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Cette thèse est consacrée à l'étude de la mesure de Yang-Mills euclidienne sur une surface compacte, avec pour groupe de structure le groupe unitaire U(N ) ou spécial unitaire SU(N ). Cette étude porte plus précisément sur le comportement asymptotique de cette mesure lorsque N tend vers l'infini, à l'aide des représentations asymptotiques du groupe unitaire.

Le premier chapitre, qui fait office d'introduction au sujet, explique en détails la construction de cette mesure en développant au préalable les diverses théories sur lesquelles elles s'appuie : la théorie de jauge, les probabilités non-commutatives et les représentations de groupes.

Nous montrons dans le chapitre , en nous reposant sur l'article [Lem ], que la fonction de partition de cette mesure de Yang-Mills converge, pour les surfaces compactes orientables de genre supérieur ou égal à 1 ou non orientables de genre supérieur ou égal à 2, vers une limite finie qui ne dépend que du genre, de l'orientabilité et de l'aire de la surface sous-jacente.

Dans le chapitre , nous construisons partiellement l'objet appelé champ maître sur les surfaces compactes orientables de genre 1 et plus, qui constitue la limite -au sens des probabilités non-commutatives -du champ aléatoire sur la surface sous-jacente dont la loi est donnée par la mesure de Yang-Mills. Principaux résultats de cette thèse.

-Le théorème . . , page , concerne la convergence des fonctions de partition pour les surfaces compactes orientables de genre supérieur ou égal à 1 ; -Le théorème . . , page , concerne la convergence des fonctions de partition pour les surfaces compactes non orientables de genre supérieur ou égal à 2 ; -Le théorème . . , page , concerne la convergence en espérance et en variance des boucles de Wilson simples pour un lacet simple contractile sur une surface orientable de genre supérieur ou égal à 1 ; -Le théorème . . , page , concerne la loi des holonomies le long de lacets d'homologie non nulle, et la concentration des boucles de Wilson pour des lacets simples non séparants, tous ces lacets étant sur une surface orientable de genre supérieur ou égal à 1.

A

This thesis is devoted to the study of Yang-Mills measure on a compact surface, with structure group the unitary group U(N ) or special unitary group SU(N ). This study is more precisely about this measure's asymptotic behaviour in the large N limit, using asymptotic representations of the unitary group.

The first chapter, as an introduction to the subject, explains in details the construction of Yang-Mills measure after having developed the several theories it is based on: gauge theory, noncommutative probability and group representations.

We show in Chapter , based on the article [Lem ], that the partition function of this Yang-Mills measure converges, for orientable surfaces of genus greater or equal to 1 and non-orientable surfaces of genus greater or equal to 2, to a finite limit that only depends on the genus, the orientability and the area of the underlying surface.

In Chapter we partially construct the so-called master field on orientable compact surfaces of genus greater or equal to 1, which is the limit -in a non-commutative probabilistic sense -to the random field on the underlying surface whose distribution is given by Yang-Mills measure.

Main results of this thesis.

-Theorem . . , page , concerns the convergence of the partition function for compact orientable surfaces of genus greater or equal to 1; -Theorem . . , page , concerns the convergence of the partition function for compact nonorientable surfaces of genus greater or equal to 2; -Theorem . . , page , concerns the convergence of Wilson loop expectation and variance for a contractible simple loop on an orientable surface of genus greater or equal to 1; -Theorem . . , page , concerns the distribution of holonomies along loops with nonzero homology, and a concentration result about simple nonseparating loops, all these loops being on an orientable surface with genus g 1.

o ù Z G (g, T ) est une constante de normalisation, appelée fonction de partition, qui dépend du groupe de structure G, du genre g de la surface et de son aire totale T . En utilisant une sorte de théorème d'extension de Kolmogorov, il peut être montré que ce processus est en réalité une marginale finidimensionnelle d'un processus plus général (H ℓ ) ℓ∈L (Σ) indexé par un ensemble L (Σ) de lacets sur la surface sous-jacente, mais nous allons rarement considérer le processus complet car tous les calculs reposent sur la formule ( ) qui dépend du graphe considéré.

On considère le cas o ù le groupe de structure est le groupe unitaire U(N ) pour deux raisons principales :

-on s'attend à ce que le processus se comporte de manière agréable lorsque N tend vers l'infini, depuis l'article fondateur de 't Hooft [tH ] ;

-cela permet de décrire la loi du champ d'holonomie de Yang-Mills en termes de diagrammes de Young et de fonctions de Schur, qui ont des propriétés combinatoires particulièrement bonnes.

Plus concrètement, la décomposition de Fourier du noyau de la chaleur sur U(N ) repose sur les représentations irréductibles du groupe, qui sont caractérisée par des N -uplets décroissants d'entiers relatifs λ = (λ 1 • • • λ N ) appelés plus hauts poids. On leur associe trois quantités :

(i) Le caractère de la représentation χ λ (U ) = χ λ (x 1 , . . . , x N ), ∀U ∼ diag(x 1 , . . . , x N ) ∈ U(N ),

(ii) La dimension de la représentation, donnée par d λ = χ λ (1, . . . , 1), (iii) Le nombre de Casimir de la représentation, donné par c 2 (λ) tel que ∆χ λ = -c 2 (λ)χ λ .

On a alors p t (U ) =

λ 1 ••• λ N (λ 1 ,...,λ N )∈Z N e -c 2 (λ) t 2 d λ χ λ (U ), ∀T > 0, ∀U ∈ U(N ).
Grâce à cette décomposition, ( ) peut être réécrite de fac ¸on plus appropriée. Dans les deuxième et troisième chapitres, qui sont écrits en anglais car il s'agit de travaux de recherche destinés à être publiés, on utilise cette décomposition pour calculer les limites de différentes quantités reliées au processus d'holonomie de Yang-Mills.

Dans le chapitre , tiré de [Lem ], on donne une formule de la fonction de partition Z N (g, T ) = Z U(N ) (g, T ) pour une surface compacte orientable sans bord de genre g 1 et d'aire totale T ; une étude asymptotique des représentations irréductibles de U(N ) nous mène à la limite suivante.

Théorème (Limites orientables, Thm. . . ). Soit Σ une surface orientable de genre g.

(i) Si g 2, alors pour tout T ∈ (0, +∞), on a la convergence suivante :

lim N →∞ Z N (g, T ) = n∈Z e -T 2 n 2 . ( )
(ii) Si g = 1, alors on considère T ∈ (0, +∞) et on pose q = e -T 2 . La convergence suivante est vérifiée :

lim N →∞ Z N (1, T ) = n∈Z e -T 2 n 2 ∞ m=1
(1q m ) -2 .

( )

Un fait intéressant est que les limites impliquent deux formes modulaires connues pour avoir des liens avec la théorie des nombres : la fonction thêta de Jacobi et la fonction d'Euler. On établit aussi un résultat similaire pour des surface non orientables définies comme la somme connexe de g plans projectifs, avec g 2 : ce résultat est donné au théorème . . . Les preuves de ces théorèmes reposent principalement sur l'étude de plus hauts poids que l'on appellera presque plats, pour lesquels le nombre de Casimir possède des propriétés analytiques et combinatoires intéressantes.

Une autre raison pour laquelle il est intéressant de comprendre la limite du champ de Yang-Mills avec pour groupe de structure U(N ) lorsque N → ∞ est l'existence supposée d'un champ maître. Il s'agit d'un champ déterministe défini comme la limite (au sens des probabilités non-commutatives) du champ d'holonomie de Yang-Mills, et son existence a déjà été prouvée sur le plan par Lévy [Lév ] et sur la sphère par Dahlqvist et Norris [DN ]. Les deux preuves sont fondées sur deux outils complémentaires : l'espérance et la variance de boucles de Wilson pour des lacets simples (des lacets sans points d'auto-intersection), et les équations de Makeenko-Migdal. L'espérance de la boucle de Wilson associée à un lacet ℓ est tout simplement E[tr(H ℓ )], et si sa limite existe, on s'attend à ce qu'elle corresponde à la valeur du champ maître pour le lacet ℓ. La variance associée est Var[tr(H ℓ )], et le fait qu'elle tende vers 0 quand N tend vers l'infini garantit que le champ maître est déterministe. Un moyen de prouver la convergence de l'espérance et la variance de la boucle de Wilson pour un lacet simple est d'utiliser l'analyse harmonique sur U(N ), et c'est par exemple comme cela que Dahlqvist et Norris ont traité le cas de la sphère. Les équations de Makeenko-Migdal sont des équations différentielles satisfaites par l'espérance de la boucle de Wilson d'un lacet qui possède (au moins) un point d'auto-intersection. Grâce à ces équations, on peut déduire récursivement le calcul d'une espérance de boucle de Wilson pour un lacet à n points d'autointersection à partir d'espérances de boucles de Wilson pour des lacets à n -1 points d'auto-intersection. Par induction, on peut alors construire (et calculer) le champ maître pour n'importe quel lacet avec un nombre fini de points d'auto-intersection.

Le but du chapitre est de généraliser aux surfaces compactes orientables de genre 1 et plus les résultats obtenus dans le plan et la sphère en termes d'espérances et de variances de boucles de Wilson. Outre le fait que la mesure de Yang-Mills a une expression plus compliquée pour de telles surfaces, le principal obstacle est que les lacets simples peuvent être divisés en deux catégories :

-Les lacets simples séparants, qui ont une homologie nulle ; -Les lacets simples non séparants, qui ont une homologie non nulle, et peuvent être identifiés à des lacets qui font le tour d'une anse, en considérant qu'une surface compacte orientable de genre g peut être contin ûment déformée en un tore à g anses.

On considère tout d'abord un lacet ℓ simple contractile. Il est en particulier séparant : il divise la surface en deux composantes connexes, dont l'une est homéomorphe à un disque. Un tel lacet peut donc être complété en un graphe de sorte que l'on puisse appliquer ( ) pour calculer l'espérance et la variance de sa boucle de Wilson. On montre dans les Thm. . . et . . que En particulier, l'espérance de la boucle de Wilson de ℓ possède la même limite que si ℓ était un lacet simple dans le plan, ce qui est assez inattendu. En fait, cela ne semble même pas avoir été conjecturé par les physiciens dans la littérature, comme c'est souvent le cas. Dans la Prop. . . , on donne également la vitesse de convergence vers zéro de la variance de la boucle de Wilson. Les preuves sont une fois de plus fondées sur la théorie des plus hauts poids presque plats, et en particulier sur la Prop. . . , qui est une généralisation que l'on a faite d'un résultat de Gross et Taylor [GT ]. On explique après cela comment ces résultats peuvent être appliqués à un théorème de Hall [Hal ] afin d'obtenir la limite de l'espérance et la variance de boucles de Wilson pour des lacets possédant éventuellement des points d'auto-intersection, qui sont contenus dans un petit disque topologique. Ensuite, on traite le cas d'un lacet simple non séparant : on montre dans le Thm. . . que l'holonomie le long d'un tel lacet est un unitaire de Haar, et dans la Prop. . . que la variance de sa boucle de Wilson converge vers 0 quand N tend vers l'infini. Dans la fin du chapitre on explique ce qu'il reste à prouver afin d'obtenir une construction complète du champ maître.

I

Gauge theories are field theories on manifolds, which play the role of spacetimes, and such that the associated fields are invariant with respect to a transformation group, named the structure group. The two-dimensional Euclidean Yang-Mills theory is a simplification of the gauge theory used in the Standard Model of particle physics; it can be viewed as a toy model where everything can be defined conveniently, whereas the four-dimensional quantum Yang-Mills theory is far from being well understood from a mathematical point of view. Indeed, the formalism of path integrals used in theoretical physics can be made rigorous when the underlying spacetime is two-dimensional. It has become a field of interest in probability theory since Migdal [Mig ] described the Yang-Mills measure on the Euclidean plane R 2 in terms of the heat kernel of the structure group. After this discovery, it has been possible to consider the Yang-Mills theory through the prism of random matrix theory, which is the point of view we will adopt in this thesis.

The first chapter can be considered as a course on two-dimensional Yang-Mills theory, and is written in French. It covers the prerequisites in differential geometry, representation theory and noncommutative probability for the construction of Yang-Mills holonomy process, that we sketch hereafter. Following the work of T. Lévy [Lév , Lév ], we consider a compact connected closed surface Σ, a compact group G, and an oriented graph G = (V, E, E + , F) embedded in Σ such that all faces of G are homeomorphic to disks. The Yang-Mills holonomy field is a G-valued stochastic process (H ℓ ) ℓ∈P(G) indexed by the set of paths in G obtained by concatenation of edges and their inverses. The distribution of this process can be described using the configuration space

C G G = G E + .
For any face F of the graph, we denote by |F | its area and ∂F its boundary. Let us also write (p t ) t 0 the heat kernel on G, and h ℓ the holonomy function defined for a loop ℓ = e ε 1 1 • • • e εn n as

h ℓ : C G G → G g → g εn en • • • g ε 1 e 1 .
The distribution of Yang-Mills field on ℓ, which can somehow be identified with Yang-Mills measure , is then given by the following formula:

E[f (H ℓ )] = 1 Z G (g, T ) G E + f (h ℓ ) F ∈F p |F | (h ∂F (g))dg, ( )
It is more precisely the push-forward of Yang-Mills measure by the holonomy map.

where Z G (g, T ) is a normalisation constant, called partition function, which depends on the structure group G, the genus g of the surface and its total area T . Using a kind of Kolmogorov extension theorem, it can be proved that this process is the finite-dimensional marginal of a more general process (H ℓ ) ℓ∈L (Σ) indexed by some set of loops L (Σ) on the underlying surface, but we will rarely consider the whole process because all computations involve the formula ( ) which depends on the graph we consider.

We consider the case when the structure group is the unitary group U(N ), for two main reasons:

-it is expected to behave nicely when N tends to infinity, since the seminal work of 't Hooft [tH ];

-it permits to describe the distribution of the Yang-Mills holonomy field in terms of Young diagrams and Schur functions, which have particularly good combinatorial properties.

In fact, the Fourier decomposition of the heat kernel on U(N ) relies on irreducible representations, which are labelled by nonincreasing N -tuples of integers λ = (λ 1 • • • λ N ) called highest weights.

We can associate to them three quantities:

(i) The character of the representation χ λ (U ) = χ λ (x 1 , . . . , x N ), ∀U ∼ diag(x 1 , . . . , x N ) ∈ U(N ),

(ii) The dimension of the representation, which is d λ = χ λ (1, . . . , 1),

(iii) The Casimir number of the representation, which is the number c 2 (λ) such that ∆χ λ = -c 2 (λ)χ λ .

We have then

p t (U ) = λ 1 ••• λ N (λ 1 ,...,λ N )∈Z N e -c 2 (λ) t 2 d λ χ λ (U ), ∀T > 0, ∀U ∈ U(N ).
Thanks to this decomposition, ( ) can be rewritten in a more convenient way. In the second and third chapters, which are written in English because they are research works destined to be published, we use this decomposition to compute limits of different quantities related to the Yang-Mills holonomy process.

In Chapter , which is based on [Lem ], we give the formula of the partition function Z N (g, T ) = Z U(N ) (g, T ) for a closed compact orientable surface of genus g 1 and total area T ; an asymptotic study of the irreducible representations of U(N ) yields the following limit.

Theorem (Orientable limits, Thm. . . ). Let Σ be an orientable surface of genus g.

(i) If g 2, then, for all T ∈ (0, +∞), the following convergences hold:

lim N →∞ Z N (g, T ) = n∈Z e -T 2 n 2 . ( )
(ii) If g = 1, then consider T ∈ (0, +∞) and set q = e -T 2 . The following convergence holds:

lim N →∞ Z N (1, T ) = n∈Z e -T 2 n 2 ∞ m=1
(1q m ) -2 . ( )

Interestingly, the limits involve two modular forms that are known to have links with number theory: the Jacobi theta function and the Euler function. We also state a similar result for nonorientable surfaces defined as the connected sum of g projective planes, with g 2: it is given in Thm. . . . The proofs of these theorems mainly rely on the study of highest weights that we will call almost flat, for which the Casimir number has nice analytical and combinatorial properties.

Another reason why one would be interested in understanding the limit of Yang-Mills field with structure group U(N ) when N → ∞ is the supposed existence of a master field. This is a deterministic field defined as the limit of the Yang-Mills holonomy field (as a noncommutative stochastic process), and it was already proven to exist in the plane by Lévy [Lév ] and in the sphere by Dahlqvist and Norris [DN ]. Both proofs are based on two complementary tools: the Wilson loop expectation and variance for simple loops (loops without self-intersections), and the Makeenko-Migdal equations.

The Wilson loop expectation associated to a given loop ℓ is simply E[tr(H ℓ )], and if its limit exists, it is expected to be the value of the master field for the loop ℓ. The associated Wilson loop variance is Var[tr(H ℓ )], and the fact that it vanishes in the large N limit guarantees that the master field is deterministic. A way to prove the convergence of Wilson loop expectation and variance for a simple loop is to use harmonic analysis on U(N ), and that is for instance how Dahlqvist and Norris treated the case of the sphere. The Makeenko-Migdal equations are differential equations satisfied by the Wilson loop expectation of a loop with a self-intersection point. Thanks to these equations, the recursive computation of a Wilson loop expectation for a loop with n crossings can be deduced from the knowledge of Wilson loop expectation for loops with n -1 crossings. By induction, one can then construct (and compute) the master field for any loop with a finite number of self-intersections.

The purpose of Chapter is to generalize to compact orientable surfaces of genus 1 and higher the results obtained in the plane and the sphere in terms of Wilson loop expectations and variances. Beside the fact that the Yang-Mills measure has a more complicated expression for such surfaces, the main obstacle is that simple loops can be divided into two categories:

-The separating simple loops, which have zero homology, -The nonseparating simple loops, which have nonzero homology and can be identified with loops that go around a handle, considering that a compact orientable surface of genus g can be continuously deformed into a torus with g handles.

We first consider a contractible simple loop ℓ. It is in particular separating: it splits the surface into two connected components, and one of these components is homeomorphic to a disk. We denote by t the area of this disk. Such a loop can then be completed into a graph and we can apply ( ) to compute its Wilson loop expectation and variance. We show in Thm. Cette thèse porte sur une étude asymptotique de la mesure de Yang-Mills sur des surfaces compactes à l'aide de la théorie des représentations. Il s'agit, en d'autres termes, de l'utilisation d'outils algébriques pour étudier un objet probabiliste défini dans un cadre géométrique. C'est donc un sujet qui puise dans des théories a priori de natures très diverses, et qui pourtant sont intimement liées :

-La théorie de jauge en deux dimensions, -Les probabilités non-commutatives, -La théorie des représentations. L'objectif de ce chapitre est de permettre à un lecteur non-initié de comprendre le contenu des chapitres suivants, qui constituent le véritable travail de recherche. Nous allons par conséquent rappeler -sans démonstration -les bases des théories mentionnées ci-dessus, ainsi que certains résultats nécessaires aux approfondissements développés dans les chapitres suivants. Ces rappels seront volontairement détaillés afin de rendre la thèse accessible à des lecteurs issus d'un parcours probabiliste traditionnel, et donc peu familiers de la géométrie différentielle, de la théorie des représentations, voire des probabilités libres qui demeurent une branche relativement récente des probabilités malgré leur popularité grandissante. Nous tenterons de notre mieux de mettre en exergue les intrications et les synergies entre ces branches, comme par exemple l'utilisation des représentations comme un analogue de la théorie de Fourier en probabilités non-commutatives, ou encore la réécriture d'intégrales de chemin sur le plan comme des moments de mouvements browniens sur des groupes.

La fin de ce chapitre s'articulera autour de la mesure de Yang-Mills sur des surfaces compactes, définie comme champ d'holonomie markovien en se fondant sur la construction de T. Lévy [Lév , Lév ] et reposant sur les théories rappelées préalablement. Nous expliquerons cette construction dans le cas des surfaces compactes connexes sans bord, avec pour groupe de structure le groupe unitaire U(N ) ou spécial unitaire SU(N ), puis développerons certains aspects de cette mesure en lien avec des mouvements browniens sur les groupes, l'analyse harmonique non-commutative, pour enfin évoquer les aspects asymptotiques que nous développerons dans les chapitres suivants. L'un de ces aspects, traité dans [Lem ], est la limite de sa fonction de partition ; l'autre, étudié conjointement avec Antoine Dahlqvist et qui va faire l'objet d'un futur article, est la limite d'une grande classe P d'observables liées à cette mesure, et qui constitue une avancée significative vers la construction du champ maître sur des surfaces compactes.

P

La théorie de Yang-Mills, du nom de C. N. Yang et R. Mills qui sont les premiers à l'avoir conceptualisée dans l'article fondateur [YM ], est une théorie de jauge non-abélienne visant à unifier trois des quatre forces fondamentales (en l'occurrence les forces éléctromagnétique, faible et forte). En réalité, il serait judicieux de parler de théories de Yang-Mills au pluriel, car il s'agit de diverses théories décrivant des phénomènes différents, mais en utilisant le même cadre ; seuls diffèrent alors l'espace-temps et le groupe de structure.

Yang et Mills n'étaient toutefois pas les premiers à introduire la notion de jauge : dès , Maxwell a décrit l'éléctrodynamique classique dans [Max ] en utilisant notamment un champ magnétique invariant par certaines transformations du potentiel agissant sur celui-ci, et ce furent alors les prémices des théories de jauge modernes. L'idée selon laquelle les interactions peuvent être décrites par des champs invariants par l'action de certains groupes de symétrie a accompagné le développement de toute la physique moderne jusqu'à ses modèles les plus récents. Dans le modèle standard de la physique des particules, on suppose que l'espace-temps est une variété pseudo-riemannienne de dimension (trois dimensions spatiales et une dimension temporelle), et le groupe de structure dépend de l'interaction considérée. Par exemple, l'électromagnétisme peut être décrit à l'aide du groupe U(1), l'interaction faible via le groupe SU(2) ou encore l'interaction forte avec SU(3). Plus globalement, la formulation actuelle des théories de jauge est la suivante : l'espace des configurations d'un système physique soumis à une interaction donnée par un groupe de symétrie G et évoluant dans un espacetemps M est modélisé par un G-fibré principal de base M . Nous allons ici considérer le "modèlejouet" suivant : l'espace-temps M est de dimension 2 (donc une surface), et le groupe de symétrie G est un groupe de Lie compact, typiquement U(N ) ou SU(N ).

Afin d'aborder sans heurts cette théorie plus souvent connue des physiciens que des mathématiciens, nous allons introduire pas à pas les outils nécessaires à son appréhension. Après de brefs rappels de géométrie différentielle, nous nous pencherons sur la formalisation des théories de jauge à l'aide de connexions sur des fibrés principaux ; c'est en réalité cette dernière partie (paragraphe . . ) qui va servir dans la suite de la thèse, et le reste peut être survolé en première lecture.

. . Variétés différentielles et espaces tangents

Dans un souci de pédagogie, nous commenc ¸ons par les fondements de la géométrie différentielle, à savoir la définition des variétés et de leurs espaces tangents. Il s'agit plutôt d'un court formulaire visant à fixer les notations et permettre les calculs dans les paragraphes qui suivront, mais cela ne se substitue certainement pas à un cours introductif. Pour plus de rappels/approfondissements sur le sujet, le lecteur est invité à consulter les ouvrages [KN , Lee , Mor ] en anglais, ou bien [Laf ] en franc ¸ais. 

Définition

(i, v 1 ) ∼ (j, v 2 ) ⇔ d(ϕ j • ϕ -1 i ) ϕ(p) v 1 = v 2 , ∀(i, j) ∈ I, ∀(v 1 , v 2 ) ∈ (R n ) 2 .
Cette définition, bien que formellement très lourde, ne dit rien de plus que la chose suivante : l'espace tangent à M en p est un espace vectoriel assimilé à R n dans chaque carte, et pour lequel changer de carte revient à composer par la différentielle du changement de cartes dans la variété. Une fac ¸on plus commode de manipuler les vecteurs de T p M est de les voir comme des dérivations sur l'algèbre F (p) des fonctions de classe C 1 au voisinage de p et à valeurs dans R.

Soit t 0 ∈]0, 1[ un réel et c : [0, 1] → M une courbe de classe C 1 sur M telle que c(t 0 ) = p. Alors le vecteur tangent à c en p est l'application linéaire X : F (p) → R f → X(f ) p := df (c(t)) dt t=t 0 . ( . )
Cette application X est bien une dérivation, au sens o ù l'on a

X(f g) p = X(f ) p g(p) + f (p)X(g) p , ∀(f, g) ∈ F (p) 2 . ( . )
Exemples.

-La sphère unité S n ⊂ R n+1 est une variété différentielle, si on la munit des cartes On peut remarquer qu'il existe pour tout (i, j) tel que U i ∩ U j = ∅ une application continue γ ji : U i ∩ U j → GL k (R) qui vérifie :

(U N , ϕ N ) et (U S , ϕ S ) o ù : -U N = S n \ {N } et U S = S n \ {S} o ù N = (0, . . . , 0 , 
ϕ j • ϕ -1 i (x, v) = (x, γ ji (x)v), ∀x ∈ U i ∩ U j . ( . )
L'application ϕ j • ϕ -1 i est appelée application de transition ou changement de coordonnées, et on peut vérifier que l'équation ( . ) équivaut à la commutativité du diagramme ( . ). Notons également que les applications γ ji forment un cocycle de Čech, c'est-à-dire qu'elles vérifient

γ ji (x)γ iℓ (x)γ ℓj (x) = I k , ∀x ∈ U i ∩ U j ∩ U ℓ .
( . )

Exemples.

-Le fibré tautologique (M × R k , pr 1 , M ) est un fibré vectoriel, aussi appelé fibré trivial de rang k sur M .

-Le fibré tangent T M de la variété M est défini comme la somme disjointe des espaces tangents à M en chacun de ses points :

T M = x∈M T x M = x∈M {x} × T x M.
La projection associée est alors la projection sur la première coordonnée.

-Le fibré cotangent T * M est le fibré dual de T M , c'est-à-dire qu'il est défini par la même projection mais que la fibre en x est l'espace vectoriel dual (T x M ) * .

Définition . . . Soit (E, π, M ) un fibré vectoriel et U un ouvert de M . Une section de π sur U est une application lisse σ : U → E telle que π • σ = id U . On note Γ(U, E) l'ensemble des sections de π sur U .

Notons que Γ(U, E) est un C ∞ (U, R)-module. Une section est une sorte de "pseudo-inverse" de π : on associe de manière lisse, à un point x ∈ M , un élément de la fibre E x (cf. Fig. . ), c'est-à-dire un vecteur. Par exemple on définit un champ de vecteurs sur une variété comme une section de son fibré tangent : cela consiste simplement à associer à chaque point p de la variété un élément X = X p de son espace tangent. De la même manière, une 1-forme différentielle sur une variété est définie comme une section du fibré cotangent. On note X(M ) = Γ(T M ) l'ensemble des champs de vecteurs sur

M et Ω 1 (M ) = Γ(T * M ) l'ensemble des 1-formes différentielles sur M . La k-ème puissance extérieure du fibré cotangent définit un fibré k (T * M ), dont l'espace des sections Ω k (M ) = Γ( k (T * M )) constitue ce que l'on appelle les k-formes différentielles. Si ω ∈ Ω k (M ), X 1 , . . . , X k ∈ X(M ), alors on définit ω(X 1 , . . . , X k ) par (ω(X 1 , . . . , X k )) x = ω x (X 1 x , . . . , X k x ), ∀x ∈ M. En particulier, ω définit une application k-linéaire alternée du C ∞ (M )-module X(M ) sur C ∞ (M ).
On peut enfin construire le fibré • (T * M ) = n k=0 k (T * M ) ; l'ensemble de ses sections, noté Ω • (M ), constitue l'ensemble des formes différentielles sur M , avec pour convention que les 0-formes sont les fonctions lisses sur M à valeurs dans R. C'est une algèbre graduée qui vérifie Ω

• (M ) = n k=0 Ω k (M ). C L Y -M
En pratique, l'équation ( . ) peut s'interpréter à l'aide de fonctions test, à l'instar des vecteurs tangents définis dans le paragraphe précédent : si X ∈ X(M ) est un champ de vecteurs et u X son flot, alors pour tout p ∈ M et pour toute fonction f ∈ F (p), on a

X(f ) p = d dt t=0 f • u X t (p). ( . )
Notons que cette formule est une simple réécriture de la règle de dérivation des fonctions composées.

Lorsque la variété est un groupe de Lie G, le flot d'un champ de vecteurs X ∈ T e G définit ce que l'on appelle l'exponentielle de Lie. Définition . . . Soit G un groupe de Lie muni de son action à gauche

G × G → G (g, h) → L g (h) = gh . -Un champ de vecteur X ∈ X(G) est invariant à gauche si pour tout g ∈ G, (L g ) * X = X. -Une k-forme différentielle ω ∈ Ω k (G) est invariante à gauche si pour tout g ∈ G, (L g ) * ω = ω.
-L'application exponentielle sur G est définie par

exp : T e G → G X → u X 1 (e) , ( . ) 
o ù X est l'unique champ de vecteurs invariant à gauche tel que Xe = X.

On note X(G) G (resp. Ω k (G) G ) l'ensemble des champs de vecteurs invariants à gauche (resp. des k-formes différentielles invariantes à gauche).

La dénomination "exponentielle" n'est pas fortuite puisqu'elle coïncide, lorsque G = GL N (C), avec l'exponentielle matricielle définie comme somme de la série exponentielle :

exp(A) = ∞ k=0 1 k! A k , ∀A ∈ M N (C) = gl N (C). ( . )
La définition de l'exponentielle de Lie nécessite l'existence et l'unicité d'un champ de vecteurs invariant à gauche associé à un vecteur tangent en l'élément neutre de G : cela découle de la proposition suivante.

Proposition . . . On a les isomorphismes canoniques suivants entre espaces vectoriels

: g ∼ = X(G) G , et g * ∼ = Ω 1 (G) G .

. . Fibré principal et connexion

Les fibrés vectoriels font partie de la famille extrêmement vaste des espaces fibrés, dont nous allons nous intéresser à un nouveau membre : les fibrés principaux. Au lieu d'être des copies d'un espace vectoriel, leurs fibres sont cette fois-ci des copies d'un groupe qui agit librement sur l'espace total. Si G est un groupe de Lie, on considère les actions (à gauche) suivantes : P l'action de G sur lui-même par multiplication à gauche

G × G → G (g, h) → L g (h) = gh , ( . ) 
-L'action de G sur lui-même par multiplication de l'inverse à droite

G × G → G (g, h) → R g (h) = hg -1 , ( . ) 
-l'action de G sur lui-même par automorphisme intérieur

G × G → G (g, h) → ι g (h) = ghg -1 , ( . ) 
-l'action de G sur son algèbre de Lie g 

G × g → g (g, X) → Ad g (X) = (ι g ) * X = d dt t=0 g exp(tX)g -1 , ( 
Φ i : π -1 (U i ) → U i × G qui font commuter le diagramme π -1 (U i ) U i × G U i π Φ i pr 1
Tout comme pour les fibrés vectoriels, il existe également une définition équivalente des fibrés principaux à l'aide de cocycles de changements de coordonnées, que nous ne détaillons pas, mais qui figurent par exemple dans [Sen a]. La notion de section définie pour un fibré vectoriel reste valable dans le cas d'un G-fibré principal, mais l'interprétation diffère. En effet, on peut considérer une section comme un moyen d'associer -toujours de manière lisse -à tout point x de M un représentant de la classe d'équivalence induite par P x (en tant qu'orbite pour l'action de G). Contrairement aux fibrés vectoriels, les fibrés principaux voient leur trivialité caractérisée par l'existence d'une section globale.

Nous avons déjà vu cette action au paragraphe précédent dans la Déf. . . . Il est important que la multiplication se fasse par l'inverse, sinon on obtient une action à droite à la place. C'est-à-dire que pour tout (p, q) ∈ P 2 tel que π(p) = π(q) = x, il existe g ∈ G tel que q = p • g. L'action de G sur P définit par dérivation une application g → X(P ) qui à X ∈ g associe son champ de vecteurs fondamental X défini en p ∈ P par Xp = d dt t=0 p • exp(tX).

( . )

Soit P = M × G un fibré principal trivial. On a, pour p = (x, g) ∈ P , T p P = T x M ⊕ T g G. Le sous-espace T x M est appelé sous-espace vertical de T p P , et T g G le sous-espace horizontal. Pour un fibré principal quelconque, la décomposition est moins claire : si l'on peut facilement retrouver le sous-espace vertical de T p P pour un fibré (P, π, M ) via

V p = T p P π(p) ⊂ T p P,
il n'y a en revanche pas de fac ¸on canonique de caractériser les vecteurs tangents horizontaux. C'est là que la notion de connexion entre en jeu. Il existe une multitude de définitions dans la littérature, nous choisissons la suivante, empruntée à [Mor ].

Définition . . . Soit (P, π, M ) un G-fibré principal. Une connexion principale (ou simplement connexion) sur P est une application qui à p ∈ P associe le sous-espace H p ⊂ T p P qui vérifie les hypothèses suivantes :

-H p est transversal à la fibre P p , i.e.

T p P = H p ⊕ V p .
-L'ensemble {H p , p ∈ P } est invariant par l'action de G à droite ; -L'application p → H p est lisse.

Le sous-espace V p = ker dπ p est appelé sous-espace vertical et H p le sous-espace horizontal de T p P . Une définition conceptuellement différente mais qui nous sera utile est la suivante. Definition . . . Soit (P, π, M ) un G-fibré principal. Une forme de connexion sur P est une 1forme différentielle ω ∈ Ω 1 (P ) ⊗ g sur P à valeurs dans g qui vérifie :

ω( Xp ) = X, ∀p ∈ P, ∀X ∈ g,

-(R g ) * ω = Ad(g -1 )ω, ∀g ∈ G.
Le théorème suivant garantit que la notion de connexion et de forme de connexion sont parfaitement équivalentes.

Théorème . . ([Mor ], Thm. . ). Soit (P, π, M ) un G-fibré principal et ω une forme de connexion sur P . L'application p → H ω p := ker ω p est une connexion sur P . Réciproquement, si l'on a une connexion sur P , on peut lui associer canoniquement une forme de connexion ω.
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En conséquence de ce théorème, nous pouvons désormais identifier une connexion à sa forme de connexion, et nous nous autoriserons l'abus de langage suivant : le terme connexion désignera par la suite aussi bien l'application qui détermine un choix de sous-espace horizontal ou la forme différentielle à valeurs dans g qui lui est associée. Il nous est également possible d'étendre la notion de connexion à l'espace sous-jacent en tirant en arrière une connexion par une section. Mentionnons, à l'attention des géomètres les plus chevronnés, qu'il existe une notion plus générale de connexion, la connexion d'Ehresmann, qui permet de définir le transport parallèle sur des fibrés de natures plus diverses. N'étant pas nécessaires à la compréhension de cette thèse nous omettons cette notion, et renvoyons par exemple à [Mor ] ou [Pau ] pour en savoir plus.

Si les fibrés principaux sont au coeur de la théorie de jauge, il sera néanmoins commode de leur associer un fibré vectoriel, appelé fibré adjoint, qui permet de décrire les connexions en termes de formes différentielles sur la base du fibré. P fibré adjoint ad(P ) comme le fibré associé à P pour l'action adjointe de G sur g. Les fibres du fibré adjoint ad(P ) sont des copies de g, et on peut trouver des trivialisations locales (U i , ϕ i ) telles que les applications de transition associées soient des applications continues à valeurs dans Aut(g). Si s : U ⊂ M → adP est une section locale de P , on peut lui associer de manière unique une fonction

f : P → g telle que (R g ) * f = Ad g -1 • f, ∀g ∈ G.
On peut alors montrer la proposition suivante, qui donne leur forme finale aux connexions.

