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I'll be waiting in the car

Don't forget the camera

If you wouldn't mind, could you �nd my yellow shoes ?

I think they are under the stairs

Ray Lamontagne, To the sea
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Résumé

A�n d'étudier la validité d'une formule de trace pour les �ots d'Anosov C∞ proposée

par Dyatlov et Zworski, nous développons des outils qui permettent de comprendre le

spectre de Ruelle des dynamiques hyperboliques in�niment dérivables. Un rôle central est

joué dans cette étude par la notion d'ultradi�érentiabilité (principalement via le langage

des classes de Denjoy�Carleman). On donne ainsi un analogue ultradi�érentiable des

méthodes développées originellement par Ruelle, Rugh et Fried (basées sur les résultats

de Grothendieck sur les opérateurs nucléaires) pour étudier les dynamiques hyperboliques

analytiques. En particulier, une analyse détaillée des opérateurs de transfert associés aux

applications dilatantes du cercle ultradi�érentiables est menée. La formule de trace est

ensuite démontrée pour une grande classe de �ots d'Anosov ultradi�érentiables. En�n,

une transformée de FBI analytique est utilisée pour prouver que l'ordre du déterminant

dynamique associé à un �ot d'Anosov de régularité Gevrey est �ni.

Mots-clés

Dynamiques hyperboliques, spectre de Ruelle, formule de trace, déterminant dynamique,

ultradi�érentiabilité.

7



Abstract

In order to study the validity of a trace formula for C∞ Anosov �ows proposed by

Dyatlov and Zworski, we develop tools that allow us to investigate the Ruelle spectrum

of in�nitely di�erentiable hyperbolic dynamics. The notion of ultradi�erentiability (and

in particular the language of Denjoy�Carleman classes) plays a central role in our study.

We give an ultradi�erentiable analogue of the methods originally developed by Ruelle,

Rugh and Fried (based on Grothendieck's results on nuclear operators) to study analytic

hyperbolic dynamics. In particular, a detailed analysis of transfer operators associated to

ultradi�erentiable expanding maps of the circle is performed. The trace formula is then

proved for a large class of ultradi�erentiable Anosov �ow. Finally, an analytic FBI trans-

form is used in order to establish that the order of the dynamical determinant associated

to an Anosov �ow of Gevrey regularity is �nite.

Keywords

Hyperbolic dynamics, Ruelle spectrum, trace formula, dynamical determinant, ultradi�er-

entiability.

8



Contents

Introduction 11

Résumé en français 37

1 Trace formulae, dynamical determinants and counter-examples 43

1.1 Trace formulae and dynamical determinants for hyperbolic maps . . . . . . 43

1.2 Counter-examples to trace formulae . . . . . . . . . . . . . . . . . . . . . . . 52

1.2.1 Hyperbolic basic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.2.2 Symbolic dynamics with explicit weighted zeta functions . . . . . . . 54

1.2.3 Smooth hyperbolic dynamics with explicit dynamical determinants . 56

1.3 Trace formulae and dynamical determinants for Anosov �ows . . . . . . . . 61

2 Denjoy�Carleman classes and transfer operators 67

2.1 Denjoy�Carleman classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2 Transfer operator for ultradi�erentiable expanding maps of the circle . . . . 72

2.2.1 Compactness of the transfer operator . . . . . . . . . . . . . . . . . . 73

2.2.2 Nuclear power decomposition . . . . . . . . . . . . . . . . . . . . . . 81

2.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.3 Koopman operators for Gevrey hyperbolic maps . . . . . . . . . . . . . . . . 91

3 Trace formula for ultradi�erentiable Anosov �ows 93

3.1 The classes Cκ,υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Local spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3 Local Koopman operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.3.1 The auxiliary operatorsMt. . . . . . . . . . . . . . . . . . . . . . . . 110

3.3.2 Schatten class properties . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.3.3 Trace of
∫ +∞

0 h (t)Mtdt and structure of the local Koopman operator.124

3.4 Global space: �rst step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.5 Global space: second step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9



10 CONTENTS

4 Finite order of the dynamical determinant for Gevrey Anosov �ows 149

4.1 Crash course: Analytic FBI transform and Gevrey di�erential operators . . 149

4.1.1 Gevrey functions and ultradistributions on manifolds . . . . . . . . . 150

4.1.2 Global analytic FBI transform on a compact manifold . . . . . . . . 159

4.1.3 Analytic FBI transform and Gevrey di�erential operators . . . . . . 168

4.2 Finite order of the dynamical determinant . . . . . . . . . . . . . . . . . . . 169

4.2.1 Constructing an escape function . . . . . . . . . . . . . . . . . . . . 170

4.2.2 Spectral theory for the generator of the �ow . . . . . . . . . . . . . . 174

4.2.3 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.3 Further applications of the FBI transform . . . . . . . . . . . . . . . . . . . 185

A Weighted transfer operators for ultradi�erentiable expanding maps of

the circle 189

B Ruelle resonances are intrinsic 191

C Factorization of the dynamical determinant 195

D About the condition υ < 2 199

E Heuristic argument 201

Bibliography 205



Introduction

The interest in hyperbolic dynamics goes back at least to the work of Hadamard [Had98]

on the geodesic �ow on negatively curved surfaces. An important milestone in the history

of the study of such systems is the de�nition by Anosov [Ano67] of the class of �ows that

now bear his name. The introduction of this notion by Anosov was motivated by the

study of the dynamical properties of the geodesic �ow on the unit tangent bundle of a

Riemannian manifold with negative, a priori non-constant, sectional curvature. The sem-

inal work of Anosov was the starting point of a systematic study of Anosov �ows, and of

their discrete-time counter parts, Anosov di�eomorphisms. This line of research has been

very active since then, and, while many questions remain unanswered, the understanding

of hyperbolic dynamics has greatly improved since the work of Anosov, due to the devel-

opment of various tools to study those systems: Markov partitions, speci�cation property,

coupling arguments, Young towers, etc.

In this thesis, we focus on a particular way to deal with hyperbolic dynamical systems:

the so-called functional approach. The basic idea behind this approach is simple: in order

to study a dynamical system T , one may study the associated composition operator (also

called Koopman operator): v 7→ v ◦ T . In particular, we expect that the spectral theory of

the Koopman operator contains relevant information concerning the statistical properties

of the system T . Koopman operator technique goes back to the work of Koopman and Von

Neumann in the early 30's. However, in the particular case of uniformly hyperbolic systems,

the work of Ruelle [Rue68, Rue78] plays a founding role that can hardly be overestimated.

We will see that the composition operator associated to a uniformly hyperbolic dynam-

ical system may be used to de�ne a relevant notion of spectrum that enables to describe

the statistical properties of this system: the Ruelle or Ruelle�Pollicott spectrum. The

main focus of this thesis is a �ne property of this spectrum: a trace formula (TFF) for

C∞ Anosov �ows conjectured by Dyatlov and Zworski in [DZ16]. We will develop the idea

that the relevant notion to study this trace formula and related questions is the notion

of ultradi�erentiability, that is we will study hyperbolic dynamical systems that belong to

classes of regularity that are intermediate between C∞ and analytic. This approach orig-

inated in the suggestion by Sébastien Gouëzel that something could be said about trace

formulae for Gevrey hyperbolic systems, and we give indeed in the last chapter of this the-
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12 INTRODUCTION

sis a detailed study of the spectral theory for Gevrey Anosov �ows. However, we consider

in this thesis much more general classes of regularity than Gevrey, using the language of

Denjoy�Carleman classes. We give an analogue in this setting of the methods initiated

by Ruelle [Rue76], Rugh [Rug92, Rug96] and Fried [Fri95] to study analytic hyperbolic

dynamics. Their works was based on the use of strong functional analytic tools available

in the real-analytic category, relying in particular on the theory of nuclear operators devel-

oped by Grothendieck [Gro55]. We will see that, going to larger classes of regularity, weaker

versions of these tools may still be constructed. In particular, the trace formula (TFF) will

be deduced for Anosov �ow that satisfy a certain ultradi�erentiability condition, while we

do not expect (TFF) to hold for all C∞ Anosov �ows.

In the remainder of this introduction, we will recall needed facts about the functional

approach to statistical properties of hyperbolic dynamical systems. After that, we will

describe our main results and propose further lines of work. Most of the results from

this thesis may be found in the articles [Jéz20a] (published in Journal of Spectral Theory),

[Jéz19a] (submitted for publication),[Jéz20b] (published in Ergodic Theory and Dynamical

Systems) and [BJ20] (submitted for publication).

Statistical properties of hyperbolic systems

Let us recall that a dynamical systems is said to be hyperbolic if it is expanding in a

direction (the unstable direction) and contracting in a supplementary direction (the stable

direction). Hyperbolic systems are notoriously chaotic: the long-time asymptotic of an

orbit is highly sensitive to initial conditions. While the systems that we study in this

thesis are deterministic, they tend to behave like random systems on large scales of times.

The dynamics of a contracting map is well-known and far from chaotic. Consequently, the

source of chaos in hyperbolic systems should be looked for in the unstable direction, and

it seems natural to try to understand �rst statistical properties for expanding maps.

Statistical properties for expanding maps of the circle

Expanding maps of the circle are the simplest examples of hyperbolic systems that we con-

sider in this thesis. They are indeed hyperbolic systems, but with trivial stable direction.

De�nition 1 (Expanding map of the circle). We say that a C1 map T from S1 = R/Z to

itself is expanding if there is λ > 1 such that, for every x ∈ S1, we have |T ′(x)| ≥ λ. We

say that λ is a dilation constant for T .

We are interested in these systems precisely because of their simplicity. Indeed, we will

use expanding maps of the circle as a toy model in �2.2 to illustrate our methods to study

transfer operators associated to ultradi�erentiable maps. Considering expanding maps, we

do not need to worry about the geometry of the stable and unstable directions, and we
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can consequently focus on how the regularity of the map and the dilatation contribute to

produce rich statistical properties (and associated spectral theory). In order to understand

how a chaotic behavior can arise from a deterministic system, it is interesting to consider

the most basic example of expanding map.

Example 1. The doubling map x 7→ 2x mod 1 is an expanding map of the circle.

If x and y are two points on S1 at distance ∼ 2−n, then after n iterations of the doubling

map, the images of the points x and y are at distance ∼ 1. If we were considering the

doubling map on R, the images of x and y would keep diverging under further iterations.

However, since we are looking at the doubling map on the quotient S1 = R/Z, it is not
possible for their images to keep diverging after n iterations since their distance has become

similar to the diameter of the circle. Actually, after these �rst n iterations, the relative

position of orbits of x and y could be almost anything: loosely speaking, they became

independent.

These considerations suggest to apply methods from probability theory to study ex-

panding maps � and more generally hyperbolic systems. The spectral theory of the transi-

tion matrix plays a key role in the study of Markov chains. When studying an expanding

map T , the analogue of the transition matrix is the already mentioned Koopman operator

v 7→ v ◦T acting on some space of functions or distributions on the circle (the choice of the

space on which the Koopman operator acts is in fact of the utmost importance, as we will

see later). In the particular case of an expanding map of the circle T , it is more convenient

to consider its adjoint, the transfer operator or Ruelle�Perron�Frobenius operator:

L = LT : v 7→
∑
Ty=x

1

|T ′(y)|
v(y). (1)

An advantage of the functional approach based on the study of the transfer operator

is that we replaced a potentially complicated non-linear dynamics by a linear one: the

iterations of the linear operator L. It is natural to consider that the long-time asymptotics

of such a linear system should be ruled by the spectral theory of the transfer operator. The

price to pay for this simpli�cation is to replace the �nite-dimensional compact manifold

S1 by an in�nite-dimensional vector space, but we hope that the spectral properties of the

transfer operator are reminiscent in some sense of the �nite dimension. The best situation

possible would be for the operator L to be compact. However, the operator L acting on

L2
(
S1
)
or C0

(
S1
)
is not compact.

This situation may be improved by changing the space on which L acts. The most

comfortable situation is when the expanding map T is real-analytic. Indeed, it has been

noticed by Ruelle [Rue76] that, in that case, the operator L acting on a space of holomor-

phic functions on a complex neighbourhood of S1 is not only compact but even nuclear

of order 0. This very powerful property allowed him to use the theory developed by
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Figure 1: Example of spectrum of a quasi-compact operator. The radius of the dashed
disc is the essential spectral radius. The blue dots are eigenvalues of �nite multiplicities.

Grothendieck in [Gro55] to study the spectral theory for L. To put it more concretely,

due to Cauchy's Formula, the operator L acting on a space of holomorphic functions is

morally an operator with smooth kernel (and hence a compact operator). Analytic expand-

ing maps of the circle have been widely studied using re�nements of this method recently

[SBJ17, SBJ13, BJ08, Nau12, BJS17, BN19].

When T is only C1+k for some k > 0, the example of real-analytic maps suggest to

make L acts on a space of functions as smooth as possible. However, even acting on the

space Ck(S1) of Ck functions from S1 to C, the operator L is not compact (see for instance

[CL99, Theorem 8.53] or [GL03]). In order to bypass this di�culty, one may introduce the

notions of essential spectral radius and quasi-compactness.

De�nition 2. Let B be a Banach space and L be a bounded linear operator from B
to itself. The essential spectral radius ress (L) of L is the in�mum of the r's such that

the intersection of the spectrum σ (L) with {z ∈ C : |z| > r} is made of a �nite number

of eigenvalues with �nite algebraic multiplicities. We say that L is quasi-compact if the

essential spectral radius of L is strictly smaller than its spectral radius r (L) � see Figure 1.

Using these notions, one can prove:

Theorem 1 ([Rue89]). Let k > 0 and T be a C1+k expanding map of the circle. Then,

the transfer operator (1) induces a bounded operator L on the space Ck
(
S1
)
. Moreover,
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the spectral radius of L is 1 and its essential spectral radius is less than λ−k where λ is a

dilation constant for T . In particular, L is quasi-compact.

One of the modern proofs of this theorem is based on a so-called Lasota�Yorke inequal-

ity1 combined with an argument due to Hennion [Hen93, Corollaire 1] based on Nussbaum's

formula for the essential spectral radius [Nus70]. The intuition behind this proof is very

simple: the transfer operator L acts like a contraction of factor λ−k on the derivative of

order k of a Ck function, while the action of the transfer operator on the other derivatives

may be considered as a compact perturbation � that may consequently impact the spectral

radius of L but not its essential spectral radius. This proof is in fact very general and can

be adapted to prove that L is quasi-compact on any reasonable space of regular functions2.

Here, the word regular can be understood in a very loose sense, including even some kind

of discontinuities (for instance, the transfer operator L may be proved to be quasi-compact

when acting on the space of functions with bounded variations on S1). See for instance

[Bal18, Part I] and references therein for a comprehensive treatment of this topic.

From the topological mixing of T , we get further information on the spectrum of the

operator L acting on Ck
(
S1
)
. We �nd indeed that 1 is the only eigenvalue of L on the unit

circle and that its algebraic multiplicity is 1. Moreover, L has an eigenvector ρ associated

to the eigenvalue 1 which is everywhere positive. If we normalize ρ so that its mean (for

the Lebesgue measure) is 1, then the probability measure µ = ρdx on S1 is invariant by the

action of T � that is we have µ
(
T−1A

)
= µ (A) for every Borel subset A of S1. Moreover,

it follows from the spectral decomposition for L that T is exponentially mixing for µ: if

f, g : S1 → C are Hölder functions then∫
S1

f ◦ Tn.gdµ →
n→+∞

(∫
S1

f.dµ

)(∫
S1

g.dµ

)
(2)

at an exponential rate that only depends on f and g through their Hölder exponent �

see [Rue89] for a proof of this fact. Going slightly further into the study of the transfer

operator L, we may establish even stronger statistical properties for the expanding map T

such as the central limit theorem and the almost sure invariance principle (see for instance

[HK82]).

Hence, considerations about the peripheral spectrum of the operator L led to a very �ne

understanding of statistical properties for the map T . One can go further by considering

the deeper part of the spectrum. In particular, it is possible to give a �ner asymptotics

for the correlations than (2) in terms of spectral data for the operator L. Indeed, if the

1Since their introduction by Lasota and Yorke to study the existence of absolutely continuous invariant
measures for piecewise expanding map of the interval [LY73], Lasota�Yorke inequalities have become a
very common tool in the study of statistical properties for hyperbolic dynamical systems.

2This is why we consider the transfer operator instead of its adjoint, the Koopman operator. Indeed,
in order to make the Koopman operator quasi-compact, one has to make it act on a space of distributions
of negative order.
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expanding map T is Ck+1 with dilation constant λ, and f, g are Ck observables, we can

write for any r > λ−k the asymptotic expansion [Rue89, Proposition 5.3]

∫
S1

f ◦ Tn.gdµ =
n→+∞

∑
z∈σCk (L)

|z|>r

m(z)−1∑
j=0

cj,z(f, g)njzn +O (rn) . (3)

Here, σCk(L) denotes the spectrum of L acting on Ck, and if z is an eigenvalue for L,
its multiplicity is denoted by m(z). The cj,z's are continuous bilinear forms on Ck(S1)

(the value of c0,1 is given by (2)). Notice that, when T is C∞, we get an asymptotic at

any geometric rate r for the correlations of C∞ functions. We see here the importance of

the discrete spectrum of the operator L, also called Ruelle spectrum or Pollicott�Ruelle

spectrum.

In this thesis, we are mostly interested in in�nitely di�erentiable hyperbolic dynamics.

If T is a C∞ expanding map of the circle, then Theorem 1 may be applied for any k > 0,

making the essential spectral radius of L arbitrarily small. It happens that in that case

the discrete spectrum of L acting on di�erent spaces are coherent in the following sense:

if z ∈ C belongs to the spectrum of L acting on Ck and |z| > max(ress(L|Ck ), ress(L|Ck′ )),
then z also belongs to the spectrum of L acting on Ck′ , and the associated generalized

eigenspaces coincide (see Appendix B and in particular Lemma B.1 and Example B.2).

Consequently, letting k go to in�nity, we de�ne a discrete spectrum for L that we will call

Ruelle spectrum.

De�nition 3 (Ruelle spectrum for expanding map). Let T be a C∞ expanding map3 of

the circle. We say that z ∈ C is a Ruelle resonance of multiplicity m ∈ N∗ for T (or L) if,
for every k large enough, z is an eigenvalue of multiplicity m of the transfer operator (1)

acting on Ck
(
S1
)
. The associated generalized eigenvectors are called the resonant states

for T or L. The set of Ruelle resonances for L is called its Ruelle spectrum and is denoted

by σR (L).

In view of the importance of the Ruelle spectrum when investigating the statistical

properties of T , it is legitimate to wonder if there is any e�cient way to compute it.

Following Ruelle [Rue76], one may tackle this question by introducing the dynamical de-

terminant de�ned for z ∈ C small enough4 by

d(z) = dT (z) := exp

(
−

+∞∑
n=1

1

n
tr[ (Ln) zn

)
, (4)

3We are mainly interested in this thesis in dynamics that are at least C∞, so that we only de�ned the
Ruelle spectrum in that case. See [Bal18, De�nition 1.1] for a more general de�nition.

4The convergence of the right-hand side in (4) for z small enough is ensured by classical bounds on the
number of periodic orbits for expanding maps, see for instance [KH95, Theorem 2.46].
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where the ��at trace� of the operator Ln is de�ned for n ∈ N∗ by

tr[ (Ln) :=
∑

Tnx=x

1∣∣(Tn)′ (x)− 1
∣∣ . (5)

Here, we take (5) as the de�nition of the �at trace of Ln. This expression is motivated by

a formal integration of the Schwartz kernel of Ln over the diagonal of S1 × S1. However,

it is possible to make this computation rigorous and then see (5) as a consequence of a

general de�nition of the �at trace using distributional considerations5. The de�nition (4)

for the dynamical determinant is motivated by the following computation, valid for any

square matrix A and z ∈ C small enough:

det (I − zA) = det (exp (ln (I − zA))) = exp (tr (ln (I − zA)))

= exp

(
−

+∞∑
n=1

1

n
tr (An) zn

)
.

Hence, formally we have �d(z) = det (I − zL)�.

We already mentioned that when T is real-analytic then the operator L acting on a

space of holomorphic functions is nuclear of order 0. It implies in particular that L has

a well-de�ned Fredholm determinant det (I − zL) and it happens that this determinant is

given for z small enough by the expression (4). Consequently, the dynamical determinant

d(z) has a holomorphic extension to C whose zeros are the inverses of the Ruelle resonances

for6 L. This fact can be generalized to C∞ expanding map:

Theorem 2 ([Rue90]). Let T be a C∞ expanding map of the circle. Then the dynamical

determinant d(z) has a holomorphic extension to C whose zeros are exactly the inverses of

the Ruelle resonances for T (counted with multiplicities).

The proof of Theorem 2 is based on a precise analysis of the action of the transfer

operator L on the spaces Ck's for k > 0. When T is real-analytic, the structure of nuclear

operator for L implies much stronger results than Theorem 2 in that case. For instance,

Ruelle [Rue76] proves the following bound on the growth of the dynamical determinant for

analytic expanding maps of the circle: there is C > 0 such that, for every z ∈ C, we have

|d(z)| ≤ C exp
(
C (log (1 + |z|))2

)
. (6)

The estimate (6) and Jensen's formula [Boa54, 1.2.1 p.2] implies an upper bound on the

number of Ruelle resonances, that has been proven generically sharp by Bandtlow and

5Basically, since the multipliers associated to the �xed points of Tn are di�erent from 1, we can check
that it makes sense to integrate the Schwartz kernel of Ln on the diagonal of S1 × S1 using the general
theory from [Hör03, �8.2]. Taking this integral as a de�nition of the �at trace, a computation yields (5).

6It follows from Lemma B.1 that if L is compact when acting on a reasonable space of holomorphic
functions then its non-zero spectrum on that space coincides with its Ruelle spectrum.
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Naud [BN19]. Another features of nuclear operator of order 0 is that they have a well-

de�ned trace that coincides with the sum of their non-zero eigenvalues according to the

work of Grothendieck [Gro55, Corollaire 4 p.18 chap.II] (working on a Hilbert space, one

can just use Lidskii's Trace Theorem). It happens that, when T is real-analytic, for n ∈ N∗,
the trace of Ln coincides with its �at trace, so that we have the following trace formula:

tr[ (Ln) =
∑

λ∈σR(L)

λn. (TFM)

This formula is the natural analogue for expanding maps of the trace formula (TFF)

proposed by Dyatlov and Zworski for C∞ Anosov �ows. While the holomorphic extension

to C of the dynamical determinant (4) remains valid for any C∞ expanding map of the

circle, it is not clear whether the same is true or not for the trace formula (TFM) or the

bound (6). Notice for instance that there is no reason a priori for the right-hand side of

(TFM) to converge, since no general bound on the number of Ruelle resonances for a C∞

expanding map is known (and we no not expect that there is any). We will study these

questions in Chapters 1 and 2.

Statistical properties for Anosov di�eomorphisms

Let us now explain how the picture from the last section is modi�ed when we replace

the expanding map T by a hyperbolic di�eomorphism, still denoted by T . For the sake of

simplicity, we will assume in this introduction that T is a transitive Anosov di�eomorphism.

We will need at some point to consider more general hyperbolic di�eomorphisms (including

in particular Smale's horseshoe [Sma67, �I.5]), but let us ignore this technical subtleties

for now. We start by recalling the de�nition of an Anosov di�eomorphism.

De�nition 4. Let M be a compact manifold and T : M → M be a C1 di�eomorphism.

We say that T is an Anosov di�eomorphism if, for every x ∈M there is a splitting of the

tangent space

TxM = Eux ⊕ Esx,

and there are constants C > 0, λ > 1 and a smooth Riemannian metric on M such that

(i) for every x ∈M and σ ∈ {s, u}, we have DT (x) (Eσx ) = EσTx;

(ii) for every x ∈M,v ∈ Eux and n ∈ N we have |DT−n(x)v| ≤ Cλ−n |v|;

(iii) for every x ∈M,v ∈ Esx and n ∈ N we have |DTn(x)v| ≤ Cλ−n |v|.

Example 2. The most classical examples of Anosov di�eomorphism are the so-called cat

maps. These are the maps on the torus T2 = R2/Z2 induced by matrices A ∈ SL (2,Z)

with no eigenvalue of modulus 1.
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Remark 1. We did not make any regularity assumption on the stable and unstable di-

rections (Eu and Es) in De�nition 4. It is a well-known fact though that the stable and

unstable directions of a smooth uniformly hyperbolic dynamical systems are automatically

Hölder-continuous, and that they integrate into Hölder foliations (called the stable and un-

stable foliations). However, these directions and the associated foliations do not satisfy a

priori any better regularity hypothesis. This is an important feature of hyperbolic systems

since the regularity of the foliations limit the applications of certain tools to study hyper-

bolic systems. One of the main advantages of the functional approach is that it bypasses

this limitation (see Remark 2 for more details). The same remark applies to Anosov �ows

de�ned below (see De�nition 6).

If T is a transitive Anosov di�eomorphism, it is convenient to introduce a smooth

weight g : M → C and then de�ne the associated weighted Koopman operator7 by

L = LT,g : v 7→ g.v ◦ T. (7)

In the invertible case, the Koopman operator and its adjoint, the transfer operator, are

very much alike, so that there is no particular reason to consider one or the other.

As in the case of expanding maps, one wants to �nd a Banach space on which L de�nes

a quasi-compact operator � and L2 (M) or C0 (M) do not ful�ll that requirement. However,

the situation is slightly more complicated here due to the coexistence of the stable and

unstable directions. In the expanding case, we saw that composition by a contracting

map had good properties (such as quasi-compactness) as an operator acting on a space

of regular functions. By duality considerations, this fact suggests that the operator of

composition by an expanding map should have a good behavior on a space of distributions

of negative order. Hence, to achieve quasi-compactness for the operator (7), we are looking

for a space of distributions that are smooth in the stable direction and dual of smooth in

the unstable direction. Such a space is now called a space of anisotropic distributions (see

[Bal17, Dem18] for surveys on this topic).

The �rst appearance of spaces of anisotropic distributions in the dynamic literature is

often considered to be in [BKL02]. However, this notion was already implicitly present

in previous work by Rugh [Rug92, Rug96], Fried [Fri95] and Kitaev [Kit99b, Kit99a]. In

[BKL02], a space on which the transfer operator (the adjoint of (7)) associated to a C3

Anosov map T is quasi-compact is constructed � no weight is considered though, which

amounts to take g = 1 in (7). However, this construction is restricted by the regularity of

the stable and unstable directions of T (see Remark 1), so that, even if T is C∞, it does
not provide a scale of spaces on which the essential spectral radius of the transfer operator

is arbitrarily small � as it was the case for expanding maps in Theorem 1.

7We will also denote this operator by L. The convention throughout this thesis is that the operator of
most interest at some point of the text will always be called L.
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After the �rst construction in [BKL02], plenty of di�erent spaces of anisotropic distri-

butions have been introduced. In [GL06], Gouëzel and Liverani improved the geometric

construction from [BKL02], lifting in particular the restriction due to the regularity of the

stable and unstable directions. As a consequence, if T is a C∞ Anosov map, the essential

spectral radius of the transfer operator (without weight) can be made arbitrarily small on

the spaces from [BKL02]. This fact is reproved by Baladi in [Bal05] using tools from micro-

local analysis under the (very strong) assumption that the stable or unstable foliation of

T is C∞. The case of general hyperbolic basic sets (rather than Anosov di�eomorphisms,

see �1.2.1) and of general weights for the Koopman operator (7) is dealt with by Baladi

and Tsujii in [BT07]. As in [Bal05], the construction from [BT07] is based on tools from

micro-local analysis. However, the analysis from [Bal05] relies on pseudo-di�erential cal-

culus while [BT07] rather uses Paley�Littlewood decomposition � a more convenient tool

if one wants to study map of �nite di�erentiability. The case of weighted Koopman opera-

tors associated to hyperbolic sets can also be tackled by geometric constructions of spaces

of anisotropic distributions, see [GL08]. These results have also been translated in the

language of semi-classical analysis by Faure, Roy and Sjöstrand [FRS08]. From all these

constructions, we have in particular the following result � the analogue of Theorem 1 for

Anosov di�eomorphisms.

Theorem 3 ([BT07, GL08]). Let T : M →M be a C∞ transitive Anosov di�eomorphism

and g : M → C be a C∞ function. For every ε > 0 there is a Banach space B with the

following properties:

(i) B is continuously contained in the space D′ (M) of distributions on M ;

(ii) the space C∞ (M) of C∞ functions on M is contained in B, and the inclusion is

continuous with dense image;

(iii) the Koopman operator (7) induces a bounded operator on B with essential spectral

radius less than ε.

Hence, the essential spectral radius of the operator L de�ned by (7) can be made

arbitrarily small. As in the case of expanding maps of the circle, one may see, using for

instance Lemma B.1, that the intersection of the spectrum of L with {z ∈ C : |z| > ε} does
not depend on the choice of the space B in Theorem 3. In this context, the notion of Ruelle

resonance may be de�ned as follow.

De�nition 5 (Ruelle spectrum for Anosov di�eomorphism). Let T : M → M be a C∞

transitive Anosov di�eomorphism and g : M → C be a C∞ function. Let z ∈ C and

m ∈ N∗. We say that z is a Ruelle resonance of multiplicity m for (T, g) (or just for the

operator L), if there is8 a Banach space B satisfying the points (i)�(iii) from Theorem 3

8Here, we could replace �there is� by �for any� without changing the de�nition.
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for some ε ∈ ]0, |z|[ such that z is an eigenvalue of algebraic multiplicity m for the operator

L de�ned by (7) acting on B. The associated generalized eigenvectors are called resonant

states for L. The set of Ruelle resonances is called the Ruelle spectrum and denoted by

σR (L).

As in the case of expanding maps, the understanding of the spectral theory for the

Koopman (or transfer) operator gives a lot of information on the statistical properties of

T , see for instance [BKL02, GL06, GL08]. In particular, we get a precise asymptotic for

the correlations associated to Gibbs states for T , similar to (3) (see [GL08, Theorem 1.2]).

Remark 2. A lot was already known on statistical properties of expanding and hyperbolic

maps before the functional approach was developed in the form that we exposed here (based

on Theorems 1 and 3). For instance, the existence of an invariant measure absolutely

continuous with respect to Lebesgue for smooth expanding maps was proved by Krzy»ewski

and Szlenk [KS69]. Concerning hyperbolic maps, many results were obtained �rst by means

of Markov partitions and symbolic dynamics9 (see for instance [Bow70, Rue78]). The main

idea of this approach is to code a hyperbolic dynamical systems in order to replace it by

a one-dimensional lattice that can then be studied using classical notions from statistical

mechanics [Rue68].

However, the approach based on Markov partitions is restricted by the regularity of the

coding, which is a priori only Hölder (this is due to the low regularity of the stable and

unstable foliations, see Remark 1). Hence, it is very unlikely that an asymptotic expansion

at any geometric order for correlations of smooth observables such as (3) may be obtained

by the method of Markov partitions. Indeed, the size of the remainder in (3) is deeply

related with the regularity of both the dynamics and the observables.

We also have a notion of dynamical determinant for the operator L de�ned by (7): the

associated dynamical determinant d(z) = dT,g(z) may still be de�ned by (4) for z ∈ C
small enough10, but the �at traces of the powers of L are now de�ned for n ∈ N∗ by

tr[ (Ln) :=
∑

Tnx=x

∏n−1
k=0 g

(
T kx

)
|det (I −DTn(x))|

. (8)

The analogue of Theorem 2 in this context reads:

Theorem 4 ([LT06, BT08]). Let T : M → M be a C∞ transitive Anosov di�eomorphism

and g : M → C be a C∞ function. Then the dynamical determinant d(z) has a holomorphic

extension to C whose zeros are exactly the inverses of the Ruelle resonances for the weighted

Koopman operator L de�ned by (7) (counted with multiplicities).

9Other tools are available though, such as the speci�cation property, a notion developed by Bowen
[Bow71, Bow72b, Bow74] that has been fruitfully revisited recently, see for instance [CT13, CT14, CT16].

10The convergence for z small enough is still ensured by classical bound on the number of periodic orbits,
see for instance [Bow71, Theorem 4.5]
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If T is a small real-analytic perturbation of a cat map, then there is a space [FR06]

on which the operator L is nuclear of order 0. As in the case of expanding maps, the

dynamical determinant d(z) coincides then with the Fredholm determinant of L, and a

bound on the growth of the dynamical determinant follows. For the same reasons as in the

case of expanding map, the trace formula (TFM) holds consequently for small real-analytic

perturbations of cat maps. This fact has been used by Adam to prove the genericity of

the existence of non-trivial resonances among analytic perturbations of a cat map [Ada17].

It follows from results of Rugh [Rug92, Rug96] that the trace formula (TFM) also holds

for real-analytic Anosov di�eomorphisms in dimension 2. The question of the validity of

(TFM) for more general Anosov di�eomorphisms will be discussed in Chapters 1 and 2.

However, notice that, as in the case of expanding maps, there is no reason a priori for the

right-hand side of (TFM) to converge when T is a general C∞ Anosov di�eomorphism.

Statistical properties for Anosov �ows

We turn now to the continuous-time analogues of the hyperbolic di�eomorphisms from the

previous section: Anosov �ows. As usual, let us start with a de�nition and an example.

De�nition 6 (Anosov �ows). Let M be a C∞ compact manifold and (φt)t∈R be a C1 �ow

onM with zero-free generator X. We say that (φt)t∈R is Anosov if, for every x ∈M , there

is a splitting of the tangent space

TxM = E0
x ⊕ Esx ⊕ Eux ,

and there are constants C > 0, λ > 1 and a smooth Riemannian metric on M such that:

(i) for every x ∈M, t ∈ R and σ ∈ {0, s, u}, we have Dφt(x) (Eσx ) = Eσφt(x);

(ii) for every x ∈M , the space E0
x is the span of X(x);

(iii) for every x ∈M,v ∈ Eux and t ∈ R+ we have |Dφ−t(x)v| ≤ Cλ−t |v|;

(iv) for every x ∈M,v ∈ Esx and t ∈ R+ we have |Dφt(x)v| ≤ Cλ−t |v|.

Example 3. As mentioned above, the example that motivated the de�nition of Anosov

�ows is the geodesic �ow on the unit tangent bundle of a compact Riemannian mani-

fold with negative sectional curvature. Other specimens of Anosov �ows are obtained by

considering suspensions of Anosov di�eomorphism. Notice also that any small C1 pertur-

bation of an Anosov �ow is also Anosov (the same is true for expanding maps and Anosov

di�eomorphisms).

Let us consider a C∞ Anosov �ow (φt)t∈R on a compact manifold. We denote its

generator by X and choose a C∞ weight V : M → C. In this context, the Koopman



23

operator de�nes a semi-group of operators:

Lt = LX,Vt : v 7→ exp

(∫ t

0
V ◦ φτdτ

)
v ◦ φt (9)

for t ≥ 0. Notice that the generator of this semi-group is formally the di�erential operator

P := X + V : whenever it makes sense we have

d

dt
(Ltv) = P (Ltv) . (10)

For instance, if v ∈ C∞ (M) then (10) holds in C∞ (M). As in the case of expanding maps

or Anosov di�eomorphisms, we replaced the �nite-dimensional non-linear dynamics (φt)t∈R
by an in�nite-dimensional linear dynamics. However, since (φt)t∈R is a continuous-time

dynamical system, we are now studying the linear ODE (10) rather than the iterations

of a single operator. Consequently, we want to understand the spectral theory of the

di�erential operator P , hoping that it would allow us to describe the long-time asymptotic

of the solutions of the linear ODE (10).

Once again, the (unbounded) operator P does not have discrete spectrum on L2 (M)

or C0 (M), and we need consequently to �nd new spaces on which the spectral theory of

P is better-behaved � the analogues of the spaces from Theorem 3. Adapting ideas from

[BKL02, GL06, GL08], Liverani in [Liv04] and then Butterley and Liverani in [BL07] (with

necessary details provided in [BL13]) gave geometric constructions of spaces adapted to

Anosov �ows. Then, Faure and Sjöstrand adapted in [FS11] the semi-classical approach

from [FRS08] to the continuous-time case. A slightly di�erent point of view on this ap-

proach is presented in [DZ16] (using radial estimates and propagation of singularities).

This construction has then been adapted to some open systems (including Axiom A sys-

tems) by Dyatlov and Guillarmou in [DG16, DG18] and to certain Morse�Smale �ows by

Dang and Rivière in [DR20a, DR20b]. The equivalent of Theorem 3 for Anosov �ow reads:

Theorem 5 ([BL07, BL13, FS11]). Let (φt)t∈R be a C∞ Anosov �ow on a compact manifold

M with generator X and V : M → C be a C∞ function11. Then, for every A > 0, there is

a Banach space B such that

(i) C∞ (M) ⊆ B ⊆ D′ (M), both inclusions are continuous and the �rst one has dense

image;

(ii) (Lt)t≥0, de�ned by (9), induces a strongly continuous semi-group of operator on B
whose generator is P = X + V with its natural domain

D (P ) = {u ∈ B : Pu ∈ B} ;

11Actually, neither [BL07, BL13] nor [FS11] include the case of weighted Koopman operators. However,
it is clear for specialists that their methods also apply in this case. The general case is dealt with in [DG16].
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(iii) the intersection of the spectrum of P with {z ∈ C : Re z > −A} is a discrete set of

eigenvalues of �nite (algebraic) multiplicity.

Figure 2: Spectrum of P acting on the space B from Theorem 5. The abscissa of the green
line is −A. The blue dots depict eigenvalues of �nite multiplicity. Their imaginary parts
may be arbitrarily large but their real parts are bounded from above.

The statement of Theorem 5 deserves a little explanation. The point (i) is just a non-

triviality condition: it ensures that the space B is made out of objects that �live� on M .

This �rst condition can be mitigated in order to allow wilder objects in B than distributions

� this fact will be crucial in Chapters 3 and 4. The point (ii) may seem technical but it is

very important. The fact that (Lt)t≥0 is a strongly continuous semi-group makes it possible

to link the spectral theory of P with the long-time asymptotic of (Lt)t≥0. It implies in

particular that, if the real part of z ∈ C is positive and large enough, then the resolvent

(z − P )−1 of P at z coincides with the Laplace transform of the Koopman operator:

R(z) :=

∫ +∞

0
e−ztLtdt (11)

where the integral converges in operator norm on B. Finally, the point (iii) implies that

the spectrum of P on B looks as depicted in Figure 2. As in the discrete-time case, the

isolated eigenvalues of �nite multiplicity on the right part of the complex plane in Figure 2

are intrinsically de�ned by X and V and called Ruelle resonances (see Lemma B.3). The
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de�nition of the Ruelle spectrum in this context is the following:

De�nition 7 (Ruelle spectrum for Anosov �ow). Let (φt)t∈R be a C∞ Anosov �ow on a

compact manifold M with generator X and V : M → C be a C∞ function. Let z ∈ C and

m ∈ N∗. We say that z is a Ruelle resonance for (φt)t≥0 and V (or just for P = X + V ) of

multiplicity m if there is12 a Banach space B satisfying the points (i)-(iii) from Theorem

5 for some A > −Re z such that z is an eigenvalue of P acting on B with multiplicity

m. The associated generalized eigenvectors are called resonant states for P . As usual, the

Ruelle spectrum is de�ned as the set of Ruelle resonances, and is denoted by σR (P ).

Remark 3. The notation σR (P ) for the Ruelle spectrum of P may be slightly misleading:

in general the Ruelle spectrum of −P is not made of the −λ's where λ runs over the Ruelle

resonances of P . This is a matter of convention: the Ruelle resonances of −P describe

the statistical properties of (φ−t)t∈R when t → +∞ rather than those of (φt)t∈R when

t→ −∞, hence a sign �ip.

Remark 4. Let us mention that there is another (equivalent) de�nition of the Ruelle

spectrum that is very popular in this context � and maybe slightly easier to manipulate. If

the real part of z ∈ C is positive and large enough, then formula (11) de�nes an operator

R(z) from C∞ (M) to D′ (M). We saw that R(z) coincides with the resolvent of P acting

on the space B from Theorem 5. Consequently, it follows from Theorem 6 that R(z) has

a meromorphic continuation to C, as an operator from C∞ (M) to D′ (M), with residues

of �nite rank. The Ruelle resonances of P are then the poles of R(z), and the multiplicity

of a resonance is given by the rank of the residue of the corresponding poles of R(z) (the

image of this residue is the space of resonant states associated to the resonance).

When considering Anosov �ows, the structure of the Ruelle spectrum is slightly more

complicated than in the discrete-time case (it is not a bounded subset of C for instance).

As a consequence, the study of the Ruelle spectrum, and hence of the statistical properties

for the �ow (φt)t∈R, is slightly more involved. For instance, it is much trickier to prove

exponential decay of correlations in this context. Consider for example the case V = 0

(that corresponds to the SRB measure), in that case 0 is a Ruelle resonance. Assuming that

(φt)t∈R is transitive, then 0 is a simple eigenvalue and there is no other Ruelle resonance

with non-negative real part. However, in order to prove exponential decay of correlation

we need to establish a spectral gap for P : the existence of A > 0 such that the only Ruelle

resonance for P with real part greater than −A is 0 (some additional technical estimates

are required, see [But16]). This is tricky because Ruelle resonances with large imaginary

parts could accumulate on the vertical line iR without touching it.

Due to the complexity and the importance of the problem of spectral gaps for Anosov

�ows, there are a lot of works on that topic. Most proofs of spectral gaps for Anosov �ows

12As in De�nition 5, we could replace here �there is� by �for any�.
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are based on some version of Dolgopyat's argument [Dol98]. Liverani gave a functional

analytic version of this argument [Liv04] that allowed him to prove exponential decay of

correlations for C4 contact Anosov �ows (for the measure induced by the contact form).

This result has been reproved in the C∞ case by Tsujii [Tsu10, Tsu12]. Exponential decay

of correlations for C∞ contact Anosov �ows can also be seen as a consequence of a general

result by Nonnenmacher and Zworski [NZ15] that gives a spectral gap of explicit size.

Faure and Tsujii [FT13] went further than the spectral gap and stated a band structure

for C∞ contact Anosov �ows. Giulietti, Liverani and Pollicott also proved exponential

decay of correlations for the measure of maximal entropy of geodesic �ows on Riemannian

manifold with negative curvature satisfying a pinching condition [GLP13]. Exponential

decay of correlations has been proved recently by Tsujii and Zhang for topologically mixing

volume-preserving C∞ Anosov �ows [TZ20] (based on previous work by Tsujii [Tsu18]). Let

us mention that, if the question of the existence of a spectral gap is crucial, there are many

others interesting results regarding the distributions of Ruelle resonances, see for instance

[FS11, DDZ14, JZ17, FT17].

Understanding the distribution of Ruelle resonances for P is consequently both di�cult

and very important. As in the discrete-time case, this question can be dealt with by the

introduction of a dynamical determinant. Its de�nition is slightly more involved in that

case, it is de�ned for Re z � 1 by13

d(z) = dX,V (z) := exp

(
−
∑
γ

T#
γ

Tγ

e
∫
γ V

|det (I − Pγ)|
e−zTγ

)
. (12)

The sum in the right-hand side of (12) is over periodic orbits γ for the �ow (φt)t∈R. We

write Tγ for the length of γ and T#
γ for its primitive length (that is the shortest length

of a periodic orbit for (φt)t∈R with the same image than γ). The integral of V along γ is

de�ned by
∫
γ V :=

∫ Tγ
0 V (φt(x)) dt for any x in the image of γ. Finally, Pγ denotes the

linearized Poincaré map associated to γ, de�ned by Pγ := DφTγ (x)
∣∣
Eux⊕Esx

. The de�nition

of Pγ depends on the choice of a point x in the image of γ. However, the conjugacy class

of Pγ does not, and hence the determinant in the right-hand side of (12) is well-de�ned.

The intuition behind the de�nition is that, formally, �d(z) = det (z − P )�. This heuristic

understanding of d(z) will be made rigorous in �4.2. The equivalent of Theorems 2 and 4

in this context is:

Theorem 6 ([GLP13, DZ16]). Let (φt)t∈R be a C∞ Anosov �ow, with generator X, on a

compact manifoldM . Let V : M → C be a C∞ function14. Then the dynamical determinant

13Once again, classical bounds on the number of periodic orbits justify the convergence for Re z � 1,
such as Margulis' bound [Mar04, Theorem 5] or the more elementary estimate [DZ16, Lemma 2.2].

14Actually, [GLP13, DZ16] do not consider the case of a general weight V . However, it is probably clear
to specialists that their methods � at least those from [DZ16] � apply to the case of general weights � and
even to the case of vector bundles. Theorem 6 is proven in a much more general setting in [DG16].
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d(z) de�ned by (12) has a holomorphic extension to C whose zeros are exactly the Ruelle

resonances for P = X + V (counted with multiplicities).

Remark 5. Dynamical determinants are often outshined by the closely related Ruelle zeta

functions. The most simple example of Ruelle zeta function associated to an Anosov �ow

(φt)t∈R is given for Re z � 1 by

ζ (z) =
∏

γ primitive

(
1− e−zTγ

)
, (13)

where the product is over primitive periodic orbits of the �ow (φt)t∈R. An argument due to

Ruelle [Rue76] allows to write the zeta function (13) as an alternated product of dynamical

determinants, so that Theorem 6 implies that ζ has a meromorphic extension15 to C.

As in the discrete-time case, when studying dynamical determinants and zeta functions

for Anosov �ows, there are functional-analytic tools that are only available in the real-

analytic category. These tools have been developed by Ruelle [Rue76] (under the very

strong assumption that the stable or unstable foliation of the �ow is real-analytic, see also

[Fri86]), Rugh [Rug92, Rug96] (in dimension 3 but without any condition on the stable

or unstable foliation) and Fried [Fri95] (in any dimension). They do not work directly

with the Koopman operator Lt or its generator P , but rather with a family of auxiliary

nuclear operators [Gro55] de�ned using symbolic dynamics. One of the consequences of

their results is that if (φt)t∈R and V are real-analytic, then the dynamical determinant

d(z) has �nite order (see De�nition 1.2). It is then folklore (see Proposition 1.27) that the

�nite order for d(z) implies a trace formula for the �ow (φt)t∈R that reads, in the sense of

distributions on R∗+,

∑
λ∈σR(P )

eλt =
∑
γ

T#
γ

e
∫
γ V

|det (I − Pγ)|
δTγ . (TFF)

This means that for every C∞ function ϕ ∈ C∞c
(
R∗+
)
compactly supported in R∗+ we have

∑
λ∈σR(P )

Lap (ϕ) (−λ) =
∑
γ

T#
γ

e
∫
γ V

|det (I − Pγ)|
ϕ(Tγ), (14)

where Lap (ϕ) denotes the Laplace transform of ϕ:

Lap(ϕ) : z 7→
∫ +∞

0
e−ztϕ(t)dt.

The notations on the right-hand side of (TFF) and (14) are the same as in (12) and we
15Actually, Ruelle arguments require an orientability condition on the stable and unstable directions of

(φt)t∈R. A strategy to overcome this condition may be found in [BS20], see [BT08] for the discrete-time
analogue.
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recall that σR (P ) is our notation for the Ruelle spectrum of P . The trace formula (TFF)

is a continuous-time analogue of (TFM). Indeed, according to Guillemin's trace formula,

the right-hand side of (TFF) is a generalized trace for the Koopman operator (9) � see

also [DZ16, Appendix B]. The formula (TFF) gives consequently a spectral interpretation

for Guillemin's trace formula in the case of real-analytic Anosov �ows.

In [DZ16], Dyatlov and Zworski gave a new proof of Theorem 6 (the �rst proof being

in [GLP13]). One of their motivations was to investigate the validity of the trace formula

(TFF) for C∞ (rather than analytic) Anosov �ows. As in the discrete-time case, notice

that in the absence on a general upper bound on the number of Ruelle resonances, there

is no reason for the left-hand side of (TFF) to converge in any sense. In [JZ17], Jin and

Zworski proved a �local� version of (TFF) for C∞ Anosov �ow and used it to show that,

for any C∞ Anosov �ow, there is a vertical strip that contains an in�nite number of Ruelle

resonances16 � a bound that has been sharpened by Naud in an appendix to their paper.

This is one of the reasons why trace formulae are interesting: they are one of the only tools

available to prove lower bounds on the number of resonances. The already mentioned work

of Adam [Ada17] also illustrates this idea.

The question asked by Dyatlov and Zworski of the validity of the trace formula (TFF)

(and of its discrete-time analogue (TFM)) beyond real-analytic systems is the main thread

of this thesis. Let us describe now our approach to this problem.

Main results

Maps: Trace formulae and counter-examples (Chapter 1)

Our �rst line of approach to the problem of the trace formula (TFF) for C∞ Anosov �ow

was to consider the discrete-time analogue of this question (TFM), where L is either the

transfer operator (1) associated to a C∞ expanding map of the circle or a weighted Koopman

operator (7) associated to an Anosov di�eomorphism. The advantage of considering a

map rather than a �ow is that the relationship between trace formulae and dynamical

determinants is much simpler in that case:

Proposition 1 (See Theorem 1.3). The trace formula (TFM) holds for n large enough

with absolute convergence of the right-hand side if and only if the dynamical determinant

(4) has �nite order.

We will prove a slightly more precise version of this result (Theorem 1.3) in �1.1. As

mentioned above, it remains true in the continuous-time setting that �nite order for the

associated dynamical determinant (12) implies that the trace formula (TFF) holds, and we

shall prove an analogue of Proposition 1 for Anosov �ows (see Proposition 1.27). However,

16Their argument is written in the case V = 0 but it is not hard to see that it still applies as soon as V
is real-valued.



29

the link between these two notions is much more explicit in the discrete-time case. For

instance, in order to produce a counter-example to (TFM), one only needs to �nd a system

for which the dynamical determinant d has in�nite order.

In order to construct counter-examples to (TFM), we need to consider slightly more

general systems than expanding maps or Anosov �ows, namely hyperbolic basic sets. In-

deed, there is much more �exibility when constructing open systems. The picture described

above for transitive Anosov di�eomorphisms adapt without much change to basic hyper-

bolic sets: we have notions of Ruelle spectrum, �at trace, dynamical determinant, etc (see

�1.2.1 for details). In �1.2, we will construct weights for a Smale's horseshoe [Sma67, �I.5]

such that the dynamical determinant of the associated Koopman operator is explicit. From

this construction, we will deduce for instance the following result:

Proposition 2 (See Corollary 1.19). Let E be a subset of N∗. Then there are a di�eo-

morphism T : S4 → S4 with hyperbolic basic set K and a smooth function g : S4 → R+,

positive on K, such that, for every n ∈ N∗, the trace formula (TFM) holds if and only if

n ∈ E (see (1.18) for the de�nition of the �at trace).

The relationship between dynamical determinants and trace formulae in the discrete-

time case is so explicit that we will construct counter-examples in �1.2 that are much more

pathological than those of Proposition 2, see Corollary 1.20.

A question that is deeply related to the problem of trace formulae is the existence of

an upper bound on the number of Ruelle resonances. The method that gives Proposition

2 also proves the following result, that asserts that there is no general upper bound on the

number of resonances for a hyperbolic di�eomorphism.

Proposition 3 (Proof in �1.2.3). Let N0 : R∗+ → R+ be a locally bounded function. Then

there are a di�eomorphism T : S4 → S4 with hyperbolic basic set K and a smooth function

g : S4 → R+, positive17 on K, such that, if we de�ne for r ∈ R∗+

N(r) = # {z ∈ C : |z| ≥ r and z is a Ruelle resonance associated to (T, g)} ,

then N0(r) =
r→0

o (N(r)).

Denjoy�Carleman classes and compact transfer operator (Chapter 2)

There is a fundamental di�erence between the trace formulae (TFM) and (TFF) and, for

instance, Theorems 2, 4 and 6: the formulae (TFF) and (TFM) involve the entire Ruelle

spectrum at once, while Theorems 2, 4 and 6 are usually proved by analyzing the Ruelle

spectrum little by little.

17The fact that g is positive on K implies that L may be used to describe the correlations for the Gibbs
measure for T associated to the potential log g. Consequently, we construct a Gibbs measure for which
there are a lot of terms in the correlations asymptotics.
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This fact is essential because the scales of spaces from Theorems 1, 3 and 5 only unveil

the Ruelle spectrum gradually. Consequently, they are suited to prove statements like

Theorems 2, 4 and 6, but they are not the most convenient tools in order to establish a

global formula like (TFF) or (TFM). Hence, we want to construct a single space that

unveils the entire Ruelle spectrum. As already mentioned, this had already been done in

certain cases, but always for real-analytic dynamics. We will see that this phenomenon

is not speci�c to the real-analytic case, and present tools that we developed to study C∞

hyperbolic dynamics.

We will start with the simplest example and explain in Chapter 2 how one can construct

a space �tted to study a given C∞ expanding map of the circle T and its associated transfer

operator (1). In �2.2, we will prove the following theorem, which is in some sense the C∞

generalization of what Ruelle [Rue76] did for real-analytic expanding maps.

Theorem 7 (See Theorem 2.9). Let T be a C∞ expanding map of the circle and denote by

L the associated transfer operator (1). Then, there is a Hilbert space H such that:

(i) H is continuously contained in the space of C∞ functions from S1 to C;

(ii) H contains the trigonometric polynomials on S1 as a dense subspace;

(iii) L induces a compact operator on H whose non-zero spectrum is the Ruelle spectrum

of L.

Theorem 7 is not su�cient to prove the trace formula (TFM). Indeed, in order to prove

a trace formula, it seems natural to try to make L trace class rather than compact. An

important di�erence between these two notions is that being trace class is a quantitative

statement (on the decay of the singular values of L). Consequently, we need to make the

fact that T is C∞ quantitative. To do so, we will use the language of Denjoy�Carleman

classes or classes of ultradi�erentiable functions.

A short introduction to the topic of Denjoy�Carleman classes is given in �2.1 � the

interested reader may refer to the more complete survey [KMR09] and references therein.

Let us just say for now that this theory provides a general procedure to produce regularity

classes intermediate between C∞ and real-analytic. The most famous such classes are

maybe the classes of Gevrey functions that have been introduced by Gevrey in his seminal

paper [Gev18] to study the regularity of the solutions of certain PDE. Using the language

of Denjoy�Carleman classes, we will give in �2.2 a quantitative version, Theorem 2.9, of

Theorem 7 � we will bound the singular values of L acting on H.
When L acting on H is trace class, we will see that the trace formula (TFM) holds. In

particular, in that case the dynamical determinant d(z) de�ned by (4) coincides with the

Fredholm determinant det (I − zL) of L � see Proposition 2.19. When L is not trace class,

we are still able to use the space H from Theorem 7 to study the dynamical determinant

d(z): the nuclear power decomposition from [BT08] may be implemented on H. It allows
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us to rewrite the dynamical determinant d(z) as a particular case of Weinstein�Aronszajn

determinant (see [Kat66, IV.�6] and references therein).

Theorem 8 (See Proposition 2.18). Under the assumptions of Theorem 7, we may write

L = Lb + Lc, where Lb is a quasi-nilpotent operator and Lc is a nuclear operator of order

0 on H. The dynamical determinant (4) may then be rewritten as

d(z) = det
(
I − z (I − zLb)−1 Lc

)
.

This statement can also be made quantitative using the language of Denjoy�Carleman

classes � yielding in particular a bound on the growth of the dynamical determinant d(z)

(see Propositions 2.16, 2.17 and 2.18). Notice that a bound on the growth of the dynamical

determinant immediately implies an upper bound on the number of Ruelle resonances by

Jensen's inequality [Boa54, Theorem 1.2.1].

The proofs of Theorems 7 and 8 are given in �2.2. They are applications of our methods

to work with transfer (or Koopman) operators associated to ultradi�erentiable hyperbolic

dynamics. We will also discuss the implication of Theorem 7 in terms of regularity of the

resonant states for L and of the conjugacy problem (see Corollaries 2.11 and 2.12).

In �2.3, we recall and discuss Theorem 2.27, a result on Koopman operators associated

to Gevrey hyperbolic di�eomorphisms that we obtained by similar methods in [Jéz20a]

(before Theorems 7 and 8). In order to keep the page count reasonable, we will not give

the proof of this result here.

Trace formulae for ultradi�erentiable Anosov �ows (Chapter 3)

We return to Anosov �ows and the question of the validity of the trace formula (TFF) in

Chapter 3. Our �rst idea when trying to prove trace formula (TFF) was to prove that

the dynamical determinant (12) has �nite order. Heuristic considerations (involving in

particular Theorem 2.27, see Remark 2.28) let us think that Gevrey classes of regularity

are a natural setting when it comes to �nite order of the dynamical determinant. However,

when applying the methods based on Paley�Littlewood decompositions exposed in Chapter

2, we were not able to get a good enough control of the Koopman operator (9) for small

t > 0. Hence, we missed the �nite order for the dynamical determinant and needed to �nd

another way to prove the trace formula (TFF). The solution that we found was to consider

operators of the form ∫ +∞

0
ϕ(t)Ltdt (15)

for a test function ϕ ∈ C∞c
(
R∗+
)
, instead of the resolvent (11). The intuition here is that

(15) is �the Laplace transform of ϕ evaluated at −P � so that, if we can prove that this

operator is trace class, we should be able to deduce the instance (14) of the trace formula
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from Lidskii's Trace Theorem. Indeed, we expect the trace of (15) to be equal to the

right-hand side of (14) because of Guillemin's trace formula [Gui77].

