations. GR2 and CV 2

denote the exponentiated versions of the algorithms (p = 2).

Iris Wine
PUR NMI PUR NMI

K-means 0.83 0.65 0.97 0.88
GR K-means 0.88 0.72 0.95 0.84
GR2 K-means 0.96 0.86 0.86 0.63
CV K-means 0.96 0.85 0.93 0.79
CV2 K-means 0.96 0.87 0.87 0.67

For the Iris dataset, both GR and CV K-means implementations are better than

regular K-means. Moreover, increasing the weights exponent improves the quality of

the clustering. This means that both gap-ratio and coefficient of variation weights

are able to capture the important information for clustering. However, for the Wine

dataset, the best option is regular K-means, which might mean that the data dimen-

sions are highly correlated and that one cannot isolate certain dimensions to improve

clustering.
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2.5 Conclusion

2.5.1 Key findings

In this chapter, we have introduced a first example of unsupervised robotic sorting

consisting in clustering real objects from color and shape information. The datasets

manipulated for this applications appeared to present various challenges for clustering.

Hence, to overcome the fact that the data are noisy and that some dimensions of

the feature space are interval variables, we have proposed a new weighted K-means

algorithm. This method, called Gap-Ratio K-means, leads to obtain better and more

robust clustering results on a physical implementation of URS. Perspectives and future

work regarding GR K-means are discussed in Chapter 9.

2.5.2 Limitations of hand-designed features for URS

Although it motivated the development of GR K-means, the data representation used

in this chapter is very specific to certain kind of objects. Any classes of objects cannot

be clustered properly from simple color, length and width features. For example,

there is very little chances that different models of screw drivers would be clustered

together using this kind of features (see Figure 1.2). Instead, such generic URS

problem requires features with higher level of abstraction, able to understand the

semantic nature of the objects at hand.

For this reason, in the next chapters, the URS decision making problem is viewed

as an image clustering problem, where each object is represented by a raw picture

of the object. The recent successes in transferring knowledge from the ImageNet

dataset to other vision tasks motivates the use of pretrained deep Convolutional

Neural Networks (CNN) to extract features for the targets image clustering tasks at

hand. In the next chapter, we propose to study how to optimize knowledge transfer

from ImageNet to a new target unsupervised image classification task.
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Part II

Image Clustering with Pretrained
CNN Features
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Chapter 3

Pretrained CNN Feature
Extractors for Image Clustering: a
Benchmark Study

Abstract

To implement an Unsupervised Robotic Sorting (URS) application, good image

clustering algorithms are necessary. Therefore, this part of the manuscript focuses on

image clustering. Recently, a common starting point for solving complex image clus-

tering problems is to use generic features, extracted with deep Convolutional Neural

Networks (CNN) pretrained on a large and versatile dataset (ImageNet). However,

in most research, the CNN architecture for feature extraction is often arbitrarily

chosen without justification. This chapter aims at providing insight on the use of

pretrained deep CNN features for unsupervised problems. Different layers from vari-

ous CNN architectures, combined with standard clustering algorithms, are evaluated

on 8 datasets from 4 different subtasks of image clustering: Natural object recog-

nition, Scene recognition, Face Recognition and Fine-grained recognition. Our key

findings are that: 1. for all architectures and tasks, the last layer before softmax tends

outperform earlier layers; 2. the choice of the CNN architecture can have a huge im-

pact on the clustering results; 3. knowing which architecture to use is a difficult task.

The last two statements motivate the use of ensemble methods in the next chapter.

28



3.1 Introduction

3.1.1 From URS to Image Clustering

The Unsupervised Robotic Sorting (URS) problem studied in this thesis consists in

physically sorting objects in an unsupervised way. The objective is to endow robots

with the ability to sort and clean in a way similar to humans. Therefore, the data

representation used in such an application should contain enough information to infer

semantic content of the different objects and to produce a human-level unsupervised

sorting. Stemming from the recent progresses in image classification (([Krizhevsky

et al., 2012]), ([Simonyan and Zisserman, 2014]), ([Szegedy et al., 2016]), ([He et al.,

2016])), representing the various objects by images seem a smart choice for such

clustering application. Then, the decision making module of URS boils down to an

Image Clustering (IC) problem. Given a set of unlabeled images, the IC (or image-set

clustering) problem consists in finding subsets of images based on their content: two

images representing the same object should be clustered together and separated from

images representing other objects. This part of the manuscript addresses the human-

level image clustering problem, which expected outputs are illustrated in Figure 3.1.

The datasets presented in Figure 3.1, as well as all the other datasets studied in this

chapter, are originally supervised image datasets. Although in all our experiments

the labels are not used at clustering time, having supervision enables to characterize

the “human-level” image clustering and gives a way to evaluate our algorithms.

Remark : This problem should not be confused with image segmentation ([Dhanachandra

and Chanu, 2017]), which is also sometimes called image clustering.

3.1.2 Previous work

Image clustering has received a lot of attention over the last two decades. It has ap-

plications for searching large image databases (([Flickner et al., 1995]), ([Gong et al.,

2015]), ([Avrithis et al., 2015])), concept discovery in images ([Lee and Grauman,

2009]), storyline reconstruction ([Kim et al., 2014]), medical images classification

([Wang et al., 2017]), etc. The first successful methods focused on feature selec-

tion and used sophisticated algorithms to deal with complex features. For instance,

([Goldberger et al., 2006]) represents images by Gaussian Mixture Models fitted to

the pixels and clusters the set using the Information Bottleneck (IB) method ([Tishby

et al., 2000]). ([Seldin et al., 2003]) uses features resulting from image joint segmenta-

tion and sequential IB for clustering. ([Fukui and Wada, 2014]) uses Bags of Features
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Figure 3.1: Definition of the image clustering problem. Examples of inputs and
expected outputs on three natural images datasets.

with local representations (SIFT, SURF, ...) and defines commonality measures used

for agglomerative clustering.

Recently, IC algorithms have shifted towards using features extracted from Convo-

lutional Neural Networks (CNN) pretrained on ImageNet ([Russakovsky et al., 2015]).

([Liu et al., 2016]) uses deep auto-encoders combined with ensemble clustering to
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generate feature representations suitable for clustering. ([Wang et al., 2017]) learns

jointly the clusters and the representation using alternating optimization ([Bezdek

and Hathaway, 2002]). For complex IC problems, the two papers cited above, as well

as ([Gong et al., 2015]) and ([Hu et al., 2017]), use pretrained CNN feature extractors

to generate a new data representation of the images before clustering.

3.1.3 Limitations

In recent research, using pretrained CNN features has enabled to obtain good clus-

tering results on complex IC problems. However, there exists a variety of publicly

available pretrained CNN architectures and, to the best of our knowledge, choosing

which one to use has not been studied yet. Indeed, in all the literature mentioned in

Section 3.1.2, the choice of the feature extractor architecture is never the same, and

never justified. There might be several explanations for such absence of research in

this direction. First, because IC is unsupervised, it is not possible to cross-validate

design choices for a specific problem, making the CNN selection process very hard.

Moreover, using any CNN feature extractor usually results in a huge boost in perform-

ance compared to standard computer vision features. These excellent results might

feel satisfactory enough and hide the fact that a good architecture choice might im-

prove even more the clustering performance.

3.1.4 Contributions

In this chapter, we propose to study the use of deep pretrained CNN features for

unsupervised classification tasks. By carrying out an extensive set of experiments

over 8 datasets representing 4 different IC tasks (see Section 3.2.1), we investigate the

interrelations between the different: 1. IC datasets; 2. CNN architectures; 3. feature

extraction layers; and 4. kinds of clustering algorithms. This study is intended to

provide better insight on the use of pretrained CNN features for unsupervised tasks.

More precisely, we want to know if

• using different architectures, although pretrained on the same dataset (Im-

ageNet), can change the clustering results,

• some layers in these networks extract features which are better suited for unsu-

pervised classification,

• the feature representations from different CNNs combine better with a certain

type of clustering algorithm.
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Our experimental results reveal that overall, the last layer before softmax is better

than all the other layers for feature extraction, and this is true for every architecture

and dataset. The rest of our results can be summarized in one simple sentence:

properly choosing the CNN architecture is important to have good clustering results

but it is a hard task. This conclusion motivates the introduction of a new ensemble

method to generate state-of-the-art results at IC in Chapter 4.

3.2 Experiments design

This chapter aims at answering several questions about the use of deep features

for image clustering. We want to know if different CNN architectures, although

pretrained on the same dataset (ImageNet), behave differently when presented an

unsupervised dataset. We also want to know if a CNN architecture should be “cut”

in the early or late layers for feature extraction. The ideal would be to come up

with generic rules such as: “when facing a particular dataset DS, and to optimize a

given metric M, one should choose the architecture NN, extract features from layer

L and cluster the new feature set with algorithm C”. To do so, we implement the

straightforward pipeline presented in Figure 3.2 for several datasets. For each dataset

we try multiple combinations of NN-L-C triplets. The results of each combination is

evaluated under different metrics.

First
Layers L Final

Layers

DS

NN

C Clusters

True Labels

Metric Score

Figure 3.2: General form of the proposed Image Clustering pipeline.

The choices made for studying the different elements in the pipeline in Figure 3.2

are described in details in the coming sections.

3.2.1 Datasets

To obtain results about CNN feature extractors which are generalizable, experiments

need to be carried out on many datasets, belonging to different subtasks of IC. Hence,
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the proposed pipeline, with different feature extractors and clustering algorithms, is

applied to the unsupervised versions of the following tasks:

• Natural object recognition: We call natural object recognition the task

of classifying images based on a single object it contains. Classes are defined

in the most generic way possible (cat, dog, car, etc.). This task is the most

similar to ImageNet. Hence, although the precise task (categories) and domain

(backgrounds) are different, pretrained deep features are expected to generate

good clustering results on this task. Moreover, we also expect that final layers

will be better suited for this task because this is the kind of objects they are

separating for ImageNet classification.

• Scene recognition: This task is different from what the pretrained network

was trained to do. Indeed, in scene recognition, a category is defined by the

simultaneous presence of multiple objects on the image. For example, a dining

room needs to contain chairs and a table on the image (Figure 3.1b). We still

expect the last layers to perform better at this task as they are supposed to

contain higher level information.

• Fine-grained recognition: This task is also very challenging for pretrained

deep features because classes are defined within what usually defines a single

category for ImageNet. For example, a fine-grained recognition task might con-

sist in recognizing different species of birds. It is difficult because the pretrained

network might have learned to produce features which are too generic for this

task without additional supervision.

• Face recognition: This task is also a fine-grained recognition task, however,

it is of such importance today that we study it as its own class of problems.

For each unsupervised classification task listed above, we pick two datasets: one

small and one large. The datasets studied, together with their statistics, are listed in

Table 3.1.

Hence, we study eight datasets in total. More details on these datasets can be

found on the papers in which they were introduced: VOC2007 ([Everingham et al.,

2007]), COIL100 ([Nayar et al., 1996]), Archi ([Xu et al., 2014]), MIT ([Quattoni and

Torralba, 2009]), Flowers ([Nilsback and Zisserman, 2009]), Birds ([Welinder et al.,

2010]), UMist ([Wechsler et al., 2012]), FEI ([Thomaz and Giraldi, 2010]).
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Table 3.1: Statistics of the eight datasets used for the image clustering benchmark
study.

Dataset Task # images # classes Images size Balanced1

VOC20072 Natural object 2841 20 Variable No
COIL100 Natural object 7200 100 128 × 128 Yes

Archi Scene 4794 25 variable No
MIT Scene 15620 67 variable No

Flowers Fine-grained 400 17 variable Yes
Birds Fine grained 2800 200 variable No
UMist Face 564 20 220 × 220 Yes
FEI Face 6033 200 640 × 480 Yes

1 A dataset is balanced if it contains a similar number of instances for each classes.
2 We use a modified version of the VOC2007 test set. All the images presenting

two or more labels have been removed in order to be able to evaluate clustering.

3.2.2 Architectures

To ease and speed up development, we compare the Keras ([Chollet, 2015]) imple-

mentations of five popular CNN architectures:

• Two VGG architectures: VGG16 & VGG19 ([Simonyan and Zisserman, 2014]),

• One ResNet architecture: ResNet50 ([He et al., 2016]),

• Two Inception-like architectures: InceptionV3 ([Szegedy et al., 2016]), Xception

([Chollet, 2016]).

We also use the ImageNet pretrained weights provided by Keras.

As of today, ImageNet is the only very large labelled public dataset which has

enough variety in its classes to be a good feature extractor for a variety of tasks.

Moreover, there are plenty of CNNs pretrained on ImageNet already available on-

line. For these reasons, we use CNNs pretrained on ImageNet. However, the results

presented here would probably apply to other databases, when larger and more diverse

datasets will be created.

3.2.3 Layers

The IC problem studied in this thesis consists in discovering classes represented by

“objects” present on the pictures. Thus, the feature extractor needs to gather se-

mantic level information about the data to make such clustering possible. Such high

level information is present in the final layers of the pretrained networks. Thus, to
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study the impact of the layer chosen, we pick three layers among the last ones for

each network :

• One layer in the end of the convolutional block (L1),

• The second layer before the ImageNet softmax layer (L2),

• The last layer before softmax (L3).

Picking layers from earlier stages of the network is both not very relevant and not

practical. Indeed, the closer to the beginning of the network the layer is, the bigger the

feature space is and the longer the clustering is. It is probably not relevant because

the features are too low level to be informative without additional supervision.

On the one hand, the last one or two layers might provide better results as their

goal is to separate the data (at least for the fully-connected layers). On the other

hand, the opposite intuition is also relevant as we can imagine that these layers are

too specialized to be transferable. The names (as given in the keras implementation)

of the layers retained for this study are reported in Table 3.2.

Table 3.2: Names of the feature extraction layers studied.

VGG16 VGG19 Inception Xception Resnet50

L1
name block5 pool block5 pool mixed7 add 12 activation 40

shape 25,088 25,088 221,952 102,400 200,704

L2
name fc1 fc1 mixed10 block14 sepconv2 act activation 47

shape 4,096 4,096 131,072 204,800 25,088

L3
name fc2 fc2 avg pool avg pool avg pool

shape 4,096 4,096 2,048 2,048 2,048

3.2.4 Clustering algorithms

Over the last fifty years, many clustering algorithms have been developed. Different

surveys propose different classifications of the clustering methods (([Xu and Wunsch,

2005]), ([Berkhin, 2006])). However, a common bipartite classification of the different

algorithms seem to emerge. The first group of algorithms are called partitioning

methods. Data points are considered independently, as points in the feature space,

and the clusters are created by separating the space into different areas. The other

type of algorithms are called graph-based methods (or connectivity based methods)

and consist in viewing the data as nodes on a graph, connected by a certain distance.
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In this chapter, the goal is not to find a good algorithm to solve a specific prob-

lem but to study the influence of the chosen CNN feature extractor (architecture +

layer) on the IC results. Hence, in this chapter, we only consider standard clustering

algorithms in order to isolate the influence of the features. For now, we leave aside

the most recent deep methods, which are state-of-the-art at clustering. They will be

the purpose of the next chapter. To keep our experiments simple and interpretable,

we pick the most widely used algorithms from each of these two main families of

algorithms:

• K-means (KM) ([Arthur and Vassilvitskii, 2007]),

• Agglomerative Hierarchical Clustering (Agg) ([Murtagh, 1983]).

For both algorithms, we use the default configuration of the scikit-learn implement-

ations ([Pedregosa et al., 2011]). This avoids fine-tuning our clustering algorithms

specifically for deep pretrained features.

There exist a variety of other simple and very popular clustering methods (([Xu

and Wunsch, 2005]), ([Berkhin, 2006])). The ones available in scikit-learn have been

tried ([Guérin et al., 2018c]) and did not present a major interest with respect to the

conclusions drawn from these experiments. However, keeping connectivity based and

graph based algorithms enable us to analyze if different architectures represent data

differently.

3.2.5 Metrics

Although we do not use the labels, our experiments are carried out on datasets that

are inherently supervised. Hence, we can use external validation metrics ([Pfitzner

et al., 2009]) to evaluate the quality of the clustering for the different combinations.

Thus, we use two popular external clustering metrics in our study.

• Normalized Mutual Information (NMI), which is a metric based on inform-

ation theory and defined as:

NMI(Y,C) =
2× I(Y,C)

H(Y ) +H(C)
, (3.1)

where Y is the list of ground truth labels, C the cluster assignments, H(.)

represents the entropy and I(Y,C) the mutual information between Y and C.

NMI ranges between 0 and 1, with 1 representing perfect accuracy.
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• Cluster purity (PUR) is defined by

PUR =
1

N

∑
c∈C

max
y∈Y
| c ∩ y |, (3.2)

were N is the number of elements in the dataset. Purity measures how much

each cluster contains a single class, it also varies between 0 and 1, and a good

algorithm has a purity close to 1.

3.3 Results

This chapter aims at studying the behaviour of different deep feature extractors for

image clustering. Different architectures, combined with different layers, are tested

for feature extraction. Because of the high number of experiments carried out in this

benchmark study, the complete results are only presented in the Appendix to improve

clarity. The full tables of results for our experiments can be found in Appendix B,

they contain NMI and purity scores, as well as clustering time for the eight datasets.

We also represent the different NMI scores in the form of histograms in Appendix C

to visualize better the influence of the features on the clustering results. The body

of the chapter only presents a summary of these results in order to highlight the

important information.

For completeness, Appendix B also includes results using bag of sifts features

(BoF) representations ([Fukui and Wada, 2014]). This enables to compare CNN

features with standard computer vision features and we can see that although BoF

features produce decent purity scores, the NMI scores are much below deep features.

We note that BoF results only appear for the smallest dataset of each task because

BoFs are expensive to compute and of limited interest for our study.

To evaluate the influence of specific components of the clustering pipeline, we

consider our experiments as a 4-dimensional design space which dimensions are: ar-

chitecture, layer, task, clustering algorithm. The correlation between two factors is

then studied by computing the mean and standard deviation (std) over all the results

containing them. These two statistics enable us to evaluate both the overall per-

formance and the stability of a combination. Although our experiments are relatively

small to draw general conclusion, they enable to give a general trend.

3.3.1 Influence of the layer

This results section begins by studying the impact of the choice of the layer on

the clustering results. We want to know how different architectures perform under
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different layers. The relation between the clustering task and the position of the layer

in the network is also studied. Figure 3.3 presents a summary of our experimental

results regarding the impact of the layer chosen.

VGG16 VGG19 Inception Xception Resnet50

0.4

0.6

0.8

(a) Layer-architecture interaction
(mean and std across tasks and clustering algorithms).

Natural object Scene Fine-grained Face

0.2
0.4
0.6
0.8

1 L1 L2 L3

(b) Layer-task interaction
(mean and std across architectures, datasets and clustering algorithms).

Figure 3.3: Influence of the layers on the clustering results (NMI).

The relation results under the different architecture-layer pairs can be visualized

in Figure 3.3a. For all architecture, NMI scores for later layers have higher mean and

lower standard deviation. This reveals that, for our experiments, final layers perform

better overall and are more consistent. The high standard deviation of earlier layers

shows that in some cases, features extracted from early layers can perform well,

however, there is more variability and the results can drop to much lower scores in

other cases. Such statement can be analyzed in more detailed looking at the plots in

Appendix C. For example, for face recognition, some L1 layers present slightly better

results than other layers, on the other hand, for fine-grained recognition, choosing L1

can results in NMI scores lower than L3 by about 0.35.

The influence of the layer on different image clustering tasks is represented in

Figure 3.3b. Before conducting these experiments, our intuition was that early layers

would be better suited for face recognition and fine-grained classification tasks while

late layers would be better at natural object and scene recognition. Indeed, high

level information about an image are contained in the last layers while early layers

represent lower level information (Gabor filters, color blobs, etc.) ([Yosinski et al.,

2014]). However, our experimental results show that whatever the task is, later layers
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perform better. This effect is damped for faces but it is still true. Moreover, for all

tasks, std is higher for early layers.

These results suggest that only the last layer before softmax (L3) should be con-

sidered for clustering. Although in some cases other layers slightly outperform L3

(e.g., L2 for Xception on FEI), the profit is small and the risk is high (high std).

Such finding implies that some “low-level” information is contained in the last lay-

ers of deep CNNs pretrained on ImageNet. This may be explained by the presence

of fine-grained recognition classes in the ImageNet dataset (e.g., different breeds of

dogs). Hence, only L3 layers are considered in the rest of this results section. Drop-

ping the first layers is also motivated by the fact that their feature spaces are of higher

dimensions, which means higher clustering time. For example, on average, clustering

L1 layers take about one hour while L3 layers only take one minute. This difference

is proportional to the size of the dataset.

3.3.2 Influence of the architecture

The next analyses focus on the choice of the CNN architecture. These results can

be found in Figure 3.4. We want to know if an architecture is better suited for

clustering than the others in general (Figure 3.4a) and depending on the task at hand

(Figure 3.4b).

Besides the fact that, in our experiments, Xception presents slightly better results

than the other architectures (higher mean and lower std), it is difficult to come up

with relevant comments about these histograms. The results for each subtask contain

too much variability, which prevents any kind of conclusion like: ”for task T, use

architecture A”. However, we underline that an absence of strong pattern does not

mean that any choice is equivalent. Indeed, there can be a huge difference in the

results between a good and a bad architecture choice (Figure 3.5). Such absence of

trend, together with the criticality of this choice, motivates the development of a new

IC algorithm in Chapter 4, which leverages ensemble methods to remove the need for

architecture selection.

3.3.3 Influence of the clustering algorithm

For completeness, correlations between the architecture used and the type of cluster-

ing algorithm are also checked. This analysis is intended to investigate if the features

extracted by different architecture are better suited for partitioning or graph-based
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Figure 3.4: Influence of the CNN architectures (L3) on the clustering results
(NMI).
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Figure 3.5: Examples where the choice of the CNN architecture is crucial for the
clustering results.

methods. These results are summarized in Figure 3.6. Our experiments do not sug-

gest any clear conclusions, indeed, the difference in the mean results are way smaller

than the standard deviations. In other words, the risk of having poor clustering

results is higher than the relative advantage one algorithm can have over the other.
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Figure 3.6: Influence of the clustering algorithm for different CNNs.

3.4 Conclusion

3.4.1 Key findings

Using pretrained CNN architecture to extract features is now a common practice to

solve image clustering. However, the choice of the architecture and layer for feature

extraction is often arbitrary. In this chapter, we conducted extended experiments on

8 standard computer vision datasets from four different IC subtasks to investigate the

behavior of these features. Our first key finding is that for all architectures and tasks,

the last layer before softmax seems to produce the most discriminative features for

clustering. Our experiments also demonstrate that the selected deep feature extractor

has a major impact on the results, however, they do not give any insight about how

to select it.

3.4.2 Towards ensemble methods for feature extraction

The initial purpose of this benchmark study was to lead to a set of simple rules to

help designing better IC algorithms by optimizing feature extraction. For example, we

expected that for fine-grained clustering, earlier layers in the network might perform

better as they are supposed to contain lower level information. We also expected

to find some clear correlations between the tasks to solve and the architecture to

use. However, the experiments carried out in this chapter rather demonstrate that

such simple rules do not exist. In addition, when facing an IC problem, the feature

extractor selection process cannot be cross-validated because of the absence of labels

(unsupervised task). The importance of architecture selection, together with the

absence of method to solve this problem, motivates the introduction of a new ensemble

method to generate state-of-the-art results at IC in Chapter 4.
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Chapter 4

Improving Image Clustering using
Multiple Pretrained CNN Feature
Extractors

Abstract

To improve image clustering results, the current practice consists in replacing

raw image data with features extracted by a pretrained convolutional neural network

(CNN). However, in the previous chapter, we have shown that the specific features

extracted, and, by extension, the selected CNN architecture, can have a major impact

on the clustering results. In addition, we have seen that this crucial design choice is

hard and is often decided arbitrarily due to the impossibility of using cross-validation

with unsupervised learning problems. However, information contained in the differ-

ent CNN architectures may be complementary, even when pretrained on the same

data. In this chapter, we propose to improve clustering performance, by rephrasing

the image clustering problem as a multi-view clustering (MVC) problem that con-

siders multiple different pretrained feature extractors as different “views” of the same

data. We then propose a multi-input neural network architecture that is trained end-

to-end to solve the MVC problem effectively. Our experimental results, conducted

on three different natural image datasets, show that: 1. using multiple pretrained

CNNs jointly as feature extractors improves image clustering; 2. using an end-to-end

approach improves MVC; and 3. combining both produces state-of-the-art results for

the problem of image clustering.
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4.1 Introduction

4.1.1 Overview

Image Clustering (IC) is a major research topic in machine learning which attempts

to partition unlabeled images based on their content. In this chapter, we still consider

the IC setting where the number of clusters is a user defined parameter. As explained

earlier, research in IC has recently shifted towards using features extracted from

Convolutional Neural Networks (CNN) pretrained on ImageNet, which has lead to

substantial improvements on complex IC datasets. In the previous chapter, it was

shown that choosing a proper architecture is a very hard task when designing an image

clustering pipeline. This difficulty, together with the impossibility to cross-validate

algorithmic choices for unsupervised tasks, lead to pretrained feature extractor choices

which are often arbitrary (([Liu et al., 2016]), ([Wang et al., 2017]), ([Gong et al.,

2015]), ([Hu et al., 2017])). This is potentially problematic as we also showed in

Chapter 3 that the choice of the architecture used for feature extraction has a major

impact on the clustering results.

In this chapter, we aim to remove the need for this design choice. Following the

intuition that different pretrained deep networks may contain complementary inform-

ation (see Section 4.2.2), we propose to use multiple pretrained networks to generate

multiple feature representations. Such representations are treated as different “views”

of the data, thus casting the initial IC problem into Multi-View Clustering (MVC).

The success of ensemble methods for clustering ([Vega-Pons and Ruiz-Shulcloper,

2011]) suggests that such an approach can improve overall clustering results.

Finally, building on the recent success of end-to-end clustering methods ([Al-

jalbout et al., 2018]), we also propose to leverage JULE ([Yang et al., 2016]), a

deep clustering method, to solve the MVC problem. By adapting JULE to optimize

the weights of a parallel neural network architecture we demonstrate state-of-the-art

IC results on several public image datasets. This approach to MVC also has the

advantage of producing a unified representation of the initial dataset which is low-

dimensional and compact. An overview of the proposed method to solve IC can be

seen in Figure 4.1.

4.1.2 Contributions

We propose to transform the IC problem into MVC by extracting features from several

different pretrained CNNs. This removes the crucial design choice of feature extractor

selection. We also propose to adapt a deep clustering approach to address MVC. Our

43



Unsupervised
image set

X

Deep feature
extractors

Fz

...

Z1

Z2

ZM

Multi-view generator

=

=

=

Multi-layer
perceptrons

Φ

. . .

X̃1

X̃2

X̃M

Z̃1

Z̃2

Z̃M

+

Concatenate

ϕout

Deep multi-view clustering network
(MVnet)

Trained with JULE
(Section 4.3.3)

Z̃out
y

Clusters

Figure 4.1: Proposed multi-view generation + deep multi-view clustering (DMVC)
approach to solve the Image Clustering problem.

experimental results, carried out across 8 standard computer vision datasets, suggest

that:

• Image clustering can be improved by using features extracted from several pre-

trained CNN architectures, eliminating the need to select one.

• Multi-view clustering can be improved by adopting an end-to-end clustering ap-

proach.

• These two ideas can be combined to obtain state-of-the-art results at image clus-

tering on several standard IC datasets.

• This methodology produces a unified compact low-dimensional representation of

the original dataset.

4.2 From Image Clustering to Multi-View Clus-

tering

4.2.1 Related work

Ensemble clustering (EC) consists in combining different clustering results in or-

der to obtain a unified, final partition of the original data with improved clustering
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accuracy ([Vega-Pons and Ruiz-Shulcloper, 2011]). It is composed of two steps: gen-

eration, which deals with the creation of a set of partitions, and consensus, where all

the partitions are integrated into a better set of clusters. In contrast to EC, Multi-

View Clustering (MVC), is concerned with finding a unified partition from multi-view

data ([Chao et al., 2017]), which can be obtained by various sensors or represented

with different descriptors. Recently, MVC has received a lot of attention: In ([Kumar

and Daumé, 2011]), the authors propose different loss functions applied on the con-

catenated views, in ([Zhao et al., 2017]) and ([Wang et al., 2016]) lower dimensional

subspaces are learned before clustering with standard methods.

MVC and EC are closely related and have already been combined in previous work.

In ([Tao et al., 2017]), good MVC results are attained by embedding MVC within the

EC framework. The authors leveraged the different views to generate independent

partitions and then used a co-association-based method to obtain the consensus. In

both ([Gao et al., 2015]) and ([Ceci et al., 2015]), generation mechanisms borrowed

from EC are used to generate artificial multiple views of the data. In this chapter,

we propose to use multiple pretrained CNNs to generate different feature representa-

tions of an image dataset. Hence, we generate a MVC problem from an ensemble of

pretrained CNN feature extractors.

4.2.2 Why combining CNN architectures may succeed?

Combining CNN architectures that were pretrained on the same dataset might seem

counter-intuitive as one can expect that all networks have learned the same inform-

ation. This section aims at explaining the intuition behind trying this idea. This

intuition is then validated experimentally in the rest of this chapter.

Let I = {0, ...255}ν1×ν2×3 be the space of ν1 by ν2 colored images considered for

IC. Then, a classification task T=(L, f ∗) is defined by:

• A set of possible labels L = {0, 1, ...K}, where 0 represents “none of the defined

labels”.

• An oracle labelling function f ∗ : I → L, which associates a label to every image.

For example, for the task of classifying images of cats and dogs, L would be {0, 1, 2},
and for an image x, the oracle f ∗(x) would output 1 if there is a cat on the image, 2 if

there is a dog and 0 if there is either none or both. This definition of a classification

task is valid for supervised classification or unsupervised classification with known

number of classes, which is the case studied in this chapter. Although in practice
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we only study datasets composed of images which possess at least one of the labels,

adding the “zero” label, allows us to define T on all I.

This definition of a classification task is abstract and f ∗ is unknown and exists

independently of any dataset. In practice, to solve T, one first need to materialize it

in the form of a dataset DS = (X, y∗), where X ⊂ I is a set of images and y∗ = f ∗(X)

are the corresponding labels in L, which are inferred by human experts. For certain

problems, such as medical image annotation, human experts might be scarce, thus

making labelling very costly. The classification problem (T, DS) is supervised if y∗

is known and unsupervised else. In the supervised setting, solving T for DS means

finding a function f : I → L for which there exists a domain on which it is equal to

f ∗: Df = {x ∈ I | f(x) = f ∗(x)}. We call Df the domain of validity of f . Then, we

have:

• Df ⊂ X ⇒ f does not fit the training set,

• Df = X ⇒ f overfits the dataset DS,

• Df ⊃ X ⇒ f generalizes to some extent.

For many image classification problems, it is very hard to learn f from scratch.

Instead, it is more common to use a pretrained CNN feature extractor fz to project

the initial dataset X to a latent feature space of lower dimension d:

fz : I → Rd

X 7→ Z.
(4.1)

From now on, X will denote a clustering dataset. Now, let A be a clustering

algorithm. Unlike in the supervised case, a clustering algorithm solves an unsuper-

vised classification problem by looking at the whole set at once. In other words, if X

contains N data points and A is applied to the outputs of fz, we have:

A : (Rd)N → LN

Z 7→ y,
(4.2)

where y are the cluster assignments produced by A. From these definitions, we can

introduce DT
fz ,A
⊂ I, the domain on which applying classification algorithm A to the

outputs of fz enables to solve task T . In the previous chapter, our experimental results

suggested that, for a given dataset, the ranking of the different feature extractors is

little dependent on the chosen clustering algorithm. Hence, the subscript A is dropped

to define DT
fz

, the domain on which fz produces a “clustering friendly” latent space

for task T.
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Finally, let f 1
z and f 2

z be two pretrained CNN feature extractors, and let T be the

task that we aim to solve on the clustering dataset X. In the previous chapter, it

was shown that f 1
z and f 2

z perform differently on the different datasets. For (T, X),

let’s assume that, according to some clustering validation metric (e.g. NMI), f 1
z

outperforms f 2
z . Then, we can conclude that either

• DT
f2
z
( DT

f1
z

(Figure 4.2a) or,

• ∀j ∈ {1, 2},DT
fjz

( (DT
f1
z
∪DT

f2
z
) (Figure 4.2b),

where the ( symbol represents strict inclusions.