Proposition . . . Soit (P, π, M ) un G-fibré principal. On a l'isomorphisme suivant :

Ω 1 (M ) ⊗ ad(P ) ≃ {ω ∈ Ω 1 (P ) ⊗ g : ω est équivariante et nulle sur les vecteurs verticaux}.

De plus l'espace A des connexions sur (P, π, M ) est un espace affine de direction Ω 1 (M ) ⊗ ad(P ).

La Prop. . . peut s'interpréter de la fac ¸on suivante : la différence entre deux connexions sur P équivaut à une 1-forme différentielle sur M à valeur dans ad(P ).

. . Courbure et action de Yang-Mills

Dans cette section, nous allons définir l'action de Yang-Mills d'une connexion à l'aide de la courbure de celle-ci. Définition . . . Soit ω une connexion sur un G-fibré principal (P, π, M ), on peut définir sa courbure Ω comme la 2-forme sur P à valeurs dans g ), ω(Y )], pour tous vecteurs X et Y tangents en un même point de P .

Ω = dω + 1 2 [ω ∧ ω], ( . ) o ù [ω ∧ ω] est une 2-forme définie par [ω ∧ ω](X, Y ) = 2[ω(X
On peut montrer que la courbure d'une connexion sur P est G-équivariante et s'annule sur les vecteurs verticaux ; d'après la Prop. . . on peut donc identifier Ω à une 2-forme sur M à valeurs dans ad(P ).

Afin de définir l'action de Yang-Mills d'une connexion, il nous est nécessaire d'introduire quelques notions de géométrie riemannienne.

Définition . . . Soit M une variété différentielle.

(i) Une métrique riemannienne sur M est une métrique g sur le fibré tangent T M : plus précisément, g est une application qui à p ∈ M associe de manière lisse une forme quadratique définie positive g p sur T p M . Le couple (M, g) est appelé variété riemannienne.

(ii) Si (M, g) est une variété riemannienne orientée , son volume riemannien dvol est l'unique nforme différentielle sur M positive et de norme 1.

Une variété différentielle M de dimension n est orientable si elle admet un atlas dont les applications de transition ont un jacobien positif, ce qui équivaut au fait qu'elle possède une n-forme différentielle partout non nulle, appelée forme volume.
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(iii) Si (M, g) est une variété riemannienne orientée de dimension n et (e 1 , . . . , e n ) une base orthonormée de T p M , o ù p est un point de M , alors on définit l'opérateur de Hodge

⋆ : k (T * M ) → n-k (T * M ) e i 1 ∧ • • • ∧ e i k → e j 1 ∧ • • • ∧ e j n-k , o ù e j 1 ∧ • • • ∧ e j n-k est tel que e i 1 ∧ • • • ∧ e i k ∧ e j 1 ∧ • • • ∧ e j n-k = dvol.
En particulier, ⋆1 = dvol.

Voyons ce que ces notions donnent en coordonnées locales. Si (M, g) est une variété riemannienne de dimension n, sa métrique s'écrit localement comme une matrice définie positive (g ij (x)) 1 i,j n avec

g ij (x) = g ∂ ∂x i , ∂ ∂x j .
On emploie en général la notation suivante : g = g ij dx i dx j . Le volume riemannien de M s'écrit quant à lui

dvol = det(g ij )dx 1 ∧ • • • ∧ dx n .
Étant donné que la courbure Ω d'une connexion ω s'interprète comme un élément de Ω 2 (M ) ⊗ ad(P ), dès lors que M est de dimension n 2 on peut lui appliquer l'opérateur de Hodge, ce qui donne ⋆Ω ∈ Ω n-2 (M ) ⊗ ad(P ). Le produit extérieur Ω ∧ ⋆Ω équivaut donc à un élément de Ω n (M ) ⊗ ad(P ) ⊗ ad(P ). De plus, le produit scalaire •, • invariant sur g définit une structure euclidienne sur ad(P ), qui se traduit par un produit scalaire que l'on va noter également •, • . Cela nous permet de construire la n-forme différentielle Ω ∧ ⋆Ω ∈ Ω n (M ). Définition . . . Soit ω une connexion sur un G-fibré principal (P, π, M ) o ù M est une variété riemannienne orientable, on définit son action de Yang-Mills par la quantité suivante :

S Y M (ω) = 1 2 M Ω ∧ ⋆Ω . ( . )
Les définitions de la courbure et de l'action de Yang-Mills d'une connexion peuvent être rendues plus explicites en passant par une section du fibré : si (P, π, M ) est un G-fibré principal, ω une connexion sur P et σ : U ⊂ M → P une section locale de ce fibré, alors on peut transporter ω sur M par pull-back en posant A = σ * ω. Cette connexion peut s'écrire en coordonnées locales sur U , en supposant que M soit de dimension n, A = A 1 dx 1 + • • • + A n dx n , o ù A 1 , . . . , A n sont des fonctions lisses de U sur g. De même, on peut transporter la courbure Ω en une 2-forme F A sur M :

F A := σ * Ω = 1 i<j n ∂A j ∂x i - ∂A i ∂x j + [A i , A j ] dx i ∧ dx j .
Il s'agit de la convention de sommation d'Einstein, selon laquelle on effectue implicitement la somme sur les indices/exposants présents deux fois : c'est ici le cas de i et j.
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La restriction sur U de l'action de Yang-Mills de ω devient finalement

S Y M (ω)| U = 1 2 1 i<j n ϕ(U ) ∂A j ∂x i - ∂A i ∂x j + [A i , A j ] 2 dx i ∧ dx j . ( . )
Il est intéressant de remarquer que la dépendance de l'opérateur de Hodge et de l'intégrale sur M visà-vis de l'orientation de M se compensent, et donc que l'action S Y M est indépendante de l'orientation de M . Cela permet donc en particulier d'étendre sa définition à des variétés non-orientables.

La mesure de Yang-Mills euclidienne , telle qu'elle est introduite dans la littérature physique, est la suivante :

dµ Y M (ω) = 1 Z e -1 2T S Y M (ω) dω. ( . )
Dans l'équation ( . ), Z désigne une constante de normalisation appelée fonction de partition, T > 0 est une quantité appelée constante de couplage, et dω est un équivalent de la mesure de Lebesgue sur l'espace des connexions. Le principal problème avec cette définition est que l'espace des connexions n'est pas localement compact, donc il n'existe pas de mesure de Radon invariante par translation sur cet espace, ce qui est l'idée que l'on se fait de dω.

. . Transformations de jauge

Une première étape vers une construction plus rigoureuse de la mesure de Yang-Mills serait d'utiliser les invariances de celle-ci par rapport à certaines transformations sur les connexions, que nous allons voir à présent. Définition . . . Soit (P, π, M ) un G-fibré principal. Une transformation de jauge sur P est un C ∞ -difféomorphisme j : P → P qui préserve les fibres et dont l'action sur P commute avec l'action de G sur P . On note J l'ensemble de ces transformations.

J , muni de la loi de composition des fonctions, est un groupe de Lie de dimension infinie avec pour élément neutre la fonction identité sur P . On l'appelle groupe de jauge.

Exemple. Supposons que P = M × G est un fibré trivial. Alors l'action de G sur P est la suivante :

(M × G) × G → M × G ((x, g), h) → (x, g) • h = (x, gh) .
Une transformation de jauge est donc un

C ∞ -difféomorphisme j : (M × G) → (M × G) tel que j(x, g) • h = j(x, gh), ∀x ∈ M, ∀(g, h) ∈ G 2 .
En effet, cette équation traduit le fait que les deux actions commutent, mais aussi que j préserve les fibres. L'application

Φ : J → C ∞ (M, G) j → J : (x → j(x, e))
Cette mesure diffère de la mesure traditionnelle par une rotation de Wick, ce qui en fait une mesure positive au lieu d'une mesure complexe. En quelque sorte, on se place dans un cadre de physique statistique plutôt que de mécanique quantique, et la mesure de Yang-Mills euclidienne est une forme de mesure de Gibbs.

La normalisation est faite de telle sorte que µ Y M soit une mesure de probabilité.
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L Y -M est une bijection, et l'action de J sur M × G s'identifie à l'action de C ∞ (M, G) sur M × G de multiplication à gauche sur la seconde coordonnée.

Comme tous les fibrés que l'on va considérer sont au moins localement triviaux, sinon globalement, on peut désormais transporter la notion de transformation de jauge sur la variété sous-jacente : si M est une variété différentielle, on peut considérer localement une transformation de jauge sur M est une fonction lisse f : U → G, o ù (U, ϕ) est une trivialisation locale du fibré. Dans un souci d'allègement des notations, nous considérons pour la fin de cette section que le fibré (P, π, M ) est trivial. L'ensemble J = C ∞ (M, G) des transformations de jauge sur M est un groupe pour la multiplication point par point, et il agit sur l'espace A M des connexions sur M de la fac ¸on suivante :

j • A = Ad j A + j * ω, ∀A ∈ A M , ( . ) 
o ù ω est la connexion, parfois appelée forme de Maurer-Cartan , définie pour g ∈ G par

ω g : T g G → g v → (L g -1 ) * v .
Dans le cas o ù G est un groupe linéaire on peut vérifier que l'équation ( . ) se réécrit

(j • A)v = j -1 Ajv + j -1 djv,
en tant que produit de vecteurs par des matrices.

Les transformations de jauge agissent sur la courbure par conjugaison :

F j•A = Ad j F A , ∀A ∈ A M .
Ainsi, si le produit scalaire sur g est ad-invariant, on voit que l'action de Yang-Mills est invariante par transformation de jauge. C'est pourquoi il est possible de restreindre la définition de dµ Y M à l'espace A M /J dans l'équation ( . ).

Néanmoins, l'espace A M /J n'est toujours pas localement compact, et donc la bonne définition d'une mesure invariante par translation n'est pas assurée. Un moyen de le faire est de transporter la mesure sur A M /J en une mesure sur G par le biais d'holonomie le long de lacets. Définition . . . Soit c une courbe sur M , et A une connexion sur M . L'holonomie de A le long de c est h(1), o ù h : [0, 1] → G est l'unique solution de l'équation différentielle suivante :

d dt h(t) = -A dc(t) dt h(t) h(0) = e.
( . )

Cette définition de l'holonomie coïncide avec la Déf. . . , si l'on regarde la connexion A sur M comme le pull-back d'une connexion ω sur P par une section σ de P . Les différentes propriétés de l'holonomie sont résumées dans la proposition suivante. ( . )

(iv) Si j ∈ J est une transformation de jauge et c une courbe sur M , alors

hol(j • A, c) = j(c(1)) -1 hol(A, c)j(c(0)). ( . )
L'idée finale prend alors forme : la mesure image de la mesure de Yang-Mills sur A M /J par l'holonomie le long d'un lacet est une mesure sur G invariante par conjugaison. C'est cette mesure-là que nous pouvons définir de fac ¸on rigoureuse, et nous y reviendrons à la section . .
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Les probabilités non-commutatives, à l'instar de la sans doute plus célèbre géométrie non-commutative dont elles s'inspirent, portent un nom ambigu, sinon fallacieux. En effet, elles ne sont pas à opposer aux probabilités dites "classiques" o ù les variables aléatoires sont à valeurs dans un espace commutatif, mais il faut plutôt les voir comme une généralisation , voire comme un changement de paradigme dans la manière d'aborder les probabilités. En effet, si les probabilités classiques et leur axiomatique de Kolmogorov se fondent sur la théorie de la mesure et l'intégrale de Lebesgue, comme en témoigne la présence de la tribu F dans l'inéluctable (Ω, F , P) introduit dans les cours de probabilités, les probabilités non-commutatives reposent quant à elles sur l'approche bourbakiste de l'intégrale, à savoir que l'on décrit l'intégrale par ses propriétés algébriques (forme linéaire sur un espace de fonctions) plutôt que géométriques (la mesure de l'aire sous la courbe d'une fonction, modulo le signe de cette dernière) . Cette divergence de points de vues sur la bonne définition d'une intégrale ("doit-on définir l'intégrale à partir de la mesure ou inversement ?") est élégamment expliquée en introduction du chapitre XI de [God ], et s'applique bien entendu à la théorie des probabilités.

Bien qu'elles semblent n'être qu'une (re)formalisation algébrique du cadre probabiliste classique, les probabilités non-commutatives ont vu leur utilité dans des applications assez diverses, souvent motivées par des modèles physiques, et l'on peut citer parmi ses branches les plus populaires la théorie des matrices aléatoires ou encore les probabilités libres. Nous allons présenter les bases de cette théorie nécessaires à la compréhension du cadre probabiliste dans lequel se place la mesure de Yang-Mills en deux dimensions ; pour des approfondissements le lecteur intéressé est invité à consulter les ouvrages [AGZ , Mey , NS ] qui apportent des points de vue complémentaires sur les probabilités noncommutatives.

Développée par Alain Connes, cette théorie est résumée dans l'ouvrage de référence [Con ]. On pourrait donc parler de "probabilités non nécessairement commutatives", ou de "géométrie non nécessairement commutative", par exemple, mais l'inélégance de la formulation a conduit à la formulation ambiguë que l'on connaît.

Notons que dans la plupart des cas, le théorème de Riesz-Markov garantit que ces deux définitions coïncident. 

τ (ab) = τ (ba), ∀(a, b) ∈ A 2 .
On peut, selon les besoins de la théorie, enrichir la structure d'un espace de probabilité non-commutatif : en voici quelques exemples traditionnels. Les C * -espaces de probabilités et les W * -espaces de probabilités bénéficient naturellement de la théorie des algèbres d'opérateurs développée entre autres par Gelfand, Naimark, von Neumann, ou encore Dixmier. Les * -espaces de probabilités englobent des espaces plus généraux, privilégiant parfois une approche plus combinatoire à défaut de bénéficier d'outils analytiques aussi puissants que ceux susmentionnés. Enfin, les espaces de probabilités non-commutatifs dépourvus d'involution sont un cas particulièrement abrupt à traiter, car ils ne possèdent même pas de notion de positivité.

En particulier, A est appelé C * -algèbre. Un théorème fondamental de la théorie des C * -algèbres, d û à Gelfand et Naimark [GN ], permet d'identifier une C * -algèbre commutative à l'algèbre des fonctions continues sur un espace localement compact et tendant vers 0 à l'infini, et une C * -algèbre quelconque à l'algèbre B(H) des opérateurs bornés sur un espace de Hilbert. Le livre de Dixmier [Dix ] fait office de référence sur le sujet.

Une algèbre de von Neumann est une sous-algèbre de l'algèbre B(H) des opérateurs bornés sur un espace de Hilbert, qui est fermée pour la topologie faible sur B(H). On peut montrer que toute algèbre de von Neumann est une C * -algèbre.

P

Exemples. (i) Soit (Ω, F , P) un espace de probabilité. On pose

A = L ∞-(Ω, P) = 1 p<∞ L p (Ω, P), et τ : A → C défini par τ (X) = E[X] = Ω X(ω)dP(ω).
Alors (A , τ ) est un espace de probabilité non-commutatif, correspondant à l'espace des variables aléatoires dont tous les moments sont finis. C'est même un * -espace de probabilité, si l'on le munit de l'involution X → X. Notons que les espaces L p , pris individuellement, ne sont pas des espaces non-commutatifs : en effet, n'étant pas stables par la multiplication, en particulier ce ne sont pas des algèbres. En revanche, l'espace L ∞ en est un, mais pas nécessairement intéressant car il ne contient pas certaines variables aléatoires fondamentales, telles que les gaussiennes.

(ii) L'espace (M N (C), tr, * ) o ù tr = 1 N Tr est la trace normalisée et * est le passage à la matrice adjointe, est un * -espace de probabilité.

(iii) On a mentionné la théorie des matrices aléatoires comme application des probabilités noncommutatives, il est donc naturel de se demander dans quel espace ces fameuses matrices vivent ; il s'agit simplement du produit tensoriel des espaces des points précédents, à savoir

M N (C) ⊗ L ∞-(Ω, P) ≃ M N (L ∞-(Ω, P)),
et on le munit de la trace τ = tr ⊗ E, qui vérifie

τ (M ) = Ω tr(M (ω))dP(ω), ∀M ∈ M N (L ∞-(Ω, P)).
Plus précisément, soit A (N ) un élément de M N (C)⊗(L ∞-(Ω, P)) o ù (Ω, F , P) est un espace de probabilités. A (N ) n'est rien d'autre qu'une variable aléatoire sur (Ω, F , P) à valeurs dans M N (C), donc stricto sensu une matrice aléatoire.

. . Distributions non-commutatives

Si l'on veut suivre le chemin des probabilités classiques, une fois les espaces de probabilité et les variables aléatoires introduits, l'étape qui suit consiste à définir la loi d'une ou plusieurs variables aléatoires, et à trouver des moyens de la caractériser. Par exemple, en probabilités classiques, la loi d'une variable aléatoire réelle X sur (Ω, F , P) est définie par la mesure image de P par X, à savoir P X = X * P, et se caractérise notamment :

(i) Par l'intégrale de fonctions mesurables bornées (ou positives), via la formule de transfert

E[f (X)] = R f (x)dP X (x), ce qui donne une caractérisation fonctionnelle ; C L Y -M (ii) Par la fonction de répartition f X (x) = P(X x) = E[1 ]-∞,x] (X)],
qui équivaut à la caractérisation fonctionnelle du fait que les fonctions indicatrices d'intervalles ] -∞, x] engendrent les fonctions mesurables positives/bornées sur R ;

(iii) Par la fonction caractéristique Φ X : t → E[e itX ], ce qui correspond à la transformée de Fourier inverse de P X , et on peut alors parler de caractérisation spectrale.

Dans le cas non-commutatif, les définitions peuvent différer selon les propriétés de l'espace considéré. La plus générale est la suivante. Définition . . . Soit (A , τ ) un * -espace de probabilité, et a un élément de A . La loi de a est la forme linéaire µ : C X, X * → C définie par µ(P (X, X * )) = τ (P (a, a * )), ∀P ∈ C X, X * .

On peut identifier l'espace des polynômes non-commutatifs à deux indéterminées et à coefficients complexes, en tant qu'algèbre, à l'algèbre engendrée par les mots (ou monômes non-commutatifs) en les variables a et a * , i.e.

w(a, a * ) = a α 1 a * β 1 . . . a α k a * β k , (α 1 , β 1 , . . . α k , β k ) ∈ N 2k , k ∈ N, ou encore w(a, a * ) = a ε 1 . . . a εn , (ε 1 , . . . ε n ) ∈ {1, * } n , n ∈ N.
Le produit des monômes se traduit explicitement par la concaténation des mots. Les images de mots en a et a * par τ constituent ce que l'on appelle les * -moments de a.

Heuristiquement, la Déf. . . revient à prendre la caractérisation fonctionnelle des variables aléatoires classiques et à remplacer les fonctions mesurables bornées par les fonctions polynomiales, ôtant de ce fait toute notion d'analyse et se focalisant sur la partie algébrique. Des interprétations plus analytiques peuvent être obtenues sous des hypothèses plus fortes : par exemple, si a ∈ A vérifie aa * = a * a (on dit que a est un élément normal de A ), et s'il existe une mesure µ sur C à support compact telle que

C z k zℓ dµ(z) = τ (a k a * ℓ ), ∀(k, ℓ) ∈ N 2 ,
alors µ caractérise également la distribution de a et s'apparente à la mesure image P X du cas classique. Si de plus a est autoadjoint, alors supp(µ) ⊂ R et les * -moments de a correspondent aux moments de µ au sens classique. Par ailleurs, si A est un C * -espace de probabilité et si a ∈ A est normal, alors la mesure µ décrite précédemment existe, et est appelée mesure spectrale de a.

Exemples.

(i) Soit (A , τ ) un * -espace de probabilité. Un élément u ∈ A est un unitaire de Haar s'il vérifie N ) est une matrice normale, alors la mesure spectrale de A (N ) existe et est donnée par l'intensité de la mesure empirique spectrale

uu * = u * u = 1 et si τ (u n ) = 0, ∀n ∈ Z \ {0}. P (ii) Soit (A , τ ) un * -espace de probabilité et r > 0 un réel positif. Si x ∈ A est autoadjoint de mesure spectrale 2 r 2 π √ r 2 -t 2 1 [-r,r] (t)dt, c'est-à-dire que τ (x k x * ℓ ) = r -r t k+ℓ √ r 2 -t 2 2dt
ù A = L ∞ (Ω, F , P) puisqu'elles vérifient bien τ (z1 A ) = zτ (1 A ) = z pour tout z ∈ C. (iv) Soit A (N ) un élément de M N (C) ⊗ (L ∞-(Ω, P)) o ù (Ω, F , P) est un espace de probabilités. Si A (
µ A = E [ µ A (N ) ] = E 1 N N i=1 δ λ i (A (N ) )
o ù λ i : M N (C) → C est la fonction qui à une matrice complexe de taille N × N associe sa i-ème valeur propre .

L'exemple (iii) ci-dessus justifie a posteriori la condition, qui aurait pu sembler superfétatoire, selon laquelle un espace de probabilité non-commutatif soit muni d'une unité : en effet, il est naturel de demander que les constantes soient mesurables quel que soit l'espace sur lequel on se place.

Étant donné des éléments (a 1 , . . . , a n ) ∈ A n , on peut également définir la distribution jointe de ces variables aléatoires, en généralisant la Déf. . . à un nombre quelconque de variables. Définition . . . Soit (A , τ ) un * -espace de probabilité, et (a 1 , . . . , a n ) des éléments de A . La distribution jointe de a 1 , . . . , a n est la forme linéaire µ sur C X 1 , X * 1 , . . . , X n , X * n définie par

µ(P (X 1 , X * 1 , . . . , X n , X * n )) = τ (P (a 1 , a * 1 , . . . , a n , a * n )), ∀P ∈ C X 1 , X * 1 , . . . , X n , X * n .
Notons que la distribution jointe au sens des probabilités non-commutatives n'admet pas nécessairement d'analogue en probabilités classiques, notamment si les variables aléatoires ne commutent pas. Plus précisément, si deux variables aléatoires a et b hermitiennes ne commutent pas, il n'existe pas toujours de mesure sur R 2 dont les moments sont ceux du couple (a, b).

Le choix de l'ordre parmi les valeurs propres n'a pas d'importance puisque la mesure empirique spectrale est une fonction symétrique des valeurs propres de A (N ) .

C L Y -M
Exemple. Soit (M N (C), tr) l'espace de probabilité non-commutatif défini par les matrices de taille N × N . On se donne (A, B) ∈ M N (C) 2 un couple de matrices hermitiennes. Alors en particulier A et B admettent des mesures spectrales en tant que matrices normales. En revanche, si elles ne commutent pas, il n'existe pas nécessairement de mesure sur R 2 admettant les mêmes moments que leur distribution jointe µ(P (X, Y )) = tr(P (A, B)), ∀P ∈ C X, Y .

En effet, si l'on prend A et B les matrices de M 2 (C) définies par

A = 0 1 1 0 , B = 1 1 1 0 ,
alors on peut notamment vérifier que

ABAB = 1 0 2 1 , ABBA = 1 1 1 2 .
Or s'il existait une mesure µ sur R 2 admettant les mêmes moments que la loi jointe de A et B, en particulier on aurait

tr(ABAB) = R 2
x 2 y 2 dµ(x, y) = tr(ABBA), ce qui est impossible puisque tr(ABAB) = 1 tandis que tr(ABBA) = 3 2 .

. . Indépendance et liberté

En probabilités classiques, l'indépendance se traduit tout d'abord à l'échelle des tribus : la famille de tribus (G 1 , . . . , G k ) est indépendante si pour tout A i ∈ G i on a la factorisation P( i A i ) = i P(A i ). Des variables aléatoires X 1 , . . . , X n respectivement à valeurs dans (E 1 , E 1 ), . . . , (E n , E n ) sont indépendantes si leurs tribus engendrées sont indépendantes, et on a l'équivalence entre les points suivants :

(i) X 1 , . . . , X n sont indépendantes ; (ii) P (X 1 ,...,Xn) = P X 1 ⊗ • • • ⊗ P Xn ; (iii) E[ i f i (X i )] = i E[f i (X i )], pour toutes f i : E i → R mesurables bornées. (iv) (pour des X i à valeurs dans R) Φ (X 1 ,...,Xn) (t 1 , . . . , t n ) = Φ X 1 (t 1 ) • • • Φ Xn (t n ), pour tout (t 1 , . . . , t n ) ∈ R n .
Les point (ii) et (iii) sont parfaitement explicites quant à la nature algébrique de l'indépendance : en effet, la mesure produit P X 1 ⊗ • • • ⊗ P Xn du point (ii) est le produit tensoriel des mesures, vues comme formes linéaires sur l'espace des fonctions mesurables bornées à valeurs dans R, et le point (iii) caractérise justement ce produit tensoriel du point de vue des formes linéaires. C'est pourquoi on parle d'indépendance tensorielle. Il est possible de redéfinir cette forme d'indépendance dans un cadre non-commutatif, mais nous allons voir que ce n'est pas spécialement naturel -ou adapté. P Définition . . . Soit (A i ) i∈I des sous-algèbres unitaires d'un espace de probabilité non-commutatif (A , τ ). Elles sont dites tensoriellement indépendantes (ou simplement indépendantes) si les A i commutent deux à deux et si τ se factorise comme suit :

τ j a j = j τ (a j ), ∀a j ∈ A j , ∀j ∈ J, ∀J ⊂ I fini.
( . )

Des variables aléatoires (a i ) i∈I sont dites indépendantes si les algèbres qu'elles engendrent respectivement sont indépendantes.

Si l'on garde en tête l'idée que τ joue le rôle de l'espérance par rapport à la mesure de probabilité dans le cas non-commutatif, et A l'algèbre des fonctions mesurables bornées, il est clair que l'équation ( . ) correspond à la caractérisation fonctionnelle de l'indépendance. Le problème est que cette notion n'est utile que pour des variables aléatoires qui commutent : par exemple, si a et b ne commutent pas, l'équation ( . ) ne permet pas de calculer (sous forme de factorisation) toutes les quantités de la forme τ (a

k 1 b ℓ 1 . . . a kn b ℓn ),
et en particulier on voit qu'elle ne permet pas de décrire intégralement la * -loi jointe de variables aléatoires qui ne commutent pas à partir de leurs * -lois respectives, comme c'est le cas en probabilités classiques. C'est pourquoi l'indépendance tensorielle est insuffisante, du moins pour décrire les interactions de variables aléatoires qui ne commutent pas.

Définition . . . Soit (A i ) i∈I des sous-algèbres unitaires d'un espace de probabilité non-commutatif (A , τ ). Elles sont dites librement indépendantes (ou simplement libres) si, pour tout n ∈ N, pour tout

(i 1 , . . . , i n ) ∈ I n tel que i k = i k+1 pour tout 1 k n et pour tout a k ∈ A i k , τ (a k ) = 0 implique τ (a 1 . . . a n ) = 0.
Des variables aléatoires (a i ) i∈I sont libres si les algèbres unitaires qu'elles engendrent respectivement sont libres.

Cette définition paraît souvent contre-intuitive et inutilement compliquée de prime abord pour quiconque est habitué aux probabilités classiques ; elle l'est moins pour les algébristes qui pourront reconnaître une analogie avec la notion de liberté dans les groupes.

Définition . . . Soit G un groupe et (G i ) i∈I des sous-groupes de G. Les (G i ) sont libres si pour tout n ∈ N, pour tous i 1 = • • • = i n et pour tout g k ∈ G i k \ {e}, on a g 1 • • • g n = e.
Cette notion de liberté au sein de la théorie des groupes induit par extension celle de produit libre de groupes, et même d'algèbres. Il est rassurant de voir que cette analogie n'est pas infondée, comme nous allons le voir. En effet, pour un groupe donné G, on peut munir son algèbre de groupe CG d'une structure d'espace de probabilité non-commutatif, en posant τ g∈G α g g = α e , et on a alors le résultat suivant. (i) Les groupes (G i ) i sont libres ;

(ii) Les algèbres de groupes CG i , en tant que sous-espaces de probabilité de (CG, τ ), sont libres.

Il n'est pas difficile de s'assurer que la relation de liberté est symétrique. Outre le lien entre la liberté en probabilités non-commutatives et la liberté en théorie des groupes, nous allons voir dans le lemme suivant que la liberté de variables aléatoires permet de s'assurer que leur loi jointe soit entièrement caractérisée par leurs lois individuelles respectives, tout comme pour des variables aléatoires indépendantes en probabilités classiques.

Lemme . . . Soit (A , τ ) un espace de probabilité non-commutatif et

(A i ) i∈I une famille de sous- espaces libres. Soit B l'algèbre engendrée par les A i , alors τ | B est entièrement déterminé par (τ | A i ) i∈I .

. . Convergence dans des espaces non-commutatifs

Contrairement aux probabilités classiques pour lesquelles de nombreuses notions de convergence coexistent et possèdent des caractéristiques propres, les espaces de probabilités non-commutatifs, sans qu'on les pourvoie de structure analytique supplémentaire, ne possèdent qu'un seul type de convergence : la convergence en distribution non-commutative.

Définition . . . Soit (A N , τ N ) N ∈N une suite d'espaces de probabilité non-commutatifs et (A , τ ) un espace de probabilité non-commutatif. Une suite de variables aléatoires (a N ) N ∈N , o ù a N ∈ A N pour tout N , converge en distribution non-commutative vers a ∈ A quand N tend vers l'infini si lim N →∞ τ N (a n N ) = τ (a n ), ∀n ∈ N. ( . )
Si l'on se rapporte au cas classique, cette convergence correspond à la fois à la convergence en loi et à la convergence dans L p pour tout p ∈ N. En guise d'illustration, voici deux formes du théorème central limite, l'une fondée sur l'indépendance tensorielle, l'autre sur la liberté.

Théorème . . . Soit

(A , τ ) un * -espace de probabilité et (a N ) N ∈N * une suite d'éléments de A indé- pendants et identiquement distribués tels que pour tout N ∈ N * : -a N est autoadjoint ; -τ (a N ) = 0 et τ (a 2 N ) = σ 2 < ∞.
Alors on a la convergence en distribution non-commutative suivante : 

a 1 + • • • + a N √ N → x, ( 
P -a N est autoadjoint ; -τ (a N ) = 0 et τ (a 2 N ) = σ 2 < ∞.
Alors on a la convergence en distribution non-commutative suivante : 

a 1 + • • • + a N √ N → s, ( 
(i) N ) N ∈N avec a (i) N ∈ A N et a (i) ∈ A . Alors : (i) (a (i) N ) i∈I,N ∈N converge en distribution non-commutative vers (a (i) ) i∈I si on a lim N →∞ τ N (a (i 1 ) N • • • a (in) N ) = τ (a (i 1 ) • • • a (in) ), ∀n ∈ N, ∀(i 1 , . . . , i n ) ∈ I n . ( . ) (ii) (a (i) N ) i∈I,N ∈N converge en * -distribution vers (a (i) ) i∈I si (a (i) N , (a (i) N ) * ) N ∈N,i∈I converge en dis- tribution vers (a (i) , (a (i) ) * ) i∈I .
Dans le contexte spécifique des matrices aléatoires, la structure analytique de l'espace auquel appartient l'objet limite permet de définir des notions de convergences plus fines et plus variées, s'approchant de celles que l'on retrouve en probabilités classiques.

Definition . . . Soit (A

(N ) 1 , . . . , A (N )
n ) N ∈N une suite de n-uplets de matrices aléatoires, c'est-àdire qu'il existe un espace de probabilité (Ω, F , P) tel que pour tout n et pour tout N , A

(N ) n : Ω → M N (C) soit une variable aléatoire, ou encore que A (N ) n soit un élément de M N (L ∞-(Ω, P)). Soit • M N (C) la norme de Frobenius donnée par M M N (C) = Tr(M M * ), ainsi que (a 1 , . . . , a n ) ∈ A n un n-uplet d'éléments d'un W * -espace de probabilité (A , τ, • ). (i) La suite de n-uplets (A (N ) 1 , . . . , A (N ) n ) converge en distribution non-commutative presque-s ûre- ment vers (a 1 , . . . , a n ) si pour presque-tout Ω, la famille (A (N ) 1 (ω), . . . , A (N ) n (ω) ∈ M N (C) converge en distribution non-commutative vers (a 1 , . . . , a n ) au sens de la Déf. . . . (ii) La suite de n-uplets (A (N ) 1 , . . . , A (N ) n ) converge en distribution non-commutative fortement vers (a 1 , . . . , a n ) si la convergence a lieu en distribution non-commutative presque-s ûrement et si pour tout P ∈ C X 1 , . . . , X n , lim N →∞ P (A (N ) 1 , . . . , A (N ) n ) M N (C) = P (a 1 , . . . , a n ) A , p.s. ( . ) C L Y -M

. . Mouvement brownien unitaire et limite d'échelle

Dans cette section, on met en pratique la théorie développée précédemment dans le but d'étudier un processus stochastique matriciel qui sera présent (de manière plus ou moins explicite) dans la théorie de Yang-Mills en deux dimensions, à savoir le mouvement brownien sur le groupe de structure -U(N ) dans notre cas. Il est construit comme solution d'une équation différentielle stochastique par rapport au mouvement brownien sur u N ; ce dernier peut, comme nous allons le voir, s'interpréter comme une matrice aléatoire dont les coefficients sont des combinaisons linéaires (à coefficients complexes) de mouvements browniens réels. Il est également, à une rotation près, égal au mouvement brownien hermitien introduit par Dyson [Dys ] qui a été étudié plus en détail que son analogue unitaire : par exemple le processus de ses valeurs propres, appelé mouvement brownien de Dyson , est le sujet de nombreuses recherches dont certaines sont liées aux questions d'universalité mentionnées au paragraphe . . .

Définition . . . Soit u N l'algèbre de Lie de U(N ), munie d'un produit scalaire •, • Ad-invariant. Le mouvement brownien sur u N est le processus gaussien K = (K t ) t 0 à valeurs dans u N qui vérifie : E[ X, K t Y, K s ] = (s ∧ t) X, Y , ∀(X, Y ) ∈ u 2 N , ∀(s, t) ∈ (R + ) 2 . ( . )
Il est possible de se ramener à l'étude de mouvements browniens réels en passant en coordonnées :

étant donné une base orthonormée (X 1 , . . . , X d ) de u N et d = dim u N = N 2 mouvements brown- iens réels standards ((B (i) t ) t 0 , 1 i d), on peut construire explicitement K par K t = i B (i) t X i .
Munissons en l'occurrence u N du produit scalaire suivant :

X, Y = N Tr(X * Y ) = N 2 tr(X * Y ). ( . )
On peut se servir du plongement de u N dans M N (C) et utiliser la base canonique (E ij ) de M N (C) pour décrire une base orthonormale de u N . On pose, pour 1 k < ℓ N ,

X kℓ = 1 √ 2N (E kℓ -E ℓk ), Y kℓ = i √ 2N (E kℓ + E ℓk ), et pour 1 k N Z k = i √ N E kk .
Cette famille est bien orthonormale pour le produit scalaire défini plus haut, et comme u N est de dimension d = N 2 on en déduit bien que c'est une base orthonormale. En conclusion, on obtient la forme matricielle explicite suivante du mouvement brownien sur u N :

K t =            iB 1 t √ N B 1,2 t +iB ′ 1,2 t √ 2N B 1,3 t +iB ′ 1,3 t √ 2N • • • B 1,N t +iB ′ 1,N t √ 2N B 1,2 t -iB ′ 1,2 t √ 2N iB 2 t √ N B 2,3 t +iB ′ 2,3 t √ 2N • • • B 2,N t +iB ′ 2,N t √ 2N B 1,3 t -iB ′ 1,3 t √ 2N B 2,3 t -iB ′ 2,3 t √ 2N iB 3 t √ N . . . B 3,N t +iB ′ 3,N t √ 2N . . . . . . . . . . . . . . . B 1,N t -iB ′ 1,N t √ 2N B 2,N t -iB ′ 2,N t √ 2N B 3,N t -iB ′ 3,N t √ 2N • • • iB 3 t √ N            ( . )
On trouvera sa définition et ses principales propriétés au paragraphe . . de [AGZ ].