The advantage of considering (15) is that, since ϕ is supported away from 0, we do

not need to control the Koopman operator Lt for t near 0 (compare for instance with the

expression (11)). It turned out that this strategy allows not only to retrieve the trace

formula (TFF) using Paley�Littlewood like decompositions similar to those of Chapter 2,

but also to work with ultradi�erentiable classes that are much larger than Gevrey classes.

Thus, we obtain in Chapter 3:

Theorem 9 (See Theorem 3.1 and Corollary 3.2). There is a class of regularity, larger

than all Gevrey classes, such that the trace formula (TFF) holds for Anosov �ow (φt)t∈R
and weight V that belong to this class of regularity..

The classes of Anosov �ows and weights that are allowed in Theorem 9 will be discussed

in �3.1, using the language of Denjoy�Carleman classes. We obtain in Proposition 3.3 an

estimate on the number of Ruelle resonances (for the allowed ultradi�erentiable �ows) that

implies that the left hand side of (TFF) de�nes a distribution on R∗+.

Finite order of dynamical determinants for Gevrey Anosov �ows (Chap-

ter 4)

After we established Theorem 9, the question of the �nite order of dynamical determinants

associated to Gevrey Anosov �ows remained open. With Yannick Guedes Bonthonneau,

we applied methods from analytic and Gevrey micro-local analysis to study this problem.

The tool that turned out to be the most convenient for us is an analytic FBI transform in

the spirit of Hel�er and Sjöstrand [HS86, Sjö96]. Similar methods have been used recently

by Galkowski and Zworski [GZ19a, GZ19b, GZ20a] to deal with certain PDEs problems

in the real-analytic category. Our methods however are not restricted to the real-analytic

regularity, but also apply in the Gevrey category. In particular, we �nally prove that the

order of the dynamical determinant associated to a Gevrey Anosov �ow is �nite.

Theorem 10 (Proof in �4.2). Let s ≥ 1. Let (φt)t∈R be an s-Gevrey Anosov �ow on an

s-Gevrey manifold. Let V : M → C be an s-Gevrey function. Denote by d(z) the associated

dynamical determinant (12). Then there is a constant C > 0 such that, for every z ∈ C,
we have

|d(z)| ≤ C exp (C |z|ns) ,

where n is the dimension of M . In particular, d(z) has order less than ns.

Gevrey classes are discussed in �4.1.1. Let us just mention for now that Gevrey classes

are nice examples of Denjoy�Carleman classes depending on a parameter s ∈ [1,+∞[.
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When s = 1, we retrieve the class of real-analytic regularity, while for s > 1 the class of

s-Gevrey functions is non-quasianalytic: it contains compactly supported functions.

The methods that we developed with Bonthonneau to study Gevrey Anosov �ows are

exposed in Chapter 4 in an abridged version. Indeed, the proof of Theorem 10 requires

technical preparations that are not directly related to our topic. It was thus not possible

to present here the full content of [BJ20] (available on the arXiv) without causing an

in�ation in the length of this thesis. Consequently, we give a short introduction to the

FBI transform methods from [BJ20] in �4.1 focusing on the results that are needed for the

proof of Theorem 10 � that we give in �4.2. Finally, we will mention other applications of

our FBI transform methods to the spectral theory of Gevrey Anosov �ows in �4.3.

Content of the appendices

Let us describe brie�y the content of the appendices of this thesis. In Appendix A, we

explain how the results from �2.2 (in particular Theorems 7 and 8) extend to more general

transfer operators than (1). In Appendix B, we give the technical results that prove that

the Ruelle resonances are intrinsically de�ned. In Appendix C, we establish a �Hadamard-

like� factorization for the dynamical determinant (12) under the hypotheses of Theorem 9.

In Appendix D, we discuss the optimality of the regularity hypothesis in Theorem 9. In

Appendix E, we detail a heuristic computation that suggests that trace formulae such as

(TFM) or (TFF) are rather exceptional phenomena in the C∞ category.

Perspectives

This thesis is dedicated to the investigation of the trace formulae (TFF) and (TFM), and

of the related question of the order of the dynamical determinants (4) and (12). Using the

notion of ultradi�erentiability, we design tools �tted to the study of in�nitely di�erentiable

uniformly hyperbolic dynamics. These tools allow us to prove positive results concerning

trace formulae and order of dynamical determinants, such as Theorems 9 and 10. The main

idea behind the proof of these results is that stronger assumptions of ultradi�erentiability

lead to better estimates on the singular values of the relevant operator acting on well-suited

spaces. These estimates lead then naturally to bounds on the growth of the dynamical

determinant, the number of Ruelle resonances, etc.

However, while we tend to think that phenomena such as the trace formula (TFF) are

rather exceptional in the C∞ category, we lack counter-examples that go beyond those of

Chapter 1. Indeed, the counter-examples from Chapter 1 have at least two �aws in our

opinion. First, these are open systems, it would be much more interesting to construct

expanding maps or Anosov di�eomorphisms for which the trace formula (TFM) fails, or the

dynamical determinant (4) has in�nite order. Indeed, a priori there could be a topological

obstruction for instance that would force the dynamical determinant of an expanding or
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Anosov map to have �nite order. The second issue with the counter-examples from Chapter

1 is that there are very particular. Indeed, we tend to think that failure of the trace formula

should be a generic fact. It would be nice to be able to prove a result of the following form18.

Conjecture 1. Let M be a compact C∞ manifold. Then the dynamical determinant asso-

ciated to a generic C∞ expanding map, Anosov di�eomorphism or Anosov �ow on M has

in�nite order.

Another reason why we ask for a generic result in Conjecture 1 is that most of the

examples of hyperbolic systems for which we are able to compute more or less explicitly

Ruelle resonances are real-analytic, so that their dynamical determinants have �nite order.

Since we are searching for objects with relatively low regularity, it would not be unusual to

rely on Baire category or probabilistic19 arguments. Moreover, there is a heuristic compu-

tation that suggests that the dynamical determinant associated to a generic perturbation

of the doubling map Example 1 could have in�nite order � see Appendix E.

One could propose stronger conjectures. For instance, the discussions from Chapter

2 (see in particular Remarks 2.5, 2.22 and 2.28) suggest that the C∞ regularity could be

replaced in Conjecture 1 either by any Denjoy�Carleman class that is not closed under

di�erentiation (in the discrete-time case) or any Denjoy�Carleman class that is larger than

all Gevrey classes (in the continuous-time case). Such a result would be particularly nice

since it would imply that our results (in particular Theorem 10) are somehow sharp. One

could also keep the C∞ regularity in Conjecture 1 but replace the �niteness of the order by

any reasonable bound on the growth of the dynamical determinant. This is also suggested

by the computation from Appendix E.

However, Conjecture 1 is maybe too di�cult for our present understanding of the topic,

and it could be reasonable to work on an easier problem. For instance, one could wonder

whether Theorem 10 is sharp in the analytic case.

Conjecture 2. Let M be a compact real-analytic manifold of dimension n. Then the

dynamical determinant associated to a generic real-analytic Anosov �ow on M has order

exactly n.

Let us explain why Conjecture 2 could be easier to approach than Conjecture 1. First of

all, a similar statement20 has been proven by Bandtlow and Naud [BN19] in the case of real-

analytic expanding map of the circle, and their methods could be a source of inspiration.
18We state here a conjecture about the order of the dynamical determinant rather than the trace formula

since it is easier to state. Indeed, considering the trace formula, we always have the issue that the spectral
size could be ill-de�ned, which makes harder to write down a precise conjecture.

19Considering the probabilistic approach, the work of Gossart [Gos20] could maybe be a source of
inspiration, since it involves �at trace computations for random hyperbolic dynamical systems. However,
the random systems from [Gos20] are almost surely not in�nitely di�erentiable, so that his work cannot
be used directly.

20Actually, they proved a lower bound on the number of Ruelle resonances, but it turns out that Con-
jecture 2 is equivalent to the fact that the bound on the number of Ruelle resonances from Theorem 4.38
is generically sharp.
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Moreover, the real-analytic case is the one for which we have the strongest functional

analytic tools: we construct in Chapter 4 a scale of spaces on which the generator of an

Anosov �ow behaves like an elliptic operator of order 1. One could then hope that our

tools could be combined with recent methods that have been developed in order to establish

Weyl's law for random perturbations of non self-adjoint elliptic operators (see [Sjö19] and

references therein) in order to approach Conjecture 2.

We also hope that the tools that we developed with Bonthonneau in [BJ20] (brie�y

exposed in Chapter 4) can be used to understand other problems than those discussed in

this thesis for which the Gevrey setting is relevant, maybe beyond dynamical systems. It

seems natural to expect that our methods can be applied to some PDE problems. For

instance, we could probably use our tools to discuss in the Gevrey setting the questions

that have been dealt with by Galkowski and Zworski using similar tools in the real-analytic

category [GZ19b, GZ20a]. Another possible applications of these FBI transform methods

in the Gevrey setting is also mentioned in [GZ20b, Remark 4].
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Résumé en français

Cette thèse est dédiée à l'étude de la théorie spectrale associée aux dynamiques hyper-

boliques C∞. Notre approche se base sur les notions d'ultradi�érentiabilité et de classe

de Denjoy�Carleman. On s'intéresse principalement au problème de la formule de trace

pour les �ots d'Anosov, proposées par Dyatlov et Zworski dans [DZ16]. Avant de présenter

cette question, rappelons les bases de l'approche fonctionnelle des propriétés statistiques

des �ots d'Anosov.

Soit (φt)t∈R un �ot d'Anosov (voir la Dé�nition 6) de régularité C∞ sur une variété

compacte M et V : M → C une fonction C∞. On note X le générateur de (φt)t∈R et on

forme l'opérateur P := X + V . On cherche à décrire l'asymptotique, lorsque t tend vers

+∞, de la famille d'opérateurs de Koopman dé�nis par

Lt : u 7→ exp

(∫ t

0
V ◦ φτdτ

)
u ◦ φt. (16)

Ici u est par exemple une fonction C∞ deM dans C. Pour comprendre cette asymptotique,

on introduit [BL07, BL13, FS11] une notion de spectre pour P , le spectre de Ruelle σR (P ).

Ce spectre peut être dé�ni de la manière suivante. Pour Re z � 1, on dé�nit la résolvante

de P par

R(z) :=

∫ +∞

0
e−ztLtdt : C∞ (M)→ D′ (M) .

On peut alors montrer que R(z) s'étend en une famille méromorphe sur C d'opérateurs de

C∞ (M) dans D′ (M), et que ses résidus sont de rang �ni. Les pôles de R(z) sont alors

appelés résonances de Ruelle de P (la multiplicité de la résonance étant le rang du résidu).

L'ensemble des résonances de Ruelle forment le spectre de Ruelle.

Les résonances de Ruelle contiennent de nombreuses informations sur les propriétés

statistiques du �ot (φt)t∈R, il est donc important d'en comprendre la distribution. Pour

cela, on peut introduire suivant Ruelle [Rue76] le déterminant dynamique dé�ni pour

Re z � 1 par

d(z) = exp

(
−
∑
γ

T ]γ
Tγ

e
∫
γ V

|det (I − Pγ)|
e−zTγ

)
. (17)

37
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La somme en argument de l'exponentielle parcourt les orbites périodiques γ du �ot (φt)t∈R.

Pour une telle orbite, Tγ dénote sa longueur, T ]γ sa longueur primitive (c'est-à-dire la

longueur de la plus petite orbite périodique de (φt)t∈R de même image que γ). On a aussi

posé
∫
γ V =

∫ Tγ
0 V (φt (x)) dt pour x un point de l'image de γ, et Pγ = DφTγ (x)|Eux⊕Esx

est l'application de Poincaré linéarisée associée à γ. Ici, Eu et Es sont les directions

respectivement stable et instable de (φt)t∈R et x est toujours un point de l'image de γ

(l'application Pγ dépend du choix de x, mais pas sa classe de conjugaison, le déterminant

dans (17) est donc bien dé�ni). Un des intérêts du déterminant dynamique (17) est qu'il

admet un prolongement holomorphe à C dont les zéros sont exactement les résonances de

Ruelle de P [GLP13, DZ16]. Les déterminants dynamiques sont également des éléments

essentiels de la théorie des fonctions zêtas dynamiques.

Lorsque le �ot (φt)t∈R et le poids V sont analytiques réels, certains outils d'analyse

fonctionnelle puissants peuvent être utilisés pour étudier les propriétés du déterminant

dynamique (17). Ces outils, qui se basent sur les travaux de Grothendieck sur la théorie

de Fredholm [Gro55], ont été utilisés d'abord par Ruelle [Rue76], puis par Rugh [Rug92,

Rug96] et Fried [Fri95]. De ces travaux, il découle en particulier que lorsque (φt)t∈R et

V sont analytiques réels, alors le déterminant dynamique (17) est d'ordre �ni (voir la

Dé�nition 1.2). Il est classique (voir Proposition 1.27) que cette propriété du déterminant

dynamique implique la formule de trace:

∑
λ∈σR(P )

eλt =
∑
γ

T ]γ
e
∫
γ V

|det (I − Pγ)|
δTγ . (TFF)

Ici, les notations sont les mêmes que dans (17) et l'égalité est à comprendre au sens des

distributions sur R∗+, c'est-à-dire que si ϕ est une fonction C∞ à support compact sur R∗+
alors

∑
λ∈σR(P )

Lap(ϕ)(−λ) =
∑
γ

T#
γ

e
∫
γ V

|det (I − Pγ)|
ϕ(Tγ),

où Lap(ϕ) dénote la transformée de Laplace de ϕ dé�nie pour z ∈ C par

Lap(ϕ)(z) =

∫ +∞

0
e−ztϕ(t)dt.

Le membre de droite dans (TFF) correspond à une trace généralisée pour l'opérateur de

Koopman (16), dont la valeur est donnée par la formule de trace de Guillemin [Gui77] �

voir aussi [DZ16, Appendix B]. Le membre de gauche quant à lui joue le rôle de la somme

des valeurs propres (le spectre de Ruelle étant ici la notion pertinente pour dé�nir cette

somme). Le formule de trace (TFF) donne donc une interprétation spectrale de la formule

de trace de Guillemin.
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Dans [DZ16], Dyatlov et Zworski s'interrogent sur la validité de la formule de trace

(TFF) lorsque le �ot (φt)t∈R et le poids V ne sont plus supposés analytiques (mais au

moins C∞), toujours dans le but de mieux comprendre la répartition des résonances de

Ruelle. Cette question constitue le �l conducteur de notre thèse. Notre point de départ

pour comprendre ce problème est la suggestion par Sébastien Gouëzel de s'y intéresser dans

le contexte de la régularité Gevrey. Rappelons qu'il s'agit d'une hypothèse de régularité

intermédiaire entre C∞ et analytique, introduite par Gevrey pour étudier la régularité

des solutions de certaines EDP [Gev18]. Cette suggestion nous a amené à développer

des outils d'analyse fonctionnelle adaptés à l'étude de la théorie spectrale des dynamiques

hyperboliques, non seulement de régularité Gevrey, mais aussi dans des classes de régularité

plus générales: les classes de Denjoy�Carleman ou classes de fonctions ultradi�érentiables.

Il s'agit également de classes de régularité intermédiaire entre C∞ et analytique, plus

variées que les classes de Gevrey, ce qui nous permet d'énoncer des résultats plus précis sur

la validité de la formule de trace (TFF). Ces outils que nous développons sont en quelque

sorte la généralisation au cas ultradi�érentiable des méthodes mentionnées ci-dessus dans

le cas analytique.

Les quatre chapitres de ce document présentent l'essentiel de nos travaux autour de la

formule de trace (TFF) et de questions proches liées à la théorie spectrale des dynamiques

hyperboliques ultradi�érentiables. Nous commençons par expliciter dans le Chapitre 1 les

liens entre formules de traces et déterminants dynamiques. Cette étude est menée pour les

�ots d'Anosov, mais aussi pour des systèmes hyperboliques à temps discret (des analogues

des questions que nous avons détaillées dans le cas continu se posent également à temps

discret). Les principales relations entre déterminants dynamiques et formules de traces

sont données dans la Proposition 1.27 (pour les �ots d'Anosov) et dans la Proposition 1

(pour les systèmes à temps discret, voir aussi le Théorème 1.3). Nous utilisons ensuite ces

liens pour construire des exemples de di�éomorphisme hyperboliques C∞ pour lesquels la

formule de trace est fausse (voir par exemple les Propositions 2 et 3).

Dans le Chapitre 2, nous rappelons la dé�nition des classes de Denjoy�Carleman et

nous commençons à utiliser cette notion pour étudier la théorie spectrale des dynamiques

hyperboliques. A�n de rendre le plus clair possible le fonctionnement de nos méthodes,

nous nous intéressons tout d'abord à des systèmes hyperboliques parmi les plus simples:

les applications dilatantes du cercle. On prouve en particulier le résultat suivant, connu

auparavant uniquement dans le cas analytique [Rue76].

Théorème A (Voir le Théorème 2.9). Soit T une application dilatante du cercle C∞ (voir

la Dé�nition 1). Il existe un espace de Hilbert H, continûment inclus dans l'espace des

fonctions C∞ sur le cercle, sur lequel l'opérateur de transfert

L : u 7→

x 7→ ∑
Ty=x

1

|T ′(y)|
u(y)

 (18)
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dé�nit un opérateur compact. De plus, les polynômes trigonométriques forment un sous-

espace dense de H.

L'opérateur (18) joue ici un rôle similaire à l'adjoint de (16) dans le cas des �ots

d'Anosov. L'espace H permet également d'étudier un déterminant dynamique associé à T ,

et de discuter la validité d'une formule de trace pour L (un analogue à temps discret de

(TFF)). En e�et, si L ne dé�nit en général qu'un opérateur compact sur H, on peut parfois

montrer que L est en fait un opérateur à trace, et une formule de trace s'en déduit par le

théorème de Lidskii. Tous ces résultats sont énoncés de manière quantitative en utilisant

le langage des classes de Denjoy�Carleman (voir en particulier le Théorème 2.9). Nos

méthodes nous permettent également d'établir un résultat sur le problème de la conjugaison

pour les applications dilatantes ultradi�érentiables (le Corollaire 2.12).

En�n, nous clôturons le Chapitre 2 en énonçant un résultat sur la théorie spectrale de

l'opérateur de Koopman de certains di�éomorphismes hyperboliques de régularité Gevrey

que nous avons obtenu par des méthodes similaires à celles détaillées pour les applications

dilatantes du cercle (voir le Théorème 2.27).

Le Chapitre 3 est consacré à la preuve du résultat principal de cette thèse :

Théorème B (Voir le Théorème 3.1 et le Corollaire 3.2). Il existe une grande classe

d'applications ultradi�érentiables telle que si M, (φt)t∈R et V appartiennent à cette classe

alors la formule de trace (TFF) est véri�ée.

La classe de régularité en question est décrite en détail dans �3.1 en utilisant le lan-

gage des classes de Denjoy�Carleman introduit dans le chapitre précédent. Remarquons

juste pour l'instant que cette classe de régularité est plus grande que toutes les classes

de Gevrey. Nous prouvons également une borne sur le nombre de résonances de Ruelle

sous les hypothèses du Théorème B (voir la Proposition 3.3) qui implique en particulier

que le membre de gauche dans (TFF) dé�nit bien une distribution sur R∗+. De manière

notable, le Théorème B n'est pas obtenu en prouvant que le déterminant dynamique (17)

est d'ordre �ni (comme c'était le cas pour les �ots analytiques). Nous ne nous attendons

d'ailleurs pas à ce que les déterminants dynamiques associés aux �ots considérés dans le

Chapitre 3 soient d'ordre �ni.

Si les résultats du Chapitre 3 sont relativement satisfaisants en ce qui concerne la

formule des traces, la question de l'ordre du déterminant dynamique nous semblait égale-

ment digne d'intérêt. Il s'agit du sujet du quatrième et dernier chapitre de cette thèse,

dans lequel nous présentons une version abrégée d'un travail en collaboration avec Yannick

Guedes Bonthonneau. Le principal outil technique dans le Chapitre 4 est une transfor-

mée de FBI analytique dans l'esprit de [HS86, Sjö96]. A�n que la taille de cette thèse

reste raisonnable, nous admettrons les résultats techniques nécessaires a�n d'utiliser cette

transformée de FBI pour étudier les �ots d'Anosov de régularité Gevrey (les preuves de

ces résultats sont détaillées dans [BJ20] disponible sur arXiv). Des méthodes similaires
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ont été utilisées récemment par Galkowski et Zworski pour étudier des problèmes d'EDP

en régularité analytique [GZ19a, GZ19b, GZ20a] (nos résultats s'appliquent à la fois en

régularité Gevrey et analytique). Ces méthodes basées sur la transformée de FBI nous

permettent alors de prouver la borne suivante sur le déterminant dynamique (17).

Théorème C (Voir le Théorème 10). Soit s ≥ 1. Si M, (φt)t∈R et V sont s-Gevrey alors

il existe C > 0 tel que pour tout z ∈ C on a

|d(z)| ≤ C exp (C |z|ns) .

En particulier, l'ordre de d est plus petit que ns.

La dé�nition des classes de Gevrey est rappelée dans �4.1.1. Rappelons que 1-Gevrey est

un synonyme d'analytique réel, le Théorème C redonne ainsi dans le cas s = 1 une borne

connue sur le déterminant dynamique, obtenue par les méthodes mentionnées ci-dessus

[Rug92, Rug96, Fri95] (aucune borne n'était connue dans la cas s > 1). Notre preuve est

cependant plus directe: nous travaillons directement avec l'opérateur de Koopman (16) et

son générateur P = X + V . D'autres applications de la transformée de FBI à l'étude des

�ots d'Anosov sont également esquissées à la �n du Chapitre 4, nouvelles mêmes dans le

cas s = 1.
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Chapter 1

Trace formulae, dynamical

determinants and counter-examples

In this chapter, we explain the complex analytic links between dynamical determinants and

trace formulae for expanding and hyperbolic maps � in �1.1 � and for Anosov �ows � in

�1.3 �, proving in particular Proposition 1 (and its continuous-time analogue Proposition

1.27). We use this dictionary to give quite striking counter-examples to the trace formula

(TFM) in �1.2, proving in particular Propositions 2 and 3.

The results from �1.1 and �1.2 may be found in [Jéz20a, �3 and 4]. The proofs from

�1.3 were already exposed in [Jéz19a, Appendix E], up to some additional details that we

give here.

1.1 Trace formulae and dynamical determinants for hyper-

bolic maps

We explain now the link between the trace formula (TFM) and the order of the dynamical

determinant (4) � where L is either the transfer operator (1) associated to an expanding

map of the circle or the weighted Koopman operator (7) associated to an Anosov di�eo-

morphism, and the �at trace tr[ (Ln) is de�ned by (5) or (8) accordingly. It is convenient

to introduce the following de�nition.

De�nition 1.1. If f is an entire function, we say that (zm)m>0 is an ordering of the zeros

of f if z0, z1, . . . , zm, . . . are the zeros of f counted with multiplicities and the sequence

(|zm|)m>0 is non-decreasing.

In this section and in �1.2, we will always order the zeros of an entire function in this

way. Recall the following de�nitions.

43
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De�nition 1.2. Let f be an entire function. The order of f may be de�ned as

lim sup
r→+∞

log+ log+

(
sup|z|6r |f (z)|

)
log r

where log+ x = log max (1, x). If f is non-zero and has �nite order, let p be the smallest

natural integer such that ∑
m>0

1

1 + |zm|p+1 < +∞ (1.1)

where (zm)m>0 is an ordering of the zeros of f (the integer p is well-de�ned thanks to

Jensen's formula). By Hadamard's Factorization Theorem [Boa54, 2.7.1], if m0 denotes

the order of 0 as a zero of f , then there is a polynomial Q such that, for all z ∈ C, we have

f (z) = zm0eQ(z)
∏

m>m0

E

(
z

zm
, p

)
(1.2)

where the function E is the Weierstrass primary factor de�ned by

E (u, p) = (1− u) exp

(
p∑

k=1

1

k
uk

)
= exp

− +∞∑
k=p+1

1

k
uk

 , (1.3)

where the last expression is only valid when |u| < 1. The genus of f is then de�ned as

max (degQ, p). We will say that the genus of an entire function of in�nite order is in�nite.

As explained in Remark 1.4 below, the following theorem is an abstract way to express

the link between trace formula and order of the dynamical determinant.

Theorem 1.3. Let f be an entire function such that f (0) = 1. Let G be a holomorphic

function de�ned on a neighbourhood of 0 such that G (0) = 0 and f (z) = eG(z) for z in a

neighbourhood of zero. Write

G (z) = −
+∞∑
n=1

1

n
anz

n (1.4)

and denote by (zm)m>0 an ordering of the zeros of f . Then for all r > 0 such that f has

no zero of modulus r, we have

an =
n→+∞

∑
|zm|<r

1

znm
+O

(
1

rn

)
. (1.5)

Furthermore, the following properties are equivalent :

(i) the order of f is �nite;
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(ii) there is a natural integer n0 such that for all integers n > n0 + 1 the series

∑
m>0

1

znm
(1.6)

converges absolutely and its sum is an.

If (i) or (ii) holds then the minimal value of n0 so that (ii) holds is the genus of f .

Remark 1.4. Taking f = d the dynamical determinant (4), we have an = tr[ (Ln), the

�at trace of L de�ned by (5) or (8) according to the context. Recalling Theorems 2 and

4, it appears then that the trace formula (TFM) holds with absolute convergence of the

right-hand side if and only if n > n0 + 1, where n0 denotes the genus of the dynamical

determinant d. In particular, Proposition 1 follows immediately from Theorems 2, 4 and

1.3.

In �1.2, we will construct dynamical determinants with arbitrary (�nite or in�nite)

genus, so that all the behaviours described in Theorem 1.3 may be realized by dynamical

determinants. Notice also that, as in the continuous-time case, we have a �local� version of

the trace formula: for every r > 0 such that there is no resonance of modulus r we have

tr[ (Ln) =
r→0

∑
λ Ruelle resonance

|λ|>r

λn +O(rn).
(1.7)

From Theorem 1.3, the local trace formula (1.7) is in fact just a reformulation of Theorem

2 or 4 according to the context.

Remark 1.5. As we will see in Proposition 1.6 below, the absoluteness of the convergence

in (ii) is essential to get an equivalence. This is quite unfortunate especially as we will

realize the counter-examples from Proposition 1.6 below as dynamical determinants in

�1.2. On the other hand, it is very easy to construct an example for which the series (1.6)

converges to a sum di�erent from an (for any chosen values of n): just multiply f by the

exponential of an entire function.

Proof of Theorem 1.3. • To prove (1.5), one only needs to notice that the holomorphic

function

z 7→ f (z)∏
i∈N
|zi|<r

(
1− z

zi

) = exp

− +∞∑
n=1

1

n

an − ∑
|zm|<r

1

znm

 zn


does not vanish on a disc of center 0 and radius a little bigger than r, and so admits

a holomorphic logarithm there.

• Suppose (i). Recall p from De�nition 1.2 and notice that the series (1.6) converges

absolutely for n > p + 1. Let r be a positive real number such that r 6 |zm| for all
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m. Then de�ne for |z| 6 r
2 and m > 0

fm (z) = −
+∞∑

k=p+1

1

k

(
z

zm

)k
, (1.8)

and notice that |fm (z)| 6 rp+1

2p
1

|zm|p+1 . Then, recalling (1.1), the series
∑

m>0 fm

converges on the disc of center 0 and radius r
2 to a holomorphic function F and,

recalling (1.2), we have for z close enough to 0

eG(z) = f (z) = eQ(z)+F (z).

Thus we may identify the coe�cients of order greater than degQ in the expansions

in power series of F and G, which ends the proof of (ii) recalling (1.4) and (1.8).

• Suppose (ii). Using the hypothesis for n = n0 + 1, the in�nite product

P (z) =
∏
m>0

E

(
z

zm
, n0

)
,

converges on C to a holomorphic function of �nite order smaller than n0 + 1 and

genus n0 (see [Boa54, Theorem 2.6.5]). But since an =
∑

m>0
1
znm

for n > n0 + 1, we

have, recalling the de�nition (1.3) of E, for z close enough to 0,

P (z) = exp

(
−

+∞∑
n=n0+1

1

n
anz

n

)

and consequently

f (z) = exp

(
−

n0∑
n=1

1

n
anz

n

)
P (z) .

Thus, f has �nite order smaller than n0 + 1 (and genus smaller than n0).

We now give two counter-examples that highlight the necessity to ask for absolute

convergence in (ii) in Theorem 1.3.

Proposition 1.6. (a) There exists an entire function f with f (0) = 1 such that if

(zm)m>0 is an ordering of the zeros of f (as de�ned in De�nition 1.1) then for

all n > 1 the series
∑

m>0
1
znm

converges with sum an (de�ned in (1.4)) but the con-

vergence is not absolute.

(b) There exists an entire function f with f (0) = 1, an ordering (zm)m>0 of the zeros

of f and a permutation σ of N such that
(
zσ(n)

)
n∈N is an ordering of the zeros of f
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and, for all n > 1, the series
∑

m>0
1
znm

converges with sum an, but
∑

m>0
1

zn
σ(m)

does

not converge.

Remark 1.7. Theorem 1.3 implies that the functions constructed by Proposition 1.6 have

in�nite order, while the associated �trace formula� (1.6) holds in some weak sense.

To prove Proposition 1.6, we will need the following lemma, whose proof is straightfor-

ward using an Abel transform.

Lemma 1.8. Let (bm)m>0 be a sequence of complex numbers such that there is a constant

M such that, for all ` ∈ N, we have
∣∣∣∑`

m=0 bm

∣∣∣ 6M . Let (cm)m>0 be a decreasing sequence

of positive real numbers that converges to 0. Then the series Σm>0bmcm converges, and we

have the estimates ∣∣∣∣∣
+∞∑
m=0

bmcm

∣∣∣∣∣ 6 2Mc0.

Proof of Proposition 1.6. We start by proving (a). Choose an irrational real number θ for

which there is a constant c > 0 such, that for all n ∈ N∗, we have
∣∣1− e2iπnθ

∣∣ > c
n2 (almost

any real number may be chosen thanks to Borel�Cantelli's lemma). For every integer n,

set

an =
+∞∑
m=2

(
e2iπmθ

ln (m)

)n
,

which is well-de�ned thanks to Lemma 1.8, but the convergence is clearly not absolute.

Furthermore, for all integers m0 > 2, we have∣∣∣∣∣an −
m0−1∑
m=2

(
e2iπmθ

ln (m)

)n∣∣∣∣∣ 6 4

c

n2

ln (m0)n
(1.9)

(take bm = e2iπn(m+m0)θ and cm = (ln (m+m0))−n in Lemma 1.8). Now (1.9) with

exp

(
−

+∞∑
n=1

1

n

(
m0−1∑
m=2

(
e2iπmθ

ln (m)

)n)
zn

)
=

m0−1∏
m=2

(
1− e2iπmθ

ln (m)
z

)

implies that the function f de�ned by f (z) = exp
(
−
∑+∞

n=1
1
nanz

n
)
, for z in a neighbour-

hood of zero, extends to an entire function whose zeros are exactly the
(
e2iπmθ

ln(m)

)−1
. Since

there is only one way to order the zeros of f with increasing moduli, point (a) is proven.

We turn now to the proof of (b). Choose θ as above and denote by (nk)k>0 the sequence

of integers de�ned by n0 = 0 and nk = k! for k > 1. De�ne I0 = {0} and Ik = [[nk+1, nk+1]]

for k > 1. For every n ∈ N, denote by k (n) the unique integer such that n ∈ Ik(n). Then

set for all integers n > 1

an =
+∞∑
m=0

(
e2iπmθ

ln (k (m) + 2)

)n
.
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Then we use Lemma 1.8 as in the proof of (a) to show that f (z) = exp
(
−
∑+∞

n=1
1
nanz

n
)

extends to an entire function whose zeros are exactly the zm =
(

e2iπmθ

ln(k(m)+2)

)−1
for m ∈ N.

We will see that there is another way to order the zeros of f , which breaks the convergence

of the series (1.6) for all n > 1, but preserves the monotonicity of the sequence of moduli.

Choose 0 < ε < 1 such that for all x ∈ [0, ε] we have Re
(
e2iπx

)
> 1

2 . Then for every

k ∈ N and n > 1, denote byN (n)
k the number of thosem ∈ Ik such thatmnθ ∈ [0, ε] mod 1,

and choose a permutation σ(n)
k of Ik which puts these elements �rst. Equidistribution of

the mnθ, for n �xed and m > 0, implies that∑k
`=0N

(n)
`

nk+1
→

k→+∞
ε,

but
∑k−1

`=0 N
(n)
` 6 nk + 1 =

k→+∞
o (nk+1), and thus

N
(n)
k

ln (k + 2)
→

k→+∞
+∞.

Now choose φ : N → N∗ such that for all n > 1 the reciprocal image φ−1 ({n}) is in�nite

(for instance 1, 1, 2, 1, 2, 3, . . . ) and set

σ =
+∞⋃
k=0

σ
(φ(k))
k .

If n > 1 the series
∑

m>0
1

zn
σ(m)

does not converge. Indeed, for all k such that φ (k) = n,

we have

Re
(
S̃
nk−1+N

(n)
k

)
> Re

(
Snk−1

)
+

1

2

N
(n)
k

ln (k + 2)
, (1.10)

where (Sm)m>0 is the sequence of partial sums of the series
∑

m>0
1
znm

, and (S̃m)m>0 is the

sequence of partial sums of the series
∑

m>0
1

zn
σ(m)

. We let k tend to +∞ with φ (k) = n,

which is possible thanks to our choice of φ. We saw that the �rst term in the right-hand

side of (1.10) converges but the second one tends to +∞, and thus the left-hand side of

(1.10) does not converge.

In order to realize the counter-examples from Proposition 1.6 as dynamical determi-

nants in �1.2, we will need the two following, merely technical, lemmas.

Lemma 1.9. For every ε > 0 and ρ > 0, the counter-examples from Proposition 1.6 may

be realized as entire functions f of the form f : z 7→ 1− 2z − z (1− z)h (z), where h is an

entire function such that, for all z ∈ C, we have h (z) =
∑+∞

`=0 α`z
`, where α` ∈

[
− ε
ρ`
, ε
ρ`

]
for all integers `.
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Proof. For all k > 2 and n > 1 set either

a(k)
n =

+∞∑
m=k

(
e2iπmθ

ln (m)

)n
or

a(k)
n =

+∞∑
m=k−2

(
e2iπmθ

ln (k (m) + 2)

)n
,

depending on whether you want to get a counter-example of type (a) or (b). Then set for

all k > 1

f̃k (z) = exp

(
−

+∞∑
n=1

1

n

(
a(k)
n + ā(k)

n

)
zn

)
.

Estimate (1.9) (and its analogue for the case (b) of Proposition 1.6) implies that f̃k
converges to 1 uniformly on all compact subsets of C as k goes to +∞. Then set

fk : z →
(

1− z
λk

)
f̃k (z), where λk = f̃k(1)

1+f̃k(1)
. Thus we have fk (0) = 1, fk (1) = −1,

and it is easy to check that fk is a counter-example of type (a) or (b), according to the way

the a(k)
n have been de�ned. We will see that that for large enough k the function fk satis�es

the conditions of Lemma 1.9. Let hk be the entire function de�ned by hk (z) = −fk(z)−1+2z
z(1−z) .

We will also need the auxiliary function Hk (z) = f̃k(z)−1
z − (f̃k (1)− 1) which vanishes at

z = 1 and tends to 0 uniformly on all compact subsets of C when k tend to +∞. Then

notice that

−hk (z) =
Hk (z)

1− z

(
1− z

λk

)
+
f̃k (1)2 − 1

f̃k (1)

and write
Hk (z)

1− z
=

+∞∑
`=0

β`z
`

then we have

α0 = −

(
β0 +

f̃k (1)2 − 1

f̃k (1)

)
and α`+1 = −

(
β`+1 +

β`
λk

)
if ` > 0.

But the sequence (λk)k>0 converges to 1
2 and (we may suppose ρ > 2)

|β`| =
1

2π

∣∣∣∣∣
∫
D(0,ρ)

Hk (z)

(1− z) z`+1
dz

∣∣∣∣∣ 6 2

ρ`
sup
|z|6r

∣∣∣f̃k (z)− 1
∣∣∣ ,

which ends the proof, recalling that f̃k converges to 1 uniformly on all compact subsets of

C as k goes to +∞.

Lemma 1.10. Let f(z) be an entire function such that f (0) = 1, and (ck)k>0 be a sequence
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of positive real numbers such that
∑

k>0 ck < +∞. Then the in�nite product∏
k>0

f (ckz) (1.11)

converges uniformly on all compact subsets of C to an entire function d that has same

genus1 than f . Furthermore, if f is one of the counter-example of type (a) or (b) con-

structed in Lemma 1.9, then d also satis�es point (a) or (b) respectively of Proposition

1.6.

Proof. If K is a compact subset of C then, since f (0) = 1, there is a constant C > 0

such that for all z ∈ K we have |f (z)− 1| 6 C |z|. Thus for all z ∈ K and k > 0, we

have |f (ckz)− 1| 6 C |ck| |z|. Hence, the in�nite product (1.11) does converge uniformly

on all compact subsets of C to an entire function d. That d has same genus as f is

straightforward from the De�nition 1.2 and Hadamard's factorization Theorem (we use

the positivity of the ck's to ensure that no unwanted cancellation happens). Let us point

out that if f (z) = exp
(
−
∑+∞

n=1
1
nanz

n
)
then d (z) = exp

(
−
∑+∞

n=1
1
nan

(∑+∞
k=0 c

n
k

)
zn
)
.

Suppose now that f is the counter-example of type (a) constructed in Lemma 1.9 and

denote by (zm)m>0 an ordering of its zeros. Let (wm)m>0 be an ordering of the zeros of d ,

then there is a bijection (φ, ψ) : N→ N2 such that for all m ∈ N we have wm =
zφ(m)

cψ(m)
, and

for every k ∈ N the sequence
(
zφ(m)

)
m∈ψ−1({k}) is an ordering of the zeros of f . Let n > 1.

It is clear from our construction that f has no more than two zeros of a given modulus2,

and so there is a constant M such that for all k ∈ N and m0 ∈ N we have∣∣∣∣∣∣∣∣
∑
m6m0
ψ(m)=k

1

znφ(m)

∣∣∣∣∣∣∣∣ 6M. (1.12)

Now, for k ∈ N, let uk be the sequence

(∑
m6m0
ψ(m)=k

1
wnm

)
m0>0

whose limit is cnkan by

construction of f . From (1.12), the sup norm of uk is smaller than cnkM , and thus the series∑
k>0 uk converges in the space of converging sequences equipped with the sup norm. But

its sum is clearly the sequence of partial sums of
∑

m>0
1
wnm

. Thus this series converges,

and its sum is an
∑+∞

k=0 c
n
k , as wanted.

We suppose that f is a counter-example of type (b). There are two natural partitions

of the zeros of d : the partition Z0, Z1, . . . , Zk, . . . by modulus (Z0 contains the element of

1If f has non integral order δ and
∑
cδk < +∞, then one may show using [Boa54, 2.9.1] that d has also

same order than f .
2That's where we use that f is precisely the counter-example constructed above. We will not need it

for the case (b)
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minimal modulus, the following are in Z1, etc) and the partition Z ′1, Z
′
2, . . . de�ned by

Z ′k =

{
z

ck
: z is a zero of f

}
.

Both partitions are endowed with the natural notion of multiplicity. Now, we get an

ordering for which (1.6) holds in the following way : we put �rst the elements of Z0 ∩ Z ′0
in the order which gave (1.6) for f , then we put the elements of Z0 ∩ Z ′1 (according to

the same order), then Z0 ∩ Z ′2, etc, when we are done with Z0 (which happens in a �nite

number of steps), we do the same with Z1, then Z2, etc. The proof that (1.6) holds in this

case is as in case (a) (in fact a bit easier). To get an ordering for which there is divergence

of the inverse of the zeros of d at any power, we do exactly the same, except that at each

step we put the elements of Z ′0 in the order which gave the divergence for f .

We end this section with the two following lemmas, that will be used to prove Propo-

sitions 2 and 3 in �1.2.

Lemma 1.11. Let E be a subset of N∗. Then there is an entire function Q such that

Q (0) = Q (1) = 0 and if Q : z 7→
∑+∞

n=1 βnz
n then βn = 0 if and only if n ∈ E, and βn ∈ R

for all n ∈ N∗. Moreover, for every ε > 0 and ρ > 0, if α > 0 is su�ciently small, then there

is an entire function h : z 7→
∑+∞

n=0 αnz
n such that (1− 2z) eαQ(z) = 1−2z−z (1− z)h (z),

for all z ∈ C, and αn ∈
[
− ε
ρn ,

ε
ρn

]
for all n ∈ N.

Proof. We will construct Q of the form Q : z 7→ z (1− z)
∑+∞

n=0 bnz
n. Then we have β1 = b0

and βn+1 = bn − bn−1, for all n > 1. If E contains a �nal segment of N∗ then it is easy

to see that there is a polynomial Q with real coe�cients that satis�es the �rst part of

Lemma 1.11. If E does not contain a �nal segment of N∗ then the sequence (bn)n∈N may

be recursively de�ned by

b0 = 1 if 1 /∈ E, 0 otherwise;

bn = bn−1 if n > 1 and n+ 1 ∈ E;

bn =
1

min {` > n, `+ 2 /∈ E}!
if n > 1 and n+ 1 /∈ E.

The second part of Lemma 1.11 may be proven in a similar way than Lemma 1.9.

Lemma 1.12. Let N0 : R∗+ → R be a locally bounded function. Then for every ε > 0

and ρ > 0 there is an entire function h : z 7→
∑+∞

k=0 αkz
k such that for all k ∈ N we have

αk ∈
[
− ε
ρk
, ε
ρk

]
, and if f : z → 1− 2z − z (1− z)h (z) and (zm)m∈N is an ordering of the

zeros of f then

N0 (r) =
r→0

o

(
#

{
m ∈ N : |zm| <

1

16r

})
. (1.13)
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Proof. Choose a sequence (zm)m∈N of non-zero positive real numbers such that zm →
m→+∞

+∞ and

N0 (r) =
r→0

o

(
#

{
m ∈ N : zm 6

1

16r

})
. (1.14)

Such a sequence exists since N0 is locally bounded. Notice that if |z| 6 1
2 and p ∈ N then

|E (z, p)− 1| 6 1

2
sup
|w|6 1

2

∣∣E′ (w, p)∣∣ 6 1

2p

where E is the Weierstrass primary factor from (1.3). Consequently, we can choose an

increasing sequence of integer (pm)m∈N such that pm →
m→+∞

+∞ and the in�nite product∏
m>0E

(
z
zm
, pm

)
converges uniformly on all compact subsets of C. For m0 large enough,

de�ne an entire function fm0 by

fm0 (z) = (1− λm0z)
∏

m≥m0

E

(
z

zm
, pm

)
= 1− 2z − z(1− z)hm0(z)

where

λm0 = 1 +
1∏

m≥m0
E
(

1
zm
, pm

) .
Using Cauchy's formula, it is easy to see that hm0 converges to 1 uniformly on all compact

subsets of C when m0 → +∞. Thus h = hm0 satisfy the �rst condition when m0 is large

enough. Moreover, we have for all r > 0

#

{
m ∈ N : zm 6

1

16r

}
= #

{
m > m0 : zm 6

1

16r

}
+m0, (1.15)

and thus

N0 (r) =
r→0

o

(
#

{
m > m0 : zm 6

1

16r

})
with (1.14), and since the right-hand side of (1.15) tends to +∞ when r tends to 0. This

ends the proof because the zm's are zeros of f .

1.2 Counter-examples to trace formulae

In this section, we realize a wide class of entire functions as dynamical determinants. In

particular, all the possibilities considered in Theorem 1.3 as well as the counter-examples

from Proposition 1.6 will materialize. We will also construct dynamical determinants,

associated with �nitely di�erentiable weights, which cannot be holomorphically continued

to the whole complex plane. Our construction will be based on a well-known example of
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zeta functions for hyperbolic �ows which cannot be continued meromorphically to the whole

complex plane (see [Bal92] and [PP90, Example 1 p.165]). The strategy is the following: we

�rst construct a subshift of �nite type and a weight for which the associated zeta function

(1.19) is explicit, then we use Whitney's extension theorem [Whi34] as in [Bow72a] to get

a hyperbolic dynamics on a manifold with the same dynamical zeta function, and �nally

we show that in this particular case the dynamical determinant may be obtained from the

dynamical zeta function.

However, this construction produces an open system rather than an Anosov di�eomor-

phism, so that we explain �rst how the picture described in the introduction adapts to

hyperbolic basic sets.

1.2.1 Hyperbolic basic sets

Let us recall the de�nition of a hyperbolic basic set.

De�nition 1.13 (Hyperbolic basic set). Let M be a C∞ manifold and K be a compact

subset of M . Let T be a C1 di�eomorphism from M to itself. We say that K is hyperbolic

for T if for every x ∈ K there is a splitting of the tangent space

TxM = Eux ⊕ Esx,

and constants C > 0, λ > 1 and a smooth Riemannian metric on M such that:

(i) for every x ∈ K and σ ∈ {u, s}, we have DT (x) (Eσx ) = EσTx;

(ii) for every x ∈ K, v ∈ Eux and n ∈ N, we have |DT−n(x)v| ≤ Cλ−n |v|;

(iii) for every x ∈ K, v ∈ Esx and n ∈ N, we have |DTn(x)v| ≤ Cλ−n |v|.

We say that K is a hyperbolic basic set for T if in addition:

• K is T -invariant, that is T−1 (K) = K;

• K is isolated, i.e. there is an open neighbourhood U ofK such thatK =
⋂
n∈Z T

n (U)

(we say that U is an isolating neighbourhood for K);

• T|K is transitive, that is T has a dense orbit in K.

Example 1.14. If T is a transitive Anosov di�eomorphism on a compact manifold M ,

then M is a hyperbolic basic set for T . Another classical example of hyperbolic basic set

is Smale's horseshoe [Sma67, �I.5]. In this section, we are mainly interested in this last

example because the associated combinatorics is simple (it is exactly conjugated to a full

shift), and it is �thin� (it has small Hausdor� dimension).
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The functional approach of statistical properties for hyperbolic basic sets is very similar

to the case of Anosov di�eomorphisms. Let T : M → M be a C∞ di�eomorphism with

hyperbolic basic set K. Let g : M → C be a C∞ weight. Here, we must assume in addition

that g is supported in a small enough isolating neighbourhood U for K. As in the case of

Anosov di�eomorphism, the associated Koopman operator is de�ned by

L : v 7→ g.v ◦ T. (1.16)

Then, as in Theorem 3, there are Banach spaces on which the essential spectral radius

of L is arbitrarily small [BT07, GL08]. However, these spaces are not intermediate be-

tween C∞ (M) and D′ (M), but between C∞c (U) and D′c (U), the spaces respectively of C∞

functions and of distributions that are compactly supported in U . De�nition 5 of Ruelle

resonances, Ruelle spectrum and resonants states adapt then naturally to this case. As

in the case of Anosov di�eomorphisms the Ruelle resonances are the zeros of a dynamical

determinant, the analytic continuation of

d(z) = exp

−∑
n≥1

1

n
tr[ (Ln) zn

 , (1.17)

where the �at traces of the powers of L are now de�ned by

tr[ (Ln) :=
∑

Tnx=x
x∈K

∏n−1
k=0 g

(
T kx

)
|det (I −DTn(x))| (1.18)

for n ∈ N∗. In particular, the Ruelle resonances of (T, g) only depend on g through its

values on K. Beware that it is not the case of the associated resonant states. Notice that

Proposition 1 also applies in that case, in view of Theorem 1.3.

1.2.2 Symbolic dynamics with explicit weighted zeta functions

Denote by (Σ, σ) the full (two-sided) shift on two symbols, that is

Σ = {0, 1}Z and σ : (xi)i∈Z 7→ (xi+1)i∈Z .

For θ ∈ ]0, 1[, de�ne a distance on Σ by dθ (x, y) = θk, where k is the integer

inf {i ∈ N : xi 6= yi or x−i 6= y−i} (with the convention θ∞ = 0). Recall that if G : Σ→ C
is a function, the weighted zeta function associated to (σ,G) is the formal power series

de�ned by

ζσ,G (z) = exp

(
+∞∑
n=1

1

n

( ∑
σnx=x

n−1∏
k=0

G
(
σkx

))
zn

)
. (1.19)
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Notice that ζσ,1 is the well-known Artin�Mazur zeta function, and that the radius of

convergence of ζσ,G is non-zero as soon as G is bounded. We are going to construct

weights G for which ζσ,G is given by (1.20), adapting a construction from [Bal92] and

[PP90, Example 1 p.165].

Proposition 1.15. Let h be a holomorphic function de�ned on a neighbourhood of 0 and

whose expansions in power series at zero is h (z) =
∑+∞

k=0 αkz
k. Denote by ρ its convergence

radius, and assume that for all k ∈ N we have αk 6= −1. Then there is a function G : Σ→ C
such that

ζσ,G (z)−1 = 1− 2z − z (1− z)h (z) . (1.20)

Moreover, for every θ ∈]1
ρ , 1[, the function G is Lipschitz for the distance dθ and, if αk ∈

]−1,+∞[ for all k ∈ N, then G is strictly positive.

Proof. Set βm = 1+αm
1+αm−1

if m > 1 and β0 = 1 + α0 and de�ne G : Σ→ C by

G (x) =

{
βm if x0 = · · · = xm−1 = 0 and xm = 1

1 if x0 = · · · = xi = · · · = 0,

where x = (xi)i∈Z. An easy computation shows that G is Lipschitz for the distance dθ
provided that θ ∈]1

ρ , 1[. For N > 0 de�ne a (N + 1)× (N + 1) matrix PN by



(PN )0,i = βi if 0 6 i 6 N − 1

(PN )0,N = 1

(PN )i+1,i = βi if 0 6 i 6 N − 1

(PN )N,N = 1

the other entries are zero,

that is,

PN =



β0 β1 β2 . . . βN−1 1

β0 0 . . . 0

0 β1 0 . . . . . .

. . . 0 β2 . . .

. . . 0

. . . 0 βN−1 1


.

Then an elementary graph-theoretic argument provides that, for all integers k > 1 and all

N > k, we have ∑
x∈Σ
σkx=x

k−1∏
i=0

G
(
σix
)

= tr
(
P kN

)
. (1.21)

Using an argument of dominated convergence (it is easy to show that
∣∣tr (P kN)∣∣ 6

2k ‖G‖k∞ by reducing to the positive case), one may then show that, for positive small
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enough z,

ζσ,G (z)−1 = lim
N→+∞

det (I − zPN ) .

A computation provides

det (I − zPN ) = (1− z)

(
1−

N−1∑
k=0

(
k∏
i=0

βi

)
zk+1

)
− zN+1

N−1∏
i=0

βi

= (1− z)

(
1−

N−1∑
k=0

(1 + αk) z
k+1

)
− zN+1 (1 + αN−1)

and thus

ζσ,G (z)−1 = (1− z)

(
1−

+∞∑
k=0

(1 + αk) z
k+1

)
= 1− 2z − z (1− z)h (z) .

Remark 1.16. We could get a more general expression for (1.20), for instance by allowing

more than two symbols. However, we will not need this here.

1.2.3 Smooth hyperbolic dynamics with explicit dynamical determi-

nants

We want now to conjugate our symbolic examples to smooth ones. To do so, we use a

method due to Bowen [Bow72a] to conjugate a subshift of �nite type to a piecewise a�ne

horseshoe.

Proposition 1.17. There are a C∞ di�eomorphism T of the sphere S4 and a hyperbolic

basic set K for T such that, if h is as in Proposition 1.15 with in addition that ρ > 1, then

there is a function g : S4 → C such that the dynamical determinant d(z) de�ned by (1.17)

and (1.18) is given by3

d (z) =

+∞∏
k=0

(
ζσ,G

( z

4k+2

)−1
) (k+1)(k+2)(k+3)

6

, (1.22)

where ζσ,G is from Proposition 1.15. Moreover, g is Cr for all integers r strictly smaller

than ln ρ
ln 4 , and, if αk ∈ ]−1,+∞[ for all integers k, then g is strictly positive on K.

Proof. Let G : Σ → C be the function given by Proposition 1.15. We next recall a

construction due to Bowen [Bow72a], in order to check that it has some extra properties

that suit us. Let (ei)06i63 be the standard basis in R4. Set R (k) = 0 if k > 0 and R (k) = 1

3The in�nite product converges for the same reason as in Lemma 1.10.
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if k < 0. Then, for x = (xi)i∈Z ∈ Σ, de�ne

I (x) =
∑
k∈Z

4−|k|e2xk+R(k).

Then one easily checks that for x, y ∈ Σ we have

5

6
d 1

4
(x, y) 6 d (I (x) , I (y)) 6

8

3
d 1

4
(x, y) , (1.23)

where d is the euclidean distance on R4. Thus I induces a homeomorphism on its image

K, which is a compact subset of R4. De�ne then

Vi =

{
(x0, x1, x2, x3) ∈ R4 : 1 6 x2i 6

3

2
, 0 6 xk 6

1

2
for k 6= 2i

}
and Fi = I ({x ∈ Σ : x0 = i}) for i = 0, 1. It is easy to check that Fi is contained in Vi.

De�ne

L =


4 0 0 0

0 1
4 0 0

0 0 4 0

0 0 0 1
4

 .
For x ∈ Vi, set Fix = Lx − 4e2i + 1

4e2i+1 (for i = 0, 1). Then, de�ne F on V0 ∪ V1 by

F |Vi = Fi. One easily checks that F ◦ I = I ◦ σ. Viewing R4 as embedded in S4, one may

extend F to a di�eomorphism T of S4, that coincides with Fi on a neighbourhood Ui of

Vi (see for instance [Pal60]). Setting U = U1 ∪U2 one has
⋂
k∈Z T

k (U) = K. Thus K is a

hyperbolic basic set for T with isolating neighbourhood U .

Now, de�ne g̃ on K by g̃ = G ◦ I−1. Let r be an integer strictly smaller than ln ρ
ln 4 .

Choose θ ∈]1
ρ , 4
−r[. Next, recalling (1.23) and that G is Lipschitz for the distance dθ, there

exists a constant C such that for all x, y ∈ K we have

|g̃ (x)− g̃ (y)|
d (x, y)r

6 C
dθ
(
I−1 (x) , I−1 (y)

)
d 1

4
(I−1 (x) , I−1 (y))r

= C (4rθ)m(x,y)

where m (x, y) is the smallest integer such that I−1 (x) and I−1 (y) do not coincide at the

position m (x, y) or −m (x, y). Using (1.23) again, one gets

m (x, y) = −
ln
(
d 1

4

(
I−1 (x) , I−1 (y)

))
ln 4

> −
ln
(

6
5d (x, y)

)
ln 4

,

and thus
|g̃ (x)− g̃ (y)|
d (x, y)r

6 C̃d (x, y)−
ln(4rθ)

ln 4 .

Consequently, Whitney extension's theorem [Whi34] ensures that g̃ may be extended to a
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Cr function g on S4. If ρ = +∞, then g may be chosen C∞. Moreover, up to multiplying

g by a bump function, one may assume that g is supported in U and, if G is positive, that

g is positive on K.

Since I conjugates (σ,G) and (T |K , g), one has for z small enough

1− 2z − z (1− z)h (z) = ζσ,G (z)−1 = exp

− +∞∑
n=1

1

n

 ∑
x∈K
Tnx=x

n−1∏
k=0

g
(
T kx

) zn

 .

Notice that for all n ∈ N∗ we have

1

|det (I − Ln)|
=

1

16n

+∞∑
k=0

(−1)k
(
−4

k

)
1

4nk
,

and recall that (−1)k
(−4
k

)
= (k+1)(k+2)(k+3)

6 is an integer. Fubini's theorem gives

d (z) = exp

− +∞∑
n=1

1

n

∑
x∈K
Tnx=x

∏n−1
k=0 g

(
T kx

)
|det (I −DxTn)|

zn


= exp

− +∞∑
n=1

1

n

1

det (I − Ln)

 ∑
x∈K
Tnx=x

n−1∏
k=0

g
(
T kx

) zn


= exp

− +∞∑
n=1

+∞∑
k=0

(−1)k
(−4
k

)
n

 ∑
x∈K
Tnx=x

n−1∏
k=0

g
(
T kx

)( z

4k+2

)n
=

+∞∏
k=0

(
ζσ,G

( z

4k+2

)−1
) (k+1)(k+2)(k+3)

6

.