DT
f1z

DT
f2z

DX

(a) Case 1: DT
f2
z
( DT

f1
z

DT
f1z

DT
f2z

DX

(b) Case 2:
∀j ∈ {1, 2},DT

fjz
( (DT

f1
z
∪DT

f2
z
)

Figure 4.2: Schematic representation of the two possible implications of f 1
z being

better than f 2
z .

In both situation, leveraging both networks can have positive implications on the

clustering results:

• Case 1: f 1
z alone contains all the information to cluster X. However, in

Chapter 3, we showed that for unsupervised datasets, it is not possible to know

which network performs best. Hence, using the two networks allows to make

sure that all the information available for clustering are provided to the final

clustering algorithm.

• Case 2: The combination of the two networks contains more information than

each of the networks separately. In other words, even if f 2
z performs worse than

f 1
z , it still contains information that f 1

z does not. This kind of situation defines

a typical setting where ensemble learning would be beneficial.
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The domain of X, called DX , is represented in green on both sketches of Figure 4.2

and illustrates the two potential benefits of combining CNN feature extractors. Obvi-

ously, this intuition can be generalized to more than two networks. Although all this

development is just an intuition and does not have theoretical evidences, we intend

to validate it experimentally in the rest of the chapter.

The potential improvement from using multiple pretrained CNN feature extractors

can also be understood through the following contrived example. To recognize a

car, one network might learn a wheel detector while another one might detect wing

mirrors. Both sets of discriminative features would enable to solve the ImageNet

classification task, on which both networks were trained, but would also carry very

different information that might be useful in solving a new IC task.

Finally, it is also important to note that the opposite intuition may also be valid.

Indeed, introducing redundancy of information might hide the important information

and decrease the clustering results. This will be investigated in the rest of the chapter.

4.2.2.1 Visualisation

To visualize this intuition on real data, we leverage the Fowlkes-Mallows Index (FMI)

([Fowlkes and Mallows, 1983]), another external clustering validation metric, which

has the advantage of having a local form. For a dataset (X, y∗) and cluster assign-

ments y, which associates a predicted label yi to every point xi in X, we note FMi the

local Fowlkes-Mallows score of datapoint xi. FMi ranges between 0 and 1 and is high

if xi is well clustered with respect to y∗. The FMI is better explained in Chapter 6

(Section 6.4.1). From this definition of FMi, we introduce the concept of FM score

per class :

FMCk =
1

NCk

NCk∑
p=1

FMp, (4.3)

where Ck represents true class k and NCk is the number of elements of Ck in the

dataset.

Then, we demonstrate the complementarity of deep feature extractors by carrying

out experiments on the UMist dataset (see Section 3.2.1). We apply agglomerative

clustering to the best performing network on this dataset (InceptionResnet) as well

as the two worst performing networks (VGG16 and Densenet121). These networks

are introduced in Section 4.2.4. Then, the NMI, purity, FM and FMC4 scores are

computed. As shown in the table in Figure 4.3, InceptionResnet is performing way

better than its two competitors with respect to all global metrics. However, looking

at class 4, we can see that the two other networks present a significant improvement
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NMI PUR FM FMC4

InceptionResnet 0.775 0.642 0.537 0.442
VGG16 0.689 0.550 0.372 0.653

Densenet121 0.684 0.553 0.384 0.700

(a) InceptionResnet (b) VGG16 (c) Densenet121

Figure 4.3: 2d t-SNE visualization of features extracted by three pretrained CNNs
for the UMist dataset. These features form different complementary views of the

data.

over InceptionResnet. The 2d t-SNE ([Maaten and Hinton, 2008]) representations

of the features extracted with the different CNNs are also represented in Figure 4.3.

Members of class 4 are in orange and the other classes in purple. For VGG16 and

Densenet121, the feature representations of class 4 are more compact and isolated,

which explains why they perform better on this class. This experiment demonstrates

the complementarity of the different networks on one example and justifies the pro-

posed multiview clustering approach.

4.2.3 IC problem reformulation

Let X = {x1, ..., xN} ⊂ I be an unlabeled set of N natural images, and let Fz =

{f 1
z , ...f

M
z } be a set of M feature extractors. In theory, Fz can be composed of

any function mapping raw pixel representations to lower-dimensional vectors, but in

practice, we use pretrained deep CNNs. The first step in our approach is to generate

a set of feature vectors from each element of Fz. For all i ∈ [1, ...M ], we denote

Zj the matrix of features representing X such that, its row Zj
i is the feature vector

representing xi and extracted by f jz :

Zj
i = f jz (xi). (4.4)

In other words, Z = {Z1, ..., ZM} can be interpreted as a set of views representing X.

Thus, Z is a multiview dataset representing X and the problem of clustering Z is a

MVC problem, which can be solved using any MVC algorithm ([Chao et al., 2017]).
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A visual representation of the multiview generation mechanism can be seen in the

blue frame of Figure 4.1, which is repeated in Figure 4.4 to ease readability.

Unsupervised
image set

X

Deep feature
extractors

Fz

...
Z1

Z2

ZM

Figure 4.4: Proposed approach to generate multiple views from a unique
unsupervised set images.

Remark: All along this chapter, we use letter i for indexing across data samples,

letter j for indexing across feature extractors and letter k for indexing across clusters.

Similarly, N , M and K respectively stand for the number of data samples, feature

extractors and clusters.

4.2.4 Experimental evidences

To conclude this section on artificial multiview data generation, we give first ex-

perimental evidences and study the optimal number of networks to use. To do so,

experiments are carried out on 4 of the standard datasets introduced in Chapter 3:

VOC2007, Archi, Flowers and UMist. In these experiments, as well as in the rest of

the chapter, we use 10 pretrained architectures: VGG16, VGG19, Inception, Xcep-

tion, Resnet50, Densenet121, Densenet169, Densenet201 ([Huang et al., 2017]), Nas-

net ([Zoph et al., 2017]) and InceptionResnet ([Szegedy et al., 2017]). In this section,

MVC problems are solved using the Multi-View Ensemble Clustering method ([Tao

et al., 2017]) with agglomerative clustering (MVECagg). This method consists in

clustering each view separately using agglomerative clustering and generating a con-

sensus partition using an ensemble clustering method based on co-association matrix.
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This method is better detailed in Chapter 5. We choose agglomerative clustering as

our base algorithm because its simplicity enables us to study straightforwardly the

clusterability of the different feature spaces. Agglomerative clustering is also pre-

ferred over K-means because it does not depend on random initialization and thus

avoids having random effects in our results.

Then, to study the clustering quality of multiview data from m (≤ 10) CNNs,

we generate all the multiview problems from all the possible combinations among

the different architectures. Each of these problems is then solved with MVECagg and

the NMI scores are computed. In Figure 4.5, for all m ∈ {1, ..., 10} we report the

mean and standard deviation across the C10
m NMI scores. To generate Figure 4.5, for

each dataset, we need to solve
10∑
m=1

C10
m = 1023 MVC problems. These results suggest

that combining more networks both increases the clustering accuracy on average

and decreases the variability, which can be seen as the risk to obtain poor results.

These results are in line with the intuitions from Section 4.2.2. From these simple

experiments, we decide to use all ten networks in the rest of the chapter, which is likely

to give the most robust clustering results. It is also interesting to note that the two

networks case performs worst than the single network case for all four datasets. This

probably comes from the absence of a “majority” to distinguish which information is

relevant.
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Figure 4.5: Evolution of the NMI score and total time (in sec) for different
numbers of pretrained CNN feature extractors.

The evolution of the clustering time with the number of feature extractors is also

reported in Figure 4.5. Obviously, when more networks are added to the pipeline, the

total clustering time increases. However, when running MVECagg with m networks,
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if we have m GPUs available, each feature extraction and agglomerative clustering

can be run in parallel on a dedicated GPU. Thus, for a given dataset, if we note

• tj1 the time for feature extraction with f jz ,

• tj2 the time for running agglomerative clustering on Zj and

• t3 the time for merging the different partitions into a consensus partition,

the total clustering time is max
j

(tj1 + tj2) + t3. For this reason, the time for running

MVECagg does not increase linearly with the number of feature extractors. Using

10 networks instead of one only increases the clustering time by a factor of around

2.5, As illustrated on Figure 4.5. The increase in the total time comes from the

fact that the slowest networks are selected more often when more networks are used

and that the partitions grouping becomes slower. In practice the slowest step is

feature extraction. If only m′(< m) GPUs are available, then the total time increases

by a factor of ∼
⌈
m
m′

⌉
, where d.e denotes the ceiling function. Making the method

scalable to a large number of CNNs when few GPUs are available is a potential area

of improvement for the method.

4.3 Deep Multi-View Clustering

4.3.1 Preliminaries: Deep end-to-end clustering

In this chapter, we also propose to leverage recent end-to-end deep clustering methods

to solve the MVC problem. End-to-end clustering methods based on neural networks

have produced excellent results over the past two years. A complete literature re-

view of the topic is outside the scope of this paper, for that we refer the reader to

the following recent survey ([Aljalbout et al., 2018]). However, to better understand

how deep clustering works we describe the first successful method, Deep Embedding

for Clustering analysis (DEC) ([Xie et al., 2016]), which is a centroid-based cluster-

ing method. This approach begins by pretraining a multi-layer perceptron (MLP)

using an auto-encoder input reconstruction loss function. Then, the MLP is fine-

tuned to output a set of cluster centers which define cluster assignments. The joint

optimization of the network and the centroids are based on the minimization of the

Kullback-Leibler (KL) divergence between the current distribution of the features and

an auxiliary target distribution, derived from high-confidence predictions. Improved

Deep Embedding Clustering (IDEC) is an improved version of DEC introduced in

([Guo et al., 2017]). It modifies DEC by replacing the loss function by a combined
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loss, taking into account the auto-encoder reconstruction loss during fine tuning. Such

an approach preserves the local structure of the data and appears to improve the DEC

clustering results.

4.3.2 Deep multi-view clustering (DMVC)

In this section, we define our approach for solving MVC. Let Cee be any deep end-

to-end clustering framework. Cee is defined by a loss function L and a procedure

P to optimize the loss function. Multiple approaches have already been adopted

to define the clustering-oriented loss L and the optimization procedure P . Two

examples, IDEC and JULE, are discussed respectively in Section 4.3.1 and 4.3.3.1.

To apply Cee to an unsupervised dataset X̃, one first needs to specify a neural network

architecture ϕθ, parameterized by θ, which projects X̃ into a lower dimensional feature

space: Z̃θ = ϕθ(X̃). Then, P is applied to minimize L(θ, X̃), producing both a good

representation Z̃θfinal
and a set of cluster assignments yfinal.

Remark: The proposed solution to Image clustering (IC) is in two steps: feature

extraction and deep clustering. The “tilde” notation is introduced to avoid confusion

between the different input spaces and latent spaces. Hence, X and Z refer respectively

to the input and latent spaces of the deep feature extractor fz, which weights are

fixed, whereas X̃ and Z̃ refer to the deep clustering network ϕθ, parameterized by θ.

Obviously, if features from a single feature extractor are used to train a single deep

clustering network, we have Z = X̃.

The choice of the architecture of ϕθ usually depends on the kind of dataset to

solve. For example, when dealing with large images, ϕθ can be a CNN and when X̃ is

composed of smaller vectors, ϕθ can be a multi-layer perceptron (MLP). In the case

of MVC, each element of X̃ is a collection of vectors. For example, the ith element of

X̃ is written as X̃i = {Zj
i ;∀j ∈ [1, ...M ]}. For this reason, to embed MVC into a deep

clustering framework, we need to define a different neural network architecture for

ϕθ, which we call MVnet. MVnet consists of a set of M independent MLPs, denoted

Φ = {ϕθ1 , ...ϕθM}, such that, ∀j ∈ [1, ...M ], the dimension of the input layer of ϕθj is

equal to the dimension of the output layer of the associated f jz . We also define ϕθout ,

another MLP with input layer dimension equal to the sum of the dimensions of the

output layers over the elements of Φ. Thus, an MVnet is composed of three layers:

a parallel layer containing all the elements of Φ, followed by a concatenating layer

which feeds into ϕθout . A visual representation of the MVnet architecture can be seen

in Figure 4.6, which is a duplicate of the red box in Figure 4.1. We note that all the

elements of Φ are independent and do not share any weights.
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Figure 4.6: Proposed deep multi-view clustering approach to solve multi-view
clustering.

DMVC is a generic framework and MVnet can be optimized using most deep

end-to-end clustering approaches. In practice, we have tried to implement DMVC

within both the IDEC and the JULE ([Yang et al., 2016]) frameworks. After carrying

out some simple experiments on standard datasets, we noticed that JULE performs

significantly better. In addition, implementing IDEC on a new dataset requires ad-

ditional parameters tuning to pretrain the autoencoders, which is time consuming,

potentially error-prone and less generic. For these two reasons, in the rest of this

chapter, we adopt JULE to solve the DMVC problem. The proposed JULE-DMVC

implementation is explained in more details in the next section.

4.3.3 DMVC with JULE

Joint Unsupervised Learning of Deep Representations and Image Clusters, or JULE,

is an iterative end-to-end clustering process that has demonstrated excellent exper-

imental results on several natural image datasets. In this section, we propose to

leverage JULE to train an MVnet to solve the MVC problem. We start by explaining

the standard JULE framework and then propose an extention to adapt it to MVnet.

We note that Section 4.3.3.1 is a summary of JULE, for a more complete description,

we refer the reader to the original paper ([Yang et al., 2016]).
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4.3.3.1 Joint Unsupervised Learning of Deep Representations and Image
Clusters

Notations and Definitions

Let X̃ be an unsupervised dataset containingN samples that we aim to cluster intoK∗

groups, where the target number of clusters K∗ ∈ N, is a user defined parameter. Let

ϕθ denote a neural network parameterized by θ, which produces a lower dimensional

representation of the initial dataset Z̃θ = ϕθ(X̃). JULE is an iterative process,

hence we introduce θ[t] and y[t] to talk about the values of the weights and cluster

assignments at iteration t. At step t, the cluster assignment y[t] defines a set of

K[t] ≤ K∗ clusters: {Ck[t], k ∈ {1, ..., K[t]}}. Likewise, θ[t] defines a latent space

Z̃θ[t] = {z̃i[t] = ϕθ[t](x̃i), x̃i ∈ X̃}.
Then, we define N κ

i ⊂ Z̃θ, the set of the κ nearest neighbors of z̃i. This definition

is used to introduce the matrix W , which defines the similarity between data samples:

W (i1, i2) =

{
exp(− ||z̃i1−z̃i2 ||

2
2

σ2 ), if z̃i2 ∈ N κ
i1

0, else.
(4.5)

In this equation, σ2 = 1
N×κ

∑
z̃i1∈Z̃θ

∑
z̃i2∈N

κ
i1

||z̃i1 − z̃i2||22 is used to normalize W

across all the data and κ is a user defined parameter. In practice, we follow the

recommendations of the authors of the original paper ([Yang et al., 2016]) and use

κ = 20. The definition of similarity in Equation 4.5, which can be found in ([Zhang

et al., 2012]), considers that a sample is similar to another sample only if it belongs

to its neighborhood. If this condition is verified, the similarity varies inversely to the

distance between these points. We note that W is not symmetric.

Finally, W is used to define the notion of clusters affinity which represents the

similarity between two clusters Ck1 and Ck2 :

A(Ck1 , Ck2) =
1

|Ck1|2
1T|Ck1

|WCk1
,Ck2

WCk2
,Ck1

1T|Ck2
|

+
1

|Ck2|2
1T|Ck2

|WCk2
,Ck1

WCk1
,Ck2

1T|Ck1
|.

(4.6)

In Equation 4.6, |Ck| is the number of samples in cluster Ck, 1|Ck| is a vector of length

|Ck| composed only of ones, and WCk1
,Ck2

is the submatrix of W which points from

samples in Ck1 to samples in Ck2 . This definition of cluster affinity also come from

([Zhang et al., 2012]).
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Overview

JULE is an iterative optimization process which leverages alternating optimization

to obtain both good cluster assignments y[tf ] and a good new representation of the

initial data Z̃θ[tf ]. Indeed, going from iteration t : (θ[t], y[t]) to iteration t+ 1 consists

in solving two subproblems:

• Representation learning: The initial network ϕθ[t] is trained on the dataset

(X̃, y[t]) to generate a set of updated weights θ[t+ 1].

• Clusters merging: A new set of cluster assignments y[t+ 1] are generated from

similarities computed in Z̃θ[t+1].

These two steps are explained in more details in the rest of this section. Because

clusters are being merged, the total number of clusters decreases when we progress

through the optimization: t < t′ ⇒ K[t] < K[t′]. JULE stops at iteration tf such

that K[tf ] = K∗. As a final step, the network ϕθ[tf ] can optionally be trained on y[tf ]

to fine-tune the representation. All the steps composing JULE can be visualized on

a two dimensional toy example in Appendix D.

Initialization

The initial set of clusters y[t0] is computed using the initialization method proposed

in ([Zhang et al., 2013]). At first, a cluster is created for each sample, containing

the sample and its nearest neighbor in the input space X̃, thus creating N clusters.

Then, the number of clusters is reduced by merging clusters which contains duplicated

samples. This heuristic process usually lead to clusters which contain between 3

to 5 samples. The weights of the neural network θ[t0] are initialized using Xavier

initialization ([Glorot and Bengio, 2010]), which consists in drawing them from a

normal distribution with zero mean and a variance which is inversely proportional to

the number of neurons.

Representation learning

To go from θ[t] to θ[t+ 1], JULE creates triplets of samples (ia, ip, in), where

• ia is the anchor sample,

• (ia, ip) is a “positive pair”, i.e. y[t]ia = y[t]ip ,

• (ia, in) is a “negative pair”, i.e. y[t]ia 6= y[t]in .
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Then ϕθ, which has initial weights θ[t], is trained to minimize a triplet loss ([Schroff

et al., 2015]):

L(θ, (ia, ip, in)) = γWt(ia, ip)−Wt(ia, in) + α, (4.7)

where γ and α are user defined parameters. This kind of loss has become very

common in representation learning ([Sermanet et al., 2018]). It consists in bringing

closer points with the same labels while increasing their distance to other points. The

parameter γ weights the importance between the positive and negative pairs. A large

γ fosters ϕθ to produce compact clusters while a small one emphasizes well separated

clusters. The parameter α is usually called the margin, it defines a minimum distance

between clusters. In ([Yang et al., 2016]), the authors suggest to use γ = 2 and

α = 0.2.

Clusters merging

The cluster merging process is driven by a single parameter η, which is called the

unfolding rate. To go from y[t] to y[t + 1], we first need to compute W [t + 1] from

Equation 4.5 in latent space Z̃θ[t+1]. Then A is computed with Equation 4.6 and the

two most similar clusters (Ca, Cb) are merged:

(Ca, Cb) = argmax
k1 6=k2

A(Ck1 , Ck2). (4.8)

When merging two clusters, the total number of clusters goes from K[t] to K[t]− 1.

During the “cluster merging” step of iteration t, this operation is repeated until the

total number of clusters reaches K[t + 1] = max{b(1− η)K[t]c , K∗}. Recommend-

ations for the unfolding rate are to use η = 0.2 for face recognition datasets and

η = 0.9 for all other cases.

Remark: After each merging, the set of clusters is modified and A must be recomputed.

A few tricks to fasten this operation are introduced in the original paper.

4.3.3.2 JULE with multiview data

In this section, we propose to use JULE to train an MVnet to solve the MVC prob-

lem. The initialization step for JULE requires to merge the first clusters based on

distances in the initial feature space of the data. To avoid having to define a distance

in a multiview space, a different approach is adopted. First, each ϕθj is pretrained

separately on Zj. After training all the ϕθj ’s, ϕθout is trained on the concatenation of

the Z̃j = ϕθj(Z
j). Once MVnet has been properly initialized, it is used to produce
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a meaningful initial unified latent representation of the multiview data. This repres-

entation serves as the initial space in which the first cluster labels are assigned. Once

the first clusters are initialized, JULE can be carried out normally on the MV data.

Another straightforward way to use JULE to solve MVC is to concatenate the

different views and apply JULE to the concatenated features. This method is taken

as a baseline for comparison in order to evaluate the MVnet approach and is referred

to as the Concatenate and Cluster approach (CC).

4.4 Experimental validation

4.4.1 Experimental setup

Our experiments are conducted on the same 8 datasets presented in Section 3.2.1

from Chapter 3. For multiview generation, we use the Keras ([Chollet, 2015]) im-

plementations and pretrained weights of the ten CNN architectures introduced in

Section 4.2.4. For each network, the chosen layer is the last before softmax, as sug-

gested by the experimental results of Chapter 3.

To solve the generated MVC problem, we compare the two proposed DMVC

methods (CC and MVnet) against MVEC. These three methods are implemented

using JULE, which has been implemented in Keras to ease integration within the full

IC pipeline (Figure 4.1). Other versions of these algorithms, using IDEC instead of

JULE, have been tested in ([Guérin and Boots, 2018]) but do not present a major

interest. For MVnet, we also report the results without fine tuning (MVnetfix), i.e.

just after the initialization of each MLP. The results are also compared to MVEC with

agglomerative clustering (MVECagg) so as to have a standard baseline for comparison.

DMVC is a framework for unsupervised classification, hence, hyperparameter tun-

ing should be avoided. In all of our experiments, we use default parameters for every

sub-algorithm used. For agglomerative clustering, we use the default configuration

of the scikit-learn implementation ([Pedregosa et al., 2011]). For MVEC, the co-

association matrix is clustered with agglomerative clustering with average linkage.

Finally, for JULE, we use the hyperparameters recommended in the original paper

([Yang et al., 2016]), which are given in Section 4.3.3.1. We also use the same kind

of neural network architecture used in the original paper:

• all the MLPs constituting the MVnet architecture used in our experiments have

dimensions d− 160− 160, where d is the input dimension,

• the activation functions for the hidden layer are rectified linear unit,
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• and we also use l2-regularization during training.

.

The clustering results are evaluated using both normalized mutual information

(NMI) and purity (PUR), which are commonly used in unsupervised classification.

They both range between 0 and 1, with 1 representing perfect accuracy.

4.4.2 Experimental results

All the results of our experiments can be found in Appendix E. They report NMI and

PUR scores for every pretrained CNN independently as well as for the different MVC

methods applied to the MVC problems generated with the ten feature extractors. It is

difficult to draw conclusions from the large number of results reported in Appendix E.

For this reason, this section presents a condensed version of these results.

First of all, an algorithm is good if it produces cluster assignments with both high

NMI and high purity. To simplify the analysis of the results, we introduce a mixed

clustering evaluation metric to analyze jointly NMI and PUR results:

MIXβ = β NMI + (1− β) PUR, (4.9)

where β is a coefficient between 0 and 1 which weights the relative importance between

NMI and PUR. Figure 4.7 represents the MIX0.5 scores for the different methods and

datasets.

To evaluate the interest of the proposed multi-view generation approach, both

DMVC approches and MVEC need to be compared with each feature extractor taken

independently. Comparing results with each of the ten networks is both cumbersome

and difficult to analyze. Instead, we prefer to report results for the Best network

(BNet) and the Worst one (WNet). BNet (respectively WNet) represents the net-

work which demonstrates the best (respectively worst) results on the precise dataset

where it appears. In practice, BNet is impossible to choose in advance because on

a true unsupervised dataset, external evaluation metrics (NMI, PUR, etc.) cannot

be computed. The only possible strategy for selecting a feature extractor f j
∗
z among

Fz = {f jz , j ∈ {1, ...,M}} is one we call the Leading Network (LNet) strategy. Given

a clustering problem X and a clustering algorithm A, the LNet strategy consists in

using a set of P supervised datasets {(X1, y
∗
1), ..., (XP , y

∗
P )} and choose f j

∗
z such that

j∗ = argmax
j∈{1,...,M}

(
1

P

P∑
p=1

MIX0.5(A(f jz (Xp)), y
∗
p)

)
. (4.10)
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In other words, the leading network is the one which presents the best clustering res-

ults on average across the P supervised datasets, with respect to algorithm A. Using

the online optimization formalism ([Hazan et al., 2016]), different feature extractors

can be considered as experts and the obtained MIX0.5 scores as rewards from previous

trials. Then, the LNet strategy simply becomes a Follow-the-Leader strategy.

In our case, we use 8 datasets to evaluate the proposed image clustering methods.

Hence, for each dataset, f j
∗
z is computed by applying the LNet strategy on the P = 7

other datasets. The results obtained by f j
∗
z on each dataset are reported under

the name LNet. In practice, it appears that the optimal feature extractor f j
∗
z is

Densenet169 for all eight datasets1.

The condensed version of the results defined above can be found in Figure 4.7. We

now propose to analyze these experimental results to explain our three key findings.

4.4.3 Results interpretations

4.4.3.1 IC can benefit from the use of several CNN feature extractors

When using multiple pretrained CNNs instead of one, the ideal scenario is when

the MV approach outperforms every independent network, i.e. it outperforms BNet.

When this occurs, we can conclude that the different feature extractors contain com-

plementary information which should be leveraged when possible (see Figure 4.2b and

Section 4.2.2). In Figure 4.7, we can see that for all datasets but Birds and COIL100,

the best of all methods is a MV method. In the specific case of COIL100, the tie

between BNet and all the MV methods might mean that the domain of validity of

BNet includes the domains of all the other networks (Figure 4.2a).

We remind that, in practice, it is impossible to predict which feature extractor will

be the BNet. When facing an unsupervised dataset, without additional knowledge,

the only way to obtain the BNet results is to choose a CNN at random and to get

lucky. The risk of using random selection is to fall in the worst case scenario (WNet).

This risk can be measured by the margin separating the MV methods from WNet.

Likewise, the potential benefit of random selection is measured by the difference

between MV and BNet results. In Figure 4.7, we see that random selection is not

worth considering because the risk is much higher than the potential benefit, which

most of the time is even negative.

1B The fact that Densenet169 is the LNet for all the datasets means that it is consistently good
across datasets. It does not mean that it is the BNet for each of the datasets. Our results actually
show that Densenet169 is the BNet only for Flowers.
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Figure 4.7: Multi-view clustering results
MIX0.5 score values for the different MVC methods and datasets.

The second possible benefit of leveraging our MV generation approach is to im-

prove results from LNet. To the best of our knowledge, the LNet strategy introduced

above is the only feature extractor selection method which is better than random.

In Figure 4.7, we can see that both MVnet and MVEC are above LNet for a large

majority of cases. We also point out that for all 8 datasets, there is at least one

ensemble method that outperforms LNet. One possible way to improve the LNet

strategy would be to increase the number of trials, i.e. the number of dataset on
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which LNet is computed. However, we doubt that the results would vary much with

a larger P . These experimental results suggest that when facing an unsupervised

dataset, using multiple feature extractors should be preferred over selecting a single

one.

4.4.3.2 MVC can be improved by adopting an end-to-end approach

We first note that methods implemented with JULE outperform agglomerative clus-

tering for most of the datasets. The three exceptions are the two scene recognition

datasets (Archi and MIT) and Birds. One possible reason for the failure of JULE in

these cases might be that the hyperparameters are not appropriate. Indeed, on the

one hand, in the original paper, authors give hyperparameters recommendations for

natural recognition and face recognition datasets. For these two tasks, we note that

the results with JULE are very good. On the other hand, for other IC problems, such

as scene and fine-grained recognition, different parameters may work better. The

scalability of JULE to different kind of IC datasets would be worth investigating. We

also believe that other deep clustering methods might work better on these datasets.

For exemple, the results reported in ([Wang et al., 2017]) appear to be good for un-

supervised scene recognition tasks. It might be worth trying to adapt their method

to multiview data and thus improve results on Archi and MIT.

To evaluate the interest of using MVnet independently from other considerations,

such as the problems involved by JULE on certain datasets, we now only look at

the 4 bars on the right of each diagram. The first thing we note is that the MVnet

architecture is better suited for multiview data than the CC approach. We also

underline that in most cases, CC presents limited interest compared to LNet. These

results suggests that, for a new IC dataset, data extracted from multiple CNN feature

extractors should be preprocessed independently before being considered jointly. We

now compare the MVnet approach against MVEC. Overall, MVnet seems to perform

better and in cases where it does not, results are similar. Finally, fine-tuning MVnetfix

end-to-end seem to be a good idea. Indeed, except for Flowers, it always seem to

perform either better or similarly.

4.4.3.3 Combining multi-view generation from multiple architectures and
DMVC produces state-of-the-art results at IC

We conclude this results interpretation section by stating that, to the best of our

knowledge, the results reported in this thesis for VOC2007, COIL100, Flowers, UMist

and FEI are the new state-of-the-art for classifying these datasets without labels.
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4.4.4 Learned representations

The quality of a deep clustering algorithm can also be assessed by studying the new

feature representation it generates.

4.4.4.1 Evaluation with K-means

The features extracted with MVnet are first evaluated by reclustering them using

K-means. K-means is a simple clustering algorithm which performs best on repres-

entations presenting compact clusters, which are distant from each others. We choose

Densenet169, which is the LNet, to represent the fixed CNN feature representation

methods. Results are reported in Figure 4.8 and show that for most datasets, better

features are generated as we progress in the training of MVnet. For Birds, MIT and

Archi, the results remain similar, which is likely to come from the fact that JULE

does not perform well on these datasets.

LNet LNet+JULE Concat DMVC-fix DMVC

0.6

0.8

1

N
M

I
sc

or
es

VOC2007
COIL100

Archi
MIT

Flowers
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UMist
FEI

Figure 4.8: NMI scores for K-means applied to feature representations from
different stages of the DMVC pipeline.

4.4.4.2 Visualization

In Figure 4.9, we also propose to visualize the evolution of the 2d t-SNE representation

of features at different stages of the MVnet training for the UMist dataset. It also

shows that this way of training MVnet produces representations that generate more

compact clusters, which are distant from each others.

63



(a) Densenet169 features (b) Densenet169 + JULE

(c) Concat (d) MVnetfix (e) MVnet

Figure 4.9: 2d t-SNE visualization of the features extracted from the UMist
dataset at different stages of the DMVC framework.

4.5 Conclusion

4.5.1 Key results

In this chapter, we propose a two-step approach to solving the image clustering prob-

lem. First, we generate multiple representations of each image using pretrained CNN

feature extractors, and reformulate the problem as a multi-view clustering problem.

Second, we define a multi-input neural network architecture, MVnet, which is used

to solve MVC in an end-to-end manner. In theory, any deep clustering framework

can be adapted to train an MVnet on unsupervised data. In practice we propose to

implement this approach within the JULE framework and demonstrate state-of-the-

art results for image clustering on several natural images datasets. This approach

also has the advantage of removing the design choice of selecting a single feature

extractor. Perspectives and future work regarding Image Clustering from multiple

pretrained CNN feature extractors are discussed in Chapter 9.

4.5.2 Back to unsupervised robotic sorting

This part of the manuscript focuses on image clustering, which is a necessary skill for a

robot to sort objects in an unsupervised way. The proposed methods for solving image

clustering sets a new benchmark for this problem. However, one of the objectives of

this thesis is to propose methods for unsupervised robotic sorting, which is a broader

problem than image clustering. Indeed, in the IC setting studied in this part, images
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are given as inputs to our algorithms whereas in a typical robotics setting, the robot

needs to collect its own data, for example by moving a hand-mounted camera. In this

setting, the points of view under which the objects are observed can have a significant

impact on the final results. For this reason, the next part of this manuscript focuses

on view selection for semantic content maximization.
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Part III

Image Acquisition in Unsupervised
Robotic Sorting
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Chapter 5

Unsupervised Robotic Sorting
from Fixed Camera Poses

Abstract

To provide a robot with the ability to sort objects based on their high level se-

mantic nature, it is relevant to represent the objects by images. In the previous

chapter, we studied Image Clustering (IC), which is a required skill for such an

implementation of Unsupervised Robotic Sorting (URS). However, IC alone is not

sufficient and the quality of the sorting also depends on the image acquisition pro-

cess. This chapter presents an implementation of URS using fixed, vertical camera

poses to gather the images, which is a common approach in robotic sorting. This

methodology is first shown to work well on an industrial use case, consisting in unsu-

pervised sorting of tools in a shopfloor environment. Then, a challenging dataset is

built to further evaluate the robustness of this image acquisition approach to light-

ing conditions, background changes and objects poses. By using different poses of

each objects jointly in a multi-view clustering framework, we show that the objects

poses are a very important factor regarding the success of URS from fixed camera

poses. Although the poses of the objects cannot be changed in a practical robotic

sorting situation, these experiments show that the views under which the objects are

observed are paramount for URS and motivate the development of a feasible optimal

view selection method in Chapter 6.
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5.1 Introduction

5.1.1 Real world classification system

The standard Machine Learning (ML) formulation of a classification problem is con-

cerned with building pipelines that map numerical data to predictions. For example,

in the case of image classification, the goal is to build models mapping tensors of

pixels (images) to categories. According to ([Theodoridis and Koutroumbas, 2006a]),

to design such a pipeline, one must solve four major subproblems: feature generation,

feature selection, classifier design and system evaluation. Some classification methods

perform some of these steps jointly, for example, deep learning models perform feature

generation, feature selection and classifier design simultaneously. This general defin-

ition of a classification pipeline applies to both supervised and unsupervised tasks.