P

La variation quadratique d[K] t correspond en fait au produit matriciel (dK t dK t ) = -I N dt. Une fac ¸on de voir cela est de faire apparaître l'élément de Casimir C u N , que l'on va décrire au paragraphe . . :

dK t ⊗ dK t = d k,ℓ=1 dB (k) t dB (ℓ) t x k ⊗ x ℓ = C u N dt. Or l'image de C u N par l'application x ⊗ y → xy est c u N I N , o ù c u N = -1, ce qui donne la formule annoncée pour d[K] t . Définition . . . Soit U ∈ U(N ).
Le mouvement brownien sur U(N ) issu de U est l'unique processus (U t ) t 0 solution forte de l'équation différentielle stochastique matricielle suivante :

dU t = U t • dK t = dK t U t + c u N 2 U t dt, ( . ) avec pour condition initiale U 0 = U .
Le passage en coordonnées nous permet de voir K comme une transformation linéaire (complexe) d'un mouvement brownien dans R d ; la bonne nouvelle est alors que les outils habituels du calcul d'Itō multidimensionnel s'appliquent au processus K. Si l'on interprète ( . ) comme un système d'EDS par rapport à des mouvements browniens réels, on se convainc sans peine que cette équation est bien définie ; on peut également montrer que pour tout t, U t appartient bien à U(N ) : en effet, si l'on applique la formule d'Itō multidimensionnelle à

U * t U t on obtient d(U t U * t ) = 0. On en déduit que U t U * t = I N pour tout t et donc U t ∈ U(N ).
Exemple. Dans le cas du groupe U(1), son algèbre de Lie est u 1 = iR, que l'on peut munir du produit scalaire usuel. Ainsi, un mouvement brownien sur u 1 est donné par (iB t ) t , o ù (B t ) est un mouvement brownien standard sur R, et donc le mouvement brownien sur U(1) est la solution forte de l'équation différentielle stochastique

dU t = iU t dB t - 1 2 U t dt.
On peut vérifier sans peine que (e iBt ) t convient ; on remarque que le mouvement brownien sur le cercle correspond bien à un "enroulement" du mouvement brownien réel, au sens o ù son angle, modulo 2π, est égal à (B t ).

L'exemple ci-dessus est important, à notre avis, pour deux raisons. Premièrement, il apparaît, de fac ¸on renormalisée, dans une factorisation du mouvement brownien sur U(N ), que l'on trouve par exemple dans [Dah ].

Lemme . . . Soit (U t ) un mouvement brownien sur U(N ). Alors (U t ) t a la même loi que (e iBt/N S t ) t o ù (B t ) est un mouvement brownien standard et (S t ) est un mouvement brownien sur SU(N ) indépendant de (B t ).

Ce processus est construit exactement comme le mouvement brownien sur u N : c'est la solution forte de l'EDS

dS t = dK su N t S t + c su N 2 S t dt, o ù c su N = -1 + 1 N 2 est associé à l'élément de Casimir C su N et K su N est un mouvement brownien sur su N . C L Y -M
Deuxièmement, une approche -que nous n'utiliserons pas dans cette thèse mais qu'il apparaît intéressant de mentionner -pour analyser le mouvement brownien sur U(N ) est de regarder le processus de ses valeurs propres ; à l'instar du mouvement brownien de Dyson qui caractérise les valeurs propres du mouvement brownien hermitien on peut décrire le processus (e iθ 1 (t) , . . . , e iθ N (t) ) des valeurs propres de (U t ) comme un système de particules sur U(1), et plus particulièrement une famille de mouvements browniens sur U(1) conditionnés à ne pas se rencontrer.

Jusqu'à présent on a introduit le mouvement brownien unitaire en utilisant une représentation matricielle de celui-ci pour se ramener au calcul stochastique multidimensionnel réel. Nous allons désormais l'étudier de fac ¸on plus intrinsèque, à travers le prisme des probabilités non-commutatives introduites aux paragraphes précédents. On se donne un espace de probabilités (Ω, F , P) et on considère le sous-ensemble de M N (C) ⊗ L ∞-(Ω, P) constitué des matrices aléatoires unitaires. C'est un sous-espace de l'espace des matrices aléatoires sur Ω ; il est muni de la structure de groupe induite par U(N ). En particulier, dans ce cadre on peut calculer les * -moments du mouvement brownien unitaire comme suit :

τ (P (U t , U * t )) = E[tr(P (U t , U * t ))] = U(N ) tr(P (U, U -1 ))p t (U )dU, ( . ) 
o ù p t est le noyau de la chaleur sur U(N ) que nous étudierons dans la section . . .

Lorsque N tend vers l'infini, ces moments admettent une limite finie qui déterminent un processus appelé mouvement brownien unitaire libre, ou mouvement brownien multiplicatif libre ; cela explique en partie l'utilisation de la trace normalisée dans le calcul des moments, et en ce sens la limite peut s'interpréter comme une limite d'échelle. Ce processus limite a été défini par Biane [Bia ] dans le langage des probabilités libres, mais des résultats similaires ont été obtenus par Singer [Sin ] et Rains [Rai ] de fac ¸on concomitante, le premier dans un contexte proche de cette thèse, à savoir l'étude asymptotique de la mesure de Yang-Mills planaire, et le second dans un contexte d'étude asymptotique de mouvements browniens sur des groupes matriciels.

Théorème . . . Lorsque N tend vers l'infini, le mouvement brownien (U t ) t 0 sur U(N ) converge presque-s ûrement en distribution non-commutative vers un processus (u t ) t 0 unitaire tel que ses incréments multiplicatifs u t u * s soient stationnaires et libres , et tel que pour tout n ∈ N * ,

τ (u n t ) = τ (u -n t ) = e -nt 2 n-1 k=0 (-t) k k! n k-1 n k + 1 . ( . )
Cette convergence se traduit de la fac ¸on suivante :

pour tout k ∈ N, (t 1 , . . . , t k ) ∈ (R + ) k , et P ∈ C X 1 , . . . , X 2k , lim N →∞ tr(P (U (N ) t 1 , (U (N ) t 1 ) * , . . . , U (N ) t k , (U (N ) t k ) * )) = τ (P (u t 1 , u * t 1 , . . . , u t k , u * t k )) p.s. ( . )
Une version "forte" de ce théorème a plus récemment été démontrée par Collins, Dahlqvist et Kemp [CDK ] : ils ont en effet montré que la convergence de la formule . reste valable si l'on remplace la trace par la norme d'opérateurs, ce qui permet de remplacer la convergence du Thm. . . en une convergence forte au sens de la Déf. . . . Il s'agit là de l'analogue, en probabilités libres, d'un processus de Lévy.

T

La théorie des représentations consiste à identifier un espace relativement général à un sous-espace de End(V ) pour un espace vectoriel V donné, et ainsi bénéficier de la théorie de la réduction des endomorphismes -entre autres -afin de décomposer les objets étudiés dans une base bien choisie. En d'autre termes, on peut voir la théorie des représentations comme une version algébrique de la théorie spectrale, ou de la théorie de Fourier.

Bien que nous la nommions "théorie" au singulier, elle est multiple et foisonnante, et surtout se rapporte à des objets qui peuvent être de natures fondamentalement différentes, et de structures plus ou moins riches ; nous allons cependant tenter d'en donner une définition informelle la plus générale possible avant d'en étudier des aspects spécifiques : étant donné une catégorie C et un objet A de celle-ci, une représentation de A dans un espace vectoriel V est la donnée d'un morphisme de A vers End(V ) ou GL(V ) , ce qui se traduit de manière synthétique par :

(ρ, V ) représentation de A ∈ Obj(C) ⇔ (V ∈ Obj(Vec), ρ ∈ Hom C (A, GL(V )).

Exemples.

(i) Dans la catégorie Grp des groupes, une représentation d'un groupe G est la donnée d'un espace vectoriel V et d'un morphisme de groupes G → GL(V ).

(ii) Dans la catégorie TopGrp des groupes topologiques, une représentation de G est donnée par un morphisme de groupes topologiques G → GL(V ), soit un morphisme de groupes qui soit continu.

( Notre objectif ici est de développer la théorie de Fourier, ou tout du moins son analogue, dans le groupe U(N ). Nous allons donc, dans un premier temps, énoncer quelques résultats généraux sur les représentations des groupes, en particulier des groupes compacts, qui vont nous mener au théorème fondamental de Peter-Weyl et à la décomposition spectrale du Laplacien sur un groupe compact. Dans un second temps, nous verrons comment ces résultats s'appliquent au cas du groupe unitaire.

. . De la mesure de Haar sur un groupe

Aussi s ûr que la théorie de Fourier et l'analyse harmonique "classiques" présupposent une connaissance de la théorie de l'intégration sur R n , la théorie des représentations, notamment appliquée à l'analyse harmonique non-commutative, nécessite une connaissance de la théorie de l'intégration sur d'autres groupes. Loin de nous l'idée de détailler cette théorie, mais il semble indispensable qu'avant Cela présuppose, bien entendu, que End(V ) ou GL(V ) appartienne à la catégorie C, et cela ne fonctionne donc pas pour toute catégorie.

C

L Y -M d'aller plus loin nous introduisions au moins la notion de mesure de Haar et quelques-unes de ses propriétés. Le chapitre de [Far ] constitue une introduction élémentaire au sujet, et un développement plus complet pourra être trouvé au chapitre de [God ], voire pour les plus hardis au chapitre VII de [Bou ] -la monographie [Wei ] pourra aussi être consultée avec profit.

Definition . . . Soit G un groupe topologique localement compact. Une mesure de Radon positive µ sur G est invariante à gauche si elle vérifie

G f (gx)dµ(x) = G f (x)dµ(x), ∀g ∈ G, ∀f ∈ C c (G), et invariante à droite si elle vérifie G f (xg)dµ(x) = G f (x)dµ(x), ∀g ∈ G, ∀f ∈ C c (G).
Une mesure invariante à gauche (resp. à droite) non nulle, si elle existe, est appelée mesure de Haar à gauche (resp. à droite).

L'existence de cette mesure a été démontrée pour un groupe localement compact métrisable et séparable par Haar [Haa ], puis par Weil [Wei ] en toute généralité. Lorsqu'un groupe admet une mesure de Haar finie, elle est unique à un facteur près ; c'est un résultat que l'on doit à von Neumann [vN ] et Kakutani [Kak ]. En particulier pour tout groupe compact G il existe une mesure de Haar à gauche µ sur G telle que µ(G) = 1 : c'est de cette mesure qu'il s'agira lorsque nous parlerons de mesure de Haar par la suite, et on la notera dg.

Proposition . . . Soit G un groupe localement compact.

(i) Si µ est une mesure de Haar à gauche sur G et g est un élément de G, la forme linéaire

C c (G) → R f → G f (gxg -1 )dµ(x)
définit une mesure de Haar à gauche. Il existe donc ∆(g) > 0 tel que 

G f (gxg -1 )dµ(x) = ∆(g) G f (x)dµ(x), et on appelle module l'application ∆ : G → R + . (ii)
: G → GL(V ).
Par défaut, dans ce qui suit, on supposera toute représentation continue si G est un groupe topologique et lisse si G est un groupe de Lie. Notons qu'on peut également définir une représentation de G par une action de groupe (g, v) → g • v sur un espace vectoriel V . Il arrive alors que V soit appelé un G-module car l'action de g sur V ressemble formellement à la multiplication externe d'un anneau A sur un A-module. L'expression "G-module" est toutefois un abus de langage, ou tout au moins une métonymie : en réalité on peut effectivement munir V d'une structure de module sur l'algèbre du groupe G. Cette correspondance mérite d'être développée.

Définition . . . Soit G un groupe, et K = R ou C. Son algèbre de groupe K[G] est la K-algèbre constituée des combinaisons linéaires d'éléments de G à coefficients dans K.
Notons que lorsque G est engendré par des générateurs {g 1 , . . . , g k }, on peut voir K[G] comme l'image de l'algèbre K X 1 , . . . , X k des polynômes non-commutatifs à k variables et à coefficients dans K par la spécialisation (X 1 , . . . , X k ) → (g 1 , . . . , g k ). La terminologie "G-module" peut alors s'expliquer par la proposition suivante, dont la démonstration constitue une simple vérification.

Proposition . . . Soit (ρ, V ) une représentation de G. Alors V peut être muni d'une structure de K(G)-module en étendant K-linéairement l'action de G sur V définie par g • v = ρ(g)v, ∀g ∈ G, ∀v ∈ V.
Les deux définitions d'une représentation que nous avons introduites possèdent chacune ses avantages : la première rend explicite le morphisme ρ tandis que la seconde est plus concise et permet d'alléger les notations, particulièrement lorsqu'on raisonne de manière diagrammatique. Dans ce qui suit, nous les utiliserons indistinctement selon ce qui semblera le plus pertinent.

Passons à présent au produit tensoriel de représentations, qui permet de considérer l'action simultanée du groupe sur plusieurs espaces vectoriels comme une action sur leur produit tensoriel.

Définition . . . Soit (ρ 1 , V 1 ) et (ρ 2 , V 2 ) deux représentations de G. Le produit tensoriel de ces représentations est défini comme la représentation ρ 1 ⊗ ρ 2 sur l'espace V 1 ⊗ V 2 vérifiant les deux propriétés (équivalentes) suivantes : g • (v 1 ⊗ v 2 ) = (g • v 1 ) ⊗ (g • v 2 ), ∀v 1 ⊗ v 2 ∈ V 1 ⊗ V 2 , ∀g ∈ G; (ρ 1 ⊗ ρ 2 )(g) = ρ 1 (g) ⊗ ρ 2 (g), ∀g ∈ G.
Note : on peut étendre cette définition au produit tensoriel d'un nombre fini de représentations ρ 1 ⊗ • • • ⊗ ρ n , et ce, de manière associative. Cela permet de voir l'algèbre tensorielle

T (V ) = ∞ n=0 V ⊗n C L Y -M
comme une représentation de G. Notons que G agit sur T (V ) par automorphismes d'algèbre graduée .

Dans les applications de la théorie des représentations aux probabilités non-commutatives, le produit tensoriel de représentations occupe une place de choix, comme l'illustrent la dualité de Schur-Weyl ou bien la décomposition d'un produit de caractères -nous aurons le loisir de présenter ces résultats au chapitre . Aussi semble-t-il utile de rappeler quelques propriétés plus ou moins connues du produit tensoriel d'espaces vectoriels ; pour plus de détails, on renvoie à [Pro , Chap. ].

Pour commencer, l'application

Φ U,V : V ⊗ U * ∼ = -→ Hom(U, V ) v ⊗ ϕ -→ u → ϕ, u v ( . )
définit un isomorphisme canonique. Toute application A ∈ Hom(U, V ), représentée matriciellement par (a ij ) dans des bases {e 1 , . . . , e n } et {f 1 , . . . , f n } respectivement de U et V , correspond au tenseur i,j a ij f i ⊗e j , en notant {e 1 , . . . , e n } la base duale sur U * . En effet, pour tout k on constate que

Φ U,V (f i ⊗ e j )(e k ) = e j , e k f i = δ jk f i et comme pour tout k on a Ae k = i a ik f i , on conclut par linéarité. Soit (ρ 1 , U ) et (ρ 2 , V ) deux représentations de G. L'action de G sur Hom(U, V ) donnée par (g • A)(u) = g • A(g -1 • u) se traduit par le diagramme U V U V A g g g•A
Un cas particulier de l'isomorphisme Φ est celui o ù V = C, et ρ 2 est la représentation triviale, i.e. ρ 2 (g)z = z, ∀z ∈ C ; la représentation définie par le procédé précédent n'est autre que la représentation contragrédiente ρ ∨ sur U * = Hom(U, C). Aussi, l'action de G sur Hom(U, V ) peut se réinterpréter en termes de produit tensoriel comme 

g • A = (ρ 2 ⊗ ρ ∨ 1 )(g)(Φ -1 U,C (A)). Un autre cas particulier d'isomorphisme est celui o ù U = V ,
Tr U (u ⊗ ϕ) = ϕ, u .
Il n'est pas difficile de vérifier que cette définition coïncide avec celle de la trace d'un endomorphisme représenté matriciellement :

Tr U (u ⊗ ϕ) = Tr(Φ U (u ⊗ ϕ)).
La trace satisfait la propriété de factorisation suivante, que l'on peut rapprocher de la factorisation qui caractérise l'indépendance tensorielle en probabilités non-commutatives.

Cette action s'opère diagonalement sur les k-tenseurs : g

• (v 1 ⊗ • • • ⊗ v k ) = (g • v 1 ) ⊗ • • • ⊗ (g • v k ). Proposition . . . Soit A ∈ End(U ), B ∈ End(V ). La trace de A ⊗ B ∈ End(U ⊗ V ) vérifie Tr(A ⊗ B) = Tr(A)Tr(B).
De la même fac ¸on qu'on peut comprendre un espace vectoriel plus simplement lorsqu'on le décompose en sous-espaces vectoriel, nous allons voir qu'il est souvent utile de décomposer une représentation en d'autres représentations plus simples. Définition . . . Soit (ρ, V ) une représentation d'un groupe G. Si W est un sous-espace de V stable par ρ(g) pour tout g ∈ G, on dit que (ρ, W ) est une sous-représentation de (ρ, V ), ou encore que W est un sous-G-module de V .

Il apparaît important de noter que l'on ne parle pas de restriction pour autant. En effet, la représentation restreinte est la restriction d'une représentation d'un groupe G à la représentation d'un sousgroupe H.

Une représentation ρ est dite irréductible si elle n'admet pas de sous-représentation non-triviale. On peut voir les représentations irréductibles comme les atomes de la théorie des représentations, et un des principaux enjeux de cette branche est de caractériser les représentations irréductibles, puis de déterminer des règles de décomposition de certaines représentations en représentations irréductibles d'autre part. Commenc ¸ons par introduire la notion d'entrelacement, qui comme on va le voir par la suite, permet d'établir des isomorphismes entre deux représentations irréductibles.

Définition . . . Si (ρ 1 , V 1 ) et (ρ 2 , V 2 ) sont deux représentations de G et A ∈ Hom(V 1 , V 2 ) vérifie Aρ 1 (g) = ρ 2 (g)A, ∀g ∈ G, ( . )
alors on dit que A entrelace ρ 1 et ρ 2 .

L'entrelacement peut se traduire par le diagramme commutatif suivant :

V 1 V 2 V 1 V 2 A g g A et on dit que A est une application G-équivariante. L'ensemble des applications G-équivariantes de V 1 vers V 2 est noté Hom G (V 1 , V 2 ). C'est l'ensemble des points fixes de l'action de G sur Hom(V 1 , V 2 ). En effet, soit A ∈ Hom G (V 1 , V 2 ). On a (g • A)(u) = g • A(g -1 • u) = A(u) si et seulement si g • A(v) = A(g • v), en posant v = g -1 • u.
Le lemme suivant est fondamental, à tel point qu'il nous semble utile d'en donner la (courte) démonstration.

C L Y -M Lemme . . (Schur). (i) Soit (ρ 1 , V 1 ) et (ρ 2 , V 2 ) deux représentations irréductibles de dimension finie d'un groupe G. Si A ∈ Hom(V 1 , V 2 ) est G-équivariante et non nulle, alors c'est un isomorphisme. (ii) Soit (ρ, V ) une représentation complexe irréductible de G, et A ∈ End(V ) une application qui commute avec ρ. Alors il existe λ ∈ C tel que A = λI V . Preuve. (i) Le sous-espace ker A est stable. En effet, soit x ∈ ker A, g ∈ G, alors ρ 2 (g)Ax = 0 = Aρ 1 (g)x donc ρ 1 (g)x ∈ ker A.
Or ρ 1 est irréductible donc soit A = 0 soit A est injective. Par un raisonnement similaire on montre la surjectivité de A.

(ii) Par le théorème fondamental de l'algèbre, il existe λ ∈ C tel que A -λI V ne soit pas inversible. En appliquant le point (i), on en déduit que A -λI V = 0.

Le lemme de Schur permet notamment de définir des classes d'équivalence sur les représentations irréductibles, en considérant que deux représentations irréductibles sont équivalentes si et seulement si elles sont entrelacées par une application linéaire non nulle. On note G l'ensemble des classes d'équivalence de représentations irréductibles.

Définition . . . Soit (ρ, V ) une représentation complexe irréductible de dimension finie d'un groupe G. Son caractère est la fonction

χ ρ : G → C g → Tr(ρ(g)) . ( . )
Un corollaire immédiat du lemme de Schur est que deux représentations irréductibles équivalentes possèdent le même caractère, donc que G est en bijection avec l'ensemble des caractères irréductibles. Aussi emploierons-nous la même notation pour cet ensemble. Un autre corollaire immédiat du lemme de Schur, utilisant cette fois-ci le point (ii), est que les représentations irréductibles d'un groupe abélien sont toutes de dimension 1, et qu'elles sont égales à leur caractère. Lorsque G est abélien et localement compact, G est lui-même un groupe abélien localement compact, appelé groupe dual. Ce cadre permet une généralisation du développement en série de Fourier des fonctions périodiques, vues comme des fonction de G = U(1) dont le groupe dual est G = Z. Nous développerons cet exemple à la lumière du théorème de Peter-Weyl dans la section . . . Définition . . . Soit (ρ, V ) une représentation complexe de dimension finie d'un groupe compact G. La représentation ρ est dite :

(i) réelle si V est muni d'une structure réelle invariante, i.e. une application antilinéaire G-équi- variante c : V → V telle que c 2 = Id V ;
(ii) quaternionique si V est muni d'une structure quaternionique invariante, i.e. une application antilinéaire G-équivariante j : V → V telle que j 2 = -Id V ;

(iii) complexe si elle n'est ni réelle, ni quaternionique.

La classification ci-dessus admet une caractérisation intéressante, donnée par la proposition suivante. ( . )

Proposition

Le membre de gauche de l'équation ( . ) est appelé indicateur de Frobenius-Schur de λ et se note parfois ι λ . Il jouera un rôle déterminant dans le chapitre pour calculer la limite de la fonction de partition de Yang-Mills sur une surface non-orientable.

Nous terminons cette section avec une brève revue des représentations d'algèbres de Lie. Définition . . . Soit g une algèbre de Lie. une représentation de g est la donnée d'un C-espace vectoriel V et d'une application linéaire ρ : g → End(V ) qui est un morphisme d'algèbres de Lie, i.e.

ρ([X, Y ]) = [ρ(X), ρ(Y )], ∀(X, Y ) ∈ g 2 .
( . )

Exemple. Si g est une algèbre de Lie, on définit sa représentation adjointe ad sur elle-même par

ad X (Y ) = [X, Y ], ∀(X, Y ) ∈ g 2 . ( . )
La théorie des représentations des algèbres de Lie est similaire à celle des représentations des groupes de Lie, notamment en raison du troisième théorème de Lie (cf. [Ser , II.V. , Thm. ]) qui établit que pour toute algèbre de Lie g de dimension finie il existe un groupe de Lie G connexe et simplement connexe tel que g soit l'algèbre de Lie de G. Forts de cette information, nous pouvons alors transporter les représentations des groupes de Lie vers celles des algèbres, via un procédé de dérivation en l'élément neutre.

Proposition . . . Soit G un groupe de Lie linéaire, g son algèbre de Lie, et (ρ, V ) une représentation continue de G dans un espace vectoriel de dimension finie. On pose

dρ : g → V, X → d dt ρ(exp tX)| t=0 . ( . )
Cela donne une représentation de g dans V , appelée représentation dérivée de ρ.

La représentation adjointe Ad de G sur g, définie par l'action adjointe ( . ), admet pour représentation dérivée la représentation adjointe ad de g dans elle-même :

ad X (Y ) = d dt Ad(exp(tX))| t=0 Y = [X, Y ]. ( . )
Ces deux représentations sont reliées par l'application exponentielle, puisqu'on a la relation

Ad exp(X) = exp(ad X ), ∀X ∈ g. ( . )
En réalité on a même un résultat encore plus fort, qui découle notamment du troisième théorème de Lie. Ser ], II.V. , Thm. ). La catégorie des groupes de Lie complexes connexes et simplement connexes est équivalente à la catégorie des algèbres de Lie complexes de dimension finie.

C L Y -M Theorem . . ([
Cette équivalence est fondamentale, dans le sens o ù les représentations d'algèbres de Lie (qui sont en général plus faciles à étudier) déterminent exactement les représentations de groupes de Lie lorsque ces derniers sont connexes et simplement connexes. Nous verrons que l'on peut également déduire les représentations d'autres groupes, non nécessairement connexes ou simplement connexes, à partir des représentations de leur algèbre de Lie : nous traiterons en détail le cas de U(N ) dans le paragraphe . . .

. . Représentations des groupes compacts

Lorsque le groupe G est compact, on peut apparenter la décomposition de ses représentations à la réduction d'endomorphismes, à l'aide de représentations unitaires. On va également voir qu'il est possible de définir un opérateur qui commute avec toutes les représentations irréductibles, et qui jouera le rôle du laplacien. Définition . . . Soit (ρ, V ) une représentation de G. Supposons V muni d'une structure d'espace de Hilbert. La représentation ρ est dite unitaire si elle est à valeurs dans U(V ) = {U ∈ End(V ) :

U * U = U U * = Id V }.
Comme la proposition suivante le montre, l'utilisation de représentations unitaires permet de décomposer toute représentation d'un groupe compact en sous-représentations irréductibles. (ii) Tout sous-espace de V stable par ρ admet un supplémentaire stable.

(iii) L'espace V peut être décomposé en somme directe de sous-espaces stables irréductibles. À l'aide de cette proposition et du lemme de Schur, on obtient les relations d'orthogonalité de Schur.

Théorème . . . Soit (ρ, V ) une représentation unitaire irréductible de G. Alors G ρ(g)u, v ρ(g)u ′ , v ′ dg = 1 d ρ u, u ′ v, v ′ , ∀(u, v, u ′ , v ′ ) ∈ V 4 . ( . ) Soit (ρ 1 , V 1 ) et (ρ 2 , V 2 ) deux représentations irréductibles de G non équivalentes. Alors G ρ 1 (g)u, v ρ 2 (g)u ′ , v ′ dg = 0, ∀(u, v) ∈ V 2 1 , ∀(u ′ , v ′ ) ∈ V 2 2 . ( . )
Ces relations sont un pas vers le théorème central de la théorie des représentations des groupes compacts, et qui a posé les jalons de l'analyse harmonique non-commutative .

Théorème . . (Peter-Weyl). Soit G un groupe compact, G l'ensemble des classes d'équivalences de ses représentations unitaires irréductibles.

(i) Pour tout λ ∈ G et (ρ λ , V λ ) une représentation de classe λ, on note M λ l'espace vectoriel engendré par les fonctions (ρ ij : g → ρ λ (g)e i , e j ) i,j , (e i ) étant une base de V λ . Alors

L 2 (G) = λ∈ G M λ , ( . ) o ù ' ' désigne la fermeture dans L 2 (G). (ii) Une fonction f ∈ L 2 (G) est dite centrale si pour tout g, h ∈ G, f (hgh -1 ) = f (g). On note Z 2 (G) le sous-espace de L 2 (G) constitué des fonctions centrales . Alors l'ensemble des caractères χ λ , o ù λ parcourt G, est une base hilbertienne de Z 2 (G).
Pour comprendre le fonctionnement de ce théorème, illustrons-le dans le cas de U(1). L'isomorphisme de groupes topologiques

U(1) → R/2πZ z = e iθ → θ ( . )
permet d'établir la correspondance biunivoque entre les fonctions centrales sur U(1) et les fonctions 2π-périodiques :

f ∈ Z(U(1)) ↔ f 0 : R/2πZ → C θ → f (e iθ )
D'après le théorème de Peter-Weyl, de telles fonctions sont donc décomposables dans la base hilbertienne des caractères irréductibles de U(1). Or, comme il s'agit ici d'un groupe abélien, ses représentations irréductibles sont toutes de dimension 1 et égales à leur caractère. On peut montrer que les caractères en question sont les fonctions (χ n ) n∈Z définies par

χ n : U(1) → C x → x n .
Par conséquent, toute fonction f ∈ Z(U(1)) admet la décomposition

f (z) = n∈Z c n (f )z n , ( . ) 
De telles fonctions sont appelées coefficients matriciels, car elles représentent les coefficients de la représentation ρ λ (g) vue comme une matrice dans la base (e i ). Notons que l'on peut réinterpréter la relation d'orthogonalité de Schur ( . ) comme suit :

G ρ ij (g)ρ kℓ (g)dg = 1 d ρ δ ik δ jℓ .
Le Z est là pour signifier que c'est précisément le centre (Zentrum en allemand) de l'algèbre L 2 (G) munie du produit de convolution, ce qui se vérifie immédiatement.

Comme U(1) est abélien, toute fonction f:

U(1) → C est centrale. C L Y -M o ù (c n (f )
) n∈Z est une famille de nombres complexes telle que la série entière du membre de droite soit de rayon de convergence au moins 1. En transposant l'équation ( . ) pour les fonctions 2πpériodiques, on obtient alors la formule classique du développement en série de Fourier

f 0 (θ) = n∈Z c n (f 0 )(cos(nθ) + i sin(nθ)). ( . )
La décomposition de fonctions sur U(1) en série de Fourier admet en réalité une généralisation, qui est un corollaire direct du théorème de Peter-Weyl et des relations d'orthogonalité de Schur : la formule de Plancherel. Si λ ∈ G est une classe d'équivalence de représentations irréductibles de G et (ρ λ , V λ ) un représentant de cette classe, on associe à toute fonction f intégrable sur G son coefficient de Fourier

f (λ) = G f (g)ρ λ (g -1 )dg.
On a alors le théorème suivant.

Théorème . . (Théorème de Plancherel). Soit G un groupe compact, f ∈ L 2 (G) une fonction de carré intégrable sur G. Alors f est égale à sa série de Fourier

f (g) = λ∈ G d λ Tr( f (λ)ρ λ (g)), ∀g ∈ G. ( . )
Si l'on utilise la définition des coefficients de Fourier et les propriétés de ρ λ on peut remarquer que l'équation ( . ) peut se réecrire à l'aide des caractères irréductibles :

f (g) = λ∈ G d λ (f * χ λ )(g), ∀g ∈ G.
( . )

Il est intéressant de mentionner que tous les résultats abordés dans cette section s'appliquent en particulier aux groupes finis, en notant que pour un tel groupe, une mesure de Haar est un multiple de la mesure de comptage.

Nous allons à présent nous tourner vers un second aspect de la théorie des représentations des groupes compacts : la résolution d'équations aux dérivées partielles. En effet, un des exemples canoniques de l'utilisation de l'analyse harmonique dans R n est la caractérisation du noyau de la chaleur, c'est-à-dire la solution fondamentale de l'équation de la chaleur

1 2 ∆ x f (x, t) = ∂ ∂t f (x, t).
Celle-ci se fonde sur une étude spectrale de l'opérateur laplacien sur R n en utilisant la transformée de Fourier ; nous allons voir comment cela fonctionne en remplac ¸ant R n par un groupe compact G muni de son algèbre de Lie g. On munit g d'une structure euclidienne, en choisissant un produit scalaire ., . invariant par la représentation adjointe de G :

Ad(g)X, Ad(g)Y = X, Y , ∀g ∈ G, ∀(X, Y ) ∈ g 2 .
Notons qu'à partir d'un produit scalaire (.|.) quelconque sur g, on peut construire un tel produit scalaire invariant en posant

X, Y = G (Ad(g)X|Ad(g)Y )dg.
Il s'agit là d'une égalité dans L 2 (G), c'est-à-dire que la série du terme de droite de ( . ) converge dans L 2 (G). T Définition . . . Soit X = (X 1 , . . . , X d ) une base orthonormée de g. On appelle élément de Casimir le tenseur

C g = d i=1 X i ⊗ X i .
Une propriété importante pour garantir la bonne définition de ce tenseur est qu'il ne dépend pas de la base orthonormée choisie. En effet, soit Y = (Y 1 , . . . , Y d ) une autre base orthonormée, posons Q = (Q ij ) 1 i,j d la matrice de changement de base de X vers Y , qui est une matrice orthogonale, c'est-à-dire que (Q -1 ) ij = Q ji pour tout (i, j) ∈ {1, . . . , d}. On a

d j=1 Y j ⊗ Y j = d j=1 d i=1 Q ij X i ⊗ Q ij X i = d i=1 d j=1 Q ij Q ij X i ⊗ X i = d i=1 d j=1 Q ij (Q -1 ) ji X i ⊗ X i = d i=1 X i ⊗ X i , en utilisant l'orthogonalité de Q.
Étant donné une représentation (ρ, V ) de g, on peut associer à l'élément de Casimir un opérateur Ω ρ ∈ End(V ), appelé opérateur de Casimir de la représentation ρ, défini par

Ω ρ = m • (ρ ⊗ ρ)(C g ) = d i=1 ρ(X i ) 2 , ( . )
o ù m : x⊗y → xy est l'opération de multiplication dans M N (C). On peut vérifier que Ω ρ commute à la représentation ρ, et si ρ est irréductible le lemme de Schur implique qu'il existe c ρ ∈ C tel que

Ω ρ = -c ρ Id V . ( . )
Le signe '-' provient de la remarque suivante : si ρ = dπ o ù π est une représentation de G telle que ρ n'est pas la représentation triviale, alors en prenant un produit scalaire (., .) sur V pour lequel π est unitaire, on a dπ(X) * = -dπ(X), ∀X ∈ g,

et pour tout v ∈ V non nul, (Ω ρ v, v) = - i ρ(X i )v 2 < 0.
Ainsi, on obtient que c ρ > 0.

L'élément de Casimir C g est en réalité intimement lié au laplacien sur le groupe G.

C

L Y -M Définition . . . L'opérateur de Laplace-Beltrami ( ou laplacien) sur G est l'opérateur défini par

∆ G : C 2 (G) → C 0 (G) f → ∆ G f : g → d i=1 d 2 dt 2 t=0 f (g exp(tX i )) , ( . )
o ù (X 1 , . . . , X d ) est une base orthonormée de g.

La dérivée de Lie, qui correspond à l'analogue, dans un groupe de Lie, de la dérivée directionnelle selon un vecteur tangent, définit une représentation ρ de g sur C 1 (G) :

ρ(X)f : g → d dt t=0 f (g exp(tX)), ( . ) 
et il vient naturellement que

∆ G f = Ω ρ f, ∀f ∈ C 2 (G). ( . )
Par ailleurs, si λ ∈ G est une classe d'équivalence de représentations irréductibles et (ρ λ , V λ ) est une représentation irréductible de classe λ, alors toute fonction représentative f ∈ M λ peut s'écrire

f (g) = Tr(A f ρ λ (g)), avec A f ∈ End(V ). Il vient que ∆ G f (g) = Tr(Ω ρ λ A f ρ λ (g)),
et d'après ( . ), en notant c λ = c ρ λ , on en déduit que

∆ G f = -c λ f. ( . )
La décomposition du laplacien en fonctions propres permet de décrire la décomposition du noyau de la chaleur sur G à l'aide des caractères irréductibles. Nous allons montrer cela dans la section . . , dans le cas o ù G est le groupe unitaire. Nous verrons également plus tard que l'élément de Casimir dont on s'est servi pour décrire le laplacien apparaît dans la construction du mouvement brownien sur le groupe -ce qui n'a rien d'étonnant lorsqu'on le considère comme un processus de Markov de générateur 1 2 ∆ G et dont le semi-groupe de convolution est justement donné par le noyau de la chaleur.

. . Diagrammes de Young et fonctions de Schur

Avant de décrire les représentations de U(N ) nous devons introduire quelques objets combinatoires que nous retrouverons dans nos calculs, et qui apparaissent dans de nombreux modèles de physique statistique .