Remark 1.18. In Proposition 1.17, the dynamical determinant d(z) is written as an

in�nite product involving the weighted zeta function ζσ,G(z) associated to the symbolic

dynamical systems from the last section. As we mentioned it in Remark 5, zeta functions

are usually written as alternated product of dynamical determinants. The fact that we can

go here in the other way and deduce the dynamical determinant from the zeta function is

quite exceptional and due to the a�ne structure of the horseshoe.

We use now the preparatory lemmas from �1.1 to deduce various corollaries from Propo-

sition 1.17. From Proposition 1.17 and Lemma 1.11, we deduce the following corollary,

which is a slightly more precise statement than Proposition 2.
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Corollary 1.19. Let E be a subset of N∗. Then there are a C∞ di�eomorphism T of S4,

a hyperbolic basic set K for T , and a C∞ function g : S4 → R, strictly positive on K, such

that, for any ordering (λm)m>0 of the resonances of (T, g), and for all n ∈ N∗, the series∑
m>0

λnm

converges absolutely, and its sum is tr[ Ln (de�ned by (1.18)) if and only if n ∈ E.

Proposition 3 is an immediate consequence of Proposition 1.17 and Lemma 1.12. From

Lemmas 1.9 and 1.10, Proposition 1.17 also gives:

Corollary 1.20. The counter-examples from Proposition 1.6 may be produced as dynamical

determinants. Namely :

a) There are a C∞ di�eomorphism T of S4, a hyperbolic basic set K for T , and a C∞

function g : S4 → R, strictly positive on K, such that for any ordering (λm)m>0

of the resonances of (T, g) (see De�nition 1.1) we have, for every n > 1, the trace

formula

tr[ (Ln) =
∑

Tnx=x
x∈K

∏n−1
k=0 g

(
T kx

)
|det (I −DxTn)|

=
∑
m>0

λnm (1.24)

but the convergence of the right-hand side is never absolute.

b) There are a C∞ di�eomorphism T of S4, a hyperbolic basic set K for T , a C∞ function

g : S4 → R strictly positive on K, an ordering (λm)m>0 of the resonances of (T, g),

and a permutation σ of N such that
(
λσ(m)

)
m>0

is an ordering of the resonances of

(T, g) and, for every n > 1, the trace formula (1.24) holds but the series
∑

m>0 λ
n
σ(m)

does not converge.

From Lemma 1.10 and Proposition 1.17, it also follows that:

Corollary 1.21. The dynamical determinant (1.17) for a C∞ di�eomorphism with C∞

weight on a hyperbolic basic set may be of any (�nite or in�nite) genus4.

Recall that Theorem 1.3 gives a characterization of the genus of the dynamical deter-

minant in terms of the trace formula (TFM). Moreover from Corollary 1.21 and [Gro55,

Corollary 1 p.17, second part of the book], we deduce that there are dynamical determi-

nants that are not Fredholm determinants of any nuclear operators (and so there is no

�good� Banach space on which the associated Koopman operators are nuclear). Finally, we

notice that Proposition 1.17 can also be used to construct systems without any resonances.

Corollary 1.22. There are a C∞ di�eomorphism T of S4, a hyperbolic basic set K for T ,

and a C∞ function g : S4 → C, such that the system (T, g) has no Ruelle resonances.

4And even of any non-integral order according to footnote 1.
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In Corollary 1.22, it is fundamental that g takes value in C: if g was positive then

ePtop(T,log g−Ju) would be a resonance, where Ptop (T, log g − Ju) is the topological pressure

of log g − Ju (where Ju is the unstable Jacobian) with respect to the dynamics T (see

Remark 1.25).

Proof of Corollary 1.22. The function h : z 7→ eiπz−1+2z
z(z−1) continues holomorphically to C

and may be written as h (z) =
∑+∞

k=0 αkz
k with αk = −

∑k+1
l=1

(iπ)l

l! − 2. Thus αk 6= −1 for

every n ∈ N (this is a consequence of the fact that π is transcendental). Thus applying

Proposition 1.17, we �nd (T, g) such that the dynamical determinant

d (z) =

+∞∏
k=0

(
e
iπz

4k+2

) (k+1)(k+2)(k+3)
6

does not vanish. Hence, (T, g) has no resonances.

Remark 1.23. The weight g produced by Corollary 1.19, 1.20 or 1.21 being strictly

positive on K, it is associated to some physically meaningful Gibbs measure µg (see [Bal18,

Chapter 7] for details). For example if g = 1 or g = |det (DT |Eu)| ( = 16 in our case ), µg
is respectively the physical measure or the measure of maximal entropy for T |K (for the T

we constructed these measures coincide). It may be noticed that the weights produced by

Corollaries 1.19, 1.20 and 1.21 may be chosen arbitrary close to 1 in the C∞ topology on

a neighbourhood of K. The proof of this relies on the fact that, according to Lemmas 1.9

and 1.11, the function h may be taken arbitrarily close to 0 in the topology of the uniform

convergence on all compact subsets of C (but, to actually prove it, an investigation of a

proof of Whitney's extension theorem is needed).

Remark 1.24. Proposition 1.17 realizes a lot of entire functions as dynamical determi-

nants, thus we could have stated many variations on Corollaries 1.19, 1.20 and 1.21. For

instance, one may construct a weight g for which the trace formula (1.24) always holds but

the convergence is absolute only when n is bigger than some �xed integer (replace 1
(lnm)n

in the expression of an in the proof of Proposition 1.6 by 1
mαn for some α > 0 and then

state analogues of Lemma 1.9 and Lemma 1.10).

Remark 1.25. If in Proposition 1.17 we take h (z) = ha,ρ (z) = a ln
(

1 + z
ρ

)
, where ρ > 1

and a > 0 is small, then we get weights g = ga,ρ, strictly positive on K. From formulae

(1.20) and (1.22), we know that the radius of convergence of the associated dynamical

determinant d(z) = da,ρ(z) is exactly5 ρeff = 16ρ. Let r > 2 be an integer, and choose

ρ such that r < ln ρ
ln 4 , then [BT08, 1.5] predicted a radius of convergence greater than

ρpred = exp (−Ptop (log ga,ρ − log 16)) 4r−1 for da,ρ. However since g is strictly positive,

[Bal18, Theorem 6.2] and [Bal18, Theorem 7.5] imply that exp (−Ptop (log ga,ρ − log 16))

5The dynamical determinant da,ρ(z) cannot even be continued meromorphically outside the disc of
center 0 and radius 16ρ.
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is the smallest zero of da,ρ(z), which can be made arbitrary close to 1
32 by taking a close

enough to 0. On the other hand, we may chose ρ arbitrary close to 4r. Thus, for all ε > 0,

there is a choice of a and ρ such that

ρeff
ρpred

6 2048 + ε.

This means that [BT08, Theorem 1.5] described accurately the way the radius of conver-

gence of the dynamical determinant grows when the regularity of the weight grows (up

to a bounded multiplicative constant that could probably be made smaller than 2048 by

adding extra parameters to the construction from Proposition 1.17).

Remark 1.26. The Ruelle resonances of the systems constructed in Proposition 1.17

comes as in�nite families. In particular, Proposition 1.17 does not allow to construct a

system with a �nite non-zero number of resonances. As far as we know, the only known

examples of systems with �nitely many resonances have either one or zero resonance.

1.3 Trace formulae and dynamical determinants for Anosov

�ows

We go back to the continuous-time setting and prove the following analogue of Proposition

1. The implication (i) ⇒ (ii) in Proposition 1.27 is folklore, while the implication (ii) ⇒
(i) seems to be new. Notice that the condition (1.25) implies that the left-hand side of

(TFF) converges to a distribution on R∗+.

Proposition 1.27. Let (φt)t∈R be a C∞ Anosov �ow, with generator X, on a compact

manifold M . Let V : M → C be a C∞ function and set P = X + V . Then the following

statements are equivalent:

(i) the dynamical determinant d de�ned by (12) has �nite order;

(ii) the trace formula (TFF) holds and there is ρ > 0 such that

∑
λ∈σR(P )

1

1 + |λ|ρ
< +∞. (1.25)

We recall that σR (P ) is our notation for the Ruelle spectrum of P . Moreover, when these

statements hold, the in�mum of the ρ's such that (1.25) hold is the order of d.

When trying to prove trace formula (TFF), one can certainly try to apply the implica-

tion (i) ⇒ (ii) from Proposition 1.27. However, if on the contrary one tries to understand

an Anosov �ow (φt)t∈R for which the trace formula (TFF) is known to hold, while we do
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not know if the associated dynamical determinant (12) has �nite order, then the implica-

tion (ii)⇒ (i) in Proposition 1.27 becomes interesting. For instance, using only tools from

elementary complex analysis, the following result is obtained.

Corollary 1.28. Let (φt)t∈R be a C∞ Anosov �ow, with generator X, on a compact man-

ifold M . Let V : M → C be a C∞ function and set P = X +V . Then, if the trace formula

(TFF) holds and if there is ρ ∈ [0, 1[ such that

∑
λ∈σR(P )

1

1 + |λ|ρ
< +∞, (1.26)

then the dynamical determinant d(z) de�ned by (12) is constant equal to one6 (in particular,

P has no resonance).

We chose to present Corollary 1.28 here because its proof is very brief, illustrating the

power of the trace formula. However, when the weight V is real-valued, [JZ17, Theorem

2] gives a better bound on the number of Ruelle resonances, using only the local trace

formula from [JZ17]. The main interests of these results is that they give lower bounds on

the number of Ruelle resonances, which are not very easy to obtain in general. Considering

Ruelle resonances for a constant time suspension of a cat map, we see that the bounds

from Corollary 1.28 and [JZ17, Theorem 2] are quite accurate as general lower bounds on

Ruelle resonances. However, we expect that for a generic Anosov �ows, there are much

more Ruelle resonances than predicted by those results.

Proof of Proposition 1.27. Let us �rst recall the folklore proof of (i) ⇒ (ii) � see [MPM15,

Theorem 17] for another approach. Let α denote the order of the dynamical determinant

d. The estimate (1.25) for any ρ > α is a consequence of Jensen's formula � see [Boa54,

2.5.12]. Let ϕ ∈ C∞c
(
R∗+
)
and recall that its Laplace transform is de�ned for z ∈ C by

Lap (ϕ) (z) =

∫ +∞

0
e−ztϕ(t)dt. (1.27)

Then, choose x > 0 large enough so that the series

∑
γ

T#
γ

e−xTγ

|det (I − Pγ)|
exp

(∫
γ
V

)
(1.28)

converges absolutely and x > Re (λ) + ε for all the resonances λ of P = X + V and some

ε > 0. It follows from standard integration by parts that for every N > 0 there is CN > 0

6Notice that when V is real-valued, or when
(
φt
)
t∈R has a periodic orbit γ such that no other periodic

orbit has the same length, then d is not constant.
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Figure 1.1: The contour ΓR.

such that, for every z ∈ C such that Re z ≥ −x, we have

|Lap (ϕ) (z)| ≤ CN

1 + |z|N
. (1.29)

Then, if γ is a periodic orbit for (φt)t∈R, Laplace Inversion Formula writes

ϕ(Tγ) =
1

2iπ

∫
{Re z=−x}

ezTγLap (ϕ) (z)dz =
1

2iπ

∫
{Re z=x}

e−zTγLap (ϕ) (−z)dz.

Thanks to the bound (1.29) and the de�nition of x, we may apply Fubini's Theorem to

�nd that ∑
γ

T#
γ e

∫
γ V

ϕ(Tγ)

|det (I − Pγ)|
=

1

2iπ

∫
{Re z=x}

h(z)Lap (ϕ) (−z)dz, (1.30)

where h denotes the logarithmic derivative h(z) = d′(z)
d(z) of the dynamical determinant d.

Now, for R > 0, de�ne the contour ΓR by

ΓR = [x− iR, x+ iR] ∪ CR,

where CR denotes the half-circle

CR = {z ∈ C : |z − x| = R and Re z ≤ x} .

By residue's formula, we have
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1

2iπ

∫
ΓR

h(z)Lap (ϕ) (−z) =
∑
λ

Lap (ϕ) (−λ),

where the sum on the right-hand side runs over Ruelle resonances of P that are enclosed

by the contour ΓR. By (1.30) and dominated convergence, we see that

1

2iπ

∫
[x−iR,x+iR]

h(z)Lap (ϕ) (−z)dz →
R→+∞

∑
γ

T#
γ e

∫
γ V

ϕ(Tγ)

|det (I − Pγ)|
.

Consequently, we only need to prove that∫
CRn

h(z)Lap (ϕ) (−z)dz →
n→+∞

0, (1.31)

for a sequence of radii (Rn)n∈N that tends to +∞. Letting p be as in (1.1), we use

Hadamard Factorization Theorem to write d(z) as (1.2). We �nd then that

h(z) = Q′(z) +
m0

z
−
∑
m≥m0

1

λm

(
z
λm

)p
1− z

λm

,

where (λm)m∈N denotes an ordering of the zeros of d (that is of the Ruelle resonances) and

m0 is the multiplicity of 0 as a Ruelle resonance. Then, let N be a large enough integer

and write

h(z) = Q̃(z) +
m0

z
−
∑
m≥m0

1

λNm

zN

λm − z

where Q̃ is the polynomial

Q̃(z) = Q′(z) +
N−1∑
`=p

(−1)`+p

 ∑
m≥m0

1

λ`+1
m

 z`.

Thanks to (1.1), we may �nd a sequence (Rn)n∈N that tends to +∞ such that for every

n ∈ N, z ∈ CRn and m ≥ m0 we have |z − λm| ≥ |λm|−p−1. Then it follows that for z ∈ CRn
we have

|h(z)| ≤
∣∣∣Q̃(z)

∣∣∣+
m0

|z|
+ |z|N

∑
m≥m0

1

|λm|N−p−1
,

and this last sum converges provided that N is large enough. Hence, we see that |h(z)|,
for z ∈ CRn , grows at most polynomially with Rn. Since CRn remains in the domain where

(1.29) holds, (1.31) follows.

We prove now the implication (ii)⇒ (i). Let x > 0 be as above. Write k = dρe where ρ
is from (1.25). Choose z ∈ C such that Re (z) > x. Then, we can �nd a sequence (ϕn)n∈N
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of C∞ functions, compactly supported in R∗+ such that

lim
n→+∞

sup
t∈R

etx
∣∣∣ϕn (t)− tke−zt

∣∣∣ = 0 (1.32)

and

sup
n∈N
t∈R∗+

∣∣∣etxϕ(k)
n (t)

∣∣∣ < +∞. (1.33)

Then, since the series (1.28) converges absolutely, we �nd with (1.32) that

∑
γ

T#
γ

ϕn (Tγ)

|det (I − Pγ)|
exp

(∫
γ
V

)
→

n→+∞

∑
γ

T#
γ

e−zTγT kγ
|det (I − Pγ)|

exp

(∫
γ
V

)
.

Now, since the trace formula holds (by assumption), we know that for all n ∈ N we have

∑
γ

T#
γ

ϕn (Tγ)

|det (I − Pγ)|
exp

(∫
γ
V

)
=

∑
λ∈σR(P )

Lap (ϕn) (−λ) .

Using (1.32) and the de�nition (1.27) of the Laplace transform, we �nd that for λ ∈ C
such that Reλ < x we have

Lap (ϕn) (−λ) →
n→+∞

∫ ∞
0

tke−(z−λ)tdt =
k!

(z − λ)k+1
.

Now, if λ ∈ C is non-zero, we have

Lap (ϕn) (−λ) =
(−1)k

λk

∫ +∞

0
eλtϕ(k)

n (t) dt.

Thus, (1.33), the fact that x > Re (λ) + ε for λ resonance, and the assumption (1.25)

provide a domination of Lap (ϕn) (−λ), so that we have, using the dominated convergence

theorem, ∑
λ∈σR(P )

Lap (ϕn) (−λ) →
n→+∞

k!
∑

λ resonances

1

(z − λ)k+1
.

Finally we have (when Re (z)� 1)

k!
∑

λ∈σP(P )

1

(z − λ)k+1
=
∑
γ

T#
γ

e−zTγT kγ
|det (I − Pγ)|

exp

(∫
γ
V

)
= (−1)k+1 (ln d)(k+1) (z),

where d is the dynamical determinant de�ned by (12). Let F denote the canonical product

of genus k−1 whose zeros are the Ruelle resonances of P = X+V (well-de�ned by [Boa54,
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(2.6.4)] thanks to (1.25)). Then we see that, if z is not a Ruelle resonance for P , we have

(lnF )(k) (z) = (−1)k (k − 1)!
∑

λ∈σR(P )

1

(z − λ)k
. (1.34)

It follows that (ln d)(k+1) = (lnF )(k+1) and consequently there is a complex number a such

that for every z ∈ C that is not a Ruelle resonance for X we have

(lnF )(k) (z) = (ln d)(k) (z) + a.

With assumption (1.25), (1.34) and dominated convergence we see that (lnF )(k) (r) →
r→+∞
r∈R

0. By direct inspection, we see that (ln d)(k) (r) →
r→+∞
r∈R

0, and consequently a = 0. Thus,

there is a polynomial Q of degree at most k − 1 ≤ ρ such that, for every z ∈ C, we have

d(z) = eQ(z)F (z).

It follows that d has order less than ρ, since F has order less than ρ according to [Boa54,

Theorem 2.6.5].

We end this section with the short proof of Corollary 1.28.

Proof of Corollary 1.28. Proposition 1.27 implies that the dynamical determinant d has

order less than 1. But notice that d is bounded on a line (choose a line parallel to the

imaginary axis corresponding to a large positive real part) and thus has to be constant by

the Phragmén�Lindelöf Theorem [Boa54, Theorem 1.4.1]. Finally, it has to be constant

equal to 1 since d(z) →
z→+∞
z∈R

1.



Chapter 2

Denjoy�Carleman classes and

transfer operators

In this Chapter, we introduce the notion of Denjoy�Carleman classes in �2.1. Then,

in �2.2, we explain our methods to study transfer or Koopman operators associated to

ultradi�erentiable hyperbolic dynamics through one of the most basic examples: expanding

maps of the circle. In particular, the proofs of Theorems 7 and 8 may be found in �2.2.

As we announced it in the introduction, we will in fact prove quantitative versions of these

results (Theorem 2.9 and Propositions 2.16, 2.17 and 2.18) using the language of Denjoy�

Carleman classes. Finally, in �2.3, we recall and discuss Theorem 2.27, one of the �rst

result that we obtained by applications of our methods to hyperbolic di�eomorphisms.

Most of the contents of �2.1 and 2.2 may be found in [Jéz20b] (with the noticeable

exceptions of Proposition 2.10 and Corollaries 2.11 and 2.12 that are new). Theorem 2.27

from �2.3 is proved in [Jéz20a].

2.1 Denjoy�Carleman classes

We give here a very brief introduction to the topic of Denjoy�Carleman classes. The

interested reader may refer for instance to [KMR09] and references therein. For a more

historical point of view on this topic, see [Bil82].

The ideas behind the notion of Denjoy�Carleman classes have �rst been introduced by

Denjoy in [Den21] in order to understand the notion of quasi-analyticity that was proposed

by Borel in [Bor12]. However, it seems that the notion of Denjoy�Carleman classes as we

know it today has been introduced by Carleman in [Car23]. We give now this de�nition.

Let A = (Ak)k∈N be an increasing and logarithmically convex sequence of positive real

numbers such that A0 = 1. Recall that the fact that A is logarithmically convex means

67
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that

∀k ∈ N∗ : A2
k ≤ Ak−1Ak+1. (2.1)

Let us mention for later use that (2.1) implies that for every k1, . . . , kn ∈ N we have

n∏
j=1

Akj ≤ Ak, (2.2)

where k = k1 + · · · + kn. This fact may be proved by induction using the fact that the

sequence (Ak+1/Ak)k∈N is increasing.

If U is an open subset of Rn and f : U → C is a C∞ function, we say that f belongs

to the Denjoy�Carleman class CA if, for every compact subset K of U , there are constants

C,R > 0 such that for every x ∈ K and α ∈ Nn we have

|∂αf(x)| ≤ CR|α|α!A|α|. (2.3)

Replacing the modulus in the left-hand side of (2.3) by a norm, we de�ne what it means

for a function valued in a Banach space to be CA. Parallelizing the circle in the usual way,

this de�nition is immediately adapted to the case of functions on S1: we say that a C∞

function f : S1 → C is in the Denjoy�Carleman class CA if there are constants C,R > 0

such that for all k ∈ N and x ∈ S1 we have∣∣∣f (k)(x)
∣∣∣ ≤ CRkk!Ak. (2.4)

We will say that a map T : S1 → S1 belongs to the class CA if its lift from R to R does.

This de�nition will only be used in Corollary 2.12. We will rather assume when needed

that the derivative T ′ : S1 → R belongs to the class CA. When the class CA is not closed

under di�erentiation, it does not imply that T belongs to CA.

Example 2.1. Let s ≥ 1. If A = (k!s−1)k∈N, then the class of regularity CA is the class

of s-Gevrey functions, that we will often denote by Gs in this thesis. We will give more

detailed information on this class of regularity in �4.1.1. Notice that in the case s = 1,

we retrieve the class of real-analytic functions (this is an easy consequence of Taylor's and

Cauchy's Formulae).

Example 2.2. Let κ > 0 and υ ≥ 1. We denote by Cκ,υ the class of regularity obtained

by taking A = (exp (kυ/κυ))k∈N. These are not standard classes of regularity. Actually,

we are not aware of any appearance of these particular classes in the literature before our

work, but the ultradi�erentiable classes that are used in [TT17] look a bit alike. However,

the classes Cκ,υ are very interesting when considering hyperbolic dynamics: see �2.2.3 but

especially Chapter 3. Indeed, when υ < 2, the trace formula (TFF) holds for Anosov �ow
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of regularity Cκ,ν . See �3.1 for a more advanced discussion on this classes of regularity

� in particular, we will de�ne what it means for a �ow on a compact manifold to be of

regularity Cκ,ν .

Our use of Denjoy�Carleman classes will be very basic, let us just recall a few well-

known facts for the sake of contextualizing. It follows from the logarithmic convexity of

(Ak)k∈N that the class of functions CA is closed under multiplication and composition �

see [Rud87, Chapter 19]. We say that the class CA is quasi-analytic if the following holds:

for every function f of class CA on a connected open subset U of Rn, if there is x0 ∈ U
such that all the derivatives of f vanish at x0 then f is identically equal to 0. If the class

CA is not quasi-analytic, then there are compactly supported functions of regularity CA

and, consequently, CA partitions of unity. The original motivation behind the introduction

of Denjoy�Carleman classes is the Denjoy�Carleman Theorem that characterizes quasi-

analytic classes among them.

Theorem 2.3 ([Den21, Car22, Car23]). Let A = (Ak)k∈N be an increasing, logarithmically

convex sequence of positive real numbers such that A0 = 1. Then the Denjoy�Carleman

class CA is quasi-analytic if and only if

+∞∑
k=0

1

(k!Ak)
1
k

= +∞.

In Chapters 3 and 4, we will mostly be interested in the non-quasi-analytic case � with

the exception of the class of real-analytic functions in Chapter 4. However, in the following

section �2.2, we do not need to distinguish between quasi-analytic and non-quasi-analytic

classes. This is possible thanks to the simple geometry of our context. We think that the

following result can be enlightening considering the question of trace formulae.

Proposition 2.4. Let A = (Ak)k∈N be an increasing, logarithmically convex sequence of

positive real numbers such that A0 = 1. Then the Denjoy�Carleman class CA is closed

under di�erentiation if and only if

sup
k∈N∗

(
Ak+1

Ak

) 1
k

< +∞. (2.5)

It is clear that (2.5) is a su�cient condition for CA to be closed under di�erentiation.

As noticed in [KMR09], it is also necessary as a consequence of [Thi08, Theorem 1].

Remark 2.5. Let us consider the classes Cκ,υ from Example 2.2. For κ > 0 and υ ≥ 1, we

deduce from Proposition 2.4 that the class Cκ,υ is closed under di�erentiation if and only

if υ ≤ 2. When υ < 2, we have the estimate

lim
k→+∞

(
Ak+1

Ak

) 1
k

= 1, (2.6)
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a stronger condition than (2.5). We will see in �2.2 below that, in the case of expanding

maps of the circle, the condition (2.6) alone ensures that the trace formula (TFM) is

satis�ed by expanding maps of the circle of regularity CA. The case of Denjoy�Carleman

classes for which the weaker condition (2.5) holds but not (2.6) is more involved but very

interesting (see Remark 2.22 and �2.2.3).

We tend consequently to think that, when considering the question of trace formulae

in Denjoy�Carleman classes, it is relevant to distinguish classes that are closed under

di�erentiation or not (and, among those closed under di�erentiation, that satisfy (2.6)

or not). We will argue in favor of this approach in Remark 2.22, see also the examples

from �2.2.3 for a more concrete approach of this point. Actually, being closed under

di�erentiation is a reasonable assumption to make on an ultradi�erentiable class if someone

wants to make di�erential geometry in that class (see [KMR09] for a discussion of that

fact). Proposition 2.10 and Corollaries 2.11 and 2.12 also reinforce the idea that Denjoy�

Carleman classes closed under di�erentiation are better-behaved than the others.

Let us now discuss some technical facts that are required for the next section. To the

class CA, we associate the function w = wA on R∗+ de�ned by

∀x ∈ R∗+ : w(x) := inf
k∈N

xkk!Ak. (2.7)

The function w will play a fundamental role in estimates on singular values and norms

of operators appearing in the nuclear power decomposition of the transfer operator. We

are not aware of any reference introducing precisely the function w, but it seems common

to introduce similar objects adapted to a particular problem (see for instance [FNRS20,

(1.1)]). The following lemma lists basic properties of the function w.

Lemma 2.6. Let A = (Ak)k∈N be an increasing, logarithmically convex sequence of positive

real numbers such that A0 = 1. Then, the function w = wA is continuous and increasing

from R∗+ to itself. Moreover, w vanishes at all orders in 0, i.e. for all α ∈ R we have

xαw(x) →
x→0

0. If µ ∈ ]0, 1[ then w(µx)/w(x) →
x→0

0. If in addition γ > 1 is such that there

is C > 0 such that for all k ∈ N we have

(k + 1)Ak+1 ≤ CγkAk, (2.8)

then, if µ ∈ ]0, 1[, there is a constant C ′ such that for all x > 0 we have

w(µx)

w(x)
≤ C ′xδ, (2.9)

where δ = − logµ/ log γ.

Remark 2.7. Let us mention for further reference that it follows from Proposition 2.4
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that there is γ > 1 such that the condition (2.8) is satis�ed by the sequence (Ak)k∈N for

every k ∈ N if and only if the class CA is closed under di�erentiation.

Proof of Lemma 2.6. Since w is de�ned as an in�mum of increasing functions, w is increas-

ing. Since w(x) is smaller than xkk!Ak for all k, it is clear that w vanishes at all orders in

0. If x ∈ R∗+, since xkk!Ak →
k→+∞

+∞, the in�mum in the de�nition of w(x) is attained by

a �nite number of integers k. Denote by k(x) the largest integer that realizes this in�mum.

Notice that if ` ≤ m then the logarithmic derivative of x 7→ x``!A` is smaller than that of

x 7→ xmm!Am. Consequently, the function x 7→ k(x) is decreasing. Thus if x0 > 0 then

for all x > x0 since k(x) ≤ k(x0) we have

w(x) = xk(x)k(x)!Ak(x) = min
n=0,...,k(x0)

xnn!An,

and consequently w is continuous on ]x0,+∞[. Since x0 > 0 is arbitrary, w is continuous

on R∗+.
Let µ be an element of ]0, 1[. Notice that for all x > 0 we have

w(µx)

w(x)
=

w(µx)

xk(x)k(x)!Ak(x)

≤
(µx)k(x) k(x)!Ak(x)

xk(x)k(x)!Ak(x)

= µk(x), (2.10)

and since it is clear that k(x) →
x→0

+∞, we get that w(µx)/w(x) →
x→0

0. Assume now that

(2.8) holds. Notice that if 0 < x < C−1 then(
x

γ

)k(x)+1

(k(x) + 1)!Ak(x)+1 ≤ xk(x)k(x)!Ak(x),

and thus we have

k

(
x

γ

)
≥ k(x) + 1.

Now, if 0 < x < C−1, letting n be the largest integer such that γnx < C−1, we �nd that

k(x) = k

(
γnx

γn

)
≥ k (γnx) + n ≥ n ≥ − log x

log γ
− a,

where a = log (γC) / log γ. Thus by (2.10) we �nd that if 0 < x < C−1 then

w(µx)

w(x)
≤ C ′xδ,

where C ′ = µ−a.

We end this section with a lemma that implies that every C∞ function on the circle

belongs to some Denjoy�Carleman class. It allows us to deduce Theorems 7 and 8 from
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their quantitative versions Theorem 2.9 and Propositions 2.16, 2.17 and 2.18. We omit the

elementary proof.

Lemma 2.8. Let (Ak)k∈N be a sequence of non-negative real numbers. Then there are a

constant C > 0 and an increasing and logarithmically convex sequence (Bk)k∈N of positive

real numbers such that B0 = 1 and

∀k ∈ N : Ak ≤ CBk.

2.2 Transfer operator for ultradi�erentiable expanding maps

of the circle

We are now going to use the notion of Denjoy�Carleman classes in order to prove Theorems

7 and 8. Let thus T be a C∞ expanding map of the circle (in the sense of De�nition 1).

Denote by λ > 1 a dilation constant for T . Moreover, let A = (Ak)k∈N be an increasing,

logarithmically convex sequence of positive real numbers such that A0 = 1, and assume

that T ′ : S1 → R is of class CA. We recall that the transfer operator L associated to T is

de�ned by

L : u 7→

x 7→ ∑
Ty=x

1

|T ′(y)|
u(y)

 . (2.11)

Using the function w = wA de�ned by (2.7), we can now state a quantitative version of

Theorem 7.

Theorem 2.9. For every θ ∈ ]1, λ[ there are constants C,M > 0 and a Hilbert space H
continuously contained in C∞

(
S1
)
and containing trigonometric polynomials as a dense

subspace, such that L de�nes a compact operator from H to itself. Moreover, if (σk)k∈N is

the sequence of singular values of L acting on H then we have

∀k ∈ N∗ : σk ≤ C sup
0<x≤ 1

k

w (Mx)

w (θMx)
. (2.12)

The proof of Theorem 2.9 is carried on in �2.2.1. In order to promote our idea that

Denjoy�Carleman classes that are closed under di�erentiation are much better-behaved

than the others, we will also prove the following:

Proposition 2.10. Assume that the Denjoy�Carleman class CA is closed under di�eren-

tiation. Then the elements of the Hilbert space H from Theorem 2.9 belong to the Denjoy�

Carleman class CA.

If Proposition 2.10 does not look that impressing, it admits the two following corollaries

that may be more interesting.



2.2. ULTRADIFFERENTIABLE EXPANDING MAPS OF THE CIRCLE 73

Corollary 2.11. Assume that the Denjoy�Carleman class CA is closed under di�erentia-

tion. Then the resonant states of L are of class CA.

Corollary 2.12. Assume that the Denjoy�Carleman class CA is closed under di�erentia-

tion. Let T1 and T2 be expanding maps of the circle of regularity CA and assume that they

are C1 conjugated. Then the conjugacy is actually of regularity CA.

Notice that Proposition 2.10 and Corollaries 2.11 and 2.12 are not from [Jéz20b]. Con-

cerning Corollary 2.11, it is well-known that the resonant states of an expanding map of

the circle T are C∞ under the sole assumption that T is C∞ (see Lemma B.1).

We will then prove Theorem 8 in �2.2.2. Actually, this proof will also come with

quantitative estimates � see Propositions 2.16, 2.17 and 2.18. Finally, we will see how

these results specify to the particular classes from Examples 2.1 and 2.2 in �2.2.3.

In Appendix A, we explain how the results from this section can be adapted to study

weighted transfer operators that are more general than (2.11).

2.2.1 Compactness of the transfer operator

Let us start the proof of Theorem 2.9. Let θ ∈ ]1, λ[ be �xed once for all. If n ∈ Z, we write
en for the function on the circle en : x 7→ e2iπnx. De�ne the family (πn)n∈N of orthogonal

projectors on L2
(
S1
)
by

πnu =

{
〈u, e0〉L2e0 if n = 0∑

θn−1≤|k|<θn〈u, ek〉L2ek otherwise
.

In order to give the de�nition of the spaceH from Theorem 2.9, we need to state a technical

but fundamental result.

Lemma 2.13. There are constants C,R > 0 such that for all m,n ∈ N and u ∈ L2
(
S1
)

such that m ≥ n we have

‖πmLπnu‖L2 ≤ Cw
(
R

θm

)
θ
m+n

2 ‖πnu‖L2 .

We can now de�ne H = Hθ,R,A as the space of u ∈ L2
(
S1
)
such that (R is the constant

from Lemma 2.13):

∑
m∈N

λ−2mw

(
R

θm−1

)−2

‖πmu‖2L2 < +∞. (2.13)

It is easily seen that the square root of the quantity above de�nes a norm for which H is

a Hilbert space. From Lemma 2.6, the quantity λ−mw
(

R
θm−1

)−1
tends to in�nity faster

than any geometric sequence when m tends to in�nity. Consequently, the space H is
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continuously contained in C∞
(
S1
)
. One can check easily that trigonometric polynomials

form a dense subspace of H.

Before proving Lemma 2.13, we need another technical result.

Lemma 2.14. There are constants C,R > 0 such that for all k, ` ∈ Z such that |k| > θ−1 |`|
we have

|〈Le`, ek〉L2 | ≤ Cw
(
R

|k|

)
.

Proof. De�ne the function ak,` : S1 → C by ak,`(x) = 1
2iπ(kT ′(x)−`) and the di�erential

operator

Lak,` : u 7→ (ak,`u)′.

Then for all m ∈ N we have

〈Le`, ek〉L2 =

∫
S1

e2iπ(`x−kT (x))dx =

∫
S1

e2iπ(`x−kT (x))Lmak,`(1)(x)dx,

so that

|〈Le`, ek〉L2 | ≤
∥∥∥Lmak,`(1)

∥∥∥
∞
.

In order to bound Lmak,`(1), we �rst investigate the derivatives of ak,`. By Faa di Bruno's

formula, for all n ∈ N and x ∈ S1 we have

a
(n)
k,` (x) =

1

2iπ

∑
m1+2m2+···+nmn=n

(−1)m1+...mn n!(m1 + · · ·+mn)!

m1! . . .mn!

× 1

(kT ′(x)− `)1+m1+···+mn

n∏
j=1

(
kT (1+j)(x)

j!

)mj
.

Thus, since T ′ belongs to the class CA,∣∣∣a(n)
k,` (x)

∣∣∣ ≤ 1

2π

∑
m1+2m2+···+nmn=n

n!(m1 + · · ·+mn)!

m1! . . .mn!

× 1

|kT ′(x)− `|1+m1+···+mn

n∏
j=1

(
|k|CRjAj

)mj ,
where C,R > 0 are from the de�nition of CA. Recall (2.2) and notice that we have

|kT ′(x)− `| ≥ λ |k|− |`| > δ |k|, where δ = λ− θ. Thus, we �nd (assuming that C > 1 and
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δ < 1, which is true without loss of generality)

∣∣∣a(n)
k,` (x)

∣∣∣ ≤ An
2πδ |k|

(
CR

δ

)n ∑
m1+2m2+···+nmn=n

n!(m1 + · · ·+mn)!

m1! . . .mn!
.

Now, notice that

∑
m1+2m2+···+nmn=n

n!(m1 + · · ·+mn)!

m1! . . .mn!
=

1 if n = 0

2n−1n! otherwise
.

Indeed, as a consequence of Faa di Bruno's formula, the sum in the left hand side is the

nth derivative at zero of the function

x 7→ 1 +
x

1− 2x
=

1

1− x
1−x

.

Notice then that for all m ∈ N there are natural integer coe�cients that do not depend

on ak,` such that

Lmak,`1 =
∑

n1+···+nm=m

cn1,...,nm

m∏
j=1

a
(nj)
k,` . (2.14)

Thus, using (2.2) again,

∥∥∥Lmak,`(1)
∥∥∥
∞
≤

∑
n1+···+nm=m

cn1,...,nm

m∏
j=1

(
nj !

Anj
2πδ |k|

(
2CR

δ

)nj)

≤ Am
(

CR

πδ2 |k|

)m ∑
n1+···+nm=m

cn1,...,nm

m∏
j=1

nj !.

Now replacing ak,` by the function a : x 7→ 1
1−x in (2.14) we have that (notice that

Lma (1) : x 7→ (2m)!
m!2m

1
(1−x)2m , where La is the di�erential operator de�ned by La(u) = (au)′)

∑
n1+···+nm=m

cn1,...,nm

m∏
j=1

nj ! = Lma (1)(0) =
(2m)!

m!2m
.

Thus ∥∥∥Lmak,`(1)
∥∥∥
∞
≤ m!Am

(2m)!

m!2

(
CR

2πδ2 |k|

)m
.

We only need to notice that (2m)!/m!2 grows at most exponentially to end the proof (with

di�erent values of C and R of course).

Proof of Lemma 2.13. We will only deal with the case n 6= 0, the case n = 0 is similar.
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Let us compute (here L∗ denotes the L2-adjoint of L, that is the Koopman operator):

‖πmLπnu‖2L2 =
∑

θm−1≤|k|<θm
|〈Lπnu, ek〉L2 |2 =

∑
θm−1≤|k|<θm

|〈πnu,L∗ek〉L2 |2

≤ ‖πnu‖2L2

∑
θm−1≤|k|<θm

‖πnL∗ek‖2L2

≤ ‖πnu‖2L2

∑
θm−1≤|k|<θm

∑
θn−1≤|`|<θn

|〈Le`, ek〉L2 |2 .

Now, if θm−1 ≤ |k| < θm and θn−1 ≤ |`| < θn then we have |k| ≥ θm−1 ≥ θn−1 > θ−1 |`|
(since m ≥ n) and thus by Lemma 2.14 we have (recall that w is increasing)

|〈Le`, ek〉L2 | ≤ Cw
(
R

|k|

)
≤ Cw

(
θR

θm

)
.

Consequently,

‖πmLπnu‖2L2 ≤ 4C2 ‖πnu‖2L2

(
θm − θm−1 + 1

) (
θn − θn−1 + 1

)
w

(
θR

θm

)2

and the result follows.

We will need another technical result to prove Theorem 2.9. For N ∈ N, de�ne the

following �nite rank operators on H:

Lc,N =
∑

0≤n≤m≤N
πmLπn and Lb,N =

∑
0≤m<n≤N

πmLπn. (2.15)

We will use these �nite rank operators to approximate the transfer operator L, to do so

we need the following lemma.

Lemma 2.15. There is a constant C > 0 such that for all M ≥ N ≥ 0 we have

‖Lc,N − Lc,M‖L2→H ≤ C sup
m>N

w
(
R
θm

)
w
(

R
θm−1

)
and

‖Lb,N − Lb,M‖H→H ≤ C sup
m≥N

w
(
R
θm

)
w
(

R
θm−1

) .
Proof. If u ∈ H then we have

(Lc,M − Lc,N )u =
∑

0≤n≤m≤M
N<m

πmLπnu
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and thus

‖(Lc,M − Lc,N )u‖2H =
∑

N<m≤M
λ−2mw

(
R

θm−1

)−2
∥∥∥∥∥∥πmL

∑
n≤m

πnu

∥∥∥∥∥∥
2

L2

.

But if N < m ≤M we have with Lemma 2.13∥∥∥∥∥∥πmL
∑
n≤m

πnu

∥∥∥∥∥∥
L2

≤
∑
n≤m
‖πmLπnu‖L2

≤ Cw
(
R

θm

)
θ
m
2

∑
n≤m

θ
n
2 ‖πnu‖L2

≤ C̃w
(
R

θm

)
θm
√∑
n≤m
‖πnu‖2L2 ,

and thus (for some new constant C that may change from one line to another)

‖(Lc,M − Lc,N )u‖2H ≤ C sup
m>N

(
w
(
R
θm

)
w
(

R
θm−1

))2∑
n≥0

(∑
m>N

θ2m

λ2m

)
‖πnu‖2L2

≤ C sup
m>N

(
w
(
R
θm

)
w
(

R
θm−1

))2∑
n≥0

‖πnu‖2L2

≤ C sup
m>N

(
w
(
R
θm

)
w
(

R
θm−1

))2

‖u‖2L2 .

Before proving the second estimate, let us show that there is a constant C > 0 such

that for every integer n we have

∑
0≤m<n

λ−2mw

(
R

θm−1

)−2

≤ Cλ−2nw

(
R

θn−2

)−2

. (2.16)

To do so, recall the function k(x) from the proof of Lemma 2.6 and choose m0 large enough

so that

λ2

θ
2k
(

R

θm0−1

) < 1.

Then, when n is large enough, we may split the sum in (2.16) between the sum over

0 ≤ m < m0 and the sum over m0 ≤ m < n. The �rst sum is independent on n, and can

consequently be ignored since the right-hand side of (2.16) tends to +∞ when n tends to
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+∞, according to Lemma 2.6. To bound the second sum, recall (2.10) to see that

λ2nw

(
R

θn−2

)2 ∑
m0≤m<n

λ−2mw

(
R

θm−1

)−2

≤
∑

m0≤m<n
λ2(n−m)

(
θm−n+1

)2k( R
θm−1

)

≤ λ2
∑
`≥0

(
λ2

θ
2k
(

R
θm0−1

)
)`

< +∞.

We turn now to the proof of the second estimate and write for u ∈ H

(Lb,M − Lb,N )u =
∑

0≤m<n≤M
N<n

πmLπnu

from which we get (we use (2.16) on the �fth line and C may change from one line to

another)

‖(Lb,M − Lb,N )u‖2H =
∑

0≤m<M
λ−2mw

(
R

θm−1

)−2
∥∥∥∥∥∥πmL

∑
n>max(m,N)

πnu

∥∥∥∥∥∥
2

L2

≤ C
∑

0≤m<M
λ−2mw

(
R

θm−1

)−2
∥∥∥∥∥∥

∑
n>max(m,N)

πnu

∥∥∥∥∥∥
2

L2

≤ C
∑

0≤m<M
λ−2mw

(
R

θm−1

)−2 ∑
n>max(m,N)

‖πnu‖2L2

≤ C
∑
n>N

 ∑
0≤m<n

λ−2mw

(
R

θm−1

)−2
 ‖πnu‖2L2

≤ C
∑
n>N

λ−2nw

(
R

θn−2

)−2

‖πnu‖2L2

≤ C sup
n>N

(
w
(

R
θn−1

)
w
(

R
θn−2

))2

‖u‖2H .

We are now in position to end the proof of Theorem 2.9.

Proof of Theorem 2.9. Lemma 2.15 implies in particular that the sequence (Lc,N )N∈N is

a Cauchy sequence of bounded operators from L2 to H and thus converges to a bounded

operator Lc : L2 → H. For the same reason, (Lb,N )N∈N converges to a bounded operator

Lb : H → H. By checking the identity on trigonometric polynomials, we see that

L = Lc + Lb. (2.17)
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In particular, L is bounded (and even compact, as a limit of �nite rank operators) from H
to itself. The only thing that we still need to check is the bound (2.12) on singular values

of the operator L acting on H. If N ∈ N, notice that the operator Lc,N + Lb,N has rank

at most 2dθNe+ 1. From Lemma 2.15 (letting M tend to in�nity), we deduce that

‖L − (Lc,N + Lb,N )‖H→H ≤ 2C sup
m≥N

w
(
R
θm

)
w
(

R
θm−1

)
and thus (see [GGK00, Theorem IV.2.5])

σ2dθN e+2 ≤ 2C sup
m≥N

w
(
R
θm

)
w
(

R
θm−1

) .
The result then follows from the fact that the sequence (σk)k∈N is decreasing.

We saw that H is continuously contained in C∞. However, when the class CA is closed

under di�erentiation, we can improve this result and prove Proposition 2.10.

Proof of Proposition 2.10. Let u ∈ H. Since u is C∞, we may write it as the sum of its

Fourier series

u =
∑
k∈Z
〈u, ek〉L2 ek. (2.18)

From the de�nition of H, we see that for k ∈ Z we have

|〈u, ek〉| ≤ λmw
(

R

θm−1

)
‖u‖H , (2.19)

where m is such that θm−1 ≤ |k| < θm if k 6= 0 and 0 otherwise. Since w is increasing,

(2.19) implies that

|〈u, ek〉| ≤ λ (|k|+ 1)
log λ
log θ w

(
θR

max(1, |k|)

)
‖u‖H . (2.20)

Now, choose L > 0 large and notice that if k ∈ Z and n ∈ N then we have for every x ∈ S1:

∣∣∣e(n)
k (x)

∣∣∣ = (2π |k|)n =

(
2π |k|
L

)n
(Ann!)−1 LnAnn!

≤ w
(

L

2πmax(1, |k|)

)−1

LnAnn!.

(2.21)
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From (2.18), (2.20) and (2.21), we �nd that for every n ∈ N and x ∈ S1

∣∣∣u(n)(x)
∣∣∣ ≤

∑
k∈Z

(|k|+ 1)
log λ
log θ

w
(

θR
max(1,|k|)

)
w
(

L
2πmax(1,|k|)

)
LnAnn! ‖u‖H .

Consequently, in order to prove that f belongs to CA, we only need to see that for L large

enough we have

∑
k∈Z

(|k|+ 1)
log λ
log θ

w
(

θR
max(1,|k|)

)
w
(

L
2πmax(1,|k|)

) < +∞.

Since CA is closed under di�erentiation, it follows from Proposition 2.4 that there is γ > 0

such that (2.8) holds for every k ∈ N. Hence, according to Lemma 2.6, there is C > 0 such

that for every k ∈ Z we have

w
(

θR
max(1,|k|)

)
w
(

L
2πmax(1,|k|)

) ≤ C max(1, |k|)−δ,

where δ = − log(2πθR/L)
log γ . Taking L large enough so that

logL > log (2πθRγ) +
log γ log λ

log θ
,

the lemma is proved.

We end this section with the proof of Corollaries 2.11 and 2.12 of Proposition 2.10.

Proof of Corollary 2.11. Applying Lemma B.1 (as in Example B.2), we �nd that the eigen-

vectors associated to non-zero eigenvalues of L acting on H are in fact the resonant states

for L in the sense of De�nition 3. Hence, the resonant states for L belong to H and are

thus of regularity CA according to Proposition 2.10.

Proof of Corollary 2.12. Any expanding map of the circle has at least one �xed point (this

is for instance a consequence of the classical result [KH95, Theorem 2.4.6]). Hence, without

loss of generality, we may assume that 0 is a common �xed point for T1 and T2. Then, we

let ρ1 and ρ2 denote the density of the invariant probability measures absolutely continuous

with respect to Lebesgue, respectively for T1 and T2. For j = 1, 2, we de�ne the map Fj
from S1 to itself by

Fj(x) =

∫
[0,x]

ρj(y)dy mod 1.
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Since ρ1 and ρ2 are fully supported, we see that the Fj 's are di�eomorphisms from S1 to

itself. Moreover [Rue89, Corollary 5.2], ρ1 and ρ2 are resonant states associated to the

resonance 1 respectively for T1 and T2. Hence, it follows from Corollary 2.11 that ρ1 and

ρ2, and hence F1 and F2, are of class CA. Since the Inverse Function Theorem holds in

regularity CA, the inverses of the di�eomorphisms F1 and F2 also belong to the class CA

(see [Kom79] or [BM04, Theorem 4.10]). In particular, the map F−1
2 ◦(±F1) is of regularity

CA. However, it follows from the claim on the bottom of the second page of [Art94] that

F−1
2 ◦ (±F1) is the conjugacy map between T1 and T2 (recall that it is unique once its

degree is �xed [KH95, Lemma 2.4.10]).

2.2.2 Nuclear power decomposition

We saw in the proof of Theorem 2.9 that the transfer operator L may be written as the

sum (2.17) of the operators Lb and Lc. In this section, we show that this is a nuclear

power decomposition in the spirit of [BT08], and we investigate the consequences of the

existence of such a decomposition, in particular in terms of dynamical determinants (see

Propositions 2.18 and 2.23). Thus, we will prove in particular Theorem 8.

We �rst investigate the operator Lb. To do so, de�ne the function g : N 7→ R∗+ by

g(N) = sup
m≥N

w
(
R
θm

)
w
(

R
θm−1

) (2.22)

and notice that g(N) →
N→+∞

0 by Lemma 2.6. The operator Lb is morally strictly upper

triangular, the following proposition uses the function g to quantify the fact that Lb is

quasi-nilpotent.

Proposition 2.16. There is a constant C > 0 such that for all n ∈ N∗ we have

‖Lnb ‖H→H ≤ C
n
n−1∏
k=0

g(k).

In particular, the spectral radius of Lb is zero (i.e. Lb is quasi-nilpotent).

Proof. Notice that if k < N then from the de�nition of Lb,N it comes that

(Lb,N − Lb,k)Lb,N = (Lb,N − Lb,k) (Lb,N − Lb,k+1) .

Thus if N ≥ n− 1 we have

Lnb,N =

n−1∏
k=0

(Lb,N − Lb,k) .
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Letting N tends to in�nity, we get that

Lnb =
n−1∏
k=0

(Lb − Lb,k)

and the result follows from Lemma 2.15.

Then we investigate the operator Lc (as an operator from H to itself).

Proposition 2.17. There are constants C,R′ > 0 such that, if we de�ne the function f

for x > 0 by

f(x) = xαw

(
R′

x

)
, (2.23)

where α = log λ/ log θ, and if (s`)`∈N denotes the sequence of singular values of Lc acting
on H, then, for all ` ≥ 1, we have

s` ≤ Cf(`). (2.24)

In particular, Lc is nuclear of order 0.

Proof. Since Lc is continuous from L2 to H, we have the following bound on its singular

values as a compact operator from H to itself:

∀m ∈ N : s2dθme+1 ≤ C sup
p≥m

λpw

(
R

θp−1

)
for some constant C > 0. Since f does not vanish, we only need to prove (2.24) for ` large.

Thus, let ` be large and let m be the largest integer such that ` ≥ 2dθme + 1. Then, we

have

s` ≤ s2dθme+1 ≤ C sup
y≥θm

yαw

(
θR

y

)
. (2.25)

Here, we performed the change of variables �y = θp". Then, notice that θm ≥ 1
2θ `−

3
2θ ≥

1
4θ `

(provided that ` is large enough). Hence, we deduce from (2.25) that, for ` large enough,

we have (with the change of variables �x = 4θy� and taking R′ = 4θ2R in the de�nition of

f)

s` ≤ C sup
x≥`

f(x). (2.26)

Recall the function k(x) from the proof of Lemma 2.6 and use (2.10) to see that for all
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x ≥ ` we have

f(x)

f(`)
≤
(x
`

)α−k(R′
`

)
, (2.27)

but if ` is large enough we have k
(
R′

`

)
> α and consequently f(x) ≤ f(`). Hence, for `

large enough we have

f(`) = sup
x≥`

f(x), (2.28)

and (2.24) follows from (2.26). To see that Lc is nuclear of order 0, recall from Lemma

2.6 that w vanishes at all orders in 0. Hence, f decays faster than the inverse of any

polynomial and so does the sequence of singular values of Lc.

Now, following [BT08], we want to use the nuclear power decomposition in order to

study the dynamical determinant d de�ned by (4) and (5). This is the point of Proposition

2.18, that completes the proof of Theorem 8.

Proposition 2.18. If z is small enough then we have

d(z) = det
(
I − z (I − zLb)−1 Lc

)
, (2.29)

where the dynamical determinant d is de�ned by (4) and (5).

Notice in particular that this proposition and Theorem 2 imply that the spectrum of L
acting on H coincides with the Ruelle spectrum of L from De�nition 3 (we already knew

that fact, as this is a consequence of Lemma B.1).

Proof of Proposition 2.18. If N ∈ N then the operators Lb,N and Lc are trace class (recall
that Lb,N , de�ned by (2.15), has �nite rank). Moreover, Lb,N is nilpotent and thus

det (I − z (Lb,N + Lc)) = det (I − zLb,N ) det
(
I − z (I − zLb,N )−1 Lc

)
= det

(
I − z (I − zLb,N )−1 Lc

)
→

N→+∞
det
(
I − z (I − zLb)−1 Lc

)
,

(2.30)

and the convergence holds uniformly on all compact subsets of C. Denote by h(z) the entire

function on the right-hand side of (2.29). Since h(0) = 1, there is a sequence (an)n≥1 of

complex numbers such that for |z| small enough we have

h(z) = exp

−∑
n≥1

an
n
zn

 .
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Then applying Cauchy's formula, we �nd for n ≥ 1 (and for ε small enough)

an = − 1

2iπ

∫
∂D(0,ε)

h′(z)

h(z)

dz

zn
= lim

N→+∞
tr ((Lb,N + Lc)n) .

Then notice that, since Lb,N is nilpotent we have

tr ((Lb,N + Lc)n) = tr
(
(Lb,N + Lc)n − Lnb,N

)
but the operators (Lb,N + Lc)n − Lnb,N converge in trace class topology to the operator

Ln − Lnb . Thus we have

an = tr (Ln − Lnb ) =
∑
k∈Z
〈(Ln − Lnb ) ek, ek〉L2 . (2.31)

Now, notice that if k ∈ Z and n ∈ N∗ we have 〈Lnb ek, ek〉L2 = 0. Indeed, if k ∈ Z∗ is such
that θm−1 ≤ |k| < θm, then for every N ∈ N, the image of ek by Lnb,N belongs to the span

of the e`'s such that |`| < θm−n. In particular, Lnb,Nek is orthogonal to ek. Since, we also

have Lnb,Ne0 = 0, we �nd that, for every k ∈ Z, we have 〈Lnb,Nek, ek〉L2 = 0, and, letting N

tends to in�nity, that 〈Lnb ek, ek〉L2 = 0. Hence, (2.31) gives

an =
∑
k∈Z
〈Lnek, ek〉L2 =

∑
k∈Z

∫
S1

e2ikπ(x−Tn(x))dx

= lim
m→+∞

∫
S1

sin ((2m+ 1)π(x− Tn(x)))

sin (π (x− Tn(x)))
dx.

(2.32)

Finally, we use a partition of unity in the last integral and locally we perform the change of

variable �u = x− Tn(x)�. Then, we recognize the Dirichlet kernel and �nd an = tr[ (Ln),

where the �at trace is de�ned by (5). This proves that h(z) = d(z).

The fact that the zeros of d are exactly the inverses of the non-zero eigenvalues of

L counted with multiplicity follows from [Kur61, Theorem 3.1]. However, notice that

in our case the situation is simpler than in the general theory of Weinstein�Aronszajn

determinant, and that the correspondence between the zeros of d and the inverses of the

non-zero eigenvalues of L may be deduced from the convergence (2.30).

In some cases, it may happen that L acting on H is trace class, or in some Schatten

class. In these cases, we may simplify Proposition 2.18 in the following way.

Proposition 2.19. Assume that there is p > 0 such that L acting on H is in the Schatten

class Sp. Then, if m denotes the smallest integer larger than p, we have

d(z) = detm (I − zL) exp

(
−
m−1∑
n=1

tr[ (Ln)

n
zn

)
, (2.33)
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where the tr[ (Ln)'s are de�ned by (5) and detm denotes the regularized determinant of

order m de�ned in [GGK00, IX] (this is the usual Fredholm determinant when m = 1).

In particular, the order of d is less than p and the trace formula (TFM) holds for every

n ≥ p.

Proof. We know that when |z| is small enough we have

detm (I − zL) = exp

−∑
n≥m

tr (Ln)

n
zn

 .

Then, the same computation (2.31)-(2.32) as in the proof of Proposition 2.18 ensures that

for n ≥ m we have

tr (Ln) =
∑
k∈Z
〈Lnek, ek〉L2 = tr[ (Ln) , (2.34)

and (2.33) follows. To see that d has order less than p, recall that the since L belongs to

the Schatten class Sp, its eigenvalues are p-summable, then apply Lidskii's Trace Theorem

to recognize that detm (I − zL) is a Weierstrass product and hence has order less than p

thanks to [Boa54, Theorem 2.6.5]. The validity of the trace formula (TFM) follows then

from Proposition 1.

Remark 2.20. If the sequence A satis�es (2.8) for some γ > 0, then the estimates (2.9)

and (2.12), respectively from Lemma 2.6 and Theorem 2.9 imply that the singular values

of L acting on H satisfy

σk =
k→+∞

O
(

1

kδ

)
, (2.35)

where δ = log θ/ log γ. Hence, L acting on H belongs to the Schatten class Sp for any

p > δ−1 and Proposition 2.19 implies that the order of d is less than log γ/ log θ. Since θ

may be chosen arbitrarily close to the expanding constant λ, the following result follows.