However, when implementing a real world classification system, the inputs to the clas-

sification pipeline do not exist a priori and first need to be measured from physical

objects. A schematic representation of a real world implementation of a classification

system can be seen in Figure 5.1.

Physical
Object(s)

Measurement
Process

Disturbances
Unmastered

Measurement
Settings

Data
Representation(s)

Classification
Pipeline Predictions

Real world data acquisition

Standard ML classification formulation

Figure 5.1: Schematic representation of a real world classification system.

To illustrate this problem, the very common toy example of a classification system

to distinguish between apples and oranges can be considered. To be able to assign

a category to a fruit, i.e. a physical object, one first needs to represent it by a

mathematical object, i.e. extract a data representation. For example, a fruit can be

represented by three real numbers: its weight, its diameter and its rugosity. Then, the
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measurement process consists in weighting the fruit, as well as measuring its diameter

and its rugosity. After choosing what quantities are measured, the values obtained

for a given fruit can still vary from two classes of factors:

• Measurement settings: These are the design choices that are made for measuring

the objects, e.g. the tools used, the protocol, etc.

• Unmastered disturbances: These are all the variations that cannot be controlled

but still influence the values of the measures, e.g. non-circularity of the fruits,

thermal expansion, etc.

Then, building a good real world classification system consists in choosing measure-

ment settings and a classification pipeline that are robust to the variations of the

unmastered disturbances.

5.1.2 Real world URS implementation

The Unsupervised Robotic Sorting (URS) problem studied in this thesis consists in

physically sorting objects based on their semantic nature. With the recent advances

in deep learning, many hard image understanding problems have now been solved.

For this reason, the feature representations chosen to represent the objects to be

sorted are images. Therefore, the final predictions are obtained by solving an Image

Clustering (IC) problem. The important problem of IC was studied in Part II of this

thesis, in which it was proposed to leverage multiple pretrained feature extractors to

improve state-of-the-art results. However, to implement URS on a real robot, the

data acquisition process also needs to be defined and can be of utmost importance.

Indeed, depending on the scene in which the robot evolves, the objects poses, the

camera poses, and the lighting conditions, the images passed as input to the IC

pipeline vary a lot. A schematic representation of the decision making module of a

URS implementation is proposed in Figure 5.2. The parameters in purple change

among the different runs of the application and cannot be controlled, while the ones

in orange need to be defined when setting up the application. Then, the objective of

a URS application is to find an IC pipeline and to define rules for camera poses such

that they jointly produce unsupervised object classifications which are consistently

good for many kind of objects and in the range of variation of the disturbances.
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Figure 5.2: Schematic representation of a decision making module of a real world
Unsupervised Robotic Sorting application.

5.1.3 Chapter organization

This chapter begins by describing a real world implementation of URS. It consists in

observing objects restricted to a given region from a fixed camera pose, which is fairly

common in robotics sorting (([Zhihong et al., 2017]), ([Eitel et al., 2015b])). Then,

a challenging dataset is created to test the robustness to background and lighting

conditions of such an approach for image acquisition. Finally, some experiments

using multiple poses of each objects jointly are carried out, and appear to have a

very positive impact on the robustness to unmastered disturbances. These results

suggest that the view under which the objects are observed is paramount for the

clustering results and motivate the development of a semantic view selection model

in Chapter 6.

5.2 URS implementation with fixed camera poses

A first implementation of semantic URS was proposed for the demonstration sessions

of the “TechDay Robotique Arts et Métiers1” in Lille, France. This demonstrator

is implemented with a KUKA LBR iiwa robot with both a camera and a parallel

gripper mounted on the end-effector. The environment, i.e. the workspace in which

the objects are placed, is an empty wooden table that is split into disjoint areas.

1https://artsetmetiers.fr/fr/techday-robotique
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Then, the URS application goes as follows:

• Setting up the scene: Different previously unseen objects are placed in the

environment such that there is no more than one object per area.

• Scene scanning: For each of the environment subdivisions, the robot moves

the camera to the perpendicular top pose where it can see the whole area and

takes a picture.

• Clustering: Once an image dataset of all the objects to sort has been gathered,

the IC pipeline with one feature extractor presented in Chapter 3 is applied and

returns a bin number for each object. The number of bins available determines

the number of clusters that the IC pipeline produces.

• Grasping and sorting: Finally, the robot physically sorts the objects accord-

ing to the clustering results.

Figure 5.3 shows a schematic view of the system, and a video of the implementation

can be found at https://youtu.be/NpZIwY3H-gE.

The demonstrations were carried out using sets of different tools (screw drivers,

allen keys, flat keys, clamps, etc.) and the goal was to correctly group together

the different models of the same tool. The demonstration sessions happened in a

shopfloor with unmastered lighting conditions (glass roof), and in about 100 runs,

only one misclassification was recorded, which was due to very high brightness (white

image). In practice, the vision module was composed of an Xception feature extractor

combined with agglomerative clustering, which is the best performing pipeline on the

robustness evaluation dataset (see Section 5.3).

5.3 Robustness to background/lighting conditions

The proposed implementation, with fixed top down camera poses, demonstrates the

feasibility of a URS decision making module in a real world application. In the

perspective of a real application in industrial workstations, it is essential to further

investigate its robustness to different environments and lighting conditions. In this

section, we propose to build a dataset to evaluate such robustness.
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(a) Unsupervised robotic sorting pipeline.
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Figure 5.3: Unsupervised Robotic Sorting with fixed camera poses.

5.3.1 Dataset

To test the robustness to unmastered disturbances of the URS application, a chal-

lenging dataset for image clustering is created, it is composed of pictures of objects

which can be found in industrial workstations. All pictures constituting the dataset

are taken with a fixed camera, which looks perpendicularly at a planar surface. To cre-

ate the dataset, we vary both the background on which the objects are placed and the

location and intensity of the light source. Such a pair defines a background/lighting

condition (BLC). Objects are chosen from seven classes, and pictures of each object

are taken under five different BLC. For each object and each BLC, the dataset con-

tains four pictures under different position/orientation within the field of view of the

top down camera. Using multiple poses of each object enables to reduce the influence

of the object pose, and thus isolate the impact of background and lighting conditions.

The different poses are also used in Section 5.4 to study how the point of view under

which the objects are observed influences the sorting results. This dataset, which is

illustrated in Figure 5.4, appears to be challenging for image clustering because of the
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BLC variations but also because some classes have low intra-cluster similarity (e.g.

USB drives) and extra-cluster similarity between some classes is relatively high (e.g.

pens and screws).

Table 5.1: Statistics of the proposed tool clustering dataset (BLC stands for
Background/Lighting Conditions).

#Images Images size #Classes #Images per class #BLC
560 640 x 480 7 12 to 24 5

The dataset statistics are summarized in Table 5.1 and sample images, illustrat-

ing the different objects, poses and BLC, can be seen on Figure 5.4a. The data-

set, together with its description, can be downloaded at: https://github.com/

jorisguerin/toolClustering_dataset. For further evaluation of the robustness

to lighting conditions, we also modify computationally the brightness of the pictures

under conditions 2 only. This allows to isolate the influence of brightness in the clus-

tering results. Example images with the applied brightness filters can be visualized

on Figure 5.4b.

BLC 1 BLC 2 BLC 3 BLC 4 BLC 5

USB

Pen

Screw

(a) Different poses, backgrounds and lighting conditions.

(b) Artificial brightness modifications on BLC 2.

Figure 5.4: Example images used to evaluate robustness to unmastered
disturbances.
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5.3.2 Results

The objective of this section is to evaluate the robustness of the image acquisition

method to background and lighting conditions. However, in Chapter 3, it was shown

that a bad choice of CNN feature extractor and/or clustering algorithm can lead to

poor clustering results for certain datasets. Hence, to isolate the influence of the

image acquisition scheme as much as possible, a good clustering pipeline is needed.

Therefore, the experiments are conducted on 10 clustering pipelines (5 CNN archi-

tectures and 2 clustering algorithms), and the results are used to choose the one

presenting the strongest results. For a given BLC, a clustering problem is sampled by

randomly taking one image (i.e. one position/orientation) for each object. The final

experiments consist in sampling 1000 clustering problems for each of the BLC and

cluster them with each of the pipelines. Results from these experiments are reported

in both Tables 5.2 (physical BLC variation) and 5.3 (artificially modified brightness

on BLC 2). For each BLC, the results reported are the means over the 1000 runs.

Averaging over all the positions enables us to reduce the dependence of the results

on the objects poses, and thus better study the robustness to BLC.

Table 5.2: Clustering results for different CNN architectures and clustering
algorithms on the tool clustering dataset.

BLC1 BLC2 BLC3 BLC4 BLC5
NMI PUR NMI PUR NMI PUR NMI PUR NMI PUR

Inception V3
Agg 0.82 0.81 0.82 0.81 0.80 0.80 0.65 0.65 0.79 0.76

KMeans 0.80 0.79 0.79 0.78 0.76 0.76 0.63 0.64 0.75 0.73

Resnet50
Agg 0.81 0.81 0.74 0.74 0.74 0.75 0.62 0.59 0.72 0.71

KMeans 0.77 0.78 0.71 0.72 0.71 0.72 0.58 0.58 0.70 0.70

VGG16
Agg 0.76 0.75 0.74 0.73 0.73 0.72 0.61 0.60 0.70 0.69

KMeans 0.72 0.72 0.70 0.70 0.71 0.70 0.58 0.57 0.67 0.67

VGG19
Agg 0.76 0.76 0.77 0.76 0.71 0.72 0.59 0.58 0.71 0.70

KMeans 0.73 0.73 0.73 0.73 0.69 0.70 0.56 0.56 0.67 0.67

Xception
Agg 0.86 0.85 0.90 0.90 0.84 0.85 0.69 0.69 0.83 0.81

KMeans 0.84 0.83 0.87 0.86 0.82 0.82 0.66 0.66 0.80 0.80
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Table 5.3: Clustering results for different CNN architectures and clustering
algorithms for different artificially modified lighting conditions on the BLC2 subset.

Very dark Dark Normal Bright Very bright
NMI PUR NMI PUR NMI PUR NMI PUR NMI PUR

Inception V3
Agg 0.74 0.72 0.81 0.79 0.82 0.81 0.80 0.80 0.71 0.70

KMeans 0.70 0.70 0.77 0.75 0.79 0.78 0.77 0.77 0.66 0.67

Resnet50
Agg 0.67 0.67 0.73 0.73 0.74 0.74 0.69 0.68 0.61 0.61

KMeans 0.65 0.66 0.70 0.71 0.71 0.72 0.66 0.66 0.58 0.59

VGG16
Agg 0.66 0.66 0.73 0.72 0.74 0.73 0.68 0.68 0.61 0.61

KMeans 0.62 0.63 0.69 0.69 0.70 0.70 0.65 0.66 0.57 0.58

VGG19
Agg 0.67 0.67 0.76 0.75 0.77 0.76 0.74 0.72 0.64 0.65

KMeans 0.64 0.65 0.73 0.73 0.73 0.73 0.71 0.70 0.59 0.62

Xception
Agg 0.77 0.77 0.88 0.89 0.90 0.90 0.84 0.84 0.73 0.74

KMeans 0.74 0.74 0.85 0.86 0.87 0.86 0.82 0.82 0.70 0.71

From these experimental results, three important conclusions are drawn:

• In Tables 5.2 and 5.3, we can see that agglomerative clustering always present

better results than KMeans. Likewise, Inception-like architectures tend to out-

perform their competitors, particularly Xception, which outperforms all the

other CNN architectures for every clustering algorithm and every BLC. Based

on these results, from now on, we only study the Xception + Agg vision pipeline.

• Table 5.3 shows that the chosen pipeline seems to be robust to reasonable

changes in lighting conditions (Dark and Bright) but its performances start

to decrease when the brightness is really high or low. This makes sens as it also

becomes difficult for a human to identify these objects.

• Background changes seem to have a more important impact on the clustering

results. Indeed, in Table 5.2, BLC 4 shows much lower results than other BLC.

This might come from the fact that the background in BLC4 contains geometric

shapes (lines, circles) which are distractors for the network.

5.4 Robustness to objects poses

5.4.1 Methodology

In Section 5.1, it was shown that given a set of objects to sort, the clustering results

depend on the lighting conditions, the scene layout, the objects poses and the camera

poses to observe each object. The dependence on background and lighting conditions

was studied experimentally in Section 5.3, and we now want to evaluate the influence

of the objects poses on the results of the proposed implementation. To do so, we

75



propose to vary the poses of the objects under a fixed camera view, which boils down

to leveraging the different poses in the dataset introduced in Section 5.3.1.

In the unsupervised image classification setting, the clustering results depend on

the entire set of images jointly, thus making it hard to evaluate the contribution of

an individual image. For this reason, a Multi-View Clustering (MVC) approach is

adopted to evaluate the influence of the object poses. Indeed, if using multiple poses

jointly enables to improve the clustering results substantially, we can conclude that

either some views are better than the others, or that the views are complementary

(see Section 4.2.2). In both cases, this would motivate the development of better view

selection methods, which is the purpose of the next chapter. The MVC problems are

solved using the Multi View Ensemble Clustering (MVEC) method that was used for

comparison in Chapter 4, and which is described in more depth in Section 5.4.2.

Remark: The Deep Multi-View Clustering method proposed in Chapter 4 was not

used because our implementation of URS consists in sorting a small number of objects

(< 50), which leads to IC problems containing too few instances. Deep end-to-end

clustering methods are usually bad at solving small scale tasks because, with too few

data, the desired number of clusters is reached too fast (after the initialization step)

and the representation learning networks cannot converge. However, such method is

not to be excluded for larger scale industrial URS problems leveraging multiple views.

5.4.2 Multi-view clustering using Ensemble-clustering

Let Ω = {Ω1, ...ΩM} be the set of M objects to cluster. For each object Ωi, let

ωi = {ωi,1, ...ωi,mi} be the set of mi views representing it. The clustering pipeline

chosen from the experiments in Section 5.3.2 (Xception + Agg) is denoted C. The

proposed MVEC method, inspired by ([Tao et al., 2017]), goes as follows. For each

object Ωi, one image ωi,j is selected randomly. Then, the new image set is clustered

using C, thus producing a partition (cluster assignment for each object) denoted Pk.

This procedure is repeated N times and the set of N partitions generated is noted

P = {P1, ..., PN}.
Once the N partitions have been generated by randomly sampling images in each

ωi, MVEC must find a consensus partition P ∗, maximizing the agreement between

the different partitions. In this thesis, an approach based on objects co-occurrence is

adopted to compute P ∗. Since this work is about unsupervised classification, there is

no correspondence between the class assignments of the different partitions of P . To

avoid this problem, we use intermediate representation of P , called the co-association
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matrix. This matrix, denoted A, is a M × M symetric matrix which entries are

defined by

Apq =
1

N

N∑
t=1

δ(Pt(Ωp), Pt(Ωq)), (5.1)

where Pt(Ωi) is the label associated with object Ωi and generated by partition Pt,

and δ(a, b) is the Kronecker symbol, which is 1 if a = b and 0 otherwise. Entry (i, j)

of CA measures how many times objects Ωi and Ωj have been classified together by

the different partitions.

Finally, let C∗ be any connectivity-based clustering algorithm. For instance, C∗

can be variants of agglomerative clustering or spectral clustering. The consensus par-

tition P ∗ is obtained by applying C∗ using A as the precomputed similarity measure

between objects:

P ∗ = C∗(A). (5.2)

A schematic representation for the MVEC pipeline can be found in Figure 5.5.

In our implementation, image sampling for partition generation is uniform, C∗ is

agglomerative clustering and the number of partitions generated is N = 1000.

Multiview Input
images

. . .

Ω1

Ω2

ΩM

Random
view sampling

C P1

C P2

C
PN

...

Image clustering
pipeline Co-Association

Matrix A

C∗
Final Set
of Labels

P ∗

Partition
gathering

Figure 5.5: Proposed MVEC approach to use multiple views of each object.

5.4.3 Results

The results using MVEC with the clustering pipeline chosen above are reported in

Table 5.4. MVEC consistently performs significantly better than the corresponding

single view approach, which are written in parenthesis in Table 5.4 as a reminder. It

is also more robust to poor background (BLC4) and lighting (Very bright) conditions.
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Table 5.4: Clustering results of MVEC for different BLC. For comparison, the
corresponding single view results are reminded in parenthesis.

NMI Purity

BLC1 0.95 (0.86) 0.96 (0.85)

BLC2

Very dark 0.91 (0.77) 0.93 (0.77)

Dark 1.00 (0.88) 1.00 (0.89)

Normal 1.00 (0.90) 1.00 (0.90)

Bright 0.96 (0.84) 0.96 (0.84)

Very bright 0.84 (0.73) 0.86 (0.74)

BLC3 0.95 (0.84) 0.96 (0.85)

BLC4 0.84 (0.69) 0.82 (0.69)

BLC5 0.95 (0.83) 0.96 (0.81)

Regarding computation time, although MVEC takes longer, this time can be

drastically reduced by parallelizing both the partition generation process and the

co-association matrix computation.

The excellent results obtained by MVEC suggest that the proposed image acquis-

ition method that consists in using fixed top down camera views is very sensitive to

objects poses. Indeed, the fact that the robustness can be increased significantly by

duplicating the objects poses suggests that in the single view approach, some of the

poses were very poor for clustering, thus decreasing the average results presented in

Tables 5.2 and 5.3. Another possible cause of having poor results with a single view

approach is that the individual images may not be compatible to use jointly. For

example, it may not be easy to group together two mugs if one is seen from the top

and the other from the side. Hence, by increasing the number of views, the event of

having similar images for similar objects becomes more likely. Robustness to poor

lighting conditions also makes sense as light comes from a certain direction and there

are always better angles to observe the objects.

5.5 Conclusion

5.5.1 Key results

Unsupervised Robotic Sorting consists in physically grouping together previously un-

seen objects in a way that makes sense at a human level. In this chapter, a first

working implementation is presented. In this application, objects are placed in con-

strained regions of the environment and the image representations are acquired from

predefined fixed camera poses. The unsupervised image classification module is com-
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posed of a pretrained Xception feature extractor and agglomerative clustering. This

approach is shown to work for a practical use case, in a real-world industrial envir-

onment. To further test the robustness of this image acquisition approach to lighting

conditions, background changes and objects poses, a robustness testing dataset was

specifically created. This dataset, which is challenging for image clustering, is made

publicly available to help other researchers to test their image clustering algorithms.

On the one hand, the proposed URS pipeline appears to be fairly robust to reas-

onable lighting changes and to different uniform backgrounds. On the other, the

results decrease drastically when the background presents strong patterns and for

very bright/dark images. The influence of the poses of the objects is evaluated by

carrying out multi-view clustering experiments. We show that sorting results can

be improved by using jointly images from several objects poses, which suggests that

under a fixed camera pose, the poses of the observed objects are of major import-

ance. Perspectives and future work regarding practical implementations of URS are

discussed in Chapter 9.

5.5.2 Towards adaptive camera poses

The first approach implemented in this chapter to solve URS demonstrates rather

good results, which is very encouraging. However, it was also shown that using fixed

camera poses for images collection is sensitive to objects poses and would benefit from

using several of these poses for each object. This makes the fixed camera approach

problematic because, in practical situations, the pose of an object in the environment

is an unmastered input to URS and cannot be changed. Hence, the fixed camera

approach is risky as it cannot account for all possible variations of the objects poses.

On another note, the goodness of a pose of an object is not intrinsic to the pose

itself but rather relative to the camera pose. What really matters is the relative

pose between the object and the camera. In addition, the camera pose is a user

defined setting that can be modified. Consequently, a different image acquisition

module, where the camera poses are adapted to the unmastered objects poses, could

help improving URS. This statement motivates the development of an autonomous

optimal view selection pipeline in Chapter 6.
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Chapter 6

Semantically Meaningful View
Selection

Abstract

An understanding of the nature of objects could help robots to solve both high-

level abstract tasks and improve performance at lower-level concrete tasks. Although

deep learning has facilitated progress in image understanding, a robot’s performance

in problems like object recognition often depends on the angle from which the object

is observed. Traditionally, robot sorting tasks rely on fixed top-down views of the

objects. By changing its viewing angle, a robot can select a more semantically in-

formative view leading to better performance for object recognition. In this chapter,

we introduce the problem of semantic view selection, which consists in finding good

camera poses to gain semantic knowledge about observed objects. We propose a

conceptual generic formulation of the problem, together with a relaxation based on

clustering, to make it solvable. We then present a new image dataset consisting of

around 10k images representing various views of 144 objects under different poses.

Finally we use this dataset to propose a first solution to the problem by training

a neural network to predict a custom “semantic score” from a top view image and

camera pose. The views predicted to have higher scores are then showed to provide

better clustering results than fixed top-down views.
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6.1 Introduction

6.1.1 From URS to Semantic View Selection

A robust Unsupervised Robotic Sorting (URS) application requires both a good

strategy for image acquisition and a good Image Clustering (IC) pipeline. In the

previous chapter, a first straightforward pipeline for image acquisition is presented.

It consists in gathering images of the different objects from fixed, top down camera

poses. Although this approach, combined with a good IC pipeline, has demonstrated

good results on a real-world industrial implementation, we have also shown that URS

may benefit from an adaptive view selection scheme. In this chapter, we propose to

study the problem of optimal view selection for clustering. This problem is embedded

into the broader problem of optimal semantic view selection. As explained in Sec-

tion 6.2, we believe that choosing views which are semantically meaningful and views

which are good for clustering are two problems which are highly positively correlated.

In the meantime, viewing the problem as one of finding “semantic views” is more

generic and has more potential direct and indirect applications. Moreover, formally

defining the generic semantic view selection problem leaves the door open to differ-

ent approaches for future research. Hence, this chapter deals with the problem of

Semantically Meaningful View Selection (SVS) independently of any URS considera-

tions. The link back to URS is done through the experimental results section, where

we demonstrate that our approach for adapting camera poses enables to improve un-

supervised sorting. The following section proposes a richer introduction about SVS,

thus extending the context of URS.

6.1.2 Introduction and context for Semantic View Selection

Recent advances in machine learning have increased robot autonomy, allowing them

to better understand their own state and environment, and to perform more com-

plex tasks. An important research direction is to improve semantic understanding

of objects, which can aid in tasks such as manipulation. For example, better se-

mantic understanding can be directly used to solve tasks such as supervised (([Eitel

et al., 2015b]), ([Zhihong et al., 2017])) and unsupervised (Chapter 5) sorting. It

can also impact indirectly other important tasks, such as robotic grasping (([Bohg

et al., 2014]), ([Lenz et al., 2015])). Indeed, ([Chua et al., 2017]) showed that the

way people grasp objects not only depends on their forms and shapes, but also on

our semantic understanding of the object. Knowledge of manipulated objects is also

important for human robot collaboration ([Tsarouchi et al., 2017]), where significant
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(a) Top view: θ = 90◦;
ϕ = 90◦

(b) Good view: θ = 45◦;
ϕ = 45◦

(c) Bad view: θ = 135◦;
ϕ = 45◦

Figure 6.1: Illustration of the Semantic View Selection Problem. The angular
parameterization is defined in Section 6.3.

efforts have been made to make robot behavior safe and adaptive to humans ([Munzer

et al., 2017]). For example, a robot should not hand a human a knife by the blade.

Vision-based methods are a natural choice to acquire knowledge about manipu-

lated objects, as supported by the recent advances in deep learning for both supervised

(([Chollet, 2016]), ([He et al., 2016])) and unsupervised (([Yang et al., 2016]), ([Al-

jalbout et al., 2018])) image classification. However, a robot can act in the real world

to change the view under which the object is observed. This can have a huge impact

on understanding what the object is. For example, in Figure 6.1, only the middle

image enables the robot to understand that it is looking at a comb. The robot’s abil-

ity to act has not been fully exploited in previous research. For example, prior work

on robotic sorting of objects relies on a fixed, perpendicular top pose for the robot

camera (see Chapter 5). Some previous work for best view selection ([Dutagaci et al.,

2010]) has focused on producing representative views of 3d mesh models. Although

this is a promising approach, it is not applicable for many robotics tasks, especially

when complete 3d models are not available for all of the manipulated objects.

A possible reason why view selection was not studied before may be that previous

work mostly deals with instance retrieval or supervised classification. In these two

applications, the models to recognize the object are trained to be robust to view
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changes by overfitting the problem to solve. Indeed, instance retrieval deals with

recognizing a precise object from a bank of objects. In this context, the view is not

crucial as each face of an object is likely to contain characteristics which are specific

enough to distinguish this object from the rest of the set. In other words, an instance

retrieval model is overfitting on the set of objects. Likewise, supervised learning can

be viewed as a form of overfitting on the given classes. As a matter of fact, when

training a supervised model, we just need to be able to separate the object from

classes which are present in the supervised problem. These characteristics do not

have to be very specific to the semantic class of the object. For example, detecting

a wheel might be sufficient to distinguish a car from a horse, but it is not generic

enough to know that we are not looking at a bus.

In this chapter, we aim to find a method to optimize the poses of a robot with

a hand-mounted camera, to maximize the semantic content of the images and un-

derstand the nature of objects being observed (Figure 6.1). In Section 6.2, we first

propose a generic conceptual formulation of this problem, which we call the Semantic

View Selection (SVS) problem. We then relax the problem by reducing it to the

optimization of a clustering-based objective. To solve this problem, we introduce a

new image dataset containing 144 objects, from 29 categories, under different poses

and observed under various views. Both the data collection process and the data-

set content are described in Section 6.3. A first approach using the clustering SVS

problem formulation on the new dataset is then detailed in Section 6.4. It consists

in training a multi-input deep convolutional neural network to map a top view and

proposed camera pose to a semantic score. Our experimental results, in Section 6.5,

demonstrate that the proposed network can predict camera poses which outperform

fixed poses at unsupervised sorting tasks.

6.2 The Semantic View Selection (SVS) problem

In this section, we formally introduce the problem of selecting optimal views for

semantic understanding and introduce notations.

6.2.1 Generic formulation: the semantic function

We begin this section by introducing some definitions. A scene is defined by a set of

objects and their relative poses. For example, the scene in Figure 6.2 is composed

of a table, a mug, a bottle and other objects around. In this chapter, the scenes are

considered static, which means that in Figure 6.2, changing the pose of the mug would
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(a) View 1 (b) View 2

Figure 6.2: Example of a scene containing two objects under different viewpoints.

define a different scene. However, the same logic could apply to dynamic scenes by

making all variables time dependant. Let ζ denote such a scene.

Now, let c be a camera, mounted at the end-effector of a robot manipulator, with

which the scene is observed. We also define Dζ ⊂ SE(3), the domain of valid camera

poses for the scene ζ, which is defined by all the poses of c that are in the reachable

workspace of the robot and for which there is no collision between the robot, the

camera, and the different elements composing the scene. Then, we can define the

view function associated with ζ, which associates an image to any valid camera pose,

by
vζ : Dζ → I

pc 7→ I.
(6.1)

In Equation (6.1), I = {0, ..., 255}ν1×ν2×3 is the space of ν1 by ν2 colored images

(resolution of c) and pc denotes a camera pose expressed in a frame that is fixed with

respect to ζ. A view function is defined with respect to a given scene ζ, indeed, an

identical camera pose in a different scene can produce very different images.

Then, we consider a given object ω in ζ and we define the conceptual semantic

function Sω(.), representing the semantic information about ω contained in an image.

Sω(I) is high if I is highly informative about the nature of ω (second column of

Figure 6.1) and low if it’s not (third column of Figure 6.1). A natural choice for

the output space of Sω is [0, 1]. A semantic function is defined relatively to the

object considered, which can be understood by considering the example in Figure 6.2.

Indeed, for the image in Figure 6.2b, Sbottle should be high while Smug should be

low. We also note that in practice, the semantic function is defined with respect

to a subjective label definition. In this thesis, we use the most generic and simple

possible label definition (e.g. spoon, mug, toothbrush, etc.), without adding any
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specific description (e.g. silver spoon, blue mug, etc.). More concretely, semantic

meaningfulness can be viewed as the information contained in the output of a high

level feature extractor, e.g. last layer of a pretrained deep CNN, which can be used

to infer the general category of the object represented in the image.

For a given scene ζ and a given object ω in this scene, the Semantic View Selection

(SVS) problem is defined as follows:

Maximize
pc∈Dζ

Sω ◦ vζ(pc). (6.2)

In other words, we aim to find p∗c such that the view vζ(pc) maximizes Sω. The

function Sω ◦ vζ(.) depends on the object being study ω, its pose, the other objects

in the scene that can act as distractors, and the pose of the camera.

6.2.2 First relaxation: clusterability functions

The semantic function defines the general form of the SVS problem, but in practice,

it cannot be evaluated. Therefore, to approximate S, we introduce a new family of

clusterability functions : {Sa,m, a ∈ A, m ∈ M}, where A represents the space of

all possible image clustering algorithms and M the space of all clustering evaluation

metrics. In other words, an element of A is a function mapping any set of images to

a corresponding set of labels:

a ∈ A ⇐⇒ a : In → Ln, (6.3)

where L = {1, ..., K} is the set of possible labels, n is the number of images in the

dataset and K is the expected number of clusters. In practice, K does not have to be

fixed but in this thesis we only deal with clustering algorithms for which K is known.

We also assume that for each image in I, there exists an associated ground-truth

label, which can be seen as an underlying subjective optimal classification (see Sec-

tion 6.2.1). For example, in the context of unsupervised robotic sorting, although no

information is known by the robot a priori, we can suppose that a qualified worker

should be able to judge the quality of the sorting afterwards. Following these nota-

tions, an elements of M is a function which takes two sets of integers as inputs, the

predicted labels and the ground truth labels, and outputs a real valued score, usually

in [0, 1]:

m ∈M ⇐⇒ m : Ln × Ln → [0, 1]. (6.4)
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Now, let Ω∞ be the conceptual infinite set of all possible objects. Similarly, let

Zω∞ be the conceptual infinite set of all possible scenes containing object ω. A natural

image clustering problem with n images is defined by

cp = {vζω[i]
(pc[i]) | for all i ∈ {1, ..., n} : ω[i] ∈ Ω∞, ζω[i] ∈ Zω[i]

∞ , pc[i] ∈ Dζω[i]
}.

In other words, any set of natural images containing an underlying label (defined by

the ω[i]’s) can be viewed as a clustering problem. Let Lcp be the ground truth labels

associated with cp and a(cp) be the cluster assignments (predictions) for cp with

algorithm a. Finally, for a given natural image I, generated with the hand-mounted

camera c, we define CPI
∞, the infinite set of all possible natural image clustering

problems containing I. Then, Sa,m is defined by

Sa,m(I) = E
cp∈CPI∞

[m(a(cp),Lcp)], (6.5)

which is the average score under metric m of all possible clustering problems con-

taining I. Sa,m(vζω(pc)) is high if the image generated with camera c in the pose pc,

observing object ω in scene ζω, is good for clustering ω with algorithm a and low if

not, where good means having a high score under m.