Une partition λ ⊢ n d'un entier naturel n est un k-uplet d'entiers naturels λ = (λ 1 , . . . , λ k ), que l'on peut toujours supposer ordonné :

λ 1 • • • λ k 0.
Les coefficients de la partition sont appelés des parts. Un diagramme de Young est la représentation graphique d'une telle partition On en trouvera une liste non exhaustive d'exemples dans [BP ] et [GP ].

T

Exemples. Considérons des cas particuliers de signatures à coefficients positifs : si N ∈ N * et r ∈ N * sont deux entiers on pose λ = (r) ∈ N N lorsque λ = (r, 0, . . . , 0), ce qui correspond à un diagramme d'une seule ligne, et si r N on pose λ = (1 r ) ∈ N N lorsque λ = (1, . . . , 1 r , 0, . . . , 0), ce qui correspond à un diagramme d'une seule colonne. On peut vérifier que

s (r) (x 1 , . . . , x N ) = h r (x 1 , . . . , x N ),
o ù h r est la r-ième fonction symétrique complète, définie comme la somme de tous les monômes de degré r. De même on peut vérifier que

s (1 r ) (x 1 , . . . , x N ) = e r (x 1 , . . . , x N ),
o ù e r est la r-ième fonction symétrique élémentaire, définie comme la somme de tous les produits de r éléments distincts parmi les N variables. Voici des exemples plus précis de telles fonctions lorsque N = 3.

s (1,0,0) : (x, y, z) →x + y + z, s (1,1,0) : (x, y, z) →xy + xz + yz, s (2,0,0) : (x, y, z) →x 2 + xy + xz + y 2 + yz + z 2 , s (1,1,1) : (x, y, z) →xyz, s (3,0,0) : (x, y, z) →x 3 + x 2 y + x 2 z + xy 2 + xyz + xz 2 + y 3 + y 2 z + yz 2 + z 3 .
Si l'on note |λ| = λ 1 +• • •+λ N on remarque que dans les exemples précédents s λ est un polynôme homogène de degré |λ| ; c'est en réalité valable pour tout λ tel que λ N 0, et c'est une conséquence de la formule de Jacobi-Trudi

s λ = det(h λ i +j-i ) 1 i,j N .
( . )

Si l'on autorise les λ i à être négatifs, l'homogénéité persiste bien que s λ devienne un polynôme de Laurent.

La formule suivante, appelée règle de branchement, permet de calculer récursivement n'importe quelle fonction de Schur à N variables à partir de celles à N -1 variables. Elle possède par ailleurs une interprétation en termes de représentations du groupe unitaire.

Proposition . . . Soit λ = (λ 1 • • • λ N ) ∈ Z N . Pour tout (x 1 , . . . , x N ) ∈ C N , on a s λ (x 1 , . . . , x N ) = µ=(µ 1 ••• µ N -1 )∈Z N -1 µ≺λ s µ (x 1 , . . . , x N -1 )x |λ|-|µ| N . ( . 
)
Une dernière formule qui va nous intéresser est la formule de Pieri.

Proposition . . . Soit λ = (λ 1 • • • λ N ) ∈ N N une partition et r un entier naturel positif. On a l'égalité suivante : h r s λ = µ s µ , ( . )
o ù la somme s'effectue sur toutes les signatures µ telles que λ ⊂ µ et telles que µλ est une bande horizontale de taille r.

On en trouvera une démonstration dans [FH , §A. ].
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Les fonctions de Schur possèdent une multitude d'autres propriétés combinatoires que l'on pourra notamment retrouver dans [Mac ] et [Sta ], mais dans le cadre de cette thèse elles auront avant tout la vocation d'être les caractères des représentations irréductibles de U(N ), comme nous allons le voir au prochain paragraphe.

. . Représentations du groupe unitaire

Dans cette section, nous allons nous concentrer sur le cas o ù le groupe G est le groupe unitaire U(N ). Notre objectif final est de démontrer la décomposition suivante du noyau de la chaleur p T sur U(N ), dont nous définirons les différentes composantes :

p T (U ) = λ 1 ••• λ N (λ 1 ,...,λ N )∈Z N e -c 2 (λ) T 2 d λ s λ (U ), ∀T > 0, ∀U ∈ U(N ). ( . )
En premier lieu, nous allons donner les représentations irréductibles de U(N ) et leurs caracères ; nous allons pour ce faire utiliser la théorie des plus hauts poids. Nous exhiberons ensuite une expression de l'opérateur de Casimir et de ses valeurs propres associées aux fonctions de Schur, pour enfin exprimer le noyau de la chaleur à l'aide des fonctions de Schur, ce qui donnera l'équation ( . ).

On rappelle que U(N ) est un sous-groupe compact et connexe de GL N (C). Son algèbre de Lie u N est un espace vectoriel réel mais pas complexe, et sa complexifiée n'est autre que gl N (C) = M N (C). Le sous-groupe

T N = {t = diag(t 1 , . . . , t N ), t 1 , . . . , t N ∈ C, |t j | = 1}
du groupe U(N ) en est un tore maximal. Son algèbre de Lie est donnée par

t N = {t = diag(t 1 , . . . , t N ), t 1 , . . . , t N ∈ iR} .
La complexifiée de t N , notée h N , correspond à la restriction de gl N (C) aux matrices diagonales, et la sous-algèbres nilpotente de gl N (C) constituée des matrices triangulaires supérieures strictes est notée n N .

Théorème . . . L'algèbre de Lie gl N (C) admet la décomposition en somme directe

gl N (C) = h N ⊕ n N ⊕ n * N ( . )
Soit (π, V ) une représentation de dimension finie de U(N ). On étend π par différentiation en une représentation dπ de l'algèbre de Lie u N , puis, par complexification, en une représentation de gl N (C). Une forme linéaire µ sur h N est un poids de la représentation π s'il existe un vecteur v ∈ V non nul tel que pour tout H ∈ h N , on ait dπ(H)(v) = µ(H)v. Tout poids de la représentation π est de la forme ) et on appelle poids de h N toutes les formes linéaires sur h N de cette forme.

µ(H) = N i=1 µ i h i , µ i ∈ Z, ∀H = diag(h 1 , . . . , h N ) ∈ h N , ( . 
L'ensemble P des poids de h N est donc en bijection avec Z N . On note P (π) le sous-ensemble de P constitué des poids de la représentation π. Parmi les poids de h N , on distingue les poids dominants et les poids fortement dominants. T Définition . . . On note P + (resp. P ++ ) l'ensemble des poids µ dominants (resp. fortement dominants), c'est-à-dire tels que

µ 1 • • • µ N (resp. µ 1 > • • • > µ N ).
Proposition . . . On a la décomposition suivante :

V = µ∈P (π) V µ , ( . )
o ù V µ est le sous-espace propre généralisé associé à µ, c'est-à-dire

V µ = {v ∈ V : ∀H ∈ h N , dπ(H)v = µ(H)v}.
Définition . . . Un vecteur non nul v ∈ V est un vecteur de plus haut poids s'il existe un poids

λ ∈ P (π) tel que dπ(H)v = λ(H)v, ∀H ∈ h N et dπ(X)v = 0, ∀X ∈ n N .
Par la décomposition ( . ) on voit que si v est un vecteur de plus haut poids et

M = H + X + ∈ gl N (C), alors dπ(M )v = λ(H)v.
Théorème . . (Théorème du plus haut poids). Soit (π, V ) une représentation de dimension finie de U(N ).

(i) π possède un vecteur de plus haut poids.

(ii) π est irréductible si et seulement si tous les vecteurs de plus haut poids sont proportionnels entre eux.

En particulier, ils sont associés à un même poids dominant λ que l'on appellera plus haut poids de π.

Ce théorème définit une application Cela suffit à décrire les caractères des représentations irréductibles car toute fonction centrale sur U(N ) est entièrement caractérisée par sa restriction à T N . Terminons par le calcul de la dimension d'une représentation irréductible à l'aide de son plus haut poids. Si (π, V ) est une représentation irréductible de plus haut poids λ, sa dimension d λ = s λ (1, . . . , 1) n'est pas donnée directement par la formule ( . ), qui lui donne une forme indéterminée. Pour contourner cela, on peut par exemple appliquer la fonction de Schur à l'ensemble des puissances d'un paramètre q = 1, ce qui donne s λ (1, q, . . . , q N -1 ) = i<j q λ i +N -iq λ j +N -j q j-1q i-1 , et de faire tendre q vers 1. On obtient la formule de la dimension de Weyl :

ϕ : U(N ) → P + χ π → λ ,
d λ = s λ (1, . . . , 1) = 1 i,j N λ i -i -λ j + j j -i . ( . 
)
On a par ailleurs la règle de branchement suivante, comme corollaire direct de la Prop. . . , qui permet de calculer par induction les dimensions de représentations irréductibles de U(N ) à partir de celles de U(N -1).

Proposition . . (Règle de branchement sur U(N )). Soit λ ∈ U(N ) un plus haut poids de U(N ).

Alors on a

d λ = µ≺λ d µ , ( . ) 
o ù la somme est effectuée sur tous les plus hauts poids µ ∈ U(N -1) entrelacés avec λ, c'est-à-dire tels que l'on obtient le diagramme de λ à partir de celui de µ en ajoutant une case.

Si λ et µ sont deux plus hauts poids de U(N ) tels que le diagramme de λ est obtenu à partir de celui de µ en ajoutant une case, on utilisera plutôt la notation λ ց µ ou µ ր λ. On retrouve une relation de ce type dans la proposition suivante, qui est un corollaire immédiat de la formule de Pieri (Prop.

. . ).

Proposition . . . Soit λ ∈ SU(N ) un plus haut poids de SU(N ). Alors on a

Tr(x)s λ (x) = µ∈ SU(N ) µցλ s µ (x), ∀x ∈ SU(N ). ( . )
Tournons-nous à présent vers l'élément de Casimir C u N . Bien que sa définition soit indépendante du choix de la base de u N , il nous sera nécessaire d'en exhiber une afin d'effectuer certains calculs. On rappelle que u N peut être munie du produit scalaire défini en ( . ), et qu'on obtient une base orthonormale pour ce produit scalaire en posant, pour 1 k < ℓ N ,

X kℓ = 1 √ 2N (E kℓ -E ℓk ), Y kℓ = i √ 2N (E kℓ + E ℓk ), et pour 1 k N Z k = i √ N E kk .
T Proposition . . . L'élément de Casimir C u N s'écrit :

C u N = - 1 N N k,ℓ=1 E kℓ ⊗ E ℓk . ( . )
Le tenseur N k,ℓ=1 E kℓ ⊗ E ℓk qui apparaît dans le terme de droite de l'équation ( . ) n'est autre que l'opérateur de transposition

T : C N ⊗ C N → C N ⊗ C N x ⊗ y → y ⊗ x .
Cette expression de l'élément de Casimir sert entre autres à déduire les formules suivantes, que l'on retrouve notamment dans [Sen a], ou plus récemment dans [DHK ] sous le nom de "formules magiques". Proposition . . . Soit (X 1 , . . . , X d ) une base orthonormée de u N pour le produit scalaire ( . ). Alors pour tout (A, B) ∈ M N (C) 2 , on a les formules suivantes :

d i=1 X 2 i = -I N , ( . ) d i=1 X i AX i = -tr(A)I N , ( . ) d i=1 tr(X i A)X i = - 1 N 2 A, ( . ) d i=1 tr(X i A)tr(X i B) = - 1 N 2 tr(AB). ( . )
Remarque. L'équation ( . ) justifie le calcul m(C u N ) = -I N , o ù m : x⊗y → xy est l'opération de multiplication sur les matrices, que l'on a utilisée au paragraphe . . pour calculer la variation quadratique du mouvement brownien unitaire.

Nous avons vu à la section . . que si l'on prend une représentation irréductible (π, V ) de U(N ), disons par exemple une représentation de plus haut poids λ, alors l'opérateur de Casimir associé vérifie

Ω λ := d i=1 dπ(X i ) 2 = -c 2 (λ)Id V ( . )
pour un certain c 2 (λ) 0. On peut désormais donner l'expression explicite de c 2 (λ).

Proposition . . . Soit λ ∈ U(N ) un plus haut poids. Alors on a

c 2 (λ) = 1 N N i=1 λ 2 i + 1 i<j N (λ i -λ j ) = 1 N N i=1 λ 2 i + N i=1 λ i (N + 1 -2i) . ( . ) Attention, cette égalité est valable dans M N (C) ⊗ C M N (C) mais pas dans M N (C) ⊗ R M N (C) ! C L Y -M
Preuve. Soit π une représentation de U(N ) de plus haut poids λ. Dans la base orthonormée (X kℓ , Y kℓ , Z k ), on a :

π(X kℓ ) 2 = 1 2N π(E kℓ ) 2 + π(E ℓk ) 2 -π(E kℓ )π(E ℓk ) -π(E ℓk )π(E kℓ ) , π(Y kℓ ) 2 = 1 2N -π(E kℓ ) 2 -π(E ℓk ) 2 -π(E kℓ )π(E ℓk ) -π(E ℓk )π(E kℓ ) .
On en déduit que

-Ω λ = N k=1 π(E kk ) 2 + k =ℓ π(E kℓ )π(E ℓk ) = N k=1 π(E kk ) 2 + 1 k<ℓ N [π(E kℓ ), π(E ℓk )].
On a en outre, pour tout

k < ℓ, [E kℓ , E ℓk ] = E kk -E ℓℓ , ce qui implique -Ω λ = N k=1 π(E kk ) 2 + 1 k<ℓ N (π(E kk ) -π(E ℓℓ )).
Enfin, soit v ∈ V un vecteur de plus haut poids. On a π(E kk )v = λ k v pour tout k, et π(E kℓ )v = 0 pour tout k < ℓ. On en déduit donc la première égalité de ( . ) ; la seconde se déduit de la première par réarrangement des sommes.

Nous pouvons enfin énoncer et démontrer le résultat annoncé au début de cette section. On appelle noyau de la chaleur sur U(N ) la solution p : (t, U ) ∈ [0, ∞[×U(N ) → p t (U ) de l'équation de la chaleur

d dt p t (U ) = ∆ U(N ) p t (U ), ∀t > 0, ∀U ∈ U(N ), p 0 (U ) = δ I N (U ) . ( . )
Théorème . . . Le noyau de la chaleur sur U(N ) admet la décomposition suivante dans L 2 (U(N )) :

p t (U ) = λ∈ U(N ) e -c 2 (λ) t 2 d λ s λ (U ), ∀t > 0, ∀U ∈ U(N ). ( . )
Preuve. Pour alléger les notations, et parce qu'il n'y a aucune ambiguïté sur le groupe sous-jacent, on notera ∆ le laplacien sur U(N ). D'après la formule de Plancherel ( . ) le noyau de la chaleur admet la décomposition de Fourier suivante dans L 2 (U(N )) :

p t (U ) = λ∈ U(N ) d λ (p t * s λ )(U ).
Il nous faut alors calculer, pour tout λ ∈ U(N ) et tout U ∈ U(N ), le produit de convolution (p t * s λ )(U ). On a, en utilisant la linéarité de l'intégrale et l'équation de la chaleur,

d dt (p t * s λ )(U ) = d dt p t * s λ (U ) = 1 2 ((∆p t ) * s λ )(U ). L Y -M
Par ailleurs, on peut vérifier que ((∆p t ) * s λ )(U ) = (p t * (∆s λ ))(U ), et il est clair que s λ ∈ M λ , donc l'équation ( . ) implique que

((∆p t ) * s λ )(U ) = -c 2 (λ)(p t * s λ )(U ),
o ù c 2 (λ) est donné dans la Prop. . . . On en déduit que, pour tout λ ∈ U(N ) et U ∈ U(N ) fixés, la fonction u λ,U → (p t * s λ )(U ) est solution de l'équation différentielle

u ′ λ,U (t) = - c 2 (λ) 2 u λ,U (t), et il existe alors une constante C λ,U ∈ R telle que (p t * s λ )(U ) = C λ,U e -c 2 (λ) t 2 .
La condition initiale p 0 (U ) = δ I N (U ) permet de déterminer C λ,U :

(p 0 * s λ )(U ) = s λ (U ) = C λ,U ,
ce qui permet de conclure la preuve.
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Suite aux travaux de Yang et Mills -notamment [YM ] -qui ont donné leur nom à la théorie, une autre avancée cruciale dans le développement de la mesure de Yang-Mills a été [Mig ], dans lequel Migdal décrit ce que devrait être cette mesure sur une surface, ou tout du moins une version discrète ; on y voit notamment la première apparition du développement du noyau de la chaleur sur le groupe de structure sur la base des caractères irréductibles. Ont suivi alors les travaux de Gross [Gro ] puis de Driver [Dri ] qui ont mené à la construction rigoureuse de la mesure de Yang-Mills planaire. Il a fallu ensuite attendre les années pour que Sengupta la construise sur la sphère [Sen ] puis sur toute surface compacte [Sen ]. Parallèlement à cela, Witten [Wit ] a étudié plus en détail la mesure de Yang-Mills discrète, dans des perspectives différentes -son but était de calculer le volume symplectique de l'espace des modules de connexions plates sur une surface de Riemann.

Dans cette section, nous décrivons la construction de la mesure de Yang-Mills telle qu'elle a été effectuée par T. Lévy [Lév , Lév ], qui est complémentaire de celle de Sengupta, et repose sur une formalisation rigoureuse de la théorie discrète de Witten, adjointe d'un passage à la limite continue par des arguments topologiques et probabilistes. À partir de maintenant, le terme surface désignera, sauf mention explicite , une variété différentielle réelle de dimension 2 compacte connexe sans bord, et on notera Σ l'ensemble de ces surfaces. Le choix de restreindre notre définition de surface provient de la classification suivante, dont on peut trouver par exemple la démonstration dans [Mas ].

Cela repose essentiellement sur la formule d'intégration par parties suivante : en reprenant la représentation ρ de u N sur C 1 (U(N )) définie par ( . ), on a pour toutes fonctions

f 1 , f 2 ∈ C 1 (G), ρ(X)f 1 , f 2 L 2 (U(N )) = -f 1 , ρ(X)f 2 L 2 (U(N )) .
La seule exception à laquelle nous accorderons de l'importance sera le plan euclidien R 2 , pour lequel une grande partie des résultats ont précédé ceux sur les surfaces compactes. . , e n de E + avec ε i ∈ {-1, 1} pour tout 1 i n, alors on lui associe l'holonomie 

h c : C G G → G g → g εn en • • • g ε 1 e 1 . ( 
bilité µ T,G,G sur C G G définie par dµ T,G,G (g) = 1 Z T,G,G F ∈F p |F | (h ∂F (g))dg, ( . ) 
o ù Z T,G,G est la constante de normalisation de µ T,G,G , appelée fonction de partition, et vérifie

Z T,G,G = C G G F ∈F p |F | (h ∂F (g))dg. ( . )
L'équation ( . ) est parfois nommée dans la littérature formule de Driver-Sengupta, car elle a été démontrée par Driver [Dri ] dans le cas o ù M est le plan euclidien, et par Sengupta [Sen , Sen ] pour la sphère S 2 puis pour toute surface compacte. Il est intéressant de remarquer que l'on n'a pas spécifié d'orientation pour le bord des faces dans la formule ( . ) ; la propriété de multiplicativité de l'application h et l'invariance du noyau de la chaleur p |F | par inversion permettent de remarquer que

p |F | (h (∂F ) -1 ) = p |F | (h ∂F ), ∀F ∈ F.
Par conséquent, la définition de la mesure de Yang-Mills est indépendante du choix de l'orientation du graphe, et, a fortiori, de l'orientation de la surface. La mesure de Yang-Mills peut donc être tout aussi bien définie sur une surface non orientable. Notons en outre que la définition de la mesure de Yang-Mills ne dépend pas du point de base lorsqu'on considère le bord d'une face F , puisque le noyau de la chaleur p |F | est également invariant par conjugaison, et changer le point de base de ∂F revient à conjuguer par des arêtes qui constituent ce bord.

La formule de Driver-Sengupta permet de définir un processus stochastique (h c ) c∈P(G) à valeurs dans le groupe G et indexé par l'ensemble P(G) des chemins possibles dans le graphe G . Le principal intérêt de ce processus est qu'il est stable par subdivision du graphe. En effet, si G 1 et G 2 sont Autrement dit, tous les chemins que l'on peut former en concaténant des arêtes du graphe. 

G 2 → C G 1 par ι 2→1 C G 2 → C G 1 g → (e ∈ E 1 → h e (g)
L red m (G) = a 1 , b 1 , . . . , a g , b g , ℓ 1 , . . . , ℓ f |[a 1 , b 1 ] • • • [a g , b g ] = ℓ 1 • • • ℓ f , ( 
G 2g+f → C, on a C G G f (H a 1 , H b 1 , . . . , H ag , H bg , H ℓ 1 , . . . , H ℓ f )dµ T,G,G = 1 Z T,G G 2g+r-1 f (x 1 , y 1 , . . . , x g , y g , z 1 , . . . , z f ) 1 i f p |F i | (z i ) 1 i g 1 j f -1 dx i dy i dz j , ( . 
)

o ù l'on a posé z f = z -1 f -1 • • • z -1 1 [x 1 , y 1 ] • • • [x g , y g ].
Exemple. On considère le graphe G de la 

E[f (H ℓ 1 )] = 1 Z T,G G 3 f (z)p t (z)p T -t (z -1 [x, y])dxdydz. ( . )
Nous verrons au chapitre vers quelle quantité converge ce genre d'intégrale, lorsque G = U(N ) et que N tend vers l'infini, en prenant pour fonctions test les fonctions puissances f : g → tr(g n ), n ∈ N.

La Prop. . . admet une version simplifiée lorsque M est la sphère ou un disque, à savoir que le groupe L red m (M ) admet pour base (en tant que groupe libre) des lassos autour de chaque face sauf une (dans le cas du plan, on exclut en règle générale la face non bornée). Sous la mesure de Yang-Mills, les holonomies le long de ces lassos sont des variables aléatoires à valeurs dans G, indépendantes et dont la densité est le noyau de la chaleur p |F | pris au temps correspondant à l'aire de la face associée au lasso. Cela revient, en quelque sorte, à considérer le cas d'un graphe admissible sur une surface compacte dont on ferait tendre l'aire d'une face vers l'infini. En effet, dans l'intégrale ( . ) la variable z f exprime la contrainte de bord de la face "extérieure", et si on l'exclut de la fonction test tout en faisant tendre |F f | vers l'infini on obtient la même factorisation qui caracérise l'indépendance des variables Les générateurs relatifs à cette présentation sont appelés tame generators dans [Lév ]. 

. . Autour de la fonction de partition

Nous avons vu au paragraphe précédent que pour une surface compacte, la fonction de partition de Yang-Mills ne dépendait pas du graphe choisi. Nous allons en donner une expression compatible avec l'étude asymptotique que nous effectuerons au chapitre . Cette expression peut notamment être trouvée dans [LM ] pour la sphère et dans [Wit ] pour les surfaces de genre supérieur, mais nous allons la redémontrer en détail, d'une part car cela illustre les résultats évoqués dans la section sur la théorie des représentations, et d'autre part car certains éléments de démonstration seront réutilisés dans le chapitre pour calculer des boucles de Wilson.

Puisque la fonction de partition de Yang-Mills sur une surface ne dépend pas du graphe, il est raisonnable de considérer un graphe le plus simple possible. Nous allons distinguer deux situations :

-Dans le cas de la sphère, on peut tracer un lacet simple qui la sépare en deux faces d'un graphe, et le lacet constitue alors l'unique arête du graphe ;

-Dans le cas d'une surface orientable ou non orientable de genre g 1, on peut prendre pour graphe le domaine fondamental, constitué alors d'une seule face polygonale à 4g (resp. 2g) côtés dans le cas orientable (resp. non orientable).

On notera Z N (g, T ) (resp. Z - N (g, T )) la fonction de partition de Yang-Mills sur une surface compacte orientable (resp. non orientable) de genre g. Il est possible d'exprimer toutes ces fonctions de partitions à l'aide des représentations irréductibles de U(N ), plus précisément la décomposition de Fourier du noyau de la chaleur et l'indicateur de Frobenius-Schur ι λ défini en ( . ). Avant de donner les formules des fonctions de partition selon l'orientabilité et le genre de la surface, mentionnons un résultat utile sur les représentations des groupes compacts.

Proposition . . ([Far ],Prop. . ). Soit (ρ, V ) une représentation irréductible d'un groupe compact

G. Alors G χ ρ (xgyg -1 )dg = 1 d ρ χ ρ (x)χ ρ (y). ( . )
Cette proposition implique le résultat suivant, qui va nous servir à calculer les fonctions de partition de surfaces de genre non nul.

Corollaire . . . Soit (ρ, H) une représentation irréductible unitaire d'un groupe compact G de caractère χ. Alors pour tout x ∈ G on a les équations

G 2 χ(x[y, z])dydz = χ(x) d 2 ρ , ( . ) et G 2 χ(xy 2 z 2 )dydz = ι ρ d ρ χ(x). ( . ) L Y -M
Preuve. L'équation ( . ) découle directement de la proposition précédente et des relations d'orthogonalité de Schur, en utilisant la décomposition de χ dans une base orthonormale de H. Pour montrer ( . ), on commence par effectuer un changement de variable y ← yz -1 , ce qui donne à l'aide de la Prop. . .

G 2 χ(xy 2 z 2 )dydz = G 2 χ(xyz -1 yz)dydz = 1 d ρ G χ(xy)χ(y)dy.
On utilise ensuite le fait que χ soit centrale pour écrire χ(y) = G χ(z -1 yz)dz, ce qui donne

1 d ρ G χ(xy)χ(y)dy = 1 d ρ G 2 χ(xy)χ(z -1 yz)dydz.
En utilisant la Prop. . . à nouveau, il vient

1 d ρ G 2 χ(xy)χ(z -1 yz)dydz = G 3 χ(xygz -1 yzg -1 )dydzdg.
On effectue alors le changement de variable z ← zg, ce qui donne

G 3 χ(xygz -1 yzg -1 )dydzdg = G 3 χ(xyz -1 yz)dydzdg.
On a alors montré l'équation suivante :

G 2 χ(xy 2 z 2 )dydz = G 2 χ(xyz -1 yz)dydz.
En utilisant la Prop. . . et la définition de ι ρ , on en déduit bien l'équation ( . ).

Bien que nous ne rentrions pas en détails dans ces considérations topologiques chères aux physiciens, mentionnons tout de même que les équations ( . ) et ( . ) possèdent une interprétation en termes de chirurgie des surfaces, et permettent de relier la fonction de partition des sommes connexes de certaines surfaces à partir de celle des surfaces de départ. C'est notamment à l'aide de cette chirurgie que Witten démontre les formules qui vont suivre dans [Wit ], et on peut également retrouver des raisonnements similaires dans [Lév , Lév ], voire dans [Lév ] o ù cette correspondance entre chirurgie des surfaces et fonctions de partitions est reliée aux théories quantiques des champs topologiques (ou TQFT, pour topological quantum field theories en anglais). Quant à nous, nous nous contenterons d'un exemple informel qui illustre l'analogie entre l'équation ( . ) avec x = e et la chirurgie de la bouteille de Klein, et pour l'illustrer nous emprunterons les illustrations très éclairantes de [Sti ]. 

(i) Si M est une sphère, Z N (0, T ) = λ∈ U(N ) e -c 2 (λ) T 2 d 2 λ ; ( . ) (ii) Si M est une surface orientable de genre g 1, Z N (g, T ) = λ∈ U(N ) e -c 2 (λ) T 2 d 2-2g λ ; ( . ) (iii) Si M est une surface non-orientable de genre g 1, Z - N (g, T ) = λ∈ U(N ) e -c 2 (λ) T 2 d 2-g λ (ι λ ) g . ( 
: U(N ) → C, on a E[f (H ℓ )] = 1 Z N (0, T ) U(N ) f (x)p t (x)p T -t (x -1 )dx, et comme pour la fonction constante f = 1 il est clair que E[f (H ℓ )] = 1, on obtient que Z N (0, T ) = U(N ) p t (x)p T -t (x -1 )dx, ce qui se simplifie en Z N (0, T ) = p T (I N )
d'après la propriété de semi-groupe du noyau de la chaleur sur U(N ). On applique alors le Thm. . . et cela donne la formule voulue, en utilisant le fait que s λ (I N ) = d λ .

(ii) On se donne des générateurs (a 1 , b 1 , . . . , a g , b g ) du groupe fondamental de M , et le graphe constitué d'une face F d'aire T , dont le bord orienté positivement s

'écrit ∂F = [a 1 , b 1 ] • • • [a g , b g ].
On a vu que cette face correspond au domaine fondamental de M . Il vient alors, d'après la Prop. . . , que la fonction de partition s'écrit

Z N (g, T ) = U(N ) 2g p T ([x 1 , y 1 ] • • • [x g , y g ])dx 1 dy 1 • • • dx g dy g .
Cela se réecrit, à l'aide du Thm. . . :

Z N (g, T ) = λ∈ U(N ) e -c 2 (λ) T 2 d λ U(N ) 2g s λ ([x 1 , y 1 ] • • • [x g , y g ])dx 1 dy 1 • • • dx g dy g .
En appliquant l'équation ( . ) g fois, on obtient que

U(N ) 2g s λ ([x 1 , y 1 ] • • • [x g , y g ])dx 1 dy 1 • • • dx g dy g = 1 d 2g-1 λ .
On en déduit bien la formule voulue.

(iii) On se donne des générateurs (a 1 , . . . , a g ) du groupe fondamental de M , et le graphe constitué d'une face F d'aire T , dont le bord orienté positivement s'écrit ∂F = a 2 1 • • • a 2 g . Comme pour le point (ii) la fonction de partition s'écrit alors

Z - N (g, T ) = U(N ) g p T (x 2 1 • • • x 2 g )dx 1 • • • dx g .
En utilisant l'équation ( . ) g fois, on obtient

U(N ) g s λ (x 2 1 • • • x 2 g )dx 1 • • • dx g = (ι λ ) g d g-1 λ .
On en déduit, comme pour le point (ii), la formule voulue.
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L'étude asymptotique de la fonction de partition sur la sphère a été l'objet de recherches des physiciens Douglas et Kazakov [DK ], qui ont constaté que l'énergie libre de la mesure de Yang-Mills sur la sphère d'aire T , c'est-à-dire la quantité

F (T ) = lim N →∞ 1 N 2 log Z N (0, T )
admettait une transition de phase à la valeur T = π 2 : sa dérivée troisième possétait un saut en cette valeur. Ce résultat a été démontré rigoureusement par Lévy et Maïda [LM ] sous la forme suivante, à l'aide de la théorie des grandes déviation et de la théorie de la minimisation sous contrainte. 

Théorème . . (Transition de phase de Douglas-Kazakov

F (3) (T ) = - 1 π 6 et lim T →π 2 T >π 2 F (3) (T ) = - 3 π 6 . ( . )
En ce qui concerne les fonctions de partition associées aux autres surfaces compactes, leur étude asymptotique est bien plus récente, et suit un régime totalement différent puisqu'elles admettent une limite finie. Ce résultat a été démontré dans [Lem ], et fait l'objet du chapitre . Les limites en question font apparaître deux formes modulaires classiques en théorie des nombres. La première est la fonction d'Euler définie sur le disque unité ouvert D par

φ(q) = ∞ m=1
(1q m ), ∀q ∈ D, et la seconde est fonction thêta de Jacobi définie sur C × H + , o ù H + est le demi-plan de Poincaré, par

ϑ(z, τ ) = n∈Z e iπn 2 τ +2iπnz , ∀(z, τ ) ∈ C × H + .
Plus précisément, nous démontrerons dans ce chapitre les deux théorèmes suivants. Dans ceux-ci, on considère aussi bien les fonctions de partition Z N (g, T ) et Z - N (g, T ) avec pour groupe de structure U(N ) que les fonctions de partition Z ′ N (g, T ) et Z ′ -N (g, T ) avec pour groupe de structure SU(N ), qui admettent une formulation similaire à celle de la Prop. . . . Théorème . . (Chap. , Thm. . . ). Soit Σ une surface compacte connexe sans bord orientable de genre g.

(i) Si g 2, alors pour tout T ∈ (0, +∞), on a la convergence suivante :

lim N →∞ Z N (g, T ) = θ(T /2) et lim N →∞ Z ′ N (g, T ) = 1. ( . )
De plus, lim

N →∞ Z ′ N (g, 0) = 1. ( . ) L Y -M
(ii) Si g = 1, alors pour tout T ∈ (0, +∞) on pose q = e -T 2 , et on a la convergence suivante :

lim N →∞ Z N (1, T ) = θ( T 2 ) φ(q) 2 et lim N →∞ Z ′ N (1, T ) = 1 φ(q) 2 .
( . )

Théorème . . (Chap. , Thm. . . ). Soit Σ une surface compacte connexe sans bord non orientable de genre g.

(i) Si g 3, alors pour tout T ∈ (0, +∞), on a la convergence suivante :

lim N →∞ Z - N (g, T ) = θ(T /2) et lim N →∞ Z ′ - N (g, T ) = 1. ( . )
De plus, lim

N →∞ Z ′ - N (g, 0) = 1. ( . )
(ii) Si g = 2, alors pour tout T ∈ (0, +∞) on pose q = e -T 2 , et on a la convergence suivante : ) . .

lim N →∞ Z - N (2, T ) = θ( T 2 ) φ(q 2 ) et lim N →∞ Z ′ - N (2, T ) = 1 φ(q 2 ) . ( . 

Le champ maître sur une surface compacte

L'idée d'étudier les aspects asymptotiques de la théorie de Yang-Mills sur U(N ) avec N → ∞ remonte aux années , notamment avec l'article [tH ] dans lequel 't Hooft a émis la conjecture que la théorie de jauge associée à SU(N ) devait considérablement se simplifier, d'un point de vue combinatoire, lorsque N tend vers l'infini . Cela a petit à petit conduit à la définition d'un objet limite de la mesure de Yang-Mills sur une surface, appelé champ maître. Celui-ci a fait l'objet de nombreuses recherches dans les années dans le cas du plan [GG , Gop , Sin , Xu ], puis dans les années -[Sen b, AS , Lév , Dah , CDG ] dans un cadre plus général. Il a par ailleurs été étudié sur la sphère, par exemple dans [FMS , LM ], avant d'être construit explicitement dans [DN ], mais son existence dans le cadre d'autres surfaces compactes est encore un problème ouvert . En guise de première étape, Hall [Hal ] a permis, sous d'importantes hypothèses de convergence de traces d'holonomies sur des laces simples, d'en déduire l'existence du champ maître sur des surfaces plus générales, mais restreint à des lacets contenus dans un disque topologique.

Une première approche du champ maître, suggérée par Singer [Sin ], est de le définir comme une connexion A ∞ sur un G ∞ -fibré principal P ∞ que pour tout lacet c avec un nombre fini de points d'auto-intersection, lim

N →∞ E[tr(H c )] = tr ∞ (hol(A ∞ , c)), ( . ) 
Pour être plus précis, bien que nous ne développerons pas les notions citées, les diagrammes planaires dominants, lorsque N tend vers l'infini, sont ceux qui possèdent des quarks sur les arêtes. 't Hooft établit également un lien entre cet ensemble de diagrammes planaires dominants et certains types de cordes. Ces considérations bien plus physiques que mathématiques dépassent néanmoins largement le cadre de cette thèse.

Il semble que son existence soit pourtant admise par les physiciens : elle est décrite comme un théorème par Singer [Sin ] mais celui-ci a annoncé que les détails d'un développement mathématique de cette construction étaient en cours d'élaboration -sans donner suite jusqu'à présent. 

(i) Pour tout (ℓ 1 , ℓ 2 ) ∈ L m (M ) 2 , h ℓ -1 = h * ℓ = h -1 ℓ et h ℓ 1 ℓ 2 = h ℓ 2 h ℓ 1 ; ( . )
(ii) Si (ℓ n ) n∈N est une suite de lacets qui converge uniformément vers un lacet ℓ, alors (h ℓn ) converge vers h ℓ dans L 2 (A , τ ).