Corollary 2.21. If there is γ > 0 such that the sequence A satis�es (2.8), then the order

of the dynamical determinant d is less than log γ/ log λ and the trace formula (TFM) holds

for every n > log γ/ log λ.

Remark 2.22. Recall from Remark 2.7 that the validity of (2.8) (for some value of γ > 0)

is equivalent to CA being closed under di�erentiation. We advertised in Remark 2.5 that

it was a relevant notion when investigating trace formula, we explain now why.

Notice that (2.8) implies that taking a derivative in the class CA results in replacing

R by γR in (2.4). Composing by a contraction of factor λ−1 (which is basically what L
does) results in replacing R by λ−1R. Thus L has morally the same regularizing e�ect in

the class CA as taking log γ/ log λ primitives (notice that this number is not necessarily an
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integer). To put it loosely, L is a smoothing operator from the point of view of the class

CA. Consequently, the decay that we obtain on the singular values of L, and ultimately the

bound on the order of the dynamical determinant, is natural (considering for instance the

case of Sobolev injections) for an operator that �makes a function gain log γ/ log λ deriva-

tives�. We witness here an interesting phenomenon: the values of n for which Corollary

2.21 ensures that the trace formula (TFM) holds depend a priori on the dilation factor λ

for T .

Now, if the sequence (Ak)k∈N satis�es (2.6), we see that (2.8) holds for any γ > 1.

Hence, we see from the discussion above that L is an operator that �makes a function gain an

in�nite number of derivatives� in the class CA. To put it more rigorously, Proposition 2.19

implies that L acting on H is nuclear of order 0, and following the dynamical determinant

d has order zero and trace formula (TFM) always hold.

See the examples from �2.2.3 for further discussions of these phenomena.

Finally, we will use the nuclear power decomposition (2.17) with Propositions 2.16, 2.17

and 2.18 in order to bound the growth of the dynamical determinant d. To do so, de�ne

the entire functions F and G by

F (z) = (1 + z)
+∞∏
m=1

(1 + f(m)z) and G(z) =
+∞∑
n=0

(
n−1∏
k=0

g(k)

)
zn, (2.36)

where we recall that f and g have been de�ned respectively in (2.23) and (2.22). Notice

that F has genus zero. Thus if n(r) denotes the number of integersm such that f(m)−1 ≤ r
or m = 0, we have the following estimate [Boa54, Lemma 3.5.1] for r > 0:

logF (r) ≤
∫ r

0

n(s)

s
ds+ r

∫ +∞

r

n(s)

s2
ds. (2.37)

This bound may be used with Proposition 2.23 to control the growth of the dynamical

determinant, see �2.2.3 for examples.

Proposition 2.23. There is a constant C such that for all z ∈ C we have

|d(z)| ≤ F (C |z|G (C |z|)) .

Proof. Let z ∈ C. Denote by (ck)k∈N the sequence of singular values of the operator

−z (I − zLb)−1 Lc and by (λk)k∈N the sequence of its eigenvalues. By Lidskii's Theorem

we have

|d(z)| =

∣∣∣∣∣∏
k∈N

(1 + λk)

∣∣∣∣∣ ≤ 1 +
∑
n≥1

∑
k1<···<kn

n∏
j=1

∣∣λkj ∣∣ .
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Then applying [GGK00, Theorem IV.3.1] we see that

|d(z)| ≤ 1 +
∑
n≥1

∑
k1<···<kn

n∏
j=1

ckj =
∏
k≥0

(1 + ck) .

Now if (sk)k≥0 denotes the sequence of singular values of Lc then we have for k ≥ 1 (replace

f(k) by 1 in the case k = 0)

ck ≤ |z|
∥∥∥(I − zLb)−1

∥∥∥
H→H

sk ≤ C |z|
∥∥∥(I − zLb)−1

∥∥∥
H→H

f(k),

for some constant C > 0, and thus |d(z)| ≤ F
(
C |z|

∥∥∥(I − zLb)−1
∥∥∥
H→H

)
. But from

Lemma 2.16, we get that, up to taking larger C, we have∥∥∥(I − zLb)−1
∥∥∥
H→H

≤ G (C |z|) ,

which ends the proof of the proposition.

Remark 2.24. Assume that the right-hand side of (2.12) in Theorem 2.9 is summable.

Then we know that L acting on H is trace class and Proposition 2.19 implies that the

order of the dynamical determinant d is less than 1. In particular, d has genus zero, and

when the right-hand side of (2.12) decays very fast we may want to get a better bound

on d. To do so, we may work as in the proof of Proposition 2.23 to �nd that there is a

constant C > 0 such that for every z ∈ C we have

|d(z)| ≤ (1 + C |z|)
∏
k∈N∗

(
1 + C |z| sup

x≤ 1
k

w (Mx)

w (θMx)

)
. (2.38)

The in�nite product in the right-hand side of (2.38) may be bounded using [Boa54,

Lemma 3.5.1] as we did for F : just replace n(s) by the number of integer k such that

supx≤ 1
k

w(Mx)
w(θMx) ≥ s

−1 in (2.37) or k = 0.

Remark 2.25. Notice that, using Jensen's formula [Boa54, 1.2.1 p.2], a bound on the

growth of the dynamical determinant immediately gives an upper bound on the asymptotics

of the number of Ruelle resonances outside of D(0, ε), when ε tends to 0.

2.2.3 Examples

Gevrey and analytic dynamics

In this section we take Ak = k!s−1 for some s ≥ 1, that is we study the Gevrey classes of

regularity from Example 2.1. We still denote by T an expanding map of the circle with

expanding factor at least λ > 1, and we assume that T ′ is s-Gevrey. In this case, we see
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that for every γ > 1, we can �nd C > 0 such that for all k ∈ N the estimate (2.8) holds.

Thus the dynamical determinant d has order 0. But we can of course get a better bound.

To do so, recall the function k from the proof of Lemma 2.6. Its de�nition implies that

if x > 0 then

xk(x)k(x)!s < xk(x)+1 (k(x) + 1)!s

and thus

k(x) > x−
1
s − 1.

Then if θ ∈ ]0, λ[ and M > 0 is the constant from Theorem 2.9, we have when m ≥ 1

σm ≤ C sup
0<x≤ 1

m

w(Mx)

w(θMx)
≤ sup

0<x≤ 1
m

(
1

θ

)k(θMx)

≤ c exp
(
−c−1m

1
s

)
(2.39)

for some constant c > 0. Thus, by [Jéz20a, Lemma 2.13] (or Remark 2.24), we have that

for some constant c > 0 we have

|d(z)| ≤ c exp
(
c
(
log+ |z|

)1+s
)
.

Notice that we retrieve the optimal result [BN19] when s = 1, which is also the result of

Ruelle [Rue76].

Remark 2.26. The bound (2.39) on the singular values of L acting on H implies that the

transfer operator L belongs to the exponential class of type (c−1, σ−1) de�ned in [Ban08].

Hence, we may apply the results from [Ban08] to transfer operators associated to Gevrey

expanding maps of the circle. For instance, the resolvent estimates [Ban08, Theorem

3.13] may be used to derive a better (super-exponential) remainder in the asymptotics

expansion for the correlations of Gevrey observables (see [GL08, Theorem 1.2] for the usual

asymptotics of correlation in the case of hyperbolic di�eomorphisms). We could probably

also use [Ban08, Theorem 4.2] to control globally the Ruelle spectrum of a perturbation of

T in the Gevrey category.

The class Cκ,υ

We investigate now the classes from Example 2.2 and illustrate the discussion from Remark

2.22. Recall that these classes will be used in Chapter 3 to de�ne a class of Anosov

�ow for which the trace formula (TFF). Hence, we choose κ > 0 and υ ≥ 1 and take

Ak = exp(kυ/κυ). Recall that according to Proposition 2.4 the class Cκ,υ is closed under

di�erentiation if and only if υ ≤ 2. Moreover, the stronger condition (2.6) holds if and

only if υ < 2. We assume now that T ′ belongs to the class Cκ,υ.
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Let us deal �rst with the case 1 < υ < 2 (the case in which (2.6) holds), then we see

that for 0 < x < 1 and some constants c depending on κ we have (k is still from the proof

of Lemma 2.6)

k(x) ≥ c−1 |log x|
1

υ−1 − c, (2.40)

thus if µ ∈ ]0, 1[, we have for some new constant c > 0 and small x > 0

w(µx)

w(x)
≤ c exp

(
−c−1 |log x|

1
υ−1

)
. (2.41)

Then, for some new constant c > 0 the estimates on the singular values of L from Theorem

2.9 becomes (for k ≥ 1)

σk ≤ c exp
(
−c−1 (log k)

1
υ−1

)
.

Once again, this gives, with Remark 2.24, that, up to taking larger c,

|d(z)| ≤
∏
k≥1

(
1 + c |z| exp

(
−c−1 (log k)

1
υ−1

))
. (2.42)

Using [Boa54, Lemma 3.5.1] to bound the right-hand side of (2.42) (that is using (2.37)

with the modi�cation described in Remark 2.24), we get that for some new constant c > 0

and all z ∈ C we have

log+ |d(z)| ≤ c exp
(
c
(
log+ |z|

)υ−1
)
. (2.43)

In particular, d has order zero, but this could have been seen as a consequence of Corollary

2.21 (see also Remark 2.22).

Now, if υ = 2 (the case in which Cκ,υ is closed under di�erentiation but (2.6) does not

hold) then we have

lim
k→+∞

(
(k + 1)Ak+1

Ak

) 1
k

= e
1
κ .

Thus, by Corollary 2.21, the dynamical determinant d has order less than (κ log λ)−1.

We have here a very interesting behaviour: the bound on the order of the dynamical

determinant depends on the dilation factor (this implies in particular that trace formula

(TFM) holds for large n according to Proposition 1). As pointed out in Remark 2.22, it

is not surprising that this behaviour occurs for the value of υ that separates classes that

are closed under di�erentiation and those that are not. As far as we know, it is the �rst

time that such a behavior is proved and, consequently, it would be particularly interesting
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to know whether our result is sharp or not in that case.

Finally, we deal with the case υ > 2, when the class Cκ,υ is not closed under di�erenti-

ation. The estimates (2.40), and thus (2.41), remain true. Thus, for some c > 0, we have

for large N (recall that g is de�ned by (2.22))

g(N) ≤ c exp
(
−c−1N

1
υ−1

)
and thus, changing the value of c,

N−1∏
k=0

g(N) ≤ c exp
(
−c−1N1+ 1

υ−1

)
.

Then, in the de�nition (2.36) of G, we may split the sum between n ≤
(

2 log r
c

)υ−1
and

n >
(

2 log r
c

)υ−1
, to �nd that for some c > 0 and all r > 0

log+G(r) ≤ c
((

log+ r
)υ

+ 1
)

An easy computation shows that for some c > 0 and all m ≥ 1 we have

f(m) ≤ c exp
(
−c−1 (logm)

υ
υ−1

)
,

where f has been de�ned by (2.23). Thus reasoning as above in the case υ < 2 (that is

using [Boa54, Lemma 3.5.1], which has been stated as (2.37) in this case), we �nd that for

some c > 0 and r > 0

log+ F (r) ≤ c exp
(
c
(
log+ r

)υ−1
υ

)
.

And by Proposition 2.23, we see that there is still a new constant c > 0 such that for all

z ∈ C we have

log+ |d(z)| ≤ c exp
(
c
(
log+ |z|

)υ−1
)
. (2.44)

Notice that this is the same estimate than (2.43) that we established in the case υ < 2, and

that it is still true in the case υ = 2 (but we have more precise information in this case).

It is very interesting that the bound (2.44) is true regardless of the value of υ while there

is a huge change in the structure of the transfer operator at υ = 2. Hence, it seems that

in most cases the nuclear power decomposition contains all the information that we need

on the dynamical determinant. This is indeed a very versatile tool that allows also to deal

with �nitely di�erentiable map [Bal18], and as we have just seen, it does not seem that

we lose much information by using this method in more favorable cases. Notice however
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that in some very favorable cases (such as Gevrey and analytic dynamics), the nuclear

decomposition does not seem to give the best bound (this is because in this case, the

bounds on the singular values of L and Lc are very similar).

2.3 Koopman operators for Gevrey hyperbolic maps

In [Jéz20a], we applied the strategy exposed in �2.2 to more complicated dynamics �

hyperbolic basic sets for smooth di�eomorphisms, see �1.2.1. Hence, we were able to prove

the following result. We recall that Gs is our abbreviation for s-Gevrey. The spaces Gsc (V )

and Usc (V ) and their topologies will be introduced in �4.1.1. The latter is a space of linear

functionals on Gevrey functions � or ultradistributions.

Theorem 2.27 ([Jéz20a]). Let s > 1. Let M be a Gs manifold and T : M → M a Gs

di�eomorphism. Let K be a hyperbolic basic set for T . Then there exist a compact isolating

neighbourhood V for K and a separable Hilbert space H such that the following holds

(i) the Hilbert space H is contained in Usc (V ) and the inclusion is continuous;

(ii) the Hilbert space H contains Gsc (V ) and the inclusion is continuous with dense image;

(iii) if g : M → C is a Gs function supported in V , the weighted Koopman operator L
de�ned by (1.16) extends to a trace class operator from H to itself;

(iv) for all n ∈ N∗ we have tr (Ln) = tr[ (Ln) � where the �at trace of Ln is de�ned by

(1.18)�, in particular the dynamical determinant d, de�ned by (1.17), is the Fredholm

determinant of L, and the trace formula (TFM) holds for every n ∈ N∗;

(v) for all β > 2 + (s+ 1) d we have

log+ |d (z)| =
|z|→+∞

O
(

(log |z|)1+β
)
,

in particular d has order zero;

(vi) if N (r) is the number of Ruelle resonances for (T, g) outside of the closed disc of

center 0 and radius r (counted with multiplicity) we have for all β > 2 + (s+ 1) d

N (r) =
r→0
O
(
|log r|1+β

)
.

Let us discuss a bit Theorem 2.27. First of all, the strategy to construct the space H
is similar to the one exposed in �2.2. However, following the general philosophy exposed

in the introduction, the space H from Theorem 2.27 has to be anisotropic. This means

that the elements of H are indeed very smooth in the stable direction (as in �2.2) but very

irregular in the unstable direction. This is why we end up with a space that is intermediate
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between Gevrey functions and ultradistributions (rather than between C∞ function and

distributions as in Theorem 3).

There are certain technical di�erences between the proofs of Theorems 2.9 and 2.27.

There are indeed some additional geometric complications in the proof of Theorem 2.27

since we need to control the stable and unstable directions for the hyperbolic map T . This

is slightly harder than in the C∞ case, since we need to make the hyperbolicity of T e�ective

after just one iteration of T in order to control the singular values of L. We introduced the

notion of �generalized cone-hyperbolicity� to do so (see [Jéz20a, De�nition 7.1]). A similar

notion will be used in Chapter 3 to deal with ultradi�erentiable Anosov �ows, see �3.3.

Another technical di�erence between the proofs of Theorems 2.9 and 2.27 is the kind

of Paley�Littlewood decompositions that we are using. In �2.2, we introduced a Paley�

Littlewood with blocks of exponential sizes adapted to the hyperbolicity of our map. On the

contrary, in [Jéz20a] we used a Paley�Littlewood decomposition with blocks of polynomial

size (depending on the regularity of the map). The construction from �2.2 seems to give

slightly better results (see �2.2.3), and it is likely that they can be adapted to the case of

hyperbolic maps in order to improve Theorem 2.27 (for instance, one could try to allow

smaller values of β in (v) and (vi)). However, one have to keep in mind that the excessively

simple geometry of the circle is one of the elements that allowed us to design the spaces

from �2.2 more carefully than those of [Jéz20a].

Remark 2.28. Theorem 2.27 suggests that the dynamical determinant (12) associated to

a Gevrey Anosov �ow should have �nite order. Let us explain why. In general, we expect an

exponential scaling between results for Anosov di�eomorphisms and �ows. For instance, if

d denotes the dynamical determinant (4) associated to a transitive Anosov di�eomorphism

T and d̃ the dynamical determinant (12) associated to the time 1 suspension of T , then an

elementary computation ensures that d̃(z) = d(ez) for every z ∈ C. Under this exponential
scaling, the almost polynomial bound from (v) in Theorem 2.27 deteriorates into �nite

order for the dynamical determinant d̃.

This is one of the reasons why we think that Gevrey regularity is the good setting

in order to establish �nite order for the dynamical determinant (12) associated to an

Anosov �ow. Some heuristic computations based on the construction of Hilbert spaces of

anisotropic distributions from [FS11] also support this idea.



Chapter 3

Trace formula for ultradi�erentiable

Anosov �ows

This chapter is dedicated to the proof of Theorem 9. The contents of this chapter and of

Appendices C and D may also be found in [Jéz19a]. Appendix B is written in a slightly

more general way than the corresponding [Jéz19a, Appendix A] in order to cover the

di�erent types of systems that are considered in this thesis.

We will start by discussing a bit further the classes Cκ,υ from Example 2.2 in �3.1.

Using the notations from �3.1, we can get a precise version of Theorem 9.

Theorem 3.1. Let κ > 0 and υ ∈ ]1, 2[. Let M be a Cκ,υ compact manifold, (φt)t∈R be a

Cκ,υ Anosov �ow on M with generator X and V : M → C a Cκ,υ function. Then for every

t0 > 0 there is a separable Hilbert space H such that

(i) for every υ̃ > υ su�ciently close to υ, we have C∞,υ̃ (M) ⊆ H ⊆ Dυ̃ (M)′, both

inclusions are continuous, and the �rst one has dense image;

(ii) for every t ∈ R+, the operator Lt de�ned by (9) is bounded on H;

(iii) (Lt)t≥0 de�nes a strongly continuous semi-group of operators on H, whose generator
coincides with P = X + V on its domain, which is {u ∈ H : Pu ∈ H};

(iv) the spectrum of P acting on H consists of isolated eigenvalues of �nite multiplicity

which coincide with the Ruelle resonances of P (multiplicity taken into account);

(v) if h : R∗+ → C is C∞ and compactly supported in [t0,+∞[ then the operator∫ +∞

0
h (t)Ltdt : H → H (3.1)

is trace class and its non-zero spectrum is the intersection of C \ {0} with the image

of the spectrum of P by λ 7→ Lap (h) (−λ) (multiplicity taken into account, Lap (h)
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denotes the Laplace transform of h). Moreover, the trace of the operator (3.1) is

given by

tr

(∫ +∞

0
h(t)Ltdt

)
=
∑
γ

T#
γ

h (Tγ)

|det (I − Pγ)|
exp

(∫
γ
V

)
,

where the sum on the right-hand side runs over periodic orbits γ of the �ow (φt)t∈R,

the notations are as in (12).

This is indeed a more precise version of Theorem 9, since, with Lidskii's trace theorem

[GGK00, Theorem 6.1 p.63], the last point of Theorem 3.1 implies the following Corollary.

Corollary 3.2 (Trace formula for ultradi�erentiable Anosov �ows). Under the assumptions

of Theorem 3.1, the trace formula (TFF) holds. In particular, the right-hand side of (TFF)

de�nes a distribution.

As a by-product of the proof of Theorem 3.1, we get the following bound on the number

of Ruelle resonances for ultradi�erentiable Anosov �ow. Notice that it implies that the

right-hand side of (TFF) converges indeed to a distribution on R∗+.

Proposition 3.3. Under the assumptions of Theorem 3.1, for all ε > 0, we have

∑
λ∈σR(P )

eεRe(λ)

1 + |λ|dimM+ε
< +∞,

where P = X + V .

The bound on the number of resonances given by Proposition 3.3 is not su�cient

to apply Proposition 1.27 and get a Hadamard factorization [Boa54, Theorem 2.7.1] for

the dynamical determinant d de�ned by (12). However, we will derive in Appendix C a

�Hadamard-like� factorization for d.

Finally, although we need υ < 2 to prove (TFF), most of the statements in Theorem 3.1

remain true when υ ≥ 2. We discuss in Appendix D the relevance and necessity of the

condition υ < 2 through the simplest possible example: the doubling map on the circle.

Concerning this condition, we also refer to the discussion from Chapter 2 about Denjoy�

Carleman classes that are closed under di�erentiation (see in particular Remarks 2.5 and

2.22 and the examples from �2.2.3).

Proposition 3.4. If, in Theorem 3.1, we allow υ ≥ 2, then there is still a Hilbert space H
satisfying (i),(ii),(iii) and (iv). Moreover, under the hypothesis of (v), the operator (3.1) is

compact and its spectrum can be described as in Theorem 3.1 in terms of Ruelle resonances.

This chapter is structured as follow. As already mentioned, �3.1 is dedicated to a

discussion of the classes Cκ,υ and associated generalized distributions. Then, in �3.2, we

construct a �local� version of the space H from Theorem 3.1. In �3.3, we study the action
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of a local model for the Koopman operator (9) on these local spaces. In �3.4, we construct

a �rst version of the space H from Theorem 3.1. However, the action of the Koopman

operator (Lt)t∈R � from (9) � on this �rst space will not be controlled for small t's, a �aw

that will be �xed in �3.5, proving Theorem 3.1 as well as Corollary 3.2 and Propositions

3.3 and 3.4.

3.1 The classes Cκ,υ

In �2.1, Example 2.2, we de�ned the classes of regularity Cκ,υ for κ > 0 and υ > 1. It is

a well-established fact (see e.g. [KMR09] and references therein) that the condition (2.1)

implies that the class Cκ,υ is closed under multiplication, composition, the Inverse Function

Theorem and solving ODEs. Notice that, according to Proposition 2.4, the class Cκ,υ is

closed under di�erentiation if and only if υ ≤ 2. Since Cκ,υ is greater than any Gevrey

class (we assume υ > 1), it is non-quasi-analytic and thus contains partitions of unity.

The Fourier transform will be a key tool in this paper, it is thus natural to introduce a

suitable class of rapidly decreasing functions and associated spaces of tempered generalized

distributions. This is often done in the literature, in particular when dealing with Gevrey

classes (see for instance [Pil88, CP92]). Notice that we will use the following convention

for the Fourier transform: if f ∈ L1 (Rn) and ξ ∈ Rn we set

F (f) (ξ) = f̂ (ξ) =

∫
Rn
e−ixξf (x) dx.

For all κ > 0, υ > 1 and f ∈ C∞ (Rn), de�ne

‖f‖κ,υ = sup
x∈Rn
α∈Nn
m∈N

(1 + |x|)m |∂αf (x)| exp

(
−(m+ |α|)υ

κυ

)
.

Then de�ne, for υ > 1,

Sυ =
{
f ∈ C∞ (Rn) : ∀κ ∈ R∗+, ‖f‖κ,υ < +∞

}
, (3.2)

which is a Fréchet space when endowed with the family of semi-norms ‖·‖κ,υ for κ > 0.

Notice that Sυ is contained in the usual space of Schwartz functions and that the elements

of Sυ are in the Denjoy�Carleman class Cκ,υ for every κ > 0. One may also check that Sυ is
closed under di�erentiation. We will denote by (Sυ)′ the space of continuous linear forms

on Sυ endowed with the weak-star topology. This space will play the role of tempered

distributions in our context.

Proposition 3.5. If υ > 1, then the Fourier transform from Sυ to itself is a continuous

isomorphism.
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Proof. We start by proving that the Fourier transform is continuous from Sυ to itself. Let

0 < κ′ < κ. Let f ∈ Sυ and recall that for all ξ ∈ Rn and α, β ∈ Nn we have1

ξα∂β f̂ (ξ) = (−i)|α|+|β|
∫
Rn
e−ixξ∂α

(
xβf(x)

)
dx

= (−i)|α|+|β|
∑

γ1+γ2=α
γ2�β

α!β!

γ1!γ2! (β − γ2)!

∫
Rd
e−ixξxβ−γ2∂γ1f(x)dx,

where γ2 � β means that each coordinate of γ2 is smaller than the corresponding coordinate

of β. Then, notice that there is a constant C > 0 such that, for every γ1, γ2, β ∈ Nd such

that γ2 � β, we have∣∣∣∣∫
Rn
eixξxβ−γ2∂γ1f(x)dx

∣∣∣∣ ≤ C ‖f‖κ,υ exp

(
(|β| − |γ2|+ |γ1|+ n+ 1)υ

κυ

)
.

Moreover, up to making C larger we also have, for every γ2 ∈ Nn,

γ2! ≤ C exp

(
|γ2|υ

κυ

)
.

Consequently, we �nd that for every ξ ∈ Rn and α, β ∈ Nn, the quantity
∣∣∣ξα∂β f̂(ξ)

∣∣∣ is
smaller than

C2 ‖f‖κ,υ
∑

γ1+γ2=α
γ2�β

α!

γ1!γ2!

β!

γ2! (β − γ2)!
exp

(
|γ2|υ + (|β| − |γ2|+ |γ1|+ n+ 1)υ

κυ

)

≤ C2 ‖f‖κ,υ 2|α|+|β| exp

(
(|α|+ |β|+ n+ 1)υ

κυ

)
.

Using the fact that for ` ∈ N

|ξ|2` =

 n∑
j=1

|ξj |2
`

=
∑
|α|=`

c (α) ξ2α,

where
∑
|α|=` c (α) = n`, we see that, for some new constant C > 0, we have for all

m ∈ N, ξ ∈ Rn and α, β ∈ Nn:

(1 + |ξ|)m
∣∣∣∂β f̂ (ξ)

∣∣∣ ≤ C ‖f‖κ,υ (4√n)m 2|β| exp

(
(m+ |β|+ n+ 2)υ

κυ

)
. (3.3)

Indeed, we can deal �rst with m even and then argue that (1 + |ξ|)m ≤ (1 + |ξ|)m+1.

Finally, since κ′ < κ and (r+n+2)υ

κ − rυ

κ′ ∼
r→+∞

−κ−κ′
κκ′ r

υ, we see that, for some new constant

1There is an error in the expression for ξα∂β f̂ (ξ) in the proof of [Jéz20a, Proposition 5.3]. However,
the proof is easily �xed by using the correct formula that we give here.



3.1. THE CLASSES Cκ,υ 97

C > 0, we have ∥∥∥f̂∥∥∥
κ′,υ
≤ C ‖f‖κ,υ ,

and the Fourier transform is indeed continuous from Sυ to itself. The same argument gives

that the inverse Fourier transform is also continuous from Sυ to itself. Moreover, since Sυ

is included in the space of Schwartz function on Rn, the elements of Sυ satisfy the Fourier

Inversion Formula. Hence, the Fourier transform is indeed a continuous automorphism of

Sυ.

Proposition 3.5 allows to de�ne the Fourier transform on (Sυ)′ by duality in the usual

way. Since Sυ is closed by multiplication, for ψ ∈ Sυ we can de�ne the Fourier multiplier

ψ (D) : (Sυ)′ → (Sυ)′ by

∀u ∈ (Sυ)′ : ψ (D)u = F−1 (ψ.û) .

It is well-known that the Fourier transform of a C∞ compactly supported function decays

faster than the inverse of any polynomial. For functions in the class Cκ,υ this statement

is made quantitative in Proposition 3.6 below. This is the key point that will allow us in

�3.2 to construct Sobolev-like spaces of anisotropic generalized distributions that are the

pieces from which we will construct the space H from Theorem 3.1 in �3.4 and �3.5.

Proposition 3.6. For every R > 0 and υ > 1, there are constants C > 0 and κ > 0 such

that, for all f ∈ Sυ and ξ ∈ Rn, we have∣∣∣f̂ (ξ)
∣∣∣ ≤ C ‖f‖κ,υ exp

(
−R(ln (1 + |ξ|))

υ
υ−1

)
. (3.4)

Proof. Choose κ > 0 large enough so that

R′ := κ
1

υ−1
υ − 1

υ
> R.

Then apply (3.3) from the proof of Proposition 3.5 with β = 0 to get a constant C > 0

such that, for all ξ ∈ Rn and m ∈ N, we have∣∣∣f̂ (ξ)
∣∣∣ ≤ C ‖f‖κ,υ ( 4

√
n

1 + |ξ|

)m
exp

(
(m+ n+ 2)υ

κυ

)
.

When |ξ| is small, we bound f̂(ξ) by taking m = 0. When |ξ| is large enough so that the

following expression makes sense and is non-negative, we take

m =

⌊(
− ln

(
4
√
n

1 + |ξ|

)) 1
υ−1

κ
1

υ−1 − n− 2

⌋
.
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With this choice of m we have(
4
√
n

1 + |ξ|

)m
exp

(
(m+ n+ 2)υ

κυ

)
≤ exp

((∣∣∣∣ln( 4
√
n

1 + |ξ|

)∣∣∣∣ 1
υ−1

κ
1

υ−1 − n− 3

)
ln

(
4
√
n

1 + |ξ|

)

+
κ

1
υ−1

υ

∣∣∣∣ln( 4
√
n

1 + |ξ|

)∣∣∣∣ υ
υ−1

)

≤
(

1 + |ξ|
4
√
n

)n+3

exp

(
κ

1
υ−1

1− υ
υ

(
ln

(
1 + |ξ|
4
√
n

)) υ
υ−1

)

≤
(

1 + |ξ|
4
√
n

)n+3

exp

(
−R′

(
ln

(
1 + |ξ|
4
√
n

)) υ
υ−1

)
,

and the result follows then from the fact that (recall that R′ > R)

(
1 + r

4
√
n

)n+3

exp

(
R (ln (1 + r))

υ
υ−1 −R′

(
ln

(
1 + r

4
√
n

)) υ
υ−1

)
→

r→+∞
0.

We need to extend the notion of ultradi�erentiability to more general objects than

complex-valued functions in order to make sense of Theorem 3.1. For instance, we will

de�ne what a Cκ,υ manifold is. To do it, we follow ideas that may be found in [KMR09],

notice however that when υ > 2 the sequence (Am)m∈N from Example 2.2 is not a DC-

weight sequence in the sense of [KMR09], so that we cannot apply most of their results.

Hopefully, it will be clear in the remaining of the section that, whereas the general theory

of our ultradi�erentiability classes may not be very satisfactory, this is of no harm in our

pedestrian approach to the problem of the trace formula.

We already de�ned in �2.1 what it means for a map from an open subset of Rn to a

Banach space to be Cκ,υ. We recall that this class of regularity is closed under composition

and inversion. A Cκ,υ manifold is then de�ned to be a Hausdor� topological space with

countable basis endowed with a maximal Cκ,υ atlas � i.e. a maximal atlas whose change

of charts are Cκ,υ. As usual, a map f : M → N between two Cκ,υ manifolds is said to be

Cκ,υ if it is Cκ,υ �in charts�.

We de�ne now topological vector spaces associated to these classes of regularity. If M

is a Cκ,υ manifold for some κ > 0 and υ > 1 then M has a natural Cκ′,υ̃ manifold structure

for all κ′ > 0 and υ̃ > υ, so that we may de�ne the class C∞,υ̃ (M) of functions from M

to C that are Cκ′,υ̃ for all κ′ > 0. Notice that all Cκ,υ functions from M to C belong to

C∞,υ̃ (M) if υ̃ > υ.

Notice that if υ > 2 then the class Cκ,υ is not closed under di�erentiation and in
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particular in this case the tangent bundle TM has no natural Cκ,υ structure. However,

derivatives of Cκ,υ functions are Cκ′,υ for all 0 < κ′ < κ. Thus the tangent bundle TM

may be endowed naturally with a Cκ′,υ structure, so that it makes sense to talk about a

Cκ′,υ̃ vector �eld when υ̃ > υ, or υ̃ = υ and κ′ < κ. Integrating such a vector �eld gives

rise to a Cκ′,υ̃ �ow2 (φt)t∈R, see [KMR09, Kom80]. A consequence of this fact is that if

X is a Cκ′,υ̃ vector �eld on M that does not vanish then X is locally conjugated via Cκ′,υ̃

charts to a constant vector �eld on Rn where n = dimM . This implies in particular that if

υ′ > υ̃ then C∞,υ′ is closed under di�erentiation with respect to X (this operation is even

continuous with respect to the topology that we de�ne below).

If M is compact, we endow C∞,υ̃ (M) with a structure of Fréchet space in the following

way: if U is an open subset of M and V is an open subset of Rn, if ψ : U → V is a C∞,υ̃

chart, ϕ is an element of C∞,υ̃ supported in U and κ > 0, de�ne the semi-norm ‖·‖ψ,ϕ,κ,υ̃
by

∀u ∈ C∞,υ̃ : ‖u‖ψ,ϕ,κ,υ̃ = sup
α∈Nn
x∈V

∣∣∂α ((ϕu) ◦ ψ−1
)

(x)
∣∣ exp

(
−|α|

υ̃

κυ̃

)
.

The topology of C∞,υ̃ (M) is generated by a countable family of these semi-norms: since

M is compact we can cover M by a �nite number of domain of charts and take a partition

of unity subordinated to this cover, then we only need to let κ runs through the integers.

The completeness of C∞,υ̃ (M) is easily veri�ed. One can also check using Leibniz formula

that pointwise multiplication C∞,υ̃ (M)×C∞,υ̃ (M)→ C∞,υ̃ (M) is continuous. Notice also

that if N is another Cκ,υ manifold and ψ : M → N is a Cκ,υ local di�eomorphism then the

map C∞,υ̃ (N) 3 u 7→ u ◦ ψ ∈ C∞,υ̃ (M) is continuous.

We will also need the space Dυ̃ (M) of C∞,υ̃ densities on M : this is the space of

complex measures of M which are absolutely continuous with respect to Lebesgue and

whose density in any C∞,υ̃ chart is C∞,υ̃. We endow Dυ̃ (M) with a Fréchet structure as we

did for3 C∞,υ̃ (M). We will denote by Dυ̃ (M)′ the space of continuous linear functionals

onM on Dυ̃ (M), that we endow with the weak-star topology. Notice that if u ∈ C∞,υ̃ (M)

then u de�nes an element of Dυ̃ (M)′ that we also denote by u, by the formula

∀µ ∈ Dυ̃ (M) : 〈u, µ〉 =

∫
M
udµ.

We de�ne in this way an injection of C∞,υ̃ (M) into Dυ̃ (M)′ that can be shown to be

continuous and to have dense image (by mollifying elements of Dυ̃ (M)′, by convolution

for instance).

Now, let M be a Cκ,υ compact manifold for some κ > 0 and υ > 1 and let n = d + 1

denotes the dimension of M . Let (φt)t∈R be a Cκ,υ �ow on M (that is, the map M × R 3
(x, t) 7→ φt (x) is Cκ,υ). Then the generator X of the �ow (φt)t∈R is a Cκ′,υ vector �eld for

2That is, the map (x, t) 7→ φt (x) is Cκ
′,υ̃.

3Notice that these two spaces may be identi�ed by the choice of a particular element of Dυ̃ (M).



100 CHAPTER 3

all κ′ < κ. Choose V : M → C a Cκ,υ potential. Let υ̃ > υ and de�ne for all t ∈ R the

continuous operator Lt on C∞,υ̃ (M) by

∀u ∈ C∞,υ̃ (M) : ∀x ∈M : Ltu (x) = exp

(∫ t

0
V ◦ φτ (x) dτ

)
u ◦ φt (x) .

Here, let us notice that the prefactor in the de�nition of Lt is a Cκ,υ function (since

this class of regularity is closed under composition). It is convenient4 to extend Lt and
P = X + V from Dυ̃ (M)′ to itself. To do so, we need to compute their adjoints. Choose

µ ∈ Dν̃ (M) positive and fully supported, it induces an isomorphism between Dυ̃ (M) and

C∞,υ̃ (M) , ν 7→ dν
dµ . Then notice that

d((φt)∗µ)
dµ satis�es for all x ∈ M and t, t′ ∈ R the

cocycle equation

d ((φt+t′)∗ µ)

dµ
(x) =

d ((φt′)∗ µ)

dµ
(x)

d ((φt)∗ µ)

dµ
(φ−t′ (x)) ,

so that we have

∀x ∈M : ∀t ∈ R :
d ((φt)∗ µ)

dµ
(x) = exp

(
−
∫ t

0
div (X) ◦ φ−τ (x) dτ

)
,

where the divergence of X is de�ned by

∀x ∈M : div (X) (x) = − d

dt

(
d ((φt)∗ µ)

dµ
(x)

)∣∣∣∣
t=0

.

Notice that div (X) is a Cκ′,υ function for all κ′ < κ. Then the formal adjoint of Lt may

be de�ned on Dυ̃ (M) by

(Lt)∗ ν = exp

(∫ t

0
(V − div (X)) ◦ φ−τdτ

)
dν

dµ
◦ φ−τdµ

and the formal adjoint of P by

P ∗ν = (−X − div (X) + V )
dν

dµ
dµ.

These two operators are continuous on Dυ̃ (M), so that P and Lt may be extended as

continuous operators on Dυ̃ (M)′. Notice that P and Lt commute.

We will need Lemmas 3.7 and 3.8 to prove Theorem 3.1.

Lemma 3.7. With the notations above, we have:

(i) If u ∈ C∞,υ̃ (M) then the map R 3 t 7→ Ltu ∈ C∞,υ̃ (M) is C∞ and its derivative is

t 7→ LtPu = PLtu.
4It makes easier to apply the results from Appendix B or to de�ne the norm ‖·‖H in (3.50) for instance.
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(ii) If u ∈ Dυ̃ (M)′ then the map R 3 t 7→ Ltu ∈ Dυ̃ (M)′ is C∞ and its derivative is

t 7→ LtPu = PLtu.

Proof. We only need to prove the �rst point: the same argument with C∞,υ̃ (M) replaced

by Dυ̃ (M), and Lt and P replaced by their formal adjoints gives the second point.

We start with the case V = 0. Using the group property of (Lt)t∈R, we only need to

prove di�erentiability at t = 0. Then we may cover M by �ow boxes, and thus we only

need to show that if u ∈ S υ̃ is supported in a compact subset K of Rd+1 then

u (·+ ted+1)− u
t

→
t→0

∂xd+1
u in S υ̃, (3.5)

where ed+1 denotes the last vector of the canonical basis of Rd+1. Up to enlarging K we

may assume that for all t ∈ [−1, 1] the function u (·+ ted+1) is supported in K. Then if

x ∈ K, α ∈ Nd+1, and t ∈ [−1, 1] we have with Taylor's formula (for any κ′′ > 0):∣∣∣∣∂αu (x+ ted+1)− ∂αu (x)

t
− ∂α∂xd+1

u (x)

∣∣∣∣
=

∣∣∣∣∂αu (x+ ted+1)− ∂αu (x)

t
− ∂xd+1

∂αu (x)

∣∣∣∣
≤

∥∥∥∂2
xd+1

∂αu
∥∥∥
∞

2
|t| ≤ |t|

2
‖u‖κ′′,υ̃ exp

(
(|α|+ 2)υ̃

κ′′υ̃

)
.

Thus if κ′, κ′′ > 0 and for R > 0 depending only on K, we have for all x ∈ Rd+1, α ∈ Nd+1

and m ∈ N:

(1 + |x|)m
∣∣∣∣∂αu (x+ ted+1)− ∂αu (x)

t
− ∂α∂xd+1

u (x)

∣∣∣∣ exp

(
−(m+ |α|)υ̃

κ′υ̃

)

≤ |t|
2
‖u‖κ′′,υ̃ R

m exp

(
(|α|+ 2)υ̃

κ′′υ̃
− (m+ |α|)υ̃

κ′υ̃

)
.

Thus if κ′ > 0 and κ′′ > κ′, then there is a constant C > 0 (that only depends on K, υ̃, κ′,

and κ′′) such that for all t ∈ [−1, 1] we have∥∥∥∥u (·+ ted+1)− u
t

− ∂xd+1
u

∥∥∥∥
κ′,υ̃

≤ C |t| ‖u‖κ′′,υ̃ ,

which implies (3.5) and thus ends the proof of the lemma in the case V = 0.

In order to deduce the result in the case of a general V from the case V = 0, we only

need to prove that the map

t 7→ exp

(∫ t

0
V ◦ φτdτ

)
(3.6)
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is C∞ from R to C∞,υ̃ (M). Indeed, the multiplication is continuous from the product

C∞,υ̃ (M) × C∞,υ̃ (M) to C∞,υ̃ (M). The map (3.6) is easily seen to be C∞ from R to

C0 (M), and one may notice that its derivatives are valued in C∞,υ̃ (recall that the classes

of regularity Cκ,υ̃, and hence C∞,υ̃, are closed by composition) with uniform bounds locally

in t. Then, by successive applications of Taylor's formula at order 1 with integral remainder,

one gets that the map (3.6) is C∞ from R to C∞,υ̃ (M), ending the proof of the lemma (we

use the exact formula for the remainder in order to bound it in C∞,υ̃ (M)).

Lemma 3.8. Let B be a Banach space such that B ⊆ Dυ̃ (M)′, the inclusion being con-

tinuous. Assume that, for all t ∈ R+, the operator Lt is bounded from B to itself, and

that (Lt)t≥0 is a strongly continuous semi-group of operator of B. Then the generator of

(Lt)t≥0 coincides with P on its domain which is

{u ∈ B : Pu ∈ B} .

Proof. Denote for now the generator of (Lt)t≥0 by X̃. Let u ∈ B be in the domain of X̃,

then the map R+ 3 t 7→ Ltu ∈ B is di�erentiable at 0 and its derivative at 0 is X̃u (by

de�nition of X̃). Since the inclusion B ⊆ Dυ̃ (M)′ is continuous, the same is true for the

map R+ 3 t 7→ Ltu ∈ Dυ̃ (M)′, whose derivative at 0 is Xu according to Lemma 3.7. Thus

X̃u = Xu ∈ B.
Reciprocally, if u ∈ B is such that Xu ∈ B, then we may de�ne a C1 map c : R+ → B

by c (t) = u +
∫ t

0 LτXudτ for all t ∈ R+. Notice that c′ (0) = Xu. Since the inclusion

B ⊆ Dυ̃ (M)′ is continuous, the map c is still C1 when seen as a map from R+ to Dυ̃ (M)′

and we have c (0) = u and c′ (t) = LtXu for all t ∈ R+, so that c (t) = Ltu for all t ∈ R+,

using Lemma 3.7. This proves that u belongs to the domain of X̃.

3.2 Local spaces

We de�ne now �local� spaces HΘ,α that will be the basic pieces to construct the space H
from Theorem 3.1. These spaces will depend on the choice of a system of cones Θ: this

system encodes the three distinguished directions from De�nition 6 of an Anosov �ow.

These spaces are Sobolev-like spaces similar to the spaces from [Bal18, De�nition 4.16] or

from [BT07] (for discrete-time systems) or [Ada18b, Ada18a] (even though the approach

is a bit di�erent, spaces in [FS11] are also Sobolev-like spaces). As in [BT07, BT08, Bal18,

Ada18b, Ada18a], we will use Paley�Littlewood decomposition to study these spaces and

the action of Koopman operators on them. However, as in [Jéz20a], we cannot use the

usual dyadic Paley�Littlewood decomposition since the weights that we use to de�ne our

Sobolev-like spaces have a growth faster than polynomial, so that we will introduce an

adapted Paley�Littlewood-like decomposition. This approach is slightly di�erent from the

strategy exposed in �2.2 since the annuli that will appear in this decomposition are not of
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exponential size, but the ideas behind are the same (see the discussion in �2.3).

First of all, we need to de�ne the systems of cones that we will use. As in [Jéz20a], we

need to consider system of potentially a large number of cones, in order to deal with the

low hyperbolicity of the �ow for small times. The interior and the adherence of a subset

Y of a topological space will be denoted respectively by
◦
Y and Y . If C and C ′ are two

cones in an Euclidean space, we write C b C ′ for C ⊆
◦
C ′ ∪{0}. The dimension of a cone

C in an Euclidean space E is by de�nition the maximum dimension of a linear subspace

of E contained in C.

De�nition 3.9 (System of cones). Let (E, 〈., .〉) be an Euclidean vector space, e ∈ E and

r ≥ 2 be an integer. A system of r + 2 cones with respect to the direction e is a family

Θ = (C0, C1, . . . , Cr, Cf ) of non-empty closed cones in E such that

(i)
◦
C0 ∪

◦
C1 ∪

◦
Cf= E \ {0};

(ii) Cf is one-dimensional and there is c > 0 such that for all ξ ∈ Cf we have |〈ξ, e〉| ≥
c |ξ|;

(iii) there are integers du and ds such that du+ds+1 = dimE, C0 is ds-dimensional and,

for i ∈ {1, . . . , r}, the cone Ci is du-dimensional;

(iv) if i ∈ {1, . . . , r − 1} then Ci+1 b Ci;

(v) C0 ∩ C2 = Cf ∩ C2 = {0}.

Let us �x d ∈ N. The vector space Rd+1 will always be endowed with its canonical

Euclidean structure and system of cones in Rd+1 will always be with respect to the direction

of ed+1 = (0, . . . , 0, 1). We will mainly use De�nition 3.9 with E = Rd+1, however, it will

be convenient in the proof of Lemma 3.29 to have at our disposal the de�nition of a system

of cones in a general Euclidean space.

If (C0, . . . , Cr, Cf ) is a system of r + 2 cones in Rd+1 (with respect to the direction

ed+1) then we can choose (ϕ0, ϕ1, . . . , ϕr−1, ϕf ) a Gevrey5 partition of unity on Sd such

that:

• for i ∈ {0, . . . , r − 1, f}, the function ϕi is supported in the interior of Ci ∩ Sd;

• if i ∈ {1, . . . , r − 2} then ϕi vanishes on a neighborhood of Sd ∩ Ci+2.

Indeed, the interiors of C0 ∩ Sd, (Cf \ C2) ∩ Sd, (C1 \ C3) ∩ Sd, . . . , (Cr−2 \ Cr) ∩ Sd and

Cr−1 ∩ Sd form an open cover of Sd.
Fix α ∈ ]0, 1[ for the remaining of the section. Choose a Gevrey function χ : R→ [0, 1]

such that χ (x) = 1 if x ≤ 1
2 and χ (x) = 0 if x ≥ 1. De�ne for all n ≥ 1 and ξ ∈ Rd+1,

5This ensures that it is Cκ,υ for any κ > 0 and υ > 1, so that all the Fourier multipliers that appear
later are automatically well-de�ned.



104 CHAPTER 3

χn (ξ) = χ (2−n |ξ|) and χα,n (ξ) = χ
(
|ξ| − 2n

α)
, set also χn = χα,n = 0 if n ≤ 0. Then set

for n ∈ N, ψn (ξ) = χn+1 (ξ) − χn (ξ) and ψα,n (ξ) = χα,n+1 (ξ) − χα,n (ξ). Thus we have

for n ≥ 1

supp ψn ⊆
{
ξ ∈ Rd+1 : 2n−1 ≤ |ξ| ≤ 2n+1

}
and

supp ψα,n ⊆
{
ξ ∈ Rd+1 : 2n

α ≤ |ξ| ≤ 2(n+1)α + 1
}
.

In addition, supp ψ0 and supp ψα,0 are contained in
{
ξ ∈ Rd+1 : |ξ| ≤ 5

}
. Moreover, we

have
∑

n≥0 ψn =
∑

n≥0 ψα,n = 1. Set

Γ = N× {0, . . . , r − 1, f} .

De�ne for (n, i) ∈ Γ the function ψΘ,n,i by

ψΘ,n,i (ξ) =

ψn (ξ)ϕi

(
ξ
|ξ|

)
if n ≥ 1,

ψ0(ξ)
r−1 if n = 0,

if i ∈ {1, . . . , r − 2, f}, and by

ψΘ,n,i (ξ) = (1− ψ0 (ξ))ψα,n (ξ)ϕi

(
ξ

|ξ|

)
if i ∈ {0, r − 1}, so that we have ∑

(n,i)∈Γ

ψΘ,n,i = 1.

We will give a Sobolev-like de�nition of the local space HΘ,α (De�nition 3.10) by mean

of a weight wΘ,α (see (3.9)). If this description is convenient to prove the basic properties of

HΘ,α (see Proposition 3.11), we will rather use in the following sections a Paley�Littlewood-

like description of the space HΘ,α (see Proposition 3.13), for any υ ∈
]
1, 1

1−α

[
we have:

HΘ,α =

u ∈ (Sυ)′ :
∑

(n,i)∈Γ

(
2nβi ‖ψΘ,n,i (D)u‖2

)2
< +∞


where

β0 = d+ 2, βr−1 = − (d+ 2) , βf = − (d+ 2) (3.7)

and

βi = − (i+ 1) (d+ 2) for i ∈ {1, . . . , r − 2} . (3.8)

The main idea behind the choice of the βi is that the expected regularity of elements
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of HΘ,α (measured via integrability of the Fourier transform) must decrease under the

action of the linear model of the dynamics (the βi play the role here of an analogue of the

escape function from [FS11]). The particular choice has been made so that computations

are as easy as possible. Our parameters have been designed in order to make the Paley�

Littlewood description as simple as possible, at the cost of a de�nition of the weight wΘ,α

that may seem a bit heavy. It is de�ned for ξ ∈ Rd+1 by

wΘ,α (ξ) = ψ0 (ξ) + (1− ψ0 (ξ))

 ∑
i∈{0,r−1}

ϕi

(
ξ

|ξ|

)
exp

(
βi ln (1 + |ξ|)

1
α

(ln 2)
1
α
−1

)

+
∑

i∈{1,...,r−2,f}

ϕi

(
ξ

|ξ|

)
〈ξ〉βi

 ,

(3.9)

where

〈ξ〉 =

√
1 + |ξ|2 for ξ ∈ Rd+1.

De�nition 3.10. De�ne the space (for any υ ∈
]
1, 1

1−α

[
)

HΘ,α =

{
u ∈ (Sυ)′ : û ∈ L2

loc and
∫
Rd+1

|û (ξ)|2wΘ,α (ξ)2 dξ < +∞
}

endowed with the scalar product

〈u, v〉Θ,α =

∫
Rd
û (ξ)v̂ (ξ)wΘ,α (ξ)2 dξ.

Recall (3.2) for the de�nition of Sυ and (3.9) for the de�nition of wΘ,α.

Proposition 3.11. HΘ,α is a separable Hilbert space that does not depend on the choice

of υ. For all 1 < υ < 1
1−α , the space S

υ is continuously contained and dense in HΘ,α, and

HΘ,α is continuously contained in (Sυ)′.

Proof. The map
A : HΘ,α → L2

(
Rd+1

)
u 7→ ûwΘ,α

is clearly an isometry. Choose υ < 1
1−α , thanks to Propositions 3.5 and 3.6 (recall (3.4)),

and since 1
α < υ

υ−1 , the map u 7→ û.w−1
Θ,α is continuous from Sυ to L2

(
Rd+1

)
. Thus the

map B : u 7→ F−1
(
uw−1

Θ,α

)
is continuous from L2

(
Rd+1

)
to (Sυ)′. But if u ∈ L2

(
Rd+1

)
then it is clear that Bu ∈ HΘ,α with ‖Bu‖Θ,α = ‖u‖2. Now, since A and B are inverses of

each other, HΘ,α is isometric to L2
(
Rd+1

)
and thus a separable Hilbert space.

Proposition 3.6 implies that Sυ is continuously contained inHΘ,α and that the inclusion

of HΘ,α in (Sυ)′ is continuous. Let u ∈ HΘ,α be in the orthogonal space to Sυ. If ρ is a
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compactly supported element of Sυ, then, for all v ∈ Sυ, we have∫
Rd+1

ρ (ξ) û (ξ)wΘ,α (ξ)2 v (ξ) dξ =
〈
u,F−1 (ρ.v)

〉
Θ,α

= 0.

Thus the function ρ¯̂uw2
Θ,α ∈ L1

(
Rd+1

)
vanishes (take for v a convolution kernel), and so

does u. Consequently, Sυ is dense in HΘ,α.

To see that HΘ,α does not depend on the choice of υ, just notice that, if we use

υ̃ ∈
]
υ, 1

1−α

[
instead of υ in the de�nition of HΘ,α, then we obtain another Hilbert space

H̃Θ,α. But then H̃Θ,α ⊆ HΘ,α, and the inclusion is isometric and has a dense image

(because H̃Θ,α contains Sυ). Since H̃Θ,α and HΘ,α are both Hilbert spaces, they must

coincide.

Remark 3.12. It is clear from the proof that in fact the elements of Sυ whose Fourier

transform is compactly supported form a dense subset of HΘ,α.

Proposition 3.13. Let 1 < υ < 1
1−α and u ∈ (Sυ)′. Then u ∈ HΘ,α if and only if

∑
(n,i)∈Γ

(
2nβi ‖ψΘ,n,i (D)u‖2

)2
< +∞. (3.10)

Moreover, the square root of this quantity de�nes an equivalent (Hilbertian) norm on HΘ,α.

Proof. First, notice that there is C > 0 such that, if n ∈ N, i ∈ {1, . . . , r − 2, f} and

ξ ∈ supp ψΘ,n,i, then
1

C
2nβi ≤ 〈ξ〉βi ≤ C2nβi .

Up to enlarging C, it is also true that if n ∈ N, i ∈ {0, r − 1} and ξ ∈ supp ψΘ,n,i then

1

C
2nβi ≤ exp

(
βi ln (1 + |ξ|)

1
α

(ln 2)
1
α
−1

)
≤ C2nβi .

Now, using the fact that the intersection number of the support of the ψΘ,n,i for (n, i) ∈ Γ

is �nite, we �nd another constant C > 0 such that for all ξ ∈ Rd+1 we have

1

C
wΘ,α (ξ)2 ≤

∑
(n,i)∈Γ

(
2nβiψΘ,n,i (ξ)

)2
≤ CwΘ,α (ξ)2 . (3.11)

From this, we get immediately that if u ∈ HΘ,α then (3.10) holds. Reciprocally, if

(3.10) holds, then û is in L2
loc (the sum

∑
(n,i)∈Γ ψΘ,n,i is locally �nite) and from (3.11) we

get that u ∈ HΘ,α. The equivalence of norms is an immediate consequence of (3.11).
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Proposition 3.13 suggests to de�ne the auxiliary Hilbert space

B =

(un,i)(n,i)∈Γ ∈
∏

(n,i)∈Γ

L2
(
Rd+1

)
:
∑

(n,i)∈Γ

(
2nβi ‖un,i‖2

)2
< +∞

 . (3.12)

De�ne the map
QΘ : HΘ,α → B

u 7→ (ψΘ,n,i (D)u)(n,i)∈Γ

. (3.13)

For (n, i) ∈ Γ de�ne also the natural projection and inclusion

πn,i : B → L2
(
Rd+1

)
(u`,j)(`,j)∈Γ 7→ un,i

and
ιn,i : L2

(
Rd+1

)
→ B

u 7→
(
uδ(n,i)=(`,j)

)
(`,j)∈Γ

.

3.3 Local Koopman operator

We are now going to study a local model for the Koopman operator (9) associated to an

Anosov �ow (φt)t∈R on a (d+ 1)-dimensional manifold M . The main result of this section

is Proposition 3.17 which is a local version of Theorem 3.1.

As a local model for a �ow, we will consider a family (Tt)t∈R of di�eomorphisms of Rd+1

such that if we de�ne F : Rd → Rd+1 by x 7→ T0 (x, 0) (here we make the identi�cation

Rd+1 ' Rd × R) then we have

∀t ∈ R : ∀ (x, y) ∈ Rd × R ' Rd+1 : Tt (x, y) = F (x) + yed+1 + ted+1. (3.14)

We will say that F is the map associated to the family of di�eomorphisms (Tt)t∈R. Re-

ciprocally, if F : Rd → Rd+1 is an immersion, we de�ne by (3.14) the associated family of

di�eomorphisms (Tt)t∈R (provided they actually are di�eomorphisms).

Remark 3.14. Let us explain why we use such a family of di�eomorphisms as a local

model for a �ow. We want to study the �ow (φt)t∈R in the neighbourhood of a �xed time

t̃0. To do it, we take charts κ and κ′ for M and we study the family of di�eomorphisms

(Tt)t∈R de�ned by the formula

Tt = κ ◦ φt̃0+t ◦ κ
′−1.

Of course, this is not in general a family of di�eomorphisms from Rd+1 to itself (a priori

the domain of Tt depends on t). However, it is more convenient to deal with di�eomor-

phisms of the whole Rd+1, and we will consequently provide extensions of the Tt to Rd+1
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when applying Proposition 3.17 in �3.4 (see Lemma 3.29). These extensions are far from

canonical, but the use of a cuto� function will ensure that none of the objects that we

consider in �3.4 depend on the choices we will make in a relevant way.

It is natural to ask for κ and κ′ to be �ow boxes, that is, if X is the generator of the �ow

(φt)t∈R, we require κ
∗ (ed+1) = X and κ′∗ (ed+1) = X (we identify ed+1 with the constant

vector �eld with value ed+1). This requirement implies (3.14) for small t and y, and, since

we are only interested here in the behaviour of (φt)t∈R locally in both space and time, we

may modify the de�nition of Tt for large t and design our extension to ensure that (3.14)

holds (we refer to the proof of Lemma 3.29 for details). Once again, this will be of no harm

in the global analysis thanks to the use of cuto� functions in both time and space.