We assume that a and m are respectively a good image clustering routine and a

good clustering metric, i.e. they have been shown to work well in practice. In the rest

of the chapter, we also assume that Sa,m and S are highly positively correlated. This

assumption is based on the intuition that a semantically meaningful image should

be properly clustered with similar objects by a good clustering pipeline. Indeed, as

detailed later, the common clustering pipeline used in this paper consists in extracting

features from a deep feature extractor and clustering the new set of features using

a standard clustering algorithm. This choice for a is in line with the definition of

semantic meaningfulness proposed in Section 6.2.1, as the final representation of a

view, passed to the clustering algorithm, is a vector a features extracted from a

pretrained CNN. Another motivation for choosing a clustering-based estimate for the

semantic function is that supervised classification or object detection methods might

not be adapted. Indeed, to compute the Monte-Carlo estimate of such function (see

Section 6.2.3), the selected algorithm needs to be run many times on relatively small

datasets. Doing this in a supervised way has high chances to result in overfitting, in

which case all views would have high semantic scores.
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6.2.3 Second relaxation: clusterability on a finite dataset

As it is not feasible to consider all possible scenes containing all possible objects, we

further relax the above definitions to consider a finite dataset. Let ΩN be a finite set

of objects containing N elements. For a given element ω of ΩN , we also define ZωNω ,

a set of Nω scenes containing ω, and Pζω
Nζω

a set of Nζω camera poses observing object

ω in scene ζω. In other words, the set

X = {vζω(pc) |ω ∈ ΩN , ζω ∈ ZωNω , pc ∈ Pζω
Nζω
}

is an natural image dataset containing
∑

ω∈ΩN

∑
ζω∈ZωNω

(Nζω) images. For a given image

I ∈ X, if the dataset X is large and diverse enough, an estimate of Sa,m(I) can be

computed by

Sa,mX (I) = E
cp∈CPIX

[m(a(cp),Lcp)], (6.6)

where CPI
X is defined like CPI

∞ with cp’s sampled from X.

For large datasets, it might be computationally intractable to compute Sa,mX (I) as

the number of possible combinations of images grows exponentially with the number

of views. Thus, we propose to compute the Monte-Carlo estimate

Ŝa,mX (I) = E
cp∈CPIX,MC

[m(a(cp),Lcp)], (6.7)

where CPI
X,MC is a subset of NMC elements of CPI

X , and NMC is a large natural

integer (NMC ≥ 2×105 in our experiments). The method used for sampling clustering

problems from X and thus creating CPI
X,MC is explained in Section 6.4.2.

6.2.4 Partially-observable Semantic View Selection

Given an object ω in a scene ζ, the relaxed SVS problem, aims to find a camera pose

pc such that Ŝa,mX (vζ(pc)) is high. In a generic robotic pipeline, the exact setup of

a scene is generally unknown and needs to be estimated from partial observations.

Let ψζ be the observation from which we want to estimate the elements composing

ζ and their relative poses. For example, ψζ can be a top-view image, taken from an

initial predefined camera pose. Our approximation of the clusterability function score

is then dependent on ψζ as a surrogate for the exact scene setup. More concretely,

we want to optimize the parameters α of a function fα : {ψζ , pc} → s ∈ Dm, where

Dm is the output domain of the metric m (usually [0, 1]), such that s is an estimate

of Ŝa,mX (vζ(pc)). A typical practical choice for fα would be a convolutional neural

network, where α represents its trainable parameters.
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6.3 Dataset Construction

To tackle the proposed relaxed SVS problem, we have built an image dataset repres-

enting various everyday objects under different poses, and observed under multiple

views with a camera mounted on the end-effector of a UR10 robot manipulator (see

Figure 6.1). The dataset can be downloaded at https://github.com/jorisguerin/

SemanticViewSelection_dataset and its statistics can be found in Table 6.1. In

this dataset, for a given object, the scenes are composed of the object alone on a

wooden table, under different poses. For example, Figure 6.1 images taken from

different camera poses for one of such scenes for a comb.

Table 6.1: Statistics of the proposed multi-objects/multi-pose/multi-view image
dataset.

# Classes # Object/class (total) # Poses/object (total) # Images/pose (total)
29 4-6 (144 ) 3 (432 ) 17-22 (9112 )

6.3.1 Estimating object location and size

The dataset was collected using an Asus Xtion RGBD sensor, hand-mounted on a

UR10 robot manipulator. For a given object ω in a given pose, we gather images

corresponding to several camera poses, with ω centered in the image. The first step

is to estimate the location of the Geometrical Center of the object (GCo). To do

so, we place the robot in an initial pose such that the camera can see the entire

workspace in which objects can be placed. We store a background image of this pose,

corresponding to what the camera sees when there is no object. Then, using RGB

background subtraction, the xy-contour of the object is obtained, the z axis being

vertical. From this contour, we estimate the x and y components of GCo, the width

and the length of ω. Finally, we compare the minimum values of the point cloud

inside and outside the xy-contour to estimate both the z component of GCo and the

height.

6.3.2 Parameterization of camera poses

To parameterize camera poses, we define a reference frame at GCo. We then compute

d =
√
length2 + width2 + height2, the diagonal of the object’s bounding box, and

define the radius R such that d takes 70% of the smallest dimension of the image

if the optical center of the camera (OCcam) is at a distance R of GCo and zcam is
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Figure 6.3: Definition of the parameters used to sample camera poses (R, θ and ϕ).

pointing towards GCo. The camera poses are sampled on the half-sphere of radius R,

centered at GCo, such that zo is positive. For each position of OCcam on the sphere,

the camera is positioned such that zcam is pointing towards GCo, xcam is in the xyo

plane and ycam is pointing “upwards”.

6.3.3 View sampling and data collection

On the sphere, the location of OCcam is localized by two angles, θ and ϕ, which are

defined as in Figure 6.3. Hence, a camera pose is simply represented by a (θ, ϕ) pair.

In our implementation, θ is sampled every 45◦ between 0◦ and 315◦ but excluding

270◦, ϕ is sampled every 15◦ between 45◦ and 75◦. The views for θ = 270◦ correspond

to configurations where the camera is oriented towards the robot base. They were not

collected in the dataset to avoid seeing the robot on the images. The other missing

values come from unreachability of the camera poses with the robot manipulator,

which occurs when the RRT connect ([Kuffner and LaValle, 2000]) planner fails to

generate a valid plan. Furthermore, while it could be interesting to sample angles

lower than ϕ = 45◦, these configurations are often unreachable because the robot

would collide the table. A subset of the views gathered for one object in a particular

pose can be seen in Figure 6.4.
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Top view

(45, 45)

(45, 225)

(45, 135)

(45, 315)

(60, 315)(60, 225)(60, 135)(60, 45)

(75, 315)(75, 225)(75, 135)(75, 45)

Figure 6.4: Best viewed in color. Subset of views for one instance of the sun
glasses class in a particular scene. The two images with highest (resp. lowest) FM

individual indexes are framed in green (resp. red). See Sections 6.4 and 6.5 for
more details.

6.4 Proposed approach

6.4.1 Clustering pipeline and metric

Given an image I, the clusterability function Ŝa,mX (I), used to represent the semantic

function, is defined by both a good clustering pipeline a and a clustering evaluation

metric m.
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In this work, we use the image clustering pipeline described in Chapter 3, which

consists in getting a new representation of each image from the last layer of a deep

CNN feature extractor, pretrained on ImageNet ([Russakovsky et al., 2015]), and

clustering the new set of features using a standard clustering algorithm. Although

some variants of this algorithm are tested in Section 6.5, the standard pipeline in this

paper uses Xception ([Chollet, 2016]) to extract features, and agglomerative clustering

([Murtagh, 1983]) to cluster the deep features set. We use the implementation and

weights of Xception proposed by the Keras library ([Chollet, 2015]).

The clustering metric chosen to represent the clusterability is the Fowlkes-Mallows

(FM) index ([Fowlkes and Mallows, 1983]), which was already used in Chapter 4 and

is defined by

FMIcp,a =
TP√

(TP + FP )(TP + FN)
, (6.8)

where TP , FP and FN respectively represent the number of true positive, false

positive and false negative pairs after clustering cp using a. The FM index ranges

between 0 and 1. We choose this index because it can be converted straightforwardly

to a local form

FMI icp,a =
TPi√

(TPi + FPi)(TPi + FNi)
, (6.9)

where FMI i represents the individual FM score of image Ii ∈ cp, TPi, FPi and FNi

respectively represent the number of true positive, false positive and true negative

pairs containing Ii. This individual form is used in the next section to reduce the

sample complexity for computing {Ŝa,mX (I), I ∈ X}. The clustering pipeline and

metric being chosen, we drop the a and m superscipts in the coming sections.

6.4.2 Training Set

From the 29 categories composing the dataset, five are chosen at random to con-

stitute a validation set which is neither used for fitting the clusterability scores nor

for training the view selection network. In this section, X refers to all the views

composing the 24 remaining categories. From X, a clustering problem is created by

sampling randomly the number of categories, the selected categories, the number of

objects per category, the selected objects, the pose for each object (scene), and one

view (camera pose) for each scene. As every estimated quantity is computed on the

training set from now on, we drop the subscript X. To build the training set for
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the SVS problem, we start by generating a large set of Ncp random clustering prob-

lems CPMC = {cpi, i ∈ Ncp}. Then, for each (cp, I) pair, we define the following

intermediate score

s̃cp(I) =

{
FMIIcp if I ∈ cp,

0 otherwise.
(6.10)

The individual semantic view score of image I is then defined by

ŝ(I) =
∑

cp∈CPMC

s̃cp(I)/N I
cp, (6.11)

where N I
cp is the number of elements in CPMC containing I. Likewise, for a given

I, we can define a global semantic view score Ŝ(I) by replacing FMIIcp by FMIcp

in (6.10).

We build CPMC such that min({N I
cp, I ∈ X}) is at least 2× 105. In practice, this

requires to solve Ncp ≈ 3×107 clustering problems. Because of the high computational

expenses of this process, we cannot get a much higher number of samples for the

Monte Carlo estimate. Hence, ŝ(I) seems more appropriate than Ŝ(I) to estimate

the semantic content of I because it evaluates the individual contribution of each

view to the global clustering results.

Hence, our training set for the next section is composed of {{IItop, ϕ
I , θI}, ŝ(I)}

input/output pairs, where IItop represents the top view image associated with I, ϕI

and θI are the angles parameterizing I. We note that, for each pose, the scores

among all the views are scaled to the [0, 1] interval to help training, as some objects

are harder to cluster than others. In such case the best views of a difficult object

might have lower ŝ values than the worst views of an easy object. This makes the

view selection problem harder because predicting the intrinsic “clusterability” of an

object from a poor view can be very challenging.

6.4.3 Learn to predict semantic scores

After computing semantic view scores for each view in our training set, we aim to

solve the SVS problem introduced in Section 6.2.4. To do so, we train a multi-input

neural network architecture to predict ŝI from a triplet (IItop, θ
I , ϕI).

The top image is first passed through a VGG convolutional block ([Simonyan and

Zisserman, 2014]) with 19 layers initialized with weights pretrained on ImageNet.

Then, the outputs of the convolution block are fed into a first multi-layer perceptron

(MLP). The outputs of this first MLP are concatenated with the angular inputs and

fed into a second MLP, which outputs the semantic estimate. The architecture is
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summarized in Figure 6.5, where BN denotes a batch normalization layer, Drop(x)

a dropout layer with x% drops and FC(k) a fully connected layer with k neurons.

ReLu and Sigmoid are standard activation layers.

vtop

Conv
Block MLP 1

θ, ϕ
+ MLP 2 ŝ

(a) Overall architecture

FC(2000) +
BN + Relu

FC(2000) +

Drop(0.25) +

BN + Relu

(b) MLP 1

FC(100) +
BN + Relu

FC(100) +

Drop(0.25) +

BN + Relu

FC(100) +

Drop(0.25) +

BN + Relu

BN +

FC(1) +

Sigmoid

(c) MLP 2

Figure 6.5: Proposed SV-net architecture. Inputs are in blue and outputs in red.
The Conv Block is the convolutional part of VGG19 (until “block4 pool” layer).

To train this network, we use the Adam optimizer ([Kingma and Ba, 2014]), with

an initial learning rate of 10−3. The choice of the architecture was cross-validated by

removing randomly two categories from the training set. At test time, all the dropout

rates are set to 0.

The choice of treating SVS problem by predicting a score from proposed camera

poses instead of regressing directly on these poses has two main motivations. First,

when dealing with robots, it might be impossible to plan a trajectory to some views,

hence, it seems more relevant to only consider reachable views. Then, the SVS prob-

lem may contain many possible solutions, in which case there is no unique mapping

between a top view and a good camera pose. Indeed, a network would likely converge

to the average of all good poses, which might not be a good pose.
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6.5 Experiments

6.5.1 Baseline for comparison

Given an object clustering problem, we define a view selector as any process to select

the camera pose to observe the objects. To evaluate the quality of a view selector

on a clustering problem, we compare its results under a certain (a,m) pair against

two baseline view selectors. The first method is usually the one implemented when

dealing with autonomous robot sorting, it consists in observing the object from the

top view. This view selector will be noted TOP in our experiments. Another baseline

view selector, denoted RAND, consists in choosing the views uniformly at random

among the possible views.

We consider a view selector successful if it can outperform these two baselines.

Indeed, borrowing from the reinforcement learning literature, comparing against the

best fixed view can be assimilated to some form of regret analysis. Computing the

best fixed view for our problem would be too computationally expensive. Instead, we

compare against one arbitrary fixed view (TOP) and also against randomly selected

views to ensure that the chosen fixed view was not particularly weak.

6.5.2 Evaluation of the individual semantic view score

The individual semantic view scores are fit using a particular (a,m) pair. Therefore,

to evaluate it, we must test it on additional clustering pipelines and metrics. We vary

pipelines by changing both the deep feature extractor and the clustering algorithm.

The three pipelines tested are denoted XCE AGG, VGG AGG and XCE KM, where

XCE stands for Xception, VGG for VGG19, AGG for agglomerative clustering and

KM for KMeans. As for the clustering metrics, we use the Fowlkes-Mallows index

(FM), normalized mutual information (NMI) and cluster purity (PUR), which are

three commonly used metrics to evaluate clustering algorithms when the ground truth

is known.

We compare two view selectors against RAND and TOP. The first one, denoted

OPTind, consists of choosing the image with the highest individual semantic view

score. Following the notations from Section 6.2.3, for a given object ω in a given

scene ζω, the camera poses are sampled from Pζω
Nζω

. The OPTind view selector chooses

the pose

pind
c = argmax

pc∈PζωNζω

(ŝ(vζω(pc))). (6.12)
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Similarly, the second view selector, denoted OPTglob, chooses the pose that produces

the image with the highest global semantic view score:

pglob
c = argmax

pc∈PζωNζω

(Ŝ(vζω(pc))). (6.13)

The results are averaged over 104 clustering problems and reported in Table 6.2.

Table 6.2: Semantic view scores validation. Comparison of clustering results
among different view selectors on the training set. for each (c,m) pair, the best view

selector is in bold.

FM NMI PUR

XCE AGG

TOP 0.48 0.78 0.73
RAND 0.50 0.78 0.74
OPTglob 0.85 0.94 0.93
OPTind 0.87 0.95 0.94

XCE KM

TOP 0.44 0.75 0.71
RAND 0.46 0.76 0.72
OPTglob 0.81 0.93 0.91
OPTind 0.83 0.93 0.92

VGG AGG

TOP 0.39 0.72 0.67
RAND 0.38 0.72 0.66
OPTglob 0.49 0.78 0.73
OPTind 0.52 0.79 0.74

The first thing to note is that both semantic estimators, although fit with a =

XCE AGG and m = FM, seem to pick views which are much better than TOP and

RAND. This is not surprising as these results were computed on the dataset used to

compute the estimators. However, it strengthens the belief that ŝ and Ŝ are good

semantic function estimators as they generalize to other feature extractors, clustering

algorithms, and metrics. Surprisingly, we also note that Ŝ and ŝ performances are

very similar. This might mean that the number of samples in the MC computation

is sufficient for Ŝ to be a good estimator of S. However, in our experiments, we

also acknowledge that for a given object ω in a given scene ζ, the values of the set

{Ŝ(vζ(pc)) | pc ∈ Pζω
Nζω
} are much closer to each other, which reveals that information

about individual data is lost when considering the global estimator. The slightly

better results of the ŝ estimator, as well as its better separability, justifies its use for

training SV-net.

Finally, we refer the reader back to Figure 6.4, where images with both high and

low ŝ(I) values have been outlined. This gives a qualitative validation of the index
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relevance for estimating the semantic function. Indeed, it is easier to tell that the

robot is looking at sun glasses from the green-outlined images than from the red-

outlined ones.

6.5.3 Evaluation of the learned semantic view selector

To evaluate our semantic view selection network (SV-net), we adopt a similar ap-

proach to the one in the previous section. The SV-net view selector is compared

against RAND and TOP under various configurations on the validation set, which was

neither seen for ŝ(I) computation, nor for training SV-net. The complete list of the 29

categories can be found in the dataset folder (https://github.com/jorisguerin/

SemanticViewSelection_dataset). Results are averaged over 104 clustering prob-

lems randomly sampled from the validation set and are reported in Table 6.3. In the

results presented, the five randomly chosen categories composing the validation set

were: comb, hammer, knife, toothbrush and wrench. We note that SV-net was able

to predict views which are better than TOP and RAND, which is a more remarkable

result than in the previous section as these kind of objects where never seen by the

network before. SV-net is able to extract sufficient information from a single top

view image to predict if a camera pose will provide good high-level features about

the object being observed.

Table 6.3: SV-net validation. Comparison of clustering results between different
view selectors on the test set. for each (c,m) pair, the best view selector is in bold.

FM NMI PUR

XCE AGG
TOP 0.44 0.51 0.70

RAND 0.48 0.56 0.74
SV-net 0.55 0.63 0.78

XCE KM
TOP 0.44 0.51 0.70

RAND 0.48 0.55 0.73
SV-net 0.55 0.62 0.78

VGG AGG
TOP 0.46 0.53 0.71

RAND 0.44 0.51 0.70
SV-net 0.48 0.55 0.73

As a qualitative validation, four samples of predicted images can be seen on Fig-

ure 6.6. We also underline that the absolute values of the clustering scores cannot

be compared between tables. Indeed, the object considered are different and there is

no guarantees that there exist views able to reach similar clustering accuracy when

different classes of objects are considered.
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(a) Example top views

(b) Associated SV-net selections

Figure 6.6: Examples of views predicted by SV-net.

6.6 Conclusion

6.6.1 Key results

In this chapter, we have introduced a new problem called semantic view selection. The

SVS problem consists of finding a good camera pose to improve semantic knowledge

about an object from a partial observation of the object. We created an image dataset

and proposed an approach based on deep learning to solve a relaxed version of SVS

problem.

By fitting an index based on averaged view clustering quality and training a neural

network to predict this index from a top view image, we show that it is possible to infer

which view results in good semantic features. This has many practical applications

including autonomous robot sorting, which is generally solved from top view images

only. Indeed, one can use the SV-net to enhance any sorting robot with the ability

to select better views to reduce sorting errors. Results reported in Section 6.5.3

demonstrate that SV-net predictions outperform the approach proposed in Chapter 5.

The views obtained with SVS are better than fixed views and have the potential to

improve URS. Perspectives and future work regarding semantic view selection are

discussed in Chapter 9.
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6.6.2 Towards fully autonomous unsupervised robotic sort-
ing

Parts II and III of the thesis focus on the decision making module of Unsupervised

Robotic Sorting (URS). It was shown that by properly choosing the views under

which to observe the objects and with a good image clustering pipeline, the results

for objects classification can be improved. However, a complete sorting pipeline is

composed of many other steps than decision making. To reach complete autonomy

and robustness to different kinds of objects and environments, a sorting robot must

have various other skills such as scene segmentation, objects localization, grasping,

trajectory generation, control, etc. Hence, the next part focuses on two of such

skills: trajectory learning and object localization, and thus constitutes a step towards

context independent robotic sorting.
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Part IV

Further developments
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Chapter 7

Model independent trajectory
optimization

Abstract

The methods for object understanding proposed in the previous chapters are im-

portant skills to increase the operating range of many robotic applications. Similarly,

this part of the thesis, presents contributions in two other tasks that can increase

autonomy, flexibility and robustness of various industrial applications, including ro-

botic sorting. Chapter 8 deals with 3D object localization and this chapter focuses

on precise trajectory learning. Recent reinforcement learning methods have enabled

to accomplish difficult high dimensional robotic tasks under unknown dynamics, us-

ing iterative Linear Quadratic Gaussian (iLQG) control theory. These algorithms

are based on building a local time-varying linear model of the dynamics from data

gathered through interaction with the environment. These techniques often require

an accurate model of the manipulated system to converge, which can be impractical

for tasks where such a model is unknown or changing frequently. This chapter pro-

poses a model independent version of iLQG by regressing the quadratic cost function

directly from the data. This way, any sensor information can be used to design the

cost function, thus making the trajectory learning easier to define and reprogram.

The proposed approach is validated against another model independent method for

a Cartesian positioning task, with various industrial robot models, in a simulated en-

vironment. Simulation is also leveraged to tune the hyperparameters of the method.

These parameters are then transferred to a real industrial robot for both standard

Cartesian positioning and a target reaching task with a laser pointer, for which a

model cannot be computed in the general case.
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7.1 Introduction

Chapters 2 to 6 focus on the unsupervised robotic sorting application. This problem

is closely related to unsupervised object understanding, an important skill for many

autonomous robotic tasks. However, to implement industrial robotic applications

that work under a broad range of conditions, many other skills need to be mastered.

In this part of the manuscript, we study two of such skills: trajectory learning and 3D

object localization. For example, in the robotic sorting context, these two skills are

essential to build a functional implementation that works in various environments,

and for any kind of objects. Indeed, object localization is a required skill to be able

to observe the different objects (view selection) and to grasp them. Likewise, to

navigate the robot between different configurations, the robotic system may benefit

from smart trajectory optimization methods, which is the focus of this chapter. We

propose to adapt a recent method based on optimal control, to accept any kind of

loss function based on sensor signals. The remainder of this section gives a specific

introduction about trajectory learning.

7.1.1 Literature overview

Optimal feedback control theory provides an efficient framework for robot manip-

ulators movement generation as it enables to compute both an optimal open-loop

trajectory and a feedback controller at once. To carry out such tasks, classical op-

timal control uses a model of the dynamics and selects the solution that minimizes

a properly designed cost function. Under linear dynamics and quadratic cost, an

optimal solution can be found analytically thanks to the widely studied theory of

Linear-Quadratic-Regulators (LQR) ([Lewis et al., 2012]). When the dynamics is a

more complex, non-linear function, the problem becomes more difficult. However,

the iterative Linear-Quadratic-Regulator algorithm (iLQR) ([Li and Todorov, 2004])

still enables to converge towards a locally optimal solution by iteratively fitting local

linear approximations to the dynamics.

On the other hand, autonomous learning of manipulation skills have received much

interest over the past decades. Thanks to different Reinforcement Learning (RL)

techniques ([Kober and Peters, 2012]), various problems involving robot manipulators

have been explored and successfully applied (([Lin, 2009]), ([Deisenroth et al., 2011]),

([Park et al., 2007])). Among RL techniques, policy search methods seem to be the

most appropriate for high dimensional robotic control problems ([Deisenroth et al.,

2013]). Recently, several researchers have proposed methods to link these two fields by
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using iterative Linear-Quadratic-Gaussian control (iLQG) (([Todorov and Li, 2005]),

([Tassa et al., 2012])) to compute control laws under unknown dynamics (([Mitrovic

et al., 2010]), ([Levine and Abbeel, 2014])). This approach is interesting as it removes

the need to model the dynamics, which can be difficult for complex systems and

environments.

7.1.2 Limitations

Besides the dynamics, an optimal control problem is also defined by its cost function.

In order to find a good trajectory it is required to design a proper cost function

in relation to the task to be carried out. Nevertheless, in most applications, we

acknowledge that the cost function is quadratic and expressed explicitly in terms of

the state and control variables. Such form of the cost function makes it easy to run

the iLQG algorithm and appears to be well suited for many applications. However, in

some cases, it can be useful to formulate the cost function in terms of variables that

are not explicitly the state and control vectors. For example, ([Levine et al., 2015b])

propose a cost function defined in the Cartesian space whereas the robot is controlled

in joint space. In such cases, a model of the system (i.e. a direct Denavit-Hartenberg

(DH) model ([Dombre and Khalil, 2013]) of the manipulator) is required to express

analytically a quadratic expansion of the cost function, which is necessary to run

iLQG. Such dependence on a robot model can be problematic since calibration is a

complex and time consuming process (([Majarena et al., 2010]), ([Elatta et al., 2004]))

and because the method is very specific to a certain system (([Nubiola and Bonev,

2013]), ([Jubien et al., 2014])). It is impossible to derive a model taking into account

every dynamic phenomena. For example, if the payload on the robot is changed,

the model calibration might not be valid anymore as strains might appear. In an

autonomous learning framework, it does not seem appropriate to have to redesign a

model after any change on the system.

7.1.3 Contributions and chapter organization

In this chapter, we propose a method to overcome the model dependence issue by re-

gressing the quadratic approximation of the cost function from samples, in the same

way as for the dynamics. In this way, the cost function can be defined from any

measurable quantity, which allows to have a more appropriate cost in some cases.

Moreover, the cost function can be defined in a more intuitive way and robot pro-

gramming can become more accessible to non-specialists.
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The task chosen to validate the method is a Cartesian positioning task. The

robot is trained to learn how to reach a Cartesian point with its end-effector using

only position sensors information and without any DH model. The cost function is

the distance measured between the end effector and the target Cartesian position

while the robot is controlled in joint space. To emphasize the interest of the method,

we also propose to learn trajectories for target reaching with a laser pointer. For this

task, the DH model cannot be computed in general because the transform to the end

effector is unknown.

Two different methods are proposed to update the controller. The first one, which

is a first order optimization method, is less elaborated but has less parameters to tune

and is faster to implement. Therefore, the cost function learning scheme described

above is validated using first-order controller updates. Using the V-REP software

([E. Rohmer, 2013]), robots with different specifications (number of joints, length

of links, ...) learn the same positioning task, which illustrates that the method

is independent of the robot model. We compare our results with another method

where the Cartesian distance is included in the state vector and the cost is thus

a function of the dynamics. Our method is shown to be more stable and to con-

verge faster to high precision positioning. Once the method is shown to work, a

second order optimization technique is implemented and its parameters are tuned

using V-REP. Finally, the parameters found are tested on a real Kuka LBR iiwa

robot on both the standard Cartesian positioning problem and a laser pointer tar-

get reaching task. This work received an IEEE IES Student Travel Paper Award

([Guérin et al., 2016]). A video that summarizes the key findings from this chapter

is available at: https://www.youtube.com/watch?v=M9RK2XznHEE&index=4&list=

PLO5umi31c_83SMDdkk26shJZbOnbqbSpl.

The chapter is organized as follows. The derivation of the iLQG algorithm is

written in Section 7.2, where both first order and second order methods are proposed

to update the controller. In Section 7.3, the regression method for cost function

estimation is validated through simulation. We tune the parameters for second order

controller updates with V-REP simulation in Section 7.4 and in Section 7.5 we validate

them experimentally on a real robot.
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7.2 Trajectory optimization using ILQG

7.2.1 Overview of Reinforcement Learning and Trajectory
Optimization

Reinforcement Learning (RL) is a subfield of Machine Learning that studies the be-

havior of an agent taking actions in an environment. The environment responds to

each action by rewarding (or penalizing) the agent. The goal of the agent is to max-

imize such reward (or minimize the cost). In this chapter, we consider the episodic

setting. For a better overview of the field of RL, the reader can refer to the following

good survey ([Kober and Peters, 2012]). To go further, we also suggest the following

textbook ([Sutton and Barto, 1998]).

At a given time t, the RL framework is composed of three main elements:

• xt, the state of the system, is a vector that contains all relevant information

about the configuration of the system (or agent). For example, in our case, the

agent is the serial robot and its state vector is composed of the angular joint

positions.

• ut, the action taken by the agent. This control vector represents commands

sent to change the state of the system. For us, ut corresponds to joint target

positions.

• lt, the cost resulting from sending command ut when in state xt. In a robotic

Cartesian positioning task, the cost at time t is proportional to the distance to

the target point.

With these elementary notations, we can introduce the following concepts:

• The cost and dynamics functions at time t are defined as follows:

lt = Lt(xt, ut), (7.1)

xt+1 = Ft(xt, ut). (7.2)

Lt outputs the cost and Ft the next state, both with respect to current state

and action. We note that environment and dynamics refer to the same thing.

• The controller is the function we want to optimize. For a given state, it needs

to output the action with smallest cost that follows the dynamics. In our case,

at time step t, it is denoted by Πt and has the special form of a time-varying

linear controller:

ut = Πt(xt) = Ktxt + kt. (7.3)
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Then, a trajectory τ , of fixed length T , is defined by the repetition T times of the

pattern shown in Figure 7.1. Mathematically, it can be denoted by

τ = {x0, u0, x1, u1, ..., uT−1, xT}, (7.4)

Initial
state
x0

State
xt

Controller

Πt(xt)

Action
ut

Cost
lt

Dynamics

Ft(xt, ut)

State
xt+1

Final
state
xT

Figure 7.1: Block diagram to define a trajectory and summarize the notations.

The guiding principle of iLQG is the following:

• From a nominal trajectory, denoted τ̄ = {x̄0, ū0, . . . , x̄T}, a new improved con-

troller is derived by:

– approximating the Taylor expansions of the cost and dynamics (Section 7.2.2),

– updating the controller according to this approximations (Section 7.2.3).

• From this new controller, a new nominal trajectory is computed.

This process is repeated until a good enough controller is reached. In most application,

this iterative process turns out to converge rather rapidly towards a locally optimal

trajectory.

7.2.2 Local approximations of cost and dynamics

As explained earlier, from a given nominal trajectory τ̄ , the goal is to update the

controller such that the cost is minimized in its neighborhood. In this process, the

first step is to compute local approximations of the cost function and dynamics around

the nominal trajectory:

Ft(x̄t + δxt, ūt + δut) ≈ x̄t+1 + [Fxt , Fut ]

[
δxt
δut

]
, (7.5)

Lt(x̄t + δxt, ūt + δut) ≈ l̄t + [Lxt , Lut ]

[
δxt
δut

]
+ 1

2

[
δxTt , δu

T
t

] [ Lx,xt Lx,ut
Lu,xt Lu,ut

] [
δxt
δut

]
, (7.6)

where δxt and δut represent variations from the nominal trajectory and capital let-

ters indexed by one (respectively two) letters represent sub-vectors (respectively sub-

matrices) of the appropriate Jacobian (respectively Hessian) matrices.
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7.2.2.1 Different approaches

In the original paper for iLQG ([Todorov and Li, 2005]), equations (7.1) and (7.2) are

considered known and both Taylor expansions are computed analytically. Later on, it

was proposed to compute the linear dynamics through regression on observed values

(([Levine and Abbeel, 2014]), ([Mitrovic et al., 2010])). This way, trajectories can be

found without a model of the environment, which is difficult to have in most situations.

However, the cost function still needs to be expressed directly in terms of the state and

action variables. If one wants to design a cost function from sensor measurements,

it might not be straightforward to obtain the partial derivatives with respect to the

state and control vectors. A good example is the task of robot positioning, where the

cost function is a Cartesian distance and the variables controlled are joint positions

(Section 7.3). In this case, different methods, illustrated in Figure 7.2, can be used

to compute the second order Taylor expansion of the cost.

The first method (Figure 7.2b) consists in using a model of the robot to convert

the angular state variables into Cartesian end-effector positions. This robot model is

then used to derive the cost function with respect to the angular positions. In some

practical situations, such model can be hard to obtain with enough precision, e.g.

humanoid robots with a lot of degrees of freedom. Indeed, coming up with a precise

model of a robot manipulator is a hard and tedious task ([Majarena et al., 2010]).

Moreover, the need for a model of the robot reduces the generality of the algorithm

and its precision is dependent on the model, which varies from one robot to another

and even with the same robot loaded differently.

As stated in the introduction, the framework for this chapter requires a model-

free method. One possibility to avoid the model is to increase the state vector with a

measurement directly proportional to the cost function (Figure 7.2c). For example,

for the positioning task in Section 7.3, the Cartesian distance can be considered to be

part of the state. By doing this, the cost function can be expressed directly from the

state and the dynamics and the derivation can be done. This trick enables to define

the cost function from any measurable quantity. However, as shown in Figure 7.2c,

the cost function approximation is not really quadratic as it is computed from a first

order approximation of the distance.