(iii) Soit (H c ) c∈P(M ) le champ d'holonomie de Yang-Mills défini au Thm. . . avec pour groupe de structure U(N ) ou SU(N ).

Pour tout lacet ℓ ∈ L m (M ) on a lim N →∞ E[tr(H ℓ )] = τ (h ℓ ). ( . )
Cette définition, empruntée à [Lév ], dit en réalité probablement les mêmes choses que celle de Singer vue plus haut, mais son avantage est de ne pas nécessiter une explicitation du * -espace de probabilité, lequel devrait, toujours d'après [Sin ], être lié à un "anneau de Murray-von Neumann d'opérateurs de type II 1 pour une représentation donnée de type II 1 de G ∞ ".

Le point (iii) de la Déf. . . signifie que le champ maître peut être vu comme le processus limite, au sens des probabilité libres, du champ d'holonomie de Yang-Mills. La démonstration de convergences de la forme ( . ) sera au coeur du chapitre . Pour des lacets simples notamment, c'est-à-dire des lacets qui ne possèdent pas de point d'auto-intersection, on peut montrer que pour une surface compacte de genre g 1 la décomposition de Fourier de E[tr(H ℓ )] suit le même régime que celle de la fonction de partition de Yang-Mills, à savoir que seule une catégorie notable de plus hauts poids contribue à la limite -les plus hauts poids presque-plats que nous introduirons dès le chapitre .

En dépit du postulat actuel en physique théorique selon lequel le champ maître existe pour tous types de surface (voir note ), seules deux surfaces ont rec ¸u un traitement complet et rigoureux d'un point de vue mathématique, et ce, dans les années :

-Le plan, qui a été notamment traité d'un côté par Lévy [Lév ] et de l'autre par Anshelevich et Sengupta [AS ] ;

-La sphère, qui a été traitée dans son intégralité par Dahlqvist et Norris [DN ].

Cette dénomination désigne en réalité une algèbre de von Neumann.
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ℓ. Notons que si le champ maître h est une fonction multiplicative, ce n'est toutefois pas le cas de Φ a priori : en effet, rien ne dit par exemple que τ (h 2 ℓ ) = τ (h ℓ ) 2 -la multiplicativité est remplacée par la version asymptotique des équations de Makeenko-Migdal. La propriété de factorisation asymptotique des traces d'holonomies ( . ) implique par ailleurs un fait remarquable : la convergence ( . ) peut être renforcée en une convergence en probabilité quand N tend vers l'infini Ainsi, l'accent est mis sur la convergence en probabilité des traces d'holonomies, aussi appelées boucles de Wilson, vers les valeurs du champ maître associée.

tr(H ℓ ) P -→ Φ ℓ , ( 
Comme annoncé un peu plus tôt, le chapitre sera dédié à l'étude du champ maître. Nous y développerons brièvement la théorie utilisée pour le construire sur le plan et sur la sphère, puis nous l'étudierons sur les surfaces compactes connexes orientables de genre supérieur ou égal à 1. En particulier, nous démontrerons le théorème suivant, qui constitue un résultat inédit.

Théorème . . (Chap. , Thm. . . et . . , Prop. . . ). Soit Σ g,T une surface compacte connexe sans bord orientable de De plus, la vitesse de convergence de la variance est de l'ordre de N ε-1 , pour ε > 0 arbitrairement petit.

Nous verrons par ailleurs que ce théorème permet de vérifier une conjecture de Hall [Hal ] que nous rappellerons. Nous discuterons ensuite d'autres types de lacets que l'on rencontre dans ces nouvelles surfaces, à savoir des lacets d'homologie non nulle. Nous montrerons des résultats partiels relatifs à ceux-ci, notamment le théorème suivant.

Théorème . . (Chap. , Thm. . . et Prop. . . ). Soit Σ g,T une surface compacte connexe sans bord orientable de genre g 1 et d'aire T .

(i) Si ℓ est un lacet d'homologie non nulle sur Σ g,T alors pour tout n ∈ Z * , E[tr(H n ℓ )] = 0.

(ii) Si ℓ est un générateur du groupe fondamental de Σ g,T , alors lim Var[tr(H ℓ )] = 0.

Nous terminerons par une description des lacets qui échappent encore au champ maître, ainsi que quelques pistes de réflexion que nous envisageons.
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This chapter describes the results obtained in [Lem ], which are essentially the computations of several limits associated to the Yang-Mills partition function when the gauge group is U(N ) or SU(N ). After giving the definition of the Yang-Mills partition function, we will introduce two major tools needed to study its asymptotics: the Witten zeta function and the almost flat highest weights. The rest of the chapter will be devoted to the computation of the limits of partition functions.
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First and foremost, let us mention that, throughout this chapter, a surface corresponds to compact connected surface without boundary. This choice is motivated by Thm. . . , that we recall here.

Theorem . . (Classification of compact surfaces).

Let Σ be a surface. Then, it is homeomorphic to either one of the following:

(i) The connected sum of g -tori , (ii) The connected sum of g projective planes.

In the first case, the surface is said to be orientable. The integer g denotes the genus of the surface, and appears for example in the computation of the Euler characteristic. In the second one, the surface is said to be non-orientable, and we will also call g the genus; however it will not contribute the same way to the Euler characteristic. Indeed, this number is equal to 2 -2g when the surface is orientable and 2g when it is not. Let us recall a few definitions from the previous chapter, in order to get a quick overview of the objects of interest. We want to define the Yang-Mills partition function in a way that we can compute its limit: for that, we will need two quantities related to the irreducible representations of U(N ) or SU(N ). Definition . . . Let λ ∈ U(N ) be a non-increasing N -tuple of integers and µ ∈ SU(N ) be a non-increasing N -tuple of integers such that µ N = 0.

If g = 0 then by convention it is a sphere; otherwise it can also be seen as a -torus with g handles.

T Y -M

(i) The dimension d λ of a representation of highest weight λ is equal to

d λ = 1 i<j N λ i -λ j + j -i j -i = 1 i<j N 1 + λ i -λ j j -i . ( . )
In the case of a representation of highest weight µ it is equal to

d µ = 1 i<j N µ i -µ j + j -i j -i = 1 i<j N 1 + µ i -µ j j -i . ( . 
)
(ii) The (quadratic) Casimir number is a non-negative real number c 2 (λ) that satisfies ∆s λ = -c 2 (λ)s λ , and is equal to

c 2 (λ) = 1 N N i=1 λ 2 i + 1 i<j N (λ i -λ j ) . ( . )
in the case of SU(N ), it is denoted c ′ 2 (µ) and is equal to

c ′ 2 (µ) = 1 N   N i=1 µ 2 i - 1 N N i=1 µ i 2 + 1 i<j N (µ i -µ j )   . ( . )
Given an orientable surface Σ with genus g and area T , the Yang-Mills partition function on Σ with structure group U(N ) is defined as the following sum :

Z N (g, T ) = λ∈ U(N ) e -c 2 (λ) T 2 d 2-2g λ . ( . )
The same kind of formula also holds when one replaces U(N ) by SU(N ) as a structure group:

Z ′ N (g, T ) = λ∈ SU(N ) e -c ′ 2 (λ) T 2 d 2-2g λ . ( . )
Now, if the surface Σ is non-orientable, defined as the connected sum of g projective planes, we can still define its Yang-Mills partition function using a slightly different formula. If we defined ι λ is the so-called Frobenius-Schur indicator of λ by

ι λ = G s λ (g 2 )dg, ( . )
then we have 

Z - N (g, T ) = λ∈ U(N ) e -T 2 c 2 (λ) d 2-g λ (ι λ ) g , if the structure group is U(N ), ( 
Y -M N Z ′ - N (g, T ) = λ∈ SU(N ) e -T 2 c ′ 2 (λ) d 2-g λ (ι λ ) g , if the structure group is SU(N ). ( . )
The purpose of this chapter is to compute the limits, as N tends to infinity, of the partition function on Σ depending on its orientability, genus and structure group. Let us introduce two functions that naturally appear in the limit, and that come from number theory -or more specifically, from the theory of modular forms. 

φ(q) = ∞ m=1
(1q m ).

( . )

As we only need special values of Jacobi theta function, let us also define an intermediate function

θ : R → R t → ϑ(0; it 2π ) = n∈Z e -tn 2 .
( . )

We can now state the two main theorems from [Lem ], which give the limit of the U(N ) and SU(N ) Yang-Mills partition function on an orientable surface of genus g 1 and on an nonorientable surface of genus g 2.

Theorem . . (Orientable limits).

Let Σ be an orientable surface of genus g.

(i) If g 2, then, for all T ∈ (0, +∞), the following convergences hold:

lim N →∞ Z N (g, T ) = θ(T /2) and lim N →∞ Z ′ N (g, T ) = 1. ( . )
Moreover, lim

N →∞ Z ′ N (g, 0) = 1. ( . )
(ii) If g = 1, then consider T ∈ (0, +∞) and set q = e -T 2 . The following convergences hold:

lim N →∞ Z N (1, T ) = θ( T 2 ) φ(q) 2 and lim N →∞ Z ′ N (1, T ) = 1 φ(q) 2 .
( . )

Theorem . . (Non-orientable limits). Let Σ be a non-orientable surface homeomorphic to the sum of g projective planes.
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(i) If g 3, then, for all T ∈ (0, +∞), the following convergences hold:

lim N →∞ Z - N (g, T ) = θ(T /2) and lim N →∞ Z ′ - N (g, T ) = 1. ( . ) Moreover, lim N →∞ Z ′ - N (g, 0) = 1. ( . )
(ii) If g = 2, then consider T ∈ (0, +∞) and set q = e -T 2 . The following convergences hold:

lim N →∞ Z - N (2, T ) = θ( T 2 ) φ(q 2 )
and lim

N →∞ Z ′ - N (2, T ) = 1 φ(q 2 ) . ( . 
)
Before we prove these theorems we can highlight the following fact: there seems to be an asymptotic factorization lim

N →∞ Z N (g, T ) = Z 1 (g, T ) lim N →∞ Z ′ N (g, T ). ( . )
Indeed, it is easy to remark that Z 1 (g, T ) = θ(T /2) from Equation ( . ), and the factorization now seems clear. Our proofs will always rely on the fact that it is easier to compute the limits in the SU(N ) case and that we can deduce the U(N ) limit from it, but this factorization will not be a part of the reasoning. The closest fact we will use is the existence of a bijection between 'dual sets', understood as the sets of irreducible representations:

SU(N ) × U(1) ≃ U(N ). ( . )
However, there is no such relationship between the underlying groups: all we know is that SU(N ) × U( 1) is a group covering of U(N ) with the homomorphism given by ϕ N : (M, z) → zM . ϕ N is actually a surjective Lie group morphism, with ker ϕ N = {(I, 1), (e 2iπ/N I, e -2iπ/N ), . . . , (e 2iπ(N -1)/N I, e -2iπ(N -1)/N )} ≃ Z N .

In particular, it appears that ϕ N factorizes into a Lie group isomorphism

SU(N ) × U(1) U(N ) (SU(N ) × U(1)) /Z N ϕ N Φ N . ( . )
Furthermore, another well-known Lie group homomorphism is given by det : U(N ) → U(1) with kernel SU(N ), which leads to the following short exact sequence

1 SU(N ) U(N ) U(1) 1 ι det . ( . )
This short sequence means that U(N ) is a group extension of U(1) by SU(N ). This is even a split extension because there exists a global section s : U(1) → U(N ): we can take for example s(z) = diag(z, 1, . . . , 1) ∈ U(N ). There is a result on group theory that says that a split extension A → H → G is equivalent to the fact that H is isomorphic to the semidirect product A ⋊ ρ G for some

C Y -M N action ρ : G × A → A.
One can find a proof of this fact in [Ser , § . ].

Regarding these relations between U(N ), SU(N ) and U(1), there might be a deeper explanation, or at least interpretation, of the factorization ( . ). It might also be probable that this has a link with the splitting of unitary Brownian motion stated in Lemma . . . Unfortunately, we didn't manage yet to relate the asymptotic factorization of partition functions to the splitting of Brownian motion or to a limiting behaviour of the diagrams ( . ) or ( . ).

A

Despite the fact that Theorems . . and . . give the limit of a normalization constant of a probability measure, the core of our proof will rely more on algebraic tools rather than probabilistic ones. Let us introduce in this section those tools, namely the Witten zeta function, which is an infinite series associated with a Lie algebra, and the almost flat highest weights, which constitute a subset of highest weights that plays a fundamental role in the large N limit of partition functions.

. . Witten zeta function

Let su N be the Lie algebra of the Lie group SU(N ). One defines its Witten zeta function ζ su N : C → C as the meromorphic continuation of the series

ζ su N (s) = λ∈ SU(N ) d -s λ . ( . )
If we consider the partition function Z ′ N (g, 0) as the limit of the partition function of an orientable surface with genus g and area T when T tends to 0, we see that it becomes a special value of Witten zeta function:

Z ′ N (g, 0) = ζ su N (2g -2). ( . )
This zeta function, as we will see later, controls the convergence of all partition functions associated with orientable surfaces with genus g 2 or non-orientable surfaces with genus g 3; it was actually studied for different reasons by Witten [Wit ], and later by Zagier [Zag ] who presumably coined its name 'Witten zeta function'.

The following Proposition summarizes the asymptotic properties of Witten zeta functions that we will need later on.

Proposition . . . For all real

s > 1, one has sup N 1 ζ su N (s) = sup N 1 λ∈ SU(N ) d -s λ < ∞.
More precisely, lim

N →∞ ζ su N (s) = 1 and lim N →∞ λ∈ SU(N ) λ =(0,...,0) d -s λ = 0.

A

The proof of this proposition relies on three lemmas.

Lemma . . . For all s > 1 and all N 1, one has

λ∈ SU(N ) d -s λ N -1 k=1 n k n k -s . ( . )
Proof. Let us choose s > 1 and N 1. In the left-hand side of ( . ), which is a sum over λ 1 . . . λ N 0, let us make the change of variables

m 1 = λ 1 -λ 2 + 1, . . . , m N -1 = λ N -1 -λ N + 1.
The new variables m 1 , . . . , m N -1 are now independent, and positive. Using ( . ), we find

d λ = 1 i<j N m i + . . . + m j-1 j -i , ( . ) so that λ 1 ... λ N =0 d -s λ = m 1 ,...,m N -1 1 1 i<j N (j -i) s (m i + . . . + m j-1 ) s = m 1 ,...,m N -1 1 N -1 k=1 k i=1 (k -i + 1) s (m i + . . . + m k ) s (k = j -1) Since m i + . . . + m k-1 k -i, we obtain λ 1 ... λ N =0 d -s λ m 1 ,...,m N -1 1 N -1 k=1 k i=1 (k -i + 1) s (m k + k -i) s = m 1 ,...,m N -1 1 N -1 k=1 k + m k -1 k -s = N -1 k=1 n k n k -s
, which is the announced upper bound.

Lemma . . . For all real

s > 1, k 1 n>k n k -s < ∞.
Proof. We use the fact that for k between 2 and n -2, the inequality n k n 2 holds. Thus,

k 1 n>k n k -s 2 -s + ∞ n=3 2 n s + (n -3) 2 s n s (n -1) s which is indeed finite for s > 1. C Y -M N Lemma . . . Let λ be an element of SU(N ). If λ = (0, . . . , 0) then d λ = 1, otherwise d λ N .
proof. Let us use again the variables m 1 , . . . , m N -1 introduced in the proof of Lemma . . . It is manifest on the expression ( . ) of d λ that this dimension is increasing in each of the variables m 1 , . . . , m r . The case where each of these variables is equal to 1 is the case where λ = (0, . . . , 0) and d λ = 1. Any other irreducible representation has a dimension that is at least equal to the dimension of one of the representations λ 1 = (1, 0, . . . , 0), λ 2 = (1, 1, 0, . . . , 0), . . . , λ N -1 = (1, . . . , 1, 0).

These representations, which are the exterior powers of the standard representation of SU(N ), have dimensions

d λ k = N k N, k ∈ {1, . . . , N -1}.
Thus, d λ N , as expected.

We can now prove Proposition . . . Proof of Proposition . . . The bound obtained in Lemma . . can be rewritten as

λ 1 ... λ N =0 d -s λ N -1 k=1 1 + n>k n k -s exp ∞ k=1 n>k n k -s
and this last bound, independent of N , is finite by Lemma . . . This proves the first assertion.

For the second, let us introduce a real s ′ ∈ (1, s) and use Lemma . . . We find λ∈ SU(N ) λ =(0,...,0)

d -s λ N -(s-s ′ ) λ∈ SU(N ) d -s ′ λ ,
which tends to 0 as N tends to infinity.

. . Almost flat highest weights

From two integer partitions α

= (α 1 • • • α r > 0) and β = (β 1 • • • β s > 0)
of respective lengths r and s, and an integer n ∈ Z, we can form, for all N r + s + 1, the highest weight ) which we also denote by λ(α, β, n) when there is no doubt on the value of N . We extend this definition in the obvious way to the cases where one or both of the partitions α and β are the empty partition.

λ N (α, β, n) = (α 1 + n, . . . , α r + n, n, . . . , n N -r-s , n -β s , . . . , n -β 1 ) ∈ U(N ), ( . 
We can also form the highest weight

λ N (α, β) = λ N (α, β, β 1 ) ∈ SU(N ),

A

Proof. Let us start with the unitary case. Using the definition of Casimir number and the definition of λ(α, β, n), we obtain

N c 2 (λ N (α, β, n)) = r i=1 α 2 i + 1 i<j r (α i -α j ) + 2n|α| + s i=1 β 2 i + 1 i<j s (β i -β j ) -2n|β| + |α|(N -r -s) + |β|(N -r -s) + 1 i r 1 j s (α i + β j ) + N n 2 ,
which can be rearranged into

N c 2 (λ N (α, β, n)) =N (|α| + |β| + n 2 ) + 2n(|α| -|β|) + r i=1 α 2 i + 1 i<j r (α i -α j ) -r|α| + s i=1 β 2 i + 1 i<j s (β i -β j ) -s|β|.
On the other hand,

K(α) = r i=1 α i (α i + 1) 2 -iα i = 1 2 r i=1 α 2 i + 1 i<j r (α i -α j ) -r|α|
and we find ( . ) as announced.

Concerning the special unitary case, we need to subtract from c 2 (λ) the quantity 1 N 2 ( λ i ) 2 , which leads to

c ′ 2 (λ N (α, β)) =c 2 (λ N (α, β, β 1 )) - 1 N 2 (|α| -|β| + N n) 2
from which ( . ) follows easily.

The proof of Theorem . . .(ii) will rely on two estimates of the Casimir number: one that helps proving the convergence of the sum of q c ′ 2 (λ) over almost flat highest weights λ to the expected limit, and one that helps controlling the sum over remaining highest weights.

Lemma . . . Let λ ∈ SU(N ). Set k = |α λ | + |β λ |. Then the following inequalities hold: k - k 2 N c ′ 2 (λ) k + k 2 N + k 2 N 2 , ( . ) k 2 c ′ 2 (λ). ( . )
Proof. We start from the expression of c ′ 2 (λ) = c ′ 2 (λ N (α λ , β λ )) given by ( . ). The point is to bound K(α λ ) and K(β λ ).

L N -The partition function can be decomposed as λ) for 1 i 4.

Z N = S N,1 + S N,2 + S N,3 + S N,4 , with S N,i = λ∈Λ γ N,i q c 2 (
-S N,1 converges, when N → ∞, to the limit stated in Theorem . . .(ii).

-S N,2 , S N,3 and S N,4 all converge to 0. This scheme of proof highlights the importance of almost flat highest weights in the large N asymptotics of Yang-Mills measure on the torus: they are somehow the only weights contributing to the limit of its partition function.

L N . . Genus g 2

The special unitary case

We will start by proving Theorem . . .(i) in the special unitary case. Let us first reduce the problem to the case where T = 0 and g = 2.

Lemma . . . For all g 0, all T 0, and all N 1, we have

1 Z ′ N (g, T ) Z ′ N (2, 0).
It follows from this lemma that the special unitary case of Theorem . . .(i) is implied by the assertion lim

N →∞ Z ′ N (2, 0) = 1, ( . )
which we will prove in this section.

Proof of Lemma . . . The N -tuple (0, . . . , 0) has dimension 1 and Casimir number 0. Thus, it contributes 1 to the partition function Z ′ N (g, T ), which explains the first inequality. The second inequality is an immediate consequence of the fact that all Casimir numbers are non-negative, and that all dimensions are positive integers.

We can finally turn to the proof of ( . ), and therefore of the special unitary variant of Theorem . . .(i). This will entirely rely on Proposition . . about asymptotic properties of Witten zeta function. Theorem . . .(i) in the special unitary case. On one hand, Lemma . . states that

Proof of

Z ′ N (2, 0) 1. C Y -M N On the other hand, Z ′ N (2, 0) = λ∈ SU(N ) d -2 λ = 1 + λ =(0,...,0) d -2 λ .
Using Lemma . . , we find

Z ′ N (2, 0) 1 + N -1 2 λ =(0,...,0) d -3 2 λ 1 + N -1 2 sup N 1 λ∈ SU(N ) d -3 2 λ .
Thanks to Proposition . . , this implies lim sup

N →∞ Z ′ N (2, 0) 1
and this concludes the proof of ( . ), hence of Theorem . . .(i) in the special unitary case.

The unitary case

We treat the unitary case of Theorem . . .(i) using our understanding of the special unitary case, and the bijection Φ : (λ, n) → λ + n given in ( . ). We will keep throughout this section the notation λ for an element of SU(N ), n for an element of Z and λ + n for the corresponding element of U(N ) for the sake of consistency.

The first observation is the following. We use the notation |λ| = λ 1 + . . . + λ N .

Lemma . . . We have the equality

c 2 (λ + n) = c ′ 2 (λ) + n + |λ| N 2 . ( . )
Proof. The proof is a simple verification using Equations ( . ) and ( . ) that respectively define c 2 and c ′ 2 .

It is the contribution of the highest weights of the form 0 + n = (n, . . . , n) which produces the Jacobi theta function in the unitary part of Theorem . . .(i). We will prove that the contribution of all other elements of U(N ) vanishes in the large N limit.

Proof of Theorem . . .(i) in the unitary case. Let us consider g 2 and T > 0. We split the partition function Z N (g, T ) into two parts

Z N (g, T ) = n∈Z e -T 2 n 2 + λ∈ SU(N ) λ =(0,...,0) n∈Z e -T 2 c 2 (λ+n) d λ+n .
The first part corresponds to highest weights of the form (n, . . . , n), which have Casimir numbers n 2 and dimension 1. The second part is the contribution of all the other highest weights. To compute it, we observe that d λ+n = d λ and we use Lemma . . . We find

0 Z N (g, T ) -ϑ(0; iT /2π) λ∈ SU(N ) λ =(0,...,0) n∈Z e -T 2 (n+|λ|/N ) 2 e -T 2 c ′ 2 (λ) d 2-2g λ . L N
The sum between the brackets is bounded independently of N , for example, in a very elementary way, by C = 1 + ϑ(0; iT /2π). Hence, the right-hand side is bounded by

C λ∈ SU(N ) λ =(0,...,0) d 2-2g λ = C ζ su(N ) (2g -2) -1
which, thanks to Proposition . . , converges to 0.

. . Genus g = 1

Our proof of the convergence of the partition function when g 2 was based on our study of the dimensions of the irreducible representations of su N , expressed in Proposition . . . A glance at ( . ) shows that when g = 1, these dimensions do not appear anymore in the partition function, and to treat this case we need to use completely different estimates. In this section, we will prove that Z N (1, T ) still admits a finite limit for T > 0, but this limit will turn out to be different from the one described in Theorem . . .(i). In particular, it will involve the classical generating function of integer partitions. Recall that if we denote, for each n 0, by p(n) the number of partitions of the integer n, we have the equality of formal series in the variable t:

α t |α| = n 0 p(n)t n = ∞ m=1 1 1 -t m , ( . ) 
where the first sum is over all integer partitions α. We can recognize in the right-hand side of Equation ( . ) the inverse of Euler function defined in ( . ). Before entering the technical details, let us explain the idea of the proof of Theorem . . .(ii), at least in the special unitary case. In the present situation where g = 1, the partition function is

Z ′ N (1, T ) = λ∈ SU(N ) e -c ′ 2 (λ) T 2 = λ∈ SU(N ) q c ′ 2 (λ) .
The problem is thus to identify which highest weights of SU(N ) keep, in the large N limit, a bounded quadratic Casimir number, and bring a non-zero contribution to the partition function. We claim, although this statement is not very precise at this stage, that these highest weights are those depicted in Fig. . (in the special unitary case, we need to look at the right part of this figure). They are the highest weights that are flat up to a small perturbation at each end, represented by two partitions α and β of length N/2. Let us call these highest weights almost flat. A similar description was proposed by Gross-Taylor in [GT ], but in the case where the perturbations remain finite, and their goal was rather to obtain a 1/N expansion of the partition function than to find its large N limit.

The smaller the length of α and β, the flatter the highest weight: typically we will consider α and β of length ≪ √ N . Using the notation λ(α, β) introduced in Fig. . , and the notation |α| (resp. |β|) for sum of the components of α (resp. β), the main estimate will be a refinement of the equality

c ′ 2 (λ(α, β)) = |α| + |β| + O(N -1 ) ( . )
Small compared to N but not necessarily finite.

C Y -M N with an explicit expression of the error in terms of α and β. The outline of the proof is then the following

Z ′ N (1, T ) ≃ λ∈ SU(N ) λ almost flat q c ′ 2 (λ) ≃ α,β of length ≪ √ N q c ′ 2 (λ N (α,β)) ≃ α,β of length ≪ √ N q |α|+|β|
and the last sum tends to the square of the generating function of integer partitions when N → ∞.

The special unitary case

Proof of Theorem . . .(ii) in the special unitary case. Let us fix γ ∈ (0, 1 2 ) and define the sets Λ γ N,i for 1 i 4 as in Eq. ( . ). For each i ∈ {1, 2, 3, 4}, we set

S ′ N,i = λ∈Λ γ N,i q c ′ 2 (λ) , so that Z ′ N (1, T ) = S ′ N,1 + S ′ N,2 + S ′ N,3 + S ′ N,4 .
For N large enough, any partition of an integer not greater than N γ has less than N 2 positive parts. Thus, if α and β are any two such partitions, the highest weight λ N (α, β) is well defined, and belongs to Λ γ N,1 . As a consequence, for N large enough,

Λ γ N,1 = {λ N (α, β), α ⊢ r, β ⊢ s : r N γ , s N γ }, and 
S ′ N,1 = |α|,|β| N γ q c ′ 2 (λ N (α,β)) .
From ( . ), we deduce that

q 4N 2γ-1 +4N 2γ-2 |α|,|β| N γ q |α|+|β| S ′ N,1 q -4N 2γ-1 |α|,|β| N γ q |α|+|β| .
Since 2γ -1 is negative, the powers of q in front of the sums on either side tend to 1 as N tends to infinity. On the other hand, the sum over α and β tends, as N tends to infinity, to the square of the generating function of partitions defined in ( . ). Hence,

lim N →∞ S ′ N,1 = lim N →∞ |α|,|β| N γ q |α|+|β| = α q |α| 2 = ∞ m=1 (1 -q m ) -2 .
In a second step, we prove that the three other contributions to Z ′ N (1, T ) vanish as N tends to infinity. For this, we use ( . ). Let us treat the case of S ′ N,2 , the case of S ′ N,3 being perfectly similar, and the case of S ′ N,4 even simpler. Let us remark that, as opposed to the case of Λ γ N,1 , we only have the inclusion

Λ γ N,2 ⊂ {λ N (α, β), α ⊢ r, β ⊢ s : r N γ , s > N γ },
L N but it will be enough to get an adequate upper bound. Indeed,

0 S ′ N,2 |α| N γ ,|β|>N γ q c ′ 2 (λ N (α,β)) ,
and from ( . ) we have

|α| N γ ,|β|>N γ q c ′ 2 (λ N (α,β)) |α| N γ ,|β|>N γ q 1 2 (|α|+|β|) α q 1 2 |α| k>N γ p(k)q k 2 .
The first sum of right-hand side is finite, and the second sum, as a remainder of a convergent series, tends to 0 as N tends to infinity. This concludes the proof.

The unitary case

The proof of Theorem . . .(ii) in the unitary case will rely on the same tools as the special unitary case, that is, the use of almost flat highest weights, combined with the bijection Φ : (λ, n) → λ+n introduced in ( . ). In particular, Lemma . . will be of great help in order to control the convergence of Z N (1, T ) using the convergence of Z ′ N (1, T ).

Proof of Theorem . . .(ii) in the unitary case. Let λ ∈ SU(N ). Thanks to Lemma . . and Proposition . . , it appears that, for all n ∈ Z,

c 2 (λ + n) = c ′ 2 (λ) + n + |λ| N 2 = c ′ 2 (λ) + n + |α λ | -|β λ | N + (β λ ) 1 2
, so that we can write, up to a change of index n ← n -

(β λ ) 1 , Z N (1, T ) = λ∈ SU(N ) n∈Z q n+ |α λ |-|β λ | N 2 q c ′ 2 (λ) . ( . )
The main difference with the case of SU(N ) is the sum over n between the brackets, and we will need to control it in order to get the convergence.

Let γ ∈ (0, 1 2 ), and the subsets (Λ γ N,i ) 1 i 4 of SU(N ) as in the special unitary case. We define, for

1 i 4, S N,i = λ∈Λ γ N,i n∈Z q n+ |α λ |-|β λ | N 2 q c ′ 2 (λ) ,
and we obtain the following decomposition:

Z N (1, T ) = S N,1 + S N,2 + S N,3 + S N,4 . Let λ be an element of Λ γ N,1 . From the fact that |α λ | -|β λ | |α λ | + |β λ | 2N γ we get n 2 -4nN γ-1 n + |α λ | -|β λ | N 2 n 2 + 4nN γ-1 + 4N 2γ-2 . ( . ) C Y -M N
For the same reason as in the special unitary case, for N large enough we have

S N,1 = |α|,|β| N γ n∈Z q (n+ |α|-|β| N ) 2 q c ′ 2 (λ N (α,β)) ;
Then, equations ( . ) and ( . ) yield

q 4N 2γ-1 +8N 2γ-2 n∈Z q n 2 +4nN γ-1 |α|,|β| N γ q |α|+|β| S N,1 ( . ) 
and

S N,1 q -4N 2γ-1 n∈Z q n 2 -4nN γ-1 |α|,|β| N γ q |α|+|β| . ( . )
The sums n∈Z q n 2 ±4nN γ-1 in both cases tend to n∈Z q n 2 by dominated convergence, because γ -1 < 0. The remaining terms in both inequalities ( . ) and ( . ) behave in the same way as in the proof of Theorem . . .(ii) in the special unitary case. This proves that lim

N →∞ S N,1 = n∈Z q n 2 ∞ m=1 1 (1 -q m ) 2 .
Now let us treat the cases of S N,2 , S N,3 and S N,4 . The arguments are the same for the three of them, so we only choose to detail the case of S N,2 . We have, using equation ( . ),

0 S N,2 |α| N γ ,|β|>N γ n∈Z q (n+ |α|-|β| N ) 2 q 1 2 (|α|+|β|) ,
and the sum between brackets can be bounded independently from N, |α| and |β| by C = 1 + ϑ(0; iT /2π), thus

0 S N,2 C α q 1 2 |α| |β|>N γ q 1 2 |γ| =C α q 1 2 |α| k>N γ p(k)q k 2 → 0, as N → ∞.
This concludes the proof as in the special unitary case.

L N

We now turn to the study of non-orientable surfaces. Let us recall that, according to Theorem . . , any such surface can be constructed as the connected sum of projective planes. In order to estimate the large N asymptotics of its associated partition function, we need to compute the Frobenius-Schur indicator associated to any highest weight of U(N ) or SU(N ).

Let (ρ, V ) a complex finite-dimensional representation of a compact group G with character χ. Recall that ρ is said to be:

L N (i) Real if it exists a symmetric G-invariant nondegenerate bilinear form; (ii) Quaternionic if it exists a skew-symmetric G-invariant nondegenerate bilinear form; (iii) Complex if there is no G-invariant nondegenerate bilinear form.
The value of ι χ is actually linked to this classification, as stated by the following Proposition, which can be found in [BtD , Prop. . ].

Proposition . . . Let (ρ, V ) be a complex finite-dimensional representation of a compact group G, with character χ. Its Frobenius-Schur indicator is given by:

ι χ =    1 if ρ is real; 0 if ρ is complex; -1 if ρ is quaternionic. ( . )
The next result allows us to decide when an irreducible representation of U(N ) or SU(N ) is real, complex or quaternionic, based on its highest weight.

Proposition . . . Let λ = (λ 1 • • • λ N ) be a highest weight of U(N ) (or SU(N ) if we fix λ N = 0). Let m i = λ i -λ i+1 ∈ N for every i ∈ {1, . . . , N -1}. An irreducible representation of U(N ) or SU(N ) with highest weight λ is: -Complex if there exists i such that m i = m N -i ; -Real if m i = m N -i
for all i ∈ {1, . . . , ⌊N/2⌋} and one of the following properties is satisfied:

-N ≡ 2[4]; -N ≡ 2[4] and m 2k+1 is even; -Quaternionic if N ≡ 2[4], m i = m N -i for all i ∈ {1, . . . , N/2} and m 2k+1 is odd.
Proof. The proof is given for SU(N ) in [FH , Prop. . ]. Now, if λ N = 0, we define µ ∈ SU(N ) by setting µ i = λ iλ N . It can be verified that a representation of U(N ) with highest weight λ is real (resp. complex, quaternionic) if and only if a representation of SU(N ) with highest weight µ is real (resp. complex, quaternionic), and for any i ∈ {1, . . . , N } the value of m i is the same for λ and µ by definition.

If we apply this proposition to the construction λ = λ N (α λ , β λ ), it yields the following result.

Corollary . . . Let λ ∈ SU(N ) and n ∈ Z. (i) If N = 2M + 1 is odd, then an irreducible representation of SU(N ) (resp. U(N )) with highest weight λ (resp. λ + n) is complex if and only if α λ = β λ . (ii) Assume that N = 2M is even. Let α = α λ ∈ SU(M ) and β = β λ ∈ SU(M + 1), and set β = (β 1 -β M , . . . , β M -1 -β M , 0) ∈ SU(M ).
Then an irreducible representation of SU(N )

(resp. U(N )) with highest weight λ (resp. λ + n) is complex if and only if α = β.
(iii) For all integer partitions α and β, all n ∈ Z, and for N large enough, the highest weight λ N (α, β, n) as defined by ( . ) is not quaternionic.

C Y -M N

The main point of this corollary is that highest weights that are not symmetric are complex and therefore do not contribute to the non-orientable partition function because their Frobenius-Schur indicator vanishes. We can also notice that quaternionic representations with almost flat highest weight do not appear in the large N scale, and that the partition function becomes a sum of nonnegative terms.

. . Genus g 3

The special unitary case

The proof of Theorem . . .(i) will be based on the same reasoning as for orientable surfaces of genus g 2, that is, using Proposition . . to show that the contribution of all other highest weights than (0, . . . , 0) vanish in the large N limit. However, the case of non-orientable surfaces with g = 3 will need a finer control, as we will see later. In particular, for even values of N and g = 3 the following inequality is needed.