In this section, we will study such a family with no reference to a particular Anosov

�ow. We will need further assumptions to do so. The �rst one is that F (or equivalently

T0 or any Tt for t ∈ R) is Cκ,υ for some κ > 0 and υ > 1. The second one is a condition of

hyperbolicity that we will express using cones.

Let r ≥ 2 be an integer and choose two systems of r + 2 cones (with respect to the

direction ed+1 as usual) Θ = (C0, . . . , Cr, Cf ) and Θ′ =
(
C ′0, . . . , C

′
r, C

′
f

)
. We assume that

(Tt)t∈R is cone-hyperbolic from Θ′ to Θ in the following sense:

(i) for all x ∈ Rd+1, i ∈ {1, . . . , r} and t ∈ R we have6

DxT tr
t (Ci) ⊆ C ′min(i+2,r);

(ii) for all x ∈ Rd+1 and t ∈ R we have

DxT tr
t (Cf ) ∩ C ′0 = {0} ;

(iii) there is Λ > 1 such that for all x ∈ Rd+1, all ξ ∈ Cr−1, and all t ∈ R we have

∣∣DxT tr
t (ξ)

∣∣ ≥ Λ |ξ| ;

(iv) for the same Λ > 1, for all x ∈ Rd+1, all ξ ∈ Rd, and all t ∈ R such that DxT tr
t (ξ) ∈

C ′0 we have7 ∣∣DxT tr
t (ξ)

∣∣ ≤ Λ−1 |ξ| .

Remark 3.15. Notice that the de�nition of the cone-hyperbolicity of the family (Tt)t∈R
only involves the derivatives DxT tr

t . However, these derivatives do not depend on t (this

is a consequence of (3.14)). Consequently, one only needs to check that (i)-(iv) hold for

6Here, Atr denotes the transpose of A.
7Notice that the condition DxT tr

t (ξ) ∈ C′0 implies in particular that ξ ∈ C0, as a consequence of (i)
and (ii).



3.3. LOCAL KOOPMAN OPERATOR 109

t = 0. This fact may be surprising since hyperbolicity is usually a phenomenon that can

only be observed after a small amount of time, but recall Remark 3.14: in the application,

the family (Tt)t∈R will only be used to describe the �ow (φt)t∈R near some time t̃0. Then,

provided that t̃0 > 0, the family (Tt)t∈R will be cone-hyperbolic (see �3.4 for the details).

Remark 3.16. Notice that if
(
T 1
t

)
t∈R and

(
T 2
t

)
t∈R are two families of di�eomorphisms

as above, then their composition may naturally be de�ned as
(
T 1
t ◦ T 2

0

)
t∈R. Moreover,

if there are systems of cones Θ,Θ′ and Θ′′ such that
(
T 1
t

)
t∈R is cone-hyperbolic from Θ′

to Θ′′ and
(
T 2
t

)
t∈R is cone-hyperbolic from Θ to Θ′ then

(
T 1
t ◦ T 2

0

)
t∈R is cone-hyperbolic

from Θ to Θ′′.

We will also consider a C∞ family (Gt)t∈R of Sυ functions from Rd+1 to C, such that

there is a compact subset K of Rd+1 such that, if x ∈ Rd+1 \K and t ∈ R, then Gt (x) = 0.

In this section, we study the family (Lt)t∈R of local Koopman operators de�ned by

Ltu = Gt (u ◦ Tt) . (3.15)

This de�nition makes sense for u ∈ S υ̃ (for any υ̃ > υ) and may be extended by duality

to u ∈
(
S υ̃
)′
. The main result of this section is Proposition 3.17, which can be seen as a

local version of Theorem 3.1.

Proposition 3.17. Let α ∈
]
υ−1
υ , 1

[
. For every t ∈ R, the operator Lt de�ned by (3.15)

is bounded from HΘ,α to HΘ′,α. Moreover, the family (Lt)t∈R is strongly continuous (as a

family of operators from HΘ,α to HΘ′,α), hence it is measurable.

Moreover, if α < 1
2 , if k is a non-negative integer and if h : R → C is a compactly

supported kth time di�erentiable function whose kth derivative has bounded variation then

the operator ∫
R
h (t)Ltdt : HΘ,α → HΘ′,α (3.16)

is in the Schatten class Sq for all q ≥ 1 such that q > d+1
k+1 . Moreover, there is a constant

C > 0, which depends on h only through its support, such that∥∥∥∥∫
R
h (t)Ltdt

∥∥∥∥
Sq

≤ C
(
‖h‖Ck−1 +

∥∥∥h(k)
∥∥∥
BV

)
,

where ‖·‖Sq denotes the Sq Schatten class norm and ‖·‖BV the bounded variation norm.

If k + 1 > d+ 1 and Θ = Θ′ we have

tr

(∫
R
h (t)Ltdt

)
=

∑
p◦F (x)=x

h (T (x))

|det (I − p ◦DxF )|

∫
R
GT (x) (x, y) dy,

where p is the orthogonal projection from Rd+1 to Rd ' Rd × {0} and, for x ∈ Rd, the
number T (x) is de�ned by F (x) = p (F (x)) + (0,−T (x)).
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Without the hypothesis α < 1
2 , it remains true that the operator (3.16) is compact.

Remark 3.18. Since α > υ−1
υ , we may choose υ̃ > υ such that υ̃ < 1

1−α . Then HΘ,α ⊆(
S υ̃
)′
and thus Ltu is well-de�ned as an element of

(
S υ̃
)′
when t ∈ R and u ∈ HΘ,α.

Remark 3.19. Notice that the spaces HΘ,α and HΘ′,α depend a priori not only on

Θ and Θ′ (and α) but also on the choice of partitions of unity (ϕ0, . . . , ϕr−1, ϕf ) and(
ϕ′0, . . . , ϕ

′
r−1, ϕ

′
f

)
on Sd as in �3.2. However, in view of Proposition 3.17, this choice is

mostly irrelevant and the dependence on Θ and Θ′ is the fundamental point.

The remainder of this section is devoted to the proof of Proposition 3.17. For this, we

introduce in Lemma 3.20 a family of auxiliary operators (Mt)t∈R acting on the space B
de�ned in (3.12). Then, we prove that the family (Mt)t∈R has the properties that we expect

from (Lt)t∈R : boundedness and strong continuity is proven in Lemma 3.20 (with the help

of the preparatory Lemmas 3.21 and 3.22, see �3.3.1), that an operator similar to (3.16) is

in a Schatten class is proven in Lemma 3.27 (with the help of Lemmas 3.23, 3.24 and 3.25,

see �3.3.2) and the formula for the trace is given in Lemma 3.28 (see �3.3.3). Finally, we

end the proof of Proposition 3.17 by showing that (Lt)t∈R inherits these properties from

(Mt)t∈R.

3.3.1 The auxiliary operators Mt.

We will need smooth functions ϕ̃0, . . . , ϕ̃r−1, and ϕ̃f : Sd → [0, 1] such that

• if i ∈ {0, . . . , r − 1, f} then ϕ̃i is supported in the interior of Ci ∩ Sd;

• if i ∈ {1, . . . , r − 2} then ϕ̃i vanishes on a neighborhood of Ci+2 ∩ Sd;

• if i ∈ {0, . . . , r − 1, f}, x ∈ Sd, and ϕi (x) 6= 0 then ϕ̃i (x) = 1.

De�ne then ψ̃n = χn+2 − χn−1 and ψ̃α,n = χα,n+b − χα,n−b for n ≥ 0, where b is chosen

large enough so that for all n ∈ N∗ we have

2(n+1)α − 2(n+b)α + 1 ≤ 1

2
and 2n

α − 2(n−b)α ≥ 1.

If (n, i) ∈ Γ set

ψ̃Θ,n,i (ξ) =

ψ̃n (ξ) ϕ̃i

(
ξ
|ξ|

)
if n ≥ 1,

ψ̃0 (ξ) if n = 0,

if i ∈ {1, . . . , r − 2, f}, and

ψ̃Θ,n,i (ξ) =

ψ̃α,n (ξ) ϕ̃i

(
ξ
|ξ|

)
if n ≥ 1,

ψ̃α,0 (ξ) if n = 0,
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if i ∈ {0, r − 1}. Thus ψΘ,n,i (ξ) 6= 0 implies ψ̃Θ,n,i (ξ) = 1. Now if (n, i) , (`, j) ∈ Γ, and

t ∈ R de�ne an operator S`,jt,n,i : L2
(
Rd+1

)
→ L2

(
Rd+1

)
by

S`,jt,n,i = ψΘ′,n,i (D) ◦ Lt ◦ ψ̃Θ,`,j (D) . (3.17)

As announced above, we de�ne in Lemma 3.20 a family of auxiliary operators whose

study will take most of the remainder of this section.

Lemma 3.20. For every t ∈ R, the sum∑
(n,i),(`,j)∈Γ

ιn,i ◦ S`,jt,n,i ◦ π`,j (3.18)

converges in the strong operator topology to an operatorMt : B → B that depends contin-

uously on t in the strong operator topology.

The proof of Lemma 3.20 is based on Lemmas 3.21 and 3.22 below. In order to prove

Lemma 3.20, we �rst de�ne a relation ↪→ on Γ that indexes the transitions (in the frequency

space) that would occur for a linear dynamics, in the spirit of [Ada18b, Ada18a]. Our local

space has been designed so that it corresponds either to a transition from high regularity to

low regularity (which makes this part of the action smoothing) or to a stationary frequency

in the direction of the �ow (we will integrate in this direction, so that it also corresponds

to a smoothing operator). The other transitions do not happen in the linear case, and we

will control this non-linearity using not only the hyperbolicity of the dynamics but also its

high regularity. Choose a > 0 such that for all x ∈ K and t ∈ R we have

a <
∥∥∥(DxT trt

)−1
∥∥∥−1

.

Choose also ν such that 0 < ν < log2 Λ
α . We de�ne now the relation ↪→. For (`, j) , (n, i) ∈ Γ,

we say that (`, j) ↪→ (n, i) holds if either of the following conditions is satis�ed:

• i = j = 0 and ` ≥ n+ νn1−α;

• i = j = r − 1 and n ≥ `+ ν`1−α;

• j = 0 and i ∈ {1, . . . , r − 1, f};

• j ∈ {1, . . . , r − 2, f} , i = r − 1 and ` ≤ nα + 4− log2 a;

• j = f, i ∈ {1, . . . , r − 2} and n ≥ `− 4 + log2 a;

• i, j ∈ {1, . . . , r − 2} with i ≥ j + 1 and n ≥ `− 4 + log2 a;

• i = j = f and |`− n| ≤ 10− log2 c, where c is such that for all ξ = (ξ1, . . . , ξd+1) ∈
Cf ∪ C ′f we have |ξd+1| ≥ c |ξ| (such a constant exists by our de�nition of a system

of cones).
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In all other cases, we say that (`, j) 6↪→ (n, i). Let us list the cases in which (`, j) 6↪→ (n, i)

in prevision of the proof of Lemma 3.21:

• i = j = 0 and ` < n+ νn1−α;

• i = j = r − 1 and n < `+ ν`1−α;

• i = r − 1, j ∈ {1, . . . , r − 2, f} and ` > nα + 4− log2 a;

• i ∈ {1, . . . , r − 2} , j = f and n < `− 4 + log2 a;

• i, j ∈ {1, . . . , r − 2} , i ≥ j + 1 and n < `− 4 + log2 a;

• i = j = f and |`− n| > 10− log2 c;

• j = f and i = 0;

• j = r − 1 and i 6= r − 1;

• j ∈ {1, . . . , r − 1} and i ∈ {0, . . . , j, f}.

Lemma 3.21 is the main tool to use the hyperbolicity of the dynamics to rule out the

transitions of frequencies that do not occur in the linear picture.

Lemma 3.21. For i ∈ {0, . . . , r − 1, f}, set αi = α if i = 0 or r−1, and αi = 1 otherwise.

There are c′ > 0 and N > 0 such that if (`, j) , (n, i) ∈ Γ we have: (`, j) ↪→ (n, i) or

max (n, `) ≤ N or, for all x ∈ K and t ∈ R,

d
(
supp ψΘ′,n,i, DxT tr

t

(
supp ψ̃Θ,`,j

))
≥ c′max

(
2n

αi , 2`
αj
)
.

Proof. We will make massive use of the following fact in this proof : if C+ and C− are two

closed cones in Rd+1 such that C+ ∩ C− = {0} (we say that such cones are transverse)

then for all ξ ∈ C+ and η ∈ C− we have

d (ξ, η) ≥ µmax (|ξ| , |η|) (3.19)

where µ = min
(
d
(
C+ ∩ Sd, C−

)
, d
(
C− ∩ Sd, C+

))
> 0.

Assume that (n, i) , (`, j) ∈ Γ are such that (`, j) 6↪→ (n, i) and max (n, l) > N for

some large N , and take ξ ∈ supp ψΘ′,n,i, η ∈ supp ψ̃Θ,`,j and t ∈ R. We go through the

di�erent cases in which (`, j) 6↪→ (n, i) as listed above.

• If i = j = 0 and ` < n + νn1−α, there are two possibilities: either DxT tr
t (η) /∈ C ′0,

and we can conclude with (3.19) (since ϕ′0 is supported in the interior of C ′0), or
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DxT tr
t (η) ∈ C ′0, and by cone-hyperbolicity we have

|ξ| −
∣∣DxT tr

t (η)
∣∣ ≥ 2n

α − Λ−1
(

2(`+b)α + 1
)

≥ 2n
α − Λ−1

(
2(n+νn1−α+b)

α

+ 1
)

≥ 2n
α
(

1− 2(n+νn1−α+b)
α−log2 Λ−nα − 2−n

α
)
.

We can then conclude if N is large enough, since

(
n+ νn1−α + b

)α − log2 Λ− nα →
n→+∞

αν − log2 Λ < 0

and

2(n+νn1−α)
α

≤ C2n
α
, (3.20)

for some constant C > 0 that does not depend on n. We used here the asymptotic

expansion
(
n+ νn1−α)α =

n→+∞
nα + αν + o (1).

• If i = j = r − 1 and n < `+ ν`1−α then∣∣DxT tr
t (η)

∣∣− |ξ| ≥ Λ2(`−b)α −
(

2(n+1)α + 1
)

≥ Λ2(`−b)α −
(

2(`+ν`1−α+1)
α

+ 1
)

≥ 2`
α
(

Λ2(`−b)α−`α − 2(`+ν`1−α+1)
α−`α − 2−`

α
)
.

We can conclude if N is large enough, since

Λ2(`−b)α−`α − 2(`+ν`1−α+1)
α−`α − 2−`

α →
`→+∞

Λ− 2αν > 0,

and (3.20) still holds when n is replaced by `.

• If j ∈ {1, . . . , r − 2, f} , i = r − 1 and ` > nα + 4− log2 a, then∣∣DxT tr
t (η)

∣∣− |ξ| ≥ a2`−2 −
(

2(n+1)α + 1
)

≥ a2`−2 − 2n
α+1 − 1

≥ a2`−3 − 1.

• If i ∈ {1, . . . , r − 2} , j = f and n < `− 4 + log2 a then∣∣DxT tr
t (η)

∣∣− |ξ| ≥ a2`−2 − 2n+1

≥ a2`−3.

• The case i, j ∈ {1, . . . , r − 2} , i ≥ j+1 and n < `−4+log2 a is dealt as the previous



114 CHAPTER 3

one.

• If i = j = f and |`− n| > 10− log2 c, then just notice that the d+ 1th coordinate of

DxT tr
t (η)− ξ is ηd+1 − ξd+1 and consequently

∣∣DxT tr
t (η)− ξ

∣∣ ≥ |ηd+1 − ξd+1| .

Since in addition we have |ξd+1| ≥ c |ξ| and |ηd+1| ≥ c |η|, we can conclude in this

case (discussing whether |ξ| or |η| is larger).

• The three last cases are dealt with by cone hyperbolicity using (3.19) (the support of

ψΘ′,n,i and the image of the support of ψ̃Θ,`,j by DxT tr
t are contained in transverse

cones).

We now use Lemma 3.21 to control transitions that do not happen in the linear picture.

Lemma 3.22. There is δ > 1 such that, for every bounded interval I of R, there is C > 0

such that if (`, j) 6↪→ (n, i) for (n, i) , (`, j) ∈ Γ, then for all t ∈ I we have, recalling (3.17),

∥∥∥S`,jt,n,i∥∥∥
L2→L2

≤ C exp

(
−max (n, `)δ

C

)
.

Proof. First of all, notice that Lt is bounded from L2 to L2 (uniformly when t ∈ I) and,
since for all (n, i) , (`, j) ∈ Γ and t ∈ I, we have∥∥∥S`,jt,n,i∥∥∥

L2→L2
≤ ‖Lt‖L2→L2 ,

the case of max (n, `) ≤ N is dealt with by taking C large enough. We consider con-

sequently (n, i) , (`, j) ∈ Γ and t ∈ I such that (`, j) 6↪→ (n, i) and max (n, `) > N . If

u ∈ L2
(
Rd+1

)
then we have, using Plancherel's formula,

(2π)2(d+1)
∥∥∥S`,jt,n,iu∥∥∥2

2

=

∫
Rd+1

ψΘ′,n,i (ξ)2

∣∣∣∣∣
∫
(Rd+1)

2
e−ixξeiTt(x)ηψ̃Θ,`,j (η)Gt (x) û (η) dxdη

∣∣∣∣∣
2

dξ.

(3.21)

We are going to bound the inner integral. To do so, de�ne for all x ∈ Rd+1 and j ∈
{1, . . . , d+ 1} the linear form lj (x) on Rd+1 × Rd+1 by lj (x) (ξ, η) = i (∂jTt (x) η − ξj).
De�ne also for all x ∈ Rd+1 the quadratic form Φ (x) on Rd+1 × Rd+1 by Φ (x) (ξ, η) =∣∣DxT tr

t (η)− ξ
∣∣2. Now for all t ∈ I and k ∈ N we de�ne a kernelKk,t : Rd+1×Rd+1×Rd+1 →
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C by induction: we set K0,t (x, ξ, η) = Gt (x) and for all k ∈ N

Kk+1,t (x, ·, ·) =
d+1∑
j=1

∂xj

(
lj (x)Kk,t (x, ·, ·)

Φ (x)

)
.

Integrating by parts in y we see that the inner integral of (3.21) is equal, for all k ∈ N, t ∈ I
and ξ ∈ Rd+1, to ∫

(Rd+1)
2
e−ixξeiTt(x)ηψ̃Θ,`,j (η)Kk,t (x, ξ, η) û (η) dxdη. (3.22)

To bound the kernel Kk,t, we notice that it is the sum of at most (5 (d+ 1))k k! terms of

the form

(x, ξ, η) 7→ ± ∂σGt (x)

(Φ (x) (ξ, η))k+m
∂γ1 lj1 (x) (ξ, η) . . . ∂γk ljk(x)(ξ, η)

× ∂µ1Φ (x) (ξ, η) . . . ∂µmΦ (x) (ξ, η) ,

(3.23)

where m ≤ k is an integer, j1, . . . , jk ∈ {1, . . . , d+ 1}, and σ, γ1, . . . , γk, µ1, . . . , µm are

elements of Nd+1 such that |σ|+ |γ1|+ · · ·+ |γk|+ |µ1|+ · · ·+ |µm| = k (all the derivatives

are with respect to the variable x). In order to bound these terms, notice that Lemma 3.21

implies that if x ∈ K, if ξ ∈ supp ψΘ′,n,i and if η ∈ supp ψ̃Θ,`,j then

Φ (x) (ξ, η) ≥
(
c′
)2 (

max
(

2n
αi , 2n

αj
))2

≥ c1 max
(

2n
αi , 2n

αj
)

max (|ξ| , |η|) ≥ c2 max (|ξ| , |η|)2 ,

for some positive constants c1 and c2. Consequently, there is a constant C > 0 such that

if l is a linear map from Rd+1 × Rd+1 → C and if q is a quadratic map Rd+1 × Rd+1 → C
then we have, for all x ∈ K, ξ ∈ supp ψΘ′,n,i and η ∈ supp ψ̃Θ,`,j∣∣∣∣ l (ξ, η)

Φ (x) (ξ, η)

∣∣∣∣ ≤ C ‖l‖
max

(
2n

αi , 2`
αj
) and

∣∣∣∣ q (ξ, η)

Φ (x) (ξ, η)

∣∣∣∣ ≤ C ‖q‖ .
The choice of the norms on the spaces of linear and quadratic maps Rd+1 × Rd+1 → C is

of course irrelevant. Thus for such x, ξ and η any term of the form (3.23) is bounded by

C2k
(

max
(

2n
αi , 2`

αj
))−k

‖∂σGt‖∞ ‖∂
γ1 lj1‖∞ . . . ‖∂

γk ljk‖ ‖∂
µ1Φ‖∞ . . . ‖∂

µmΦ‖∞ ,

where ‖·‖∞ refers to the supremum of the corresponding norm on K. Now, notice that,

since T0 is Cκ,υ then for any κ′ < κ the maps l1, . . . , ld+1 (valued in the space of linear maps

from Rd+1 × Rd+1 to C) and Φ (valued in the space of quadratic maps from Rd+1 × Rd+1

to C) are Cκ′,υ (we can event take κ′ = κ if υ ≤ 2). Thus there are constants M,R > 0
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such that for all µ ∈ Nd, we have

‖∂µΦ‖∞ ≤MR|µ| |µ|! exp

(
|µ|υ

κ′υ

)
,

for all γ ∈ Nd and j ∈ {1, . . . , d+ 1}, we have

‖∂γlj‖∞ ≤MR|γ| |γ|! exp

(
|γ|υ

κ′υ

)
,

and for all t ∈ I and σ ∈ Nd, we have

‖∂σGt‖∞ ≤MR|σ| |σ|! exp

(
|σ|υ

κ′υ

)
.

Thus each term of the form (3.23) is bounded by

C2kM2k+1Rkkk exp

(
kυ

κ′υ

)
2−kmax(n,`)α

when x ∈ K, ξ ∈ supp ψΘ′,n,i, η ∈ supp ψ̃Θ,`,j and t ∈ I. Consequently, for such x, ξ, η

and t the kernel Kk,t (x, ξ, η) is bounded for all integers k by

2−kmax(n,`)α (5 (d+ 1))k C2kM2k+1Rkk2k exp

(
kυ

κ′υ

)
. (3.24)

Now, choose κ′′ > 0 such that 1
κ′υ + 2 ≤ 1

κ′′ and pick new values of the constants M and

R so that (3.24) is now smaller than

M

(
R

2max(n,`)α

)k
exp

(
kυ

κ′′

)
.

Now, using this estimate and Cauchy�Schwarz in (3.22), we bound the inner integral in

(3.21) by

C̃ ‖u‖2 2
(d+1)`

2

(
R

2max(n,`)α

)k
exp

(
kυ

κ′′

)
,

which gives ∥∥∥S`,jt,n,iu∥∥∥
2
≤ C ′ ‖u‖2 2

(`+n)(d+1)
2

(
R

2max(n,`)α

)k
exp

(
kυ

κ′′

)
.

Now take

k =


−κ′′ ln

(
R

2max(n,`)α

)
υ


1

υ−1


to get (with new constants and δ = αυ

υ−1 > 1, see the proof of Proposition 3.6 for a similar
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computation) ∥∥∥S`,jt,n,iu∥∥∥
2
≤ C ‖u‖2 2

(`+n)(d+1)
2 exp

(
−max (n, `)δ

C

)
.

Finally, we get rid of the factor 2
(`+n)(d+1)

2 by taking larger C.

We can now prove Lemma 3.20 about the family (Mt)t∈R of auxiliary operators.

Proof of Lemma 3.20. Let us split the sum (3.18) into∑
(n,i),(`,j)∈Γ
(`,j)6↪→(n,i)

ιn,i ◦ S`,jt,n,i ◦ π`,j and
∑

(n,i),(`,j)∈Γ
(n,i)↪→(`,j)

ιn,i ◦ S`,jt,n,i ◦ π`,j . (3.25)

Thanks to Lemma 3.22, the �rst sum in (3.25) converges absolutely in norm operator

topology. To deal with the second sum in (3.25), notice that there is some constant C

depending on I such that, for all t ∈ I and (n, i) , (`, j) ∈ Γ, we have∥∥∥ιn,i ◦ S`,jt,n,i ◦ π`,j∥∥∥B→B ≤ C2nβi2−`βj . (3.26)

Then the second sum in (3.25) can be divided into seven sums that correspond to the

di�erent cases in the de�nition of ↪→. It is elementary, using (3.26), to see that the �rst

six converge in norm operator topology. Consequently, we are left with the sum∑
n,`∈N
|n−`|≤M

ιn,f ◦ S`,ft,n,f ◦ π`,f (3.27)

for some M > 0. For all N1 ∈ N, de�ne the operator

PN1 =
∑

0≤n,`≤N1

|n−`|≤M

ιn,f ◦ S`,ft,n,f ◦ π`,f .

Pick u = (um,k)(m,k)∈Γ ∈ B. Then if N2 ≥ N1 ≥ 0, we have

‖(PN2 − PN1)u‖2B ≤ 2

N2∑
n=0

2−2(d+2)n

∥∥∥∥∥∥∥∥
∑

N1<`≤N2
|`−n|≤M

S`,ft,n,fu`,f

∥∥∥∥∥∥∥∥
2

2

+ 2

N2∑
n=N1+1

2−2(d+2)n

∥∥∥∥∥∥∥∥
∑

0≤`≤N1
|`−n|≤M

S`,ft,n,fu`,f

∥∥∥∥∥∥∥∥
2

2

.

(3.28)
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Next, we have by the triangle inequality,∥∥∥∥∥∥∥∥
∑

N1<`≤N2
|`−n|≤M

S`,ft,n,fu`,f

∥∥∥∥∥∥∥∥
2

2

≤

 ∑
N1<`≤N2
|`−n|≤M

∥∥∥S`,ft,n,fu`,f∥∥∥
2


2

≤ C

 ∑
N1<`≤N2
|`−n|≤M

‖u`,f‖2


2

,

for some constant C > 0. Then, from the Cauchy�Schwarz inequality, we get ∑
N1<`≤N2
|`−n|≤M

‖u`,f‖2


2

=

 ∑
N1<`≤N2
|`−n|≤M

2`(d+2)2−`(d+2) ‖u`,f‖2


2

≤

 ∑
N1<`≤N2
|`−n|≤M

22`(d+2)


 ∑
N1<`≤N2
|`−n|≤M

2−2`(d+2) ‖u`,f‖22


≤ C ′22n(d+2)

∑
N1<`≤N2
|`−n|≤M

2−2`(d+2) ‖u`,f‖22

for another constant C ′ > 0. Consequently, we can bound the �rst sum in (3.28)

N2∑
n=0

2−2n(d+2)

∥∥∥∥∥∥∥∥
∑

N1<`≤N2
|`−n|≤M

S`,ft,n,fu`,f

∥∥∥∥∥∥∥∥
2

2

≤ CC ′
N2∑
n=0

∑
N1<`≤N2
|`−n|≤M

2−2`(d+2) ‖u`,f‖22

≤ C̃
∑
`>N1

2−2`(d+2) ‖u`,f‖22 ,

where in the last line we noticed that, when ` is �xed, there are at most 2M + 1 values of

n for which |`− n| ≤ M . Working similarly with the second sum, we see that there is a

constant C such that

‖(PN2 − PN1)u‖2B ≤ C
∑

`≥N1−M
2−2(d+2)` ‖u`,f‖22 ,

and thus the sequence (PN1u)N1≥0 is Cauchy in B. Consequently, the sequence (PN )N≥0

converges in strong operator topology, hence, so does the sum (3.27). It remains to prove

thatMt depends continuously on t in the strong operator topology. To do so, just notice

that when u is �xed the sum ∑
(n,i),(`,j)∈Γ

ιn,i ◦ S`,jt,n,i ◦ π`,ju
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converges uniformly (in t ∈ I) toMtu and each of its terms is continuous with respect to

t (to see this, notice that if (n, i) , (`, j) ∈ Γ then S`,jt,n,i is locally uniformly bounded as an

operator from L2 to L2, and the continuity is easily proven for smooth u).

3.3.2 Schatten class properties

Now let h : R∗+ → C be a compactly supported function as in Proposition 3.17. If

(n, i) , (`, j) ∈ Γ, then write

H`,j
n,i =

∫
R
h (t)S`,jt,n,idt,

where we recall that S`,jt,n,i is de�ned by (3.17). Notice that the sum∑
(n,i),(`,j)∈Γ

ιn,i ◦H`,j
n,i ◦ π`,j

converges in strong operator topology to
∫
R h (t)Mtdt, sincein Lemma 3.20 the convergence

is uniform locally in t. To prove Proposition 3.17, we want now to prove that this operator

is in a Schatten class (or at least compact), this is the point of Lemma 3.27. To do so

we need �rst to establish a bunch of lemmas: Lemma 3.23 will be used to deal with the

transition of frequencies corresponding to the linear model of the dynamics apart from

the direction of the �ow, Lemma 3.24 will settle the problem of frequency transitions

corresponding to the non-linearity, and Lemmas 3.25 and 3.26 will be used to deal with

stationary frequencies in the direction of the �ow.

Lemma 3.23. There is a constant C > 0 such that, for all (n, i) , (`, j) ∈ Γ, the trace class

operator norm of H`,j
n,i : L2 → L2 is bounded by C2

(d+1)nαi

2 2
(d+1)`

αj

2 , where αi = α if i = 0

or i = r − 1 and αi = 1 otherwise.

Proof. Notice that if u ∈ L2 then ψΘ′,n,i (D)u = F−1
(
ψΘ′,n,i

)
∗u. Consequently, we have8

H`,j
n,i =

∫
K
F−1

(
ψΘ′,n,i

)
(· − y)⊗

(∫
R
h (t)Gt (y) δTt(y) ◦ ψ̃Θ,`,j (D) dt

)
dy. (3.29)

And then the result follows from the fact that

∥∥F−1
(
ψΘ′,n,i

)∥∥
2

=
1

√
2π

d+1

∥∥ψΘ′,n,i

∥∥
2
≤ C2

(d+1)nαi

2

and ∥∥∥∥∫
R
h (t)Gt (y) δTt(y) ◦ ψ̃Θ,`,j (D) dt

∥∥∥∥
(L2)∗

≤ C
∥∥∥ψ̃Θ,`,j

∥∥∥
2
≤ C̃2

(d+1)`
αj

2 ,

where ‖·‖(L2)∗ denotes the operator norm on the dual of L2
(
Rd+1

)
.

8If E,F are Banach spaces, e ∈ F and l ∈ E′, we denote by e ⊗ l the rank 1 operator de�ned by
e⊗ l(u) = l(u).e for u ∈ E.



120 CHAPTER 3

Lemma 3.24. There is a constant C > 0 and some δ > 1 such that, if (`, j) 6↪→ (n, i)

for (n, i) , (`, j) ∈ Γ, then the trace class operator norm of H`,j
n,i : L2 → L2 is bounded by

C exp
(
−max(n,`)δ

C

)
.

Proof. We may assume that max (n, `) > N . Without loss of generality, we may assume

that K ⊆ ]−π, π[d+1 and then, if u ∈ L2
(
Rd+1

)
write (the sum converges in L2)

H`,j
n,iu =

∑
k∈Zd+1

ck

(∫
R
h (t)Ltψ̃Θ,`,j (D)udt

)
ψΘ′,n,i (D) ρk,

where ρ is a function supported in ]−π, π[d+1 that takes value 1 on K, the function ρk is

de�ned by ρk (x) = ρ (x) eikx and if v is supported in ]−π, π[d+1 and k ∈ Zd+1, its kth

Fourier coe�cient is denoted by ck (v):

ck (v) =
1

(2π)d+1

∫
]−π,π[d+1

e−ikxv (x) dx.

By requiring that ρ is s-Gevrey (for some s > 1), we may ensure as in [Jéz20a, Lemma

6.5] that (for some constant C > 0)

∥∥ψΘ′,n,i (D) ρk
∥∥

2
≤ C2

(d+1)nαi

2 exp

−d (k, supp ψΘ′,n,i

) 1
s

C

 .

Now, if k ∈ Zd+1 and (`, j) ∈ Γ de�ne

δ (k, `, j) = sup
x∈K

d
(
k,DxT tr

t

(
supp ψ̃Θ,`,j

))
.

Then integrating by parts as in [Jéz20a, Lemma 6.7] or as in Lemma 3.22 we see that if

δ (k, `, j) ≥ ε2`
αj (for some arbitrary �xed ε > 0) then∥∥∥∥ck ◦ ∫

R
h (t)Ltdt ◦ ψ̃Θ,`,j (D)

∥∥∥∥
(L2)∗

≤ C2(d+1)`αj exp

(
− ln (1 + δ (k, `, j))

υ
υ−1

C

)
.

But now, if (`, j) 6↪→ (n, i) and max (n, l) > N , then, for all k ∈ Zd+1, either the distance

d
(
k, supp ψΘ′,n,i

)
or the distance δ (k, `, j) is greater than c′

2 max
(

2n
αi , 2`

αj
)
, thanks to

Lemma 3.21. Moreover, if |k| is greater than C2max(n,`) (for some large C > 0), then we

have δ (k, `, j) ≥ εmax(2n
αi , 2`

αj
) and d

(
k, supp ψΘ′,n,i

)
≥ ε |k|. Thus, the sum

H`,j
n,i =

∑
k∈Zd+1

(
ψΘ′,n,i (D) ρk

)
⊗
(
ck ◦

∫
R
h (t)Ltdt ◦ ψ̃Θ,`,j (D)

)

converges in trace class topology, and from the estimates above we see that the announced
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result holds with δ = αυ
υ−1 .

Lemma 3.25. Assume that h is kth times di�erentiable and that is kth derivative has

bounded variation. Then there is a constant C > 0 such that for all n, ` ∈ N we have∥∥∥H`,f
n,f

∥∥∥
L2→L2

≤ C2−(k+1)`.

Proof. If u ∈ L2
(
Rd+1

)
and x ∈ Rd+1, then we have,

H`,f
n,fu (x) =

∫
Rd+1

Vn,` (x, η) û(η)dη,

where the kernel Vn,` is de�ned by

Vn,` (x, η) =
1

(2π)2(d+1)

∫
(Rd+1)

3×R
ei(x−z)ξ+iT0(z)ηeitηd+1ψΘ′,n,f (ξ)

× ψ̃Θ,`,f (η)h (t)Gt (z) dzdξdt.

(3.30)

We can assume that ` is large enough (the H`,f
n,f 's are uniformly bounded on L2), which

ensures that ηd+1 (the last coordinate of η) does not vanish on the support of ψ̃Θ,`,f .

Consequently, we can perform k + 1 integrations by parts in t in (3.30) to get

Vn,` (x, η) =
ik+1

(2π)2(d+1)

∫
(R×Rd+1)

3
ei(x−z)ξ+iT0(z)ηeitηd+1ψΘ′,n,f (ξ)

×
ψ̃Θ,`,f (η)

ηk+1
d+1

dk+1

dtk+1
(h (t)Gt (z)) dtdzdξ.

Using the Leibniz rule, we see that, if µ denotes the measure of total variation of h(k+1),

the measure dk+1

dtk+1 (h (t)Gt (z)) dt may be written as f (t, z) dµ (t) for all z ∈ Rd+1. More-

over, f has the following properties: it is measurable, f (t, z) = 0 if z ∈ Rd+1 \ K, and∫
R supz∈Rd+1 |f (t, z)| dµ (t) < +∞. Then, de�ne the function Ψ` : Rd+1 → R by Ψ` (η) =
ψ̃Θ,`,f (η)

ηk+1
d+1

, the operator Lt : L2
(
Rd+1

)
→ L2

(
Rd+1

)
by Ltu (z) = f (t, z) . (u ◦ Tt (z)), and

notice that we have

H`,f
n,f = ψΘ′,n,f (D) ◦

∫
R
Ltdµ (t) ◦Ψ` (D) .

Finally, notice that ‖Ψ`‖∞ ≤ C2−`(k+1) to end the proof.

Lemma 3.26. Let s > 0 and ε > 0. Then there is a constant C > 0 such that for all

N > 0 and n ∈ N with n < N there is an operator Fn,N : L2 (K) → L2
(
Rd+1

)
of rank at
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most 2(1+ε)(d+1)N such that for all u ∈ L2 (K) we have

∥∥ψΘ′,n,f (D)u− Fn,Nu
∥∥

2
≤ C2−sN .

Proof. The proof is similar to the proof of [BT08, Lemma 4.21].

We are now ready to prove Lemma 3.27.

Lemma 3.27. Under the hypotheses of Lemma 3.25 and if in addition α < 1
2 , the operator∫

R
h (t)Mtdt (3.31)

belongs to the Schatten class Sp for every p ≥ 1 such that p > d+1
k+1 . Moreover, its norm

in this Schatten class is bounded by C
(
‖h‖Ck−1 +

∥∥h(k)
∥∥
BV

)
where C depends on h only

through its support.

Without the assumption that α < 1
2 , it remains true that the operator de�ned by (3.31)

is compact.

Proof. We know that ∫
R
h (t)Mtdt =

∑
(n,i),(`,j)∈Γ

ιn,i ◦H`,j
n,i ◦ π`,j (3.32)

where the sum converges in the strong operator topology. From Lemma 3.24, it is clear

that the sum ∑
(n,i),(`,j)∈Γ
(n,i)6↪→(`,j)

ιn,i ◦H`,j
n,i ◦ π`,j

converges in the trace class operator topology. We are left with the sum∑
(n,i),(`,j)∈Γ
(n,i)↪→(`,j)

ιn,i ◦H`,j
n,i ◦ π`,j

that we can divide, as in the proof of Lemma 3.20, into seven sums corresponding to

the di�erent cases in the de�nition of ↪→. The �rst six sums are dealt with by using

Lemma 3.23. We will only detail the computation corresponding to the �rst case in the

de�nition of ↪→ (i.e. the case i = j = 0, the case i = j = r − 1 is dealt with in the

same way and the others are easier), in order to highlight where the hypothesis α < 1
2 is

used. If n, ` ∈ N, then the trace class operator norm of ιn,0 ◦ H`,0
n,0 ◦ π`,0 is smaller than

C2
(d+1)nα

2 2
(d+1)`α

2 2(d+2)n2−(d+2)`. Thus, in order to deal with the sum corresponding with
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the case i = j = 0 in the de�nition of ↪→, we only need to prove that the quantity∑
`,n∈N

(`,0)↪→(n,0)

2
(d+1)nα

2 2
(d+1)`α

2 2(d+2)n2−(d+2)` (3.33)

is �nite. Notice that

2−(d+2)`+
(d+1)`α

2 ∼
`→+∞

1

1− 2−(d+2)

(
2−(d+2)`+

(d+1)`α

2 − 2(d+2)(`+1)+
(d+1)(`+1)α

2

)
so that ∑

`≥`0

2−(d+2)`+
(d+1)`α

2 ∼
`0→+∞

2−(d+2)`0+
(d+1)`α0

2

1− 2−(d+2)
.

In particular, there is a constant C > 0 such that, for all `0 ∈ N. We have

∑
`≥`0

2−(d+2)`+
(d+1)`α

2 ≤ C2−(d+2)`0+
(d+1)`α0

2 .

Now if n ∈ N, let `0 be the smallest integer such that `0 ≥ n+νn1−α, we have then (notice

that `0 ≤ Bn for some constant B that does not depend on n)

∑
`∈N

(`,0)↪→(n,0)

2−(d+2)`+
(d+1)`α

2 =
∑
`≥`0

2−(d+2)`+
(d+1)`α

2 ≤ C2−(d+2)`0+
(d+1)`α0

2

≤ C2−(d+2)n2−(d+2)νn1−α
2

(d+1)Bα

2
nα .

Thus, we have

∑
`,n∈N

(`,0)↪→(n,0)

2
(d+1)nα

2 2
(d+1)`α

2 2(d+2)n2−(d+2)` ≤ C
∑
n∈N

2−(d+2)νn1−α
2

(d+1)(Bα+1)
2

nα ,
(3.34)

and this sum is �nite since α < 1
2 . As explained above, a similar argument allows to

deal with the sum corresponding to any of the six �rst cases in the de�nition of ↪→.

Consequently, we are left with the sum

P =
∑
n,`∈N
|n−`|≤M

ιn,f ◦H`,f
n,f ◦ π`,f .

Choose s > k + 1 and ε > 0, and apply Lemma 3.26 to de�ne for all N > 0 the operator

PN =
∑

0≤n,`<N
|n−`|≤M

ιn,f ◦ Fn,N ◦
∫
R
h (t)Ltdt ◦ ψ̃Θ,`,j ◦ π`,f ,
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whose rank is at most N22(1+ε)(d+1)N . Then notice, using Lemma 3.25, that we have

‖PN − P‖B→B ≤ C
∑
n,`<N
|n−`|≤M

(∥∥Fn,N − ψΘ′,n,f (D)
∥∥
L2(K)→L2(Rd+1)

×
∥∥∥∥∫

R
h (t)Ltdt ◦ ψ̃Θ,`,f (D)

∥∥∥∥
L2→L2

)
+ C

∑
n,`≥N
|n−`|≤M

∥∥∥H`,f
n,f

∥∥∥
L2→L2

≤ C̃
(
N22−sN + 2−(k+1)N

)
≤ C ′2−(k+1)N ,

(3.35)

for some constants C, C̃ and C ′ that do not depend on N . Letting N tend to in�nity, we

see that P is compact. Moreover, if (sm)m≥0 denotes the sequence of singular values of P ,

we get from (3.35) and [GGK00, Theorem 2.5 p.51]

sN22(1+ε)(d+1)N+1 ≤ C
′2−(k+1)N .

Thus, the sequence (sm)m≥0 is in `p for all p > (1+ε)(d+1)
k+1 (the sequence (sm)m≥0 is de-

creasing). This ends the proof in the case α < 1
2 since ε > 0 is arbitrary. Indeed, all the

terms in the proof are controlled by the L∞ norm of h, except the one that we bounded

using Lemma 3.25 that is controlled by ‖h‖Ck−1 +
∥∥h(k)

∥∥
BV

.

In order to deal with the case α ≥ 1
2 , notice that we only used the assumption α < 1

2 to

ensure that the series (3.34) converges. However, if we remove the factor 2
(d+1)nα

2 2
(d+1)`α

2

from the sum (3.33), this new series converges, just like in the proof of Lemma 3.20. That

is, if we consider the operator norm instead of the trace class norm, the sums corresponding

to the �rst six cases in the de�nition of ↪→ converge, even if α ≥ 1
2 . Consequently, the

right-hand side of (3.32) always converges in the operator norm topology, and the left-hand

side of (3.32) is always compact.

3.3.3 Trace of
∫ +∞

0
h (t)Mtdt and structure of the local Koopman oper-

ator.

Before proving that (Lt)t∈R inherits of the properties of (Mt)t∈R, thus showing Proposi-

tion 3.17, we still need to prove that the operator
∫
R h (t)Mtdt has the expected trace,

when it makes sense. This is the point of the following lemma.

Lemma 3.28. Under the hypotheses of Proposition 3.17, if Θ = Θ′,if α < 1
2 and if

k + 1 > d+ 1 then

tr

(∫
R
h (t)Mtdt

)
=

∑
p◦F (x)=x

h (T (x))

|det (I − p ◦DxF )|

∫
R
GT (x) (x, y) dy,
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where p denotes the orthogonal projection on Rd ' Rd × {0} and, for x ∈ Rd, the number

T (x) is de�ned by F (x) = p (F (x)) + (0,−T (x)).

Proof. For all N ∈ N write

AN =
∑

(n,i),(`,j)∈Γ
0≤n,`≤N

ιn,i ◦H`,j
n,i ◦ π`,j

and notice that [GGK00, Theorem 11.3 p.89] implies that

tr

(∫
R
h (t)Mtdt

)
= lim

N→+∞
tr (AN ) .

Moreover, using Lidskii's trace theorem, we see that for all N ∈ N we have

tr (AN ) =
∑

(n,i)∈Γ
0≤n≤N

tr
(
Hn,i
n,i

)
.

Now, from (3.29), we see that

tr
(
Hn,i
n,i

)
=

∫
R

∫
K
h (t)Gt (w) ψ̃Θ,n,i (D)

(
F−1 (ψΘ,n,i) (· − w)

)
(Tt (w)) dwdt

=

∫
R

∫
K
h (t)Gt (w)F−1 (ψΘ,n,i) (Tt (w)− w) dwdt.

We used in the second line that if ψΘ,n,i (ξ) 6= 0 then ψ̃Θ,n,i (ξ) = 1. Now letM be such that

K ⊆ [−M,M ]d+1 and h is supported in [−M,M ]. De�ne the map g : Rd+1 ' Rd × R →
Rd+1 by g (x, t) = F (x)− (x,−t). Notice that for all (x, y) ∈ Rd+1 and t ∈ R we have

Tt (x, y)− (x, y) = g (x, t) .

Cone-hyperbolicity implies that the Jacobian of g does not vanish. Consequently we can

�nd a �nite family (ρa)a∈A of compactly supported C∞ functions ρa : Rd+1 → [0, 1]

such that
∑

a∈A ρa (w) = 1 for all w ∈ [−M,M ]d+1 and for all a ∈ A there is a C∞

di�eomorphism ga : Rd+1 → Rd+1 that coincides with g on a neighborhood of the support

of ρa. Thus, we �nd that tr
(
Hn,i
n,i

)
is equal to

∑
a∈A

∫
[−M,M ]d+2

h (t) ρa (x, t)Gt (x, y)F−1 (ψΘ,n,i) (ga (x, t)) dxdtdy

=
∑
a∈A

∫
Rd+1×[−M,M ]

h (ta (z)) ρa ◦ g−1
a (z)

Gta(z) (xa (z) , y)∣∣∣detDg−1
a (z)ga

∣∣∣ F−1 (ψΘ,n,i) (z) dzdy

where w = (x, y) and g−1
a (z) = (xa(z), ta(z)). Since

∑
(n,i)∈Γ ψΘ,n,i = 1 we �nd that for all
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a ∈ A we have

lim
N→+∞

∑
(n,i)∈Γ
0≤n≤N

∫
Rd+1×[−M,M ]

h (ta (z)) ρa ◦ g−1
a (z)

Gta(z) (xa (z) , y)∣∣∣detDg−1
a (z)ga

∣∣∣ F−1 (ψΘ,n,i) (z) dzdy

=

∫
[−M,M ]

h (ta (0)) ρa
(
g−1
a (0)

) Gta(0) (xa (0) , y)∣∣∣detDg−1
a (0)ga

∣∣∣ dy.

And thus

tr

(∫
R
h (t)Mtdt

)
=
∑
a∈A

∫
[−M,M ]

h (ta (0)) ρa
(
g−1
a (0)

) Gta(0) (xa (0) , y)∣∣∣detDg−1
a (0)ga

∣∣∣ dy.

Now, notice that g (x, t) = 0 if and only if p ◦ F (x) = x and t = T (x), thus∫
[−M,M ]

h (ta (0)) ρa
(
g−1
a (0)

) Gta(0) (xa (0) , y)∣∣∣detDg−1
a (0)ga

∣∣∣ dy

=
∑

p◦F (x)=x

∫
[−M,M ]

ρa (x, T (x))h (T (x))
GT (x) (x, y)

|det (I − p ◦DxF )|
dy.

Here we noticed that the Jacobian of g do not depend on the last coordinate. Finally,

summing over a ∈ A we get

tr

(∫
R
h (t)Mtdt

)
=

∑
p◦F (x)=x

h (T (x))

|det (I − p ◦DxF )|

∫
[−M,M ]

GT (x) (x, y) dy.

We show Proposition 3.17 by proving that (Lt)t∈R also satis�es the properties estab-

lished for (Mt)t∈R in Lemmas 3.20, 3.27 and 3.28.

Proof of Proposition 3.17. Recall that QΘ (de�ned by (3.13)) induces an isomorphism be-

tween HΘ,α and QΘ (HΘ,α), which is a closed subspace of B. We denote by Q−1
Θ the inverse

isomorphism (and similarly for QΘ′).

Now, if (un,i)(n,i)∈Γ is �nitely supported (i.e. there are �nitely many (n, i) ∈ Γ such

that un,i 6= 0) and such that for all (n, i) ∈ Γ we have un,i ∈ Sυ̃ (for some υ̃ ∈
]
υ, 1

1−α

[
)

we write u =
∑

(n,i)∈Γ ψ̃Θ,n,i (D)un,i and notice that Ltu ∈ Sυ̃ for all t ∈ R, and thus

Ltu ∈ HΘ′,α. Consequently, Mt (un,i)(n,i)∈Γ = QΘ′Ltu is in QΘ′
(
HΘ′,α

)
. Since such

elements are easily seen to be dense in B, it appears that Mt sends B into QΘ′
(
HΘ′,α

)
.

We can consequently de�ne the operator Q−1
Θ′ ◦Mt ◦ QΘ.

The calculation above also implies that Lt and Q−1
Θ′ ◦Mt ◦QΘ coincides on HΘ,α (since

the element of Sυ̃ whose Fourier transform is compactly supported are dense in HΘ,α,
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and HΘ,α and HΘ′,α are continuously contained in
(
S υ̃
)′
, see Remark 3.12). Now, since

Lt : HΘ,α → HΘ′,α is conjugated toMt : B → B (the conjugacy being independent of t), it

inherits of all the relevant properties ofMt, which ends the proof of Proposition 3.17 with

Lemmas 3.20, 3.27 and 3.28 (for the computation of the trace, use Lidskii's trace theorem

and the fact thatMt sends B into QΘ′
(
HΘ′,α

)
, and not only let this subspace stable).

3.4 Global space: �rst step

We are now ready to start the proof of Theorem 3.1 using the tools from �3.2 and �3.3.

So let M be a compact d+ 1-dimensional Cκ,υ manifold, let (φt)t∈R be a Cκ,υ Anosov �ow

on M , and let V : M → C a Cκ,υ function. We denote by X the generator of (φt)t∈R and

write P = X + V . We also denote by (Lt)t∈R the associated Koopman operator, de�ned

by (9). We �x t0 > 0 from now on.

We will construct in this section two auxiliary Hilbert spaces H̃ and H̃0. The space

H̃0 almost satis�es the conclusions of Theorem 3.1 (this is the point of Proposition 3.32)

but the Koopman operator Lt is bounded from H̃0 to itself only for large values of t a

priori. This problem will be settled in �3.5. The �rst thing that we need to do in order to

construct the spaces H̃ and H̃0 is to show that, locally in space and for large times, the

action of the �ow (φt)t∈R behaves like the local model that we studied in �3.3, this is the

point of Lemma 3.29. Indeed, we construct in Lemma 3.29 a system of admissible charts

adapted to the dynamics of (φt)t∈R (this is a continuous-time analogue of [Jéz20a, Lemma

8.1]). We can then glue copies of the local spaces from �3.2 to de�ne the global spaces H̃
and H̃0. Finally, we state and prove Proposition 3.32.

Lemma 3.29. There are a �nite set Ω, an integer r and t1 ∈ ]0, t0[ such that:

(i) there is no periodic orbit of (φt)t∈R of length less than 3t1;

(ii) for all ω ∈ Ω there is a Cκ,υ chart κω : Uω → Vω, where Uω is an open subset of M

and Vω an open subset of Rd+1, such that Vω = Wω × ]−t1, t1[ for some open subset

Wω of Rd, and for all x ∈ Uω : Dxκω (X (x)) = ed+1;

(iii)
⋃
ω∈Ω Uω = M ;

(iv) for all ω ∈ Ω, there is a system of r + 2 cones Θω = (C0,ω, . . . , Cr,ω, Cf,ω) in Rd+1

(with respect to the direction ed+1);

(v) for every ω, ω′ ∈ Ω and t ∈ [t0, 3t0] there is a Cκ,υ immersion Fω,ω′,t : Rd → Rd+1

such that the associated family
(
T ω,ω

′,t
t′

)
t′∈R

(de�ned by (3.14)) is indeed a family of

di�eomorphisms and is cone-hyperbolic from Θω to Θω′;

(vi) for all ω, ω′ ∈ Ω, t ∈ [t0, 3t0] and t′ ∈ ]−t1, t1[, if x ∈ Uω is such that φt+t′ (x) ∈ Uω′
then T ω,ω

′,t
t′ ◦ κω (x) = κω′ ◦ φt+t′ (x).
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Proof. Choose a Mather metric |·|x on M (see [Mat68]). This metric makes the splitting

TxM = Eux ⊕ Esx ⊕ RX (x) (3.36)

orthogonal and is Hölder-continuous. Moreover, |X (x)|x = 1 for all x ∈M and, for t ≥ 0,

we have
∥∥∥Dxφt|Esx

∥∥∥ ≤ λ−t and ∥∥∥Dxφ−t|Eux
∥∥∥ ≤ λ−t (for the induced norm, λ > 1). Choose

γ > 0 such that

λ−2t0
(
γ2 + 1

)
< 1.

Then, choose γ1 ∈]1/γ, λ
t0
2 /γ[ and de�ne for all i ≥ 2 the number γi = λ−

t0(i−1)
2 γ1. Now,

let r be large enough so that
λ2t0

1 + γ2
r−1

> 1.

Since γγ1λ
− 5t0

8 < 1, we may choose ε̃u > 0 and ε̃s > 0 such that

ε̃u > λ−
t0
2 γ1ε̃s and ε̃s > γλ−

t0
8 ε̃u,

and small enough so that

λ−2t0
(
ε̃2s + γ2 + 1

)
< 1

and
λ2t0

1 + γ2
r−1 + ε̃2u

> 1.

Finally, set εu = λ−
t0
8 ε̃u and εs = λ−

t0
2 ε̃s.

Now, for all x ∈ M , if ξ ∈ TxM write ξ = ξu + ξs + ξ0 the decomposition of ξ with

respect to (3.36), and de�ne the cones Cf (x) and Ci (x), for i ∈ N by

C0 (x) = {ξ ∈ TxM : |ξu|x ≤ γ |ξs|x and |ξ0|x ≤ ε̃s |ξs|x} ,

Ci (x) =
{
ξ ∈ TxM : |ξs|x ≤ γi |ξu|x and |ξ0|x ≤ λ

− (i−1)t0
4 ε̃u |ξu|x

}
(3.37)

for i ∈ N∗ and

Cf (x) = {ξ ∈ TxM : |ξ0|x ≥ εs |ξs|x and |ξ0|x ≥ εu |ξu|x} .

Notice that all these cones depend Hölder-continuously on x. We will see that our choice

of parameter ensures that if x ∈M , then Θ (x) = (C0 (x) , . . . , Cr (x) , Cf (x)) is a system

of r + 2 cones with respect to the direction X (x). Indeed:

(i) if ξ ∈ TxM \ Cf (x), since γγ1 > 1, we have either |ξu|x < γ |ξs|x or |ξs|x < γ1 |ξu|x.

In the �rst case, either |ξ0|x < ε̃s |ξs|x, in which case ξ ∈
◦

C0 (x), or |ξ0|x ≥ ε̃s |ξs|x,

which implies ξ ∈
◦

Cf (x), since εs < ε̃s and |ξ0|x >
ε̃s
γ |ξu|x > εu |ξu|x. Similarly, we
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can see that in the second case either ξ ∈
◦

C1 (x) or ξ ∈
◦

Cf (x);

(ii) if ξ ∈ Cf (x) then |ξ0|x ≥
1√

1+ε−2
u +ε−2

s

|ξ|, which implies that Cf (x) is one dimen-

sional;

(iii) if ξ ∈ C0 (x) then |ξ|x ≤
√

1 + γ2 + ε̃2s |ξs| and thus C0 (x) is ds-dimensional, where ds
is the dimension of Esx, for the same reason Ci (x) is du-dimensional for i ∈ {1, . . . , r};

(iv) Ci+1 (x) b Ci (x) for i ∈ {1, . . . , r − 1} because γi+1 < γi and λ−
it0
2 ε̃u < λ−

(i−1)t0
2 ε̃u;

(v) C0 (x) ∩ C2 (x) = {0} because γγ2 < 1 and Cf (x) ∩ C2 (x) = {0} because we have

λ
t0
4 εu/ε̃u = λ

t0
8 > 1.

Let us set Λ := λt0 min((ε̃2u+γ2
r−1 +1)−

1
2 , (ε̃2s+γ2 +1)−

1
2 ) > 1. Our choice of parameter

ensures that for t ≥ t0 and x ∈M :

• for all i ∈ {1, . . . , r} we have (Dxφt)
tr (Ci (φt (x))) ⊆ Ci+4 (x) because λ−2tγi ≤ γi+4

and λ−tλ−
(i−1)t0

4 /λ−
(i+3)t0

4 < 1;

• (Dxφt)
tr (Cf (φt (x))) ∩ C0 (x) = {0} because εsλt > ε̃s;

• for all ξ ∈ Cr−1 (φt (x)) we have
∣∣(Dxφt)

tr (ξ)
∣∣
x
≥ Λ |ξ|φt(x);

• if ξ ∈ Tφt(x)M and (Dxφt)
tr (ξ) ∈ C0 (x) then

∣∣(Dxφt)
tr (ξ)

∣∣
x
≤ Λ−1 |ξ|φt(x) holds.