In this chapter, we propose a different model independent approach, illustrated in

Figure 7.2d, in which the cost function is directly approximated quadratically. This

method is developed in the next section.
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xt, ut ? lt

(a) Function to approximate.

xt, ut Learnt linear
dynamics

Approximate
robot model

lt

(b) Using a model of the robot.

xt, ut

dt

Learnt linear
dynamics

dt+1

xt+1

Analytical
differentiation

lt

(c) Including the distance dt in the state representation.

xt, ut

Learnt linear
dynamics

Learnt quadratic
cost function

xt+1

lt

(d) Learning the quadratic approximation of the cost.

Figure 7.2: Different ways to compute the second order Taylor expansion of a
Cartesian distance cost function from angular state and control vectors.

7.2.2.2 Quadratic cost approximation through exploration and regression

The proposed method consists in computing both approximations following an explor-

ation and regression scheme. The first stage generates a certain number N of random

trajectories around the nominal. These trajectories are normally distributed around τ̄

with a certain time-varying covariance, denoted Σt for time step t. Therefore, during

sample generation, the controller is stochastic and follows:

Πt(ut|xt) = N (Ktxt + kt,Σt), ∀t ∈ {0, ..., T − 1}, (7.7)

where N (µ,Σ) is the normal distribution of mean µ and standard deviation Σ. From

these samples, we can make two regressions, a linear one ([Freedman, 2009]) to get

the dynamics and a quadratic one ([De Brabanter et al., 2013]) to approximate the

cost function.

A quadratic regression consists in transforming the data with a second order

polynomial kernel and applying a linear regression on the resulting higher dimensional

data. In the general case, a quadratic expansion of the cost w.r.t. δxt and δut
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(respectively n and m entries) is obtained by solving a linear regression with input

data in the form:

[1, δx1, ..., δxn︸ ︷︷ ︸
n

, δx2
1, δx1δx2, ..., δx

2
n︸ ︷︷ ︸

n(n+1)
2

, δu1, ..., δum︸ ︷︷ ︸
m

, δu2
1, ..., δu

2
m︸ ︷︷ ︸

m(m+1)
2

, δx1δu1, ..., δxnδum︸ ︷︷ ︸
n×m

]T .

This corresponds to a regression with (1 +m+ n+ n(n+1)
2

+ m(m+1)
2

+m× n) learn-

able parameters, which is more than the other approaches where only the linear

dynamics is learned ((1 +m+ n) learnable parameters).

The higher dimensionality of the cost regression requires a higher number of

samples for equal approximation precision, which can be an issue when data gener-

ation is expansive. However, all the samples found during the dynamics exploration

phase can also be used for the quadratic regression if the cost is recorded at the same

time than the new state observed. The efficiency of the methods in Figures 7.2c and

7.2d are compared in Section 7.3.

7.2.3 Update the controller

7.2.3.1 Compute the cost-to-go

Once the Taylor expansions of the cost and dynamics functions have been estimated,

the next step is to update the controller to get lower cost over the whole trajectory.

To do so, we need to leverage the state-value (V ) and action-value (Q) functions,

which are defined as follows:

QΠ
t (xt, ut) = EΠ

[
T∑
j=t

lj

]
= Lt(xt, ut) + EΠ

[
T∑

j=t+1

lj

]
, (7.8)

V Π
t (xt) = EΠ

[
T∑
j=t

lj

]
= EΠ

[
Lt(xt,Πt(xt)) +

T∑
j=t+1

lj

]
, (7.9)

where Π = {Πt, t ∈ {1, ..., T−1}} denotes the time-varying linear controller. In other

words, QΠ
t represents the expected cost until the end of the trajectory if following Π

after being in state xt and selecting action ut. The state-value function V Π
t is the

same but conditioned only on xt. If Π is deterministic, these two functions are strictly

equivalent. To simplify the notations, from now on, we remove the Π exponents of

Q and V . Under the assumption that the trajectories are Markov Decision Process

(MDP), (7.8) and (7.9) can be reformulated as:

Qt(xt, ut) = lt + Vt+1(xt+1), (7.10)

Vt(xt) = Qt(xt,Πt(xt)). (7.11)
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To lighten the derivation of the updated controller, we also define an intermedi-

ate controller that enables us to compute improvements on the time-varying linear

controller Π during each improvement step:

δut = π(δxt) = Ptδxt + pt. (7.12)

The Pt term improves the controller response to state variations and the pt term is a

shift in the nominal trajectory.

To compute an improved controller, we first compute quadratic Taylor expansions

of both value functions:

Qt(x̄t + δxt, ūt + δut) ≈ Q0t + [Qxt , Qut ]

[
δxt
δut

]
+ 1

2

[
δxTt , δu

T
t

] [ Qx,xt Qx,ut

Qu,xt Qu,ut

] [
δxt
δut

]
, (7.13)

V Π
t (x̄t + δxt) ≈ V0t + Vxtδxt +

1

2
δxTt Vx,xtδxt. (7.14)

These quadratic approximation are computed with a backward recursive method and

Qt can be expressed in terms of Vt+1 by plugging (7.5), (7.6) and (7.14) into (7.10).

This leads to the following expressions for the coefficients of (7.13):

Q0t = l̄t + V0t+1 + Vxt+1x̄t+1 +
1

2
x̄Tt+1Vx,xt+1x̄t+1,

Qxt = Lxt + Vxt+1Fxt + x̄Tt+1Vx,xt+1Fxt ,

Qx,xt = Lx,xt + F T
xtVx,xt+1Fxt ,

Qut = Lut + Vxt+1Fut + x̄Tt+1Vx,xt+1Fut ,

Qu,ut = Lu,ut + F T
utVx,xt+1Fut ,

Qx,ut = Lx,ut + F T
xtVx,xt+1Fut .

(7.15)

The coefficients of (7.14) are then obtained using (7.12), (7.13) and (7.11):

V0t = Q0t +Qutpt +
1

2
pTt Qu,utpt,

Vxt = Qxt +QutPt + pTt Qu,utPt + pTt Q
T
x,ut ,

Vx,xt = Qx,xt + P T
t Qu,utPt +Qx,utPt.

(7.16)

Once all the value functions have been computed backward with initial condition

VT = LT (xT ), the controller with lowest cost-to-go at each time step needs to be

computed.
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7.2.3.2 First order controller update

In order to improve the controller, δut that minimizes Qt needs to be computed at

each time step t. Hence, we start by isolating the terms of Qt depending on δut in

(7.13), which gives the following quadratic function to minimize:

f(δxt, δut) = (Qut + δxTt Qx,ut)δut +
1

2
δuTt Qu,utδut. (7.17)

Then, we derive this function with respect to δut:

∂f

∂δut
(.) = Qut + δxTt Qx,ut + δuTt Qu,ut . (7.18)

Note that this partial derivative is in the Jacobian form (row wise).

To optimize the controller, several methods (first and second order) have been

applied ([Todorov and Li, 2005]). In Section 7.2.3, we present an efficient second order

technique, validated in Sections 7.4 and 7.5. However, to ease the characterization

of the method, this section introduces a first order method, which is more intuitive.

The gradient of f with respect to δut is

∇δutf(δxt, 0) = QT
ut +QT

x,utδxt. (7.19)

And steps towards better controllers are made in the opposite direction of the gradi-

ent. Hence, for the same input δxt, the new chosen δut should be

δut = −ε(QT
ut +QT

x,utδxt). (7.20)

Obviously, the model being only valid locally, the step ε should be chosen small

enough not to violate a “proximity to nominal” constraint.

In practice, we have implemented a slightly different method, similar to super-

SAB ([Allard and Faubert, 2004]). The variance for exploration (see Section 7.3) is

modified according to the evolution of the partial derivatives signs, i.e. it is increased

if the sign remains the same and decreased otherwise. Then, ε is tuned to stay inside

the variance boundaries. In this way, as we get closer to the optimal solution, the

exploration gets tighter and the improvements are more accurate. This controller

improvement method appear to converge within a reasonable number of steps for

positioning tasks (Section 7.3).
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Then, the controller can be updated to produce new commands:

ut = ũt + δut, (7.21)

where ũt is the action chosen if following the current controller Π̃ = (K̃t, k̃t). By

definition of the current controller, we have

ũt = K̃txt + k̃t, (7.22)

where xt is a slight deviation from the nominal trajectory:

xt = x̄t + δxt. (7.23)

By plugging (7.12), (7.22) and (7.23) into (7.21), we obtain:

ut = K̃txt + k̃t + Ptδxt + pt, (7.24)

Finally, by adding and subtracting Ptx̄t to the equation above, the global controller

is updated as follows:

Kt = K̃t + Pt, (7.25)

kt = k̃t + pt − Ptx̄t, (7.26)

where the values of Pt and pt can be found by identification between (7.20) and (7.12):

Pt = −εQT
x,ut , (7.27)

pt = −εQT
ut . (7.28)

The new average trajectory is obtained by applying this new controller to the

initial state.

7.2.3.3 Second order controller update

Another method, more efficient but more complex, can be implemented to update the

controller. Under the quadratic value functions (7.13) and (7.14), it can be shown,

by cancelling the derivative (7.18), that the optimal controller under such dynamics

and cost is defined by

Kt = −Q−1
u,utQu,xt ,

kt = ūt −Q−1
u,utQut −Ktx̄t. (7.29)
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A criterion to compute the new covariance is also needed. The goal being to

explore the environment, we follow ([Levine and Koltun, 2013]) and choose the co-

variance with highest statistical entropy in order to maximize information gained

during exploration. Such covariance matrix is:

Σt = Q−1
u,ut . (7.30)

However, (7.13) and (7.14) being only valid locally, we need to limit the deviation

from the nominal trajectory or the environment might respond completely differently

and we might fall into bad behaviors. Such issue is solved in the next section by

introducing a proximity constraints on the trajectories, thus making the choice of the

initial covariance matrix of major importance. Indeed, it influences the exploration

range for all the future steps: if it has large values, next iteration also needs to have

large covariance. In our implementation, we start with diagonal covariance matrices

(for all t ∈ {0, ...T − 1}) where all the diagonal entries are the same. The choice of

such diagonal entries, denoted σini, is studied experimentally for the task of Cartesian

positioning in Section 7.4.

7.2.3.4 Limit the deviation from nominal trajectory

The controller derived above is optimal only if the dynamics and cost are respectively

linear and quadratic everywhere. The approximations being only valid locally, the

controller needs to stay close from the nominal trajectory after update. This problem

can be solved by adding a constraint to the cost minimization problem:

DKL(ρ(τ)||ρ̃(τ)) ≤ ε, (7.31)

where DKL is the statistical Kullback-Leibler divergence. ρ̃(τ) and ρ(τ) are the

trajectories probability distributions under the current controller and the updated

one, and ε is a user defined parameter.

In ([Levine et al., 2015b]), it is shown that such constrained optimization problem

can be solved rather easily by introducing the modified cost function:

Lmodt(xt, ut) =
1

η
Lt(xt, ut)− log(Π̃t(xt, ut)), (7.32)

where Π̃ is the current controller (before update) and η is also user defined. Indeed,

using dual gradient descent, we can find a solution to the constrained problem by

alternating between the two following steps:

• Compute the optimal unconstrained controller under Lmod for a given η

• If the controller does not satisfy (7.31), increase η.
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A large η has the effect of increasing the importance on constraint satisfaction, so the

larger η is, the closer the new trajectory distribution will be from the previous one.

To evaluate (7.31), one first needs to compute DKL(ρ(τ)||ρ̃(τ)). In the appendix

of ([Montgomery and Levine, 2016]), the authors show that

DKL(ρ(τ)||ρ̃(τ)) =
T∑
t=0

EΠt(xt)

[
DKL(Πt(ut|xt)||Π̃t(ut|xt))

]
. (7.33)

In the context of the time-varying linear-Gaussian policies, we show that this formula

can be written as follows:

DKL(ρ(τ)||ρ̃(τ)) =
1

2

T∑
t=0

Tr(AtΣxt) + µTxtAtµxt + 2µTxtbt + ct, (7.34)

where At, bt, ct, µxt and Σxt (the mean and covariance of the state distribution at

time step t) are computed recursively from the initial state distribution, the Taylor

expansions of the dynamics and the expression of the controller. A complete proof as

well as the exact recursive formulas for At, bt, ct, µxt and Σxt are given in Appendix F.

7.2.3.5 Initialize η and choose ε

The way Q is defined from approximation does not guarantee positive definiteness for

Qu,ut , i.e. it might not be eligible to be a covariance matrix. This issue is addressed by

increasing η such that the distribution is close enough from the previous one. As the

previous trajectory has a positive definite covariance, there exists a η that enforces

positive definiteness. This gives a good way to initialize η for a given pass.

Finally, the choice of ε is also paramount. If it is too small, the controller sequence

will not progress towards optimality and if it is too large, it might be unstable. The

idea is to start with a certain εini and decrease it if the new accepted controller is

worse than the previous one. The choice of εini is studied experimentally for the task

of Cartesian positioning in Section 7.4.

7.3 Simulation validation of quadratic regression

for cost computation

In order to validate the quadratic regression method to compute the cost, we start

by implementing the simple gradient descent update on the V-REP software.
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7.3.1 Problem definition

In order to show the effectiveness of the method, a robot manipulator positioning task

has been implemented using the V-REP simulation software. The robot is controlled

in angular position, the state vector is the vector of angular joint coordinates and

the control vector is the desired angular positions for the next step. The goal is to

reach a target Cartesian point with the end-effector of the robot. The cost function is

expressed naturally as the Cartesian distance between the connector and the target.

Figure 7.3 represents the initial and final trajectories for the simulated positioning

tasks. On this figure, the end-effector is represented by the little black connector at

the extremity of the robots and the target by the center of the red floating sphere.

The distance (cost function) is extracted directly from the software. In real physical

applications, one can imagine it to be provided by any distance measurement sensor

(e.g. laser tracker).

(a) Initial, randomly chosen, nominal trajectory

(b) Final trajectory found

Figure 7.3: Trajectory learned in simulation for positioning task for different
industrial robots (KUKA LBR iiwa / ABB IRB 140 / UR 10 / F&P P-ARM, from

left to right).

If one want to solve such control problem with classical methods, he first needs

to build a model of the robot (e.g. DH), giving the end-effector position w.r.t. joint

coordinates. Indeed, to be able to get the quadratic approximation of the cost,

one needs to map analytically the joint space to the Cartesian space in order to

differentiate it. Obviously, no such model has been derived for the simulation and
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we implemented the algorithm on four industrial robots with different specifications

(number of links, lengths of links, ...) to illustrate that the method is model-free

(Figure 7.3). Testing any additional new robot would take only a few additional

minutes of work as there is no need to explicit a DH-model. Thanks to this method,

we are free of modelling imprecision and only sensor precision is involved in the

learning process.

It is also worth underlining that the task would be similar if fixing a reference

frame to the end-effector and adding orientation constraint. All that is needed is to

take distances between three points instead of only one.

7.3.2 Trajectory found on different robots

The nominal trajectory used to initialize the iLQG algorithm was chosen randomly.

We chose to set all desired joint positions to 60◦ and explore around this initial

command. Figure 7.3a represents the initial nominal trajectory. Note that the angular

point-to-point (PTP) movement between two joints configuration is considered as a

black box, part of the V-REP environment. In this way, the dynamics can really be

considered unknown.

Figure 7.3b represents final trajectories found for the positioning task. The al-

gorithm stopped running when a precision of 0.1 mm was reached. As it can be seen,

iLQG with no model of the robot and Cartesian cost function succeeds to reach its

objective point with different robots. Indeed, they have different lengths, different

numbers of links, but the algorithm can still converge towards a solution without

being restricted on the cost function definition.

7.3.3 Number of samples needed

Figure 7.4 shows the influence of the number of samples on the rate of convergence

on one specific robot (KUKA LBR iiwa). For a sample count above 40, the solution

does not evolve anymore, which means that 40 samples is enough to characterize with

high precision the local cost function.

On the other hand, Figure 7.4 also shows that if the number of samples gathered

is too small (e.g. 5), the cost and dynamics will not be approximated well and the

algorithm might not converge towards the desired solution.
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Figure 7.4: Distance to target point with respect to the number of iLQG passes.
Different curves represent different number of samples generated for learning the

cost and dynamics.

7.3.4 Comparison with state modification method

As mentioned in Section 7.2, another method to avoid robot modeling consists in

including the Cartesian distance in the state vector. This technique corresponds to

diagram 7.2c of Figure 7.2. In this section, the proposed quadratic regression method

is compared with this common technique. Figure 7.5 illustrates the learning curves

for both methods under different learning sample sizes. We acknowledge that state

modification is less stable. Indeed, in this simulation, results with 30 samples are

better than the ones with 40, which does not happen using quadratic approximation.

Moreover, the state modification does not show the nice property of being independent

of the number of samples when this number becomes high (< 40). Finally, the

quadratic regression appears to be more efficient in the final stages of the algorithm,

which might come from the fact that a better model of the cost is required to reach

high precision in the positioning.

7.4 Parameters tuning for second order methods

Now that we have seen that the method is working and overall better than the other

model free method, we try to implement a more complex and elaborated controller
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Figure 7.5: Comparisons of two methods: Quadratic regression (plain blue lines)
and modified state (dotted orange lines). Right-upper boxes on each figures are

zoom on the final stages of iLQG.

update. We use the second order scheme defined in Section 7.2.3.3 and a more

complex cost function in order to boost the learning of the positioning task. Such

inverse kinematics task is only carried out with the KUKA LBR iiwa robot Figure 7.6.

7.4.1 Cost function

For this problem, the cost function needs to be expressed in terms of the Cartesian

distance between the end-effector and the target point. We chose the more elaborated

cost function proposed in ([Levine et al., 2015b]):

l(d) = d2 + v log(d2 + α), (7.35)

where v and α are both real user defined parameters. The squared distance term

encourages fast convergence to the neighborhoods of the target and the log term
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Figure 7.6: Trajectory learnt on V-REP software with a KUKA LBR iiwa.

encourages precise positioning. Hence, v is a trade-off parameter between the two

penalties and α is a small positive value that ensures numerical stability. As we do

not consider any geometric parameter of the robot, the distance cannot be obtained

with direct model considerations and needs to be measured from sensors.

7.4.2 Tune the algorithm parameters

Section 7.3 shows that a number of samples around 40 is a good balance between

accurate quadratic regression and exploration time for 7 d.o.f. robots. So we carry

out our experiments with N = 40. Then, the learning process depends on four

parameters, which are studied experimentally in this section:

• the initial covariance, σini, which corresponds to the diagonal entries of the

covariance matrices of the initial time-varying controller (Section 7.2.3.3),

• the v and α terms from the cost function (Equation 7.35),

• the initial upper bound for the KL divergence between the current and updated

trajectories, εini (Section 7.2.3.5).
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Different values of these parameters are tested in simulation using V-REP on the

following positioning task:

• Initial position : All 7 angles at 0 (straight position on Figure 7.6)

• Target position : Cartesian vector [500, 500, 500]T in mm, in the robot frame

(red sphere on Figure 7.6)

• Initial mean command : target angular positions = initial positions (no move

command).

Figure 7.6 shows a trajectory found by the algorithm.

7.4.3 Results and analysis

After a preliminary study, we choose three values for each parameter and all the 81

possible combinations are tried to choose a good set of parameters for positioning

tasks. Results obtained are summarized in Table 7.1. In our simulation, the robot

was allowed only 16 trials to reach a precision of 0.1 mm. Thus, we insist that in

Table 7.1, an underlined number represents the number of iLQG iterations before

convergence whereas other numbers are the remaining distance to objective after 16

iterations.

Table 7.1: Influence of the four user defined parameters on the convergence of the
method.

σini = 1

v εini
α

10−3 10−5 10−7

0.1
100 11 16 13
1000 0.25 12 10
10000 13 0.27 8

1
100 0.11 14 16
1000 10 12 10
10000 0.10 1.69 0.24

10
100 0.11 0.22 0.84
1000 0.13 12 0.20
10000 13 0.23 15

σini = 10

v εini
α

10−3 10−5 10−7

0.1
100 0.32 0.15 0.39
1000 0.45 0.28 0.22
10000 0.30 0.29 0.31

1
100 0.14 0.32 0.32
1000 14 1.93 1.70
10000 1.82 0.99 0.11

10
100 0.34 0.38 0.39
1000 0.71 0.29 0.53
10000 0.70 0.14 2.31

σini = 100

v εini
α

10−3 10−5 10−7

0.1
100 12.79 12.42 17.83
1000 4.42 0.30 3.50
10000 2.88 10.93 2.60

1
100 24.37 15.75 10.13
1000 7.66 6.32 1.87
10000 2.67 8.37 6.44

10
100 1.93 8.93 1011

1000 8.03 2.23 3.50
10000 2.70 4.83 2.60

An underlined number represents the number of iLQG iterations to reach 0.1mm
precision, Other numbers represent the distance remaining after 16 iterations.

Results in Table 7.1 suggest that the best set of parameters for the positioning

task is σini = 1, v = 0.1, α = 10−7 and εini = 10000. Indeed, these parameters have

the smallest number of iterations and are thus chosen for the experimental validation

in section 7.5.
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Together with the raw data in Table 7.1, we also plot the evolution of the dis-

tance within the iterations of a simulation for several sets of parameters. Looking at

Table 7.1, it seems that the most critical parameter is σini. Figure 7.7 shows three

learning curves where only σini varies, all the other parameters are set to their median

value. From here it appears that the initial covariance is not crucial in the early stages

of the learning process. However, the right plot, which is a zoom on the final steps,

reminds that if the covariance is too large, the algorithm will not converge towards

the desired accuracy behavior. Hence, as already suggested by Table 7.1, keep σini

around 1 seems to be a good choice to obtain the desired accurate behavior.
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Figure 7.7: Influence of the initial covariance on the learning speed with other
parameters set to v = 1, α = 10−5, εini = 1000

After setting σini to 1, we draw the same plots for the other parameters in Fig-

ure 7.8. These reveal that v and α do not appear to influence the behavior in this

range of values. However, looking at Figure 7.8c, we can see that εini needs to be

kept large enough such that an iLQG iteration can make enough progress towards

optimality. For small εini, convergence is slower near the initial configuration.

7.5 Experimental validation for the method

7.5.1 Validity of simulation parameters for a real-world im-
plementation

Experimental setup

In this section, we evaluate how well the parameters chosen in simulation (Section 7.4)

transfer to real-world. Hence, our algorithm is implemented on a real KUKA LBR
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Figure 7.8: Influence of other parameters on learning speed with σini = 1. When
they do not vary, other parameters take the following values: v = 1, α = 10−5,

εini = 1000

iiwa for a similar positioning task under different initial and final configurations,

which are shown on Figure 7.9:

• Initial pose : [140, 0, 0, 0, 0, 0, 0]T , angular positions in ◦ (Figure 7.9a),

• Target position : [−600, 400, 750]T , Cartesian position in mm expressed in the

robot frame (Position of the end effector on Figure 7.9b),

• Initial mean command : target angular pose = initial pose (no move).

The choice of changing the initial configuration is motivated by two reasons:

• It shows that the parameters found in Section 7.4 are not case dependent,

• This setup reduces the risk of collision with the working environment.
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(a) Initial configuration. (b) Final pose learned.

Figure 7.9: Initial configuration and final pose learned for the Cartesian
positioning task with the KUKA LBR iiwa.

Results

The learning process defined above resulted in the learning curve on Figure 7.10. We

note that it takes as many steps to go from the initial configuration to 1 mm accuracy

than from 1 mm to 0.1 mm. The final command, i.e. target angular configuration,

provided by the algorithm is [144.266, 25.351, 2.328,−56.812, 5.385, 24.984, 4.754]T .

Regarding the learning time, the overall process took approximately 9 minutes, 6 for

exploration and 3 for calculations.
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Figure 7.10: Learning curve for iLQG on the robot.
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On this experimental validation, the distance is computed from the end-effector

position read from the robot internal sensors. Even if it was probably computed

thanks to a direct DH model, our algorithm uses it as a black box sensor measurement.

Thus, similar results would have been obtained using any other distance measurement

sensor (e.g. laser tracker) instead of using the internal robot variables. We just note

that, the precision reached is relative to the precision of the measurement tool.

7.5.2 Qualitative validation on a case where no DH model is
available

A qualitative validation on a case for which the direct geometric model of the system

cannot be computed is proposed in this section. The robot, equipped with a two-

finger gripper, is positioned in a room at a random and unknown location. Then, a

laser pointer is placed in the gripper in a random orientation and the end-effector is

defined by the projection of the laser on a given white wall of the room. A target

is stuck on this wall and the objective is to find a robot configuration to reach its

center. A camera continuously streams the distance (in pixels) between the red dot

and the center of the target thanks to a simple computer vision pipeline. This distance

information is used to compute the cost function and provide feedback to the robot.

The different elements described above and the initial setup for this tasks can be seen

in Figure G.29a.

For this task, the mapping from joint positions to end effector positions cannot

be computed because both the location of the robot and the orientation of the laser

pointer are unknown. Hence, this example is a good case study to test iLQG with

learned dynamics and cost function. The proposed approach converges towards the

center of the target in approximately two minutes at a precision of around 2 mm,

which is the precision of our simple external measurement system. The final config-

uration reached can be seen in figure G.29b and a video of the robot solving the task is

available at: https://www.youtube.com/watch?v=Ekda9q3vv6Y. This implementa-

tion demonstrates qualitatively the interest of the method by solving a task where

obtaining a model is really hard and we can see that our approach is not impacted

by such absence of model.
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(a) Initial configuration

(b) Learned final pose

Figure 7.11: Qualitative validation: Laser pointer target reaching task.
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7.6 Conclusion

In this chapter, we have introduced a modified version of iLQG to solve the locally

optimal trajectory learning problem. This approach consists in regressing the second

order Taylor expansion of the cost function from data measurements. Compared to

standard ways of computing the cost function, this method has the advantage of being

independent from the model of the system and avoids nested approximations. To

validate the proposed method, we have studied experimentally the task of Cartesian

positioning for serial robots, without using the forward model. We assume that

during learning, the robot can only access its angular joint positions and the Cartesian

distance between its end-effector and its target, measured by an external sensor.

The simulated experiments conducted in Section 7.3 demonstrate that learning

the quadratic cost function is more stable and converges faster to high precision

trajectories than including distance as a state variable. Simulation is also leveraged

to learn a good set of hyperparameters for second order controller improvements.

These parameters are then shown to work for a real robot for a standard positioning

task. The high precision reached for this simple positioning task let us hope that such

methods will be suitable for more complex industrial tasks. Finally, we demonstrate

the model independence of the approach by solving a target reaching task with a laser

pointer, for which a direct model cannot be computed in general. Perspectives and

future work regarding trajectory learning are discussed in Chapter 9.
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Chapter 8

Automatic Construction of
Real-World Datasets for 3D Object
Localization using Two Cameras

Abstract

Similarly to object understanding and trajectory learning, object localization is

an elementary robotic skill that is use in the conceptual definition of many robotic

applications, including robotic sorting. Unlike classification, position labels cannot

be assigned manually by humans. For this reason, generating supervision for precise

object localization is a hard task. This chapter details a method to create large

datasets for 3D object localization, with real world images, using an industrial robot

to generate position labels. By knowledge of the geometry of the robot, we are able to

automatically synchronize the images of the two cameras and the object 3D position.

We applied it to generate a screw-driver localization dataset with stereo images, using

an industrial robot. This dataset could then serve to train a CNN regressor to learn

end-to-end stereo object localization from a set of two standard uncalibrated cameras.
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8.1 Introduction

Like object understanding and trajectory learning, object localization is an element-

ary brick which can serve in building many robotic applications and can be made more

autonomous and easier to “program” by unqualified workers. Hence, this chapter ad-

dresses the problem of 3D object localization and introduces a method for automatic

generation of large stereo localization datasets. By leveraging the precision and re-

peatability of industrial robots, the proposed methodology enables to save labor time

and increase precision for datasets construction. This chapter is an ongoing research

and these datasets should be used for training end-to-end stereo localization networks

to validate the methodology. However, we believe that this chapter introduces some

interesting concepts about dataset construction that can be useful to the community.

We now propose a more specific introduction to the topic of 3D localization using a

system of stereo cameras.

In the context of autonomous manipulation, 3D object localization plays an es-

sential role. Stereo vision is one of the most efficient methods for 3D reconstruction

and thus is a very useful tool when dealing with robotic manipulation. Indeed, stereo

vision has received many attention in research over the past decade in different sub-

fields of autonomous manipulation such as grasping (([Azad et al., 2007]), ([Morales

et al., 2006])), contact-reach tasks ([Hudson et al., 2012]), and even playing soccer

([Käppeler et al., 2010]).

However, classical methods of stereo vision are hard to design and require a lot of

tuning. They can be inaccurate as they are composed of many steps, which are all

potential sources of errors (see Section 8.2). For this reason, we strongly believe that

stereo localization would benefit from an end-to-end learning approach, which would

simplify the design process and hopefully improve the system accuracy. Recently,

several end-to-end approaches have been successful in achieving complex tasks, such as

robot manipulation ([Levine et al., 2015a]), self-driving cars ([Bojarski et al., 2016]),

speech recognition ([Amodei et al., 2016]) or obstacle avoidance ([Muller et al., 2006]).

Even for end-to-end learning of manipulation tasks, which includes object localization,

the vision part must be pretrained to locate objects if we want reinforcement learning

to be scalable to real life applications ([Levine et al., 2015a]). Hence, this work, which

mainly focuses on end-to-end learning of 3D stereo object localization, also has great

significance within the wider context of robotic autonomous learning of manipulation

tasks.
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To train a regression model (e.g. convolutional neural network) to learn stereo

localization, we need to generate labeled data for localization, i.e., stereo images of

the object to be located together with its position in space. Gathering labels for

localization is a hard task. Position labels are hard to get as they cannot be written

manually without spending precious time doing very precise measurements for each

sample. In this chapter, we introduce an approach for building such a dataset, by

using an industrial robot to generate labeled data for 3D stereo localization. The

main contribution of this chapter is to describe a procedure to gather a lot of labeled

stereo data for automatic object localization. This procedure is applied to generate

a dataset for screw drivers 3D localization, composed of more than three thousand

samples. To provide a baseline for future research to test regression models for end-to-

end stereo localization, this dataset is made publicly available and can be downloaded

at https://goo.gl/stu5UE.

8.2 Motivations for end-to-end stereo localization

8.2.1 Classical stereo vision methods for 3D localization

The use of stereo vision has a long history in robotics manipulation (([Azad et al.,

2007]), ([Hudson et al., 2012])). However, currently, stereo localization consists in

stacking different methods that can each be inaccurate. As we can see in Figure 8.1,

to implement 3D object localization, it is needed to calibrate both cameras, com-

pute accurate stereo matching, build a computer vision pipeline to identify pixels of

interest, triangulate, and measure accurate transformation of frames to project the

result in the frame of interest.

More recently, researchers have started to use deep learning for stereo vision (([Luo

et al., 2016]), ([Knöbelreiter et al., 2016]), ([Zbontar and LeCun, 2016])). However,

they mainly focus on stereo matching, which is only solving part of the problem. This

trend can also be seen by looking at the problem proposed with the most famous

datasets for stereo vision (([Geiger et al., 2012]), ([Scharstein et al., 2014])). To

locate an object in space, one also needs to get the precise pixels in one of the image,

which can cause errors, even with perfect stereo matching. Indeed, this problem is

close to instance segmentation ([Romera-Paredes and Torr, 2016]) and is not easy. In

general, end-to-end learning approaches tend to be better than stacking subsystems as

it can correct internal errors. For this reason we introduce such a framework for stereo

localization in the next section. This chapter is a first step towards implementing it as
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Figure 8.1: Typical pipeline for stereo vision object localization.

it proposes a generic way to produce real-world datasets for stereo object localization

using a robot to generate position labels.

8.2.2 End-to-end pipeline for stereo localization

An end-to-end pipeline for stereo object localization would consist in mapping pixels

from two images to 3D points in space representing an object pose, using a regression

function approximator. Such a pipeline could then be used for grasping, or any robotic

manipulation task.