Proposition . . . Let N = 2M be an integer. For λ ∈ SU(N ), if we set α = α λ ∈ SU(M ) and β = β λ ∈ SU(M + 1), as well as β = (β 1 -β M , . . . , β M -1 -β M , 0) ∈ SU(N ) as in Corollary . . .(ii), then d λ 1 + β M M M d α d β .
Proof. Using Equation ( . ) and the fact that

λ = λ N (α, β) = (α 1 + β 1 , . . . , α M -1 + β 1 , β 1 , β M -β 1 , . . . , β 2 -β 1 , 0), it is clear that d λ d α d β . Moreover, d β = 1 i<j M +1 1 + β i -β j j -i = M i=1 β i M + 1 -i d β β M M M d β .
Combining both inequalities gives the expected result.

Proof of Theorem . . .(i).

The highest weight (0, . . . , 0) is associated to the trivial representation, which is real by Proposition . . and has dimension 1 and Casimir number 0. We can then rewrite

Z ′ - N (g, T ) = 1 + λ∈ SU(N ) λ =(0,...,0) q c ′ 2 (λ) d 2-g λ (ι λ ) g ,
and the remaining sum can be bounded as follows:

λ∈ SU(N ) λ =(0,...,0)

q c ′ 2 (λ) d 2-g λ ι λ λ∈ SU(N ) λ =(0,...,0) q c ′ 2 (λ) d 2-g λ .
L N If g 4, then the right-hand side has been proved to converge to 0 as N → ∞ in Section . . , hence the result follows.

Now, if g = 3, we need to refine the analysis in order to get the convergence. From Corollary . . , it appears that λ ∈ SU(N ) contributes to the partition function if and only if it is symmetric. The case N = 2M + 1 is easier to prove, so we start with it. As ι λ = 0 if λ is associated with a complex representation, we have

Z ′ - N (3, T ) =1 + λ∈ SU(N ) λ =(0,...,0) λ is symmetric q c ′ 2 (λ) d -1 λ (ι λ ) 3 , which means that |Z ′ - N (3, T ) -1| = α∈ SU(M +1) α =(0,...,0) q c ′ 2 (λ N (α,α)) d -1 λ N (α,α) (ι λ N (α,α) ) 3 α∈ SU(M +1) α =(0,...,0) q c ′ 2 (λ N (α,α)) d -2 α ζ su(M ) (2),
where in the first inequality we used the fact that d λ N (α,α) d 2 α . Then, letting M tend to infinity and using Proposition . . , we have indeed

lim M →∞ Z ′ - 2M +1 (3, T ) = 1. Now consider N = 2M . Let β = (β 1 -β M , . . . , β M -1 -β M , 0). Corollary .
. states that λ = λ N (α, β) contributes to the partition function if and only if α = β. It implies:

|Z ′ - N (3, T ) -1| = (α,β)∈ SU(M )× SU(M +1) α= β q c ′ 2 (λ N (α,β)) d -1 λ N (α,β) (ι λ N (α,α) ) 3 .
We can then apply Proposition . . to get

|Z ′ - N (3, T ) -1| α∈ SU(M +1) α =(0,...,0) n∈N 1 + n M -M d -2 α = n∈N 1 + n M -M α∈ SU(M +1) α =(0,...,0) d -2 α .
The first sum is bounded because

1 + n M -M
e -n for any n, M , and the second one converges, following the same argument as in the case N = 2M + 1. We finally get

lim M →∞ Z ′ - 2M (3, T ) = 1. C Y -M N Finally, we have shown that lim M →∞ Z ′ - 2M (3, T ) = lim M →∞ Z ′ - 2M +1 (3, T ) = 1,
which concludes the proof.

The unitary case

As for the special unitary case, the proof of the unitary case for non-orientable surfaces of genus g 3 is similar to the one of orientable surfaces of genus g 2. Indeed, the point is to show that only constant highest weights contribute to the large N limit.

Proof of Theorem . . .(i) in the unitary case. Let us consider g 3 and T > 0. We split the partition function Z - N (g, T ) into two parts

Z - N (g, T ) = n∈Z e -T 2 n 2 + λ∈ SU(N ) λ =(0,...,0) n∈Z e -T 2 c 2 (λ+n) d 2-g λ+n ι g λ+n .
Let us assume that g 4. Following the arguments used in the orientable case with g = 2, we find

0 |Z N (g, T ) -ϑ(0; iT /2π)| λ∈ SU(N ) λ =(0,...,0) n∈Z e -T 2 (n+|λ|/N ) 2 e -T 2 c ′ 2 (λ) d 2-g λ .
The sum between the brackets is bounded by C = 1 + ϑ(0; iT /2π) and the other sum is bounded in absolute value by ζ su(N ) (g -2)-1, which converges to . Hence, the whole right-hand side converges to 0.

If g = 3 we need a special analysis similar to the one in the special unitary case. Using Corollary . . , any λ ∈ U(N ) contributes to Z - N (3, T ) if and only if it is symmetric. Let us first assume that N = 2M + 1. Then, we can write

Z - N (3, T ) =ϑ(0; iT /2π) + λ∈ SU(N ) λ =(0,...,0) λ is symmetric n∈Z q c 2 (λ+n) d -1 λ (ι λ ) 3 , therefore 0 |Z - N (3, T ) -ϑ(0; iT /2π)| λ∈ SU(N ) λ =(0,...,0) λ is symmetric n∈Z q (n+|λ|/N ) 2 q c 2 (λ) d -1 λ α∈ SU(M +1) α =(0,...,0) n∈Z q (n+|λ N (α,α)|/N ) 2 q c 2 (λ N (α,α)) d -2 α .
L

N

The right-hand side converges to for the same reason as in the case g 4. Now, let us assume that N = 2M . Let β be defined as before. We have

0 |Z - N (3, T ) -ϑ(0; iT /2π)| (α,β)∈ SU(M )× SU(M +1) α= β n∈Z q (n+|λ N (α,β)|/N ) 2 q c 2 (λ N (α,β)) d λ N (α,β) .
Proposition . . , plus similar arguments as before, yield

|Z - N (3, T ) -ϑ(0; iT /2π)| (1 + ϑ(0; it/2π)) n∈N 1 + n M -M α∈ SU(M +1) α =(0,...,0) d -2 α ,
and the right-hand side converges to zero. We proved the convergence for odd and even values of N to the same quantity, which concludes the case g = 3.

.

. Genus g = 2

The Klein bottle is the non-orientable equivalent to the torus, as we will see, in the sense that the dimensions of the irreducible representations do not appear in the formula of the partition function. Hence, the proof of Theorem . . .(ii) is using almost flat highest weights as well.

The special unitary case

Proof of Theorem . . .(ii) in the special unitary case. From Corollary . . and Proposition . . we deduce that λ ∈ SU(2M ) (resp. SU(2M + 1) has a nonzero Frobenius-Schur indicator if and only if α = β (resp. α = β), where α = α λ and β = β λ are defined as in Section . . , and

β = (β 1 -β M , . . . , β M -1 -β M , 0) ∈ SU(M ).
Let γ ∈ (0, 1 2 ), and the subsets (Λ γ N,i ) 1 i 4 of SU(N ) defined as in ( . ). We define, for

1 i 4, S ′ N,i = λ∈Λ γ N,i ι 2 λ q c ′ 2 (λ) = λ∈Λ γ N,i λ is symmetric q c ′ 2 (λ) ,
and we obtain the following decomposition:

Z ′ N (1, T ) = S ′ N,1 + S ′ N,2 + S ′ N,3 + S ′ N,4 .
-If N = 2M + 1, then the symmetry condition is equivalent to the fact that α = β and we can simplify equation ( . ) into

c ′ 2 (λ N (α, α)) = 2|α| + 4K(α) N ,
for any α of length r and N 2r. Let us recall the estimation

|2K(α)| |α|(|α| -1), C Y -M N which leads, for λ = λ(α, α) ∈ Λ γ N,1 , to |c ′ 2 (λ) -2|α|| 4N 2γ-1 . ( . )
Recall that we found in the proof of Theorem . . .(ii) that, for N large enough,

Λ γ N,1 = {λ N (α, β), α ⊢ r, β ⊢ s : r N γ , s N γ }.
We then get from this equality and from ( . ) the estimate

q 4N 2γ-1 |α| N γ q 2|α| S ′ N,1 q -4N 2γ-1 |α| N γ q 2|α| , ( . ) 
and both bounds converge to the expected quantity

∞ m=1 1 1-q 2m .
-If N = 2M , then the symmetry condition is equivalent to the fact that α = β and under this condition we have

|α| N γ |β| N γ ⇔ |α| N γ β M N γ -|α| .
Furthermore, equation ( . ) becomes

2|α| + M β M -4N 2γ-1 c ′ 2 (λ) 2|α| + M β M + 4N 2γ-1 + 4N 2γ-2 .
We obtain that

q 4N 2γ-1 +4N 2γ-2 |α| N γ   n N γ -|α| q M n   q 2|α| S ′ N,1 , S ′ N,1 q -4N 2γ-1 |α| N γ   n N γ -|α| q M n   q 2|α| .
( . )

The sums between brackets in both inequalities are bounded between 1 and n∈Z q M n . The latter converges to 1 as M tends to infinity, by dominated convergence (it is clearly bounded by the geometric series n∈N q n ). It finally appears that both bounds of

S ′ N,1 in ( . ) converge to ∞ m=1 1 1-q 2m .
By similar arguments as the ones used in the case of the torus, we can prove that S ′ N,2 , S ′ N,3 and S ′ N,4

all converge to 0 as the remainders of convergent series. This concludes the proof.

The unitary case

Proof of Theorem . . .(ii) in the unitary case. Let λ be an element of SU(N ). Recall that we found in the proof of Theorem . . .(ii) in the unitary case that, for all n ∈ Z,

c 2 (λ + n) = c ′ 2 (λ) + n + |λ| N 2 = c ′ 2 (λ) + n + |α λ | -|β λ | N + (β λ ) 1 2 , L N so that we can write, modulo a change of index n ← n -(β λ ) 1 , Z - N (2, T ) = λ∈ SU(N ) n∈Z q n+ |α λ |-|β λ | N 2 ι 2 λ+n q c ′ 2 (λ) . ( . )
Let γ ∈ (0, 1 2 ), and the subsets (Λ γ N,i ) 1 i 4 of SU(N ) as in the special unitary case. We define, for 1 i 4,

S N,i = λ∈Λ γ N,i n∈Z q n+ |α λ |-|β λ | N 2 ι 2 λ+n q c ′ 2 (λ) ,
and we obtain the following decomposition:

Z N (1, T ) = S N,1 + S N,2 + S N,3 + S N,4 .
Let λ be an element of Λ γ N,1 . From corollary . . we deduce that ι λ+n = 0 if and

only if α = β if N is odd or α = β if N is even, where α = α λ and β = β λ satisfy λ = λ N (α, β) and β = (β 1 -β M , . . . , β M -1 -β M , 0) ∈ SU(M ).
In the following, we will assume that this condition is satisfied by λ + n so that it contributes to the partition function.

-

If N = 2M + 1, then n + |α|-|β| N = n and S N,1 = n∈Z q n 2 λ=λ(α,α)∈Λ γ N,i q c ′ 2 (λ) . ( . ) 
We get then back to the SU(N ) case which was previously proved.

-

If N = 2M , let β = (β 1 , . . . , β M -1 , 0) as in the g 3 case, then n + |α|-|β| N = n -M β M N and β M = 0 if N is large enough because λ is almost flat. Hence, S N,1 = n∈Z q n 2 λ=λ(α,β)∈Λ γ N,i α= β q c ′ 2 (λ) . ( . )
Once again, we get back to the SU(N ) case which was previously proved.

With similar arguments as in the previous proofs, we can prove that S N,2 , S N,3 and S N,4 all converge to 0 as they are remainders of convergent series. Finally, using the convergence results from the SU(N ) case, we see that the limit of S 2M,1 and S 2M +1,1 is the same, which is the one stated in Theorem . . .(ii), and it is therefore the limit of Z - N (2, T ).

C T

In this chapter, we first describe the master field and recall its construction for the plane and the sphere, before presenting results about higher genus surfaces. In particular, we compute in Thm. . . (resp. . . ) the limit of Wilson loop expectation (resp. variance) for contractible simple loops, and we explain how it can be extended to a broader class of loops, including those with self-intersections. We also discuss in Thm. . . and Prop. . . the case of loops which have nonzero homology.

T W M -M

It seems that the first definition of the master field was given in [Wit ], at least informally, based on the work of 't Hooft [tH ] that is considered by many to be the starting point of the study of large N limit. However, it has become an intense subject of research in the early s, with the seminal papers [Sin , GG ]. It was initially considered as the limiting object of Yang-Mills measure on the plane, and treated as such in the first place, but physicists began quickly to generalize it to the sphere, because some limiting aspects of Yang-Mills on the sphere were already investigated by Douglas and Kazakov [DK ] or also Boulatov [Bou ].

From a mathematical perspective, it became a subject of interest in the beginning of st century [Sen b, AS , Lév , Dah , CDG ] for the plane, then for the sphere [FMS , LM , DN , Hal ]. The articles [Lév ] and [DN ] can be used as references for the construction of the master field, respectively on the plane and on the sphere. In our definition, it can be defined as the limit of the Yang-Mills holonomy field defined in Thm. . . . Recall that for a surface Σ and m ∈ Σ a base point, we denote L m (Σ) (resp. P(Σ)) the monoid of loops on Σ starting from and ending to m. (resp. the set of paths in Σ) . Our definition of the master field is then the following, which is a reminder of Def.

. . . Definition . . . Let Σ be a surface and m ∈ Σ a base point. A master field on Σ is the datum of a * -probability space (A , τ ) and a noncommutative stochastic process (h ℓ ) ℓ∈Lm(Σ) on A that satisfies the following properties:

Cf. p. -. T W M -M (i) For all (ℓ 1 , ℓ 2 ) ∈ L m (Σ) 2 , h ℓ -1 = h * ℓ = h -1 ℓ and h ℓ 1 ℓ 2 = h ℓ 2 h ℓ 1 ; ( . ) (ii) If (ℓ n )
n∈N is a sequence of loops that converges uniformly to a loop ℓ and if the sequence of their lengths converges to the length of ℓ, then (h ℓn ) converges to h ℓ in L 2 (A , τ ).

(iii) Let (H c ) c∈P(Σ) be the Yang-Mills holonomy field on Σ with structure group U(N ) or SU(N ).

For any ℓ ∈ L m (M ) we have

lim N →∞ E[tr(H ℓ )] = τ (h ℓ ). ( . )
The quantity tr(H ℓ ) given in Equation ( .) is called Wilson loop functional, and its expectation with respect to Yang-Mills measure is called Wilson loop expectation. It was first defined by Wilson [Wil ], as a gauge-invariant observable derived from the holonomy of a principal connection around a loop; one can find in [Sen ] how this definition of Wilson loop is related to the one we use. The reason why these functionals are studied in the setting of large N Yang-Mills is the following theorem, proved by Sengupta [Sen ] for a smaller class of groups and then extended by Lévy [Lév ].

Theorem . . . Let G be a finite product of groups among U(N ), SU(N ), O(N ), SO(N ), Sp(N ), and G be an oriented graph. Then the algebra generated by the Wilson loops is dense in the space of continuous functions on the configuration space C G G . We will not detail the proof of this result, but highlight the fact that it relies on the following property, that all groups given in Theorem . . share: for all n-tuples (x 1 , . . . , x n ) and (y 1 , . . . , y n ) of elements of G, we have the equivalence between ∃g ∈ G, y 1 = gx 1 g -1 , . . . , y n = gx n g -1 and ∀w word in n letters and their inverses, w(y 1 , . . . , y n ) is conjugated to w(x 1 , . . . , x n ).

Wilson loop expectations are well established in the case of two-dimensional Yang-Mills theory, as we will see later, but in higher dimensions they remain under investigation even for lattice gauge theory, as shown by the recent results from Chatterjee [Cha ], Cao [Cao ] and Forsström et al. [FLV ].

The main use of Wilson loops in this chapter will be the following: as stated by Definition . . , the moments of the master field applied to a loop ℓ are the limits of the expectations of Wilson loop functionals applied to the same loop.

In this section we will explain, in a somehow unified procedure, how to prove the existence of the master field in the cases of the plane and the sphere, which are the only known cases yet. Indeed, despite the fact that the Yang-Mills holonomy process has two distinct structures for each of these surfaces, the way of constructing the master field is similar. The first step is to prove the convergence of Wilson loop expectations and variances for simple loops, i.e. loops without crossings, and then to compute these expectations and variances for a broader class of loops using the so-called Makeenko-Migdal equations. We will develop these two steps separately, as they are rather independent in the sense that they do not rely on the same tools.

T W M -M
-Determinantal processes, which are used in [LW ] to compute the asymptotic distribution of a unitary Brownian bridge;

-Large deviations, which are depicted in [Gui ] and used in [LM ] to compute the same limit as in [LW ].

The use of noncommutative harmonic analysis in order to compute integrals such as ( . ) or ( . ) is based to the heat kernel decomposition. In our preferred setting, which is G = U(N ), this decomposition is derived in Section . . : let us recall it.

The irreducible representations of U(N ) are labelled by nonincreasing N -tuples of integers λ = (λ 1 • • • λ N ) called highest weights, and we denote respectively by d λ and c 2 (λ) their dimension and Casimir number, given by

d λ = 1 i<j N λ i -λ j + j -i j -i ( . )
and

c 2 (λ) = 1 N N i=1 λ 2 i + 1 i<j N (λ i -λ j ) . ( . )
The set of irreducible representations is denoted by U(N ) and is in bijection with the set of highest weights. The character of a representation of highest weight λ is given by the Schur function s λ , which is defined in Prop. . . ; however, we will not need its explicit formula for our computations. Theorem . . states that the heat kernel on U(N ) admits the decomposision

p T (U ) = λ∈ U(N )
e -c 2 (λ) T 2 d λ s λ (U ), ∀T > 0, ∀U ∈ U(N ).

( . )

We can make a similar statement for the group SU(N ): its irreducible representations are labelled by nonincreasing N -tuples of integers µ = (µ 1

• • • µ N = 0) also called highest weights, and their dimension and Casimir number are respectively given by

d µ = 1 i<j N µ i -µ j + j -i j -i = 1 i<j N 1 + µ i -µ j j -i ( . ) and c ′ 2 (µ) = 1 N   N i=1 µ 2 i - 1 N N i=1 µ i 2 + 1 i<j N (µ i -µ j )   . ( . )
The Equation ( . ) still holds for SU(N ) when one replaces accordingly the highest weights and their related quantities d λ and c 2 (λ).

Let us get back to the Wilson loop expectations for the plane and the sphere: for G = U(N ), Eq. ( . ) becomes (-1) ht(µ-λ) s µ (x), ∀x ∈ SU(N ).

W ℓ = λ∈ U(N ) e -c 2 (λ) t 2 d λ U(N ) tr(x)s λ (x)dx, ( 
( . )

In particular, for r = 1, we have

Tr(x)s λ (x) = µ∈ U(N ) µցλ s µ (x), ∀x ∈ U(N ). ( . )
Using ( . ), we have in the plane

W ℓ = 1 N λ∈ U(N ) e -c 2 (λ) t 2 d λ µ∈ U(N ) µցλ U(N ) s µ (x)dx. ( . )
As the integral U(N ) s µ (x)dx is equal to 1 if µ = (0, . . . , 0) and 0 otherwise, it appears that W ℓ = e -c 2 ((0,...,0,-1)) t 2 d (0,...,0,-1) .

( . )

A direct computation of the Casimir number and the dimension of the representation yields

W ℓ = e -t 2 , ( . ) 
which trivially converges to e -t 2 when N → ∞.

In the case of the sphere, with similar arguments we obtain

W ℓ = 1 N Z T λ,µ∈ U(N ) λրµ e -c 2 (λ) t 2 -c 2 (µ) T -t 2 d λ d µ . ( . )
It is much more complicated to compute the limit of such a quantity, because it is a sum over a set of indices whose size depends on N , and thus it cannot be treated as a simple series. Dahlqvist and Norris [DN ] found a way to pass through this obstacle, using the empirical distribution of the highest weights

µ λ = 1 N N i=1 δ λ i , ∀λ ∈ U(N ).
Indeed, they applied a large deviation principle found by Guionnet and Maïda in [GM ], and they used some concentration results as well as contour integrals making rigorous the arguments already present in [Bou ], to show that ) This n = 1 case is also a particular case of another (simpler) rule, which is Pieri's rule, given in Prop. . . . In the equation above, ρ T denotes the density, with respect to Lebesgue measure, of the minimizer of the functional I T on the set M 1 (R) of probability measures on R having a density with respect to Lebesgue measure such that this density takes values in [0, 1], as

lim N →∞ W ℓ = 2 nπ ∞ 0 cosh((2t -T ) x 2 ) sin(πρ T (x))dx. ( . 
I T (µ) = R 2 (x 2 + y 2 ) T 2 -2 log |x -y|dµ(x)dµ(y) if µ([a, b]) b -a ∀[a, b] ⊂ R, +∞ otherwise.
.

It appears that this minimizer actually is the semicircle distribution with variance 1 T when T π 2 , and a much more complicated distribution otherwise. The fact that this distribution changes at the critical value π 2 is called the Douglas-Kazakov transition phase,, named after the physicists who conjectured it in [DK ]. This conjecture was proved independently by Liechty and Wang [LW ] and Lévy and Maïda [LM ].

The Wilson loop expectation W ℓ and its limit admit a generalization, in the sense that there is a closed formula for E[tr(H n ℓ )] for any n ∈ N and an explicit expression of its limit, for both the plane and the sphere; they are given respectively by the moments of the unitary Brownian motion and the unitary Brownian bridge, and their limits are respectively computed in [Bia ] and [DN ], based on formula ( . ). However, as we will see in the next section, these formulae are superfluous to know the existence and the expression of the master field.

. . Makeenko-Migdal equations

The Makeenko-Migdal equations are named after the authors of [MM ] who derived them using an informal integration by parts. Nevertheless, they could also be named after Kazakov and Kostov who gave them in [KK , § ] the form we will use. Given a loop in a surface with a self-intersection point , these equations give an expression of the partial derivatives of its Wilson loop average with respect to the areas of the faces that are adjacent to the self-intersection point. Let us be more explicit about this expression. Let Σ is either the plane or a compact surface and G = (E, V, F) a graph embedded in Σ. If ℓ is a loop on Σ obtained as a path in G with a simple crossing on a vertex v ∈ V, -ℓ 1 and ℓ 2 are subloops of ℓ with basepoint v such that ℓ = ℓ 1 ℓ 2 , -(e 1 , e 2 , e 3 , e 4 ) ∈ E 4 are edges that start or end with v, and such that ℓ 1 = e 1 w 1 e 2 and ℓ 2 = e 4 w 2 e 3 with w 1 and w 2 some words in edges of E \ {e 1 , e 2 , e 3 , e 4 }, -t 1 , t 2 , t 3 and t 4 are the areas of the faces bordered by ℓ that share the common vertex v, labelled counterclockwise and starting from the face between e 1 and e 4 , then the Makeenko-Migdal equation reads ) From now on, we will only consider such points to be simple crossings, i.e. vertices that only have 2 incoming edges and 2 outgoing edges. ) where L 1 and L 2 are the subloops of L obtained by the usual splitting of Makeenko-Migdal. Note that it defines a function Φ over P(Σ) as in Def. . . , which we can also call master field. Thanks to Eq. ( . ), we obtain that tr(H ℓ )

∂ ∂t 1 - ∂ ∂t 2 + ∂ ∂t 3 - ∂ ∂t 4 W ℓ = E[tr(H ℓ 1 )tr(H ℓ 2 )]. ( . 
d dt Φ L(t) = Φ L 1 (t) Φ L 2 (t) , ( . 
P -→ Φ L
when N tends to infinity; in other terms, Wilson loops converge in probability to the master field (or to its trace, depending on the definition we take), not only in expectation. Note that Lévy [Lév ] proved that this convergence even holds almost surely. With Theorem . . and Equations ( .) and ( . ), we have all the needed tools to construct the master field on the plane and on the sphere, and to compute its value on loops with a finite number of self-intersections.

C

After the master field was constructed in the plane and in the sphere, one could expect it to be constructed on other compact surfaces than the sphere, possibly depending on their genus. This construction still remains unsolved, although Hall [Hal ] did a first step towards it, and the purpose of this section is to make another step.

We start by giving an expression of Wilson loop expectation and variance for a contractible simple loop in surfaces with genus 1 and higher and with structure group U(N ) or SU(N ), then we compute their limit using the theory of almost flat highest weights developed in Chapter . We also prove that the fluctuations are of order 1 N 1-ε for ε > 0 arbitrarily small, and we give a simpler proof of the convergence of Wilson loop expectation and variance for g 2 with structure group U(N ).

Then, we discuss the case of loops with nontrivial homology, which is a case that does not appear in the plane or the sphere, as well as the joint distribution of the holonomy of the generators of the group of reduced loops on a graph embedded in the surface. Finally, we discuss what is still missing in order to obtain the master field.

. . Contractible simple loops

Let us start with simple loops that are contractible, that is, homotopy equivalent to a point. We will show in this section that their associated Wilson loop expectation and variance behave exactly as in the plane when N tends to infinity. In other words, the global structure of the surface has no influence on such loops -provided the surface is not the sphere. ) where (p t ) t∈R + is the heat kernel on G.

C W ℓ = 1 Z N (g, T ) G 2g+1 tr(x)p t (x -1 )p T -t (x[y 1 , z 1 ] • • • [y g , z g ])dx g i=1 dy i dz i , ( . 
We can also define the Wilson loop variance as the variance of Wilson loop functional -as tautological as it seems. It leads to the following formula, because the Wilson loop is a complex random variable:

Var[tr(H ℓ )] = E[|tr(H ℓ )| 2 ] -|E[tr(H ℓ )]| 2 .
It appears that

Var[tr(H ℓ )] = E[tr(H ℓ )tr(H ℓ )] -|E[tr(H ℓ )]| 2 = E[tr(H ℓ )tr(H * ℓ )] -|E[tr(H ℓ )]| 2 , ( . )
so that the variance can be explicitly computed as long as we know the expectations E[tr(H ℓ )] and

E[tr(H ℓ )tr(H * ℓ )].
In order to push further the computation of Wilson loop expectations when the gauge group is U(N ) or SU(N ), we will use the harmonic analysis tools that we described in Section . . , based on irreducible representations. Our goal will be to prove the following Proposition.

Proposition . . (Wilson loop expectation and variance). Let Σ g,T be an orientable compact connected surface of genus g 1 and of area T , ℓ be a contractible loop of interior area t, and G = SU(N ) or U(N ) be the structure group. If we set q = e -T /2 , then we have the following formulae:

(i) If G = SU(N ), then E[tr(H ℓ )] = 1 N Z ′ N (g, T ) λ,µ∈ SU(N ) µրλ q c ′ 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c ′ 2 (µ)-c ′ 2 (λ)) , ( . 
)

E[tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z ′ N (g, T ) λ,µ∈ SU(N ) λ∼µ q c ′ 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c ′ 2 (µ)-c ′ 2 (λ)) . ( . ) (ii) If G = U(N ), then E[tr(H ℓ )] = 1 N Z N (g, T ) λ,µ∈ U(N ) µրλ q c 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c 2 (µ)-c 2 (λ)) , ( . 
)

E[tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z N (g, T ) λ,µ∈ U(N ) λ∼µ q c 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c 2 (µ)-c 2 (λ)) . ( . )
Before we prove Prop. . . , let us introduce the following lemma, which enables to integrate Schur functions involving commutators. C T Lemma . . . Let G be a compact group and dg its normalized Haar measure. If (ρ, V ) is an irreducible representation of G, we have

G 2 χ ρ (x[y, z])dydz = χ ρ (x) d 2 ρ , ∀x ∈ G. ( . )
In order to prove Lemma . . , we need two intermediary propositions, which we will not prove because they are quite standard.

Proposition . . ([Far ], Prop. . ). Let G be a compact group, and dg its normalized Haar measure. For any irreducible representation (ρ, V ) of G, we have

G χ ρ (xgyg -1 )dg = 1 d ρ χ ρ (x)χ ρ (y), ∀(x, y) ∈ G 2 .
Proposition . . . Let G be a compact group and (ρ, V ), (π, W ) two irreducible representations of G. Then

χ ρ * χ π = χρ dρ if ρ ∼ π, 0 otherwise.
Proof of Lemma . . . First, according to Proposition . . , we have for any

(x, y) ∈ G 2 : G χ ρ (xyzy -1 z -1 )dz = 1 d ρ χ ρ (xy)χ ρ (y -1
).

If we integrate out y ∈ G it appears that

G 2 χ ρ (x[y, z])dydz = (χ ρ * χ ρ )(x) d ρ ,
which yields ( . ) using Proposition . . .

We now have all the tools to prove Prop. . . . Proof of Prop. . . . We will prove it in the case G = U(N ), the case G = SU(N ) being the same. Let us start from Eq. ( . ). We can decompose the heat kernels following ( . ):

W ℓ = 1 Z N (g, T ) λ,µ∈ U(N ) d λ d µ e -c 2 (λ)t 2 - c 2 (µ)(T -t) 2 U(N ) 2g+1 tr(x)s λ (x -1 )s µ (x[y 1 , z 1 ] • • • [y g , z g ])dx g i=1 dy i dz i .
We can then apply Lemma . . g times, which transforms the commutators into dimensions:

W ℓ = 1 Z N (g, T ) λ,µ∈ U(N ) d λ (d µ ) 1-2g e -c 2 (λ)t 2 - c 2 (µ)(T -t) 2 U(N )
tr(x)s λ (x -1 )s µ (x)dx.

C

Then, using Pieri's rule and the fact that tr = 1 N Tr gives

W ℓ = 1 Z N (g, T ) λ,µ∈ U(N ) d λ (d µ ) 1-2g N e -c 2 (λ)t 2 - c 2 (µ)(T -t) 2 ν∈ U(N ) νցµ U(N )
s λ (x -1 )s ν (x)dx.

If we set q = e -T /2 and use the orthogonality relations of characters, it yields Eq. ( . ).

In the same manner as in Eq. ( .), we can compute E[tr(H ℓ )tr(H * ℓ )] as

E[tr(H ℓ )tr(H * ℓ )] = 1 Z N (g, T ) U(N ) 2g+1 tr(x)tr(x -1 )p t (x -1 )p T -t (x[y 1 , z 1 ] • • • [y g , z g ])dx g i=1 dy i dz i ,
which can be rewritten, using the heat kernel decomposition, Lemma . . and Pieri's rule:

E[tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z N (g, T ) λ,µ∈ U(N ) d λ (d µ ) 1-2g e -c 2 (λ)t 2 - c 2 (µ)(T -t) 2 × ν,τ ∈ U(N ) νցµ,τ ցλ U(N )
s τ (x -1 )s ν (x)dx.

Setting q = e -T /2 as before and using the orthogonality of Schur functions, we obtain Eq. ( . ) as expected.

It is now time to state the main results of this section, which give the limits of the Wilson loop expectation and variance for a simple loop in a closed topological disk. Theorem . . . Let Σ g,T be an orientable compact connected surface of genus g 1 and of area T , ℓ be a contractible simple loop of interior area t, and G = SU(N ) or U(N ) be the structure group. The associated Wilson loop expectation converges, as N → ∞, and its limit is

lim N →∞ E[tr(H ℓ )] = e -t 2 .
( . )

Note that the limit does actually not depend on the genus of the surface, as long as it is greater or equal to 1. The value of the limit is the same as in the plane. The result about the variance is the following.

Theorem . . . Let Σ g,T be an orientable compact connected surface of genus g 1 and of area T , ℓ be a contractible simple loop of interior area t, and G = SU(N ) or U(N ) be the structure group. The associated Wilson loop variance satisfies the following limit:

lim N →∞ Var[tr(H ℓ )] = 0.
( . )

Tools for asymptotic study

In order to compute the limits of Equations ( . ) to ( . ), we will need the theory of almost flat highest weights developed in [Lem ] and introduced in Chapter . Let us recall a few results about it, sometimes without proof.

From two integer partitions

α = (α 1 • • • α r > 0) and β = (β 1 • • • β s > 0)
of respective lengths r and s, and an integer n ∈ Z, we can form, for all N r + s + 1, the highest weight

λ N (α, β, n) = (α 1 + n, . . . , α r + n, n, . . . , n N -r-s
, nβ s , . . . , nβ 1 ) ∈ U(N ).

( . )

We extend this definition in the obvious way to the cases where one or both of the partitions α and β are the empty partition.

We can also form the highest weight

λ N (α, β) = λ N (α, β, β 1 ) ∈ SU(N ),
with the convention that λ N (α, ∅) = λ N (α, ∅, 0) = (α 1 , . . . , α r , 0).

We have seen in Section . . that these constructions can be reversed, in the sense that given a highest weight λ ∈ U(N ), then we can define unambiguously α, β and n such that λ = λ N (α, β, n) . In this case, we will denote them by α λ , β λ and n λ to emphasize the fact that they are determined by λ. As we will see, this decomposition will be of great help to control the Casimir numbers of highest weights, as well as their dimensions. Let us start with estimations about Casimir numbers.

Lemma . . . Let λ ∈ SU(N ). Set k = |α λ | + |β λ |. Then the following inequalities hold: k - k 2 N c ′ 2 (λ) k + k 2 N + k 2 N 2 , ( . ) k 2 c ′ 2 (λ). ( . )
This result was already proved in Chapter : it is actually Lemma . . . We can complete it with the following proposition. Proposition . . . Let (λ, µ) ∈ SU(N ) 2 be two highest weights and set α = α µ and β = β µ . If λ ց µ or if λ ∼ µ, then we have for N large enough

- T 2 c ′ 2 (µ) + t 2 (c ′ 2 (µ) -c ′ 2 (λ)) - T 8 (|α| + |β|) + t. ( . )
More precisely, it comes from the mappings given in ( . ) and ( . ).

T

From now on, let us fix a real γ ∈ (0, 1 3 ), that we can consider as a control parameter . We split the set of highest weights of SU(N ) in four disjoint subsets:

Λ γ N,1 = {λ ∈ SU(N ) : |α λ | N γ , |β λ | N γ }, Λ γ N,2 = {λ ∈ SU(N ) : |α λ | > N γ , |β λ | N γ }, Λ γ N,3 = {λ ∈ SU(N ) : |α λ | N γ , |β λ | > N γ }, Λ γ N,4 = {λ ∈ SU(N ) : |α λ | > N γ , |β λ | > N γ }.
( . )

We can do the same for highest weights of U(N ), but the subsets will be denoted by Ω γ N,i instead of Λ γ N,i . In this framework, ( . ) can be refined as the following for any highest weight λ ∈ Λ γ N,1 , called almost flat:

|α λ | + |β λ | -4N 2γ-1 c ′ 2 (λ) |α λ | + |β λ | + 4N 2γ-1 + 4N 2γ-2 . ( . )
We can rewrite this as

c ′ 2 (λ) -|α λ | + |β λ | 8N 2γ-1 . ( . )
Another crucial point is the following: for N large enough, any partition of an integer not greater than N γ has less than N 2 positive parts. Thus, if α and β are any two such partitions, the highest weight λ N (α, β) is well defined, and belongs to Λ γ N,1 . As a consequence, for N large enough,

Λ γ N,1 = {λ N (α, β), α ⊢ r, β ⊢ s : r N γ , s N γ }. ( . )
Using the bijection Φ given in ( . ), we get as well for almost flat highest weights of U(N ) with N large enough,

Ω γ N,1 = {λ N (α, β, n), α ⊢ r, β ⊢ s : r N γ , s N γ , n ∈ Z}. ( . )
The dimension of almost flat highest weights can also be related to the dimension of irreducible representations of the symmetric group.

Proposition . . . Let α = (α 1 • • • α r ) and β = (β 1 • • • β s ) be two integer partitions, N r + s + 1 an integer and γ ∈ (0, 1 
3 ) a real number. Let us assume that |α| N γ and |β| N γ . The partitions α and β induce two highest weights of SU(N ), α = λ N (α, ∅) and β = λ N (β, ∅). We have the following facts.