Then, for every x ∈M , we may choose a Cκ,υ chart κx : Vx →Wx = B (0, δx)× ]−tx, tx[

such that κx (x) = 0, the map Dxκx : TxM → Rd+1 is an isometry and, for every y ∈ Vx,
we have Dyκx (X (y)) = ed+1 (we can require the last two points simultaneously because

|X (x)|x = 1). For every x ∈M , choose a system of r+ 2 cones Θx = (C0,x, . . . , Cr,x, Cf,x)

such that Dxκ
tr
x (Cf,x) b Cf (x),Dxκ

tr
x (C0,x) b C0 (x), and, for every i ∈ {1, . . . , r}, we

have
(
Dxκ

tr
x

)−1
(Ci+1 (x)) b Ci,x b

(
Dxκ

tr
x

)−1
(Ci (x)). Here we recall that the de�nition

(3.37) of Ci(x) is valid for any i ≥ 1. Up to making Vx smaller, we may ensure that for all

y ∈ Vx we have

Dyκ
tr
x (Cf,x) b Cf (y) , Dyκ

tr
x (C0,x) b C0 (y) , (3.38)

for all i ∈ {1, . . . , r} we have

(
Dyκ

tr
x

)−1
(Ci+1 (y)) b Ci,x b

(
Dyκ

tr
x

)−1
(Ci (y)) , (3.39)

and, in addition,

‖Dyκx‖ ≤ 1 + ε and
∥∥∥(Dyκx)−1

∥∥∥−1
≥ 1− ε, (3.40)

where ε > 0 is small enough so that

1− ε
1 + ε

Λ > 1.
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By compactness of M , there are x1, . . . , xn such that M is covered by the open sets

κ−1
xi

(
B
(

0,
δxi
2

)
×
]
− txi

100 ,
txi
100

[)
for i = 1, . . . , n. Let t1 = mini=1,...,n

txi
100 . By cutting the

charts into pieces and translating them, we may assume that for every i = 1, . . . , n we have

txi = 100t1 (this could make us lose the fact that Dxiκxi is an isometry, but this is of no

harm since (3.40) remains true and that is all we need). Notice that for such a t1 there

is no periodic orbit of (φt)t∈R of length less than 3t1. If necessary, we reduce the value

of t1 so that t1 < t0. Set t2 = 30t1 and let N =
⌈

2t0
t2

⌉
. Choose χ : Rd → [0, 1] Gevrey,

compactly supported and such that χ (y) = 1 if |y| ≤ 1.

If i, j ∈ {1, . . . , n}, if k ∈ {0, . . . , N}, and if y ∈ B
(

0,
δxi
2

)
are such that the point

φt0+kt2

(
κ−1
xi (y, 0)

)
lies in κ−1

xj

(
B
(

0,
δxj
2

))
× [−t2, t2], and η > 0 is small enough de�ne

Fi,j,k,y,η : Rd → Rd+1 by (here we see Rd ' Rd × {0} as a subset of Rd+1)

Fi,j,k,y,η (z) = χ

(
z − y
η

)
κxj ◦ φt0+kt2 ◦ κ−1

xi (z)

+

(
1− χ

(
z − y
η

))(
κxj ◦ φt0+kt2 ◦ κ−1

xi (y) +Dy

(
κxj ◦ φt0+kt2 ◦ κ−1

xi

)
(z − y)

)
Notice that Fi,j,k,y,η coincides with κxj ◦ φt0+kt2 ◦ κ−1

xi on B (0, η), and that it can be

made arbitrarily close in the C1 topology to the a�ne map z 7→ κxj ◦ φt0+kt2 ◦ κ−1
xi (y) +

Dy

(
κxj ◦ φt0+kt2 ◦ κ−1

xi

)
(z − y) by taking η = ηi,j,k,y small enough. In particular, Fi,j,k,y,η

de�nes a cone-hyperbolic family of di�eomorphisms
(
Ti,j,k,y,η,t′

)
t′∈R from Θxi to Θxj (the

cone-hyperbolicity follows from the properties of the di�erential of φt0+kt2 proven above

and the quasi-isometry property (3.40) of the charts, to see that the Ti,j,k,y,η,t′ 's are dif-

feomorphisms just notice that they are proper local di�eomorphism and hence covering

of Rd+1 by itself). De�ne η̃i,y = mink=0,...,N
j=1,...,n

ηi,j,k,y (if j is such that φt0+kt2

(
κ−1
xi (y, 0)

)
/∈

κ−1
xj

(
B
(

0,
δxj
2

))
×[−t2, t2], i.e. there is no allowed transitions from i to j at the considered

time, set ηi,j,k,y = ∞ and take for Fi,j,k,y,η̃i,y any Cκ,υ map that de�nes a cone-hyperbolic

family of di�eomorphisms9 from Θxi to Θxj ) .

Notice also that for all (z, z′) ∈ B (0, η̃i,y)× ]−t2, t2[ and all t, t′ ∈ ]−t2, t2[ we have

κxj ◦ φt0+kt2+t+t′ ◦ κ−1
xi

(
z, z′

)
= κxj ◦ φt0+kt2+t+t′+z′ ◦ κ−1

xi (z, 0)

= Fi,j,k,y,η̃i,y (z) + z′ed+1 +
(
t+ t′

)
ed+1

= T i,j,k,y,tt′
(
z, z′

)
,

where
(
T i,j,k,y,tt′

)
t′∈R

denotes the family of cone-hyperbolic di�eomorphisms associated

with Fi,j,k,y,η̃i,y + ted+1.

9There always is a linear such map.



3.4. GLOBAL SPACE: FIRST STEP 131

By compactness of B
(

0,
δxi
2

)
, we may �nd yi,1, . . . , yi,mi ∈ B

(
0,

δxi
2

)
such that

B

(
0,
δxi
2

)
⊆

mi⋃
`=1

B

(
yi,`,

η̃i,yi,`
2

)
.

Finally, set

Ω = {(i, `) : i ∈ {1, . . . , n} , ` ∈ {1, . . . ,mi}} ,

and, for all ω = (i, `) ∈ Ω,

Vω = B

(
0,
η̃i,yi,`

2

)
× ]−t1, t1[ , Uω = κ−1

xi

(
B

(
0,
η̃i,yi,`

2

)
× ]−t1, t1[

)
,

κω = κxi |Uω , Θω = Θxi .

If ω′ = (j, `′) ∈ Ω and t ∈ [t0 + kt2, t0 + (k + 1) t2] let

Fω,ω′,t = Fi,j,k,yi,`,η̃i,yi,` + (t− kt2) ed+1.

From what is above, these data satisfy the statement of the lemma.

Choose a Gevrey partition of unity (ϕω)ω∈Ω subordinated to the open cover (Uω)ω∈Ω.

Fix α ∈
]
υ−1
υ , 1

[
(if υ < 2, we choose α < 1

2) and choose υ̃ ∈
]
υ, 1

1−α

[
. Then de�ne

Φ : Dυ̃ (M)′ → ⊕ω∈Ω

(
S υ̃
)′

u 7→
(
(ϕωu) ◦ κ−1

w

)
and

S : ⊕ω∈Ω

(
S υ̃
)′ → Dυ̃ (M)′

(uω)ω∈Ω 7→
∑

ω∈Ω (hωuω) ◦ κω,

where hω : Rd+1 → [0, 1] is Gevrey, supported in Wω, and takes value 1 on κω (supp ϕω).

Notice that S ◦Φ is the identity of Dυ̃ (M)′. It can be veri�ed that Φ and S are continuous.

We may now de�ne the �rst version of the global Hilbert space (the �nal one will be

introduced in �3.5). De�ne

HΩ = ⊕ω∈ΩHΘω ,α

and

H̃ =
{
u ∈ Dυ̃ (M)′ : Φ (u) ∈ HΩ

}
,

endowed with the norm

‖u‖H̃ = ‖Φ (u)‖HΩ
=

√∑
ω∈Ω

∥∥(ϕωu) ◦ κ−1
ω

∥∥2

HΘω,α
.
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Proposition 3.30. H̃ is a separable Hilbert space (equivalently, Φ
(
H̃
)
is closed in HΩ)

that does not depend on the choice of υ̃. The inclusion of H̃ in Dυ̃ (M)′ is continuous, and

C∞,υ̃ (M) is continuously contained in H̃.

Proof. To see that Φ
(
H̃
)
is closed in HΩ, just notice that

Φ
(
H̃
)

= {u ∈ HΩ : ΦSu = u} ,

and that the inclusion of HΩ in
⊕

ω∈Ω

(
S υ̃
)′
is continuous. The inclusion of H̃ in Dυ̃ (M)′

may be written as the composition of Φ, the inclusion ofHΩ in
⊕

ω∈Ω

(
S υ̃
)′
and S. It is thus

continuous. Finally, Φ sends C∞,υ̃ (M) continuously into
⊕

ω∈Ω S υ̃, which is continuously

contained in HΩ, thus C∞,υ̃ (M) is contained in H̃, the inclusion being continuous.

Let H̃0 be the closure10 of C∞,υ̃ (M) in H̃. Recall from �3.1 that for each t ∈ R we may

de�ne the operator Lt from (9) as an operator from Dυ̃ (M)′ to itself. We start by proving

that, for t ≥ t0, the operator Lt is bounded from H̃ to H̃0.

Proposition 3.31. For all t ∈ [t0,+∞[ the operator Lt is bounded from H̃ to H̃0. More-

over, as an operator from H̃ to H̃0, the operator Lt depends continuously on t ∈ [t0,+∞[

in the strong operator topology.

Proof. We only need to prove the result for t ∈ [t0, 3t0], and then use the group property

of (Lt)t∈R. Recall indeed that H̃0 is a closed subspace of H̃. For all t ∈ R de�ne

L̃t :
⊕
ω∈Ω

(
S υ̃
)′ →⊕

ω∈Ω

(
S υ̃
)′

by L̃t = Φ ◦ Lt ◦ S. The operator L̃t may be described via a matrix of operators(
L̃ω,ω′,t

)
ω,ω′∈Ω

, that is, we have

L̃t (uω)ω∈Ω =

(∑
ω′∈Ω

L̃ω,ω′,tuω′
)
ω∈Ω

. (3.41)

Now, if t ∈ [t0, 3t0] and t′ ∈ ]−t1, t1[, then the operator L̃ω,ω′,t+t′ for ω, ω′ ∈ Ω may be

described as

L̃ω,ω′,t+t′u (x) = ϕω ◦ κ−1
ω (x) e

∫ t+t′
0 V ◦φτ(κ−1

ω (x))dτ

× hω′ ◦ κω′ ◦ φt+t′ ◦ κ−1
ω (x)u ◦ κω′ ◦ φt+t′ ◦ κ−1

ω (x)

= Gω,ω′,t,t′ (x)u ◦ T ω
′,ω,t

t′ (x) ,

(3.42)

10It could well be that H̃0 = H̃, see Proposition 3.11, but we do not need this fact
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where
(
T ω
′,ω,t

t′

)
t′∈R

is the family of di�eomorphisms associated to Fω′,ω,t by (3.14), and

Gω,ω′,t,t′ (x) = ϕω ◦ κ−1
ω (x) e

∫ t+t′
0 V ◦φτ(κ−1

ω (x))dτhω′ ◦ κω′ ◦ φt+t′ ◦ κ−1
ω (x)

properly extended by zero. We can then apply Proposition 3.17 to prove that L̃ω,ω′,t+t′ is
bounded from HΘ′ω ,α to HΘω ,α. Then L̃t+t′ is bounded from HΩ to itself thanks to (3.41).

Notice that if u ∈
⊕

ω∈Ω S
υ̃ then L̃t+t′u = Φ (Lt+t′ ◦ Su) ∈ Φ

(
H̃0

)
. Thus, since

⊕
ω∈Ω S

υ̃

is dense in HΩ, the operator L̃t+t′ sends HΩ into Φ
(
H̃0

)
. Denote by Ψ : Φ

(
H̃0

)
→ H̃0

the inverse of the isomorphism induced by Φ, and notice that Lt+t′ coincide on H̃ with

Ψ ◦ L̃t+t′ ◦ Φ, and is thus bounded from H̃ to H̃0. Finally, from Proposition 3.17, we

know that L̃t+t′ : HΩ → HΩ depends continuously on t′ ∈ ]−t1, t1[ in the strong operator

topology, and consequently so does Lt+t′ : H̃ → H̃0.

We want now to prove Schatten properties for operators de�ned in term of the Lt's for
t ≥ t0. To do so, it is convenient to introduce (ψ`)`∈Z, a

t1
3 Z invariant smooth partition of

unity on R (that is, we have ψ` = ψ0

(
· − ` t13

)
) such that ψ0 is supported in

]
− t1

2 ,
t1
2

[
.

Proposition 3.32. Assume υ < 2. There is $ ∈ R with the following property: if

h : R∗+ → C and k ∈ N satisfy

(i) h is supported in [t0,+∞[;

(ii) h is kth time di�erentiable and its kth derivatives has bounded variations;

(iii) there is a constant C > 0 such that for every ` ∈ N we have∥∥∥∥ψ0h

(
·+ `

t1
3

)∥∥∥∥
Ck−1

+

∥∥∥∥∥
(
ψ0h

(
·+ `

t1
3

))(k)
∥∥∥∥∥
BV

≤ Ce−$`;

then the operator ∫ +∞

0
h(t)Ltdt : H̃ → H̃0 (3.43)

is in the Schatten class Sp for every p ≥ 1 such that p > d+1
k+1 . Moreover, if k > d and if

we see (3.43) as an operator from H̃0 to itself, we have

tr

(∫ +∞

t0

h (t)Ltdt
)

=
∑
γ

T#
γ

h (Tγ)

|det (I − Pγ)|
exp

(∫
γ
V

)
,

where the sum on the right-hand side runs over closed periodic orbits11 γ of the �ow (φt)t∈R.

11Recall that Tγ is the length of γ, while T#
γ denotes its primitive length and Pγ is a linearized Poincaré

map. We will see during the proof of the proposition that this sum converges.
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Finally, if υ ≥ 2, it remains true (under the same assumptions) that the operator (3.43)

is compact.

Remark 3.33. Notice that if h is a C∞ function supported in [t0,+∞[, then h clearly

satis�es the conditions (i)-(iii) from Proposition 3.32. This will be the main application of

Proposition 3.32 in order to prove the trace formula (see Lemma 3.44). However, we will

also need to consider other functions h in the proof of Lemma 3.43 and in the Appendix

C.

For the sake of the proof, we split Proposition 3.32 into Lemmas 3.34, 3.35 and 3.36.

Lemma 3.34. Under the assumption of Proposition 3.32, the operator (3.43) is in the

Schatten class Sp for every p ≥ 1 such that p > d+1
k+1 . If υ ≥ 2, it remains true that (3.43)

is compact.

Proof. Let p ≥ 1 be such that p > d+1
k+1 . Choose N large enough so that Nt1 ≥ t0, and

write for all ` ≥ N∫
R
ψ` (t)h (t)Ltdt = LqNt1

3

∫
R
ψ0 (t)h

(
t+ `

t1
3

)
L rt1

3
+t

dt,

where ` = qN + r with q, r ∈ Z and N ≤ r < 2N (notice that q ≥ 0). Applying

Proposition 3.17 as in the proof of Proposition 3.31, we see that the operator∫
R
ψ0 (t)h

(
t+ `

t1
3

)
L rt1

3
+t

dt (3.44)

is in the Schatten class Sp, with norm in this class an O
(
e−$`

)
(there is a �nite number

of possible values for r). Thus the sum

∑
`∈Z

∫
R
ψ` (t)h (t)Ltdt (3.45)

converges in Sp provided that $ is large enough(there are a �nite number of non-zero terms

with k < N that are also in Sp thanks to Proposition 3.17 since h (t) vanishes for t ≤ t0).
Now notice that, for every t ∈ R, the sum∑

`∈Z
ψ` (t)h (t)Lt

converges in operator norm topology to h (t)Lt, and the convergence is uniform in t (pro-

vided that $ is large enough), so that the sum (3.45) is in fact the operator∫ +∞

0
h(t)Ltdt,
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which is consequently in Sp.

Finally, when υ ≥ 2 it remains true that the operator (3.44) is compact according to

Proposition 3.17, and the convergence in the operator norm topology ensures that (3.43)

is compact.

We need now to compute the trace of this operator when k > d and υ < 2. We will

deduce the global formula for the trace from the local formula from Proposition 3.17.

Lemma 3.35. Under the assumptions of Proposition 3.32 and if ` ∈ Z we have

tr

(∫
R
ψ` (t)h (t)Ltdt

)
=
∑
γ

ψ` (Tγ) exp

(∫
γ
V

)
h (Tγ)T#

γ

|det (I − Pγ)|
, (3.46)

where the sum runs over periodic orbits γ of the �ow (φt)t∈R. Here, we recall that (ψ`)`∈Z
is a t1

3 Z invariant smooth partition of unity on R such that ψ0 is supported in
]
− t1

2 ,
t1
2

[
.

Proof. If ` is such that `t13 < t0− t1
2 then (3.46) is immediate: both sides vanish. Otherwise,

choose an integer m ≥ 0 such that `t1
3 −mt0 ∈

[
t0 − t1

2 , 2t0
]
(one can for instance take m

to be the largest integer such that `t1
3 −mt0 ≥ t0−

t1
2 ) and de�ne t3 = max

(
t0,

`t1
3 −mt0

)
.

This ensures that the support of ψ` is contained inmt0+t3+]−t1, t1[ and that t3 ∈ [t0, 2t0].

For all −→ω = (ω1, . . . , ωm) ∈ Ωm de�ne

U−→ω =
m⋂
j=1

φ−jt0 (Uωi) .

Then choose a re�nement
(
Ũ−→ω ,w

)
(−→ω ,w)∈Ωm×W

of (U−→ω )ω∈Ωm whose elements are small

enough such that, if γ is a periodic orbit of (φt)t∈R of length Tγ less than t3 + mt0 + t1,

and (−→ω ,w) ∈ Ωm × W, then the intersection of γ with Ũ−→ω ,w is an interval (i.e. con-

nected, while possibly empty). This can be done because there are a �nite number of

such orbits. Choose a Gevrey partition of unity
(
θ−→ω ,w

)
(−→ω ,w)∈Ωm×W adapted to the open

cover
(
Ũ−→ω ,w

)
(−→ω ,w)∈Ωm×W

of M . For t ∈ t3 + mt0 + ]−t1, t1[, recall from the proof of

Proposition 3.31 the operators L̃t = Φ ◦ Lt ◦ S, and L̃ω,ω′,t, for ω, ω′ ∈ Ω, de�ned by the

formula,

L̃ω,ω′,tu (x) = ϕω(κ−1
ω (x))e

∫ t
0 V ◦φτ(κ

−1
ω (x))dτhω′(κω′φtκ

−1
ω (x))u(κω′φtκ

−1
ω (x)).

Then write L̃ω,ω′,t as a sum of operators

L̃ω,ω′,t =
∑

(−→ω ,w)∈Ωm×W

Aω,ω′,−→ω ,w,t
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where, for −→ω = (ω0, . . . , ωm−1) and w ∈ W,

Aω,ω′,−→ω ,w,tu (x) = θ−→ω ,w
(
κ−1
ω (x)

)
L̃ω,ω′,tu (x)

=
(
θ−→ω ,wϕω

)
◦ κ−1

ω (x) e
∫ t
0 V ◦φτ(κ

−1
ω (x))dτhω′ ◦ κω′ ◦ φt ◦ κ−1

ω (x)

× u ◦ T ωm,ω
′,t3

t−t3−mt0 ◦ T
ωm−1,ωm,t0

0 ◦ · · · ◦ T ω1,ω2,t0
0 ◦ T ω,ω1,t0

0 (x) .

Consequently, we can use Proposition 3.17 to see that Aω,ω′,−→ω ,w,t : HΘω′ ,α → HΘω ,α is

bounded (here, we recall that α has been �xed after the proof of Lemma 3.29, when

de�ning the space H̃). Then, working as in the proof of Lemma 3.34, the operator∫
R
ψ` (t)h (t) L̃tdt (3.47)

is trace class, sendsHΩ into Φ
(
H̃0

)
and the induced operator is conjugated to the operator

de�ned by (3.47) without the tilde. Consequently, using Lidskii's trace theorem, we get

tr

(∫
R
ψ` (t)h (t)Ltdt

)
= tr

(∫
R
ψ` (t)h (t) L̃tdt

)
=
∑
ω∈Ω

tr

(∫
R
ψ` (t)h (t) L̃ω,ω,tdt

)
=
∑
ω∈Ω

∑
(−→ω ,w)∈Ωm×W

tr

(∫
R
ψ` (t)h (t)Aω,ω,−→ω ,w,tdt

)
.

Next, we �x ω and (−→ω ,w) and we compute

tr

(∫
R
ψ` (t)h (t)Aω,ω,−→ω ,w,tdt

)
using Proposition 3.17. To do so, recall the family of cone-hyperbolic di�eomorphisms(

T ω,
−→ω

t

)
t∈R

:=
(
T ωm,ω

′,t3
t−t3−mt0 ◦ T

ωm−1,ωm,t0
0 ◦ · · · ◦ T ω1,ω2,t0

0 ◦ T ω,ω1,t0
0

)
t∈R

and denote by Fω,−→ω : Rd → Rd+1 the associated immersion. By Proposition 3.17, we have

tr

(∫
R
ψ` (t)h (t)Aω,ω,−→ω ,w,tdt

)
=

∑
p◦Fω,−→ω (x)=x

(
h
(
Tω,−→ω (x)

)
ψ`
(
Tω,−→ω (x)

)∣∣det
(
I − p ◦DxFω,−→ω

)∣∣ ∫
R
Gω,−→ω ,w,Tω,−→ω (x) (x, y) dy

)
,

where, as in Proposition 3.17, if x ∈ Rd, then Tω,−→ω (x) denotes the opposite of the last

coordinate of Fω,−→ω (x), and

Gω,−→ω ,w,t (x) =
(
θ−→ω ,wϕω

)
◦ κ−1

ω (x) e
∫ t
0 V ◦φτ(κ

−1
ω (x))dτhω ◦ κω ◦ φt ◦ κ−1

ω (x) ,
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properly extended by zero.

Now, denote by Q0 the (�nite) set of x ∈ Rd such that p ◦ Fω,−→ω (x) = x and

D (x) :=
h
(
Tω,−→ω (x)

)
ψ`
(
Tω,−→ω (x)

)∣∣det
(
I − p ◦DxFω,−→ω

)∣∣ ∫
R
Gω,−→ω ,w,Tω,−→ω (x) (x, y) dy 6= 0,

and by Q1 the (�nite) set of periodic orbits γ for (φt)t∈R such that

E (γ) :=
h (Tγ)ψ` (Tγ)

|det (I − Pγ)|
e
∫
γ g
∫
γ#

θ−→ω ,wϕω 6= 0.

We will construct a bijection x 7→ γ (x) between Q0 and Q1 such that, for all x ∈ Q0, we

have D (x) = E (γ (x)). This will immediately imply that

tr

(∫
R
ψ` (t)h (t)Aω,ω,−→ω ,w,tdt

)
=
∑
γ

h (Tγ)ψ` (Tγ)

|det (I − Pγ)|
e
∫
γ V
∫
γ#

θ−→ω ,wϕω

and we can then end the proof by summing over ω ∈ Ω and (−→ω ,w) ∈ Ωm ×W.

Let x ∈ Q0. Since D (x) 6= 0, there is ỹ ∈ R such that Gω,−→ω ,w,Tω,−→ω (x) (x, ỹ) is non-

zero. Set z = (x, ỹ), and notice that z ∈ Vω, so that κ−1
ω (z) make sense. Moreover, since

Gω,−→ω ,w,Tω,−→ω (x) (z) 6= 0, we must have φjt0 (z) ∈ Uωj for j ∈ {1, . . . ,m}, and φTω,−→ω (x) (z) ∈
Uω. In addition, since ψ`

(
Tω,−→ω (x)

)
6= 0, we know that Tω,−→ω (x) ∈ t3 +mt0 + ]−t1, t1[, and

thus Lemma 3.29 ensures that

κω ◦ φTω,−→ω (x) ◦ κ−1
ω (z) = T ωm,ω

′,t3
t−t3−mt0 ◦ T

ωm−1,ωm,t0
0 ◦ · · · ◦ T ω1,ω2,t0

0 ◦ T ω,ω1,t0
0 (z)

= T ω,
−→ω

Tω,−→ω (x) (z) = Fω,−→ω (x) + Tω,−→ω (x) ed+1 + ỹd+1ed+1

= p ◦ Fω,−→ω (x)− Tω,−→ω (x) ed+1 + Tω,−→ω (x) ed+1 + ỹd+1ed+1 = z.

Consequently, there is a periodic orbit γ (x) of length Tγ(x) = Tω,−→ω (x) for (φt)t∈R passing

through the point κ−1
ω (z). Notice that, while the point κ−1

ω (z) depends on the choice of

ỹ, the orbit γ (x) does not (another choice of ỹ would only change κ−1
ω (z) into another

point of the orbit γ (x)). The map Dκ−1
ω (z)φTγ(x)

is conjugated via Dκ−1
ω (z)κω to DzT ω,

−→ω
Tω,−→ω (x).

However, in a base adapted to the decomposition of the tangent space into the stable and

unstable directions and the direction of the �ow, the matrix of the map Dκ−1
ω (z)φTγ(x)

is

[
Pγ(x) 0

0 1

]
,

while the matrix of DzT ω,
−→ω

Tω,−→ω (x) in the canonical basis of Rd+1 is of the form

[
p ◦DxFω,−→ω 0

∗ 1

]
.
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Thus, the linear maps Pγ(x) and p ◦ DxFω,−→ω have the same spectrum, which implies

that det
(
I − Pγ(x)

)
= det

(
I −DxFω,−→ω

)
. Denote by Ix the set of y ∈ R such that

Gω,−→ω ,w,Tω,−→ω (x) (x, y) 6= 0. Then for all y ∈ Ix, we have

exp

(∫ Tω,−→ω (x)

0
V ◦ φτ

(
κ−1
ω (x, y)

)
dτ

)
= exp

(∫
γ(x)

g

)
.

Moreover, the map Ix 3 y → κ−1
ω (x, y) = φy−ỹ

(
κ−1
ω (z)

)
is injective (the length of Ix is at

most 2t1, and there is no periodic orbit of (φt)t∈R of length less than 3t1), and its image is

γ ∩ Ũ−→ω ,w (thanks to our assumption on the re�nement), so that a change of variable gives

∫
R
Gω,−→ω ,w,Tω,−→ω (x) (x, y) dy = exp

(∫
γ(x)

V

)∫
γ#(x)

θ−→ω ,wϕω,

and thus we have E (γ (x)) = D (x) 6= 0, in particular γ(x) ∈ Q1. It remains to prove that

Q0 3 x 7→ γ (x) ∈ Q1 is a bijection.

If x ∈ Q0 then the intersection of γ (x) with Ũ−→ω ,w is an interval, and thus the set

κω

(
γ (x) ∩ Ũ−→ω ,w

)
is contained in a line perpendicular to Rd×{0} (recall that κω is a �ow

box) and this line projects on x ∈ Rd. Thus γ (x) determines x and consequently the map

x 7→ γ (x) is injective.

Reciprocally, if γ ∈ Q1 then γ must intersect Ũ−→ω ,w on a non-empty interval that is sent

by κω into a line perpendicular to Rd×{0}, that projects on a point x ∈ Rd. Choose y ∈ R
such that (x, y) is the image by κω of some point z̃ ∈ γ such that θ−→ω ,w (z̃)ϕω (z̃) 6= 0.

Working as in the other case, we see that T ω,
−→ω

Tγ
(x, y) = (x, y), and thus p ◦ Fω,−→ω (x) = x

and Tγ = Tω,−→ω (x). The same calculation as above implies that D (x) = E (γ) 6= 0, so

that x ∈ Q0. Finally, it is clear that γ = γ (x) from the construction of γ (x): these two

periodic orbits pass through the point z̃. Thus, the map x 7→ γ (x) is surjective, and the

proof is over.

Lemma 3.36. Under the assumptions of Proposition 3.32, the series

∑
γ

h (Tγ)T#
γ

|det (I − Pγ)|
e
∫
γ V (3.48)

converges absolutely and

tr

(∫ +∞

0
h(t)Ltdt

)
=
∑
γ

h (Tγ)T#
γ

|det (I − Pγ)|
e
∫
γ V .

Proof. First, use Lemma 3.35 and (the proof) of Lemma 3.34, with the weight V replaced

by ‖Re (V )‖∞ h replaced by 1 + |h|2, to get that (this can also be seen using an estimates
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on the number of periodic orbit for (φt)t∈R such as [DZ16, Lemma 2.2]):

∑
`∈Z

∑
γ

ψ` (Tγ) exp (Tγ ‖Re (V )‖∞)
|h (Tγ)|T#

γ

|det (I − Pγ)|
< +∞.

We can then use the Fubini�Tonelli and monotone convergence theorems to get that

∑
`∈Z

∑
γ

ψ` (Tγ) exp (Tγ ‖Re (V )‖∞)
|h (Tγ)|T#

γ

|det (I − Pγ)|

=
∑
γ

∑
`∈Z

ψ` (Tγ) exp (Tγ ‖Re (V )‖∞)
|h (Tγ)|T#

γ

|det (I − Pγ)|

=
∑
γ

exp (Tγ ‖Re (V )‖∞)
|h (Tγ)|T#

γ

|det (I − Pγ)|
< +∞.

This proves that the sum (3.48) converges absolutely and provides integrability and domi-

nation which allow us to apply Fubini's theorem and the dominated convergence theorem

to get

tr

(∫ +∞

0
h(t)Ltdt

)
=
∑
`∈Z

tr

(∫ +∞

0
ψ` (t)h(t)Ltdt

)

=
∑
`∈Z

∑
γ

ψ` (Tγ) exp

(∫
γ
V

)
h (Tγ)T#

γ

|det (I − Pγ)|

=
∑
γ

∑
`∈Z

ψ` (Tγ) exp

(∫
γ
V

)
h (Tγ)T#

γ

|det (I − Pγ)|

=
∑
γ

exp

(∫
γ
V

)
h (Tγ)T#

γ

|det (I − Pγ)|
.

We end this section with the proof of two merely technical lemmas that will be use-

ful in the following section to construct and study the anisotropic Hilbert spaces from

Theorem 3.1.

Lemma 3.37. For all u ∈ Dυ̃ (M)′, the map R 3 t 7→ ‖Ltu‖H̃ is measurable (with the

convention that ‖u‖H̃ =∞ if u /∈ H̃).

Proof. Let us prove �rst that the map Dυ̃ (M)′ 3 u 7→ ‖u‖H̃ is measurable. Since the

inclusion of H̃ in Dυ̃ (M)′ is continuous (hence measurable) and ‖·‖H̃ is continuous on

H̃, we only need to check that H̃ is a measurable subset of Dυ̃ (M)′. Keeping track of

the di�erent steps in the de�nition of H̃, we see that it is enough to prove that L2
loc is a
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measurable subset of
(
S υ̃
)′
, which is clear with the following characterization of L2

loc:

L2
loc = {u ∈

(
S υ̃
)′

: ∀ compact K ⊆ Rd+1, ∃C > 0,

∀ϕ ∈ S υ̃ supported in K, |〈u, ϕ〉| ≤ C ‖ϕ‖2}.

Finally, recall that, if u ∈ Dυ̃ (M)′, the map R 3 t 7→ Ltu ∈ Dυ̃ (M)′ is measurable

(and even C∞) according to Lemma 3.7 to end the proof.

Lemma 3.38. There is a continuous semi-norm N on C∞,υ̃ (M) such that for all u ∈
C∞,υ̃ (M) and t ∈ [−t0, t0] we have

‖Ltu‖H̃ ≤ N (u) .

The same is true replacing Lt by (L−t)∗ and C∞,υ̃ (M) by Dυ̃ (M).

Proof. Since the inclusion of C∞,υ̃ (M) in H̃ is continuous and (Lt)t∈R is a group, we

only need to prove that there is ε > 0 such that for every continuous semi-norm N1 on

C∞,υ̃ (M) there is a continuous semi-norm N2 on C∞,υ̃ (M) such that for all u ∈ C∞,υ̃ (M),

and t ∈ [−ε, ε] we have
N1 (Ltu) ≤ N2 (u) . (3.49)

In fact, we only need to achieve (3.49) for N1 of the form ‖·‖κω ,ϕω ,κ,ν̃ for ω ∈ Ω and κ ∈ R∗+
(because these semi-norms generate the topology of C∞,υ̃ (M)). But then, it becomes clear

that (3.49) can be achieved, since the κω are �ow boxes. The proof for the adjoint is

similar.

3.5 Global space: second step

In this section, we end the proof of Theorem 3.1. We keep using the notations that we

introduced at the beginning of �3.4.

Given the spaces H̃ and H̃0 and Proposition 3.32 from the previous section, the proofs of

Theorem 3.1, Proposition 3.3, and Proposition 3.4 are now reduced to functional analysis,

and we deal with these proofs in this last section. These proofs are split into several lemmas

as follow: as far as Theorem 3.1 and Proposition 3.4 are concerned, (i) is contained in

Lemma 3.40, (ii) is in Lemma 3.41, (iii) is a consequence of Lemma 3.41 and Lemma 3.8,

(iv) is in Lemma 3.43, and (v) is in Lemma 3.44 (with 2t0 instead of t0). We end the

section with the proof of Proposition 3.3. First of all, we de�ne the space H.

De�nition 3.39. Thanks to Lemma 3.37, we may de�ne for all u ∈ Dυ̃ (M)′,

‖u‖2H =

∫ t0

0
‖Ltu‖2H̃ dt, (3.50)
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and then de�ne the space

Ĥ =
{
u ∈ Dυ̃ (M)′ : ‖u‖2H <∞

}
endowed with the norm ‖·‖H. Let H be the closure of C∞,υ̃ (M) in Ĥ (for some υ̃ ∈]
υ, 1

1−α

[
, where α has been de�ned in �3.4, we recall in particular that if υ < 2 then

α < 1
2).

Lemma 3.40. H and Ĥ are separable Hilbert spaces. The inclusion of H and Ĥ in Dυ̃ (M)′

are continuous, and C∞,υ̃ is contained in H and Ĥ, and the inclusion is continuous.

Proof. We only need to prove the lemma for Ĥ (the statements for H immediately follows).

Notice that the map

Ĥ → L2
(

[0, t0] , H̃
)

u 7→ (Ltu)0≤t≤t0

(3.51)

is an isometry. To show that Ĥ is a separable Hilbert space, we only need to prove that the

image of the map (3.51) is closed . Let (un)n∈N be a sequence in Ĥ such that the sequence(
(Ltun)0≤t≤t0

)
n∈N

converges to (v (t))0≤t≤t0 in L2
(

[0, t0] , H̃
)
. Then there is a subset A

of N and a Borel subset B of full measure in [0, t0] such that, for all t ∈ B, the sequence

(Ltun)n∈A converges to v (t) in H̃ (in particular, it converges in Dυ̃ (M)′). Choose t′ ∈ B
and set u = L−t′v (t′) ∈ Dυ̃ (M)′. Then, for all t ∈ B and n ∈ A, we have

Ltun = Lt−t′ (Lt′un) .

Letting n tend to in�nity, we have

v (t) = Lt−t′v
(
t′
)

= Lt
(
L−t′v

(
t′
))

= Ltu.

Since v ∈ L2
(

[0, t0] , H̃
)
, this implies that u ∈ Ĥ, and thus the image of Ĥ under the map

(3.51) is closed, so that Ĥ is a Hilbert space.

To prove that the inclusion of Ĥ in Dυ̃ (M)′ is continuous, just notice that if ϕ ∈
C∞,υ̃ (M) then

〈u, ϕ〉 =
1

t0

∫ t0

0
〈Ltu, (L−t)∗ ϕ〉dt,

and use Lemma 3.38. The continuous inclusion of C∞,υ̃ (M) in Ĥ is an immediate conse-

quence of Lemma 3.38.

We now prove that H has the property that H̃0 missed: the operator Lt for t ≥ 0 is

bounded from H to itself.

Lemma 3.41. For every t ≥ 0, the operator Lt is bounded from H to itself. Moreover,

(Lt)t≥0 is a strongly continuous semi-group of operators on H.
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Proof. If u ∈ H̃ and t ≥ t0 then we have

‖Ltu‖2H =

∫ t0

0
‖LτLtu‖2H̃ dτ =

∫ t0

0
‖LtLτu‖2H̃ dτ ≤ ‖Lt‖2H̃→H̃ ‖u‖

2
H .

If 0 ≤ t ≤ t0 then we have

‖Ltu‖2H =

∫ t

0
‖Lt0Lτu‖

2
H̃ dτ +

∫ t0

t
‖Lτu‖2H̃ dτ

≤
(

1 + ‖Lt0‖
2
H̃→H̃

)
‖u‖2H .

Thus Lt is bounded from H̃ to itself, but since Lt sends C∞,υ̃ (M) into C∞,υ̃ (M) (and

thus into H), the operator Lt induces a bounded operator Lt : H → H. Since (Lt)t≥0

is locally uniformly bounded and (Ltu)t≥0 depends continuously on t as an element of H
when u ∈ C∞,υ̃ (M) (see Lemma 3.7), the semi-group (Lt)t≥0 is strongly continuous.

Notice that, according to Lemma 3.8, the generator of the semi-group (Lt)t≥0 is P =

X + V . We prove now a lemma that allows us to go from H to H̃0 and back, in order to

prove that the properties that we stated for H̃0 in Proposition 3.32 may be extended to H.

Lemma 3.42. For all t ≥ t0, the operator Lt is bounded from H̃ to H. If z ∈ C is such

that Re (z)� 1 then (z − P )−1 is bounded from H to H̃.

Proof. Let u ∈ H̃ then

‖Ltu‖2H ≤ sup
τ∈[t,t+t0]

‖Lτ‖2H̃→H̃ ‖u‖
2
H̃ .

Thus Lt is bounded from H̃ to Ĥ. Since it sends C∞,υ̃ (M) into itself, Lt sends H̃0 into H.
Now, recall [Kat66, Problem 1.15 p.487] that if Re (z)� 1 and u ∈ H then

(z − P )−1 u =

∫ +∞

0
e−ztLtudt.

But recall that the norm of u in H is the norm of (Ltu)0≤t≤t0 in the space L2
(

[0, t0] , H̃
)
.

Thus, for all n ∈ N, the norm of (Ltu)nt0≤t≤(n+1)t0
in the space L2

(
[0, t0] , H̃

)
is smaller

than ‖Lt0‖
n
H→H ‖u‖H. Thus if Re (z) > ln (‖Lt0‖H→H), then, by Cauchy�Schwarz inequal-

ity, there is a constant C > 0 such that the L1 norm of t 7→ e−ztLtu is smaller than

C ‖u‖H→H. Thus (z − P )−1 is bounded from H to H̃.

We are now ready to prove that the spectrum of P = X + V acting on H is discrete.

Lemma 3.43. The spectrum of P acting on H is made of isolated eigenvalues of �nite

multiplicity and it coincides with the Ruelle spectrum of P (multiplicity taken into account).
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Proof. According to Lemmas B.3 and 3.41, it is enough to prove that the spectrum of P

acting on H is made of isolated eigenvalues of �nite multiplicity (recall De�nition 7 of the

Ruelle spectrum). Let z ∈ C be such that Re z � 1. Since P is the generator of a strongly

continuous semi-group, z belongs to the resolvent set of P . From [Kat66, Problem 6.16

p.177], we see that we only need to prove that the essential spectral radius of (z−P )−1 is

zero (see De�nition 2).

To do so, let χ : R∗+ → [0, 1] be a compactly supported C∞ function such that χ(t) = 1

if t ≤ 2t0. Then, according to [Kat66, Problem 1.15 p.487], for all n ≥ 1 we have, provided

that Re z � 1:

(z − P )−n =
1

(n− 1)!

∫ +∞

0
e−zttn−1Ltdt

=
1

(n− 1)!

∫ +∞

0
χ(t)e−zttn−1Ltdt+

1

(n− 1)!

∫ +∞

0
hn(t)Ltdt,

(3.52)

where the function hn : R∗+ → C is de�ned by hn(t) = (1− χ(t)) e−zttn−1. Set also

h̃n(t) = zhn(t+ t0) + h′n(t+ t0), so that for all t ∈ R∗+ we have

hn(t+ t0) = e−zt
∫ t

0
ezτ h̃n(τ)dτ.

Then, notice that

Lt0 ◦
∫ +∞

0
h̃n(τ)Lτdτ ◦ (z − P )−1 =

∫ +∞

0

∫ +∞

0
e−zth̃n(τ)Lt0+t+τdtdτ

=

∫ +∞

0

(∫ +∞

τ
e−zuezτ h̃n(τ)Lt0+udu

)
dτ

=

∫ +∞

0
e−zu

(∫ u

0
ezτ h̃n(τ)dτ

)
Lt0+udu

=

∫ +∞

0
hn(t0 + u)Lt0+udu

=

∫ +∞

0
hn(t)Ltdt.

(3.53)

Moreover, if Re z � 1 , then, for every n ≥ 1, the function h̃n satis�es the assumptions of

Proposition 3.32 and consequently the operator∫ +∞

0
h̃n(t)dt : H̃ → H̃

is compact. It follows then from (3.53) and Lemma 3.42 that the operator

1

(n− 1)!

∫ +∞

0
hn(t)Ltdt : H → H
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is compact. On the other hand, we see that the operator norm of

1

(n− 1)!

∫ +∞

0
χ(t)e−zttn−1Ltdt : H → H

is less than C(2t0)n

(n−1)! for some constant C > 0. With (3.52), it follows then from Hennion's

argument [Hen93] based on Nussbaum formula [Nus70] that the essential spectral radius

of (z − P )−1 on H is less than

lim inf
n→+∞

(
C(2t0)n

(n− 1)!

) 1
n

= 0.

We can now give the proof of the most interesting property of the Hilbert space H̃.

Lemma 3.44. Let h be a C∞ function supported on a compact subset of [2t0,+∞[. Then

the operator ∫ +∞

0
h (t)Ltdt : H → H (3.54)

is compact. Its non-zero spectrum is the intersection of C \ {0} with the image of the

spectrum of P by λ 7→ Lap(h)(−λ), where Lap denotes the Laplace transform.

If υ < 2, the operator (3.54) is trace class and

tr

(∫ +∞

0
h (t)Ltdt

)
=
∑
γ

h (Tγ)T#
γ

|det (I − Pγ)|
exp

(∫
γ
V

)
.

Proof. As in the proof of Lemma 3.43, de�ne the function h̃ on R∗+ by

h̃ (t) = zh (t+ t0) + h′ (t+ t0) .

Since h̃ is C∞ and compactly supported in [t0,+∞[, it satis�es the assumption of Propo-

sition 3.32 and, working as in the proof of Lemma 3.43, we see that the operator∫ +∞

0
h (t)Ltdt = Lt0 ◦

∫ +∞

t0

h̃ (t)Ltdt ◦ (z − P )−1 : H → H

is compact.

In order to identify the non-zero spectrum of (3.54), we denote by f the function

de�ned by f(z) = Lap(h)(−z) and by A the operator (3.54). If λ ∈ C denotes by Eλ the

generalized eigenspace of P associated to λ and, if λ 6= 0, by Fλ the generalized eigenspace
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of A associated to λ. We want to prove that for all µ ∈ C \ {0} we have

Fµ =
⊕
λ∈C

f(λ)=µ

Eλ,

which is a more precise statement that our claim on the eigenvalues of A. Let λ ∈ σ (X)

be such that f(λ) 6= 0. Since P commutes with Lt for t ≥ 0, it commutes with A so that

Eλ is stable by A. We denote by P̃ and Ã the endomorphisms of Eλ induced respectively

by P and A. Since Eλ is �nite-dimensional (according to Lemma 3.43), the operator P̃ is

bounded, and we may de�ne for t ≥ 0 the operator etP̃ on Eλ. Then, etP̃ is nothing else

than the operator induced by Lt on Eλ (they solve the same Cauchy problem). It follows

that we have

Ã =

∫ +∞

0
h(t)etP̃dt = f

(
P̃
)
, (3.55)

where f(P̃ ) is meant in the sense of the holomorphic calculus of bounded operators (we

may develop etP̃ in power series). Since σ(P̃ ) = {λ} by de�nition of Eλ, it follows that

σ(Ã) = {f(λ)}, which gives

Eλ ⊆ Ff(λ).

Reciprocally, let µ ∈ σ (A) \ {0}. From the equality

PA = −
∫ +∞

0
h′(t)Ltdt,

we see that the range of A is included in the domain of X. In particular, Fµ is contained

in the domain of P and thus P induces a bounded operator on the �nite dimensional space

Fµ. Applying as above the holomorphic calculus of bounded operators, we get that

Fµ ⊆
⊕
λ∈C

f(λ)=µ

Eλ,

and (3.55) is proven.

If υ < 2, we may replace �compact� by �trace class� in the argument above. Then,

using Lemma B.1, we see that the operator∫ ∞
0

h (t)Ltdt

has the same non-zero spectrum when acting on H or on H̃0 and thus, by Lidskii's trace

theorem, the same trace. This ends the proof with Proposition 3.32.
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Remark 3.45. As pointed out after the statement of Theorem 3.1, the point (v) of Theo-

rem 3.1 proves trace formula (TFF) which was stated as an equality between distributions

on R∗+. However, it is clear from the proof that the equality in fact holds in the dual of the

space of compactly supported Cd+2 functions on R∗+ whose d+ 2th derivative has bounded

variation. In fact, using the same trick as in the proof of Proposition 3.3, we see that trace

formula holds in the dual of the space of compactly supported Cd+1 functions on R∗+ whose

d+ 1th derivative has bounded variations.

We end this section with the proof of Proposition 3.3.

Proof of Proposition 3.3. First of all, we need to prove that, when Re (z)� 1, the essential

spectral radius (see De�nition 2) of the operator

Lt0 (z − P )−1 =

∫ +∞

t0

e−z(t−t0)Ltdt (3.56)

acting on H is zero. From the proof of Lemma 3.43, we know that the essential spectral

radius of (z − P )−1 is zero. Then if r > 0 is such that (z − P )−1 has no eigenvalue of

modulus r we may de�ne the spectral projection

Πr =
1

2iπ

∫
∂D(0,r)

(
w − (z − P )−1

)−1
dw.

Then I − Πr has �nite rank and the spectral radius of (z − P )−1 Πr is less than r. Since

Lt0 commutes with (z − P )−1, it also commutes with Πr and thus the spectral radius of

Lt0 (z − P )−1 Πr is less than ‖Lt0‖ r. Then writing

Lt0 (z − P )−1 = Lt0 (z − P )−1 Πr + Lt0 (z − P )−1 (1−Πr) (3.57)

and using Hennion's argument [Hen93] as in the proof of Lemma 3.43 (notice that the

second term of the right-hand side of (3.57) has �nite rank), we see that the essential

spectral radius of Lt0 (z − P )−1 is less than ‖Lt0‖ r. Since r > 0 may be chosen arbitrarily

small, the essential spectral radius of Lt0 (z − P )−1 is zero. Consequently, using functional

calculus in �nite dimension as in the proof of Lemma 3.44, we may prove that the spectrum

of Lt0 (z − P )−1 is made of the et0λ

z−λ where λ runs over the Ruelle spectrum of P .

On the other hand, according to Proposition 3.32 (with h the characteristic function

of [t0,+∞[ and k = 0), the right-hand side of (3.56) de�nes an operator on H̃0 which is

in the Schatten class Sp for any p > d + 1 (in particular it is compact and has essential

spectral radius zero). We may use Lemma B.1 to get that the spectrum of this operator

is the same as the spectrum of the operator (3.56) acting on H, that we just described.

Consequently, for all p > d + 1, since the operator acting on H̃0 is in the Schatten class
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Sp, its spectrum is in `p (see [GGK00, Corollary 3.4 p.54]), so that

∑
λ∈σR(P )

∣∣∣∣ eλt0z − λ

∣∣∣∣p < +∞.

Since t0 > 0 and p > d+ 1 are arbitrary, Proposition 3.3 follows.
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Chapter 4

Finite order of the dynamical

determinant for Gevrey Anosov �ows

This last chapter is dedicated to the proof of Theorem 10. In �4.1, we gather some facts

about Gevrey classes and analytic FBI transforms. This is basically an abridged version

of Chapters 1 and 2 from [BJ20]. In order to keep the length of this thesis reasonable,

most of the results in �4.1 will be stated without proof. However, we will always give

precise references to [BJ20] where the interested reader can �nd all the required proofs or

references. The section 4.2 is dedicated to the detailed proof of Theorem 10 using the tools

introduced in �4.1. Finally, in �4.3, we expose some other applications of FBI transforms

method to the study of Anosov �ows. For the same reasons as above, we will refer to

[BJ20] for proofs. The content of �4.2 and 4.3 correspond to the third chapter of [BJ20].

Mind that in this chapter we will use, as it is common in the semi-classical analysis

literature, an implicit parameter h > 0, thought of as tending to 0. Whenever needed, we

will assume that h is small enough.

4.1 Crash course: Analytic FBI transform and Gevrey dif-

ferential operators

In this �rst section, we recall the results from the �rst two chapters of [BJ20] that are

needed for the proof of Theorem 10.

In �4.1.1, we recall some basic facts about Gevrey and analytic classes of regularity.

These results may be found in �1.1 in [BJ20]. We will not need the other results from the

�rst chapter of [BJ20] since we will not discuss Gevrey pseudo-di�erential operators here

and because we will admit all the required results from the second chapter of [BJ20] � such

as the existence of a global analytic FBI transform on a compact manifold.

In �4.1.2, we de�ne a global analytic FBI transform on a compact analytic manifold.

Admitting that such an object exists, we recall then its basic properties. We also investigate

149
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the notion of complex Lagrangian deformation which is central in [BJ20].

In �4.1.3, we explain how a global analytic FBI transform may be used to study di�er-

ential operators with Gevrey coe�cients, stating the results that will be fundamental in

the proof of Theorem 10.

Remark 4.1. The FBI transform methods that we expose here are extensions of the

work of Hel�er and Sjöstrand [HS86, Sjö96] in the analytic category. These methods had

already been investigated in the Gevrey category by Lascar and Lascar [LL97]. However,

all these versions of this method contain limitations that we had to overcome in order to

prove Theorem 10. The main problem was that they only consider compactly supported

Lagrangian deformations (which amounts to take G compactly supported in De�nition 4.14

below). Consequently, an important part of [BJ20] is dedicated to the extension of the

methods of Hel�er and Sjöstrand and to the investigation of certain micro-local techniques

in the Gevrey category. For more details, see the introduction of [BJ20].

As we were working on this project, Galkowski and Zworski were elaborating a very

similar extension of the work of Hel�er and Sjöstrand [GZ19a, GZ19b]. However, their

work is restricted to the real-analytic case and they only work on tori.

4.1.1 Gevrey functions and ultradistributions on manifolds

In �2.1, we introduced the notion of Gevrey regularity � see in particular Example 2.1. Let

us now explore a bit further Gevrey classes.

De�nitions

Let s ≥ 1 be �xed. Let U be an open subset of Rn. We recall from Example 2.1 that a

function f : U → C is said to be s-Gevrey (or, for short, Gs) if f is C∞ and if, for every

compact subset K of U , there are constants C,R > 0 such that, for all α ∈ Nn and x ∈ K,

we have

|∂αf(x)| ≤ CR|α|α!s. (4.1)

The constant R in (4.1) may be interpreted as the inverse of a (Gevrey) radius of con-

vergence. Recall that when s = 1, this describes the class of real-analytic function on

U . When s > 1, the class of Gs functions is non-quasi-analytic according to Theorem

2.3: it contains compactly supported functions. We will denote by Gs (U) the space of Gs

functions on U and by Gsc (U) the space of compactly supported elements of Gs (U). The

non-quasi-analyticity of Gs when s > 1 implies in particular that there are Gs partitions
of unity.

The de�nition above extends immediately to the case of Banach valued functions. A

function f from U to some Banach space B is said to be Gs if (4.1) holds with the modulus
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replaced by the norm of B. With this de�nition, the class of Gs functions is closed under

composition, as was proved by Gevrey in his original paper [Gev18]. In fact, the class of Gs

functions is very well-behaved and, when s > 1, quite �exible: for instance, it is Cartesian

closed, closed under di�erentiation, solving ODEs, Implicit Function Theorem, etc, and

there are versions of Borel's and Whitney's theorem for Gs functions (see [KMR09] and

references therein for details).

Since the class Gs is stable by composition and inversion, we have a natural de�nition of

a Gs structure on a manifold: a Gs manifold is a Hausdor� topological space with countable

basis endowed with a maximal Gs atlas. Here, a Gs atlas is de�ned to be an atlas with Gs

change of charts (notice that we retrieve the usual notion of real-analytic manifold when

s = 1). As usual, if M and N are two Gs manifolds, then a map f : M → N is said to

be Gs if it is Gs �in charts�. Since the class Gs satis�es the Implicit Function Theorem,

most elementary results from di�erential geometry are easily checked to be true in the Gs

category. In particular, there is a well-de�ned notion of Gs (vector) bundle, and each usual

bundle associated with M (tangent, cotangent, etc) admits a natural Gs structure. As a

consequence, it makes sense to say that a vector �eld over M is Gs.

Remark 4.2. Of course, a real-analytic manifold has a natural structure of Gs manifold,

since real-analytic maps are Gs. As pointed out in [LL97], all Gs manifolds may be described

in this way. Indeed, there is a Gevrey version of the famous Whitney's Embedding Theorem

[Whi36] : every Gs compact manifold is Gs-di�eomorphic to a real-analytic submanifold of

an Euclidean space. The adaptation of the proof of Whitney's Theorem to our setting is

straightforward. Since the Inverse Function Theorem holds in the Gs category, it su�ces to

follow the lines of the proof of [Hir94, Theorem 7.1], replacing C∞ by Gs at every step. This
gives an analytic structure on a compact Gs manifold, compatible with the Gs structure.

We want now to de�ne ultradistributions on a Gs manifold M . To do so, we need to

give a structure of topological vector space to the space Gsc (M) of compactly supported

Gs functions on M . If (U, κ) is a Gs chart for M , and K a relatively compact subset of U ,

then we de�ne for every R > 0 and function f , in�nitely di�erentiable on a neighbourhood

of K, the semi-norm (n denotes the dimension of M)

‖f‖s,R,K := sup
x∈κ(K)
α∈Nn

∣∣∂α (f ◦ κ−1
)

(x)
∣∣

R|α|α!s
. (4.2)

We extend this de�nition to any relatively compact subset K of M by covering K by a

�nite number K1, . . . ,KN of compact sets included in some domains of charts and setting

‖f‖s,R,K :=
N∑
j=1

‖f‖s,R,Kj .
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Then, if K is a relatively compact subset of M and R > 0, we de�ne Es,R (K) to be

the Banach space of functions f ∈ C∞(M), supported in K, such that ‖f‖s,R,K < +∞,

endowed with the norm ‖·‖s,R,K . For s = 1, consider this de�nition as temporary, as we

will give a more practical but equivalent scale of spaces of real analytic functions below.

Notice that these spaces heavily depend on the choices of charts that we made above.

It is, however, not the case of the inductive limit, when U is an open subset of M ,

Gsc (U) := lim−→
KbU

lim−→
R>0

Es,R (K) .

Here, the �rst limit is taken over compact subsets K of U , and the inductive limit is taken

in the category of locally convex topological vector spaces. Notice that the underlying set

of this limit is indeed the set of compactly supported Gs functions on U . In particular,

when s = 1, if U is not compact itself then Gsc (U) is trivial. In the case that M itself is

compact, we will write Gs(M) for Gsc (M).

We de�ne the space Us (U) of ultradistributions on U to be the strong dual of Gsc (U).

Then, by [Gro50], we see that Us (U) identi�es with the projective limit

Us (U) = lim←−
KbU

lim←−
R>0

(
Es,R (K)

)′
.

In particular, Us (U) is a Fréchet space. It is a Roumieu-type space of ultradistributions.

More details on Roumieu and Beurling spaces, can be found in [BBMT91]. The support

of an ultradistribution is de�ned as in the case of usual distributions, and the spaces of

compactly supported distributions on U is denoted by Usc (U). The topology of Usc (U)

only matters for Theorem 2.27, and we can take for instance the weak-star topology. An

element of U1 (M) or more generally of
(
E1,R(M)

)′
for some large R ≥ 1 will be referred

to as a hyperfunction.