In this chapter, we propose an approach to build datasets for stereo localization

learning. Showing the feasibility of gathering large datasets is a first step towards

investigating the feasibility of end-to-end object stereo localization. The purple dotted

line in Figure 8.1 illustrates what the network is supposed to encode, the relative

camera calibration could be added to this frame. After seeing the excellent results

produced by CNNs o, various tasks dealing with images, it seems that only the

difficulty to gather enough labelled data prevents them to carry out end-to-end stereo

localization. The idea implemented in this chapter consists in defining a method,

using a precise and accurate industrial robot, to generate labelled data for object

localization. We also apply it to the get data for screw-drivers localization. Section 8.3

contains more details about the dataset generation.
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8.3 Dataset generation

When building a dataset for supervised learning, it is crucial to make sure that our

input data are sufficient to know everything about our outputs. For the case of stereo

object localization, all that is required is to have two cameras with fixed focal length

and relative positions. We also need to keep the position of the two cameras fixed

with respect to the robot and to make sure that both cameras are oriented such that

they share partially common fields of view, i.e. the object must be seen by both

cameras.

8.3.1 Generate diversity to avoid overfitting

In order to avoid overfitting, the dataset should have as much diversity as possible.

To do so, we try to change the following parameters:

• Lighting conditions, by gathering the data in a shop-floor with a glass roof,

• Background, by placing different other objects in the scene.

We also add images where distractors (other tools) are placed in the background. This

way, the CNN must learn to locate screwdrivers and not any object. The dataset con-

tains different screwdrivers to help discover the concept of what makes a screwdriver.

Finally, we make sure that the random configurations of the robot explore the

full range of positions and orientations allowed within the common view range of the

cameras. Figure 8.2 shows a representative subset of the images present in the dataset.

Note that each image shown has a corresponding image from the other camera.

Figure 8.2: Representative subset of the images from the screw driver localization
dataset.
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8.3.2 Avoid learning the wrong thing by removing the robot

The idea of using a robot to generate supervision opens a broad range of possibilities

for object localization. However, the robot, or at least the tool holder, will appear

on every image, which is a drawback of the approach. Indeed, we can fear that the

regressor learns to locate the robot and just applies some kind of shift to find the

object to be located. To avoid such problem, we need to remove the robot from some

of the images. We proceed in two different ways:

• Physically, we hide the robot by wrapping some cloth around it (Figure 8.2)

• Computationally, using a computer vision pipeline to remove the robot from im-

ages. To do so, we increase the dataset and take four images per sample: robot

+ tool, robot alone, and the backgrounds corresponding to the two situations.

The full pipeline is described in Figure 8.3.

Robot Only
(RO)

Background RO

Pixel-wise difference
+ Thresholding

+ Openings
+ Gaussian blur

Soft robot mask:

W

1− • ×

×

Robot + tool (R+T)

Background R+T

+
Tool only image

Figure 8.3: Computer vision pipeline using four images to generate an image
containing only the studied objects.

The underlying idea behind the robot removal computer vision algorithm is to use

the robot only image and the background to compute a mask of the robot and replace

the corresponding pixels by background pixels. A similar approach has been proposed

by ([Levine et al., 2016]). The necessity to get two background images comes from
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the changes in lighting conditions. This algorithm is then fine tuned to remove only

the good pixels and get smooth edges.

To ensure that all the images in our dataset do not contain any systemic patterns

coming from our robot removal algorithm, it is also important to keep original images

(with the robot).

8.3.3 Technical details on data generation

For tool calibration, we assume that the screw driver is orthogonal to the tool holder

and we use the very accurate torque sensors of the Kuka LBR iiwa robot to detect

when contact is reached with a plaque in several directions. In this way, we can

get all the shifts and compute the transformation of frames. This procedure is fully

automated and the operator just needs to place the screw driver in the clamp.

When we generate data, we make sure that the object stands within a certain

cuboid (the biggest inside the common views), that the robot is not hiding the ob-

ject in the image, and obviously, that the robot is not colliding with itself or the

environment.

We also check, for the cases where we take several images, that the robot is not

behind the screw driver so that there is no mask superposition and we do not remove

part of the tool with our computer vision algorithm.

8.4 Conclusion

In this chapter, we described a procedure to build a dataset for 3D object localization

using stereo vision. By using an industrial robot, we have shown that it is possible to

generate data with accurate position labels. We propose an approach to generate data

with enough variability, to avoid overfitting, as well as a method to remove the robot

from some of the images to prevent our regressor from learning the wrong thing. This

methodology is applied to build a dataset for screw driver localization. This dataset

can then be used for training a regression model to learn 3D localization from pairs

of images coming from our stereo system. Perspectives and future work regarding 3D

stereo localization are discussed in Chapter 9.
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Part V

Conclusion
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Chapter 9

Summary and open questions

Abstract

This final chapter proposes a summary of the contributions developed throughout

this manuscript and introduces various research perspectives, which arise naturally

from the findings of this thesis.
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9.1 Key contributions

Modern industrial robots are flexible machines that can be reprogrammed without

mechanical modification and are highly instrumented. These characteristics enable

them to successfully achieve a large variety of tasks. However, their current use in in-

dustry is still far from the level of autonomy and adaptability that we can expect from

such complex systems. In this manuscript, we have proposed several contributions

in machine learning to start bridging this gap and to increase robustness of robotic

applications to different setups. These contributions are mostly centered around the

unsupervised sorting task but have applications in many other domains of robotics.

After introducing the new application of Unsupervised Robotic Sorting (URS), we

proposed a first implementation consisting in sorting objects based on their shapes

and colors in an unsupervised fashion. This adaptation of a common robotic sorting

pipeline to the unsupervised setting lead to the development of a new clustering al-

gorithm that we called Gap-Ratio K-means and that appears useful for noisy datasets

containing interval scale data.

Then, to enable our sorting robot to cluster objects with a higher level of abstrac-

tion, the problem of image clustering has been studied. The current state-of-the-art

methods for complex datasets are using Convolutional Neural Networks (CNN) pre-

trained on Imagenet to extract features from complex images. For this reason, we

first carried out a benchmark study to evaluate how well the different CNN architec-

tures and layers transfer to new unsupervised image datasets. The absence of strong

trend in the results motivated the development of an ensemble clustering approach

to leverage information from several of such CNNs. This new approach was shown to

be state-of-the-art at image clustering on several public datasets.

After developing good image clustering pipelines on standard datasets, we pro-

posed to embed them in practical URS implementations. A first implementation has

been created in a shopfloor environment and its robustness to various external factors

has been tested. The results from this study suggested that the quality of the sorting

is highly dependent on the point of view under which the objects are observed. This

finding motivated the development of an optimal view selection method, consisting

in creating a large multi-view dataset and use it to train a neural network to choose

optimal camera poses. This approach was shown to perform better than fixed and

random camera poses on classes of objects that were not seen at training time, which

suggests that the network has learned to use geometric features for view selection.

135



Besides the crucial skill of object understanding, we introduced contributions in

two other areas of robotics, which are also essential to improve robustness and ad-

aptability of industrial applications. On the one hand, a standard trajectory learning

method was adapted to learn a quadratic model of the cost function instead of com-

puting it analytically. This way, the method becomes independent of the robot’s

model, thus making the system easier to program in more situations. On the other

hand, a method using a robot manipulator to autonomously produce datasets for 3D

stereo localization was developed. This technique was used to create one such dataset

for screwdriver localization, which was released to the community.

In summary, the different contributions presented in this manuscript address dif-

ferent tasks, which are all important skills for industrial robotics. Furthermore, we

would like to emphasize that all the proposed methods have the same underlying

purpose: increasing the validity range of the different skills without reprogramming.

Indeed,

• unsupervised robotic sorting generalizes standard sorting applications to any set

of objects, removing the need to reconfigure the application when the classes

change,

• optimal view selection has the potential to make robotic vision systems inde-

pendent of the observed objects poses,

• the proposed trajectory learning method is generic and does not need to be

adapted to the learning agent or its configuration,

• autonomous dataset generation can possibly be an interesting method for de-

veloping new specific industrial vision applications with minimal human efforts.

9.2 Directions for future work

9.2.1 Gap-Ratio K-means algorithm

The clustering algorithm proposed in Chapter 2 demonstrated promising results on

the unsupervised robotic sorting from color and shape features. Furthermore, the

additional experiments carried out in Section 2.4.5 suggest that Gap-Ratio (GR)

K-means can also work for datasets such as Iris, that do not present the kind of

features specific to the URS implementation. Based on this observation, it would be

interesting to investigate further the scope of validity of GR K-means and to try to

find a statistical test to choose if GR K-means should be used over other variants.
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Another interesting extension of GR K-means would be to combine it with data

orthogonalization methods (such as ICA ([Oja and Hyvarinen, 1997])). Indeed, GR

weights are computed along different dimensions of the feature space and if features

have strong correlation, gaps might disappear and variance might be spread along

several dimensions. For this reason, it seems appealing to try to decorrelate data

using orthogonalization methods.

Finally, it could also be interesting to consider not only the largest gap along one

dimension but also the next ones, according to the number of different classes desired.

Indeed, if within three classes the two separations come from the same features, even

more importance should be given to this set of features. Some modifications of the

equations in Section 2.3 should enable to try such approach.

9.2.2 Image clustering

Experimental results from Chapter 4 illustrate that different CNNs, pretrained on

the same task, often contain different and complementary information about a target

dataset. Differences may arise from a number of sources including the architecture

(number of layers, layer shape, presence of skip connections, etc.), the regularization

method, or the loss functions used for training. Investigating which parameters in-

fluence knowledge transfer to unsupervised tasks is an interesting axis of research for

future work and such knowledge may help to design better CNN architectures.

We also note that pretrained CNNs are used as feature extractors for many ap-

plications, not just clustering. Using multiple pretrained CNNs to define a multi-view

learning problem may be appealing for other tasks where complementary information

present in pretrained feature extractors can improve performance.

Although JULE ([Yang et al., 2016]) appears to be a good algorithm to solve

MVC, we acknowledged that it fails for some datasets. Hence, it would be interesting

to try different deep clustering methods or to adapt the parameters of JULE for

different IC tasks.

Finally, as the number of available pretrained CNNs will keep increasing and

many researchers have limited resources, the case where the number of available

feature extractors is much larger than the number of available GPUs needs to be

considered. Hence, investigating an optimal strategy for architectures selection and

resources allocation to maximize the available information is a promising research

direction.
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9.2.3 Unsupervised robotic sorting

The experiments carried out in Chapter 6 demonstrated the positive impact of se-

mantic view selection on the URS results. Likewise, in Chapter 5, we showed that

using multiple viewpoints of an object can help to understand its nature. Hence, a

natural perspective would be to extend the semantic view selection problem to the one

of multi-view selection. Implementing such a multi-view approach in the formalism

of the “next best view selection” literature ([Krainin et al., 2011]) would also allow

to detect when the top view is already good, thus avoiding unnecessary computation.

The dataset presented in Chapter 6 could be used to train a recurrent neural network

to address this problem.

Now that the decision making module of the unsupervised sorting application has

been shown to work, it will also be interesting to include it in a more complete pick-

and-place pipeline, which handles automatic scene segmentation, objects localization

and robotic grasp detection.

9.2.4 Trajectory learning

To further validate the quadratic cost regression approach, several research perspect-

ives can be considered. On the one hand, it would be interesting to use an external

measurement tool for the basic positioning task in order to compare our positioning

method precision with other techniques. Indeed, the precision of the inverse kin-

ematics of the robot cannot be defined with internal robot measurements. On the

other hand, it would also be interesting to study the behavior of the method for more

complex manipulation tasks involving contact.

Another directions of improvement of the proposed trajectory learning method is

to try to decrease sample complexity. Indeed, the cost quadratic regression has more

learnable parameters than the dynamics linear regression and thus requires more

examples to produce a valid estimate. This involves additional exploration time. To

solve this issue, we could leverage the approach proposed in ([Levine and Abbeel,

2014]), which consists in building a prior on the regressed variables in the form of a

Gaussian mixture model. We conducted preliminary experiments with this method

and the first results suggest that the overhead exploration cost due to quadratic

regression can be highly attenuated with such Bayesian regression approach.

We finally note that the local trajectory learning problem studied in Chapter 7

is an important step in the Guided Policy Search (GPS) algorithm (([Levine et al.,

2015b]), ([Levine and Abbeel, 2014])). GPS is a very promising method that can
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learn successful visuomotor policies for complex robotic tasks by using learned time-

varying linear-Gaussian trajectories to guide the training of a complex neural policy.

Hence, embedding our method in the framework of GPS is an interesting direction for

future research because the improvements proposed on the trajectory optimization

method could improve and accelerate GPS.

9.2.5 Stereo localization

The logical continuation of this work on autonomous datasets generation is to exploit

the screwdriver localization dataset that was created and train a CNN architecture

to encode the 3D stereo localization pipeline. Another perspective is to apply this

process as a preprocessing step for reinforcement learning of manipulation tasks,

likewise in ([Levine et al., 2015a]). By doing this, we can expect to get better results

with a policy using stereo images instead of a single camera.
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[Guérin et al., 2018c] Guérin, J., Gibaru, O., Thiery, S., and Nyiri, E. (2018c). CNN

features are also great at unsupervised classification. In AIFU2018 (4th Interna-

tional Conference on Artificial Intelligence and Applications), February 17th-18th,

Melbourne, Australie.
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[Olabi et al., 2010] Olabi, A., Béarée, R., Gibaru, O., and Damak, M. (2010).

Feedrate planning for machining with industrial six-axis robots. Control Engin-

eering Practice, 18(5):471–482.

[Park et al., 2007] Park, J.-J., Kim, J.-H., and Song, J.-B. (2007). Path planning for

a robot manipulator based on probabilistic roadmap and reinforcement learning.

International Journal of Control Automation and Systems, 5(6):674.

151



[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duch-

esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830.

[Pereira et al., 2014] Pereira, V., Fernandes, V. A., and Sequeira, J. (2014). Low cost

object sorting robotic arm using raspberry pi. In Global Humanitarian Technology

Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE, pages 1–6. IEEE.

[Pfitzner et al., 2009] Pfitzner, D., Leibbrandt, R., and Powers, D. (2009). Charac-

terization and evaluation of similarity measures for pairs of clusterings. Knowledge

and Information Systems, 19(3):361.

[Quattoni and Torralba, 2009] Quattoni, A. and Torralba, A. (2009). Recognizing

indoor scenes. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pages 413–420. IEEE.

[Ren and Fan, 2011] Ren, S. and Fan, A. (2011). K-means clustering algorithm based

on coefficient of variation. In Image and Signal Processing (CISP), 2011 4th Inter-

national Congress on, volume 4, pages 2076–2079. IEEE.

[Romera-Paredes and Torr, 2016] Romera-Paredes, B. and Torr, P. H. S. (2016). Re-

current instance segmentation. In European Conference on Computer Vision, pages

312–329. Springer.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,

S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Im-

agenet large scale visual recognition challenge. International Journal of Computer

Vision, 115(3):211–252.

[Scharstein et al., 2014] Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl,

G., Nesic, N., Wang, X., and Westling, P. (2014). High-resolution stereo datasets

with subpixel-accurate ground truth. In Jiang, X., Hornegger, J., and Koch, R.,

editors, GCPR, volume 8753 of Lecture Notes in Computer Science, pages 31–42.

Springer.

[Schroff et al., 2015] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet:

A unified embedding for face recognition and clustering. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 815–823.

152



[Sciavicco and Siciliano, 2000] Sciavicco, L. and Siciliano, B. (2000). Modelling and

control of robot manipulators.

[Seldin et al., 2003] Seldin, Y., Starik, S., and Werman, M. (2003). Unsupervised

clustering of images using their joint segmentation. In Proceedings of the 3rd In-

ternational Workshop on Statistical and Computational Theories of Vision (SCTV

2003).

[Sermanet et al., 2018] Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E.,

Schaal, S., and Levine, S. (2018). Time-contrastive networks: Self-supervised learn-

ing from video. Proceedings of International Conference in Robotics and Automa-

tion (ICRA).

[Shi et al., 2016] Shi, Y., Long, P., Xu, K., Huang, H., and Xiong, Y. (2016). Data-

driven contextual modeling for 3d scene understanding. Computers & Graphics,

55:55–67.

[Shum et al., 2016] Shum, A., Wang, Y., and Hsieh, S.-J. (2016). Design, build and

remote control of a miniature automated robotic sorting system. Design, Build,

141(3).

[Sicard and Levine, 1988] Sicard, P. and Levine, M. D. (1988). An approach to an

expert robot welding system. IEEE transactions on systems, man, and cybernetics,

18(2):204–222.

[Siciliano and Khatib, 2016] Siciliano, B. and Khatib, O. (2016). Springer handbook

of robotics. Springer.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very

deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556.

[Singh et al., 2016] Singh, T., Dhaytadak, D., Kadam, P., and Sapkal, R. (2016).

Object sorting by robotic arm using image processing. International Research

Journal of Engineering and Technology (IRJET).

[Stevens, 1946] Stevens, S. S. (1946). On the theory of scales of measurement.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Introduction to

reinforcement learning, volume 135. MIT Press Cambridge.

153



[Szabo and Lie, 2012] Szabo, R. and Lie, I. (2012). Automated colored object sorting

application for robotic arms. In Electronics and Telecommunications (ISETC),

2012 10th International Symposium on, pages 95–98. IEEE.

[Szegedy et al., 2017] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017).

Inception-v4, inception-resnet and the impact of residual connections on learning.

In AAAI, volume 4, page 12.

[Szegedy et al., 2016] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z.

(2016). Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–

2826.

[Tan et al., 2015] Tan, H., Xu, Y., Mao, Y., Tong, X., Griffin, W. B., Kannan, B., and

DeRose, L. A. (2015). An integrated vision-based robotic manipulation system for

sorting surgical tools. In Technologies for Practical Robot Applications (TePRA),

2015 IEEE International Conference on, pages 1–6. IEEE.

[Tao et al., 2017] Tao, Z., Liu, H., Li, S., Ding, Z., and Fu, Y. (2017). From ensemble

clustering to multi-view clustering. In Proc. of the Twenty-Sixth Int. Joint Conf.

on Artificial Intelligence (IJCAI), pages 2843–2849.

[Tassa et al., 2012] Tassa, Y., Erez, T., and Todorov, E. (2012). Synthesis and stabil-

ization of complex behaviors through online trajectory optimization. In Intelligent

Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages

4906–4913. IEEE.

[Theodoridis and Koutroumbas, 2006a] Theodoridis, S. and Koutroumbas, K.

(2006a). Chapter 1-introduction. Pattern Recognition, pages 1–12.

[Theodoridis and Koutroumbas, 2006b] Theodoridis, S. and Koutroumbas, K.

(2006b). Chapter 11-clustering: Basic concepts. Pattern Recognition, pages 595–

625.

[Theodoridis and Koutroumbas, 2006c] Theodoridis, S. and Koutroumbas, K.

(2006c). Chapter 14-clustering algorithms iii: Schemes based on function optimiz-

ation. Pattern Recognition, pages 701–763.

[Theodoridis et al., 2010] Theodoridis, S., Pikrakis, A., Koutroumbas, K., and Ca-

vouras, D. (2010). Introduction to pattern recognition: a matlab approach. Aca-

demic Press.

154



[Thomaz and Giraldi, 2010] Thomaz, C. E. and Giraldi, G. A. (2010). A new ranking

method for principal components analysis and its application to face image analysis.

Image and Vision Computing, 28(6):902–913.

[Tishby et al., 2000] Tishby, N., Pereira, F. C., and Bialek, W. (2000). The inform-

ation bottleneck method. arXiv preprint physics/0004057.

[Todorov and Li, 2005] Todorov, E. and Li, W. (2005). A generalized iterative lqg

method for locally-optimal feedback control of constrained nonlinear stochastic

systems. In American Control Conference, 2005. Proceedings of the 2005, pages

300–306 vol. 1.

[Tsarouchi et al., 2017] Tsarouchi, P., Matthaiakis, A.-S., Makris, S., and Chryssol-

ouris, G. (2017). On a human-robot collaboration in an assembly cell. International

Journal of Computer Integrated Manufacturing, 30(6):580–589.

[Vapnik and Vapnik, 1998] Vapnik, V. N. and Vapnik, V. (1998). Statistical learning

theory, volume 1. Wiley New York.

[Vega-Pons and Ruiz-Shulcloper, 2011] Vega-Pons, S. and Ruiz-Shulcloper, J. (2011).

A survey of clustering ensemble algorithms. International Journal of Pattern Re-

cognition and Artificial Intelligence, 25(03):337–372.

[Wallén, 2008] Wallén, J. (2008). The history of the industrial robot. Linköping
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Appendix A

A beginner’s definition of Machine
Learning

Every morning, a fruit retailing company receives apples and oranges mixed in the

same containers. Then, fruits go on a conveyor one by one and need to be placed

in the crates corresponding to their type. For such task, we can think of different

levels of automation. A first, very simple solution is to have someone stand by the

end of the conveyor, who decides whether a fruit is an apple or an orange. Even

though such method would work perfectly, it has the drawback of requiring a worker

fully dedicated to this tedious task. To automate such procedure, another possibility

is to automatically measure characteristics of the different fruits, such as color, size,

etc. Such characteristics are called features and are then used to determine where the

fruits should go. To do so, an engineer can analyze the features, plot them, compute

statistics, etc. and come up with more or less complex rules to decide whether a fruit

is an apple or an orange. Such automation can save valuable time and money for the

company, but is limited to apples and oranges. If the company starts receiving melons,

they would need to call the engineer again, so that he can come up with new rules that

take melons into account. In this simple example, using Machine Learning (ML) can

be thought of as automating the work of the engineer. By automatically analyzing

some labelled examples, i.e. features measurements and corresponding categories, a

machine learning algorithm can come up with general rules for classifying previously

unseen fruits.

The famous example of apples and oranges classification is basic, but yet is a

good illustration of why ML receives so much interest. It enables to define complex

programs and models for specific cases, by generalizing from examples. It is easy, even

for a non-specialist, to teach a well-designed ML algorithm to carry out new tasks.

Arthur Samuel ([McCarthy and Feigenbaum, 1990]), one of the pioneers of ML who
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wrote the first self-learning program in 1959, defines ML as the ”field of study that

gives computers the ability to learn without being explicitly programmed”. In other

words, a ML program is not written for a specific task but for a class of problems;

it can modify itself to solve different problems of the same nature. This very generic

definition contains all the subfield of ML which we are about to define.

There exists many different ways of grouping different ML algorithms. One pos-

sible classification is to consider the kind of inputs received by the algorithm and the

outputs it produces. From there, we can define three main categories:

• Supervised Learning: From a training set, composed of pairs of data objects

and desired outputs, a supervised learning algorithm learns general rules to

map inputs to outputs. Such rules should generalize to predict outputs for

previously unseen data. It is called supervised learning because it generalizes

from known examples. The classification of apples and oranges described above

is an example of supervised learning.

• Unsupervised learning: The goal of unsupervised learning is mainly to group

data based on their similarity. Inputs do not have labels, the idea is to max-

imize similarity between objects in the same groups. For instance, finding two

groups among a set of fruits features, without initial labelled examples is an

unsupervised learning problem.

• Reinforcement learning: The last major area of ML is Reinforcement Learn-

ing (RL). It serves as a tool to solve control problems and games. The RL

framework is composed of an agent, who evolves by taking actions in an envir-

onment. The environment responds by sending a score to reward (or punish)

the agent according to a user defined criteria. The rewards measure how good

the agent’s action are with respect to the task at hand. Then, by interacting

with the environment, the agent should change its behavior to choose actions

which maximize reward over its lifetime. In other words, RL consists in learn-

ing through interaction. A good text book to better understand RL concepts

is ([Sutton and Barto, 1998]).

Although less frequent, we also find the field of semi-supervised learning, which mixes

labelled and unlabelled data, as well as active learning, where the algorithm can

request specific data from the user.
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When defining ML, it is also interesting to consider the kind of problems it can

solve. Apart from the RL problems, which were already introduced, two other main

problems are solved using ML:

• Classification: Given a data object (vector, matrix, pixels, etc.), the goal of

classification is to identify the group it belongs to. A good definition of the

classification problem as well as tools to solve it can be found in ([Theodoridis

et al., 2010]). Classification can be either supervised or unsupervised, in which

case it is also called clustering.

• Regression: Regression, or function estimation, consists in finding the output

of a function for a given input. More details can be found in ([Vapnik and

Vapnik, 1998]). If the outputs are finite and discrete, a regression problem

becomes a classification problem, however, the special structure of classification

problems is widely used and should be kept as a separate problem. Most of the

time, regressions with continuous outputs are supervised learning problems.

We conclude this brief ML introduction with a word about deep learning, a sub-

field of supervised learning which has received much attention lately. As shown in

the initial example of apples and oranges, ML is an interesting tool to automate

model creation and parameters tuning, it is a nice way to enable people with little

knowledge to create usable, case specific programs. In addition to this nice applica-

tion, some ML algorithms are also able to learn things humans cannot program. For

example, learning functions to associate raw images pixel representations to categor-

ies. The most widely used tool for such application are artificial Neural Networks

(NN) ([Yegnanarayana, 2009]) and more particularly deep neural networks ([LeCun

et al., 2015]). Such NN models can be arbitrarily complex and are able to discover

highly complex models and structures in the data if provided with enough examples.

A good application to illustrate deep learning is image classification. For example,

using deep NN with image pixels as inputs (([Szegedy et al., 2016]), ([Huang et al.,

2017])), very low error rates can be reached for the problem of ImageNet classifica-

tion ([Russakovsky et al., 2015]). ImageNet is a dataset composed of over one million

high-resolution images, which needs to be classified within 1000 classes. Such deep

NN predictors are composed of tens of millions of parameters, and thus are impossible

to code manually.
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Appendix B

Complete result tables from
Chapter 3 benchmark study
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Appendix C

Complete NMI scores for different
feature representations from
Chapter 3 benchmark study
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Figure C.1: NMI scores on natural object recognition datasets.
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Figure C.2: NMI scores on scene recognition datasets.
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Figure C.3: NMI scores on natural fine-grained datasets.
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Figure C.4: NMI scores on face recognition datasets.
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Appendix D

Illustration of the JULE
methodology on a 2d made-up
example

This appendix aims at illustrating the JULE methodology (see Section 4.3.3.1 for more

details). To do so, we propose to visualize the evolution of a made up 2 dimensional

dataset throughout the JULE pipeline. The initial data on which JULE is applied

can be seen in Figure D.1a. These data are transformed into another 2d space, using

JULE to train a feed forward neural network of dimensions 2 − 100 − 2 with relu

activations and L2 regularization. The result of cluster initialization can be seen in

both the initial space and the latent space respectively in Figures D.1b and D.1c.

Figures D.1d to D.1h are then represented in the latent space. The unfold rate is

set to 0.75, which justifies the fact that the expected number of clusters 3 is reached

after two merging passes.
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Figure D.1: Made-up 2d example to illustrate the JULE methodology.
Nc stands for the number of clusters at a given stage of the JULE pipeline.
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Appendix E

Complete result tables from
Chapter 4
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Table E.1: Results on natural object recognition datasets.
(N/A: incompatible methods)

VOC2007 COIL100
JULE Agg JULE Agg

nmi pur nmi pur nmi pur nmi pur
VGG16 0.695 0.761 0.651 0.709 0.994 0.970 0.956 0.879
VGG19 0.676 0.734 0.650 0.711 0.994 0.978 0.948 0.846

Inception 0.764 0.819 0.692 0.757 0.988 0.948 0.953 0.851
Xception 0.764 0.785 0.719 0.798 0.988 0.949 0.955 0.855
Resnet50 0.719 0.762 0.656 0.717 0.996 0.980 0.967 0.899

Densenet121 0.748 0.778 0.734 0.792 0.991 0.964 0.963 0.880
Densenet169 0.742 0.791 0.713 0.763 0.993 0.970 0.962 0.880
Densenet201 0.769 0.800 0.729 0.789 0.993 0.970 0.972 0.901

InceptionResnet 0.763 0.809 0.643 0.699 0.982 0.928 0.927 0.791
Nasnet 0.752 0.811 0.668 0.690 0.979 0.906 0.943 0.809
MVEC 0.821 0.813 0.794 0.816 0.996 0.980 0.967 0.874

CC 0.745 0.806 N/A N/A 0.996 0.980 N/A N/A
MVnet 0.817 0.826 N/A N/A 0.995 0.980 N/A N/A

MVnet-retrain 0.827 0.860 N/A N/A 0.996 0.980 N/A N/A

Table E.2: Results on scene recognition datasets.
(N/A: incompatible methods)

Archi MIT
JULE Agg JULE Agg

nmi pur nmi pur nmi pur nmi pur
VGG16 0.393 0.331 0.414 0.402 0.473 0.385 0.492 0.445
VGG19 0.403 0.349 0.398 0.384 0.485 0.422 0.491 0.445

Inception 0.433 0.343 0.421 0.407 0.521 0.430 0.561 0.508
Xception 0.447 0.402 0.433 0.417 0.574 0.483 0.587 0.539
Resnet50 0.422 0.333 0.447 0.449 0.496 0.404 0.529 0.480

Densenet121 0.455 0.376 0.455 0.462 0.505 0.406 0.542 0.485
Densenet169 0.436 0.367 0.471 0.462 0.531 0.462 0.572 0.523
Densenet201 0.465 0.431 0.480 0.480 0.475 0.346 0.587 0.531

InceptionResnet 0.416 0.346 0.402 0.376 0.545 0.473 0.537 0.489
Nasnet 0.436 0.362 0.408 0.397 0.615 0.524 0.611 0.563
MVEC 0.482 0.362 0.506 0.479 0.605 0.454 0.644 0.564

CC 0.459 0.378 N/A N/A 0.533 0.430 N/A N/A
MVnet 0.482 0.432 N/A N/A 0.590 0.491 N/A N/A

MVnet-retrain 0.488 0.449 N/A N/A 0.594 0.495 N/A N/A
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Table E.3: Results on fine-grained recognition datasets.
(N/A: incompatible methods)

Flowers Birds
JULE Agg JULE Agg

nmi pur nmi pur nmi pur nmi pur
VGG16 0.704 0.658 0.644 0.619 0.503 0.158 0.557 0.309
VGG19 0.677 0.642 0.646 0.649 0.519 0.192 0.557 0.310

Inception 0.759 0.718 0.677 0.674 0.542 0.199 0.569 0.305
Xception 0.705 0.675 0.670 0.675 0.609 0.278 0.644 0.417
Resnet50 0.718 0.690 0.708 0.675 0.450 0.129 0.529 0.261

Densenet121 0.833 0.801 0.799 0.776 0.562 0.193 0.625 0.387
Densenet169 0.831 0.815 0.797 0.782 0.529 0.184 0.605 0.373
Densenet201 0.810 0.795 0.767 0.751 0.540 0.184 0.634 0.394

InceptionResnet 0.598 0.535 0.562 0.535 0.470 0.146 0.516 0.232
Nasnet 0.662 0.584 0.578 0.525 0.500 0.180 0.547 0.261
MVEC 0.850 0.758 0.798 0.731 0.589 0.178 0.665 0.343

CC 0.762 0.712 N/A N/A 0.569 0.229 N/A N/A
MVnet 0.879 0.860 N/A N/A 0.662 0.271 N/A N/A

MVnet-retrain 0.834 0.766 N/A N/A 0.616 0.273 N/A N/A

Table E.4: Results on face recognition datasets.
(N/A: incompatible methods)

UMist FEI
JULE Agg JULE Agg

nmi pur nmi pur nmi pur nmi pur
VGG16 0.891 0.802 0.689 0.550 0.924 0.775 0.897 0.753
VGG19 0.874 0.798 0.740 0.630 0.934 0.798 0.915 0.789

Inception 0.841 0.722 0.760 0.616 0.953 0.854 0.941 0.860
Xception 0.835 0.732 0.731 0.609 0.953 0.850 0.928 0.833
Resnet50 0.949 0.908 0.717 0.577 0.953 0.869 0.919 0.804

Densenet121 0.906 0.845 0.684 0.553 0.959 0.895 0.928 0.827
Densenet169 0.933 0.880 0.734 0.602 0.960 0.879 0.926 0.823
Densenet201 0.904 0.819 0.720 0.600 0.957 0.861 0.942 0.865

InceptionResnet 0.889 0.803 0.775 0.642 0.913 0.748 0.892 0.738
Nasnet 0.886 0.809 0.725 0.558 0.946 0.819 0.922 0.798
MVEC 0.942 0.877 0.763 0.610 0.966 0.903 0.949 0.865

CC 0.936 0.870 N/A N/A 0.960 0.882 N/A N/A
MVnet 0.966 0.922 N/A N/A 0.962 0.891 N/A N/A

MVnet-retrain 0.984 0.967 N/A N/A 0.963 0.893 N/A N/A

176



Appendix F

KL divergence between Gaussian
trajectories

Constructive proof of formula (7.34)

F.1 Problem statement

This appendix presents a method to compute the Kullback-Leibler divergence (DKL)

between two Gaussian trajectory distributions, ρ and ρ̃. The initial states of these

two trajectories are drawn from the same distribution

ρ(x0) = N (µx0 , Σx0), (F.1)

whereN (µx0 ,Σx0) is the normal distribution of mean vector µx0 and covariance matrix

Σx0 . We also assume that these two trajectory distributions share the same dynamics

ρ(xt+1|xt, ut) = N (Fxutxut + ft, Σdyn
t ), (F.2)

where xt and ut are respectively the state and action vectors at time step t and

xut = [xTt , u
T
t ]T . In the context of learnt iLQG introduced in Chapter 7, this assump-

tion is justified the small deviation rule for policy updates. Finally, both trajectory

generate actions by following different time-varying linear-Gaussian controllers

Π(ut|xt) = N (Ktxt + kt,Σut), (F.3)

Π̃(ut|xt) = N (K̃txt + k̃t, Σ̃ut). (F.4)
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With these notations, the trajectory distributions can be written

ρ(τ) = ρ(x0)
T−1∏
t=0

Π(ut|xt)ρ(xt+1|xt, ut), (F.5)

ρ̃(τ) = ρ(x0)
T−1∏
t=0

Π̃(ut|xt)ρ(xt+1|xt, ut). (F.6)

F.2 Trajectories divergence in terms of conditional

action distributions divergences

In ([Montgomery and Levine, 2016]), the authors show that KL divergence between

the two trajectory distributions can be written as

DKL(ρ(τ)||ρ̃(τ)) =
T−1∑
t=0

Eρ(xt)

[
DKL(Π(ut|xt)||Π̃(ut|xt))

]
, (F.7)

where ρ(xt) is the probability distribution of the state at time step t under the con-

troller Π. Their proof is the following:

Proof of Formula (F.7). By definition of the KL divergence, we can write

DKL(ρ(τ)||ρ̃(τ)) = Eρ(τ) [ln(ρ(τ))− ln(ρ̃(τ))] . (F.8)

Then, by expanding the trajectories (F.5) and (F.6) in (F.8) and by cancelling the

initial state and dynamics, we get

DKL(ρ(τ)||ρ̃(τ)) = Eρ(τ)

[
T−1∑
t=0

ln(Π(ut|xt))− ln(Π̃(ut|xt))

]
. (F.9)

By linearity of the expectation, (F.9) becomes

DKL(ρ(τ)||ρ̃(τ)) =
T−1∑
t=0

Eρ(xt,ut)

[
ln(Π(ut|xt))− ln(Π̃(ut|xt))

]
. (F.10)

Since ρ(xt, ut) denotes the joint distribution of states and actions at time step t for

trajectory distribution ρ, it can be written as ρ(xt, ut) = ρ(xt)Π(ut|xt). Hence, (F.10)

becomes

DKL(ρ(τ)||ρ̃(τ)) =
T−1∑
t=0

Eρ(xt)

[
EΠ(ut|xt)

[
ln(Π(ut|xt))− ln(Π̃(ut|xt))

]]
. (F.11)
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Finally, we note that the definition of the KL divergence between Π and Π̃ at time

step t is defined by

DKL(Π(ut|xt)||Π̃(ut|xt)) = EΠ(ut|xt)

[
ln(Π(ut|xt))− ln(Π̃(ut|xt))

]
. (F.12)

Substituting (F.12) into (F.11) leads to Formula (F.7).