(i) If we set d α as the dimension of the irreducible representation of S |α| associated with α, then, assuming that N is large enough, ) and the same result holds for β.

d α N |α| |α|! (1 -2N 2γ-1 ) d α d α N |α| |α|! (1 + 2N 2γ-1 ), ( . 
(ii) For any n ∈ Z, the dimension of λ N (α, β, n) satisfies the following estimation, assuming that N is large enough:

d α d β N |α|+|β| |α|!|β|! (1 -24N 3γ-1 ) d λ N (α,β,n) d α d β N |α|+|β| |α|!|β|! (1 + 24N 3γ-1 ) ( . )
Intuitively, as we will discuss it later, we want it to be as small as possible, while remaining positive.

C

Note that this proposition generalizes a result by Gross and Taylor: in [GT ], they derived similar asymptotic expansions but in the case where |α| and |β| were finite and not depending on N . However, we really need the stronger assumption |α|, |β| N γ as we will see later.

Proof of Proposition . . . (i) let us first recall that (cf. [GT , VO ])

d α = d α N |α| |α|! 1 i r 1 j α i 1 + j -i N . ( . )
But for any 1 i r and 1 j α i , we have 1r ji α i -1, and under the assumption |α| N γ it implies that |j -i| N γ . Thus,

(1 -N γ-1 ) |α| 1 i r 1 j α i 1 + j -i N (1 + N γ-1 ) |α| .
From the convexity inequality of the exponential function, we have

(1 + N γ-1 ) |α| e |α|N γ-1 .
We can use the following reverse inequalities, that hold for any x ∈ (0, 1 2 ):

e x 1 + 2x, log(1 -x) -2x.
It implies that, for N such that N γ-1 < 1 2 (which is true for N large enough),

1 -2N 2γ-1 e -2|α|N γ-1 (1 -N γ-1 ) |α| 1 i r 1 j α i 1 + j -i N e |α|N γ-1 1 + 2N 2γ-1 .
This estimation, applied to ( . ), gives the expected result.

(ii) Let us first remark that, from the Weyl dimension formula, we have for any n ∈ Z

d λ N (α,β,n) = d αd β Q(α, β), ( . ) with Q(α, β) = 1 i r 1 j s (N + 1 -i -j)(α i + β j + N + 1 -i -j) (α i + N + 1 -i -j)(β j + N + 1 -i -j) .
As r |α| and s |β|, the assumption |α|, |β| N γ implies that we also have r, s N γ . For any 1 i r and 1 j s, we have therefore

-2N γ 3 -2N γ α i + β j -i -j + 1 2N γ -1 2N γ . It implies that 1 + α i + β j -i -j N 2N γ-1 , C T
and we have the same bound for 1+α i -i-j N , 1+β j -i-j N and 1-i-j N , so that

Q(α, β) = 1 i r 1 j s (1 + A N (i, j))(1 + B N (i, j)) (1 + C N (i, j))(1 + D N (i, j)) , with |A N (i, j)|, |B N (i, j)|, |C N (i, j)|, |D N (i, j)| 2N γ-1 .
For any (i, j) we have

1 C N (i, j) = 1 - 1 + C N (i, j) 1 + C N (i, j) = 1 + C ′ N (i, j), with |C ′ N (i, j)| 2|C N (i, j)|
, and the same result holds for D N (i, j). It implies that

Q(α, β) = 1 i r 1 j s (1 + A N (i, j))(1 + B N (i, j))(1 + C ′ N (i, j))(1 + D ′ N (i, j)), with |A N (i, j)|, |B N (i, j)|, |C ′ N (i, j)|, |D ′ N (i, j)| 4N γ-1 .
Hence, using the same inequalities as in (i) we get the estimation

e -8N 3γ-1 (1 -4N γ-1 ) N 2γ Q(α, β) (1 + 4N γ-1 ) N 2γ e 4N 3γ-1 , which implies 1 -8N 3γ-1 Q(α, β) 1 + 8N 3γ-1 .
We can apply this, as well as the point (i), to get for N 2γ-1 < 1 4 (which is in particular true for N large enough)

d λ N (α,β,n) d α d β N |α|+|β| |α|!|β|! (1 + 2N 2γ-1 ) 2 (1 + 8N 3γ-1 ),
which can be simplified considering that for (x, y, z) ∈ (0, 1 4 ) 3 such that x + y + z < 1 4 ,

(1 + x)(1 + y)(1 + z) e x+y+z 1 + 2(x + y + z).
Indeed, for N such that N 3γ-1 + 2N 2γ-1 < 1 4 we obtain

d λ N (α,β,n) d α d β N |α|+|β| |α|!|β|! (1 + 8N 2γ-1 + 16N 3γ-1 ) d α d β N |α|+|β| |α|!|β|! (1 + 24N 3γ-1 ), and 
d λ N (α,β,n) d α d β N |α|+|β| |α|!|β|! (1 -24N 3γ-1 ),
which proves the result.

C

Branching rules

Before proving Theorem . . , we still have to discuss a bit about branching rules. Indeed, in ( . ) (resp. ( . )), a sum over λ ց µ appears, with λ and µ being highest weights of SU(N ) (resp. U(N )). We will show how this branching is transformed in the decomposition λ = λ N (α, β, n) that we introduced in the previous section.

Proposition . . . Let α = (α 1 • • • α r ), β = (β 1 • • • β s ), α ′ = (α ′ 1 • • • α ′ r ′ ) and β ′ = (β ′ 1 • • • β ′ s ′
) be integer partitions, and (n, n ′ , N ) ∈ Z 3 three integers such that N max(r + s, r ′ + s ′ ). Then the following assertions are equivalent:

(i) λ N (α ′ , β ′ , n ′ ) ց λ N (α, β, n), (ii) (α ′ ց α, β ′ = β and n ′ = n) or (β ′ ր β, α ′ = α and n ′ = n).
Proof. In order to see the equivalence, recall the construction of λ N (α, β, n) given in ( . ):

λ N (α, β, n) = (α 1 + n, . . . , α r + n, n, . . . , n N -r-s , n -β s , . . . , n -β 1 ) = (λ 1 , . . . , λ N ).

The only way of having λ

N (α ′ , β ′ , n ′ ) ց λ N (α, β, n) is to increment a coefficient λ i such that λ i > λ i+1
. It clearly excludes the coefficients λ r+1 , . . . , λ r+s . Two only ways remain: either we increment one of the coefficients λ 1 , . . . , λ r , or we increment one of the coefficients λ r+s+1 , . . . , λ N . The first case corresponds to α ′ ց α and the second one to β ′ ր β (while leaving the other parameters unchanged), according to the description of the coefficients in terms of α, β and n. The equivalence follows immediately.

The main consequence of this proposition, combined with ( . ) and ( . ), is that for N large enough, {(λ, µ) ∈ SU(N ) × Λ γ N,1 : λ ց µ} splits into two disjoint sets

{(λ N (α ′ , β), λ N (α, β)) : |α| N γ , |β| N γ , α ′ ց α} and {(λ N (α, β ′ ), λ N (α, β)) : |α| N γ , |β| N γ , β ′ ր β}.
From ( . ) we also have that, for N large enough,

{(λ, µ) ∈ U(N ) × Ω γ N,1 : λ ց µ} splits into {(λ N (α ′ , β, n), λ N (α, β, n)) : |α| N γ , |β| N γ , α ′ ց α, n ∈ Z} and {(λ N (α, β ′ , n), λ N (α, β, n)) : |α| N γ , |β| N γ , β ′ ր β, n ∈ Z}.
The main advantage of these decompositions is that we make fully use of Lemma . . that uses branching over partitions rather than highest weights. However, using Prop. . . will somehow convert dimensions of representations of U(N ) or SU(N ) into dimensions of representations of S n with some integer n. We will therefore need the following branching rules. Proof. Let us recall the so-called branching rules on S n , cf. [Sag ] for example:

χ λ ↑ S n+1 = µ⊢(n+1) µցλ χ µ , and χ λ ↓ S n-1 = µ⊢(n-1) µրλ χ µ .
As the character of a restricted representation is equal to the restriction of the character, the second branching rule directly implies ( . ). For the character of an induced representation we have the following result [FH , Eq.( . )]: if G is a finite group and H a subgroup of G, then for any character χ of a representation of H we have

χ ↑ G (g) = 1 |H| x∈G xgx -1 ∈H χ(xgx -1 ), ∀g ∈ G.
If we apply this formula to G = S n+1 , H = S n , χ = χ λ and g = 1 we get ( . ) as expected.

Asymptotics of the expectation

We can now turn to the proof of Theorem . . . We will split it into one dedicated to SU(N ) and one dedicated to U(N ), as the proofs are slightly different.

Proof of Theorem . . in the special unitary case. Let γ ∈ (0, 1

3 ) be a fixed real number. For any i ∈ {1, 2, 3, 4} we define E γ i [tr(H ℓ )] as follows:

E γ i [tr(H ℓ )] = 1 N Z ′ N (g, T ) µ∈Λ γ N,i q c ′ 2 (µ) (d µ ) 2g-2 λ∈ SU(N ) λցµ d λ d µ e t 2 (c ′ 2 (µ)-c ′ 2 (λ)) ,
with the sets Λ γ N,i being as in ( . ).

From Equation ( . ) and the definition of each Λ γ N,i we have

E[tr(H ℓ )] = 4 i=1 E γ i [tr(H ℓ )]. We will show first that lim N →∞ E γ 1 [tr(H ℓ )] = e -t/2 , C
and then that for 2 i 4, lim

N →∞ E γ i [tr(H ℓ )] = 0,
which will imply Equation ( . ).

From Equation ( . ) we have, for N large enough,

E γ 1 [tr(H ℓ )] = 1 N Z ′ N (g, T ) |α|,|β| N γ q c ′ 2 (λ N (α,β)) (d λ N (α,β) ) 2g-2 λ∈ SU(N ) λցλ N (α,β) d λ d λ N (α,β) e t 2 (c ′ 2 (λ N (α,β))-c ′ 2 (λ)) .
Furthermore, we can notice that adding a box to λ N (α, β) is equivalent to adding a box to the partition α to get α ′ ց α or removing one from the partition β to get β ′ ր β such that α ′ or β ′ is another partition. It means that

E γ 1 [tr(H ℓ )] = 1 N Z ′ N (g, T ) |α|,|β| N γ q c ′ 2 (λ N (α,β)) (d λ N (α,β) ) 2g-2 × α ′ ցα d λ N (α ′ ,β) d λ N (α,β) e t 2 (c ′ 2 (λ N (α,β))-c ′ 2 (λ N (α ′ ,β))) + β ′ րβ d λ N (α,β ′ ) d λ N (α,β) e t 2 (c ′ 2 (λ N (α,β))-c ′ 2 (λ N (α,β ′ )))
.

( . )

We will first control the differences of Casimir numbers, then the ratios of dimensions, and show that only the sum over α ′ ց α contributes to the large N limit. From ( . ) we obtain that for any α and β such that |α|, |β|

N γ , -1 -16N 2γ-1 c ′ 2 (λ N (α, β)) -c ′ 2 (λ N (α ′ , β)) -1 + 16N 2γ-1 , ∀α ′ ց α and 1 -16N 2γ-1 c ′ 2 (λ N (α, β)) -c ′ 2 (λ N (α, β ′ )) 1 + 16N 2γ-1 , ∀β ′ ր β. We obtain the following estimation for E γ 1 [tr(H ℓ )]: E γ 1 [tr(H ℓ )] = e ε(N,γ) Z ′ N (g, T ) |α|,|β| N γ q |α|+|β| (d λ N (α,β) ) 2g-2 e -t 2 N α ′ ցα d λ N (α ′ ,β) d λ N (α,β) + e t 2 N β ′ րβ d λ N (α,β ′ ) d λ N (α,β) , ( . ) with |ε(N, γ)| (4T + 8t)N 2γ-1 .
Using Prop. . . and the fact that for any x ∈ (0, 1 4 )

1 1 -2x 1 + 4x and 1 1 + 2x 1 -4x, C T
we have for any α ′ ց α and N large enough

d λ N (α ′ ,β) d λ N (α,β) N d α ′ (|α| + 1)d α (1 + 24N 3γ-1 )(1 + 48N 3γ-1 ) N d α ′ (|α| + 1)d α (1 + 144N 3γ-1 ) and d λ N (α ′ ,β) d λ N (α,β) N d α ′ (|α| + 1)d α (1 -144N 3γ-1 ).
Combined with Prop. . . these equations yield

1 -144N 3γ-1 1 N α ′ ցα d λ N (α ′ ,β) d λ N (α,β) 1 + 144N 3γ-1 . ( . )
With similar arguments we also have, because |β| N γ :

0 1 N β ′ րβ d λ N (α,β ′ ) d λ N (α,β) |β| N 2 (1 + 144N 3γ-1 ) 37N γ-2 . ( . )
Combining this with ( . ) we find

E γ 1 [tr(H ℓ )] = e -t 2 η(N, γ) e ε(N,γ) Z ′ N (g, T ) |α|,|β| N γ q |α|+|β| (d λ N (α,β) ) 2g-2 , ( . ) with 1 -144N 2γ-1 η(N, γ) 1 + 144N 3γ-1 + 37e t N γ-2 .
If we let N → ∞, the remaining sum has the same limit as Z ′ N (g, T ) as we have seen in the proof of Thm. . . (see page for g 2 and page for g = 1). Moreover, ε(N, γ) tends to 0 and η(N, γ) to 1. From all of this we can deduce that lim N →∞ E γ 1 [tr(H ℓ )] = e -t 2 .

Now we have to show that the other E γ i all tend to 0 when N → ∞. We have

E γ i [tr(H ℓ )] = 1 N Z ′ N (g, T ) µ∈Λ γ N,i q c ′ 2 (µ) (d µ ) 2g-2 λ∈ SU(N ) λցµ d λ d µ e t 2 (c ′ 2 (µ)-c ′ 2 (λ)) .
Using Proposition . . , if we set α = α µ and β = β µ , we have the following inequality for N large enough:

E γ i [tr(H ℓ )] 1 N Z ′ N (g, T ) µ∈Λ γ N,i e -T 8 (|α|+|β|)+t (d µ ) 2g-2 λ∈ SU(N ) λցµ d λ d µ .
Furthermore, using ( . ) we have λ∈ SU(N ) λցµ

d λ d µ = Tr(I N ) = N, C therefore E γ i [tr(H ℓ )] 1 Z ′ N (g, T ) µ∈Λ γ N,i e -T 8 (|α|+|β|)+t (d µ ) 2g-2 1 Z ′ N (g, T ) µ∈Λ γ N,i e -T 8 (|α|+|β|)+t ,
where in the second inequality we used the fact that for any µ ∈ Λ γ N,i , d µ 1.

From now on, we will set i = 2, but the arguments will be similar for i = 3 and i = 4. For N large enough, we have

E γ 2 [tr(H ℓ )] e t Z ′ N (g, T ) |α|>N γ ,|β| N γ e -T 8 (|α|+|β|)+t = e t Z ′ N (g, T ) |α|>N γ e -T 8 |α| |β| N γ e -T 8 |β| .
The fraction e t Z ′ N (g,T ) is bounded because (Z ′ N (g, T )) N 1 is a convergent sequence, according to Thm. . . ; the first sum converges to 0 as the remainder of the convergent series defining the generating function of partitions. The second sum is bounded as the partial sum of a similar generating function. We obtain that E γ 2 [tr(H ℓ )] → 0 as N → ∞. We have the same convergence for i = 3 and i = 4 and the result follows.

Proof of Theorem . . in the unitary case. Let γ ∈ (0, 1

3 ) be a fixed real number. As in the special unitary case, we define for 1 i 4 the quantity E γ i [tr(H ℓ )] as

E γ i [tr(H ℓ )] = 1 N Z N (g, T ) µ∈Ω γ N,i q c 2 (µ) (d µ ) 2g-2 λ∈ U(N ) λցµ d λ d µ e t 2 (c 2 (µ)-c 2 (λ)) . ( . )
As we have seen right after Prop. . . , we have for N large enough

E γ 1 [tr(H ℓ )] = 1 Z N (g, T ) |α|,|β| N γ n∈Z q c 2 (λ N (α,β,n)) (d λ N (α,β,n) ) 2g-2 × 1 N α ′ ցα d λ N (α ′ ,β,n) d λ N (α,β,n) e t 2 (c 2 (λ N (α,β,n))-c 2 (λ N (α ′ ,β,n))) + 1 N β ′ րβ d λ N (α,β ′ ,n) d λ N (α,β,n) e t 2 (c 2 (λ N (α,β,n))-c 2 (λ N (α,β ′ ,n)))
.

Let us introduce two intermediary quantities, depending on α, β and n:

A N (α, β, n) = 1 N α ′ ցα d λ N (α ′ ,β,n) d λ N (α,β,n) n∈Z e t 2 (c 2 (λ N (α,β,n))-c 2 (λ N (α ′ ,β,n))) , B N (α, β, n) = 1 N β ′ րβ d λ N (α,β ′ ,n) d λ N (α,β,n) n∈Z e t 2 (c 2 (λ N (α,β,n))-c 2 (λ N (α,β ′ ,n))) .
C T We will show that A N (α, β, n) produces the limit we are trying to get, and that B N (α, β, n) do not contribute to this limit. Let us first consider A N (α, β, n) and use Lemma . . : from ( . ) and the fact that for any 1 i N

-N γ-1 α i + β 1 + 1 -i N N γ-1 + 1 N 2N γ-1 , we deduce c 2 (λ N (α, β, n)) -c 2 (λ N (α ′ , β, n)) = -1 - 2n N + ε 1 (N, γ)
with |ε 1 (N, γ)| 2N γ-1 . Combining this estimation with Equation ( . ) yields

A N (α, β, n) = e -t 2 +ε 1 (N,γ) (1 + η 1 (N, γ))e -tn N ,
with |η 1 (N, γ)| 144N 2γ-1 . Analogously, we have from ( . ) and ( . )

B N (α, β, n) = e t 2 +ε 2 (N,γ) η 2 (N, γ)e -tn N , with |ε 2 (N, γ)| 0 and |η 2 (N, γ)| 36N γ-2 .
In particular, we have

E γ 1 [tr(H ℓ )] = C N Z N (g, T ) e -t 2 +ε 1 (N,γ) (1 + η 1 (N, γ)) + e t 2 +ε 2 (N,γ) η 2 (N, γ) , ( . ) 
with

C N = n∈Z e -tn N |α|,|β| N γ q c 2 (λ N (α,β,n)) (d λ N (α,β,n) ) 2g-2 .
We would like to show that lim N →∞ C N = lim N →∞ Z N (g, T ). According to Lemma . . we have

C N = |α|,|β| N γ n∈Z q (n+ |α|-|β| N ) 2 + 2tn T N q c ′ 2 (λ N (α,β)) (d λ N (α,β) ) 2g-2 ,
and from Eq. ( . ) we get for any α and

β such that |α|, |β| N γ n 2 -n 4N γ-1 - 2t T N n + |α| -|β| N 2 + 2tn T N n 2 + n 4N γ-1 + 2t T N + 4N 2γ-2 .
It leads to the following estimates:

n∈Z q n 2 +n(4N γ-1 + 2t T N )+4N 2γ-2 |α|,|β| N γ q c ′ 2 (λ N (α,β)) (d λ N (α,β) ) 2g-2 C N and C N n∈Z q n 2 -n(4N γ-1 -2t T N ) |α|,|β| N γ q c ′ 2 (λ N (α,β)) (d λ N (α,β) ) 2g-2 . C The quantity |α|,|β| N γ q c ′ 2 (λ N (α,β)) (d λ N (α,β) )
2g-2 has the same limit as Z ′ N (g, T ) as we have seen in the proof of Thm. . . (see page for g 2 and page for g = 1). Moreover we have, by dominated convergence,

lim N →∞ n∈Z q n 2 -n(4N γ-1 -2t T N ) = lim N →∞ n∈Z q n 2 +n(4N γ-1 + 2t T N )+4N 2γ-2 = n∈Z q n 2 , therefore lim N →∞ C N = n∈Z q n 2 lim N →∞ Z ′ N (g, T ) = Z N (g, T ).
Plugging this limit into ( . ) and using the estimates of ε 1 (N, γ), ε 2 (N, γ), η 1 (N, γ) and η 2 (N, γ), we finally get lim

N →∞ E γ 1 [tr(H ℓ )] = e -t 2 .
Now we have to show that the other E γ i all tend to 0 when N → ∞. We will need the following estimations, which are direct consequences of ( . ): if α, β, α ′ , β ′ are partitions such that α ′ ց α and β ′ ր β, then for any n ∈ Z we have

c 2 (λ N (α, β, n)) -c 2 (λ N (α ′ , β, n)) 1 - 2n N and c 2 (λ N (α, β, n)) -c 2 (λ N (α, β ′ , n)) 1 - 2n N .
In particular, combined with Prop. . . , these estimations imply that for any (λ, µ) ∈ U(N ) 2 such that λ ց µ,

c 2 (µ) -c 2 (λ) 1 - 2n N , ( . ) 
with n = n µ . Recall that from ( . ) we have

λ∈ U(N ) λցµ d λ d µ = N.
If we combine these results with ( . ), we get the following estimation:

0 E γ i [tr(H ℓ )] e t 2 Z N (g, T ) µ∈Ω γ N,i q c 2 (µ)+ 2tnµ T N (d µ ) 2g-2 . ( . )
Now let us specialize our computation to a given i. We will do it for i = 2, the other cases being similar. We have 0

E γ 2 [tr(H ℓ )] C N,2 Z N (g, T ) , with C N,2 = e t 2 |α|>N γ ,|β| N γ n∈Z q c ′ 2 (λ N (α,β))+(n+ |α|-|β| N ) 2 + 2tn T N (d λ N (α,β) ) 2g-2 .
Recall that for any α and β we have d λ N (α,β) 1. Besides, from ( . ) we have c ′ 2 (λ N (α, β))

1 2 |α| + |β|, and we also have the following estimation:

- T 2 n + |α| -|β| N 2 + 2tn T N = - T 2 n + |α| -|β| + t T N 2 - (|α| -|β|)t 2T N 2 + t 2 2T N 2 - T 2 n + |α| -|β| + t T N 2 + t 2 2T N 2 + (|α| + |β|)t 2T N 2 . It means that C N,2 e t 2 |α|>N γ ,|β| N γ n∈Z q (n+ |α|-|β| N t N T ) 2 q (|α|+|β|)( 1 2 -t T 2 N 2 )-t 2 T 2 N 2 .
The sum between parentheses is bounded independently from N, |α| and |β| by C = 1 + ϑ(0; iT 2π ), and we have for N large enough the inequality 1

2 -t T 2 N 2 > 1 4 , therefore C N,2 Ce t 2 + 2t T N 2 |α|>N γ q |α| 4 |β| N γ q |β| 4 ,
and it is clear that this quantity converges to zero when N → ∞, because |α|>N γ q |α| 4 converges to zero and the other terms are uniformly bounded in N . We obtain that lim N →∞ E γ 2 [tr(H ℓ )] = 0, and we have the same limit for i = 3 and i = 4. This concludes the proof.

Asymptotics of the variance

We would like to prove Thm. . . in this section. Before that, let us remark that Equation ( . ) implies that Equation ( . ) is equivalent to

lim N →∞ E[tr(H ℓ )tr(H * ℓ )] = lim N →∞ |E[tr(H ℓ )]| 2 ,
which can be rewritten, thanks to Thm. . . :

lim N →∞ E[tr(H ℓ )tr(H * ℓ )] = e -t .
( . )

We will prove Thm. . . by proving this limit, using similar arguments as in the proof of Thm. . . . Proof of Theorem . . in the special unitary case. First, using Equation ( . ), we have

E[tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z ′ N (g, T ) λ,µ∈ SU(N ) λ∼µ λ =µ q c ′ 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c ′ 2 (µ)-c ′ 2 (λ)) + 1 N 2 .
We deduce from this the fact that

lim N →∞ E[tr(H ℓ )tr(H * ℓ )] = lim N →∞ 1 N 2 Z ′ N (g, T ) λ,µ∈ SU(N ) λ∼µ λ =µ q c ′ 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c ′ 2 (µ)-c ′ 2 (λ)) .

C

Let us define, for γ ∈ (0, 1 3 ) and i ∈ {1, 2, 3, 4}:

E γ i [tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z ′ N (g, T ) λ,µ∈Λ γ N,i λ∼µ λ =µ q c ′ 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c ′ 2 (µ)-c ′ 2 (λ)) .
Using similar arguments as in the proof of Theorem . . , we have for N large enough

E γ 1 [tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z ′ N (g, T ) |α|,|β| N γ q c ′ 2 (λ N (α,β)) (d λ N (α,β) ) 2g-2 λ∈ SU(N ) λ∼λ N (α,β) λ =λ N (α,β) d λ e t 2 (c ′ 2 (λ N (α,β))-c ′ 2 (λ)) d λ N (α,β) .
We can notice that adding a box and removing another box to λ N (α, β) is equivalent to one of these cases:

-Adding a box to α and β; -Adding a box and removing another one to α; -removing a box and adding another one to β; -Removing a box to α and β.

Remark that the third case is equivalent to "adding a box and removing another one to β" because the operations "adding a box" and "removing a box" commute. Remark also that all these operations are under the implicit condition that they are mappings from the set of integer partitions to itself. Hence, if we define

S N,1 = 1 N 2 α ′ ցα β ′ ցβ d λ N (α ′ ,β ′ ) d λ N (α,β) e t 2 (|α|+|β|-|α ′ |-|β ′ |+ε 1 (N,γ)) , S N,2 = 1 N 2 α ′ րα β ′ րβ d λ N (α ′ ,β ′ ) d λ N (α,β) e t 2 (|α|+|β|-|α ′ |-|β ′ |+ε 2 (N,γ)) , S N,3 = 1 N 2 α ′ ∼α α ′ =α d λ N (α ′ ,β) d λ N (α,β) e t 2 (|α|-|α ′ |+ε 3 (N,γ)) , S N,4 = 1 N 2 β ′ ∼β β ′ =β d λ N (α,β ′ ) d λ N (α,β) e t 2 (|β|-|β ′ |+ε 4 (N,γ)) , with |ε i (N, γ)| 16N 2γ-1 for i ∈ {1, 2, 3, 4}, we have E γ 1 [tr(H ℓ )tr(H * ℓ )] = 1 Z ′ N (g, T ) |α|,|β| N γ q c ′ 2 (λ N (α,β)) (d λ N (α,β) ) 2g-2 (S N,1 + S N,2 + S N,3 + S N,4
) .

A different one, this time, because we assume that the new highest weight is different from the initial one.

C T We will prove that only S N,1 contributes to the limit. Using Prop. . . , we have for N large enough

S N,1 = α ′ ցα β ′ ցβ d α ′ d β ′ |α ′ ||β ′ |d α d β e t 2 (2+ε 1 (N,γ)) η 1 (N, γ),
with |η 1 (N, γ) -1| 144N 3γ-1 (following the same arguments as in the proof of Thm. . . ). We can apply Prop. . . and get

S N,1 = e t+ t 2 ε 1 (N,γ) η 1 (N, γ).
Similarly, we have

S N,2 = |α||β| N 4 e t+ t 2 ε 2 (N,γ) η 2 (N, γ),
with |η 2 (N, γ) -1| 144N 3γ-1 . Now, in order to compute S N,3 and S N,4 , let us notice that

α ′ ∼α α ′ =α d α ′ d α = -1 + α ′′ ցα d α ′′ d α α ′ րα ′′ d α ′ d α ′′ = -1 + α ′′ ցα d α ′′ d α = |α|.
We can apply this equality and use the same arguments as above to get

S N,3 = |α| N 2 e ε 3 (N,γ) η 3 (N, γ), S N,4 = |β| N 2 e ε 4 (N,γ) η 4 (N, γ),
with |η 3 (N, γ) -1| 144N 3γ-1 and |η 4 (N, γ) -1| 144N 3γ-1 . As we have |α|, |β| N γ , it appears that S N,2 145e t+ t 2 ǫ 2 (N,γ) N 2γ-1 , and S N,2 tends to 0 when N tends to infinity. We come to the same conclusion for S N,3 and S N,4 , and we also find that S N,1 tends to e t when N tends to infinity. It follows that

E γ 1 [tr(H ℓ )tr(H * ℓ )] = e -t + o(1) Z ′ N (g, T ) |α|,|β| N γ q c ′ 2 (λ N (α,β)) (d λ N (α,β) ) 2g-2 ,
and the right-hand side converges to e -t as N → ∞.

Now let us prove that E

γ i [tr(H ℓ )tr(H * ℓ )] tends to 0 for i ∈ {2, 3, 4}. Recall that E γ i [tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z ′ N (g, T ) λ,µ∈Λ γ N,i λ∼µ λ =µ q c ′ 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c ′ 2 (µ)-c ′ 2 (λ)) .
C Using Lemma . . and setting α = α µ and β = β µ , we have 

E γ i [tr(H ℓ )tr(H * ℓ )] e t N 2 Z ′ N (g, T ) λ,µ∈Λ γ N,i λ∼µ λ =µ 1 (d µ ) 2g-2 d λ d µ e -T 8 (|α|+|β|) = e t N 2 Z ′ N (g, T ) µ∈Λ γ N,i
(d µ ) 2g-2 (1 - 1 N 2 ) e t (1 -1 N 2 ) Z ′ N (g, T ) µ∈Λ γ N,i e -T 8 (|α|+|β|) .
Now it is clear that, following the same arguments as in the proof of Theorem . . , that the quantity E γ i [tr(H ℓ )tr(H * ℓ )] tends to 0 as N tends to infinity, for i ∈ {2, 3, 4}. This proves Equation ( . ), and therefore Theorem . . . We set, for γ ∈ (0, 1 3 ) and i ∈ {1, 2, 3, 4}: Let us define, for α and β two partitions and n ∈ Z an integer, We have, for N large enough,

E γ i [tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z N (g, T ) λ,µ∈Ω γ N,i λ∼µ λ =µ q c 2 (µ) (d µ ) 2g-2
S N,1 = 1 N 2 α ′ ցα β ′ ցβ d λ N (α ′ ,β ′ ) d λ N (α,β) e t 2 (c 2 (λ N (α,β,n))-c 2 (λ N (α ′ ,β ′ ,n))) , S N,2 = 1 N 2 α ′ րα β ′ րβ d λ N (α ′ ,β ′ ) d λ N (α,β) e t 2 (c 2 (λ N (α,β,n))-c 2 (λ N (α ′ ,β ′ ,n))) , S N,3 = 1 N 2 α ′ ∼α α ′ =α d λ N (α ′ ,β) d λ N (α,
E γ 1 [tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z N (g, T )
|α|,|β| N γ n∈Z q c 2 (λ N (α,β,n)) (d λ N (α,β,n) ) 2g-2 (S N,1 + S N,2 + S N,3 + S N,4 ) .

We can compute the differences of Casimir numbers in each S N,i using Prop. . . , in the same way as we did in Lemma . . . For instance, if α ′ ց α and β ′ ց β and i 0 and j 0 are such that α ′ i 0 = α i 0 + 1 and

β ′ i 0 = β i 0 + 1, then c 2 (λ N (α, β, n)) -c 2 (λ N (α ′ , β ′ , n)) = -2 - 2 N (α i 0 + β i 0 -i 0 -j 0 ).
In particular, if |α|, |β| N γ , we have

-2 -4N γ-1 c 2 (λ N (α, β, n)) -c 2 (λ N (α ′ , β ′ , n)) -2 + 4N γ-1 .
Following the same argument, if α ′ ր α and β ′ ր β then

2 -4N γ-1 c 2 (λ N (α, β, n)) -c 2 (λ N (α ′ , β ′ , n)) 2 + 4N γ-1 . C If α ′ ∼ α then |c 2 (λ N (α, β, n)) -c 2 (λ N (α ′ , β, n))| 4N γ-1 ,
and it is the same if we consider β ′ ∼ β. Now S N,i can be estimated the same way as in the special unitary case: we have S N,1 =e -t+ε 1 (N,γ) η 1 (N, γ), S N,2 =e t+ε 2 (N,γ) |α||β| N 4 η 2 (N, γ), S N,3 =e ε 3 (N,γ) |α| N 2 η 3 (N, γ), S N,4 =e ε 4 (N,γ) |β| N 2 η 4 (N, γ),

with |ε i (N, γ)| 8tN γ-1 and |η i (N, γ) -1| 144N 3γ-1 for 1 i 4. Then, still using similar arguments, we find that

E γ 1 [tr(H ℓ )tr(H * ℓ )] = e -t + o(1) Z N (g, T ) |α|,|β| N γ n∈Z q c ′ 2 (λ N (α,β,n)) (d λ N (α,β,n) ) 2g-2 ,
which tends to e -t as N → ∞.

It remains to prove that E γ i [tr(H ℓ )tr(H * ℓ )] converges to 0 for i ∈ {2, 3, 4}. Recall that we have This sum converges to 0 when N → ∞, thus so does E γ 2 [tr(H ℓ )tr(H * ℓ )]. We can apply the same trick for i ∈ {3, 4}, the Thm. . . follows.

E γ i [tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z N (g, T ) λ,µ∈Ω γ N,i λ∼µ λ =µ q c 2 (µ) (d µ ) 2g-2

C

Fluctuations of the variance

Let us discuss the convergence rate of Var[tr(H ℓ )], because the proofs involved many different estimations. Among them, the most restrictive ones are Prop. . . and ( . ). Their common feature is the use of the control parameter γ which is assumed to be either in (0, 1 3 ) or (0, 1 2 ) depending on the estimation; the convergence does not depend on the specific value of γ. Indeed, the whole point of this parameter is to control |α| and |β| by a sequence (x N ) N 1 that satisfies the following assumptions:

lim N →∞ x N = ∞, lim N →∞ N -1 3 x N = 0.
These assumptions were already implicit in Chapter , in the informal reasoning made in p. . The first one is here to ensure that the weights that are not almost flat have a contribution which is bounded by the remainder of a convergent series, whereas the second one is here to ensure that the contribution of almost flat highest weights converges to the right limit. We took x N = N γ , but we could have taken x N = log(N ) as well. The outline of our proofs would probably have remained unchanged, but without giving any better information on the convergence. Indeed, we can take γ as small as needed, thus the rate of convergence can be as close to 1 N as we want: it is precisely 1 N 1-ε with ε > 0 arbitrarily small. It can be summarized in the following proposition. Proposition . . . Let Σ g,T be a surface and ℓ be a simple loop satisfying the same assumptions as in Thm. . . . Then for any ε > 0, there exists a constant C ε > 0 such that, for N large enough, Var(tr(H ℓ )) C ε N ε-1 .

( . )

Simpler proofs for g 2

Although we directly proved Thm. . . and . . for any g 1 using almost flat highest weights, it appears to be an interesting to see if the proof can be simplified for g 2. Indeed, as we saw in Chapter for the limit of partition function, the case g 2 did not require the use of almost flat highest weights, but rather 'flat' weights (i.e. constant weights). We will show here that it is still true for the Wilson loop expectation and variance, and that the proofs of Thm. . . and . . can be simplified for g 2.

Proof of Thm. . . in the unitay case with g 2. Let us start with ( . ). The sum over µ ∈ U(N ) can be split into two terms, the one associated with µ = (n, . . . , n) for n ∈ Z (we will call µ a flat highest weight and denote by Λ N the set of such weights) and the sum of the remaining terms. The main point is that for any µ = (n, . . . , n) ∈ Λ N , the only λ ∈ U(N ) such that λ ց µ is λ = (n + 1, n, . . . , n), which has dimension N and Casimir number c 2 ((n + 1, n, . . . , n)) = n 2 + 1 + 2n N .

with n = n µ in the sense that there exist unique partitions α and β with less than N 2 parts such that µ = λ N (α, β, n). From ( . ) we have for any µ ∈ U(N ) Proof of Thm. . . in the unitary case with g 2. We will prove ( . ) as previously, and this will imply that the Wilson loop variance tends to 0. Let us set Λ N = {(n, . . . , n) ∈ U(N ), n ∈ Z} as in the previous proof. We have from Equation ( .) 