Remark 4.3. The fact that the limit (4.1.1) does not depend on the choices of charts in

the de�nition of the norms ‖·‖s,R,K follows from the stability by composition of the class

Gs. Indeed, if we denote by (‖·‖′s,R,K)R>0 the family of norms that is obtained with another

choice of charts, one sees (applying Faa di Bruno's formula or adapting the original proof

of Gevrey [Gev18]) that there is a constant C > 0 such that for every R > 0 we have

‖·‖s,C max(1,R),K ≤ C ‖·‖
′
s,R,K and ‖·‖′s,C max(1,R),K ≤ C ‖·‖s,R,K . (4.3)

In particular, when the manifold M is an open subset of Rn, we can (and will) choose the

chart κ in the de�nition (4.2) to be the inclusion in Rn.

Remark 4.4. Let s ≥ 1. In order to discuss perturbations of Gs Anosov �ows in �4.3, we

need to de�ne a topology on the space of Gs sections of a Gs vector bundle. Let p : F →M

denote a real Gs vector bundle on M (the case of complex vector bundle is similar). Let
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(U, κ) be a Gs chart for M and (κ,Ψ) : p−1 (U) → κ (U) × Rd be a trivialization for

p : F →M . Then, if K is a relatively compact subset of U and R > 0, we de�ne for every

C∞ section f of F the semi-norm

‖f‖s,R,K = sup
x∈κ(K)
α∈Nn

∥∥∂αΨ
(
f ◦ κ−1

)
(x)
∥∥

R|α|α!s
,

where ‖·‖ denotes any norm on Rd. Using this semi-norm to replace (4.2), the case of

sections of the vector bundle F is dealt with as the case of the trivial line bundle over M .

In particular, whenM is a compact manifold, we have a de�nition the spaces Es,R (M ;F ),

for R > 0, and a topology on the space Gs (M ;F ) of Gs sections of F .

The particular case of real-analytic functions

We want now to rewrite the de�nitions of the previous paragraph in a way that may be

more intuitive, in the case s = 1. Indeed, it may seem more natural to describe real analytic

functions as restrictions of holomorphic functions. If K is a compact subset of Rn, then we

see that a smooth function f de�ned on a neighbourhood of K such that ‖f‖1,R,K < +∞
admits a holomorphic extension to a complex neighbourhood of K of size (CR)−1 (for

some C > 0 that does not depend on R), the L∞ norm of this extension being bounded

by C ‖f‖1,R,K . Reciprocally, if f admits a bounded holomorphic extension to a complex

neighbourhood of size CR−1, then ‖f‖1,R,K is �nite and controlled by the L∞ norm of the

extension (independently on R). We will now explain how this remark generalizes to the

case of compact manifolds.

Let then M be a compact real-analytic manifold of dimension n. By a result of Bruhat

and Whitney [WB59], the manifold M admits a complexi�cation M̃ . That is, M̃ is a

holomorphic manifold of complex dimension n endowed with a real-analytic embedding

M ⊆ M̃ , such that M is a totally real submanifold of M̃ . This means that at each p ∈M ,

we have TpM∩iTpM = {0}. It follows then that ifN is a complex manifold and f : M → N

is a real-analytic map, then f extends to a holomorphic map from a neighbourhood of M

in M̃ to N . In particular, if M̃ ′ is another complexi�cation for M then the identity of M

extends to a biholomorphism between a neighbourhood of M in M̃ and a neighbourhood

of M in M̃ ′.

Remark 4.5. If M̃ is a complexi�cation for M , let B(M̃) denote the Banach space of

bounded holomorphic functions on M̃ . Then, we may give a new de�nition of the space of

real-analytic functions on M by

G1 (M) = lim−→̃
M

B
(
M̃
)
.

Here, the inductive limit (in the category of locally convex topological vector spaces) is
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over all the complexi�cations1 M̃ of M . This coincides with (4.1.1) when s = 1. This

de�nition may be quite appealing because it is very intrinsic. However, we will rather

use a more concrete description of G1(M), that boils down to choosing a basis of complex

neighbourhoods for M .

We will use particular complexi�cations of M called Grauert tubes. The notion of

Grauert tube �rst appeared in [Gra58], but we will rely on the exposition from [GS91].

First, according to [Mor58], there is a real-analytic embedding of M into an Euclidean

space. Hence, we may choose a real-analytic Riemannian metric g on M . According

to [WB59], there exists a complexi�cation M̃ of M endowed with an anti-holomorphic

involution z 7→ z̄ such that M is the set of �xed point of z 7→ z̄. Then, since the square

of the distance induced by g on M is real-analytic near the diagonal, it extends to a

holomorphic function on a neighbourhood of the diagonal ofM ×M in M̃ × M̃ . Following

[GS91], we de�ne ρ on M̃ (up to taking M̃ smaller) by

ρ(z) = −1

4
d(z, z̄)2.

From [GS91], we know that ρ de�nes a strictly plurisubharmonic function on M̃ such that

M = {z ∈ M̃ : ρ(z) = 0}. Then, if ε > 0 is small, we de�ne the Grauert tube (M)ε as the

sublevel set of ρ:

(M)ε :=
{
z ∈ M̃ : ρ(z) < ε2

}
. (4.4)

Notice that, since ρ is strictly plurisubharmonic, the Grauert tube (M)ε is strictly pseudo-

convex. Moreover, the real (1, 1)-form i∂∂̄ρ is Kähler and the associated hermitian form

coincides with g on M . We shall consequently still denote this hermitian form by g.

Using the notion of Grauert tube, we can replace the spaces E1,R (M) de�ned above

with a more convenient scale. If R > 0 is large enough, denote by E1,R (M) the space

of bounded holomorphic functions on (M)1/R (endowed with the sup norm). The spaces

E1,R (M) de�ned in this way do not need to coincide with the previous version, but they

give rise to the same inductive limit (in the category of locally convex topological vector

spaces):

G1 (M) = lim−→
R→+∞

E1,R (M) .

Hence, we will always assume that we use this de�nition of the spaces E1,R (M) in the case

s = 1. To see that we get the same topology on G1 (M) as previously, work as in Remark

4.3 (using Cauchy's and Taylor's formulae to prove an estimate similar to (4.3)).

1We get rid of the set-theoretic complications here in the usual way: the cardinal of a complexi�cation
for M is at most 2ℵ0 .
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Let us point out that there is another way to describe Grauert tubes. Indeed, since

the Riemannian metric g is real-analytic, so is its exponential map. Consequently, if x is

a point in M , the exponential map expx : TxM →M extends to a holomorphic map, still

denoted by expx, from a neighbourhood of 0 in TxM ⊗ C to M̃ . Then, the map

(x, v) 7→ expx(iv) (4.5)

de�nes a real analytic di�eomorphism between a neighbourhood of the zero section in TM

and a neighbourhood of M in M̃ . For ε > 0 small enough, under the map in (4.5), the

Grauert tube (M)ε is the image of

{
(x, v) ∈ TM : g(v, v) < ε2

}
.

With this description of the Grauert tube (M)ε, we see that the projection TM → M

induces a real-analytic projection from (M)ε to M , that we shall denote by Re. We de�ne

also the function |Im| : (M)ε → R+ as the square root of ρ. We will sometimes, slightly

abusively, write |Im z| instead of |Im| (z).

Since M is compact, we could have chosen any decreasing basis of neighbourhoods for

M in M̃ to de�ne the spaces E1,R (M). However, we will need to consider real-analytic

functions de�ned on T ∗M (for instance symbols) or more generally on products of the

type MN1 × (T ∗M)N2 . Since these manifolds are non-compact, the choice of a complex

neighbourhood for T ∗M becomes non-trivial. Since we want to consider symbols on T ∗M ,

it seems natural to introduce the Grauert tubes for the Kohn�Nirenberg metric gKN .

Recall that gKN is de�ned in the following way. The Levi�Civita connexion associated

with g gives a splitting TT ∗M = V ⊕H into vertical and horizontal bundles, where both

subbundles are identi�ed with TM , so that we can de�ne

gKN (x, ξ) := gH(x, ξ) +
1

1 + |ξ|2x
gV (x, ξ).

In charts, it is uniformly equivalent to its �at version

g�atKN = dx2 +
1

1 + |ξ|2
dξ2.

The curvature of gKN is bounded, and so are all its covariant derivatives, and one can

check that it admits Grauert tubes, that roughly looks like cones at in�nity.

More precisely, the cotangent space T ∗M̃ of M̃ is a complexi�cation of T ∗M . Notice

that there is a natural inclusion of T ∗M ⊗ C into T ∗M̃ and that the anti-holomorphic

involution that �xes T ∗M is given on T ∗M ⊗ C by (x, ξ) 7→ (x, ξ̄). As above, we �nd

a strictly plurisubharmonic function ρKN de�ned on a neighbourhood of T ∗M in T ∗M̃ .
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Then, mimicking (4.4), we set for ε > 0 small enough

(T ∗M)ε :=
{
α ∈ T ∗M̃ : ρKN (α) < ε2

}
.

As in the compact case, |Imα| will denote the square root of ρKN (α). To describe these

tubes in more concrete terms, we may examine them in local coordinates. Given a real-

analytic chart for M , it extends holomorphically to a chart for M̃ . It hence de�nes a

holomorphic trivialization for T ∗M̃ , mapping T ∗M on T ∗Rn. If we denote these coordi-

nates by x̃ = x + iy, ξ̃ = ξ + iη, then for a point α ∈ T ∗M̃ that writes (x̃, ξ̃) in local

coordinates, the quantity |Imα| is uniformly equivalent to

|Imα| � |y|+ |η|
〈ξ〉

.

This gives a rough but tractable idea of the shape of Grauert tubes in local coordinates.

Let us discuss some others notations. Since x 7→ gx is a Kähler metric, the map

α 7→ gαx(αξ, αξ) is real analytic and non-negative. On the other hand, we can consider the

holomorphic extension g̃ of g, so that α 7→ g̃αx(αξ, αξ) is a holomorphic map. With the

determination of the square root positive on the reals, we de�ne for α = (αx, αξ) in T ∗M̃

the Japanese brackets

〈α〉 =
√

1 + g̃αx(αξ, αξ) and 〈|α|〉 =
√

1 + gαx(αξ, αξ). (4.6)

Hence, 〈α〉 is holomorphic in α, while 〈|α|〉 is not. However, notice that on a Grauert

tube (T ∗M)ε, for ε > 0 small enough, the positive quantities 〈|α|〉 , |〈α〉| and Re 〈α〉 are
uniformly equivalent. Notice also that we may de�ne a Kohn�Nirenberg metric on T ∗M̃

(since T ∗M̃ identi�es with the cotangent bundle of M̃ seen as a real-analytic manifold).

Almost analytic extensions

Let (M, g) be a compact real-analytic Riemannian manifold. To study deformations in the

Grauert tube of M (or of T ∗M), we will make extensive use of almost-analytic extensions

of smooth functions on M . The notion of almost analytic extension was introduced by

Hörmander [Hör69] and then by Nirenberg [Nir71]. It has become a very common notion

in microlocal analysis, and are essential for instance in [MS75].

Recall that if f is a C∞ function on M then an almost-analytic extension for f is a

compactly supported C∞ functions f̃ on some (M)ε that coincides with f on M and such

that ∂̄f̃ vanishes at all orders on M . It is classical that such a f̃ exists [Zwo12, Theorem

3.6]. While this is hardly surprising, it will be crucial in our analysis that if f is Gs then f̃
may be chosen Gs as well. This will allow us to make the �atness of ∂̄f̃ nearM quantitative

with Lemma 4.7 below.
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It seems to be folklore that the fact that Gs functions admit a Gs almost analytic

extension may be deduced from results of Carleson on universal moment problems [Car61].

Since we were not aware of any existing proof in the literature, we provided one in [BJ20,

Lemma 1.1].

Lemma 4.6. Given a Grauert tube (M)ε ⊃M , for each s > 1, there exists a constant Cs
and a compact subset K ⊆ (M)ε so that for all R > 0, there exists a bounded map f 7→ f̃

from Es,R(M) to Es,Cs max(1,R)(K), such that f̃ is an almost-analytic extension for f .

In order to apply Lemma 4.6, we need to investigate the way a Gevrey function can be

�at. To do so, we can apply the �sommation au plus petit terme�, a method for regularizing

certain divergent series that is particularly well suited for Taylor series of Gevrey functions.

The interested reader may refer to [Ram93] for details and historical references and to

[BJ20, Lemma 1.3] for a proof of the following lemma.

Lemma 4.7. Let U be an open subset of Rn and K a compact and convex subset of U .

Then for every s > 1, there is a constant C > 0 such that for every R ≥ 1, x ∈ K and

f ∈ C∞ (U), if the quantity ‖f‖s,R,K de�ned by (4.2) is �nite, and all derivatives of f at

x vanish, then for every y ∈ K we have

|f(y)| ≤ C ‖f‖s,R,K exp

(
−(R |x− y|)−

1
s−1

C

)
. (4.7)

Remark 4.8. Let us explain how Lemma 4.7 allows to control the size of an almost analytic

extension of a Gevrey function. Let s > 1 and R ≥ 1. Let M be a compact real-analytic

manifold. According to Lemma 4.6, for some ε > 0, R′ ≥ 1 and compact subset K ⊆ (M)ε,

there is a continuous map f 7→ f̃ from Es,R (M) to Es,R
′
(K) such that f̃ is an almost

analytic extension for f .

Hence, if f ∈ Es,R (M) the 1-form ∂̄f̃ vanishes at in�nite order on M . Then, applying

Lemma 4.7 in charts, we �nd that for z ∈ (M)ε we have

∣∣∣∂̄f̃(z)
∣∣∣ ≤ Cs,R ‖f‖s,R,M exp

(
− 1

Cs,R |Im z|
1
s−1

)
. (4.8)

Recall that |Im z| has been de�ned on (M)ε. Here, we use any metric on the cotangent

bundle of (M)ε to measure the size of ∂̄f̃ . Moreover, since the derivatives of f̃ are Gevrey

too, one can easily see that (4.8) can in fact be improved to a Gevrey estimates (in charts).

In Gs micro-local analysis, the error terms that are allowed are those that decay like

exp(−1/(Ch)1/s), for some C > 0, when the small parameter h tends to 0. Hence, we

see that it only makes sense to consider the value of the almost analytic extension of a

Gs function at a distance at most C−1h1−1/s of the real if we do not want to produce

uncontrolled errors.
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Analytic and Gevrey symbols, admissible phase

In order to de�ne an analytic FBI transform in �4.1.2, we need the notion of analytic

symbols on a compact real-analytic manifold M . To do so, we use the notations that we

introduced above.

De�nition 4.9. Let M be a compact real-analytic manifold. Let m ∈ R. An analytic

symbol of order m on T ∗M is a real-analytic function a : T ∗M → C such that there are

ε > 0 and C > 0 such that a admits a holomorphic extension to (T ∗M)ε that satis�es for

every α ∈ (T ∗M)ε

|a(α)| ≤ C 〈|α|〉m .

We denote by S1,m (T ∗M) the set of analytic symbols of order m on T ∗M . We say that

a symbol a ∈ S1,m (T ∗M) is elliptic in S1,m (T ∗M) if there is C > 0 such that for every

α ∈ T ∗M we have

|a(α)| ≥ 1

C
〈α〉 .

De�nition 4.11 of real-analytic symbols extends mutatis mutandis to product of the

form (T ∗M)N1 ×MN2 , or reasonable subsets of such a product. Since we will not discuss

here Gevrey pseudo-di�erential operators, we do not need to de�ne the most general Gevrey

symbols. We only need to consider symbols for Gevrey di�erential operators, that is

polynomials on the �bers of T ∗M with Gevrey coe�cients. More concretely, such a symbol

corresponds to a Gevrey section of the vector bundle

m⊕
k=0

(TM ⊗ C)⊗k

for somem ∈ N, and it has a Gs almost analytic extension which is a section of the complex

analytic vector bundle

m⊕
k=0

TM̃⊗k

where M̃ is a complexi�cation for M . Let us put it in more concrete terms in the case of

di�erential operators of order 1, our principal interest here. If X is a Gs vector �eld on

M and V : M → C be a Gs function, let P = X + V . Then the principal symbol of the

semi-classical di�erential operator hP may be de�ned by

p(α) = iαξ (X(αx))
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for α = (αx, αξ) ∈ T ∗M . Then X admits a Gs almost analytic extension X̃ which is

a section of TM̃ (where we recall that M̃ denotes a complexi�cation for M). Then the

almost analytic extension for p may be de�ned on T ∗M̃ by

p̃(α) = iαξ

(
X̃(αx)

)
.

This is a function on T ∗M̃ , polynomial in every �ber, with Gs almost analytic coe�cients.

Before being able to de�ne what an analytic FBI transform is, we need a last de�nition.

De�nition 4.10. Let M be a compact real-analytic manifold. A phase on M is a holo-

morphic symbol Φ of order 1 de�ned for (α, y) ∈ (T ∗M)ε × (M)ε with d(αx, y) < δ (for

some ε, δ > 0) such that

(i) if (α, y) ∈ T ∗M ×M then the imaginary part of Φ(α, y) is non-negative;

(ii) Φ(α, αx) = 0 for α = (αx, αξ) ∈ T ∗M ;

(iii) for α ∈ T ∗M , we have dyΦ(α, αx) = −αξ.

We say that Φ is an admissible phase if it satis�es in addition the coercivity condition:

(iv) there is a constant c > 0 such that if α, y are real and Φ(α, y) is de�ned, then

Im Φ(α, y) ≥ c 〈α〉 d (αx, y)2.

4.1.2 Global analytic FBI transform on a compact manifold

De�nition of an FBI transform

We explain now what we mean by a global analytic FBI transform on a manifold and give

a short introduction to the notion of complex Lagrangian deformation of the cotangent

bundle. The interested reader may refer to [BJ20, �2.1] and to the introduction of the

same paper for historical references.

We �x a compact real-analytic manifold M of dimension n ∈ N. Without loss of

generality, we may endowM with a Riemannian metric g, so that the machinery described

in �4.1.1 is available. We denote by M̃ a complexi�cation forM . We de�ne now the notion

of analytic FBI transform.

De�nition 4.11. An analytic FBI transform is an operator T , from C∞ (M) to D′ (T ∗M),

such that for some C, ε0, ε1, η > 0, the Schwartz kernel KT of T is holomorphic in (M ×
T ∗M)ε0 and for (x, α) = (x, (αx, αξ)) therein satis�es

(a) if d(x, αx) > ε1/2, then |KT (α, x)| ≤ Ce−η
〈|α|〉
h .

(b) for d(x, αx) ≤ ε1, ∣∣∣KT (α, x)− ei
ΦT (α,x)

h a(α, x)
∣∣∣ ≤ Ce−η 〈|α|〉h , (4.9)
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ΦT being an admissible phase (as de�ned in De�nition 4.10), and a being a semi-classical

analytic symbol, elliptic in the symbol class h−
3n
4 S1,n

4 (with the subtlety that a(α, x) is

maybe only de�ned for αx and x close to each other). An adjoint analytic FBI transform is

an operator S : C∞c (T ∗M)→ D(M)′ whose kernelKS(x, β) satis�es that (α, x) 7→ KS(x, α)

is the kernel of an analytic FBI transform.

Remark 4.12. While it does not appear in the notation, the symbol a is allowed to depend

on the small implicit parameter h > 0 (but it has to satisfy estimates uniformly in h). We

say that ΦT is the phase of T and that a is its symbol.

Recall that the fact that KT is the kernel of T means that if u is a smooth function on

M then Tu is de�ned by the formula

Tu : α 7→
∫
M
KT (α, x)u(x)dx.

Actually, it follows from the holomorphy ofKT that Tu is well-de�ned as a holomorphic

function on (T ∗M)ε0 for u ∈
(
E1,R0 (M)

)′
provided ε0 > 0 is small enough and R0 is large

enough.

Notice that if T is an analytic FBI transform, its adjoint T ∗ with respect to the L2

spaces onM and T ∗M is an adjoint analytic FBI transform, since the kernel of T ∗ is given

by (x, α) 7→ KT (α, x) (the cotangent bundle T ∗M is endowed with its canonical volume

form).

Due to the holomorphy condition that we impose on the kernel of an FBI transform,

it is not clear that such an object exists on a general compact real-analytic manifold.

However in [BJ20, Lemma 2.3] we prove:

Proposition 4.13. Let M be a compact real-analytic manifold. Then there is an analytic

FBI transform on M .

The proof of Proposition 4.13 is based on Hörmander's solution to the ∂̄ equation,

following a suggestion by Maciej Zworski.

Complex Lagrangian deformations

As noticed in Remark 4.12, if u is a hyperfunction onM and T an analytic FBI transform,

then Tu de�nes not only a function on T ∗M but also a holomorphic function on (T ∗M)ε0 .

At the heart of [HS86, Sjö96] is the idea to study the restriction of Tu to a well-chosen

submanifold Λ of (T ∗M)ε0 � a priori di�erent from T ∗M . However, in order to make the

analysis works, some assumptions on Λ are necessary.

In order to state the assumptions that we need to make on the manifold Λ , we need to

recall a few facts on the symplectic geometry of (T ∗M)ε0 . We let θ denotes the complex

canonical 1-form on (T ∗M)ε0 and ω = dθ the associated symplectic form. Indeed, recall
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that (T ∗M)ε0 may be seen as an open subset in the cotangent bundle T ∗M̃ of a complex-

i�cation M̃ of M . Then set ωR = Reω and ωI = Imω. Notice that ωR and ωI are real

symplectic forms on (T ∗M)ε0 . In local charts with x̃ = x+ iy, ξ̃ = ξ + iη, the expression

for ω is given by

ω = dξ ∧ dx− dη ∧ dy︸ ︷︷ ︸
=ωR

+ i(dη ∧ dx+ dξ ∧ dy)︸ ︷︷ ︸
=ωI

.

We can also express the Liouville 1-form:

θ = ξ · dx− η · dy + i(ξ · dy + η · dx).

Following Sjöstrand, we will denote with an I objects of symplectic geometric de�ned

through the use of ωI . For example, the I-Hamiltonian (i.e. w.r.t. ωI) vector �eld of a C1

function f is given in the coordinates above by

HωI
f = ∇ηf ·

∂

∂x
−∇xf ·

∂

∂η
+∇ξf ·

∂

∂y
−∇yf ·

∂

∂ξ
, (4.10)

so that df = ωI(·, HωI
f ).

One �nds directly that T ∗M is a I-Lagrangian submanifold of (T ∗M)ε0 . The idea of

[HS86] is to replace it by another I-Lagrangian submanifold of (T ∗M)ε0 . However, we

will not work with all I-Lagrangian subspaces of (T ∗M)ε0 , we shall only consider adapted

I-Lagrangians as we de�ne now.

De�nition 4.14. Let s ≥ 1 and τ0 ≥ 0. Let Λ be an I-Lagrangian in (T ∗M)ε0 . We say

that Λ is a (τ0, s)-adapted Lagrangian if it takes the form

Λ = eH
ωI
G (T ∗M) . (4.11)

Here, we assume that G is a real-valued function so that G0 := h−1+1/sG is a symbol (in

the usual Kohn�Nirenberg class of symbol) on (T ∗M)ε0 of order 1/s, supported in some

(T ∗M)ε1 with ε1 < ε0. Additionally, we require that (we use the covariant derivatives

associated to the Kohn�Nirenberg metric to measure the derivatives of G0)

sup
α∈(T ∗M)ε0

k≤3

∥∥∇kG0(α)
∥∥
KN

〈|α|〉
1
s

≤ τ0. (4.12)

Remark 4.15. If G is as in De�nition 4.14, then one easily sees that the vector �eld

HωI
G is complete, so that we can de�ne a (τ0, s)-adapted Lagrangian Λ by the formula

(4.11) (the manifold Λ is then I-Lagrangian since exp(HωI
G ) is an I-symplectomorphism).

Notice also that the assumptions on the symbol G impose that it depends on h, but in a

uniform fashion as h→ 0 (in particular, Λ is uniformly smooth with respect to the Kohn�
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Nirenberg metric when h tends to 0). In the applications, the dependence of G on Λ will

be fairly explicit since G will be of the form τ0h
1−1/sG0 with G0 of order 1/s satisfying

the assumptions of De�nition 4.14 with τ0 = 1.

One may notice that if τ0 ≥ τ1 and s ≥ s′ then any (τ0, s)-adapted Lagrangian is also

(τ1, s
′)-adapted.

Remark 4.16. Let m ∈ R and Ω be a manifold on which there is a notion of Kohn�

Nirenberg metric and of Japanese bracket (the main examples are T ∗M, (T ∗M̃)ε0 and

an adapted Lagrangian Λ), then we de�ne as usual the Kohn�Nirenberg class of symbol

SmKN (Ω) as the space of C∞ functions a : Ω→ C such that for every k ∈ N we have (using

the covariant derivative associated to the Kohn�Nirenberg metric):

sup
α∈Ω

∥∥∇ka(α)
∥∥
KN

〈|α|〉m
< +∞.

For instance, in De�nition 4.14 we ask for G0 ∈ S1/s
KN

(
(T ∗M)ε0

)
.

Since the adapted Lagrangians are uniformly smooth submanifolds with respect to the

Kohn�Nirenberg metric, and image of T ∗M under a uniformly smooth �ow, the symbol

class SmKN (Λ) is well de�ned, and to check that a ∈ SmKN (Λ), we can compute the deriva-

tives either directly on Λ, or through the pullback by exp(HωI
G ), with covariant derivatives

or with partial derivatives in coordinates.

The notion of (τ0, s)-adapted Lagrangian is tailored so that it makes sense to restrict the

almost analytic extension of the principal symbol of a di�erential operator with Gevrey co-

e�cients (as de�ned in 4.1.1, see also Remark 4.8) to a (τ0, s)-adapted Lagrangians when τ0

is small. More precisely, if G is as in De�nition 4.14, it follows from the local expression 4.10

for HωI
G that the norm of HωI

G for the Kohn�Nirenberg metric is O
(
τ0h

1−1/s 〈|α|〉1/s−1 ).
This essentially proves

Lemma 4.17. Let s ≥ 1 and T ≥ 0. There is a constant C > 0 such that, for every

τ0 ∈ [0, T ], if Λ is a (τ0, s)-adapted Lagrangian and α ∈ Λ then

| Imα| ≤ Cτ0h
1− 1

s 〈|α|〉
1
s
−1

In particular, for every ε > 0, there is a τ1 > 0 such that, for every τ0 ∈ [0, τ1], any

(τ0, s)-adapted Lagrangian is contained in (T ∗M)ε.

In particular, we see that if T is an analytic FBI transform and Λ is a (τ0, s)-adapted

Lagrangian manifold with τ0 small enough, then, according to Remark 4.12, if u is a

hyperfunction on M then Tu is de�ned on Λ. We de�ne then the transform TΛ associated

by restriction: TΛu = (Tu)|Λ.

In order to de�ne weighted L2 spaces on adapted Lagrangians, we need to de�ne a
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volume form on such Lagrangians. To do so, we use the following lemma, which is proven

by a perturbative argument (see [BJ20, Lemma 2.2])

Lemma 4.18. Let s ≥ 1. There exists T > 0 and a constant C > 0 such that, for every

τ0 ∈ [0, T ], if Λ is a (τ0, s)-adapted Lagrangian then the restriction of ωR to Λ (that we

shall also denotes by ωR) is symplectic.

From now on, if Λ is an adapted Lagrangian, we will just denote by dα the 2n-form

ωnR/n!, which induces a volume form on Λ. We will denote as usual the corresponding

duality pairing

〈f, g〉Λ =

∫
Λ
fg dα. (4.13)

Using the volume form dα, we may also de�ne adjoint analytic FBI transforms associated

to Λ. If S is an adjoint analytic transform with kernel KS and Λ is a (τ0, s)-adapted

Lagrangian manifold with τ0 small enough, then we de�ne the operator SΛ by

SΛv(x) =

∫
Λ
KT (x, α)v(α)dα,

where x ∈M and v is a measurable function on Λ that decays fast enough � we will extend

later this de�nition to more general v.

The natural space in our setting will not be L2(Λ, dα) but rather L2(Λ, e−2H/hdα),

where H is an action associated with Λ, solving

dH = − Im θ|Λ. (4.14)

Since Λ is I-Lagrangian, we deduce that there are local solutions to this equation. However,

since Λ is assumed to be of the form (4.11), we can �nd an explicit global solution, given

by

H :=

∫ 1

0

(
e(τ−1)H

ωI
G

)∗
(G− Im θ(HωI

G ))dτ. (4.15)

Analytic FBI transform and Gevrey regularity

Since an FBI transform is some kind of generalization of the Fourier transform, we expect

that regularity of a hyperfunction u on M may be described in terms of decay properties

of the transform Tu. This is indeed true and we explain it now.

Let T be an analytic FBI transform, S be an adjoint analytic transform and Λ be a

(τ0, 1)-adapted Lagrangian with τ0 small enough. We recall the associated transforms TΛ

and SΛ that we introduced above. We need spaces to describe the decay or growth of a

function on Λ. Let s ≥ 1 and r ∈ R. If f is a function from Λ to C, let

‖f‖Λ,s,r := sup
α∈Λ
|f(α)| e−r〈|α|〉

1
s ∈ R+ ∪ {+∞} .
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Then we de�ne F s,r (Λ) to be the Banach space of continuous function f : Λ → C such

that ‖f‖Λ,s,r < +∞.

We de�ne then the following spaces of functions on the Lagrangian Λ. For s ≥ 1

introduce the space of functions decaying at least exponentially

Gs (Λ) :=
⋃
r<0

F s,r (Λ) ,

and the space of functions diverging slower than any exponential

Us (Λ) :=
⋂
r>0

F s,r (Λ) .

These spaces are endowed respectively with the inductive and projective limit structure

(in the category of locally convex topological vector spaces). Notice that Gs (Λ) is dense

in Us (Λ) (just multiply by a bump function) and that the L2 pairing (4.13) in Λ gives

a natural duality bracket between Us (Λ) and Gs (Λ). The spaces Gs (Λ) and Us (Λ) are

natural analogues of Gs (M) and Us (M) on the FBI side. Indeed, we have the following

results.

Proposition 4.19 (Proposition 2.1 in [BJ20]). Let s′ > s ≥ 1 and assume that Λ is

a (τ0, s
′)-Gevrey adapted Lagrangian with τ0 small enough. Then, the transform TΛ is

continuous from Gs (M) to Gs (Λ) and from Us (M) to Us (Λ).

Proposition 4.20 (Proposition 2.2 in [BJ20]). Let s′ > s ≥ 1 and assume again that Λ

is a (τ0, s
′)-Gevrey adapted Lagrangian with τ0 small enough. Then, the transform SΛ is

continuous from Gs (Λ) from Gs (M) and admits a continuous extension from Us (Λ) to

Us (M).

If Propositions 4.19 and 4.20 give a good idea of the link between regularity on M and

decay on the FBI side, they are not precise enough for what we intend to do. In particular,

when dealing with Gs Anosov �ows, we want to consider (τ0, s)-adapted Lagrangians, in

order to get the best results possible. Thus, we need more precise estimates that explains

how (τ0, s)-adapted Lagrangians relate with Gs functions and associated ultradistributions.

We can use for instance the following lemmas.

Lemma 4.21. Let s ≥ 1 and R ≥ 1. Then there is C > 0 such that, if Λ is a (τ0, s)-

adapted Lagrangian with τ0 small enough and 0 ≤ r ≤ C−1h−1/s, then TΛ is bounded

from Es,R (M) to F s,−r (Λ) and SΛ extends continuously to an operator from F s,r (Λ) to(
Es,R (M)

)′
.

Lemma 4.22. Let s ≥ 1 and ε > 0. Then there is R > 0 such that, if Λ is a (τ0, s)-adapted

Lagrangian with τ0 small enough and r ≥ εh−1/s, then TΛ is bounded from
(
Es,R (M)

)′
to

F s,r (Λ) and SΛ is bounded from F s,−r (Λ) to Es,R (Λ).
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While the statements of Lemmas 4.21 and 4.22 may seem technical, their proofs are

relatively easy. Lemma 4.22 follows from bounds on the growth of Gevrey norms of y 7→
KT (α, y) and y 7→ KS(y, α) when α tends to +∞ along Λ. These bounds may be obtained

for instance by applying Cauchy's Formula on a polydisc with shrinking radius (see [BJ20,

Lemmas 2.5 and 2.6]). The �rst point in Lemma 4.21 may be proved by an application of

Gevrey non-stationary phase method and the second point follows by a duality argument

(see [BJ20, Lemma 2.4 and Proposition 2.2]).

Inversion formula

It follows from Lemmas 4.21 and 4.22 that if T is an analytic FBI transform and S is

an adjoint analytic FBI transform, then the composition2 ST makes sense as an operator

from
(
E1,R0 (M)

)′
to
(
E1,R1 (M)

)′
for any R1, and R0 large enough depending on R1. It

would be useful to be able to retrieve an ultradistribution u from its FBI transform Tu �

if possible in an explicit way. We will use the following result to do so.

Proposition 4.23 (Theorem 6 in [BJ20]). Let M be a compact real-analytic manifold and

h > 0 be small enough. Then there is an analytic FBI transform T on M such that T ∗T

is the identity3.

The proof of Proposition 4.23 is given in [BJ20, �2.1.3]. Let us give a short glimpse

of the ideas behind this demonstration. First of all, from Proposition 4.13, we know that

there is an analytic FBI transform T0 on M . Then, from an application of the stationary

phase method, we may prove that the self-adjoint operator T ∗0 T0 is an elliptic analytic

pseudo-di�erential operator of order 0 (in a sense de�ned in [BJ20, �1.3]). Then, we apply

a suited functional calculus to construct an inverse square root for T ∗0 T0: this is a self-

adjoint analytic pseudo-di�erential operator P that satis�es PT ∗0 T0P = I (the operator P

is a priori only de�ned for h small enough). It remains to see by another application of

the holomorphic stationary phase method that T = T0P is an analytic FBI transform to

end the proof of Proposition 4.23.

From now on, we �x a compact real-analytic manifold M and let T be an analytic

FBI transform given by Proposition 4.23 � assuming that h > 0 is small enough. We will

also denote by S the adjoint T ∗ of T . Using Stokes' Formula to shift a contour, we may

generalize Proposition 4.23 to FBI transforms associated to Lagrangian deformations of

T ∗M .

Proposition 4.24 (Lemma 2.7 in [BJ20]). Let Λ be a (τ0, 1)-adapted Lagrangian with

τ0 small enough. Then, for every R1 large enough, for R0 large enough, the composition

2In order to lighten notations, we sometimes drop the index Λ when Λ = T ∗M . That is we use the
short hand T = TT∗M and S = ST∗M .

3With the notations above, it would be more precise to say that T ∗T is the inclusion of
(
E1,R0 (M)

)′
in
(
E1,R1 (M)

)′
.
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SΛTΛ is well-de�ned from
(
E1,R0 (M)

)′
to
(
E1,R1 (M)

)′
and is the inclusion between these

spaces.

Remark 4.25. Beware that SΛ is only a left inverse for TΛ. Indeed, the image of TΛ only

contains smooth function and the operator ΠΛ := TΛSΛ is a projector on the image of TΛ.

The study of this projector and of related operators is the object of [BJ20, �2.2].

Spaces associated to Lagrangian deformation

Let us �x a (τ0, 1)-adapted Lagrangian Λ with τ0 small enough. We want to associate a

scale of �Sobolev-like� spaces to Λ. In �4.2, we will see that for a relevant choice of Λ these

spaces are suited to the spectral analysis of Gevrey Anosov �ows. First of all, recalling

the action H on Λ given by (4.15) and satisfying the equation (4.14), we de�ne a scale of

weighted L2 spaces on Λ by

L2
k (Λ) := L2

(
Λ, 〈|α|〉2k e−

2H
h dα

)
,

where k ∈ R and we recall that dα denotes the volume form ωnR/n! on Λ. Then we de�ne

the associated scale of spaces of hyperfunctions on the manifold by

HkΛ :=
{
u ∈

(
E1,R (M)

)′
: TΛu ∈ L2

k (Λ)
}
, (4.16)

where k ∈ R, and R ≥ 1 is large enough so that Proposition 4.24 applies. The space HkΛ
is endowed with the norm

‖u‖HkΛ := ‖TΛu‖L2
k(Λ) .

Finally, it is also useful to introduce the notations

H∞Λ =
⋂
k∈R
HkΛ and H∞Λ,FBI =

⋂
k∈R
HkΛ,FBI.

Let us now list the basic properties of these spaces.

Proposition 4.26. Let Λ be a (τ0, 1)-adapted Lagrangian with τ0 small enough. Then, for

every k ∈ R, the space HkΛ is a separable Hilbert space and (equivalently) HkΛ,FBI is a closed
subspace of L2

k (Λ).

Proposition 4.27. Let s ≥ 1 and R0 be large enough. Then, if τ0 is small enough �

depending on R0 � and Λ is a (τ0, s)-adapted Lagrangian, we have for every k ∈ R

Es,R0 ⊆ HkΛ ⊆ (Es,R0)′. (4.17)
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Under the same assumptions, for 1 ≤ s′ < s and every k ∈ R, we have

Gs′ (M) ⊆ HkΛ ⊆ Us
′
(M) .

All these inclusions are continuous.

Propositions 4.26 and 4.27 are consequences of Proposition 4.24 (see [BJ20, Corollary

2.2]). Further analysis leads to a density statement.

Proposition 4.28 (Corollary 2.3 in [BJ20]). Assume that τ0 is small enough and that Λ

is a (τ0, 1)-adapted Lagrangian. Then, assuming that h > 0 is small enough, there is R > 0

such that, for all k ∈ R, the space E1,R(M) is dense in HkΛ. Moreover, if u ∈ L2 (M)∩HkΛ,
there is a sequence (un)n∈N in E1,R (M) such that (un)n∈N converges to u both in L2 (M)

and in HkΛ.

It may also be insightful to notice that in the absence of deformations, we just gave an

equivalent de�nition of the usual (semi-classical) Sobolev spaces.

Proposition 4.29 (Corollary 2.4 in [BJ20]). Let h > 0 be small enough. Then, for every

k ∈ R, the space HkT ∗M is the usual semi-classical Sobolev space of order k on M , with

uniformly equivalent norms as h tends to 0.

Some properties of the undeformed case remain true for general Λ's, for instance we

have:

Proposition 4.30 (Lemma 2.24 in [BJ20]). Let Λ be a (τ0, 1)-adapted Lagrangian. Assume

that τ0 and h are small enough and let k ∈ R. Then, if u ∈ H−kΛ and v ∈ HkΛ the pairing

〈u, v〉 := 〈TΛu, TΛv〉L2
0(Λ) (4.18)

is well-de�ned and induces an (anti-linear) identi�cation between H−kΛ and the dual of HkΛ
(inducing equivalent, but a priori not equal norms).

Estimates on singular values of certain operators will be crucial in the proof of The-

orem 10. To this end, we will use the following result � which is also reminiscent of the

undeformed case.

Proposition 4.31 (Proposition 2.13 in [BJ20]). Assume that Λ is a (τ0, 1)-adapted La-

grangian with τ0 small enough. Assume that h > 0 is small enough. Let m > 0 and

q ∈ R, then the inclusion of Hm+q
Λ into HqΛ is compact. In addition, if (µk)k∈N denotes the

singular values of this inclusion then we have

µk =
k→+∞

O
(

1

k
m
n

)
.
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In particular, the inclusion of Hm+q
Λ into HqΛ belongs to the Schatten class Sp for every

p > n/m.

4.1.3 Analytic FBI transform and Gevrey di�erential operators

It is now time to explain how di�erential operator with Gevrey coe�cients acts on the

spaces HkΛ's that we just de�ne, which is the object of [BJ20, �2.2 and �2.3]. We start by

stating a boundedness result.

Proposition 4.32 (Proposition 2.4 in [BJ20]). Let s ≥ 1. Let P be a (semi-classical)

di�erential operator of order m ∈ N with Gs coe�cients. Let Λ be a (τ0, s)-adapted La-

grangian with τ0 small enough � depending on P . Assume that h > 0 is small enough.

Then, for every k ∈ R the operator P is bounded from HkΛ to Hk−mΛ � with uniform bound

when h tends to 0.

Actually, we will rather consider di�erential operators as unbounded operators on H0
Λ,

so that the following result is more suited to our needs. This is a straightforward general-

ization of [BJ20, Lemmas 3.2 and 3.4]

Proposition 4.33. Let s ≥ 1. Let P be a di�erential operator of order 1 with Gs coe�-

cients. Let Λ be a (τ0, s)-adapted Lagrangian with τ0 small enough and assume that h > 0

is small enough. Then the operator P acting on H0
Λ with domain

D (P ) =
{
u ∈ H0

Λ : Pu ∈ H0
Λ

}
is a closed operator. Moreover, if u ∈ D (P ), there is a sequence (un)n∈N of elements of

H∞Λ such that (un)n∈N and (Pun)n∈N converge respectively to u and Pu in H0
Λ. The same

approximation property holds when P is replaced by its adjoint4 P ∗.

Finally, the main tool that we will use to study Anosov �ows is the following �multi-

plication formula� [BJ20, Proposition 2.11].

Proposition 4.34 (Multiplication formula). Let s ≥ 1 and P be a di�erential operator of

order m with Gs coe�cients. Assume that Λ is a (τ0, s)-Gevrey adapted Lagrangian with

τ0 small enough. Let pΛ denotes the restriction to Λ of a Gs almost analytic extension of

the principal symbol of P . Assume that h is small enough. Let f ∈ Sm′KN (Λ) be a symbol of

order m′ on Λ, uniformly in h. Then, if m1,m2 ∈ R are such that m1 +m2 = m+m′− 1,

there is a constant C > 0 such that for any u, v ∈ H∞Λ , we have (the scalar product is in

L2
0 (Λ))

|〈fTΛPu, TΛv〉 − 〈fpΛTΛu, TΛv〉| ≤ Ch ‖u‖Hm1
Λ
‖v‖Hm2

Λ
. (4.19)

4Here, we consider the adjoint of P with respect to the Hilbert structure on H0
Λ and not its formal

adjoint.
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We recall that the notion of almost analytic extension for the principal symbol of a

di�erential operators with Gs coe�cients has been de�ned in �4.1.1 and that the class of

symbols Sm
′

KN (Λ) is de�ned in Remark 4.16.

Let us discuss brie�y the proof of Proposition 4.34, considering that this is one of

the main results from [BJ20] and that it will be a key tool in the proof of Theorem 10

(see in particular the proof of Lemma 4.37). What we expose here rapidly is exposed in

details in [BJ20, �2.2 and 2.3]. Recalling the inversion formula Proposition 4.24, in order

to understand the action of a di�erential operator P on the spaces HkΛ, one only needs

to understand the action of the operator TΛPSΛ on the spaces L2
k (Λ). Using the Gevrey

stationary phase method, we are able to identify the kernel of the operator TΛPSΛ. Thanks

to the introduction of the action H in the de�nition of the space L2
0 (Λ), we see that the

reduced kernel of TΛPSΛ associated to its action on this space is the kernel of a certain

Fourier Integral Operator with complex phase with positive imaginary part. We can then

use Melin�Sjöstrand's version5 of the stationary phase method with complex phase [MS75]

to study a certain class of Fourier Integral Operators that contains in particular TΛPSΛ.

We prove in particular that the orthogonal projector BΛ on the image of TΛ in L2
0 (Λ) is

one of these Fourier Integral Operators. The understanding of the algebraic properties of

these operators allow then to prove a formula of the form

BΛfTΛPSΛBΛ ' BΛσBΛ (4.20)

up to negligible operators (this is some kind of Toeplitz representation for the operator P ).

Here, σ is a symbol on Λ that coincides at �rst order with fpΛ. Proposition 4.34 follows

then from the representation formula (4.20).

4.2 Finite order of the dynamical determinant

We turn now to the proof of Theorem 10. From now on, s ∈ [1,+∞[ is �xed, X is a

Gs vector �eld on a compact Gs manifold M that generates an Anosov �ow (φt)t∈R, and

V : M → C is a Gs function. We de�ne the di�erential operator P = X + V , and the

associated Koopman operator is given by (9). Without loss of generality, we may assume

that M is endowed with a structure of real-analytic Riemannian manifold (coherent with

its Gs structure, see Remark 4.2).

The machinery from �4.1.1 is then available, in particular we denote by M̃ a complex

neighbourhood for M . According to Proposition 4.23, there is an analytic FBI transform

T on M such that T ∗T = I. As above we set S = T ∗. In order to apply the results

from �4.1 to the operator P , we need �rst to �nd a suitable (τ0, s)-adapted Lagrangian Λ.

5The Gevrey regularity assumption on P is only used in order to justify the applications of the stationary
phase method mentioned above. After that, we only need to do C∞ micro-local analysis on Λ.
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The Lagrangian Λ will be de�ned by (4.11) where the symbol G is de�ned by G = τG0

where τ � h1− 1
s and G0 is a so-called escape function. The section �4.2.1 is devoted to the

construction of G0 (see Lemma 4.35). In �4.2.2, we will then describe the spectral theory

of P on the related spaces de�ned in �4.1.2. Finally, the proof of Theorem 10 is given in

�4.2.3.

4.2.1 Constructing an escape function

Recall that the decomposition TM = E0⊕Eu⊕Es of the tangent bundle from De�nition

6 induces a dual decomposition T ∗M = E∗0 ⊕ E∗u ⊕ E∗s of the cotangent bundle. Here,

E∗0 = (Eu ⊕ Es)⊥, E∗u = (E0 ⊕ Eu)⊥ and E∗s = (E0 ⊕ Es)⊥. We denote by p : T ∗M → C

the principal symbol of the semi-classical di�erential operator hP . We recall that for

α = (αx, αξ) ∈ T ∗M ,

p(α) = iαξ (X(αx)) . (4.21)

To apply the machinery presented in the previous part, we will need an almost analytic

extension for p. We construct it as in �4.1.1: we take a Gs almost analytic extension X̃

for X, given by Lemma 4.6 if s > 1 (we just take X̃ = X if s = 1), and then we set for

α = (αx, αξ) ∈ (T ∗M)ε0 (for some small ε0 > 0)

p̃(α) = iαξ

(
X̃ (αx)

)
. (4.22)

It will be important when constructing the escape function G0 that this almost analytic

extension is linear in αξ. We are now ready to construct G0.

Lemma 4.35. Let C 0 be a conical neighbourhood of E∗0 in T ∗M . Let δ ≥ 0. Then there

are arbitrarily small ε0 > ε1 > 0 and a symbol G0 of order δ on (T ∗M)ε0, supported in

(T ∗M)ε1 with the following properties:

(i) the restriction of {G0,Re p̃} to T ∗M is negative and classically elliptic of order δ

outside of C 0, that is, for some C > 0 and α ∈ T ∗M \ C 0 large enough, we have

{G0,Re p̃} (α) ≤ −C 〈|α|〉δ ;

(ii) there are C, ε2 > 0 such that {G0,Re p̃} ≤ C on (T ∗M)ε2.

Here, the Poisson Bracket {G0,Re p̃} is the one associated with the real symplectic form

ωI on (T ∗M)ε0 .

Notice that Lemma 4.35 is slightly simpler than the corresponding result in [BJ20]

(Lemma 3.1 from the mentioned paper). This is because we focus on Theorem 10. In
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[BJ20], we prove additionally a statement on the Gevrey wave front set of resonant states

(that we recall in �4.3, see Proposition 4.41) and we need additional properties on the

escape function G0 to do so.

Before proving Lemma 4.35, let us explain why we need our escape function to satisfy

these properties. The point (i) will be used in the proof of Lemma 4.37 to deduce the

hypoellipticity of the operator P acting onH0
Λ from the multiplication formula, Proposition

4.34. The point (ii) will be used in the proof of Proposition 4.36 to show that the Koopman

operator (9) de�nes a continuous semi-group on H0
Λ. This property is what ensures that

the spectrum of P on our spaces has a dynamical meaning. Even though point (i) seems

to be the most crucial one, since it is the one that allows us to enter the world of Schatten

operators and �nally prove Theorem 10, the importance of (ii) could not be overestimated.

Finally, notice that, in order to apply Proposition 4.34 in the most favorable case for us,

it will be natural in the following to choose δ = 1/s.

Proof of Lemma 4.35. We want to understand {G0,Re p̃} in order to control how the real

part of p̃ evolves under the �ow of HωI
G0
. However, since {G0,Re p̃} = −{Re p̃, G0}, we may

understand {G0,Re p̃} by controlling how G0 evolves under the �ow of −HωI
Re p̃. Hence, we

need to understand the dynamics of this �ow. To do so, we may multiply X̃ by a bump

function identically equals to 1 near M (since we only claim properties for G0 near T ∗M

and we will not use the high regularity of X̃ in this proof). Then, it follows from the

formula (4.10) that the �ow of −HωI
Re p̃ is complete. We denote this �ow by (Θt)t∈R and

write

Θt(α) = (Θt,x(α),Θt,ξ(α)) .

Using (4.10), we see that HωI
Re p̃ is given in coordinates (x+ iy, ξ + iη) by

−HωI
Re p̃ =

n∑
j=1

Re X̃j
∂

∂xj
+ Im X̃j

∂

∂yj
−

(
ξ

(
∂ Im X̃

∂yj

)
+ η

(
∂ Re X̃

∂yj

))
∂

∂ξj

−

(
ξ

(
∂ Im X̃

∂xj

)
+ η

(
∂ Re X̃

∂xj

))
∂

∂ηj
.

(4.23)

Indeed, it follows from (4.21) that in such coordinates we have

Re p̃ = −ξ
(

Im X̃
)
− η

(
Re X̃

)
.

From (4.23), we see that the projection Θt,x of Θt is in fact given by the formula

Θt,x(α) = φ̃t(αx),
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where (φ̃t)t∈R denotes the �ow of X̃ (in particular, the restriction of φ̃t to M is φt). Then,

we notice that in (4.23), the component of −HωI
Re p̃ along ∂/∂ξ and ∂/∂η is linear in (ξ, η).

It implies that

Θt,ξ(α) = Lt(αx)(αξ),

where Lt(αx) is a R-linear application from T ∗αxM̃ to T ∗
φ̃t(αx)

M̃ (that depends smoothly on

t and αx). Now, since X̃ satis�es the Cauchy�Riemann equations and is tangent to M on

M , we �nd that, for y = 0, in the same system of coordinates than (4.23), we have

∂ Re X̃

∂y
= −∂ Im X̃

∂x
= 0 and

∂ Im X̃

∂y
=
∂ Re X̃

∂x
=
∂X

∂x
. (4.24)

By uniqueness in the Cauchy�Lipschitz Theorem, we �nd by plugging (4.24) in (4.23) that,

for x ∈M and t ∈ R we have6

Lt(x) =
(
Dφt(x)−1

)tr
. (4.25)

Hence, the hyperbolicity of (φt)t∈R will have important consequences on the dynamics of

(Θt)t∈R. Let us �complexify� the bundles E∗0,u,s. For x ∈ M , we denote by EC,∗
0 , EC,∗

u

and EC,∗
s the complexi�cation of E∗0 , E

∗
u and E∗s , considering linear forms valued in C

instead of R. For instance, for x ∈ M , we write EC,∗
0,x for the subspace of T ∗xM ⊗ C

consisting of R-linear maps from TxM to C that vanish on Eu ⊕ Es (or, under a natural

identi�cation, of C-linear forms on T ∗xM̃ that vanish on Eu ⊕ Es). From the fact that

TxM = E0
x ⊕Eux ⊕Esx is a totally real subspace of maximal dimension of TxM̃ , we deduce

that T ∗xM̃ = EC,∗
0,x ⊕ E

C,∗
u,x ⊕ EC,∗

s,x . Since E0
x, E

u
x and Esx depends in a Hölder-continuous

fashion on x ∈M , so does EC,∗
0,x , E

C,∗
u,x and EC,∗

s,x . Consequently, we may extend continuously

EC,∗
0 , EC,∗

u and EC,∗
s to M̃ . Then, if M̃ is small enough, we have TxM̃ = EC,∗

0,x ⊕E
C,∗
u,x ⊕EC,∗

s,x

for all x ∈ M̃ . A priori, this decomposition is only invariant under Lt for t ∈ R when x

is real. If σ ∈ T ∗xM̃ then we write σ = σ0 + σu + σs for the decomposition of σ under

TxM̃ = EC,∗
0,x ⊕ E

C,∗
u,x ⊕ EC,∗

s,x . Then, we put a real Riemannian metric on M̃ and de�ne for

γ > 0 the cone �elds Cγu and Cγs by setting for x ∈ M̃

Cγu(x) =
{
σ ∈ T ∗xM̃ : |σ0|+ |σs| ≤ γ |σu|

}
and

Cγs (x) =
{
σ ∈ T ∗xM̃ : |σ0|+ |σu| ≤ γ |σs|

}
.

6We recall that Atr is our notation for the transpose of A.
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Without loss of generality, we may assume that C 0 is closed and does not intersect E∗u ⊕
E∗s \ {0}. We may also assume that there is a closed conic neighbourhood C C,0 of EC,∗

0 in

T ∗M̃ such that C C,0∩T ∗M = C 0. Choose then a small closed conic neighbourhood of C0s

of E∗s ⊕ E∗0 in T ∗M .

From (4.25) and standard arguments in hyperbolic dynamic, there are a large T0 > 0,

small 0 < γ′ < γ, some λ > 1 and a constant c > 0 such that if α = (αx, αξ) ∈ T ∗M̃ , and

T1 ≥ T0 then:

a. either ΘT1,ξ(α) ∈ Cγ
′

u (φ̃T1(αx)) or Θ−T0,ξ(α) ∈ Cγ
′

s (φ̃−T0(αx)) or α ∈ C C,0;

b. if Θ−T0,ξ(α) ∈ Cγu(φ̃−T0(αx)) then ΘT1,ξ(α) ∈ Cγ
′

u (φ̃T1(αx)) and we have the bound

|ΘT1,ξ(α)| ≥ λ |Θ−T0,ξ(α)|;

c. if ΘT1,ξ(α) ∈ Cγs (φ̃T1(αx)) then Θ−T0,ξ(α) ∈ Cγ
′

s (φ̃−T0(αx)) and we have the bound

|ΘT1,ξ(α)| ≤ λ−1 |Θ−T0,ξ(α)|;

d. if α ∈ T ∗M does not belong to C 0s, then, for t ≥ 0, we have that Θt,ξ(α) does

not belong to Cγs (φ̃t(αx)), and, for t ≥ T0, we have Θt,ξ(α) ∈ Cγ
′

u (φ̃t(αx)) and

|Θt,ξ(α)| ≥ c |αξ|.

Since we ask here for x ∈ M , these are consequences of the hyperbolicity of (φt)t∈R, that

is it only relies on the dynamic on M . We want to apply a perturbation argument to show

that b and c remain true on a small complex neighbourhood of M , but we need �rst to �x

the value of T1. Hence, we �x the value of T1, large enough such that we have

sup
α∈T ∗M\{0}

1

|αξ|δ

∫ 0

−T0

|Θt,ξ(α)|δ dt <
cδ(T1 − T0)

2
. (4.26)

Now that T1 is �xed, it follows from a perturbation argument that, up to taking a

smaller λ, a smaller γ, a larger γ′ and a smaller c, the properties b and c above remain true

when α ∈ T ∗ (M)ε0 , for some small ε0 > 0 (and (4.26) remains true since we asked for a

strict inequality). Then, we choose a symbol m ∈ S0
KN

(
T ∗ (M)ε0

)
of order 0 on T ∗(M)ε0 ,

valued in [−1, 1], with the following properties:

• if x ∈ (M)ε0 and σ ∈ T ∗xM̃ \ (Cγu(x) ∪ Cγs (x)) or σ is near 0 then m(x, σ) = 0;

• there is C > 0 such that if x ∈ (M)ε0 and σ ∈ Cγ
′

s (x) satis�es |σ| ≥ C then

m(x, σ) = 1;

• there is C > 0 such that if x ∈ (M)ε0 and σ ∈ Cγ
′

u (x) satis�es |σ| ≥ C then

m(x, σ) = −1;

• m is non-positive on Cuγ and non-negative on Csγ .
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Then, we may de�ne G0 near T ∗M ⊗ C by the formula

G0(α) =

∫ T1

T0

m(Θt(α)) |Θt,ξ(α)|δ dt. (4.27)

We multiply G0 by a bump function to satisfy the claim on the support. It does not change

the value of G0 near T ∗M and hence it will not interfere with the properties (i) and (ii).

We may consequently use the formula (4.27) to prove (i) and (ii).

We start by proving (i). To do so we compute

{G0,Re p̃} = −{Re p̃, G0} = −HωI
Re p̃G0

= m(ΘT1(α)) |ΘT1,ξ(α)|δ −m(Θ−T0(α)) |Θ−T0,ξ(α)|δ
(4.28)

Assuming that α does not belong to C 0, we know that ΘT1,ξ(α) belongs to Cγ
′
u or Θ−T0,ξ(α)

belongs to Cγ
′
s . Let us assume for instance that ΘT1,ξ(α) belongs to Cuγ′ (the other case is

symmetric). Then again there are two possibilities: either Θ−T0,ξ(α) belongs to Cuγ or it

does not. If it does then (for |αξ| large enough)

m(ΘT1(α)) |ΘT1,ξ(α)|δ −m(Θ−T0(α)) |Θ−T0,ξ(α)|δ

≤ − |ΘT1,ξ(α)|δ + |Θ−T0,ξ(α)|δ

≤ −
(
λδ − 1

)
|Θ−T0,ξ(α)|δ

≤ − 1

C
|αξ|δ ,

for some C > 0. If Θ−T0,ξ(α) does not belong to Cuγ , then the situation is even simpler

since the term −m(Θ−T0(α)) |Θ−T0,ξ(α)|δ is non-positive. Hence, the right-hand side in

(4.28) is negative and elliptic of order δ outside of C 0.