F.3 Expected conditional actions distributions di-

vergence in terms of state distributions

For all t in {0, ..., T}, the expected value of the KL divergence between the conditional

action distributions in (F.7) can be expressed by

Eρ(xt)

[
DKL(Π(ut|xt)||Π̃(ut|xt))

]
=

1

2

[
Tr(AtΣxt) + µTxtAtµxt + 2µTxtbt + ct

]
, (F.13)

where µxt and Σxt are respectively the mean and variance of the state distribution at

time step t (see Section F.4), and where

At = (K̃t −Kt)
T Σ̃−1

ut (K̃t −Kt),

bt = (K̃t −Kt)
T Σ̃−1

ut (k̃t − kt),

ct = αt + βt,

αt = ln
|Σ̃ut |
|Σut |

+ Tr(Σ̃−1
ut Σut)− dim(ut),

βt = (k̃t − kt)T Σ̃−1
ut (k̃t − kt).

(F.14)

And where Tr(.) represents the trace of a matrix, |.| its determinant and dim(.) the

dimension of a vector.

Proof of Formula (F.13). Using the formula of KL divergence between two multivari-

ate Gaussian distributions we have

Eρ(xt)

[
DKL(Π(ut|xt)||Π̃(ut|xt))

]
= Eρ(xt)

[
1

2

[
ln
|Σ̃ut |
|Σut |

+ Tr(Σ̃−1
ut Σut)− dim(ut)

+
[
(K̃t −Kt)xt + (k̃t − kt)

]T
Σ̃−1
ut

[
(K̃t −Kt)xt + (k̃t − kt)

]]]
. (F.15)

By linearity of the expectation and because αt, defined in (F.14), does not depend on

xt, we can write

Eρ(xt)

[
DKL(Π(ut|xt)||Π̃(ut|xt))

]
=

1

2
(αt + Θt), (F.16)
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where

Θt = Eρ(xt)

[[
(K̃t −Kt)xt + (k̃t − kt)

]T
Σ̃−1
ut

[
(K̃t −Kt)xt + (k̃t − kt)

]]
. (F.17)

By expending (F.17), we can leverage the linearity of expectation and the symmetry

of covariance matrices to obtain

Θt = Eρ(xt)

[
xTt (K̃t −Kt)

T Σ̃−1
ut (K̃t −Kt)xt

]
+ 2Eρ(xt)

[
xTt (K̃t −Kt)

T Σ̃−1
ut (k̃t − kt)

]
+ (k̃t − kt)T Σ̃−1

ut (k̃t − kt)

(F.18)

Then, we use the formula of the expectation of a quadratic form, and with the nota-

tions (F.14), we get

Θt = Tr(AtΣxt) + µTxtAtµxt + 2µTxtbt + βt (F.19)

The final formula (F.13) is obtained by injecting (F.19) into (F.16).

F.4 Recursive computation of state distributions

With Equation (F.13), we now only need the expressions of µxt and Σxt for all t in

{0, ..., T} to be able to compute DKL(ρ(τ)||ρ̃(τ)). Starting from the known moments

of ρ(x0), these can be computed recursively:

µxt+1 = Fxutµxut + ft, (F.20)

Σxt+1 = FxutΣxut(Fxut)
T + Σdyn

t , (F.21)

where ft is the constant term in the dynamics regression, which in practice corres-

ponds to the value of state of the current nominal trajectory, and where

µxut =

[
µxt

Ktµxt + kt

]
, (F.22)

Σxut =

[
Σxt ΣxtK

T
t

KtΣxt KtΣxtK
T
t + Σut

]
. (F.23)

Proof of Formulas (F.20) and (F.21). Let’s assume that for time step t, µxt and Σxt ,

the mean vector and covariance matrix of the state distribution, are known. Then,

we have

Eρ(xt,ut)[ut] = Eρ(xt,ut)[Ktxt + kt + ωt]

= Ktµxt + kt.
(F.24)
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Where ωt = N (0,Σut) is the noise of the stochastic controller Π. Likewise, because

xt and ωt are independent, we also have

Varρ(xt,ut)[ut] = Varρ(xt,ut)[Ktxt + kt] + Varρ(xt,ut)[ωt]

= KtΣxtK
T
t + Σut ,

(F.25)

and

Covρ(xt,ut)[xt, ut] = Eρ(xt,ut)[(xt − E[xt])(ut − E[ut])]

= E [(xt − E[xt])(Kt(xt − E[xt]) + ωt − E[ωt])]

= E
[
(xt − E[xt])(xt − E[xt])

TKT
t

]
+ E

[
(xt − E[xt])(ωt − E[ωt])

T
]

= ΣxtK
T
t .

(F.26)

Where the last line comes from the independence between xt and ωt (Cov[xt, ωt] = 0).

Finally, from (F.24), (F.25) and (F.26), we can write µxut and Σxut in the form of

(F.22) and (F.23). Then, if Ωt denotes a Gaussian noise drawn from N (0,Σdyn
t ) we

can compute

µxt+1 = Eρ(xt,ut)[xt+1]

= Eρ(xt,ut)[Fxutxut + ft + Ωt]

= Fxutµxut + ft,

(F.27)

and, by independence of xut and Ωt,

Σxt+1 = Var[Fxutxut + ft + Ωt]

= FxutΣxut(Fxut)
T + Σdyn

t .
(F.28)
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F.5 Summary algorithm

To conclude this appendix, we propose the following pseudo-code for the computation

of the KL divergence between Gaussian trajectories.

Inputs : µx0 ,Σx0 ,
{
Fxut , ft,Σ

dyn
t , Kt, kt,Σut , K̃t, k̃t, Σ̃ut ; ∀t ∈ {0, ..., T}

}
Outputs : DKL(ρ(τ)||ρ̃(τ))

Initialization: D = 0, µxt = µx0 ,Σxt = Σx0

for t ∈ {0, ..., T − 1} do

Compute At, bt and ct using (F.14)

Compute Eρ(xt)

[
DKL(Π(ut|xt)||Π̃(ut|xt))

]
using (F.13)

Compute µxut and Σxut using (F.22) and (F.23)
Compute µxt+1 and Σxt+1 using (F.20) and (F.21)

D ← D + Eρ(xt)

[
DKL(Π(ut|xt)||Π̃(ut|xt))

]
µxt ← µxt+1

Σxt ← Σxt+1

end

Return : DKL(ρ(τ)||ρ̃(τ)) = D

Algorithm 1: Pseudo-code for computation of KL divergence between two Gaus-
sian trajectories.
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Annexe G

Résumé étendu en français

Cette annexe propose une synthèse du mémoire de thèse rédigée en langue française.

Dans un soucis de concision, seule la méthodologie et les principaux résultats sont

présentés. On notera que, par souci de cohérence du manuscrit, les acronymes en

anglais sont utilisés dans ce résumé. Les traductions en français sont rappelées dans

le glossaire, au début de la thèse.

Les travaux présentés ont été financés en partie par le projet européen ColRobot

(robotique collaborative pour l’assemblage et la préparation de kits dans le contexte de

la fabrication intelligente). Ce projet fait partie du programme de l’union européenne

pour la recherche et l’innovation à horizon 2020 sous le financement No.688807.

Les travaux ont été menés en grande partie au sein du LISPEN (Laboratoire

d’Ingénierie des Systèmes Physiques et Numériques), dans l’équipe des Arts et Métiers

de Lille. Une partie des recherches présentées dans ce mémoire ont également été

conduites au Robot Learning Lab, au Georgia Institute of Technology, à Atlanta.

Cette période à Atlanta a été financée par Fulbright Hauts de France et la fondation

Arts et Métiers.
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localisation 3D d’objets en utilisant deux caméras . . . . . . . . . . . 217
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G.14 Schéma de la méthode DMVC . . . . . . . . . . . . . . . . . . . . . . 200

G.15 Résultats de partitionnement multi-vues . . . . . . . . . . . . . . . . 201
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G.1 Introduction : vers des robots plus polyvalents

G.1.1 L’apprentissage automatique au service de l’adaptabi-
lité des robots

Un robot industriel est un mécanisme motorisé complexe, conçu de manière à pou-

voir être programmé pour différentes tâches. Cette flexibilité mécanique lui permet

d’exécuter une large gamme de mouvements, ce qui a permis un essor important

de la robotique dans les usines au cours des dernières décennies. Pendant de nom-

breuses années, la recherche autour de la programmation robotique s’est principale-

ment concentrée sur l’étude de la cinématique et du contrôle de ces machines com-

plexes. Cependant, cette vision du robot comme une simple machine de précision,

dénuée de capacité de perception et d’adaptation, a limité leur utilisation à des en-

vironnements cloisonnés et à des tâches très répétitives, nécessitant de gros volumes

de production pour être rentable.

Ces dernières années ont vu émerger un nouveau contexte industriel, appelé in-

dustrie 4.0, qui propose une vision plus souple des unités de production, nécessitant

des robots plus polyvalents, capables de collaborer avec d’autres machines ainsi que

des humains. Avec l’apparition de ce nouveau besoin, les systèmes robotisés modernes

ont été équipés de nombreux capteurs afin de leur donner des capacités de perception

et ainsi leur permettre de résoudre une plus grande diversité de tâches.

Dans cette thèse, nous proposons de mener une réflexion autour de la généralisation

des applications robotiques à des plages de fonctionnement plus larges. De part ses

nombreux récents succès en terme de modélisation de systèmes complexes, l’appren-

tissage automatique (ML) est un cadre intéressant pour mener cette étude. En effet,

le ML permet de définir des tâches de manière plus systémique et a démontré des

résultats moins dépendants d’une tâche donnée. Une introduction à l’apprentissage

automatique est proposée en Annexe A. Le but de cette thèse est d’introduire de

nouvelles méthodes de ML, permettant d’élargir la gamme de fonctionnement et le

domaine d’applicabilité de diverses applications robotiques, et ainsi de mieux exploi-

ter la richesse dans la conception de ces machines. Les améliorations introduites dans

ce manuscrit sont présentées principalement dans le contexte du tri robotisé, introduit

ci-après.

G.1.2 Tri robotique non supervisé

Malgré que le tri automatisé soit parmi les plus anciennes applications de robotique

industrielle, il reste une tâche complexe. En effet, le schéma complet d’une application
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de tri est composé de nombreuses sous-tâches :

• segmentation de scène,

• identification et localisation d’objets,

• collecte de données sur les différents objets,

• préhension,

• prise de décision sur la façon de trier les objets.

Dans cette thèse, nous nous intéressons principalement au module de prise de décision

et proposons une approche plus générique que ce qui est fait classiquement. En

définissant la tâche de tri de manière non-supervisée, l’application est alors pro-

grammée pour fonctionner avec tous types d’objets au lieu d’être spécialisée pour

certaines catégories.

En d’autres termes, le problème étudié dans cette thèse consiste à résoudre un

problème de partitionnement de données (clustering), appliqué à des objets physiques.

Pour cette raison, ce problème est appelé tri robotique non-supervisé (URS). Deux

exemples d’URS sont présentés en Figure G.1 et des développements pour résoudre

ce problème sont proposés dans les chapitres 2 à 6.

Tri Robotique

Non-Supervisé

(a) Outils dans un poste de travail

Tri Robotique

Non-supervisé

(b) Briques Lego de différentes formes et couleurs

Figure G.1: Deux exemples de problèmes de Tri Robotique Non-Supervisé (URS)

Dans la suite de ce résumé, les différents développements effectués autour de l’URS

sont présentés de manière synthétique. Les résultats clés sont également rapportés et

discutés. Pour des explications plus complètes, le lecteur peut se référer au corps du

texte de la thèse, en langue anglaise, qui présente en détail les méthodes employées

et discute les résultats en profondeur.
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G.2 Partitionnement de données à partir de ca-

ractéristiques de couleur et de forme.

G.2.1 Définition du problème et des difficultés

Dans ce chapitre, une première mise en oeuvre d’URS est proposée dans laquelle un

robot doit trier des objets à partir de caractéristiques de couleur et de forme. Cette

représentation d’objet est utilisée fréquemment dans la littérature du tri robotisé.

Cette application est non-supervisée, ce qui signifie qu’aucune règle concernant la

manière de trier n’est prédéfinie et qu’aucun exemple de tri correct n’est fourni au

préalable. Un exemple d’une telle tâche est présenté en Figure G.2.

Figure G.2: Robot utilisant notre algorithme des K-moyennes pondéré par rapport
des écarts pour trier des objets à partir de caractéristiques de couleur et de forme.

Une vidéo de démonstration peut être vue à l’url suivant :
https://www.youtube.com/watch?v=korkcYs1EHM

L’approche proposée pour résoudre ce problème d’URS se base sur l’algorithme de

partitionnement de données des K-moyennes. Cependant, le type de données étudié

dans ce chapitre ainsi que les conditions de fonctionnement de l’application présentent

de nombreuses difficultés pour cet algorithme. Tout d’abord, les caractéristiques de

forme et de couleur ont des ordres de grandeurs très différents, ce qui impose de nor-

maliser les données. En parallèle, les objets sont triés dans un environnement indus-

triel dans lequel la lumière n’est pas mâıtrisée, ce qui implique une grande dispersion

des données (Figure G.3). La combinaison de cette forte dispersion avec la nécessité

d’une normalisation impose l’utilisation d’algorithmes des K-moyennes pondérées,

une variante des de la méthode des K-moyennes classique, pour palier à la perte d’in-

formation due à la normalisation. Enfin, les caractéristiques étudiées appartiennent à

différentes échelles de mesure : les caractéristiques de couleur (RGB) sont des variables
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d’intervalles alors que les distances sont des variables de rapports. Cette spécificité

empêche l’utilisation du coefficient de variation (CV) dans la pondération des K-

moyennes. Pour résoudre la combinaison de ces trois difficultés, un nouvel algorithme,

appelé algorithme des K-Moyennes Pondérées par Rapport des Écarts (GRKM), est

proposé. Une présentation résumée de cet algorithme ainsi que les principaux résultats

sur la tâche étudiée sont présentés dans cette annexe. Pour une présentation plus en

profondeur, le lecteur peut se référer au Chapitre 2 de cette thèse.

Figure G.3: Exemples de jeux de données pour différentes conditions de lumière.

G.2.2 Approche proposée et résultats

L’algorithme GRKM proposé dans ce chapitre se base sur le calcul des écarts entre

chaque paire de points consécutifs pour chaque dimension. Le rapport de l’écart

maximum sur l’écart moyen est ensuite calculé pour chaque dimension puis utilisé

pour créer des poids qui sont réinjectés dans les données normalisées afin de trouver

les dimensions les plus importantes. L’utilisation des écarts est motivée par l’intui-

tion qu’un grand écart pour une dimension peut signifier que les valeurs viennent

de deux distributions différentes et donc que les points appartiennent à deux classes

différentes. L’avantage d’utiliser des données relatives est qu’elles peuvent fonction-

ner pour différents types d’échelles. A travers de nombreux exemples simulés, qui

sont présentés dans le corps du texte, la pertinence de cette approche est démontrée
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pour différents problèmes de partitionnement. Cette approche est ensuite testée sur

l’application robotique de tri de blocs Lego. L’étude est menée sur un cas pratique

comportant trois catégories, présentées en Figure G.3. Cette expérience de tri est

répétée 98 fois avec différentes conditions de lumière et différentes dispositions des

objets. Les résultats obtenus sont comparés avec les méthodes de KM classique et de

CVKM. Ils sont présentés en Figure G.4, où l’on peut également voir une étude de

robustesse quand une des composantes de couleur se rapproche de zéro (histogramme

de droite).

Données d’origine Données légèrement modifiées

8% 8%

81
%

81
%10

0%

10
0%

97
%

17
%

10
0%

17
%

K-means GR K-means GRp∗ K-means CV K-means CVp∗ K-means

Figure G.4: Pourcentage d’expériences avec aucune classification erronée.
L’expérience a été reproduite 98 fois sous différentes conditions de lumière et avec
différents arrangements des blocs Lego. Le taux d’erreur présenté est moyenné sur

ces 98 tentatives.

Pour étudier la qualité des poids proposés par rapport à d’autres méthodes de la

littérature, une étude sur la stabilité de ces poids par exponentiation est également

proposée. Les résultats peuvent être trouvés sur la Figure G.5.

Les résultats expérimentaux démontrent la robustesse de l’approche GRKM face

aux KM classiques ainsi qu’au CVKM. En effet, pour des données bruitées, avec des

conditions de lumière variables et quand une des composantes RGB se rapproche de

zéro, les poids GR semblent mieux appropriés. De plus, les poids obtenus par GRKM

sont plus stables pour des exposants plus grands, ce qui révèle un meilleur équilibrage

des poids que pour la méthode CVKM. Le GRKM est également testé avec des jeux

de données classiques de la littérature (Fischer Iris et Wine Dataset). Les résultats

obtenus, commentés plus en détails dans le corps de la thèse, mettent en évidence

l’influence du conditionnement des données dans le choix d’une approche.
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Figure G.5: Comparaison de la stabilité des poids GR et CV. Étude de l’influence
des exposants pour le partitionnement de briques Lego par K-means pondéré

exponentiel.

G.2.3 Conclusions et limitations

Dans ce chapitre, un premier exemple d’URS où les objets sont triés à partir de ca-

ractéristiques de couleur et de forme a été introduit. Les jeux de données générés par

cette application présentent de nombreuses difficultés pour le problème de partition-

nement de données. Ainsi, pour outrepasser le fait que les données sont bruitées et que

certaines dimensions des vecteurs de caractéristiques sont des variables d’intervalle,

un nouvel algorithme de K-moyennes pondérées a été introduit. Cette méthode, ap-

pelée K-moyennes pondérées par rapport des écarts, a permis d’obtenir de meilleurs

résultats sur une mise en oeuvre physique de l’URS. Des perspectives d’utilisation et

d’amélioration concernant l’algorithme GRKM sont présentées dans le Chapitre G.9.

Bien qu’ayant motivé le développement du GRKM, la représentation des objets

choisie dans ce chapitre est très spécifique et ne permet pas de trier n’importe quel type

d’objets. Par exemple, il est peu probable que les différents modèles de tournevis sur

la Figure G.1 soient correctement classés avec une représentation de forme et couleur.

En effet, un problème plus générique d’URS requiert l’utilisation de caractéristiques

ayant un niveau d’abstraction plus élevé, permettant de révéler la nature sémantique

des différents objets étudiés. De ce fait, dans les chapitres à venir, le module de prise

de décision de l’URS est vu comme un problème de partitionnement d’images (IC), où

chaque objet est représenté par une image le représentant. Les récents succès obtenus

pour le transfert de connaissance depuis ImageNet vers d’autres tâches de vision

par ordinateur motive l’utilisation de réseaux de convolutions profonds (CNN) pour

extraire des caractéristiques des images du nouveau problème d’IC. Dans le prochain

chapitre, une étude sur l’optimisation du transfert de connaissance d’ImageNet vers

une nouvelle tâche non-supervisée est étudiée.
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G.3 Extraction de caractéristiques par CNN pré-

entrâınés pour le partitionnement d’images.

G.3.1 Introduction et état de l’art

Pour résoudre le problème de tri robotique non-supervisé (URS) dans sa version la

plus générique, les différents objets à classer sont représentés par des images. Après

avoir collecté des photos des objets à trier, un problème d’URS devient un problème

de partitionnement d’images (IC), dont des exemples d’entrées-sorties sont présentés

en Figure G.6.

Partitionnement

d’Images

(a) VOC2007

Partitionnement

d’Images

(b) MIT

Partitionnement

d’Images

(c) ORL

Figure G.6: Définition du problème de partitionnement d’images. Exemples
d’entrées et des sorties attendues associées pour trois jeux d’images naturelles.
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Les articles récents qui adressent le problème d’IC se basent sur des caractéristiques

extraites par des réseaux de convolution (CNN) pré-entrâınés sur ImageNet. Ces ca-

ractéristiques sont ensuite utilisées en entrée d’un algorithme de partitionnement pour

produire la classification finale. La plupart de ces articles propose des innovations sur

les algorithmes de partitionnement mais ne justifie pas le choix du CNN pour l’ex-

traction de caractéristiques. Dans ce chapitre, une étude est menée pour connâıtre

l’influence du choix du CNN sur les résultats d’IC. L’étude proposée vise à savoir si

• le choix de l’architecture peut changer les résultats du partitionnement,

• certaines couches sont plus adaptées que d’autres pour l’extraction,

• il existe des interactions entre les types des données étudiés et les différentes

d’architectures.

G.3.2 Expérience proposée et résultats

Pour étudier ces interactions, le schéma présenté en Figure G.7 est mis en oeuvre avec

différents jeux de données (DS), architectures de CNN (NN), couches d’extractions

(L), algorithmes de partitionnement (C) et métriques. Le but de cette étude est de

trouver des règles pour choisir NN et L.

Premières
couches L Dernières

couches

DS

NN

C Groupes

Vraies
classes

Métrique Score

Figure G.7: Schéma descriptif de l’étude sur l’extraction de caractéristiques.

L’étude proposée est menée avec

• 8 jeux de données, appartenant à 4 sous-tâches de partitionnement d’images,

• 5 architectures et 3 couches d’extraction pour chacune d’elles,

• 2 algorithmes de partitionnement,

• 2 métriques de validation externes.

Le descriptif exhaustif de tous les éléments de l’étude peut être trouvé dans le corps

du texte.
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Les résultats complets obtenus sont présentés en annexe B. Ces résultats sont

synthétisés sur les Figures G.8, G.10 et G.9, où les moyennes et écarts types pour

différents couples de paramètres sont représentés.

VGG16 VGG19 Inception Xception Resnet50

0.4

0.6

0.8

(a) Interaction couche/architecture
(moyenne et écart type sur les différentes tâches et algorithmes).

Natural object Scene Fine-grained Face

0.2
0.4
0.6
0.8

1 L1 L2 L3

(b) Interaction couche/tâche
(moyenne et écart type sur les architectures, DS et algorithmes).

Figure G.8: Influence de la couche d’extraction sur le partitionnement (NMI).

Les résultats obtenus pour les différentes couches (Figure G.8) montrent que la

dernière couche avant la classification finale ImageNet est la meilleure, quel que soit

le réseau utilisé et quelle que soit la tâche. Ce résultat donne une première indication

importante quant au choix de la couche d’extraction. En regardant la Figure G.9,

il apparâıt que le choix de l’architecture est également crucial pour obtenir de bons

résultats. En revanche, celui-ci apparâıt beaucoup moins trivial. Les écarts types

étant plus grands que les différences moyennes de performance entre les réseaux, il

est impossible de conclure sur le choix de l’architecture.
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Figure G.9: Exemples où le choix de l’architecture du réseau de convolution est
crucial pour la réussite du partitionnement.
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Figure G.10: Influence du choix de l’architecture du réseau de convolution (L3)
sur les résultats de partitionnement (NMI).

G.3.3 Conclusions

L’utilisation d’un CNN pré-entrâıné pour extraire des caractéristiques est mainte-

nant devenue une pratique courante pour résoudre des problèmes d’IC. Cependant,

le choix de l’architecture et de la couche d’extraction est souvent arbitraire. Dans ce

chapitre, nous avons mené des expériences sur huit jeux de données classiques de vi-

sion provenant de quatre sous-tâches de classification. Le premier résultat intéressant

de cette étude est que la dernière couche avant le softmax semble produire les ca-

ractéristiques les plus intéressantes pour le partitionnement. Les expériences ont

également démontré que le choix de l’architecture d’extraction de caractéristiques

est crucial pour le tri non-supervisé. Cependant, les résultats obtenus ne permettent

pas de conclure quant au choix d’une telle architecture. Pour pallier à ce problème,

une nouvelle méthode ensembliste est proposée dans le chapitre suivant.
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G.4 Améliorer le partitionnement d’images en uti-

lisant plusieurs CNN pré-entrâınés.

G.4.1 Introduction

L’utilisation de réseaux profonds pré-entrâınés pour l’extraction de caractéristiques

permet d’améliorer grandement les résultats d’IC. Cependant, les expériences menées

dans le chapitre précédent ont démontré que le choix d’une bonne architecture pour un

problème donné est particulièrement complexe. Une méthode pour s’affranchir de ce

choix est introduite dans ce chapitre. En suivant l’intuition que différents réseaux pré-

entrâınés peuvent contenir des informations complémentaires, nous proposons d’utili-

ser plusieurs CNNs simultanément pour générer plusieurs représentations des données

initiales. Cette approche revient à transformer le problème initial en un problème de

partitionnement multi-vues (MVC). Le problème de MVC ainsi généré est résolu par

la méthode de partitionnement profond JULE, que nous avons modifiée pour accepter

des données multi-vues. Les résultats obtenus par la méthodologie proposée sont les

meilleurs résultats connus dans la littérature pour plusieurs jeux de données. Cette

approche présente également l’avantage de générer une représentation unifiée de basse

dimension du jeu de données de départ.

G.4.2 Intuition sur l’utilisation de plusieurs CNNs

Dans le corps de la thèse, quelques justifications théoriques à propos de l’utilisation de

plusieurs réseaux sont apportées. Une première expérience est ensuite menée sur le jeu

de données UMist pour justifier de la complémentarité des différentes architectures.

Elle consiste en une étude de performance de trois réseaux pour les différentes classes

de UMist prises indépendemment. Les résultats sont présentés sur la Figure G.11, où

l’on peut voir que les différentes architectures ne réagissent pas de la même manière

pour différentes catégories : VGG16 et Densenet121 se comportent mieux avec la

classe 4 de UMist, alors que InceptionResnet est l’architecture la plus performante

pour ces données. Ces résultats suggèrent que les informations contenues dans chacun

des réseaux sont complémentaires.

Afin de confirmer cette intuition, la méthode ensembliste MVEC, présentée sur la

Figure G.12, est mise en oeuvre pour différents jeux de données. Pour chaque jeu de

données, nous faisons varier le nombre d’architectures utilisées pour l’extraction et

essayons toutes les permutations parmi 10 architectures étudiées. Les résultats de ces

expériences sont présentés sur la Figure G.13, où il apparâıt que pour tous les jeux

198



NMI PUR FM FMC4

InceptionResnet 0.775 0.642 0.537 0.442
VGG16 0.689 0.550 0.372 0.653

Densenet121 0.684 0.553 0.384 0.700

(a) InceptionResnet (b) VGG16 (c) Densenet121

Figure G.11: Visualisation t-SNE 2d des caractéristiques extraites par trois CNNs
pré-entrâınés pour le jeu de données UMist. Ces caractéristiques forment différentes

vues des données qui sont complémentaires.

de données, augmenter le nombre de CNNs permet d’obtenir de meilleurs résultats

NMI. Un plus grand nombre de réseaux permet également de diminuer la variance

des résultats, ce qui signifie que la performance de l’algorithme de partitionnement

est moins dépendante du choix des architectures. On peut également voir qu’avec une

mise en oeuvre multi-GPUs, le temps de partitionnement ne croit pas linéairement

avec le nombre de CNNs utilisés.
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C
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Algorithmes
de clustering

. . .

Matrice de
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C∗
Catégories

finales

Figure G.12: Schéma de la méthode MVEC utilisée pour étudier l’influence de
l’utilisation de plusieurs CNNs.
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Figure G.13: Évolution du score NMI et du temps total (en secondes) pour
différents nombres de CNNs pré-entrâınés pour l’extraction de caractéristiques.

G.4.3 Méthode complète et résultats

Après avoir validé l’utilisation de plusieurs extracteurs de caractéristiques en parallèle,

nous proposons de partitionner les données multi-vues générées avec la méthode

de partitionnement profond JULE. Une architecture parallèle de perceptron multi-

couches est définie et entrâınée grâce à une version modifiée de JULE, qui fonctionne

pour des données multi-vues. Le schéma complet de la méthode peut être trouvé sur

la Figure G.14.
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Figure G.14: Méthode proposée (DMVC) pour résoudre le problème de
partitionnement d’images. Génération de vues multiples + Partitionnement

multi-vues profond.
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Cette méthode est ensuite testée sur huit jeux de données de classification d’images.

Les résultats obtenus sont comparés avec ceux obtenus par une extraction simple

(BNet, LNet et WNet), et ceux obtenus par d’autres méthodes multi-vues (CC et

MVEC). Les résultats sont présentés sur la Figure G.15, où l’on peut voir que dans

de nombreux cas, notre approche est meilleure que le meilleur réseau connu (LNet),

et qu’elle permet souvent de surpasser le meilleur réseau (BNet). De plus, MVnet est

également plus efficace que les autres méthodes d’agrégation testées.
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Figure G.15: Scores MIX0.5 pour différentes méthodes de MVC et différents jeux
de données.
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L’autre intérêt majeur de l’utilisation de DMVC par rapport à MVEC est qu’il

permet d’obtenir une nouvelle représentation unifiée des données de départ. La visua-

lisation t-SNE des différentes caractéristiques durant le processus de partitionnement

DMVC peut être vue sur la Figure G.16, où l’on remarque que les représentations

extraites par DMVC sont de plus en plus compacts et séparent de mieux en mieux

les différentes classes.