E[tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z N (g, T ) µ∈Λ N λ∈ U(N ) λ∼µ q c 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c 2 (µ)-c 2 (λ)) + 1 N 2 Z N (g, T ) µ∈ U(N )\Λ N λ∈ U(N ) λ∼µ q c 2 (µ) (d µ ) 2g-2
1 N 2 + q n 2 N 2 -1 N 2 .
It is clear that the right-hand side converges to e -t when N → ∞.

Now, let us prove that the following remainder converges to 0:

∆(N ) = 1 N 2 Z N (g, T ) µ∈ U(N )\Λ N λ∈ U(N ) λ∼µ q c 2 (µ) (d µ ) 2g-2 d λ d µ e t 2 (c 2 (µ)-c 2 (λ)) .
Recall that for any µ ∈ U(N ) \ Λ N , we have d µ N ; using similar arguments as in Prop. . . , we can prove that for any λ ∼ µ c 2 (µ)c 2 (λ) 2 + 2µ 1 N .

We can also reproduce the proof of ( . ) to get λ∈ U(N ) λցµ

d λ d µ N 2 . 1 N 2g-2 Z N (1, T 2 ) Z N (g, T )
.

The right-hand side converges to 0 when N → ∞, therefore it is also the case for ∆(N ). This concludes the proof.

. . Loops with self-intersections

From our asymptotic analysis of simple loops and Makeenko-Migdal equations we can deduce the limit of Wilson loops for a broader class of loops, still included in a topological disk: it was proved by Hall in [Hal ], using the same kind of arguments as in the plane or the sphere. Before we state this theorem, let us give a few definitions that it will rely on. Definition . . . Let Σ be a closed compact connected surface of total area T , and L a loop on Σ with a finite number of simple self-intersections included in a topological disk U ⊂ Σ. Suppose that there is an admissible graph G = (E, V, F) such that L is traced out on G, and that there exists a face F 0 ∈ F such that ∂F 0 is contained in L.

(i) If x is a point of U \ L([0, 1]), we define the winding number w(L, x) of L around x as the homotopy class of L in U \ {x}.

(ii) For any face F ∈ F we define the winding number of L around F as the quantity w(L, F ) = w(L, x) for a given x ∈ F .

(iii) We call admissible subloop of L any subloop obtained by splitting of L according to Makeenko-Migdal equations. By convention we also consider L to be an admissible subloop of itself.

(iv) The maximal winding number of L is defined as

|w max | = max L,F ′ |w(L ′ , F )|, ( . )
where the maximum is taken among the indices F ∈ F and the admissible subloops L ′ of L.

This face can be seen as the 'external face' of the loop. It is not hard to see that this definition does not depend on the x ∈ F we choose.

C (v)

The loop L is said to be small if A|w max | < T, ( . )

where A = Tarea(F 0 ) is the difference between the total area of Σ and the area of the external face F 0 .

Under the 'smallness' assumption described in the previous definition, we have the following result. (ii) The associated variance vanishes in the large N limit: where L 1 and L 2 are derived from L in the ususal way.

What we proved in Section . . imply that, for G = U(N ) or SU(N ), the assumptions of Thm. . . are satisfied. In particular, we are able to compute the values of the master field (assuming that it exists) for any small loop contained in a topological disk, with a finite number of self-intersections. This is a good start but obviously not satisfactory. It would be at least interesting to get rid of the smallness assumption. Let us illustrate the limits of this Theorem with Fig. . . The loop considered here can be deformed into a simple loop only if the external face has a sufficient area. If its area z is less than y, where y is the area of the smallest internal face, then we are not able to get rid of the self-intersection.

There is still hope, because Hall also proved in [Hal ] the following theorem, based on stronger assumptions. i w ij (ℓ 1 , ...ℓ f -1 ) and its homology class (p 1 , q 1 , ..., p g , q g ) in H 1 (Σ) ≃ Z 2g . If the latter is nontrivial, it implies that at least one of the p i or q i is nonzero. Recall that H 1 (Σ) is abelian, therefore the roles of p i and q i are symmetric and we can assume without a loss of generality that p i 0 = 0 for a fixed i 0 . Given the definition we choose for ℓ, it is clear that p i = j m ij and q i = j n ij for all i. As we assumed n = 0 and p i 0 = 0, by taking u i 0 such that (u p i 0 i 0 ) n = 1 and fixing the other u i and v i to 1, we finally get

1 -u np i 0 i 0 E [tr(H n ℓ )] = 0,
which concludes the proof. Now let us turn to the computation of the variance. It is more complicated because we cannot use the same trick as in the expectation: indeed, the multiplication of edge variables by scalar matrices will not produce a nontrivial factor, as the coefficient from the word will cancel out with the one from its inverse. However, it is still possible to prove a concentration result for simple nonseparating loops. Proposition . . . Let Σ g,T be a closed compact connected surface of genus g 1 and total area T > 0, and ℓ be a nonseparating simple loop. We have tr(x 1 )tr(x 1 )s λ (x 1 )s λ (x * 1 )dx 1 .

Let us notice that the summand is exactly the one from the partition function, multiplied by the remaining integral. The latter can be reinterpreted as follows: because tr(x 1 ) = tr(x * 1 ) we have

U(N )
tr(x 1 )tr(x 1 )s λ (x 1 )s λ (x * 1 )dx 1 = tr(.)s λ (.) 2 L 2 (U(N )) ,

C

and we will prove that this norm tends to 0 as N tends to infinity. Indeed, using formula ( . ) and the character orthogonality relations, we have tr(.)s λ (. Besides, as there are at most N ways of adding a box to the diagram of λ, we indeed find out that tr(.)s λ (.) 2

L 2 (U(N ))

1 N , and therefore E[tr(H ℓ )tr(H ℓ )] → 0 as N → ∞. From Theorem . . we deduce that the variance also converges to 0.

We deduce from Theorem . . and Proposition . . that simple nonseparating loops are Haar unitaries such that the variance of their trace vanishes in the large N limit. However, that does not give us any information about the variance of more general loops with nonzero homology.

The conclusion to this section is that the master field, assuming its existence, is equal to zero when applied to the generators of the fundamental group; the moments of the limit of Yang-Mills holonomy process also converge to 0 for all other loops that are homologically nontrivial, but we don't know yet if the limit of the process itself is 0, nor if the convergence holds in probability.

. . Joint distribution for several loops

Till now, we only considered the noncommutative distribution of a single loop. However it might be also interesting to study the joint distribution of several loops, as in the case of the plane. Indeed, Lévy [Lév ] proved -among other things -that the variables (H ℓ ) ℓ∈B associated to the lasso basis of a graph on the plane are independent and asymptotically free. We will see how this result is modified in our setup, for a compact surface. Then, to conclude the proof, we only need to check that for any couple of (c 1 , c 2 ) both Wilson loops have finite variance and at least one has a variance that vanishes in the large N limit ; but this is a direct consequence of Theorem . . for the lasso generators and Prop. . . for the generators of π 1 (Σ), which are indeed simple nonseparating loops.

This Proposition implies in particular that for all (c 1 , c 2 ) ∈ B By induction, we can prove the following result.

  (H ℓ )] = e -t 2 and lim N →∞ Var[tr(H ℓ )] = 0.

  . . . Une variété différentielle réelle de classe C ∞ (ou lisse) et de dimension n ∈ N * est un espace topologique M muni d'une famille (U i , ϕ i ) i∈I telle que : les champs de vecteurs sont définis comme une famille de vecteurs indexés par l'espace sous-jacent. Ici, on ne suppose pas que la variété M possède une telle structure, et c'est pourquoi il est nécessaire d'introduire le concept d'espace tangent. Définition . . . Soit M une variété différentielle de dimension n munie d'un atlas (U i , ϕ i ) i∈I et p ∈ M un point de cette variété. L'espace tangent à M en p est le quotient T p M du R-espace vectoriel i:p∈U i {i} × R n par la relation d'équivalence suivante :

  1) et S = (0, . . . , 0, -1) sont respectivement les pôles Nord et Sud ; -ϕ N : U N → R n est la projection stéréographique par rapport au pôle Nord, c'est-à-dire que pour tout x ∈ U N , le point (ϕ N (x), 0) est l'unique point d'intersection de la droite (N x) avec l'hyperplan R n × {0} ; -ϕ S : U S → R n est la projection stéréographique par rapport au pôle Sud, c'est-à-dire que pour tout x ∈ U S , le point (ϕ S (x), 0) est l'unique point d'intersection de la droite (Sx) avec l'hyperplan R n × {0}. La Fig. . illustre la projection stéréographique du cercle S 1 par rapport au pôle nord.

  . ) appelée action adjointe. Définition . . . Soit M une variété différentielle et G un groupe de Lie. Un G-fibré principal de base M est une variété différentielle P munie d'une action libre à droite P × G → P (p, g) → p • g , dont les fibres (π -1 (x)) x∈M sont les orbites de P sous l'action de G , et d'une projection lisse π : P → M telle qu'il existe un recouvrement de M par des ouverts U i et des difféomorphismes G-équivariants

  Définition . . . Soit ω une connexion sur un G-fibré principal (P, π, M ) et σ : M → P une section de ce fibré. On définit la connexion A induite par ω sur M , ou champ de jauge sur M , par A = σ * ω. Étant donné une connexion ω sur un G-fibré principal (P, π, M ), et une courbe lisse c : [a, b] → M , toute courbe c : [a, b] → P est appelée un relèvement de c si π • c = c -en particulier, si σ est une section de P alors σ • c est un relèvement de c. Un tel relèvement est dit horizontal (par rapport à la connexion ω) si pour tout t le vecteur tangent d dt c(t) est un vecteur horizontal, c'est-à-dire ω d dt c(t) = 0. Proposition . . ([Mor ], Prop. . ). Soit G un groupe de Lie compact et (P, π, M ) un G-fibré principal, ω une connexion sur ce fibré, et c : [a, b] → M une courbe lisse. Pour tout x 0 ∈ P c(a) , il existe un unique relèvement horizontal c : [a, b] → P de c tel que c(a) = x 0 . La Prop. . . signifie que l'on peut transporter chaque point de la fibre au-dessus de c(a) sur un point de la fibre au-dessus de c(b) parallèlement à la direction définie par la connexion. Ce transport parallèle a donné naissance à la notion d'holonomie. Définition . . . Soit (P, π, M ) un G-fibré principal, σ une section de P , ω une connexion sur P et c : [0, 1] → M une courbe sur M . Alors l'holonomie de ω le long de c est la courbe h : [0, 1] → G solution de l'équation différentielle d dt h(t) = -σ * ω dc(th(1) de cette courbe calcule le transport parallèle le long de c déterminé par ω : si l'on note c le relèvement horizontal de c, celui-ci satisfait c(1) = (σ(c))(0)h(1). L'application h peut également s'interpréter comme une application hol(ω, c) : P c(0) → P c(1) G-équivariante, que l'on nomme également holonomie, et qui à tout point p ∈ P c(0) associe c(1), o ù c est l'unique relèvement horizontal de c tel que c(0) = p. On peut vérifier que les deux applications sont bien compatibles. La Fig. . illustre cette notion d'holonomie et de relèvement.

  Il s'agit ni plus ni moins que de l'image par Φ du groupe de jauge sur P , et de ce fait Φ devient un isomorphisme de groupes. cf. [DEF + , Mor ] P Proposition . . . Soit A une connexion sur M . Alors l'holonomie le long de A vérifie : (i) Si c est une courbe sur M et ϕ un changement de paramétrage croissant, alors hol(A, c • ϕ) = hol(A, c). (ii) Si c 1 et c 2 sont des courbes sur M telles que c 1 (1) = c 2 (0) alors hol(A, c 1 c 2 ) = hol(A, c 2 )hol(A, c 1 ). ( . ) (iii) Si c est une courbe sur M alors hol(A, c -1 ) = hol(A, c) -1 .

  Définition . . . Soit (A , τ ) un espace de probabilité non-commutatif. (i) Si A est muni d'une involution * antilinéaire telle que (ab) * = b * a * pour tout (a, b) ∈ A 2 et telle que τ (a * a) 0, ∀a ∈ A , alors l'état τ est dit positif et (A , τ ) est appelé * -espace de probabilité. L'état est dit fidèle s'il satisfait la propriété suivante pour tout a ∈ A : τ (a * a) = 0 ⇐⇒ a = 0. (ii) Si (A , τ ) est un * -espace de probabilité muni d'une norme • : A → [0, ∞) pour laquelle τ est continu, telle que (A , • ) soit un espace vectoriel normé complet et qui vérifie ab a b , ∀(a, b) ∈ A 2 , et a * a = a 2 , ∀a ∈ A , alors (A , τ, • ) est appelé un C * -espace de probabilité . (iii) Si (A , τ, • ) est un C * -espace de probabilité tel que A soit une algèbre de von Neumann , alors (A , τ, • ) est appelé W * -espace de probabilité.

  On utilisera par la suite la notation i 1 = • • • = i n pour signifier cette condition, en gardant à l'esprit que = n'est pas une relation transitive. Soit G un groupe et (G i ) i∈I des sous-groupes de G. Les points suivants sont équivalents :

  . ) o ù x est une variable aléatoire normale centrée de variance σ 2 . Théorème . . . Soit (A , τ ) un * -espace de probabilité et (a N ) N ∈N * une famille libre d'éléments de A identiquement distribués tels que pour tout N ∈ N * :

  . ) o ù s est un élément semi-circulaire de variance σ 2 . La Déf. . . admet une généralisation naturelle aux familles quelconques de variables aléatoires, en particulier les processus. Définition . . . Soit (A N , τ N ) N ∈N une suite d'espaces de probabilité non-commutatifs et (A , τ ) un espace de probabilité non-commutatif. Soit I un ensemble d'indices et on considère pour tout i ∈ I la suite de v.a. (a

  iii) Dans la catégorie k -Alg des k-algèbres associatives, o ù k est un corps, une représentation de degré n d'une algèbre A est la donnée d'un morphisme de k-algèbres A → M n (k). (iv) Dans la catégorie C * Alg des C * -algèbres, une représentation d'une C * -algèbre A est la donnée d'un espace de Hilbert H et d'un morphisme de C * -algèbres A → B(H).

  et qui permet de définir la trace d'un tenseur. Définition . . . Soit u ⊗ ϕ un tenseur de U ⊗ U * . Sa trace est le scalaire défini par

  . . ([BtD ], Prop. . ). Soit (ρ, V ) une représentation irréductible d'un groupe compact G, de caractère χ. Alors G χ(g 2 )dg =    1 si ρ est une représentation réelle, 0 si ρ est une représentation complexe, -1 si ρ est une représentation quaternionique.

  Proposition . . . Soit (ρ, V ) une représentation de dimension finie d'un groupe compact G.(i) Il existe un produit scalaire •, • sur V pour lequel ρ est une représentation unitaire.

  et il se trouve qu'elle est bijective, comme l'indique le théorème suivant. Théorème . . . Pour tout λ ∈ P + il existe une représentation irréductible de U(N ) de plus haut poids λ. De plus, si π est une représentation irréductible de U(N ) de plus haut poids λ et de caractère χ π , alors pour tout t ∈ T N , χ π (t) = s λ (t), ( . ) o ù s λ est la fonction de Schur associée à λ . En particulier, si deux représentations irréductibles ont le même plus haut poids, alors elles sont équivalentes.On utilise implicitement la bijection T N ≃ U(1) N ⊂ C N pour étendre les fonctions de Schur au tore maximal T N .

  Soit G un groupe et (E, V, F) un graphe admissible sur une surface M , muni d'une orientation E + . Si c = e ε 1 1 • • • e εn n est un chemin passant par les arêtes e 1 , . .

  . ) L'application c → h c satisfait la même propriété de multiplicativité que celle décrite dans la Prop. . . pour l'holonomie d'une connexion le long d'un lacet.Il reste désormais à munir notre espace de configuration d'une mesure de probabilités, comme annoncé plus tôt. Le dernier ingrédient nécessaire à la définition de cette mesure est la donnée d'une mesure d'aire sur M , c'est-à-dire d'une mesure borélienne absolument continue par rapport à la mesure de Lebesgue dans toute carte. On l'utilisera pour mesurer l'aire des faces du graphe et on notera |F | l'aire de la face F ∈ F. Définition . . . La mesure de Yang-Mills sur G de groupe de structure G est la mesure de proba-

  ) , o ù chaque arête e de G 1 est vue comme un chemin de G 2 . On peut montrer, en utilisant la propriété de semi-groupe du noyau de la chaleur (p t ) t 0 sur G, que µ T,G,G 1 = (ι 2→1 ) * µ T,G,G 2 , et que les fonctions de partition Z T,G,G 1 et Z T,G,G 2 sont égales. En particulier on peut définir Z T,G comme la valeur de la fonction de partition de la mesure de Yang-Mills, qui ne dépend donc pas du choix d'un graphe sur la surface. On peut également construire une limite inductive des mesures de Yang-Mills sur des graphes plongés dans une même surface, mais cette construction est nettement plus difficile à montrer. En effet, étant donné deux graphes G 1 et G 2 , il n'existe pas toujours un troisième graphe qui soit à la fois plus fin que G 1 et G 2 . De plus, il n'est pas toujours garanti qu'un lacet, même très régulier, puisse s'écrire comme concaténation d'arêtes d'un graphe -son complémentaire peut par exemple posséder une infinité de composantes connexes (par exemple on ne peut pas trouver de graphe qui contienne le lacet issu de la concaténation du segment [0, 1/π] et du graphe de la fonction x → x sin(1/x) sur [0, 1/π], comme illustré à la Fig..). Un choix possible pour résoudre ces difficultés est de munir M d'une structure riemannienne telle que le volume riemannien coïncide avec la mesure d'aire, et de restreindre l'ensemble des chemins aux chemins géodésiques par morceaux, comme montré dans[Lév , Lév ], et il est ensuite envisageable d'étendre cette construction à des lacets moins réguliers par des raisonnements de densité. On obtient alors le théorème suivant.

Figure . :

 . Figure . : Un lacet de R 2 que l'on ne peut pas écrire comme un chemin tracé dans un graphe.

  Fig. . sur un tore d'aire totale T . Si l'on pose t = |F 1 | et si l'on se donne f : G → C, on peut calculer E[f (H ℓ 1 )] = C G G f (H ℓ 1 )dµ T,G,G en utilisant la Prop. . . et cela donne

  Figure . : En recollant les bords du cylindre de gauche, on obtient la bouteille de Klein de droite. L'étape du milieu montre que pour préserver l'orientation du bord recollé la surface doit se traverser elle-même.

Figure . :

 . Figure . : Le polygone (à gauche) correspondant à la construction de la bouteille de Klein de la Fig. . peut être transformé en le domaine fondamental de la bouteille de Klein (à droite) par découpage et recollement.

  . ) o ù l'on a alors la convergence de variables aléatoires complexes vers une constante réelle. Il nous est donc possible de donner une nouvelle description du champ maître, peut-être plus simple que celle de la Déf. . . . Définition . . . Soit M ∈ Σ ∪ {R 2 } une surface et m un point de M . Un champ maître sur M est une fonctionnelle Φ : L m (M ) → R qui vérifie l'équation ( . ) pour tout ℓ ∈ L m (M ).

  genre g 1 et d'aire T . Soit ℓ un lacet simple contractile entourant un domaine d'aire t. Lorsque le groupe de structure est U(N ) ou SU(N ) avec N qui tend vers l'infini, la trace du champ d'holonomie de Yang-Mills sur Σ g,T associé au lacet ℓ vérifie lim N →∞ E[tr(H ℓ )] = e -t/2 ,

C

  

  Definition . . . Let H + = {τ ∈ C : ℑ(τ ) > 0} be the complex upper-half plane and D = {q ∈ C : |q| < 1} the open unit disk. (i) The Jacobi theta function is the function ϑ : C × H + → C defined by ϑ(z; τ ) = n∈Z e iπn 2 τ +2iπnz . ( . ) (ii) The Euler function is the function φ : D = {q ∈ C : |q| < 1} → C defined by

  (Murnaghan-Nakayama rule). Let λ ∈ U(N ) be a highest weight, r a positive integer.Then we haveTr(x r )s λ (x) = µ∈ U(N ) µ≻rλ

C

  (ii) The limit of its Wilson loop variance is zero:lim N →∞ Var(tr(H L )) = 0.( . )(iii) The limit Φ L satisfy a large-N Makeenko-Migdal equation as follows: if v is a self-intersection point of L and if we vary the areas of the faces in a checkerboard pattern as in Fig.., resulting in a family of curves L(t), then

  Let λ ⊢ n for any positive integer n. We have

  not hard to find out that for any ν ∈ SU(N )

  Proof of Thm. . . in the unitary case. According to Equation ( . ), we haveE[tr(H ℓ )tr(H * ℓ )] = 1 N 2 Z N (g, T ) λ,µ∈ U(N ) λ∼µ λ =µ q c 2 (µ) (d µ ) 2g-2

  2 (µ)-c 2 (λ)) 2 (µ)-c 2 (λ)) .

  2 (µ)-c 2 (λ)) .

  2 (λ N (α,β,n))-c 2 (λ N (α ′ ,β,n))) d λ N (α,β ′ ) d λ N (α,β) e t 2 (c 2 (λ N (α,β,n))-c 2 (λ N (α,β ′ ,n))) .

2 ,From

 2 2 (µ)-c 2 (λ)) .For any λ ∼ µ, if we set α = α µ , α ′ = α λ , β = β µ , β ′ = β λ , n = n µ and n ′ = n λ , we get in particular that n = n ′ and |α| -|β|= |α ′ | -|β ′ |. In particular, if we use the fact that c 2 (µ) = c ′ 2 (λ N (α, β))+ n + |α| -|β| N 2 and c 2 (λ) = c ′ 2 (λ N (α ′ , β ′ ))+ n ′ + |α ′ | -|β ′ | N then it follows that c 2 (µ)c 2 (λ) = c ′ 2 (λ N (α, β))c ′ 2 (λ N (α ′ , β ′ )). d λ N (α ′ ,β ′ ) d λ N (α,β) e -T 2 c ′ 2 (λ N (α,β))+ t 2 (c ′ 2 (λ N (α,β))-c ′ 2 (λ N (α ′ ,β ′ ))) d λ N (α ′ ,β ′ ) d λ N (α,β) e -T 2 c ′ 2 (λ N (α,β))+ t 2 (c ′ 2 (λ N (α,β))-c ′ 2 (λ N (α ′ ,β ′ ))) β ′ =β d λ N (α,β ′ ) d λ N (α,β) e -T 2 c ′ 2 (λ N (α,β))+ t 2 (c ′ 2 (λ N (α,β))-c ′ 2 (λ N (α,β ′ ))) ,then we getE γ 2 [tr(H ℓ )tr(H * ℓ )] 1 Z N (g, T ) |α|>N γ ,|β| N γ n∈Z e -T 2 (n+ |α|-|β| N ) 2 (d λ N (α,β,n) ) 2g-2 (S N,1 + S N,2 + S N,3 + S N,4 ) . d λ N (α ′ ,β ′ ) d λ N (α,β) ,and from Prop. . . and . . we have for N large enough S N,1 e -T 8 (|α|+|β|) (1 + 144N 3γ-1 ).Similarly, we haveS N,2 e -T 8 (|α|+|β|) (1 + 144N 3γ-1 ), S N,3 e -T 8 (|α|+|β|) |α| N 2 (1 + 144N 3γ-1 ), S N,3 e -T 8 (|α|+|β|) |β| N 2 (1 + 144N 3γ-1 ).Asn∈Z e -T 2 (n+ |α|-|β| N ) 2is uniformly bounded for every α, β and N by C = 1 + ϑ(0; iT /2π), we getE γ 2 [tr(H ℓ )tr(H * ℓ )] C(1 + 144N 3γ-1 ) Z N (g, T ) |α|>N γ ,|β| N γ 4(|α| + |β|)e -T 8 (|α|+|β|) N 2 (d λ N (α,β) ) 2g-2 .Let us also recall that for any α and β we have d λ N (α,β) 1, therefore the sum of the right-hand side is bounded by |α|>N γ ,|β| N γ 4(|α| + |β|)e -T 8 (|α|+|β|) .

Z

  N (g, T ) 1 N 2g-2 µ∈ U (N )\Λ N e -T 2 c 2 (µ)-tn N ,Cand the right-hand side tends to 0 as N tends to infinity because 2g -2 > 0 and the sum on the right is bounded independently from N . Finally, as Z N (g, T ) → ϑ(0; iT 2π ), we get that limN →∞ E[tr(H ℓ )] = e -t 2 ,as expected.

  2 (µ)-c 2 (λ)) .If µ = (n, . . . , n) ∈ Λ N is a flat highest weight, then there are only two highest weigths equivalent to µ: λ = (n + 1, n, . . . , n, n -1) and µ itself. We have c 2 (λ) = n 2 + 2 andd λ = N 2 -1, therefore 1 N 2 Z N (g, T ) µ∈Λ N λ∈ U(N ) 2 (µ)-c 2 (λ)) =e -t Z N (g, T ) n∈Z

  Theorem . .([Hal ], Thm. ). Let Σ be a closed compact connected surface of total area T . If for any simple loop c contained in a topological disk of Σ the Wilson loop expectation E[tr(H c )] admits a finite limit (as N → ∞) which is continuous with respect to the area of the domain enclosed by c, and if for any such curve c the variance of the Wilson loop Var(tr(H c )) tends to 0, then for any small loop L with a finite number of simple self-intersections included in a topological disk:(i) The limit Φ L := lim N →∞ E[tr(H L )] exists and depends continuously on the areas of the faces of L.

  (H L )) = 0. (iii) The limiting expectation values satisfy the following large-N Makeenko-Migdal equations. Let us vary the areas of the faces surrounding a crossing v in a checkerboard pattern as in Fig. . , resulting in a family of curves L(t). Thenddt Φ L(t) = Φ L 1 (t) Φ L 2 (t) ,(. ) 

  Theorem . .([Hal ], Thm. ). Let Σ be a closed compact connected surface of total area T . If for any closed curve c contained in a topological disk of Σ and any n ∈ Z the Wilson loop expectation E[tr(H n c )] admits a finite limit (as N → ∞) which is continuous with respect to the area of the domain enclosed by c, and if for any such curve c the variance of the Wilson loop Var(tr(H n c )) tends to 0, then for any loop L with a finite number of simple self-intersections included in a topological disk:(i) The limit Φ L := lim N →∞ E[tr(H L )] exists and depends continuously on the areas of the faces of L.CProof. Let a 1 , b 1 , ..., a g , b g , ℓ 1 , ..., ℓ f the tame generators of L red v (G) (cf. Prop. . . ). Without a loss of generality we can set the loop ℓ =

p

  Let us now compute E [tr(H n ℓ )]. From the Driver-Sengupta formula we haveE [tr(H n ℓ (z 1 , ...z f -1 ) n f -1 t=1 p |Ft| (z t ) × p |F f | [x 1 , y 1 ]...[x g , y g ](z 1 ...z f -1 ) u 1 , v 1 , ..., u g , v g ∈ Z(G) some elements of the center of U(N ). As Z(U(N )) is the set of scalar matrices we can set u i = u i I N and v i = v i I N with |u i | = |v i | = 1.Let us consider now Hℓ the random variable obtained from H ℓ by multiplying the generators of π 1 (Σ) by u i and v i respectively. In other terms, it is characterized by ix i ) m ij (v i y i ) n ij w ij (z 1 , ...z f -1 )) n f -1 t=1 p |Ft| (z t ) × p |F f | [u 1 x 1 , v 1 y 1 ]...[u g x g , v g y g ](z 1 ...z f -1 )We will compute E tr( Hn ℓ ) in two different ways.(i) Using the fact that[u i x i , v i y i ] = [x i , y i ], we get by linearity i ) m ij (y i ) n ij w ij (z 1 , ...z f -1 )) |Ft| (z t ) p |F f | [x 1 , y 1 ]...[x g , y g ](z 1 ...z f -1 ) the change of variables x ′ i = u i x i , y ′ i = v i y i inEquation ( . ) we directly get E [tr(H n ℓ )]. These computations lead to g i=1 u np i i v nq i i E [tr(H n ℓ )] =E [tr(H n ℓ )] ,

  (H ℓ )] = 0.Proof. We can complete ℓ into a set of generators {a 1 , b 1 , . . . , a g , b g } of π 1 (Σ g,T ), with ℓ = a 1 . From Driver-Sengupta formula we haveE[tr(H ℓ )tr(H ℓ )] = 1 Z N (g, T ) U(N ) 2g tr(x 1 )tr(x 1 )p T ([x 1 , y 1 ] • • • [x g , y g ])dx 1 dy 1 • • • dx N dy N ,and we can use, as always, the Fourier decomposition of the heat kernel, which yieldsE[tr(H ℓ )tr(H ℓ )] = 1 Z N (g, T ) 1 )tr(x 1 )s λ ([x 1 , y 1 ] • • • [x g , y g ])dx 1 dy 1 • • • dx N dy N .Then, using g -1 times Lemma . . and once Prop. . . , we find E[tr(H ℓ )tr(H ℓ )

  {µ ∈ U(N ) : µ ց λ}.

  Proposition . . . Let Σ be a closed compact connected surface of genus g 1 and G an admissible graph on Σ with f faces, and v a vertex in G.Let B = {a 1 , b 1 , . . . , a g , b g , ℓ 1 , . . . , ℓ f } the set of tame generators of L red v (G), then all these generators are asymptotically uncorrelated, that is, limN →∞ Cov(tr(H c 1 ), tr(H c 2 )) = 0, ∀(c 1 , c 2 ) ∈ B 2 . ( . )Proof. From Cauchy-Schwarz inequality, we have |Cov(tr(H c 1 ), tr(H c 2 ))| Var(tr(H c 1 )) Var(tr(H c 2 )).

master field on compact orientable surfaces

  Genus g 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genus g = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The master field, from Wilson to Makeenko-Migdal . . . . . . . . . . . . . . . . . . Wilson loop expectations for simple loops . . . . . . . . . . . . . . . . . . . Makeenko-Migdal equations . . . . . . . . . . . . . . . . . . . . . . . . . Compact surfaces of higher genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contractible simple loops . . . . . . . . . . . . . . . . . . . . . . . . . . . Loops with self-intersections . . . . . . . . . . . . . . . . . . . . . . . . . . Loops with nontrivial homology . . . . . . . . . . . . . . . . . . . . . . . . Joint distribution for several loops . . . . . . . . . . . . . . . . . . . . . . . Remaining loops: the 'missing link' . . . . . . . . . . . . . . . . . . . .
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. . and . . that lim N →∞ E[tr(H ℓ )] = e -t 2 and lim T M . .

. Espaces de probabilité non-commutatifs Définition . . . Un

  espace de probabilité non-commutatif est un couple (A , τ ), o ù A est une Calgèbre unitaire, et τ est une forme linéaire sur A qui vérifie τ (1 A ) = 1, appelée état. τ est appelé état tracial, ou trace, s'il vérifie la propriété supplémentaire suivante :

	C	L	Y	-M
	.			

  Le module ∆ est un morphisme continu de groupes de G vers R + . Soit G un groupe (resp. un groupe topologique, un groupe de Lie), et K = R ou C. Une représentation de G est la donnée d'un K-espace vectoriel V et d'un morphisme de groupes ρ

(iii) Si le module de G est constant et égal à 1, on dit que G est unimodulaire. Dans ce cas, toute mesure de Haar à gauche est une mesure de Haar à droite, et elle est invariante par passage à l'inverse. . . Définitions et constructions générales Définition . . .

  des graphes admissibles orientés tels que G 2 est plus fin que G 1 , i.e. si toute arête de G 1 est un chemin dans G 2 , on peut construire une inclusion C

	C	L	Y	-M

  , b 1 , . . . , a g , b g ) sont des générateurs du groupe fondamental de M , -pour tout i ∈ {1, . . . , f }, ℓ i est un lasso qui entoure la face F i , c'est-à-dire un lacet de la forme c∂F

		. )
	o	ù -f = |F| est le nombre de faces du graphe,
		-(a 1

i c -1 avec c un chemin qui part de m et rejoint le bord de F , -pour toute fonction intégrable f :

  la même loi au temps T que [H a , H b ]. En d'autres termes, H ℓ a la loi d'un "pont brownien sur G entre l'élément neutre et le commutateur de deux unitaires de Haar". Dans le chapitre nous verrons dans quelle mesure la limite des moments du champ d'holonomie de Yang-Mills avec pour groupe de structure U(N ) (resp. SU(N )) s'approche de celle des moments du mouvement brownien unitaire (resp. spécial unitaire).

	C	L	Y	-M

  ). Pour tout T 0, la quantité F (T ) existe. Cela définit une fonction F : R * + → R qui est de classe C 2 sur R * + et de classe C ∞ sur R * + \{π 2 }. Par ailleurs, la dérivée troisième de F admet un saut de -2 π 6 en π 2 :

	lim T →π 2 T <π 2

  tr ∞ est un caractère du groupe G ∞ . Cette définition est reprise dans le cas de la sphère dans[DN ], et elle est autant intuitive qu'elle est peu commode car il est difficile de rendre explicites P ∞ et G ∞ ; par exemple lorsqu'on considère le champ de Yang-Mills avec pour groupe de structure U(N ), rien ne garantit que le groupe G ∞ associé soit le groupe U(∞) défini comme limite inductive, et même si c'était le cas, il s'avère que U(∞) est un groupe pour lequel l'analyse harmonique est difficile à effectuer : le lecteur intéressé pourra consulter les travaux d'Olshanski[Ols , BO , GO ] sur le sujet. Toutefois, il est possible de contourner cette approche en utilisant le langage des probabilités non-commutatives. Soit M ∈ Σ ∪ {R 2 } une surface et m un point de M . Un champ maître sur M est la donnée d'un * -espace de probabilité (A , τ ) et d'un processus stochastique non-commutatif (h ℓ ) ℓ∈Lm(M ) sur A qui vérifie les hypothèse suivantes :

	C	L	Y	-M
	o ù Définition . . .		

Cela se fait de manière analogue à la Prop. . . . On parle aussi de champ de jauge en physique.

(iv) Si G est compact ou abélien, alors il est unimodulaire.On peut faire le rapprochement avec la définition . . lorsque G est un groupe de Lie, et en utilisant la correspondance entre mesures et 1-formes différentielles.

En particulier, la théorie des fonctions sphériques sur une paire de Gelfand s'apparente à la théorie qui découle du théorème de Peter-Weyl, et permet par exemple de traiter le cas d'un groupe localement compact. On pourra consulter[Far ] pour un aperc ¸u de cette théorie.

Proof. Let us start with The case when λ ց µ. Let i 0 be the index such that λ i 0 = µ i 0 + 1. From the definitions of c ′ 2 (µ) and c ′ 2 (λ) (see ( . )) and the fact that i 0 N , we have the estimation

From ( . ) and the fact that |µ| = |α| -|β| + N β 1 |α| + N |β|, we then get

and the inequality ( . ) is satisfied for N such that t 2N < T 8 . Now let us prove the case when λ ∼ µ. If λ = µ then the result directly follows from Lemma . . . Otherwise, there are i 0 = j 0 such that

Using the definition of Casimir number, we have

As

If i 0 < j 0 then we have c ′ 2 (µ)c ′ 2 (λ) 0 and the bound given by the case λ = µ still holds. Otherwise, we have

Since µ 1 = α 1 + β 1 |α| + |β| and using Lemma . . we obtain

The inequality follows, when N satisfies t N < T 8 . We can also mention a similar result, that will be used to prove Thm. . . in the unitary case, and which is a direct consequence of Prop. . . .

(ii) If β ′ is a partition such that β ′ ր β and i 0 is the index such that