It remains to prove (ii). The analysis is based on (4.28) again. Let α ∈ (T ∗M)ε2 . If

ΘT1,ξ(α) ∈ Cγ
′
u or Θ−T0,ξ(α) ∈ Cγ

′
s , then the analysis from the proof of (ii) applies, and

we see that the right-hand side in (4.28) is non-positive for αξ large enough. Otherwise,

Θ−T0,ξ(α) /∈ Cγu and ΘT1,ξ(α) /∈ Cγs and both terms in the right-hand side of (4.28) are

non-positive. Thus, the right-hand side of (4.28) is always non-positive when |αξ| is large
enough. Hence, by compactness, the right hand side of (4.28) is bounded from above,

proving (ii).

Now, that we are equipped with a good escape function, we are in position to apply

the tools from �4.1 to study the spectral theory of P = X + V .

4.2.2 Spectral theory for the generator of the �ow

With the notations of the previous section, we set δ = 1/s and let G0 be an escape

function given by Lemma 4.35 (for arbitrary C 0, we only assume that C 0 is closed an
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does not intersect E∗u ⊕ E∗s \ {0}). Then we de�ne G = τG0 and Λ = eH
ωI
G T ∗M with

τ = cτ0h
1− 1

s , where c and τ0 are small. Notice that if c is small enough, then Λ is a

(τ0, s)-adapted Lagrangian (in the sense of De�nition 4.14), and hence the results from

�4.1 will apply to the Gs semi-classical pseudor hP . We will not consider the asymptotic

h → 0, and hence we shall assume that h is �xed, small enough so that the results from

�4.1 apply. We shall also assume that τ0 is small enough for the same reason.

We want now to study the spectral theory of the operator P = X+V on the space H0
Λ

de�ned by (4.16). Notice that, according to Proposition 4.32, if h and τ0 are small enough,

then the operator hP (and hence P ) is bounded from HkΛ to Hk−1
Λ for every k ∈ R. From

Proposition 4.33, we see that P de�nes a closed operator on H0
Λ. We will start by proving

that P is the generator of a semi-group.

Proposition 4.36. The operator P is the generator of a strongly continuous semi-group

(Lt)t∈R on H0
Λ. Moreover, if t ≥ 0 and u ∈ H0

Λ∩L2 (M) then Ltu is given by the expression

(9).

We will then prove the following key lemma that will be used with Proposition 4.31 to

prove that the resolvent of P is in a Schatten class.

Lemma 4.37 (Hypo-ellipticity of P ). There is a constant C > 0 such that for every

u ∈ D(P ) we have u ∈ HδΛ and

‖u‖HδΛ ≤ C
(
‖u‖H0

Λ
+ ‖Pu‖H0

Λ

)
,

where we recall that we set δ = 1/s.

With Proposition 4.31, we deduce then from Lemma 4.37 that P has a good spectral

theory on H0
Λ. More precisely, we have:

Theorem 4.38. If z is any element in the resolvent set of P , then the resolvent (z−P )−1 :

H0
Λ → H0

Λ is compact and if (σk)k≥0 denotes the sequence of its singular values, we have

σk =
k→+∞

O
(
k−

1
sn

)
.

In particular, the operator (z − P )−1 is in the Schatten class Sp for any p > ns. Conse-

quently, P has discrete spectrum on H0
Λ, and this spectrum is the Ruelle spectrum of P .

The eigenvectors of P acting on H0
Λ are also the resonant states for P . If N(R) denotes

the number of Ruelle resonances of modulus less than R, we have

N(R) =
R→+∞

O (Rns) .

Theorem 10 will then be proved in the following section as a corollary of Theorem 4.38.
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The key tool in the proof of these results will be the multiplication formula Proposition

4.34. Let us start by proving that P is the generator of a semi-group.

Proof of Proposition 4.36. We will apply Hille�Yosida Theorem to prove that P is the

generator of a strongly continuous semi-group. We denote by pΛ the restriction to Λ of the

almost analytic extension p̃ of the principal symbol of hP given by (4.22). It follows from

(ii) in Lemma 4.35 that there is a constant C > 0 such that Re pΛ ≤ C. Indeed, since Re p̃

vanishes on T ∗M , the value of Re pΛ is obtained by integrating {G0,Re p̃} on an orbit of

time τ of the �ow of HωI
G0
.

We see that by Proposition 4.34, up to making C larger (depending on h, that we recall

is �xed), we have for u ∈ H∞Λ

Re〈−Pu, u〉H0
Λ
≥ −1

h
〈Re pΛTΛPu, TΛu〉 − C ‖u‖2H0

Λ

≥ −2C ‖u‖2H0
Λ
.

Hence, if z ∈ C, we have

Re〈(z − P )u, u〉H0
Λ
≥ (Re z − 2C) ‖u‖2H0

Λ
.

By Cauchy�Schwarz, we �nd that

‖(z − P )u‖H0
Λ

=
‖(z − P )u‖H0

Λ
‖u‖H0

Λ

‖u‖H0
Λ

≥

∣∣∣〈(z − P )u, u〉H0
Λ

∣∣∣
‖u‖H0

Λ

≥
Re〈(z − P )u, u〉H0

Λ

‖u‖H0
Λ

≥ (Re z − 2C) ‖u‖H0
Λ
,

(4.29)

for u ∈ H∞Λ . By Proposition 4.33, this estimate remains true when u ∈ D(P ). This proves

that if Re z > 2C, then the operator z − P is injective and its image is closed. To prove

that the image of z − P is dense, notice that if u ∈ H∞Λ then

Re 〈(z − P )∗u, u〉H0
Λ

= Re 〈(z − P )u, u〉H0
Λ
,

and consequently (4.29) still holds when z−P is replaced by (z−P )∗ (for u ∈ H∞Λ , but it

implies the same result for u ∈ D(P ∗) by Proposition 4.33). Hence, (z − P )∗ is injective,

and thus the image of z − P is closed.

Thus, z − P is invertible and from (4.29), we see that∥∥∥(z − P )−1
∥∥∥ ≤ 1

Re z − 2C
,

for the operator norm on H0
Λ. Hence, the Hille�Yosida Theorem applies (the domain of



4.2. FINITE ORDER OF THE DYNAMICAL DETERMINANT 177

P is dense since it contains E1,R0), and we know that P is the generator of a strongly

continuous semi-group.

Denote by (L̃t)t≥0 the semi-group generated by P on H0
Λ and (Lt)t≥0 the semi-group on

L2 (M) de�ned by (9). We want to prove that for t ≥ 0 and u ∈ H0
Λ∩L2 (M) we have Ltu =

L̃tu. Thanks to the semi-group property, we only need to prove it for t ∈ [0, t0] for some

small t0 > 0. Then, since elements of L2 (M) ∩ H0
Λ may be simultaneously approximated

in L2 (M) and in H0
Λ by elements of E1,R0 (according to Proposition 4.28), we only need

to prove the equality for u ∈ E1,R0 . Now, there is a t0 > 0 and a R1 > 0 such that for

u ∈ E1,R0 , the curve γ : [0, t0] 3 t 7→ Ltu is C1 in Es,R1 with γ′(t) = Pγ(t). Provided that

τ0 is small enough, Es,R1 is continuously included in H0
Λ (see Proposition 4.26) and hence

the curve γ has the same property in H0
Λ. Consequently, we have γ(t) = L̃tu for t ∈ [0, t0],

according to [ABHN11, Proposition 3.1.11], ending the proof of the proposition.

We turn now to the proof of the hypo-ellipticity of the operator P .

Proof of Lemma 4.37. Assume �rst that u ∈ H∞Λ . Let χ+, χ− and χ0 be C∞ functions

from R → [0, 1] such that χ+ + χ0 + χ− = 1, and, for some small η > 0, the function χ0

is supported in [−η, η], the function χ− is supported in
]
−∞,−η

2

]
and the function χ+ is

supported in
[η

2 ,+∞
[
. Then de�ne for σ ∈ {+,−, 0} the symbol fσ on Λ by

fσ(α) = χσ

−ip
(
e
−τHωI

G0 (α)
)

〈|α|〉

 .

Then notice that if α is in the support of f+ then we have

Im pΛ(α) = Im p
(
e
−τHωI

G0 (α)
)

+O (τ 〈|α|〉)

≥ η

2
〈|α|〉 ,

(4.30)

provided that τ is small enough (depending on η). And similarly, if α belongs to the

support of f− we have

Im pΛ(α) ≤ −η
2
〈|α|〉 . (4.31)

If α belongs to the support of f0 then we have

∣∣p (e−τHG0 (α)
)∣∣ ≤ η 〈|α|〉 ≤ Cη 〈∣∣e−τHG0 (α)

∣∣〉 .
Hence, either e−τHG0 (α) is small, either it does not belong to C 0 (provided that η is small

enough, we use here the assumption that C 0 does not intersect E∗u ⊕ E∗s ). In the second
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case, we may apply (i) in Lemma 4.35 to �nd that

Re pΛ(α) = Re p
(
e
−τHωI

G0 (α)
)

+ τ {G0,Re p̃}+O
(
τ2

0 〈|α|〉
2δ−1

)
≤ − 1

C
〈|α|〉δ + C,

(4.32)

provided that τ is small enough. Here, we added the constant C so that (4.32) remains

true for any α in the support f0. Now, Proposition 4.34 and (4.32) give that (the constant

C may vary from one line to another)

−Re〈〈|α|〉δ f0TΛPu, TΛu〉 ≥ −
1

h

∫
Λ
〈|α|〉δ f0(α) Re pΛ(α) |TΛu(α)|2 dα− C ‖u‖H0

Λ
‖u‖HδΛ

≥ 1

C

∫
Λ
f0(α) 〈|α|〉2δ |TΛu(α)|2 dα− C ‖u‖H0

Λ
‖u‖HδΛ .

Applying Cauchy�Schwarz formula, we �nd then that∫
Λ
f0(α) 〈|α|〉2δ |TΛu(α)|2 dα ≤ C ‖u‖HδΛ

(
‖Pu‖H0

Λ
+ ‖u‖H0

Λ

)
. (4.33)

Working similarly with (4.32) replaced by the better estimates (4.30) and (4.31), we �nd

that (4.33) still holds when f0 is replaced by f+ or f−. Summing these three estimates,

we get

‖u‖2HδΛ ≤ C ‖u‖HδΛ
(
‖Pu‖H0

Λ
+ ‖u‖H0

Λ

)
. (4.34)

Since the result is trivial when u = 0, we may divide by ‖u‖HδΛ in (4.34) to end the proof

of the lemma when u ∈ H∞Λ .

We deal now with the general case u ∈ D(P ). Let (un)n∈N be a sequence of elements

of H∞Λ as in Proposition 4.33. Since we already dealt with the case of elements of H∞Λ we

know that for some C > 0 and all n ∈ N we have

‖un‖HδΛ ≤ C
(
‖u‖H0

Λ
+ ‖Pu‖H0

Λ

)
.

In addition, TΛun converges pointwise to TΛu and hence the result follows by Fatou's

Lemma.

We are ready to prove Theorem 4.38.

Proof of Theorem 4.38. Let z be any element of the resolvent set of P . If u ∈ H0
Λ then we

have that

P (z − P )−1u = z(z − P )−1u− u.
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Hence, (z − P )−1 and P (z − P )−1 are both bounded from H0
Λ to itself and, consequently,

Lemma 4.37 implies that (z − P )−1 is bounded from H0
Λ to HδΛ. Hence, Proposition 4.31

implies that (z − P )−1, as an operator from H0
Λ to itself, is compact, with the announced

estimates on its singular values.

We prove the estimates on the number of eigenvalues of P before proving that these

eigenvalues are indeed the Ruelle resonances. Let z ∈ C be any point in the resolvent

set of P and denote by Ñ(R) the number of eigenvalues of (z − P )−1 of modulus larger

than R−1. Then let (µk)k∈N denote the sequence of eigenvalues of (z − P )−1 and (σk)k∈N
the sequence of its singular values, and choose p > 0 such that δp/n < 1. According to

[GGK00, Corollary IV.3.4], we have then for every R > 0 that

Ñ(R)

Rp
≤

Ñ(R)−1∑
k=0

|µk|p ≤
Ñ(R)−1∑
k=0

σpk

≤ C
Ñ(R)−1∑
k=0

(1 + k)−
δp
n

≤ CÑ(R)1− δp
n .

Here, we applied the estimates on singular values that we just proved, and C may vary

from one line to another. It follows that Ñ(R) ≤ C
n
δpR

n
δ . The estimates on N(R) follows

since, if (λk)k∈N denotes the sequence of eigenvalues of P , we have the relation µk = 1
z−λk

(up to reordering, and recall that δ = 1/s).

It remains to prove that the eigenvalues of P acting on H0
Λ are indeed the Ruelle res-

onances of P . The situation here is a bit complicated due to the use of very irregular

hyperfunctions, so that we cannot rely directly on Lemma B.3. We detail here the argu-

ment, but the basic ideas are the same than those that we explain in Appendix B. Let

R0 > 0 be large enough, and assume that τ0 is small enough, so that (4.17) holds and that

E1,R0 is dense in H0
Λ (see Proposition 4.28). We also assume that R0 is large enough so

that E1,R0 (M) is dense7 in C∞ (M). Denote by i0 the inclusion of E1,R0 in H0
Λ and by i1

the inclusion of H0
Λ in

(
E1,R0

)′
. Then, we de�ne

R̃(z) = i1 ◦ (z − P )−1 ◦ i0 : E1,R0 →
(
E1,R0

)′
,

where (z − P )−1 denotes the resolvent of P on the space H0
Λ. We just saw that it is a

meromorphic family of operator on C.

Then, if we denote by i the inclusion of E1,R0 into C∞ (M) and by j the inclusion of

7This is possible since, if ∆ is an analytic Laplacian onM , then E1,R0 (M) contains all the eigenvectors
for ∆ when R0 is large enough. See [Zel17, �14.5] and references therein. One can also refer to [BJ20]: the
density statement is proved there under the name of Corollary 2.1.
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D′ (M) into
(
E1,R0

)′
, we see that

R̃(z) = j ◦R(z) ◦ i, (4.35)

where R(z) : C∞(M) → D′(M) is de�ned by (11), and admits an analytic continuation

by the usual theory of Banach spaces of anisotropic distributions (see Remark 4). Indeed,

when Re z is large (4.35) follows from Proposition 4.36 since R̃(z) and R(z) are both

obtained as the Laplace transform of the family of operators (9). The equality (4.35) then

follows for any z by analytic continuation. Integrating on small circles, we see that (4.35)

is also satis�ed by the residues of R̃(z) and R(z). Since these residues have �nite rank

and since E1,R0 is dense in C∞ (M), it follows that the eigenvalues of P on H0
Λ (the poles

of R̃(z)) are the Ruelle resonances of P (the poles of R(z)) counted with multiplicity (the

rank of the associated residues). For the same reason, the resonant spaces (the images of

the residues) also coincide.

4.2.3 Proof of Theorem 10

In order to show that the dynamical determinant d(z) given by (12) has �nite order (under

our Gevrey assumption), we shall relate it to a regularized determinant associated with the

resolvent of P . This will be based on the following version of the Guillemin trace formula:

Lemma 4.39. If the real part of z is large enough and m is an integer such that m > sn,

then the operator (z − P )−m acting on H0
Λ is trace class and

tr
(
(z − P )−m

)
=

1

(m− 1)!

∑
γ

T#
γ e

∫
γ V

|det (I − Pγ)|
Tm−1
γ e−zTγ . (4.36)

Here, we use the notations from (12) and (TFF).

The proof of Lemma 4.39 that we give here di�ers from the one from [BJ20, Lemma

3.5]. Indeed, in [BJ20], we privileged a proof based on Guillemin's trace formula because

it was in principle more general. We give here a proof based on the trace formula (TFF)

for ultradi�erentiable Anosov �ows, Theorem 9, that we proved in the previous chapter of

this thesis.

Proof. Let b ∈ R and Bm,b denote the Banach space of Cm function f : R+ → C such that

f(0) = · · · = f (m−1)(0) = 0 and

‖f‖Bm,b := sup
k∈{0,...,m}

x∈R

ebx
∣∣∣f (k)(x)

∣∣∣ < +∞.
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If f ∈ Bm,b then the Laplace transform

Lap(f)(z) =

∫ +∞

0
e−ztf(t)

is well-de�ned for Re z > −b. Moreover, successive integration by part ensures that

|Lap(f)(z)| =
∣∣∣∣ 1

zm
Lap(f (m))(z)

∣∣∣∣ ≤ 1

|z|m
‖f‖Bm,b
b+ Re z

.

Hence, if b is greater than the real part of all Ruelle resonances for P , then, according to

the counting bound in Theorem 4.38, we may de�ne a continuous linear form on Bm,b by

l : f 7→
∑

λ∈σ(P )

Lap(f)(−λ).

However, if Re z > b, the function fz : t 7→ e−zttm+1

(m+1)! belongs to Bm,b and, by Lidskii's

Trace Theorem,

l(fz) =
∑

λ∈σ(P )

1

(z − λ)m+2
= tr

(
(z −X)−m−2

)
.

Then, since X and V are Gevrey, the global trace formula (TFF) holds according to

Theorem 9: for every f ∈ C∞c
(
R∗+
)
we have

l(f) =
∑
γ

T#
γ e

∫
γ V

|det (I − Pγ)|
f(Tγ). (4.37)

Notice that the right-hand side in (4.37) de�nes a continuous linear form on Bm,b, provided

that b is large enough (apply for instance Margulis' bound). Then, if Re z > b, the function

fz belongs to the adherence of C∞c
(
R∗+
)
in Bm,b (use the fact that f (m)

z (0) = 0 to see so).

Hence, an approximation argument provides that, for Re z > b,

d2

dz2

(
1

m(m+ 1)
tr
(
(z −X)−m

))
= tr

(
(z −X)−m−2

)
=

1

(m+ 1)!

∑
γ

T#
γ e

∫
γ V

|det (I − Pγ)|
e−zTγTm+1

γ

=
d2

dz2

(
1

(m+ 1)!

∑
γ

T#
γ e

∫
γ V

|det (I − Pγ)|
e−zTγTm−1

γ

)
.

Consequently, there are constants a1, a2 ∈ C such that for Re z � 1 we have

tr
(
(z −X)−m

)
=

1

(m− 1)!

∑
γ

T#
γ e

∫
γ V

|det (I − Pγ)|
e−zTγTm−1

γ + a1 + a2z. (4.38)



182 CHAPTER 4

Thus, we only need to prove that a1 = a2 = 0 to end the proof of the lemma. By dominated

convergence, when z is real and tends to +∞ the �rst term in the right-hand side of (4.38)

tends to 0. Hence, we only need to prove that the trace of (z −X)−m tends to 0 when z

is real and tends to +∞. However, this fact follows from Lidskii's Trace Formula

tr
(
(z −X)−m

)
=

∑
λ∈σ(P )

1

(z − λ)m
,

the counting bound in Theorem 4.38 and dominated convergence.

With Lemma 4.39, we are ready to relate the dynamical determinant d(z) de�ned by

(12) with a regularized determinant. See [GGK00, Chapter XI] for the general theory of

regularized determinants.

Lemma 4.40. Let z be a complex number with large real part and m be the smallest integer

strictly larger than sn. Let Qz be the polynomial of order at most m− 1

Qz(λ) = −
m−1∑
`=0

(∑
γ

T#
γ e

∫
γ V e−zTγT `−1

γ

|det (I − Pγ)|

)
(z − λ)`

`!
.

Then for every λ ∈ C we have

d(λ) = detm
(
I + (λ− z) (z − P )−1

)
exp (Qz(λ)) ,

where detm denotes the regularized determinant of order m.

Proof. By analytic continuation principle, we only need to prove this result for λ close to

z. For such a λ the regularized determinant is de�ned by

detm
(
I + (λ− z) (z − P )−1

)
= exp

−∑
`≥m

(z − λ)`

`
tr
(

(z − P )−`
)

= exp

−∑
`≥m

(z − λ)`

`!

∑
γ

T#
γ e

∫
γ V

|det (I − Pγ)|
T `−1
γ e−zTγ


= exp

−∑
γ

T#
γ

Tγ

e
∫
γ V e−zTγ

|det (I − Pγ)|
∑
`≥m

((z − λ)Tγ)`

`!


= exp

(
−
∑
γ

T#
γ

Tγ

e
∫
γ V e−zTγ

|det (I − Pγ)|

(
e(z−λ)Tγ −

m−1∑
`=0

((z − λ)Tγ)`

`!

))
= d(λ)e−Qz(λ).

The applications of Fubini Theorem are justi�ed when Re z � 1 and |z − λ| is small enough

by Margulis' bound.
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We are now ready to prove Theorem 10.

Proof of Theorem 10. Let m be as in Lemma 4.40. Recall the Weierstrass primary factor

(1.3)

E(λ,m− 1) = (1− λ) exp

(
m−1∑
`=1

1

`
λ`

)
= exp

(
−

+∞∑
`=m

1

`
λ`

)
,

the second expression being valid when |λ| < 1. It follows from Lidskii's Trace Theorem

that for Re z � 1 and λ ∈ C we have

detm
(
I − (z − λ)(z − P )−1

)
=

+∞∏
k=0

E

(
λ− z
λk − z

,m− 1

)
, (4.39)

where (λk)k∈N denotes the sequence of Ruelle resonances of P . We want to use this

expression with Lemma 4.40 in order to prove Theorem 10, but let us make an observation

�rst. If λ is a complex number such that∣∣∣∣ λ|λ| − 1

∣∣∣∣ ≤ 1

2
(4.40)

then we have Reλ ≥ |λ| /2. Hence, using the expression (12) and dominated convergence,

we see that when |λ| tends to +∞ while satisfying (4.40), the function d(λ) tends to 1. In

particular, d(λ) remains bounded when λ satis�es (4.40). Hence, we may assume in the

following that ∣∣∣∣ λ|λ| − 1

∣∣∣∣ ≥ 1

2
, (4.41)

and that |λ| is large of course. When |λ| is large enough, we may apply Lemma 4.40 with

z = |λ|. Then, notice that Q|λ|(λ) tends to 0 when |λ| tends to +∞ and thus we may

ignore the factor exp (Qz(λ)) from Lemma 4.40. The other factor is given by (4.39) (with

z = |λ|).
Notice that if |λk| ≥ 5 |λ| then

∣∣∣ λ−|λ|λk−|λ|

∣∣∣ ≤ 1
2 and hence

log

∣∣∣∣E ( λ− |λ|
λk − |λ|

,m− 1

)∣∣∣∣ ≤ 2

∣∣∣∣ λ− |λ|λk − |λ|

∣∣∣∣m ≤ 2m+1

(
|λ|

|λk| − |λ|

)m
≤ 2

(
5

2

)m ∣∣∣∣ λλk
∣∣∣∣m . (4.42)

On the other hand if |λk| < 5 |λ|, we have, since we assume (4.41),∣∣∣∣ λ− |λ|λk − |λ|

∣∣∣∣ ≥ 1

2

1∣∣∣λk|λ| − 1
∣∣∣ ≥ 1

12
.
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Hence, we have

log

∣∣∣∣E ( λ− |λ|
λk − |λ|

,m− 1

)∣∣∣∣ ≤ log

∣∣∣∣1− λ− |λ|
λk − |λ|

∣∣∣∣+
m−1∑
`=1

1

`

∣∣∣∣ λ− |λ|λk − |λ|

∣∣∣∣`

≤
∣∣∣∣ λ− |λ|λk − |λ|

∣∣∣∣+
m−1∑
`=1

∣∣∣∣ λ− |λ|λk − |λ|

∣∣∣∣`

≤

(
m−1∑
`=0

12m−1−`

)∣∣∣∣ λ− |λ|λk − |λ|

∣∣∣∣m−1

≤ 12m
∣∣∣∣ λ− |λ|λk − |λ|

∣∣∣∣m−1

.

(4.43)

Then, introduce a constant C such that Reλk ≤ C for all k ∈ N (such a constant exists

because P is the generator of a strongly continuous semi-group) and notice that for |λ|
large enough, we have ∣∣∣∣ λ− |λ|λk − |λ|

∣∣∣∣ ≤ 2∣∣∣λk−C|λ| − 1 + C
|λ|

∣∣∣ ≤ 2

1− C
|λ|
≤ 4.

And thus, (4.43) becomes:

log

∣∣∣∣E ( λ− |λ|
λk − |λ|

,m− 1

)∣∣∣∣ ≤ 48m

4
. (4.44)

Now, gathering (4.42) and (4.44), that are valid respectively when |λk| ≥ 5 |λ| and |λk| <
5 |λ|, we �nd that

log
∣∣detm (I − (|λ| − λ)(|λ| − P )−1

)∣∣
≤ 2×

(
5

2

)m
|λ|m

∑
|λk|≥5|λ|

|λk|−m +
48m

4
# {k ∈ N : |λk| < 5 |λ|} . (4.45)

Then, from the counting bound in Theorem 4.38, we see that

# {k ∈ N : |λk| < 5 |λ|} = O (|λ|sn) , (4.46)

and that, ∑
|λk|≥5|λ|

|λk|−m = O
(
|λ|sn−m

)
. (4.47)

We end the proof of Theorem 10 by plugging (4.46) and (4.47) in (4.45).
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4.3 Further applications of the FBI transform

In order to lighten the exposition, we focused in this chapter on the proof of Theorem

10. However, [BJ20] contains other results on Anosov �ows that we sum up now. Let

consequently s ≥ 1 and (φt)t∈R be a Gs Anosov �ow on a Gs compact manifold M of

dimension n. Let also V : M → C be a Gs function. It is classical [FS11] that the C∞

wave front sets of the resonant states for P = X +V are contained in the stable8 direction

E∗s de�ned in �4.2.1. In [BJ20, De�nition 2.3], we de�ne a Gevrey wavefront set for an

ultradistribution, using an analytic FBI transform. With this de�nition, we are able to

prove the following.

Proposition 4.41 (Proposition 3.2 in [BJ20]). The Gs wave front sets of the resonant

states for P = X + V are contained in the stable direction E∗s .

Certain perturbations of the operator P are also studied in [BJ20]. The �rst kind of

perturbations that we consider are of the form (for ε ≥ 0 small)

Pε = P + ε∆, (4.48)

where ∆ is a self-adjoint elliptic non-positive di�erential9 operator of order m > 1 with Gs

coe�cients � for instance the Laplace�Beltrami operator associated to a Gs Riemannian

metric. On a dynamical level, the operator (4.48) appears when studying stochastic per-

turbations of the �ow (φt)t∈R. We see that when ε > 0 the operator Pε is elliptic of order

m and has bounded from above real part, so that it has discrete spectrum on L2 (M). We

will denote by σL2 (Pε) this spectrum. It has been proven by Dyatlov and Zworski [DZ15,

Theorem 1] that σL2 (Pε) converges to the Ruelle spectrum of P = P0 when ε tends to 0.

In our Gs context, we are able to give a �global� version of this result. To do so, we need

to introduce a new distance to compare spectrum. If z ∈ C, we de�ne the distance dz on
C ∪ {∞} \ {z} by

dz(x, y) =

∣∣∣∣ 1

z − x
− 1

z − y

∣∣∣∣ .
Then our result on stochastic perturbations of Gs Anosov �ow reads:

Proposition 4.42 (Theorem 9 in [BJ20]). Let p > ns and z ∈ R+ be large enough. Then

8Beware that most of the references in the literature, in particular [FS11], do not work with the Koopman
operator (9) but with its adjoint, the transfer operator. It amounts to reverse the direction of the time
for the �ow (φt)t∈R, and consequently the stable and unstable direction are inverted. That is why it is
often stated that the wave front sets of resonant states are contained in the unstable rather than stable
direction.

9Actually, certain pseudo-di�erential operators are allowed in [BJ20].
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there is C > 0 such that for ε > 0 small enough we have

dz,H (σR (P ) ∪ {∞} , σL2 (Pε) ∪ {∞}) ≤ C |ln ε|−
1
p .

Here, dz,H denotes the Hausdor� distance associated to the distance dz.

The proof of Proposition 4.42 is based on an investigation of the Schatten properties of

the resolvent of the operator (4.48) and on resolvent bounds from [Ban04]. The convergence

in Proposition 4.42 seems to be very weak. However, we think that it is not reasonable to

expect too fast a convergence in such a global result. Indeed, when we add the di�erential

operator ∆ to P in order to form Pε, since ∆ has higher order, we can expect that the

spectrum of Pε looks globally like the spectrum of ∆, rather than like the Ruelle spectrum

of P . Indeed, the higher order operator will be predominant at higher frequencies � this

fact can be made rigorous looking for instance at the symbol of Pε and using the ellipticity

of ∆. Furthermore, the spectrum of ∆ is contained in R− while we expect some kind of

vertical structure for the Ruelle spectrum of P (see for instance [JZ17, FT13]). Hence, we

may expect σL2 (Pε) to be some kind of ��attened� version of the Ruelle spectrum of P ,

and its global structure is thus very di�erent from the actual Ruelle spectrum of P .

We also consider in [BJ20] deterministic perturbations of the Anosov �ow (φt)t∈R � or

linear response. To do so, we consider a perturbation

ε 7→ Xε

of our vector �eld X = X0. Here, the perturbation is de�ned for ε in a neighbourhood

of 0 and is assumed to be (at least) C∞ from this neighbourhood of zero to a space of Gs

sections of the tangent bundle ofM (see Remark 4.4). We can also consider a perturbation

ε 7→ Vε with the same features and then form for ε near zero the operator

Pε = Xε + Vε. (4.49)

Let us consider the most simple example: in the C∞ case, if P0 has a simple resonances

λ0, then it will extend to a C∞ family of simple resonances ε 7→ λε (provided that the

perturbation is C∞). However, even if the perturbation ε 7→ Xε is real-analytic in the

C∞ category, then we do not know that the family ε 7→ λε is real-analytic (in fact, it is

reasonable to expect that it is not). We shall see below that if the perturbation ε 7→ Xε is

real-analytic in the real-analytic category, then the family ε 7→ λε is real-analytic (this is

an immediate consequence of Theorem 4.44). Using the notations from �4.2, we are able

to prove the following result.

Proposition 4.43 (Proposition 3.4 in [BJ20]). Assume that δ > 1/2 (i.e. s < 2). Let

` ∈ R+ \N. Assume that h and τ are small enough. Then for ε small enough, the spectrum
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of Pε acting on H0
Λ is the Ruelle spectrum of Pε. Moreover, if k = (`+ 1)δ − ` and r is a

large enough positive real number, then the the map

ε 7→ (r − Pε)−1 ∈ L
(
H0

Λ,HkΛ
)

is C` on a neighbourhood of 0.

The interesting point in Proposition 4.43 is that the loss of regularity when di�erenti-

ating the resolvent of Pε is mitigated by its smoothing property (given by Lemma 4.37).

This new feature of our high regularity setting is even more striking when s = 1.

Theorem 4.44 (Theorem 11 in [BJ20]). Assume that s = 1 and that the perturbations

ε 7→ Xε and ε 7→ Vε are real-analytic. Assume that h and τ are small enough. Then, for

r ∈ R+ large enough, the map

ε 7→ (r − Pε)−1 ∈ L
(
H0

Λ,H1
Λ

)
is real-analytic on a neighbourhood of zero.

Theorem 4.44 allows to apply Kato theory on analytic perturbations of operators

[Kat66]. We can prove in particular the following result, which is hardly surprising, but

we are not aware of any proof in the literature devoted to this subject (see [KKPW89,

Corollary 1] however for a related statement).

Theorem 4.45 (Theorem 2 in [BJ20]). Let ε 7→ Xε be a real-analytic family of real-

analytic vector �elds on a real-analytic manifold M , de�ned for ε near 0. We assume that

X0 generates an Anosov �ow that admits a unique SRB measure10 µ0. Let µε denote the

unique SRB measure of the Anosov �ow generated by Xε, for ε near zero. Then the map

ε 7→ µε ∈ U1 (M)

is real-analytic on a neighbourhood of zero.

Remark 4.46. In Proposition 4.43, we need to make the additional assumption s < 2.

This is for technical, but de�nitely not anecdotal, reasons. A natural �rst step in the proof

of Proposition 4.43 would be to prove that Proposition 4.36 and Lemma 4.37 still holds

for ε near 0. This is true for Lemma 4.37 but a priori not for Proposition 4.36. This is

because unfortunately the property (ii), from Lemma 4.35, of the escape function G0 is

not stable under small perturbations of the vector �eld X. This is quite an issue since

Proposition 4.36 is what ensures that the resolvent set of P acting on H0
Λ is non-empty

and that its spectrum coincides with the Ruelle spectrum. To prove that the resolvent set

10See for instance [You02] for de�nition and discussion of the notion of SRB measure.
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of Pε remains non-empty when ε is near 0, we use another construction of the resolvent of

P , based on an alternative version of Proposition 4.34 (namely [BJ20, Proposition 2.5]).

However, this construction is restricted to the case s < 2, hence the additional assumption

in Proposition 4.43. To prove that the spectrum of Pε on H0
Λ coincides with its Ruelle

spectrum when ε is near 0, we use the characterization of the Ruelle spectrum as limit of

stochastic perturbations [DZ15, Theorem 1].



Appendix A

Weighted transfer operators for

ultradi�erentiable expanding maps of

the circle

When studying an expanding map of the circle T , it is sometimes useful to consider more

general transfer operators that the one de�ned by (1). We explain here how the methods

from �2.2 may be adapted to deal with weighted transfer operators.

If ψ : S1 → C is a function we may de�ne the weighted transfer operator Lψ by

Lψϕ : x 7→
∑

y:Ty=x

ψ(y)

|T ′(y)|
ϕ(y).

We will assume in the following that ψ is in CA, the Denjoy�Carleman class from �2.2. It

is then easy to see that the analysis above remains true for the operator Lψ, so that we

can state:

Proposition A.1. Theorem 2.9 remains true when L is replaced by Lψ. Moreover, we

may also de�ne in this case the nuclear power decomposition (2.17). This decomposition

satis�es Propositions 2.16 and 2.17. Propositions 2.18 and 2.23 and Corollary 2.21 remain

true as well if we replace the dynamical determinant d, from (4), by dψ which is obtained

from (4) by replacing tr[ (Ln) by

tr[
(
Lnψ
)

=
∑

x:Tnx=x

∏n−1
k=0 ψ(T kx)∣∣1− (Tn)′ (x)

∣∣ .
To prove Proposition A.1, notice that the actual de�nition of L is only used in the proofs

of Lemma 2.14 and Proposition 2.18 in the analysis from �2.2. The computation that gives

Proposition 2.18 can still be carried out and will give the formula that we announced for

the �at trace of the weighted transfer operator. Thus we will only explain how we can
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replace the operator L by Lψ in the proof of Lemma 2.14.

Lemma A.2. Lemma 2.14 remains true when L is replaced by Lψ.

Proof. Recall the di�erential operator Lak,` introduced in the proof of Lemma 2.14 and

notice that for all m ∈ N we have

〈Lψe`, ek〉L2 =

∫
S1

e2iπ(`x−kT (x))ψ(x)dx =

∫
S1

e2iπ(`x−kT (x)Lmak,`(ψ)(x)dx,

and thus we want to bound
∥∥∥Lmak,`(ψ)

∥∥∥
∞

instead of
∥∥∥Lmak,`(1)

∥∥∥
∞
. As in the proof of Lemma

2.14, we notice that there are natural integer coe�cients that do not depend on ak,` nor ψ

such that

Lmak,`(ψ) =
∑

n1+···+nm+k=m

cn1,...,nm,kψ
(k)

m∏
j=1

a
(nj)
k,` . (A.1)

Then, working as in the proof of Lemma 2.14 and using the fact that ψ is of class CA, we
�nd constants C,R > 0 that do not depend on m, k or ` such that

∥∥∥Lmak,`(ψ)
∥∥∥
∞
≤ C

(
R

|k|

)m
Am

∑
n1+···+nm+k=m

cn1,...,nm,kk!
m∏
j=1

nj !.

As in the proof of Lemma 2.14, we introduce now the operator La obtained by replacing

the function ak,` in the de�nition of Lak,` by a : x 7→ 1
1−x . Since the coe�cients in (A.1)

do not depend on ak,` nor ψ we have

Lma (a)(0) =
∑

n1+···+nm+k=m

cn1,...,nm,kk!
m∏
j=1

nj !

but direct computation shows that Lma (a) : x 7→ 2mm!
(1−x)2m+1 , and this ends the proof.
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Ruelle resonances are intrinsic

As pointed out in the introduction, the Banach spaces that appear in Theorems 1, 3 and 5

are highly non-canonical. Hence, in order to see that the Ruelle spectrum (see De�nitions

3, 5 and 7) is a well-de�ned object, we need a result to compare discrete spectrum of an

operator acting on di�erent spaces. For the discrete time case, we can for instance use

the following lemma (which is slightly more general than [Bal18, Lemma A.3] or [BT08,

Lemma A.1]).

Lemma B.1. Let B1 and B2 be Banach spaces. Let B be a Hausdor� topological vector

space. Assume that there are continuous inclusions of B1 and B2 into B, and that the

intersection B1 ∩ B2 is dense in both B1 and B2. For i = 1, 2, let Li denotes a bounded

operator on Bi. Assume that the restrictions of L1 and L2 to B1 ∩ B2 coincide. Let U be

an unbounded connected open subset of C. Assume that the intersections of the spectra of

L1 and L2 with U only consist of isolated eigenvalues of �nite algebraic multiplicities.

Then, the intersection of the spectra of L1 and L2 with U coincide and so do the

associated generalized eigenspaces (that are consequently included in B1 ∩ B2).

Proof. De�ne a norm on B1 + B2 by

‖u‖B1+B2
:= inf

u=v+w
v∈B1,w∈B2

‖v‖B1
+ ‖w‖B2

.

It follows from the fact that B is a Hausdor� topological space that this formula indeed

de�nes a norm on B1 + B2. Moreover, B1 + B2 with this norm identi�es with the quotient

of B1 × B2 by the closed subspace {{u, v} ∈ B1 × B2 : u = v}, so that this norm makes

B1 + B2 a Banach space. We may consequently replace B by B1 + B2 and assume that

B = B1 + B2 is a Banach space.

Since L1 and L2 coincide on the intersection B1 ∩ B2, we may de�ne an operator L on

B by setting Lu = L1v + L2w if u = v + w (this de�nition is independent of the choice of

v and w). One easily checks that L is a bounded operator on B, and induces a bounded
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operator on B1 ∩ B2 that we endow with the complete norm

‖u‖B1∩B2
:= ‖u‖B1

+ ‖u‖B2
.

It follows from the discussion in [Kat66, Chapter III, �5] that for i = 1, 2 the resolvent

(z − Li)−1 de�ne a meromorphic family of bounded operators from Bi to itself on U , with

residues of �nite rank. We de�ne then a meromorphic family on U of operators from B1∩B2

to B by

Ri(z) = jBi↪→B ◦ (z − Li)−1 ◦ jB1∩B2↪→Bi ,

where we denote by the letter j inclusion maps. Now, if z ∈ U is such that |z| >
max(‖L‖ , ‖L1‖ , ‖L2‖), we can write

R1(z) = jB1↪→B ◦ (z − L1)−1 ◦ jB1∩B2↪→B1 = jB1↪→B ◦
∑
n≥0

z−n−1Ln1 ◦ jB1∩B2↪→B1

=
∑
n≥0

z−n−1jB1↪→B ◦ Ln1 ◦ jB1∩B2↪→B1 =
∑
n≥0

z−n−1Ln ◦ jB1∩B2↪→B

= jB2↪→B ◦
∑
n≥0

z−n−1Ln2 ◦ jB1∩B2↪→B2 = R2(z).

Since U is unbounded and connected, it follows then from the analytic continuation prin-

ciple that the meromorphic map R1 and R2 coincides on U . Now, let λ ∈ U be an element

of the spectrum of L1. By assumption, this is an isolated eigenvalue of �nite multiplicity,

so that the associated spectral projector is given by

Pλ,1 =
1

2iπ

∫
γ

(z − L1)−1 dz, (B.1)

where γ is a small enough circle around λ. We also know that Pλ,1 has �nite rank. Replacing

1 by 2 in (B.1), we de�ne similarly Pλ,2, which is the spectral projector associated to λ for

L2 if λ belongs to the spectrum of L2 and 0 otherwise. Since R1 = R2, we �nd that

jB1↪→B ◦ Pλ,1 ◦ jB1∩B2↪→B1 =
1

2iπ

∫
γ
R1(z)dz =

1

2iπ

∫
γ
R2(z)dz

= jB2↪→B ◦ Pλ,2 ◦ jB1∩B2↪→B2 .

(B.2)

Now, for i = 1, 2, let Eλ,i denotes the generalized eigenspace associated to λ for Li, that is
the image of Pλ,i. Since this is a �nite-dimensional space, its topology is unambiguously

de�ned. By assumption, B1 ∩ B2 is dense in Bi, so that Pλ,i (B1 ∩ B2) is dense in Eλ,i.

However, Pλ,i (B1 ∩ B2) is a subspace of the �nite-dimensional vector space Eλ,i and is
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thus closed in Eλ,i, so that

Eλ,i = Pλ,i (B1 ∩ B2) . (B.3)

The inclusion of B1 in B induce an inclusion of Eλ,i in B. Recalling (B.2), we deduce from

(B.3) that

Eλ,1 = Pλ,1 (B1 ∩ B2) = Pλ,2 (B1 ∩ B2) = Eλ,2.

Consequently, the spectrum of L1 in U is contained in the spectrum of L2 and the associated

eigenspaces coincide. Since the roles of L1 and L2 are symmetric here, the lemma is

proven.

Example B.2. Let T be a C∞ expanding map of the circle and L denote the associated

transfer operator (1). Let z ∈ C∗ and take k, k′ > 0 such that |z| > max(λ−k, λ−k
′
), where

λ is a dilation constant for T . Recalling Theorem 1, we can then apply Lemma B.1 with

B1 = Ck(S1), B2 = Ck′(S1), B = C0(S1) and U = {w ∈ C : |w| > max(λ−k, λ−k
′
)}. It

implies that z is an eigenvalue of L acting on Ck(S1) if and only if it is an eigenvalue of L
acting on Ck′(S1). Moreover, when z is actually an eigenvalue the associated generalized

eigenspaces coincide. This argument justi�es De�nition 3 and proves that the resonant

states associated to a C∞ expanding map of the circle are C∞. A similar reasoning can

be made in the case of Anosov di�eomorphism to justify De�nition 5 (in that case we will

take a space of distributions for B).

We give now the results that we will use to identify Ruelle resonances for Anosov �ows.

This is just an abstract version of the argument based on the meromorphic extension of

the resolvent presented in the introduction. However, since we will be working with non-

standard spaces of ultradi�erentiable functions and generalized distributions, it will be

useful to have a general result at our disposal that do not make reference to a particular

class of regularity.

Lemma B.3. Let B1 and B2 be Banach spaces. Let B be a Hausdor� topological vector

space. Assume that there are continuous inclusions of B1 and B2 into B, and that the

intersection B1 ∩ B2 is dense in both B1 and B2. For i = 1, 2, let (Li,t)t≥0 be a strongly

continuous semi-group of operator on Bi whose generator is denoted by Xi. Assume that

for every t ≥ 0 the restrictions of L1,t and L2,t to B1 ∩ B2 coincide. Let U be a connected

open subset of C that contain points with arbitrarily large positive real parts. Assume that

the intersections of the spectra of X1 and X2 with U only contain isolated eigenvalues of

�nite algebraic multiplicities.

Then, the intersections of the spectra of X1 and X2 with U coincide and so do the

associated generalized eigenspaces (that are consequently contained in B1 ∩ B2).
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Proof. The proof is basically the same as for Lemma B.1. The only di�erence is that we

replace the representation of the resolvent as a power series by the representation as a

Laplace transform

(z −Xi)
−1 =

∫ +∞

0
e−ztLi,tdt

which is valid for i = 1, 2 when Re z � 1.



Appendix C

Factorization of the dynamical

determinant

We establish here, under the hypotheses of Theorem 3.1, a Hadamard-like factorization

(C.3) for the dynamical determinant d(z) de�ned by (12). We use the same notations as

in �3.4 and �3.5. Let t0 > 0 be shorter than any periodic orbit of (φt)t∈R. Then, working

as in the proof of Proposition 3.3, we see that, for Re z � 1, the essential spectral radius

of

Lt0(z − P )−(d+2) =
1

(d+ 1)!

∫ +∞

t0

e−z(t−t0)(t− t0)d+1Ltdt : H → H (C.1)

is zero. Here, as in �3.4 and 3.5, the operator P = X + V denotes the generator of the

semi-group (Lt)t≥0 de�ned by (9). Then, applying holomorphic functional calculus in �nite

dimension as in the proof of Lemma 3.44, we see that the spectrum of (C.1) is made of the
eλt0

(z−λ)d+2 for λ in the spectrum of P . Then, for Re z � 1, Proposition 3.32 implies that the

right-hand side of (C.1) de�nes a trace class operator on H̃0. From Lemma B.1, we see

that the spectrum of (C.1) is the same when acting on H or on h̃0. Then, using Lidskii's

Trace Theorem and Proposition 3.32, we see that1,

∑
λ∈σR(P )

eλt0

(z − λ)d+2
=

1

(d+ 1)!

∑
γ

T#
γ exp

(∫
γ
V

)
(Tγ − t0)d+1 e−z(Tγ−t0)

|det (I − Pγ)|
.

For all λ ∈ C \ {0} notice that the meromorphic map

z 7→ −
∑

n≥d+1

zn

λn+1
e−(z−λ)t0 =

e−(z−λ)t0

z − λ
+

d∑
n=0

zn

λn+1
e−(z−λ)t0

1Notice that the trace formula (TFF) may be deduced from this equality using residue's formula as in
the proof of Proposition 1.27.
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has a unique pole at λ whose order is 1 and whose residue is 1. Thus there is an entire

function Gλ,t0 such that for all z ∈ C

G′λ,t0 (z)

Gλ,t0 (z)
= −

∑
n≥d+1

zn

λn+1
e−(z−λ)t0 =

e−(z−λ)t0

z − λ
+

d∑
n=0

zn

λn+1
e−(z−λ)t0

and Gλ,t0 (0) = 1. Choose for G0,t0 any logarithmic primitive of z 7→ e−t0z

z . Now, let R > 0

and assume that λ ∈ σR(P ) is such that |λ| ≥ 2R. Notice that for all z ∈ D (0, R) we have∣∣∣∣∣G′λ,t0 (z)

Gλ,t0 (z)

∣∣∣∣∣ ≤ 2eRt0Rd+1 e
Re(λ)t0

|λ|d+2

and using the fact that Gλ,t0 has a logarithm on D (0, R) that vanishes at 0 (since Gλ,t0
vanishes only at λ) we get that, for some constant C depending only on R and all z ∈
D (0, R),

|1−Gλ,t0 (z)| ≤ C e
Re(λ)t0

|λ|d+2
.

Using Proposition 3.3, this implies that the in�nite product

d̃ (z) =
∏

λ∈σR(P )

Gλ,t0 (z)

converges uniformly on all compact subsets of C. Notice that the zeros of d̃(z) are precisely

the Ruelle resonances of P . Now, we �nd that

(
ezt0 (lnGλ,t0 (z))′

)(d+1)
= (−1)d+1 (d+ 1)!

eλt0

(z − λ)d+2

and thus, for Re z � 1,(
ezt0

(
ln d̃ (z)

)′)(d+1)

= (−1)d+1 (d+ 1)!
∑

λ∈σR(P )

eλt0

(z − λ)d+2

= (−1)d+1
∑
γ

T#
γ exp

(∫
γ
V

)
(Tγ − t0)d+1 e−z(Tγ−t0)

|det (I − Pγ)|

=

(
ezt0

∑
γ

T#
γ exp

(∫
γ
V

)
e−zTγ

|det (I − Pγ)|

)(d+1)

=
(
ezt0 (ln d (z))′

)(d+1)
,

(C.2)

where d(z) is the usual dynamical determinant de�ned by (12). From (C.2), we deduce

that there are a polynomial F of degree at most d and µ ∈ C such that, for all z ∈ C, we
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have the Hadamard-like factorization

d (z) = µ exp
(
F (z) e−t0z

) ∏
λ∈σR(P )

Gλ,t0 (z) . (C.3)

In order to make this factorization more explicit, let us describe the Gλ,t0 's. For all

λ ∈ C \ {0}, de�ne the polynomial

Qλ,t0 = −
d∑

k=0

(
d∑

n=k

k!

n!

(t0 − λ)n−k−1

λk+1

)
Xk,

and notice that (
Qλ,t0 (z) e−z(t0−λ)

)′
=

d∑
n=0

zn

λn+1
e−(z−λ)t0 .

Thus we have for all λ ∈ C \ {0} and z ∈ C

Gλ,t0 (z) =
(

1− z

λ

)
exp

(
Qλ,t0 (z) e−(z−λ)t0 −Qλ,t0(0)eλt0

)
× exp

(
z

∫ 1

0

e−(zu−λ)t0 − 1

zu− λ
du

)
.

The last factor is a logarithmic primitive of z 7→ e−(z−λ)t0−1
z−λ .
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Appendix D

About the condition υ < 2

In order to discuss the condition υ < 2 in Theorem 3.1 and Corollary 3.2, let us get

back to the simplest example of hyperbolic systems: the doubling map from Example

1. The reader may also refer to the discussion about Denjoy�Carleman classes that are

closed under di�erentiation in Chapter 2, see in particular Remarks 2.5 and 2.22, and the

examples from �2.2.3. Replacing an Anosov �ow by the doubling map, an analogue of the

space H from Theorem 3.1 would then be an isotropic space of the type (here (f̂(n))n∈Z

denotes the sequence of Fourier coe�cient of a function f)

Hα,β =

{
f ∈ C∞

(
S1,C

)
:
∑
n∈Z

∣∣∣f̂ (n)
∣∣∣2 e2β ln(1+|n|)

1
α < +∞

}
,

where β > 0 and α ∈
]
υ−1
υ , 1

[
(this is the same condition as in Proposition 3.17), endowed

with the norm

‖f‖α,β =

√∑
n∈Z

∣∣∣f̂ (n)
∣∣∣2 e2β ln(1+|n|)

1
α .

Then the transfer operator

L : f 7→
f
( ·

2

)
+ f

( ·+1
2

)
2

associated to the doubling map1 may be written as

L =
∑
n∈Z
〈·, e2n〉L2en,

where en : x 7→ e2iπnx (the sum converges in strong operator topology on the space of

continuous endomorphisms of Hα,β). Thus, the singular values of L acting on Hα,β are the

1This is just the transfer operator from (1) when T is the doubling map from Example 1.
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e
β
(

ln(1+|n|)
1
α−ln(1+2|n|)

1
α

)
for n ∈ Z. Using the fact that

ln (1 + |n|)
1
α − ln (1 + 2 |n|)

1
α =
|n|→+∞

− ln 2

α
ln (1 + |n|)

1
α
−1 +O

(
ln (1 + |n|)

1
α
−2
)

we see that L acting on Hα,β is trace class when α < 1
2 and is not trace class when α > 1

2

(in the case α = 1
2 it depends on the value of β, it corresponds to the case υ = 2 in �2.2.3).

Thus, we need to chose α < 1
2 if we want L to be nuclear. For general maps, this choice is

possible only when υ < 2 (see the condition in Proposition 3.17).

Consequently, using our method to prove the trace formula (TFF) for Cκ,υ Anosov �ows
would require to construct Hilbert spaces in a totally di�erent way, if υ > 2. The case

υ = 2 also seems to be tricky, but the results from �2.2, and in particular 2.2.3, suggest

that maybe something interesting can be proven in that case.
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Heuristic argument

We detail here an argument that suggests that the dynamical determinant (de�ned by (4)

and (5)) associated to a generic perturbation of the doubling map, Example 1, has in�nite

order (hence supporting Conjecture 1). We denote by T the doubling map and by t 7→ Tt

a perturbation of T in the C∞ topology (such that T0 = T ) . We also assume that this

perturbation is C∞ in t. We denote by Lt the transfer operator (1) associated to T and by

dt the associated dynamical determinant (4). Let us write for x ∈ S1

f(x) =
d

dt

(
T ′t(x)

)
|t=0

, (E.1)

and notice that for n ∈ N and x ∈ S1 we have

d

dt

(
(Tnt )′ (x)

)
|t=0

= 2n−1
n−1∑
k=0

f ◦ T k.

Using the Implicit Function Theorem to follow periodic point of Tt, we �nd then that for

n ∈ N∗ we have

d

dt

(
tr[ (Lnt )

)
|t=0

= −
∑

Tnx=x

(Tn)′′ (x)dx
dt + 2n−1

∑n−1
k=0 f ◦ T k(x)(

(Tn)′ (x)− 1
)2

= − 2n−1

(2n − 1)2

∑
Tnx=x

n−1∑
k=0

f ◦ T k(x)

= − n2n−1

(2n − 1)2

∑
Tnx=x

f(x) = −n2n−1

2n − 1
an(f),

where we introduced for n ∈ N∗ the linear form an de�ned by

an(f) =
1

2n − 1

2n−2∑
k=0

f

(
k

2n − 1

)
.
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Consequently, we �nd that for z ∈ C we have

d

dt
(dt(z))|t=0 = (1− z)

∑
n≥1

2n−1

2n − 1
an(f)︸ ︷︷ ︸

:=hf (z)

.
(E.2)

We denote by E the space of C∞ functions from S1 to R with zero average. We endow

E with the C∞ topology. Notice that f belongs to E and that all functions in E may be

realized as (E.1) by choosing the perturbation t 7→ Tt. We will prove that the derivative

(E.2) is an entire function of the variable z that grows arbitrarily fast for generic f ∈ E.
Since d0(z) = 1− z, this suggests that for t near 0 the dynamical determinant dt(z) grows

arbitrarily fast for generic X. Indeed, we have

dt(z) =
t→0

(1− z)
(
1 + thf (z) +O(t2)

)
. (E.3)

This asymptotic expansion a priori only holds1 uniformly on all compact subsets of C, so
that it cannot be used to investigate the growth of dt(z), but it can certainly guide our

intuition.

It follows from Euler�MacLaurin's formula [Kre98, Corollary 9.27] that for every f ∈ E
the sequence (an(f))n∈N decreases faster than any geometric sequence, so that hf is an

entire function. In order to see that any bound on the growth of hf fails generically, we

only need to prove the following � due to Cauchy's formula.

Lemma E.1. Let (bn)n≥1 be a sequence of strictly positive real numbers that decays faster

than any geometric sequence. Then there is a Gδ dense subset A of E such that for every

f ∈ A we have

|an(f)| ≥ bn

for in�nitely many n's.

Proof. We start by constructing a particular element g ∈ E. Let P ⊆ N∗ denotes the set
of prime integers. For every p ∈ P de�ne the function

ep : x 7→ exp (2iπ (2p − 1)x) .

Then, notice that for every p, q ∈ P, we have

a2p−1 (eq) = δp,q.

1The estimate (E.3) may be established using the methods from [Jéz19b]. We asserted there that there
was an issue in the presence of non-simple resonances, but we realized since then that it was not the case.



203

Indeed, if p 6= q, then 2p − 1 and 2q − 1 are relatively prime2. Then let

g =
∑
p∈P

√
b2p−1ep.

Since
(√
bn
)
n≥1

decays faster than any geometric sequence, we see that g belongs to E.

Moreover, for every p ∈ P, we have

a2p−1(g) =
√
b2p−1.

Now, for every m ∈ N∗, we de�ne

Bm = {f ∈ E : ∀n ≥ m : |an(f)| ≤ bn} .

The Bm's are closed subsets of E. Letting A = E \ ∪m≥0Bm, we only need to show that

the Bm's have empty interior. The lemma then follows by an application of Baire category

theorem. Let consequently m ∈ N∗ and f ∈ Bm. Then, for p a prime integer greater than

m and ε > 0 we have

|a2p−1 (f + εg)| ≥ ε |a2p−1(g)| − |a2p−1(f)| ≥ ε
√
b2p−1 − b2p−1,

and if p is large enough, we have
√
b2p−1 > 2b2p−1/ε, since (bn)n≥1 tends to 0. Hence, for

every ε > 0 we have f + εg /∈ Bm, so that Bm has empty interior.

2More generally, if m,n ∈ N∗, then the greatest common divisor of 2m−1 and 2n−1 is 2m∧n−1, where
m ∧ n denotes the greatest common divisor of m and n.
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