(a) Densenet169 (b) Densenet169 + JULE

(c) Concat (d) MVnetfix (e) MVnet

Figure G.16: Visualisation t-SNE 2d des caractéristiques extraites du jeu de
données UMist à différentes étapes de la structure DMVC.

G.4.4 Conclusions

Dans ce chapitre, une approche en deux temps pour la résolution du problème de par-

titionnement d’images a été présentée. Plusieurs représentations des données initiales

sont extraites par différents CNNs, puis un réseau de neurones est entrâıné de manière

non supervisé, en utilisant JULE, afin de résoudre le problème de partitionnement

multi-vues. La méthode proposée présente l’avantage d’enlever la décision critique

du choix de l’extracteur et permet d’obtenir d’excellents résultats pour différents

exemples d’IC.

La classification d’images non-supervisée est une brique technologique essentielle

pour adresser le problème d’URS. Cependant, pour se rapprocher de l’objectif de cette

thèse, à savoir créer un module de tri autonome robotisé, il est également important

d’étudier la manière de collecter les images qui vont être envoyées à l’algorithme d’IC.

Cette thématique de prise de données avec un robot équipé d’une caméra est le sujet

des deux prochains chapitres.
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G.5 Tri robotisé non-supervisé à partir de poses

caméra fixes.

G.5.1 Introduction

La formulation classique d’un problème de classification par apprentissage, qu’il soit

supervisé ou non, cherche à construire un modèle pour associer des données numériques

(images) à des prédictions (catégories). Cependant, pour une mise en oeuvre physique

d’une application de classification, les entrées du système n’existent pas a priori et

doivent d’abord être mesurées à partir d’objets physiques. Pour le problème d’URS

étudié dans cette thèse, les objets à trier sont représentés par des images et les

prédictions finales sont obtenues en résolvant un problème d’IC, qui a été adressé

précédemment. Pour mettre en oeuvre une telle application sur un vrai robot, le pro-

cessus d’acquisition des données doit également être défini et son choix est primordial

pour obtenir une solution robuste. En effet, suivant la scène dans laquelle le robot

évolue, les poses des objets et de la caméra, et les conditions de lumières, les images

qui sont envoyées à l’algorithme d’IC peuvent être très différentes. Une représentation

schématique du module de prise de décision d’URS est présentée sur la Figure G.17.

Les paramètres en violet varient et ne peuvent pas être contrôlés alors que ceux en

orange doivent être définis pour mettre en oeuvre l’application. L’objectif d’une ap-

plication d’URS est donc de définir un algorithme d’IC ainsi que des règles pour la

prise d’images qui réalisent ensemble une classification robuste et consistante dans le

domaine de variation des paramètres non mâıtrisés.

Objet
Physique

Acquisition
d’image

Pose des objets
Disposition de la scène
Conditions de lumière

Pose caméra
Paramètres camera

Représentation
par images

Partitionnement
d’images Prédictions

Figure G.17: Représentation schématique du module de prise de décision d’une
application de tri robotique non-supervisée avec des objets réels.
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G.5.2 Première mise en oeuvre et robustesse aux conditions
d’éclairage et d’arrière-plan

Une première mise en oeuvre de tri robotique non supervisé est présentée sur la

Figure G.18. La prise de données se fait avec une caméra montée sur l’effecteur d’un

robot sériel, et pour toutes les prises de vue, la caméra est placée verticalement au

dessus des différents objets. L’ensemble des images collectées est ensuite envoyé à un

algorithme d’IC présenté précédemment.

{C(i)}i∈Im

Module vision

Scène initiale Ensemble d’images
Ensemble de catégories

Sorties

Balayage de la scène
Voir Figure (G.18b)

Préhension et tri

(a) Schéma de principe de l’application de tri robotique non-supervisé (URS).

Couche finale

Images
Caractéristiques

Catégories

Extraction de caractéristiques
par CNN

Algorithme de
partitionnement standard

(b) Description du module de vision.

Figure G.18: Tri robotique non-supervisé avec pose de caméra fixée.

Afin de tester la robustesse de la méthode de prise d’images par caméra verticale,

un jeu d’images a été créé spécifiquement. Celui-ci comprend différents objets, placés

sur différents supports et dans différentes conditions de lumière. Différentes instances

de différentes classes sont utilisées afin de pouvoir réaliser un tri non-supervisé. Pour

chaque objet, dans chaque condition, différentes positions de l’objet sont collectées

afin de pouvoir également tester la robustesse à la pose de l’objet par la suite. Des

exemples d’images extraites du jeu de données créé peuvent être vues sur la Fi-

gure G.19. Des modifications artificielles de la luminosité sont également proposées

afin de tester la méthodologie sous des conditions extrêmes.
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BLC 1 BLC 2 BLC 3 BLC 4 BLC 5

USB

Pen

Screw

(a) Différentes poses, arrière-plans and conditions de lumière.

(b) Modification artificielle de la luminosité sur BLC 2.

Figure G.19: Exemples d’images utilisées pour l’évaluation de la robustesse aux
perturbations non-mâıtrisées.

Les différents résultats obtenus sont présentés sur les Tables G.1 et G.2. On y

voit notamment que les résultats sont assez sensibles aux changements de luminosités

importants ainsi qu’aux arrière-plans présentant des motifs.

Tableau G.1: Résultats de partitionnement pour différentes architectures de CNN
et différents algorithmes de partitionnement sur le jeu de données de

partitionnement d’outils.

BLC1 BLC2 BLC3 BLC4 BLC5
NMI PUR NMI PUR NMI PUR NMI PUR NMI PUR

Inception V3
Agg 0.82 0.81 0.82 0.81 0.80 0.80 0.65 0.65 0.79 0.76

KMeans 0.80 0.79 0.79 0.78 0.76 0.76 0.63 0.64 0.75 0.73

Resnet50
Agg 0.81 0.81 0.74 0.74 0.74 0.75 0.62 0.59 0.72 0.71

KMeans 0.77 0.78 0.71 0.72 0.71 0.72 0.58 0.58 0.70 0.70

VGG16
Agg 0.76 0.75 0.74 0.73 0.73 0.72 0.61 0.60 0.70 0.69

KMeans 0.72 0.72 0.70 0.70 0.71 0.70 0.58 0.57 0.67 0.67

VGG19
Agg 0.76 0.76 0.77 0.76 0.71 0.72 0.59 0.58 0.71 0.70

KMeans 0.73 0.73 0.73 0.73 0.69 0.70 0.56 0.56 0.67 0.67

Xception
Agg 0.86 0.85 0.90 0.90 0.84 0.85 0.69 0.69 0.83 0.81

KMeans 0.84 0.83 0.87 0.86 0.82 0.82 0.66 0.66 0.80 0.80
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Tableau G.2: Résultats de partitionnement pour différentes architectures de CNN
et différents algorithmes de partitionnement sur l’ensemble d’images BLC2 avec

différentes modifications artificielles de la luminosité.

Very dark Dark Normal Bright Very bright
NMI PUR NMI PUR NMI PUR NMI PUR NMI PUR

Inception V3
Agg 0.74 0.72 0.81 0.79 0.82 0.81 0.80 0.80 0.71 0.70

KMeans 0.70 0.70 0.77 0.75 0.79 0.78 0.77 0.77 0.66 0.67

Resnet50
Agg 0.67 0.67 0.73 0.73 0.74 0.74 0.69 0.68 0.61 0.61

KMeans 0.65 0.66 0.70 0.71 0.71 0.72 0.66 0.66 0.58 0.59

VGG16
Agg 0.66 0.66 0.73 0.72 0.74 0.73 0.68 0.68 0.61 0.61

KMeans 0.62 0.63 0.69 0.69 0.70 0.70 0.65 0.66 0.57 0.58

VGG19
Agg 0.67 0.67 0.76 0.75 0.77 0.76 0.74 0.72 0.64 0.65

KMeans 0.64 0.65 0.73 0.73 0.73 0.73 0.71 0.70 0.59 0.62

Xception
Agg 0.77 0.77 0.88 0.89 0.90 0.90 0.84 0.84 0.73 0.74

KMeans 0.74 0.74 0.85 0.86 0.87 0.86 0.82 0.82 0.70 0.71

G.5.3 Influence de l’angle de prise de données

Pour essayer de pallier à ces problèmes et d’augmenter la robustesse du système

global, une étude de l’influence de la prise de vue est proposée. Pour ce faire, nous

comparons les résultats obtenus précédemment avec une méthodologie multi-vues,

utilisant les images obtenues pour différentes positions ensemble, afin de procéder

au tri. Le schéma de principe de la méthodologie employée peut être trouvé sur la

Figure G.20.

Images d’entrée
multi-vues

. . .

Ω1

Ω2

ΩM

Échantillonage
aléatoire de vues

C P1

C P2

C
PN

...

Partitionnement
d’images Matrice de

co-association A

C∗
Ensemble final
de catégories

P ∗

Rassemblement
de partitions

Figure G.20: Méthode MVEC, utilisée pour combiner plusieurs vues de chaque
objet.

Les résultats obtenus par cette approche, présentés sur la Table G.3, montrent

que l’utilisation simultanée de différents points de vue des objets permet d’améliorer

la robustesse aux différents éléments non mâıtrisables. L’étude menée dans ce cha-

pitre souligne donc l’importance d’étudier la méthodologie de collecte des images de
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manière plus fine que l’approche initiale proposée.

Tableau G.3: Résultats du partitionnement MVEC pour différentes BLC. Pour
comparer, les résultats avec vue unique sont rappelés entre parenthèse.

NMI Purity

BLC1 0.95 (0.86) 0.96 (0.85)

BLC2

Very dark 0.91 (0.77) 0.93 (0.77)

Dark 1.00 (0.88) 1.00 (0.89)

Normal 1.00 (0.90) 1.00 (0.90)

Bright 0.96 (0.84) 0.96 (0.84)

Very bright 0.84 (0.73) 0.86 (0.74)

BLC3 0.95 (0.84) 0.96 (0.85)

BLC4 0.84 (0.69) 0.82 (0.69)

BLC5 0.95 (0.83) 0.96 (0.81)

G.5.4 Conclusions

Dans ce chapitre, une première mise en oeuvre d’URS est proposée, dans laquelle des

images sont collectées avec une caméra placée verticalement au-dessus des différents

objets à trier. Cette approche fonctionne plutôt bien pour le cas pratique indus-

triel testé. Pour tester de manière plus complète la robustesse de cette approche aux

changements d’arrière-plan et de luminosité, un jeu d’images représentant différents

objets dans différentes conditions a été créé. Ces données sont difficiles pour l’IC.

Les résultats obtenus sur ces données montrent que la robustesse de l’approche di-

minue quand la luminosité change trop et quand l’arrière-plan comporte des mo-

tifs. Des expériences multi-vues sont également menées avec différentes images de

chaque objet et montrent que l’angle de vue sous lequel sont observés les objets in-

flue sur la robustesse du système global. Ainsi, comme il semble impossible de définir

une méthodologie robuste de prise de données par caméra fixe, nous proposons de

développer un schéma de pose caméra adaptative et autonome dans le prochain cha-

pitre.
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G.6 Sélection de vues sémantiquement riches

Comme démontré dans le chapitre précédent, une mise en oeuvre robuste d’URS

requiert non seulement un bon algorithme d’IC mais également une bonne stratégie

d’acquisition d’images. Dans ce chapitre, afin de pouvoir choisir des images adaptées

pour le partitionnement, une méthode de sélection de vues à fort contenu sémantique

est proposée. La sélection de vues sémantique est une direction de recherche peu

explorée jusqu’à maintenant, mais qui peut avoir de nombreux impacts positifs pour

la robotique. L’utilisation de la mobilité d’un robot pour améliorer la compréhension

des objets qu’il manipule semble une piste d’étude importante pour de nombreuses

applications. Pour mieux comprendre le rôle de la prise de vue dans la classification

d’objets, on peut observer la Figure G.22, où seule l’image du milieu permet au robot

de comprendre que l’objet étudié est un peigne. Dans ce chapitre, nous proposons

d’entrâıner un réseau de convolution pour optimiser la pose d’un robot sériel, équipé

d’une caméra en bout de bras, afin de maximiser le contenu sémantique de l’image

obtenue et de comprendre la nature des objets observés. Les résultats expérimentaux

obtenus démontrent que les poses retenues par le réseau surpassent les poses fixes

pour la tâche d’URS.

(a) Vue de dessus :
θ = 90◦ ; ϕ = 90◦

(b) Bonne vue :
θ = 45◦ ; ϕ = 45◦

(c) Mauvaise vue :
θ = 135◦ ; ϕ = 45◦

Figure G.21: Illustration du problème de sélection de vue sémantique. La
paramètrisation angulaire est définie plus tard.
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G.6.1 Méthodologie

L’objectif de ce chapitre est donc de proposer un modèle permettant de prédire si

une pose caméra sera intéressante pour pouvoir comprendre la nature d’un objet.

Cette prédiction doit être faite seulement à partir d’une vue de dessus perpendicu-

laire à l’objet. Pour réaliser cet objectif, un jeu de données multi-vues de différents

objets est constitué. Après avoir rassemblé 144 objets, appartenant à 29 catégories

différentes, un robot est utilisé afin de collecter des images de chacun des objets,

prises depuis différentes poses de la caméra. Trois positionnements de chacun des ob-

jets sont choisis aléatoirement et pour chaque pose objet, une vingtaine d’images est

collectée sous différents angles. En tout, 9112 images sont obtenues, comme le montre

le Tableau G.4, qui résume les statistiques du jeu d’images. Des exemples d’images

pour un objet dans une pose donnée peuvent être trouvés sur la Figure G.22.

Tableau G.4: Statistiques du jeu de données d’images
multi-objets/multi-poses/multi-vues proposé.

# Classes # Object/class (total) # Poses/object (total) # Images/pose (total)
29 4-6 (144 ) 3 (432 ) 17-22 (9112 )

Ensuite, les images sont séparées en un jeu d’entrâınement et un jeu de validation,

cette séparation est faite par catégorie. Un indice de ”partitionnabilité” est ensuite

calculé pour toutes les images du jeu d’entrâınement puis un CNN est entrâıné à

prédire cet indice à partir des informations de vue de dessus et du positionnement

attendu de la caméra. Des images à haut (respectivement faible) score de partitionna-

bilité sont encadrées en vert (respectivement rouge) sur la Figure G.22. L’architecture

de réseau retenue pour cet entrâınement est présentée sur la Figure G.23. Des expli-

Top view

(45, 45)

(45, 135)

(45, 225)

(45, 315)

(60, 45)

(60, 135)

(60, 225)

(60, 315)

(75, 45)

(75, 135)

(75, 225)

(75, 315)

Figure G.22: Meilleure visualisation en couleur. Ensemble de vues pour un objet
de la catégorie “lunettes de soleil” dans une pose donnée. Les deux images avec le

plus haut (resp. bas) score FM individuel sont encadrées en vert (resp. rouge).
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cations détaillées sur la méthodologie de création du jeu de données multi-vues ainsi

que sur l’entrâınement du modèle peuvent être trouvées dans le corps du texte.

vtop

Conv
Bloc MLP 1

θ, ϕ
+ MLP 2 ŝ

Figure G.23: Architecture SV-net proposée. Les entrées sont en bleu et les sorties
en rouge. Le “Conv Bloc” est la partie convolutionnelle de VGG19 (jusqu’à la

couche “block4 pool”). Les MLPs sont présentés dans leurs versions intégrales dans
le corps de la thèse.

G.6.2 Résultats

Pour analyser la qualité du réseau entrâıné, nous comparons les vues qu’il prédit pour

les objets du jeu de validation avec les vues de dessus fixes (TOP) et des vues aléatoires

(RAND). Cette approche nous permet de valider que les prédictions du réseau sont

meilleures que des vues fixes et aussi que la vue fixe choisie n’est pas particulièrement

mauvaise à cette tâche. Les résultats sont comparés pour différents extracteurs de

caractéristiques ainsi que différents algorithmes de partitionnement pour vérifier que

le réseau n’a pas été sur-entrâıné pour un modèle donné. Les résultats obtenus peuvent

être vus sur le TableauG.5, où l’on voit que notre réseau est capable de proposer des

vues intéressantes pour le problème de reconnaissance sémantique d’objets. Certaines

des prédictions du réseau apparaissent sur la Figure G.24 et semblent correspondre à

des angles de vues que des humains auraient pu choisir.

Tableau G.5: SV-net validation. Comparaison des résultats de partitionnement
entre différentes méthodes de sélection de vue sur les données de test. Pour chaque

couple (c,m), le meilleur résultat est en gras.

FM NMI PUR

XCE AGG
TOP 0.44 0.51 0.70

RAND 0.48 0.56 0.74
SV-net 0.55 0.63 0.78

XCE KM
TOP 0.44 0.51 0.70

RAND 0.48 0.55 0.73
SV-net 0.55 0.62 0.78

VGG AGG
TOP 0.46 0.53 0.71

RAND 0.44 0.51 0.70
SV-net 0.48 0.55 0.73
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(a) Exemples de vues de dessus

(b) Sélections SV-net correspondantes

Figure G.24: Exemples de vues prédites par SV-net.

G.6.3 Conclusion

Dans ce chapitre, nous avons introduit un nouveau problème appelé sélection de

vue sémantique. La SVS sert à choisir une bonne pose caméra pour améliorer la

connaissance sémantique d’un objet physique observé. Pour résoudre ce problème,

un jeu de données spécifique a été créé et une approche d’apprentissage profond a

été proposée. La solution présentée a montré qu’il est possible d’inférer la qualité

sémantique d’une pose caméra seulement à partir d’informations provenant d’une

autre vue de l’objet. Ce résultat ouvre de nombreuses perspectives d’applications,

telles que le tri robotique autonome, qui est en général résolu par des vues de dessus.

Jusqu’alors, les recherches présentées dans cette thèse se sont concentrées sur le

module de prise de décision de l’URS. Les méthodologies proposées, tant pour la

sélection de vues que pour l’IC, ont permis d’améliorer les résultats de tri d’objets

non-supervisés. Cependant, un schéma d’URS complet doit proposer des solutions à

d’autres problèmes importants tels que la segmentation de scènes, la prise d’objets,

la localisation d’objets, etc. Ainsi, la prochaine partie de cette thèse se concentre sur

deux de ces compétences : l’apprentissage de trajectoires et la localisation d’objets.

Ces avancées représentent des étapes importantes vers la conception d’un robot de

tri complètement autonome.
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G.7 Apprentissage de trajectoires indépendant du

modèle du système

G.7.1 Introduction

Dans les chapitres précédents, le problème de compréhension non supervisé d’ob-

jets physiques, qui est une compétence essentielle pour l’URS, a été étudié. Cepen-

dant, pour pouvoir mettre en oeuvre une application d’URS industrielle autonome et

robuste, de nombreuses autres compétences sont requises. Dans les deux prochains

chapitres, deux de ces compétences sont étudiées : l’apprentissage de trajectoires et

la localisation 3D. Ainsi, dans ce chapitre, nous proposons d’adapter une méthode

récente d’apprentissage de trajectoires afin qu’elle puisse fonctionner pour n’importe

quelle fonction de coût mesurable. Cette solution est indépendante du modèle du

robot, ce qui signifie que le schéma d’apprentissage ne nécessite pas de connâıtre

l’intégralité des paramètre physiques du système étudié. Cette méthode d’appren-

tissage présente l’intérêt d’être plus intuitive et donc de rendre la programmation

robotique plus accessible aux opérateurs dans l’industrie.

Pour valider notre solution, la tâche de positionnement cartésien d’un robot sériel

est étudiée. Un robot est entrâıné à apprendre comment atteindre un point de l’es-

pace cartésien avec son effecteur en utilisant uniquement des information de capteurs

de position. Le modèle est d’abord validé sur une tâche classique, où l’effecteur est

attaché physiquement au robot, puis sur une tâche plus complexe, où le modèle direct

ne peut pas être calculé.

G.7.2 Méthodologie

La solution proposée est construite à partir d’une méthode basée sur l’iLQG. L’algo-

rithme iLQG a pour objectif d’optimiser des trajectoires, représentées numériquement

par une alternance d’états du système étudié et de commandes envoyées aux action-

neurs afin de changer cet état. Un schéma représentant les différents éléments d’une

trajectoire est présenté sur la Figure G.25.

Sur la représentation de la Figure G.25, lorsque la dynamique est linéaire et la

fonction de coût est quadratique, une série de commandes optimales peut être trouvée

analytiquement grâce à la théorie des LQG. Cependant, lorsque ces fonctions sont non-

linéaires et plus complexes, il est nécessaire de pouvoir en faire des développements

limités locaux pour pouvoir optimiser des trajectoires. La littérature a aujourd’hui

montré qu’il est possible d’adopter un schéma d’exploration et régression pour dériver
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Figure G.25: Schéma bloc pour définir une trajectoire et résumer les notations.

une approximation linéaire locale de la dynamique et obtenir de bons résultats d’opti-

misation de trajectoire. Cependant, pour ce qui est de la fonction de coût, la plupart

des articles propose de la calculer à partir d’un modèle du robot ou encore d’ajouter

des variables au vecteur d’état afin de pouvoir ensuite la calculer analytiquement.

Dans ce chapitre, nous proposons d’étendre le processus d’exploration-régression à

l’estimation de la fonction de coût. Cette méthode permet d’éviter de créer un es-

timateur quadratique calculé à partir d’une approximation linéaire. Les différentes

méthodes possibles pour calculer le développement limité de deuxième ordre de la

fonction de coût sont présentées sur la Figure G.26.

xt, ut
Dynamique linéaire

apprise
Modèle approximatif

du robot
lt

(a) Utiliser un modèle du robot.

xt, ut

dt

Dynamique linéaire
apprise

dt+1

xt+1

Dérivation
analytique

lt

(b) Inclure la distance dt dans la représentation d’état.

xt, ut

Dynamique linéaire
apprise

Fonction de coût
quadratique apprise

xt+1

lt

(c) Apprendre l’approximation quadratique du coût.

Figure G.26: Différentes options pour calculer le développement limité de second
ordre de la fonction de coût cartésienne à partir de vecteurs d’état et d’un contrôle

dans l’espace angulaire.
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La méthodologie utilisée est détaillée dans le corps de la thèse. Nous noterons

simplement que celle-ci requiert de prédéfinir plusieurs hyperparamètres et que, pour

la tâche de positionnement cartésien étudiée, ceux-ci ont été choisis en simulation

(Figure G.27) avant de mettre en oeuvre l’apprentissage sur système réel.

(a) Trajectoire nominale initiale, choisie aléatoirement

(b) Trajectoires finales apprises

Figure G.27: Trajectoires apprises en simulation pour une tâche de
positionnement cartésien pour différents robots industriels (KUKA LBR iiwa / ABB

IRB 140 / UR 10 / F&P P-ARM, de gauche à droite).

G.7.3 Résultats

Nous proposons de valider la méthode en étudiant la tâche de positionnement cartésien

de l’effecteur d’un robot sériel, tout d’abord pour une tâche classique, où l’effecteur est

lié physiquement au robot, puis dans une tâche plus complexe, qui ne peut fonctionner

sans notre méthode du fait de l’impossibilité de calculer un modèle direct du robot.

La première expérience est comparée avec la méthode (c) sur la Figure G.26. Les

résultats sont présentés sur la Figure G.28, on y voit notamment que notre méthode

est plus consistante quand le nombre d’échantillons est suffisant, et qu’elle converge

plus rapidement vers des comportements de haute précision. L’autre expérience, qui

représente une validation qualitative de l’indépendance du modèle du robot, voit le

robot équipé d’un pointeur laser avec lequel il doit trouver comment viser le centre

d’une cible en actionnant ces moteurs angulaires (Figure G.29). Avec notre méthode,

la tâche peut être résolue en l’espace de quelques minutes.
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Figure G.28: Comparaison de deux méthodes : Régression quadratique (courbe
pleine bleue) et modification du vecteur d’état (courbe pointillée orange). Les cadres
en haut à droite de chaque figure sont des zooms sur les dernières itérations d’iLQG.

G.7.4 Conclusion

Ce chapitre introduit une version modifiée d’iLQG pour résoudre le problème de

contrôle optimal local. Pour ce faire, le développement limité de second ordre de

la fonction de coût est appris à partir de données mesurées. Comparée à d’autres

méthodes de calcul de fonction de coût, notre approche présente l’avantage d’être

indépendante du modèle de robot utilisé tout en ne nécessitant aucune cascade d’ap-

proximations. Cette approche est validée expérimentalement sur la tâche de position-

nement cartésien d’un robot sériel sans utiliser de modèle du robot. Le système a

seulement accès aux valeurs angulaires et à certains retours capteurs cartésiens. Les

résultats obtenus sont plus stables et convergent plus rapidement vers des comporte-

ments très précis.
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(a) Configuration initiale

(b) Pose finale apprise

Figure G.29: Validation qualitative : viser une cible avec un pointeur laser.
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G.8 Construction automatique de jeux de données

d’images réelles pour la localisation 3D d’ob-

jets en utilisant deux caméras

G.8.1 Introduction

Tout comme la compréhension d’objets physiques et l’apprentissage de trajectoires,

la localisation 3D est une brique technologique importante pour rendre la robotique

plus autonome. Dans ce chapitre, une méthode de création automatique de jeux de

données stéréo pour la localisation d’objets est proposée. La localisation stéréo est

une tâche complexe qui nécessite de nombreuses briques technologiques, présentées

sur la Figure G.30, pouvant toutes être sources d’imprécision. L’entrâınement d’un

réseau de neurones résolvant la tâche bout-à-bout, sans passer par des briques in-

termédiaires, pourraient avoir un impact très bénéfique sur la qualité de la localisation.

Un tel réseau correspond au cadre violet sur la Figure G.30. Ainsi, nous présentons

une méthodologie pour générer automatiquement des données entrée-sortie pour en-

trâıner un tel modèle. Nous proposons d’utiliser la grande précision et répétabilité

d’un robot industriel pour construire ce type de jeu de données. Ce chapitre est un

sujet de recherche en développement et doit encore être validé en utilisant les jeux de

données créés pour entrâıner des réseaux de localisation. Cependant, la méthodologie

de construction proposée peut être utile à la communauté.

Image droite

Image gauche

Carte
des disparités

Carte des
profondeurs

[
xi
yi

]
image

xiyi
zi


cam

xiyi
zi


robot

Appariement stéréo

Triangulation

Algorithme de vision Changement de repère

À encoder dans le réseau

Figure G.30: Approche classique pour la localisation par vision stéréo.
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G.8.2 Méthodologie

Pour générer un tel jeu de données, nous proposons de fixer l’objet à localiser sur

l’effecteur d’un robot sériel dont on connâıt le modèle direct. Ainsi, il est facile de

calculer la position précise de l’objet dans le repère du robot. Deux caméras sont

fixées par rapport au repère robot, de telle manière qu’elles observent la même zone

dans l’espace de travail du robot. Ensuite, le robot déplace l’objet dans le champ

des caméras et nous pouvons ainsi générer des couples d’images associés à une po-

sition 3D connue de l’objet. Ces données sont les entrées-sorties du réseau que l’on

souhaite entrâıner et ce procédé permet donc de générer un jeu de données supervisé

pour la tâche de localisation stéréo. Des exemples d’images générées pour la tâche de

localisation de tournevis peuvent être vues sur la Figure G.31.

Figure G.31: Ensemble d’images représentatif du jeu de données de localisation de
tournevis.

Afin d’éviter d’obtenir des biais importants dans nos données, nous essayons de

changer la luminosité et les arrières-plans des images lors de la création des jeux

de données, comme nous pouvons le voir sur la Figure G.31. Afin d’éviter que nos

réseaux apprennent simplement à localiser le robot puis appliquer une translation,

il est également important que ce dernier ne soit pas présent dans l’intégralité des

images. Pour ce faire, le robot est caché physiquement sur certaines des images (Fi-

gure G.31). Un algorithme pour supprimer le robot des images est également proposé,

il se base sur l’acquisition de quatre images et est expliqué en détail dans le corps du

texte. Un schéma explicatif peut être vu sur la Figure G.32.
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Figure G.32: Approche de vision par ordinateur utilisant quatre images pour
générer une image contenant seulement l’objet étudié.

G.8.3 Conclusions

Dans ce chapitre, nous avons proposé une méthodologie de construction de jeux de

données supervisés pour la localisation stéréo. Un jeu de données a été créé pour des

tournevis et mis à la disposition de la communauté. Ces jeux de données peuvent

ensuite servir à entrâıner des CNNs siamois à résoudre la tâche de localisation.
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G.9 Conclusions générales

Les robots industriels modernes sont des machines qui peuvent être reprogrammées

pour résoudre de nombreuses tâches sans toucher à leur architecture physique. Ces ca-

ractéristiques leur permettent de résoudre une grande diversité de tâches. Cependant,

leur utilisation actuelle est encore loin du niveau d’autonomie et d’adaptabilité espéré

pour de tels systèmes complexes. Dans cette thèse, nous avons proposé diverses contri-

butions d’apprentissage automatique afin de se rapprocher de l’autonomie complète.

Ces contributions sont principalement centrées autour du tri robotique non-supervisé

mais trouvent de nombreux autres domaines d’application dans la robotique.

Pour en savoir plus sur le travail réalisé ainsi que sur les perspectives futures de

développement, nous invitons le lecteur à se référer au corps du texte de cette thèse,

en anglais.
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METHODES D’APPRENTISSAGE AUTOMATIQUE POUR DES 

APPLICATIONS ROBOTIQUES DANS UN CONTEXTE INDUSTRIEL :  

ETUDE DE CAS DU TRI ROBOTISÉ 

RESUME: L’architecture multi-axes des robots industriels permet de les programmer 

pour effectuer des tâches diverses. Cependant, malgré qu’ils soient équipés de 

nombreux capteurs - ce qui devrait leur permettre de s’adapter à des changements 

d’environnement - l’utilisation de robots dans l’industrie se limite souvent à des tâches 

très répétables et ne nécessitant que peu d’adaptabilité. Dans un contexte industriel, 

la programmation de robots capables de s’adapter automatiquement à diverses 

applications, et étant robustes sous différentes conditions de fonctionnement est une 

source de progrès importante. Ainsi, dans cette thèse, plusieurs contributions en 

apprentissage automatique sont proposées dans le but de concevoir des robots 

intelligents, ayant une plus grande gamme de fonctionnements. Les méthodes 

présentées dans ce mémoire sont centrées autour du tri autonome d’objets mais 

peuvent servir à implémenter de nombreuses autres applications robotiques. Afin de 

concevoir des applications plus polyvalentes, des solutions aux problèmes de tri 

d’images non supervisé, de choix de vue optimal, d’apprentissage de trajectoires et de 

localisation stéréoscopique ont été développées. 

Mots clés : Tri robotique, Classification non supervisée, Transfert de connaissance, Choix de 

vue optimal, Apprentissage de trajectoires, Création automatique de bases de données 

MACHINE LEARNING IMPROVEMENTS FOR ROBOTIC APPLICATIONS 

IN AN INDUSTRIAL CONTEXT:                                                                          

CASE STUDY OF AUTONOMOUS SORTING 

ABSTRACT: Thanks to their flexible mechanical design, modern industrial robots can 

be programmed for different tasks. However, despite the fact that they are highly 

instrumented – which should enable them to be responsive to their environment - the 

use of robots in industry is still often restricted to repeatable tasks with low level of 

adaptability. In an industrial context, it is essential to program robots that can 

autonomously adapt to different applications and are robust to changes in their 

working conditions. Hence, in this thesis, several machine learning contributions are 

presented, aiming at designing smarter robotic applications, with a broader 

operational range. The methods developed are centered on autonomous sorting, but 

may be useful to address problems in many other subfields of robotics. Throughout 

this thesis, new approaches are proposed to address image clustering, optimal view 

selection, trajectory learning and stereo localization, with the objective of designing 

more versatile robotic applications. 

Keywords : Robotic sorting, Image clustering, Transfer learning, Optimal view selection, 

Trajectory learning, Autonomous dataset generation 
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